ESF LOAD SEQUENCER

SOFTWARE VERIFICATION AND VALIDATION REPORT

prepared by: SIMPACT ASSOCIATES, INC. 5520 Ruffin Road San Diego, CA 92123

September 9, 1982

ESF LOAD SEQUENCER
 SOFTWARE VERIFICATION AND VAIIDATION REPORT

TABLE OF CONTENTS

1. OBJECTIVE 1
2. STUDY PROCEDURE AND RESULTS SUMMARY 2
3. SPECIFICATION REQUIREMENTS 4
4. SOFTWARE STRUCTURE 5
5. SYSTEM ROUTINES 7
如 6. UNDERVOLTAGE MONITORING 9
6. ESF BUS LOAD SEQUEINCING 10
7. AUTOTESTING 12
8. PERFORMANCE/DESIGN DEMONSTRATION TEST RESULTS 16
9. CONCLUSION 17
APPENDIX A A-1
1.- OBJECTIVE

The objective of the Software Verification and Validation Study is to verify that the software of the ESF Load Sequencer meets the requirements of the design specification, and that no sneak software paths (circuits) exist that would render the system inoperable. The ESF Load Sequencer is a module in the Balance of Plant (BOP) Engineered Safety Features Actuation System (ESFAS) supplied by General Atomic Company (GA) to the Palo Verde Nuclear Generating Station under Arizona Public Service Company purchase Order 10407-13-JM-104 and Bechtel Power Corporation Specification 13-JM-104. This module controls loading of the station ESF bus and diesel generators under loss of power conditions or if an accident signal is present.

The purpose of this report is to outline the methods used to perform this study and to detail the findings of the study.

2. STUDY PROCEDURE AND RESULTS SUMMARY

The following steps were taken to perform the study:
a. Review of Bechtel Specification (13-JM-104). This specification was reviewed in detail to determine the functional requirements of the ESF Load Sequencer.

- b. Review of General Atomic Operations and Maintenánće Manual (E-1l5-760). This manual was reviewed to determine how the functional requirements had been implemented and in particular, which functions had been implemented in software. The major functions implemented in software are:
i. Monitoring of accident signals and sequencing control of ESF bus loads.
ii. Monitoring loss of power condition and generation of load shed signal and loss of power off delay.
iii. Auto-testing of all ESFAS Modules including ESF Load Sequencer.
c. Review of Software Documentation (SK-1678). This documentation includes program listings and flowcharts for all software modules in the ESF Load Sequencer. The documentation was reviewed for completeness. In addition, each module was reviewed individually to determine that the flowcharts matched the program code, that the program code was properly documented and that the code as implemented performed the required functions.
d. Review of Performance Test Report (E-115-787) and Design Demonstration Test Report (E-160-972). The performance Test demonstrates the functional performance of the ESFAS equipment. The Design Demonstration Test verifies that the design of the ESF Load Sequencer permits no credible common failure modes to exist in response to credible input perturbations and series of events. Both test reports were reviewed to determine whether the tests exercised all program paths within the software of the ESF Load Sequencer.

The results of this study show that the software of the ESF Load Sequencer meets the requirements of ESFAS Specification, 13-JM-104. Two minor anomalies were noted in the software, neither of which will cause a malfunction of the ESFAS equipment.

The first anomaly results from disabling interrupts during test of the bottom half of RAM memory. This causes an increase in the sampling interval of the contact debounce algorithm which in turn delays posting of an input change. Since the delay is of the order of 10 msec , there is no significant affect on the performance of the ESFAS system.

- The second anomaly is in the load sequencer logic and fican cause 2 msec pulses on certain relay outputs. The duration of these pulses is not sufficient to cause activation of any device.

The Bechtel Specification, 13-JM-104, defines the technical requirements for all aspects of the ESFAS system. The functions specific to the ESF Load Sequencer are defined in. Section 4.5.14 of that specification. These functions are implemented in the ESE Load Sequencer software. In addition, this software also controls the auto-testing functions, as specified in Section 4.5.13 and certain alarm contact outputs as specified in Section 4.5.16. The major requirements of the specification are:
a. Monitor undervoltage input from Lop/LS module. upon detection of undervoltage condition generate a l second load shed pulse and activate loss of power signal. When undervoltage condition clears ensure that it remains in the cleared condition for 60 seconds before deactivating loss of power signal.
b. Monitor loss of power and accident signals. Upon detection of specific combinations of these inputs, initiate one of four loading sequences or modes (see specification attachment $4-1$, sheet 8). Activate one contact per sequencer mode to indicate automatic sequencing in progress. Activate up to ten independent, time separated loading signals, adjustable in one second increments over a total time span of 60 seconds (for sequencer outputs and timing, see specification attachment 4-2, tables 8 and 9, respectively).
c. Automatically test the operation of the maximum possible portion of the ESFAS system. Upon detection of circuit malfunction, immediately initiate remote annunciator and indicate malfunction locally. This automatic testing, under normal or failure condition of the test features must not interfere with the normal operation of system or cause protective action.

The software consists of a number of routines which operate in conjunction with each other to fulfill all functions of the system. These routines fall into four categories.
a. System Routines. These routines handle timer interrupts and input/output. They also control the execution of the other programs in the system.
b. Task Routines. These routines implement the major functions in the system, i.e., under voltage monitoring, mode detection/output sequencing and auto-testing.
c. Task subroutines. These röutines implement specific functions within the task routines. .
d. Common Subroutines. These routines implement functions common to several tasks.

The software structure and hierarchy is shown in Figure 4-1. Appendix A contains a profile of each routine in the system. The profile lists the following information for each routine:
a. Category (e.g., system routine, task, etc.)
b. Function
c. Verification Study Data, including:
i. accuracy and completeness of flowcharts
ii. accuracy and completeness of prögram listing comments
iii. specific design demonstration/performance tests which exercise the code
iv. coding or design errors detected in the routine
v. comments

These common subroutines called by multiple tasks or task subroutines

Figure 4-1 Software Structure Chart

To meet the functional requirements defined in section 3 , the system must provide the following major features:
a. Accurate time base generator to control time-related functions e.g., input debouncing, load shed pulse duration, loss-of-power off delay and sequencing of loads onto the ESF bus.
b. Concurrent operation of several different functions e.g., undervoltage monitoring, mode determination/load sequencing and automatic testing.

These features are implemented in two system routines, the timer interrupt handler (RST75/RST65), and the executive program (EXEC). The overall design of these programs was validated and the detailed implementation of each feature was verified. Particular emphasis was placed on verification of the major features outlined above.

The system meets the time base generator requirements by implementation of two timer interrupts. The lower priority interrupt occurs every 2 msec , the higher priority interrupt occurs every 10 msec. The 2 msec interrupt routine reads all digital inputs and processes them through a debounce routine. The debounce algorithm is based on the 2 msec sampling time and ensures that the input has reached a steady state before reporting any change to the other software routines. The 10 msec interrupt routine sets a software flag for the executive program in addition to debouncing the inputs. The executive uses this 10 msec flag to allocate execution time to each of the concurrent functions and as a time base to schedule programs handiing time-related functions.

The executive allocates 10 msec time slots for execution of the concurrent functions required in the system. Each concurrent function outlined in (b) above is designed as a separate program(s) (see Table 5-1). These programs, or tasks, run under control of the executive which allocates 10 msec time slots to each as required. Within the 10 msec time slot the task must execute to completion and return control to the executive. The system complies with this requirement; the execution time for each task is shown in Table 5-1.

Every 250 msec the executive allocates one 10 msec time slot to the task $S 0$ which monitors the undervoltage condition and checks for a stall condition in the opposite train (redundant system). It, also allocates one 10 msec time slot to the task Sl which detects changes in the sequencer mode and performs the bus load sequencing operation. The remaining twenty-three 10 msec time slots are allocated to autotesting tasks. The sequential time slot during which each task may be executed is shown in Table 5-1. Since the task 50 and $S 1$

Task Name	Function Performed	Executed during time-slot	Approximate execution time
-			
so	Check loss of power condition *Generate/check stall opposite train signal	0	1 msec
S1	Sequencer mode determination. Sequencer output control	1	3 msec
S2	*Generate $10 \mathrm{msec} / 50 \mathrm{msec}$ module test pulse	2	1 msec
s3	*Check 10 msec module test pulse on	3	1 msec
S4	*Check 10 msec module test pulse off	4	1 msec
S7	*Check 50 msec module test pulse on	7	1 msec
S 24	*Check 50 msec module test pulse off	24	1 msec
tiram	*Test top half of RAM memory	2-24	7 msec
biram	*Test bottom half of RAM memory	2-24	8 msec
ROM	*Test ROM memory	2-24	4 msec
* Auto testing functions			
are executed every 25 th time slot, they execute at 250 msec ($1 / 4 \mathrm{sec}$) intervals. This synchronous execution permits the timed execution of functions at 1 sec intervals as required for load shed pulse, loss-of-power off delay and sequencing of loads onto the ESF bus. This inherent program timing is also used in the autotesting software to control the duration of test pulses to the other ESF modules.			
The design was found to be valid and met the system requirements of the specification. No discrepancies were detected in the software implementation of the design.			

6. UNDERVOLTAGE MONITORING

The design specification defines the following major requirements for the undervoltage monitoring function:
a. Monitor an input from LOP/LS module for undervoltage condition on the 4.16 kV ESF bus.
b. Upon occurrence of undervoltage condition, generate a, one second load shed pulse and set loss of power condition.
c. If undervoltage condition clears and remains cleared for $60 \mathrm{sec}, \mathrm{clear}$ loss of power condition (off-delay). .

These functions are implemented in subroutine CKLOP which is executed every 250 msec by the task So. The overall design of the subroutine was validated and the detailed implementation of each feature was verified. particular emphasis was placed on verification of the major features outlined above.

The program monitors the bus undervoltage input from the LOP/LS module. Upon detection of an undervoltage condition it activates the load shed output to the LOP/LS module and illuminates the loss of power indicator on the Load Sequencer module. Internally it indicates the loss of power condition by setting a software flag. The program uses the synchronous nature of the task (it executes every 250 msec) to control the duration of the load shed pulse. On the fourth execution of the program after the signal is activated, it is deactivated terminating the load shed pulse.

After generation of the load shed pulse, the system continues to monitor the undervoltage input. If the undervoltage clears and remains in the cleared state for 60 seconds, the loss of power indicator is extinguished and the loss of power software flag is cleared. Again, the synchronous nature of the task is used to determine this 60 sec off-delay. Should the undervoltage condition re-occur within the 60 sec off-delay period, the design of the software ensures that the 60 sec off-delay is terminated without resetting the loss of power indicator or flag. A new 60 sec off-delay is started when the undervoltage clears again. The design of the software also ensures that the load shed pulse occurs only once for each loss of power condition. The load shed pulse is generated when the undervoltage condition is first detected. No further load shed pulses are generated until the 60 sec off-delay completes although several undervoltage conditions may occur within this time interval.

The design was found to be valid and met the undervoltage monitoring requirement of the specification. No discrepancies were detected in the software implementation of the design.

7. ESF BUS LOAD SEQUENCING

The design specification defines the following major requirements for the ESF bus load sequencing function:
a. Monitor loss of power condition and accident signal inputs for specified combinations of these inputs.
b. Upon detection of any such combination, initiate/terminate load sequencing mode. The input combinations which cause mode transitions are defined in specification attachment $4-1$, sheet 8 .
c. Upon initiation of any mode, start bus loading sequence defined for that mode per specification attachment 4-2, table 9. Initiate contact closure to indicate currently active mode.
d. Sequence loads onto ESF bus at the specified time intervals for the active mode.
e. Upon termination of a sequencing mode, return all outputs to idle state (mode 0) and clear mode indication contact.

The mode determination function is implemented in task $S i$ which executes every 250 msec . The load sequencing function is implemented in the subroutine OSEQ. OSEQ is called by task Sl when the sequencer is in any mode other than mode 0 . The overall design of these programs was validated and the detailed implementation of each feature was verified. particular emphasis was placed on verification of the major features outlined above.

The task Sl checks initially for an active sequencing mode (modes l-4). If such a mode is active, it verifies that the specified inputs are still in the required state. All inputs which are not specified for the mode are considered as "don't caren inputs and are ignored. If all specified inputs are still true, no mode change is required. If some inputs have changed state, the sequencer returns to the idie state (mode 0), the mode indication output is cleared and all sequencer output signals are returned to the mode 0 condition. The sequencer always returns to the idle state when conditions for the active sequencing mode are no longer true even though conditions may be correct for entry into another sequencing mode. The next execution of the task will cause the transition to the new mode.

If the sequencer is in the idle state (mode 0) upon entry to the task, the loss of power software flag and the accident signals are checked. If the state of these inputs matches the state specified for any of the sequencing modes 1-4, that mode is activated. Again, all inputs which are not specified for the mode are treated as "don't care" conditions. upon
transition to the mode, the mode indication output is set and the sequencing timer is started.

Prior to exiting task Sl, a check of the current sequencing mode is made. If the mode is not zero (output. sequence active) the subroutine OSEQ is called. This routine handes the contact closure outputs and the time activation of these signals necessary to sequence the loads onto the ESF bus.

- Since the routine executes every $1 / 4 \mathrm{sec}$ the time resolution is sufficiently accurate to meet the load sequencing requirements. The routine is table-driven in design; this means that all sequencing modes are handled by the same executable program code with variable parameters (e.g., output signal, activation time) stored in a table of each mode. All table entries were verified and found to be correct.

A design anomaly was found in the routine OSEQ. As with all digital outputs in the system, this routine sets/clears outputs in the output bit map. This output bit map is copied to the output ports every 2 msec by the timer interrupt routine. Certain actuation signals exist which change state twice during a sequencing mode e.g., Charging pumps in mode 2. These require two entries in the mode table which specifies the parameters for OSEQ, one to activate the output, the other to deactivate the output. The design of the software is such that if, for example, the signal is activated at time 0 sec and deactivated at time 40 sec , every time the routine executes after the 40 sec time, the signal will first be set, then cleared in the output bit map. If an interrupt occurs while the bit is set, the bit is copied from the bit map to the output port. The bit will. remain set until the next interrupt, 2 msec later, by which time $O S E Q$ will have reset the bit. The probability of occurrence of this 2 msec pulse is small; in addition, the duration of the pulse is insufficient to cause actuation of the controlled device. This anomaly will cause no malfunction of the ESFAS system.

