
1. Introduction
Wildfire size and frequency have recently increased in the western United States (Iglesias et  al., 2022), with 
further increases expected in the future (Abatzoglou et  al.,  2021; Ellis et  al.,  2021). Recent years have been 
particularly severe, with considerable impacts on ecosystems, nearby populations, and air quality. For instance, 
in California, wildfire burned area in 2020 was approximately double the previous record, and the eight largest 
fires in California's recorded history have occurred since 2017 (Cal Fire, 2021). Understanding the precise causes 
of these intensifying effects is challenged by the fact that wildfires are complex phenomena driven by many 
factors. For example, vegetation density (Hessilt, 2022), dead fuel moisture (Dorph et al., 2022), winds (Keeley 
& Syphard, 2019; Kolden & Abatzoglou, 2018), and extreme fire weather (Goss et al., 2020; He et al., 2022) all 
affect fire likelihood in complex and non-linear ways.

A first step toward understanding wildfire behavior is being able to predict its occurrence. Among the drivers of 
wildfire occurrence, arguably the least understood is live fuel moisture content (LFMC, the mass of vegetation 
moisture per unit of dry biomass). LFMC depends on not just recent hydrometeorology, but also soil and plant 
characteristics that affect rates of water uptake and water loss, including soil hydraulic properties, rooting char-
acteristics, and xylem and stomatal traits (Nolan et al., 2022; Pivovaroff et al., 2019; Rao et al., 2022). Spatial 
variations of these traits are known to be large and likely important to LFMC and fire, but are poorly mapped 
(Novick et al., 2022). Furthermore, in situ LFMC measurements are prohibitively labor-intensive to be made 

Abstract Live fuel moisture content (LFMC) is a key determinant of landscape ignition potential, but 
quantitative estimates of its effects on wildfire are lacking. We present a causal inference framework to isolate 
the effect of LFMC from other drivers like fuel type, fuel amount, and meteorology. We show that in California 
when LFMC is below a critical flammability threshold, the likelihood of fires is 1.8 times as high statewide 
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Plain Language Summary Wildfires are complex phenomena and can occur under a range of 
conditions, making it difficult to determine how different drivers affect wildfire occurrence. For example, 
dense contiguous vegetation, dry litter, dry vegetation, high winds, and warm air all contribute to high fire 
likelihood. Under such co-occurring conditions, how can we determine each driver's effect on fire likelihood? 
Here, we present a framework to attribute an individual driver's effect on fire occurrence, while controlling 
for other correlated factors that might provide a false signal. We consider lightning-based ignitions, assuming 
they are randomly distributed, and compare the fire outcomes for different vegetation dryness levels, all else 
held constant. We test our framework in California and find that when vegetation is dryer than the critical 
flammability threshold, wildfire likelihood increases by almost a factor of two. These results help clarify 
the uncertainty in the effect of vegetation dryness on fire occurrence, and may also help improve wildfire 
preparedness, management, and response strategies.
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at high spatio-temporal resolution. As a result, many fire danger models at most only partially account for the 
effects of soil and plant traits on LFMC (Bradshaw et al., 1984; Fujioka et al., 2008; Hardy & Hardy, 2007; Yebra 
et  al.,  2013). It is thus crucial to understand whether these modeling limitations significantly affect wildfire 
predictions.

Recent developments in remote sensing-based LFMC mapping (Quan et al., 2021; Rao et al., 2020) now enable 
detailed studies of LFMC's role in wildfire occurrence. Several studies show a strong threshold-like correlation 
between low LFMC and wildfire occurrence (Chuvieco et al., 2009; Jurdao et al., 2012; Luo et al., 2019) or 
burned area (Dennison et al., 2008; Nolan et al., 2016). However, correlative studies such as these may inflate 
the effect of LFMC on wildfire occurrence due to cross-correlation between LFMC and other wildfire drivers 
like atmospheric aridity and winds. Additionally, previous studies of LFMC's influence on fire occurrence have 
generally lacked a reliable counterfactual. For example, if a region didn't burn, was it due to LFMC being too wet, 
a lack of ignition sources, or other, non-LFMC-related differences with regions that did burn?

