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• A novel approach for flood risk mapping
under resource-constrained scenarios is
proposed.

• Tree-basedMLmodels are evaluated to es-
timate flood susceptibility using DTM-
derived GFDs.

• An efficient DEA-based approach is em-
ployed to map socio-economic vulnerability.

• Flood risk is derived by combining flood sus-
ceptibility and socio-economic vulnerability.

• A GIS-based flood risk map is developed at
the finest administrative-level.
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Quantifying flood hazards by employing hydraulic/hydrodynamic models for flood risk mapping is a widely imple-
mented non-structural flood management strategy. However, the unavailability of multi-domain and multi-
dimensional input data and expensive computational resources limit its application in resource-constrained regions.
The fifth and sixth IPCC assessment reports recommend including vulnerability and exposure components along with
hazards for capturing risk on human-environment systems from natural and anthropogenic sources. In this context,
the present study showcases a novel flood risk mapping approach that considers a combination of geomorphic flood
descriptor (GFD)-based flood susceptibility and often neglected socio-economic vulnerability components. Three popular
Machine Learning (ML)models, namely Decision Tree (DT), RandomForest (RF), andGradient-boosted Decision Trees
(GBDT), are evaluated for their abilities to combine digital terrain model-derived GFDs for quantifying flood suscepti-
bility in a flood-prone district, Jagatsinghpur, located in the lower Mahanadi River basin, India. The area under
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receiver operating characteristics curve (AUC) along with Cohen's kappa are used to identify the best ML model. It is
observed that the RF model performs better compared to the other two models on both training and testing datasets,
with AUC score of 0.88 on each. The socio-economic vulnerability assessment follows an indicator-based approach by
employing the Charnes-Cooper-Rhodes (CCR)model of Data Envelopment Analysis (DEA), an efficient non-parametric
ranking method. It combines the district's relevant socio-economic sensitivity and adaptive capacity indicators. The flood
risk classes at the most refined administrative scale, i.e., village level, are determined with the Jenks natural breaks al-
gorithm using flood susceptibility and socio-economic vulnerability scores estimated by the RF and CCR-DEA models, re-
spectively. It was observed that >40 % of the villages spread over Jagatsinghpur face high and very high flood risk. The
proposed novel framework is generic and can be used to derive a wide variety of flood susceptibility, vulnerability, and
subsequently riskmaps under a data-constrained scenario. Furthermore, since this approach is relatively data and com-
putationally parsimonious, it can be easily implemented over large regions. The exhaustive flood maps will facilitate
effective flood control and floodplain planning.
1. Introduction

Floods are the most widespread and the third most calamitous natural
hazard globally. There were nearly 1298 major flood events between
2010 and 2019 in the world, causing US$33.7 billion in economic loss
(IFRC, 2020). In India alone, >100,000 people lost their lives between
1953 and 2018 due to major flood events, which incurred ₹3000 billion
worth of damage to public utilities (CWC, 2019). Alarmingly, the country
also has the most socio-economically deprived population exposed to
flood risk (Rentschler and Salhab, 2020). Unfortunately, with the continual
rise of global temperature (Nilawar and Waikar, 2019; Schiermeier, 2011),
urbanization (Shastri et al., 2015), deforestation (Bradshaw et al., 2007),
and greenhouse emissions (IPCC, 2013), both the intensity and the
frequency of flood events are expected to rise, which is a severe threat
especially for developing nations such as India. Thus, flood risk assessment
is critical strategy for developing appropriate resilience pathways (Mehryar
and Surminski, 2022) and for stakeholders' allocation and management of
water resources (Kapetas et al., 2019).

“Risk” is defined as a measure of the probability and severity of adverse
effects (Lowrance, 1976). Objectively, “flood risk” arises due to the interac-
tion of hazard, exposure, and vulnerability dimensions (Kron, 2005;
Barredo et al., 2007; IPCC, 2021). Mapping flood risk by aggregating
hazard, exposure, and vulnerability helps to derive crucial information for
informed decision-making (Prinos et al., 2008). In the context of flood
risk, socio-economic vulnerability assessment is often neglected, but is a
vital component for understanding ‘to whom’ and ‘to what degree’ the
adverse impacts prevail in a society (Mishra and Sinha, 2020; Mohanty
et al., 2020a,b). Especially developing nations face high flood risk due to
their populace's high socio-economic sensitivity and low adaptive capacity
(Ward et al., 2017). It highlights the need for administrative authorities,
researchers, and water resource planners to come together to strategize
and implement various flood management options to lessen the risk and
damages associated with these hydro-climatic extremes (Dilley et al.,
2005). Structural and non-structural measures are the two primary options
for flood risk management and mitigation (Mohapatra and Singh, 2003;
Yamini et al., 2020; Kuriqi and Hysa, 2021; Ardiclioglu et al., 2022). Of
these options, the latter is more sustainable due to its reversibility, accept-
ability, and environment-friendliness (Kundzewicz, 2002). Assessment and
mapping of flood risk elements is one suchwell-known non-structural mea-
sure and is used to identify flood hotspots (Díez-Herrero et al., 2009). Flood
hazard is a key element of flood risk and has been characterized by flood
extent (Manfreda et al., 2014),floodwater depth (wd) and floodwater veloc-
ity (wv), the combination of wd and wv (Mohanty et al., 2020a,b), insurance
rate at a region (Burby, 2001), flooding area (Shareef and Abdulrazzaq,
2021), flooding susceptibility (Rahman et al., 2019), pedological distribu-
tion (Sangwan and Merwade, 2015), bankfull discharge (Chau and
Thanh, 2021), among others. Hydraulic-hydrodynamic modeling (HHM)
approaches have been employed for estimating flood extent, wd, and wv at
fine resolutions, i.e., 1 m resolution. However, these complex models not
only require multi-domain and multi-dimensional input data but also
require intensive computational facility and financial resources. Therefore,
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their application is limited in data- and resource-constrained scenario,
mostly an issue of developing nations (Samela et al., 2018). Various alterna-
tive approaches have been researched and adopted to map flood hazard
under such circumstances. Many of these alternative approaches use digital
terrainmodels (DTM) and other remotely sensed products to estimateflood
hazard (Noman et al., 2001; Pradhan, 2010).

