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Abstract

Despite the high level of automation in industrial production, manual operations still play an impor-
tant role and contribute significantly to the overall production costs. For the evaluation of these
manual processes the “Methods-Time Measurement” (MTM) is widely used. This method is applied
to real workplaces or mock-ups thereof, while also Virtual Reality (VR) can be used for the repre-
sentation of such workplaces. However, the evaluation of the workers’ performed actions is still done
manually, which is a time-consuming and error-prone process. This paper introduces an approach to
automatically detect full-body actions of users in VR and consequently derive the appropriate MTM
values, without knowledge of a pre-existing workplan. The detection algorithm that was developed
is explained in detail and its performance is analyzed through a user study with 30 participants.

Keywords: Methods-Time Measurement, Virtual Reality, Action Detection, Workplace Optimization

1 Introduction

Although industrial production processes are
already highly automated, manual work contin-
ues playing an important role and is a significant
factor towards the overall production cost. As an
implication, a careful evaluation and optimization
of such manual work processes is required [1, 2].

For evaluating manual work places, the work
of Taylor [3] set the starting point towards the
development of standardized evaluation methods.
Originating from Taylor’s work, many different
methods were developed for the evaluation of man-
ual work, as described by Caiza et al. [1]. One

of the most widely used methods is the Methods-
Time Measurement (MTM), which analyzes man-
ual operations by dividing them into a sequence of
so-called basic motions [4]. The time standard that
is used for the MTM evaluation is referred to as
“Time Measuring Units” (TMU), with one TMU
being equivalent to 0.036 s. Thus, the granularity
is fine enough for a detailed analysis [5].

Depending on the work process, several levels
of detail of the MTM exist. The highest precision
is achieved by the MTM-1, which offers 17 basic
motions to decompose an overall more complex
movement. Such a thorough analysis is mainly
used for industrial mass production cases. For
smaller production series, the analysis effort can
be reduced by using the MTM-2, which only offers

1
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9 basic movements. Thus, it is less precise, but the
transcription effort is significantly lower. For even
smaller production series, MTM-UAS or MTM-
MEK can be used, which group a series of basic
movements and are even faster to perform.

For an MTM evaluation, the workplace needs
to be built or modeled by cardboard before the
envisioned work can be performed. Thus, the eval-
uation of a new workplace is impossible without
at least a physical mockup of it being devel-
oped first. When the environment is physically
in place, the worker has to perform the planned
tasks, while the process is being recorded. The
videos are then analyzed by an expert, who manu-
ally transcribes all actions into the corresponding
TMUs for the chosen MTM standard. However,
this manual process is time-consuming, expensive,
and error-prone. Moreover, using either cardboard
models or the real workplace itself are options not
well suited for small alterations, which would be
necessary to optimize the workplace layout.

This paper introduces an algorithm that
enables the automatic transcription of the per-
formed tasks into the corresponding TMU values.
Our approach relies on Virtual Reality (VR) to
shift the early workspace planning into a digital
form. Using VR automatically reduces the mate-
rial waste of the cardboard modeling approach and
allows for faster workplace alterations based on
the MTM-2 evaluation. Additionally, using a Vir-
tual Environment (VE) allows the integration of
realistic components and tools which better resem-
ble the real world compared to their cardboard
alternatives.

After discussing about the related work on
motion recognition and automatic MTM tran-
scription in VR, this paper gives a detailed
overview of the developed algorithm, followed by
a description of the user study process. Next, the
paper presents the analytic results of the study
and concludes with a summary and an outlook on
future work.

2 Related work

Tracking user movements has been of particular
interest in VR, with the main objective being the
enhancement of immersion. For instance, walking
detection is important, since it can lead to more
realistic navigation of the user in the VE. For the
detection of walking, different approaches can be

used, such as tracking the head movements as done
by [6]. However, this and similar works like in [7–9]
do not account for movements of the body in the
VE and are usually based on a highly periodic pat-
tern of walking, which is not necessarily observed
in real walking scenarios where a displacement of
the torso occurs. Moving towards real walking,
Kunz et al. [10] showed that real walking can also
be integrated in factory planning with the use of
redirecting walking methods. This is considered
as highly useful for planning and digital design of
industrial facilities [11].