Existing studies use two methods to approximate this alternative. Some use a random sampling of all unburned 
areas as a comparison (Chang et al., 2013; Chuvieco et al., 2009), thereby implicitly assuming that the unburned 
areas also experienced an ignition, an assumption which may not always hold (Abdollahi et al., 2019; Villarreal 
et al., 2022). Other studies use the areas just outside the burn scar as a comparison, assuming that LFMC was too 
wet outside the burn scar for the burn scar to extend further (Jurdao et al., 2012; Yebra et al., 2018). Although 
this method has the benefit of relying on areas near known ignitions (which may have similar fuel distribution 
as adjacent burned areas), factors such as human containment and meteorology may also affect the shape of the 
burned scar, undermining the resulting inferred LFMC effects. Our solution is to focus on lightning-caused fires, 
taking advantage of the fact that lightning occurrence is both an observable and pseudo-random source of poten-
tial ignitions enabling robust causal inference.

2. Methods
We design a randomized control experiment to estimate the effect of LFMC on lightning ignition probability hold-
ing all other geographic, topographic, meteorological, and fuel factors constant. We create lightning pairs within 
land cover types with one having dry LFMC and another having wet LFMC while minimizing differences in other 
covariates (Figure 1). We apply our approach to forests, shrubs, and grasses in California between 2016 and 2021.

2.1. Creating Matched Pairs of Lightning Events

We classify each lightning event as occurring over either dry or wet pre-fire LFMC based on land cover-specific 
thresholds, with dry-LFMC lightning events defined as those associated with a pre-fire LFMC below 55% for 

Figure 1. Approach to select lightning events used for causal inference. Brown (cyan) circles indicate lightning events at 
places where live fuel moisture content is less (greater) than a pre-determined threshold. To find matched pairs of lightning 
events with similar covariates, we compute the Mahalanobis distance (calculated over all covariates) across all possible 
dry-LFMC and wet-LFMC pairs and matched pairs were chosen to minimize the sum of the between-pair Mahalanobis 
distance across all matched pairs. Note that while 12 features are used for matching, only two feature axes are shown here for 
visualization.
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grasslands, below 106% for shrublands, or below 81% for forests. We choose these thresholds because previous 
work in Argentina showed that fire size varies across these breakpoints (Argañaraz et al., 2018), which are simi-
lar to thresholds established in Californian chaparral (Dennison & Moritz, 2009). We classify LFMC to enable 
causal estimation of LFMC's effect on fire likelihood based on the potential outcomes framework (see Text 
S1 in Supporting Information S1). However, the relevance of such thresholds may be context-specific (Pimont 
et al., 2019). We therefore also test the sensitivity of our results to varying degrees of LFMC difference from this 
threshold.

Each lightning pair consists of a dry-LFMC strike and a wet-LFMC strike, with land cover being identical and 
all other wildfire-related properties being as similar as possible. As covariates, we consider latitude and longi-
tude, above-ground biomass (AGB) and dead biomass to control for fuel availability (Hessilt,  2022; Safford 
et al., 2022), wind speed on the lightning day (Goss et al., 2020), cumulative precipitation 12 months before the 
lightning day, average vapor pressure deficit (VPD) over the 4 months before the lightning day to control for 
soil moisture (Dadap et al., 2019), and litter moisture effects (Dorph et al., 2022) (Table S1 in Supporting Infor-
mation S1). We use lagged aggregates for precipitation and VPD rather than instantaneous values because soil 
moisture and litter moisture have memory (McColl et al., 2017).

We control for dead fuels by replicating the Safford et al. (2022) approach to estimate dead biomass. We use 
annual tree mortality maps from the aerial detection and monitoring program (USFS, 2017) from 2012 to 2016, 
when drought-induced tree mortality was high across California (Lund et al., 2018). We filter out background 
mortality (shapefiles with <1 dead tree per acre) to isolate areas with recent mortality. We then create a cumu-
lative map by summing the remaining dead trees across 2012–2016, resulting in a map with the number of dead 
trees at the end of 2016, the starting year of our analysis. We also use mean canopy height, its spatial variance, 
and the spatial variance of normalized difference vegetation index (NDVI) in the lightning pixel to control for 
vegetation structure and its sub-grid scale heterogeneity (Fernández-Guisuraga et al., 2021), and elevation and 
slope to control for topographic influences (Holden & Jolly, 2011).