All other features of the design were found to be valid and met the requirements of the specification. No discrepancies were detected in the software implementation of the design.
8. AUTOTESTING

The design specification defines the following requirements for the autotesting function:
a. Test automatically and continually maximum possible portion of the ESFAS system.
b. Under normal or failure conditions of the testing system, ensure that it interferes in no way with the normal operation of the system.
c. Upon detection of circuit malfunction, initiate a remote annunciator and locally indicate malfunction.
d. Permit convenient interruption of autotesting at any time.

These functions are implemented in three categories; redundant system (opposite train) monitoring by task so, ESFAS module testing by tasks $52,53, S 4,57$ and 524 , and Load Sequencer testing by tasks TIRAM, BlRAM and ROM. The overall design of each test was validated and the detailed implementation of the testing features verified.

The task so monitors a square wave input with a 10 second period which is generated by the opposite train (redundant system). If a transition is not detected every 5 secs, an indicator on the Load Sequencer module is illuminated to indicate a stall. In addition, the stall opposite train annunciator is activated. The task so also generates a square wave output with a 10 second period which is monitored by the opposite train. This feature continually monitors the correct operation of each system.

The other testing features are executed only if the Manual/Auto switch is in the Auto position and only if the sequencer is in the idle state (mode 0). The executive routine monitors the Manual/Auto switch and prevents scheduling of the autotest tasks if it is in the manual position. This meets the requirement to permit convenient interruption of autotesting at any time.

The system tests the other modules within the ESFAS system by generation of test pulses to those modules. The tasks s2, S3 and 54 working in conjunction with each other, generate and test responses to 10 msec test pulses. The tasks S2, S7 and S24 generate and test responses to 50 msec test pulses. The synchronous nature of task scheduling by the executive, permits generation of accurate pulse lengths. This test pulse software is table driven in the same manner as the output sequencer (OSEQ) routine. The test output, the expected module input and the expected test return are all defined within the parameter table for each module. To test
a module the output is set. At 10 msec (or 50 msec) later the state of the module inputs and the test return inputs are tested. If found in the correct state the test output is cleared. At 10 msec (or 170 msec) later the state of the module inputs and the test return inputs are again tested to ensure that they have returned to the cleared state. It should be noted that the program not only tests the correct response of the module input and test return which correspond to the activated test output, but it also tests all other - module inputs and test returns to ensure that they do "not respond. If an error is detected the test is terminated and the test indicator lamp on the module under test is flashed. The autotest suspend annunciator is also activated. These features satisfy the requirements specified in item (c) above.

Under normal autotesting conditions the task so checks for the presence of a real input, as opposed to a test output response. If a real input is found, autotesting is suspended and initiation of the new sequencer mode (if required) will be performed by task Sl. Suspension of autotesting due to a real input or due to a module test failure, does not affect the mode determination or the load sequencing functions of the Load Sequencer in any way.

Autotesting of the Load Sequencer module itself is performed by the tasks TIRAM, BlRAM and ROM. These tasks test the top half of RAM memory, the bottom half of RAM memory and ROM memory, respectively. The RAM memory tests do a write/read/compare operation of all data patterns into all RAM memory locations. The ROM memory test does a checksum calculation/comparison operation on all ROM memory locations. If an error is detected in any of these tests, an error light pattern is flashed on the Load Sequencer module and all software functions are inhibited. It is not possible to continue system operation when an error is detected in one of the tests as failure of RAM or ROM can cause unpredictable operation of the system.

An anomaly was found in the design of task BlRAM. Inputs are sampled by the interrupt routine which normally executes at 2 msec intervals. Any input change is processed by a debounce algorithm which requires three consecutive sample values to determine the true debounced state. This results in a delay of up to 4 msec between the occurrence of the change and the reporting of it to the processing task.

Interrupts are disabled while testing the bottom half of RAM. This ensures that no data is changed during execution of the test which requires slightly in excess of 8 msec of the 10 msec exection slot assigned by the Executive. The inputs are sampled once prior to disabling of the interrupt, once upon reenabling of the interrupt and a third time at the end of the 10 ms execution time slot (see Figure 8-1). Assuming
this extended sample interval (8 msec) will still match the mechanical characteristics of the input contact, the delay between the occurrence of the change and the reporting of it to the processing task (i.e., time required for three consecutive samples of the input) has now increased to 10 msec. This is an increase of 150% in the reporting delay experienced with the 2 msec sample interval. It will have no significant affect on the operation of the Load Sequencer - however; the undervoltage monitoring and sequencer mode - determination functions are only performed once every 250 msec.

All other features of the design were found to be valid and met the requirements of the specification. No discrepancies were detected in the software implementation of the design.

TIME (MSECC)

NTUT SAMPLING

INTERRUPT DISABLED
INTERRUPT ENABLED

NORMAL EXECUTION

Figure 8-1 Input sampling timing diagram

9. PERFORMANCE/DESIGN DEMONSTRATION TEST RESULTS

The results of the Performance Test Report (E-115-787) and the Design Demonstration Test Report (E-160-972) were reviewed to determine whether all program paths within the software had been exercised by these tests. Appendix A lists tests which exercised the logic of each program. In general,

- almost all program paths were tested. Exceptions are the
- failure paths for the RAM and ROM test programs, and the fatal error routine (HALT) to which they transfer control. These program paths are straightforward and perform their designed function.

All test results indicate that the design and implementation of the software fulfill the requirements of the design specification.

10. CONCLUSION

The results of this study show that the software of the ESF Load Sequencer meets all the requirements of the ESFAS Design Specification l3-JM-104. In addition, no sneak circuits or software paths exist that would render the system inoperable. The two anomalies which were noted, 2 msec pulses on

- sequencer output relays and variations in debounce timing of - inputs, will cause no malfunction in the ESFAS equipment.'
Program Name: HALT
Category:
Function:
$-$
Flowchart:
Source Code Comments:Exercised by:
Design/Coding Errors:
Comments:
System Routine
Terminates system execution on fatalerror. Displays flashing error codein lights of Load Sequencer module:
Complete and correct
Adequate
This routine was not exercised byeither the Design Demonstration Testor the Performance Test.NoneNone
Program Name:
Category:
Function:Elowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
System Routine
Initializes software and hardware on system power up (cold start).
Complete and correct
Adequate
Performance Test on start up(ELA 342-0062, Sheet 33 of 70)
None
Comments: None
Program Name: RST75/RST65
Category:
System 'Routine
processes timer interrupts. Readsinputs and stores debounced results ininput bit map. Copies output bitimapto output ports. Sets 10 msecinterrupt flag for executive.
Flowehart:
Source Code Comments:
Exercised by:
Design/Coding Errors:None
Comments:

Program Name:
Category:
Function:
-
Flowchart:
Source Code Comments:
Exercised by:

Design/Coding Errors:
Comments:

DEBNC
System Routine
Debounces digital inputs. Called by system routine RST75/RST65.

Complete and Correct
Adequate
Performance Test and Design Test on each interíupt (every 2 msec).

None
None
Program Name: INIT
Category:
System Routine
Function:Initializes I/O ports and timers.Called by system routine COLD.$:$
Flowchart:
Complete and correct
Source Code Comments: Adequate
Exercised by:
Performance Test on start up(ELA 342-0062 Sheet 33 of 70)
Design/Coding Errors: None
Comments:

Program Name:	EXEC
Category:	System Routine
Function:	Controls execution of tasks within system.
Flowchart:	Complete and correct
Source Code Comments:	Adequate
Exercised by:	Autotest section of performance Test Design/Coding Errors: Comments:
	None

Program Name: SO
Category: Task
Function:
Flowchart:
Source Code Comments:
opposite train (redundant system). ${ }_{i}$:
Updates system running flag for this train.
Calls CKLOP to monitor undervoltage condition. .
Checks for any real inputs to stop/resume autotesting.
Complete and correct
Adequate
Exercised by:
Design/Coding Errors:
Comments:
Stall/system running; tested byPerformance Test (ELA 342-0062, Sheet65 of 70).
Undervoltage monitoring; tested byDesign Demonstration "Test(ELA 342-0063, Page 16 of 43, Test 1)
Stop autotesting on real input; testedby Design Demonstration Test(ELA 342-0063, Page 22 of 43, Test 6)Resume autotesting on absence of realinputs tested by Design DemonstrationTest (ELA 342-0063, Page 24/43,Test 8A/8B)
None
None
Program Name: S1
Category:Function:-
-
Flowehart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:

Monitors loss of power and accident signals to determine sequencing mode:

Calls output sequencing (OSEQ) routine to sequence bus loads.

Complete and correct.
Accurate
Mode transitions tested by Desing Demonstration Test (ELA 342-0063, Pages 22 and 23 of 43, Tests 6, 7A and 7B).

None
None
Program Name: S2
Category: Task
Function: Activates test pulse for module autotesting.
Complete and correct
Adequate
Performance Test (ELA 342-0062, Sheet58 of 70):
Design/Coding Errors: None
Comments:
None
Program Name: S3

Category:

Function:

Flowchart:

Source Code Comments:
Exercised by:

Design/Coding Errors:

Comments:

Task
Checks "on" condition of test return for 10 msec test pulse (module autotesting) and deactivate fiest pulse.

Complete and correct
Adequate
Performance Test. (ELA 343-0062, Sheet 58 of 70).

None
-
Task, S3, S4, S7 and S24 are all a part of the same source code module (TEST) and use a common error exit, TSTERR.
Program Name:

Category:

Function:
-
$-$
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:

S4

Task

Check "off" condition of test return for 10 msec test pulse (module autotesting).
$:$
Complete and corret
Adequate
Performance Test (ELA 34-0062, Sheet 58 of 70).

None
part of source code module TEST.
Program Name: 57
Category: TaskFunction:-
-
Flowchart:Checks "on" condition of test returnfor 50 msec test pulse (moduleautotesting) and deactivate testpulse.
Complete and correct
Source Code Comments:
Adequate
Exercised by:Performance Test (ELA 342-0062, Shweet58 of 70).
Design/Coding Errors: None
Comments:

Part of source code module TEST.
Program Name: S24
Category: Task
Function:Checks "off" condition of test returnfor 50 msec test pulse (moduleautotesting). i
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors;
Comments:
Complete and correct .
Adequate
Performancè Test (ELA 342-0062, Sheet58 of 70).
None
Part of source code module 'TEST.

Program Name:

Category:

Function:

Flowchart:
Source Code Comments:

Exercised by:

Design/Coding Errors:
Comments:

TIRAM

Task

'rests the top half of RAM memory. Complete and correct.

Adequate
Autotest section of Performance Test (ELA 342-0062, Sheet 58 of 70). Failure condition not encountered during test, hence no testing of failure path.

None
None
Program Name:Category:
Function:
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:

BIRAM

Task
Tests the bottom half of RAM memory.
Complete and correct

Adequate

Autotest section of Performance Test (ELA 642-0062, Sheet 58 of 70). Failure condition not encountered during test hence no testing of failure path.

This test disables interrupt for approximately 8 msec. This affects the input debouncing algorithm and can delay updating of debounced inputs in input bit map. No coding errors.

None
Program Name: ROM
Category: Task
Function:
Tests ROM memory
Flowchart:
Source Code Comments:Complete and correct
$i=$
AdequateAutotest section of Performance Test(ELA 642-0062, Sheet 58 of 70).Failure condition not encounteredduring test hence no testing offailure path.
Design/Coding Errors: None
Comments: None

Program Name:
Category:
Function:
-
Flowchart:
Source Code Comments:
Exercised by:

Design/Coding Errors:
Comments:

STALL
Task Subroutine called by so
Check for stall of opposite train (redundant system).

Complete and correct
Adequate
Exercised continuously during testing. Stall condition simulated during Performance Test.(ELA 342-0062, Sheet 65/70)

None
None
Program Name: LIGHT
Category:
Function:
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
None
Comments: None
Task Subroutine called by so
Toggles lights which have blink statusset.
Complete and Correct
Minimal
Performance Test failure simulation.(ELA 342-0062, Sheet 64 of 70).

Program Name:	CKLOP
Category:	Task Subroutine called by so
Function:	Monitors undervoltage condition and generates load shed pulse and loss of power indication.
Flowehart:	Complete and correct
Source Code Comments:	Adequate
Exercised by:	All path's exercised by Design Demonstration Test (ELA 342-0063, page 19 of 43, Test 4 and Page 18 of 43, Test 3).
Desig/Coding Errors:	None
Comments:	None

Program Name:

Category:

Function:

Flowchart:

Source Code Comments:
Exercised by:

Design/Coding Errors:

Comments:

OSEQ

Task Subroutine called by si

Controls time sequencing of loads onto ESF bus.

Complete and correct
Adequate
Actuation response time measurements of Performance Test (ELA 342-0062, Sheet 40 of 70 to. Sheet 44 of 70).

Design can cause unwanted 2 msec pulses on signals which change state twice during bus loading sequence.

None

Program Name:

Category:

Function:

Flownhart:
Source Code Comments:
Exercised by:

Design/Code Errors:
Comments:

ITTI/ITT2
Task Subroutine called by s2
Initializes parameters for lomsec/50msec pulse testing of module Complete and correct

Adequate
Autotest section of Performance Test (ELA 342-0062, Sheet 58 of 70).

None
Flowcharts for these programs are included with programs for task 52.
Program name: ONCK
Category:
Function:
-
Flowchart:Source Code Comments:
Exercised by:
Design/Coding Errors:
Task Subroutine called by 53 and 57.
Checks "on" condition for specifiedinput, "off" condition for all otherinputs.i:
Complete and correct
Adequate
Autotest section of Performance Test(ELA 342-0062, Sheet 58 of 70).None
Comments:

Program Name:
Category:
Function:
-
Flowehart:
Source Code Comments:
Exercised by:

Design/Coding Errors:
Comments:

OFECK
Task Subroutine called by $S 4$ and 524
Check "off" condition for specified input.

