NORTH DAKOTA GEOLOGICAL SURVEY
Winom. M. Laird, State Geologist

BULLETIN 51

NORTH DAKOTA STATE WATER COMMISSION
Millo W. Holsveen, State Ingineer

COUNTY GROUND WATER STUDIES 12

Geology and Ground Water Resources
of

WELLS COUNTY

PART II - GROUND WATER BASIC DATA
by
FRANK BUTURLA, JR. Geological Survey United States Department of the Interior

Prepared by the United States Geological Survey in cooperation with the North Dakota State
Water Commission, the North Dakota Geological Survey, and the Wells County Water Management District.

This is one of a series of county reports published cooperatively by the North Dakota Geological Survey and the North Dakota State Water Commission. The reports are in three parts; Part I describes the geology, Part II presents ground water basic data, and Part III describes the ground water resources. Parts II and III will be published later and will be distributed as soon as possible.
Page
Introdu:tion- 1
 1
Well-numbering system 3
 3
 3
 6
Mineral constituents in solution 6
Properties and characteristics of water- 9
Selected references 11
ILLUSTRATIONS
Plate L. Map showing location of wells, springs, and test holes in Wells
County, North Dakota- (in pocket)
Figure 1. Map showing location of county ground-water studies 2
2. Diagram showing system of numbering wells, springs, and test holes- 4
TABLES
 13
2. Record of springs 29
3. Water-level records of selected observation wells 30
4. Logs of test holes and selected wells 46
 117

GEOLOGY AND GROUND WATER RESOURCES OF WELLS COUNTY, NORTH DAKOTA PART II - GROUND WATER BASIC DATA

By
Frank Buturla, Jr.

INTRODUCTION

Purpose and Scope

The purposes of the investigation of the geology and ground-water resources of Wells County, N. Dak. (fig. 1) were to determine the location and extent of the ground-water reservoirs (aquifers); to evaluate the occurrence and movement of ground water, including the sources of resharge and discharge; and to determine the chemical quality of the ground water. The investigation is to provide sufficient information about the occurrence of ground water to plan its safe and intelligent development for irrigation, donestic, industrial, and municipal purposes.

The investigation was made cooperatively by the U.S. Geological Survey, North Dakota State Water Comalssion, North Dakota Geological Survey, and the Wells County Water Management District. The results of the investigation will be published in three separate parts of the bulletin series of the North Dakota Geological Survey and the county groundwater stidies series of the North Dakota State Water Commission. Part I is an interpretive report describing the geology, Part II is a compilation of the ground-water basic data, and Part IIJ. is an interpretive report describing the ground-water resources. Part II makes available the hydrologic data collected during the county investigation and functions as a reference for Parts I and III.

The information in this report consists of the following: (1) data on about 800 wells, springs, and test holes; (2) water-level measurements in 67 observation wells; (3) logs of about 240 test holes and selected wells; and (4) chemical analyses of 76 water sanples.

The data in this report are useful for predicting geologic and ground-water conditions in Wells County. For example, a person considering the construction of a new well can locate the proposed site on plate 1 (in pocket). The characteristics of nearby wells may be deternined fram tables 1 and 2 , and the water-level fluctuations in the area may be determined fram table 3. The type of material encountered in nearby wells may be determined from table 4, and the chemical quality of water in adjacent wells may be determined from table 5. However, such extrapolations should be made conservatively because of the irregular distribution of the water-bearing materials.

FIGURE I-Location of county ground-water studies

The wells, springs, and test holes in the tables are numbered according to a system based on the location in the public land classification of the United States Bureau of Land Management. It is illustrated in figure 2. The first numeral denotes the township north of an east-west base line located in Arkansas, the second numeral denotes the range west of the fiftl principal meridian located in Wisconsin, and the third numeral denotes the section in wich the well is located. The letters a, b, c, and designate, respectively, the northeast, northwest, southwest, and southeast quarter sections, quarterquarter sections, and quarter-quarter-quarter sections (10-acre tract). For example, well 150-72-15aaa is in the $\operatorname{NE} \frac{1}{4} N E \frac{1}{4} N E \frac{1}{4}$ sec. $15, T, 150 \mathrm{~N} ., \mathrm{R}$. 72 W . Consecutive terminal numerals are added if more than one well is recorded within a lo-acre tract. The location of each well, spring, and test hole listed in the tables is shown on plate 1 .

Acknowledgments

The cooperation of the county commissioners, township assessors, and the residents of Wells County js gratefully acknowledged. Well site logs were prepared principally by L. Ir. Froelich and C. H. Beeks, Jr., of the North Dakota State Water Commission. The early stages of the investigation were under the direction of P. G. Randich of the U.S. Geological Siurvey.

EXPLANATION OF TABLES

The logs in table 4, except those furnished by commercial drilling companies, are composites of the well-site geologists' and drillers' descriptions, sample analyses, and eleatric logs (where available). Visual methods (megascopic and microscopic) were used to describe the composition and texture of the subsurface rock samples. Color descriptions were determined by comparing the sample with the Geological Society of America rock-color chart (1963). If the cuttings reacted (effervesced) when treated with dilute hydrochloric acid, the material was described as calcareous. Grain-size determinations used in the logs refer to the Wentworth (1922) size scale. Logs of test holes without tesit-hole numbers were drilled in the late $1940^{\prime \prime} \mathrm{s}$ and early $1950^{\prime} \mathrm{s}$ for an unpulolished report on the Heimdal valley and New Rockford area, Commercial logs are in the terminology of the individual driller with the exception that the order has been changed to present the principal lithology first.

FIGURE 2 - System of numbering wells, springs, and test holes.

1. special note are the terms, "taking water" and "lost circulation." Under normal circumstances a general rule to follow is that any bed of rock materials beneath the earth's zone of saturation that will take water during hydraulic rotary drilling will also give up water to wells. Thus, during well drilling where permeable material is present, the water level in the mud pit will decline because drilling fluid is lost to the formation. If the formation penetrated is highly permeable, as a gravel deposit, circulation of the drilling fluid may be entirely lost to the formation. Lost circulation normally may be restored by adding bentonite or a similar substance to the drilling fluid.

The term "till" indicates an unsorted, unstratified agglomeration of rock particles ranging from clay to boulders. Generally clay is the predominant particle size. If a particle size other than clay is daminant, that particle size is used as a modifying term. Consequently, terms such as silty, sandy, or gravelly are textural terms used to indicate that the material described contains an appreciable, but not a dominant amount of the modifying material.

Observation wells were constructed in selected test holes. These, for the most part, were cased with $1 \frac{1}{4}$-inch plastic pipe, slotted in the lower 10 or 20 feet or scremed in the lower 2 feet. They were pumped from 5 to 8 hours and a water sample was collected for chemical analysis (table 5).

The monthly water-level measurements listed in table 3 were made during this investigation. Records of water-level fluctuations in wells in Wells County prior to this study have been published in U.S. Geological Survey Water-Supply Papers 817, 840, 845, 886, 908, 938, 946, 988, 1018, 1025, 1073, 1098, 1128, 1158, 1167, 1193, 1223, 1267, 1323, 1406, and 1456.

The stratigraphic nomenclature used in this report is that of the North Dakote Geological Survey and, in some instances, differs from that of the U.S. Geological Survey.

All natural waters contain dissolved mineral matter. Water in contact with soils or rock, even for only a few hours, will dissolve some mineral matter. The quantity of dissolved mineral matter in a natural water depends primarily on the type of rocks or soils with which the water has been in contact and the length of time of contact. Ground water is generally more highly mineralized than surface water because it remains in contact with the rocks and soils for much longer periods.

The mineral constituents and physical properties of natural waters reported in the table of analyses include those that have a practical bearing on the value of the waters for most purposes. The analyses generally include determinations of silica, iron, calcium, magnesium, sodium, potassium (or sodium and potassium together calculated as sodium), alkalinity as carbonate and bicarbonate, sulfate, chloride, fluoride, nitrate, boron, dissolved solids, pH , and specific conductance. The source and significance of the different constituents and properties of natural waters are discussed in the following paragraphs.

Mineral Constituents in Solution

Sillca $\left(\mathrm{SiO}_{2}\right)$
Silica is dissolved from practically all rocks. Some natural waters contain less than 5 ppm (parts per million) of silica and few contain more than 50 ppm , but the more common range is from 10 to 30 ppm . Silica does not affect water for domestic purposes but it contributes to the formation of scale in pipes, water heaters, and boilers. Iron (Fe)

Iron compounds are very common in rocks and they are easily leached by ground water. On exposure to air, normal basic waters that contain more than 1 ppm of iron soon become turbid with the insoluble reddish ferric oxide produced by oxidation. Surface waters, therefore, seldom contain as much as 1 ppm of dissolved iron, although some acid waters carry large quantities of iron in solution. Ground waters commonly contain as much as 10 ppm . Rarely, concentrations over 50 ppm may occur in waters with a pH of 5 to 8 (Hem, 1959). Iron causes reddish-brown stains on porcelain or enamelware and fixtures and on fabrics washed in the water. The U.S. Public Health Service (1962) recommends an upper limit of 0.3 ppm of iron in drinking water.

Calcium (Ca)
Calcium may be leached from all rocks, but limestone and dolamite fragments in the glacial drift proride the largest amount of calcium in Wells County. Calcium is a major cause of hardness and forms scale on utensils and on boilers and pipes. The calcium content of ground water may be as high as several hundred parts per million.

Magnesivill (Mg)

Magnesium is dissolved from many rocks, particularly from dolonitic rocks. Its effect in water is similar to that of calcium. The magnesium in soft waters may amount to only 1 or 2 ppm, but water in areas that contain large quantities of dolamite or other magnesium-bearing rocks may contain more than 100 ppm of magnesium. Sea water contains more then $1,000 \mathrm{ppm}$ of magnesium.

Sodium and potassium (Na and K)
Sociium and potassium are dissolved from practically all rocks. Sodium is the predominant cation in some of the more highly mineralized waters found in the western United sitates. Natural waters that contain only 3 or 4 ppm of the two together are likely to carry almost as much potassium as sodium. As the total quantity of these constituents increases, the proportion of sodium becomes much greater. However, the potassium concentration in water does not usually exceed 50 ppm . Moderate quantities of sodium and potassium have little effect on the usefulness of the water for most purposes, but waters that carry more than 50 ppm of the two may require careful operation of steam boilers to prevent foaming. More highly mineralized waters that contain a large proportion of sodium salts may be unsatisfactory for irrigation. The presence of several hundred parts per million of sodium in water makes it unsuitable for use in sodium-restricted diets used as therapy for cardiovascular diseases.

Bicarbonate and carbonate (HCO_{3} and CO_{3})
Bicarbonate and carbonate are sometimes reported as alkalinity. Since the major causes of alkalinity in most natural waters are carbonate and bicarbonate ions dissolved from carbonate rocks, the results are usually reported in terms of these constituents. Although alkalinilty is primarily due to the presence of carbonate and bicarbonate, other ions also contribute to alkalinity such as silicates, phosphates, borates, possibly fluoride, and certain organic anions which may occur in colored waters. The significance of alkalinity to the domestic, agricultural, and industrial user is usually dependent upon the nature of the cations ($\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K) associated with it. However, manate amounts of alkalinity do not adversely affect most uses.

Sulfate $\left(\mathrm{SO}_{4}\right)$
Sulfate is dissolved from many rocks and soils-in especially large quantities from gypsum and from beds of shale. It is formed also by the oxidation of sulfides of iron and may therefore be present in considerable quantities in mine waters. The concentratior of sulfate in waters is generally limited to about 1,500 ppa by the solubility of calcium sulfate. Sulfate in waters that contain much calcium and magnesium causes the formation of hard scale in steam boilers and may increase the cost of softening the water. The U.S. Public Health Service (1962) recomends that 250 ppm of sulfate should be the upper limit for drinking water.

Chloride (Cl)
Chlorides are generally very soluble campounds and are found in most rocks so that chlorides are found in all natural waters. Large quantities of chloride may affect the industrial use of water by increasing the corrosiveness of waters that contain large quantities of calcium and magnesium. The U.S. Public Health Service (1962) recommends an upper limit of 250 ppm of chloride for drinking water.

Fluoride (F)
Fluoride has been reported as being present in igneous and same sedimentary rocks to about the same extent as chloride. However, most fluorides, unlike the chlorides, are low in solubility so that the quantity of fluoride in natural waters is ordinarily very small compared to that of chloride. Hem (1959) reported that fluoride concentrations in excess of 10 ppm are rare. Investigations have proved that fluoride concentrations of about 0.6 to 1.7 ppm reduce the incidence of dental caries, and that concentrations greater than 1.7 ppm also protect the teeth from cavities, but cause an undesirable black stain (Durfor and Becker, 1964): U.S. Public Health Service (1962, p. 8) states, "When fluoride is naturally present in drinking water, the concentration should not average more than the appropriate upper control limit (0.6 to 1.7 ppm). Presence of fluoride in average concentrations greater than two times the optimum shall constitute grounds for rejection of the supply." Concentrations higher than the stated limits may cause mottled enamel in teeth, endemic cumulative fluorosis, and skeletal effects.

Nitrate $\left(\mathrm{NO}_{3}\right)$
Nitrate in water is considered a final oxidation product of nitrogeneous material and may indicate contamination by sewage or other organic matter. U.S. Public Health Service (1962) sets 45 ppm as the upper limit for nitrate. Ingestion of water containing excessive quantities of nitrate may result in infantile methemoglobinemia. If the concentration is sufficiently great, both man and animals can be poisoned by nitrate.

Boron (B)
Boron in salall quantities has been found essential for plant growth, but irrigation water containing more than 1 ppm boron is detrimental to navy beans and other boronsensitive crops.

Dissolved solids
The reported quantity of dissolved solids--the residue on evaporation--consists mainly of the dissolved mineral constituents in the water. It may also contain same organic matter and water of crystallization. Waters with less than 500 ppm of dissolved solids are usually satisfactory for domestic and some industrial uses. Water containing several thousand parts per million dissolved solids are sometimes successfully used for irrigation where practices permit the removal of soluble salts through the application of large volumes of water on well-drained lands, but generally water containing more than about 2,000 ppm is considered to be unsuitable for long-term irrigation under average conditions.

