

VMware vSphere 6.7 Clustering Deep Dive

Copyright © 2018 by Frank Denneman, Duncan Epping and Niels Hagoort

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, or
otherwise, without written permission from the publisher. No patent
liability is assumed on the use of the information contained herein.
Although every precaution has been taken in the preparation of this book,
the publisher and authors assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from
the use of the information contained herein.

International Standard Book Number: ISBN 978-1723901065

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized.

Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark. Cover design by DigitalMaterial.nl

Version: 1.0.1

ABOUT THE AUTHORS

Frank Denneman is a Senior Staff Architect working for VMware in the
Office of CTO of the Cloud Platform business unit focusing on Resource
Management. Frank is a VCDX (029) and co-author of the bestselling
“vSphere Host Resources Deep Dive” book and “vSphere Clustering Deep
Dive" series. Frank presents on a regular basis at global virtualization
events and has been a VMworld Top 10 speaker for six consecutive
years. You can find his articles at www.frankdenneman.nl. Follow Frank
on Twitter @frankdenneman.

Duncan Epping is a Chief Technologist working for VMware in the Office
of CTO of the Storage and Availability business unit focusing on hyper-
converged infrastructure and data management. Duncan is a VCDX (007)
and co-author of 8 books on the topic of VMware including “vSAN
Essentials”, and the “vSphere Clustering Deep Dive” series. He has 5
patents granted and 1 patent pending on the topic of availability, storage,
and resource management. Duncan presents on a regular basis at global
virtualization events like VMworld and international VMUGs. You can find
his articles on www.yellow-bricks.com and you can follow him on twitter
@DuncanYB.

Niels Hagoort is a freelance Virtualization Architect with more than 15
years of experience. He has extensive knowledge in the field of
designing, building and implementing complex enterprise IT
infrastructures. Niels is a VCDX (212) and co-author of the “vSphere Host
Resources Deep Dive” book. Niels presents at global virtualization events
like VMworld and international VMUGs on a regular basis. You can find
his articles at www.nielshagoort.com. Follow Niels on Twitter
@NHagoort.

INTRODUCTION AND ACKNOWLEDGEMENTS ... 9

FOREWORD .. 11

HIGH AVAILABILITY .. 15

INTRO TO VSPHERE HIGH AVAILABILITY .. 17
vSphere 6.7 ... 20

COMPONENTS OF HA .. 25
HOSTD Agent ... 27
vCenter ... 28

FUNDAMENTAL CONCEPTS .. 31
Master Agent ... 32
Slaves .. 35
Heartbeating .. 39
Network Heartbeating ... 39
Datastore Heartbeating ... 40
Isolated versus Partitioned .. 43
VM Protection ... 47

RESTARTING VIRTUAL MACHINES ... 53
Restart Priority and Order .. 54
Restart Retries .. 61
Isolation Response and Detection .. 68
Isolation Detection .. 74

VSAN AND VVOL SPECIFICS ... 89
HA and vSAN ... 89
HA and Virtual Volumes ... 98

ADDING RESILIENCY TO HA .. 107
Corner Case Scenario: Split-Brain ... 110

ADMISSION CONTROL .. 113
Admission Control Policy ... 114
Admission Control Algorithms ... 116
Cluster Resource Percentage Algorithm .. 116
Failover Hosts ... 132
Performance Degradation .. 133
Decision Making Time ..135

VM AND APPLICATION MONITORING .. 145

Why Do You Need VM/Application Monitoring? ... 146
How Does VM/App Monitoring Work? ... 147
VM Monitoring Implementation Details ... 149
Application Monitoring .. 150

VSPHERE HA INTEROPERABILITY ...155
HA and Storage DRS .. 155
Storage vMotion and HA ... 155
HA and DRS ... 156
DPM and HA .. 159
Proactive HA .. 160

ADVANCED SETTINGS .. 165
How Do You Configure these Advanced Settings? .. 165
Most Commonly Used .. 166

VSPHERE DISTRIBUTED RESOURCE SCHEDULER 169

INTRODUCTION TO VSPHERE DRS ... 171
Requirements ... 172
Cluster Level Resource Management .. 173
DRS Cluster Settings .. 174
DRS Automation Levels ... 176
Initial Placement ... 180
vCenter Sizing .. 182
Supporting Technology.. 187
vMotion ... 187
Conclusion ... 196

RESOURCE DISTRIBUTION ... 197
DRS Dynamic Entitlement .. 197
Resource Scheduler Architecture ...198
Dynamic Entitlement Target .. 202
Resource Contention ... 205
Resource Allocation Settings ... 206
Reservation .. 207
Shares .. 211
Limits ... 221
Tying it All Together .. 222

RESOURCE POOLS AND CONTROLS .. 223
Root Resource Pool ... 223
Resource Pools .. 225

Resource Pool Resource Allocation Settings ... 230
Shares ... 230
The Resource Pool Priority-Pie Paradox .. 239
Resource Pool-Level Reservation ... 246
Expandable Reservation ... 254
Resource Pool Limit .. 259

CALCULATING DRS RECOMMENDATIONS ... 261
When is DRS Invoked? ... 261
Recommendation Calculation ... 262
Imbalance Calculation ... 262
Network Aware DRS ... 275

IMPACTING DRS RECOMMENDATIONS .. 279
DRS Additional Options .. 279
VM Distribution .. 280
Memory Balancing in Non-Overcommitted Clusters .. 281
CPU Over-Commitment (DRS Additional Option) ... 287
AggressiveCPUActive .. 290
VM Size and Initial Placement... 291
MaxMovesPerHost .. 292
Placement Rules .. 294
VM Overrides ... 302
The Impact of DRS Automation Levels on Cluster Load Balance 304

DISTRIBUTED POWER MANAGEMENT .. 307
Calculating DPM Recommendations .. 310
Power-Off Recommendations ...315
Recommendation Classifications .. 322
Guiding DPM Recommendations ... 324

VSPHERE STORAGE DRS ... 327

INTRODUCTION TO VSPHERE STORAGE DRS 329
Resource Aggregation ... 330
Initial Placement .. 330
Load Balancing ... 331
Affinity Rules ... 333
Datastore Maintenance Mode .. 334
Requirements .. 334

STORAGE DRS INITIAL PLACEMENT .. 335

STORAGE DRS LOAD BALANCING ... 353

Space Load Balancing ... 354
I/O Load Balancing .. 359
Load Balancing Recommendations .. 368
Invocation Triggers... 370
Recommendation Calculation ... 372

DATASTORE CLUSTER CONFIGURATION ... 375
Creating a Datastore Cluster ... 376

ARCHITECTURE AND DESIGN OF DATASTORE CLUSTERS 387
Connectivity .. 387
Datastores ... 396
VM Configuration .. 397
Disk Types .. 402
VM Automation Level .. 407
Interoperability ... 407
Storage DRS Integration with Storage Profiles ... 412

AFFINITY RULES ... 421
Storage DRS Rules ... 422
Violate Anti-Affinity Rules .. 427

DATASTORE MAINTENANCE MODE ... 431
Automation Mode .. 431

QUALITY CONTROL .. 439

STORAGE I/O CONTROL .. 441
SIOC Explained ... 445
Storage Fairness .. 445
Latency Threshold Computations .. 447
I/O Injector .. 448
Queue Depth ... 451
SIOC Logging ... 454
Communication Mechanism ... 455
Local Scheduler .. 457
Datastore-Wide Scheduler ... 459
VAIO .. 463
Statistics Collection Only ... 467
Storage I/O Allocation ... 469
Shares ... 469
Limits and Reservations... 470
Interoperability ... 472

NETWORK I/O CONTROL .. 475
Network I/O Control Constructs .. 476
Evolution of NIOC .. 478
NIOC Defaults .. 480
Bursty Network Consumers .. 482
Bandwidth Allocation .. 483
Shares ... 483
Ingress and Egress Perspective ... 486
Limits .. 486
Destination Traffic Saturation ... 489
Reservations .. 493
Network Resource Pools ... 495
Individual VM Parameters ... 499
Bandwidth Management .. 501
Traffic Marking ... 502

STRETCHED CLUSTERS .. 505

USE CASE: STRETCHED CLUSTERS .. 507
Scenario ... 507
Technical Requirements and Constraints .. 508
Uniform Versus Non-Uniform vMSC Configurations .. 510
Infrastructure Architecture ..513
vSphere Configuration .. 516
vSphere HA ... 516
DRS ... 533
Storage DRS .. 540
Failure Scenarios ... 543
Summary ... 562

INDEX .. 563

 9

INTRODUCTION AND
ACKNOWLEDGEMENTS

In December of 2010 we published the very first version of this, now,
deep dive series. We had no clue what we were getting ourselves in to.
We knew however that we wanted to write a book, which had a different
level of depth than most other virtualization related books out there. With
over 200 pages on the topic of vSphere HA and DRS we felt we
succeeded. Each edition after that added new chapters, use cases,
recommended practices, and topics. Needless to say, when we started
writing the first version early 2010, we never expected this series to sell
over 50,000 copies worldwide.

For this edition of the book we decided to ask Niels Hagoort as the third
author. As Niels has a vast experience in enterprise architectures, we felt
that it would help aligning our content with you, the reader. On top of
that, Niels also brings a deep expertise in networking, which adds a new
dimension to this book. It helped he gained massive experience in
creating a technical book as he co-authored the Host Deep Dive writing in
2017 with Frank.

At VMworld, in 2012, we met Chris Wahl. Chris was voted as Top
vBlogger number 51 that year. We felt a connection with Chris, he
understood and shared our passion for the VMware community and love
for sharing information and knowledge. (Although the Dutch lion tattooed
on his arm may also have helped.) Chris, like us, had a desire to dive deep
yet distill to the core. We always appreciated and enjoyed his material, be
it in writing or at an event on stage. We are happy he was willing to write
the foreword for our book.

Figure 1: Photo from 2012

Before we start diving deep, there are a couple of things we like to share.
First and foremost, the opinions expressed in this book are our personal
opinions. Content published was not approved in advance by VMware
and does not necessarily reflect the views and opinions of VMware.

We would like to thank our VMware management team (Christos
Karamanolis, Charu Chaubal, Kit Colbert) for supporting us on this
project. A special thanks goes out to our technical reviewers from
VMware R&D: Aalap Desai, Komal Desai, Keith Farkas, Sahan Gamage,
Lan Gao, Fei Guo, Sai Inabattini, Adarsh Jagadeeshwaran and Zhelong
Pan. Also, a big thank you to community reviewer Marco van Baggum.
Thanks for keeping us honest and contributing to this book.

We hope that you will enjoy reading this book as much as we did writing
it.

Frank Denneman, Duncan Epping, Niels Hagoort

 11

FOREWORD

The realm of technology is one that has traditionally been constructed on
silos. We tend to fragment our skills into very specific areas of expertise,
even going so far as to isolate the very people who run data center and
cloud operations into little buckets of focus and energy. I’d like to think
that this, more than anything, was the root cause for such painfully slow
progress towards realizing the dream of a fully software defined data
center. I had always felt a bit stifled by this organizational fragmentation
and thirsted for a way to put my hands on just about any solution that
shows the promise of removing the burden of manual processes. Since
you’re reading this book, I’ll make the assumption that you have had
similar thoughts.

The introduction of virtualization into the mainstream technology scene
had two great rippling effects on the IT ecosystem: it brutally crushed a
number of constraints and assumptions that were choking innovation for
delivering applications while also building one of the most positive and
influential communities I’ve yet to witness. Designing and implementing
highly efficient vSphere environments required collaboration across
technology and team silos and opened the door to many tech
professionals who wanted something more from their career. As our
grassroots community fought to virtualize anything and everything in our
path, we did something incredibly smart by sharing this knowledge on
the VMTN forums and across a wide swath of blogs. The VMware
community is why I started blogging, sharing, and exploring what could
be done to build some truly spectacular solutions for myself and others.

This adventure created a hunger that demanded more in depth and
architecture-driven content for future design experts of the world to
consume. In 2011, I picked up a copy of the recently released VMware
vSphere 4.1 HA and DRS Technical Deepdive book with great anticipation
because it focused on the core foundations of vSphere that underpin
every virtualization design decision I’d ever need to make. I still have my
signed physical copy sitting on the shelf riddled with colored flags and

highlighted passages. And, to my delight, I was able to meet the authors -
Duncan and Frank - while at VMworld 2011 to snap a photo with my
clustering heroes and pick their brains about the book.

Truth be told, this was a bit of a pivot point in my career and stoked my
resolve to create content for the community. I thought to myself, “here’s
two guys writing about their experiences solving real, tangible problems
and sharing their knowledge to the betterment of others - I want in!” I can
recall countless times where I used their content at my place of work or
as part of my consulting engagements, especially when it came to the
more obscure topics of co-stop, NUMA locality percentages, and
designing around the old Automated Availability Manager architecture -
bonus points if you remember AAM!

More than anything, these clustering deepdive books gave me the
confidence to tackle larger and more complex design projects. This
culminated into preparing for the VMware Certified Design Expert (VCDX)
exam, which I took one year after first cracking open the first deepdive
book. At the same time, I spent countless hours blogging about my areas
of interest, such as using NFS datastores to run virtual machines (which
was controversial at the time), and pouring entirely too much money into
a home lab to quench my tinkering itch. Later, I was offered the
opportunity to submit a book idea to VMware Press, which materialized
into Networking for VMware Administrators.

Now days I focus my energy on tearing down technology and operational
silos by recording shows for the Datanauts Podcast with fantastic
community guests and my partner in crime and network aficionado,
Ethan Banks. It is humbling to see tens of thousands of downloads for
each episode and hear the success stories of those listening to our
shows. I also have the extreme pleasure of running an amazing team of
Technical Marketing Engineers at a startup named Rubrik. It really is my
dream scenario and I am thankful for the opportunities presented to me
at every turn.

Let’s focus on your journey. Every adventure starts with a bold first step.
For me, it was taking the time to read the delightfully informative
clustering deepdive books and absorb all of the lessons there within. You
now have that very same tome of knowledge in your hands with
everything you need to be wildly successful with vSphere 6.7. What you
do with this information is entirely up to you, but know that anything and
everything is both possible and within reach with a little grit and some
imagination!

Chris Wahl

Chief Technologist

Rubrik

P1

HIGH AVAILABILITY

 17

01
INTRO TO VSPHERE HIGH

AVAILABILITY

Availability has traditionally been one of the most important aspects
when providing services. When providing services on a shared platform
like VMware vSphere, the impact of downtime exponentially grows as
many services run on a single physical machine. As such VMware
engineered a feature called VMware vSphere High Availability (HA).
VMware vSphere High Availability, hereafter simply referred to as HA,
provides a simple and cost effective solution to increase availability for
any application running in a Virtual Machine (VM) regardless of its
operating system. It is configured using a couple of simple steps through
vCenter Server (vCenter) and as such provides a uniform and simple
interface. HA enables you to create a cluster out of multiple ESXi hosts.
This will allow you to protect VMs and their workloads. In the event of a
failure of one of the hosts in the cluster, impacted VMs are automatically
restarted on other ESXi hosts within that same VMware vSphere Cluster.

P1 \\ HIGH AVAILABILITY

18

Figure 2: vSphere HA Concept

On top of that, in the case of a guest OS level failure, HA can restart the
failed guest OS. This feature is called VM Monitoring, but is sometimes
also referred to as VM-HA. This might sound fairly complex but again can
be implemented with a single click.

Figure 3: VM and Application Monitoring

Unlike many other clustering solutions, HA is a simple solution to

01 // INTRO TO HIGH AVAILABILITY

19

implement and literally enabled within five clicks. On top of that, HA is
widely adopted and used in all situations. However, HA is not a 1:1
replacement for solutions like Microsoft Clustering Services (MSCS) /
Windows Server Failover Clustering (WSFC). The main difference between
WSFC and HA being that WSFC was designed to protect stateful cluster-
aware applications while HA was designed to protect any VM regardless
of the type of workload within, but also can be extended to the
application layer through the use of VM and Application Monitoring.

In the case of HA, a fail-over incurs downtime as the VM is literally
restarted on one of the remaining hosts in the cluster. Whereas MSCS
transitions the service to one of the remaining nodes in the cluster when
a failure occurs. In contrary to what many believe, WSFC does not
guarantee that there is no downtime during a transition. On top of that,
your application needs to be cluster-aware and stateful in order to get the
most out of this mechanism, which limits the number of workloads that
could really benefit from this type of clustering.

One might ask why would you want to use HA when a VM is restarted
and service is temporarily lost. The answer is simple; not all VMs (or
services) need 99.999% uptime. For many services, the type of
availability HA provides is more than sufficient. On top of that, many
applications were never designed to run on top of an WSFC cluster. This
means that there is no guarantee of availability or data consistency if an
application is clustered with WSFC but is not cluster-aware.

In addition, WSFC clustering can be complex and requires special skills
and training. One example is managing patches and updates/upgrades in
a WSFC environment; this could even lead to more downtime if not
operated correctly and definitely complicates operational procedures. HA
however reduces complexity, costs (associated with downtime and
MSCS), resource overhead and unplanned downtime for minimal
additional costs. It is important to note that HA, contrary to WSFC, does
not require any changes to the guest as HA is provided on the hypervisor
level. Also, VM Monitoring does not require any additional software or OS
modifications except for VMware Tools, which should be installed

P1 \\ HIGH AVAILABILITY

20

anyway as a best practice. In case even higher availability is required,
VMware also provides a level of application awareness through
Application Monitoring, which has been leveraged by partners like
Symantec to enable application level resiliency and could be used by in-
house development teams to increase resiliency for their application.

HA has proven itself over and over again and is widely adopted within the
industry; if you are not using it today, hopefully you will be convinced
after reading this section of the book.

vSphere 6.7
Before we dive into the main constructs of HA and describe all the
choices one has to make when configuring HA, we will first briefly touch
on what’s new in vSphere 6.0 and describe the basic requirements and
steps needed to enable HA. This book covers all the released versions of
what is known within VMware as Fault Domain Manager (FDM), which was
introduced with vSphere 5.0. We will call out the differences in behavior
in the different versions where applicable, our baseline however is
vSphere 6.7.

What’s New?
Compared to vSphere 6.0 the changes introduced with vSphere 6.7 for
HA are minor, however there were some significant changes with
vSphere 6.5. Some of the new functionality will make the life of many of
you much easier. Although the list is relatively short, from an engineering
point of view many of these things have been an enormous effort as they
required change to the deep fundaments of the HA architecture.

▪ Admission Control Enhancements
 Revamped UI, with the default admission control policy

now being “percentage based” but defined by the
number of “host failures cluster tolerates”

 The ability to specify the “performance degradation
tolerated” by any VM

01 // INTRO TO HIGH AVAILABILITY

21

▪ Restart Priority Enhancements
 Increase from 3 to 5 restart priority levels
 Ability to specify when the next priority level should

restart. Not limited to the start of the VMX process as
in the past, but now also waiting for an X number of
minutes etc.

▪ HA Orchestrated Restart
 Ability to specify dependency between VMs using VM

to VM rules
▪ ProActive HA

 Ability to place a host in maintenance mode (or
quarantine mode) when hardware (components) is
degraded

This is just a short list and a brief description, in the chapters to follow
we will go into detail for every single new and existing feature.

What is Required for HA to Work?
Each feature or product has very specific requirements and HA is no
different. Knowing the requirements of HA is part of the basics we have
to cover before diving into some of the more complex concepts. For
those who are completely new to HA, we will also show you how to
configure it.

Prerequisites
Before enabling HA, it is highly recommend validating that the
environment meets all the prerequisites. We have also included
recommendations from an infrastructure perspective that will enhance
resiliency.

Requirements:

▪ Minimum of two ESXi hosts
▪ Minimum of 4 GB memory per host
▪ VMware vCenter Server

P1 \\ HIGH AVAILABILITY

22

▪ Shared Storage for VMs
▪ Pingable gateway or other reliable address

Recommendation:

▪ Redundant Management Network (not a requirement, but highly
recommended)

▪ 8 GB of memory or more per host
▪ Multiple shared datastores

Firewall Requirements
The following table contains the ports that are used by HA for
communication. If your environment contains firewalls external to the
host, ensure these ports are opened for HA to function correctly. HA will
open the required ports on the ESXi firewall.

PORT PROTOCOL DIRECTION
8182 UDP Inbound
8182 TCP Inbound
8182 UDP Outbound
8182 TCP Outbound

Table 1: Firewall Ports

Configuring vSphere High Availability
HA can be configured with the default settings within a couple of clicks.
The following steps will show you how to create a cluster and enable HA,
including VM Monitoring, using the vSphere Client (HTML-5). Each of the
settings and the design decisions associated with these steps will be
described in more depth in the following chapters.

1. Click on the “Hosts & Clusters” view.
2. Right-click the Datacenter in the Inventory tree and click New

Cluster.
3. Give the new cluster an appropriate name. We recommend at a

minimum including the location of the cluster and a sequence

01 // INTRO TO HIGH AVAILABILITY

23

number ie. ams-hadrs-001.
4. Select Turn On vSphere HA.
5. Ensure “Enable host monitoring” and “Enable admission control”

is selected.
6. If required, enable VM Monitoring by selecting VM Monitoring

Only or VM and Application Monitoring in the dropdown.
7. Click “OK” to complete the creation of the cluster.

Figure 4: vSphere HA Configuration

When the HA cluster has been created, the ESXi hosts can be added to
the cluster simply by right clicking the host and selecting “Move To”, if
they were already added to vCenter, or by right clicking the cluster and
selecting “Add Host”.

P1 \\ HIGH AVAILABILITY

24

When an ESXi host is added to the newly-created cluster, the HA agent
will be loaded and configured. Once this has completed, HA will enable
protection of the workloads running on this ESXi host.

As we have clearly demonstrated, HA is a simple clustering solution that
will allow you to protect VMs against host failure and operating system
failure in literally minutes. Understanding the architecture of HA will
enable you to reach that extra 9 when it comes to availability. The
following chapters will discuss the architecture and fundamental
concepts of HA. We will also discuss all decision-making moments to
ensure you will configure HA in such a way that it meets the
requirements of your or your customer’s environment.

 25

02
COMPONENTS OF HA

Now that we know what the pre-requisites are and how to configure HA
the next steps will be describing which components form HA. Keep in
mind that this is still a “high level” overview. There is more under the
cover that we will explain in following chapters. The following diagram
depicts a two-host cluster and shows the key HA components.

Figure 5: vSphere HA Components

As you can clearly see, there are three major components that form the
foundation for HA:

P1 \\ HIGH AVAILABILITY

26

▪ FDM
▪ HOSTD
▪ vCenter

The first and probably the most important component that forms HA is
FDM (Fault Domain Manager). This is the HA agent. The FDM Agent is
responsible for many tasks such as communicating host resource
information, VM states and HA properties to other hosts in the cluster.
FDM also handles heartbeat mechanisms, VM placement, VM restarts,
logging and much more. We are not going to discuss all of this in-depth
separately as we feel that this will complicate things too much.

FDM, in our opinion, is one of the most important agents on an ESXi host,
when HA is enabled, of course, and we are assuming this is the case. The
engineers recognized this importance and added an extra level of
resiliency to HA. FDM uses a single-process agent. However, FDM
spawns a watchdog process. In the unlikely event of an agent failure, the
watchdog functionality will pick up on this and restart the agent to
ensure HA functionality remains without anyone ever noticing it failed.
The agent is also resilient to network interruptions and all paths down
(APD) conditions. Inter-host communication automatically uses another
communication path (if the host is configured with redundant
management networks) in the case of a network failure.

HA has no dependency on DNS as it works with IP addresses only. This is
one of the major improvements that FDM brought. This does not mean
that ESXi hosts need to be registered with their IP addresses in vCenter;
it is still a best practice to register ESXi hosts by its fully qualified
domain name (FQDN) in vCenter.

Although HA does not depend on DNS, remember that other services may
depend on it. On top of that, monitoring and troubleshooting will be much
easier when hosts are correctly registered within vCenter and have a
valid FQDN.

Although HA is not dependent on DNS, it is still recommended to

02 // COMPONENTS OF HA

27

register the hosts with their FQDN for ease of operations/management.

vSphere HA also has a standardized logging mechanism, where a single
log file has been created for all operational log messages; it is called
fdm.log. This log file is stored under /var/log/ as depicted in the
screenshot below.

Figure 6: FDM.log

Although typically not needed, we do recommend getting familiar with
the fdm.log file as it will enable you to troubleshoot the environment
when an issue has occurred. An example when the fdm.log will be very
useful is the situation where VMs have been restarted without any
apparent reason. The fdm.log file will show when the VMs have been
restarted, but more importantly it will also inform you why VMs have
been restarted, whether it was the result of a host, network or storage
failure for instance.

Ensure syslog is correctly configured and log files are offloaded to a
safe location to offer the possibility of performing a root cause
analysis in case disaster strikes.

HOSTD Agent
One of the most crucial agents on a host is HOSTD. This agent is
responsible for many of the tasks we take for granted like powering on
VMs. FDM talks directly to HOSTD and vCenter, so it is not dependent on
VPXA, like in previous releases. This is, of course, to avoid any
unnecessary overhead and dependencies, making HA more reliable than
ever before and enabling HA to respond faster to power-on requests.

P1 \\ HIGH AVAILABILITY

28

That ultimately results in higher VM uptime.

When, for whatever reason, HOSTD is unavailable or not yet running after
a restart, the host will not participate in any FDM-related processes. FDM
relies on HOSTD for information about the VMs that are registered to the
host, and manages the VMs using HOSTD APIs. In short, FDM is
dependent on HOSTD and if HOSTD is not operational, FDM halts all
functions and waits for HOSTD to become operational.

vCenter
That brings us to our final component, the vCenter Server. vCenter is the
core of every vSphere Cluster and is responsible for many tasks these
days. For our purposes, the following are the most important and the
ones we will discuss in more detail:

▪ Deploying and configuring HA Agents
▪ Communication of cluster configuration changes
▪ Protection of VMs

vCenter is responsible for pushing out the FDM agent to the ESXi hosts
when applicable. The push of these agents is done in parallel to allow for
faster deployment and configuration of multiple hosts in a cluster.
vCenter is also responsible for communicating configuration changes in
the cluster to the host which is elected as the master. We will discuss
this concept of master and slaves in the following chapter. Examples of
configuration changes are modification or addition of an advanced
setting or the introduction of a new host into the cluster.

HA leverages vCenter to retrieve information about the status of VMs
and, of course, vCenter is used to display the protection status of VMs.
(What “VM protection” means will be discussed in later on). On top of
that, vCenter is responsible for the protection and unprotection of VMs.
This not only applies to user-initiated power-offs or power-ons of VMs,
but also in the case where an ESXi host is disconnected from vCenter at
which point vCenter will request the master HA agent to unprotect the

02 // COMPONENTS OF HA

29

affected VMs.

Figure 7: VM Protection Status

Although HA is configured by vCenter and exchanges VM state
information with HA, vCenter is not involved when HA responds to failure.
It is comforting to know that in case of a host failure containing the
virtualized vCenter Server, HA takes care of the failure and restarts the
vCenter Server on another host, including all other configured VMs from
that failed host.

There is a corner case scenario with regards to vCenter failure: if the ESXi
hosts are so called “stateless hosts” and Distributed vSwitches are used
for the management network, VM restarts will not be attempted until
vCenter is restarted. For stateless environments, vCenter and Auto
Deploy availability is key as the ESXi hosts literally depend on them.

If vCenter is unavailable, it will not be possible to make changes to the
configuration of the cluster. vCenter is the source of truth for the set of
VMs that are protected, the cluster configuration, the VM-to-host
compatibility information, and the host membership. So, while HA, by
design, will respond to failures without vCenter, HA relies on vCenter to
be available to configure or monitor the cluster.

After deploying vCenter Server and configuring your cluster, we
recommend setting the correct HA restart priorities for it. Although

P1 \\ HIGH AVAILABILITY

30

vCenter Server is not required to restart VMs, there are multiple
components that rely on vCenter and, as such, a speedy recovery is
desired. When configuring your vCenter VM with the highest priority for
restarts, remember to include all services on which your vCenter server
depends for a successful restart: DNS, Active Directory and MS SQL (or
any other database server you are using).

In stateless environments, ensure vCenter and Auto Deploy are highly
available as recovery time of your VMs might be dependent on them.

Understand the impact of virtualizing vCenter. Ensure it has the
highest priority for restarts and ensure that services which vCenter
Server depends on are available: DNS, Active Directory and the
potential external database server.

 31

03
FUNDAMENTAL CONCEPTS

Now that you know about the components of HA, it is time to start
talking about some of the fundamental concepts of HA clusters:

▪ Master / Slave agents
▪ Heartbeating
▪ Isolated vs Network partitioned
▪ VM Protection
▪ Component Protection

Everyone who has implemented vSphere knows that multiple hosts can
be configured into a cluster. A cluster can best be seen as a collection of
resources. These resources can be carved up with the use of vSphere
Distributed Resource Scheduler (DRS) into separate pools of resources
or used to increase availability by enabling HA.

The HA architecture introduces the concept of master and slave HA
agents. Except during network partitions, there is only one master HA
agent in a cluster. Any agent can serve as a master, and all others are
considered its slaves. A master agent is in charge of monitoring the
health of VMs for which it is responsible and restarting any that fail. The
slaves are responsible for forwarding information to the master agent
and restarting any VMs at the direction of the master. The HA agent,
regardless of its role as master or slave, also implements the VM/App
monitoring feature which allows it to restart VMs in the case of an OS
failure or restart services in the case of an application failure.

P1 \\ HIGH AVAILABILITY

32

Master Agent
As stated, one of the primary tasks of the master is to keep track of the
state of the VMs it is responsible for and to take action when
appropriate. In a normal situation, there is only a single master in a
cluster. We will discuss the scenario where multiple masters can exist in
a single cluster in one of the following sections, but for now let’s talk
about a cluster with a single master. A master will claim responsibility for
a VM by taking “ownership” of the datastore on which the VM’s
configuration file is stored.

To maximize the chance of restarting VMs after a failure we
recommend masking datastores on a cluster basis. Although sharing
of datastores across clusters will work, it will increase complexity
from an administrative perspective.

That is not all, of course. The HA master is also responsible for
exchanging state information with vCenter. This means that it will not
only receive but also send information to vCenter when required. The HA
master is also the host that initiates the restart of VMs when a host has
failed. You may immediately want to ask what happens when the master
is the one that fails, or, more generically, which of the hosts can become
the master and when is it elected?

Election
A master is elected by a set of HA agents whenever the agents are not in
network contact with a master. A master election thus occurs when HA
is first enabled on a cluster and when the host on which the master is
running:

▪ fails
▪ becomes network partitioned or isolated
▪ is disconnected from vCenter Server
▪ is put into maintenance or standby mode
▪ when HA is reconfigured on the host

03 // FUNDAMENTAL CONCEPTS

33

The HA master election takes approximately 15 seconds and is
conducted using UDP. While HA won’t react to failures during the
election, once a master is elected, failures detected before and during the
election will be handled. The election process is simple but robust. The
host that is participating in the election with the greatest number of
connected datastores will be elected master. If two or more hosts have
the same number of datastores connected, the one with the highest
Managed Object Id will be chosen. This however is done lexically;
meaning that 99 beats 100 as 9 is larger than 1. For each host, the HA
State of the host will be shown on the Summary tab. This includes the
role as depicted in screenshot below where the host is a master host.

After a master is elected, each slave that has management network
connectivity with it will setup a single secure, encrypted, TCP connection
to the master. This secure connection is SSL-based. One thing to stress
here though is that slaves do not communicate with each other after the
master has been elected unless a re-election of the master needs to take
place.

Figure 8: vSphere HA State - Master

As stated earlier, when a master is elected it will try to acquire ownership
of all the datastores it can directly access or access by proxying
requests to one of the slaves connected to it using the management

P1 \\ HIGH AVAILABILITY

34

network. For traditional storage architectures, it does this by locking a
file called protectedlist that is stored on the datastores in an existing
cluster. The master will also attempt to take ownership of any datastores
it discovers along the way, and it will periodically retry any it could not
take ownership of previously.

The naming format and location of this file is as follows:
/<root of datastore>/.vSphere-HA/<cluster-specific-

directory>/protectedlist

For those wondering how “cluster-specific-directory” is constructed:
<uuid of vCenter Server>-<number part of the MoID of the cluster>-

<random 8 char string>-<name of the host running vCenter Server>

The master uses this protectedlist file to store the inventory. It keeps
track of which VMs are protected by HA. Calling it an inventory might be
slightly overstating: it is a list of protected VMs and it includes
information around VM CPU reservation and memory overhead. The
master distributes this inventory across all datastores in use by the VMs
in the cluster. The next screenshot shows an example of this file on one
of the datastores.

Figure 9: vSphere HA Files

Now that we know the master locks a file on the datastore and that this
file stores inventory details, what happens when the master is isolated or
fails? If the master fails, the answer is simple: the lock will expire and the
new master will relock the file if the datastore is accessible to it.

03 // FUNDAMENTAL CONCEPTS

35

In the case of isolation, this scenario is slightly different, although the
result is similar. The master will release the lock it has on the file on the
datastore to ensure that when a new master is elected it can determine
the set of VMs that are protected by HA by reading the file. If, by any
chance, a master should fail right at the moment that it became isolated,
the restart of the VMs will be delayed until a new master has been
elected. In a scenario like this, accuracy and the fact that VMs are
restarted is more important than a short delay.
Let’s assume for a second that your master has just failed. What will
happen and how do the slaves know that the master has failed? HA uses
a point-to-point network heartbeat mechanism. If the slaves have
received no network heartbeats from the master, the slaves will try to
elect a new master. This new master will read the required information
and will initiate the restart of the VMs within roughly 10 seconds.

Restarting VMs is not the only responsibility of the master. It is also
responsible for monitoring the state of the slave hosts and reporting this
state to vCenter Server. If a slave fails or becomes isolated from the
management network, the master will determine which VMs must be
restarted. When VMs need to be restarted, the master is also responsible
for determining the placement of those VMs. It uses a placement engine
that will try to distribute the VMs to be restarted evenly across all
available hosts.

All of these responsibilities are really important, but without a
mechanism to detect a slave has failed, the master would be useless.
Just like the slaves receive heartbeats from the master, the master
receives heartbeats from the slaves so it knows they are alive.

Slaves
A slave has substantially fewer responsibilities than a master: a slave
monitors the state of the VMs it is running and informs the master about
any changes to this state.

P1 \\ HIGH AVAILABILITY

36

The slave also monitors the health of the master by monitoring
heartbeats. If the master becomes unavailable, the slaves initiate and
participate in the election process. Last but not least, the slaves send
heartbeats to the master so that the master can detect outages. Like the
master to slave communication, all slave to master communication is
point to point. HA does not use multicast.

Figure 10: vSphere HA State - Slave

Files for Both Slave and Master
Before explaining the details, it is important to understand that both
Virtual SAN (vSAN) and Virtual Volumes (VVol) have introduced changes
to the location and the usage of files. For specifics on these two different
storage architectures we like to refer you to those respective sections in
the book.

Both the master and slave use files not only to store state, but also as a
communication mechanism. We’ve already seen the protectedlist file
used by the master to store the list of protected VMs. We will now

03 // FUNDAMENTAL CONCEPTS

37

discuss the files that are created by both the master and the slaves.
Remote files are files stored on a shared datastore and local files are
files that are stored in a location only directly accessible to that host.

Remote Files
The set of powered on VMs is stored in a per-host “poweron” file. It
should be noted that, because a master also hosts VMs, it also creates a
“poweron” file. The naming scheme for this file is as follows: host-
number-poweron

Tracking VM power-on state is not the only thing the “poweron” file is
used for. This file is also used by the slaves to inform the master that it is
isolated from the management network: the top line of the file will either
contain a 0 or a 1. A 0 (zero) means not-isolated and a 1 (one) means
isolated. The master will inform vCenter about the isolation of the host.

Local Files
As mentioned before, when HA is configured on a host, the host will store
specific information about its cluster locally.

Figure 11: vSphere HA Local Files

Each host, including the master, will store data locally. The data that is
locally stored is important state information. Namely, the VM-to-host
compatibility matrix, cluster configuration, and host membership list.
This information is persisted locally on each host. Updates to this
information is sent to the master by vCenter and propagated by the
master to the slaves. Although we expect that most of you will never

P1 \\ HIGH AVAILABILITY

38

touch these files – and we highly recommend against modifying them –
we do want to explain how they are used:

▪ clusterconfig This file is not human-readable. It contains the
configuration details of the cluster.

▪ vmmetadata This file is not human-readable. It contains the
actual compatibility info matrix for every HA protected VM and
lists all the hosts with which it is compatible plus a vm/host
dictionary.

▪ fdm.cfg This file contains the configuration settings around
logging. For instance, the level of logging and syslog details are
stored in here.

▪ hostlist A list of hosts participating in the cluster, including
hostname, IP addresses, MAC addresses and heartbeat
datastores.

Now although vmmetadata and clusterconfig are not human readable,
this does not mean it is impossible to know what information is stored in
them. The script prettyPrint.sh allows you to print the information in the
above 4 files. For example, the command below prints the clusterconfig
information.

/opt/vmware/fdm/fdm/prettyPrint.sh clusterconfig

If you use this command with “-h” all options will be provided, we feel
these speak for itself. When troubleshooting however especially
“hostlist” and “vmmetadata” will come in handy. The parameter “hostlist”
will give you the host name and host identifier. This will make the fdm.log
easier to digest. Below screenshot displays partly the information
provided by the “hostlist” parameter.

03 // FUNDAMENTAL CONCEPTS

39

Figure 12: PrettyPrint.sh Hostlist Example

The “vmmetadata” parameter displays the compatibility list, although we
haven’t covered the compatibility list yet it is good to know that this
contains information about which VM can be restarted on which host.

Heartbeating
We mentioned it a couple of times already in this chapter, and it is an
important mechanism that deserves its own section: heartbeating.
Heartbeating is the mechanism used by HA to validate whether a host is
alive. HA has two different heartbeating mechanisms. These heartbeat
mechanisms allow it to determine what has happened to a host when it
is no longer responding. Let’s discuss traditional network heartbeating
first.

Network Heartbeating
Network Heartbeating is used by HA to determine if an ESXi host is alive.
Each slave will send a heartbeat to its master and the master sends a
heartbeat to each of the slaves, this is a point-to-point communication.
These heartbeats are sent by default every second.

When a slave isn’t receiving any heartbeats from the master, it will try to
determine whether it is Isolated– we will discuss “states” in more detail
later on in this chapter.

Network heartbeating is key for determining the state of a host.
Ensure the management network is highly resilient to enable proper
state determination.

P1 \\ HIGH AVAILABILITY

40

Datastore Heartbeating
Datastore heartbeating adds an extra level of resiliency and prevents
unnecessary restart attempts from occurring as it allows vSphere HA to
determine whether a host is isolated from the network or is completely
unavailable. How does this work?

Datastore heartbeating enables a master to more determine the state of
a host that is not reachable via the management network. This datastore
heartbeat mechanism is used in case the master has lost network
connectivity with one, or multiple, slaves. The datastore heartbeat
mechanism is then used to validate whether a host has failed or is
merely isolated/network partitioned. Isolation will be validated through
the “poweron” file which, as mentioned earlier, will be updated by the
host when it is isolated. Without the “poweron” file, there is no way for
the master to validate isolation. Let that be clear! Based on the results of
checks of both files, the master will determine the appropriate action to
take. If the master determines that a host has failed (no datastore
heartbeats), the master will restart the failed host’s VMs. If the master
determines that the slave is Isolated or Partitioned, it will only take action
when it is appropriate to take action. With that meaning that the master
will only initiate restarts when VMs are down or powered down / shut
down by a triggered isolation response.

By default, HA selects 2 heartbeat datastores – it will select datastores
that are available on all hosts, or as many as possible. Although it is
possible to configure an advanced setting (das.heartbeatDsPerHost) to
allow for more datastores for datastore heartbeating we do not
recommend configuring this option as the default should be sufficient for
most scenarios, except for stretched cluster environments where it is
recommended to have two in each site manually selected. This is
extensively discussed in the Stretched Clusters section of this book.
The selection process gives preference to VMFS over NFS datastores,
and seeks to choose datastores that are backed by different LUNs or
NFS servers when possible. If desired, you can also select the heartbeat
datastores yourself. We, however, recommend letting vCenter deal with

03 // FUNDAMENTAL CONCEPTS

41

this operational “burden” as vCenter uses a selection algorithm to select
heartbeat datastores that are presented to all hosts. This however is not
a guarantee that vCenter can select datastores which are connected to
all hosts. It should be noted that vCenter is not site-aware. In scenarios
where hosts are geographically dispersed it is recommended to manually
select heartbeat datastores to ensure each site has one site-local
heartbeat datastore at minimum. More on this topic is covered in the Use
Case section of this book, which discusses metro cluster deployments.

In a metro-cluster / geographically dispersed cluster we recommend
setting the minimum number of heartbeat datastores to four. It is
recommended to manually select site local datastores, two for each
site.

Figure 13: Datastore Heartbeating

The question now arises: what, exactly, is this datastore heartbeating

P1 \\ HIGH AVAILABILITY

42

and which datastore is used for this heartbeating? Let’s answer which
datastore is used for datastore heartbeating first as we can simply show
that with a screenshot, see below. vSphere displays extensive details
around the “Cluster Status” on the Cluster’s Monitor tab. This for
instance shows you which datastores are being used for heartbeating
currently and which hosts are using which specific datastore(s).

Figure 14: Datastore Heartbeating Selected

In block based storage environments HA leverages an existing VMFS file
system mechanism. The datastore heartbeat mechanism uses a so
called “heartbeat region” which is updated as long as the file is open. On
VMFS datastores, HA will simply check whether the heartbeat region has
been updated. In order to update a datastore heartbeat region, a host
needs to have at least one open file on the volume. HA ensures there is at
least one file open on this volume by creating a file specifically for
datastore heartbeating. In other words, a per-host file is created on the
designated heartbeating datastores, as shown below. The naming
scheme for this file is as follows: host-number-hb.

03 // FUNDAMENTAL CONCEPTS

43

Figure 15: Heartbeat File

On NFS datastores, each host will write to its heartbeat file once every 5
seconds, ensuring that the master will be able to check host state. The
master will simply validate this by checking that the time-stamp of the
file changed.

Realize that in the case of a converged network environment, the
effectiveness of datastore heartbeating will vary depending on the type
of failure. For instance, a NIC failure could impact both network and
datastore heartbeating. If, for whatever reason, the datastore or NFS
share becomes unavailable or is removed from the cluster, HA will detect
this and select a new datastore or NFS share to use for the heartbeating
mechanism. Unless of course you have selected the option “select only
from my preferred datastores” and none of the preferred datastores is
available.

Datastore heartbeating adds a new level of resiliency but is not the be-
all end-all. In converged networking environments, the use of
datastore heartbeating adds little value due to the fact that a NIC
failure may result in both the network and storage becoming
unavailable.

Isolated versus Partitioned
We’ve already briefly touched on it and it is time to have a closer look.
When it comes to network failures there are two different states that

P1 \\ HIGH AVAILABILITY

44

exist. What are these exactly and when is a host Partitioned rather than
Isolated? Before we will explain this, we want to point out that there is
the state as reported by the master and the state as observed by an
administrator and the characteristics these have.

We would recommend everyone to read the following bullet points
thoroughly (and multiple times) as the terminology in these situations
are often incorrectly used. It sounds like it is just semantics, but there’s a
big difference in how vSphere HA responds to an Isolation versus how it
responds to a Partition.

Let’s be very clear and define each state:

▪ An isolation event is the situation where a single host cannot
communicate with the rest of the cluster. Note: single host!

▪ A partition is the situation where two (or more) hosts can
communicate with each other, but no longer can communicate
with the remaining two (or more) hosts in the cluster. Note: two
or more!

Having said that, you can also find yourself in then situation where
multiple hosts are isolated simultaneously. Although chances are slim,
this can occur when for instance a change is made to the network and
various hosts of a single cluster lose access to the management
network. Anyway, let’s take a look at Partition and Isolation events a bit
more in-depth

The diagram below shows possible ways in which an Isolation or a
Partition can occur.

03 // FUNDAMENTAL CONCEPTS

45

Figure 16: Isolation vs Partition

If a cluster is partitioned in multiple segments, each partition will elect its
own master, meaning that if you have 4 partitions your cluster will have 4
masters. When the network partition is corrected, one of the four masters
will take over the role and be responsible for the cluster again. This will
be done using the election algorithm (most connected datastores,
highest lexical number). It should be noted that a master could claim
responsibility for a VM that lives in a different partition. If this occurs and
the VM happens to fail, the master will be notified through the datastore
communication mechanism.

In the HA architecture, whether a host is partitioned is determined by the
master reporting the condition. So, in the above example, the master on
host ESXi-01 will report ESXi-03 and ESXi-04 partitioned while the master
on host ESXi-03 will report ESXi-01 and ESXi-02 partitioned. When a
partition occurs, vCenter reports the perspective of one master.

A master reports a host as partitioned or isolated when it can’t
communicate with the host over the management network, it can
observe the host’s datastore heartbeats via the heartbeat datastores.

P1 \\ HIGH AVAILABILITY

46

The master cannot alone differentiate between these two states – a host
is reported as isolated only if the host informs the master via the
datastores that is isolated. This still leaves the question open how the
master differentiates between a Failed, Partitioned, or Isolated host.

When the master stops receiving network heartbeats from a slave, it will
check for host “liveness” for the next 15 seconds. Before the host is
declared failed, the master will validate if it has actually failed or not by
doing additional liveness checks. First, the master will validate if the host
is still heartbeating to the datastore. Second, the master will ping the
management IP address of the host. If both are negative, the host will be
declared Failed. This doesn’t necessarily mean the host has PSOD’ed; it
could be the network is unavailable, including the storage network, which
would make this host Isolated from an administrator’s perspective but
Failed from an HA perspective. As you can imagine, however, there are
various combinations possible. The following table depicts these
combinations including the “state”.

STATE
NETWORK

HEARTBEAT
STORAGE

HEARTBEAT

HOST
LIVENESS

PING

ISOLATION
CRITERIA

MET
Running Yes N/A N/A N/A
Isolated No Yes No Yes

Partitioned No Yes No No
Failed No No No N/A

FDM Agent
Down

N/A N/A Yes N/A

Table 2: HA State

HA will trigger an action based on the state of the host. When the host is
marked as Failed, a restart of the VMs will be initiated. When the host is
marked as Isolated, the master might initiate the restarts.
The one thing to keep in mind when it comes to isolation response is that
a VM will only be shut down or powered off when the isolated host knows
there is a master out there that has taken ownership for the VM or when
the isolated host loses access to the home datastore of the VM.

03 // FUNDAMENTAL CONCEPTS

47

For example, if a host is isolated and runs two VMs, stored on separate
datastores, the host will validate if it can access each of the home
datastores of those VMs. If it can, the host will validate whether a master
owns these datastores. If no master owns the datastores, the isolation
response will not be triggered and restarts will not be initiated. If the host
does not have access to the datastore, for instance, during an “All Paths
Down” condition, HA will trigger the isolation response to ensure the
“original” VM is powered down and will be safely restarted. This to avoid
so-called “split-brain” scenarios.

To reiterate, as this is a very important aspect of HA and how it handles
network isolations, the remaining hosts in the cluster will only be
requested to restart VMs when the master has detected that either the
host has failed or has become isolated and the isolation response was
triggered.

VM Protection
VM protection happens on several layers but is ultimately the
responsibility of vCenter. We have explained this briefly but want to
expand on it a bit more to make sure everyone understands the
dependency on vCenter when it comes to protecting VMs. We do want to
stress that this only applies to protecting VMs; VM restarts in no way
require vCenter to be available at the time.

When the state of a VM changes, vCenter will direct the master to enable
or disable HA protection for that VM. Protection, however, is only
guaranteed when the master has committed the change of state to disk.
The reason for this, of course, is that a failure of the master would result
in the loss of any state changes that exist only in memory. As pointed out
earlier, this state is distributed across the datastores and stored in the
“protectedlist” file.

When the power state change of a VM has been committed to disk, the
master will inform vCenter Server so that the change in status is visible

P1 \\ HIGH AVAILABILITY

48

both for the user in vCenter and for other processes like monitoring tools.
Within the vSphere Client you can validate that a VM has been protected
on the VM’s summary page as displayed in the next screenshot. As
shown, the UI also provides information about the types of failures HA
can handle for this particular VM.

Figure 17: VM is Protected

03 // FUNDAMENTAL CONCEPTS

49

To clarify the process, we have created a workflow diagram of the
protection of a VM from the point it is powered on through vCenter:

Figure 18: VM Protection Workflow

But what about “unprotection?” When a VM is powered off, it must be
removed from the protectedlist. We have documented this workflow in

P1 \\ HIGH AVAILABILITY

50

the following diagram for the situation where the power off is invoked
from vCenter.

Figure 19: VM Unprotection

03 // FUNDAMENTAL CONCEPTS

51

We realize a lot of new terminology and concepts have been introduced
in this chapter. Understanding these new concepts is critical for
availability of your workloads, and in some cases critical for a successful
restart of your VMs.

P1 \\ HIGH AVAILABILITY

52

 53

04
RESTARTING VIRTUAL MACHINES

In the previous chapter, we have described most of the lower level
fundamental concepts of HA. We have shown you that multiple
mechanisms increase resiliency and reliability of HA. Reliability of HA in
this case mostly refers to restarting (or resetting) VMs, as that remains
HA’s primary task.

HA will respond when the state of a host has changed, or, better said,
when the state of one or more VMs has changed. There are multiple
scenarios in which HA will respond to a VM failure, the most common of
which are listed below:

▪ Failed host
▪ Isolated host
▪ Failed guest operating system

Depending on the type of failure, but also depending on the role of the
host, the process will differ slightly. Changing the process results in
slightly different recovery timelines. There are many different scenarios
and there is no point in covering all of them, so we will try to describe the
most common scenario and include timelines where possible.

Throughout this chapter we will describe theoretical restart times, please
realize that these timings are based on optimal scenarios with maximum
availability of resources and no constraints whatsoever. In real life the
restart of a VM may take slightly longer, this depends on many variables,

P1 \\ HIGH AVAILABILITY

54

some of which we have listed below. Note that this is an example of what
may impact restart times, by no means a full list.

▪ Availability of resources
▪ Network performance
▪ Storage performance
▪ Speed of CPU and available CPUs/Cores
▪ Speed of memory and available capacity
▪ Number of VMs impacted
▪ Number of hosts impacted

Before we dive into the different failure scenarios, we want to explain
how restart priority and retries work.

Restart Priority and Order
A feature of HA that has always been a hot discussion is Restart Priority
and Order. The main reason for the debate being the lack of proper
prioritization or the ability to specify dependency between VMs. This
completely changed with the arrival of vSphere 6.5 where the restart
mechanism was redesigned and a new functionality was introduced
where you have the ability to specify dependency between VMs. Since
early days HA can take the configured priority of the VM into account
when restarting VMs. However, it is good to know that Agent VMs take
precedence during the restart procedure as the “regular” VMs may rely on
them. Although Agent VMs are not common, one use case for it would be
a virtual storage appliance.

Pre-vSphere 6.5 prioritization was done by each host and not globally.
Each host that had been requested to initiate restart attempts would
attempt to restart all top priority VMs before attempting to start any
other VMs. If the restart of a top priority VM failed, it would be retried
after a delay. In the meantime, however, HA would continue powering on
the remaining VMs. Keep in mind that some VMs could have been
dependent on the agent VMs.

04 // RESTARTING VIRTUAL MACHINES

55

VMs can be dependent on the availability of agent VMs or other VMs.
Although HA will do its best to ensure all VMs are started in the
correct order, this is not guaranteed. Document the proper recovery
process.

Besides agent VMs, HA also prioritizes FT secondary machines. We have
listed the full order in which VMs will be restarted below:

▪ Agent VMs
▪ FT secondary VMs
▪ VMs configured with a restart priority of highest
▪ VMs configured with a restart priority of high
▪ VMs configured with a restart priority of medium
▪ VMs configured with a restart priority of low
▪ VMs configured with a restart priority of lowest

The priority by default is set to medium for the whole cluster and this can
be changed in the “VM Overrides” section of the UI.

Figure 20: Restart Priority

After you have specified the priority you can also specify if there needs to
be an additional delay before the next batch can be started, or you can

P1 \\ HIGH AVAILABILITY

56

specify even what triggers the next priority “group”, this could for
instance be the VMware Tools guest heartbeat as shown in the
screenshot below. The other option is “resources allocated” which is
purely the scheduling of the batch itself (this is the old behavior), the
power-on event completion or the “app heartbeat” detection. That last
one is most definitely the most complex as you would need to have App
HA enabled and services defined etc. We suspect that if people use this
they will mostly set it to “Guest Heartbeats detected” as that is easiest
and most reliable.

Figure 21: Start Next Priority VMs Batch When …

If for whatever reason there is no guest heartbeat ever, or it simply takes
a long time then there is also a timeout value that can be specified. By
default, this is 600 seconds, this can be decreased or increased,
depending on what you prefer.

In case you are wondering, yes you can also set a restart priority for
vCenter Server. All changes to the restart priority are stored in the cluster
configuration. You can examine this if needed through the script we
discussed earlier called prettyPrint.sh, simply type the following:

/opt/vmware/fdm/fdm/prettyPrint.sh clusterconfig

04 // RESTARTING VIRTUAL MACHINES

57

The output which is then presented will look something like below
example, we would recommend searching for the word “restartPriority” to
find the changes you have made as the output will be more than 100
lines.

Figure 22: Section of PrettPrint.sh Output

The Restart Priority functionality is primarily intended for large groups of
VMs, if you have thousands of VMs you can select those ten / twenty
VMs and change priority so that they will be powered-on first. However, if
you for instance have a 3-tier app and you need the database server to be
powered on before the app server then you can also use VM/VM rules as
of vSphere 6.5, this functionality is typically referred to as HA
Orchestrated Restart.

You can configure HA Orchestrated Restarts by simply creating “VM”
Groups. In the example below we created a VM Group called App with the
application VM in there. We have also created a DB group with the
Database VM in there.

P1 \\ HIGH AVAILABILITY

58

Figure 23: Application Group

Figure 24: Database Group

04 // RESTARTING VIRTUAL MACHINES

59

This application has a dependency on the Database VM to be fully
powered-on, so we specified this in a rule as shown in the below
screenshot.

Figure 25: VM to VM Rule Definition

Now one thing to note here is that in terms of dependency, the next
group of VMs in the rule will be powered on when the cluster wide set
“VM Dependency Restart Condition” is met. This is a mandatory rule, also
known as a hard rule. If this is set to “Resources Allocated”, which is the
default, then the VMs will be restarted literally a split second later. Think
about how to set the “VM Dependency Restart Condition” as otherwise
the rule may be useless. Also realize that if the VM Dependency Restart
Condition cannot be met, that the next group of VMs are not restarted.

P1 \\ HIGH AVAILABILITY

60

Figure 26: VM Dependency Restart Condition

For both restart priority and orchestrated restart, it is important to
think about when the next batch should be restarted. vSphere allows
you to configure it in various different ways, take advantage of the
flexibility offered.

It should be noted that HA will not place any VMs on a host if the
required number of agent VMs are not running on the host at the time
placement is done.

Now that we have briefly touched on it, we would also like to address
“restart retries” and parallelization of restarts as that more or less
dictates how long it could take before all VMs of a failed or isolated host
are restarted. Note that the use of Restart Priorities and/or the use of
Orchestrated Restart will impact restart timing, but let’s take a look at
restart retries first before we discuss restarting timing.

04 // RESTARTING VIRTUAL MACHINES

61

Restart Retries
The number of retries is configurable as of vCenter 2.5 U4 with the
advanced option das.maxvmrestartcount. The default value is 5. Note that
the initial restart is included in this number.

HA will try to start the VM on one of your hosts in the affected cluster; if
this is unsuccessful on that host, the restart count will be increased by 1.
Before we go into the exact timeline, let it be clear that T0 is the point at
which the master initiates the first restart attempt. This by itself could be
30 seconds after the VM has failed. The elapsed time between the failure
of the VM and the restart, though, will depend on the scenario of the
failure, which we will discuss in this chapter.

As said, the default number of restarts is 5. There are specific times
associated with each of these attempts. The following bullet list will
clarify this concept. The ‘m’ stands for “minutes” in this list.

▪ T0 – Initial Restart
▪ T2m – Restart retry 1
▪ T6m – Restart retry 2
▪ T14m – Restart retry 3
▪ T30m – Restart retry 4

P1 \\ HIGH AVAILABILITY

62

Figure 27: Restart Retry Timeline

As clearly depicted in the diagram above, a successful power-on attempt
could take up to ~30 minutes in the case where multiple power-on
attempts are unsuccessful. This is, however, not exact science. For

04 // RESTARTING VIRTUAL MACHINES

63

instance, there is a 2-minute waiting period between the initial restart and
the first restart retry. HA will start the 2-minute wait as soon as it has
detected that the initial attempt has failed. So, in reality, T2 could be T2
plus 8 seconds. Another important fact that we want to emphasize is
that there is no coordination between masters, and so if multiple masters
are involved in trying to restart the VM, each will retain their own
sequence. Multiple masters could attempt to restart a VM. Although only
one will succeed, it might change some of the timelines.

What about VMs which are "disabled" for HA or VMs that are powered-
off? What will happen with those VMs? Before vSphere 6.0 those VMs
would be left alone, as of vSphere 6.0 these VMs will be registered on
another host after a failure. This will allow you to easily power-on that
VMs when needed without needed to manually re-register it yourself.
Note, HA will not do a power-on of the VMs, it will just register it for you!
(Note that a bug in vSphere 6.0 U2 prevents this from happening, and you
need vSphere 6.0 U3 for this functionality to work.)

Let’s give an example to clarify the scenario in which a master fails
during a restart sequence:

Cluster: 4 Host (esxi-01, esxi-02, esxi-03, esxi-04)

Master: esxi-01

The host ESXi-02 is running a single VM called VM01 and it fails. The
master, ESXi-01, will try to restart it but the attempt fails. It will try
restarting VM01 up to 5 times but, unfortunately, on the 4th try, the
master also fails. An election occurs and ESXi-03 becomes the new
master. It will now initiate the restart of VM01, and if that restart would
fail it will retry it up to 4 times again for a total including the initial restart
of 5.

Be aware, though, that a successful restart might never occur if the
restart count is reached and all five restart attempts (the default value)
were unsuccessful.

P1 \\ HIGH AVAILABILITY

64

When it comes to restarts, one thing that is very important to realize is
that HA will not issue more than 32 concurrent power-on tasks on a given
host. To make that more clear, let’s use the example of a two host
cluster: if a host fails which contained 33 VMs and all of these had the
same restart priority, 32 power on attempts would be initiated. The 33rd
power on attempt will only be initiated when one of those 32 attempts
has completed regardless of success or failure of one of those attempts.

Note, pre-vSphere 6.5, if there were 31 low-priority VMs to be powered on
and a single high-priority VM, the power on attempt for the low-priority
VMs would be issued at the same time as the power on attempt for the
high priority VM. This has changed with vSphere 6.5 as mentioned earlier,
as now you have the ability to specify when the next batch should be
restarted. By default however this is “resources allocated”, which equals
the pre-vSphere 6.5 behavior.

Configuring restart priority alone of a VM is not a guarantee that the
power on of the VMs will actually be completed in this order. Ensure
proper operational procedures are in place for restarting services or
VMs in the appropriate order in the event of a failure.

Now that we know how VM restart priority and restart retries are handled,
it is time to look at the different scenarios:

▪ Failed host
 Failure of a master
 Failure of a slave

▪ Isolated host and response

Failed Host
When discussing a failed host scenario, it is needed to make a distinction
between the failure of a master versus the failure of a slave. We want to
emphasize this because the time it takes before a restart attempt is
initiated differs between these two scenarios. Although the majority of
you probably won’t notice the time difference, it is important to call out.

04 // RESTARTING VIRTUAL MACHINES

65

Let’s start with the most common failure, that of a host failing, but note
that failures generally occur infrequently. In most environments,
hardware failures are very uncommon to begin with. Just in case it
happens, it doesn’t hurt to understand the process and its associated
timelines.

The Failure of a Slave
The failure of a slave host is a fairly complex scenario. Part of this
complexity comes from the introduction of a new heartbeat mechanism.
Actually, there are two different scenarios: one where heartbeat
datastores are configured and one where heartbeat datastores are not
configured. Keeping in mind that this is an actual failure of the host, the
timeline is as follows:

▪ T0 – Slave failure.
▪ T3s – Master begins monitoring datastore heartbeats for 15

seconds.
▪ T10s – The host is declared unreachable and the master will

ping the management network of the failed host. This is a
continuous ping for 5 seconds.

▪ T15s – If no heartbeat datastores are configured, the host will
be declared dead.

▪ T18s – If heartbeat datastores are configured, the host will be
declared dead.

The master monitors the network heartbeats of a slave. When the slave
fails, these heartbeats will no longer be received by the master. We have
defined this as T0. After 3 seconds (T3s), the master will start monitoring
for datastore heartbeats and it will do this for 15 seconds. On the 10th
second (T10s), when no network or datastore heartbeats have been
detected, the host will be declared as “unreachable”. The master will also
start pinging the management network of the failed host at the 10th
second and it will do so for 5 seconds. If no heartbeat datastores were
configured, the host will be declared “dead” at the 15th second (T15s)
and VM restarts will be initiated by the master. If heartbeat datastores
have been configured, the host will be declared dead at the 18th second

P1 \\ HIGH AVAILABILITY

66

(T18s) and restarts will be initiated. We realize that this can be confusing
and hope the timeline depicted in the diagram below makes it easier to
digest.

Figure 28: Restart Timeline for Slave Failure

The master filters the VMs it thinks failed before initiating restarts. The
master uses the protectedlist for this, on-disk state could be obtained
only by one master at a time since it required opening the protectedlist
file in exclusive mode. If there is a network partition multiple masters

04 // RESTARTING VIRTUAL MACHINES

67

could try to restart the same VM as vCenter Server also provided the
necessary details for a restart. As an example, it could happen that a
master has locked a VM’s home datastore and has access to the
protectedlist while the other master is in contact with vCenter Server and
as such is aware of the current desired protected state. In this scenario,
it could happen that the master which does not own the home datastore
of the VM will restart the VM based on the information provided by
vCenter Server.

This change in behavior was introduced to avoid the scenario where a
restart of a VM would fail due to insufficient resources in the partition
which was responsible for the VM. With this change, there is less chance
of such a situation occurring as the master in the other partition would
be using the information provided by vCenter Server to initiate the
restart. That leaves us with the question of what happens in the case of
the failure of a master.

The Failure of a Master
In the case of a master failure, the process and the associated timeline
are slightly different. The reason being that there needs to be a master
before any restart can be initiated. This means that an election will need
to take place amongst the slaves. The timeline is as follows:

▪ T0 – Master failure
▪ T10s – Master election process initiated
▪ T25s – New master elected and reads the protectedlist
▪ T35s – New master initiates restarts for all VMs on the

protectedlist which are not running

Slaves receive network heartbeats from their master. If the master fails,
let’s define this as T0 (T zero), the slaves detect this when the network
heartbeats cease to be received. As every cluster needs a master, the
slaves will initiate an election at T10s. The election process takes 15s to
complete, which brings us to T25s. At T25s, the new master reads the
protectedlist. This list contains all the VMs, which are protected by HA.
At T35s, the master initiates the restart of all VMs that are protected but

P1 \\ HIGH AVAILABILITY

68

not currently running. The timeline depicted in the diagram below
hopefully clarifies the process.

Figure 29: Restart Timeline for Master Failure

Besides the failure of a host, there is another reason for restarting VMs:
an isolation event.

Isolation Response and Detection
Before we will discuss the timeline and the process around the restart of
VMs after an isolation event, we will discuss Isolation Response and
Isolation Detection.

04 // RESTARTING VIRTUAL MACHINES

69

One of the first decisions that will need to be made when configuring HA
is the “Isolation Response”.

Isolation Response
The Isolation Response (or Host Isolation as it is called in vSphere 6.0)
refers to the action that HA takes for its VMs when the host has lost its
connection with the network and the remaining nodes in the cluster. This
does not necessarily mean that the whole network is down; it could just
be the management network ports of this specific host. Today there are
three isolation responses: “Disabled”, “Power off”, and “Shut down”. In
previous versions (pre vSphere 6.0) there was an isolation response
called "leave powered on", this has been renamed to "disabled" as "leave
powered on" means that there is no response to an isolation event.

Figure 30: Isolation Response Configuration

P1 \\ HIGH AVAILABILITY

70

The isolation response features answers the question, “what should a
host do with the VMs it manages when it detects that it is isolated from
the network?” Let’s discuss these three options more in-depth:

▪ Disabled (default) – When isolation occurs on the host, the state
of the VMs remains unchanged.

▪ Power off and restart VMs– When isolation occurs, all VMs are
powered off. It is a hard stop, or to put it bluntly, the “virtual”
power cable of the VM will be pulled out!

▪ Shut down and restart VMs – When isolation occurs, all VMs
running on the host will be shut down using a guest-initiated
shutdown through VMware Tools. If this is not successful within
5 minutes, a “power off” will be executed. This time out value
can be adjusted by setting the advanced option
das.isolationShutdownTimeout. If VMware Tools is not installed,
a “power off” will be initiated immediately.

This setting can be changed on the cluster settings under the option
“Response for Host Isolation” in the vSphere Client. Note that this differs
from the Web Client, as this used to be located under “VM Options”. It is
also possible to override the default or selected behavior on a per VM
basis. This can be done in the VM Overrides section of the vSphere Client
by selecting the appropriate VMs and then selecting the “Override” option
for Host isolation response and selecting the appropriate isolation
response.

04 // RESTARTING VIRTUAL MACHINES

71

Figure 31: VMs Overrides – Host Isolation Response

The default setting for the isolation response has changed multiple times
over the last couple of years and this has caused some confusion. Below
you can find the what changed with which version.

▪ Up to ESXi3.5 U2 / vCenter 2.5 U2 the default isolation response
was “Power off”

▪ With ESXi3.5 U3 / vCenter 2.5 U3 this was changed to “Leave
powered on”

▪ With vSphere 4.0 it was changed to “Shut down”
▪ With vSphere 5.0 it has been changed to “Leave powered on”
▪ With vSphere 6.0 the "leave powered on" setting is now renamed

to "Disabled"

Keep in mind that these changes are only applicable to newly created
clusters. When creating a new cluster, it may be required to change the
default isolation response based on the configuration of existing clusters
and/or your customer’s requirements, constraints and expectations.
When upgrading an existing cluster, it might be wise to apply the latest
default values. You might wonder why the default has changed once
again. There was a lot of feedback from customers that “Disabled” was
the desired default value.

P1 \\ HIGH AVAILABILITY

72

Before upgrading an environment to later versions, ensure you
validate the best practices and default settings. Document them,
including justification, to ensure all people involved understand your
reasons.

The question remains, which setting should be used? The obvious
answer applies here; it depends. We prefer “Disabled” for traditional
environments because it eliminates the chances of having a false
positive and its associated down time. One of the problems that people
have experienced in the past is that HA triggered its isolation response
when the full management network went down. Resulting in the power
off (or shutdown) of every single VM and none being restarted. This
problem has been mitigated. HA will validate if VMs restarts can be
attempted – there is no reason to incur any down time unless absolutely
necessary. It does this by validating that a master owns the datastore
the VM is stored on. Of course, the isolated host can only validate this if
it has access to the datastores. In a converged network environment with
iSCSI storage, for instance, it would be impossible to validate this during
a full isolation as the validation would fail due to the inaccessible
datastore from the perspective of the isolated host.

We feel that changing the isolation response is most useful in
environments where a failure of the management network is likely
correlated with a failure of the VM network(s). If the failure of the
management network won’t likely correspond with the failure of the VM
networks, isolation response would cause unnecessary downtime as the
VMs can continue to run without management network connectivity to
the host.

A second use for power off/shutdown is in scenarios where the VM
retains access to the VM network but loses access to its storage, leaving
the VM powered-on could result in two VMs on the network with the
same IP address. An example of when this could happen for instance is
with vSAN storage. When vSAN is configured HA leverages the vSAN
network for network heartbeating.

04 // RESTARTING VIRTUAL MACHINES

73

This means that if the HA heartbeat does not function properly, it is very
unlikely that VMs running on that particular host can access the vSAN
datastore. As such for vSAN we always recommend setting the isolation
response to “power off”.

Realizing that many of you are not designing hyper-converged solutions
yet, or are responsible for maintaining a legacy infrastructure let us try to
provide some guidance around when to use which isolation policy.

LIKELYHOOD
THAT HOST

WILL RETAIN
ACCESS TO VM

DATASTORE

LIKELYHOOD
VMS RETAIN

ACCESS TO VM
NETWORK

RECOMMENDED
ISOLATION

POLICY
RATIONALE

Likely Likely Disabled
VM is running fine,

no reason to power it
off

Likely Unlikely Shutdown

Choose shutdown to
allow HA to restart
VMs on hosts that

are not isolated and
hence are likely to

have access to
storage and network

Unlikely Likely Power off

Use Power Off to
avoid having two
instances of the

same VM on the VM
network

Unlikely Unlikely Power off

VM is unavailable,
restart makes most

sense. Clean
shutdown is not

needed as storage is
most likely

inaccessible

Table 3: Isolation Response Decision Guidance

P1 \\ HIGH AVAILABILITY

74

The question that we haven’t answered yet is how HA knows which VMs
have been powered-off due to the triggered isolation response and why
the isolation response is more reliable than with previous versions of HA.
In earlier versions HA did not care and would always try to restart the
VMs according to the last known state of the host. That is no longer the
case. Before the isolation response is triggered, the isolated host will
verify whether a master is responsible for the VM. If, for whatever reason,
all hosts in your cluster are isolated from the HA network then HA will not
trigger the isolation response. As triggering the isolation response at that
time would not lead to an improved situation.

