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A B S T R A C T   

Computationally inexpensive carbon cycle models serve as critical and efficient tools for illuminating the 
complex dynamics of the carbon cycle and its interplay with the climate system, offering insights into how our 
planet has responded to climate perturbations throughout its history. During geologic hyperthermal events, 
carbon cycle models are employed to trace the trajectory of carbon emissions and establish a connection between 
the emission trajectory and changes in the Earth’s surface environment. To date, the prevalent method to esti
mate the carbon emission rate relies on coupling the carbon cycle modeling and proxy reconstructions. Most 
previous studies employ a forward methodology, i.e., they force the model with an array of predefined carbon 
injection scenarios and select the one that produces the best fit to one or more specific proxy-derived records (e. 
g., atmospheric pCO2, sea surface pH, and calcite compensation depth) as the optimal solution. However, this 
forward method has two potential disadvantages. First, it can be computationally expensive, particularly when 
tens of thousands of scenarios need to be conducted to find the best solution. Second, it might not yield the best 
injection trajectory if none of the predefined carbon emission curves represents the realistic emission curve. 
Hence, an inverse model that can reconstruct the carbon emission trajectory directly from the record/records is 
urgently needed. In this study, building upon the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir 
(LOSCAR) Model (Zeebe, 2012), we develop an interactive carbon cycle model (named iLOSCAR) using the open- 
source Python language and include two options, a forward model and an inverse model. The forward model 
replicates the original LOSCAR model, while the inverse model calculates the emission trajectory constrained by 
the proxy records in a single run. Both models are accessible via a web-based interface, which allows users to 
interactively tune model parameters and conduct experiments. In this paper, we present the details of iLOSCAR, 
including model structure and derivation of key equations. We then validate iLOSCAR’s performance through an 
identical twin test and model intercomparison. We also apply it to a climatic perturbation event to diagnose 
features of the emission pattern that were overlooked in previous studies. Finally, we discuss the possible di
rections for model’s future development.   

1. Introduction 

Since the beginning of the industrial era, anthropogenic carbon 
emissions have resulted in the continuous increase in atmospheric CO2 
concentration (pCO2), from ~280 in the pre-industry world to ~410 
ppm in 2019 (Legg, 2021). The rapidly rising pCO2 levels are altering the 
radiative balance of the Earth’s surface and the mean global surface 
temperature is ~1 ◦C higher in 2011–2020 than 1850–1900 (Morice 
et al., 2021). Continuing carbon emission also impacts the ocean car
bonate system, causing the decline in surface pH and the reduction in the 

ocean’s carbonate mineral saturation state (Hönisch et al., 2012). The 
global warming and ocean acidification are suggested to bring about 
negative consequences for marine life (Zeebe et al., 2008). As such, 
forecasting the future pCO2 trend and attendant response of Earth sys
tem has become a high priority for the scientific community. However, 
model simulations for future climate projections still have large un
certainties, partly due to the poor understanding and parameterizations 
of the global carbon cycle (Goddéris et al., 2023; Legg, 2021). Although 
no perfect analogs for the ongoing perturbation exist, transient warming 
events accompanied by global carbon cycle perturbation are rather 
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common in Earth’s history and have been explored to provide insight to 
the ongoing climate change (Foster et al., 2018). Moreover, achieving a 
more precise delineation of carbon emission trajectories during these 
geological hyperthermal events can enrich our holistic understanding of 
the temporal interplay between the carbon cycle and changes in Earth’s 
surface environment (Zeebe et al., 2016), which is crucial for predicting 
future environmental conditions under different scenarios of anthropo
genic carbon emissions. Consequently, this enhanced comprehension 
would be instrumental in shaping our responses to potential climatic 
changes and in steering future mitigation strategies. 

