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Abstract
Background: The lateral premotor cortex plays a crucial role in visually guided limb movements.
It is divided into two main regions, the dorsal (PMd) and ventral (PMv) areas, which are in turn
subdivided into functionally and anatomically distinct rostral (PMd-r and PMv-r) and caudal (PMd-c
and PMv-c) sub-regions. We analyzed the callosal inputs to these premotor subdivisions following
23 injections of retrograde tracers in eight macaque monkeys. In each monkey, 2–4 distinct tracers
were injected in different areas allowing direct comparisons of callosal connectivity in the same
brain.

Results: Based on large injections covering the entire extent of the corresponding PM area, we
found that each area is strongly connected with its counterpart in the opposite hemisphere.
Callosal connectivity with the other premotor areas, the primary motor cortex, prefrontal cortex
and somatosensory cortex varied from one area to another. The most extensive callosal inputs
terminate in PMd-r and PMd-c, with PMd-r strongly connected with prefrontal cortex. Callosal
inputs to PMv-c are more extensive than those to PMv-r, whose connections are restricted to its
counterpart area. Quantitative analysis of labelled cells confirms these general findings, and allows
an assessment of the relative strength of callosal inputs.

Conclusion: PMd-r and PMv-r receive their strongest callosal inputs from their respective
counterpart areas, whereas PMd-c and PMv-c receive strong inputs from heterotopic areas as well
(namely from PMd-r and PMv-r, respectively). Finally, PMd-r stands out as the lateral premotor area
with the strongest inputs from the prefrontal cortex, and only the PMd-c and PMv-c receive weak
callosal inputs from M1.

Background
The motor cortex of macaques is divided into four main
regions: the primary motor cortex (M1), the premotor cor-

tex (PM), the supplementary motor area (SMA) and the
cingulate motor area (CMA). These regions have been
subdivided further into distinct areas on the basis of ana-
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tomical and functional criteria. In the PM region, the dor-
sal (PMd) and ventral (PMv) areas have been
distinguished on anatomical, histochemical and neuro-
physiological ground [1-6]. More recently, PMd and PMv
have been proposed to contain distinct functional areas
along the rostro-caudal axis, referred to as PMd-r, PMd-c,
PMv-r and PMv-c [5,7-9]. They correspond roughly to
areas F7, F2, F5 and F4, respectively, in the nomenclature
of Matelli and his co-workers [10-14]. Similarly, SMA has
been subdivided into a rostral part (pre-SMA) and a cau-
dal part (SMA-proper) [15], also referred to as F6 and F3,
respectively [10,11,13,14,16]. Finally, three areas have
been identified within the CMA on the basis of corticospi-
nal projections [17]: a rostral area (CMA-r) and two cau-
dal areas, one dorsal (CMA-d) and one ventral (CMA-v).
These multiple subdivisions are illustrated in Figure 1.

The ipsilateral connections of these motor cortical areas
with the other cortical areas have been extensively studied
since many years, with renewed interest in recent years
especially with respect to the posterior parietal cortex
[1,7,10-12,18-60]. By contrast, callosal connections of
most premotor areas have attracted less attention, despite
their importance for understanding inter-hemispheric
exchange of information necessary for coordinated
actions of the two sides of the body [61]. It is thus of inter-
est to know how each premotor area connects with the
opposite hemisphere in terms of topography and strength
of the connections. Previous studies have described the
callosal connectivity of M1 and SMA-proper [31,61,62].
They have shown that the hand area of M1 receives a
minor callosal input from its counterpart in the other
hemisphere, whereas the hand area in SMA-proper is
more densely interconnected with the other hemisphere.
More recently, Liu et al. [63] have contrasted the callosal
connections of SMA-proper and pre-SMA and found that
the two areas share common callosal inputs but the
strength of the connections differs, with pre-SMA more
heavily connected with the opposite hemisphere.

Callosal connectivity of the other premotor areas has been
less investigated. Only one recent study [64] has described
the callosal connections of the rostral and caudal dorsal
premotor areas (PMd-r and PMd-c, corresponding to the
areas F7 and F2, respectively), whereas those of ventral
premotor and cingulate motor areas are still lacking. We
performed an extensive multiple tracing investigation of
callosal connections of the lateral premotor areas, with
emphasis on the distinction between dorsal (PMd) and
ventral (PMv) sectors as well as the comparison between
their rostral and caudal divisions. We compared data
obtained from two groups of animals. In the first group,
large injections of 3–4 tracers were performed in each ani-
mal (n = 3) filling in most, if not the whole, extent of the
PM sub-areas. In a second group of animals (n = 5), we
performed smaller injections in the PM sub-areas for com-
parison with other studies. The first group of animals was
used to describe a fairly exhaustive picture of the origin of
the callosal projection to the four sub-areas of PM, includ-
ing the issue of overlap/segregation of the different projec-
tions, whereas more precise topographic aspects are
described based on the second group of animals.

