From:	RST06 Hoc
Sent:	Sunday, April 10, 2011 4:54 AM
To:	Hoc, PMT12
Cc:	RSTO1 Hoc
Subject:	PARs for Deputies Meeting Rev11.docx
Attachments:	PARs for Deputies Meeting Rev11.docx

Revised items 1 through 10 under Phase 1 technical stability section to reflect most recent changes.

\square

From:
Sent:
To:
Subject:
Attachments:

Hoc, PMT12
Sunday, April 10, 2011 1:40 AM
RST06 Hoc
PARs for Deputies Meeting Rev11
PARs for Deputies Meeting Revll.docx

(b)(5)

C:SFoiaProjectFoiaPDFExportiPSTs!RST06 HOCEmailst0034300002.docxM4:PMFFuntin

From:
LA 06 Hoc
Sent:
To:
Subject:
Attachments:
LI A08 Hoc

Sunday, April 10, 2011 6:18 PM
FW: Latest Composite Paper
PARs for Deputies Meeting Rev14 Trish Milligan and RST input 04-10-11.docx

Liaison Team Director
U.S. Nuclear Regulatory Commission

Operations Center

From: Hoc, PMT12
Sent: Sunday, April 10, 2011 6:17 PM
To: LA 06 Hoc
Cc: LIA06 Hoc
Subject: Latest Composite Paper

5
(b)(5)
\square
(b)(5)
(b)(5)

\square
\square

> (b)(5)

From:
Sent:
To:
Subject:
Attachments:

Hoc, PMT12
Sunday, April 10. 2011 1:39 AM
RST06 Hoc
FW: Integrated document from Trish Milligan
PARs for Deputies Meeting Rev0 (3).docx

From: PMT01 Hoc
Sent: Sunday, April 10, 2011 12:43 AM
To: Hoc, PMT12
Subject: FW: Integrated document from Trish Milligan

From: McDermott, Brian

Sent: Friday, April 08, 2011 4:02 PM
To: PMT09 Hoc; PMT01 Hoc; Cool, Donald; Zimmerman, Roy; Blount, Tom; Hiland, Patrick
Subject: Integrated document from Trish Milligan
Attached is the document that Trish was working to integrate today, based on direction from last night. (b)(5)

Once clarity is gained regarding the desired product, I recommend using the Task Tracker to document the conclusions such that subsequent shifts will be able to clearly understand the deliverables. I also recommend that all parties present for the alignment discussion review the Task Tracker language, to ensure the best possible description of the deliverables is provided for the oncoming shift.

Brian

Contact Group Name: Industry Consortium

From:
Sent:
To:
Subject:
Attachments:

Hoc, PMT12
Monday, April 11, 2011 12:46 AM
RST06 Hoc
Red line and clean copies of the Permanent Re-Entry latest rev.
PARs for Deputies Meeting Rev14 clean copy Trish Milligan and RST input 04-10-11.docx; PARs for Deputies Meeting Rev14 Trish Milligan and RST input 04-10-11.docx

Attached. This is located in M/Fukushima/Papers. Tx greg

5

\square

5

- Wittick, Brian

From:	Wittick, Brian
Sent:	Tuesday, April 12, 2011 9:42 AM
To:	Emche, Danielle
Subject:	Re: Read out from 4/11 and 4/12

If it is OUO it should not be shared outside US channels.

Sent from NRC BlackBerry
Brian Wittick

From: Emche, Danielle
To: Wittick, Brian; Doane, Margaret; Mamish, Nader; Foggie, Kirk
Cc: Abrams, Charlotte; Bloom, Steven
Sent: Tue Apr 12 09:38:15 2011
Subject: Re: Read out from 4/11 and 4/12
(b)(5)

Danielle
Sent from an NRC BlackBerry.

From: Wittick, Brian
To: Doane, Margaret; Emche, Danielle; Mamish, Nader; Foggie, Kirk
Cc: Abrams, Charlotte; Bloom, Steven
Sent: Tue Apr 12 09:03:59 2011
Subject: Re: Read out from 4/11 and 4/12
It should probably be marked OUO and controlled accordingly.
UR
Sent from NRC BlackBerry
Brian Wittick
(b)(6)

From: Diane, Margaret
To: Emche, Danielle; Mamish, Nader; Foggie, Kirk
Cc: Abrams, Charlotte; Bloom, Steven; Wittick, Brian
Sent: Tue Apr 12 08:28:56 2011
Subject: Re: Read out from 4/11 and 4/12

Danielie and Brian
There is going to be a meeting at the IAEA with the US, on Japan invoking the assistance convention. Any concern with me sending this note to them. The assistance discussion would help.
Margie

Sent from an NRC Blackberry
Margaret Doane

From: Emche, Danielle
To: Doane, Margaret; Mamish, Nader; Foggie, Kirk
Cc: Abrams, Charlotte; Bloom, Steven; Wittick, Brian
Sent: Tue Apr 12 07:15:30 2011
Subject: Read out from 4/11 and 4/12
Email your questions. It is $8: 15$ and we haven't had dinner or lunch! You better read the whole thing ©)

Danielle

From:	Harrington, Holly
To:	McIntyre, David; Erenner, Eliot
Subject:	RE: U.S. Nuclear-Disaster Preparedness Hobbled by Uncertain Chain of Command
Date:	Tuesday, April 12, 2011 8:42:29 AM

Eliot - I can send to Brian McDermott and ask them to review. We may want to come up with a blog post to address the general issue.

Holly

From: McIntyre, David
Sent: Tuesday, April 12, 2011 8:24 AM
To: Brenner, Eliot; Harrington, Holly
Subject: FW: U.S. Nuclear-Disaster Preparedness Hobbled by Uncertain Chain of Command
Not sure this ProPublica piece would make it into our clips. Discusses potential chaos as locals, feds do power struggles during an emergency.

```
From: Dave McIntyre [mailto (b)(6)
Sent: Tuesday, April 12, 2011 6:42 AM
To:McIntyre, David
Subject: U.S. Nuciear-Disaster Preparedness Hobbled by Uncertain Chain of Command
I would like to share this link with you:
htt://www.propublica.org/article/u.s.-nuclear-disaster-preparedness-hobbled-by-uncertain-chain-of-command
```

From ProPublica - journalism in the public interest. Sent using the ProPublica iOS app.

Dave

From:
RST01 Hoc
Sent:
Wednesday, April 13, 2011 3:23 PM
To:
Subject:
ETO2 Hoc

Attachments:
FW: Daiichi Electrical Injection Status.docx
Daiichi Electrical Injection Status.docx

From: DiRito, Paul J (WANO) [mailto:DiRitoPJ@INPO.org]
Sent: Wednesday, April 13, 2011 12:38 PM
To: RST01 Hoc
Subject: Daiichi Electrical Injection Status.docx

Restricted Distribution: Copyngit e2011 by the Institute of Nuclear Power Operations. Net for sate or for commercrat use. Reproduction of this report without ine
 this repon should not detver or transfer this repot to any third perty, w make mis report or its conterts public. without the prior agreenent of Npo. All otner rights reserved.

DISCLAMER:

This email arti any of its athachnents may centain proprietary NPO or WANO informaticn that is prvilegeq, confidenial or protected by copyright belonging to INPO or WANO. This e-mail is intended solaty for the uso of the individual or entity for which it is intended. If you are not ing intended recipiant of this a-mas, any dissemination. distribution, copying. or action taken in relation to the contents of and attechments to this email is contrary to the rights of thpo or WaNO and is prohibited. If you are not the incended recipient of this e-mail. please notify the sender immediately by relurn eman and pernenemty detete ine onginal and any copy or printent of this e-mail and any etamments.
Thank you.

The next Consortium Call will be held on THURSDAY April $14^{\text {th }}$ at 2000 hrs . to better align with the new schedule of Cabinet meetings in Japan.

Thank you
Lisa

Lisa Gibney Wright
Liaison Team Coordinator
US Nuclear Regulatory Commission
Email to: LIA08.hoc@nrc.gov
Desk Ph: 301-816-5185
\cdot
(b)(4)
$\therefore \cdot \cdots$

. .
(b)(4)
. .

-•••
-
\square
From: ETO2 Hoc

Sent:	Wednesday, April 13, 2011 3:36 PM
To:	OSTO1 HOC
Cc:	RSTO1 Hoc
Subject:	FW: Daiichi Electrical Injection Status.docx
Attachments:	Daiichi Electrical Injection Status.docx

EST Support (OST01.hoc):

Here's something that I assume is for the ET Director.

RST01:

Please send all e-mails to OST01.hoc if you want information to be given to the ET Director.

Thanks....karen Jackson, est response ops sys mgr

From: RSTO1 Hoc

Sent: Wednesday, April 13, 2011 3:23 PM
To: ET02 Hoc
Subject: FW: Daiichi Electrical Injection Status.docx

From: DiRito, Paul J (WANO) [mailto:DiRitoP]@INPO.org]
Sent: Wednesday, April 13, 2011 12:38 PM
To: RST01 Hoc
Subject: Daiichi Electrical Injection Status.docx

Restrcted Distribution: Copyright 2011 Dy ths institute of Nuclear Power Operations. Not or saie or for comnereat use. Peproduction cit this revort without the prior witheri consent of APO is expressly prohibited Linauthorized reproduction is a violation cf applicable bur. The perton or persiens that are furnished cosies of
 reserved

OISCLAMEF:

 gissemination, distrioution, copying, or acton taken in retation to the contents and atachmente to this email is cantary io the nghts of iNpO or waplo and is
 copy or printost of thisemal and any andechments
Thank you.


```
From:
OSTOL HOC
Sent:
To:
Wednesday, April 13, 2011 7:49 AM
Weber, Michael
RE: RESPONSE - IAEA Technical Briefing Summary for April 12, 2011
```

Mr. Weber,

You are correct about the round-about way that this gets to the EST Coordinator. I have added you to the Distribution List for the IAEA documents we receive.
V / r,
Rebecca Stone
EST Coordinator

From: Weber, Michael
Sent: Wednesday, April 13, 2011 7:41 AM
To: OSTO1 HOC
Subject: RESPONSE - IAEA Technical Briefing Summary for April 12, 2011
Thanks, Rebecca. From the email string below, it appears that LIA02 is on Mark Shaffer's distribution list. Note the / document we are discussing is not a product of the State Department and the HOO is not on Mark's distribution. ' would like to receive Mark's daily report.

From: OST01 HOC
Sent: Wednesday, April 13, 2011 7:21 AM
To: Weber, Michael
Subject: RE: RESPONSE - IAEA Technical Briefing Summary for April 12, 2011

Mr. Weber,

The HOO are on State's distribution list for the IAEA documents. Any emails sent to the HOO get forwarded to the EST' Coordinator. From there, we forward them to the current ET Director. If you would like to be added to our distribution list or have any additional questions, please notify the EST Coordinator on shift at ost01.hoc@nrc.gov.

V/r,
Rebecca Stone
EST Coordinator

From: Wiggins, Jim
Sent: Wednesday, April 13, 2011 7:02 AM
To: Weber, Michael
Ce: OST01 HOC
Subject: RE: RESPONSE - IAEA Technical Briefing Summary for April 12, 2011
Don't know the author. It's a report that supported a press opportunity that occurred $4 / 12$. NHK ran a story on it overnight. I got it from OST01. OST01 - do you have a source for the IAEA report?

From: Weber, Michael

Sent: Wednesday, April 13, 2011 6:54 AM

To: Wiggins, Jim
Cc: Virgilio, Martin; Doane, Margaret; Mamish, Nader; Golder, Jennifer; Shaffer, Mark R; ET05 Hoc; ET01 Hoc; OST02
HOC; Dyer, Jim
Subject: RESPONSE - IAEA Technical Briefing Summary for April 12, 2011
Thanks, Jim. Is the document that you attached from the IAEA Technical Briefing a product prepared by Mark in Vienni based on the Technical Briefing? I found the summary to be useful and informative.

From: Wiggins, Jim
Sent: Wednesday, April 13, 2011 5:32 AM
To: Virgilio, Martin; Weber, Michael; Dyer, Jim; Carpenter, Cynthia; Boger, Bruce; Johnson, Michael; Zimmerman, Roy
Subject: FW: IAEA Technical Briefing Summary for April 12, 2011
Se the attached FYI
wsu, heard overnight that a'remote visual check of the U4 SFP indicated water over the top of the fuel bundles , 5-10 ft)
-
From: LIA08 Hoc
Sent: Wednesday, April 13, 2011 5:23 AM
To: RST07 Hoc; Hoc, PMT12; Wiggins, Jim
Subject: FW: IAEA Technical Briefing Summary for April 12, 2011
For your info. Jeff Temple

From: LIA02 Hoc
Sent: Wednesday, April 13, 2011 4:19 AM
To: LIA08 Hoc
Subject: FW: IAEA Technical Briefing Summary for April 12, 2011

From: Shaffer, Mark R [mailto:ShafferMr@state.gov]
Sent: Wednesday, April 13, 2011 4:19 AM

- To: Shaffer, Mark R; Scheland, Mark DL; IAEA Vienna; Davies, Glyn T

(b)(6)

Subject: IAEA Technical Briefing Summary for April 12, 2011

IAEA Technical Briefing on Fukushima Accident - April 12, 2011

The IAEA Technical Briefing on April 12 was led by Deputy Director General Denis Flory, and supported by Mr. Miro Lipar, from the Division of Nuclear Installation Safety; Ms. Elena Buglova, Acting Director for the Incident \& Emergency Center; and Ms. Maria Betti, Director of IAEA's Marine Environmental Laboratories in Monaco.

Current Situation

Overall, the situation at the Fukushima Daiichi plant remains very serious, but there are early signs of recovery in some functions such as electrical power and instrumentation.

Provisional INES Level 7 Rating

IAEA confirmed that the Nuclear and Industrial Safety Agency (NISA) has submitted a provisional International Nuclear and Radiological Event Scale (INES) Level 7 rating for the accident at the Fukushima Daiichi nuclear
power plant. This new provisional rating considers the accidents that occurred at Units 1, 2 and 3 as a single event on INES and uses estimated total release to the atmosphere as a justification.
Previously, separate provisional INES Level 5 ratings had been applied for Units 1,2 and 3.
The provisional rating was determined by NISA after it received the results of the analysis conducted by the Japan Nuclear Energy Safety Organization (JNES). NISA then applied the INES assessment methodology to calculate the total estimated release in terms of radiological equivalence to $\mathrm{l}-131$.

Based on this provisional assessment, NISA concluded that the accident would be provisionally rated INES Level 7 as per the definition in the 2008 Edition of the INES Manual, which identifies a level \& accident as "An event resulting in an environmental release corresponding to a quantity of radioactivity radiologically equivalent to a release to the atmosphere of more than several tens of thousands of terabequerels of l-131." NISA estimates that the release of radioactive material to the atmosphere is approximately 10% of the Chernobyl accident, which is the only other accident to have an INES Level 7 rating.

Protective Measures

"On April 11, the Government of Japan announced that they had concluded to establish 'Planned Evacuation Areas' and 'Evacuation prepared Area' in the areas beyond the 20 km radius from the Fukushima Daiichi nuclear power plant. The review was conducted because the Government considered the safety of residents its first priority. The Government of Japan considered the standards recommended by the Intemational Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA) as part of the review.

With regard to the 'Planned Evacuation Areas', the Japanese authorities have found that the areas beyond 20 km radius could be exposed to over 20 mSv during the course of the next one year, approximately until next March. Therefore the Government of Japan will be consulting with the local communities in terms of planned evacuations, ant at this juncture they are hoping that this planned evacuation will be carried out during the next month to come. The Planned Evacuation Areas that have been newly designated for evacuation include Kutsurao village, Namie town, litate village, a part of Kawamata town and a part of Minami Souma City.

The Government also defined a second new area called the 'Evacuation Prepared Area'. This area includes the area previously defined as the 'Indoor Evacuation Area' between 20 and 30 km from Fukushima Daiichi, but excludes those areas designated above as 'Planned Evacuation Areas'.
Within the 'Evacuation Prepared Area' people living in this area should be prepared for indoor evacuation or evacuation (outside of this area) in case of emergency. Voluntary evacuation is recommended within this area. Children, pregnant women, people who require nursing care and those who are hospitalized should not enter this area. Kindergartens, pre-schools, elementary schools, junior-high schools and high school will be closed within this area."

Earthquake of 11 April

With regard to earthquake that occurred in Japan at 08:16 UTC, on April11, the IAEA International Seismic Safety Centre rated it as a 6.6 magnitude, revised from an initial 7.1 magnitude. The epicenter of the earthquake was in Fukushima Prefecture, 68 km from the Daiichi nuclear power plant. The epicenter was inland at a depth of 13.1 km . The IAEA contacted NISA who confirmed the following regarding the status of the Fukushima Daiichi nuclear power plant:

- No changes were observed on the readings at the on-site radiation monitoring posts;
- Workers were temporarily evacuated to the seismic evacuation shelter;
- Off-site power was lost and water injection pumps for Units 1,2 and $\mathbf{3}$ stopped but were restarted 50 minutes after the earthquake; and
- The injection of nitrogen into Unit 1 stopped and resumed later.

Fukushima Daiichi Plant Status

In Unit 1 fresh water is being continuously injected into the RPV through the feed-water line at an indicated flow rate of $6 \mathrm{~m}^{3} / \mathrm{h}$ using a temporary electric pump with off-site power. In Units 2 and 3 fresh water is being continuously injected through the fire extinguisher lines at an indicated rate of $7 \mathrm{~m}^{3} / \mathrm{h}$ using temporary electric pumps with off-site power.

Nitrogen gas is being injected into the Unit 1 containment vessel to reduce the possibility of hydrogen combustion within the containment vessel. The pressure in this containment vessel is increasing due to the addition of nitrogen. The pressure in the RPV is increasing as indicated on both channels of instrumentation. In Units 2 and 3 Reactor Pressure Vessel and Drywell pressures remain at atmospheric pressure.

RPV temperatures remain above cold shutdown conditions in all Units, (typically less than $95^{\circ} \mathrm{C}$). In Unit 1 temperature at the feed water nozzle of the RPV is $221^{\circ} \mathrm{C}$ and at the bottom of the RPV is $120^{\circ} \mathrm{C}$. In Unit 2 the temperature at the feed water nozzle of the RPV is $155^{\circ} \mathrm{C}$. The temperature at the bottom of the RPV was not reported. In Unit 3 the temperature at the feed water nozzle of the RPV is $97^{\circ} \mathrm{C}$ and at the bottom of the RPV is $111^{\circ} \mathrm{C}$.

There has been no change in status in Units 4, 5 and 6 and the Common Spent Fuel Storage Facility.

Radiation Monitoring

On April 11, deposition of both iodine-131 and cesium-137 was detected in 6 and 8 prefectures respectively. The values reported for iodine-131 ranged from 2.1 to $35 \mathrm{~Bq} / \mathrm{m}^{2}$ and for cesium- 137 from 5.2 to $41 \mathrm{~Bq} / \mathrm{m}^{2}$.

Gamma dose rates are measured daily in all 47 prefectures, the values tend to decrease. For Fukushima, on April 11 a dose rate of $2.1 \mu \mathrm{~Sv} / \mathrm{h}$, for the lbaraki prefecture a gamma dose rate of $0.15 \mu \mathrm{~Sv} / \mathrm{h}$ was reported. The gamma dose rates in all other prefectures were below $0.1 \mu \mathrm{~Sv} / \mathrm{h}$.
Dose rates are also reported specifically for the Eastern part of the Fukushima prefecture, for distances of more than 30 km to Fukushima-Daiichi. On April 11, the values in this area ranged from 0.2 to $25 \mu \mathrm{~Sv} / \mathrm{h}$.

In an additional MEXT monitoring program, on April 11 measurements were reported for 25 cities in 13 prefectures. In Fukushima City, a value of $0.42 \mu \mathrm{~Sv} / \mathrm{h}$ was observed. In all other cities, gamma dose rates ranged from 0.04 to $0.13 \mu \mathrm{~Sv} / \mathrm{h}$. Typical normal background levels are in the range of 0.05 to $0.10 \mu \mathrm{~Sv} / \mathrm{h}$. Also on April 11, the IAEA Team made measurements at 9 different locations in the Fukushima area at distances of 30 to 58 km , West to Northwest from the Fukushima nuclear power plant. At these locations, the dose rates ranged from 0.1 to $2.2 \mu \mathrm{~Sv} / \mathrm{h}$. At the same locations, results of beta-gamma contamination measurements ranged from 0.01 to $0.28 \mathrm{Megabecquerel} / \mathrm{m}^{2}$.

Analytical results related to food contamination were reported by the Japanese Ministry of Health, Labor and Welfare on 11 April, and covered a total of 21 samples taken on 8 April and 10 to 11 April. Analytical results for all of the samples of various vegetables, spinach and other leafy vegetables, fruit (strawberries), various meats (chicken, beef and pork), seafood and unprocessed raw milk in eight prefectures (Fukushima, Gunma, Hyogo, Ibaraki, Miyagi, Niigata, Saitama and Yamagata) indicated that I-131, Cs-134 and/or Cs-137 were either not detected or were below the regulation values set by the Japanese authorities.

Marine Monitoring

TEPCO is conducting a program for seawater (surface sampling) at a number of near-shore and off-shore monitoring locations. Up until April 3, a general decreasing trend was observed at the sampling points TEPCO 1 to TEPCO 4. After the discharge of contaminated water on April 4, a temporary increase has been reported. As of April 12, no new data for TEPCO 1-10 sampling points have been reported.

MEXT Off-shore Monitoring Program

As reported in previous briefings, MEXT initiated the off-shore monitoring program on March 23 and subsequently points 9 and 10 were added to the off-shore sampling scheme. On April 4, MEXT added two sampling points to the north and west of sampling point 1. These are referred to as points A and B. As of April 12, no new data for all MEXT sampling points have been reported.

Questions from Member States

Member States asking questions today included Japan, Singapore, Korea, Russia and France.
Nearly all questions centered on more detail regarding the INES 7 rating. Singapore and Korea in particular wanted to know what member states "should be doing differently in response to the new rating." Despite DDG Flory's best efforts to explain that INES is meant to relay information based on scientific findings, not to describe conditions on the ground or real effects on human health or the environment, the member states continued to probe for what actions they should take in response to this "new" decision. Russia was also vocal in this discussion, stating that it is "not appropriate to compare accidents like Chernobyl and others, because this is not what the INES system is for." Russia also (correctly) pointed out that the accident at Fukushima is still ongoing and it is premature to speculate how much radioactivity will be released, in compassion to other accidents. Seemly, Russia was concerned with Japan's announced that the radioactive releases from Fukushima so far are only 10% of what Chernobyl released.
Russia also asked several questions about Japan's plans for "storing and/or containing" the massive amount of contaminated water that continues to be accumulated on site. DDG reminded member states that storage tanks, trenches and other means of containment are currently being completed on site, in hope that there will be adequate storage capacity to meet this need.

Closing Remarks

DDG Flory closed the meeting by stating that Philippines and the Republic of Korea have also now provided IAEA with monitoring data and/or links to their websites. Although not specifically mentioned by DDG Flory, the USG provided IAEA with monitoring data (from the Environmental Protection Agency) on April 9. Lastly, DDG Flory stated that the next technical briefing will be conducted on April19.

This email is UNCLASSIFIED.

Merzke, Daniel

From:	Merzke, Daniel
Sent:	Wednesday, April 13, 2011 8:43 AM
To:	Bradford, Anna; Warren, Roberta; Thoma, John; Baggett, Steven; Tadesse, Rebecca; Mock,
	Andrea
Cc:	Vietti-Cook, Annette; Muessie, Mary; Andersen, James
Subject:	FW: FYI - PARs for Deputies Meeting Rev 19a (2). dock
Attachments:	PARs for Deputies Meeting Rev 19a (2).docx

Please find attached the latest draft document with the criteria for short-term re-entry of U.S. citizens inside the 50 mile zone around Fukushima, and the long-term re-entry criteria. I would like to stress this is still a draft document at this time. I'm still working on locating a copy of the Global Assessment, and will forward that when I find it.

Dan

From: Dudek, Michael
Sent: Wednesday, April 13, 2011 7:42 AM
To: Merzke, Daniel
Subject: FYI - PARs for Deputies Meeting Rev 19a (2).docx
Dan,
Here is one of the documents for distribution, as appropriate. OUO at this time.
Michael I. Dudek

Michael Dudek | Technical Assistant | NSIR/Division of Preparedness \& Response | U.S. NRC
11555 Rockville Pike, Rockville, MD 20852 | \boldsymbol{i} (301) 415-6500 / R: Michael.Dudek Tinre.gov
(b)(5)

From:
Sent: To:

Subject:

RST01 Hoc
Thursday, April 14. 2011 1:57 PM

PW: 1100 am call notes/ questions

1100 Call Notes

Decision made to change the format of the meeting from being run by INPO to being run by the RST. Call changing from discussing RST Assessment to discussing plant conditions and items of concern among consortium members.

On Tuesdays and Thursday s, call will also address changes to the RST Assessment document.
INPO and EPRI indicated that they will still support the Tuesday and Thursday calls but will not listen in on the other calls.

Questions/Comments from the 1100 Call

1. What size Tsunami was the plant designed to withstand?
a. What size earthquake was the plant designed to withstand.
b. GEH indicated that design of earthquake was in ground motion and not on Richter scale
2. Does anybody have a copy of the paper that was previously generated on potential interactions between boron and seawater?
3. Any thoughts on how high radiation levels should be in SFP with water level 2.5 m above TAF? Currently reading 8 rem $/ \mathrm{hr}$
4. Any thoughts on having TEPCO getting a better flow path that could handle higher pressures? Recommendations
5. Any word on when they might stop inerting Unit 1?
6. Any concerns that may have more instrument failures due to operating in a high radiation / high temperature environment?
7. Received report today that TEPCO thinks they have 4' of water in DW, I thought we believed they had 10-12' any effort to reconcile differences?

Comments

1. Concern about Alternate Vent methods of venting Unit 1 RPV
a. Method of venting all RPV's
b. Concern about covering up the SRV's if they flood up DW
i. Do we have that concern?
ii. SRV may close and lose all injection and vent capability
2. Appears no damage to $\# 4$ SFP fuel - may not have had a fire
a. Radiation levels appear to be high 8 rem $/ \mathrm{hr}$ for level of 2.5 m over top of stored fuel
3. RST Assessment is being farmed out to NRR, all comments and changes will still go through RST
4. Unit 2 trench pumped down - refilled again
5. DOE indicated that they would send out information copies of documents that they had been working on.
6.

a. Want feedback/comments bv Close of business on Mondav.

From:
Sent:
To:
Cc:
Subject:
Aoki, Steven [Steven.Aoki@nnsa.doe.gov]
Thursday, April 14, 2011 9:33 AM
Gauntt, Randal; Kelly, John E (NE); Binkley, Steve
Lee, Richard; Orrell, Stanley A; Pickering, Susan Y; Bums, Shawn kew@dycoda.cem; Tinker, Charles
RE: Unit 4 Spent Fuel Pool Isotopic Analysis

From: Gauntt, Randal
Sent: Thursday, April 14, 2011 4:53 AM
To: Kelly, John E (NE); Aoki, Steven
Cc: Lee, Richard (NRC); Orel, Stanley A; Pickering, Susan Y; Burns, Shawnkkcw@idycoda:Cl...a_harles.tinkler@nrc.gov Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis
(b)(5)

Randy
From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent: Thursday, April 14, 2011 2:35 AM
To: alan.blamey@nrc.gov; Brian Wittick; Carl Moore; Chuck Casto; elmo.collins@nrc.gov; Gauntt, Randall O; Jeff Mitman; michael.call@nrc.gov; michael.hay@nrc.gov; Miller, Marie; richard.kondo@crbard:com; rudolph.bernhard@nre.gov; Salay, Michael; Steve Garchow; Steve Reynolds
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis

(b)(4)

1

Lee Gard

INFO
\square
qardla@inpo.org
Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized
repicuutwon is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

DISCLAINER:
This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright.belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity ior whicil it is intended. If you are not the intended recipient of this e-maii, any dissemination. distribution, copying. or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the iniended recipient of this e-mail, please notify the sender immediately by return e-mail and permanenity delete the original and any copy or printout of this e-mail and any attachments.
Thank you.

From:	Taunt, Randall O Orogaunt@sandia.gov]
Sent:	Thursday, April 14, 2011 10:31 AM
To:	Aoki, Steven; Kelly, John E (NE); Binkley, Steve
Cc:	Lee, Richard; Orel, Stanley A; Pickering, Susan Y; Burns, Shawn;"kow@dycoda,com;
Subject:	Tinker, Charles
	RE: Unit 4 Spent Fuel Pool Isotopic Analysis

From: Gauntt, Randall 0
Sent: Thursday, April 14, 2011 8:09 AM
To: Aoki, Steven; Kelly, John E (NE); Binkley, Steve
Cc: Lee, Richard (NRC); Orrell, Stanley A; Pickering, Susan Y; Burns, Shawn) kcw@dycoda.com; charles.tinkler@nrc.gov Subject: RE: Unit 4 Spent Fuel Pool Isotopic Analysis

Good suggestion.
(b)(5)
randy

From: Aoki, Steven [Steven.Aoki@nnsa.doe.gov]
Sent: Thursday, April 14, 2011 7:32 AM
To: Gauntt, Randall O; Kelly, John E (NE); Binkley, Steve
Cc: Lee, Richard (NRC); Orel, Stanley A; Pickering, Susan Y; Burns, Shawn $\}$ kcw@dycoda:com $\frac{\text { charles.tinkler@nrc.gov }}{\text {, }}$ Subject: RE: Unit 4 Spent Fuel Pool Isotopic Analysis

From: Gauntt, Randal
Sent: Thursday, April 14, 2011 4:53 AM
To: Kelly, John E (NE); Aoki, Steven
Cc: Lee, Richard (NRC); Orel, Stanley A; Pickering, Susan Y; Burns, Shawn; kcw@dycoda.com;Tcharles.tinkler@nrc.gov Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis
\qquad
\square

Randy

From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent: Thursday, April 14, 2011 2:35 AM
To: alan.blamey@nrc.gov; Brian Wittick; Carl Moore; Chuck Easto; elmo.collins@nrc.gov; Gauntt, Randall O; Jeff Mitman; michael.call@nrc.gov; michael.hay@nrc.gov; Miller, Marie; richard.kondo@crbard.com; tudolph.bernhard@nrc.gov; Salay, Michael; Steve Garchow; Steve Reynolds
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis

Lee Gard
 INPO
 「cell
 (b)(6)

gardla(@)inpo.org
1
Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

DISCLAIMER:
This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential. or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. if you are not the infended recipient of this ϵ-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and atachments to this email is contrary to the rights of INPO or WianO and is prohibited. If you are not the intended recipient of this e-mail, please rolify the sender mmediately by return e-maii and permanently delete the onginal and any copy or printout of this e-mail and any attachments.
Thank you.

Lee, Richard

From:	Taunt, Randall O [rogaunt@sandia.gov]
Sent:	Thursday, April 14, 2011 8:58 AM
To:	'JohnE.Kelly@Nuclear.Energy.Gov', Lee, Richard
Cc:	Orel, Stanley A; Pickering, Susan Y; Burns, Shawn; 'kcw@dycoda.com'; Tinker, Charles;
Subject:	'Steven.Aoki@nnsa.doe.go'
	Re: Unit 4 Spent Fuel Pool Isotopic Analysis

(b)(5)
${ }_{4}^{4}$

From: Kelly, John E (NE) [mailto:JohnE.Kelly@Nuclear.Energy.Gov]
Sent: Thursday, April 14, 2011 06:32 AM
To: Lee, Richard (NRC) Richard.Lee@nrc.qov; Gauntt, Randall 0
Cc: Orel, Stanley A; Pickering, Susan Y; Burns, Shawn kew@dycoda:com < kcw@dycodacom>; Tinker, Charles
Charles.Tinkler@nrc.gov; Aoki, Steven Steven.Aoki@nnsa.doe.gov
Subject: RE: Unit 4 Spent Fuel Pool Isotopic Analysis
(b)(5)

From: Lee, Richard (NRC)
Sent: Thursday, April 14, 2011 8:04 AM
To: Gauntt, Randal
Cc: Orel, Stanley A; Pickering, Susan Y; Kelly, John E (NE); Burns, Shawly;-kew@dycodatcom; Tinker, Charles; Aoki, Steven
Subject: RE: Unit 4 Spent Fuel Pool Isotopic Analysis

Randy:
d
2
(b)(5)

Richard

From: Gauntt, Randall O [mailto:rogaunt@sandia.gov]
Sent: Thursday, April 14, 2011 4:53 AM
To: Kelly, John E (NE); Aoki, Steven
Cc: Lee, Richard; Orrell, Stanley A; Pickering, Susan Y; Burns, Shawn;.kew@dycoda.com; Piinkler, Charles
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis \qquad
$\square \quad$ (b)(5) $\quad \square$

Randy

From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent: Thursday, April 14, 2011 2:35 AM
To: alan.blamey@nrc.gov; Brian Wittick; Carl Moore; Chuck Casto; elmo.collins@nrc.gov; Gauntt, Randall O; Jeff Mitman; michael.call@nrc.qov; michael.hay@nrc.gov; Miller, Marie; richard.kondo@crbard.com; rudolph.bernhard@nrc.gov; Salay, Michael; Steve Garchow; Steve Reynolds
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis
\square

Lee Gard

TNPO
Celt (b)(6)
gardla@jnpo.org
Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

DISCLAIMER:

This e-mall and any of its atiachments may contain proprietary $\mathbb{N P O}$ or WANO information that is privileged, confidential, cr protected by copyright belonging to INPO or WANO. This e-mail is intended solety for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail. any dissemination, distribution, copying, or action tahen in relation to the contents of ard attachments to this e-mail is contrary to the rights of iNPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments.
Thank you

Lee, Richard

From:	Lee, Richard
Sent:	Thursday, April 14, 2011 8:43 AM
To:	'Gauntt, Randall O'
Subject:	RE: Unit 4 Spent Fuel Pool Isotopic Analysis

(b)(5)

$=$
From: Gauntt, Randall O [mailto:rogaunt@sandia.gov]
Sent: Thursday, April 14, 2011 8:29 AM
To: Lee, Richard
Subject: Re: Unit 4 Spent Fuel Pool Isotopic Analysis
Well.
(b)(5)

From: Lee, Richard [mailto:Richard.Lee@nrc.qov]
Sent: Thursday, April 14, 2011 06:04 AM
To: Gaunt, Randall 0
Cc: Orrell, Stanley A; Pickering, Susan Y; Kelly, John E (NE) < JohnE.Kelly@Nuclear.Energy.Gov>; Burns, Shawn;
kcw@dycodazcom_kcw@dycodacom>; Tinkler, Charles Charles.Tinkler@nrc.gov; Aoki, Steven
Esteven.Aoki@nnsa.doe.gov>
Subject: RE: Unit 4 Spent Fuel Pool Isotopic Analysis

Randy:
\square

(b)(5)

Richard

From: Gauntt, Randall O [mailto:rogaunt@sandia.gov]
Sent: Thursday, April 14, 2011 4:53 AM
To: Kelly, John E (NE); Aoki, Steven
Cc: Lee, Richard; Orrell, Stanley A; Pickering, Susan Y; Burns, Shawn; kewodycodarcom;at inkier, Charles
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis
\square
Randy

From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent: Thursday, April 14, 2011 2:35 AM
To: alan. blamey@nrc.gov; Brian Wittick; Carl Moore; Chuck Casto; elmo.collins@nrc.gov; Gauntt, Randall O; Jeff Mitman; michael.call@nrc.gov; michael.hay@nrc.gov; Miller, Marie; richard.kondo@crbard.com; rudolph.bernhard@nrc.gov; Salay, Michael; Steve Garchow; Steve Reynolds
Subject: FW: Unit 4 Spent Fuel Pool Isotopic Analysis
(b)(4)

Lee Gard

INPO
cell (b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

[^0]| From: | HOO Hoc |
| :--- | :--- |
| Sent: | Thursday, April 14, 2011 8:28 PM |
| To: | LA07 Hoc; $\amalg A 08$ Hoc; OST01 HOC |
| Subject: | FW: Official notice (14/04/2011) Documents of the briefing |
| Attachments: | image001.jpg |

Headquarters Operations Officer
U.S. Nuclear Regulatory Commission
Phone: 301-816-5100
Fax: 301-816-5151
email: hoo.hoc@nrc.gov
secure e-mail: hoo1@nrc.sgov.gov
eU.S.NRC

From: Hinds, Lynda J [mailto:HindsL〕@state.gov] On Behalf Of Tokyo Staff Assistant
-Sent: Thursday, April 14, 2011 8:25 PM

Subject: FW: Official notice (14/04/2011) Documents of the briefing

Lynda Hinds
Staff Assistant
(03) 3224-5370

From: PROTOCOLOFFICE-EM [mailto:protocoloffice-em@mofa.go.jp]
Sent: Friday, April 15, 2011 4:49 AM

-Urgent-
 Official Notice
 (15 ${ }^{\text {th }}$ April 2011 04:00 revised)

To All Missions (Embassies, Consular posts and International Organizations in Japan)

The Ministry of Foreign Affairs has the honour to send for the perusal of Missions documents which were distributed at the briefing on 14 ${ }^{\text {th }}$ April, 2011 at 16:00 for your reference.
< p class=MsoNormal style='text-indent:7.0pt'>
Also, the Ministry would like to inform the missions that the Chief Cabinet Secretary announced at the press conference the removal of shipment restriction of kakina, leafy vegetable, originated from Tochigi Prefecture.

Furthermore, the Ministry would like to correct the data provided by NISA colleague at the briefing regarding sampling data of water from the Unit4 spent fuel pool. The corrected data is the following:

```
\({ }^{131} \mathrm{I} \quad 2.2 \times 102 \mathrm{~Bq} / \mathrm{cm}^{3}\left(=220 \mathrm{~Bq} / \mathrm{cm}^{3}\right)\)
        (note: the usual data is less than \(0.01 \mathrm{~Bq} / \mathrm{cm}^{3}\) )
    \({ }^{134} \mathrm{Cs} 8.8 \times 10 \mathrm{~Bq} / \mathrm{cm}^{3}\left(=88 \mathrm{~Bq} / \mathrm{cm}^{3}\right)\)
    (note: the usual data is less than \(0.01 \mathrm{~Bq} / \mathrm{cm}^{3}\) )
\({ }^{137} \mathrm{Cs} 9.3 \times 10 \mathrm{~Bq} / \mathrm{cm}^{3}\left(=93 \mathrm{~Bq} / \mathrm{cm}^{3}\right)\)
    (note: the usual data is the order of \(0.1 \mathrm{~Bq} / \mathrm{cm}^{3}\) )
```


List of attachments

1. List of briefers from Ministries other than the MOFA ($14^{\text {th }}$ April)
2. Levels of radioactive contaminants in foods (data reported on 13 April 2011) (Ministry of Health, Labour and Welfare)
3. Current situation for water supply works(14 ${ }^{\text {th }}$ April 2011) and Press release on detection of radioactive materials in tap water($33^{\text {th }}$ announcement)(Ministry of Health, Labour and Welfare)
4. Results of the inspection on radioactive materials in fisheries products (Ministry of Agriculture, Forestry and Fisheries)
5. Reading of Environmental Radiation Level by emergency monitoring (Ministry of Education, Culture, Sports, Science and Technology)
6. Press Release (Evaluation of Environmental Radiation Monitoring Results (16:45 on April 13, 2011) (Nuclear Safety Commission, Cabinet Office)
7. District-based Assessment of Vulnerability to Earthquake Disaster (2008), issued by Tokyo Metropolitan Government (MOFA)
8. Tokyo Metropolitan Government Disaster Prevention Homepage (MOFA)
9. Information for those who are interested in the volunteer work for the Great East Japan Earthquake) (MOFA)
10. Excerpts from the press conference by Executive Vice President Muto (TEPCO)
11. Seismic Damage Information (the $91^{\text {st }}$ and $92^{\text {nd }}$ Release) (Nuclear and Industrial Safety Agency)
12. Conditions of Fukushima Dai-ichi Nuclear Power Station Unitl-6 (As of 6:00 April 14 ${ }^{\text {th }}$, 2011) (Nuclear and Industrial Safety Agency)

From:
Sent:
To:

OSTOI HOC
Thursday, April 14, 2011 2:59 PM
Franovich, Mike; Hipschman, Thomas; Snodderly, Michael; Orders, William; Castleman, Patrick; Weber, Michael; Virgilio, Martin; Boger, Bruce; Zimmerman, Roy; Bowman, Gregory
Subject:
Attachments:

Draft Chuck Casto Slides
JapanGlobalAssessment.pptx

Please see attached DRAFT slides from Chuck Casto, as requested. Staff comments have not been incorporated yet. After receipt of planned final, we can resend that version tomorrow, hopefully.

Executive Support Team
(for the ET Director, Roy Z.)

\square

Westreich, Barry

From:	Holahan, Patricia
Sent:	Friday, April 15, 2011 11:10 AM
To:	Westreich, Barry; Holahan, Vincent
Subject:	Fw: OUO- Japan

FYI.

From: Zimmerman, Roy 1_{6}
To: Monninger, John; Virgilio, Martin
Cc: Merzke, Daniel; Wiggins, Jim; Holahan, Patricia; Evans, Michele; Weber, Michael
Sent: Fri Apr 15 10:17:32 2011
Subject: OUO- Japan
Just got off the phone call briefing with Chuck Casto and the Chairman. Chuck indicated that based on the TEPCO isotopic analysis of the Unit 4 SFP. TEPCO currently believes the spent fuel is undamaged. This is a more positive view than yesterday's statement that damage occurred to some fuel rods. .
(b)(5)

(b)(5)

> (b)(5)

Regarding the composite assessment, NSIR has the lead and it is being worked by Trish Milligan We are contacting Trish and will get back to you.

SoS briefing slides: Received from Chuck and provided to various folk, including you and I

From:
Sent:
To:
Subject:
Attachments:

Hoc, PMT12
Friday, April 15, 2011 9:23 AM
PMT10 Hoc
Latest version of Composite document
PARs for Deputies Meeting Rev 21 with tracked changes (3).docx

Sam

There doesn't appear to be a new version since the meeting with Marty on Wednesday,

Sandi

5

(b)(5)

Deputic: Meeting-Rev $\hat{=}$
deex
(b)(5)

1.

From:
Sent:
To:
Attachments:

Hoc, PMT12
Friday, April 15, 2011 11:43 AM
PMT10 Hoc
Composite Document Rev 1 - formerly called PARs for Dep Mtg V21.docx

Sam

Here's the latest draft.

Sandi

(b)(5)

\square

\square

Wittick, Brian

From:	Wittick, Brian
Sent:	Saturday, April 16, 2011 2:03 AM
To:	Huffert, Anthony; Gepford, Heather; Meighan, Sean
Subject:	FW: April 15 briefing notes, excel spreadsheet and radiation survey map
Attachments:	April 14 1600 Facility Area Survey Data[1].pdf; April 15 Ryan 6 pm briefing notes.doc; TEPCO
	Summary Rev.87 Final April 15.x ls

\square

From: Gard, Lee A (INPO) [mailto:GardLA@INPO.org]
Sent: Friday, April 15, 2011 5:21 AM
To: Blamey, Alan; Wittick, Brian; Moore, Carl; Casto, Chuck; Collins, Elmo; Gauntt, Randall O; Mitman, Jeffrey; michael.call@nrc.gov; Hay, Michael; Miller, Marie; richard.kondo@crbard.com; Bernhard, Rudolph; Salay, Michael; Garchow, Steve; Steve Reynolds
Subject: FW: April 15 briefing notes, excel spreadsheet and radiation survey map

[^1]
福島第一サーベイマップ（平成23年4月14日 16：00現在）

FUKUSHIMA DAIICHI

Status as of 6pm (JST) April 15, 2011- TC Briefing. (All times JST)

All information may be shared

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- N2 purging of Unit 1 continues. Drywell pressure has been steady or slightly decreasing over the past several days.
- The transfer of radioactive water from the Unit 2 trench to the Unit 2 hotwell was completed last night. After an initial decrease, trench level has been increasing.
- Leak checks and seal inspections / repairs are in progress in the Radioactive Waste building in preparation for water transfers from the units.
- To support waste water cleanup TEPCO announced they will install multiple temporary tanks of 27,000 tons capacity by the end of May. They will also deploy a megafloat of 10,000 tons capacity by mid-May.
- 25 tons of water was added to the Unit 3 SFP. Spray of 140 tons into the Unit 4 pool is planned for today.
- Silt screens are in the process of being installed around intake / discharge areas. They are also placing sandbags filled with zeolite in the water around the intake structures to aid in the absorption of cesium.
- The unmanned helicopter is scineduled to fly again today. Videos from previous test flights have not yet been released.
- Debris removal and dust / particle scatter preventive actions are continuing.
- To strengthen electrical power reliability the Tohoku transmission line used as the Unit $1 \& 2$ power source and the TEPCO power source for Unit $3 \& 4$ will be cross connected and switchable. The emergency diesel generators for powering injection will be relocated to higher ground (April 15).

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line continues at 6 cubic meters/hr. Comments on parameters:
- Reactor pressure indicator A increased slightly to .428 MPa g, (62 psig). Indicator B is considered to be unreliable.
- Feedwater nozzle temperature continues to decrease and is reading 197 C (387F). This parameter remains suspect.
- Reactor vessel lower temperature has remained steady at 119 C (246 F)
- Drywell and torus pressure remains relatively steady at . 185 MPa abs (27.6 psia) and .165 MPa abs (23 psia) respectively.
- Dose rates in the Torus continue to decrease slightly to $9.7 \mathrm{~Sv} / \mathrm{hr}$ (970 Rem/hr.)
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at 7 cubic meters/hr, ($=$ to the goal and equivalent to the decay heat rate 14 days after shutdown.) Comments on parameters:
- Unit 2 reactor pressures remain fairly stable. TEPCO now considers these measurements to be suspect.
- Feedwater nozzle temperature continues to decrease slowly to 150 C (302 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure is stable at . 090 MPa abs (13.8 psi)
- Dose rates in the U2 Drywell and Torus continue to decrease. The drywell dose rates are at 27.1 Sv/hr or (2,710 Rem/hr) and the dose rate in the Torus has decreased to . 629 Sv/hr or (62.9 Rem/hr.)
- In Unit 3, injection of non-borated fresh water using the low pressure coolant injection line continues at 7 cubic meters/hr (= to the goal and equivalent to the decay heat rate 14 days after shutdown.). Comments on parameters:
- Unit 3 reactor pressures indicate stable but are considered suspect.
- Feedwater nozzle temperature is fluctuating day-to-day and is considered to be unreliable.
- Reactor vessel lower temperature has been steady two days at at 121 C (248 F)
- Drywell pressure was steady at . 104 MPa abs (15 psi). Torus pressure decreased slightly to .166 MPa abs (24 psi).
- Dose rates in the U3 Drywell and Torus continue to decrease. The drywell is at 16.5 Sv/hr ($1,650 \mathrm{Rem} / \mathrm{hr}$) and the dose rate in the Torus is . $634 \mathrm{~Sv} / \mathrm{hr}$ or ($63.4 \mathrm{Rem} / \mathrm{hr}$.)

Dose and Dose Rates

- Radioactivity level in underground water around Unit 1 and 2 has increased compared to samples taken last week. Increases observed ranged from 6 to 38 times higher depending on the isotope. Radioactivity levels of groundwater around Units 3 and 4 remained the same or decreased slightly.
- The number of workers who have received greater that $100 \mathrm{mSv}(10$ Rem) has increased to 28. The highest received was 198 mSv (19.8 Rem). The maximum emergency dose is temporarily set at 250 mSv .
- Overall site dose rates are decreasing. For example:
$>$ The last reading reported at the main gate was $72 \mu \mathrm{~Sv} / \mathrm{hr}$ or (7.2 millirem/hour).
$>$ The side of the administration building facing the units is at 545 $\mu \mathrm{Sv} / \mathrm{hr}$ or $55 \mathrm{mrem} / \mathrm{hr}$.
$>$ The dose rate at the west gate is reported to be $37 \mu \mathrm{~Sv} / \mathrm{hr}$ or (3.7 millirem/hour).

rent Status and Planned Work

15 April at 08:00 (Rev-87)

ank	Draining water - Fazer level - . Tater level in I/B $0 \mathrm{P}+580 \mathrm{~mm}$ (at 07:00 on 15 April) : sace as 14 Ap-il 11:00 - Fater transfer (Concentrated R 用 \rightarrow T/B) (2 Aprid 14:25-4 April 09:22; suspended) - Fater transfer pumps were added ($1 \rightarrow 5$ purps: 3 Apr. 10:00-4 Apr. 09:22, suspended due to high water level in the trench) Hork for shutting off the leak in pit - Concrete was poured ($25 \mathrm{~m}^{3}$) to clog	Draining water - Mater transfer RHR pump area \& CS pump area - $\quad \mathrm{S} / \mathrm{C}$ (4 April) Discharging rater in sub-drain of Unit 5 to the sea: 950 m 3 (4 April 21:00-B April 12:14)	Draining water - Water transfer (RW base floor $\rightarrow \mathrm{H} / \mathrm{F})$ (1 April 13:40-2 April 10:00) - Suspended by large amount of water: considering draining water - Discharging water in sub-drain of Unit 6 to the sea; 372.6 m 3 (4 April 21:00-9 April 18:52)	```Draining water -Concentrated RTM sea: 9070 m (4 April 19:03 - 10 April 17:40) FDraining water from main process building was completed Draining water from incinerator building was started (on 6 April) #Being repaired of boundary / Prevention of leaks from boundary of buildings before storing highly contaminated water in concentrated *T```

RCIC:Reactor Core Isolation Cooling
RHR : Residual Heat Removal
RPV :Reactor Pressure Vessel
S/C : Suppression Chamber
SDF :Self Defense Force
SFP : Spent Fuel Pool
SCTS :Stabd by Gas Treatment System

FUKUSHIMA DAIICHI

Status as of 6pm (JST) April 26, 2011- TC Briefing.
Information that is in italics should not be shared as it has not yet been released by TEPCO.