To date, the carbon emission trajectory for the past events is pre
dominantly derived through coupling the carbon cycle modeling and 
proxy reconstructions. Previous studies have primarily utilized a for
ward methodology, in which one forces the model with an ensemble of 
predefined carbon injection scenarios and then selects the scenario that 
produces the best fit to one or more specific proxy-derived records as the 
optimal solution (Chen et al., 2022; Clarkson et al., 2018; Dunkley Jones 
et al., 2018; Hull et al., 2020; Landwehrs et al., 2020; Papadomanolaki 
et al., 2022a; Wang et al., 2023; Zeebe et al., 2009). However, the for
ward method is associated with several potential disadvantages. Firstly, 
it can be computationally expensive, particularly when tens of thou
sands of scenarios need to be conducted to find the best solution (Chen 
et al., 2022). Additionally, the predefined emission scenarios are usually 
set to follow a specific type of distribution, e.g., uniform distribution 
(Harper et al., 2020; Hull et al., 2020; Papadomanolaki et al., 2022a), 
beta distribution (Chen et al., 2022), gamma distribution (Shen et al., 
2022b), or Gaussian distribution (Shen et al., 2022a). However, carbon 
emissions in the real world may occur spontaneously and thus be 
randomly distributed. Therefore, the forward method may not neces
sarily yield the best realistic injection trajectory. Furthermore, proxy 
records suggest that carbon emissions during certain hyperthermal 
events are characterized with several carbon emission pulses (e.g., the 
Permian-Triassic boundary, PTB, and the Paleocene-Eocene Thermal 
Maximum, PETM, events; Bowen et al., 2015; Wu et al., 2023). Such a 
discretized emission pattern is challenging to be resolved with the for
ward method, which precludes a comprehensive understanding of how 
carbon emissions evolve in time. 

Recently, a double inversion method has been developed, building 
upon the cGENIE Earth system model (Edwards and Marsh, 2005; 
Ridgwell et al., 2007). This method facilitates the direct calculation of 
both the time-resolved mass and provenance (i.e., isotopic composition) 
of emitted carbon from given proxy records during hyperthermal events 
(Cui et al., 2011). For instance, when using pCO2 data (or ocean surface 
pH) to constrain the emission rate, the inverse cGENIE model adjusts the 
mass of carbon input automatically at each model time-step (usually one 
week) to reproduce the given pCO2 value. If the model value falls below 
(above) the data value, a pulse of carbon with a prescribed mass will be 
released to (removed from) the atmosphere (Cui et al., 2011). Similarly, 
the δ13C value of emitted carbon is also adjusted at each step to match 
the given surface ocean δ13C. The model can then estimate the time- 
resolved carbon emission scenario by binning the emission fluxes and 
isotopic value in time. This inversion method has been applied to 
quantify the carbon emission scenario over the Paleocene-Eocene 
Thermal Maximum event (PETM, ~ 56 Ma; Gutjahr et al., 2017), 
Oceanic Anoxic Event 1a (~121 Ma; Adloff et al., 2020), and the 
Permian-Triassic Boundary (PTB, ~252 Ma; Wu et al., 2023). 

Although significant improvement has been made compared with the 
forward method, the current double-inversion algorithm is limited in its 
wider application due to its low computational efficiency and opera
tional difficulty, particularly for scientists lacking programming and 
computer skills. Furthermore, modeling studies pertaining to deep time 
are often limited by the absence of well-defined parameters for relevant 
processes in the carbon cycle. To address this, recent studies have 
employed Monte Carlo simulations, which involve randomly selecting 
thousands of ensembles of model parameters from predefined distribu
tions, to achieve comprehensive error propagation (Chen et al., 2022; 

Isson et al., 2022; Krissansen-Totton and Catling, 2017, 2020). However, 
the cGENIE model’s limited computational efficiency poses a challenge 
to conducting sensitivity tests that explore the impact of uncertainties 
linked to key carbon cycle parameters on modeled emission scenarios. 
Such parameters include, but are not limited to, background silicate and 
carbonate weathering flux and corresponding isotopic signature, marine 
rain ratio, and climate sensitivity. For instance, in Wu et al. (2023), only 
15 experiments are conducted to test the sensitivity of modeling results 
on the uncertainties of proxy data, whereas the dependency on the 
aforementioned parameters is not explored. 