Results
Injection sites
The locations of the injection sites were confirmed on his-
tological criteria. Figure 2 shows the reconstruction of
each injection site on surface views of the brain hemi-
sphere. Each monkey received 2–4 distinct tracers injected
in different PM areas. As the figure shows, the injection
sites varied in size and location within each PM sub-area
and, sometimes, encroached on an adjacent area (see also

Premotor areas represented on a two-dimensional map of the cortexFigure 1
Premotor areas represented on a two-dimensional map of 
the cortex. On the left, surface view of the anterior part of 
the right hemisphere. The rectangle indicates the cortical 
region flattened and shown on the right. On the 2-D map, 
sulci are represented by shaded zones, the dashed lines indi-
cate the fundus of the sluci. The premotor subdivisions are 
defined on the basis of SMI-32 staining (see text). Abbrevia-
tions: Ar, arcuate sulcus; Ce, central sulcus; CgG, cingulate 
gyrus; Ci, cingulate sulcus; CMA-d, r and v, dorsal rostral and 
ventral parts of the cingulate motor area, respectively; P = 
sulcus principalis; M1, primary motor cortex; PMd-c, r, cau-
dal and rostral parts of the dorsal premotor cortex; PMv-c, r, 
caudal and rostral parts of the ventral premotor cortex; pre-
SMA, rostral part of the SMA; SMA-proper, caudal part of 
the SMA.
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Reconstruction of the injection sites on a lateral view of the left hemisphere of the 8 monkeys included in the present studyFigure 2
Reconstruction of the injection sites on a lateral view of the left hemisphere of the 8 monkeys included in the present study. 
Tracers: biotinylated dextran amine (BDA), diamidino yellow (DY), fast blue (FB), fluoro ruby (FR), cholera-toxin B subunit 
(CB). For other abbreviations, see Fig. 1.
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Table I). A particular protocol was conducted in Mks 1–3
in order to obtain large injection sites covering most of the
injected PM sub-area. Examples of such large injection
sites are shown on photomicrographs (Fig. 4), following
injections of BDA, DY, FB and CB. The injections were per-
formed in such a way (usually at 2 depths along each pen-
etration) to form a cylinder covering all cortical layers,
from the surface down to the limit between the grey and
the white matter.

In the following sections, we will describe the callosal
labelling based on representative examples of the results
obtained in MK1 and MK2 (Fig. 5 and 6). Individual var-
iability is illustrated in figure 8 for 11 cases, and addi-
tional tables [Additional file 1] and a figure [Additional
file 2] are presented as Supplementary material. In Figures 5
and 6, we have chosen to superimpose the labelling from
4 different tracers for comparison reasons.

Injections in PMd-r
Five injections were made into PMd-r (Table I). Figures 5
and 6 (red dots) illustrate the distribution of retrogradely
labelled cells in the hemisphere contralateral to the injec-
tion site following large injections into PMd-r of two
monkeys. As the figures show, PMd-r receives it main cal-
losal projections from the premotor areas anterior to the
level of the genu of the arcuate sulcus, and from prefrontal
cortex. Within this region, labelling was assigned to PMd-
r, Pfc dorsal to the principal sulcus extending to the cingu-
late sulcus, pre-SMA and rostral cingulate cortex (CMA-r).
In the cortex located laterally or caudally to the level of the
genu of the arcuate sulcus, labelling was sparse or limited
to small patches (Pfc ventral to the principal sulcus, PMv-
r, PMd-c, CMA-v). This general pattern of transcallosal
labelling was consistent with the data derived from a
smaller injection of DY in PMd-r in Mk 6 (see Fig. 7, green
patches), although the labelling was less extensive.

Injections in PMd-c
Seven injections were made in PMd-c in 7 animals (Table
I). Figures 5 and 6 illustrate the distribution of labelling
on coronal sections (blue dots), and figure 7 shows the
data for monkey Mk6 on a 2-D map of the cortex. As after
injections in PMd-r, injections in PMd-c yielded extensive
labelling in the dorso-medial frontal cortex of the contral-
ateral hemisphere. The main difference is that here, the
labelling was relatively more caudal than following injec-
tions in PMd-r (compare red and blue dots). Analysis of
the distribution of labelled cells in relation with areal bor-
ders shows that the strongest labelling was located in
PMd-c, PMd-r and pre-SMA. Moderate or weak labelling
was also found in the cingulate motor areas (CMA-r,
CMA-v and CMA-d), SMA-proper and M1. The general
pattern of labelling was the same in Mk3 where large
injections were made, except that the labelling was more

predominant in PMd-c than in PMd-r (see Fig. 8A and
supplementary material). The results following a small
injection in PMd-c are shown in Fig. 7, and they confirm
the main observations made on the basis of large injec-
tion. The main difference is that the labelling was less
extensive in rostral PMd-r following a small injection.

Injections in PMv-r
Six injections were made in PMv-r of 6 different animals
(Table I). The key finding is that following these injec-
tions, most labelled cells in the contralateral hemisphere
were found in the cortex located just behind the inferior
arcuate sulcus, anterior to the level of the genu (sections
14–22 in Fig. 5 and 6, grey dots), which corresponds to
the counterpart area PMv-r. As one moves anteriorly or
posteriorly, the dense labelling in PMv-r moves ventrally,
forming a long stripe within the bank of the lateral sulcus
(Fig. 5 and 6; see also supplementary figure). At its caudal
aspect, this labelling is probably in area S2. Additional
labelling was found in pre-SMA, CMA-r and ventral Pfc
(Fig. 6). Note that labelling was observed in dorsal premo-
tor areas (Fig. 6, section 22), but this projection was not
confirmed in the other cases with similar injections.
Finally, there was no labelling in PMv-c, i.e. behind the
genu.

