Fixed-End Moment Equations for
Continuous Prestressed Concrete Beams

by Duryl M. Bailey and Phil M. Ferguson®

SYNOPSIS

Fixed-end moments created by prestressing for constant cross-section
beams are given. These fixed-end moments may be used with structural
analysis methods to design continuous prestressed concrete beams. Fixed-
end moments for cable profiles composed of straight line segments or
parabolic segments are presented for both exterior and interior spans. Only
symmetrical cable profiles are given for interior spans. Tables are presented

for aiding in the solution of difficult equations.

CONTINUOUS BEAMS

In recent years there have been
many excellent papers written about
prestressed concrete including the
design and analysis of both simple
and continuous prt.‘str(-:sscd concrete
beams. Some of these papers were
written by Parme and Paris'*, Fies-
enheiser®, Moorman®, and Lin®

Lin® has presented a very inter-
esting and useful method in which
he balances the dead load effect
on the beam with the imposed
load of the prestressing forces. This
method eliminates the main diffi-
culty in designing continuous pre-
stressed conerete beams. Hence, the
load balancing method is recom-
mended in instances where it can
be used. In cases where the dead
load either is not or cannot be bal-
anced by the prestressing force, the

®Project Engineer, Soils Division, U.S.
Army Waterways Experiment Station,
Vieksburg, Mississippi and Professor of
Civil Engineering, The University of Tex-
as, Austin, Texas, respectively.
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following equations and tables are
submitted for use.

A brief description of continuously
prestressed concrete beams will be
given. The assumption is made that
the reader is familiar with the de-
sign and analysis procedures of a
simple prestressed concrete beam,
namely, a prestressed concrete beam
which is simply supported at each
end. not continuous over a support.
It is also assumed that the reader
is familiar with the ordinary analysis
of statically indeterminate beams.

Assumptions which are usually
made in both simple prestressed
concrete beams and continuous
prestressed concrete beams are giv-
en in Moorman’s paper?. These as-
sumptions are

1. Hooke’s Law is valid

2, The principle of superposition

holds

3. The horizontal component of

the tension in the cable is equal

to the tension in the cable

4. The friction force is negligible

5. The lateral force from the
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cable is either vertical or normal

to the axis of the member

6. the loss of cable tension due

to creep is negligible

7. The reduction in cross-sectional

area because of the cable ducts is

negligible

In simple prestressed concrete
beams, the moment induced by the
prestressing force is equal to the
horizontal force in the cable times
the distance of the cable from the
centroid of the beam. Elastic rota-
tion at the supports and elastic de-
flection along the beam can occur
without creating any moments at the
supports because of the hinged ends
of the beam. The term hinged-end
refers to a beam whose end is free
to rotate without moments being in-
duced by this rotation. When the
dead load and live load of the beam
is not considered, the line of pres-
sure from the prestressing force. or
stress on the concrete, coincides
with the cable profile.

In a continuous prestressed con-
crete beam without dead load or
live load, the line of pressure on the
concrete may or may not coincide
with the cable profile. If the line of
pressure on the concrete does coin-
cide with the cable, the cable is
known as a concordant cable. In
many cases the line of pressure on
the concrete will not coincide with
the cable profile. The reason for this
is as follows:

Moments from the prestressing
cable are induced along the con-
tinuous prestressed concrete beam
as they are in the simple pre-
stressed concrete beam. These mo-
ments along the beam cause de-
flections and in turn rotations at the
supports. These rotations are not
frec to take place but are restrained
due to the continuity of the beam.
The resistance to these rotations cre-
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ates moment at the interior supports
of the beam. These moments at the
support induced by the continuity
of the structure cause the center of
pressure on the concrete to deviate
from the location of the cable pro-
file.

Fig. 1(a) shows an unloaded end
span of a continuous beam with M
the moment created by the beam
restraint at the interior support. The
moment, M, creates an extra reaction
at each end of the exterior span.
This reaction is really due to the
force in the cable and the continu-
ity of the structure. The extra re-
action gives a moment curve which
varies linearly between supports as
shown in Fig. 1(b). As a result the
center of pressure on the concrete
varies linearly from the cable pro-
file between beam supports. How-
ever, the center of pressure on the
concrete will follow the same in-
trinsic shape as the cable profile.
Fig. 2 shows an assumed cable pro-
file and an assumed center of pres-
sure on the concrete for a continuous
beam. At the end supports the cable
profile and the center of pressure
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Fig. 1—Moment Created by Prestressing
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Fig. 2—Cable Profile and Center of Pressure
on Concrete for End Span

on the concrete coincide. At the in-
terior support, the cable profile and
center of pressure on the concrete
do not coincide. At the center line
of the exterior span, the deviation
between the center of pressure on
the concrete and the cable profile
is half the amount it is at the sup-
port.

In continuous prestressed concrete
the line of pressure on the concrete
is of the utmost importance in the
elastic analysis of the beam. The
line of pressure must fall within a
limiting zone along the beam. The
limiting zone is determined from
the maximum and minimum mo-
ment curves which are created from
external loads, cross-sectional prop-
erties of the beam, the allowable
tension in the concrete used, and
the force of the prestressing cable.
Lin® discusses the location of the
limiting zone in his book. The limit-
ing zone will be briefly discussed
here. Fig. 3 shows an elevation of
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Fig. 3—Possible Limiting Zone for End Span

the end span of a continuous beam.
The vertical scale of the beam is in-
creased for convenience of plotting
the limiting zone. The usual beam
sign convention is used. A positive
moment creates compression stress
at the top fiber of the beam. M,,..
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is the largest algebraic moment
along the beam. M,,;, is the smallest
algebraic moment along the beam.
For clarification, M., is associated
with the maximum positive moment
in a beam span and M,;, is asso-
ciated with the support moment for
a continuous beam. F is the pre-
stressing force of the cable. When
no tension stress is allowed in the
concrete, the limiting zone is de-
termined by plotting from the kern
lines of the beam. Fig. 3 shows a
beam in which no tension stress is
allowed in the concrete. The top
portion of the limiting zone is de-
termined by the M,,. curve. Let
Gmas = Myae/F. Then @, is plotted
from the top kern line and varies
along the beam. When M,,,. is posi-
tive, Guq is plotted below the kern
line. When M, is negative, dyq. is
plotted above the kern line. Let
Aumin = M pin/F. When M is posi-
tive, @ is plotted below the bottom
kern line. When M, is negative,
Ay is plotted above the bottom
kern line. The zone between the
curves obtained by plotting the
values of @yu- and @, is the limiting
zone of the beam.