Similar to walking, also hand gesture recogni-
tion was researched. A survey by Sagayam et al.
[12] give an overview of the different approaches.
For this task contemporary works rely on com-
puter vision and deep learning approaches [13, 14],
which however require rich datasets for their train-
ing.

Only little work can be found specifically on
the topic of automatic MTM transcription for
industrial applications. The first work is from
Bellarbi et al. [15], in which an algorithm was
developed to automatically generate MTM-UAS
codes. The proposed algorithm follows a deci-
sion tree-like structure, where all the MTM basic
motions are classified in groups, among which are
“eye movement”, “hand movement”, and “body
movement”. These three nodes contain a certain
expected sequence of data, including 3D positions,
rotations, and time. However, the authors state
that their approach suffers from false positives
and false negatives when unrelated actions, e.g.,
scratching, interrupt the main intended action.
This is a problem stemming from the algorithm’s
reliance on hard-coded sequences of data to con-
verge to a detection. Another piece of work for an
automated MTM transcription is from Benter &
Kuhlang [16]. Their approach relies on Microsoft
Kinect’s full body tracking data, which does not
track sufficiently the leg movements, as stated
by the authors. Consequently, the aforementioned
drawback does not allow the detection of actions
such as “Walk” and “Foot Motion”. In addition,
the users always have to stay in the limited field
of view of Microsoft Kinect, which makes the eval-
uation of larger workspaces impossible. Lastly,
the developed algorithm works with only a lim-
ited subset of MTM-1 actions, and basic motions
such as “Reach”, “Grasp”, or “Position” are not
considered.
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3 Methodology

3.1 Algorithm development

The aforementioned algorithm from Bellarbi et al.
[15] works on data that were recorded during a vir-
tual MTM session. However, this comes to the cost
of recording a vast amount of data, which actu-
ally prohibits analyzing longer work sequences.
Therefore, our algorithm will perform a real-time
detection of the actions through the incoming data
from the VR equipment. The VR equipment that
is utilised consists of the HTC Vive Pro Head
Mounted Display (HMD), 2 controllers, 4 base sta-
tions and 3 HTC Vive Trackers. One Vive Tracker
was positioned at the back side of the users’ hip,
with the other 2 placed on each foot each. Our
detection algorithm thus relies on a 5-point track-
ing (2 feet, 2 hands, 1 hip), with the tracking data
from the HMD not being used.

Our virtual MTM application was developed
in Unity1, with the SteamVR plugin used to inter-
face with the HTC Vive equipment. In order to
increase the realism of the workspace optimization
process in VR, a full-body animation through an
avatar was incorporated. The avatar was devel-
oped using “MakeHuman”2, which is an open
source software tool for the prototyping of photo-
realistic avatars. In order to match the avatars
movements to the movements of the user, the
“Final IK” Unity Asset3 was utilised. With this,
the avatar was animated in real time, based on
the positions of the 5 tracked devices on the user.
For a precise animation, the avatar needs first
to be adjusted to each individual user. This is
a quick process, which lasts less than a minute
and takes place during the so-called “calibration
phase” before each user starts their session.

As mentioned above, the MTM-2 standard was
chosen for our work, which includes the actions
Get, Put, Apply Pressure, Crank, Eye Action, Foot
Motion, Step, and Bend & Arise. From these
basic movements, Eye Action was discarded due
to the missing eye tracking hardware. Similarly,
the Crank action, referring to a circular move-
ment of the hands for the rotation of an object like

1http://www.unity.com; (accessed March 2022)
2http://www.makehumancommunity.org; (accessed March

2022)
3http://root-motion.com; (accessed March 2022)

a steering wheel, was also not considered - sim-
ply to reduce the effort for the initial version of
the algorithm. In the following section, all consid-
ered MTM-2 action detections will be described in
more detail.

3.1.1 Step and foot motion

One of the main challenges for the detection
of the Step and Foot Motion actions is distin-
guishing between intended foot movements and
“nervous feet”. Furthermore, the intended foot
movements should be separated between Step and
Foot Motion. The former is a considered an action
with the intention of moving the whole body with
respect to the environment, while the latter is a
smaller motion of the feet which does not intend
to the displacement of the body. The flowchart of
the decision process is shown in Figure 1.

