•	REGULA	Y INFORMAT	ION DISTRIBUTI	DESYSTEM (RI	.DS)
FACIL:50-3 AUTH,NAME ROOT,L.D. RECIP,NAM	31 Duane Arnol AUTHOR Iowa El E RECIPI	d Energy (R AFFILIAT) Lectric Lig LENT AFFIL)	ht & Power Co,	ectric Light	& Pow 05000331
SUBJECT: F " f DISTRIBUTI	orwards respor Technical Rept or BWR Coolant	nse to requ on Matl S Pressure COPIES F	est for addl i Selection & Pro Boundary Pipir REFEIVED:LTR	nfo re NUREG- cessing Guide	0313, lines
NOTES:					
I	RECIPIENT D CODE/NAME R ORB2 BC 01	LTTR ENC		NT COF VNAME LTTR	
	D/HDS2 B/DL/ORAB G FILE 04	1 0 1 0 1 1	NRR/DL D1 NRR/DSI/F RGN3		1 1 1

LPDR NSIC

03 05

1 1

1 1

TOTAL NUMBER OF COPIES REQUIRED: LTTR

09

02

6 1 1

6

- 1 1

EXTERNAL: ACRS NRC PDR NTIS

23 ENCL

÷

21

Iowa Electric Light and Power Company

December 21, 1982 NG-82-2784

LARRY D. ROOT ASSISTANT VICE PRESIDENT NUCLEAR GENERATION

> Mr. Harold Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

> > Subject: Duane Arnold Energy Center Docket No: 50-331 Op. License No: DPR-49 NUREG-0313, Rev. 1, Request for Additional Information

Dear Mr. Denton:

This letter and attachments are submitted in response to the NRC's request for additional information dated November 8, 1982 regarding NUREG-0313, Rev. 1, IGSCC. In accordance with your request, a copy of this response is also being provided to EG&G Idaho, Inc.

Most of the information requested in your letter has been provided to the NRC in the following three principal documents (1) the DAEC FSAR and UFSAR, (2) Iowa Electric letter NG-82-2653 dated December 1, 1982 submitted in response to IE Bulletin 82-03, and (3) Iowa Electric letter LDR-81-225 dated June 30, 1981. Attachment 1 to this letter identifies the documentation applicable to your individual questions. Attachments 2 through 5 provide copies of this documentation.

Very truly yours,

Larry D. Root Assistant Vice President Nuclear Generation

700 (

LDR/WJM/rh* Attachments:

Response to NRC letter of 11/8/82
 DAEC leakage monitoring information
 DAEC UT procedure
 DAEC Response to IEB 82-03

5) DAEC letter LDR-81-225 dated 6/30/81

6) DAEC Core Spray SRI Numbers

cc: W. Miller D. Arnold

PDR

8212280065 821221

PDR ADOCK 05000331

L. Liu S. Tuthill F. Apicella (NRC) NRC Resident Office

Commitment Control No. 82-0469

382 - A CENTURY OF SERVICE - 1982 *

ATTACHMENT 1

NG-82-2784 Dec. 21, 1982

Response to questions contained in November 8, 1982 NRC letter

NRC Item 1

- 1. Unidentified Leakage Monitoring. (IV.B.1 of NUREG-0313, Rev. 1)
 - a. Identify the methods to detect and monitor unidentified leakage in the pressure boundary piping of your BWR. Some of these methods are enumerated in Regulatory Guide 1.45, Paragraph b.
 - b. Please fill out the attached table of information regarding the systems identified in the above paragraph.

Response to Item 1

The requested information is contained in Attachment 2 which are excerpts from the DAEC UFSAR, Technical Specifications, and procedures.

NRC Items 2a & b

2. Augmented ISI of Partially Nonconforming Service Sensitive Pipe

Attachment 1 of the L. D. Root to Harold Denton letter of June 30, 1981 (LDR-81-225) states that "Augmented inservice inspection has been done on the above systems in accordance with the guidelines of NUREG-0313, Rev. 1."

- a. Please identify the methods for augmented ISI of the partially nonconforming service sensitive pipe (IV.B.3 of NUREG-0313 Rev. 1).
- b. Provide a copy of specifications for the augmented ISI method or methods. (IV.B.3 of NUREG-0313 Rev. 1).

Response to Items 2a & b

DAEC utilizes ultrasonic testing for volumetric examination. If interpretation of ultrasonic results warrant, radiographic technique may also be applied. Further, to meet the ASME code, certain components and supports receive surface examinations utilizing Dye Penetrant or Magnetic Particle. All systems and components also receive visual examinations prior to other techniques being employed. Attachment 3 contains a copy of our procedure UT-27 which provides the DAEC ultrasonic testing procedures.

NRC Item 2c

c. Identify each of the augmented ISI methods used and the training and certification levels the individuals using those methods received. (IV.B.3 of NUREG-0313 Rev. 1). Indicate if cracked specimens are used in your training.

Response to Item 2c

Examiners are certified in accordance with the guidelines of SNT-TC-1A. In addition, Attachment 4 contains information on the DAEC Level III inspector demonstration on Nine Mile Point samples in Columbus, Ohio.

NRC Items 2d, e, & f

- d. Identify the proportion of the partially nonconforming service sensitive pipe that is being inspected. (IV.B.2.b of NUREG-0313 Rev. 1).
- e. Identify the inspection interval of each system of the partially nonconforming service sensitive pipe. (IV.B.2.b of NUREG-0313 Rev. 1).
- f. Identify the Stress Rule Index Numbers for the welded joints in the partially nonconforming service sensitive pipe. (IV.B.1.b (6) of NUREG-0313 Rev. 1).

Response to Items 2d, e, & f

As identified in Attachment 5, DAEC pipe and fittings that are classified as partial non-conforming and service sensitive are the following:

- (A) Recirculation System Bypass
- (B) Core Spray spools that connect carbon steel pipe to stainless steel safe-end extensions at the RPV nozzles
- (C) CRD Hydraulic return spool that connects carbon steel pipe to the RPV nozzle
- (D) Reactor water cleanup systems

NUREG-0313, Revision 1 and Attachment 5, Augmented Inservice Inspection guidelines are being applied to all of the above piping. The SRI numbers and inspection plans for the upcoming DAEC refueling outage for (A) are identified in Attachment 4. The SRI numbers for (B) are provided in Attachment 6. The (B) piping is being inspected again this outage. The (C) piping has been inspected during outages in 1975, 1977, 1978, 1980 and 1981. SRI numbers have not been calculated for this piping. The (D) piping has been inspected in 1978, 1980 and 1981 outages. SRI numbers have not been calculated for this piping.

NRC Items 3a, b & c

3. Augmented ISI of Partially Nonconforming Nonservice Sensitive Piping

Attachment 1 of the L. D. Root to Harold Denton letter of June 30, 1981 (LDR-81-225) gives some information on partially nonconforming nonservice sensitive piping (hereinafter piping).

- a. Please identify the methods for augmented ISI of the piping (IV.B.3 of NUREG-0313 Rev. 1).
- Please provide a copy of the specifications for the augmented ISI b. methods or methods (IV.B.3 of NUREG-0313 Rev. 1).
- Identify each of the augmented ISI methods used and the training с. and certification levels the individuals using those methods received. Indicate if cracked specimens are used in your training. (IV.B.3 of NUREG-0313 Rev. 1).

Response to Items 3a & b

See Response to items 2a, b and c above.

NRC Items 3d, e & f

- d. Identify the proportion of the piping that is being inspected (IV.B.2.b of NUREG-0313 Rev. 1).
- e. Identify the Stress Rule Index Numbers for the welded joints in the partially piping. (IV.B.1.b (6) of NUREG-0313 Rev. 1).
- f. Identify the proposed inspection interval for each system of partially piping (IV.B.1.b of NUREG-0313 Rev. 1).

Response to Items d, e & f

As identified in Attachment 5, DAEC pipe and fittings that are classified as Partially Nonconforming Nonservice Sensitive Piping are the following:

- (A) Recirculation System except the bypass pipe
- (B) RHR stainless steel transition spools to the recirculation system
- (C) Liquid Level Control (Reactor Vessel)
- (D) Instrumentation piping (Reactor Vessel)

NUREG-0313, Revision 1 and Attachment 5 Augmented Inservice Inspection guidelines are being applied to all the above piping. The SRI numbers and inspection plans for the upcoming DAEC refueling outage for (A) and (B) are identified in Attachment 4. Appropriate portions of (C) and (D) piping (including dissimilar metal "BF" welds) are scheduled for inspection during the upcoming 1983 DAEC refueling outage. SRI numbers have not been calculated for this piping.

50-331

RESPONSE TO REQUEST FOR INFO ON TECHNI-CAL REPT. OF MAT'L SELECTION & PROCES-SING GUIDELINES FOR BWR COOLANT PRES-SURE-BOUNDARY PIPING

	- NO	TICE -
DIVISION CHARGEE MUST BE <u>BRANCH</u> CHARGEE PAGE(S)	OF DOCUMENT TO YOU FOR RETURNED TO 016. PLEASE OUT THROUGH	E OFFICIAL RECORDS OF THE CONTROL. THEY HAVE BEEN A LIMITED TIME PERIOD AND O THE <u>RECORDS FACILITY</u> <u>DO NOT SEND DOCUMENTS</u> <u>THE MAIL</u> . REMOVAL OF ANY T FOR REPRODUCTION MUST ASONNEL. 50-331 12/21/82 <u>8212380065</u>
DEADLIN	E RETURN DATE	8212280065
		o
	<u></u>	RECORDS FACILITY BRANCH

. .

.

.

.

ATTACHMENT 2

.

、

5.2.5 DETECTION OF LEAKAGE THROUGH REACTOR COOLANT PRESSURE BOUNDARY

Reliable means are provided to detect leakage from the nuclear system barrier inside the drywell. Nuclear system leakage rate limits are established so that appropriate action can be taken before the integrity of the nuclear system process barrier is unduly compromised.

5.2.5.1 Safety Design Bases

The nuclear system leakage rate limits are set such that corrective action can be taken before one of the following occurs:

- 1. A threat of significant compromise to the nuclear system process barrier.
- 2. A leakage rate in excess of the coolant makeup capability to the reactor vessel.
- 3. A leakage rate in excess of the removal capability of the drywell sump pumps.

The nuclear system leakage detection system employs diverse methods to indicate leakage within the drywell.

5.2.5.2 Description

5.2.5.2.1 General

Reliable means are provided to detect leakage from the nuclear system barrier inside the drywell. Nuclear system leakage rate limits are established so that appropriate action can be taken before the integrity of the nuclear system process barrier is unduly compromised.

The DAEC design includes a nuclear system leak detection, isolation, processing, and makeup system. This system (made up of many normal station operational subsystems) provides for leakage control capability. This capability includes the following:

- 1. Identifying the reactor building (or reactor primary system) leakage sources.
- 2. Efficiently isolating and controlling the sources.
- 3. Effectively removing the residual leakage water (before and after isolation).
- 4. Conveniently replacing the leakage liquid and/or restoring the source system function.

These functions are accomplished under normal operation or postaccident conditions in a manner in which normal (10 CFR 20) or accident (10 CFR 100) offsite dose limits do not exceed established values and in a manner in which the core and the containment cooling continuity is not impaired or negated.

The leakage considered here is limited to that water or steam released from the nuclear system process barrier inside the primary containment. Leakage inside the drywell is treated separately from leakage elsewhere in the plant because the drywell contains a high concentration of nuclear system piping and is totally inaccessible during reactor operation.

If a leak occurs, the drywell will contain the released matter that will be present in the liquid, gaseous, and vapor phases. This will result in the collection of water in the sumps, a possible increase in drywell temperature, pressure, and relative humidity, an increase in the air-conditioning heat load, and an increase in the radioactivity of the drywell atmosphere. The closed limited volume of the drywell enhances the detection sensitivity.

5.2.5.2.2 Leakage Sources

Total leakage within the drywell is divided into two classifications--identified and unidentified--depending on whether the drywell equipment drain sump (identified) or the drywell floor drain sump (unidentified) receives the fluid:

Identifiable Leakage (Equipment Drain Sump)

Identifiable leakage into the equipment drain sump is composed of normal seal and valve packing leakage and does not represent a safety consideration so long as the leakage is small compared to the available reactor coolant makeup capacity.

Most valves and pumps in the nuclear system inside the drywell are equipped with double seals; leakage through the primary seal is piped to the equipment drain sump.

Leakage from the reactor vessel head flange gasket is piped to a collection chamber and then to the equipment drain sump. The chamber filling time is periodically timed during plant operation, and the flange gasket leakage rate is calculated. (Section 7.6.4 presents a more detailed discussion.)

Leakage from the main steam relief and safety values is identified by downstream temperature sensors that read out in the main control room. Relief value discharge is directed to the suppression pool.

Unidentifiable Leakage (Floor Drain)

The unidentifiable leakage is composed of all leakage from the reactor primary system that is not defined as identifiable

leakage. This unidentified leakage is collected in the drywell floor drain sump. Vapor that is condensed by the drywell ventilation system will drain to this sump.

The sump systems and input sources are indicated on Figure 11.2-2.

5.2.5.2.3 Leak Detection Methods

The following seven methods are used to detect leakage in the primary containment:

- 1. Equipment drain sump flow.
- 2. Floor drain sump flow.
- 3. Drywell ventilation system cooling water temperature.
- 4. Drywell pressure.
- 5. Drywell temperature.
- 6. Drywell atmosphere radioactivity.

Instrumentation is provided for the primary containment sumps having a capability to detect steam leakage of 0.5 gpm within a 45-min period. The response time depends on the amount of background leakage but will not exceed the interval between pumping cycles. The higher the leak rate the shorter the response time. Alarms are provided to annunciate leakage. The alarm setpoints will be adjustable from 0 to 5 gpm for the floor drain sump (unidentified leakage) and 0 to 25 gpm for the equipment drain sump (identified leakage), thus giving the capability of having alarm annunciation set at or below the license limit and providing immediate response when the preselected rate is reached or exceeded.