Properties and Characteristics of Water

Temperature

Temperature is an important factor in properly determining the quality of water. This is very evident for such a direct use as an industrial coolant. Temperature is also important, but perhaps not so evident, for its indirect influence upon concentrations of dissolved gases and distribution of chemical solutes in ground water. Normally, the temperature of ground water within 60 feet of the surface approximates the mean annual air temperature and increases $1^{\circ} \mathrm{F}$ for each 60 to 100 feet of increase in depth.

Hardiness

Hardness is the characteristic of water that receives the most attention in industrial and domestic use. It is commonly recognized by the increased quantity of soap required to produce lather. The use of hard water is also objectionable because it contributes to the formation of scale in boilers, water heaters, radiators, and pipes, with a resultant decrease in rate of heat transfer, possibility of water heater or boiler failure, and decrease of flow.

Hardness is caused almost entirely by compounds of calcium and magnesium. Other constituents--such as iron, manganese, aluminum, barium, strontium, and free acid-also cause hariness, although they usually are not present in quantities large enough to have any appresiable effect.

Generally, bicarbonate and carbonate determine the proportions of "carbonate" hardness of water. Carbonate hardness is the amount of hardness chemically equivalent to the amount of bicarbonate and carbonate in solution. Carbonate hardness is approximately equal to the amount of hardness that is removed from water by boiling and is termed temporary herdness.

Noncarbonste hardness is the difference between the hardness calculated from the total amount of calcium and magnesium in solution and the carbonate hardness. If the carbonate hardness (expressed as calcium carbonate) equals the amount of calcium and magnesium hardness (also expressed as calcium carbonate) there is no noncarbonate hardness. Noncarbonate hardness is about equal to the amount of hardness remaining after water is boiled. The scale formed at high temperatures by the evaporation of water containing noncarbonate hardness comonly is tough, heat resistant, and difficult to remove.

Although many people talk about soft water and hard water, there has been no firm line of demarcation. Water that seems hard to an easterner may seem soft to a westerner. The U.S. Geological Survey has adopted the following classification:

Hardness range (calcium carbonate in pom)	
$0-60$	Hardness description
$61-120$	Soft
$121-180$	Moderately hard
More than 180	Hard
	Very hard

For public use, water with hardness of about 200 ppm generally requires softening treatment (Durfor and Becker, 1964).

Sodium-adsorption ratio (SAR)
The term "sodium-adsorption ratio (SAR)" was introduced by the U.S. Salinity Laboratory Staff (1954). It is the ratio expressing the relative activity of sodium ions in exchange reaction with soil and is an index of the sodium or alkali hazard to the soil. Sodium-adsorption ratio is expressed by the equation:

$$
\mathrm{SAR}=\frac{\mathrm{Na}^{+}}{\frac{\sqrt{\mathrm{Ca}^{++}+\mathrm{Mg}^{++}}}{2}}
$$

where the concentrations of the ions are expressed in milliequivalents per liter (or equivalents per million for most irrigation waters).

Waters are divided into four classes with respect to sodium or alkali hazard: low, medium, high, and very high, depending upon the $S A R$ and specific conductance. Water varies in respect to sodium hazard from that which can be used for irrigation on almost all soils to that which is generally unsatisfactory for irrigation.

Specific conductance (micromhos per centimeter at $25^{\circ} \mathrm{C}$)
Specific conductance is a convenient, rapid determination used to estimate the amount of dissolved solids in water. It is a measure of the ability of water to conduct an electrical current. Commonly, the amount of dissolved solids (in parts per million) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from well to well and it may even vary in the same source with changes in the composition of the water (Durfor and Becker, 1964).

Specific conductance of most water in the eastern United States is less than 1,000 micromhos, but in the arid western parts of the country, a specific conductance of more than 1,000 micranhos is common.

Hydrogen-ion concentration (pH)
Hydrogen-ion concentration is expressed in terms of pH units. The values of pH often are used as a measure of the solvent power of water or as an indicator of the chemical behavior certain solutions may have toward rock minerals.

The degree of acidity or alkalinity of water, as indicated by the hydrogen-ion concentration, expressed as pH , is related to the corrosive properties of water and is useful in determining the proper treatment for coagulation that may be necessary at watertreatment plants. A pH of 7.0 indicates that the water is neither acid nor alkaline. Readings progressively lower than 7.0 denote increasing acidity and those progressively higher than 7.0 denote increasing alkalinity. The pH of most natural ground waters ranges between 5.5 and slightly more than 8 .

SELECTED REFTERENCES

Abbott, G. A., and Voedisch, F. W., 1938, The municipal ground-water supplies of North Dakota: North Dakota Geol. Survey Bull. 11. Bluemle, J. P., 1965, Geology and ground water resources of Eddy and Foster Counties,

North Dakota; Part I, Geology: North Dakota Geol. Survey Bull. 44 and North Dakota State Water Comm. County Ground Water Studies 5, 66 p . Bluemle, J. P., Faigle, G. A., Kresl, R. J., and Reid, J. R., 1967, Geology and ground water resources of Wells County; Part I, Geology: North Dakota Geol. Survey Bull. 51 and North Dakota State Water Comm. County Ground Water Studies 12, 39 p. Durfor, C. N., and Becker, Edith, 1964, Public water supplies of the 100 largest cities in the United States, 19\%2: U.S. Geol. Survey Water-Supply Paper 1812. Filaseta, Leonard, 1946, Ground water in the Fessenden area, Wells County, North Dakota: North Dakota State Water Comm. Ground Water Studies, no. 1, 22 p.

Geological Society of America, 1963, Rock-color chart: New York, Geological Society of America.

Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473.

Trapp, Henry, Jr., 1966, Geology and ground water resources of Eddy and Foster Counties, North Dakota; Part II, Ground water basic data: North Dakota Geol. Survey Bull. 44 and North Dakota State Water Comm. County Ground Water Studies 5, 243 p.
U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956.
U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture, Agriculture Handb. 60.

Wentworth, C. K., 1922, A scale of grade and class terms for clastic sediments: Jour. of Geol., v. 30, p. 377-392.

EXPLANATTON

Method drilled
B, bored
C, cable tool
C, cabl
, dug
J, jetted
V , driven

Aquifer

${ }_{0}^{16}$, sand and gravel
0 , glacial til
K1, Lower Cretaceous
K3, Upper Cretaceous
00 , cutwash
PA, Hell Cre
P, Hell Creek Formation
PC, Fox Hills Formation
PD, Pierre Formation
M, Niobrara Formation
is, sand
52, buried channel deposits
Litholegy
, very fine grained
, fine grained
3, medium grained
4, coarse grained
5, very coarse grained
7, clayey
7, silty
8, sendy
, gravelly
F, shale
G, gravel
$\stackrel{P}{\mathrm{P}, \text { clay }} \mathrm{s}$ and and grave
S , sand
S , sand
V , sandstone
Y , shaly or
Y, shaly or slaty

Depth to water below land surface
F, flows
Use of water
C, conmercial
P, public supply
, public supply
, stock
T , institutional

Lift and power
Lift
B, bucket
c, sintrifugal
J, jet
N, none
N, none
P, piston
s, plston
T, turbersine
T, turbine
Power
1, hand
3, gasoline engine
5, electric moto
6, windmill
f, gasoline engine through 5 horsepower
T, electric motor through 1 horsepower
T, electric motor >1 to 5 horsepower
U , electric motor >5 to 15 horsepower

Specific conductance (micromhos per centimeter at $25^{\circ} \mathrm{C}$)
3, $301-500$
$4,501-1,000$
4, 501-1,000
5, 1,001-2,000
7, 5,001-10,000
', 10,001-20,000
Remarks
(1) Chemical quality of water analyses c. complete

K, conductance
P, partial available but not given
(2) Yield of well, in gallons per minute $\mathrm{F}, 0.1$ or less
(3) Type of log data
, arillers log
G, geologist 108 or sample log
J, gamma ray log
, sonic log
x, electric, radiation, caliper, and fluid-velocity logs
(4) Temperature, in degrees F
(5) Frequency of water-level measurements M , monthly M, monthly
0 , original (inventory) measurement only

15
TABLE 1 , CONTINUED.

23

table 1, coninnued.

table 1, continued.
\%

тй

EXplanation
Lithology
F, shale
G, gravel

Specific conductance (micromhos per entimeter at $25^{\circ} \mathrm{C}$)

4, 501-1,000
5, 1,001-2,000
6, 2,001-5,000

Location number	Owner or name	Use of water	Lithology	Flow range	Conductance	Altitude	Remarks
145-69-5ddc	Robert Froelich	H	-	-	5	
© 145-72-8cac	G. P. Hoots	S	\cdots		$\cdot \stackrel{ }{5}$	
, 145-72-17abb	J. Ryberg	H	G	< 1/8 gpm	5	. \cdot.	Flows year round.
146-69-29ddd	E. L. Eaton	U	G	< $1 / 8 \mathrm{gpom}$	\cdots	1730	
146-69-33aba	Francis Hammes	S	G	< $1 / 8 \mathrm{gpm}$	5	1660	
146-73-25cbd2	George Wilson	S \cdot.	Flows year round.
147-73-2bbc	C. Schindler	S	-	.	.	1751	
147-73-3aac	C. Schindler	S	-	-	.	1750	
150-68-1cce	Harold Johnson	U	G	1/8-1 gpm	4	1525	
150-68-11abb	A. L. Garnass	U	F	< 1/8 врm	6	1500	
150-68-12bbb	L. B. Garnass	U	G	1/8-1 gpm	. \cdot	1525	Sheyenne terrace.

Depth to water in feet below land surface

147-67-19 cbe								
	Iate	Water level		Date	Water level		Date	Water level
Dec.	29, 1965	13.11	July	6, 1966....	10.67	Jan.		12.17
Feb.	17, 1966	13.24	Aug.		11.31	Feb.	15.	12.38
Mar.	17.......	13.14	Sept.	13..........	11.65	Mar.	16.	12.44
Apr.	14.	12.95	Oct.		11.73	Apr.	20.	11.17
May	26.	11.25	Nov.	21..........	11.75	May	25.	9.82
June	22.....	11.00	Dec.	20..........	11.86	June	22.	10.56

(See Trapp, 1966, p. 95 for records from Sept. 1963 to Nov. 1965.)

145-68-10bcc								
Oct.	13, 1965....	10.62	June	22, 1966....	10.09	Jan.	24, 1967....	11.80
Nov.	29..........	10.59	July		10.05	Feb.	15..........	12.01
Dec.	29..........	10.62	Aug.	16..........	10.18	Mar.	16..........	12.17
Feb.	17, 1966...	11.23	Sept.	14...........	10.47	Apr.	20..........	11.63
Mar.	17..........	11.08	Oct.	12..........	10.72	May	25..........	11.05
Apr.	14...........	10.80	Nov.	21..........	11.10	June	22..........	10.83
May	26..........	10.41	Dec.	20..........	11.40			

145-68-12add								
Oct.	13, 1965....	10.16	June	22, 1966....	9.35	Jan.	24, 1967...	11.24
Nov.	29..........	10.34	July	7..........	9.54	Feb.	15..........	11.39
Dec.	29..........	10.44	Aug.	16..........	9.90	Mar.	16..........	11.27
Feb.	17, 1966....	10.76	Sept.	14.	10.39	Apr.	20.	10.82
Mar.	17..........	9.74	Oct.	12..........	10.78	May	25..........	10.05
Apr.	14..........	9.98	Nov.	21..........	10.96	June	22..........	10.03
May	26..........	9.30	Dec.	20.	11.07			

145-69-26bbb								
Oct.	12, 1965....	42.80	June	22, 1966....	41.73	Jan.	24, 1967....	41.48
Nov.	29..........	42.40	July	7..........	41.69	Feb.	15...	41.24
Dec.	29..........	42.10	Aug.	16..........	41.74	Mar.	16..........	41.50
Feb.	17, 1966....	41.90	Sept.	14..........	41.83	Apr.	20..........	41.27
Mar.	17..........	41.68	Oct.	12.	41.81	May	25..........	40.92
Apr.	14..........	41.80	Nov.	21.	41.55	June	22...	41.32
May	26..........	41.70	Dec.	20.	41.55			

145-70-23bbb								
Sept.	15; 1964....	5.76	Aug.	17, 1965...	3.66	June	22, 1966....	3.70
Oct.	22.....	5.50	Sept.	15..........	3.18	July	7..........	3.60
Nov.	12..........	5.43	Nov.	2..........	3.12	Aug.	16.	5.09
Mar.	26, 1965....	Frozen	Dec.	29..........	4.45	Sept.	14.	5.03
Apr.	26..........	6.76	Feb.	17, 1966...	Frozen	Oct.	12..........	5.01
May	17...........	5.75	Apr.	14..........	6.00	Nov.	22.........	4.92
June	24..........	5.24	May	26..........	3.78	Dec.	20..........	5.27
July	20..........	4.52						

Depth to water in feet below land surface

145-72-10ama								
	Date	Water level		Date	Water level		Date	Water level
Nov.	23, 1965...	36.63	June	21, 1966...	13.68	Jan.	23, 1967....	12.22
Dec.	28.........	21.80	July	5..........	13.20	Feb.	15..........	12.05
Jan.	25, 1966....	19.15	Aug.	16..........	13.00	Mar.	15.	12.03
Feb.	16..........	17.80	Sept.	12..........	12.89	Apr.	20..........	11.75
Mar.	16..........	16.49	Oct.	11.........	12.84	May	24..........	11.47
Apr.	13..........	15.26	Nov.	21..........	12.55	June	21.	11.98
May	25..........	14.20	Dec.	19..........	12.40			
145-73-24ddd								
Sept.	28, 1964....	8.93	Aug.	26, 1965....	7.17	Aug.	16, 1966....	7.70
Oct.	22..........	8.17	Sept.		6.94	Sept.	12..........	8.44
Nov.	11.	8.15	Nov.	1..........	6.43	Oct.	11..........	9.05
Dec.	15..........	8.43	Dec.	28.........	Frozen	Nov.	21..........	9.17
Jan.	20, 1965....	9.01	Jan.	25, 1966....	Frozen	Dec.	19..........	9.35
Feb.	18..........	9.37	Feb.	16..........	Frozen	Jan.	23, 1967....	9.74
Mar.	25..........	Frozen	Mar.	16..........	Frozen	Feb.	15..........	Frozen
Apr.		6.12	Apr.	13..........	Frozen	Mar.	15.........	Frozen
May	17..........	6.09	May	25..........	6.03	Apr.	20..........	7.15
June	24..........	6.93	June	21..........	6.27	May	24..........	6.15
July	19..........	6.42	July	5..........	6.08	June	21..........	7.05
Aug.	18..........	6.90						
146-68-12bcb								
Sept.	24, 1964....	16.10	Sept.	15, 1965....	13.99	Sept.	13, 1966....	9.73
Oct.	21..........	17.32	Nov.		13.05	Oct.	12..........	10.42
Nov.	12..........	17.33	Dec.	29.........	12.47	Hov.	21...........	10.85
Mar.	26, 1965...	17.40	Feb.	17, 1966....	12.62	Dec.	20..........	11.05
Apr.	26..........	17.37	Apr.	14..........	11.54	Jan.	24, 1967....	11.39
May	17..........	17.32	May	26...........	9.55	Mar.	16.........	11.84
June	24..........	17.23	June	22..........	8.95	Apr.	20.	10.30
July	20..........	15.43	July		8.70			8.05
Aug.	17..........	14.45	Aug.	16..........	9.15	June	22.	8.24
Aug.	27..........	14.28						
146-68-31bab								
Oct.	$2,1964 \ldots .$	17.89	Aug.	$17,1965 \ldots$				15.93
	22...........	21.03		27..............	19.66	July	6...........	15.80
Nov.	12..........	20.85	Sept.	15..........	19.43	Aug.	16..........	16.10
Mar.	26, 1965....	21.38	Nov.	2.........	18.26	Sept.	13..........	16.65
Apr.	26..........	21.38	Feb.	17, 1966....	17.89	Oct.	12..........	16.92
May	17..........	21.05	Mar.	17..........	17.83	Nov.		17.08
June	24..........	20.65	Apr.	14..........	18.30	Dec.	20..........	17.25
July	20..........	20.37	May	26..........	17.30		20..........	17.25