These approaches suggest that a region's underlying geomorphological
signature influences its flooding behavior (Hack and Goodlett, 1960).
Various geomorphic flood descriptors (GFDs) such as topographic index
(Beven and Kirkby, 1979), multi-resolution valley bottom flatness index
(Gallant and Dowling, 2003), downslope index (Hjerdt et al., 2004), modi-
fied topographic index (Manfreda et al., 2011), height above the nearest
drainage (Nobre et al., 2011), geomorphic flood index (Manfreda et al.,
2014), DTM-derived flood depth (Nardi et al., 2006), and others represent
a variety of hydro-geomorphological relationships. These descriptors have
been extensively used for estimating natural hazards such as floods
(Ghosh et al., 2019; Papaioannou et al., 2015), landslides (Ayalew and
Yamagishi, 2005), and even forest fires (Pourghasemi et al., 2020). The
extensive adoption of GFDs for quantifying the severity of these natural
hazards is primarily because of the unrestricted and near-global availability
of remotely sensed products such as DTMs (Gorokhovich and Voustianiouk,
2006). In the context of flood risk assessment, GFDs have been used for
flood extent mapping (Degiorgis et al., 2012), estimation of flood depth
(Manfreda and Samela, 2019), andflood hazard and susceptibilitymapping
(Pradhan, 2010; Mishra and Sinha, 2020).

Flood susceptibility has often been used to characterize flood
hazard. It is the propensity of a region to flooding due to its physical
attributes (Vojtek and Vojteková, 2019). A recently popular way to esti-
mate flood susceptibility is by using machine learning (ML) models,
which can combine geographic information system (GIS) layers of phys-
ical attributes into a flood susceptibility layer. This approach is more
accessible and economical compared to HHM approaches because it
requires less data and resources. Generally, a group of preselected ML
models is trained on a small sample of training data consisting of the
values of physical attributes at a location with its corresponding
flooding status (flooded or non-flooded). Post-training, the probabilistic
output of the best MLmodel is generalized over the study area. The need
to test a group of models arises because no single model works on all
possible data distributions (Kotsiantis et al., 2007). Numerous ML
models such as logistic regression (Pradhan, 2010), support vector
machines (Tehrany et al., 2015), tree-based classifiers (Lee et al.,
2017), multilayer perceptron (Janizadeh et al., 2019), convolutional
neural networks (Wang et al., 2020), and others have been used for
delineating flood hotspots. ML models have also been used for modeling
stage-discharge-sediment (Kumar et al., 2022) and mapping flood prob-
ability (Avand et al., 2022). Since ML-based flood susceptibility assess-
ment approach is affordable considering the size and variety of data
required, it can be employed to estimate the hazard component of
risk. However, majority of these studies have not considered vulnerabil-
ity, which plays a governing role in sensitivity, adaptability and
resilience of a society, during flood events.
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Vulnerability resides at the core of risk, and it impacts various aspects of
ecosystem such as hydroclimatic extremes (Vittal et al., 2020), agriculture
(Sharma et al., 2020), groundwater (Kazakis et al., 2015), and others. It
refers to the susceptibility of individuals, communities, or systems to risk
(United Nations International Strategy for Disaster Reduction, 2009).
Socio-economic vulnerability is expressed as a combination of the socio-
economic sensitivity and the lack of adaptive capacity of the populace in
a region. Including socio-economic vulnerability in flood risk assessment
is especially timely in the era of socio-hydrology but is still largely ignored
(Mohanty et al., 2020a,b). Conventionally used vulnerability assessment
methods, such as the analytical hierarchical process (AHP), the technique
for order performance by similarity to ideal solution (TOPSIS), among
others, introduce subjectivity because these methods require expert consul-
tation to agree upon the weights of vulnerability indicators (Sherly et al.,
2015). It is understood that choices such as selecting vulnerability indica-
tors and aggregation method are subjective and largely depend on data
and resource availability, causing the elimination of subjectivity in
vulnerability assessment impossible. Nevertheless, the subjectivity due to
the weighting scheme of indicators derived from expert consultation, can
be removed by using data envelopment analysis (DEA) models, which
have been widely adopted for socio-economic vulnerability assessment
(Sherly et al., 2015; Vittal et al., 2020).

In light of the existing literature, the current study proposes a novel
framework based on ML and DEA for flood risk quantification to address
the above-mentioned gaps. The framework considers hazard as well as
socio-economic vulnerability under data-scarce situations. ML-based
flood susceptibility mapping approach is utilized as an affordable
alternative to conventional HHM approaches, as it overcomes the com-
putational cost and time associated with HHM approaches significantly
without compromising accuracy. In a noteworthy step, the study
considers socio-economic vulnerability dimensions as an integral
component of flood risk that is usually neglected in the literature on
flood risk management. In doing this, our study aligns its approach for
flood risk mapping according to the definition recommended in IPCC's
Fifth and Sixth Assessment Reports. Hence, the present research consid-
ering both these dimensions within a sophisticated framework is a
crucial step toward flood risk mapping, advantageous for flood-prone
regions in low, and middle-income nations. This study is demonstrated
over a severely flood-prone region in the lower Mahanadi River basin
in India to derive flood risk map at the finest administrative level. The
Fig. 1. Location map of Jagatsinghpur district. Flooded and
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primary goal of this work is to develop a framework that: (a) requires
less data considering both the availability of reliable public data at
fine resolution and (b) maps flood risk accurately with low subjectivity.
In previous studies, large-scale floodplain delineation tools that require
only DTM-derived flood descriptors have been developed (Samela et al.,
2018). With this context, the proposed framework requires only
the DTM of the area under study for flood susceptibility mapping,
which makes the framework data parsimonious without sacrificing
accuracy. Additionally, these descriptors intrinsically capture hydro-
geomorphological, lithological, and even geo-environmental attributes
(MacMillan et al., 2004; Odeha et al., 1994; Yang et al., 2005).
Simultaneously, socio-economic vulnerability of the entire study area
based on the available demographic information from recent census
data for an efficient non-parametric DEA is quantified. Finally, the
socio-economic vulnerability and flood susceptibility are amalgamated
and mapped in GIS platform to derive flood risk maps at the village
level. The proposed framework is data and computationally parsimoni-
ous, which promises its selection as an effective tool for evaluating flood
risk over hydrologically and geographically complex areas. This re-
search article is organized in five sections. Section 1 provides an insight
into the relevant literature followed by the objectives of the current
study. The description of the study area and data used are described in
Section 2. The proposed methodology which illustrates the estimation
of flood susceptibility and socio-economic vulnerability is presented in
Section 3. Section 4 describes results and discussion pertaining to the
study. The major outcomes of the study are enumerated in Section 5.

