Product Catalog

2022

Leaders in the automation industry since 1963

TELE specializes in developing state-of-the-art monitoring, control, and automation technology and fulfills and exceeds local sourcing needs of OEMs, resellers, and distributors.

TELE is a family-owned technology company headquartered in Austria that is passionate about hiring the best to develop and manufacture control and monitoring solutions for both; the energy and the industrial sector.

FOUNDED IN 1963, TELE Haase continues to be a market leader for time and monitoring relays and has been developing customized solutions and components for the industrial and energy sectors for more than five decades.

TELE PRODUCTS are used globally and located in control cabinets, industrial plants, and transformer stations, as well as in the wind, water, and solar energy power plants.

IN THE COMING YEARS, TELE's technology integrates seamlessly into the industrial landscape by learning to communicate and deliver data across different interfaces and places where that information is needed. In doing so, we pave the way for the factory of the future and, even better, enable industries to be more efficient, green and worker friendly.

Serving North America

Our products are designed to protect, monitor, and automate systems for a wide range of industries. TELE relays might be small, but they master an immense variety of applications.

United States, Canada \& Mexico

Since 2018, TELE CONTROLS I N C . has been located out of Arlington, Virginia, fulfilling and exceeding the local sourcing needs of OEMs (original equipment manufacturers) to resellers and distributors throughout North America. TELE Controls has provided excellent on-demand project support in addition to personal sales assistance.

At a glance

- Headquartered in Vienna, Austria
v Offices in the USA and UK
- Production in

Austria since 1963
\checkmark 55+ years of experience
, Global sales network serving 50+ countries
, Reliable and "green" automation components

We Are Automation

With nearly 60 years of experience in the development and production of control and monitoring components, we are proud of sharing this know-how with our customers.

In America and the world over

Be it in Arlington (USA), Vienna (Austria), or anywhere else in the world - TELE stands for top quality, sustainability, and exceptional customer service - both for TELE devices and for jointly developed products (EMS).

TELE customers can rely on an experienced, flexible, and reliable partner for the innovative development of ideas and their manufacturing.

How can you benefit from TELE?

, Short development and lead times

- Proven modular components
- Ability to integrate into the customer's system
\checkmark Scalable in price and performance
- In-house development and production with optimized batch sizes

Our Business Areas

> With solid engineering know-how, TELE develops and produces smart technology for a better world. We try out ideas and break new ground on our way to "the company of the future".

Automation components

According to our customers' needs, we develop and produce technical solutions for a wide variety of controlling and monitoring tasks, such as timing and monitoring relays, grid and system protection, power electronics and industrial IoT. TELE products are being used all over the world in control cabinets, plant and machinery, renewable energy sector or facility management.

EMS Contract Manufacturing

At TELE Haase you will find our conveniently located Electronic Manufacturing Services (EMS), which can flexibly adapt to your requirements with a personal touch and Austrian quality. We support you in ideation, electronic development , prototyping to serial production and delivery.

Factory Hub Vienna

With the Factory Hub we offer space for new ideas and concepts of young founders and support startups with our extensive production know-how in the implementation of prototypes and small series along with out in-house coworking space.

Organisation Playground

TELE implemented a new organization structure in 2012 and invites people to join our experiences. Based on the idea of "New Work" we operate without traditional hierarchies and make democratic decisions. This promotes individual responsibility andagility, and puts us in a position to offer operational excellence at all levels in the future.

Product Portfolio

Time Delay Relays

- Single function timers
- ON and OFF delay
- Multi-function timers
- Timer modules for industrial switching relays
- Star-delta (wye-delta) timers
- Digital timers
- Staircase timers
- Impulse encoders
- Alternating function timers
- Pump/ Load alternators

Monitoring Relays

- Phase failure/ loss
- Phase sequence
- Phase imbalance / Asymmetry
- Voltage up to 900 V AC
- Current up to 100 A AC/DC direct or higher via external CTs
- Effective frequency from $40-70 \mathrm{~Hz}$
- Temperature via PTC, NTC or PT100
- Conductive liquid level

Power Meters

- 1~ power meter up to 50 A and 1000 V with ModBusRTU interface
- 1~ power meter up to 300A and 1000V with ModBusRTU interface
- Real power monitor up to $11 \mathrm{~kW} / 15 \mathrm{hp}$ direct or higher via external CTs
- Power factor monitor up to 11 kW/15hp direct or higher via external CTs

Accessories

- TR power modules
- DIN-Rail mounting plates
- Sealable front covers
- Conductive probes
- USB to RS485 converters

Switching Relays

- RM/RA, miniature "ice cube" relays
- RT, industrial relays
- RP, PCB relays
- STKR, PLC coupling relays
- Sockets and modules

Power Supplies

- Industrial power supplies
- Compact power supplies

Thyristor Stacks

- Thyristor stacks, 1- \& 3-phase SCRs

■ Semiconductor fuses

- Fuse holders

Product Series

Designed to fulfill your needs:
 Meet our ENYA, VEO and GAMMA Series!

