U. S. NULLEAR REGULATORY COMMISSION #### REGION III Report No. 50-456/OL-38-01(DRS) Docket Nos. 50-456; 50-457 Licenses No. NPF-72: NPF-77 Licensee: Commonwealth Edison Company Braidwood Station R.R. 1, Box 84 Braceville, IL 60407 Facility Name: Braidwood Statica Examination Administered At: Braidwood Station and Production Training Center Examination Conducted: July 18-22, 1988 Examiners: 8 / 18/ 88 8-12-88 J. A. Hopkins Approved By: Thomas M. Burdick, Chief Operating Licensing Section 2 #### Examination Summary Examination administered on July 18-22, 1988 (Report No 50-456/OL-88-01(DRS)) to six Reactor Operator and seven Senior Operator candidates. Results: Three Senior Reactor Operators candidates failed the examinations and one Reactor Operator candidate failed the examinations. #### REPORT DETAILS #### 1. Examiners T. M. Burdick *D. J. Damon J. A. Hopkins P. R. Sunderland T. Guilfoil, SCNALYSTS F. Victor, SONALYSTS *Chief Examiner #### 2. Exit Meeting On July 25, 1988, the examiners met with the members of the plant staff to discuss findings made during the course of the examinations. The following personnel attended the exit meeting. #### Commonwealth Edison Company (CECo) R. Querio, Station Manager R. Ungeran, Operations Engineer, Unit 1 K. Kofron, Production Superintendent O. O'Brien, Services Superintendent T. Chasensky, Training Supervisor D. Huston, Operator Licensing Training Group Leader #### U.S. Nuclear Regulatory Commission (USNRC) D. J. Damon, Region III Examiner J. A. Hopkins, Region III Examiner The following strengths and weaknesses were detailed to the facility staff: #### a. Strengths - (1) The candidates exhibited strong team work and practiced good communication skills by using "repeat backs" or some other positive acknowledgement of most orders and most communications. - (2) The candidates demonstrated positive control in each phase of the bistable tripping procedure. - (3) The candidates exhibited good knowledge of individual systems and good familiarity with Technical Specifications. - (4) In general, the candidates used the operating procedures well, especially the Emergency Procedures. #### b. Weaknesses - (1) In simulation scenarios with a loss of Centrifugal Charging Pump, most candidates did not shut Valve FCV-121 prior to starting the standby pump, as required by procedure BwAR 1-9-A3. - (2) In simulator scenarios with a loss of an electrical bus, the candidates would focus on an individual piece of equipment and ignore other equipment that had been lost. For example, the BOP would focus on the loss of an ESW pump, and ignore a stopped CC pump and the de-energized bus. In some cases, candidates did not even recognize that a bus had been lost. - (3) In general, the candidates had difficulty: - (a) identifying Temporary Alterations on a Critical Drawing; - (b) explaining the meaning of the circled numbers on the Radiation Survey Maps. - (4) Some of the candidates were not aware that the kWP requires a review of the Radiation Survey Map prior to signing the RWP. - (5) On the SRO written exam, the majority of the candidates did not correctly answer a question concerning the verification of a reactor trip in the Emergency Operating Procedure. - (6) on the RO written exam, all candidates failed to correctly answer a question concerning verification of a stuck control rod. BwOA-ROD-3 specifies exercising rod banks in five step increments. Most candidates stated that rod banks must be exercised in 10 step increments. #### c. General Comments Although these topics were not covered by every examiner and are not considered generic in nature, they deserve mention in this report. - (1) QA by the licensed's Training Department on examination materials sent to the NRC was inconsistent. For example, one side of a two sided page would not be copied, drawings and even entire chapters would be missing. Additionally, the system descriptions were not all current, which affected the written examination. - (2) During the conduct of the operating examination, some deficiencies were noted in the implementation of certain Administrative Procedures. For example: - (a) A caution card on the Main Control Board could not be found in the Master Caution Logbcok. - (b) The status of an Out of Service (OOS) Tag logged in the Master OOS Logbook could not be determined. - (c) The status of a Nuclear Work Request identified on the Shift Engineer's Turnover Log could not be determined. #### 3. Examination Review The following are facility comments on the written examination and their respective NRC resolutions: #### Question 1.20 #### Facility Comment Part a Acceptable answer for description should also be ". . . suction pressure less than minimum required NPSH " #### NRC Resolution Comment accepted. Answer Key modified to give credit for "When pump suction pressure (0.25) is less than minimum required NPSH (0.25) bubbles form." This first phase of the second sentence will be accepted for credit, as well as the current key. Part b Additional acceptable answers should be: - Temperature alarms on components served - Low flow alarms on components served #### NRC Resolution Comment not accepted. These alarms are considered annunciators in the Control Room and were specifically excluded in the question. However, "Temperature increasing on components served" will be added to the answer key. Answer key modified. #### Question 3.02 #### Facility Comment Part b The question is very confusing, difficult to tell what is wants. The questions asks what generates a Logic Cabinet Urgent Failure. The key gives answers for "Power Cabinet Urgent Failure." Recommend that Logic Cabinet Urgent Failure Alarms also be acceptable. - 1. Loose or missing card - 2. Slave Cycler failure - 3. Oscillator failure - 4. Shutdown banks C, D, E circuit failure #### MRC Resolution Part b deleted. #### Question 3.03 #### Facility Comment Part b The question asks for four rod stops that block both manual and auto withdrawal other than OTDT and OPDT. The key lists only two. The key is correct in that there are only two such rod stops. Recommend full credit for the two listed in the key. #### NRC Resolution Part b deleted. #### Question 3.12(a) (Third Sentence) #### Facility Comment Part a Answer should state: Chilled water to the RCFC chilled water coils vice "Essential Service Water to the chilled water coils." #### NRC Resolution Comment not accepted. Chilled water to the RCFC chilled water coils is not isolated on a Safety Injection signal. The SI signal bypasses SX to the Primary Containment Refrigeration Unit. This causes the chill water pump to trip. Chilled water is not isolated. Answer key modified. #### Question 4.05(b) #### Facility Comment Part b Typical valve numbers should be acceptable for full credit. #### NRC Resolution Comment accepted. Answer key modified. #### Question 5.01 #### Facility Comment The question asks for a description of the effects of a boration on shutdown margin. The answer key then requires an explanation of the effect on a trip. Recommend that the last sentence not be required for full credit. #### NRC Resolution Comment accepted. Answer key modified. #### Question 5.03 #### Facility Comment Significantly different values for Delta-rho can be obtained by using different calculational methods. Request that a band of ±30 pcm be acceptable on the answer, and the following calculational methods for delta-rho be acceptable. a. Delta-rho = $$\ln \frac{(K^2)}{K_1}$$ a. Delta-rho = $$\ln \frac{(K^2)}{K_1}$$ b. Delta-rho = $\frac{K_2}{K_2K_1}$ #### NRC Resolution Comment partially accepted. Alternate calculational methods will be accepted for full credit. Because of this, a range for the total delta-rho will be set at 960 to 1000 pcm. The range for xenon delta-rno will be set at -500 to -540 pcm. #### Question 5.08 (a) #### Facility Comment #### Part a Since the question di' not specify that only moderator temperature :ed; recommend that the following answer be considered: If moderator temperature increases, fuel temperature must increase (at or above PMAN thus doppler power coefficient will add negative reac 'vi'... #### NRC Resolution Comment partially accepted. While it is true that a fuel temperature increase will result in a moderator temperature increase, this is not the only method that can be used to raise moderator temperature. Therefore, if a candidate states the assumption that the moderator temperature increase was due to a fuel temperature increase, credit will be given for the facility requested answer as one part of the overall answer. Answer Key is modified accordingly. #### Question 5.09(b) #### Facility Comment #### Part b The reason for a smaller power decrease given in the answer key is incorrect. Doppler Power Coefficient gets less negative as the core ages. Even though Fuel Temperature Coefficient gets more negative due to buildup of Pu , cild creep causes the change in Fuel Temperature per % power to decrease—this overrides the Pu effect. The power decreases is smaller at the end of life because MTC is so much more negative, temperature does not have to decrease as much to compensate for rods. #### NRC Resolution Comment accepted. Answer Key modified. #### Question 6.03 #### Facility Comment Question premise is false, all Diesel Generator and Diesel engine trips are simultaneous. Thus, examinees were unable to determine what the question was asking. Recommend this question be deleted. #### NRC Resolution Comment not accepted. The answers given in the original key energize a generator trip relay which in turn energizes a engine shutdown relay. Though the two trip signals are fractions of a second apart, the generator trip does in fact occur first. Also, based on additional references, the answer key is expanded to include the following: manual, bus lockout, and SI. Answer Key mcdified as indicated. #### Question 6.08(d) #### Facility Comment High water temperature should by 205° vice
225°. #### NRC Resolution Comment accepted. Typographical error was corrected. #### Question 6.10 #### Facility Comment Contact 3 should be (RTA) (BYA) This was recently changes as a result of the modification to P-8. This change is still in routing and has not been incorporated into all of the Braidwood Training Material. #### NRC Resolution Comment accepted. Answer Key modified. It is expected that the facility develop a system to inform the NRC examiners prior to examinations when a change has been made that has not been incorporated into training materials. #### Question 7.06 #### Facility Comment - Should be an Unusual Event, Lake level is below Tech Spec minimum; as this Tech Spec has no correction period, we must immediately begin shutting down. - Could be an Unusual Event. Question does not state why the operator initiated S.I. but indicates it might have been required as pressure has stabilized below shutoff head of Hi Head SI and below Normal Operating Pressure. This is symptomatic of a small break LOCA. Recommend either answer, None or Unusual Event be accepted. - 3. Answer could be None as EAL, specifies that an inadvertent dilution must be cause for rods going below Low-Low insertion limit and question does not give enough information to determine whether or not that is cause of runback. Recommend that either answer, None or Unusual Event be accepted. #### NRC Resolution - 1. Comment accepted. Answer Key modified. - Comment partially accepted. Answer Key modified to require Unusual Event as the answer. - Comment accepted. Answer Key modified. #### Question 7.07 #### Facility Comment Training guidance as agreed to by PTC, Braidwood and Byron in this matter, is that if one trip breaker is open and all other Rx trip parameters are verified, i.e. rod bottom lights are lit and a negative startup rate exists, it is not necessary to go to BwFR-S.1. Recommend that an answer along the line of "Send a person to locally open the closed trip breaker" be acceptable for full credit. #### NRC Response Comment not accepted. BwAP 340-1, Paragraph C.2.h.1 states in part "When the sequence is not important, the low-level step shall be preceded by a bullet. A "closed bullet" requires all steps to be completed in any order "(•)." This statement removes all decision making from the operator regarding the completion of low-level steps preceded by a closed bullet. BwAP 340-1 further states that "If an action cannot be performed or an expected response is not obtained, the user should go to the contingency response or action." Thus, to conform with BwAP 340-1, if a low-level step that is preceded by a closed bullet cannot be performed, the major step is not considered to be completed satisfactory and the response not obtained column must be entered. Training policy as generated by PTC regarding the implementation of EP-O step 1 violates the guidance contained in BwAP 340-1. Technical Specification 6.8.1 gives specific guidance concerning the use of procedures. Technical Specification 6.8.2 sets forth the review requirements that must be met prior to implementing changes to the procedures as listed in 6.8.1. Since the training policy has not been reviewed by the Onsite Review and Investigative Function as stated in Technical Specification 6.5.2, the facility may not be operated in accordance with training policy and must be operated in accordance with approved administrative and emergency operating procedures. The Answer Key remains unchanged. #### Question 7.08 #### Facility Comment Point source formula not provided on formula sheet. Recommend that full credit be awarded for any reasonable and conservative attempt to solve, or the question be deleted. #### NRC Resolution Comment accepted. The fact that the formula was not provided will be taken into account and credit will be assigned accordingly. #### Question 8.10 #### Facility Comment An alternate acceptable answer should be: "... provides assurance that a mass addition pressure transpert can be relieved by the operation of a single POF, or an RHR relief valve." #### NRC Resolution Comment accepted. Answer Key mcdified. #### Question 8.11 #### Facility Comment Key is only practically correct. Additional instances are: - 1. To prevent injury to public or company personnel. - To prevent releases off-site in excess of Tech Spec limits. - To prevent damage to equipment if such damage is tied to a possible adverse effect on public health and safety. #### Also: In an emergency when this action is immediately needed to protected the public health and safety and no action consistent with license conditions and Tech Specs is immediately apparent. Recommend that these two answers also be acceptable for full credit. #### NRC Resolution Comment accepted. Answer Key modified. ## MASTER COPY U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION | FACILITY: | _BEAIDWOOD_1&2 | |--------------------|----------------| | REACTOR TYPE: | _EWR-WEC4 | | DATE ADMINISTERED: | _88/07/18 | | EXAMINER: | _DAMOND | | CANDIDATE: | | | | | #### INSTRUCTIONS TO CANDIDATE: Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. | CATEGORY
YALUE_ | | CANDIDATE'S | % OF
CATEGORY
 | | CAIEGORY | |--------------------|--------|-------------|----------------------|----|---| | _25.00 | _25.00 | | | 5. | THEORY OF NUCLEAR POWER PLANT
OPERATION, FLUIDS, AND
THERMODYNAMICS | | _25.00 | _25.00 | | | 6. | PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION | | _25.00 | _25.00 | | | 7. | PROCEDURES - NORMAL, ABNORMAL,
EMERGENCY AND RADIOLOGICAL
CONTROL | | _25.00 | _25.00 | | *** | 8. | ADMINISTRATIVE PROCEDURES,
CONDITIONS, AND LIMITATIONS | | 100.00 | | Final Grade | | % | Totals | All work done on this examination is my own. I have neither given nor received aid. Candidate's Signature MASTER COPY #### NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply: - Cheating on the examination means an automatic denial of your application and could result in more severe penalties. - Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating. - 3. Use black ink or dark pencil only to facilitate legible reproductions. - 4. Print your name in the blank provided on the cover sheet of the examination. - 5. Fill in the date on the cover sheet of the examination (if necessary). - 6. Use only the paper provided for answers. . - 7. Frint your name in the upper right-hand corner of the first page of each section of the answer sheet. - B. Consecutively number each answer sheet, write "End of Category __" as appropriate, start each category on a new page, write only on one side of the paper, and write "Last Page" on the last answer sheet. - 9. Number each answer as to category and number, for example, 1.4, 6.3. - 10. Skip at least three lines between each answer. - 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table. - 12. Use abbreviations only if they are commonly used in facility literature. - 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required. - 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not. - 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK. - 16. If parts of the examination are not clear as to intent, ask questions of the examiner only. - 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed. 18. When you complete your examination, you shall: - a. Assemble your examination as follows: - (1) Exam questions on top. - (2) Exam aids figures, tables, etc. - (3) Answer pages including figures which are part of the answer. - b. Turn in your copy of the examination and all pages used to answer the examination questions. - c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions. - d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked. #### BEACIOR_IHEORY_EORMULAS: . . $$P = \frac{\sum \sum_{i=1}^{\infty} \forall}{3.12 \times 10^{10} \text{ fissions/sec}}$$ $$P_{th} = \frac{1}{1 + (B L_{th})} = e^{-(B^2 L_{th}^2)}$$ $$C_1 (1-K_{eff1}) = C_2 (1-K_{eff2})$$ $$m = \frac{1}{1-K} = \frac{C_{final}}{C_{initial}}$$ $$\alpha_{T} = \frac{1}{f} \frac{\Delta f}{\Delta t} + \frac{1}{f} \frac{\Delta p}{\Delta t} - \frac{B^{2}}{\Delta t} + \frac{\Delta L_{th}^{2}}{\Delta t} + \frac{2}{\Delta t}$$ $$\rho = \frac{1}{\tau} + \frac{\overline{B}}{1 + \lambda \tau}$$ $$\Delta \rho = 1n \frac{K_{final}}{K_{initial}}$$ $$\tau = \frac{\overline{B}}{-\frac{\rho}{\lambda \rho}} - \frac{\rho}{\lambda \rho}$$ $$P_1 = P_0 = \frac{R_{eff} - P_0}{R_{eff} - P_1}$$ #### DATA_SHEET IHERMODYNAMICS_AND_ELUID_MECHANICS_EQRMULAS: $$\eta = \frac{\dot{o}_{1}}{\dot{o}_{1}} - \frac{\dot{o}_{0}}{\dot{o}_{1}}$$ $$\Delta T_{m} = \frac{\Delta T_{m}(in) - \Delta T_{m}(out)}{\Delta T_{m}(in)}$$ $$\Delta T_{m}(in)$$ $$\Delta T_{m}(out)$$ $$T_{c1} - T_{ps} = \frac{Gr^2}{4k}$$ $$\dot{Q} = \frac{A \Delta
T_{total}}{\Delta X_{a} - \Delta X_{b}} - \Delta X_{n}$$ $$-A \Delta T_{total}$$ $$\dot{Q} = \frac{2 \pi L\Delta T}{1 + \frac{\ln R_2/R_1}{K} + \frac{\ln R_3/R_2}{K_3}}$$ $$P_1V_1 = P_2V_2 = T_1$$ $$G = \frac{\sum_{f \in h} th}{B.8 \times 10^{9}}$$ #### CENTRIEUGAL_PUMP_LAWS: $$\frac{N_1}{-1} = \frac{\dot{m}}{\dot{m}_2}$$ $$\frac{{\binom{N_1}{2}}^2}{{\binom{N_2}{2}}^2} = \frac{H_1}{H_2}$$ $$\frac{(N_1)^3}{(N_2)^3} = \frac{P_1}{P_2}$$ #### RADIATION_AND_CHEMISTRY_EORMULAS: $$I_{\times} = I_{0} e^{-mx}$$ $$I = I_{0} \frac{(i)^{n}}{10}$$ $$C_1V_1 = C_2V_2$$ $$C = C_0 e^{-Gt}$$ #### CONVERSIONS: $$1 \text{ gm/cm}^3 = 62.4 \text{ 1bm/ft}^3$$ $$1 \text{ ft}^3 = 7.48 \text{ gal}$$ $$e = 2.72$$ $$H = 3.14159$$ $$1 \text{ KW} = 738 \text{ ft-lbf/sec}$$ $$h = 4.13 \times 10^{-21} M-sec$$ $$1 W = 3.12 \times 10^{10}$$ fissions/sec $$g_c = 32.2 \text{ lbm-ft/lbf-sec}^2$$ $c^2 = 931 \text{ MEV/AMU}$ $$C = 3 \times 10^8$$ m/sec $$\sigma = 0.1714 \times 10^{-8} \text{ Btu/hr ft}^2 \text{ R}^4$$ Avogadro's Number = 6.023 x 10²³ Heat of Vapor (H2D) = 970 Btu/1bm Heat of Fusion (ICE) = 144 Btu/1bm $$1 \text{ AMU} = 1.66 \times 10^{-24} \text{ grams}$$ Mass of Neutron = 1.008665 AMU Mass of Proton = 1.007277 AMU Mass of Electron = 0.000549 AMU One atmosphere = 14.7 psia = 29.92 in. Hg #### AYERAGE_IHERMAL_CONDUCTIVITY_(K) | Material
Cork | K
0.025 | |----------------------------------|------------| | Fiber Insulating Board | 0.028 | | Maple or Dak Wood | 0.096 | | Building Brick | 0.4 | | Window Glass | 0.45 | | Concrete | 0.79 | | 1% Carbon Steel | 25.00 | | 1% Chrome Steel | 35.00 | | Aluminum | 118.00 | | Copper | 223.00 | | Silver | 235.00 | | Water (20 psia, 200 degrees F) | 0.392 | | Steam (1000 psia, 550 degrees F) | 0.046 | | Uranium Dioxide | 1.15 | | Helium | 0.135 | | Zircaloy | 10.0 | #### MISCELLANEOUS_INEORMATION: $$KE = 1/2 \text{ mv}^2$$ $$V_f = V_0 + at$$ | Geometric Object | Area | Volume | |-------------------------|---|---| | Triangle | A = 1/2 bh | /////////////////////////////////////// | | Square | A = S ² | /////////////////////////////////////// | | Rectangle | A = L x W | /////////////////////////////////////// | | Circle | A = πr ² | 111111111111111111111111111111111111111 | | Rectangular Solid | A = 2(LxW + LxH + WxH) | V = L × W × H | | Right Circular Cylinder | $A = (2 \pi r^2)h + 2(\pi r^2)$ | V = πr ² h | | Sphere | $A = 4 \pi r^2$ | $V = 4/3 \ (\pi r^2)$ | | Cube | 111111111111111111111111111111111111111 | V = 5 ³ | #### DAIA_SHEET #### MISCELLANEOUS_INEORMATION_(cogtiqued): | | | | | 10 0 | FR 20 App | pendix B | | |----------|---|--|------|-----------------------|--------------------------|-----------------------|--------------------------| | | | | | Table | I | Tabl | e II | | Material | Half-Life | Gamma
Energy
MEV per
Disintegration | | Col I
Air
uc/ml | Col II
Water
uc/ml | Col I
Air
uc/ml | Col II
Water
uc/ml | | Ar-41 | 1.84 h | 1.3 | Sub | 2×10 ⁻⁶ | | 4×10 ⁻⁸ | | | Co-60 | 5.27 y | 2.5 | S | 3×10 ⁻⁷ | 1×10 ⁻³ | 1×10 ⁻⁸ | 5×10-5 | | I-131 | B.04 d | 0.36 | s | 9×10 ⁻⁹ | 6×10-5 | 1×10-10 | 3×10-7 | | Kr-85 | 10.72 y | 0.04 | Sub | 1×10 ⁻⁵ | | 3×10 ⁻⁷ | | | Ni -65 | 2.52 h | 0.59 | S | 9×10 ⁻⁷ | 4×10-3 | 3×10-8 | 1×10-4 | | Pu-239 | 2.41×10 ⁴ y | 0.008 | S | 2×10 ⁻¹² | 1×10-4 | 6×10-14 | 5×10-6 | | Sr-90 | 29 y | | s | 1×10 ⁻⁹ | 1×10 ⁻⁵ | 3×10-11 | 3×10-7 | | Xe-135 | 9.09 h | 0.25 | Sub | 4×10 ⁻⁶ | | 1×10 ⁻⁷ | | | | le radionucl
es not decay
ous fission | ide with T _{1/2} > by alpha or | 2 hr | 3×10 ⁻⁹ | 9×10 ⁻⁵ | 1×10-10 | 3×10-6 | | Neutron Energy (MEV) | Neutrons per cm ² equivalent to 1 rem | Average flux to deliver
100 mrem in 40 hours | |------------------------|--|---| | thermal
0.02
0.5 | 970×106
400×106
43×106
24×10 | 670
280 (neutrons)
30 | | Energy (MEV) | Water | Concrete | Iron | Lead | |--------------|-------|----------|------|------| | 0.5 | 0.090 | 0.21 | 0.63 | 1.7 | | 1.0 | 0.067 | 0.15 | 0.44 | 0.77 | | 1.5 | 0.057 | 0.13 | 0.40 | 0.57 | | 2.0 | 0.048 | 0.11 | 0.33 | 0.5 | | 2.5 | 0.042 | 0.097 | 0.31 | 0.49 | | 3.0 | 0.038 | 0.088 | 0.30 | 0.47 | FIGURE 4-2 A.C. DISTRIBUTION SINGLE LINE DIAGRAM PART 2 (REV. O) FIGURE 12-1A REACTON COOLANT SYSTEM FIGURE 24-11 CONDENSER PERMISSIVE CIRCUIT (REV. 0) REV. 2 WOG-1 TRANSFER TO COLD LEG RECIRCULATION 1BWEP ES-1.3 UNIT 1 ACTION/EXPECTED RESPONSE RESPONSE NOT OSTAINED CAUTION Steps 1 thru 5 should be performed without delay. BwFRs should NOT be implemented prior to completion of these steps. CAUTION The following Spurious Valve Actuation Guideline (SVAG) valves must be energized locally at MCCs, before transfer to Cold Leg Recirculation. SI pump suction from RWST Isol Valve: • 1SI8806 (MCC 131X 1AP3) SI pump Mini Flow Isol Valve: • 1SI8813 (MCC 132X 4AL3) CAUTION SI recirculation flow to the RCS must be maintained at all times. CAUTION If offsite power is lost after SI reset, then manual action may be required to restart safeguard equipment. ************************ NOTE With this procedure in effect, notify* the Station Director who will evaluate for GSEP conditions, per BwZP 200-1, BRWD EMERGENCY ACTION LEVELS. APPROVED JUL 30 1987 BRAIDWOOD Step continued on next page REV. 2 WOG-1 #### TRANSFER TO COLD LEG RECIRCULATION UNIT 1 1BWEP ES-1.3 STEP #### ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED 1BWOA PRI-5, CONTROL ROOM #### 1 RESET SI: - a. Depress both SI reset pushbuttons - b. Verify SI ACTUATED permissive light - NOT LIT - c. Verify AUTO SI BLOCKED permissive light - LIT - VERIFY CC WATER FLOW TO THE RH .2 HEAT EXCHANGERS: - a. CC to RH HX isol valves OPEN: - 1CC9412A - · 1CC9412B - b. CC flow indicated on 1FI688 and 1FI689 - GREATER THAN 4670 GPM - a. Manually open CC to RH HX isol valves: - 1CC9412A Reset SI per INACCESSIBLITY. - 1CC9412B - b. Verify locally RH HX outlet butterfly valve throttled: - 1CC9507A (364' +12' S16 AB) - · 1CC9507B (364' +12' S17 AB) - VERIFY ADEQUATE CNMT 3 RECIRCULATION SUMP LEVEL: - a. Bottom 4 Cnmt recirc sump level indicator lights - LIT - a. Check floor water level channels A (1LI-PC006) and B (1LI-PC007), greater than 1 inch. IF level greater than 1 inch, THEN GO TO Step 4. IF level is less than 1 inch, THEN GO TO 1BwCA-1.1, LOSS OF EMERGENCY COOLANT RECIRCULATION, Step 1. APPROVED JUL 30 1987 REV. 2 WOG-1 TRANSFER TO COLD LEG RECIRCULATION UNIT 1 1BWEP ES-1.3 STEP ACTION/EXPECTED RESPONSE RESPONSE NOT OSTAINED CAUTION Any pumps taking suction from RWST should be stopped upon RWST EMPTY alarm (5.9%). CAUTION SI pumps should be stopped if RCS pressure is GREATER THAN 1590 PSIG, their shutoff head pressure. ### 4 VERIFY CNMT RECIRCULATION SUMP ISOLATION VALVES POSITION: - Cnmt recirc sump isol valves - OPEN: - 1SI8811A - 1SI8811B Establish RH pump suction from the Cnmt recirc sump on one RH train at a time as follows: - a. Check adequate Cnut recirc sump level: - o Bottom 4 sump level indicator lights LIT. - c Level indication on floor water level channels A (1LI-PC006) and B (1LI-PC007) greater than 1 inch. - b. Stop RH pump in affected train: - o RH pump 1A - o RH pump 1B Step continued on next page APPROVED JUL 30 1987 REV. 2 WOG-1 TRANSFER TO COLD LEG RECIRCULATION UNIT 1 1BWEP ES-1.3 ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED Step 4 (continued) c. Close RWST to RH pump suction valve for affected RH pump: o 1SI8812A o 1SI8812B d. Stop CS pump in affected train by placing control switch in PULL OUT: o CS pump 1A o CS pump 1B e. Close RWST to CS pump suction valve for affected CS pump: o 1CS001A o 1CS001B f. Open Cnmt recirc sump suction valve to affected RH pump: 1SI8811A 1SI8811B g. Restart affected RH pump: o RH pump 1A o RH pump 18 h. Open RWST to CS pump suction valve for affected CS pump: 0 1CS001A Step continued on next page o 1CS001B APPROVED REV. 2 TRANSFER TO COLD LEG RECIRCULATION 18WEP ES-1.3 Step 4 (continued) i. Restart affected CS pump: o CS pump 1A o CS pump 1B IF both RH trains were affected. THEN repeat Steps a through i for remaining train. IF at least one flow path from Chmt recirc sump to the RCS can NOT be established or maintained. THEN GO TO 1BwCA-1.1, LOSS OF EMERGENCY COOLANT RECIRCULATION, Step 1. APPROVED JUL 30 1987 REV. 2 WOG-1 TRANSFER TO COLD LEG RECIRCULATION UNIT 1 IBWEP ES-1.3 STEP ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED CAUTION Prior to initiation of Cold Leg Recirculation, verify Control Room and Aux Bldg Charcoal Booster Fans are discharging thru the Charcoal absorbers. - ALIGN ECCS FOR COLD LEG RECIRCULATION: 5 - a. Verify CENT CHG pumps miniflow a. Manually close CENT CHG valves - CLOSED: - 1CV8110 - 1CV8111 - 1CV8114 - 1CV8116 pump miniflow valves IF 1CV8111 and 1CV8114 will NOT close and 1B CENT CHG pump is running, THEN: - 1) Trip the 1A CENT CHG pump. - 2) Locally CLOSE 1A CENT CHG pump miniflow isol valve: - 1CV8479A (364' S14 ourside 1A CENT CHG pump Rm). - 3) START 1A CENT CHG pump. IF 1CV8110 and 1CV8116 will NOT close and 1A CENT CKG pump is running, THEN: - 1) Trip 1B CENT CHG pump 2) Locally CLOSE 1B CENT CHG pump miniflow isol valve: - 1CV8479B (364 X14, outside 13 CENT CHG pup Rm). - 3) START 1B CENT CHG pump. APPROVED Step continued on next page JUL 30 1987 REV. 2 WOG-1 TRANSFER TO COLD LEG RECIRCULATION 1BWEP ES-1.3 STEP #### ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED b. Manually close valves. Step 5 (continued) - b. Verify RH pump suction from RWST isol valves - CLOSED: - 1SI8812A - 1SI8812B - c. Close SI pump miniflow isol valves: - · 1SI8813 - 1SI8814 - 1SI8920 - d. Close RH HX discharge crosstie valves: - 1SI8716A - 1SI8716B - e. Open SI and CENT CHG pumps suction crosstie valves: - 1SI8807A - 1SI8807B - 1SI8924 - f. Open RH pumps discharge to suction of CENT CHG and SI pumps valves: - 1CV8804A
- 1SI8804B APPROVED JUL 30 1987 REV 2 WOC-1 TRANSFER TO COLD LEG RECIRCULATION UNIT 1 1BWEP ES-1.3 STEP #### ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED - 6 ISOLATE RWST FROM SI AND CENT CHG PUMPS: - a. Close SI pump suction from RWST isol valve: - · 1SI8806 - b. Close RWST to CENT CHG pump suction valves: - 1CV112D - 1CV112E APPROVED JUL 30 1987 REV. 2 TRANSFER TO COLD LEG RECIRCULATION 1BWEP ES-1.3 STEP #### ACTION/EXPECTED RESPONSE RESPONSE NOT OSTAINED - 7 START ECCS PUMPS AS NECESSARY - 8 ALIGN CONTAINMENT SPRAY SYSTEM FOR RECIRCULATION IF NECESSARY: - a. Check RWST 19vel LESS THAN 5.9%: a. GO TO Step 9. - RWST EMPTY status lights LIT - b. Open Cnmt recirc sump supply valves: - 1CS009A - · 1CSCOSB - c. Close RWST supply isol valves: - 1CS001A - 1CS001B - 9 ALIGN CC FOR POST LOCA RECOVERY PER BWOP CC- 14 COMPONENT COOLING POST LOCA ALIGNMENT - 10 RETURN TO PROCEDURE AND STEP IN -END- JUL 30 1987 #### APPENDIX A BRAIDWOOD EMERGENCY ACTION LEVELS - Aircraft crash or missiles from whatever source. - 2) Control From evacuation. - 3) Earthquake. - (4) Unplanned Explosion - Z5) Fire. - 6) Flood or Low Water Level. - 7) Security Threat. - 8) Tornado/Severe winds. - O9) Toxic Gas. - Z₁₀₎ Less of AC power. - 11) Loss of DC power. - 12) Plant Shutdown Functions. - 13) Loss of Annunciator Alarm Capability. - 14) Other systems required by Technical Specifications. - 15) Inadequate Core Ccolant. - 16) Loss of primary coolant. - 17) Main Steam Line Break/Feed Line Break. - 18) Loss of Heat Sink. - 19) Steam Generator Tube Rupture. - 20) Inadvertent Positive Reactivity - 21) Feedwater Malfunction. - 22) ECCS Actuation. - 23) Turbine Generator Accedent. - 24) Loss of Fission Product Barriers. - 25) Fuel Handling Accident. - 26) Elevated Area Rad Monitor Readings. - 27) Gaseous Radiation Releases. - 28) Liquid Radiation Releases. - 29) Personal Injury. - 30) Hazardous Materials. - 31) Other Conditions. - 32) Transportation Accidents. APPROVED OCT 9 1987 ON-BI TYIER ## APPENDIX A (Continued) BRAIDWOOD EMERGENCY ACTION LEVELS | CONDITIONS | | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | | |------------|---|---|---|--|---|--| | Cla | ass Description | Events in progress
or have occurred
which indicate a
potential degrada-
tion of the level
of safety of the
plant. | Events in progress
or have occurred
which involve an
actual or potential
substantial degrada-
tion of the level
of safety of the
plant. | Events in progress
or have occurred
which involve actual
or likely major
failures of plant
functions needed
for protection of
the public. | Events in progress
or have occurred
which involve actual
or imminent substan-
tial core degradation
or melting with poten-
tial for loss of con-
tainment integrity. | | | 1) | Aircraft crash
or missiles
from whatever
source. | Impacted on-site. | Impacted on-site and has dagraded equipment described in the Technical Specifications such that a limiting condition for operation requires a shutdown. | A) Impacted co-site and has degraded equipment describ in the Technical Specifications be the limiting cond for operation tha requires a shutdo or B) has exceed a Tech nical Specificati safety limit. | yond
ition
t
wn; | | | 2) | Control Room
Evacuation. | | Due to exceeding
10CFR20 exposure
limits, evacuation
is required and
control is established
from local control
stations or from
Remote Shutdown
Panel within
15 minutes. | Due to exceeding
10CFR20 exposure
limits, evacuation is
required and control
is not established
from Local Control
Stations or from
Remote Shutdown Panel
within 15 minutes. | | | OCT 9 1987 PRAIDWOOD #### APPENDIX A (Continued) BRAIDWOOD EMERGENCY ACTION LEVELS | CON | DITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL ENERGENCY | |-----|--|---|---|--|--| | | Earthquake (activation of seismic monitor- ing alarm with level verification, not spurious, or testing.) | Seismic equipment is activated. (at level of 0.02g). | At a level greater
than Operating
Basis Earthquake
(> 0.095g). | At a level greater
than Safe Shutdown
() 0.21g). | | | 4) | Unplanned Explosion. | Onsite but not affecting plant operations. | Explosion onsite has degraded equipment described in the Technical Specifications such that a limiting condition for operation requires a shutdown. | A) Explosion has degraded equip- ment described in the Technical Specifications beyond the condit for operation tha requires a shutdo or B) has exceeded a Technical Specifi tion safety limit | ion
it
wn; | | 5) | Fire (ongoing as described by observation or alarm, and verified by the (fire brigade). | A) Fire requires NRC notification if not identified within 10 mins.; or B) Fire requiring offsite assistance but not affecting plant operation. | Fire requires off-
site assistance and
has degraded equip-
ment described in
the Technical Speci-
fications such that
a limiting condition
for operation
requires a shutdown. | A) Fire requires off site assistance a has degraded equiment described in Technical Specifications beyond the limiting condition for operation the requires a shutdown or B) has exceeded a Technical Specification safety limiting continuous contraction safety limiting continuous contractions as shutdown or contractions as shutdown contractions as shutdown contractions | ind
ip-
ica-
on
at
own; | OCT 9 1987 ## BRAIDWOOD EMERGENCY ACTION LEVELS | CONDITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |-----------------|-------------------|--|--|-------------------| | 6) Flood | Cooling pond dike | Water at level of | Water level at plant | | | | failure affecting | Probable Maximum | grade elevation ()
601 feet MSL). BG: | | | OR | offsite property. | Flood (Cooling Pond
water level | Rainfall in excess of | | | Low Water Level | | > 598.17 feet MSL). EG: Precipitation | Probable Maximum
Precipitation | | | | | greater than or | | | | | | equal to the
Probable Maximum | | | | <u> </u> | | Precipitation of | | | | , | | 31.9 inches in 48 hrs) | | | | 2 | | 31.7 Inches In to his, | | | | | | <u>OR</u> | <u>OR</u> | | | • | | Cooling Pond water | Cooling Pond water | | | | | level < 590 feet | level < 584 feet | | | 5 | | MSL with coincident | MSL with coincident | | | | | cooling pond dike | cooling pond dike | | | | | failure. | failure. | | APPROVED OCT 9 1987 MM .- MUOD | CONDITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL ENERGENCY |
--|---|-------|--|--| | 7) Security Threat Definition: Acts which threaten the safety of station personnel or security of the nuclear units or special nuclear material. This includes crowd disturb- ances or acts of sabotage. | The following events as described in the Security Plan: (1) Obvious attempt to sabotage. (2) Internal disturbance (disturbance (disturbance which is not short lived or is not a harmles outburst involvione or more individuals within the protected area). (3) Bomb device discovered. (4) Hostage. (5) Civil disturbance (spontaneous collective group gathering which disrupts normal operations). (6) Armed or forced protected area intrusion. (7) Armed or forced vital area intrusion. | e . | An ongoing security threat (event) involving an imminent loss of physical control of the facility. | An ongoin; security threat (event) involving a loss of physical control of the facility. | APPROVED OCT 9 1987 | CONDITIONS | | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |------------|--|---|---|---|---| | 8) ONLY | Tornado or
severe winds
being experi-
enced (Wind
speed as
indicated in
Control Room is
used to classify
condition.) | A) Tornado near Facility (1) Control Room informed by Load Dispatcher OR (2) Station personnel have made visual aighting; or B) Sustained winds > 60 mph. | A) Tornado strikes Facility or B) Sustained winds) 75 mph. | Sustained winds > 85 mph and either unit not in cold shutdown. | | | | Toxic Gas. | Uncontrolled
release of Toxic
gas at life
threatening levels
near or onsite. | Entry of Toxic Gas
into the protected
area. | Entry of Toxic Gas
gas into vital areas
affecting the safe
shutdown of the
plant. | | | 10) | Loss of AC
Power. | Loss of all offsite
AC power or loss of
all onsite AC power
required per unit. | Loss of all off-
site AC power and
loss of all onsite
AC power required
per unit. | Both ESF 4KV busses
per unit deenergized
for > 15 minutes. | Ongoing loss of power
and total loss of
feedwater makeup
capability. | APPROVED OCT 9 1987 TRAIDWOOD | CONT | TTIONS | UNUSUAL EVENT |
ALERT | _ | SITE EMERGENCY | GENERAL EMERGENCY | |-------------|---------------------------|---|--|----|---|-------------------| | 11) | Loss of DC
Power. | Loss of DC Power sourcer has degraded equipment described in the Technical Specifications such that a limiting condition for operation requires a shutdown. |
e of all ESF
power, per
t. | | Bunses 111 (211)
and 112 (212) are
both deenergised
for) 15 minutes. | | | NOTION (12) | Plant Shutdown functions. | | any function needed to main- tain cold shut- down (Both RH trains, OR both CC trains, R both SX trains.) OR Failure of the Reactor Protection System instrumentation to initiate | A) | Complete loss of any function needed to maintain hot shutdown. (If you do not have at least one operable S/G with Wide Range water level > 65% AND ability to control steam release either by S/G PORV, or steam dump capability to the condenser.) OR | | | | | | and complete a reactor trip, which brings the reactor sub-critical once a limiting safety system setpoint has been exceeded. | B) | Transient requiring operation of shutdown systems with failure trip. (Power Generat continues, but no condamage evident.) | to
ion | APPROYED | COND | ITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |------|---|---|--|--|-------------------| | 13) | Loss of most or
all alarm
capability of
annunciators. | | In the Main Control
Room. | In the Main Control
Room and a plant
transient in progress. | | | 14) | Conditions or
systems required
by Technical
Specifications
(i.e. ECCS,
fire protection,
etc.) | Equipment described in the Technical Specifications is degraded such that a limiting condition for operation requires a shutdown. | A) Equipment describe in the Technical Specifications is degraded beyond the limiting condition for operation that requires a shutdown OR B) has exceeded a Tenical Specification safety limit. | he
n
t
wn; | | | 15) | Inadequate
Core Coolant. | of 10 highest incore thermoccupic readings OR Subcooling (25°P for 15 minutes. | Braidwood Status Tree's (BwST's) require entry into PwFR-C.2 Response to Degraded Core Cooling, based on subcooling, number of RCP's running, vessel level, and core exit thermo- couples. | Braidwood Status Tree's (BwST's) require entry into BwFR-C.1 Response to Inadequate Core Coolin based on sub- cooling, number of RCP's running, vessel level, and core exit thermo- couples. | | APPR VED CCT 9 1987 RRAIDWOOD | CONDITIONS | | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL ENERGENCY | |------------|--|--|--|--|--| | 300.000 | Loss of Primary
Coolant. | A) Failure of a primary system safety or relief valve to close. OR a primary PORV failure to close, and its block valve will not isolate. B) Total Reactor Coolant leakage, excluding Pressure Boundary leakage, exceeds the limits specified in the Technical Specification | A > 50 gpm leakage increase in a 4 hour period as indicated by either leak rate calculations, charging pump flow or VCT level changes. | Primary system leak-
age is beyond
makeup capabilities
of charging pumps. | Primary system leakage is beyond mekeup capabilities of charging pumps AND Failure to activate BOCS. | | 17) | Main Steam Line
Break/Feed line
Break. | limiting condition for operation for greater than or equal to 4 hours. C) Detection of any Reactor Coolant Pressure Boundary leakage. With zero or small primary to secondary leakage and/or small | With 1 gpm primary
to secondary leakage
and with 1% failed | Ten (10) gpm primary
to secondary leakage
And significant fuel
damage. | | | | | percentage of failed fuel. | fuel. | oundye. | APPROVED | | COND | ITIONS | UNUSUAL EVENT | ALERT | SITE EMERGEMCY | GENERAL EMERGENCY |
--|----------------------------------|--|---|---|---| | 18) | Loss of Heat
Sink. | | Braidwood Status Tree's (BwST's) require entry to BwFR-H.1 Resp ase to Loss of Secondary Heat Sink, based on total feedwater flow to the steam gene- rators. | Alert condition is
on going for 15
minutes. (Loss of
all feedwater and
all auxiliary feed
water, and the
residual heat
removal system is
not in operation.) | Alert condition is
on going for 45
minutes. (Loss of
all feedwater and
all auxiliary feed
water and the residual
heat removal system is
not in operation.) | | NOTE WITH THE PARTY OF PART | Steam Generator
Tube Rupture. | Exceeding primary to secondary leakage rates as specified in Technical Specifications. | Entry into BwEP-3 Steam Generator Tube Rupture with the following: Reactor Trip/ Safety Injection AND 1. High radiation in the condenser air removal system. OR 2. High radiation in steam generator bl down. OR 3. Unexplained increasing any steam generator level. | ise | | | COND | DITIONS | UNUSUAL EVENT ALE | SITE EMERGENCY | GENERAL ENERGENCY | |------|---|--|----------------|-------------------| | 20) | Inadvertent positive reactivity insertions due to rods or dilution. | A. Inadvertent dilution such that: 1) Technical Specification shutdown margin requirement are violated. OR 2) The control bank low low insertion limit is reached. B. Uncontrolled rod withdrawal from subcriticality or power operation. | | | | 21) | Feedwater