The method used in this discus-
sion is the method of equivalent
loads. By this procedure, forces
which are created by the action of
the prestressing cable pressing
against the concrete are determined.
These equivalent loads have been
determined previously by other writ-
ers’ 245, For clarification, these loads
will also be derived in this paper.

Fixed-end moments due to pre-
stressing will be derived for various
cable profiles. These fixed-end mo-
ments may be used in the Moment
Distribution Method or Slope-De-
Hection Method to determine sup-
port moments in the beam due to
the prestressing force. By using these
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support moments in the beam, with
no live load or dead load considered.
the location of a corresponding cen-
ter of pressure on the concrete at
the supports can be determined. The
support moment due to prestressing
when divided by the prestressing
force in the cable locates the center
of pressure on the concrete at the
supports. Between supports the cen-
ter of pressure on the concrete varies
linearly from the cable profile.
Hence, the center of pressure of the
concrete from cable alone, can be
located throughout the continuous
beam.

CABLE PROFILES
STRAIGHT LINE SEGMENTS

Fig. 4 is a portion of a beam in
which sharp bends in the cable oc-
cur at Section A-A and Section B-B.
The cable between these sections is
a straight line. The cable makes an
angle, a, with the horizontal axis
of the beam. Assume no friction loss
in the cable between the two sec-
tions. Also, assume the horizontal
component of the cable force is
equal to the cable force. The vertical
component of the cable force, F, at
Section A-A and Section B-B is

P,=P,=Ftana (1)

However, since tan a =t/kL, Eq. 1
becomes
By =P :-i‘z (2}
These are likewise the forces the
concrete has to exert on the cable
at A and B to keep the cable in the
position shown in Fig. 4 when the
cable is made horizontal to the left
of A and to the right of B. Hence
Eq. 2 gives the magnitude of the
equivalent concentrated load due to
this form of prestressing. From Eq.
2, note that the equivalent concen-
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Fig. 4—Portion of Beam with Straight Cable

trated load is a function only of the
force in the cable and the dimen-
sions of the cable profile.

Figs. 5(a) and 5(b) show cable
profiles for an end span. The cable
profile is composed of straight line
segments with sharp bends. The
beams are shown with a hinged-end
at A and a fixed-end at B. The fixed-
end moment at B will be determined
for the cable profile shown in Figs.
5(a) or 5(b) where R and S are
fractional factors applied to the de-
flection y. Two equivalent concen-
trated loads due to prestressing will
occur in the span. Two other con-
centrated loads due to prestressing
will occur at the supports. However,
the loads at the supports will not
affect the fixed-end moment at B.
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Fig. 5—Possible Straight Line Segment Cable
Profile for End Spans
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Fig. 6—Propped Cantilever Beam with Two
Concentrated Loads

Fig. 6 shows a beam which is sub-
jected to two concentrated loads.
These concentrated loads are as-
sumed positive when acting in a
downward direction. The sign con-
vention to be used for the fixed-end
moments is the beam bending mo-
ment sign convention, that is, a posi-
tive moment is a moment which
causes compression stress on the top
fiber of the beam. By using Eq. 2
and the symbols and dimensions
shown in Figs. 5(a) and 5(b), values
for P, and P, shown in Fig. 6 can
be obtained.

— ol Ry By=—Sy7
@[R(a+b)—as]

L ab (3)

and

P,=—5| ¥y S9—Bu]_
3 F’:CL+ bL

Fy[b+c¢(S—R)
-—'Eg[ Ct:b (4)

A statically determined moment,
m, is applied at the hinged end A
by the cable profiles in Figs. 5(a)
and 5(b). The value of m is

m=Fey (5)

where F is the prestressing force
and e, is the distance of the cable
from the centroid of the beam at
support A. When the cable is above
the centroid of the beam, ey is
positive.
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Fig. 7 shows a propped cantilever
beam with a concentrated load, P,
at a distance x from the hinged-end.
The equation for the moment, Mg,
can be found in several engineering
handbooks.

Px (L2 —
Mﬂ=_x(§‘_12_r*) (6)

If P=P, and x=alL are substi-
tuted into Eq. 6 and if P =P, and
x = (1 — ¢)L are substituted into Eq.
6 and these results are combined

V=
X L=x

r | !
AT\ =J1§5

L

Fig. 7—Propped Cantilever Beam with One
Concentrated Load

algebraically into one equation, the
following result is obtained

.
= PiLo06) _

P.(1—c) L [Lt— (1— )2 L?]
o L7 ()

Substitute the values of P, and P
that are given in Eqs. 3 and 4 into
Bicg o7

_Fy i i
M.,—%{ [a(R—S)+bR](1—a?)+

[b+c(S—H)](I—c)(2—c)}

(8)

Fig. 8 shows a propped cantilever

beam with an applied moment, m,

at the hinged end. The fixed-end

moment at B due to the applied
moment at A is

m Fe
My=—T5— =5 ©)
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Fig. B—Propped Cantilever Beam with Moment
Applied at Hinged End

since the applied moment at A is
given in Eq. 5.

If Egs. 8 and 9 are added together
algebraically, the fixed-end moments
due to prestressing are determined
for the cable profiles shown in Figs.
5(a) or 5(b).

M, =§Ty{ [a(R—S)+bR](1—a2)+

[b+c(s—ﬂ)](1—.:)(z—c)}

Fe
S (10)

Eq. 10 contains 7 independent
variables and one dependent vari-
able. The independent variables are
F, y, es, a, b, R and S. Since
a+b+e¢=1, ¢ is not a variable
after @ and b are assigned values.
The dependent variable of Eq. 10
iﬁ A'f".