ENYA
time delay and MONITORING RELAYS

VEO
TIME DELAY AND
MONITORING RELAYS

GAMMA
TIME DELAY RELAYS, MONITORING RELAYS AND POWER MONITORS

DESIGN FEATURES	Economical design 0.7 in (17.5 mm) or 1.4 in (35 mm) IEC style footprint DIN rail mount Screw terminals	Compact industrial design 0.9 in (22.5 mm) or 1.8 in (45 mm) IEC style footprint DIN rail mount Screw terminals or push-in terminals Flexible marking plate Ultra-low profile	Advanced industrial design $0.9 \mathrm{in}(22.5 \mathrm{~mm}$) or $1.8 \mathrm{in}(45 \mathrm{~mm})$ IEC style footprint DIN rail mount Screw terminals Marking area
	$\begin{gathered} \mathrm{W} \times \mathrm{H} \times \mathrm{D} \\ 0.69 / 1.38 \times 2.43 \times 2.56 \mathrm{in} \\ (17.5 / 35 \times 87 \times 65 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { W } \times \mathrm{H} \times \mathrm{D} \\ 0.88 / 1.76 \times 2.64 \times 2.99 \mathrm{in} \\ (22.5 / 45 \times 67 \times 76 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} W \times H \times D \\ 0.88 / 1.76 \times 3.54 \times 4.25 \mathrm{in} \\ (22.5 / 45 \times 90 \times 108 \mathrm{~mm}) \end{gathered}$
FUNCTIONALITY	Timing and monitoring relays Single and multifunction versions Control/ trigger input fully adjustable LED status indication	Timing and monitoring relays Single and multifunction versions Control/ trigger input Fully adjustable LED status indication	Timing and monitoring relays Power monitors, transducers Control/ trigger input Single and multifunction versions Fully adjustable LED status indication or LCD screen
TECHNICAL FEATURES	Outputs SPDT, SPNO, SPNC or DPDT Power supply range $12-240 \mathrm{~V}$ AC/DC	Outputs SPDT, SPNO, SPNC, 3PNO or DPDT analog out $0 . . .20 \mathrm{~mA}, 4 . . .20 \mathrm{~mA}, 0 . . .10 \mathrm{~V}$ and bipolar Power supply range 12-240 V AC/DC	Outputs SPDT, SPNO, SPNC or DPDT analog out, $4 . . .20 \mathrm{~mA}$ and $0 . . .10 \mathrm{~V}$ Power supply range $24-240 \mathrm{~V}$ AC/DC or 12 to 5000 V AC or 24 VDC via $\mathrm{TR}^{\prime \prime}$ and TR3 power modules
	```Accuracy \leq5% Energy consumption 0.8-1.3W Operating temperature - 13 to +131 %}\textrm{F (-25 to +55 ' C)```	```Accuracy \leq2.5% Energy consumption 0.35-0.60W Operating temperature - 13 to +131 %}\textrm{F (-25 to +55 ' C)```	Accuracy $\leq 3 \%$ Energy consumption $1.0-1.5 \mathrm{~W}$ Operating temperature -13 to $+131^{\circ} \mathrm{F}$ $\left(-25\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$
	Overvoltage category III / 4kV	Overvoltage category III / 4kV	Overvoltage category III / 4kV or 6 kV
	CE, EAC, UL, CSA, UKCA	CE, EAC, UL, CSA, UKCA	CE, EAC, UL, CSA, UKCA
	EN 61812-1, EN 60947	EN 61812-1, EN 60947	EN 61812-1, EN 60947, EN 50178



## Products Impacting

## The Market

Our most unique innovations:


E1ZMLA10 24-240V AC/DC
Why decide between a pump alternator and timer when you can have both in one device? Control voltages of 24-240V AC/DC and make your life easier.

See page 14


V4IA100A 24-240V AC/DC
The unit has an integrated current transducer that works from 0-100A AC and DC. With the flexibility of selecting from one of six integrated analog outputs.


TIMER MODULE COM3T
Transform your regular switching relay into a multifunctional super time delay relay and contactor.


G4BM480V12ADTL20
This REAL power monitor doesn't require software skills for set-up and monitoring. Simplifying the way power monitoring should be executed.


## Function Overview

Time Delay Relays

## Our Functions In Detail:

$U$	Supply voltage
LED	LED status indication
LED U	LED status indication supply voltage
LED R	Led status indication relay output


LED U/t	LED status indication for supply voltage   and timing of function
R	Relay output
T	Thyristor output


$S$	Control/Trigger input
Y	Star-/ Wye-time
$\Delta$	Delta time
t	Set time

## E ON DELAY



When the supply voltage $U$ is applied, the set interval $t$ begins. After the interval $t$ has expired the output relay $R$ switches into on-position. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the set interval, the interval $t$ already expired is erased and is restarted when the supply voltage is next applied.

## A OFF DELAY WITHOUT AUXILIARY VOLTAGE



When the supply voltage $U$ is supplied, the output relay $R$ swiches into on-position. If the supply voltage is interrupted, the set interval $t$ begins. After the set interval $t$ has expired the output relay $R$ switches into off-position. If the supply voltage is reconnected before the interval $t$ has expired the interval already is erased and is restarted with the next cycle.

## R OFF DELAY



The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the output relay R switches into on-position. If the control contact is opened, the set interval t begins. After the interval $t$ has expired the output relay switches into off-position. If the control contact is closed again before the set interval has expired, the interval already expired is erased and is restarted.

## S STAR-DELTA START-UP (WYE DELTA)



When the supply voltage $U$ is applied, the star-contact switches into on-position and the set star-time t1 begins. After the interval t1 has expired the star-contact switches into off-position and the set transit-time t2 begins. After the interval t2 has expired the delta-contact switches into on-position. To restart the function the supply voltage must be interrupted and reapplied.

## ER ON DELAY AND OFF DELAY WITH CONTROL CONTACT



The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the set interval t 1 begins. After the interval t 1 has expired, the output relay R switches into on-position. If the control contact is opened, the set interval t 2 begins. After the interval t2 has expired, the output relay Switches into off-position. If the control contact is opened before the interval t 1 has expired, the interval already expired is erased and is restarted with the next cycle.


When the supply voltage $U$ is applied, the release for the interval starts. When the control contact $S$ is closed, the set interval $t$ begins. If the control contact $S$ is opened during the set interval $t$, the interval stops, and the already expired interval is stored. During the lapse of time the control contact can be opened or closed as often as required. If the sum of the periods, in which the control contact S is closed reaches the set interval $t$ the output relay $R$ switches into on-position. The interval is stopped and a further activation of the control contact $S$ remains without effect. By interrupting the supply voltage, the device will be reset. A possibly expired time t is deleted.

## Es ON DELAY WITH CONTROL INPUT



The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the set interval $t$ begins. After the interval $t$ has expired the output relay $R$ switches into on-position. This status remains until the control contact is opened again. If the control contact is opened before the interval t has expired , the interval already expired is erased and is restarted with the next cycle.

ET ON DELAY TWO WIRE CONNECTED


When the supply voltage $U$ is applied, the set interval $t$ begins. After the interval has expired the thyristor switches on. This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval, the interval already expired is erased and is restarted when the supply voltage is next applied.

## Wu SINGLE SHOT LEADING EDGE VOLTAGE CONTROLLED



EWu ON DELAY SINGLE SHOT LEADING EDGE WITH CONTROL CONTACT


When the supply voltage $U$ is applied, the set interval t1 begins. After the interval t1 has expired, the output relay R switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into off-position. If the supply voltage is interrupted before the interval $\mathrm{t} 1+\mathrm{t} 2$ has expired, the interval already expired is erased and is restarted when the supply voltage is next applied.
nWu MAINTAINED SINGLE SHOT LEADING EDGE


When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval $t$ begins. After the interval $t$ has expired the output relay switches into off-position. This status remains until the supply voltage is interrupted. If the supply voltage is reconnected before the interval t has expired, the unit continues to perform the actual single shot.

## Ws SINGLE SHOT LEADING EDGE WITH CONTROL INPUT



The supply voltage $U$ must be constantly applied to the device. When the control contact S is closed, the output relay R switches into on-position and the set interval t begins. After the interval t has expired the output relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.


The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the set interval t1 begins. After the interval t1 has expired, the output relay R switches into on-position and the set interval t 2 begins. After the interval t 2 has expired, the output relay switches into offposition. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

## Wa SINGLE SHOT TRAILING EDGE WITH CONTROL INPUT



The supply voltage U must be constantly applied to the device. Closing the control contact $S$ has no influence on the condition of the output R. When the control contact is opened, the output relay switches into on-position and the set interval $t$ begins. After the set interval has expired, the ouput relay switches into off-position. During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.
nWa MAINTAINED SINGLE SHOT TRAILING EDGE


