

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Long-term Trends in Arctic Riverine Chemistry Signal Multi-faceted Northern Change

Suzanne Tank (Suzanne.tank@ualberta.ca) University of Alberta https://orcid.org/0000-0002-5371-6577 **James McClelland** Marine Biological Laboratory **Robert Spencer** Florida State University Alexander Shiklomanov University of New Hampshire Anya Suslova Woodwell Climate Research Center **Florentina Moatar INRAF Rainer** Amon Texas A&M University, Galveston Campus https://orcid.org/0000-0002-1437-4316 Lee Cooper University of Maryland **Greg Elias** Western Arctic Research Center Vyacheslav Gordeev **Russian Academy of Sciences Christopher Guay** Mamala Research LLC Tatiana Gurtovaya South Russia Centre for Preparation and Implementation of International Projects Lyudmila Kosmenko Ministry of Natural Resources and Environment of the Russian Federation Edda Mutter Yukon River Inter-Tribal Watershed Council **Bruce Peterson** Marine Biological Laboratory **Bernhard Peucker-Ehrenbrink** Woods Hole Oceanographic Institution https://orcid.org/0000-0002-3819-992X Peter Raymond

Yale University https://orcid.org/0000-0002-8564-7860

Paul Schuster

U.S. Geological Survey https://orcid.org/0000-0002-8314-1372

Lindsay Scott

Woodwell Climate Research Center

Robin Staples

Government of the Northwest Territories

Robert Striegl

US Geological Survey https://orcid.org/0000-0002-8251-4659

Mikhail Tretiakov

Arctic and Antarctic Research Institute https://orcid.org/0000-0003-3702-6362

Alexander Zhulidov

South Russia Centre for Preparation and Implementation of International Projects

Nikita Zimov

Northeast Science Station

Sergey Zimov

Northeast Science Station of Pacific Geographical Institute https://orcid.org/0000-0002-0053-6599

Robert Holmes

Woodwell Climate Research Center

Article

Keywords:

Posted Date: February 9th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2530682/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Additional Declarations: There is NO Competing Interest.

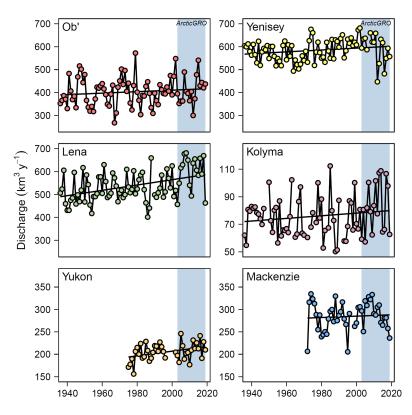
Version of Record: A version of this preprint was published at Nature Geoscience on August 21st, 2023. See the published version at https://doi.org/10.1038/s41561-023-01247-7.

1 2	Long-term Trends in Arctic Riverine Chemistry Signal Multi-faceted Northern Change
3	Current F. Taul ¹ January M. MacCalland ² , Dahart C.M. Cuanary ³ , Alaun Jaul, Children et al. ⁴ , Anua
4 5	Suzanne E. Tank ¹ , James W. McClelland ² , Robert G.M. Spencer ³ , Alexander I. Shiklomanov ⁴ , Anya Suslova ⁵ , Florentina Moatar ⁶ , Rainer M.W. Amon ⁷ , Lee W. Cooper ⁸ , Greg Elias ⁹ , Vyacheslav V. Gordeev ¹⁰ ,
6	Christopher Guay ¹¹ , Tatiana Yu. Gurtovaya ¹² , Lyudmila S. Kosmenko ¹³ , Edda A. Mutter ¹⁴ , Bruce J.
7	Peterson ² , Bernhard Peucker-Ehrenbrink ¹⁵ , Peter A. Raymond ¹⁶ , Paul F. Schuster ¹⁷ , Lindsay Scott ⁵ , Robin
8	Staples ¹⁸ , Robert G. Striegl ¹⁷ , Mikhail Tretiakov ¹⁹ , Alexander V. Zhulidov ¹² , Nikita Zimov ²⁰ , Sergey Zimov ²⁰ ,
9	Robert M. Holmes ⁵
10	
11	
12	¹ Dependence of Dislocian Coise and University of Alberta, Educantee, AD, Consula
13	 ¹ Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada ² Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
14 15	³ Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL, USA
16	⁴ Earth Systems Research Center, University of New Hampshire, Durham, NH, USA
17	⁵ Woodwell Climate Research Center, Falmouth, MA, USA
18	⁶ RiverLy, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, INRAE, Villeurbanne, France
19	⁷ Department of Marine and Coastal Environmental Sciences, Texas A&M University, Galveston, TX, USA
20	and Department of Oceanography, Texas A&M University, College Station, TX, USA
21	⁸ Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons,
22	MD, USA
23	⁹ Western Arctic Research Center, Inuvik, NT, Canada
24	¹⁰ Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russian Federation
25	¹¹ Mamala Research LLC, Honolulu, HI, USA
26 27	¹² South Russia Centre for Preparation and Implementation of International Projects, Rostov-on-Don, Russian Federation
27	¹³ Hydrochemical Institute of the Federal Service for Hydrometeorology and Environmental Monitoring,
29	Ministry of Natural Resources and Environment of the Russian Federation, Rostov-on-Don, Russia
30	¹⁴ Yukon River Inter-Tribal Watershed Council, Anchorage, AK, USA
31	¹⁵ Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods
32	Hole, MA, USA
33	¹⁶ School of Forestry & Environmental Studies, Yale University, New Haven, CT, USA
34	¹⁷ U. S. Geological Survey, Earth System Processes Division, Boulder, CO, USA
35	¹⁸ Water Resources Division, Government of the Northwest Territories, Yellowknife, NT, Canada
36	¹⁹ River Estuaries and Water Resources Department, Arctic and Antarctic Research Institute, Saint
37	Petersburg, Russian Federation
38	-
39	²⁰ Pacific Geographical Institute of the Far Eastern Branch of the Russian Academy of Sciences, Chersky, Russian Federation

41 Abstract

42 Large rivers integrate processes occurring throughout their watersheds, and are therefore sentinels of 43 change across broad spatial scales. Riverine chemistry also regulates ecosystem function across 44 Earth's land-ocean continuum, exerting control from the micro- (e.g., food web) to the macro- (e.g., 45 carbon cycle) scale. In the rapidly warming Arctic, a wide range of processes have been hypothesized 46 to alter river water chemistry. However, it is unknown how the land-ocean flux of waterborne 47 constituents is changing at the pan-Arctic scale. Here, we show profound shifts in the concentration 48 and transport of biogeochemical constituents in the six largest Arctic rivers (the Ob', Yenisey, Lena, 49 Kolyma, Yukon, and Mackenzie) since 2003, near river mouths capturing two-thirds of the pan-Arctic 50 watershed. While some constituent fluxes increase substantially at the pan-Arctic scale (alkalinity and 51 associated ions), others decline (nitrate and associated inorganic nutrients) or are overall unchanged 52 (dissolved organics). These clear but divergent trends diagnose a multi-systems perturbation that 53 indicates alteration of processes ranging from chemical weathering on land, to primary production in 54 the coastal ocean. We anticipate these findings will refine models of current and future functioning of 55 the coupled land-ocean Arctic system, and spur research on scale-dependent change across the river-56 integrated Arctic domain.

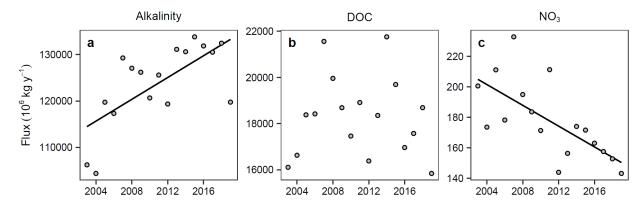
57


58 Main

59 Large rivers are planetary linchpins, connecting vast swaths of terrestrial landmass to the 60 world's coastal oceans. On land, rivers integrate patchy landscapes and the variable biogeochemical 61 processes that these landscapes host, as water moving through watersheds incorporates the chemical 62 signature of its flow path. In the coastal ocean, the chemical signature of water transported by rivers regulates nearshore biogeochemical^{1,2} and ecological^{3,4} function; over broader scales, river water and its 63 composition modify ocean physics¹. Nowhere is this more consequential than in the Arctic, where ~11% 64 65 of Earth's riverine discharge drains into an enclosed basin containing $\sim 1\%$ of global ocean volume⁵. This 66 drainage occurs predominantly via six large rivers (Figure 1, Extended Data Table 1). As a result, 67 quantifying trends in river water chemistry at a constrained series of downstream sites allows us to diagnose change across much of the pan-Arctic watershed, better understand the current functioning of 68 69 the connected land-ocean Arctic system, and predict what the future may hold for this rapidly changing 70 region⁶.