The unidentified leakage rate is the portion of the total leakage rate received in the drywell sumps that is not identified. A threat of significant compromise to the nuclear system process barrier exists if the barrier contains a crack that is large enough to propagate rapidly (i.e., critical crack). An allowance for leakage that does not compromise barrier integrity and is not identifiable is made for normal plant operation. The unidentified leakage rate limit for the DAEC is established at the 5-gpm rate to allow time for corrective action before the process barrier could be significantly compromised. This 5-gpm unidentified leakage rate is substantially lower than the calculated flow from a subcritical crack in a primary system pipe. The experimental as well as mathematical background is summarized below.

Critical Crack Length

Both the GE^4 and the BMI^5 test results indicate that formulas for theoretical fracture mechanics do not predict critical crack length, but that satisfactory empirical expressions may be developed to fit test results. A simple equation (for axially

oriented through-wall cracks) that fits the data in the range of normal design stresses (for carbon steel pipe) is

$$l = \frac{15,000 \text{ D}}{\sigma \text{ h}}$$
 (see data correlation on Figure 5.2-14).

 l_{C} = critical crack length, in.

D = mean pipe diameter, in.

o_h = nominal hoop stress, psi

Crack Opening Displacement

The theory of elasticity predicts a crack-opening displacement of

$$w = \frac{2l\sigma}{E}$$

where

l = crack length $\sigma = applied$ nominal stress

E = Young's modulus

Measurements of crack-opening displacement made by BMI show that local yielding and bending greatly increases the crack opening displacement as the applied stress σ approaches the failure stress σ_f . A suitable correction factor for plasticity effects is

$$C = \sec\left[\frac{\pi \sigma}{2 \sigma_{f}}\right]$$

The crack opening area is given by

$$A = C\pi\omega \ell/4$$

or

 $A = \frac{\pi \ell^2 \sigma}{2E} \text{ sec } \left[\frac{\pi \sigma}{2 \sigma_f} \right]$

For a given crack length ℓ , $\sigma_f = 15,000 \text{ D/}\ell$.

Leakage Flow Rate

The maximum flow rate for the blowdown of saturated water at 1000 psi is 55 lb/sec-in.², and for saturated steam the rate is 14.6 lb/sec-in.² (Reference 6). Friction in the flow passage reduces this rate, but for cracks leaking at 5 gpm (0.7 lb/sec) the effect of friction is small. The required leak size for 5-gpm flow is

A = 0.0126 in.² (saturated water) A = 0.0475 in.² (saturated steam)

Figure 5.2-15 shows general relationships between crack length, leak rate, stress, and line size using the mathematical model described above. The asterisks in the figure denote conditions at which the crack-opening displacement is 0.1 in., at which time instability is imminent. This provides a realistic estimate of the leak rate to be expected from a crack of critical size. In every case, the leak rate from a crack of critical size is significantly greater than the 5-gpm criteria.

From the mathematical model described above, the critical crack length and the 5-gpm crack length have been calculated for representative BWR pipe sizes and pressure (1050 psi). Results are tabulated as follows.

The lengths of through-wall cracks that would leak at the rate of 5 g/min given as a function of wall thickness and nominal pipe size are

Nominal	Wall	<u>Crack Leng</u>	th l (in.)
Pipe Size	Thickness (in.)	Steam Line	Water Line
4 in., Schedule 80 12 in., Schedule 80 20 in., main steam 22 in., recirculation	0.337 0.687 0.758 0.975	7.15 8.46 7.39	4.91 4.76 4.39

The ratios of crack length l to the critical crack length lc as a function of nominal pipe size are

Nominal	Ratio	2/2C
Pipe Size	Steam Line	Water Line
4 in., Schedule 80 12 in., Schedule 80 20 in., main steam 22 in., recirculation	0.745 0.432 0.342	0.510 0.243 0.158

It is important to recognize that the failure of ductile piping with a long, through-wall crack is characterized by large crack-opening displacements that precede unstable rupture. Judging from observed crack behavior in the GE and BMI experimental programs involving both circumferential and axial cracks, it is estimated that leak rates of hundreds of gpm will precede crack instability. Measured crack-opening displacements for the BMI experiments were in the range of 0.1 to 0.2 in. at the time of incipient rupture, corresponding to leaks of the order of 1 in.² in size for plain carbon steel piping. For austenitic stainless steel piping, even larger leaks are expected to precede crack instability, although there is insufficient data to permit quantitative prediction.

The results given are for a longitudinally oriented flaw at normal operating hoop stress. A circumferentially oriented flaw could be subjected to stress as high as the 550°F yield stress,

5.2-31

assuming that high thermal expansion stresses exist. A good mathematical model that is well supported by test data is not available for the circumferential crack. Therefore, it is assumed that the longitudinal crack, subject to a stress as high as 30,000 psi, constitutes a "worst case" with regard to leak rate versus critical size relationships. Given the same stress level, differences between the circumferential and longitudinal orientations are not expected to be significant in this comparison.

5.2.5.2.3.1 Equipment Drain and Floor Drain Sumps. The equipment drain sump system is actually composed of two sumps: the equipment drain sump is located beneath the reactor inside the reactor vessel pedestal and is directly joined to the equipment drain pump sump located inside the drywell but outside the pedestal. These two sumps will be generally referred to as the equipment drain sump.

The equipment drain sump level is used to control the drain pumps and provide alarms to control room personnel.

The pump control and alarm function is as follows.

At the lowest of the high water level settings, the preferred pump is automatically started. If the water level continues to rise, a higher water level setting starts the standby pump and actuates an alarm in the control room. When the water level decreases to a low water level setting, the pumps are stopped and the automatic pump selector switch reverses the roles of the preferred and standby pumps.

As the water that has collected in the sump is pumped out, the discharge flow is monitored. The flow rate is continually plotted on a recorder in the control room. The total volume pumped is indicated in the control room. The sump pump discharge flow duration, the frequency of pump operation, and the volume pumped can be used to provide a measure of the leakage rate.

Excessive leak rates are indicated by a control room alarm. This alarm is actuated by either of two timed conditions: the pump starting at shorter intervals than would be required if the alarm setpoint leak rate existed, or the pump running longer than would be required to lower the level to the shutoff point.

The drywell floor drain sump system is monitored and controlled in the same manner as the drywell equipment drain sump.

5.2.5.2.3.2 Drywell Ventilation. The drywell ventilation system is a water-cooled, forced-air system, using well water as the cooling medium. In this system, the temperature of the gas entering and leaving the cooler and the outlet temperature of the well water are monitored. Once steady-state operation is established, variations of these parameters can indicate possible

5.2-32

leaks. Since the inlet water has an essentially constant temperature, a rise in outlet temperature indicates additional heat load on the cooling coils and could be indicative of a leak. Either high air or water outlet temperature will actuate an alarm.

5.2.5.2.3.3 <u>Drywell Pressure and Temperature</u>. The drywell temperature and pressure are monitored, indicated, and recorded in the control room. The sample points and instrumentation are indicated in Figure 6.2-44.

The drywell atmosphere radioactivity detector provides a sensitive and rapid indication of increased nuclear system leakage. The drywell environment is continuously sampled from three locations that are chosen to provide both a representative gas mixture and an indication of the location of the leakage. The lines used for the oxygen sampling system are also used for the drywell atmosphere radioactivity detector in order to take advantage of existing piping, penetrations, and isolation capabilities. The piping runs to the detector are as short and as straight as possible to minimize the particulate deposition and are constructed of stainless steel to minimize chemical reactions.

The drywell atmosphere radioactivity detector is designed so that steam leakage rates as low as 1 gpm can be detected.

The sampled air undergoes three separate processes in which the radioactive noble gas, halogen, and particulate content is determined. This system is thus a three-channel monitoring system. The processed air is returned to the drywell.

The readings for each channel are fed into a pen recorder so that a permanent record of the drywell atmosphere radioactivity is maintained. The system will alarm locally and in the control room to indicate system failure or alarm conditions. No automatic action is initiated by the system. Provisions have been made for "grab" sample bottles that can be quickly removed from the sample lines without disturbing the flow and analyzed for definitive isotopic content. For a discussion of primary system leak detection outside of primary containment, refer to Section 3.11.

5.2.5.3 Safety Evaluation

5.2.5.3.1 General

The different drywell parameters that are discussed in Section 5.2.5 provide diverse methods for determining if an increased leak rate exists within the drywell. The allowable leakage rates have been based on the predicted and experimentally determined behavior of cracks in pipes, the ability to make up coolant system leakage, the normally expected background leakage due to equipment design, and the detection capability of the various drywell monitors.

Based on the behavior of cracks, a 5-gpm leak rate limit has been assigned to unidentified leaks and a 25-gpm leak rate limit for identified leaks. Experience has shown that normal leak rate is 4 gpm into the equipment drain sump and 0 to 0.5 gpm into the floor drain sump.

The sump working capacities and pump discharge capacities are large enough to accept the design leak rates. The sump working capacity is the amount of water between the low-level pump trip and the high-high-level alarm point. The equipment drain sump (approximate working capacity, 450 gal) and the floor drain sump (approximate working capacity, 225 gal) are drained by two 50-gpm pumps. This pump capacity permits one pump in each sump to remove the design total leakage because of the possibility that most of the leakage could flow into one sump.

5.2.5.3.2 Behavior of Cracks

The behavior of cracks in piping systems has been experimentally and analytically investigated as part of an NRCsponsored Reactor Primary Coolant System Rupture Study (the Pipe Rupture Study). Analysis using the data obtained in this study has shown that there is a high probability that a leaking crack can be detected before it grows to a dangerous or critical size because of mechanically or thermally induced cyclic loading, or stress corrosion cracking, or some other mechanism characterized by gradual crack growth. Earthquake and normal vibration stresses are considered in the determination of the critical crack size. For the crack size that gives a water leakage of 15 gpm, the probability of rapid propagation was calculated to be 10^{-4} . The crack area corresponding to a 15-gpm leak is approximately 1.8×10^{-4} ft².

The Technical Specification unidentified leakage rate has been set at 5 gpm to provide further conservatism.

5.2.5.3.3 Total Leakage Rate Limit

The criterion for establishing the total leakage rate limit is based on the makeup capability of the CRD and RCIC systems and is independent of the feedwater system, normal ac power, and the core standby cooling systems. The CRD system supplies 42 gpm into the reactor vessel; the RCIC system can supply 425 gpm through the feedwater sparger to the reactor vessel. The total leakage rate limit is set at less than 0.1 of this value or 30 gpm.

5.2.5.3.4 Drywell Leak Detection

The sump-fill timer and pump-out timer for both the equipment drain sump and floor drain sump are set to alarm at levels that provide adequate separation from expected leak rates to avoid spurious alarms but low enough to indicate significant leaks. Exact leak rates can be determined from the flow indications in the control room, and any increase beyond the normal leak rate will be apparent to control room personnel.

The drywell ventilation system consists of several coolers, each with a separate heat load. The calculated well water differential temperature is 30° to 45°F depending on the cooler in question. It is therefore reasonable to assume that a 5°F rise in outlet temperature is detectable.

If one assumes the following, one can determine that, for a given size break, steam and water are equally detectable although four times as much reactor water is lost through a water break.

- 1. A 5°F rise in cooler outlet water temperature is detectable by control room personnel.
- 2. Normal cooler heat load is 740,000 Btu/hr.
- 3. A 1000-psig blowdown of saturated steam or water.⁷
- 4. Fifty percent of the water and 100% of the steam become airborne.

The alarms associated with the cooler air and water outlet provide additional indication should a sudden increase in leak rate occur.

Drywell temperature and, to some extent, drywell pressure are controlled by the drywell ventilation system. As the heat load on the cooling coil is increased, the average drywell temperature will increase. If this temperature exceeds the setpoint, an alarm will occur. The combination of increased temperature and increased absolute humidity causes the drywell pressure to increase. A small increase in pressure above the setpoint will actuate an alarm; a 2-psig increase indicates a larger leak and is used to initiate a scram and nuclear steam supply isolation. Low reactor water level will also indicate larger leaks and initiate a scram and isolation.

If the drywell ventilation system is assumed to be saturated so that the steam or water from a leak does not condense, there will be an increase in drywell temperature, pressure, and relative humidity with respect to time, providing an indication of the sensitivity of these parameters.

The drywell atmosphere radioactivity detector serves as a sensitive, reliable backup to the other methods of leak detection. It is anticipated that the particulate detector will be the primary indication of leakage, with the halogen and noble gas detectors serving as indications of the drywell environment if drywell venting is required. These detectors, in conjunction with an isotopic analysis, can be used to indicate whether the detected leak is from a steam or water system.

The detector units are shielded to minimize the effect of background activity and thereby increase the detection sensitivity. The individual units have the capability of being tested for reaction to a source and calibrated. Since the background contamination and deposition--chemical reaction effects--cannot be predetermined, and since it is an increase in detected values that indicates a leak, the alarm points will be determined by operator experience; the setpoints will be low enough to provide the quickest indication without receiving spurious alarms.

It is expected that this system will provide at least an order of magnitude reduction in the leak size that can be detected and will also reduce the time delay in sensing the condition.

5.2.5.4 Inspection and Testing

The nuclear system leak detection system is an operational system in daily use and as such does not require periodic testing to ensure operability.

The following list shows where reactor vessel pressure measuring instruments used for the automatic control of equipment or systems are discussed:

Pressure Instrumentation

Pressure switches used to initiate a scram

Pressure switches used to bypass main steam line isolation valve closure scram

Pressure switches used for HPCI, core spray, and LPCI

Pressure transmitters and recorders used for feedwater control

Differential-pressure switches measuring differential pressure between reactor vessel and jet pump riser pipes

Differential-pressure switches measuring differential pressure between the inside of core spray sparger pipes and core inlet above the core support assembly.