Therefore, it is critical to have an efficient inverse model that can 
reliably reconstruct the trajectory of carbon emissions constrained by 
proxy records. To address this need, we have developed iLOSCAR, an 
extension of the LOSCAR model (Zeebe, 2012). Originally designed for 
efficiently computing global carbon cycle dynamics in a forward way, 
LOSCAR has been widely used to estimate carbon emissions during 
various hyperthermal events (Zeebe et al, 2009; Chen et al., 2022; Cox 
and Keller, 2023; Heimdal et al., 2020; Henehan et al., 2020; Hull et al., 
2020; Papadomanolaki et al., 2022b). Our newly developed iLOSCAR 
leverages LOSCAR’s modeling capabilities, and allows for both forward 
and inverse modeling. iLOSCAR can complete the double inversion in 
~10 min on a current standard laptop machine with Apple M1 8 cores 
@3.2 GHz, and yield results comparable to those from previous studies 
using the more complex cGENIE model (see examples in Section 4 and 5, 
Table 1). Additionally, our model features a user-friendly web-based 
interface, enabling users to interactively tune model parameters and 
conduct experiments. This intuitive design eliminates the necessity for 
extensive programming knowledge, making complex modeling acces
sible to a broader user base. Furthermore, the iLOSCAR code is pub
lished as an open-source Python package, allowing other scientists to 
contribute to the model development freely and collaboratively. For 
example, users can couple other elemental cycles such as P and Ca 
(Komar and Zeebe, 2016, 2017) into iLOSCAR in future versions to 
handle a wider range of environmental and geological scenarios. 

In the following, we will present the details of iLOSCAR, including 
model structure and the inversion algorithm in Section 2. Section 3 and 
4 will focus on validating the model’s performance through an identical 
twin test and model intercomparison. We will then use the model to 
refine the estimate of carbon emission trajectory during a climatic 
perturbation event in the paleo-glacial world (Kasimovian–Gzhelian 
boundary, KGB; ~304 Ma) and discuss some features of the emission 
pattern that were overlooked before. Finally, we will discuss the model’s 
limitations and potential directions for the model’s future development. 

2. Model description 

2.1. Forward model 

The numerical architecture and parameterizations of the forward 
model in iLOSCAR are based on the original LOSCAR model (Zeebe, 
2012), which comprises three components: atmosphere, ocean, and 
sediment. The oceanic component of the model is segmented into three 
ocean reservoirs in the modern version: the Atlantic, Indian, and Pacific. 
In the paleo version, an additional fourth reservoir, the Tethys, is 
included. Each of these reservoirs is further subdivided into three depth 
zones: surface, intermediate, and deep. Furthermore, the model includes 
a generic box that parameterizes the high latitude ocean. The forward 
model tracks various biogeochemical tracers, including oceanic dis
solved inorganic carbon-DIC, total alkalinity-ALK, stable carbon iso
topes-13C, atmospheric pCO2, and others, in different boxes. These 
tracers form the state variables ( y→) of the model. Their dynamic changes 
over time are governed by the following ordinary differential equation 
(ODE) system: 

d y→

dt
= F(t, y→) (1) 
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where t is time, and F is the function used to calculate the derivatives of 
the state variables y→. The dimension of y→ is 140 (modern setup) or 184 
(palaeo setup). Note that the information of model parameters is 
implicitly incorporated in the function F, including the time-dependent 
carbon emission scenario (termed as fcinp(t)) and the isotopic compo
sition of emitted carbon (fδ13C(t)). The equations and corresponding 
processes encapsulated within function F have been described in detail 
by Zeebe (2012). In this context, we will treat F as a known function. 
Then the task of the forward model is to solve the ODE system with 
initial state values of y→(t0): 

y→(t) = y→(t0) +

∫ t

t0
F
(

τ, y→(τ)
)

dτ (2) 