When the supply voltage $U$ is supplied, the output relay $R$ remains into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position and the set interval t begins. After the set interval t has expired the output relay switches into off-position. When the supply voltage is reconnected before the interval $t$ has expired, the unit continues to perform the actual single shot.

## nWuWa MAINTAINED SINGLE SHOT LEADING AND TRAILING EDGE



When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval t begins.
After the interval thas expired the output relay switches into off-position. As soon as the supply voltage is interrupted the output relay switches into on-position again and the set interval t begins. After the set interval t has expired the output relay switches into off-position. If the supply voltage is interrupted ( nWu ) or reconnected ( $n W$ a) before the interval $t$ has expired the unit continues to perform the actual single shot

WsWa SINGLE SHOT LEADING AND SINGLE SHOT TRAILING EDGE WITH CONTROL CONTACT


The supply voltage $U$ must be constantly applied to the device. When the control contact $S$ is closed, the output relay R switches into on-position and the set interval t1 begins. After the interval t1 has expired, the output relay $R$ switches into off-position. If the control contact is opened, the output relay again switches into on-position and the set interval t2 begins. After the interval t2 has expired the output relay switches into offposition. During the interval, the control contact can be operated any number of times.

## Bi FLASHER PULSE FIRST

LED U/t

## Bp FLASHER PAUSE FIRST

LED U/t


When the supply voltage $U$ is applied, the set interval $t 1$ begins and the output relay $R$ switches into onposition. After the interval t 1 has expired, the set interval t 2 begins. So that the output relay R remains in on-position, the control contact $S$ must be closed and opened again within the set interval t2. If this does not happen, the output relay R switches into off-position and all further pulses at the control contact are ignored. To restart the function the supply voltage must be interrupted and reapplied.

## Ii ASYMMETRIC FLASHER PULSE FIRST

When the supply voltage $U$ is applied, the output relay $R$ switches into on-position and the set interval t 1 begins. After the interval t1 has expired, the output relay switches into off-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into on-position. The output relay is triggered at the ratio of t 1 :t2 until the supply voltage is interrupted.

Ip ASYMMETRIC FLASHER PAUSE FIRST


When the supply voltage $U$ is applied, the set interval t1 begins. After the interval t1 has expired, the output relay $R$ switches into on-position and the set interval t2 begins. After the interval t2 has expired, the output relay switches into off-position. The output relay is triggered at the ratio of $\mathrm{t} 1: \mathrm{t} 2$ until the supply voltage is interrupted.

T, TW FUNCTION AUTOMATIC TIMER WITH (TW) OR WITHOUT (T) SWITCH-OFF WARNING


After the pushbutton (control input) has been pressed, the output relay Rcloses and the set interval t begins. If the pushbutton is pressed again before the interval has expired, the interval begins again (restart function complies with EN 60669-2-3). Rapid, multiple pressing of the pushbutton (pumping) adds 2, 3 or more time intervals to extend the time up to 60 min . Prolonged pressure on the button ( $>2 \mathrm{~s}$ ) aborts the interval running and switches the relay off (energy saving function). In the TW mode the device provides a switch-off warning (in accordance with DIN 180-158-2) by generating short pulses (flashing) at 30 s , 15 s and 5 s prior to switch-off.

## P, PN IMPULSE SWITCH MODE



P(R) IMPULSE SWITCH MODE WITH OFF DELAY


In this mode, every keypress toggles the output relay R (flip-flop). After the pushbutton (control input) has been pressed, the output relay closes and the set interval $t$ begins. After the interval has expired the output relay switches into off-position. If the pushbutton is pressed again before the interval has expired, the interval will be canceled and the output relay switches into off-position.

## LA LOAD ALTERNATOR - PUMP CHANGER



In this mode, every falling edge toggles the output relay R (flip-flop) from L1 to L2 or L2 to L1 whatever position is defined by the previous status. On Power-Up the relay $R$ stays in off condition until the first falling edge is detected on S Terminal B1. To ensure a safe and optimal function, please turn both timing controllers on the front to the most left position (CCW), which equals 50 msec . In this operation mode, a minimum delay/de-bump time of 50 msec is applied from the falling edge of the control input until relay R is changing its state. Is a longer delay time as 50 msec is set, a short pulse on the "S" input resets the times. The timer is restarted with the next falling edge signal on „S" input again. If you wish to apply longer delay times, set the according time selectors to the required values or contact your application engineer.


Our 3-in-1 pump alternating relay offers the highest performance in the industry's most compact and space-saving DIN-Rail enclosure style.

WHY TELE'S ALTERNATING RELAY? It controls two loads simultaneously and upgrades the regular alternating function by an integrated ON (E) and OFF (R) delay functionality. The selector switch allows the user to lock in one sequence while the relay works with a wide range control voltage of $24-240 \mathrm{~V}$ AC/DC.

Our E1ZMLA is often used in special applications where optimization of load usage is required by balancing the runtime of two loads. Identical loads are used for the same task - one or more standby units are available in case the first load fails. However, an idle load might deteriorate due to lack of use and thereby lose its safety
margin. Alternating relays prevent this by assuring that multiple loads get equal run time. In addition, there are situations where a need arises to have multiple loads on at the same time for additional capacity if one load cannot keep up with demand

This alternating functionality " LA " is initiated by a control switch, such as a float switch, manual switch, timing relay, pressure switch or other isolated contact. Each time the initiating switch is opened, the output relay contacts will change state, thus alternating the two loads. Two LED indicators show the status of the output relay, control voltage and timing function.

[^0]- Low profile selector switch
. 2 LEDs for relay status, timing and operating voltage indication
- cULus, UKCA, CE, EAC, RoHs
- Rugged design for industrial applications

TYPE DESIGNATION	E1ZM10 12-240V	E1ZM10 24-240V	E1ZMQ10	E1ZMW10	E3ZM20
			$\star$ TOP SELLER *		
ORDER INFORMATION					
Part No. single package	110100	110200	110202	-	111100
Part No. packaging unit (10 pcs)	110100A	110200A	110202A	110206A	-
FUNCTIONALITY	multifunction		4-function	multifunction	multifunction
E ON delay	-	■	-	■	$\square$
R OFF delay	-	-	-	-	-
Es ON delay with control contact	■	■			■
Wu Single shot leading edge, voltagecontrolled	-	-		■	■
Ws Single shot leading edge with control contact	-	-	■	■	$\square$
Wa Single shot trailing edge with control contact	-	-		■	■
Bp Flasher pause first	■	-			■
Wt Pulse repetition analysis			-	-	
WsWa Single shot leading and trailing edge with control contact				$\square$	

POWER SUPPLY CIRCUIT

Supply voltage	12-240V AC/DC	24-240V AC/DC	24-240V AC/DC	24-240V AC/DC	12-240V AC/DC
Frequency			$48-63 \mathrm{~Hz}$		

## TIME CIRCUITS

Time ranges	7
Setting range	$0.05 \mathrm{~s}-100 \mathrm{~h}$

INPUT CIRCUIT


OUTPUT CIRCUIT

Contacts	SPDT	SPDT	SPDT	SPDT	DPDT
Switching capacity			(8A / 2		

## DESIGN

Dimensions $(W \times H \times D)$	$0.69 \times 2.43 \times 2.56 \mathrm{in}(17.5 \times 87 \times 65 \mathrm{~mm})$
Certificates	$C .38 \times 2.43 \times 2.56 \mathrm{in}$
$(35 \times 87 \times 65 \mathrm{~mm})$	


TYPE DESIGNATION	E1Z1E10	E1Z1R10	E1Z1ER10	E1ZI10	E3Z120	E3ZS20
ORDER INFORMATION						
Part. No. single package	-	-	-	110101	111101	111300
Part No. package 10 pcs.	110204A	110205A	110208A	-	-	-
FUNCTIONALITY	ON delay	OFF delay	ON/OFF delay	asymmetric flasher	asymmetric flasher	star-delta
E ON delay	-					
R OFF delay		-				
ER ON delay + OFF delay with control contact			-		$\square$	
EWu ON delay single shot leading edge, voltage-controlled					■	
Ws Single shot leading edge with testkey						
EWs ON delay single shot leading edge with control contact					■	
Ip Asymmetric flasher pause first				-	■	
li Asymmetric flasher pulse first				-	-	
Wt Pulse repetition analysis					-	
WsWa Single shot leading and trailing edge with control contact					■	
S Star-delta start-up (wye-delta)						$\square$

## POWER SUPPLY CIRCUIT

Supply voltage
Frequency range
24-240V AC/DC
12-240V AC/DC 12-240V AC/DC $12-240 \mathrm{VAC} / D C$
$48-63 \mathrm{~Hz}$

## TIME CIRCUITS

Time ranges
Setting range

7	7	7	7	7

## INPUT CIRCUIT

Trigger input

OUTPUT CIRCUIT

Contacts	SPDT	SPDT	SPDT	SPDT	DPDT	DPDT
Switching capacity		$\begin{gathered} \text { 2000VA } \\ (8 \mathrm{~A} / 250 \mathrm{VAC}) \end{gathered}$		$\begin{gathered} \text { 2000VA } \\ (8 \mathrm{~A} / 250 \mathrm{VAC}) \end{gathered}$	$\begin{gathered} \text { 2000VA } \\ (8 \mathrm{~A} / 250 \mathrm{VAC}) \end{gathered}$	$\begin{gathered} \text { 2000VA } \\ (8 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC}) \end{gathered}$
DESIGN						