Section Where Discussed

Reactor Protection System (7.2)

Reactor Protection System (7.2)

Emergency Core Cooling System Control and Instrumentation (7.3.2)

Feedwater Control System (7.7.1)

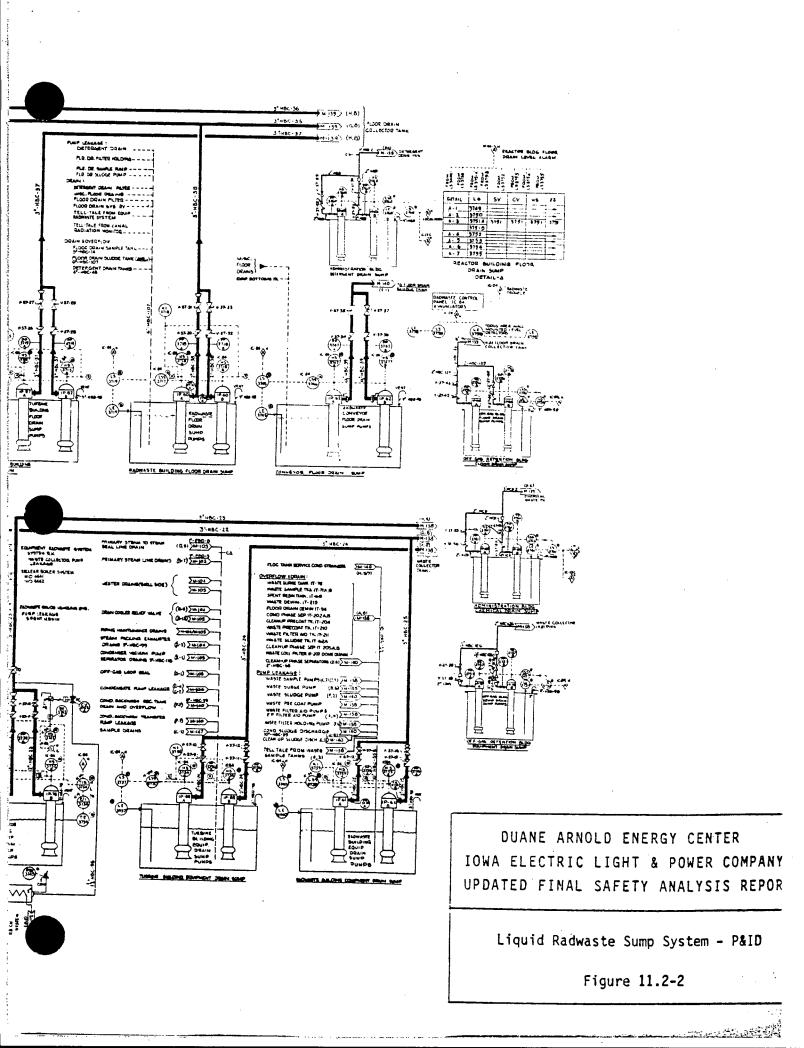
Emergency Core Cooling System Control and Instrumentation (7.3.2)

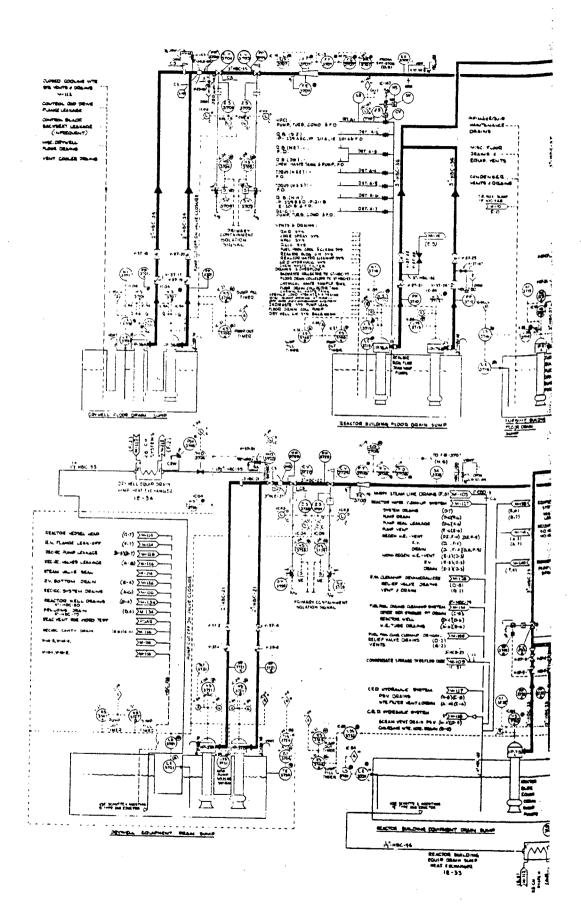
Emergency Core Cooling System Control and Instrumentation (7.3.2)

7.6.4.9 <u>Reactor Vessel Top Head Flange Leak Detection</u>

A connection is provided on the reactor vessel flange into the annulus between the two metallic seal rings used to seal the reactor vessel and top head flanges. This connection permits the detection of leakage from the inside of the reactor vessel past the inner seal ring. The connection is piped to a collection chamber installed between two ac solenoid-operated valves. The arrangement is shown in Figure 5.1-1, Sheet 1. The upstream valve is normally open, the downstream valve normally closed. A level switch is provided to detect the accumulation of water in the collection chamber. This level switch actuates an alarm in the main control room. A pressure switch is also provided to actuate the alarm in the main control room as pressure in the leakage collection piping becomes abnormally high. A pressure indicator is provided to indicate the pressure inside the piping arrangement. The level switch is located inside the primary containment, and the pressure instruments are located outside the drywell but inside the reactor building. The specifications for the level and pressure instruments are given in Table 7.6-8. The two solenoid valves are controlled by a switch in the main control room. The positions of the valves are indicated by lights. If

leakage past the inner seal ring is indicated, the upstream valve can be closed and the downstream valve can be opened by remote manual operation from the main control room. This action routes the accumulated leakage to the drywell equipment drain sump. After the collection chamber is drained, the solenoid-operated valves can be returned to their normal positions. The leakage rate can be determined by timing the period until the level alarm is reactivated (Section 5.2.5).


7.6.4.10 Safety Evaluation


The reactor vessel instrumentation is designed to provide sufficient continuous indication of key reactor vessel operating parameters during planned operations such that the operator can efficiently monitor these parameters and anticipate any approach to operating conditions that could lead to any unacceptable safety results.

The redundancy of all indicators provided ensures that the possibility that all instrumentation could be lost simultaneously is so remote as to be negligible. In addition, sensors providing safety signals to the RPS and engineered safeguards systems for scram and isolation functions are separate from these indicator sensors so that a loss of indication does not directly obviate protection against accidents and transients.

7.6.4.11 Inspection and Testing

Pressure, differential pressure, water level, and flow instruments are located in the reactor building and are piped so that calibration and test signals can be applied during reactor operation.

M-137 Rev 12

APPENDIX A

TO

OPERATING LICENSE DPR-49

TECHNICAL SPECIFICATIONS AND BASES

FOR

DUANE ARNOLD ENERGY CENTER IOWA ELECTRIC LIGHT AND POWER COMPANY CENTRAL IOWA POWER COOPERATIVE CORN BELT POWER COOPERATIVE DOCKET NO. 50-331

FEBRUARY 1974

LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS

c.

C. <u>Coolant Leakage</u>

2.

1.

- 1. Any time irradiated fuel is 1. in the reactor vessel and reactor coolant temperature is above 212°F, reactor coolant leakage into the primary containment from unidentified sources shall not exceed 5 gpm. In addition, the total reactor coolant system leakage into the primary containment shall not exceed 25 gpm.
 - Both the sump and air sampling systems shall be operable during reactor power operation. From and after the date that one of these systems is made or found to be inoperable for any reason, reactor power operation is permissible only during the succeeding seven days unless system is made operable sooner.
- 3. If the conditions in 1 or 2 cannot be met, an orderly shutdown shall be initiated and the reactor shall be in a Cold Shutdown Condition within 24 hours.

D. Safety and Relief Valves

During reactor power operating conditions and prior to reactor startup from a Cold Condition, or whenever reactor coolant pressure is greater than atmospheric and temperature greater than 212°F, both safety valves and the safety modes of all relief valves shall be operable, except as specified in 3.6.D.2.

Coolant Leakage

Reactor coolant system leakage shall be checked by the sump and air sampling system and recorded at least once per day.

D. Safety and Relief Valves

At least one safety valve and 3 relief valves shall be checked or replaced with bench checked valves once per operating cycle. All valves will be tested every two cycles.

The setpoint of the safety valves shall be as specified in Specification 2.2.

DUANE ARNOLD ENERGY CENTER Reference Only UNIT NO. 1 IOWA ELECTRIC LIGHT AND POWER COMPANY REV. 55 APPROVAL SURVEILLANCE TEST PROCEDURE NO. 42A001 DAILY AND SHIFT INSTRUMENT CHECKS Prepared by: Ann Howard Date: 9-20-82 Approved by: ///// Date: 9-24-82_ FOR Date: 117 - 5-82 Approved by: Maril 2. second f Performance Supervisor Date: 10-3.82 Approved by: Quality Control Supervisor Reviewed by: Herb- Liaique Date: 9 - 28 -8 2. • . Date: 10-7-82 Reviewed by: Chairman, Operations Committee Ullum Date: 10-8-82 Approved by: Plant Superintendent - Nuclear Implementation Date 10 - 11 - 82 Rev. 55 9/17/82

• • • Date Panel Acceptance Instrument Criteria Section Function Number Number Operators > 36 feet NA NA Initials 4.90 Spent Fuel Pool with spent fuel Level ft. in Pool NA Local Green light on SELC Heat Trac-None ing Temperature Controller All open (red) 1029 Excess Flow Check NA None lights CN Valve Status All Recorders NA NA Inking properly None Time & Date entered Checked for on Charts Inking See Calculation Sheet 4.2E ΝA NA Reactor Coolant (Appendix B) 4.6C Leakage Calculation Sheet Complete 4.6E Jet Pump Flow NA КA See Calculation Sheet 4.65 (Appendix C) Mismatch Celculation Sheet Complete • Jet Pump Operabil-NA See Calculation Sheet NA 4.6E (Appendix D) ity Calculation Sheet Complete

Reference Only

٠

Procedure

Date

December 20, 1977

Kev.

ы

JAILY INSTRUMENT CHECKS

Fech.

Spec.

Procedure

4.2.3

.

4.2.e

4.2.1

4.2.g

4.2.h

4.2.1

4.2.1

•

Page 24 of 36 APPENDIX B Reactor Coolant Leakage All readings are to be taken at Panel 1C19. • 1. Unidentified average leak rate calculation • a. FQ 3707 present readingtime of reading • b. FQ 3707 previous readingtime of reading • c. Total gallons pumped (a-b)time of reading • d. Time interval (a-b)hours X 60 =min. • e. Unidentified average leak rate = Total Callons Pumped	ocedure	Date	July 16, 1979 Rev. 32	STP_	42/001	
Reactor Coolant Leakage All readings are to be taken at Panel 1C19. 1. Unidentified average leak rate calculation a. FQ 3707 present reading			•	Page	24of 36	
Reactor Coolant Leakage All readings are to be taken at Panel 1C19. 1. Unidentified average leak rate calculation a. FQ 3707 present reading						
All readings are to be taken at Panel 1019. Unidentified average leak rate calculation a. FQ 3707 present readingtime of readingtime of readingtime of readingtime of reading b. FQ 3707 previous readingtime of readingtime interval (a-b)time of readingtime interval (a-b)to a start time interval (a-b)to a start time interval (a-b)time interval (minutes) =t. c. Total average leak rate calculation			APPENDIX B			
 Unidentified average leak rate calculation a. FQ 3707 present reading			Reactor Coolant Leakage			
 a. FQ 3707 present readingtime of reading b. FQ 3707 previous readingtime of reading c. Total gallons pumped (a-b) d. Time interval (a-b)hours X 60 =min. e. Unidentified average leak rate = Total Gallons Pumped f. Maximum allowed: 5 gpm 2. Total average leak rate calculation a. FQ 3708 present readingtime of reading b. FQ 3708 previous readingtime of reading c. Total gallons pumped (a-b) d. Time interval (a-b) d. Time interval (a-b)	۸11	readi	ngs are to be taken at Panel 1C19.		٠	•
 b. FQ 3707 previous readingtime of reading c. Total gallons pumped (a-b)hours X 60 =min. d. Time interval (a-b)hours X 60 =min. e. Unidentified average leak rate = Total Callons Pumped f. Maximum allowed: 5 gpm 2. Total average leak rate calculation a. FQ 3708 present readingtime of reading b. FQ 3708 previous readingtime of reading c. Total gallons pumped (a-b)time of reading d. Time interval (a-b)time of reading	1.	Uni	dentified average leak rate calculation			
 b. FQ 3707 previous readingtime of reading c. Total gallons pumped (a-b)hours X 60 =min. d. Time interval (a-b)hours X 60 =min. e. Unidentified average leak rate = Total Callons Pumped Time Interval (minutes) = f. Maximum allowed: 5 gpm 2. Total average leak rate calculation a. FQ 3708 present readingtime of reading b. FQ 3708 previous readingtime of reading c. Total gallons pumped (a-b)time of readingtime of reading		a.	FQ 3707 present reading time of reading	ading		
 c. Total gallons pumped (a-b)		b.	FQ 3707 previous reading time of re-	eading		
 d. Time interval (a-b) hours X 60 = min. e. Unidentified average leak rate = Total Gallons Pumped Time Interval (minutes) = f. Maximum allowed: 5 gpm 2. Total average leak rate calculation a. FQ 3708 present reading time of reading b. FQ 3708 previous reading time of reading c. Total gallons pumped (a-b) hours X 60 = min. e. Identified average leak rate = Total Gallons Pumped for average leak rate = 1.e + 2.e 		_ C •	lotal gallons pumped (a-b).			_
<pre>Time Interval (minutes) =</pre>		d.	Time interval $(a-b)$ hours X 60 =		min.	
 f. Maximum allowed: 5 gpm 2. Total average leak rate calculation a. FQ 3708 present readingtime of reading		e.	Unidentified average leak rate = Total Gallons	Pumped		
2. Total average leak rate calculation a. FQ 3708 present readingtime of reading b. FQ 3708 previous readingtime of reading c. Total gallons pumped (a-b) d. Time interval (a-b)hours X 60 =min. e. Identified average leak rate = <u>Total Gallons Pumped</u> f. Total average leak rate = 1.e + 2.e 		<i>c</i>	Time Interval (r	minutes)) =	g
 a. FQ 3708 present reading time of reading b. FQ 3708 previous reading time of reading c. Total gallons pumped (a-b) d. Time interval (a-b) hours X 60 =min. e. Identified average leak rate = <u>Total Gallons Pumped</u> f. Total average leak rate = 1.e + 2.e 		Í.	Maximum allowed: 5 gpm			
<pre>c. Total gallons pumped (a-b) d. Time interval (a-b) hours X 60 =min. e. Identified average leak rate = Total Gallons Pumped Time Interval (minutes) =81 f. Total average leak rate = l.e + 2.e</pre>	2.	Tot	al average leak rate calculation			
<pre>c. Total gallons pumped (a-b) d. Time interval (a-b) hours X 60 =min. e. Identified average leak rate = Total Gallons Pumped Time Interval (minutes) =81 f. Total average leak rate = 1.e + 2.e</pre>		a.	FQ 3708 present readingtime of rea	ading		
<pre>c. Total gallons pumped (a-b) d. Time interval (a-b) hours X 60 =min. e. Identified average leak rate = Total Callons Pumped Time Interval (minutes) =81 f. Total average leak rate = 1.e + 2.e</pre>		ь.	FQ 3708 previous reading time of re	eading_		
 d. Time interval (a-b) hours X 60 =min. e. Identified average leak rate = <u>Total Gallons Pumped</u> f. Total average leak rate = l.e + 2.e 		c.	iotal gallons pumped (a-b)			-
Time Interval (minutes) f. Total average leak rate = l.e + 2.e			Time interval (a-b) hours X 60 =		min.	
f. Total average leak rate = 1.e + 2.e		e.	Identified average leak rate = <u>Total Gallons Pun</u> Time Interval (mir	nutes)		gpm
g. Maximum allowed 25 gpm.		f.	Total average leak rate = 1.e + 2.e			
		g.	Maximum allowed 25 gpm.			
			·			