As mentioned earlier, it does this by validating if a master owns the home
datastore of the VM. When isolation response is triggered, the isolated
host removes the VMs which are powered off or shutdown from the
“poweron” file. The master will recognize that the VMs have disappeared
and initiate a restart. On top of that, when the isolation response is
triggered, it will create a per-VM file under a “poweredoff” directory which
indicates for the master that this VM was powered down as a result of a
triggered isolation response. This information will be read by the master
node when it initiates the restart attempt in order to guarantee that only
VMs that were powered off / shut down by HA will be restarted by HA. Of
course, this is only possible when the datastores are still accessible
during the time of failure.

This is, however, only one part of the increased reliability of HA.
Reliability has also been improved with respect to “isolation detection,”
which will be described in the following section.

Isolation Detection
We have explained what the options are to respond to an isolation event
and what happens when the selected response is triggered. However, we
have not extensively discussed how isolation is detected. The
mechanism is fairly straightforward and works with heartbeats, as earlier
explained. There are, however, two scenarios again, and the process and
associated timelines differ for each of them:

04 // RESTARTING VIRTUAL MACHINES

75

▪ Isolation of a slave
▪ Isolation of a master

Before we explain the differences in process between both scenarios, we
want to make sure it is clear that a change in state will result in the
isolation response not being triggered in either scenario. Meaning that if
a single ping is successful or the host observes election traffic and is
elected a master or slave, the isolation response will not be triggered,
which is exactly what you want as avoiding down time is at least as
important as recovering from down time. When a host has declared itself
isolated and observes election traffic it will declare itself no longer
isolated.

Isolation of a Slave
HA triggers a master election process before it will declare a host is
isolated. In the below timeline, “s” refers to seconds.

▪ T0 – Isolation of the host (slave)
▪ T10s – Slave enters “election state”
▪ T25s – Slave elects itself as master
▪ T25s – Slave pings “isolation addresses”
▪ T30s – Slave declares itself isolated
▪ T60s – Slave “triggers” isolation response

Note that the isolation response gets triggered 30 seconds after the host
has been declared isolated. This also means that a restart of the VM will
be “delayed” with 30 seconds. Pre vSphere 5.1 this delay did not exist,
the delay is configurable however through the advanced setting
das.config.fdm.isolationPolicyDelaySec. Note though that the minimum
value is 30 seconds, if a value lower than 30 seconds is configured HA
will still default to 30 seconds.

When the isolation response is triggered HA creates a “power-off” file for
any VM HA powers off whose home datastore is accessible. Next it
powers off the VM (or shuts down) and updates the host’s poweron file.

P1 \\ HIGH AVAILABILITY

76

The power-off file is used to record that HA powered off the VM and so
HA should restart it. These power-off files are deleted when a VM is
powered back on or HA is disabled, the below screenshot shows such a
power-off file, which in this case is stored in a VVol.

Figure 32: Poweroff File

Of course, the creation of the poweroff file and the fact that the host is
declared isolated is also stored in the fdm.log file. Below some example
of what that looks like in the fdm.log file. Note that the example has been
edited/pruned for readability purposes.

Figure 33: Isolation Declared

After the completion of this sequence, the master will learn the slave was
isolated through the “poweron” file as mentioned earlier, and will restart
VMs based on the information provided by the slave.

04 // RESTARTING VIRTUAL MACHINES

77

Figure 34: Restart of VM After Isolation

Isolation of a Master
In the case of the isolation of a master, this timeline is a bit less
complicated because there is no need to go through an election process.
In this timeline, “s” refers to seconds.

▪ T0 – Isolation of the host (master)
▪ T0 – Master pings “isolation addresses”
▪ T5s – Master declares itself isolated
▪ T35s – Master “triggers” isolation response

Additional Checks
Before a host declares itself isolated, it will ping the default isolation
address which is the gateway specified for the management network,
and will continue to ping the address until it becomes unisolated. HA
gives you the option to define one or multiple additional isolation
addresses using an advanced setting. This advanced setting is called
das.isolationaddress and could be used to reduce the chances of having
a false positive. We recommend setting an additional isolation address. If
a secondary management network is configured, this additional address

P1 \\ HIGH AVAILABILITY

78

should be part of the same network as the secondary management
network. If required, you can configure up to 10 additional isolation
addresses. A secondary management network will more than likely be on
a different subnet and it is recommended to specify an additional
isolation address which is part of the subnet.

Figure 35: Isolation Address

Selecting an Additional Isolation Address
A question asked by many people is which address should be specified
for this additional isolation verification. We generally recommend an
isolation address close to the hosts to avoid too many network hops and
an address that would correlate with the liveness of the VM network. In
many cases, the most logical choice is the physical switch to which the
host is directly connected. Basically, use the gateway for whatever
subnet your management network is on. Another usual suspect would be

04 // RESTARTING VIRTUAL MACHINES

79

a router, a virtual interface on the switch or any other reliable and
pingable device on the same subnet. However, when you are using IP-
based shared storage like NFS or iSCSI, the IP-address of the storage
device can also be a good choice.

Select a reliable secondary isolation address. Try to minimize the
number of “hops” between the host and this address.

Isolation Policy Delay
For those who want to increase the time it takes before HA executes the
isolation response an advanced setting is available. Thus setting is
called das.config.fdm.isolationPolicyDelaySec and allows changing the
number of seconds to wait before the isolation policy is executed is. The
minimum value is 30. If set to a value less than 30, the delay will be 30
seconds. We do not recommend changing this advanced setting unless
there is a specific requirement to do so. In almost all scenarios 30
seconds should suffice.

Restarting VMs
The most important procedure has not yet been explained: restarting
VMs. We have dedicated a full section to this concept.
We have explained the difference in behavior from a timing perspective
for restarting VMs in the case of a both master node and slave node
failures. For now, let’s assume that a slave node has failed. When the
master node declares the slave node as Partitioned or Isolated, it
determines which VMs were running on using the information it
previously read from the host’s “poweron” file. These files are
asynchronously read approximately every 30s. If the host was not
Partitioned or Isolated before the failure, the master uses cached data to
determine the VMs that were last running on the host before the failure
occurred.

P1 \\ HIGH AVAILABILITY

80

Before it will initiate the restart attempts, though, the master will first
validate that the VM should be restarted. This validation uses the
protection information vCenter Server provides to each master, or if the
master is not in contact with vCenter Server, the information saved in the
protectedlist files. If the master is not in contact with vCenter Server or
has not locked the file, the VM is filtered out. At this point, all VMs having
a restart priority of “disabled” are also filtered out.

Now that HA knows which VMs it should restart, it is time to decide
where the VMs are placed. HA will take multiple things in to account:

▪ CPU and memory reservation, including the memory overhead of
the VM

▪ Unreserved capacity of the hosts in the cluster
▪ Restart priority of the VM relative to the other VMs that need to

be restarted
▪ Virtual-machine-to-host compatibility set
▪ The number of dvPorts required by a VM and the number

available on the candidate hosts
▪ The maximum number of vCPUs and VMs that can be run on a

given host
▪ Restart latency
▪ Whether the active hosts are running the required number of

agent VMs

Restart latency refers to the amount of time it takes to initiate VM
restarts. This means that VM restarts will be distributed by the master
across multiple hosts to avoid a boot storm, and thus a delay, on a single
host.

If a placement is found, the master will send each target host the set of
VMs it needs to restart. If this list exceeds 32 VMs, HA will limit the
number of concurrent power on attempts to 32 for that particular host. If
a VM successfully powers on, the node on which the VM was powered on
will inform the master of the change in power state. The master will then
remove the VM from the restart list.

04 // RESTARTING VIRTUAL MACHINES

81

If a placement cannot be found, the master will place the VM on a
“pending placement list” and will retry placement of the VM when one of
the following conditions changes:

▪ A new virtual-machine-to-host compatibility list is provided by
vCenter

▪ A host reports that its unreserved capacity has increased
▪ A host (re)joins the cluster (For instance, when a host is taken

out of maintenance mode, a host is added to a cluster, etc.)
▪ A new failure is detected and VMs have to be failed over
▪ A failure occurred when failing over a VM

But what about DRS? Wouldn’t DRS be able to help during the placement
of VMs when all else fails? It does. The master node will report to vCenter
the set of VMs that were not placed due to insufficient resources, as is
the case today. If DRS is enabled, this information will be used in an
attempt to have DRS make capacity available.

VM Component Protection
In vSphere 6.0 a new feature, as part of vSphere HA, was introduced
called VM Component Protection. VM Component Protection (VMCP)
allows you to protect VMs against the failure of your storage system, or
components of the storage system or storage area network. There are
two types of failures VMCP will respond to, those are Permanent Device
Loss (PDL) and All Paths Down (APD). Before we look at some of the
details, we want to point out that enabling VMCP is extremely easy. It can
be enabled in the Failures and Responses section by simply selecting the
response for a PDL and the response for an APD. Note that in the new
vSphere Client the term “VM Component Protection” is not used any
longer, instead we refer to “Datastore with PDL” and “Datastore with
APD” as shown in the below screenshot.

P1 \\ HIGH AVAILABILITY

82

Figure 36: VM Component Protection - PDL

04 // RESTARTING VIRTUAL MACHINES

83

Figure 37: VM Component Protection - APD

As stated there are two scenarios HA can respond to: PDL and APD. Let’s
look at those two scenarios a bit closer. With vSphere 5.0 a feature was
introduced as an advanced option that would allow vSphere HA to restart
VMs impacted by a PDL condition.

A PDL condition is a condition that is communicated by the array
controller to ESXi via a SCSI sense code. This condition indicates that a
device (LUN) has become unavailable and is likely permanently
unavailable. An example scenario in which this condition would be
communicated by the array would be when a LUN is set offline. This
condition is used during a failure scenario to ensure ESXi takes
appropriate action when access to a LUN is revoked. It should be noted
that when a full storage failure occurs it is impossible to generate a PDL
condition as there is no communication possible between the array and
the ESXi host. This state will be identified by the ESXi host as an APD
condition.

P1 \\ HIGH AVAILABILITY

84

Although the (advanced setting) functionality itself worked as advertised,
enabling and managing it was cumbersome and error prone. It was
required to set the option “disk.terminateVMOnPDLDefault” manually. With
vSphere 6.0 a simple option in the Web Client was introduced which
allowed you to specify what the response should be to a PDL sense code.
This is shown in the screenshot below:

Figure 38: Web Client PDL Response

In the vSphere Client (HTML-5) the experience changed slightly. PDL is
no longer spelled out, and the dropdown list has been removed for tick
boxes. The options presented however remain the same.

Figure 39: vSphere Client PDL Response

The three options provided are “Disabled, “Issue Events” and “Power off
and restart VMs”. Note that “Power off and restart VMs” does exactly
that, your VM process is killed and the VM is restarted on a host which
still has access to the storage device.

Pre-vSphere 6.0 it was not possible for vSphere to respond to an APD
scenario. APD is the situation where the storage device has become
inaccessible, but the reason is unknown to ESXi. In most cases, it is
typically related to a storage network problem when this occurs. With

04 // RESTARTING VIRTUAL MACHINES

85

vSphere 5.1 changes were introduced to the way APD scenarios were
handled by the hypervisor. This mechanism is leveraged by HA to allow
for a response.

As explained earlier, an APD condition is a situation where access to the
storage is lost without receiving a SCSI sense code from the array. This
for instance can happen when the network between the host and the
storage system has failed, hence the name “all paths down.” When an
APD condition occurs (access to a device is lost) the hypervisor starts a
timer. After 140 seconds the APD condition is declared and the device is
marked as APD time out. When the 140 seconds has passed, HA will start
a timer. The HA time out is 3 minutes by default. When the 3 minutes has
passed, HA will take the action defined within the UI. There are four
options:

▪ Disabled
▪ Issue Events
▪ Power off and restart VMs – Conservative
▪ Power off and restart VMs – Aggressive

Note that aggressive and conservative refers to the likelihood of HA
being able to restart VMs. When set to “conservative” HA will only restart
the VM that is impacted by the APD if it knows another host can restart
it. In the case of “aggressive” HA will try to restart the VM even if it
doesn’t know the state of the other hosts. This could lead to a situation
where your VM is not restarted when there is no host that has access to
the datastore the VM is located on. Having said that, in a normal
situation HA will always know what the state is. The Conservative and
Aggressive option really only come in to play when there is a network
partition of some kind. It is fair to say that in normal clusters this is fairly
unlikely, in a stretched cluster however this is likely to occur.

P1 \\ HIGH AVAILABILITY

86

Figure 40: vSphere Client APD Response

It is also good to know that if the APD is lifted and access to the storage
is restored during the total of the approximate 5 minutes and 20 seconds
it would take before the VM restart is initiated, that HA will not do
anything unless you explicitly configure it do so. This is where the
“Response recovery” comes in to play as shown in the screenshot above.
If there is a desire to do so you can reset the VM even when the host has
recovered from the APD scenario, during the 3-minute (default value)
grace period. This can be useful in the event where VMs reside in an
unrecoverable state after an APD condition has been declared.

Another useful option is the Response Delay. This setting determines
when HA response to the declared APD state. By default, as already
mentioned, this is set to 3 minutes. Although you can increase or
decrease this delay we recommend leaving this unchanged, unless
there’s a specific reason to change this of course like for instance a
recovery time objective of lower than five minutes as defined in a service
level agreement.

04 // RESTARTING VIRTUAL MACHINES

87

Without access to shared storage a VM becomes useless. It is highly
recommended to configure VMCP to act on a PDL and APD scenario.
We recommend setting both to “power off and restart VMs” but leave
the “response for APD recovery after APD timeout” disabled so that
VMs are not rebooted unnecessarily.

vSphere HA respecting Affinity Rules
Prior to vSphere 5.5, HA did nothing with VM to VM Affinity or Anti
Affinity rules. Typically for people using “affinity” rules this was not an
issue, but those using “anti-affinity” rules did see this as an issue. They
created these rules to ensure specific VMs would never be running on the
same host, but vSphere HA would simply ignore the rule when a failure
had occurred and just place the VMs “randomly”. With vSphere 5.5 this
changed vSphere HA is “anti-affinity” aware and in vSphere 6.0 also VM
to Host affinity aware. In order to ensure anti-affinity rules were
respected you had to set advanced settings or configure in the vSphere
Web Client as of vSphere 6.0 as shown below.

Figure 41: vSphere HA Rule Settings

Now note that this does not mean that when you configure anti-affinity
rules or VM to Host affinity rules and have this configured to “true” and
somehow there aren’t sufficient hosts available to respect these rules
that HA would not restart the VM. It would aim to comply to the rules, but
availability trumps cluster rules in this case and VMs will be restarted.

P1 \\ HIGH AVAILABILITY

88

In vSphere 6.5 to configure this has disappeared completely. The reason
for this is because vSphere HA now tries to respect these rules by
default, as it appeared this is the behavior customers wanted.

Note, that if for whatever reason vSphere HA cannot respect the rules, as
mentioned before, it will restart the VMs (violating the rule) as these are
non-mandatory rules it choses availability over compliancy in this
situation.

If you would like to disable this behavior and don’t care about these rules
during a fail-over event you can set either or both advanced settings:

▪ das.respectVmVmAntiAffinityRules – set to “true” by default, set
to “false” if you want to disable it

▪ das.respectVmHostSoftAffinityRules – set to “true” by default,
set to “false” if you want to disable it

We recommend against changing the default behavior. vSphere HA
will try to conform to the rules, and if needed will violate. We also
recommend using a limited number of rules, we will explain the DRS
section of the book what the potential impact is of a higher number of
rules.

One more thing to note, many people seem to be under the impression
that Affinity, Anti-Affinity and VM-to-Host rules are a DRS function. This
is mainly the result of the name (DRS Rules) the feature had in the past.
However, these are cluster rules and not a DRS function per se. The
functionality can also be used with DRS enabled or licensed, although
that limits usefulness in our opinion.

 89

05
VSAN AND VVOL SPECIFICS

In the last couple of sections, we have discussed the ins and out of HA.
All of it based on VMFS based or NFS based storage. With the
introduction of VMware vSAN and Virtual Volumes also comes changes
to some of the discussed concepts. We’ve already seen that the use of
vSAN potentially changes the design decision around the isolation
response. What else is different for HA when vSAN or VVols are used in
the environment? Let’s take a look at vSAN first.

HA and vSAN
vSAN is VMware’s approach to Software Defined Storage. We are not
going to explain the ins and outs of vSAN, but we do want to provide a
basic understanding for those who have never done anything with it.
vSAN leverages host local storage and creates a shared data store out of
it. If you have an interest in learning more about vSAN after reading this
section of the book, we can highly recommend reading the freely
available vSAN Essentials book by Cormac Hogan and Duncan Epping.
The book can be found here: www.vsan-essentials.com.

http://www.vsan-essentials.com/

P1 \\ HIGH AVAILABILITY

90

Figure 42: vSAN Datastore

vSAN requires a minimum of 3 hosts and each of those 3 hosts will need
to have 1 SSD for caching and 1 capacity device (can be SSD or HDD).
Only the capacity devices will contribute to the total available capacity of
the datastore. If you have 1 TB worth of capacity devices per host then
with three hosts the total size of your datastore will be 3 TB.

Having said that, with vSAN 6.1 VMware introduced a "2-node" option.
This 2-node option is actually two regular vSAN nodes with a third
"witness" node, where the witness node acts as a quorum and does not
run workloads and neither contributes to the capacity of the vSAN
Datastore.

The big differentiator between most storage systems and vSAN is that
availability of the VM’s is defined on a per virtual disk or per VM basis
through policy. This is what vSAN calls “Failures To Tolerate”, and can be
configured to any value between 0 (zero) and 3. When configured to 0
then the VM will have only 1 copy of its virtual disks (objects) that means
that if a host fails where the virtual disks (objects) are stored the VM is
lost. As such all VMs are deployed by default with Failures To Tolerate

05 // VSAN AND VVOL SPECIFICS

91

(FTT) set to 1. A virtual disk is what vSAN refers to as an object. An
object, when FTT is configured as 1 or higher, has multiple components.
In the diagram below we demonstrate the FTT=1 scenario, and the virtual
disk in this case has 2 "data components" and a "witness components".
The witness is used as a "quorum" mechanism. Note that in a two-node
configuration, this witness component would be stored on the Witness
node, always! Node that the situation below shows the simplest of vSAN
policy capabilities. There are also options to increase the stripe size, or
use RAID-5 or RAID-6 or even increase the Failures To Tolerate to 2 or 3,
which would increase the number of components.

Figure 43: vSAN Network RAID

As the diagram above depicts, a VM can be running on the first host in
the cluster while its storage components are on the remaining hosts in
the cluster. Note that the above

P1 \\ HIGH AVAILABILITY

92

As you can imagine from an HA point of view this changes things as
access to the network is not only critical for HA to function correctly but
also for vSAN. When it comes to networking note that when vSAN is
configured in a cluster HA will use the same network for its
communications (heartbeating etc). On top of that, it is good to know
that VMware highly recommends 10GbE to be used for vSAN.

10GbE is highly recommend for vSAN, as vSphere HA also leverages
the vSAN network and availability of VMs is dependent on network
connectivity ensure that at a minimum two 10GbE ports are used and
two physical switches for resiliency.

The reason that HA uses the same network as vSAN is simple, it is too
avoid network partition scenarios where HA communications is
separated from vSAN and the state of the cluster is unclear. Note that
you will need to ensure that there is a pingable isolation address on the
vSAN network and this isolation address will need to be configured as
such through the use of the advanced setting das.isolationAddress0. We
also recommend to disable the use of the default isolation address
through the advanced setting das.useDefaultIsolationAddress (set to
false).

If you leave the isolation address set to the default gateway of the
management network, then HA will use the management network to
verify the isolation. There could be a scenario where only the vSAN
network is isolated, in that particular situation VMs will not be powered
off (or shutdown) when the isolation address is not part of the vSAN
network.

When an isolation does occur the isolation response is triggered as
explained in earlier chapters. For vSAN the recommendation is simple,
configure the isolation response to “Power Off and restarts VMs”. This is
the safest option. vSAN can be compared to the “converged network with
IP based storage” example we provided earlier. It is very easy to reach a
situation where a host is isolated, and all VMs remain running but are
restarted on another host because the connection to the vSAN datastore
is lost.

05 // VSAN AND VVOL SPECIFICS

93

Configure your Isolation Address and your Isolation Policy
accordingly. We recommend selecting “power off” as the Isolation
Policy and selecting a reliable pingable device as the isolation
address.

Folder Structure with vSAN for HA
What about things like heartbeat datastores and the folder structure that
exists on a VMFS datastore, has any of that changed with vSAN. Yes, it
has. First of all, in a “vSAN” only environment the concept of Heartbeat
Datastores is not used at all. The reason for this is straight forward, as
HA and vSAN share the same network it is safe to assume that when the
HA heartbeat is lost because of a network failure so is access to the
vSAN datastore. Only in an environment where there is also traditional
storage the heartbeat datastores will be configured, leveraging those
traditional datastores as a heartbeat datastore. Note that we do not feel
there is a reason to introduce traditional storage just to provide HA this
functionality, HA and vSAN work perfectly fine without heartbeat
datastores. If you however have traditional storage we do recommend
implementing heartbeat datastores as it can help HA with identifying the
type of issue that has occurred.

Normally HA metadata is stored in the root of the datastore, for vSAN
this is different as the metadata is stored in the VM’s namespace object.
The protectedlist is held in memory and updated automatically when
VMs are powered on or off.

Now you may wonder, what happens when there is an isolation? How
does HA know where to start the VM that is impacted? Let’s take a look
at a partition scenario.

P1 \\ HIGH AVAILABILITY

94

Figure 44: vSAN Partition Scenario

In this scenario, there a network problem has caused a cluster partition.
Where a VM is restarted is determined by which partition owns the VM
files. Within a vSAN cluster this is fairly straightforward. There are two
partitions, one of which is running the VM with its VMDK and the other
partition has a VMDK replica and a witness. Guess what happens!? Right,
vSAN uses the witness to verify which partition has quorum and based
on that result, one of the two partitions will win. In this case, Partition 2
has more than 50% of the components of this object and as such is the
winner. This means that the VM will be restarted on either ESXi-03 or
ESXi-04 by HA. Note that the VM in Partition 1 may or may not be
powered off, this depends on whether ESXi-01 and ESXi-02 can
communicate with each other or not. If ESXi-01 and ESXi-02 can
communicate then the VM will not be powered off as the isolation
response it not triggered. If ESXi-01 and ESXi-02 cannot communicate

05 // VSAN AND VVOL SPECIFICS

95

then the isolation response will be triggered and the VM will be powered
off. Note that for the sake of simplicity we simplified the example. For a
detailed understanding of how vSAN components, witnesses and the
quorum mechanism (votes) work we like to refer to the vSAN Essentials
book by Cormac Hogan and Duncan Epping.

One final thing which is different for vSAN is how a partition is handled in
a stretched cluster configuration. In a traditional stretched cluster
configuration, using VMFS/NFS based storage, VMs impacted by an APD
or PDL will be killed by HA through VM Component Protection. With vSAN
this is slightly different. HA VMCP in 6.0 and higher is not supported with
vSAN.

P1 \\ HIGH AVAILABILITY

96

Figure 45: vSAN Stretched Cluster

vSAN has its own mechanism, for now at least. vSAN recognizes when a
VM running on a group of hosts, in the diagram above let’s say Site B, has
no access to any of the components in a stretched cluster. When this is
the case vSAN will simply kill the impacted VM. You can disable this
behavior, although we do not recommend doing this, by setting the
advanced host setting called VSAN.AutoTerminateGhostVm to 0.

05 // VSAN AND VVOL SPECIFICS

97

Heartbeat Datastores, When Can They Help?
We have already briefly discussed this, but we want to reiterate this as it
is a topic, which is skipped and overlooked often. Even in a vSAN
environment Heartbeat Datastores can be useful. Let us first go over an
isolation scenario briefly again and then discuss why the Heartbeat
Datastore could be “useful”. I used quotes here on purpose, as some
might not prefer the behavior when a heartbeat datastore is defined in a
vSAN world.
When is an isolation declared? A host declares itself isolated when:

▪ It is not receiving any communication from the master
▪ It cannot ping the isolation address
▪ It is not receiving any election traffic of any other hosts in the

cluster

If you have not set any advanced settings then the default gateway of the
management network will be the isolation address. Just imagine your
vSAN Network to be isolated on a given host, but for whatever reason the
Management Network is not. In that scenario isolation is not declared,
the host can still ping the isolation address using the management
network vmkernel interface. However, vSphere HA will restart the VMs.
The VMs have lost access to disk, as such the lock on the VMDK is lost.
HA notices the host is gone, which must mean that the VMs are dead as
the locks are lost. It will then try to restart the VMs.

That is when you could find yourself in the situation where the VMs are
running on the isolated host and also somewhere else in the cluster.
Both with the same mac address and the same name / IP address. Not a
good situation to be in when those VMs are still accessible over the VM
network. Although this is not likely, it still is a risk with a relatively high
impact.

This is where the heartbeat datastore could come in handy. If you would
have had datastore heartbeats enabled, and accessible during the failure,
then this would be prevented. The isolated host would simply inform the
master it is isolated through the heartbeat datastore, and it would also

P1 \\ HIGH AVAILABILITY

98

inform the master about the state of the VMs, which in this scenario
would be powered-on. The master would then decide not to restart the
VMs. Do realize that the VMs which are running on the isolated host are
more or less useless as they cannot write to disk anymore. Although the
heartbeat datastore will prevent the VMs from being restarted, and as
such avoid the duplicate mac address and/or IP-address issue, this could
still be considered undesirable as the VMs may be unusable as they
cannot write to disk.

There is no right or wrong in this case. Whether you should or should
not use Heartbeat Datastore entirely depends on your preferred
outcome. As such we recommend testing with and without heartbeat,
and configure based on your preferred outcome.

HA and Virtual Volumes
Let us start with first describing what Virtual Volumes is and what value
it brings to an administrator. Virtual Volumes, or VVols as it is usually
referred too, was developed to make your life (vSphere admin) and that of
the storage administrator easier. This is done by providing a framework
that enables the vSphere administrator to assign policies to VMs or
virtual disks, not unlike vSAN. In these policies capabilities of the storage
array can be defined. These capabilities can be things like snapshotting,
deduplication, raid-level, thin / thick provisioning etc. What is offered to
the vSphere administrator is up to the Storage administrator, and of
course up to what the storage system can offer to begin with. In the
screenshots below, we show an example for instance of some of the
capabilities Nimble exposes through policy.

05 // VSAN AND VVOL SPECIFICS

99

Figure 46: Virtual Volumes Enabling Capabilities

P1 \\ HIGH AVAILABILITY

100

Figure 47: Virtual Volumes Nimble Protection Schedule

When a VM is deployed and a policy is assigned then the storage system
will enable certain functionality of the array based on what was specified
in the policy. So no longer a need to assign capabilities to a LUN, which
holds many VMs, but rather per VM or even per VMDK level control. So
how does this work? Let’s take a look at an architectural diagram first.

05 // VSAN AND VVOL SPECIFICS

101

Figure 48: Virtual Volumes Architecture

The diagram shows a couple of components that are important in the
VVol architecture. Let’s list them out:

▪ Protocol Endpoints aka PE
▪ Virtual Datastore and a Storage Container
▪ Vendor Provider / VASA
▪ Policies
▪ Virtual Volumes

Let’s take a look at all of these three in the above order.

Protocol Endpoints, what are they? Protocol Endpoints are literally the
access point to your storage system. All IO to virtual volumes is proxied
through a Protocol Endpoint and you can have 1 or more of these per
storage system, if your storage system supports having multiple of
course. (Implementations of different vendors will vary.) PEs are
compatible with different protocols (FC, FCoE, iSCSI, NFS) and if you ask
me that whole discussion with Virtual Volumes will come to an end. You
could see a Protocol Endpoint as a “mount point” or a device, and yes,
they will count towards your maximum number of devices per host (1024
as of vSphere 6.7). (Virtual Volumes itself won’t count towards that!)

P1 \\ HIGH AVAILABILITY

102

Next up is the Storage Container. This is the place where you store your
VMs, or better said where your virtual volumes end up. The Storage
Container is a storage system logical construct and is represented within
vSphere as a “virtual datastore”. You need 1 per storage system, but you
can have many when desired. To this Storage Container you can apply
capabilities. If you like your virtual volumes to be able to use array based
snapshots then the storage administrator will need to assign that
capability to the storage container. Note that a storage administrator can
grow a storage container without even informing you. A storage
container isn’t formatted with VMFS or anything like that, so you don’t
need to increase the volume in order to use the space.

But how does vSphere know which container is capable of doing what? In
order to discover a storage container and its capabilities we need to be
able to talk to the storage system first. This is done through the vSphere
APIs for Storage Awareness. You simply point vSphere to the Vendor
Provider and the vendor provider will report to vSphere what’s available,
this includes both the storage containers as well as the capabilities they
possess. Note that a single Vendor Provider can be managing multiple
storage systems which in its turn can have multiple storage containers
with many capabilities. These vendor providers can also come in
different flavors, for some storage systems it is part of their software but
for others it will come as a virtual appliance that sits on top of vSphere.

Now that vSphere knows which systems there are, what containers are
available with which capabilities you can start creating policies. These
policies can be a combination of capabilities and will ultimately be
assigned to VMs or virtual disks even. You can imagine that in some
cases you would like Quality of Service enabled to ensure performance
for a VM while in other cases it isn’t as relevant, but you need to have a
snapshot every hour. All of this is enabled through these policies. No
longer will you be maintaining that spreadsheet with all your LUNs and
which data service were enabled and what not, no you simply assign a
policy. (Yes, a proper naming scheme will be helpful when defining
policies.)

05 // VSAN AND VVOL SPECIFICS

103

When requirements change for a VM you don’t move the VM around, no
you change the policy and the storage system will do what is required in
order to make the VM (and its disks) compliant again with the policy. Not
the VM really, but the VVols.

Okay, those are the basics, now what about Virtual Volumes and vSphere
HA. What changes when you are running Virtual Volumes, what do you
need to keep in mind when running Virtual Volumes when it comes to
HA?

First of all, let me mention this, in some cases storage vendors have
designed a solution where the "vendor provider" isn't designed in an HA
fashion (VMware allows for Active/Active, Active/Standby or just "Active"
as in a single instance). Make sure to validate what kind of
implementation your storage vendor has, as the Vendor Provider needs
to be available when powering on VMs. The following quote explains
why:

“When a Virtual Volume is created, it is not immediately accessible
for IO. To Access Virtual Volumes, vSphere needs to issue a “Bind”
operation to a VASA Provider (VP), which creates IO access point
for a Virtual Volume on a Protocol Endpoint (PE) chosen by a VP. A
single PE can be the IO access point for multiple Virtual Volumes.
“Unbind” Operation will remove this IO access point for a given
Virtual Volume.”

That is the "Virtual Volumes" implementation aspect, but of course things
have also changed from a vSphere HA point of view. No longer do we
have VMFS or NFS datastores to store files on or use for heartbeating.
What changes from that perspective. First of all a VM is carved up in
different VVols:

▪ VM Configuration
▪ VM Disk's
▪ Swap File
▪ Snapshot (if there are any)

P1 \\ HIGH AVAILABILITY

104

Besides these different types of objects, when vSphere HA is enabled
there also is a volume used by vSphere HA and this volume will contain
all the metadata which is normally stored under "/<root of
datastore>/.vSphere-HA/<cluster-specific-directory>/" on regular
VMFS. For each HA Cluster a separate folder will be created in this VVol
as shown in the screenshot below.

Figure 49: Virtual Volumes Folder Structure

All VM related HA files which normally would be under the VM folder, like
for instance the power-on file, heartbeat files and the protectedlist, are
now stored in the VM Configuration VVol object. Conceptually speaking
similar to regular VMFS, implementation wise however completely
different.

Figure 50: Virtual Volumes Object for HA Files

The power-off file however, which is used to indicate that a VM has been
powered-off due to an isolation event, is not stored under the .vSphere-HA
folder any longer, but is stored in the VM config VVol (in the UI exposed
as the VVol VM folder) as shown in the screenshot below. The same
applies for vSAN, where it is now stored in the VM namespace object,
and for traditional storage (NFS or VMFS) it is stored in the VM folder.
This change was made when Virtual Volumes was introduced and done
to keep the experience consistent across storage platforms.

05 // VSAN AND VVOL SPECIFICS

105

Figure 51: Virtual Volumes Location of Poweroff File

And that explains the differences between traditional storage systems
using VMFS / NFS and new storage systems leveraging Virtual Volumes
or even a full vSAN based solution.

P1 \\ HIGH AVAILABILITY

106

 107

06
ADDING RESILIENCY TO HA

In the previous chapter, we extensively covered both Isolation Detection,
which triggers the selected Isolation Response and the impact of a false
positive. The Isolation Response enables HA to restart VMs when “Power
off” or “Shut down” has been selected and the host becomes isolated
from the network. However, this also means that it is possible that,
without proper redundancy, the Isolation Response may be unnecessarily
triggered. This leads to downtime and should be prevented.

To increase resiliency for networking, VMware implemented the concept
of NIC teaming in the hypervisor for both VMkernel and VM networking.
When discussing HA, this is especially important for the Management
Network.

“NIC teaming is the process of grouping together several physical
NICs into one single logical NIC, which can be used for network fault
tolerance and load balancing.”

Using this mechanism, it is possible to add redundancy to the
Management Network to decrease the chances of an isolation event.
This is, of course, also possible for other “Portgroups” but that is not the
topic of this chapter or book. Another option is configuring an additional
Management Network by enabling the “management network” tick box
on another VMkernel port.

P1 \\ HIGH AVAILABILITY

108

A little understood fact is that if there are multiple VMkernel networks on
the same subnet, HA will use all of them for management traffic, even if
only one is specified for management traffic!

Although there are many configurations possible and supported, we
recommend a simple but highly resilient configuration. We have included
the vMotion (VMkernel) network in our example as combining the
Management Network and the vMotion network on a single vSwitch is
the most commonly used configuration and an industry accepted best
practice. Note that we will not go very deep in to the network design
aspect at this stage, there are plenty of other resources that can help
with this. We will also not discuss the use of a Standard vSwitch versus a
Distributed Switch, as that topic does not belong in this book.

Requirements:

▪ 2 physical NICs
▪ VLAN trunking

Recommended:

▪ Minimum of 2 physical switches
▪ If available, enable “link state tracking” to ensure link failures are

reported

The vSwitch should be configured as follows:

▪ vSwitch0: 2 Physical NICs (vmnic0 and vmnic1)
▪ 2 Portgroups (Management Network and vMotion VMkernel)
▪ Management Network active on vmnic0 and standby on vmnic1
▪ vMotion VMkernel active on vmnic1 and standby on vmnic0
▪ Failback set to No

Each portgroup has a VLAN ID assigned and runs dedicated on its own
physical NIC; only in the case of a failure it is switched over to the
standby NIC. We highly recommend setting failback to “No” to avoid
chances of an unwanted isolation event, which can occur when a

06 // ADDING RESILIENCY TO HA

109

physical switch routes no traffic during boot but the ports are reported as
“up”. (NIC Teaming Tab)

Pros: Only 2 NICs in total are needed for the Management Network and
vMotion VMkernel, especially useful in blade server environments. Easy
to configure.

Cons: Just a single active path for heartbeats.

The following diagram depicts this active/standby scenario:

Figure 52: Network Configuration

To increase resiliency, we also recommend implementing the following
advanced settings and using NIC ports on different PCI busses –
preferably NICs of a different make and model. When using a different
make and model, even a driver failure could be mitigated.

P1 \\ HIGH AVAILABILITY

110

Advanced Settings: das.isolationaddressX = <ip-address>
The isolation address setting is discussed in more detail in the section
titled "Fundamental Concepts". In short; it is the IP address that the HA
agent pings to identify if the host is completely isolated from the network
or just not receiving any heartbeats. If multiple VMkernel networks on
different subnets are used, it is recommended to set an isolation address
per network to ensure that each of these will be able to validate isolation
of the host.

Take advantage of some of the basic features vSphere has to offer
like NIC teaming. Combining different physical NICs will increase
overall resiliency of your solution.

Corner Case Scenario: Split-Brain
A split-brain scenario is a scenario where a single VM is powered up
multiple times, typically on two different hosts. This is possible in the
scenario where the isolation response is set to “Disabled” and network
based storage, like NFS / iSCSI and even Virtual SAN, is used. This
situation can occur during a full network isolation, which may result in
the lock on the VM’s VMDK being lost, enabling HA to actually power up
the VM. As the VM was not powered off on its original host (isolation
response set to “Disabled”), it will exist in memory on the isolated host
and in memory with a disk lock on the host that was requested to restart
the VM.

Keep in mind that this truly is a corner case scenario which is very
unlikely to occur in most environments. In case it does happen, HA relies
on the “lost lock detection” mechanism to mitigate this scenario. In short
ESXi detects that the lock on the VMDK has been lost and, when the
datastore becomes accessible again and the lock cannot be reacquired,
issues a question whether the VM should be powered off; HA
automatically answers the question with Yes. However, you will only see
this question if you directly connect to the ESXi host during the failure.
HA will generate an event for this auto-answered question though.
As stated above the question will be auto-answered and the VM will be

06 // ADDING RESILIENCY TO HA

111

powered off to recover from the split-brain scenario. The question still
remains: in the case of an isolation with iSCSI or NFS, should you power
off VMs or leave them powered on?

As just explained, HA will automatically power off your original VM when
it detects a split-brain scenario. This process however is not
instantaneous and as such it is recommended to use the isolation
response of “Power Off” or “Disabled". We also recommend increasing
heartbeat network resiliency to avoid getting in to this situation. We will
discuss the options you have for enhancing Management Network
resiliency in the next chapter.

Link State Tracking
This was already briefly mentioned in the list of recommendations, but
this feature is something we would like to emphasize. We have noticed
that people often forget about this even though many switches offer this
capability, especially in blade server environments.

Link state tracking will mirror the state of an upstream link to a
downstream link. Let’s clarify that with a diagram.

P1 \\ HIGH AVAILABILITY

112

Figure 53: Link State Tracking

The diagram above depicts a scenario where an uplink of a “Core Switch”
has failed. Without Link State Tracking, the connection from the “Edge
Switch” to vmnic0 will be reported as up. With Link State Tracking
enabled, the state of the link on the “Edge Switch” will reflect the state of
the link of the “Core Switch” and as such be marked as “down”. You
might wonder why this is important but think about it for a second. Many
features that vSphere offer rely on networking and so do your VMs. In the
case where the state is not reflected, some functionality might just fail,
for instance network heartbeating could fail if it needs to flow through
the core switch. We call this a ‘black hole’ scenario: the host sends traffic
down a path that it believes is up, but the traffic never reaches its
destination due to the failed upstream link.

Know your network environment, talk to the network administrators
and ensure advanced features like Link State Tracking are used when
possible to increase resiliency.

 113

07
ADMISSION CONTROL

Admission Control is more than likely the most misunderstood concept
vSphere holds today and because of this it is often disabled. However,
Admission Control is a must when availability needs to be guaranteed
and isn’t that the reason for enabling HA in the first place?

What is HA Admission Control about? Why does HA contain this concept
called Admission Control? The “Availability Guide”, a.k.a. the HA bible,
states the following:

“vCenter Server uses admission control to ensure that sufficient
resources are available in a cluster to provide failover protection
and to ensure that VM resource reservations are respected.”

Please read that quote again and especially the first two words. Indeed, it
is vCenter that is responsible for Admission Control, contrary to what
many believe. Although this might seem like a trivial fact it is important
to understand that this implies that Admission Control will not disallow
HA initiated restarts. HA initiated restarts are done on a host level and
not through vCenter.

As said, Admission Control guarantees that capacity is available for an
HA initiated failover by reserving resources within a cluster. It calculates
the capacity required for a failover based on available resources. In other
words, if a host is placed into maintenance mode or disconnected, it is
taken out of the equation. This also implies that if a host has failed or is

P1 \\ HIGH AVAILABILITY

114

not responding but has not been removed from the cluster, it is still
included in the equation. “Available Resources” indicates that the
virtualization overhead has already been subtracted from the total
amount.

To give an example; VMkernel memory is subtracted from the total
amount of memory to obtain the memory available memory for VMs.
There is one gotcha with Admission Control that we want to bring to your
attention before drilling into the different policies. When Admission
Control is enabled, HA will in no way violate availability constraints. This
means that it will always ensure multiple hosts are up and running and
this applies for manual maintenance mode actions and, for instance, to
VMware Distributed Power Management. So, if a host is stuck trying to
enter Maintenance Mode, remember that it might be HA which is not
allowing Maintenance Mode to proceed as it would violate the Admission
Control Policy. In this situation, users can manually vMotion VMs off the
host or temporarily disable admission control to allow the operation to
proceed.

But what if you use something like Distributed Power Management
(DPM), would that place all hosts in standby mode to reduce power
consumption? No, DPM is smart enough to take hosts out of standby
mode to ensure enough resources are available to provide for HA
initiated failovers. If by any chance the resources are not available, HA
will wait for these resources to be made available by DPM and then
attempt the restart of the VMs. In other words, the retry count (5 retries
by default) is not wasted in scenarios like these.

Admission Control Policy
The Admission Control Policy dictates the mechanism that HA uses to
guarantee enough resources are available for an HA initiated failover.
This section gives a general overview of the available Admission Control
Policies. The impact of each policy is described in the following section,
including our recommendation. Admission Control changed in vSphere
6.5 substantially, or at least the user interface changed, and a new form

07 // ADMISSION CONTROL

115

of admission control was introduced. The user interface used to look like
the below screenshot.

Figure 54: Admission Control

As of vSphere 6.5 the UI has changed, it combines two aspects of the
different Admission Control algorithms.

Figure 55: Admission Control Algorithms

Let’s look at the different algorithms first, there are three options
available. Each option has its caveats but also benefits, we do feel
however that for the majority of environments the default Admission
Control policy / algorithm is recommend.

P1 \\ HIGH AVAILABILITY

116

Admission Control Algorithms
Each Admission Control Policy has its own Admission Control algorithm.
Understanding each of these Admission Control algorithms is important
to appreciate the impact each one has on your cluster design. For
instance, setting a reservation on a specific VM can have an impact on
the achieved consolidation ratio. This section will take you on a journey
through the trenches of Admission Control Policies and their respective
mechanisms and algorithms.

Cluster Resource Percentage Algorithm
The Cluster Resource Percentage algorithm used to be an admission
control policy option and was one of the most used admission control
policies. The simple reason for this was that it is the least restrictive and
most flexible. It was also very easy to configure as shown in the
screenshot below, which is what the UI looked like pre-vSphere 6.5.

Figure 56: Percentage Based

The main advantage of the cluster resource percentage algorithm is the
ease of configuration, and flexibility it offered in terms of how resources
were saved for VM restarts. The big change in vSphere 6.5 however is
that there no longer is a need to specify a percentage manually, but you
can now specify how many Host Failures the Cluster should Tolerate as
shows in the below screenshot.

07 // ADMISSION CONTROL

117

Figure 57: Host Failures Cluster Tolerate

When you specify a number of Host Failures this number is then
automatically calculated to a percentage. You can of course override this
if you prefer to manually set the percentage, typically customers would
keep CPU and memory equal. The big benefit of specifying the Host
Failures is that when you add hosts to the cluster the percentage of
resources saved for HA restarts is automatically calculated again and
applied to the cluster, where in the past customers would need to
manually calculate what the new percentage would be and configure
this.
If you configure the percentage manually, and it is configured lower than
a single host failure, this could result in an error message. This error
message will state the following:

“Insufficient configured resources to satisfy the desired vSphere HA
failover level on the cluster.”

P1 \\ HIGH AVAILABILITY

118

Although this is a warning from vSphere HA Admission Control, it does
not stop you from powering on VMs. This warning only indicates that the
percentage reserved is less than that of a single host, which potentially
could lead to VMs not being restarted due to the lack of available
unreserved resources.

So how does the admission control policy work?
First of all, HA will add up all available resources to see how much it has
available (virtualization overhead will be subtracted) in total. Then, HA
will calculate how much resources are currently reserved by adding up all
reservations for memory and for CPU for all powered on VMs.
For those VMs that do not have a reservation, a default of 32 MHz will be
used for CPU and a default of 0 MB + memory overhead will be used for
Memory. (Amount of overhead per configuration type can be found in the
“Understanding Memory Overhead” section of the Resource Management
guide.)

In other words:

((total amount of available resources – total reserved VM

resources)/total amount of available resources) <= (percentage HA

should reserve as spare capacity)

Total reserved VM resources includes the default reservation of 32 MHz
and the memory overhead of the VM. Let’s use a diagram to make it a bit
clearer:

Total cluster resources are 24 GHz (CPU) and 96 GB (MEM). This would
lead to the following calculations:

((24 GHz - (2 GHz + 1 GHz + 32 MHz + 4 GHz)) / 24 GHz) = 69 %

available

((96 GB - (1,1 GB + 114 MB + 626 MB + 3,2 GB)/96 GB= 85 % available

As you can see, the amount of memory differs from the diagram. Even if
a reservation has been set, the amount of memory overhead is added to
the reservation. This example also demonstrates how keeping CPU and

07 // ADMISSION CONTROL

119

memory percentage equal could create an imbalance. Ideally, of course,
the hosts are provisioned in such a way that there is no CPU/memory
imbalance. Experience over the years has proven, unfortunately, that
most environments run out of memory resources first and this might
need to be factored in when calculating the correct value for the
percentage. However, this trend might be changing as memory is getting
cheaper every day.

In order to ensure VMs can always be restarted, Admission Control will
constantly monitor if the policy has been violated or not. Please note that
this Admission Control process is part of vCenter and not of the ESXi
host! When one of the thresholds is reached, memory or CPU, Admission
Control will disallow powering on any additional VMs as that could
potentially impact availability. These thresholds can be monitored on the
HA section of the Cluster’s summary tab.

Figure 58: Admission Control Monitoring

If you have an unbalanced cluster (hosts with different sizes of CPU or
memory resources), your percentage should set manually and be equal or
preferably larger than the percentage of resources provided by the
largest host. This way you ensure that all VMs residing on this host can
be restarted in case of a host failure. Again, there’s a danger to manually
configuring percentages as it may lead to a situation where after

P1 \\ HIGH AVAILABILITY

120

changes in the cluster no sufficient resources are available to restart
VMs. You can also find yourself in a situation where resources might be
fragmented throughout the cluster, especially in larger overbooked
clusters this can happen. Although DRS is notified to rebalance the
cluster, if needed, to accommodate these VMs resource requirements, a
guarantee cannot be given. We recommend selecting the highest restart
priority for this VM (of course, depending on the SLA) to ensure it will be
able to boot.

The following example and diagram will make it more obvious: You have
3 hosts, each with roughly 80% memory usage, and you have configured
HA to reserve 20% of resources for both CPU and memory. A host fails
and all VMs will need to failover. One of those VMs has a 4 GB memory
reservation. As you can imagine, HA will not be able to initiate a power-on
attempt, as there are not enough memory resources available to
guarantee the reserved capacity. Instead an event will get generated
indicating "not enough resources for failover" for this VM.

Although HA will utilize DRS to try to accommodate for the resource
requirements of this VM a guarantee cannot be given. Do the math;
verify that any single host has enough resources to power-on your
largest VM. Also take restart priority into account for this/these
VM(s).

Slot Size Algorithm
The Admission Control algorithm that has been around the longest is the
slot size algorithm, formerly known as the “Host Failures Cluster
Tolerates” policy. It is also historically the least understood Admission
Control Policy due to its complex admission control mechanism.

Similar to the Cluster Resource Percentage algorithm you can specify the
number of Host Failures the Cluster Tolerates in an N-1 fashion. This
means that the number of host failures you can specify in a 64-host
cluster is 63. As mentioned before, this “Host failures cluster tolerates”
also is available when the percentage-based policy is selected.

07 // ADMISSION CONTROL

121

Figure 59: Host Failures Cluster Tolerates

Within the vSphere Client it is possible to specify the slot size algorithm
should be used through the dropdown under “Define host failover
capacity by”.

Figure 60: Slot Policy

P1 \\ HIGH AVAILABILITY

122

When “Slot Policy” is selected the “slots” mechanism is used. The details
of this mechanism have changed several times in the past and it is one
of the most restrictive policies; more than likely, it is also the least
understood.

Slots dictate how many VMs can be powered on before vCenter starts
yelling “Out Of Resources!” Normally, a slot represents one VM.
Admission Control does not limit HA in restarting VMs, it ensures enough
unfragmented resources are available to power on all VMs in the cluster
by preventing “over-commitment”. Technically speaking “over-
commitment” is not the correct terminology as Admission Control
ensures VM reservations can be satisfied and that all VMs’ initial
memory overhead requirements are met. Although we have already
touched on this, it doesn’t hurt repeating it as it is one of those myths
that keeps coming back; HA initiated failovers are not prone to the
Admission Control Policy. Admission Control is done by vCenter. HA
initiated restarts, in a normal scenario, are executed directly on the ESXi
host without the use of vCenter. The corner-case is where HA requests
DRS (DRS is a vCenter task!) to defragment resources but that is beside
the point. Even if resources are low and vCenter would complain, it
couldn’t stop the restart from happening.

Let’s dig in to this concept we have just introduced, slots.

“A slot is defined as a logical representation of the memory and
CPU resources that satisfy the reservation requirements for any
powered-on VM in the cluster.”

In other words, a slot is the worst-case CPU and memory reservation
scenario in a cluster. This directly leads to the first “gotcha”.

HA uses the highest CPU reservation of any given powered-on VM and
the highest memory reservation of any given powered-on VM in the
cluster. If no reservation of higher than 32 MHz is set, HA will use a
default of 32 MHz for CPU. If no memory reservation is set, HA will use a
default of 0 MB + memory overhead for memory. (See the VMware
vSphere Resource Management Guide for more details on memory

07 // ADMISSION CONTROL

123

overhead per VM configuration.) The following example will clarify what
“worst-case” actually means.

Example: If VM01 has 2 GHz of CPU reserved and 1024 MB of memory
reserved and VM02 has 1 GHz of CPU reserved and 2048 MB of memory
reserved the slot size for memory will be 2048 MB (+ its memory
overhead) and the slot size for CPU will be 2 GHz. It is a combination of
the highest reservation of both VMs that leads to the total slot size.
Reservations defined at the Resource Pool level however, will not affect
HA slot size calculations.

Be really careful with reservations, if there’s no need to have them on
a per VM basis; don’t configure them, especially when using host
failures cluster tolerates. If reservations are needed, resort to
resource pool based reservations.

Now that we know the worst-case scenario is always taken into account
when it comes to slot size calculations, we will describe what dictates
the number of available slots per cluster as that ultimately dictates how
many VMs can be powered on in your cluster.

First, we will need to know the slot size for memory and CPU, next we will
divide the total available CPU resources of a host by the CPU slot size
and the total available memory resources of a host by the memory slot
size. This leaves us with a total number of slots for both memory and
CPU for a host. The most restrictive number (worst-case scenario) is the
number of slots for this host. In other words, when you have 25 CPU slots
but only 5 memory slots, the number of available slots for this host will
be 5 as HA always takes the worst-case scenario into account to
“guarantee” all VMs can be powered on in case of a failure or isolation.

The question we receive a lot is how do I know what my slot size is? The
details around slot sizes can be monitored on the HA section of the
Cluster’s Monitor tab by checking the “Advanced Runtime Info” section
when the “Host Failures” Admission Control Policy is configured.

P1 \\ HIGH AVAILABILITY

124

Figure 61: Advanced Runtime Info

As you can imagine, using reservations on a per VM basis can lead to
very conservative consolidation ratios. However, this is something that is
configurable through the vSphere Client. If you have just one VM with a
really high reservation, you can set an explicit slot size by going to “Edit
Cluster Services” and specifying them under the Admission Control
Policy section. In the screenshot above, there is a single VM with a 16 GB
reservation; this skews the number of available slots in the cluster as a
result. As can be seen, only 24 slots are available.

If one of these advanced settings is used, HA will ensure that the VM that
skewed the numbers can be restarted by “assigning” multiple slots to it.
However, when you are low on resources, this could mean that you are
not able to power on the VM with this reservation because resources
may be fragmented throughout the cluster instead of available on a
single host. HA will notify DRS that a power-on attempt was
unsuccessful and a request will be made to defragment the resources to
accommodate the remaining VMs that need to be powered on. In order
for this to be successful DRS will need to be enabled and configured to
fully automated. When not configured to fully automated user action is
required to execute DRS recommendations.

07 // ADMISSION CONTROL

125

The following diagram depicts a scenario where a VM spans multiple
slots:

Figure 62: VM Spanning Multiple Slots

Notice that because the memory slot size has been manually set to 1024
MB, one of the VMs (grouped with dotted lines) spans multiple slots due
to a 4 GB memory reservation. As you might have noticed, none of the
hosts has enough resources available to satisfy the reservation of the
VM that needs to failover. Although in total there are enough resources
available, they are fragmented and HA will not be able to power-on this
particular VM directly but will request DRS to defragment the resources
to accommodate this VM’s resource requirements.

The great thing about the vSphere Client is that after setting the slot size
manually to 1 GB (1024 MB) you can see which VMs require multiple
slots when you click “calculate” followed by “view”. This is demonstrated
in the below screenshots.

P1 \\ HIGH AVAILABILITY

126

Figure 63: Change Memory Slot Size

Figure 64: VMs Requiring Multiple Slots

Admission Control does not take fragmentation of slots into account
when slot sizes are manually defined with advanced settings. It will take
the number of slots this VM will consume into account by subtracting
them from the total number of available slots, but it will not verify the
number of available slots per host to ensure failover. As stated earlier,
though, HA will request DRS to defragment the resources. This is by no
means a guarantee of a successful power-on attempt.

07 // ADMISSION CONTROL

127

Avoid using manually specified slot sizes to increase the total number
of slots as it could lead to more down time and adds an extra layer of
complexity. If there is a large discrepancy in size and reservations, we
recommend using the percentage based admission control policy.

We highly recommend monitoring this section on a regular basis to get a
better understand of your environment and to identify those VMs that
might be problematic to restart in case of a host failure. Also, it is
possible to identify the VMs with a high reservation in the vSphere Client.
You can do this by going to the VM view and adding a column called
“Reservations” as shown in the screenshot below.

Figure 65: Large Memory Reservation

Using the above view, and the additional column, it is quickly determined
that the VMware NSX infrastructure requires reservations, and is
potentially skewing the number of slots. However, after manually
changing the memory slot size to 1024MB, the number of total slots,
used slots and slots available significantly changes as demonstrated in
the screenshot below.

P1 \\ HIGH AVAILABILITY

128

Figure 66: Slots Available Changed

Unbalanced Configurations and Impact on Slot
Calculation
It is an industry best practice to create clusters with similar hardware
configurations. However, many companies started out with a small
VMware cluster when virtualization was first introduced. When the time
has come to expand, chances are fairly large the same hardware
configuration is no longer available. The question is will you add the
newly bought hosts to the same cluster or create a new cluster?

From a DRS perspective, large clusters are preferred as it increases the
load balancing opportunities. However, there is a caveat for DRS as well,
which is described in the DRS section of this book. For HA, there is a big
caveat. When you think about it and understand the internal workings of
HA, more specifically the slot algorithm, you probably already know what
is coming up.

Let’s first define the term “unbalanced cluster.”

An unbalanced cluster would, for instance, be a cluster with 3 hosts of
which one contains substantially more memory than the other hosts in
the cluster.

Let’s try to clarify that with an example.

Example: What would happen to the total number of slots in a cluster of

07 // ADMISSION CONTROL

129

the following specifications? Yes, we know, the below provided example
of host resources is not realistic in this day and age, however it is for
illustrative purposes and makes calculations easier.

▪ Three host cluster
▪ Two hosts have 16 GB of available memory
▪ One host has 32 GB of available memory

The third host is a brand-new host that has just been bought and as
prices of memory dropped immensely the decision was made to buy 32
GB instead of 16 GB.

The cluster contains a VM that has 1 vCPU and 4 GB of memory. A 1024
MB memory reservation has been defined on this VM. As explained
earlier, a reservation will dictate the slot size, which in this case leads to
a memory slot size of 1024 MB + memory overhead. For the sake of
simplicity, we will calculate with 1024 MB. The following diagram depicts
this scenario:

P1 \\ HIGH AVAILABILITY

130

Figure 67: Unbalanced

07 // ADMISSION CONTROL

131

When Admission Control is enabled and the number of host failures has
been selected as the Admission Control Policy, the number of slots will
be calculated per host and the cluster in total. This will result in:

HOST NUMBER OF SLOTS
ESXi-01 16 Slots
ESXi-02 16 Slots
ESXi-03 32 Slots

Table 4: Number of Slots per ESXi Host

As Admission Control is enabled, a worst-case scenario is taken into
account. When a single host failure has been specified, this means that
the host with the largest number of slots will be taken out of the
equation. In other words, for our cluster, this would result in:

ESXi-01 + ESXi-02 = 32 slots available

Although you have doubled the amount of memory in one of your hosts,
you are still stuck with only 32 slots in total. As clearly demonstrated,
there is absolutely no point in buying additional memory for a single host
when your cluster is designed with Admission Control enabled and the
number of host failures has been selected as the Admission Control
Policy.

In our example, the memory slot size happened to be the most restrictive;
however, the same principle applies when CPU slot size is most
restrictive.

When using admission control, balance your clusters and be
conservative with reservations as it leads to decreased consolidation
ratios.

Now, what would happen in the scenario above when the number of
allowed host failures is to 2? In this case ESXi-03 is taken out of the
equation and one of any of the remaining hosts in the cluster is also
taken out, resulting in 16 slots. This makes sense, doesn’t it?

P1 \\ HIGH AVAILABILITY

132

Can you avoid large HA slot sizes due to reservations without resorting to
advanced settings? That’s the question we get almost daily and the
answer is the “Percentage of Cluster Resources Reserved” admission
control mechanism.

Failover Hosts
The third option one could choose is to select one or multiple designated
Failover hosts. This is commonly referred to as a hot standby.

Figure 68: Dedicated Failover Hosts

It is “what you see is what you get”. When you designate hosts as
failover hosts, they will not participate in DRS and you will not be able to
run VMs on these hosts! Not even in a two-host cluster when placing one
of the two in maintenance. These hosts are literally reserved for failover
situations. HA will attempt to use these hosts first to failover the VMs. If,
for whatever reason, this is unsuccessful, it will attempt a failover on any

07 // ADMISSION CONTROL

133

of the other hosts in the cluster. For example, in a when two hosts would
fail, including the hosts designated as failover hosts, HA will still try to
restart the impacted VMs on the host that is left. Although this host was
not a designated failover host, HA will use it to limit downtime.

Figure 69: Configure Failover Host Admission Control Policy

Performance Degradation
The question that then rises is if Admission Control is all about ensuring
VMs can be restarted, but what about the resources available to the VMs
after the restart? Pre-vSphere 6.5 there was no way to guarantee what
the availability of resources would be after a restart. Starting with
vSphere 6.5 we have the option to specify how much performance
degradation can be tolerated as shown in the screenshot below.

Figure 70: Performance Degradation Tolerated

P1 \\ HIGH AVAILABILITY

134

As said, this feature allows you to specify the performance degradation
you are willing to incur if a failure happens. It is set to 100% by default,
but it is our recommendation to consider changed the value. You can for
instance change this to 25% or 50%.

So how does this work? Well first of all, you need DRS enabled as HA
leverages DRS to get the cluster resource usage. But let’s look at an
example:

▪ 75 GB of memory available in 3 node cluster
▪ 1 host failure to tolerate specified
▪ 60 GB of memory actively used by VMs
▪ 0% resource reduction tolerated

This results in the following:
75 GB – 25 GB (1 host worth of memory) = 50 GB

We have 60 GB of memory used, with 0% resource reduction to tolerate
60 GB needed, 50 GB available after failure which means that a warning
is issued to the vSphere admin. Now the vSphere admin can decide what
to do, accept the performance degradation or buy new hosts and add
these to the cluster to ensure the performance for all VMs remain the
same after an HA initiated restart. Of course, in larger environments it
may also be possible to migrate VMs to other clusters in the
environment.

Note that the feature at the time of writing does all calculations based on
a single host failure and the percentage specified applies to both CPU
and memory.

To ensure consistent performance behavior even after a failure we
recommend considering setting Performance Degradation Tolerated to
a different value than 100%. The value should be based on your
infrastructure and service level agreement.

07 // ADMISSION CONTROL

135

Decision Making Time
As with any decision you make, there is an impact to your environment.
This impact could be positive but also, for instance, unexpected. This
especially goes for HA Admission Control. Selecting the right Admission
Control algorithm can lead to a quicker Return On Investment (ROI) and a
lower Total Cost of Ownership (TCO). In the previous section, we described
all the algorithms that form Admission Control and in this section, we will
focus more on the design considerations around selecting the
appropriate Admission Control Policy for your or your customer’s
environment.

The first decision that will need to be made is whether Admission Control
will be enabled. We generally recommend enabling Admission Control as
it is the only way of guaranteeing your VMs will be allowed to restart after
a failure. It is important, though, that the policy is carefully selected and
fits your or your customer’s requirements.

Admission control guarantees enough capacity is available for VM
failover. As such we recommend enabling it.

Although we already have explained all the mechanisms that are being
used by each of the policies in the previous section, we will give a high-
level overview and list all the pros and cons in this section. On top of that,
we will expand on what we feel is the most flexible Admission Control
Policy and how it should be configured and calculated.

Percentage as Cluster Resources Reserved
The percentage based Admission Control is based on per-reservation
calculation. The percentage based Admission Control Policy is less
conservative than the “slot based” algorithm and more flexible than
“Failover Hosts”. It is by far the most used algorithm, and that is for a
good reason in our opinion!

P1 \\ HIGH AVAILABILITY

136

Pros:

▪ Accurate as it considers actual reservation per VM to calculate
available failover resources

▪ Cluster dynamically adjusts when resources are added

Cons:

▪ Unbalanced clusters can be a potential problem when there’s a
discrepancy between memory and CPU resources in different
hosts

Please note that, although a failover cannot be guaranteed, there are few
scenarios where a VM will not be able to restart due to the integration HA
offers with DRS and the fact that most clusters have spare capacity
available to account for VM demand variance. Although this is a corner-
case scenario, it needs to be considered in environments where absolute
guarantees must be provided.

Slot Size Algorithm
This algorithm was historically speaking the most used for Admission
Control. Most environments are designed with an N+1 redundancy and
N+2 is also not uncommon. This Admission Control Policy uses “slots” to
ensure enough capacity is reserved for failover, which is a fairly complex
mechanism. Slots are based on VM-level reservations and if reservations
are not used a default slot size for CPU of 32 MHz is defined and for
memory the largest memory overhead of any given VM is used.

Pros:

▪ Fully automated (When a host is added to a cluster, HA re-
calculates how many slots are available)

▪ Guarantees failover by calculating slot sizes

07 // ADMISSION CONTROL

137

Cons:

▪ Can be very conservative and inflexible when reservations are
used as the largest reservation dictates slot sizes

▪ Unbalanced clusters lead to wastage of resources
▪ Complexity for administrator from calculation perspective

Specify Failover Hosts
With the “Specify Failover Hosts” Admission Control Policy, when one or
multiple hosts fail, HA will attempt to restart all VMs on the designated
failover hosts. The designated failover hosts are essentially “hot
standby” hosts. In other words, DRS will not migrate VMs to these hosts
when resources are scarce or the cluster is imbalanced.

Pros:

▪ What you see is what you get
▪ No fragmented resources

Cons:

▪ What you see is what you get
▪ Dedicated failover hosts not utilized during normal operations

Recommendations
We have been asked many times for our recommendation on Admission
Control and it is difficult to answer as each policy has its pros and cons.
However, we generally recommend the Percentage based Admission
Control Policy. It is the most flexible policy as it uses the actual
reservation per VM instead of taking a “worst case” scenario approach
like the slot policy does.

P1 \\ HIGH AVAILABILITY

138

However, the slot policy guarantees the failover level under all
circumstances. Percentage based is less restrictive, yet offers lower
guarantees that in all scenarios HA will be able to restart all VMs. With
the added level of integration between HA and DRS we believe the
Cluster Resource Percentage Policy will fit most environments.

Do the math and take customer requirements into account. We
recommend using a “percentage” based admission control policy, as it
is the most flexible.

Now that we have recommended which Admission Control Policy to use,
the next step is to provide guidance around selecting the correct
percentage. We cannot tell you what the ideal percentage is as that
totally depends on the size of your cluster and, of course, on your
resiliency model (N+1 vs. N+2). We can, however, provide guidelines
around calculating how much of your resources should be set aside and
how to prevent wasting resources.

Selecting the Right Percentage
Pre-vSphere 6.5 it was required to manually specify the percentage for
both CPU and memory for the Cluster Resource Percentage Policy. It was
a common strategy to select a single host as a percentage of resources
reserved for failover. We generally recommended selecting a percentage
which is the equivalent of a single or multiple hosts. Today the
percentage can be manually specified, or can be automatically calculated
by leveraging “Host failures cluster tolerates”. We highly recommend to
not change the percentage manually if there’s no reason for it. The big
advantage of the automatic calculation is that when new hosts are
added to the cluster, or hosts are removed, HA will automatically adjust
the percentage value for you. When the percentage value is manually
configured then you will need recalculate and re-configure based on the
new outcome of the calculations. If you do end up configuring the
percentage manually, ensure that it is always set to a value equal to, or
larger than, the value of a single host. In other words, in a 4 host cluster,
ensure the percentage is set to 25% or higher.

07 // ADMISSION CONTROL

139

Let’s explain why and what the impact and risk is of manual calculations
and not using the equivalent of a single or multiple hosts.

Let’s start with an example: a cluster exists of 8 ESXi hosts, each
containing 70 GB of available RAM. This might sound like an awkward
memory configuration but to simplify things we have already subtracted
2 GB as virtualization overhead. Although virtualization overhead is
probably less than 2 GB, we have used this number to make calculations
easier. This example zooms in on memory but this concept also applies
to CPU, of course.

For this cluster, we will define the percentage of resources to reserve for
both Memory and CPU to 20%. For memory, this leads to a total cluster
memory capacity of 448 GB:

(70 GB + 70 GB + 70 GB + 70 GB + 70 GB + 70 GB + 70 GB + 70 GB) *

(1 – 20%)

A total of 112 GB of memory is reserved as failover capacity.

Once a percentage is specified, that percentage of resources will be
unavailable for VMs, therefore it makes sense to set the percentage as
close to the value that equals the resources a single (or multiple) host
represents. We will demonstrate why this is important in subsequent
examples.

In the example above, 20% was used to be reserved for resources in an 8-
host cluster. This configuration reserves more resources than a single
host contributes to the cluster. HA’s main objective is to provide
automatic recovery for VMs after a physical server failure. For this
reason, it is recommended to reserve resources equal to a single or
multiple hosts. When using the per-host level granularity in an 8-host
cluster (homogeneous configured hosts), the resource contribution per
host to the cluster is 12.5%. However, the percentage used must be an
integer (whole number). It is recommended to round up to the value
guaranteeing that the full capacity of one host is protected, in this
example, the conservative approach would lead to a percentage of 13%.

P1 \\ HIGH AVAILABILITY

140

Figure 71: Determining the Percentage

07 // ADMISSION CONTROL

141

Aggressive Approach
We have seen many environments where the percentage was set to a
value that was less than the contribution of a single host to the cluster.
Although this approach reduces the amount of resources reserved for
accommodating host failures and results in higher consolidation ratios, it
also offers a lower guarantee that HA will be able to restart all VMs after
a failure. One might argue that this approach will more than likely work
as most environments will not be fully utilized. However, it will result, as
mentioned earlier, in an error message when configured too low and also
does eliminate the guarantee that after a failure all VMs will be
recovered. Wasn’t that the reason for enabling HA in the first place?

Adding Hosts to Your Cluster
Although the percentage is dynamic and calculates capacity at a cluster-
level, changes to your selected percentage might be required when
expanding the cluster. The reason being that the amount of reserved
resources for a fail-over might not correspond with the contribution per
host and as a result lead to resource wastage. For example, adding four
hosts to an eight host cluster and continuing to use the previously
configured admission control policy value of 13% will result in a failover
capacity that is equivalent to 1.5 hosts. The next figure depicts a
scenario where an eight-host cluster is expanded to twelve hosts. Each
host holds eight 2 GHz cores and 70 GB of memory. The cluster was
originally configured with admission control set to 13%, which equals to
109.2 GB and 24.96 GHz. If the requirement is to allow a single host
failure 7.68 GHz and 33.6 GB is “wasted” as clearly demonstrated in the
diagram below.

P1 \\ HIGH AVAILABILITY

142

Figure 72: Adding Hosts

07 // ADMISSION CONTROL

143

Last but not least, we do want to point out the following caveat again
when it comes to Admission Control and how CPU and Memory
resources are calculated:

“The total host resources available for virtual machines is
calculated by adding the hosts' CPU and memory resources.
These amounts are those contained in the host's root resource
pool, not the total physical resources of the host. Resources
being used for virtualization purposes are not included. Only
hosts that are connected, not in maintenance mode, and have
no vSphere HA errors are considered.”