Injections in PMv-c
Five injections were made in PMv-c (Table I). These injec-
tions gave rise to strong labelling in the contralateral fron-
tal areas, with the core of labelling in PMv-c and PMv-r in
all cases. Figures 5 and 6 illustrate two representative
examples (green dots). As in the cases with injections in
PMv-r, callosal labelling following injections in PMv-c is
located mainly lateral to the genu of the arcuate sulcus
and in mesial cortex. The most extensive labelling was
found in the ventral premotor region (including both
PMv-r and PMv-c), where it spanned the cortex caudal and
anterior to the level of the genu of the arcuate sulcus (sec-
tions 18–38 in Fig. 5 and 6). Weak labelling was found
consistently in pre-SMA, CMA-r and M1, and in some
cases in PMd-r, SMA-proper, CMA-v and CMA-d and
PMd-c (see Fig. 8).

Comparison between PMd and PMv
The present study allowed a direct comparison between
the callosal connections of the four premotor areas inves-
tigated. Comparison can be made directly on coronal sec-
tions in figures 5 and 6 (two monkeys with large
injections of 4 tracers each) and on a 2D map of the cortex
in figure 7, in monkey Mk6 where we made small injec-
tions of 3 tracers (see also Fig. 8).

It appears that, at a gross level, callosal projections to dor-
sal and ventral premotor sectors are organized along both
the rostro-caudal and the medio-lateral axes (Fig. 5 and
Page 4 of 18
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6). Along the rostro-caudal axis, injections in rostral sec-
tors (PMd-r and PMv-r) tend to yield stronger labelling in
rostral frontal areas of the opposite hemisphere, i.e. ante-
rior to the level of the genu of the arcuate sulcus (see for
example Fig. 6; red and grey dots). Similarly, large injec-
tions in the caudal sectors (PMd-c and PMv-c) resulted in
strong callosal labelling in caudal frontal areas (blue and
green dots), with however, important labelling in rostral

regions overlapping with the projections to rostral sectors.
This might be due to the large size of the injection sites, as
small injections into PMd-c and PMv-c (Fig. 7) led to less
overlap. A similar pattern of labelling is also observed fol-
lowing injections into PMv-c (green dots in Fig. 5 and 6).
Figure 8A shows the percentage of cells in different areas,
organized a rostral and a caudal group.

Photomicrographs showing SMI-32 staining observed in Mk2 or Mk3 illustrating transition zones between the prefrontal cortex (Pfc) and PMv-r (panel A), between PMd-c and M1 (panel B), between PMv-r and ProM (panel C) and PMv-c and SomC (panel D)Figure 3
Photomicrographs showing SMI-32 staining observed in Mk2 or Mk3 illustrating transition zones between the prefrontal cortex 
(Pfc) and PMv-r (panel A), between PMd-c and M1 (panel B), between PMv-r and ProM (panel C) and PMv-c and SomC (panel 
D). See list of abbreviations. Scale bar = 1 mm.
Page 5 of 18
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Superimposed to this trend, the organisation of callosal
projections along the medio-lateral axis is even more
striking. Figures 5 and 6 show that callosal inputs to PMd
arise almost exclusively from the dorso-medial regions
(red and blue dots), whereas those to PMv originate pre-
dominantly from lateral regions (green and grey dots),
with small zones of overlap in pre-SMA, the cingulate
motor areas, the border between PMd-c and PMv-c, and
the most medial part of PMd-r. Figure 7 illustrates more
clearly the topography of callosal labelling after three
small injections in monkey Mk6.

Quantitative analysis
A quantitative analysis was conducted on data from 11
injections in 3 monkeys (Mks 1–3) following the proce-
dure described in the Methods section. This procedure
provided a numerical estimate of the contribution of each
area to the overall callosal afferent connectivity of PMd-r,
PMd-c, PMv-r and PMv-c. The results of this analysis are
represented graphically for each monkey in Figure 8A (see
also [Additional file 1  ]).

Figure 8A shows the variability across the animals with
large injections of tracers in the four premotor sectors
(Mks 1–3). The variability appeared most prominently for
the percentage of the homotopic callosal projections,

which ranged from 29 to 40% for PMd-r (in 2 monkeys),
from 43 to 81% for PMv-r, from 16 to 23% for PMd-c and
from 14 to 19% for PMv-c. For the two latter divisions, the
variability was larger for the percentage of the inputs com-
ing from the heterotopic contralateral PMv-r (Fig. 8A).
Despite this variability, it appears that PMd-r and PMv-r
receive most of their callosal inputs from rostral frontal
areas, especially for PMd-r; Inputs from caudal regions are
weak or absent. By contrast, PMd-c and, to a lesser extent,
PMv-c receive inputs from both rostral and caudal areas.

Figure 8B compares the results of the present study with
those previously reported for pre-SMA and SMA-proper
[45], using the same analysis of percent contribution of
contralateral frontal areas. It appears that the variability
observed here is in the same order of magnitude as that
observed among 4 monkeys with injections in pre-SMA
and SMA-proper.