Malfunction. | Any feedwater malfunction resulting in a sustained decrease in Feedwater temperature to the steam generators by > 60°F. | | | | 22) | BCCS Actuation. | PCCS initiation. (Non Spurious) with flow into reactor coolant system. | | | | CONDITIONS | | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL ENERGENCY | |---|-----|--|--|----------------|-------------------| | 23) Turbine-Gen accident in which missi are generat | les | A turbine generator failure in which missiles are generated and no penetration of the casing occurs and normal reactor shutdown follows. | A turbine generator failure in which missiles are generated and penetration of the casing does occur; all possible impact areas containing essential equipment are protected and normal reactor shut down follows. | | | APPROVED | CONDITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |--|---------------|---|--|--| | 24) Loss of Fission
Product Barriers. | | A. > 2 x 10 ² R/hr
Primary Containment
Radiation, OR | A. > 4 x 10 ² R/hr
Primary Containment
Radiation, OR | A. > 2 x 10 ³ R/hr
Primary Containment
Radiation, and probable
loss of primary
containment, OR | | Primary Contain-
ment Radiation
is observed on
the RM-11 display
console for:
1(2)RE-AR020 or | | B. Loss of 1 of the following 3 fission product barriers: 1) Cladding: | B. Loss of 2 of the following 3 fission product barriers: 1) Cladding: | B. Loss of 2 of the following 3 fission product barriers: with an imminent loss of the third barrier: 1) Cladding: | | 1(2)RE-AR021 | | grab sample results > 300 uCi/cc equivalent of I-131 | yrab sample results
> 300 uCi/cc
equivalent of I-131 | yrab sample results
> 300 uCi/cc
equivalent of I-131 | | | | 2) Reactor Coolant | 2) Reactor Coolant
System: | 2) Reactor Coolant
System: | | | | System: a) Containment press. > 5 psig and b) Containment temp. > 150°F and c) Containment humidity > 50% | a) Containment press. > 5 psig and b) Containment temp. > 150°F and c) Containment humidity > 50% | a) Containment press. > 5 paig and b) Containment temp. > 150°F and c) Containment humidity > 50% | | | | 3) Primary Containment a) Containment | 3) Primary Containment a) Containment | 3) Primary
Containment
a) Containment | | | | press. > 50 psig or
b) Containment
temp. > 260°F, or
c) Loss of contain-
ment integrity when
containment integrity
is required. | press. > 50 psig or
b) Containment
temp. > 280°F or
c) Loss of contain-
ment integrity when
containment integrity
is required. | press. > 50 paig or b) Containment tomp. > 280°F or c) Loss of containment integrity when containment integrity is required. APPROVED | | CONT | ITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL ENERGENCY | |------------------|--|--|--|--|-------------------| | INFORMATION ONLY | Fuel Handling Accident (Direct information from fuel handling personnel indicating that an irradiated fuel assembly has been damaged.) | | Building exhaust
has been diverted
through the charcoal
filters. | A) Radiation levels in the Fuel Handling Building are > 100 mR/hr as observed on the RM-11 display console for ORE-AR055 or ORE-AR056, OR B) Fuel Handling Building exhaust charcoal filters are depleted OR inoperable and radioactivity is being released to the atmosphere. | | | 26) | Elevated Area
Rad Monitor
readings | Unplanned increase
by factor of 20 in
any ARM. | Unplanned increase (Resulting from degradation in the control of radioactive material and confirmed by survey or redundant instrumentation) by a factor of 100 of any ARM. | | | APPROVED OCT 9 1987 PRAIDWOOD | CONDITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |---
---|---|--|--| | 27) Gaseous Radiation Releases** A. Core Damage Suspected | No core damage event
is postulated at the
Unusual Event level. | Instantaneous release
rate exceeds
1.8 x 10 ⁶ uCi/sec | Release rate averaged
for 2 minutes exceeds
> 500 mrem/hr whole
body at the site
boundary
(8.9x10 ⁶ uCi/sec)
OR
Release rate averaged
for 30 minutes ex- | Instantaneous release rate exceeds level corresponding to > 1 rem/hr whole body at the site boundary under actual meteorology. This condition exists when Q > 7x106xU where Q = release rate in | | B. NO Core Damage Suspected | Instantaneous release rate exceeds 1.8 x 10 ⁶ uCi/sec Noble gas OR 30 uCi/sec Iodine OR 10 CFR 20.105 instantaneous release limits are exceeded. | Instantaneous release rate exceeds 1.8 x 10 ⁷ uCi/sec Noble gas OR 300 uCi/sec Iodine OR 10 times 10 CFR 20.105 instantaneous release limits are exceeded. | body at the site boundary (8.9 x 10 ⁵ uCi/sec) Release rate averaged for 2 minutes exceeds > 500 mrem whole body at the site boundary (1.6 x 10 ⁸ uCi/sec) OR Release rate averaged for 30 min. exceeds > 50 mrem hr whole body at the site boundary (1.6 x 10 ⁷ uCi/sec) | U = mean wind speed
in meters/sec | ^{**}Monitored releases can be measured by effluent monitoring or counting instrumentation. For noble gases, effluent monitor 1(2)RE-PRO030, channel 4, displays the release rate in uCi/sec on the RM-11 display console. For iodines, effluent monitor 1(2)RE-PRO030, channel 4, displays the release late in deliver that must be corrected for stack flow rate to ot ain a release rate in APPROVED ^{**}Unmonitored releases can be estimated by field measurements taken by Environmental Survey Teams. | CONDITIONS | | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |-------------------|--|--|---|--|--| | 28) | Radiation Release from the Plant as measured by counting instrumentation or effluent monitoring irst- rumentation. | 1) Gross Beta > 1 x 10 ⁻⁷ uCi/ml OR 2) Tritium > 3 x 10 ⁻³ uCi/ml | 1) Gross Beta 2) 1 x 10 ⁻⁶ uCi/m or 40 Ci total in 24 hours OR 2) Tritium 2 3 x 10 ⁻² uCi/ml or 500 Ci total in 24 hours. | 1) Cross Beta) 2,000 Ci total in 24 hours OR 2) Tritium) 2 x 10 ⁴ Ci total in 24 hrs. | 1) Gross Beta 2 x 10 ⁴ Ci total in 24 hours OR 2) Tritium 2 x 10 ⁵ Ci total in 24 hrs. | | Ž ₂₉) | Personnel
Injury | Transportation of a radioactively contaminated injured person to hospital | | | | | 30) | Hazardous
Materials | As a direct result of hazardous materials a person is killed or hospitalized or estimated property damage exceeds \$50,000 | 0. | | | · APPROVED OCT 9 1987 COCHEGIASE | CONDITIONS | UNUSUAL EVENT | ALERT | SITE EMERGENCY | GENERAL EMERGENCY | |---|--|--|---|--------------------| | 31) Any other Conditions of equivalent magnitude to the criteria used to define the accident category as determined by the Station Director.* | Warrants increased awareness on the part of the state and/or local off-site officials. | Warrants activation of Technical Support Center. | Warrants activation of the Emergency Operations Facility and monitoring teams; warrants notification of the public by State and local agencies. | Imminent Core Helt | *Conditions that may or may not warrant classification under GSEP include: Incident reporting per 10CFR50.72 Incident reporting per 10CFR20.403 or Illinois Rules and Regulations, Part D.403. Discharges of oil or hazardous substances into waterways per 33CFR153. C. Security contingency events per the Station Security Plan. đ. The Station Director may, at his discretion, categorize the above situations as GSEP emergencies, depending upon the seriousness of the situation. (Refer to Section 9.3 of the generic plan for additional information.) APPROVED - 32) A. A vehicle transporting radioactive materials or non-radioactive Hazardous materials from a Commonwealth Edison generating station is involved in a situation in which: - 1. Fire, breakage or suspected radioactive contamination occurs involving a shipment of radioactive material or; - 2. As a direct result of Hazardous materials, - (a) A person is killed; or - (b) A person receives injuries requiring hospitalization; or - (c) Estimated carrier or other property damage exceeds \$50,000. - B. Any other condition involving Hazardous material transportation and equivalent to the criteria in Item A. (Final) APPROVED OCT 9 1987 PRAIDWOOD ### INFORMATION ONLY REV. 2A WOG-1 ### REACTOR TRIP OR SAFETY INJECTION 1BWEP-0 STEP ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED ### 121 YERIFY TURBINE TRIP: - All Turbine throttle stop valves CLOSED - All Turbine governor valves -CLOSED ### Manually trip the Turbine. IF Turbine will NOT trip, THEN manually run back the Turbine at maximum rate by the following method: - 1) Press TURB MAN. - Press FAST ACTION and GOV LWR simultaneously. IF Turbine can NOT be run back, THEN place EH pumps in PULL OUT position. IF Turbine still will NOT trip, THEN manually initiate Main Steamline Isolation and manually close MSIV bypass valves. ### 131 YERIFY POWER TO 4KY ESF BUSSES: - a. ESF busses AT LEAST ONE ENERGIZED: - O Bus 141 alive light -LIT -OR- - o Bus 142 alive light - - b. ESF busses ALL ENERGIZED: - Bus 141 alive light LIT -AND- - · Bus 142 alive light LIT a. Try to restore power to a least one ESF bus. IF power can NOT be restored to at least one ESF bus, THEN GO TO 1BwCA-0.0, LOSS OF ALL AC POWER, Step 1. b. Try to restore power to deenergized ESF bus while continuing with this procedure. APPROVED DEC 1 1 1987 BRAIDWOOD ### INFORMATION ONLY REACTOR TRIP OR SAFETY INJECTION 1BWEP-0 REV. 2A WOG-1 (0024Q/0002Q) ACTION/EXPECTED RESPONSE RESPONSE NOT OBTAINED CAUTION During a loss of offsite power, operator action will be necessary to actuate PZR PORVs. BOTE With this procedure in effect, notify the Station Director who will evaluate for GSEP conditions per BWZP 200-1, BRWD EMERGENCY ACTION LEVELS. ************** Steps 1 through 15 are IMMEDIATE ACTION steps. BOT "Adverse Containment" as used in Braidwood Emergency Procedures is defined as: e Containment pressure GREATER THAN 5 PSIG APPROVED -OR-Containent radiation level GREATER THAN 10⁵ R/HR. DEC 1 1 198 BRAIDWOOD III VERIFY REACTOR TRIP: Manually trip the Reactor. Rod bottom lights - LIT IF the Reactor will NOT trip Reactor trip and bypass breakers - OPEN THEN GO TO 1BWFR-S.1, RESPONSE TO NUCLEAR POWER Neutron flux - DECREASING GENERATION/ATWS, Step 1. Page 3 of 31 QUESTION 5.01 (1.00) The plant is operating at 85% power with rod control in manual and all other control systems in automatic. The operator inadvertently aligns charging pump suction to the RWST. Describe the changes to the shutdown margin. QUESTION 5.02 (2.00) A centrifugal charging sump is running with the discharge flow control valve FCV-121 in mid proition. Indicate how each parameter will change (Increase, Decrease, or Remain the Same) if the discharge valve is fully opened. - a. Discharge flow - b. Pump discharge pressure upstream of the discharge valve - c. Motor amps - d. Available NPSH to the pump - e. Seal injection flow QUESTION 5.03 (3.00) Consider the following plant conditions: MODE 3. BOL Boron concentration is 900 ppm All shutdown banks withdrawn Actual reactivity present in the core is minus 4% delta-K/K Source range indication of 100 CPS Differential boron worth is minus 10 pcm/ppm A boron dilution to 750 ppm increases the source range indication to 132 CPS. During the dilution, Xenon concentration has changed. How many PCM of reactivity did xenon contribute during the dilution? State all equations used and assumptions made and show all work. QUESTION 5.04 (1.50) Explain how the venturi-type flow restrictor will act to limit main steam line flow if a line break occurs downstream of the venturi. (**** CATEGORY OS CONTINUED ON NEXT PAGE *****) QUESTION 5.05 (3.00) The reactor is at 100% power at BOL with equilibrium xenon and all rods out when the boron concentration is reduced, causing a deep insertion of control rod bank D to maintain Tave constant. Describe how the axial core power distribution will change as a result of this action. ASSUME NO FURTHER ROD
MOTION. Continue the explanation until steady state conditions are restored. #### QUESTION 5.06 (3.00) - Why does a single RCP pump running during hot shutdown draw more motor (0.75)amperage than when one of four running at power? - Why does a RCF running at cold conditions draw more motor amperage than (0.75)at hot conditions? - Why is RCP motor amperage higher when starting the pump than when (0.75) - Why should operating a pump with too much flow and no discharge d. (0.75)pressure be avoided? #### QUESTION 5.07 (1.00) WHY will Axial Flux Difference change if reactor power is reduced from 100% to 50%? Assume the reactor is operating at 100% power with all rods out. early in cycle life at equilibrium Xenon conditions when power is reduced to 50% by borating (no rod motion). Neglect changes due to Xenon. #### QUESTION 5.08 (2.50) - Explain two effects on core reactivity that occur as Reactor Coolant (0.75)temperature is increased? - Briefly explain why there is a larger change in the magn. tude of MTC b. with changes in boron concentration at 560 degrees than there is at (1.0) 100 dearees. - WHY does power defect coefficient become more negative as the core C. (0.75)ages? QUESTION 5.09 (2.00) a. Describe how inserting a control rod group 50 steps (from ARO) would affect each of the parameters below. Continue description until equilibrium is reached. Assume the plant is operating at 100% power early in cycle life and all other parameters are normal for this condition. 1. Reactor power. (0.75) 2. RCS Tave. (0.75) b. How would the plant response differ at end of life? (0.5) QUESTION 5.10 (2.00) - a. Why can the neutron population remain relatively constant in a subcritical reactor with Keff of 0.5? (0.75) - b. Explain why initially locating the detector further from the neutron source than required during core loading will still result in an accurate 1/M plot. (0.75) - c. Why is locating the detector between the source and the fuel being loaded during a core load considered unconservative? (0.5) QUESTION 5.11 (2.00) Explain WHY each of the condenser conditions below act to decrease overall efficiency of the plant. Consider each case separately. Use of appropriate thermodynamics formulas is acceptable. - a. Hotwell level increases (above the bottom rows of tubes). - b. Noncondensible gas inventory increases. - c. Circulating water flow decreases. QUESTION 5.12 (2.00) Briefly describe 2 power distribution limits that are used to ensure that the power distribution shape in the core is acceptable, how they are determined, and what direction (radially or axially) each ensures acceptable power distribution. (NOTE: include 1 limit for radial distribution AND 1 limit for axial distribution.) QUESTION 6.01 (1.50) Per BwDA-RCP-2, "Loss of Seal Injection", explain why an RCP does not necessarily have to be tripped when seal injection flow to the RCP is lost. QUESTION 6.02 (3.50) Refer to figure 4-1 and 4-2 attached. a. What position (OPEN or SHUT) would each of the following breakers be in (2.5)for a SHUTDOWN electrical plant lineup? | 5. | 1561 | 10. | 1432 | 15. | 1441 | 20. | 1423 | |----|------|-----|------|-----|------|-----|------| | 4. | 1592 | 9. | 1431 | 14. | 1413 | | 1424 | | 3. | 1591 | 8. | 1582 | 13. | 1414 | | 1422 | | 2. | 1572 | 7. | 1581 | 12. | 1412 | | 1421 | | 1. | 1571 | 6. | 1562 | 11. | 1411 | | 1442 | b. Which breakers from the above list would be in a different position from the shutdown lineup if the plant is placed into an AT-POWER (1.0)lineup? QUESTION 6.03 (2.50) List or describe 5 trips associated with the Emergency Diesel Generators that will cause the generator output breaker to trip open before causing the EDG to trip. (I.E. DO NOT include trips that DO NOT cause a generator trip prior to engine trip.) Assume the EDG is running for surveillance testing. PAGE QUESTION 6.04 (3.00) Refer to figure 12-1A attached. On the drawing, label each of the following penetrations as indicated: | a. | SI | (8 | connections | |----|--------------------|-----|--------------| | b. | RHR | (8) | connections) | | c. | Accumulators | (4 | connections) | | | Hi head charging | (4 | connections) | | | CVCS letdown | (1 | connection) | | | Normal charging | (1 | connection) | | | Alternate charging | (1 | connection) | | - | Auxiliary spray | (1 | connection) | | | RCDT | (2 | connections) | QUESTION 6.05 (2.00) - Assume that power is steady at 35%. I&C technicians are performing calibrations on a stator cooling water differential pressure transmitter. One of the other channel transmitters fails low and a reactor trip occurs. Explain why the reactor tripped. QUESTION 6.06 (2.50) Refer to the attached diagram concerning the Boron Thermal Regeneration System (BTRS): - a. Describe the flow path during the release (boration) mode. (1.5) - b. Describe the flow path during the storage (dilution) mode. (1.0) QUESTION 6.07 (3.00) Briefly describe the Reactor Vessel Level Indicating System, including the types of detectors used and the principles of operation of the system. QUESTION 6.08 (3.50) - List or describe 8 conditions that will cause an auto trip of a running Motor Driven Fer water Pump. Include setpoints where applicable. - List or describe 6 conditions that will cause an auto trip of a running Turbine Driven Feedwater Fump. Include setpoints where applicable. - c. List or describe 3 conditions that will cause a trip of a running motor drive, AUXILIARY FEEDWATER PUMP. Include setpoints where applicable. - List or describe 3 conditions that will cause a trip of a running diesel driven AUXILIARY FEEDWATER PUMP. Include setpoints where applicable. (.175 ea) NOTE: different conditions that send the same trip signal to the pump will count as 1 response. QUESTION 6.09 (2.00) Assume that you are the SRO reviewing RO logs and note the following data: Turbine load = 80% Steam Generator pressure = 998 psig Steam flow (per generator) = 3.4 x 10E6 lbm/hr All systems operating in automatic Are the above indications consistent with each other? Justify your answer. · SHOWING ALL CALCULATIONS. State all assumptions. QUESTION 6.10 (1.50) Refer to figure 24-11 attached concerning the steam dump system. Label the contacts on the figure numbered 1A, 1B, 1C, 2, 3, 4, 5 and 6. QUESTION 7.01 (2.50) What are the entry conditions for BWEF ES-0.0, "Rediagnosis"? Be specific. DUESTION 7.02 (2.50) BwEF ES-1.3, "Transfer to Cold Leg Recirculation" (attached), contains a caution stating that BwFRs should NOT be implemented prior to completion of steps 1 thru 5. What are the reasons (bases) for this caution? QUESTION 7.03 (1.50) Per BwEP-O, "Reactor Trip or Safety Injection", list or describe 3 symptoms that require a reactor trip. AND safety injection, if both have not occurred. Include setpoints. QUESTION 7.04 (1.50) State the line of succession (who has the responsibilities) of the Acting Station Director if the Station Director is not available or not on site during an emergency. QUESTION 7.05 (.50) True or False? General categorization and declaration of an emergency condition may be delegated by the Station Director to the Corporate Command Center Director. QUESTION 7.06 (3.00) Classify each of the following as to their appropriate Emergency Action Level. Limit your answers to NONE, UNUSUAL EVENT, ALERT, SITE EMERGENCY, (.75 ea) or GENERAL EMERGENCY. BwZP 100-141 is attached. - 1. cooling pond level is at 588 ft due to dry weather - an operator initiates safety injection with the plant at power. 2. Fressure remains stable at 2135 psig. - 3. While removing the main generator from the grid, the operator inadvertently opens the SAT disconnects instead of the UAT disconnects - 4. a runback results in driving bank D control rods below the low-low rod insertion limit QUESTION 7.07 (2.00) Refer to the attached pages from 1BwEF-0. While performing step 1 of this procedure, you note that one of the reactor trip breakers did not open. All rod bottom lights are lit. What action(s) do you take and WHY? *QUESTION 7.08 (2.00) Assume that the long fuel handling tool must be physically inspected by removing it from the spent fuel pool. The tool will be out of the pool for 2 weeks. Readings at the end of the tool are 240 mrem per hour at a distance of 2 feet. Where (at what distance) must a RADIATION AREA sign be posted? Show all work and state all assumptions. QUESTION 7.09 (1.50) Per BwGP 100-2, "Plant Startup", certain actions must be taken by the operator if the source range count rate increases unexpectedly by a factor of two or more during any operation. What immediate actions must be taken and when can the operation be resumed? (**** CATEGORY OF CON: NUED ON NEXT PAGE *****) QUESTION 7.10 (3.00) BwGP 100-2, "Plant Startup"; states in part "the shutdown banks must be at the fully withdrawn position whenever positive reactivity is being added..." Describe 3 exceptions to this rule. QUESTION 7.11 (2.50) Per BwGP 100-6, "Refueling Outage", describe 5 occurrences that require that core alteration operations be suspended. QUESTION 7.12 (2.50) Per BwRP 1120-1, "Controlled Area Access", personnel entry into a controlled area is not permitted unless certain requirements are met. List or describe 5 of these requirements. QUESTION 8.01 (2.00) Per Technical Specification 3.1.1.4, the lowest operating loop temperature shall be greater than or equal to 550 degrees F when in mode 1 or 2. Give 4 reasons for this limit. QUESTION 8.02 (2.50) Assume that one of the governor valves for the Unit 2 high pressure turbine is stuck and declared inoperable. Per Technical Specification 3.3.4, "Turbine Overspeed Protection", what are your 3 options? QUESTION 8.03 (2.50) Assume that you are the on-shift SCRE, unit 1 is in an outage, and unit 2 is at 40% power. An auxiliary operator who is enrolled in the train g program for reactor operator at Byron is at Braidwood to assist the operations department during the outage. He asks you if he may move the control rods in manual
on unit 2 in order to complete practical factors for his training as an RD. What administrative requirements must be met before you let him perform the manipulation? Be specific. QUESTION 8.04 (2.50) Per BwAP 350-1, "Operating Logs and Records", give 10 types of entries that should be made in the SHIFT ENGINEER'S LOG. Do not give actual examples. QUESTION 8.05 (2.00) Per BwAP 350-1. "Operating Logs and Records", give 8 types of entries that should be made in the CONTROL ROOM LOGS. Do not give actual examples. QUESTION 8.06 (3.00) Assume that you are the SRO on shift with unit 1 in mode 3 when you receive the following chemistry sample results for unit 1: dissolved oxygen: 1.1 ppm chloride: 0.25 ppm fluoride: 0.11 ppm specific activity: 1.2 microcuries/gram dose equivalent I-131 gross activity: 24 microcuries/gram E-bar: 0.4 Explain what basis would be used (if any) for entering the actions statements for: - a. Technical Specification 3.4.7, "Chemistry" - b. Technical Specification 3.4.8, "Specific Activity" QUESTION 8.07 (1.50) Assume that you are the Shift Engineer and are notified that an acid spill occurred while regenerating ion exchanger resin beds. Fer BwAP 550-13, "Caustic and Acid Spill Cleanup Procedure", list 3 actions that you should take. QUESTION 8.08 (2.00) Per BwAP 900-9, "Telephone Bomb/Sabotage Threat", list 4 persons or organizations that you should notify of a bomb threat if you are the Shift Engineer. QUESTION 8.09 (.50) Per the license for Unit 1, what is the maximum power level (thermal) that Unit 1 is authorized to operate at? QUESTION 8.10 (1.50) Technical Specification 3.5.3 specifies that a maximum of one centrifugal charging pump shall be operable whenever the temperature of one or more of the RCS cold legs is less than or equal to 330 degrees F. Technical Specification 4.5.3.2 further states that no safety injection pumps shall be operable in this condition. What is the basis for these technical specification limits? QUESTION 8.11 (1.00) Explain under what conditions an operator may be allowed to violate technical specifications when performing an Emergency Procedure (BwEP series). QUESTION 8.12 (2.50) Technical Specification 3.6.2.2 places limits on the volume and concentration of NaOH in the spray additive tanks. What are the bases for these limits? Be specific. QUESTION 8.13 (1.50) State whether or not each of the following cases would require entry into a Technical Specification LCO. Limit your answer to YES or NO. (.75 ea) - A containment pressure channel monthly channel check was performed on the following dates this year: Jan 4, Feb 6, Mar 6, Apr 13, May 12 and June 6. - Control room temperature has been 100 degrees for the last 2 shifts. The plant is in mode 3. (***** END OF CATEGORY OB *****) (********** END OF EXAMINATION ************) ### . .. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 5.01 (1.00) SDM increases [0.3] The decrease in the reactivity by the boron will be equal to the increase in reactivity by the temperature and/or power decrease. [0.7] REFERENCE Reactor Theory, ch 7, obj 8 and pp 7-8 to 7-14 004000K519 ... (KA'S) ANSWER 5.02 (2.00) a. Increase b. Decrease c. Increase d. Decrease (will accept remain the same) e. Increase [0.4 pts each] REFERENCE Fluid Flow, ch 2, obj 5 and pp 2-38 to 2-46 004000K604 191004K105 191004K106 191004K107 193006K115 ... (KA'S) ANSWER 5.03 (3.00) | Keff1 = 1/((1-(-0.04)) = 0.9615 | [0.3] | |---|-------| | 100(19615) = 132(1 - Keff2), $Keff2 = 0.9708$ | [0.7] | | rho2 = (0.9708 - 1)/0.9708 = -0.03 | [0.3] | delta rho = rho2 - rho1 = -0.03 - (-0.04) = 0.01 = 1000 pcm [0.6] (accept delta rho=ln(k2/k1)=963 pcm and delta rho=(k2-k1)/k2k1=996 pcm)(acceptable range on delta rho is 960 to 1000 pcm) Boron delta rho = -150 ppm \times -10 pcm/ppm = 1500 pcm [0.5] [0.6] Xenon delta rho = 1000pcm - 1500 pcm = -500 pcm (acceptable range on Xenon delta rho is -500 to -540 pcm) REFERENCE Reactor Theory, ch 4, obj 4 Reactor Theory, ch 5, pp 5-28 to 5-31 Reactor Physics, ch 6, obj 13 and pp 6-21 to 6-24 001000K528 ... (KA'S) ### ... THEORY OF NUCLEAR POWER PLANT OFERATION, FLUIDS, AND ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 5.04 (1.50) As the area of the venturi decreases, fluid velocity increases.(.5) The velocity is limited to sonic velocity in the throat of the nozzle.(.5) Since mass flow rate is proportional to velocity, mass flow rate is limited by sonic velocity in the throat.(.5) (full credit for concept) REFERENCE Fluid Flow, ch 3, obj 1b and pp 3-17 to 3-23 039000A201 191002K101 191002K105 193004K103 193006K115 ...(KA'S) ANSWER 5.05 (3.00) - Rod insertion causes flux shift towards bottom of core (0.5). Xenon buildup in top of core due to less burnout and xenon reduction in bottom of core due to increased burnout causes flux to shift towards the bottom of the core even more (1.0). Later, xenon buildup in bottom of the core due to increased production and xenon reduction in top of the core due to xenon decay causes a flux swing towards the top of the core (1.0). These feedback effects between xenon and power result in an axial power oscillation (0.5) (which will die out with time). REFERENCE Reactor Theory, ch 4, obj 10 and pp 4-29 to 4-34 192005K114 192005K116 ...(KA'S) ### . 5: THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS ANSWERS -- BRAIDWOOD 1%2 -88/07/18-DAMON. D. ANSWER 5.06 (3.00) - a. A single pump running has a higher flow than when all 4 are operating (due to reduced discharge pressure) so more work is done and more (0.75)amperage drawn. - At cold conditions, fluid density is higher, so more mass is moved so (0.75)more work is done and more amperage drawn. - It must accelerate more mass, which requires more work, and amps. (0.75) C. - d. Operating at runout may cause pump damage/trip on overcurrent. (0.75) will accept concept for all parts REFERENCE Fluid Flow, ch 2, obj's 1, 5, 9, 14 and pp 2-24 to 2-25, 2-63 to 2-69 Fig's FF-2-32, FF-2-33 191004K107 191004K108 191004K112 ... (KA'S) 191004K105 ANSWER 5.07 (1.00) Due to the greater decrease in the temperature of the coolant exiting the core relative to the decrease of the inlet coolant (0.5), more positive reactivity will be added in the upper core regions (0.5), (resulting in a more positive (less negative) AFD.) REFERENCE Reactor Theory, ch B, obj 4 and pp 8-14 to 8-16 193009K102 193009K107 ... (KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 5.08 (2.50) - a. The increasing temperature causes a density change of the coolant which results in negative reactivity, (.25) due to the decrease in moderating ability of the water. (.25) The subsequent decrease in density results in removing boron, causing positive reactivity due to fewer losses to the boron poison. (.25) [Accept the following for DNE reactivity effect: If the candidate assumed that the moderator temperature rise was due to fuel temperature rise, doppler power coefficient will add negative reactivity.] - b. The change in density of the coolant with changing temperature at higher temperature is much greater than at lower temperature, (0.5) so more boron atoms enter or leave the core at higher temperatures which causes a larger reactivity change for a given temperature change (0.5) - c. Lowering boron concentration over life makes MTC.more negative due to the decreased poisoning changes with density/temperature changes. (.5) MTC's contribution to power defect overrides other changes over core life, (.25) (causing power defect coefficient to become more negative.) REFERENCE Reactor Theory, ch 2, obj's 6, 8, 9 and pp 2-63 to 2-69 192004K108 ... (KA^*S) ANSWER 5.09 (2.00) - a. 1. Reactor power will initially decrease to add positive reactivity from doppler due to the negative reactivity added by the control rods. (.5) Power will return to 100% since power follows steam demand. (.25) - 2. Tave will decrease because of steam flow/reactor power mismatch (.5) until enough positive reactivity is added to return reactor power to 100%. (.25) - b. The difference is that Tave will decrease less (since MTC is more negative at EDL). Also accept smaller power decrease. (0.5) REFERENCE Heat Transfer, ch 7, obj's 7, 8 and pp 7-32 to 7-56 192004K106 192004K107 192008K124 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 5.10 (2.00) - a. The loss of fission neutrons is made up by source neutrons. (0.75) - b. The initial count rate is low as well as the subsequent count rates so that the ratio of 1/M is constant and not affected. (0.75) - The detector will detect only source neutrons in this geometry until there is a relatively large flux from the fuel being loaded. (0.5) REFERENCE Reactor Physics. ch 8, obj's 4, 16 and pp 8-13 to 8-30 192003K101 192008K104 ... (KA'S) ANSWER 5.11 (2.00) - a. Effective area available to condense steam is reduced, which increases Tsat and Psat in the condenser. The increase in Psat causes the extraction of less work from the turbine since work is proportional to delta P across the turbine, so efficiency decreases. - b. Increasing noncondensibles block some tube area, with same consequences as above. Also, this reduces the amount of steam undergoing phase change, which decreases the specific volume change, leading to higher pressure, and the effects above. - c. Reduced mass flow reduces heat rejected from the steam in the condenser, causing less dT, with a corresponding increase in Tsat and Psat, with the effects above. (3 answers @ 0.666 ea.; General concept required, not specific answer) (will also accept explanations utilizing appropriate heat transfer equations) REFERENCE Thermodynamics, ch 4, obj 11 and pp 4-64 to 4-106 191006K110 191006K112 191006K114 193005K103 ...(KA'S) #### 5. THEORY OF NUCLEAR FOWER PLANT DEERATION. FLUIDS, AND THERMODYNAMICS ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 5.12 (2.00) Axial Flux
Difference (0.25) determines axial distribution (0.25) and is determined by subtracting calibrated I from the bottom detectors from the calibrated I from the top detectors and dividing by the 100% power calibrated I (0.5). Quadrant Power Tilt Ratio (0.25) determines the radial flux shape (0.25) and is determined by ratioing the maximum upper half excore detector I to the average upper excore detector I (also applies to lower detectors) (0.5). F(Q)Z [0.25] determines local heat flux at a specific elevation [0.25] by use of the in-core NI's to ensure both axial and radial flux within limits. [0.5] Fxy [0.25] ensures that radial peaking factors within limits [0.25] and is determined with in-core NI's. [0.5] [Any 2 of 4 that addresses both radial and axial flux] (2.0) REFERENCE Reactor Theory, ch 8, obj 7 and pp 8-16 to 8-24 193009K101 193009K102 ... (KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 6.01 (1.50) As long as CCW is supplied to the thermal barrier (.75), reactor coolant is cooled to acceptable temperatures prior to reaching the seals and bearings. (.75) #### REFERENCE System Description ch 13, objective 4d and pp 13-42 to 13-43 003000A201 ... (KA'S) ANSWER 6.02 (3.50) - 11. open 16. shut 1. open 6. shut 17. open 12. shut 7. open 2. shut 13. open 18. shut 3. open 8. shut 14. open 19. open 4. shut 9. open 10. shut 5. open 15. open 20. open - b. 1571, 1572, 1561, 1562, 1431, 1432, 1441, 1442 (.125 for each answer, 3.5 total) #### REFERENCE System Description ch. 4, objective 9 and pp 4-105 to 4-106 062000K104 ... (KA'S) ANSWER 6.03 (2.50) Any 5 0 .5 ea: Generator over-current Generator neutral to ground over-current Loss of field Reverse Power Under-frequency Manual Bus lockout Safety Injection #### REFERENCE System Description ch. 9, objective 5 and pp 9-48 to 9-51 Figure 9-2 064000K402 ... (KA'S) FIGURE 12-1A REACTOR COOLANT SYSTEM ### 6. _ FLANT_SYSTEMS_DESIGN. CONTROL. AND INSTRUMENTATION ANSWERS -- BRAIDWOOD 182 -88/07/18-DAMON. D. ANSWER 6.04 (3.00) See attached drawing REFERENCE System Description ch 12, objective 2h and figure 12-1A 002000K106 002000K108 002000K110 ... (KA'S) ANSWER 6.05 (2.00) A combination of 2 stator water DP transmitters low give a generator trip (45 seconds later). (.75) Generator trip gives turbine trip. (.5) With reactor power above 30% (p-8), turbine trip will give reactor trip. (.75) REFERENCE System Description ch 7c, objective 1e and pp 7c-23 to 7c-25 012000K106 045050K101 ... (KA'S) ANSWER 6.06 (2.50) - moderating heat exchanger, bypasses letdown chiller heat exchanger, through letdown reheat heat exchanger, through resin beds, to moderating heat exchanger, and letdown chiller heat exchanger - b. moderating heat exchanger, through letdown chiller heat exchanger, to resin beds, to moderating heat exchanger (.25 for each component) REFERENCE System Description ch 16, obj 6 and pg 16-5 004000K405 ... (KA'S) -88/07/18-DAMON . ANSWER 6.07 (3.00) System consists of a series of heated junction thermocouple sensors. (.25) Each sensor consists of a thermocouple near a heater and another 'way from the heater. (.75) If liquid water is covering the sensor, the delta T between thermu. iples is small due to the good heat transfer properties of liquid water. (1.0) If steam voiding occurs, the heat transfer goes down and a larger delta T is present, indicating the level change. (1.0) REFERENCE System Description, ch 34b, obj 4 and pp 34b-10 to 34b-11 016000K101 016000K102 ... (KA'S) ANSWER 6.08 (3.50) a. any 8 of the following: 1. phase DA overcurrent 5. hi lube oil temp - 175 degrees 6. lo lube oil press - 10 psig b. any 6 of the following: 1. overspeed - 5720 RPM 1. overspeed - 5/20 kg. 2. lo autostop oil press - 35 psig 6. any 81 7. thrust bearing wear - 3. lo bearing press - 10 psig 4. lo vacuum - zone C @ 14" Hq c. anv 3 of the following: 1. control switch (manual) 2. overcurrent d. any 3 of the following: 1. overcrank - 55 secs 7. loss of only CD/CB pump 8. low sur ion pressure-400 pte 1. phase DA overcurrent 2. phase DC overcurrent 3. neutral ground overcurrent 4. hi differential current 7. loss of only CD/CB pump 8. low sur ion pressure-400 ptg v 9. hi-2 S/G level any S/G JH 10. any SI 2 Ag 82 11. undervoltage 5. hi-2 S/G level any S/G 10 mils 3. 10-2 sustion press-4.48"Hg 4. undervoltage bus 141 4. overspeeu - 1900 RPM 2. high water temp - 205 dagrees 5. lo-2 suction press-4.48"Hg 3. lo bil pressure - 10 psig .175 ga: for answers with setpoints. .0875 for trip 5 for setpoint REFERENCE System Description, ch 25, obj 7 and pp 25-82 to 25-83 ch 26, obj 7 and pp 26-14, 26-17 059000K416 061000K407 ... (KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 6.09 (2.00) Not consistent. (.5) Steam pressure ramps from 1092 to 975 from 0 to 100% power (.5) 80% turbine load = 998 psig Steam flow 0 to 100% power = 0 to 3.75 x 10E6 1bm/hr (15 x 10E6 lbm/hr all S/G's) 80% turbine load = 3 x 10E6 lbm/hr. (.25) (This is the inconsistency) #### REFERENCE System Description, ch 23, obj 11 and pg 23-10 039000A106 ... (KA'S) ANSWER 6.10 (1.50) | 1A. | 1B. 1C - circ water pum; breakers | (.25) | |-----|-----------------------------------|-------| | 2 - | condenser vacuum | (.25) | | 3 - | RTA (.125) and BYA (.125) | | | 4 | loss of load (C-7) | (.25) | | 5 - | steam pressure mode | (.25) | | 6 - | permissive (C-9) | (,25) | NOTE: 3. 4. 5 may be interchanged in any order #### REFERENCE System Description, ch 24, obj 7 and figure 24-11 041020K401 ... (KA'S) #### Z.__EROCEDURES___NORMAL._ABNORMAL._EMERGENCY_AND RADIOLOGICAL_CONTROL ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 7.01 (2.50) Entered based on operator judgement when: (.75) 1. SI is actuated or required AND (.75) 2. BwEP-0 has been implemented (.5) AND a transition has seen made to another BwEP (.5) (.5 pts off if the AND logic is missing) REFERENCE BWEP ES-0.0 symptoms or entry conditions 0000116011 ...(KA'S) ANSWER 7.02 (2.50) The amount of water in the RWST between the switchover setpoint and the empty point is limited, (.75) so the realignment of the SI system must be done quickly to maintain SI pump suction. (.75) These steps must be completed even if challenges to the CSFs occur at this time, (.5) since they relate to the maintenance of core cooling. (.5) (credit given for concept, not exact wording) REFERENCE BWEP ES-1.3, first caution BWEP Simulator Lesson Plans, EP-1, obj 1c and pg 157 ERG background, ES-1.3, Step 1 Note 1, (HP-Rev. 1A) 0000118007 ...(KA'S) ANSWER 7.03 (1.50) - 1. FZR pressure less than or equal to 1829 psig - 2. steamline pressure less than or equal to 640 psig - 3. containment pressure greater than or equal to 3.4 psig (.4 for each symptom, .1 for each setpoint) REFERENCE BWEP-0 symptoms or entry conditions 000007G011 ...(KA'S) # Z. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 7.04 (1.50) Shift Engineer Shift Foreman SCRE (.5 ea. order important) REFERENCE BwZF 090-1, E.1 194001A116 ...(KA'S) ANSWER 7.05 (.50) False REFERENCE BwZP 090-1, D.1.a 194001A116 ...(KA'S) ANSWER 7.06 (3.00) 1. unusual event 2. unusual event 3. unusual event 4. unusual event or none REFERENCE BwZP 200-1A1 194001A116 ...(KA'S) ANSWER 7.07 (2.00) Since not all reactor trip and bypass breakers are open, the second substep cannot be completed. (.5) Since this is a "closed bullet" item, all substeps must be completed to complete the major step. (.5) Since the major step cannot be satisfied, the RNO column must be entered. (.5) so go to BwFR-S.1, step 1. (.5) REFERENCE BWEP-0, step 1 BWAP 340-1, C.2.b.1 194001A102 ...(KA'S) ### Z.__FROCEDURES _ _ NORMAL _ ABNORMAL _ EMERGENCY AND RADIOLOGICAL CONTROL ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 7.08 (2.00) Assume a point source, so R1 (D1)**2 = R2 (D2)**2 (.5) R1=240 mrem/hr D1=2 ft Radiation Area = 5 mrem/hr or 100 mrem/5 days. Assuming 8 hr work day = 100 mrem/40 hrs or 2.5 mrem/hr for worker in that area for the week (1.0) therefore R2=2.5 mrem/hr and D2=19.6 feet (credit given for 19.5 to 20 ft) (.25)(.25) (credit given for any other valid assumptions, such as covering with shielding to reduce rad levels, etc) REFERENCE BWRP 100-A1, pg 3 of 69 Radiological Protection Module, ch 5, Appendix A 194001K103 ... (KA'S) ANSWER 7.09 (1.50) The operation shall be stopped immediately (.75) and suspended until a satisfactory evaluation has been made. (.75) REFERENCE BwGF 100-2, E.1.a 015000B001 ... (KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON. D. ANSWER 7.10 (3.00) (1.0 ea) - 1. If the shutdown banks cannot be withdrawn, the reactor coolant must be borated to ensure adequate shutdown margin, and the boron concentration confirmed by sampling. - 2. If the reactor coolant has been borated to at least the hot, xenon-free boron concentration, and is being maintained at hot standby, the shutdown banks need not be withdrawn. - 3. If the reactor coolant has been borated to the cold shutdown concentration, the shutdown banks need not be withdrawn. (exact wording not required) REFERENCE BwGP 100-2, E.2.c 001000G001 ... (KA'S) ANSWER 7.11 (2.50) any 5 of the following @ .5 ea: - 1. less than one boron injection flow path available - 2. no centrifugal charging pump operable - 3. less than one borated water source available - 4. less than two source range monitors in service - 5. direct communications between control room and refueling station lost - 6. less than one RH loop in operation - 7. less than 23 feet of water above Rx vessel flange - less than one fuel building exhaust vent system operable - 9. activation of containment evacuation alarm - 10. RCS or refueling canal Keff greater than 0.95 - 11. RCS or refueling canal boron concentration less than 2000 ppm REFERENCE BWGF 100-6, E.3 000036G010 000036G011 ... (KA'S) #### 7: PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND · RADIOLOGICAL_CONTROL ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 7.12 (2.50) Any 5 of the following @ .5 ea: - 1.