Depth to water in feet below land surface

Depth to water in feet below land surface

Depth to water in feet below land surface

147-68-1ddd								
Date		Water level	Date		Water level	Date		Water level
Apr.	2, 1964....	7.70	Mar.	26, 1965....	8.93	June	22, 1966....	3.95
May	20..........	6.48	Apr.	26...........	6.48	July	6..........	3.50
June	24...........	2.44	May	17..........	6.55	Aug.	16..........	5.55
July	24...........	5.35	June	24..........	7.32	Sept.	13.........	6.05
Aug.	17..........	5.27	July	20..........	6.69	Oct.	12..........	6.39
Sept.	23..........	5.22	Aug.	17.........	4.65	Hor.	21...........	7.06
	24..........	5.45		27..........	5.12	Dec.		7.79
Oct.		4.58	Sept.	15..........	5.09	Jan.	24, 1967...	8.67
	21..........	5.08	Hov.	2..........	3.20	Feb .	15..........	9.25
Nov.	12..........	5.44	Dec.	29..........	5.22	Mar.	16..........	9.83
		5.54	Feb.	17, 1966....	7.22	Apr.	20.	0.96
Dec.	22...........	6.39	Mar.	17..........	7.13	May	25..........	2.82
Jan.	21, 1965....	7.53	Apr.	14..........	2.67	June	22..........	4.80
Feb.	19...........	8.31	May	26..........	3.45			
147-68-10add								
Oct.	14, 1965....	9.43	June	22, 1966....	8.83	Jan.	24, 1967....	8.99
Nov.	29..........	9.44	July	6..........	8.72	Feb.	15..........	9.15
Dec.	29..........	9.31	Aug.	16..........	8.67	Mar.	16..........	9.23
Feb.	17, 1966...	9.54	Sept.	13..........	8.80	Apr.	20..........	8.10
Mar.	17..........	9.48	Oct.	12	8.80	May	25.........	8.40
Apr.	14..........	9.45	Nov.		8.80	June	22..........	8.35
May	26.	9.05	Dec.	20..........	8.85			
147-68-22aaal								
Sept.	24, 1964....	12.20	Aug.	27, 1965...	7.42	Sept.	13, 1966...	7.44
Oct.	21..........	12.53	Sept.	15..........	7.00	Oct.	12..........	8.39
Nov.	12..........	12.22	Nov.	1..........	5.04	Nov.	21..........	8.52
Jan.	21, 1965...	13.13	Dec.	29.........	6.42	Dec.	20.........	9.34
Feb.	19...........	14.21	Feb.	17, 1966....	9.38	Jan.	24, 1967....	10.75
Mar.		15.21	Mar.	17..........	10.12	Feb.	15...........	11.50
Apr.	26...........	15.55	Apr.	14..........	4.73	Mar.	16..........	12.26
May	17..........	14.11	May	26..........	3.20	Apr.	20..........	8.80
June	24..........	10.90	June	22..........	3.53	May	25..........	4.42
July	20..........	8.52	July	6..........	3.39	June	22..........	4.92
Aug.	17...........	7.01	Aug.	16..........	6.30			
147-70-3baa								
Sept	23, 1964....	14.33	Feb.	18, 1965....	15.33	June	23, 1965....	13.64
Oct.	21...........	14.11	Mar.	25..........	16.05	July	19..........	13.33
Nov.	12..........	13.89	Apr.	26..........	15.69	Aug.	17.........	12.64
Jan.	21, 1965...	14.70	May	17..........	15.37	Well	$\begin{aligned} & 27 \\ & \text { destroyed } \end{aligned}$	12.70

Depth to water in feet below land surface

147-70-15cec								
	Date	Water level		Date	Water level		Date	Water level
Sept.	23, 1964....	8.05	July	19, 1965...	6.84	May	26, 1966...	4.04
Oct.	20..........	8.31	Aug.	17..........	6.17	June	21..........	4.74
Nov.	12.	8.35		27..........	6.11	July		4.16
Jan.	21, 1965....	9.02	Sept.	15..........	4.74	Aug.	15.	6.23
Feb.	18..........	9.52	Nov.		4.48	Sept.	13.........	7.30
Mar.	25..........	8.50	Dec.	29..........	5.34	Oct.	11.	8.10
Apr.	26..........	5.73	Feb .	17, 1966...	6.82	Nov.	21.	8.20
May	17..........	5.72	Mar.	17..........	6.30	Dec.	19..........	8.39
June	23..........	7.01	Apr.	13..........	5.30	Jan.	23, 1967....	8.63
147-70-18cec								
Oct.	20, 1964....	8.78	Sept.	15, 1965...	8.25	Sept.	13, 1966....	8.28
Nov.	12.........	8.89	Nov.	1..........	7.25	Oct.	11..........	8.68
Jan.	21, 1965....	7.88	Dec.	29.	7.54	Nov.	21.	8.75
Apr.	26..........	8.73	Mar.	23, 1966....	8.61	Dec.	19.........	9.00
May	17..........	7.44	Apr.	13..........	8.24	Jan.	23, 1967....	9.61
June	23..........	7.69	May	26.	6.27	Mar.	15..........	9.69
July	19.	7.48	June	21.	6.65	Apr.	20..........	8.46
Aug.	17.	7.60	July		6.43	May		6.91
	27.........	7.75	Aus.	15..........	7.36	June	21..........	7.22
147-70-22bbb								
Oct.	20, 1964....	5.75	Sept.	15, 1965...	3.80	Sept.	13, 1966...	6.44
Nov.	12..........	6.35	Nov.	1..........	4.05	Oct.	11..........	7.76
Feb.	18, 1965...	8.52	Dec.	29..........	5.22	Nov.	21.	8.00
Mar.	25..........	4.29	Feb.	17, 1966....	7.08	Dec.	19..........	8.35
Apr.	26.	3.05	Mar.	17..........	5.00	Jan.	23, 1967...	8.83
May	17.	3.66	Apr.	13..........	2.68	Feb.	15..........	9.04
June	23..........	5.46	May	26.	3.25	Mar.	15..........	2.60
July		5.37	June		3.97	Apr.	20..........	2.37
Aug.	17.	3.84	July		3.05	May	24..........	3.39
	27.	3.87	Aug.		5.63	June	21..........	5.05
147-72-3bbb 1								
Sept.	23, 1964....	10.52	Nov.	1, 1965....	10.09	Sept.	13, 1966....	9.70
Oct.	20..........	9.65	Dec.	28.........	10.37	Oct.	11..........	9.93
Nov.	11..........	9.70	Jan.	25, 1966...	Plugged	Nov.		10.55
Dec.	15.........	9.86	Feb.	16..........	11.93	Dec.	19..........	10.60
Apr.	26, 1965...	11.75	Mar.	16..........	12.37	Jan.	23, 1967....	11.52
May	17..........	11.37	Apr.	13.........	12.34	Feb.	15..........	10.89
JuIy	19..........	9.69	May	25..........	9.81	Mar.	15..........	12.08
Aug.		10.52	June	21..........	8.96	Apr.		11.76
	26..........	10.60	July		8.75	May		9.48
Sept.	14..........	10.95	Aug.	15..........	8.87	June	21..........	9.27

Depth to water in feet below land surface

Depth to water in feet below land surface

148-71-24ddd							
Date	Water level		Date	Water level		Date	Water level
Nov. 17, 1966....	10.15	Feb.	15, 1967...	11.11	May	24, 1967...	11.69
Dec. 19.........	10.30	Mar.	15..........	11.65	June	21..........	11.21
Jan. 23, 1967....	10.77	Apr.	20..........	11.99			
148-71-26dec							
Sept. 17, 1964....	11.74	June	23, 1965...	10.27	Dec.	29, 1965....	Frozen
Oct. 21.........	11.54	July	19..........	10.14	Jan.	25, 1966....	Frozen
Hov. 12.........	11.22	Aug.	17..........	10.09	Feb.	16..........	Frozen
Mar. 25, 1965...	12.24		27.	10.10	Apr.	13.	10.35
Apr. 26..........	12.03	Sept.	15..........	10.19	June	21..........	8.30
May 17.........	11.56	Nov.		10.29		11 destroyed	
148-71-28aaa							
Sept. 17, 1964....	10.40	Nov.	1, 1965....	8.29	Sept.	13, 1966....	8.93
Oct. 21..........	9.84	Dec.	29..........	9.13	Oct.	11..........	9.50
Nov. 12..........	9.84	Jan.	25, 1966....	10.28	Nov.	18..........	10.10
Mar. 25, 1965....	12.81	Feb.	16.........	11.24	Dec.	19..........	10.46
Apr. 26.........	12.27	Mar.	16..........	11.66	Jan.	23, 1967....	11.50
May 17..........	10.21	Apr.	13..........	11.23	Feb.	15..........	12.15
June 23..........	8.77	May	25..........	7.02	Mar.	15.	13.10
July 19..........	8.76	June	21..........	6.86	Apr.	19..........	12.00
Aug. 17..........	9.68	July		6.88	May	24..........	7.64
27..........	10.26	Aug.	15..........	7.93	June	21..........	7.43
Sept. 15.	10.42						
148-72-9ece							
Aug. 15, 1966....	5.07	Dec.	19, 1966...	6.38	Apr.	19, 1967...	5.26
Sept. 13.	6.05	Jan.	23, 1967....	7.14	May		4.78
Oct. 11.	6.05	Feb.	15..........	7.20	June	21..........	5.60
Nov. 18.	6.32	Mar.	15.	7.06			
148-72-15aba							
Nov. 8, 1965....	3.19	May	25, 1966....	3.07	Dec.	19, 1966....	3.69
22......	3.29	June	21..........	3.19	Jan.	23, 1967....	3.82
Dec. 28...	3.42	July		2.60	Feb.	15..........	3.70
Jan. 25, 1966....	Frozen	Aug.	15.........	3.63	Mar.	15..........	3.33
Feb. 16..........	Frozen	Sept.		3.90	Apr.	19..........	2.64
Mar. 16.	Frozen	Oct.		3.90	May	24..........	2.20
Apr. 13..........	Frozen	Nov.	18.	3.69	June	21.	3.62
148-72-34dad							
Aug. 15, 1966....	11.78			12.25			
Sept. 13..........	12.17	Jan.	23, 1967....	12.32	May	24...........	10.12
Oct. 11..........	12.20	Feb.	15...........	12.15	June	21..........	11.65
Nov. 18..........	12.25	Mar.	15..........	11.95			

Depth to water in feet below land surface

148-73-14ada								
	Date	Water level		Date	Water level		Date	Water level
Dec.	28,	3.10	June	21, 1966....	2.40	Jan.	23,	5.03
Jan.	25,	4.11	July	5..........	1.06	Feb.		5.05
Feb.		Frozen	Aug.	15..........	2.60	Mar.		4.78
Mar.	16.	Frozen	Sept.	13.	4.15	Apr.		Frozen
Apr.	13	Frozen	Oct.	11.	4.50	May		1.80
May	25.	Frozen	Nov.	18.	4.45	June		3.22
June		2.50	Dec.	19.	4.59			
148-73-35daa								
Mar.		1.06	Sept.	13, 1966....	0.87	Apr.		Frozen
Apr.		1.07	Oct.	11..........	. 84	Mey		0.55
May		. 80	Nov.	18.	Frozen			. 61
June	21.	. 80	Dec,	19.........	Frozen			. 58
July		. 65	Feb.	16, 1967...	Frozen	June		. 50
Aug.		. 68	Mar.	15....	Frozen			
149-68-20dad								
Sept.		33.01	Aug.	17, 1965...	31.99	May		30.90
Oct.	21.	32.93		26..	31.84	June		30.89
Nov.		32.77	Sept.	15.	31.67	July		30.89
Jan.		31.65	Kov.		31.24	Aug.	16	30.95
Apr.	26.	32.85	Dec.	28.	30.98	Sept.	13.	31.12
May		32.58	Feb.	16, 1966....	31.21	Oct.	12	31.19
June	23.	32.63	Mar.	17..........	31.08	Nov.	21	31.39
July		32.22	Apr.	14..........	31.19	Dec.		31.53
149-68-21cbe								
Oct.		29.68	June		29.43			
Nov.		29.69	July	6..........	29.42	Feb.	16	30.30
Dec.		29.48	Aug.	16..........	29.60	Mar.	15.	30.50
Feb.		29.75	Sept.	13.	29.65	Apr.		29.99
Mar.		29.66	Oct.	11.	29.79	May		29.80
Apr.	14.	29.75	Nov.	21.	29.95.	June		29.77
May		29.48	Dec.	20.	30.07			
149-69-18adb 1								
Sept.	18,	10.33	July	19, 1965...	10.12	June		4.80
Oct.	21.	10.35	Aug.	17..........	7.80	July		4.89
Nov.		10.44	Sept.	15..........	7.03	Aug.		6.83
Mar.	25,	11.16	Nov.		5.46	Sept.	13.	7.95
Apr.	26.	10.52	Dec.	29.........	6.24	Oct.	11	8.44
May		10.47	Apr.	13, 1966....	6.72	Nov.	21	8.79
June		10.47	May	25..........	4.65	Dec.	20	9.00