Figure 1: The six great Arctic rivers that are the focus of this assessment. Sampling locations are indicated by red dots. The $16.8 \times 10^6 \text{ km}^2$ pan-Arctic watershed is delineated by the red line.

71	Past work on north-flowing rivers has established significant increases in discharge across the
72	pan-Arctic since the early-mid 20 th century ^{7,8} (Figure 2), attributed to intensification of the hydrologic
73	cycle ⁹ . Such increases in water transport suggest that we should expect long-term change in the riverine
74	flux (i.e., total riverine transport, as mass time ⁻¹) of biogeochemical constituents, particularly for
75	constituents such as organic carbon that are transport, rather than supply, limited in the north ^{10,11} .
76	Similarly, there is a broadly articulated expectation that permafrost thaw will increase the transport of
77	organic matter, nutrients, and ions to aquatic networks, and thus their delivery to the coastal ocean ¹²⁻¹⁴ .
78	However, these assessments miss that change in the north is multi-faceted, with factors such as
79	shrubification ¹⁵ , temperature-induced increases in biogeochemical processing rates by heterotrophic
80	and autotrophic microbes ¹⁶⁻¹⁸ , disturbances such as wildfire ¹⁹ , and human modifications such as river
81	impoundment ²⁰⁻²² , changing land use ²³ , and changing industrial emissions ²⁴ often occurring
82	simultaneously, with the potential for antagonistic effects ^{e.g., 25} . Even for permafrost thaw, deepening
83	flowpaths ²⁶ or processes such as sorption ^{27,28} can lead to patterns in mobilization that vary between
84	sites or regions ²⁹ .


Figure 2: Long-term discharge record for each of the six great Arctic rivers. The timespan of the ArcticGRO data record is indicated with blue shading.

85 Here, we examine a nearly twenty-year record of coupled river discharge and chemistry 86 (Extended Data Figure 1) collected from the six largest rivers that drain to the Arctic Ocean. These rivers: 87 the Ob', Yenisey, Lena, and Kolyma in Russia, and the Mackenzie and Yukon in North America, capture two-thirds of the Arctic Ocean watershed area (Figure 1, Extended Data Table 1). This data record is the 88 89 result of our group's ongoing efforts via the Arctic Great Rivers Observatory (ArcticGRO; 90 www.arcticgreatrivers.org), which — given the challenge of collecting methodologically-consistent and 91 seasonally-representative samples across these diverse jurisdictions and sites — represents an 92 unparalleled resource for exploring Arctic riverine change. Our analyses reveal trends at magnitudes 93 that signal broad-scale perturbation throughout the pan-Arctic, but with divergent trajectories that shed 94 light on variable mechanisms of change. We use these insights to consider potential drivers of effect and

- the consequences of observed change, and to explore where knowledge gaps are hampering our ability
 to understand current and future functioning of the land-ocean Arctic system.
- 97
- 98 Pronounced, but divergent trends in Arctic riverine flux

99 We focus our assessment on three chemical constituents that are important drivers of 100 biogeochemical function across the land-ocean Arctic domain, and that are also representative of 101 broader constituent classes. These are: dissolved organic carbon (DOC; representative of the broader 102 organic matter pool including organic-associated nutrients); alkalinity (representative of many dissolved 103 ions); and nitrate (NO₃; representative of dissolved inorganic nutrients, including ammonium (NH₄⁺) and 104 silica (SiO₂)) (Extended Data Figure 2). To assess constituent flux, we applied a modelling approach that 105 couples daily discharge data with more sporadic concentration measurements, and makes use of the known relationship between concentration and discharge to determine flux (see Methods)³⁰. Of our 106 107 focal suite, only alkalinity experienced a pan-Arctic (i.e., six rivers combined) increase in annual flux over 108 our period of record (Figure 3a). Nitrate declined significantly, while DOC, which has often been a focus 109 of study given its role as a rapid-cycling component of the contemporary carbon cycle, showed no 110 discernable change at the pan-Arctic scale (Figure 3b-c). Change that did occur, however, was 111 substantial, with a 32% decline in NO_3^- and an 18% increase in alkalinity over a period of 17 years. An 112 assessment of trends in flux across the broad suite of constituents measured by the ArcticGRO program 113 (Extended Data Figure 3) reveals patterns within constituent classes (i.e., Extended Data Figure 2) that 114 generally track those for the focal constituents. For example, trends in flux for ions closely affiliated with alkalinity (Ca²⁺, Mg²⁺, Li⁺, Sr²⁺) largely tracked that constituent; nutrients (SiO₂ and NH₄⁺) showed a pan-115 116 Arctic decline similar to that for NO₃; and patterns for total dissolved phosphorus were similar to those 117 for DOC. Given that these constituents are regulated by processes ranging from chemical weathering² to biological uptake¹⁶⁻¹⁸ on land; and modify processes ranging from ocean acidification³¹ to primary 118

119 production⁴ in the coastal ocean, the ecological and biogeochemical ramifications of the changes we

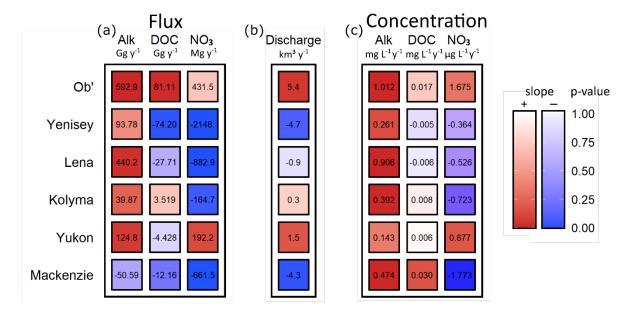

120 observe are likely profound.

Figure 3: Trends in annual constituent fluxes of alkalinity (as CaCO₃), dissolved organic carbon (DOC), and nitrate (as NO₃-N), summed across the six great Arctic rivers. Fluxes are provided as 10^6 kg y⁻¹. Thiel-Sen slopes with p<0.05 are indicated as lines within each panel. Statistical outputs are provided in Table S1.

121

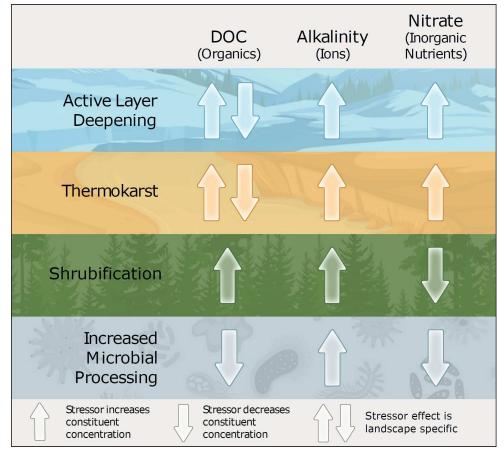
122 Concentration and discharge direct changing flux

123 In some cases, river-specific trends in constituent flux deviated from the pan-Arctic sum. For example, NO₃⁻ increased modestly in the Yukon (p=0.12), and showed little change in the Ob' (p=0.70) despite the 124 125 pan-Arctic decline described above; alkalinity patterns for the Mackenzie (negative trend slope; p=0.54) 126 contrasted with clear increases elsewhere; and DOC increased in the Ob' and decreased in the Yenisey 127 (p<0.02) in the face of limited change in other rivers (p=0.23–0.84); (Figure 4a). In part, these patterns 128 appeared to be driven by river-specific trends in discharge, which decreased in the Mackenzie (p=0.02) 129 and Yenisey (p=0.09) over the 17-year length of our data record (Figure 4b) despite the longer-term 130 increase in discharge documented for the pan-Arctic domain^{7,8} (Figure 2). Examining the mechanisms 131 underlying these changes in constituent flux requires that we disentangle inter-annual and long-term change in water discharge from co-occurring trends in concentration. This task is complicated by the fact 132 133 that constituent concentrations vary seasonally and with discharge itself. We use two distinct 134 approaches to resolve these two known concerns.