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$ )		$0.69 \times 2.43 \times 2.56$ in $(17.5 \times 87 \times 65 \mathrm{~mm})$			$1.38 \times 2.43 \times 2.56$ in $(35 \times 87 \times 65 \mathrm{~mm})$	
Certificates		CE, cULus, EAC, UKCA				



ORDER INFORMATION

## Part No.

Part No. packaging unit (10 pcs)

## FUNCTIONALITY

E ON delay
R OFF delay
A OFF delay without auxiliary voltage
Es ON delay with control contact
Wu Single shot leading edge, voltage-controlled
nWu Maintained single shot leading edge
Ws Single shot leading edge with
control contact
Wa Single shot trailing edge with
control contact
nWa Maintained single shot trailing edge
nWuWa Maintained single
shot leading and trailing edge
Bi Flasher pulse first
Bp Flasher pause first
Wt Pulse repetition analysis
Ec Additive ON delay
Ii Asymmetric flasher pulse first
Ip Asymmetric flasher
pause first
S Star-delta start-up (wye-delta)

## SUPPLY CIRCUIT

Supply voltage

Frequency range

## TIME CIRCUITS

Time ranges	10	
Setting range	$0.05 \mathrm{~s}-100 \mathrm{~h}$	4
$0.05 \mathrm{~s}-3 \mathrm{~min}$		

## INPUT CIRCUIT

Trigger input

## OUTPUT CIRCUIT

Contacts
Switching capacity

SPDT	SPDT	SPDT	SPDT	SPDT	SPDT

## DESIGN

Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )
$0.88 \times 2.64 \times 2.99$ in $(22.5 \times 67 \times 76 \mathrm{~mm})$
CE, cULus, EAC, UKCA

TYPE DESIGNATION
ORDER INFORMATION
Part No.

## POWER SUPPLY CIRCUIT

Supply voltage
Frequency range

## TIME CIRCUITS

Time ranges
Setting range

12-240V AC/DC

## INPUT CIRCUIT

Trigger input
Remote potentiometer input

## OUTPUT CIRCUIT

Contacts
Switching capacity
$0.05 s-100 h$


G2ZM20

120401
multifunction
■


■

24-240V AC/DC
$12-240 \mathrm{~V}$ AC/DC
$48-63 \mathrm{~Hz}$
$\rightarrow-$
24-240V AC/DC
24-240V AC/DC
(
7
$0.05 s-100$

05s-100h
16
$0.05 s-30 d$

4
10
$0.05 s-10 h$
$0.1 \mathrm{~s}-10 \mathrm{~min}$

## DESIGN

Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )
Certificates

[^1]
# Timing relays for various applications 



## Safe switch-off

E1ZM10 24-240 To prevent fire hazard, the stove in a dormitory shared kitchen must switch off safely after a defined period of time. The switch needs to perform even if the central pushbutton has been illegally blocked.

## Anti-flutter protection

V2ZQ10 In pools of a wastewater treatment plant the use of the timing relay with Function E (switchon delay) delays reading of the switch contact until the next usable measurement, and thereby prevents "flutter switching".


## Monitoring of a cold store door

G2ZMF11 As soon as the control contact (Y1-Y2) is interrupted by opening the cold store door the cooling is switched off directly and the set time t starts to run. If the cold store door remains open for longer than the selected time, the delayed contact deactivates and an acoustic signal is triggered. This prevents the door from remaining open for too long or being improperly closed.

	Relay coil with one winding
PTC	Positive temperature coefficient
L	Wire connection to phases


U	Supply voltage
$R$	Relay output
Min	Minimum


May	Maximum
Rel	Relay

## O OVER



## U UNDER



If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MAX threshold.

## W WINDOW



If the measured value falls below the adjusted MIN threshold, the output relay switches into off-position. The output relay switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay switches into offposition. The output relay switches into on-position again, as soon as the measured value falls below the adjusted MAX threshold.

## 2MIN MINIMUM MONITORING



If the measured value falls below the adjusted MAX threshold, the output relay Rel1 switches into off-position. If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value exceeds the according adjusted threshold (MAX or MIN).

## 2MAX MAXIMUM MONITORING



If the measured value exceeds the adjusted MIN threshold, the output relay Rel2 switches into off-position. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relays Rel1 and Rel2 switch into on-position again, as soon as the measured value falls below the according adjusted threshold (MAX or MIN).

## mm minimum and maximum monitoring (min/max)



If the measured value falls below the adjusted MIN threshold, the output relay Rel2 switches into off-position. The output relay Rel2 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold. If the measured value exceeds the adjusted MAX threshold, the output relay Rel1 switches into off-position. The output relay Rel1 switches into on-position again, as soon as the measured value exceeds the adjusted MIN threshold.

## TEMP TEMPERATURE MONITORING



If the supply voltage $U$ is applied and the cumulative resistance of the PTC-circuit is less than $3.6 \mathrm{k} \Omega$ (standard temperature of the motor), the output relay R switches into on-position. When the cumulative resistance of the PTC-circuit exceeds $3.6 \mathrm{k} \Omega$, the output relay switches into off-position. The output relay switches into on-position again after the cumulative resistance falls below $1.6 \mathrm{k} \Omega$.

## SEQ PHASE SEQUENCE MONITORING



When all phases are connected in the correct sequence and the measured asymmetry is less than the fixed value, the output relay switches into on-position (yellow LED illuminated). When the phase sequence changes, the output relay switches into off-position (yellow LED not illuminated). It is recommended to connect the neutral wire of the monitoring relay once loads in the system use neutral connection.

## PHASE FAILURE MONITORING



PUMP UP

As soon as one of the three phases fails, the output relay R switches into off-position (yellow LED not illuminated). For reliable phase loss detection, the asymmetric function should be enabled. It is recommended to connect the neutral wire of the monitoring relay once loads in the system use neutral connection


## PUMP DOWN

Connection of the probe rods E1, E2 and E3. When the air-fluid level falls below the minimum probe E2 the set interval of tripping delay begins. After the expiration of the interval, the output relay R switches into on-position. When the air-fluid level again rises above the maximum probe E1, the set interval of turn-off delay begins. After the expiration of the interval the output relay switches into off-position,

## LATCH (ERROR MEMORY)



Connection of the probe rods E1, E2 and E3. When the maximum probe E1 gets moistened the set interval of tripping delay begins. After the expiration of the interval the output relay R switches into on-position. When the airfluid level falls below the minimum probe E2, the set interval of turn-off delay begins. After the expiration of the interval, the output relay switches into off-position.

## ASYM ASYMMETRY/BALANCE MONITORING



If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the output relay switches into off-position. If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y-voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the output relay switches into off-position.

## ON DELAY



The output relay switches on if the monitored value is within the selected range during the defined time period.

## DELAY



If the monitored value leaves the selected range, the output relay only switches into off-position following expiry of the trip delay.

## START START-UP SUPPRESSION

Max

The output relay switches on when the supply voltage is applied. Changes to measured variables have no impact on the setting of the output relay during start up suppression.

## I = 0 RECOGNITION OF DISCONNECTED CONSUMERS



When the current flow between terminals i and k is interrupted the output relay switches into offposition. When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up supression.

PUMP UP WITH MIN-/MAX- ALARM

## FUNCTION 1


(2uA) 1 container, 4 probes, 1 pump

Level control between probes E2 and E3 by pumping up. The probes E1 and E4 serve as overflow- respectively dry runnin alarm and may be used to control alarm devices, valves or additional pumps.

## PUMP UP AND DOWN (bidirectional) WITH MINIMUM ALARM (3b-)

## FUNCTION 3



The level is controlled by pumping in and out around the level of probe E3. One example of the minimum alarm via probe E 4 is used in dry-running warnings.

TWO INDEPENDENT CONTAINERS - PUMP UP (2u2)
FUNCTION 5 1-2 container, 1-2 probes each, 1 pump each


Pump up between probes E1-E2 respectively E3-E4 (alternatively control around one probe). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.

PUMP UP WITH
INTEGRATED PUMP CHANGE

## FUNCTION 7



Pump up between the control probes E1 and E2. The V4LM acts as an intelligent pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued, for maximum availability and uninterrupted operation through full redundancy.

## WELL CONTROL (3w-) WITH WELL AND DRY ALARM

## FUNCTION 9

well, 1 high tank, 3 probes, 1 pump


The function serves to ensure the water supply by means of a high tank and a well (pump up into the high tank from the well). Alarm functions: well alarm and dry alarm (high tank and well without water). The pump is protected against dry running in case the well (or feeding container) is below sufficient liquid levels.

## FUNCTION 2

PUMP DOWN WITH MIN-/MAX- ALARM

(2dA) 1 container, 4 probes, 1 pump

Level control between probes E2 and E3 by pumping down. The probes E1 and E4 serve as overflow - respectively dry running alarm and may be used to control alarm devices, valves or additional pumps.

PUMP UP AND DOWN (bidirectional) WITH MAXIMUM ALARM (3b+)

## FUNCTION 4

1 container, 4 probes, 2 pumps