Supervision has authorized the entry. - 2. each person has a valid NGET card - 3. each person has read and understands the appropriate RWP - 4. each person has received a bioassay - 5. the job supervisor or the person performing the work has checked with Rad/chem for requirements - 6. each person is aware of the maximum dose equivalent authorized - 7. each person has read and understood all radiological signs and labels at the access control point REFERENCE BWRF 1120-1, F.2 194001K103 ...(. A'S) ANSWERS -- BRAIDE DOD 182 -88/07/18-DAMON, D. ANSWER 8.01 (2.00) Any 4 of the fc'lowing & .5 ea: 1. MTC is within analyzed temperature range 2. trip instrumentation is in normal operating range 3. PZR capable of being in an OPERABLE status with a steam bubble 4. reactor vessel is above minimum RT NDT 5. plant is above cooldown steam dump permissive (P-12) REFERENCE Tech. Spec. bases 3/4.1.1.4 001000K516 002000G006 ...(KA'S) ANSWER 8.02 (2.50) restore valve to operable status (.5) (within 72 hrs) or close at least one valve in the affected steam line (1.0) or isolate the turbine from the steam supply (1.0) (within 6 hrs) REFERENCE Tech. Spec 3.3.1 0450006005 ...(KA'S) ANSWER 8.03 (2.50) must be under the direct supervision of a licensed operator (.75) his name must be on the memo from the Braidwood training department verifying that he is in a training status and eligible to perform reactivity manipulations (1.75) REFERENCE BWAF 300-1, para C.8 10 CFR 55.59 inspection report 50-456/87042(DRF) 194001A103 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-DAMON. D. ANSWER 8.04 (2.50) any 10 of the following 0 .25 ea: - 1. major equipment status changes - 2. major system and equipment testing - 3. personnel accidents or injuries - 4. entering a tech spec action statement - 5. leaving a tech spec action statement - 6. potential reportable occurrences - occurrence of significant events, such as reactor trips or unexpected power changes - 8. criticality data, such as rod position and boron concentration - 9. implementation of GSEF - 10. security incidents - 11. out-of-spec chemistry results - off-site calls to/from NRC, upper management, or Duty Officer concerning significant events - 13. pertinent miscellaneous information Note: will accept other answers on a case-by-case basis REFERENCE BWAP 350-1, para C.1.c.2 194001A103 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 8.05 (2.00) Any 8 of the following @ .25 ea: - 1. mode changes - 2. load changes - 3. reactivity changes (other than during startup and shutdown) - 4. equipment status changes - 5. time of criticality during startup and pertinent plant data at criticality - 6. performance of surveillance testing - 7. reportable occurrences - 8. safety-related and other important equipment maintenance in progress - 9. entering a tech spec action statement - 10. leaving a tech spec action statement - 11. implementation of GSEP - 12. all releases of radioactive effluents, including start and stop times - 13. pertinent miscellaneous information Note: will accept other answers on a case-by-case basis. REFERENCE BWAP 350-1, para C.1.d.3 194001A103 ...(KA'S) ANSWER 8.06 (3.00) - 1. exceeding oxygen transient limit (1.0) and exceeding chloride steady state limit (1.0) - 2. exceeding dose equivalent I-131 limit (1.0) REFERENCE Tech Spec 3.4.7, TS table 3.4-2, 3.4.8 004000G005 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. ANSWER 8.07 (1.50) 1. Contact medical personnel if needed and/or chemistry supervision 2. Ensure that the area of the spill is roped off with caution signs 3. ensure the spill is cleaned up with non-combustible absorbing material (.5 ea) REFERENCE BWAF 550-13, F.1 194001K110 ... (KA'S) ANSWER 8.08 (2.00) any 4 of the following @ .5 ea: 1. security control center operator 2. station manager 3. construction superintendents 4. project manager 5. station security administrator 6. load dispatcher, southern division 7. NRC REFERENCE BWAF 900-9. C.2.c 194001K116 ... (KA'S) ANSWER 8.09 (.50) 3411 megawatts thermal REFERENCE Unit 1 license section 2.C.1 015000G010 ... (KA'S) ANSWER 8.10 (1.50) Provides assurance that a mass addition pressure transient (.5) can be relieved by the operation of a single PDRV (.5) or an RHR suction relief valve. (.5) ANSWERS -- BRA. DWOOD 182 -88/07/18-DAMON, D. REFERENCE TS basis 3/4.5.3, 3/4.1.2 0060006006 ...(KA'S) ANSWER 8.11 (1.00) Any one of the following: - When the actions are directed by the EP in order to maintain plant safety. - 2. a. To prevent injury to the public or company personnel - b. To prevent releases off-site in excess of the TS limits - c. To prevent damage to equipment if such damage is tied to a possible adverse effect on public health and safety - 3. In an emergency when this action is immediately needed to protect the public health and safety and no action consistent with license conditions and Tach Specs is immediately apparent. (credit given for concept, not exact wording) REFERENCE ERG Executive Volume, Generic Issues, Technical Specification Violation BWAP 300-1, pp 17-18 10CFR50.54x 006000G001 ...(KA'S) ANSWER 8.12 (2.50) Ensures a pH value of between 8.5 and 11.0 for the solution recirculated within containment after a LOCA. (1.0) This band minimized the evolution of iodine (.75) and minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components. (.75) REFERENCE TS basis 3/4.6.2.2 026000B006 ...(KA'S) ANSWER 8.13 (1.50) - 1. no - 2. yes . 8. ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS PAGE 35 ANSWERS -- BRAIDWOOD 1&2 -88/07/18-DAMON, D. REFERENCE TS 4.01, 3.7.12, 0000686003 1030006006 ...(KA'S) # MAS COPY ## U. S. NUCLEAR REGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION | FACILITY: | BRAIDWOOD 1&2 | | | |--------------------|---------------|--|--| | REACTOR TYPE: | PWR-WEC4 | | | | DATE ADMINISTERED: | 88/07/18 | | | | EXAMINER: | VICTOR, F. | | | | CANDIDATE: | | | | #### INSTRUCTIONS TO CANDIDATE: Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts. | CATEGORY
VALUE | | CANDIDATE'S
SCORE | % OF
CATEGORY
VALUE | | CATEGORY | |-------------------|------------------------------|----------------------|---------------------------|----|---| | 25.00 | 26.04
, 125.51 | | | 1. | PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW | | | 23,97 | | | 2. | PLANT DESIGN INCLUDING SAFETY
AND EMERGENCY SYSTEMS | | 25.00 | | | | 3. | INSTRUMENTS AND CONTROLS | | 25.00 | 26.04 | | - | 4. | PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL | | 96.00 | | Final Grade | | % | Totals | All work done on this examination is my own. I have neither given nor received aid. Candidate's Signature MASTER COPY #### NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS During the administration of this examination the following rules apply: - 1. Cheating on the examination means an automatic denial of your application and could result in more severe penalties. - 2. Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating. - 3. Use black ink or dark pencil only to facilitate legible reproductions. - 4. Print your name in the blank provided on the cover sheet of the examination. - 5. Fill in the date on the cover sheet of the examination (if necessary). - 6. Use only the paper provided for answers. - 7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet. - 8. Consecutively number each answer sheet, write "End of Category _ " as appropriate, start each category on a new page, write only on one side of the paper, and write "Last Page" on the last answer sheet. - 9. Number each answer as to category and number, for example, 1.4, 6.3. - 10. Skip at least three lines between each answer. - II. Separate answer sheets from pad and place finished answer sheets face down on your desk or table. - 12. Use abbreviations only it they are commonly used in facility literature. - 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required. - 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not. - 15. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK. - 16. If parts of the examination are not clear as to intent, ask questions of the examiner only. - 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed. - 18. When you complete your examination, you shall: - a. Assemble your examination as follows: - (1) Exam questions on top. - (2) Exam aids figures, tables, etc. - (3) Answer pages including figures which are part of the answer. - b. Turn in your copy of the examination and all pages used to asswer the examination questions. - c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions. - d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked. OUESTION 1.01 (1.00) MULTIPLE CHOICE Which one of the following conditions will result in a negative
startup rate when the reactor is at power. Assume the reactor does not trip/scram. - a. Inadvertant dilution. - b. Steam line break. - c. Feedwater regulator valve fails full open. - d. Dropped control rod. QUESTION 1.02 (1.00) MULTIPLE CHOICE The effective multiplication factor (Keff) is the ratio between the number of: - a. Neutrons in one generation and the number of neutrons in the previous generation. - b. Fast neutrons produced by all neutron-induced fissions and the number of fast neutrons produced by thermal neutron-induced fissions. - c. Thermal neutrons absorbed in the core and the number of thermal neutrons produced in the core. - d. Fast neutrons produced from thermal neutron-induced fission and the number of thermal neutrons absorbed in the fuel. QUESTION 1.03 (1.00) MULTIPLE CHOICE Differential boron worth (DBW) becomes MORE NEGATIVE (the absolute value becomes larger) with an increase in which one of the following? - a. Coolant boron concentration - b. Coolant average temperature - c. Controlling rod group height - d. Fission product poison buildup QUESTION 1.04 (2.00) Answer the following TRUE or FALSE. - a. To reduce the possibility of moisture carryover in Unit 1 Steam Generators, FOUR additional swirl vane separators (total of 16) (0.5)have been added to each steam generator. - b. Unit 2 Steam Generators have higher flow rates through the riser section than Unit 1 Steam Generators which helps to reduce potential corrosion problems. (0.5) - c. For equivalent transients, the Unit 1 Steam Generator level indication response will be slower and less pronounced when compared with Unit 2. (0.5) - d. During a normal plant transient on Unit 2, the operator should expect the narrow range and wide range Steam Generator level indication to move in opposite directions. (0.5) ### 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.05 (1.00) MULTIPLE CHOICE How will affected pressurizer level indication compare to actual pressurizer level if a pressurizer level reference line ruptures? - Indicated pressurizer level will be lower than actual pressurizer level. - b. Indicated pressurizer level will be higher than actual pressurizer level. - c. Indicated pressurizer level will be equal to actual pressurizer level. - d. Indicated pressurizer level will fail as is. QUESTION 1.06 (1.00) MULTIPLE CHOICE The plant is operating at 30 percent load during a load ramp to full power. If steam flow denisity compensation pressure channel fails at its 30 % load value, then at full power, affected steam flow indication will: - a. Be less than actual steam flow. - b. Be equal to actual steam flow. - c. Be greater than actual steam flow. - d. Fail at the 30 percent load value. QUESTION 1.07 (1.00) MULTIPLE CHOICE Which of the following statements best describes the change in count rate resulting from a short rod withdrawal with Keff at 0.99 as compared to an identical rod withdrawal with Keff at 0.95. - a. Less time will be required to reach steady-state following the rod withdrawal and the count rate will be greater with Keff at 0.99. - b. More time will be required to reach steady-state following the rod withdrawal and the change in count rate will be less with Keff at 0.99. - c. Less time will be required to reach steady-state following the rod withdrawal and the count rate will be less with Keff at 0.99. - d. More time will be required to reach steady-state following the rod withdrawal and the change in count rate will be greater with Keff at 0.99. QUESTION 1.08 (1.00) MULTIPLE CHOICE During a reactor startup, control rods are withdrawn such that 1,000 pcm (1% delta-K/K) of reactivity is added. Before the withdrawal Keff was 0.97 and count rate was 500 cps. What will the final steady state count rate be following rod withdrawai? - a. 750 cps. - b. 1000 cps. - 2000 cps. C. - d. 2250 cps. QUESTION 1.09 (1.50) When fuel temperature is increased, the resonance absorption peaks are shortened and broadened such that more neutron energies are susceptible to absorption, but the average probability of resonance absorption (average microscopic cross-section) remains constant. Explain why the doppler effect adds negative reactivity with increasing fuel temperture despite the constant average microscopic cross-ctions of the resonance absorbers. QUESTION 1.10 (1.00) MULTIPLE CHOICE During a loss-of-coolant accident that results in fuel damage, several thermocouples exceed their melting temperature. The temperature indication from these thermocouples will be: - a. Lower than the actual temperature being measured. - b. Higher than the actual temperature being measured. - c. About the same as the actual temperature being measured. - d. Impossible to describe due to the lack of a similar previous operating event. QUESTION 1.11 (1.00) MULTIPLE CHOICE How does critical heat flux vary from the bottom to the top of the reactor core during normal full power operation? - a. Increases, then decreases. - b. Decreases, then increases. - c. Continuously decreases. - d. Continuously increases. ### 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.12 (1.50) Answer the following TRUE or FALSE. - a. When subcooled nucleate boiling is occurring in the core, fuel rod surface temperature is greater than coolant saturation temperature. (0.5) - b. Convection is the primary mechanism by which heat is transferred between the fuel rod surface and the reactor coolant during normal operations. (0.5) - c. During a LOCA with steam blanketing the fuel rod, radiation becomes the principle method of heat transfer. (0.5) QUESTION 1.13 (1.00) MULTIPLE CHOICE The moderator temperature coefficient (MTC) becomes LEAST NEGATIVE (the absolute value becomes smallest) under which one of the following conditions? - a. Average temperature is decreased while boron concentration is decreased. - b. Average temperature is decreased while boron concentration is increased. - Average temperature is increased while boron concentration is increased. - d. Average temperature is increased while boron concentration is decreased. ### 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUESTION 1.14 (1.00) MULTIPLE CHOICE Which one of the following is NOT a purpose for rod insertion limits? - a. Minimize the time required for the control rods to add negative reactavity following a reactor trip. - Produce axial flux distributions that will prevent local power peaking. - c. Provide a shutdown reactivity margin that will offset the power defect at any power level. - d. Minimize the reactivity added in the event of a rod ejection accident. QUESTION 1.15 (1.00) MULTIPLE CHOICE Which of the following conditions will result in criticality occurring at a lower than estimated control rod position? - a. A malfunction resulting in control rod speed being slower than normal speed. - b. Delaying the time of start up from 3 hours to 5 hours following a trip from 100% power equilibrium conditions. - c. Misadjusting the steam dump controller such that steam pressure is maintained 50 psig higher than the required no load setting. - d. Inadvertent dilution of RCS boron concentration. #### .1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. THERMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUESTION 1.16 (1.00) MULTIPLE CHOICE The plant is stable at 90 percent power with rod control in manual (Tave. equal Tref.). The controlling rod group is inserted about 10 steps. No other operator action is taken. Which one of the following properly describes the sequence of the plant response resulting from the rod insertion? - a. Reactor power remains constant, Tave increases. Tave stabilizes above Tref. - b. Reactor power decreases. Tave decreases, reactor power stabilizes below 90 percent, Tave stabilizes at approximately Tref. - c. Reactor power remains constant. Tave decreases, Tave increases, Tave stabilizes at approximately Tref. - d. Reactor power decreases, Tave decreases, reactor power increases to approximately 90 percent, Tave stabilizes below Tref. QUESTION 1.17 (1.00) MULTIPLE CHOICE At the time of reactor shutdown from 100 percent power, shutdown margin was determined to be -5883 pcm with all control rods fully inserted. Three days later Xenon reactivity had changed by 2675 pcm, temperature reactivity had changed by 500 pcm due to cooling down to 140 degrees F and boron concentration had changed by 1040 pcm due to borating the RCS. What is the new shutdown margin? - a. -2168 pcm. - b. -3748 pcm. - -4843 pcm. - d. -5883 ccm. QUESTION 1.18 (1.00) How does reactor power respond during a plant startup at end of life (EOL) when the point of adding heat is reached with a 1.0 dpm startup rate? Assume no operator action and no reactor trip. #### · 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.19 (1.00) MULTIPLE CHOICE Fast neutron irradiation adversely affects the reactor pressure vessel primarily by causing. - a. Embrittlement stress. - b. Brittle fracture. - c. Thermal gradients. - d. Pressurized thermal shock. QUESTION 1.20 (2.00) a. Define pump cavitation and describe how it occurs. (1.25) b. List THREE conditions monitored by the control room operator that would indicate that a Component Cooling Water pump was cavitating. (Do not include noise and annunciators.) (0.75) QUESTION 1.21 (1.00) MULTIPLE CHOICE Which of the following is NOT compensated for by K excess (Excess Multiplication Factor). - a. Fuel burn up. - b. Fission product poison buildup. - c. Chemical shim. - d. Reactivity effects of fuel and moderator temperature. ## 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.22 (1.00) MULTIPLE CHOICE To increase nuclear power from 15% power to 100% power normally requires which one of the following combinations of actions? - a. Increasing turbine first-stage
pressure, decreasing RCS boron concentration, and increasing rod height. - b. Decreasing turbine first-stage pressure, decreasing RCS boron concentration, and increasing rod height. - c. Increasing turbine first-stage pressure, increasing RCS boron concentration, and decreasing rod height. - d. Decreasing turbine first-stage pressure, increasing RCS boron concentration, and decreasing rod height. QUESTION 2.01 (2.00) How do the following systems connect to the reactor coolant system? - Pressurizer spray? [STATE LOOP NUMBER(S) AND WHETHER HOTLEG OR COLDLEG] - b. Pressurizer surge? [STATE LOOP NUMBER(S) AND WHETHER HOTLEG OR COLDLEG] - c. Emergency Core Cooling System? [LIST FOUR SYSTEMS CONNECTING TO COLDLEGS] - d. CVCS charging? [STATE LOOP NUMBER(S)] - e. CVCS letdown? [STATE LOOP NUMBER(S)] - f. CVCS fill? [STATE LOOP NUMBER(S) AND WHETHER HOTLEG OR COLDLEG] QUESTION 2.02 (2.00) - a. How are the reactor coolant pump breakers interlocked with the loop isolation valves? [LIST TWO INTERLOCKS] [1.25] - b. Why must the RCPs be tripped on a Phase B isolation signal? [INCLUDE TWO RCP COMPONENTS AFFECTED] [0.75] QUESTION 2.03 (2.00) - a. Why is a constant by pass spray flow maintained through the pressurizer spray system? [LIST THREE REASONS] [0.75] - b. What are the sources of water discharged to the Pressurizer Relief Tank [PRT]? [LIST FIVE SOURCES OTHER THAN VALVE LEAK OFFS SUCH AS RHR SUCTION VALVES ETC] [1.25] QUESTION 2.04 (2.50) List FIVE functions of the Volume Control Tank. (***** CATEGORY OZ CONTINUED ON NEXT PAGE *****) QUESTION 2.05 (2.00) - a. When in the BORATE MODE of operation, why is the blender output directed to the VCT outlet instead of the VCT inlet? [0.5] - b. Why is the amount of time using the ALTERNATE DILUTE mode of operation limited? [INCLUDE IN THE ANSWER WHERE THE BLENDER OUTPUT IS DIRECTED AND LIST TWO UNDESIRABLE EFFECTS OF ALTERNATE DILUTION] [1.5] QUESTION 2.06 (2.50) - a. Why does each SI and CV line entering the RCS contain valves [for example 1SI 8810A,B,C,D] which are locked in a throttled positions? [LIST TWO REASONS] - b. List SIX systems associated with the ECCS which have pumps that are automatically started following a LOCA. [1.5] QUESTION 2.07 (3.00) - a. Describe the two [2] interlock conditions that must be satisfied in order to open the Containment Spray Pump Recirc Sump suction Valves CS009A(B) and include the reasons for each interlock. [2.0] - Describe the interlock condition that must be satisfied in order to open the Containment Spray Pump RWST Suction Isolation Valves CSOO1A(B) and include the reason for the interlock. [1.0] QUESTION 2.08 (1.50) List THREE conditions that will cause automatic closure of the MSIVs? [INCLUDING SETPOINTS, INTERLOCKS AND COINCIDENCES AS APPROPRIATE] QUESTION 2.09 (1.00) How will the steam dump system be affected by a failure/loss of the 125VDC non ESF bus 113? [SELECT THE CORRECT ANSWER] - a. The steam dumps will be inoperable because the D solenoid is powered from the 125VDC non ESF bus 113. - b. The steam dump _ysiem will be inoperable because ALL of the solenoids are powered from the 125VDC non ESF bus 113. - c. The steam dumps will trip to the full open position because the C solenoid repositions to the instrument air port upon the failure/loss of the 125VDC non ESF bus 113. - d. The steam dump system will be fully operable because the steam dump solenoids are not powered by the 125VDC non ESF bus 113. QUESTION 2.10 (1.50) What condition is required for the auxiliary feedwater ESW suction valves to automatically open? [assume the valve control switch is in the autoposition. [INCLUDE SETPOINT AND THREE COINCIDENCE SIGNALS] - QUESTION 2.11 (1.00) During normal at-power operations with on-site power from the SATs and UATs, how are the inplant loads split? [SELECT THE CORRECT ANSWER] - a. UAT 141-1 supplies buses 157 and 141 and UAT 142-1 supplies buses 159 and 143 - b. UAT 141-2 supplies buses 142 and 156 and UAT 142-2 supplies buses 144 and 158 - c. UAT 141-1 supplies buses 144 and 156 and UAT 142-2 supplies buses 142 and 158 - d. UAT 141-2 supplies buses 156 and 144 and UAT 142-1 supplies buses 159 and 141 QUESTION 2.12 (2.00) What are the purposes of the component cooling water surge tank? [LIST FOUR] (***** END OF CATEGORY 02 *****) QUESTION 3.01 (2.00) Units 1 and 2 are operating at 100% load. Both Units have been experiencing frequent makeup to the VCT. I&C technicians are investigating. - If Unit 1 is in the auto M/U mode, how would Unit 1 VCT level be affected if LT-112 fails at 56%? [ASSUME NO OPERATOR ACTION; SELECT THE CORRECT ANSWER] [1.0] - a. VCT level will increase until LT-185 opens CV-112A to full divert at 95% - b. VCT level will decrease to 5%; at 5% VCT level CV-112D and E opens and CV-112B and C close - c. VCT level will go to zero - d. YCT level will decrease to 37% and then increase until LT-185 opens CV-112A to full divert at 95% - 2. If Unit 2 is in the auto M/U mode, how would Unit 2 VCT level be affected if LT-185 fails at 0%? [ASSUME NO OPERATOR ACTION; SELECT THE CORRECT ANSWER] [1.0] - a. VCT level will increase until LT-112 opens CV-112A to full divert at 95% - b. VCT level will decrease to 5%; at 5% VCT level CV-112D and E opens and CV-112B and C close - c. VCT level will go to zero - d. VCT level will be maintained in the normal operating range QUESTION 3.02 (1.50), (0.50) During operation at power [93%], you are manually withdrawing the controlling bank of rods and the "Rod Control URGENT Failure" annunciator is actuated in the control room. - a. How is rod motion affected? [ANSWER FOR BOTH MANUAL AND AUTO] [0.5] - What are the power cabinet conditions/failures that cause a "Logic Cabinet Urgent Failure"? [LIST FOUR CONDITIONS/FAILURES] [1.0] QUESTION 3.03 (2.00): 1.00 - a. What are the rod stops that block only automatic rod withdrawal? [LIST TWO; INCLUDE SETPOINTS AND COINCIDENCE AS APPROPRIATE] [1.0] - b. Other than the overtemperature and over power delta T rod stops, what are the rod stops that block both automatic and manual rod withdrawal? [LIST FOUR; INCLUDE SETPOINTS AND COINCIDENCE AS APPROPRIATE] [1.0] 7 H QUESTION 3.04 (1.00) The Rod Position Indication System consists of two different position indication systems. Briefly describe how each system senses/determines rod position? QUESTION 3.05 (2.00) The auctioneered high Tavg signal is used as an input to several circuits including the computer and recorder. List FIVE different circuits, other than the computer and recorder, that are supplied with auctioneered high Tavg inputs. QUESTION 3.06 (1.50) With the Steam Dump System aligned for normal 100 % power operations, explain how the Steam Dump System would be affected if PT-505 [HP Turbine First Stage Impulse Pressure] fails LOW. QUESTION 3.07 (2.50) While operating at 75% power, the Pressurizer Pressure Control System reference pressure, Pref, [Proportional-Integral-Derivative (PID) Controller setting] fails to zero. [ASSUME PLANT SYSTEMS RESPOND AS DESIGNED AND AS NORMALLY ALIGNED; NO OPERATOR ACTION TAKEN] How will the pressurizer pressure control system respond to the failure? [DESCRIBE HOW PRESSURIZER PRESSURE RESPONDS AND INCLUDE JUSTIFICATION FOR YOUR DESCRIPTION] [2.5] (**** CATEGORY 03 CONTINUED ON NEXT PAGE ****) QUESTION 3.08 (3.00) - a. What condition(s) are required for the P-4 permissive actions to occur? [LIST TWO COMPONENTS AND THEIR REQUIRED POSITION] [0.75] - b. What are the actions that the P-4 permissive initiates? [LIST FOUR ACTIONS and ASSOCIATED CONDITIONS SETPOINTS & COINCIDENCES AS APPROPRIATE] [2.25] QUESTION 3.09 (2.00) Lable ITEMS A. through E. on the attached source range block diagram, Figure 3-1. QUESTION 3.10 (2.25) - a. List THREE inadequate core cooling instrumentation sensors. [0.75] - b. What is the significance of the following indications on the inadequate core cooling detection system: - 1. Interval 1? [DESCRIBE THE CONDITION OF THE REACTOR COOLANT] [0.5] - 2. Interval 2? [DESCRIBE THE STATUS OF THE REACTOR COOLANT INVENTORY] [0.5] - Interval 3? [DESCRIBE HOW CORE EXIT TEMPERATURES ARE TRENDING AND STATE WHY.] QUESTION 3.11 (2.25) - a. Describe the operation of the interlocks associated with AREA RADIATION MONITORS ORE-ARO55 and ORE-ARO56 (Fuel Building Fuel Handling Incident). [1.5] - Describe the operation of the interlocks associated with PROCESS RADIATION MONITORS ORE-PRO33 and ORE-PRO34 (Control Room Outside Air Intake B Monitors). [0.75] QUESTION 3.12 (3.00) - a. Describe the operating sequence for the Reactor Containment Fan cooler System following a Safety Injection Actuation. [Include the operation of interlocks were appropriate.] [2.0] - b. What conditions will actuate the P-14 Interlock and what actions are initiated by this permissive? [LIST THREE ACTIONS AND INCLUDE SETPOINTS & COINCIDENCE AS APPROPRIATE] [1.0] QUESTION 4.01 (1.50) Procedure 18WOA ELEC-1, "Loss of DC Bus Unit 1" requires a reactor trip on loss of either 125 VDC Bus-111 or Bus-112. What is the basis for requiring this action? QUESTION 4.02 (1.50) In BWAP 340-1, "Use of Procedures for Operating Department", it is stated that ," Due to the large number of procedures, which vary widely in complexity and impact, it is recognized that their content must be retrieved on differing bases." In accordance with BWAP 340-1 how are Braidwood General Procedures (BwGP's) to be used? QUESTION 4.03 (2.00) Procedure 1 BWEP, ES-1.3, "Transfer To Cold Leg Recirculation Unit 1", contains a caution stating that: "SI pumps should be stopped if RCS pressure is GREATER THAN 1590 Provide a detailed explaination why the cold leg recirculation procedure contains this caution. QUESTION 4.04 (1.50) In accordance with Technical Specifications 3/4.4.6, "Reactor Coolant System Leakage", list the THREE Reactor Coolant System Leakage Detection Systems that should be operable in Modes 1 through 4. QUESTION 4.05 (1.50) List the SUBSTEPS required to verify the following immediate action steps as stated in