Depth to water in feet below land surface

149-69-28dde

Sept. 18, 1964.	5.89	Sept.	15, 1965....	1.93	July	6, 1966....	2.36
Oct. 21.	5.52	Nov.		2.39	Aug.	16.........	4.65
Nov. 12.	5.52	Dec.	28.	Frozen	Sept.	13.	6.18
Apr. 20, 1965.	1.95	Feb.	16, 1966....	Frozen	Oct.	12.	6.88
May 17.	2.20	Apr .	13..........	2.30	Nov.	21.	7.10
June 23.	4.71	May	26.	2.20	Dec.	20.	7.44
July 19.	3.66	June	22.	2.55	Jan.	24, 1967....	Frozen
Aug. 17.	2.74						
149-70-2aaa							
Oct. 21, 1965.	57.79	June	21, 1966....	57.33	Jan.	23, 1967...	56.40
Nov. 1......	57.68	July		57.38	Feb.		57.28
Dec. 29..	57.29	Aug.	16.	57.28	Mar.	15.	57.45
Jan. 25, 1966.	57.41	Sept.	13..........	57.35	Apr.	19..........	57.06
Feb. 16.	57.53	Oct.	11..........	57.12	May	25.	57.00
Apr. 13.	57.58	Nov.	21..........	56.87	June	21.........	57.00
May 25.	57.49	Dec.	20..........	56.98			

149-70-9daal

Depth to water in feet below land surface

149-70-26cdb								
	Da.te	Water level		Date	Water level		Date	Water level
Sept.	18,	11.47	Aug.	26, 1965...	7.95	June	21, 1966....	5.50
Oct.	21.	11.54	Sept.	15..........	7.80	July	6..........	6.25
Nov.	12.	11.47	Nov.		6.40	Aug.	15.........	7.60
Mar.	25,	11.65	Dec.	29.........	6.70	Sept.	13.	8.40
Apr.	26.	8.10	Feb.	16, 1966...	Frozen	Oct.	11	8.89
May	17.	7.65	Mar.	16..........	Frozen	Nov.	21.	9.10
June		8.14	Apr .	13..........	4.45	Dec.	20.	9.20
July	19.	8.36	May	25.........	4.30	Jan.	23.	Frozen
Aug. . 17. . 7.87								
149-71-9ddd2								
July	14.	17.74	Nov.	1, 1965....	14.83	Sept.	13, 1966...	12.32
Oct.		16.83	Dec.	29.........	14.95	Oct.	11.	13.08
Nov.	$11 .$.	16.84	Jan.	25, 1966...	15.36	Nov.	18..........	13.85
Jan.	20,	17.42	Feb.	16..........	15.43	Dec.	19.........	14.05
Apr.		17.75	Mar.	16..........	15.24	Jan.	23, 1967...	14.45
May		16.69	Apr.	13.........	13.96	Feb.	15..........	14.76
June		15.62	May	25..........	12.69	Mar.	15.	15.15
July		15.25	June	21	11.70	Apr.	19.	14.96
Aug.		14.48	July		11.53	May	24..........	12.89
		14.29	Aug.	15.........	10.62	June	21	11.68
Sept. 15......... 14.45								
149-71-19cdd								
Aug.	15,	6.08	Dec.	19, 1966...	7.28	Apr.	19, 1967...	6.41
Sept.		6.84	Jan.	23, 1967....	7.68	May	24..........	4.75
Oct.		7.10	Feb.	15.	7.78	June	21.	5.33
Nov.		7.27	Mar.	15.	7.70			
149-71-22bcb								
Sept.	16,	30.12	Sept.	15, 1965....	29.68	June	21, 1966....	26.40
Oct.		30.06	Nov.		28.86	July		26.00
Nov.		29.16	Dec.		28.48	Aug.	15..........	25.55
Mar.	25,	29.02	Jan.	25, 1966....	27.84	Sept.	13..........	25.62
Apr.		29.05	Feb.	16..........	27.62	Oct.	11.	25.17
May	17.	29.18	Mar.	16.	26.79	Nov.	18.	25.53
June		30.00	Apr.	13.	27.28	Dec.	19..........	24.69
July		30.28	May	25.........	26.64	Jan.	23, 1967....	25.00
Aug.		29.77						
149-72-3aaa2								
Aug.	15,	12.25	Dec.	19, 1966....	13.70	Apr .	19, 1967...	14.28
Sept.	13.	12.92	Jan.	23, 1967....	14.03	May	25.........	13.29
Oct.	1.1.	13.20	Feb.	16..........	14.22	June	21........	12.72
Nov.	2.1.	13.45	Mar.	15..........	14.50			

Depth to water in feet below land surface

Depth to water in feet below land surface

150-69-14cde								
	Date	Water level		Date	Water level		Date	Water level
Sept.	17,	13.65	Mar.	25, 1965...	14.20	Aug.	17, 1965...	12.30
Oct.	21.	13.85	Apr.	26..........	13.50		26..........	12.47
Nov.	12	13.76	May	17..........	13.13	Sept.	15..........	12.80
Jan.	2 C,	13.74	June	23..........	13.10	Measur	rement discon	wed.
Feb.	18.	14.18	July	20.	13.16			
150-70-19cdc								
July	7,	8.11	July	20, 1965...	2.50	Apr.	13, 1966....	5.93
Oct.	21.	9.21	Aug.	18..........	4.55	May	25..........	3.60
Nov.	12.	9.53		26..........	4.85	June	21.	4.85
Jan.	2 C,	11.31	Sept.	15..........	3.96	July	6..........	5.60
Feb.	18.	11.92	Nov.		4.44	Aug.	16..........	6.97
Mar.	25;	12.03	Dec.	28.	Frozen	Sept.	13..........	7.75
Apr.	26.	11.13	Jan.	25, 1966....	Frozen	Oct.	11.	9.13
May		9.86	Feb.	16..........	Frozen	Plugge		
June		8.94	Mar.	16.	5.83			
150-70-25ccb								
Sept.	18,	6.22	Nov.	1, 1965....	3.92	Sept.	13, 1966....	5.60
Oct.		6.05	Dec.	29.........	Frozen	Oct.	11.	5.69
Nov.	12.	6.12	Jan.	25, 1966....	5.52	Nov.	21.	5.78
Mar.	25,	Frozen	Feb.	16..........	5.35	Dec.	20.	6.04
Apr.		5.10	Mar.	16.	4.28	Jan.	23, 1967....	6.22
May		5.19	Apr.		4.24	Feb.	16.	6.38
June		3.99	May	25..........	3.94	Mar.	15.	6.19
July		2.28	June	21..........	4.50	Apr.	19...........	4.57
Aug.		3.98	July	6.	4.19	May	25..........	4.29
		4.45	Aug.		5.15	June	21.	5.20
Sept.	15.	4.13						
150-70-31cdd								
Aug.	16,	82.53	Nov.	21, 1966....	82.40	Feb.	16, 1967....	82.18
Sept.	13.	82.60	Dec.	20....	82.36	Mar.	15.........	82.25
Oct.	11.	82.50	Jan.	23, 1967....	82.29	Well d	destroyed	

Depth to water in feet below land surface

150-72-21cde									
	De.te	Water level		Date		Water level		Date	Water level
Jan.	20,	11.94	Feb.		1966....	11.40	Oct.		11.03
		12.20		16.		11.71	Nov.		11.12
		12.50		20.	. .	11.87		10.	11.04
Feb .		12.50		25.		12.25		15.	11.22
		12.53	Mar.	1.		12.50		21.	11.13
	10.	13.05			12.14		25.	10.95
		12.96		10.	12.08		30.	11.23
	20.	13.24			9.70	Dec.	1.	11.10
	25.	13.42		20.		6.66		5.	11.12
Mar.		13.54		26.	. . .	7.50		10.	11.35
		13.68		30.	. . .	7.64		15.	11.43
	10.	13.37	Apr .	1.		7.96		20.	11.50
	15.	13.15			8.20		24.	11.63
	20.	13.07		15.	8.57		26.	11.67
	25.	12.90		20.		8.60		30.	11.56
	30.	13.06		25.	8.80	Jan.		11.58
Apr.		13.12		30.	8.85		5.	11.63
		13.04	May			8.60		10.	11.73
	10.	12.66			8.75		15.	11.55
	15.	11.45		10.	. . .	8.91		20.	11.74
	20.	10.93		15.	. . .	8.85		25.	11.98
	25.	10.62		20.		9.04		27.	12.01
	30.	10.68		26.		9.25		30.	11.98
May	1.	10.69		30.	. . .	9.55	Feb.	1.	12.14
		10.53	June	1.	9.65		5.	11.95
	10.	10.58			9.46		10.	12.06
	15.	10.60			9.35		15.	12.35
	20.	10.62		15.	9.34			12.54
		10.73		20.	9.50		25.	12.85
	30.	10.40		25.		10.02		28.	13.01
June		10.45	July	30.		9.86	Mar.		12.97
		10.51		11.	. . .	9.55		6.	12.92
	10.	10.64		15.		9.80		10.	12.72
	15.	10.93		20.		10.25		15.	12.63
	13.	11.05		25.	10.45			12.00
	23..	11.18		30.	10.50		25.	11.55
	25.	11.20	Aug.	1.		10.55		30.	10.50
	30.	11.26		5.		10.84	Apr .	1.	10.50
July	1.	11.21		10.	. . .	10.30		5.	10.39
		11.08		15.	. . .	10.33		10.	10.72
	10.	10.54		20.		10.60		15.	10.76
		10.05		25.	10.34			9.94
		10.08		30.	...	10.68		25.	9.82
		9.78	Sept.	1.		10.67		29.	9.71
	30.	9.80		5.	.	10.60	May	1.	9.77
Aug.		9.60		10.		10.80		5.	9.66
Nov.	30.	9.20		16.	. .	11.01		10.	9.01
Dec.		9.35		20.	. .	11.01		15.	8.90
Jan.	1,	9.56		25.		10.95			9.18
	5.	9.75		30.	10.96		25.	9.13
	10.	9.90	Oct.	1.	10.85		30.	9.48
	$15 .$.	10.06		5.	10.94	June	1.	9.70
	20.	10.00		10.	11.00			10.02
	25.	10.24		15.	...	11.11		10.	9.78
	30.	10.61		20.	10.93		15.	9.89
Feb.		10.91		25.	11.07			9.66
		11.22							

Depth to water in feet below land surface

145-68-10bcc
Test hole 2452Altitude: 1,630 feet
Formation Material Thickness (feet) (feet)
Glacial drift:
opsoil, sandy loam, black------------------------------1 1
Gravel, fine and medium, sandy, brown, moderately well- sorted, subangular to subrounded------------------------ 9
Sand,
Shale, silty, olive-gray to olive-black, noncalcareous--- 23145-68-12addTest hole 2453Altitude: 1,590 feet
Glacial drift:
 1
Sand, medium to very coarse, gravelly, brown to gray,
moderately well-sorted, subangular to subrounded--.-- 31
Pierre FormationShale, olive-gray to olive-black-------------------------10 1010
145-68-16cecTest hole 2451
Altitude: 1,668 feet
Glacial drift:
Sand and gravel, very coarse sand to medium gravel,
Sand and gravel, yellow-brown, very clean------------------5
5
Till, sandy, olive-gray---------------------------------------1- 21
Pierre Formation:
 22531
.53
145-68-26dcc Test hole 1891
Altitude 2,100 feet
Glacial drift: Gravel, fine to medium, sandy, oxidized. Interbedded with layers of silty yellowish-brown oxidized clay-.-- 11 11
Till, silty, olive-gray; numerous shale grains----------- 80 121
 179
Pierre Formation:
Shale, dark-greenish-gray---------------------------------- 31 210

145-69-2bdb
C. E. Kutz
(Log by A. B. Kamoni)
Altitude: 1,670 feet

Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$

145-69-2ccc
 Test hole 2576

Altitude: 1,740 feet

	21	21
Till, silty, dusky-yellow, contains sand lenses	8	29
Sand, medium to coarse, gravelly	6	35
Till, silty, olive-gray-	4	39
Sand, medium to coarse, gravelly	3	42
Till, silty to sandy, olive-gray, rocky	52	94
Sand, medium to coarse, subangular to subrounded	8	102
Till, silty to gravelly, olive-gray-----------	4	106
Sand, medium to coarse-------------	4	110
Till, gravelly, olive-gray, drills moderately rough	192	302
Sand, medium to coarse-	2	304
Till, silty, olive-gray	50	354
Till, silty to sandy, olive-gray	12	366
Till, silty, olive-gray-	4	370
Silt, sandy, olive-gray, drills tight-	43	413
Sand, medium to coarse, gravelly, drills rough	8	421
Till, silty, olive-gray-----------------------	7	428
Pierre Formation:		
Shale, silty, olive-black, noncalcareous-----------------	13	447
$\begin{aligned} & \text { 145-69-8aaa } \\ & \text { Test hole } 2448 \end{aligned}$		
Altitude: 1,790 feet		
Glacial drift:		
Sand, fine, clayey, dark-brown to yellowish-gray---------	6	6
Till, sandy, dusky-yellow to moderate-olive-brown, oxidized-	16	22
Gravel, fine to medium, sandy, reddish-brown, moderately sorted	8	30
	27	57
	7	64
	9	73
Sand, fine to coarse, gravelly, gray, poorly sorted, clay and till lenses present, interbedded-	40	113
Gravel, fine and medium, sandy, clayey-	53	166
Till, silty and sandy, olive-gray----.	46	212
Till, silty, medium-olive-gray------------------------------	29	241
Pierre Formation:		
Shale, olive-gray to olive-black, noncalcareous---------	21	262

145-69-19aaa
Test hole 2641
Altitude: 1,860 feet

Formation	Materia	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift :			
	Till, very silty, dusky-yellow to yellowish-gray, 23		
	Till,	65	88
	Sand, m	2	90
	Till, tigh	206	296
Pierre Formation:			
Silt, clayey, olive-gray, noncalcareous-----------------27 223			
Shale, silty, dark-olive-gray to olive-black, noncalcareous, drills very tight			