In comparison to the original LOSCAR model, our iLOSCAR forward 
model features several innovations. Firstly, iLOSCAR is implemented 
using the open-source Python language. This grants access to a broader 
suite of advanced computational packages compared to the C language 
utilized by the original LOSCAR model. Secondly, to address the 
reduction of running speed caused by switching the programming lan
guage, the codes are optimized using Numba, a Just-In-Time (JIT) 
compiler, to enhance the model’s computational speed and efficiency. 
Also, the original function used for calculating the oceanic carbonate 
system (Follows et al., 2006) has been vectorized. This modification 
allows simultaneous calculations from multiple inputs, enhancing 
computational efficiency. Lastly, we employ the LSODA (an acronym for 
Livermore Solver for Ordinary Differential equations, with Automatic 
method switching for stiff and nonstiff problems) algorithm as the ODE 
solver, given its demonstrated stability when dealing with stiff prob
lems, as highlighted by Hindmarsh (1992). 

2.2. Inverse model 

2.2.1. Inverse algorithm 
As aforementioned, the aim of the inverse model is to derive fcinp(t)

and fδ13C(t) that can force the model to make the best fit to proxy- 
derived records xobs(t). The best fit here is defined as the minimum of 
the sum of relative errors between xobs(t) and corresponding modeling 
results xmodel(t): 

fcinp(t), f δ13C(t) = argmin
∑n

i=1
∣
xmodel(ti) − xobs(ti)

xobs(ti)
∣ (3) 

In this case, fcinp(t) and fδ13C(t) are implicit variables in xmodel(ti). 
Previous double-inversion studies based on cGENIE select pCO2 or 
average sea surface pH (pHas hereinafter) and average sea surface δ13C 
(δ13Cas hereinafter) to determine the fcinp(t) and fδ13C(t) (Gutjahr et al., 
2017; Wu et al., 2023). The dynamic evolution of these three proxies is 
also resolved by iLOSCAR, and therefore we offer the same options for 
double inversion in our inverse model. 

Although theoretically carbon emissions in the geologic past could 
be intermittent, it is necessary to make some assumptions to reduce the 
number of parameters required to describe fcinp(t) and fδ13C(t). Here a 
stepwise uniform function is applied to represent the emission trajec
tory. Specifically, the modeled time period is partitioned into a specific 
number of intervals according to provided xobs data. In each interval, we 

assume a constant emission rate, i.e.: 

fcinp(t) = k1 (if t0 ≤ t ≤ t1)

= k2 (if t1 < t ≤ t2)

……  

= kn (if tn− 1 < t ≤ tn). (4) 

A similar function is used to represent δ13C(t): 

f δ13C(t) = d1 ( if t0 ≤ t ≤ t1)

= d2 (if t1 < t ≤ t2)

……  

= dn (if tn− 1 < t ≤ tn) (5)  

where ti…n are determined from given target proxy records. In this way, 
fcinp(t) and fδ13C(t) can be represented by n parameters. Then we apply 
a sequential iteration algorithm to solve the inverse problem by deriving 
k1…kn and d1…dn, which is described as follows:  

(1) Turn off the carbon emission and spin up the forward model for 2 
million years to the steady state. Tune the parameters until initial 
xmodel = xobs(t0). x here could be pHas or pCO2, according to the 
proxy data given.  

(2) Start from the (t0, t1 interval and k1 is the only unknown 
parameter for the defined cost function (Eq. (3)) at this interval.  

(3) Apply numerical methods to solve k1 (see Section 2.2.2).  
(4) Run the forward model at the (t0, t1 interval with the k1-based 

fcinp(t), then save the y→(t1) as the initial y→ values for the next 
interval (t1, t2).  

(5) Move to the next interval and repeat step 2, 3, and 4. Stop the 
iteration when kn is determined.  

(6) Repeat steps 2–5 to calculate (d1,…, dn) for fδ13C(t). The proxy 
data used in this step will be δ13Cas. 