1BWEP-0, "Reactor Trip or Safety Injection Unit 1". a. VERIFY REACTOR TRIP: (0.375) b. VERIFY FW ISOLATION: (1.125) QUESTION 4.06 (2.00) - a. Having observed the symptoms in procedure 1BWOA ROD-3 "Stuck or Misaligned Rod", what action is taken by the reactor operator to determine/verify that the rod is actually stuck. (1.0) - b. According to procedure; 1BWOA ROD-3; the method used to realign a rod that is misaligned LOW with respect to its group is significantly different from the procedure for realigning a rod that is misaligned HIGH. State the basic difference between the two realignment procedures (1.0) QUESTION 4.07 (1.50) BWRP 1000-A1, "Commonwealth Edison Radiation Protection Standards", provides guidance on the wearing and use of personnel dosimeters, and dose limits for individuals. - a. State where on the body and how in relation to each other personnel dosimeters are required to worn. (Normal position only, DO NOT state exceptions.) (0.5) - b. State the required action for an individual who after entering a Radiologically Controlled Work area discovers that their self-reading dosimeter reads off-scale. (0.5) - c. List the whole body and extremity dose limits for life-saving activities. (0.5) QUESTION 4.08 (1.00) In accordance with BWAP 330-1 "Station Equipment Out-of-Service Procedures", WHAT is the recommended sequence for the placement of Out of Service Cards when removing a power operated valve from service? QUESTION 4.09 (2.00) List FOUR symptoms for a failed number one RCP seal per procedure 1BWOA RCP-1, "Reactor Coolant Pump Seal Failure Unit 1." (**** CATEGORY 04 CONTINUED ON NEXT PAGE ****) QUESTION 4.10 (1.00) Using the guidance provided in BWAP 1100-1, "Fire Protection Program", what action should you take when discovering a fire in the Turbine Building? QUESTION 4.11 (2.00) Abnormal procedure 1 BWOA PRI-2, "Emergency Boration-Unit 1", lists in order of preference, FOUR methods used to emergency borate the RCS. - a. List the first THREE methods in order of preference. (1.0) - b. State why emergency boration using the MANUAL emergency borate valve (1CV8439) is the fourth or least prefered method. (1.0) QUESTION 4.12 (1.00) List the TWO parameters, including set points, that indicate adverse containment conditions have been reached. QUESTION 4.13 (1.50) Fill in the blank for the following concerning Plant Technical Specifications: a. Reactor Coolant System pressure shall not exceed psig and RCS temperature (Tavg) in Mode 1 must be greater than degrees F. ### MULTIPLE CHOICE - b. Reactor Coolant System (RCS) leakage through a steam generator to the secondary coolant is known as: - (1) Controlled Leakage - (2) Identified Leakage - (3) Pressure Boundary Leakage - (4) Unidentified Leakage QUESTION 4.14 (1.50) State the RCP Trip Criteria as listed in "Operator Action Summary Sheet for 1BWEP-O Series Procedure" (fold-out page). QUESTION 4.15 (1.00) Fill in the blanks for the following "Precautions and Limitations" for the Component Cooling System as stated in WEC's "Precautions, Limitations and Setpoints for Nuclear Steam Supply Systems". | a. | The temperature of the cooling water components should be greater than or | | the vari | ou | s | |----|---|--|----------|----|--------------| | | degrees F and should NOT exceed
normal operations. | | degrees | F | during (0.5) | | The | normal | source | of | makeup | wate | er | to the | e CC | surge | tanks | is | |------|--------|------------|----|--------|------|--------|-------------|-----------------|----------------------|---------------------------|---| | | | | | | | | | | | | | | ther | 1 | | | There | | is | used | as | an eme | rgency | source. (0.5) | | | | The normal | | | If | If the | . If the no | . If the normal | . If the normal sour | . If the normal source is | The normal source of makeup water to the CC surge tanks If the normal source is not average tanks then is used as an emergency | QUESTION 4.16 (1.50) The control room operators are performing 1BWFR-C.2 "Response to Degraded Core Cooling", in response to an ORANGE path condition shown on the Core Cooling Critical Safety Function (CSF) status tree. Answer the following TRUE or FALSE. Consider each one separately. - a. The operators must leave this procedure before completion and go to 1BWFR-S.2 "Response to Loss of Core Shutdown", if the subcriticality status tree indicates an ORANGE path condition. - b. The operators may leave this procedure at any step as soon as the core cooling CSF adverse condition has cleared. (GREEN path established) - c. The operators must leave this procedure before completion and go to 1BWFR-H.1, "Response to Loss of Secondary Heat Sink", if the heat sink CSF status tree indicates a RED path condition. QUESTION 4.17 (1.00) Special Operating Order Number SO-ST-0014 is entitled "Mandatory In-Hand Procedure". Define a mandatory in-hand procedure and list by number or title description the ONE Braidwood OP applicable to this special order. FIGURE 3-1 | f = ma | v = s/c | |---|---| | w = mg | s = vot + hat2 | | E = mC ² | a = (vf - vo)/t | | KE = 1 mv ² | v _f = v _o + at | | PE = mgh | ω = θ/t | | W = VAP | | | ΔE = 931Δm | | | Q - mc_AT | | | Q - mc AT
Q - UAAT | | | Pwr = Wf m | | | P = P 10 SUR(t) | | | $P = P_0 10^{SUR(t)}$
$P = P_0 e^{t/T}$ | | | SUR = 26.06/T | | | T = 1.44 DT | | | SUR = $26 \left(\frac{\lambda_{eff} \rho}{3 - \rho} \right)$ | | | T = (1*/0) + [(6 | - p)/Aeff ^p] | | $T = t^*/(\rho - \overline{\beta})$ | | | $T = (\vec{\beta} - \rho)/\lambda_{eff}^{\rho}$ | | | $\rho = (K_{eff}^{-1})/K_{eff}$ | | | p - [1*/TKeff] | $-\left[\overline{B}/(1+\lambda_{\rm eff}T)\right]$ | | $P = \Sigma \phi V/(3 \times 10^{10})$ | | | E = No | | | | | ### WATER PARAMETERS 1 gal. = 8.345 lbm 1 gal. = 3.78 liters 1 ft³ = 7.48 gal. Density = 62.4 lbm/ft³ Density = 1 gm/cm³ Heat of varorization = 970 Ftu/lbm Heat of fusion = 144 Btu/lbm 1 Atm = 14.7 psi = 29.9 in. 1g. 1 ft. H₂O = 0.4335 lbf/in² 1 inch = 2.54 cm OF = 9/5°C + 32 OC = 5/9 (OF = 20) Table 1. Saturated Steam: Temperature Table | | Abs Press. | Spe | cific Volu | me | | Enthalpy | | | Entropy | | Tomo | |------|--------------------|----------|------------|--------|--------|----------|--------|--------|---------|--------|------| | Tomo | Lb per | Sat. | | Sat. | Sat. | | Sat. | Sat. | | Sat. | Temp | | Temp | | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Fahr | | Fahr | Sq In. | Vf | Vig | Vg | h f | hig | hg | St | Sig | Sg | t | | | | | | 3304.7 | 0.0179 | 1075.5 | 1075.5 | 0.0000 | 2.1873 | 2 1873 | 32.0 | | 32.0 | 0 08859 | 0.016022 | 3304.7 | | 1.996 | 1074.4 | 1076.4 | 0 0041 | 2.1762 | 2 1802 | 34.0 | | 34.8 | 0 09600 | 0 016021 | 3061.9 | 3061.9 | 4.008 | 1073.2 | 1077.2 | 0.0081 | 2.1651 | 2 1732 | 36.0 | | 36 0 | 0.10395 | 0.016020 | 2839.0 | 2839 0 | | 1072.1 | 1078 1 | 0.0122 | 2.1541 | 2.1663 | 38.0 | | 38.6 | 0.11249 | 0.016019 | 2634.1 | 2634.2 | 6.018 | 10/2.1 | 10/0.1 | 00122 | | | | | | 1 12162 | 0.016019 | 2445.8 | 2445.8 | 8.027 | 1071.0 | 1079.0 | 0.0162 | 2 1432 | 2.1594 | 40.0 | | 40.0 | 1.12163 | 0.016019 | 2272.4 | 2272.4 | 10 035 | 1069.8 | 1079.9 | 0 0202 | 2.1325 | 2.1527 | 42.8 | | 42.8 | 0.13143 | | 21128 | 2112.8 | 12 041 | 1068.7 | 1080.7 | 0.0242 | 2.1217 | 2.1459 | 44.0 | | 44 8 | 0 14192 | 0.016019 | | 1965.7 | 14.047 | 1067.6 | 1081.6 | 0.0282 | 2.1111 | 2.1393 | 46.0 | | 46.8 | 0.15314 | 0.016020 | 1965.7 | | 16.051 | 1066.4 | 1082.5 | 0.0321 | 2.1006 | 2.1327 | 48.0 | | 48.0 | 0.16514 | 0.016021 | 1830.0 | 1830.0 | 10.031 | 1000.4 | 1002.5 | | | | | | | | 0.010023 | 1704.8 | 1704.8 | 18.054 | 1065.3 | 1083.4 | 0.0361 | 2.0901 | 2.1262 | 50.0 | | 58.0 | 0.17796 | 0.016023 | 1589.2 | 1589.2 | 20.057 | 1064.2 | 1084.2 | 0.0400 | 2.0798 | 2.1197 | 52.0 | | 52.0 | 0.19165 | 0.016024 | | 1482.4 | 22 058 | 1063.1 | 1085.1 | 0.0439 | 2.0695 | 2 1134 | 54.0 | | 54.8 | 0.20625 | 0.016026 | 1482.4 | | 24.059 | 1061.9 | 1086.0 | 0.0478 | 2 0593 | 2 1070 | 56.0 | | 56.0 | 0 22183 | 0.016028 | 1383.6 | 1383.6 | | 1060.8 | 1086 9 | 0.0516 | 2.0491 | 2.1008 | 58.0 | | 58.9 | 0.23843 | 0.016031 | 1292.2 | 1292.2 | 26.060 | 1000.0 | 1000 3 | 0.03.0 | | | | | | 0.25611 | 0.016033 | 1207.6 | 1207.6 | 28.060 | 1059.7 | 1087.7 | 0.0555 | 2.0391 | 2.0946 | 60.0 | | 80.0 | | 0.016036 | 1129.2 | 1129.2 | 30.059 | 1058.5 | 1088.6 | 0.0593 | 2.0291 | 2.0885 | 62.0 | | 62.0 | 0.27494 | | 1056.5 | 1056.5 | 32.058 | 1057.4 | 1089.5 | 0.0632 | 2.0192 | 2.0824 | 64.0 | | 64.8 | 0.29497 | 0.016039 | | 989.1 | 34.056 | 1056.3 | 1090.4 | 0.0670 | 2.0094 | 2.0764 | 66.0 | | 66.0 | 0.31626 | 0.016043 | 989.0 | 926.5 | 36.054 | 1055.2 | 1091.2 | 0.0708 | 1.9996 | 2 0704 | 68.0 | | 68.0 | 0.33889 | 0.016046 | 926.5 | 920.3 | 30.034 | 1033.2 | | | | | | | | 0.00000 | 0.016050 | 868.3 | 868.4 | 38.052 | 1054.0 | 1092.1 | 0.0745 | 1.9900 | 2.0645 | 70.0 | | 70.0 | 0.36292 | 0.016054 | 814.3 | 814.3 | 40.049 | 1052.9 | 1093.0 | 0.0783 | 1.9804 | 2.0587 | 72.0 | | 72 0 | 0.38844 | 0.016058 | 764.1 | 764.1 | 42.046 | 1051.8 | 1093.8 | 0.0821 | 1.9708 | 2.0529 | 74.1 | | 74.8 | 0.41550 | 0.016063 | 717.4 | 717.4 | 44.043 | 1050.7 | 1094.7 | 0.0858 | 1.9614 | 2.0472 | 76.0 | | 76.0 | 0.44420 | 0.016067 | 673.8 | 673.9 | 46.040 | 1049.5 | 1095.6 | 0 0895 | 1.9520 | 2 0415 | 78.1 | | 78.8 | 0.47461 | 0.010007 | | | | | | 0.0030 | 1.9426 | 2 0359 | 80.0 | | 80.0 | 0 50683 | 0.016072 | 633.3 | 633.3 | 48.037 | 1048.4 | 1096.4 | 0.0932 | | 2 0303 | 82.1 | | 82.8 | 0.54093 | 0.016077 | 595.5 | 595.5 | 50.033 | 1047.3 | 1097.3 | 0 0969 | 1.9334 | | 84 | | 84.8 | 0.57702 | 0.016082 | 560.3 | 560.3 | 52.029 | 1046.1 | 1098 2 | 0.1006 | 1:9242 | 2 0248 | 86 | | 86.0 | 061518
 0.016087 | 227.5 | 527.5 | 54.026 | 1045.0 | 10990 | 0.1043 | 1.9151 | 2 0193 | 88 | | 88.0 | 0.65551 | 0.016093 | 496.8 | 496.8 | 56 022 | 10439 | 1099 9 | 0.1079 | 1.9060 | 2.0139 | | | | | 0.016099 | 468.1 | 468.1 | 58 018 | 1042.7 | 1100 8 | 0.1115 | 1 8970 | 2.0056 | 90.0 | | 90.0 | 0 69813 | 0.016105 | 441.3 | 441.3 | 60 014 | 1241.6 | 11016 | 01152 | 18881 | 2 0033 | 92 1 | | 97 8 | 0.74313
0.79062 | 0.016111 | 416.3 | 416.3 | 62 010 | 1040.5 | 11025 | 01188 | 1 8792 | 1 9950 | 91 (| | 94.8 | | 0.016111 | 392.8 | 392.9 | 64.006 | 10393 | 1103 3 | 0 1224 | 1 8704 | 19928 | 96 (| | 96 0 | 0 84072
0 89356 | 0016123 | 370.9 | 370.9 | 66 003 | 1038 2 | 1104 2 | 0 1250 | 1 8617 | 1.9876 | 98 0 | | | Abs Press. | Spe | cilic Volum | ne | | nthalpy | | | Entropy | | | |----------------|------------------|----------|-------------|--------|----------|---------|--------|--------|---------|--------|-------| | Y | | Sal. | | Sat. | Sat. | | Sat. | Sat. | | Sat. | Temp | | Temp | Lb per | | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Fahr | | Fahr | Sq In. | Liquid | | Vg. | hi | hig | he | SI | Sig | Sg | t | | ı | р | | AIE | | | | 1105.1 | 0.1295 | 1.8530 | 1.9825 | 100.0 | | 180.8 | 0.94924 | 0.016130 | 350.4 | 350.4 | 67.999 | 1037.1 | 1105.9 | 0.1331 | 1.8444 | 1.9775 | 102.0 | | 102.0 | 1 00789 | 0.016137 | 331.1 | 331.1 | 69.995 | 1035.9 | | 0.1366 | 1.8358 | 1.9725 | 104.0 | | 184.0 | 1.06965 | 0.016144 | 313.1 | 313.1 | 71.992 | 1034.8 | 1106.8 | 0.1402 | 1.8273 | 1.9675 | 106.0 | | 106.0 | 1.1347 | 0 016151 | 296.16 | 296.18 | 73.99 | 1033 6 | 1107.6 | | 1.8188 | 1.9626 | 108.0 | | 108.0 | 1.2030 | 0.016158 | 280.28 | 280.30 | 75.98 | 1032.5 | 1108.5 | 0.1437 | 1.0100 | 1.3020 | | | | | 0015155 | 265.37 | 265.39 | 77.98 | 1G31.4 | 1109.3 | 0.1472 | 1.8105 | 1.9577 | 110.0 | | 118.0 | 1.2750 | 0.016165 | | 251.38 | 79 98 | 1030.2 | 1110.2 | 0 1507 | 1.8021 | 1.9528 | 112.0 | | 112.8 | 1.3505 | 0.016173 | 251.37 | 238.22 | 81.97 | 1029.1 | 11110 | 0.1542 | 1.7938 | 1.9480 | 114.0 | | 114.0 | 1.4299 | 0.016180 | 238.21 | 225.85 | 83.97 | 1027.9 | 1111.9 | 0.1577 | 1.7856 | 1.9433 | 116.0 | | 116.0 | 1.5133 | 0.016188 | 225.84 | 223.03 | 85.97 | 1026.8 | 1112.7 | 0.1611 | 1.7774 | 1.9386 | 118.0 | | 118.0 | 1.6009 | 0.016196 | 214.20 | 214.21 | 03.37 | | | | | | 120.0 | | | 1 0007 | 0.016204 | 203.25 | 203.26 | 87.97 | 1025.6 | 1113.6 | 0.1646 | 1.7693 | 1.9339 | | | 128.8 | 1.6927 | 0.016213 | 192.94 | 192.95 | 89.96 | 1024.5 | 1114.4 | 0.1 30 | 1.7613 | 1.9293 | 122.0 | | 122.0 | 1.7891 | 0.016213 | | 183.24 | 91.96 | 1023.3 | 1115.3 | 0.1715 | 1.7533 | 1.9247 | 124.6 | | 124.8 | 1.8901 | 0.016221 | 183.23 | 174.09 | 93.96 | 1022.2 | 1116.1 | 0.1749 | 1.7453 | 1.9202 | 126.0 | | 126.0 | 1.9959 | 0.016229 | 174 08 | 165.47 | 95.96 | 1021.0 | 1117.0 | 0.1783 | 1.7374 | 1.9157 | 128.0 | | 128.0 | 2.1068 | 0.016238 | 165.45 | 103.47 | 33.30 | | | | | | 120.0 | | | | 0.016247 | 157.32 | 157.33 | 97.96 | 1019.8 | 1117.8 | 0.1817 | 1.7295 | 1.9112 | | | 130.0 | 2.2230 | | 149.64 | 149.66 | 99.95 | 1018.7 | 11186 | 0.1851 | 1.7217 | 1.9068 | 132.0 | | 132.0 | 2.3445 | 0.016256 | | 142.41 | 101.95 | 1017.5 | 11195 | 0.1884 | 1.7140 | 1.9024 | 134.0 | | 134.0 | 2.4717 | 0.016265 | 142.40 | 135.57 | 103.95 | 1016.4 | 1120.3 | 0.1918 | 1.7063 | 1.8980 | 136.0 | | 136.0 | 2 6047 | 0.016274 | 135.55 | 133.37 | 105.95 | 1015.2 | 1121.1 | 0.1951 | 1.6986 | 1.8937 | 138.6 | | 138.0 | 2.7438 | 0.016284 | 129.09 | 129.11 | 103.53 | 1013.2 | ***** | | | | | | | | 0.015202 | 122.98 | 123 00 | 107.95 | 1014.0 | 1122.0 | 0.1985 | 1.6910 | 1.8895 | 148.0 | | 148.0 | 2.8892 | 0.016293 | | 117.22 | 109.95 | 1012.9 | 1122.8 | 0.2018 | 1.6534 | 1.8852 | 142.0 | | 142.0 | 3.0411 | 0.016303 | 117.21 | 111.76 | 111.95 | 1011.7 | 1123.6 | 0.2051 | 1.6759 | 1.8810 | 144.0 | | 144.0 | 3 1997 | 0.016312 | 111.74 | | 113.95 | 1010.5 | 1124.5 | 0.2084 | 1.6684 | 1.8769 | 146.1 | | 146.0 | 3.3653 | 0.016322 | 106.58 | 106.59 | 115.95 | 1009.3 | 1125.3 | 0.2117 | 1.6610 | 1.8727 | 148 | | 148.0 | 3.5321 | 0.016332 | 101.68 | 101.70 | 113.33 | | | | | | 150. | | | 27'44 | 0.016343 | 97.05 | 97.07 | 117.95 | 1008.2 | 1126.1 | 0.2150 | 1.6536 | 1.8686 | | | 158.8 | 3.7184 | 0.016353 | 92.66 | 92.68 | 119.95 | 1007.0 | 1126.9 | 0.2183 | 1.6463 | 1.8646 | 152 | | 152.8 | 3.9065 | 0.016363 | 88.50 | 88.52 | 121.95 | 1005.8 | 1127.7 | 0.2216 | 1.6390 | 1.8606 | 154 | | 154.0 | 4.1025 | 0.016374 | 84.56 | 84.57 | 123.95 | 1004.5 | 1128.6 | 0.2248 | 1.6318 | 1.8566 | 156. | | 156.0 | 4.3068
4.5197 | 0.016384 | 80.82 | 80.83 | 125.96 | 1003.4 | 1129.4 | 0.2281 | 1.6245 | 1.8526 | 158. | | 158.8 | 4.319/ | 0.010304 | 00.01 | | | | | 0.0010 | 16174 | 1.8487 | 160. | | 158.6 | 47414 | 0.016395 | 77.27 | 77.29 | 127.96 | 1002.2 | 1130.2 | 0.2313 | 1.6174 | 1.8448 | 162 | | 162.8 | 4 9722 | 0.016406 | 73 90 | 73.92 | 129.96 | 1001.0 | 1131.0 | 0.2345 | 1.6103 | 1.8409 | 164 | | 164 8 | 52124 | 0.016417 | 70 70 | 70.72 | 131.96 | 999.8 | 1131.8 | 0.2377 | 1.6032 | | 166 | | | 5 4623 | 0.016428 | 67 67 | 67.68 | 133.97 | 9986 | 11326 | 0.2409 | 1.5961 | 1.8371 | 168 | | 166.0
168.0 | 5.7223 | 0.016440 | 64.78 | 64.80 | - 135.97 | 997.4 | 1133.4 | 0.2441 | 1.5892 | 1.8333 | 108 | | 100.0 | 3.7223 | | | | | *** | 1134.2 | 0.2473 | 1.5822 | 1.8295 | 170. | | 1700 | 5 9926 | 0.016451 | 62.04 | 62.06 | 137.97 | 996.2 | | 0.2505 | 1.5753 | 1.8258 | 172 | | 172.0 | 6.2736 | 0.016463 | 59 43 | 59.45 | 139.98 | 995 0 | | 0.2537 | 1.5684 | 1 8221 | 174 | | 174 0 | 6 5656 | 0016474 | 56.95 | 56.97 | 141.98 . | 993.8 | | 0.2568 | 1.5616 | 18184 | 176 | | 176.0 | 6.8530 | 0016486 | 54 59 | 5461 | 143 99 | 992 6 | 1136 6 | 0.2300 | 1 5548 | 1 9147 | | | | Abs Press. | Spe | cific Volu | me | | Enthalpy | | | Entropy | Sat. | Tem | |----------------|------------------|----------------------|------------------|------------------|--------|----------|--------|-----------|---------|--------|-------| | Temp | Lb per | Sat. | | Sat. | Sat. | | Sat. | Sat. | | | Fah | | Fahr | Sq In. | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | | | t | D D | v ₁ | Vig | Vg | hı | hig | hg | SI | Sig | Sg | 1 | | | | | | | 148 00 | 990.2 | 1138.2 | 0.2631 | 1.5480 | 1.8111 | 180.0 | | 180.0 | 7.5110 | 0.016510 | 50.21 | 50.22 | 150 01 | 989.0 | 1139.0 | 0.2662 | 1.5413 | 1.8075 | 182 0 | | 182.0 | 7.850 | 0.016522 | 48.172 | 18.189 | 152 01 | 987.8 | 1139.8 | 0.2694 | 1.5346 | 1 8040 | 184 0 | | 184.8 | 8.203 | 0.016534 | 46.232 | 46.249 | | 986.5 | 1140.5 | 0.2725 | 1.5279 | 1 8004 | 186.0 | | 186.0 | 8 568 | 0.016547 | 44.383 | 44.400 | 154.02 | 900.3 | 1141.3 | 0.2756 | 1.5213 | 1.7959 | 188.0 | | 188.6 | 8.947 | 0.016559 | 42.621 | 42.638 | 156.03 | 985.3 | 1141.3 | 0.2730 | | | | | | 9.340 | 0.016572 | 40.941 | 40.957 | 158.04 | 984.1 | 1142.1 | 0.2787 | 1.5148 | 1.7934 | 190.0 | | 190.0 | | 0.016585 | 39.337 | 39.354 | 160.05 | 982.8 | 1142.9 | 0.2818 | 1.5082 | 1.7900 | 192 6 | | 192.0 | 9.747 | 0.016598 | 37.808 | 37 824 | 162.05 | 981.6 | 1143.7 | 0.2848 | 1.5017 | 1.7865 | 194 0 | | 194.0 | 10.168 | | 36.348 | 36.364 | 164.06 | 980.4 | 1144.4 | 0.2879 | 1.4952 | 1.7831 | 196 0 | | 196.0 | 10.605 | 0.016611 | 34.954 | 34.970 | 166.08 | 979.1 | 1145.2 | 0.2910 | 1.4888 | 1.7798 | 198.0 | | 198.0 | 11.058 | 0.010024 | 34.334 | 34.370 | | | | | | | 200.0 | | 200.0 | 11.526 | 0.016637 | 33.622 | 33.639 | 168.09 | 977.9 | 1146.0 | 0.2940 | 1.4824 | 1.7764 | | | 200 0 | 12.512 | 0.016664 | 31.135 | 31 151 | 172.11 | 975.4 | 11475 | 0.3001 | 1.4697 | 1.7698 | 204 (| | 284.0 | 13.568 | 0.016691 | 28.862 | 28.878 | 176.14 | 972.8 | 1149.0 | 0.3061 | 1.4571 | 1 7632 | 208 (| | 208.0 | | 0.016719 | 26.782 | 26.799 | 180.17 | 970.3 | 1150.5 | 03121 | 1 4447 | 1 7568 | 2120 | | 212.0
216.0 | 14.696
15.901 | 0.016747 | 24.878 | 24 894 | 184.20 | 967.8 | 1152.0 | 0.3181 | 1.4323 | 1.7505 | 216.0 | | 216.0 | 13.301 | 0.010, 4, | 21.0.0 | | | | | | | 1 7447 | 220.0 | | 220.0 | 17.186 | 0.016775 | 23.131 | 23.148 | 188.23 | 965.2 | 1153.4 | 0.3241 | 1.4201 | 1.7442 | 224.0 | | 274.8 | 18.556 | 0.016805 | 21.529 | 21.545 | 192.27 | 962.6 | 1154.9 | 0.3300 | 1.4081 | 1.7380 | | | 228 0 | 20.015 | 0.016834 | 20.056 | 20.073 | 196.31 | 960.0 | 1156.3 | 0.3359 | 1 3961 | 1.7320 | 228 0 | | 232.0 | 21.567 | 0.016864 | 18.701 | 18.718 | 200.35 | 957.4 | 1157.8 | 0.3417 | 1.3842 | 1.7260 | 232 (| | 236.0 | 23.216 | 0.016895 | 17.454 | 17.471 | 751.30 | 954.8 | 1159.2 | 0.3476 | 1.3725 | 1.7201 | 236 | | | | | 15 204 | 16.321 | 208.45 | 952.1 | 1160.6 | 0.3533 | 1.3609 | 1.7142 | 240.0 | | 248.0 | 24.968 | 0.016926 | 16.304 | 15.260 | 212.50 | 949.5 | 1162.0 | 0.3591 | 1.3494 | 1.7085 | 244 | | 244.0 | 26.826 | 0.016958 | 15.243 | 13.200 | 216.56 | 946.8 | 1163.4 | 0.3649 | 1.3379 | 1.7028 | 248 | | 248 8 | 28.796 | 0.016990 | 14.264 | 14.281 | 220.62 | 944.1 | 1164.7 | 0 3 7 0 6 | 1.3266 | 1 6972 | 252 (| | 252.0 | 30.883 | 0.017022
0.017055 | 13.358
12.520 | 13.375
12.538 | 224.69 | 941.4 | 1166.1 | 0.3763 | 1.3154 | 1 6917 | 256 | | 256.0 | 33.091 | 0.017033 | 12.320 | 12.330 | | | | | | | *** | | 268 0 | 35.427 | 0.017089 | 11.745 | 11.762 | 228.76 | 938.6 | 1167.4 | 0.3819 | 1.3043 | 1.6862 | 260 | | 264.0 | 37.894 | 0.017123 | 11.025 | 11.042 | 232.83 | 935.9 | 1168.7 | 0.3876 | 1.2933 | 1 6808 | 264 (| | 268.0 | 40.500 | 0.017157 | 10.358 | 10 375 | 236.91 | 933.1 | 11700 | 0.3932 | 1.2823 | 1 6755 | 268 (| | 212.8 | 43 249 | 0.017193 | 9.738 | 9.755 | 240.99 | 930.3 | 1171.3 | 0.3987 | 1 2715 | 1.6702 | 272.0 | | 276.0 | 46.147 | 0.017228 | 9.162 | 9.180 | 245.08 | 927.5 | 1172.5 | 0.4043 | 1.2607 | 1.6650 | 276 | | 210.0 | 10.147 | | | | | | | 0.4000 | 1 2501 | 1.6599 | 280 (| | 280.0 | 49.200 | 0.017264 | 8.627 | 8.644 | 249.17 | 924.6 | 1173.8 | 0.4098 | 1.2395 | 1.6548 | 284 0 | | 284 0 | 52 414 | 0.01730 | 8.1280 | 8.1453 | 253 3 | 921.7 | 1175.0 | 04154 | | 16498 | 288 | | 288 0 | 55 795 | 0.01734 | 7.6634 | 7.6807 |
257.4 | 918.8 | 1176.2 | 0.4208 | 1.2290 | 16449 | 297 | | 292 9 | 59 350 | 0.01738 | 7 2 3 0 1 | 7.2475 | 261.5 | 915 9 | 1177.4 | 0.4263 | 1 2186 | 16400 | 296 1 | | 296 0 | 63 084 | 0.01741 | 6.8259 | 6.8433 | 265.6 | 913.0 | 1178.6 | 0 4 3 1 7 | 1 2082 | 1.0400 | 2301 | | | Abs Press. | Sn | ecific Volu | ime | | Enthalpy | | | Entropy | C-4 | Temp | |----------------|--------------------|---------|-------------|---------|---------|----------|--------|--------|---------|------------------|----------------| | Temp | Lb per | Sat. | | Sat. | Sat. | 21 9 | Sat. | Sat. | £ | Sat. | Fahr | | Fahr | Sq In. | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | | | 1 | p | 71 | Vig | vg | hı | h tg | hg | SI | Sig | 28 | t | | 306.6 | 67.005 | 0.01745 | 6.4483 | 6.4658 | 269.7 | 910.0 | 1179.7 | 0.4372 | 1.1979 | 1.6351 | 300 0
304 0 | | 384 8 | 71.119 | 0.01749 | 6.0955 | 6 1130 | 273.8 | 907.0 | 1180 9 | 0 4426 | 1.1877 | 1.6303
1.6256 | 308 0 | | 388.0 | 75.433 | 0.01753 | 5.7655 | 5 7830 | 278.0 | 904.0 | 1182.0 | 0.4479 | 11776 | 1.6209 | 312.0 | | 312.0 | 79 953 | 0.01757 | 5.4566 | 5 4742 | 282 1 | 901.0 | 1183 1 | 0.4533 | | 1.6162 | 316.0 | | 316.0 | 84.688 | 0.01761 | 5.1673 | 5 1849 | 286.3 | 897.9 | 1184.1 | 0.4586 | 1.1576 | 1.0102 | 310.0 | | 328.8 | 89 643 | 0.01766 | 4.8961 | 4.9138 | 290.4 | 894.8 | 1185.2 | 0.4640 | 1.1477 | 1.6116 | 320.0 | | 324.8 | 94.826 | 0.01770 | 4 6418 | 4 6595 | 294.6 | 891.6 | 1186.2 | 0.4692 | 1.1378 | 1.6071 | 324 0 | | 329.0 | 100 245 | 0.01774 | 4.4030 | 4 4208 | 298.7 | 888.5 | 1187.2 | 0.4745 | 1.1280 | 1.6025 | 328.0 | | 332.0 | 105.907 | 0.01779 | 4.1788 | 4 1966 | 302.9 | 885.3 | 1188 2 | 0.4798 | 1.1183 | 1.5981 | 112.0 | | 336.0 | 111.820 | 0.01783 | 3.9681 | 3 9859 | 307.1 | 882.1 | 1189 1 | 0.4850 | 1 1086 | 1.5936 | 336.0 | | | 117.002 | 0.01787 | 3.7699 | 3.7878 | 311.3 | 878.8 | 1190 1 | 0.4902 | 1.0990 | 1 5892 | 340 0 | | 340.0 | 117.992 | 0.01792 | 3.5834 | 3 6013 | 315.5 | 875.5 | 11910 | 0.4954 | 1.0894 | 1.5849 | 344 0 | | 344.6 | 124 430 | 0.01797 | 3.4078 | 3 4258 | 319.7 | 872.2 | 11911 | 0.5006 | 1.0799 | 1.5806 | 348 0 | | 348.0 | 131.142 | 0.01801 | 3.2423 | 3 2603 | 323.9 | 868.9 | 1192.7 | 0.5058 | 1.0705 | 1.5763 | 352.0 | | 352.0
356.0 | 138 138
145 424 | 0.01806 | 3.0853 | 31044 | 328 1 | 865.5 | 1193.6 | 05110 | 10611 | 1.5721 | 356.0 | | 330.0 | 145424 | 0.000 | | | | | | 05161 | 1.0517 | 1.5678 | 360.0 | | 368.0 | 153.010 | 0.01811 | 2.9392 | 2.9573 | 332.3 | 862.1 | 1194 4 | 0.5161 | | 1.5637 | 364.0 | | 364.0 | 160 903 | 0.01816 | 2.8002 | 2.8184 | 336.5 | 858.6 | 1195.2 | 0.5212 | 1.0424 | 1.5595 | 368 0 | | 368.0 | 169.113 | 0.01821 | 2.6691 | 2 6873 | 340.8 | e35.1 | 1195 9 | 0.5263 | 1 0332 | 1.5554 | 372 0 | | 372.0 | 177.648 | 0.01826 | 2.5451 | 2.5633 | 345 0 | 851.6 | 1196.7 | 05314 | 1.0240 | 1.5513 | 376.0 | | 376.0 | 186.517 | 0.01831 | 2.4279 | 2 4462 | 349.3 | 848 1 | 1197.4 | 0.5365 | 1.0148 | 1.3313 | 310.0 | | 380.0 | 195.729 | 0.01836 | 2.3170 | 2 3353 | 3536 | 844.5 | 1198.0 | 0.5416 | 1.0057 | 1.5473 | 380.0 | | 384.8 | 205 294 | 0.01862 | 2.2120 | 2 2304 | 357.9 | 840.8 | 1198.7 | 0.5466 | 0.9966 | 1.5432 | 384.0 | | 388.0 | 215.220 | 0.01847 | 2.1126 | 2.1311 | 362.2 | 837.2 | 1199.3 | 0.5516 | 0.9876 | 1.5392 | 388.0 | | 392.0 | 25.516 | 0.01853 | 2.0184 | 2.0369 | 366.5 | 833.4 | 1199.9 | 0.5567 | 0.9786 | 1.5352 | 392.0 | | 396.8 | 236.193 | 0.01858 | 1.929! | 1.9477 | . 370.8 | 829.7 | 1200.4 | 0 5617 | 0 9696 | . 1.5313 | 396.0 | | | 247.250 | 0.01864 | 1.8444 | 1.8630 | 375.1 | 825.9 | 1201.0 | 0.5667 | 0 9607 | 1.5274 | 400.0 | | 480.8 | 247.259
258.725 | 0.01870 | 1.7640 | 1.7827 | 379.4 | 822.0 | 1201.5 | 0 5717 | 0.9518 | 1.5234 | 404.0 | | 494.0
498.8 | 270 600 | 0.01875 | 1.6877 | 1.7064 | 383.8 | 818.2 | 1201.9 | 0.5766 | 0 9429 | 1.5195 | 408 0 | | 412.0 | 282 894 | 0 01881 | 1.6152 | 1.6340 | 388 1 | 814.2 | 1202.4 | 0.5816 | 0.9341 | 1.5157 | 412 0 | | 116.0 | 295 617 | 001887 | 1.5463 | 1.5651 | 392.5 | 810.2 | 1202.8 | 0.5866 | 0 9253 | 1.5118 | 416.0 | | | | | | | 200.0 | 806.2 | 1203.1 | 0.5915 | 0.9165 | 1.5080 | 420 0 | | 428.8 | 308 780 | 0.01894 | 1.4808 | 1.4997 | 396.9 | 802.2 | 1203.1 | 0.5964 | 0.9077 | 1.5042 | 424.0 | | 424.0 | 322 391 | 0.01900 | 1.4184 | 1.4374 | 401.3 | 798.0 | 1203.7 | 0 6014 | 0 8990 | 1.5004 | 428.0 | | 428 0 | 336 463 | 0 01906 | 1.3591 | 1.3782 | 410.1 | 793 9 | 1204.0 | 0 6063 | 0 8903 | 1.4966 | 437 0 | | 432 0
436 0 | 351 00
366 03 | 0.01913 | 1.30256 | 1.26806 | 4146 | 789.7 | 123 2 | 06112 | 0 8816 | 1.4928 | 436.0 | | | | | | | 4190 | 785.4 | 1204 4 | 0.6161 | 08729 | 1.4890 | 440.0 | | 448 0 | 381.54 | 0 01926 | 1.19761 | 1 21687 | 419.0 | 781.1 | 1204 6 | 0 6210 | 0 8643 | 1 4853 | 444.0 | | | Abs Press. | Si | pecific Vol | lume | | Enthalpy | | | Entropy | | | |-------|------------|---------|-------------|---------|--------|----------|--------|--------|---------|--------|-------| | Temp | Lb per | Sat. | | Sat. | Sat. | | Sat. | Sat | 100 71 | Sat | Temp | | Fahr | Sg In. | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Fahr | | t | p p | V, | Vip | Vg | ht | h tg | | St | Sig | Sg | t | | 460.0 | 466.87 | 0.01961 | 0.97463 | 0 99424 | 441.5 | 763.2 | 1204.8 | 0.6405 | 0.3299 | 1.4704 | 460 0 | | 464.0 | 485.56 | 0.01969 | 0 93588 | 0.95557 | 446.1 | 758.6 | 1204.7 | 0.6454 | 0 8213 | 1.4667 | 464 0 | | 468.0 | 504.83 | 0.01976 | 0.89885 | 0.91862 | 450.7 | 754.0 | 1204.6 | 0.6502 | 0.8127 | 1.4629 | 468 0 | | 472.0 | 524.67 | 0.01984 | 0.86345 | 0.88329 | 455.2 | 749.3 | 1204.5 | 0.6551 | 0.8042 | 1.4592 | 472 0 | | 476.8 | 545.11 | 0.01992 | 0.82958 | 0.84950 | 459.9 | 744.5 | 1204.3 | 0.6599 | 0.7956 | 1.4555 | 476 0 | | 488.0 | 566.15 | 0.02000 | 0.79716 | 0.81717 | 464.5 | 739.6 | 1204.1 | 0.6648 | 0.7871 | 1.4518 | 480.0 | | 484.0 | 587.81 | 0.02009 | 0.76613 | 0.78622 | 469.1 | 734.7 | 1203.8 | 0.6696 | 0.7785 | 1.4481 | 134 0 | | 488.0 | 610.10 | 0.02017 | 0.73641 | 0.75658 | 473.8 | 729.7 | 1203.5 | 0.6745 | 0.7700 | 1.4444 | 488 0 | | 492.0 | 633.03 | 0.02026 | 0.70794 | 0.72820 | 478.5 | 724.6 | 1203.1 | 0.6793 | 0.7614 | 1.4407 | 497 0 | | 496.0 | 656.61 | 0.02034 | 0.68065 | 0.70100 | 483.2 | 719.5 | 1202.7 | 0.6842 | 0.7528 | 1.4370 | 496.0 | | 500.0 | 680.86 | 0.02043 | 0.65448 | 0.67492 | 487.9 | 714.3 | 1202.2 | 0.6890 | 0.7443 | 1.4333 | 500 0 | | 504.0 | 705.78 | 0.02053 | 0.62938 | 0.64991 | 492.7 | 709.0 | 1201.7 | 0.6939 | 0 7357 | 1.4296 | 504 0 | | 508.0 | 731.40 | 0.02062 | 0.60530 | 0.62592 | 497.5 | 703.7 | 1201.1 | 0.6987 | 0.7271 | 1 4258 | 508 0 | | 512.0 | 757.72 | 0 02072 | 0.58218 | 0.60289 | 502.3 | 698.2 | 1200.5 | 0.7036 | 0.7185 | 1 4221 | 512.0 | | 516.0 | 784.76 | 0.02081 | 0.55997 | 0.58379 | 507.1 | 692.7 | 1199.8 | 0.7085 | 0.7099 | 1 4183 | 5160 | | 528.8 | 812.53 | 0.02091 | 0.53864 | 0.55956 | 512.0 | 687.0 | 1199.0 | 0.7133 | 0.7013 | 1.4145 | 5200 | | 524.8 | 841.04 | 0.02102 | 0.51814 | 0.53916 | 516.9 | 681.3 | 1198.2 | 0.7182 | 0.6926 | 1.4108 | 574 0 | | 528.0 | 870.31 | 0.02112 | 0.49843 | 051955 | 521.8 | 675.5 | 1197.3 | 0.7231 | 0.6839 | 1.4070 | 528 0 | | 532.0 | 900.34 | 0 02123 | 0.47947 | 0.50070 | 526.8 | 669.6 | 1196.4 | 0.7280 | 0 6752 | 1.4032 | 532 û | | 536.0 | 931.17 | 0.02134 | 0.46123 | 0.48257 | 531.7 | 663.6 | 1195.4 | 0 7329 | 0 6665 | 1.3993 | 536 0 | | 540.0 | 962.79 | 0.02146 | 0.44367 | 0.46513 | 536.8 | 657.5 | 1194.3 | 0.7378 | 0.6577 | 1.3954 | 540 0 | | 544.8 | 995.22 | 0.02157 | 0.42677 | 0.44834 | 541.8 | 651.3 | 1193.1 | 0.7427 | 0.6489 | 1.3915 | 544 0 | | 548.8 | 1028.49 | 0.02169 | 0.41048 | 0.43217 | 546.9 | 645.0 | 1191.9 | 0.7476 | 0.6400 | 1.3876 | 548 0 | | 552.0 | 1062.59 | 0.02182 | 0.39479 | 0.41660 | 552.0 | 638.5 | 1190.6 | 0.7525 | 0 6311 | 1.3837 | 552 0 | | 556.0 | 1097.55 | 0.02194 | 0.37966 | 0.40160 | 557.2 | 632.0 | 1189.2 | 0.7575 | 0.6222 | 1.3797 | 556.0 | | 560.0 | 1133.38 | 0.02207 | 0.36507 | 0.38714 | 562.4 | 625.3 | 1187.7 | 0.7625 | 0.6132 | 1.3757 | 560 0 | | 564 0 | 1170.10 | 0.02221 | 0.35099 | 0.37320 | 567.6 | 618.5 | 1186.1 | 0.7674 | 0.6041 | 1.3716 | 564 0 | | 568.0 | 1207.72 | 0.02235 | 0.33741 | 0.35975 | 572.9 | 611.5 | 1184.5 | 0.7725 | 0.5950 | 1.3675 | 568 0 | | 572.0 | 1246.26 | 0.02249 | 0.32429 | 0.34678 | 578.3 | 604 5 | 1182.7 | 0.7775 | 0.5859 | 1.3634 | 572 0 | | 576.0 | 1285.74 | 0.02264 | 0.31162 | 0.33426 | 583.7 | 597.2 | 1180.9 | 0.7825 | 0.5766 | 1.3592 | 576 0 | | 580.0 | 1326 17 | 0.02279 | 0.29937 | 0.32216 | 589.1 | 589.9 | 1179.0 | 0 7876 | 0 5673 | 1.3550 | 580 0 | | 584 0 | 1367.7 | 0 02295 | 0.28753 | 0.31048 | 594.6 | 582.4 | 1176.9 | 0.7927 | 0 5580 | 1.3507 | 584 0 | | 588.0 | 14100 | 0.02311 | 0.27608 | 0 29919 | 600 1 | 574.7 | 11748 | 0.7978 | 0 5485 | 1 3464 | 588 0 | | 592.0 | 1453 3 | 0.02328 | 0.26499 | 0.28827 | 605.7 | 566.8 | 1172.6 | 0.8030 | 0 5390 | 1.3420 | 592 0 | | 596.0 | 1497.8 | 0.02345 | 0 25425 | 0.27770 | 611.4 | 5588 | 11702 | 0 8082 | 0.5293 | 1.3375 | 596 0 | | | Abs Press. | Sp | ecific Volu | ıme | | Enthalpy | | | Entropy | | | |--------------|------------------|----------------|-------------|---------------|----------------|----------|---------------|-----------------|---------|---------------|--------------| | Temp
Fahr | Lb per
Sq In. | Sat.