For every frame, the shown sequence of deci-
sions takes place for each foot tracker. First, the
absolute velocity for each foot tracker is calcu-
lated. If this velocity exceeds 0.2 m/s, a threshold
which was experimentally determined, then the
so-called “Foot Movement” state is entered. As
soon as the decision tree enters the “Foot Move-
ment” state, it is firstly checked whether this state
was already active or not. This is done to ensure
that foot-related actions are not constantly being
transcribed during the motion process, but only
once the movement is completed. If “Foot Move-
ment” was previously inactive, then the starting
position in space and the time are both stored in
memory. On the other hand, if the “Foot Move-
ment” state was already entered, then the current
foot position is stored and the distance from the
starting point is updated. Additionally, if this dis-
tance is greater than the maximum displacement
that was recorded so far during the ongoing “Foot
Movement”, then the maximum displacement is
updated to reflect this change. This process is
repeated until the foot velocity goes below 0.2 m/s
for a time period longer than 0.4 s. This time
buffer was set to avoid triggering the “Foot Move-
ment” again in the case that the user momentarily
pauses the motion of their foot. As soon as “Foot
Movement” is completed, the maximum foot dis-
placement is stored as the distance traveled during
the motion process. If that distance is greater than
0.2 m, then a Step is detected. Otherwise, if it
less than 0.2 m but still greater than 0.05 m, a
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Fig. 1 Step and Foot Motion detection flowchart

Foot Motion is detected. All other foot motions
are discarded as nervous foot movements.

3.1.2 Bend & arise action

Bend & Arise is the only action in MTM-2 that is
not dependent on a single body part, but is essen-
tially relevant to the entire upper body movement.
For this reason, a combination of all the track-
ing objects was used for detecting this action. The
flowchart of the decision process followed is shown
in Figure 2. The detection process is based on ini-
tial calibration steps, where the distance between
the hand controllers and the foot trackers is cal-
culated for an upright posture. This gives the
distance do shown in Figure 2.

After the calibration process, the same dis-
tance between the controllers and the foot trackers
is continuously computed and stored as the cur-
rent distance dc. Then, the ratio R between dc and
do is calculated. If the ratio is less than a thresh-
old of 70%, then the “Bend” state is entered. If
this condition is not met, a second condition is
evaluated, which uses the hip tracker to measure
the forward bending angle. If this angle exceeds
30◦, the “Bend” state is also entered. In order to
deal with the edge case where the feet come closer
to the hands – which should not be accounted
as a “Bend” – an additional safety condition is
applied, checking that the height of both the feet
trackers is less than 20 cm. The 20 cm height
threshold ensures that both feet are approximately
on the ground, while leaving a safety margin for
the placement of the foot trackers slightly higher
than their expected position. The Bend & Arise

4https://www.ikinema.com/docs/s317i325.html, (accessed
March 2022)

action is finally transcribed as soon as the user
returns to an upright position.

3.1.3 Get, regrasp & put actions

This section describes a set of actions, as they are
mutually exclusive in their transcription. The Get

action refers to an object being grasped by the
user. Within MTM-2, this action can be further
subdivided depending on the number of grasping
actions undertaken and the weight/force applied.
Since in our application the VR controllers are uti-
lized, these two subcategories are discarded, and
Get is only considered along with its “Distance
Class” – which is the distance from the starting
point of the hand’s movement to the point where
the grasping takes place. The Regrasp action refers
to the user grasping again the same object that
was previously in their hand. Finally, the “Put-
Correction” is a special case of the Put action,
which refers to immediate correction of an object’s
placement. For a “Put-Correction” to be detected
by the algorithm, the user has to regrasp the
object that was previously placed.

Figure 3 shows the inputs that are used for
the detection of the aforementioned actions. First,
the trigger of the controllers is used for grasp-
ing the objects. Hence, the first condition is to
check whether the trigger is pressed or not. In
order to avoid moving forward to the Get decision
process when the trigger is accidentally pressed,
an additional safety check is implemented that
checks whether an interactable object is nearby.
Apart from these conditions, a “Hand Movement”
state was also implemented to manage the sequen-
tial relationship between the hand motion and the
pressing of the trigger. This state is only entered
when there was no previous hand motion and
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Fig. 2 Bend & Arise detection flowchart and body visualization4

Fig. 3 Get detection input flowchart

there is no object that is already grasped. Fur-
thermore, the controller’s velocity has to exceed
0.1 m/s, and the time after the previous “Hand
Movement” has to be larger than 0.2 s.