2. Study area and data description

Jagatsinghpur district (19°58′ N to 20°23′ N and 86°3′ E to 86°45′ E),
located in Odisha state (Fig. 1), is one of the most flood-affected districts
of India (Ghosh et al., 2019). It spreads for an area of 1668 km2 and accom-
modates a population of around 11,36,971 (Census of India, 2011). The
district has 1320 villages. The Mahanadi river and its distributaries delin-
eate the northern side of the district, whereas the southern side is
surrounded by the Devi, the Kathajodi, and the Biluakhai rivers. The district
is part of both the Mahanadi and Devi deltas. Its eastern boundary aligns
with the Bay of Bengal. The district is situated in a coastal plain zone as
per agro-climatic classification and in deltaic alluvial plains of the river
system with several estuaries, creeks on the coastal belt. Three types of
non-flooded points were collected from Sub-extent-1.
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soils of the district are laterite (89,700 thousand ha), coastal saline (53,700
thousand ha), and deep alluvial (20,500 thousand ha). The average annual
rainfall is around 1500 mm (Baliarsingh et al., 2018). The district is one of
the highly populated coastal districts of Odisha with temperate climate
(maximum temperature: 38 °C andminimum temperature: 12 °C). Roughly
80 % of the annual rainfall occurs in the monsoon period. The district is
prone to cyclonic rainfalls during the monsoons and has been experiencing
natural calamities like floods and cyclones which significantly hinder its
economic development.

The economy of the district is predominantly agrarian as nearly 80% of
its population depends on agriculture- and cultivation-related activities for
their survival. The land use land cover of the district primarily comprises
nearly 63 % agricultural land, 3.5 % forest cover, and 32 % under waste
land (DPMU, 2017). Paddy is the primary food crop grown, while cotton,
sugarcane, and turmeric are the major commercial crops. Owing to the
flat terrain (elevation: 0–25 m above mean-sea level) of the district and
heavy sediment load from upstream, the surrounding and inhabiting rivers
and rivulets quickly overflow during the monsoon season (Mishra and
Mishra, 2010). Agriculture and cultivation-dependent populations are
among the worst affected communities by natural hazards, especially by
droughts and floods (Mishra and Mishra, 2010). Hence, the agriculture
and cultivation-driven economy and the geographical position of the
district render it socio-economically vulnerable and physically susceptible
to floods. Such geomorphological and spatial configuration of the district,
warm and humid climate and high rainfall renders it vulnerable to a trio
of flooding (coastal, fluvial and pluvial). The studies conducted over this
Fig. 2. Proposed flood risk mappin
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region on flood risk management such as Mohanty et al. (2020a,b) and
Gusain et al. (2020) have consideredflood hazard and vulnerability compo-
nents to quantify risk. However, the computational and data requirements
in these frameworks are computationally demanding. The proposed novel
approach attempts to overcome these limitations by adopting an ML-DEA-
based approach to quantify flood risk at the finest administrative scale
(village level) over the study area.

In the present study, the DTM of the district was generated from the
indigenously developed national digital elevation model, CartoDEM
(generated using CartoSat-1 stereo pairs, obtained from National Remote
Sensing Centre (NRSC), Hyderabad, India) (Muralikrishnan et al., 2013),
as shown in Fig. 1, which is used to generate the GFDs of the framework
(Refer Table S-1). The socio-economic data for Jagatsinghpur town and
1072 villages was collected from the Census of India. Table S-2 enumerates
the SEV indicators used for the present study. Recently, Mohanty et al.
(2020a,b), Mohanty and Karmakar (2021) carried out a comprehensive
fine-scale wd and wv mapping of the district using coupled 1D-2D hydrody-
namic modeling. The wd grid at 50 years return period from Mohanty et al.
(2020a,b) was considered as the ground truth for identifying flooded and
non-flooded locations and for validating the performance of the flood
susceptibility mapping module of the framework.

3. Methodology

The proposed framework is illustrated in Fig. 2. It consists of three
components: (i) estimating flood susceptibility using ML, (ii) calculating
g framework used in the study.
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socio-economic vulnerability using DEA, and (iii) quantification and map-
ping of flood risk. Based on an exhaustive literature survey (Manfreda
et al., 2014; Papaioannou et al., 2015; Pradhan, 2010), twenty GFDs,
which require only DTM or its derivatives as input(s) and can be computed
with open-source tools, are selected to predictflood susceptibility usingML.
Among these descriptorsDTM andMRVBF captureflatness and lowness at a
location. VDCN captures flatness relative to stream network. Sl, κh, κp, κt,
and CI capture localized flow behavior, whereas global flow behavior is
captured by flow accumulation (local) (Al), flow accumulation (stream)
(Ar),flow depth (stream) (hr), flow depth (local) (hl), distance to the nearest
stream (D), elevation difference to the nearest stream (H), vertical distance
to the channel network (VDCN), topographic index (TI), and downslope
index (DI). All GFDs of the framework are explained in detail in Table S-1.

As mentioned earlier, socio-economic vulnerability can be represented
by an integrated resultant of socio-economic sensitivity and adaptive capac-
ity. A relatively higher value of a socio-economic sensitivity indicator, for
example population density of a sub-region, in a region indicates a compar-
atively higher socio-economic vulnerability in the sub-region along the
dimension expressed by that indicator. Likewise, a relatively higher value
of an adaptive capacity indicator, for example, literacy rate, results in a
comparatively lower socio-economic vulnerability in the sub-region along
the dimension it represents. All SEV indicators must be judiciously chosen
per the socio-economic scenario of area under study. In the present study,
relevant socio-economic sensitivity and adaptive capacity indicators were
picked to estimate the socio-economic vulnerability of Jagatsinghpur
district at village level using the CCR-DEA model, an efficient non-
parametric ranking technique. The following subsections describe the
three components of the proposed framework.

3.1. Estimation of flood susceptibility using ML models

DTM is the primary input GFD for flood susceptibility assessment in the
present geomorphic framework. The remaining nineteen GFDs are com-
puted in GIS environment, using an open-source software package, QGIS
(QGIS.org, 2021). The framework employs tree-based ML models to com-
bine the grids of GFDs into flood susceptibility grids. These models can
capture non-linear and complex relationships between input features and
target labels, making them ideal candidates for mapping the relationship
between GFDs and flooding behavior at a location. They have also been
popularly adopted in flood susceptibility studies (Lee et al., 2017;
Tehrany et al., 2013) because of their non-parametric nature (Song and
Ying, 2015) and inherent ability to capture feature interaction (Oh,
2019). The framework poses flood susceptibility estimation as a binary
classification problem: classification of a location as either flooded or
non-flooded based on its GFD values. However, multicollinearity among
GFDs can impact model performance and interpretability; therefore,
multicollinear GFDs are discarded and the remaining GFDs, referred to as
multicollinearity-free GFDs (MFGFDs), are used as input features. Flooding
information available for a small set of locations of the area under study,
along with the corresponding values of GFDs at these locations, is used to
create a tabular dataset. The dataset is further split into training (70 %)
and testing (30 %) datasets, ensuring class balance. Class balance means
there is an equal number of flooded and non-flooded data points in each
sub-dataset. Maintaining class balance is recommended, especially if area
under the receiver operating characteristic curve (AUC) is used as a metric
to evaluate model performance (Saito and Rehmsmeier, 2015). The ML
models are trained on the training dataset, and their classification perfor-
mance is evaluated on both datasets. Using tree-based ML models ensures
complex, non-linear relationships of these features with flood susceptibility
and interaction among these descriptors are learned without increasing
data redundancy and computational burden of modeling.