Complete and correct
Adequate
Autotest section of Performance Test (ELA342-0062, Sheet 58 £ 70).

None
None
Program Name: NEXT
Category:
Function:$-$
Elowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:
Task Subroutine called by 52 and S24Advances testing to next entry inparameter table used for lomsec/50msecpulse testing.
Complete and correct
Adequate
Autotest section of Performance Test(ELA 342-0062, Sheet 58 of 70).
None
None

```
Program Name:
Category:
Function:
    -
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:
UPDATE
```

Category:
Function:
-
Flowchart:
Source Code Comments:
Exercised by:

Design/Coding Errors:
Comments:

UPDATE
Common Subroutine
Updates test parameters for lomsec/50msec pulse test of module;

Complete and correct
Adequate
Autotest section of Performance Test (ELA 3432-0062, Sheet 58 of 70).

None
None
Program Name: TSTW
Category:
Common Subroutine
Function:-
Flowchart:
Source Code Comments:Compares byte (8 bits) with specifiedbyte of input bit map.
Complete and correctMinimal
Exercised by:Design/Coding Errors:Autotesting section of performanceTest (ELA 342-0062, Sheet 58 of 70).
None
Comments:
Program Name: SETB
Category:
Common Subroutine
Function:Flowehart:
Source Code Comments:Exercised by:
Design/Coding Errors:
Sets bit corresponding to designatedoutput in output bit map.
Complete and correct
Minimal
Load shed vpulse generation of DesignDemonstration Test (ELA 342-0062,Page 19 of 43, Test 4).
None
Comments: None

Program Name:

Category:

Function:

Flöwchart:

Source Code Comments:
Exercised by:

Design/Coding Errors:
Comments:

CLRB

Common Subroutine

Clears bit corresponding to designated output in output bit map.

Complete and correct
Minimal
Load Shed pulse generation of Design Demonstration Test (ELA 342-0062, Page 19 of 43, Test 4).

None

None
Program Name: TSTB
Category:
Common Subroutine
Tests bit corresponding to designated
Function:input in input bit map.
Flowehart:
Complete and correct
Source Code Comments: Minimal
Exercised by:Load Shed pulse generation of DesignDemonstration Test (ELA 342-0062,Page 19 of 43, Test 4).
Design/Coding Errors: None
Comments:

Program Name:

Category:

Function:
$-$

Flowchart:

Source Code Comments:

Exercised by:

Design/Coding Errors:

Comments:

SUSP
Common Subroutine
Calls STOP to terminate sequencing mode or autotesting, then sets system in autotesting suspended state. .

Complete and correct

Adequate
Autotest termination in Design Demonstration Test (ELA 342-0063, Page 24 of 43, Test 8A/8B).

None
None
Program Name: STOP
Category:
Function:
--
Flowchart:
Source Code Comments:
Exercised by:
Design/Coding Errors:
Comments:
Common Subroutine
Terminates sequencing mode orautotesting. Sets all outputs to idlestate and turns off all lights exceptSTOP.
Complete and correct
Adequate
Mode 1 or mode 4 termination in DesignDemonstration Test (ELA 342-0063,Page 24 of 43, Test 8A/8B).
None
None
\square

```
BOP ESFAS CHANGE
    Scope of Work
```

The following software modules have been changed to redefine the bit 7 of $0 B M+3$ from the mode \emptyset indicator to the stall opposite train annunciator:

By searching the cross reference files for $O B M+3$ and $A 7$:

1. EQUATE .SRC: Change 1 place for the redefinition of bit 7.
2. S1 .SRC: Remove code in 2 places where the mode \emptyset indicator was both set and reset.
3. STALL .SRC: Add code in 2 places to both set and reset the stall opposite train annunciator.
4. SUBS .SRC: Change code in STOP routine such that it will not set the mode \emptyset indicator bit.
5. In addition, add a date and revision module. (ID.SRC)

Link this module last so that it will be in the second EPROM.

Put the following ASCII data in the date and revision module:
DATE August 18, 1982
REVISION PVLS. 03


```
    1 Mr:iE [C!h]E
2: TIILE ('LAD CEOJEICER - EMJATE FILE (IO-SHS-62>')
A; EANTS: D5-jpil-7e
5; FGOSRAHER: S, P, SMECLUH
S;
```



```
8;
7;
10 i . THIS FILE CEITAIHS THE SYSTEII EQUATES FOR
11 ; THE LGRISEQUEMESR.
12;
```



```
14;
IE GUELIC FRTICS:PETLA,PRTIRIPKTIL,FRT!TL,FRTITH
```



```
19 FOSLIS FSTHAMPGT49,FRTW,#RTACS
```



```
27;
```


31 ;
22;
3コ;
74: HRENAEE FERT ASEIGXEMTS
35:
76;
77 ;
工卫 ; PENICE 1
3: : --.-.....
\therefore;
A9:9
al !
: : ! !
ㅅ:?
?
0 O:
9313
li Efiles Efl ib

47 :
43:
B?
5リMC:
50 ;
51 ;

！

Derl SEC

SOHACE STATEHETT

：

0 O ：
3022

Exinti	E（d）	2	\％mats rex 2 ＇ n^{\prime}
54 5R2：	E：3	26	
Er friait	E！	27	；etrui meat 2 ＇60
53 frisit	E¢d	23	ititep Les
$5 ?$ \％ 5 \％Ta	EEJ	29	ftime lise 2
53 ；			
59 ；			
sio ；	EEVIC		
61 ；			
62 ；			
6.7			
St fitsa	50	32	
S 5 ETIE	上込	33	ioutut pert j ${ }^{\text {cta }}$
asitas	Esis	34	icutput port 3 ＇${ }^{\text {c }}$
57 FRTJCS	E®］	35	iceitech／Stitus
68 ；			
69 ；			
30 ；	EEUS		
71 ；			
32 ；			
73 －56ヶ3	eeu	40	；ovtrut fort 4 \}a'
74 8rtab	¢cu	41	iculeut fort $4{ }^{\text {c }}$ \％＇
75 artas	Eau	42	ioutrut yorl 4 ＇ $\mathrm{c}^{\text {＇}}$
76 FRTSES	E®J	43	icmineosetitus a

COTIE Bin j

3	L3C E3!	90	GSiCE STATEGEHT		
	：Res	1：2 7ems	［：］	ardu	
	2：7．	：3 \％	\＆${ }^{\text {P }}$	2．3in	
	$4{ }^{+2}$	1！c ：\％	FiJ	8PN1H	；！${ }^{\text {a }}$
cial		111 ［65\％	E0	coner	
		112；			
		113；			
		1：\％	－－－－－－－－－－－－－－－－－－－－－－－－－－－－		
		1！5；			
		i15 519	ESU	Cibill	
		117 ；			
		118 ；			
		119；	\qquad		
		120 ；			
	0803	124 ：ics	5	C103l	
	Enay	15 E Lfe	50］	23）${ }^{\text {a }}$	
	¢ 903	192 cricim	E！	crabil	OCATTMCL
	8303	12d Disces	508	dectu	
	！ 9 ¢	125 FiEx－F	End	1557	
	360		E¢！	26031	
	！	197［5	E®J	40\％	
		123 Er：	E0：	80べ：	
	ㅅ04	120 SSP	g？	A：04	
	（53）	120 cescil	5	209 2 ：	；ESEDTEA CHLLEA
8	COC：	131 Cini	ENㅣㄴ	Sish4	
		172 ExTck	［	0enotis	
	：cof	135 1¢： 32	$5 \times$	19\％\％	
	2 CO	154 Crisut	50.	2004	
	\therefore A $20 . j$	¢35 ciitu	ETJ	focth	
	Eets	138 ！20c\％．	［0：	$960 \leq 4$	BHOMAALL CHLLER
		$137 \text {; }$			
			如枵		
		178			
		1 119	LIght cutat kit Ifeliniticis		
		11：			
		142；			
	gics		2c］	Qath	
		1：4 Li	EC：	62ici	
	0109	195	E¢！	0f？：	iffiss（chithiomeit flrge lsemiliol
＊	のご\％	1：3 13	EQ！	O3n边	\＆Fitce TEST
	ST？	147 L	［		；LPMS TST
	$2 \mathrm{aj} \times$	148：5	［ 0 ！	2 x 061	；Allo TEST Fhll
	0 OH	149 LS	E\％	4i3）	；？？？
	2 Sa	15： $\mathrm{l}^{\text {a }}$	5	EN： 111	；？？？
	O1S！	15119	Es！	210！！	
0？：		15：LT	cis	： 30.10	
		15：			
	6：5：	15： 110	E\％	SiC3\％	
	色：	！ce．L！	Ef：	CE：	
		15！ $1: 9$	TJ	：$\because: 3:$	
（	2 OB	15： 1.13	ET］	20．：	
	ใ：$\because!$	15819	E？：	＂：\because	隹：
	Sin！	15\％！5	E1	$\because \because$	
		！！：			
		：$!$ ：	f：\％	．7－：${ }^{\text {a }}$	
		iin			

E：aicic intit if

（3）	1RE $\because:$	氖	gntoce statereht		
		：			－－
	$\because: 3$	$\because \because$	50	02038	
	碞：	： $5:$	Es！	9207u．	
	€）	： 5 ：$:$ ？	$5 \times$	（4）${ }^{\text {a }}$－	
	cisz	： 573	923	C8354	
	¢S：	182 it	ET：	1－93H	
	¿：？	： 5 ¢ ${ }^{\text {n }}$	E0！	20．33	iStes matchtos
	\％	2\％AS	E：11	48034	：Scimi halcritín
	Efer	：1：$\%$ \％	ETU	E303K	
		¢？n ：			
		1：3；			
		129 i			
		175 ：			（18P1
	Oiot	17850	EEU	O2OH	iHf SI
	O－	177 FL	［0］	02048	ilf SI
	9！\％	2758	［0］	C4O5H	iCiE fuy
	C39\％		［0］	（S8．4	iDS ESS ${ }^{\text {（EXAFO）}}$
	15.84	1S9 84	［¢：］	1204H	；FiE Efarj
	2 Sn 4	18： ES	EM	20才â	8筞
	¢304	182 P：5	50］	$4 \mathrm{Sj} \mathrm{S}_{4}$	ics
	SARi	1936	En！	SOSt	EEL：
\cdots	O！S	：$¢ 8: 8$	E¢J	0105H	；ESO
	¢	185 f：S	E：${ }^{\text {d }}$	02051	；EES CTI．
（3）	\％	$1388: 0$	E「：！	9405 H	
）	C゚：	13？R11	ES！	OÊ大亏：	1Eit CH－m
＂	2t：5	1238.2	EQ	10才JH	； 423 LC
：	2 f \％	1ES 815	E E	20351	iCESH
＂		19\％8：14	ESt	480505	ictit lion
	80j5	1918：5	EQU	80054	SHOR CHL
		192；			
		157：			
		194：			
		175；	QUIPUS EIT IEFIMITIGMS		
		196：	－－－－－－－－－－－－－－－－－－－－－		
		9¢7 ；			
	（195	198 TEGR	$59!$	010：3	
	Of：		50！	02284	ilis Examen MEST rucs LITE
	OT）		Ec：	90¢ 4	iLCF！SEC FULS
	Cotel	2×1 LC： 50	E¢J	68：14	iLSE S）SEC Prioremil butfut
	3 O	262 Ting	58	2д¢6H	
		203 ；			
		$204 i$			
		295	E： HI		

$\therefore \therefore \because: \ldots \square$

0
TRTE ：：：
：13
号
resur a－$\because \because \div$
（．．．．n ：：
M药

：SEs SM：

${ }_{3}^{12}$	A 6	Ais	i 983	A2	\％ 0.903	A3	A 6803	ń4	A 1003	65	4803	66°	－
A．？		${ }^{15}$	A 263	653E1	A 3000	AFSS2	A 4000	flLIT	A 5100	fidio	A 0102	ETH：	${ }^{\text {a }}$ CDOS
ceruy		CH2？	A 6 ¢	coill		Cachit	स 5303	CrEFM̂	A 9200	CinJAS	A 0：00	cs	A 1603
Widif	A	Liscs	n 0 cos	4981］	A 5000	ECH	A 8003	ESP	A 6104	ESECtich	A CzO	FSE	a 0100
5：5yf	$\therefore 1 \%$	AS31	n $0: 03$	10	n 0100	L1	A 120.0	$L 10$	S 0 ¢01	L11	A CEN	L1\％	A 1001
$1: 3$	A Exis	Li\％	A AOT	115	n E$) \mathrm{Cl}$	12	A 020	13	A 0350	14	n $10 \cdot 0$	15	A 2000
L．	人	$1 ?$	A	18	f．	1.	A 0201	LCPS	A 1004	L區	A 1000	L¢？ 1	A 0508
Lfeso	¢ 6 ¢	LfE！	${ }_{4} 693$	\％ 3 ：SPL	n ESO_{4}	frita	A Cill	FRTED	\％ $001 ?$	Fritic	A 0 Oi3	PRTICS	A 03io
กf17\％		SFIITL	A SO： 4	897en	\therefore ¢ ${ }^{1} 1$ ？	Fitis	A cosia	PRTS	A 0018	Fites	A cols	PaT2T	n 0018
Priinio		resjo		frite	A $\mathrm{CO21}$	PRT．C	a 6022	PrTESS	A 0023	Fritin	A 0 \％ 20	Patiz	\＃介v2s
P\％is	¢	89TCS	A 8 ¢ 2 ？	Si		Fis	A 0304	Fis）	A ${ }^{\text {enios }}$	F111	A CEOE	Ri\％	$\therefore 1005$
	\therefore ¢ $9 \times \sim$	P19	A	8：5	A Ejos	S2	A 040，	［？	－ 080.4	Ria	A 1004	RE	A 2004
85		5.7	ล	P． 3	A 1105	R？		GIf：	A 200	TETItS	a 6001	TCREPA	A 0201
－${ }^{\text {csivi：}}$	\％ 8	Tfe2	A Stas	TE：${ }^{\text {P }}$	a cics	Ifess	A 1001	TFEEMA	A Cic1	TCS	A E700	TLC？	A 2201
T6：		XEP号	A 850	Xacc	${ }_{\square}^{2} 080$	ẊECNA	6650	$\mathrm{X} \times \mathrm{X}$	A 4001				