The first two conditions make sure that a
“Get” state can be entered only when it is not
already active. Then, the condition of the veloc-
ity threshold ensures that “Hand Movement” will
be started when there is sufficient movement of
the hand. Finally, the time buffer of 0.2 s ensures
that there is some time for the user to press the
trigger before a new “Hand Movement” is re-
initiated. When the “Hand Movement” state is
entered, the position of the controller is saved as
the start position, which is later used for calcu-
lating the “Distance Class” for the Get action. In

addition, the time is saved. For the “Hand Move-
ment” state to be exited, the controller’s velocity
should drop below 0.1 m/s for more than 0.2 s to
ensure that the user has not momentarily stopped
the hand motion. Otherwise, if the velocity gets
again higher than 0.1 m/s before 0.2 s of inactivity
have passed then, the motion will continue to be
associated with the previous “Hand Movement”.

The previous conditions are forwarded to the
“Get Decision Tree”, which is shown in Figure 4,
for it to decide which of the three actions should
be transcribed. The forwarding of the inputs to
the Get Decision Tree takes place when the trig-
ger is pressed with an interactable object nearby.
That is when the ongoing “Hand Movement” state
is exited, and the current controller position is
stored as the “Get Position”. Additionally, the
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time that has passed compared to the previous Put
action is being computed and stored as the Get-to-
Put time window. These two values are important
decision parameters that will be used within the
Get Decision Tree.

The Get Decision Tree follows a sequential pro-
cess of conditional checks. The first conditional
block is relevant to the detection of the “Put
Correction” case associated to the previous Put

action. For this, three conditions are evaluated.
First, it is checked whether the grasped object is
the same as the one from the previous Put action.
Second, it is checked whether the same hand is
grasping the object, and third, the action should
not take place more than 1 s after the previous
Put for it to be classified as a “Put Correction”.

If the conditions for “Put Correction” are not
satisfied, then the process will be checked for a
“Regrasp” action. Regrasp shares the same first
two conditions with the “Put Correction” case,
since it also involves the grasping of the same
object, while the hand stays relatively close to that
object. The differentiating point between these 2
cases is the fact that Regrasp is not an action that
is relevant to the time of occurrence, but mostly
the movement of the user in space. Hence, the
third condition checks whether the “Hand Move-
ment” has started within a 0.35 m radius from the
object after the previous Put action. If this is the
case, then a Regrasp is transcribed. The 0.35 m
distance threshold was decided after consultation
by MTM experts.

If the conditional blocks for neither “Put Cor-
rection” nor Regrasp are fulfilled, then pressing
the trigger is interpreted as a Get action. Since
detecting a Get follows a modular approach, the
algorithm can detect separate Get actions from
the two hands that may simultaneously take place.

As shown in Figure 5, the Get action also
includes the assignment of a “Distance Class”,
as well as the check for a special case named
“Sequence of Get/Put”. First, the “Distance
Class” is calculated as the 3D Euclidean dis-
tance between the starting point of the associated
“Hand Movement” and the spatial point when the
trigger is pressed. For the “Sequence of Get/Put”,
a sequential grabbing of an object after the place-
ment of another object nearby is checked, where
it is assumed that the distance between the new
Get and the previous Put is less than 0.3 m and
the time passed is not more than 2 s. Also the case

of passing an object from one hand to the other
could be attributed to a “Sequence of Get/Put”.
This is simply done by checking whether the oppo-
site controller is pressed concurrently with the one
that was already pressed, and at the same time the
two hands both attempt to grasp the same virtual
object.

Detecting the Put action is much simpler than
the Get, since it only checks whether the con-
troller’s trigger is released after a Get was already
performed. Some parameters that are stored dur-
ing the Put detection are the object that is placed
and the time of placement. Moreover, the position
of the controller when the trigger is released is also
stored and used to calculate the “Distance Class”
for the Put. This is the Euclidean distance between
the position where the trigger was pressed (Get),
and the currently saved position when the trigger
is released (Put).