Flooding information required to prepare datasets can be obtained from
previous local studies, historical flood data and maps, and other reliable
sources. In the present study, flooded and non-flooded locations were iden-
tified from the wd grid of the district prepared by Mohanty et al. (2020a,b)
using an HHM approach. The details of the approach are discussed in
5

Mohanty et al. (2020a,b) and Ghosh et al. (2021). It should be noted that,
ideally, observed flood maps should be utilized for training ML models.
However, due to unavailability of observed flood data for the concerned
study area, flood information derived from a comprehensive HHM frame-
work (Mohanty et al., 2020a) is utilized here. Furthermore, the proposed
ML framework is designed specifically for preliminaryflood risk assessment
in data- and resource-scarce regions and not to replace the traditional HHM
approaches that can compute dynamic flood attributes such as flood veloc-
ity and momentum even in near-real time. ML models are not expected to
learn these dynamic attributes with GFDs which are static. Yet, they likely
learn the relative static representation because GFDs are selected explicitly
for expressing hydro-geomorphological properties that influence these
dynamic attributes. The following sub-sections explain the flood suscepti-
bility assessment part of the framework in detail.

3.1.1. Removing multicollinearity
Multicollinearity occurs when high intercorrelations exist among more

than two GFDs. Multicollinearity is expected among GFDs because they are
generated from one input, DTM. It is required to be removed to improve
model performance and interpretability (Mansfield and Helms, 1982).
The framework uses the variance inflation factor (VIF) analysis to identify
multicollinear GFDs owing to its prominent use in flood susceptibility
studies (Khosravi et al., 2018). After performing VIF analysis,
multicollinearity-free geomorphic flood descriptors (MFGFDs) are used as
input features in theMLmodels. The procedure for performing VIF analysis
is enumerated below.

1. An ordinary least square regression model is fit considering the ith GFD
(gi) as a dependent variable and the rest of GFDs as explanatory
variables.

2. The procedure is repeated for all the descriptors. Each regression model
gives the coefficient of determination (Ri

2). The VIF score of the ith flood
descriptor (VIFi) is then calculated using the equation below:

VIFi ¼ 1
1− R2

i
ð1Þ

3. Finally, only the descriptors having lower than a preset cut-off of VIF
score (Kutner et al., 2005) are considered free from multicollinearity.
The cut-off value is set to five in the framework.

3.1.2. Tree-based models
In the present study, three tree-based ML models: (a) decision tree (DT),

(b) random forest (RF), and (c) gradient-boosted decision trees (GBDT)
were assessed for their ability to combine the grids of MFGFDs into the grid
offlood susceptibility values. Thesemodels can learn non-linear and complex
relationships betweenMFGFDs andflooding status. If flooding information at
M different locations of the area under study is available, a tabular dataset is
prepared using the values of MFGFDs (Gmf in number) (X= x1, x2,…, xi,…
xM and xiϵRGmf with their corresponding flooding status valuesY= y1, y2,…
yi,…, yM and yi={0,1}where 0 denotes non-flooded location and 1 denotes
flooded location. The dataset is further split into training and testing datasets.
The objective of an ML model is to estimate a classification function F(x)
capable of producing y as accurately as possible with the training dataset.
The three models are briefly explained in the subsequent paragraphs. It
should be stressed that a location here refers to a square region represented
by the resolution at which GFDs are used.

A tree is an undirected graph with no cycles, and a node in a tree is a
decision point. A binary tree is a special tree having at most two decision
outcomes at any given decision node. Decision-tree learning is a set of
non-parametric supervised ML algorithms that are used for both classifica-
tion and regression. It is based on the concept of entropy in information



P. Deroliya et al. Science of the Total Environment 851 (2022) 158002
theory (Shannon, 1948). The entropy of a dataset (B) that has c classes/cat-
egories/types of instances is given by Eq. (2).

E Bð Þ ¼
Xc

i¼1

− pi log2pi ð2Þ

where pi is the proportion of instances of the ith class in B.
The classification and regression tree (CART) (Breiman et al., 1984) is a

widely used decision-tree algorithm that has been previously adopted for
flood susceptibility mapping (Rahmati and Pourghasemi, 2017). It can
model rule-based relationships between physical attributes and flooding
status at a location in the form of a binary tree without requiring any strict
assumptions about the data distribution. Advantageously, it also inherently
considers feature interaction. If a GFD (g) is split at a threshold (gτ) on a
node of the tree, it divides the dataset (B) having m data points at that
node into Bleft and Bright sub-datasets each havingmleft andmright data points,
respectively. The information gain (I), reduction in the overall entropy,
from the split is given by the following equation.

I B; gτð Þ ¼ E Bð Þ− mleft

m
: E Bleft

� �
−

mright

m
: E Bright

� � ð3Þ

The trained binary tree comprises a root node, internal nodes, and ter-
minal nodes. Each non-terminal node of the tree makes an optimal binary
decision (gτ∗) that separates the dataset available at that node to maximize
information gain (see Eq. (3)) rendering the subsequent sub-datasets at
the daughter nodes as homogenous as possible. Each internal node follows
the same rule. However, no further splitting is done at the terminal nodes.
These nodes either have a predefined entropy level or can be finalized from
pruning to reduce overfitting, which occurs when themodel performance is
worse on the testing dataset than on the training dataset. The CART algo-
rithm was used for decision tree learning for the present study, and the
trained decision tree (DT) was pruned with the minimum cost-complexity
pruning algorithm to reduce overfitting (Breiman et al., 1984).