Discussion
We found that the four premotor areas receive homotopic
callosal connections and have distinct patterns of callosal
inputs from heterotopic areas. Based on both qualitative
and quantitative analyses, the overall results (schemati-
cally illustrated in Fig. 9) can be summarized as follows:
(1) Callosal inputs to PMd and PMv are organized along

Table 1: List of tracers injected in PM in Monkeys Mk1 – Mk8, with indications on the total volume injected for each tracer, the number 
of penetrations and sites of infusions.

PMd-r PMd-c PMv-r PMv-c

Mk1 CB FB BDA DY
x (2.7 µl,5,9) x (7 µl,7,7) x (9 µl,6,9) x (16 µl,8,10)

Mk2 BDA DY CB FB
x (20 µl,10,20) x (12 µl,6,12) x (3.9 µl,7,13) x (12 µl,6,12)

Mk3 CB FB BDA
x (2.5 µl,3,5) x (9 µl,7,9) x (6 µl,6,6)

Mk4 DY CB FB
x (0.4 µl,2,4) x (7.5 µl,2,4) x (0.8 µl,2,4)

Mk5 FB DY
W, E (0.4 µl,2,4) D, W (0.6 µl,2,4)
70–80 µA 50 µA

Mk6 DY FR FB (M1)
NE (0.4 µl,2,4) NE (1 µl,2,4) F (0.8 µl,2,4)

Mk7 DY FB
E, S (0.6 µl,2,4) NE (8 µl,2,4)
75 µA

Mk8 FB DY
Eyes (0.8 µl,4,8) F (0.8 µl,4,4)
10–20 µA 12–80 µA

x = No ICMS performed. NE: non-excitable site with ICMS.
Conventions for ICMS: D = Digits; E = Elbow; F = Face; S = Shoulder; W = wrist.
Tracers: biotinylated dextran amine (BDA), diamidino yellow (DY), fast blue (FB), fluoro ruby (FR), cholera-toxin B subunit (CB). Arrows means 
that the injection site encroaches the adjacent area pointed by the arrow. (Ml) indicates that the injection site in PMd-c or PMv-c encroaches Ml.
Below each tracer, the three numbers between parentheses give the total volume injected, the number of syringe penetrations and the total 
number of sites where the tracer was infused.
Page 6 of 18
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a medio-lateral axis; (2) Ventral premotor sectors receive
callosal afferents from a limited number of contralateral
frontal areas, whereas the dorsal sectors receive inputs
from a larger set of areas; (3) The strongest callosal inputs
to rostral sectors (PMd-r and PMv-r) were always found to
originate from homotopic regions, irrespective of the size
of the injection sites and the tracer injected. However, the
results following injections into PMv-c and PMd-c varied
depending on the size of injections. Small injections
yielded preferential labelling in homotopic areas, whereas
large injections tended to results in strong labelling in ros-
tral sectors as well; (4) PMd-r stands out as the lateral pre-
motor area with the strongest inputs from the prefrontal
cortex, extending from the principal sulcus to cingulate
sulcus; (5) caudal sectors (PMd-c and PMv-c) receive weak

callosal projections from M1, which does not project to
the rostral sectors. We will discuss these findings in rela-
tion with previous studies and their functional implica-
tion, and address two issues that might affect our
interpretations and conclusions, the size of the injection
sites and the definition of the borders between areas.

Relation to previous studies
Ipsilateral connections of premotor and motor cortex
gained a tremendous interest in recent years, but callosal
connectivity has received less attention, with the excep-
tion of M1 and the SMA which were extensively studied. It
was found that callosal afferents to M1 and SMA depend
on the somatotopic organization, namely with the hand
area of M1 receiving much less callosal projections than
proximal territories [62]. With the identification of finer
subdivisions within the non primary premotor cortex, it is
important to examine callosal connectivity of each dis-
crete area in order to advance our understanding of their
respective function. Of particular interest is the compara-
tive approach in the same animal, where the spatial distri-
bution of the callosal projecting neurons and their
respective contribution to the projection can be directly
compared. Two recent studies have adopted such an
approach by making injections of two distinct tracers, one
in each area, in the same brain. One has compared the cal-
losal afferents of pre-SMA and SMA-proper [63], the other
compared those of PMd-r and PMd-c [64]. Both studies
reported that each of these premotor areas receives cal-
losal inputs primarily from its counterpart area in the
opposite hemisphere and, additionally, from other areas
of the frontal cortex.