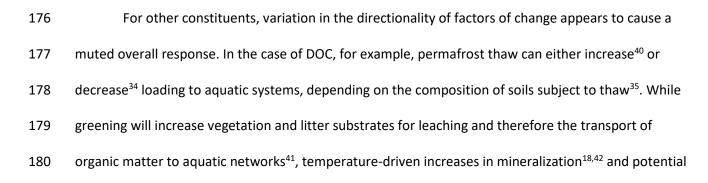
Figure 4: Annual trends for: (a) constituent flux; (b) discharge; and (c) concentration for each of the six great Arctic rivers. In each panel, the Sen's slope (numerical value) and p-value of the trend (shading) are shown. Flux and concentration trends for the full ArcticGRO constituent list are shown in Extended Data Figures 3 and 5, respectively; detailed statistical outputs are provided in Tables S1 and S2.

135	First, we use an approach to directly examine trends in measured concentrations, via trend
136	analyses that are binned by season to account for seasonal variation in concentration unrelated to
137	directional change over time (see <i>Methods</i>). We target this approach specifically to account for changes
138	to the within-year seasonality of sampling across the two-decade timespan of the ArcticGRO program.
139	Results from this direct trend analysis for concentration (Figure 4c) are generally similar to those for flux,
140	described above (Figure 4a). Increases in alkalinity are widespread (p=0.00–0.14 in all rivers except the
141	Yukon), nitrate concentrations decline (albeit modestly) across most rivers, and trends for DOC
142	concentration are largely absent (p=0.73–0.96) in all rivers except for the Mackenzie, where DOC
143	concentration increases modestly over time (p=0.16).
144	Second, we assess changes in flux controlled for inter-annual variation in discharge via a flow-
145	normalization modelling approach that removes variation in discharge across years, but retains within-
146	year (i.e., day-to-day) seasonality. Although this method does not generate an estimate of "true" flux, it
147	is preferred when the analytical emphasis is mechanistic in nature (see also Methods) ³² , because it

overcomes year-to-year fluctuations in discharge that can obscure underlying change. These flow-148 149 normalized fluxes show trends that largely reflect those for concentration presented above (Figure 4c), 150 with some notable refinements: increases in alkalinity and decreases in NO₃⁻ become more robust, and a 151 decrease in DOC emerges for the Kolyma while the DOC increase in the Mackenzie is maintained 152 (Extended Data Figure 4). Overall, patterns for flow-normalized fluxes are remarkably similar to our best 153 estimates of true flux and concentration presented above, with broad-scale increases in alkalinity and 154 declines in NO₃⁻, and variable and modest trends for DOC. Taken as a whole, these broad but divergent 155 trends diagnose a multi-systems perturbation to the pan-Arctic system, with effects profound enough to 156 reach the mouths of large northern rivers.


157

158 Divergent trends diagnose multi-systems change


159 The array of factors that might reasonably enable long-term change in riverine chemistry is diverse, 160 varying regionally in magnitude and across chemical constituents in effect (Figure 5, Supplemental Text). 161 As just one example, abrupt permafrost thaw (i.e., thermokarst) is a regionally-specific phenomena dependent on the presence of ground ice³³ that is generally understood to increase the transport of 162 some constituents to riverine networks (e.g., inorganic nutrients)²⁹, but potentially decrease others (e.g., 163 164 DOC, in cases where landscape collapse increases mineral sorption, or diverts hydrologic flow paths through mineral soils)^{34,35}. As a result, the variation in response that we describe above can be used to 165 166 diagnose drivers of change, and develop approaches to assess future functioning of the land-ocean 167 Arctic system.

For some chemical constituents, known factors of change are both relatively widespread and consistent in their directionality (Figure 5; Supplemental Text). In the case of alkalinity and related ions, for example, exposure to deeper soils via either active layer deepening or thermokarst-associated permafrost thaw will typically increase mineral weathering by increasing water contact with deeper

mineral soils^{36,37}. Acting synergistically, shrubification³⁸ and increased temperature-driven organic
 matter processing³⁹ will increase weathering rates via processes such as increasing soil pore water
 acidity. Because these processes are coherent in their directionality and geographically widespread, the
 net result appears as a cohesive increase in concentration and flux throughout the pan-Arctic domain.

Figure 5: A conceptual diagram to illustrate key drivers of change of Arctic riverine chemistry, and their anticipated direction of effect for each of the three focal constituents. The Supplemental Text provides an overview of the literature evidence for this conceptual exercise, in addition to a description of drivers that are regional in their effect, or exert control largely outside of the timespan of the ArcticGRO data record.

rapid processing of novel organic matter substrates⁴³ act in opposition to this effect. Across these large
 Arctic rivers, the net result appears to be a dissipation of effect with transport through aquatic
 networks, and little net change in DOC delivery to the coastal ocean over the timespan of this
 assessment.

185 Finally, in some cases, geographically widespread processes appear to overwhelm counteracting 186 drivers. For example, although we broadly expect permafrost thaw to increase inorganic nitrogen delivery to aquatic networks²⁹, our analyses reveal declines in the transport of NO_3^- (and other inorganic 187 188 nutrients) to the Arctic Ocean from large Arctic rivers. This suggests that factors such as temperaturedriven increases in nitrogen cycling¹⁷ or nitrogen uptake and/or immobilization^{16,44} may currently be 189 overwhelming local increases in mobilization²⁹, when assessed at the large-river watershed scale. These 190 191 findings underline the importance of taking a systems approach to understanding Arctic change, with an 192 acknowledgement that biogeochemical cycles are inherently linked across elements and space.

193

194 Broad perturbation in linked biogeochemical cycles across the land-ocean Arctic domain

195 Our analyses diagnose changes to the land-ocean Arctic system that are pervasive enough to leave few 196 biogeochemically-active elements unscathed. As a result, these findings likely signal domain-scale 197 change to ecosystem function. On land, ecosystem models have predicted increases in organic matter loading to fluvial networks in the changing north⁴⁵. The lack of this signal at river outflows, therefore, 198 199 suggests possible increases in carbon mineralization and associated outgassing during transit through 200 watersheds, and thus an acceleration in carbon cycling within Arctic fluvial networks. Increasing 201 alkalinity is suggestive of increases in chemical weathering, but in a region where a predominance of 202 carbonate over silicate weathering, coupled with substantial sulfide oxidation in some watersheds, 203 causes the ratio of CO_2 consumption: alkalinity generation to be overall low relative to the global mean². 204 Increasing SO₄ fluxes in rivers where SO₄ appears to be largely derived from sulfides (Extended Data

Figure 3; Yukon, Kolyma⁴⁶) may in fact indicate increasing bicarbonate liberation in the absence of CO₂
 fixation².

207 In the coastal ocean, riverine inputs of DIC result in CO₂ outgassing to the atmosphere⁴⁷. The 208 magnitude of this effect relative to weathering-induced CO₂ fixation on land, and its change, will play a 209 key role in determining the carbon balance of the Arctic system. Acting concurrently, the declining NO₃⁻ 210 that we document is consistent with negative feedbacks for Arctic Ocean biological productivity and CO₂ 211 uptake from the atmosphere, which is generally thought to be increasing as seasonal sea ice declines and nutrients become more available⁴⁸. However, the Arctic Ocean also has globally low N:P ratios 212 because its shelf sediments are a significant nitrogen sink through denitrification⁴⁹. As a result, 213 214 decreases in riverine NO₃⁻ transport coupled with increasing discharge will increase stratification and 215 decrease availability of nutrients for biological production. The changes will play out alongside other cooccurring processes, such as changes to the dilution effect of river water on ocean pH² with increasing 216 217 alkalinity, and consequent effects of this change on primary production⁵⁰.