An ensemble can improve the classification performance of a single de-
cision tree without losing its benefits. Bootstrapped aggregation (bagging)
and boosted tree ensembles have been used in flood susceptibility mapping
(Chen et al., 2020; Lee et al., 2017). Random forest (RF), introduced by
Breiman (2001), is an ensemble of decision trees trained on bootstrapped
training data samples. In the proposed framework, each tree is trained on
a bootstrapped sample of data (by replacement) with a random subset of
MFGFDs. The flooding probability given by each trained tree is considered
to estimate the flooding probability, which is interpreted as flood suscepti-
bility value (FSl), at a location l using its values of MFGFDs (xl). If T such
trees are trained on the dataset, the flooding probability (FSl) at l is given
by the following expression:

FSl ¼ ∑T
t¼1 FSlt
T

ð4Þ

where FSl is the flood susceptibility value at location l, and FSlt is the prob-
ability given by t ∈ T tree that l belongs to the flooded class.

Unlike bagging in RF, boosting attempts to improve the accuracy of a
weak learner by repeatedly training the weak learner on various distribu-
tions of the training data and combining the trainedweak learners into a ro-
bust composite learner (Schapire, 1999). A shallow decision tree, a decision
tree with less depth (usually 10–12), is a weak leaner. It performs poorly on
both training and testing datasets. Shallow decision trees can be boosted
into gradient-boosted decision trees (GBDT), which is a highly robust and
interpretable model for regression and classification (Friedman, 2001). It
is an additive boosted model that optimizes an arbitrary differentiable
loss function and uses shallow decision trees. It builds one decision tree at
a time to fit the residual errors of the trees before it and has been exten-
sively used for its high prediction power and computational performance.
A comprehensive mathematical description of GBDT can be found in Si
et al. (2017). In the present study, all the three tree-based models were
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based on CART, and their classification performance was evaluated using
the metrics described in the following sub-section.

3.1.3. Evaluation of classification performance and feature importance
As per the framework, a location can belong to either flooded or non-

flooded class which are denoted as 1 and 0 respectively. The ML models
learn to predict the probability that a location belongs to flooded class
using the values of MFGFDs (xl) at the location. This probability value is
interpreted as the flood susceptibility value at the location. In the context
of the proposed framework, a threshold (τ) converts the probabilistic output
(flood susceptibility value) of an ML model to its deterministic output (a
given location belongs toflooded class ifflood susceptibility value is greater
than or equal to τ). A confusion matrix (Kohavi and Provost, 1998) is
derived after applying the threshold (assumed 0.5) on flood susceptibility
values. Thematrix consists of four values: true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN).

True positives (TP): It is the number of knownflooded locations that are
predicted to belong to flooded class.

False positives (FP): It is the number of known non-flooded locations
that are predicted to belong to flooded class.

True negatives (TN): It is the number of known non-flooded locations
that are predicted to belong non-flooded class.

False negatives (FN): It is the number of known flooded locations that
are predicted to belong to non-flooded class.

The proposed framework uses a commonly adopted threshold-
dependent metric, Cohen's kappa (κ) (Cohen, 1960) and a popular
threshold-independent metric, area under receiver operating characteristic
curve (AUC) (Fawcett, 2006) to evaluate the performance of ML models.
The two metrics have been widely used in flood susceptibility studies
(Chapi et al., 2017; Tehrany et al., 2015). κ represents the agreement
between the prediction made by a trainedMLmodel and the ground reality
and can be computed using the equations provided below:

κ ¼ po − pe
1− pe

ð5Þ

where po is the relative observed agreement between the MLmodel and the
ground reality, and pe is the hypothetical probability of such agreement by
chance. They can be calculated using the equations below.

po ¼
TPþ TN

TPþ TN þ FN þ FP
ð6Þ

pe ¼
TPþ FNð Þ TPþ FPð Þ þ FPþ TNð Þ FN þ TNð Þ

TPþ TN þ FN þ FPð Þ2 ð7Þ

Another approach to evaluate binary classification performance is by
using receiver operating characteristic (ROC) curves. Varying τ generates
multiple confusion matrices, which can used to calculate true positive
(rtp) and false positive (rfp) rates. These rates are required to plot ROC
curves and to calculate AUC scores. rtp and rfp for a particular threshold
are calculated as follows:

rtp ¼ TP=P ð8Þ

P ¼ TPþ FN ð9Þ

rfp ¼ FP=N ð10Þ

N ¼ TN þ FP ð11Þ

AUC: Area under ROC curve is the probability that a trained ML can
correctly classify a location into flooded or non-flooded class with the
values of MFGFDs at the location.

The ML model with the highest κ and AUC values on both training and
testing datasets is used to generate a grid of flood susceptibility values of
the study area by applying the trained model on the grids of MFGFDs.
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The global contribution of each MFGFD in the performance of a trainedML
model indicates its importance in the model (Williamson et al., 2021). The
present framework defines the feature importance score (FI) for a given
MFGFD used in a trained ML model as the percentage contribution of that
feature to the performance of the ML model.

3.2. Estimation of socio-economic vulnerability using data envelopment analysis

Socio-economic vulnerability has two components: sensitivity and
adaptive capacity. The former component is determined by the indicators
that adversely affect the results of a catastrophic event, for example, the
population density of a community. On the other hand, adaptive capacity
indicators describe the ability of a community to prepare for and respond
to the impacts of present and foreseeable hazards (Smit and Wandel,
2006). As mentioned earlier, the inclusion of socio-economic vulnerability
into flood risk estimation is equally essential. Therefore, the proposed
framework aggregates relevant socio-economic sensitivity and adaptive
capacity indicators of the study area to quantify its socioeconomic vulnera-
bility, as per IPCC recommendation, using the Charles-Cooper-Rhodes
(CCR) DEA model. Nevertheless, if a specific type of vulnerability such as
infrastructural vulnerability is to be incorporated into risk, the framework
is flexible enough to accommodate it. The preprocessing steps and the
description of the model are provided in subsequent sub-sections.

3.2.1. Standardization of SEV indicators
Socio-economic data is usually not available at the grid level where

GFDs are computed. It is often available at the administrative level such
as district, village, or block level. In the present framework, spatial unit
(SU) term is used to refer to the level of administrative units. As per the
framework, two sets of SEV indicators: S, the set of socio-economic sensitiv-
ity indicators and Sc, the set of adaptive capacity indicators, respectively,
are standardized using the equation shown below:

astdju ¼

aju − amin
j

amax
j – amin

j
; j ⊆ S

amax
j − aju

amax
j – amin

j
; j ⊆ Sc

8>>><
>>>:

ð12aÞ

where aju is the value of the jth indicator for the uth spatial unit (SU) and is
converted into ajustd which is the standardized value of the jth indicator for
the uth SU. ajmin and ajmax are the minimum and the maximum values of
the jth indicator across all SUs, respectively.

