## OIF PLL Interoperability Demo CEI-224G

ECOC 2022 19-21 September 2022 Basel, Switzerland

# OIF's Common Electrical I/O (CEI) Work

## Has Been a Significant Industry Contributor

| Name       | Rate per pair | Year   | Activities that Adopted, Adapted or were influenced by the OIF CEI                                   |
|------------|---------------|--------|------------------------------------------------------------------------------------------------------|
| CEI-224G   | 224Gbps       | 202X   | Several channel reach projects in progress, kicked off in 2022                                       |
| CEI-112G   | 112Gbps       | 2022   | Seven channel reach projects in progress, IEEE,<br>InfiniBand, T11 (Fibre Channel), Interlaken, ITU. |
| CEI-56G    | 56Gbps        | 2017   | IEEE, InfiniBand, T11 (Fibre Channel), Interlaken, ITU                                               |
| CEI-28G    | 28 Gbps       | 2012   | InfiniBand EDR, 32GFC, SATA 3.2, SAS-4,100GBASE-KR4,<br>CR4, CAUI4, Interlaken, ITU                  |
| CEI-11G    | 11 Gbps       | 2008   | InfiniBand QDR, 10GBASE-KR, 10GFC, 16GFC, SAS-3,<br>RapidIO v3, Interlaken, ITU                      |
| CEI-6G     | 6 Gbps        | 2004   | 4GFC, 8GFC, InfiniBand DDR, SATA 3.0, SAS-2, RapidIO v2, HyperTransport 3.1, Interlaken, ITU         |
| SxI5       | 3.125 Gbps    | 2002-3 | Interlaken, FC 2G, InfiniBand SDR, XAUI, 10GBASE-KX4, 10GBASE-CX4, SATA 2.0, SAS-1, RapidIO v1, ITU  |
| SPI4, SFI4 | 1.6 Gbps      | 2001-2 | SPI-4.2, HyperTransport 1.03                                                                         |



## OIF CEI-224G New Project Starts



- New Projects started at OIF Q1 2022 meeting
- One SerDes core might not be able to cover multiple applications from XSR to LR
- For short reach applications, simpler and lower power equalizations are desired



Copyright © 2022 OIF



This demonstration is an industry first operational showcase of 224G LR PHY (112GBd PAM4) from Synopsys being driven by a Keysight M8199 Arbitrary Waveform Generator, through a high bandwidth (120GHz) 1mm based ISI board modeling package and channel losses.



#### CEI-224G: Framework Document



| OIF                                                                              |             |  |  |  |
|----------------------------------------------------------------------------------|-------------|--|--|--|
| CONTENTS                                                                         |             |  |  |  |
| GLOSSARY <sup>†</sup><br>1 EXECUTIVE SUMMARY<br>2 INTRODUCTION                   | 5<br>8<br>9 |  |  |  |
| 2.1 Purpose                                                                      | 9           |  |  |  |
| 2.2 Motivation                                                                   | 10          |  |  |  |
| 2.3 Challenges and possible solution space                                       | 10          |  |  |  |
| 2.3.1 Challenges of channel requirements and characteristics                     |             |  |  |  |
| 2.3.3 Challenges of material characteristics properties fabrication and modeling |             |  |  |  |
| 2.3.4 Challenges of modulation, equalization, target DER, and FEC/latency        |             |  |  |  |
| 2.3.5 Challenges of test and measurement                                         | 22          |  |  |  |
| 2.4 Summary                                                                      |             |  |  |  |
| 3 INTERCONNECT APPLICATIONS                                                      | 28          |  |  |  |
| 3.1 Die to Die Interconnect Within a Package                                     |             |  |  |  |
| 3.2 Die to optical engine within a package                                       |             |  |  |  |
| 3.3 Chip to Nearby Optical Engine                                                |             |  |  |  |
| 3.4 Chip to Module                                                               |             |  |  |  |
| 3.5 Chip to Chip within PCBA                                                     |             |  |  |  |
| 3.6 PCBA to PCBA across a Backplane/Midplane or a copper cable                   |             |  |  |  |
| 3.7 Chassis to Chassis within a Rack                                             |             |  |  |  |
| 3.8 Rack to Rack side-by-side                                                    |             |  |  |  |
| 3.9 Longer links                                                                 |             |  |  |  |
| 3.10 Interconnect Application Summary                                            |             |  |  |  |
| 4 POINTS OF INTEROPERABILITY                                                     | 34          |  |  |  |
| 5 OPPORTUNITIES FOR FUTURE WORK                                                  | 36          |  |  |  |
| 6 RELATION TO OTHER STANDARDS                                                    |             |  |  |  |
| 7 SUMMARY                                                                        | 38          |  |  |  |

- Summarizes the consensus findings and guidance for new OIF CEI-224G projects
- Identifies key technical challenges for next generation systems
  - Power, density, performance, reach and cost
- Defines electrical interconnection applications and discusses some of the interoperability test challenges
- Establishes baseline materials that will enable 1.6/3.2 Tbps rate architectures and lower cost, lower complexity 800G and 400G architectures



**OIF-FD-CEI-224G-01.0** published in February 2022



Copyright © 2022 OIF

CEI Participating Members!





Copyright © 2022 OIF

6





#### www.oiforum.com



Copyright © 2022 OIF