为

Come mienle course

INC SEJ SEO SRRKCE STATEKE:RT

43 i
47 ;

LYT EIn르́
EALL SEE: LVI Bis号is

Li:n Leizliu

 51 - STMT 1 fin

PEIC STMP:
Ci c COO
ExEDint sumg

nis	Efotio	Al	E 0000	A?	E 0 cos	${ }^{3} 3$	E cous	A7	Enos	CLS	E0090	nown	E
[5\%	E Ahen	Le:	[600	10.FLO	[0 ¢	Hicit	E (\%)	Mig	E 000	0 OE0	E laio	SEIE	E (6,00
Lu:	E 0 cos	STer	E (0, O_{0}	Susp	E 0	TERA	E 0 (0	T6er	E	TE:	E 6 \%	tyre	$\varepsilon \times 00$

uem surals

\therefore	[cis	A ${ }^{\text {a }}$	[000)	H2	E 000	A_{3}	E 000	A7	E 00	chares	C08\%	CH:CK	csors
0	¢ cras	3esmen	E 230	ITH	E 6\%	L6?	E 0	Lefig	E 人:	(in)	C00sh	160	C68
Fi:	c cin	!	C Cose 4	HI	C (19?	\%	¢ 090	13	c 6.5	Hन!	E 0 : $\%$ in	H0]E	E (0)
$0:=0$	¢ 0 (\%)	Crit	C bect	SI	c 60	setb	[(C	SIAS	E 0 \%	STS:	E Deso	SUSP	E 0 60
[E\%	5030	70\%	E ciso	TSTE	E 5	TYFE	E						

resemw cumbte ho entais

:	: 5	\%	123									
(3):	15	\because	15									
:	15	¢:	1:?	-								
83	15	!	12?					-				
$\therefore ?$	15											
¢	131	14	153	159								
Cix:	5	$?$	ε	1:3	123	13	155	180				
$\because 8$:											
mes	12	69	35	135	153					,		
St	14	173										
16	:?											
Sifor	3	50	85	23	98	119	146					
4	?	13:										
\%	121	23st										
\%	$1: 1$	146										
M,	143					,						
:18	36	\% \%							.			
H2	I8	73			.							
$1: 3$	i)	6it										
12:4T	12	175			.							
Mas	:1	32	170	180								
cien	14	182										
¢5Sct	4	5	55	65	63	71	31	24	i^{87}	97	10.4	
S!	1	9	329									
Tin	14	45	5 \%	76	94	171				,		
51\%	12	47	63	73	95	112						
(eta	$1!$	183										
(.) \%	11	184								.		
Tiei	14	! 7	123									
IR?	13	53	123									
1538	14	43	54	64	70	80	36	98	113	127	137	$15:$
TIFE	11	10.5										

Gioss meemere coitisie

 !ex en

ORC) CE
gnt: :5
(
CST 16000
00! 20.0%
Afor 7 niong
ACC E?
gne casen

3
1
$2!$
$3 i$
$4 i$
4
$5 ;$
3
3
7
3
3
9

Iy STRL
23 21 $5 \quad 22$ E 2
25

C 3
PUSS.
PIEH

10 ;
11
12;
12 ;
14 CSEG
15 ;
:8: StmLleteter moume

PuSH E ;EATE REGICTETS

LXI HITETALL
LOA SF icET STALL ETATE FI.AG

27 ;

$2:$;

nels Ex:Ef
cold case:
(0) 8 3nob

C 30
E
CHE E 3
CRE 5j5: C 35

JZ
Siñ
KII
Sin sf
Jip ST20.
3:
3? ;
33 :
031:
finn :7

stan

DATE: 11-: ini-7s

FUBLC STARL

3
2
3

at whem fraceers


``` Crinl Fixt
``` 2 :

:ucti six:as

(3)
MES SMEDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\because\) & [00 & cis & 5080 & 113 & E 090 & Reantick & C 2 Ses & ¢ETP & E COO & sr & Esino & Stsv & E690 \\
\hline Sif & E \(\because \bigcirc \bigcirc\) & 3i:0 & C \%rat & ST20 & C 003 F & ST3 & C01:7 & STio & C \(\mathrm{CLSCO}_{7}\) & STSO & C 6 S & SI39 & C 3 ? \({ }^{\text {a }}\) \\
\hline Stith & (¢f: & tainl & E ADA & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\therefore\) & :! & -5 & 77 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{.}} \\
\hline ant & [1 & 4 & SS & & \\
\hline : & ! & 57 & 35 & \multirow[b]{2}{*}{S5\%} & \\
\hline :EM & 3 & 4. & \(7)\) & & \\
\hline S.ts & ! & 78 & 78 & & \\
\hline 9 & 11 & 24 & 3i & 74 & \\
\hline §'E゙' & 11 & 32 & \(4 ?\) & 72 & \multirow[t]{2}{*}{96} \\
\hline ctr & 11 & 22 & & & \\
\hline \% T!e & 23 & 3 St & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline (-2) & 35 & St & & & \\
\hline 9i3i & 4 & \({ }^{\text {E }}\) & & . & \\
\hline S1!9 & is & 3: & & & \\
\hline Stes & E! & ? & & \multirow[b]{2}{*}{71} & \\
\hline 919 & 4 & 31 & 3s & & 823 \\
\hline Stal & 1 & 9 & 154 & & \\
\hline TSTH: & : & 23 & & & \\
\hline
\end{tabular}

CESS REEPETE COMETE
gine or semedy
! ! \&

O

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{14}{*}{3 E} & 9 & \multicolumn{5}{|l|}{Stince sthekent} \\
\hline & 128 ； & & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{！evte}} & \multicolumn{2}{|l|}{atils} \\
\hline & 199 ； & & & & & \\
\hline & 110 ； & & OFFesi & 5it & Greit & III \\
\hline & 111 ； & reses & \(\bigcirc\) & 01 & 0 & 01 \\
\hline & 112 ； & Catic & 0 & 02 & 0 & 02 \\
\hline & 113 ； & Cryss & 0 & 04. & 1 & \(6!\) \\
\hline & 114 ； & ciso & － & \％ & 1 & 22 \\
\hline & 115 ； & Lif & 9. & ！ & 1 & 04 \\
\hline & 116 ； & Gris！ & 0 & 20 & 1 & © \\
\hline & 117 ； & A¢ \({ }^{\text {cis }}\) 2 & 0 & 40 & 1 & 10 \\
\hline & 118 ； & Legr & 2 & 40 & 1 & 4） \\
\hline & 119 ： & Leek & 2 & 20 & 1 & 80 \\
\hline & 120 i & & & & & \\
\hline
\end{tabular}

0．37 2ncon．E
121 STL：LEM IN．
122： \(\mathrm{n}^{4}!\mathrm{I}\)
123；MOM Crâ
124；L！0：\％
155；GNA C

123；SIA ORM
127；LiA IM
122；AN․ 7C：
12？；Firic
130；RRC
131；hỉv C． B
132；LiA INit2
133 ； HMl 3OH
134 R RLC
135 ；KLE
136；08 c
137 ；YON C，
138；LDH ©
13：；जna－C
1ヶ0；STA ETH！！
sizi c？
cose
sese \(=1006\)
（S？？？
\(4 \div 2\)
个！
¢
6：
fET
142 ；

144 ；
145 ；
146；THI F

159； （）
：O！
品
！：！？
（85）

153 LI：HTT
\＆ 15
15
2：
！
E
15：
15
：：
： 9
\(1!?\)
16：
162

FJ애
Ly． 1 Me：3tio
LA CLI：
y M

そ！！！

L！
y
lay bín
n！！！
！：：：：？

fris．

1
\begin{tabular}{|c|c|c|c|c|c|}
\hline (i) \(\mathrm{E}=3\) & & & \multicolumn{3}{|l|}{GUSEE STMTETENT} \\
\hline [69 23 & & 215 & 13\% & 3 & - \\
\hline (3 \% 5 & & 2: & : \(: 1:\) & \(\therefore 6\) & ; \({ }_{\text {: }}^{\text {P }}\) \\
\hline ¢2? 23 & & 9 O & a? & H & \\
\hline CThe F & & 275 & 4.9 & A:h & \\
\hline & & 272 & & 104, & \\
\hline crei 77 & & & 49 & H, H & ; 10 \\
\hline 6.62 5. & & 22: & 3 Sin & A & \\
\hline 0.33 3-96:0 & \(E\) & 235 & CIA & H2E & \\
\hline 0ans & E & 29E & STA & TYE & ;SET TMFE TS 0 (STEP) \\
\hline CCSE 51 & & 227 & \% 0 & H & \\
\hline ceen cs & & 228 & \multicolumn{3}{|l|}{FET} \\
\hline & & 229; & & & \\
\hline - & & 230 & E! 1 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CIf.E & C sec & Liont & c. 503 B & SETE & C S0090 & STL & C 6037 & STE: & Ccos2 & Su3' & C 0352 & TST8 & 9015: \\
\hline TSTi & C \(\mathrm{HSO}_{2 \mathrm{r}}\) & & & & & & & & & & & & \\
\hline
\end{tabular}

SBEEMLY CEMTLETE HO ERROS

Coss semence curlete


```

    LCC <Z] SEM GRLNCE STATEMEMT
    ```

```

PG: I!TG THE L.sET E:GOH,
12:

```

```

15;
16 :

| 17 |  |
| :--- | :--- |
| 10 | CSEG |
| 10 |  |

    ccov !!EETOES
        60:2 EスEッニ07:
        0%j gneranz!
        GA& EMESEN:
        00:0 3n=3N0:0
    002% S%2{0e3
    ```

```

    0jiE Exacie
    cose : =2ne2j
    ```