In other words, vSphere HA Admission Control takes the state of a host in
to account when doing its calculations. Be aware that a disconnected
host, a host with an HA error, or a host in maintenance mode, will impact
the available resources to power-on VMs and subsequently the
potentially reserved resources for restarting VMs after a failure.

P1 \\ HIGH AVAILABILITY

144

 145

08
VM AND APPLICATION

MONITORING

VM and Application Monitoring is an often overlooked but really powerful
feature of HA. The reason for this is most likely that it is disabled by
default and relatively new compared to HA. We have tried to gather all
the information we could around VM and Application Monitoring, but it is
a pretty straightforward product that actually does what you expect it
would do.

P1 \\ HIGH AVAILABILITY

146

Figure 73: VM and Application Monitoring

Why Do You Need VM/Application
Monitoring?
VM and Application Monitoring acts on a different level from HA. VM/App
Monitoring responds to a single VM or application failure as opposed to
HA which responds to a host failure. An example of a single VM failure
would, for instance, be the infamous blue screen of death (BSOD). In the
case of App Monitoring the type of failure that triggers a response is
defined by the application developer or administrator.

08 // VM AND APPLICATION MONITORING

147

How Does VM/App Monitoring Work?
VM Monitoring resets individual VMs when needed. VM/App monitoring
uses a heartbeat similar to HA. If heartbeats, and, in this case, VMware
Tools heartbeats, are not received for a specific (and configurable)
amount of time, the VM will be restarted. These heartbeats are monitored
by the HA agent and are not sent over a network, but stay local to the
host.

Figure 74: Monitoring Sensitivity

When enabling VM/App Monitoring, the level of sensitivity can be
configured. The default setting should fit most situations. Low sensitivity
basically means that the number of allowed “missed” heartbeats is
higher and the chances of running into a false positive are lower.
However, if a failure occurs and the sensitivity level is set to Low, the
experienced downtime will be higher. When quick action is required in the
event of a failure, “high sensitivity” can be selected. As expected, this is
the opposite of “low sensitivity”. Of course, within the UI a customer
configuration can also be provided, as shown in the screenshot above.

P1 \\ HIGH AVAILABILITY

148

SENSITIVITY
FAILURE

INTERVAL
MINIMUM
UPTIME

MAX RESETS

MAX
RESETS

TIME
WINDOW

Low
120

Seconds
480 Seconds 3 7 Days

Medium
60

Seconds
240 Seconds 3 24 Hours

High
30

Seconds
120 Seconds 3 1 Hour

Table 5: Level of Sensitivity

It is important to remember that VM Monitoring does not infinitely reboot
VMs unless you specify a custom policy with this requirement. This is to
avoid a problem from repeating. By default, when a VM has been
rebooted three times within an hour, no further attempts will be taken.
Unless the specified time has elapsed.

Although the heartbeat produced by VMware Tools is reliable, VMware
added a further verification mechanism. To avoid false positives, VM
Monitoring also monitors I/O activity of the VM. When heartbeats are not
received AND no disk or network activity has occurred over the last 120
seconds, per default, the VM will be reset. Changing the advanced setting
das.iostatsInterval can modify this 120-second interval.

It is recommended to align the das.iostatsInterval with the failure
interval selected in the VM Monitoring section of vSphere HA within the
Web Client or the vSphere Client.

Align das.iostatsInterval with the failure interval.

Screenshots
One of the most useful features as part of VM Monitoring is the fact that
it takes screenshots of the VM’s console. The screenshots are taken
right before VM Monitoring resets a VM. It is a very useful feature when a

08 // VM AND APPLICATION MONITORING

149

VM “freezes” every once in a while for no apparent reason. This
screenshot can be used to debug the VM operating system when needed,
and is stored in the VM’s working directory as logged in the Events view
on the Monitor tab of the VM.

VM and Application monitoring can substantially increase availability.
It is part of the HA stack and we strongly recommend using it!

VM Monitoring Implementation Details
VM/App Monitoring is implemented as part of the HA agent itself. The
agent uses the “Performance Manager” to monitor disk and network I/O;
VM/App Monitoring uses the “usage” counters for both disk and network
and it requests these counters once enough heartbeats have been
missed that the configured policy is triggered.

As stated before, VM/App Monitoring uses heartbeats just like host-level
HA. The heartbeats are monitored by the HA agent, which is responsible
for the restarts. Of course, this information is also being rolled up into
vCenter, but that is done via the Management Network, not using the VM
network. This is crucial to know as this means that when a VM network
error occurs, the VM heartbeat will still be received. When an error
occurs, HA will trigger a restart of the VM when all three conditions are
met:

▪ No VMware Tools heartbeat received
▪ No network I/O over the last 120 seconds
▪ No storage I/O over the last 120 seconds

Just like with host-level HA, the HA agent works independently of vCenter
when it comes to VM restarts.

Timing
The VM/App monitoring feature monitors the heartbeat(s) issued by a
guest and resets the VM if there is a heartbeat failure that satisfies the

P1 \\ HIGH AVAILABILITY

150

configured policy for the VM. HA can monitor just the heartbeats issued
by the VMware tools process or can monitor these heartbeats plus those
issued by an optional in-guest agent.

If the VM monitoring heartbeats stop at time T-0, the minimum time
before HA will declare a heartbeat failure is in the range of 81 seconds to
119 seconds, whereas for heartbeats issued by an in-guest application
agent, HA will declare a failure in the range of 61 seconds to 89 seconds.
Once a heartbeat failure is declared for application heartbeats, HA will
attempt to reset the VM. However, for VMware tools heartbeats, HA will
first check whether any IO has been issued by the VM for the last 2
minutes (by default) and only if there has been no IO will it issue a reset.
Due to how HOSTD publishes the I/O statistics, this check could delay
the reset by approximately 20 seconds for VMs that were issuing I/O
within approximately 1 minute of T-0.

Timing details: the range depends on when the heartbeats stop relative
to the HOSTD thread that monitors them. For the lower bound of the
VMware tools heartbeats, the heartbeats stop a second before the
HOSTD thread runs, which means, at T+31, the FDM agent on the host
will be notified of a tools yellow state, and then at T+61 of the red state,
which HA reacts to. HA then monitors the heartbeat failure for a
minimum of 30 seconds, leading to the min of T+91. The 30 seconds
monitoring period done by HA can be increased using the
das.failureInterval policy setting. For the upper bound, the FDM is not
notified until T+59s (T=0 the failure occurs, T+29 HOSTD notices it and
starts the heartbeat failure timer, and at T+59 HOSTD reports a yellow
state, and at T+89 reports a red state).

For the heartbeats issued by an in-guest agent, no yellow state is sent, so
the there is no additional 30 seconds period.

Application Monitoring
Application Monitoring is a part of VM Monitoring. Application
Monitoring is a feature that partners and / or customers can leverage to

08 // VM AND APPLICATION MONITORING

151

increase resiliency, as shown in the screenshot below but from an
application point of view rather than from a VM point of view. There is an
SDK available to the general public and it is part of the guest SDK.

Figure 75: Application Monitoring

The Guest SDK is currently primarily used by application developers from
partners like Symantec to develop solutions that increase resilience on a
different level than VM Monitoring and HA. In the case of Veritas, a
simplified version of Veritas Cluster Server (VCS) is used to enable
application availability monitoring, including responding to issues. Note
that this is not a multi-node clustering solution like VCS itself, but a
single node solution.

Veritas ApplicationHA, as it is called, is triggered to get the application up
and running again by restarting it. Veritas ApplicationHA is aware of
dependencies and knows in which order services should be started or
stopped. If, however, this fails for a certain number (configurable option
within ApplicationHA) of times, VMware HA will be requested to take
action. This action will be a restart of the VM.

Although Application Monitoring is relatively new and there are only a
few partners currently exploring the capabilities, in our opinion, it does
add a whole new level of resiliency. Your in-house development team
could leverage functionality offered through the API, or you could use a
solution developed by one of VMware’s partners. We have tested
ApplicationHA by Veritas and personally feel it is the missing link. It

P1 \\ HIGH AVAILABILITY

152

enables you as System Admin to integrate your virtualization layer with
your application layer. It ensures you as a System Admin that services
which are protected are restarted in the correct order and it avoids the
common pitfalls associated with restarts and maintenance. Note that
VMware also introduced an "Application Monitoring" solution which was
based on Hyperic technology, this product however has been deprecated
and as such will not be discussed in this publication.

Application Awareness API
The Application Awareness API is open for everyone. We feel that this is
not the place to do a full deep dive on how to use it, but we do want to
discuss it briefly.

The Application Awareness API allows for anyone to talk to it, including
scripts, which makes the possibilities endless. Currently there are 6
functions defined:

▪ _VMGuestAppMonitor_Enable_()
 Enables Monitoring

▪ _VMGuestAppMonitor_MarkActive_()
 Call every 30 seconds to mark application as active

▪ _VMGuestAppMonitor_Disable_()
 Disable Monitoring

▪ _VMGuestAppMonitor_IsEnabled_()
 Returns status of Monitoring

▪ _VMGuestAppMonitor_GetAppStatus_()
 Returns the current application status recorded for the

application
▪ _VMGuestAppMonitor_Free(_)

 Frees the result of the
VMGuestAppMonitor_GetAppStatus() call

These functions can be used by your development team. However, App
Monitoring also offers a new executable. This allows you to use the
functionality App Monitoring offers without the need to compile a full
binary. This new command, vmware-appmonitoring.exe, takes the

08 // VM AND APPLICATION MONITORING

153

following arguments, which are not coincidentally similar to the
functions:

▪ Enable
▪ Disable
▪ markActive
▪ isEnabled
▪ getAppStatus

When running the command vmware-appmonitor.exe, which can be
found under "VMware-GuestAppMonitorSDK\bin\win32\" the following
output is presented:

Usage: vmware-appmonitor.exe {enable | disable | markActive |

isEnabled | getApp Status}

As shown there are multiple ways of leveraging Application Monitoring
and to enhance resiliency on an application level.

P1 \\ HIGH AVAILABILITY

154

 155

09
VSPHERE HA INTEROPERABILITY

Now that you know how HA works inside out, we want to explain the
different integration points between HA, DRS and Storage DRS.

HA and Storage DRS
vSphere HA informs Storage DRS when a failure has occurred. This to
prevent the relocation of any HA protected VM, meaning, a VM that was
powered on, but which failed, and has not been restarted yet due to their
being insufficient capacity available. Further, Storage DRS is not allowed
to Storage vMotion a VM that is owned by a master other than the one
vCenter Server is talking to. This is because in such a situation, HA would
not be able to reprotect the VM until the master to which vCenter Server
is talking is able to lock the datastore again.

Storage vMotion and HA
If a VM needs to be restarted by HA and the VM is in the process of being
Storage vMotioned and the VM fails, the restart process is not started
until vCenter informs the master that the Storage vMotion task has
completed or has been rolled back. If the source host fails, however, VM
will restart the VM as part of the normal workflow. During a Storage
vMotion, the HA agent on the host on which the Storage vMotion was
initiated masks the failure state of the VM. If, for whatever reason,
vCenter is unavailable, the masking will timeout after 15 minutes to
ensure that the VM will be restarted.

P1 \\ HIGH AVAILABILITY

156

Also note that when a Storage vMotion completes, vCenter will report the
VM as unprotected until the master reports it protected again under the
new path.

HA and DRS
HA integrates on multiple levels with DRS. It is a huge improvement and
it is something that we wanted to stress as it has changed both the
behavior and the reliability of HA.

HA and Resource Fragmentation
When a failover is initiated, HA will first check whether there are
resources available on the destination hosts for the failover. If, for
instance, a particular VM has a very large reservation and the Admission
Control Policy is based on a percentage, for example, it could happen
that resources are fragmented across multiple hosts. (For more details
on this scenario, see Chapter 7.) HA will ask DRS to defragment the
resources to accommodate for this VM’s resource requirements.
Although HA will request a defragmentation of resources, a guarantee
cannot be given. As such, even with this additional integration, you
should still be cautious when it comes to resource fragmentation.

Flattened Shares
When shares have been set custom on a VM an issue can arise when
that VM needs to be restarted. When HA fails over a VM, it will power-on
the VM in the Root Resource Pool. However, the VM’s shares were those
configured by a user for it, and not scaled for it being parented under the
Root Resource pool. This could cause the VM to receive either too many
or too few resources relative to its entitlement.

09 // HA INTEROPERABILITY

157

A scenario where and when this can occur would be the following:

VM01 has a 1000 shares and Resource pool RP-1 has 2000 shares.
However, RP-1 has 2 VMs and both VMs will have 50% of those “2000”
shares. The following diagram depicts this scenario:

Figure 76: Flatten Shares Starting Point

When the host fails, both VM02 and VM03 will end up on the same level
as VM01, the Root Resource Pool. However, as a custom shares value of
10,000 was specified on both VM02 and VM03, they will completely blow
away VM01 in times of contention. This is depicted in the following
diagram:

P1 \\ HIGH AVAILABILITY

158

Figure 77: Flattening of Shares

This situation would persist until the next invocation of DRS would re-
parent the VMs VM02 and VM03 to their original resource pool. To
address this issue HA calculates a flattened share value before the VM’s
is failed-over. This flattening process ensures that the VM will get the
resources it would have received if it had failed over to the correct
resource pool.

This scenario is depicted in the following diagram. Note that both VM02
and VM03 are placed under the Root Resource Pool with a shares value
of 1000.

09 // HA INTEROPERABILITY

159

Figure 78: Flattening of Shares

Of course, when DRS is invoked, both VM02 and VM03 will be re-parented
under RP-1 and will again receive the number of shares they had been
originally assigned.

DPM and HA
If Distributed Power Management (DPM) is enabled and resources are
scarce during an HA failover, HA will use DRS to try to adjust the cluster
(for example, by bringing hosts out of standby mode or migrating VMs to
defragment the cluster resources) so that HA can perform the failovers.

If HA strict Admission Control is enabled (default), DPM will maintain the
necessary level of powered-on capacity to meet the configured HA
failover capacity. HA places a constraint to prevent DPM from powering
down too many ESXi hosts if it would violate the Admission Control
Policy.

P1 \\ HIGH AVAILABILITY

160

When HA admission control is disabled, HA will prevent DPM from
powering off all but one host in the cluster. A minimum of two hosts is
kept up regardless of the resource consumption. The reason this
behavior has changed is that it is impossible to restart VMs when the
only host left in the cluster has just failed.

In a failure scenario, if HA cannot restart some VMs, it asks DRS/DPM to
try to defragment resources or bring hosts out of standby to allow HA
another opportunity to restart the VMs. Another change is that DRS/DPM
will power-on or keep on hosts needed to address cluster constraints,
even if those host are lightly utilized. Once again, in order for this to be
successful DRS will need to be enabled and configured to fully
automated. When not configured to fully automated user action is
required to execute DRS recommendations and allow the restart of VMs
to occur.

Proactive HA
This is not really an integration point, but it is a function of HA which is
not really implemented through HA. Proactive HA was implemented by
the DRS team, and requires DRS, but can be found in the vSphere HA
configuration section.

What does it do? Well in short, it allows you to configure actions for
events that may lead to VM downtime. What does that mean? Well you
can imagine that when a power-supply goes down your host is in a so
called “degraded state”, when this event occurs an evacuation of the host
could be triggered, meaning all VMs will be migrated to any of the
remaining healthy hosts in the cluster.

09 // HA INTEROPERABILITY

161

Figure 79: Proactive HA

How do we know the host is in a degraded state? Well that is where the
Health Provider comes in to play. The health provider reads all the sensor
data and analyze the results and then serve the state of the host up to
vCenter Server. These states are “Healthy”, “Moderate Degration”,
“Severe Degradation” and “Unknown”. (Green, Yellow, Red) When vCenter
is informed DRS can now take action based on the state of the hosts in a
cluster, but also when placing new VMs it can take the state of a host in
to consideration. The actions DRS can take by the way is placing the
host in Maintenance Mode or Quarantine Mode. So, what is this
quarantine mode and what is the difference between Quarantine Mode
and Maintenance Mode?

Maintenance Mode is very straightforward, all VMs will be migrated off
the host. With Quarantine Mode, this is not guaranteed. If for instance
the cluster is overcommitted then it could be that some VMs are left on
the quarantined host. Also, when you have VM-VM rules or VM/Host
rules which would conflict when the VM is migrated then the VM is not

P1 \\ HIGH AVAILABILITY

162

migrated either. Note that quarantined hosts are not considered for
placement of new VMs. It is up to you to decide how strict you want to
be, and this can simply be configured in the UI. Personally I would
recommend setting it to Automated with “Quarantine mode for moderate
and Maintenance mode for sever failure(Mixed)”. This seems to be a
good balance between up time and resource availability. Screenshot
below shows where this can be configured.

Figure 80: Proactive HA Automated Remediation

Proactive HA can respond to different types of failures, at the start of this
section I mentioned power supply, but it can also respond to memory,
network, storage and even a fan failure. Which state this results in
(severe or moderate) is up to the vendor, this logic is built in to the Health
Provider itself. You can imagine that when you have 8 fans in a server
that the failure of one or two fans results in “moderate”, whereas the
failure of for instance 1 out of 2 NICs would result in “severe” as this
leaves a “single point of failure”. Oh, and when it comes to the Health
Provider, this comes with the vendor vCenter Server plugins. This is also

09 // HA INTEROPERABILITY

163

the most complicated part of the configuration of Proactive HA. The
plugin unfortunately isn’t easy to find for all vendors. In some cases
even, a vendor may not support Proactive HA. If a provider has been
installed it should show up in the configuration section of Proactive HA
as shown in the screenshot below.

Figure 81: Proactive HA Provider

P1 \\ HIGH AVAILABILITY

164

 165

10
ADVANCED SETTINGS

There are various types of KB articles and this KB article explains it, but
let me summarize it and simplify it a bit to make it easier to digest.
There are various sorts of advanced settings, but for HA three in
particular:

▪ das.* = Cluster level advanced setting
▪ fdm.* = FDM host level advanced setting
▪ vpxd.* = vCenter level advanced setting

How Do You Configure these Advanced
Settings?
Configuring these is typically straight forward, and most of you hopefully
know this already. If not, let us go over the steps to help configuring
your environment as desired.

Cluster Level
In the vSphere Client:

1. Go to “Hosts and Clusters”
2. Click your cluster object
3. Click the “Configure” tab
4. Click “vSphere Availability”

P1 \\ HIGH AVAILABILITY

166

5. Click “Edit” on “vSphere HA”
6. Click the “Advanced Options” button

FDM Host Level
▪ Open up an SSH session to your host and edit

“/etc/opt/vmware/fdm/fdm.cfg”

vCenter Level
In the vSphere Client:

1. Go to “Hosts and Clusters”
2. Click the appropriate vCenter Server
3. Click the “Configure” tab
4. Click “Advanced Settings” under “Settings”

Most Commonly Used
In this section, we will primarily focus on the ones most commonly used,
a full detailed list can be found in KB 2033250. Please note that each
bullet details the version which supports this advanced setting.

▪ das.maskCleanShutdownEnabled
 Whether the clean shutdown flag will default to false

for an inaccessible and poweredOff VM. Enabling this
option will trigger VM failover if the VM’s home
datastore isn't accessible when it dies or is
intentionally powered off.

▪ das.ignoreInsufficientHbDatastore
 Suppress the host config issue that the number of

heartbeat datastores is less than
das.heartbeatDsPerHost. Default value is “false”. Can
be configured as “true” or “false”.

▪ das.heartbeatDsPerHost
 The number of required heartbeat datastores per host.

https://kb.vmware.com/kb/2033250

10 // ADVANCED SETTINGS

167

The default value is 2; value should be between 2 and
5.

▪ das.isolationaddress[x]
 IP address the ESXi hosts uses to check on isolation

when no heartbeats are received, where [x] = 0 ‐ 9. (see
screenshot below for an example) VMware HA will use
the default gateway as an isolation address and the
provided value as an additional checkpoint. We
recommend adding an isolation address when a
secondary service console is being used for
redundancy purposes.

▪ das.usedefaultisolationaddress
 Value can be “true” or “false” and needs to be set to

false in case the default gateway, which is the default
isolation address, should not or cannot be used for this
purpose. In other words, if the default gateway is a non-
pingable address, set the “das.isolationaddress0” to a
pingable address and disable the usage of the default
gateway by setting this to “false”.

▪ das.isolationShutdownTimeout
 Time in seconds to wait for a VM to become powered

off after initiating a guest shutdown, before forcing a
power off.

▪ das.allowNetwork[x]
 Enables the use of port group names to control the

networks used for VMware HA, where [x] = 0 – ?. You
can set the value to be ʺService Console 2ʺ or
ʺManagement Networkʺ to use (only) the networks
associated with those port group names in the
networking configuration. In 5.5 this option is ignored
when VSAN is enabled by the way!

▪ das.ignoreRedundantNetWarning
 Remove the error icon/message from your vCenter

when you don’t have a redundant Service Console
connection. Default value is “false”, setting it to “true”
will disable the warning. HA must be reconfigured after
setting the option.

P1 \\ HIGH AVAILABILITY

168

▪ das.perHostConcurrentFailoversLimit
 By default, HA will issue up to 32 concurrent VM power-

ons per host. This setting controls the maximum
number of concurrent restarts on a single host. Setting
a larger value will allow more VMs to be restarted
concurrently but will also increase the average latency
to recover as it adds more stress on the hosts and
storage.

We recommend avoiding the use of advanced settings as much as
possible. It typically leads to increased complexity, and when unneeded
can lead to more down time rather than less down time.

P2

VSPHERE DISTRIBUTED RESOURCE
SCHEDULER

 170

 171

11
INTRODUCTION TO VSPHERE DRS

VMware vSphere Distributed Resource Scheduler (DRS) is a resource
management solution for vSphere clusters that allows IT organizations
to deliver optimized performance of application workloads.

The primary goal of DRS is to ensure that workloads receive the
resources they need to run efficiently. DRS determines the current
resource demand of workloads and the current resource availability of
the ESXi host that are grouped into a single vSphere cluster. DRS
provides recommendations throughout the life-cycle of the workload.
From the moment, it is powered-on, to the moment it is powered-down.

DRS operations consist of generating initial placements and load
balancing recommendations based on resource demand, business
policies and energy saving settings. It is able to automatically execute
the initial placement and load balancing operations without any human
interaction, allowing IT-organizations to focus their attention elsewhere.

DRS provides several additional benefits to IT operations:

▪ Day-to-day IT operations are simplified as staff members are
less affected by localized events and dynamic changes in their
environment. Loads on individual virtual machines invariably
change, but automatic resource optimization and relocation of
virtual machines reduce the need for administrators to respond,

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

172

allowing them to focus on the broader, higher-level tasks of
managing their infrastructure.

▪ DRS simplifies the job of handling new applications and adding
new virtual machines. Starting up new virtual machines to run
new applications becomes more of a task of high-level resource
planning and determining overall resource requirements, than
needing to reconfigure and adjust virtual machines settings on
individual ESXi hosts.

▪ DRS simplifies the task of extracting or removing hardware
when it is no longer needed or replacing older host machines
with newer and larger capacity hardware.

DRS simplifies separating of VMs for availability requirements or unite
virtual machines on the same ESXi host machine for increased
performance while maintaining mobility.

We recommend enabling DRS to achieve higher consolidation ratios
and better load balancing.

Requirements
In order for DRS to function correctly, the virtual infrastructure must meet
the following minimum requirements:

▪ VMware ESXi grouped in a cluster
▪ VMware vCenter Server
▪ VMware Enterprise Plus License
▪ Meet vMotion requirements (not mandatory, but highly

recommended)
 Shared datastores accessible by all ESXi hosts inside the

cluster
 Private migration network
 Gigabit ethernet
 Processor compatibility

11 // INTRODUCTION TO DRS

173

For DRS to allow automatic load balancing, vMotion is required. For
initial placement though, vMotion is not a requirement.

We recommend configuring vMotion to fully benefit from the
capabilities of DRS.

 Cluster Level Resource Management
Clusters group the resources of the multiple ESXi hosts and treat them
as a pool of resources. DRS presents the aggregated CPU and memory
resources as one big host to the virtual machines. Abstracting host
resources in a pool structure allows DRS to group, isolate and manage
CPU and memory resources beyond the resources of a single host.

It is probably unnecessary to point out, but a virtual machine cannot
span hosts even when resources are pooled by using DRS. DRS relies on
host-local resource schedulers to allocate physical resources. In addition
to resource pools and resource allocation policies, DRS offers the
following resource management capabilities:

Initial placement: When a virtual machine is powered on in the cluster,
DRS places the virtual machine on a fitting ESXi host or generates a
recommendation depending on the automation level.

Load balancing: DRS distributes virtual machine workloads across the
ESXi hosts inside the cluster. DRS continuously monitors the workload
demand and the cluster resources. DRS compares the results to the ideal
resource distribution and performs or recommends virtual machine
migrations to ensure workloads receive the resources to which they are
entitled, with the goal of maximizing workload performance.

Power management: If Distributed Power Management (DPM) is enabled,
DRS compares cluster-level and host-level capacity to the demand of the
virtual machines, including recent historical demand. It places, or
recommends placing ESXi hosts in standby mode if excess capacity is
detected or it powers on ESXi hosts if more capacity is required.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

174

Host evacuation: DRS can help move VMs to other hosts to put a host
into maintenance mode. Based on the automation level, DRS can perform
the vmotion automatically or provide recommendations for user to
approve. DRS will also retry moving failed to be moved VMs to
accommodate transient vmotion failure or VM misconfiguration.

Cluster maintenance mode: DRS evaluates a set of hosts that can be put
into maintenance mode at the same time to speed up the VMware
Update Manager remediation process. DRS takes HA, Fault Tolerance,
(FT) vMotion compatibility and reservations into account when
determining the number of ESXi hosts eligible for entering maintenance
mode simultaneously. If no constraints are present, cluster maintenance
mode aims for 150% consolidation ratio.

Constraint correction: DRS redistributes virtual machines across ESXi
hosts in the cluster. It moves virtual machines as needed to adhere to
user-defined affinity and anti-affinity rules.

Support for agent virtual machines: Agent virtual machines are virtual
machines that are required to be deployed and active on every host and
belong to solutions that use ESX Agent Manager. DRS and DPM fully
support ESX agents and respect the requirements of the ESX agent
virtual machine. DRS and DPM understand that:

▪ Agent virtual machines do not have to be evacuated for a host
to enter maintenance mode or standby.

▪ Agent virtual machines must be available before virtual
machines can complete migration to or be powered up on a
host.

DRS Cluster Settings
When enabling DRS on the cluster, you select the automation level and
the migration threshold. DRS settings can be modified when the cluster
is in use and without disruption of service. The following high-level steps
show how to create a cluster and enable DRS:

11 // INTRODUCTION TO DRS

175

1. Select Host and Cluster view (Default view)
2. Select Datacenter
3. Right-click on datacenter and select New Cluster

Figure 82: New DRS Cluster

4. Give the new cluster an appropriate name, aligned to your name
convention

5. Select Turn ON DRS
6. Select Automation Level
7. Verify Migration Threshold and if necessary adjust slider
8. It’s recommended to enable EVC

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

176

DRS Automation Levels
Three levels of automation are available, allowing DRS to provide
recommendations for initial placement and load balancing operations.
DRS can operate in manual mode, partially automated mode and fully
automated mode. Allowing the IT operation team to be fully in-control or
allow DRS to operate without the requirement of human interaction.

Figure 83: DRS Automation Level

Manual Automation Level
The manual automation level expects the IT operation team to be in
complete control. DRS generates initial placement and load balancing
recommendations and the IT operation team can choose to ignore the
recommendation or to carry out any recommendations.

If a VM is powered-on in a DRS enabled cluster, DRS presents a list of
mutually exclusive initial placement recommendations for the virtual
machine. If a cluster imbalance is detected during a DRS invocation, DRS
presents a list of recommendations of virtual machine migrations to
improve the cluster balance. With each subsequent DRS invocation, the
state of the cluster is recalculated and a new list of recommendations
could be generated.

11 // INTRODUCTION TO DRS

177

Partially Automated Level
DRS generates initial placement recommendations and executes them
automatically. DRS generates load-balancing operations for the IT
operation teams to review and execute. Please note that the introduction
of a new VM can impact current active workload, which may result in
DRS generating load-balancing recommendations. It is recommended to
review the DRS recommendation list after power-on operations if the DRS
cluster is configured to operate in partially automated mode.

The vSphere cluster summary screen shows the number of the pending
DRS recommendations. This is a click-through function.

Figure 84: DRS Metrics on Cluster Summary Screen

Click on the number listed and the H5 client automatically takes you to
the DRS recommendations screen. These recommendations are
refreshed after each load-balancing calculation (5 minutes interval).

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

178

Figure 85: Pending DRS Recommendations

Click on the apply recommendation located on the bottom right side of
your screen to start a migration operation.

Fully Automated Level
DRS operates autonomous in fully automated level mode and requires no
human interaction. DRS generates initial placement and load balancing
recommendations and executes these automatically. Please note that
the migration threshold setting configures the aggressiveness of load
balancing migrations.

AUTOMATION

LEVEL
INITIAL PLACEMENT LOAD BALANCING

Manual
Recommended host(s)

displayed
Migration recommendation is

displayed
Partially

Automated
Automatic placement

Migration recommendation is
displayed

Fully
Automated

Automatic placement Automatic migration

Table 6: DRS Automation Level Operations

Per-VM Automation Level
DRS allow Per-VM automation level to customize the automation level for
individual VMs to override the cluster’s default automation level. This
allows IT operation teams to benefit from DRS at the cluster level while

11 // INTRODUCTION TO DRS

179

isolating particular VMs. This can be helpful if some virtual machines are
not allowed to move due to licensing or strict performance requirement.

Figure 86: VM Override Options

Please note, that DRS still considers the VM for load balancing
operations, it just doesn’t automatically move them around anymore.

Figure 87: DRS Recommendation of Partially Automated VM

In essence, you create a contract with DRS agreeing that you will be the
one to take action if a recommendation is generated for that particular
VM. Setting the automation level to manual or partially automated does
not exclude it from being considered for load-balancing operations to
solve the imbalance of the cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

180

Please take this into account when you are configuring highly utilized
VMs with a per-VM automation level.

Impact of Automation Levels on Procedures
When the manual or partially automated automation level is selected, it is
expected that the user manually applies the recommendations generated
by DRS. Please note that DRS reviews the state of the cluster at an
interval of five minutes and publishes recommendations to solve any
calculated imbalance of the cluster. Consequently, administrators should
check the recommendations after each DRS invocation to resolve the
cluster imbalance. Besides inefficiency, it is possible that DRS rules may
be violated if the administrators apply the recommendations
infrequently. DRS rules are explained in section “Rules” of chapter 15.

The automation level of the cluster can be changed without disrupting
virtual machines. It is easy to change, so why not try Fully automated for
a while to get comfortable with it?

Initial Placement
Initial placement occurs when a VM is powered on or resumed. The initial
placement engine in vSphere 6.7 is renewed and is much more efficient
than the previous version.

vSphere 6.5 is equipped with the new initial placement engine, similar
to one in 6.7. However, it did not support vSphere HA. As a result, only
a vSphere cluster with DRS enabled and HA disabled benefitted from
the new engine. If HA was enabled in 6.5, DRS would revert to the old
initial placement engine. In.6.7 this engine supports HA and is now
available for all workloads, and not only clusters who run workloads
that ensure availability by leveraging in-app services.

11 // INTRODUCTION TO DRS

181

Old Initial Placement Behavior
DRS took a snapshot of the cluster state to generate a host
recommendation for VM initial placement. A snapshot is an overview of
all the active ESXi hosts and their current utilization. During a batch
power-on operation of multiple VMs, DRS uses the same snapshot for
initial placement recommendations. That means that if you want to
power-on 64 VMs at once, it will use the same utilization statistics
reported in the snapshot. For example, if ESXi host 1 is empty, VM01 is
placed on that host. The same logic is applied to VM64 as well, host 1 is
empty, thus place VM64 on host 1. As a result, DRS placed most of all
VMs on the same host. In reality host 1 is already loaded with 63 other
VMs.

Another problem with the old algorithm is the time it takes to power-on a
group of VMs. Sometimes it could take more than a minute to power-on
the VM. In modern times with containers sharing the infrastructure
alongside the VMs, this power-on latency is not desirable. Especially
when you design your environment to use instant clones. On average the
old algorithm took 4 seconds to 1 minute to complete a VM power-on
operation, the new algorithm completes the power-on operations within
10 seconds.

vSphere 6.7 Initial Placement Behavior
In vSphere 6.7, the algorithm completely avoids snapshotting. It keeps
the host load up to date when a VM is placed. This result in a far more
accurate view for DRS. VMs are placed on an ESXi host that can deliver
the resources from the get-go, it does not have to wait for the load-
balancing algorithm to run before it can be moved to an ESXi host that
can provide the resources the VM demands.

The performance engineering team ran a test comparing the initial
placements engines. The test powered on 64 VMs simultaneously on 4
ESXi host cluster. The results are covered in the table below:

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

182

 HOST 1 HOST 2 HOST 3 HOST 4

OId Algorithm 11 53 0 0
6.7 Algorithm 16 16 16 16

Table 7: VM Distribution by Initial Placement Algorithm

Virtual Machine Performance Modelling
Due to the lack of historical performance data, DRS will assume that the
VM is 100% busy and will select an ESXi host that can run the VM. During
initial placement, DRS will take the current demand for the VMs and the
capacity of each host into account.
If the cluster is configured with the automation level set to manual, DRS
creates a prioritized list of recommended hosts for VM placement. This
list is presented to the user to help select an appropriate host.

Please note that, due to this performance model the DRS
aggressiveness, defined by the DRS migration threshold, has no effect
on Initial Placement.

vCenter Sizing
In previous editions of the book, we recommended to take the impact of
the resource utilization by the DRS threads on vCenter Server into
account when sizing the vCenter server and designing the cluster
environment. It still is important to realize that running DRS is not free,
but the DRS redesign reduced the resource utilization dramatically.
Comparing the memory consumption of DRS managing large clusters,
6.7 DRS consumes 3 times less memory than 6.0, which already provided
a big improvement over 5.5.

Carefully select the appropriate size of your VCSA during deployment ,
the VCSA deployment process assists you in selecting the size that is
suitable for your vSphere environment.

11 // INTRODUCTION TO DRS

183

DEPLOYMENT
SIZE

NUMBER OF
HOSTS

NUMBER OF
VMS

CPUS USED
BY

APPLIANCE

MEMORY
USED BY

APPLIANCE
Tiny 10 100 2 10 GB

Small 100 1.000 4 16 GB
Medium 400 4.000 8 24 GB

Large 1.000 10.000 16 32 GB
X-Large 2.000 35.000 24 48 GB

Table 8: VCSA Deployment Size

This overview provides you a proper guideline for your deployment size,
however it does not take into account how these hosts are grouped
within the virtual infrastructure. vCenter creates and runs a single DRS
thread per cluster and it can increase the overall memory consumption if
you run a high number of vSphere clusters. It is recommended to use the
vSphere Appliance Management Interface (VAMI) to monitor the CPU and
memory consumption of vCenter. Log into vCenter using port 5480. For
example: https://vcsa67.lab.homedc.nl:5480/ and go the monitor tab.
You can monitor resource utilization on an hourly, daily, weekly, monthly,
quarterly, and yearly basis.

Figure 88: VCSA Last Quarter Memory Utilization View

https://vcsa67.lab.homedc.nl:5480/

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

184

DRS Thread per Cluster
vCenter creates and runs a single DRS thread per cluster. The DRS thread
communicates with the management agent (VPXA) on each ESXi host
inside the cluster.

Figure 89: DRS Components

The vCenter agent (VPXA) runs inside each ESXi host in the cluster and
enables a two-way communication between the ESXi host and vCenter.
VPXA keeps the status of both ESXi and VMs in sync with the status
shown in vCenter.

The VPXA sends information when a VM power state changes or when a
VM is migrated with vMotion. Periodically, the VPXA sends additional
notification and statistics to the vCenter server. DRS sends messages to
the ESXi host, such as proposed migrations and information requests.

Prior to 6.7, DRS would process the statistics of all the VPXA’s and
distribute new resource targets to the VPXAs. The distribution of the new

11 // INTRODUCTION TO DRS

185

resource targets would happen around the same time as the load-
balancing operation, every 5 minutes. In 6.7 the process of dividing host
resources amongst the active VMs and the subsequent distribution of
resource targets happens every 60 seconds now and runs separately
from the load balancing operation. This allows DRS to react much faster
to sudden VM demand change.

DRS 6.7 still runs the load-balancing algorithm each 5 minutes. This
thread calculates the imbalance of the cluster, applies resource settings
and, if needed, generates migration recommendations. If an ESXi host is
added or removed (maintenance mode included) a load-balancing
operation is triggered.

DRS does not immediately trigger a resource target allocation process
(sometimes referred to as resource divvy) when a VM is powered on or
off. Similarly when a VM configuration is changed, DRS will take these
changes into account during the next periodic Load Balancing or
resource target allocation process.

Separate VDI Workloads From VSI Workloads
In large environments, we recommend separating VDI workloads and
server workloads and assigning different clusters to each workload to
reduce the number of DRS invocations. By isolating server workloads
from VDI workloads, only the VDI clusters experience increased DRS
invocations, reducing overall overhead, complexity and the number of
calculations performed by DRS.

Separate VDI workloads and server workloads and assign different
clusters to each workload to reduce the DRS invocations.

Cluster Sizing
The general guideline is that the more hosts you have in the cluster, the
more opportunities DRS has to place the virtual machines. The maximum
number of hosts supported in vSphere 6.7 for a DRS cluster is 64. Each

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

186

cluster is able to contain 8000 VMs, with a maximum of 25.000 powered-
on VMs per vCenter. It is expected that DRS will not be the limiting factor
when designing cluster configurations. However, the following can
impact DRS cluster and virtual machine sizing:

Size of host versus the maximum number of virtual machines in a
cluster: In vSphere 6.7, the maximum number of VMs inside a cluster is
8000, with the current maximum of 64 hosts per cluster, you can run up
to 125 VMs per host on average. Please take the maximums into
considerations when researching scale-up versus scale out cluster
configurations.

The number of virtual machines versus the number of LUNs required:
vSphere 6.7 allows up to 1024 volumes connected to an ESXi host. DRS
only considers hosts compatible for virtual machine migration if hosts
are connected to the same VMFS datastore. Consistent VMFS datastore
connectivity across all hosts in the DRS cluster is regarded as a best
practice. If more than 1024 datastores need to be connected, consider
using multiple DRS clusters and size them accordingly.

Hardware configuration – Heterogeneous or Homogeneous:
Heterogeneous host configurations can impact the effectiveness of DRS.
DRS will not migrate VMs if the physical configuration cannot host the
VMs. By leveraging EVC, multiple hardware configurations can exist
within a DRS cluster and allow older hardware configurations to be mixed
with new hardware configurations. Although we recommend enabling
EVC, we advise you to refrain from combining hardware configurations
that are too different.

For example, vSphere 6.7 and up allows up to 128 vCPUs and 6128 GB of
memory to be assigned to a virtual machine, and we expect to see an
increase in the number of larger virtual machines within the virtual
infrastructure. Larger virtual machines such as 48 or 64 vCPU virtual
machines cannot be hosted on a system containing two Octa Core CPUs.
Keep your platform in sync with the demands of the applications, but
figure out whether you want to have these diverse systems into a single
cluster.

11 // INTRODUCTION TO DRS

187

Supporting Technology
DRS leverages vMotion to live migrate workloads between hosts, to get
the mobility of workloads it is important to review your vMotion
configuration and the Enhanced vMotion Compatibilities options of your
cluster.

vMotion
vMotion is probably the best example of an industry-changing feature.
When virtualization was first introduced, it was all about flexibility and
mobility of virtual machines. However, portability and flexibility was
somewhat limited based on the power state of the virtual machine.
VMware changed the world of IT by introducing vMotion.

The vMotion configuration of your vSphere cluster indirectly impacts the
resource allocation of your VMs. DRS calculates how fast it can transfer
a VM from the source host to the destination host during the load-
balancing process. It calculates how many VMs it can transfer within a
single load balancing operation. It adjusts its recommendation based on
these numbers. That means that if DRS cannot move VMS fast enough,
or cannot move the desired VMs to achieve the best load balance, DRS
will reduce the number of recommendations. All based on the fact how
many migrations it can fit within the 5-minute window (the time between
two load balancing operations). Thus, the bigger and better the pipeline
between hosts, the more data can flow, i.e. the more migrations that can
occur, the higher the number of movements DRS can generate to get the
VMs on hosts that CAN deliver the desired resources.

Multi-NIC vMotion
With this in mind, we recommend multi-nic vMotion almost all of the
time. Multi-NIC vMotion uses multiple vmknics that allows ESXi to load
balance vMotion migration(s) across the available bandwidth. Even if
there is one migration recommended, ESXi will leverage both vmknics,

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

188

and thus different uplinks to migrate the VM to a new host. Doubling the
bandwidth typically cuts the time required to migrate the VMs roughly in
half, and thereby allowing DRS to generate more migrations to achieve
load utilization balance within the cluster. Regardless of the number of
vMotion enabled vmknics or uplinks, the total number of concurrent
vMotions is 8 per host.

Although the number of concurrent vMotions hasn't changed for a while,
please note that the vMotion performance increases as additional
network bandwidth is made available to the vMotion network. While
10GbE is becoming the standard, a lot of organizations are looking at 25
GbE or 40 GbE networks.

10/25/40GbE vMotion Network
vSphere 6.0 introduced the vMotion stream architecture. During the
vMotion process, vMotion creates stream channels (TCP/IP connection)
between the source and designation host based on the available
vmknics. By default a single vMotion stream channel pair is created per
vMotion-enabled vmknic. One vMotion stream to prepare the data, one
vMotion stream to transmit the data.

 A single vMotion stream channel is capable of achieving line rate on
10GbE, to be more precise, running a vMotion worker on an average CPU
core allows you to get 18 gigabits per second.

It is recommended to have at least two to three vMotion enabled vmknics
on a 25/40GbE vMotion NIC to achieve full line rate.

NUMBER OF

VMOTION
VMKNICS

NUMBER OF 25
GBE NICS

THROUGHPUT
NUMBER OF 40

GBE NICS

1 1 18 Gb per second 1
2 N/A 28 Gb per second 1
3 N/A 36 Gb per second 1

Table 9: vmknics per Physical NIC Configuration

11 // INTRODUCTION TO DRS

189

As you noticed, the increase of throughput is not linear, due to
scheduling and other various overheads. Source: VMware KB 2108824

CPU Consumption of vMotion Process
ESXi reserves CPU resources on both the destination and the source host
to ensure vMotion can consume the available bandwidth. ESXi only takes
the number of vMotion NICs, and their respective speed into account, the
number of vMotion operations does not affect the total of CPU resources
reserved! 10% of a CPU core for a 1GbE NIC, 100% of a CPU core for a 10
GbE NIC. vMotion is configured with a minimum reservation of 30%.
Therefore if you have 1GbE NIC configured for vMotion, it reserves at
least 30% of a single core.

vSphere 6.5 introduced encrypted vMotion and encrypts vMotion traffic if
the destination and source host are capable of supporting encrypted
vMotion, if this is the case, vMotion traffic consumes even more CPU
cycles on both the source and destination host.

Encrypted vMotion
As mentioned, vSphere 6.5 introduced encrypted vMotion and by doing
so it also introduced a new stream channel architecture. When an
encrypted vMotion process is started, three stream channels are created.
Prepare, Encrypt and Transmit. The encryption and decryption process
consumes CPU cycles and to reduce the overhead as much as possible,
the encrypted vMotion process uses the AES-NI Instruction set of the
physical CPU. AES-NI stands for Advanced Encryption Standard- New
Instruction and was introduced in the Intel Westmere-EP generation
(2010) and AMD Bulldozer (2011). It’s safe to say that most data centers
run on AES-NI equipped CPUs. However, if the source or destination host
is not equipped with AES-NI, vMotion automatically reverts back to
unencrypted if the default setting is selected.

Although the encrypted vMotion leverages special CPU hardware
instructions set to offload overhead, it does increase the CPU utilization.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

190

The technical paper “VMware vSphere Encrypted vMotion Architecture,
Performance, and Best Practices” published by VMware list the overhead
on the source and destination host.

Figure 90: Encrypted vMotion CPU Overhead on the Source Host

Figure 91: Encrypted vMotion CPU Overhead on the Destination Host

Encrypted vMotion is a per-VM setting, by default every VM is configured
with Encrypted vMotion set to Opportunistic. The three settings are:

11 // INTRODUCTION TO DRS

191

Figure 92: VM Options Encrypted vMotion

SETTING BEHAVIOR
Disabled Does not use encrypted vMotion

Opportunistic
Use encrypted vMotion if source and destination host supports it.

Only vSphere 6.5 and later use encrypted vMotion

Required
Only allow encrypted vMotion. If the source and destination host
does not support encrypted vMotion, migration with vMotion is

not allowed

Table 10: Per-VM Encrypted vMotion Settings and Behavior

Please be aware that encrypted vMotion settings are transparent to DRS.
DRS generates a load balancing migration and when the vMotion process
starts, the vMotion process verifies the requirements. Due to the
transparency, DRS does not take encrypted vMotion settings and host
compatibility into account when generating a recommendation.

This is important to understand if you are running a heterogeneous
cluster with various vSphere versions, or different types of CPU
generations. Please make sure the BIOS version supports AES-NI and
make sure AES-NI is enabled in the BIOS. Also, verify if the applied
Enhanced vMotion Compatibility (EVC) baseline exposes AES-NI.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

192

CPU Headroom
It is important to keep some unreserved and unallocated CPU resources
of the ESXi host available for the vMotion process, to avoid creating
gridlock. DRS needs some resources to run its threads, and vMotion
requires resources to move VMs to lesser utilized ESXi host.

Enhanced vMotion Capability

The CPU on the source and destination host must come from the same
vendor class to be compatible for vMotion. Enhanced vMotion
Compatibility (EVC) makes a common CPU feature set between the CPUs
available through the use of a baseline. EVC is complementary to the
popular building block architecture and allows customers to scale out
clusters with various server generations while maintaining a form of
standardization. EVC also helps to complete full cluster upgrades with no
downtime to any virtual machines. Add the new hosts to the cluster,
migrate the VMs and retire the old ones if necessary.

How Does EVC Work?
EVC allows for vMotion between different CPU generations through the
use of Intel Flex Migration and AMD-V Extended Migration technologies.
EVC leverages a defined baseline that allows all the hosts in the cluster
to advertise the same CPU feature set. The EVC baseline does not
disable the features within a CPU but indicates to a virtual machine that
specific features are not available.

Please note that CPU clock speed, cache size, and the number of
cores are not included in EVC baselines, they are not masked in any
way shape or form! EVC only focuses on CPU features specific to CPU
generations, such as SIMD (SSE) or AMD-now instructions. EVC
masks these CPU features. This means that the features are still
available and active, but they are not visible to the software running
inside the VM.

11 // INTRODUCTION TO DRS

193

When enabling EVC, a CPU baseline must be selected. This baseline
represents a feature set of the chosen CPU generation and exposes
specific CPU generation features. When a VM powers-on within an EVC
cluster, this cluster’s baseline will be attached to the virtual machine until
it powers-off.

AMD EVC MODES INTEL EVC MODES

AMD Opteron Generation 1 (Rev. E)
Intel "Merom" Generation (Intel Xeon

Core 2)

AMD Opteron Generation 2 (Rev. F)
Intel "Penryn" Generation (Intel Xeon

45nm Core2)
AMD Opteron Generation 3

(Greyhound)
Intel "Nehalem" Generation (Intel Xeon

Core i7)
AMD Opteron Generation 3 (no

3Dnow!) (Greyhound)
Intel "Westmere" Generation (Intel Xeon

32nm Core i7) *
AMD Opteron Generation 4 (Bulldozer)

*
Intel "Sandy Bridge" Generation

AMD Opteron "Piledriver" Generation Intel "Ivy Bridge" Generation
AMD Opteron "Steamroller" Generation Intel "Haswell" Generation

AMD "Zen" Generation Intel "Broadwell" Generation
 Intel "Skylake" Generation

Table 11: Supported EVC Modes in ESXi 6.7

* EVC baseline that introduces AES-NI (see encrypted vMotion)

The EVC baseline is attached to the virtual machine until it powers off
even if it is migrated to another EVC cluster.

EVC is set at the cluster level, go to the vSphere cluster and select the
configure tab. A VMware EVC option is listed inside the configuration
tree. One simple but fantastic feature is the EVC Compatibility checker in
the UI. If you select a baseline, the compatibility checker immediately
lists the ESXi hosts that are not compatible in the cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

194

Figure 93: EVC Compatibility Check

Will EVC Impact Application Performance?
Keep in mind that enabling EVC may impact the performance of
applications specifically written to benefit from these special
instructions masked by EVC. As mentioned before, but never stressed
enough, EVC does not affect the number of instructions per second, the
number of available cores, hardware acceleration, caching or other CPU
features that most software uses.

If your application uses the particular instruction sets such as AVX, it is
recommended to test your application with and without EVC baseline
attached and determine whether infrastructure scalability and
operational simplicity are less or more important than the increase of
performance of the instruction set.

11 // INTRODUCTION TO DRS

195

If your application is not designed to leverage particular CPU instruction
sets, it's highly unlikely to experience performance degradation. But with
anything in IT, do not guess! It’s important to test, establish a baseline,
and make data-driven decisions before enabling a feature.

Enabling and Disabling EVC
EVC can be enabled even when VMs are active. Powered-on virtual
machines will not block configuration of EVC for a cluster as long as the
VM itself is compatible with the desired EVC mode.

If EVC is disabled, the VMs continue to operate at the same EVC mode
and are not forced to restart. If complete removal of the EVC mode is
required, the VM must go through a full power-cycle; a reboot is not
sufficient.

If EVC is disabled on a cluster containing FT-enabled VMs, their DRS
automation settings are changed to Disabled and DRS will be unable to
migrate the primary and secondary during load-balancing and
maintenance mode operations. If EVC is enabled again, these VMs will
once again receive the default cluster DRS automation level.

Power Off VM Instead of Reboot
It is important to remember that EVC baselines are applied only during
power-on operations. If the EVC cluster mode is changed, existing VM are
required to complete a full power-cycle to receive the new baseline. A VM
continues to run if the EVC mode is increased, for example from Intel "Ivy

Bridge" generation to Intel "Skylake" generation, but will operate with the
knowledge of the instruction set of the original Ivy Bridge generation
baseline until it is power-cycled, at which point the new Skylake baseline
will be propagated to the VM.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

196

EVC Requirements
To enable EVC on a cluster, the cluster must meet the following
requirements:

▪ All hosts in the cluster must have CPUs from a single vendor,
either AMD or Intel.

▪ All hosts in the cluster must have advanced CPU features, such
as hardware virtualization support (AMD-V or Intel VT) and AMD
No eXecute (NX) or Intel eXecute Disable (XD) and must be
enabled in the BIOS.

▪ All hosts in the cluster should be configured for vMotion. See
the section, host configuration requirements for vMotion.

▪ All hosts in the cluster must be connected to the same vCenter
Server.

Besides, all hosts in the cluster must have CPUs that support the EVC
mode you want to enable. To check EVC support for a specific processor
or server model, see the VMware Compatibility Guide at:
http://www.vmware.com/resources/compatibility/.

Conclusion
DRS is a simple to use clustering solution that will allow you to reach
higher consolidation ratios while providing optimal utilization of available
resources. Understanding the architecture of DRS will enable you to
design vCenter and DRS clusters that provides the best performance
while operating as efficiently as possible. The following chapters will
discuss the fundamental concepts of resource management. We will also
review all decision-making moments to ensure you configure DRS in
such a way that it meets the requirements of your or your customer’s
environment.

 197

12
RESOURCE DISTRIBUTION

In this section, we will explain DRS dynamic entitlement and the
concepts of resource management. Understanding elements such as
dynamic entitlement, resource pools, and resource allocation settings
will allow you to troubleshoot DRS behavior more efficiently and gain
optimal performance for your virtual machines.

Before diving into DRS and local host resource management, it is
essential that we step back and examine the fundamentals of dynamic
entitlements.

DRS Dynamic Entitlement
Dynamic entitlement defines a target that represents the ideal amount of
resources eligible for use. Both DRS and the host-local schedulers
compute this target, and it is up to the virtual machine or resource pool
to use the available resources or not. Entitlement consists of static and
dynamic elements.

Reservations, shares, and limits define the static part, while estimated
VM demand and ESXi host contention levels define the dynamic part. A
VM has a separate dynamic entitlement target for CPU and memory.

Dynamic entitlement rests on the configured reservations, shares, and
limits settings. These settings not only affect the performance of the VM

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

198

but could impact the performance of other virtual machines as well.
Therefore, it is essential to understand how dynamic entitlement is
calculated and how to configure the VM without introducing a denial-of-
service for the VM or the rest of the environment.

Both the dynamic and static elements are explained in detail later in this
chapter. For now, let’s start with the architecture of the scheduler
responsible for calculating dynamic entitlements.

Resource Scheduler Architecture
The ESXi host runs multiple host-local resource schedulers within the
VMkernel, including the CPU schedulers and the memory scheduler. DRS
runs a global scheduler within vCenter. The DRS scheduler provides
guidelines to the ESXi resource schedulers.

Figure 94: DRS and Host-Local Schedulers

12 // RESOURCE DISTRIBUTION

199

DRS Scheduler
The global scheduler is responsible for dividing the cluster resources.
After receiving the active usage and demands of VMs, DRS determines
the dynamic entitlement for each VM.

The DRS scheduler computes the ideal CPU and memory entitlements
that would have been reached if the cluster were a single large host. DRS
relies upon host-level scheduling to implement DRS resource pool and
virtual machine-level resource settings.

Host-local resource schedulers are responsible for allocating resources
to VMs, requiring translation of cluster resource pool settings to host-
level resource pool settings.

DRS solves this by mirroring the cluster resource pool tree to each host
and mapping the appropriate resource settings to each resource pool
node. The host-local scheduler places the resource pools in the
/host/user hierarchy.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

200

Figure 95: Resource Pool Structure Mapped to ESXi Host-Local RP Tree

DRS sends resource pool settings to each host-local resource pool tree
containing the dynamic entitlement of all VMs that are active on that
host. DRS trims the resource pool tree and sends the host only the
allocations for the VMs running there. In the figure below none of the
VMs within resource pool RP1 are active on ESXi-02. Consequently, that
specific resource pool tree does not exist on ESXi-02.

12 // RESOURCE DISTRIBUTION

201

Figure 96: Mapping Resource Pool Structure Across Host-Local RP Trees

Local Scheduler
The local scheduler treats the host-local resource pool tree similar to if
the user had set up the tree directly on the host. Following the resource
allocation settings of the resource pool tree, the host-local scheduler
computes the dynamic entitlement with regards to the tree and flows
resources between VMs when that is appropriate. The host-local
resource scheduler can allocate additional resources if necessary - if
resources are available - and can quickly respond to changes in demand.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

202

Dynamic Entitlement Target
During normal operations in a non-overcommitted cluster, the dynamic
entitlement of a VM can fluctuate depending on its activity. In a non-
overcommitted cluster, the VM receives all the resources it demands. It
does not make sense to limit the VM by the scheduler, as artificially
capping resource allocation requires additional calculations from the
host-local schedulers. This unnecessary overhead is avoided by the host-
local schedulers as much as possible, resulting in a less-restrictive
resource allocation policy.

The dynamic entitlement target of a VM increases as the demand of the
VM increases. In other words, the VM is effectively capped on resource
usage by its maximum configured size (i.e., the number of vCPUs and
configured memory size). The dynamic entitlement target consists of
demand and usage metrics. By integrating demand metrics in the
calculation, both host-local schedulers and DRS understand how many
resources the VM wanted to use over how many resources it received.

The metrics used by DRS for dynamic entitlement calculations are CPU
active and memory active. CPU active metrics exported by the host-local
CPU scheduler include %Run + %Ready. The host-local scheduler
includes some parts of the ready time in the active time, depending on
the adjustments for specific CPU features such as Hyperthreading and
power management.

The host-local memory scheduler exports the active memory metric, and
it is the primary memory metric used by DRS to determine the memory
entitlement. The active memory represents the working set of the VM,
which signifies the number of active pages in RAM. By using the working-
set estimation, the memory scheduler determines which of the allocated
memory pages are actively used by the VM and which allocated pages
are idle. The active memory part also includes the VM’s memory
overhead. To accommodate a sudden rapid increase of the working set,
DRS incorporates 25% of idle consumed memory in the entitlement
calculation.

12 // RESOURCE DISTRIBUTION

203

This percentage is key whether you want DRS to load-balance on
active memory use or on consumed memory use. If your cluster is
designed to back all the virtual memory with physical memory (no
memory overcommit), this metric should be set to 100%. The
additional option “Memory Metric for Load Balancing” sets the idle
consumed memory to 100%.

Figure 97: Dynamic Entitlement Target

Let’s use a 16 GB VM as an example of how DRS calculates the memory
demand. The guest OS running in this VM has touched 75% of its
memory size since it was booted, but only 35% of its memory size is
active. As a result, the VM has consumed 12288 MB, and 5734 MB of this
is the active memory.

Figure 98: Active - Consumed - Configured Memory

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

204

As mentioned, DRS accommodate a percentage of the idle consumed
memory to be ready for a sudden increase in memory use. To calculate
the idle consumed memory metric, DRS subtracts the 5734 MB active
memory from the consumed memory; 12288 MB. Resulting in a total
6554 MB idle consumed memory. By default, DRS includes 25% of the
idle consumed memory, i.e. 6554 * 25% = +/- 1639 MB.

Figure 99: Idle Consumed Memory Calculation

The virtual machine has a memory overhead of 90 MB. The memory
demand DRS uses in its load balancing calculation is as follows: 5734
MB + 1639 MB + 90 MB = 7463 MB. As a result, DRS selects a host that
has 7463 MB available for this machine if it needs to move this virtual
machine to improve the load balance of the cluster.

Memory Metric for Load Balancing Enabled
When enabling the option “Memory Metric for Load Balancing,” DRS
takes into account the consumed memory + the memory overhead for
load balancing operations. In essence, DRS uses the metric Active +
100% IdleConsumedMemory. More info about this feature in chapter 15.

12 // RESOURCE DISTRIBUTION

205

Figure 100: Memory Metric for Load Balancing Enabled

Resource Contention
Resource contention impacts the dynamic entitlement. Resource
contention, sometimes called overcommitment, can take all forms and
shapes. If the infrastructure is correctly sized, long-term contention does
not occur. However, short-term contention can occur when resource
usage rapidly increases to the point where demand temporarily exceeds
availability.

Host failovers, boot storms, application scheduling, load correlation and
load synchronicity can cause contention.

Load correlation is the relationship between loads running in different
machines. If an event initiates multiple loads, for example, a search query
on front-end web server, this may result in increased load on the
supporting stack and backend.

Load synchronicity is often caused by load correlation but can also exist
due to user activity such as morning startup routines of users such as
login, checking mail and database connectivity.

When contention occurs, both the reservation and share resource
allocation settings affect entitlement.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

206

DRS Dynamic Entitlement versus Host-Local
Entitlement
Although both DRS and the host-local schedulers compute the dynamic
entitlement of a VM, they do not exchange these calculations. They also
operate with different scheduling periods. Please note that DRS
calculates the average and peak demand for a target for the resource
pool tree every 60 seconds. This period is different than the previous
versions, in which DRS calculates the entitlement targets every 5
minutes. The shorter period allows DRS to respond better to variations of
demand.

Resource Allocation Settings
Resource allocation settings are available for both virtual machines and
resource pools. Chapter 13 explains resource pools and resource
allocation policies. This section describes the function and impact of
virtual machine allocation settings.

SETTING BEHAVIOR

Reservation
A reservation is the amount of physical resources (MHz or MB)
guaranteed to be available for the virtual machine. (Identified in

VMkernel as “MIN”).

Shares
Shares specify the relative importance of the VM. Shares are
always measured against other powered-on sibling VMs and

resource pools on the host.

Limit
A limit specifies an upper bound for resources that can be

allocated to a VM. (Identified in VMkernel as “MAX”).

Table 12: Resource Allocation Settings

12 // RESOURCE DISTRIBUTION

207

Figure 101: Resource Allocation Settings and Dynamic Entitlement

Reservation
A reservation is the number of physical resources guaranteed available
to a virtual machine. When contention occurs, the host-local schedulers
need to determine how many resources they can reclaim. The scheduler
cannot reclaim resources that are protected by reservation. In other
words, a reservation creates a minimum (MIN) dynamic entitlement
target that is at least as large as the reservation.

During memory contention, the host-local memory scheduler compares
the memory usage of the VM to the dynamic entitlement. If the usage is
above the dynamic entitlement, memory is ballooned, compressed or
swapped until physical memory usage is at or below the entitlement.
Reclamation of resources stops when it reaches the target set by a
reservation, as it is the minimum guaranteed dynamic entitlement. the
entitlement used to decide memory reclamation is calculated by host-
local memory scheduler itself with almost the same algorithm that DRS
resource distribution uses.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

208

Continuing with the previous memory example, depicted in figure below.
The virtual machine has a dynamic entitlement of 7463 MB. A 6144 MB
(6 GB) reservation is set, resulting in a minimum entitlement target of
6144 MB. If contention occurs, the host-local memory scheduler will take
the minimum entitlement into account when recalculating a new target
and can reclaim memory from the virtual machine up to its minimum
entitlement.

Figure 102: 6 GB Minimum Entitlement

Resource Pool-Level Reservation Behavior
Reservations can exist at both the VM and resource pool levels.
Reservations set on a resource pool behave differently than a reservation
set on a VM. The resource pool divides its resources amongst the active
VMs.

DRS distributes the allocated resources of the resource pool across the
host-local RP branches within the cluster. The resources reserved by the
host-local resource pool trees are available to each VM and flow between
them depending on their dynamic entitlements.

DRS in 6.7 is more aggressive with distributing resources than previous
versions. In previous versions, only the resources that cover the dynamic
entitlement of the VMs are distributed. For example, if the resource pool
is configured with a 30 GB reservation and the VM demand was 20 GB,

12 // RESOURCE DISTRIBUTION

209

DRS distributed 20 GB of the resources across the host-local resource
pool trees. In 6.7, DRS distributes the 20 GB to the appropriate RP trees
and evenly distributes the remaining 10 GB to ensure the RP has
additional resources to satisfy increased demand. A host-local RP tree
receives updated resource targets every 60 seconds in vSphere 6.7.

Virtual Machine-Level Reservation Behavior
Virtual machine-level reservations have a less dynamic nature than
resource pool-level reservations. Also, a CPU reservation has a different
effect than a memory reservation on the availability of resources for
other virtual machines.

A reservation set at the VM-level defines the minimum entitlement of that
specific VM. During contention, the host-local schedulers can reclaim
resources up to the minimum entitlement of the VM. Unlike resource
pool-level reservations where resources are provided based on the usage
and demand of a VM, the reservations set at the VM level are static. This
means that the VM is entitled to have these resources available at all
times, whether it uses them or not. This impacts availability of that
resource for other VMs.

A difference exists between reserving a resource and using the resource.
As reservations are a part of the dynamic entitlement calculation, a VM
can use more or less than it has reserved. The static nature of the VM-
level entitlement impacts the sharing of resources. By not incorporating
usage and demand, reserved resources are static, and the host-local
schedulers are not allowed to reclaim any idle resources beyond the
dynamic entitlement of a VM.

However, when exactly will a VM hit its full reservation? Popular belief is
that the VM hits full reservation immediately when a VM becomes active,
but that is not entirely true. A memory reservation on VM-level protects
only the consumed physical RAM. Physical RAM only gets allocated to
the VM when the virtual RAM is accessed. However, in practice, it
depends on the guest OS running inside the VM. During startup, Windows

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

210

zeroes each page available during boot, hitting the full reservation during
boot time. Linux, however, only accesses the memory pages it requires.
For example, a 4 GB Linux VM configured with a 2 GB memory
reservation and accessing 1 GB would have only 1 GB of physical RAM
allocated and protected by the reservation. Its minimum entitlement
would be 1GB. A Windows machine with a similar configuration would
have the minimum entitlement of 2 GB directly after Windows completed
the boot process.

Fortunately, it is not all bad. The agility of the workload determines to
share of reserved resources: CPU instructions are transient and can
quickly finish. For this reason, the CPU scheduler allows other virtual
CPUs to use the physical CPU while the entitled VM is not active. If the
entitled VM requests resources, the unentitled VM can be de-scheduled
quickly and placed in a queue. Physical RAM holds data, and if memory
space was loaned out to other VMs for temporary use, this data needs to
be moved if the rightful owner wants to use this memory space. Clearing
out this data takes significant time and may delay the entitled VM
unfairly. To avoid this, the memory scheduler does not loan out reserved
physical memory for temporary use.

Admission Control and Dynamic Entitlement
Dynamic entitlement and admission control are independent
mechanisms, but they are both affected by reservations. The admission
control mechanism is active before power-on and validates that enough
system resources (total system resources - total reservations made by
other VMs) are available to meet the CPU and or memory reservation.
The power-on operation succeeds only if the admission control is
successful whereas dynamic entitlement is active during operation of the
VM and doesn't reclaim used resources protected by reservation.

In other words, admission control exists during the first lifecycle phase of
the VM (pre-power-on), while dynamic entitlement controls the VM during
the operational stage of its lifecycle.

12 // RESOURCE DISTRIBUTION

211

Shares
The scheduler determines the priority of a workload by comparing the
share values of the active VMs that share the same parent object that
can be a resource pool or the cluster. Shares determine how resources
are divided (total system resources - total reservations).

Relative Priorities
Let’s use a flat hierarchy as an example; a vSphere cluster contains two
VMs. No resource pool exists. The VMs are the child objects of the
cluster. The cluster is the parent of both VMs, as they share the same
parent, they are considered to be siblings of each other. If contention
occurs, the scheduler determines the priority by comparing the shares of
both VMs to the outstanding shares within the cluster.

Figure 103: Parent, Child, Sibling Relationship Mapping

Since they signify relative priorities; the absolute values do not matter,
comparing 2:1 or 20.000 to 10.000 has the same result.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

212

CPU Shares
After obeying the minimum entitlement of the VMs, shares of CPU are
used to divide the available physical CPU resources. If a VM is not using
its reserved CPU time, the unused CPU time is available to other VMs.
The CPU scheduler calculates an MHzPerShare value for correct
distribution of CPU time. This metric is used by the CPU scheduler to
identify which VMs are ahead of their entitlement and which VMs are
behind and do not fully utilize their entitlement.

When a VM wants to run, the CPU scheduler identifies the progress of the
VM and places it in one of its queues. If the VM is behind its entitlement,
it is placed it in the main scheduler queue. If it is ahead of its entitlement,
the scheduler places the vCPU in the extra queue. Before scheduling, the
CPU scheduler compares the MHzPerShare values of the VMs in the
main queue and selects the VM with the lowest MHzPerShare value. If no
VMs are in the main queue, the scheduler selects a VM from the extra
queue.

The scheduler calculates the MHzPerShare as follows:

MHzPerShare = MHzUsed / Shares

MHzUsed is the current utilization of the VM measured in megahertz,
while shares indicate the currently configured number of shares of the
VM.

For example, VM01 is using 2500 MHz and has 2000 shares, resulting in
an MHzPerShare value of 1.25. VM02 is consuming 2500MHz as well but
has 1000 shares, resulting in an MHzPerShare value of 2.5. The
scheduler places VM01 in front of the queue due to its lower
MHzPerShare value.

12 // RESOURCE DISTRIBUTION

213

Figure 104: Order of Priority

If the VM with the lowest MHzPerShare value decides not to utilize the
cycles, the scheduler allocates the cycles to the VM with the next lower
MHzPerShare value. Reservations override shares and guarantee the
number of physical resources regardless of the number of active shares
present in the pool. As a result, the VM can always use the CPU cycles
specified in its reservation, even if the VM has a higher MHzPerShare
value. For example, three VMs are present in a resource pool that
possesses 8 GHz.

VM SHARES RESERVATION

VM01 2000 None

VM02 1000 2500

VM03 2000 None

Table 13: Shares and Reservations Overview

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

214

VM01 is running a memory-intensive application and does not require
many CPU cycles. Both VM02 and VM03 host a CPU-intensive
application. VM01 is running at 500 MHz, with 2000 shares, the
MHzPerShare equals 0.25. VM02 owns 1000 shares plus a CPU
reservation of 2500MHz. VM03 owns 2000 shares but is powered off.
Because VM02 is in need of CPU cycles, the CPU scheduler allocates
CPU cycles up to its reservation resulting in an MHzPerShare value of 2.5
(2500/1000). At this point, 5000 MHz remains available in the resource
pool.

Figure 105: VM02 Claiming Resources Up to its Reservation

In the next scenario VM03 just powered up and is behind its entitlement;
the CPU scheduler compares the MHzPerShare values of the VMs and
selects the VM with the lowest MHzPerShare value. Step 1 – VM03 has
an MHzPerShare of 0 and can claim up to 0.25, the MHzPerShare value
of VM01. Step 2 – VM01 does not need additional CPU cycles and
forfeits it claim, VM03 can now claim CPU resources until it reaches an
MHzPerShare value equal to 2.5 before the CPU scheduler considers

12 // RESOURCE DISTRIBUTION

215

providing CPU cycles to VM02. VM03 owns 2000 shares, meaning it can
be allocated up to 4500 MHz to reach an MHzPerShare value of 2.5
(4500/2000). The CPU scheduler allocates 4500 MHz to equalize
distribution before considering the share value of VM02 to allocate the
remaining 500 MHz.