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- N2 purging of the Unit 1 Drywell was stopped yesterday for approximately five hours while power supply lines from Unit $5 / 6$ were connected to a Unit $1 / 2$ load center to improve reliability of Units 1 and 2. During that time, Drywell pressure decay and decay rate was monitored and used to estimate free space and water level in the Drywell. It is now believed that Drywell water level is .5 m below the bottom of the reactor vessel.
- The robot entered the Unit 1 reactor building on Tuesday to check for possible leakage from an electrical penetration or other areas on the reactor building first floor. No leakage was observed. TEPCO is considering increasing injection flow up to $14 \mathrm{m3} / \mathrm{hr}$ to increase the flooding rate of the Drywell.
- Transfer of highly radioactive water from Unit 2 to the Centralized Radioactive Waste Treatment Facility continues at a rate of 250 tons/day. Level in the Radioactive Waste Facility has risen 840 mm since the start of transfer.
- Unit 2 trench level decrease has slowed dropping only 10 mm since yesterday. It is now 890 mm below the trench top. Unit 3 trench level has increased an additional 20 mm and is now 980 mm from the top.
- After four days of stability, Unit 4 turbine building water level increased 50 mm and is now 3050 mm (1.5 m above floor level) which is slightly higher than the Unit 3 turbine building water level of 3000 mm .
- Two hundred ten tons of water were added to the Unit 4 Spent Fuel Pool (SFP) yesterday. Another 160 ton addition is scheduled for today to fill the pool. The structural integrity of the Unit 4 SFP is considered sufficient to support a full SFP. Calculations and observations indicate that approximately 82 tons of water is needed to be added to the Unit 4 SFP daily to maintain level.
- Thirty-eight tons of water was added Unit 2 SFP yesterday. Fifty tons of water is scheduled to be added to the Unit 3 SFP today. Boil off rates are 21 tons/day and 17 tons/day respectively.

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line continues at $6.1 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Reactor pressure indicator A is increased slightly to .450 MPa abs (65 psig). Indicator B continues to be suspect.
- Feedwater nozzle temperature continues to be suspect.
- Reactor vessel lower temperature decreased slightly to 111 C (232 F)
- Drywell and Torus pressure remained at . 150 MPa abs (22 psia).
- Drywell and Torus dose rates are considered to be suspect.
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at $7 \mathrm{m3} / \mathrm{hr}$. Comments on parameters:
- Unit 2 reactor pressures remain suspect.
- Feedwater nozzle temperature decreased slightly to 122 C (252 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure was stable near atmospheric.
- Dose rate in the U2 Drywell continues to decrease. The drywell dose rate is $2.31 \mathrm{~Sv} / \mathrm{hr}$ or $(2,310 \mathrm{Rem} / \mathrm{hr})$. The Torus dose rate reading is considered suspect.
- In Unit 3, of non-borated fresh water using the low pressure coolant injection continues at $6.8 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 3 reactor pressures are considered suspect.
- Feedwater nozzle temperature is considered to be suspect.
- Reactor vessel lower temperature decreased slightly to 110 C (230 F)
- Drywell pressure was steady at . 104 MPa abs (15 psi). Torus pressure is also steady at . 178 MPa abs (26 psi).
- Dose rate in the U3 Drywell continues to decrease and is at 14.6 $\mathrm{Sv} / \mathrm{hr}$ ($1,460 \mathrm{Rem} / \mathrm{hr}$). Dose rate in the Torus is considered to be suspect.

Dose Rates

- Overall site dose rates are stabilizing or only varying slightly. For example:
$>$ The last reading reported at the main gate was $52 \mu \mathrm{~Sv} / \mathrm{hr}(5.2$ $\mathrm{mrem} / \mathrm{hour}$) and be $23 \mu \mathrm{~Sv} / \mathrm{hr}$ ($2.3 \mathrm{mrem} / \mathrm{hour}$) at the west gate.
$>$ The side of the administration building facing the units decreased slightly to $.450 \mu \mathrm{~Sv} / \mathrm{hr}$ or $45 \mathrm{mrem} / \mathrm{hr}$. The same as yesterday.

Fukushima-Daiichi Current Status and Planned Fork
26 April at 01:00 \& 09:00 (Rev-100)

		府		Id				
Peschrity ferrol (thlt (1actia)	Curcal Sutis				Write buract EP i trixise oritit mat 4riss wise)	itut of the pat motaice ctic antit boltef at (Usertiknie peratrd ofler ceapletios of IN hitratic test jasi belor the startupl Humbioituint cold chudern	Litef inn yutps If anald thad	
		 sic: $10.11 \times 10^{\circ} \sin$ (ructing lemad cralmaxaly) tonlituss \mid)	(a) (10 06:00 on os brill): STA cesaldexarn\|y (7) 1.0×10^{2} 5h h (ruming 1 mod tatinumshly)					
	Mal fixb Himand (tたM "Bxaturlus' thitilities)	 LITO od bogic aid to freth colant belore ximim cald wat don Afler lestoriăt perat? CAbratia SiL	Cisxalth frest mat higation surtod lat $10: 10 \mathrm{om}$ 28 Hech) Die wid tate xid to inded exaleat bloter *etith tald dul dan thfir redetios pairs: 0 Oratias If	Lint (tre metro) Cilo wid boric wid to frest coolat halore xiribut cold stan dom (ather retorimp perrs) Clatity				
	Curtal Sules	 ance as cas itted) - ionn sarre wh sultari to off-rile pmet. Hissiallits texoraty mparseel pap for 0 Cose teolite 13: Hitallos. (oce 6 metil) Whetem line for terc roolian roler 1akriut Whataray Dit for cere conlay mite idpertica ase mates to hip atused lao is Aprill les it in ill	lat urentele coolmal hingerima tsolich is carated 4prili) - Pour swatc no miltbed to offsicu ports. Thatallailan of in chatraty pep for Wis (3 4ra) Ciand to pator ontritikt mpitixs $\%$ isalalled (cat ketil) taprajom sajective 	mastere ses) creplaid (flew luty: 6.1 dith h_{1} lautis pans. Hashation of the situmate pue for Th (2) tered) Itemeta to metiox mpraties conditionos of ingratim vaz hasedled (on [14 axil) IImanery Dif for core conlian ater Isjatico (on (e) hpril)			th 	
		 (cxtimocsip) combinasul) Solta of tit : 1099 C	```Lritl``` ```catiauxu!(:)``` ```conilumbi!)``` ```Lpril)``` ```Frre mery mothe: [?].{c```	```act \(\{\) Trives \(\mid\) ?``` ```nectimphity``` ```Jorill``` ```Find nuter mathe: 51.9T (rictlis Itread cullawivily dee to mperide indertimp oraliad Bithe of Ift : 110.4 C```		4quil) 0.0081 taril) taril) $4.11^{\circ} \mathrm{C}$	Apt11 0.013 Pr harill hor II) 21 C	
	fluat fcolimy hatef 	${ }^{17 \%}$ pup rurbues bevidilay). ratorits off-sile porm it triad movipurit Bier AV floodias	19 518 4s tartisa mildined. thes Iten [aillat trision ryinen	```(The roct ns s.spered bruyey of llai``` ```(4) turblat buldiace. Irgosise is dria twe hitherolalon maler``` ```mutaind effoler gatit rejut omiperals```			Dishration of travern drleraim (rase of tirp	

Cuntalasas Fancilion ．Coulive ion $[$ isimel	Orttul Sulus	 Hity rem：多． C Disuted mallution thropig butceed lise （1） $10: 30 \times 12 \mathrm{brch}$ －PTV despa presife ：shita 	Tifrazire lat（sid as \＄Laril） Sic：Bon sole（fuadiad） 的动 relom： 113 C thardend 	```Tatrane (an 05:00 os 3t deril) Dit : 0.10 N 19724 5ir: 0.174 Wers``` ```(nuchisf trem canimass)``` ```sk: (4) il.4 C. (3) 4.4 ᄃ Burne ravilation lurosh tadend has (at \(9: 77\) on 13 harch Kit desim presure : : tof th``` ```liplure dise aotima pressuse : 310 lis.```				
	Sint fits Plucad ITREC ＂Kaderiters Atrivitits）	 －Fill RT mad muthylion line vith аічгояи －Leinfored ratiorina of RT pressire －Coaluma to grute tratiation lime Sfier servilat offosile pows） Wher restritea of expipyaty） Ghencion of cat ist csil 	Sene as will	Same as esis ！				
Sperl finl Puat（STP） （torat lieat Enow ！ ［lact 5apoly］	Grame subly	TSF man liti！ uncruis（to vist lend stien） ISF）tuperatis mo porse supply） （Batei） （ orlind thatiethend －31 loceh 11：63－13：67 － 31 kord in： － 2 haril 18：15－17：19 Lait I we tenget loa＂Jued Glaffe＂to Mrearatios for roer fediag nich sletule $3 \mathrm{O}=\mathrm{F}$ 	ISST ratel lopel methan In mater lacel mand Insp texatium － 19 iqtall l6：c6－17：3 －2 April $1 \mathrm{~B}: \mathbf{5}-17: 4$ EFivolal of the entriag straiut ta FR list az sapined（3）larti）． （arbajoded for il Lichl	```SSTpun letis incerula ix \(^{2}\) mier lert mied``` ```laxt of gome zuippis) Brinith tace lud lital A traurisal``` ```Pam?``` ```Pale)``` ```(1)``` ```oinstig``` ```Teplacient``` ```3 (at II axtill``` ```[xallorim in to creal Pluatirnatiox of tajection llas to the poos tircaido FK lim - 2 2 mpil 13:40-14:00 (100)```	 arth： （at 11：10 on 21 larch and lass） Mistimat befe latit lore！ － 54 rrl 1 $17: 3015: 2$ － 1 dxi］18：23－18：40 － 9 appl1 17：07－｜9：24 Iftrantion for mot ferding rile cetctic April） 3 （00 11 apil1） $\because 2$ ns capplated（I？iprili lase of ite ［5ul is toliurred to to edenorind sur ete） OS the Ilerdara in and mation tempenstr． rater lerol and raistion doser．6on 32, Apili） 	 Fitan reast of 8 国 酸 bist ice： 4rin Eacester couitant is lowet rith ros かん keril 	－absang mexiai What ress of inut hire met wi xelinged）相 buctux： 4aril） rool of 40 MatII 	 in coblers giph in sistaz （2t mech $15: 15 \cdot 18: 04$ ） un ith Lurd
	plamerd with （bun ｜ketrities of FRC Iexas			and ltraid 	 （tos） nituctive			

Midu Moltace Ma kort 	Carrat Sats	 （at $15: 16$ on 21 Bnal und found bat in foll on ？ thach 1158 1． 4 C cula bas poeted $2101: 19$ at 3 lard a 24 burb instilled mal！ithe）for 19 Mor ！I） lnstulled （0， 5 buril）	 distituntom artmort of lidase Ex roa Ds atria Itra lowal｜es． （m） 3 darill	Diki PiC 10 ported trouph tratslasion lize（at 10：15 co man bich） lamymy prot maly edinen villisiat in trachand parl of 酸 offolle potir Iramanala lice －Itial divertc chats of the moter antir ndicto for toilt ex mith ns copepleted nad lumertive of cable low the treders and loors leatiation if cobles wite completed on 11 lans on 7 nhtch mh hatch Dilatisites is retorat ia nie control F (x) thred． W／a rec u－1 has bea parted on 30 herch 	Tise Fic 14 preted hrow чгдяibio os 31 lith $y \text { brit }$ ras atixa lise mivera nailible）（a ：Anail）	```Matporty pould spply whiond aillater the wordand art of cesy nffith Dowr``` ```ILIM Thoralaty arine trax of is mo 59 in emallith``` ```nd``` ```sa fill herch``` ```101 pined on 2tin threh Whate fritlankes failly no pwerd 49:10 maz 2th luest``` ```onlsoring pust (``` ```kert Strerahta morsitt mext``` ```indtaled (\$ mill)```	ailisus pitu pover tranjulem lian tibos poril libe IL， 41 ate gunitiolt DItwermin larks at skestinte of tixil hes hatalled and ant is sertice Oromers in 8,0 －litsi nia od iastalled able ros craturt an ${ }^{2}$ Brat restores． －Tlir lia to tuil It？aia wos no ibsulid （45 dall）	FTlensurit at Sth lourd apriction（1）hatil $1: 3$－ $1:$ 列
						（B）		
$\begin{array}{\|l\|l} x \text { Powt } \\ \text { nnaftr } \end{array}$			 shlus al 16			```parred bl``` ```TH:``` ```on it lerch```		
		．						
	tatrav Siua		al isemplion of intricien as il itr 100 art －M14e m山 ctand os iln lurch ns nupud to be the rita fric STP that tei 			```tik``` ```butrem Wuldieg os 18 Lrith to rellere My[uch``` ```crets``` ```Murch```	［1］ th the ither buldite wa is tarth to relion 47d 4 Mn un at wo jurd raposion Ullar bols is ith Lif collize wnt coteted to pront rijs ibmáninat 	

Huffert, Anthony

From:	Huffert, Anthony
Sent:	Sunday, April 17, 2011 10:54 PM
To:	'rogaunt@sandia.gov'
Subject:	FW: GEH Nuclear Response Team Response
Attachments:	Q466 NRC_Postulated_Core_breach_1F2 - FINAL.pdf
Importance:	High

From: Mitman, Jeffrey
Sent: Sunday, April 17, 2011 5:45 AM
To: Liaison Japan
Subject: FW: GEH Nuclear Response Team Response
Importance: High
(b)(4)

From: RST01 Hoc
Sent: Saturday, April 16, 2011 9:22 AM
To: Mitman, Jeffrey
Subject: FW: GEH Nuclear Response Team Response

From: RST09 Hoc
Sent: Friday, April 15, 2011 8:20 PM
To: RST01 Hoc
Subject: FW: GEH Nuclear Response Team Response
Please forward to site team.

From: RST01 Hoc [mailto:RST01. Hoc@nrc.gov]
Sent: Friday, April 15, 2011 6:51 PM
To: RST09 Hoc; RST07 Hoc; RST08 Hoc
Subject: FW: GEH Nuclear Response Team Response

From: GE Hitachi Nuclear Response Team (GE Power \&
Water)[SMTP:GE. HITACHINUCLEARRESPONSETEAM@GE.COM]
Sent: Friday, April 15, 2011 6:50:50 PM
To: RST01 Hoc
Subject: GEH Nuclear Response Team Response
Auto forwarded by a Rule

April 15, 2011
Confidential - GE Hitachi Nuclear Energy LLC
Withhold Pursuant to FOIA Exemption 4
2×4
Information is Unverified

April 15, 2011
 Confidential - GE Hitachi Nuclear Energy LLC
 Withhold Pursuant to FOIA Exemption 4
 Information is Unverified

April 15, 2011

Confidential - GE Hitachi Nuclear Energy LLC
Withhold Pursuant to FOIA Exemption 4 Information is Unverified

$$
\therefore \text {. : }
$$

April 15, 2011
Confidential - GE Hitachi Nuclear Energy LLC
Withhold Pursuant to FOIA Exemption 4 Information is Unverified

Attached please find our NRC Postulated Core Breach 1F2 Review.
<<Q466 NRC_Postulated_Core_breach_1F2 - FINAL.pdf>>
Rich Rusin

Technical Services

GE Hitachi Nuclear Response Team

From:	OST01 HOC
Sent:	Sunday, April 17, 2011 1:51 PM
To:	RST01 Hoc
Subject:	FW: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
Attachments:	guideline comments.docx

Doug sent this to Trish already.

From: Weaver, Doug

Sent: Sunday, April 17, 2011 1:46 PM
To: OST01 HOC; Deegan, George; Lewis, Robert; Hiland, Patrick; Skeen, David; Dudek, Michael; Milligan, Patricia;
Gibson, Kathy; Case, Michael; Anderson, James; Tracy, Glenn
Cc: Rahimi, Meraj; Kinneman, John; Haney, Catherine; Ordaz, Vonna
Subject: RE: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
Trish,
Please see attached comments for you consideration.

Doug

From: OST01 HOC
Sent: Sunday, April 17, 2011 3:54 AM
To: Deegan, George; Lewis, Robert; Weaver, Doug; Hiland, Patrick; Skeen, David; Dudek, Michael; Milligan, Patricia; Gibson, Kathy; Case, Michael; Anderson, James; Tracy, Glenn
Subject: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
******Please mote. Allattachments aro official Use Only**********

The Operations Center has identified a task that falls in the purview of the Line Organization. You were provided as a POC for NRR/NSIR/RES/FSME/NMSS.

NSIR: Please provide the latest version of the composite document to Marty Virgilio by 0900 Monday morning 4/18.
NRR/FSME/NMSS/RES: Please review and provide comments to Trish Milligan, NSIR and OST 01 HOC by 4/17/2011, 1500 EDT

This ticket is being tracked in the Japan SharePoint page (http://nsirops.nrc.gov/Lists/HOC\ Red\ Tickets/Alltems.aspx) under ticket number 4771.

Please provide a response to this email to confirm receipt. Thank you,

Executive Support Team

[^2]

From:
Sent:
To:
Subject:
Attachments:

PMT10 Hoc
Sunday, April 17, 2011 9:29 AM
RST01 Hoc; pmt12.hoc@nrc.gov
Composite document comments on definitions and a reentry parameter
Composite Document Rev 1 - formerly called PARs for Dep Mtg V21.docx

Larry and Casper,

(b)(5)

Sam Keith

CDC Liaison

From: PMT10 Hoc
Sent: Friday, April 15, 2011 10:14 PM
To: Hoc, PMT12
Cc: PMT10 Hoc
Subject: FW:

$$
(b)(5)
$$

Thanks,
Sam Keith
. CDC Liaison
404-277-0016

From: Hoc, PMT12
Sent: Friday, April 15, 2011 11:43 AM
To: PMT10 Hoc
Subject:
Sam
Here's the latest draft.

Sandi

Andersen, James

From:	Andersen, James
Sent:	Sunday, April 17. 2011 12:22. PM
To:	OST01 HOC
Subject:	Re: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process

No that is okay. Just let me know if you need assistance fro the EDO's office. Thanks

Sent from an NRC Blackberry
James Andersen
(b)(6)

From: OSTO1 HOC
To: Andersen, James
Sent: Sun Apr 17 11:53:34 2011
Subject: RE: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
Do you want me to send and make sure your name is listed? I have only gotten 1 reply so far.

From: Andersen, James

Sent: Sunday, April 17, 2011 11:52 AM
To: OSTO1 HOC
Subject: Re: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
I probably will not see the responses for reply to all, please let me know if you do not hear back from the lead offices. Thanks.

Sent from an NRC Blackberry
James Andersen
(b)(6)

From: OSTO1 HOC
To: Andersen, James
Sent: Sun Apr 17 09:44:03 2011
Subject: FW: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
Here you go.

From: OST01 HOC
Sent: Sunday, April 17, 2011 3:54 AM
To: Vegan, George; Lewis, Robert; Weaver, Doug; Hiland, Patrick; Skeen, David; Dudek, Michael; Milligan, Patricia; Gibson, Kathy; Case, Michael; Anderson, James; Tracy, Glenn
Subject: ACTION - New Ticket for Japanese Event Task Tracking (JETT) Process
******P Please note: All attachments are Qfficialliconom**********

The Operations Center has identified a task that falls in the purview of the Line Organization. You were provided as a POC for NRR/NSIR/RES/FSME/NMSS.

NSIR: Please provide the latest version of the composite document to Marty Virgilio by 0900 Monday morning 4/18.

NRR/FSME/NMSS/RES: Please review and provide comments to Trish Milligan, NSIR and OST O1 HOC by 4/17/2011, 1500 EDT

This ticket is being tracked in the Japan SharePoint page (http://nsirops.nrc.gov/Lists/HOC\ Red\ Tickets/Allitems.aspx) under ticket number 4771.

Please provide a response to this email to confirm receipt. Thank you,

Executive Support Team

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinemens.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement. change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
(b)(5)

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
\square

Our assessments and recommendations are based on the best available lechnical information. We acknowledge that the information is subject to change and refinement.

From:	Tracy, Glenn
Sent:	Sunday, April 17, 2011 5:20 AM
To:	OST01 HOC
Subject:	FW: Composite document rev 2

From:
Sent:
Subject:

Tracy, Glenn
OSTO1 HOC
FW: Composite document rev 2

From: RST08 Hoc
Sent: Sunday, April 17, 2011 3:51 AM
To: Hiland, Patrick; Ruland, William; Collins, Timothy; Skeen, David
Cc: RST01 Hoc; Norton, Charles; FOIA Response.hoc Resource; Garchow, Steve; Hoc, PMT12; Tracy, Glenn
Subject: RE: Composite document rev 2
All,
A thought related to the Composite Document:

(b)(5)

Eva Brown, BWR Systems and Ops Analyst
Reactor Safety Team
Nuclear Regulatory Commission

From: RSTO1 Hoc
Sent: Saturday, April 16, 2011 9:58 PM
To: RST08 Hoc
Subject: FW: Composite document rev 2

```
From: RST01 Hoc
Sent: Saturday, April 16, 2011 7:04 PM
To: Hiland, Patrick; Ruland, William; Collins, Timothy; Skeen, David
Cc: RST07 Hoc
Subject: FW: Composite document rev 2
```


All,

Attached is the Composite Document. The purpose of this document is to provide guidance for return and re-entry of US citizens to areas around Fukushima Daiichi NPP.

The RST is responsible for enclosure 2.

(b)(5)

\square
Chuck Norton
RST BWR Analyst

From: Hoc, PMT12

Sent: Saturday, April 16, 2011 5:50 PM
To: RST01 Hoc
Subject: Composite document rev 2

(b)(5)

(b)(5)
(b)(5)
(b)(5)
\square

- •
(b)(5)

From:
Sent:
To:
Subject:
Attachments:

Hoc, PMT12
Sunday, April 17, 2011 10:02 AM
PMT10 Hoc
rev2
Composite document rev 2.docx change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject io change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject io change and refinement
(b)(5)

Our assessments and recommendations are based on the best available technica! information. We acknowledge that the information is subject to change and refinement. change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
 change and refinement

From:	Wittick, Brian
Sent:	Monday, April 18, 2011 5:01 PM
To:	Schwartman, Jennifer
Subject:	Re: Japan Nuclear Assistance Meeting (04/15)

Thanks

Sent from NRC BlackBerry

Brian Wittick
(b)(6)

From: Schwartzman, Jennifer
To: Wittick, Brian
Sent: Mon Apr 18 16:57:30 2011
Subject: FW: Japan Nuclear Assistance Meeting (04/15)
Item 2 of 2

From: Suttenberg, Jeremy
Sent: Monday, April 18, 2011 4:17 PM
To: Schwartzman, Jennifer
Subject: FW: Japan Nuclear Assistance Meeting (04/15)

Here's my write-up. Let me know if you have any other questions.

- Jeremy.

From: Burns, Stephen
Sent: Monday, April 18, 2011 9:55 AM
To: Clark, Lisa; Bupp, Margaret; Reddick, Darani; Davis, Roger; Zorn, Jason; Coggins, Angela
Cc: Hirsch, Patricia; Suttenberg, Jeremy
Subject: FW: Japan Nuclear Assistance Meeting (04/15)
Below is FYI regarding a meeting we covered Friday.

From: Suttenberg, Jeremy
Sent: Friday, April 15, 2011 5:08 PM
To: Rothschild, Trip; Hirsch, Patricia; Kim, Grace; Burns, Stephen; Dyer, Jim; Virgilio, Martin; Weber, Michael; Dane, Margaret
Subject: Japan Nuclear Assistance Meeting (04/15)

Attorney-Client Information

Today, I participated in an inter-agency meeting to discuss some legal issues involved with U.S. government assistance to Japan. Attorneys from State and DOE are flying to Tokyo on Tuesday to meet with their Japanese counterparts, and this was sort of a pre-meeting briefing. In attendance were lawyers from State, DOD, DOE, DOJ, and the NSC (a full attendance list is attached).
\square

- Jeremy

Jeremy Suttenberg
Attorney
Office of the General Counsel
U.S. Nuclear Regulatory Commission
(301) 415-2842

Jeremy.Suttenberg@nrc.gov

From:	Hoc, PMT12
Sent:	Monday, April 18, 2011 7:16 AM
To:	PMT10 Hoc
Subject:	FW:
Attachments:	Composite rev 3.docx; Composite rev 3 clean copy.docx; composite alternative
	recommendations.docx

From: Milligan, Patricia
Sent: Monday, April 18, 2011 3:05 AM
To: Hoc, PMT12; Wiggins, Jim; McDermott, Brian; Martin.Virgillio@nrc.gov; Zimmerman, Roy
Subject:

I have attached three versions of the composite document.. one with tracked changes, one that is "clean" and one that is a bit of a departure from the others.

I have several concerns about the composite document that were shared by some reviewers of the document in the comments provided to me.
(b)(5)

I can be reached at (b)(6) for discussion. I am currently on travel - feel free to call anytime

Patricia Mulligan, CHP, KPh
Senior Technical Advisor for Preparedness \& Response
Office of Nuclear Security and Incident Response
US NRC

MS TB46M
Washington, DC 20555
301-415-2223 \longrightarrow
Blackberr:
(b)(6) 6

$$
\begin{aligned}
& \text { AL } \\
& 5
\end{aligned}
$$

Our assessmenss and recommendarions are hased on the best available technical infornation. We ackorowledge that the inforcoarion is subject to change and refinernent.
(b)(5)
\square
\square

(

Our assessments and recommencations are based on the best available rechnieal information. We acknowledge thyt the informarion is subject to change and refinement.

Out assessments and recomumendations are based on the best available technical informanion. We ackowiedge that the information is subject to

 change and tefinement.

OFFICLAL USE ONLY

1.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinemen.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
(b)(5)

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
\square
(b)(5)

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
1.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
(b)(5)

[^3]Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to

 change and refinement.Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

OFFICIAL USE ONLY
1.

RST

NRC - D. Skeen, L. Criscione, L. Vick
Consortium - Representatives from GEH, INPO, EPRI, AFRI, BETIS, and Naval Reactors

Regarding N2 iniection into a containment with a high steam generation rate

It was pointed out by one Consortium member that Unit 1 is generating approximately 266 cubic feet of O 2 per day which would take some time to build up a significant concentration. Overall, TEPCO's Unit 1 approach appears to mitigate any H2 concerns at this time. However, source of coolant leak remain unknown to-date and is contributing to uncertainties for re-flooding the vessel/containment.

Recommendations/comments regarding N2 strategy/discussion for Unit 2 and 3 continues.

TEPCO Road Map

Overall, Consortium is reviewing the roadmap for comment feedback. Generally, the time line should be shorter rather than longer. More detail is needed for practical implementation.

Site Team Feedback (Casto)

Site team reported that TEPCO is transferring about 480 TONS per day of water to Radwaste it will take about 26 days to complete the task.

Robot information regarding Unit 2 indicates that Unit 2 reactor building is full of steam, 40 Degrees C. TEPCO is looking for a way to entomb the reactor building basement. Site team suspects that bellows may be ruptured/failed.

Mr. Casto mentioned 4 long term issues: 1) Stopping the leak from the suppression pool; 2) water getting into turbine building trenches may be coming from Unit cross-connect piping associated with the radioactive waste system; 3) TEPCO need help with high level waste processing - Maybe DOE labs has suggestions; 4) Unit 3 reactor building is inaccessible due a lot of debris and equipment damage in the N 2 piping area plus very high radiation areas TEPCO is looking for alternate ways of injecting Nitrogen; 5) Unit 2 precludes N2 due to inability to maintain pressure in the drywell.

The following was sent to the Japan Site Team:

1. Ask TEPCO what is the strategy once unit 1 is at TAF. Is there a way to recirc and cool containment/torus? Are they going to continue to inject at a low rate to make up for boiling and vent steam? What affect will this have on salt/boron etc.?
2. What is the current pump head/max RPV injection rate for all units $(1,2,3)$?
3. Send basis as to why TEPCO believes unit 1 is only at 4 ft in containment?
4. Please see email concerning data which used to be supplied from TEPCO

- Kóck, Andrea

From:	Kock, Andrea
Sent:	Tuesday, April 19, $20115: 36$ PM
To:	Bubar, Patrice; Merzke, Daniel; Milligan, Patricia
Cc:	Tadesse, Rebecca
Subject:	RE: EPA guidance on reentry and return

Thanks, Patty for framing those questions! It would be helpful to discuss those. The only other questions I would have would be:
(b)(5)

Thanks to all for meeting with us if you can!

Andrea Mock
United States Nuclear Regulatory Commission
Technical Assistant for Materials
Office of Commissioner Ostendorff
301-415-2896
(From: Bubar, Patrice
Sent: Tuesday, April 19, 2011 4:55 PM
To: Merzke, Daniel; Milligan, Patricia; Mock, Andrea
Cc: Tadesse, Rebecca
! Subject: RE: EPA guidance on reentry and return

(b)(5)

Trish - 1 know you are just getting back into the country so you may not even know what time zone you are in. But if we could find some time tomorrow for me and Andrea Nock to meet with you - that would be quite helpful.

I was trying to arrange time through Sandra Cianci to have us meet with Marty but that is not going to be possible tomorrow. I have asked Sandra to find some time with Marty early Thursday - if possible - before the meeting with the other federal agencies on the RAGs.

If we can find some time to meet - here is a sampling of the topics I would like to discuss:
\square
\square

(b)(5)

Andrea may have other questions to discuss.

Thank you for your consideration. Dan - thank you for assisting us with this also.

Patty Bubar
Chief of Staff
Office of Commissioner William D. Magwood
U.S. Nuclear Regulatory Commission

301-415-1895

From: Merzke, Daniel
Sent: Tuesday, April 19, 2011 3:40 PM
To: Batkin, Joshua; Bradford, Anna; Sharkey, Jeffry; Castleman, Patrick; Thoma, John; Monninger, John; Sosa, Belkys; Baggett, Steven; Bubar, Patrice; Tadesse, Rebecca; Nieh, Ho; Kock, Andrea Cc: Virgilio, Martin; Weber, Michael; Milligan, Patricia; Vietti-Cook, Annette
Subject: RE: EPA guidance on reentry and return

I hope this clears up the question. If you have further questions, please let me know.

Dan

From: Kock, Andrea

Sent: Tuesday, April 19, 2011 2:59 PM
To: Milligan, Patricia; Merzke, Daniel
Subject: FW: EPA guidance on reentry and return
Importance: High

(b)(5)

Thanks

Andrea Kock

. United States Nuclear Regulatory Commission
Technical Assistant for Materials
Office of Commissioner Ostendorff
301-415-2896

From: Vietti-Cook, Annette
Sent: Tuesday, April 19, 2011 12:37 PM
To: Kock, Andrea
Subject: FW: EPA guidance on reentry and return
Importance: High

From: Vietti-Cook, Annette
Sent: Tuesday, April 19, 2011 12:34 PM
To: Batkin, Joshua; Monninger, John; Sharkey, Jeffry; Castleman, Patrick; Sosa, Belkys; Snodderly, Michael; Bubar, Patrice; Orders, William; Nieh, Ho; Franovich, Mike
Subject: FW: EPA guidance on reentry and return
Importance: High
(b)(5)

From: Zimmerman, Roy
Sent: Tuesday, April 19, 2011 12:23 PM
To: Virgilio, Martin; Vietti-Cook, Annette; Milligan, Patricia
Cc: Hoc, PMT12
Subject: FW: EPA guidance on reentry and return
Importance: High

(b)(5)

From: Keith, Sam (ATSDR/DTEM/ATB) [mailto:Idk4@cdc.gov]
Sent: Tuesday, April 19, 2011 12:05 PM
To: Hoc, PMT12; RST01 Hoc
Cc: Zimmerman, Roy; LA08 Hoc
Subject: EPA guidance on reentry and return
Importance: High

Sandy,
(b)(5)

Tater muay.

I would appreciate you sharing this message and attachment with Trish at the earliest. I am copying ET and LIA on this.
Thanks,
Sam Keith
\therefore CDC Liaison

```
From: OST01 HOC
Sent: Tuesday, April 19, 2011 2:40 PM
To: RST01 Hoc
Subject: RE: Task No 4847 "ASSIGN A ITEM JOINTLY TO NSIR AND NRR"
```

Please advise OST01 if this e-mail effectively closes task 4847.

Thank you,

EST Support

From: Hiland, Patrick
Sent: Tuesday, April 19, 2011 2:33 PM
To: Dudek, Michael; RST01 Hoc; OST01 HOC
Cc: Skeen, David; Brown, Frederick
Subject: Task No 4847 "ASSIGN A TEEM JOINTLY TO NSIR AND NRR"
Importance: High
The below was sent to ET yesterday. NRR assumes that this closes Task No. 4847.

From: Brown, Frederick
Sent: Monday, April 18, 2011 4:45 PM
To: Virgilio, Martin; Zimmerman, Roy; Wiggins, Jim; Uhle, Jennifer; Boger, Bruce; Dyer, Jim
Cc: Skeen, David; Hiland, Patrick; Milligan, Patricia; Reynolds, Steven; Casto, Chuck; OST01 HOC; RST01 Hoc
Subject: RE: ACTION: ASSIGN A TTEM JOINTLY TO NSIR AND NRR
Importance: High

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to

 change and refinement.Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.
(b)(5)

From:	PMT10 Hoc
Sent:	Tuesday, April 19, 2011 6:58 PM
To:	skeith@cdc.gov
Subject:	FW: composite paper OFFICIAL USE ONLY
Attachments:	Composite rev 5.doc; composite rev 5 with tracked changes.doc

For ability to work remotely with NRC on this document

From: Hoc, PMT12
Sent: Tuesday, April 19, 2011 8:36 AM
To: PMT10 Hoc
Subject: FW: composite paper

From: Milligan, Patricia
Sent: Tuesday, April 19, 2011 8:27 AM
To: Hoc, PMT12
Subject:

Here is the paper. the internet was down at the hotel this am until now. who does upgrades at 6 am??
Patricia Milligan, CHP, RPh
Senior Technical Advisor for Preparedness \& Response
Office of Nuclear Security and Incident Response
US NRC
MS T B46M
Washington, DC 20555
301-415-2223
Blackberry (b)(6)

From：
Sent：
To：
Cc：
Subject：
Attachments：

Dudek，Michael
Tuesday，April 19， 2011 3：55 PM
OST01 HOC；Hoc，PMT12
Milligan，Patricia；Williams，Kevin；Holahan，Patricia；McDermott，Brian；Norris，Michael CLOSURE OF ACMON \＃4906．－Review of EPA vs．NRC re－entry guidance documents EPAS Version Reentry－Return＿4－13－2011．docx；Composite rev 6．doc

Operations Center，

（b）（5）

Please close action \＃4906 for NSIR．

Thanks，
Michael I．Dudek
Michael Dudek｜Technical Assistant｜NSIR／Division of Preparedness \＆Response｜U．S．NRC
11555 Rockville Pike，Rockville，MD 20852｜（301）415－6500｜W：Michacl．Dudckénure．gov
From：Dudek，Michael
Sent：Tuesday，April 19， 2011 2：50 PM
To：OST01 HOC；Hoc，PMT12
Cc：Merzke，Daniel；Milligan，Patricia；Williams，Kevin
Subject：RE：ACTION：Review of EPA vs．NRC re－entry guidance documents
Operations Center，
（b）（5）

Please advise．
Michael Dudek｜Technical Assistant｜NSIR／Division of Preparedness \＆Response｜U．S．NRC
11555 Rockville Pike，Rockville，MD 20852｜（301）415－6500｜（⿴囗⿱一𧰨心夊：Michact，Dudekícince．gov

From：OSTO1 HOC
Sent：Tuesday，April 19， 2011 2：00 PM
To：Hoc，PMT12；Dudek，Michael
Subject：RE：ACTION：Review of EPA vs．NRC re－entry guidance documents
This ticket was sent out of process．Please refer all questions to PMT．Due date is ASAP for meeting at the White House tomorrow：

The Operations Center has identified a task that falls in the purview of the Line Organization．You were provided as a POC for NRR

Question to be answered by NSIR：

1

(b)(5)

This ticket is being tracked in the Japan SharePoint page (http://nsirops.nrc.gov/Lists/HOC\ Red\ Tickets/Allitems.aspx) under ticket number 4906.

Please provide a response to this email to confirm receipt. Thank you,

Executive Support Team
******Please note: All attachments are Official Use Only**********

From: Dudek, Michael

Sent: Tuesday, April 19, 2011 1:41 PM
To: Hoc, PMT12
Subject: RE: ACTION: Review of EPA vs. NRC re-entry guidance documents
When is this due? What is the Tasking? Concurrence?
Michael Dudek | Technical Assistant | NSIR/Division of Preparedness \& Response | U.S. NRC 11555 Rockville Pike, Rockville, MD 20852 | 7 (301) 415-6500| ($凶$: Michael Dudekiaincr.gov

From: Hoc, PMT12

Sent: Tuesday, April 19, 2011 1:10 PM
To: Dudek, Michael
Subject: ACTION: Review of EPA vs. NRC re-entry guidance documents
Importance: High
Michael,

Please be diligent in assigning this task.
V / r,

Kimberly Gambone

PMT12

From: Hoc, PMT12
Sent:
Tuesday, April 19. 2011 8:37 AM
LIA08 Hoc; OST01 HOC; RST01 Hoc; Zimmerman, Roy
PW:
Composite rev 5 .doc; composite rev 5 with tracked changes. doc

From: Milligan, Patricia
Sent: Tuesday, April 19, 2011 8:27 AM
To: Hoc, PMT12
Subject:
Here is the paper. the internet was down at the hotel this am until now. who does upgrades at 6 am?? Patricia Mulligan, CHP, KPh
Senior Technical Advisor for Preparedness \& Response
Office of Nuclear Security and Incident Response
US NRC
MS T B46M
Washington, DC 20555
-301-415-2223
Blackberry) (b)(6)

From:	Salay, Michael
Sent:	Wednesday, April 20, 2011 7:50 AM
To:	Lee, Richard
Cc:	Marksberry, Don; Esmaili, Hossein
Subject:	RE: NRA ANSWER ON NITROGEN PURGE

Richard,
We did not send this writeup. HQ RST had already provided their comments to the Japan Team (Jeff Mitman is on the RST in Japan). What we were saying was mostly consistent with what contributed by NRR. The two sentences that I sent Jeff more concisely state the differences.
-Mike
-----Original Message-----
From: Lee, Richard
Sent: Tuesday, April 19, 2011 8:39 PM
To: Salay, Michael; Marksberry, Don; Esmaili, Hossein
Subject: RE: NRR ANSWER ON NITROGEN PURGE
Mike:

Have RES provided the writeup you sent yesterday on nitrogen inerting to RST?
Richard

```
From: Salay, Michael
Sent: Tuesday, April 19, 2011 12:11 PM
To: Marksberry, Don; Esmaili, Hossein
Cc: Lee, Richard
Subject: FW: NRR ANSWER ON NITROGEN PURGE
From: Salay, Michael
Sent: Tuesday, April 19, 2011 8:20 AM
To: Mitman, Jeffrey
Subject: RE: NRR ANSWER ON NITROGEN PURGE
Jeff,
It seemed to me that the argument that was being made that they are steam purging (flushing
combustible gases out of DW with steam), not that they are steam inerting (making a
combustible mixture non-combustible by increasing the steam concentration). Do we know for
sure, however, that they are flushing through leaks in the DW and not through the SP thus
potentially leaving the DW atmosphere mostly unchanged?
-Mike
From: Mitman, Jeffrey
Sent: Tuesday, April 19, 2011 12:01 AM
To: Liaison Japan
Subject: FW: NRR ANSWER ON NITROGEN PURGE
```

Sent: Tuesday, April 19, 2011 9:44 AM
To: Mitman, Jeffrey; PMT japan Resource
Subject: FW: NRR ANSWER ON NITROGEN PURGE

From: Harrison, Donnie
Sent: Monday, April 18, 2011 4:25 PM
To: Hiland, Patrick; RST01 Hoc; OST01 HOC
Cc: Skeen, David; Ruland, William; Brown, Frederick
Subject: RE: NRR ANSWER ON NITROGEN PURGE
(b)(5)

From: Hiland, Patrick
Sent: Monday, April 18, 2011 3:57 PM
To: RST01 HoC; OST01 HOC
Cc: Skeen, David; Ruland, William; Brown, Frederick; Harrison, Donnie
Subject: NRR ANSWER ON NITROGEN PURGE
Importance: High
The evaluation of Nitrogen purge vs. steam has been reviewed by NRR. The comments below incorporates GEH's review and our own assessment. FYI, the contributors are noted in parens.
(Fred Brown)
"I believe that GEH has discussed this on our calls.

$$
(b)(4),(b)(5)
$$

From: RST01 Hoc
Sent: Monday, April 18, 2011 4:59 AM
To: Hiland, Patrick; OSTO1 HOC
Cc: RST01 Hoc; Skeen, David; Ruland, William
Subject: ACTION: ASSIGN A ITEM TO NRR
Please assign the following action thru task tracker:
As a result of discussion with the Site team at the 0300, 18 April 2011 call the issues associated with the nitrogen inerting were clarified.

If possible provide input to RST before 110018 April 2011. If this is not possible please provide RST with estimated completion time.

From:	Gambone, Kimberly
Sent:	Friday, April 22, 2011 7:40 PM
To:	Gilligan, Patricia
Cc:	Kokajko, Lawrence; Hoc, PMT12; RST01 Hoc; LA08 Hoc; OSTO1 HOC
Subject:	RE: revised guidelines

Thanks Trish. Ill get this routed for review.
Kimberly

From: Milligan, Patricia
Sent: Friday, April 22, 2011 6:54 PM
To: Gambone, Kimberly
Subject: Pw: revised guidelines

Sent from my NRC Blackberry
Patricia A Mulligan, CHP RPh
(b)(6)

From: Milligan, Patricia
To: Hoc, PMT12
Sent: Fri Apr 22 18:18:30 2011
Subject: revised guidelines

I am home all night .. if you need to talk. have the WOOs patch you thru.
Thanks
Patricia Milligan, CHP, RPhSenior Technical Advisor for Preparedness \& ResponseOffice of Nuclear Security and Incident Response
US NRC
MS TB46M
Washington, DC 20555
301-415-2223
Blackberry (b)(6)

From:
Sent:
To:
Subject:
Attachments:

STOL HOC
Friday, April 22, 2011 2:54 PM
FOIA Response.hoc Resource
FW: Response to Letter from Rep. Markey to Sec. Thu
NA-40 Markey Letter Draft Response 4-21.docx
-----Original Message-----
From: LIA08 Hoc
Sent: Friday, April 22, 2011 2:49 PM
To: McGinty, Tim; Giitter, Joseph
Cc: Kokajko, Lawrence; Droggitis, Spiros; RST01 Hoc; Hoc, PMT12; OST01 HOC
Subject: FW: Response to Letter from Rep. Markey to Sec. Thu
Mr. McGinty and Mr. Witter:
NRC has been asked to review and comment on the attached draft letter from DOE to Rep Marker. Per ET Director direction, I am sending it to DORP and DPR for review. Please send any comments back to Spiro Droggitis and to LIA08. Thank you.

V/R,

Clyde Raglan

Liaison Team Coordinator
US Nuclear Regulatory Commission
email: lia08.hoc@nrc.gov
Desk Ph: 301-816-5185
----Original Message-----
From: LIA08 Hoc
Sent: Friday, April 22, 2011 1:51 PM
To: RSTO1 Hoc; Hoc, PMT12; OSTO1 HOC; Kokajko, Lawrence
Subject: FW: Response to Letter from Rep. Markey to Sec. Thu
I have reviewed the attached, and do not see any problems with this draft, but I assume others will need to review before getting back to Spiros. Does anyone else need to review/have comments? Does anyone know if this differs from what we have told Rep. Markey?

Please respond before end of shift. Thanks!

Clyde Raglans

Liaison Team Coordinator
US Nuclear Regulatory Commission
email: lia08.hoc@nrc.gov

Desk Ph: 301-816-5185

```
-----Original Message-----
From: Stransky, Robert
Sent: Friday, April 22, 2011 1:38 PM
To: LlA08 Hoc
Subject: FW: Response to Letter from Rep. Markey to Sec. Chu
```

----Original Message-----
From: Droggitis, Spiros
Sent: Friday, April 22, 2011 8:41 AM
To: Stransky, Robert
Subject: FW: Response to Letter from Rep. Markey to Sec. Chu

Robert: FYI, in Bill and Scott's absence. Could you please have someone take a look at this draft DOE response and provide comments to DOE? Thanks, Spiros
-----Original Message-----
From: Droggitis, Spiros
Sent: Friday, April 22, 2011 8:38 AM
To: Gott, William
Subject: FW: Response to Letter from Rep. Markey to Sec. Chu

Bill: FYI in Scott's absence. Could you have someone take a look at this draft DOE response and provide comments to DOE? Thanks, Spiros
-----Original Message-----
From: Droggitis, Spiros
Sent: Friday, April 22, 2011 8:36 AM
To: Morris, Scott; Benowitz, Howard
Subject: FW: Response to Letter from Rep. Markey to Sec. Chu

Scott/Howard: I am out today. I received this proposed response from DOE
to Congressman Markey's March 13 letter to the President. Would you mind taking a look at it and getting back to Carl
Pavetto, as appropriate?
Thanks, Spiros
-----Original Message-----
From: Pavetto, Carl [mailto:Carl.Pavetto@nnsa.doe.gov]
Sent: Friday, April 22, 2011 8:21 AM
To: Droggitis, Spiros
Subject: Response to Letter from Rep. Markey to Sec. Chu

Hi Spiros

The Secretary received a letter from Congressman Markey asking questions about the federal government's response to a crisis like the crisis in Japan.

The letter was originally sent to the President and it was referred to DOE even though the substantive answers to most of the questions would not be a DOE lead.

We have prepared a response that I attach. If you could be so kind as to review the draft response or forward it to whomever else in NRC might have input, I would appreciate it.

Thanks!

CSP
N^{3}

\square
\square

From:

Sent:

To:

Subject:
Attachments:

> RST01 Hoc
> Friday, April 22, 2011 10:35 AM
> RST01A Hoc
> FW: Some layout drawings and P\&IDs for 1F1
> 1F1, RWCU (729E466).pdf, 1F1, Shutdown reactor Cooling System (729E484).pdf; 1F1, SLC (161F259).pdf; 1F4 RFF Laydown.pdf; 1F4_FPC_PID.pdf; 1FX, CRD Hydraulic (104R944).pdf; 1FX, Reactor Internal Data (729E257_0).pdf; 1FX, Reactor Vessel and Reculation Loop Data (729E523).pdf; 730E427C STD Plant Containment Drawing 1F1
> Type[1].pdf; 1F1, 1F2, 1F3, Assorted Reactor Building Elevations.pdf; 1F1, Atmospheric Control System (161F278).pdf; 1F1, Containment Spray Cooling System (148F709).pdf; 1F1, Core Spray System (919D677).pdf; 1F1, Fuel Pool Cooling (729E483r5).pdf; 1F1, HPCI (729E465 sh1).pdf; 1F1, HPCI (729E465 sh2).pdf; 1F1, Isolation Condenser System (729E503).pdf

From: Marksberry, Don
Sent: Thursday, April 21, 2011 1:42 PM
To: RST01 Hoc
Subject: Some layout drawings and P\&IDs for 1F1

From:	RSTO2 Hoc
Sent:	Friday, April 22, 2011 3:43 PM
To:	OSTO1 HOC
Subject:	April 22 roadmap assessmentRev.1.docx
Attachments:	April 22 roadmap assessmentRev.1.docx

Attachments:
April 22 roadmap assessmentRev.1.docx

April 22, 2011
(b) (4)

(b)(4)

(b)(4)
(b)(4)

From:
Sent:
To:
Cc:

Subject:

Attachments:

Follow Up Flag:

Flag Status:

Norwood, Donald
Sunday, April 24, 2011 2:31 AM
RSTOI Hoc
Mitman, Jeffrey; Garchow, Steve; Lupold, Timothy, 'cipullotl@state.gov'; Norwood, Donald
Fukushima Plant Drawings
Rx Bldg a.pdf; Rx Bldg b.pdf; Rx Bldg c.pdf, Rx Bldg d.pdf; Atmosphere Control.pdf; Cntmt Data.pdf: Core Spray.pdf; HPCI:pdf; Iso Condenser.pdf; RPV Internals.pdf

Follow up
Flagged

For your review.
Norwood

\square

From:	Garchow, Steve
Sent:	Monday, April 25, 2011 2:18 AM
To:	Mitman, Jeffrey; Moore, Carl; Lupold, Timothy; Norwood, Donald
Cc:	RST01 Hoc
Subject:	FW: Bellows drawing for Reactor well seal and vent line.
Attachments:	NX-7831-3 Reactor bellows.pdf; NX-7865-2 Reactor well seal.pdf; NX-8291-97[89'
	bellow for vent line.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

fyi
-----Original Message-----
From: Reynolds, Steven
Sent: Monday, April 25, 2011 2:16 AM
To: Garchow, Steve
Subject: Fw: Bellows drawing for Reactor well seal and vent line.