218

219 Conclusions

220 In addition to implications for the current and future functioning of the land-ocean Arctic 221 system, our findings point to several important considerations for understanding change. Particularly for 222 bio-reactive constituents (DOC, nutrients), this work illustrates the importance of scale. Widespread 223 declines in constituents such as NO₃⁻ in the face of local processes known to increase land-water 224 mobilization suggests a fulcrum-like redistribution in biogeochemical cycling at the landscape-scale, 225 where fine-scale uptake and processing is increasing at the expense of communities downstream. How 226 the balance between local mobilization and broader-scale processing may shift for the smaller 227 catchments encircling the Arctic Ocean that have much shorter in-river transit times (see, for example, NO₃⁻ trends in refs. ^{51,52}), or for other bio-reactive constituents (dissolved organic matter and other 228

229	inorganic nutrients) remains an open question. However, this potential scale-dependent variation in
230	river mouth trends will be an important determinant of the geographic distribution of change in the
231	Arctic nearshore. Teasing apart the relative importance of various drivers of change, and how they will
232	vary with time and across constituents, will require process-based models, as already developed for
233	alkalinity ³⁹ and DOC ⁴⁵ , in addition to models that are linked across elements and space ⁴⁷ . These models
234	must inherently co-consider multiple drivers of change, including those not directly discussed above
235	(e.g., impoundment, declining acid deposition, land use and land cover change; see also Supplemental
236	Text). The datasets we draw on for our analyses are remarkable for their geographic cohesion and their
237	relative length. However, they also diagnose profound change occurring in real time. This work clearly
238	calls for continued, coordinated observation of the land-ocean Arctic system. More importantly,
239	however, it reinforces the need for rapid attention to Earth's warming climate, and its multiplicative
240	effects in the north.
241	

242 Online Methods

243

245

244 Sample collection and dataset coverage

246 Water chemistry: We began sampling the six largest Arctic rivers for water chemistry in the summer of 247 2003. The project was initially called PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, 248 and Suspended Sediments), and was expanded and renamed the Arctic Great Rivers Observatory 249 (ArcticGRO) in 2008. Sample collection for the data presented in this paper occurred 5-7 times per year, 250 with the exception of a short break during 2007-08 (Extended Data Figure 1). Water chemistry samples 251 are collected as far downstream on each of the six Great Arctic rivers as logistically feasible, at Salekhard 252 (Ob'), Dudinka (Yenisey), Zhigansk (Lena), Cherskiy (Kolyma), Pilot Station (Yukon), and Tsiigehtchic 253 (Mackenzie) (Figure 1; Extended Data Table 1). Between 2003 and 2011, open water sampling was 254 conducted using a D-96 sampler⁵³ equipped with a Teflon nozzle and Teflon sample collection bag, 255 which enabled depth-integrated and flow-weighted samples. Samples were collected at five roughly 256 equal increments across the river channel and combined in a 14-L Teflon churn, resulting in a single 257 composite sample. Beginning in 2012, open-water sampling was conducted by collecting three near-258 surface samples on each of the left-bank, right-bank, and mid-points of each river, and combining these 259 to form a composite sample. Across the full period of record, wintertime (under ice) samples were 260 collected by drilling a hole at the river's mid-point, and collecting a sample from below the ice surface. 261 262 Within years, the timing of sample collection has changed slightly over the ArcticGRO period of record.

Within years, the timing of sample collection has changed slightly over the ArcticGRO period of record.
 Early collection schemes (2003-06 and 2009-11) focused on the spring freshet (three or more samples

264 per year), with further sample coverage through the more broadly-spread late summer (period of 265 deepest thaw of the seasonally-frozen active layer; one to four samples) and winter (typically one 266 sample) periods. Given the paucity of cross-site comparable data for these rivers at the outset of the 267 ArcticGRO program, this sampling scheme was designed to maximize coverage during the high flows of 268 the spring, when constituent concentrations are changing rapidly and the majority of constituent flux 269 occurs⁵⁴. In 2012, sampling shifted to become evenly spread across the annual cycle, with samples 270 collected bi-monthly (i.e., six samples per year), and months of collection alternating between years. 271 Sample processing (i.e., filtering and preservation) occurs within 24 hours of sample collection. As 272 described above for sample collection, processing protocols were identical across all sites. Processed 273 and preserved samples were shipped to Woods Hole, MA, where they were distributed to specialized 274 laboratories for individual analyses. A complete description of processing and analytical methodologies 275 is available on the ArcticGRO website (www.arcticgreatrivers.org), and archived at the Arctic Data Center⁵⁵. The focal constituents highlighted in this paper were analyzed as follows: For DOC, on a 276 277 Shimadzu TOC analyzer, following acidification with HCl, sparging, and using the 3 of 5 injections that 278 resulted in the lowest coefficient of variation; for alkalinity, following acid titration using a Hach digital 279 titrator (2003-2009) and Mettler Toledo model T50M titrator (2010 onwards); for NO₃⁻ (as NO₃⁻ + NO₂⁻) 280 colorimetrically using a Lachat Quickchem FIA+ 8000 (2003-2011) and Astoria (2012 onwards) 281 autoanalyzer.

282

Discharge: All Arctic-GRO discharge measurements are from long-term gauging stations operated by
 Roshydromet, the US Geological Survey, and the Water Survey of Canada. On the Ob', Yukon, and
 Mackenzie Rivers, gauging stations are identical to the ArcticGRO sample collection location. On the
 Yenisey, Lena, and Kolyma Rivers, proximate gauging stations were used, at Kyusyur, Igarka, and
 Kolymskoye, respectively. The effect of this modest offset, and methods for correction, have been
 described elsewhere⁵⁴. Continually-updated concentration and discharge datasets are available on the
 ArcticGRO website. Concentration and discharge data used for this analysis (i.e., 2003 – 2019, inclusive)

- 290 have been archived at the Arctic Data Center (https://doi.org/10.18739/A2VH5CK43).
- 291

292 Determination of constituent flux using the WRTDS Kalman approach

293

Determining constituent flux requires a modelling approach, because discharge data are typically 294 295 available at daily (or even more refined) time steps, while concentration measurements are almost 296 always collected much more patchily over time. We used the Weighted Regressions on Time, Discharge, 297 and Season (WRTDS) approach to estimate constituent flux over the ArcticGRO period of record, 298 actualized in the EGRET (Exploration and Graphics for RivEr Trends)⁵⁶ package in the R statistical platform⁵⁷. This approach has been shown to provide more accurate estimates of constituent flux than 299 other common statistical techniques used for flux estimation⁵⁸, as a result of the use of weighted 300 301 regression (see below), and the removal of the requirement for homoscedastic residuals for bias 302 correction⁵⁹. Similar to other flux estimation techniques, the predictive equation takes the form of:

- 303
- 304 305

$$\ln(c) = \beta_0 + \beta_1 t + \beta_2 \ln(Q) + \beta_3 \sin(2\pi t) + \beta_4 \cos(2\pi t) + \varepsilon$$
(1)

306 where *c* is concentration, *Q* is discharge, *t* is time in decimal years, and ε is the unexplained variation, 307 with the sine and cosine functions enabling seasonality within the model³⁰. However, unlike most other 308 flux modelling approaches, the coefficients $\beta_0 - \beta_4$ are not static, but are allowed to vary gradually in *Q*, *t* 309 space. This is accomplished via an approach that develops a separate model for each day of the 310 observational record by re-evaluating the relationship between concentration and time, season, and 311 discharge, with a weighting that prioritizes samples closest in *Q*, *t* space to the day of estimation⁵⁹. For

- 312 this work, we use the WRTDS-Kalman modification, which further improves upon the above-described
- 313 technique by using a first order autoregressive (AR1) model to capture residual autocorrelation⁶⁰. An
- 314 assessment of measured vs. modelled daily outputs via WRTDS-Kalman is provided in Extended Data
- 315 Figure 6. Daily WRTDS-Kalman flux outputs have been archived at the Arctic Data Center
- (https://doi.org/10.18739/A2VH5CK43). 316

318 Calculation of flow-normalized flux, and assessment of flow-normalized trends

319

317

320 A complication of evaluating trends in flux is that a substantial amount of variation in concentration is

- 321 caused by year-to-year variation in discharge, which adds considerable noise to the time series. To
- 322 assess changes in flux with year-to-year variation in discharge removed, we use the WRTDS flow
- 323 normalization technique, which filters out the influence of inter-annual variation in streamflow. This is 324 accomplished by creating a probability density function (pdf) of Q for each day of the calendar year, and
- 325 producing flow-normalized concentrations and fluxes that integrates over this pdf³². In this way,
- 326 discharge is normalized across calendar years, but intra-annual variation (i.e., seasonal variation, at a
- 327 daily time step) is retained. Given the statistical complexity of this smoothing approach, we estimate
- 328 uncertainty in change over the flow normalized time series using a block bootstrap technique
- 329 implemented in the R package *EGRETci*, which creates a posterior mean estimate ($\hat{\pi}$) of the probability
- 330 of a trend, and assesses trend likelihood as: highly likely ($\hat{\pi}$ <0.05 or >0.95) very likely ($\hat{\pi}$ 0.05-0.10 or
- 331 0.90-0.95), likely ($\hat{\pi}$ 0.10-0.33 or 0.66-0.90), or about as likely as not ($\hat{\pi}$ 0.33-0.66)³². Our results are
- 332 provided as mean and 90% confidence interval outputs from the block bootstrap approach described in ref. ³². 333
- 334