This previous scenario demonstrates that shares of CPU play a
significant role in distributing CPU cycles.

Memory Shares
The memory scheduler is invoked every 15 seconds to recompute the
dynamic entitlement memory statistics to determine and update the VM
memory allocations.

The host-local memory scheduler is responsible for allocating the
resources. As mentioned before, every VM is allowed to allocate
additional resources if no contention exists.

If contention occurs, the memory scheduler reclaims memory based on
the dynamic entitlement of the VM. ESXi determines the level of
contention by calculating the free memory state (MinFreePct). Based on
the level of contention and the free memory state, the memory scheduler
determines which reclamation mechanism to use.

The MinFreePct calculation is extensively covered in the vSphere 6.5
Host Resources Deep Dive, available at Amazon.com or a free ebook at
hostdeepdive.com. (Source: vSphere 6.5 Host Deep Dive)

Calculating MinFree
A sliding scale is applied to the available memory that the VMkernel
manages. This amount of memory is less than the total amount of
memory installed in the system due to overhead of hardware and ESXi
itself. The sliding scale is partitioned in four parts: a 256 GB host
configuration is used for this example.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

216

PERCENTAGE MEMORY RANGE EFFECTIVE RANGE RESULT

6% 0-4 GB 4096 MB 245.76
4% 4-12 GB 8192 MB 327.68

2% 12-28 GB 16,384 MB 327.68

SUBTOTAL 28,762 MB 901.12

1% Remaining Memory 233,040 MB 2330.40

Total MinFree 3231.52

Table 14: MinFree Calculation of 256 GB Host

The table is split up in two parts. The first part is the range calculation of
the first 28 GB of memory of a host. It is reasonable to assume that
servers that run ESXi 6.7 contain more than 32 GB of memory. Therefore,
the first three steps are equal for all ESXi 6.5 hosts.

The interesting step in this calculation is the 1% of remaining memory.
This is truly the sliding scale part of the equation as it differs for various
memory configurations (256 GB, 512 GB, 1024 GB, etc.).
It is dynamically adjusted if the memory configuration of the host is
expanded. Using the 256 GB memory configuration as an example.

The 1% is calculated across the range of 233040 MB (261712 MB -/-
28762 MB). This is the result of 261,712 MB of VMkernel managed
memory minus the 28,762 MB (4096 MB + 8192 MB + 16384 MB) used
for the preceding percentage calculations. MinFree does not do anything
by itself. The result of the MinFree calculation is used to derive the
memory state of the ESXi host.

Memory State Transition Points
The VMkernel applies one or more memory reclamation techniques when
memory pressure occurs. A more aggressive method of memory
reclamation is applied with the increase of memory pressure. This may
impact VM performance. As a result, memory reclamation is relaxed
when memory pressure decreases. To avoid oscillation between two
states, different memory state transition points are active with reference
to the memory pressure condition. More specifically, the VMkernel uses

12 // RESOURCE DISTRIBUTION

217

two transition points for a memory state, one if memory pressure
increases and one when memory pressure decreases.

MEMORY
STATE

MEMORY PRESSURE
INCREASE

MEMORY PRESSURE
DECREASE

High 301% of MinFree 401% of MinFree

Clear 300% of MinFree 400% of MinFree

Soft 64% of MinFree 100% of MinFree

Hard 32% of MinFree 48% of MinFree

Low 16% of MinFree 24% of MinFree

Table 15: Memory State Transition Points

As shown, the memory state transition points are derived from the
MinFree threshold. It is important to understand that these thresholds
are the transition points for that particular level. When memory pressure
is increasing, the host enters the listed memory state. Let’s use an ESXi
host with 256 GB memory as an example.

Figure 106: Memory Transition Points Host with 256 GB Memory

Memory Reclamation Techniques per State
Several memory reclamation techniques exist to reclaim memory from
VMs. The memory reclamation techniques are transparent page sharing,
memory ballooning, memory compression, and memory swapping. Each
memory state applies one or more memory reclamation technique.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

218

MEMORY STATE SHARE BALLOON COMPRESS SWAP BLOCK

High X

Clear X

Soft X X

Hard X X X

Low X X X X

Table 16: Memory Reclamation Techniques Active per Memory State

The Clear, Soft, and Hard states focus on providing the best performance
possible, while each step introduces a more drastic reclamation
technique to prevent memory starvation. The Low state is required for
correctness. It protects the VMkernel from crashing resulting from
memory starvation.

Share-Per-Page
The memory scheduler selects idle memory to reduce the impact of
memory reclamation. To determine which physical memory can be
redistributed, the memory scheduler computes the Share-Per-Page
metric. The memory scheduler reclaims memory from the VM or resource
pool that owns the fewest shares per allocated physical memory page.

The memory scheduler determines the Shares-per-Page by dividing the
number of shares by the allocation of pages, corrected with the number
of active pages and the idle memory tax percentage.

The idle memory tax is applied progressively: the tax rate increases as
the ratio of idle memory to active memory for the VM. Adjusting the
number of shares with active and idle pages helps to avoid a pure
proportional-share state where idle VMs with disproportionate numbers
of shares can hoard memory.

12 // RESOURCE DISTRIBUTION

219

Resource Contention
If the free memory state transitions from high to another state such as
soft, hard or low, the memory scheduler is invoked and it calculates a
new resource allocation target for each VM.

The memory scheduler classifies the working-set memory of a VM as idle
or active and uses idle memory tax to adjust the resource allocation
target. Although it’s possible to reclaim all the unprotected (non-
reserved) memory, the memory scheduler keeps a 25% buffer to
accommodate rapid increase of the working set.

Assume a 16 GB VM is running Windows. Due to the zero-out technique
used by Windows at boot time, the VM allocated memory equal to the
configured size. 40% of its configured size is active (6553.6 MB). The VM
is configured with a 4 GB memory reservation. After estimating the active
memory of the working set size and keeping 25% consumed idle memory
as a buffer to be able to respond rapidly to workload increase, the
dynamic entitlement is determined at 9101.2 MB for this virtual machine.

The calculation is as follows: 40% of 16384 MB = 6553.6 MB active
consumed memory. As all memory is consumed, the calculation of idle
consumed memory is: 16384 MB – 6553.6 MB = 9830.4 MB. 25% of idle
consumed memory = 9830.4 * 0.25 = 2457.6. The memory overhead
reservation is 90 MB, making the total of 6553.6 + 2457.6 + 90 = 9101.2
MB dynamic entitlement.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

220

Figure 107: Dynamic Entitlement to Determine Reclamation

The memory scheduler respects the reservation and cannot reallocate
memory that is protected by the reservation. Depending on the level of
contention, memory is reclaimed from each VM. A low level of contention
results in a small number of memory pages reclaimed from each VM on
the host. High levels of contention result in increased levels of
reclamation. The memory scheduler tries to reclaim pages up to the
dynamic entitlement of each VM, but the memory may be reclaimed up to
the reservation. This point is typically reached only if memory demand is
excessive.

Figure 108: Reclamation and Level of Contention

12 // RESOURCE DISTRIBUTION

221

Worst Case Allocation
When memory is reclaimed up to the minimum entitlement, the VM
experiences its worst-case allocation. This value is presented in vCenter
as the worst-case scenario column of the resource allocation tab. This
value is meant as a theoretical value to help understand how bad
resource allocation can become for the virtual machine.

Limits
Limits are a part of the resource allocation settings and define the
allowed upper limit of allocation of physical resources. Both the CPU and
memory scheduler allocate resources up to the limit. Even if there are
enough free resources available, a limit defines the maximum entitlement
and is enforced by the host-local resource schedulers. Setting a 10 GB
limit on a 16 GB VM running Windows, results in a dynamic target of x,
while having a reclaim target of 6 GB. As mentioned before, windows
touch the complete memory range during boot. The BIOS reports 16 GB,
thus windows will touch 16 GB, the memory scheduler is instructed to
allocate physical memory up to 10 GB. How does the VMkernel provide
the extra 6 GB? Most of it will be swapped memory, as the other memory
reclamation techniques cannot respond fast enough before the boot
sequence is finished.

Why Use Limits?
Try not to if you do not have a memory leaking application that cannot be
fixed by the vendor or your developers.

Initially, limits were used as a troubleshooting tool by developers to
induce a state of overcommitment at the VM level without having to
overcommit the entire ESXi host. A limit is a boundary for dynamic
entitlement calculations which is not exposed to the guest OS inside the
virtual machine. The guest OS resource manager is only aware of the
configured size of the virtual machine, i.e. configured memory and
number of vCPUs.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

222

CPU Limits: A limit specifies an upper boundary for CPU resources that
can be allocated to a virtual machine. If the vCPU exceeds its CPU time, it
is descheduled until it is allowed to run again. Possibly wasting CPU
cycles while frustrating users due to the underperforming behavior of the
application

Memory Limits: The guest OS sizes and tunes its caching algorithms and
memory management to the memory it detects. A limit set smaller than
the configured memory size hurts performance, as the guest OS or
applications within a VM uses memory that is not backed by physical
memory. The memory scheduler needs to allocate memory space by
ballooning, compressing or swapping, generating overhead on the ESXi
host and the storage level if memory is swapped.

Tying it All Together
Reservations, shares, and limits are just components used to calculate
the dynamic entitlement. When contention occurs, the VM resource
target is at least as large as the reservation. This minimum entitlement
identifies the reclamation boundary for host-local schedulers; they
cannot reclaim resources beyond this point. Limits define the maximum
target for the host-local schedulers and restrict the physical resource
allocation. Shares, activity, and contention define the remainder of the
entitlement. If a virtual machine's resource usage is either above or
below its entitlement, resource reclamation occurs until the VM’s usage
is at or below the minimum entitlement.

At the deepest level in the world of host-local resource schedulers,
reservation, ownership, and shares do not exist. There is only a dynamic
target that must be honored. In other words, the host only tries to
allocate resources according to the entitlement target.

 223

13
RESOURCE POOLS AND CONTROLS

Clusters aggregate ESXi host CPU and memory resources into resource
pools. These resource pools provide an abstraction layer between the
resource providers (ESXi hosts) and resource consumers (virtual
machines). This form of abstractions provides the ability to isolate
resources between pools, but also share resources within pools.

The resource allocation controls: reservations, shares, and limits are
instrumental for isolating and sharing of resources. The resource
allocation settings are similar to the virtual machine resource allocation
settings explained in the previous chapter. This chapter zooms in on how
settings work at the resource pool level and what impact they have on
virtual machine workloads.

Root Resource Pool
A root resource pool is created at the cluster level when enabling DRS.
The host resources are added to the capacity of the root resource pool
when an ESXi host joins the cluster. The resources required to run the
ESXi virtualization layer are not available to the cluster:

The total amount of host resources - virtualization overhead =
available resources associated with the cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

224

Figure 109: HA Disabled on DRS Cluster

If HA is enabled, resources required satisfying HA failover are drawn from
the root resource pool, because HA failover places virtual machines into
the root resource pool. The resources required to run the virtualization
layer are not visible when reviewing the capacity of the root resource
pool, while DRS marks the resources required to satisfy HA failover as
reserved resources.

13 // RESOURCE POOLS AND CONTROLS

225

Figure 110: Cluster HA Failover Resources

Resource Pools
As a cluster distributes resources from hosts to VMs, the hosts play the
role of resource providers, while VMs are resource consumers. The
resource pool plays both roles of a resource provider and consumer as
they consume resources from the cluster and in turn, distribute
resources to the VMs.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

226

Figure 111: Resource Providers and Consumers

It is important to realize that resource pools can be both consumers
and providers of resources as this might impact the way you design
your resource pools from a shares perspective.

Inflating or Deflating Resource Pools
Resource pools span the entire cluster. When adding an ESXi host to the
cluster, its resources are immediately available to the resource pool. The
opposite is true when removing hosts from the cluster: resources
provided by the ESXi host are subtracted from the cluster and are not
available for use by the resource pool and its child objects.

Removing ESXi hosts can place a cluster in an overcommitted state.
An overcommitted state occurs when the available cluster resources
cannot satisfy the reservations of all resource pools. Resource
allocations for the active virtual machines are reduced during an
overcommitted state.

13 // RESOURCE POOLS AND CONTROLS

227

Host-Local Resource Pools
As mentioned in the previous chapter, the cluster hierarchy is mapped to
a resource pool structure on each ESXi host within the cluster. If
resource allocation settings are applied at the cluster level, these
settings are propagated to the host-local resource pool tree. Once these
are in place, the host-local CPU and memory scheduler takes care of the
actual resource allocation.

Dividing Resources
DRS divides cluster resources with a coarser granularity than the host-
local resource schedulers. DRS computes the dynamic entitlement target
of all VMs every 60 seconds. ESXi 6.5 introduced a new model for DRS
operations. The load-balancing operation and resource distribution
operations run separately from each other. Load-balancing operations
run every 300 seconds. The resource allocation operation runs every 60
seconds. It’s much more frequent than the previous versions, where load-
balancing and resource allocation operation ran every 300 seconds.
Running it more frequent allows DRS to adjust to resource demand
changes better.

During the resource allocation operation, each host conceptually receives
a target of resources based upon the dynamic entitlement of its active
VMs.

Let’s use the host-local memory scheduler as an example. It is
responsible for the distribution of available memory within the ESXi. The
host-local memory scheduler makes a bottom-up pass over the resource
pool tree to compute the demand at each resource pool node.

If the demand of a VM exceeds the amount of memory provided, the
dynamic entitlement is adjusted. The memory scheduler makes a top-
down pass to compute the new targets for all resource pools and their
member virtual machines. The host-local memory scheduler then allows
the resource pools to allocate memory to their targets.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

228

Resource Pools Are Not Folders
Resource pools are not folders. They serve as a hierarchy structure for
the resource schedulers to determine the resource allocation targets for
the VMs inside. Putting VMs into RPs can have a restrictive effect on VM
performance.

Often, we come across environments that use resource pools as a folder
structure in the “Hosts and Clusters” view of vCenter, because it helps
the administrator identify relationships between the VMs. Using resource
pools for this purpose generates unnecessary load on both vCenter and
the ESXi hosts that can affect application performance.

Do not use resource pools as a folder structure in Host and Cluster
view, but use the appropriate folder view.

Resource Pool Tree Structure
For an ESXi host, the maximum resource pool tree depth for user-created
pools is 8; 4 levels are taken internally on each ESXi host. These internal
resource pools are independent of the DRS resource pools. To avoid
complicated proportional share calculations and complex DRS dynamic
entitlement calculations, we advise not to exceed a resource pool depth
of 2. The flatter the resource pool tree, the easier it is to manage and
reduces overhead during dynamic entitlement calculations.

13 // RESOURCE POOLS AND CONTROLS

229

Worst-Case Scenario Should Not Mimic Your
Cluster Operational State
In the following sections, we explain the working of shares during a
worst-case scenario situation: every virtual machine claims 100% of their
configured resources, the system is overcommitted, and contention
occurs.

In real life, this situation (hopefully) does not occur very often in your
clusters, maybe this state occurs during a severe outage. During normal
operations, not every virtual machine is active and not every active virtual
machine is 100% utilized. Activity and amount of contention are two
elements determining dynamic entitlement of active virtual machines.

To understand true demand and determine whether the resource
allocation settings of your resource pools are properly configured, we
recommend you to install the VMware Fling “DRS Entitlement Viewer”
available at https://labs.vmware.com/flings/.

Figure 112: DRS Entitlement Viewer

https://labs.vmware.com/flings/

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

230

For ease of presentation, we tried to avoid as many variable elements as
possible and used a worst-case scenario situation in each example.

Resource Pool Resource Allocation
Settings
Resource pools have similar resource allocation settings to virtual
machine-level resource allocation settings. However, their behavior can
differ.

SETTING BEHAVIOR

Reservation

Reservation is the amount of physical resources guaranteed to
be available for the VM or resource pool. Reserved resources are
not wasted if they are not used. If the utilization is less than the
reservation, the resources can be utilized by other running VMs.

Units are MB for memory, MHz for CPU. (MIN”)

Shares
Shares specify the relative importance of the VM or resource
pool. Shares are always measured against other powered-on

sibling VMs and resource pools on the host

Limit

A limit specifies an upper bound for resources that can be
allocated to a VM or resource pool. The utilization of a resource

pool will not exceed this limit, even if there are available
resources. (“MAX”)

Expandable
Reservation

Expandable reservation determines whether or not the
reservation on a resource pool can grow beyond the specified
value, if the parent resource pool has unreserved resources. A

non-expandable reservation is called a fixed reservation. Enabled
by default

Low 16% of MinFree

Table 17: Resource Pool Allocation Settings

Shares
Shares determine the priority of a resource pool or VM compared to their
siblings. Siblings can be resource pools or virtual machines that exist at
the same hierarchical level, i.e., share the same parent.

13 // RESOURCE POOLS AND CONTROLS

231

DRS determines priority by comparing the number of shares to the total
number of shares issued by the object’s parent. For example, resource
pool RP-1 owns 4000 CPU shares. If it is the only object, its parent (the
cluster) has issued only 4000 CPU shares. Because the resource pool
owns all issued shares, it is entitled to all the CPU resources available in
the cluster.

Resource pool RP-2 is added to the cluster and owns 8000 shares. The
cluster issues 8000 more shares, increasing the total shares to 12000.
RP-1 owns 4000 shares of the outstanding 12000. Thus it owns 33% of
the total number of outstanding shares.

Figure 113: Resource Pool 1 and 2 Share Ratio

If every VM is generating 100% demand, the cluster is in a worst-case
scenario state. As a result, DRS distributes the resource to the rightful
owners. As Resource pool RP-1 owns 33%, it is entitled to consume 33%
of the cluster and distribute it amongst its child-objects.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

232

Please note that we are describing a worst-case scenario, typically
load varies and resources can flow between resource pools as the
targets are updated every minute. The shares do not carve up the
resources of a cluster statically. Shares guide the resource
distribution in a cluster in the gentlest of ways.

Shares are a part of the dynamic entitlement calculation. During
computation of dynamic entitlement, reservation and limits take
precedence over shares, but this does not imply that shares do not play a
significant role in resource distribution!

Resource Pool Size
Because resource pool shares are relative to other resource pools or
virtual machines with the same parent resource pool, it is important to
understand how vCenter sizes resource pools.

The values of CPU and memory shares applied to resource pools are
similar to virtual machines. By default, a resource pool is sized like a
virtual machine with 4 vCPUs and 16 GB of RAM. Depending on the
selected share level, a predefined number of shares are issued. Similar to
VMs, four share levels can be selected. There are three predefined
settings: High, Normal or Low, which specify share values with a 4:2:1
ratio, and the Custom setting, which can be used to specify a different
relative relationship.

SHARE LEVEL SHARES OF CPU SHARES OF MEMORY

Low 2000 81920
Normal 4000 163840

High 8000 327680

Table 18: Share Level Overview

Caution must be taken when placing VMs at the same hierarchical level
as resource pools, as VMs can end up with a higher priority than
intended. For example, in vSphere 6.7, the largest virtual machine can be
equipped with 128 vCPUs and 6 TB of memory.

13 // RESOURCE POOLS AND CONTROLS

233

A 128 vCPU and 6 TB VM owns 256000 (128 x 2000) CPU shares and 122
560000 (6128000 x 20) memory shares. In the previous version of the
book, we had a nice bar graph that showed the scale between the largest
VM and a resource pool with shares level set to high. With these new
maximums, it's difficult to create something meaningful while having to
deal with the physical dimension of the book. Comparing these two
results in a CPU ratio is 32:1 and memory 374:1. The previous is an
extreme example, but the reality is that 16 GB and 4 vCPU VM is not
uncommon anymore. Placing such a VM next to a resource pool results
in sibling rivalry.

Sibling Rivalry
As shares determine the priority of the resource pool or virtual machine
relative to its siblings, it is important to determine which objects compete
for priority.

Figure 114: Sibling Rivalry between VM and Resource Pool

In the scenario depicted above, multiple sibling levels are present. VM01
and RP-1 are child objects of the cluster and therefore are on the same
sibling level. VM02 and VM03 are child objects of RP-1. VM02 and VM03
are siblings, and both compete for resources provided by RP-1. DRS
compares their share values to each other. The share values of VM01

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

234

and the other two VMs cannot be compared with each other because
they each have different parents and thus do not experience sibling
rivalry.

Shares indicate the priority at that particular hierarchical level, but the
relative priority of the parent at its level determines the availability of the
total amount of resources.

VM01 is a 2 vCPU 8 GB virtual machine. The share value of RP-1 is set to
high. As a result, the resource pool owns 8000 shares of CPU. The share
value of VM01 is set to Normal and thus it owns 2000 CPU shares.
Contention occurs, and the cluster distributes its resources between RP-
1 and VM01. If both VM02 and VM03 are 100% utilized, RP-1 receives
80% of the cluster resources based on its share value.

Figure 115: First Level of Resource Distribution

RP-1 divides its resources between VM02 and VM03. Both child-objects
own an equal number of shares and therefore receive each 50% of the
resources of RP-1.

13 // RESOURCE POOLS AND CONTROLS

235

Figure 116: Second Level of Resource Distribution

This 50% of RP-1 resources equals to 40% of the cluster resources. As for
now, both VM02 and VM03 are able to receive more resources than
VM01. However, three additional VMs are placed inside RP-1. The new
VMs own each 2000 CPU shares, increasing the total number of
outstanding shares to 10000.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

236

Figure 117: Additional Workload Introduced in Resource Pool RP-1

The distribution at the first level remains the same during contention.
The cluster distributes its resources amongst its child-object, VM01 and
RP-1; 20% to VM01 and 80% to RP-1. Please note this only occurs when
all objects are generating 100% utilized.

If VM01 was generating 50% of its load and the VMs in RP-1 are 100%
utilized, the cluster would flow the unused resources to the resource pool
to satisfy the demand of its child objects.

The dynamic entitlement is adjusted to the actual demand. The VMs
inside RP-1 are equally active, as a result of the reduced activity of VM01;
they each receive 2% more resources.

13 // RESOURCE POOLS AND CONTROLS

237

Figure 118: Dynamic Entitlement

VM02, VM03 and VM04 start to idle. The resource pool shifts the
entitlement and allocates the cluster resources to the VMs that are
active, VM05 and VM06. They each get 50% of 80% of the cluster
resources due to their sibling rivalry.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

238

Figure 119: Sibling Rivalry Within RP with Idle and Active VMs

Share Levels are Pre-sets, not Classes
A VM that is placed inside the resource pool, or created in a resource
pool, does not inherit the share level of the resource pool. When creating
a VM or a resource pool, vCenter assigns the Normal share level by
default, independent of the share level of its parent.

Think of share levels as presets of share values. Configure a resource
pool or virtual machine with the share-level set to high, and it gets 2000
CPU shares per vCPU. A VM configured with the share level set to low
gets 500 CPU shares. If the VM has 4 vCPUs, the VM owns the same
number of shares than the 1 vCPU with a share value set to high.

Both compete with each other based on share amounts, not based on
share level values.

13 // RESOURCE POOLS AND CONTROLS

239

The Resource Pool Priority-Pie Paradox
As we described in previous sections, at every level, siblings compete for
resources and dilute the remaining resources available for every
subsequent level.

The amount of resources available to each sibling depends on the
number of rivals and their configurations inside the resource pool. This
means that a few virtual machines inside a resource pool configured with
a Low share level can end up with a higher dynamic entitlement than
many virtual machines in a resource pool that is configured with a High
share level. Virtual machines depicted in the next figure are all configured
identically, and their size is scaled proportionally to their dynamic
entitlement within the cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

240

Figure 120: VM Dynamic Entitlement Based on RP Share Value

From Resource Pool Setting to Host-Local
Resource Allocation
How do resource pool shares affect VM workloads? As mentioned before,
DRS mirrors the resource pool hierarchy to each host and divides the
entitled resources of the resource pool across the host-local RP tree
based on the number of active VMs, their share amounts, and their
current utilization. Once the resource allocation settings are propagated
to the host local RP tree, the local host CPU and memory scheduler take
care of the actual resource allocation.

For example, a resource pool in a 2-host cluster is configured with a
Normal CPU share level. Here, the resource pool RP-1 holds 4000 shares

13 // RESOURCE POOLS AND CONTROLS

241

of CPU. Four VMs running inside the resource pool can be configured as
follows:

Figure 121: Single Resource Pool Configuration

VM
SHARE
LEVEL

NUMBER
OF VCPU

SHARES
SHARE
RATIO

ESXi HOST

VM01 Normal 2 2000 2/8 ESXi-01
VM02 Low 2 1000 1/8 ESXi-01

VM03 Low 2 1000 1/8 ESXi-01

VM04 High 2 4000 4/8 ESXi-02

Table 19: Share Configuration RP-1 VMs

Assume that all of the VMs equal utilization and stable workloads. DRS
balances the virtual machines across both hosts and creates the
following resource pool mapping:

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

242

Figure 122: Host-Local Resource Pool Mapping

The number of shares specified on VMs VM01, VM02 and VM03 add up
to 4000 and equals to half of the amount of total configured shares
inside the resource pool. In this example, DRS places VM01, VM02, and
VM03 on ESXi-01 and for that reason assigns 2000 of the total 4000

13 // RESOURCE POOLS AND CONTROLS

243

shares to RP-1 of the host local RP tree. VM04 runs on ESXi host ESXi-02
and receives the other half of the resource pool shares.

At this point resource pool RP-2 is created. RP-2 is configured with a high
share level and owns 8000 CPU shares. The VM members of RP-2 are
configured identically to the virtual machines in RP-1.

Figure 123: Multiple Resource Pool Configuration

VM
SHARE
LEVEL

NUMBER
OF VCPUS

SHARES
SHARE
RATIO

ESXI HOST

VM05 Normal 2 2000 2/8 ESXi-01
VM06 Low 2 1000 1/8 ESXi-01

VM07 Low 2 1000 1/8 ESXi-01

VM08 High 2 4000 4/8 ESXi-02

Table 20: Share Configuration RP-2 VMs

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

244

Figure 124: Resource Pool Mapping ESXi-01

The host-local resource pool tree of ESXi-01 is updated with RP-2; RP-2 is
configured with twice the number of shares as RP-1. Introducing 4000
more shares increases the total number of shares to 6000. Since RP-2
owns 4000 of the total of 6000, it gets 67 percent of the ESXi host’s
resources. Due to the 67%- 33% distribution at resource pool level, the
local resource scheduler allocates more resources to RP-2 when
contention occurs. The resources allocated to RP-2 are distributed

13 // RESOURCE POOLS AND CONTROLS

245

across the VMs based on their hierarchical level (sibling rivalry). As a
result, virtual machine VM05 is entitled to 50% of RP-2’s resources during
contention; this translates to 33% of the ESXi host’s resources.

The Resource Allocation option in the monitor view of clusters shows the
%shares column. This column displays the percentage of resources
assigned to the object. This value is related to the total shares issued by
the parent and therefore applies only to that particular hierarchical level.

Figure 125: Cluster Resource Allocation Overview

To emphasize, the example used VMs with equal and stable workloads.
During normal conditions, some virtual machines have a higher
utilization than others. As the active resource utilization is part of the
dynamic entitlement calculation, the active workload is taken into
consideration when dividing the resource pool shares and resources
across hosts and local resource pool trees.

Furthermore, virtual machine utilization often changes and usually
affects the resource distribution after each DRS invocation.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

246

Resource Pool-Level Reservation
Setting a reservation guarantees permanent availability of physical
resources to the resource pool. Resources protected by a reservation
remain available to child objects during contention.

Resource pool-level reservations do not implicitly define a reservation at
the child-object layer, but the resource pool distributes protected
resources to its child objects. The distribution of protected resources is
based on the dynamic entitlement of each child object within the
resource pool and therefore can fluctuate for each child object from time
to time.

The activity and level of contention play a big part in the distribution of
protected resources. By using the virtual machine’s dynamic entitlement,
resource pool reservations have a dynamic nature and are more in line
with the concept of consolidation and fairness.

DRS divides reserved resources among the VMs that require them. The
resource pool reserved resource distribution is very conservative in
versions before vSphere 6.7. The old model has rigorous control on how
many resources to give out to VM. Only resources are provided to satisfy
the dynamic entitlement. If there are additional resources in the resource
pool, they are not distributed until a VM demands this using its dynamic
entitlement. DRS in vSphere 6.7 has two significant improvements over
previous versions, first of all, the targets run every 60 seconds, and the
resource distribution algorithm is much more aggressive by distributing
resources if not used by other child objects. This allows DRS to
accommodate sudden VM demand change.

Let’s take a closer look at this behavior. A memory reservation is set at
12 GB on RP-1. RP-1 contains four VMs, each configured with 4 GB of
memory and no VM reservation. VM02 and VM03 are configured with a
Low share level; VM01 has a Normal share level, while VM04 is
configured with a High share level. The figure below shows the
distribution of protected memory from the resource pool to every single

13 // RESOURCE POOLS AND CONTROLS

247

VM at 08:00 (8 AM). VM01 and VM03 are rather busy, while VM02 and
VM04 are each running a very light workload.

Figure 126: Distribution of Resource Pool Reservation at 08:00 (8 AM)

Although VM03 is configured with a Low share level, the availability of
resources and the lack of contention allow VM03 to receive 4 GB of
protected memory. In other words, physical memory stores all of VM03's
memory pages.

The figure below shows the same environment at 11:00 (11 AM). At that
particular time, VM01, VM03, and VM04 are highly utilized. The reserved
memory owned by the resource pool is divided based on share level and
utilization of each VM. As a result, the resource pool distributes the most
memory to VM04 due to its High share level, VM01 gets 3 GB according
to its resource demand, and the rest of the reserved memory is divided
between VM02 and VM03. As VM03 is highly utilized, its dynamic
entitlement is higher than that of VM02, and therefore VM03 can allocate
3 GB of reserved resources.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

248

Figure 127: Distribution of Resource Pool Reservation at 11:00 (11 AM)

At 19:00 (7 PM), all systems are idle, except VM02, which is running a
backup operation. All memory required is distributed to VM02 while the
resource pool has enough reserved memory available to satisfy the
dynamic entitlement of the other virtual machines.

Figure 128: Distribution of Resource Pool Reservation at 19:00 (7 PM)

The dynamic nature of resource pool reservation might not be suitable
for specific VMs: virtual machine-level reservations are more suitable if
the continuous guaranteed availability of physical resources is required.

13 // RESOURCE POOLS AND CONTROLS

249

Child-Object-Level Reservation Inside a
Resource Pool
If a child-object inside a resource pool is configured with a reservation,
that reservation is honored by DRS. DRS relies upon host-level
scheduling and host-level resource pools to implement DRS-level
resource pools and to enforce resource pool and virtual machine-level
resource settings. DRS passes virtual machine-level reservations straight
through to the host, where the host-level CPU and memory schedulers
enforce the reservation.

Any virtual machine-level reservation is withdrawn from the resource
pool-level reservation amount and reduces the number of reserved
resources available to its siblings. Physical resources allocated by the
virtual machine reservation are available only for that virtual machine
and is not shared with siblings or VMs and resource pools external to the
parent resource pool.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

250

Figure 129: VM Reservation Within a Resource Pool

Set per-virtual machine reservations only if a virtual machine
absolutely requires guaranteed resources.

13 // RESOURCE POOLS AND CONTROLS

251

Activation of Reservation
Virtual machine reservations only take effect when a VM is powered on.
A resource pool-level reservation applies from the moment it is set.
Regardless of child virtual machines’ activity. Because of this instant
activation, the reservation immediately reduces the number of available
unreserved resources at the parent level.

Neither DRS nor the VMkernel power on a VM if it cannot honor its
reservation. In addition to virtual machine-level reservations, the
VMkernel requires unreserved memory to satisfy the memory overhead
of each VM. Configuring resource pool-level reservations can impact the
consolidation ratio of VMs in the cluster.

We recommend to right-size resource pool-level reservations to avoid
unnecessary reduction of the pool of unreserved resources. Adjust
resource pool-level reservations according to the requirements of the
current virtual machines. A great tool for this is the DRS entitlement
viewer fling available at http://labs.vmware.com/flings.

Memory Overhead Reservation
For each running VM, ESXi reserves physical memory for its virtualization
overhead. ESXi requires this extra space for the internal VMkernel data
structures like VM frame buffer and a mapping table for memory
translation. Two kinds of VM overheads exist:

Static Overhead
Static overhead is the minimum overhead that is required for the VM to
startup. DRS and the host-local memory scheduler use this metric for
admission control and vMotion calculations. The destination ESXi host
must be able to accommodate the sum of the VM reservation and the
static overhead otherwise the vMotion fails.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

252

Dynamic Overhead
Once a VM starts up, the virtual machine monitor (VMM) can request
additional memory space. The VMM requests the space, but the
VMkernel is not required to supply it. If the VMM does not obtain the
extra memory space, the VM continues to function, but this could lead to
performance degradation. The VMkernel treats overhead reservation the
same as VM-level memory reservation, and it won't reclaim this memory
once it's used.

To power-up VMs in the resource pool, a pool of reserved resources
needs to be available. If no resource pool-level reservation is set, the
resource pool is required to allocate unreserved resources from its
parent. To allow resource pools to retrieve unreserved resources, enable
the Expandable Reservation setting on the resource pool.

Memory overhead reservations need to be taken into account while
designing the cluster and resource pool structure.

The vSphere Resource Management guide lists the overhead memory of
virtual machines. The table listed below is an excerpt from the Resource
Management guide (page 34) and lists the most common ones.

MEMORY 1 vCPU 2 vCPU 4 vCPU 8 vCPU

256 20.29 24.28 32.23 48.16
1024 25.90 29.91 37.86 53.82

4096 48.64 52.72 60.67 76.78

16384 139.62 143.98 151.93 168.60

Table 21: VM Memory Overhead

Engineering spends much time reducing the memory overhead, for
example, an 8 vCPU virtual machine with 4096 MB vRAM would consume
on average a memory overhead of 561.52 MB on older versions, in the 6.x
versions, the overhead is down to 76.78 MB.

13 // RESOURCE POOLS AND CONTROLS

253

Please be aware of the fact that memory overheads may vary with each
new release of ESXi, so keep this in mind when upgrading to a new
version. Verify the documentation of the VM memory overhead and
check the specified memory reservation on the resource pool.

Memory Overhead Reservation Appears as
Resource Pool Reservation
When a virtual machine powers on, the memory overhead reservation is
added to the total amount of resource pool reservation. If a resource pool
is configured without a reservation, the total amount of memory
overhead reservation is displayed in the resource pool summary.
In the example below, you see the resource pool named Common
Workload. In the left part of the image, no VMs are powered on. The
resource pool has no memory reservation configured. The VM DCX0is
powered on, it has no reservation as well, yet the Used Reservation is
now listing 230 MB. This is the memory overhead reservation to run the
VM, and it is accounted towards the resource pool.

Figure 130: Memory Overhead Reservation

Right Size Virtual Machines
Although the VMkernel requires a small amount of memory to satisfy the
memory overhead reservation of a VM, a significant amount of memory
can be required when running many virtual machines. Right-sizing VMs
can save a lot of reserved and non-shareable memory.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

254

Expandable Reservation
The Expandable Reservation option allows a resource pool to acquire
unreserved resources from its parents to satisfy VM-level and memory
overhead reservations.

If the Expandable Reservation setting is enabled, Admission Control
considers the capacity in the parent resource pool tree available for
satisfying VM-level reservations. If the Expandable Reservation setting is
not enabled, Admission Control considers only the available resources of
the resource pool to satisfy the reservation.
In the following scenario, the expandable reservation option is disabled
for the memory configuration of the resource pool. The UI list the
reservation type as fixed instead of expandable.

Figure 131: Reservation Type Fixed

The resource pool has no reserved memory configured. When powering
on a VM, the following error shows:

13 // RESOURCE POOLS AND CONTROLS

255

Figure 132: Power On Failure

To verify whether the resource pool can satisfy the reservations, add the
virtual machine-level reservations and static overhead reservations of
every active virtual machine in the resource pool. The result of the
calculation cannot exceed the resource-pool level reservation, unless
Expandable is checked. DRS uses the following decision matrix:

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

256

Figure 133: Power On Decision Workflow

13 // RESOURCE POOLS AND CONTROLS

257

Traversing the Parent Tree
Admission Control only considers unreserved resources from parents,
not siblings. The search for unreserved capacity halts at a resource pool
configured with a limit or if Expandable Reservation is not enabled. If the
requested capacity would allocate more resources than the limit of the
parent resource pool specifies, vCenter rejects the request, and the VM
does not start.

Figure 134: Traversing the Parent Resource Pool Tree

To satisfy memory overhead reservations, enable Expandable
Reservation if no reservations are set at the resource pool-level.

Reservations are Not Limits
A reservation at the resource pool-level defines the amount of protected
physical resources; it does not define the maximum amount of available
physical resources. Child-objects can allocate resources beyond the
specified reservation. However, allocating additional resources is based
on share value, and this does not guarantee that the required resources
are available for use.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

258

Figure 135: Reservation and Shares

In the figure above, RP-1 has a 12 GB memory reservation configured, but
the total configured memory of its VMs is higher than the reservation
(Configured memory + memory overhead reservation = +/- 17 GB). RP-1
relies on the shares to obtain the remaining 5 GB to satisfy resource
demand of the VMs inside the pool.

Both resource pools have an equal number of shares, providing them
with equal chances of obtaining resources. Due to the difference in
activity of VMs, RP-1 receives 5 GB, while RP-2 receives 1 GB.
Although it appears equal distribution based on shares is not the case in
this scenario, both resource pools get the resources they require, as 80%
demand of 16 GB equals to 12.8 GB.

13 // RESOURCE POOLS AND CONTROLS

259

Resource Pool Limit
A limit defines the maximum amount of available physical resources that
can be allocated. Limits are an excellent way of specifying a boundary
with regards to physical resource utilization of objects. The limit
prohibits a resource pool from allocating more physical resources than
the configured amount, even when they are available. Setting limits on
resource pools or VMs can not only affect the performance of the virtual
machines, but can negatively affect the rest of the environment.

Limits associated with resource pools apply to all the child-objects within
the resource pool collectively. Resource pool-level limits do not implicitly
define a limit at the child-object layer, but instead adjust the maximum
amount of resources any child object can utilize. Because a resource
pool limit does not become a static setting on the child-object, the
availability of resources capped by the limit can fluctuate for each child
object from time to time. As a result, the dynamic entitlement of a virtual
machine can fluctuate depending on the level of contention inside the
resource pool.

The resource pool limit is divided amongst its children based on the
dynamic entitlement of each child-object. Because allocation is based on
dynamic entitlement, actual activity and level of contention play a big
part in the availability of resources.

Limits, Reservations and Memory Overhead
Reservation
A limit must be equal to or exceed the configured reservation. If VMs are
configured with a reservation, that reservation is directly subtracted from
the resource pool unreserved memory pool. To power-on, a VM vCenter
must be able to reserve the defined amount of reserved memory plus the
memory overhead of the VM.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

260

When calculating the limit on a resource pool, take both reservations
and memory overhead reservations into account.

Expandable Reservation and Limits
As explained in the previous section, Expandable Reservation is used to
allocate unreserved memory for VM reservations and VM memory
overhead reservations on behalf of the VMs inside the resource pool. If
the resource pool is unable to provide enough unreserved resources, it
traverses the ancestor tree to allocate sufficient unreserved resources.

However, when a limit is set at the resource pool level, the resource pool
cannot allocate more physical resources than defined by its limit setting.
Although the expandable reservation setting allows the resource pool to
allocate additional unreserved resources, the limit parameter prohibits
the resource pool from allocating more physical resources than the
configured limit.

 261

14
CALCULATING DRS

RECOMMENDATIONS

DRS takes several metrics into account when calculating migration
recommendations to load balance the cluster: the current resource
demand of the VMs, host resource availability and high-level resource
policies. The following section explores how DRS uses these metrics to
create a new and better placement of VMs than the current location of
the VMs, while still satisfying all the requirements and constraints.

When is DRS Invoked?
DRS calculates resource allocation targets every 60 seconds, while the
load-balancing operation runs every 300 seconds by default. During the
load-balancing operation DRS computes and generates
recommendations to migrate VMs.

DRS retires each recommendation that is not applied at the next load
balancing operation. Please note that DRS might generate the same
recommendation again if the imbalance is not solved.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

262

Recommendation Calculation
DRS performs multiple calculations and passes to generate migration
recommendations. DRS determines the cluster imbalance and makes a
selection of suitable VMs to migrate to solve the imbalance.

Constraints Correction
Before determining the current load imbalance, DRS checks for
constraint violations. The constraint correction pass determines whether
DRS needs to:

▪ Evacuate hosts that the user requested to enter Maintenance or
Standby mode

▪ Correct Mandatory VM-Host affinity/anti-affinity rule violations
▪ Correct VM/VM anti-affinity rules violations
▪ Correct VM/VM affinity rules violations
▪ Correct host resource overcommitment (Rare, since DRS is

controlling resources)

These constraints are respected during load balancing. Understand that
constraints may cause an imbalance, which may not be fixable while
respecting these constraints. The imbalance information on the cluster
summary page informs the administrator if an unfixable imbalance was
identified.

Imbalance Calculation
To establish cluster imbalance, DRS compares the Current Hosts Load
Standard Deviation (CHLSD) metric to the Target Host Load Standard
Deviation (THLSD). If the CHLSD exceeds the THLSD, the cluster is
considered imbalanced.

14 // CALCULATING DRS RECOMMENDATIONS

263

Current Host Load Standard Deviation
DRS determines the Current Host Load Standard Deviation (CHLSD) by
computing the average and standard deviation of the normalized
entitlement across all active hosts in the cluster.

Normalized entitlement is the measure of the utilization of available
capacity. DRS receives the usage and demand of each VM to compute its
dynamic entitlement then sums the entitlements of all VMs on the host
and divides this by the capacity of the host. The available capacity of the
host is the number of resources remaining after subtracting the
resources required for running the virtualization layer.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑒𝑛𝑡𝑖𝑡𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑉𝑀 𝑒𝑛𝑡𝑖𝑡𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 ℎ𝑜𝑠𝑡

Because the virtual machine entitlement contains demand metrics, such
as %ready time for CPU and %idle for memory, the standard deviation of
the normalized entitlement is very similar to the state of a cluster that
does not experience contention.

Target Host Load Standard Deviation
DRS derives the Target Host Load Standard Deviation (THLSD) from the
DRS migration threshold, which defines the cluster imbalance tolerance
level.

DRS Migration Threshold
The migration threshold determines the maximum value under which the
load imbalance is to be kept under. The DRS migration threshold offers
five levels, ranging from Conservative to Aggressive.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

264

Figure 136: Migration Threshold

Each threshold level sets an imbalance tolerance margin. The Aggressive
threshold sets a tight margin allowing for little imbalance, while the more
conservative thresholds tolerate bigger imbalances. The most
conservative threshold does not compute a THLSD and only
recommends mandatory moves to correct constraint violations. More
information about thresholds can be found later in the chapter.

A higher frequency of migrations can be expected when selecting a more
aggressive migration threshold as DRS is required to keep the CHLSD
lower than the THLSD.

The metric Current Host Load Standard deviation is presented in vCenter,
while CHLSD is often referred as the Load Imbalance Metric inside DRS.
In the next section, Load Imbalance Metric is interchangeable with
CHLSD.

14 // CALCULATING DRS RECOMMENDATIONS

265

Figure 137: DRS Migration Recommendation Workflow

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

266

If the Current Hosts Load Standard Deviation exceeds the Target Hosts
Load Standard Deviation, DRS will initiate the GetBestMove.

while (load imbalance metric > threshold) {

move = getbestmove();

if no good migration is found:

stop;

else:

add move to the list of recommendations;

update representation of cluster to the state after the move is

added; }

The algorithm adds all the recommendations to the list before allowing
vCenter or the user to execute the recommendations list.

GetBestMove
The GetBestMove procedure aims to find the VM that gives the best
improvement in the cluster-wide imbalance. The GetBestMove procedure
consists of the following instructions:

GetBestMove() {

for each virtual machine v:

 for each host h that is not source host:

 if h is lightly loaded compared to source host:

 if cost-benefit and risk analysis accepted

 simulate move v to h

 measure new cluster-wide load imbalance metric as g

 return move v that gives least cluster-wide imbalance g.

}

This procedure determines which migration offers the most
improvement. DRS cycles through each DRS-enabled VM and each host
that is not the source host. The source host is the ESXi host currently
running the VM under consideration. DRS compares the normalized
entitlement of the source host to each destination host. Hosts with a
lower normalized entitlement are selected for further simulations.
After the GetBestMove is completed and the result is positive, DRS
selects an ESXi host from the previous normalized entitlement selection
and simulate a migration. DRS computes the possible CHLSD of both

14 // CALCULATING DRS RECOMMENDATIONS

267

hosts after the simulated migration and, if they still exceed the DRS
Migration threshold, DRS repeats the procedure but selects a different
target host. DRS repeats this procedure for every VM-to-host
combination. The migration recommendation lists the migrations that
result in the most significant reduction in load imbalance.

Cost-Benefit and Risk Analysis Criteria
The purpose of the cost-benefit and risk analysis is to filter out expensive
and unstable migrations. The term “unstable migration” indicates the
effect of the migration on the cluster load balance and examines the
stability of the workload pattern of the virtual machine. Please note it
does not imply the vMotion process itself is unstable.

DRS invokes a cost-benefit risk analysis to throttle migrations and avoid
a constant stream of vMotions. Both the source and destination hosts
incur costs when performing a vMotion and continuously initiating
vMotions can nullify the benefit of migrating a virtual machine.

The cost-benefit and risk analysis also prevent spiky workloads from
affecting the recommendations. If a virtual machine’s workload changes
directly after the recommendation, the recommendation becomes
useless and creates a situation where the virtual machine is selected
over and over again, resulting in “Ping-Pong” migrations.

Cost
The vMotion process reserve 30% of a CPU core if a 1GbE connection is
used. If 10GbE is available to the vMotion Portgroup, it reserves 100% of
a CPU core. This reservation is set to a host-local resource pool and is
created on both source and destination hosts. If multiple vMotions are
running, this reservation is shared between the vMotion tasks. A shadow
VM is created on the destination host during the vMotion process; the
memory consumption of this shadow VM is also factored into the cost of
the recommendation.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

268

Benefit
By moving a VM, resources on the source host are released and made
available for other VMs. The migrated VM benefits due to the lower
normalized entitlement on its new host. The migration of workloads
identified by DRS results in a much more balanced cluster.
If any host is overcommitted on a particular resource, DRS gives a higher
benefit weight to that resource for all migrations. For example, if
contention occurs primarily on CPU, DRS applies a higher benefit weight
on CPU to resolve contention. DRS re-examines overcommitment on a
particular resource during each invocation.

Risk
Risk accounts for the possibility of irregular loads. Irregular load
indicates inconsistent and spiky demand workloads.

Combining the Cost-Benefit Risk
DRS recommends migrations for rebalancing if their estimated cost is
lower than their potential benefit for current and recent VM demand and
to the relative imbalance between hosts. DRS combines the cost benefits
and risk to compute a new placement of virtual machines that satisfies
all constraints and improves load balance.
The cost-benefit and risk analysis determines the resource gain of
migration, whether positive or negative.

To determine if migration has a positive result, the workload
characteristics of the VM over the last 5 minutes are analyzed. This is
called the “stable time” and indicates how long the VM has used
resources similar to the active workload metric. A conservative
estimation is used for the remaining time within the invocation period
(invocation period duration – stable time). DRS assumes the VM runs at
its worst possible load and uses the peak value from the last 60 minutes.
DRS includes the cost of migration and considers the resource gain of
both the source and destination hosts. DRS only recommends a
migration if the cost-benefit and risk analysis produces a positive result.

14 // CALCULATING DRS RECOMMENDATIONS

269

MinGoodness
Besides the Cost-Benefit analysis, DRS calculates a Goodness value for
each move. This value indicates the positive or negative effect of a move
on the load balance of the cluster. For both the Cost-Benefit and
Goodness metrics, DRS uses the same rating system:

RATING DESCRIPTION

-2 Strongly reject
-1 Accept only if the other metric is rated strongly accept

0 Neutral, leave the decision to the other metric

+1 Accept, if the other metric is neutral or above

+2 Strongly accept, reject only if other metric rating is definitely reject

Table 22: DRS Rating System

Each move gets a goodness rating that is related to current load balance
and the minimum migration threshold. If a move severely hurts the load
balance, the move receives a rating of -2. A move that slightly reduces
the load balance gets a -1 rating. One that improves the load balance but
does not improve it enough to reach the minimum threshold receives a
neutral rating. A move that improves the load balance slightly (0.1)
receives a +1 rating. Moves with a goodness rating of +2 improve the
load balance by a significant amount.

As mentioned before, DRS uses the same values to weight the cost-
benefit of a move. These ratings are applied as follows: A move that
reduces resource availability by at least 10% receives a -2 rating. A move
that could have a slight decrease in resource availability receives a value
of -1. If a move has a neutral effect on resource availability, i.e., it doesn’t
hurt or help, receives a 0 value. If a move improves resource availability, a
+1 rating is awarded, while a move that improves resource availability by
at least 10% receives a +2 rating.
Before presenting the recommendations, the goodness ratings are
compared to the cost-benefit ratings. As the cost-benefit algorithm is
more conservative than the goodness algorithm, it is highly unlikely to
see DRS recommend moves with a neutral or less goodness rating.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

270

Therefore, recommendations made by DRS are usually moves with
positive cost-benefit and goodness ratings.

Filtering moves by goodness (MinGoodnessFiltering) and cost-benefit
(CostBenefitFiltering) could prevent DRS from recommending moves
when a cluster is severely imbalanced. A cluster is regarded as severely
imbalanced when any host’s load differs more than 0.2 from the target
host load deviation.

If you notice that DRS is not recommending any load balancing moves in
your environment, it could be that each move has a too little impact on
the cluster imbalance. It is possible that no possible move significantly
improves the cluster-wide balance (controlled by the
MinGoodnessFiltering), or that the moves which improve the cluster-wide
imbalance have costs that are too high (controlled by the
CostBenefitFiltering).

To solve this situation, DRS is equipped with three additional steps in the
load-balancing algorithm. These steps are RelaxMinGoodness,
RelaxCostBenfitFiltering and DropCostBenefitFiltering. How does this
work?

 COST-BENEFIT RATINGS

Goodness Ratings

 -2 -1 0 1 2
-2 Reject Reject Reject Reject Reject

-1 Reject Reject Reject Reject Reject

0 DCB RCB RMG Accept Accept

1 DCB RCB Accept Accept Accept

2 DCB Accept Accept Accept Accept

Table 23: DRS Invocation Steps

During normal operations, moves with neutral or negative Goodness
ratings are rejected (Reject); however, they can be reconsidered and
accepted (Accept) if the cluster remains severely imbalanced.

14 // CALCULATING DRS RECOMMENDATIONS

271

If the cluster remains severely imbalanced after the DRS load balancing
step, and if the load balancing operation isnot limited by the migration
limit (MaxMovesPerHost), load balancing is re-run with the
RelaxMinGoodness (RMG) flag activated. This means that a DRS
considers recommending moves with a neutral goodness and cost-
benefit rating previously dropped by MinGoodNessFiltering.

If the analysis shows that the cluster remains severely imbalanced, even
after considering moves that improve the cluster-wide balance in a small
- but still positive way, DRS sets the RelaxCostBenefitFiltering (RCB) flag.

In this situation, moves are considered that would improve load balance
on a small to medium scale, even if they have a slightly negative Cost
Benefit value. If these additional moves do not solve the severe
imbalance, DRS sets the DropCostBenefit (DCB) flag and considers
moves that would have been strongly rejected during regular load
balancing runs.

Please note that these additional moves only appear if the cluster is in a
state of severe imbalance. In essence, this feature is an automated way
of implementing the manual workaround of setting minGoodness=0 and
costBenefit=0. However, DRS applies this mechanism only during states
when it’s necessary; enabling these settings manually could hurt VM
performance.

Calculating the Migration Recommendation
Priority Level
The migration threshold specifies the tolerance of imbalance of the
Current Host Load Standard Deviation (CHLSD) relating to the Target
Host Load Standard Deviation (THLSD). The migration threshold factor is
configured via the DRS setting on the cluster level. Priority levels are
used to make the migration threshold setting simpler to understand.

During its calculations, DRS assigns a priority level to each
recommendation and this priority level is compared to the migration

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

272

threshold. If the priority level is less than or equal to the migration
threshold, the recommendation is displayed or applied, depending on the
automation level of the cluster. If the priority level is above the migration
threshold, the recommendations are either not displayed or discarded.
You can think of the migration threshold as a filter for recommendations
generated by DRS.

Level 1 (conservative)
When selecting the conservative migration threshold level, only
mandatory moves, priority-one recommendations, are executed. This
means that the DRS cluster does not invoke any load-balancing
migrations. Mandatory moves are issued when:

▪ The ESXi host enters maintenance mode
▪ The ESXi host enters standby mode
▪ An (anti-) affinity rule is violated
▪ The sum of the reservations of the virtual machines

exceeds the capacity of the host

It is possible that a mandatory move causes a violation on another host.
If this happens, DRS moves VMs to fix the new violation at the next DRS
invocation. This scenario is possible when multiple rules exist on the
cluster. It is not uncommon to see several migrations required to satisfy
the configured DRS rules.

Level 2 (moderately conservative)
The level 2-migration threshold only applies priority-one, and priority-two
recommendations, priority two recommendations promise a very good
improvement in the cluster’s load balance.

Level 3 (moderate)
The level 3-migration threshold is the default migration threshold when
creating DRS clusters. The moderate migration threshold applies priority-
one, -two and priority-three recommendations, promising a good
improvement in the cluster’s load balance.

14 // CALCULATING DRS RECOMMENDATIONS

273

Level 4 (moderately aggressive)
The level 4-migration threshold applies all recommendations up to
priority level four. Priority-four recommendations promise a moderate
improvement in the cluster’s load balance.

Level 5 (aggressive)
The level 5-migration threshold is the right-most setting on the migration
threshold slider and applies all five priority level recommendations; every
recommendation which promises even a slight improvement in the
cluster’s load balance is applied.

The default moderate migration threshold provides a higher tolerance
for migrations, while offering sufficient balance. The algorithm
generates only recommendations that are worthwhile according to the
tolerance. The default setting is typically aggressive enough to
maintain workload balance across hosts without creating unnecessary
overhead caused by too-frequent migrations.

Pair-Wise Balancing Thresholds
vSphere 6.5 introduced an additional load balancing threshold that helps
to minimize the load difference between hosts in the cluster. This
threshold is tied to the migration threshold and determines the maximum
load difference between the least utilized host and the most utilized host
within the cluster. This setting is called pair-wise balancing.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

274

Figure 138: Pair-Wise Balancing Threshold

In this scenario, DRS compares the host load of each host and
determines that the least utilized host is ESXi-01 with 30% utilization.
The most utilized host is ESXi-05, which is 52% utilized. The difference in
load exceeds the threshold of 20% that related to from the migration
threshold. The table below lists the Tolerable Resource Utilization
Difference Between Host Pair and its relationship with the migration
threshold level.

MIGRATION THRESHOLD

LEVEL
TOLERABLE RESOURCE UTILIZATION DIFFERENCE

BETWEEN HOST PAIR
1 Conservative Not available

2 30%

3 (Default) 20%

4 10%

5 5%

Table 24: DRS Migration Threshold Level

14 // CALCULATING DRS RECOMMENDATIONS

275

DRS migrates VMs to reduce the load difference. DRS is not bound to
migrate the workload from ESXi-05 to ESXi-01. It can move VMs from
ESXi-05 to any other host in the cluster. Standard load-balancing logic is
applied, and therefore DRS takes all the constraints into account when
finding the most suitable candidate for migration.

Network Aware DRS
vSphere 6.5 introduced Network-Aware DRS. The DRS initial placement
and load-balancing algorithms take host network utilization and the VM
network usage in account when determining the best ESXi host for VM
placement.

It is crucial to understand that DRS in vSphere 6.7 does not migrate
VMs when there is a network load imbalance. DRS balances on CPU
and memory imbalance and uses network utilization metrics to fine-
tune the VM placement. It makes sure that the VM is placed on a host
that provides the compute resources and the host does not have a
saturated network connection. In essence, network-aware is a filter for
host selection; network utilization is not a first-class citizen in the
DRS algorithms like CPU and memory.

Initial Placement Enhancement
During Initial Placement, DRS creates a list of ESXi host based on
compatibility, compute utilization, constraints, and resource
requirements of the VM. DRS sorts the list and selects the ESXi host that
satisfies the resource utilization of the VM (100% utilization of compute
resource configuration) and have the least network utilization.

Load-Balancing Enhancement
During Load Balancing, DRS generates the list of migration
recommendations. Network-aware DRS prunes the list of migration
recommendations that contains hosts that are network saturated.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

276

After pruning, DRS selects the migration recommendation that improves
the cluster balance from a compute perspective. If the cluster contains
hosts that are network saturated, DRS selects the migration
recommendation that improves cluster balance and that improves the
network resource availability of the source host. Due to this new
selection of hosts, DRS only shows a single host recommendation if the
VM is set to manual DRS automation level.

Network Saturation Threshold
The network saturation threshold is set to 80% by default. It's important
to understand that Network-aware DRS uses the total network capacity
and usage of the host, it accounts for all the physical uplinks that are
connected to a switch and in an 'up' state. It doesn't distinguish between
portgroups or vSwitches.

For example, your ESXi host has four physical 1 GbE NICs. Two NICs are
connected to vSwitch0 that handles infrastructure network traffic, such
as management network traffic, vMotion traffic and IP-storage traffic.
The two remaining physical NICs are attached to vSwitch1, solely created
to isolate VM traffic. You can argue that Network-aware DRS should only
consider the utilization of vSwitch1. Unfortunately, vSwitch configuration
and higher-level objects are not visible to network-aware DRS. Thus, it
just aggregates the bandwidth of all the active physical NICs.

14 // CALCULATING DRS RECOMMENDATIONS

277

Figure 139: Network-Aware DRS Thresholds on Logically Separated NICs

Today most new servers are equipped with converged network adapters
or 2 x 10GbE NICS, logically partitioned by VLANs. In these situations,
Network-Aware DRS functions more accurately as VM networks are able
to use all the network bandwidth available to the ESXi host.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

278

Figure 140: Network-Aware DRS Thresholds 10 GbE NICs Configuration

Advanced Setting
You can change the threshold with the following advanced setting:
NetworkAwareDrsSaturationThresholdPercent. By default, it is set to 80%.
Lowering the threshold might be helpful if the ESXi hosts have an
abundance of bandwidth. But as always, please test it first in a test
environment before using advanced settings in production.

 279

15
IMPACTING DRS

RECOMMENDATIONS

Some DRS settings and features can influence the DRS migration
recommendations. This chapter takes a closer look at the various
settings and the impacts they can have on the DRS calculations and load
balancing process.

DRS Additional Options
To simplify DRS tuning, DRS exposed three new policies grouped under
the name Additional Options. These options provide customizations to
the DRS load-balancing algorithm and translate into advanced settings.
Each of these options is listed in the advanced settings tab of the cluster
UI. These options are available at Cluster | Configure | vSphere DRS | Edit.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

280

Figure 141: DRS Cluster Additional Options

VM Distribution
The VM Distribution (TryBalanceVmsPerHost) setting instructs DRS to
distribute the VMs equally across the cluster. This policy replaces the
advanced settings LimitVMPerESXHost and LimitVMsPerESXHostPercent
introduced in vSphere 5.5.

Figure 142: VM Distribution

Fundamentally, the VM Distribution setting keeps the number of VMs on
any host below the (number of VMs)/(number of hosts).
The setting is a soft setting, meaning that DRS attempts to distribute the
VMs evenly with the best effort. It still honors and applies the full load-
balancing algorithm. The cluster should not get in a state that it is
severely imbalanced.

15 // IMPACTING DRS RECOMMENDATIONS

281

The setting only applies to load-balancing operations. Imbalance can
occur if a group of VMs is powered on simultaneously. During the next
load-balancing operation, the imbalance is solved. During this load-
balance operation, DRS determines which VM has the lowest entitlement
(small VM) and moves this to less loaded host. The move still needs to
improve the overall load balance. Thus you won't see DRS migrate VMs
randomly.

This option is primarily meant for availability purposes, averaging out the
number of VMs per host in the cluster. The side effect of selecting this
option is the increasing number of vMotions, to keep the number of VMs
per host balanced.

Memory Balancing in Non-
Overcommitted Clusters
DRS is aligned with the premise of virtualization, resource sharing and
overcommitment of resources. DRS goal is to provide compute resources
to the active workload to improve workload consolidation on a minimal
compute footprint. However, virtualization surpassed the original
principle of workload consolidation to provide unprecedented workload
mobility and availability.

With this change of focus, many customers do not overcommit on
memory. Many customers design their clusters to contain (just) enough
memory capacity to ensure all running virtual machines have their
memory backed by physical memory. In this scenario, DRS behavior
should be adjusted as it traditionally focusses on active memory use.

vSphere 6.5 and 6.7 provides this option in the DRS cluster settings. By
ticking the box “Memory Metric for Load Balancing” DRS uses the VM
consumed memory for load-balancing operations.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

282

Figure 143: DRS Memory Metric for Load Balancing

Please note that DRS is focused on consumed memory, not
configured memory! DRS always keeps a close eye on what is
happening rather than accepting static configuration. Let’s take a
closer look at DRS input metrics of active and consumed memory.

Out-of-the-box DRS Behavior
As described in the chapter “Resource Distribution” DRS calculates the
active memory demand of the VMs in the cluster during load balancing
operation. The active memory represents the working set of the VM,
which signifies the number of active pages in RAM. By using the working-
set estimation, the memory scheduler determines which of the allocated
memory pages are actively used by the virtual machine and which
allocated pages are idle. To accommodate a sudden rapid increase of the
working set, 25% of idle consumed memory is allowed. Memory demand
also includes the virtual machine’s memory overhead.

Let’s use a 16 GB VM as an example of how DRS calculates the memory
demand. The guest OS running in this virtual machine has touched 75%

15 // IMPACTING DRS RECOMMENDATIONS

283

of its memory size since it was booted, but only 35% of its memory size
is active. This means that the virtual machine has consumed 12288 MB
and 5734 MB of this is used as active memory.

Figure 144: Active, Consumed and Configured Memory

As mentioned, DRS accommodate a percentage of the idle consumed
memory to be ready for a sudden increase in memory use. To calculate
the idle consumed memory, the active memory 5734 MB is subtracted
from the consumed memory, 12288 MB, resulting in a total 6554 MB idle
consumed memory. By default, DRS includes 25% of the idle consumed
memory, i.e. 6554 * 25% = +/- 1639 MB.

Figure 145: Default Dynamic Entitlement Calculation

The VM has a memory overhead of 90 MB. The memory demand DRS
uses in its load balancing calculation is as follows: 5734 MB + 1639 MB +
90 MB = 7463 MB. As a result, DRS selects a host that has 7463 MB
available for this machine if it needs to move this VM to improve the load
balance of the cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

284

Memory Metric for Load Balancing Enabled
When enabling the option “Memory Metric for Load Balancing”, DRS
takes into account the consumed memory + the memory overhead for
load balancing operations. In essence, DRS uses the metric Active +
100% IdleConsumedMemory.

Figure 146: 100% Idle Consumed Memory

The UI client from vSphere 6.5 update 1d and up allows you to get better
visibility in the memory usage of the virtual machines in the cluster. The
memory utilization view can be toggled between active memory and
consumed memory.

Figure 147: Cluster Memory Utilization Consumed View

15 // IMPACTING DRS RECOMMENDATIONS

285

When reviewing the cluster, it shows that the cluster is pretty much
balanced.

Figure 148: Cluster Balanced State

When looking at the default view of the sum of VM memory utilization
(active memory), it shows that ESXi host ESXi-02 is busier than the
others.

Figure 149: Sum of VM Memory Utilization Based on Active Memory

Since the active memory of each host is less than 20% and each virtual
machine is receiving the memory they are entitled to, DRS does not move
VMs around. Remember, DRS is designed to create as little overhead as
possible. Moving one VM to another host to make the active usage more
balanced, is just a waste of compute cycles and network bandwidth. The
VMs receive what they want to receive now, so why take the risk of
moving VMs?

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

286

However, a different view of the current situation is when you toggle the
graph to use consumed memory.

Figure 150: Sum of VM Memory Utilization Based on Consumed Memory

Now we see a more significant difference in consumed memory
utilization. Much more than 20% between ESXi-02 and the other two
hosts. By default, due to pair-wise balancing DRS tries to clear a
utilization difference of 20% between hosts. However, since DRS focuses
on Active memory usage, Pair-Wise Balancing won’t be activated with
regards to the 20% difference in consumed memory utilization. After
enabling the option “Memory Metric for Load Balancing” DRS rebalances
the cluster with the optimal number of migrations (as few as possible) to
reduce overhead and risk.

Figure 151: Memory Metric for Load Balancing Enabled

If you design your cluster with no memory overcommitment as guiding
principle, we recommend testing out the DRS option “Memory Metric
for Load Balancing”. You might want to switch DRS to manual mode,
to verify the recommendations first.

Please note that these additional options override any equivalent cluster
advanced options. For example, if you set cluster advanced option
PercentIdleMBInMemDemand to some value, and then enable the memory
metric option for load balancing, the advanced option is cleared to give
precedence to the new memory metric option.

15 // IMPACTING DRS RECOMMENDATIONS

287

CPU Over-Commitment (DRS Additional
Option)
DRS provides the CPU over-commitment option for applications that
benefit from lower CPU latency (CPU scheduling time). By reducing the
number of virtual CPUs per physical CPU, you skew the cluster more
towards performance than providing the best economics.

Figure 152: Setting the CPU Over-Commit Ratio 4:1

When setting the CPU Over-Commitment option of the DRS cluster, you
configure an advanced option. Depending on the client use, the advanced
option is different.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

288

CLIENT TYPE HTML 5 CLIENT WEB CLIENT

Focus
Host-Based vCPU to pCPU

ratio

Cluster-wide CPU over-
commitment ratio

Advanced
Setting

MaxVcpusPerCore MaxVCPUsPerClusterPct

Minimum
Value

4 0

Maximum
Value

32 500

Table 25: vSphere Client Variation

Maximum vCPUs per CPU Core
This DRS additional option control is available via the H5 client and is
active at the ESXi host level. No ESXi host in the cluster is allowed to
violate this setting. The UI allows settings between 0 and 500. However,
the minimum value is 4, the maximum value is 32. The maximum setting
is in line with ESXi host maximum vCPU to pCPU limit of 32.

15 // IMPACTING DRS RECOMMENDATIONS

289

Figure 153: MaxVcpusPerCore Advanced Option

Maximum vCPU Per Cluster Percentage
This DRS additional options control is applied when using the (not-
recommended) web client. This setting applies a cluster-wide vCPU to
pCPU overcommitment ratio. The setting is a percentage based on the
calculation of total number of vCPUs in the cluster / total number of
pCPUs in the cluster divided by 100.

Figure 154: Web Client Option

You are allowed to use the minimum value of 0. However, this restricts
the cluster from running any vCPU on the cluster. You are manually
creating a cluster-wide denial of service. A use-case might be a
temporary ban on workloads to make room for cluster-wide upgrade
operations. Other than that, we cannot come up with a use-case.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

290

Figure 155: MaxVcpusPerClusterPct

In general, it is recommended to use the H5 client as much as possible.
However, the difference in behavior could force you to load the web
client. If you want to reduce the over-commitment ratio of 4:1 or less use
the web client. If you want to be more lenient, but still restrict it to less
than 32, use the H5 client. It is expected that future updates of the
vSphere versions provide a more uniform experience.

AggressiveCPUActive
Stated multiple times in the book, but noting it again, please only use
advanced settings unless there is an absolute need for it. Especially
the AggressiveCPUActive setting, test properly, before applying it in
production environments.

The AggressiveCPUActive setting changes the CPU balancing behavior
of DRS. It's designed to handle spiky CPU workloads by changing the
statical input for DRS to base its recommendations on. By default, DRS
uses the CPU active percentage statistic, averaged over five minutes to
determine the CPU entitlement. When an application is generating stable

15 // IMPACTING DRS RECOMMENDATIONS

291

load, this average provides an adequate representation of the workload.
Using such a sample size allows vCenter to handle high volumes of stats,
which ramp up quickly when you realize DRS uses 20 quikstat counters
per VM with a 60 minutes length of history.

However, if the workload generates short-lived spikes of workload, the
average stat can smooth out spikes and are missed by DRS to generate a
migration recommendation to find a more suitable host.

When enabling AggressiveCPUActive (AggressiveCPUActive=1), DRS
uses five one-minute samples of average CPU active. DRS sorts these
statistics in ascending order and selects the second highest value in the
interval. It means that DRS uses the 80th percentile value of the last 5
minutes of active CPU usage of the VM.

For example, a VM is running a workload that is using 60%, 5%, 80%, 5%
and 40%. With the default 5 minutes quickstat, DRS determine the
demand of the VM is 38%. When enabling AggressiveCPUActive, DRS
sorts the quickstats in ascending order, 5%,5%,40%,60% and 80% and
selects the 4th value (80th percentile). DRS uses 60% as CPU active
demand for this VM.

Using this setting can help to avoid ready time for particular VMs, but
please be aware that this more aggressive DRS behavior increases
overhead at the vCenter level and it skews the behavior of DRS
recommendation. It can be compelling, but it can also introduce
unwanted behavior. Please test accordingly.