To: Reynolds, Steven; Casto, Chuck; Gard, Lee A (INPO) GardLA@INPO.org
Sent: Mon Apr 25 02:12:26 2011
Subject: FW: Bellows drawing for Reactor well seal and vent line.
Attached are unsolicited engineering drawings forwarded to me by the Monticello PC system engineer. He thought these might be useful. I have no idea if they are similar to Fukushima or not.

Let me know if there is any other information from Monticello that you might be interested in.

Dirk
_-Original Message----
From: Foster, Dirk L. [mailto:Dirk.Foster@xenuclear.com]
Sent: Monday, April 25, 2011 11:49 AM
To: Foster, Dirk L CAPT USN
Subject: FW: Bellows drawing for Reactor well seal and vent line.

From: Bush, Devin
Sent: Friday, April 22, 2011 2:34 PM
To: Wojchouski, Alan V.
Cd (b) (6) osier, Dirk L.
Subject: FW: Bellows drawing for Reactor well seal and vent line.

Thanks AI!
I'll forward these to Dirk also. He is in Japan assisting with the Fukushima crisis.

From: Wojchouski, Alan V.
Sent: Wednesday, April 20, 2011 11:19 PM
To: Bush, Devin
Subject: Bellows drawing for Reactor well seal and vent line.

Devin

Attached are the drawing for the reactor seal bellow and it's arrangement.
Also the drawing for the vent line bellows.
Hope these help.

Alan W.

From:
Sent:
To:
Attachments:

Hoc, PMT12
Monday، April 25, 2011 6:52 PM
PMT10 Hoc
Composite rev 8.docx

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to

 change and refinement cbange and refinement.

From:	PMT10 Hoc
Sent:	Monday, April 25, 2011 8:39 PM
To:	Hoc, PMT12
Subject:	CDC comments on Composite document rev 8
Attachments:	Composite document rev 8 CDC cots 2011-04-25.docx

Stacy, my comments on the Composite document are attached for Trish's consideration. Please let me know if you have any questions.

Thanks,
Sam Keith
CDC Liaison

From: Hoc, PMT12
Sent: Monday, April 25, 2011 6:52 PM
To: PMT10 Hoc
Subject:

Our assessments and recommendations are based on the best available technical information. We acknowledge that the information is subject to change and refinement.

\section*{Our assessments and recommendations are based on the best available tectanical informarion. We acknowledge that the infonpation is subject to

\section*{

 \square,

(b)(5)

Our assessments and recommendrtions are based on the best available technical information. We ackenowiedge that the information is subject to cbange and refinernent.
(b)(5)

Our assessments and recommendations are based on the best avsilable technical information. We acknowladge that the information is subject to change and refinemem.

.

From:

Sent:
To:
Subject:
Attachments:

STOL HOC
Monday, April 25, 2011 5:13 PM
FOIA Response.hoc Resource
FW: REPLY: revised guidelines - Cl comments
Composite rev 8 cj edits.docx

From: Jones, Cynthia
Sent: Monday, April 25, 2011 4:16 PM
To: Milligan, Patricia; McDermott, Brian; Williams, Kevin
Cc: Merzke, Daniel; Bush-Goddard, Stephanie; Andersen, James; Bowman, Gregory; Virgilio, Martin; Gambone, Kimberly; Dudek, Michael; MorganButer, Kimyata; Jackson, Deborah; Weaver, Doug; Hiland, Patrick; Skeen, David; Ciocco, Jeff; Kevern, Thomas; Wiggins, Jim; Evans, Michele; Holahan, Patricia; Tracy, Glenn; Uhle, Jennifer; Carpenter, Cynthia; Johnson, Michael; Kokajko, Lawrence; Weber, Michael; RST01 Hoc; LIA08 HOC; OST01 HOC; Reynolds, Steven; Holonich, Joseph; Casto, Chuck; PMT_japan Resource; Holahan, Vincent; Zimmerman, Roy; Booger, Bruce; Layton, Michael; Lewis, Robert
Subject: RE: REPLY: revised guidelines - CJ comments
My comments to Trish's revised edits from this PM are attached.
(b)(5)

Thank for the opportunity to comment
Cyndi

Sent: Monday, April 25, 2011 9:25 AM

To: Virgilio, Martin; Gambone, Kimberly; Dudek, Michael; MorganButler, Kimyata; Jackson, Deborah; Weaver, Doug; Hiland, Patrick; Skeen, David; Ciocco, Jeff; Keven, Thomas; Wiggins, Jim; Evans, Michele; Holahan, Patricia; Tracy, Glenn; Uhle, Jennifer; Carpenter, Cynthia; Johnson, Michael; Kokajko, Lawrence; Weber, Michael; RST01 Hoc; LIA08 Hoc; OST01 HOC; Reynolds, Steven; Holonich, Joseph; Castor, Chuck; PMT_japan Resource; Holahan, Vincent; Zimmerman, Roy; Jones, Cynthia; Boger, Bruce; Layton, Michael; Lewis, Robert; McDermott, Brian; Williams, Kevin

Cc: Merzke, Daniel; Bush-Goddard, Stephanie; Andersen, James; Bowman, Gregory
Subject: RE: REPLY: revised guidelines

(b)(5)

Please review and comment.
thank you.
Trish

Patricia Milligan, CHP, RPh
Senior Technical Advisor for Preparedness \& Response
Office of Nuclear Security and Incident Response
US NRC
MS TB46M
Washington, DC 20555
301-415-2223
Blackierry \quad (b)(6)
From: Virgilio, Martin
Sent: Sunday, April 24, 2011 12:24 PM
To: Gambone, Kimberly; Dudek, Michael; MorganButler, Kimyata; Jackson, Deborah; Weaver, Doug; Hiland, Patrick; Skeen, David; Ciocco, Jeff; Kevern, Thomas; Wiggins, Jim; Evans, Michele; Holahan, Patricia; Tracy, Glenn; Uhle, Jennifer; Carpenter, Cynthia; Johnson, Michael; Kokajko, Lawrence; Weber, Michael; Holahan, Patricia; RST01 Hoc; LA08
Hoc; OST01 HOC; Skeen, David; Hiland, Patrick; Reynolds, Steven; Holonich, Joseph; Casto, Chuck; PMT_japan Resource; Holahan, Vincent; Tracy, Glenn; Zimmerman, Roy; Holahan, Patricia; Jones, Cynthia; Boger, Bruce; Wiggins, Jim; Kokajko, Lawrence; Uhle, Jennifer; Layton, Michael; Carpenter, Cynthia; Johnson, Michael; Lewis, Robert; Milligan, Patricia
Cc: Merzke, Daniel; Bush-Goddard, Stephanie; Andersen, James; Bowman, Gregory
Subject: REPLY: revised guidelines
All
(b)(5)

Please set of goal at COB Monday for resolving these differences. NSIR lead:

Marty

From: Gambone, Kimberly

Sent: Friday, April 22, 2011 8:02 PM
To: Virgilio, Martin; Dudek, Michael; MorganButler, Kimyata; Jackson, Deborah; Weaver, Doug; Hiland, Patrick; Skeen, David; Ciocco, Jeff; Kevern, Thomas
Cc: Holahan, Vincent; PMT_japan Resource; Tracy, Glenn; Zimmerman, Roy; Boger, Bruce; Wiggins, Jim; Uhle, Jennifer; Layton, Michael; Holonich, Joseph; Kokajko, Lawrence; Carpenter, Cynthia; Johnson, Michael; Lewis, Robert; Holahan, Patricia; Jones, Cynthia
Subject: FW: revised guidelines

All,

Attached is the latest revision of the Composite Paper, i.e., "Recommendations for US citizens on relaxation of the 50 mile evacuation recommendation and re-entry to evacuate areas around Fukushima Daiichi NPP. " NRC Operations Center PMT requests that all line organizations review and provide comment. We strive to release the document to the federal family middle of next week.

Provide comments by COB Tuesday, April $26^{\text {th }}$ to PMT12.hoc@nrc.gov, Cc: Patricia Milligan.

Task Tracker \#4969.

Please contact me if you have questions.

Thank you.
V / r,

Kimberly Gambone
PMT/PAAD

Our assessmedrs and recommendations are based on the best available technical information. We acknowledge that the information is subject to chagge and refinemens.

Our assessments and recommendations are bosed on the best available technical information We acknowledge that the information is subject to change and refinement.

\square

Our assessmens and recommendations are based on the best available technical information. We acknowledge that the information is subject to charge and refinctrient.
\square

Meighan, Sean

From:	Gard, Lee A (INPO) [GardLA@INPO.org]
Sent:	Tuesday, April 26, 2011 1:14 AM
To:	Huffert, Anthony; Moore, Car;; Casto, Chuck; Gepford, Heather; Mitman, Jeffrey; Hay,
	Michael; Salay, Michael; Meighan, Sean; Garchow, Steve; Reynolds, Steven; Foster, Dirk L
	CAPT USN; $\frac{\text { (b)(6) }}{}$
	FW: April 26 plant Updates
Subject:	20110426 0100 Plant Parameters[1].pdf; 201104260500 Unit 1 Drywell Pressure[1].pdf;
Attachments:	20110426 0700 Water Levels.pdf

Attached is the latest information on N2 purge, building water levels and temperature / pressure graphs.

.DISCLAIMER:

This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments. Thank you.

4月26日01：00賏在

Abstract

 8 8 H：

－各ノ゚ラメー外関する適足跣明

頑	記盏方法	測定方法	記䨠点数／Ch 数Or 系統数
原子敬注水状況		板設誰器	1／1䍃
原子炉水位		本設的示紀	$\begin{array}{ll} A \text { 系 } & 1 / 1 C h \\ \text { B } & 1 / 1 C h \end{array}$
原子炉何力	 	則定し任力に撸算	
原子㞹水温度		－	－
D／W•S／C代力	 （DN：ドライウェル，S／C：隹力排制室）		
$\begin{gathered} D(W \\ \text { 霝囲济温度 } \end{gathered}$	 		RPVペローシール $1 / 5 \mathrm{Ch}$ DNHVH戻 $1 / 5 \mathrm{Ch}$
CAMS放射線 モータ	 	本敨䞟示新	
S / C 温度	 		
	 		1／2Ch（1号），1Ch（2～4号）
	 		1／1血絞

項目	内容	4月26日01時時点0状況
8t ${ }^{\text {筑稂 }}$		
	4号相：： 	－
㖪识誰符を路路確中	 	

1F1水位•匡力心関するパラメータ

1F1水位•匤かに関するパラメータ

㫿					ONE 力 （MPa abs）	\|s/C低力 (MPa abs)	$\begin{aligned} & \text { CAMS } \\ & \text { DM(A) } \\ & (S V / h) \end{aligned}$	$\begin{aligned} & \text { CAANS } \\ & \text { OWNB) } \\ & (\text { Sv/h) } \end{aligned}$	$\begin{aligned} & C \text { CAMS } \\ & s / C(A) \\ & (S V / h) \end{aligned}$	$\begin{aligned} & C A M S \\ & \left.\begin{array}{l} C / C(B) \\ (S V / h) \\ (\end{array}\right) \end{aligned}$	㣜
4／22 6：00	－1650	－1650	0.435	1.113	0.160	0.160			0.994	1.85	
4／22 9：00					0.160	0.160			0.994	1.84	
4／22 12：00	－1650	－1650	0.440	1.120	0.160	0.160			0.994	1.83	
4／22 15：00					0.160	0.160			0.995	1.83	
4／22 18：00	－1650	－1650	0.430	1.113	0.160	0.160			0.996	1.82	
4／2221：00					0.160	0.160			0.996	1.81	
4／230：00	－1650	－1650	0.440	1.128	0.160	0.160			0.997	1.80	
4／233：00					0.160	0.160			0.997	1.79	
4／236：00	－1700	－1700	0.443	1.138	0.160	0.160			0.998	1.78	
4／239：00					0.160	0.160			0.999	1.77	
4／23 12：00	－1700	－1700	0.440	1.130	0.160	0.160			1.00	1.77	
4／2315：00					0.160	0.160			1.00	1.76	
4／2318：00	－1650	－1700	0.440	1.130	0.155	0.155			1.00	1.75	
4／2321：00					0.155	0.155			1.00	1.75	
4／240：00	－1650	－1650	0.438	1.130	0.155	0.155			1.01	1.74	
4／243：00					0.155	0.155			1.01	1.74	
4／246：00	－1700	－1700	0.435	1.143	0.155	0.155			1.01	1.74	
4／24 12：00	－1700	－1700	0.433	1.143	0.155	0.155			1.02	1.74	
4／24 15：00					0.155	0.155			1.03	1.74	
4／2418：00	－1700	－1700	0.438	1.148	0.150	0.155			1.03	1.74	
4／24 21：00					0.155	0.155			1.04	1.74	
4／250：00	－1700	－1700	0.440	1.160	0.155	0.155			1.04	1.74	
4／253：00					0.155	0.155			1.05	1.75	
4／25 6：00	－1700	－1650	0.450	1.173	0.155	0.155			1.06	1.76	
4／259：00					0.155	0.155			1.07	1.76	
4／25 11：00	－1700	－1650	0.448	1.168	0.155	0.155			1.08	1.76	
4／25 15：00	－1650	－1650	0.453	1.173	0.150	0.155			1.08	1.74	
4／25 17：00	－1650	－1550	0.448	1.165	0.150	0.150			1.09	1.74	
4／25 20：00					0.150	0.150			1.10	1.75	
4／25 23：00	－1650	－1650	0.450	1.173	0.150	0.150			1.10	1.75	

H翼不良 H䁲不良

1F－1 温度に関するパラメータ（代表点）

1F－1 温度 1 関するパラメータ（紿水ノズル及び安全升排気温度）

111	［18	IIII	11	6711	12	101	IIII	IIII	581	Tim	6011	1011	1111	111	1601	1011	7011	（ti）	1801	771	W以
		fili	111							7171	［III	［III	111	IIII				III	1011	111	W0\％ $2 / 4$
115	III	［7II	\％ 11	I7II	P（2）	171	［1］1	IIII	IU1	17	1011	5011	IIII	IIII	1011	III	911	721	7011	171	义（1\％）
III	III	1711	IH	IIII	［11	［111	Iili	I＇II	121	\％	6011	1011	IIII	I＇ili	011	III	\％oil	121	181	7III	W\％${ }^{\text {Wh }}$
116	519	IIII	IV10	161	（17）	Sill	181	fill	［17］	（171	1011	1011	IIII	IIII	1011	III	611	IIII	1811	171	（x）15
		Hil	［ ${ }^{\text {H }}$							Ith	1011	1011	IIII	111				PIII	011	［1i1	CMI ${ }^{\text {a }}$
115	515	III	1 H	IIII	121	FM1	［ili	III	ह⿴囗	Tivis	1011	101	IIII	1011	101	7011	701	［II	\％ 6	171	CWIW
		III	III							［7i］	1811	1011	1111	8011				［CII	7601	011	cotsem
815	715	111	511	181	171	Vin1	171	III	I81	ITII	1011	1011	［III	0011	P101	1011	1011	ICII	101	121	00096
		111	511							Imi	1011	1011	［III	101				Fici	T01	7 71	06186%
175	175	111	5 CW	1811	［ 21	\％61	1781	［！II	681	（ti）	2011	1011	［III	1811	1801	1011	7011	TICI	8601	［ 111	$6071 / \mathrm{T}$
		17	7							10\％	1011	0011	TIII	8011				IIII	161	（ 111	0 ¢ 6176
115	115	III	TH1	rill	［［71	171	127	IIII	5121	H1	7011	COII	1011	5011	F｜\％10］	8011	\％ 61	¢fli	1601	［1II	Walin
15	111	III	棋	Q1	［2］	Fin	Fili	III	1117	IVII	1011	1011	2III	1811	101	1811	TOII	PTI	601	IIII	WMW／
		IIII	（1）							mi	III	8011	IIII	711				\％ 6	5015	811	W\％17／
8	18	（111）	\％	1081	Fit	131	501	\％II	1	［i］	fil	［111	IIII	SIII	7011	［III	IIII	IIII	6011	6il	000127
14	123	1111	1610							CWII	fili	CIII	311	IIII				IIII	5011	［t］I	Wपए／
18	16	TII	（\％）	17	［ 71	121	［171	TiII	F101	6，${ }^{5}$	7111	7III	1211	［IIII	1011	fill	［III	17	0011	1711	ला1 W
		1911	17							\％11	TIII	IIII	［ 111	IIII				［27］	1011	｜ill	$6{ }^{6015}$
Ifir	（6）	Tद11	IIT	［17	181	｜ 1	60．1	1111	［ 1×1	［ ${ }^{\text {bin }}$	IIII	TIII	1711	171	7II	［III	511	［7\％	1011	7111	W\％1LT
		1911	IM							171	IIII	［III	131	III				［211	F001	5711	WW
［17	t］	6911	1\％	［1］1	181	（TV）	$5{ }_{6}$	111		III	IIII	fili	1211	1711	III	fill	［III	1271	III	IIII	WIL\％
		III	\％							6 \％ 1	8 III	IIII	$12] 1$	711				（27）	III	（til	WIET／
H17	717	8111	III	IIII	\％ 71	［1！	彦	5011	5161	81	411	IIII	［7］	171	IIII	1211	fili	［6］	IIII	（til	000\％／
		IIII	IV							IIII	（11）	111	1211	7111				（G）	7111	Til	W12un
818	18	7III	（H）	17.1	781	IT1	Thi	171	PIII	6in	1711	III	IIII	171	\％III	IIII	311	M	（III	fill	Wilw
		1711	15							\％iti	311	III	171	711				\％il	III	PIII	woski
13	（11）	IIII	5	1 \％1	7101	161	Col	1811	0161	fin	［11	III	1411	1711	$1 i 11$	IIII	11	51.1	PIII	［ill	W2IU
		8711	P\％							161	｜21］	III	1211	7111				IKI	CIII	fil	（0）Wh
176	136	PIII	P1	I I 1	16%	171	Fol 1	711	2 III	fin	311	1211	III	171	（III）	［711	121	761	711）	411	007uh
		6111	1\％							711	［611	［［1］	ItII	171				［14］	IIII	III	00t Wh
785	575	7171	711	［III	TM1	\％ 61	71！	IIII	1171	IIII	［7i1	［ili	IIII	171	fill	5711	［31］	PIII	fill	IIII	60uh
		IIII	III							Fi11	771	［711	III	III				P191	IIII	7il	М1\％\％
13	$1{ }^{5}$	III	1%	［1］1	701	P61	［161	1611	\％1	17	IIII	211	\％III	711	IIII	171	\％ 611	\％ 10	（1II）	fil	W11\％
17	6	（III	IH	611	60.1	6861	211	2021	181	Cil1	1711	¢ 511	IEII	（11）	8111	1711	1211	（T9）	IIII	7ill	W21\％
111	11	ITII	（1）	［ 71	¢001	161	IIII	IIII	Jiil	IIII	1711	76	IIII	111	111	1711	fil	｜iti	IIII	711	6171
		IIII	1\％							717	371	7611	fill	171				FTi］	［1II	971	W017\％
6	16	IIII	［17	［ 211	Til	10.1	\％	0.1	41	7611	5211	7211	6111	1711	IIII	1211	121	\％	（III）	Pif	W01L／5
		IIII	\％11							717	IIII	［ 311	IIII	［17］				071	IIII	PIII	W110
\％	$1{ }^{\text {a }}$	IIII	7\％	（ 61	171	Tal	（171	171	7101	661	［11］	6.11	IIII	［17］	IIII	Fil	171	171］	TIII	7711	W10\％
176	［T5	7il	\％${ }^{6}$	161	［III	101	हो1	Q1	Tici	COOI	711	［ 711	［III	IIII	IIII	511	［ 31	｜ \mid｜	¢111	Hill	W＜106
16	（17\％	（III）	\％	8 Cl	fili	III	121	10.1	181	［i1）	［711）	8711	1711	171	1111	111	［611	75il	I＇III	IIII	60065
		［III	［							819	I2II	［2］	1 III	IIII				IIII	fill	171	W0w
76	［15	III	（1）	IVII	7III	F161	\％	501	［ 11	8 III	［ 311	1411	IIII	fili	1211	（11）	［6］	［14］	111	511	80062\％
		［iII	\％							\％ 21	Itil	Cil	6711	Stil				171	III	Esil	$68161 / 1$
III	IM	（11）	$11 / 1$	611	721	181	Itil	712	TIT	（III	7611	［ Cl	5111	IIII	1211	（171）	Fil	W1	771	Şil	C0111／6
		1811	\％							（cil	IIII	stil	IIII	III				W11	III	Fili	WM16
［6］	56	1811	8 H	571	5 Im	Itil	m！	5171	51	IVII	IIII	｜ti］	［7II	III	111	111	［tI）	IIII	III	5911	$002101 / 7$
		7111	11							（171	IIII	TIII	1711	7117				IIII	I7II	7911	6／15
16	［	171	\％ 11	171	ITI	ITill	Sni	127	ITत，	［｜\％1	IIII	Till	1511	7711	711	［7］	ItII	111	171	F911	W0117
		7611	IM							｜ 91	fill	7 III	1911	IIII				WVI	I＇til	\％ 711	W0011／7
111	10	181	11%	［ 31	8 CN	101	［＇6］	121	191	｜\％1	ItII	［111	1911	7171	Till	711	6 Cl	\％ 01	ItII	6 ¢11	0001／
		1611	117							所	III	Itil	｜ 11	7171				581	\％111	111	6071117
15	75	（01）	818	P511	H1	mal	¢ 1	โ2］	［雨	181	6111	ITII	1911	P111	TIII	511	bill	IVII	1 111	011	comili
		8611	116							1\％1	111	8 ClI	CIII	IIII				0011	1 CLI	1911	005181／7
［III	If1	1011	\％ 1	$5 \% 1$	PTI	mi	mi	P61］	Pisil	｜ $\mid 1$	6 （III	IIII	IVII	7711	Imili	［1］	8 811	101	IEII	IIII	D0， 1117
		1011	［ 1							［｜＊｜	H1	Sill	5 SIII	571				1211	511	517	60811／4
$1{ }^{5} 5$	515	［0］	IV	$8 \% 1$	［ m 1	Fill	IS	［7］	M	［［］］	1711	171	IIII	（171）	fill	8711	511	TIII	fcll	PIII	6071／7
15	515	1801	111	8181	181	1231	111	123	1611	0851	OHII	511	8511	1511	fill	6711	8 FII	191	1211	671	$00081 / 7$
$\begin{array}{\|c\|c\|} \hline 917 \\ y-60 / 5 \\ \hline \end{array}$			10t1－HN JITHHW WO	$500-502$ IIUHS	100－40 IINys	$\left\lvert\, \begin{aligned} & 08 t-c 60 \\ & \text { Oitys } \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 7 r-c 00 \\ & \text { wis } \end{aligned}$		801－62 	（0） 5 － 58 	$\begin{gathered} 61.66 \\ 6.41003 \end{gathered}$			$\left\lvert\, \begin{gathered} \text { nene } \\ \text { mine } \end{gathered}\right.$	（4） $5+1$ 		（4）8w $11 \mathrm{y} / \mathrm{K}$		alver	otury 73533	
ต12า 																					

1F2水位•匡加関するパラメータ

1F2 水位•匡恥関するパラメータ

日帱	\qquad			孫 原子柘邸（MPa）	$\left\|\begin{array}{l} \mathrm{D} / \mathrm{WE} \text { 力 } \\ (\mathrm{MPa} \text { abs }) \end{array}\right\|$	s／C任力 （MPa abs）	$\begin{aligned} & \text { CAMS } \\ & \mathrm{D} / \mathrm{W}(\mathrm{~A}) \\ & (\mathrm{SV} / \mathrm{h}) \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & \text { D/W(B) } \\ & (S v / h) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & \text { S/C(A) } \\ & (S V / h) \end{aligned}$	$\begin{aligned} & \hline \text { CAMS } \\ & \text { S/C(B) } \\ & (S V / h) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 中操基量 } \\ & (\mathrm{mSv} / \mathrm{h}) \end{aligned}$	筞肃
4／180：00	－1500	－2100	－0．023	－0．027	0.085		25.8	29.3	0.592	108.0	0.06	
4／188：00	－1500	－2100	－0．025	－0．029	0.085		25.7	29.2	0.580	101.0	0.10	
4／1812：00	－1500	－2100	－0．023	－0，032	0.085		25.8	29.1	0.584	101.0	0.08	
4／18 13：00	－1500	－2100	－0．023	－0．032	0.085		25.6	29.1	0.584	101.0	0.08	
4／1818：00	－1500	－2100	－0．018	－0．027	0.085		25.5	29.0	0.578	85.4	0.07	
4／190：00	－1500	－2100	－0．020	－0．029	0.085		25.4	28.9	0.571	97.2	0.08	
4／196：00	－1500	－2100	－0．020	－0．029	0.085		25.3	28.8	0.568	114.0	0.08	
4／19 12：00	－1500	－2100	－0．020	－0．029	0.085		25.3	28.7	0.565	108.0	0.07	
4／19 18：00	－1500	－2100	－0．023	－0．027	0.080		25.2	28.6	0.564	99.2	0.07	
4／200：00	－1500	－2100	－0．020	－0．027	0.080		25.1	28.5	0.560	89.3	0.10	
4／206：00	－1500	－2100	－0．023	－0．029	0.080		25.0	28.4	0.555	105.0	0.08	
4／20 12：00	－1500	－2100	－0．023	－0．029	0.080		24.9	28.3	0.551	103.0	0.09	
4／20 18：00	－1500	－2100	－0．023	－0．029	0.080		24.8	28.1	0.547	101.0	0.08	
4／210：00	－1500	－2100	－0．023	－0．029	0.080		24.7	28.1	0.542	108.0	0.08	
4／21：600	－1500	－2050	－0．023	－0．029	0.880		24.6	28.0	0.538	109.0	0.08	
4／21 12：00	－1500	－2050	－0．023	－0．025	0.085		24.6	27.9	0.534	114.0	0.05	
4／21 18：00	－1500	－2050	－0．020	－0．025	0.090		24.5	27.8	0.530	1200	0.07	
4／220：00	－1500	－2050	－0．018	－0．023	0.085		24.4	27.7	0.526	132.0	0.07	
4／22 6：00	－1500	－2100	－0．023	－0．027	0.085		24.3	27.6	0.522	137.0	0.07	
4／22 12：00	－1500	－2050	－0．023	－0．027	0.085		24.2	27.5	0.519	138.0	0.08	
4／22 18：00	－1500	－2050	－0．027	－0．034	0.085		24.1	27.4	0.517	135.0	0.06	
4／230：00	－1500	－2100	－0．023	－0．027	0.085		24.1	27.3	0.516	132.0	0.08	
4／23：00	－1500	－2100	－0．023	－0．027	0.080		24.0	27.0	0.512	135.0	0.07	
4／23 12：00	－1500	－2100	－0．023	－0．025	0.080		23.9	26.8	0.509	136.0	0.07	
4／2318．00	－1500	－2050	－0．020	－0．023	0.080		23.8	26.7	0.506	128.0	0.10	
4／240：00	－1500	－2050	－0．020	－0．020	0.080		23.7	26.6	0.503	126.0	0.10	
4／246：00	－1500	－2050	－0．020	－0．025	0.080		23.6	28.5	0.500	1100	0.10	
4／24 12：00	－1500	－2050	－0．018	－0．025	0.080		23.6	26.5	0.497	115.0	0.08	
4／2418：00	－1500	－2050	－0．020	－0．025	0.080		23.5	26.4	0.496	107.0	0.07	
4／250：00	－1500	－2100	－0．020	－0．027	0.080		23.4	26.3	0.493	119.0	0.06	
4／25 6：00	－1450	－2100	－0．020	－0．027	0.080		23.3	26.2	0.490	103.0	0.06	
4／25 11：00	－1500	－2100	－0．020	－0．025	0.080		23.2	26.1	0.489	94.1	0.05	
4／25 17：00	－1500	－2100	－0．018	－0．025	0.080		23.2	26.0	0.486	98.6	0.07	
4／2523：00	－1500	－2100	－0．020	－0．025	0.080		23.1	26.0	0.483	105.0	0.05	

H翼不良

1F－2 温店し1閉するハラメータ（1代表点）

1F－2 温度に関するパラメータ

									$\begin{gathered} \text { RPVRO- } \\ \vdots-\Lambda \end{gathered}$			
4／168：00	159.5	85.8	142.8			148.3	114.8	132	0.5	84	79.5	
4／16 12：00	158.8	65.8	141.6			145	117.1	131	0.5	84	79.1	
4／1618．00	158.7	65.4	141.8			144.9	119.8	131	0.5	94	78.6	
4／170：00	159	65.4	142			145.1	121.3	132	0.5	84	78.1	
4／178：00	158.8	85.3	141.5			144.7	119.8	132	0.5	84	17.8	
4／1712：00	158.5	85.4	14.1			14.1	119.9	131	0.5	84	71	77.4
4／1718：00	158.8	85.4	141.5			144.4	121.4	132	0.5	84	76.5	11
4／180．00	158.5	65.4	141.7			144.5	121.3	132	0.5	94	78.1	70.4
4／186：00	158.6	85.3	141.8			144.6	118.5	132	0.5	93	75.6	78
4／18 12：00	158.2	65.4	140.9			143.7	120.3	132	0.5	93	75.2	75.5
4／18 18：00	158.5	65.4	140			198.6	120	130	0.5	93	74.9	75.2
4／190：00	154.1	85.4	138.2			193	117.1	128	0.5	93	74.6	74.9
4／198000	152	65.4	138.5			188.9	123.3	128	0.5	94	74.5	74.8
4／19 12：00	149.8	65.8	135.4			187.9	127.8	127	0.5	93	74.4	74.8
4／19 18：00	147.9	65.7	134.8			182.5	127.5	126	0.5	93	74.4	74.8
4／200：00	147.5	85.1	133.4			137.1	128.2	124	0.5	93	74.3	74.8
4／208：00	151	65.2	133.8			138.9	125.8	122	0.5	93	74	74.3
4／20 12：00	153.9	85.2	134.7			137.6	128.2	123	0.5	92	73.7	74
4／20 18：00	155.3	85.4	135.5			138.5	128.9	124	0.5	83	73.4	73.1
4／210：00	156.2	85.3	138			138.7	127.2	126	0.5	93	73.2	73.5
4／216：00	155.9	65.2	138.1			138.8	128.4	128	0.5	83	72.9	73.2
4／21 12：00	158.2	65.3	136			138.7	128.4	128	0.5	93	72.8	13
4／21 18：00	150.8	65.5	134.8			1372	127.6	125	0.5	84	72.8	72.9
4／220：00	151.2	65.5	133.1			135.8	126.7	124	$0 . S$	94	72.8	72.9
4／22 6：00	148.1	65.7	131.2			134.4	125.5	122	0.5	93	72.5	72.8
4／22 12：00	141.8	85.1	129.2			132.4	124.4	120	0.5	93	72.4	12.7
4／22 18：00	140.7	65.7	128.8			131.7	120.4	118	0.5	93	12.3	72.8
4／230：00	140.1	65.7	128.4			131	108.4	111	0.5	93	72.2	12.5
4／23 6．00	140	65.8	128			131.6	108.5	118	0.5	93	72.1	72.3
4／23 12：00	139.8	65.8	127.1			133.4	111	118	0.5	93	12	72.2
4／2318．00	138.7	65.8	127.2			130.1	112.5	118	0.5	93	71.8	12.1
4／24000	136.8	65.8	128.3			129.1	118.1	115	0.5	93	71.8	72.1
4／24 6．00	134	65.8	125.2			129.1	118.8	114	0.5	92	71.7	11.9
4／24 12：00	140.2	65.8	124.2			128.5	118.9	114	0.5	82	71.5	11.8
4／2418．00	138.9	85.8	123.4			123.3	117.2	114	0.5	92	11.4	11.6
4／250：00	138.1	65.8	122.8			123.2	114.4	113	0.5	92	71.3	11.6
4／25：00	137.8	65.7	122.5			122	115.5	114	0.5	93	71.2	11.4
4／25 11：00	137.2	65.7	122.3			122.9	118.3	114	0.5	92	71.1	11.3
4／2517．00	137.4	65.7	122.5			122.2	115.6	114	0.5	92	11	11.3
4／2523：00	137.1	65.1	121.9			120.5	118.4	114	0.5	92	70.9	71.1

1F3水位•理加関するハラメータ

1F3水位•圧加閉するパラメータ

日時	原子防水位 （mm）	原子伟水位 （mm）	A系原子畕匡力 （MPa）	孫原子栭任力 (MPa)	ONEIA（MPa 8bs）	S／CE力 （MPa 8bs）	CAMS DN（A） （Sv／h）	CAMS D／W（B） （Sv／h）	CAMS $S / C(A)$ （Sv／h）	GAMS S／C（B） （Sv／h）		倫考
4／170：00	－1800	－2250	－0．005	－0．032	0.1043	0.1888	15.9	12.1	0.811	0.564	0.07	
4／176：00	－1800	－2250	－0．083	－0．030	0.1047	0.1875	15.8	12.1	0.810	0.562	0.07	
4／17．14：00	－1800	－2250	－0．085	－0．030	0.1043	0.1684	15.8	12.0	0.607	0.560	0.07	
4／17 19：00	－1800	－2250	－0．083	－0．032	0.1045	0.1687	15.8	12.0	0.605	0.559	0.07	
4／180：00	－1800	－2250	－0．085	－0．034	0.1045	0.1898	15.8	11.9	0.604	0.557	0.065	
4／188：00	－1800	－2250	－0．081	－0．034	0.1048	0.1701	15.8	11.8	0.802	0.558	0.085	
4／1812．00	－1800	－2250	－0．081	－0．034	0.1047	0.1710	15.8	11.9	0.600	0.554	0.065	
4／18 13：10	－1800	－2250	－0．085	－0．034	0.1047	0.1712	15.8	11.9	0.599	0.554	0.085	
4／18 13：45	－1800	－2250	－0．081	－0．034	0.1047	0.1713	15.8	11.9	0.599	0.554	0.065	
4／18 18：00	-1850	－2250	－0．005	－0．034	0.1045	0.1715	15.7	11.8	0.598	0.552	0.085	
4／190．00	－1850	－2250	－0．085	－0．038	0.1041	0.1720	15.7	11.8	0.598	0.551	0.070	
4／19 8：00	－1850	－2250	－0．085	－0．034	0.1041	0.1724	15.7	11.8	0.594	0.549	0.085	
4／1912：00	－1850	－2250	－0．085	－0．040	0.1036	0.1722	15.6	11.7	0.592	0.547	0.080	
4／1918：10	－1850	－2250	－0．083	－0．040	0.1034	0.1727	15.6	11.7	0.590	0.546	0.065	
4／200002	－1850	－2250	－0．087	－0．038	0.1041	0.1734	15.6	11.7	0.588	0.544	0.055	
4／20 6：00	－1850	－2250	－0．089	－0．038	0.1045	0.1741	15.5	11.8	0.587	0.542	0.070	
4／20 12：00	－1850	－2250	－0．089	－0．043	0.1045	0.1748	15.5	11.6	0.585	0.541	0.085	
4／20 18：10	-1850	－2250	－0．087	－0．043	0.1047	0.1754	15.5	11.6	0.582	0.540	0.065	
4／20 23：50	－1850	－2250	－0．087	－0．045	0.1054	0.1761	15.4	11.5	0.580	0.539	0.085	
4／218：00	－1850	－2250	－0．085	－0．043	0.1081	0.1768	15.4	11.5	0.578	0.538	0.085	
4／21 12：00	－1850	－2250	－0．087	－0．043	0.1050	0.1769	15.4	11.5	0.577	0.537	0.065	
4／21 18：00	－1850	－2250	－0．085	－0．043	0.1052	0.1775	15.3	11.4	0.575	0.535	0.085	
4／220：00	－1850	－2250	－0．039	－0．047	0.1055	0.1778	15.1	11.4	0.573	0.534	0.065	
4／22 8：00	－1850	－2250	－0．087	－0．047	0.1055	0.1780	15.2	11.4	0.570	0.532	0.070	
4／22 11：50	－1850	－2250	－0．089	－0．049	0.1048	0.1780	15.2	11.4	0.569	0.531	0.070	
4／22 17：50	－1850	－2250	－0．089	－0．049	0.1047	0.1783	15.2	11.3	0.588	0.530	0.080	
4／230：00	－1850	－2250	－0．087	－0．053	0.1047	0.1785	15.2	11.3	0.588	0.528	0.060	
4／23 6：15	－1850	－2250	－0．087	－0．049	0.1045	0.1782	15.1	11.3	0.564	0.527	0.070	
4／23 11：55	－1850	－2250	－0．087	－0．049	0.1038	0.1778	15.1	11.3	0.563	0.528	0.080	
4／2318：00	－1850	－2250	－0．089	－0．051	0.1033	0.1778	15.0	11.2	0.562	0.525	0.060	
4／240：00	－1850	－2250	－0．091	－0．055	0.1027	0.1778	15.0	11.2	0.581	0.523	0.070	
4／245：50	－1850	－2250	－0．089	－0．053	0.1031	0.1778	15.0	11.2	0.560	0.522	0.080	
4／24 12：00	－1850	－2250	－0．091	－0．051	0.1031	0.1780	14.9	11.1	0.558	0.521	0.070	
4／24 18．00	－1850	－2250	－0．091	－0．051	0.1034	0.1785	14.9	11.1	0.557	0.520	0.070	
4／250：00	－1850	－2250	－0．089	－0．055	0.1038	0.1787	14.8	11.1	0.558	0.519	0.070	
4／25 8：00	－1850	－2250	－0．089	－0．053	0.1041	0.1789	14.8	11.1	0.554	0.518	0.070	
4／25 11：00	－1800	－2250	－0．091	－0．055	0.1029	0.1787	14.7	11.0	0.553	0.517	0.050	
4／25 17，00	－1850	－2250	－0．089	－0．055	0.1034	0.1787	14.7	11.0	0.552	0.518	0.050	
4／25 23：00	－1800	－2250	－0．091	－0．055	0.1041	0.1792	14.8	11.0	0.551	0.515	0.050	

1F－2 温度し関するパラメータ（代表点）

fil	ill	1201	918	2'69	190	878	1851	886	8601	[991	6'58	00: $67 \mathrm{Sl} / \mathrm{T}$
916	Git	9.11	H_{18}	¢ 89	¢L6	gic	csi	86	011	8 CO 1	LIL	00:4198/7
gil	811	021	968	869	816	2it	891	960	011	8 8\%1	888	00:11 92/7
816	9 Il	stal	COL	689	988	ES	061	C66	${ }^{6} 601$	6'991	972	00:9 92/b
816	8.16	C*21	818	l69	188	109	9821	1201	8 O 11	691	9ill	$000092 / 7$
C13	C'I 1	8821	C'59	169	186	88	L2bl	8201	2011	9991	816	00:8172/7
[17	C'I'	9821	259	H6S	986	671	SOHI	8201	9011	CCOI	959	0021 102/7
8 8't	817	1821	968	169	966	162	6191	CFO1	8601	1091	118	OSS $92 / \mathrm{T}$
816	817	8621	168	8 PG	588	618	HOSI	1201	$8{ }^{\prime} 601$	[991	161	000 $12 / 7$
816	611	9081	ELS	169	9001	\$ 108	tml	8001	1011	CSI	118	00:81 $182 / 7$
611	611	8281	L99	669	8001	124	9621	Crol	9801	1291	158	5s $1168 / \mathrm{L}$
21	36	Trcl	299	689	1101	299	6801	5801	8801	6 tsI	658	S198C2/b
121	121	lisel	189	889	2201	$81 / 2$	181	8011	5601	OSI	118	$000882 / 6$
121	121	8 BCI	C'L9	989	8201	[18	2841	CCII	1011	6671	908	OS:162/7
27\%	27	6 Cl	829	815	8201	TII	C Bl 1	1811	8111	8811	126	OS $1120 / 4$
C\%	671	9881	10	VIS	6201	C08	S'til	1611	YOII	rosi	E'6	000.922/4
C\%	[71	2 i 1	8.99	15	S201	818	20\%	1611	8011	9 l 1	966	$000022 / 8$
12	121	¢161	Ctl	ILS	CCOI	C7l	Of1	C85	011	L'th	001	$00.8112 / 7$
926	92	8261	V69	tLS	8 COL	9CL	201	896	roll	['6¢1	1001	00:21 12/7
83	977	8 CBI	6.19	689	9'COI	908	8 Cl	98	\$601	CLEI	9101	$009812 / 4$
120	[21	C'861	89	15	CTO1	198	raci	196	8011	Cscl	1001	05:8202/7
176	[21	9902	Il	119	¢901	1801	8 CBl	896	S801	6081	P001	01:8102/17
826	872	1012	S'IL	I'19	9201	8111	8721	859	¢ 501	[CJI	2001	$00.2102 / 1$
679	676	512	S61	15	1001	8 BO	1821	196	1801	cill	I'86	00:902/7
${ }_{6}$	C	9912	CBL	119	COOI	$6 \mathrm{Cl1}$	L2Cl	188	9801	1021	986	20002/1
1 Cb	16	C612	VB1	819	1001	8211	1 CCI	196	L'601	1811	L'66	01:8161/t
28	28	8122	108	SLS	1001	6811	I'sc!	16	8601	2CII	1101	00221 $61 / 7$
C't	vic	9972	S6l	tis	1001	1411	L'bll	616	COll	8211	2201	$009881 / 7$
$\begin{array}{\|c\|} \hline \text { 日䭪 } \\ 4 \pi-60 / 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline v R \\ v-60,5 \\ \hline \end{array}$	Y-f-Q.vady						H1412.164 108				

 P112 U

(-Y

1F5／6 原子炉水温度•使用済燃料プール温度

	1F5 泺子妒水温辱	1F5 使用济㪇牟ブール温底	1F6 厚子納永温度	
4／23 12：00	40.4	38.8	43.0	25.5
4／23 13：00	43.5	38.2	39.2	26.0
4／23 14：00	46.4	36.9	36.1	26.5
4／23 15：00	48.8	36.6	34.1	27.0
4／23 16.00	51.5	36.1	32.1	27.0
4／23 17：00	53.8	35.6	30.8	27.5
4／23 18．00	56.3	35.1	29.5	28.0
4／23 19：00	58.6	34.8	28.6	28.5
4／23 20：00	48.7	34.8	27.8	29.0
4／23 21：00	46.3	35.1	27.1	29.0
4／23 22：00	44.4	35.4	26.6	29.5
4／23 23：00	42.7	35.8	26.1	29.5
4／240：00	41.4	36.1	25.8	30.0
4／24 1：00	40.2	36.4	25.5	30.0
4／24 2：00	39.0	36.8	25.2	30.5
4／24 3.00	38.2	37.1	25.0	31.0
4／244．00	37.4	37.5	24.8	31.0
4／24 5：00	36.7	37.8	24.4	31.5
4／246．00	36.1	38.1	24.6	32.0
4／247．00	35.6	38.6	24.4	32.5
4／24 8：00	35.1	38.9	24.4	33.0
4／249：00	34.7	39.2	24.3	33.5
4／24 10，00	35.6	39.6	24.2	33.5
4／24 11：00	39.7	39.3	24.2	34.0
4／24 12：00	40.8	39.2	24.1	34.5
4／24 13．00	43.4	38.4	24.1	34.5
4／24 14：00	46.3	37.5	24.1	35.0
4／24 15：00	48.5	37.1	24.1	35.5
4／24 16：00	50.6	36.7	24.1	36.0
4／24 17．00	53.7	35.9	24.1	36.5
4／2418．00	56.1	35.5	24.2	37.0
4／24 19：00	58.1	35.2	28.1	36.5
4／24 20：00	60.8	34.7	30.1	35.0
4／24 21：00	62.6	34.4	31.6	34.5
4／24 22：00	58.4	34.1	33.3	34.0
4／24 23：00	55.0	34.1	35.3	32.5
4／250：00	51.8	34.4	36.9	32.0
4／25 1：00	49.0	34.8	38.4	31.0
4／25 2．00	46.8	35.1	39.9	30.0
4／25 3：00	44.9	35.5	41.5	29.5
4／25 4：00	43.3	35.8	43.3	29.5
4／25 5：00	41.8	36.2	45.0	28.5
4／25 6：00	40.5	36.6	46.9	28.5
4／25 7：00	39.4	37.0	48.8	28.0
4／25 8：00	38.7	37.3	50.2	27.5
4／25900	37.5	37.9	52.6	27.0
4／25 10，00	37.2	38.0	53.5	26.5
4／25 11：00	36.6	38.3	44.5	26.5
4／25 12：00	36.1	38.6	41.2	27.0
4／25 13：00	37.2	39.0	38.1	27.5
4／25 14：00	39.7	39.3	36.1	28.0
4／25 15：00	43.0	39.6	34.0	28.5
4／25 16：00	45.9	40.0	32.3	28.5
4／25 17：00	48.1	40.3	31.2	29.0
4／25 18：00	50.5	40.1	30.1	29.5
4／25 19：00	52.9	39.9	29.3	29.5
4／25 20：00	55.6	39.0	28.5	30.0
4／25 21：00	58.0	38.5	27.9	30.0
4／25 22：00	60.6	38.0	27.3	30.5
4／25 23：00	62.2	37.8	27.0	31.0
4／260：00	53.3	37.5	26.6	31.5
4／26 1：00	50.5	37.8	26.3	32.0

1F1 D／WI（N2注入後の挙動）

From:	Hoc, PMT12
Sent:	Tuesday, April 26, 2011 3:07 PM
To:	PMT10 Hoc
Subject:	FW: Update to paper
Attachments:	Composite rev 9.docx

From: Milligan, Patricia
Sent: Tuesday, April 26, 2011 3:01 PM
To: Uhle, Jennifer; Foster, Jack; Hoc, PMT12
Subject: Update to paper
Comments?

Thanks.

Our assessments and recommendations are based on the best svailable tecbnical information. We acknowledge that the information is subject to cbange and relinement.
\square

Our assessments and recommendations are based on the best available technical information. We acknowledge that the informalion is subject to change and refinemen.

Our assessments and recommendarions are based on the best available le:ihnical information. We acknowledge that the informarion is subject to change and refinewent.

Our assessments and recommendstions are based on the best available tectrnicai infomstion. We acknowledge that the information is subject to change add refirmmens.
\square

Meighan, Sean
From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent: Wednesday, April 27, 2011 5:54 AM
To: Huffert, Anthony; Moore, Carl; Casto, Chuck; Gepford, Heather; Mitman, Jeffrey; Hay, Michael; Salay, Michael; Meighan Sean; Garchow, Steve; Reynolds, Steven; Foster, Dirk L CAPT USN; (b)(6) Wittick, Brian; Gregg Schneider; Lovell, Russ; Hochevar, Albert R. (INPO); Gakuto Nakamura; Gard, Lee A (INPO); Hiroyuki Matsuura; Junji Tanaka; jwhitcra@bechtel.com; Keith Moser; Michio Matsuda; Richard Rossi; Bob Holland; sekim@westinghouse.com; serorj@westinghouse.com; Shigeo Hattori; Shinya Fujii; Shuji Furuya; Yoneo Suzumegano; Tom Stevens
Subject: FW: April 27 briefing notes and excel spreadsheet
Attachments: TEPCO Sumarry Rev. 101 Final April $27 . x \mid s ;$ April 27 Ryan 6 pm briefing notes. doc

Attached are the briefing notes and parameter spread sheet. The radiation survey map was not available today.