In the present study, we made comparisons along two
axes within the lateral premotor cortex, the rostro-caudal
axis (rostral versus caudal regions) and the medio-lateral
axis (dorsal versus ventral areas). We found that the gen-
eral pattern of callosal connectivity described previously
holds true, with however some surprising observations
which we discuss later in this section. Indeed, we found
that the strongest callosal projections to PMd-r and PMv-
r arise from their counterpart areas, as was reported for
PMd-r [64], pre-SMA and SMA-proper [63], irrespective of
the size of the injections. However, unexpectedly this was
not systematically the case for PMd-c and PMv-c (see Fig.
8A), which were found to receive their strongest callosal
inputs from the rostral sub-regions, i.e. from PMd-r and
PMv-r, respectively. This result contrasts with those of
Marconi et al. [64] regarding PMd-c, which they reported
to receive most of its inputs from its contralateral counter-
part. Whether this discrepancy is due to technical differ-
ences or the location of the injection sites in the two
studies is not clear. One likely cause may be the size of the
injections, which were much bigger in our Mks 1–3 than
in the 2 monkeys in the study of Marconi et al. [64]. This

Photomicrographs of typical injection sites for BDA (left col-umn) and for DY, FB and CB (from top to bottom in the right column)Figure 4
Photomicrographs of typical injection sites for BDA (left col-
umn) and for DY, FB and CB (from top to bottom in the 
right column). Scale bar = 1 mm.
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Frontal sections of the right hemisphere of Mk1, arranged from rostral to caudal with increasing ID# (10 to 54), showing the distribution of retrogradely labelled neurons as a result of tracers injections in the opposite PMd-r (red dots), PMv-r (grey dots), PMd-c (blue dots) and PMv-c (green dots)Figure 5
Frontal sections of the right hemisphere of Mk1, arranged from rostral to caudal with increasing ID# (10 to 54), showing the 
distribution of retrogradely labelled neurons as a result of tracers injections in the opposite PMd-r (red dots), PMv-r (grey 
dots), PMd-c (blue dots) and PMv-c (green dots). The tracers used are indicated in the bottom right. Tracers: biotinylated dex-
tran amine (BDA), diamidino yellow (DY), fast blue (FB), cholera-toxin B subunit (CB). See list of abbreviations.
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Frontal sections of the right hemisphere of Mk2, showing the distribution of retrogradely labelled neurons as a result of tracers injections in the opposite PMd-r (red dots), PMv-r (grey dots), PMd-c (blue dots) and PMv-c (green dots)Figure 6
Frontal sections of the right hemisphere of Mk2, showing the distribution of retrogradely labelled neurons as a result of tracers 
injections in the opposite PMd-r (red dots), PMv-r (grey dots), PMd-c (blue dots) and PMv-c (green dots). Same conventions as 
in Figure 5.
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interpretation is supported by our data in cases with small
injections in PMd-c and PMv-c (e.g. Mk6), showing a
majority of labelled neurons in the counterpart area on
the opposite hemisphere.

As in the case of pre-SMA and SMA-proper [61,63], addi-
tional callosal projections to the four subdivisions of PM
were found to arise from a number of heterotopic areas.
Interestingly, the strength and topography of callosal con-
nections were found to vary along the antero-posterior
axis. Our findings indicate that, if all projections are taken
into account (see Fig. 9 and supplementary material), cau-
dal areas (PMd-c and PMv-c) receive inputs from a larger
set of areas than rostral ones (PMd-r and PMv-r), paral-
leled by a larger number of projecting cells. A similar
result was reported by Marconi et al. [64] for PMd-r and
PMd-c. Furthermore, the caudal divisions tend to be con-
nected with caudal premotor areas of the opposite hemi-
sphere including SMA-proper, dorsal and cingulate motor
areas (CMA-v, CMA-d). Callosal projections from M1
were rarely observed, and were weak. By contrast, the ros-
tral divisions receive inputs from rostral premotor areas,
such as pre-SMA and CMA-r, and from prefrontal cortex
but do not receive projections from M1. This general prin-
ciple was also described for pre-SMA versus SMA-proper
[63] and for PMd-r versus PMd-c [64]. In particular, our
observations regarding inputs from M1 are compatible
with the findings of previous studies showing that contral-
ateral M1 projects weakly to SMA-proper and PMd-c, but
does not project to pre-SMA nor PMd-r [61,63,64,74,75].
Likewise, the present findings are in agreement with pre-
vious reports regarding the callosal inputs from prefrontal
cortex to other premotor areas. Thus, it was found that
pre-SMA and PMd-r receive inputs from contralateral pre-
frontal cortex, but not SMA-proper or PMd-c [63,64].

Finally, callosal projections to each area examined in the
current study were found to arise from largely segregated
populations of cells, but this segregation was much more
striking between cells projecting to dorsal versus ventral
sectors (see Figs. 6 and 7), than between rostral versus cau-
dal sectors. In fact, following injections of different trac-
ers, one in either PMd-r or PMd-c the other in PMv-c or
PMv-r, large cortical regions contained neurons that were
labelled with only one tracer. The zones of co-existence of
cells labelled with one or the other tracer were limited to
medial premotor areas. Despite this co-existence, a fine
examination indicates that the two cell populations were
organised in separate patches. The situation is somewhat
different for the comparisons between PMd-c and PMd-r
on one hand, and between PMv-c and PMv-r on the other
hand. Callosal cells projecting to PMd-c and those project-
ing to PMd-r co-exist within several areas with the strong-
est overlap in PMd-r, pre-SMA and CMA-r. Cells
projecting to PMv-c and those projecting to PMv-r co-exist

within PMv-r, CMA-r and to a limited extent in pre-SMA.
These findings suggest that dorsal and ventral premotor
areas belong to separate inter-hemispheric circuits, but
their respective subdivisions belong to partly overlapping
anatomical systems.