Operators Initials

NOTE: An IE agreement with the NRC requires that a reactor shut-down be initiated if unidentified leakage is observed to increase by 2 gpm in a 24 hr. period, or to double in a 4 hr. period.

Procedure	Date	April	11.	1979	Rev.0

Page 25 of 36

gpm

APPENDIX B1

Unidentified Reactor Coolant Leakage

(Complete Once per Shift)

All readings are to be taken at Panel 1019.

Unidentified average leak rate calculation

a.	FQ 3707 present reading	Time of Reading	
	FQ 3707 previous reading		
	Total gallons pumped (a-b)		
d.	Time interval (a-b) hours X 60) = min.	
е.	Unidentified average leak rate = Tot	al Gallons Pumped	
	Timo	Interval (minutes)	gpn
E.	Maximum allowed: 5 gpm		
g.	Drywell Floor Drain Sump fill timer base line.	set to 1 gpm above the above	
One	erator's Initials		
ope			
Uni	dentified average leak rate calculat		
Uni a.	dentified average leak rate calculat FQ 3707 present reading	Tine of Reading	
Uni a. b.	dentified average leak rate calculat FQ 3707 present reading FQ 3707 previous reading	Tine of Reading	
Uni a. b. c.	dentified average leak rate calculat FQ 3707 present reading FQ 3707 previous reading Total gallons pumped (a-b)	Tine of Reading Time of Reading	
Uni a. b. c. d.	dentified average leak rate calculat FQ 3707 present reading FQ 3707 previous reading Total gallons pumped (a-b) Time interval (a-b) hours X	Tine of Reading Time of Reading 50 =min.	
Uni a. b. c. d.	dentified average leak rate calculatFQ 3707 present readingFQ 3707 previous readingTotal gallons pumped (a-b)Time interval (a-b)hours XUnidentified average leak rate = To	Tine of Reading Time of Reading 50 =min.	
Uni a. b. c. d. e.	dentified average leak rate calculatFQ 3707 present readingFQ 3707 previous readingTotal gallons pumped (a-b)Time interval (a-b)hours XUnidentified average leak rate = ToTime	Tine of Reading Time of Reading 50 =min. tal Gallons Fumped	
Uni a. b. c. d. e. f.	dentified average leak rate calculatFQ 3707 present readingFQ 3707 previous readingTotal gallons pumped (a-b)Time interval (a-b)hours XUnidentified average leak rate = To	Tine of Reading Time of Reading 50 =min. tal Gallons Fumped Interval (minutes)	
Uni a. b. c. d. e. f. g.	Adentified average leak rate calculat FQ 3707 present reading FQ 3707 previous reading Total gallons pumped (a-b) Time interval (a-b) hours X Unidentified average leak rate = To Time Maximum allowed: 5 gpm Drywell Floor Drain Sump fill timer	Tine of Reading Time of Reading 50 =min. tal Gallons Fumped Interval (minutes)	

- FQ 3707 present reading Time of Reading a.
- FQ 3707 previous reading Time of Reading Ъ. Total gallons pumped (a-b) c.
- d.
- Time interval (a-b) hours X 60 = min. Unidentified average leak rate = Total Gallons Pumped e. Time Interval (minutes)
- f. Maximum allowed: 5gpm
- Drywell Floor Drain Sump fill timer set to 1 gpm above the above g٠ base line.

Operator's Initials_

NOTE: An IE agreement with the NRC requires that a reactor shut-down be initiated if unidentified leakage is observed to increase by 2 gpm in a 24 hour period, or doubles in a 4 hour period.

2.

3.

1.

ATTACHMENT 3

· · ·

	andra and a second s	<u>an de la serie de la contra de la</u>			
	r	Lambert•	MacGill • Th	nomas, Inc.	
• • • • •	€. • •*		Testing • Engineerir	ng • Service • Training	
-				771 East Brokaw Road	
			-	San Jose.Ca. 95112 408 • 297 • 8766	
					HEET Z
		WNP-2 PROCEDURE	COVER SHEET AND QU	ALIFICATION RECORD	
	Dress		Daniai an Na		/
		lure No. UT-27			
معدية مراجع	Proced	dure Title <u>ULTRAS</u>	SONIC EXAMINATION C	OF NUCLEAR COOLANT S	YSTEM
(111)	PIPIN	IG FOR THE DUANE AN	RNOLD ENERGY CENTER	8	
an (ألك أن الله الله الله الله الله الله الله الل					
	LMT.	Inc. QA Review and	Approval MM	1 Stevel III	
				lity Assurance Offic	car)
			1244	rich upparance offic	Celj
	Client	Approval K.U. Har	+ 3 01	•	
	CTTCIII	RA. M	"Curtar 3-11-81		
	Author	•	-	•	
		rized Nuclear Insp	ector Approval	•	· · · · · · · · · · · · · · · · · · ·
	Specif	ic Qualification	Record		
a series and the series of the	•	_			
and a market		Component	Examiners		T
				Date	4
			KELLERHALL		
		20" M.S. SCH80	PECHACEK	7/8/82 D& Haruhl	
,					
					4
1					
					1
				` 	
				· · · · · · · · · · · · · · · · · · ·	<u>ه</u>

Lamperto MacGillo Inomas, inc. Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 WNP-2 PROCEDURE COVER SHEET AND QUALIFICATION RECORD Revision No. O Procedure No. UT-27 Procedure Title ULTRASONIC EXAMINATION OF NUCLEAR COOLANT SYSTEM PIPING FOR THE DUANE ARNOLD ENERGY CENTER 1. no herel III LMT, Inc. QA Review and Approval (Quality Assurance Officer) Client Approval K.U. Harrington 3-10-91 Authorized Nuclear Inspector Approval Specific Qualification Record Examiners Component Date have Dans, P. Hulyard Manhal 3110181 Berlingame, Brodie 12", 18", 8" Rpmg Dave Hall 3/25/81 29 4" s/s Rybors 5th 80 R. Burlingame, R. Hulegand \$-9-81 8 (S + Sul 80 D. HARVEY / AB9160 20 Minuc 4-2-81 2.1.4 DAVIS 4-6-81 Pilink 10 DAVIS 4-18-81 10 Ruc Slow-WALKE JAVIS

المحمد هي ويعار (ج. يعده وعد عند الدر به سند الدر المحمد مي الم

	08/(e) - ETA (-1%)
Lambert • N	AacGill • Thomas, Inc. Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112
	408-297-8766
FI	ELD CHANGE RECORD
Procedure No. UT-27	Field Change No. 1
Procedure Title <u>Ultrason</u>	ic Examination of Nuclear Coolant System
Piping for the Duane Arnold	
·	
Revision No. 0	Date 6-25-79
	- · ·
LMT, Inc. Approval	Z. Thomas Date 4-15-81
Client Approval K.U. Ha	
Authorized Nuclear Inspector A	
Procedure Change:	
Page 1, Qualification; Add Te	chnical Manager, under T. G. Lamberts signature.
Page 2, Paragraph IV.A.; Dele	te words "The Cover Sheet", and add "Page 1 of
This Procedure".	
Page 3, Paragraph IV.B. change	to read "The LMT Field Supervisor
Shall Be Responsible f	or the Qualification of a Particular Examination".
Page 3, Paragraph VI.A.; Add	sentence to read "Examiners Must be Certified
a Minimum Level II in	Ultrasonic Testing to Evaluate Test Results.
Page 6, Paragraph VII.E.; Add	Item 3. LMT-Gel, Ultra-Gel, or Any Similiar
Lightweight Couplant i	s Acceptable.

	LMT-QAF8- 9/8
	MacGill • Thomas, Inc. Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766
	FIELD CHANGE RECORD
Procedure No. UT-2 Procedure Title Ull Piping for the Duane Arm	trasonic Examination of Nuclear Coolant System
Revision No. 0	Date 6-25-79
LMT, Inc. Approval	E.J. Thomas Date 4-15-81
Client Approval <u>K.U</u> Authorized Nuclear Inspec Procedure Change:	
	Change second sentence to read "Any Change in the
	ument, Wedges, Transducer Cable or Transducer Requir
	on. Change third sentence to read " A Change in mel, Couplant, Recording Instrumentation, or Recorde
	e Requires a Calibration Check, However, Instrument
Testing".	cation Need Not Be Made With the Transducer Used for
	.; Change first sentence to read "Calibration is
	Complete System on an Appropriate Basic Calibration
Block at the Beg	inning of Each Work Shifts Testing of That Material"
	•
· · · · · · · · · · · · · · · · · · · 	

٢			"homas, Inc	
l			771 East Brokaw Road San Jose,Ca. 95112 408-297-8766	
	É.	IELD CHANGE RECO	ORD	
Procedure	e No. UT-27	· · ·	Field Change No.	. 1
Procedure	Title Ultraso		Nuclear Coolant Syst	
	r the Duane Arnold			
	No. 0	Date 6-25-79	9	
			·····	
LMT, Inc.	Approval _ E	7 thomas	Date	415-01
	proval K.U.k			
	Nuclear Inspector			<u>4-17-8</u> 4-23-81
Procedure	Change:		. •	
Page 17, Pa	ragraph XI.D.4.; C	hange to read "Over	rlap Between Parallel	Scans Shal
Be	Nominally 15%, an	d In No Case Less T	Than 10% of the Trans	ducer
Pi	ezo-Electric Eleme	nt.		
Page 18, Pag	ragraph XII.A.; A	dd Item 3. "The Si	ite Level III Shall R	eview and
Eva	luate All Non Geom	metric Reflections	in Accordance With IW	IA 3100 (b)
	ASME XI (1974)".			
Page 20, Pa	ragraph XIV.1.; Cr	lange to read "Fxam	ination Reports Will	Ro Dovien
			for Conformity to th	
01	and nocedure.	Add Item 2. "All	Inspection Reports S	hall Be
Su	<u>bject to Review by</u>	the Owner and Auth	orized Inspector".	
			·	
Ch	ange page numberin	ig from Page 18 thru	u F, (Final) to run c	onsecutive

. 1			OMAS, Inc. • Service • Training 771 East Brokaw Road San Jose Ca. 95112 408-297-8766	
	WNP-2 PROCEDURE CO	OVER SHEET AND QUA	LIFICATION RECOR	ם
Procedu		Revision No ONIC EXAMINATION OF NOLD ENERGY CENTER		SYSI
	c. QA Review and A Approval <u>K.U. Harr</u> <i>R.A. 79.4</i>	(Qual	ity Assurance Of	?
Authori	zed Nuclear Inspec	ctor Approval		
Authori	zed Nuclear Inspec c Qualification Re	ctor Approval	Date	
Authori	zed Nuclear Inspec	ctor Approval	Date	
Authori	zed Nuclear Inspec c Qualification Re	ctor Approval	Date	
Authori	zed Nuclear Inspec c Qualification Re	ctor Approval	Date	
Authori	zed Nuclear Inspec c Qualification Re	ctor Approval	Date	
Authori	zed Nuclear Inspec c Qualification Re	ctor Approval	Date	

Lambert • MacGill • Thomas, Inc.

Testing • Engineering • Service • Iraining 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 1 FOLLOWING PAGE 2 REVISION 0 DATE: 6/25/79

TITLE: ULTRASONIC EXAMINATION OF NUCLEAR COOLANT SYSTEM PIPING FOR THE DUANE ARNOLD ENERGY CENTER

I. PURPOSE AND SCOPE

A. Purpose

This procedure provides instructions for implementation of the requirements of the ASME Boiler and Pressure Vessel Code, Section XI, for the straight beam and angle beam contact ultrasonic examination of full penetration butt welds and adjacent base metal in wrought and cast piping made from ferritic steel in ASME Class 1 and Class 2 systems. The procedure may also be applied to austenitic steels and dissimilar metal welds where successful qualification is acheived.

B. Scope

This procedure is limited to piping systems having nominal wall thicknesses of 0.20" to 6". The examinations may be performed from either inside or outside surfaces.

QUALIFICATION:

Approved for use II Semiled Lucht alians

OBMac Sill Loula

Lambert • MacGill • Thomas, Inc.