To find the lightning strike pairs with the most comparable covariates, we perform a global optimization to mini-
mize the sum of Mahalanobis distances between each pair's covariates (Text S1 in Supporting Information S1). 
We restrict our analysis to the peak fire period (June to November, Westerling et al., 2006) and to the period when 
LFMC data are available (2016–2021).

2.2. Estimating the Average Effect of Dry LFMC

The resultant data set has pairs of lightning events, each with a dry-LFMC strike and a wet-LFMC strike from 
the same land cover, and other similar covariates. For each pair, we analyze whether lightning ignited a wildfire 
in either member. We do so by checking whether a burned fire pixel appeared within 2 days of the lightning date 
in the lightning grid cell, which allows for errors in the detection date of a fire. This way, we label each lightning 
event as “fire” or “no fire.” As an independent check on the accuracy of our labels, we compare our labeled fires 
to fires from the CAL FIRE's Fire and Resource Assessment Program (FRAP) (CAL FIRE, 2023). The FRAP 
investigates the causes behind select fires. Only 3.1% of FRAP fires caused by something other than lightning 
(covering 6% by area) are considered lightning-caused fires in our data set, adding confidence to our method. We 
calculate the likelihood of a fire for the dry-LFMC and wet-LFMC lightning events separately and divide the two 
to obtain the risk ratio (Equations 1 and 2). The risk ratio quantifies the effect of dry LFMC on the likelihood of 
fire relative to that of wet LFMC.

Risk ratio =
True positives

Predicted positives
×
Predicted negatives

False negatives
 (1)

=
Dry − LFMC lightningwith ignition

Dry − LFMC lightning strikes
×

Wet − LFMC lightning strikes

Wet − LFMC lightningwith ignition
 (2)

To further characterize the effects of LFMC, we re-compute the risk ratio separately for lightning events: (a) in 
each land cover type, (b) belonging to four equal-sized bins of LFMC difference between the two lightning events 
of each pair, and (c) in each year. Finally, we quantify the uncertainty associated with each estimate of the risk 
ratio by running a conditional maximum likelihood estimation (Fisher) test to obtain 95% confidence intervals.
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2.3. Data Sets

We use daily lightning data from the National Lightning Detection Network 
(Orville et al., 2011), which has a spatial accuracy of 0.1° (∼10 × 10 km). 
We obtain fire occurrence data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) burned area product MCD64A1 (Boschetti 
et al., 2013) at 500 m resolution. To classify lightning into dry-LFMC light-
ning and wet-LFMC lightning, we use LFMC mapped across the western 
United States at 250 m resolution and a 15-day timescale (Rao et al., 2020, 
Figure S1 in Supporting Information  S1). These maps were created using 
a recurrent neural network based on synthetic aperture radar data (along 
with optical reflectance, topographic, and soil characteristics) and trained 
on ground measurements from the National Fuel Moisture Database (United 
States Forest Service,  2018). These maps have low uncertainty across the 
diverse vegetation and topography of California (R 2 = 0.63) and are further 
described in Text S2, Figures S1 and S2 in Supporting Information S1. We 
use the most recent pre-lightning LFMC to classify the lightning events.

We use 2016 and 2019 land cover data from the National Land Cover 
Database (Homer & Fry,  2012), precipitation and VPD data from the 
Parameter-elevation Regression on Independent Slopes Model (PRISM 
Climate Group Oregon State University,  2004), elevation data from 
USGS (2018), canopy height from Simard et al. (2011), NDVI from MODIS 
(Huete et al., 2010), wind speed from GRIDMET (Abatzoglou, 2011) and 
the 2010 harmonized AGB map from Spawn et  al.  (2020). Time-variable 
and high-resolution AGB datasets do not exist for California; however, we 
assume spatial variations in AGB dominate temporal variations, and neglect 
the latter. Because the lightning pairs are also matched on more recent land 
cover data, and major changes in AGB would be expected to be associated 
with land cover change, we expect the impact of this assumption to be small.