VM Size and Initial Placement
When a VM powers on, DRS selects a target host to place the VM. DRS
prefers the registered host as long as the placement of the VM on this
host does not cause a cluster imbalance.

During initial placement, DRS applies a worst-case scenario because it
does not have historical data of the resource utilization of the virtual

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

292

machine. DRS assumes that both the memory demand and CPU demand
is equal to its configured size. I.e., powering on a 4 vCPU 16 GB VM
introduces 400% CPU load and consumes 16 GB of memory.

VMs that are oversized can introduce a temporary cluster imbalance. If
none of the cluster members can provide the full 100% of the resources
requested DRS defragments the cluster’s resources, migrating VMs to
make room.

If the actual utilization of a VM is comparable to its configured size, the
new migrations are expected behavior as they help the cluster reach a
balanced state as quickly as possible. However, if a VM is oversized (its
active utilization does not compare to DRS’s initial expectation), a
number of migrations throughout several DRS rounds may occur to
rebalance the cluster.

We are aware that many organizations still size their VMs based on
assumed peak loads happing in the (late) life cycle of that service or
application. This is similar to the policy historically used for sizing
physical machines. One of the benefits of using VMs is the flexibility it
offers with regards to resizing a machine during its lifecycle. We
recommend leveraging these mechanisms and incorporating this into
your service catalog and daily operations. To most effectively utilize your
resources, size a VM according to its current or near-future workload.

MaxMovesPerHost
DRS evaluates the cluster and recommends migrations based on
demand and cluster balance state. This process repeats each invocation
period. To minimize CPU and memory overhead, DRS limits the number
of migration recommendations per DRS invocation period. Ultimately,
there is no advantage in recommending more migrations that can
complete within a single invocation period. On top of that, the demand
could change after an invocation period which would render the previous
recommendations obsolete.

15 // IMPACTING DRS RECOMMENDATIONS

293

vCenter calculates the limit per host based on the average time per
migration, the number of simultaneous vMotions and the length of the
DRS invocation period (PollPeriodSec).

PollPeriodSec: By default, PollPeriodSec – the length of a DRS
invocation period – is 300 seconds, but can be set to any value between
60 and 3600 seconds.

Decreasing: The interval increases the overhead on vCenter due
to additional cluster balance computations. It also reduces the
number of allowed vMotions due to a smaller time window,
resulting in more extended periods of cluster imbalance.

Increasing: The interval decreases the frequency of cluster
balance computations on vCenter and allows more vMotion
operations per cycle. Unfortunately, this may also leave the
cluster in a more prolonged state of cluster imbalance due to
the prolonged evaluation cycle.

Simultaneous vMotions: vSphere allows you to perform 8 concurrent
vMotions on a single host with 10GbE capabilities. For 1GbE, the limit is
4 concurrent vMotions.

Multi-NIC vMotion: Assigns multiple active NICs to the vMotion
portgroup that allows vMotion to leverage the available bandwidth for
vMotion operations. Even a single vMotion can utilize all available NICs
to decrease the amount of time required for a vMotion.

Estimated total migration time: DRS considers the average migration
time observed from previous migrations. The average migration time
depends on many variables, such as source and destination host load,
active memory in the VM, link speed, available bandwidth and latency of
the physical network used by the vMotion process.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

294

When designing a DRS cluster, take the requirements of vMotion into
account. By providing enough bandwidth, the cluster can reach a
balanced state more quickly, resulting in better resource allocation
(performance) for the VMs.

Placement Rules
To control VM placement, vSphere 6.7 offers both Virtual Machine-to-
Virtual Machine (VM-VM) rules and Virtual Machine to Host (VM-Host)
rules.

▪ VM-VM affinity rules specify whether VMs should stay together
and run on the same hosts (affinity rules) or that they are not
allowed to run on the same host (anti-affinity).

▪ A VM-Host affinity rule specifies whether the members of a VM

DRS group can or should run on the members of a Host DRS
group.

VM-VM Affinity Rules
A VM-VM affinity rule specifies which VMs should run on the same ESXi
host.

Affinity rules are used to keep multiple VMs on the same ESXi host,
typically to eradicate network latency. For example, by keeping both the
front-end and back-end servers of an application on the same host,
internal application network traffic remains inside the virtual switch,
reducing latency and decreasing load on physical network links and
components.

VM-VM Anti-Affinity Rules
A VM-VM anti-affinity rule achieves the opposite of an affinity rule: it
specifies which VMs are not allowed to run on the same host.
Anti-affinity rules can be used to offer host failure resiliency to services
provided by multiple VMs; examples of such services are Active Directory

15 // IMPACTING DRS RECOMMENDATIONS

295

domain controllers, DNS servers, and web server farms. By running these
VMs on separate hosts, it is possible to maintain service availability
during an ESXi host failure.

VM-VM Affinity Rules – impact on HA
Note that VMware HA is unaware of VM-VM affinity and anti-affinity
rules. Following a host failure, VMware HA may restart the VMs on the
same host, but DRS corrects this violation during the next invocation.

VM-VM Affinity Rules – impact on DRS
VM-VM affinity rules limit migration choices and place more constraints
on VM mobility. DRS obeys affinity rules and correct constraint violations
first before determining optimal VM placement to achieve cluster
balance. In small clusters or large clusters with a large number of rules,
this behavior can lead to sub-optimal cluster balance and resource
allocation. Although DRS may temporarily violate VM-VM affinity rules if
necessary for placement, it corrects the violation during the next
invocation period if possible, probably affecting resource allocation
again.

VM-Host Affinity Rules
A VM-Host affinity rule specifies whether the VMs, belonging to a VM
Group, must (not) or should (not) run on the ESXi hosts in a Host Group.
VM-Host affinity rules establish an association between a group of VMs
and a group of ESXi hosts. Please note that VMs listed in the VM Group
can independently run on the ESXi host listed in the Host Group, they are
not required to run all on the same hosts within the Host Group – unless
the Host Group contains only one host, of course.

VM-Host affinity rules can be used to isolate VMs inside cluster-subsets
of hosts to comply with ISV license regulations. A VM-Host Anti-affinity
rule may be used to separate VMs across different failure domains for
increased availability. An example of a failure domain could be a server
blade chassis or hosts or sets of racks connected to the same power
supplies. A VM-Host affinity rule consists of three components:

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

296

▪ VM Group
▪ Host Group
▪ Type (i.e., Must/Should run on)

VM-Host affinity and anti-affinity can be configured as either mandatory
rules, presented in the UI as “Must (not) run on” or preferential rules,
presented as “Should (not) run on”.

Figure 156: VM to Host Affinity Rule

VM-Host affinity rules apply to a specific cluster. Therefore, they can
only contain virtual machines and ESXi hosts belonging to that
specific cluster.

VM Group: The VM group contains the VMs to which the rule applies.
Please note that if a VM is removed from the cluster, it is automatically

15 // IMPACTING DRS RECOMMENDATIONS

297

removed from the VM Group. The VM is not automatically re-added to the
group if it is returned to the cluster.

Host Group: The Host Group contains the ESXi hosts to which the rule
applies. Similar to VM behavior, if an ESXi host is removed from the
cluster, it is automatically removed from the Host Group. The host is not
automatically returned to the group if the host re-added to the cluster.

Type: Two different types of VM-Host rules are available, a VM-Host
affinity rule can either be a “must” rule or a “should” rule.

Should (not) run on: The “should” rule is a preferential rule for DRS and
DPM. DRS and DPM use best effort trying to satisfy these rules, but DRS
and DPM can violate should rules if necessary.

Must (not) run on: The “must”-rule is a mandatory rule for HA, DRS, and
DPM. It forces the specified VMs to run on or not run on the ESXi hosts
specified in the ESXi Host Group.

Should Run - Preferential Rules
Preferential rules are designed to influence DRS migration
recommendations. DRS executes preferential rules if it does not over-
utilize the CPU or memory demand of the host. During load-balancing
calculations, DRS runs the preferential rules. If they violate any other
requirement, DRS drops the rule list and reinitializes a load-balance
calculation without the preferential rules.

DRS does not provide any information regarding preferential rules to HA.
Since HA is unaware of these “should” rules, it may unknowingly violate
these rules during placement after a host failure. During the next DRS
invocation cycle, DRS identifies the constraint and issues a (4 stars -
priority 2) migration recommendation to correct this violation, if possible.
Depending on the automation level of DRS, it will either display the
recommendation or correct the situation itself.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

298

Must Run - Mandatory Rules
A mandatory rule applies to DRS, DPM, HA, and user-initiated operations.
DRS takes the mandatory rules into account when generating or
executing operations. DRS never produces any recommendations that
violate the mandatory rule set. For example, DRS rejects the request for
Maintenance Mode if it would violate a mandatory rule.

If a reservation is set on a VM, DRS takes both the reservation and the
mandatory rules into account. Both requirements must be satisfied
during placement or power on operation. If DRS is unable to honor either
one of the requirements, the VM is not powered on or migrated to the
proposed destination host.

When a mandatory rule is created, and the current VM placement is in
violation of a rule, DRS corrects this violation or reports an error if the
violation cannot be corrected.

It is important to realize that HA does not violate mandatory rules during
a VM restart following a host failure; HA will failover VMs, if possible. If
vCenter is available, HA sends an action list (which VM needs to failover)
to vCenter. Periodically HA checks if vCenter has freed up enough
resources so that HA can handle the failover operations. If HA cannot
restart the VMs after a configurable number of retries, it generates an
error.

A user operation, such as a vMotion of a VM to a host external to the
Host Group, violates the mandatory rule and fails with an error indicating
host incompatibility.

15 // IMPACTING DRS RECOMMENDATIONS

299

Figure 157: vMotion Compatibility Check

Compliance with mandatory rules is deemed crucial by vSphere, and
mandatory rules are not removed when DRS is disabled. That bears
repeating: even after disabling DRS, mandatory rules are still in effect for
HA and user operations. The cluster continues to track, report and alert if
these mandatory rules are violated. For example, if a vMotion operation
would violate a mandatory rule, the cluster rejects the migration
operation, citing host incompatibility as the reason. Mandatory rules can
only be disabled if the administrator explicitly does so. If the
administrator intends to disable DRS, he should remove mandatory rules
before disabling DRS.

Please note that once DRS is disabled, vCenter no longer displays the
DRS options, prohibiting the user from viewing or managing the rules.
When DRS is enabled once again, the rules are displayed; disabling DRS
does not permanently orphan the rules.

DPM does not place an ESXi host into standby mode if the result would
violate a mandatory rule. Moreover, DPM powers-on ESXi hosts if these
are needed to meet the requirements of the mandatory rules.

Mandatory rules place more constraints on VM mobility, restricting the
number of hosts a VM can run on. HA and DPM operations are
constrained as well. For example, mandatory rules will:

▪ Limit DRS in selecting hosts to load-balance the cluster
▪ Limit HA in selecting hosts to power up the VMs
▪ Limit DPM in selecting hosts to power down

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

300

Mandatory VM-Host affinity rules reduce the placement options for DRS
when defragmenting the cluster. When using HA “Percentage based”
admission control, resource fragmentation can occur. During a failover,
HA can request defragmentation of cluster resources. To satisfy this
request, DRS migrates VMs to free up enough resources to power-on all
of the failed VMs. During defragmentation, DRS is allowed to use multi-
hop migrations, which creates a chain of dependent migrations. For
example, VM-A migrates to host 2 and VM-B migrates from host 2 to host
3. Mandatory rules reduce the options by allowing VMs to only move
around within their associated DRS host groups.

A VM that is a member of multiple mandatory rule sets is constrained to
run only on the host(s) listed in both DRS host groups. For example, rule
1 allows the VM02 to run on 4 hosts ESXi-01, -02, -03 and ESXi-04. Rule 2
allows the virtual machine to run on host ESXi-03, -04, -05 and ESXi-06.
The net result is that the VM is only allowed to run on the compatibility
subset that contains ESXi-03 and ESXi-04.

15 // IMPACTING DRS RECOMMENDATIONS

301

Figure 158: Compatibility Subset

Rule Behavior
Mandatory rules are obeyed, and preferential rules are executed if they
do not overcommit the host or cause constraint violations. Rules impact
DRS in its goal of achieving a load-balanced cluster. As you can imagine,
mandatory affinity rules can complicate troubleshooting in specific
scenarios. For example, trying to determine why a VM is not migrated
from a highly utilized host to an alternative lightly utilized host in the
cluster.
If you create a rule that conflicts with an existing rule, the old rule
overrides the newer rule, and DRS disables the new rule. When creating a
new rule, a message displays the conflicting rule, and the new rule is
visibly disabled.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

302

Due to their limiting behavior, mandatory rules should be used sparingly
and only for specific cases, such as licensing requirements. Preferential
rules can be used to meet availability requirements such as separating
VM between blade enclosures, racks, or other failure domains.

Use VM-Host and VM-VM affinity rules sparingly, as rules can have an
impact load balancing operations. The configured rules introduce
constraints for load balancing.

Backup Your Affinity Rules
Many users create rules but forget to create a backup or to document
them. Anti-affinity rules can play an important role in satisfying SLA or
BC/DR requirements. Using PowerCLI, the rules can easily be extracted
from the vCenter database. Ben Liebowitz (@ben_liebowitz) created a
nice script that exports the rules from multiple vCenters. You can find his
script here: http://www.thelowercasew.com/script-to-backup-your-vcenter-
drs-rules

VM Overrides
VM Overrides allows you to change the behavior of HA and DRS for a
specific VM. VM Overrides options is available at Cluster | Configure |
Configuration | VM Overrides.

Figure 159: VM Overrides

It allows you to customize automation levels for individual VMs to
override the DRS cluster automation level.

15 // IMPACTING DRS RECOMMENDATIONS

303

Figure 160: DRS Automation Level

There are four automation level modes:

▪ Disabled
▪ Manual
▪ Partially Automated
▪ Fully Automated

Disabled Automation Level
If you select the disabled automation level, then DRS operations are
disabled for that specific VM. DRS does not generate a migration
recommendation or generate an initial placement recommendation. The
VM powers-on on its registered host. A powered-on VM with its
automation level set to disabled impacts the DRS load balancing
calculation as it consumes cluster resources.

During the recommendation calculation, DRS ignores the VMs set to
disabled automation level and selects other VMs on that host.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

304

Manual Automation Level
If you select the manual automation level, DRS generate both initial
placement and load balancing migration recommendations. However, the
user needs to manual approve these recommendations.

If you have very active VMs that you want to pin down on a single
host, we recommend you to use VM-Host affinity rules instead. DRS
does not consider that VM for moving as that would violate the affinity
rule and thus looks for other VMs to improve the balance.

Partially Automation Level
DRS automatically places a VM with a Partially Automated level.
However, it generates a migration recommendation, which requires
manual approval.

The Impact of DRS Automation Levels on
Cluster Load Balance
When selecting any other automation level than disabled, you create a
contract with DRS stating that you are the one executing the
recommendations. As a result, DRS continues to include the VMs in the
analysis of cluster balance and resource utilization. During the analysis
DRS simulates VM moves inside the cluster, DRS includes every VM that
is not disabled in the migration recommendations selection process.

If a particular move of a VM offers the highest benefit and the least
amount of cost and lowest risk, DRS generates a migration
recommendation for this move. Because DRS is limited to a specific
number of migrations, it might drop a recommendation of a VM that
provides almost similar goodness.

The problem with this scenario is that the recommended migration might
be a VM configured with a manual automation level, while the VM with

15 // IMPACTING DRS RECOMMENDATIONS

305

near-level goodness is configured with the default automation level. This
should not matter if the user monitors each and every DRS invocation
and reviews the migration recommendations when issued. It is
unrealistic to expect this, as DRS runs 288 times per day.

We have seen a scenario where a group of the VMs were configured with
manual mode. It resulted in a host becoming a “trap” for the VMs during
an overcommitted state. The user did not monitor the DRS tab in vCenter
and was missing the migration recommendations. This resulted in
resource starvation for the VMs itself, but even worse, it impacted
multiple VMs inside the cluster. Because DRS generated migration
recommendations, it dropped other suitable moves and could not
achieve an optimal balance.

Disabled versus Partially and Manual
Automatic Levels
Disabling DRS on VMs has some negative impact on other operation
processes or resource availability, such as placing a host into
maintenance mode or powering up a VM after maintenance itself. As it
selects the registered host, it might be possible that the VM is powered
on a host with ample available resources while more suitable hosts are
available. However disabled automation level avoids the scenario
described in the previous paragraph.

Partially automatic level automatically places the VM on the most
suitable host, while manual mode recommends placing the VM on the
most suitable host available. Partially automated offers the least
operational overhead during placement, but can together with manual
automation level introduce lots of overhead during normal operations.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

306

Risk versus Reward
Selecting an automation level is almost a risk versus reward game.
Setting the automation level to disabled might impact some operation
procedures, but allows DRS to neglect the VMs when generating
migration recommendations and come up with alternative solutions that
provide cluster balance as well. Setting the automation level to partially
or manual offers you better initial placement recommendations and a
more simplified maintenance mode process, but creates the risk of
unbalance or resource starvation when the DRS.

 307

16
DISTRIBUTED POWER

MANAGEMENT

Distributed Power Management (DPM) Provides power savings by
dynamically sizing the cluster capacity to match the VM resource
demand. DPM dynamically consolidates VMs onto fewer ESXi hosts and
powers down excess ESXi hosts during periods of low resource
utilization. If the resource demand increases, ESXi hosts are powered
back on and the VMs are redistributed among all available ESXi hosts in
the cluster.

DPM is disabled by default and can be enabled by selecting the power
management modes Manual or Automatic. DRS must be enabled first
because of DPM’s dependency on DRS for moving VMs around the
cluster.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

308

Figure 161: Enable DPM

DPM can be set to Manual or Automatic mode. All hosts inside the
cluster will inherit the default cluster setting, but DPM settings can be
configured on at the host-level as well. Host-level settings override the
cluster default setting.

Figure 162: DPM Automation Level

DPM Host Power Management options is available at Cluster | Configure
| Configuration | Host Options.

16 // DISTRIBUTED POWER MANAGEMENT

309

Figure 163: DPM Host Power Management Option

A reason for overriding DPM cluster default is virtual machine template
placement. While DPM leverages DRS to migrate all active VMs on a host
before powering it down, the registered templates are not moved. This
means that templates registered on the ESXi host placed in standby
mode are not accessible as long as the host is in standby mode.

Each power management mode operates differently:

AUTOMATION
LEVEL

DESCRIPTION

Disabled No power recommendation is issued

Manual
A power recommendation is generated; the user must

manually confirm the recommendation

Automatic
A power recommendation is generated and is executed

automatically; no user intervention required

Table 26: DPM Automation Levels

DRS and DPM management modes are distinct and can differ from each
other: DRS can be set to automatic while DPM is set to manual or vice
versa. Both DRS and DPM generate recommendations, and each
combination of management modes results in different behavior
regarding initial placement and migration recommendations or
operations. Keep in mind that certain combinations, while valid, do not
make much sense to implement.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

310

DRS

LEVEL
DPM

LEVEL
EFFECT

Manual Manual
Recommendations generated for placement of VMs
and power-on/off hosts; manual action required to

apply all recommendations

Automatic Manual
Recommendations generated for power-on/off hosts;

automatic placement of VMs

Manual Automatic

Recommendations generated for power-on/off hosts,
but user must confirm VM migrations before DPM will

place ESXi host into standby mode. DPM will
automatically power-up host if resources are needed

Automatic Automatic
Fully automatic placement of virtual machines and

automatic power-on/off of ESXi hosts.

Table 27: DRS and DPM Automation Levels

The goal of DPM is to keep the cluster utilization within a specific target
range, but at the same time take various cluster settings, VM settings
and requirements into account when generating DPM recommendations.
After DPM has determined the maximum number of hosts needed to
handle the resource demand and HA requirements of the VMs, it
leverages DRS to distribute the VMs across that number of hosts before
placing the target ESXi hosts into standby mode.

Calculating DPM Recommendations
DPM attempts to keep the resource utilization of each ESXi host in the
cluster within a specified Target Resource Utilization Range, offering an
optimum mix of resource availability and power savings. If the resource
utilization of an ESXi host in the cluster is below the target resource
utilization range, DPM evaluates and provide power-off
recommendations if necessary. Conversely, if resource utilization is
above the resource utilization target range, DPM provides power-on
recommendation after evaluation.

16 // DISTRIBUTED POWER MANAGEMENT

311

Evaluating Resource Utilization
DPM evaluates each ESXi host and calculates whether the CPU and
memory resource utilization of the ESXi host is within the specified
target utilization range. DPM computes the target utilization range as
follows:

Target Resource Utilization Range = DemandCapacityRatioTarget ±
DemandCapacityRatioToleranceHost

Resource utilization: DPM calculates the resource utilization of an ESXi
host based on the VM demand and the available ESXi host capacity. The
available capacity of a host is the number of resources remaining after
subtracting the resources required for running the virtualization layer.
DPM calculates the resource demand as the sum of each active virtual
machine over a historical period of interest plus two standard deviations.
DPM uses different historical periods for recommending power-on
recommendations than for calculating power-off recommendations.

Similar to DRS, the calculation of demand is a combination of active
usage plus unsatisfied demand during periods of contention. By using
historical data over a more extended period instead of using only the
current demand of active virtual machines, DPM ensures that an
evaluated virtual machine demand is representative of the virtual
machines’ normal workload behavior. Using shorter periods of time may
lead to unnecessary power state change recommendations. Not only
does this impact the power-saving efficiency, but it also impacts DRS as
it attempts to load-balance the active VMs across a continually changing
landscape of available hosts.

DemandCapacityRatioTarget is the utilization target of the ESXi host. By
default, this is set at 63%.

DemandCapacityRatioToleranceHost specifies the tolerance around the
utilization target for each host, by default, this is set at 18%.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

312

DPM attempts to keep the ESXi host resource utilization centered at the
63% sweet spot, plus or minus 18%, creating a range between 45 and
81%. The sweet spot of 63% is based on in-house testing and feedback
from customers. If the ESXi hosts’ resource utilization of each resource
is below 45%, DPM evaluates power-off operations. If the resource
utilization exceeds the 81% of either CPU or memory resources, DPM
evaluates power-on operations of standby ESXi hosts.

Figure 164: Power Operations Regarding to Host Utilization Levels

Advanced options
At DRS advanced options, the user can specify a different
DemandCapacityRatioTarget and DemandCapacityRatioToleranceHost value.

16 // DISTRIBUTED POWER MANAGEMENT

313

DemandCapacityRatioTarget and can be set from 40% to 90%, while
DemandCapacityRatioToleranceHost and can be set from 10% and 40%.

It is recommended to use the default values and to only modify the
values when you fully understand the impact.

The advanced options can be found at the DRS cluster settings.
DPM Host Power Management options is available at Cluster | Configure
| vSphere DRS | Edit | Advanced Options.

Figure 165: DRS Cluster Advanced Options

Finding a proper balance between supply and demand can be quite tricky
as underestimating resource demand can result in lower performance
while overestimating resource demand can lead to less optimal power
savings.

Historical Period of Interest
As mentioned before, DPM determines the VM average demand by
calculating the demand over a historical period of interest. DPM uses two
periods of interest when calculating the average demand:

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

314

DPM uses a shorter period for evaluating power-on recommendations,
allowing itself to respond to demand increases relatively quickly.

Power-on recommendations: The period of interest in evaluating VM
demand for power-on operations is 300 seconds (5 minutes).

The longer period used to evaluate power-off operations ensures that
DPM responds more slowly to a decrease in workload demand.

Power-off recommendations: DPM uses a longer period of evaluating
resource demand for power-off operations; DPM evaluates the VM
workload of the past 2400 seconds (40 minutes).

DPM must be sure that it will not negatively impact VM performance.
Providing adequate resources for workload demand is considered more
important by DPM than a rapid response to decreasing workloads, so
performance receives a higher priority by DPM than saving power. This
becomes visible when reviewing the rules of power-on and power off
operation recommendations; a power-off recommendation is only applied
when the ESXi host is below the specified target utilization range, AND
there are no power-on recommendations active.

Evaluating Power-On and Power-Off
Recommendations
If the resource utilization evaluation indicates low or high resource
utilization, DPM generates power-state recommendations that reduce the
distance between the current resource utilization and the target resource
utilization range. In other words, optimizing and aligning the power
demand to the workload demand.
Both DRS and DPM evaluate every ESXi host in the cluster for power-
state recommendations. Hosts are placed in a particular order for
evaluation to optimize the evaluation and selection process. Candidate
host can be rejected if they violate any DRS constraint, such as affinity
rules or any resource reservation.

16 // DISTRIBUTED POWER MANAGEMENT

315

Power-Off Recommendations
Before selecting ESXi hosts for power off operations, DPM reviews the
active hosts inside the cluster and sorts them in a specific order for its
power off evaluation process. If the cluster contains hosts in both DPM
automatic mode and manual mode, they are placed into separate groups.
Hosts inside the automatic mode group are considered before the hosts
inside the manual mode group.

If the cluster contains homogeneous-sized hosts, DPM considers hosts
in order of lower VM evacuation costs: hosts inside the automatic mode
group with a lower number of VMs or smaller VMs are considered before
heavily-loaded hosts in the same group.

If the cluster contains heterogeneous-sized hosts, DPM considers hosts
in order of critical resource capacity. For power-off recommendations,
smaller capacity hosts are favored over larger capacity hosts.

To generate Host Power-Off Recommendations, DPM evaluates the
candidate hosts and uses DRS to run simulations in which the candidate
hosts are powered off in the cluster.

These simulations are used by DPM to determine the impact of the
power-off operations. DPM examines the positive gain of reducing the
number of lightly loaded hosts and reducing the distance of the current
utilization to the target resource utilization while minimizing the increase
of utilization on the remaining hosts

To measure the amount of resource utilization under the target resource
utilization range, DPM calculates a value for CPU and memory resources
called cpuLowScore and memLowScore. To measure the amount of
resource utilization above the target resource utilization range, DPM
computes the resource HighScores called cpuHighScore and
memHighScore.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

316

The formula used for each resource is similar and calculates the
weighted distance below or above the target utilization. DRS calculates
the memLowScore as follows:

MemLowScore = Sum across all hosts below target utilization (target
utilization – host utilization)

DPM compares the LowScore value of the cluster with all the candidate
hosts’ active workloads to the LowScore value of the simulations. DPM
includes the critical resource state in this evaluation. If the hosts are
overcommitted on memory, DPM determines that memory is the critical
resource and will prioritize memory over CPU recommendations. If a
simulation offers improvement of the LowScore and if the HighScore
value does not increase, DPM generates a power-off recommendation.
This power-off recommendation also contains VM migration
recommendations for the virtual machines running on this particular
host.

Rejection of Host Power-Off Recommendations
DPM does not power down a host if it violates the minimum powered-on
capacity specified by the settings MinPoweredOnCpuCapacity and
MinPoweredOnMemCapacity.

OPTION DESCRIPTION

MinPoweredOnCpuCapacity
The minimum amount of powered-on CPU

capacity maintained by VMware DPM

MinPoweredOnMemCapacity
The minimum amount of powered-on memory

capacity maintained by VMware DPM

Table 28: DPM Advanced Options

By default, both settings have a value of 1 MHz and 1 MB respectively,
which ensures that at least one host is kept powered-on. If these settings
are altered, it might happen that DPM and DRS do not require all of the
powered-on physical resources to run the VMs at a proper level. An ESXi
host may be idle, leading to less efficient power utilization.

16 // DISTRIBUTED POWER MANAGEMENT

317

The CPU capacity kept powered on might not match the required CPU
characteristics. If this setting is used in a cluster with different CPU
configurations, enable EVC to guarantee that the available CPU
resources are compatible with all VMs.

Enable EVC when adjusting MinPoweredOnCapacity settings with
heterogeneous CPU/Memory configurations inside a cluster.

Another reason for DPM to not select a specific candidate host is based
on DRS constraints or objectives. For example, a host might be rejected
for power off if the VMs that need to be migrated can only be moved to
hosts that become too heavily utilized. This situation can occur when
multiple DRS (anti) affinity rules are active in the cluster.

A third factor is that DPM does not select a candidate host to power
down based on the negative or non-existing benefit indicated by the
power-off cost/benefit analysis run by DPM. DPM continues to run
simulations as long as the cluster contains ESXi hosts below the target
utilization range.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

318

DPM Power-Off Cost/Benefit Analysis
Before DPM generates a power-off recommendation, it calculates the
costs associated with powering down a host. The following costs are
taken into account:

▪ Migrating VMs off the candidate host
▪ Power consumed during the power-down period
▪ Unavailable resources of candidate host during power-down
▪ Loss of performance if candidate host resources are required to

meet workload demand while candidate host is powered off
▪ Unavailability of candidate host resources during the power-up

period
▪ The power consumed during the power-up period
▪ Cost of migrating VMs to the candidate host

DPM runs the power-off cost/benefit analysis that compares the costs
and risks associated with a power-off operation to the benefit of
powering off the host. DPM only accepts a host power-off
recommendation if the benefits meet or exceed the performance impact
multiplied by the PowerPerformanceRatio setting.

The default value of PowerPerformanceRatio is 40 but can be modified to
a value in the range between 0 and 500. A user-specified
PowerPerformanceRatio is set at the DRS advanced options interface.
As always, do not change these settings unless you understand the true
impact of modifying them. Both cost and benefit calculations include
CPU and memory resources.

Power-Off Cost and Benefit Analysis
Calculation
The power-off benefit analysis calculates the StableOffTime value, which
indicates the amount of time the candidate host is expected to be
powered-off until the cluster needs its resources because of an
anticipated increase in VM workload.

16 // DISTRIBUTED POWER MANAGEMENT

319

StableOffTime = ClusterStableTime – (HostEvacuationTime +
HostPowerOffTime)

The time that the VM workload is stable and no power-up operations are
required is called the ClusterStableTime. DPM will use the VM stable
time, calculated by the DRS cost-benefit-risk analysis, as input for the
ClusterStableTime calculation.

The time it takes from applying the power-off recommendation to the
power-off state is taken into account as well. The analysis breaks this
time down into two sections and calculates this as the sum of the time it
takes to migrate all active VMs off the host (HostEvacuationTime), and
the time it takes to power off the host (HostPowerOffTime).

The power-off cost is calculated as the summation of the following
estimated resource costs:

▪ Migration of the active VMs running on the candidate host to
other ESXi hosts

▪ Unsatisfied VM resource demand during power-on candidate
host at the end of the ClusterStableTime

▪ Migration of VMs back onto the candidate host

DPM can only estimate the last two bullet points; DPM calculates the
number of hosts required to be available at the end of the
ClusterStableTime. This calculation is, to some extent, a worst-case
scenario as DPM expects all the VMs to generate heavy workloads at the
end of the ClusterStableTime, as a result of this generating a
conservative value.

As previously mentioned, DPM only recommends a power-off operation if
there is a significant gain in resource utilization efficiency. It might be
possible that the ClusterStableTime is low, and this can result in a
StableOffTime equal to or even less than zero. During this scenario, DPM
stops evaluating the candidate host for a power-off operation
recommendation because it does not offer any benefit.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

320

Power-On Recommendations

Host Selection for Power-On
Recommendations
Similar to power-off recommendations, ESXi hosts in automatic mode
are evaluated before ESXi hosts in manual mode for power-on
recommendations. In a cluster containing heterogeneous-sized hosts,
the ESXi hosts with a larger capacity with regards to the critical
resources are favored.

If the sort process discovers equal hosts concerning the capacity or
evacuation cost, DPM randomizes the order of hosts, done for a wear-
leveling effect. Be aware that sorting of the hosts for power-on or power-
off recommendations does not determine the actual order for the
selection process to power-on or power-off hosts.

Host Power-On Recommendations
If the resource utilization evaluation indicates a host with high utilization
inside the cluster, DPM considers generating host power-on
recommendations.

Before selecting an ESXi host for power on, DPM reviews the standby
hosts inside the cluster and sorts them in a specific order for DPM power
on evaluation process.

DPM continues by evaluating each standby host and invokes DRS to run
simulations. The simulations distribute current VMs across all hosts
regardless if they are active or standby. By using the HighScore
calculation, DPM determines the impact of a power-up operation on the
current utilization ratio. It needs to determine how much improvement
each power-up operation has on the distance of the resource utilization
from the target utilization or the possible reduction of the number of
highly utilized hosts. DPM compares the HighScore value of the cluster

16 // DISTRIBUTED POWER MANAGEMENT

321

in its current state (standby host still down) to the HighScore value of the
simulations. If a simulation offers an improved HighScore value when a
standby host is powered-on, DPM generates a power-on recommendation
for that specific host.

DPM does not strictly adhere to its host sort order if doing so would lead
to choosing a host with capacity far more significant than needed if a
smaller capacity host that can adequately handle the demand is also
available. Sometimes a host is not selected if DPM expects that the
candidate cannot offer the simulated load-reduction.

For example, if it is not possible to migrate specific virtual machines to
the candidate due to vMotion incompatibility, the simulated reduction
may not be achievable.

DPM continues to run simulations as long as there are hosts in the
cluster exceeding the target utilization range. DPM is very efficient in
homogeneous-sized clusters as DPM skips every host that is identical
regarding physical resources or vMotion compatibility to any host who is
already rejected for power-on operation during the simulation.

Use homogeneous clusters, as DPM operates more efficiently.

Impact of Advanced Settings on Host Power-
On Recommendations
Advanced options can be set to specify a particular minimum amount of
CPU or memory capacity is kept powered on regardless of DPM
recommendations.

If the user sets a custom value in the advanced settings,
MinPoweredOnCpuCapacity and MinPoweredOnMemCapacity, DPM needs to
adjust its power-on operation recommendations to fulfill the
requirements defined in these settings.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

322

Contrary to a power-off recommendation, redistribution of VMs among
the powered-on hosts is not included in a power-on recommendation. To
satisfy that need, DPM relies on future invocation rounds of DRS.

Recommendation Classifications
The DPM threshold slider works similarly to the DRS slider. Like DRS,
threshold options range from conservative to aggressive. DPM
recommendation priority levels can be compared to the DRS priority
levels.

The aggressive level of DPM corresponds with the aggressive level of
DRS in that it generates DPM recommendations up to priority 5. Similarly,
the conservative level of DPM corresponds with the conservative level of
DRS: selecting the conservative level threshold causes DPM to generate
priority level 1 recommendations only. The following warning is displayed
below the threshold slider when the conservative DPM level is selected:

Apply only priority 1 recommendations. vCenter applies power-on
recommendations produced to meet HA requirements or user-
specified capacity requirements. DPM will only automatically apply
the power-on recommendations.

In this scenario, DPM does not generate power-off recommendations;
this effectively means that the automatic DPM power saving mode is
disabled. The user can place the server in the standby mode manually,
but DPM will only power-on ESXi hosts when the cluster fails to meet
specific HA or custom capacity requirements or constraints.

Priority Levels
The power-off and power-on recommendations are assigned priorities
ranging from priority one-recommendations to priority-five
recommendations.

16 // DISTRIBUTED POWER MANAGEMENT

323

Priority level ratings are based on the resource utilization of the cluster
and the improvement that is expected from the suggested host power
state recommendation. It may be interesting to note that different ranges
are applied to power-on recommendations than power-off
recommendations: power-off recommendations can range from priority 2
to priority 5 while power-on recommendations range from priority 1 to
priority 3.

PRIORITY
LEVEL

POWER-OFF
RECOMMENDATION

POWER-ON
RECOMMENDATION

1 X
2 X X
3 X X
4 X
5 X

Table 29: Priority Levels Range of Power State Recommendations

Power-Off Recommendations
Recommendations with higher priority levels results in more power-
savings if the recommendations are applied. The highest power-off
priority level 2 results in the most significant reduction of excess
capacity headroom, while applying a priority level 5 power-off
recommendation results in a modest reduction in excess capacity
headroom. Priority level 1 recommendations are not generated for power-
off recommendations as providing adequate resources for workload
demand is considered more important by DPM than rapid response to
decreasing workloads.

Power-On Recommendations
A priority level 1 is generated when conforming to vSphere High
Availability requirements or powered-on capacity requirements set by the
user. Power-on priority level 2 indicates a more urgent recommendation
to solve higher host utilization saturation levels than priority level 3.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

324

Be aware that the generated migration recommendations are not
mandatory. If DRS is set to the conservative migration threshold, these
migration recommendations are ignored and effectively disables DPM.

Do not set DRS to the conservative migration threshold if DPM is
required.

Guiding DPM Recommendations

DPM Standby Mode
The term “Standby mode” used by DPM specifies a powered down ESXi
host. The term is used to indicate that the ESXi host is available to be
powered on should the cluster require its resources. DPM requires the
Host to be able to awake from an ACPI S5 state via Wake-On-LAN (WOL)
packets or one of the two supported out-of-band methods: Intelligent
Platform Management Interface (IPMI) version 1.5 or HP Integrated
Lights-Out (iLO) technology. Both IPMI and iLO require the availability of
a Baseboard Management Controller (BMC) providing access to
hardware control functions and allowing the server hardware to be
accessed from the vCenter server using a LAN connection. To use WOL,
the ESXi host must contain a Network Interface Card that supports the
WOL protocol. If the host does not offer the hardware support and
configurations of any of these protocols, it cannot be placed into standby
mode by DPM.

DPM WOL Magic Packet
If the ESXi host is not an HP server supporting iLO, does not support IPMI
version 1.5, or if the appropriate credentials for using iLO or IPMI have
not been configured and set up in vCenter, DPM uses Wake-On-LAN
Packets to bring the ESXi host out of standby mode. The “magic packet,”
the network packet used to bring the server back to life, is sent over the
vMotion network by another currently powered on ESXi server in the
cluster. For this reason, DPM keeps at least one host powered on in the

16 // DISTRIBUTED POWER MANAGEMENT

325

cluster at all times, managed by the DPM advanced controls,
MinPoweredOnCpuCapacity and MinPoweredOnMemCapacity, both
configured with the respective default values of 1 MHz and 1 MB.
Because the magic packet is sent across the vMotion network to a
powered-off server, DPM impacts the configuration of the vMotion
network as well. Because most NICs support WOL only if they can switch
to 100 Mb/s, the switch port used by the vMotion NIC must be set to
auto-negotiate link speed instead of setting the port to a fixed
speed/duplex such as 1000 Mb/s Full. Industry best practices advise
setting both NIC and switch ports to identical settings, so ensure that
vmknic speed is set to auto-negotiate as well.

Baseboard Management Controller
If both a BMC wake method (IPMI or iLO) and WOL are present and both
are operational, DPM attempts to use a BMC wake method as default. To
ensure IPMI is operational, configure the BMC over LAN channel to
always be available, some BMC LAN channels require the availability to
send operator-privileged commands. Some BMC boards require IPMI
accounts set in the BIOS.

DPM uses MD5- or plaintext-based authentication with IPMI. If the BMC
reports that it supports MD5 and has the operator role enabled, only then
vCenter uses MD5 authentication. vCenter switches to plaintext
authentication if none or only one requirement is met. If neither MD5 nor
plaintext is enabled or supported, vCenter does not use IPMI and
attempts to use Wake-On-LAN.

P2 \\ DISTRIBUTED RESOURCE SCHEDULER

326

Protocol Selection Order
1. If the server is configured for IPMI or iLO, DPM uses the

protocols in the order IPMI, iLO and then WOL.
2. If vCenter is unable to successfully power on the ESXi host with

the IPMI, it uses the second protocol, iLO.
3. If this attempt fails, DPM tries to power on using the Wake-On-

LAN and instructs a powered-on ESXi host to send the magic
packet.

It is essential to understand that placing the ESXi host into standby
mode does not use any power management protocols; vCenter initiates a
graceful shutdown of the ESXi host.

P3

VSPHERE STORAGE DRS

 329

17
INTRODUCTION TO VSPHERE

STORAGE DRS

Storage DRS resolves some of the operational challenges associated
with VM provisioning, migration and cloning. Historically, monitoring
datastore capacity and I/O load have proven to be very difficult. As a
result, it is often neglected, leading to hot spots and over- or underutilized
datastores. Storage I/O Control (SIOC) solves part of this problem, by
providing a datastore-wide disk-scheduler that allows for proportional
allocation of I/O resources to VMs based on their respective shares
during times of contention.

Storage DRS brings this to a whole new level by providing smart virtual
machine placement and load balancing mechanisms based on both
space and I/O capacity. In other words, where SIOC reactively throttles
hosts and VMs to ensure fairness. SDRS proactively generates
recommendations preventing imbalances from both space utilization and
latency perspectives. There are five key features that Storage DRS offers:

▪ Resource aggregation
▪ Initial Placement
▪ Load Balancing
▪ Datastore Maintenance Mode
▪ Affinity Rules

P3 \\ STORAGE DRS

330

Resource Aggregation
Resource aggregation is the critical component that all other Storage
DRS features depend on. Resource aggregation enables grouping of
multiple datastores into a single, flexible pool of storage called a
datastore cluster.

A datastore cluster is a construct that provides access to Storage DRS
functionality. The datastore cluster separates the physical from the
logical. It dramatically simplifies storage management by allowing
adding and removing datastores dynamically from the cluster. In turn,
this allows you to deal with maintenance, performance or out of space
conditions more quickly and efficiently. The Storage DRS load balancer
provides automatic initial placement of VM disk files and economical use
of datastores.

Initial Placement
The goal of initial placement is to place virtual machine disk files (VMDK)
based on the existing load on the datastores, ensuring that neither space
nor the I/O capacity is exhausted prematurely.

Initial placement provides a more straightforward provisioning process
by automating the selection of an individual datastore and leaving the
user with the much smaller-scale decision of selecting a datastore
cluster. Storage DRS selects a particular datastore within a datastore
cluster based on actual space utilization and I/O capacity.

In an environment with multiple seemingly identical datastores, initial
placement can be a time-consuming and challenging task for the
administrator. In many environments, the standard practice is to find a
datastore with the most free space and use that one. This is not always
the best choice. Not only does a datastore with adequate available disk
space need to be identified, but it is also crucial to ensure that the
introduction of this new VM does not result in I/O bottlenecks.

17 // INTRODUCTION TO STORAGE DRS

331

Storage DRS takes care of all of this and substantially reduces the
amount of operational effort required to provision VMs; that is the actual
value of Storage DRS.

Load Balancing
Storage DRS can operate in two distinct load-balancing modes: No
Automation (manual mode) or Fully Automated. Where initial placement
reduces complexity in the provisioning process, load balancing
addresses imbalances within a datastore cluster. Before Storage DRS,
placement of VMs was often based on current space consumption or the
number of VMs on each datastore. I/O capacity monitoring and space
utilization trending are often regarded as too time-consuming. Over the
years, we have seen this lead to performance problems in many
environments, and in some cases, even result in downtime because a
datastore ran out of space.

Storage DRS load balancing helps prevent these unfortunately common
scenarios by generating placement recommendations based on both
space utilization and I/O capacity. The load balance process is initiated
periodically, by default every 8 hours. Placement recommendations are
generated if the space utilization or I/O latency of a datastore exceeds
the thresholds configured at the datastore cluster level. Depending on
the selected automation level, these recommendations will be
automatically applied by Storage DRS or will be presented to the
administrator who then can decide to apply them manually.

P3 \\ STORAGE DRS

332

Figure 166: Storage DRS Automation Level

Although we see load balancing as a single feature of Storage DRS, it
consists of two separately configurable options. When either of the
configured thresholds for utilized space or I/O latency is exceeded,
Storage DRS makes recommendations to resolve the imbalance within
the datastore cluster. In the case of I/O capacity load balancing,
monitoring can be explicitly disabled.

17 // INTRODUCTION TO STORAGE DRS

333

Figure 167: I/O Metric for Storage DRS Recommendations

Storage DRS functionality can be enabled on fully populated datastores
and environments without downtime. It is also possible to add fully
populated datastores to existing datastore clusters. It is a great way to
solve actual or potential bottlenecks in any environment with minimal
required effort or risk.

Affinity Rules
Affinity Rules enable control over which VMDKs should or should not be
placed on the same datastore within a datastore cluster following your
best practices and availability requirements. By default, all of a virtual
machine’s VMDKs are kept together on the same datastore.

P3 \\ STORAGE DRS

334

Datastore Maintenance Mode
Datastore maintenance mode can be compared to host maintenance
mode: when a datastore is placed in maintenance mode, all registered
VMDKs on that datastore are migrated to the other datastores in the
datastore cluster. Typical use cases are data migration to a new storage
array or maintenance on a LUN, such as migration to another RAID
group.

Requirements
For Storage DRS to function correctly, the environment must meet the
following requirements:

▪ VMware vCenter Server 5.0 or later
▪ VMware vSphere ESXi 5.0 or later
▪ VMware vCenter Cluster (recommended)
▪ VMware vSphere Enterprise Plus license
▪ Shared VMFS or NFS datastore volumes
▪ Shared datastore volumes accessible by at least one ESXi host

inside the cluster*
▪ Datastores must be visible in only one data center

* Full cluster connectivity is recommended, however, this is not enforced.

 335

18
STORAGE DRS INITIAL PLACEMENT

Storage DRS can automate the initial placement of a VM to avoid disk
space imbalances and I/O hotspots on the datastores. By providing
automatic datastore selection, Storage DRS initial placement minimizes
the risk of over-provisioning a datastore, creating I/O bottlenecks or
negatively impacting performance of the VMs.

User Interaction
Initial placement speeds up the process for the user by automating the
datastore selection. Datastores used in a datastore cluster are by default
not visible when selecting a datastore during the VM creation process;
only datastore clusters or “unclustered” datastores are available for
selection.

P3 \\ STORAGE DRS

336

Figure 168: Selecting Storage During VM Creation Process

Affinity Rules
By default, Storage DRS place a VM and its VMDKs on datastore(s)
within a datastore cluster according to the datastore cluster affinity
rules. VMDK affinity rule is the default setting for the datastore cluster.

Figure 169: Default VM Affinity Rule

18 // STORAGE DRS INITIAL PLACEMENT

337

The default can be changed, from affinity to anti-affinity by deselecting
the option box. Please note that the new standard rule only applies to
newly created VMs.

Cluster Automation Level
Datastore clusters can be configured either with manual load balancing
or automatic load balancing. There is no partially automated mode
available in Storage DRS. Automated initial placement is excluded in both
modes: Storage DRS generates an Initial placement recommendation
that always requires a manual confirmation.

Figure 170: Cluster Automation Level

DRS Mobility and Datastore Connection
When connecting a datastore cluster to a DRS cluster, Storage DRS is in
charge of VM placement. It is responsible for VM placement on compute
and storage level. Storage DRS checks the datastore connectivity of all
hosts within the DRS cluster to ensure that the VMs have the highest
mobility on both host and datastore levels.

Storage DRS prefers datastores that are connected to all hosts of a DRS
cluster (fully connected), before considering datastores that are
connected to a subset of hosts within the DRS cluster (partially
connected).

P3 \\ STORAGE DRS

338

If a VM is placed on a partially connected datastore, it impacts the
compute mobility perspective (DRS) of the VM. DRS can only move the
VM to hosts that are connected to that particular datastore.

Space and I/O Load Consideration
When selecting a datastore, initial placement takes both DRS and
Storage DRS threshold metrics into account. It selects the host with the
least utilization and the highest connectivity to place the VM.

For datastores, Storage DRS takes the utilization of the datastores of the
datastore cluster into account and combines space and IO metrics using
a dynamic weighting.

If space is running low, it attempts to balance the space more than I/O
(and vice versa). If neither resources are constrained the weight of both
metrics is the same. For example, if the available datastores are close to
the space utilization threshold, the weight of the space metric becomes
higher, and it is more likely that initial placement is based on space
balancing.

Space Utilization Threshold
During initial placement, Storage DRS checks the total amount of free
space at datastore cluster level and datastore level. When placing VMs,
Storage DRS avoids violating the space utilization threshold. It is
essential to understand that the space utilization threshold set on a
datastore cluster applies to each datastore separately, not to the
collective whole of the datastore cluster. This means that each datastore
has a buffer space which initial placement tries to avoid using.

18 // STORAGE DRS INITIAL PLACEMENT

339

Figure 171: Datastore Space Utilization Threshold

Setting the space utilization threshold to 80% on a datastore cluster
containing a single 1 TB datastore allows Storage DRS to place VMs that
consume space up to 800 GB. In this scenario, 600 GB of the Datastore 1
is used. As a result, Storage DRS considers this datastore to have 200 GB
free. The placement of a VM bigger than 200 GB violates the threshold. If
all the datastores are at or above the threshold, initial placement
proceeds if there is a datastore that can fit the incoming VM. For
example, if there is an incoming VM of 150 GB, and all the other
datastores have also exceeded the space threshold, then this VM can be
placed at Datastore 1.

P3 \\ STORAGE DRS

340

Datastore Cluster Defragmentation
Storage DRS considers both free space at datastore and datastore
cluster levels. If enough free space is available in the datastore cluster
but not enough space is available per datastore, the datastore cluster is
considered fragmented. During this state, Storage DRS migrates existing
VMs from one or more datastores to free up space if it cannot place the
new VM on any datastore.

Depth of Recursion
Storage DRS uses a recursive algorithm for searching alternative
placement combinations. To keep Storage DRS from trying an extremely
high number of combinations of VM migrations, the “depth of recursion”
is limited to 2 steps. What defines a step and what counts towards a
step? A step can be best defined as a set of migrations out of a datastore
in preparation for (or to make room for) another migration or placement
into that same datastore. A step can contain migration of one VMDK, but
can also contain migrations of multiple VMs with multiple VMDKs
attached. In some cases, free space must be created on that target
datastore by moving a VM out to another datastore, which results in an
extra step. The following diagram visualizes the process.

18 // STORAGE DRS INITIAL PLACEMENT

341

Figure 172: Depth of Recursion

Storage DRS has calculated that a new VM, VM10, can be placed on
Datastore 1 if VM3 and VM4 are migrated to Datastore 2, however,
placing these two VMs on Datastore 2 violates the space utilization.
Therefore room must be created. As a result, VM5 is moved out of
Datastore 2 as part of a step of creating space. This results in Step 1,
moving VM5 out to Datastore 3, followed by Step 2, moving VM3 and
VM4 to Datastore 2, and finally placing the new VM on Datastore 1.

Storage DRS stops its search if there are no 2-step moves to satisfy the
storage requirement of initial placement. An advanced setting can be set
to change the number of steps used by the search. As always, changing

P3 \\ STORAGE DRS

342

the defaults is strongly discouraged since many hours of testing has
been invested in researching the setting that offers excellent
performance while minimizing the impact of the operation. If you have a
strong case for changing the number of steps, set the Storage DRS
advanced configuration option MaxRecursionDepth. The default value is 1
the maximum value is 5. Because the algorithm starts counting at 0, the
default value of 1 allows 2 steps. Please note that this is a per-Datastore
Cluster option.

Goodness Value
Storage DRS reviews all datastores in the datastore cluster and initiates
a search for space on each datastore. A search generates a set of
prerequisite migrations if it can provide space that allows the VM
placement within the depth of recursion. Storage DRS evaluates the
generated sets and awards each set a goodness value. The set with the
least amount of cost (i.e., migrations) is the preferred migration
recommendation and shows at the top of the list.

Scenario
The datastore cluster contains 3 datastores; each datastore has a size of
1000 GB and contains multiple VMs with various sizes. The space
consumed on the datastores range from 550 GB to 650 GB, while the
space utilization threshold is set to 80%. Datastore 1 has 150 GB of free
space before hitting the threshold (T). Datastore 2 has 250 GB and
Datastore 3 has 225 GB of free space below the threshold.

18 // STORAGE DRS INITIAL PLACEMENT

343

Figure 173: Space Utilization Datastore Cluster Prior to Initial Placement

At this point, the administrator creates VM10 that requests 350 GB of
space. Although the datastore cluster itself contains 1225 GB of free
space, Storage DRS avoids placing the VM “as is” on any of the three
datastores because placing the VM without taking precautionary actions
would violate the space utilization threshold of the datastores.

As each ESXi host provides information about the overall datastore
utilization and the VMDK statistics, Storage DRS has a clear view of the
most up to date situation and uses these statistics as input for its
search.

P3 \\ STORAGE DRS

344

In the first step, it simulates all the necessary migrations to fit VM10 in
Datastore 1. The prerequisite migration process with least number of
migrations to fit the virtual machine on to Datastore 1 looks as follows:

▪ Step 1: VM03 from Datastore 1 to Datastore 2
▪ Step 1: VM04 from Datastore 1 to Datastore 3
▪ Place VM10 on Datastore 1

Figure 174: Datastore 1 Simulation Prerequisites Migrations

18 // STORAGE DRS INITIAL PLACEMENT

345

Although VM03 and VM04 are each moved out to a different datastore,
both migrations are counted as a one-step prerequisite migration
because both VMs migrate out of a SINGLE datastore (Datastore 1).

In a new simulation, Storage DRS evaluates Datastore 2. Due to the size
of VM05, Storage DRS is unable to migrate VM05 out of Datastore 2
because it immediately violates the utilization threshold of any selected
destination datastore.

One of the coolest parts of the algorithm is that it considers inbound
migrations as valid moves. In this scenario, migrating VMs into Datastore
2 would free up space on another datastore to provide enough free space
to place VM05, which in turn frees up enough space on Datastore 2 to
allow Storage DRS to place VM10 onto Datastore 2.

P3 \\ STORAGE DRS

346

Figure 175: Datastore 2 Simulation Prerequisite Migrations

The prerequisite migration process with least number of migrations to fit
the VM on Datastore2 looks as follows:

▪ Step 1: VM02 from Datastore 1 to Datastore 2
▪ Step 1: VM03 from Datastore 1 to Datastore 3
▪ Step 2: VM05 from Datastore 2 to Datastore 1
▪ Place VM10 on Datastore 2

18 // STORAGE DRS INITIAL PLACEMENT

347

The analysis of Datastore 3 generates a single prerequisite migration.
Migrating VM08 from Datastore 3 to Datastore 2 will free up enough
space to allow placement of VM10. Selecting VM09 would not free up
enough space and migrating VM07 generates more cost than migrating
VM08. By default, Storage DRS attempts to migrate the VMDK(s) with a
size that is closest to the required space.

Figure 176: Datastore 3 Simulation Prerequisite Migrations

P3 \\ STORAGE DRS

348

The prerequisite migration process with least number of migrations to fit
the VM on to Datastore 3 looks as follows:

▪ Step 1: VM08 from Datastore 3 to Datastore 2
▪ Place VM10 on Datastore 3

After analyzing the cost and benefit of the three search results, Storage
DRS assigns the highest goodness factor to the migration set of
Datastore 3. Although each search result can provide enough free space
after moves, the recommendation set of Datastore 3 results in the least
number of moves and migrates the smallest amount of data. All three
results are shown; the most highly recommended set is placed at the top.

A placement recommendation screen is displayed. Note that you can
apply only the complete recommendation set and that applying the
recommendation triggers the prerequisite migrations before the initial
placement of the VM occurs.

Adding a New Disk to an Existing VM in a
Datastore Cluster
When adding a new disk, Storage DRS triggers the initial placement
process for that disk. Storage DRS reviews the configured affinity rule of
the VM. Storage DRS never can violate the affinity or anti-affinity rule of
the VM. For example, if the datastore cluster default affinity rule is set to
“keep VMDKs together” then all the files are placed on the same
datastore. Therefore, if you add a new disk to the VM, that disk must be
stored on the same datastore in order not to violate the affinity rule.

Storage DRS will defragment the datastore cluster if individual
datastores do not have enough free space below the threshold. Therefore
in a datastore cluster, you will never see Storage DRS splitting up a VM if
it's configured with an affinity rule, but you will see pre-requisite moves,
migrating VMs out of the datastore to make room for the new VMDK.

18 // STORAGE DRS INITIAL PLACEMENT

349

Manually Migrating VMs within the Datastore
Cluster
If a VM is placed inside the datastore cluster, you cannot easily migrate
the VM to another datastore. When selecting a storage migration, the
datastore destination in the select storage window shows the datastore
cluster as the destination.

Figure 177: Datastore Cluster as Destination

Until you activate the "Disable Storage DRS for this virtual machine", the
window will show you the individual datastores within the datastore
cluster. It nicely orders the datastores based on their compatibility with
the storage profile that is attached to the VM (chapter 21 covers storage
profiles).

P3 \\ STORAGE DRS

350

Figure 178: Disable Storage DRS Reveals Individual Datastores

Why must you disable automation for this VM when migrating between
datastores inside a datastore cluster or when selecting a datastore
during placement of a new VM?

It is all about intent. When migrating a VM into a datastore cluster, you
are migrating the VM into a load-balancing domain (the datastore
cluster). You trust Storage DRS to provide you an environment that
provides an optimum load balanced state where the VMs receive the
overall best I/O performance and the optimal placement regarding space
utilization.

If the user wants to migrate the VM to a different datastore inside the
datastore cluster, Storage DRS is capturing this intent, as “user knows
best”. The way this is designed is that if a datastore is selected, then
user is telling us that the selected datastore is the best, i.e., user knows
something Storage DRS doesn’t. And to prohibit any future migration
recommendation to other datastores, Storage DRS is disabled to ensure
permanent placement.

18 // STORAGE DRS INITIAL PLACEMENT

351

This behavior also applies when migrating a virtual machine into a
datastore cluster. During initial placement it is expected that the user
selects the datastore cluster, if the user wants to select a specific
datastore it has to select “Disable Storage DRS for this virtual machine”
in order to be able to select a member datastore.

During the initial placement operation, Storage DRS runs a simulation to
understand the impact of the VM placement. During this simulation,
Storage DRS retrieves the current datastore free space values.

Storage DRS uses this "snapshot" of free space during this simulation.
The snapshot works perfectly for a single VM as the begin state of the
operation is the actual state of the datastore cluster. But what if you
want to deploy multiple VMs in one transaction? The datastore utilization
changes after placing the first VM, but all following VM placement is now
done with an incorrect view of the datastore cluster utilization state.
Let’s use an example that explains this behavior.

In this scenario the datastore cluster contains three datastores, the size
of each datastore is 1 TB, no VMs are deployed yet, and therefore they
each report a 100% free space. When deploying a 500 GB VM, storage
DRS selects the datastore with the highest reported number of free
space, and as all three datastores are equal, it will pick the first datastore,
Datastore 1. Until the deployment process is complete, the datastore
remains to report 1000 GB of free space.

When deploying a single VM, this behavior is not a problem. However,
when deploying multiple VMs, this might result in an unbalanced
distribution of virtual machine across the datastores.

To solve this problem Storage DRS (since 5.1) applies a storage lease
when deploying VMs on a datastore. This lease “reserves” the space and
making deployments aware of each other, thus avoiding
suboptimal/invalid placement recommendations.

The same datastore cluster configuration is used, each datastore if
empty, reporting 1000 GB free space. Three virtual machines, VM01,

P3 \\ STORAGE DRS

352

VM02, and VM03, are deployed. Respectively they are 100 GB, 200 GB
and 400 GB in size. During the provisioning process, Storage DRS selects
a datastore for each VM. As the main goal of Storage DRS is to balance
the utilization of the datastore cluster, it determines which datastore has
the highest free space value after each placement during the simulation.

During the simulation, VM01 is placed on Datastore 1, as all three
datastores report an equal value of free space. Storage DRS then applies
the lease of 100 GB and reduces the available free space to 900 GB.

When Storage DRS simulates the placement of VM02, it checks the free
space and determines that Datastore 2 and Datastore 3 each have 1000
GB of free space. Datastore 1 reports 900 GB. Although VM02 can be
placed on Datastore 1 as it does not violate the space utilization
threshold, Storage DRS prefers to select the datastore with the highest
free space value. Storage DRS will choose Datastore 2 in this scenario as
it picks the first datastore if multiple datastores report the same free
space value.

The simulation determines that the optimal destination for VM03 is
Datastore 3, as this reports a free space value of 1000 GB, while
Datastore 2 reports 800 free space and Datastore 1 reports 900 GB of
space.

This lease is applied during the simulation of placement for the
generation of the initial placement recommendation and remains applied
until the placement process of the VMs is completed or when the
operation times out.

 353

19
STORAGE DRS LOAD BALANCING

Storage DRS takes both space and I/O load into consideration when
recommending load-balancing recommendations: Storage DRS
generates a unified load-balance recommendation.

Storage DRS generates migration recommendations when space
utilization or I/O response time thresholds have exceeded, and a
significant space or I/O imbalance exists. However, if Storage DRS
cannot correct the threshold violation, it balances the load within the
datastore cluster as much as possible.

The datastore cluster settings displays both space and I/O load
balancing configuration options.

P3 \\ STORAGE DRS

354

Figure 179: Storage DRS Thresholds

Storage DRS uses these settings to determine if migrations are required
to balance workload across datastores. Each of the load balancers
generates recommendations independently. Storage DRS considers both
recommendations before providing a unified recommendation. The
following section examines each load balancer separately before
expanding upon unified recommendations.

Space Load Balancing
Storage DRS distributes space utilization of the VMs across the
datastores of the datastore cluster. The workflow is repeated for each
space-overloaded datastore, and more than one migration may be
recommended to reduce the load on a datastore. The space balance
workflow looks as follows:

19 // STORAGE DRS LOAD BALANCING

355

Figure 180: Space Load Balance Workflow

Collecting Statistics
Storage DRS retrieves VM statistics from the vCenter database every two
hours. The host on which the VM is registered provides vCenter detailed
information regarding the files associated with the VM. Storage DRS
collects this information from the vCenter database to understand the
disk usage and file structure of each VM.

Each ESXi host reports the datastore utilization at a frequent interval,
and this information is stored in the vCenter database. Storage DRS

P3 \\ STORAGE DRS

356

checks whether the datastore utilization is above the user-set threshold.
The user-set threshold – space utilization ratio threshold – defines the
maximum acceptable space load of the VMFS datastore. The space load
is the sum of the total consumed space on the datastore, divided by the
capacity of the datastore.

Space load = (total consumed space on the datastore)/(datastore
capacity)

By default, the space utilization ratio is set to 80%, which indicates that
the total consumed space on the datastore must not exceed 80% of the
capacity of the datastore. To avoid unnecessary migrations from one
overloaded datastore to a datastore that is near the threshold, Storage
DRS uses the space utilization ratio difference threshold to determine
which datastores should be considered as destinations for VM
migrations.

19 // STORAGE DRS LOAD BALANCING

357

Figure 181: Minimum Space Utilization Difference

The space utilization ratio difference threshold indicates the required
difference of utilization ratio between the destination and source
datastores. The difference threshold value is set by default to 5%.
Utilization is usage * 100/capacity. If the space used on Datastore 1 is
82% and Datastore 2 is 79%, the difference is 3%. Storage DRS will not
make migration recommendations from Datastore 1 to Datastore 2 until
it exceeds the threshold.

Cost Benefit-Risk Analysis
Similar to DRS, Storage DRS uses a cost-benefit metric to identify
suitable migration candidates and to determine if the datastore cluster
benefits from the move.

P3 \\ STORAGE DRS

358

Benefit: The increase of free space after a VM moves out of the
datastore.

Cost: The size of the VMDK and activity of I/O workload impacts the cost
calculation. The number of mirrored writes to the datastores and the
expected duration of the migration are considered as the overhead of a
migration.

Risk: Risk is involved when generating migration recommendations for
VMs configured with thin-provisioned disks. Storage DRS considers the
allocated disk space instead of the provisioned amount (configured size)
when determining if load balancing is required. The data-growth rate is
considered a risk when migrating thin disks. Storage DRS attempts to
avoid migrating VMs with data-growth rates that will likely cause the
destination datastore to exceed the space utilization threshold in the
near future.

The growth rate is estimated by means of historical usage samples; with
recent samples weighing more than older samples. The “Near future” is a
defined time window and defaults to 30 hours. If the benefit outweighs
the cost, Storage DRS considers the move for a recommendation.

Migration candidate selection
When a datastore exceeds the space utilization threshold, Storage DRS
attempts to move the number of megabytes out of the datastore to
correct the space utilization violation. In other words, Storage DRS
attempts to select a VM that is closest in size required to bring the space
utilization of the datastore to the space utilization ratio threshold.

To minimize overhead, Storage DRS prefers moving powered-off VMs to
powered-on VMs. The advantage of moving powered-off VMs is that
Storage DRS does not have to track any block changes inside the VMDK
during relocation and does not have to calculate the performance
degradation on the VM workload.

19 // STORAGE DRS LOAD BALANCING

359

To reduce the overhead even more, if the VM swap files are stored in a
location explicitly specified by the user, Storage DRS does not move
these files. After evaluation of statistics, space utilization and utilization
ratio thresholds, the Storage DRS space load-balancing algorithm selects
a candidate VM. This VM offers the highest benefit with the lowest
overhead. However, Storage DRS does not apply or display the load
balancing recommendation straight away; it considers the I/O load
balancing recommendations before generating the actual
recommendations.

On-Demand Space Load Balancing
Although Storage DRS load-balancing runs every 8 hours, a load
balancing process is triggered by Storage DRS when the consumed
space in a datastore exceeds the utilization ratio threshold. Storage DRS
monitors utilization of the datastores and decides when the algorithm
invocation needs to be scheduled. Depending on the fill-rate of the
volume and the associated risk, Storage DRS decides if a load-balancing
process needs to take place. It is possible that the threshold is violated,
but due to a slow fill-rate, space load balancing is not immediately
necessary. This behavior avoids generating unnecessary overhead.

I/O Load Balancing
The I/O load balancer’s goal is to resolve the imbalance of performance
delivered from datastores in a datastore cluster. To generate an I/O load
balancer migration, Storage DRS runs the workflow outlined in the next
figure. Similar to the space-balancing algorithm, this algorithm runs for
all overloaded datastores, and the algorithm may recommend one or
more migrations for each overloaded datastore.

P3 \\ STORAGE DRS

360

Figure 182: I/O Load Balancing Workflow

Stats Collection – Performance Snapshot
The main metric used by Storage DRS to represent performance is the
average latency on each datastore. To solve the uneven distribution of
average latency within the datastore cluster, Storage DRS requires input
to recommend migrations. The required input is acquired by collecting a
set of various statistics from vCenter. This set of statistics is commonly
referred to as the “performance snapshot”. Storage DRS uses the
performance snapshot for its online device and workload modeling.

19 // STORAGE DRS LOAD BALANCING

361

Online Device and Workload Modelling
To achieve better and more efficient utilization of storage resources in a
datastore cluster, Storage DRS creates an online device and workload
model. This model helps Storage DRS determine overall device
performance capability and analyzes the impact of a specific set of
workload data points on the latency of the datastore.

Device Modelling
Storage DRS captures device performance to create its performance
models. Most storage devices hide RAID level and device characteristics
from ESXi hosts and only present latency and the total capacity of a disk.
It is essential to understand that not every disk is the same and that
device performance can vary due to a wide variety of configuration
differences. For example, a 2 TB disk spanning a disk group containing
thirty-two 15K RPM Fibre-Channel disks usually offers better
performance than a 2 TB disk spanning eight 7.2K RPM SATA disks. To
understand and learn the performance of each device, Storage DRS uses
a workload-injector and a reference workload to measure outstanding
I/O’s and latency. Paired together, they indicate the relative performance
capability of a datastore.

Please remember that Storage DRS does not require any support from
the storage array to determine device characteristics. No additional
third-party software is required to run Storage DRS.

Workload Modelling
The workload modeling process creates a workload metric of each virtual
disk. Per virtual disk, 4 data points are collected:

▪ Number of Outstanding I/Os
▪ I/O size
▪ Read / Write ratio
▪ % Randomness

P3 \\ STORAGE DRS

362

Storage DRS analyzes the impact of each data point on latency and
returns an overall workload model metric.

Normalized Load
The device metric and workload metric are used to define the normalized
load of a datastore. The normalized load allows Storage DRS to base its
load balancing recommendation on both the intensity of the workload
and the capabilities of the connected devices. The standard deviation of
the normalized load of each datastore allows Storage DRS to determine
the datastore cluster load imbalance.

Figure 183: I/O Load-Balancing Input

This performance snapshot contains read and write latency samples
captured by the SIOC injector on the previous day. Although Storage DRS
is invoked every 8 hours, the I/O load Storage DRS evaluates the same
performance data from the previous day during each invocation.
Effectively, I/O load balancing recommends moves based on whole-day
stats. This could lead to I/O load-balancer-related migrations once a day.

19 // STORAGE DRS LOAD BALANCING

363

Data Points
To avoid having its data polluted by peak load moments, Storage DRS
does not use real-time statistics. Instead, it aggregates all the data
points collected over a period of time. Storage DRS reviews the data
points, and if the 90th percentile I/O latency measured over a day for the
datastore is higher than the threshold, Storage DRS considers the
datastore as overloaded. By using the 90th percentile, Storage DRS uses
the busiest 10% of the measurement period as a basis for its I/O load
balancing decision.

As workloads shift during the day, enough information needs to be
collected to make an accurate assessment of the workloads. Therefore,
Storage DRS must have at least 16 hours of data before
recommendations are made. By using at least 16 hours of data, Storage
DRS has enough data of the same timeslot so it can compare utilization
of datastores.

For example Datastore 1 to Datastore 2 on Monday morning at 11:00. As
16 hours is 2/3 of the day, Storage DRS receives enough information to
characterize the performance of datastores on that day. However, how
does this tie in with the 8-hour invocation period?

8-hour invocation period and 16 hours worth of data Storage DRS uses
16 hours of data. However, this data must be captured in the current day
otherwise the performance snapshot of the previous day is used. How is
this combined with the 8-hour invocation periods?