Liquid | Evap | Sat.
Vapor | Sat.
Liquid | Evap | Sat.
Vapor | Sait.
Liquid | Evap | Sat.
Vapor | Temp
Fahr | | t | р | v ₁ | Vig | ٧g | h ₁ | hig | hg | SI | Sig | Sg | t | | 0.00 | 1543.2 | 0.02364 | 0.24384 | 0.267 | 617.1 | 550.6 | 1167.7 | 0.8134 | 0.5196 | 1.3330 | 600.0 | | 504.0 | 1589.7 | 0.02382 | 0.23374 | 0.25757 | 622.9 | 542.2 | 1165.1 | 0.8187 | 0.5097 | 1.3284 | 604.1 | | 0.80 | 1637.3 | 0.02402 | 0.22394 | 0.24796 | 628.8 | 533.6 | 1162.4 | 0.8240 | 0.4997 | 1 3238 | 608.0 | | 512.0 | 1686.1 | 0.02422 | 0.21442 | 0.23865 | 634.8 | 524.7 | 11595 | 0.8294 | 0.4896 | 1.3190 | 612.0 | | 16.6 | 1735.9 | 0.02444 | 0.20516 |
0.22960 | 640.8 | 515.6 | 1156 4 | 0.8348 | 0.4794 | 1.3141 | 616.0 | | 520.0 | 1786.9 | 0.02466 | 0.19615 | 0.22081 | 646.9 | 506.3 | 1153 2 | 0.8403 | 0.4689 | 1.3092 | 620 | | 24.0 | 1839.0 | 0.02489 | 0.18737 | 0.21226 | 653.1 | 426.6 | 11498 | 0.8458 | 0.4583 | 1.3041 | 624.1 | | 628.0 | 1892.4 | 0.02514 | 0.17880 | 0.20394 | 659.5 | 486.7 | 1146 1 | 0.8514 | 0.4474 | 1.2988 | 628 | | 632 0 | 1947.0 | 0.02539 | 0.17044 | 0.19583 | 665.9 | 476.4 | 1142.2 | 0.8571 | 0.4364 | 1.2934 | 632 1 | | 636 0 | 2002.8 | 0.02566 | 0.16226 | 0.18792 | 672.4 | 465.7 | 1138 1 | 0.8628 | 0 4251 | 1.2879 | 636.0 | | 40.0 | 2059.9 | 0.02595 | 0.15427 | 0.18021 | 679.1 | 454.6 | 1133.7 | 0.8686 | 0.4134 | 1.2821 | 640 | | 644.0 | 2118.3 | 0.02625 | 0.14644 | 0.17269 | 685.9 | 443.1 | 1129.0 | 0.8746 | 0.4015 | 1 2761 | 644 | | 48.0 | 2178.1 | 0.02657 | 0.13876 | 0.16534 | 692.9 | 431.1 | 1124.0 | 0.8806 | 0.3893 | 1.2699 | 648 | | 52.0 | 2239.2 | 0.02691 | 0.13124 | 0.15816 | 700.0 | 418.7 | 11187 | 0.8868 | 0.3767 | 1 2634 | 652 | | 56.0 | 2301.7 | 0.02728 | 0.12387 | 0.15115 | 707.4 | 405.7 | 1113.1 | 0.8931 | 0.3637 | 1.2567 | 656. | | 0.03 | 2365.7 | 0.02768 | 0.11663 | 0.14431 | 714.9 | 392.1 | 1107.0 | 0.8995 | 0.3502 | 1.2498 | 666 | | 64.0 | 2431.1 | 0.02811 | 0.10947 | 0.13757 | 722.9 | 377.7 | 1100 6 | 0.9064 | 0.3361 | 1.2425 | 664 | | 68.0 | 2498.1 | 0.02858 | 0.10229 | 0.13087 | 731.5 | 362.1 | 1093.5 | 0.9137 | 0.3210 | 1.2347 | 668 | | 72.0 | 2566.6 | 0.029.1 | 0.09514 | 0.12424 | 740.2 | 345.7 | 1085.9 | 0.9212 | 0.3054 | 1.2266 | 672. | | 76.0 | 2636.8 | 0.02970 | 0.08799 | 0.11769 | 749.2 | 328.5 | 1077.6 | 0.9287 | 0.2892 | 1.2179 | 676 | | 80.0 | 2708.6 | 0.03037 | 0.08080 | 0.11117 | 758.5 | 310.1 | 1068.5 | 0.9365 | 0.2720 | 1.2086 | 680 | | 84.0 | 2782.1 | 0.03114 | 0.07349 | 0.10463 | 768.2 | 290.2 | 1058.4 | 0.9447 | 0.2537 | 1.1984 | 684 | | 88.0 | 2857.4 | 0.03204 | 0.06595 | 0.09799 | 778.8 | 268.2 | 1047.0 | 0.9535 | 0.2337 | 1.1872 | 688.1 | | 92.0 | 2934.5 | 0.03313 | 0.05797 | 0.09110 | 790.5 | 243.1 | 1033.6 | 0.9634 | 0.2110 | 1.1744 | 692 | | 96.0 | 3013.4 | 0.03455 | 0.04916 | 0.08371 | 804.4 | 212.8 | 1017.2 | 0.9749 | 0.1841 | 1.1591 | 696. | | 00 0 | 3094.3 | 0.03662 | 0.03857 | 0.07519 | 822.4 | 172.7 | 995.2 | 0.9901 | 0.1490 | 1.1390 | 700.0 | | 02.0 | 3135.5 | 0.03824 | 0.03173 | 0.06397 | 835.0 | 144.7 | 979.7 | 1.0006 | 0.1246 | 1 1252 | 7021 | | 04 0 | 3177.2 | 0.04108 | 0.02192 | 0.06300 | 854.2 | 102.0 | 956.2 | 1.0169 | 0.0876 | 1 1046 | 704 (| | 85 0 | 31983 | 0.04427 | 0.01304 | 0.05730 | 873.0 | 61.4 | 934.4 | 1.0329 | 0.0527 | 1 0856 | 705.0 | | 05 47* | 3208.2 | 0.05078 | 0.00000 | 0.05078 | 906.0 | 0.0 | 906.0 | 1.0612 | 0.0000 | 1 0612 | 705. | Table 2: Saturated Steam: Pressure Table | | | Sn | ecific Volu | me | | Enthalpy | | | Entropy | | Ab. D | |------------|--------|-------------|-----------------|------------------|------------------|----------|------------------|--------|---------|------------------|----------------| | Abs Press. | Temp | Sat. | | Sat. | Sat. | | Sat. | Sat. | | Sat. | Abs Pres | | Lb/Sq In. | Fahr | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Lb/Sq In | | p | t | v 1 | v _{fg} | v _g | h I | hig | hg | SI | Stg | Sg | p | | | | | | 2202.4 | 0.0003 | 1075.5 | 1075.5 | 0.0000 | 2.1872 | 2.1872 | 0 0886 | | 0 08865 | 32 018 | 0.016022 | 3302.4 | 3302 4 | 0.0003
27.382 | 1060.1 | 1087.4 | 0.0542 | 2.0425 | 2 0967 | 0 25 | | 0 25 | 59 323 | 0.016032 | 1235.5 | 1235 5 | 47.623 | 1048.6 | 1096.3 | 0.0925 | 1.9446 | 2 0370 | 0.50 | | 0.50 | 79.586 | 0 016071 | 6415 | 641.5 | 69.73 | 1036.1 | 1105.8 | 0 1326 | 1.8455 | 2 0370
1 9781 | 10 | | 1.0 | 101.74 | 0 016136 | 333.59 | 333.60
73.532 | 130.20 | 1000.9 | 1131.1 | 0.2349 | 1.6094 | 1.8443 | 50 | | 5.0 | 162.24 | 0.016407 | 73.515 | 13.332 | 161.26 | 982.1 | 1143.3 | 0 2836 | 1.5043 | 1 7879 | 100 | | 10.0 | 193.21 | 0 016592 | 38 404 | 38.420
26.799 | 180.17 | 970.3 | 1150.5 | 0.3121 | 1.4447 | 1.7568 | 14 696 | | 14 696 | 212 00 | 0 016719 | 26.782 | 26.290 | 181.21 | 969.7 | 1150.9 | 0.3137 | 1.4415 | 1.7552 | 15.0 | | 15.0 | 213.03 | 0 016726 | 26.274 | | | | | | | | 20 0 | | 20 0 | 227.96 | 0 016834 | 20.070 | 20.087 | 196.27 | 960.1 | 1156.3 | 0.3358 | 1.3962 | 1.7320 | 300 | | 30 0 | 250 34 | 0.017009 | 13.7266 | 13.7436 | 2189 | 945.2 | 1164.1
1169.8 | 0.3632 | 1.3313 | 1.6995 | | | 40.0 | 267.25 | 0.017151 | 10.4794 | 10.4965 | 236.1 | 933.6 | 1169.8 | 0.3921 | 1.2844 | 1 6765 | 40 0 | | 50 0 | 281.02 | 0 017274 | 8.4967 | 8.5140 | 250.2 | 923.9 | 1174 1 | 0.4112 | 1.2474 | 1.6586 | 50.0 | | 600 | 292.71 | 0 017383 | 7.1562 | 7.1736 | 262.2 | 915.4 | 1177.6 | 0.4273 | 1.2167 | 1 6440 | 60 0 | | 70 0 | 302.93 | 0.017482 | 6.1875 | 6.2050 | 272.7 | 907.8 | 11806 | 0 4411 | 1.1905 | 1.6316 | 70 0 | | 80 0 | 312 04 | 0 017573 | 5.4536 | 5.4711 | 282.1 | 900.9 | 1183 1 | 0.4134 | 1.1675 | 1.6208 | 80 0 | | 90.0 | 320.28 | 0 017659 | 4.8779 | 4.8953 | 290.7 | 894.6 | 1185.3 | 0.4643 | 1.1470 | 1.6113 | 90 0 | | 100.0 | 327.82 | 0.017740 | 4.4133 | 4.4310 | 298.5 | 888.6 | 1187.2 | 0.4743 | 1.1284 | 1 6027 | 100 0 | | 1103 | 334.79 | 0.01782 | 4.0306 | 4.0484 | 305.8 | 883.1 | 1188.9 | 0.4834 | 1.1115 | 1.5950 | 1100 | | 1200 | 341.27 | 0 01789 | 3.7097 | 3.7275 | 312.6 | 877.8 | 1190.4 | 0 4919 | 1.0960 | 1.5879 | 1200 | | 130 0 | 347.33 | 0.01796 | 3.4364 | 3.4544 | 319.0 | 872.8 | 1191.7 | 0.4998 | 1.0815 | 1.5813 | 130 0 | | 140 0 | 353.04 | 0 01803 | 3.2010 | 3.2190 | 325.0 | 868.0 | 1193.0 | 0.5071 | 1.0681 | 1.5752 | 140 0 | | 150.0 | 358.43 | 0.01809 | 2 9958 | 3.0139 | 330.6 | 863.4 | 1194.1 | 6.5141 | 1.0554 | 1 5695 | 150 0 | | 160 0 | 363 55 | 0 01815 | 2.8155 | 2.8336 | 336.1 | 859.0 | 1135.1 | 0.5206 | 1.0435 | 1 5641 | 160 0 | | 170.0 | 368.42 | 0 01821 | 2.6556 | 2.6738 | 341.2 | 854.8 | 1196.0 | 0.5269 | 1.0322 | 1 5591 | 170 0 | | 180.0 | 373.08 | 0.01827 | 2.5129 | 2.5312 | 346.2 | 850.7 | 1196.9 | 0.5128 | 1.0215 | 1 5543 | 180 0 | | 190.0 | 377 53 | 0 01833 | 2.3847 | 2.4030 | 350.9 | 846.7 | 1197.6 | 0.5384 | 1.0113 | 1 5498 | 190 0 | | 200.0 | 381.80 | 0 01839 | 2.2689 | 2.2873 | 355.5 | 842.8 | 1198.3 | 0.5438 | 1.0016 | 1.5454 | 200 0 | | 210.0 | 385.91 | 0 0 1 8 4 4 | 2.16373 | 2.18217 | 359.9 | 839.1 | 11990 | 0.5490 | 0.9923 | 1 5413 | 2100 | | 220.0 | 389.88 | 0 01850 | 2 06779 | 2.08029 | 364 2 | 835.4 | 1199.6 | 0.5540 | 0.9834 | 1 5374 | 220 0 | | 230.0 | 393.70 | 0.01855 | 1.97991 | 1.99846 | 368 3 | 831.8 | 1200 I
1200 6 | 0.5588 | 0 9748 | 1 5336 | 230 0 | | 240 0 | 397.39 | 0 01860 | 1.89909 | 1.91769 | 372 3 | 828 4 | 1200.6 | 0.5634 | 0 9665 | 1 5299
1 5264 | 2400 | | 250 0 | 400.97 | 0.01865 | 1.82452 | 1.84317 | 376.1 | 825.0 | 1201.1 | 0.5679 | 0.9585 | 1 5264 | 250 0
260 0 | | 260 0 | 404 44 | 0 01870 | 1.75548 | 1.77418 | 379.9 | 821.6 | 1201 5 | 0.5722 | 0 9508 | 1 5230
1 5197 | 210 0 | | 2700 | 407.80 | 0 01875 | 1 69137 | 1.71013 | 383 6 | 818.3 | 1201.9 | 0.5764 | 0 9433 | 15166 | 280 0 | | 280 0 | 411.07 | 0 01880 | 1.63169 | 165049 | 387.1 | 815.1 | 1202 3 | 0 5805 | 0 9361 | 15135 | 2900 | | 290.0 | 414.25 | 0 01885 | 1.57597 | 1.59482 | 390.6 | 812.0 | 1202.6 | 0.5844 | 0.9291 | | | | 300 0 | 417 35 | 0 01889 | 1.52384 | 1.54274 | 394 0 | 808 9 | 1202.9 | 0.5882 | 0 9223 | 1 5105 | 300 0 | | 3500 | 431 73 | 0 01912 | 1.30642 | 1.32554 | 400 9 | 794 2 | 1204 0 | 0 6059 | 0 8909 | 1 4968 | 350 0 | | | | Sp | ecific Volu | ime | | Enthalpy | | | Entropy | | | |------------------|----------------------|--------------------|--------------------|--------------------|----------------|----------------|------------------|------------------|------------------|------------------|------------------| | Abs Press. | Temp | Sat. | | Sat. | Sat. | • | Sat. | Sat. | · · · · | Sal | Abs Press | | Lb/Sq In. | Fah: | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Liquid | Evap | Vapor | Lb/Sq In. | | р | -t | v _t | v _{fg} | v g | p.t. | hig | h g | 51 | Sig | 2 8 | p | | 450.0 | 456.28 | 0.01954 | 1.01224 | 1.03179 | 437.3 | 767.5 | 1204.8 | 0.6360 | 0.8378 | 1 4738 | 450 0 | | 500 0 | 467 01 | 0.01975 | 0.90787 | 0.92762 | 449.5 | 755.1 | 1204.7 | 0 6490 | 0.8148 | 1.4639 | 500 0 | | 550 0 | 476.94 | 0.01994 | 0.82183 | 0.84177 | 460 9 | 743.3 | 1204.3 | 0 6611 | 0.7936 | 1.4547 | 550 0
600 0 | | 600 O | 486 20 | 0.02013 | 0.74962 | 0.76975 | 471.7 | 732 0 | 1203.7
1202.8 | 0.6723 | 0.7738 | 1 4381 | 650 0 | | 650 0 | 494 89 | 0.02032 | 0.68811 | 0.70843 | 481 9 | 720.9
710.2 | 1202.8 | 0 6828
0 6928 | 0.7552
0.7377 | 1.4304 | 700 0 | | 700 0 | 503.08 | 0.02050 | 0.63505 | 0.65556 | 491.6 | 710.2 | | | 0.7377 | | | | 750 8 | 510 84 | 0.02069 | 0.58880 | 0 60949 | 500.9 | 699.8 | 1200.7 | 0 7022 | 0 7210 | 1.4232 | 750 0 | | 800 0 | 518.21 | 0.02087 | 0 54809 | 0.56896 | 509.8 | 689.6 | 1199.4 | 0.7111 | 0 7051 | 1 4163 | 800 0 | | 850 O | 525.24 | 0.02105 | 051197 | 0.53302 | 518.4 | 679.5 | 1198.0 | 0.7197 | 0 6899 | 1.4096 | 850 0 | | 900 0 | 531 95 | 0.02123 | 0 47968 | 0.50091 | 526.7 | 6697 | 1196.4 | 0 7279 | 0.6753 | 1.4032
1.3970 | 900 0
950 0 | | 950 0 | 538.39 | 0 02141 | 0.45064 | 0.47205 | 534 7 | 660.0 | 1194.7 | 0.7358 | 0 6612 | 1.3910 | 1000 0 | | 1000 0 | 544.58 | 0.02159 | 0.42436 | 0.44596 | 542.6 | 650.4 | 1192.9
1191.0 | 0.7434 | 0.6476 | 1.3851 | 1050 0 | | 1050 0 | 550 53 | 0 02177 | 0.40047 | 0 42224 | 550 1 | 640 9 | 1189 1 | 0 7507
0 7578 | 0 6344 | 1.3794 | 1100 0 | | 1100 0 | 556 28 | 0.02195 | 0.37863 | 0.40058 | 557.5 | 631.5 | 1187.0 | | 0 6216 | 1 3738 | 1150 0 | | 1150 0 | 561 82 | 0 02214 | 0.35859 | 0 38073 | 564.8 | 622.2 | 1184.8 | 0.7647
0.7714 | 0.5969 | 1.3683 | 1200 0 | | 1200 0 | 567.19 | 0.02232 | 0.34013 | 0.36245 | 571.9 | 613.0 | | 0.7714 | 0.5903 | | | | 1250 0 | 572 38 | 0.02250 | 0.32306 | 0.34556 | 578.8 | 603.8 | 1182.6 | 0.7780 | 0.5850 | 1.3630 | 1250 0 | | 1300 0 | 577.42 | 0.02269 | 0.30722 | 0.32991 | 585.6 | 594.6 |
1180.2 | 0.7843 | 0.5733 | 1.3577 | 1300 0 | | 3350 0 | 582 32 | 0 02288 | 0.29250 | 0.31537 | 592.3 | 585 4 | 1177.8 | 0.7906 | 0.5620 | 1.3525 | 13500 | | 1400 0 | 587.07 | 0 02307 | 0.27871 | 0.30178 | 598.8 | 576.5 | 1175.3 | 0.7966 | 0.5507 | 1 3474 | 1400.0 | | 1450 0 | 591.70 | 0.02327 | 0.26584 | 0 28911 | 605.3 | 567.4 | 1172.8 | 0 8026 | 0.5397 | 1 3423 | 1450 0 | | 1500 0 | 596.20 | 0 02346 | 0 25372 | 0 27719 | 611.7 | 558.4 | 1170.1 | 0.8085 | 0 5288 | 1 3373 | 1500 0 | | 1550 0 | 600 59 | 0 02366 | 0.24235 | 0.26601 | 618.0 | 549 4 | 1167.4 | 0.8142 | 05182 | 1 3324 | 1550 0 | | 1600 0 | 604 87 | 0.02387 | 0.23159 | 0 25545 | 624.2 | 540.3 | 1164.5 | 0 8199 | 0 5076 | 1.3274
1.3225 | 1600 0
1650 0 | | 1650 0
1700 0 | 609 05 613 13 | 0 02407
0 02428 | 0.22143 0.21178 | 0 24551
0 23607 | 630 4
636.5 | 531.3
522.2 | 1161 6
1158 6 | 0 8254
0 8309 | 0.4971 | 1 3176 | 1700 0 | | 1750.0 | 617.12 | 0.02450 | 0.20263 | 0.22713 | 642.5 | 513.1 | 1155 6 | 0 8363 | 0 4765 | 1.3128 | 1750 0 | | 1800 0 | 621 02 | 0.02472 | 0.19390 | 0.21861 | 648 5 | 503 8 | 1152.3 | 0 8417 | 0.4662 | 1 3079 | 1800 0 | | 1850 0 | 624 83 | 0.02495 | 0 18558 | 0 21052 | 654.5 | 494.6 | 11490 | 0.8470 | 0 4561 | 1.3030 | 1850 0 | | 1900 0 | 628 56 | 0.02517 | 0.17761 | 0.20278 | 660.4 | 485.2 | 1145.6 | 0.8522 | 0 4459 | 1.2981 | 1900 0 | | 1950 0 | 632.22 | 0.02541 | 0 16999 | 0.19540 | 566.3 | 475 8 | 1142.0 | 0 8574 | 0 4358 | 1 2931 | 1950 0 | | 2003 0 | 635.80 | 0 02565 | 0 16266 | 0.18831 | 672.1 | 466.2 | 1138.3 | 0 8625 | 0 4256 | 1 2881 | 2000 0 | | 2100 0 | 642.76 | 0.02615 | 0.14885 | 0.17501 | 683.8 | 446.7 | 1130.5 | 0.8727 | 0 4053 | 1.2780 | 2100 0
2200 0 | | 2200 0
2300 0 | 649.45
655.89 | 0 02669 | 0 13603 | 0.16272 | 695 5 | 426.7 | 11122.2 | 0.8828 | 0.3848 | 1 2676
1 2569 | 2300 0 | | 2400 0 | 662.11 | 0.02727 | 0.12406
0.11287 | 0.15133
0.14076 | 707.2
719.0 | 406.0
384.8 | 1103.7 | 0 8929 | 0.3640 | 1 2460 | 2400 0 | | 2500.0 | CC0 11 | | | 0.13068 | | | 1002.2 | 0.0130 | | 1 2345 | 2500 0 | | 2500 0
2600 0 | 668.11
673.91 | 0.02859 | 0.10209 | 0.13068 | 731.7
744.5 | 361.6
337.6 | 1093 3
1082 0 | 0.9139 | 0.3206
0.2977 | 1 2225 | 2600 0 | | 2700 0 | 679 53 | 0 03029 | 0 08165 | 0.11194 | -757.3 | 312.3 | 1069 7 | 0 9356 | 0 2741 | 1 2097 | 2700 0 | | 2800 0 | 684 96 | 0.03134 | 0 07171 | 0 10305 | 770 7 | 285.1 | 1055.8 | 0 9468 | 0 2491 | 1 1958 | 2800 0 | | 2900 0 | 690 22 | 0.03262 | 0.06158 | 0 09420 | 785 1 | 254.7 | 1039.8 | 0 9588 | 0 2215 | 1 1803 | 2900 0 | | 3000 0 | 695 33 | 0.03429 | 0.05073 | 0 08500 | 801.8 | 2184 | 1020.3 | 0 9728 | 0 1891 | 1 1619 | 30000 | | 31000 | 700 28 | 0.03681 | 0 03771 | 0 07452 | 824 0 | 1693 | 993 3 | 0 9914 | 0 1460 | 1 1373 | 31000 | | 3200 0 | 705 08 | 0 04472 | 0.01191 | 0.05663 | 875.5 | 561 | 931.6 | 1.0351 | 0 0482 | 1 0832 | 3200 0 | | | 705 47 | 0 05078 | 0 00000 | 0.05078 | 99 | 0.0 | 906 0 | 1 0612 | 0 0000 | 1 0612 | № 8 2 · | Table 3. Superheated Steam | Abs Press
Lb/Sq In
(Sat Temp) | | Sat
Water | Sal
Steam | Tempe
200 | rature -
250 | Degrees
300 | Fahrenh
150 | 400 | 450 | 500 | 600 | 100 | 100 | 900 | 1900 | 1100 | 1700 | |-------------------------------------|-------|----------------------------------|----------------------------|------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------| | (10: 74) | \$A | 0 01614
69 73
0 1326 | 333 6
1105 8
19781 | 98 26
392 5
1150 2
2 0509 | 148 26
427 4
1172 9
2 0841 | 198 26
452 3
1195 7
2 1152 | 248 26
482 1
1218 7
2 1445 | 298 76
511 9
1741 8
2 1727 | 348 26
541 7
1265 1
2 1985 | 398 26
571 5
1288 6
2 2737 | 498 26
631 1
1336 1
2 2708 | 598 76
690 7
1384 5
2 3144 | 698 26
750 3
143) 7
2 3551 | 758 26
809 8
1483 8
2 7934 | 898 76
859 4
1534 5
2 4296 | 998 76
929 0
1586 8
2 4640 | 1098 76
917 6
1639 7
2 4969 | | (162 24) | 5a . | 0 01641
130 20
0 2349 | 7353
1131 1
18443 | 37 76
78 14
1148 6
1.8716 | 87 76
84 21
1171 7
1 9054 | 137 76
90 74
1194 8
1 9369 | 187 76
96 25
12 18 0 | 237 76
102 74
1241 3
1 9943 | 787 76
108 73
1264 7
2 0208 | 337 76
114 21
1288 2
2 0460 | 437 76
126 15
1335 9
2 0932 | 537 76
138 08
1384 3
2 1369 | 637 76
150 01
1433 6
2 1776 | 737 76
161 94
1483 7
2.2159 | 837 76
173 86
1534 7
2 2521 | 937 76
185 78
1586 7
2 2466 | 1037 76
197 70
1639 6
2 3196 | | (193 21) | \$A | 0 01659
161 26
0.2836 | 38 42
1143 3
1.7879 | 6 79
38 54
1146 6
1 7928 | \$6.79
41.93
1170.2
1.8273 | 106 79
44 98
1193 7
1 8593 | 156 79
48 02
1217 1
1 8892 | 706 79
51 03
1240 6
1 9173 | 256 79
54 04
1264 1
1 9439 | 306 79
57 04
1287 8
1 9692 | 406 79
63 03
1335 5
2 0166 | 506 79
69 00
1 38 4 0
2 0603 | 606 79
74 98
1433 4
2 1011 | 706 79
80 94
1483 5
2 1394 | 806 79
86 91
1534 6
2.1757 | 906 79
92 87
1586 6
2 2101 | 1006 7
98 8
1639
2 74 3 | | 14 696
(212 00) | \$A . | 9167
180 17
3121 | 26 799
1150 5
1 7568 | | 38 00
28 42
(164 8
1 7833 | 88 00
30 52
1197 6
1 8156 | 138 00
37 60
1216 1
1 8459 | 188 00
34 67
1239 9
1 8743 | 238 00
36 77
1263 6
1 9010 | 288 00
38 77
1287 4
1 9265 | N88 00
47 86
1335 7
1 9/39 | 488 00
46 93
1383 8
2 0177 | 588 00
51 00
14 (1.7
7 0 585 | 684 00
55 06
(48) 4
7 0969 | 288 00
59 13
1534 5
7 1332 | 888 00
63 19
1586 5
7 1676 | 975 0
67 7
16 34
2 290 | | Q13 031 | \$ | 0 0 1673
181 21
0 313? | 26 790
1150 9
1 7552 | | 36 97
27 837
1168 7
1 7809 | 86 97
79 699
1192 5
1 8134 | 136 97
31 939
1216 7
1 8437 | 186 97
33 953
1239 9
1 8720 | 736 97
35 977
1263 6
1 8988 | 286 97
37 985
1287 3
1 9242 | 386-97
41-986
1335-2
1-9717 | 486 97
45 978
1383 8
2 0155 | 586 97
49 964
1633 2
2 0563 | 686 97
53 946
1483 4
2 0946 | 786 97
57 576
1534 5
2 1309 | 886 97
61 905
1586 5
7 1653 | | | (227 %) | \$A . | 0 01681
196 ??