The standardization ensures that all indictors have a common scale and
unit, are non-negative (Karmakar et al., 2010), and can be fed into an input-
oriented DEA model (Sherly et al., 2015). The standardized values of SEV
indicators for each SU are coalesced into its socio-economic vulnerability
score using the CCR-DEAmodel, owing to its widespread use in vulnerabil-
ity assessment, especially from natural hazards (Liu et al., 2018; Wei et al.,
2004). The model is described in the subsequent sub-section.

Similarly, the standardization of GFDs at the grid level can be performed
for their visual comparison using the equation below.

gstdfl ¼

gfl − gmin
f

gmax
f − gmin

f
; f ⊆G

gmax
f − gfl

gmax
f − gmin

f
; f ⊆Gc

8>>>><
>>>>:

ð12bÞ

where gfl is the value of the fth GFD at the lth location and is converted
into gflstd which is the standardized value of the fth GFD at the lth location.
gfmin and gfmax are the minimum and the maximum values of the fth GFD
across all locations, respectively. G and Gc are the sets of GFDs (see Table-
S1) that are positively or negatively related to the flooding propensity
at a location, respectively. It should be noted tree-based models, especially
when used for classification, do not require standardization as a preprocess-
ing step.
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3.2.2. The Charles-Cooper-Rhodes (CCR) data envelopment analysis (DEA)model
A unit, from a set of homogenous units, that produces y outputs with x

inputs can be evaluated for its relative efficiency using data envelopment
analysis (DEA), which is a non-parametric technique for evaluating the
relative efficiency of homogenous units. DEA is often implemented when
it is difficult to estimate absolute measures of efficiency. The proposed
framework uses the slack-based input-oriented CCR-DEA model (Charnes
et al., 1978). The CCR-DEA model considers constant returns to scale
(CRS) meaning outputs linearly scale with inputs.

In the context of the framework, the standardized SEV indicators
(astd) are inputs to the DEA model. The jth SEV indicator value for the uth
SU is denoted by ajustd (j=1, 2,…, x). Z is the total number of SUs. Because
vulnerability loss data is seldom available, the output of the model is
assumed to be unity for all SUs. The mathematical representation of the
CCR-DEA model to evaluate the relative efficiency of the uth SU in the
context of the proposed framework is described below.

min θu − ϵ ∑x
j¼1s

−
j þ sþ

� �h i
ð13Þ

subject to

XZ
z¼1

λzastdjz þ s−j ¼ θuastdju j ¼ 1; 2;…; xð Þ∀u

∑
Z

z¼1
λz � sþ ¼ 1∀u

s−j ≥0 j ¼ 1; 2;…; xð Þ

sþ≥0

λz≥0 z ¼ 1; 2;…;Zð Þ

where θu is the relative efficiency of the uth SU; ajzstd is the value of the jth
standardized SEV indicator for the zth SU. ϵ > 0 is a non-Archimedean
value, and sj− and s+ are the slack and surplus variables, respectively. Solv-
ing the optimization problem, the optimum value of θu (θu∗) for the uth SU is
obtained and is called its CCR efficiency.

Prior to using themodel, it should be ensured that the total number of SUs
must bemore than twice the product of the total number of inputs and outputs
to prevent the curse of dimensionality (Dyson et al., 2001). Therefore, princi-
pal component analysis (PCA), a popular dimension reduction technique,may
be required to decorrelate the standardized SEV indicators and to reduce the
number of the indicators before feeding them into the DEA model if a signifi-
cant linear correlation (Pearson's correlation coefficient≥ 0.8) exists among
the standardized SEV indicators (Nataraja and Johnson, 2011; Sherly et al.,
2015). Weakly correlated indicators may otherwise alter the dominant attri-
butes of the principal components, corrupting the efficiency estimation (Yap
et al., 2013). The CCR-DEA model provides the CCR efficiency (θ∗) of each
SU, which can be interpreted as the efficiency of an SU to contribute to SEV.
θu∗ of uth SU is converted into its socio-economic vulnerability score (SEVu)
using the following equation.

SEVu ¼ 1− θ�u
� � ð14Þ

It should be noted that the output to the CCR-DEAmodel is kept uniform
(set to one) across all spatial units (SUs) because vulnerability loss data is
seldom available. Still, vulnerability loss metrics such as annual fatalities
attributed to floods if available can be added as outputs to the DEA
model, which will improve vulnerability ranking of SUs.

3.3. Estimation of flood risk using flood susceptibility and SEV scores

In the proposed framework, flood risk is defined as the product of flood
susceptibility and socio-economic vulnerability. A similar approach to
combine susceptibility and vulnerability has recently been adopted by



Table 1
Geomorphicflood descriptorswith their cor-
responding variance inflation factor (VIF)
scores in deceasing order.

GFD VIF

LGFI 16.72
GFI 16.23
hr 13.58
hl 11.31
Ar 9.48
CA 4.62
DTM 3.30
H 3.30
Al 3.01
MRVBF 2.95
TI 2.67
CB 2.26
VDNS 2.17
Sl 2.09
κh 1.99
κp 1.79
CI 1.77
DI 1.68
κt 1.49
D 1.37

Table 2
Classification performance of DT, RF, and GBDT models on training and testing.

Performance metric κ AUC

ML models DT RF GBDT DT RF GBDT

Training 0.59 0.69 0.62 0.75 0.88 0.83
Testing 0.60 0.68 0.67 0.75 0.88 0.85
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Ghosh et al. (2019) and Mishra and Sinha (2020) and is consistent with the
IPCC (2021) definition of risk. Since socio-economic vulnerability scores
and flood susceptibility values are calculated at two different spatial levels
(the former at the SU level and the latter at the grid level), flood
susceptibility values are resampled from the grid level to the SU level to
keep spatial consistency, using the equation below.

FSu ¼ ∑L
l¼1 FSl
L

ð15aÞ

where FSu is the flood susceptibility score of the uth SU, L is the total num-
ber of locations in the uth spatial unit, FSl is the flood susceptibility value
predicted by the best ML model at the lth location in the uth SU. If
waterbody information of the study area is available, it can be included to
enrich flood susceptibility scores using Eq. (15b).

FSu ¼ ∑K
k¼1 FSk þW
K þW

ð15bÞ

where FSk is the flood susceptibility value predicted by the best ML model
at the kth non-waterbody location in the uth SU.K andW are the total num-
ber of non-waterbody and waterbody locations in the uth SU, respectively.

Thereafter, Eq. (16) is used to calculate the flood risk score of each SU by
multiplying its flood susceptibility and socio-economic vulnerability scores.
Furthermore, the flood risk score of each SU is converted into its correspond-
ing flood risk index (FRI) value using min-max normalization (Eq. (17)).