P3 \\ STORAGE DRS

364

Figure 184: Invocation Period Overview

I/O load balancing is technically performed every 16 hours. Usually after
midnight, after the day date, the stats are fixed and rolled up, this is
called the rollover event. The first invocation period (08:00) after the
rollover event uses the 24 hours statistics of the previous day. After 16
hours of the current day have passed, Storage DRS uses the new
performance snapshot and may evaluate moves based on the new stats.

Storage DRS always uses past-day statistics regardless of the
selected invocation period. For example, if the invocation period is
set to 72 hours, Storage DRS still reviews the data collected from the
previous 16 hours.

Load Imbalance Recommendations
The I/O latency threshold defines the trigger point for considering load
balancing to reduce latency. To do this, Storage DRS identifies the
normalized load of each datastore. If a normalized load exceeds the user-
set I/O latency threshold, Storage DRS reviews the load differences
between the datastores in the datastore cluster and compares that to the
value of tolerated imbalance set by the I/O imbalance threshold. If the
load difference between the datastores matches or exceeds the tolerated
imbalance, Storage DRS initiates the process to recommend migrations.

19 // STORAGE DRS LOAD BALANCING

365

Figure 185: I/O Imbalance Threshold

The I/O imbalance threshold can be set from Conservative to Aggressive
by moving the slider to the appropriate side. A more conservative setting
causes Storage DRS to generate recommendations only when the
imbalance across the datastores is very high while selecting a more
aggressive setting would make Storage DRS generate recommendations
to solve even small imbalances.

Cost-Benefit Analysis
The cost-benefit analysis is similar to the cost-benefit analysis of the
space load balancer.

Cost: The cost is related to the duration of the Storage vMotion, which by
itself is dependent on the size of the VM disk files.

Benefit: The benefit is the estimated improvement of I/O latency that is
achieved on the source disk after the VM is migrated to the destination
disk. If, after subtracting the cost from the benefit, the benefit remains
greater than zero, Storage DRS generates an I/O load balance
recommendation. If the imbalance is very low between the source and
destination datastores and the VMDK files are large, the value can be
zero because the estimated Storage vMotion time is so high that it does
not make sense to recommend the move.

P3 \\ STORAGE DRS

366

Ignoring Peak Moments
Storage DRS starts to generate I/O load-related recommendations once
an imbalance persists for some period of time, usually at least 10% of a
day (or approximately 2.4 hours). This timeframe prevents Storage DRS
from being impacted by peak load moments. The duration of the
imbalance period depends on the workload and the I/O imbalance
threshold.

SIOC Latency and Storage DRS Latency
Although SIOC is leveraged by Storage DRS, its latency threshold setting
is decoupled from Storage DRS. The configured latency threshold for
Storage DRS is used by Storage DRS to classify a datastore as being
overloaded and make recommendations to prevent bottlenecks and
hotspots. The configured latency threshold for SIOC is used by SIOC to
detect contention and throttle hosts based on this information to ensure
each VM receives the number of resources it is entitled to.

To compute the latency metric, Storage DRS uses the
vmObservedLatency metric while SIOC only uses the device latency
metric. vmObservedLatency is the time between the hypervisor receiving
an I/O request from the VM and getting I/O response back from the
datastore. By using vmObservedLatency, Storage DRS is also aware of
any queuing delays (wait time) occurring inside the host.

To leverage vmObservedLatency, all hosts connected to the datastore
cluster should be vSphere 5.1 or higher. This metric is included in the
SIOC Performance Charts in the vSphere UI.

To avoid misaligned latency threshold settings, SIOC automatically
determines the latency threshold for each device. The default latency
threshold for datastores in a datastore cluster is based on the device
model. This threshold corresponds to 90% of peak IOPS of the disks
backing the datastore. SIOC does not set the threshold lower than the
specified I/O latency threshold when the I/O metric is enabled.

19 // STORAGE DRS LOAD BALANCING

367

If you set the SIOC latency manually, set the SIOC latency higher than
Storage DRS latency threshold, because Storage DRS latency is about
correcting to reduce and avoid contention, whereas SIOC latency is
about throttling workloads in a fair way when there is contention.

Datastore Correlation Detector
IO load balancing operations avoid recommending migration of VMs
between two performance-correlated datastores. Performance-correlated
datastores are datastores that share the same backend resource such as
disk- or RAID-groups. When multiple datastores share the same disk- or
RAID-group, their performance characteristics could be interrelated, i.e., if
one datastore experiences high latency, the other datastores sharing the
same disks might experience similarly high latency since the same disks
service I/O’s from both datastores.

Storage DRS uses the SIOC injector for datastore correlation detection.
How does it work? The datastore correlation detector measures
performance during isolation and when concurrent IOs are pushed to
multiple datastores. For example, Datastore 1 and Datastore 2 belong to
the same datastore cluster. The SIOC injector uses a synthetic workload
to measure to average I/O latency of Datastore 1 in isolation. Next, it
measures the average I/O latency of Datastore 2 in isolation. The third
step uses the same workload on both datastores simultaneously.

The first two steps are used to establish the baseline for each datastore.
If the average latency of each datastore in step 3 has increased
significantly, the datastores are marked as performance-correlated. If
there is no performance correlation, concurrent I/O to one datastores
should have no effect on the other datastore. If two datastores are
performance-correlated, the concurrent I/O streams should amplify the
average I/O latency on both datastores.

When two datastores are marked as performance-correlated, Storage
DRS does not generate IO load balancing recommendations between
those two datastores. However, Storage DRS can still generate

P3 \\ STORAGE DRS

368

recommendations to move VMs between two correlated datastores to
address out of space situations or to correct rule violations.

Load Balancing Recommendations
Storage DRS generates both space and I/O load balancing
recommendations separately. However, it weighs and combines both
recommendations to provide a unified recommendation.

Unified Recommendations
A migration recommendation should not violate any user-set threshold.
For example, migrating a VM to resolve an I/O load imbalance should not
create a situation that results in a space load balance violation on the
destination datastore and requires Storage DRS to generate another
migration recommendation to resolve the space imbalance.

To avoid this scenario, Storage DRS calculates the space and I/O load
imbalances for each candidate migration and selects the migration that
improves the I/O load imbalance while not decreasing the space balance.
To address any conflicting goals, each move is awarded a goodness
metric that represents the weighted sum of the improvements to the I/O
load and space load imbalances.

If the space load metric of each datastore is substantially below the
space utilization threshold, the I/O load metric becomes the dominant
factor in migration recommendations. However, if the space utilization of
a datastore is above the threshold, the space metric receives more
weight than the I/O load metric. Likewise, if I/O is overcommitted, the I/O
load metric receives more weight than the space metric. Otherwise, both
metrics receive equal weight.

If both thresholds are exceeded, Storage DRS can still decide not to
generate migration recommendations if, for example, no valid moves
exist. This can occur due to VM anti-affinity rules or because the cost of
each move outweighs the benefit of that move. For example, the benefit

19 // STORAGE DRS LOAD BALANCING

369

value of a move can be zero if migrating VMs with large disks is the only
way to solve a very low I/O imbalance. In this scenario, the cost of the
Storage vMotion time would exceed the improvement on the I/O load
balance in the datastore cluster.

Dependent Migration Recommendations
Dependent migration recommendations consist of multiple
recommendations that must be executed in order, as a whole, to achieve
a positive gain (load balanced). It is entirely possible that partial
executions of this set may lead to a negative gain (worse imbalance).
Storage DRS does not generate dependent migration recommendations
during load balancing operations; however, Storage DRS may generate
multiple independent moves which can lead to a positive gain of load
balance. These independent moves can be executed in any order and still
result in an improvement of load balance. Applying a subset of
recommendations may also lead to an improvement, but with a smaller
positive gain than applying the full set of recommendations.

Note that initial placement and migrations of virtual disks is based on the
space availability and that the Storage DRS algorithm can issue multiple
Storage vMotion actions as part of its recommendation to accommodate
a virtual disk within a datastore. See the cluster defragmentation section
for more information.

Cultivation Time
Storage DRS migration recommendations are delayed after Storage DRS
is enabled for the first time. As mentioned in the data points section,
Storage DRS requires at least 16 hours worth of data before it can use
the performance snapshot for migration recommendations. On top of
this, Storage DRS uses a “warm-up” period in which it determines the
capabilities of connected storage array(s) and the characteristics of the
active workloads. This results in delays before the first set of migration
recommendations is generated.

P3 \\ STORAGE DRS

370

In general, Storage DRS is being conservative about issuing load-
balancing recommendations before it has collected enough information
about the environment.

Invocation Triggers
The I/O load balancing algorithm is automatically invoked every 8 hours.
When the invocation interval expires, Storage DRS computes and
generate recommendations to migrate VMs. Each recommendation that
is not applied is retired at the next invocation of Storage DRS; Storage
DRS might generate the same recommendation again if the imbalance is
not resolved.

The invocation period can be changed via the user interface and can
range between 60 minutes and 43200 minutes (30 days). If the
invocation period is set to 0, periodic load balancing is turned off.
Changing the default value is strongly discouraged. A less frequent
interval might reduce the number of Storage vMotion operations and
result in less overhead, but may lead to longer datastore cluster
imbalance. Shortening the interval will likely generate extra overhead
while providing little additional benefit.
Besides periodic scheduling according to the configured invocation
frequency, the Storage DRS imbalance calculation is also performed
when it detects changes, such as:

▪ The datastore cluster configuration is updated
▪ A datastore is entering maintenance mode
▪ During initial placement [No load balancing]
▪ A datastore is moved into a datastore cluster
▪ A datastore exceeds its configured space threshold
▪ When “Run Storage DRS” is invoked

Cluster Configuration Change
If the thresholds or invocation period is changed, Storage DRS triggers a
new imbalance calculation.

19 // STORAGE DRS LOAD BALANCING

371

Datastore Maintenance Mode
When triggering maintenance mode, Storage DRS leverages vCenter APIs
to retrieve a list of registered VMs on a given datastore. Storage DRS
generates the migration recommendations and, depending on the
automation level. It presents the list directly to vCenter for execution or
presentation to the user.

If there are any faults generated after putting the datastore into
maintenance mode, manual override kicks in. In this case, the user
must cancel the request to enter maintenance mode or approve the
recommendations and agree to manually address the faults.

Because Storage DRS retrieves information via vCenter APIs, and uses
the vCenter APIs to move VM files, it only generates migration
recommendations for VMs that are registered in vCenter. Orphaned VMs
or other non-related files are not migrated. When executing migration
recommendations, vCenter only considers the remaining datastores of
the datastore cluster as destinations. Datastores outside the cluster are
not considered as suitable and compatible destinations.

Initial Placement
Initial placement of a VM or virtual disk triggers the Storage DRS
imbalance calculation when:

▪ A VM is created
▪ A VM is cloned
▪ A virtual disk is added to a VM
▪ A VM or virtual disk is migrated into the datastore cluster

Exceeding Threshold
An invocation of Storage DRS is scheduled to run when a host reports
datastore usage above the user-set threshold or when a thin-provisioning
out-of-space alarm is triggered.

P3 \\ STORAGE DRS

372

Invocation Frozen Zone
Each ESXi host reports datastore space utilization statistics to vCenter
on a regular basis. vCenter compares the utilization statistics to the
imbalance threshold and schedules a Storage DRS invocation if the
utilization exceeds the threshold.

Because ESXi hosts do not report on a synchronous basis, vCenter might
keep on receiving utilization statistics while a VM is being migrated to
solve the space utilization violation. To counter possible Storage DRS
schedule requests from vCenter due to space threshold issues, an
invocation “frozen zone” is introduced. After each Storage DRS
invocation, Storage DRS invocation cannot be scheduled for at least 10
minutes.

Future Storage DRS invocations take these recommendations into
account; the best practice would be to apply such recommendations as
soon as possible.

Recommendation Calculation
Storage DRS performs multiple calculations and passes to generate
migration recommendations. Storage DRS determines the datastore
cluster imbalance and selects suitable VMs to migrate to solve the
imbalance. It monitors both space load and I/O performance to generate
the migration recommendation. Before generating recommendations,
Storage DRS checks for constraint violations.

The constraint correction pass determines whether Storage DRS needs
to recommend mandatory Storage vMotions:

▪ To correct VMDK-VMDK anti-affinity rule violations
▪ To correct VMDK-VMDK affinity rule violations
▪ To correct VM-VM anti-affinity rule violations

19 // STORAGE DRS LOAD BALANCING

373

If no acceptable move can be found to fix a violation, Storage DRS
displays the reason why it cannot fix the violation in a fault message
located in the Storage DRS view.

How to Create a "New Storage DRS
recommendation generated" Alarm
One of the drawbacks of manual mode is the need to monitor the
datastore cluster on a regular basis to discover if new recommendations
are generated. As Storage DRS is generated every 8 hours and doesn’t
provide insights when the next invocation run is scheduled, it's become a
bit of a guessing game when the next load balancing operation has
occurred.

To solve this problem, it is recommended to create a custom alarm and
configure the alarm to send a notification email when new Storage DRS
recommendations are generated. Here’s how you do it: Go to Storage |
Storage DRS Cluster| Configure | More | Alarm Definitions | Add.

Name and Description
Provide the name of the alarm as this name will be used by vCenter as
the subject of the email. Provide an adequate description so that other
administrators understand the purpose of this alarm.

Figure 186: Alarm Name and Description

Targets
Since you already selected the Datastore Cluster, the target type and
target are prefilled.

P3 \\ STORAGE DRS

374

Figure 187: Alarm Targets

Alarm Rule
Select the drop down box at the IF statement and select “New Storage
DRS recommendation generated”. Select the severity of the alarm level,
we guess you don’t want a migration recommendation listed as critical,
thus we selected the warning type in this example. Fill out the email
address if you want to be notified via an email message. Or if you want it
plugged into your monitoring systems you can configure SNMP traps or
use a script.

Figure 188: Alarm Rule

Review
Click on next to review the alarm and create to finish this process. Make
sure the option at the left bottom “Enable this alarm” is indicated as
green.

 375

20
DATASTORE CLUSTER

CONFIGURATION

Datastore clusters form the basis of Storage DRS and can best be
described as a collection of datastores aggregated into a single object.
Once configured, you manage a datastore cluster instead of the
individual datastores. Please be aware that datastore clusters are
referred to as “storage pods” in the vSphere API.

P3 \\ STORAGE DRS

376

Figure 189: Datastore Cluster Ecosystem Architecture

A datastore cluster is used as the storage destination during the
provisioning process. The provisioning process not only refers to the
creation of a VM, but also to adding a disk to an existing VM, cloning a
VM or moving a VM by Storage vMotion operation into the datastore
cluster.

The datastore cluster becomes a load-balancing domain once Storage
DRS is enabled. The load balancing algorithm issues migration
recommendations when thresholds are exceeded.

The workflow for creating a datastore cluster is straightforward.

Creating a Datastore Cluster
Before we show the eight steps that need to be taken when creating a
datastore cluster, we want to list some constraints and our
recommendations for creating datastore clusters.

20 // DATASTORE CLUSTER CONFIGURATION

377

Constraints:
▪ VMFS and NFS cannot be part of the same datastore cluster
▪ Use Similar disk types inside a datastore cluster
▪ Maximum of 64 datastores per datastore cluster
▪ Maximum of 256 datastore clusters per vCenter Server
▪ Maximum of 9000 VMDKs per datastore cluster

Recommendations:

▪ Group disks with similar characteristics (RAID-1 with RAID-1,
Replicated with Replicated, 15k RPM with 15k RPM, etc.)

▪ Pair I/O latency threshold with disk type: SSD disk 10-15ms,
FC/SAS 20-40ms, SATA disk: 30-50ms

▪ Full connectivity of datastores, all ESXi hosts of DRS cluster are
connected to all datastores within datastore cluster

▪ Leverage information provided by vSphere Storage APIs -
Storage Awareness

Configuration Workflow
1. Go to the Home screen.
2. Go to Storage.
3. Right click on Datacenter object or select Datacenter object and

select Actions.
4. Select Storage.
5. Click on “New Datastore Cluster”.
6. Provide the datastore cluster with a name and leave “Turn On

Storage DRS” enabled.
7. Select Automation level.
8. Enable or Disable I/O load balancing.
9. Configure the I/O latency threshold if I/O load balancing is

enabled and select the appropriate threshold based on the disk
architecture that back the datastores.

10. Set space threshold, please note that the setup screen only
offers the percentage based setting. The setting screen of the
datastore cluster allows you to configure an absolute number
(i.e. 50 GB instead of 20%).

P3 \\ STORAGE DRS

378

11. Select the hosts and clusters you wish to connect to.
12. Select the appropriate datastores.
13. Validate the selected configuration and click finish.

The datastore cluster is created literally in seconds. If “Storage DRS” is
not enabled, a datastore cluster is created which lists the datastores
underneath, but Storage DRS won’t recommend any placement action for
provisioning or migration operations on the datastore cluster.

Name and Location
The first steps are to enable Storage DRS, specify the datastore cluster
name and check if the “Turn on Storage DRS” option is enabled.

Figure 190: Datastore Cluster Name and Location

When “Turn on Storage DRS” is activated, the following functions are
enabled:

▪ Initial placement for virtual disks based on space and I/O
workload

▪ Space load balancing among datastores within a datastore
cluster

▪ IO load balancing among datastores within a datastore cluster

20 // DATASTORE CLUSTER CONFIGURATION

379

The “Turn on Storage DRS” checkbox enables or disables all of these
components at once. If necessary, I/O balancing functions can be
disabled independently. When disabling Storage DRS by disabling the
“Turn On Storage DRS” checkbox, all the Storage DRS settings, e.g.,
automation level, aggressiveness controls, thresholds, rules and Storage
DRS schedules are saved so they may be restored to the same state it
was in when Storage DRS was disabled.

Storage DRS Automation
Storage DRS offers two automation levels:

No Automation (Manual Mode)
Manual mode is the default mode of operation. When the datastore
cluster is operating in manual mode, placement and migration
recommendations are presented to the user but are not executed until
they are manually approved.

Fully Automated
Fully automated allows Storage DRS to apply space and I/O load-balance
migration recommendations automatically. No user intervention is
required. However, initial placement recommendations still require user
approval.

P3 \\ STORAGE DRS

380

Figure 191: Storage DRS Automation

Select a cluster automation level for cluster level and, if necessary, fine-
tune the behavior of the individual algorithms and features. This screen
allows you to configure Storage DRS that automatically applies storage
load balance operations while providing the user I/O load balancing
recommendations. The user has to approve the I/O load balance
recommendations manually in this configuration.

20 // DATASTORE CLUSTER CONFIGURATION

381

Figure 192: Customized Storage DRS Automation Settings

Rule enforcement automation level: Specifies the Storage DRS behavior
when it generates recommendations for correcting affinity rules
violations in a datastore cluster. Since an affinity rule is a constraint, a
rule of behavior for Storage DRS to obey to, these recommendations are
marked as the highest priority and should be executed as fast as
possible. It's recommended to set this to fully automated.

Policy enforcement automation level: Specifies the Storage DRS behavior
when it generates recommendations for correcting storage and VM
policy violations after a datastore is coming out of maintenance mode. If
you use Storage Policy, it’s recommended to set this to fully automated.

VM evacuation automation level: Specifies the Storage DRS behavior
when it generates recommendations for VM evacuations from datastores
in a datastore cluster. This applies to the behavior of Storage DRS when
putting a datastore in maintenance mode. Do you want automatic
migrations of VMs when putting a datastore in maintenance mode, if yes,
select fully automated.

P3 \\ STORAGE DRS

382

Partially Automated is Missing Storage DRS does not offer partially
automated automation that provides automatic initial placement of
the VMs. Initial placement recommendations must always be
approved manually, regardless of the selected automation level. The
automation level only specifies the approval-automation of space and
I/O load balancing recommendations.

Storage Run Runtime Settings
Configure the I/O latency threshold if I/O load balancing is enabled and
select the appropriate threshold based on the disk architecture that back
the datastores.

Set space threshold; please note that the setup screen only offers the
percentage-based setting. The setting screen of the datastore cluster
allows you to configure an absolute number (i.e. 50 GB instead of 20%)

Figure 193: Storage DRS Runtime Settings

20 // DATASTORE CLUSTER CONFIGURATION

383

Select Clusters and Hosts
The “Select Hosts and Clusters” view allows the user to connect the
datastore cluster to one or more DRS clusters. Only clusters within the
same vSphere datacenter can be selected, as the vCenter datacenter is
storage DRS boundary.

Figure 194: Cluster and Host Selection Screen

Please note that datastores shared across multiple data centers
cannot be included in a datastore cluster. A datastore cluster is
managed by a single vCenter, as Storage DRS runs in a single vCenter.
If two vCenters can both see the datastore cluster, then the Storage
DRS operations would conflict between the vCenters.

P3 \\ STORAGE DRS

384

Select Datastores
By default, only datastores connected to all hosts in the selected DRS
cluster(s) are shown. The Show datastore dropdown menu provides the
options to show partially connected datastores.

Figure 195: Select Datastores

If the overview shows a datastore that is not connected to all host,
now is the time to fix this! Partially connected datastores limit DRS
and Storage DRS load balancing effectiveness.

20 // DATASTORE CLUSTER CONFIGURATION

385

Ready to Complete
The “Ready to Complete” screen provides an overview of all the settings
configured by the user.

Figure 196: Ready to Complete

Click on Finish to create the Datastore Cluster.

P3 \\ STORAGE DRS

386

 387

21
ARCHITECTURE AND DESIGN OF

DATASTORE CLUSTERS

Connectivity
When introducing a datastore cluster into the infrastructure, care must
be taken regarding the connectivity of the datastore cluster. There are
multiple aspects of connectivity that must be considered: connectivity of
a datastore cluster to hosts within a compute cluster, connectivity to
multiple compute clusters and connectivity to multiple arrays. For
example, spanning a datastore cluster across multiple storage arrays is
possible and supported, but what are the benefits and pitfalls of such a
configuration?

Host Connectivity
Connectivity between ESXi hosts and datastores affects initial placement
and load balancing decisions made by both DRS and Storage DRS.
Although connecting a datastore to all ESXi hosts inside a cluster is a
recommended practice. We still come across partially connected
datastores in virtual environments. Let’s start with the basic terminology.

P3 \\ STORAGE DRS

388

Fully connected datastore clusters: A fully connected datastore cluster is
one that contains only datastores that are available to all ESXi hosts in a
DRS cluster. This design is a recommendation, but it is not enforced.

Partially connected datastore clusters: If any datastore within a
datastore cluster is connected to a subset of ESXi hosts inside a DRS
cluster, the datastore cluster is considered a partially connected
datastore cluster.

What happens if the DRS cluster is connected to partially connected
datastore clusters? It is essential to understand that the goal of both
DRS and Storage DRS is resource availability. The key to offering
resource availability is to provide as much mobility as possible.

Storage DRS does not generate any migration recommendations that
reduces the compatibility (mobility) of a VM regarding datastore
connections. VM-to-host compatibility is calculated and captured in
compatibility lists.

Compatibility List
A VM-host compatibility list is generated for each VM. The compatibility
list determines which ESXi hosts in the cluster have network and storage
configurations that allow the VM to come online successfully. The
membership of a mandatory VM-to-Host affinity rule is listed in the
compatibility list as well. If the VM’s configured network port group or
datastore is not available on the host, or the host is not listed in the host
group of a mandatory affinity rule, the ESXi server is deemed
incompatible to host that VM.

Both DRS and Storage DRS focus on resource availability and resource
outage avoidance. Therefore, Storage DRS prefers datastores that are
connected to all hosts. Partial connectivity impacts both DRS and
Storage DRS load balancing capabilities.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

389

If DRS selects a host (ESXi-01) that is partially connected, it limits the
mobility of the VMDK within the datastore (Datastore 2 and Datastore 3)
If Storage DRS selects Datastore 1, it limits the mobility of the VM within
the DRS cluster (ESXi-02 and ESXi-03).

Figure 197: VM and VMDK Mobility in a Partially Connected Architecture

During the process of generating migration recommendations, DRS
selects a host that can provide enough resources to satisfy the VM’s
dynamic entitlement, while lowering the imbalance of the cluster. DRS
might come across a host with much lower utilization, than other hosts
inside the cluster. If that lightly utilized host is not connected to the

P3 \\ STORAGE DRS

390

datastore containing the VM’s files, (the poor connection situation might
even be the reason for the low utilization rate) DRS does not consider the
host due to the incompatibility. While this host might be a desirable
option to solve resource imbalance from a DRS resource load balancing
perspective, its lack of connectivity prevents it from being more
effectively utilized. Also, keep in mind the impact of this behavior on VM-
Host affinity rules, DRS does not migrate a VM to a partially connected
host inside the host group (DRS cluster). Similar imbalances can happen
with Storage DRS load balancing using partially connected datastores.

Partially connected datastores are not recommended when fully
connected datastores are available that do not violate the space Storage
DRS threshold.

I/O load balancing in Partially Connected
Datastore Clusters
You might wonder why the space Storage DRS threshold is explicitly
mentioned and not the latency threshold: that’s because I/O load
balancing is disabled when a partially connected datastore is detected in
the datastore cluster. Not only on that single, partially connected
datastore, but the entire datastore cluster. This limitation effectively
disables a complete feature set of your virtual infrastructure.

Partially Connected Datastores and the
Invocation Period
The connectivity status is extremely important when the Storage DRS
interval expires. During the migration recommendation calculation, the
connectivity state of each datastore is checked. If a partially connected
datastore is detected during the check, Storage DRS disables I/O load
balancing and space load balancing might not consider that datastore as
a valid destination.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

391

A temporary all-paths-down status or a rezoning procedure might not
have an effect on Storage DRS load-balancing behavior, but what if good
old Murphy decides to give you a visit during the invocation period? Keep
this in mind when scheduling maintenance on the storage platform; it
might be wise to temporarily disable Storage DRS.

Connect all datastores within a datastore cluster to all ESXi host
within a compute cluster.

Cluster Connectivity
A long-time best practice is to connect datastores to a single DRS
cluster. When introducing a new cluster, new datastores were created to
contain the VMs provisioned onto that new cluster. This best practice
was recommended primarily to reduce the number of SCSI-locks. As
VAAI functionality replaces old SCSI locks, connecting datastores to
multiple clusters becomes a possibility without impacting performance.
With that in mind, sharing datastore clusters across multiple compute
clusters is a supported configuration. Minimizing the number of
datastore clusters makes initial placement of VMs increasingly simple.
During VM placement, the administrator must select the destination DRS
cluster and Storage DRS selects the host that can provide the most
resources to the VM.

A migration recommendation generated by Storage DRS does not move
the VM at the host level. Consequently, a VM cannot move from one
compute cluster to another DRS cluster by any operation initiated by
Storage DRS.

P3 \\ STORAGE DRS

392

Figure 198: DRS and Storage DRS Load Balancing Domains

Multiple Compute Clusters and SIOC
VMs of various clusters can safely share datastores of a datastore
cluster, as SIOC and its shares are datastore focused. SIOC is unaware of
and unaffected by the cluster membership of a host. SIOC uses virtual
disk shares to distribute storage resources fairly, and these are applied
on a datastore-wide level, regardless of host clustering. In short, cluster
membership of the host has no impact on SIOC’s abilities to detect
violations of the latency threshold or manage the I/O stream to the
datastore.

Maximum Number of Hosts per Volume
The maximum supported number of hosts connected to a VMFS
datastore is 64. Keep this in mind when sizing compute clusters or
connecting multiple compute clusters to datastore clusters using VMFS
datastores. The maximum number of hosts connected to an NFS
datastore depends on the maximums of the NFS filer.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

393

Array Connectivity
What if multiple arrays are available to the virtual infrastructure? Are
there any drawbacks to spanning the datastore cluster across multiple
arrays, or would there be more benefits associated with creating a
datastore cluster per array?

Figure 199: Array Connectivity

Combining datastores located on different storage arrays into a single
datastore cluster is a supported configuration. Such a configuration
could be used during a storage array data migration project where VMs
must move from one array to another, but also when using multiple
arrays on a permanent basis. The key areas to focus on are the
homogeneity of configurations of the arrays and datastores.

When combining datastores from multiple arrays, it is highly
recommended to use datastores that use similar types of arrays, disks,
and RAID levels. Using similar types of arrays provide comparable
performance and redundancy features. Although RAID levels are
standardized by SNIA, implementation of RAID levels by different
vendors may vary from the actual RAID specifications. An
implementation used by a particular vendor may affect the read and/or
write performance and the degree of data redundancy compared to the
same RAID level implementation of another vendor.

P3 \\ STORAGE DRS

394

APIs for Storage Awareness
Would vSphere APIs for Storage Awareness (VASA) and Storage profiles be
any help in this configuration? VASA enables vCenter to display the
capabilities of the LUN/datastore. This information could be leveraged to
create a datastore cluster by selecting the datastores that report similar
storage capabilities. Keep in mind that the actual capabilities surfaced by
VASA are being left to the individual array storage vendors. This means
that the storage capability detail and description could be similar, yet the
performance or redundancy features of the datastores may differ.

Would this be harmful, or will Storage DRS stop working when
aggregating datastores with different performance levels? Storage DRS
will work and will load balance VMs across the datastores in the
datastore cluster. However, Storage DRS load balancing focuses on
distributing the VMs in such a way that the configured thresholds are not
violated and getting the best overall performance out of the datastore
cluster. By mixing datastores providing different performance levels, VM
performance may not be consistent when migrated between datastores
belonging to different arrays.

Hardware Offloading
Another caveat to consider is the impact of migrating VMs between
datastores on different arrays: vSphere API for Array Integration (VAAI)
hardware offloading is not possible. Storage vMotion will be managed by
one of the datamovers in the vSphere stack. As storage DRS does not
identify “locality” of datastores, it does not incorporate the additional
overhead incurred when migrating VMs between arrays.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

395

Figure 200: VAAI Hardware Offloading within Arrays

If designing an environment that provides a stable and continuous level
of performance, redundancy and low overhead, could datastores from
multiple arrays be aggregated into a single datastore cluster? Datastores
and array should have the following configuration:

▪ Identical vendor
▪ Identical firmware/code
▪ Identical number of spindles backing diskgroup/aggregate
▪ Identical RAID Level
▪ Same replication configuration
▪ All datastores connected to all hosts in compute cluster
▪ Equal-sized datastores
▪ Equal external workload (best none at all)

We recommend creating multiple datastore clusters. Group datastores
belonging to each storage array into their own datastore cluster. It
reduces the complexity of both the design and ongoing operations.

P3 \\ STORAGE DRS

396

When spanning multiple arrays, the configuration of the storage arrays
need to be kept as identical, impacting the management of the storage
arrays. Keep firmware versions identical across arrays in addition to
maintaining array functional parity and synchronizing downtime during
maintenance windows. Besides reducing operational overhead, keep the
datastore clusters confined within a storage array leverages VAAI. This
helps to reduce the load on the storage subsystem.

Datastores
The maximum number of datastores and the disk footprint of VMs are
usually the primary drivers of the datastore design. If a configuration
standard exists within your company, be aware of the possible impact
the maximum number of datastores could have on the consolidation
ratio of VMs on a datastore cluster.

Space Utilization Threshold and the Space
Safety Buffer
One of the primary considerations in the consolidation ratio of the VMs
to datastores is the space safety buffer. A common practice is to assign
a big chunk of space as safety buffer to avoid an out of space situation
on a datastore, which might lead to downtime of the active VMs. We have
seen organizations using requirements of 30% free space on datastores.
As Storage DRS monitors space utilization, the free space used as a
safety buffer can be greatly reduced. Each ESXi host reports the VM
space utilization and the datastore utilization; Storage DRS triggers an
invocation if the configured space utilization threshold is violated.
By reducing slack space, a higher consolidation ratio can be achieved (if
I/O performance allows this). Reclaiming slack space can provide
additional space for extra datastores within the datastore cluster.
 The availability of more datastores benefits Storage DRS by offering
more load balancing options: more datastores increases the number of
storage queues available, which benefits I/O management at the ESXi
level as well as SIOC at the cluster level.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

397

Scale Up or Scale Out Datastores
The maximum number of datastores supported in a datastore cluster is
64. If there is no predefined (company IT-standard) datastore size
standard, a suitable datastore size needs to be determined. Datastore
size depends on multiple variables: consolidation ratio of VMs per
datastore cluster, VM disk footprint and storage array performance to
name a few. As mentioned in the previous paragraph, more datastores
means more scheduling options for storage DRS. Selecting a smaller
datastore size could result in more migrations if the space utilization
threshold of datastores is violated.

Storage DRS supports datastores up to 64 TB. Extents are supported as
well, although there are some drawbacks introduced when using extents
in datastore clusters. Extending a datastore does not offer extra load
balancing options to Storage DRS, just a single datastore grows in size.
Storage DRS disables SIOC on an extended datastores, which in turns
result in disabled I/O load balancing for that particular datastore.

Storage DRS does not support combining NFS and VMFS datastores
into a single datastore cluster. You need to commit to one type of file
system per datastore cluster.

VM Configuration
The VM configuration impacts the load balancing ability of storage DRS
as well as the consolidation ratio of VMs to datastore clusters.

Datastore Cluster Default Affinity Rule
Storage DRS allows you changing the default affinity rule for the
datastore cluster. By default, Storage DRS recommends an Intra-VM
affinity rule. If you deselect this rule, Storage DRS spreads the VM files
and VMDKs across different datastores.

P3 \\ STORAGE DRS

398

Figure 201: Default VM Affinity

Affinity rules are covered more in detail in the next chapter. The Intra-VM
affinity rule keeps the VM files, such as VMX file, log files, vSwap and
VMDK files together on one datastore.

Figure 202: Initial Placement with Default Affinity Rule

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

399

Keeping all files together on one datastore helps ease troubleshooting.
However, Storage DRS load balance algorithms may benefit from the
ability to distribute the VM across multiple datastores. Let’s zoom in how
Storage DRS handles VMs with multiple disks when the Intra-VM affinity
rule is removed from the VM.

DrmDisk
Storage DRS uses the construct “DrmDisk” as the smallest entity it can
migrate. A DrmDisk represents a consumer of datastore resources. This
means that Storage DRS creates a DrmDisk for each VMDK belonging to
the VM. The interesting part is how it handles the collection of system
files and swap file belonging to VMs: Storage DRS creates a single
DrmDisk representing all of the system files. If, however, an alternate
swapfile location is specified, the vSwap file is a separate DrmDisk. Load
balancing is disabled on this swap DrmDisk. For example, for a VM with
two VMDK’s and no alternate swapfile location configured, Storage DRS
creates three DrmDisks:

• A separate DrmDisk for each VM Disk File
• A DrmDisk for system files (VMX, Swap, logs, etc)

Figure 203: DrmDisk of a VM

When deploying a new virtual machine into the datastore cluster, Storage
DRS generates the following datastore recommendation:

P3 \\ STORAGE DRS

400

Figure 204: Datastore Recommendation with Affinity Rules Disabled

Notice the separate recommendation for “New Virtual Machine
configuration file”? This is the DrmDisk containing the system files.

Increasing Granularity
Initial placement and Space load balancing benefit tremendously from
separating virtual disks across datastores. Instead of searching for a
suitable datastore that can hold the VM as a whole, Storage DRS is able
to search for appropriate datastores for each DrmDisk file separately.
You can imagine that this increased granularity means that datastore
cluster fragmentation is less likely to happen and, if prerequisite
migrations are required, the number of migrations is expected to be a lot
lower.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

401

Figure 205: Initial Placement with VMDK Anti-Affinity Rule Enabled

I/O Load Balancing with Anti-Affinity Rules
Similar to initial placement and load balancing, I/O load balancing
benefits from the greater granularity. Using smaller units, it can find a
better fit for each workload generated by the VMDK files. The system file
DrmDisk will not be migrated very often as it is small in size and does not
generate a lot of I/O. Storage DRS analyzes the workload of each
DrmDisk, then decides on which datastore it should place the DrmDisk to
keep the load balance within the datastore cluster while also providing
enough performance to each DrmDisk.

If Intra-VM affinity rules are used, Space balancing is required to find a
datastore that can store the VM without exceeding the space utilization
threshold. If I/O load balancing is enabled, this datastore also needs to
provide enough performance to keep the latency below the I/O latency
threshold after placing the three DrmDisks. You can imagine it is a lot
less complicated when space and I/O load balancing are allowed to place
each DrmDisk on a datastore that suits their specific needs.

P3 \\ STORAGE DRS

402

Disk Types
Storage DRS supports the following disk types:

▪ Thick
▪ Thin
▪ Independent disk
▪ vCloud Linked Clones
▪ Snapshot

Thick Disk
By default vSphere configures a VM with the thick format. During initial
placement and load balancing operations, the provisioned space is used
to calculate the necessary space available on the datastore. Because
allocated and provisioned space are the same, the calculation is simple.

Thin Provisioned Disk
Storage DRS supports thin provisioned disks. As mentioned in the load-
balancing algorithm chapter, it uses the committed space of a thin
provisioned disk instead of the provisioned space. One caveat is that
during the initial placement process, Storage DRS uses the provisioned
space in its calculations. This safeguards Storage DRS from violating the
space utilization threshold directly after placement.

Independent Disk
By default, Storage DRS does not move VMs with independent disks.
Independent disks can be shared or not. Determining whether the disks
are shared is a costly operation within the algorithm, as Storage DRS
needs to investigate every VM and its disks in the datastore cluster. To
reduce the overhead generated by Storage DRS on the virtual
infrastructure, Storage DRS does not recommend such moves.
When using VMs that have disks set to independent and are placed in a

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

403

datastore cluster, attempting to enter Storage DRS maintenance mode
for a datastore result in the error “Storage DRS is unable to move
independent disks.” An advanced parameter allows the use of non-
shared independent disks in a datastore cluster.

The option sdrs.disableSDRSonIndependentDisk needs to be added to the
vpxd.cfg file to use non-shared independent disks in a datastore cluster.
By default, this option is not listed in the vpxd.cfg and is treated as true.
When specified and set to false, Storage DRS moves independent disks
and the error “Storage DRS is unable to move independent disks” does
not appear.

Remember that adding this option to the VPXD.cfg file it automatically
applies to all datastore clusters managed by that vCenter server! Please
note that this option should only be used with non-shared independent
disks! Moving shared independent disks is not supported.

Avoiding VMDK Level Over-Commitment While
Using Thin Disks and Storage DRS
The behavior of thin provisioned disk VMDKs in a datastore cluster is
quite impressive. Storage DRS supports the use of thin provisioned disks
and is aware of both the configured size and the actual data usage of the
virtual disk. When determining the placement of a VM, Storage DRS
verifies the disk usage of the files stored on the datastore. To avoid
getting caught out by instant data growth of the existing thin disk
VMDKs, Storage DRS adds a buffer space to each thin disk.

This buffer zone is determined by the advanced setting
PercentIdleMBinSpaceDemand. This setting controls how conservative
Storage DRS is with determining the available space on the datastore for
load balancing and initial placement operations of VMs.

IdleMB
The advanced option “PercentIdleMBinSpaceDemand” specifies the
amount of IdleMB a thin-provisioned VMDK disk file contains.

P3 \\ STORAGE DRS

404

▪ When a thin disk is configured, the user determines the
maximum size of the disk (capacity). This configured size is the
“Provisioned Space”.

▪ When a thin disk is in use, it contains data. The size of the

actual data inside the thin disk is the “Allocated Space”.

▪ The space between the allocated space and the provisioned
space is called identified as the IdleMB.

Let’s use this in an example. VM10 has a single VMDK on Datastore 1.
The total configured size of the VMDK is 6 GB. VM10 written 2 GB to the
VMDK, this means the amount of IdleMB is 4 GB.

Figure 206: Thin Provisioned Disk

PercentIdleMBinSpaceDemand
The PercentIdleMBinSpaceDemand setting defines the percentage of
IdleMB that is added to the allocated space of a VMDK during free space
calculation of the datastore. The default value is 25%. When using the
previous example, the PercentIdleMBinSpaceDemand is applied to the 4
GB unallocated space, 25% of 4 GB = 1 GB.

Entitled Space Use
Storage DRS adds the result of the PercentIdleMBinSpaceDemand
calculation to the consumed space to determine the “Entitled Space
Use”. In this example the entitled space use is: 2 GB + 1 GB = 3 GB.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

405

Figure 207: Entitled Space Use

Calculation During Placement
The size of Datastore1 is 10 GB. VM10 entitled space use is 3 GB, this
means that Storage DRS determines that Datastore 1 has 7 GB of
available free space. The Space Utilization Threshold set on the
Datastore Cluster applies to each datastore. Thus, the load-balancing
algorithm kicks in when the datastore thin provisioned disks entitled
space use exceeds 8 GB.

Figure 208: Datastore Free Space

Changing the PercentIdleMBinSpaceDemand Default Setting
Any value from 0% to 100% is valid. This setting applies to the datastore
cluster level. There can be multiple reasons to change the default
percentage. By using 0%, Storage DRS will only use the allocated space,
allowing high consolidation. This is might be useful in environments with
static or extremely slow data increase.

P3 \\ STORAGE DRS

406

There are multiple use cases for setting the percentage to 100%,
effectively disabling over-commitment on VMDK level. Setting the value
to 100% forces Storage DRS to use the full size of the VMDK in its space
usage calculations. Many customers are comfortable managing over-
commitment of capacity only at storage array layer. This change allows
the customer to use thin disks on thin provisioned datastores.

Use case 1: NFS Datastores
A use case is for example using NFS datastores. Default behavior of
vSphere is to create thin disks when the VM is placed on a NFS
datastore. This forces the customer to accept a risk of over-commitment
on VMDK level. By setting it to 100%, Storage DRS uses the provisioned
space during free space calculations instead of the allocated space.

Use case 2: Safeguard to Protect Against Unintentional Use of Thin Disks
This setting can also be used as safeguard for unintentional use of thin
disks. Many customers have multiple teams for managing the virtual
infrastructure, one team for managing the architecture, while another
team is responsible for provisioning the virtual machines. The
architecture team does not want over-commitment on VMDK level, but is
dependent on the provisioning team to follow guidelines and only use
thick disks. By setting “PercentIdleMBinSpaceDemand” to 100%, the
architecture team ensures that Storage DRS calculates datastore free
space based on provisioned space, simulating “only-thick disks”
behavior.

Use-case 3: Reducing Storage vMotion Overhead While Avoiding Over-
commitment
By setting the percentage to 100%, no over-commitment will be allowed
on the datastore. However, the efficiency advantage of using thin disks
remains. Storage DRS uses the allocated space to calculate the risk and
the cost of a migration recommendation when a datastore avoids its I/O
or space utilization threshold. This allows Storage DRS to select the
VMDK that generates the lowest amount of overhead. vSphere only
needs to move the used data blocks instead of all the zeroed out blocks,
reducing CPU cycles. Overhead on the storage network is reduced, as
only used blocks need to traverse the storage network.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

407

VM Automation Level
Automation levels for individual VMs can be customized to override the
Storage DRS cluster automation level. There are four automation levels
for VMs:

▪ Fully Automated
▪ Manual
▪ Default (cluster automation level)
▪ Disabled

If the automation level of a VM is set to Disabled, Storage DRS does not
migrate that VM or provide migration recommendations for it. By setting
the automation mode of the VM to Manual, Storage recommendations
are generated, but all recommendations need to be approved by the user
before any action is taken.

Impact of VM Automation Level on Load Balancing Calculation
A VM set to Disabled automation level still has an impact on space and
I/O load balancing as both space, and I/O metrics are still captured both
at the datastore level and per VM. With the VM automation level set to
Disabled, Storage DRS refrains from generating migration
recommendations for that VM.

Interoperability

Array Features
vSphere 6.0 introduced Deep integration with vSphere APIs for Storage
Awareness (VASA) 2.0 and this removed many of the interoperability
concerns Storage DRS had with Array-based features. When the VASA
plugin for your storage system is configured then Storage DRS will
understand what capabilities are enabled on your storage system and
more specific your datastores. From 6.0 and up Storage DRS is capable
of understanding:

P3 \\ STORAGE DRS

408

▪ Array-based auto-tiering
▪ Array-based deduplication
▪ Array-based replication
▪ Array-based thin-provisioning

Array-Based Auto-Tiering
By default, Storage DRS runs every 8 hours and uses performance data
captured over more than a 16-hour period to generate I/O load balancing
decisions. Many array-based auto-tiering features use a different
timeframe to collect, analyze and move workload.

Storage DRS expects that the behavior of a LUN remains the same for at
least 16 hours and it will perform its calculations using this assumption.
Auto-tiering solutions might change the underlying structure of the
datastore based on its algorithms and timescales, conflicting with these
calculations.

VASA identifies datastores with auto-tiering and Storage DRS treats
these datastores differently for performance modeling purposes. Storage
DRS backs of at that moment. It becomes very conservative with
generating recommendations. Storage DRS lets the array deal with the
SLA guarantees because it’s dealing at the block level and this is much
more efficient than at the VMDK level.

Storage DRS increases the latency in such a way that it allows the
storage Array to remediate and rectify the problems. Even after doing
everything it can to solve the imbalance, and the latency is still growing,
that’s the moment Storage DRS helps to solve the I/O latency imbalance.
The SIOC threshold is set even higher. The SIOC threshold is a part of this
solution as well, as it can help to throttle the I/O load at the Host level.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

409

Array-Based Deduplication
Deduplication offers space savings due to the elimination of duplicate
data based on the actual content. This is achieved by indexing of the
actual stored data on a datastore and storing only the index for the
shared data.

As a result, all identical blocks will be replaced by a single block and the
rest will be replaced by pointers to that block. Pre-vSphere 6.0 Storage
DRS was not aware of the deduplication behavior of the underlying
datastores.

Moving data out of a deduplicated datastore might inflate the actual
storage use on the storage array, but moving data between datastores
backed by the same deduplicated pool may potentially cause
inefficiencies as well. For example, if a VMDK is moved from datastore 1
to datastore 2 where both datastores are sharing a common
deduplication pool:

The entire content of the VMDK will be accessed to make the copy. This
operation is less efficient on a deduplicated datastore. The deduplication
engine will re-index the incoming VMDK on datastore 2. This is
completely unnecessary due to sharing of the deduplication pool by 1
and 2. These moves have no net benefit and may potentially cause a
great deal of overhead.

VASA identifies the datastores that share a common deduplication pool,
and Storage DRS avoids any space balancing move operation between
two datastores sharing the same deduplication pool. However, Storage
DRS is capable of moving VMs out of the deduplicated pool as a last
resort. Typically this depends on the VASA provider functionality of the
storage array vendor, the VASA provider can identify how efficient the
deduplication process is and Storage DRS can decide to move less-
efficient VMs to other datastores. This functionality is not a VASA
requirement, thus verify with your storage vendor if they have
implemented this extra functionality.

P3 \\ STORAGE DRS

410

Figure 209: VMDK Migration within Deduplication Pools

Array-Based Replication
When replication is enabled and your datastore is part of a Storage Array
consistency group then Storage DRS will ensure that the VM is only
migrated to a datastore that belongs to the same consistency group.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

411

Figure 210: VMDK Migration within Same Consistency Group

Array-Based Thin-Provisioning
Pre vSphere 6.0 version used VASA to provide a thin-provisioning
threshold. If the datastore exceeded the threshold (75%), then VASA
triggered the thin-provisioning alarm. Storage DRS marked the datastore
and did not move any VMs into this datastore via initial placement or
load-balancing operations.

Since 6.0 VASA informs Storage DRS which datastores share the same
thin-provision pool at the storage array level. VASA allows the storage
array to report the available capacity within the thin-provisioning pool.
This allows Storage DRS to generate recommendations based on the
actual space rather than the reported capacity of the datastore. Storage
DRS migrates the VMDK to a datastore backed by a different thin-
provisioning pool if there is a physical space problem at the array level.

P3 \\ STORAGE DRS

412

Figure 211: VMDK Migration between Thin-Provisioning Pools

Storage DRS Integration with Storage
Profiles
Storage Policy Based Management (SPBM) allows you to specify the policy
for a VM that is enforced by Storage DRS. Datastore clusters can be
tagged or use VASA to expose the capabilities of the storage array’s
LUNs backing these datastores. If the VMs have storage profiles
associated with them, Storage DRS can enforce placement based on
underlying datastore capabilities.

This makes it much easier to select appropriate datastores for virtual
machine placement or the creation of datastore clusters. It can also
facilitate the troubleshooting process or conversations between you
(vSphere administrator) and the storage administrators by automatically
providing vCenter with details such as RAID level, thin/thick provisioned,
replication state and much more.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

413

Profile-Driven Storage
Prior to the availability of Profile-Driven Storage, managing datastores
and matching the SLA requirements of VMs with the appropriate
datastores was challenging, to say the least. Profile-Driven Storage
allows for rapid and intelligent placement of VMs based on pre-defined
storage profiles. These profiles usually represent a storage tier and are
created through a vCenter feature called “VM Storage Profiles.” Typically,
characteristics like RAID level, replication, performance, deduplication
and thin/thick provisioned are used to define different tiers. An example
of these tiers would be:

▪ Latency Sensitive - All Flash Array
▪ Fast - Hybrid Array
▪ Economic - Hybrid Array - Deduplication enabled

Using VM Storage Profiles, different storage characteristics, provided
through the Storage APIs (system defined) or manually entered (user
defined), can be specified in a VM Storage Profile. These VM Storage
Profiles are used during provisioning, cloning and Storage vMotion to
ensure that only those datastores or datastore clusters compliant with
the VM Storage Profile are made available.

This is shown in the figure below where the VM Storage Profile “Latency
Sensitive” is selected and the datastore cluster “SHB9” is presented as
compliant with this VM Storage Profile.

P3 \\ STORAGE DRS

414

Figure 212: Compatible Datastore Cluster

The reason we are discussing this feature is that Profile-Driven Storage
helps select the correct datastore cluster. Only datastore clusters that
are compliant with the VM Storage Profile is presented. A requirement for
this to work, however, is that similar type datastores are selected during
the creation of the datastore cluster.

Please note that Datastore Clusters should be seen as a pod of
service. It’s a load-balancing domain! Meaning datastores within that
datastore cluster should provide the same level of service or
performance. You can tag a datastore cluster or the individual
datastores. You can even tag a subset of datastores with different
tags within that cluster. In that scenario, neither the datastores or the
datastore cluster will show up as a compatible storage destination
during the initial placement of the VM.

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

415

If you desire to build a datastore cluster with datastores that offer
different storage services, you can still tag the individual datastores
separately. The only challenge is that the datastore cluster or datastore
is not directly displayed as compatible datastore.

In this example the datastore cluster groups four datastores into a single
load-balancing domain, two datastores are backed by a diskgroup
containing only flash devices. These datastores, 10G-AFA-01 and 10G-
AFA-02 are tagged with the tag AFA, and this Tag is linked to the storage
policy "Latency Sensitive". The datastore cluster contains two datastores
that are backed by a diskgroup that contains AFA and spindles (Hybrid
solution). Not as fast as the AFA, but lightyears faster than an old all-
spindle array. The tag Hybrid is applied to these datastores and the
storage policy "Fast Storage" uses this tag.

Figure 213: Multiple Storage Policies in Single Datastore Cluster

VM10 is not running a latency sensitive application, but prefers fast
responding storage. The hybrid datastores are sufficient for the workload
requirements of VM10. During the deployment process, the Fast Storage
storage policy is applied to VM10. The UI list no compatible datastore.

P3 \\ STORAGE DRS

416

Figure 214: Incompatible Datastores

We know that there are datastores within the datastore cluster and select
SHB9 and continue the deployment process. (You can argue that this
screen should bubble up the two datastores, but again, a datastore
cluster is intended to be a consistent load-balancing domain. The ready
to complete screen shows that there are datastore recommendations.

Figure 215: Datastore Selection Recommendations

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

417

By clicking on the link of more recommendation, the deployment process
displays the compatible datastores for the VM to be placed on.

Figure 216: Compatible Datastore List

As proven, it can work, but we are not sure this is the way to use storage
policies. Interesting fact, I/O load balancing is disabled, yet Storage DRS
still displays the I/O latency to allow you to make a well-informed
decision.

P3 \\ STORAGE DRS

418

Storage Policy Compliancy
The status screen of the VM shows which VM storage policy is applied to
the VM and if the VM configuration is compliant with the storage policy.

Figure 217: VM Storage Policy Compliance Status

As part of Storage DRS integration with storage profiles, the Storage DRS
cluster level advanced option EnforceStorageProfiles is introduced.

Advanced option EnforceStorageProfiles takes one of these integer
values: 0,1 or 2. The default value is 0. When the option is set to 0, it
indicates that there is no storage profile or policy enforcement on the
Storage DRS cluster. For example, Load balancing can move the VMs to
a datastore that is not compliant with the storage policy.

When the option is set to 1, it indicates that there is a storage profile or
policy soft enforcement on the Storage DRS cluster. This is analogous
with DRS soft rules. Storage DRS will comply with storage profile or
policy in the optimum level. Storage DRS will violate the storage profile
compliant if it is required to do so. Storage DRS affinity rules will have
higher precedence over storage profiles only when storage profile
enforcement is set to 1. For example, if the anti-affinity rule is active, it
may happen that a single disk will violate the storage policy.

When the option is set to 2, it indicates that there is a storage profile or
policy hard enforcement on the Storage DRS cluster. This is analogous
with DRS hard rules. Storage DRS will not violate the storage profile or

21 // ARCHITECTURE AND DESIGN OF DATASTORE CLUSTER

419

policy compliant. Storage profiles will have higher precedence over
affinity rules. Storage DRS will generate fault: could not fix anti-affinity
rule violation. For example, VMs will not be moved out a datastore if no
other compliant datastores are available.

Prerequisites
By default, Storage DRS will not enforce storage policies associated with
a VM. Please configure EnforceStorageProfiles option according to your
requirements. The options are Default (0), Soft (1) or Hard (2).

Please note that Storage DRS does not remediate any current
violations of storage policies immediately. Thus if a VM violates the
policy, Storage DRS does not move the VM after setting
EnforceStorageProfiles. During the load-balancing invocation, Storage
DRS will generate the recommendation for moving the VM to a
compliant datastore.

P3 \\ STORAGE DRS

420

 421

22
AFFINITY RULES

By default, Storage DRS applies an Intra-VM affinity rule (VMDK affinity)
that specifies storing all files belonging to a VM on one datastore.
After configuring a datastore cluster, the advanced options allow you to
change this default VM affinity rule.

Figure 218: Default VM Affinity

By deselecting the Default VM affinity section’s “Keep VMDKs together
by default” option, all new VMs are configured with an anti-affinity rule,
meaning that Storage DRS initial placement and load balancing keeps
the VM files and VDMK files stored on separate datastores. This chapter
takes a closer look at the affinity rules provided by Storage DRS, how
they can impact initial placement and load balancing operations and how
to configure them.

P3 \\ STORAGE DRS

422

Storage DRS Rules
Storage DRS provides the option to control the placement of virtual
disks. The affinity rule keeps virtual disks of a VM together on the same
datastore, and this rule is considered to be a VMDK affinity rule. Anti-
Affinity rules in datastore clusters are available for VMDK level and VM-
VM level. Storage DRS rules are available at Storage | Storage DRS
Cluster| Configure | Configuration | Rules.

Figure 219: Storage DRS Rules

All rules are enforced during initial placement and Storage DRS-
recommended Storage vMotions, but they are not enforced on user-
initiated Storage vMotions.

22 // AFFINITY RULES

423

VMDK Affinity Rule
Storage DRS applies a VMDK affinity rule to each VM by default. The
VMDK affinity rule keeps the VMDKs belonging to a VM stored together
on the same datastore.

Figure 220: Initial Placement with Default Affinity Rule

VMDK Anti-Affinity Rule
The Intra-VM VMDK anti-affinity rule keeps the specified VMDKs
belonging to a VM on separate datastores.

P3 \\ STORAGE DRS

424

Figure 221: Initial Placement with VMDK Anti-Affinity Rule Enabled

When the default VM affinity rule option at datastore cluster level is
deselected, Storage DRS places each VM disk file on a separate
datastore. During the creation of a new VM, Storage DRS recommends
placing the VMDK files on different datastores.

22 // AFFINITY RULES

425

Figure 222: Datastore Recommendation with Default Anti-Affinity

VM Anti-Affinity Rule
The Storage DRS VM anti-affinity rule keeps the specified VMs on
different datastores. This rule can help maximize the availability of a
collection of related VMs. The availability of the set of VMs is increased
by not allowing Storage DRS to place the VMs on the same datastore.
For example, web servers in a load-balanced cluster or domain
controllers.

P3 \\ STORAGE DRS

426

Figure 223: VM to VM Anti-Affinity Rule

Storage DRS VM anti-affinity rules can contain two or more VMs. We
recommend applying VM anti-affinity rules sparingly. Anti-Affinity rules
place limitations on Storage DRS initial placement, maintenance mode,
and load-balancing operations by reducing the possibilities it has to
reach a steady and balanced state.

VMs that are associated with an Inter-VM VM anti-affinity rule must be
configured with an Intra-VM affinity rule. If a VM is configured with an
Intra-VM anti-affinity rule, this could be due to the cluster-wide default
anti-affinity rule, vCenter displays the following warning and the user is
required to fix the violation manually.

22 // AFFINITY RULES

427

Figure 224: Default VM Affinity Conflict

Violate Anti-Affinity Rules
Initial placement, I/O, and space load balancing do not violate anti-
affinity rules; however, when generating migration recommendations for
datastore maintenance mode, Storage DRS may provide
recommendations that potentially violate the affinity and anti-affinity
rules.

Storage DRS generates migration recommendations with the rules intact
and provides these recommendations to the user if no faults are
generated. If the fully automatic mode is selected, maintenance mode
does not require manual approval unless there is a fault.

Configuring an intricate and elaborate set of rules in a datastore cluster
with a small number of datastores may lead Storage DRS to generate
faults. If there are faults, Storage DRS reruns the algorithm but drops the
affinity and anti-affinity rules, which may lead to recommendations that
violate the affinity rule set.

P3 \\ STORAGE DRS

428

Anti-Affinity Rules with Datastore Correlation
Datastore correlation typically indicates resource sharing. It is best to
avoid using two correlated datastores to enforce an anti-affinity rule (VM-
VM or VMDK-VMDK).

Figure 225: EnforceCorrelationForAffinity Enabled

Storage DRS allows controlling affinity rules when performance
correlation is detected. Set the EnforceCorrelationForAffinity in the
advanced options of the datastore cluster:

VALUE ENFORCEMENT DESCRIPTION

0 None No consideration for correlations

1 Soft
Do not use any correlated datastores unless it is

necessary when fixing an anti-affinity rule violation

2 Hard
Do not use correlated datastores. If the rule can’t be
fixed without using correlated datastores, generate

faults

Table 30: EnforceCorrelationForAffinity Settings

22 // AFFINITY RULES

429

Overriding Datastore Cluster Default
Storage DRS provides the ability to override the default datastore cluster
affinity rule at the VM level. This can be done during the creation of a VM
or when the VM is placed inside the datastore cluster. When the VM is
created, the affinity rule can be changed via the VM override option of the
datastore cluster settings page or by editing the settings of the VM
directly.

VM Overrides
The VM Overrides function allows you to configure a different VMDK
affinity rule. The VM Overrides option is available Storage | Storage DRS
Cluster| Configure | Configuration | VM Overrides. Click add to select the
VM you want to configure and select the appropriate options.

Figure 226: VM Overrides

Storage DRS Rules
Affinity rules can be changed in the Storage DRS Rules window. The
advantage of changing rules at the datastore cluster level is that multiple
VMs can be selected and changed at once.

Moving a VM into a Datastore Cluster
If an existing VM is moved into a datastore cluster, the application of an
Intra-VM affinity rule depends on the disk layout configuration of the VM
and the method of introduction. A VM can be moved into a datastore

P3 \\ STORAGE DRS

430

cluster by either Storage vMotion or by adding the datastore(s)
containing its disks to a datastore cluster.

VMDK
CONFIGURATION

MIGRATION
METHOD

RULE
ACTIVATE

DISK LAYOUT

All VMDKs on single
DS

SvMotion Yes
All VMDKs on

single DS
VMDKs on multiple

DS
SvMotion Yes

All VMDKs on
single DS

All VMDKs on single
DS

Add Datastore Yes
All VMDKs on

single DS
VMDKs on multiple

DS
Add Datastore No

VMDKs on
multiple DS

Table 31: Overview Storage vMotion of Various VM Storage Layouts

Be aware of the result of these actions when migrating to a datastore
cluster. When a VM is moved into a datastore cluster by Storage vMotion,
placement of the VMDKs associated with the VM is made in accordance
of the cluster wide default affinity rule. If a VMDK affinity rule is
configured as cluster wide default rule, Storage DRS will consolidate all
of the VMDKs onto a single datastore, regardless of the original layout.

When adding datastores to the cluster, Storage DRS configures the
existing VMs with VMDKs stored on a single datastore. If the VMDK files
associated with a VM span multiple datastores, Storage DRS disables
the default affinity rule (if there is one) for the VM configuration. This is
done to avoid an SvMotion storm when moving a datastore into a
datastore cluster if the datastore contains existing VMDKs that are not
kept together.

 431

23
DATASTORE MAINTENANCE MODE

Datastore maintenance mode is similar to Host Maintenance Mode.
When a datastore is placed in Maintenance Mode, all registered VMs on
that datastore are migrated to other datastores in the datastore cluster.

By using the vCenter datastore API, Storage DRS learns which registered
VMs are using the datastore. Storage DRS uses this list as input for
generating migration recommendations. Because Storage DRS depends
on vCenter’s inventory, VMs that are not registered in vCenter will not be
migrated off the datastore. The same is true for any other files on the
datastore that are not related to registered VMs, such as ISO files.

Automation Mode
Depending on the Storage DRS automation mode, or the VM Evacuation
automation level vCenter automatically executes Storage vMotions for
the VMs if Storage DRS is configured in Fully Automated mode.
Otherwise, vCenter generates a recommendation list and presents this to
the user for validation.

P3 \\ STORAGE DRS

432

Figure 227: VM Evacuation Automation Level

VM evacuation automation level: Specifies the Storage DRS behavior
when it generates recommendations for VM evacuations from datastores
in a datastore cluster. This applies to the behavior of Storage DRS when
putting a datastore in maintenance mode. Do you want automatic
migrations of VMs when putting a datastore in maintenance mode, if yes,
select fully automated.

Using Datastore Maintenance Mode for Migration Purposes
Datastore maintenance mode can be used to safely migrate VMs out of
the datastore for storage array related maintenance operations such as
migrating a LUN to another RAID group or migrating multiple VMs to
datastores hosted by a new Storage Array.

Manually moving a large group of VMs manually out of datastore is a
time-consuming operation. Selecting the datastore cluster as the
migration target, initial placement helps you select the appropriate
datastore. However, you still need to manually start a Storage vMotion
process for each VM and manage the migrations until the last VM is
migrated.

23 // DATASTORE MAINTENANCE MODE

433

Datastore Maintenance Mode on a Datastore
When the datastore inside a datastore cluster is placed into maintenance
mode, migration recommendations are generated to empty the datastore.
Storage DRS reviews the VMs on the datastores and distributes them
across the other datastores in the datastore cluster. Storage DRS finds
an optimal placement based on the space and I/O utilization of the VMs
and moves them to selected datastores while keeping the datastore
cluster as balanced as possible concerning space and I/O load.

Depending on the Storage DRS automation mode, it generates a list of
recommendations (Manual mode) and automatically execute migrations
of the VMs (Fully Automated).

After all the VMs have been migrated, Storage DRS will indicate that the
datastore is in maintenance mode. At this point you can remove the
datastore from the datastore cluster.

Throttle the Number of Storage vMotion
Operations
When enabling datastore maintenance mode, Storage DRS move VMs
out of the datastore as fast as it can. The number of VMs that can be
migrated into or out of a datastore is 8 and is controlled by the operation
costs and limits defined at various levels. This is related to the
concurrent migration limits of hosts, network, and datastores. To
manage and limit the number of concurrent migrations, either by vMotion
or Storage vMotion, a cost and limit factor is applied. Although the term
“limit” is used, a better description would be “maximum cost.” For a
migration operation to be able to start, the cost of the operation cannot
exceed the maximum cost (limit) configured on the resources. In this
case, vMotion and Storage vMotion are considered operations and the
ESXi host, network and datastore are considered resources. A resource
has both a maximum and an in-use cost. When an operation is requested,
the in-use cost plus the new operation cost cannot exceed the maximum
cost.

P3 \\ STORAGE DRS

434

The operation cost of a storage vMotion on a host is 4, the max cost of a
host is 8. If one Storage vMotion operation is running, the in-use cost of
the host resource is 4, allowing one more Storage vMotion process to
start without exceeding the host limit.

As a storage vMotion operation also hits the storage resource cost, the
max cost and in-use cost of the datastore needs to be factored in as well.
The operation cost of a Storage vMotion for datastores is set to 16, the
max cost of a datastore is 128. This means that 8 concurrent Storage
vMotion operations can be executed on a datastore. These operations
can be started on multiple hosts, not more than 2 storage vMotion from
the same host due to the max cost of a Storage vMotion operation on the
host level.

23 // DATASTORE MAINTENANCE MODE

435

Figure 228: Storage vMotion in Progress

P3 \\ STORAGE DRS

436

How Do You Throttle The Number of Storage
vMotion Operations?
You may want to throttle the number of storage vMotion operations to
reduce the I/O hit on a datastore during maintenance mode. The
preferred method for doing so is to reduce the max cost for provisioning
operations to the datastore. Adjusting host costs is strongly
discouraged. Host costs are defined according to host resource
limitation issues and adjusting host costs can impact other host
functionality that is unrelated to vMotion or Storage vMotion processes.
Adjusting the max cost per datastore can be done by editing the vpxd.cfg
or via the advanced settings of the vCenter Server Settings in the
administration view.

If done via the vpxd.cfg, the value
vpxd.ResourceManager.MaxCostPerEsx6xDS should be added as
follows:

< config >
< vpxd >
< ResourceManager >
< MaxCostPerEsx6x1DS > new value < /MaxCostPerEsx6xDS >
< /ResourceManager >
< /vpxd >
< /config >

Please note that the setting changed names starting vSphere 6.0, this
setting used to be called MaxCostPerEsx41DS.
Please remember to leave some room for vMotion when resizing the max
cost of a datastore since the vMotion process has a datastore cost as
well. During the stun/unstun of a VM, the vMotion process hits the
datastore, and the cost involved with this process is 1.

As an example, changing the MaxCostPerEsx6xDS to 112, allows 7
concurrent Storage vMotions against a given datastore in the vCenter
inventory. If 7 concurrent Storage vMotions are started on this datastore,
a vMotion process of a VM using this datastore will be queued as the
vMotion process would violate the max cost of the datastore. 7 x 16 =

23 // DATASTORE MAINTENANCE MODE

437

112 + 1 vMotion = 113. The moment a Storage vMotion is completed, the
vMotion process will resume as resources become available.

Please note that cost and max values are applied to each migration
process, impact normal day-to-day DRS and Storage DRS load balancing
operations as well as the manual vMotion and Storage vMotion
operations occurring in the virtual infrastructure managed by the vCenter
server.

As mentioned before, adjusting the cost at the host side can be tricky as
the costs of operations and limits are relative to each other and can even
harm other host processes unrelated to migration processes. Think
about the impact on DRS if you adjust the cost at the host side! When
increasing the cost of a Storage vMotion operation on the host, the
available “slots” for vMotion operations are reduced. This might impact
DRS load balancing efficiency when a storage vMotion process is active
and should be avoided at all times.

 438

P4

QUALITY CONTROL

441

24
STORAGE I/O CONTROL

Virtualization infrastructures commonly operate shared storage
platforms to serve datastores to VMware ESXi hosts. We are moving
towards distributed storage systems that allow for easier performance
and capacity scaling, like with VMware vSAN. However, a significant
portion of the market is still using storage arrays that present LUNs or
NFS shares as datastores towards the ESXi hosts.

A general consensus in our industry is that most virtualization
performance issues originate in latency issues caused by the storage
backend.

Storage arrays are evolving, flash becoming the de facto standard in
today’s data center. Flash storage continues to grow more dense,
meaning that more and more capacity is available in the same amount of
rack units. On the other hand, the application landscape is also changing.
Demand for capacity and performance is increasing. That leaves us with
the same challenges we had since we began to utilize shared storage
systems in our vSphere environments.

When using shared storage, the fundamental storage architecture
remains the same. Multiple ESXi hosts are connected to storage
controllers within storage arrays that utilize spindles and flash media to
store data.

P4 \\ QUALITY CONTROL

 442

Storage administrators today are still faced with the challenge of making
sure all workloads can consume their much-needed storage resources.
Looking at infrastructures with VMs running on the same shared
datastore, served by a storage array, we need to make sure to enforce a
level of storage fairness between the various VMs.

Figure 229: Basic Shared Storage Architecture

Without storage fairness, it is entirely possible that VM3 running on one
ESXi host gets more storage performance entitlement relative the other
two VMs running on the ESXi-01 host.

24 // STORAGE I/O CONTROL

443

A general recommendation is not to have datastores shared across
multiple vSphere clusters or other physical workloads. This way, we
will be able to benefit from vSphere storage quality control
mechanisms to the fullest.

The following diagram shows an example of unbalanced storage I/O
consumption on the datastore. The ESXi-01 server hosts two VMs, while
the ESXi-02 server only hosts one VM. When all three VMs are consuming
similar I/O on the same shared datastore, VM03 will have 50% of the
storage I/O entitled to it while VM01 and VM02 both get 25%, sharing the
50% designated from the ESXi-01 host to the datastore.