```

    2:
    22 vens: 08 'FULS.03
2A;
25 EmH

```

```

Oni= Eg@og vans c voli
EMEPMAL SMmOLS
!SE 3゙T:cle
:nis C シjoc vE[S C0014

```


ChTe Ar AsEMEX -

0

The following constitutes a justification for the recommended procedure for resting the isolation capability of the optical isolator assembly (0342-7100) provided within the PVNGS BOP ESFAS equipment. Attachment A consists of annotated excerpts from Reliability Handbook MLL-HDBK-217C regarding discrete semiconductors, i.e. OPTO-Electronic Devices. Considering the opto-coupler type used (14 each of 4 N 38 A devices) and environmental conditions expected within the equipment, the total MTBF for isolator assembly based upon the isolation standoff characteristic - this assumption is probably overly conservative because the MIL-HDBK-217C model includes all failure except degradation of output light from the light emitting elements - is 13.3 years. This result implies that each opto-isolator assembly (\(0342-7100\)) must be removed from its cabinet assembly location and bench tested for voltage isolation standoff capability per the procedure referenced below.

Reference information regarding light output degradation (CTR) is also supplied in Attachment B. Reference information concerning opto-coupler isolation parameter measurements and data sheets for the 4 N 38 A optical isolator devices are provided in Attachment \(C\).

Specification 13-JM-104, Section 4.4.5.2 requires that ..."Electrical isolation provided shall be capable of withstanding application of 1500 V RMS, 60 HZ potential for 60 seconds without degradation of isolation...". The procedure outlined below and performed once every 13.3 years during the plant life for the isolator assembly should verify the voltage isolation characteristic of the cross-train isolator assembly (0342-7100).

Because the isolator assembly is partitioned into two sections via the common input and output return lines (designed to minimize the number of terminals needed on the terminal blocks for circuit interface), two tests will be required to be performed on each assembly. The first test will verify isolator circuits 1 through 8 and 10 (see schematic 0342-7110), while the second test will check out isolator circuits 9 and 11 through 18. If a failure is detected in either test, common troubleshooting techniques
- may need to be used to locate the failed individual isolators within the applicable group. This additional trouble locating effort is forced by the common input return and output return printed circuit layout.

Figure 1 conceptually indicates the test approach and equipment setup for the voltage isolation standoff verification test.

As a first step, the 0342-7100 isolator assembly must be removed from the applicable logic cabinet by carefully disconnecting the associated input and output wiring harness. Particular attention should be given to disturbing the lead dress as little as possible so as to minimize wiring reconnection errors.

Secondly, a shorting jumper should be placed across each protection diode associated with both the input and output of each optical-coupler device. This jumper protects against damage to either the input led or the output transistor of the isolator from high capacitive charging currents impressed by high dv/dt's during the application of the test voltage.

Thirdly, a high voltage breakdown generator (GAC recommends the standard
"AC Hypot Junior" unit manufactured by Associated Research, Inc., 8221 North Kimball Avenue, Skokie, Illinois, 60076, or equivalent.) is impressed across terminals TB1-9 and TB2-1, and checks are made for any breakdown with the test generator set to 1500 V RMS, 60 HZ output. This test voltage should be applied for 60 seconds minimum. The test generator must then be moved between terminals TB1-20 and TB2-12 and the same isolation breakdown check made.

After successful bench test completion, the test jumpers should be removed, the isolation assembly carefully re-installed in the logic cabinet, and wiring connection verified. After verification; normal manual test procedures should be conducted to verify that each cross train isolator circuit employed functions properly.

2.2.10 Opto-electronic Semiconductor Devices, Group X.

\section*{SPECIFICATION}

MIL-S-19500
MIL-S-19500 None

\section*{DESCRIPTION}

Light Emitting Diode (LED)
Opto-electronic Coupler (Isolator)
LED Alpha-numeric Display

The part failure rate model, \(\lambda_{p}\), is:
\(\lambda_{p}=\lambda_{b} \pi^{\dot{C}} \cdot \pi_{E} \pi_{0}\) failures \(/ 10^{6}\) hours
\(=(0.0034)(1.8)(1)(100)=0.612\) FAILURES \(/ 10^{6}\) HOURS FOR EACH \$N38A where:
\(\lambda_{b}=\) base failure \(\cdot\) rate in failures \(/ 10^{6}\) hrs., Table 2.2.10-4.
\(\pi_{C}=\) complexity factor, Table 2.2.10-3.
\(\pi_{E}=\) environmental factor, Table 2.2.10-1.
\(\pi_{Q}=q u a l i t y\) factor, Table 2.2.10-2.
The above model:includes all failures except deoradation of output light from the light emitting elements:* for model backoround and guidance concerning light degradation, see Bibliography Item No. 49.

TABLE 2.2.10-1
\(\pi_{E}\), ENVIRONMENTAL FACTOR
SEE PP. 2-3,4 POR DEFINTITN
\begin{tabular}{|c|c|}
\hline Environment & \(\pi_{E}\) \\
\hline\(\frac{G_{B}}{S_{F}}\) & {\([7\)} \\
\(G_{F}\) & 1 \\
\(A_{I T}\) & 2 \\
\(A_{I F}\) & 2.8 \\
\(N_{S}\) & 5.6 \\
\(G_{M}\) & 4 \\
\(N_{U}\) & 4 \\
\(A_{U T}\). & 5 \\
\(A_{I J F}\) & 4.2 \\
\(M_{L}\) & 8.4 \\
& \(i 0\) \\
\hline
\end{tabular}
table 2.2.10-2
\(\pi^{0}\), QUALITY FACTOR
 OP FAILURE FOR EACH USED ISOLATOR CIRCUIT, AND COMAK refrecences for each inti CIRCUIT AND EACH OUTPUT CIRQUIT; THE TOTAL ISOLATG. EAMURE RATE IS:
\[
\lambda_{T}=\sum_{i=1}^{i=14} \lambda_{P_{i}}=14(0.612) \frac{E-1 / c c_{i}}{106 r_{i}}
\]
\[
\lambda_{T}=8.568 \text { falcues } / 10^{6} \mathrm{HfRS}
\]
packaged alpha-numeric dispiays
\[
\begin{aligned}
& O R \\
& \text { MTBF }=1 / \lambda_{T}=116.713 \mathrm{HRS} \\
&=13.3 \mathrm{YRS}
\end{aligned}
\] and to NOi-Jhal hemptic packeged LED's and isolaters. **-Applies to all devices encapsulated wizh organic materials..

TABLE 2.2.10-3
\(\pi \dot{C}\). COMPLEXITY FACTOR
\begin{tabular}{|c|c|c|c|}
\hline Device & \({ }^{\pi} \mathrm{C}\) & Device & \({ }^{1}{ }_{C}\) \\
\hline Single LED & 1.0 & \multicolumn{2}{|l|}{Alpha-Numeric Displays*} \\
\hline Single Isolators & & 1 character & 2.8 \\
\hline Simple** & 1.5 & , chap & 3.8 \\
\hline \({ }_{n}^{\prime \prime} \frac{\mathrm{w} / 1}{1 / 2}\) trans. & 11:8 & 2 character & 4.0 \\
\hline "W/2 trans. & 2.2
3.3 & 2 character \(\mathrm{W} / \mathrm{logic}_{\text {chip }}\) & 5.0 \\
\hline "w/lin. amp. \& 1 trans. & 3.6 & 3 character & 4.9 \\
\hline "w/lin. amp. \& 2 trans. & 4.0 & 3 character \(\mathrm{w} / \mathrm{logic}\) chip & 5.9 \\
\hline Dual Isolators & & 4 character & 5.7 \\
\hline & & 5 character & 6.3 \\
\hline Simple** & 2.3 & 6 character & 6.9
7.4 \\
\hline H W/2 trans. & 2.7
3.3 & 7 character
8 character & 7.4
8.0 \\
\hline "w/2 lin. amps. & 5.0 & 9 character & 8.5 \\
\hline "w/2 lin. amps. \& 2 & & 10 character & 8.9 \\
\hline * w/2 lin amps \({ }_{\text {trans }} 4\) & 5.4 & & \\
\hline trans. & 6.0 & & \\
\hline
\end{tabular}
*-The number of characters in a display is the number of characters contained in a sinnle sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be .4-one character displays, not l-four character display.
**-Simple isolator(s) contains only a lignt-emitting element(s) and a light detecting element(s).

\section*{- 9'April 1979}

\section*{DISCRETE SEMICOHDUCTORS}

OPTO-ELECTRONIC DEVICES
TABLE 2.2.10-4
OPTO-ELECTRONIC SEMICONDUCTOR DEVICE BASE FAILURE RATE, \(\lambda_{b}\), IN FAILURES PER \(10^{6}\) HOURS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{*S (\(P_{o p} / P_{\text {max }}\) or \(\left.I_{o p} / I_{\text {max }}\right)\)} \\
\hline \(\left.{ }^{1}{ }^{\circ} \mathrm{C}\right)\) & .1 & - 2 & . 3 & . 4 & \(.5^{\circ}\) & . 6 & . 7 & . 8 & . 9 & 1.0 \\
\hline 0 & . 0002 & . 0003 & . 0005 & . 0008 & . 0012 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 \\
\hline 5 & . 0002 & . 0004 & . 0006 & . 0010 & . 0014 & . 0020 & . 0028 & . 0040 & . 0058 & . 0088 \\
\hline 10 & . 0003 & . 0005 & . 0008 & . 0012 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 & . 0112 \\
\hline 15 & . 0004 & . 0006 & . 0010 & . 0014 & . 0020 & . 0028. & . 0040 & . 0058 & . 0088 & . 0146 \\
\hline 20 & . 0005 & . 0008 & . 0012 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 & . 0112 & . 0200 \\
\hline 25 & . 0006 & . 0010 & . 0014 & . 0020 & . 0028 & . 0040 & . 0058 & . 0088 & . 0146 & . 0288 \\
\hline 30 & . 0008 & . 0012 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 & . 0112 & . 0200 & \\
\hline 35 & . 0010 & . 0014 & . 0020 & . 0028 & . 0040 & . 0058 & . 0088 & . 0146 & . 0288 & \\
\hline 40 & . 0012 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 & . 0112 & . 0200 & & \\
\hline 45 & . 0014 & . 0020 & . 0028 & . 0040 & . 0058 & . 0088 & . 0146 & . 0288 & & \\
\hline 50 & . 0017 & . 0024 & . 0034 & . 0048 & . 0071 & . 0112 & . 0200 & & & \\
\hline - 55 & .cos: & . 0028 & . 0040 & . 0058 & . 0088 & . 0146 & . 0288 & & & \\
\hline \(6{ }^{6}\) & . \(\because \times .:\) & -n 34 & . 0048 & . 0071 & . 0112 & . 0200 & & & . & \\
\hline 65 & \(\therefore \therefore=\) & . 00 & . 0058 & . 0088 & . 0146 & . 0288 & & & & \\
\hline 70 & . 0034 & . 0048 & . 0071 & . 0112 & . 0200 & & & & & \\
\hline 75 & . 0040 & . 0058 & . 0088 & . 0146 & . 0288 & & & & & = \\
\hline , 80 & . 0048 & . 0071 & . 0112 & . 0200 & & & & & & \\
\hline 85 & . 0058 & . 0088 & . 0146 & . 0288 & & & & & & \\
\hline 90 & . 0071 & . 0112 & . 0200 & & & & & & . & \\
\hline 95 & . 0088 & . 0146 & . 0288 & & & & & & & \\
\hline 100 & . 0112 & . 0200 & & & & & & & & - \\
\hline 105 & . 0146 & . 0283 & & & & & - & & & \\
\hline 110 & . 0200 & & & & & & & & & \\
\hline 115 & . 0282 & & & & & & & & & \\
\hline
\end{tabular}
-
*-If derating infomation for isolators and displays is unavailable, assume \(S=.5, T_{S}=25^{\circ} \mathrm{C}\), and:
\(T_{\text {max }}=125^{\circ} \mathrm{C}\) for hermetic isolators,
- \(T_{\text {max }}=100^{\circ} \mathrm{C}\) for plastic isoliztors and for all displays.

See Section 2.2.11.2(7) \& (9) for correction factor for \(S\) ratio and for
the appropriate value of \(T\) to use with above table.
33. "liichrome Resistor Properties and Reliability", RADC-TR-73-181, RO 765534.
34. "Donmancy i Power On-Off Cycling Effects on Electronic Equipment 8 Part Reliability". RADC-TR-73-248, AD 768519.
35. "Use of Harranties for Defense Avionic Equipment", RADC-TR-73-249, AD 769399/7.
36. "Reliahility Acquisition Costs", RADC-TR-73-334, AD 916286L.
37. "Electrical Characterization of Complex Microcircuits", RADC-TR-73-373, AD 775740.
36. "Reliability Study of Polyimide/Glass Multilayer Boards": RADC-TR-73-400. AD 77194.
39. "Infrared Testing of Multilayer Boards", RADC-TR-74-88, AD 780550.
40. "Laser Reliability Prediction"; RADC-TR-75-210, AD A016437.
41. "Reliability Model for Miniature Blower Kotors Per MIL-B-23071B". RKDC-TR-75-178, AD A013735.
42. "Reliability Investigation of the IISC 2010 Transistors", ECOM-0052-F-72, AD B000815L.
43. "Reliability Investigations of the MSC 1330A and HSC 13308 Microwave Power Transistors", AD 923318 L.
44. "RCA TA8694 and TA8777 Microwave Power Transistor Reliability Investigation", AD A007587.
45. "Reliability Prediction for Microwave Transistors", RADC-TR-74313. AD AOO3643.
46. "Reliability Study of Microwave Power Transistors, RADC-TR-75-18, AD A007788.
"
47. "PADE Nonelectronic Reliability Notebook, Revised", "RADC-TR-75-22, RD A005657.
48. "Reliatility/Desigr: Thermal Applications", MIL-HDBK-251, 19 January 1978.
49. "Development of Failure Rate Mrdels for Semiconductor Optoeiectroinic Devices", FAA-RD-76-134, AD AL?9163.
50. "High Power Hicrowave Tube Reliability Study", FAA-RD-76-172, AD A033612.
\(I_{Z(M A X)}=\) maximum rated zener current at \(T_{S}\)
C.F. = stress correction factor per (8) below
(4) Group VII Microwave Mixer Diodes
\(S=\frac{\text { Operating Spike Leakage (erg's) }}{\text { Rated Burnout Energy at } 25 \text { degrees } C .}\)
(5) Group VII Microwave Detector DiJdes
\(\dot{S}=\frac{P_{O P} \text { (Operating Power Dissipation) }}{P_{\text {MAX }} \text { (Rated Power, at } 25 \text { degrees C.) }}\)
(6) Group VIII Varactor, Step Recover, and Tunnel Diodes.
\[
S=\frac{P_{O P}}{P_{\text {MAX }}} \text { (C.F.) }
\]
where:
\[
\begin{aligned}
& P_{O P}=\text { actual power dissipated } \\
& P_{\text {MAX }}=\text { maximum rated power at } T_{S} \\
& \text { C.F. }=\text { stress correction factor per (8) below }
\end{aligned}
\]
(7) Group \(X\) Opto-electronic Semiconductor Devices.
\[
\begin{aligned}
& S=\frac{I_{O P}}{I_{M A X}} \text { (C.F.) } \quad \text { or } S=\frac{P_{O P}}{P_{M A X}} \text { (C.F.) } \\
&=\frac{20}{B 0}(\phi 75)=0.1875 \\
& \text { where: }
\end{aligned}
\]
\(I_{O P}=\) operating average forward current
\(I_{\text {MAX }}=\) maximum rated average forward current at \(T_{S}\)
\(P_{O P}=\) actual power dissipated
\(P_{\text {MAX }}=\) maximum rated power at \(T_{S}\)
C.F. \(=\) stress correction factor per (9) below.

9 April 1979
\(\because\) 'DISCRETE SEMICONDUCTORS
(8)": Stress Correction Factor (C.F.) and temperature corrections for Silicon Devices.
a. Devices with \(T_{S}=25\) degrees \(C \& T_{M A X}=175\) degrees \(C\) to
C.F. \(=1\)
b. Devices with \(T_{S}>25\) degrees \(C \& T_{\text {MAX }}=175\) degrees \(C\) to
C.F. \(=\frac{175-T_{S}}{150}\)
c. Devices with \(T_{S}=25\) degrees \(C \& T_{\text {MAX }}<175\) degrees \(C\).