One design chart that included all
the variables of Eq. 10 would be
very difficult to construct. However,
three separate design tables are pre-
sented which will allow rapid calcu-
lation of M, Eq. 9 was added
algebraically with Eq. 8 to obtain
Eq. 10. Eq. 9.is a very simple equa-
tion. Therefore, it will not be in-
cluded in the design tables. Eq. 9
reveals that the fixed-end moment,
My, is equal to one-half the magni-
tude and opposite in sign to the
applied moment created by the pre-
stressing at support A.

The three design tables will be
determined from Eq. 8.

Assume R=S =0 and substitute
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these values in Eq. 8. The result is

My = Fy(1 —;) (2—c)

(11)

Divide each side of Eq. 11 by Fy.

My _(l—c)(2—¢)
- 2

T (12)

The following equation is obtained
from differential calculus:

aM
s ()

Where AM; is the change in the
fixed-end moment M,, AR is the

change in the variable R, and %

is the partial derivative of M, with
respect to R, Take the partial deriv-
ative of Eq. 8,

s =2 [(a+bY1-0)~

c(1=c)2—c)] (14)
Substitute Eq. 14 into Eq. 13,

_Fy il
aMﬂ_z—P[(aanm a?)

c(l—c)(2—c)I1(AR)  (15)

The following equation also comes
from calculus:

AM, =(ﬁé‘sﬁ) (AS) (16)

Applying calculus to Eq. 8,

oM, _Fy %
T g Ll
e(1—c)(2—c)] AS (17)

Substitute Eq. 17 into Eq. 16,
—Fyr
AMp = b [ a(l a )+

c(l—c)(2—¢)] AS) (18)
Let AR=R in Eq. 15 and divide
81




both sides of Eq. 18 by FyS.
FyR ~ 2b

c(1—c)(2—c)
2b

Let AS=S in Eq. 18 and divide
both sides of Eq. 18 by FyS.

(19)

AM, _ —a(l—a?) =
FyS ~  2b
c(l—c)(2—c)
T (20)

The change of the fixed-end mo-
ment due to prestressing which is
caused by the variables R and S
can be calculated by Eqgs. 19 and 20.
Eq. 12 can be used to caleulate M
when R =S = 0. Hence, if Egs. 12,
19 and 20 are added together alge-
braically, the fixed-end moment due
to prestressing can be calculated.

The solutions of Eqgs. 12, 19 and
20 are given in Tables 1, 2 and 3
respectively. The increments of the
tabulated values are such that
straight line interpolation may be
used while creating a maximum
error of 10 in the fifth decimal place.

Fig. 9(a) shows a propped canti-
lever beam with a cable profile. The
magnitude of the prestressing force
is assumed constant along the en-

Table 1—Values of

'i._.z_.'.‘.‘_'
(b)
Fig. 9—Straight Line Segment Profile for End
Span
tire span. The design tables, Tables
1, 2 and 3, will be used to calculate
the fixed-end moment. Eq. 9 also
will be used to calculate the fixed-
end moment for F = 100 kips.
Fe, _ 100(0.25) _

»"f.rn:"' _-;' = 2

—12.5 kip-ft.

When a = 0.2 and ¢ = 0.4, the fixed-
end moment due to Table 1 is

M2 = +0.48 Fy

= +0.48 (100) (1.5)
= +72 kip-ft.
When a =02, c=0.4 and R=1%,

_"_"lu_ 1 (1—¢)(2—2¢)

Fy y 4

c Value | ¢ Value | € Value || ¢ Valu
0.00[1.0000(0.20[0.7200}0.40|0.4800(0.60 0.2800
0.02(0.9702[l0.22|0.69420.42|0.4582 [0.62|0.2622
0.04|0.9408 10.24|0.6688(|0.44|0.4368 0.6410.2LL8
0.06(0.9118 [0.26]0.6438[0.46(0.4158|0.66 0.2278
0.08|0.8832]0.28|0.6192[|0.48[0.3952 0.68]0.2112
0.10]0.8550(0.30]0.5950(]0.50[0.3750]0.70]0.1950
0.12(0.82721]0.32(0.57120.52|0.3552[0.72|0.1792
0.14(0.7998 [10.34]0.5478 ||0.54|0.3358 |0.74 0.1638
0.16|0.77280.36(0.5248|0.56|0.3168 0.76]0.1488
0.18|0.74620.38]0.5022[0.58]0.2982|[0.780.1342
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_la+b(—-a)+c(l1—¢)(2—0¢)

Table 2—Values of = 26
2

9961 Arvnigoy

0,2010,22 10,24 10,26 10,28 10.30|0.32 |0, 34 [0.36 [0,38 [0,L0 |0,42[0,LL[0,L6[0,LB]C,50]0,520.54]0,56]0,58 [0,60

6000 [6100 [6200 [6300 61,00 6500 |6600 [6700 |6800 [6900 [7000 [710017200[7200C |7400]750017600 |7700 17800 |7900

.
oolop

5782 |5880 |5978 [6076 [B17L [6272 [b370 [DLOB (650D [066L [6762 |6860 6958 | 7056 |7154 | 7252 | 7350 [7TL4E | 7546 [764LL (7742
5568 (5664 |5760 [5856 5952 |6048 6144 16240 (6336 |64,32 [6528 | 6624 |6720|6816 |6912 |7008 |7104 |7200 (7296 |7392 7488
5358 (5452 |5546 (5040|5734 |5828 (5922 |6016 (6110 |6204 (6298 | 6392|6486 |6580 |6674 |6768 | 6862 |6956 7050|7144 (7238
5152 |5244 (5336 |5428 [5520 |5612 |5704 |5796 [58B8 [5980 (6072 |616L |6256 |6348 |6440 (6532|6621, |6716 |6808 [6900 |6992
4950 |5040 |5130 |5220 5310 | 5400 [5490 |5580 [5670 |5760 |5850 | 5940 6030|6120 |6210|63006390 |6480[6570 |6660 |6750