145-69-26bbb Test hole 2449

Altitude: 1,811 feet

Glacial drift:
Topsoil, silty loam, black--------------------------------1

Till, silty and sandy, moderate-olive-brown, oxidized---- 9
Tily, olive-gray, cohesive, moderately hard---.-.-.......- 199
Gravel, fine to coarse, sandy, clayey, gray, did not take
water---1
Sand, very fine to fine, silty, olive-gray, calcareous--
 33

Fox Hills Formation:
Sandstone, very fine grained, olive-gray to dark-greenish-

Sandstone, dark-greenish-gray, calcareous----------------- 9
336

Altitude: 1,855 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, silty, black---------------------	2	2
	Till, silty to slightly sandy, dusky-yellow	9	11
	Till, silty, olive-gray----------	95	106
	Clay, silty, olive-gray, drills tight	7	113
	Till, silty, olive-gray-----------------1-1.	89	202
	Sand, subangular to subrounded, poorly sort	5	207
	Till, silty to slightly sandy, olive-gray, and plasticity, shale and lignite presen	- 199	406
Pierre Formation:			
Shale, silty, olive-black, noncalcareous----------------314 44			
$\begin{gathered} 145-70-21 \text { dab } \\ \text { Adam Stroh } \\ \text { (Log by A. B. Kamoni) } \end{gathered}$			
	Topsoil, black---	2	
	Clay, yellow---	2	4
	Gravel, yellow-	5	9
	Clay, yellow-	5	14
	Gravel, clayey, yellow	4	18
	Gravel, gray---.-.--	7	25
	Clay, gravelly, gray-	2	27
I45-71-2abdChancy Gillham(Log by Norm Staí)			
Altitude: 1,905 feet			
	Topsoil-	1	1
	Clay, sandy, yellow	20	21
	Clay, gray, (till)-	42	63
	Sand, fine, blue, conteins lignite	7	70
	Sand, fine to medium, with lignite	35	105
	Clay, sandy-	13	118
	Clay, gray----	2	120

145-71-25ddd Test hole 2445

Altitude: 1,866 feet
Glacial drift:

Sand, clayey, dark-brown (road fill?)	7	7
Clay, sandy, dusky-yellow-	11.	18
Clay, olive-brown	3	1
Till, sandy, olive-brown	12	33
Till, sandy, olive-gray, lenses of fine to medium gray sand-	15	48
	66	114
Gravel, fine and medium, with medium to very coarse sand, subangular to subrounded-	12	126
Till, silty to sandy, gravelly to rocky, olive-gray-----	46	172
Clay, silty, light-olive-gray to olive-gray, very cohesive, drills easy-	40	212

145-72-23cba
R. R. Rodacker
(Log by A. B. Kamoni)

146-69-36bac
Richard Neumiller
(Log by A. B. Kamoni)
Altitude: 1,643 feet

146-70-35aaa
 Test hole 2447

Altitude: 1,775 feet
Glacial drift:

Till, sandy, dusky-yellow, oxidized----------------------16

Till, silty to sandy, olive-gray---------------------------31

Till, silty to very sandy, small sand lenses throughout-- 19

146-71-17cccl Test hole 2481												
Formation	Material	Altitude:	1,808 feet		$\frac{\text { aickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$						
Glacial drift:												
Topsoil, silty loam, black----------------------------11 1												
THII, silty and sandy, moderate-olive-brow-------------- 23												
Till, silty and sandy, olive-gray---------------------10-3 10												
\qquad												
Sand., fine to coarse, slightly clayey in spots, gray,shale and coal present, takes water---- 110												
	Sand., sa	but with mom	re clay-		10	120						
Sand, fine to medium, gray, moderately well-sorted, very												
	Till, ${ }^{\text {ci }}$, ollve-g	ay--------		53	189						
TH11, silty to sandy, olive-gray, drills tight---------59 256												
	Sand, me	rse, grave	Iy, large an		9	265						
Till., silty and sandy, olive-gray', tightly compacted--... 73												
Fox Hilis Pormation:												
	Shaje, sandy to silty, yellowish-gray to light-olive-gray 12											
Sand, very fine to fine, dark-greenish-gray--------------7 7												
Clay, sandy, light-olive-gray to greenish-gray----------11 11.												
$\begin{aligned} & 146-71-17 \mathrm{ccc} 2 \\ & \text { Test hole } 2481 \mathrm{~A} \end{aligned}$												
Altitude: 1,808 feet												
Glacial drift:												
Tili, silty and sandy, some very small sand lenses------- 87												
$\begin{gathered} \text { 146-71-18ced2 } \\ \text { Ben Hagelie } \\ \text { (Log by A. B. Kamoni) } \end{gathered}$												
Cobllestones--3 3												
Sand, yellow---12 9												
Sea mud, 1 yellow--------------------------------------11010 13												
Sand, yellow-w-------------------------------------17 4												
	Sea mud, gray-------------------------------------15 5											
1/ Author's interpretation of sea mud is lake clay.												
$\begin{gathered} \text { 146-71-32ada } \\ \text { Albert Fuhrman } \\ \text { (Log by A. B. Kamioni) } \end{gathered}$												

Test hole 248

Altitude: 1,808 feet

Glacial drift:

Sand, fine to coarse, slightiy clayey in spots, gray,
chale and coal present, takes water------- 35

Sand, fine to medium, gray, moderately well-sorted, very

Sand, medium and coarse, gravelly large amount of shale-
Till, silty and sandy, olive-gray', tightly compacted--..- 73
Shaje, sanay to silty, yellowish-gray to light-olive-gray
Clay', sandy, light-olive-gray to greenish-gray---------... 1

146-71-17ece2
Test hole 2481 A
Altitude: 1,808 feet

Tili, silty and sandy, some very small sand lenses------- 87

25

25
Band, fine to coarse--------------------------------------18
35
1/ Author's interpretation of sea mud is lake clay.

146-71-32ada
(Log by A. B. Kamoni)

146-71-32bbb
Test hole 2543
Altitude: 1,855 feet

Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{(f e e t)}$
Glacial drift:			
	Topsoil, silty, black Till, very silty, moderate-yellowish-brown, highly	1	1
	oxidized	23	24
	Till, silty, olive-gray, moderately hard, low pebble đensity-	80	104
	Till, silty, olive-gray, large amount of lignite present-	8	112
		33	145
	Gravel, medium to coarse grained, poorly sorted, angular to subengular-	5	150
	Till, silty, olive-gray, moderately hard------------------	173	323
	Gravel, fine to medium, angular to subangular-----------	- 5	328
	Clay, very silty to sandy, olive-gray-	17	345
	THil, olive-gray--	50	395
	Gravel, fine to medium, angular to subangular	2	397
	Till, silty, olive-gray-	2	441 443
	Rock, granite---------	2	443
Pierre Formation:			

146-72-14bbb Test hole 2542		
Altitude: 1,832 feet		
Glacial drift:		
Topsoil, silty, black--	1	1
Till, very silty, moderate-yellowish-brown to duskyyellow, highly oxidized	22	23
	48	71
Sand, very coarse to fine gravel, angular to subangular, "heaved"	10	81
Till, olive-gray, moderately hard (samples very poor)----	221	302
Gravel, fine to medium grained, very angular, drills rough, possibly cemented	15	317
	22	339
	10	349
Fox Hills Formation: Clay, very sandy, dark-greenish-gray, slightly indurated-	19	368
$\begin{aligned} & \text { 146-73-3cec } \\ & \text { Test hole } 2510 \end{aligned}$		
Altitude: 1,874 feet		
Glacial drift:		
	1	1
	24	25
Till, olive-gray, very hard, fairly smooth, large amount of igneous material	139	164
	22	186
	42	228
	11	239
Till, silty, olive-gray	11	250
Gravel, clayey---.-.-.-	10	260
	40	300
Till, moderate olive-brow, very hard--------------------1.	48	348
Fox Hills Formation: Siltatone, silty to sandy, brown	16	364

Altitude: 1,820 feet

147-68-1bbb
Test hole 2625
Altitude: 1,566 feet

147-68-4bbb

Test hole 2569
Altitude: 1,585 feet

Glacial drift:

Topesoil, silty, dusky-brown	1	1
Till, silty, dusky-yellow, oxidized	14	15
Till , ssndy, moderate-olive-brown to olive-gray	6	21
Sand, fine to medium, oxidized--	7	28
Tilly, silty to silghtly sandy, dusky-yellow, axidized---	2	30
Saud, fine to medium, oxidized-	4	34
Till, silty, olive-gray-	58	92
Gravel, sandy, poorly sorted-	4	96
Till, silty to gravelly	44	140

Altitude: 1,587 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		1	1
	Till, silty to sandy, dusky-yellow, oxidized-	22	23
	Ti11, silty, olive-gray-	24	47
		10	57
		8	65
	Sand, prorly sorted-	5	70
	Till, slightly gravelly, ollve-gray	5	75
		3	78
		- 60	138
Pierre Formation:			
		- 10	148
	$147-68-10 \mathrm{add}$ $\text { Test hole } 2457$		
	Altitude: 1,555 feet		
Glacial drift:			
	Topsoil, silty loam, black-	1	1
		9	10
		- 24	34
	Sand, coarse to very coarse, large amount of shale and coal present, takes water- Gravel, coarse to very coarse, large amount of lignite, well-sorted-	$-\quad 38$ $-\quad 8$	72 80
Pierre Formation:			
		- 15	95
	$\begin{gathered} \text { 147-68-20add } \\ \text { Test hole } 2456 \end{gathered}$		
	Altitude: 1,580 feet		
Glacial drift:			
		- 2	2
		- 18	20
		- 1	21
		- 1	22
	Till, very aandy, grayish-olive-green, highly cohesive, moderately rocky-	- 174	196
Plerre Formation:			
	147-68-22aaa2 Test hole 2570		
	Altitude: 1,580 feet		
Glacial drift:			
		- 1	1
		- 9	10
	Till, silty with sand layers, dusky-yellow, oxidized----	-117	21
		- 7	28
	Till, silty to slightly gravelly---------------------------	- 61	89
		- ${ }^{2}$	91
		- 18	109
	Sand, nedum to very coarse, gravelly, subangular to subrounded, large amount of lignite present 59	- 48	157

147-68-25addl
Test hole 1468
Altitude: 1,590 feet
Glacial drift:

Till, buff to yellow--------------------------------------14
Sand, very fine to coarse, moderately silty to clean,

 21
ion: 8 170
Pierre Formation
Shale, blue-gray, soft to brittle, noncalcareous-------- 8

lif-68-30ddd
Test hole 2572

Altitude: 1,597 feet

147-68-34aaa
Test hole 2626
Altitude: 1,691 feet
Glacial drift:

Till, silty, olive-gray------------------------------------1 61
Till, silty, dark-olive-gray, drills smooth--.................. 24
Pierre Formation:
Shale, olive-black, brittle, noncalcareous--------------- 37

147-69-5bbb
Test hole 2479

Altitude: 1,595 feet

Till, very shaly, moderate-olive-brown to light-olive-

Pierre Formation:
Shale, silty, olive-black, noncalcareous, contains some

\qquad
60

Altitude: 1,580 feet

Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, silty, black	1	1
	Till, silty, dusky-yellow, oxidized	22	23
	Till, silty, olive-gray----	17	40
	Sand, medium to coarse, clayey, consists of shale particles	11	51
	Silt, sandy, olive-gray, drills tight-----	27	78
	Clay, olive-gray, very compact, drills tight	8	86
		37	123
	Sand, coarse, gravelly-	2	125
	Till, silty to gravelly, ollve-gray-	8	133
Pierre Formation:			
	Shale, ollye-black--	25	158

147-69-30bbb
Test hole 2651
Altitude: 1,633 feet

Glacial drift:

Topsoil,	1	1
Till, very silty, moderate-yellowish-brown, oxidized-----	3	4
Gravel, sandy, angular, oxidized-	2	6
Till, rocky, moderate-yellow-brown, oxidized	5	11
Till, silty, olive-gray, extremely rocky-	29	40
Silt, clayey to sandy, very dusky-red (10 R 2/2), soft---	4	44
Till, silty, olive-gray, hard rmation:	96	140
Clay, very silty to sandy, contains sandstone layers, noncalcareous, dusky-blue-green and mottled with brown tints- \qquad	10	150
tion:		
Shale, olive-black, highly fissile, noncalcareous-	30	180

147-69-34bbb
Test hole 2573
Altitude: 1,620 feet
Glacial drift:

Altitude: 1,641 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, black	1	1
Till, silty to sandy, rocky, moderate-yellowish-brown,			
	Sand, very fine to fine, silty-	3	7
	Till, silty to sandy, rocky, moderate-yellowish-brown-	18	25
	Sand, fine to medium, silty-----	1	26
	Till, very silty, olive-gray-	3	29
	Sand, fine to very fine, silty	2	31
	Till, silty, olive-gray------	12	43
	Sand, gravelly, angular to subrounded	4	47
	Till, olive-gray------	7	54
	Clay, very sandy, grayish-olive-green, fairly calcareous driller reports rocks (till)	- 9	63
	Gravel, medium, angular-------	5	68
	Clay, very sandy, grayish-olive-green	26	94
	Till, olive-gray------------	10	104
	Gravel, medium to coarse, rocky-	8	112
	Clay, very sandy, grayish-olive-green, calcareous-----	3	115
	Gravel, coarse to very coarse, rocky, subangular to angular limestones, very clean, takes large amounts of water \qquad	25	140

147-72-5ccc Test hole 2556		
Altitude: 1,655 feet		
Glacial drift:		
Topsoil, silty, olive-black	1	1
	9	10
Sand, fine to medium, mostly quartz	11	21
	28	49
Sand, fine to medium, subangular to subrounded, large amount of lignite	35	84
Clay, silty, light-olive-gray, few sand lenses--w--------	26	110
Fox Hills Formation:		
Clay, light-gray to very light-gray, drills tight, very calcareous	16	126

147-72-6bbb Test hole 2557

Altitude: 1,640 feet
Glacial drift

Till, silty dusky-yallow, rocky, oxidized----..-. --

 Sand, medium to coarse, gravelly, subangular to subrounded, rounded lignite cobbles present, lost circulation- 72