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PAGE 2 FOLLOWING PAGE 3

PROC. NO. UT-27

REVISION 0 DATE: 6/25/79

II. REFERENCE DOCUMENTS

A. Applicable Code Editions

This procedure meets the requirements of the 1974 edition of ASME XI, Summer 1975 addenda.

- B. Supplemental References
 - SNT-TC-1A (June 1975), "Recommended Practice for the Establishment of Personnel Qualification and Certification Programs."
 - 2. LMT Procedure QA-6, "Qualification and Certification of NDE Personnel."
 - 3. LMT Operating and Quality Assurance Manual.

III. DEFINITIONS

None

IV. RESPONSIBILITY

A. The Technical Manager, LMT, Inc., is responsible for the generation and control of this procedure and shall so indicate by a dated signature on the cover sheet.

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose.Ca. 95112 408-297-8766

PROC. NO. UT-27 PAGE 3 FOLLOWING PAGE 4 REVISION 0 6/25/79

DATE:

The responsible LMT Field Supervisor shall qualify the IV. B. procedure for a particular examination.

v. PROCEDURE QUALIFICATION

The procedure may be qualified for specific examinations, personnel, and equipment by successful calibration.

VI. PERSONNEL REQUIREMENTS

- Examiners using this procedure shall have levels of Α. qualifications as per the Procedure Qualification.
 - в. Personnel shall be qualified and certified according to the requirements of ASME XI, SNT-TC-1A, and LMT, Inc. Procedure QA-6, "Qualification and Certification of NDE Personnel."

VII. EQUIPMENT AND MATERIAL REQUIREMENTS

Ultrasonic testers shall be of the pulse echo type. Α. Instruments shall have an amplitude display linear within 5% of calibrated screen height over 80% of that height, and an attenuator accurate over the range of the test to **±20%** of nominal value which is stepped in increments of 2 dB or less. Instruments shall have had their internal

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 4 FOLLOWING PAGE 5 REVISION 0 DATE: 6/25/79

- VII. A. alignment and calibration verified within 90 days of any implementation of this procedure.
 - A record of calibration shall be available at the jobsite for client audit.
 - B. Connecting cables shall be coaxial, and their length limited to less than that at which significant signal degradation occurs, but shall not exceed 200 feet.
 - C. Electronic recording equipment, when used, shall be electronically aligned within 180 days of use.
 - D. Search units shall be certified by the manufacturer as to essential properties, including bandwidth, damping, center frequency, and relative gain.
 - 1. A record of search unit properties shall be available at the jobsite for client audit.
 - 2. Angle beam search unit wedges shall be within $\pm 3^{\circ}$ of nominal value when checked on a standard reference block such as an IIW or Rompas.
 - 3. Search units shall be selected according to Table 1. Additional search units may be used for evaluation or in unusual circumstances; however, such use shall be

Testing • Engineering • Service • Training 14030 Elvira St. Saratoga, Ca. 95070 408-867-4109

PROC.	NO.	UT-27	
PAGE 5			
FOLLOW	ING	PAGE	6
REVISI	ON 0	1	
DATE:	6/2	5/79	

VII. D. 3. documented by an approved Field Change to the procedure as per LMT, Inc. Quality Assurance Procedure QA-5.

Material Thickness	L-Wave Ang Straight Be Size (in.)	am Exam	Shear Wa Beam Size	ve Angle Exam Freq.
눅" or less	ју н	5-10 MHz	. ¼"X¼"	5 MHz
>½" to l"	¼" to l"	24-5 MHz	- *"x*" to *"x5"	24-5 MHz or 1-24 MHz P/C
l" and above	l"xl"	1-24 MHz	국"x국" to 국"xl"	2½ MHz or 1-2½ MHZ P/C

Table 1

4. Search unit contact angle beam wedges shall meet the requirements of Table 2 for coverage of the weld root as shown in Figure 1, when the examination is limited to half-node (half-vee path).

Beam Angle	Required Index to Weld & Distance A
45°	.93T
60°	1.6 T
70°	2.47T

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 6 FOLLOWING PAGE 7 REVISION 0 DATE: 6/25/79

- VII. E. Couplant materials shall be as low as practicable in sulfur and halogen content. Certification shall be provided on a generic basis for each brand of couplant. Analysis for halogens and sulfur shall be made according to ASTM D-129-64 and ASTM D-808-63.
 - Residual halogens and sulfur shall not exceed 1% by weight.
 - 2. Reactor coolant water is a satisfactory couplant.
 - F. Calibration blocks shall be of the form of Figures 2 and 3 with calibration notches as shown. Calibration blocks shall be of the same nominal size, thickness, material, and surface finish as the pipe to be examined.
 - Calibration notches for Class 1 piping examination shall be one inch long, less than ½ inch wide, and 5% of the nominal pipe wall thickness in depth.
 - Calibration notches for Class 2 piping shall be one inch long, less than ½" wide and lo% of the nominal pipe wall thickness in depth.
 - 3. Calibration holes for use in half node examinations only shall be drilled perpendicular to the ends of

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 7 FOLLOWING PAGE 8 REVISION 0 DATE: 6/25/79

VII. F. 3. the block to the center line of the pipe, one and one-half inches deep. The hole diameters and location shall conform to those outlined in Table 3.

Pipe Wall (T)	Hole Ø	Hole Location
< 2 "	to be de- termined empiri- cally	kT and 3∕4T
>2"	79	4T, 5T, and 3/4T

Table 3

 Other reflectors may be included in block designs for informational purposes.

VIII. PREPARATIONS

A. Documentation

- The following documentation shall be submitted to the DAEC Supervisor for review before beginning any examination:
 - a) Procedure
 - b) Calibration Sheets
 - c) Inspection Reports
 - d) Materials and Equipment Certifications

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 8 FOLLOWING PAGE 9 REVISION 0 DATE: 6/25/79

VIII. A. l. e) Personnel Certifications

- f) NRC Form 4
- g) NRC Form 5
- B. Physical
 - The following physical preparation requirements shall be reviewed by the examiner with the DAEC Supervisor before specific examinations are performed:
 - a) Insulation removal
 - b) OSHA requirements (ladders, lighting, fresh air)
 - c) Cleanup requirements
 - d) Safety precautions
 - Surfaces shall be sufficiently smooth and clean that in the judgment of the examiner a meaningful examination may be performed, before proceeding.
 - 3. Welds shall be identified and all required marking procedures completed before performing any examinations.

IX. LIMITATIONS

This procedure is based on ASME Nuclear Requirements; it may

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose,Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 9 FOLLOWING PAGE 10 REVISION 0 DATE: 6/25/79

IX. not be applicable to military, API, or AWS requirements without modification.

X. CALIBRATION

- A. Test calibration is performed on a complete system. Any change in the ultrasonic instrument, transducer cable, or transducer requires test recalibration. A change in qualified personnel, recording instrumentation, or recorder connection cable requires a calibration check, however, instrument alignment verification need not be made with the transducer used for testing.
- B. Instrument alignment verification for screen height and amplitude control linearity shall be performed before the initial examination in any given series and repeated at intervals not exceeding 90 days.
 - 1. Instrument Linearity Verification
 - a) Position the search unit on a calibration block to obtain two echoes with a 2:1 amplitude ratio.
 - b) Set the larger echo to 80% of calibration screen height.

Testing • Engineering • Service • Training 14030 Elvira St. Saratoga, Ca. 95070 408-867-4109 PROC. NO. UT-27 PAGE 10 FOLLOWING PAGE 11 REVISION 0 DATE: 6/25/79

x.	в.	1.	c)	Vary the amplitude of the larger echo from 100% to 20% of calibrated screen height in 10% incre- ments.
			d)	Note that at each increment the smaller echo
				remains 1/2 the larger within a tolerance band
				of ±5% of full screen height.
			e)	Record successful performance of the verification
				on a Calibration Record form (Figure 4).
	•	2.	Att	enuator Linearity Verification
			a)	Position the search unit to obtain an 80% of full
				scale echo on the calibrated screen.
			b)	Adjust the sensitivity control to decrease the
				system gain by 6 and 12 dB. Compare the response
				with Table 4 and determine its acceptability.
				Estimate system response to ±1% of calibrated full
				scale.
			c)	Position the search unit to obtain a 40% of full
				scale echo on the calibrated screen.
			d)	Adjust the sensitivity control to increase the
	·			system gain by 6 dB. Compare the response with

Testing • Engineering • Service • Training 14030 Elvira St. Saratoga, Ca. 95070 408-867-4109 PROC. NO. UT-27 PAGE 11 FOLLOWING PAGE 12 REVISION 0 DATE: 6/25/79

- X. B. 2. d) Table 4 to determine its acceptability. Estimate system response to ±1% of calibrated full scale.
 - e) Position the search unit to obtain a 20% of full scale echo on the calibrated screen.
 - f) Adjust the sensitivity control to increase the system gain by 12 dB. Compare the response with Table 4 to determine its acceptability. Estimate system response to ±1% of calibrated full scale.
 - g) Record successful performance of the verification on a Calibration Record form (Figure 4).

Indication Set	Gain Change	Indication Tolerance Limits
80%	-6 dB	32% to 48%
808	-12 dB	16% to 24%
40%	+6 dB	64% to 96%
20%	+12 dB	64% to 96%

Table 4

C. Examination Calibration

 Straight beam examination scans shall be calibrated at the time of examination on a representative sample of the material examined by placing the first back

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 12 FOLLOWING PAGE 13 REVISION 0 DATE: 6/25/79

X. C. 1. reflection at 80% amplitude and four sweep divisions.

2. Angle Beam Examination

Calibration is performed on a complete system on an appropriate basic calibration block at the beginning of each day's testing of that material.

- a) Calibration shall be performed on a calibration block whose temperature is within ±25°F of the material to be examined.
- b) Set the sweep range on the calibrated tester screen according to Table 5.

Pipe Thickness (T)	Metal Path	I.D./O.D. Points
Up to h	2½ node	2,4,6,8,10 Div.
> 2" - 1"	2 node	2.5,5,7.5,10 Div.
>1" - 2"	1½ node	3,6,9 Div.
> 2."	l node	5,10 Div.
Cast Stainless	h node	8 Div.

Table 5

c) For examinations utilizing metal paths greater than one-half node, test sensitivity at any range is established by setting the amplitude of the

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose,Ca. 95112 408 - 297 - 8766 PROC. NO. UT-27 PAGE 13 FOLLOWING PAGE 14 REVISION 0 DATE: 6/25/79

X. C. 2. c) nearest notch echo to 80% of full calibrated scale. The responses from the remaining notch echoes in the test region shall then be obtained at this sensitivity, joined together in a smooth DAC curve on the tester face, and similarly recorded on the Calibration Record form (Figure 4). The DAC curve so generated is the Primary Reference Level.

> d) For examinations utilizing a half-node metal path, a DAC curve shall be generated using the side drilled holes in a basic calibration block so that the maximum hole response is set to 80% calibrated screen height. This response shall be obtained with the transducer centerline aligned with the hole half length and the beam perpendicular to the SDH, to prevent possible erroneous corner responses. The DAC shall be clearly marked on the tester face and smoothly extrapolated to cover the examination range 0 to T inches. The DAC shall also be recorded on the Calibration Record form (Figure 4). The DAC curve is the Primary Reference Level.

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 14 FOLLOWING PAGE 15 REVISION 0 DATE: 6/25/79

X. C. 2. e) After the Primary Reference Level has been established on the basic block a calibration reference response may be established on a Rompas or other standard reference block. The response should include both sweep and amplitude calibration points and should be recorded as a calibration check response on the Calibration Record form. This response may be used for calibration check when an appropriate basic block is not available.

XI. PERFORMANCE

A. Straight Beam Lamination Scan of Rolled Plate Piping

 The area to be examined by angle beam methods shall be examined for laminations which would interfere with these examinations.

B. <u>Calibration Check</u>

- A calibration check is required before and after each examination, with any change in test personnel, and at least once every four hours.
- 2. The calibration check shall as a minimum consist of

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 15 FOLLOWING PAGE 16 REVISION 0 DATE: 6/25/79

- XI. B. 2. verification of the DAC curve by a single point amplitude and range check using the basic calibration block or a portable block such as the Rompas whose response has been related to that of the basic block.
 - a) The amplitude response of the reference reflector during the calibration check shall be within ±2 dB, and its sweep location within ±10% of the calibration reference response value recorded on the calibration sheet to be acceptable.
 - b) An unacceptable calibration check shall be cause for full examination of the test system to determine the reason for the calibration change. Typical causes for calibration change are ambient temperature effects on transducers and electronics, control settings inadvertently changed, and loss of couplant between the transducer and wedge. If, in the judgment of the examiner, the cause of the calibration change has been corrected or may be compensated for by a change in control settings, calibration may be restored using the calibration check response.

Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 16 FOLLOWING PAGE 17 REVISION 0 DATE: 6/25/79

XI. B. 2. c) Any examination that has been performed in a noncalibrated condition shall be repeated.

C. <u>Sensitivity</u>

Scanning sensitivity shall be 6 dB greater than that of the Primary Reference Response.

- D. Coverage of Butt Welds in Piping
 - The entire examination volume comprising the weld and adjacent base metal, as shown in Figure 5, shall be examined with the beam normal to the weld for at least a full V path on either side of the weld according to Table 6.

Beam	Required Perpendicular Scan Coverage Measured from the Weld E for Full V with Weld Width T	Required Parallel Scan Coverage Measured from the Weld b
45°	The lesser of 3T or 2.5T+1"	Т
60 [°]	The lesser of 4.5T or 4T+1"	T
70°	The lesser of 6.5T or 6T+1"	Т

Table 6

Testing • Engineering • Service • Iraining 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NC. UT-27 PAGE 17 FOLLOWING PAGE 18 REVISION 0 DATE: 6/25/79

XI.	D.	2.	The entire examination volume comprising the weld and
			adjacent base metal, as shown in Figure 5, shall be
			examined with the beam parallel to the weld for a full
			V path on either side of the weld in two directions
			according to Table 6.