335 Assessment of trends in annual discharge and WRTDS-Kalman constituent flux

336

337 Daily discharge and flux estimates were summed within years to generate an annual time series, and a 338 Mann-Kendall test was used to analyze the significance of annual trends over time. Within this analysis,

- 339 trend slopes were calculated using the Theil-Sen method. Trend analyses, and the calculation of slopes
- 340 were conducted using the trend package⁶¹ in R⁵⁷. We report Kendall's p-value and Sen's slope in the
- 341 main text, and report additional statistical outputs in Table S1.
- 342

343 Assessment of trends in concentration

- 344 To allow us to examine trends in concentration directly, but account for seasonal variation in
- 345 concentration measurements that may skew trend detection, we used a Seasonal Kendall test⁶². This
- 346 approach accounts for seasonality by calculating the Mann-Kendall statistic for each of p seasons
- 347 directly, and then combines the test statistic for each season (S_p) to create an overall seasonal Kendall
- 348 statistic (S'):
- 349

$$S' = \sum_{i=1}^{p} S_p$$

- We used a modification of the original seasonal Kendall test which accounts for serial dependence by 351 using an autogregressive moving average (ARMA) (1:1) approach⁶³. We defined seasons as spring (May-352
- 353 June), summer (July-October) and winter (November-April), as has been previously established for the ArcticGRO dataset^{54,64}. We further used a seasonal Kendall slope estimator to determine the magnitude 354
- of trends, following the Theil-Sen approach as modified for the seasonal Kendall test⁶². 355
- 356
- 357 Data visualization

- Figures 2-4 and Extended Data figures 1 and 3-5 were actualized in R⁵⁷ using *ggplot2*⁶⁵. The correlation
- 359 cluster analysis shown in Extended Data figure 2 was carried out using the function "heatmap.2" in the
- 360 *gplots* package⁶⁶ in R.
- 361

362 Data availability

- 363 Data used for our analyses and daily Kalman outputs are provided as a fixed package at the Arctic Data
- Center (https://doi.org/10.18739/A2VH5CK43). More recent updates of the ArcticGRO water quality
- and discharge datasets can be found at the project website (www.arcticgreatrivers.org) and through the
- 366 Arctic Data Center⁵⁵.
- 367

368 Acknowledgements

- 369 Funding for the PARTNERS program and Arctic Great Rivers Observatory has been provided via NSF
- 370 grants 0229302, 0732985, 0732821, 0732522, 0732583, 1107774, 1603149, 1602680, 1602615,
- 371 1914081, 1914215, 1913888, and 1913962. This work would not have been possible without
- 372 contributions from many individuals at the six ArcticGRO sampling locations, and we very gratefully
- acknowledge contributions from Edwin Amos, Bart Blais, Charlie Couvillion, Anya Davydova, Nicole Dion,
- 374 Vladimir Efremov, Les Kutny, Ryan McLeod, Robert Myers, Alexander Pavlov, Alexander Smirnov, Mikhail
- 375 Suslov, Galina Zimova, and support from the Environment and Climate Change Canada (ECCC) and
- 376 Indigenous and Northern Affairs Canada (INAC) offices in Inuvik, Canada. We also would like to
- acknowledge that sample collection occurred within the Gwich'in Settlement Region (Mackenzie River),
- and on the traditional territories of the Yup'ik people (Yukon River) in North America and the Evenk
- people (Lena River) in Russia. Julianne Waite assisted with the creation of Figure 5. Sean Sylva, Gretchen
- 380 Swarr, and Maureen Auro assisted with analyses of major and trace anion/cation data.
- 381

382 Author contributions

- 383 *Conceived of the paper and performed data analysis:* SET, RMH, JWM, RGMS, AS, FM, AIS; *Led*
- 384 manuscript preparation: SET; Initial design of the ArcticGRO (PARTNERS) program: BJP, RMH, JWM, PAR,
- 385 RGS, RMWA, LWC, VVG, SZ, AVZ; *Sample and data acquisition:* AVZ, TYG, SZ, NZ, GE, PFS, EAM, RS, MT,
- LSK; *Performed laboratory analyses:* AS, LS, BP-E, PR, CG, PFS; *Read and commented on the manuscript:* All authors
- 387 388
- 389 Corresponding author: Suzanne E. Tank (suzanne.tank@ualberta.ca)
- 390
- 391 **Competing interests:** The authors declare no competing interests.

393

394 **Extended Data Table 1:** Characteristics of the six largest Arctic watersheds.

-	Watershed	Area at	Distance to	Mean	Runoff	Permafrost ^c	Continuous	Discontinuous	Tundra ^d	Forest ^d	Regulated ^e	Mean annual	Mean annual	Population
	Area	gauge	Arctic	discharge ^b			Permafrost ^c	Permafrost ^c				temperature	precipitation	Density ^g
			Ocean ^a	(2003-2019)	(2003-2019)							(2003-2019) ^f	(2003-2019) ^f	
	10 ⁶ km ²	10 ⁶ km ²	km	km³ y⁻¹	mm y⁻¹	(% area)	(% area)	(% area)	(% area)	(% area)	(% area)	°C	mm y⁻¹	people km ⁻²
Ob'	2.99	2.95	287	409	139	26	2	4	0.1	48.2	14.6	-0.7	604	9.07
Yenisey	2.54	2.44	433 (697)	595	244	88	33	11	0.5	67.9	50.5	-4.4	619	2.85
Lena	2.46	2.43	754 (211)	599	247	99	79	11	1.2	62.5	7.2	-8.9	548	0.45
Kolyma	0.65	0.53	120 (283)	108	205	100	100	0	3.2	16.7	18.9	-10.7	546	0.2
Yukon	0.83	0.83	200	211	254	99	23	66	0.1	68.4	0.0	-4.8	571	0.17
Mackenzie	1.78	1.68	260	295	176	82	16	29	0.0	74.2	4.3	-3.6	547	0.25
Sum	11.25			2,217										
Pan-Arctic	16.8 ^h			~3710 ⁱ	~220									

^a Distance from the water chemistry station (discharge gauge) to the Arctic Ocean, including transit distance through river mouth Deltas. Where only one value is presented, water

chemistry and discharge data collection are co-located. Data for Russian rivers are from the Hydrometeorological Service of the USSR⁶⁷. Data for North American rivers are estimated
 from Google Earth.

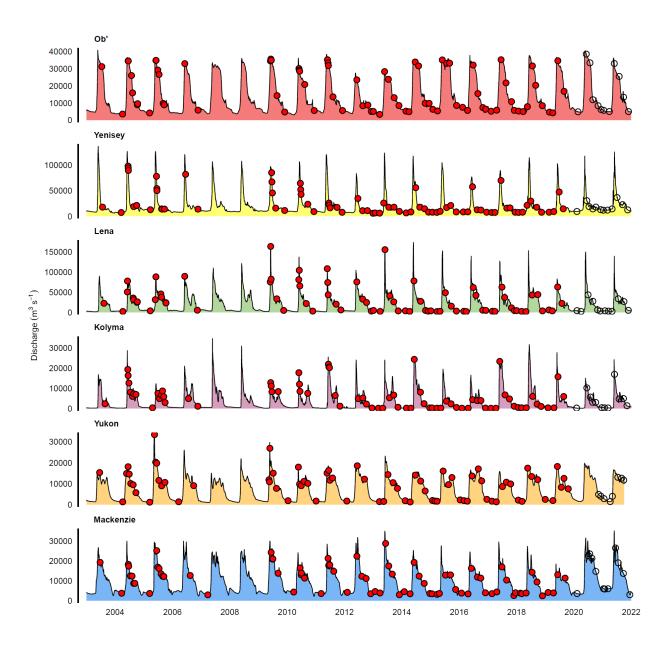
^b Mean annual discharge over the study period

^c From Holmes et al. (2013)⁶⁸. Permafrost extent and classification from the International Permafrost Association's Circum-Arctic Map of Permafrost and Ground Ice Conditions.

400 ^d Vegetation classes from the 20-class GLDAS/NOAH product⁶⁹, based on a 30 arc second MODIS vegetation data that uses a modified IGBP classification scheme. Tundra is the sum of 401 mixed and bare ground tundra. Forest is the sum of evergreen, deciduous, and mixed forest, and wooded tundra.