0 3358 | 20 087
1154 2
17320 | | 77 04
20 788
1167 1
1 7475 | 77 04
77 356
1191 4
1 7805 | 177 04
73 900
1715 4
1 8111 | 177 04
25 428
1239 2
1 8397 | 272 04
26 946
12610
1 8666 | 272 04
28 457
1286 9
1 8921 | 377 04
31 466
1134 9
1 9397 | 477 04
34 465
1383 5
1 9836 | 577 04
37 458
1437 9
7 0244 | 677 04
40 447
1483 2
7 0628 | 777 64
43 435
1534 3
2 0991 | 877 04
46 470
1586 3
2 1336 | 1639 | | 240 0/1 | \$A . | 0 0 16 9 1
2004 52
0 35 35 | 16 101
1160 6
1 7141 | | 9 93
16 558
1165 6
1 77 17 | 59.93
17.829
1190.7
17547 | 109 93
19 076
1714 5
1 7856 | 159 93
20 107
1718 5
1 8145 | 209 93
21 527
1262 5
1 8415 | 759 93
27 740
179/, 4
1 84/7 | 359 93
25 153
11 14 5
1 9149 | 450 13
27 547
138 13
1 7584 | 559 93
29 454
0432 /
1 979/ | 659 93
12 148
1481 0
2 9 181 | 759 93
34 740
15 14 7
7 0744 | 854 53
37 130
1586 7
7 100m | (1, P) | | (250 34) | \$ h | 0 01701
218 93
0 3682 | | | | 49 66
14 810
1189 0
1 7334 | 99 66
15 #59
1211 6
1 7647 | 149 66
16 892
1237 8
1 7937 | 199 66
17 914
1261 9
1 \$210 | 249 66
18 929
1286 0
1 8467 | 349 66
20 945
1334 7
1 8946 | 449 66
72 951
1383 0
1 9 386 | 549 66
74 957
1437 5
1 9795 | 649 66
26 949
1487 8
2 0179 | 789 66
78 943
1534 0
7 0543 | 30 4 %
1586 1
7 0888 | 16 39 | | 35
(259 29) | SA . | 0 01708
728 03
0 3809 | 11 896
1167 1
1 6472 | | | 40 71
12 654
1187 8
1 7152 | 90 71
13 562
1212 7
1 7468 | 140 71
14 453
1237 1
1 7761 | 190 71
15 334
1761 3
1 8035 | 240 71
16 207
1285 5
1 8294 | 340 71
17 939
1333 9
1 8774 | 19 662
1382 8
1 9214 | 540 7)
21 379
1437 3
1 9624 | 640 71
23 092
1482 7
2 0009 | 740 71
74 803
1533 9
2 0377 | 840 71
26 512
1586 0
7 0717 | 940 7
78 771
1638 1
7 1041 | | Q47 75) | Sh | 0 01715
236 14
0 3921 | 10 497
1169 \$
16765 | | | 32 75
11 036
1186 6
1 6992 | 82 75
11 838
1211 7
1 7312 | 132 75
12 624
1236 4
1 7608 | 182 75
13 398
1260 8
1 7883 | 737 75
14 165
1785 0
1 8143 | 337 75
15 685
1333 6
1 8624 | 432 75
17 195
1382 5
1 9065 | 532 75
18 699
1432
1 9476 | 632 75
20 199
1482 5
1 9860 | 732 75
21 697
1533 7
2 0224 | 637 75
23 154
1585 8
2 0565 | 932 7
24 68
1638
2 089 | | 274 44 | 50 | 0 01721
243 49
0 4021 | | | | 75 56
9 777
1185 4
1 6849 | 75 56
10 497
1710 4
1.7173 | 125 %
11 7m
1235 7
1.7471 | 175 56
11 897
1260 7
1,7748 | 725 56
12 577
1284 6
1 8010 | 125 56
13 932
1333 3
1 8492 | 425 56
15 276
1382 1
1 8934 | 525 56
16 614
1431 9
1.9345 | 625 %
17 950
1482 3
1 97 30 | 725 56
19 782
1533 6
7 9093 | 825 56
20
613
1585 7
2 9439 | 1638 | | 2281 029 | 14 | 0 01727
250 21
0 4112 | | | | 18 98
8 769
1184 1
1 6 720 | 68 98
9 474
1209 9
1 7048 | 118 98
10 062
1234 9
1 7349 | 168 90
10 684
1759 6
1 7628 | 218 98
11 306
1264 1
1 7890 | 318 98
17 529
1332 9
1 8374 | 418 98
13 741
1387 0
1 8816 | 518 98
14 947
1471 7
1 9227 | 619 98
16 150
1482 2
1 9613 | 718 96
17 350
1533 4
1 9977 | 818 98
18 549
1585 6
2 0322 | 16.38 | | 287 971 | \$ A | 0 01733
256 41
0 4194 | | | | 12 93
7 945
1182 9
1 6601 | 62 93
8 546
1208 9
1 6933 | 112 93
9 130
1234 2
1 7737 | 142 93
9 702
1259 1
1 7518 | 212 93
10 267
1283 6
1 7781 | 312 93
11 381
1332 6
1 8266 | 412 93
12 485
1381 8
1 8710 | 512 93
13 583
1431 5
1 9121 | 617 93
14 677
1482 0
1 9507 | 717 93
15 769
1533 3
1 987 | #12 93
16 #59
15#5 5
2 022 | 1638 | | C292 711 | 5A | 0 01738
262 21
0.4273 | 7 174
1177 6
1 6440 | | | 7 29
7 257
118) 6
1 6492 | 57 79
7 815
1208 0
1 6829 | 8 354
1233 5
17134 | 157 29
8 881
1258 5
1 7417 | 207 29
9 400
1283 2
1 7681 | 307 29
10 425
1337 3
1 8168 | 407 29
11 438
1381 5
1 8617 | 507 29
12 446
1431 3
1 9024 | 607 29
13 450
1441 8
1 9410 | 707 29
14 452
1533 7
1 9774 | 867 29
15 452
1545 3
2 0120 | 16 45 | | 65
(29 ⁷ 56) | 14 | 267.63 | 6 653
1179 1
1 6375 | | | 2 02
6 575
1180 3
1 6390 | 52 02
7 195
1207 0
1 6731 | 107 02
7 697
1737 7
1 7040 | 157 02
8 186
1757 5
1 7324 | 202 02
8 667
1282 7
1 7590 | 302 02
9 A15
1331 9
1 8077 | 407 02
10 552
1381 3
1 8522 | 502 02
11 484
1431 1
1 8935 | 602 02
12 412
1481 6
1 9321 | 702 02
13 337
1533 0
1 9645 | 802 02
14 261
1585 2
2 0031 | 1638 | | (302 93) | 50 | 0 01748
272 74
0 4411 | 6 205
1180 6
1 6316 | | | | 47 07
6 554
1206 0
1 6640 | 97 07
7 133
1732 0
1 6951 | 14/ 07
7 590
1257 3
1 7237 | 197 07
8 039
1282 2
1 7504 | 297 07
8 972
1331 6
1 7993 | 9793
9793
1381 0
18439 | 497 07
10 659
14 30 9
1 8852 | 597 07
11 522
1481 5
1 9238 | 697 07
12 382
1517 9
1 9601 | 797 07
13 740
1585 1
1 9949 | 16.18 | | (307 61) | 5A | 0 01753
277 56
0 4474 | 5 814
1181 9
1 6260 | | | | 6 704
1705 0
1 6554 | 92 29
6 645
1231 2
1 6468 | 142 39
7 074
1256 7
1 7156 | 192 39
7 494
1281 7 | 292 39
8 320
1331 3
1 7915 | 392 39
9 135
1390 7
1 8361 | 492 39
9 945
1430 7
1 8774 | 592 39
10 750
1481 3
1 9161 | 692 29
11 553
1537 7
1 9526 | 792 79
12 355
1585 0
1 9872 | 1315 | Sh = superheat f v = specific volume, cu ft per lb h = enthalpy. Btu per lb s = entropy. Btu per R per lb Table 3 Superheated Steam - Continued | hos Press
Lb/Sq in
Sai Tempi | | Sat | Sal | Tempe
350 | erature
400 | | Lahient | | | | | | | | | | | |------------------------------------|---------|------------------------------|----------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------------|--|--------------------------------------|---|--|--|--|--|--|------| | | | | | | 400 | 450 | 500 | 550 | 600 | 700 | 800 | 900 | 1000 | 1106 | 1200 | 1300 | 11:0 | | 312 04) | - | 0 01757
282 15
0 4534 | 5 471
1183 1
1 6208 | 37 96
5 801
1204 0
1 6473 | 87 96
6 718
1730 5
1 6790 | 137 96
6 627
1256 1
1 7080 | 187 96
7 018
1281 3
1 7349 | 237 96
7 408
1306 2
1 7602 | 287 96
7 794
1330 9
1 7842 | 387 96
8 560
1380 5
1 8289 | 487 96
9 319
1430 5
1 8702 | 587 96
10 075
1481 1
1 9689 | 687 96
10 829
1532 6
1 9454 | 787 96
11 581
1584 9
1 9800 | 887 96
12 331
16 38 0
2 0131 | 987 96
13 081
1692 0
2 0446 | 1287 | | 85
316 761 | 54 . | 0 01 762
286 52
0.4590 | 5 167
1184 2
1.6159 | 3374
5 445
1203 0
1 6396 | 83 74
5 840
1229 7
1 6716 | 133.74
6.273
1255.5
1.7008 | 183 74
6 597
1280 8
1 7279 | 233 74
6 966
1305 8
1 7532 | 283 74
7 230
1330 6
1 7772 | 383 74
8 052
1380 2
1 8270 | 48) 74
8 768
1430)
1 8634 | 583 74
9 480
1481 0
1 9021 | 683 74
10 190
1537 4
1 2386 | 783 74
10 898
1584 7
1 9733 | 883 74
31 604
1637 9
2 0063 | 983 74
12 310
1691 9
2 0379 | 1083 | | 320 21b | 3 | 001766
29069
04643 | 4 895
1185 3
14113 | 29.72
5.128
1207.0
1.6323 | 79 72
5 505
1778 9
1 6646 | 129 77
5 869
1254 9
1 6940 | 179 72
6 223
1280 3
1 7712 | 229 72
6 577
1305 4
1 7467 | 279 72
6 917
1330 2
1 7707 | 379 72
7 600
1380 0
1.8156 | 479 72
8 277
1430 1
1 8570 | 579 72
8 950
1480 8
1 8957 | 679 72
9 621
1532 3
1 9323 | 779 72
10 790
1584 6
1 9669 | 879 72
10 958
1637 8
2 9000 | 979 72
11 675
1691 8 | 1079 | | 85
324 31 | 4 | 0 01770
294 70
9 4694 | 4 651
1186 2
1 6069 | 25 87
4 845
1200 9
1 8253 | 75 87
5 705
1228 1
1 6560 | 175 87
5 551
1252 3
1 6876 | 175 87
5 889
1279 8
1 7149 | 275 87
6 771
1 305 0
1 7404 | 275 87
6 518
1329 9
1 7645 | 375 87
7 196
1379 7
1 8094 | 475 87
7 838
1479 9
1 8509 | 575 87
8 477
1480 6
1 8897 | 675 87
9 113
1537 1
1 9262 | 775 87
9 747
1584 5
1 9609 | 875 87
10 380
1637 7 | 975 87
11 012
1691 7 | 10:1 | | 10C
327 82) | \$ | 001774
29854
04743 | 4 431
1187 2
1 6027 | 27 18
4 590
1199 9
1.6187 | 72 18
4 935
1777 4
1 6516 | 122 18
5 266
1253 7
1 6814 | 172 18
5 588
1279 3
1 7088 | 227 8
5 904
1304 6
1 7344 | 272 18
6 216
1329 6
1 7586 | 377 18
6 833
1379 5
1 8036 | 677 18
7 443
1479 7
1 8451 | 572 18
8 050
1480 4
1 8439 | 672 18
8 655
1532 0
1 9205 | 772 18
9 258
1584 4 | 872 18
9 860
1637 6 | 972 18
10 460
1691 6 | 1072 | | 185
331 37) | 4 | 0 01778
302 24
0 4790 | 4 731
1/84 0
1 5988 | 18 63
4 359
1198 8
1 6127 | 68 (1
4 690
1276 6
[6455 | 114 53
5 007
1253 1
1 6755 | 168 63
5 315
1278 8
1 7031 | 218 63
5 617
1304 7
1 7288 | 268 63
5 915
1329 7
1 7530 | 368 63
6 504
1379 2
1 7961 | 468 63
7 086
1479 4
1 8396 | 568 63
7 565
1480 3 | 668 63
8 241
1531 8 | 768 63
8 816
1584 7
1 9498 | 1 9883
868 63
9 389
1637 5 | 968 63
9 961
1691 5 | 1068 | | 118
334 /9) | ** | 0 01787
305 80
0 4834 | 4 048
1188 1
1 5950 | 15.21
4.149
11977
1.6061 | 65.71
4.468
1775.8
1.6396 | 115.21
4.777
1252.5
1.6698 | 165.71
5 (6.8
12/8 J
1 6975 | 715.71
5.75.7
1301.8
1.7233 | 265.21
5.642
1328.9
1.7476 | 365.71
6.705
1379.0
1.7928 | 465 21
6 761
1429 2
1 8344 | 565 71
7 314
1480 1
1 8737 | 19151
665 21
7 865
1511 7
1 9099 | 765.71
6.413
1584 1 | 865 71
8 96.1
1637 6 | 965 21
9 407
1641 4 | 1065 | | 115
138 Offi | \$ | 0 01785
309 25
0 4877 | 3 881
1189 6
15913 | 11 92
3 957
11 96 7
1 6001 | 61 92
4 265
1225 0
1 6340 | 111 97
4 558
1251 8
1 6644 | 161 92
4 841
1277 9
1 6922 | 211 92
5 119
1303 3
1 7181 | 261 92
5 392
1328 6
1 7425 | 361 92
5 937
1378 7
1 7677 | 461 97
6 465
1429 0
1 8294 | 561 92
6 994
1479 9
1 8682 | 661 92
7 521
1531 6
1 9049 | 761 92
8 046
1584 0
1 9 3 96 | 19777
861 97
8 570
1637 2
1 9727 | 961 92
9 093
1691 4 | 1061 | | 176
341 27) | 58 ** | 0 01 789
312 58
0 4919 | 3 7275
1190 4
1 5479 | 8 73
3 7815
1195 6
1 5943 | 58 73
4 0786
1274 1
1 6286 | 108 73
4 3610
1251 2
1 6592 | 158 73
4 6341
1277 4
1 6877 | 208 73
4 9009
1307 9
1.7132 | 25.0 73
5 16.37
1328 2
1 7376 | 358 73
5 6813
1378 4
1 7829 | 458 7)
6 1978
1478 8
1 8246 | 558 73
6 7006
1479 8
1 8635 | 658 73
7 2060
1531 4
1 9001 | 758 73
7 7096
1583 9
1 9349 | #58 73
8 7119
1637 1 | 954 73
8 7130
1691 3 | 105/ | | 130
347 33) | 4 - 4 - | 0 01796
318.95
0.4998 | 3 4544
1191 7
1.5413 | 247
34699
11934
15433 | 52 67
3 7489
1222 5
1 6182 | 102 67
4 0129
1249 9
1 6493 | 152 67
4 7672
1276 4
1.6775 | 202 67
4 5151
1302 1
1 7037 | 252 67
4 7589
1327 5
1,7283 | 352 67
5 7384
1377 9
1 7737 | 457 67
5.7/18
1428 4
1.8155 | 552 67
6 1814
1479 4
1 8545 | 652 67
6 6486
1531 1 | 757 67
7 1140
1583 6
1 9259 | 857 67
7 5781
1636 9
1 9591 | 952 67
8 0411
1691 1 | 1052 | | 54 8
353 040 | 4 | 0 01 803
324 96
0 5071 | 37190
1193 0
1.5752 | | 46 96
3 466 1
1270 8
1 5085 | 94 96
3.7)43
1245 7
1 6400 | 146 96
3 9526
1275 3
1 6686 | 196 96
4 1844
1301 3
1 6949 | 246 96
4 4 1 1 9
1 3 2 6 8
1 7 1 96 | 346 96
4 8588
1377 4
1.7652 | 446 96
5 2995
1428 0
1
8021 | 546 96
5 7 364
14 79 1
1 8461 | 646 96
6 1 709
15 30 8
1 8828 | 746 96
6 8036
1583 4
1 9176 | 846 96
7 034 9
1636 7
1 9508 | 1 9907
946 96
7 4652
1690 9
1 9825 | 1044 | | 154
254 43) | 4 | 0 01 809
230 65
0 5141 | 2 0139
1194 1
1 5695 | | 41 57
3 7208
1219 1
1 5993 | 91 57
3 4555
1247 4
1 4313 | 141 57
3 6799
1274 3
1 6602 | 191 57
3 8978
1300 5
1 6867 | 241 57
4 11112
1326 1
1 7115 | 341 57
4 5298
1376 9
1 7573 | 441 57
4 5421
1427 6
1 7992 | 541 57
5 3507
1478 7
1 6383 | 641 57
5 7568
1530 5 | 741 57
6 16/2
1583 1
1 9099 | 61157
65642
16365 | 94157
6 9661
1490 7
1 9748 | 1041 | | 164
363 558 | 4 | 0 01815
336 07
0 5206 | 7 8336
1195
1 564 | | 36 45
3 0060
1217 4
1 5 906 | 86 45
3 2288
1246 0
1 6231 | 136 45
3 4413
1273 3
1 6522 | 186 45
3 6469
1299 6
1 6790 | 736 45
3 8480
1375 4
1.7039 | 336 45
4 7470
1376 4
1 7499 | 436 65
4 6295
1427 2
1 7919 | 536 45
5 0137
1476 4
1 8310 | 636 45
5 3945
1530 3
1 8678 | 736 45
5 774 1
1542 9
1 902 7 | 6.1527
16.36.3
1.9359 | 936 45
6 5.793
1690 5
1 9676 | 1036 | | 178
364 42) | 4 | 0 01 821
341 24
0.5269 | 2 6738
1196 5
1 5591 | | 31 58
2 8162
1215 6
1 5823 | 81 58
3 0288
1244 7
1.6152 | 131 58
3 7 306
1272 2
1 644 7 | 181 58
3 4255
1294 8
1 6217 | 231 58
3 6158
1324 7
1 6968 | 331 58
3 9879
1375 8
1 7428 | 431 58
4 3536
1426 8
1 7850 | 531 58
4 7155
1478 0
1 8241 | 631 58
5 0749
1530 9
1 8610 | 731 58
5 4325
1582 6
1 895 8 | \$31.58
5.7888
1636.1
1.9291 | 931 58
6 1430
1690 4
1 9608 | 1011 | | 188
373 080 | 4 | 0 01827
346 19
0 5328 | 25312
1196 9
15543 | | 26.92
2.6474
1213.8
1.5743 | 74.92
2.8508
1243.4
1.6078 | 126 92
3 04 33
1271 2
1 6 3 7 6 | 176 92
3 7786
1297 9
1 664 7 | 274 92
3 4093
1324 0
1 6 900 | 374 97
37671
1375 3
17362 | 474 92
4 1084
1426 3
1 7784 | 526.92
4 *508
1=/7 ?
1 8176 | 676 92
4 7907
1529 7
1 8545 | 774 92
5 1 799
1582 4
1 8894 | \$76 92
5 4657
1635 9
1 9227 | 974 97
5 8014
1690 7
1 9545 | 1076 | | 194
377 530 | \$A | 0 01833
350 94
0 5384 | 2 4030
1197 6
1 5498 | | 22 47
2 4961
1712 0
1 5667 | 72 47
2 6915
1247 0
1 6006 | 127 47
2 8756
1270 1
1 6307 | 177 47
3 05.75
1297 1
1 6581 | 222 47
3 2246
1323 3
1 6835 | 322 47
3 5601
1374 8
1 7299 | 427 47
3 8889
1425 9
1 7722 | 527 47
4 2140
1477 4
1 8115 | 627 47
4 5365
1529 4
1 84 84 | 722 47
4 8572
1542 1
1 8834 | 877 47
5 1766
1635 7
1 9166 | 927 47
5 4 9 4 9
1 6 9 0 0
1 9 4 8 4 | 1022 | | 796
381 801 | 4 | 0 01 879
255 51
0 5434 | 2 7873
1198 3
1 5454 | | 18 20
2 3498
1710 1
1.5593 | 68 20
7 5480
1240 6
1 5938 | 118 20
7 7747
1749 0
1 6242 | 168 70
2 8939
1296 7
1 6518 | 218 70
3 0583
1327 6
1 6773 | 318 20
3 3783
1374 3
1 7239 | 418 70
3 6 9 1 5
1 4 7 5 5
1 7 6 6 3 | 518 20
4 0008
1477 0
1 8057 | 618 20
4 3077
1529 1
1 8426 | 718.20
4.6178
1581.9
1.8776 | 818 20
4 9165
16 75 4
1 9109 | 918 70
5 7 191
1689 8
1 9427 | 1018 | Sh = superheat, f v = specific volume, cu ft per lb h = enthalpy. Btu per ib s = entropy. Btu per f per ib Table 3. Superheated Steam - Continued | Abs Press
Lb/Sq in
Sat lemp) | | Sat
Water | Sat
Steam | Tempe
400 | 450 | Deerces
500 | fabrent
550 | 500 | 100 | EZA | 100 | 1000 | 1180 | 1700 | 1300 | 1400 | 1500 | |------------------------------------|----------|------------------------------|-----------------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--|--|--|---|--------------------------------------| | 218
(385 91) | SA | 0 01844
359 91
0 5490 | 21827
1195 0
15413 | 14 09
2 7364
1708 02
1 5527 | 64 09
2 4 18 1
17 39 7
1 5 8 7 7 | 114 09
2 5880
1268 0
1 6180 | 164 09
2 7504
1295 3
1 6458 | 214 09
2 9078
1321 9
1 6715 | 314 09
37137
1373 7
17187 | 414 09
3 5178
1475 1
1 7607 | 514 09
3 8087
1476 7
1 8001 | 614 09
4 1007
1528 8
1 8371 | 714 09
4 3915
1581 6
1 8721 | 814 09
46811
1635 7
1 9054 | 914 09
4 9655
1689 6
1 9377 | 1014 09
5 25 21
1744 8
1 96 27 | 11140
5544
1800
1997 | | 77 6
(389 88) | 4 | 0 01850
364 17
0 5540 | 2 0863
1199 6
1 5374 | 10 12
2 1240
1206 3
1 5453 | 60 12
2 2 2 9 9 9
12 3 7 8
1 5 8 0 8 | 110 12
2 4638
1266 9
1 5120 | 160 12
2 5 199
1294 5
1 6400 | 210 17
2 7710
1321 2
1 6658 | 310 12
3 0642
1373 2
1 7128 | 410 12
3 3504
1424 7
1 7553 | 51012
36327
11763
17948 | 610 12
3 9125
1528 5
1 8318 | 710 17
4 1905
1581 4
1 8668 | 810 17
4 4671
1635 0
1 9002 | 910 17
4 7426
1689 4
1 9320 | 1610 12
5 0173
1744 7
1 9625 | 1110 i
5 29 i
1800 i
1 99 i | | 738
(393 70s | SA . | 0 01855
368 28
0 5588 | 1 9985
1200 1
1 5336 | 6 30
2 0212
1204 4
1 5385 | 56 30
2 1919
1236 3
1 5747 | 106 10
7 3503
1265 7
1 606 2 | 75008
1293 6
16344 | 206 30
2 6461
1320 4
1 6664 | 306 30
2 9276
1372 7
1 7075 | 406 30
3 2020
1424 7
1 7507 | 506 30
3 4776
1476 0
1 7897 | 606 30
3 7406
1528 7
1 8268 | 706 30
4 0068
1581 1
1 8618 | 806 30
4 2717
1634 8
1 8952 | 906 30
4 5 355
1689 3
1 9270 | 1006 30
4 7984
1744 5
1 9576 | 1106 3
5 060
1800
1 986 | | 248
(297 39) | \$A . | 0 01860
377 77
0 5634 | 1 9177
1700 6
1 5299 | 2 61
1 9268
1207 4
1 5320 | 52 61
2 0978
1234 9
1 5687 | 102 61
2 7462
1264 6
1 6006 | 152 61
7 3915
1292 7
1.6291 | 202 61
2 5316
1319 7
1 6552 | 302 61
2 8024
1377 1
1 7025 | 402 61
3 0661
1421 8
1 7452 | 502 61
3 3759
1475 6
1 7848 | 602 61
3 5831
1527 9
1 8219 | 702 61
3 8 38 5
1580 9
1 8570 | 802 61
4 0926
1634 6
1 8904 | 902 61
4 3456
1689 1
1 9223 | 1002 61
4 5977
1744 3
1 9528 | 1102 6
4 849
1800
1 982 | | 256
(400 97) | 5 | 0 01865
376 14
0 5679 | 8437
 2011
 15264 | | 49 03
7 0016
1233 4
1 5629 | 99 03
2 1504
1263 5
1 595 i | 149 03
2 2909
1291 8
1 6239 | 199 03
2 4 262
1319 0
1 6502 | 299 03
26872
1371 6
18976 | 399 03
2 9410
1423 4
1 7405 | 499 03
3.1909
1475 3
1.7801 | 599 03
3 4382
1527 6
1 8173 | 699 03
3 6837
1580 6
1 8524 | 799 03
3 97 78
1634 4
1 8858 | 899 03
4 1709
1688 9
1 9177 | 999 03
4 4131
1744 2
1 9482 | 1099 0
4 654
1800
1 977 | | 758
(404 44) | \$A . | 0 01870
379 90
0.5727 | 1 7742
1201 5
1 5230 | | 45 56
1 9173
1231 9
1 5573 | 95 56
2 0619
1262 4
1 5899 | 145 56
2 1981
1290 9
1 6189 | 195 56
2 3289
1318 2
1 6453 | 295 56
2 5808
1371 1
1 6930 | 295 56
2 8256
1423 0
1 7359 | 495 56
3 0663
1474 9
1 7756 | 595 56
3 3044
1527 3
1.8128 | 695 55
3 5408
1580 4
1 8480 | 795.56
3.7758
1634.7
1.8814 | 895 56
4 0097
1688 7
1 9133 | 995 56
4 7427
1744 0
1 9439 | 1095 5
4 475
1800
1 973 | | 276
(407 80) | \$A . | 0 01875
383 56
0 5764 | 17101 1701 9 15197 | | 47 20
1 8391
1230 4
1 551 8 | 97 70
1 9799
1261 7
1 5848 | 147 20
2 1171
1290 0
1 6140 | 192 20
2 2 388
1317 5
1 6406 | 797 20
7 4874
1370 5
1 6885 | 397 20
2 7186
1427 6
1 7315 | 492 20
2 9509
1474 6
1 7713 | 597 20
3 1806
1527 1
1 8085 | 692 20
3 4084
1580 1
1 9437 | 792 20
3 6 34 9
16 34 0
1 8 7 7 3 | 892 20
3 8403
1688 5
1 9090 | 997 20
4 0849
1741 9
1 9396 | 1097 7
4 308
1800
1 96 9 | | 288
(411 07) | 2 | 0.01880
38712
0.5805 | 1 6505
1202 3
1 5166 | | 38 93
1 7665
1778 8
1 5464 | 88 93
1 9037
1260 0
1 5798 | 138 93
2 0322
1289 1
1 6093 | 188 93
2 1551
1316 8
1 6361 | 258 93
2 3909
1370 0
1 684 1 | 388 93
2 6194
1472 1
1 7273 | 488 93
2 8437
1474 2
1 7671 | 588 93
3 0655
1576 8
1 8043 | 688 93
3 2855
1579 9
1 8395 | 788 93
3 5047
1633 8 | 888 93
3 7717
1688 4
1 9050 | 988 93
3 9384
1743 7
1 9356 | 1088 9
4 154
1799
1 964 | | 290
(4) 4 25) | 4.4. | 0 01 885
390 60
0 5844 | 1 594 8
1202 6
1 5135 | | 35 75
1 6988
1277 3
1 5412 | 85.75
1.8327
1258.9
1.5750 | 135.75
1.9578
1288.1
1.6048 | 185 /5
2 0772
1316 0
1 6317 | 285.75
2.3058
1369.5
1.6799 | 385 75
2 5 769
1421 7
1 7232 | 485 75
2 7440
1473 9
1 7630 | 585 75
2 9585
1526 5
1 8003 | 685.75
3 1.711
1579 6
1 8356 | 785 75
3 3874
1633 5
1 8690 | 3 5926
1688 2
1 9010 | 985 75
3 8019
1743 6
1 9316
 1045 /
4 010
1799
1 961 | | 300
(4)7 75) | \$4
1 | 0 01889
393 99
0 5682 | 1 5427
1202 9
1 5105 | | 32 65
1 6356
1275 7
1 5351 | 82 65
1 7665
1257 7
1 5703 | 137 65
1 8883
1287 7
1 6003 | 182 65
2 0044
1315 2
1 6274 | 282 65
2 2263
1368 9
1 6758 | 382 65
2 4407
1421 3
1 7192 | 482 65
2 6509
1473 6
1 7591 | 587 65
7 8585
1526 7
1 7964 | 682 65
3 0643
1579 4
1 8317 | 782 65
3 7688
1633 3
1 8652 | 882 65
3 4721
1688 0
1 8977 | 982 65
3 6746
1743 4
1 9278 | 1082 6
3 876
1799
1 957 | | 318
(420 36) | 3. | 0 01894
397 30
0.5920 | 1 4939
1203 2
1 5076 | | 29 64
1 5763
1224 1
1 5311 | 79 64
1 7044
1256 5
1 5457 | 129 64
1 8233
1286 3
1 5960 | 179 64
1 9363
1314 5
1 6233 | 279 64
2 1520
1368 4
1 6719 | 379 64
2 3600
1420 9
1 7153 | 479 64
2 5636
1473 7
1 7553 | 579 64
2 7650
1525 9
1 7927 | 579 64
2 9644
1579 2
1.8280 | 779 64
3 1625
1633 1
1 8615 | 879 64
3 3594
1687 8
1 8935 | 979 64
3 5555
1743 3
1 9241 | 1079 6
3 750
1799
1 953 | | 379
(423 31) | 4 | 0.01899
40053
0.5956 | 1 4480
1203 4
1 5048 | | 26 69
1 5207
1272 5
1 5261 | 76 69
1 6462
1255 2
1 5612 | 17673
17673
1785 3
15918 | 176 69
1 8725
1313 7
1 6192 | 276 69
2 0823
1367 8
1 6680 | 376 69
2 7843
1420 5
1.7116 | 476 69
2 4821
1472 9
1 7516 | 576 69
2 6774
1525 6
1.7890 | 676 69
2 8708
1578 9
1 8243 | 776 69
3 0628
1632 9
1 8579 | 876 69
3.7538
1687 6
1.8899 | 976 69
3 4438
1743 1
1 9206 | 1076 6
3 633
1799
1 950 | | 338
(426 B) | \$h | 0 01 903
403 70
0.5961 | 1203 6
1502 i | | 23 82
1 4584
1220 9
1 5213 | 73 82
1 5915
1254 0
1 5568 | 123 82
1 7050
1284 4
1 5876 | 173 82
1 8175
1313 0
1 6153 | 273 82
2 0168
1367 3
1 6643 | 373 82
2 7132
1420 0
1 7029 | 473 82
2 4054
1477 5
1 7480 | 573 82
2 5950
1525 3
1.7855 | 673 82
2 7828
1578 7
1 8208 | 773 82
7 9692
1632 7
1 8544 | 873 87
3 1545
1687 5
1 8864 | 973 82
3 3389
1742 9
1 9171 | 1073 8
3 527
1799
1 946 | | 348
(428 99) | 4.4. | 0 01 908
406 80
0.6026 | 1 3640
1203 8
1 4994 | | 21 01
1 4191
12:9 2
1 5165 | 71 01
1 5395
1752 8
1 5525 | 121 01
1 6511
1283 4
1 5836 | 171 01
1 7561
1312 2
1 6114 | 271 01
1 9552
1366 7
1 6606 | 371 01
2 1463
1419 6
1 7044 | 471 01
2 3333
1477 2
1 7445 | 571 01
7 5175
1525 0
1 7820 | 671 01
2 7000
1578 4
1 8174 | 771 01
2 8811
1632 5
1.8510 | 871 01
3 0611
1687 3
1 8831 | 971 01
3 2402
1742 8
1 9138 | 1071 0
3 419
1799
1 943 | | 254
(43) 735 | 4. | 0 01912
409 83
0.6059 | 1204 0 | | 18 27
1 3725
1217 5
1 5119 | 68.77
1.4913
1251.5
1.5483 | 118 27
1 6002
1282 4
1 5797 | 168 27
1 7028
1311 4
1 6077 | 268 27
1.89/0
1366 2
1.6571 | 364 27
2 0832
1419 2
1.70.5 | 468 27
2 7652
1471 8
1 7411 | 548 27
2 4445
1524 7
1.7787 | 658 27
2 6219
1578 2
1 8141 | 768 27
2 7980
1632 3
1.8477 | 858 27
2 9730
1687 1
1 8798 | 968 27
3 1471
1747 6
1 9105 | 1068 2
3 320
1798
1 940 | | 368
(434 4)) | 3 - 4 - | 0 01927
417 81
0 6092 | 17891
1704
14943 | | 15 59
1 22 85
1215 8
1 5073 | 65 59
1 4454
1250 3
1 5441 | 115 59
1 5521
1281 5
1 5758 | 16559
16575
13106
16040 | 265 59
1 8471
1365 6
1 6536 | 365 59
7 0237
1418 7
1 6976 | 465 59
2 7009
1471 5
1 7379 | 565 59
2 3755
1524 4
1 7754 | 665 59
2 5482
1577 9
1 8109 | 765 59
2 7196
1632 1
1 8445 | 865 59
2 8898
1686 9
1 8766 | 965 59
3 0592
1742 5
1 9073 | 1045 5
3 277
1798
1 936 | | 388
(439 61) | 24 . 4 . | 0 01925
418 59
0 6154 | 1 221 8
125# 4
1 485# | | 10 39
1 7472
1717 4
1 4982 | 60 29
1 3606
1247 7
1 5360 | 110 39
1 4635
1279 5
1 5683 | 160 39
1 5598
1309 0
1 5969 | 260 39
3 7410
1364 5
1 6470 | 360 39
1 91 39
1417 9
1 6911 | 460 39
7 0825
1470 8
1 7315 | 560 39
2 7484
1523 8
1 7692 | 660 39
7 4) 7 4
15 7 7 4
1 864 7 | 760 29
2 5750
1631 6
1 8384 | 860 39
2 7 366
1686 5
1 8 705 | 960 39
2 8973
1747 7
1 9012 | 1060 3
3 057
1794
1 930 | Sh = superheat, f v = specific volume, cu ft per lb h = enthalpy. Btu per lb s = entropy. Btu per R per lb Table 3. Superheated Steam - Continued | | | | | | Tai | ble 3. | Supe | rheate | ed Ste | am - C | contin | ved | | | | | | |-------------------------------------|--------------|--------------------------------|-----------------------------|------------------------------------|---------------------------------------|--|---------------------------------------|---------------------------------------|--|--|---------------------------------------|--------------------------------------|---|--|---|--|---| | Abs Press
Lb/Sq in
(Sat Temp) | | Sat.