2.2.2. Numerical methods to solve k and d 
Step 3 is a critical component of our inversion algorithm. At each 

iteration, one new k or d will be solved for defining the emission tra
jectory. Consequently, the solution to the optimization problem speci
fied in Eq. (3) will be the root of the following equation: 

xmodel(ti) = xobs(ti) (6) 

To find the root of Eq. (6), we apply the TOMS 748 root-finding al
gorithm, which uses a mixture of inverse cubic interpolation and 
Newton-quadratic steps to enclose zeros of contiguous univariate func
tions (Alefeld et al., 1995). This algorithm offers the advantage of a 
rapid convergence rate, which significantly accelerates the inversion 
process. Additionally, Algorithm 748 is readily available in the Python 
Scipy package. 

Table 1 
Summary of double-inversion experiments.  

Event Cumulative emission (Gt) Peak Emission rate (Gt/yr) Average δ13C (‰) Running time (minutes)a 

This study From Ref. This study From Ref. This study From Ref. 

PTB Phase 1 4955 5014 0.14 0.2 − 14.6 − 16 13.6 
PTB Phase 2 20,538 20,984 0.69 0.7 − 7.7 − 9 
KGB1 9106 9000 0.025 – − 18.2 − 19 7  

a Time for running the model from the web-based interface on a current standard laptop machine with Apple M1 8 cores @3.2 GHz (no other CPU-demanding 
processes running). 
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3. Test 

Before applying the model to the case studies, we validate its per
formance through various tests. 

3.1. Forward model test 

To assess the performance of the forward model, we compare the 
modeling outcomes obtained from both iLOSCAR and the original 
LOSCAR model. These comparisons are made under both modern and 
paleo default settings, using the same simulated carbon emission tra
jectory of 1000 Gt carbon (1Gt = 1015 g; − 55‰ δ13C) over 6 kyr (as 
depicted in Fig. S1 and S2). Each experiment runs for a duration of 100 
kyr. We use the LOSCAR modeling results as the baseline, and conduct 
timepoint-wise comparisons for two key proxies, namely, pCO2 and δ13C 
of atmospheric CO2. The relative difference between the two models for 
these proxies is in the order of 10− 4 to 10− 5, which may be attributed to 
the difference between the ODE integration methods applied: a fourth- 
order Rosenbrock method in LOSCAR, while an LSODA method in 
iLOSCAR. The carbon content and isotope values in different boxes are 
closely interlinked. Therefore, the robust alignment of these two proxies 
between both models attests to the reliability of iLOSCAR’s forward 
model. To further substantiate our conclusion, we supply the same y→

and t to the ODE system represented by Eq. (2). We find that the dif
ference between the derivatives computed by the two models is of the 
order of 10− 16, which is close to machine precision, thus corroborating 
the reliability of our newly developed iLOSCAR model. 

Moreover, the iLOSCAR forward model is efficient. The reported 
time below is from running the model from the web-based interface on a 

current standard laptop machine featuring a Mac operating system and 
Apple M1 8 cores @3.2 GHz, without any concurrent high-demand CPU 
processes. For the 100 kyr test, in the context of our modern and paleo 
experiments previously discussed, the model takes around 18 and 22 s 
respectively, with Numba compilation consuming roughly 13 to 16 s of 
this time. Notably, the compilation process is only necessary during 
iLOSCAR’s initial execution. Once compiled, subsequent perturbation 
experiments are significantly expedited, taking merely ~5 and ~ 6 s to 
complete. While this might be slightly slower than the original LOSCAR 
model (which operates in ~2 s), the computational efficiency of iLO
SCAR remains robust, meeting the requirements of most potential ap
plications. A comprehensive and detailed description of the comparison 
tests can be found in the Supplementary Materials. 