402 • Regulated area at the end of the study period, from Lehner et al. (2011)⁷⁰. Includes impoundments that were completed on the Kolyma (2013) and Yenisey (2012) rivers during the

403 ArcticGRO period of analysis.

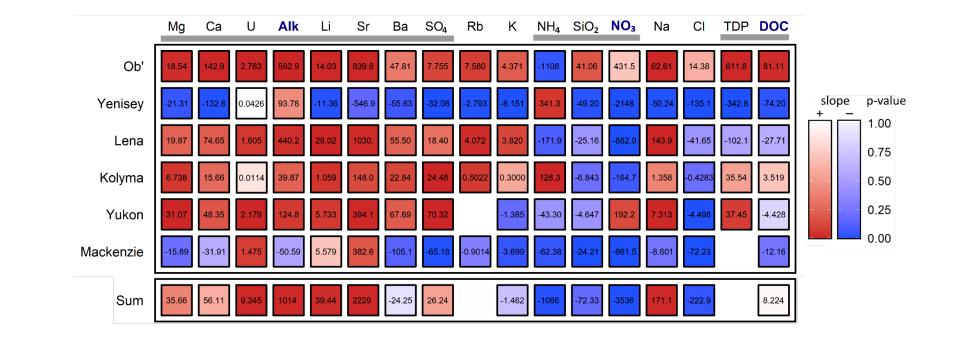

404 ^f Mean annual temperature and precipitation from the MERRA2 reanalysis product⁷¹.

405 ^g Population density from the Center for International Earth Science Information Network (2018)⁷² gridded population of the world.

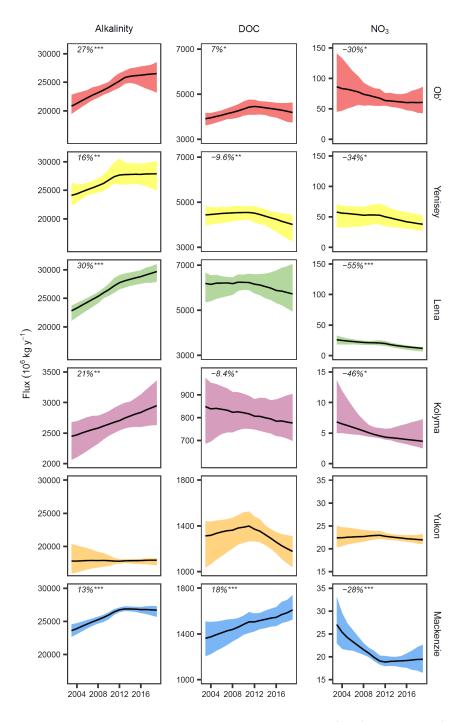
406 ^h Watershed area of 16.8 x 10⁶ km² corresponds to the area demarcated in Figure 1, which does not include drainage to Hudson Bay. The pan-Arctic watershed including Hudson Bay, but

407 excluding the Greenland Ice Cap, covers an area of 22.4 x 10⁶ km² (from Lammers et al. 2001⁷³)

408 Estimate derived from Shiklomanov et al. 2021²², for the period covering 1980-2018

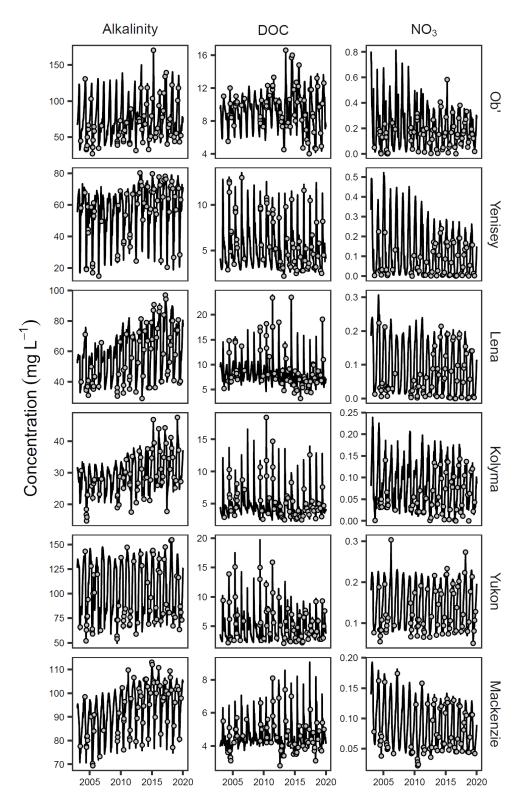

Extended Data Figure 1: Time-series of discharge and concentration measurements across the six Arctic
 Great Rivers. Discharge is shown as a continuous time-series for all rivers. Dates of sample collection for
 concentration measurements used in this analysis are shown with red circles; clear circles indicate

414 ongoing data collection.


- Extended Data Figure 2: A cluster heatmap illustrating correlation between constituents for the full
 ArcticGRO dataset. Shading indicates the Pearson correlation coefficient, which was used as the distance
 metric for hierarchical clustering. Focal constituents (alkalinity, nitrate [NO₃-N], and dissolved organic
- 422 carbon [DOC]) are bolded in blue. Black boxes within the correlation plot and grey shading along axes
- 423 indicate clusters associated with each focal constituent.

Extended Data Figure 3: Annual trends in constituent flux across the full ArcticGRO dataset, for each of the six great Arctic rivers. Trend analysis is via a Mann Kendall analysis; the Thiel-Sen slope (numerical value) and p-value of the trend analysis (shading) are shown. Corresponding trends in concentration are

430 provided in Extended Data Figure 5. Grey bars illustrate groupings from Extended Data Figure 2. Units (Gg y⁻¹ or Mg y⁻¹) are provided in Table S1.


433 **Extended Data Figure 4:** Flow-weighted trends in annual constituent flux for the three focal constituents

(alkalinity, dissolved organic carbon [DOC], and nitrate [NO₃-N], for each of the six Great Arctic rivers.
 The solid line indicates the mean, and shading indicates 90% confidence interval from the block

- 436 bootstrap analysis. Asterisks indicate trends that are: *** highly likely (posterior mean estimate $\hat{\pi}$ <0.05 or
- 437 >0.95); ** very likely ($\hat{\pi}$ 0.05-0.10 or 0.90-0.95); or *likely ($\hat{\pi}$ 0.10-0.33 or 0.66-0.90), with percentage
- 438 change in constituent flux indicated for the period of record. Where no percentage change is shown,
- 439 trends were assessed to be about as likely as not ($\hat{\pi}$ 0.33-0.66).

	Mg	Са	U	Alk	Li	Sr	Ва	SO4	Rb	к	NH ₄	SiO₂	NO ₃	Na	CI	TDP	DOC		
Ob'	0.013	0.126	0.004	1.012	0.009	1.044	-0.002	-0.014	0.010	-0.000	1.181	0.020	1.675	0.090	0.023	0.149	0.017		
Yenisey	-0.031	-0.158	0.001	0.261	-0.010	-0.080	-0.109	-0.040	-0.001	-0.007	0.329	-0.022	-0.364	-0.077	-0.183	-0.347	-0.005	slope + –	p-value 1.00
Lena	0.092	0.194	0.002	0.906	0.038	2.615	0.196	0.040	0.010	0.007	-0.411	-0.008	-0.526	0.416	0.271	-0.171	-0.006	8	0.75
Kolyma	0.085	0.138	-0.000	0.392	0.009	1.601	0.270	0.385	0.003	0.001	0.320	-0.074	-0.723	0.024	-0.008	-0.196	0.008		0.50
Yukon	0.117	-0.022	0.003	0.143	0.011	1.202	-0.103	0.299	0.001	-0.018	-0.158	-0.027	0.677	0.018	-0.023	-0.027	0.006		0.25 0.00
Mackenzie	0.069	0.261	0.006	0.474	0.004	2.525	-0.052	-0.013	0.000	0.001	0.047	-0.052	-1.773	0.013	-0.213		0.030		0.00

Extended Data Figure 5: Trends for constituent concentration across the full ArcticGRO dataset, for each of the six great Arctic rivers. Trend
 analysis is via a seasonal Mann-Kendall analysis; the Thiel-Sen slope (numerical value) and p-value of the trend analysis (shading) are shown.
 Corresponding trends in constituent flux are provided in Extended Data Figure 3. Grey bars illustrate groupings from Extended Data Figure 2.
 Units (mg L⁻¹ y⁻¹ or µg L⁻¹ y⁻¹) are provided in Table S2.

Extended Data Figure 6: Measured vs. modelled concentrations of the focal constituent suite, for each
 of the six great Arctic rivers. Circles indicate true concentration measurements; lines indicate outputs
 from the WRTDS-Kalman model.