4752 [LALO |L928 [5016 (5104 (5192 [528C |5368 [54,56 [55LL 5632 | 5720 | 5807 | 5896 5984 6072|6160 |6248 |6336 |6L24 |6512
L558 |L644 (4730 |LB16 (4902 |L988 [507L |5160 |5246 (5332 (5418 | 5504 | 5590|5676 |5762| 5848|5934 |6020|6106 (6192 |6278
4368 |L452 |L536 (4620 |L70L (4788 |LB872 |L956 |5040 (5124 (5208 |5292 (5376|5460 |5544 | 5428|5712 | 5796 | 5880 | 5964 (6048
L182 |4 264 |L346 (4428 14510 (4592 |L6TL (6756 |L838 (4920 (5002 | 5084 | 5166|5248 {5330 5412|5494 | 5576|5658 | 5740 |5822

000 |LOHO |4160 [4240 4320 [4L00 |LL8D [L560 |L6LO |4720 |LB0O |4880|4960]50L0 |5120(5200]5280(5360| 5440|5520 |5600

M = = = = O

3822 3900|3978 [4056 [4134 [4212 |L290 [L368 L4406 [L52L [LB02 [L6B0 |4758 | 4836|4914 [L.992 | 5070 |5148 5226 | 5304 |5382
3648 (3724 (3800 (3876 (3952 (4,028 |L10L (4180 |L256 |L332 |L408 | 4484 |4560|4636 (4712|4788 | L4864 |49L0| 5016|5092 [5168
3478 13552 (1626 (3700 |3774 (3842 13922 3996 |4070 |L14d [L218 14292 |4366|LLLO (4514|4588 (4662 (4736|4810 |488L (4958
3312 3384 (3456 3528|3600 (3672 |374L 3816 (3888 [3960 [LO32 | 4104 |4176 (4248 (4320|4392 | 446l (4536|4608 |4680 [4752
3150 13220 13290 336013430 {3500 |3570 13640 |3710 [3740 [3850 |39203990|4060 4130]42004270|4340]4410 4480 [4550

2992 13050 [3128 [3196 [3264 [3332 [3L0D (3467|3536 3804 [3672 [37L0[3808|3876 [3944 | 4012 [LOH0 [41L8 (4216 [428L [L352
3036|3102 2168 (3234 |3300 (3366 (3432 3498 | 3564 (3630|3696 (3762|3828 (3894 |3960|4026 [4092 |L158
268# 12752 2416 | 2820 (2944 | 3008 13072 (3136 |3200 (3264 [3328 |3392(3456|3520 (3584 (3648 (3712|3776|3840 (3904 (3968
2542 12604 (2666 | 2728 | 2760 (2452 2914 (2976 (3032 |3100 (3162 |3224 (3286|3348 |341043472]3534 |3596|3658 3720
2400|2460 |2520 [2580| 2640 12700 |2760 | 2820 |288C 2940 [3000 [3060{3120]/3180]324013300]/3360[3420(3480

4 & & 8

2262 12320 12378 |2L36 [249L [2552 |2610 [266E [2726 |27806 |2842 [2000 [2958 3016 3074 |3132(3190(3248
2128 2184|2240 (22962352 |12408 |246L |252C (2576 | 2632 (2688 | 2744 [ 2800| 2856 | 2912 | 2968 | 3024
1997 12052 (2106 [2160 (2214 |2268 |2322 (2376 |2430 |2484 [2538 | 2592 | 26L6| 2700|2754 [ 2808
1872|1924 (1976 (2028 (2080|2132 |218L 2235 2288 |2340 [2392 | 2444 | 2496 2548 | 2600
1750 {1800 1850 1190019502000 |2050 (2100 (215012200 |2250 | 2300]2350| 2400

1632 (1680|1728 |1776 (1824 [1872 [1920 1968 (2016 [2064 [2112 [2160[2208
1518 (1564 |1610 |1656|1702 (1748 [1794 | 1240 (1486 11932 |1978 | 2024

1L0# 11452 | 1496 1540|1584 (1628 |1672 1716|1760 [1804 (1848
1302 |1344 |1386 |1428 [1470(1512 |1554 1596 (1634 (1680
1200 /124011280 11320(1360 1400|1440 |1480|1520 Note: Above values must be multiplied by 10-%

1102 (1140(1178 [1216[1254 (1292 [133C (1368
1008 [1°44 (1070 (1116(1152|1148 |1224
001# 10952 |0986 |1020| 1054 |1088
OR32 |0B6L | 0296 | 0928 | 0960
0750|0720 |0210 |0540
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0672|0700 0728
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Euwmof [Hd

M —a(l—a)+c(l1 — —
Table 3—Values of LU ( )te(l—d(2—0¢
FyS 2b
a

c | 0,20] 0.22] 0,2 0!36 8] 0,30] 0.32] O, 0,36] 0,38] © 0.42] O.4LL] 0.L6] 0.LB] 0.50] 0.52] 0.5L] 0.56 | 0.58 | 0.60 |
[0.00{-1200[-1342 |-1LE6(-163 -i?%ﬁ -1950|=2112 -22%ﬁ —241,B [=2622 |- 3%% —20R2 |—3158 |=1358 |=1552 |=1750 |=3952 =L 158 |-368 |=L5R2 [=LB00
0.02[-0082 [-1122|-1266] 1414 |=1566 | -1722 |-1882 [-2046 |-2214 |-2386 [-2562| -2742 | -2926 |-311L |-3306 [=2502 [-3702 <3908 |-L1LL |-1, 375 |-45L2
0. 04| -0768 | -0906 | -1068| 1194 |-1344 |-1498 [-1656 |-1818 | -1984 [-2154 | -2328| -2506 | -2688 | -2874 |-3064 |-3258 |-3456 ~3658 (-386L |-LO74 |-4288
0. 06| -0558 |-0694 | -0834 | -0578 |-1126|-1278 [-1434 [-1594 |-1758 [-1926 | -2098| -2274 | -2454 | -2638 |-2826 |-2018 |-3214 (-3414 (-3618 |-3826 -4,038
0. 08| -0352 |-1426 | -062L| ~0766 |-0912|-1062[-1216 [-1374 |-1536 [-1702 | -1872| -2046 | -2224 | -24,06 |-2592 |-2782 |-2976 (-3174 (-3376 |-3582 |-3792