Because the lightning data has the coarsest spatial resolution of the datasets, 
we linearly average all other data to that resolution (10 × 10 km), except land 

cover and fire. For land cover, we assign the most common land cover type to each 10 km grid and filter out the 
3.2% of grid cells where it occupies less than 40% of the grid area. For fire, if any 500 m pixel within the lightning 
footprint burned, we associate that lightning event with an ignition. The data sources and their aggregation are 
summarized in Table S1 in Supporting Information S1.

3. Results
3.1. Change in Covariate Imbalance After Matching Lightning Strikes

Compared to wet-LFMC lightning strikes, dry-LFMC strikes are biased toward low precipitation, low AGB and 
dead biomass, shorter vegetation, and high VPD (square points in Figure 2). Multiple covariates (altitude and past 
VPD) differ by more than one standard deviation between dry-LFMC and wet-LFMC lightning occurrences due 
to strong cross-correlation with LFMC (Figure S3 in Supporting Information S1), motivating the need to match 
dry-LFMC and wet-LFMC lightning events to robustly determine the influence of LFMC.

After matching, the standardized difference between the covariates is less than 0.10 for all covariates except 
VPD (0.30), terrain slope (0.15) and altitude (0.32) (Figure 2). Due to the high bias in dry-LFMC lightning 
occurrences, we can match only 13,358 out of 38,581 lightning events (Text S1 in Supporting Information S1).

Of the resulting 13,358 lightning events, 235 (or 1.8%) caused an ignition (Figure  3d). Ignition likelihood 
was strongly correlated to LFMC (correlation = −0.87; Figure S4 in Supporting Information S1). Most of the 
lightning-caused ignitions are concentrated in northern California, and hence show a different spatial pattern than 
the strikes without ignitions (Figure 3a). However, we observe no related spatial patterns for the LFMC associ-
ated with lightning (Figure 3b), or across land cover types (Figure 3c).

Figure 2. Effects of matching lightning strikes on covariates. Standardized 
differences in covariates before (squares) and after (circles) matching of 
dry-Live fuel moisture content (LFMC) and wet-LFMC lightning strikes. 
Lower absolute standardized differences indicate lower differences between 
covariates, limiting their ability to confound our inference. The 𝐴𝐴 𝐴𝐴 symbol 
represents spatial variance within the lightning pixel (10 × 10 km).
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3.2. Effects of LFMC on Fire Likelihood

Across the 13,358 matched lightning events in our data set, 85 fires ignited in wet-LFMC areas, while 150 
fires ignited in dry-LFMC areas. The likelihood of wet-LFMC lightning igniting a fire is thus ∼1-in-78, 
whereas the likelihood of dry-LFMC lightning igniting a fire is ∼1-in-43. This represents a risk ratio for 
dry-LFMC lightning of 1.8 (95% confidence interval: 1.4–2.3). That is, when LFMC is less than the land 
cover-specific threshold—and under constant vegetation, fuel availability and prior meteorology—the like-
lihood of a fire is 80% higher (Figure 4a). The risk ratio is 2.5 (1.3–4.7) in shrubs, 1.6 (1.2–2.2) in forests, 
and 1.7 (0.4–6.9) in grasslands. The high uncertainty in grasslands is likely because only 8 out of 235 fires 
occurred in grasslands.

Segregating the matched pairs of lightning strikes based on their difference in LFMC 
(LFMCdry-LFMC lightning  −  LFMCwet-LFMC lightning) reveals that greater differences in LFMC are associated with a 
higher likelihood of fire (Figure 4b). The risk ratio is relatively low (1.2; 0.7–1.9) when the difference in LFMC 
is less than 10% between the matched pairs but exceeds 2.0 when the LFMC differs by more (reaching 2.2 in the 
highest bin). The risk ratio for all 𝐴𝐴 Δ LFMC categories is significant at the 95% confidence level, except when the 
LFMC difference is less than 10%.