[^4]Meighen, Sean

Attached are the briefing notes, parameter spread sheet and survey map.

.DISCLAIMER:

This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments. Thank you.

Meighan, Sean
From: Gard, Lee A (INPO) [GardLA@INPO.org]
Sent:
To:

Subject:
Attachments: $\quad 26$ April Drywell Info.pdf; 26 April SFP Info.pdf

We have been told that the plan is to fill Unit 4 SFP between today and tomorrow and then keep adding to keep it full. They will both strengthen the Unit 4 RB and also "shore up" from underneath the Unit 4 SFP. We are trying to get the plan.

.DISCLAIMER:

This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments.
Thank you.

Water may be leaking from No. 4 reactor fuel pool
The operator of the troubled Fukushima Daiichi nuclear power plant says water may be leaking from the spent fuel pool of the No. 4 reactor.

More than 1,500 spent fuel rods are stored in the pool, the largest number at the site.
Tokyo Electric Power Company, or TEPCO, has been injecting water daily into the pool to make up for the loss of cooling function and prevent the fuel rods from being exposed and further damaged.

TEPCO has poured in 140 to 210 tons of water over each of the last few days. The company found that water levels in the pool were 10 to 40 centimeters lower than expected despite the water injections.

The walls of the reactor building supporting the pool were severely damaged by a hydrogen explosion last month. TEPCO says the pool may have been damaged by the blast as well.

According to a schedule announced earlier on containing the ongoing emergency, TEPCO plans to install concrete pillars to support the fuel pool by around July to increase its earthquake resistance.
Wednesday, April 27, 2011 09:05 +0900 (JST)

Fukushima－Daiichi Current Status and Planned Work

27 April at oc：001 $109: 00$（Rev－101）

Practiflity Casirsel Oblt． Reater）	Ormas Stata		［Hi］［ins ure bol Inserid ta the ters		```closed toor cura shrod Inglicesen! ms dring wucul```	gint of the mal canalise cato （thinguate oxiarted atier foreftion of Efithararit lel fust before the （12rtup） Wubualaty cold suldem	
		 catimmosh costandif）	 $57 / \mathrm{h}$ （milevaith） 	```5v/h``` ```centimanh!``` ```Hed```			
	luat bofls Plakyed （TIR ${ }^{2}$ haddyatars Ativilies）	（tone ten masert OTO add botcacid to froit coolant before difer matariay pater Chmentia is	 （Lank ten myiry Oif a deric arld to truth colent beforo ciniay codd sul ans Gflar tenoray man： d Oxatisist	Gay lim resure alwing iold col（man atter mandian ame Coporatiot 5li			
	（trres）${ }^{\text {gitas }}$	（Srited to ：egorery Installod mot dition （axp mictuly xive． Whatallea ligapary trelacesat peop for COM Finomata to anitor teratily ceditiast of instalion 100 Matil） ins iastallod（on It herill lajasits lin（8 bili）	presury tollas isjertia \＆ilis． 10 cemplend Flot batid 14 ati by ittriay powr． ［踪 （2）Wera） imulide（as amil） Wixtion lise for ope colias totor laperime as ly：lifed（4） 11 horil） hipar 1 l a 1 （on 18 toril）	Trath niter isjation itra fP lise to los presbate colen injertiex Sritai io capilitef porer． （2 2 Lrch ） istilise（matyil） inimalas ia（Endlad lon 14 tyil） sinctios ns and to hat promat（e la haril） （ 4 ） 18 igril）			 （i1） 18
 If Rualkit theat therial （ Cof ［exlat		```Rratar Lite Lent Gi (rivi at ithent``` ```sต1นะย1ร!```	 W gastrearn） coll hualy） Fitid ente mint：胡保 	```- (matizmoly) RE9 What CHiswofly``` ```yfom``` ```pridis)```		 （a） Latic： 1 4all！ ローて	101！ （ a 1 i ） asil） 住 9

	Nal forts Plaxad Untirit｜es of Cetilin bitur Sxpply Force）	1410×1 raintion atirasen arand Mif is the tublay trildind． resloriag offitile paet 1 milatol expimers DFor PT floodiat 	 （fen worl ms mospeded dea to hiti leatha mildizu． relorita clfosile pate 1 ralated 	 refletion eviraman wag Mif ia bed turt to kilding）． Arearisy to troin the hifer radiallan 2u！ （lead loty（enilta lexsire） reslorias off－itu pans a raleted mations				－
Whaimant fixctiv： （Coslicy and ［07ixan）	Furnm Sthat	（10／7 4 －Itegesabsai En bellor sula： 12.5 C －Proseti Gifitiots －PO desiqn pronne：ostir． Paptitio Aise mation praxare： 310 PPa	 －Taspratiovi： －Prisuri：ton Sadz（Eundint） t Hiraiy to stat mellalas tirasion Wric：ed liay ibun matord fotar） 					
	Fuxt Forks Planod inton Hixation＇ （2：xilits）	 －Efil rit nd matilation lise mita Thitotes －Cantara to suary cotiatim lia （0hter swatime ofrita patr） （CDI Thaster tor blation coil 	－a pit	53x as yit 1				
Syat Fan： POD］（SP） flexes lyat Primict 1 （lati Smply）	Tureal Slate	```ISPP bitr \|mal``` ```1097P Imestater``` ```\(x\) perte tapply) WStime tarte tant lerm``` ```hater) (callad the Etpinat) - 31 lura \(13: 03-13: 51\) - II ture 16:4-15:04 - 2 artil \(17: 1 f 17: 19\)``` EElophant＂to protich confuslos on 3 april． Whenation for riter feditu vila aliertit yant f， 1 ！ 1 ． 	 sistiat If lfe ad axaray lix －13 kyil 16：06 17： 2 11；${ }^{2}$ Pus cempleted in bued． （ximalie for II brit）	Spingr leni exatais（lis muler lesol ster） －5SP tumixur miskimer ne bisk hatal解 margown resicia hall Lart：minored Itiel phestric What hitra－laroted mis ayd for Fopisumest od tho Elequan ras erodi bit t－dixit to （as II tyill ontar hani throun 形 10 1911 （1）x_{2} din	 ordor as bser） Fatber serb wat level Thateriat eith has Eirpiant －5 tanll 17．35－18：22 －itril 18：2－19：4 －9 heil 17：07－19：24 Aheprthici for water freilal rith stailits 2 was copleted（12 iprib）Sost of the 161 is talited to to maderach． Whizaly masim itatronats literl arentil Isegitarts． 23 64 3 ？ ispill 	Inrolani suluria； 1H24 mand or 5 （lerel darse wie mi atimid） Difp blet les： 甶化（atmon？ Ten： 1 rect A 1 （Ipt：） 	－Isratan scminion FIVAL 1 Eritai or 4 USGP 1stot has． 4 riij rol of th rater tash at ty tan lant（ -1 （4ail） 	E57 vatol iwrepthe －Wat laf dation achiund ay fio raclara （ 4 Hath 16：55－19：0 ） TFRC（A）station al is：05 on thatheri

	plons ant Qun icitrlites 				```(na)``` ```Hforimis```			:
Hifit Fitas (A) Prev: Supal:	cutrat Sintut	mand of Texise gic Digulymens of lit inted for sum cirant a 3 hard (4) 4 tri. LStwoube aryitu wint fatuled. *rallabla) (an 19 haicil) - Tis tiva to tala ation mon me tantulad. (ous is haril)	H0W P/C x turnated io land disurixulse setorl of tixain DPC (40 $15: 46$ or 21 Hext Thasintion li retorm it min coaltel no al 16.46 as 77 Ibres Einequber arsite pent instalited Tenke keles lise - Whas liv: itulalied (can 35 别	Hay (at 19:35 in 32rd bred - Imanerity maser appit misidered milissing that imanalatea lise Contir cteploid al 14 : - lasiadaliza s! elii rimuit bradars ad - lazowetics of calla Irya tia beters ond lacs - lossaisalos of cables rife copptited oce : 11 lanch. allue: 1 ins 4dit $\infty 24$ Mrch an 31 H tem ㄱoce	(4) بएration - © 9 d hath a) 7 h han lastallod itchotu hacior lise Crian He Lutanarailala) [0: 19 iprill	Themapart puser syivil sabornd utilistita the सRen tratmander lis fleathiti lix (14.9) Introsefaty graticuses of 5 A and 5 B are turnilila nd os 314 Hing Dhim Purtitration Fazility mas perres 45 $9: 10 \mathrm{cos} 24 \mathrm{Althm}$ maibais Hat - Sirentize orsite part frasallei. (23 Cof f])	Tlespla; pant apply midrod allitis dit liea (1.2) sh univailふ! saisplitur surise Chasted by Hill Tirst ris od inalalled coblo us condryod a) 80 Berci retient. Fistmatur ondit xim - The lime so lalt IIt caia mos mos hossallad. (H) 4 (in)	Thextart wiat ler timpa as 3 Ith limed - Iicaxarp par for coman pool is 1riped aric $100^{\circ} \mathrm{S}^{\circ}$ antion purilce ol dxaceern :restared at $17: 10$ or 17 ct pidi lor ctana pal स1:ำ19 - [il
	Dbasen wort Wat wavilios of firestic Pomer smp T6.3:	resiayed offar ctaplating siter travfer free t/8				(b)		
IM. Poter Yusal!	Withen Slum	troxaty batety le maine phat stacs	```IPan ul 1 Cuplowis ter ponted ty lmaxit tallit is weitor plat shtus Flomen Mis% lma bun prowe```	lexarars batily is action plati shes realeat by from ocer al 12:15 a 2131 Lurci (\$0 Luse)	 slitus	3 tacerong butity to cenitur plast sidts IIXX 31 Curpr 3 Slits been metrad ain 31 hirch	```Warl of It C mapmets tre mared # latoyaty butidy io matitr plant stams```	
	lext Bils Plazer Gectirities of Elmetris Patr	\cdots						
Miscrlimasis Hespulit auiast fordoun	Serme shatha	Frater mal for hdipica pas atominite in fro - Cosibibing tho indertion of it pas (903) (13) - Cajoctiof of al in durw of parity tit (tas Whon rathi resth erice of mitr; (9997) Styil 0:10- as Earticuate (11 April 17:16-3:19) 	Ki of the freter wildiy in of ercerace ban Iride lifrote tie nais draldith terı. Lis ceativaid of hatrex px.	RKY	\square			
	Weit torts Plangan (hat keteitios		 :3x maitack					

$\begin{gathered} \text { Trbion Bild } \\ \text { iny } \\ \text { Inter Praizing } \end{gathered}$	Carrai Suisi	```: Har \|ime) in T/``` ```- Italer trastiles``` ```(en: 30) Mrinaian nier in Trexth``` ```(4) 1, 1, mat C. 4 As/A min leath - Itirt line! friat toj ede of gratoy to matry arface?``` ```: man at lyil 01. © - Perate matiociad miandery of ster liwi in has trach tas```	```- Iser here fa \(1 / 8\)``` ```: Now ax amil bit``` ```(2 Arill 17:10-9 mori] 13:10)``` ```Pralyng toter is Irach``` ```les``` ```tis. 1 - Tizir larel !froa top ofed of prulup to nier siileal``` ```- Late milarizy mantonat of mator Ifrel in the iread as andidighed (on : thill Mryatice "Comit" - Whather mand manand orer the cred. (at 13:15 on (pril) - Iojactios of lionte exalial to matiat lats (toobecine on 1 kyii)``` ```- 4 atil 13 15.92- \(77: 01\)```	Chaliaja anter fo $1 / 6$ - Fole indifor $657-57$ sitpe wath - 8 A is foll. Leth free mane tracter tess confinere $\operatorname{los}(4, q i l)$ ADrsifita paler la frexa - Belaica leal of the ger surfare in 4) trax (b) etesiterexal dor lo difficelty in popsond by detris) - Itint letal surfal trone maiteriay masermal of vine lorel in the traxd ses *sublisind (m: marli)	LDrainiat vith - hatar lored in 7/8 $-1 / 80$ (atmand 09:2 is ibe Itexy Tiort for statiry off the lasi in pit crack	 - Mater incasfur - Sh (4 Luril) 4 (5ril $21: 60-8$ Apri] $\mid 2: 14$ Dotalata nuep !s Cl - (S aper -Tatis (as 19 aptil)	TDififing ntor - Hiar tracter 保 basa fiocer - 4 mier: cosidatind drisimatrat Dixcherdiar rater is atrotats 	Tratisa nutet 'Coctitutiod al - se: (1 14pril 19:03-10 tril: ms ctoplatad to its ind na molitid izndulat is in promen ? 4 Whet for imititg off ibe las Phid courantod mitar thes frax lint itatifmilities - hocral of tratise at if C (14.17)
	Fist llorts Plan	[0trialm estar is T / h baseat I/B themal lo fit fallitios						
anlars	inter siale	- Baty Trimaisl of deran - Iros pikla is fral of lor selenfellitios. 						
	Yrti Eurts plecood	 	S 					
Letrelations:								
 Mid: Raxiar Core lisolatica Cooliay								
BI Cordentie Storapa Tort 的 : Ryidulitut Emal								
* : Whin Stex SCTS Sedd by hat Irgatomat Srsta								
wit: Dolor Paver Conter SH: :Sayl Deas Cooting								
 StC Sturd by Ligid cenirel Pft Pons Distrikul ias Ceath								

FUKUSHIMA DAIICHI
Status as of 6pm (JST) April 26, 2011- TC Briefing.
Information that is in italics should not be shared as it has not yet been released by TEPCO.

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- N2 purging of the Unit 1 Drywell was stopped yesterday for approximately five hours while power supply lines from Unit $5 / 6$ were connected to a Unit $1 / 2$ load center to improve reliability of Units 1 and 2. During that time, Drywell pressure decay and decay rate was monitored and used to estimate free space and water level in the Drywell. It is now believed that Drywell water level is .5 m below the bottom of the reactor vessel.
- The robot entered the Unit 1 reactor building on Tuesday to check for possible leakage from an electrical penetration or other areas on the reactor building first floor. No leakage was observed. TEPCO is considering increasing injection flow up to $14 \mathrm{~m} 3 / \mathrm{hr}$ to increase the flooding rate of the Drywell.
- Transfer of highly radioactive water from Unit 2 to the Centralized Radioactive Waste Treatment Facility continues at a rate of 250 tons/day. Level in the Radioactive Waste Facility has risen 840 mm since the start of transfer.
- Unit 2 trench level decrease has slowed dropping only 10 mm since yesterday. It is now 890 mm below the trench top. Unit 3 trench level has increased an additional 20 mm and is now 980 mm from the top.
- After four days of stability, Unit 4 turbine building water level increased 50 mm and is now 3050 mm (1.5 m above floor level) which is slightly higher than the Unit 3 turbine building water level of 3000 mm .
- Two hundred ten tons of water were added to the Unit 4 Spent Fuel Pool (SFP) yesterday. Another 160 ton addition is scheduled for today to fill the pool. The structural integrity of the Unit 4 SFP is considered sufficient to support a full SFP. Calculations and observations indicate that approximately 82 tons of water is needed to be added to the Unit 4 SFP daily to maintain level.
- Thirty-eight tons of water was added Unit 2 SFP yesterday. Fifty tons of water is scheduled to be added to the Unit 3 SFP today. Boil off rates are 21 tons/day and 17 tons/day respectively.

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line continues at $6.1 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Reactor pressure indicator A is increased slightly to .450 MPa abs (65 psig). Indicator B continues to be suspect.
- Feedwater nozzle temperature continues to be suspect.
- Reactor vessel lower temperature decreased slightly to 111 C (232 F)
- Drywell and Torus pressure remained at .150 MPa abs (22 psia).
- Drywell and Torus dose rates are considered to be suspect.
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at $7 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 2 reactor pressures remain suspect.
- Feedwater nozzle temperature decreased slightly to 122 C (252 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure was stable near atmospheric.
- Dose rate in the U2 Drywell continues to decrease. The drywell dose rate is $2.31 \mathrm{~Sv} / \mathrm{hr}$ or $(2,310 \mathrm{Rem} / \mathrm{hr})$. The Torus dose rate reading is considered suspect.
- In Unit 3, of non-borated fresh water using the low pressure coolant injection continues at $6.8 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 3 reactor pressures are considered suspect.
- Feedwater nozzle temperature is considered to be suspect.
- Reactor vessel lower temperature decreased slightly to 110 C (230 F)
- Drywell pressure was steady at . 104 MPa abs (15 psi). Torus pressure is also steady at . 178 MPa abs (26 psi).
- Dose rate in the U3 Drywell continues to decrease and is at 14.6 $\mathrm{Sv} / \mathrm{hr}(1,460 \mathrm{Rem} / \mathrm{hr})$. Dose rate in the Torus is considered to be suspect.

Dose Rates

- Overall site dose rates are stabilizing or only varying slightly. For example:
$>$ The last reading reported at the main gate was $52 \mu \mathrm{~Sv} / \mathrm{hr}(5.2$ $\mathrm{mrem} / \mathrm{hour}$) and be $23 \mu \mathrm{~Sv} / \mathrm{hr}$ ($2.3 \mathrm{mrem} / \mathrm{hour}$) at the west gate.
$>$ The side of the administration building facing the units decreased slightly to $.450 \mu \mathrm{~Sv} / \mathrm{hr}$ or $45 \mathrm{mrem} / \mathrm{hr}$. The same as yesterday.

From:
Sent:
To:

Subject:
Attachments:

Gard, Lee A (INPO) [GardLA@INPO.org]
Wednesday, April 27, 2011 3:07 AM
Huffert, Anthony; Moore, Carl; Casio, Chuck; Gepford, Heather, Mitman, Jeffrey; Hay, Michael; Salary. Michael: Meiahan. Sean; Garchow, Steve; Reynolds, Steven; Foster, Dirk L CAPT USN; (b)(6) Wittick, Brian
FW: Unit 4 RB support plan
Plan for Unit 4 RB support.pdf

Attached is an overview of the support being considered for Unit 4 RB. Presently TEPCO is still saying additional support is not need so this is "just in case". Schedule runs until July.

Drawing details in Japanese, we will work to translate.
-Lee

Abstract

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The person or persons that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

.DISCLAIMER:

This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments. Thank you.

Meighan, Sean

From:	Gard, Lee A (INPO) [GardLA@INPO.org]
Sent:	Wednesday, April 27, 2011 4:46 AM
To:	Huffert, Anthony; Moore, Carl; Casto, Chuck; Gepford, Heather; Mitman, Jeffrey; Hay,
	Michael; Salay, Michael; Meighan, Sean; Garchow, Steve; Reynolds, Steven; Foster, Dirk :
	CAPT USN; $\frac{\text { (b)(6) }}{}$Subject: FW: Unit 4 RB support plan Attachments: Brian
	1F4 RB SFP Reinforcement Plan (Draft).pdf

English translation now of the Unit 4 R/B Spent Fuel Pool Reinforcement Plan (Draft)
.DISCLAIMER:
This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this email is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments. Thank you.

1F4 R/B Spent Fuel Pool Reinforcement Plan (draft)

Wittick, Brian

From:
Sent:
To:

Subject: Attachments:

Gard, Lee A (INPO) [GardLA@INPO.org]
Wednesday, April 27, 2011 5:54 AM
Huffert, Anthony; Moore, Carl; Casto, Chuck; Gepford, Heather; Mitman, Jeffrey; Hay, Michael; Salay, Michael; Meighen, Sean; Garchow, Steve; Reynolds, Steven; Foster, Dirk L CAPT USN; (b)(6) Wittick, Brian; Gregg Schneider; Lovell, Russ; Hochevar, Albert R. (INPO); Gakuto Nakamura; Gard, Lee A (INPO); Hiroyuki Matsuura; Junji Tanaka; jwhitcra@bechtel.com; Keith Maser; Michio Matsuda; Richard Rossi; Bob Holland; sekim@westinghouse.com; serorj@westinghouse.com; Shigeo Hattori; Shinya Fujii; Shuji Furuya; Yoneo Suzumegano; Tom Stevens
FW: April 27 briefing notes and excel spreadsheet
TEPCO Sumarry Rev. 101 Final April 27.xls; April 27 Ryan 6 pm briefing notes.doc

Attached are the briefing notes and parameter spread sheet. The radiation survey map was not available today.

.DISCLAIMER:

This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments.
Thank you.

Fukushina-Daiichi Current Status and Planned Hork
27 April at 06:00 \& 09:00 (Rev-10!)

Cusulfanal Piectling [forling os ($\mathrm{m} / \mathrm{in} \mathrm{m}=1$)	arren! intus	 - iratpletr: Fify thlon mal: 12.64 㗅 rexum: 9, 1 C - Inserature: (a) 51.0 C C (a) 50.9 C Hyture dice whime mexmere : 310 kh		 - Prespriti Q 1011 Didos trad extioserali) Hithera: 101: 't - Prosum: Q im Prata - Hisprours: (0) 4.2 ¢. (0) 1.2 C WSirter reathation liroost hatiked liue (as 9.8 oa 13 Aral$)$ 				
	Vit math Pleass (120) Honswarters delisture)	 - Fill KT at walaion liom zia piltaver Ufter womita offalu pert Chawish it tyen fexilom Uritur crillation of ralparats) DETp opentiom in fix ex 	Sarementl					
Smal ful Pal ISP) (aves) Hol iszull Tuat supl)	rrift futer	13Fp nior limil Eecridin thatele 10 moxte bexase of Elimer sact lat lral tainf) (colled tre Elepesal) - 7 Aatil 11 1 -12:19 (tilt I ru thated icas "lute Giralfe" ta sotar paps tas suphetine lan 9 hat (t). this: 	1127 mitr litul ISP matite VIImet mite tas limel - 19 atil 16 $16-11: 3$ lhap nss carimed (3) lischi. [stadiled ior II Lerie)	TSFP uifol lafl twit of poors ruphit 5 5 mavienas whith Iell teta inposedi (dxall li:es y:0 Corell (tater) - 30 henll 17:15-99:15 Vrem Puril Litimaralion lea nies fertias vith aksitic In. hataringard wa madi for replamint 3 foll liftil) - I dpell ta:00-12:00 liten of prite leal) Anoatistetire of iajertion lioe of ite pool trowh Prilum - 27 Aprll 13:40 - 16:00 (them) -38 4pril $12: 35$ - $14: 02(17.5 \mathrm{toa})$ 	IST nur letel : Lerertuin sen: (a) 11:10 的 A+1 1arch ad lutit 4 - S4pall 12:3-10:2 - 1 pril 18:33-53:40 - 9 4ril 17:07-1:34 ITherastion fer vili fexim vila enewis dacill 13 (111 isfil) * in! is trilited to be twadnare. ase ne.) waseroter, 12 an 1 4erif) Histring rith le Elentast R ? 	Tlantialy senting of dayil) Hol 41.3 Arose inity sad trasfifted to freth (6) 11 	Mlatriton swhim \|lual rownd - Ban rimal ia SA costica mos. of ta (levt alase wit wivineled) IISf later tho: arili roo of bl hatil 	Fiff thin lexatidure fis calter, Utary maply to ux cyex be suble
	pireats roll that Axtivitite of \|ff hat				```(tra)``` ```stinctiser```			

Not for Release

High Holuy ris pown Suply	Curtes 5hates	```Wisn pic 3 cosereted io loxal diatibution wtwh of Ische IPC``` ```Digiments of ic teried for thert eitrall``` ```my ind``` ```041 larch``` ```- Eismation malite mopr``` ```itasulled.``` ```mildite) (60 (a prill)``` ```fobstimat```	 distititulem Ematiof bidas $E x$ （4） $13: 46$ on 7 Hral） Illajution by maxd in min cultrol red 11 15：46－ us iastalled（Tudatu kryest lint－ （4）w IJx inataliod （tan X iqril）	lise ta $10: 30$ a tod bral pailisian the unginim lim －Trind diverris charge of the meor Cenitt Thilele for bit］axd flat no samen －lazulation ef milit circili breakrs an prer cables etrestofitied eais larch －Paxertios of ciblif for the treders nod lats －lartabilizo of aftes mry sumplut on （2）Lert －Pouct suply yas stapol de to ateriba catrite pond of lail 3u（eqpite：6．5y －- （4） （ 4 trail 10：32－15：27） no n Brch． ras	［likit ic 4）puried drowh irasiaisi＝ stenathon ast－ 5011 （3）April 10：37－1s：9） 033 brad －111radaticm of al rentact a $11: 50$ on Es hisa Pa arise lim 	quillising 1 be pows 11． 4 51 ret witild 2 coceted to the rath mpirf tint Mimimer adicistution inllitior 74 paresed en tith iarat Whet pritionion faclity as pomed －Inteltituing cale liging work for aseltoring hact anstrethon sa sile pere －Tis lisp is his lit wina ma tastalled． （25． 4 pil）	millibin the kithenad anl of wir of f－ xits Pral lim IL．2U 38 caralimb xatelitert merles coubsiont $m \geqslant 0 \text { herris }$ Frelteliz mas Afill int resiored Streatios ea site pener intulied 	Wheporar！pant lor stamo and to cesterd in 15：30 Ulomptry purt for cemen 由ris patise of fisersetinh sitct ifetern al It：4 oall haril Ifit for comen pol －Protit rapif as stoped dan to ulrazion ［291－6891
	alazes woth Cosl scivition of Elactictan Spoply lis）	filithatice work of alcelfleity nill be remided 				Olaying liseroty porer eble for sif （1）		
x Ponir xand	［ural fiale		 Matis 21 $16: 30$ on 11 Herai	 Hilas －Buthits for reticor tenel caters onsit on alat thad （ 10 Erch）	b aithes	paryd by fitics mall 品ech	pornd b Lrextif blaty to mila pim Ress	
	Bax min Pimarad （artuit）os of Clatitk fropr	－						
Kikellions Hasers caims Thindrama	Turmi Suies	```melatim is (\(\%\)``` ```Dajertion of is in is in proctry (flem rite: 害his datere of purit): 제 1 Lefil 01:31-9 tratil 0:3:3 (surpender das 10 gitate to him dytre ef prity (15 - Lijestion al bididerere of parits is ss``` ```189. 8 N 1 wail A: Mo.```	HI art of the parcas hildiay is of caserices －Toite sadt dunte men lan lura no 421 hut． It is lead wat tili nillanss 	Pr		the mility mand（x0）a thid of libe recter tidelas on 18 tech to reling lify mam D）wid is arxit exizules Wiks blet of ite ty calline wie （atered to scrent risi inadestion lea 3 hutchl	be the letior ballitim of 18 forch to oflint mimeses Is $\%$ berd	
	Mat Inds Plawad Thent Alifata）		nter sol andility					．

FUKUSHIMA DAIICHI
Status as of 6pm (JST) April 27, 2011- TC Briefing.
Information that is in italics should not be shared as it has not yet been released by TEPCO.

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- Percent of fuel damage estimates has been revised for all three reactor cores. Current estimates are 55% damage of Unit 1 fuel, 35% of Unit 2 fuel and 30% damage of Unit 3 fuel. A calculation error contributed to inaccuracies in the previous estimates of $70 \%, 30 \%$, and 25% respectively.
- N2 purging of the Unit 1 Drywell continues. It is now believed that Drywell water level is .5 m below the bottom of the reactor vessel. TEPCO increased injection flow to the primary containment vessel to $10 \mathrm{~m} 3 / \mathrm{hr}$ Wednesday morning. After verifying leak tightness injection flow will be increased to $14 \mathrm{~m} 3 / \mathrm{hr}$ later today.
- The robot will entered the Unit 1 reactor building on Thursday to check for possible leakage following the increase in vessel injection rate.
- Transfer of highly radioactive water from Unit 2 to the Centralized Radioactive Waste Treatment Facility continues at a rate of 250 tons/day. Level in the Radioactive Waste Facility has risen 946 mm since the start of transfer.
- Unit 2 trench level has not changed since late Monday. Unit 3 trench level has increased an additional 10 mm and is now 970 mm from the top.
- After increasing 50 mm yesterday, Unit 4 turbine building water level remained steady at 3050 mm (1.15 m above floor level). Unit 3 turbine building water level also remained steady at 3000 mm .
- One hundred thirty tons of water was added to the Unit 4 Spent Fuel Pool (SFP) yesterday. Another 70 ton addition is scheduled for today. Forty seven tons of water was added to the Unit 3 SFP yesterday. The fuel pool cooling line is now being used for injection into the Unit 3 SFP and the elephant has been moved to Unit 1.
- Based on recent differences between observed water level increase and calculated water level increase following water additions to the Unit 4 SFP, TEPCO now believes the Unit 4 SFP pool may be leaking.

Previously it was reported that observed water level increase following water addition was as expected.

- Although TEPCO considers that the Unit 4 reactor building structural integrity is sufficient to support the SFP, plans have been developed to add supports in the compartments under the Unit 4 SFP. Construction is expected to start in May and completed in July.

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line will be increased in steps up to $14 \mathrm{~m} 3 / \mathrm{hr}$ today until at least tomorrow morning. Comments on parameters:
- Reactor pressure indicator A is steady at .450 MPa abs (65 psig). Indicator B continues to be suspect.
- Feedwater nozzle temperature continues to be suspect.
- Reactor vessel lower temperature is steady at 111 C (232 F)
- Drywell and Torus pressure remained at . 150 MPa abs (22 psia).
- Drywell and Torus dose rates are considered to be suspect.
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at approximately $7 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 2 reactor pressures remain suspect.
- Feedwater nozzle temperature decreased slightly to 120 C (248 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure was stable near atmospheric.
- Dose rate in the U2 Drywell continues to decrease. The drywell dose rate is $2.27 \mathrm{~Sv} / \mathrm{hr}$ or $(2,270 \mathrm{Rem} / \mathrm{hr})$. The Torus dose rate reading is considered suspect.
- In Unit 3, of non-borated fresh water using the low pressure coolant injection continues at $6.9 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 3 reactor pressures are considered suspect.
- Feedwater nozzle temperature is considered to be suspect.
- Reactor vessel lower temperature decreased slightly to 110 C (230 F)
- Drywell pressure was steady at . 103 MPa abs (15 psi). Torus pressure is also steady at . 178 MPa abs (26 psi).
- Dose rate in the U3 Drywell continues to decrease and is at 14.3 $\mathrm{Sv} / \mathrm{hr}(1,460 \mathrm{Rem} / \mathrm{hr})$. Dose rate in the Torus is considered to be suspect.

Dose and Dose Rates

- A female employee received a cumulative radiation dose of 18 mSv during the first quarter of 2011. This exceeds the maximum allowable dose for a female of $5 \mathrm{mSv} / 3$ months. Quarterly dose for all 19 female employees of the station is under review.
- Overall site dose rates are stabilizing or decreasing slightly. For example:
$>$ The last reading reported at the main gate was $51 \mu \mathrm{~Sv} / \mathrm{hr}(5.1$ $\mathrm{mrem} / \mathrm{hour}$) and be $23 \mu \mathrm{~Sv} / \mathrm{hr}$ ($2.3 \mathrm{mrem} / \mathrm{hour}$) at the west gate.
$>$ The side of the administration building facing the units decreased slightly to $.440 \mu \mathrm{~Sv} / \mathrm{hr}$ or $44 \mathrm{mrem} / \mathrm{hr}$. The same as yesterday.

Valentine, Nichole

From:	Philpott, Stephen
Sent:	Thursday, April 28, 2011 9:15 AM
To:	Valentine, Nicholee
Subject:	FW: Mark 1 Containment Issues (Q372)
Attachments:	Report-BWRMarkIContainment_03212011.pdf; Q372 Request.pdf

Hi Nikki,
This is a response I received from GE related to the other chain of e-mails I sent you yesterday in response to FOIA 2011-0189. The attached report is not marked as Proprietary, so 1 imagine it's OK to release. Plus 1 have another e-mail that indicates this report was available on GE's website, so I think it has been available for a while (and it's a bit dated now).

Steve

From: Hen, Jeff (GE Power \& Water) [mails
(b)(6)

Sent: Monday, April 04, 2011 11:13 PM
To: Philpott, Stephen
Cc: Harrison, James F. (GE Power \& Water); GE Hitachi Nuclear Response Team (GE Power \& Water)
Subject: Mark 1 Containment Issues (Q372)
Mr. Philpott,

It has been several days since you have issued your request. I am sending you a white paper that we prepared hoping it will satisfy your curiosity. Please reply with specifics if you desire more information.

Thanks,
Jeff

Jeff A. Hen

Technical Project Manager
GE Hitachi Nuclear Energy
T 9108194729
M (b) (6)
F 9103624729
\square
3901 Castle Hayne Road, M/C F-12
P.O. Box 780

Wilmington, NC 28402, USA

Mark I Containment Report

March 19, 2011

Purpose

This paper describes the Mark I containment design in use in the 23 U.S. reactors and its ability to fulfill its safety function in containing fission product releases under design basis conditions. It also offers, as an initial matter, some observations about the performance of the Mark I containment under many beyond-design-basis events experienced at Fukushima Daiichi in March 2011.

Performance of Mark I Containments at Fukushima Dailchi

Fukushima Daiichi Units 1-4 are boiling water reactors ("BWRs") equipped with Mark I containments. Units 1-3 were operating; Unit 4 was in shutdown with fuel offloaded when the earthquake and tsunami occurred, which resulted in the loss all offsite and on-site power to all four units.

Early reports regarding Units 1-3 stated plant operators used safety relief valves to relieve pressure in the reactor pressure vessel. In addition, when the fuel rods became uncovered, hydrogen formed in the core (due to zirconium/water reaction) and was also transported into the wetwell when the reactor vessel safety relief valves opened. The combination of steam and hydrogen flowing into the wetwell increased the wetwell temperature and pressure. Since there was no on-site or off-site power available, there was no means available to cool the wetwell water. Over time, the pressure in the primary containment rose over the design pressure. To avoid containment breach, venting became necessary. Upon venting, it is believed that vented hydrogen gas caused explosions at these units.

The following should be noted:

- Coincident long-term loss of both on-site and off-site power for an extended period of time is a beyond-design-basis event for the primary containment on any operating nuclear power plant.
- The Mark I containment vessels appeared to have held pressure to well above the design pressure.
- The response of the reactor pressure vessel and reactor in general agree with severe accident management studies performed in the 1980s and early 1990s.

BACKGROUND

Description of the Mark I Containment System

Figure 1 shows a cutaway view of a typical Mark I Containment system. The major components shown in the figure include:

- The drywell, which surrounds the reactor pressure vessel (RPV) and recirculation loops. The drywell is light-bulb shaped steel-lined pressure vessel backed over most of its surface with reinforced concrete.
- A wetwell is situated beneath the drywell and connected to the drywell by a system of vent pipes. The wetwell is a toroidal-shaped (donut shaped) pressure vessel which is filled to about half of its height with water. The wetwell is often referred to as a torus (donut shape) or as a suppression pool (due to its function) and is made from either steel or concrete.
- An interconnecting vent network exists between the drywell and the wetwell. The vents are open on one end to the drywell and on the other end open into a header in the wetwell that has additional downcomer vents below the water level in the suppression pool.

The drywell, wetwell and vent system form the primary containment around the reactor pressure vessel and recirculation loops. The function of the containment system is to contain the energy released during a postulated design-basis loss-of-coolant accident of any size reactor coolant pipe and to protect the reactor from external events. The design-basis break is the largest reactor recirculation system pipe. The primary containment system is designed to withstand the combined seismic, pressure and temperature loads for this event and maintain integrity. The containment system accommodates this accident without exceeding the design leakage rate; in this way, the containment system limits the release of fission products during that event to offsite dose to levels significantly below the guideline values specified by regulation (10 CFR 100).

The primary containment is one of the three main barriers limiting release of fission products from the BWR nuclear fuel into the environment. Other barriers include the fuel rod cladding and the reactor pressure vessel together with its piping, which form the reactor coolant pressure boundary and the primary containment. In addition to the three fission product barriers, the secondary containment surrounds the primary containment and houses emergency core cooling systems and the spent fuel pool.

Note: Secondary Containment may vary from site to site

Figure 1 - Typical Mark I Containment System

Containment Operation during a Loss of Coolant Accident

During normal operation, the drywell atmosphere and the wetwell atmosphere is inerted (filled with nitrogen), and the wetwell water is at ambient temperature. In the event of a pipe break in the reactor coolant system inside the drywell, pressurized coolant escaping from inside the reactor coolant system will flash to steam and begin to pressurize and heat the drywell atmosphere. The reactor is automatically shut down. As the pressure rises in the drywell, the vent system will also pressurize, eventually forcing the steam into the wetwell below the water level. The steam contacting the water condenses in the wetwell. This reduces (suppresses) the pressure in primary containment following the loss of coolant accident by turning steam back into water.

Steam condensing in the wetwell gradually increases the wetwell temperature and pressure. As the accident progresses, plant instrumentation will sense the change in conditions in containment and in the reactor coolant system, and emergency systems will activate to cool the shut down reactor. Systems will also be activated to cool the water in the wetwell. These active emergency systems can be powered by off-site power or by on-site emergency diesel generators in the event of a loss of off-site power. With these emergency systems available, the Mark I containment system is designed to contain reactor water (and any fission products if present) without release during a range of pipe break scenarios, up to and including a full guillotine rupture of the largest pipe connected to the reactor vessel, such that the primary containment pressure does not exceed its design value (50 to 60 PSIG at expected accident temperature). This prevents discharge of any released water (and fission products if present) during the loss of coolant accident from escaping containment into the atmosphere.

Use of a wetwell for pressure suppression in primary containment is a feature of the General Electric BWR design.

Design Basis

Appendix A to 10 CFR 50 lists current general design criteria for nuclear power plants. Four General Design Criteria-2, 16,50, and 51-are used for any reactor vendor containment design. Each of the criteria are provided below:

Criterion 2 - Design bases for protection against natural phenomena. Structures, systems and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, tsunami and seiches without loss of capability to perform their safety functions. The design bases for these structures, systems, and components shall reflect: (1) Appropriate consideration of the most severe of the natural phenomena that have been historically reported for the site and surrounding area, with sufficient margin for the limited accuracy, quantity, and period of time in which the historical data have been accumulated, (2) appropriate combinations of the effects of normal and accident conditions with the effects of the natural phenomena and (3) the importance of the safety functions to be performed.

Criterion 3 - Reactor containment and associated systems shall be provided to establish an essentially leak-tight barrier against the uncontrolled release of radioactivity to the
environment and to assure that the containment design conditions important to safety are not exceeded for as long as postulated accident conditions require.

Criterion 50 - Containment design basis. The reactor containment structure, including access openings, penetrations, and the containment heat removal system shall be designed so that the containment structure and its internal compartments can accommodate, without exceeding the design leakage rate and with sufficient margin, the calculated pressure and temperature conditions resulting from any loss-of-coolant accident. This margin shall reflect consideration of (1) the effects of potential energy sources which have not been included in the determination of the peak conditions, such as energy in steam generators and as required by $\S 50.44$ energy from metal-water and other chemical reactions that may result from degradation but not total failure of emergency core cooling functioning, (2) the limited experience and experimental data available for defining accident phenomena and containment responses, and (3) the conservatism of the calculational model and input parameters.

Criterion 51 - Fracture prevention of containment pressure boundary. The reactor containment boundary shall be designed with sufficient margin to assure that under operating, maintenance, testing, and postulated accident conditions (1) its ferritic materials behave in a nonbrittle manner and (2) the probability of rapidly propagating fracture is minimized. The design shall reflect consideration of service temperatures and other conditions of the containment boundary material during operation, maintenance, testing, and postulated accident conditions, and the uncertainties in determining (1) material properties, (2) residual, steady state, and transient stresses, and (3) size of flaws.

The Mark I containment system has undergone extensive testing and analysis and in some cases has been modified to ensure that these criterion are satisfied, as described in the following sections.

Original Design of the Mark I Containment

The original design of the Mark I containment system considered postulated accident loads associated with containment design. These included pressure and temperature loads associated with a loss-of-coolant accident (LOCA), seismic loads, dead loads, jet-impingement loads, and hydrostatic loads due to water in the suppression chamber.

The original design loads for the containment were based on large-scale tests performed by GE and other institutions. The purpose of these initial tests, performed from 1958 through 1962, was to demonstrate the viability of the pressure-suppression concept for reactor containment design. The tests were designed to simulate LOCAs with breaks in piping sized up to approximately twice the cross-sectional break area of the design-basis LOCA.

The tests were instrumented to obtain quantitative information associated with containment design pressures during these events. The data from these tests were the bases for the design and the initial NRC approval of the Mark I containment system.

Evolution of the Design

After the establishment of the original design criteria, additional loading conditions were identified which arise in the functioning of the pressure-suppression concept used in the Mark I containment system design. These conditions were noted in the course of performing large-scale testing of an advanced design pressure-suppression containment (Mark III). Specifically, during the large-scale testing of the Mark III containment system design in the period 1972 through 1974, new suppression pool hydrodynamic loads were identified for the postulated LOCAs. GE tested the Mark III containment concept in its Pressure Suppression Test Facility (PSTF). These tests were initiated for the Mark III concept because of configuration differences between the previous containment concept and the Mark III design. More sophisticated instrumentation was available for the Mark III tests, as were computerized methods for data analysis. It was from the PSTF testing that the short-term dynamic effects of drywell air being forced into the pool in the initial stage of the postulated LOCA were first identified. This air injection into the suppression pool water results in a pool swell event of short duration. In this event, a slug of water rises and impacts the underside of structural components within the suppression chamber.

In addition to the information obtained from the PSTF data, other LOCA-related dynamic load information were obtained from foreign testing programs for similar pressure-suppression containments. In these foreign tests, oscillatory condensation loads which occur during the later stages of a postulated LOCA were identified.

Also, experience at operating plants indicated that Safety Relief Valve (SRV) discharges to the suppression pool would cause oscillatory hydrodynamic loads within the suppression chamber. Both the LOCA and SRV discharge are characterized by an initial short period injection of air into the suppression pool, followed by a longer period of steam discharge into the suppression pool.

Further, during in-plant testing of Mark I containments, new suppression pool hydrodynamic loads which had not explicitly been included in the original Mark I containment design basis were identified. These additional loads result from dynamic effects of drywell air and steam being rapidly forced into the suppression pool (torus) during a postulated LOCA and from suppression pool response to safety relief valve (SRV) operation generally associated with plant transient conditions.

These hydrodynamic loads had not been considered in the original design of the Mark I containment, the NRC required that a detailed reevaluation of the Mark I containment system be made.

In February and April 1975, the NRC transmitted letters to all U.S. utilities owning BWR facilities with the Mark I containment system design, requesting that the owners quantify the hydrodynamic loads and assess the effect of these loads on the containment structure. The February 1975 letters reflected NRC concerns about the dynamic loads from SRV discharges, while the April 1975 letters indicated the need to evaluate the containment response to the newly identified dynamic loads associated with a postulated design basis LOCA.

As a result of these letters from the NRC, and recognizing that the additional evaluation effort would be very similar for all Mark I BWR plants, the affected utilities formed a Mark I Owners Group, and GE was designated as the Group's lead technical organization. The objectives of the group were to determine the magnitude and significance of these dynamic loads as quickly as possible and to identify courses of action needed to resolve any outstanding safety concerns. The Mark I Owners Group divided this task into two programs: A Short-Term Program and a LongTerm Program.

The objectives of the Short-Term Program (STP) were to verify that each Mark I containment system original configuration would maintain its integrity and functional capability when subjected to the most probable loads induced by a postulated design basis LOCA, and to verify that the licensed Mark I BWR facilities could continue to operate safely without endangering the health and safety of the public while a methodical, comprehensive Long-Term Program (LTP) was being conducted.

The STP structural acceptance criteria used to evaluate the design of the torus and related structures were based on providing adequate margins of safety; i.e., a safety-to-failure factor of 2 , for continued operation of the plant's original configuration before the more detailed results of the LTP were available.

The NRC concluded that a sufficient margin of safety had been demonstrated in the STP to ensure the functional performance of the containment system and, therefore, any undue risk to the health and safety of the public was precluded. These conclusions were documented in the "Mark I Containment Short-Term Program Safety Evaluation Report," NUREG-0408, dated December 1977. The NRC granted the operating Mark I facilities an exemption relating to the structural factor of safety requirements of 10 CFR 50.55 (a) for an interim period while the more comprehensive LTP was being conducted.

The objectives of the LTP were to establish conservative design basis loads that are appropriate for the anticipated life of each Mark I BWR facility, and to restore the originally intended design safety margins for each Mark I containment system. The plans for the LTP and the progress and results of the program were reviewed with the NRC throughout the performance of the program.

The LTP consisted of:

- The definition of loads for suppression pool hydrodynamic events
- The definition of structural assessment techniques
- The performance of a plant-unique analysis (PUA) for each Mark I facility in the U.S.

The generic aspects of the Mark I Owners Group effort were completed with the submittal of the "Mark I Containment Program Load Definition Report" (LDR) and the "Mark I Containment Program Structural Acceptance Criteria, Plant Unique Analysis Application Guide" (PUAAG). The NRC concluded that load definitions and structural acceptance criteria documented in these two reports were acceptable for use in the plant-unique analysis of each plant. The NRC conclusions and comments were presented in the "Mark I Containment Long-Term Program

Safety Evaluation Report, NUREG-0661," dated July 1980 and Supplement Number 1 to NUREG-0661.

GE provided reports to each Mark I BWR facility with plant unique LOCA hydrodynamic loads. GE also prepared and provided a supplementary generic load definition report and supporting application guides which provided the load definition procedures for the postulated LOCA and SRV actuation events for use in the structural re-evaluation of the pressure suppression chamber, vent system, SRV discharge piping, and other Mark I containment components.

The NRC reviewed the generic criteria and analysis techniques developed for the LTP for reassessment of the Mark I containment. The NRC provided an acceptance criteria for application of the LTP loads assessment process in US NRC NUREG-0661, "Safety Evaluation Report, Mark I Containment Long-Term Program," July 1980 and NUREG-0661, Supplement 1, issued August 1982 (Refer to Attachment 4 for additional information regarding NUREG-0661)

Each BWR Mark I plant performed a plant-unique re-assessment of the Mark I containment, applying the load definition process developed by the LTP and implementing the NRC acceptance criteria of NUREG-0661. The objective of this reassessment was to either demonstrate that the existing plant design has the required safety margin or to identify any additional plant modifications that were necessary to restore the intended margins of safety in the containment design. The reports included, as appropriate, documentation of evaluation performed for modifications to the original design (the plant-unique assessments led to structural modifications to the torus and vent system at most US BWR's with Mark I containments to ensure compliance with the applicable criteria). The plant-unique analyses documented the efforts to address each of the applicable NUREG-0661 requirements and demonstrated with the NUREG-0661 acceptance criteria that the design of the containment is adequate and that the original design safety margins are either confirmed with the original design or restored with the modifications. Each Mark I BWR facility submitted its plant-unique analysis report to the NRC for approval, since each plant has an individual license with the NRC.

Containment Operation during a Station Blackout

In the late 1980s and early 1990s, BWR operators made procedure changes and modifications to cope with events which involved the loss of the normal offsite power and normally available emergency diesel generators as discussed in NRC Regulatory Guide 1.155 (Station Blackout).

To support safe operation in a variety of circumstances, the plants have been designed and have developed procedures to address a wide range of potential events. The Emergency Operating Procedures provide instructions for maintaining adequate core cooling and protection of the reactor vessel and containment under a variety of prescribed emergency conditions. If adequate core cooling cannot be maintained, radiological emergency response procedures provide instructions for plant staff to take actions to mitigate the consequences of an event that could lead to radioactive material release to the public and provides for making recommendations to state and local agencies to take action to protect the health of the public such as evacuation or sheltering. The industry has also implemented Severe Accident Management Guidelines (SAMG) to diagnose and mitigate severe accidents. These operating guidelines include steps for
dealing with challenges to containment integrity and reactor coolant loss beyond the original plant design basis. This includes methodology to use auxiliary equipment that is not driven by normal plant power sources to provide makeup water to the reactor vessel/containment. These guidelines interface with Emergency Operating Procedures to mitigate a loss of large areas of the plant and with state and local radiological emergency response procedures.

As a result of the September 11, 2001 terrorist attacks, additional actions and equipment were put in place at certain U.S. plants to allow water makeup to the reactor and the fuel pools should significant damage occur to the reactor buildings. These changes include pre-staged diesel-driven pumps, piping, and procedures that would support water makeup from various water supplies without the need for electrical power.

Also, as a result of the Industry Degraded Core Rulemaking (IDCOR) and NRC programs for Severe Accident Closure, recommended that all Mark I U.S. nuclear power plants add a containment venting capability. This containment vent was designed as a hard pipe that would discharge from the containment in the case of a BWR from the wetwell or drywell, and discharge to an elevated release, such as the plant stack. All U.S. Mark I nuclear reactors have installed this containment venting modification.