Callosal and ipsilateral connectivity of dorsal and ventral 
premotor areas: a gradient between prefrontal cortex and 
motor cortex
It is important to examine callosal and ipsilateral connec-
tivity of the lateral premotor areas before speculating on
possible functional implications of the present results.
Ipsilateral cortical inputs to PMd and PMv have been the
focus of recent anatomical studies (see Introduction for
references). Despite slight discrepancies between the find-
ings of these studies, there is a general agreement that pro-
jections that arise from parietal cortex and prefrontal
cortex are organized along the two axes examined in the
present study: the rostro-caudal and medio-lateral axes.
Along the medio-lateral axis, it was found that parietal
and prefrontal areas located dorsally and medially project
to PMd-c and PMd-r, those located laterally project to
PMv-r and PMv-c. Hence, PMd receives inputs from the
dorsal aspect of dorsolateral prefrontal (DLPf) cortex
[25,28,37,76] and from the posterior parietal cortex
[29,41,45,47,53,54,75,77,78]. By contrast, PMv is con-
nected with the ventral aspect of DLPf cortex and the infe-
rior parietal lobule [12,47,54]. Along the rostro-caudal
axis, it was shown, in particular, that areas located more
caudally in the superior parietal lobule and the parieto-
occipital sulcus project predominantly to rostral PMd,
those located more anteriorly project mostly to caudal
PMd. Some of these parietal areas that project to PMd-r
are directly connected with extrastriate visual cortex and
are involved in early visuo-motor transformations [78-
80]; those that project to PMd-c are involved in somato-
sensory processing, and/or sensori-motor transformations
[41,42,45,47,54]. On the other hand, PMd-c (but not
PMd-r) projects to ipsilateral M1 and to the spinal cord
[81,82]. The situation is less clear for PMv-c versus PMv-r
in this respect. However, it is interesting to note that the
general scheme where ipsilateral and callosal inputs con-
verge remains valid. For example, inputs from the parietal
lobe come from the second somatosensory area (S2),
among other areas [41,54]. In the present study, we found
callosal inputs to PMv-c and PMv-r from S2 (and to a
much less extent from S1). Functionally, S2 and PMv may
share sensorimotor signals involved in grasping objects
[54].

Conclusion
In summary, lateral premotor areas that receive prefrontal
inputs also receive projections from areas involved in
early visuo-motor transformations; those that do not
receive prefrontal inputs project to M1 and the spinal cord
Page 10 of 18
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and receive projections from parietal areas involved in
high order sensorimotor processing. It is known that ros-
tral and caudal divisions are interconnected, supposedly
allowing a functional gradient linking prefrontal cortex
with motor cortex. This organization seems to hold true
for callosal connectivity. Rostral divisions of lateral pre-
motor cortex, especially PMd, receive callosal inputs from
prefrontal cortex, but not from M1, and from their homo-
topic areas. Caudal divisions, by contrast, do receive
inputs from M1, although weak, but have little inputs
from prefrontal cortex. Furthermore, PMd-c and PMv-c
receive strong callosal inputs from PMd-r and PMv-r,
respectively.

Taken together, the anatomical data reviewed above sug-
gest that the general principle of ipsilateral and callosal
connectivity of premotor areas remains similar. This
seems to argue that callosal connectivity provides similar

but complementary information necessary for sensori-
motor transformations and bimanual coordination. It is
widely accepted that inter-hemispheric connections of
motor areas are necessary for the execution of complex
motor behavior that requires coordination of both limbs.
As reviewed above and elsewhere [e.g. [8,84]], visuomotor
information derived from the posterior parietal cortex
may reach rostral premotor regions via ipsilateral projec-
tions, or indirectly through ipsilateral prefrontal cortex or
through callosal fibers (present study; [75,83]). These
regions play a key role in high order motor planning, and
have projections to caudally adjacent areas, which in turn
have direct input to M1 and the spinal cord and their neu-
ronal activity correlates with the kinematics of limb move-
ments. Their callosal connectivity might allow selection of
which arm to use, as well as temporal and spatial coordi-
nation of bimanual movements. Weak callosal connec-
tions of the M1 hand area could reflect the high degree of
lateralisation of its neuronal activity during movement
execution [84]. By contrast, callosal interactions between
premotor areas may convey high order information inde-
pendent from body representation. In fact, the rostral
PMd is involved in spatial attention (see [85] for review)
and eye movements [67]. Interestingly, callosal projec-
tions to PMd-r sites where eye movements are represented
do not differ from those that result from injections at
other PMd-r sites. Furthermore, we noted that our injec-
tion at an eye movement-related site (Mk8, Table 1; not
illustrated) did not lead to any callosal labelling in frontal
regions where oculomotor areas would be expected to be
located based on sulcal landmarks (e.g., the frontal eye
fields on the anterior bank of the arcuate sulcus). This sug-
gests that callosal connections of premotor areas investi-
gated in this study mediate high order information
necessary for action planning, independent of the motor
effectors.