10| -0150|-0242|-0418| -0558 |-0702| -0P50|-1002|-1158|-1314 |-1482|-1650|-1822[-1998 |-2178 |-2362 |-2550 |-2742 |-2638 |-3138 |-3342 |-3550
0.12| OOLR|-0082[-0216|-035L [~04L96 | =06i2|-0702 |-0046|-1104 |-1266 |-1412] -1602|=1776 [-195L [-2136 [-2122 [-2512 [-2706 [-29CL [-3106 |-3312
0.14| 0242| 0114 |-00148| -015L |-0294 |04 28 | -0586 [-0738 | -089L |-1054 | -1218| -1386[-1552 (1734 [-1914 [-2098 (-2286 |-2478 |~2674 |-2874 (-3078
0.16| oL32| 0306| 0176| coiz |-0096|-0238 |-03284 |-0534 |-0688 |-0846 | -1008| -1174 | -1344 |-1518 |-1696 |-1878 |-2064 -2252 (-2L48 |-2646 |-2848
0.18| 0618| 0uo4| 0366| 0234 | 0098 |-00L2|-0186 |-0334 |-0486 |-0642 | -DB02| -0966|-113L | ~1306 |-1483 |-1662 |-18L6 (-2034 (-2226 |-2422 -2622
0.20| 0800) 0678| D552 22| 0288| 0150| 0008 |-0138|-0288 |-0442]-0600]|-0762 -091%.—1098 -1272|-1450 [-1632 |-1818 |-2008 |-2202 [-2400
D.22| 0978 08S&| O73L| 0606 OL74| 0338] O198| 0054 |-009%4 [-0246|-0402] -0562| ~0726 |02k |-1066 [-1242 [-1422 [-1606 [-1794 |-1986 |-2162
0.24] 1152| 1034 | 0912| 0786 | 0656| 0522| 0384 | 0zi2| 0096|-0054|-0208|-0366|-0528 |-069L |-0861 |-1038 |-1216 |-1398 |-158% |-177) -1968
0.26| 1322| 1206| 1026 0962 0f34| 0702| 0566| ouz6| 0282| 0134 |-0018|-0174]-0334 |-0498 | -0666 |-0838 |-1014 (-1194 (-1378 |-1566 |-1758
o0.28| 1L88| 1374| 1256 1134 | 1008| 0878| o7uL| 0606| oL6u| 0318 0168| 0OL4|-Olkl |-0306|-0472 |-0642 |-0816 (0994 (-1176 |-1362 |-1552
0.30] 1650| 1538] 1222] 1302] 1178| 1050| 0918| o7¢2! oé42| ohoR| 0is0| 0198| 0042|-0118]-0792]-0L50 |-0622 [-0798 [-0978 -1162|-1350
053] 18081 1604] 1564] 1L66| 13LL| 1218| 1088| 095, | OR156| 0674 0528]| 0378| 0224 | 0066|-0096(-0262 [-0432|-0606 [-078L |-0966[-1152
0.34| 1962| 185L| 17u2| 1626| 1506| 1382| 1254| 1122| 0986| 0246| 0702| 0554| 0402| 02u6| 00B6|-0078 |-02L6 (-0L18 (-0594 |-0774 |-0958
0.36| 2112) 2c06| 1206| 1782| 166L| 15u2| 1416| 1286| 1152| 1014 0872| 0726| 0576 OL22| 0264 | 0102 |-0064 [-0234 (0408 |-0586|-0768
0.38| 2252| 2154 20L6| 1934 | 1814| 1698| 1574 1446| 1314 | 1178| 1038| o#9L| o7u6| 0594 | Ou38| 0278 | OLLL |-0054 (-0226 -0LO2
o.%40| 240c| 2298| 2192] 2082 | 1964| 18s50| 1722| 1602| 1272| 1:38| 1200| 1058| 0912| 0762| 0608| 0450 | 0288 | 0122|0048
0.42| 2538 2L38| 2334 2226 2114] 199#| 1878 1754 | 1626 1&92 1358| 1218 1074 | 0026| O77kL| UGB | 0458 | 0294
0.44| 2672| 2574 | 24,72 2366 | 2256| 21i2| 2024| 1902| 1776| 1646| 1512| 1374| 1232| 1086| 0936| 0782 | 0624
0.46| 2802 2708| 26806| 2502 | 2394| 2282| 2166| 2046 1922| 1764| 1662| 1526 1386| 1242| 1094| 0942
0.48| 2928 2834 | 2736 2634 | 2528| 2u18| 2304| 2186| 2064 1938| 1408| 1674| 1536| 1394 | 1248
0.50] 3050| 2958| 2862| 2762| 2658| 2550| 2438| 2322| 2202| 2078 o| 1#818| 1622| 1542
0. 52| 3168 | 3078 29¢8L| 2886 | 278L| 2678| 2568 2454 | 2338] 2214 2083] 1958| 1824
0. 54] 3282] 319L| 3102| 3006| 2905| 2802| 2694| 2582| 2466 2346| 2222| 2094
D.56| 3392| 3306| 3216| 3122| 3024| 2922| 2815| 2706| 2592 247L| 2352
0.58] 3498| 3u14| 3326| 3234 | 3138| 3038| 293L4| 2826| 2714| 2598| .
0.60] 3600| 3518] 3432| 3342) 3248] 3150| 30481 294,2| 2832 Note: Ahove values rust be multinlied by 107
0.62] 3698| 3618| 3534| 34L6| 3354 3258] 3158] 3054
0.64]| 3792| 3714| 3632( 3546| 3L56| 3362| 3264
0. 66| 3882| 3806| 3726 36L2| 3554 462
0. 68| 3968| 3894| 3816| 3734 3648
0.70] 4050| 3978| 3902| 3R22
0. 72| 128 k& GRL
0.74] 4202| L134
0. 76] 4272




the fixed-end moment due to Table 2
s

a‘f;g:; = +0.24 .FyR
= +0.24 (100) (1.5) (%)
= +12 kip-ft.