In summary, this vent allows operators to protect the integrity of the primary containment as well as preventing a ground-level release for the severe accident scenarios beyond the design and licensing basis (Refer to Attachment 5 for additional modification information specific to BWR Mark I containment).

Conclusion

The Mark I containments in currently operating BWRs have been designed to meet the specific provisions of 10 CFR 50 Appendix A, General Design Criteria 2, 16, 50 and 51 for containment design or the applicable equivalent regulation at the time of licensing.

The GE Mark I containment systems in U.S. BWRs have undergone extensive testing and analysis and have been modified to meet NRC regulations. The Mark I pressure suppression containment is a proven technology that has been enhanced with confirmatory testing, enhanced knowledge and advanced analysis over time. It meets all regulations and has been certified by review of the NRC through a Safety Evaluation Report (SER) at each Mark I plant under comprehensive, NRC-mandated Mark I Containment Program re-analyses performed to address the evolving design loading conditions.

The Mark I containment also has many features inherent in its design that make the probability of a severe accident extremely low. They have been modified throughout their operation to provide additional features and response capabilities to further reduce this probability.

Also, to ensure containment integrity, the drywell or primary containment, as called, is tested at established intervals (every 10 to 15 years) in accordance with 10 CFR 50 Appendix J Program (Primary Reactor Containment Leakage Testing). This test is used to demonstrate containment integrity and to demonstrate it will perform its safety function by verifying that leakage through
the containment, and systems and components penetrating the primary containment, shall not exceed established limits. The containment and associated systems and components penetrating containment are designed to provide the final barrier in preventing the release of quantities of radioactive material that would have a significant radiological effect on the health of the public. This program also uses periodic surveillance testing to demonstrate the leak tightness.

Additional procedures, hardware and resources have been planned and prepared for the beyond-design-basis scenarios to assure protection of the safety and health of the public. In addition, 10 CFR 50, Appendix B, also assures that any conditions adverse to quality be identified and resolved. It requires assuring that the cause of the condition is determined and corrective actions taken to preclude repetition.

Attachments

U.S. Nuclear Plants With Mark I Containment

Reactor Name	State
Browns Ferry 1	Alabama
Browns Ferry 2	Alabama
Browns Ferry 3	Alabama
Brunswick 1	North Carolina
Brunswick 2	North Carolina
Cooper	Nebraska
Dresden 2	Illinois
Dresden 3	Illinois
Duane Arnold	lowa
Edwin I. Hatch 1	Georgia
Edwin I. Hatch 2	Georgia
Fermi 2	Michigan
Hope Creek 1	New Jersey
James A. Fitzpatrick	New York
Monticello	Minnesota
Nine Mile Point 1	New York
Oyster Creek 1	New Jersey
Peach Bottom 2	Pennsylvania
Peach Bottom 3	Pennsylvania
Pilgrim 1	Massachusetts
Quad Cities 1	Illinois
Quad Cities 2	Illinois
Vermont Yankee 1	Vermont

Analyzed Loading Conditions For Mark I Containments

Hydrodynamic Loads evaluated a spectrum of postulated pipe breaks to determine the worst loading condition for each structural element. For the long-term program, an intermediate liquid break accident (IBA) and a small steam break accident (SBA) were specified in addition to the Design Basis Accident DBA. All LOCA and seismic loads are added together as appropriate for the load combination scenario. Not all of the suppression pool hydrodynamic loads can occur at the same time. In addition, the load magnitudes and timing will vary, depending on the accident scenario under consideration. Therefore, combinations of loading conditions have been determined from typical plant primary system and containment response analyses, with considerations for automatic actuation, manual actuation, and single active failures of the various systems in each event. The typical new loads analyzed were:

Pressure and temperature time histories for the suppression chamber wetwell and drywell
Vent system pressurization and thrust loads
Net vertical pool swell loads and average submerged pressures on the suppression chamber
Pool swell impact and drag loads on the vent system
Pool swell froth impingement loads
Pool fallback loads
Vent header deflector loads
Condensation oscillation loads and chugging loads
Fluid structure interaction
Safety-relief valve discharge loads
Submerged structure drag loads
Secondary effects loads
Seismic slosh/loads, which occurs due to horizontal seismic motion on the pool
Post-pool-swell waves/loads, due to the wave action associated with continued flow through the downcomers

Asymmetric vent system flow, resulting from asymmetric flowrates due to vent blockage
Downcomer gas-clearing loads, resulting from the rapid clearing of gas from the vent system causing lateral loads as bubbles are being formed in the pool
Sonic and compression wave loads, due to the shock wave propagating from the break location

Safety-relief valve steam discharge loads

Original loads included pressure and temperature loads associated with a LOCA, seismic loads, dead weight loads, jet impingement loads, hydrostatic loads due to water in the suppression chamber, overload pressure test loads, and construction loads.

The generic aspects of the Mark I Owners Group LTP were completed with the submittal of the Mark I Containment Program Load Definition Report (LDR), and the Mark I Containment Program Structural Acceptance Guide (PUAAG), as well as supporting reports on the LTP experimental and analytical tasks. The generic analysis techniques were used to perform a plant unique analysis to confirm the adequacy of the modifications made to the containment structures and related piping. This analysis was documented in the Plant Unique Analysis Report (PUAR), which shows that the original margins of safety in the containment design have been restored.

Recommended Modifications For Mark I Containments

The Mark I containment was originally designed based on large-scale experimental tests in 1958 through 1962. More advanced large-scale tests in 1972 through 1974 and actual plant operations identified some new phenomena and issues needing resolution. The Mark I containment program began in 1975 when NRC sent letters to Mark I owners requiring Reevaluation of Containment Response to Hydrodynamic Loads. The BWR Owners Group embarked on a program to resolve the issues. The issues were highly scrutinized and reviewed for plant-specific applicability on operations and structural capability. In summary, dynamic effects of drywell air and steam being rapidly forced into the suppression pool (torus) during a postulated LOCA and from suppression pool response to SRV operation generally associated with plant transient operating conditions were addressed for:

- Loss-of-Coolant-Accident-Related Hydrodynamic Loads including Pool Swell Phenomena
- Loss-of-Coolant-Accident Steam Condensation Phenomena
- Safety-Relief Valve Discharge-Related Hydrodynamic Loads

The new experimental data and new analytical models extensively studied the issues. Immediate operability of the existing structures was demonstrated for the short-term then more robust structural improvements were implemented. Operational changes and strengthened structural supports at specific locations were implemented to meet ASME and other industry acceptance criteria. A typical list of hardware changes made:

- Torus: Additional ring girder reinforcement, Miter joint support saddles and saddle extension plates, Additional ring-girder-to-torus weld, Torus Temperature monitoring instrumentation, Torus tie-downs, Dynamic restraint snubbers
- Vent System: Downcomer/vent header stiffeners, Downcomer lateral bracing Downcomer longitudinal bracing, Vent header deflector, Vent line drain reinforcement, Torus-to-drywell vacuum breakers, and Vacuum breaker header support
- Internal Structures: Catwalk midbay supports, Catwalk lateral bracing, Catwalk supports at ring girders, Conduit rerouted
- Wetwell Piping Modifications (Internal): Spray header supports, HPCI turbine drain pot support, HPCI turbine exhaust line support, ECCS suction strainer reinforcement, LPCI full-flow test line supports, modify external supports
- Relief Valve Discharge Line Piping: Reinforced vent line penetration, Added Tquenchers, Added T-quencher supports, Added SRV line support, SRVDL vacuum breaker

- Torus Hardened Vent

- Torus Vacuum Breaker orientation changes
- SRV operating - recommendations to minimize loading, discharge piping pressure switch, instrumentation to allow SRV position monitoring

ATTACHMENT 4

Page 1 of 2

NUREG - 0661 ABSTRACT July 1980

"This Safety Evaluation Report prepared by the staff of the Office of Nuclear Reactor Regulation discusses suppression pool hydrodynamic loads in boiling water reactor (BWR) facilities with the Mark I pressure-suppression containment design. The report finishes the NRC's Generic Technical Activity A-7 (Mark I Containment Long-Term Program), which has been designated an "Unresolved Safety Issue." The report describes the generic techniques f or the definition of suppression pool hydrodynamic loads in a Mark I system and the related structural acceptance criteria.

On the basis of a review of the experimental and analytical programs conducted by the Mark I Owners Group, the staff has concluded that, with one exception, the proposed suppression pool hydrodynamic load definition procedures (as modified by the staff ' s requirements in Appendix A of this report) will provide conservative estimates of these loading conditions. The exception is the lack of an acceptable specification for the downcomer "condensation oscillation" loads. In addition, requirements for confirmatory analyses and testing have been identified. The resolution of these issues will be described in a supplement to this report.

The staff also has concluded that the proposed structural acceptance criteria are consistent with the requirements of the applicable codes and standards. In conjunction with the general structural analysis techniques, these criteria will provide an acceptable basis for establishing the margins o f safety in the Mark I containment design."

NUREG-0661 SUPPLEMENT 1 ABSTRACT August 1982

"When the NRC staff published "Safety Evaluation Report, Mark I Containment Long-Term Program" (NUREG-0661) in July 1980 four areas were identified where the technical issues had not been fully resolved. These were:

1. Specification for condensation oscillation loads acting on the down comers
2. Adequacy of the data base for specifying torus wall pressures during condensation oscillations,
3. Possibility of asymmetric torus loading during condensation oscillations, and
4. Effect of fluid compressibility in the vent system on pool swell loads.

The first item, downcomer condensation oscillation loads, lacked an acceptable load definition. The remaining three items had acceptable specifications; however, the NRC requested additional confirmatory information to justify the adequacy of the load specifications.

This supplement addresses the resolution of the four issues listed above. In response to NRC concerns expressed in NUREG-0661, the Mark I Owners Group conducted additional experimental and analytical studies. The experimental studies consisted basically of two additional condensation oscillation tests in the Full-Test Facility (Norco, Califomia). The staff has reviewed these efforts and has concluded that all technical issues connected with the generic Mark I Long-Term Program have been resolved."

Summary:

NUREG 661 Contains a safety evaluation of loading determination methods and acceptance criteria for the evaluations that resulted in the modifications made as part of the Long Term Program.

NUREG 661 Supplement 1 contains a safety evaluation of the four unresolved issues described in NUREG 0661.

Summary of Critical Modifications

The following modifications are the more significant examples of improvements to the Mark I containment design as enhancements to design margins or increased capability to address "beyond design basis conditions."

Hardened Vent

In the 1980s, the NRC staff reviewed the potential for accidents more severe than those the plants were licensed and designed to mitigate. In order to enhance the ability of all containments to prevent and mitigate the consequences of severe accidents beyond the design basis accidents, the NRC requested that all plants install a hardened vent. In the event of a core damage accident, the hardened vent would allow reduction in containment post-accident pressure. Hardened meant that the vent would transport hydrogen, steam and other accident products and release them outside the reactor building. This would preclude damage to the reactor building and equipment from steam and the possible hydrogen explosions.

In response to the GL 89-16 and the results of their Individual Plant Examinations (IPEs), all of the nuclear power plants installed a hardened vent. This hardened vent capability would allow BWR plant operators to vent post-accident airborne materials by passing them through the water in the wetwell, thereby removing a large amount of the radioactive material contained in the vent stream before venting. This added capability increases the ability of the Mark I containment to mitigate the consequences of design-basis and beyond-design-basis accidents.

SRV Modifications

Mark I containments were designed for hydrostatic loads as part of the original design basis of the plants. During subsequent testing of the Mark III containment design, additional hydrodynamic loads were identified. The industry established a Mark I Owners' Group and developed test regimes to define the hydrodynamic loads and establish design criteria for evaluation of the Mark I containment.

The hydrodynamic loads are defined in Plant Unique Load Definition Reports and each Mark I containment was evaluated against its own report. As a result of this effort, Mark I plants modified their piping and/or pipe supports inside containment to reduce the loads an SRV discharge would impose on the torus and to withstand post-LOCA loads on SRV discharge piping. These modifications included pipe supports, discharge line vacuum breakers, "rams head" discharge pipe fittings and T -quenchers. The modifications provide additional margin to ensure that SRV actuation will not damage the wetwell pressure boundary, any of the wetwell internal components or piping, and also ensure that the SRV piping will remain functional during postulated transients and accidents.

ATTACHMENT 5

Torus Attached Piping

In addition to the SRV piping modifications discussed above, the plant-unique analysis identified new loads on torus attached piping (TAP). In order to ensure the structural integrity of the torus for all postulated loads, all TAP was re-evaluated and either removed or modified as necessary. The piping was evaluated, and upgrades were made to torus attachments and pipe supports to ensure that they would withstand all postulated loads with a significant factor of safety between the design load and the actual load. These modifications ensure that the Mark I containment will continue to perform its safety function during plant transients and postulated accidents as well as improve the capability to mitigate beyond-design-basis events.

ECCS Suction Strainers

NRC Bulletin 96-03 identified NRC concerns with the potential for debris plugging of Emergency Core Cooling System (ECCS) suction strainers inside the containment wetwell. These concerns resulted from an event in Sweden and two events in the U. S. that indicated the possibility that fibrous insulation material dislodged by a design-basis accident and particulate material suspended in the wetwell water could be entrained on strainer surfaces causing loss of the ECCS pumps. These pumps are used for normal reactor shutdown and to inject cooling water into the reactor following an accident that depressurizes it.

The plant owners employed the BWR Owners' Group (BWROG) and the Electric Power Research Institute (EPRI) to conduct testing to determine criteria for designing and, particularly, sizing the strainers to ensure ECCS pumps capability if needed. Each plant owner then designed and installed new larger strainers. These strainers provide additional assurance that ECCS pumps will perform their intended function in the unlikely event of an accident.

Meighen, Sean

FYI, Al

Al Hochevar
Institute of Nuclear Power Operations
Cell
(b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

[^5]FUKUSHIMA DAIICHI
Status as of 6pm (JST) April 28, 2011- TC Briefing.
Information that is in italics should not be shared as it has not yet been released by TEPCO.

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- N2 purging of the Unit 1 Drywell continues. TEPCO increased injection flow to the primary containment vessel to $10 \mathrm{~m} 3 / \mathrm{hr}$ at approximately 10:00 am Wednesday morning. Reactor vessel temperature, drywell temperature and pressure were observed to decrease after the start of the injection increase. The rate of change of these parameters slowed this morning. TEPCO intends to stop the increased injection rate before drywall pressure reaches atmospheric.
- The robot is scheduled to enter the Unit 1 reactor building today to check for possible leakage following the increase in vessel injection rate.
- Transfer of highly radioactive water from Unit 2 to the Centralized Radioactive Waste Treatment Facility continues at a rate of 250 tons/day. Level in the Radioactive Waste Facility has risen 1055 mm since the start of transfer.
- Unit 2 trench level has decreased only slightly since Monday and is now 900 mm from the top of the trench. Unit 3 trench level has increased an additional 20 mm and is now 950 mm from the top.
- Unit 4 turbine building water level increased 50 mm and is at 3050 mm (1.2 m above floor level). Unit 3 turbine building water level remained steady at 3000 mm .
- Eighty five tons of water was added to the Unit 4 Spent Fuel Pool (SFP) yesterday. No addition to the Unit 4 SFP is scheduled for today. Sixty tons of water is scheduled to be added to Unit 2 SFP today.
- After reexamining the recent differences between observed water level increase and calculated water level increase following water additions to the Unit 4 SFP, TEPCO now believes the Unit 4 SFP pool may not be leaking. The condition of the Unit 4 SFP will continue to be evaluated closely by TEPCO.
- A water sample for radionuclide analysis is scheduled to be taken from the Unit 4 SFP today.
- TEPCO released their plan for radioactive water treatment today. Ultimately it will have a capacity of $1,200 \mathrm{~m} 3 /$ day. A reservoir capacity of $31,400 \mathrm{~m} 3$ will be installed by early June. Additional capacity will be added later. Currently there is an accumulation of $87,500 \mathrm{~m} 3$ of radioactive waste water at the station. Injection into the reactor pressure vessels is adding to this total daily.

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line was increased in steps up to $10 \mathrm{~m} 3 / \mathrm{hr}$ yesterday on a temporary basis. Future injection flow will be determined following analysis of data obtained during the injection flow increase. Comments on parameters:
- Reactor pressure decreased to . 415 MPa abs (60 psig).
- Feedwater nozzle temperature is considered to be suspect but did show a decrease of approximately 25 C (77F).
- Reactor vessel lower decreased approximately 12 C to 98.5 C (209 F)
- Drywell and Torus pressure decreased to .125 MPa abs (18 psia).
- Drywell and Torus dose rates are considered to be suspect.
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at approximately $7 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 2 reactor pressures remain suspect.
- Feedwater nozzle temperature was steady at 120 C (248 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure was stable near atmospheric.
- Dose rate in the U2 Drywell continues to decrease. The drywell dose rate is $2.24 \mathrm{~Sv} / \mathrm{hr}$ or $(2,240 \mathrm{Rem} / \mathrm{hr})$. The Torus dose rate reading is considered suspect.
- In Unit 3, of non-borated fresh water using the low pressure coolant injection continues at approximately $6.8 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 3 reactor pressures are considered suspect.
- Feedwater nozzle temperature is considered to be suspect.
- Reactor vessel lower temperature was steady at 110 C (230 F)
- Drywell pressure was steady at . 102 MPa abs (15 psi). Torus pressure is also steady at .178 MPa abs (26 psi).
- Dose rate in the U3 Drywell continues to decrease and is at 14.2 Sv/hr ($1,420 \mathrm{Rem} / \mathrm{hr}$). Dose rate in the Torus is considered to be suspect.

Dose and Dose Rates

- As reported yesterday, a female employee received a cumulative radiation dose of approximately 18 mSv during the first quarter of 2011. This exceeds the maximum allowable dose for a female of $5 \mathrm{mSv} / 3$ months. Upon examination it was determined that the woman received 13.6 mSv internal exposure. The woman was working in a building that was contaminated by the hydrogen explosion on March $12^{\text {th }}$ and was not wearing a protective mask. Two other females working in the same building may have also exceeded their exposure limits.
- Overall site dose rates are stabilizing or decreasing slightly. For example:
$>$ The last reading reported at the main gate was $48 \mu \mathrm{~Sv} / \mathrm{hr}$ (4.8 $\mathrm{mrem} / \mathrm{hour}$) and $22 \mu \mathrm{~Sv} / \mathrm{hr}$ ($2.2 \mathrm{mrem} / \mathrm{hour}$) at the west gate.
$>$ The side of the administration building facing the units decreased slightly to $430 \mu \mathrm{~Sv} / \mathrm{hr}$ or $43 \mathrm{mrem} / \mathrm{hr}$.

Fukushima－Daiichi Current Status and Planned Hork
28 April at 06：00 \＆09：00（Rev－102）

basionty Comitol thit Pastor）					```[IIIT fol asub)[in *f0 stom\| in SP Guta tumey SP & iascor crity``` ```mork drimacuac!```	scist of the nelt apustian caria caeplatios of slax：cy） Ithintainitacend stinatom	［lose una molys it math］ IFF then on ICold stadom lat is：29 on：0 Hacll	
		 contizusety） recilimisis）	ax（at osimas atil）： 5月 ce：masip！ （8）It	```(4) ha tition andyil:``` ```5int Sic: (i) a \(2 \times 10^{5} 58 / 2\) (nuchiny trend coat incosily```				
	Hext lotis Plex （170） phenurters （ktiritim）	（Leof uns warge） Dio asil botic maid to fresh cootean bilert axierits cold stal dem afif tistoing man） COBnatay	 （at $10: 10 \pm 28$ kuri betert cilning cold sunt O yuation SC	furs tro mesmor Life ed turic sid to fresh coolmu beforn seiving cold sent then Offer nestorica pease？ Drentict 56	．			
Culat Suply a ing 1 an lixal $\mathrm{Ex} \times \mathrm{al}$ （fuy） colitas）	Gritul stater	 axp nas cueplecel Grion Rour：na sith bs inerian －fuer batre ins sichtis to offaite $x+1$ ． Gat 18：安 on sispill frat It flasila 3 4xal Core coultry walt mopit paspars inatalid．（on 6 taril） Thethe lime for co：e colive inter is mestan ves iastallot for 4 kapil） injertiond 	TFied matr isjerion fratif liso is （robel leat） ifstrancuita i！cion of at （wil） －Paxel matce ras nitrhed to off－ silt nuet？ （a）（8：2 on 5 （ Hlasull aion of the dipriain wep for些 （ 8 Stirch） of ［tratled（on 6 Apil） Rextap lipe for care coliog noter firgetico us imsalle for H tpril） itigution mas and to hide mizad（on 15 dpril）	DFreh ester injectich froe fl lina to loo （cogleten） －Pour manterns sitched to off－sito paver． （at It：s mat maril） 2\％ （ z Mrat ） instillis（ain 6 srit） EPaction lise for rore conlifa mier injection ms installid（ma 14 taril） Wrabisy．Di6 or cast ctoling nior injelion （ 0018 h p il 1 ）		庣 （SXC Exp：Coolity moth nithor rathentor	 triped（ 83 lquil 18：07－ 26 dpil III： 1	
		（6．41） ThF－1650 $=$（Fual teive Grife 1） （milamaty） Ford rator amila：illit fotching read soblimuas if） 	｜rot！ （cril） pextimously） contiassaly） 	（an（i） exilatis） ratimas｜y foed utst tread contimicsly du is naquelod 1shication probld Botlon of M！：COC		4ill （cosko （반： 1 O．Wi Pr mid 1\％	9！ Tartare Mai） asis Itcolui Taquatre fot in onats 3， r 1 i ） H： C ．	
	Vint tivis Plated Intivities of conling Eater Supply Fortr）	CBitch the taporat melor tixm pesp to 141 \％ radiation meristreet afgind ITP is ite tubita buildity）． Quas leis fooling kejarol CSIC endiarty oparation in SX mos after ivsoring oll jite goite I matand equitrens	［avich ita ：mposy miot hirm piop Lo H1 18 Tha wil uis tuigrould dy to hiph the turtime billdial． matring offrice part a related nulimats	CSith the mor dras pup 10 \＃7ay （the urbina mildisp）． Preanla to dria the hied raliation foter O8： retorine off－sila part i roland canipasals	－			－

	ciumal 5 matas	10，（an（i． －Incernime： －Frosers： 1 is mas Is 1：30 on 12 Hurk －MY desija prspate ： 34 this tepise dis wortin persiso ： 310 the				Linntive prossure kiep bo sctis （10） 11		
	Sul in＇s Pleated （Tmo Miskarateri （mecivitions）	Ditdregh creastramsily lirsi －Fill fiv orimatiatim lim rith mitrute －Reinforcod mailoritis of FV mamair －Cretiaso io sectry isatiation lifa aftom matiu offollo pant？ Dhestarity pr spial faxtion difer instatima of imitesas） Qularation tal ranith at	Sme 5 mili 1	500 4 xil 1				
fran：flef （ay）（STP） 4xan litat pramal IA：St Spuly］	Clami Suate	STp raier Iom！ mpact sund Whimet cat hat loirl （Frasi him） （allisd in Slatron） －31 hatd 13：06－13：5\％ － 2 datil $12: 1815: 19$ The nichaze of cocirte mapin metifo fot ：intltr som parg vas capleinit tan 9 ！pril） Latt！ （oo 33 hail）	 ETP ：capatur mistita fet lise ye nepany lito －2 arril 15：5－174 Fimal of ta suistitunimet in Pr liso Eat in intal tit Irity． 	asp niter leme －9PP Imparam lal of pan spopis） 5 wasmol shate hall wasictomat Diser） － 10 hpril litis－1s：15 limes heeri） Hetric mplemes 3 lon 11 4pril） － 18 April 14：18－18：02（3010） －26 ipril 12：0－12：01 lutect of nier Imal acol turas 解 lit 	 Oiks （2：11：10 m？？trich and le：m） Dlateing rid to findumt －5nail 17：3t10：2 － 7 ayil 18：3019：0 －94；il $11: 07$－19：2 pikti： 年il） $3 \operatorname{lm} \operatorname{ll}$ titili ？ 4us is bellored is bo ardaraped rap atc．） tapathor． dypilf	1tarmatay smurima Ilbat： rmmal －thas Iycoral in Sit coolirg mato a！鰧 Ifall ditas une al actured） dixp wite 1m： I（ i il） nool of 1 目 Inill 	Hametan mutine Wiva inemal －保 －Han trand in Sic colin and of （18） 410 Wherater chialamin is inast rith tos of fid 	 Fralisy fextia wisond fin colous Intm atpily is ite timer Stp by lit spitat DRCO ）sured at $18: 0^{\circ}$ M 2 ith Herb
		Crepair of he Eleman II	```गінн:``` ```(11) 1 ㅂ (1)```		 Amil shex：win			

Hitisy Yoluse 4 Pres andy	Curma flatis	```distritation ut mext of Todatis OC (he \(18: 16\) on 30 Marcib)``` ```on 17 Wurb``` ```cat 24 bich``` ```Wistraplike corsite pour``` ```insullas``` ```ben asailetel (os 19 bail)``` ```insul\|hd (bas ingil)```	```Disin PicX mantred to loal disurikuim ctisit if lackal EX``` ```Minalation is astard io ajo control reat``` ```Sisealibx aryilu paw``` ```ns intalled frabulumen line - ctana litise tan bee miletel lan 19 april) lie lisa to thit chath bes ass buthled```		wasnistom ilst in 10:35 on 2nad herth frumpleat [28 bril 10:2\}-1::37 on 23 Hent on 2 H Hatch pas (atisalim Las bexpiamilalde ton ig ariil)	utilising tos W0\% Iracalation ling (ratertiol lim 14.21) 51 en tramilide and meractiod to the mier supply lita on 2 itu theth Tharreary athisistation wildios ${ }^{105}$ Drymid on 2th thach Nawd a1 9:10 on 24 in werch -rinerigeting cable lates worl for maticalta Fand IStimitho ar-aity popr impllat (53)	atilisim tha ardixaped pert of fex off- sis pant travission fion flandori lite (1.3) 121 cratid) of haic) no iatalled ad ont is- sarice (tyanad by PM) Tras mod lasual led chle os condetan as 8 Wurh 10nturd AStiention orrsitit pary instum (S Mrill)	
	placed work Me: Minition of Eletios Parn Suryly Ital)				 			
	carma suras	 nitus	```states``` ```n: \(16: 3\) a \(a_{i}\) it mat```	```!emany tulety 10 witer plan silater``` ```Tre``` ```to ? Ins brech``` ```(30) luart)```		peryit bi slatus IIC a clarm ib-lias been paried on 31 huth		
		-						
Xisellumus *ssyrrs 4ilut 14dess	Satumi Sutis	```Tirientam for byhtypas gralations in ity Cusider ire to injetian of in \(\mu\) Drimetins of \(8 ?\) no is in oupers - FFior tusa: 2xalan dotite of puritr: \%)``` ```Lourpexiand dat to gisch to high datem ol pritity \(0(2)\) - Injaction of tind dever of prity (Tlow inte: ation orpte of priti: 20.931 94yllatio- - Injertion of \(x^{2}\) tal tas stiphd dey us```		PY		the Lum recter buildise of 18 tatch to tolige brideres tat atas to aroid applesico соним (trad	I) wlesl3-7.6 ced met fillod of hat ofling axinl izan menict of ite retar balling on is lywh to orliers htating Its end to ansid riplosions cmasd ta perest toin indatino (s) 20 Nitis!	
		[.	stal gad bevery lifiza sathise is on anticta				-	

(b)(4)

[^6]From：
Sent：
To：

Subject：
Attachments：

Hochevar，Albert R．（INPO）［HochevarAR＠INPO．org］ Friday，April 29， 2011 10：08 PM
Huffert，Anthony；Wittick，Brian；Moore，Carl；Chuck Casto；Norwood，Donald；Gepford， Heather；Mitman，Jeffrey；Salay，Michael；Hay，Michael；Meighan，Sean；Garchow，Steve： Reynolds，Steven；CAPT Dirk L Foster；Reid Tanaka 1F Plant DATA（4／30／2011）
福島第一プラントパラメータ0430＿06時00分．pdf；作業予定•現状0430＿800Fix．pdf

All，
Plant data as of today．
Al

Al Hochevar
Institute of Nuclear Power Operations
Cell \square

Restricted Distribution：Copyright © 2011 by the Institute of Nuclear Power Operations．Not for sale or for commercial use．Reproduction of this report without the prior written consent of INPO is expressly prohibited．Unauthorized reproduction is a violation of applicable law．The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party，or make this report or its contents public，without the prior agreement of INPO．All other rights reserved．
．DISCLAIMER：
This e－mail and any of its attachments may contain proprietary INPO or WANO information that is privileged，confidential，or protected by copyright belonging to INPO or WANO．This e－mail is intended solely for the use of the individual or entity for which it is intended．If you are not the intended recipient of this e－mail，any dissemination，distribution，copying，or action taken in relation to the contents of and attachments to this e－mail is contrary to the rights of INPO or WANO and is prohibited．If you are not the intended recipient of this e－ mail，please notify the sender immediately by return e－mail and permanently delete the original and any copy or printout of this e－mail and any attachments．
Thank you．

福島第一 1～4号 作業枤况（4月30日 8：00現在）

頃	1号	2号	3号	4号
$\underset{\text { 嫄㧺 }}{ }$		［4／30予定］ 消火級よる资水注人維続		－
	 6．0n3／h（4／30 $5: 00)$ ret 1 人中 （4／29 10：08～ $\left.10: 1410-63^{3} / 4\right)$	［㣏 ${ }^{\prime \prime}$ ］ 6．9n3／h（4／30 5：00）て泩入中 	［実芢］ $6.5 n^{3} / h(4 / 305: 00)$ 万泩入中 	－
$\begin{aligned} & \text { SFP } \\ & \text { Sick } \end{aligned}$		$\begin{aligned} & {\left[\begin{array}{l} {[4 / 30 \text { 予定 }]} \\ \text { 號 } \end{array}\right.} \\ & \hline \end{aligned}$	$\begin{aligned} & {[4 / 30 \text { 㐨 }]} \\ & \text { なL } \end{aligned}$	
		［泰］ －4／2810：15～11：288PC 注水（䔧 43t）	［英㯈］ －4／26 12：00～12：02 4／26 12：：25～14：02 FPC泩 （47．5t）	［難
$\begin{gathered} \text { T/B俍 } \end{gathered}$	[4/30予定] なし	[4/30予定] なし	$\begin{aligned} & {[4 / 30 \text { 予定 }]} \\ & \text { なL } \end{aligned}$	[4/30予定] なし
	[異斯]			
	T $1 / 8$ 水位 $]$ 0와550m（4／30 7：00） （4／1711：00より変したし） 		OPF5000m（4／307：00） （4／2311：00より変したな） 	［T／B水 1 ］ 0P73100min（4）：00：00） （4／2711：00より変しなし）
$\begin{aligned} & \text { トレンチ } \\ & \text { 䊅 } \end{aligned}$			水面まて 920 man （43007：00） （4／2918：002 1010 mt	[[wizhil]
集中RW				
腓受入	［英闌4／1910：08～4／29 9：10			

 4／25 14：10電䅫切替による一時傐止。4／2519：10 N N 封入再開。

 0330 80 Fix i ．doc

福島第一 1～4号 作業状况（4月30日 8：00現在）

本活情钼瑨

4月30日 6：00現还

号擞	1号摇	2号楼	3号㮔	4号㙏	5 号楼	6号楼
原子妨注水状況	沙 $6 . \mathrm{m}^{3} / \mathrm{h}$ （4／305：00賄）					
原子枮水位						
原子部代力		A $=0.025 \mathrm{MPag}(\mathrm{A}) * 3$ B系－0．025MPag（D）※3 （4／305．00㽬）			$\begin{gathered} 0.002 \mathrm{MPag} \\ (4306: 00 \mathrm{me}) \end{gathered}$	$\begin{gathered} 0.010 \mathrm{MPag} \\ (4,306000 \mathrm{OHF}) \end{gathered}$
原子妒水温度					$\begin{gathered} 40.7 \mathrm{C} \\ (430600 \mathrm{gif}) \end{gathered}$	$\begin{gathered} 47.7 \mathrm{C} \\ (4: 30600 \mathrm{Haif}) \end{gathered}$
原子在低力窓器 まわら温度	 （4：305：00賏在）					
D／W－S／C圧力	$\begin{aligned} & \text { OW 0.120MPa abs } \\ & \text { SCC } 0.115 \mathrm{MPa} \text { abs } \\ & (4 / 305000 \mathrm{IR} \text {) } \end{aligned}$	$\begin{aligned} & \text { DW 0.075MPa abs } \\ & \text { SiC } \times 1 \\ & (4 / 30500 \text { 瞋 }) \end{aligned}$	$\begin{aligned} & \text { DiW 0.1043MPa abs } \\ & \text { SiC 0.1803MPa abs } \\ & (4: 30500 \text { Midit) } \end{aligned}$		＊2 	
$\begin{gathered} \text { D/W } \\ \text { 䨎異気温度 } \end{gathered}$						
$\begin{gathered} \text { CAMS 敌射湶 } \\ \text { 鸟 } \end{gathered}$	DIW（A）＊ （B）${ }^{1} 1$ $\operatorname{SiC}(A) 1.16 \times 10^{00}$ sith $* 3$ （B） $1.57 \times 10^{\circ}$ Svih $* 3$ (4:30500 獖开)	$\mathrm{D}^{\prime} \mathrm{W}(\mathrm{A}) 2.19 \times 10^{\prime} \mathrm{S}$ v／h （B） $2.46 \times 10^{1} 5 \mathrm{w} / \mathrm{h}$ $\operatorname{SCC}(A) 4.44 \times 10^{-1 S} \operatorname{Sv}$＇ 3 （B） 4.52×10^{1} Svih $* 3$ (4/30 5:00 瞋)	DiW（A） 1.39×10^{1} Sv／h （B） $1.05 \times 10^{1} \mathrm{~Sv} / \mathrm{h}$ $\operatorname{SiC}(A) 5.24 \times 10^{-1} 5 v i h * 3$ （B） $4.91 \times 10^{1} 5 \mathrm{~Sv} / \mathrm{h} \% 3$ $(4 / 30500 \text { 隕连) }$			
S / C 温度			$\begin{aligned} & \text { A A : 407C } \\ & \text { B }: 407 \mathrm{C} \\ & (4: 30500 \text { 賏 }) \end{aligned}$			
	0.384 MPa g 10.4855 Mababal	0．384MPa 8 0.485 MPa abs	$0.384 M P a$ g 10.485 MPa abs			
	0．427MPa clo．523 MPa absl	0．427MPa g10．528NPa abs	0．427MPa g 0.528 MPa abs			
	＊1	$\begin{gathered} 56 \mathrm{C} \\ (4 / 30500 \text { 瞋 }) \end{gathered}$	＊1	＊1	$\begin{gathered} 39.6 \mathrm{C} \\ (430600 \text { 䀞 }) \end{gathered}$	$\begin{gathered} 290 \mathrm{C} \\ (4: 30600 \text { 眧 }) \end{gathered}$
い゙に	$\begin{gathered} 2600 \mathrm{~mm} \\ (4 / 305: 00 \text { 相隹) } \end{gathered}$	$\begin{gathered} 5700 \mathrm{~mm} \\ (4 / 30500 \text { 梘估) } \end{gathered}$	＊1	5850 mm （4／305：00 ［睡）	＊2	
部原						
その他書硍	 				$\begin{aligned} & 5 u: S H C E-F \\ & 14: 2921: 16 u \end{aligned}$	

※1：\＃1䈓不艮

䫁	炀載方法	則定族	
原子如注水状況			1／1統
嫄子阿水位		本呚指交㷏	$\begin{array}{ll} A x_{n} & 1 / 1 C h \\ B ⿱ 幺 ⿲ 丶 丶 丶 木 ⿴ \end{array}$
原子妸住力	 	新定し任加賏筫	$\begin{array}{ll} \hline \text { A系 } & 1 / 2 C h \\ B ⿱ ㇒ ⿱ 幺 小 心 & 1 / 2 C h \end{array}$
原子炣水温度		－	－
原子炉压力容器 まわり温度	 		
DN／S／C代力	 		
雰囲枵温度	 		RPVペローシール $1 / 5$ Ch DWHVH戻 $1 / 5 \mathrm{Ch}$
$\begin{gathered} \text { CAMS放射線 } \\ \text { E- } \end{gathered}$	 		DN A系 $1 / 1$ Ch Ban $1 / 1$ Ch S / C $A ⿱ 幺 ⿲ 丶 丶 丶 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 口$ $1 / 1 C h$ B $1 / 1 C h$
S／C 昷度	 		
	 		1／2Ch（1号），1Ch（2～4号）
	(FPC:		1／1䙹

期	内容	4月30日6時狩点0）状況
bt楼不佷		
テ－外限双到象外	 	－

1F1水位•圧かに関するがラメータ

［ITDIIT
（

日㖿			A营原子推亚加 $\mathrm{M} \mathrm{Pa}_{\mathrm{B}}$ ）	妍（MP）	DNWIU 力 （MPa chs）	s／CEI （MPI 1 abs）	$\begin{aligned} & \text { CAMS } \\ & \text { D/W } \mathrm{H}) \\ & \left(\mathrm{Sy}_{\mathrm{y}} / \mathrm{h}\right) \end{aligned}$	CAMS D／MBI （Sv／h）	$\begin{aligned} & \hline C A \bar{M} \bar{S} \\ & S / C(A) \\ & (S y / h) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline C A M S \\ & S / C(B) \\ & (S V / h) \\ & \hline \end{aligned}$	筒考
4／28 5：00	－1650	－1650	0.445	1.185	0.150	0.150			1.11	1.74	
4／268：00					0.150	0.150			1.12	1.74	
4／26 11：00	－1650	－1650	0.445	1.180	0.150	0.150			1.12	1.74	
4／26 14：00					0.155	0.155			1.12	1.74	
4／26 17：00	－1600	-1650	0.443	1.183	0.155	0.150			1.13	1.74	
4／26 20：00	－1600	－1650	0.445	1.190	0.155	0.155			1.13	1.74	
4／28 23：00	－1600	－1650	0.443	1.203	0.155	0.155			1.13	1.73	
4／27 2：00					0.155	0.155			1.13	1.73	
4／275：00	－1650	－1600	0.450	1.205	0.155	0.155			1.14	1.73	
4／278：00	－1650	－1650	0.450	1.205	0.155	0.155			1.14	1.72	
4／2711：00	－1650	－1650	0.445	1.203	0.155	0.155			1.14	1.72	
4／27 14．00	－1650	－1650	0.440	1.198	0.145	0.145			1.15	1.71	
4／2717：00	－1650	－1650	0.435	1.188	0.140	0.140			1.15	1.71	
4／2720：00	－1650	－1650	0.423	1.175	0.135	0.135			1.16	1.10	
4／27 23：00	－1650	－1550	0.420	1.173	0.130	0.130			1.16	1.69	
4／282：00	－1650	－1600	0.415	1.170	0.125	0.125			1.16	1.68	
4／285：00	－1650	－1600	0.415	1.168	0.125	0.125			1.16	1.67	
4／288：00	－1600	－1600	0.415	1.170	0.120	0.120			1.16	1.65	
4／28 11：00	－1600	－1600	0.418	1.170	0.120	0.110			1.16	1.64	
4／28 14：00	－1600	－1600	0.413	1.163	0.120	0.110			1.17	1.62	
4／2817：00	－1600	－1600	0.410	1.168	0.115	0.110			1.17	1.00	
4／2820：00	－1600	－1600	0.410	1.165	0.115	0.110			1.17	1.58	
4／28 23：00	－1660	－1600	0.410	1.168	0.110	0.110			1.17	1.56	
4／29 200	－1600	－1850	0.413	1.170	0.110	0.110			1.17	1.53	
4／29500	－1650	－1650	0.413	1.175	0.110	0.110			$1: 17$	1.50	
4／298：00	－1650	－1650	0.408	1.180	0.105	0.105			1.17	1.48	
4／29 10：00	－1700	－1700	0.408	1.173	0.105	0.105			1.18	1.46	
4／29 11：00	－1700	－1700	0.410	1.175	0.105	0.105			1.17	1.49	
4／29 14：00	－1700	－1700	0.420	1.185	0.115	0.110			1.16	1.57	
4／29 17：00	－1650	－1650	0.423	1.188	0.120	0.110			1.16	1.59	
4／29 20：00	－1650	－1700	0.425	1.190	0.120	0.110			1.16	1.60	
4／29 23：00	－1700	－1700	0.430	1.200	0.120	0.110			1.66	1.60	
4／30 2：00	－1650	－1700	0.430	1.198	0.120	0.115			1.16	1.59	
4／30 5：00	－1650	－1700	0.435	1，205	0.120	0.115			1.16	1.57	

1F－1 温度しこ開するパラメータ（代表点）

1F2水位•矿加関するパラメータ

IF2 枋•任恥関するバラメータ

				Tintil 								
日時			A系原子施任力 (MPa)	8系原干杨互力（MPa）	D／WEカ （MPa abs）	S／C壬力 （MPa abs）	$\begin{aligned} & \text { CAMS } \\ & \text { DW }(A) \\ & (S W / h) \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & \mathrm{D} / \mathrm{WB}) \\ & (\mathrm{SV} / \mathrm{h}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & S / C(A) \\ & (S V / h) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & S / C(B) \\ & (S V / h) \\ & \hline \end{aligned}$		䓵考
4／21 12：00	－1500	－2050	－0．023	－0．025	0.085		24.8	27.9	0.534	114.0	0.05	
4／21 18：00	－1500	－2050	－0．020	－0．025	0.090		24.5	27.8	0.530	120.0	0.07	
4／220：00	－1500	－2050	－0．018	－0．023	0.085		24.4	27.7	0.526	132.0	0.07	
4／22 6：00	－1500	－2100	－0．023	－0．027	0.085		24.3	27.8	0.522	137.0	0.07	
4／22 12：00	－1500	－2050	－0．023	－0．027	0.085		24.2	27.5	0.519	136.0	0.08	
4／22 18：00	－1500	－2050	－0．027	－0．034	0.085		24.1	27.4	0.517	135.0	0.05	
4／230000	－1500	－2100	－0．023	－0．027	0.085		24.1	27.3	0.516	1320	0.08	
4／23 6：00	－1500	－2100	－0．023	－0．027	0.080		24.0	27.0	0.512	1350	0.07	
4／23 12：00	－1500	－2100	－0．023	－0．025	0.080		23.9	26.8	0.509	136.0	0.07	
4／23 18．00	－1500	－2050	－0．020	－0．023	0.080		23.8	26.7	0.506	128.0	0.10	
4／240：00	－1500	－2050	－0．020	－0．020	0.080		23.7	26.8	0.503	126.0	0.10	
4／246：00	－1500	－2050	－0．020	－0．025	0.080		23.6	26.5	0.500	110.0	0.10	
4／241200	－1500	－2050	－0．018	－0．025	0.080		23.6	26.5	0.497	115.0	0.08	
4／2418：00	－1500	－2050	－0．020	－0．025	0.080		23.5	26.4	0.486	107.0	0.07	
4／250：00	－1500	－2100	－0．020	－0．027	0.080		23.4	26.3	0.483	118.0	0.06	
4／25 6：00	－1450	－2100	－0．020	－0．027	0.080		23.3	26.2	0.490	103.0	0.06	
4／25 11：00	－1500	－2100	－0．020	－0．025	0.080		23.2	26.1	0.489	94.1	0.05	
4／25 17：00	－1500	－2100	－0．018	－0．025	0.080		23.2	26.0	0.486	98.6	0.07	
4／25 23：00	－1500	－2100	－0．020	－0．025	0080		23.1	26.0	0.483	105.0	0.05	
4／26：500	－1500	－2100	－0．020	－0．025	0.080		23.0	25.9	0.480	104.0	0.08	
4／26 14：00	－1500	－2050	－0．018	－0．025	0.080		22.9	25.8	0.477	76.4	0.07	
4／28 17：00	－1500	－2100	－0．018	－0．025	0.080		22.8	25.7	0.476	106.0	0.08	
4／2623：00	－1500	－2100	－0．020	－0．027	0.075		22.7	25.6	0.474	57.7	0.08	
4／27 5：00	－1500	－2100	－0．018	－0．023	0.080		22.7	25.6	0.472	43.3	0.08	
4／27 11：00	－1500	－2100	－0．018	－0．025	0.075		22.6	25.5	0.470	45.9	0.06	
4／2717：00	－1500	－2100	－0．020	－0．023	0.075		22.5	25.4	0.467	43.3	0.05	
4／27 23：00	－1500	－2100	－0．018	－0．020	0.075		22.5	25.3	0.465	41.9	0.08	
4／28500	－1500	－2100	－0．016	－0．020	0.075		22.4	25.2	0.463	40.8	0.08	
4／28 11：00	－1500	－2100	－0．020	－0．023	0.075		22.3	25.2	0.461	39.7	0.04	
4／28 17：00	－1500	－2100	－0．020	－0．020	0.075		22.3	25.1	0.480	38.3	0.07	
4／2823：00	－1500	－2100	－0．020	－0．023	0.075		22.2	25.0	0.456	37.4	0.08	
4／29 5：00	－1500	－2100	－0．023	－0．023	0.075		22.1	24.9	0.454	35.9	0.08	
4／29 11．00	－1500	－2100	－0．020	－0．023	0.075		22.1	24.8	0.452	37.1	0.08	
4／2917：00	－1500	－2100	－0．025	－0．025	0.075		22.0	24.8	0.449	36.1	0.07	
4／29 23：00	－1500	－2100	－0．025	－0．023	0.075		22.0	24.7	0.447	38.5	0.07	
4／30 5：00	－1500	－2100	－0．025	－0．025	0.075		21.9	24.6	0.444	45.2	0.07	

[^7]
1F－2 温度して関するパラメータ（代表点）

1F－2 温度に関するバラ

								DNH HVH	$\overline{\text { PRVAD }}$			5／GJ－A
4／200000	147.5	85.1	133.1			137.1	126.2	12	0.5	93	74.3	946
4／208．00	151	65.2	133.6			138.8	125.8	122	0.5	93	74	14.3
4／20 12：00	153.9	65.2	134.7			137.6	128.2	123	0.5	92	73.1	74
4／2018．00	155.3	65.4	135.5			138.5	126.9	124	0.5	93	73.4	13.7
4／21000	156.2	65.3	138			138.1	127.2	126	0.5	93	73.2	73.5
4／21 8.00	155.9	85.2	138.1			138.8	128，4	128	0.5	93	72.8	73.2
4／21 12：00	156.2	65.3	136			138.7	128.4	128	0.5	93	72.8	73
4／21 18：00	153.8	65.5	134.8			1372	127.6	125	0.5	94	72.5	12.9
4／20：00	151.2	65.5	133.1			135.9	128.7	124	0.5	8	72.8	12.9
4／22．6．00	14.1	65.7	131.2			134.1	125.5	122	0.5	93	72.5	12.8
$4 / 221200$	14.8	65.7	129.2			132.4	124.4	120	0.5	83	72.4	12.1
$4 / 221800$	140.7	65.7	128.8			131.7	120.4	118	0.5	83	72.3	72.6
$4 / 23000$	140.1	65.7	128.4			131	1089	117	0.5	93	72.2	72.5
$4 / 238.00$	140	85.8	128			131.6	108.5	116	0.5	83	72.1	72.3
4／2312．00	139.8	65.8	127.1			133.4	111	118	0.5	93	12	722
4／2318．00	138.7	65.8	127.2			130.1	112.5	118	0.5	93	71.9	72.1
4／240：0	138.8	85.8	128.3			129.1	118.1	115	0.5	93	11.8	22.1
4／240．00	134	65.8	125.2			128.1	1188	114	0.5	92	71.7	71.9
4／2412：00	140.2	65.8	124.2			128.5	118.9	114	0.5	98	11.5	71.8
4／2418：00	138.8	65.8	123.4			123.3	117.2	114	0.5	92	71.4	71.6
4／250：00	138.1	65.8	122.9			123.2	114.4	113	0.5	82	71.3	71.8
4／25 6：00	137.6	65.7	122.5			122	115.5	114	0.5	93	71.2	71.1
4／25 11：00	137.2	85.7	122.3			122.9	118.3	114	0.5	92	71.1	71.3
4／251700	137.4	85.7	122.5			122.2	115.6	114	0.5	82	11	71.3
4／2523．00	137.1	85.7	121.9			120.5	116.4	114	0.5	92	70.9	71.1
4／265．00	138.4	85.6	1212			120	117.5	113	0.5	92	70.0	70.9
4／28 11：00	135.4	85.7	120.5			120.1	116.2	112	0.5	82	70.7	11
4／2817：00	135.4	65.8	120.2			111.3	115	112	0.5	82	70.7	70.9
4／2629：00	135	65.7	120.4			117	115.1	112	0.5	92	70.6	70.8
4／275．00	134.9	85.7	120.4			117.8	114	112	0.5	92	70.5	70.8
4／2111：00	1344	65.7	1203			118	114.2	111	0.5	92	70.5	70.8
4／271700	134	85.8	120.1			118.5	113.4	III	0.5	92	70.5	70.7
4／2723：00	134.4	85.8	120.1			117.8	118.1	III	0.5	82	70.4	70.7
4／28500	133.8	85.7	1199			177.1	113.3	111	0.5	82	70.4	20.1
4／28 11．00	133.4	85.7	119.8			118.2	113.1	110	0.5	92	70.3	70.8
4／28 17：00	133.2	68.8	119.6			117	1163	110	0.5	92	70.3	70.5
4／2823：00	133	65.6	119.4			118.2	118.1	110	0.5	02	70	70.3
4295.00	1329	85.6	1192			118.5	115.9	110	0.5	02	69.1	10
4／2911．00	132.8	85.1	118.2			118.3	1158	110	0.5	92	69.6	89.8
4／2917．00	128	85.8	119.3			118.7	113	108	0.5	82	69.3	69.8
$4 / 2823.00$	132.9	85.1	119.3			117.5	115.8	108	0.5	92	69.1	69.3
4／305：00	129.8	85.8	118.1			118.8	115.3	109	0.5	92	68.8	69.1