Methods
The data reported in this paper are based on 23 tracer
injections made in eight macaque monkeys (3 Macaca fas-
cicularis and 5 Macaca mulatta). Table I summarizes the
location of these injections, the nature and amount of the
tracers injected. Figure 2 shows their reconstructions on
lateral views of the brain. The injections made in monkeys
(Mks) 4–8 have been used to determine ipsilateral con-
nections of premotor cortex [54], and those in Mks 1–3
for assessing the degree of overlap/segregation of thalam-
ocortical projections to PM [65]. In addition, BDA injec-
tions in cases Mks 1–3 served for studying the
corticothalamic projections of PM [66]. Twelve injections
were made in PMd (5 in PMd-r and 7 in PMd-c); eleven
injections were in PMv (6 in PMv-r and 5 in PMv-c). We
used fluorescent tracers Fast Blue (FB), Diamidino-Yellow
(DY) and Fluoro-ruby (FR), and the non fluorescent trac-
ers Biotinylated Dextran Amine (BDA) and Choleratoxin

Distribution of labelling after 3 injections in Mk6 illustrated on a 2-D map of the frontal cortexFigure 7
Distribution of labelling after 3 injections in Mk6 illustrated 
on a 2-D map of the frontal cortex. Same abbreviations and 
conventions as in Fig. 1.
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B subunit (CB). Experimental procedures have been per-
formed in accordance with the Guide for the Care and Use
of Laboratory Animals (ISBN 0-309-05377-3; 1996) and
approved by national veterinary authorities (Switzerland
and France).

Surgery
The monkeys (aged 4–10 years and weighing 4–10 kg)
were pre-anesthetized with ketamine (5 mg/kg, i.m.) and
later deeply anesthetized with propofol (3 ml/kg/h; i.v.).
The animals were then placed in a stereotaxic frame. Sur-
gery was performed under aseptic conditions, and body
temperature, heart and respiration rates, O2 blood satura-
tion and expired CO2 were monitored during surgery. The
skull was opened on one side in order to expose the pre-
motor cortex and visualize the arcuate and central sulci. In
Mks 1–4, injections in the PM subdivisions were guided
visually based on sulcal landmarks (arcuate and central
sulcus), taking the genu of the arcuate sulcus as the rostr-
ocaudal limit between PMd-r and PMd-c as well as
between PMv-r and PMv-c, as described earlier
[63,65,67,68]. In Mks 5–8, the locations of the injections
were in addition guided using intracortical microstimula-
tion, as described earlier for the same animals [54]. Injec-
tions were made with a Hamilton syringe (5 or 10 µl)
which was inserted perpendicularly to the cortical surface.
At the end of the injections, the dura mater, muscles, and
skin were sutured and the animals were treated for several
days with analgesics (Vetalgin; 100 mg/kg, i.m. or
Rymadil; 4 mg/kg, s.c.), and with an antibiotic (Ampi-
ciline 10%; 30 mg/kg, i.m.). The animals survived for 2–3
weeks and were then deeply anesthetized with ketamine,
followed by a lethal dose of sodium pentobarbital (Vetan-
arcol; 90 mg/kg, i.p.). Transcardiac perfusion with 500 ml
of saline (0.9%) was followed by 3 litters of a solution of
paraformaldehyde (4% in phosphate buffer 0.1 M, pH
7.6) and 2 litters of a solution of paraformaldehyde (4%
in a 10% sucrose solution in phosphate buffer). The per-
fusion was then continued with 20 and 30% solutions of
sucrose in phosphate buffer (2 and 1 litters, respectively).
The brain was dissected into blocs, stored during 2–4 days
in a solution of 30% sucrose, frozen, and cut in the frontal
plane. Sections (50 µm thick) were collected in eight
series. Two series of sections were immediately mounted
on slides (without cover slip) and stored in the refrigera-
tor for fluorescent microscopy analysis. The histological
processing to visualize CB and BDA was described in
detail in previous reports [66,69,70]. In Mks 4–8, DY, FB
and FR labelled neurons were plotted on sections taken at
0.8 mm intervals, using the MicroBrightField Neurolucida
System (Colchester, USA). In Mks 1–3, labelled neurons
were plotted using a home made motorized microscope
stage, as previously reported [66,69,70]. The DY, FB and
FR labelled neurons were plotted on the same sections,
whereas the non-fluorescent tracers BDA and CB were

each plotted on two sections adjacent to the one analyzed
for DY, FB and FR. For each tracer, plots were made every
1.6 mm for reconstruction and illustration purposes, but
observation of the labelling was done at 0.8 mm intervals.
When necessary, intermediate slides were used for a finer
assessment of changes in labelling. Drawings with plots of
labelled cells were then exported in the form of computer
files formatted for later processing using the software
CorelDraw 9. In Mks 1–3, the plots with CB and BDA were
aligned and superimposed to the plots with FB and DY,
allowing direct comparison of the 4 tracers on the same
section (Figs. 5 and 6).