147-72-17bcc

Test hole 2638
Altitude: 1,690 feet

Formation:	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, sandy, brown	1	1
	Sand, medium to coarse, gravelly, angular to subangular	13	14
	Sand, medium to coarse, gravelly, subangular to subrounded	3	17
	Till, silty to sandy, olive-gray	84	101
	Clay, silty, light-olive-gray to grayish-olive, calcareous, $\mathrm{H}_{2} \mathrm{~S}$ odor (lake sediment)	26	127
	Clay, very silty to sandy, light-olive-gray, slightly calcareous (lake sediment)	6	133
		10	143
	Till, silty, olive-gray, lenses of fine gravel	21	164
	Clay, silty, olive-gray---------	17	181
	Till, silty, olive-gray-------	9	190
Fox Hilla Formation:			
	Clay, very sandy, dark-greenish-gray, brittle, noncalcareous	41	231

147-72-23ddd Test hole 2664		
Altitude: 1,675 feet		
Glacial drift:		
Topsoil, black	1	1
Till, silty, moderate-yellowish-brown, oxidized---------	4	5
Clay, smooth, highly plastic, moderate-yellowish-brown---	4	9
Clay, smooth, calcareous, olive-gray-------.	6	15
	2	17
Till, silty, olive-gray-	11	28
Till, olive-gray, gravel layers of angular limestone---.	7	35
	23	58
Fox Hills Formation:		
Sand, clayey, grayish-olive-green, speckled with mafic m.nerals, noncalcareous-	22	80
147-73-1cce Test hole 2751		
Altitude: 1,743 feet		
Glacial drift:		
Topsoil, silty, black-	1	1
Clay, silty to sandy, yellowish-brown	7	8
Gravel, sandy to clayey-	2	10
Till, moderate-brown-	10	20
Till, silty, olive-gray-	42	62
	28	90
Till, very silty, medium-dark-gray, contains interbedded oxidized layers	48	138
Gravel, sandy and clayey, large amount of limestone------	54	192
Fox Hills Formation: Sandstone, medium-bluish-gray, drills hard	28	220

147-73-3cec
Test hole 2511
Altitude: 1,880 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, silty, black	1	1
	Till, very silty to moderately sandy, dark-yellowish-brown-	- 15	16
	Gravel, medium to coarse, angular, clay intermixed-------	- 15	31
	Till, olive-gray--	- 50	81
		. 5	81.5
		- . 5	82
	Rock	2	84
	Till, olive-gray	50	134
	Clay, very silty, olive-gray, soft----------------------1.	- 11	145
	Gravel, fine to coarse grained, sandy to silty, subangular to subrounded limestone	- 16	161
	Gravel, as above but less clay----------------------------	- 14	175
	Clay, very silty, light-olive-gray, very calcareous------	- 76	251
		- 21	272
	Till, very silty to moderately sandy, light-olive-brown, very hard, (second oxidized zone)	- 20	292
	Gravel, medium to coarse grained, angular to subangular, 95 percent limestone; drills rough, possibly cemented-	- 23	315
	$\begin{aligned} & 148-68-10 \mathrm{ada} \\ & \text { Test hole } 2458 \end{aligned}$		
	- Altitude: 1,555 feet		
Glacial drift:			
	Topsoil, sandy loam, black-	1	1
	Till, sandy, dusky-yellow-	10	11
	Sand, medium to coarse, well-sorted	28	39
	Till, olive-gray--	- 2	41
		- 20	61
	Till, gravelly, olive-gray-	38	99
Pierre Formation: ${ }^{\text {a }}$			
	Shale, olive-gray-	17	116
	148-68-20bac B. Krenzel (Log by Norm Stai)		
	Altitude: 1,570 feet -		
	Clay, sandy, yellow---	- 17	
		- 98	115
	Gravel, medium to coars	2	117
		- 3	120
	$\begin{gathered} \text { 148-68-26bcc } \\ \text { Test hole } 2568 \end{gathered}$		
	Altitude: 1,565 feet		
Glacial drift:			
		- 1	1
	Till, very gravelly, yellowish-gray to dusky-yellow, oxidized-	- 11	12
	Sand, medium to coarse, gravelly, silty to clayey, oliveblack to olive-gray-	- 10	22
	69		

$148-69-13 b c c$
Test hole 2506
Altitude: 1,590 feet

Glacial drift:

Till, silty, dark-yellowish-brown, oxidized---------------13

Clay, very silty, smooth, grayish-olive-green------------53
Clay, very silty, greenish-olive-green, very dry---....-. 20

Pierre Formation:
Shale, moderately hard, olive-black------------------------16

> 148-69-28aaa
> Test hole 2650

Altitude: 1,595 feet
Glacial drift:

Till, very silty, dusky-yellow to moderate-yellowish-
brown, rocky (oxidized)---------------------------------17
18

56
Till, silty to moderately gravelly, olive-gray, very hard 35
Formation Material Thickness
Glacial drift--Continued:Gravel, fine to medium, angular------------------------. 394
Till, olive-gray, very hard--------------------------------- 29 123Pierre Formation:126
Shale, olive-black, extremely hard, blocky, possibly
160
148-70-7ddd Well A.
(Log republished from Filaseta, 1946, p. 15)
Altitude: 1,610 feet

Topsoil, blac	1	1
Clay, yellow-	18	19
Boulders and c	2	21.
Clay, yellow-	9	30
Clay, blue-	4	34
Sand and grave	1	35
Clay, blue	92	127
Boulders	1	128
Sand-	32	160
Shale	4	164

148-70-8cbd
Well K
(Log republished from Filaseta, 1946, p. 16)
Altitude: 1,612 feet

148-70-8cde
Well D
(Log republished from Filaseta, 1946, p. 16)
Altitude: 1,610 feet

Topsoil, black	1	1
Clay, yellow-	1	2
Gravel with some	8	10
Clay, yellow-	22	32
Boulders and grav	4	36
Clay, blue-	97	133
Sand-	12	145
Clay, blue-	17	162
Shale-	18	180

148-70-14ecc
Test hole 2649
Altitude: 1,600 feet

Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{\text { (feet) }}$
Glacial drift:			
	Topsoil, black	1	1
	Till, silty to slightly sandy, moderate-yellowish-brown, (oxidized)	14	15
		7	22
	Sard, fine to medium, very silty-	4	26
	Tille, silty, olive-gray---------	12	38
	Till, gravelly, olive-gray-	15	53
	Tijl, silty, olive-gray, large amount of lignite--------	- 67	120
	Tijl, silty to slightly sandy, olive-gray-------	40	160
	Gravel, medium to coarse, angular	3	163
	Till, gravelly, olive-gray-----..	7	170
Pierre Formation:			
	Shale, olive-gray to olive-black, noncalcareous---------	- 30	200

148-70-17bcb
Well I
(Log republished from Filaseta, 1946, p. 16)

Altitude: 1,615 feet

148-70-18ada
 Well H
 (Log republished from Filaseta, 1946, p. 15)

Altitude: 1,616 feet

Altitude: 1,604 feet			
Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, very silty, dusky-brow	1	1
	Till, silty to sandy, dusky-yellow, oxidized	12	13
	Sand, fine to medium, subangular to subrounded, oxidized	2	15
	Till, silty, olive-gray-	33	48
	Till, silty to slightly sandy, olive-gray	67	115
	Clay, slightly silty, light-olive-gray, calcareous	6	121
	Till, olive-gray-	8	129
	Clay, silty, light-olive-gray	7	136
		13	149
	Till, silty, light-olive-gray to olive-gray	29	178
	Sand, medium to coarse, gravelly, drills rough	9	187
		8	195
Pierre Formation:			
	Shale, olive-black	26	221

148-70-32ceb
Altitude: 1,615 feet
Glacial drift:
Sand, medium to coarse, yellow---------------------------10 10

Sand and gravel, very silty, gray------------------------100

Till, gray---170 70
Pierre Formation:

148-70-32daa		
Altitude: 1,615 feet		
Glacial drift :		
Till, silty, light-gray-	5	5
Sand, fine to medium, well-sorted, brown	13	18
Till, gray, unoxidized-	177	195
Pierre Formation:		
Shale, gray-	5	200
148-70-32ddd		
Altitude: 1,615 feet		
Glacial drift:		
Clay, silty, yellow-	10	10
Sand, medium to coarse, grayish-brown	10	20
Till, silty, gray-	75	95
Till, sandy, gray-	90	185
Till, silty, gray-	30	215
Pierre Formation:		
Shale, gray-	5	220

Altitude: 1,606 feet

Formation	Material	$\frac{\text { Depth }}{\text { (feet) }}$
Glacial drift:		
	Topsioil,	1
Till, silty to slightly sandy, yellowish-gray to		
Sanc, medium to coarse, gravelly, subangular to sub-		
	Till, si	71
	Till., si	90
	Till., si	183
	Clayr, si	197
Pierre 70	tion: Shale, s	221

148-71-12bad
(Iog republished from Filaseta, 1946, p. 20)
Altitude: 1,610 feet

148-71-12bbc
(Iog republished from Filaseta, 1946, p. 19)
Altitude: 1,615 feet

$\begin{gathered}148-71-13 \mathrm{ccc} \\ \text { Test hole } 2630\end{gathered}$
Altitude: 1,605 feet

148-71-24ddd
Test hole 2628
Altitude: 1,613 feet

Altitude: 1,615 feet

148-72-26aaa Test hole 2633			
	Altitude: 1,650 feet		
Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Till, very silty, dusky-yellow to yellowish-gray, oxidized	13	13
	Sand, medium to coarse grained, poorly sorted, sub-angular-	- 2	15
Fox Hills Formation:			
	Clay; sandy, moderate-yellowish-brow, noncalcareous, oxidized-	4	19
	Clay, sandy, dark-greenish-gray, noncalcareous----------1.	- 12	31
$148-72-26 \mathrm{bbb}$ Test hole 2757			
Altitude: 1,645 feet			
Glacial drift:			
	Topsioil, black-	1	1
	Till, silty to sandy, moderate-yellowish-brown	- 12	13
		- 3	16
Fox Hills	Formation: Sandstone, medium to coarse grained, grayish-blue	- 44	60
$\begin{aligned} & 148-72-29 \mathrm{ccc} \\ & \text { Test hole } 2635 \end{aligned}$			
Altitude: 1,649 feet			
Glacial drift:			
	Topsoil, dusky-brown-	1	1
	Till, silty, dusky-yellow to yellowish-gray, oxidized----	- 11	12
	T111, silty, olive-gray--------------------------------------	- 31	43
Fox Hillis Formation:			
	olive-gray, noncalcareous	- 20	63
148-72-34bbb Test hole 2634			
Altitude: 1,645 feet			
Glacial drift:			
Till, very silty to sandy, dusky-yellow to yellowish-			
	gray, oxidized	14	15
Till, silty, olive-gray- Sancl, fine to medium grained, subangular to subrounded,			
	Sand, fine to medium grained, subangular to subrounded, around 5 percent 2 ignite and shale particies-	- 29	50
	Clay, silty, olive-gray, calcareous, drills tight---..--	- 74	124
	Tili, silty, olive-gray	5	129
	Clay, silty to sandy, dark-greenish-gray to greenishblack, intermixed with lenses of rocky till-	- 24	153
Fox Hills	s Formation: Clay, very sandy, dark-greenish-gray, noncalcareous	- 25	178

148-72-34dad

Test hole 2554
Altitude: 1,645 feet

149-68-5adb
Altitude: 1,560 feet

149-68-5dad
 Altitude: 1,535 feet

149-68-8aad

Altitude: 1,543 feet
Glacial drift:
Sand and gravel, fine to coarse sand to coarse gravel,

Till, gray, unoxidized------------------------------------15
Sand, mediun to coarse, sility, gray, about 30 percent

30
ion:
 75
$149-68-90 \mathrm{bb}$
Altitude: 1,548 feet

149-68-11aad
U.S. Bureau of Peclsastion test hole AP6

Altitude: 1,560 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Alluvium:			
	Clay, silty, black-	10	10
Glacial drift:			
	Till, silty, gray, with shale and limestone pebbles	- 90	100
	shale-	25	125
	Sand and gravel, medium to coarse sand to fine gravel,		12
		75	200
	Shale, dark-gray-	5	240

149-68-17asa
U.S. Bureau of Reclamation test hole AP3

149-68-17bbc
U.S. Bureau of Reclamation test hole AP2

149-68-21cbe

Test hole 2460
Altitude: 1,565 feet
Glacial drift:
Topsoil, sandy loam, black-------------------------------11 $\frac{1}{1}$

Pierre Formation:
283

149-68-32dda
Test hole 2567
Altitude: 1,560 feet

> 149-69-3aas
> Test hole 2654
> Altitude: 1,548 feet

> 149-69-4bcb
> Altitude: 1,535 feet

Glacial drift:

149-69-5aaa

Altitude: 1,547 feet.