1F3水位•加加関するパラメータ

1F3 水位•匡功関するパラメータ

8は相については，以

日䬼	原子樗水位 （教唃战（A） （mm）	原子原本位 （答玤唼B） （mm）	A系原子祀任力 （MPa）	$\begin{aligned} & \text { 孫 原干妒氐 } \\ & \text { 力 (MPa) } \end{aligned}$	ONEX ${ }^{(M P a}$ abs）	S / C 任力 $(\mathrm{MPa}$ abs）	CAMS D／W（A） （Sv／h）	CAMS DN（B） （Sv／h）	CAMS $S / C(A)$ （Sv／h）	CAMS $\mathrm{S} / \mathrm{C}(\mathrm{B})$ （Sy／h）		䳡为
4／20 12：00	－1850	－2250	－0．089	－0．043	0.1045	0.1748	15.5	11.8	0.585	0.541	0.065	
4／20 18：10	－1850	－2250	－0．087	－0．043	0.1047	0.1754	15.5	11.8	0.582	0.540	0.085	
4／20 23：50	－1850	－2250	0.087	－0．045	0.1054	0.1781	15.4	11.5	0.580	0.539	0.065	
4／218：00	－1850	－2250	－0．095	－0．043	0.1081	0.1788	15.4	11.5	0.579	0.538	0.065	
4／21 12：00	－1850	－2250	－0．087	－0．043	0.1050	0.1789	15.4	11.5	0.577	0.537	0.065	
4／21 18：00	－1850	－2250	－0．085	－0．043	0.1052	0.1775	15.3	11.4	0.575	0.535	0.065	
4／220：00	－1850	－2250	－0．089	－0．047	0.1055	0.1776	15.1	11.4	0.573	0.534	0.085	
4／22 8：00	－1850	－2250	－0．087	－0．0．4	0.1055	0.1780	15.2	11.4	0.570	0.532	0.070	
4／22 11：50	－1850	－2250	－0．038	－0．049	0.1048	0.1780	15.2	11.4	0.568	0.531	0.070	
4／22 17：50	－1850	－2250	－0．089	－0．048	0.1047	0.1783	15.2	11.3	0.588	0.530	0.080	
4／230．00	－1850	－2250	－0．087	－0．053	0.1047	0.1785	15.2	11.3	0.568	0.528	0.080	
4／23 8：5	－1850	－2250	0.087	－0．049	0.1045	0.1782	15.1	11.3	0.564	0.527	0.070	
4／23 11：55	－1850	－2250	－0．087	－0．049	0.1038	0.1778	15.1	11.3	0.563	0.528	0.080	
4／2318．00	－1850	－2250	－0．089	－0．051	0.1033	0.1776	15.0	11.2	0.562	0.525	0.080	
4／240：00	－1850	－2250	－0．091	－0．055	0.1027	0.1778	15.0	11.2	0.581	0.523	0.070	
4／24 5：50	－1850	－2250	0.089	－0．053	0.1031	0.1778	15.0	11.2	0.560	0.522	0.060	
4／24 12：00	－1850	－2250	－0．091	－0．051	0.1031	0.1780	14.9	11.1	0.558	0.521	0.070	
4／2418．00	－1850	－2250	－0．091	－0．051	0.1034	0.1785	14.9	11.1	0.557	0.520	0.070	
4／25000	－1850	－2250	0089	－0．055	0.1038	0.1787	14.8	11.1	0.556	0.519	0.070	
4／25 8．00	－1850	－2250	0.089	－0．053	0.1041	0.1789	14.8	11.1	0.554	0.518	0.070	
4／25 11.00	－1800	－2250	－0．081	－0．055	0.1029	0.1787	14.7	11.0	0.553	0.517	0.050	
4／25 17，00	－1850	－2250	－0．099．	－0．055	0.1034	0.1787	14.7	11.0	0.552	0.516	0.050	
4／25 23：00	－1800	－2250	－0．091	－0．055	0.1041	0.1792	14.8	11.0	0.551	0.515	0.050	
4／285：00	－1850	－2250	－0．087	－0．055	0.1043	0.1794	14.8	11.0	0.550	0.514	0.040	
4／269：00	－1850	－2250	－0．089	－0．055	0.1041	0.1794	14.5	10.9	0.549	0.513	0.040	
4／2817：00	－1850	－2250	－0．089	－0．051	0.1033	0.1780	13.9	10.9	0.517	0.511	0.050	
4／2823．00	－1850	－2250	－0．089	－0．049	0.1034	0.1792	14.2	10.9	0.530	0.510	0.050	
4／27 5：00	－1850	－2250	－0．009	－0．059	0.1031	0.1787	14.3	10.9	0.532	0.508	0.050	
4／27 11：00	－1850	－2250	－0．089	－0．053	0.1029	0.1792	14.3	10.8	0.534	0.507	0.040	
4／27 17：00	－1850	－2250	－0．089	－0．053	0.1022	0.1788	14.3	10.8	0.534	0.505	0.050	
4／2723：00	－1850	－2250	－0．007	－0．055	0.1022	0.1789	14.3	10.8	0.534	0.504	0.045	
4／285：00	－1850	－2250	－0．089	－0．055	0.1017	0.1783	14.2	10.8	0.533	0.502	0.050	
$4 / 2811.00$	－1850	－2250	－0．089	－0．055	0.1017	0.1785	14.2	10.7	0.532	0.501	0.050	
4／28：17：10	－1850	－2250	0.085	－0．055	0.1017	0.1790	14.2	10.7	0.532	0.500	0.050	
4／2823：00	－1850	－2250	－0．089	－0．060	0.1027	0.1792	18.1	10.7	0.530	0.498	0.040	
4／295．00	－1850	－2250	－0．091	－0．082	0.1038	0.1798	14.1	10.8	0.528	0.498	0.050	
4／29 11：00	－1850	－2250	－0．091	－0．080	0.1033	0.1798	17.0	10.8	0.527	0.495	0.050	
4／29 17：00	－1850	－2250	－0．039	－0．060	0.1028	0.1798	14.0	10.8	0.528	0.494	0.050	
4／29 23：00	－1850	－2250	－0．039	－0．084	0.1040	0.1804	14.0	10.5	0.525	0.482	0.050	
4／305：00	－1850	－2250	－0．091	－0．068	0.1043	0.1803	13.8	10.5	0.524	0.491	0.040	

		ReV Imivi		Pev deplatic						RPMATM		$\begin{gathered} \text { SCH-n } k \\ 3: 8 \\ \hline \end{gathered}$
4/22 1150	92.4	1488	11.18	118.1	1463	17.2	102.8	57.8	828	137.8	42.2	12.2
4/2217.50	80.6	149.9	110.1	110.3	146.2	81.7	102.3	58.5	51.3	136.8	42.1	42.1
1/23000	81.7	150	109.2	110.8	1481	11.8	102.2	58.8	58.	135.2	12.1	12.1
4/238:16	85.9	154.9	109.1	108.5	1088	65.2	101.1	58.9	58.2	134.2	42	12
4/2311.55	8.7	152.1	108.	101.3	129.5	12.4	100.6	59.2	55.7	132.8	41.8	4.9
4/2318.00	81.1	153	110.1	100.8	14.4	80.5	100.6	59.1	51.3	130.6	41.8	41.9
4/240:00	79.1	15.5	109.8	102.1	150.4	81.9	99.5	598	6.4	129.8	41.8	11.8
4/24650	81.1	180.1	109.8	10.3	151.9	19.4	99.5	593	635	128.9	4.8	11.8
4/241200	65.5	100.2	110.8	1029	14.5	14.	98.6	59.4	65.2	128.6	4.17	11.7
4/241800	11.6	1655	110.2	1028	142.1	68	98.3	59.4	65.3	126.8	4.1	4.2
4/25000	1.6	189	110.1	103.4	129.8	80.4	98.4	59.2	61.8	124.3	41.6	41.6
4/25 6.00	12.5	165.9	109.3	99.3	130	53	98.5	58.9	70.2	1225	4.8	11.6
4/25 11:00	888	164.8	110	89.5	145.8	13.2	97.8	59.6	69.5	120	41.8	1.5
1/25 17.00	$n .1$	183.8	110	98	153	63.6	97.3	59.5	61.4	117.6	4.5	4.5
4/25 2300	84.9	155.1	109.1	888	158.4	62.8	38.1	59.2	61.5	103.1	11.1	1.14
4/20500	619	151	110.4	4.1	156.8	68.7	81	59	61.3	1178	41.4	4.4
4/2880.00	82.5	14.9	110.7	97	158	13.1	90.1	59.1	69	121.5	4.4	4.4
4/78817:00	88.2	154.8	110.5	94.3	100.1	62.4	88	58.6	11.2	122.2	4.3	41.3
4/2823.00	85.0	156.8	1101	92	158.1	632	98.1	59.1	98.7	122.2	412	11.2
4/275:00	12	15.1	110.1	84.3	151	51.1	89.3	589	101.9	121.7	41.2	4.2
4/2711.00	82.3	160.4	110.3	95.3	153.7	50	97.3	59.9	103.8	123.4	4.1	4.1 .1
4/21 17.00	83.2	1492	1089	82.4	150.8	38	98.1	80.8	104	124.8	4.1	1.11
4/2723:00	8.6	137.1	110.2	80.5	152.1	56.6	97.2	80.1	1029	124.1	4.1	11.1
4/285:00	8	129.5	1098	82.1	150.9	51.8	98.2	60.1	102.1	124.7	4	4
1/28 11.00	85.1	1212	109.1	81.3	154.1	54.1	85.6	60.1	88.9	125.4	4	4
4/28 17.10	83.5	12.1	110	84.3	150.1	54.1	98	60.6	85.5	128	41	41
4/282300	82.4	120.0	112.1	92.2	14.1	80.3	98.8	80.5	88.1	129.1	40.9	40.9
4/28500	81.3	114.	1121	81.8	150.8	85.1	88.1	80.2	98.6	1283	40.9	10.9
4/29 1100	80.8	III	1129	8	151.1	81	86.7	60.3	81.2	121.4	40.9	10.8
4/2917.00	809	105.1	1131	83.1	151.2	84.3	98.3	60.4	91.8	121.8	40.8	10.8
1/292300	81.6	1082	1133	81.2	147.1	84.8	88.1	60.1	97.8	128.0	40.8	40.8
4/305.00	816	1008	113.1	84.6	150	81.6	91	80	101.2	125.3	40.1	40.7

1F5／6 原子炉水温度，使用済燃料プール温度推移

1F5／6 原子炉水温度•使用済然料プール温度

	1F5 監子姖水温椇		1F6可子姖水湯度	
4／2710．00	37.5	41.3	54.3	27.0
4／27 11：00	40.4	41.1	44.3	27.0
4／2712．00	42.8	40.8	40.9	27.5
4／2713：00	45.8	39.5	37.6	28.5
4／2714：00	48.1	39.1	35.5	29.0
4／2715：00	50.4	38.8	33.6	29.0
4／2716．00	52.7	38.3	32.1	29.5
4／27 17：00	55.0	37.8	30.9	30.0
4／2718．00	58.2	37.5	29.8	30.0
4／2719：00	59.4	37.1	29.2	30.0
4／27 20：00	53.4	37.0	28.6	30.5
4／27 21：00	50.5	37.4	32.6	30.5
4／27 22：00	48.2	37.6	34.1	30.0
4／27 23：00	47.5	37.9	35.9	29.5
4／28 0：00	45.7	38.3	37.5	29.0
4／28 1：00	43.3	38.6	39.0	29.0
4／28 2.00	41.9	39.0	40.7	28.5
4／28 3：00	41.0	39.2	42.1	28.0
4／28 4.00	40.1	39.6	43.9	27.0
4／28 5.00	39.4	39.9	45.6	27.0
4／28 6．00	38.7	40.4	47.5	27.0
4／28700	38.1	40.7	49.3	26.5
$4 / 288.00$	37.6	41.0	50.9	26.5
4／28 9．00	37.1	41.3	52.5	26.0
4／28 10，00	38.7	41.6	46.2	26.0
4／28 11.00	41.3	41.4	43.2	26.5
4／28 12：00	43.9	41.1	40.3	27.0
4／28 13．00	46.4	40.1	37.7	27.5
4／28 14．00	48.9	39.5	35.6	28.0
4／28 15：00	51.4	39.1	33.7	28.0
4／28 16：00	53.8	38.7	32.2	28.5
4／28 17：00	55.8	38.3	31.2	29.0
4／28 18：00	58.0	37.9	30.2	29.5
4／28 19．00	60.5	37.5	29.3	30.0
4／28 20：00	57.7	37.1	28.7	30.0
4／28 21：00	54.2	37.2	28.2	30.0
4／28 22：00	51.3	37.5	27.7	30.5
4／28 23：00	48.7	37.9	27.2	30.5
4／290000	46.6	38.2	26.8	31.0
4／29 1：00	45.1	38.5	26.6	31.0
4／29 2：00	43.3	38.9	26.2	32.0
4／29 3：00	42.0	39.2	26.0	32.5
4／29 4：00	41.0	39.5	25.7	33.0
4／29 5：00	40.0	39.9	25.5	33.0
4／29 6：00	39.1	40.3	25.3	33.5
4／29 7：00	38.4	40.6	25.2	34.0
4／29 8：00	37.9	41.1	25.1	34.0
4／29 9：00	37.3	41.4	25.0	34.5
4／29 10：00	38.2	41.6	24.9	35.0
4／29 11．00	41.2	41.4	24.9	35.5
4／29 12：00	43.7	41.2	24.8	36.0
4／29 13：00	47.0	40.1	24.8	36.5
4／29 14：00	48.9	39.6	24.8	36.5
4／29 15：00	51.3	39.2	24.9	37.0
4／29 16：00	53.7	38.9	24.9	37.0
4／29 17：00	55.9	38.4	24.9	37.5
4／29 18：00	58.4	38.0	24.9	38.0
4／29 19．00	60.8	37.7	28.6	37.5
4／29 20：00	62.7	37.3	30.1	37.5
4／29 21．00	64.9	37.0	31.9	35.0
4／29 22：00	57.1	36.9	33.8	35.0
4／29 23：00	53.7	37.1	36.0	34.0
4／30 0：00	50.7	37.4	37.6	33.0
4／30 1：00	48.4	37.8	39.2	32.0
4／30 2.00	46.3	38.1	40.8	31.0
4／30 3．00	44.8	38.4	42.1	30.5
4／30 4：00	42.7	38.9	44.6	30.0
4／30 5：00	42.0	39.1	45.6	29.5
4／30 6．00	40.7	39.6	47.7	29.0

$2 F-1$ 号機

$2 F-2$ 号機

$2 F-3$ 号機

$2 F-4$ 号機

時間	$\begin{array}{\|c\|} \hline \text { 际压 } \\ {[\mathrm{MPa}} \\ \text { (gage }) \\ \hline \end{array}$	标水位 ［mm］ 管止封	妒水温度 $\left.{ }^{[0}{ }^{\circ} \mathrm{C}\right]$給水スペ！温度	$\left\|\begin{array}{c} \text { D/WE凩力 } \\ {[\mathrm{kPa}(\mathrm{gage})} \end{array}\right\|$	D／W温度 ［ $\left.{ }^{\circ} \mathrm{C}\right]$	S／C圧力 ［ KPa （abs）］	S／C水位 ［mm］	S / C 温度 $\left[{ }^{\circ} \mathrm{C}\right]$
2011／4／280：00	0.05	5200	23.9	1	27.5	108	2003	23
2011／4／282：00	0.05	5200	23.9	8	27.5	108	2002	23
2011／4／28 4．00	0.05	5200	23.9	8	27.5	108	2003	23
2011／4／28 8：00	0.05	5200	23.9	8	27.5	108	2003	23
2011／4／288．00	0.05	5200	23.9	7	27.5	108	2003	23
2011／4／28 10：00	0.05	5200	23.9	7	27.5	108	2002	23
2011／4／2812：00	0.05	5200	23.9	7	27.5	108	2002	23
2011／4／2814：00	0.05	5200	23.9	7	27.5	108	2002	23
2011／4／2816：00	0.05	5200	23.9	7	21.5	108	2002	23
2011／4／2818：00	0.05	5200	24.0	7	27.5	108	2002	23
2011／4／28 20：00	0.05	5200	24.0	7	27.4	108	2002	23
2011／4／28 22：00	0.05	5200	24.0	6	27.4	108	2003	23
2011／4／290：00	0.05	5200	24.0	6	27.5	108	2003	23
2011／4／29200	0.05	5200	24.0	6	27.5	108	2004	23
2011／4／29 4．00	0.05	5200	24.0	6	27.4	108	2004	23
2011／4／298：00	0.05	5200	24.0	6	27.4	108	2004	23
2011／4／29 8：00	0.05	5200	23.9	6	27.5	108	2004	23
2011／4／29 10：00	0.05	5200	23.9	6	21.4	108	2004	23
2011／4／29 12：00	0.05	5200	23.9	6	27.4	108	2006	23
2011／4／29 14：00	0.05	5200	23.9	6	27.4	108	2005	23
2011／4／29 18：00	0.05	5200	23.9	6	27.4	108	2005	23
20174／29 18：00	0.05	5200	23.9	6	27.4	108	2004	23
2011／4／29 20：00	0.05	5200	23.9	5	27.4	108	2006	23
2011／4／292200	0.05	5200	23.9	5	27.4	107	2008	23
2011／4／300．00	0.05	5200	23.9	5	27.4	107	2004	23
2011／4／302：00	0.05	5200	23.9	5	27.4	107	2004	23
2011／4／30 4：00	0.05	5200	23.9	5	27.4	107	2004	23
2011／4／30 6：00	0.05	5200	23.8	5	27.5	107	2004	23
2011／4／30 8：00								
2011／4／30 10：00								
2011／4／30 12：00								
$2011 / 4 / 301400$								
2011／4／30 18：00								
2011／4／30 18：00								
2011／4／30 20：00								
2011／4／30 22：00								
2011／5／10：00								

時間	$\begin{array}{\|c\|} \hline \text { 标压 } \\ {[\mathrm{MPa}} \\ \text { (gage }) \end{array}$	枦水位 ［mm］ 寄止時	炣水温度 $\left.{ }^{\circ} \mathrm{C}\right]$絡水 $/$ ズl温度	$\left\|\begin{array}{c} D / W I I^{\prime} \\ {[\mathrm{kPa}(\text { gage })} \end{array}\right\|$	D／W温度 $\left[{ }^{\circ} \mathrm{C}\right]$	$\left.\left\lvert\, \begin{array}{l} \mathrm{S} / \mathrm{C} \text { 圧力 } \\ {[\mathrm{kPa}(\mathrm{abs})} \end{array}\right.\right]$	$\begin{gathered} \mathrm{S} / \mathrm{C} \text { 水位 } \\ {[\mathrm{mm}]} \end{gathered}$	S / C 温度 ［ $\left.{ }^{\circ} \mathrm{C}\right]$
2011／4／280．00	0.04	6050	24.8	4.8	28.6	104	1200	24
2011／4／282：00	0.03	6050	24.8	4.9	28.5	104	1200	24
2011／4／28 4：00	0.03	6050	24.8	5.1	28.5	104	1200	24
2011／4／28 8：00	0.03	8050	24.9	5.0	28.4	104	1200	24
2011／4／288：00	0.03	6050	24.9	5.0	28.4	104	1200	24
2011／4／28 10：00	0.03	6050	24.9	5.0	28.5	104	1200	24
2011／4／2812：00	0.04	6050	24.9	5.0	28.5	104	1200	24
2011／4／28 14：00	0.03	8050	24.9	5.0	28.4	104	1200	24
2011／4／28 16：00	0.03	6050	24.9	4.9	28.4	104	1200	24
2011／4／2818：00	0.03	6050	24.9	4.7	28.4	104	1200	24
2011／4／2820：00	0.03	6050	24.9	4.2	28.5	104	1200	24
2011／4／28 22：00	0.03	6050	24.9	4.1	28.4	104	1200	24
2011／4／290：00	0.03	6050	24.9	3.9	28.4	104	1200	24
2011／4／29 2：00	0.03	6050	24.9	3.9	28.4	104	1200	24
2011／4／29 4：00	003	6050	24.9	3.7	28.5	104	1200	24
2011／4／298．00	0.03	6050	24.9	3.5	28.4	104	1200	24
2011／4／29 8：00	0.03	6050	24.8	3.5	28.4	104	1200	24
2011／4／29 10：00	0.03	8050	24.8	3.4	28.4	104	1200	24
2011／4／2912：00	0.03	6050	24.8	3.4	28.5	104	1200	24
2011／4／29 14．00	0.03	6050	24.8	3.4	28.4	104	1200	24
2011／4／29 18：00	0.03	6050	24.8	3.4	28.4	104	1200	24
2011／4／29 18：00	0.03	6050	24.8	3.2	28.4	104	1200	24
2011／4／2920：00	0.03	6050	24.8	3.0	28.3	104	1200	24
2011／4／292200	0.03	6050	24.8	2.9.	28.3	104	1200	24
2011／4／300：00	0.03	6050	24.7	2.8	28.4	104	1200	24
2011／4／30 2：00	0.04	6050	24.7	2.8	28.3	104	1200	24
2011／4／304．00	0.03	6050	24.8	2.7	28.3	104	1200	24
2011／4／30 6：00	0.03	6050	24.7	2.7	28.4	104	1200	24
2011／4／308：00								
2011／4／30 10．00								
2011／4／30 12：00								
2011／4／30 14：00								
2011／4／30 18：00								
2011／4／30 18：00								
2011／4／3020：00								
2011／4／3022：00								
201／1／5／10：00								

時間	$\begin{array}{\|c\|} \hline \text { 妒匡 } \\ {\left[\begin{array}{c} \mathrm{MPa} \\ \text { (gage) }) \end{array}\right.} \\ \hline \end{array}$		炉水温度 $\left.{ }^{\circ}{ }^{\circ} \mathrm{C}\right]$給水 $/$ ス＇ll温度 2	$\left\|\begin{array}{c} \mathrm{D} / \mathrm{W} ⿷ 匚 土 丶 亍 十 \\ {[\mathrm{kPa}(\mathrm{gag} \mathrm{~g})} \end{array}\right\|$	D / W 温度 $\left[{ }^{\circ} \mathrm{C}\right]$	S／C任力 ［KPa（abs）］	S／C水位 ［mm］	S / C 温度 ［ $\left.{ }^{\circ} \mathrm{C}\right]$
2011／4／200：00	0.00	3576	32.9	11	33.0	110	2100	26
2011／4／282：00	0.00	3575	32.8	11	33.0	110	2100	26
2011／4／28 4，00	0.00	3570	32.7	11	33.0	110	2100	26
2011／4／286：00	0.00	3570	328	11	33.0	110	2100	26
2011／4／288：00	0.00	3568	32.8	11	32.9	110	2100	26
2011／4／29 10．00	0.00	3565	32.8	11	33.1	110	2100	26
2011／4／28 12：00	0.00	3561	327	11	32.9	110	2100	26
2011／4／2814．00	0.00	3558	32.8	11	33.0	110	2100	26
2011／4／2818：00	0.00	3555	32.5	11	33.0	110	2100	26
2011／4／2818．00	0.00	3555	32.5	11	33.1	110	2100	26
2011／4／2820．00	0.00	3549	32.4	10	32.9	110	2100	28
2011／4／282200	0.00	3549	32.3	10	32.8	110	2100	26
2011／4／29000	0.00	3545	32.4	10	32.8	110	2100	26
2011／4／292：00	0.00	3545	32.4	10	32.8	110	2100	26
2011／4／29 400	0.00	3542	32.3	10	32.8	110	2100	28
2011／4／29 6.00	0.00	3538	32.3	10	32.8	110	2100	26
2011／4／29800	0.00	3535	32.3	10	32.8	110	2100	26
2011／4／291000	0.00	3532	323	10	32.8	110	2100	26
2011／4／29 12：00	0.00	3532	32.2	10	32.8	110	2100	26
2011／4／291400	0.00	3524	32.2	10	32.8	110	2100	26
2011／4／29 18．00	0.00	3521	32.2	10	32.9	110	2100	26
2011／4／29 18：00	0.00	3520	32.1	9	32.8	110	2100	26
2011／4／2920．00	0.00	3511	32.1	$\underline{9}$	32.7	110	2100	26
2011／4／2922：00	0.00	3508	32.1	－ 9	32.6	110	2100	26
2011／4／300：00	0.00	3506	32.5	－ 9	32.6	110	2100	26
2011／4／302：00	0.00	3502	33.1	9	32.7	110	2100	28
2011／4／30 4：00	0.00	3500	33.4	－ 9	32.7	110	2100	26
2011／4／30 8：00	0.00	3497	33.5	9	32.8	110	2100	28
2011／4／30800								
2011／4／30 10．00								
2011／4／30 12：00								
2011／4／30 14：00								
2011／4／3018：00								
2011／4／30 18：00								
2011／4／3020：00								
2011／4／3022：00								
2011／5／10：00								

2F－4号㙨			※呚料厂頁部（TAF）からの水位＝炀水位 $+4200[\mathrm{~mm}]$					
時間	$\begin{gathered} \hline \text { 阿圧 } \\ {[\mathrm{MPa}} \\ (\mathrm{gage}) \end{gathered}$		炉水温度 $\left.{ }^{[0}{ }^{\circ} \mathrm{C}\right]$絡水ズ住温度	$\begin{gathered} \mathrm{D} / \mathrm{W} \text { It } \\ {[\mathrm{kPa}(\mathrm{gage})]} \end{gathered}$	D／W温度 $\left[{ }^{\circ} \mathrm{C}\right]$	S／C圧力 ［ KPa （abs）］	S / C 水位 ［mm］	$S / C^{\text {温度 }}$ $\left[{ }^{\circ} \mathrm{C}\right]$
2011／4／280：00	0.10	4589	29.4	，	32.3	106	2050	30
2011／4／282：00	0.07	4589	29.3	1	32.5	106	2050	30
2011／4／284：00	0.07	4589	29.1	1	32.1	106	2050	30
2011／4／288：00	0.07	4589	29.0	1	31.7	100	2050	30
2011／4／288：00	0.07	4589	28.8	7	32.0	106	2050	30
2011／4／28 10：00	0.07	4589	28.7	1	31.6	106	2050	30
2011／4／2812：00	0.07	4589	28.6	7	32.4	106	2050	30
2011／4／2814：00	0.07	4589	28.5	1	31.9	106	2050	29
2011／4／2816：00	0.07	4589	28.3	B	32.1	106	2050	29
2011／4／2818：00	0.07	4589	28.2	6	32.1	106	2050	29
2011／4／2820：00	0.07	4589	28.1	6	31.4	106	2000	29
2011／4／2822：00	0.07	4589	28.0	8	31.2	106	2050	29
2011／4／290．00	0.07	4589	27.9	5	31.3	106	2050	29
2011／4／29 2：00	0.07	4589	27.9	5	31.6	106	2050	29
2011／4／29 4：00	0.07	4589	27.8	5	31.7	106	2050	29
2011／4／298：00	0.07	4589	27.7	5	31.6	106	2050	29
2011／4／29800	0.07	4588	27.7	5	31.7	106	2050	28
2011／4／29 10：00	0.07	4589	27.6	5	31.8	106	2050	28
2011／4／2912：00	0.07	4589	27.5	5	31.6	106	2050	28
2011／4／29 14：00	0.07	4589	27.4	5	31.7	106	2050	28
2011／4／29 18：00	0.07	4589	27.4	5	31.8	108	2050	28
2011／4／2918：00	0.07	4589	27.3	4	31.4	106	2050	28
2011／4／29 20：00	0.07	4589	27.2	4	31.5	108	2050	28
2011／4／29 22：00	0.07	4589	27.2	4	31.5	106	2050	28
2011／4／30 0．00	0.07	4589	272	4	31.7	108	2050	28
2011／4／30 2：00	0.07	4589	27.1	4	31.5	108	2050	28
2011／4／30 4：00	0.07	4589	27.1	4	31.4	105	2050	28
2011／4／30 6：00	0.07	4589	27.0	4	31.6	106	2050	28
2011／4／308：00								
2011／4／30 10．00								
2011／4／301200								
2011／4／30 14：00								
2011／4／30 16：00								
2011／4／30 18：00								
2011／4／30 20．00								
2011／4／3022：00								
2011／5／10．00								

Fukushima Daiichi Daily Update

1. Major evolutions

Unit 1 trial flooding operation is continuing. RPV injection flow was increased from $6 \mathrm{~m} 3 / \mathrm{h}$ to $10 \mathrm{~m} 3 / \mathrm{h}$ yesterday 10:00AM. RPV water level increased by 10 cm but stabilized after 10 hours. The reason of level stabilization is not identified. RPV pressure and D/W pressure decreased gradually. Various temperature parameters decreased. Estimation of D/W water level is not available. Injection flow rate was maintained at $10 \mathrm{~m} 3 / \mathrm{h}$ and will be returned to $6 \mathrm{~m} 3 / \mathrm{h}$ when D / W pressure drops below 0.11 MPa abs to avoid negative pressure. There is no change observed in the water level in Unit 1 trench or turbine building.

Tepco corrected yeasterday's communication concerning possible leakage from Unit 4 SFP. Recent data didn't show any indication of leakage.

Tepco press released their plan of radioactive water treatment. The treatment system is composed of Cs Absorber, Decontamination System, Desalination System and reservoirs, as outlined in the "Roadmap for Restoration". Some principal parameters are;

Treatment Capacity: $\quad 1,200 \mathrm{~m} 3 /$ day
D/F: $\quad 10 \mathrm{E}+4-10 \mathrm{E}+6$ on $\mathrm{Cs}($ from $10 \mathrm{E}+5-10 \mathrm{E}+6 \mathrm{~Bq} / \mathrm{cm} 3$ to $10 \mathrm{E}+1-10 \mathrm{E}+2 \mathrm{~Bq} / \mathrm{cm} 3$)
Reservoir Capacity: $\quad 31,400 \mathrm{~m} 3$ will be installed before early June. Addition is considered, including
HLW reservoir)
Accumulated water: $\quad 87,500 \mathrm{~m} 3$ currently plus $210-500 \mathrm{~m} 3 /$ day of injected water

2.Unit status

Unit 1:
RPV injection flow was increased from $6 \mathrm{~m} 3 / \mathrm{h}$ to $10 \mathrm{~m} 3 / \mathrm{h}$. Reactor pressure and D / W pressure decreased gradually. FW nozzle temperature and RPV bottom temperature decreased.

	$4 / 285: 00$	$4 / 275: 00$	$4 / 2523: 00$
Reactor Pressure (MPa g)	$0.415 / 1.168^{*}$	$0.450 / 1.205^{*}$	$0.450 / 1.173^{*}$
FW Nozzle Temperature $\left({ }^{\circ} \mathrm{C}\right)$	107.3^{*}	132.0^{*}	133.3^{*}
	*under examination	.	
RPV Bottom Temperature $\left({ }^{\circ} \mathrm{C}\right)$	98.5	110.5	111.3
Injection flow rate $(\mathrm{m} 3 / \mathrm{h})$	10.0	5.9	6.1
D/W pressure $(\mathrm{MPa}$ abs)	0.125	0.155	0.150

No SFP spray scheduled today.
Unit 2:
FW Nozzle Temperature continues to decrease;

	$4 / 285: 00$	$4 / 275: 00$	$4 / 2523: 00$
Reactor Pressure (MPa g)	$-0.016^{* /-0.020^{*}}$	$-0.018^{* /-0.023^{*}}$	$-0.020^{*} /-0.025^{*}$
FW Nozzle Temperature (C)	119.9	120.4	121.9
RPV Bottom Temperature (C)	\rightarrow	\rightarrow	indication incorrect
Injection flow rate (m3/h)	7.0	6.9	7.0
D/W pressure (MPa abs)	0.075	0.080	0.080
SFP temperature (C)	50.0	57.0	71.0

SFP water supply is scheduled today $10: 00-11: 30,60 \mathrm{t}$.

Unit 3:

No big changes within a limited band;

	$4 / 285: 00$	$4 / 275: 00$	$4 / 2523: 00$
Reactor Pressure (MPa g)	$-0.0555^{*} /-0.089^{*}$	$-0.053^{*} /-0.089^{*}$	$-0.055^{*} /-0.091^{*}$
FW Nozzle Temperature $\left({ }^{\circ} \mathrm{C}\right)$	86.0^{*}	72.0^{*}	84.9^{*}
	${ }^{*}$ under examination		
RPV Bottom Temperature $\left({ }^{\circ} \mathrm{C}\right)$	109.6	110.7	109.8
Injection flow rate $(\mathrm{m} 3 / \mathrm{h})$	6.8	6.9	6.8
D/W pressure $(\mathrm{MPa}$ abs $)$	0.1017	0.1031	0.1041

SFP water supply is not scheduled today.

Unit 4:

SFP water spray was conducted on 4/27 12:18-15:15, 85 t . No schedule for today.

Common pool:

32C (4/27 6:50)

3. T/B and Trench drainage

Unit 1 T/B and Trench level unchanged. Unit 2 trench level decreased. Unit 3 Trench level and Unit 4 T/B level are increasing;
$\begin{array}{ll}\text { T/B (above floor level) } & \text { Trench (below grating) } \\ 3.15 \mathrm{~m} \text { (no change since 4/27 7:00) } & 1.53 \mathrm{~m} \text { (no change since 4/27 7:00) }\end{array}$
Unit $1 \quad 3.15 \mathrm{~m}$ (no change since 4/27 7:00)
Unit $2 \quad 1.20 \mathrm{~m}$ (no change since $4 / 277: 00$) $\quad 0.90 \mathrm{~m}(-\mathrm{lcm}$ since 4/277:00)* *water transfer continued.
Unit $3 \quad 1.10 \mathrm{~m}$ (no change since $4 / 277: 00$)
0.95 m (+2 cm since 4/27 7:00)

Unit $4 \quad 1.20 \mathrm{~m}(+5 \mathrm{~cm}$ since $4 / 277: 00)$

4. Site Environmental Data

Site environmental dose is gradually decreasing;

4/289:00 4/279:00 4/26 9:00
Main Gate ($\mu \mathrm{Sv} / \mathrm{h}$): $\quad 48.0$

West Gate ($\mu \mathrm{Sv} / \mathrm{h}$): $\quad 21.8$ 21.8
430
51.0
52.0
22.7

440
23.3450

Adm. Bldg. $(\mu \mathrm{Sv} / \mathrm{h}): \quad 430$

[Environmental Data]

a. Radiation Level during on Apr. 27-Apr. 28

Time and Date	Dose rate $(\mu \mathrm{Sv} / \mathrm{h})$	Location
$16: 002011 / 04 / 27$	22.7	Monitoring Car in West gate of Fukushima Daiichi NPS
$00: 002011 / 04 / 28$	22.4	Monitoring Car in West gate of Fukushima Daiichi NPS
$08: 002011 / 04 / 28$	21.9	Monitoring Car in West gate of Fukushima Daiichi NPS

Monitoring post data ($\mu \mathrm{Sv} / \mathrm{h}$)

	MP-1	M-2	MP-3	MP-4	MP-5	MP-6	MP-7	MP-8
$16: 00201104 / 27$	7	29	23	21	32	58	155	149
$00: 00201104 / 28$	7	29	23	21	31	58	154	148
$08: 00201104 / 28$	7	28	22	20	30	56	150	144

b. Iodine and Cesium are detected by the isotopic analysis;

- Site Dust Sampling Data, 4/26, at west gate

	$4 / 26$		
	Measured (Bq/cm3)	Ratio (1)/(2)	(2)limitation of breathing air for radiation worker
Volatile			
I-131	$5.0 \mathrm{E}-05$	0.05	$1 \mathrm{E}-03$
Cs-134	$1.2 \mathrm{E}-05$	0.01	$2 \mathrm{E}-03$
Cs-137	$1.4 \mathrm{E}-05$	0.00	$3 \mathrm{E}-03$
Particulate			
$\mathrm{I}-131$	$4.0 \mathrm{E}-05$	0.04	$1 \mathrm{E}-03$
Cs-134	$9.7 \mathrm{E}-06$	0.00	$2 \mathrm{E}-03$
Cs-137	$1.0 \mathrm{E}-05$	0.00	$3 \mathrm{E}-03$

- Dust Sampling Data, $4 / 25$ beyond 20 km from station

Time and Date	$\mathrm{I}-131$ $(\mathrm{~Bq} / \mathrm{m} 3)$	$\mathrm{Cs}-137$ $(\mathrm{~Bq} / \mathrm{m} 3)$	Location
$10: 01-10: 214 / 25$	ND	ND	(Point1) 60 km northwest of station
$12: 36-12: 564 / 25$	ND	ND	(Point2-1) 40 km northwest of station
$11: 32-11: 524 / 25$	ND	ND	(Point2-6) 45 km south of station

- Pond Water and Soil Sampling Data, $4 / 25$ beyond 20 km from station

Place	Distance from the plant	Sample	Nuclide	Radioactive level $(\mathrm{Bq} / \mathrm{kg})$
				4/25
Iitate	40 km northwest Point2-1	Pond water	1-131	43.0
			Cs-137	32.1
		Soil	I-131	4,390
			Cs-137	10,800
Kawamata	45 km northwest Point2-2	Soil	1-131	1,780
			Cs-137	3,720
Tamura	40 km west. Point2-3	Soil	I-131	333
			Cs-137	484
Minamisoma	25 km north Point2-4	Soil	1-131	698
			Cs-137	1,060
Ono	40km southwest Point2-5	Soil	I-131	189
			Cs-137	744
Iwaki	45 km south Point2-6	Soil	I-131	2,080
			Cs-137	1,010
Kawamata	35 km northwest Point2-7	Soil	1-131	8,690
			Cs-137	22,400
Date	50 km northwest Point2-8	Soil	1-131	1,870
			Cs-137	1,850
Nihonmatsu	45 km westnorthwest Point2-9	Soil	I-131	3,010
			Cs-137	12,400

I-131 ($\mathrm{Bq} / \mathrm{kg}$)

CS-137 (Bq/kg)

- Measured from potable water samples at several prefectures.

		$4 / 26$
Tochigi (Utsunomiya)	$\mathrm{I}-131(\mathrm{~Bq} / \mathrm{kg})$	ND
	$\mathrm{Cs}-137(\mathrm{~Bq} / \mathrm{kg})$	ND
Ibaraki (Hitachinaka)	$\mathrm{I}-131(\mathrm{~Bq} / \mathrm{kg})$	0.45
	$\mathrm{Cs}-137(\mathrm{~Bq} / \mathrm{kg})$	ND
Tokyo (Shinjuku)	$\mathrm{I}-131(\mathrm{~Bq} / \mathrm{kg})$	ND
	$\mathrm{Cs}-137(\mathrm{~Bq} / \mathrm{kg})$	ND

I-131 was detected in water reservoir in Fukushima prefecture.

	$4 / 18$	$4 / 19$	$4 / 20$	$4 / 21$	$4 / 22$	$4 / 23$	$4 / 24$	$4 / 25$	$4 / 26$	Location
$\mathrm{I}-131(\mathrm{~Bq} / \mathrm{kg})$	11.1	ND	ND	ND	ND	ND	ND	14.1	ND	Iitate(Tajiri) in Fukushima

- Nuclide analysis result for sea water samples at 330 m south from the discharge point of units 1-4

	$4 / 2614: 10$		
Nuclide	(1)Sample concentration $(\mathrm{Bq} / \mathrm{cm} 3)$	Ratio $(1) /(2)$	(2)National Safety guideline limitation $(\mathrm{Bq} / \mathrm{cm} 3)$
$\mathrm{I}-131$	$2.7 \mathrm{E}-02$	0.68	$4.0 \mathrm{E}-02$
$\mathrm{Cs}-134$	$1.3 \mathrm{E}-01$	2.2	$6.0 \mathrm{E}-02$
$\mathrm{Cs}-137$	$1.3 \mathrm{E}-01$	1.4	$9.0 \mathrm{E}-02$

Nuclide analysis result for sea water samples at 30 m north from the discharge point of units $5 \& 6$

	$4 / 2614: 30$		
Nuclide	(1)Sample concentration $(\mathrm{Bq} / \mathrm{cm} 3)$	Ratio $(1) /(2)$	(2) National Safety guideline limitation $(\mathrm{Bq} / \mathrm{cm} 3)$
$\mathrm{I}-131$	$8.6 \mathrm{E}-02$	2.2	$4.0 \mathrm{E}-02$
$\mathrm{Cs}-134$	$2.1 \mathrm{E}-01$	3.5	$6.0 \mathrm{E}-02$
$\mathrm{Cs}-137$	$2.3 \mathrm{E}-01$	2.6	$9.0 \mathrm{E}-02$

Nuclide analysis result for sea water samples at unit 2 screen

		$4 / 26$		
	Nuclide	(1)Sample concentration $(\mathrm{Bq} / \mathrm{cm} 3)$	Ratio $(1) /(2)$	(2) National Safety guideline limitation $(\mathrm{Bq} / \mathrm{cm} 3)$ Inside the silt fence
	$\mathrm{Cs}-134$	2.431	$1.3 \mathrm{E}+02$	3,300
	$\mathrm{I}-137$	$2.5 \mathrm{E}+01$	$4.0 \mathrm{E}-02$	
	$\mathrm{Cs}-134$	$1.7 \mathrm{E}+01$	280	$9.0 \mathrm{E}-02$
	$\mathrm{Cs}-137$	$1.7 \mathrm{E}+01$	1,900	$4.0 \mathrm{E}-02$

Nuclide analysis result for sea water samples at 15 km offshore points (4/26)

		$4 / 26$		
	Nuclide	(1)Sample concentration $(\mathrm{Bq} / \mathrm{cm} 3)$	Ratio $(1) /(2)$	Safety guideline limitation $(\mathrm{Bq} / \mathrm{cm} 3)$

- Measurement result for sub drain on $1^{\text {st }}$ floor of turbine building $(\mathrm{Bq} / \mathrm{cm} 3)(4 / 25)$ (No new data available)

Unit	Unit Sub drain	Unit2 Sub drain	Unit3 Sub drain	Unit4 Sub drain	Unit5 Sub drain	Unit6 Sub drain	Unit Deep well
$\mathrm{I}-131$	$1.3 \mathrm{E}+02$	$6.1 \mathrm{E}+02$	$2.0 \mathrm{E}+01$	$9.3 \mathrm{E}-02$	$1.3 \mathrm{E}-01$	$3.8 \mathrm{E}-01$	ND
$\mathrm{Cs}-134$	$5.5 \mathrm{E}+01$	$3.3 \mathrm{E}+01$	$3.9 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$3.3 \mathrm{E}-01$	ND
$\mathrm{Cs}-137$	$6.4 \mathrm{E}+01$	$3.7 \mathrm{E}+01$	$4.2 \mathrm{E}+00$	$1.3 \mathrm{E}-01$	$3.1 \mathrm{E}-01$	$3.9 \mathrm{E}-01$	ND

Wittick, Brian

From:	Hochevar, Albert R. (INPO) [HochevarAR@INPO.org] Sent:
Thursday, April 28, 2011 1:57 AM	
To:	Huffert, Anthony, Wittick, Brian; Moore, Carl; Chuck Casto; Norwood, Donald; Gepford,
	Heather; Mitman, Jeffrey; Satay, Michael; Hay, Michael; Meighen, Sean; Garchow, Steve;
Subject:	Reynolds, Steven; CAPT' Dirk L Foster; Reid Tanaka
Attachments:	FW: Press release on Unit injection
	Unit 1 injection.doc

FYI,
Al
Al Hochevar
Institute of Nuclear Power Operations
Cell \quad (b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

[^8]
TEPCO monitoring No. 1 reactor

Tokyo Electric Power Company is monitoring one of the reactors at the Fukushima Daiichi nuclear plant to determine whether more water could be pumped inside to cool the fuel rods.

Tokyo Electric plans to submerge the fuel rods at 2 reactors in water by July this year.
On Wednesday morning, the utility increased the amount of water injected into the No. 1 reactor from 6 tons per hour to 10 tons per hour on an experimental basis.

As a result, the temperature at the top of the reactor was 107.3 degrees Celsius Thursday morning, down 24.7 degrees from before the water increase. The temperature at the bottom of the reactor had dropped 12 degrees to 98.5 degrees Celsius.

Pressure inside the reactor containment vessel was also down.

Tokyo Electric says it's not yet known how deep the water inside the reactor container is, but that no leakage outside the reactor building has been confirmed.

The utility had initially planned to increase the amount of water injected to 14 tons per hour on Wednesday, but it says it will continue to monitor temperatures and pressure through Thursday evening.

Thursday, April 28, 20.11. 12:48 +0900 (JST')

From:
Sent:
To:

Subject:
Attachments:

Hochevar, Albert R. (INPO) [HochevarAR@INPO.org]
Thursday, April 28, 2011 12:47 AM
Huffert, Anthony; Wittick, Brian; Moore, Carl; Chuck Casto; Norwood, Donald; Gepford, Heather; Mitman, Jeffrey; Salay, Michael; Hay, Michael; Meighen, Sean; Garchow, Steve; Reynolds, Steven; Bradley Gawbow; CAPT Dirk L Foster; Reid Tanaka
FW: April 28 Updates
20110428.0500 Unit 1 Drywell Pressure[1].pdf; 201104280700 Water Levels[1].pdf; 20110428 Rev. 14 Evaluated Water Level in U1 PCV[1].pdf; 201104280600 Plant Parameters[1].pdf
All.

(b)(4)	(b)(4)
have relieved him by tomorrow.	
Thanks,	
Al	

Al Hochevar
Institute of Nuclear Power Operations
Cell (b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

From: Ryan, Robert D (WANO)
Sent: Wednesday, April 27, 2011 10:55 PM
To: INPO EmergencyResponseCtr (INPO); INPOERCTech; INPOERCAnalysis
Cai Gard, Lee A (INPO); Maddox, James E. (INPO); Garchow, David F.(INPO); Gambone, Robert L (INPO)
Subject: April 28 Updates
Latest information on N2 purge, drywell level, building water levels and temperature / pressure graphs
(b)(4)

Bob

DISCLAIMER

This email and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This email is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by retum e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments. Thank you.