For a=02, ¢ =04 and S =%, the
fixed-end moment given by Table 3
is

My, = +0.24 FyS
= +0.24 (100) (1.5) (%)
= +24 kip-ft,

Hence, the fixed-end moment for the
beam shown in Fig. 9(a) is obtained
by the following algebraic summa-
tion.

Mp=—125+T72+12+24=
+95.5 kip-ft,

If Fig. 9(a) is one span of a two-
span continuous beam with equal
spans, a concordant cable can be
obtained in the following manner.
Assume the cable profile can be
raised or lowered. Also assume that
the cable must keep the same de-
flected shape as in 9(a). Thus, if
only ¢, may be varied and R and S
must be retained, the values from
the tables remain the same as in
the previous calculations. The alge-
braic summation from these three
charts is M, =72 + 24 + 12 = 108
kip-ft. The fixed-end moment when
¢, is a variable is

M, =108 - £%4
108 — 50 ¢, (20a)

For the cable to be concordant, the
fixed-end moment must be equal to
the force in the cable times the dis-
tance of the cable from the centroid
of the beam. Hence,

My = +F (ey — 1.00 + 1.50)
= +100 (e4 + 0.50) (21)

February 1966

Set Eq. 20a equal to Eq. 21 and
solve for e,.

100 (¢4 + 0.50) = 108 — 50e,

+58
€4 =150 = 0.387 ft.

Hence, Fig 9(b) shows a cable pro-
file which is a concordant cable for
a two span continuous beam of
equal spans. The beam and cable
profile is symmetrical about sup-
port B.

Fig. 10 shows a symmetrical cable
profile for an interior span com-
posed of straight line segments with
sharp bends.

®

Fig. 10—Symmetrical Straight Line Segment Pro-
file for Interior Span

In a threespan continuous unit,
the moment curves will usually be
svmmetrical about the center-line of
the middle span. In a four-span con-
tinuous unit, the point of maximum
positive moment will not occur ex-
actly at the centerline of the interior
span. However, the maximum posi-
tive moment will occur closer to the
centerline of the interior span than
it will in the exterior span. Only a
cable profile which is symmetrical
about the centerline of span will be
considered.

Two equivalent concentrated loads
due to prestressing will be created
by the cable profile shown in Fig. 10.
These loads will be located at a
distance al. from each support. Fig.
11(a) shows equal positive, ie.,
downward, loads acting on the
beam, Applying the dimensions
shown in Fig. 10 with Eq. 2, the
magnitude of the equivalent concen-
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{¢) Moment Diagram Due to Fixed-End M

equal to zero (zero angle change
from A to B). The fixed-end mo-
ments are then

M, =Mp=—Pal(l—a) (23)
Substitute Eq. 22 into Eq. 23,
."'.f,l = ."”y = +Fy(1 = a) (24)

Eq. 24 gives the fixed-end moments
due to prestressing for the cable pro-
file shown in Fig. 10.

CABLE PROFILE
PARABOLIC CURVES

Fig. 12 shows a portion of a beam
with a constant cross-section that
has a parabolic shaped cable pro-
file. Section B-B is passed through
the beam where the slope of the
parabola is horizontal. Section A-A
is a section which is a distance kL
from Section B-B. The equation of
the parabola with respect to its hori-
zontal tangent at Section B-B is
A= o

“3) @~

Fig. 11—Fixed-End Beam

trated loads due to prestressing is

.. :

p=—_1 (22)

Fig. 11(b) shows the moment dia-
gram for a simple beam with two
equal concentrated loads at a dis-
tance aL from each end. Fig. 11(c)
shows the moment diagram which
is created by equal end moments.
When a beam is fixed at each end
and subjected to the symmetrical
loads shown in Fig. 11(a), the total
moment diagram for the beam can
be obtained by combining the mo-
ment diagrams shown in Figs. 11(b)
and 11(c) to make the total area

56

KL
Fy
F Cable— C.6—.4 :
- _z-cxz i't i
X,
i A Ll F
L ow,

Fig. 12—Equivalent Uniform Load Due to Para-
bolic Cable

Since the cable profile is para-
bolic, the moment curve induced by
the prestressing force is parabolic.
From elementary structural theory,
if a moment curve is a parabola, the
load condition which produces it is
a uniform load. Again it is assumed
that the loss due to friction is negli-
gible and the horizontal component
of the cable force taken is equal to
the total force on the cable. Section
B-B is a point of zero shear because
the slope of the moment curve, like

PCI Journal




the cable, is horizontal when the
beam is considered under the action
of the prestressing force alone, Let
wy be the equivalent uniform load
due to prestressing. I is the force
in the cable, t is the vertical rise of
the parabola, and kL is the hori-
zontal length of the parabola being
considered. Take moments at Sec-
tion A-A at the point of the cable
and set this moment summation
equal to zero,

wpk?l? _

SM=Ft—"222 =0 ()
Solve Eq. 25 for wy.
2 Ft
Wye =ﬁ (26)

Fig. 13 shows an end span with
a cable profile composed of three
different parabolas. The cable pro-

Fig. 13—Possible Parabolic Profile for End Span

file is continuous and the parabolas
have a common tangent at their
points of intersection at G and H.
The equations for these curves are

, X Ry
R=ays (27)
x?
&= bg L-; (28}
and
Lo
T Lt (29)

Eq. 27 and 28 have horizontal tan-
gents at their origins, ie, x=0,
which is the common point between

February 1966

the two curves, Eq. 29 has a hori-
zontal tangent at the fixed end of
the beam. For Eq. 28 and 29 to have
a common tangent at their intersec-
tion, the derivatives of each curve
must be equal at point H. The
derivative of Eq. 28 at x = DL is

dz _ 2mx _2m

& "L BL )
The derivative of Eq. 29 at x = ¢L is

az _2nx _2n

o s (31)