3.2. Inverse model test 

An identical twin test is performed to assess the performance of the 
inverse model. In this test, a preliminary run of the forward model is 
used to generate a synthetic ‘truth’ proxy data set, which is subsequently 
used in the inverse model experiments. Thus, the twin test provides a 
straightforward way to check whether the inverse algorithm works 
correctly. During the experiment, we prescribe an artificial emission 
curve with a two-stage pattern (Fig. 1). Specifically, 3000 Gt 13C- 
depleted carbon (− 20‰ δ13C, equivalent to the δ13C of typical sedi
mentary organic carbon) is emitted to the atmosphere over the first 
3000 years, simulating a swift and brief ejection event. This is followed 
by a release of 10,000 Gt carbon (− 5 ‰ δ13C, equivalent to the δ13C of 
mantle-dominated CO2 degassing) over 35,000 years. The maximum 
emission rates reach 2.1 and 0.5 Gt/yr in these two respective events, 

Fig. 1. Twin test results for the inverse model. a, b, Modeled global mean ocean surface pH and δ13C. Yellow symbols denote the target proxy records with the 
prescribed carbon emission scenario, which is shown in c (emission rate) and d (isotopic value). The blue bars in b and d represent the recovered emission trajectory 
(carbon emission rate and carbon isotope value) from the inverse model. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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encapsulating the known range of the previous estimates for past 
hyperthermal events (Gutjahr et al., 2017; Wu et al., 2023). 

The inverse model results, constrained by both the pH and δ13Cas 
records generated by the forward model, are shown in Fig. 1. These 
results suggest a total carbon release of approximately 12,987 Gt, a 
value very close to the actual amount of 13,000 Gt. The pulsive pattern is 
also resolved by the model, with emissions concentrated within two 
distinct time intervals. The reconstructed largest emission rate in the 
first stage is ~1.9 Gt/yr, slightly lower than the predefined value (~2.1 
Gt/yr). The small difference could be attributed to undersampling near 
the time when the largest emission rate occurs (Fig. 1c). The recon
structed δ13C shows some oscillation when carbon input is slow (e.g., 
first 500 years), which could be corrected by weighted average δ13C 
calculation over a specific time (Fig. 1d). The mean δ13C for the first 3 
kyr and the 5–40 kyr interval are − 19.77‰ and − 5.03‰, respectively, 
similar to the true values. In summary, the inverse model successfully 
recovers the prescribed carbon emission trajectory. 

Following the validation of the model’s performance, we proceed to 
apply the inverse model to investigate two warming events in Section 4 
and 5, namely PTB and KGB. Both events are characterized by significant 
negative carbon isotope excursions (CIE) and are closely linked to per
turbations of the carbon cycle (Chen et al., 2022; Wu et al., 2021). In 
each experiment, the model parameters are first fine-tuned to match the 
boundary conditions as detailed in the Supplementary materials. Then, 
the published proxy records are used to constrain the inverse model to 
reconstruct the carbon emission trajectories, thereby offering insights 
into the underlying carbon cycle dynamics of these significant climatic 
events. 

4. Model intercomparison: emission trajectory reconstruction 
across the PTB 

The PTB records an extreme global warming of approximately 7 ◦C to 
10 ◦C, and the largest mass extinction in the Phanerozoic (Fan et al., 
2020; Sun et al., 2012). Previous double inversion results indicate 
massive carbon emissions across the PTB (~ 25,000 Gt), and the emis
sion trajectory shows a two-phase pattern (Fig. 2c). For our current 
iLOSCAR inverse model runs, the pCO2 and δ13Cas records were taken 
from Wu et al., 2021, 2023. 

The double-inversion experiment generates an emission trajectory 
that aligns well with previous estimates and successfully reconstructs 
the two-phase pattern across the PTB (Fig. 2; Table 1). The slight dif
ferences are considered acceptable, considering the variance in the 
parameterization of many processes between the two models, such as 
the organic carbon cycle in the ocean, the internal ocean mixing rates, 
and the calcite burial on the seafloor (Ridgwell et al., 2007; Ridgwell 
and Hargreaves, 2007; Zeebe, 2012). The calculated δ13Csource values 
during two phases are both slightly higher by ~1.3‰ than those from 
Wu et al. (2023), with an average of − 14.6 ‰ (0–52 kyr) and − 7.7‰ 
(52–94 kyr), respectively. Despite the minor discrepancy, the results still 
illustrate a transition from a mixed thermogenic and volcanic carbon 
source to a more mantle-dominated volcanic source, as suggested in Wu 
et al. (2023). Concurrently, the diagnosed cumulative carbon emissions 
associated with the two phases show negligible difference between this 
study and Wu et al. (2023) (Fig. 2c; Table 1). Our model predicts a 
transient sea surface warming of 7.5 ◦C and a 0.45 unit decrease of ocean 
surface pH. Of these changes, only an approximate 1.8 ◦C temperature 
rise and a 0.11 unit pH decrease occur during Phase 1(Fig. 2a). 