各エレヘーションへの到達日

Stas/m	

4月28日6：00㲘连

号湛	1号第	2 拱	3号楼	4号楼	5 号粯	6号機
原子炉注水状況			㵲 $6.8 \mathrm{~m}^{3} \mathrm{~h}$ h （4／285：00 賏）			
原子䄆水位						$\begin{gathered} \text { Wivit } \\ 2138 \mathrm{~min} \\ (428600 \mathrm{llif}) \end{gathered}$
原子裙力					0.007 MPag （4286000睈）	0.013 MPag （4：28600）${ }^{(1)}$ ）
原子产水温度					$\begin{gathered} 38.7 \mathrm{C} \\ (4: 28600 \text { 䀢) } \end{gathered}$	$\begin{gathered} 47.5 \mathrm{C} \\ (4.28600 \text { 溇 }) \end{gathered}$
原子限力容器 まわら温度						
D／W•S／C比力			DW 0．1017MPa abs S／C 0.1783 MPa abs （4／285：00 䀟）		＊2 	
易㽞黄温度	RPVペローシール：100．5C HVH戻：：88．3C （ 4 ；28500 相庄）					
CAMS 故射袙 モータ	DN（A）${ }^{1}$ （B）${ }^{*} 1$ $\operatorname{SiC}(A) 1.16 \times 10^{00} \mathrm{~s} / \mathrm{h} * 3$ （B） $1.67 \times 10^{\circ} 5 v / \mathrm{h} * 3$ $(4 / 28500 \text { 䝰 })$	DIW（A） $2.24 \times 10 \mathrm{~Sv} / \mathrm{h}$ （B） $2.52 \times 10^{\prime} \mathrm{Sv} / \mathrm{h}$ S／C（A） 4.63×10^{-1} Svih $* 3$ （B） $4,08 \times 10^{\prime} \mathrm{Sv} / \mathrm{W} \times 3$ （4／285：00䚍）	D！W（A）1．42×10＇Svih （B） 1.08×10^{1} Svih $S / C(A) 5.33 \times 10^{-1}$ Svih $* 3$ （B） $5.02 \times 10^{-15} \mathrm{Svin} \times 3$ (4i28500 賠)			
S / C 温度		$\begin{array}{\|l\|} \hline \text { A }: 70.4 \mathrm{C} \\ \text { B (: 70.7C } \\ \text { (4/285:00 睦) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline A X: 41.0 \mathrm{C} \\ B(410 \mathrm{C} \\ (4 / 285: 00 \text { 舀 }) \\ \hline \end{array}$			
Diwettement	0．384MPa g 10.4851 Pa absl	0.3841 MPa g 10.485 MPa abs	0.384 MPa g 0.4855 MPa abs			
	0．427Ma g10．528MPa abs 1	0．427MPa β［0．528MPa abs	0．427Ma g 105288 NPa absi			
	＊ 1	$\begin{gathered} 5000 \mathrm{C} \\ (4 / 28500 \text { 桖 }) \end{gathered}$	＊1	＊1	$\begin{gathered} 40.4^{\circ} \mathrm{C} \\ (4 / 28600 \text { 䀘 }) \end{gathered}$	$\begin{gathered} 27.0 \mathrm{C} \\ (4: 28600 \mathrm{lific}) \end{gathered}$
FPCRTF－HVM Nis	$\begin{gathered} 3700 \mathrm{~mm} \\ (4 / 285000 \text { 凅 }) \end{gathered}$	$\begin{gathered} 5400 \mathrm{~mm} \\ (4: 285: 00 \mathrm{~N} \text { 䝰) } \end{gathered}$	＊1	$\begin{aligned} & \hline 6550 \mathrm{~mm} \\ & (4,285: 00 \end{aligned}$ 贈)	＊2	
第源						
その他情報					$\left\lvert\, \begin{aligned} & 5 u: S H C E-F \\ & \text { 14:27 19:13~ } \end{aligned}\right.$	

顛		澵定法	
原子和注水玳况			1／1纆
願隠水䛧			$\begin{array}{\|lll} \hline A ⿱ 幺 ⿲ 丶 丶 丶 ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 口 & 1 / 1 \mathrm{Ch} \\ \text { BK } & 1 / 1 \mathrm{Ch} \end{array}$
	 	 	$\begin{array}{\|ll} \hline \text { AK } & 1 / 2 C h \\ B ⿱ 幺 ⿲ 丶 丶 丶 木 ⿴ 囗 ⿱ 一 一 心 & 1 / 2 C h \end{array}$
原子彷水温度		－	－
原子神佰力堅器 まわ力㯰度	 		
DN．S／CEカ	 		
	 		RPVハロローシール 1／5Ch DWHVH戻 $1 / 5 \mathrm{Ch}$
$\begin{aligned} & \text { CAMS 感線 } \\ & \text { E- } \end{aligned}$			
S／C 温度	 		A哥1／4Ch（1号）．8Ch（2～3g） B ${ }^{3} 1 / 4 \mathrm{Ch}(15) .8 \mathrm{Ch}(2 \sim 35)$
	 	根䬽䫀	1／2Ch（19）． 1 Ch（2～4 ${ }^{\text {g }}$ ）
		桹涀祹	1／1䊝

頃目	内容	4月28日6時封点の状況
縭器不良		
$\bar{T}-$ 外貯奴对象名	 	－
	眧確据を示したもの。	

1F1水位•圧力に関するパラメータ

［TITIT

兟			A系原子冽正 $力(\mathrm{MPa})$	孫系子危压力 $\left.{ }^{(1) P Q}\right)$	D／NE 力 （MPa abs）	S／CII力 （MPa abs）	$\begin{aligned} & \text { CAMS } \\ & \text { DMMA } \\ & (S V, A) \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & \text { D/Y(B) } \\ & (S V / h) \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & s / C(A) \\ & (S V / h) \end{aligned}$	$\begin{aligned} & \text { (CAMS } \\ & \text { s/C(B) } \\ & (S \mathrm{~S} / \mathrm{H}) \end{aligned}$	者
4／24 8：00	－1700	－1700	0.435	1.143	0.155	0.155			1.01	1.74	
4／24 12：00	－1700	－1700	0.433	1.143	0.155	0.155			1.02	1.74	
4／2415：00					0.155	0.155			1.03	1.74	
4／2418：00	－1700	－1700	0.438	1.148	0.150	0.155			1.03	1.74	
4／2421：00					0.155	0.155			1.04	1.74	
4／250：00	－1700	－1700	0.440	1.160	0.155	0.155			1.04	－1．74	
4／253：00					0.155	0.155			1.05	1，75	
4／25 6：00	－1700	－1850	0.450	1.173	0.155	0.155			1.06	1.76	
4／259：00					0.155	0.155			1.07	1.76	
4／25 11：00	－1700	－1650	0.448	1.168	0.155	0.155			1.08	1.76	
4／25 15：00	－1650	－1650	0.453	1.173	0.150	0.155			1.08	1.74	
4／2517：00	－1650	－1550	0.448	1.165	0.150	0.150			1.09	1.74	
4／25 20：00					0.150	0.150			1.10	1.75	
4／25 23：00	－1650	－1650	0.450	1.173	0.150	0.150			1.10	1.75	
4／202：00					0.150	0.150			1.11	1.75	
4／265：00	－1650	－1650	0.445	1.185	0.150	0.150			1.11	1.74	
4／268：00					0.150	0.150			1.12	1.74	
4／2611：00	－1650	－1650	0.445	1.180	0.150	0.150			1.12	1.74	
4／2814：00					0.155	0.155			1.12	1.74	
4／2817：00	-1600	－1650	0.443	1.183	0.155	0.150			1.13	1.74	
4／2820：00	－1600	－1650	0.445	1.190	0.155	0.155			1.13	1.74	
4／2823：00	－1800	－1850	0.443	1.203	0.155	0.155			1.13	1.73	
4／272：00					0.155	0.155			1.13	1.73	
4／275：00	－1650	－1800	0.450	1.205	0.155	0.155			1.14	1.73	
4／278：00	－1650	－1650	0.450	1.205	0.155	0.155			1.14	1.72	
4／2711：00	－1650	－1650	0.445	1.203	0.155	0.155			1.14	1.72	
4／2714：00	－1650	－1650	0.440	1.198	0.145	0.145			1.15	1.71	
4／2717：00	－1650	－1650	0.435	1.188	0.140	0.140			1.15	1.71	
4／27 20：00	－1650	－1650	0.423	1.175	0.135	0.135			1.16	1.70	
4／2723：00	－1650	－1550	0.420	1.173	0.130	0.130			1.16	1.69	
4／282：00	－1650	－1800	0.415	1.170	0.125	0.125			1.16	1.68	
4／285：0）	－1650	－1800	0.415	1.168	0.125	0.125			1.16	1.67	

1F－1 温度に関するパラメータ（代表点）

1F2水位•仼か関するハラメータ

IF2 水•匡かに関するバラメータ
［1］IIT］

㫿			A系原子間力（ MPB ）	$\begin{aligned} & \text { 孫原子疤 } \\ & \text { F力力 }(4 \mathrm{MPa}) \end{aligned}$	DNEI力 （MPa abs）	S／CEI力 （MPa abs）	CAMS ON（A） （Sv／h）	$\begin{aligned} & \text { CAMS } \\ & \text { DNW }(B) \\ & (S V / h) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & \text { S/CA) } \\ & (\mathrm{SV} / \mathrm{h}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & S / C(B) \\ & (S V / h) \end{aligned}$		策
4／1912：00	－1500	－2100	－0．020	－0．029	0.085		25.3	28.7	0.565	108.0	0.01	
4／1918．00	－1500	－2100	－0．023	－0．027	0.880		25.2	28.6	0.564	99.2	0.07	
4／200：00	－1500	－2100	－0．020	－0．027	0.880		25.1	28.5	0.560	89.3	0.10	
4／20 6：00	－1500	－2100	－0．023	－0．029	0.080		25.0	28.4	0.555	105.0	0.08	
4／20 12：00	－1500	－2100	－0．023	－0．029	0.080		24.9	28.3	0.551	103.0	0.09	
4／2018．00	－1500	－2100	－0．023	－0．029	0.080		24.8	28.1	0.547	101.0	0.08	
4／210．00	－1500	－2100	－0．023	－0．029	0.080		24.7	28.1	0.542	108.0	0.08	
4／216：00	－1500	－2050	－0．023	－0．029	0.080		24.6	28.0	0.538	109.0	0.08	
4／21 12：00	－1500	－2050	－0．023	－0．025	0.085		24.6	27.8	0.534	114.0	0.05	
4／21 18．00	－1500	－2050	－0．020	－0．025	0.090		24.5	27.8	0.530	120.0	0.07	
4／220．00	－1500	－2050	－0018	－0．023	0.085		24.4	27.1	0.528	132.0	0.07	
4／22 6：00	－1500	－2100	－0．023	－0．027	0.085		24.3	27.6	0.522	137.0	0.07	
4／22 12：00	－1500	－2050	－0．023	－0．027	0.085		24.2	27.5	0.519	136.0	0.08	
4／22 18：00	－1500	－2050	－0．027	－0．034	0.085		24.1	21.4	0.517	135.0	0.08	
4／230．00	－1500	－2100	－0．023	－0．027	0.085		24.1	27.3	0.516	132.0	0.08	
4／23600	－1500	－2100	－0．023	－0．027	0.080		24.0	27.0	0.512	135.0	0.07	
4／2312：00	－1500	－2100	－0．023	－0．025	0.080		23.9	28.8	0.509	138.0	0.07	
4／2318．00	－1500	－2050	－0．020	－0．023	0.080		23.8	26.7	0.506	128.0	0.10	
4／24000	－1500	－2050	－0．020	－0．020	0.080		23.7	26.6	0.503	128.0	0.10	
4／24600	－1500	－2050	－0．020	－0．025	0.080		23.6	28.5	0.500	110.0	0.10	
4／2412．00	－1500	－2050	－0．018	－0．025	0.080		23.6	28.5	0.497	115.0	0.08	
4／2418．00	－1500	－2050	－0．020	－0．025	0.080		23.5	28.4	0.496	107.0	0.07	
4／250：00	－1500	－2100	－0．020	－0．027	0.080		23.4	28.3	0.493	119.0	0.06	
4／25 6：00	－1450	－2100	－0020	－0．027	0.080		23.3	28.2	0.490	103.0	0.08	
4／25 11：00	－1500	－2100	－0．020	－0．025	0.080		23.2	28.1	0.489	94.1	0.05	
4／25 17：00	－1500	－2100	－0．018	－0．025	0.080		23.2	26.0	0.488	98.6	0.07	
4／25 23：00	-1560	－2100	－0．020	－0．025	0.080		23.1	28.0	0.483	105.0	0.05	
4／265．00	－1500	－2100	－0．020	－0．025	0.080		23.0	25.9	0480	104.0	0.06	
$4 / 2811.00$	－1500	－2050	－0．016	－0．025	0.080		22.9	25.8	0.471	78.4	0.07	
4／28 17：00	－1500	－2100	－0．018	－0．025	0.880		22.8	25.7	0.476	106.0	0.08	
4／2823：00	－1500	－2100	－0．020	－0．027	0.075		22.1	25.8	0.174	57.1	0.08	
4／275．00	－1500	－2100	－0．018	－0．023	0.080		22.1	25.6	0.472	43.3	0.08	
$4 / 2711.00$	－1500	－2100	－0．018	－0．025	0.075		22.8	25.5	0.470	45.9	0.06	
4／2717：00	－1500	－2100	－0．020	－0．023	0.075		22.5	25.4	0.487	43.3	0.05	
4／2723：00	－1500	－2100	－0．018	－0．020	0.075		22.5	25.3	0.465	41.9	0.08	
4／285：00	－1500	－2100	－0．016	－0．020	0.075		22.4	25.2	0.463	40.8	0.08	

B㛺不良

101	106	26	So	III	CCll	IIII			6611	199	8 COL	00.788/18	
101	102	28	S0	III	1811	9 cli			1021	899	bitl	00ECl $12 / 6$	
101	S06	26	S0	111	HCII	g 911			1021	899	101		
802	902	26	SO	III	2 ili	811			EOZ1	159	Phi	$00.1120 / 1$	
806	\% ${ }^{\circ}$	26	So	211	bll	9211			1021	[9	8 nl	$00: 512 / 16$	
601	9 OL	28	So	411	[GII	111			1021	[59	Scl	OOCLI 92/b	
BOL	102	26	So	211	911	CLII			$\underline{02!}$	899	ISCI	00:2192/6	
IL	10 L	28	So	211	2911	1021			500t	['99	ticl	$0.1102 / p$	
601	802	26	S0	CII	¢ 111	021			て'12]	89	1981	$00: 592 / 6$	
I'll	602	28	SO	III	Vill	9021			8.121	198	\|'L¢	00.52 ch	
cill	12	26	50	HII	g'sil	272			9221	199	DiLl	00ll 42	
EII	111	26	SO	\$11	C8II	6271			[22]	['99	licl	$0001152 / 6$	
171	l'il	6	50	111	SGII	261			5221	[98	g'LC	00.9 S\%/	
911	811	26	50	811	Hill	20 Cl			8721	898	18 Cl	000 $\mathrm{SL}_{2 / 1}$	
911	DiL	66	SO	111	7111	cid			rcal	899	68 Cl	$00818 / 18$	
811	916	26	So	111	6 BII	9841			2\%2	898	2061	0027187	
611	l'IL	26	S0	111	8811	1621			T 921	899	+10	$00.978 / 17$	
121	812	86	SO	Gll	1811	1681			C'921	898	g'gicl	0001816	
121	$6 \cdot 12$	66	S0	911	9211	1001			lil	899	[$18 C$	$00.81 \mathrm{Cl/7}$	
32	21	86	50	911	111	-cil			Cili	89	8681	$00.2182 / 2$	
ç	İi	C6	SO	911	9801	SIII			881	85	OH1	00.8527	
Gul	220	66	So	111	1801	101			18 il	(59	$10 \mathrm{O} \mid$	$000087 / 1$	
gil	ClL	C 6	S0	811	1021	[1E]			8821	['98	1061	008122.6	
Lil	V 21	68	S'0	021	Hin	1201			2621	['99	8'191	$00.2122 / 6$	
82	926	CB^{8}	So	221	¢'G21	1bic			2 ILI	159	1981	$00.922 / 10$	
824	922	W	SO	121	[92]	695			1 col	8'90	l'\|9		$00027 / 10$
671	920	68	So	521	8121	261			gtil	\$'99	gCS	00:81 $12 / 6$	
CI	821	${ }^{6} 6$	SO	921	1821	1881			BCI	899	2951	$00.21 \mathrm{~L} / \mathrm{b}$	
CCI	641	C6	S0	921	1881	888			1 CCl	299	6591	00.912016	
Sill	Cli	66	SO	921	212]	[8C]			917	E9	2991	$00016 / 4$	
ICl	ill	16	S'0	121	6921	5881			¢GCI	199	CS9]	00: $010 \mathrm{CL} / \mathrm{b}$	
16	CIL	26	SO	321	2021	gill			[12]	69	6 CSI	002104	
Cat	V	16	SO	27	8971	6881			BCC	299	\| 91	00:90/t	
8 l	C'ta	66	SO	621	2921	I'LI			Tici	199	filit	0000271	
876	敉	66	50	821	Sill	¢'281			$9 \% \mathrm{l}$	['9	6 '6)	000.816178	
871	bil	86	SO	121	$8{ }^{\prime \prime 2}$ l	6181			$\square C C 1$	999	6641	00:2161/6	
872	S't	16	SO	821	CCCI	6681			¢9Cl	799	291	00:961/6	
696	912	6	S0	621	1211	c61			T8CI	199	I't91	$000061 / 6$	
						aicrick		H697					

1F3水位•圧力に関するパラメータ

1F3水位•匤が関するパラメータ

日旿	原子涫水位 （喿料场（A） （mm）	原子枌水位 （mm）	A系原子間旡 （ $\mathrm{MPa}_{\mathrm{a}}$ ）	孫 原子护任力 (MPa)	D W匡力 $(\mathrm{MPa}$ abs）	S／CEIS （MPa abs）	CAMS D／N（A） （Sv／h）	CAMS D／W（B） （Sv／h）	CAMS S／C（A） （Sv／h）	CAMS S／C（B） （Sv／h）		㩦为
4／18 18：00	－1850	－2250	－0．085	－0．034	0.1045	0.1715	15.7	11.8	0.588	0.552	0.085	
4／190：00	－1850	－2250	－0．085	－0．036	0.1041	0.1720	15.7	11.8	0.596	0.551	0.070	
4／198：00	－1850	－2250	－0．085	－0．034	0.1041	0.1724	15.7	11.8	0.594	0.548	0.085	
4／19 12：00	－1850	－2250	－0．085	－0．040	0.1036	0.1722	15.6	11.7	0.592	0.547	0.080	
4／1918：10	－1850	－2250	－0．083	－0．040	0.1034	0.1727	15.6	11.7	0.590	0.567	0.065	
4／20002	－1850	－2250	－0．087	－0．038	0.1041	0.1734	15.6	11.7	0.588	0.54	0.055	
4／20 6：00	－1850	－2250	－0．099	－0．038	0.1045	0.1741	15.5	11.8	0.587	0.542	0.070	
4／20 12：00	－1850	－2250	－0．089	－0．043	0.1045	0.1748	15.5	11.8	0.565	0.541	0.065	
4／20 18：10	－1850	－2250	－0．087	－0．043	0.1047	0.1754	15.5	11.6	0.582	0.540	0.085	
\＄／2023：50	－1850	－2250	－0．087	－0．045	0.1054	0.1781	15.4	11.5	0.580	0.539	0.085	
4／21 6：0	－1850	－2250	0.085	－0．043	0.1061	0.1788	15.4	11.5	0.579	0.539	0.085	
4／21 1200	－1850	－2250	－0．087	－0．043	0.1050	0.1769	15.4	11.5	0.571	0.537	0.085	
4／31 18：00	－1850	－2250	－0．085	－0．043	0.1052	0.1775	15.3	11.4	0.575	0.535	0.065	
4／220．00	－1850	－2250	－0．039	－0．047	0.1055	0.1776	15.1	11.4	0.513	0.534	0.085	
$4 / 228.00$	－1850	－2250	－0．087	－0．047	0.1055	0.1780	15.2	11.4	0.570	0.532	0.070	
4／22 11．50	－1850	－2250	－0．089	－0．049	0.1048	0.1780	15.2	11.4	0.569	0.531	0.070	
4／22 17：50	－1850	－2250	－0．089	－0．049	0.1047	0.1783	15.2	11.3	0.568	0.530	0.080	
4／23000	－1850	－2250	－0．087	0.053	0.1047	0.1785	15.2	11.3	0.566	0.528	0.080	
4／23 8：15	－1850	－2250	－0．087	－0．049	0.1045	0.1782	15.1	11.3	0.584	0.527	0.070	
4／23 11：55	－1850	－2250	－0．087	－0．049	0.1038	0.1778	15.1	11.3	0.563	0.528	0.080	
4／2318：00	－1850	－22i50	－0．089	－0．0．51	0.1033	0.1778	15.0	11.2	0.562	0.525	0.080	
4／24000	－1850	－2250	－1．091	－0．055	0.1027	0.1776	15.0	11.2	0.581	0.523	0.070	
4／24：5：50	－1850	－2250	－0．089	－0．053	0.1031	0.1778	15.0	11.2	0.580	0.522	0.060	
4／2412：00	－1850	－2250	－0．081	－0．051	0.1031	0.1780	14.9	11.1	0.558	0.521	0.070	
4／2418：00	－1850	－2250	－0．091	－0．051	0.1034	0.1785	14.9	11.1	0.557	0.520	0.070	
4／250．00	－1850	－2250	－0．089	－0．055	0.1036	0.1787	14.8	11.1	0.550	0.518	0.070	
4／25 8：00	－1850	－2250	－0．089	－0．053	0.101	0.1788	14.8	11.1	0.554	0.518	0.070	
4／25 11：00	－1800	－2250	－0．091	－0．055	0.1029	0.1787	14.7	11.0	0.553	0.517	0.050	
4／25 17：00	－1850	－2250	－0．089	－0．055	0.1034	0.1787	14.7	11.0	0.552	0.516	0.050	
4／25 $23: 00$	－1800	－2250	－0．001	－0．055	0.1041	0.1782	14.6	11.0	0.551	0.515	0.050	
4／26：00	－1850	－2250	－0．087	－0．055	0.1043	0.1784	14.0	11.0	0.550	0.514	0.040	
4／289：00	－1850	－2250	－0．089	－0．055	0.1041	0.1794	14.5	10.8	0.549	0.513	0.040	
4／28 17：00	－1850	－2250	－0．089	－0．051	0.1039	0.1780	13.9	10.8	0.517	0.511	0.050	
4／28 23：00	－1950	－2250	－0．089	－0．049	0.1034	0.1792	14.2	10.9	0.530	0.510	0.050	
4／27 5：00	－1850	－2250	－0．099	－0．053	0.1031	0.1787	14.3	10.8	0.532	0.508	0.050	
4／2711：00	－1850	－2250	－0．089	－0．053	0.1029	0.1792	14.3	10.8	0.534	0.507	0.040	
4／21 17：00	－1850	－2250	－0．089	－0．053	0.1022	0.1789	14.3	10.8	0.534	0.505	0.050	
4／27 23：00	－1850	－2250	－0．0．87	－0．055	0.1022	0.1789	14.3	10.8	0.534	0.504	0.045	
4／28 5：00	－1850	－2250	－0．089	－0．055	0.1017	0.1783	14.2	10.8	0.533	0.502	0.050	

		RPV／n7isi＇								RPVAD $0-1-1$		$\begin{gathered} 3 / 67-16 x \\ 13 \\ \hline \end{gathered}$
4／20800	88.7	121.3	108.1	05.1	126.7	108.9	100.4	51	79.5	215	42.9	42.8
4／20 12：00	100.2	123.7	1075	858	124.8	11.8	102.6	57.1	71.5	210.7	42.8	42.8
4／20 18：10	100.4	130.9	108.5	05.8	133.8	108.7	105.5	57.1	12	200.5	42.1	42.7
1／20 25：50	100.7	135.3	1109	88.7	135,4	98.1	104.3	51	58	189.3	42.7	12.7
4，216：00	101.8	137,3	109.1	88.6	137.0	80.5	1038	58.9	61.9	193.9	42.6	42.8
4／21 12：00	1004	1389	1104	88.8	1402	73.8	1038	51.2	68.1	182.6	42.5	42.5
4／21 18：00	100	14.1	110	88.3	140	72.3	103.3	51.1	14.3	191.3	42.4	42.4
4／22000	89.5	148	110.8	118.1	142.2	67.	1025	57	85.8	142	423	42.3
4／22010	83.3	150.4	1104	119.4	140.5	86.3	102.9	57.6	031	138.6	42.3	42.3
4／2211：50	92.4	148.8	1118	1181	148.3	77.2	102.8	57.8	62.8	137.8	42.	422
4／22 17：50	808	148.9	110.1	1133	148.2	81.1	102.3	58.5	57.3	136.6	42.1	42.1
1／23000	81.7	150	1002	110.8	148.1	71.8	1022	58.8	58.1	135.2	42.1	42.1
4／23 0：15	858	154.9	109.9	1085	1099	85.2	101.4	58.9	502	134.2	42	42
4／23 17：55	85.7	152.1	1088	104.3	129.5	72.4	100.0	592	55.7	132.9	41.8	41.8
4／2318．00	81.1	153	110.1	100.6	144.4	80.5	1008	59.4	57.3	130.0	41.8	41.9
1／21000	78.1	155.7	1098	1027	150．4	818	99.5	59.6	84.1	129.8	41.8	41.8
4／245：50	81.1	180.1	109.9	10.3	151.9	79.4	99.5	59.3	035	129.3	118	418
4／2412．00	85.5	1632	110.6	102.8	140.5	749	98.8	50.4	852	128.6	41.7	41.7
4，241800	11.8	1555	1102	1028	142.7	68	98.3	59.4	65.3	126.6	41.7	41.7
4／250．00	14.6	189	110.8	103.4	129.8	60.4	98.4	58.2	87.8	124.3	41.8	4.6
4／25 6：00	72.5	1858	109.3	时3	130	53	98.5	58.8	70.2	122.5	41.8	41.0
4／25 11.00	68.8	184.8	110	99.5	145.8	43.2	97.8	59.8	69.5	120	41.8	415
4／25 1710	11.1	189.8	110	98	153	50.8	97.3	59.5	81.4	1176	41.5	415
4／25 2300	84.8	155.7	109.8	88.8	150.4	82.8	88.7	59.2	64.5	100.1	41,4	41.4
4／203．00	07.8	151	110.4	84.8	156.8	68.7	01	59	67.3	117.8	414	114
4／868．50	82.5	149.4	110.7	97	158	43.4	90.7	59.1	68	121.5	114	41.4
4／2817：00	882	1518	110.5	M， 3	160.7	82.4	88	59.6	11.2	1222	11.3	41.3
4／28 23.00	85.8	159.8	110.7	92	158，7	63.2	96.1	59.1	88.7	122.2	11.2	412
1／21500	12	15.1	110.7	4， 3	157	51.7	98.3	598	101.8	121.1	11.2	41.2
4／2711：00	82.3	150.4	110.3	95.3	159.1	50	97.3	59.8	103.6	123.4	11.1	41.1
4／2111．00	09.2	1432	100.0	92.4	150.8	38	98.7	60.6	104	124.8	11.1	41.1
1／2123：00	84.6	137.1	1102	90.5	152.1	56.8	972	60.7	102.8	124.1	111	1.1
428500	88	129.5	1098	82.7	150.8	57.8	96.2	60.0	102.1	124.7	41	81

1F5／6原子㚸水温度，使用斎㜣糊フール温度推㱛

100.0	
	－1F5 原子炣水温度
	－1F5 使用济然料フール温度
	4．1F6原子炉水温度
80.0	4176 使用剤然料コ一ル温度

0.0

$$
4 / 28
$$

1F5／6 原子妒水温度－使用済燃料プール温度

4／25 9．00	37.5	37.9	52.6	27.0
4／25 10：00	37.2	38.0	53.5	26.5
4／25 11：00	36.6	38.3	44.5	26.5
4／25 12：00	36.1	38.6	41.2	27.0
4／25 13：00	37.2	39.0	38.1	27.5
4，25 14：00	39.7	39.3	36.1	28.0
4／25 15：00	43.0	39.6	34.0	28.5
4／25 16：00	45.9	40.0	32.3	28.5
4／25 17．00	48.1	40.3	31.2	29.0
4／25 18，00	50.5	40.1	30.1	29.5
4／25 19：00	52.9	39.9	29.3	29.5
4／25 20：00	55.6	39.0	28.5	30.0
4／25 21：00	58.0	38.5	27.9	30.0
4／25 22：00	60.6	38.0	27.3	30.5
4／25 23：00	62.2	37.8	27.0	31.0
4／260：00	53.3	37.5	26.6	31.5
4／261．00	50.5	37.8	26.3	32.0
4／26 2．00	48.0	38.1	28.1	32.5
4／26 3：00	46.0	38.4	25.9	32.5
4／26 4．00	44.2	38.8	25.7	33.0
4／26 5．00	42.7	39.1	25.5	33.0
4／26 6：00	41.1	39.5	25.4	33.5
4／26 7：00	39.9	40.0	25.2	34.0
4：26 8．00	39.1	40.3	25.1	34.5
4／26 9：00	39.0	40.6	25.0	35.0
4／26 10：00	40.6	40.6	25.0	35.5
4／26 11：00	43.1	40.4	24.9	36.0
4／26 12：00	45.9	40.0	24.9	36.0
4／26 13：00	48.6	39.1	24.8	36.5
4／26 14．00	51.1	38.7	24.8	37.0
4／26 15：00	53.7	38.3	24.8	37.0
4／26 16：00	55.8	37.9	24.8	37.5
4；26 17：00	58.3	37.5	24.8	37.5
4／28 18：00	60.6	37.1	27.6	38.0
4／26 19：00	63.0	36.8	28.7	38.0
4；26 20：00	54.9	36.8	30.2	37.0
4／26 21：00	51.6	37.1	32.2	35.0
4／26 22：00	49.0	37.3	34.3	34.5
4／26 23：00	46.7	37.7	36.3	34.0
4／270：00	44.8	38.0	37.9	33.0
4／27 1：00	43.2	38.3	39.3	32.0
4／27 200	420	38.7	40.8	31.0
4／273：00	41.0	39.0	423	31.0
4／27 4：00	39.9	39.4	44.2	30.0
4／27 5：00	39.0	39.7	45.9	29.5
4／27 6：00	38.3	40.1	47.9	28.5
$4 / 277.00$	37.6	40.4	49.5	28.5
$4 / 278.00$	37.0	40.8	51.1	28.0
4／27 9：00	35.4	41.1	52.8	27.5
4／27 10：00	37.5	41.3	54.3	27.0
4／27 11：00	40.4	41.1	44.3	27.0
4／27 12：00	428	40.8	40.9	27.5
4／27 13：00	45.8	39.5	37.6	28.5
4／27 14：00	48.1	39.1	35.5	29.0
4／27 15．00	50.4	38.8	33.6	29.0
4／27 16：00	52.7	38.3	32.1	29.5
4／27 17．00	55.0	37.8	30.9	30.0
4／27 18：00	58.2	37.5	29.8	30.0
4／27 19．00	59.4	37.1	29.2	30.0
$4 / 27$ 20：00	53.4	37.0	28.6	30.5
4／27 21：00	50.5	37.4	32.6	305
4／27 22：00	48.2	37.6	34.1	30.0
4／27 23：00	47.5	37.9	35.9	29.5
4／280．00	45.7	38.3	37.5	29.0
$4: 281: 00$	43.3	38.6	39.0	29.0
4／28 200	41.9	39.0	40.7	28.5
4／28 3：00	41.0	39.2	42.1	28.0
4／28 4：00	40.1	39.6	43.9	27.0
4／28 5：00	39.4	39.9	45.6	27.0
4／28 6：00	38.7	40.4	47.5	27.0

```
From:
Sent:
To:
Subject:
Attachments:
Hochevar, Albert R. (INPO) [HochevarAR@INPO.org]
Thursday, April 28, 2011 12:47 AM
Huffert, Anthony; Wittick, Brian; Moore, Carl; Chuck Casto; Norwood, Donald; Gepford,
Heather; Mitman, Jeffrey; Salay, Michael; Hay, Michael; Meighan, Sean; Garchow, Steve;
Reyniolds. Steven; Bradley Gawbow; CAPT Dirk,L Foster; Reid Tanaka
FW: April }28\mathrm{ Updates
20110428 0500 Unit 1 Drywell Pressure[1].pdf; 201.10428 0700 Water Levels[1].pdf;
20110428 Rev. }14\mathrm{ Evaluated Water Level in U1 PCV[1].pdf; 20110428 0600 Plant
Parameters[1].pdf
```

All.
\square (b)(4)

Thanks,
Al

Al Hochevar
Institute of Niuclear Power Operations
Cell
(b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

From: Ryan, Robert D (WANO)
Sent: Wednesday, April 27, 2011 10:55 PM
To: INPO EmergencyResponseCtr (INPO); INPOERCTech; INPOERCAnalysis
Cc: Gard, Lee A (INPO); Maddox, James E. (INPO); Garchow, David F.(INPO); Gambone, Robert L (INPO)
Subject: April 28 Updates
Latest information on N2 purge, drywell level, building water levels and temperature / pressure graphs
(b)(4)
b

Clamer:

 princu of this enall and any aberments.
ou.

1F1D／WI（N2注入後の举動）

［ow$\left.\right\|_{-9045}$	｜F－1	水量	曀		各エレイーションのの坦远日		
	OP（mm）	PCV（m）			$3\left(\mathrm{~m}^{3} \mathrm{~h}\right)$	$2\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	$1\left(\mathrm{~m}^{3} / \mathrm{h}\right)$
	35330	7736	（V）	PCV上 ${ }^{\text {a }}$	5.42804	5715314	6：141678
	28650	7440	（U）	PCVM゙ント下敗	4901809	5，82314	5．21028
	27150	7373	（T）	D／W水位（上部）LS	4．2921．09	5.713 .44	5.50115 .8
	23990	7233	（S）	TAF	4，212229	5.41544	5，\％ 4 1922
-xne	22781	7179	（R）	JP／スル	4：214\％	5.31244	57213.8
	20290	7089	（a）	明F到違	4．25：15．49	5.13 .44	5112238
	19303	7025	（P）		420109	4，30744	5．160．62
	17540	8790	（0）	CAMS	\＄．211884	4．2510．4	5.6828
	16524	8630	（N）	SRV木没	4.151829	4.22214	4.5118 .28
3x	16150	6570	（M）		4.1617%	42020.14	4．274．3
	15450	6445	（L）		4.16234	4，18．54	4．71972
	15200	6400	（K）	RPV教部岩水	4.168 .45	4：177．14	4：20223
	15150	6390	（J）	DNEE喭	4，105．29	4917214	4040.088
	14700	6305	（I）	電気へネトレシぶ	4.15103	4.15734	4.1639
$\left[\begin{array}{l} a_{n} \\ n \\ n \end{array}\right.$	14486	8266	（H）	SLCOEXライン止弁	4.141260	4／1412，（1）	414100
	12200	5837	（G）	O／W积浾通面			
	11200	5643	（F）	HVH蜀度别			
	8236	5113	（E）	S／Cペン開口上磻			
	3570	2410	（D）	S／C中心			
	2780	1820	（C）	S／C／通常最高椎			
	2680	1750	（B）				
	－470	0	（A）	S／C度都			

各エしベーションの国達達日

号慮		2呂谁	35	4 嘘	5 号度	6䍂
	） $10.0 \mathrm{~m}^{3} / \mathrm{h}$ 14／28500）（10）					
原宁管水位						
					00074P98 	0.0134 p ？ 8 （4：2860014it
					$\begin{gathered} 3870 \\ (4,896004 \mathrm{mif}) \end{gathered}$	$\frac{176}{(42860745}$
	（4／28500）（19H）					
D／W•S／C氏力	D．W O． 125 FiPa abs SiC 0.125 MPa abs （4．28500 ${ }^{(1)}$（1）				罂2 	
CAMS放射綏						
SCC稚医			$\left\{\begin{array}{l} A 4.410 \mathrm{C} \\ \mathrm{BE}: 410 \mathrm{C} \\ 1428500 \mathrm{gm}) \end{array}\right.$			
	\％ 1	$\begin{gathered} 500 \mathrm{C} \\ (4285001 \mathrm{~m}) \end{gathered}$	\％ 1	\％ 1		200 428600造
FPGATHOM H：	$\begin{gathered} 3700 \mathrm{~mm} \\ (428500 \mathrm{mam}) \end{gathered}$		＊ 1	$\begin{aligned} & 65501 \mathrm{him} \\ & 44,28500 \end{aligned}$ 瑱）	－	2
都						
				$\left[\begin{array}{c} 1 / 17-h! \\ 396 \\ (427650) \end{array}\right.$	$14271813=1$	$14272000: 1$
解用					部：期程 	

洎		蝊䍃	
		（2aty	1／1䍃
			A番 $1 / 10 \mathrm{Ch}$ B弗 $1 / 1 \mathrm{Ch}$
閑子部㰮	 	 	A为 $1 / 2 \mathrm{Ch}^{2}$ B $1 / 20 \mathrm{Ch}$
			－
DW．S／C代	 		
DW	 		
S／Cidit	 		A亦 $1 / 4 \operatorname{ch}(12) 8 \operatorname{ch}(2 \times 35)$
	 		1／2Ch（15）． $10 \mathrm{ch}(2 \sim 46)$
FPCx_{4}^{2-9}	4	＊	1／1絾

顛	积	
	H14相：	
	4 	－
	 	 Scheats

1F1水位•生か関するハラメータ

日碞			力 $\left(M p_{3}\right)$		DNED 	$\left(\begin{array}{l} \mathrm{S} / \mathrm{OE} 力 \\ (\mathrm{MPD}, \text { abs }) \end{array}\right.$	$\begin{aligned} & \text { CAMS } \\ & \text { DMMA } \\ & \text { CSWhi } \end{aligned}$		$\begin{aligned} & \text { CAMS } \\ & \text { SCCN } \\ & \text { (Sum } \end{aligned}$		璃考
4／246：00	－1700	－1700	0.435	1.143	0.156	0.155			1.01	1.74	
4124 12：00	－1700	－1700	0.433	1.143	0.155	0.155			1.02	1.74	
4／2415：00					0.155	0.155			1.03	1.74	
4／2418：00	-1700	-1700	0.438	1.148	0.150	0.155			1.03	1.74	
4／24 21：00					0.155	0.155			1.04	1.74	
\＄／200：00	－1700	－1700	0440	1.160	0.165	0.155			1.04	1.74	
4／25 3：00					0.155	0.155			1，05	1.75	
4／250：00	－1700	－1650	0450	1.173	0.159	0.156			1.06	1.78	
4／259：00					0.155	0.155			1.07	1.76	
4／25 11：00	－1700	－1650	0.448	1.168	0.165	0.155			1.08	1.78	
4／2515：00	－1850	－1050	0.453	1.173	0.150	0.155			1.18	1.74	
4／251700	－1650	－1550	0448	1.165	0.150	0.150			1.09	1.74	
4／25 20：00					0.150	0.150			1.10	175	
4／25 23：00	-1650	-1050	0450	1.173	0.150	0.150			1.10	1.35	
4／20200					0.150	0.150			1.11	1.75	
4／265：00	－1650	－1650	0.445	1.185	0.150	0.150			1.11	1.74	
4／268：00					0.150	0.150			1.12	174	
$4 / 201100$	－1650	－1650	0.445	1.180	0.150	0.150			1.12	1.74	
4／20 14：00					0.155	0.155			1.12	1.74	
4／2017：00	-1800	－1650	0.443	1.183	0.15	0.150			1.13	1.14	
4／262000	－1600	－1650	0.445	1.190	0.155	0.155			1.13	194	
4／202300	－1600	－1650	0.44	1，203	0.155	0.155			1.13	1.73	
$4 / 27200$					0.165	0.155			1.13	173	
4／275：00	－1650	－1600	0450	1.205	0.155	0.155			1.14	173	
4：278：00	－1650	－ 1650	0.450	1.205	0.155	0.155			1.14	1.72	
4／2711．00	－1650	－1850	0445	1.203	0.155	0.155			1.14	1.72	
4／27 14：00	－1650	－1650	0440	1.198	0.145	0.145			1.15	1.71	
41271700	－1650	－1650	0.439	1.188	0.140	0.140			1.15	1.71	
4／2720：00	－ 1650	－1050	0.423	1.15	0.135	0.135			1.18	1.70	
4／2723：00	－-1650	－1550	0.420	1.173	0.130	0.130			1.16	169	
4／282：00	－1050	－1600	0.415	1.170	0.125	0.125			1.16	1.68	
4／285：00	－ 1650	－1600	0.415	1.168	0.125	0.125			1.10	1.67	

1F－1温度に関するパラメータ（代表点）

1F－1温度1－関するハララメータ（給水ノズル及び安全弁排気温度）

464．

	veteric trave	Vatid 1 rasem				$m a+x A$ nыаи			nomor	Eymer	103 tal					$\begin{aligned} 5+50 x \\ x 6 x<2 \end{aligned}$				waten	\tan
Fins	Tr	T1	13	\square	111	112		In	d	\square		135	TFT	TII	［142	－1N4	끄는		\％	III	3 IH
－1		$\underline{11}$		HI	111	1137				11	17	प多	तब1	71\％	Tat	－nt	12，		1	18	उE
4．100］	110\％	112	13				－132	11	H1	111	法					W－1	－6，	H	111		
4， 1	14	－19	$1{ }^{14}$	1131	111	112	11	$1{ }^{12}$			1918	127	171	Tha	F	0.125	314	4	1183	H1	［19
411400	1	H1	1	［113	W14	$1{ }^{1}$	\square	111			，	y	113	1751	138	129	113			12	，
int 4	112		115				13	11	－										新		
1：209	1	119	111	1	$1{ }^{1}$	H2						121	Cix	M	11	$1{ }^{11}$	M14		II	W］	III
$40^{2} 4$	4	H11）		11%	11	11	－		113	1	12	131	18 B	113	L	1214	14	，	114		
4，intion		14			117		1121	11					18		－17					I	
4．2citio	，	－ 11							1								1				4
429	111		1	112	111	111	－11	，	114	11		I	$1{ }^{1}$	TE	Trim	III	FIL		IT）	${ }^{1}$	715
11P1	111		1						114	11											
1，1610	星11		1	12			－11	11			4	174	Int	121	17	\％	\％		117	S	$\underline{4}$
4， 110 m	11	－11	！	1 m	It	tin	718	115	－ $7 \times$		－ 1	18	17	I11	His	int	315			111	3
4，micm	111	－ 1	151	113	1112	III					－	1119	118	T115	\％	－ k^{1}	I］			7 ${ }^{4}$	
		－111．	1				114	17			－ 3										
	1.	－111		III	IIIE．	［1］	4	11	12		－it	${ }^{12} 7$	1 m	1212	UE	\％ 1	萑			18	It
$-12 x+6$				TII	111	IIII	－12	1	12	1	14	171	IIT	IV3	TII	［5］	73I			31）	4
4920\％			1	1.	1215	Win	保	H2	Til	T	\square		Tix	134		Int	［1］			E	
＋2，	？	$\underline{111}$	1	I17	III！	111	＋14	\％	III		11	－ 15	Htry	1KI	1312	19， 19	［171		［15	III	$\underline{1}$
\％ 120	1	－11	M	I11	11.	In	$1{ }^{1}$	1		1	－	14］	115	12.2	12 x	－id	InI		IT	$\underline{5}$	TIT
	t	－ 19	13	115	III	IIII	，		H2	－	－ 11	1313	1112	亩	11	7t	\square	m		13	12
1，4is		－102	H1	17	13	1 m	－	，	It	1			T1								
20^{112}	1		19						11		$1 / 1$	He			：1	1	Li			${ }^{1}$	T 7
＋17085	1	1113	$\frac{112}{14}$	III！	IIII	1		in		HL		Hes	－ 12	－115	T115	1713	Whil		it	H	2
41307	112				Tin	M19		T1	衾女	T15	If		III						$1{ }^{118}$		
］T10］	111	－	is ${ }^{-}$	125		143	H！	IfII	114	1191－	\cdots	［ ${ }^{3}$	W1	的	－	ibi	Tin		14	䆩	314
40140	11	H09	17				1107	117	15	M1 11	19								11		
$\frac{18460}{1+1108}$	$\frac{112}{112}$	192	${ }^{17}$				110	117		1 L 1	－19	［12］	IIPS	921	12：	Th：	？	$\frac{64}{4}$	111	317	
17209	1115	ivt	13	\％	126	1梚	1p	113	－151	－ 115	－ 111	120：	11.	$1{ }^{1} 1$	If\％	IIII	III？	$\underline{\square}$	－11	m	IIT
Cht		19	11	I5	115			111	－107	－1818	－117	121	115	$\underline{173}$	181	HII	111			$1{ }^{1}$	1
1， 510	1	${ }^{4}$	17					11													
12100	．	18	1	12													12		1		
4181509	11	11	11	H1	11		1		IIP	，	I 1	in．	113	43	－129	K1	\＃117			17	8 H
12800		1	1																1		
\％ 27	11	H	＋	$\underline{1}$	$\underline{1}$	U10	Til	115	T11	\cdots	14，		䢒				$\underline{1}$	4）	18	1	
－ 3	III	－ 63	1	III	111	Chis	119	19	$1{ }^{161}$	919	TM	तリ	311	］［？	Che	7 HI	TiII		17	III	Tu
$\frac{3}{3}$	111	T\％	1	119	IVI2	L1		H			I	Im	W11	W	II！	IXI	II2		11	15	S1I
420 ${ }^{\text {a }}$	it	34		172	－ 102	161	T	，		Tib	1	1012	ग13	］ IL	13	W2	TV4	14	गt	1 T	
－	$\square 1+2$		14	TII	－IIT			$1{ }^{18}$	＋14		1										
CH5	115	\square					－75	1	111	Hit	14	－		x，	W	？	H／xt		12	15	1
， 1176	11	1	1		，	S	1	${ }^{1 / 1}$	－14	16	4								获		
2\％16	Iİ	新	17				＋19	－	砳		\square										
， 3	$1{ }^{5}$	31	12	1	10i	15	，	$\square 5$	－ 5	， 1	d	号	T				1	1	＋	¢	
	${ }^{3}$	＋ 4	1	－183	$1{ }^{1}$	－rot	1		$\underline{109}$			11		－142	12		，	，	\％		
\pm	102	1	年	1	W	T	10	2	－ 102	－	，	Itim	，	17				It			
－4146												111			r		13		197		
1115																					

1F2水位•圧力に関するパラメータ

［1717：

暒			$\text { } 力\left(M P_{A}\right)$		DNW $力$ （MPa abs）	S／CED （MPa abs）		CAMS DMB ${ }^{(1)}$ （Syy）	$\begin{aligned} & \text { CAMS } \\ & \text { SICA } \\ & \text { (SUA) } \end{aligned}$	$\begin{aligned} & \text { CAMS } \\ & s / C(B) \\ & (S v / h) \end{aligned}$		制考
41191200	－1500	－2100	－0．020	－0．029	0.885		25.3	28.7	0.565	108.0	0.07	
4／1918：00	－1500	－2100	－0．023	－0．027	0.080		25.2	28.8	0588	99.2	0.07	
4／200：00	－1500	－2100	－0．020	－0027	0.080		25.1	28.5	0.560	88.3	0.10	
4／20．600	－1500	－2100	－0．023	－0020	0,080		25.0	28.4	0.555	105.0	0.08	
$4 / 201200$	－1560	－2100	－0．023	－0029	0.880		249	20.3	0.551	103.0	0.09	
$4 / 2018: 00$	－1500	－2100	－0．023	－0．028	0.030		24.8	28.1	0.547	101.0	0.08	
\＄／210．00	－1500	－2100	－0．023	－0．020	0.080		24.7	28.1	0.542	1080	0.08	
4 4216：00	－1500	－2050	－0．023	－0．029	0.880		24.6	28.0	0.538	109.0	0.08	
$4 / 2112.00$	－1500	－2050	－0．023	－0．025	0.085		24.8	27.9	0.534	114.0	0.05	
4／21 18.00	－1500	－2050	－0．020	－0025	0.090		24.5	27.8	0.530	1200	0.07	
4／22000	－1500	－2050	－0018	－0．023	0.085		24.4	27.1	0.528	1320	007	
4／22600	－1500	－2100	－0．023	0.027	0.035		243	21.8	0.522	1370	0.07	
4／2212：00	－1500	－2050	－0．023	－0．027	0.085		24.2	27.5	0.519	1360	008	
$4 / 221800$	－1500	－2050	－0．027	0.003	0.095		24.1	27.4	0.517	1350	0.06	
4／23000	－1500	－2100	－0．023	－0．927	0085		24.1	27.3	0.510	1320	0.08	
4／236：10	－1500	－2100	－0．023	－0．027	0.050		24.0	27.0	0.512	135.0	0.07	
4／23 12：00］	－1500	－2100	－0．023	－0．025	0.080		23.9	268	0.509	138.0	007	
4／2318．00	－1500	－2050	－0020	－0．023	0.080		23.8	28.7	0.500	1280	0.10	
4／24000	－1500	－2050	－0．020	－0．020	0.080		23.7	26.6	0.503	1260	D．io	
$4 / 24000$	-1500	－2050	－0．020	－0．025	0080		23.6	26.5	0.500	110.0	0.10	
$4 / 241200$	－1500	-2050	－0．018	－0．025	0089		236	28.5	0.497	1150	0.08	
4／24 18：00	－1500	－2050	－0．020	－0．025	0.080		23.5	28.4	0.495	107.0	0.07	
4／25000	－1500	－2100	－0．020	－0．027	0080		23.4	28.3	0.433	112.0	0.06	
4／256：00	－1450	－2100	－0．020	－0．027	0.080		233	28.2	0.490	1030	0.06	
4／25 11：00	－1500	－2100	－0．020	－0．025	0.080		232	20,1	0.489	04.1	0.05	
4／2517：00	－1500	-2100	－0．018	－0．025	0.080		232	28.	0.488	98.6	0.07	
4／2523：00	－1550	－2100	－0．020	－0．025	0080		23.1	28.0	0.489	1050	0.05	
4：265：0	－1500	－2100	－0．020	－0．025	0.089		23.0	25.8	0.480	1040	0.05	
4／2，11：00	－1500	－2050	－0．015	－0，025	0080		22.0	25.8	0.471	76.1	0.07	
4／2817：00	－1500	－2100	－0．018	－0．025	0.080		22.8	25.7	0.478	1080	0.03	
$4 / 2623: 00$	－1500	－2100	－0．020	－0．027	0.075		22.7	256	0.471	51.7	008	
4／275：00	－1500	－2100	－0，018	－0．023	0.080		2.27	25.6	0.42	43.3	0.83	
4／2711：00	－1500	－2000	－0．018	－0．025	0.075		22.8	25.5	0470	459	008	
4／2717：00	-1560	－2100	－0．020	－0．023	0.075		225	25.4	0.46	43.3	0.05	
7／223：00	－1500	－2100	－0，019	－0．020	0.075		225	25.3	0.455	41.9	008	
4／28500	－－1500	－2100	－0．016	00020	0.075		22.4	$\underline{25.2}$	0.969	408	0.08	