Equate Egs. 30 and 31 and com-
bine terms,
m_ b

n c

(32)

From Fig. 13, it can be seen that
a+b+c=1 and m+n=y. Thus
with these two equations and Eg.
32, m and n can be expressed in
terms of ¢, b, a and v.

n
ﬂ:y—m=y—T=

yc yc

P ey e (33)
and
o Ul SO |
mEySnsg =
yb _ yb
c+b (1—a) (34)

Let w, be the equivalent uniform
load over the aL portion of the span,
w, the equivalent uniform load over
the bL portion of the span, and w.
the equivalent uniform load over the
cL portion of the span. The uni-
form loads are considered positive
when acting in a downward direc-
tion. Using the above load notation
and the dimensions shown in Fig.
13, the Eqs. 26, 33 and 34, the equa-
tions for the equivalent uniform
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loads are

2F Ry "
w,,z—?ﬁ*i (35)
st | SSIB g
Wy = b(l = a) Iz (36}
and
W 2Fy -
M=t A — g (37)

Equations for the fixed-end mo-
ments of a propped cantilever beam
with a uniform load over portions
of the span will now be derived.
Fig. 7 shows a propped cantilever
beam with a concentrated load at
x distance from the hinged-end. The
equation for the fixed-end moment
for the beam in Fig, 7 is
Px{(ls=x
Pe(l? ) i

Fig. 14 shows a method of express-
ing a uniform load as an infinite
number of concentrated loads along
a beam. The magnitude of these con-

r’=wdx

:l\{.n =

W—7

-

|
U H b
r|
|
l

P
Zg

eam
dyz

ey

% dx '}

—

Fig. 14—Method of Expressing Uniform Logd as
Infinite Number of C rated Loads

centrated loads is P = w dx, where
w is the uniform load on the beam
and dx is an infinitely small length
of the beam. Substitute this value

88

of the concentrated load into Eq. 6.

 (wdx) x (L* — x*)
Y E

Eq. 38 is the equation for the fixed-
end moment of a propped cantilever
beam due to a uniform load over an
infinitely small length of beam at a
distance x from the hinged-end. The
equation for fixed-end moment due
to a uniform load over a portion of
the span can be obtained by inte-
grating Eq. 38 between the limits
of the load.

In Eq. 38, let w=1w, and inte-
grate between the limits of x=0
and-x =aL.

ol C R ps
M":E w, x (L? — x*) dx

My = (38)

f Y
_ W __L”x'*ﬂ]"'
=i x o BRI
:—%(2—&2) (39)

Eq. 39 is the equation for the fixed-
end moment at B for the beam in
Fig. 15(a).

Let w=w, in Eq. 38. Integrate
Eq. 38 between the limits of x = aL
and x=(a+b) L.

AML o e (12 — x2) da
M, =5 1&;.1(2['2 ) dx _

Wy ﬂ—iﬁ, (at Bl i
I iy 2 4 b —

il 2D 4 o
7z [2LY(at+b)

(a+b)*L*—2a*L*+a'L+]

O [(at+b)[2~(a+bF] -

a*(2—a*)] (40)
Eq. 40 is the fixed-end moment at
B for the beam in Fig. 15(b).

The equation of the fixed-end mo-
ment for the beam in Fig. 15(c)
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Fig. 15—Three Loading Conditions for Uniform
Load Applied to a Propped Cantilever Beam

will now be derived. Let w = w, in
Eq. 38. Integrate Eq. 38 between
the the limits of x=(1—¢)L and
1- = Il-

(" wex(L*—a2)dx
MB_ ]fl‘-t!f‘ 2 L'-]

_ Wy [L2x2 gAY
TR T T

Q=e)l

= — w"8L2 [1-(1- c)ef

__w L2 (@)
== 8 (41)

The equation for the fixed-end
moment of a propped cantilever
beam due to an applied moment at
the hinged-end has appeared pre-
viously. This equation was

M,,=—~%=—52"l )

“ebruary 1966

Add algebraically Eqs. 39, 40, 41
and 9,

wl?a*(2—a?)  wL?
8 8
[(a+b)= [2—(a+b)*]—a*(2—a® }

wL*c2(2—¢c) m,,,
3 —2—(42}

Substitute Eqs. 35, 36 and 37 into
Eq. 42.

My =5 [ Gmet) (R )+
(a+b)[2—(a+b)]

Mh:

b(l—a)
¢(2—c)? Fey
=) ]‘ g (8

If the cable location at A coin-
cides with the centroid of the beam.
e, =0.If e, =0, Eq. 43 reduces to

e o B - a*

(a+b)* [2—(a+b)*] i
b(1—a)
c(2—c)*
= R
Substitute a+b=1—¢ into the
middle term of Eq. 44.

Kyl _avfn.. @
(1—=c)* (14-2c—c?)
b(1—a)

e(2—c)*
e } (45)

Eq. 44 or Eq. 45 will be used to
develop design tables that will en-
able a rapid calculation of My A
correction can easily be made if e,
does not equal zero.

Design tables for Eq. 44 or Eq.
45 are Tables 4 and 5. In calculus
it was shown that

AM, = (M) AR (46)

-+

dR
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In Eq. 46, A My is the change in
the fixed-end moment at B, AR is
the change in the variable R, and
oMy
dJR
with respect to R. The partial deriv-
ative of Eq. 45 is

M »
dR

Substitute Eq. 47 into Eq. 46,

is the partial derivative of M

=3-2-a) (47)

AM, = +I;u (2—a?)(AR) (48)

If F, y and a are constant in Eq. 48,
then the change in My is propor-
tional to the change in R. Eq. 48
reveals that if the value of a is con-
stant, R produces a linear effect on
the fixed-end moment at B.