- Any obstruction or other condition preventing full coverage of the examination shall be recorded on the examination report.
- Overlap between parallel scans shall be nominally 15%, and in no case less than 10%.

E. Coverage for Branch Welds in Piping

Piping branch welds shall be examined from the larger pipe in both perpendicular and parallel directions to fulfill the coverage requirement of Table XI C. Examination volumes are shown in Figures 6, 7, and 8.

F. Scanning Speed

Scanning speed shall not exceed six inches per second.

G. Limitations

Physical or other limitations that prevent full compliance with the requirements of this procedure shall be recorded on the Examination Report form, Figure 6.

Testing • Engineering • Service • Iraining 771 East Brokaw Road San Jose, Ca. 95112 408-297-8766 PROC. NO. UT-27 PAGE 18 FOLLOWING PAGE 19 REVISION 0 DATE: 6/25/79

XI. H. Automatic Alarms

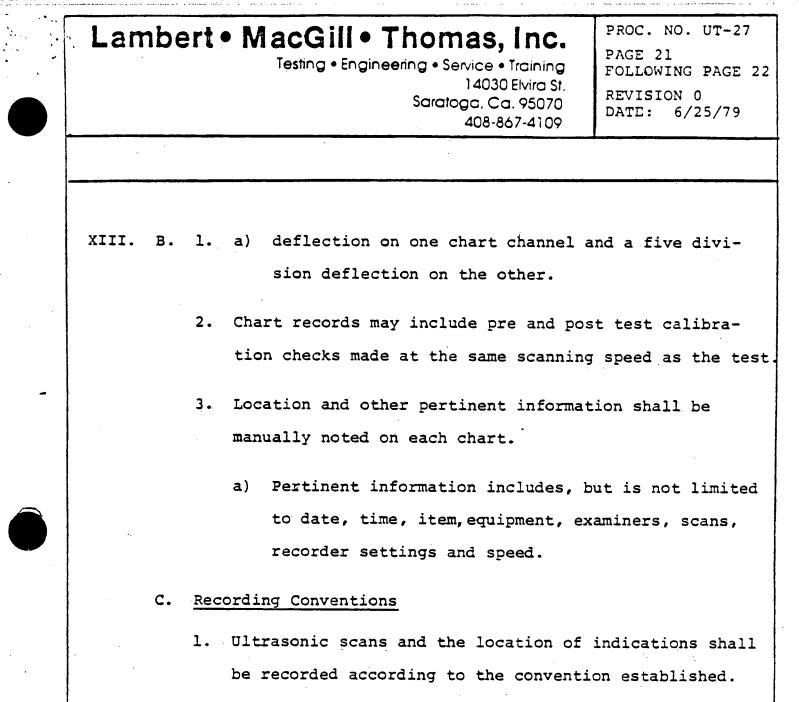
Automatic alarms or recording may be used as an aid to the examiner.

XII. EVALUATION

A. <u>Reporting Criteria</u>

- Any indication exceeding 100% of the primary reference distance amplitude curve shall be evaluated by the examiner to determine the extent, location and shape of the reflector.
- Reflector data shall be recorded and evaluated in terms of established acceptance criteria meeting paragraph IWA 3100 (b) of ASME XI (1974).

XIII. RECORDS


A. An Examination Report form shall be prepared for each item examined, and each Examination Report shall be related to an Ultrasonic Calibration Record. Typical forms are attached in Figures 4 and 9.

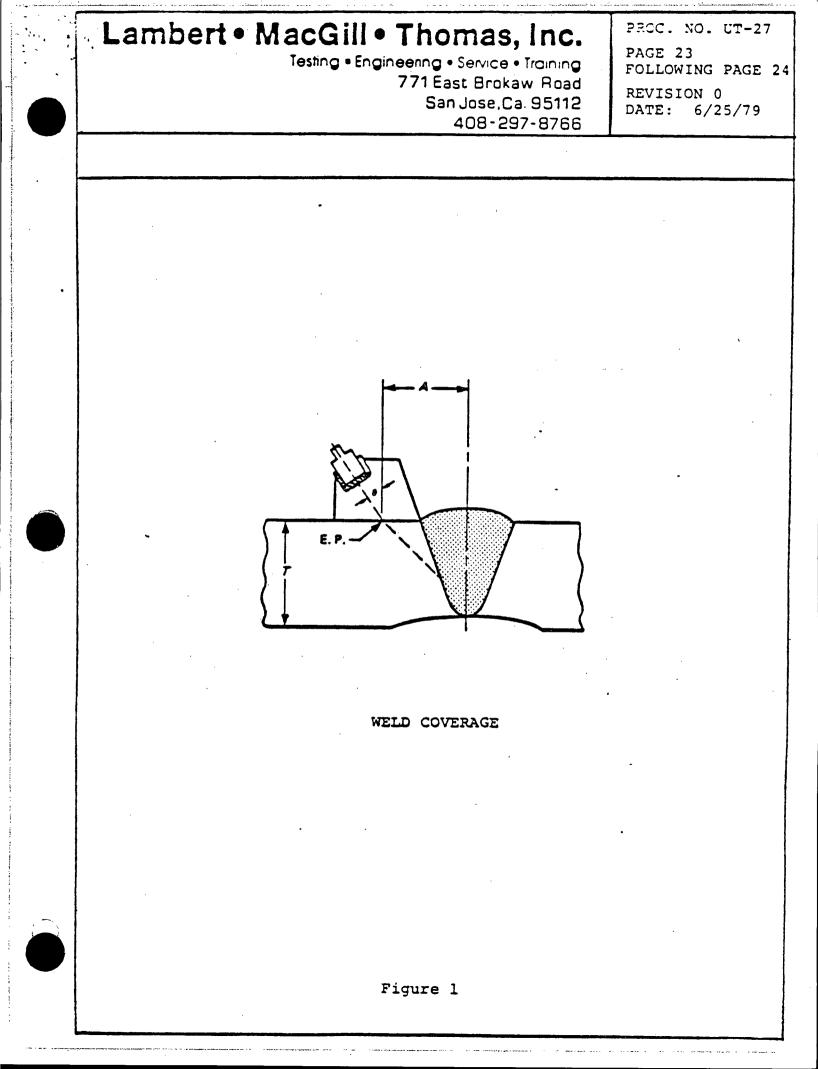
Testing • Engineering • Service • Training 14030 Elvira St. Saratoga, Ca. 95070 408-867-4109 PROC. NO. UT-27 PAGE 20 FOLLOWING PAGE 21 REVISION 0 DATE: 6/25/79

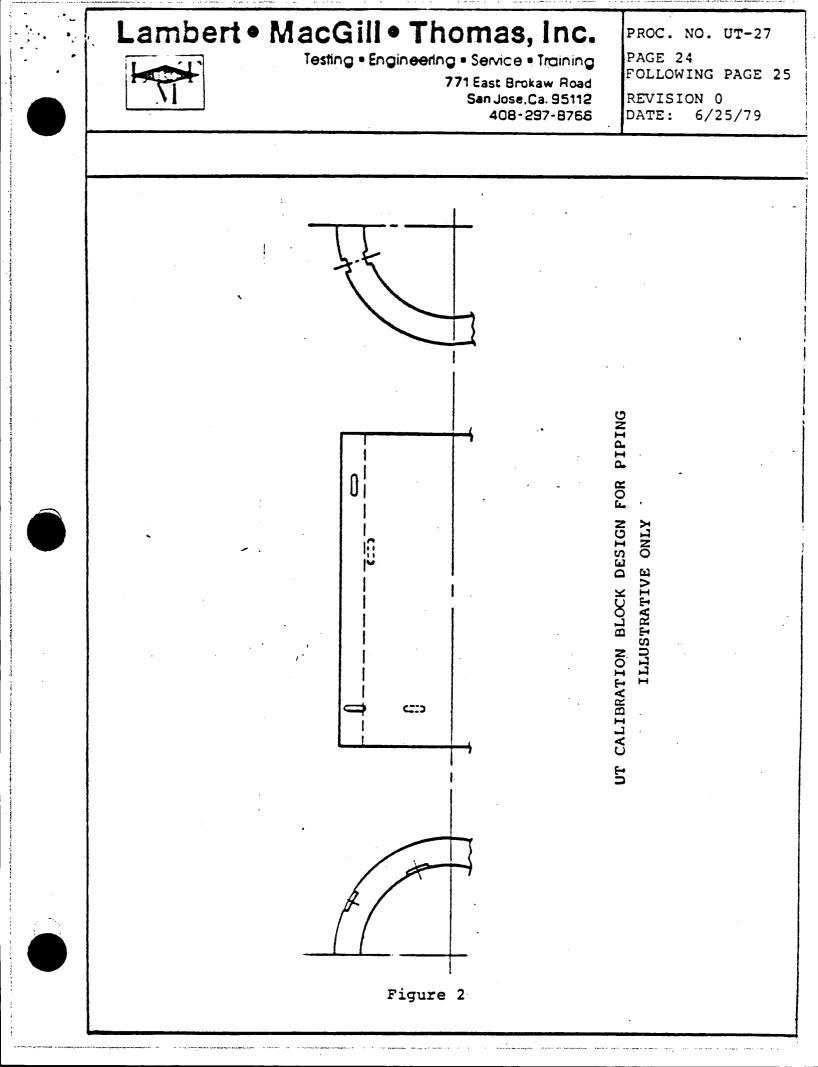
- XIII. A. 1. The Examination Report shall contain a sketch which clearly identifies the location reference system for the examination.
 - Where permanent reference marks are available, locations shall be measured according to the direction of the reference mark.
 - a) Should no permanent reference marks be available, the location reference system shall utilize clock coordinates with 12:00 o'clock reference to top dead center on horizontal piping and the outside radius of the nearest elbow on vertical piping. Branch piping welds are to be referenced according to the branch.

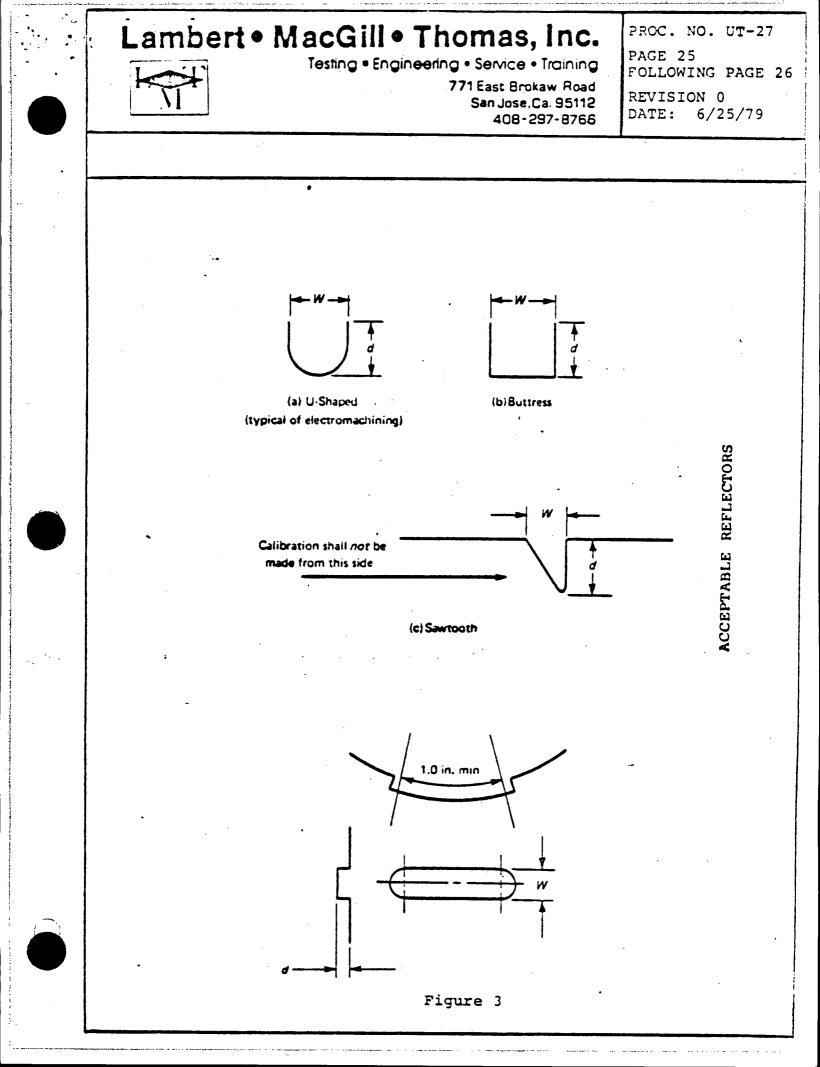
B. Oscillograph chart records may be made of all examinations.