The level is maintained by pumping in and out around the level of probe E2. A maximum alarm via probe E1 warns of liquid overflow. Functions 3 and 4 can be changed during full operation.

TWO INDEPENDENT CONTAINERS - PUMP DOWN (2d2)

## FUNCTION 6



Pump down between probes E1-E2 respectively E3-E4 (alternatively control around one probe). This feature allows level control in two separate containers with only one device. It is also possible to control cascades.

PUMP DOWN WITH IINTEGRATED PUMP CHANGE

## FUNCTION 8



Pump down between the control probes E1 and E2. The V4LM acts as an intelligent pump changer (for even use) with pump monitoring (feedback inputs E3 \& E4). If a pump fails, the remaining pump is permanently prioritized and an alarm is issued, for maximum availability and uninterrupted operation through full redundancy.

## CODE OUTPUT FOR PLC CONNECTION

## FUNCTION 10

# Monitoring relays have a wide range of uses 



## Panel condition monitoring

TELE'S E1PF480Y/277VSY01 protects electrical components inside a panel by continuously checking phase loss, phase (un)balance, and phase rotation. Insufficient power supply or dirty voltage quality triggers the integrated alarm relay. The monitor activates the backup power or starts your fault response chain. TELE can also cover tripping delay functions.

## No flooding in the underground car park

TELE LEVEL MONITOR V4LM continuously controls a potential increase of the water level in garage facilities. Once the connected sensors come into contact with ingressing water, the relay immediately activates pumps to drain the liquid and sends acoustic and optical warning signals.



## V-belt monitoring

THE POWER FACTOR METER
G2CM400VL10AL20 quickly recognizes whether a V-belt has broken or if it has become loose. A tripping delay ensures that no fault messages or acoustic or optical warning signals are sent to the control system in the event of small deviations.

TYPE DESIGNATION	E1PF480Y/277VSY01   * TOP SELLER *	E1PF480Y/277VSY10	E1YM480/277VS10	E1UM230V01	E1IM10AACL10
ORDER INFORMATION					
Part No.	1340306	1340305	1340409	1340101	1340200
FUNCTIONALITY	phase monitor	phase monitor	3-phase voltage monitor	1-phase voltage monitor	1-phase current monitor
Phase failure, Loss	$\square$	■			
SEQ ... Phase sequence	$\square$	$\square$	$\square$		
ASYM ... Asymmetry, Balance	■	■			
O ... Over					$\square$
U ... Under			$\square$	■	$\square$
W ... Window			$\square$	$\square$	$\square$

## SWITCHING THRESHOLD

Maximum

Minimum

Asymmetry

## MEASURING CIRCUIT

Measuring variable	$3 \sim$ voltage AC sinus	$3 \sim$ voltage AC sinus	$3 \sim$ voltage AC sinus	1~ voltage AC/DC sinus	1~ current AC sinus
Measuring input	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	$\mathrm{U}_{\mathrm{N}}=480 / 277 \mathrm{~V} \mathrm{AC}$	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	24 V AC/DC and 230V AC	10A AC

## SUPPLY CIRCUIT

Supply voltage

Frequency range

$\begin{aligned} & -10 \% \text { to }+10 \% \text { of } U_{N} \\ & 432 \mathrm{~V} \text { to } 528+\mathrm{V} \text { AC } \end{aligned}$	$\begin{aligned} & -10 \% \text { to }+10 \% \text { of } U_{N} \\ & 432 \mathrm{~V} \text { to } 528 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{aligned} & -35 \% \text { to }+10 \% \text { of } U_{N} \\ & 312 \mathrm{~V} \text { to } 528 \mathrm{~V} \mathrm{AC} \end{aligned}$	$\begin{gathered} -25 \% \text { to }+20 \% \text { of } U_{\mathrm{N}} \\ 18 \text { to } 29 \mathrm{~V} \mathrm{AC/DC;} \\ 173 \text { to } 276 \mathrm{~V} \mathrm{AC} \end{gathered}$	$\begin{gathered} -15 \% \text { to }+15 \% \\ \text { of } 230 \mathrm{~V} \text { AC } \\ 195 \mathrm{to} 265 \mathrm{~V} \text { AC } \end{gathered}$
$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$	$48-63 \mathrm{~Hz}$ or DC	$48-63 \mathrm{~Hz}$

TIME CIRCUITS
Tripping delay (DELAY)
fixed, approx. 100 ms
$0.1-20 \mathrm{~s}$
$0.1-10 \mathrm{~s}$
$0,1-10 s$

## OUTPUT CIRCUIT

Contact
Switching capacity

SPDT	SPDT	SPDT	SPDT	SPDT
$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V}$ AC $)$

## DESIGN

$0.69 \times 2.43 \times 2.56$ in $(17.5 \times 87 \times 65 \mathrm{~mm})$
CE, cULus, EAC, UKCA

TYPE DESIGNATION	G2PF400VS02	G2PF230VS02	G2PF115VS02	G2PM400VSY20	G2PM230VSY20	G2PM115VSY20
ORDER INFORMATION						
Part No.	2390000	2390001	2390002	2390505	2390512	2390506
FUNCTIONALITY		phase monitor		3 -phase voltage monitor		
U ... Under				$\square$	■	$\square$
W ... Window				■	$\square$	$\square$
SEQ ... Phase sequence	-	■	■	■	■	■
Phase failure	-	$\square$	■	$\square$	$\square$	$\square$
ASYM ... Asymmetry	-	■	■	■	■	■

SWITCHING THRESHOLD

| Maximum | - | -20 to $+30 \%$ of $U_{N}$ |
| :--- | :--- | :--- | :--- |
| Minimum | - | -30 to $+20 \%$ of $U_{N}$ |
| Asymmetry | fixed, typ. $30 \%$ | 5 to $25 \%, 0 F F$ |

## MEASURING CIRCUIT

Measuring variable
Measuring input
Frequency range

## SUPPLY CIRCUIT

## Supply voltage

TIME CIRCUITS
Start-up surpression time
(START)
Tripping delay (DELAY)

$3(\mathrm{~N}) \sim$ voltage $A C$ sinus			$3(\mathrm{~N}) \sim$ voltage $A C$ sinus	
$U_{N}=400 / 230 \mathrm{VAC} \quad U_{N}=230 / 132 \mathrm{~V} \mathrm{AC}$	$U_{N}=115 / 66 \mathrm{~V} \mathrm{AC}$	$U_{N}=400 / 230 \mathrm{VAC}$	$U_{N}=230 / 132 \mathrm{~V} \mathrm{AC}$	$U_{N}=115 / 66 \mathrm{~V} \mathrm{AC}$
$48-63 \mathrm{~Hz}$		$48-63 \mathrm{~Hz}$		

## OUTPUT CIRCUIT

Contacts	DPDT
Switching capacity	
DESIGN	
Dimensions $(W \times H \times D)$	$0.88 \times 3.54 \times 4.25 \mathrm{in}(52.5 \times 90 \times 108 \mathrm{~mm})$
Certificates	CE, CULus, $\mathrm{EAC}, \mathrm{UKCA}$


TYPE DESIGNATION	G2UM300VL20	G2IM5AL20	G2IM10AL20	G2JM5AL20
ORDER INFORMATION				
Part No.	2390304	2390411	2390410	2390801
FUNCTIONALITY	1-phase voltage monitor	1-phase current monitor	1-phase current monitor	3-phase current monitor
O ... Over	「	■	■	■
U... Under	$\square$	$\square$	■	■
w ... Window	■	$\square$	■	■
SEQ ... Phase sequence				
Phase failure				
ASYM ... Asymmetry				
+LATCH ... Error memory	$\square$	$\square$	$\square$	$\square$

SWITCHING THRESHOLD

Maximum
Minimum
10 to $100 \%$ of $U_{N}$
5 to $95 \%$ of $U_{N}$
Asymmetry

10 to $100 \%$ of $I_{N}$	10 to $100 \%$ of $I_{N}$	10 to $100 \%$ of $I_{N}$
5 to $95 \%$ of $I_{N}$	5 to $95 \%$ of $I_{N}$	5 to $95 \%$ of $I_{N}$

## MEASURING CIRCUIT

Measuring variable
Measuring input
Frequency range

## SUPPLY CIRCUIT

Supply voltage

## TIME CIRCUITS

ON delay
Start-up surpression time (START)
Tripping delay (DELAY)
voltage AC/DC
AC sinus
$30 / 60 / 300 \mathrm{~V} \mathrm{AC/DC}$
$16,6-400 \mathrm{~Hz}$ or DC
current AC/DC
AC sinus
$20 \mathrm{~mA} / 1 \mathrm{~A} /$
$5 \mathrm{~A} A C / D C$ or $C T$

current AC/DC   AC sinus	current AC   AC sinus
$100 \mathrm{~mA} / 1 \mathrm{~A} /$	
$10 \mathrm{~A} \mathrm{AC/DC}$ or CT	5 A AC or CT
DC	$16,6-400 \mathrm{~Hz}$

$16,6-400 \mathrm{~Hz}$ or DC
$16,6-400 \mathrm{~Hz}$
$16,6-400 \mathrm{~Hz}$ or DC

24 to 240 V AC/DC
24 to 240 V AC/DC
24 to 240 V AC/DC

$0-10 s$	$0-10 s$	$0-10 s$	$0-10 s$
$0.1-10 s$	$0.1-10 s$	$0.1-10 s$	$0.1-10 s$

## OUTPUT CIRCUIT

Number of switch contacts	DPDT	DPDT
Switching capacity	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{VAC})$	

## DESIGN

Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )
$0.88 \times 3.54 \times 4.25$ in $(22.5 \times 90 \times 108 \mathrm{~mm})$
CE, cULus, EAC, UKCA

TYPE DESIGNATION	G2PM690VSY20	G2PU690VS20	G2TFKN02	G2LM20
		* TOP SELLER *		
ORDER INFORMATION				
Part No.	2390517	2390507	2390110	$\begin{gathered} 2390201 \text { (24V AC) } \\ 2390202 \text { (110V AC) } \\ 2390200 \text { (230V AC) } \end{gathered}$
FUNCTIONALITY	3- phase voltage monitor	3-phase loss monitor	temperature monitoring (PTC)	level monitor for conductive liquids
U ... Under	$\square$	$\square$		
W ... Window	■			
SEQ ... Phase sequence	-	$\square$		
Phase failure	$\square$	■		
ASYM ... Asymmetry	■	$\square$		
Temperature monitoring (PTC)			-	
Short circuit monitoring (PTC)			-	
Zero-voltage latch (PTC)			$\square$	
Test function (PTC)			-	
Pump up				-
Pump down				■

SWITCHING THRESHOLD

Maximum	55 to $115 \%$ of $U_{N}$	-	$\geq 3.6 \mathrm{k} \Omega$ (switch-off resistance)	-
Minimum	50 to $110 \%$ of $U_{N}$	180 to 690V AC	$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$	-
Asymmetry	5 to 25\%, OFF	fixed, 25\%	-	-

## MEASURING CIRCUIT

Measuring variable
Measuring input

## SUPPLY CIRCUIT

Supply voltage
Frequency range
3~ voltage $A C$ sinus
$3 \sim 208-690 V A C$
$3 \sim$ voltage $A C$ sinus
temperature
180-690V AC
liquid level via conductive probes
0.25 to $100 \mathrm{k} \Omega$

## tIME CIRCUITS

Start-up surpression time (START)
Tripping delay (DELAY)
OFF delay

$0.1-10 s$	$0.1-10 s$	-

OUTPUT CIRCUIT
Contacts
Switching capacity

$\begin{aligned} = & \text { measuring voltage } \\ & 177 \mathrm{~V} \text { to } 794 \mathrm{~V} \text { AC } \end{aligned}$	$\begin{aligned} = & \text { measuring voltage } \\ & 177 \mathrm{~V} \text { to } 794 \mathrm{~V} \text { AC } \end{aligned}$	24 to 240V AC/DC	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC} \\ & 110 \mathrm{~V} \mathrm{AC} \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$
$20-70 \mathrm{~Hz}$	$20-70 \mathrm{~Hz}$	-	-

## DESIGN

Dimensions (W $\times H \times D$ )
$0.88 \times 3.54 \times 4.25$ in $(22.5 \times 90 \times 108 \mathrm{~mm})$
CE, cULus, EAC, UKCA
Certificates

DPDT	DPDT	DPDT
	$1250 \mathrm{VA}(5 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC})$	DPDT

[^2]

## SWITCHING THRESHOLD