Fig. 2. Modeling results across the PTB. a, b, Modeling pCO2, sea surface temperature and δ13C results from the inversion-derived carbon emission trajectories 
(lines). Yellow symbols in a and b denote the smoothing proxy records, which are used as input in the iLOSCAR inverse model (Wu et al., 2021, 2023). δ13Cas data in b 
is derived from the compilation of global marine carbonate δ13C data (Wu et al., 2023). c, d, Inversion results comparison between this study and the standard run in 
Wu et al. (2023). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Our inverse modeling results also underscore the advantages of in
verse- over brute-force forward operations of carbon cycle models. For 
instance, while the forward modeling using LOSCAR (Wang et al., 2023) 
successfully reconstructs the average environmental change and carbon 
emission pattern during the Permian-Triassic boundary (PTB), it lacks 
the ability to discern the two-phase pattern. 

5. Recalculating the emission trajectory across the KGB 

The KGB is a global warming event that occurs during a paleo-glacial 
state with a modern-like background pCO2 value (~350 ppm) (Chen 
et al., 2022). Thus, the KGB study is expected to provide more insight 
into the current climate change and its impact on Earth’s environment. 
However, the carbon release trajectory during the KGB is primarily 
obtained using a brute-force forward modeling approach with the 
original LOSCAR model (Chen et al., 2022). As a result, the recon
structed carbon emission trajectory may not mirror the actual solution. 
Here we implement the inverse model to improve upon the previous 
estimates, aiming to enhance our understanding of the trigger and re
covery mechanisms associated with this warming event. 

An injection of ~9000 Gt organic matter-derived C is postulated to 
explain the observed pCO2 and δ13Cas excursion (Chen et al., 2022). In 
this study, we employ the same pCO2 and δ13Cas records from Chen 
et al. (2022) to force the double inverse model. The modeling results are 
ambiguous due to the uncertainty inherent in the age model. Specif
ically, the reported data indicates a ~ 200 kyr lag in the onset of sea 
surface δ13C excursion behind that of pCO2 values. Consequently, the 
pCO2 and δ13Cas excursions last for 600 and 400 thousand years, 
respectively (Chen et al., 2022). To explore the impact of chronological 

uncertainty on modeling outcome, we execute two sets of experiments, 
where the CIE and the carbon emissions both last for ~400 (KGB1) or 
600 kyr (KGB2). 

Our inverse modeling results show that cumulative carbon emissions 
from KGB1 (9106 Gt C) are ~15% lower than those from KGB2 (10,494 
Gt C) (Fig. 3c; Table S1). The noticeable difference suggests that the 
double-inversion results are sensitive to the selection of the age model. 
The higher cumulative carbon emissions in KGB2 can be attributed to 
more carbon removal through the silicate weathering feedback mecha
nisms under longer CIE duration scenarios. With total carbon release of 
similar order at a longer interval, the carbon emission rates during KGB 
from both experiments (~0.01–0.02 Gt C/yr) are one order of magni
tude smaller than those during the PTB (~0.2 Gt C/yr). Correspond
ingly, the temperature increase is relatively modest, with a rise of ~3 ◦C 
over the 400 kyr period. Additionally, our inverse model also suggests a 
flux-weighted δ13C source of − 18.2‰ (KGB1) or − 23‰ (KGB2), which 
is consistent with previous estimate (− 19‰; Chen et al., 2022) and 
implies the oxidation of organic sediments as the carbon source. The 
slower emission rates and slightly more 13C-depleted source suggest 
mechanistic dissimilarities between the KGB and the PTB. 