FRu ¼ FSu � SEVu ð16Þ

FRIu ¼ FRu − FRmin

FRmax − FRmin
ð17Þ

where FRu and FRIu are the flood risk score and the flood risk index value at
the uth location, respectively. FRmin and FRmax are the minimum and maxi-
mum flood risk scores out of all SUs, respectively. Additionally, five flood
risk classes: “very low,” “low,” “medium,” “high,” and “very high” flood risk,
can be delineated with flood risk scores, for linguistic representation and
ease in communication with stakeholders. The framework employs the
Jenks natural breaks algorithm (Jenks, 1967) for delineating thesefive classes.
The algorithm is an iterative algorithm that minimizes the intra-cluster vari-
ance of each class and maximizes the overall inter-cluster variance for a
predefined number of classes and has been extensively adopted in flood haz-
ard, risk, and vulnerability mapping (Mishra and Sinha, 2020; Toosi et al.,
2019).

4. Results and discussion

The present study, for the first time, employs a combination of ML and
DEA (ML-DEA) to quantify flood risk over a geomorphologically complex
region at the finest administrative level. The wd grid of the study area was
available at 20 m × 20 m resolution; therefore, the DTM grid of the
study area was resampled and the other GFD grids were computed at the
same resolution using QGIS. Relevant socio-economic sensitivity and adap-
tive capacity indicators (see Table S-3) were judiciously chosen to capture
the socio-economic characteristics of the district. The flood susceptibility
and socio-economic vulnerability scores of the district were estimated as
per the methodologies depicted in Fig. 2b and a, respectively. These scores
were subsequently utilized to quantify FRI values and to delineateflood risk
classes at the spatial unit level. In this study, spatial units were villages and
Jagatsinghpur town of the district.

4.1. Data exploration, pre-processing, and model training

The GFDs discussed in Table S-1 were standardized as per Eq. (12b) as
shown in Fig. S-1a and b to visually understand the influence of each
GFD. It may be noted that a relatively higher standardized value indicates
a relatively higher flood propensity. It is observed that hl, κh, κp, κt, Al, and
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CA vary little spatially. DTM and MRVBF have high values in the coastal
region showing their ability to capture the propensity of coastal floods.
Multicollinearity among GFDs is expected as mentioned in Section 3.1.1.
Thus, VIF analysis was performed at the grid level to assess multicollinear-
ity among GFDs. The VIF scores obtained are provided in Table 1 in
decreasing order. Five GFDs: LGFI, GFI, hr, hl, and Ar, were found to be
multicollinear, hence, discarded. The remaining 15 GFDs (MFGFDs) were
used as input features in the ML models. Table 1 and Fig. S1-b show that
LGFI and GFI are the top two multicollinear GFDs and highly correlated,
respectively. The high correlation between these two GFDs in the present
study is because the study area is a small convex-divergent catchment.
Since both GFDs have the same denominator, H, in their formulations
(See Table-S1), while their corresponding numerators vary a little in the
study area; therefore, the denominator dominates their values. However,
it should be noted that the influence of GFDs is expected to vary depending
on the study area. To derive the supervisory data to train and test
ML models, two thousand locations (1000 flooded) were randomly
sampled from the portion of the district not dominated by coastal floods
(Sub-extent-1) (See Fig. 1) to fix the flow direction (from upstream to
coastline). Sub-extent-1 was demarcated using the wd grid (return period:
50 years) obtained from Mohanty et al. (2020a,b). The wd grid was consid-
ered as the ground truth for identifying flooded and non-flooded locations.
A tabular dataset was prepared from the values ofMFGFDs and the flooding
status values (flooded or non-flooded) at these sampled locations. It was
further divided into the training dataset (70 %: 1400 data points) and the
testing dataset (30 %: 600 data points). The three tree-based models (DT,
RF, andGBDT), briefly described in Section 3.1.2, were trained on the train-
ing dataset. The performance of these models was compared using κ and
AUC scores as explained in Section 3.1.3.

4.1.1. Selection of the best ML model
Table 2 enlists the values of performance metrics κ and AUC for the

three ML models on the training and testing datasets. Fig. 3 shows the



Fig. 3. Flood susceptibility grids produced using a) DT, b) RF, c) GBDT model, d) RF enriched with already available waterbodies information.
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flood susceptibility grids developed using the three ML models. It may be
observed that the metrics corresponding to the DT model are the lowest
indicating its poor performance. The GBDT model provides a significant
performance improvement. Nonetheless, the RF model is observed to
perform better than the other two models on both datasets. Additionally,
ROC curves were generated using the testing dataset with the trained
models as shown in Fig. 4. It is evident that the DT model suffered from
early retrieval issue and had the poorest AUC among the models, whereas
Fig. 4. The receiver operating characteristic (ROC) curves on the testing dataset for
the no-skill classifier, DT, GBDT, and RF models.
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the RF model provided the best performance. The flood susceptibility grid
generated by the RF model was enriched with the information of the
waterbodies of the district considering the presence of water in these
waterbodies for most of the year as shown in Fig. 3(d). Thereafter, the
enriched grid was resampled to the SU level using Eq. (15b). The resampled
flood susceptibility values are referred to as flood susceptibility scores (FS)
andwere used to generate the flood susceptibility map of the district shown
in Fig. 5. Eragari, Nuapada, Itatikiri, Bachhalo, and Saharadia areas
were among the most flood susceptible villages, whereas Biraballavpur,
Kalioda, Nepur, Gopa, and Talia were the least flood susceptible villages
in the district.

Table 3 represents the feature importance scores of geomorphic
flood descriptors used in the RF model, which shows that DTM,
MRVBF, and VDCN have higher feature importance than the other
GFDs. In fact, these three GFDs contribute >40 % to the performance
of the RF model.

The framework uses tree-based models because they provide a good
balance of their ability to learn complex relationships between input
features and target labels and data requirement. However, interpreting
them is not straightforward. Although the importance of each MFGFD
can be computed at global level (see Table 3), the contribution of
MFGFDs to flood susceptibility values may vary from location to loca-
tion. Therefore, in the future, instance-based interpretability techniques
can be added to the framework. These techniques allow for understand-
ing how MFGFDs influence flood susceptibility values locally, hence,
strengthening confidence in modeling. Additionally, they can be used
by experts to evaluate ML models and to develop personalized flood
measures for each SU. Using tree-based ML models ensures complex,
non-linear relationships of these features with flood susceptibility and
interaction among these descriptors are learned without increasing
data redundancy and computational burden of modeling.