3.1.4 Apply pressure

Apply Pressure refers to the pressing of a button
in the VE. The way that the interaction system
was set up for the user to interact with virtual
buttons was through the trackpad buttons of the
controllers. These are big circular buttons that are
placed at the top side of the controllers. The algo-
rithm checks whether the trackpad buttons are
pressed, while the hand is in a close proximity to a
virtual button. If these two conditions are met for
either of the two controllers, an Apply Pressure is
transcribed.

3.2 User study

The main goal of the user study is to evaluate
the performance of the algorithm in detecting the
undertaken actions and transcribing them to the
appropriate MTM values.

3.2.1 Technical setup

The VE was designed with a large walkable area to
allow for plenty of Steps and Foot Motions to be
performed. Furthermore, in order to measure the
robustness of the grasping-related action recog-
nition, objects with various sizes and geometries
were placed within the VE, as shown in Figure 6.
In detail, there are 2 tables, 2 boxes, 1 box cover,
2 hammers, 2 wrenches, 4 cubes of variable sizes,
a target area for the cubes, 1 button, 3 screws, 1
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Fig. 4 Get decision tree

Fig. 5 Get action detection and extra features

pedal, 1 pallet and a start-position mark on the
floor. From these, the 2 tables, the cubes’ target
area, the start-position mark, and the pallet are
non-interactable objects, meaning that the users
cannot alter their position. Some extra objects
were also placed in the VE to increase realism,
such as a fire extinguisher, some shelves and a
bulletin board. However, these objects were not
relevant for the user study.

3.2.2 User study design

The user study was designed to have a duration
of approximately 30 minutes. Initially, the con-
text and the purpose of the study was briefly

explained to the participants. Then, they were
instructed to fill out a pre-study questionnaire
with demographic- and background-related ques-
tions, as well as their acquaintance with VR equip-
ment. Further, a Simulator Sickness Questionnaire
(SSQ) [17] was completed.

Before the actual user study takes place, the
users had to perform a trial run to get familiar
with the virtual environment and the controllers.
The trial run consisted of all the interactions
which would be required during the actual exper-
iment, such as grasping and placing of objects,
passing objects between the two hands and press-
ing of a button.
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Fig. 6 The virtual environment for the user study

As soon as the trial run was completed, the
users entered the actual run of the study, in which
data got recorded. This started with a “calibra-
tion phase”, where the avatar was adjusted to fit
more realistically each user’s body. Additionally,
the vertical distance between the controllers and
the feet trackers for both sides was stored, which
is utilized as already mentioned for the Bend &

Arise detection.
During the study, the tasks that the users were

required to perform, were verbally communicated
by the study facilitator in a step-by-step man-
ner. These consisted of a variety of tasks which
would enable the detection of all the actions under
consideration. Throughout the time in which the
participants were performing the instructed tasks,
the VR scene was recorded, with the view shown in
Figure 7. This included a virtual dashboard with
the results of the automatic transcription of all the
actions being displayed in real-time. Through the
comparison of these values with the motion of the
avatar, the automatic transcription can be man-
ually evaluated offline, after all the user studies
took place.

As soon as the users completed the tasks, they
removed the VR equipment and filled out a post-
study questionnaire. The questionnaire consisted
of a second SSQ, a task load index SIM-TLX [18],
and questions from the System Usability Scale
(SUS) [19].

3.2.3 User study participants

30 participants took part in the user study, mainly
recruited from the university staff and students.
From them, 20 were male and 10 were female. The

Fig. 7 Scene view of the user study

average age was 28 with a SD = 11.1 years. 23.3%
of the participants were wearing glasses during the
user study, 10% contact lenses, and 66.7% had
normal vision.

4 Results

This paragraph will present the results of both
- the questionnaires and the transcription algo-
rithm.

4.1 SSQ results

The SSQ reveals how certain feelings of the users
change after performing the tasks in VR. The
responses to the questions were given on a Likert
scale between 0 and 3. As it can be seen from Table
1, there is no significant difference in the answers
before and after the VR session, which means that
the users did not show any extreme reactions due
to the user study.