Figure 3. Lightning, fire, and land properties across the study region. (a) Yellow (purple) points denote lightning events that 
ignited (did not ignite) a fire. (b) Brown (cyan) points denote lightning events that struck during dry (wet) Live fuel moisture 
content conditions. Note that lightning events may overlap. Only lightning events remaining after matching are shown. (c) 
Land covers included in our analysis. (d) Confusion matrix of lightning events and fire for matched pairs of lightning events.
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3.3. Annual Variation in Risk Ratio at Lightning Sites

When compared within years, 2020 had the highest risk ratio (2.3; 1.3–4.1), followed by 2017 (2.0; 1.2–3.1, 
Figure 4c). All other years' risk ratios are not significant (p > 0.05) which may be due to a combination of factors 
such as where lightning occurs each year, the interannual variability of LFMC, lower sample sizes, etc. (Table S2 
and Figure S1 in Supporting Information S1). The risk ratio in 2020 was high even though neither the fraction 
of dry-LFMC regions (0.7), nor the average difference of LFMC between each matched pair of lightning strikes 
(−19%) showed significant deviations from other years. Since risk ratios of shrubs and forests differ significantly, 
we checked for differences in land cover of lightning locations but found that 2020 is not an outlier. However, 
the lightning strikes leading to ignition in 2020 were overwhelmingly concentrated in August, unlike in other 
years when the lightning strikes with ignitions were more distributed throughout the warm season (Figure S7 in 
Supporting Information S1). Note that 2017 also had high risk ratio relative to other years, but did not have an 
anomalous lightning ignition pattern, nor other clear explanatory patterns in LFMC or land cover to explain the 
high risk ratio (Table S2 in Supporting Information S1). Further research is needed to explain the high risk ratio 
in 2017 and more generally, the annual variation of risk ratios.

4. Discussion and Conclusions
Wildfires are complex phenomena that can occur under many conditions, making it difficult to determine the 
influence of different drivers using correlative studies alone. We provide the first causal evidence that LFMC 
increases the likelihood of a lightning-caused wildfire after controlling for fuel availability, precipitation, VPD, 
winds, and other location-specific differences in fuel flammability (Figures 3 and 4). This result is robust in the 
presence of unobserved confounders (Text S3 and Figure S5 in Supporting Information S1). Thus, under the same 
fire-weather conditions, LFMC may vary enough to influence live fuel flammability.

The effect of LFMC on ignition risk varies by land cover. The risk ratio is significantly higher for shrubs (2.5) 
than forests (1.6, Figure 4a), despite the higher LFMC threshold in shrubs. Although few studies have directly 
measured the lightning ignition efficiency of individual vegetation classes, the available research demonstrates 
that vegetation composition plays a significant role in lightning fire occurrence. Even outside California, specific 
conifer species are associated with increased lightning ignition efficiency, leading to high fire occurrences in 
forests relative to other types of land cover (e.g., Oregon: Díaz-Avalos et al., 2001; Washington: Narayanaraj & 
Wimberly, 2012; Arizona: Dickson et al., 2006). Vecín-Arias et al. (2016) observed a similar phenomenon on 
the Iberian Peninsula but noted that the percentage of shrublands within a pixel was positively correlated with 

Figure 4. Risk ratio of dry Live fuel moisture content (LFMC) causing a fire. (a) Increased fire likelihood after lightning 
strikes a region with LFMC < threshold compared to lightning striking a region with LFMC > threshold, either for all pairs 
(black) or pairs of a specific land cover type (colored). (b) Same as (a), but for lightning pairs segregated by the difference 
in LFMC between lightning events of each pair. (c) Same as (a), but for lightning pairs segregated by year. For each year, 
lightning strikes are matched within the respective year only. In all plots, points indicate the mean and whiskers extend to 95% 
confidence intervals. The dashed line indicates a risk ratio of 1 (no effect).
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ignition probability due to an abundance of fine fuels. In contrast, in Tasmania, the highest ignition efficiencies 
were observed in button grass (Nampak et al., 2021). These results further demonstrate that lightning ignition 
efficiency may vary geographically, as a function of broader climatological and physiological controls.