C.F. \(=\frac{T_{\text {MaX }}-25}{150}\)
and enter \(\lambda_{b}\) table with \(T=T_{A}+\left(175-T_{\text {MAX }}\right)\)
\[
\text { or } T=T_{C}+\left(175-T_{\text {MAX }}\right)
\]
d. Devices with \(T_{S}>25\) degrees \(C \& T_{\text {MAX }}<175^{\circ}\) degrees \(C\).
C.F: \(=\frac{T_{M A X}-T_{S}}{150}\)
and enter \(\lambda_{b}\) table with \(T=T_{A}+\left(175-T_{\text {MAX }}\right)\)
\[
\text { or } T=T_{C}+\left(175-T_{\text {MAX }}\right)
\]
(9) \(\therefore \because: \quad: \quad:\) - Factor (C.F.) and temperature correction for Ontoelectronic Devices. Cor devices with \(T_{S} \geq 25^{\circ} \mathrm{C}\). or \(T_{M A X} \leq 125^{\circ} \mathrm{C}\)., or both,
C.F. \(=\frac{T_{\text {MAX }}-T_{S}}{100}=\frac{100-25}{100}=0.75\)
and enter \(\lambda_{b}\) table with \(T=T_{A}+\left(125-T_{M A X}\right)=35+(125-100)=60\)
\[
\text { or } T=T_{C}+\left(125-T_{\text {MAX }}\right)
\]

\section*{2.2:11 INSTRUCTIONS FOR USE OF SEMICONDUCTOR MODELS}
2.2.11.1 Device Ratings

Transistors are normally rated at maximum power dissipation and diodes at maximum current permissible. Usually each device is given two temperature rating points: .
\(1 T_{\text {MAX }}\) - Maximum permissible junction temperature.
\(2 \cdot T_{S}\) - Maximum ambient or case temperature at which 100 percent of the rated load can be dissipated without causing the specified maximum junction temperature to be exceeded. (Case temperatures are given primarily for power devices. used on heat sinks.)

As the ambient or case temperature rises above the \(T_{S}\) value, the interr: 1 temperature rise (i.e., the power load) must be \({ }^{S}\) decreased so \(\$^{*}: \cdots T_{\text {MAX }}\) is not exceeded. This is illustrated in Figure 2.2.11-1.

FIGURE 2.2.11-1. Conventional Derating Curve

Note:
\(T_{S}=\) temperature at which derating begins
\(T_{\text {MAX }}=\) maximum rated junction temperature
\(T_{A}=\) ambient temperature
\(T_{C}=\) case temperature
only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DOD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, - the total equipment program should be given careful scrutiny and not just the parts quality. Otherwise, the low failure rates as predicted by the models for high quality parts will not be valid.
c. Use Environment.

All part reliability models include the effects of environmental stresses through the factor, \(\pi_{k}\). The definitions of these environments are shown in Table 2-3. The \(\pi_{E}\) factor is quantified within each part failure rate model. These environments encompass the major areas of equipment use. Some equipment may experience more than one environment during its nomal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch (\(M_{L}\)) conditions during boost and return from orbit, and space flight (\(S_{F}\)) while in orbit.

TABLE 2-3 ENVIROMMENTAL SYMEOL IDENTIFICATION AND DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline ENVI ROMMSEMT & TE SYMBOL & NOHIIIAL EAVIROMAENTAL COIIDITIDAS \\
\hline Ground, Benign & \(G_{B}\) & Nearly zero environmental stress with optimum engineering operation and maintenance. \\
\hline Space, Flight & \(S_{F}\) & Earth orbital. Approaches Ground, Benign conditions without access for maintenance. Vehicle neither under powered flight nor in atmospheric re-entry. \\
\hline Ground, Fixed & \(G_{F}\) & Conditions less than ideal to include installation in permanent racks with adequate cooling air, maintenance by military personnel and possible installation in unheated buildings. \\
\hline Ground, Mobile & \(G_{M}\) & Conditions more severe than those for \(G[\), mostly for vibration and shock. Cooling air supply may also be more limited, and maintenance less uniform. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{} \\
\hline \[
\because: i=0: a M E N J
\] & \({ }_{\text {TE }}^{\text {SYitiboi }}\) & NOHINAL ENVIRONMENTAL CONDITIONS \\
\hline \[
\begin{aligned}
& \therefore: 81, \\
& \therefore \text { eltered }
\end{aligned}
\] & \(N_{S}\). & Surface ship conditions similar to \(G_{F}\) but subject to occasional high shock and vibration. \\
\hline \[
\left\{\begin{array}{l}
\text { inval. Un- } \\
\text { sneitered }
\end{array}\right.
\] & \(N_{U}\) & Nominal surface shipborne conditions but with repetitive high levels of shock and vibration. \\
\hline Airborne, Inhabited, Transport & \(A_{\text {IT }}\) & Typical conditions in transport or bomber compartments occupied by aircrew without environmental extremes of pressure, temperature, shock and vibration, and installed on long mission aircraft such as transports and bombers. \\
\hline Airborne, Inhabited Fighter & \(A_{\text {IF }}\) & Same as \(A_{I T}\) but"installed on high performance aircraft such as fighters and intercepters. \\
\hline Airborne, Uninhabited, Transport & \(A_{U T}\) & Bomb bay, equipment bay, tail, or wing installations where extreme pressure, vibration, and temperature cycling may be aggravated by contamination from oil, hydraulic fluid and engine exhaust. Installed on long mission aircraft such as transports and bombers. \\
\hline Airborne, Uninhabited, Fighter & \(A_{U F}\) & Same as \(A_{U T}\) but installed on high performance aircraft such as fighters and intercepters. \\
\hline Missile, Launch & \(M_{L}\) & Severe conditions of noise, vibration, and other environments related to missile launch, and space vehicle boost into orbit, vehicle re-entry and landing by parachute. Conditions may also apply to installation near main rocket engines during launch operations. \\
\hline
\end{tabular}

\section*{d. Part Failure Rate Models.}

Part failure rate models for microelectronic parts are significantiy different form those for other parts and are presented entirely in Section 2.1. Another type of model is used on most other parts; a typical example is the following one for discrete semiconductors:

General electric

\section*{Photon Coupled Isolator 4N38-4N38A}

Ga As Infrared Emitting Diode \& NPN Silicon Photo-Transistor
The General Electric \(4 N 38\) and \(4 N 38 A\) consist of a gallium \({ }^{!}\) arsenide infrared emitting diode coupled with a silicon photo \(T\) transistor in a dual in-line package.

\section*{FEATURES:}
- Fast switching speeds
- High DC current transfer ratio
- High isolation resistance
- 2500 volts isolation voltage
- I/O compatible with integrated circuits

 \(\pm\) Indicates JEDEC registered values
absolute maximum ratings: \(\left(25^{\circ} \mathrm{C}\right)\) (unless otherwise specified)
\(\dagger\) tiorage Temperature - 55 to \(150^{\circ} \mathrm{C}\). Operating Temperature - 55 to \(100^{\circ} \mathrm{C}\). Lead Soldering Time (at \(260^{\circ} \mathrm{C}\)) 10 seconds.

\(\dagger\) Total device dissipation @ \(T_{A}=25^{\circ} \mathrm{C} . P_{D} 250 \mathrm{~mW}\).
\(\dagger\) Derate \(3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\) ambient.
individual electrical characteristics \(\left(25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INFRARED EMITTING & TYP. & max. & UNITS & PHOTO-TRANSISTOR & MIN. & TYP. & MAX. & UNITS \\
\hline \(\dagger\) Forward Voltage
\[
\left(I_{F}=10 \mathrm{~mA}\right)
\] & 1.2 & 1.5 & volts & \(\dagger\) Breakdown Voltage - \(\mathrm{V}_{\text {(BR)CEO }}\) (\(I_{C}=1 \mathrm{~mA}, I_{F}=0\)) & 80 & - & - & volts \\
\hline & & & & \(\dagger\) Breakdown Voltage - \(V_{(B R) C B O}\) (\(I_{C}=1 \mu A, I_{F}=0\)) & 80 & - & - & volts \\
\hline \(\dagger\) Reverse Current (\(V_{R}=3 V\)) & - & 100 & microamps & \(\dagger\) Breakdown Voltage \(-V_{(B R) E C O}\)
\[
\left(I_{E}=100 \mu A, I_{F}=0\right)
\] & 7 & - & - & volts \\
\hline & & & & \(\dagger\) Collector Dark Current - Iceo
\[
\left(V_{C E}=60 \mathrm{~V}, I_{F}=0\right)
\] & - & - & 50 & nanoamps \\
\hline Capacitance
\[
V=0, f=1 \mathrm{MHz}
\] & 50 & - & picofarads & †Collector Dark Current - \(1_{\text {cbo }}\)
\[
\left(V_{C E}=60 V_{,} I_{F}=0\right)
\] & - & - & 20 & nanoamps \\
\hline
\end{tabular}

\section*{coupled electrical characteristics \(\left(25^{\circ} \mathrm{C}\right)\).}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{4N38} & MIN. & TYP. & MAX. & UNITS \\
\hline flsolation Voliase 60 Hz with the input terminals (diode) & & 1500 & - & - & volts (peak) \\
\hline shorted together and the output terminals (transistor) & 4 N 38 A & 3500 & - & - & volis (peak) \\
\hline shorted together. & 4N38A & 1775 & - & - & voles(RMS)(1 sece) \\
\hline \(\dagger\) Saturation Vollage - Collector - Emilter (\(\mathrm{F}_{\text {c }}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}\)) & & - & 100 & 1.0 & volts \\
\hline Resistance - IRED to Photo-Transistor (@ 500 volts) & & - & 100 & - & gigaohms \\
\hline Capacitance - IRED to Photo-Transistor (\(\mathfrak{C}\). 0 volts, \(f=1 \mathrm{MHz}\)) & & - & 1 & - & picofarad \\
\hline DC Current Transfer Ration (\(I_{F}=10 \mathrm{~mA}, V_{C E}=10 \mathrm{~V}\)) & & 10 & & - & \(\%\) \\
\hline Switching Speeds (\(\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}},=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega\)) & - & & & & \\
\hline Turn-On Time - \(t_{\text {on }}\) & & - & 5 & - & microseconds \\
\hline Turn-Off Time - \(\mathrm{t}_{\text {off }} 127\) & & - & 5 & - & microseconds \\
\hline
\end{tabular}

\section*{TYPICAL CHARACTERISTICS}

1. OUTPUT CURRENT VS INPUT CURRENT

3. INPUT CHARACTERISTICS

5. NORMALIZED DARK CURRENT VS TEMPERATURE 128

2. OUTPUT CURRENT VS TEMPERATURE

4. OUTPUT CHARACTERISTICS

6. COLLECTOR BASE CURRENT VS TEMPERATURE
\(\therefore\) Optical Couple-/Isolators
Couplers are designed to provide isolation protection fromhigh-voltage transients, surge voltage, or low-level noise that would otherwise damage the input or generate erroneous information. They allow interfacing systems of different logic levels, diflerent grounds. etc., that would otherwise be incompatible. Motorola couplers are tested and specitied to an isolation voltage of 7500 Vac peak.

Motorola oflers a wide array of standard devices with a wide range of specifications (including the lirst series of DIP transistors and Darlington couplers to achieve JEDEC registration: transistors - 4N25 thru 4N38, and Darlingtons - 4N29 thru 4N33). All Motorola couplers are UL Recognized with File Number E54915.

CASE 730A

The Transistor Coupler is probably the most popular form of isolator since it olfers moderate spece (Eporoximately 300 kHz), sensitivity and economy; In addition, the collector-base junction can be used as a photodiode to achieve higher speeds. The output in the diode mode is lower, requiring amplification for more usable output levels.

The Darington Translstor Coupler is used when high transler ratios and increased output current capability are needed. The speed. approximately 30 kHz , is slower than the transistor type but the transfer ratio can be as much as ten times as high as the single transistor type.

Transistor Output
Lsolation Voltage is 7500 V (Min) enall devices. See notes.
\begin{tabular}{|c|c|c|}
\hline Device Type & \begin{tabular}{l}
DC Curtent \\
Transter Ralio \% Min
\end{tabular} & V(BR)CEO Volts Min \\
\hline TIL112 & 2.0 & 20 \\
\hline TIL115 & 2.0 & 20 \\
\hline 1.15 & 6.0 & 30 \\
\hline MCT26 & 6.0 & 30 \\
\hline TIL111 & 8.0 & 30 \\
\hline TIL114 & 8.0 & 30 \\
\hline LL12 & 10 & 20 \\
\hline MOC1006 & 10 & 30 \\
\hline 4N27 & 10 & 30 \\
\hline 4N28 * & 10 & 30 \\
\hline H17A4 & 10 & 30 \\
\hline TIL124 & 10 & 30 \\
\hline TIL153 & 10 & 30 \\
\hline IL74 & 12.5 & 20 \\
\hline MOC1005 & 20 & 30 \\
\hline TIL125 & 20 & 30 \\
\hline TIL. 154 & 20 & 30 \\
\hline 4N25 & 20 & 30 \\
\hline 4N26 & 20 & 30 \\
\hline H11A2 & 20 & 30 \\
\hline H11A3 & 20 & 30 \\
\hline H11A520 & 20 & 30 \\
\hline 1.1 & 20 & 30 \\
\hline MCT2 & 20 & 30 \\
\hline TlL116. & 20 & 30 \\
\hline 4 N 38 & 20 & 80 \\
\hline HIIAS & 30 & 30 \\
\hline MCT271 & 45 & 30 \\
\hline Milat & 50 & 30 \\
\hline Hilas50 & 50 & 30 \\
\hline TIL117 & 50 & 30 \\
\hline TIL126 & 50 & 30 \\
\hline TIL. 155 & 50 & 30 \\
\hline CNY17 & 62 & 70 \\
\hline MCT275 & 70 & 80 \\
\hline MCT272 & 75 & 30 \\
\hline MCT277 & 100 & 30 \\
\hline 4N35 & 100 & 30 \\
\hline 4N36 & 100 & 30 \\
\hline \(4{ }^{\text {N37 }}\) & 100 & 30 \\
\hline H11A5100 & 100 & 30 \\
\hline MCT273 & 125 & 30 \\
\hline MCT274 & 225 & 30 \\
\hline
\end{tabular}

Darlington Output
Isolation Voltage is 7500 V (Min) on all devices. See notes.
\begin{tabular}{|c|c|c|}
\hline Device Type & DC Current Transler Ratio \% Min & V(BR)CEO Volts Min \\
\hline 4N31 & 50 & 30 \\
\hline H1183 & 100 & 25 \\
\hline 4N29 & - 100 & 30 \\
\hline 4N30 & 100 & 30 \\
\hline MCA230 & 100 & 30 \\
\hline H118255 & 100 & 55 \\
\hline MCA255 & 100 & 55 \\
\hline H1182 & 200 & 25 \\
\hline MCA231 & 200 & 30 \\
\hline MOC119* & 300 & 30 \\
\hline T1L119* & 300 & 30 \\
\hline TILI13 & 300 & 30 \\
\hline MOC8030* & 300 & 80 \\
\hline TIL127 & 300 & 30 \\
\hline T16128* & 300 & 30 \\
\hline TIL156 & 300 & 30 \\
\hline TIL157 & 300 & 30 \\
\hline H1181 & 500 & 25 \\
\hline 4N32 & 500 & 30 \\
\hline \(4 N 33\) & 500 & 30 \\
\hline MOC8020* & 500 & 50 \\
\hline MOC8050 \({ }^{\circ}\) & 500 & 80 \\
\hline MOC802 \({ }^{\circ}\) & 1000 & 50 \\
\hline
\end{tabular}

Moles:
7. Isolstion Surge Voltege, \(V_{1}\) SO. 18 aninternaldevice dieleetict Dieakdown faling for inis test LEO pins i and 2 are commonand ohotoliansisior pins 4.5. And 6 are common
2. All Motorols couplers are specilifo al 1500 Vac dean is seconds) Inis usuallyescecos ine originatot is aeciticat tion and JEOEC registered values

By: W.H. Sahm

\author{
Technical Contributors: \\ J. Cook \\ R. Finke \\ A. Fox \\ R. Grandys \\ M. Tarzia