451 452	Refere	ences
453	1	Carmack, E. C. et al. Freshwater and its role in the Arctic Marine System: Sources, disposition,
454	-	storage, export, and physical and biogeochemical consequences in the Arctic and global oceans.
455		J. Geophys. ResBiogeosci. 121 , 675-717, doi:https://doi.org/10.1002/2015JG003140 (2016).
456	2	Tank, S. E. <i>et al.</i> A land-to-ocean perspective on the magnitude, source and implication of DIC
457		flux from major Arctic rivers to the Arctic Ocean. <i>Global Biogeochem. Cycles</i> 26 , GB4018,
458		doi:10.1029/2011GB004192 (2012).
459	3	Dunton, K. H., Weingartner, T. & Carmack, E. C. The nearshore western Beaufort Sea ecosystem:
460		Circulation and importance of terrestrial carbon in arctic coastal food webs. Progress in
461		Oceanography 71 , 362–378 (2006).
462	4	Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic
463		Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169,
464		doi:10.1038/s41467-020-20470-z (2021).
465	5	McClelland, J. W., Holmes, R. M., Dunton, K. H. & Macdonald, R. W. The Arctic Ocean estuary.
466		<i>Estuar. Coast.</i> 35 , 353–368, doi:10.1007/s12237-010-9357-3 (2012).
467	6	Previdi, M., Smith, K. L. & Polvani, L. M. Arctic amplification of climate change: a review of
468		underlying mechanisms. <i>Environ. Res. Lett.</i> 16, 093003, doi:10.1088/1748-9326/ac1c29 (2021).
469	7	Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171-2173
470		(2002).
471	8	McClelland, J. W., Dery, S. J., Peterson, B. J., Holmes, R. M. & Wood, E. F. A pan-arctic evaluation
472		of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33,
473	-	L06715, doi:10.1029/2006GL025753 (2006).
474	9	Rawlins, M. A. <i>et al.</i> Analysis of the Arctic system for freshwater cycle intensification:
475		Observations and expectations. J. Clim. 23, 5715-5737, doi:doi:10.1175/2010JCLI3421.1 (2010).
476	10	Raymond, P. A. <i>et al.</i> Flux and age of dissolved organic carbon exported to the Arctic Ocean: A
477		carbon isotopic study of the five largest Arctic rivers. <i>Glob. Biogeochem. Cycles</i> 21 , GB4011,
478		doi:10.1029/2007GB002934 (2007).
479	11	Gómez-Gener, L., Hotchkiss, E. R., Laudon, H. & Sponseller, R. A. Integrating Discharge-
480 481		concentration dynamics across carbon forms in a boreal landscape. <i>Water Resour. Res.</i> 57,
481 482	12	e2020WR028806, doi:https://doi.org/10.1029/2020WR028806 (2021). Toohey, R. C., Herman-Mercer, N. M., Schuster, P. F., Mutter, E. A. & Koch, J. C. Multidecadal
482 483	12	increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths,
484		groundwater, and permafrost. <i>Geophys. Res. Lett.</i> 43 , 12,120-112,130,
485		doi:10.1002/2016gl070817 (2016).
486	13	Shogren, A. J. <i>et al.</i> Revealing biogeochemical signatures of Arctic landscapes with river
487	10	chemistry. <i>Sci Rep</i> 9 , 12894, doi:10.1038/s41598-019-49296-6 (2019).
488	14	Gabysheva, O. I., Gabyshev, V. A. & Barinova, S. Influence of the active layer thickness of
489		permafrost in eastern Siberia on the river discharge of nutrients into the Arctic Ocean. Water 14,
490		84 (2022).
491	15	Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the
492		Pan-Arctic. <i>Global Change Biol.</i> 12 , 686-702, doi:10.1111/j.1365-2486.2006.01128.x (2006).
493	16	Reay, D. S., Nedwell, D. B., Priddle, J. & Ellis-Evans, J. C. Temperature dependence of inorganic
494		nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and
495		bacteria. Appl. Environ. Microb. 65, 2577-2584, doi:10.1128/AEM.65.6.2577-2584.1999 (1999).
496	17	Salazar, A., Rousk, K., Jónsdóttir, I. S., Bellenger, JP. & Andrésson, Ó. S. Faster nitrogen cycling
497		and more fungal and root biomass in cold ecosystems under experimental warming: a meta-
498		analysis. <i>Ecology</i> 101 , e02938, doi:https://doi.org/10.1002/ecy.2938 (2020).

499 18 Wickland, K. P. et al. Biodegradability of dissolved organic carbon in the Yukon River and its 500 tributaries: Seasonality and importance of inorganic nitrogen. Glob. Biogeochem. Cycles 26, 501 GB0E03, doi:10.1029/2012gb004342 (2012). 502 19 Box, J. E. et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 14, 503 045010, doi:10.1088/1748-9326/aafc1b (2019). 504 20 Maavara, T. et al. River dam impacts on biogeochemical cycling. Nature Reviews Earth & 505 Environment 1, 103-116, doi:10.1038/s43017-019-0019-0 (2020). 506 21 Zolkos, S. et al. Multidecadal declines in particulate mercury and sediment export from Russian 507 rivers in the pan-Arctic basin. Proc. Natl. Acad. Sci. USA 119, e2119857119, 508 doi:doi:10.1073/pnas.2119857119 (2022). 509 22 Shiklomanov, A. et al. in Arctic Hydrology, Permafrost and Ecosystems (eds Daging Yang & 510 Douglas L. Kane) 703-738 (Springer International Publishing, 2021). 511 23 Bergen, K. M. et al. Long-term trends in anthropogenic land use in Siberia and the Russian Far 512 East: a case study synthesis from Landsat. Environ. Res. Lett. 15, 105007, doi:10.1088/1748-513 9326/ab98b7 (2020). 514 24 Aas, W. et al. Global and regional trends of atmospheric sulfur. Sci Rep 9, 953, doi:10.1038/s41598-018-37304-0 (2019). 515 516 25 Slaveykova, V. I. Biogeochemical dynamics research in the Anthropocene. Frontiers in 517 Environmental Science 7, doi:10.3389/fenvs.2019.00090 (2019). Vonk, J. E., Tank, S. E. & Walvoord, M. A. Integrating hydrology and biogeochemistry across 518 26 519 frozen landscapes. Nat. Commun. 10, 5377 (2019). 520 Opfergelt, S. The next generation of climate model should account for the evolution of mineral-27 521 organic interactions with permafrost thaw. Environ. Res. Lett. 15, 091003, doi:10.1088/1748-522 9326/ab9a6d (2020). 523 28 Shakil, S., Tank, S. E., Vonk, J. E. & Zolkos, S. Low biodegradability of particulate organic carbon 524 mobilized from thaw slumps on the Peel Plateau, NT, and possible chemosynthesis and sorption 525 effects. Biogeosciences 19, 1871-1890, doi:10.5194/bg-19-1871-2022 (2022). 526 29 Tank, S. E. et al. Landscape matters: Predicting the biogeochemical effects of permafrost thaw 527 on aquatic networks with a state factor approach. Permafrost Periglac. 31, 358-370, 528 doi:https://doi.org/10.1002/ppp.2057 (2020). 529 30 Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions on time, discharge, and 530 season (WRTDS), with an application to Chesapeake Bay river inputs. JAWRA Journal of the 531 American Water Resources Association 46, 857-880, doi:https://doi.org/10.1111/j.1752-532 1688.2010.00482.x (2010). 533 31 Terhaar, J., Orr, J. C., Ethé, C., Regnier, P. & Bopp, L. Simulated Arctic Ocean response to 534 doubling of riverine carbon and nutrient Delivery. Glob. Biogeochem. Cycles 33, 1048-1070, 535 doi:https://doi.org/10.1029/2019GB006200 (2019). 536 32 Hirsch, R. M., Archfield, S. A. & De Cicco, L. A. A bootstrap method for estimating uncertainty of 537 water quality trends. Environmental Modelling & Software 73, 148-166, 538 doi:https://doi.org/10.1016/j.envsoft.2015.07.017 (2015). 539 33 Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafrost Periglac. 24, 108-540 119, doi:10.1002/ppp.1779 (2013). 541 34 Littlefair, C. A., Tank, S. E. & Kokelj, S. V. Retrogressive thaw slumps temper dissolved organic 542 carbon delivery to streams of the Peel Plateau, NWT, Canada. *Biogeosciences* 14, 5487-5505, 543 doi:10.5194/bg-14-5487-2017 (2017). 544 35 Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on Arctic river 545 biogeochemistry. Hydrol. Process. 23, 169-182, doi:10.1002/hyp.7196 (2009).