4.2 Task load index results

The outcomes of the SIM-TLX questionnaire show
that the user study was considered neither phys-
ically nor mentally challenging. Furthermore, the
users considered that they were successful in per-
forming the instructed tasks, meaning that the
shift to VR did not influence their morale in a
negative way. In addition, the presence-related
questions showed that the user experience was
considered as particularly immersive, which is an
important factor to ensure that the MTM eval-
uation in VR is comparative to the real-world
scenario.
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Table 1 Results of the SSQ
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∆ 0.13 -0.1 -0.1 -0.1 -0.17 -0.03 0.2 -0.13 0.1 0 0.13 0.17 0.03

4.3 Statistical metrics and manual

data transcription

In order to measure the performance of the auto-
matic MTM-2 transcription, the results of a man-
ual transcription are used as ground truth and
then compared to the results of the algorithm.
This comparison was done trough the calculation
of the True Positives (TP), the False Positives

(FP), and the False Negatives (FN) for all of the
considered MTM-2 actions. True Positives are the
actions that were actually done by the user and
were also successfully detected by the algorithm.
False Positives are the actions that were detected
by the algorithm without the user actually per-
forming them. False Negatives are the actions
that were done by the user, but not detected
by the algorithm. These three metrics are used
extensively in literature for the evaluation of pre-
diction tasks, and thus are also used here to make
the results easily comparable with similar works.
Additionally, they can be used for the calculation
of two important metrics, namely the Precision

and Recall of the detections. The metrics Precision
and Recall are defined as:

Precision =

∑
TP

∑
(TP + FP )

(1)

Recall =

∑
TP

∑
(TP + FN)

. (2)

Precision is the ratio of the detected actions which
are actually relevant, since it compares the correct
detections to the sum of correctly and incorrectly
detected actions. A high Precision means that the
algorithm has not falsely detected many actions
that did not take place. On the other hand, Recall

says how many of the actually performed actions
are detected by comparing the detected actions to
the sum of the detected and undetected actions. A
high Recall means that only a few of the performed
actions were missed by the algorithm.

For all the individual actions, the cumulated
TPs, FPs, and FNs are listed in Figures 8, 9, 10,
and 11, together with the calculated Precision and
Recall values. The colors represent the quality of
the results and easily show where there is still
room for improvement.

Fig. 8 Transcription results for lower and main body
actions - Bend & Arise, Step, Foot Motion

Fig. 9 Transcription results for hands actions - Get,

Regrasp, Put

Fig. 10 Transcription results for hands actions - Put Cor-

rection, Sequence Get-Put, Apply Pressure



Springer Nature 2021 LATEX template

Fig. 11 Transcription results for pedal press

5 Discussion

It is evident that the results of the transcrip-
tion algorithm are very notable, with most of the
action detections exceeding 95% for Precision and
97% for Recall. The high Recall numbers indicate
that the algorithm in general does not miss actions
from the user. However, it is sometimes overly
sensitive to certain actions, which is reflected in
the Precision results. In particular, the actions
related to the leg trackers, i.e., Step and Foot

Motion, show remarkable results for both Preci-

sion and Recall. This means that incorporating
a “Foot Movement” state with given time and
velocity thresholds was successful towards sepa-
rately detecting the actions of each foot. It is
important to note that a large number of FPs
of these two actions originates from the “Pedal
Presses”, specifically resulting in 48 out of the
59 FPs for Step, and 20 out of 51 FPs for Foot

Motion. This means that if these two actions were
deactivated when the pedal was pressed, then
the Precision for Step detection would rise from
98.1% to 99.2%, and for Foot Motion from 95.9%
to 97.4% respectively. Hence, the Step and Foot

Motion detection method on its own constitutes a
very powerful concept, but some more work needs
to be done to properly integrate the logic of the
“Pedal Press” to the overall detection framework.
Additionally, in order to make Foot Motion less
sensitive in its detection and further eliminate its
FPs, the distance threshold of 0.05 m could be
slightly increased. Finally, very few times there
have been FPs because the trackers momentarily
lost connection to the base stations due to poten-
tial occlusions, leading to a small displacement of
their position, which did not actually take place
in reality.