California's shrubs and forests are located in areas with contrasting climatology and fire-climate regimes (Keeley 
& Syphard, 2017). Among areas with frequent lightning, shrubs are predominantly located in the high-elevation 
desert east of the Sierra Nevada, while occupying a higher average elevation than California's forested areas 
(Figure 3c). As a result, lightning strikes in shrubs have a significantly higher average elevation (Figure S6 in 
Supporting Information S1) than those in forests, which may influence solar radiation and its effects on live and 
dead fuel flammability. Further, our LFMC data are derived from a C-band synthetic aperture radar, which does 
not fully penetrate forest canopies. Because the retrieved LFMC is mostly sensitive to the crown—rather than 
surface—fuels, LFMC may less accurately reflect the actual live fuels burning in forests (Krawchuk et al., 2006), 
lowering the apparent influence of LFMC.

Our analysis also sheds light on the role of several factors in driving the record-setting 2020 California fire season, 
when ∼4.3 million acres burned (Safford et al., 2022). 2020 was associated with the highest risk ratio (i.e., high 
effect of LFMC on ignition probability; Figure 4c), but the risk ratio is not explained by several expected controls. 
Thus, the higher apparent effect of LFMC on lightning-ignited wildfire must have been promoted by other factors 
besides those in our framework. Tropical storm Fausto reached California between 15 and 17 August 2020, 
producing 859 lightning strikes—about 15 times more than the average for any three days between June and 
November from 2016 to 2021 according to the National Lightning Data Network. Given the unusual concentra-
tion of 2020 lightning (Figure S7 in Supporting Information S1), which coincided with an extreme heatwave over 
California, suppression activities may have been particularly challenged while firefighters attempted to contain 
large areas simultaneously (Safford et  al.,  2022). In addition, the COVID-19 pandemic may have challenged 
suppression efforts in 2020. Although more research is needed to better understand this unusual fire year, our 
results suggest that human fire management characteristics might modulate how different landscape and climate 
factors affect natural ignition risk.

Although we report an approximate doubling of the likelihood of a wildfire under dry-LFMC conditions 
(Figure 4b), fire probability remains low. When LFMC is dry, the probability of a fire given a lightning strike 
is 2.25%, compared to 1.27% when LFMC is wet (Figure 4d). These low probabilities of lightning ignitions are 
consistent with previous research (Abatzoglou et al., 2016; Dorph et al., 2022; Nampak et al., 2021).

The improved understanding of LFMC's effect on fuel flammability can be used to inform several fire manage-
ment practices. LFMC can vary significantly across landscapes and even between nearby species or individuals 
depending on soil and plant hydraulic traits (Nolan et al., 2022; Rao et al., 2022; Scarff et al., 2021), but these 
variations are not fully accounted for in fire danger models. Our robust, causal demonstration of the significant 
role of LFMC in regulating ignition probability motivates further efforts to account for LFMC in wildfire danger 
estimation, either through using remote sensing-based maps or through ecohydrological models that can forecast 
spatially variable LFMC responses to weather conditions.

Because California uses a wide network of LFMC measurements (United States Forest Service, 2018) to deter-
mine staffing levels of local and regional wildfire response units, a more accurate estimation of LFMC's effect on 
flammability may improve the allocation of firefighting resources. Similarly, a more accurate quantification of 
ignition probability can help to target public safety measures, such as power shutoffs to reduce the potential for 
accidental ignitions. Moreover, there is a severe backlog of prescribed burns in California (Miller et al., 2020). 
Since the safety of prescribed burns depends partially on LFMC (Biswell, 1999), improved understanding of 
flammability under different land cover and LFMC conditions may improve prescribed burn planning. As the 
climate continues to warm and dry, prescribed burn windows may shrink (Dong et al., 2022; Ellis et al., 2021), 
further fueling the need for an accurate estimate of LFMC's effect on flammability. Finally, as a changing climate 
alters wildfire regimes in California and globally (Ellis et al., 2021; Keeley & Syphard, 2016) our causal frame-
work may be used to attribute and update the effects of other drivers on wildfire occurrence.

Data Availability Statement
The scripts supporting the analysis can be found at https://doi.org/10.5281/zenodo.8128765. Source of all data 
used is available in Table S1 in Supporting Information S1.
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