546	36	Keller, K., Blum, J. D. & Kling, G. W. Stream geochemistry as an indicator of increasing
547	50	permafrost thaw depth in an arctic watershed. <i>Chem. Geol.</i> 273 , 76-81 (2010).
548	37	Zolkos, S., Tank, S. E. & Kokelj, S. V. Mineral weathering and the permafrost carbon-climate
549	0,	feedback. <i>Geophys. Res. Lett.</i> 45 , 9623-9632, doi:doi:10.1029/2018GL078748 (2018).
550	38	Berner, R. A. The carbon cycle and CO_2 over Phanerozoic time: the role of land plants. <i>Philos.</i>
551	00	<i>Trans. R. Soc. B-Biol. Sci.</i> 353 , 75-81, doi:10.1098/rstb.1998.0192 (1998).
552	39	Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D. & Roelandt, C. High sensitivity of the
553	33	continental-weathering carbon dioxide sink to future climate change. <i>Nature Clim. Change</i> 2 ,
554		346-349, doi:10.1038/nclimate1419 (2012).
555	40	Vonk, J. E. <i>et al.</i> High biolability of ancient permafrost carbon upon thaw. <i>Geophys. Res. Lett.</i> 40 ,
556	10	2689-2693, doi:10.1002/grl.50348 (2013).
557	41	Finstad, A. G. <i>et al.</i> From greening to browning: Catchment vegetation development and
558		reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. <i>Sci</i>
559		<i>Rep</i> 6 , 31944, doi:10.1038/srep31944 (2016).
560	42	Moore, T. R., Paré, D. & Boutin, R. Production of dissolved organic carbon in Canadian forest
561		soils. <i>Ecosystems</i> 11 , 740-751, doi:10.1007/s10021-008-9156-x (2008).
562	43	Drake, T. W. <i>et al.</i> The Ephemeral signature of permafrost carbon in an Arctic fluvial network. <i>J.</i>
563		Geophys. ResBiogeosci. 123 , 1475-1485, doi:10.1029/2017jg004311 (2018).
564	44	Hicks Pries, C. E., McLaren, J. R., Smith Vaughn, L., Treat, C. & Voigt, C. in <i>Multi-scale</i>
565		Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Change
566		(eds Y. Yu Yang, M. Keiluweit, N. Senesi, & B. Xing) (John Wiley & Sons, Inc., 2022).
567	45	Kicklighter, D. W. et al. Insights and issues with simulating terrestrial DOC loading of Arctic river
568		networks. Ecol. Appl. 23, 1817-1836, doi:https://doi.org/10.1890/11-1050.1 (2013).
569	46	Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite
570		oxidation, and the modern sulfur cycle. <i>Earth Planet. Sc. Lett.</i> 496 , 168-177,
571		doi:https://doi.org/10.1016/j.epsl.2018.05.022 (2018).
572	47	Lacroix, F., Ilyina, T. & Hartmann, J. Oceanic CO ₂ outgassing and biological production hotspots
573		induced by pre-industrial river loads of nutrients and carbon in a global modeling approach.
574		<i>Biogeosciences</i> 17, 55-88, doi:10.5194/bg-17-55-2020 (2020).
575	48	Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive
576		increased Arctic Ocean primary production. Science 369, 198-202,
577		doi:doi:10.1126/science.aay8380 (2020).
578	49	Chang, B. X. & Devol, A. H. Seasonal and spatial patterns of sedimentary denitrification rates in
579		the Chukchi sea. Deep Sea Research Part II: Topical Studies in Oceanography 56, 1339-1350,
580		doi:https://doi.org/10.1016/j.dsr2.2008.10.024 (2009).
581	50	Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton
582		communities. <i>Nature Climate Change</i> 5 , 1002-1006, doi:10.1038/nclimate2722 (2015).
583	51	McClelland, J. W., Stieglitz, M., Pan, F., Holmes, R. M. & Peterson, B. J. Recent changes in nitrate
584		and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. J.
585		<i>Geophys. ResBiogeosci.</i> 112 , G04S60, doi:10.1029/2006JG000371 (2007).
586	52	Kendrick, M. R. <i>et al.</i> Linking permafrost thaw to shifting biogeochemistry and food web
587	F 2	resources in an Arctic river. <i>Global Change Biol.</i> 24 , 5738-5750, doi:10.1111/gcb.14448 (2018).
588	53	Davis, B. E. A guide to the proper selection and use of federally approved sediment and water-
589	Γ 4	quality samplers. Report No. 2005-1087, (2005).
590	54	Holmes, R. M. <i>et al.</i> Seasonal and annual fluxes of nutrients and organic matter from large rivers
591		to the Arctic Ocean and surrounding seas. <i>Estuar. Coast.</i> 35 , 369-382, doi:10.1007/s12237-011-
592		9386-6 (2012).

593 55 Holmes, R. M., McClelland, J., Tank, S., Spencer, R. & Shiklomanov, A. Arctic Great Rivers 594 Observatory IV Biogeochemistry and Discharge Data: 2020-2024. Arctic Data Center. 595 doi:10.18739/A2XW47X7D (2022). 596 56 Hirsch, R. M. & De Cicco, L. A. User guide to Exploration and Graphics for RivEr Trends (EGRET) 597 and dataRetrieval: R packages for hydrologic data. Report No. 4-A10, 104 (Reston, VA, 2015). 598 57 R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2022). 599 58 Lee, C. J. et al. An evaluation of methods for estimating decadal stream loads. J. Hydrol. 542, 600 185-203, doi:https://doi.org/10.1016/j.jhydrol.2016.08.059 (2016). 601 59 Hirsch, R. M. Large biases in regression-based constituent flux estimates: Causes and diagnostic 602 tools. JAWRA Journal of the American Water Resources Association 50, 1401-1424, 603 doi:https://doi.org/10.1111/jawr.12195 (2014). 604 60 Zhang, Q. & Hirsch, R. M. River Water-guality concentration and flux estimation can be 605 improved by accounting for serial correlation through an autoregressive model. Water Resour. 606 Res. 55, 9705-9723, doi:https://doi.org/10.1029/2019WR025338 (2019). 607 61 trend: Non-Parametric Trend Tests and Change-Point Detection. R package version 1.1.4. (2020). 608 62 Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality 609 data. Water Resour. Res. 18, 107-121, doi:https://doi.org/10.1029/WR018i001p00107 (1982). 610 63 Hirsch, R. M. & Slack, J. R. A Nonparametric trend test for seasonal data with serial dependence. 611 Water Resour. Res. 20, 727-732, doi:https://doi.org/10.1029/WR020i006p00727 (1984). 64 McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. 612 613 Glob. Biogeochem. Cycles 30, 629-643, doi:10.1002/2015gb005351 (2016). Wickham, H. gaplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016). 614 65 615 Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 66 616 3.1.3. https://CRAN.R-project.org/package=gplots. (2022). The Resources of Surface Waters of the USSR. Hydrological Knowledge., Vol. 15, 16, 17, 19 617 67 618 (Gidrometeoizdat, 1965-1969). 619 68 Holmes, R. M. et al. in Climatic Change and Global Warming of Inland Waters: Impacts and 620 Mitigation for Ecosystems and Societies (eds C.R. Goldman, M. Kumagi, & R.D. Robarts) (Wiley, 621 2013). 622 69 Rodell, M. et al. The global land data assimilation system. Bulletin of the American 623 Meteorological Society 85, 381-394 (2004). 624 70 Lehner, B. et al. High-resolution mapping of the world's reservoirs and dams for sustainable 625 river-flow management. Front. Ecol. Environ. 9, 494-502, doi:https://doi.org/10.1890/100125 626 (2011). 627 71 Gelaro, R. et al. The modern-era retrospective analysis for research and applications, Version 2 628 (MERRA-2). J. Clim. 30, 5419-5454, doi:10.1175/jcli-d-16-0758.1 (2017). 629 72 Center for International Earth Science Information Network - CIESIN - Columbia University. 630 (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, New York, 2018). 631 73 Lammers, R. B., Shiklomanov, A. I., Vorosmarty, C. J., Fekete, B. M. & Peterson, B. J. Assessment 632 of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res.-633 Atmos. 106, 3321-3334 (2001).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

AGROLongTermChangeSupplement20230130.pdf