As for the Bend & Arise action, the detec-
tion is also very good with a Precision of 85.9%
and a Recall of 98.9%. It is worth noting that
for this action 17 out of total 29 FPs occurred
to 3 out of the 30 users, due to occlusions of the

trackers. Hence, if these occlusions were avoided,
the performance of Bend & Arise would improve
drastically.

Moving to the hand-related action detections,
almost all FPs relevant to Get, Put, Regrasp

and the special classes “Put-Correction”, and
“Sequence of Get/Put” are due to a mismatch
in the interfacing between the detection algo-
rithm and the SteamVR Interaction system. This
caused the user to see the highlighting of an object
slightly earlier than the detection algorithm con-
sidered the object as ready-to-grasp. This can be
easily corrected in future work.

In spite of the aforementioned problem, the
performance of both Get and Put detections
remained at very high levels, with the Preci-

sion ranging at 95% and the Recall at 99%.
The Regrasp action was affected slightly more
by this issue, because many times the users did
not approach the objects close enough during
the second grasping. Despite that, the Precision

remained at 84.1%, and the Recall at 97.2%. On
the other hand, the “Put Correction” transcrip-
tion was affected the most from this inconsistency,
with the Precision dropping to 51.3%. This comes
from the fact that for a “Put Correction” an
instantaneous regrasping of the object that was
previously placed is required, and the early object-
highlighting led many times the users to not go
all the way back to the object’s position. Finally,
the Precision and Recall for the detection of the
“Sequence of Get/Put” special case were 84.1%
and 97.2%, respectively, which are quite satisfac-
tory numbers.

As for the Apply Pressure detection it can be
seen that the approach followed brought perfect
results for both Precision and Recall. This can be
attributed to the use of Unity tags to differenti-
ate the buttons from the rest of the interactable
objects. As such, the detections remained robust
against potential erroneous actions from the users,
such as confusing the controller inputs. Pedal
Presses were detected with a Precision of 73.3%
and a Recall of 97.1%. As visible from the results,
the average number of Step actions detected dur-
ing a Pedal Press is 1.6, while for Foot Motion

0.7. This means that when users were instructed
to press the virtual pedal, they were more fre-
quently approaching the pedal from further away
distances, resulting in larger leg movements.
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6 Conclusion and future work

In this paper, an automatic MTM-2 transcrip-
tion algorithm for a work process within a virtual
environment was introduced and evaluated with a
corresponding user study. The algorithm is based
on the spatial input data of a VR tracking sys-
tem consisting of a Head Mounted Display, 2
controllers, 1 hip tracker, and 2 feet trackers.
The tracking signals were also used to animate
the avatar through inverse kinematics to increase
immersion for the user.

For the user study, a workflow was designed
including actions that are expected to take place
in a real workplace. These actions were then auto-
matically detected by the developed algorithm in
real-time, which considered most of the MTM-2
basic motions, such as Get, Put, Apply Pressure,
Foot Motion, Step, and Bend & Arise actions. As
the results from the user study show, the intro-
duced algorithm works remarkably well, with most
of the action detections exceeding 95% for Pre-

cision and 97% for Recall. Some lower numbers
were only detected for the hand-related actions,
which mainly stem from an inconsistency between
the algorithm and the interaction system in VR.
Hence, it is considered that with some minor
modifications the algorithm can achieve an even
higher Precision, setting a promising transcrip-
tion framework for the MTM-2 analysis of virtual
workplaces.

Future work will tackle the mentioned incon-
sistency between the algorithm and SteamVR,
but also focus on further improving the algo-
rithm itself, such as for the detection of Pedal
Presses. Another future extension will be the
implementation of a dataset capturing system.
Such a recorded dataset could be used to replay
a user’s session in the virtual environment and
allow experts to see in a first-person view the
actions that are being performed. This could be an
interesting feature for MTM experts to evaluate
first-hand the efficiency of the overall workflow,
even while being in a remote location.

Finally, the extension of the algorithm to sup-
port the automatic transcription of the actions
in a real workplace needs to be investigated.
This would require certain modifications to both
the hardware and the detection process of cer-
tain actions, such as grasping. The controllers

cannot be used in a real-world setting, there-
fore motion capture gloves could be considered.
Another option would be to track and detect
hand-related actions via cameras. All these and
other options need to be further evaluated in order
to decide which is an optimal approach to extend
the algorithm to the real-world case.
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