Our results further highlight two features regarding the carbon 
emission trajectory that are not identified in the previous work (Chen 
et al., 2022). Firstly, a gradual decrease in δ13Csource with time is diag
nosed (Fig. 3d and S4), indicating changing carbon sources across the 
KGB. Nonetheless, we place limited confidence in the precise values for 
each interval, as the pCO2 and δ13Cas data used here are derived from 
smoothed results and have large uncertainties (Chen et al., 2022). 
Nevertheless, a shift in the degassing mechanism across the KGB is 
plausible, but it necessitates further evidence to confirm. Secondly, the 

Fig. 3. KGB1 modeling results. a, b, Modeling pCO2, sea surface temperature and δ13C results from the inversion-derived carbon emission trajectories for the 
experiment KGB1. Yellow symbols in a and b denote the smoothing proxy records, which are used as input in the iLOSCAR inverse model (Chen et al., 2022). c, d, 
Inversion cumulative emission rates (KGB1 and KGB2) and source δ13C (KGB1). Note that the results in b and d only span the CIE interval. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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pCO2 recovery following the peak CIE occurs more rapidly than ex
pected if solely attributed to removal through silicate weathering alone, 
necessitating the presence of a negative carbon emission. KGB is also 
accompanied by an estimated 20% increase in seafloor anoxia areal 
extent, as inferred from uranium isotopes (Chen et al., 2022). Seafloor 
anoxia favors the burial and preservation of organic carbon. It also en
hances the phosphorus remineralization and elevates the dissolved 
phosphorus concentration in the surface ocean, which in turn will boost 
the primary production and lead to greater organic carbon preservation 
(Komar and Zeebe, 2017; Papadomanolaki et al., 2022a; Slomp and Van 
Cappellen, 2007). Therefore, we hypothesize that the negative emissions 
diagnosed by our model likely represent enhanced organic carbon 
burial. This process removes carbon from the surface Earth system and 
expedites the recovery of pCO2 levels. 

6. Summary and outlook 

The newly developed iLOSCAR model is capable of replicating the 
forward mode from the original LOSCAR model and executing the 
double-inversion experiment efficiently across various timescales. The 
close alignment of double-inversion results between iLOSCAR and 
cGENIE for geologic carbon perturbation events is not surprising, given 
the LOSCAR model encompasses most essential processes involved in 
the long-term carbon cycle (Zeebe, 2012). Hence, the iLOSCAR model 
presents itself as a reliable and efficient alternative to the complex 
cGENIE model, particularly when concentrating on the long-term car
bon cycle at a basin-to-global scale. Furthermore, by utilizing the iLO
SCAR inverse model, we offer novel insights into the emission 
characteristics during the KGB that were previously unexplored. 

We also wish to emphasize the dynamic and continuously updatable 
nature of iLOSCAR. For instance, users are encouraged to reach out to us 
for discussions on how to modify parameters that are currently inac
cessible via the web-based interface. Should certain modification 
emerge as common requests, we can update the model structure to 
enable adjusting these parameters directly from the interface. Moreover, 
the degree to which modeling results can approximate the true condi
tions in the geological history depends on both the quality of proxy data 
and the reliability of the model settings. A limitation for the current 
double-inversion method, whether iLOSCAR- or cGENIE-based, is that it 
can only inversely calculate the carbon emission rate from one single 
proxy (e.g., pCO2 or pHas). While it can perfectly match the target re
cords, the model results of other carbon system variables are not guar
anteed to align well with observations. It is becoming increasingly 
common to have multiple proxy records available for a single hyper
thermal event, particularly for intensely studied events such as the 
PETM and PTB. Consequently, future versions of iLOSCAR are under 
development to offer an inverse function capable of deriving the optimal 
emission trajectory from multiple proxies. 
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