Definition of areal borders
In Mks 1–3, adjacent sections were processed for SMI-32
(Sternberger Monoclonal Inc., MD, USA), an antibody
directed against a non-phosphorylated neurofilament
protein labelling pyramidal cells in the cerebral cortex,
according to the following protocol. Briefly, free-floating
sections were first pre-incubated for 10 min in 1.5% H2O2
in phosphate-buffered saline (PBS; pH = 7.2) to remove
endogenous peroxidase activity. Sections were rinsed sev-
eral times in PBS, and then incubated overnight at 4°C in
SMI-32 monoclonal antibody (dilution 1:3000), 2% nor-
mal horse serum and 0.2% triton-X-100. After several
rinses, sections were incubated 30–60 minutes at room
temperature in biotinylated secondary antibody (1:200,
Vector Laboratories, Burlingame, CA) and stained with
the avidin-biotin complex (ABC) immunoperoxidase
method (Vectastain Elite kits, Vector Laboratories). The
reaction was visualized with 3,3'-diaminobenzidine tet-
rahydrochloride (DAB) as the chromogen, diluted 0.05%
in Tris-saline with 0.001% H2O2. Sections were then
washed thoroughly and immediately mounted on gelatin-
coated slides, dehydrated, and cover slipped. As a control,
the primary antibody was omitted from the processing of
some sections while the rest of the procedure remained
the same. Another series of sections was stained for Nissl.

SMI-32 immunoreactivity provided reliable criteria to set
the limit between PMd-c and PMv-c as shown in previous
studies [9,47], and the limit between PM and prefrontal
cortex or M1 [63,71]. Photomicrographs illustrating crite-
ria based on SMI-32 were shown in a recent report [63] for
the borders PMd-c/PMv-c, PMd-r/Pfc, SMA-proper/PMd-
c, pre-SMA/PMd-r, SMA-proper/CMA-d and pre-SMA/
CMA-r. Further examples of SMI-32 stained sections are
shown in Figure 3 to illustrate the following limits based
on SMI-32 immunoreactivity: Pfc/PMv-r, PMd-c/M1, lat-
eral border of PMv-r with the promotor area (ProM, as
defined by Paxinos et al. [72]) and the lateral border of
PMv-c with the somatosensory cortex. Other borders were
based on previously published work. For example, the
limit between CMA-d and CMA-v corresponds to the fun-
dus of the cingulate sulcus, based on the distribution of
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A: quantitative data giving the percent distribution of callosal neurons observed in different cortical areas as a result of tracer injections made in PMd-r (top left plot), PMd-c (top right plot), PMv-r (bottom left plot) and PMv-c (bottom right plot)Figure 8
A: quantitative data giving the percent distribution of callosal neurons observed in different cortical areas as a result of tracer 
injections made in PMd-r (top left plot), PMd-c (top right plot), PMv-r (bottom left plot) and PMv-c (bottom right plot). The 
percent values are given by different symbols for each of the three individual monkeys included in the quantitative analysis 
(Mk1, Mk2 and Mk3). For a given monkey, the sum of the percent values is 100%. B: for comparison, same data, but for the dis-
tribution of callosal neurons projecting to pre-SMA and SMA-proper for other monkeys (taken from [63]).
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Summary diagram of callosal projections from premotor areas and prefrontal cortex to dorsal and ventral premotor sectorsFigure 9
Summary diagram of callosal projections from premotor areas and prefrontal cortex to dorsal and ventral premotor sectors. 
Thin lines depict strong to moderate projections, dotted lines represent weak projections.
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corticospinal neurons [17,73]. Nissl and SMI-32 criteria
were also used to define the border between CMA and the
region CgG of the cingulate gyrus. Nissl and SMI-32
reconstructions were digitized and aligned to the sections
containing the plots of labelled neurons.

Quantitative analysis
The distribution of labeled neurons was analyzed quanti-
tatively for 11 out of the 23 injections (in Mks 1–3). For
each tracer, the labeled neurons were counted on all
reconstructed sections. Then, the percentage of labeled
neurons in each cortical area was calculated as the ratio of
the number of labelled cells in that area to the total
number of callosal labelled neurons for a given tracer
injection. This procedure provided a numerical estimate
of the contribution of each area to the overall callosal
afferent connectivity of PMd-r, PMd-c, PMv-r and PMv-c
(Fig. 8A; see also supplementary material).

List of abbreviations used
Ar = arcuate sulcus

BDA = biotinylated dextran amine

C = cerebral cortex

CB = cholera toxin B subunit

CC = corpus callosum

Cd = caudate nucleus

CE = central sulcus

CgG = cingulate gyrus

CIN = cingulate sulcus

Cl = claustrum

CMA-d = dorsal part of the cingulate motor area

CMA-r = rostral part of the cingulate motor area

CMA-v = ventral part of the cingulate motor area

DLPF = dorsolateral prefrontal cortex

DY = diamidino-yellow

FB = fast-blue

FR = fluoro-ruby

GP = globus pallidus

ICMS = intracortical microstimulation

P = sulcus principalis

M1 = primary motor cortex

Pfc = prefrontal cortex

PM = premotor cortex

PMd-c = caudal part of the dorsal premotor cortex

PMd-r = rostral part of the dorsal premotor cortex

PMv-c = caudal part of the ventral premotor cortex

PMv-r = rostral part of the ventral premotor cortex

pre-SMA = rostral part of the SMA

ProM = promotor area

Put = putamen

SMA = supplementary motor area

SMA-proper = caudal part of the SMA

SMI-32 = antibody directed against a nonphosphorylated
neurofilament protein that labels pyramidal cells

SomC = somatosensory cortex

S1 = primary somatosensory cortex

S2 = secondary somatosensory cortex

Thal = thalamus

WGA = wheat germ agglutinin

WM = white matter
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