For Tables 4 and 5, straight line
interpolation may be used with the

Table 4
Solution of le;“ - : )
2-32
a 1
0.35 | 0.469375
0.36 0.467600
Os37 0.465775
0.38 | 0.463900
0.39 0.461975
0.40 0.460000
DLLE 0.457975
O.L2 0.455900
O.43 0.453775
O0.44 0.451600
0.45 | 0.449375
0.4L6 0.447100
0.47 0.444775
0.48 0.442400
0.49 | 0.439975
0.50 0.437500

same accuracy that occurs in Tables
1, 2 and 3. From Tables 4 and 5, it
is observed that if the variables, R
and a, are held constant, My de-
creases when ¢ is increased. If the
variables, R and ¢, are held con-
stant, M, increases when a is in-
creased.

Parme and Paris® have derived a
formula for the fixed-end moments
due to prestressing for an interior
span. The cable profile is made of
parabolas and is symmetrical about
the centerline of the interior span.
The equation which they derived,
expressed in the notation of Fig. 16
is

Fy(l—a)
1.5

Beam sign conventions apply to
Eq. 49.

My=My=+ (49)

[ g
i cds s ) aL |
L L2 J
I - - —a

Fig. 16—Symmetrical Parabolic Cable Profile for
Interior Span

Next an elastic design example
will be given illustrating the use of
Tables 4 and 5. Fig. 17 shows a
three span continuous beam (50.0 ft.
—60.0 ft.—50.0 ft.) subjected to a
uniform load of 600 lbs. per foot
and a uniform live load of 1000 Ibs.
per foot. For simplicity, no partial
span loading of the live load is
used. Fig. 18 shows the maximum
and minimum moment curves for
this beam.

Fig. 19 shows the selected beam
which has a kern distance of 7.0
inches. The limiting zone for the
center of pressure on concrete is
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Solutioniof 2 )
Fy

Table 5

a’(2—a%

+

(1—e2 (1 +2c—c’)_c{2—c)’

| b(1—a)

b(1—a)

i

a)

]

¢ [0,35]0.36]0.37

0.40]0.41

=02 | L390| 4457
.03 || 4307|4374
04 || k225| 5292
05l L14k(L2]
.06 || 4063|412

_._8_?_ 55;6]&62” ggﬁs
. 4473 L5L0] L60

115

L52L
hhh2
4359

L115
4034

_&.3.90 4970
LEL5]LBBS

47314801
L6LT | K717
46

332
N o

7(093
.53 1 0820|0874
.54 | 0763|0817
=551 070610760

1156/1213
1039|110

«56] 0650 {J?Clk
57| 0595|064
.58 0540|0593
<591 048510538

Note: Above values must be multiplied by 10-k
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DEAD LOAD

~Live Load= 000", -
I B
r o o o

LIVE LOAD: CASE A

E' —Live Load=|000%:

e s 7 i
LIVE LOAD: CASE 8

—Live Lood=/000%

I
an wir & o

LIVE LOAD: CASE C

Live Load= 1000%;-
P

- e

LIVE LOAD: CASE D

Fig. 17—Design Loads for Three Span Continu-
ous Beam

also designated. No tension stress is
permitted in this beam.

A concordant cable consisting en-
tirely of parabolas will be deter-
mined for this beam. For this design
a prestressing force of 450 kips will
be used. By inspecting Fig. 19, the
following values have been chosen
for span AB: a=042, ¢=0.08,
R=04, y=1.073 ft.

From Table 4, when a = 0.42, the
value is 0.455900 and from Table 5
when a = 0.42 and ¢ = 0.08, the val-
ue is 0.4373. Hence the constant to
calculate the fixed-end moment at
end B of span AB is 0.4373 + 0.4
(0.455900) 0.6197. Thus the fixed-
end moment is

M = 0.6197 Iy

= 0.6197 (450) (1.073)
= 300 kip-ft.

The stiffness of span AB at joint
B is a 3 EI/L member and due to
symmetry of loading, the stiffness of
span BC is a 2EI/L member.
IHence, the distribution factors in
the moment distribution analysis is
0.643 for member BA and 0.357 for
member BC.

Fig. 19 shows that the cable is
located 0.644 ft. above the centroid
of the beam. For the cable to be
concordant, the final moment must
equal 450 (0.644) =290 kip-ft. The
final moment is now known and
the fixed-end moment in span
AB is known. Now a cable profile
and a fixed-end moment in span BC
must be chosen such that the cable
will be concordant. Let v be the
unknown fixed-end moment in span
BC and solve for v using moment
distribution (see Fig. 20).

Thus
+290 = + v + (300-0)0.357
v = 284 kip.-ft.
From Eq. 23, the cable profile in
span BC is determined.

S lany b Ryfl =gl
S e
450y (1 —

—*!{g a)=300y(1—a)

The value of a is selected to be
0.08. Hence,
284
y= W = 1.08 ft.
Fig. 19 shows a concordant cable
for the beam and presents an elastic
design solution.

CONCLUSION

Data presented in Tables 1 and 4
are parabolic data. Also data pre-
sented in Tables 3 and 5 are para-
bolic¢ in both the a and ¢ directions.
Data presented in Table 2 are para-
bolic in the ¢ direction and linear
in the a direction. When data are
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parabolic, exact values may be cal-
culated by use of parabolic interpo-
lation coefficients which may be
developed by using Lagrange’s In-
terpolation Polynominals. For those
not familiar with this method and
for those who do not feel that this
refinement is necessary, straight line
interpolation will give accuracy
equal to or less than 1 in the fourth
decimal place.

Equations and data for fixed-end
moments for the end-spans of con-
tinuous units have been computed
and derived for a beam fixed at one
end and simply supported at the
other end. These boundary condi-
tions must be considered when using
these fixed-end moments in the
structural anlaysis of the beam.

The tables and equations pre-
sented in this paper offer the de-
signer great flexibility in selecting
his cable profile and a rapid method
of calculating fixed-end moments
due to prestressing for further use

in structural analysis.
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Texas in partial fulfillment of the requirements for the degree
of Master of Science in Civil Engineering.

Discussion of this paper is invited. Please forward your discussion to PCl Headquarters
before May 1 to permit publication in the August 1966 issue of the PCI JOURNAL.
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