- Chart records used in indication analysis shall utilize two channels, one corresponding to vertical deflection of the tester signal and the other to horizontal.
 - a) These channels shall be calibrated to match the oscilloscope display. That is, an indication 90% of vertical amplitude appearing at five divisions on the tester screen should have a nine division

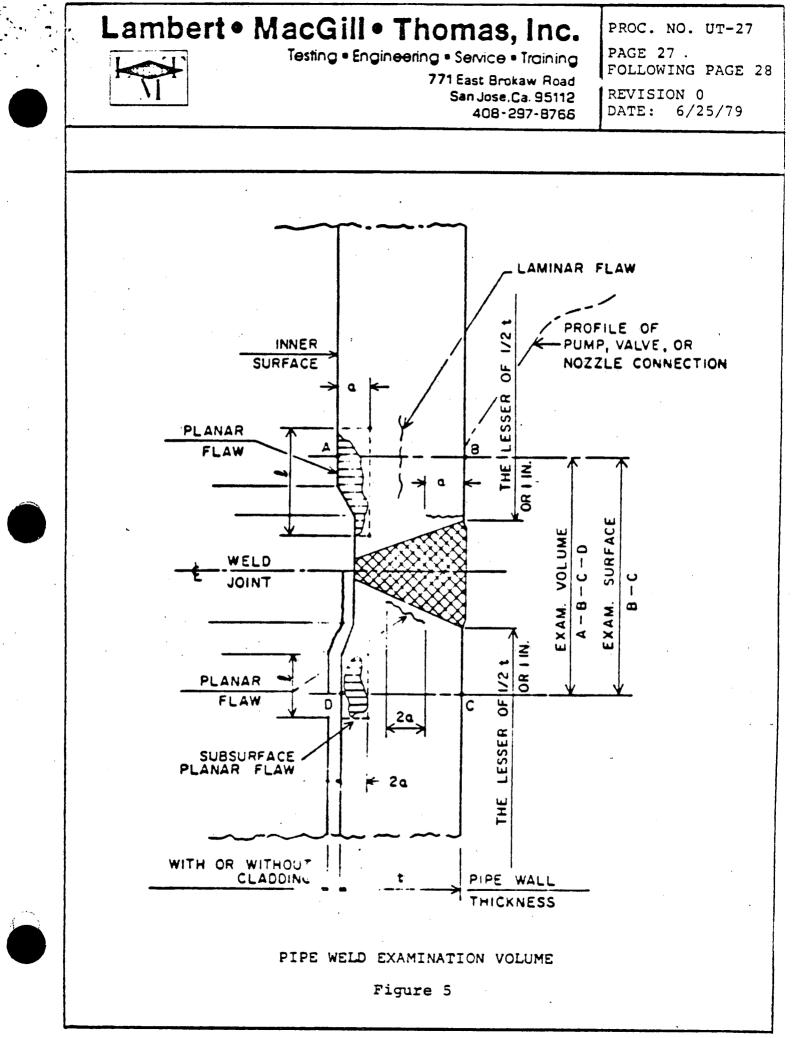
D. Other types of recording, such as event or alarm monitoring, may be used as an aid to the examiner where feasible.

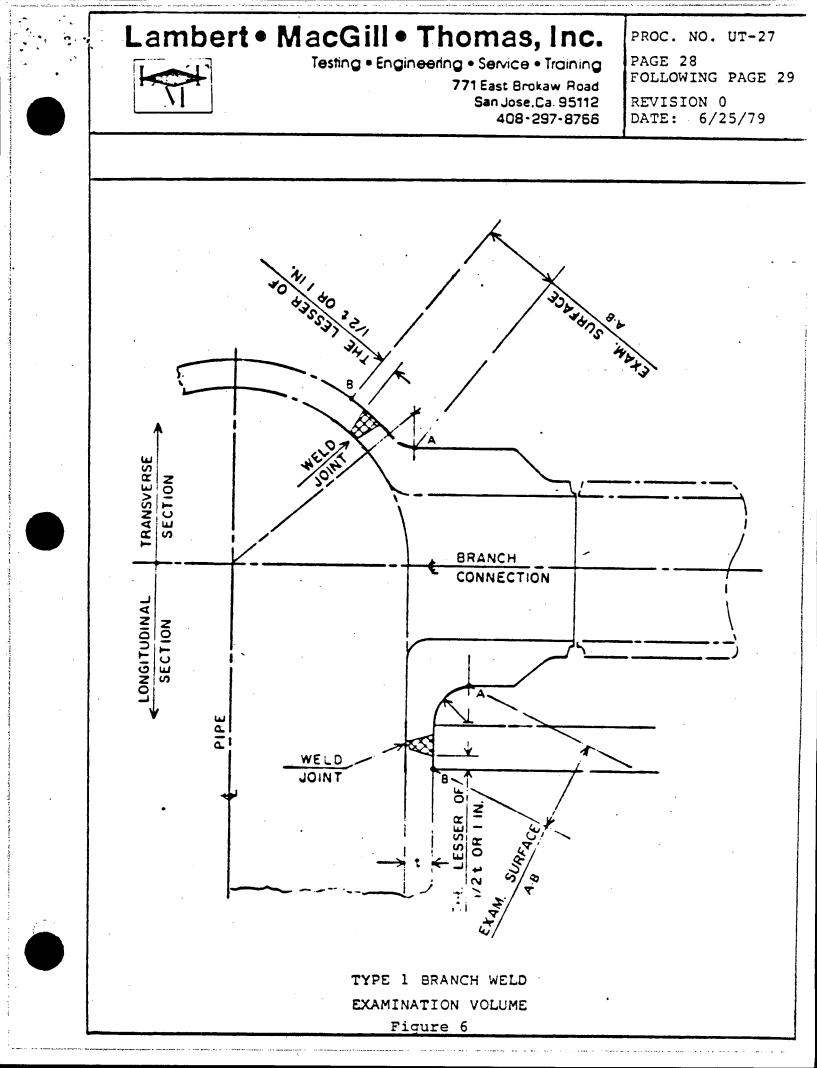

XIV. REVIEW

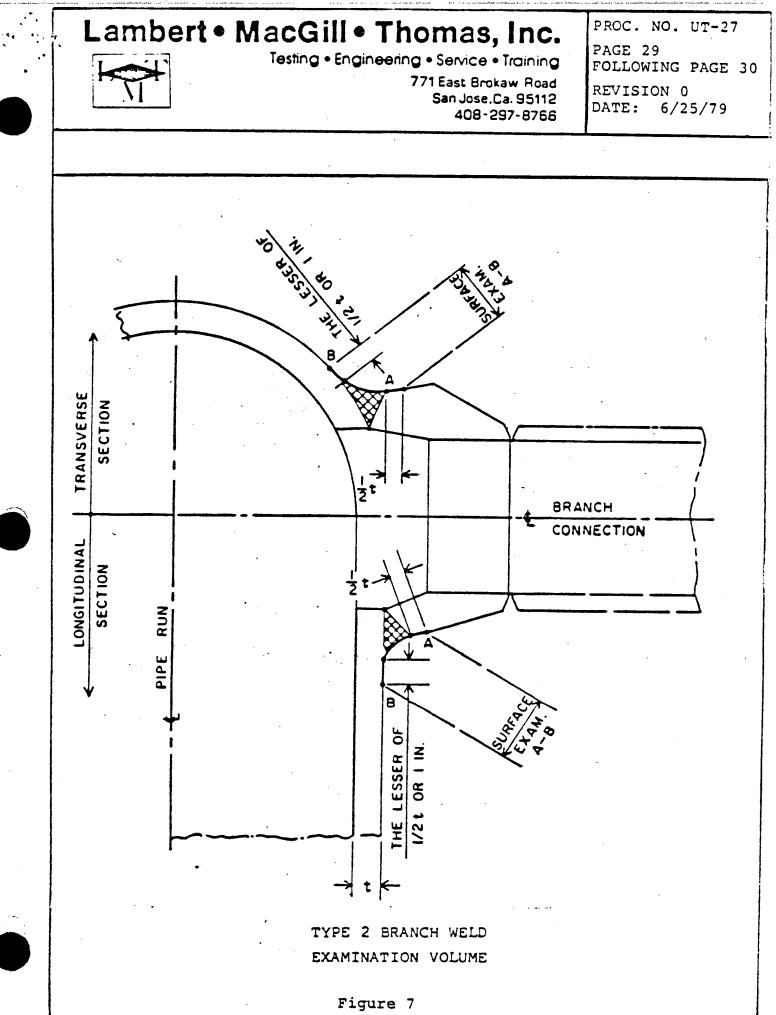

Examination Reports are subject to review by the assigned LMT Level III Examiner for conformity to the requirements of this procedure.

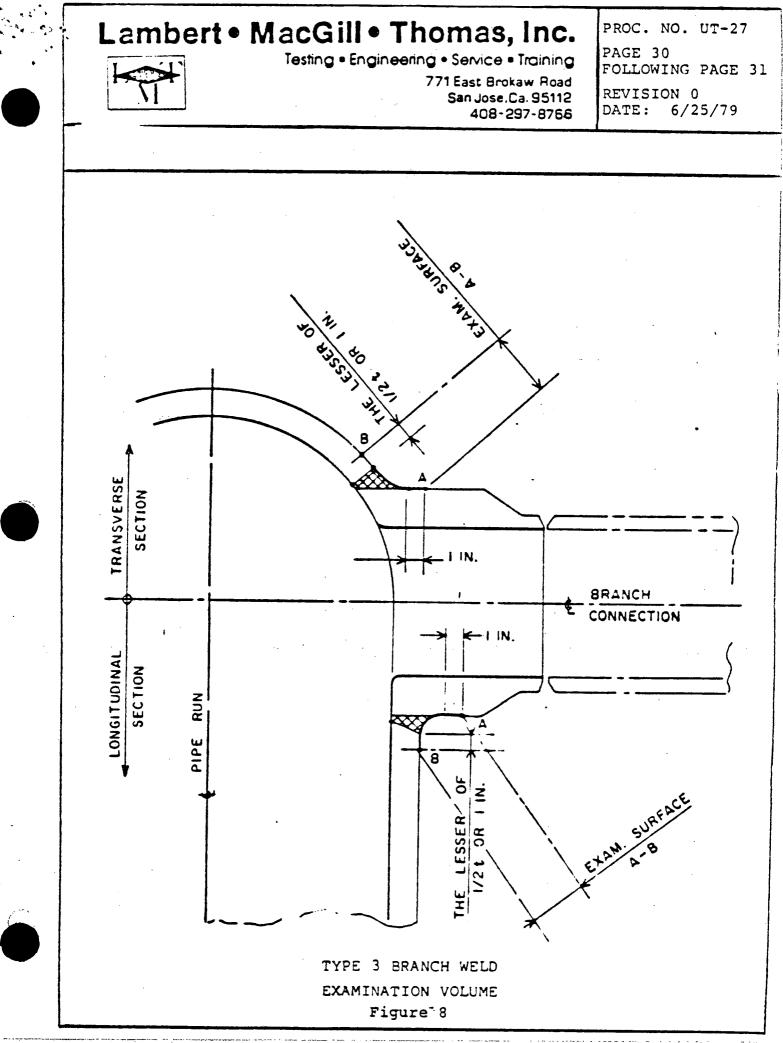

Testing • Engineering • Service • Training 14030 Elvira St. Saratoga, Ca. 95070 408-867-4109 PROC. NO. UT-27 PAGE 22 FOLLOWING PAGE 23 REVISION 0 DATE: 6/25/79

XV. STORAGE AND DISTRIBUTION

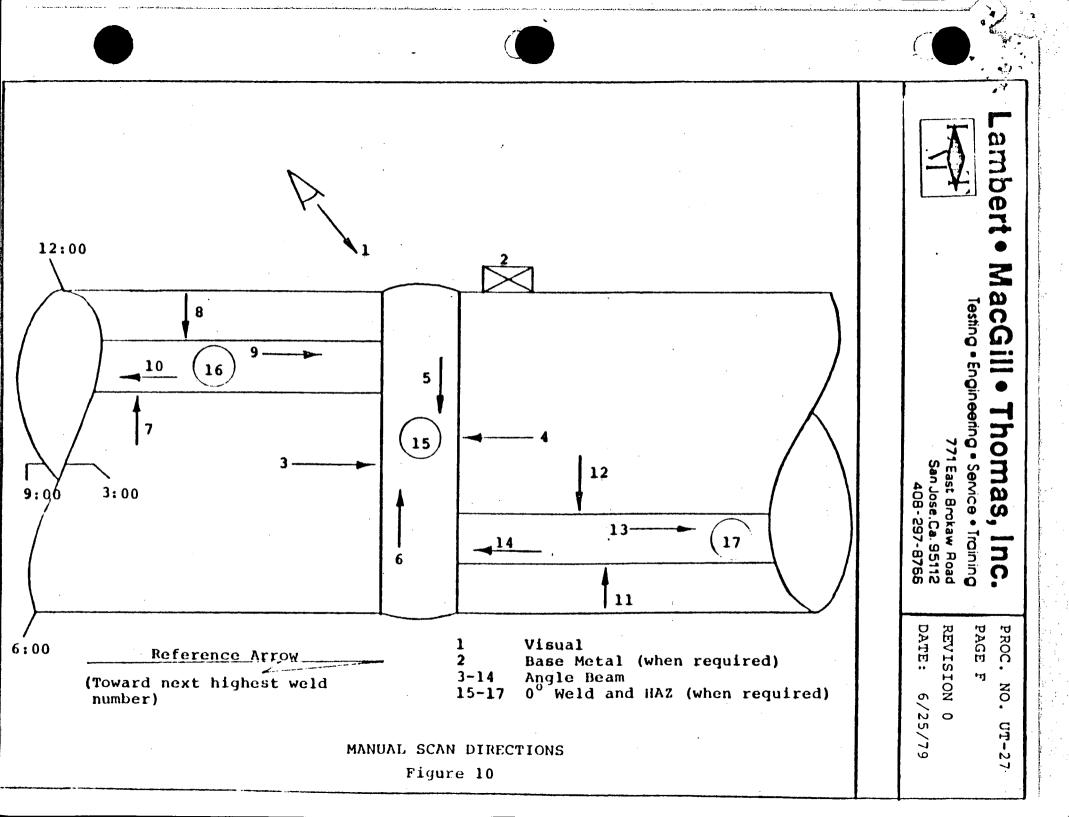

- A. Examination documentation shall become the property of IELP upon sign-off. Additional reports, which may include examination documentation as reference material, shall be generated from copies.
- B. Field storage facilities shall provide a safe storage area, and access to files shall be limited to the LMT Field Supervisor and his designated representatives, the DAEC Supervisor, and the Authorized Nuclear Inspector.