}

LayoutiDesign: D. Barney
\begin{tabular}{rl}
Production: & R. Brewster \\
D. Kay \\
B. Dillon-Malone \\
N. Patrick
\end{tabular}

\section*{B. RELIABILITY PREDICTION OF CIRCUITS CONTAINING IRED's}

Previously the IRED phenomena of light output decrease, as the time current flows through it, was mentioned. This presents a dilemma to the circuit designer attempting to provide adequate margins for bias values unless he can predict what minimum value of light output, from the IRED, he can expect at the end of the design life of his equipment. Based on the results of tests performed at G.E. and at customer's facilities (who were kind enough to furnish us test data and summaries) the G.E. Application Engineering Center has developed design guidelines to allow the prediction of the approximate worst case, end of life, IRED performance. The basis of the prediction is the observed behavior of the ratio of light output after operation to the initial value of light output. It also is based on the observation that all devices do not behave identically in this ratio in time, but that a distribution with identifiable tenth, fiftieth (median) and ninetieth percentile points exists at any time the ratio is calculated. Use of this tenth percentile ratio (\(90 \%\) of the devices are better than this) and the distribution of light output (or CTR for courlers) above the specified minimum value allows the product of specitied minimim light outpui and tenth percentile ratio, predicted at end of life, to be used as a reasonable approximation of minimum
summary of tests used to obtain ired design guide lines
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(25^{\circ} \mathrm{C}\) & \(40^{\circ} \mathrm{C}\) & \(55^{\circ} \mathrm{C}\) & \(70^{\circ} \mathrm{C}\) & \(80^{\circ} \mathrm{C}\) & \(100^{\circ} \mathrm{C}\) \\
\hline 3 mA & \[
\begin{gathered}
20 \\
1000 \mathrm{Hr} . \\
3 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & & & & \\
\hline 5 mA & \[
\begin{gathered}
20 \\
1000 \mathrm{Hr} .
\end{gathered}
\]
\[
1,5 \mathrm{~mA}
\] & & & & & \\
\hline 10 mA & \[
\begin{gathered}
16 \\
1000 \mathrm{Hr} \\
1,10 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & & & \(\because\) & , \\
\hline 20mA & \[
\begin{gathered}
27 \\
500,1000 \mathrm{Hr} \\
1,5,10.20 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & & & \[
\begin{gathered}
108 \\
1000 \mathrm{Hr} . \\
10 \mathrm{~mA}
\end{gathered}
\] & \\
\hline 25mA & \[
\begin{gathered}
20 \\
1500 \mathrm{Hr} . \\
10 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline 20 \\
1500 \mathrm{Hr} . \\
10 \mathrm{~mA} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 1500 \mathrm{Hr} . \\
& 10 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
60 \\
1500 \mathrm{Hr} . \\
10 \mathrm{m.} \\
\hline
\end{gathered}
\] & & \\
\hline 50mA & & \[
\begin{array}{|c|}
\hline 20 \\
1500 \mathrm{Hr} \\
10 \mathrm{~mA} \\
\hline
\end{array}
\] & . & \[
\begin{gathered}
40 \\
1500 \mathrm{Hr} . \\
10 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & \\
\hline 60mA & \[
\begin{gathered}
20 \mathrm{Hr} \\
1000 \mathrm{Hr} \\
1,5,10,20.60 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & & & \[
\begin{gathered}
163 \\
1000,3000,5000 \mathrm{Hr} . \\
10 \mathrm{~mA} \\
\hline
\end{gathered}
\] & \\
\hline 75mA & & & & \[
\begin{gathered}
20 \\
1500 \mathrm{Hr} . \\
10 \mathrm{~mA} \\
\hline
\end{gathered}
\] & & \\
\hline 100 mA & \[
\begin{gathered}
79 \\
1 \mathrm{~K}, 15 \mathrm{~K} 30 \mathrm{~K} \mathrm{Hr} \\
1.10,100 \mathrm{md}
\end{gathered}
\] & & & & & \[
\begin{aligned}
& 90 \\
& 168.1500 \mathrm{Hr} . \\
& 1.10 .100 \mathrm{~mA} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

This chart represents about 2.0 million device hours of operation on 625 dual in-line optocouplers and 111 hermetic iRED's.

FORMAT OF DATA PRESENTATION: TEST DURATION IfM CURRENT
end of life value. Although this does not represent the worst possible case, no correlation can be found between initial light output and rate of decrease in light output, and so the percentage of devices expected to be less than the guideline derived number approaches zero. These guidelines, as can be noted, are based on fair sample sizes, although both larger samples than these and greater precision, higher resolution, measurements could provide better fits. To make the guideline development less obscure, the discussion will trace the steps followed in defining these design guidelines and, in the process, develop the guidelines.

When the percent of initial value of light output (or current transfer ratio in couplers) of an IRED on an operating life test, is plotted against the time the IRED has been operated, two phenomena become apparent. The long-term behavior is found to be a straight line when the ratio is plotted on a logarithmic time scale. The short-term behavior is found to have a much shallower slope, on the same plot, than the long-term belavior. This effect is illustrated by the fact that the long-term straight line can be extrapolated back towards zero and will usually intersect the initial value line at a time between 10 and 100 hours. These properties combine to allow the response to be described by a "virtual initial time" and the slope of the line passing through that time point. This had been recognized in other work. The problems with predicting response are the variety of test conditions at which both stress and measurement data have been taken, and the spread of data at the readout points. It was recognized that the fail in light output was accelerated by either stressing the IRED harder, i.e., at a higher current (\(I_{F S}\)) and/or temperature, or by monitoring the test results at lower current (\(I_{F M}\)) levels. Precise acceleration factors have yet to be determined due to lot-to-lot variability. Fortunately, circuit design purposes can be served by a less precise model, which only attempts to serve the requirements of circuit design. For this approach, as mentioned before, we pay attention to the lower decile of the distribution and its change in time.

LIfe test results - illustrating observed change in ired ouifut with operating time

The question naturally arises of the applicability of this description to time periods beyond the one and five thousand hour times that the majority of the tests stopped at. Fortunately, tests have been completed on discrete IRED's for 30,000 hours. The results of these tests indicate that nothing unexpected happens at extremely long times, as can be seen aboye. This is reinforcing eviderce indicating the superiority of the G.E. silicon doped, liquid phase epitaxially grown IRED. grown IRED.

LONG.TERM IRED LIFE TEST RESULTS

Plotting the response (best straight line) of various test conditions on a single graph, the acceleration due to raising stress current (\(\mathrm{I}_{\mathrm{FS}}\)) is easily seen. Higher temperatures during stress cause the same effect, and can be accomplished by raising the ambient or by self-heating (in a coupler by dissipating power in the output device). Lowering the current at which the IRED light output is menitored, (\(I_{\text {FM }}\)) also accelerates the phenomena, but in looking at many test results, it appears that the ratio of \(\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) is the key factor affecting the slope besides temperature.

EFFECT OF MEASUREMENT CURRENT ON SLOPE

EFFECT OF
STRESS TEMPERATURE ON SLOPE

EFFECT OF
STRESS CURRENT
ON SLDPE

When the temperature effect is plotted as an acreleration vs. ten:perature, a fair straight line fit is found, as illustrated below. This temperature acceleration factor represents the ratios of the slopes of the lower decile lines of various temperature stresses. The fit is not perfect, but is good enough to be useful. It contains both discrete IRED data (LED55 series) and optocoupler data (H11 series) and appears to fit both equally.

With this, and the determination of the coupled thermal resistance in the optocoupler (i.e., the heating factor for the IRED from power dissipated in the output device), it was attempted to fit the \(I_{F S} / I_{F M}\) ratio into the model. After many attempts to find models which fit various phenomena better, and the generation of additional data to try to fill holes, it was decided that two factors contributed to the inability of defining a tight fit single line. These are lot-to-lot and sampling variability and the precision (and volume) of data required to find the slope at low I Fs/ \(\mathbf{I}_{\mathrm{FM}}\) ratios and low temperatures. These factors cause the best model found to enclose a band of observed values, as can be seen.

Bias Current Effect

Tomperature Effect

IRED OUTPUT VS. TIME SLOPE PREDICTION CURVES ASSUMING A VIRTUAL INITIAL TIME OF 50 HOURS
To use this data the circuit designer must define a desired lifetime, the degree of control he has on minimum and maximum values of \(\mathrm{I}_{\mathrm{F}}\) in any single socket, and the temperature environment to which the circuit is exposed.

A simple exampie of the design procedure illustrates its use. Assume the nced for an 4 N 35 which will provide 10 mA oi output current at 5 Volts VCE after 100,000 hours of \(55^{\circ} \mathrm{C}\) operation. To find the IRED current needed to provide this, we need the minimum specified CTR of the 4 N 35 , the estimated slope of the lower decile of light output vs. time and the temperature acceleration of that slope at \(55^{\circ} \mathrm{C}\). The 4 N 35 specincation indicates a minimun CTR of \(100 \%\), that for \(I_{F}\) values of up to 20 mA the \(C T R\) is relatively constant and that at \(55^{\circ} \mathrm{C}\) the CTR will be about 0.85 times its \(25^{\circ} \mathrm{C}\) value \(\left(\frac{\Delta C T R}{\Delta T}\right)\). The center of the range of slopes vs. \(I_{F S} / I_{F M}\) is conservatively chosen at a ratio of 1.3 and found to be \(5 \%\) per decade (slope). This should provide a reasonably worst case approximation of bcth coupler performance and possible current variation
effects due to power supply and bias circuit drifts. The temperature acceleration factor curve indicates this slope will be increased by 1.75 times at \(55^{\circ} \mathrm{C}\left(\mathrm{A}_{\mathrm{T}}\right)\), i.e., the slope will be \(8.8 \%\), decade. The difference between 50 hours and 100,000 hours (t) is 3.3 decades (log 100,000 \(\log 50\)), so the expected lower decile will provide about \(29 \%\) less light at 100,000 hours than initially. To provide the 10 mA output requirement, the IRED current must be raised by about \(40 \%\) to compensate for light lessening with operation [i.e., \(\frac{100}{100-29} \cdot\)] and this must be raised by \(18 \%\) (i.e., \(1 / 85\)) to compensate temperature variation of CTR, yielding a minimum input cursent to the IRED of 16.6 mA , as compared to the 10 mA required initially at \(25^{\circ} \mathrm{C}\). The formula used in this example is:
\[
I_{F}=\frac{\cdot 100}{100-\left[\text { slope } \times A_{T} \times \log (t / 50)\right]} \times \frac{\cdot 1}{\Delta C T R / \Delta T} \times \frac{I_{C}}{C T R}
\]
where: \(\quad A_{T}\) is the temperature acceleration for slope at the expected operating temperature, CTR is the specified minimum current transfer ration, \(\triangle C T R / \Delta T\) is the change in CTR due to temperature, Is:- the required output current, \(\dot{i}_{i}\) is the required IRED bias current, Slope is the light output lessening per decade time, and \(t\) is the circuit design life.

Note that for a one million hour life the required IRED current would only rise to 18.5 mA , as time has only increased by another decade! The estimate of the effect of operating time on the circuit has been almost as simple as the estimate of temperature effects.

Measurement of the light parameters of a phototransistor requires a light source of known intensity and spectral characteristics. Lamps with known spectral characteristics, i.e., calibrated standards, are available and, in conjunction with a thermo pile or calibrated photo cell and a solid mechanical positioning system, can be the basis of an opto measuring system. Some relatively simple systems based on the response of a silicon photo cell are available, but the assumption that all silicon devices have identical spectral response is implicit in their use for optical measurements. As different devices have different response curves, the absolute accuracy of these devices is impaired, although excellent comparative measurements can te made. Another method which has fair accuracy is the use of a calibrated detector, L9UX4 for the photo SCR's or L14H special for the phototransistors, to adjust the light source to the desired level. This will eliminate spectral problems as the calibrated device has an identical spectral response to the devices being measured: Accuracy will then depend on basic equipment accuracies, ambient control and mechanical position reproducibility.

Spectral response measurements require use of precision filters or a precision monochromator and a calibrated photo cell or thermo pile. As in the case of the IRED, it is recommended that these measurements be done by a laboratory specializing in optical measurements.

\section*{\(\rightarrow\) C. Optocoupler Measurements}

The measurement of the individual devices in the optocoupler is identical to the measurement of a discrete diode and a discrete device of the type of detector being considered, and is covered previously. The measurement of isolation and transfer characteristics are not as obvious, and will be illustrated.