Water | Sat
Steam | Temp
450 | erature
500 | - Degree | s fahren
600 | heil
650 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | | (M) (M) | 4 | 0 01934
424 17
0 6217 | 1204 6 | 5 40
1 1738
1208 8
1 4894 | 55 40
1 284 1
1 245 1
1 5282 | 105 40
1 3836
1277 5
1 5611 | 155 40
1 4763
1307 4
1 5901 | 205 40
1 5646
1335 9
1 6163 | 255 40
1 6499
1 363 4
1 6406 | 355 40
1 8151
1417 0
1 6850 | 19759 | 7 1339 | | 7 4450 | | 7 7515 | 1055 40
2 9031
1798 2 | | 47 4
(449 40) | | 0 01942
429 56
0 6276 | 1 1057
1204 7
1 4802 | 1 1071
1205 7
1 4808 | 50 60
1 7148
1242 4
1 5706 | 100 60
1 3113
1275 4
1 5542 | 150 60
1 4007
1305 8
1 5835 | 200 60
1 4856
1334 5
1 6100 | 250 60
1 5676
1 362 3
1 6 345 | 350 60
1 7758
1416 2
1 6791 | | 550 60
2 0 304
1527 7 | | 750 60
7 3277
16 10 8 | 850 60
7 4 19
16a 18
1 859 1 | | 1050 50 | | H2 (3) | 5A | 0 01950
434 77
0.6332 | 1 0554
1204 8
1 4759 | | 45 97
1.1517
1239 7
1.5132 | 95 97
1 2454
1273 4
1 5474 | 145 97
1 3319
1304 2
1 5772 | 195 97
1 4138
1337 2
1 6040 | 245 97
1 4926
1361 1
1 6286 | 345 97
1 6445
1415 3
1 6734 | 445 97
1 7918
1468 7
1 7142 | 545 97
1 9363
1527 1
1 7521 | 645 97
2 0 790
1575 9
1 7878 | 745 97
2 2203
1630 4
1 6216 | 845 97
7 3605
1685 5
1 8538 | 945 97
2 4998
1741 2
1 8847 | 1045 9 | | 454 50) | 3.4. | 0 01959
439 83
0 6387 | 1 0092
1204 8
1 4718 | | 41 50
1 0939
1236 9
1 5060 | 91 50
1 1852
1271 3
1 5409 | 141 50
1 7691
1302 5
1 5711 | 19150
13482
1331 8
15982 | 241 50
1 4247
1360 0
1 6230 | 341 50
1 5703
1414 4
1 6680 | 441 50
1 7117
1468 0
1 7089 | 541 50
1 8504
1571 5
1 7469 | 641 50
1 9872
1575 4
1 7826 | 741 50
2 1776
1679 9
1 8 165 | 841 50
7 2569
1685 1
1 8488 | 941 50
2 3903
1740 9
1 8/97 | 1041 50
2 5230
1797 4
1 9093 | | 490
(462 82) | SA | 0 01967
644 75
0 6439 | 0 9668
1204 8
1 4677 | | 37 18
1 0409
1234 1
1 4990 | 87 8
 1300
 1269
 15346 | 137 18
1 2115
1300 8
1 5652 | 187 18
1 2881
1330 5
1 5925 | 237 18
1 3615
1358 8
1 6176 | 337 18
1 5073
1413 6
1 6628 | 437 8
 6384
 467
 7038 | 537 18
1 7716
1520 9
1 7419 | 637 18
1 9030
1574 9
1 7777 | 737 8
2 0330
1629 5
1 8116 | 837 18
2 1619
1684 7
1 8439 | 937 18
2 7900
1740 6
1 8748 | 1037 18
2 4173
1797 2
1 9045 | | 506
H67 01) | 3 | 0 01975
449 52
0 6490 | 0 9776
1204 7
1 4639 | | 32 99
0 9919
1231 2
1.4921 | 82 99
1 0791
1267 0
1 5284 | 132 99
11584
1299 1
15595 | 182 99
1 2327
1329 1
1 5871 | 232 99
1 3037
1357 7
1 6123 | 332 99
1 4 397
1417 7
1 6578 | 432 99
1 5708
1466 6
1 6950 | 532 99
1 6992
1520 3
1 7371 | 632 99
1 8256
1574 4
1 7730 | 732 99
1 9507
1629 1
1 8069 | 832 99
2 0746
1684 4
1 8393 | 912 99
7 1977
1740 3
1 8702 | 1037 99
2 3200
1796 9
1 8998 | | 529
(471.07) | 3.4. | 0 01987
454 8
0.6540 | 0 891 4
1204 5
1 4601 | | 28 93
0 9466
1778 3
1 4853 | 78 93
1 0321
1264 8
1 5223 | 1285:
11094
12974
15539 | 178 93
11816
1327 7
15818 | 728 93
1 2504
1356 5
1 6077 | 378 93
1 3819
1411 8
1 6530 | 428 93
1 5085
1465 9
1 6943 | 528 93
1 6323
1519 7
1 7325 | 628 93
1.7542
1573 9
1.7644 | 728 93
1 8746
1628 7
1 8024 | 828 93
1 9940
1684 0
1 8348 | 978 93
7 1175
1740 0
1 8657 | 1078 93
2 7 3 0 7
1 7 9 4 7 | | 548
pt.75.021 | 4 | 0 01990
658 71
0 658 7 | 0 8577
1204 4
1 4565 | | 24 99
0 9045
1725 3
1 4786 | 74 99
0 9884
1262 5
1 5 164 | 124 99
1 0640
1295 7
1 5485 | 174 99
11342
1326 3
15767 | 274 99
1 2010
1355 3
1 6023 | 324 99
1 3784
1410 9
1 6483 | 424 99
1 4508
1465 1
1 6897 | 524 99
1
5704
1519 1
1 7780 | 624 99
1 6880
1573 4
1 7640 | 724 99
1 8042
1628 7
1 7981 | 824 99
1 9193
1683 6
1 8305 | 974 99
7 0336
1739 7
1 8615 | 1 8954
1074 99
7 1471
1796 4 | | 344
78 54) | 3.4. | 0 01 998
463 14
0 6634 | 0 8264
1703 2
1 4529 | | 21 16
0 8653
1222 2
1 4720 | 71 16
0 94/9
1260 1
1 5106 | 171 16
1 0717
1793 9
1 5431 | 171 16
1 0967
1324 9
1 5717 | 221 15
1 1552
1354 2
1 5925 | 321 16
1 7 78 7
14 10 0
1 64 38 | 421 16
1 3977
1464 4
1 6853 | 521 16
1 5129
1518 6
1 7237 | 621 16
1 6766
1577 9
1 7598 | 771 16
1 / 388
1627 8
1 / 939 | 871 16
1 8500
1683 3 | 921 16
1 960 3
17 39 4 | 18911
1821 14
2 06:04
1796 1 | | 500
(4.82 57) | \$ | 0 027004
46,7 67
0 66,79 | 0 7971
1203 9
1 4495 | | 17 43
0 8287
1219 1
1 4654 | 6743
09100
1258 0
15049 | 117.43
0.982.4
1292.1
1.5380 | 167 43
1 0492
1323 4
1 5668 | 7174)
11175
13530
13529 | 31743
17324
1409 7
16394 | 417 43
1 3473
1463 7
1 6811 | 517 43
1 4593
1518 0
1 7196 | 61743
15693
15724
17556 | 717.43
16780
1627.4
17898 | 1 8263
1743
17855
1682 9
1 8223 | 91743
18921
17391
18533 | 18870
1817 41
19980
1795 9 | | 186 20) | 4 | 0 02013
471 70
0 4723 | 0 7697
1203 7
1 6461 | | 13 80
0 7944
1215 9
1.4590 | 63 80
0 8746
1255 6
1.4993 | 113 60
0 9456
1290 3
1.5329 | 163 80
1 0109
1377 0
1 5621 | 213 80
1 0276
1351 8
1 5884 | 313 80
1 1292
1402 3
1 6351 | 413 80
1 3008
1463 0
1 6769 | 513 80
1 4093
1517 4
1 7155 | 613 80
15160
1571 9
17517 | 713 80
1 6211
1627 0
1 7959 | 813 80
17752
1682
18184 | 41 | 1 6831
1013 FO
1 9309
1795 6 | | 654
H 54 85) | | 0 02032
481 89
1.4428 | 0.7084
1202 8
1.4381 | | 511
07173
12076
14430 | 55 11
0 7954
1249 6
1 4858 | 105 11
0 8634
1285 7
1 5207 | 155 11
0 9254
1318 3
1.5507 | 205 11
0 9835
1348 7
1 5775 | 305 11
1 0929
1406 0
1 6249 | 405 11
1 1969
1461 2
1 6671 | 505 11
1 2979
1515 9
1 7059 | 604 11
1 3969
1570 7
1 7422 | 705 11
1 4544
1625 9
1 7765 | 805 11
1 5 909
1641 6
1 8092 | 904.11
1 6.844
17.38 0
1 8403 | 1 8792
1005 11
1 7873
1754 9
1 8701 | | 798
(563 08) | 4 | 0 02050
491 60
9.6928 | 0 6556
1201 8
1 4304 | | | 46 92
6 7271
1243 4
1 4726 | 96 97
0 7928
1281 0
1 5090 | 146 92
0 8520
1314 6
1 5399 | 196 92
0 9072
1345 6
1 5673 | 796 92
1 0102
1403 7
1 6154 | 396 92
1 1078
1459 4
1 6580 | 496 92
1 2023
1514 4
1 6970 | 596 97
1 7948
1569 A
1 7335 | 696 97
1 3858
1624 8
1 7679 | 796 92
1 4757
1680 7
1 8006 | 896 92
1 564 7
1737 2 | 9% 92
16530
1793) | | 754
510 Mi | 4 - 4 - | 0.02069
500 89
0.7022 | 0 6095
1200 7
1 4232 | | | 39 16
0 66 76
12 36 9
1 4 5 9 8 | 89 16
0 7313
1276 1
1 4977 | 139 16
0 7882
1310 7
1 5296 | 189 16
0 8409
1342 5
1 5577 | 289 16
0 9386
1401 5
1 6065 | 389 16
1 0 306
1457 6
1 6494 | 489 16
1 1195
1517 9
1 6886 | 589 16
1 2063
1568 2
1 7252 | 689 16
1,2916
1622 8
1,7503 | 789 16
1 3759
1679 8 | 889 16
1 4592
1736 4
1 8239 | 989 16
1 5419
1793 6 | | 506
5 (8 21) | \$A | 9 02087
509 81
8 7111 | 0 5640
1199 4
1 4163 | | | 31 79
0 6 15 1
12 30 1
1 44 72 | 81 79
0 6774
1271 1
1 4869 | 131 79
0 7323
1305 8
1 5198 | 181.79
0.7878
1339.3
1.5484 | 281 79
0 8759
1399 1
1 5980 | 381 79
0 9631
1455 8
1 6413 | 481 79
1 0470
1511 4
1 6807 | 581 79
1 1789
1566 9
1 7 1 7 5 | 681 79
1 2093
1622 7
1 7522 | 781 79
1 2885
1678 9
1 7851 | 881 79
1 3569
1735 7
1 8764 | 981 79
1 4446
1792 9 | | 858
525 24) | | 0.02105
518 40
0.7197 | 0 5330
1198 0
1 4096 | | | 24 76
0 5683
1273 0
1 4347 | 74 76
0 6796
1765 9
1 4763 | 124 76
0 6829
1302 8
1 5102 | 174 76
0 7315
1336 0
1 5396 | 274 76
0 8205
1396 8
1 5899 | 374.76
0.9034
1454.0
1.6336 | 474 76
0 9830
1510 0
1 6733 | 574 76
1 0606
1565 7
1 7102 | 674.76
1.1366
1621.6
1.7450 | 274 76
1 7115
1678 0
1 7780 | 874 76
1 2855
1734 9
1 8094 | 974 76
1 3588
1797 3
1 8395 | | 904
531 951 | SA
A
A | 0 02123
526 70
0 7279 | 0 5009
1196 4
1 4032 | | | 18 05
0 5263
1215 5
3 4223 | 68 05
0 5869
1760 6
1 4659 | 118 05
0 6 388
1298 6
1 5010 | 168 05
0 6858
1332 7
1 5311 | 268 05
0 7713
1394 4 | 368 05
0 8504
1452 7
1 6263 | 468 05
0 9762
1508 5
1 6662 | 568 05
0 9998
1564 4
1 7033 | 668 05
1 0770
1620 6
1 7 382 | 768 05
1 1430
1677 1 | 868 05
1 2131
1/34 1
1 8028 | 964 05
1 2875
1791 6
1 8179 | Sh = superheat f v = specific volume, cu ft per ib h = enthalpy. Blu per lb s = entropy, Blu per f per lb Table 3. Superheated Steam - Continued | Abs Press
Lb/Sq in
(Sat Temp) | | Sal
Water | Sat
Steam | lempi
550 | grature - | Der: +5 | fahienn
100 | 750 | 800 | 850 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1903 | |-------------------------------------|----------|------------------------------|-----------------------------|------------------------------------|-------------------------------------|--|---------------------------------------|--|---------------------------------------|--|---------------------------------------|---|--|--------------------------------------|---|---|---------------------------------------| | 858
(5.38.39) | \$A . | 0 07141
534 74
0 7358 | 0.4771
1194.7
13970 | 1161
04883
12076
14098 | 61 61
0 5485
1255 1
1 4557 | 111 61
0 5993
1294 4
1 4921 | 16161
06449
1329 3
15278 | 21161
06871
13615
15500 | 261 61
0 7272
1392 0
1 5748 | 311 61
0 7656
1471 5
1 5977 | 361 61
0 8030
1450 3
1 6193 | 461 61
0 8753
1507 0
1 5595 | 561 81
0 9455
1563 2
1 6967 | 661 61
1 0142
1619 5
1 7317 | 761 61
1 08:7
1676 2
1 7649 | 851 51
1 1484
1733 3
1 7965 | 961 61
1 7(4)
1 (9) 7
1 8(6) | | 1004
(544 58) | 3 | 0 02159
54255
0.7434 | 0 4450
1192 9
1 3910 | 5 42
0 4525
1199 3
1 3973 | 55 42
0 5137
1249 3
1 4457 | 105 42
0 5635
1290 1
1 4833 | 155 42
0 6080
1375 9
1 5149 | 205 42
0 6489
1358 7
1 5476 | 255 47
0 6875
1389 5
1 5677 | 305 42
0 7245
1419 4
1 5908 | 355 42
0 7603
1448 5
1 6126 | 455 47
0 8795
1505 4
1 6530 | 555 42
0 8966
1561 9
1 6905 | 655 47
0 9677
1618 4
1 7256 | 755 47
1 0766
1675 3
1 7589 | #55.47
1.0901
1732.5
1.7905 | 100 47
100 1
100 1 | | 1856
(550 53) | 54 | 0 02177
550 15
0.7507 | 04222
1191 0
13851 | | 49 47
0 4821
1243 4
1 4358 | 99 47
0 5 3 1 2
1 2 8 5 7
1 4 7 4 8 | 149 47
0 5 745
1377 4
1 5072 | 199 47
0 6142
1355 8
1 5354 | 249 47
0 6515
1387 2
1 5608 | 799 47
0 5872
1417 3
1 5842 | 349 47
0 7715
1446 6
1 6062 | 449 47
0 7881
1503 9
1 6469 | 549 47
0 8524
1560 7
1 6845 | 649 47
0 9151
1617 4
1 7197 | 749 47
0 9767
1674 4
1 7531 | 849 47
10373
1731 8
1.7848 | 949 47
1 69 7
1 8:51 | | 11 00
(556 28) | \$0
* | 0 02195
557 55
0 7578 | 0 400€
1189 1
1 3794 | | 43 72
0 4531
1237 3
1 4259 | 93 72
0 5017
1281 2
1 4664 | 14372
05440
1318 8
14995 | 193 72
0 5 726
1352 9
1 5284 | 243 72
0 6188
1384 7
1 5542 | 293 72
0 6533
1415 2
1 5779 | 34377
06865
14447
16000 | 0 7505
1502 4
1 6410 | 54377
08121
1559 4
16787 | 643 72
0 8723
1616 3
1 7141 | 743 72
0 9313
1673 5
1 7475 | 843 72
0 9894
1/31 0
1 7793 | 943.73
1 047 9
1 789 0
1 805 | | 1158
(56) 82) | 58 | 0 02214
564 78
0 764 7 | 0 3807
1187 0
1 3738 | | 3918
04263
1230 9
14160 | 89 18
0 4746
1276 6
1 4582 | 139 18
0 5 162
1315 ?
1 4923 | 189 18
0 5538
1349 9
1 5216 | 239 18
0 5889
1382 2
1 5478 | 289 18
0 6273
1413 0
1 5717 | 339 18
0 6544
1442 8
1 5941 | 439 18
0 716 1
1500 9
1 6353 | 539 18
0 7754
1558 1
1 6732 | 639 18
0 8337
1615 2
1 7087 | 739 18
0 8899
1672 6
1 7422 | 839 18
0 9456
1730 2
1 7741 | 939 19
1 CT 1
179 5
1 8345 | | 1286
(567 19) | \$A . | 0 02232
571 85
0 7714 | 0 3674
1184 8
1 3683 | | 32 81
0 4016
1224 2
1 4061 | 82 81
0 4497
1771 8
1 4501 | 137 81
0 4905
1311 5
1 4851 | 182 81
0 5773
1346 9
1 5150 | 232 81
0 5615
1379 7
1 5415 | 282 81
0 5939
1410 8
1 5658 | 337 81
0 6750
1440 9
1 5883 | 432 81
0 6845
1492 4
1 6298 | 532 81
0 /418
1556 9
1 6679 | 637 81
0 7974
1614 7
1 7035 | 732 81
0 8519
1671 6
1 7371 | \$37.81
0.9055
1779.4
1.7691 | 937 1
0 55 5-
178 1
1 7994 | | 1300
(577 42) | \$h | 0 07769
585 58
0 784 3 | 0 3299
1180 2
1 3577 | | 22 58
0-1570
1209 9
1
3860 | 72 58
0 4052
1261 9
1 4340 | 177 58
0 4451
1303 9
1 4711 | 177 58
0 4804
1340 8
1 5027 | 727 58
0 5179
1374 6
1 5296 | 277 58
0 5436
1406 4
1 5544 | 322 58
0 5779
1437 1
1 5773 | 422 58
0 6287
1896 3
1 6194 | 527 58
0 6827
1554 3
1 6578 | 622 58
0 7341
1612 0
1 6917 | 777 58
0 7847
1669 8
1 7775 | 877 58
0 8345
1727 9
1 7596 | 925 65
0 8236
1724
1 790 | | 14 00
(587 07) | SA | 0 02307
598 83
0 7966 | 0.3018
1175.3
1.3474 | | 12 93
0 3176
1194 1
1 3652 | 62 93
0 3667
1751 4
1 4181 | 117 93
0 4059
1796 1
1 4575 | 162 93
0 4400
1334 5
1 4900 | 217 93
0 4712
1369 3
1 5182 | 267 93
0 9004
1402 0
1 5436 | 312 93
0 5282
1433 2
1 5670 | 417 93
0 5809
1493 7
1 6096 | 512 93
0 6311
15" 1 8
1 6484 | 617 93
0 6798
1609 9
1 6845 | 717 91
0 7277
1668 0
1 7185 | 817 93
0 7737
1726 3
1 7508 | 917 9
0 81 9
1785
1 781 | | 1586
(5% 20) | 53 | 0 02346
611 68
0 8085 | 0 2772
1170 1
1 3373 | | 3 80
0 7870
1176 3
1 3431 | 53 80
0 3328
1240 2
1 4022 | 103 80
0 37;7
1287 9
1 4443 | 153 80
0 4049
1328 0
1 4282 | 203 80
0 4350
1364 0
1 5023 | 253 80
0 4629
1397 4
1 5333 | 303 80
0 4894
1479 2
1 5572 | 403 80
0 5 3 9 4
14 90 1
1 600 4 | 503 80
0 5869
1549 7
1 6395 | 603 80
0 6327
1607 7
1 6759 | 267 80
0 6773
1666 7
1 7101 | 803 80
0 7210
1724 8
1 7425 | 9014
0:4:
1781
1773 | | 1609
(504 87) | \$A . | 0 02387
624 20
0 8199 | 0 7555
1164 5
1 3274 | | | 45 13
0.3026
1228 3
1.3861 | 95 13
0 3415
1279 4
1 4312 | 145 (3
0 374)
1321 4
1 4667 | 195 13
0 4032
1358 5
1 4968 | 245 13
0 4301
1392 8
1 5235 | 295 13
0 4555
1425 2
1 5478 | 395 13
0 5031
1486 9
1 5916 | 494 13
0 5482
1546 6
1 6317 | 595 13
0 5915
1605 6
1 6678 | 695 13
0 6336
1664 3
1 7027 | 295 ()
0 6748
1723 2
1 7347 | 895 1
0 715
1787
1 765 | | 17 06
(613 13) | \$. | 0 07478
636 45
0 8309 | 0.7361
1158.6
1.3176 | | | 36 87
0 7754
1715 3
1 3697 | 84.87
03147
12705
14183 | 134 87
0 3448
1314 5
1 4555 | 184.87
0.3751
1352.9
1.4867 | 734 87
0 4011
1388 1
1 5140 | 286.87
0.4255
1421.2
1.5388 | 38A 87
0 4711
14A3 8
1 5833 | 186 87
0 5140
1544 0
1 6732 | 586 87 | 684 87
0 5951
1667 5
1 6947 | 766 87
0 6341
1771 7
1 7274 | 845 5
0 6.7
178: | | 1200
(62) 02) | 3 | 0 02472
648 89
0.8417 | 0.7186
1152.3
1.3079 | | | 24 98
0 7505
1201 2
1 3528 | 74 98
0 7906
126.1 1
1 4054 | 174 98
0 1273
1307 4
1 4446 | 178 98
0 7500
134: 2
1 4768 | 228 98
0 1752
1383 3
1 5049 | 278 58
0 1988
1417 1
1 5 302 | 378 98
0 4476
1480 6
1 5753 | 478 98
0 48 16
1541 4
1 6156 | 578 98
0 5279
1601 2
1 6528 | 678 98
0 5009
1640 7
1 6876 | 778 98
0 5980
1770 1
1 7704 | 0 6 3 2
1 7 7 8
1 7 5 1 | | 1906
(621 56) | \$h | 0 02517
660 36
0 8522 | 0 202 8
1145 6
1 2981 | | | 21 44
0 2274
1185 7
1 1346 | 71.44
0.258.7
1251.3
1.3925 | 121 44
0 3004
1300 2
1 4 3 3 8 | 171 44
0 3275
1341 4
1 4677 | 771 44
0 1571
1378 4
1 4960 | 271 44
0 3749
1412 9
1 5219 | 371 44
0 4171
1477 4
1 5677 | 471 44
0 4565
15 18 8
1 6084 | 571 44
0 4940
1599 1
1 6458 | 671 44
0 5 10 3
16 5 R 8
1 6 8 0 8 | 771 44
0 54 56
1718 6
1 7138 | 871.4
0.600
177.6
1.745 | | 2908
(635 80) | 58 | 0 02565
672 11
0 8625 | 11383 | | | 14 70
0 2056
1168 3
1 3154 | 64.70
0.7488
1240.9
1.3794 | 114 20
0 7805
1292 6
1 4231 | 164 20
0 3072
1335 4
1 4578 | | 264 20
0 3534
1408 7
1 5138 | 364 70
0 3947
1474 1
1 5603 | 45.4 20
0 4.320
15.36 2
1 601 4 | 0 4680 | 664 70
0 502 7
165 7 0
1 6 7 4 3 | 764 20
0 5 36 5
1717 0
1 707 5 | 1771 | | 2196
(642.76) | 5h | 0 02615
643 79
0 8727 | 0 1750
1130 5
1 2780 | | | 774
01847
1148 5
12947 | 57.74
0.7364
12.48
1.3661 | 107.24
0.2634
1284.9
1.4125 | 157 74
0 7888
1179 3
1 4486 | 707 24
0 3173
1 164 4 | 257 24
0 13 19
1404 6
1 5060 | 357.74
0.1714
1470.9
1.5532 | 45774
0 Fires
15116
1 5948 | 55124
04445
15947 | 657.24
0.4:78
1655.7
16681 | 757 74
0 5101
1715 4
1 7014 | 857.7
0.541
1775 | | 2700
1649 451 | \$A | 0 02569
595 46
0 8828 | 11.25 2 | | | 55
0 14 4
1173 9
1 7691 | 50 55
0.21 M
12 IA 0
1 3523 | 100 55
0 7454
1776 8
1 4020 | 150 55
0 7770
1373 1
1 4 395 | 200.55
0.7950
1353.3 | 250 55
0 1161
1490 0
1 4984 | 350 55
0 3515
1457 6
1 5463 | 450 55
0 1897
15 30 9
1 5883 | 55055
04731
1541 5 | 650 55
0 4551
1651 3
1 6622 | 750 55
0 48A2
1713 9
1 6956 | 850 5
0 5 14
177.2 | | 7700
(655 89) | SA . | 0 02777
707 18
0 8979 | 0 1513
11)12
1 2549 | | | | 44 11
0 1975
1295 1
1 3381 | 43 (1
0 2 kg/s
1 24,8 4
1 191.1 | 14111
0.7566
1315.7
1.4305 | 144 ()
0 2 193
1 158 ()
1 452 8 | 24411
0:999
11947
14910 | 344 11
0 3372
1454 7
1 5 2 3 7 | 644 11
0 1714
1578 3
1 5821 | 544 11 0 4035 | 644 1
0 4 144
1651 5
1 6565 | 744 1
0 454
1717 3
1 5 701 | 0 4 9 3 | Sh = superheat, f v = specific volume, cu lt per ib h = enthaloy Btu per ib s = entropy. Btu per R per ib Table 3. Superheated Steam - Continued | lb/Sq in
Sal Temp) | | Sal | Sal | Tempo
100 | erature - | Degrees
800 | fahrent
850 | 900 | 950 | 1000 | 1850 | 1100 | 1150 | 1200 | 1306 | 1400 | 1500 | |-----------------------------------|-------|------------------------------|-----------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|---|--------------------------------------|--|---------------------------------------|--|---------------------------------------|--|--|--|---------------------------------------|----------------------------------| | 749 6
(6 62 11) | \$4 | 0 02 790
718 95
0 9031 | 0 1408
1103 7
1 2460 | 37 89
0 1824
1191 6
1 3232 | 87 89
0 7164
1759 7
1 3808 | 137 89
07474
1310 1
14217 | 187 89
07648
1357 8
14549 | 237 89
0 7850
1391 2
1 4837 | 287 89
0 3037
1476 9
1 5095 | 337 89
0 3214
1460 9
1 5332 | 387 89
0 3382
1493 7
1 5553 | 437.89
0.3545
1525.6
1.526.1 | 487 89
0 3703
1557 0
1 5959 | 537 89
0 3856
1588 1
1 6149 | 637 89
04:55
1649 6
1 6509 | 737 89
0 4443
1710 8
1 6847 | #37 #
0 #73
1771
1 716 | | 2508
(66.8 1.1) | SA . | 0 02 859
731 71
0 9139 | 01107 | 31 89
0 1681
1176 7
1 3076 | 81 89
0 7032
1250 6
1 3701 | 131 89
0 7793
1303 4
1 4129 | 181 89
0 7514
1347 4
1 4472 | 731 89
0 7717
1386 7
1 4766 | 281 89
0 2896
1423 1
1 5029 | 131 89
0 1068
1457 5
1 5269 | 361 89
0 1237
1490 7
1 5492 | 431 89
0 3390
1527 9
1 5703 | 441 89
0 354 3
1554 6
1 590 3 | 531.89
0.3642
1585.9
1.6094 | 611 K1
0 3980
1647 K
1 6456 | 731 89
04/59
1709 7
16/95 | 1711
04%
1770
1770 | | 2600
(673 \$1) | \$A . | 0 02938
744 47
0.9247 | 0 1211
1082 0
1 2225 | 26 99
0 1547
1160 2
1.2908 | 76 09
0 1909
1241 1
1 3592 | 126 09
0 2171
1296 5
1 4042 | 176 09
0 2 390
134 1 9
1 4 395 | 226 09
0 2585
1382 1
1 4696 | 776 09
0 7765
1419 ?
1 4964 | 326 09
0 2933
1454 1
1 5208 | 376 09
0 3093
1487 7
1 5434 | 426 09
0 3247
1570 2
1 5646 | 476 09
0 3 395
1552 2
1 5848 | 526 09
0 3540
1583 7
1 6040 | 626 09
0 3819
1646 0
1 6405 | 726 09
0 4088
1707 7
1 6746 | 826 0
0 435
1764
1 706 | | 1168
(679 53) | | 0 03029
757 34
0 9356 | 0 1119
1069 7
1 2097 | 20 47
0 1411
1147 0
1 2727 | 70 47
0 1794
1231 1
1.3481 | 120 47
0 2058
1789 5
1 3954 | 170 47
0 2775
1336 3
1 4319 | 220 47
0 2464 | 270 47
0 7444
1415 7
1 4900 | 370 47
0 7809
1450 7
1 5148 | 370 47
0 7965
1484 5
1 5376 | 470 47
0 3114
1517 5
1 5591 | 470 47
0 3759
1549 8
1 5794 | 520 47
0 3 399
1581 5
1 5968 | 620 47
0 3670
1644 1
1 6355 | 770 47
0 3931
1706 1
1 6697 | 820 4
0 418
1767
1 702 | | 2606
1664 96) | \$A . | 0 03134
170 69
0 9468 | 0 1030
1055 8
1.1958 | 15 04
0 1278
1121 2
1 2527 | 65 04
0 1685
1220 6
1 3368 | 115 04
0 1952
1282 2
1 3867 | 165 04
0 2168
1330 7
1 4245 | 715 04
0 7358
1372 8
1 4561 | 265 04
0 2531
1411 2
1 4838 | 315 04
0 2693
1447 2
1 5089 | 365 04
0 7845
1481 6
1 5321 | 415 04
0 7991
1514 8
1 5537 | 465 04
0 3132
1547 3
1 5742 | 515 04
0 3262
1579 3
1 5938 | 615 04
0 3532
1642 7
1 6306 | 715 04
0 3785
1704 5
1 6451 | 815 0
0 40
1756
1 697 | | 2988
(690 22) | \$ | 0 63262
785 3
0 9588 | 0 0942
1039 8
1 1803 | 9 78
0 1138
1095 7
1 2283 | 59
78
0 158 1
1209 6
1 325 1 | 109 78
0 1853
1274 7
1 3780 | 159.78
0.2068
1324.9
1.4171 | 209 78
0 7756
1368 0
1 4494 | 259 78
6 7427
1407 2
1 4777 | 309 78
0 7585
1443 7
1 5032 | 359 78
0 2 7 34
14 78 5
1 5 7 6 6 | 409 78
0 2877
1512 1
1 5485 | 459 78
0 3014
1544 5
1 5692 | 509 78
0 3147
1577 0
1 5489 | 609 78
0 3403
1640 4
1 6259 | 709 78
0 3649
1703 0
1 6605 | 809 7
0 388
1765
1 693 | | 3000
(695 J 3) | 58 | 0 03428
801 84
0 9728 | 0 0850
1070 3
1 1619 | 4 67
0 0187
1050 5
1 1966 | 0 1483
1197 9
1 3131 | 104 67
0 1759
1267 0
1 3692 | 154 67
0 1975
1319 0
1 4097 | 204 67
0 2141
1141 2
1 4429 | 254 67
0 7 179
1403 1
1 471 7 | 304 67
0 7484
1440 7
1 4976 | 354 67
0.7630
1475 4
1.5713 | 404 67
0 7770
1509 4
1 5434 | 454 67
07904
1547 4
1 5647 | 504 67
0 1013
1574 8
1 5841 | 604 67
0 3787
16 18 5
1 6714 | 704 67
0 3572
1701 4
1 6561 | 804 6
0 175
176 1
1 648 | | 2160
(200 2 %) | 54 | 0 03681
823 97
0 9914 | 00745
9933
11373 | | 49 72
0 1389
1185 4
1 3007 | 99 77
0 1671
1259 1
1 3604 | 149 72
0 1887
1313 0
1 4024 | 199 72
0 7071
1358 4
1 4364 | 249 72
0 7237
1399 0
1 4658 | 299 77
0 2 390
1436 7
1 4920 | 349 22
0 7533
1477 3
1 5161 | 399 72
0 2670
1506 6
1 5384 | 449 77
0 7 800
1539 9
1 5594 | 499 72
0 2927
1572 6
1 5794 | 599 77
0 3170
1636 7
1 6169 | 699 77
0 3403
1699 8
1 651 8 | 799 7
0 367
1762
1 684 | | 3290
(705 08) | \$A . | 0 04472
875 54
1 0251 | 0 0566
931 6
1 08 32 | | 44 92
0 1300
1177 J
1 2877 | 94 92
0 1548
1250 9
1 3515 | 144 97
0 1804
1106 9
1 3951 | 194 97
0 1987
1353 4
1 4300 | 244 92
0 2 (5)
1 294 9
1 4600 | 294 92
0 7 301
143) 1
1 4866 | 344 97
0 7447
1469 2
1 5110 | 394 97
0.7576
1501 8
1 5335 | 444 97
0.7704
1537 4
1 554 7 | 494 92
0 28.77
15.70 3
1 5749 | 594 97
0 3065
16 34 8
1 6 1 7 6 | 694 97
0 3291
1698 3
1 6477 | 791 9
0 351
1741
1 680 | | 2386 | 4.4. | | | | 0 1213
1158 2
1 2742 | 0 1510
1242 1
1 3425 | 0 1777
1300 7
1 3879 | 0 1908
1348 6
1 4237 | 0 2070
1390 7
1 4542 | 0 7718
1479 5
1 4813 | 0 2357
1466 I
1 5059 | 0 2488
(50) 0
1 5287 | 0 2613
1534 9
1 5501 | 0 2734
1568 I
1 5204 | 0 7966
1637 9
1 6084 | 0 3187
1696 7
1 64 36 | 9 347
1759
1 676 | | 3480 | 4 | | | | 0 1179
114) 7
1 2600 | 0 1435
1733 7
1 3334 | 0 1653
1294 3
1 3807 | 0 1834
1343 1
1 4) 74 | 0 1994
1386 4
1 4486 | 0 7140
1425 9
1 4761 | 0 7776
1462 9
1 5010 | 0 7405
1498 3
1 5240 | 0.7528
1537 4
1 5456 | 0.7646
 565.8
 5660 | 0 7872
1631 1
1 6042 | 0 X088
 695
 6396 | 0 329
1758
1 677 | | 2544 | 4 | | | | 0 1048
1127 1
1 2450 | 0 1254
1274 6
1 3242 | 0 1583
1787 8
1 3734 | 0 1764
1338 7
1 4117 | 0 1977
1387 7
1 4430 | 0 7066
1427 7
1 4/99 | 0 7700
1459 7
1 4962 | 0.73.76
1495.5
1.5194 | 0 7447
1529 9
1 5412 | 0.7563
1563 6
1.5618 | 9 2784
1629 2
1 6002 | 0 7995
16916
16358 | 0 319 | | 3540 | 4 | | | | 0 0964
1108 6
1 2781 | 0 12%
1215 3
1 3144 | 0 1517
1281 2
1 3662 | 0 1647
1333 0
1 4050 | 0 1854
1377 9
1 4374 | 0 1996
1418 6
1 4658 | 0 7178
1456 5
1 4914 | 0 2752
1492 6
1 5149 | 0 7371
1527 4
1 5369 | 0 7485
1561 3
1 5576 | 0 7702
1627 3
1 5962 | 0 2508
1692 A
1 632 | 9 310
1755
1 665 | | 3888 | 4 | | | | 0 0799
1064 7
1 1888 | 0 1169
11955
1 2955 | 01395 | 0 1574
1327 4
1 3928 | 0 1/29
1369 1
1 4265 | 0 1868
1411 2
1 4558 | 0 1996
1450 1
1 4821 | 0.7116
1487.0
1.5061 | 0 7731
1527 4
1 5294 | 0 7340
1556 8
1 5495 | 0.7549
16216
1.5486 | 0 7746
1688 9
1 6247 | 0 793
1751
1 658 | | 4666 | 3. | | | | 0 0531
1007 4
1 1396 | 0 1052
11/4 3
1 2754 | 0 1784
1753 4
1 3371 | 0 146.)
13116
13807 | 0 1416
1360 ?
14158 | 0 1757
14016
1 4461 | 0 1877
14436
1 4730 | 0 1944
1441 3
1 4976 | 0 7105
1517 3
1 5203 | 0 2710
1552 7
1 5417 | 0.7411
1614 8
1 3817 | 6.7501
1685.7
1 6177 | 0 778 | | 4290 | 54 | | | | 0 04 98
950 1
1 0905 | 0 (945
1151 6
1 2544 | 0 1 # 3
17 3 # 6
1 32 7 3 | 0 1362
1300 J
1 3646 | 0 1513
1351 7
14053 | 1396.0 | 6 769
 437
 8642 | 0 1883
1475 5
1 4893 | 0 1991
1517 7
1 5124 | 0.7093
1547 6
1.5341 | 0.2787
1616 1
15742 | 0.7470
1687 6
1 6109 | 0 74.4
1744
1 645 | | C4.99 | 5A | | | | 0 (47)
909 5
1 0556 | 0 0846
11273
1 7325 | 0 10%0
1773 3
1 3073 | 0 17 70
1289 0 | 01470 | 0 1547 | 0 1671 | 01782 | 0 1887
1507
1 5048 | 0 1446
154) 0
1 5264 | 0 2174 | 0 7351 | 0.751 | Sh = superheat f v = specific volume, cu ft per ib h = enthalpy. Blu per ib s = entropy. Blu per R per ib Table 3. Superheated Steam - Continued | bs Press | | | | | | | | | | | | | | | | | | |-----------------------|--------------|--------------|-------|----------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------|-----------------------------|----------------------------|--------------------------| | Lb/Sq in
Sat Temp) | | Sat
Water | Steam | 750 | 800 | 850 | \$00 | 950 | 1000 | 1050 | 1100 | 1150 | 1208 | 1250 | 1300 | 1400 | 1500 | | *** | | | | 0 0380
883 8
1 0331 | 0 0751
1100 0
1 2084 | 0 1005
1207 3
1 2927 | 01186 | 0 1335
1332 6
1 3847 | 0 1465
1380 5
1 4181 | 0 1582
1423 7
1 4472 | 0 1591
1453 9
1 4734 | 0 1792
1501 9
1 4974 | 0 1889
1538 4
1 5197 | 0 1982
1573 8
1 5407 | 0 2071
1608 5
1 5607 | 0 2742
1676 3
1 5982 | 0 7404
1747
1 6330 | | 488 | \$A . | | | 0 0355
866 9
1 0180 | 0 0665
1071 2
1 1835 | 0 0927
1190 7
1 2768 | 0 1109
1265 2
1 3327 | 0 1757
1323 1
1 3745 | 0 1385
1377 6
1 4090 | 0 1500
1417 0
1 4390 | 0 1606
1458 0
1 4657 | 0 1706
1496 7
1 4901 | 0 1800
1533 2
1 5128 | 0 1890
1969 7
1 5341 | 0 1977
1604 7
1 5543 | 0.7147
1673
1 5921 | 0 229 | | 1000 | SA
N
N | | | 0 0338
854 9
1 0070 | 0 0591
1042 9
1.1593 | 0 0855
1173 6
1.2612 | 0 1038
1252 9
1 3207 | 0 1185
1*13.5
1 3645 | 0 317
 364 6
 400 | 0 1475
1410 2
1309 | 0 1529
1452 1
1 4582 | 0 1676
1491 5
1 4831 | 6 1718
1529 1
1 5061 | 0 1806
1565 5
1 5277 | 0 1890
1600 9
1 5481 | 0 2050
1670 0
1 5863 | 0 770 | | 5290 | | | | 0 0376
845 8
0 9985 | 0 0531
1016 9
1 1370 | 0 0789
1156 0
1 2455 | 0 0973
1240 4
1 3088 | 0 1119
1303 7
1 2545 | 0 1244
1356 6
1 3914 | 0 1356
1403 4
1 4229 | 0 1458
1446 7
1 4509 | 0 1553
1486 3
1 4762 | 0 1642
1524 5
1 4995 | 6 1726
1561 3
1 5214 | 0 1810
1597 2
1 5420 | 0 1466
1666 8
1 5806 | 0 711
1734
1 616 | | 5486 | 4.4. | | | 6 0317
838 5
0 9915 | 0 0483
994 3
1 1175 | 0 0778
1138 I
1.27% | 0 0912
122? 7
1 2969 | 0 1058
1293 7
1 3446 | 0 1187
1348 4
1 3827 | 0 1297
1396 5
1 4151 | 0 1392
1440 3
1 4437 | 0 1485
1481 1
1 4694 | 0 1577
1519 8
1 4931 | 0 1656
1557 1
1 5153 | 0 17 %
1591 4
1 5362 | 0 1888
1663 /
1 5750 | 0 203
1737
1 610 | | 5444 | 3 | | | 0 0309.
837 4
0.9855 | 0 0447
975 0
1 1006 | 0 0677
1119 9
1 2137 | 0 0856
1214 8
1.2850 | 0 1001
1283 7
1 3348 | 0 1174
1340 7
1 3742 | 0 17 32
1 38 9 6
1 40 75 | 0 1131
1434 3
1 4366 | 0 1422
1475 9
1 4628 | 0 1508
1515 7
1 4869 | 0 1589
1552 9
1 5093 | 0 1667
1589 6
1 5304 | 0 1815
1660 5
1 5697 | 0 195
1779
1 605 | | 5484 | 4 | | | 0 0303
8273
0 9803 | 0 D419
954 8
1 D867 | 0 06.77
1101 8
1 1981 | 0 0805
1701 8
1 2732 | 0 0%49
1273 6
1 3250 | 0 1070
1317 0
1 3658 | 0 1177
1387 6
1 3999 | 0 1774
1478 3
1 4297 | 0 1343
1470 5
1 4564 | 0 1447
1510 5
1 4808 | 6 1577
1548 7
1 5035 | 0 (60)
(58) 8
(548 | 0 1747
1657 4
1 5644 | 0 188
1/24
1 600 | | 140 | 2 | | | 0 0298
822 9
0 9758 | 0 0397
945 1
1 0746 | 0 0579
1084 6
1 1833 | 0 0757
1188 8
1 2615 | 0 0900 | 0 10.20
1323 6
1 3574 | 0 1126
1375 7
1 3925 | 0 1221
1422 3
1 4229 | 0 1309
1465 4
1 4500 | 0 1391
1505 9
1 4748 | 0 1469
1544 6
1 4978 | 0 1544
1587 0
1 5194 | 0 1684
1654 2
1 5593 | 0 183
1724
1 596 | | 6586 | 30.00 | | | 0.0287
8139
0.9661 | 0 0358
9195
1 0515 | 0 0495
1046 7
1 1506 | 0 0655
1154 3
1.2328 | 0 0793
1237 8
1 2917 | 0 0909
1302 7
1 3370 | 0 1012
1358 1
1 3743 | 0 1) 04
1407 3
1 4064 | 0 1188
1452 2
1 4347 | 0 1766
1494 2
1 4604 | 0 340
 1534
 1 484 | 0 1411
1577 5
1 5062 | 0 1544
1646 a
1 5471 | 0 166 | | 7906 | 4 | | | 0 02 79
806 9
0 9542 | 0 0334
901 8
1 0350 | 0 04 38
1016 5
1 1243 | 0 0573
1124 9
1 2055 | 0 0704
1212 6
1 2649 | 0 0816
1281 7
1 3171 | 0 0915 | 0 1004
1392 2
1 3904 | 0 1085
1439 1
1.4200 | 01160
1482
6
1 4466 | 0 1231
1523 /
1 4710 | 0 1298
156.) I
1 4938 | 0 1474
1638 6
1 5355 | 0 154
1711
1 573 | | 7540 | 54 | | | 0 0277
801 3
0 9514 | 0 0318
889 0
1 0224 | 0 0399
992 9
1 1033 | 0 05 12
10977 | 0 0631
1188 3
1 2473 | 0 0737
1261 0
1.2980 | 0 0833
1327 9
1.3397 | 0 0918
1377 2
1 3751 | 0 0996
1426 0
1 4059 | 0 1068
1471 0
1 4335 | 0 113K
15133
1 4586 | 0 1700
1553 7
1 4819 | 0 1371
1630 8
1 5245 | 6 143
1704
1 563 | | 1101 | | | | 0 0267
796 6
0 9455 | 0 0306
879 1
1 0122 | 9 0371
974 4
1 0864 | 0 0465
1074 3
1.1613 | 0 0571 | 0 06 71
1241 0
1 2798 | 0 0762
1305 5
1 3233 | 0 0845
1367 2
1 3603 | 0 0920 | 0 0999 | 0 1054
15011
1 4467 | 0 1115
1544 5
1 4705 | 0 1730
1623 1
1 5140 | 0 (33)
1698
1 353 | | 1500 | | | | 0 0762
792 7
0 9402 | 0 0796
871 2
1 00 17 | 0 0350
959 8
1 0727 | 0 0479
1054 5
1 1437 | 0 0527
1144 0
1 2064 | 0 0615
1271 9
1 2627 | 0 0701
1788 5
1 3076 | 0 0780
13475
1 3460 | 0 0053
1400 ?