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		20	20
	Sand and gravel, silty, gray, with considerable shale--	20	40
		60	100
	Sand and gravel, gray-black, coal abundant, material angular-	95	195
Pierre Formation:			
	Shale, dark-gray	9	204
	149-69-5daa		
	Altitude: 1,570 feet		
Glacial drift:			
			20
	Till, silty, gray, with shale pebbles, unoxidized-----	20	40
	Sand, silty, gray, contains considerable shale	175	215
		35	250
	Gravel, gray, about 30 percent clay, contains shale and coal	65	315
Pierre Formation:			
	Shale, dark-gray----	- 1	316

149-69-5dddI

Altitude: 1,582 feet

> 149-69-5ddd2
> Test hole 2564
> Altitude: 1,585 feet

Glacial drift:

Topsoil, silty,	1	1
Till, silty and sandy, dusky-yellow, oxidiz	9	10
Sand, medium to coarse, graveliy, clayey, oxidized	10	20
Till, silty to moderately sandy, olive-gray-	95	115
Sand, medium to coarse, poorly sorted, large amount of lignite-	137	252

Altitude: 1,580 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift :			
	Till, silty, yellow to gray-	20	20
		145	165
	Gravel, gray, considerable shale, about 20 percent clay-	- 35	200
		- 15	215
	Gravel, gray, mostly shale, about 20 percent clay-	50	265
	Gravel, medium, gray, about 10 percent clay-----	15	280
		- 5	285
Pierre Formation:			
		- 5	290

149-69-11cca
Test hole 2655
Altitude: 1,577 feet
Glacial drift:
Topsoil, black--11
Till, silty to sandy, gravelly, dusky-yellow, oxidized-- 14

Sand, medium to coarse, fairly well-sorted, subangular to
subrounded

Sand, very coarse, gravelly; subangular to subrounded,

Pierre Formation:

149-69-12bbc Test hole 2462
Altitude: 1,545 feet
Glacial drift:

Greivel, fine to medium, clayey, poorly sorted, subrounded 15
Pierre Formation:

210

149-69-13ccc
U.S. Bureau of Reclamation test hole API

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
	Topsoil	1	1

$\begin{aligned} & \text { 149-69-20dda } \\ & \text { Test hole } 2565 \end{aligned}$		
Altitude: 1,595 feet		
Glactal drift:		
Till, silty to sandy, dusky-yellow, oxidized-------------	20	20
	11	31
Till, silty, with a few sand lenses, olive-gray---------	67	98
Gravel, sandy, poorly sorted, rough drilling------------	10	108
Till, silty to gravelly, olive-gray----------------------1.	40	148
	9	157
Sand, clayey, olive-gray, poorly sorted, large amount of lignite-	23	180
Gravel, sandy to clayey, large amount of shale and		
	29	209
Plerre Formation: Shale, olive-black	33	242

$149-69-24 \mathrm{bcc}$
Test hole 2463
Altitude: 1,575 feet

Glacial drift:

Topsoil, silty, black-------------------------------------1

Sand, medium to coarse-------------------------------------1 7

Sand, medium to coarse, clayey, subangular to subrounded,

Sand, medium to coarse, subangular to subrounded, shale

Pierre Formation:

149-69-35ade
(Iog republished from Filaseta, 1946, p. 20)
Altitude: 1,580 feet

Tops	2	2
Clay, yellow	6	8
Clay, blue	174	182
Shale---	8	190

149-70-2aaa
Test hole 2466
Altitude: 1,595 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topisoil, silty loam, black-	17	$4{ }^{1}$
	Tilil, sandy to silty, dusky-yellow, oxidized----------1.	43	44
		- 7	51
	Sand, medium to coarse, fairly well-sorted, subangular to subrounded, very clean, takes water fast	- 19	70
	Gravel, medium to coarse, large amount of quartz and chert, clean-	- 10	80
Fox Hills Formation: 23			
	Clay, sandy, light-bluish-gray-	23	103
	Clay, sandy, grayish-olive, calcareous, indurated-------1.	- 12	115

149-70-3cbb
 Altitude: 1,596 feet

$149-70-4$ daal
City of Fessenden No. 2
(Log by C. A. Simpson \& Sons)

Altitude: 1,590 feet

149-70-4das2
City of Fessenden No. 1
(Log by G. Pross)
Altitude: 1,590 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{\text { (feet) }}$
	Sand and gravel, coarse	- 14	119
	Sand, fine, gray--	- 33	152
	Sand, medium-	5	157
	Gravel and sand-	13	170
	149-70-6ddd Test hole 2656		
	Altitude: 1,600 feet		
Glacial drift:			
	Topsoil, black--	1	1
		19	20
	Till, very silty, olive-gray---------------------------	25	45
	Gravel, coarse to very coarse, rough drilling	14	59
	Till, ollve-gray--	1	60
	Sand, medium to coarse, silty	6	66
	Till, gravelly, olive-gray-	13	79
	Gravel, coarse, angular-	8	87
	Till, very silty, olive-gray	73	160
	Till, rocky, olive-black--	27	187
	Gravel, rocky--	3	190
	Till, olive-gray-	5	195
	Gravel, rocky, angular	7	202
	Till, ollive-gray-	7	209
	Silt, light-gray--------	6	215
	Till, olive-gray with silt layers-	- 20	235
Pierre Formation:			
		25	260
	149-70-9daal Test hole 2503		
	Altitude: 1,610 feet		
Glacial drift:			
		1	1
	Till, very silty, dusky-yellow, oxidized, rocky----------	- 30	31
	Gravel, fine to medium, angular to subrounded-	2	33
	Till, olive-gray	24	57
	Sand, medium to fine grained, silty, subrounded, large amount of Iignite-	12	69
	Sand, coarse grained, well-sorted, subrounded to roundedSand, very coarse grained, graveliy, large amount of	36	105
		104	209
	Gravel, medium to very coarse, subangular, mostly limestone	28	237
		26	263
Pierre For	tion: Shale, olive-black, noncalcareous	20	283

Altitude: 1,597 feet

149-71-6dec
Test hole 2547
Altitude: 1,610 feet

Formation	Material	$\frac{\text { Thickness }}{\text { (feet) }}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		1	1
	Till, very silty to sandy, dusky-yellow to moderate-yellowish-brown, oxidized-	14	15
		37	52
		3	55
Sand, medium to coarse, silty, fairly well-sorted, sub-			
	Clay, sandy, olive-gray	9	104
	Sand, medium to coarse, subrounded, large amount of Iignite	13	117
Sand, medium to coarse, silty, subrounded, large amount			124
	Sand, medium to coarse, silty, subrounded, large amount of lignite	74	198
		6	204
	Sand, fine to medium, silty, not as much lignite as in sands above	15	219
	Gravel, fine to medium, very sandy, poorly sorted, subrounded to rounded, some chert present in larger grains-	6	225
Pierre Formation:			
	Shale, ollve-black, very hard, bentonite streaks present-	24	336

149-71-9ddd 1
Test hole 2502
Altitude: 1,605 feet
Glacial drift:
Topsoil, silty, black-------------------------------------1

Fox Hills Formation:

149-71-19eca
Test hole 2648
Altitude: 1,613 feet
Glacial drift:

Clay, olive-gray, very hard, contains organic specks 14
throughout--12 12

Sand, medium, silty to clayey, large amounts of lignite-- 14
Sand, medium, silty, numerous clay layers present--....... 10
Sand, medium, fairly silty, well-sorted, subrounded to

Silt, clayey to sandy, olive-gray, very calcareous--..----- 59
Till, silty, olive-gray, hard to very hard---...-.-............ 4
Gravel, fine to medium, subrounded to rounded------------- 9
Silt, clayey to sandy, olive-gray, very softt, very cal-

Test $49-71-19 \mathrm{cdd}$
Altitude: 1,610 feet
Glacial drift:

Sand, medium, well-sorted, angular to subangular (possibly wind blown)	4	4
Clay, very silty, dusky-yellow-	7	11
Till, very silty, olive-gray-	18	29
Clay, silty, olive-black, calcareous	17	46
Sand, medium grained, subrounded, mostly quartz	16	62
Silt, olive-gray to ollve-black, very hard	6	68
Sand, fine to medium, very silty-	4	72
	6	78
Sand, medium to coarse, gravelly, subrounded to rounded--	7	85
Sand, fine, silty-	4	89
Sand, fine to medium, very silty, some lignite present--rmation:	78	167
	22	189

Altitude: 1,605 feet

149-72-3aan1, Test hole 2546

Altitude: 1,605 feet
Glacial drift:

Topsoil, silty, yellow-	5	$\frac{1}{6}$
Silt, sandy, dusky-yellow	5	6
Silt, very sandy, dusky-yellow	12	18
Sancl, fine to medium, subengular to subrounded	28	46
Gravel, fine to medium, sandy-	86	52 138
Till, silty, olive-gray--	86	138
Till., silty, olive-gray, very rocky-	2	140
Till, very silty, olive-gray-	10	150
Till, silty, olive-gray-----	52	202
Gravel, angular, mostly limestone	4	206
rnation:		
Clayr, very sandy, light-bluish-green to green, hard,	25	231

149-72-3a0a2
Test hole 2546 A
Altitude: 1,605 feet

Altitude: 1,542 feet

149-72-18bcb
B. Werth
(Iog by A. B. Kamoni)
Altitude: 1,620 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{\text { (feet) }}$
	Clay, sandy, yellow-	16	16
	Sand., yellow--	3	19
	Sand., gray-	5	24
	Clay, blue-	2	26

149-72-19ddd
Test hole 2494
Altitude: 1,620 feet

$149-72-24 \mathrm{ddb}$
Test hole 2661

Altitude: 1,608 feet
Glacial drift:
Topsoil, black---11 1

$\begin{array}{lll}\text { Gravel, fine to medium, sandy, large amounts of coal----- } & 6 & 109\end{array}$

$149-72-25 \mathrm{bbb}$
Test hole 2500

Altitude: 1,600 feet

Glacial drift:
Till, sandy, dusky-yellow, oxidized-----------------------11

149-72-33aaa
Test hole 2761
Altitude: 1,623 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		1	1
	Till, silty to yery sandy, moderate-yellowish-brown-----	14	15
		7	22
	Clay, yery silty, olive-gray, very calcareous, laminated (Iake clay) 	32	54 60
Fox Hills Formation: 80			
	149-72-33eca Test hole 2762		
	Altitude: 1,615 feet		
Glacial drift:			
		1	1
	Till, silty to sandy, moderate-yellowish-brown, oxidized-	19	20
	Sand, medium to coarse, well-sorted, oxidized------------	2	22
Fox Hills Formation:			
	$\begin{gathered} 149-72-33 \mathrm{dbb} \\ \text { Test hole } 2763 \end{gathered}$		
	Altitude: 1,615 feet		
Glacial drift:			
	Topsoil, grayish-black-	1	1
	Clay, silty to sandy, moderate-yellowish-brow, oxidized-	-	2
Fox Hills Formation:			
	149-72-35ddd Test hole 2632		
	Altitude: 1,602 feet		
Glacial drift:			
	Clay, very silty, dusky-yellow to yellowish-gray, noncalcareous (lake sediment)	- 3	3
	Till, silty to sandy, dusky-yellow to yellowish-gray, oxidized-	- 8	11
	Till, silty, dark-olive-gray, drills fairly easy	- $\begin{array}{r}54 \\ 3\end{array}$	65
	Gravel, fine to medium grained, sandy, angular----------Till, silty, dark-oliye-gray, dxills rough-	- $\begin{array}{r}3 \\ 11\end{array}$	68 79
		- 128	207
Fox Hills	rmation: Silt, clayey, greenish-gray, noncalcareous	- 24	231

Altitude: 1,615 feet

149-73-35bb
(Log by U.S. Bureau of Reclamation)
Altitude: 1,634 feet

Clay, silty, sandy, buff	15	15
Clay, silty, gray--	5	20
Sand, fine, silty, buff	8	28
Shale, very silty, gray, grades into very fine indurated sand-	6	34
Sand, very fine, silty, cemented	7	41
Shale, silty, firm, gray-	4	45
Shale, very silty, firm, gray	9	54
Sand, fine, silty, buff-	9	63
Shale, sandy, lignitic, black-	1	64
Sand, fine to very fine, silty, light-gray, salt and peoper appearance	49	113
Shale, very silty, light-gray	37	150

Altitude: 1,595 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Till, dus	8	8
	Gravel,	3	11
	Till, sil	7	18
	Till, oli	90	108
Pierre Formation:			

Glacial drift
Topsoil, sandy loam, black-------------------------------1

$150-68-29 \mathrm{ddd}$
Test hole 2505
Altitude: 1,570 feet

Glacial drift:
Topsoil, silty, black-------------------------------------1
1
T111, very silty and gravelly, dusky-yellow (oxidized)-- 18
19
Sand, very coarse to medium grained, gravelly, very silty

34
42
Till, silty, olive-gray, rocky, soft---------------------8 82
Till, silty, olive-gray, moderately hard, rocky---------- 61
Gravel, very fine grained, angular to subangular, mostly

Till, silty, olive-gray, with gravel layers and rocks---

108

Pierre Formation:

199

150-69-4bad
Altitude: 1,530 feet

150-69-20asa

Test hole 2623
Altitude: 1,587 feet

$150-69-24 \mathrm{dcc}$
Test hole 2653

Altitude: 1,580 feet

150-69-29ddd
Altitude: 1,555 feet
Glacial drift:
Till, silty, yellow, oxidized------------------------------ 5
Sand and gravel, brow, considerable shale, poorly sorted--125
Sand and gravel, silty, gray, considerable shale--------- 10 30
---------------- 35 -
Pierre Formation: 90

Altitude: 1,560 feet

Formation	Material	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:		
	Topsoil, silty, dusky-brown-	1
	Sand, medium to coarse, gravelly, oxidized	10
	Sand, medium to coarse, saturated--	21
	Till, gravelly, olive-gray---.--------	42
150-69-32ada		
Altitude: 1,554 feet		
Glacial drift:		
	Clay, silty, black-	3
	Sand, medium to coarse, brown	11
	Till, gray------.-----	30
	Gravel and sand, silty, gray-	40
Pierre Formation:		
	Shale, dark-gray	50
150-69-32daa		
Altitude: 1,548 feet		
Glacial drift:		
	Sand, medium to coarse, brown-	5
	Sand, silty, gray, considerable shale	30
	Till, gray-----------	
Pierre Formation:		
150-70-4bbb Test hole 2471		
Altitude: 1,595 feet		
Glacial drift:		
	Topsoil, silty, black	1
	Till, dusky-yellow--	12
	Till, olive-gray----	23
Pierre Formation:		
150-70-8dec Test hole 2472		
Altitude: 1,570 feet		
Glacial drjft:		
	Topsoil, silty loam, black-	1
	Till, sandy, dusky-yellow-	9
	Till, silty, olive-gray--	32
	Rocks and gravel-------	35
	Sand, medium to coarse, moderately well-sor angular to subrounded	40
	Till, silty, olive-gray----	85
Pierre For	tion: Clay, sandy, bluish-green to light-gray,	115

Altitude: 1,598 feet

150-70-27bec
Altitude: 1,581 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Till, silty, yellow, oxidized-	35	35
	Till, gray, unoxidized-	125	160
	Gravel, very silty, gray, large amount of shale----------	- 110	270
	Sand and gravel, very silty, gray, large amount of shale-	- 60	330
Pierre Formation:			
	Shale, dark-gray--	- 10	340
150-70-28aaa			
Altitude: 1,570 feet			
Glacial drift:			
Sand and gravel, medium sand grading into fine gravel,brown--- 20			
		- 16	36
	Till, gray, unoxidized-	4	40
150-70-28abb			
Altitude: 1,541 feet			
Glacial drift:			
	Sand, very fine, silty, gray-	5	5
	Sand, medium to coarse, brown-	10	15
		- 15	30
150-70-28ada			
Altitude: 1,560 feet			
Glacial drift:			
	Sand, very fine grading into coarse, brown----------------	- 15	15
	Sand and gravel, gray, shale and coal present-----------	- 15	30
		- 10	40
		- 5	45
150-70-28ece Test hole 2467			
Altitude: 1,595 feet			
Glacial drift:			
		- 1	1
		- 2	3
		- 28	31
	Till, silty, olive-gray--.	4	35
	Sand, very fine to medium, fairly well-sorted-----------	- 5	40
		9	49
		- 251	300
	Gravel, fine to medium, subrounded, mostiy limestone-----	- 6	306
		21	327
Pierre For		20	347