Fig. 5. The flood susceptibility map of Jagatsinghpur, Odisha, based on the flood susceptibility scores (FS).
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4.2. Socio-economic vulnerability and flood risk mapping

Pearson correlation coefficients between all pairs of SEV indicators
were calculated as shown in Fig. S-2. High intercorrelations among these
indicators were not found. Therefore, the CCR-DEA model was used to
aggregate all available indicators after standardization without performing
PCA. The CCR efficiency (θ∗) of each SU was converted into its socio-
economic vulnerability score using Eq. (14). Following this, the Jenks
natural breaks algorithm was applied to demarcate five vulnerability
classes. According to it, 29.13 %, 17.7 %, 19.5 %, 20.6 %, and 13 % of
villages belong to “very low,” “low,” “moderate,” “high,” and “very high”
vulnerability classes, respectively. Fig. 6 shows the socio-economic map
of the district. Sanamandasahi and Gopalpur are found to be the most
socio-economically vulnerable villages.

Next, the socio-economic vulnerability score (SEV) and the flood
susceptibility score (FS) of each SU were multiplied to obtain its flood
risk score (FR) as per Eq. (16). Thereafter, the flood risk scores were
converted into the flood risk index values using Eq. (17). The flood risk
scores were also used to identify flood risk classes using the Jenks natural
breaks algorithm. The maps of flood risk index and flood risk class of the
district are shown in Figs. 7 and 8, respectively. Bilipada, Jayasankhapur,
Saharadia, Jotta, and Paruna are the five most flood risk prone villages,
whereas Keruapada, Chhelikulia, Chariakana, Nalanga, and Salio were
the least prone to flood risk. As per the results, 16.68 % of villages are
subject to “very low” flood risk, 15.47 % to “low,” 24.5 % to “moderate,”
Table 3
Feature importance scores (FI) of geomorphic flood descriptors (GFDs) used in the
RF model.

GFD FI (%) GFD FI (%) GFD FI (%)

DTM 15.9 D 6.5 κp 4.3
MRVBF 15.1 CB 4.8 CI 4.2
VDNS 14.3 TI 4.6 κt 3.9
H 6.7 Sl 4.5 Al 2.2
CA 6.7 κh 4.4 DI 2.1
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27.6 % to “high,” and 15.75 % are subject to “very high” flood risk. The
extensive and detailed flood related information determined at the finest
administrative scale over Jagatsinghpur district may be referred to by the
Regional District Emergency Centre, Mahanadi River Basin Organization,
policy makers, and town-planners to adopt appropriate land-use options
and flood control measures for minimizing risk and increasing resilience
of the affected communities.

The proposed framework uses DTM-derived flood descriptors at the
same spatial level because it improves the reliability of the resultant flood
susceptibility grid. All tree-based ML models and the CCR-DEA are non-
parametric, which widens the framework's applicability. The free and
near-global availability of good quality DTMs such as SRTM and
ASTERDEM ensure the easy availability of reliable DTM. All flood descrip-
tors have been preselected for the framework based on an in-depth litera-
ture review. Nevertheless, socio-economic sensitivity and adaptive
capacity indicators must be judiciously chosen per the study area's socio-
economic context and data availability. In the present study, the SEV indi-
cators were selected to represent the agrarian economy of the district, the
literacy and employment characteristics of its populace, and the presence
of marginal population in the district. The probability density functions of
each GFD conditioned on the flooding status were plotted as shown in
Fig. S-3, to understand its influence on floods in the study area. In the
figure, it may be observed that DTM, MRVBF, and VDCN separate flooded
locations from non-flooded locations better than the other GFDs. Yet,
none of the GFDs can be used as a sole descriptor for classification, which
validates our choice of choosing many descriptors over one. Nevertheless,
it should be noted that the influence of GFDs is expected to change per
study area. It is easier to use all the GFDs in theMLmodels after accounting
for multicollinearity than to identify a universal flood descriptor, as has
been extensively researched in the past (Degiorgis et al., 2012; Manfreda
et al., 2014). It is well-known that neighborhood characteristics at a loca-
tion also affect flood susceptibility, which tree-based models cannot inher-
ently capture, so in the future, computer vision-based techniques can be
used to incorporate these characteristics into the framework. It is empha-
sized that the proposed framework is primarily designed to preliminarily
assess flood risk in data- and resource-scarce regions. It cannot replace
the traditional HHM approaches because GFDs cannot capture the



Fig. 6. Socio-economic vulnerability map produced by converting the technical efficiency scores into the socio-economic vulnerability scores.
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dynamics of floodwater; however, the framework can be used to identify
flood risk hotspots for further hydrodynamic modeling at a local scale,
hence, significantly reducing computational cost.

5. Conclusions

The present study proposes a novel framework of flood risk mapping
through a machine learning-based approach using DTM-based GFDs as
well as socio-economic sensitivity and adaptive capacity indicators. The
exhaustive framework is demonstrated over Jagatsinghpur district, part of
Fig. 7. Flood risk map based on flood risk index valu
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the highly flood prone lower Mahanadi basin in India. Three extensively-
used tree-based ML models are assessed for their ability to combine 15
multicollinearity-free DTM-derived GFDs into flood susceptibility value,
which is a proxy of geomorphic flood hazard. It is observed that the RF
model performs better compared to the other two models by providing
the highest AUC and κ values (AUCRF = 0.88; κRF = 0.68), and therefore
selected for quantifying the flood susceptibility for the study area at the
finest administrative scale, i.e., village level. On the other hand, socio-
economic vulnerability is derived by considering relevant socio-economic
sensitivity and adaptive capacity indicators using the CCR-DEA model
es calculated after normalizing flood risk scores.



Fig. 8. Flood risk map based on flood risk classes demarcated by one-dimensional clustering performed with the Jenks natural breaks algorithm.
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which eliminates subjectivity arising from weighting indicators by experts.
Further,five flood risk classes are demarcatedwith the Jenks natural breaks
algorithm on the flood risk scores obtained bymultiplying the flood suscep-
tibility and socio-economic vulnerability scores. It is observed that 16.68%
of villages are subject to “very low” flood risk, 15.47 % to “low,” 24.5 % to
“moderate,” 27.6 % to “high,” and 15.75 % are subject to “very high” flood
risk. The proposed framework is computationally efficient as it primarily
requires only DTM and a set of known flooded locations over a study area
for estimating flood susceptibility. Therefore, it is an affordable alternative
to computationally expensive HHMapproaches and can be usedwhen intri-
cacies related toflood dynamics are not required. The proposed framework,
owing to the consideration of a wide array of geomorphological features
and socio-economic characteristics of disaster-facing population, promises
its wide applicability, especially over data- and resource-constrained large
flood-prone regions.
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