1 3793 | 0 0919
1448 2
1 4087 | 0 0982
1492 9
1 4352 | 0 1041
1525)
1 4597 | 0 1151
1615 4
1 5040 | 0 125
1691
1 543 | | 1001 | \$A | | | 0 0258
799 3
0 9354 | 0 0288
864 7
0 9964 | 0 0335
948 0
10613 | 1037 6 | 0 04E3
1125 4
1 1918 | 0 0568
1204
12468 | 1272 1 | | 0 0 794
1387 5
1 3667 | 1437 1 | 0 0918
1487 9
1 4243 | 0 0975
1526 3
1 4492 | 0 1081
1607 9
1 4944 | | | 65M | | | | 0 0754
786 4
0 9310 | 0 07 K2
859 7
0 9900 | 9 0 177
9 38 3
1 05 1 6 | 0 0 380 1073 4 | 0 0451
110# 9
1.1771 | 0.0578 | | 0 0675
1318 9
1 3191 | 0 0 742
1375 1
1 3546 | 0 0804
1426 1
1 3858 | 0 0862
(47) (
1 4137 | 0 0917
1517 1
1 4392 | 0 1019
1600 4
1 4851 | 1674 | | 10000 | 50 | | | 0 0251
783 8
0 9270 | 0 00 F6
854 5
0 9847 | 930 2
1 04 32 | 0 0362 | 0 0475
1094 7
1 1638 | 0 0495
1172 6
1 2185 | 0 0565
1742 0
1 2652 | 0 0633
1305 3
13065 | 0 0697
1362 9
1 3429 | 0 0757
1415 3
1 3749 | 0 0012
1453 4
1 4035 | 0 0865
1508 6
1 4795 | 0 0963
1593 I
1 4763 | 0 105
1677
1 518 | | 18546 | \$A . | | | 781.5 | | 9 0303
923 4
1 9356 | 10015 | 0 0404
1081 3
7 1519 | 1158 9 | 0 0537
1728 4
1 2529 | 0 05-95
1297 4
1 2946 | 0 0656
1351 1
1 3371 | 0 0714
1404 7
1 3644 | 0 0768
1453 9
1 3937 | 1500 0 | | 1666 | Sh = superheat, f v = specific volume, cu ft per lb h = enthalpy. Btu per ib s = entropy. Btu per f per ib Table 3. Superheated Steam - Continued | Sal | Sat | | perature | - Degree | STahipe | heit | | | | | _ | | - | - | - | |------|-------|----------------------------|---|---|--|---|---
---|---|--|---|--|--|--|---| | Wate | Steam | | 800 | 858 | 900 | 950 | 1000 | 1050 | 1100 | 1150 | 1268 | 1750 | 1308 | 1400 | 1500 | | : | | 0 0745
779 5
0 91 96 | 0 0267
846 9
0 9742 | 0 0296
9175
1 0292 | 9921
10851 | 0 0386 | 0 0443
1146 3
1 1945 | | | 0 0620 | 0 06 76 | 0 0777 | 0 0/76 | 0 0854
1574 ; | 0 095 | | : | | 0 0243
7777
0 9163 | 0 0243
843 8
0 96 98 | 9124 | 984 5
1 0777 | 0 0370 | 0 04;")
1133 9 | 0 0478 | 0 05.34 | 0.0588 | 0 0641 | 0 6691 | 0 0739 | 0 0827 | 0 090 | | • | | 0 0241
776 1
0 9131 | 0 0260
841 0
0 9657 | 907 9
1 0177 | 9/7 8 | 0 0357 | 0 0405 | 0 0456
11937 | 0 05ne | 0 0560 | 0 0610 | 0 0659 | 0 0704 | 0 0740 | 0 0869
1648 | | : | | 0 0238
774 7
0 9101 | 0 0756
838 6
0 9618 | 9039
9039
1 0127 | 0 0309
971 9
1 0637 | 9 0346
1043 1 | 0 0390 | 0 0437
1184 1 | 0 0486 | 0 0535 | 0 0543 | 14180 | 0 0673 | 0 0754 | 0 08.17 | | 1 | | 0 6236
7715
0 9073 | 0 0253
834 3
0 9582 | 0 0275
900 4
1 0080 | 0 0 107
754 8
1 0578 | 0 0136 | 0 0176 | 0 0470 | 0 0446 | 0 0517 | 0 0548 | 0 0602 | 0 MAS | 0 0775 | 0 0799 | | • | | 0 0735
7773
0 9045 | 0 0251
834 4
0 9548 | 0 0271
8972
1 0037 | 0 0297
962 2
1 0524 | 0 0378
1030 0
1 1014 | 0 0364
1099 1
1 1495 | 0 0405 | 0 0448 | 0 0492 | 0 0535 | 0 0577 | 1451 8 | 1545 7 | 0 0768 | | | | 0 0733
771 3
0 9019 | 0 0748
\$32 6
0 9515 | 0 0267
894 3
0 9996 | 0 0291
958
0
1 0473 | 0 0320 | 0 0354 | 0 0392 | 0 0432 | 0 0474 | 0 0515 | 0 0555 | 0 0595 | 0 06 70 | 0 0740 | | : | | 0 0231
770 4
0 8994 | 0 0746
831 0
0 9484 | 0 0264
891 /
0 9957 | 954 3
1 0426 | 0 0314 | 00345 | 0 0380 | 0 0418
1213 8 | 0 0458 | 0 04 96 | 0 0534 | 0 05/3 | 0 05.46
1537 6 | 0 8714 | | 1 | | 7696 | 0 0744
879 5
0 9455 | 0 0761
889 3
0 9920 | 0 0782
950 9
1 0382 | 0 0308 | 0 0337 | 0 0369 | 0 0405 | 0 0443
1268 1 | 0 0479
1376 0 | 0 0516 | 0 0552 | 0 06.24
1526 4 | 0 0K-90 | | 1 | | 764 9 | 0 0247
E'E 7
0 9427 | 0 0758
88.7.7
0 98.86 | 0 0278
9478
1 0340 | 0 0 102 | 0 0329
1075 7
1 1247 | 0 0360 | 0 0393
1206 3
1 2073 | 0 0479
12611
1 2457 | 0 0464
1319 6
1 2815 | 0 04*9
1377 8
1 3131 | 0 0534
14716
1 3474 | 0 06n3
15/0 4 | 0 0K43 | | | | Water Steam | Water Steam 758 0 0245 7775 0 9195 0 0243 7777 0 9163 0 0238 7774 0 9131 0 0238 7777 0 9003 0 0238 7773 0 9003 0 0238 7773 0 9003 0 0238 7773 0 9003 | Water Steam 758 800 0 0745 0 0767 779 5 846 9 0 0196 0 0747 0 0743 0 0767 7777 843 8 0 0163 0 0768 7777 843 8 0 0163 0 0768 7761 8410 0 0768 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0756 7761 8410 0 0766 7776 836 6 0756 7776 836 6 0756 7776 8376 6 0756 7776 8310 0 0766 7776 8310 0 0 0766 7776 8310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Water Steam 758 880 858 0 0245 0 0267 0 0296 777 5 846 9 317 5 0 9196 0 9742 1 0296 777 7 841 8 912 4 0 9163 0 9698 1 0232 0 0241 0 0263 0 0264 776 1 841 0 967 8 100241 0 0296 0 0284 776 1 841 0 967 1 1072 0 0238 0 0256 0 0279 774 7 818 6 903 9 0 9101 0 9618 1 0127 0 0238 0 0256 0 0279 774 7 818 6 903 9 0 9101 0 9618 1 0127 0 0236 0 0255 0 0279 777 3 834 8 897 2 0 0231 0 0248 0 0261 777 3 834 897 2 0 9045 0 9548 1 0037 1 777 3 834 897 2 0 9045 0 9548 1 0037 1 777 3 834 897 2 0 9045 0 9548 1 0037 1 777 3 834 897 2 0 9045 0 9548 0 0261 771 3 512 6 894 3 0 9019 0 9515 0 9996 0 0231 0 0244 0 0261 770 4 831 0 891 7 0 8994 0 9484 0 9957 0 8990 0 9455 0 9990 | Water Steam 758 800 858 900 | Water Steam 758 800 858 800 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 900 958 950 958 950 958 950 958 950 958 950 958 950 958 950 958 950 958 950 958 950 | Water Steam 758 800 858 800 958 1880 1880 200 | Water Steam 758 800 858 900 958 1000 1050 | Water Steam 758 800 858 900 958 1000 1050 1100 | Water Steam 758 800 858 900 958 1880 1850 1108 1150 1108 1150 1108 1150 1108 1774 1774 846 9 917 5 992 1 1089 9 1146 3 1215 9 1280 2 1319 7 1099 9 1089 9 1146 3 1215 9 1280 2 1319 7 1099 9 1089 9 1146 3 1215 9 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 7 1280 2 1319 2 1280 2 1319 2 1280 2 1319 2 1280 2 1319 2 1280 2 1318 3 1320 9 1318 3 1320 9 1318 3 1320 9 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 1280 3 1320 3 | Water Steam 758 800 858 900 958 1000 1050 1100 1150 1200 | Water Steam 758 890 858 900 956 1000 1050 1100 1150 1200 1250 1250
1250 1250 1250 1250 1250 1250 1250 125 | ### Steam 758 800 858 900 958 1000 1850 1100 1150 1208 1758 1200 1 00745 0 00745 0 00756 0 00756 0 00355 0 00866 0 00870 0 00870 0 00770 0 0775 1 00875 1 0775 1846 9 3175 9971 10895 1 1463 12159 12802 13797 13944 1444 14915 14914 17833 13709 1 3944 1444 14915 14914 17833 13709 1 3944 1344 14915 14914 17833 13709 1 3944 1344 14915 14914 17833 13709 1 3944 1344 14915 14914 17833 13709 1 3944 1344 14915 14914 17833 13709 1 3944 1345 14917 14917 14918 17914 1783 14918 | Water Steam 758 800 858 900 950 1800 1850 1100 1150 1280 1250 1260 1400 | Sh = superheal f v = specific volume, cu ft per lb h = enthalpy. Stu per Ib s = entropy. Stu per R per Ib # 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 1&2 -88/07/18-VICTOR, F. ANSWER 1.01 (1.00) d. REFERENCE Westinghouse, Fundamentals of Nuclear Reactor Physics, 1983, p. 7-21. 192003K106 ...(KA'S) ANSWER 1.02 (1.00) REFLERNCE Westinghouse, Fundamentals of Nuclear Reactor Physics, 1983, p. 5-52. 192002K108 ...(KA'S) ANSWER 1.03 (1.00) C. REFERENCE BW PWR Operation Fundamentals-Reactor Theory p. 5-17 to 5-20 Westinghouse, Reactor Core Control for Large PWR's, 1983, p.5-13 thru 5-18. 1920U4K109 ...(KA'S) ANSWER 1.04 (2.00) a. FALSE b. TRUE c. TRUE d. TRUE REFERENCE BW S.D. PWR. Operations, Unit 1/2 Differences p. 12 to 16. 035010K402 035010K503 ...(KA'S) # PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 1.05 (1.00) b. REFERENCE BW PWR Operations Fundamentals-Instrumentation and Control p. 1-33 Westinghouse, Thermal-Hydraulic Principles and Applications to the PWR, Vol. 2, 1982, p.11-29. 191002K109 ...(KA'S) ANSWER 1.06 (1.00) c. REFERENCE BW PWR Operations S.D. p.27-18 Westinghouse, Mitigating Core Damage, 1984, p. 6.26 Westinghouse, Thermal-Hydraulic Principles and Applications to the PWR, Vol. 2, 1982, p. 11-19, 11-20. 191002K102 ...(KA'S) ANSWER 1.07 (1.00) d. REFERENCE Westinghouse, Fundamentals of Nuclear Reactor Physics, 1983, p. 8-54. 192008K103 ...(KA'S) ANSWER 1.08 (1.00) a. REFERENCE BW PWR Operations Fundamentals-Reactor Theory Ch.9;p.8 of 33 Westinghouse, Reactor Core Control for Large Pressurized Water Reactors, 1983, p. 9-10. 192008K104 ...(KA'S) # 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 1.09 (1.50) Reasonance energy neutrons travel further into the fuel pellet (0.5) (reduces self shielding) which ensures all neutrons with resonance energy are absorbed (0.5). In addition neutrons with energies slightly above or below resonance energy have a greater probability of being absorbed in the fuel (0.5) (lost from the fission chain). REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 2-30 and 2-31. Westinghouse, Reactor Core Control for Large PWRs, 1983, p.2-29. 192004K107 ...(KA'S) ANSWER 1.10 (1.00) a. REFERENCE BW PWR Fundamental Text-Instrumentation and Control p.1-42 Westinghouse, Mitigating Core Damage, 1984, p.8.9. 191002K114 ...(KA'S) ANSWER 1.11 (1.00) c. REFERENCE Westinghouse, Transient and Accident Analysis, Vol. 1, 1983, p.12-11 and 12-43. BW PWR Fundamentals Text-Heat Transfer p. 9-25 and HT. 9-11. 193008K106 ...(KA'S) ANSWER 1.12 (1.50) a. TRUE b. TRUE C. TRUE # 1. PPINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. REFERENCE BW PWR Fundamentals Text-Heat Transfer p. 1-64, 1-72, 1-94 193008K101 193008K103 ...(KA'S) ANSWER 1.13 (1.00) b. REFERENCE Westinghouse, Reactor Core Control for Large PWRs, 1983, p. 3-20 to 3-28. BW PWR Fundamentals Text- Reactor Theory p. 3-17, 3-18. 192004K106 ...(KA'S) ANSWER 1.14 (1.00) a. REFERENCE BW PM2 Operations Fundamentals-Reactor Theory p. 6-25. Westinghouse, Reactor Core Control for Large PWRs, 1983, p. 6-30. 192005K115 ...(KA'S) ANSWER 1.15 (1.00) d. REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-14 to 7-17. Westinghouse, Reactor Core Control For Large Pressurized Water Reactors, 1983, p. 7-31 thru 7-33. 192008K102 ...(KA'S) ANSWER 1.16 (1.00) d. REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-10. Westinghouse, Reactor Core Control for Large PWRs, 1983, p. 9-18. 192008K120 ...(KA'S) ## 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 1.17 (1.00) b. REFERENCE BW PWR Operations Fundamentals-Reactor Theory p. 7-6. Westinghouse, Reactor Core Control For Large Pressurized Water Reactors, 1983, pages 7-21 thru 7-23. 192002K114 ...(KA'S) ANSWER 1.18 (1.00) Reactor power will increase (0.25) until it is turned by the heatup of the fuel (0.25) and coolant $\frac{(0.5)}{(0.25)}$ at which time startup rate decreases to near zero. (0.25) REFERENCE BW PWx Operations Fundamentals-Reactor Theory CH.9, p. 20 of 33. Westinghouse, Reactor Core Control for Large PWRs, 1983, p. 9-17. 192008K117 ...(KA'S) -ANSWER 1.19 (1.00) a. REFERENCE Westinghouse, Thermal-Hydraulic Principles and Applications to the PWR, Vol. 2, p. 13-62. BW PWR Fundamentals Text-Heat Transfer, p.6-22. 193010K105 ...(KA'S) ### 1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW ANSWERS -- BRAIDWOOD 132 -88/07/18-VICTOR, F. In partia", additional acceptable answer for second senfence, " when pump suction prossure (0,25) is less than the minimum required APSH (0,25)"... ANSWER 1.20 (2.00) - a. Cavitation is the formation (0.25) and subsequent collapse (0.25) of vapor bubbles in a pump. When local pressure (0.25) decreases below fluid saturation pressure (0.25) bubbles form and then collapse as the bubbles move to regions of higher pressure (0.25). - b. (1) Fluctuation in pressure. Any three at (0.25 each) 34 (2) Fluctuation in flow. (3) Fluctuation in motor current. (4) Temperature increasing on components served. REFERENCE BW PWR Fundamentals Text Fluid Flow p. 2-47. 191004K101 ...(KA'S) ANSWER 1.21 (1.00) C. REFERENCE BW PWP. Operations Fundamentals-Reactor Theory p. 2-9 Westinghouse, Reactor Core Control for Large Pressurized Water Reactors. 1983, p. 2.7. 192002K109 ... (KA'S) ANSWER 1.22 (1.00) a. BW PWR Operations Fundamentals-Reactor Theory Ch.9, p.22 of 33. Westinghouse, Reactor Core Control for Large PWRs, 1983, p.9-22. Ch.9 Append D Q#5 ANS or why dilute- Power defect add negative reactivity-dilute to compensate. 192008K119 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. | ANSWER | 2.01 | (2.00) | |-------------------|----------|-------------| | CALL OF LA POLICE | to * W & | 1 6 6 0 0 / | | a. | 100ps 3 and 4 [| 0.2] cold legs [0.2] | [0.4] | |----|-----------------|----------------------|-------| | | | | | b. loop 4 [0.1] hotleg [7.1] [0.2] c. hihead SI RHR Accumulators | [all 4 @ 0.2 each] | [0.8] | |--------------------|-------| | | | d. loop 1 or 2 - [0.2] e. loop 3 [0.2] f. all 4 [0.1] coldlegs [0.1] [0.2] ### REFERENCE Reactor Coolant System Lesson Plan, Chapter 12, p. 31 and 33 002000K106 002000K108 002000K109 ...(KA'S) ## ANSWER 2.02 (2.00) - a. In order to close the RCP breaker [0.25] the hot leg and cold leg [0.25] must be open [0.25] or the cold leg shut [0.25] and the bypass open [0.25]. - b. Component Cooling Water is lost [0.25] to the reactor coolant pump oil coolers [0.25] and the reactor coolant pump thermal barrier heat exchanger [0.25] on a phase B isolation signal. #### REFERENCE Reactor Coolant Pump Lesson Plan, Chapter 13, Rev. 5, p. 36 Reactor Coolant Pump System Description, Rev. 5, Para II.5., p. 13-36, 003000K112 003000K411 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 2.03 (2.00) a. Prevent excess cooling of the spray system Limit effects of thermal shock on the spray nozzle Equalize PZR and RCS chemistry [all 3 @ 0.25 each] [0.75] b. Primary makeup water pump Pressurizer PORVs Pressurizer safety valves RCP seal water relief valve- Letdown Orifice relief valve [all 5 @ 0.25 each] [1.25] REFERENCE Pressurizer Lesson Plan, Chapter 14, Rev. 3, Para II.c.2, p. 20 Pressurizer Pressure and Level Control System Description, Chapter 14, Rev. 4, Para II.7, p. 14-23 and 14-24, 010000K105 010000K401 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 2.04 (2.50) Provide surge capacity for RCS expansion
not accommodated by the Pressurizer Provide a means for oxygen control of the RCS by maintaining hydrogen in the RCS during normal operation Provide sufficient net positive suction pressure for the charging pumps Provide sufficient back pressure for the number one seal of the RCPs Provide a place to makeup to the RCS Place to remove dissolved gases to Waste Gas System [equivalent wording accepted for full credit] [any 5 @ 0.5 each] [2.5] REFERENCE Chemical and Volume Control System Description, Chapter 15a, Rev. 6, Para II.A.1.m, p. 15a-27 and 15a-28 004000G007 ...(KA'S) - ANSWER 2.05 (2.00) - a. To prevent clogging of the VCT spray nozzle [0.5] - b. Blender output is directed to the VCT inlet [0.25] and outlet [0.25] [0.5] Water directed to the VCT outlet is not degassed by the spray nozzle [0.5] Water directed to the VCT outlet is not exposed to the hydrogen gas in the VCT and therefore is not allowed to absorb hydrogen [0.5] [equivalent wording accepted for full credit] REFERENCE Reactor Makeup Control Lesson Plan, Chapter 15b, p.36 Reactor Makeup Control System Description, Chapter 15b, p. 15b-25 & 15b-26. 004000K106 ... (KA'S) .ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 2.06 (2.50) a. To limit pump runout [0.5] To limit individual line flow on a downstream break [7.5] b. CVCS system [Centrifugal charging pumps] Safety injection system Residual heat removal system Component cooling water system Essential service water system Auxiliary feedwater system Containment spray system [alt 6 @ 0.25 each] [1.5] [1.0] TE GNY REFERENCE Emergency Core Cooling System Description, Chapter 58, Rev. 7, Para I.B., p. 58-8, Para III.D.1.a.2, p. 58-53. 006000A302 006050K402 ...(KA'S) ANSWER 2.07 (3.00) a. Containment Recirc Sump suction valves [SI8811A/B] must be fully open [0.5] to ensure a suction path to the CS pumps from the recirc sump is available [0.5] Residual Heat Removal hot leg suction valves [RH8701A(B)] must be fully closed [0.5] to prevent the CS pumps from inadvertently taking a suction from the RCS hot leg supply lines to RHR [0.25] and discharging the contents of the RCS into the containment atmosphere [0.25] [equivalent wording accepted for full credit] b. Containment Spray Pump Recirc Sump Suction Isolation Valves [CS009A(B)] must be fully closed [0.5] to prevent inadvertently supplying a drain flowpath from the RWST to the recirc sumps [0.5] [equivalent wording accepted for full credit] REFERENCE Containment Spray System Description, Chapter 59, Rev. 2, Para II.C.2.&3., p. 59-25 and 59-26 026000K401 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 2.08 (1.50) 2/3 [0.1] low steam line pressure in any line [0.2] 640 psig [0.1] when above P-11 [0.1] or SI not blocked below P-11 [0.1] [0.6] high-high containment pressure [0.2] 8.2 psig [0.1] on 2/3 channels [0.1] [0.4] 2/3 [0.1] high negative steam pressure rate in any line [0.2] 100 psi/50 sec [0.1] when below P-11 and SI blocked $\frac{[0.1]}{[0.05]_{TH}}$ [0.5] REFERENCE Main Steam System Description, Chapter 23, p.23-35 039000K405 ...(KA'S) ANSWER 2.09 (1.00) a. REFERENCE Steam Dump System Description, Chapter 24, Rev. 2, Para II.A.9., p. 24-12 and Para II.C.1.c., p. 24-14 041020K603 ...(KA'S) ANSWER 2.10 (1.50) low auxiliary feedwater pump suction pressure [0.2] 1.22" Hg VAC [0.1] coincident with one of the following signals:[0.1] 2/4 [0.1] low-low steam generator level signals [0.2] from any steam generator [0.1] 2/4 [0.1] reactor coolant pump busses [0.2] undervoltage [0.1] [0.4] any SI [0.3] REFERENCE Auxiliary Feedwater System Description, Chapter 26, Revision 4, Para II.C.1., p. 26-39 061000K401 ...(KA'S) [2.0] ### 2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS ANSWERS -- BRAIDWOOD 1&2 -88/07/18-VICTOR, F. ANSWER 2.11 (1.00) d. REFERENCE A.C. Electrical Power Distribution System Description, Chapter 4, Rev. 2, Para III.B., page 4-104, TPO #4. 062000K201 ...(KA'S) ANSWER 2.12 (2.00) Accommodate the expansion and contraction of the component cooling water resulting from the temperature changes during system operation Provides an immediate source of makeup in the event of a component cooling system leak Provide a suction head for the component cooling pumps Accommodate the inflow of reactor coolant stemming from a RCP thermal barrier heat exchanger tube rupture for three minutes [equivalent wording accepted for full credit] [all 4 @ 0.5 each] REFERENCE Component Cooling Water System Description, Chapter 19, Rev. 2, Para II.A.3., p. 19-15 008000G007 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 3.01 (2.00) - c. [VCT level will go to zero] [1.0 each ans.] - 2. d. [VCT level will be maintained in the normal operating range] REFERENCE Chemical and Volume Control System Description, Chapter 15a, Rev. 6, Para II.B.1.k., p. 15a-54&55 004020A104 ...(KA'S) ANSWER 3.02 (1.50) 3" (0.50) - a. Manual rod motion stops -[0.25 each ans.] Auto rod motion stops - Phase failure Part b" Jeleted. Logic error - Multiplexing error Loose or missing card [any 4 at 0.25 each] REFERENCE Rod Control System Description, Chapter 28, Rev. 5, Para II.B.2.a., p.28-65 through 28-67 001050K401 ...(KA'S) ANSWER 3.03 (2.00) 7, (1.00) - a. C-5 [turbine first stage pressure] [0.25] <15% [0.15] 1/1 [0.1] C-11 [control bank D] [0.25] 223 steps [0.25] - b. 6 1 [intermediate range nuclear overpower] [0.25] current equal to 20% power [0.15] 1/2 [0.1] Part "b" deleted. 7 N del ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. REFERENCE Rod Control System Description, Chapter 28, Rev. 5, Para C.1., p. 28-72 and 28-73 001000K408 ...(KA'S) ANSWER 3.04 (1.00) The digital rod position indication system [0.25] senses actual rod position using coils mounted around the rod drive pressure housing[0.25]. The demand position indication system [0.25] determines rod position by counting the number of steps demanded by the rod control system[0.25]. REFERENCE Rod Position Indication System Description, Chapter 29, Rev. 5, Para I.B., p. 29-5 014000A102 ...(KA'S) ANSWER 3.05 (2.00) Rod control Steam dumps Pressurizer level program [all 5 @ 0.4 each] RIL Deviation alarms [loop Tavg or Tref] REFERENCE Reactor Coolant System Description, Chapter 12, Rev. 2, Para II.B.1., p. 12-22 through 12-24 016000K403 ...(KA'S) ANSWER 3.06 (1.50) The loss of load controller [0.5] would generate a Tavg-Tref mismatch signal [0.5], however the dump valves would not open since they are not armed [0.5]. REFERENCE Steam Dump System Description, Chapter 24, Rev. 2, Para II.A.7., p. 24-11 041020A408 C41020K411 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-VICTOR, F. ANSWER 3.07 (2.50) Pressure decreases because PORV opens momentarily and shuts [0.5] all heaters turn off [0.5] while both spray valves open and remain open [0.5]. [A reactor trip and] safety injection occur which raises pressure after the pressurize is filled soild [0.5]. Final pressure will be determined by cycling of the PORV [0.5]. [equivalent wording accepted for full credit] REFERENCE Pressurizer Pressure and Level Control System Description, Chapter 14, Rev. 3, Para II.C.1., p. 14-38 through 14-41 010000K103 ...(KA'S) ANSWER 3.08 (3.00) - a. When a Reactor Trip Breaker [0.25] and it's Bypass Breaker [0.25] are both open [0.25] [in either train.] - b. 1. Actuates turbine trip. [0.5] - 2. Closes the main feedwater valves [0.25] on Tavg < 564 [0.25] - Prevents opening of main feedwater valves which were closed [0.25] by safety injection [0.25] or high-high steam generator water level [0.25]. - Allows manual block [0.25] of the automatic reactuation of safety injection [0.25] REFERENCE Reactor Protection System Description, Chapter 60b, Rev. 3, Para II.C.1., p. 60b-21 012000K610 ...(KA'S) · ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 3.09 (2.00) - A. PREAMP - B. LOSS OF DETECTOR VOLTAGE ALARM - C. AUDIO COUNT RATE - D. SUR CIRCUIT [0.4 for each ans.] E. HI FLUX AT SHUTDOWN REFERENCE Source Range NI'S System Description, Chapter 31, Rev. 3, Figure 31-7 015000G007 015000K603 ...(KA'S) ANSWER 3.10 (2.25) a. Reactor coolant loop pressure sensors Reactor vessel level indication system [RVLIS] Core exit thermocouples [all 3 @ 0.25 each]] - b. 1. Loss of fluid subcooling prior to the occurrence of saturation conditions in the coolant [equivalent wording accepted] [0.5] - Decreasing coolant inventory within the upper plenum [from the top of the vessel to the top of the active fuel] [0.5] - Increasing core exit temperature produced by uncovery of the core [0.5] REFERENCE Inadequate Core Cooling System Description, Chapter 34b, Rev. 2,. Para I.B, p. 34b-4 through 34b-6 016000G015 017020K601 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-VICTOR, F. ### ANSWER 3.11 (2.25) - a. When a high radiation level is detected, one of the charcoal booster fans [0.25] (OVAO4CA or B) starts [0.25]. The filter bypass damper closes [0.25] and flow is directed through the filter [0.25]. Once one of the booster fans starts [0.25] the other is locked out and prevented from starting [0.25]. - b. When a high radiation level is detected, automatically the outside air intake B dampers close [0.25], the makeup area unit fan (OVCO3CB) starts [0.25] and the main control room turbine building air intake "B" dampers open [0.25]. REFERENCE Radiation Monitoring System Description, Chapter 49, Rev. 2, Para II.C.1.&2 p. 49-64 through 49-67 072000K402 073000K101 ...(KA'S) ANSWER 3.12 (3.00) E 0.47. Change third sentence to read " E scential Service (3.00) E 0.47. - a. All RCFC fans operating in HIGH speed will trip. [0.40] After a 20 second time delay [0.4] (with power available) all fans will start in LOW speed. [0.4] Essential Service Water to the chilled water coils is isolated [0.4] (resulting in the chill water pump tripping.) The RCFC unit is interlocked with the Essential Service Water outlet isolation valves [0.4] (such that isolation valves automatically open when fan motors start and close when fan motors stop.) - b. The P-14 interlock is generated by
Hi-Hi Steam Generator Level [0.1] with 2/4 detectors [0.1] on 1/4 Steam Generators [0.1] above 81.4% NR [0.1]. The P-14 interlock closes all feedwater control valves [0.2], trips the MFW pumps [0.2] and actuates a turbine trip [0.2]. REFERENCE Engineered Safety Features System Description, Chapter 61, Rev. 2, Para II.C.14. p. 61-34 Containment Ventilation and Purge System Description, Chapter 42, Rev. 2 Para II.C.1 & 2 p. 42-38 through 42-40 013000G004 013000K113 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 4.01 (1.50) A reactor trip is necessary to prevent low S/G levels (0.5) since the Feedwater Regulating Valves (0.5) and Feedwater Bypass Valves (0.5) fail closed on loss of either DC bus. REFERENCE BW Rev.2 S.D. Chapt.8a p.8a-22 BW Procedure 1BWOA ELECT-1 p. 2 of 28 000058K302 ...(KA'S) ANSWER 4.02 (1.50) The operator must have the procedures immediately present (0.5) (as they are used) and steps are signed off on a flow chart (0.5) as the steps are performed. (0.5) REFERENCE BW Procedure BWAP 340-1, Rev. 52, p.2 194001A102 ...(KA'S) - ANSWER 4.03 (2.00) When aligning the RHR system to supply the SI system (0.5) the SI Pump miniflow valves must be shut (to prevent coolant from entering the RWST.) (0.5) With RCS pressure above 1590 psig the SI pumps will be operating at their shutoff head pressure.(0.5) Operating the SI pumps at shutoff head pressure with no recirculation (miniflow) could damage the pumps.(0.5) REFERENCE BW Procedure 1 BWEP, ES-1.3 p.4 BW Systems Lesson Plan ECCS Ch.58, p. 44 of 81 006000K402 006000K406 ...(KA'S) ANSWERS -- BRAIDWOOD 1&2 -88/07/18-VICTOR, F. ANSWER 4.04 (1.50) - The Containment Atmosphere Particulate Radioactive Monitoring System. - The Containment Floor Drain and Reactor Cavity Flow Monitoring System. - The Containment Gaseous Radioactivity Monicoring System. (0.5 each ans.) REFERENCE BW Technical Specifications p. 3/4 4-20. 000009A210 000009A211 ...(KA'S) ANSWER 4.05 (1.50) - a. Rod bottom lights-LIT. Reactor trip and bypass breakers-OPEN Neutron Flux-Decreasing (0.125 each ans.) - b. FW pumps-TRIPPED FW pumps discharge valves-CLOSED IFW 002 A/B/C/D FW reg valves-CLOSED | FW 510/520/530/540 FW reg byp valves-CLOSED | FW 510/520/530/540 FW isol valves-CLOSED | FW 009 A/B/C/D FW temprng flow cont valves-CLOSED | FW 039 A/B/C/D FW temprng isol valves-CLOSED | FW 035 A/B/C/D FW prehtr byp isol valves-CLOSED | FW 037 A/B/C/D FWIV byp isol valves-CLOSED | FW 043 A/B/C/D FWIV byp isol valves-CLOSED | FW 043 A/B/C/D FWIV byp isol valves-CLOSED | FW 043 A/B/C/D FW 125 each ans.) REFERENCE BW Procedure 1BWEP-0 p.3 of 31, 6 of 31, 7 of 31 000005G010 000007A206 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 4.06 (2.00) a. With rod control in manual, exercise the bank (with the failed rod) by inserting rods 5 steps (0.5) and then withdrawing rods 5 steps (0.5) to determine if all rods move. b. A rod misaligned high is driven in to match its group (0.5) while a rod misaligned low has the group driven in to match the misaligned rod. (0.5) REFERENCE BW Procedure 1BWOA, ROD-3 p.3 of 6, 6 of 6 000005K306 ...(KA'S) ANSWER 4.07 (1.50) - a. Personnel dosimeters are worn near each other (0.25) on the front part (0.135) of the body at or above the waist level (0.25)?" - b. The individual shall leave the work area and report to his supervisor (0.125), (0.25) and then to Radiation/Chemistry immediately (0.25). - c. Whole body dose limit shall not exceed 75 rem.(0.25) Extremities dose limit shall not exceed 200 rem.(0.25) REFERENCE BW Procedure BWRP 1000-A1 p.26,33 194001K103 194001K104 ...(KA'S) ANSWER 4.08 (1.00) First --Place an OOS card on the remote control switch. Next ---Place an OOS card on the power supply for the valve. Last ---Place an OOS card on the valve. (0.33 each ans.) REFERENCE BW Procedure BWAP 330-1 p.3; BWAP 330-6 p.1 194001K102 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 4.09 (2.00) 1. #1 seal leakoff flow high 2. #1 seal leakoff flow low 3. #1 seal outlet temperature high 4. RCP vibration 5. #1 seal low delta-p (Any 4 at 0.5 each) REFERENCE BW Procedure 1BWOA, RCP-1 p.1 of 14 003000G015 ...(KA'S) ANSWER 4.10 (1.00) If you discover a fire that is so small that you are sure you can put it out with extinguishers readily available, extinguish it at once [0.25] and then dial extension 2211 and report the fire [0.25]. If in doubt summon aid before fighting the fire.[0.25] Report the use of any fire equipment to the Fire Marshal as soon as possible.[0.25] REFERENCE BW Administrative Procedure 000067G001 194001K116 ...(KA'S) ## ANSWER 4.11 (2.00) - a. 1. Emergency borate using emergency borate valve(1CV8104). - 2. Emergency borate through the normal boration path. - 3. Emergency borate using RWST. (0.25 each; 0.25 for correct order) - b. Emergency boration using the manual boration valve (1CV8439) will only deliver 10 GPM of boration flow (0.5) which does not meet the flowrate required by Technical Specifications. (0.5) REFERENCE BW Procedure 1BWOA, PRI-2 p. 2 of 7 through 4 of 7. 000024K302 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 4.12 (1.00) 1. Containment pressure (0.25) greater than 5 psig. (0.25) 2. Containment radiation level (0.25) greater than 100,000 R/HR.(0.25) REFERENCE BW Procedure 18WEP-0 p.3 of 31 000009A210 000009A211 103000G015 ...(KA'S) ANSWER 4.13 (1.50) a. 2735, 550 (0.5 each) b. (2) Identified Leakage (0.5) REFERENCE BRAIDWOOD T.S. p.1-3; 2-1; and 3/4 1-6 002000G005 010000G005 ...(KA'S) ANSWER 4.14 (1.50) Trip the RCPs when: -- CC Water to RCPs lost (0.25) -- Containment Phase B activated (0.25) --Controlled cooldown not in progress (0.25) and RCS pressure less than 1370 psig (0.25) and High Head SI pump greater than 50 GPM (0.25) or SI pump(s) greater than 100 gpm. (0.25) REFERENCE BW Procedure 1BWEP-0 fold-out page. 000007A104 ...(KA'S) ANSWER 4.15 (1.00) a. 60 105 b. Demineralized water supply Reactor makeup water (0.25 each) REFERENCE BW Precautions, Limitations and Set points p.90 008030G010 ...(KA'S) ANSWERS -- BRAIDWOOD 182 -88/07/18-VICTOR, F. ANSWER 4.16 (1.50) a. FALSE b. FALSE c. TRUE REFERENCE BW Procedure BWAP 340-1, Rev.52 p.9 000011K011 ...(KA'S) ANSWER 4.17 (1.00) A mandatory in-hand procedure must be in the possession of the personnel on the job and each step is read (0.25) and understood (0.25) prior to performing the task. (0.25) BWOP RD-5, Control Rod Drive MG Set Start Up and Paralleling. (0.25) REFERENCE BW Special Operating Order SO-ST-0014 194001A102 194001A103 ...(KA'S)