```
Maximum
```

Minimum

$\begin{gathered} \geq 3.6 \mathrm{k} \Omega \\ \text { (switch-off resistance) } \end{gathered}$	10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$	10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$	10 to $100 \%$ of $\mathrm{I}_{\mathrm{N}}$	sensitivity: $10 \mathrm{k} \Omega-500 \mathrm{k} \Omega$   Vsense: 20, 40, 60, 80, $100 \%$
$\begin{gathered} \leq 1.6 \mathrm{k} \Omega \\ \text { (switch-on resistance) } \end{gathered}$	5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$	5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$	5 to $95 \%$ of $\mathrm{I}_{\mathrm{N}}$	sensitivity: $250 \Omega-12.5 \mathrm{k} \Omega$   Vsense: 20, 40, 60, 80, 100 \%

MEASURING CIRCUIT
Measuring variable

Measuring input

temperature	$1 \sim$ current $A C / D C$   AC sinus
PTC	$10 \mathrm{~A} \mathrm{AC/DC}$

1~ current $A C / D C$
AC sinus
100A AC/DC
1~ current AC/DC
AC sinus
35AAC/DC
level via conductive probes
low (L): $250 \Omega-12.5 \mathrm{k} \Omega$ high (H): $10 \mathrm{k} \Omega-500 \mathrm{k} \Omega$

## SUPPLY CIRCUIT

Supply voltage

Frequency range

$\begin{aligned} & 24-240 \mathrm{~V} \text { AC/DC } \\ & -15 \% \text { to }+10 \% \end{aligned}$	$\begin{gathered} \text { AC: } 110-240 \mathrm{~V} \\ \text { DC: } 24-240 \mathrm{~V} \\ \text { AC: }-15 \% \text { to }+15 \% \\ \text { DC: }-30 \% \text { to }+30 \% \end{gathered}$	24-240V AC/DC   AC: $-15 \%$ to $+10 \%$   DC: $-30 \%$ to $+30 \%$	24-240V AC/DC   AC: $-15 \%$ to $+10 \%$   DC: $-30 \%$ to $+30 \%$	24-240V AC/DC   AC: $-10 \%$ to $+10 \%$   DC: $-25 \%$ to $+25 \%$
16.6 to 400 Hz or DC				

## TIME CIRCUITS

ON delay	approx. 50 ms	approx. 300 ms	approx. 300 ms	approx. 300 ms	-
Start-up surpression time (START)	-	-	$0-10 s$	$0-10 s$	-
Tripping delay (DELAY)	-	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	-
Delay (measuring filter)	-	-	-	-	1-10s
OUTPUT CIRCUIT					
Contact	SPNO	SPDT	$2 \times$ SPDT	$2 \times$ SPDT	$3 \times$ SPNO
Switching capacity	2000VA (8A / 250V AC)	1250VA (5A / 250 V AC)			

## DESIGN

Dimensions (W $\times \mathrm{H} \times \mathrm{D}$ )
$0.88 \times 2.64 \times 2.99$ in $(22.5 \times 67 \times 76 \mathrm{~mm})$
Certificates
$1.76 \times 2.64 \times 2.99$ in $(45 \times 67 \times 76 \mathrm{~mm})$

Please find probes matching E3LM-, G2LM-, V4LM-series on page 35 (chapter: Add-ons).

TYPE DESIGNATION	V2PF480Y/277VSY01	V2PM400Y/230VS10	V2UM230V10	V4PF480Y/277VSYTK02
ORDER INFORMATION				
Part No. screw terminal	2100000	2100500	2100300	2104200
Part No. packaging unit (10 pcs)	2100000A	-	-	-
FUNCTIONALITY	phase monitor	3- phase voltage monitor	1- phase voltage monitor	phase and temperature monitor
Phase failure, Loss	$\square$	$\square$		$\square$
SEQ ... Phase sequence	-	■		$\square$
ASYM ... Asymmetry, Balance	$\square$			$\square$
U ... Under		$\square$	$\square$	
W ... Window		-	-	
Temperature monitoring (PTC)				$\square$

## SWITCHING THRESHOLD

Maximum	-	75 to $130 \%$ of $U_{N}$	80 to $115 \%$ of $U_{N}$	-
Minimum	-	70 to $125 \%$ of $U_{N}$	75 to $110 \%$ of $U_{N}$	-
Asymmetry	5 to 25\%, OFF	-	-	5 to $25 \%$, OFF
MEASURING CIRCUIT				
Measuring variable	3~ voltage A s	$3 \sim$ voltage AC sinus	1~ voltage AC/DC AC sinus	3 ~ voltage $A C$ sinus temperature
Measuring input	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$	$U_{N}=400 / 230 \mathrm{VAC}$	$U_{N}=24 \mathrm{~V} \mathrm{AC/DC} \mathrm{or} 230 \mathrm{~V} \mathrm{AC}$	$U_{N}=480 / 277 \mathrm{~V} \mathrm{AC}$

## SUPPLY CIRCUIT

Supply voltage
Frequency range

| $-10 \%$ to $+10 \%$ of $U_{N}$ | $-35 \%$ to $+35 \%$ of $U_{N}$ | $-30 \%$ to $+30 \%$ of $U_{N}$ | $-10 \%$ to $+10 \%$ of $U_{N}$ |
| :---: | :---: | :---: | :---: | :---: |
| $432 / 250 \mathrm{~V}$ to $528 / 305 \mathrm{~V}$ AC | $260 / 250 \mathrm{~V}$ to $540 / 310 \mathrm{~V} \mathrm{AC}$ | 17 V to $31 \mathrm{~V} \mathrm{AC/DC;} 161 \mathrm{~V}$ to 299 V AC | $432 / 250 \mathrm{~V}$ to $528 / 305 \mathrm{~V} \mathrm{AC}$ |
| $48-63 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ | $16.6-400 \mathrm{~Hz}$ or DC | $48-63 \mathrm{~Hz}$ |

## TIME CIRCUITS

ON delay	approx. 400 ms	approx. 200 ms	approx. 300 ms	approx. 500 ms
Tripping delay (DELAY)	< 250 ms	$0.1-10 \mathrm{~s}$	$0.1-10 \mathrm{~s}$	approx. 250 ms

## OUTPUT CIRCUIT

Contact	SPDT	SPDT	SPDT	DPDT
Switching capacity	2000VA (8A / 250V AC)			

## DESIGN

Dimensions $(W \times H \times D)$	$0.88 \times 2.64 \times 2.99$ in $(22.5 \times 67 \times 76 \mathrm{~mm})$
Certificates	



TELE power monitoring systems offer significant advantages, particularly in situations in which monitoring tasks are usually carried out by sensors and load monitoring relays.

## Benefits at a glance:

- No problems due to contamination or measurement value drift of the sensors
- No maintenance and cleaning costs
- Easy to use, even in charged air or volatile substances
- Savings in terms of cabling
- No use of explosion-proof barriers necessary
- Reduction of error sources
- Easy retrofitting



## CURRENT MONITORING RELAYS

Pure current measurements in the supply to motors can only be used in an extremely restricted capacity to monitor loads. This is due to three essential factors:

01 In alternating current circuits, the measured current is apparent current. This total current comprises the sum of reactive and active current components. However, when generating mechanical power it is the active current that is exclusively decisive. The reactive current merely causes losses and does not contribute to the shaft power delivered.

02 In an underload range the current does not reduce in a linear manner with the load but instead remains relatively high due to the necessary magnetisation current. Therefore, no relevant correlation exists between current and load.

03 The current is dependent on the supply voltage. An undervoltage condition with a constant load can result in an increased current draw. To prevent such cases monitoring of the pure active current is insufficient.

This means that pure current monitoring is applicable only for extreme operating conditions, such as a drive blockage, because the current rises dramatically in such cases.

POWER MONITORING SYSTEMS WITH POWER FACTOR MEASUREMENT (COS $\varphi$ ) The power factor $\cos \varphi$ is the cosine of the phase shift angle between the current drawn and the voltage applied. For electrical motors this is dependent on the loading and theoretically equals 1 in an ideal case. However, due to induction it effectively lies within a range of 0.85 to 0.95 with a nominal load.

In an underload range, the $\cos \varphi$ monitor is extremely significant because the proportion of losses increases sharply at lower loads and results in a $\cos \varphi$ of up to $<0.5$ in an idle state. This is not applicable around the zero point and in an overload range because load changes cause only small changes of the phase shift angle $\varphi$.

## POWER MONITORING SYSTEMS WITH EFFECTIVE POWER MEASUREMENTS

 The effective power measurement facilitates obtaining the most precise feedback regarding the state of an electrical motor because the effective power is proportional to the shaft power. A direct correlation exists between the effective power supplied and the motor loading (torque at constant rotational speed) across the entire working range.

# Power monitors are being used for various applications 



## Monitoring of a waste incineration screw conveyor

G4BM480V12ADTL20 The screw conveyor in a waste incineration plant is monitored for overload. If the screw gets blocked or if pieces in the conveyor are too heavy, overload is detected by the effective power of the drive motor and the conveyor system is switched off.

## Sensorless pump monitoring

G4CIM690V16ATL20 Waste water facility pumps need monitoring of three operating conditions: dry running, mislaid input filter or missing intake and lower density through heating of the medium. Safe operation of machinery and systems is ensured by constantly monitoring the power factor of the drive motor.


## Monitoring of a facility's ventilation system

G2CM400V10AL20 The correct functioning of an exhaust fan is monitored with the function "under" (underload monitoring). When the exhaust duct is clogged, the power factor worsens. The device reads this metric. In addition, high starting current need to be bridged for a short time and must not lead to a shutdown.

				16 $\qquad$ $\begin{aligned} & \square \\ & 0^{-m}=-\frac{0}{0} \\ & 0=0 \end{aligned}$
TYPE DESIGNATION	G2CM400V10AL20	G4CM690V16ATL20	G2BM480V12AFL10	G4BM480V12ADTL20
ORDER INFORMATION				
Part No.	2390602	2394600	2390700	2394706
FUNCTIONALITY	power factor $\cos \varphi$ in 1- or 3-phase mains	power factor $\cos \varphi$ in 1- or 3-phase mains	true power monitoring in 1- or 3-phase mains	true power monitoring in 1- or 3-phase mains
O ... Overload monitoring	$\square$		$\square$	$\square$
U ... Underload monitoring	■		$\square$	■
W ... Window	$\square$			■
2MIN ... Minimum monitoring		$\square$		■
2MAX ... Maximum monitoring		E		■
MIN/MAX ... Minimum- and maximum monitoring		■		■
+LATCH ... Error memory	$\square$	$\square$	$\square$	■
I = 0 DETECTION ... Recognition of disconnected consumers		-	-	-
Temp ... Temperature monitoring of the motor winding		$\square$		$\square$

## SWITCHING THRESHOLD

Threshold P / P1

Threshold P2

$\cos \varphi$ Max: $0.2-1.0$	$\cos \varphi 1: 0,3-1$ (inductive) $1-0,3$ (capacitive)	5 to $120 \%$ of $\mathrm{P}_{\mathrm{N}}$	2.5 kW : 120 W to 2.5 W 10kW: 480W to 10 kW
$\cos \varphi$ Min: $0.1-0.99$	$\cos \varphi$ 1: 0,3-1 (inductive) 1 -0,3 (capacitive)	-	2.5 kW : 120 W to 2.5 W 10kW: 480W to 10 kW

MEASURING CIRCUIT

Measuring variable

Measuring range
Measuring input voltage

Overload capacity voltage

Measuring input current