1. Isolation Parameters are always measured with the terminals of each device of the coupler shorted. This prevents the high capacitive charging currents, caused by the high dy/dt's applied during the measurement, from damaging either device. Salety precautions must be observed in these tests due to the very high voltages present!
a). Isolation voltage is measured as illustrated below. Normally the surge voltage capability is measured, and, unless the high voltage power supply has a fast shutdown (\(<0.5 \mu \mathrm{sec}\)), the device under test will be destroyed if its isolation voltage capability is less than the high voltage supply -see "Avoid IcEO measurements", Hendriks

The design guideline, unfortunately, is only valid for the G.E. IRED's and DIP couplers. Life tests of competitive units at both maximum rating and accelerated test conditions indicate a wide variation of performance exists in the industry. The accelerated test results were duplicated by the maximum rating test results, indicating the same type of response in both the \(A_{T}\) and \(\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) curves. But the magnitude of shifts observed, especially the lower decile, are much greater, indicating much greater slopes, in percent per decade, of the light output vs. operating time graphs. This is illustrated in the plots comparing the life test resuits given above. To life cycle design with such devices would require derivation of a different model, based on a matrix of life tests. Based on extremely limited testing and some published information, it appears that at least two other manufacturers of IRED's and optocouplers can achieve light output performance with operation similar to the G.E. performance. Neither utilizes the glass dielectric in the coupler and no tests have been performed to allow comment on other reliability factors.

Degradation failure rates, to a desired criterià of percent initial light output, may be calculated from accelerated data to use condition response by use of the design guideline. The design guideline temperature acceleration and slope per decade factors may be used to calculate an equivalent number of test hours at use condition to the accelerated test. Note that early hour slope of light output vs. time is very shallow, and accelerated test results are not valio for operating times under 168 hours. The number of devices which decrease in light output to a value less than the desired criteria on the accelerated test is then used with the equivalent unit hours to estimate failure rate. While this is not strictly accurate, due to the distribution of change in light output, the following is a useful approximation:
\[
t_{x}=10\left[\left(\log \frac{t_{0}}{50}\right) \times \frac{A_{T 1}}{A_{T 2}} \times A_{I}+\log 50\right]
\]
where: \(A_{1}\) is the slope at stress conditions \(\div\) slope at use conditions,
\(A_{T 1}\) is the temperature acceleration at stress conditions, \(\mathrm{A}_{\mathrm{T} 2}\) is the temperature acceleration at use conditions,
\(t_{0}\) is the stress test duration, and
\(t_{x}\) is the equivalent time at use conditions.
The reliability test summary degradation failure sates were calculated this way and provide an example.

The \(100^{\circ} \mathrm{C}, 100 \mathrm{~mA}\) phototransistor accelerated operating life tests run for 168 hours (\(t_{0}\)). The temperature acceleration curve gives a \(\frac{A_{T 1}}{A_{T 2}}\) ratio of the slope per decade at \(100^{\circ} \mathrm{C}\) to the \(55^{\circ} \mathrm{C}\) value of \(\frac{2.83}{1.75}=1.62\). The middle line of the \(\mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) curve gives a ratio of \(\frac{10}{4}=2.5\) for the slopes of a \(10 \mathrm{~mA} / 10 \mathrm{~mA} \mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) compared to the \(100 \mathrm{~mA} / 10 \mathrm{~mA} \mathrm{I}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FM}}\) the test was run at. Thee equivalent hours for this test at a \(55^{\circ} \mathrm{C}\) use condition is:
\[
\begin{aligned}
t_{x} & \left.=10!\left(\log \frac{168}{50}\right) \times(1.62) \times(2.5)+\log 50\right] \\
& =6770 \text { hours. }
\end{aligned}
\]

Two units of the 325 tested failed a light output criteria of half the initial value, giving a \(2 / 2,200,000\) device hours observed failure rate, which at the \(50 \%\) UCL is the \(0.12 \%\) per thousand hour failure sate shown in the summary chart. This also illustrates that for the G.E. IRED and coupler, the decrease in light output should inave a minimal effect on circuit failure rate in conservatively designed circuits.

\section*{ISOLATION VOLTAGE TEST}
is set at. Crowbar techniques may be used in lab set-ups to provide rapid tum-off and forestall the test being described as "destructive." Steady-state isolation voltage is usually specified as a fixed percentage of the measured surge capability, although limited life tests indicate this derating is not required for the G.E. glass dielectric isolation. Application Engineering believes conservative design practices are required in the use of isolation voltage ratings, due to the.transients normally observed when line voltages are monitored and the catastrophic effects of a failure.
b). Isolation resistance is measured at voltages far below the surge isolation capability, and has less potential for damaging the device being tested. The test is illustrated schematically here,

measuring of isolation resistance
and requires the procedures normally used when measuring currents below a microampere.
c). Isolation capacitance is a straightforward capacitance measurement. The capacitance of couplers utilizing the G.E. patented glass dielectric process is quite independent of applied voltage

\title{
YiD STRJE, \\ - \\ , -4 \\ anf
}

\section*{Photon Coupled Isolator 4N38-4N38A}

Ga As Infrared Emitting Diode \& NPN Silicon Photo-Transistor
The General Electric 4N38 and 4N38A consist of a gallium \({ }^{\frac{1}{4}}\) arsenide infrared emitting diode coupled with a silicon photo \({ }^{\top}\) transistor in a dual in-line package.

\section*{FEATURES:}
- Fast switching speeds
- High DC current transfer ratio
- High isolation resistance
- 2500 volts isolation voltage
- I/O compatible with integrated circuits

\(\pm\) Indicates JEDEC resistered values
absolute maximum ratings: \(\left(25^{\circ} \mathrm{C}\right)\) (unless otherwise specified)
\(\dagger\) Storage Temperature -55 to \(150^{\circ} \mathrm{C}\). Operating Temperature - 55 to \(100^{\circ} \mathrm{C}\). Lead Soldering Time (at \(260^{\circ} \mathrm{C}\)) 10 seconds.

\(\dagger\) Total device dissipation © \(T_{A}=25^{\circ} \mathrm{C} . \mathrm{P}_{\mathrm{D}} 250 \mathrm{~mW}\).
\(\dagger\) Derate \(3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\) ambient.
individual electrical characteristics \(\left(25^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline INFRARED EMITTING & TYP. & MAX. & UNITS & PHOTO.TRANSISTOR & MIN. & TYP. & MAX. & UNITS \\
\hline \(\dagger\) Forward Voltage \(\left(I_{F}=10 \mathrm{~mA}\right)\) & 1.2 & 1.5 & volts & \(\dagger\) Breakdown Voltage \(-V_{\text {(gR)CEO }}\) (\(I_{C}=1 \mathrm{~mA}, I_{F}=0\)) & 80 & - & - & volts \\
\hline & & & & \(\dagger\) Breakdown Voliage - \(\mathrm{V}_{(\mathrm{BR})}\) CBO (\(I_{C}=1 \mu A, I_{F}=0\)) & 80 & - & - & volts \\
\hline \(\dagger\) Reverse Current (\(\left.V_{R}=3 V\right)\) & - & 100 & microamps & \(\dagger\) Breakdown Voltage - \(\mathrm{V}_{(\mathrm{BR}) \mathrm{ECO}}\) (\(I_{E}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0\)) & 7 & - & - & volts \\
\hline & & & & \(\dagger\) Collector Dark Current - Iceo
\[
\left(V_{C E}=60 V, I_{F}=0\right)
\] & - & - & 50 & nanoamps \\
\hline Capacitance
\[
\dot{V}=0, f=1 \mathrm{MHz}
\] & 50 & - & picofarads & tCollector Dark Current - Icbo
\[
\left(V_{C E}=60 \mathrm{~V}, I_{F}=0\right)
\] & - & - & 20 & nanoamps \\
\hline
\end{tabular}
coupled electrical characteristics \(\left(25^{\circ} \mathrm{C}\right)\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & MIN. & TYP. & MAX. & UNITS \\
\hline flsolation Voliase 60 Hz with the input terminals (diode) & 4N38 & 1500 & - & - & volts (peak) \\
\hline shorted together and the out put terminals (transistor) & 4N38A
\(4 N 38 A\) & \[
\begin{aligned}
& 2500 \\
& 1775
\end{aligned}
\] & - & - & volts (peak) \\
\hline shorted together. & & & - & - & \[
\text { volts }(R M S)(1 \text { sec. })
\] \\
\hline t Saturation Voliage - Collector - Emitter (\(\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}\)) & & - & & 1.0 & \\
\hline Resistance - IRED to Photo-Transistor (@ 500 volts) & & - & 100 & - & gigaohms \\
\hline Capacitance - IRED to Photo-Transistor (@ 0 volis, \(f=1 \mathrm{MHz}\)) & & \(\overline{-10}\) & 1 & - & picofarad \\
\hline DC Current Transfer Ration (\(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\)) & & 10 & & - & \[
\%
\] \\
\hline Switching Speeds (\(\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}},=2 \mathrm{~mA}, \mathrm{R}_{L}=100 \Omega\)) & - & & & & \\
\hline \[
\begin{aligned}
& \text { Turn-On Time }-t_{\text {on }} \\
& \text { Turn-Off Time }-t_{\text {off }}
\end{aligned}
\] & & - & 5 & - & microseconds microseconds \\
\hline Tuin-Off Time - toff 127 & & - & 5 & - & microseconds \\
\hline
\end{tabular}

Couplers are oesigned tc... \(\begin{gathered}\text { vide isolation protection }\end{gathered}\) fromhigh-voltage transients, surge voltage. or low-level noise that would otherwise damage the input or generate erroneous information. They allow interfacing systèms of diflerentlogic levels, diflerent grounds, etc., that would otherwise be incompatible. Motorola couplers are tested and specilied to an isolation voltage of 7500 Vac peak.

Motorola oflers a wide array of standard devices with a wide range of specifications (including the first series of DIP transistors and Darlington couplers to achieve JEDEC registration: transistors - 4N25 thru 4N38, and Darlingtons - 4N29 thru 4N33). All Motorola couplers are UL. Recognized with File Number E54915.

CASE 730A

The Transistor Coupler is probably the most popular form of isotator since it ollers moderate speed (approximately 300 kHz). sensitivity and economy. In addition. the collector-base junction can be used as a photodiode to achieve higher speeds. The output in the diode mode is lower, requiring amplification for more usable output levels.

The Darington Transistor Coupler is used when high sransler sallos and increased oulput current capability are needed. The speed, approximately 30 kHz , is slower than the transistor type but the transfer ratio can be as much as ten times as high as the single transistor type.

Transistor Output Isolation Voltaoe is 7500 V (Min) gnalldevices. See notes.
\begin{tabular}{|c|c|c|}
\hline Device Type & DC Current Transter Ratlo \(\%\) Min & \[
\begin{gathered}
\text { V(BR)CEO } \\
\text { VOlts } \\
M / n
\end{gathered}
\] \\
\hline TIL112 & 2.0 & 20 \\
\hline TLlis & 2.0 & 20 \\
\hline 14.15 & 6.0 & 30 \\
\hline MCT26 & 6.0 & 30 \\
\hline TKL191 & 8.0 & 30 \\
\hline TLL144 & 8.0 & 30 \\
\hline 1 L12 & 10 & 20 \\
\hline MOC1006 & 10 & 30 \\
\hline 4 N 27 & 10 & 30 \\
\hline 4 N28 & 10 & 30 \\
\hline H11A4 & 10 & 30 \\
\hline TIL124 & 10 & 30 \\
\hline TIL153 & 10 & 30 \\
\hline 1174 & 12.5 & 20 \\
\hline MOC1005 & 20 & 30 \\
\hline TIL125 & 20 & 30 \\
\hline T1L254 & 20 & 30 \\
\hline 4 N 25 & 20 & 30 \\
\hline 4N26 & 20 & 30 \\
\hline H11A2 & 20 & 30 \\
\hline Hitas & 20 & 30 \\
\hline H11A520 & 20 & 30 \\
\hline L1/
MCT2 & 20
20 & 30 \\
\hline MCT2
TIL116. & 20
20 & 30
30 \\
\hline 2N38. & 20 & 80 \\
\hline HIIAS & 30 & 30 \\
\hline MCT271 & 45 & 30 \\
\hline Hilat & 50 & 30 \\
\hline HiTA550 & 50 & 30 \\
\hline 716117 & 50 & 30 \\
\hline TIL126 & 50 & 30
30 \\
\hline CNY17 & 62 & 70 \\
\hline MCT275 & 70 & 80 \\
\hline MCT272 & 75 & 30 \\
\hline MCT277 & 100 & 30 \\
\hline 4 4N3S & 100 & 30 \\
\hline \(4{ }^{\text {N }} 36\) & 100 & 30 \\
\hline 4N37
H1145100 & 100 & 30 \\
\hline H11A5100 & 100 & 30 \\
\hline \(\mathrm{MCT}^{\text {MC273 }}\) & 125 & 30 \\
\hline MCT274 & 225 & 30 \\
\hline
\end{tabular}

Darlington Output
Isolation Voltage is 7500 V (Min)
on all devices. See notes.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Device \\
Type
\end{tabular} & DC Current Transfer Ratio \% MIn & \[
\begin{aligned}
& \text { V(BR)CEO } \\
& \text { Volts } \\
& \text { Min }
\end{aligned}
\] \\
\hline 4N31 & 50 & 30 \\
\hline H1183 & 100 & 25 \\
\hline 4N29 & 100 & 30 \\
\hline 4N30 & 100 & 30 \\
\hline MCA230 & 100 & 30 \\
\hline H11825S & 100 & 55 \\
\hline MCA25S & 100 & 55 \\
\hline H1182 & 200 & 25 \\
\hline MCA231 & 200 & 30 \\
\hline MOC119* & 300 & 30 \\
\hline TILI19* & 300 & 30 \\
\hline TL113 & 300 & 30 \\
\hline MOC8030* & 300 & 80 \\
\hline TLL127 & 300 & 30 \\
\hline TIL128* & 300 & 30 \\
\hline TIL156 & 300 & 30 \\
\hline TILI5T & 300 & 30 \\
\hline H1181 & 500 & 25 \\
\hline 4N32 & 500 & 30 \\
\hline 4 N33 & 500 & 30 \\
\hline MOC8020* & 500 & 50 \\
\hline MOC8059 \({ }^{\circ}\) & 500 & 80 \\
\hline MOC8021* & 1000 & 50 \\
\hline
\end{tabular}

\section*{- Pin 3 ans Pingaie nol connected}

\section*{Nolos:}
1. Iiolation Surge Voliage, \(V_{1}\) SO, is aniniernal device dietec tic breatidown rating foithis test teO pins 1 and 2 are commonand onototransisiof dins 4.5. end 6 are common
2. All Motorola couplets are specilied at 7300 Vac peak is recondsi this usually aceees ine originator a topecificatreands This usually taceeosine
tion and JEOEC registered values```