Figure 230: Unbalanced Storage I/O Consumption

P4 \\ QUALITY CONTROL

 444

The more desirable storage I/O distribution would be to throttle down the
storage I/O entitlement of VM03, making sure it can consume the same
I/O in relation to what VM01 or VM02 are entitled to.

Figure 231: Balanced Storage I/O Consumption

The exemplary situation we just described uses a mechanism to control
storage fairness, making sure all VMs are equally treated when it comes
to storage I/O consumption. It will prevent one VM from monopolizing
the datastore by leveling out all other I/O requests the datastore
receives.

24 // STORAGE I/O CONTROL

445

In the extent of storage fairness, we would like to be able to prioritize
specific workloads. How do we make sure our business-critical
workloads are preferred over lower class workloads when it comes to
shared storage performance? All the more reason why we need vSphere
Storage I/O Control.

SIOC Explained
Storage I/O Control (SIOC) was first introduced in vSphere 4.1, supporting
Virtual Machine File System (VMFS) datastores only. As of vSphere 5.0,
SIOC also included support for Network File System (NFS) datastores.

The release of vSphere 6.5 saw an improved SIOC implementation, most
noticeable is the use of the vSphere APIs for I/O Filtering (VAIO)
framework. More about this topic in an upcoming chapter.

SIOC is disabled by default and is enabled per datastore. It is available
with vSphere Enterprise+ licensing.

Storage Fairness
SIOC introduced a datastore-wide scheduler, allowing distribution of
queue priority against the VMs located on multiple ESXi hosts that are
connected to a datastore. Before SIOC, disk I/O scheduling was done
only at ESXi host level.

SIOC is designed to help you in situations where storage contention
occurs. If necessary, SIOC will divide the available queue slots across the
ESXi hosts to satisfy the storage I/O requirements based on VM
priorities. SIOC measures the latency from the datastore inside the
VMkernel to the storage media inside the storage array. It is not designed
to migrate VMs to other hosts in the cluster to reduce latency or
bandwidth limitations incurred by the data path.

P4 \\ QUALITY CONTROL

 446

The goal of Storage DRS I/O load balancing is to fix long-term
prolonged I/O imbalances, VMware vSphere Storage I/O Control
addresses short-term burst and loads.
Source: https://kb.vmware.com/s/article/2149938

Even though there are similarities between Storage DRS and SIOC, they
are not alike. SIOC is all about managing storage queues whilst Storage
DRS is about intelligent storage placement and avoiding bottlenecks.

SIOC Defaults
When enabling SIOC you will be presented with several options. By
default, SIOC is using the congestion threshold option set to 90% of the
peak throughput.

Figure 232: Default SIOC Configuration Values

As the percentage based congestion threshold is the only dynamic
option, it is typically a good idea to leave SIOC by its default setting. If
you have specific requirements or need to manually enforce the latency
threshold, configured as milliseconds (ms), you can do so. The following
table consists of some guidelines on what value to use when using the
manually set threshold, depending on the type of storage media used.

24 // STORAGE I/O CONTROL

447

STORE MEDIA TYPE RECOMMENDED LATENCY THRESHOLD

Flash 5-15 ms
Fibre-channel 15-25 ms

SAS 20-30 ms
SATA 30-50 ms

Table 32: Latency Recommendations

More information about the “Include the I/O statistics for SDRS” option is
discussed in the Storage DRS chapter in this book.

A general recommendation is to enable SIOC on all datastores used in a
cluster. Let us emphasize; SIOC only kicks in when contention occurs.
But when that happens, SIOC is there to help you to throttle down that
noisy neighbor VM. It does so by adjusting the queue depth to storage on
a per-VM basis. It is important to understand that once latency comes
back down below the threshold value, all ESXi hosts and VMs can have
their full queue depth as SIOC will stop throttling.

Latency Threshold Computations
When SIOC is enabled on a datastore, all ESXi hosts monitor the device
latency when communicating with that datastore. Only when the device
latency exceeds the default or custom latency thresholds, it is
considered to be congested. As a result of SIOC taking the average
device latency of all ESXi hosts connected to the datastore into account,
it understands the overall picture when determining the correct queue
depth for the VMs. Keep in mind; SIOC throttling will only occur during
contention.

Automatic or Manual Threshold
When you want SIOC to automatically assess the latency threshold, as it
would be when you enable SIOC, the I/O-injector is used. However,
datastore latency is determined by statistics of its esxtop equivalent
(DQLEN) when the congestion threshold is set to a manual value.

P4 \\ QUALITY CONTROL

 448

Because the automatic latency threshold computation feature leverages
the I/O-injector, it learns the peak value of a datastore and adjusts the
SIOC threshold accordingly. The SIOC threshold will be set to 90% of its
peak value. Due to a regular re-run of the I/O-injector, SIOC will keep the
actual workloads and the storage backend in mind. If something changes
on either end, it will adapt its threshold values.

I/O Injector
The I/O-injector was first introduced in vSphere 5.0 as part of SIOC. As
mentioned, when SIOC operates in automatic threshold computation
mode, the I/O-injector mechanism is used. It allows SIOC to characterize
datastore performance.

The I/O-injector mechanism, previously used to automatically
determine the latency threshold of a given datastore, has been
enhanced to also determine the IOPS (4K, random read) of a given
datastore.
Source: cormachogan.com/2013/06/20/storage-io-control-workload-injector-behaviour/

Datastore latency is determined by the used storage backend model and
configuration. When storage tiers within a storage array are defined,
configuration details like the number of disks or flash media backing
each datastore makes a difference in performance behaviour. Even a
small difference in the number of storage disks or flash media (for
example seven vs nine spindles) may cause a substantial difference in
performance. On top of that, some arrays use large disk pools and stripe
LUNs across these pools.

The I/O-injector process takes about 30 seconds and is triggered once
every 24 hours per datastore. Let us stress that the I/O-injector tries to
characterize a datastore when it is idle. Even though an injector process
has started, it will stop and retry later to try to minimize the overhead on
the storage backend. The I/O-injector will trigger random read I/O’s using
a variety of Outstanding I/O (OIO) numbers to determine datastore
latency. In other words, random read I/O is injected using a different
number of outstanding I/O every time. Since this is a recurring process,

24 // STORAGE I/O CONTROL

449

SIOC is adaptive and will update the datastore latency value when
storage backend configurations change. The outcome of the I/O-injector
process is plotted in the following diagram.

 Figure 233: Device Modeling using Different Number of Disks

As this example demonstrates, when the number of Outstanding I/O
increases, the latency also increases for each device. The rates at which
the increases occur are different.

In mathematics, the slope or gradient of a line describes its steepness,
incline, or grade. A higher slope value indicates a steeper incline.

We would like to refer those who want to read more on this topic to the
BASIL academic paper written by the Storage DRS engineering team:
https://www.usenix.org/conference/fast-10/basil-automated-io-load-
balancing-across-storage-devices

Auto-Tiering Algorithms

The SIOC I/O-injector feature is a powerful tool. However, auto-tiering
solutions migrate LUN segments (blocks) to different disk types based
on the usage pattern. Hot segments (frequently accessed) typically move
to a faster storage tier while cold segments move to slower tiers.
Depending on the array type and vendor, there are different kind of
policies and thresholds for these migrations.

P4 \\ QUALITY CONTROL

 450

Each vendor uses different time-cycles to collect and analyze workloads
before moving LUN segments: some auto-tiering solutions move blocks
based on real-time workload while other arrays move chunks after
collecting performance data for 24 hours. This means that auto-tiering
solutions alter the landscape in which the SIOC injector performs its test.

For example, SIOC is primarily opening datastore blocks located in the
Tier-1 disk group. As the datastore isn’t using these segments that often
(cold blocks) the auto-tiering solution decides to migrate these segments
to a lower tier. In this case, the segments are migrated from SDD devices
to 15K disks.

Figure 234: Migrate Cold Segments by Auto-Tiering

Auto-tiering solutions might change the underlying structure of the
datastore based on its algorithms and timescales, possibly conflicting
with SIOC computations.

24 // STORAGE I/O CONTROL

451

Because of possible SIOC implications when using the I/O-injector
with the automatic latency threshold computation in combination with
auto-tiering storage solutions, we would recommend to configure the
SIOC latency threshold to a manual value.

Also, be sure to verify the recommendations with your storage vendor
with regards to SIOC. Now that we discussed the I/O-injector mechanism,
let’s have a look at what queue depths are all about.

Queue Depth
When contention does occur, SIOC will throttle VM storage entitlement
by controlling the storage device queue depths.

Depending on the storage backend solution, the ESXi VMkernel storage
paths connect the workload inside in the VM to the physical storage
device, that consists of either flash or disk devices.

Various VMkernel and storage components are touched along the way.
Every step of the way impacts performance because each step hits a
queue or buffer.

P4 \\ QUALITY CONTROL

 452

Figure 235: Storage Path SAN

This diagram shows the queues in the path from a guest OS to a storage
device in a storage array. It traverses the ESXi stack and connects to the
Storage Processors in the array over fabric. The fabric itself incorporates
switch port buffers (ingress and egress) that have similar behaviour to
queues.

It is possible for each queue to have a different queue depth. This
phenomenon can lead to a possible saturation in storage I/O processing.
For example, you have an ESXi host with six local storage devices with a
queue depth of 32 each. That will make for a theoretical queue depth
total of 192. If these storage devices are connected to a storage
controller using a queue depth of 128, it could result in 64 I/O’s that will
be held back by the VMkernel.

24 // STORAGE I/O CONTROL

453

When a VM is accessing data stored on server-side resources, like with
VMware vSAN, the storage path is notable shorter in comparison to
storage array resources. However, this chapter focuses on SIOC that is
only applicable when using storage arrays.

The VMkernel storage framework consists of queues that correlate with
some of the metrics that are seen in esxtop. These metrics provide
insights on how your storage environment is setup in terms of queue
depths.

QUEUE DESCRIPTION

WQLEN World Queue Length
AQLEN Adapter Queue Length
DQLEN Device Queue Length

Table 33: Storage I/O Queues

The World Queue (WQLEN) determines the maximum number of VMkernel
active I/O’s that the world is allowed to contain simultaneously. The
storage Adapter Queue (AQLEN) determines the maximum of active I/O’s
in the VMkernel for the driver of a storage controller. The Storage Device
(DQLEN) is the maximum number of active I/O for a specific storage
device. Looking in esxtop, these metrics are seen in the disk adapter, disk
device and disk VM views.

If we look at the storage device view in esxtop, we will examine the
Device Queue (DQLEN) as this value is utilized by SIOC when operating in
manual mode.

Figure 236: Esxtop Disk Device View

Checking what device or LUN is behind the storage device queue may
require some research. The esxcli storage core device list command will

P4 \\ QUALITY CONTROL

 454

present detailed information and capabilities for the storage device. This
allows you to map the device name to the used storage array.

Figure 237: Storage Device List

SIOC Logging
All logging regarding datastores, queue depth and workload shares are
stored in the storagerm.log file. This file is located in the ESXi host local
/logs directory in the scratch partition mount point.

Although it is not necessary to examine this file from an operational point
of view, it can give some understanding on what’s happening under the
hood when SIOC is enabled. Typical output looks like this:

24 // STORAGE I/O CONTROL

455

Figure 238: Storagerm.log Output

Interestingly, you will spot several ‘Storage I/O Control: ANOMALY –
external workload detected on datastore’ log entries. That could relate to
workloads outside of the SIOC scope that are also sending I/O towards
the datastore in question. Several situations could lead to similar
behavior:

▪ Not all ESXi hosts accessing the datastore are managed by
vCenter or by the same vCenter instance

▪ The physical storage media (spindles or flash) on the storage
device where this datastores is located are shared with other
datastores that are not SIOC enabled

▪ The SIOC enabled datastore has multiple extents

When you make sure that none of the above situations are applicable to
your configuration, you should not see the behavior of the stated SIOC
anomalies.

Communication Mechanism
When SIOC is enabled, it will request the maximum device queue depth
per device and set it to the maximum. SIOC also needs a way to know the
datastore-wide latency and I/O load from all the ESXi hosts using the
datastore. It does so by having a data-point (file) per datastore.

P4 \\ QUALITY CONTROL

 456

Figure 239: Iormstats.sf Listing

Similar to vSphere HA, SIOC uses a shared file on each SIOC enabled
datastore called: .iormstats.sf. This file can be accessed by multiple ESXi
hosts simultaneously. Each host periodically writes its average latency
and the number of I/O’s for that datastore into the iormstats.sf file.
Remember that datastore access is not cluster bound. ESXi hosts
outside the cluster could access the datastore impacting SIOC
calculations.

Figure 240: ESXi Host Accessing IORMSTATS.SF

24 // STORAGE I/O CONTROL

457

This enables all ESXi hosts to read the file and compute the datastore-
wide latency average, which in turn allows for the computation of the
Queue Depth for each host based on the I/O slot entitlement.
This may sound complex, so let’s have a look at some exemplary
scenarios that visualize how SIOC works in the following sections.

Local Scheduler
Datastore-wide scheduling is done by SIOC, but the current local ESXi
disk I/O scheduler is called mClock that was introduced in vSphere 5.5. It
replaced the Start-time Fair Queuing (SFQ) local disk scheduler that was
used up to vSphere 5.1.

The mClock scheduler is primarily developed to provide better disk I/O
scheduling that allows for setting storage limits, shares and reservations
on a VMDK level. Prior to mClock, it was only possible to configure IOPS
limits and shares on a VMDK. Both SIOC and Storage DRS both honor
IOPS reservations.

Local disk scheduling influences the ESXi host-level prioritization for all
VMs running on the a ESXi host. This, by itself, could be of great value
when high value workloads need a higher priority compared to low value
workloads, but also when all VMs should be treated equally. mClock
focuses on submitting I/O request from all VMs on the ESXi host.

The following diagram depicts a scenario where three VMs all have equal
shares with an exemplary queue depth of 32. VM03 is the only running
VM on ESXi-02. The other VMs (VM01 and VM02) receive less storage
entitlement on the shared datastore because they are running on the
same ESXi host.

P4 \\ QUALITY CONTROL

 458

Figure 241: Local Disk Scheduler

The local disk scheduler is not able to see beyond the boundaries of the
ESXi host and has no knowledge of what other workloads are consuming
on the datastore.

24 // STORAGE I/O CONTROL

459

Datastore-Wide Scheduler
SIOC keep tracks of a performance metric called normalized latency,
compares it with the congestion latency threshold every four seconds,
and only kicks in if the normalized latency is above the threshold.

SIOC calculates this normalized latency by factoring in latency values for
all hosts (the iormstats.sf file we discussed earlier) and all VMs
accessing the datastore, taking into account different I/O sizes. Larger
I/O sizes means higher observed latency than with smaller I/O sizes.

An example would probably clarify how this works. The following
diagram depicts the scenario where a host is throttled as the latency
threshold has been exceeded.

P4 \\ QUALITY CONTROL

 460

Figure 242: Datastore-wide Disk Scheduler (SIOC)

The datastore-wide disk scheduler resembles the local disk scheduler
(mClock) in that it will prioritize VMs over others depending on the
number of shares assigned to their respective disks.

24 // STORAGE I/O CONTROL

461

It does so by calculating the I/O slot entitlement, but only when the
configurable latency threshold is exceeded.

The datastore-wide disk scheduler sums up the disk shares for each of
the VMDKs of the virtual machines on the datastore. In the case of ESXi-
01, that is 2000, and in the case of ESXi-02, it is 1000. Next, the
datastore-wide disk scheduler will calculate the I/O slot entitlement
based on the host-level shares and it will throttle the queue. In the
example, each of the virtual machines is entitled to 33% of the storage
resources. Host ESXi-01 will receive 66% and ESXi-02 will receive 33%. If
you compare this to the first scenario, you can understand why it is
recommended to enable SIOC on all datastores, even if there is no need
to prioritize.

Even when there is no need to prioritize VMs, there is a benefit to
enabling Storage I/O Control as it helps prevent self-inflicted Denial of
Service attacks.

Let it be clear that SIOC does not make latency magically dissolve. By
throttling the queue, latency moves up the stack from the device to the
kernel. However, this does imply that only a subset of VMs on a
datastore incurs higher latency instead of all VMs on that datastore. On
top of that, it is based on the entitlement of the VM; a VM with a lower I/O
slot entitlement will incur more latency, which is how it should be.

Share Variety

Using an example where all VMs have equal shared is fairly simple. It
becomes more complex when we provide different share values to the
VMs in the following scenario and diagram. We have three VMs residing
on two ESXi hosts and on a SIOC enabled datastore.

Two VMs (VM02 and VM03) have been assigned 500 shares each where
VM01 has 1500 shared assigned to it. VM01 is entitled to 60% of the
available I/O slots. VM02 and VM03 both are entitled to 20% each. We
can calculate this by adding up all the shared and dividing the number of
shares per VM by the result. Looking at VM01, the following formula
applies: 1500 / (1500 + 500 + 500) = 0,60 that translates to 60%.

P4 \\ QUALITY CONTROL

 462

Figure 243: SIOC Share Variance Example

24 // STORAGE I/O CONTROL

463

VAIO
With the release of vSphere 6.5, SIOC is refactored to use the vSphere
APIs for I/O Filtering (VAIO) framework. The VAIO framework enables
VMware and third-party plugins to tap into I/O flows, in this case between
the VM and its VMDK.

I/O filters that are associated with virtual disks gain direct access to
the virtual machine I/O path regardless of the underlying storage
topology. Source: vsphere-esxi-vcenter-server-65-resource-management-guide.pdf

Figure 244: VAIO Framework for SIOC

The big benefit of SIOC utilizing the VAIO framework is that we now can
enforce SIOC constructs to VMs using Storage Policy Based Management
(SPBM).

Following the trend of being as efficient as possible from a
manageability and configuration consistency point-of-view, applying
storage shares, limits and reservations to VMs has never been easier.
SPBM allows for common management across storage tier and quality
control automation using a policy-driver control plane.

P4 \\ QUALITY CONTROL

 464

You simply assign the applicable storage policy to your VM and SPBM
will make sure the SIOC settings are applied. That also makes it very
easy to change share, limit or reservations values if you have new
insights concerning storage quality control. When a policy is changed,
the VMs connected to it will automatically be updated with the new SIOC
values.

The SIOC filter provider is installed by default on an ESXi host version 6.5
or higher. It is listed as filter ‘SPM’ in the Storage I/O Filters.

Figure 245: SPM Filter Listing

vCenter 6.7 already includes three default SIOC policy components for
low, normal and high I/O shares allocation.

Figure 246: Default SIOC Policy Components

When the default policies do not fit your requirements, it is easy to create
additional policies. Log in to your vCenter instance, go to the Policies and
Profiles view and choose to create a new Storage Policy Component. The
provider ‘VMware Storage I/O Control’ is automatically selected once you
choose the category ‘Storage I/O Control’.

24 // STORAGE I/O CONTROL

465

Just set the appropriate SIOC settings for the policy and pay extra
attention to the IOPS limit value. Limits should be handled with care.

Typically, if there is no requirement for limits, a general recommendation
is to leave it disabled. Looking at the policy, you can achieve this by
setting the IOPS limit to value “-1” in the policy component.

Figure 247: Custom SIOC Policy Component

The next step is to create a VM Storage Policy. That allows us to create a
new policy structure that includes host based services based on SIOC.

P4 \\ QUALITY CONTROL

 466

Figure 248: Host Based Services in VM Storage Policy

Once the VM Storage Policy is created, you will be able to assign it to
current or new VMs by selecting the policy when defining the storage
options.

Figure 249: Assigning a VM Storage Policy

24 // STORAGE I/O CONTROL

467

Adopting a policy-based control plane allows for programmability.
Programmability enables automation. Without programmatic control,
there’s no foundation for effective, coordinated automation.

Once the VM storage policy is applied to a VM, it is easily checked if the
VM is still compliant to the policy by selecting the VM Compliance
overview. You will get instant insight on what VMs are using the policy
and together with their compliancy status.

Figure 250: VM Storage Policy Compliancy

Statistics Collection Only
SIOC stats-only mode gathers statistics to provide you insights on the
I/O utilization of the datastore. Please note that stats-only mode does
not enable the datastore-wide scheduler and will not enforce throttling.

P4 \\ QUALITY CONTROL

 468

Beware that enabling stats-only mode increases the footprint of log data
into the vCenter database. Then again, this is also the case when SIOC is
used as that automatically enables the statistics collection.

Figure 251: Enable Stats-Only Mode

Once SIOC statistics collection is enabled, you will find four additional
performance views collecting data in vCenter.

Because of the additional load on the vCenter database, only use
statistics mode if you really require the SIOC datastore insights. If not,
it is not recommended to enable the stats only mode.

Use this when you are prohibited from using SIOC but do benefit from
having more knowledge about datastore-wide performance like
normalized latency, aggregated IOPS or maximum queue depths.

Figure 252: SIOC Performance Views

24 // STORAGE I/O CONTROL

469

Figure 253: SIOC Stats-Only Exemplary Performance View

Sometimes it is necessary to troubleshoot your environment and having
logs to review is helpful in determining what is happening. Like the SIOC
feature itself, SIOC logging is disabled by default. You explicitly need to
enable SIOC or the SIOC stats-only mode.

Storage I/O Allocation
The following chapters will elaborate on the various SIOC constructs that
allow you to manage storage entitlement allocations. It is strongly
recommended to apply shares, limits and reservations using the VM
storage policies as explained in the VAIO chapter.

Shares
We already discussed how shares work in the datastore-wide scheduler
chapter. Shares represent a relative priority of storage entitlement
against the other VMs residing on the same datastore. The pre-set share
levels are low (500), medium (1000) and high (2000). Even though these
settings probably suitable most situations, you can configure custom
values within the range of 200-4000 to fit your requirement.

P4 \\ QUALITY CONTROL

 470

Limits and Reservations
The limit construct with SIOC works as expected. Once configured, the
VM is not able to consume more IOPS as stated in the limit value. Note
that in previous releases I/O limits were normalized at 32KB, meaning
that a 64KB I/O would count as two I/Os. In the current release I/Os are
not normalized. One other big difference between the current release of
vSphere and previous versions is that for instance SvMotion I/Os are not
billed to the VM. This results in SvMotion no longer being limited to a
certain IOPS value when the VM, or it’s virtual disks are.

The big differentiator between memory or network and storage
reservations is that the disk I/O scheduler will soft-claim the IOPS. It
allows unused resources to be consumed by other VMs.

As long as the VM IOPS reservations are satisfied, the disk I/O scheduler
will look at the share value to determine the storage entitlement per ESXi
host and VMs.

Even though VM02 is assigned to a VMware storage policy that includes
an IOPS reservation of 1000 IOPS, VM01 and VM03 can use the vacant
IOPS if VM02 does not consume that much I/O. When the VM02 starts to
consume IOPS up to its reserved IOPS value, they will be re-assigned to
VM02 adhering to the configured reservations almost instantly.

24 // STORAGE I/O CONTROL

471

Figure 254: Storage Entitlement Based on Reservations

The exemplary scenario in the diagram above elaborates on how IOPS
assignment works when a storage array is congested and VMs have
IOPS reservations. In this scenario, because the storage array is
congested, it is only able to deliver 1000 IOPS to the datastore. This
situation will force the disk I/O scheduler to distribute the available IOPS
based on the reservations rather than share values. When the full
reservation demand cannot be met, a percentage is calculated based on
the reserved IOPS per VM.

P4 \\ QUALITY CONTROL

 472

A total of 2500 IOPS are reserved in this scenario. The allocation formula
is the VM IOPS reservation / Total reserved IOPS. Therefore, the allocation
per VM would be as follows:

▪ VM01 : 500 / 2500 = 20%
▪ VM02 : 1000 / 2500 = 40%
▪ VM03 : 500 / 2500 = 20%
▪ VM04 : 500 / 2500 = 20%

Bringing that back to the relative IOPS per VM allocation, that results in:

▪ VM01 : 20% x 1000 = 200 IOPS
▪ VM02 : 40% x 1000 = 400 IOPS
▪ VM03 : 20% x 1000 = 200 IOPS
▪ VM04 : 20% x 1000 = 200 IOPS

This example helps to explain how the disk I/O scheduler is handling
reservations in time of contention. Reality will probably paint a different
picture when it comes to VM demand for storage I/O, but it is good to
have an understanding of how the IOPS reservation construct works.

Interoperability
SIOC does have several limitations. We talked about SIOC when using
auto-tiering mechanisms. That situation could lead to mismatching
computations depending on the storage array or its configuration.
Always check the VMware Hardware Compatibility List (HCL) and consult
your storage vendor whether to enable or disable SIOC.

It is important to understand that SIOC is not supported when using:

▪ VMware vSAN or Virtual Volumes
▪ Raw Device Mappings (RDM)
▪ Multiple VMFS extents
▪ vSphere Metro Storage Cluster (vMSC) environment

24 // STORAGE I/O CONTROL

473

Stretched storage solutions, or vMSC, are not supported to use SIOC as
described in VMware KB article 2042596.

When your environment does allow you to utilize SIOC, it is generally a
good idea to let it help you in maintaining storage fairness in your
VMware infrastructures.

P4 \\ QUALITY CONTROL

 474

475

25
NETWORK I/O CONTROL

We are dealing with various network traffic streams within our virtual
data centers. Ranging from VMware vSphere system traffic like HA,
vMotion, and vSAN next to IP storage protocols like iSCSI or NFS. Equally
or even more important is the network traffic generated by the virtualized
workloads, your applications.

All these network traffic flows are directed to other ESXi hosts in your
virtual environment and external applications, servers or devices.

The primary element these network flows have in coming is that they all
utilize Ethernet-based networks. All the network flows are typically
segmented using VLAN (dot1q) or VXLAN with VMware NSX.

Back when 1GbE connections were the de-facto standard in data centers,
it was no exception to have more than six network interfaces per ESXi
host. One of the reasons we used as much network interfaces as we
could, was to mitigate the risk of experiencing network bandwidth
contention. We needed to ensure all our processes and applications had
adequate bandwidth available. It was not uncommon to saturate a 1GbE
using vMotion or IP storage datastores.

Nowadays, we are moving towards fewer network interfaces per ESXi
host. The 10GbE bandwidth pNICs are widely adopted, and we are on the
verge of adopting 40GbE or higher pNICs.

P4 \\ QUALITY CONTROL

 476

Network I/O characteristics are changing, and we need to cater to that
need by providing and ensuring network bandwidth.

Two network interfaces per host is a new possible standard. Modern
reference architectures like the VMware Validated Design (VVD) advocate
the use of two 10GbE network interfaces for all network traffic. That
includes ESXi management, vMotion, vSAN, vSphere Replication and
production workload traffic.

There are multiple advantages when using as few network interfaces as
possible. Think about decreasing complexity, less configuration to be
done. More important, the positive impact on economics. Each network
port on a physical switch is eating budget. Using fewer network
interfaces per ESXi host allows for a more efficient switch port
allocation.

The apparent disadvantage is that we have more network traffic types
running parallel on the same network interfaces in our ESXi hosts with a
re-introduced risk of network bandwidth contention. That is where
VMware vSphere Network I/O Control (NIOC) comes into play.

Network I/O Control Constructs
NIOC is a feature that provides additional control over the usage of
network bandwidth. The network resource management feature uses
constructs of shares, reservations, and limits. It is very similar to the
model like DRS does for compute resources.

Network I/O Control is only available on a Distributed vSwitch that is
available in the vSphere Enterprise Plus Edition. It is also included in
your vSAN licenses.

NIOC enforces the share value specified for the different traffic types in
the event of network contention. When contention occurs, NIOC applies
the share values set to each traffic type. As a result, less important
traffic, as defined by the share percentage, will be throttled. That allows

25 // NETWORK I/O CONTROL

477

more critical traffic types to gain access to more network resources.
NIOC also allows for bandwidth reservation for system traffic, based on
the capacity of the physical adapters on an ESXi host. All these
configurable constructs enable you to have fine-grained network
resource control at the virtual machine network adapter level.

Figure 255: Basic Network I/O Control Constructs

P4 \\ QUALITY CONTROL

 478

Evolution of NIOC
NIOC was initially introduced in vSphere 4.1 and evolved with the
releases of new vSphere and Distributed vSwitch versions over time.

NETWORK I/O CONTROL
VERSION

DISTRIBUTED VSWITCH
VERSION

VSPHERE
VERSION

v1
4.1.0 4.1
5.0.0 5.0

v2
5.1.0

5.1
5.5
6.0

5.5.0
5.5
6.0

v3
6.0.0

6.0

6.5
6.6.0 6.7

Table 34: Network I/O Control Releases

With NIOC version 3, that was introduced in vSphere 6.0, you had the
option to operate either version. It was possible to stick to version 2 or to
upgrade to version 3 if no unsupported features were used that could
prevent a successful upgrade.

The principal difference between version 2 and 3 is the ability to setup
Class of Service (CoS) tagging and physical adapter shares in user-
defined resource pools in version 2.

It is not supported anymore to use user-defined resource pools and to
assign QoS to system traffic. Network I/O Control Version 3 moved
towards the usage of Network Resource Pools (NRP) at the level of the
entire Distributed port groups and the ability to have per vNIC defined
network shares. This approach allows for a more fine-grained network
bandwidth guarantee across a cluster when using a Distributed vSwitch.
We’ll go further into detail how NIOC works under the hoods in the next
chapters.

25 // NETWORK I/O CONTROL

479

A newly created Distributed vSwitch, using one of the available versions,
in vSphere 6.7 dictates the use of NIOC version 3. Even when you opt for
the Distributed vSwitch version 6.0.0, NIOC version 3 is still the only
option available. Version 2 is depreciated. It can differ when you
upgraded your environment to vSphere 6.7 from an earlier release.

Figure 256: Distributed vSwitch Versions in vSphere 6.7

An existing Distributed vSwitch can be quickly checked on its Distributed
vSwitch version. It will also allow you to determine the current NIOC
version. You can do so by levering the GUI looking at the Distributed
vSwitch settings.

Figure 257: Verify NIOC Version in the GUI

P4 \\ QUALITY CONTROL

 480

NIOC Defaults
When you create a new Distributed vSwitch, the NIOC feature will be
enabled automatically. If not desired for whatever reason, it must be
explicitly set to disabled.

The following traffic types are defined by default:

▪ Management Traffic
▪ Fault Tolerance (FT) Traffic
▪ vMotion Traffic
▪ Virtual Machine Traffic
▪ iSCSI Traffic
▪ NFS Traffic
▪ vSphere Replication (VR) Traffic
▪ vSAN Traffic
▪ vSphere Data Protection Backup (VDP) Traffic

NIOC provides three predefined share levels and a custom share level.
The pre-set share levels; low, normal and high, provide an easy method of
assigning a number of shares to the network resource pool. Setting the
share level to Low assigns 25 shares to the network resource pool,
Normal assigns 50 shares and High 100 shares. The custom option
allows you to assign the number of shares yourself within the supported
range of 1 – 100. By default, each system network resource pool is
assigned 50 shares except for the virtual machine traffic resource pool.
This pool gets 100 shares.

By default, NIOC is set up to ensure that Virtual Machine network traffic
is getting a higher priority (100) than vSphere system traffic. It does so
solely to protect the most critical data flows, being your virtual workloads
running on top of ESXi.

25 // NETWORK I/O CONTROL

481

Figure 258: Default Configured NIOC Traffic Types in vSphere 6.7

All traffic type heuristics are configurable. It is up to you to decide that
the default values match your requirements or if these need
customisations to fit your workloads and architecture.

Re-configuring the default values can be done within the boundaries of
the Distributed vSwitch uplink bandwidth. Working with 10GbE interfaces
in an environment will allow you to reserve up to that value. NIOC
calculates the minimum uplink speed that is available. Meaning an uplink
setup of two 10GbE interfaces per ESXi host will result in 10GbE of
bandwidth that is available to divide over your traffic profiles. It will state
the minimum available bandwidth as ‘Minimal link speed’. That means
that is it not possible to overcommit network bandwidth.

NIOC Advanced Setting
A Distributed vSwitch is able to mix pNIC’s with different bandwidth
capabilities, for example, 1GbE and 10GbE. In such a scenario, it could
prove useful to exclude the lower capacity pNICs from the bandwidth
allocation model of NIOC.

P4 \\ QUALITY CONTROL

 482

You can do so by configuring the per-ESXi host advanced setting
Net.IOControlPnicOptOut. The value should be a comma-separated list
with the vmnic adapters that need to be opted out from NIOC. In the
following example, vmnic2 and vmnic3 are excluded.

Figure 259: Example NIOC Exclude Configuration

Bursty Network Consumers
By having NIOC enabled and with all settings at their default value, it
priorities virtual machine traffic by setting a higher share value. NIOC
provides a quality control mechanism by allowing customers to weigh
the nine pre-configured network traffic types.

The presence of potential bursty bandwidth consumers fuels the
necessity for network bandwidth resource control.

Talking about potential bursty network consumers, think about the
behavior of vMotion operations. They introduce temporary network
traffic that tries to consume as much bandwidth as possible. For
instance, in a (hyper)converged network infrastructure using two pNICs
as uplink interfaces, this may have a disruptive effect on other network
traffic streams. Strongly depending on the running workloads and its I/O
characteristics, storage-related network types could inflict a comparable
impact.

25 // NETWORK I/O CONTROL

483

Due to way NIOC operates shares, it provides control for predictable
networking performance while different network traffic streams are
contending for the same bandwidth.

Bandwidth Allocation
The following chapters will dig deeper into the various NIOC constructs
that allow you to manage network bandwidth allocations.

Shares
We already discussed some parts of the default share values between
the various system traffic types and the pre-set share levels. Shares
represent a relative priority of a network traffic type against the other
network types within the same ESXi host and physical adapter.
The available bandwidth per network traffic types is adaptive and
calculated by its relative shared and by the amount of data that other
network types are consuming. This situation comes into effect when a
physical network adapter is saturated. NIOC will then assign the
appropriate network bandwidth to each network traffic type based on the
share configuration.

For example; your Distributed vSwitch is configured with a Management,
vMotion, NFS and Virtual Machine port group. All network traffic types
are using the default share value. The ESXi host is connected to the
Distributed vSwitch using two 10Gbe uplinks in an active/active state.

P4 \\ QUALITY CONTROL

 484

Figure 260: NIOC Shares Example

This means that 50+50+50+100=250 shares are active on vmnic0
connected to DvUplink1. In this situation, the Virtual Machine network
traffic type gets to divide 40% (100/(50+50+50+100)) of the available
physical adapter network bandwidth. Because we are using 10GbE
pNICs, this translates to 4 Gbit/s bandwidth to distribute over the actively
transmitting virtual machines on this ESXi host.

25 // NETWORK I/O CONTROL

485

Figure 261: NIOC Shares Distribution

The stated example is a worst-case scenario because usually not all port
groups are transmitting, as the shares are relative to other network pools
actively using the physical adapter. Virtual Machine and vMotion traffic
might be only active on this pNIC. In that case, only the shares of the
vMotion and VM network traffic pools are compared against each other
to determine the available bandwidth for both network resource pools.

Figure 262: NIOC Shares Deviation with Fewer Traffic Sources

The moment another traffic source transmits to the Distributed vSwitch,
a new calculation is made to determine the available bandwidth for the
network traffic types.

It’s a continuous process to determine the available network bandwidth
per network traffic type to make sure each network traffic type gets its
piece of the bandwidth pie.

P4 \\ QUALITY CONTROL

 486

Ingress and Egress Perspective
Important to note is that NIOC only applies to ingress traffic from the
Distributed vSwitch its perspective. Incoming traffic from the VM or
VMkernel interface to the Distributed vSwitch is seen as an ingress
traffic flow. That means a limit only affects native traffic coming from an
active VM running on the ESXi host or VMkernel interface traffic initiated
on the ESXi host itself.

Figure 263: NIOC Ingress and Egress Perspective

Limits
Limits can be applied to restrict a particular network traffic type. A limit
is a hard stop for network bandwidth consumption. Because it cannot
consume outside its configured value, it introduces a risk of service
impact. Generally, using limits is not recommended because it is
sensitive to service interruption when misconfigured or set up too
conservative.

The bandwidth limit applies to each individual interface in the ESXi host
configured as DvUplink. For example, you configure a vSphere Data
Protection Backup (VDP) network traffic type limit on a Distributed

25 // NETWORK I/O CONTROL

487

vSwitch that is using two uplinks per ESXi host. Both uplinks are
configured to forward VDP traffic.

Figure 264: NIOC VDP Traffic Type Limit Configuration Example

Setting the network bandwidth limit to 3 Gbit/s results in an actual
limitation of 6 Gbit/s per ESXi host.

Figure 265: NIOC VDP Traffic Type Limit Example

P4 \\ QUALITY CONTROL

 488

Test Scenario
Let’s have a look at how this scenario looks like in real-life. We are using
a packet generator that will consume practically every bit of bandwidth it
can lay its hands on within the boundaries of its CPU constraints (check
the vSphere Host Resources Deep Dive book for more information). We
configured the system traffic type with a limit at 3 Gbit/s.

Figure 266: NIOC Traffic Type 3 Gbit/s Limit Test

When examining the esxtop output in the screenshot above and zoom in
on the MbTX/s metrics, we notice the network I/O scheduler enforces a
limit to both uplink interfaces at the configured value. That leads to a
total uplink capacity for the limited traffic type of 3+3=6 Gbit/s.

The network I/O scheduler reacts to changes in the NIOC settings quite
promptly. That means if you have new insights that lead to changed
values for shares, reservations or limits, the network I/O scheduler will
adhere to these changes instantaneous.

During the test workload, we changed the limit for the system traffic type
from 3 to 2 Gbit/s. In the following screenshot, you will notice that the
uplink won’t go beyond the updated limit value. There is no need to
restart a network traffic flow or the VM.

Figure 267: NIOC Traffic Type 2 Gbit/s Limit Test

25 // NETWORK I/O CONTROL

489

Scheduled Limit Values
When applying limits to vSphere replication or VDP system traffic
network pools, you don’t have the ability within vCenter today to have
time-driven or scheduled, bandwidth limit values.

For example, if you need to limit the vSphere Replication traffic type
during office hours because they consume too much bandwidth, but they
should be able to absorb all the bandwidth they need during the night. To
make this happen, you can consider implementing scripted limit
schedules. That would allow you to schedule to limit the specific network
traffic types to, let’s say, 1 Gbit/s at 8.00 AM and change the limit to 4
Gbit/s at 19.00 PM each office day.

Chris Wahl (@ChrisWahl) included a PowerShell script on his GitHub
repository that could prove useful to achieve scripted limit schedules.
Make sure you check it out at https://github.com/WahlNetwork.

Destination Traffic Saturation
Even though the usage of NIOC bandwidth limits, another possible issue
can be imposed. The issue at hand is related to NIOC and its nature to
only be able to control ingress traffic flows.

For example, in the situation of bursty network consumers like vSphere
vMotion operations, it is perfectly possible for vMotion network flows to
consume a large or entire portion of the vMotion network traffic type on
the vMotion destination VMkernel interface. That could happen when
vMotion migrations are initiated on multiple ESXi hosts and are sent
towards the same destination host. By doing so, the bandwidth of the
destination host is at risk of being saturated, even though NIOC is active.

https://twitter.com/ChrisWahl
https://github.com/WahlNetwork

P4 \\ QUALITY CONTROL

 490

Figure 268: NIOC Limit Consumption by Other ESXi Hosts

In the example as shown in the diagram above, the two source ESXi
hosts are already devouring all the destination host bandwidth. Both
source ESXi hosts vMotion traffic flows are limited at 5 Gbit/s using
NIOC limits, but NIOC does not control the egress traffic towards the
destination ESXi host. The vMotion VMkernel interface on the destination
host is saturated, impacting migration times.

Use NIOC to enforce source-based network bandwidth control. Use
traffic shaping for destination-based bandwidth management.

Traffic Shaping
To counter the risk of egress bandwidth exhaustion, we can control the
egress vMotion traffic flows using traffic shaping. By doing so, the
outgoing traffic is also limited to a fixed bandwidth value. Traffic shaping
is configured on a Distributed port group. Because our example is about
vMotion, we will set the vMotion port group with an egress traffic shape
configuration.

25 // NETWORK I/O CONTROL

491

When configuring traffics shaping, we have the following three
parameters to be set for either ingress or egress traffic:

▪ Average bandwidth (kbit/s)
▪ Peak bandwidth (kbit/s)
▪ Burst size (KB)

The average bandwidth is the bits per second value flowing through the
specific Distributed port group over time. The peak bandwidth is the
absolute maximum bandwidth the port group is able to consume. The
burst size is a safe-net as it allows the port group to burst. It is a
multiplicative factor that defines how long the bandwidth can exceed the
average bandwidth setting.

The configuration values for the peak and average bandwidth are in
kbit/s meaning you need to calculate what specific numbers you need.
So, if you have a 10 Gbit/s NIC interface for your Distributed vSwitch
uplinks, it means you have a total of 10,485,760 kbit/s. When you enable
Traffic Shaping by default, it is set to have an average bandwidth of
100,000 kbit/s, Peak Bandwidth of 100,000 kbit/s and a burst size
of 102400 KB. That means that if you enable traffic shaping and leave it
by its default configuration, it will result in the traffic limited to 100,000
Kbps. 100,000 Kbps is around 100 Mbit/s and not a lot to work with for
vMotion operations. It is not even a support vMotion configuration.

With the specific use-case we have in this example, to limit the
destination host vMotion traffic, we need to configure the egress traffic
shaping for the vMotion port group to, for example, 7 Gbit/s.

P4 \\ QUALITY CONTROL

 492

Figure 269: Egress Traffic Shaping Configuration

Once configured correctly, traffic shaping will throttle down the
bandwidth on the destination host and by doing so automatically tune
down the bandwidth send from the source ESXi hosts.

Figure 270: NIOC Limit Consumption Solved with Traffic-Shaping

25 // NETWORK I/O CONTROL

493

We cannot stress enough to be very careful when configuring traffic-
shaping values. With regards to the vMotion network traffic as described
in this chapter, misconfiguration could lead to slower vMotion
performance and possible vMotion failing because of time-outs.

Even though the stated scenario may be a corner-case, it is wise to think
it through. Especially in larger clusters where multiple ESXi hosts are
regularly simultaneously put in maintenance mode for patching.

Reservations
To enforce bandwidth availability, it is possible to reserve a portion of the
available uplink bandwidth. It may be necessary to configure bandwidth
reservations to meet business requirements with regards to network
resources availability. In the system traffic overview, under the resource
allocation option in the Distributed vSwitch settings, you can configure
reservations. Reservations are set per system traffic type or per VM
which we will cover in the upcoming chapters.

Strongly depending on your IT architecture, it could make sense to
reserve bandwidth for specific business critical workloads or your vSAN
network or IP storage network backend. However, be aware that network
bandwidth allocated in a reservation cannot be consumed by other
network traffic types. When a reservation is not used to the fullest, NIOC
does not redistribute the capacity to the bandwidth pool that is
accessible to different network traffic types or network resource pools.
Since you cannot overcommit bandwidth reservations by default, it
means you should be careful when applying reservations to ensure no
bandwidth is gone to waste. Thoroughly think through the minimal
amount of reservation that you are required to guarantee for network
traffic types.

For NIOC to be able to guarantee bandwidth for all system traffic
types, you can only reserve up to 75% of the bandwidth relative to the
minimum link speed of the uplink interfaces.

P4 \\ QUALITY CONTROL

 494

When configuring a reservation, it guarantees network bandwidth for that
network traffic type or VM. It is the minimum amount of bandwidth that
is accessible. Unlike limits, a network resource can burst beyond the
configured value for its bandwidth reservation, as it doesn’t state a
maximum consumable amount of bandwidth.

Figure 271: NIOC Maximum Reservation Value

You cannot exceed the value of the maximum reservation allowed. It will
always keep aside 25% bandwidth per physical uplink to ensure the basic
ESXi network necessities like Management traffic. As seen in the
screenshot above, a 10GbE network adapter can only be configured with
reservations up to 7.5 Gbit/s.

As with bandwidth limits, the configured reservation value applies per
physical adapter that is used as uplink in the Distributed vSwitch.

A bandwidth reservation applies to each Distributed vSwitch uplink. For
example, if you set a reservation of 2 Gbit/s for vSAN, a total of 4 Gbit/s
is reserved when using two Distributed vSwitch uplinks per ESXi host.

25 // NETWORK I/O CONTROL

495

Figure 272: NIOC Reservation Example

Looking into this example, it means that if your cluster contains five ESXi
hosts each with two uplinks, the total cluster reservation will be
5*(2+2)=20 Gbit/s.

Reservations could prove very useful to guarantee network bandwidth for
multiple tenants running on the same Distributed vSwitch. By allocating
a reservation on a Distributed port group level when each tenant is using
its own port group.

Network Resource Pools
To create more individual network bandwidth reservations for specific
workloads, you can configure more fine-grained reservations. These
bandwidth reservations are configurable on port groups residing on a
Distributed vSwitch. It allows you to create more detailed quality control
between various workloads or tenants within your virtual data center.

P4 \\ QUALITY CONTROL

 496

Figure 273: Network Resource Pool Constructs

To set network resource pools values, you first need to reserve
bandwidth for the VM traffic type. Once an amount of bandwidth is
allocated for VM traffic, networks resource pools can be defined.

25 // NETWORK I/O CONTROL

497

Figure 274: Virtual Machine Traffic Reservation Example

All bandwidth available to the Virtual Machine traffic type can be sliced
up over the network resource pools. That allows for an easy way to
facilitate bandwidth reservations for Distributed port groups and all VMs
connected to it. In this example, we reserved 2 Gbit/s for the Virtual
Machine traffic type.

Figure 275: Network Resource Pools

Our lab cluster consists of three ESXi hosts each equipped with two
pNICs resulting in a total of six Distributed vSwitch uplinks. The total

P4 \\ QUALITY CONTROL

 498

amount of available bandwidth to be divided over the network resource
pools will be 12 Gbit/s. The following calculations are applicable for NIOC
to determine the maximum reservations allowed for a network resource
pool.

Configured reservation for VM system traffic * number of DvUplinks =
Aggregated reservation for network resource pools

In our test environment that translates to 2 Gbit/s * 6 = 12 Gbit/s. That is
the cluster-wide maximum for network resource pool reservations. When
you add more hosts to the cluster and the Distributed vSwitch, it will
adjust the aggregated reservation accordingly.

Distributed port groups can be mapped to a network resource pool. In the
following example, we can select both our created network resource
pools for the ‘Application X’ port group.

Figure 276: Network Resource Pool on a Distributed Port Group

VMs connected to this port group, that is mapped to a custom network
resource pool, is now able to consume the reserved bandwidth. More
insights on all Distributed port groups and VMs connected to a specific
network resource pool is available in vCenter by clicking on the network
resource pool.

25 // NETWORK I/O CONTROL

499

Figure 277: Network Resource Pool Usage Overview

Individual VM Parameters
Adding port groups to a network resource pool helps you to manage the
bandwidth allocation over all the VMs connected to it. However, if you are
required to enforce a level of bandwidth prioritisation per VM, network
resources pools won’t help you as they only provide bandwidth
reservations. You are able to configure individual NIOC setting at the
virtual NIC (vNIC) level in each VM by selecting the appropriate network
adapter and configure the NIOC settings.

Figure 278: Per vNIC Reservation Example

P4 \\ QUALITY CONTROL

 500

You can also consult the VM overview within a network resource pool. It
will give you a better understanding on what is configured across all
VMs.

Figure 279: Network Resource Pool VM Overview

You can use shares, reservations and limits for individual VMs and their
vNICs that are connected to a Distributed port group.
Ensure that the reserved bandwidth for all vNICs do not exceed the
bandwidth of the DvUplinks on the ESXi host the VM is registered on.
With vSphere DRS enabled on the cluster, this will prevent the VM from
booting.

Figure 280: Power On Failure by vSphere DRS

25 // NETWORK I/O CONTROL

501

Bandwidth Management
We talked about the various constructs and possibilities to tune Network
I/O Control to your need. Using NIOC can be beneficial and help you
managing network bandwidth to comply to your SLA agreements and to
mitigate the risk of pNIC saturation because of that one bandwidth-
greedy network traffic type or VM.

However, advanced NIOC configurations come at the price of additional
operational overhead and the associated risk of misconfiguration. When
wrongfully applied, it can do more harm than good. Reservations or limits
and the possible coherent traffic shaping configurations are by nature
very sensitive to human error. Especially when you utilize them on
multiple levels:

▪ Network traffic type
▪ Network resource pool
▪ Virtual Machine per vNIC

A general recommendation is to keep the NIOC layer as simple as
possible. While there are use cases for reservations and perhaps even
limits, it is recommended to utilise the shares for prioritisation of virtual
network traffic.

Making sure each network traffic type can consume all its requested
network bandwidth is essential. Use proper network bandwidth
performance and capacity management to ensure all demands can be
met with the available bandwidth per ESXi hosts. VMware vRealize
Operations can help you with that.

P4 \\ QUALITY CONTROL

 502

Traffic Marking
NIOC is focused on the virtual networking layer within in VMware data
center. But what about the physical layer?

In converged infrastructures or enterprise networking environments, it is
not uncommon for Quality of Service (QoS) to be configured in the
physical layers. QoS is the ability to provide different priorities to network
flows, or to guarantee a certain level of performance to a network flow by
using tags. In vSphere 6.7, you have the ability to create flow-based
traffic marking policies to mark network flows for QoS.

Quality of Service
vSphere 6.7 supports Class of Service (CoS) and Differentiated Services
Code Point (DSCP). Both are QoS mechanisms used to differentiate traffic
types to allow for policing network traffic flows.

As related to network technology, CoS is a 3-bit field that is present in
an Ethernet frame header when 802.1Q VLAN tagging is present. The
field specifies a priority value between 0 and 7, more commonly known
as CS0 through CS7, that can be used by quality of service (QoS)
disciplines to differentiate and shape/police network traffic.
Source: https://en.wikipedia.org/wiki/Class_of_service

One of the main differentiators is that CoS operates at data link layer in
an Ethernet based network (layer-2). DSCP operates at the IP network
layer (layer-3).

Differentiated services or DiffServ is a computer networking
architecture that specifies a simple and scalable mechanism for
classifying and managing network traffic and providing quality of
service (QoS) on modern IP networks. DiffServ uses a 6-bit
differentiated services code point (DSCP) in the 8-bit differentiated
services field (DS field) in the IP header for packet classification
purposes. Source: https://en.wikipedia.org/wiki/Differentiated_services

https://en.wikipedia.org/wiki/Internet_Protocol

25 // NETWORK I/O CONTROL

503

When a traffic marking policy is configured for CoS or DSCP, its value is
advertised towards the physical layer to create an end-to-end QoS path.

Figure 281: QoS Classification Advertised from Virtual to Physical Layer

Traffic marking policies are configurable on Distributed port groups or on
the DvUplinks. To match certain traffic flows, a traffic qualifier needs to
be set. This can be realized using very specific traffic flows with specific
IP address and TCP/UDP ports or by using a selected traffic type. The
qualifier options are extensive.

For example, you are required to tag iSCSI traffic from the ESXi hosts
towards the physical network layer using CoS tag 4. using a CoS value to
mark Management traffic, you could configure the Distributed uplink
group with an egress Cos tag rule that matches system type traffic iSCSI.

P4 \\ QUALITY CONTROL

 504

Figure 282: CoS Tag Traffic iSCSI Rule Example

After configuring this traffic rule, you need to enable it by using the
‘Enable and re-order’ button. Now your outgoing iSCSI traffic is marked
with CoS value 4. This is just a simple example of what is possible with
traffic rules in vSphere 6.7. When you are required to implement QoS
tags, be sure to think about where to apply the traffic rule, keeping the
configuration as simple and manageable as possible.

The Distributed vSwitch applies rules on traffic at different places in the
data stream. It is able to apply traffic filter rules between uplink
interfaces and the pNIC or between the vNIC and the port on the
Distributed vSwitch. Important to note is that vSphere does not shape
traffic according to the QoS tagging, this is done appropriately in the
physical layer.

P5

STRETCHED CLUSTERS

507

26
USE CASE: STRETCHED CLUSTERS

In this part we will be discussing a specific infrastructure architecture
and how HA, DRS and Storage DRS can be leveraged and should be
deployed to increase availability. Be it availability of your workload or the
resources provided to your workload, we will guide you through some of
the design considerations and decision points along the way. Of course,
a full understanding of your environment will be required in order to make
appropriate decisions regarding specific implementation details.
Nevertheless, we hope that this section will provide a proper
understanding of how certain features play together and how these can
be used to meet the requirements of your environment and build the
desired architecture.

Scenario
The scenario we have chosen is a stretched cluster also referred to as a
VMware vSphere Metro Storage Cluster solution. We have chosen this
specific scenario as it allows us to explain a multitude of design and
architectural considerations. Although this scenario has been tested and
validated in our lab, every environment is unique and our
recommendations are based on our experience and your mileage may
vary.

A VMware vSphere Metro Storage Cluster (vMSC) configuration is a
VMware vSphere certified solution that combines synchronous
replication with storage array-based clustering. These solutions are

P5 \\ STRETCHED CLUSTERS

 508

typically deployed in environments where the distance between
datacenters is limited, often metropolitan or campus environments.

The primary benefit of a stretched cluster model is to enable fully active
and workload-balanced datacenters to be used to their full potential.
Many customers find this architecture attractive due to the capability of
migrating VMs with vMotion and Storage vMotion between sites. This
enables on-demand and non-intrusive cross-site mobility of workloads.
The capability of a stretched cluster to provide this active balancing of
resources should always be the primary design and implementation goal.

Stretched cluster solutions offer the benefit of:

▪ Workload mobility
▪ Cross-site automated load balancing
▪ Enhanced downtime avoidance
▪ Disaster avoidance
▪ Fast recovery

Technical Requirements and Constraints
Due to the technical constraints of an online migration of VMs, the
following specific requirements must be met prior to consideration of a
stretched cluster implementation:

▪ Storage connectivity using Fibre Channel, iSCSI, NFS, and FCoE
is supported

▪ The maximum supported network latency between sites for the
vSphere ESXi management networks is 10ms round-trip time
(RTT)

▪ vMotion, and Storage vMotion, supports a maximum of 150ms
latency as of vSphere 6.0, but this is not intended for stretched
clustering usage (Requires Enterprise Plus license)

▪ The vMotion network has a 250 Mbps of dedicated bandwidth
per concurrent vMotion session requirement

▪ The maximum supported latency for synchronous storage

26 // USE CASE

509

replication links is 10ms RTT. Refer to documentation from the
storage vendor because the maximum tolerated latency is lower
in most cases. The most commonly supported maximum RTT is
5ms

▪ SMP FT is not supported
▪ Storage IO Control is not supported

The storage requirements are slightly more complex. A vSphere Metro
Storage Cluster requires what is in effect a single storage subsystem
that spans both sites. In this design, a given datastore must be
accessible—that is, be able to be read and be written to—simultaneously
from both sites. Further, when problems occur, the vSphere hosts must
be able to continue to access datastores from either location
transparently and with no impact to ongoing storage operations.

This precludes traditional synchronous replication solutions because
they create a primary–secondary relationship between the active
(primary) LUN where data is being accessed and the secondary LUN that
is receiving replication. To access the secondary LUN, replication is
stopped, or reversed, and the LUN is made visible to hosts. This
“promoted” secondary LUN has a completely different LUN ID and is
essentially a newly available copy of a former primary LUN. This type of
solution works for traditional disaster recovery–type configurations
because it is expected that VM’s must be started up on the secondary
site. The vMSC configuration requires simultaneous, uninterrupted
access to enable live migration of running VMs between sites.

The storage subsystem for a vMSC must be able to be read from and
write to both locations simultaneously. All disk writes are committed
synchronously at both locations to ensure that data is always consistent
regardless of the location from which it is being read. This storage
architecture requires significant bandwidth and very low latency between
the sites in the cluster. Increased distances or latencies cause delays in
writing to disk and a dramatic decline in performance. They also preclude
successful vMotion migration between cluster nodes that reside in
different locations.

P5 \\ STRETCHED CLUSTERS

 510

Note that initially vMSC storage configurations had to go through a
mandatory certification program. As of vSphere 6.0 this is no longer
needed. vMSC configurations are now fully partner supported and can be
found on the vmware.com website under PVSP (Partner Verified and
Supported Products). Before purchasing, designing or implementing
please consult the PVSP listing to ensure the partner has filed for PVSP
and has tested with the correct vSphere versions.

The vMSC listings typically also provide a link to the specifics of the
implementation by the partner. As an example, the PVSP Listing for
Dell/EMC VPLEX provides the following link:
https://kb.vmware.com/kb/2007545. This link provides all tested
scenarios and supported components with Dell/EMC VPLEX.

Verify the PVSP list before acquiring hardware. Being able to receive
proper support is crucial for any business or mission critical
environment!

Uniform Versus Non-Uniform vMSC
Configurations
vMSC solutions are classified into two distinct types. These categories
are based on a fundamental difference in how hosts access storage. It is
important to understand the different types of stretched storage
solutions because this influences design considerations. The two types
are:

▪ Uniform host access configuration – vSphere hosts from both
sites are all connected to a storage node in the storage cluster
across all sites. Paths presented to vSphere hosts are stretched
across a distance

▪ Non-uniform host access configuration – vSphere hosts at each
site are connected only to storage node(s) at the same site.
Paths presented to vSphere hosts from storage nodes are
limited to the local site

https://kb.vmware.com/kb/2007545

26 // USE CASE

511

The following in-depth descriptions of both types clearly define them
from architectural and implementation perspectives.

With uniform host access configuration, hosts in data center A and data
center B have access to the storage systems in both data centers. In
effect, the storage area network is stretched between the sites, and all
hosts can access all LUNs. NetApp MetroCluster is an example of
uniform storage. In this configuration, read/write access to a LUN takes
place on one of the two arrays, and a synchronous mirror is maintained in
a hidden, read-only state on the second array. For example, if a LUN
containing a datastore is read/write on the array in data center A, all
vSphere hosts access that datastore via the array in data center A. For
vSphere hosts in data center A, this is local access. vSphere hosts in
data center B that are running VMs hosted on this datastore send
read/write traffic across the network between data centers. In case of an
outage or an operator-controlled shift of control of the LUN to data center
B, all vSphere hosts continue to detect the identical LUN being presented,
but it is now being accessed via the array in data center B.

The ideal situation is one in which VMs access a datastore that is
controlled (read/write) by the array in the same data center. This
minimizes traffic between data centers to avoid the performance impact
of reads’ traversing the interconnect.

The notion of “site affinity” for a VM is dictated by the read/write copy of
the datastore. “Site affinity” is also sometimes referred to as “site bias”
or “LUN locality.” This means that when a VM has site affinity with data
center A, its read/write copy of the datastore is located in data center A.
This is explained in more detail in the “DRS” subsection of this paper.

P5 \\ STRETCHED CLUSTERS

 512

Figure 283: Uniform Access

With non-uniform host access configuration, hosts in data center A have
access only to the array within the local data center. The array, as well as
its peer array in the opposite data center, is responsible for providing
access to datastores in one data center. Dell EMC® VPLEX® is an
example of a storage system that can be deployed as a non-uniform
storage cluster, although it can also be configured in a uniform manner.
VPLEX provides the concept of a “virtual LUN,” which enables vSphere
hosts in each data center to read and write to the same datastore or LUN.
VPLEX technology maintains the cache state on each array so vSphere
hosts in either data center detect the LUN as local. EMC calls this
solution “write anywhere.” Even when two VMs reside on the same
datastore but are located in different data centers, they write locally
without any performance impact on either VM. A key point with this
configuration is that each LUN or datastore has “site affinity,” also
sometimes referred to as “site bias” or “LUN locality.” In other words, if
anything happens to the link between the sites, the storage system on
the preferred site for a given datastore will be the only one remaining
with read/write access to it. This prevents any data corruption in case of
a failure scenario. If VMs by any chance are not running within the
location that has read/write access to the datastore they will end up
being killed and restarted by HA. We will discuss this in-depth in the

26 // USE CASE

513

upcoming sections.

Figure 284: Non-Uniform Access

Our examples use uniform storage because these configurations are
currently the most commonly deployed. Many of the design
considerations, however, also apply to non-uniform configurations. We
point out exceptions when this is not the case.

Understand the difference between Uniform and Non-uniform access.
There are advantages to either and specific design considerations for
each configuration.

Infrastructure Architecture
In this section, we describe the basic architecture referenced in this
document. We also discuss basic configuration and performance of the
various vSphere features. For an in-depth explanation of each feature,
refer to the vSphere 6.7 Availability Guide and the vSphere 6.7 Resource

P5 \\ STRETCHED CLUSTERS

 514

Management Guide. We make specific recommendations based on
VMware best practices and provide operational guidance where
applicable. We also like to refer to the official vSphere Metro Storage
Cluster white paper hosted on storagehub.vmware.com. This paper was
written by Duncan based on the use case in this book, it may however
contain more recent recommendations as it is updated more frequent.

Infrastructure
The described infrastructure consists of a single vSphere 6.7 cluster with
four vSphere 6.7 hosts. These hosts are managed by a VMware vCenter
Server Appliance™ 6.7 instance. When we originally wrote this section for
the book our lab environment was located in our data center’s in
Amsterdam and London. Due to Brexit, and the potential data compliancy
impact, we decide to move our data centers to The Netherlands. The first
site is now located (and called) in Amsterdam; the second site is located
(and called) in Rotterdam. The network between Amsterdam data center
and Rotterdam data center is a stretched layer 2 network. There is a
minimal distance between the sites, as is typical in campus cluster
scenarios.

Each site has two vSphere hosts, and the vCenter Server instance is
configured with vSphere VM-Host affinity to the hosts in Rotterdam data
center. In a stretched cluster environment, only a single vCenter Server
instance is used. This is different from a traditional Site Recovery
Manager configuration in which a dual vCenter Server configuration is
required. The configuration of VM-Host affinity rules is discussed in more
detail in the “DRS” subsection of this document.

Eight LUNs are depicted in the diagram below. Four of these are
accessed through the virtual IP address active on the iSCSI storage
system in the Amsterdam data center; four are accessed through the
virtual IP address active on the iSCSI storage system in the Rotterdam
data center.

26 // USE CASE

515

Figure 285: Our Lab Infrastructure

LOCATION HOST IP DATASTORES
LOCAL

ISOLATION
ADDRESS

Amsterdam 172.16.103.182 Amsterdam01 172.16.103.10
 172.16.103.183 Amsterdam02
 Amsterdam03
 Amsterdam04

Rotterdam 172.16.103.184 Rotterdam01 172.16.103.10
 172.16.103.185 Rotterdam02
 Rotterdam03
 Rotterdam04

Table 35: Infrastructure Details

The vSphere cluster is connected to a stretched storage system in a
fabric configuration with a uniform device access model. This means

P5 \\ STRETCHED CLUSTERS

 516

that every host in the cluster is connected to both storage heads. Each of
the heads is connected to two switches, which are connected to two
similar switches in the secondary location. For any given LUN, one of the
two storage heads present the LUN as read/write via iSCSI. The other
storage head maintains the replicated, read-only copy that is effectively
hidden from the vSphere hosts.

vSphere Configuration
Our focus in this document is on HA, DRS, and Storage DRS in relation to
stretched cluster environments. Design and operational considerations
regarding vSphere are commonly overlooked and underestimated. Much
emphasis has traditionally been placed on the storage layer, but little
attention has been applied to how workloads are provisioned and
managed.

One of the key drivers for using a stretched cluster is workload balance
and disaster avoidance. How do we ensure that our environment is
properly balanced without impacting availability or severely increasing
the operational expenditure? How do we build the requirements into our
provisioning process and validate periodically that we still meet them?
Ignoring these requirements makes the environment confusing to
administrate and less predictable during the various failure scenarios for
which it should be of help.

Each of these three vSphere features has very specific configuration
requirements and can enhance environment resiliency and workload
availability. Architectural recommendations based on our findings during
the testing of the various failure scenarios, and our understanding of
vSphere, are given throughout this section.

vSphere HA
Our environment has four hosts and a uniform stretched storage
solution. A full site failure is one scenario that must be taken into

26 // USE CASE

517

account in a resilient architecture, alongside host failures, network
failures and different types of storage failures. HA is crucial in any
environment to provide a certain level of availability, but even more so in
a vMSC configuration. We recommend enabling HA and recommend
thoroughly reading the following guidelines for an optimal HA
configuration for vMSC based infrastructures.

Admission Control
We recommend enabling HA Admission Control. Workload availability is
the primary driver for most stretched cluster environments, so providing
sufficient capacity for a full site failure is recommended. Such hosts are
equally divided across both sites. To ensure that all workloads can be
restarted by HA on just one site, configuring the admission control policy
to 50 percent for both memory and CPU is recommended.

We recommend using a percentage-based policy because it offers the
most flexibility and reduces operational overhead. Even when new hosts
are introduced to the environment, there is no need to change the
percentage and no risk of a skewed consolidation ratio due to possible
use of VM level reservations. For more details about admission control
policies and the associated algorithms, refer to the vSphere 6.7
Availability Guide.

Additionally, as of vSphere 6.5 it is also possible to specify how much
Performance Degradation (VMs Tolerate) you are willing to tolerate for
your workloads. By default, this setting is configured to 100%. You can
change this to your liking and should be based on your SLA with the
business. As this setting is new, we will briefly explain how it works by
looking at an example.

An environment has 75 GB of memory available in a three-node cluster.
One host failure to tolerate is specified and 60 GB of memory is actively
used by VMs. In the UI, it is also specified that 0% resource reduction is
tolerated.

P5 \\ STRETCHED CLUSTERS

 518

HA will now take a single host failure in to account for this cluster. This
results in 75 GB – 25 GB (1 host worth of memory) = 50 GB of memory
available to run workloads. There is 60 GB of memory used. This implies
that with 0% resource reduction to tolerate, 60 GB of memory is required.
However, after a failure there is only 50 GB available and as such vSphere
issues a warning. Note that this does not stop the provisioning of new
VMs or the power-on of VMs. That is what Admission Control is for.

The following screenshot a HA cluster configured with Admission Control
enabled. Note that as of vSphere 6.5 specific settings around admission
control need to be set after creating the cluster.

Figure 286: Cluster Creation

26 // USE CASE

519

First recommendation is to ensure that admission control is configured
to reserve 50% of both CPU and Memory resources for HA. This is to
ensure, that in the case of a full site failure, all VMs can be restarted.
Starting vSphere 6.5 the UI for Admission Control has slightly changed.
In the interface, you now specify the number of hosts failures to tolerate
which is then, converted to a percentage, or you can alternatively override
the calculations and manually specify the percentage. We recommend
using the Cluster Resource Percentage admission control policy
algorithm as it is the most flexible policy. As we always want to protect
against a full site failure we will manually set the percentage to 50% for
both memory and CPU capacity. For more details please read the chapter
describing admission control.

Figure 287: Admission Control

P5 \\ STRETCHED CLUSTERS

 520

HA Heartbeats
HA uses heartbeat mechanisms to validate the state of a host. There are
two such mechanisms: network heartbeating and datastore
heartbeating. Network heartbeating is the primary mechanism for HA to
validate availability of the hosts. Datastore heartbeating is the secondary
mechanism used by HA; it determines the exact state of the host after
network heartbeating has failed.

If a host is not receiving any heartbeats, it uses a fail-safe mechanism to
detect if it is merely isolated from its master node or completely isolated
from the network. It does this by pinging the default gateway. In addition
to this mechanism, one or more isolation addresses can be specified
manually to enhance reliability of isolation validation. We recommend
specifying a minimum of two additional isolation addresses, with each
address being local to a particular site.

In our scenario, one of these addresses physically resides in the
Amsterdam data center; the other physically resides in the Rotterdam
data center. This enables HA validation for complete network isolation,
even in case of a connection failure between sites. The next figure shows
an example of how to configure multiple isolation addresses. The HA
advanced setting used is das.isolationAddress. More details on how to
configure this can be found in VMware KB article 1002117.

Use a minimum of two isolation addresses, each being local to either
location. This will allow validating site local host isolation even during
a partition.

The minimum number of heartbeat datastores is two and the maximum
is five. For HA datastore heartbeating to function correctly in any type of
failure scenario, We recommend increasing the number of heartbeat
datastores from two to four in a stretched cluster environment. This
provides full redundancy for both data center locations. Defining four
specific datastores as preferred heartbeat datastores is also
recommended, selecting two from one site and two from the other. This
enables HA to heartbeat to a datastore even in the case of a connection

http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1002117

26 // USE CASE

521

failure between sites. Subsequently, it enables HA to determine the state
of a host in any scenario.

Adding an advanced setting called das.heartbeatDsPerHost can increase
the number of heartbeat datastores. This is shown below:

Figure 288: Heartbeat Datastores

To designate specific datastores as heartbeat devices, we recommend
using Use datastores from the specified list and complement
automatically if needed. This enables HA to select any other datastore if
the four designated datastores that have been manually selected
become unavailable. We recommend selecting two datastores local to
each location to ensure that datastores are available at each site in the
case of a site partition.

P5 \\ STRETCHED CLUSTERS

 522

Figure 289: Configuration of Heartbeat Datastores

Increase the number of heartbeat datastores and select specific site
local heartbeat datastores to allow the use even during double failure
scenarios.

Permanent Device Loss and All Paths Down
Scenarios
As of vSphere 6.0, enhancements have been introduced to enable an
automated failover of VMs residing on a datastore that has either an all
paths down (APD) or a permanent device loss (PDL) condition. PDL is
applicable only to block storage devices.