Overload capacity current

power factor $(\cos \varphi)$, 1- or 3-phase loads AC sinus	power factor $(\cos \varphi)$, 1 - or 3-phase loads AC sinus	true power, 1- or 3-phase loads AC sinus	true power, 1- or 3-phase loads AC sinus
0.1 to 1	0.3 to 1	$\begin{gathered} 0.75 \mathrm{~kW} \cdot 1.5 \mathrm{~kW} \cdot 3 \mathrm{~kW} \cdot 6 \mathrm{~kW} \\ 1 \mathrm{hp} \cdot 2 \mathrm{hp} \cdot 4 \mathrm{hp} \cdot 8 \mathrm{hp} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~kW} \cdot 10 \mathrm{~kW} \\ 3.4 \mathrm{hp} \cdot 13.6 \mathrm{hp} \end{gathered}$
40 to 415 V AC (1-ph) 40/23 to 415/240V AC (3-ph)	85 to 690 V AC (1-ph) 85 to 690/400V AC (3-ph)	0 to 480V AC (1-ph) 0 to 480/277V AC (3-ph)	0 to 480 V AC (1-ph) 0 to 480/277V AC (3-ph)
500 V AC (1-ph) 500/289V AC (3-ph)	796 V AC (1-ph) 796/460V AC (3-ph)	550 V AC (1-ph) 550/318V AC (3-ph)	550 V AC (1-ph) 550/318V AC (3-ph)
0.5 to 10A	$\begin{gathered} 1 \text { to } 8 \mathrm{~A}(4.8 \mathrm{~kW}) \\ 2 \text { to } 16 \mathrm{~A}(19.6 \mathrm{~kW}) \end{gathered}$	0 to $6 \mathrm{~A}(1.5 \mathrm{~kW})$ 0 to 12A ( 6 kW )	0.15 to $6 \mathrm{~A}(2.5 \mathrm{~kW})$ 0.3 to $12 \mathrm{~A}(10 \mathrm{~kW})$
11A permanent	20A permanent	12A permanent	12A permanent
selectable via power module TR2	selectable via power module TR3	selectable via power module TR2	24-240V AC/DC
1-100s	3-180s	0.1-2s	0-100s
$0.1-40 \mathrm{~s}$	$1-50 \mathrm{~s}$	0.1-2s	$0.1-50 \mathrm{~s}$
-	Y1-Y2 (latch)	Y1-Y2 (latch)	Y1-Y2 (latch)
DPDT	$2 \times$ SPDT	SPDT	2 x SPDT
1250VA (5A / 250V AC)			

## DESIGN

Dimensions (W×H×D)
Certificates

$0.88 \times 3.54 \times 4.25 \mathrm{in}$	$1.76 \times 3.54 \times 4.25 \mathrm{in}$	$0.88 \times 3.54 \times 4.25 \mathrm{in}$	$1.76 \times 3.54 \times 4.25 \mathrm{in}$
$(22.5 \times 90 \times 108 \mathrm{~mm})$	$(45 \times 90 \times 108 \mathrm{~mm})$	$(22.5 \times 90 \times 108 \mathrm{~mm})$	$(45 \times 90 \times 108 \mathrm{~mm})$

 with ModBus RTU interface, for highly accurate, flexible and reliable measurements.

TELE carries a range of communication-capable sensing devices with ModBus RTU interface with the focus on electric energy applications and monitoring of key electrical values in industrial plants.

The modules may look like regular current transformers but they reliably measure current / voltage / power / energy and various other electrical values in single-phase networks. These values are provided to any kind of control unit, datalogger or

PLC unit via the established industrial standard ModBus RTU.

The fast measurement cycles and data transmission gives the plant operator a clear view of the condition of his installation. This accurate process data enables specialists and engineers to adapt maintenance intervals accordingly, and help to avoid costly unscheduled downtimes.


## SERIAL CONVERTER USB-RS485

(ISOLATED UP TO 5KV)

## USB

The S-USB485 is a serial converter and galvanically isolated up to 5 kV , based on chip USB FTDI. Windows validated drivers download automatically when your PC is online. This device connects safely to any ModBus devices on RS485.

# TELE SENS compact energy metering modules with Modbus RTU for various applications 



## Smart energy metering for ventilation systems

S9XIM300A1000VM demonstrates its strengths for instance with ventilation systems in state-of-the-art facility management. Modern transducers need to be integrated into existing energy circuits in a sustainable and almost contactless way. Instead of a simple measuring device for conduction or energy, the requirement these days is to derive data from a measuring circuit and send them digitally to control units or SCADA systems for evaluation.

Quick and easily available information about operating conditions like e.g. energy flow, efficiency and fault states help detect potential wear and tear, blockages and may prevent costly engine failures, repair works and operational interruptions.

## Digitally measuring windpowered electrical generators

S6XIM50A1000VM Wind turbines are regularly confronted with variable frequencies at alternating current and require measuring instruments that are precisely designed for this purpose.

Being one of the smallest single-phase power meters on the market TELE's S6XM50A1000VM is designed for use in rugged environments. Its integrated RS485 interface allows the S6XM50A1000VM to be connected to any ModBus device such as PCs, HMI, PLC, WLAN, modems and Wi-Fi access routers. A safely isolated data stream at the ModBus RTU interface delivers reliably values for power, current, voltage and energy (non-volatile meter memory).



Our unique and multifunctional current transducer challenges the status quo in the transducer world.

The 6 integrated analog outputs and the HALL sensor allow the direct conversion of up to 100A AC and DC to a mA or V signal.

The V4IA100A safely isolates and transmits your important process data. It can be mounted conveniently on a DIN-Rail. Also available with relay outputs.

## Advantages

- Integrated current sensor for AC and DC
- Scalable input range 25 or 50 or 75 or 100A
- Galvanically isolated input/output

■ Bidirectional current detection for DC

- Supply Voltage 24 - 240V AC/DC
- Adjustable Analog Outputs
- Low profile selector switches
- 4 LEDs for supply voltage, output status
- cULus, UKCA, CE, EAC, RoHs

Select from:

- $0 . .20 \mathrm{~mA}$
- $4 . .20 \mathrm{~mA}$
$\checkmark 0.10 \mathrm{~V}$
- $12 \mathrm{~mA} \pm 8 \mathrm{~mA}$
- $10 \pm 10 \mathrm{~mA}$
- $5 \mathrm{~V} \pm 5 \mathrm{~V}$




## INTERFACE

ModBus RTU
Analog out 0-10V
USB
INPUTS

Current AC	50 A	300 A	300 A	
Current DC	50 A	400 A	300 A	
Voltage AC	800 V	800 V	-	
Voltage DC	1000 V	1000 V	-	-
Frequency	DC and $1-400 \mathrm{~Hz}$	DC and $1-400 \mathrm{~Hz}$	DC and $20-2000 \mathrm{~Hz}$	-

## VALUES

Irms	-	■	-
Idc	-	-	-
Vrms	-	■	
Vdc	-	-	
Ah on Irms			-
Power/reactive/apparent power	-	■	
CosPhi	-	-	
Active energy bidirectional	-	-	
Ipeak	-	■	
Vpeak	-	■	
Frequency	-	-	
Min. values	-	-	
Max. values	-	■	
THD	$\square$	■	

## SUPPLY CIRCUIT

Supply voltage 9-30V DC 9-30VDC 9-30V DC 9-30V DC

## DESIGN

Dimensions $(W \times H \times D)$

Compliance

Certificates

$$
\begin{gathered}
46.1 \times 63 \times 26.4 \mathrm{~mm} \\
(1.8 \times 2.48 \times 1 \mathrm{in})
\end{gathered}
$$

CE
$89,1 \times 99.3 \times 28.5 \mathrm{~mm}$
( $3.5 \times 3.9 \times 1.12 \mathrm{in}$ )
EN601000-6-4/2006+A1 2011
EN64000-6-2/2005 EN61010-1/2010

CE, cULus CE, cULus
CE

## $\oplus$ In addition to our core products we are glad to be offering the green extra:

## Complementary Products

- DIN-rail mounting plates: MP
[page 38]
- Power modules for GAMMA series
[page 39]
- Probes: SK
[page 39]
- Front covers for GAMMA series


## Switching Relays

$\left.\begin{array}{lll}\text { Relay Bases } & \square & \text { Multifunctional timer module series: COMBI }\end{array}\right]$ [page 40]

## DC Power Supplies

- Industrial series: NDR
[page 43]
■ Industrial series: HDR
[page 43]


## Thyristor Control Units

- Fuse and fuse holders
- Thyristor control series: GTF
[page 44]
- Thyristor switch (SSR) series: GTS

Mounting Plates MP easily attach any DIN-rail device to every kind of surface, panel and backplate

	FITS	ATTACHMENT	DIMENSIONS $(W \times H \times D)$

TR2, TR3, SNT Series power modules for transforming the supply voltage to the internal operating voltage of GAMMA relays


TYPE DESIGNATION	SUPPLY VOLTAGE	TOLERANCE	POWER INPUT $\mathrm{P}_{\text {IN }}$	$\begin{gathered} \text { POWER } \\ \text { OUTPUT P } \end{gathered}$	DESIGN	PART NO.
SNT2-24V DC	24V DC	20.4-26.4V	2VA	0.5 VA	A	282050
TR2-24V AC	24 V AC	$20.2-26.4 V$	2VA	0.5VA	A	282110
TR3-24V AC	24 V AC	20.4-26.4V	4VA	1.5VA	B	285010
TR2-110V AC	110 V AC	94-121V	2VA	0.5 VA	A	282113
TR3-110V AC	110 V AC	94-121V	4VA	1.5VA	B	285013
TR2-127V AC	127 V AC	108-140V	2VA	0.5VA	A	282114
TR2-230V AC	230 V AC	195-264V	2VA	0.5VA	A	282120
TR3-230V AC	230 V AC	184-264V	4VA	1.5 VA	B	285025
TR2-400V AC	400 V AC	$340-456 \mathrm{~V}$	2VA	0.5VA	A	282117
TR3-400V AC	400 V AC	$323-456 \mathrm{~V}$	4VA	1.5 VA	B	285017
TR3-440V AC	440 V AC	374 - 484V	4VA	1.5 VA	B	285019
TR3-500V AC	500 V AC*	425-550V	4VA	1.5 VA	B	285026

* may only be used with types G4PM and G4BM!


TR2-42V AC


TR3-400V AC


Remove protective cover before use.

Probes - SK Series for monitoring of conductive liquids with E3LM-, G2LM-, V4LM- SERIES

(0) $\square$ $\square$			TYPE   DESIGNATION	$\begin{gathered} \text { MAX. } \\ \text { VOLTAGE } \end{gathered}$	$\begin{aligned} & \text { MAX. } \\ & \text { TEMPERA- } \\ & \text { TURE } \end{aligned}$	NUMBE ELECTR	LENGTH	DESI	PART NO.
1	-		SK1		$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$	1	$5.5 \mathrm{in}(140 \mathrm{~mm})$	A	190107
			SK2		$194{ }^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$	2	19.7 in ( 500 mm )	B	190108
			SK3-500		$194{ }^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$	3	19.7 in (500mm)	C	190109
			SK3-1000		$194{ }^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$	3	39.4 in (1000 mm)	C	190110

Front Cover FA-G2 for GAMMA monitoring relays, width 8.9 in ( 22.5 mm )


## 2 IN1 ELECTRONIC <br> MULTIFUNCTION TIMER



The 2 in 1 electronic multifunction timer combined with 3PH power contactor is the perfect solution for directly switching small motors, fans, pumps, , lamp loads or electric heaters up to 10A@230V. Thanks to the compact size and versatility it reduces space, wiring costs and the amount of components. This is why this unit is the ideal replacement for standard plug-in contactors.

COMBI Series multifunction timer module for industrial relays (RT) with socket type ES9 and PF-113BEM (ES12)


Relay Bases for switching relays

|  |  | TYPEOF | FOR |
| :---: | :---: | :---: | :---: |$\quad$ PACKAGING $\quad$ MODULES USABLE $\quad$ CONNECTION $\quad$ RELAYS $\quad$ RATED VOLTAGE $\quad$ UNIT $\quad$ PART NO.