1F－2 温度に関するパラメータ（代表点）

							－	－				
In	bol	3	90	III	CIII	I2II			6811	29	8 Cl	6008842
10	PIL	40	50	III	111	$8 i 11$			1021	891	亚	Coct 12
LU	901	81	50	111	1811	7811			107	859	析	004120
80	501	4	50	III	6ill	011			COI	［17	HLCL	00.1126
806	501	if	50	$4 i 1$	111	411			6021	19	6． 1	009 216
0 dil	Hiol	0	50	411	［il	111			P0．il	ITS	51	C0ET 96
OM	101	4	50	411	GII	¢ 11			2011	89	picl	6041974
11	101	76	50	211	611	1041			$90 \% 1$	69	FCL	0611978
019	602	21	56	III	SIII	021			171	97	樓：	0098014
111	bil	7il	SO	HII	4911	5021			017	19	121.1	O0ES 510
111	II	6	80	m	9 Cil	321			927	17	Hii	004 cos
011	111	6	50	111	C＇B1	621			681	19	द［C］	00.11976
Bil	lil	8	90	11	gआ	121			9721	199	的位	00．95ly
911	811	76	80	III	6711	［\％］			6811	89	18 c 1	000 564
911	112	26	So	d11	7111	C，			60］I	19.9	6 \％ 1	$0081+276$
$81 /$	Cil	8	50	711	bill	5821			2 bll	898	$3(1 i)$	
6＇ll	111	4	50	111	8 fin	104			6511	85	61	
18	811	6	St	411	1811	164			6011	89	8001	000820
181	611	8	50	811	9211	｜M｜			811	8 \％	［明］	00815
2π	714	71	50	811	111	PCI			［17］	859	8601	0．t1E
\％	14	4	50	911	S¢	9 Cl			881	89	011	C076
421	20	18	50	111	\％981	101			bill	199	1017	OPDCa
$\underline{614}$	Cil	（1i）	S0	811	D0il	［ $11 /$			8821	199	10 Fl	Cigilib
14	121	\％	50	031	tit	Plici			663	19	8 m	
84	511	16	50	81	954	Plici			$\overline{C 1 E I}$	［9］	IGM	00812 H
04	94	1	50	H1	［97］	SECI			T¢T	599	2 CI	00016
021	$\overline{71}$	6	50	921	017	4101			lm	¢＇98	8 CHI	008112
4	84	16	50	121	18.8	（『）			91	\％98	6991	002112
l1，	871	4	SO	9.1	解行	8 Cl C			1921	158	6991	069127
916	hil	8	90	94	lill	L ${ }^{4} \mathrm{Cl}$			981	TI	2891	06016
1 CL	Fill	6	60	71	6421				99%	F9	CSSI	$60.8100^{2 / 6}$
11	Ct	$\underline{5}$	50	挍	2921	961			1 Cc	299	6 CSI	Cowiold
6 L	12	16	80	211	\％f1	6 ClO			980	$\underline{4}$	131	$00.902 / 7$
919	P\％		50	011	201	1611			TCCI	159	$9(1)$	O000／t
8\％	FIL	66	50	911	914	9681			810	［59	B＇T	00．31817
8 gl	Vit	6	50	41	$8 \cdot 121$	6181			156	859	6671	0.7218178
di	S＇K	16	50	耾	［2］	$6{ }_{681}$			58 Cl	199	651	0089817
Til	V17	6	SO	81	171	［6］			681	858	｜hat	$00081 / 16$
7明第	VIn发	3／ET	H－f			的 1 小－48	Hir	TH．	相		VIT－W	
1－ CaNO^{2}	11－20：		－ li_{1} ldad	［ Whimat m／0	）	Wromiti		［frciunded				

1F3 水位•圧力に関するバラメータ

1F3 水佔•画かに関するハラメータ

｜all

6镜		闌辛估植 （浩教符日 （mm）	A系周子解正力 （ $\mathrm{M} \mathrm{P}_{\mathrm{a}}$ ）	力（MPa）	DNEEATMP 960）	S／CIX $力$（MP （abs）	caMs Dima （Swh）	CAMS DAMBI （Sv／h）	cans $5, C(A)$ （Svih）	OALS 5／C（B） （Svih）		保为
$4 / 181800$	-1850	－2250	－0，086	-0.034	0.1045	0.1715	15.7	11.8	0598	0.592	0045	
4190000	－1850	－2750	－10．085	－0．038	0.101	0.7720	18.1	11.8	0.596	0551	0.070	
4／19150	－1850	－2250	－0．085	－0．034	0.1041	0.1724	15.7	11.8	0.594	0.518.	0085	
4／181200	-1850	－2250	－0．083	－0．040	0.1630	0.1722	15.0	11.7	0.592	0.547	0.080	
4／1918：10	－1050	－2230	－1083	－0040	0.1034	0.7127	158	11.7	0.59	0540	0085	
4／20002	－1850	－2260	－0．087	－0．038	01041	0.1734	15.5	11.7	0.388	0544	0055	
41206：00	－1850	－2250	－1089	－0，038	0.1045	0.1741	15.5	11.8	0.987	0542	0.070	
4／201200	－1850	－2250	－0．039	－0．043	0.1045	01748	155	118	0.55	0.541	0.065	
$4 / 2018.10$	－1850	－250	－0．097	－0．043	0.1047	0.1764	16	11.8	Q682	0540	0.065	
4／2023．50	－1950	－2250	－0．087	－1045	0.1054	0.161	154	115	0980	0589	0065	
4，210：00	-1850	－2250	－1．085	－0，043	0,1081	0.7708	10.4	115	0979	0.538	0.065	
4，211200	－1850	－2250	－0．087	－00．13	0.1050	0.1769	154	115	0.57	0.537	0.655	
1／211800	－1850	－2150	－20108	－1043	01052	0.1775	183	11.4	0.575	0.535	0.055	
422000	－1850	－2550	－0．019	－0．017	01055	0.1770	15.1	11.4	0573	0934	0.065	
47220.00	－1850	－2250	－0．081	－0．047	0.1055	0.1780	152	11.4	0570	0532	0.070	
4／22 11：50	－1850	－2250	－0039	00049	01048	0.1729	15.2	11.4	0.569	0.531	0.070	
4／22 17：50	-1850	－1250	00089	－0，049	0.1047	0.1783	15.2	11.3	0.568	0590	0,080	
4,73000	－1850	－2250	0.097	－0053	0.1041	0.1785	152	113	0.669	0528	0080	
4／236：15	－1850	－-2250	00087	－1048	0.1045	0.1782	15.1	11.3	0.589	0571	0.071	
\＄／23 11：56	－1850	－2250	－0087	－4049	01038	0.1778	15.1	11.2	0563	0528	0060	
\＄／231800	－1880	－2530	－ 0089	－0051	0.1039	0.1778	150	112	0.582	055	0080	
4，24000	-1850	－2250	－0．091	－0055	0.1027	0.1776	15.0	112	0.501	053	0.070	
4／24：50	－1850	－2250	－0099	－0053	0.1031	0.1778	15.9	11.2	0.560	0522	0080	
4／241200	-1850	－－2250	－0．091	－0．051	0.1031	0.1780	14.8	11.1	0.558	0521	0070	
4241800	－1850	－2250	－0．091	－0．051	0.1034	0.1785	14.9	11.1	0.557	0520	0.070	
4125000	－1650	－2250	－0．099	－0．055	01038	0.1781	14.8	111	0950	0519	0070	
4725：00	－1850	－2250	－0．099	－0053	0.1011	0.1789	14.8	111	0.54	0518	0070	
1251100	－1800	－2250	－ 0091	－0055	0.1028	0.1787	14.	11,0	0553	0.11	0050	
4／2517：00	－ 1850	－ 2250	－1099	H005	0.1034	0.1787	14.7	11.0	0.552	8516	0050	
42252300	－1800	2239	－0．091	－0．015	0.1041	0.1782	148	11.0	0.551	0.516	0050	
$8 / 28500$	－－1850	－ 2250	－0．087	－1055	0.1043	0.1798	14.8	110	0.55	0.514	0.040	
4／20000	－ 1850	－－220	－ 0.089	－0055	0.191	0.1784	14.5	109	0848	0.517	0040	
4.281700	－1850	－－2250	－0090	－0051	0.1039	0.1780	13.	100	0517	0.511	0050	
4／292300	－－1850	－－2250	－0089	－0，049	01034	01792	142	109	0850	0.610	0.050	
497500	－ 1185	－ 2250	－0，099	－0．053	01031	01787	14.3	100	0532	0.509	0.050	
1／2711，00	01－1830	1－2250	$0-0.089$	－0053	0.1029	0192	143	108	0834	0507	0.010	
4．2717：00	－1050	－－220	－－0．039	－0053	01022	0.1780	143	108	059	0405	0050	
1／272300	［－1850	－－2250	－ 0097	－0，055	0.1022	0.1789	14.3	10.8	05.4	0.504	0045	
4／28500	－-1850	－ 2225	$0-0.099$	－0055	0.1017	0.1783	14	108	0.503	0.909	0050	

1F－3渦度｜－關するハラメータ

		Fin ${ }^{\text {and }}$	Findifut			14				Whtry	$\left[\begin{array}{l} 5 \mathrm{CH} \\ \text { sila } \end{array}\right]$	
47064	明？	1213	1084	的 1	12.9	108.8	1041	9	19.5	219	428	129
46012，${ }^{2}$	1912	1231	1075	938	1288	1118	1070	371	115	207	128	228
4／20 18i0	1001	1309	1095	089	1318	109 ？	105.5	51.	72	Ye5 5	421	121
（120） 3750	101	1332	1109	081	1384	\％	1043	5	40	190．	42.1	al
421800	10.18	173.	1094	nen	1371.	60.5	1038	48	319	1939	40	136
2421200	100.1	100.1	110.4	810	1402	135	1039	37.2	明4	1923	42.5	423
4／211200	190	14.9	1 II	$80^{3} .3$	140	123	1093	51.1	1.3	1813	42.	124
472009		14	1109	1191	1422	018	1093	11	058	14．	43	23
N／2600	013	150.4	1104	1184	1415	63	1028	318	83.7	1488	42	43
4.221150	614	1481	1110	1161	143	11.2	1028	518	178	129.1	429	42
4，22175	60．	1499	1101	1133	148	119	1023	389	573	109	4.1	421
4／12009	81.1	150	1042	1109	14.2	111	1072	5月，	4.1	1392	42.1	421
4， 3 䉼 15	059	1349	1094	1085	108.0	62	1014	349	42	13.2	42	4
1／2315 5	$8{ }^{3} 1$	16.1	D日a	103	1295	12.1	1016	992	01	10.1	113	118
\＄231500	81.1	137	10.1	1000	14.4	655	imin	89.4	gid	1990	118	419
4／24000	19.1	（13）${ }^{1}$	1030	1041	15	810	99.9	389	M	79.9	10	418
＋24500	81.1	160.9	1099	10.3	16.19	10.4	100 3	9935	6.5	129	415	11.6
4241200	6.5	1612	H00	10.9	140.5	48	88.	50.4	652	1769	4.3	$11 . ?$
4241800	718	1695	1102	1028	142.1	铞	93	394	839	168	4.4	117
435010	148	163	1198	1034	1208	N0，	889	61	6711	1243	115	1.6
4 tan 800	125	1859	1001	003	130	$3)$	895	519	102	197	4.6	4.8
4251109	明昜	1018	110	095	1450	4.2	178	32.	6） 5	120	112	418
48961700	17.1	i638	110	1	$15]$	830	873	54	114	1178	413	$4{ }^{15}$
4．75200	Sid	155.7	1098	H8	180.4	620	087	59	0.5	181.1	414	114
1，76809	019	181	104	09	1068	619	1	19	61.3	178	414	414
4／80000	62.3	14.4	110.	81	150	134	88.	51	Tim	12.3	11.4	114
4／841709	80		10.3	M3	10.7	62.1	0	596	112	129.	419	4.3
426am	85.	150	116.	61	13］	012	951	50.	合）	122	412	412
din500	n	1531	1101	813	157	51.	483	399	1019	181.9	4 L	41.2
4，27117	\％${ }^{\text {\％}}$	150，	110.	05.3	13.71	50	213	8 ig	1005	1293	41.1	41.
（allim	的1	102	1084	824	1589	38	961	W0， 5	104	1246	11.1	111
4， 12704	Q48	13,1	1102	005	15.2	680	912	60.2	1028	12.1	111	41.1
ditas00	t	1299	1095	017	1501	61.8	002	809	19.1	124	41	4

[^9]

1/25 900	37.5	37.9	526	27.0
4.251000	372	380	525	28.5
4251100	36.6	383	4.5	26.5
4/2512.00	36.1	350	41.2	270
4.25 13.00	37.2	39.0	33.1	275
4.251400	39.7	32.3	35.1	25.0
4,25 1500	43.0	39.6	34.0	28.5
412516:00	459	40.0	32.3	28.5
4.25 17:00	4 4. 1	403	31.2	290
4.2518 .00	50.5	60.1	30.1	29.5
4.2519 .00	52.9	33.3	29.3	29.5
$4 / 252000$	55.6	390	28.5	30.0
$4{ }^{\prime 2} 252100$	58.0	38.5	27.9	30.0
4252200	60年	38.0	273	30.5
4,2523,00	622	37.8	27.0	31.0
4,26000	53.3	37.5	29.6	31.5
4.28100	50.5	37.8	263	320
4720200	48.0	38.1	26.1	32.5
41263.00	46.0	38.4	259	32.5
423400	442	38.d	257	330
4.28500	42.7	39.1	25.5	330
$4 / 26800$	41.1	39.5	25.4	33.5
$4 ; 26.700$	39.9	40.0	25.2	340
47268001	39.1	40.3	25.1	345
4.269001	39.0	40.6	250	35.0
4.2010 .00	40.6	415	25.0	35.5
4.2011 .00	43.1	40.4	24.9	360
4 4.261200	45.9	40.0	249	36.0
412813.50	48.8	39.1	24.8	36.5
4.2614000	51.1	38.?	24.5	37.0
4,28.15:00	53.7	38.3	24.8	37.0
4:28:16:00	55.8	37.9	248	37.5
422817001	583	37.5	24.8	37.5
4/26 18:00	B0. 6	37.1	27.6	38.0
4/25!900	61.0	38.8	28.7	380
4.2620.00	54.9	368	30.2	57.0
4:2621:00	51.0	37.1	32.2	350
4.26:22:001	49.0	57.3	34.3	34.5
4/29 23.00	45.7	37.7	56.3	34.0
4.270 .001	448	38.0	37.9	33.0
$4 ; 271: 00$	432	38.3	39.3	320
$4 \cdot 212.00$	420	387	40.2	31.0
$4 \div 273,00$	41.0	35.0	423	31.0
4r274:00	39.5	313,4	44.2	30.0
4275000	39.0	39.7	459	29.5
$4276: 00$	38.3	40.1	47.9	28.5
427700	37.6	20.4	49.5	28.5
4.278 .00	370	40.8	51.1	280
4.27900	35.4	41.1	528	27.5
4.271000	37.5	413	543	27.0
4,2711:001	40.5	41.1	44.3	27.0
4.27:200	42.3	40.8	0.3	275
42713.00	45.3	2 c .5	37.8	28.5
4.2714 .001	48:1	38.1	33.5	29.0
4/2715000	50.4	38.8	338	29.0
4/2716:00	527	38.3	321	29.5
4/27 17.00	55.0	37.8	30.9	30.0
$4 / 2718.00$	78.2	37.5	29.8	30.0
4.2719000	59.4	37.1	29.2	300
$4,2720: 00$	53.4	37.0	28.0	30.5
4/27.21:00	50.5	37.4	32.8	30.5
4.272200	48.2	37.6	34.1	30.0
$4 / 2723.00$	47.5	37.8	35.9	29.5
4.280 .001	45.3	SE3	37.5	29.0
$4 / 23100$	43.3	38.6	39.0	29,0
4228000	41.9	39.	40.7	28.5
4.28300	41.0	39.2	42.1	28.0
4/29 400	40.1	39.6	439	27.0
423500	39.4	39.9	45.6	27.0
4.28000	33.7	404	47.5	27.0

For review

From: GE Hitachi Nuclear Response Team (GE Power \& Water) [maito:GE. HitachiNuclearResponseTeam@ge.com]
Sent: Saturday, April 02, 2011 3:32 PM
To: RST01 Hoc
Cc: inpoerctech@inpo.org
Subject: Q385 Rev. 6
Rev 6 from GEH

From: GE Hitachi Nuclear Response Team (GE Power \& Water)
Sent: Saturday, April 02, 2011 2:06 PM
To: 'RST01.Hoc@nrc.gov'
Cc: 'inpoerctech@inpo.org'
Subject: RE: Q385 Rev. 51245

Rev 5 from GEH

From: GE Hitachi Nuclear Response Team (GE Power \& Water)
Sent: Saturday, April 02, 2011 7:50 AM
To: 'RST01.Hoc@nrc.gov'
Cc: 'inpoerctech@inpo.org'
Subject: Q385 Rev. 40400
GEH has reviewed the Supplemental Paper on Containment Venting dated 02 April 2011 (Q385 Rev. 40400 file) transmitted by the RST on 02 April 2011 at 5:22 AM EDT.
(b)(4)

Abstract

From: Hoc, PMT12

Sent: Wednesday, March 16, 2011 1:55 PM
To:
PMTERDS Hoc
Subject:
Attachments:
FW: Press Release PDF 16 March 201002
Press Release PDF 16 March 2010 02.pdf

From: PMTO2 Hoc

Sent: Wednesday, March 16, 2011 1:10 PM
To: Hoc, PMT12
Subject: FW: Press Release PDF 16 March 201002

From: PMTO2 Hoc
Sent: Wednesday, March 16, 2011 1:08 PM
To: Burnell, Scott; Coggins, Angela; (b)(6) ; Jones, Cynthia; Brenner, Eliot
Cc: cmht@nnsa.doe.gov; narac@lini.gov; HOO Hoc; LIA11 Hoc
Subject: Press Release PDF 16 March 201002
Attached as requested by the NRC Chairman is the PDF version of the NRC Protective Measures Team (PMT) dose estimates that support the NRC and State Department press release to expand the evacuation zone to 50 miles.
(b)(5)

It is our
understanding that NRC's Office of Public Affairs will attach this PDF containing dose projections to their next press release.

Protective Measures Team
NRC Operations Center
301-816-5100

All,

Here is some information I received from the Shaw group. I have permission from Bob Holland to release this to you.
Al

Al Hochevar

Institute of Nuclear Power Operations

Cell

 (b)(6)Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

From: Holland, Robert (Stoughton) [mailto:robert.holland@shawgrp.com]
Sent: Saturday, April 30, 2011 8:17 AM
To: Hochevar, Albert R. (INPO)
Cc: Gard, Lee A (INPO); Fadel, Daniel P
Subject: FW: Curie Content of Fuel Cores and Spent Fuel Pools
Al,
This is info we asked Shaw Radiological folks to provide. Please use as you see fit. I just forwarded Tom Stevens' table on SFP data to her for additional info. She had asked for some additional info at bottom...
V/r Bob

Robert Holland

Project Manager
Nuclear Services
Shaw Power Group
100 Technology Center Drive
Stoughton. MA 02072-4705
517.589 .1256 direct
(b)(6) cell
517.589.2969 fax
rober.holland@shawgro.com
Shaw ${ }^{\text {TM }}$ a world of Solutions ${ }^{\text {m }}$

www shaworo.com

DISCLSNAER

 ty

 a mul and any
Imetrik yout
(b)(4)

From:	Hizchevar Abert R. (INPQ)
To:	Reynolds Steyen
Cc:	Chuck Casto; Fresman Scott; Miller, Mark; Mitchell, Mathew; Peterson Hiromori Plasse Richard; Temos Bobert: Mitman Jeffey
Subject:	[WARNING: MESSAGE ENCRYPTED]OFF SHORE CONTAMINATION RESULTS
Date:	Saturday, April 30, 2011 11:25:34 PM
Attachments:	OFF SHORE CONTAMINATION Press Release.docx
	NUGLIDE SUMMARY.Ddf

Steve

Off shore contamination results. Not sure if you have this or not. If I am sending you information that is not useful, please let me know.
Al

Al Hochevar
Institute of Nuclear Power Operations
$\mathrm{Cell} \quad(\mathrm{b})(6)$
Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

[^10]Results of Nucide Analysis of Seawater <Offshore of baraki Prefecture> Reference
(Data summarized on April 30)

Place of Sampling	3 km offshore of Takadokobama shore		3 kmoffsh ore of Kujhhama shore		3 km offishore of Oarai shore		3 km ofishore of Hirai shore		3 km offshore of Hasaki shore		(2) Density limit by the ammouncement of Reactor Regulation ($\mathrm{Bq} / \mathrm{cm} 3$) (the density limit in the mater outside of surrounding monitored areas in the section 6 of the appendix 2)
Time and Dale of Sample Collecion	At9:00am Apil 29, 2011		At7:59am April 29, 2011		At 10:46am April 29, 2011		Al8:20am April 29, 2011		A19:38am April 29, 2011		
Detected Nuclides (Half-IIfe)	(1)Density of Sample ($\mathrm{Bq} / \mathrm{cm}^{3}$)	Scaling Factor (1)(2)	(1)Density of Sample ($\mathrm{Ba} / \mathrm{cm}^{3}$)	Scaling Factor (1)(2)	(1)Density of Sample (Bq/ $/ \mathrm{cm}^{3}$)	Scaling Factor (0)(2)	(1)Density of Sample (Ba/cm ${ }^{3}$)	Scaling Factor (1)(2)	(1)Density of Sample (Bq/cm ${ }^{3}$)	Scaling Factor (1)(2)	
1.131 (about 8 days)	ND	-	ND	-	ND	-	ND	-	ND	-	4E-02
$\begin{gathered} \text { Cs-134 } \\ \text { (about2 years) } \end{gathered}$	ND	-	HD	-	MD	-	ND	-	ND	-	6E-02
$\begin{gathered} \text { Cs-137 } \\ \text { (about } 30 \text { years) } \end{gathered}$	ND		ND		ND		ND	-	ND	-	9E-02

※ $0.0 \mathrm{E}-0$ means 0.0×10^{-0}
※ Data of other nuclides are under evaluation.

Press Release (Apr 30,2011)
The results of nuclide analyses of radioactive materials in seawater collected at the offshore area of Ibaraki Prefecture

On April 29, 2011, we started sampling survey of the sea water at 5 points in the 3 km offshore area of Ibaraki Prefecture.

Today we have conducted nuclide analysis of radioactive materials in the water sampled on April 29. We have reported the result of the analysis to NISA and the government of Ibaraki Prefecture as per attached.

From:	Hayden, Elizabeth
To:	Brenner, Eliot
Subject:	FW: d4awings
Date:	Monday, March 28, 2011 4:50:00 PM
Attachments:	Document.pdf

PDF of Bechtel equipment drawings.
-----Original Message-----
From: Hayden, Elizabeth
Sent: Friday, March 25, 2011 10:06 AM
To: 'MMallen@bechtel.com'
Subject: FW: d4awings
Michelle,

Here are the 3 drawings on the equipment that evolved.
Beth Hayden
Senior Advisor
Office of Public Affairs
U.S. Nuclear Regulatory Commission
--- Protecting People and the Environment
301-415-8202
elizabeth.hayden@nrc.gov
-----Original Message-----
From: ELIZABETH.HAYDEN@NRC.GOV [mailto:ELIZABETH.hayden@nrc.gov]
Sent: Friday, March 25, 2011 8:51 AM
To: Hayden, Elizabeth
Subject: d4awings

~ 50 meters

\qquad
$\xrightarrow[ـ]{\longrightarrow} \quad \rightarrow \quad 700$ meters units 283
*Notes:
Also need diesel trucks
Robots to enter high radiation areas
Train
2

...12TEMP COOLING SYSTEM.dgn 3/18/2011 2:11:48 AM
-

From:
Hoc, PMT12
Sent: Friday, April 29. 2011 11:26 AM
To:
Subject:

Attachments:

OST01 HOC
FW: DRAFT Document - Recommendation on Update to Travel Advisory - Official Use Only
OUO DRAFT Rec for Travel Advisory Update 29April11.docx

From: Hoc, PMT12
Sent: Friday, April 29, 2011 11:21 AM
To: Hoc, PMT12; Bentz, Julie A.; veal.lee@epamail.epa.gov; Perciasepe.Bob@epamail.epa.gov;
Dietrich.Debbie@epamail.epa.gov; Keith, Sam (ATSDR/DTEM/ATB); Tupin.Edward@epamail.epa.gov; boyd.mike@epa.gov
Cc: McDermott, Brian; Evans, Michele; Skeen, David; Milligan, Patricia; Brock, Kathryn
Subject: DRAFI Document - Recommendation on Update to Travel Advisory - Official Use Only

Sorry...here is the attachment.

From: Hoc, PMT12
Sent: Friday, April 29, 2011 11:09 AM
To: 'Bentz, Julie A.'; 'veal.lee@epamail.epa.gov'; 'Perciasepe.Bob@epamail.epa.gov'; 'Dietrich.Debbie@epamail.epa.gov';
'Keith, Sam (ATSDR/DTEM/ATB)'; 'Tupin.Edward@epamail.epa.gov'; 'boyd.mike@epa.gov'
Cc: McDermott, Brian; Evans, Michele; Skeen, David; Milligan, Patricia
Subject: DRAFT Document - Recommendation on Update to Travel Advisory - Official Use Only

Hello Interagency Partners,
The attached document provides draft language to assist with communications
(b)(5)

NRC wants to collect any critical comments (show-stoppers) from the Interagency (one set of comments per agency) by no later than COB on Monday 2MAY11 ET, so that NRC may integrate/resolve any issues raised and finalize the document. Once the document is finalized, the NRC team in Japan will provide the document to the Ambassador and provide the team's current assessment of the decision considerations.

NRC would be happy to discuss your comments either individually or in a conference call, perhaps on Monday if there is interest. Please direct all replies/comments to PMT12, Kathryn Brock, and Brian McDermott (pmt12.hoc@nrc.gov, Kathryn.brock@nrc.gov, brian.mcdermott@nrc.gov). Or, we may be reached by telephone through the Operations Center at 301-816-5100.

Sincerely,

Kathryn Brock
US Nuclear Regulatory Commission
Protective Measures Team (PMT)

From:

Sent:
To:
Subject:
Attachments:

OST01 HOC
Friday, April 29, 2011 4:25 AM
RSTO1 Hoc; Hoc, PMT12
FW: OUO FW: April 28 briefing notes, excel spreadsheet and radiation survey map OUO
April 28 Ryan 6 pm briefing notes.doc; TEPCO Sumarry Rev. 102 final April 28(1).xls; 201104270850 Facility Area Survey Data[1].pdf

From: ET02 Hoc
Sent: Friday, April 29, 2011 4:02 AM
To: OST01 HOC
Subject: FW: OUO FW: April 28 briefing notes, excel spreadsheet and radiation survey map OUO

From: ET01 Hoc

Sent: Friday, April 29, 2011 4:01:35 AM
To: ET02 Hoc
Subject: FW: OUO FW: April 28 briefing notes, excel spreadsheet and radiation survey map OUO
Auto forwarded by a Rule

From: LIA08 Hoc
Sent: Friday, April 29, 2011 4:01:30 AM
To: ET01 Hoc
Subject: OUO FW: April 28 briefing notes, excel spreadsheet and radiation survey map OUO
Auto forwarded by a Rule

Liaison Team Coordinator
US Nuclear Regulatory Commission
email: lia08.hoc@nrc.gov
Desk Ph: 301-816-5185

From: Wittick, Brian
Sent: Friday, April 29, 2011 2:22 AM
To: Emche, Danielle; LIA08 Hoc
Subject: FW: April 28 briefing notes, excel spreadsheet and radiation survey map
FYI
From: Hochevar, Albert R. (INPO) [mailto:HochevarAR@INPO.org]
Sent: Thursday, April 28, 2011 5:44 AM
To: Huffert, Anthony; Wittick, Brian; Moore, Carl; Chuck Casto; Norwood, Donald; Gepford, Heather; Mitman, Jeffrey;
Sally, Michael; Hay, Michael; Meighan, Sean; Garchow, Steve; Reynolds, Steven; CAPT Dirk L Foster; Reid Tanaka
Subject: April 28 briefing notes, excel spreadsheet and radiation survey map

FYI,
-AI
Al Hochevar
Institute of Nuclear Power Operations
Cell \quad (b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

DISCLAMER

 INPO or WANO. This e-mail is intended solety for the use of he individiai or entity for which it is intented il you are nci the intended recipient of this e-mail, any cisseminalion, distribution, copyng, or acton iaken on reiation to the conteris of and anachmeris to this email is conbry te the rights of inPO of WANO and is prohibited. If you are rol the mtended recipient of the e-mait piease roif; the sende immediately by return ental and permanenlly detele the orginal and any cooy or printout of this email and any anacnments.
Thank you.

Wittick, Brian

From:	Hochevar, Albert R. (INPO) [HochevarAR@INPO.org]
Sent:	Thursday, April 28, 2011 5:44 AM
To:	Huffert, Anthony; Wittick, Brian; Moore, Carl; Chuck Casto; Norwood, Donald; Gepford,
	Heather; Mitman, Jeffrey; Sally, Michael; Hay, Michael; Meighan, Sean; Garchow, Steve; Reynolds, Steven; CAPT Dirk L Foster; Reid Tanaka Subject:
Attachments:	April 28 briefing notes, excel spreadsheet and radiation survey map
	April 28 Ryan fp briefing notes.doc; TEPCO Sumamy Rev. 102 final April 28(1).xls;
	20110427 0850 Facility Area Survey Data[1].pdf

FYI,
Al

Al Hochevar
Institute of Nuclear Power Operations
Cell
(b)(6)

Restricted Distribution: Copyright © 2011 by the Institute of Nuclear Power Operations. Not for sale or for commercial use. Reproduction of this report without the prior written consent of INPO is expressly prohibited. Unauthorized reproduction is a violation of applicable law. The persons and organizations that are furnished copies of this report should not deliver or transfer this report to any third party, or make this report or its contents public, without the prior agreement of INPO. All other rights reserved.

[^11]
FUKUSHIMA DAIICH

Status as of Wpm (JST) April 28, 2011- TC Briefing.
Information that is in italics should not be shared as it has not yet been released by TEPCO.

The priorities remain as follows:

- Ensuring fresh water injection and cooling capabilities to the reactors and spent fuel pools. Goal is to reduce and maintain temperature in the reactors and spent fuel pools below 100 degrees centigrade.
- Draining water from the turbine buildings and trenches to reduce the radiation levels so that work can continue.
- Containing the spread of radioactive materials.

Highlights for today include the following:

- N2 purging of the Unit 1 Drywell continues. TEPCO increased injection flow to the primary containment vessel to $10 \mathrm{~m} 3 / \mathrm{hr}$ at approximately 10:00 am Wednesday morning. Reactor vessel temperature, drywell temperature and pressure were observed to decrease after the start of the injection increase. The rate of change of these parameters slowed this morning. TEPCO intends to stop the increased injection rate before drywell pressure reaches atmospheric.
- The robot is scheduled to enter the Unit 1 reactor building today to check for possible leakage following the increase in vessel injection rate.
- Transfer of highly radioactive water from Unit 2 to the Centralized Radioactive Waste Treatment Facility continues at a rate of 250 tons/day. Level in the Radioactive Waste Facility has risen 1055 mm since the start of transfer.
- Unit 2 trench level has decreased only slightly since Monday and is now 900 mm from the top of the trench. Unit 3 trench level has increased an additional 20 mm and is now 950 mm from the top.
- Unit 4 turbine building water level increased 50 mm and is at 3050 mm (1.2 m above floor level). Unit 3 turbine building water level remained steady at 3000 mm .
- Eighty five tons of water was added to the Unit 4 Spent Fuel Pool (SFP) yesterday. No addition to the Unit 4 SFP is scheduled for today. Sixty tons of water is scheduled to be added to Unit 2 SFP today.
- After reexamining the recent differences between observed water level increase and calculated water level increase following water additions to the Unit 4 SFP, TEPCO now believes the Unit 4 SFP pool may not be leaking. The condition of the Unit 4 SFP will continue to be evaluated closely by TEPCO.
- A water sample for radionuclide analysis is scheduled to be taken from the Unit 4 SFP today.
- TEPCO released their plan for radioactive water treatment today. Ultimately it will have a capacity of $1,200 \mathrm{~m} 3 /$ day. A reservoir capacity of $31,400 \mathrm{~m} 3$ will be installed by early June. Additional capacity will be added later. Currently there is an accumulation of $87,500 \mathrm{m3}$ of radioactive waste water at the station. Injection into the reactor pressure vessels is adding to this total daily.

Unit Status

- In Unit 1, non-borated fresh water injection into the main feedwater line was increased in steps up to $10 \mathrm{~m} 3 / \mathrm{hr}$ yesterday on a temporary basis. Future injection flow will be determined following analysis of data obtained during the injection flow increase. Comments on parameters:
- Reactor pressure decreased to .415 MPa abs (60 psig).
- Feedwater nozzle temperature is considered to be suspect but did show a decrease of approximately 25 C (77F).
- Reactor vessel lower decreased approximately 12 C to 98.5 C (209 F)
- Drywell and Torus pressure decreased to .125 MPa abs (18 psia).
- Drywell and Torus dose rates are considered to be suspect.
- In Unit 2, injection of non-borated fresh water using the low pressure coolant injection continues at approximately $7 \mathrm{m3} / \mathrm{hr}$. Comments on parameters:
- Unit 2 reactor pressures remain suspect.
- Feedwater nozzle temperature was steady at 120 C (248 F)
- Reactor vessel lower temperature is believed unreliable.
- Drywell pressure was stable near atmospheric.
- Dose rate in the U2 Drywell continues to decrease. The drywell dose rate is $2.24 \mathrm{~Sv} / \mathrm{hr}$ or ($2,240 \mathrm{Rem} / \mathrm{hr}$). The Torus dose rate reading is considered suspect.
- In Unit 3, of non-borated fresh water using the low pressure coolant injection continues at approximately $6.8 \mathrm{~m} 3 / \mathrm{hr}$. Comments on parameters:
- Unit 3 reactor pressures are considered suspect.
- Feedwater nozzle temperature is considered to be suspect.
- Reactor vessel lower temperature was steady at $110 \mathrm{C}(230 \mathrm{~F})$
- Drywell pressure was steady at . 102 MPa abs (15 psi). Torus pressure is also steady at . 178 MPa abs (26 psi).
- Dose rate in the U3 Drywell continues to decrease and is at 14.2 $\mathrm{Sv} / \mathrm{hr}(1,420 \mathrm{Rem} / \mathrm{hr})$. Dose rate in the Torus is considered to be suspect.

Dose and Dose Rates

- As reported yesterday, a female employee received a cumulative radiation dose of approximately 18 mSv during the first quarter of 2011. This exceeds the maximum allowable dose for a female of $5 \mathrm{mSv} / 3$ months. Upon examination it was determined that the woman received 13.6 mSv internal exposure. The woman was working in a building that was contaminated by the hydrogen explosion on March $12^{\text {th }}$ and was not wearing a protective mask. Two other females working in the same building may have also exceeded their exposure limits.
- Overall site dose rates are stabilizing or decreasing slightly. For example:
$>$ The last reading reported at the main gate was $48 \mu \mathrm{~Sv} / \mathrm{hr}$ (4.8 mrem/hour) and $22 \mu \mathrm{~Sv} / \mathrm{hr}$ ($2.2 \mathrm{mrem} /$ hour) at the west gate.
$>$ The side of the administration building facing the units decreased slightly to $430 \mu \mathrm{~Sv} / \mathrm{hr}$ or $43 \mathrm{mrem} / \mathrm{hr}$.

Fukushima-Daiichi Current Status and Planned Hork
28 April at 06:00\&09:00 (Rev-102)

		$\left(b_{1}\right.$			(i)			
tuativits Controc 0talt (456:(a)	carear Sispa		[ill (ha ate ippl fartud in the cote		 tlourd for cuiz drood seplacerat mat crites mincr)	```HCote ne lowed vith badia for the sun of lut matuem:m cyl Hisy malted m (Earlauth cxerred dil comituse of```	Wleat ime crian 17 math) pray lual on Htold fathom hat $6: 39$ ons Muld	
		 conlicesuly) centirousif)			-			
	Srat torts firmord hinkarisfi detioltios)	Llear (ten mextere) Cilo add boris sid to fred coolat herore cieflas cold stan dern atter restoring pery) Coprivisa SS	Lharate liable mater iajaction siatid Lst $10: 10$ of 88 lated) den ten maste) whar! cietlad cold dal tan a Aponter sif	itas teth matare) blate xietriag cold stan terat cafite restorlof powrs) Therating 5 If				
	Cureas Sutbs	(tirita to ceprom iandld aix dith (firs lata: $10.0 \mathrm{D}^{\text {d }}$ /h by lateria - here wirce no seithat to off-sht pover. -for RT flodies - Cory corlias witer floe rity mos ctured 0 CI Mayrs to celtre actratima caditions of (ztulid ! 506 hxil? iniretiox un lastaled (as 14 derib) Dojersian	 avilud maill sile pinkr. lat $\mid 1: 3$ on 5 detil) 6 43 (atert) Illawa to satior operatus crefitions of lac:alld (tate chill) inyetita in whaliod (co 11 dail) thinetilet 	Tived nut ingricion fray fP Hw to low pravire conlex tajection fisitud to (1) $1: 6$ ami. (a) $1: 3: 3 \times 3$ aspil) Wiestatalice of Ur alterate puap for 3 (38 lard) of Thsalles (on 6 4pril) iajortion ns istalled (oa Al haril) IItasity of for care coolisk niti Itakicion 		倩 	 111:17)	
rmpas: sipit : Gults: hat finsil (Cor" coolinis:		Marilt wallemuni? bilta of im: : 89.5t	AM1I? prill! (atikund) catimentid) Int qua math: Mi gic: 	```Lprall``` ```Aprill``` ```mationula!``` ```cuatimysty)``` ```trod chaticauly da to supertid inthetim maxtas thom of EF : 109.6 C C```		(10p il) iff.his an thuy Don tast (tare) Meril) C. Whers Malli) 30.14	mpril) 14F:013m wail! $0.013 \mathrm{EP}_{\mathrm{c}-1}$ tralil 1.: ${ }^{2}$	
	Su: Ethls thased untiritios al Coolit; EtIT Suppl, fotit	1818 The rat ens sumpert de to lits Larbicy ty: (diaqu). (Laxi Ifra Coullaf lugres testorlide eff site paral timbed mapoparals	10 41 (lie noth us, surpeind aw : hid 14 (traine enfldily). 4ces lin (ontian Macal) rtatite offestup port ithed traiprats	 ther not in wherded trisese of Brin the untix beillity. nater restoring off-itu part it related tquipents				

Cons： Ftax！ ifanilused conlarival	fartal Stuls							
	Nathem Plamel Hew ｜xalthind	 －Fill for mod ratilatloa lifer rith minucem －Rrinfersed caltotine of 106 gratir Qfter meturify off－siter（xom） Dintorina PT mery laxilus －MTC triea fipact Ufier rextretion of eapipeals） Gixa mation in sti we Clestrime $D / 7$ inditat coll 	［se 8 hill ！	50x a cill ${ }^{\text {a }}$		\square	\square	
｜Saral Fur） （toy（Spi） Oxay tame 4 Tiser Juppist	Curral Slate	```Ph? niter lurel``` ```mixtrisia thate ta mapre bexam of wor rear anplil``` ```(frnd Intr) (shlad the Ilapana) - 31 buch B:03-12.51 - 31 Herct 11:35-16:4 - 2 Naril 11:16-17:19``` ```hit I eat hand fica "lane gitalf" to``` ```Mifensuluat for watr！forins rith electrit mitor \\ 榢：``` ```thit 1. \\ （ \(\cos 34 \times 1\) ）```	lisp nat le：1 thathin thater Intil sint Ety ：caprimin Wister suy ixd len tine was calend til turth． 	ISTP nat lest ｜nsp trimptate sf lath of paser supplif Batert － 10 dxil 18：1519：15 Grab b：et Ifitpmation lar ules ferlime tith fitetris Abrilt Thy 2 itruyberard na wares lat properati！ 3 ［ m II aril） － 3 derif 12：00－12：02 frest of Oitr lard） oul trath	 ord 1 Lat $13: 18$ ox it bred a linh －inctis vidi it Eleften －Aqril 15：35－18：47 － 7 1pril 18．22－19：0 － 3 4．4il｜t：0n｜s：2 Itrearation for atiat fectise rith elentit suts mationt mepleced lot 9 Apt！！ Elendeata： 13s $[\mathrm{EE}$ ］ Is wheied to be bixaza． （7ate tiol Impatictr． 20． 2 c ad A dpill	IThertion swirim －IS MEE－：拟－I S？ 318 USpp bite loul：wirtuin fiter EIF tive tre： L－（I） Tilh roe！ of $!$ frak wist tud is by tal lanil－ （1）tril） 	Mlmising teirnm atal regall －Brat mesal lo sit conlar an of bi ｜epril｜ roid of 1.1 pril） 	Tisf mith tremaikr fis suitra La 18 \％$\%$ and Alvitr sappls ta the cemo Hf h M1 astm
	palcen wht （6）： crithition of Fit inal		Gifirth mitr iajectice to sp tragh ite ctistits 113 （6：0）					
Bith Volutat的 Fheas xupoly	faterat situs	```Hsoo Pic X conarcied to lacal distilitalica``` ```say urch``` ```ca 31 hard``` ```inhuiled.``` ```bren mitable) [an 19 daxil) - Iie lise to biat sto mina bes vo Inotilex (ise 35 Iprot)```	distillatiso wirnt of lddum Lat $13: 46$ कt 9 thect ma 13 Gt：m lit． istsalite． （en 5 L miril）		fraxisyivo aterphat （2． $81-6417$ （wherild as at－jo dpril） m 13 barrl 的约 bitch 23 insulalite flata Mxiter lime－ atwo lise tu beta arilated lon lf mail）	allisist be rectayd man of iar alfsile Neet （line 1．．4） 58 mm cuntitusle an tcanatid ta the rater suppiy liry on fith xurch 14： Brate Amilicalion failliy mo precred i1 9：010 wa 3th Harch Dismipation cale luying wat for waiteris： Lums HETrencion atice past －Tie liat to Catt tit mio bas at ｜latilint 	Tinaxivy prel athlish les aspraxed part of bily aff－ sis exer trasalsial lisw flow bri Hos （1．2H） J ${ }^{\prime}$ uantitatis limorery pay（oxts as sbastitute erckicr thared br Pio entrited in 30 Dorch rextere． ［astuld （8） lar 11 ）	 wat ith hats Dal has ribyed de to port circtil siluh IIAlame a：17：4！os 11 bril －horit ngity is ulaped te to ximptra （2）teril 15：46－16：31）


				```Ofmer ofl de is tort at Sairfiusthim```  ```Chatation moth of dereticity vill tr molutid stitr comaleting neter traster froe ITs```				
$\begin{aligned} & \text { ox poute } \\ & \text { sopply } \end{aligned}$	Crren Sums	Thart of ll C evelipatis vere ponered by uruparan biluty io manter olial ม,						
	Orrent Statu		Tinctidertey the injertion of te pos iato A.    part   of ibe restor hildias is of exoreted Thite mite derrond os ?lat brth 7ns   sapessed to be the sime fro 5 f?   thal    cxil.   It is mand hat this nitightre  	Cr		13 holes(3~1.5 (1) retr drilled on the   ciiling pasp (as0 m thid) of Le merior   Bildin of is buth to reliere dratocen   cat and to aroié riplosica    coetred   la preatal rize mondation lan 30 (arch)	```the```  ```retor Evifily on 8 kurch la reline Matiouqn (1) mad to moid riplaticos```  ```scored to maval tait iemansima```	
					-			
		```Draintit mier is \(1 / 1\) That leiel in \(1 / \mathrm{n}\)```   ```4 lif traster```  ```09:30) Droinics riat ja froch Edititon Irrel of the niter surfact la th Woxh:```  ```Ither Itad (froe lop dide of graizet to meter garfact```    ```giter lotel is its trexit res established (on? 4ril)```			SOrxiairy mater   - Tater leial is lid    : sepe as if kpri] li:00   - Bater trasofer thaxmintated   - $\mathrm{T} \boldsymbol{1} \mathrm{H}$   (2 april li:35-1 Apri! 09:72: argwed      0s:-2. (1-:5 fras: 3 dar- $10: 00-1$ dpr.   susperdod the io hiph nive leati It the liment   Work fac dationg of! tre lesk ha pi:    ilose erad!		Brainit vint   - Wher leil that            - $\mathrm{H} \cdot \mathrm{x}$       nete:   cresitrint tamiva ster        	Thabeid phet   - Comemted [ $\rightarrow$ m: Ma 日      Ditaingat toce fras wiap pretso   culdin   to cuapined      Enliditr      Mtoxine owrius for Heppils arambiti   inceastion is in progres (If April -   139 trill   Dlowh for swistiog off in lean of   props   bullaier las It artll)   Ahid ardutim:ef nete thasim Ireatil? to in Ixilition (it marit lo:cf - )   (29 intil)       falue
	$\begin{aligned} & \text { Sint Porks } \\ & \text { Plyard } \end{aligned}$							

Oltrrs	Crreat States	Thitr Thit krat Cantaticative Ceatroi Mramol of thals Ufros plater ho frat of lat creve failition. (P)
	Wit forts fllound	

Metrelaigat:

	Iffilralor heesies lasel
on Dry fell	
	9\% : Self Mramer face
ff fire forectiom	Sp : Spat fut Pod
16: Mia Stus	
14: Hoter Pret citur	gre : Stan man Cosing
	SLC Stand br itoudd fertral
Pic: faus gatiberim Conter	

[^0]: DISCLAINIER:
 This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged. confidential, or protected by copyright balonging to INPO or WANO. This e-mail is intended sclely for the use of the individual or entity for which it is intended. if you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of inPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notity the sender immediately by return e-mail and permanently delote the original and any copy or printout of this e-mail and any atiachments.
 Thank you.

[^1]: DISCLAIMER:
 This email and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution; copying. or action taken in relation to the contents of and attachments to this email is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by retum e-mail and permanently delete the original and any copy or printout of this email and any attachments.
 Thank you.

[^2]: ******Please note: All attachments are Official Use Only**********

[^3]: \cdots -

[^4]: .DISCLAIMER:
 This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this email, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments.
 Thank you.

[^5]: .DISCLAIMER:
 This e-mail and any of its attachments may contain proprietary INPO or WANO information that is privileged, confidential, or protected by copyright belonging to INPO or WANO. This e-mail is intended solely for the use of the individual or entity for which it is intended. If you are not the intended recipient of this e-mail, any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is contrary to the rights of INPO or WANO and is prohibited. If you are not the intended recipient of this e-mail, please notify the sender immediately by return e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments.
 Thank you.

[^6]: CHSELAIMER-
 This e-mail and any of itsoutachments may contain proprietary INPO or wANe-nformation that is privileged, confidential, or protected becepyright belonging-te-inpo or WANO. This email is intended solely for the use of the individual or entity of this e-mail, any dissemination, distribution, copying, om action taken in relation to the contents of and attachments to this e-maithis contrary to the rights of INPO or WEANQ and is prohibited. If you are not the intended reeiphent of this e-mail, please notify the sender immediately byseturn e-mail and permanently delete the original and any copy or printout of this e-mail and any attachments Thank you.

[^7]: H翼不良

[^8]: DISCLAiMER:

 Tn Erik you

[^9]:

[^10]:

 1-arin :

[^11]: CLEARER:

 That mu.