150-70-31cdd
Test hole 2562
Altitude: 1,600 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{\text { (feet) }}$
Glacial drift:			
		1	1
	Till, silty, dusky-yellow to moderate-olive-brow-------	30	31
	Till, silty, ollve-gray---------	81	112
		6	118
		39	157
	Sand, medium to coarse, gravelly, large amount of lignite and shale present, subangular to subrounded-	172	329
Plerre Formation:			
	Shale, olive-black, noncalcareous-	25	354
150-70-33add			
Altitude: 1,590 feet			
Glacial drift:			
		16	16
	Till, blue-gray, unoxidized, sand and gravel lenses present throughout-	140	156
	Sand, very silty, blue-gray, chiefly shale and coal---...	14	170
		50	220
	Sand and gravel, gray to brown, fairly clean	15	235
	Gravel and sand, gray, 20 percent clay---	5	240
	Gravel and sand, gray to brown, fairly clean-----------1.	26	266
		35	301
Pierre Formation:			
		15	316

150-70-34bbb
 Altitude: 1,588 feet

150-70-34ece
Altitude: 1,595 feet
Glacial drift:
Till., sandy, yellow------------------------------------16 16

| Sand and gravel, clayey, gray, chiefly shale and lignite- | 95 | 285 |
| :--- | :--- | :--- | :--- |

Pierre Formation: and gravel, silty, gray 332

150-70-36aas

Test hole 2624
Altitude: 1,586 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		1	1
	Till, very silty to slightly sandy, dusky-yellow to moderate-olive-brow, oxidized-	24	25
	Till, silty, olive-gray, drills moderately rough--------	- 13	38
		4	42
	Sand, fine to medium-	2	44
	Gravel, fine to medium grained, subangular to subrounded, drills rough	- 3	47
	Till, silty, dark-olive-gray, drills moderately rough----	- 45	92
	Sand, medium to coarse, gravelly, drills rough----------	- 7	99
		- 4	103
	Sand, medium to coarse grained, gravelly, large amount of shale and lignite present; subangular to subrounded gravel, mostly angular-	- 34	137
Pierre Formation: 34			
	Clay, very sandy, light-gray, noncalcareous, $\mathrm{H}_{2} \mathrm{~S}$ odor--	16	153
	Clay, silty to very sandy, fine sand lenses present, light-gray to green, noncalcareous, $\mathrm{H}_{2} \mathrm{~S}$ odor-	- 23	176
	clay, silty to very sandy, light-gray to green, drills tight-	- 13	189
$\begin{aligned} & 150-71-4 \mathrm{ddd} \\ & \text { Test hole } 2470 \end{aligned}$			
Altitude: 1,580 feet			
Glacial drift:			
	Topsoil, sandy loam, black-	- I	1
	Till, silty, dusky-yellow, oxidized	- 10	11
	Till, silty to sandy, olive-gray-	- 4	15
	Sand, fine to medium grained-	- 3	18
	Till, silty, olive-gray----..--	- 34	52
	Clay, sandy, light-greenish-gray, noncalcareous	- 4	56
	Till, gravelly, olive-gray------	57	113
	Till, very gravelly, olive-gray	- 44	157
		- 19	176
	Rock, granite-----------	- 1	177
	Sand, coarse to very coarse, gravelly, subrounded to subangular, large amount of coal and shale, moderately		
		- 73	250
	Gravel, sandy, fine to medium, subrounded, poorly sorted, large amount of coal-	, 32	282
Plerre Formation: 32			
	Shale, olive-black, noncalcareous-	22	304

150-71-8bbb Test hole 2485

Altitude: 1,610 feet
Glacial drift:

1
4

$\begin{array}{r}4 \\ 8 \\ \hline\end{array}$
Till, very sandy, rocky, moderate-olive-brown------..........

11
39

Till, silty to very sandy, very rocky, olive-gray, rough

$150-71-11 a b b$
Test hole 2561

Glacial drift:

Till, silty, dusky-yellow, oxidized-
THI1, silty, olive-gray, contains few sand lenses-------

Till, gravelly, olive-gray----m----m---------------------- 21

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Topsoil, sandy, olive-black	1	1
	Till, sandy to gravelly, dusky-yellow, oxidized-	22	23
	Till, silty, olive-gray-	7	30
	Gravel, sandy-	2	32
	Till, silty to sandy, olive-gray-	10	42
	Sand, medium to coarse, gravelly-	8	50
		- 38	88
	Gravel, sandy, subrounded to subangular, drills rough---	- 8	96
	Till, silty, olive-gray--	53	149
	Till, sandy to gravelly, drills rough	- 29	178
		- 13	191
	Sand, poorly sorted, grave11y, subangular to subrounded, large amount of lignite present-	101	292
Plerre Formation:			
		23	315

150-71-26abb
 Test hole 2469
 Altitude: 1,585 feet

Glacial drift:

	Topsoil, sandy, yellowish-brow	2	2
	Sand, medium to coarse, subangular to subrounded-	27	29
	Till, silty, gravelly, olive-gray	13	42
	Gravel, medium to coarse, mostly shale and limestone	5	47
	Till, silty to sandy, very gravelily, olive-gray-	26	73
	Sand, medium to coarse, fairly well-sorted----	5	78
	Till, gravelly, olive-gray	8	86
	Gravel, fine, medium to coarse, poorly sorted	8	94
	Rock--granite-	3	97
	Till, silty, olive-gray	49	146
	Sand, coarse to very coarse	52	198
	Gravel, fine to medium, poorly sorted	12	210
	Clay, gravelly, rocky-	8	218
	Sandstone, fine to medium grained, bluish-green	2	220
	Gravel, fine to medium, subrounded, moderately wellsorted	11	231
	Clay, silty, olive-gray, heavy $\mathrm{H}_{2} \mathrm{~S}$ smell (lacustrine)----	2	233
	Gravel, fine to medium, subangular, poorly sorted, drilled like cemented-	26	259
Fox Hills F	ruation:		259
	Clay, sandy, light-bluish-gray to light-brown------------	24	283

150-71-29aab
Test hole 2560
Altitude: 1,600 feet

Altitude: 1,604 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		11	11
	Till, gray, unoxidized-	93	104
	Sand, medium to coarse, gravelly	6	110
		- 40	150
		- 19	169
	Gravel, fine, sandy, very silty	18	187
	Till, gray-	87	274
Pierre Formation:			
	Shale, gray-	16	290
	$\begin{gathered} 150-72-11 a d b \\ \text { Alice Goldade } \\ \text { (Log by Russell Drilling Co.) } \end{gathered}$		
	Altitude: 1,620 feet		
		- 9	9
	Sand, gravel, silty-	- 35	44
		- 151	195
	Sand, fine	- 5	200
	Gravel streaked with clay-	- 10	210
	$\begin{aligned} & 150-72-12 d d a \\ & \text { Test hole } 2486 \end{aligned}$		
	Altitude: 1,597 feet		
Glacial drift:			
	Topsoil, clay, dark-brown-	- 1	1
	Till, silty and very sandy, dusky-yellow-	11	12
		- 41	53
	Till, silty to moderately sandy, olive-gray-------------	- 96	149
	Gravel, fine to medium, sandy, poorly sorted, moderately rough drilling, does not take water-	- 10	159
		- 5	164
	Gravel, fine to coarse, moderately sandy, subangular to subrounded, moderately well-sorted, large amount of shale particles, did not take water-	- 8	172
	Till, silty and sandy, olive-gray------------------------1.	- 13	185
	Gravel, fine to medium, clayey, poorly sorted, rough drilling-	27	212
		- 74	286
Pierre For		- 19	305

150-72-15aaa Test hole 2665			
Altitude: 1,605 feet			
Formation.	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
		- 11	1
	Till, very gravelly and rocky, moderate-yellow-brown----	- 11	12
		- 64	76
	Till, very silty, olive-gray, extremely rocky, rough drilling	- 5	81
Pierre Formation: silty, olive-gray, hard---------------------------1/2			
		- 27	280
$\begin{gathered} 150-72-20 \mathrm{bcc} \\ \text { Test hole } 2489 \end{gathered}$			
Altitude: 1,590 feet			
Glacial drift:			
		- 1	1
	Till, very sandy, yellowish-gray to moderate-olive-brow, rough drilling-	, 18	19
		- 55	74
150-72-23ada Test hole 2487			
Altitude: 1,520 feet			
Glacial irift:			
	Topsoil, silty loam, black-	1	
	Clay, silt and sand, dusky-yellow, interbedded	3	8
		- 4	8
	Sand, medium and coarse, moderately well-sorted, takes water- \qquad	- 4	12
	Sand, medium and coarse, interbedded clay and silt------	- 3	15
	Till, silty and sandy, very rocky, olive-gray-----------1.	- 98	113
$150-72-23 \mathrm{ddd}$ Test hole 2488			
Altitude: 1,605 feet			
Glacial drift:			
	Topsoil, loam, black--	- 1	1
	Till, sandy, yellowish-gray to dusky-yellow--------------1.	- 13	14
	Tili, silty and sandy, moderate-olive-brown----------1.-	8	22
	Sand, medium, gray, well-sorted, subrounded--------------	- 3	25
	Till, sandy, olive-gray--	23	48
	Boulder, sandstone----	2	50
		55	105
	Sand, fine to coarse, clayey, does not take water Silt and sandy clay, olive-gray to dark-greenish-gray,	- 27	132
	drills tight	22	154
	Till, sandy, olive-gray---------------1.	6	160
		- 15	175
	Till, sandy, olive-gray to dark-greenish-gray----.---..-	- 16	191
Fox Hills Formation:			

$150-72-28$ bas
Harvey test hole $62-1$
(Log by C. A. Simpson \& Sons)

Altitude: 1,526 feet

Formation	Material	$\frac{\text { Depth }}{(\text { feet })}$
	Topsoil-	1
	Sand, clayey, gray	8
	Sand------------	14
	Clay, sandy, gray-	19
	Sand, gray-------	23
	Clay, sandy, gray-	25
	Sand, fine-------	30
	Sand, coarse, gravelly	39.5
	Sand, fine, clayey, coal present	40
	Sand, coarse, gravelly, clayey--	45
	Sand, gravel, pebbles, clayey---	50
	Clay, gravelly--...--.................	50.5
	Gravel, coarse	52
	Gravel, very clayey----	53
	Sand, coarse--------	56
	Sand and gravel, clayey-	61
	Clay, sandy---.------	91

150-72-28bab2
Harvey test hole 62-2
(Log by C. A. Simpson \& Sons)
Altitude: 1,525 feet

$150-72-28 \mathrm{bac}$
Harvey test hole $60-3$
(Log by C. A. Simpson \& Sons)
Altitude: 1,525 feet

150-72-28bad
Harvey test hole 60-4
(Log by C. A. Simpson \& Sons)
Altitude: 1,525 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{\text { (feet) }}$
	Topscill-	1	1
	Clay, sandy, brown-	3	4
	Sand, clayey, gray-	10	14
	Sand, gravel, pebbles, somewhat clayey-	2	16
		22	38
	Sand, very clayey--	4	42
	Sand and gravel-..-	1	43
	Sand, coarse, gravelly-	1	44
	Sand with coal-------	4	48
	Sand, coarse, gravel	6	54
	Sand----------.---	2	56
	Sand, coarse, gravel-	16	72
	Gravel, hard packed-	2	
$150-72-28 b d b$ Harvey test hole 60-2 (Log by C. A. Simpson \& Sons) Altitude: 1,525 feet			
$\begin{gathered} 150-72-31 \\ \text { Conrad Kafton } \\ \text { (Log by Kussell Drilling Co.) } \end{gathered}$			
Altitude: 1,600 feet			
	Sand, silty-	14	14
	Gravel, sandy	41	55
	Clay, blue---	105	160
	Clay, blue, streaked with gravel	25	185
		5	190
	Clay, blue-	- 5	195

150-73-2bba
Test hole 17
(Log by U.S. Bureau of Reclamation)

150-73-9aaa
Test hole 2491
Altitude: 1,615 feet

Formation	Material	$\frac{\text { Thickness }}{(\text { feet })}$	$\frac{\text { Depth }}{(\text { feet })}$
Glacial drift:			
	Sand, very silty and clayey, dusky-yellow-----------------	- 4	4
	Gravel, fine, sandy, rusty-brown, poorly sorted, angular to subrounded-	- 12	16
	Gravel, silty and sandy, unoxidized------------------------	- 6	22
		111	133
		- 8	141
		- 17	158
		- 3	161
	Silt and fine sandy clay, light-olive-gray to olive-gray, soft	- 32	193
		- 59	252
		- 12	264
	Till, very silty, light-olive-gray, soft, calcareous-----	- 41	305
Plerre Formation:			
	$\begin{gathered} 150-73-13 \mathrm{dad} \\ \text { Test hole } 2499 \end{gathered}$		
	Altitude: 1,600 feet		
Glacial drift:			
	Topsoil, silty, black--	1	1
	Clay, very silty, light-olive-gray	1	2
	Till, sandy, dusky-yellow--------	3	5
	Sand, medium to fine grained, oxidized	7	12
	Till, olive-gray---	8	20
Pierre Formation:			
	Shale, dark-olive-gray-	33	53
	150-73-15ccc Test hole 2544		
	Altitude: 1,605 feet		
Glacial drift:			
		- 1	1
	Sand, gravelly, dusky-yellow, subangular to subrounded---	- 4	5
	Till, silty, light-olive-gray--	2	7
	Clay, olive-gray, calcareous--	2	9
	Till, very silty, olive-gray-	9	18
	Sand, poorly sorted, subangular to subrounded------------	- 1	19
	Till, silty to sandy, olive-gray, rocky----	- 147	166
Fox Hills Formation:			
	Sand, fine to very fine, greenish-gray, angular to subangular, noncalcareous	- 23	189

150-73-26aba
Leonard Smestad
(Log by A. B. Kamoni)
Altitude: 1,605 feet

TABLE 5.--Chemical analyses of selected water samples

EXXPLAFATION

Analytical results are in parts per million, except where indicated.

Use of water
C, comercial; H, domestic; P, public supply; S, stock; U, unused.