PYF14BE (ES 15/4N)		screw terminal	RA, RM			10	180134
PYF14BE3 (ES 15/4S)	(pls. s. table below)						180145
PYF14BE3CC (ES 15/4G)		push-in terminal					180148
CST-B14F2-L (ES 15/4B)							180146
RSS214		screw terminal	RM				180050
P150BE/3R (ES 50/3)							180150
PI50BE/3CC (ES 50/3G)		push-in terminal		300 V	AC	20	180149
P150BE (ES 50)		screw terminal					180137
PSS8/3						10	180056
PF083BE (ES8)	no		RT 8-pin				180139
ES 9	yes						180041
PF113BEM (ES12)	(pls. s. table below)		RT 11-pin				180136
PF113BE (R11X)	no					1 or 10*	180155

* For KAPPA series also available as single packaging unit.


Socket PYF14BE (ES15/4N)


Socket PI50BE(ES50)


Socket PYF14BE3CC (ES15/4G)


Socket PF113BE (R11X)

STKR Series + Accessories slim interface relays

	TYPE DESIGNATION	RATED VOLTAGE	RATED CURRENT	$\begin{aligned} & \text { RELAY } \\ & \text { vOLTAGE } \end{aligned}$	CONTACTS	PACK. UNIT	PART NO.
	STKR 524	24 V AC/DC	6A	24 V DC	SPDT	10 pcs	180504
	STKR 024	24 V DC		24 V DC	SPDT		180503
	STKR 615	115 V AC/DC		24 V DC	SPDT		180506
	STKR 730	230 V AC		60 V DC	SPDT		180505
	ACCESSORIES	FUNCTION	RATED CURRENT	DETAILS	CONTACTS	PACK. UNIT	PART NO.
C miner	PB-B SKR	jumper link	-	blue	20	10 pcs	180535
STKR + PB-B SKR	PB-R SKR		-	red			180536
	RM699V-3011-85-1024	replacement relay for STKR	6A	24 V DC	SPDT	20 pcs	100660
	RM699V-3011-85-1060			60 V DC	SPDT		100661

RA, RM Series miniature ice cube relays


* RA and RM relays with gold plating and integrated suppression diode available upon request.

RP Series $\mathrm{PCB} /$ slim ice cube relays
TYPE DESIGNATION RATED VOLTAGE RATED CURRENT CONTACTS PACKAGING UNIT PART NO.


RT Series 8- and 11-pin ice cube relays


* RT relays with gold plating and integrated suppression diode available upon request.

Modules and Accessories for switching relays

MODEL	TYPE DESCRIPTION	FOR SOCKETS SERIES	FOR SWITCHING RELAYS SERIES	RATED VOLTAGE	PACKAGING UNIT	PART NO
M21N	diode	PYF, CST, PI	RA, RM, RP	6-230V DC (+A1)		180261
M41R	LED (red) + diode	PYF, CST, PI	RA, RM, RP	6-24V DC (+A1)		180263
EM 12	LED (green) + diode	RSS214, PSS8	RA, RM, RP	6-24V DC (+A1)		180309
EM 03	RC-link	RSS214, PSS8	RA, RM, RP	110-230V AC		180300
TYPE41 (TVL1)	LED + diode	PF113BEM, ES9	RT	6-24V DC (+A1)		180232
TYPE21 (TVD1)	retaining clip (metal)	PF113BEM, ES9	RT	6-230V DC (+A1)		180230
HB/RM-RA	retaining clip (plastic)	PYF, CST, RSS214	RA, RM		25	180032
HB/ES15	retaining clip (metal)	PYF, CST	RA, RM			180153
HB/RT	retaining clip (plastic)	PF, ES9	RT			180043
HB/RP 16	retaining clip (plastic)	P150	RP		20	180029
HB/PSS	retaining clip (plastic)	PSS8/3	RP			180060
BS/PSS	front cover (label field)	PSS8/3	RP			180057



M41R


EM 12


EM 03


HB

Fuse Holders (capsule fuse) by Wöhner

MODEL	RATED CURRENT (IEC)	POLES	FUSE SIZE	PART NO.
Fuse holder 1-P 10x38	32A	1-Poles	$0.4 \times 1.5 \mathrm{in}(10 \times 38 \mathrm{~mm})$	490976
Fuse holder 3-P 10x38	32 A	3-Poles	$0.4 \times 1.5 \mathrm{in}(10 \times 38 \mathrm{~mm})$	490977
Fuse holder 1-P 14x51	50 A	1-Poles	$0.6 \times 2$ in $(14 \times 51 \mathrm{~mm})$	490978
Fuse holder 3-P 14x51	50A	3-Poles	$0.6 \times 2$ in $(14 \times 51 \mathrm{~mm})$	490979
Fuse holder 1-P 22x58	100A	1-Poles	$0.9 \times 2.3$ in $(22 \times 58 \mathrm{~mm})$	490987
Fuse holder 3-P $22 \times 58$	100 A	3-Poles	$0.9 \times 2.3$ in $(22 \times 58 \mathrm{~mm})$	490988

Switching Power Supplies industrial housing for switch cabinet and plant construction by MeanWell

TYPE	INPUT VOLTAGE	DIMENSIONS $(W \times H \times D)$	OUTPUT VOLTAGE	OUTPUT CURRENT	OUTPUT POWER	PART NO.
NDR-120-24		$\begin{gathered} 1.6 \times 4.9 \times 4.5 \mathrm{in} \\ (40 \times 125.2 \times 113.5 \mathrm{~mm}) \end{gathered}$		5.00A	120W	491601
NDR-240-24	$90-264 \mathrm{~V}$ AC	$\begin{gathered} 2.5 \times 4.9 \times 4.5 \mathrm{in} \\ (63 \times 125.2 \times 113.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 24 \mathrm{~V} D C \\ \text { (adj. } 24-28 \mathrm{~V} \text { DC) } \end{gathered}$	10.0A	240W	491610
NDR-480-24		$\begin{gathered} 3.4 \times 4.9 \times 4.5 \mathrm{in} \\ (85.5 \times 125.2 \times 113.5 \mathrm{~mm}) \end{gathered}$		20.0A	480W	491619



Switching Power Supplies compact housing for building and plant engineering by MeanWell

TYPE	INPUT VOLTAGE	DIMENSIONS $(W \times H \times D)$	OUTPUT VOLTAGE	OUTPUT CURRENT	OUTPUT POWER	PART NO.
HDR-15-24	$85-264 \mathrm{~V}$ AC	$\begin{gathered} 0.7 \times 3.5 \times 21.4 \mathrm{in} \\ (17.5 \times 90 \times 54.5 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 24 \mathrm{~V} D C \\ \text { (adj. } 21.6-29 \mathrm{~V} \text { DC) } \end{gathered}$	0.63A	15W	491701
HDR-30-24		$\begin{gathered} 1.4 \times 3.5 \times 21.4 \mathrm{in} \\ (35.0 \times 90 \times 54.5 \mathrm{~mm}) \end{gathered}$		1.50 A	30W	491702
HDR-60-24		$\begin{gathered} 2.0 \times 3.5 \times 21.4 \mathrm{in} \\ (52.5 \times 90 \times 54.5 \mathrm{~mm}) \end{gathered}$		2.50 A	60W	491703
HDR-100-24		$\begin{gathered} 2.8 \times 3.5 \times 21.4 \mathrm{in} \\ (70.0 \times 90 \times 54.5 \mathrm{~mm}) \end{gathered}$		3.83A	100W	491704



GTF Series digital thyristor control unit (compact design, digitally configurable) by Gefran

MODEL	AUXILIARY VOLTAGE	NOMINAL VOLTAGE	NOMINAL CURRENT	FAN	INTERNAL FUSE	OPERATING MODE	DIMENSIONS $(W \times H \times D)$	PART NO
GTF-25-480-0-0-0-0 1-P-M	24V AC/DC	480 V AC *	25A			phase clipping control (other operating modes configurable)	$\begin{gathered} 2.4 \times 5.4 \times 5.6 \mathrm{in} \\ (60 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493100
GTF-40-480-0-0-0-0 1-P-M			40A				$\begin{gathered} 2.4 \times 5.4 \times 5.6 \mathrm{in} \\ (60 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493105
GTF-50-480-0-0-0-0 1-P-M			50A				$\begin{gathered} 3.1 \times 5.4 \times 5.6 \mathrm{in} \\ (80 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493108
GTF-60-480-0-0-0-0 1-P-M			60A				$\begin{gathered} 3.1 \times 5.4 \times 5.6 \mathrm{in} \\ (80 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493111
GTF-75-480-0-0-0-0 1-P-M			75A				$\begin{gathered} 5 \times 5.4 \times 5.6 \text { in } \\ (127 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493121
GTF-90-480-0-0-0-0 1-P-M			90A				$\begin{gathered} 5 \times 5.4 \times 5.6 \text { in } \\ (127 \times 136.5 \times 143 \mathrm{~mm}) \end{gathered}$	493131
GTF-120-480-0-0-0-0 1-P-M			120A	-			$\begin{gathered} 5 \times 5.9 \times 5.6 \text { in } \\ (127 \times 150.5 \times 143 \mathrm{~mm}) \end{gathered}$	493141
GTF-150-480-0-0-1-0 1-P-M			150A	■	■		$\begin{gathered} 4.3 \times 11.9 \times 6.7 \mathrm{in} \\ (108.3 \times 302 \times 170.4 \mathrm{~mm}) \end{gathered}$	493152
GTF-200-480-0-0-1-0 1-P-M			200A	■	E			493161
GTF-250-480-0-0-1-0 1-P-M			250 A	-	-			493171
Configuration cable + software								493090

* other nominal voltages upon request


Fuse holder

GTS Series Gefran thyristor switch (compact design, operating mode zero point switch) by Gefran

TYPE DESIGNATION	NOMINAL vOLTAGE	NOMINAL CURRENT	CONTROL INPUT	FAN	DIMENSIONS $(W \times H \times D)$	PART NO.
GTS-15/48-D-0	480 V AC *	15A	$6-32 \mathrm{~V}$ DC		$\begin{gathered} 0.9 \times 3.9 \times 4.2 \mathrm{in} \\ (24 \times 100 \times 107 \mathrm{~mm}) \end{gathered}$	493010
GTS-25/48-D-0		25A			$\begin{gathered} 0.9 \times 3.9 \times 4.2 \mathrm{in} \\ (24 \times 100 \times 107 \mathrm{~mm}) \end{gathered}$	493005
GTS-40/48-D-0		40A			$\begin{gathered} 1.4 \times 3.9 \times 5.6 \mathrm{in} \\ (35 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493003
GTS-50/48-D-0		50A			$\begin{gathered} 2.4 \times 3.9 \times 5.6 \mathrm{in} \\ (60 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493001
GTS-60/48-D-0		60A			$\begin{gathered} 3.1 \times 3.9 \times 5.6 \mathrm{in} \\ (80 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493020
GTS-75/48-D-0		75A			$\begin{gathered} 5 \times 3.9 \times 5.6 \mathrm{in} \\ (127 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493021
GTS-90/48-D-0		90A			$\begin{gathered} 5 \times 3.9 \times 5.6 \mathrm{in} \\ (127 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493022
GTS-120/48-D-0 VEN92		120A		■	$\begin{gathered} 5 \times 3.9 \times 5.6 \mathrm{in} \\ (127 \times 100 \times 142 \mathrm{~mm}) \end{gathered}$	493023

* other nominal voltages upon request

Semiconductor Fuses (capsule fuse) by Wöhner

| TYPE DESIGNATION | NOMINAL <br> CURRENT | NOMINAL CURRENT <br> THYRISTOR CONTROL | FUSE SIZE |
| :--- | :---: | :---: | :---: | :---: |



[^3]
## Lotele

## US OFFICE

## TELE Controls Inc.

1101 Wilson Blvd
6th Floor
Arlington, VA 22209
United States

## UK OFFICE

## TELE Control Ltd

Park House
200 Drake Street
Rochdale, OL16 1PJ
United Kingdom

GLOBAL HEADQUARTERS

## TELE Haase

## Steuergeraete Ges.m.b.H.

Vorarlberger Allee 38
Vienna, 1230
Austria

We're here to help. Please contact us directly or get in
touch with your TELE reseller.
www.tele-controls.com
sales@tele-controls.com
+1 (833) 490-5500


[^0]:    Advantages

    - 3-in-1 duplex control of two loads
    - Integrated OFF and ON delay
    - Load alternator w/selector switch to lock loads manually
    - Control voltage 24 - 240V AC/DC
    - 8A@250VAC SPDT output

[^1]:    *G2ZA20 10MIN TRUE OFF DELAY - Additional Functions nWa, nWu \& nWuWa on pages 11-12.

[^2]:    Please find probes matching E3LM-, G2LM-, V4LM-series on page 35 (chapter: Add-ons).

[^3]:    齿 Example product code monitoring relay

    | $\mathbf{G}$ | $\mathbf{2}$ | $\mathbf{P}$ | $\mathbf{U}$ | $\mathbf{6 9 0 V}$ | $\mathbf{S}$ | $\mathbf{2 0}$ DPDT |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | G2PU690VS20

    Gamma series, in a 0.88 in wide housing, measures 3-ph voltage, under voltage detection for a nominal voltage of 690 V , includes phase sequence monitoring and DPDT output