A PDL condition, as is discussed in one of our failure scenarios, is a
condition that is communicated by the array controller to the vSphere
host via a SCSI sense code. This condition indicates that a device (LUN)
has become unavailable and is likely permanently unavailable. An
example scenario in which this condition is communicated by the array is
when a LUN is set offline. This condition is used in non-uniform models
during a failure scenario to ensure that the vSphere host takes
appropriate action when access to a LUN is revoked. When a full storage
failure occurs, it is impossible to generate the PDL condition because
there is no communication possible between the array and the vSphere
host. This state is identified by the vSphere host as an APD condition.
Another example of an APD condition is where the storage network has

26 // USE CASE

523

failed completely. In this scenario, the vSphere host also does not detect
what has happened with the storage and declares an APD.

To enable HA to respond to both an APD and a PDL condition, HA must
be configured in a specific way. We recommend enabling VM Component
Protection (VMCP). Note that in the current UI this feature is not labeled
as “VM Component Protection” or “VMCP”. Within the UI you simply
specify the response to a Datastore with PDL and a Datastore with APD
under Failures and Responses as shown below:

Figure 290: Failure Condition and Responses Configuration

The configuration screen can be found as follows:

▪ Log in to VMware vSphere Web Client
▪ Click Hosts and Clusters
▪ Click the cluster object

P5 \\ STRETCHED CLUSTERS

 524

▪ Click the Manage tab
▪ Click HA and then Edit
▪ Select Failures and Responses
▪ Select individual functionality, as displayed in figure 8

The configuration for PDL is basic. In the Failures and Responses
section, the response following detection of a PDL condition can be
configured. We recommend setting this to Power off and restart VMs.
When this condition is detected, a VM is restarted instantly on a healthy
host within the HA cluster.

For an APD scenario, configuration must occur in the same section, as is
shown in Figure 8. Besides defining the response to an APD condition, it
is also possible to alter the timing and to configure the behavior when
the failure is restored before the APD timeout has passed as shown
below.

Figure 291: APD Response Delay

26 // USE CASE

525

When an APD condition is detected, a timer is started. After 140 seconds,
the APD condition is officially declared and the device is marked as APD
timeout. When 140 seconds have passed, HA starts counting. The
default HA timeout is 3 minutes. When the 3 minutes have passed, HA
restarts the impacted VMs, but VMCP can be configured to respond
differently if preferred. We recommend configuring it to Power off and
restart VMs, with an Aggressive or Conservative restart policy.

What do you select? Aggressive or Conservative? Conservative refers to
the likelihood that HA will be able to restart VMs. When set to
conservative, HA restarts only the VM that is impacted by the APD if it
detects that a host in the cluster can access the datastore on which the
VM resides, additionally HA also verifies whether there are enough
resources to start a VM. In the case of aggressive, HA attempts to restart
the VM even if it doesn’t detect the state of the other hosts. This can lead
to a situation in which a VM is not restarted because there is no host that
has access to the datastore on which the VM is located. So when can
you find yourself in the situation where HA does not know if it can or
cannot restart a VM, well for instance in the case of a site partition. If the
likelihood of getting in to an APD scenario where it is impossible to
detect if other hosts have access is high, then the aggressive restart
policy should be used. If this is very unlikely then conservative restart
policy should be used. It is impossible for us to provide guidance in this
matter, as the network implementation and type of stretched storage
system implemented determines the likelihood.

If the APD is lifted and access to the storage is restored before the
timeout has passed, HA does not unnecessarily reset the VM unless
explicitly configured to do so. If a response is chosen even when the
environment has recovered from the APD condition, Response recovery
can be configured to Reset VMs. We recommend leaving this setting
disabled. Note that if Reset VMs is selected, any configured Restart
Priority and / or dependency will not be taken in to account during the
reset phase. Restart priority and / or dependency is only applied when
VMs are restarted. (A restart is substantially different then a reset!)

P5 \\ STRETCHED CLUSTERS

 526

Starting with vSphere 5.5, an advanced setting called
Disk.AutoremoveOnPDL was introduced, and is implemented by default.
This functionality enables vSphere to remove devices marked as PDL and
helps prevent reaching, for example, the 512-device limit for a vSphere
host. However, if the PDL scenario is resolved and the device returns, the
vSphere host’s storage system must be rescanned before the device will
appear. We recommend disabling Disk.AutoremoveOnPDL for vSphere 5.5
hosts by setting the host advanced settings value to 0. From vSphere 6.0
and higher, this advanced setting is no longer required to be changed
from the default configuration to properly recover the devices marked as
PDL, it should be set to 1. Please ensure to change the setting from 0 to 1
when upgrading from vSphere 5.5 to a vSphere 6 version.

Enable automatic response to APD and PDL scenarios. Ensure tests
are conducted after every change to validate VMs are restarted
accordingly.

Restart Ordering and Priority
Starting with vSphere 6.5 it is now possible to provide additional
granularity and control in terms of restart sequence and dependencies
for VMs in the VM Overrides section. Pre-vSphere 6.5 it was already
possible to set a restart priority, but as each host in a cluster could
power-on 32 VMs at a time and there was no option to specify a delay or
a dependency of any kind, it would usually lead to all VM s being
powered-on simultaneously. Per vSphere 6.5 it is now possible to specify
to which priority group each VM belongs (VM Restart Priority: Lowest,
low, medium, high, highest)

We recommend configuring VM Restart Priority for important
infrastructure components like vCenter Server, DNS or Active Directory,
and for applications which are formed out of multiple tiers. For example,
a VM may have an application, web and database tier where, in most
cases, the database tier would need to be started first. First select all the
VMs for which you want to change the restart priority as shown in the
screenshot below. By default, all VMs have a restart priority of Medium.

26 // USE CASE

527

Figure 292: VM Group – Select a VM

Next select the desired restart priority. As the selected VMs in our case
are important for the application layer we give them the restart priority of
Highest.

Figure 293: Restart Priority

P5 \\ STRETCHED CLUSTERS

 528

On top of that, it is possible to specify when to start powering-on the VMs
which belong to the next group. This is specified by the “Start next
priority VMs when” drop down. You can set this to “guest heartbeats
detected” for instance, which means HA will wait for VMware Tools to
report a “liveness” heartbeat. If, however, a heartbeat is not received then
by default after 600 seconds the next group is started. This can be
increased, or decreased, by specifying the “or after timeout occurs at”
value. We recommend leaving this set to the default of 600.

Figure 294: Start Next Priority VMs

Starting in vSphere 6.5 there is a second option to specify restart order,
but in this case, it is a restart dependency between VMs. This is
leveraging the HA and DRS cluster rules. A dependency can simply be
created by creating two VM groups and then defining a VM to VM rule in
which the dependency is specified. Here the next group is only started
when the configured VM Dependency Restart Condition is met. If the
cluster wide condition is set to the default Resources Allocated, then the
second group of VMs is powered-on a split second after the first group as
this is purely a restart scheduling exercise. Powered-on or even Guest
Heartbeats detected are more appropriate in most cases.

26 // USE CASE

529

Note that the specified rules are considered mandatory rules and these
rules will not be violated as a result. In other words, if the power-on of the
first group is unsuccessful and the specified condition is “powered on”
then the second group will never be powered on.

Figure 295: VM Group

We have gone through the UI various times, and still find it difficult to
read. The second group will be powered on only when the first group is
powered on, as depicted in the next screenshot.

P5 \\ STRETCHED CLUSTERS

 530

Figure 296: Restart Dependency

Restart order and dependency can be complex to configure. Document
the restart order and dependency to ensure environments can be
restarted correctly even when HA does not respond correctly to a
failure.

ProActive HA
ProActive HA was introduced in vSphere 6.5 and is found in the UI under
Availability but technically it is a function of DRS. ProActive HA enables
you to configure actions for events that may lead to VM downtime.
Downtime avoidance is the key reason typically for deploying a vMSC
configuration, therefore we recommend enabling ProActive HA.

26 // USE CASE

531

In order to enable ProActive HA, a health provider (vSphere Web Client
Plugin) needs to be installed first. At the time of writing only the
following server vendors provide a health provider: HPE, Dell and Cisco.

After the installation of the health provider, Proactive HA can be enabled.
We recommend setting the Proactive HA automation level to Automated
so that action is immediately taken when a potential issue arises.

Figure 297: Proactive HA Automated Remediation

P5 \\ STRETCHED CLUSTERS

 532

Figure 298: Proactive HA Provider

Next, the Remediation needs to be configured. We recommend
configuring this with Quarantine mode for moderate and Maintenance
mode for severe failure(Mixed). The other options are Maintenance Mode
and Quarantine Mode. Before selecting either, it is useful to understand
the difference.

▪ Quarantine Mode – Only places the host in quarantine mode.
DRS will try to migrate VMs from this host to others. However, if
there is some level of over commitment or HA/DRS Cluster rules
are defined VM VMs may not be migrated

▪ Maintenance Mode – All VMs will be migrated
▪ Quarantine for Moderate / Maintenance for severe – Depending

on the type of failure, the host will either be placed in to
Quarantine Mode or Maintenance Mode. This is best described
as conservative (should) and aggressive (must) host evacuation

ProActive HA can respond to different types of failures, depending on the

26 // USE CASE

533

version of the health provider plugin and the different types of vendor
components that are being monitored. For example, Dell OpenManage
(OMIVV) 4.0.x only supports monitoring of Power Supplies, Fans and
Storage (SD Cards). The ProActive HA framework however also
additionally supports Memory and Network monitoring. However,
responses to Memory and Network failures can only be configured when
the health provider supports this.

When an issue arises, the severity of the issue determines the ProActive
HA response. These severities are color coded, where Yellow and Red are
the states in which ProActive HA takes action. Some plugins will allow
you to specify the severity of an issue manually, like Dell OpenManage.
We recommend however to leave severity as pre-defined by the server
vendor.

STATE COLOR
Unknown Gray

Ok Green
Moderately degraded Yellow

Severely degraded Red

Table 36: Status ProActive HA

For more details on configuring the health provider and health provider
specific settings we would like to refer to the server vendor
documentation.

Enable Pro-Active HA to prevent outages. Note however that
additional server vendor plugins are required, test these and validate
they are supported for the vSphere version you will be running.

DRS
DRS is used in many environments to distribute load within a cluster. It
offers many other features that can be very helpful in stretched cluster
environments. We recommend enabling DRS to facilitate load balancing
across hosts in the cluster. The DRS load-balancing calculation is based

P5 \\ STRETCHED CLUSTERS

 534

on CPU and memory use. Care should be taken with regard to both
storage and networking resources as well as to traffic flow. To avoid
storage and network traffic overhead in a stretched cluster environment,
we recommend implementing DRS affinity rules to enable a logical
separation of VMs. This subsequently helps improve availability. For VMs
that are responsible for infrastructure services, such as Microsoft Active
Directory and DNS, it assists in ensuring separation of these services
across sites.

Site Affinity
DRS affinity rules also help prevent unnecessary downtime, and storage
and network traffic flow overhead, by enforcing preferred site affinity. We
recommend aligning vSphere VM-to-host affinity rules with the storage
configuration—that is, setting VM-to-host affinity rules with a preference
that a VM run on a host at the same site as the array that is configured
as the primary read/write node for a given datastore. For example, in our
test configuration, VMs stored on the Amsterdam01 datastore are set
with VM-to-host affinity with a preference for hosts in the Amsterdam
data center. This ensures that in the case of a network connection failure
between sites, VMs do not lose connection with the storage system that
is primary for their datastore. VM-to-host affinity rules aim to ensure that
VMs stay local to the storage primary for that datastore. This
coincidentally also results in all read I/O’s staying local.

Different storage vendors use different terminology to describe the
relationship of a LUN to a particular array or controller. For the
purposes of this document, we use the generic term “storage site
affinity,” which refers to the preferred location for access to a given
LUN.

We recommend implementing “should rules” because these are violated
by HA in the case of a full site failure. Availability of services should
always prevail. In the case of “must rules,” HA does not violate the rule
set, and this can potentially lead to service outages. In the scenario
where a full data center fails, “must rules” do not allow HA to restart the

26 // USE CASE

535

VMs, because they do not have the required affinity to start on the hosts
in the other data center. This necessitates the recommendation to
implement “should rules.” DRS communicates these rules to HA, and
these are stored in a “compatibility list” governing allowed start-up. If a
single host fails, VM-to-host “should rules” are respected by default. Pre-
vSphere 6.5 we recommended configuring the HA rule settings to respect
VM-to-host affinity rules where possible, as by default HA used to ignore
these should rules during a restart event.

With a full site failure, HA can restart the VMs on hosts that violate the
rules. Availability takes preference in this scenario. Below it can be seen
what this looked like with vSphere 6.0. In vSphere 6.5 this option
disappeared completely, by default HA respects the rules going forward.

Figure 299: Former Required HA Rule Settings

Under certain circumstances, such as massive host saturation coupled
with aggressive recommendation settings, DRS can also violate “should
rules.” Although this is very rare, we recommend monitoring for violation
of these rules because a violation might impact availability and workload
performance. If there is a desire to change the default behavior the
following advanced settings can be configured:

▪ das.respectVmVmAntiAffinityRules – set to “true” by default, set
to “false” if you want to disable HA respecting VM-VM affinity
and anti-affinity rules

▪ das.respectVmHostSoftAffinityRules – set to “true” by default,
set to “false” if you want to disable HA respecting VM-Host
affinity rules

We recommend manually defining “sites” by creating a group of hosts
that belong to a site and then adding VMs to these sites based on the
affinity of the datastore on which they are provisioned. In our scenario,

P5 \\ STRETCHED CLUSTERS

 536

only a limited number of VMs were provisioned. We recommend
automating the process of defining site affinity by using tools such as
PowerCLI. If automating the process is not an option, use of a generic
naming convention is recommended to simplify the creation of these
groups. We recommend that these groups be validated on a regular basis
to ensure that all VMs belong to the group with the correct site affinity.

The next series of screenshots depicts the configuration used for this
chapter. In the first screenshot, all VMs that should remain local to the
Amsterdam data center are added to the Amsterdam VM group, of
course we have done the same for the Rotterdam data center, this
however is not depicted. We also have to create a VM/Host Group.

Figure 300: VM/Host Group Creation Part 1

Next, an Amsterdam host group is created that contains all hosts
residing in this location.

26 // USE CASE

537

Figure 301: VM/Host Group Creation Part 2

Next, a new rule is created that is defined as a “should run on rule.” It
links the host group and the VM group for the Amsterdam location.

P5 \\ STRETCHED CLUSTERS

 538

Figure 302: VM/Host Group Creation Part 3

This should be done for both locations, which should result in two rules
at a minimum. Note that we have in this particular case configured
should rules as we prefer the VMs to be restarted in our Rotterdam data
center when an outage has occurred. However, if these VMs are not
replicated, you should define a “must run on hosts in group” rule instead.

Limit the use of rules as they decrease the number of placement
options DRS has. Subsequently incorrect use of rules can also result
in VMs not being restarted by HA after a failure.

26 // USE CASE

539

Advanced Settings
Starting vSphere 6.5 the UI for DRS has also changed. In the past many
configurations required advanced settings to be entered in the DRS
configuration screen. Now that these settings are easier to find, the
chances are that you will also want to try these. Note that we do not
describe all advanced configuration options here, or any functionality,
which has no specific impact on vMSC configurations. As an example,
the option VM Distribution allows you to distribute the number of VMs
more evenly across hosts. However, this is based on the number of VMs
per host, and not on resources. In order to ensure distribution, it can (and
will) ignore any configured non-mandatory (should) “VM-to-Host” rules. In
other words, it could force VMs to be placed in a location where you do
not expect them to be placed. Before using any of these new options,
ensure that after configuring you re-test the different failures scenarios
and validate the outcome with the expected outcome.

Figure 303: DRS Additional Options

P5 \\ STRETCHED CLUSTERS

 540

Correcting Affinity Rule Violation
DRS assigns a high priority to correcting affinity rule violations. During
invocation, the primary goal of DRS is to correct any violations and
generate recommendations to migrate VMs to the hosts listed in the host
group. These migrations have a higher priority than load-balancing
moves and are started before them.
DRS is invoked every 5 minutes by default, but it is also triggered if the
cluster detects changes. For instance, when a host reconnects to the
cluster, DRS is invoked and generates recommendations to correct the
violation. Our testing has shown that DRS generates recommendations
to correct affinity rules violations within 30 seconds after a host
reconnects to the cluster. DRS is limited by the overall capacity of the
vMotion network, so it might take multiple invocations before all affinity
rule violations are corrected.

Storage DRS
Storage DRS enables aggregation of datastores to a single unit of
consumption from an administrative perspective, and it balances VM
disks when defined thresholds are exceeded. It ensures that sufficient
disk resources are available to a workload. We recommend enabling
Storage DRS in Manual Mode with I/O Metric disabled. The use of I/O
Metric or VMware vSphere Storage I/O Control is not supported in a
vMSC configuration, as is described in VMware KB article 2042596.

http://kb.vmware.com/selfservice/microsites/search.do?cmd=displayKC&docType=kc&externalId=2042596&sliceId=1&docTypeID=DT_KB_1_1&dialogID=659548068&stateId=0%200%20659544945

26 // USE CASE

541

Figure 304: Storage DRS Configuration

Figure 305: Storage DRS Runtime Settings

P5 \\ STRETCHED CLUSTERS

 542

Migrations
Storage DRS uses Storage vMotion to migrate VM disks between
datastores within a datastore cluster. Because the underlying stretched
storage systems use synchronous replication, a migration or series of
migrations have an impact on replication traffic and might cause the
VMs to become temporarily unavailable due to contention for network
resources during the movement of disks. Migration to random datastores
can also potentially lead to additional I/O latency in uniform host access
configurations if VMs are not migrated along with their virtual disks. For
example, if a VM residing on a host at site A has its disk migrated to a
datastore at site B, it continues operating but with potentially degraded
performance. The VM’s disk reads now are subject to the increased
latency associated with reading from the array at site B. Reads are
subject to inter-site latency rather than being satisfied by a local target.

To control if and when migrations occur, we recommend configuring
Storage DRS in manual mode. This enables human validation per
recommendation as well as recommendations to be applied during off-
peak hours, while gaining the operational benefit and efficiency of the
initial placement functionality.
We recommend creating datastore clusters based on the storage
configuration with respect to storage site affinity. Datastores with a site
affinity for site A should not be mixed in datastore clusters with
datastores with a site affinity for site B. This enables operational
consistency and eases the creation and ongoing management of DRS
VM-to-host affinity rules. Ensure that all DRS VM-to-host affinity rules are
updated accordingly when VMs are migrated via Storage vMotion
between datastore clusters and when crossing defined storage site
affinity boundaries. To simplify the provisioning process, we recommend
aligning naming conventions for datastore clusters and VM-to-host
affinity rules.

The naming convention used in our testing gives both datastores and
datastore clusters a site-specific name to provide ease of alignment of
DRS host affinity with VM deployment in the correlate site.

26 // USE CASE

543

Failure Scenarios
There are many failures that can be introduced in clustered systems. But
in a properly architected environment, HA, DRS, and the storage
subsystem do not detect many of these. We do not address the zero-
impact failures, such as the failure of a single network cable, because
they are explained in depth in the documentation provided by the storage
vendor of the various solutions. We discuss the following “common”
failure scenarios:

▪ Single-host failure in Amsterdam data center
▪ Single-host isolation in Amsterdam data center
▪ Storage partition
▪ Data center partition
▪ Disk shelf failure in Amsterdam data center
▪ Full storage failure in Amsterdam data center
▪ Full compute failure in Amsterdam data center
▪ Full compute failure in Amsterdam data center and full storage

failure in Rotterdam data center
▪ Loss of complete Amsterdam data center

We also examine scenarios in which specific settings are incorrectly
configured. These settings determine the availability and recoverability
of VMs in a failure scenario. It is important to understand the impact of
misconfigurations such as the following:

▪ Incorrectly configured VM-to-host affinity rules
▪ Incorrectly configured heartbeat datastores
▪ Incorrectly configured isolation address
▪ Incorrectly configured PDL handling
▪ vCenter Server split-brain scenario

P5 \\ STRETCHED CLUSTERS

 544

Single-Host Failure in Amsterdam Data Center
In this scenario, we describe the complete failure of a host (ESXi-01) in
Amsterdam data center. This scenario is depicted below.

Figure 306: Single Host Failure

Result
HA successfully restarted all VMs in accordance with VM-to-host affinity
rules.

Explanation
If a host fails, the cluster’s HA master node detects the failure because it
no longer is receiving network heartbeats from the host. Then the master
starts monitoring for datastore heartbeats. Because the host has failed
completely, it cannot generate datastore heartbeats; these too are

26 // USE CASE

545

detected as missing by the HA master node. During this time, a third
availability check—pinging the management addresses of the failed
hosts—is conducted.

If all of these checks return as unsuccessful, the master declares the
missing host as dead and attempts to restart all the protected VMs that
had been running on the host before the master lost contact with the
host.

The vSphere VM-to-host affinity rules defined on a cluster level are
“should rules.” HA VM-to-host affinity rules will be respected so all VMs
are restarted within the correct site.

However, if the host elements of the VM-to-host group are temporarily
without resources, or if they are unavailable for restarts for any other
reason, HA can disregard the rules and restart the remaining VMs on any
of the remaining hosts in the cluster, regardless of location and rules. If
this occurs, DRS attempts to correct any violated affinity rules at the first
invocation and automatically migrates VMs in accordance with their
affinity rules to bring VM placement in alignment. We recommend
manually invoking DRS after the cause for the failure has been identified
and resolved. This ensures that all VMs are placed on hosts in the correct
location to avoid possible performance degradation due to
misplacement.

P5 \\ STRETCHED CLUSTERS

 546

Single-Host Isolation in Amsterdam Data
Center
In this scenario, we describe the response to isolation of a single host in
Amsterdam data center from the rest of the network.

Figure 307: Single Host Isolation

Result
VMs remain running because isolation response is configured to leave
powered on.

Explanation
When a host is isolated, the HA master node detects the isolation
because it no longer is receiving network heartbeats from the host. Then

26 // USE CASE

547

the master starts monitoring for datastore heartbeats. Because the host
is isolated, it generates datastore heartbeats for the secondary HA
detection mechanism. Detection of valid host heartbeats enables the HA
master node to determine that the host is running but is isolated from
the network. Depending on the isolation response configured, the
impacted host can power off or shut down VMs or can leave them
powered on. The isolation response is triggered 30 seconds after the
host has detected that it is isolated.

We recommend aligning the isolation response to business requirements
and physical constraints. From a best practices perspective, leave
powered on is the recommended isolation response setting for the
majority of environments. Isolated hosts are rare in a properly
architected environment, given the built-in redundancy of most modern
designs. In environments that use network-based storage protocols, such
as iSCSI and NFS, and where networks are converged, the recommended
isolation response is power off. In these environments, it is more likely
that a network outage that causes a host to become isolated also affects
the host’s ability to communicate to the datastores.

If an isolation response different from the recommended leave powered
on is selected and a power off or shut down response is triggered, the HA
master restarts VMs on the remaining nodes in the cluster. The vSphere
VM-to-host affinity rules defined on a cluster level are “should rules.”
However, because HA respects VM-to-host affinity rules by all VMs are
restarted within the correct site under “normal” circumstances.

P5 \\ STRETCHED CLUSTERS

 548

Storage Partition
In this scenario, a failure has occurred on the storage network between
data centers, as is depicted below.

Figure 308: Storage Partition

Result
VMs remain running with no impact.

Explanation
Storage site affinity is defined for each LUN, and DRS rules align with this
affinity. Therefore, because storage remains available within the site, no
VM is impacted.

26 // USE CASE

549

If for any reason the affinity rule for a VM has been violated and the VM
is running on a host in Amsterdam data center while its disk resides on a
datastore that has affinity with Rotterdam data center, it cannot
successfully issue I/O following an inter-site storage partition. This is
because the datastore is in an APD condition. In this scenario, the VM
can be restarted because HA is configured to respond to APD conditions.
The response occurs after the 3-minute grace period has passed. This 3-
minute period starts after the APD timeout of 140 seconds has passed
and the APD condition has been declared.

Note that it is possible to define what should happen when the APD is
lifted before the 3-minute grace period has passed. One of the options is
to reset the VM. If resetting the VM is configured then when the APD is
lifted the VM will be reset. Note that any restart ordering will not take
effect. Restart Order and dependency only applies to VMs, which are
restarted.

To avoid unnecessary downtime in an APD scenario, we recommend
monitoring compliance of DRS rules. Although DRS is invoked every 5
minutes, this does not guarantee resolution of all affinity rule violations.
Therefore, to prevent unnecessary downtime, rigid monitoring is
recommended that enables quick identification of anomalies such as a
VM’s compute’s residing in one site while its storage resides in the other
site.

P5 \\ STRETCHED CLUSTERS

 550

Data Center Partition
In this scenario, the Amsterdam data center is isolated from the
Rotterdam data center, as is depicted below:

Figure 309: Data Center Partition

Result
VMs remain running with no impact.

Explanation
In this scenario, the two data centers are fully isolated from each other.
This scenario is similar to both the storage partition and the host
isolation scenario. VMs are not impacted by this failure because DRS
rules were correctly implemented, and no rules were violated. HA follows
this logical process to determine which VMs require restarting during a
cluster partition:

26 // USE CASE

551

The HA master node running in Amsterdam data center detects that all
hosts in Rotterdam data center are unreachable. It first detects that no
network heartbeats are being received. It then determines whether any
storage heartbeats are being generated. This check does not detect
storage heartbeats because the storage connection between sites also
has failed, and the heartbeat datastores are updated only “locally.”
Because the VMs with affinity to the remaining hosts are still running, no
action is needed for them. Next, HA determines whether a restart can be
attempted. However, the read/write version of the datastores located in
Rotterdam data center are not accessible by the hosts in Amsterdam
data center. Therefore, no attempt is made to start the missing VMs.

Similarly, the vSphere hosts in Rotterdam data center detect that there is
no master available, and they initiate a master election process. After the
master has been elected, it tries to determine which VMs had been
running before the failure and it attempts to restart them. Because all
VMs with affinity to Rotterdam data center are still running there, there is
no need for a restart. Only the VMs with affinity to Amsterdam data
center are unavailable, and HA cannot restart them because the
datastores on which they are stored have affinity with Amsterdam data
center and are unavailable in Rotterdam data center.

If VM-to-host affinity rules have been violated—that is, VMs have been
running at a location where their storage is not defined as read/write by
default—the behavior changes. The following sequence describes what
would happen in that case:

1. The VM with affinity to Amsterdam data center but residing
in Rotterdam data center is unable to reach its datastore.
This results in the VM’s being unable to write to or read
from disk.

2. In Amsterdam data center, this VM is restarted by HA
because the hosts in Amsterdam data center do not detect
the instance’s running in Rotterdam data center.

3. Because the datastore is available only to Amsterdam data
center, one of the hosts in Amsterdam data center acquires
a lock on the VMDK and is able to power on this VM.

P5 \\ STRETCHED CLUSTERS

 552

4. This can result in a scenario in which the same VM is
powered on and running in both data centers.

Figure 310: Lock on VMDK

5. If the APD response is configured to Power off and restart
VMs (aggressive), the VM is powered off after the APD
timeout and the grace period have passed. This behavior is
new starting vSphere 6.0. Note that if the restart policy is
set to conservative, depending on the type of partition, and
HA’s ability to talk to the hosts in the second location, VMs
may or may not be automatically killed.

If the APD response is not correctly configured, two VMs will be running,
for the following possible reasons:

▪ The network heartbeat from the host that is running this VM is
missing because there is no connection to
that site

▪ The datastore heartbeat is missing because there is no
connection to that site

26 // USE CASE

553

▪ A ping to the management address of the host that is running
the VM fails because there is no connection to that site

▪ The master located in Amsterdam data center detects that the
VM had been powered on before the failure. Because it is unable
to communicate with the VM’s host in Rotterdam data center
after the failure, it attempts to restart the VM because it cannot
detect the actual state

If the connection between sites is restored, a classic “VM split-brain
scenario” will exist. For a short period of time, two copies of the VM will
be active on the network, with both having the same MAC address. Only
one copy, however, will have access to the VM files, and HA will detect
this. As soon as this is detected, all processes belonging to the VM copy
that has no access to the VM files will be killed, as is depicted below.

Figure 311: Lock Lost Message

In this example, the downtime equates to a VM’s having to be restarted.
Proper maintenance of site affinity can prevent this. To avoid
unnecessary downtime, we recommend close monitoring to ensure that
HA and DRS cluster rules align with datastore site affinity.

P5 \\ STRETCHED CLUSTERS

 554

Disk Shelf Failure in Amsterdam Data Center
In this scenario, one of the disk shelves in Amsterdam data center has
failed. Both Amsterdam01 and Amsterdam02 on storage A are impacted.

Figure 312: Disk Shelf Failure

Result
VMs remain running with no impact.

Explanation
In this scenario, only a disk shelf in Amsterdam data center has failed.
The storage processor has detected the failure and has instantly
switched from the primary disk shelf in Amsterdam data center to the
mirror copy in Rotterdam data center. There is no noticeable impact to
any of the VMs except for a typical short spike in I/O response time. The

26 // USE CASE

555

storage solution fully detects and handles this scenario. There is no need
for a rescan of the datastores or the HBAs because the switchover is
seamless, and the LUNs are identical from the vSphere host perspective.

Full Storage Failure in Amsterdam Data Center
In this scenario, a full storage system failure has occurred in Amsterdam
data center.

Figure 313: Full Storage Failure Site Amsterdam

Result
VMs remain running with no impact.

Explanation
When the full storage system fails in Amsterdam data center, a take over

P5 \\ STRETCHED CLUSTERS

 556

command must be initiated manually. As described previously, we used a
NetApp MetroCluster configuration to describe this behavior. This take
over command is particular to NetApp environments; depending on the
implemented storage system, the required procedure can differ. After the
command has been initiated, the mirrored, read-only copy of each of the
failed datastores is set to read/write and is instantly accessible. We have
described this process on an extremely high level. For more details, refer
to the storage vendor’s documentation.

From the VM perspective, this failover is seamless: The storage
controllers handle this, and no action is required from either the vSphere
or storage administrator. All I/O now passes across the intra-site
connection to the other data center because VMs remain running in
Amsterdam data center while their datastores are accessible only in
Rotterdam data center.

HA does not detect this type of failure. Although the datastore heartbeat
might be lost briefly, HA does not take action because the HA master
agent checks for the datastore heartbeat only when the network
heartbeat is not received for 3 seconds. Because the network heartbeat
remains available throughout the storage failure, HA is not required to
initiate any restarts.

Permanent Device Loss
In the scenario shown the next figure, a permanent device loss (PDL)
condition occurs because datastore Amsterdam01 has been taken
offline for ESXi-01 and ESXi-02. PDL scenarios are uncommon in uniform
configurations and are more likely to occur in a non-uniform vMSC
configuration. However, a PDL scenario can, for instance, occur when the
configuration of a storage group changes as in the case of this described
scenario.

26 // USE CASE

557

Figure 314: Permanent Device Loss

Result
VMs from ESXi-01 and ESXi-02 are restarted by HA on ESXi-03 and ESXi-
04.

Explanation
When the PDL condition occurs, VMs running on datastore Amsterdam01
on hosts ESXi-01 and ESXi-02 are killed instantly. They then are restarted
by HA on hosts within the cluster that have access to the datastore,
ESXi-03 and ESXi-04 in this scenario. The PDL and killing of the VM world
group leader can be witnessed by following the entries in the
vmkernel.log file located in /var/log/ on the vSphere hosts. The following
is an outtake of the vmkernel.log file where a PDL is recognized and
appropriate action is taken.

P5 \\ STRETCHED CLUSTERS

 558

2017-03-14T13:39:25.085Z cpu7:4499)WARNING: VSCSI: 4055: handle
8198(vscsi4:0):opened by wid 4499 (vmm0:fri-iscsi-02) has Permanent
Device Loss. Killing world group leader 4491

We recommend configuring Response for Datastore with Permanent
Device Loss (PDL) to Power off and restart VMs. This setting ensures
that appropriate action is taken when a PDL condition exists. The correct
configuration is shown below.

Figure 315: HA PDL Response Configuration

26 // USE CASE

559

Full Compute Failure in Amsterdam Data
Center
In this scenario, a full compute failure has occurred in Amsterdam data
center.

Figure 316: Full Compute Failure

Result
All VMs are successfully restarted in Rotterdam data center.

Explanation
The HA master was located in Amsterdam data center at the time of the
full compute failure at that location. After the hosts in Rotterdam data
center detected that no network heartbeats had been received, an
election process was started. Within approximately 20 seconds, a new

P5 \\ STRETCHED CLUSTERS

 560

HA master was elected from the remaining hosts. Then the new master
determined which hosts had failed and which VMs had been impacted by
this failure. Because all hosts at the other site had failed and all VMs
residing on them had been impacted, HA initiated the restart of all of
these VMs. HA first schedules the restart, which only can only succeed
when sufficient unreserved resources are available. In order to ensure
this we had HA admission control enabled and set to reserve 50% (2 host
failures) of CPU and memory capacity.

 HA can initiate 32 concurrent restarts on a single host, providing a low
restart latency for most environments. As described in the HA section of
this paper, there is the ability to sequence the order of restart for VMs
leveraging the VM Overrides feature (there are 5 options: lowest, low,
medium, high, highest). This policy must be set on a per-VM basis. These
policies were determined to have been adhered to; highest-priority VMs
started first, followed by high-, medium-, low- and lowest-priority VMs.

As part of the test, the hosts at the Amsterdam data center were again
powered on. As soon as DRS detected that these hosts were available, a
DRS run was invoked. Because the initial DRS run corrects only the DRS
affinity rule violations, resource imbalance was not corrected until the
next full invocation of DRS. DRS is invoked by default every 5 minutes or
when VMs are powered off or on through the use of vSphere Web Client.

26 // USE CASE

561

Loss of Amsterdam Data Center
In this scenario, a full failure of Amsterdam data center is simulated.

Figure 317: Full Loss of Data Center

Result
All VMs were successfully restarted in Rotterdam data center.

Explanation
In this scenario, the hosts in Rotterdam data center lost contact with the
HA master and elected a new HA master. As the storage system had
failed, a take over command had to be initiated on the surviving site,
again due to the NetApp-specific process. After the take over command
had been initiated, the new HA master accessed the per-datastore files
that HA uses to record the set of protected VMs. The HA master then
attempted to restart the VMs that were not running on the surviving

P5 \\ STRETCHED CLUSTERS

 562

hosts in Rotterdam data center. In our scenario, all VMs were restarted
within 2 minutes after failure and were fully accessible and functional
again.

By default, HA stops attempting to start a VM after 30 minutes. If the
storage team does not issue a takeover command within that time
frame, the vSphere administrator may need to manually start up VMs
after the storage becomes available.

Summary
When properly operated and architected, stretched clusters are an
excellent solution to increase resiliency and offer inter-site workload
mobility. There has always been, however, confusion regarding failure
scenarios and the various types of responses from both the vSphere
layer and the storage layer. In this white paper, we have tried to explain
how HA and DRS respond to certain failures in a stretched cluster
environment and to offer recommendations for configuration of a
vSphere cluster in this type of environment. This paper highlights the
importance of site affinity, the role played by HA and DRS Cluster rules
and groups, how HA interacts with those rules and groups, and how
users must ensure that the logic enforced by those rules and groups is
maintained over time to provide the reliability and predictability of the
cluster.

563

INDEX

A

Adapter Queue
AQLEN 453

all paths down
APD 26, 47, 81, 85, 522

B

blue screen of death
BSOD 146

C

Class of Service
CoS............................. 478, 502

Current Hosts Load Standard
Deviation
CHLSD 262, 266

D

Differentiated Services Code
Point
DSCP 502

Distributed Power Management
DPM 114, 159, 173, 307

Distributed Resource Scheduler
DRS 31, 171

E

Enhanced vMotion

Compatibility
EVC 191, 192

F

Failures To Tolerate
FTT 90, 91

Fault Domain Manager
FDM 20

Fault Tolerance
FT 174, 480

fully qualified domain name
FQDN 26

H

High Availability
HA .. 17

M

Microsoft Clustering Services
MSCS 19

N

Network File System
NFS 445

Network I/O Control
NIOC 476

Network Resource Pools
NRP.................... 478, 495, 497

INDEX

 564

O

Outstanding I/O
OIO 448, 449

P

Permanent Device Loss
PDL 81, 522, 556, 557, 558

Q

Quality of Service
QoS 102, 502

R

Raw Device Mappings
RDM................................... 472

Return On Investment
ROI 135

S

Start-time Fair Queuing
SFQ 457

Storage Device
DQLEN 453, 454

Storage I/O Control
SIOC . 329, 445, 446, 455, 461,

464, 540
Storage Policy Based

Management
SPBM 412, 463

T

Target Host Load Standard

Deviation
THLSD 262, 263, 271

Total Cost of Ownership
TCO 135

V

vCenter Server
vCenter................................. 17

Virtual Machine
VM .. 17

virtual machine disk files
VMDK 330

Virtual Machine File System
VMFS 445

virtual NIC
vNIC 499

Virtual SAN
vSAN 36, 110

Virtual Volumes
vvol .. 36, 89, 98, 100, 101, 103,

104, 105
VM Component Protection

VMCP 81, 82, 83, 95, 523
VMware Hardware

Compatibility List
HCL 472

VMware Validated Design
VVD 476

vSphere API for Array
Integration
VAAI 394

vSphere APIs for I/O Filtering
VAIO 445, 463

vSphere APIs for Storage
Awareness
VASA 102, 394, 407

INDEX

565

vSphere Appliance
Management Interface
VAMI 183

vSphere Data Protection
Backup
VDP 480, 486

vSphere Metro Storage Cluster
vMSC 472, 507, 509, 514

vSphere Replication

VR 476, 480, 489

W

Windows Server Failover
Clustering
WSFC 19

World Queue
WQLEN 453

	ClusterDeepDive-Boek-9-manuscript-rubrik-vmug
	ebook-Rubrik-org
	VMware
	VMware vSphere 6.7 Clustering Deep Dive
	Copyright © 2018 by Frank Denneman, Duncan Epping and Niels Hagoort
	ABOUT THE AUTHORS
	INTRODUCTION AND ACKNOWLEDGEMENTS
	Figure 1: Photo from 2012
	Frank Denneman, Duncan Epping, Niels Hagoort
	FOREWORD
	Chris Wahl
	Chief Technologist
	P1
	HIGH AVAILABILITY
	INTRO TO VSPHERE HIGH AVAILABILITY
	Figure 2: vSphere HA Concept
	Figure 3: VM and Application Monitoring
	vSphere 6.7
	What’s New?
	What is Required for HA to Work?
	Prerequisites
	Firewall Requirements
	Configuring vSphere High Availability

	Figure 4: vSphere HA Configuration
	COMPONENTS OF HA
	Figure 5: vSphere HA Components
	Figure 6: FDM.log
	HOSTD Agent
	vCenter

	Figure 7: VM Protection Status
	FUNDAMENTAL CONCEPTS
	Master Agent
	Election

	Figure 8: vSphere HA State - Master
	Figure 9: vSphere HA Files
	Slaves

	Figure 10: vSphere HA State - Slave
	Files for Both Slave and Master
	Remote Files
	Local Files

	Figure 11: vSphere HA Local Files
	Figure 12: PrettyPrint.sh Hostlist Example
	Heartbeating
	Network Heartbeating
	Datastore Heartbeating

	Figure 13: Datastore Heartbeating
	Figure 14: Datastore Heartbeating Selected
	Figure 15: Heartbeat File
	Isolated versus Partitioned

	Figure 16: Isolation vs Partition
	VM Protection

	Figure 17: VM is Protected
	Figure 18: VM Protection Workflow
	Figure 19: VM Unprotection
	RESTARTING VIRTUAL MACHINES
	Restart Priority and Order

	Figure 20: Restart Priority
	Figure 21: Start Next Priority VMs Batch When …
	Figure 22: Section of PrettPrint.sh Output
	Figure 23: Application Group
	Figure 25: VM to VM Rule Definition
	Figure 26: VM Dependency Restart Condition
	Restart Retries

	Figure 27: Restart Retry Timeline
	Failed Host
	The Failure of a Slave

	Figure 28: Restart Timeline for Slave Failure
	The Failure of a Master

	Figure 29: Restart Timeline for Master Failure
	Isolation Response and Detection
	Isolation Response

	Figure 30: Isolation Response Configuration
	Figure 31: VMs Overrides – Host Isolation Response
	Isolation Detection
	Isolation of a Slave

	Figure 32: Poweroff File
	Figure 33: Isolation Declared
	Figure 34: Restart of VM After Isolation
	Isolation of a Master
	Additional Checks

	Figure 35: Isolation Address
	Selecting an Additional Isolation Address
	Isolation Policy Delay
	Restarting VMs
	VM Component Protection

	Figure 38: Web Client PDL Response
	Figure 39: vSphere Client PDL Response
	Figure 40: vSphere Client APD Response
	vSphere HA respecting Affinity Rules

	Figure 41: vSphere HA Rule Settings
	VSAN AND VVOL SPECIFICS
	HA and vSAN

	Figure 42: vSAN Datastore
	Figure 43: vSAN Network RAID
	Folder Structure with vSAN for HA

	Figure 44: vSAN Partition Scenario
	Figure 45: vSAN Stretched Cluster
	Heartbeat Datastores, When Can They Help?
	HA and Virtual Volumes

	Figure 46: Virtual Volumes Enabling Capabilities
	Figure 48: Virtual Volumes Architecture
	Let’s take a look at all of these three in the above order.
	Figure 49: Virtual Volumes Folder Structure
	Figure 50: Virtual Volumes Object for HA Files
	ADDING RESILIENCY TO HA
	Cons: Just a single active path for heartbeats.
	Figure 52: Network Configuration
	Corner Case Scenario: Split-Brain
	Link State Tracking

	Figure 53: Link State Tracking
	ADMISSION CONTROL
	Admission Control Policy

	Figure 54: Admission Control
	Figure 55: Admission Control Algorithms
	Admission Control Algorithms
	Cluster Resource Percentage Algorithm

	Figure 56: Percentage Based
	Figure 57: Host Failures Cluster Tolerate
	So how does the admission control policy work?
	Figure 58: Admission Control Monitoring
	Slot Size Algorithm

	Figure 59: Host Failures Cluster Tolerates
	Figure 60: Slot Policy
	Let’s dig in to this concept we have just introduced, slots.
	Figure 61: Advanced Runtime Info
	Figure 62: VM Spanning Multiple Slots
	Figure 63: Change Memory Slot Size
	Figure 64: VMs Requiring Multiple Slots
	Figure 65: Large Memory Reservation
	Figure 66: Slots Available Changed
	Unbalanced Configurations and Impact on Slot Calculation

	Let’s first define the term “unbalanced cluster.”
	Let’s try to clarify that with an example.
	Figure 67: Unbalanced
	ESXi-01 + ESXi-02 = 32 slots available
	Failover Hosts

	Figure 68: Dedicated Failover Hosts
	Figure 69: Configure Failover Host Admission Control Policy
	Performance Degradation

	Figure 70: Performance Degradation Tolerated
	Decision Making Time
	Percentage as Cluster Resources Reserved

	Pros:
	Cons:
	Slot Size Algorithm

	Pros:
	Cons:
	Specify Failover Hosts

	Pros:
	Cons:
	Recommendations
	Selecting the Right Percentage

	A total of 112 GB of memory is reserved as failover capacity.
	Figure 71: Determining the Percentage
	Aggressive Approach
	Adding Hosts to Your Cluster

	Figure 72: Adding Hosts
	VM AND APPLICATION MONITORING
	Figure 73: VM and Application Monitoring
	Why Do You Need VM/Application Monitoring?
	How Does VM/App Monitoring Work?

	Figure 74: Monitoring Sensitivity
	Align das.iostatsInterval with the failure interval.
	Screenshots
	VM Monitoring Implementation Details
	Timing

	Application Monitoring

	Figure 75: Application Monitoring
	Application Awareness API

	VSPHERE HA INTEROPERABILITY
	HA and Storage DRS
	Storage vMotion and HA
	HA and DRS
	HA and Resource Fragmentation
	Flattened Shares

	Figure 76: Flatten Shares Starting Point
	Figure 77: Flattening of Shares
	Figure 78: Flattening of Shares
	DPM and HA
	Proactive HA

	Figure 79: Proactive HA
	Figure 80: Proactive HA Automated Remediation
	Figure 81: Proactive HA Provider
	ADVANCED SETTINGS
	How Do You Configure these Advanced Settings?
	Cluster Level
	FDM Host Level
	vCenter Level

	Most Commonly Used

	P2
	VSPHERE DISTRIBUTED RESOURCE SCHEDULER
	INTRODUCTION TO VSPHERE DRS
	Requirements
	Cluster Level Resource Management
	DRS Cluster Settings

	Figure 82: New DRS Cluster
	DRS Automation Levels

	Figure 83: DRS Automation Level
	Manual Automation Level
	Partially Automated Level

	Figure 84: DRS Metrics on Cluster Summary Screen
	Figure 85: Pending DRS Recommendations
	Fully Automated Level
	Per-VM Automation Level

	Figure 86: VM Override Options
	Figure 87: DRS Recommendation of Partially Automated VM
	Impact of Automation Levels on Procedures
	Initial Placement
	Old Initial Placement Behavior
	vSphere 6.7 Initial Placement Behavior
	Virtual Machine Performance Modelling

	vCenter Sizing

	Figure 88: VCSA Last Quarter Memory Utilization View
	DRS Thread per Cluster

	Figure 89: DRS Components
	Separate VDI Workloads From VSI Workloads
	Cluster Sizing

	The number of virtual machines versus the number of LUNs required:
	Supporting Technology
	vMotion
	Multi-NIC vMotion
	10/25/40GbE vMotion Network
	CPU Consumption of vMotion Process
	Encrypted vMotion

	Figure 90: Encrypted vMotion CPU Overhead on the Source Host
	Figure 91: Encrypted vMotion CPU Overhead on the Destination Host
	Figure 92: VM Options Encrypted vMotion
	CPU Headroom

	Enhanced vMotion Capability
	How Does EVC Work?

	Figure 93: EVC Compatibility Check
	Will EVC Impact Application Performance?
	Enabling and Disabling EVC
	Power Off VM Instead of Reboot
	EVC Requirements
	Conclusion

	RESOURCE DISTRIBUTION
	DRS Dynamic Entitlement
	Resource Scheduler Architecture

	Figure 94: DRS and Host-Local Schedulers
	DRS Scheduler

	Figure 95: Resource Pool Structure Mapped to ESXi Host-Local RP Tree
	Figure 96: Mapping Resource Pool Structure Across Host-Local RP Trees
	Local Scheduler
	Dynamic Entitlement Target

	Figure 97: Dynamic Entitlement Target
	Figure 98: Active - Consumed - Configured Memory
	Figure 99: Idle Consumed Memory Calculation
	Memory Metric for Load Balancing Enabled

	Figure 100: Memory Metric for Load Balancing Enabled
	Resource Contention
	DRS Dynamic Entitlement versus Host-Local Entitlement

	Resource Allocation Settings

	Figure 101: Resource Allocation Settings and Dynamic Entitlement
	Reservation

	Figure 102: 6 GB Minimum Entitlement
	Resource Pool-Level Reservation Behavior
	Virtual Machine-Level Reservation Behavior
	Admission Control and Dynamic Entitlement
	Shares
	Relative Priorities

	Figure 103: Parent, Child, Sibling Relationship Mapping
	CPU Shares

	MHzPerShare = MHzUsed / Shares
	Figure 104: Order of Priority
	Figure 105: VM02 Claiming Resources Up to its Reservation
	Memory Shares
	Calculating MinFree
	Memory State Transition Points

	Figure 106: Memory Transition Points Host with 256 GB Memory
	Memory Reclamation Techniques per State
	Share-Per-Page
	Resource Contention

	Figure 107: Dynamic Entitlement to Determine Reclamation
	Figure 108: Reclamation and Level of Contention
	Worst Case Allocation
	Limits
	Why Use Limits?

	Tying it All Together

	RESOURCE POOLS AND CONTROLS
	Root Resource Pool

	Figure 109: HA Disabled on DRS Cluster
	Figure 110: Cluster HA Failover Resources
	Resource Pools

	Figure 111: Resource Providers and Consumers
	Inflating or Deflating Resource Pools
	Host-Local Resource Pools
	Dividing Resources
	Resource Pools Are Not Folders
	Resource Pool Tree Structure
	Worst-Case Scenario Should Not Mimic Your Cluster Operational State

	Figure 112: DRS Entitlement Viewer
	Resource Pool Resource Allocation Settings
	Shares

	Figure 113: Resource Pool 1 and 2 Share Ratio
	Resource Pool Size
	Sibling Rivalry

	Figure 114: Sibling Rivalry between VM and Resource Pool
	Figure 115: First Level of Resource Distribution
	Figure 116: Second Level of Resource Distribution
	Figure 117: Additional Workload Introduced in Resource Pool RP-1
	Figure 118: Dynamic Entitlement
	Figure 119: Sibling Rivalry Within RP with Idle and Active VMs
	Share Levels are Pre-sets, not Classes
	The Resource Pool Priority-Pie Paradox

	Figure 120: VM Dynamic Entitlement Based on RP Share Value
	From Resource Pool Setting to Host-Local Resource Allocation

	Figure 121: Single Resource Pool Configuration
	Figure 122: Host-Local Resource Pool Mapping
	Figure 123: Multiple Resource Pool Configuration
	Figure 124: Resource Pool Mapping ESXi-01
	Figure 125: Cluster Resource Allocation Overview
	Resource Pool-Level Reservation

	Figure 126: Distribution of Resource Pool Reservation at 08:00 (8 AM)
	Figure 127: Distribution of Resource Pool Reservation at 11:00 (11 AM)
	Figure 128: Distribution of Resource Pool Reservation at 19:00 (7 PM)
	Child-Object-Level Reservation Inside a Resource Pool

	Figure 129: VM Reservation Within a Resource Pool
	Activation of Reservation
	Memory Overhead Reservation

	Static Overhead
	Dynamic Overhead
	Memory Overhead Reservation Appears as Resource Pool Reservation

	Figure 130: Memory Overhead Reservation
	Right Size Virtual Machines
	Expandable Reservation

	Figure 131: Reservation Type Fixed
	Figure 132: Power On Failure
	Figure 133: Power On Decision Workflow
	Traversing the Parent Tree

	Figure 134: Traversing the Parent Resource Pool Tree
	Reservations are Not Limits

	Figure 135: Reservation and Shares
	Resource Pool Limit
	Limits, Reservations and Memory Overhead Reservation
	Expandable Reservation and Limits

	CALCULATING DRS RECOMMENDATIONS
	When is DRS Invoked?
	Recommendation Calculation
	Constraints Correction

	Imbalance Calculation
	Current Host Load Standard Deviation
	Target Host Load Standard Deviation
	DRS Migration Threshold

	Figure 136: Migration Threshold
	Figure 137: DRS Migration Recommendation Workflow
	GetBestMove

	GetBestMove() {
	Cost-Benefit and Risk Analysis Criteria
	Cost
	Benefit
	Risk

	Combining the Cost-Benefit Risk
	MinGoodness
	Calculating the Migration Recommendation Priority Level

	Level 1 (conservative)
	Level 2 (moderately conservative)
	Level 3 (moderate)
	Level 4 (moderately aggressive)
	Level 5 (aggressive)
	Pair-Wise Balancing Thresholds

	Figure 138: Pair-Wise Balancing Threshold
	Network Aware DRS
	Initial Placement Enhancement
	Load-Balancing Enhancement
	Network Saturation Threshold

	Figure 139: Network-Aware DRS Thresholds on Logically Separated NICs
	Figure 140: Network-Aware DRS Thresholds 10 GbE NICs Configuration
	Advanced Setting

	IMPACTING DRS RECOMMENDATIONS
	DRS Additional Options

	Figure 141: DRS Cluster Additional Options
	VM Distribution

	Figure 142: VM Distribution
	Memory Balancing in Non-Overcommitted Clusters

	Figure 143: DRS Memory Metric for Load Balancing
	Out-of-the-box DRS Behavior

	Figure 144: Active, Consumed and Configured Memory
	Figure 145: Default Dynamic Entitlement Calculation
	Memory Metric for Load Balancing Enabled

	Figure 146: 100% Idle Consumed Memory
	Figure 147: Cluster Memory Utilization Consumed View
	Figure 148: Cluster Balanced State
	Figure 149: Sum of VM Memory Utilization Based on Active Memory
	Figure 150: Sum of VM Memory Utilization Based on Consumed Memory
	Figure 151: Memory Metric for Load Balancing Enabled
	CPU Over-Commitment (DRS Additional Option)

	Figure 152: Setting the CPU Over-Commit Ratio 4:1
	Maximum vCPUs per CPU Core

	Figure 153: MaxVcpusPerCore Advanced Option
	Maximum vCPU Per Cluster Percentage

	Figure 154: Web Client Option
	Figure 155: MaxVcpusPerClusterPct
	AggressiveCPUActive
	VM Size and Initial Placement
	MaxMovesPerHost
	Placement Rules
	VM-VM Affinity Rules

	VM-VM Anti-Affinity Rules
	VM-VM Affinity Rules – impact on HA
	VM-VM Affinity Rules – impact on DRS
	VM-Host Affinity Rules

	Figure 156: VM to Host Affinity Rule
	Should Run - Preferential Rules
	Must Run - Mandatory Rules

	Figure 157: vMotion Compatibility Check
	Figure 158: Compatibility Subset
	Rule Behavior
	Backup Your Affinity Rules
	VM Overrides

	Figure 159: VM Overrides
	Figure 160: DRS Automation Level
	Disabled Automation Level
	Manual Automation Level
	Partially Automation Level
	The Impact of DRS Automation Levels on Cluster Load Balance
	Disabled versus Partially and Manual Automatic Levels
	Risk versus Reward

	DISTRIBUTED POWER MANAGEMENT
	Figure 161: Enable DPM
	Figure 162: DPM Automation Level
	Figure 163: DPM Host Power Management Option
	Calculating DPM Recommendations
	Evaluating Resource Utilization

	Figure 164: Power Operations Regarding to Host Utilization Levels
	Advanced options
	Figure 165: DRS Cluster Advanced Options
	Historical Period of Interest
	Evaluating Power-On and Power-Off Recommendations
	Power-Off Recommendations

	Rejection of Host Power-Off Recommendations
	DPM Power-Off Cost/Benefit Analysis
	Power-Off Cost and Benefit Analysis Calculation
	Host Selection for Power-On Recommendations
	Host Power-On Recommendations

	Use homogeneous clusters, as DPM operates more efficiently.
	Impact of Advanced Settings on Host Power-On Recommendations
	Recommendation Classifications
	Priority Levels
	Power-Off Recommendations
	Power-On Recommendations

	Guiding DPM Recommendations
	DPM Standby Mode
	DPM WOL Magic Packet
	Baseboard Management Controller
	Protocol Selection Order

	P3
	VSPHERE STORAGE DRS
	INTRODUCTION TO VSPHERE STORAGE DRS
	Resource Aggregation
	Initial Placement
	Load Balancing

	Figure 166: Storage DRS Automation Level
	Figure 167: I/O Metric for Storage DRS Recommendations
	Affinity Rules
	Datastore Maintenance Mode
	Requirements

	STORAGE DRS INITIAL PLACEMENT
	User Interaction

	Figure 168: Selecting Storage During VM Creation Process
	Affinity Rules

	Figure 169: Default VM Affinity Rule
	Cluster Automation Level

	Figure 170: Cluster Automation Level
	DRS Mobility and Datastore Connection
	Space and I/O Load Consideration
	Space Utilization Threshold

	Figure 171: Datastore Space Utilization Threshold
	Datastore Cluster Defragmentation
	Depth of Recursion

	Figure 172: Depth of Recursion
	Goodness Value

	Scenario
	Figure 173: Space Utilization Datastore Cluster Prior to Initial Placement
	Figure 174: Datastore 1 Simulation Prerequisites Migrations
	Figure 175: Datastore 2 Simulation Prerequisite Migrations
	Figure 176: Datastore 3 Simulation Prerequisite Migrations
	Adding a New Disk to an Existing VM in a Datastore Cluster
	Manually Migrating VMs within the Datastore Cluster

	Figure 177: Datastore Cluster as Destination
	Figure 178: Disable Storage DRS Reveals Individual Datastores
	STORAGE DRS LOAD BALANCING
	Figure 179: Storage DRS Thresholds
	Space Load Balancing

	Figure 180: Space Load Balance Workflow
	Collecting Statistics

	Figure 181: Minimum Space Utilization Difference
	Cost Benefit-Risk Analysis
	Migration candidate selection
	On-Demand Space Load Balancing
	I/O Load Balancing

	Figure 182: I/O Load Balancing Workflow
	Stats Collection – Performance Snapshot
	Online Device and Workload Modelling
	Device Modelling
	Workload Modelling
	Normalized Load

	Figure 183: I/O Load-Balancing Input
	Data Points

	Figure 184: Invocation Period Overview
	Load Imbalance Recommendations

	Figure 185: I/O Imbalance Threshold
	Cost-Benefit Analysis
	Ignoring Peak Moments
	SIOC Latency and Storage DRS Latency
	Datastore Correlation Detector
	Load Balancing Recommendations
	Unified Recommendations
	Dependent Migration Recommendations
	Cultivation Time

	Invocation Triggers
	Cluster Configuration Change
	Datastore Maintenance Mode
	Initial Placement
	Exceeding Threshold
	Invocation Frozen Zone

	Recommendation Calculation
	How to Create a "New Storage DRS recommendation generated" Alarm

	Name and Description
	Figure 186: Alarm Name and Description
	Targets
	Figure 187: Alarm Targets
	Alarm Rule
	Figure 188: Alarm Rule
	Review
	DATASTORE CLUSTER CONFIGURATION
	Figure 189: Datastore Cluster Ecosystem Architecture
	Creating a Datastore Cluster
	Configuration Workflow
	Name and Location

	Figure 190: Datastore Cluster Name and Location
	Storage DRS Automation

	No Automation (Manual Mode)
	Fully Automated
	Figure 191: Storage DRS Automation
	Figure 192: Customized Storage DRS Automation Settings
	Storage Run Runtime Settings

	Figure 193: Storage DRS Runtime Settings
	Select Clusters and Hosts

	Figure 194: Cluster and Host Selection Screen
	Select Datastores

	Figure 195: Select Datastores
	Ready to Complete

	Figure 196: Ready to Complete
	ARCHITECTURE AND DESIGN OF DATASTORE CLUSTERS
	Connectivity
	Host Connectivity
	Compatibility List

	Figure 197: VM and VMDK Mobility in a Partially Connected Architecture
	I/O load balancing in Partially Connected Datastore Clusters
	Partially Connected Datastores and the Invocation Period
	Cluster Connectivity

	Figure 198: DRS and Storage DRS Load Balancing Domains
	Multiple Compute Clusters and SIOC
	Maximum Number of Hosts per Volume
	Array Connectivity

	Figure 199: Array Connectivity
	APIs for Storage Awareness
	Hardware Offloading

	Figure 200: VAAI Hardware Offloading within Arrays
	Datastores
	Space Utilization Threshold and the Space Safety Buffer
	Scale Up or Scale Out Datastores

	VM Configuration
	Datastore Cluster Default Affinity Rule

	Figure 201: Default VM Affinity
	Figure 202: Initial Placement with Default Affinity Rule
	DrmDisk

	Figure 203: DrmDisk of a VM
	Figure 204: Datastore Recommendation with Affinity Rules Disabled
	Increasing Granularity

	Figure 205: Initial Placement with VMDK Anti-Affinity Rule Enabled
	I/O Load Balancing with Anti-Affinity Rules
	Disk Types
	Thick Disk
	Thin Provisioned Disk
	Independent Disk
	Avoiding VMDK Level Over-Commitment While Using Thin Disks and Storage DRS

	IdleMB
	Figure 206: Thin Provisioned Disk
	PercentIdleMBinSpaceDemand
	Entitled Space Use
	Figure 207: Entitled Space Use
	Calculation During Placement
	Figure 208: Datastore Free Space
	Changing the PercentIdleMBinSpaceDemand Default Setting
	Use case 1: NFS Datastores
	Use case 2: Safeguard to Protect Against Unintentional Use of Thin Disks
	VM Automation Level

	Impact of VM Automation Level on Load Balancing Calculation
	Interoperability
	Array Features
	Array-Based Auto-Tiering
	Array-Based Deduplication

	Figure 209: VMDK Migration within Deduplication Pools
	Array-Based Replication

	Figure 210: VMDK Migration within Same Consistency Group
	Array-Based Thin-Provisioning

	Figure 211: VMDK Migration between Thin-Provisioning Pools
	Storage DRS Integration with Storage Profiles
	Profile-Driven Storage

	Figure 212: Compatible Datastore Cluster
	Figure 213: Multiple Storage Policies in Single Datastore Cluster
	Figure 214: Incompatible Datastores
	Figure 215: Datastore Selection Recommendations
	Figure 216: Compatible Datastore List
	Storage Policy Compliancy

	Figure 217: VM Storage Policy Compliance Status
	Prerequisites
	AFFINITY RULES
	Figure 218: Default VM Affinity
	Storage DRS Rules

	Figure 219: Storage DRS Rules
	VMDK Affinity Rule

	Figure 220: Initial Placement with Default Affinity Rule
	VMDK Anti-Affinity Rule

	Figure 221: Initial Placement with VMDK Anti-Affinity Rule Enabled
	Figure 222: Datastore Recommendation with Default Anti-Affinity
	VM Anti-Affinity Rule

	Figure 223: VM to VM Anti-Affinity Rule
	Figure 224: Default VM Affinity Conflict
	Violate Anti-Affinity Rules
	Anti-Affinity Rules with Datastore Correlation

	Figure 225: EnforceCorrelationForAffinity Enabled
	Overriding Datastore Cluster Default
	VM Overrides

	Figure 226: VM Overrides
	Storage DRS Rules
	Moving a VM into a Datastore Cluster

	DATASTORE MAINTENANCE MODE
	Automation Mode

	Figure 227: VM Evacuation Automation Level
	Using Datastore Maintenance Mode for Migration Purposes
	Datastore Maintenance Mode on a Datastore
	Throttle the Number of Storage vMotion Operations

	Figure 228: Storage vMotion in Progress
	How Do You Throttle The Number of Storage vMotion Operations?

	P4
	QUALITY CONTROL
	STORAGE I/O CONTROL
	Figure 229: Basic Shared Storage Architecture
	Figure 230: Unbalanced Storage I/O Consumption
	Figure 231: Balanced Storage I/O Consumption
	SIOC Explained
	Storage Fairness
	SIOC Defaults

	Figure 232: Default SIOC Configuration Values
	Latency Threshold Computations
	Automatic or Manual Threshold

	I/O Injector

	Figure 234: Migrate Cold Segments by Auto-Tiering
	Queue Depth

	Figure 235: Storage Path SAN
	Figure 236: Esxtop Disk Device View
	SIOC Logging
	Communication Mechanism

	Figure 239: Iormstats.sf Listing
	Figure 240: ESXi Host Accessing IORMSTATS.SF
	Local Scheduler

	Figure 241: Local Disk Scheduler
	Datastore-Wide Scheduler

	Figure 243: SIOC Share Variance Example
	VAIO

	Figure 244: VAIO Framework for SIOC
	Figure 246: Default SIOC Policy Components
	Figure 247: Custom SIOC Policy Component
	Figure 250: VM Storage Policy Compliancy
	Statistics Collection Only

	Figure 251: Enable Stats-Only Mode
	Figure 252: SIOC Performance Views
	Figure 253: SIOC Stats-Only Exemplary Performance View
	Storage I/O Allocation
	Shares
	Limits and Reservations
	Interoperability

	NETWORK I/O CONTROL
	Network I/O Control Constructs

	Figure 255: Basic Network I/O Control Constructs
	Evolution of NIOC

	Figure 256: Distributed vSwitch Versions in vSphere 6.7
	Figure 257: Verify NIOC Version in the GUI
	NIOC Defaults

	Figure 258: Default Configured NIOC Traffic Types in vSphere 6.7
	NIOC Advanced Setting
	Figure 259: Example NIOC Exclude Configuration
	Bursty Network Consumers
	Bandwidth Allocation
	Shares

	Figure 260: NIOC Shares Example
	Figure 261: NIOC Shares Distribution
	Figure 262: NIOC Shares Deviation with Fewer Traffic Sources
	Ingress and Egress Perspective

	Figure 263: NIOC Ingress and Egress Perspective
	Limits

	Figure 264: NIOC VDP Traffic Type Limit Configuration Example
	Figure 265: NIOC VDP Traffic Type Limit Example
	Test Scenario

	Figure 266: NIOC Traffic Type 3 Gbit/s Limit Test
	Figure 267: NIOC Traffic Type 2 Gbit/s Limit Test
	Scheduled Limit Values
	Destination Traffic Saturation

	Figure 268: NIOC Limit Consumption by Other ESXi Hosts
	Traffic Shaping

	Figure 269: Egress Traffic Shaping Configuration
	Figure 270: NIOC Limit Consumption Solved with Traffic-Shaping
	Reservations

	Figure 271: NIOC Maximum Reservation Value
	Figure 272: NIOC Reservation Example
	Network Resource Pools

	Figure 273: Network Resource Pool Constructs
	Figure 274: Virtual Machine Traffic Reservation Example
	Figure 275: Network Resource Pools
	Figure 276: Network Resource Pool on a Distributed Port Group
	Figure 277: Network Resource Pool Usage Overview
	Individual VM Parameters

	Figure 280: Power On Failure by vSphere DRS
	Bandwidth Management
	Traffic Marking
	Quality of Service

	Figure 281: QoS Classification Advertised from Virtual to Physical Layer
	Figure 282: CoS Tag Traffic iSCSI Rule Example
	P5
	STRETCHED CLUSTERS
	USE CASE: STRETCHED CLUSTERS
	Scenario
	Technical Requirements and Constraints
	Uniform Versus Non-Uniform vMSC Configurations

	Figure 283: Uniform Access
	Figure 284: Non-Uniform Access
	Infrastructure Architecture
	Infrastructure

	Figure 285: Our Lab Infrastructure
	vSphere Configuration
	vSphere HA
	Admission Control

	Figure 286: Cluster Creation
	Figure 287: Admission Control
	HA Heartbeats

	Figure 288: Heartbeat Datastores
	Figure 289: Configuration of Heartbeat Datastores
	Permanent Device Loss and All Paths Down Scenarios

	Figure 290: Failure Condition and Responses Configuration
	Figure 291: APD Response Delay
	Restart Ordering and Priority

	Figure 292: VM Group – Select a VM
	Figure 293: Restart Priority
	Figure 294: Start Next Priority VMs
	Figure 295: VM Group
	Figure 296: Restart Dependency
	ProActive HA

	Figure 297: Proactive HA Automated Remediation
	Figure 298: Proactive HA Provider
	DRS
	Site Affinity

	Figure 299: Former Required HA Rule Settings
	Figure 300: VM/Host Group Creation Part 1
	Figure 301: VM/Host Group Creation Part 2
	Figure 302: VM/Host Group Creation Part 3
	Advanced Settings

	Figure 303: DRS Additional Options
	Correcting Affinity Rule Violation
	Storage DRS

	Figure 304: Storage DRS Configuration
	Figure 305: Storage DRS Runtime Settings
	Migrations
	Failure Scenarios
	Single-Host Failure in Amsterdam Data Center

	Figure 306: Single Host Failure
	Result
	Explanation
	Single-Host Isolation in Amsterdam Data Center

	Figure 307: Single Host Isolation
	Result
	Explanation
	Storage Partition

	Figure 308: Storage Partition
	Result
	VMs remain running with no impact.
	Explanation
	Data Center Partition

	Figure 309: Data Center Partition
	Result
	VMs remain running with no impact.
	Explanation
	Figure 311: Lock Lost Message
	Disk Shelf Failure in Amsterdam Data Center

	Figure 312: Disk Shelf Failure
	Result
	VMs remain running with no impact.
	Explanation
	Full Storage Failure in Amsterdam Data Center

	Figure 313: Full Storage Failure Site Amsterdam
	Result
	VMs remain running with no impact.
	Explanation
	Permanent Device Loss

	Figure 314: Permanent Device Loss
	Result
	Explanation
	Figure 315: HA PDL Response Configuration
	Full Compute Failure in Amsterdam Data Center

	Figure 316: Full Compute Failure
	Result
	All VMs are successfully restarted in Rotterdam data center.
	Explanation
	Loss of Amsterdam Data Center

	Figure 317: Full Loss of Data Center
	Result
	All VMs were successfully restarted in Rotterdam data center.
	Explanation
	Summary

	INDEX
	A
	Adapter Queue
	B
	C
	Class of Service
	D
	DSCP 502
	DPM 114, 159, 173, 307
	E
	F
	Failures To Tolerate
	Fault Domain Manager
	Fault Tolerance
	H
	High Availability
	M
	Microsoft Clustering Services
	N
	Network File System
	Network I/O Control
	Network Resource Pools
	O
	Outstanding I/O
	P
	Permanent Device Loss
	Q
	Quality of Service
	R
	Raw Device Mappings
	Return On Investment
	S
	Start-time Fair Queuing
	Storage Device
	Storage I/O Control
	T
	THLSD 262, 263, 271
	V
	Virtual Machine
	VMDK 330
	VMFS 445
	Virtual SAN
	Virtual Volumes
	VM Component Protection
	HCL 472
	VVD 476
	VAAI 394
	VAIO 445, 463
	VASA 102, 394, 407
	VAMI 183
	VDP 480, 486
	W
	WSFC 19