9	mhar	t o R/	larG	; ill • '	Thom	nas, Ind	ISO N	No	
- 9	IIIDCI	6 - 10				ervice • Train		No.	
			1021111				"'¥	io	
			÷.,		771 Eas	t Brokaw Ro	bad		
						Jose,Ca. 95'			
					4	08-297-87	'66 Page		of
	RE	PORT	OP	ULTR	ASONI	C CALI	BRATI	ON	
S I	Examiner/I	Level		Examin	er/Level		Review/	/Level	<u>ų, i i i zr. i i i</u>
GN						Customer			
	Tastrinea	•		c /na	Becor	dor		S /N	·
_	Recorder	د		S/N	Cable	der			
E	Vertical I	Linearity	Check			Check	Completed	1	
0		Signal	. 1 [1	00 90	80 70	60 50	40 30	20 10	<u>ت</u>
σ		Signal Sig	nal 2 sh	all equal	50% of Si	gnal 1 ±5% of	full scal	e	لـ
I	Attenuato	-		_		-	Check Comp		
P			Gain :		-6	-12 Set		Set	+6
M		Signal		803 32		to 24 203	64 to 96	408 6	
	• • • • •	•••••••••			e must fal	l within list			<u> </u>
E	Transduces								
N.	•					Freq			
T	s/n	Mfg	•	Туре	Size	Freq	Index_	······································	Angle
	s/n	Mfg	•	Type	Size	Freq	Index_	·	Angle
	S/N	Mfg	•	Туре	Size	Freq	Index_	······································	Angle
	-,								
P				Rev	•	Date		—	
R	Procedure								
-			 						
R O	Procedure_							Temp.	
R O C	Procedure_ Cal. Block	< Type		s/1	N	Ref. Refl.			
R O C C	Procedure_	< Type		s/1	N				
R O C	Procedure_ Cal. Block	< Typeion/Ref.	Blk	S/1	N	Ref. Refl.			Cal
R O C C	Procedure_ Cal. Block	< Typeion/Ref.		S/1	N S/N	Ref. Refl.		_ Temp	Cal
R O C C A	Procedure_ Cal. Block	< Typeion/Ref.	Blk	S/1	N	Ref. Refl.		_ Temp	Cal
R O C A L	Procedure Cal. Block Verificati	< Typeion/Ref.	Blk	S/1	N S/N	Ref. Refl.		_ Temp	Cal
R O C A L I	Procedure Cal. Block Verificati	< Typeion/Ref.	Blk	S/1	N S/N 10	Ref. Refl.		_ Temp	Cal
R O C A L I B	Procedure Cal. Block Verificati Gain Sweep	< Typeion/Ref.	Blk	S/1	N S/N 10	Ref. Refl.		_ Temp	Cal
R O C A L B R A	Procedure Cal. Block Verificati	< Typeion/Ref.	Blk	S/1	N S/N 10 8	Ref. Refl.		_ Temp	Cal
R OC C A L I B R A T	Procedure Cal. Block Verificati Gain Sweep	< Typeion/Ref.	Blk	S/1	N S/N 10 8	Ref. Refl.		_ Temp	Cal.
R O C A L B R A	Procedure Cal. Block Verificati Gain Sweep Delay	< Typeion/Ref.	Blk	S/1	N S/N 10 10 8 6 4	Ref. Refl.		_ Temp	Cal.
R OC C A L I B R A T	Procedure Cal. Block Verificati Gain Sweep Delay Reject	< Typeion/Ref.	Blk	S/1	N S/N 10 10 8 6	Ref. Refl.		_ Temp	Cal.
R OC C A L I B R A T I	Procedure Cal. Block Verificati Gain Sweep Delay Reject	< Typeion/Ref.	Blk	S/1	N S/N 10 10 8 6 4	Ref. Refl.		_ Temp	Cal.

.



FOLLOWING PAGE F LMT-UTX2 Lambert • MacGill • Thomas, Inc. Testing • Engineering • Service • Training 771 East Brokaw Road San Jose, Ca. 95112 40B • 297 • B766 Page REPORT OF VISUAL AND ULTRASONIC EXAMINATION I DescriptionSizeMaterialS/N (s	Time
Lambert • MacGill • Thomas, Inc. Report No. Testing • Engineering • Service • Training 771 East Brokaw Road 771 East Brokaw Road Job No. Job No. Date 40B-297-B766 Page REPORT OF VISUAL AND ULTRASONIC EXAMINATION I Description Size Material S/N (stress)	Time
Testing • Engineering • Service • Training Cal.No	· Time
771 East Brokaw Road San Jose.Ca. 95112 40B-297-B766 Job No Date REPORT OF VISUAL AND ULTRASONIC EXAMINATION I Description	
San Jose, Ca. 95112 408-297-8766 Page REPORT OF VISUAL AND ULTRASONIC EXAMINATION I DescriptionSizeMaterialS/N(s	<u></u>
408-297-8766 Page REPORT OF VISUAL AND ULTRASONIC EXAMINATION I DescriptionSizeMaterialS/N(s	
408-297-8766 Page REPORT OF VISUAL AND ULTRASONIC EXAMINATION I DescriptionSizeMaterialS/N(s	
I Description Size Material S/N(s	
Ε.)
M Location Preparation Temp,	v. •
S Examiner/Level Examiner/Level Review/Level	
G Authorized Inspector Customer	
N	<u> </u>
E Tester 1 S/N 2 S/N	
U Recorder 1 S/N 2 S/N	
P Transducer 1	,
E 34	
Marker Photo	
P Calibration Procedure Rev	
R Examination Procedure Rev. O Record Procedure Rev.	
remp. Rei. Amp. Swp.	
A Ref. Gain Damp Reject Gate I Alarm Mag. Tape Count Chart Cal. Check Time	
Cal. Ref. Blk Ref. Rfl Amp Sweep Position	
Scan Gain Ref. Dwg Reject Level Report Level	<u>.</u>
E NAD = No apparent disc. L = Linear G = Geometry S = Spot M = M	ultiples
X A Scan Type Disp. Scan Type Disp. Scan Type	Disp.
M PT	
1 Visual 7 13	
	<u> </u>
10 16	
A 5 11 17 17 6 18 1	
T 12 18 18	
I Scan Description of Indications	
0	
N	

.

ATTACHMENT 4

.

Iowa Electric Light and Power Company

December 1, 1982 NG-82-2653

LARRY D. ROOT ASSISTANT VICE PRESIDENT NUCLEAR GENERATION

Mr. James G. Keppler Regional Administrator Region III U.S. Nuclear Regulatory Commission 799 Roosevelt Road Glen Ellyn, IL 60137

> Subject: Duane Arnold Energy Center Docket No: 50-331 Op. License No: DPR-49 Response to IE Bulletin 82-03, IGSCC

Dear Mr. Keppler:

This letter and attachments are submitted in response to your IE Bulletin 82-03, Revision 1, issued October 28, 1982. In accordance with your request, this letter provides response to those items in your Bulletin for which you requested information by December 1, 1982. Additional information will be developed prior to and during the DAEC Cycle 7 refueling outage which is currently scheduled to begin on February 11, 1983. This additional information will be forwarded to you as it is developed.

Attachment 1 responds on an item by item basis to IEB-82-03. For convenience, we have also reproduced the questions and requests for information of your Bulletin. Four additional attachments are provided which contain detailed information.

Preparation and submittal of this letter and information to the NRC is estimated to have required approximately three man weeks of engineering effort. Estimates of resources that will be devoted to preparing future submittals will be provided in subsequent correspondence.

In accordance with your request, this letter and attachments are submitted under oath and affirmation.

IOWA ELECTRIC LIGHT AND POWER COMPANY arry U.

LDR/WJM/dmh* Attachments

Subscribed and sworn to Before Me on this <u>let</u> day of <u>December</u> 1982.

cc: W. Miller D. Arnold L. Liu

S. Tuthill F. Apicella

Mary & Benfield

Notary Public in and for the State of Iowa

NRC Resident Office Ref: Commitment Control No. 82-0434

1882 - A CENTURY OF SERVICE

MARY E. BENFIELD COMMISSION EXPIRING SEPTEMBER 30, 1983

General Office • PO. Box 351 • Cedar Rapids. Iowa 52406 • 319/398-4411

ATTACHMENT 1

IEB 82-03 Item 1

Actions To Be Taken by Licensees of BWR Facilities Identified in Table 1:

 Before resuming power operations following the current refueling or extended outage, the licensee is to demonstrate the effectiveness of the detection capability of the ultrasonic methodology used or planned to be used to examine welds in recirculation system piping. This demonstration shall be made on representative service-induced cracked pipe samples. Arrangements should be made to allow NRC to witness this demonstration. This demonstration shall employ those procedures and standards, the same type of equipment (same transducer size, frequencies and calibrationstandards), and representative UT personnel from the inservice inspection (ISI) organization utilized or to be utilized in the examinations at the plant site.*

Response to Item 1

The Level III Inspector that DAEC will utilize for the Cycle 7 DAEC refueling outage inspections is Mr. Elwin L. Thomas of the firm of Lambert, Macgill and Thomas. Mr. Thomas has previously demonstrated on behalf of Northeast Utilities the effectiveness of UT methodology that is functionally equivalent to that to be employed at DAEC. This demonstration was conducted at the Battelle Memorial Institute in Columbus, Ohio and included samples of the Nine Mile Point Unit 1 Plant. It is our understanding that representatives of the NRC were present to witness this demonstration.

It is our intent not to repeat the demonstration by Mr. Thomas. In the event the NRC believes a repeat of this demonstration is necessary, we request prompt notification to allow scheduling of a demonstration that will avoid impacting the DAEC refueling schedule.

IEB 82-03 Item 2

2. Before resuming power operations following the current refueling or extended outage, the licensee is to provide a listing of results of recirculation system piping inspections.

Response to Item 2

The requested information will be provided prior to resuming power operations following DAEC Cycle 7 refueling outage.

*We understand that Electric Power Research Institute (EPRI) has arranged to have samples from the Nine Mile Point Unit 1 plant available for industry demonstrations of UT methodology. The samples have been taken to Battelle Memorial Institute in Columbus, Ohio for characterization and subsequent use.

(2) Attachment 1

IEB 82-03, Item 3

3. Before resuming power operations following the current refueling or extended outage, the licensee (if the inspections indicate the presence of cracks) is to describe the corrective actions taken and report these in accordance with the appropriate regulations.

Response to Item 3:

The requested information will be provided prior to resuming power operations following DAEC Cycle 7 refueling outage.

IEB 82-03, Item 4a

- 4. To assist NRC's further evaluation of this issue, the following shall be submitted by December 1, 1982:
 - a. A description of the sampling plan used or to be used during this outage for UT examinations of recirculation system piping welds and the bases for the plan. The description should:
 - (1) Provide an isometric drawing of the recirculation system piping showing all the welds, and the number of welds and their locations that have been examined or will be examined.
 - (2) Identify criteria for weld sample selection (e.g., stress rule index, carbon content, high stress location, and their values for each weld examined).
 - (3) Describe piping material(s), including material type, diameter, and wall thickness.
 - (4) Estimate the occupational radiation exposure incurred or expected and briefly summarize measures taken to maintain individual and collective exposures as low as reasonably achievable.

Response to Item 4a:

- (1) Attachment 2 contains isometric drawings of the DAEC recirculation system and a matrix of prior and scheduled weld inspections for the DAEC Cycle 7 refueling outage.
- (2) Criteria for weld sample selection for all recirculation system welds that have been examined since the 1980 refueling outage and those welds to be examined during the 1983 outage have been based upon stress rule index and carbon content. In addition to the above, all welds in these recirculation system bypass loops have been examined during each refueling outage since 1975. Also, all welds in the recirculation inlet risers will have been examined once and more than

NG-82-2653 December 1, 1982

(3) Attachment 1

fifty percent of the riser welds will have been examined a second time with the 1983 outage examinations. The isometric drawings and IGSCC Susceptibility Matrix (Attachment 2) identifies all welds and the year of the latest examination. Also, the Stress Corrosion Cracking Evaluation Program Report - Duane Arnold Energy Center; dated April 23, 1980 (Attachment 3) identifies the carbon content of material and the stress rule index for each weld.

(3) Attachment 3 identifies each component in the recirculation system by size and material specification and type. The main loop piping is 22 inch O.D. Schedule 80 pipe and fittings.

The ring headers are nominal 16" 0.D. with nominal thickness of 1 and 1/8". The header cap is 16" 0.D. with a minimum wall thickness of 0.708". The inlet risers are 10" schedule 80 nominal size pipe and the bypass loops are 4" Schedule 80 nominal pipe size.

(4) The estimated occupational exposure for personnel involved in preparing for scheduled recirculation system inspections (insulation removal for example), conducting inspections, and restoring the piping systems to pre-inspection status is 37 man rems. This calculation does not include exposure that would be incurred in the event any repairs are warranted.

The primary means that will be utilized to limit occupational dose is: (a) the installation of temporary shielding blankets and (b) limiting worker time in radiation fields. Based on past experience, installation of heavy shielding or internal systems decontamination are not judged to be cost effective or effective in dose reduction due to increased exposure to install heavy shielding or to decontaminate systems.

IEB 82-03, Item 4b

b. A summary description of the UT procedures and calibration standards used or to be employed in the examination at the licensee's plant site. This description should include the scanning sensitivity, the evaluation sensitivity and the recording criteria.

Response to Item 4b:

Iowa Electric plans to use Ultrasonic Procedure #UT-27 Revision O with field changes in our next refueling outage. This procedure has successfully detected cracks at Duane Arnold in 4" schedule 80 pipe which was verified by Dye Penetrant Test after pipe removal. A description of #UT-27 Revision O is as follows:

(1) The primary reflection is 5% notchs for Class 1 piping.

(4) Attachment 1

- (2) Evaluation sensitivity is established by setting the nearest notch echo to 80% of full calibrated scale.
- (3) Scanning sensitivity shall be 6 db breater than the primary response.
- (4) A calibration check is required before and after each examination.
- (5) Examiners must be certified at a minimum as Level II in Ultrasonic Testing to evaluate results and subsequent review and evaluation by Level III, will be provided.
- (6) Evaluation is in accordance with IWA 3100 (b) of ASME Section XI (1974) with addenda through Summer, 1975. Iowa Electric plans to continue its policy of recording any indication determined to be a crack regardless of amplitude or size.
- (7) Strip chart recordings are planned for recording shear wave results.
- (8) All recorded chart signals shall be identified.
- (9) Calibration blocks shall be of the same nominal size, thickness, material, and surface finish as the pipe to be examined in the 1983 outage.

IEB 82-03, Item 4c

c. A summary of the results of any previous inspection of the recirculation system piping welds which used the validated examination methodology as discussed in Action Item 1 above.

Response to Item 4c:

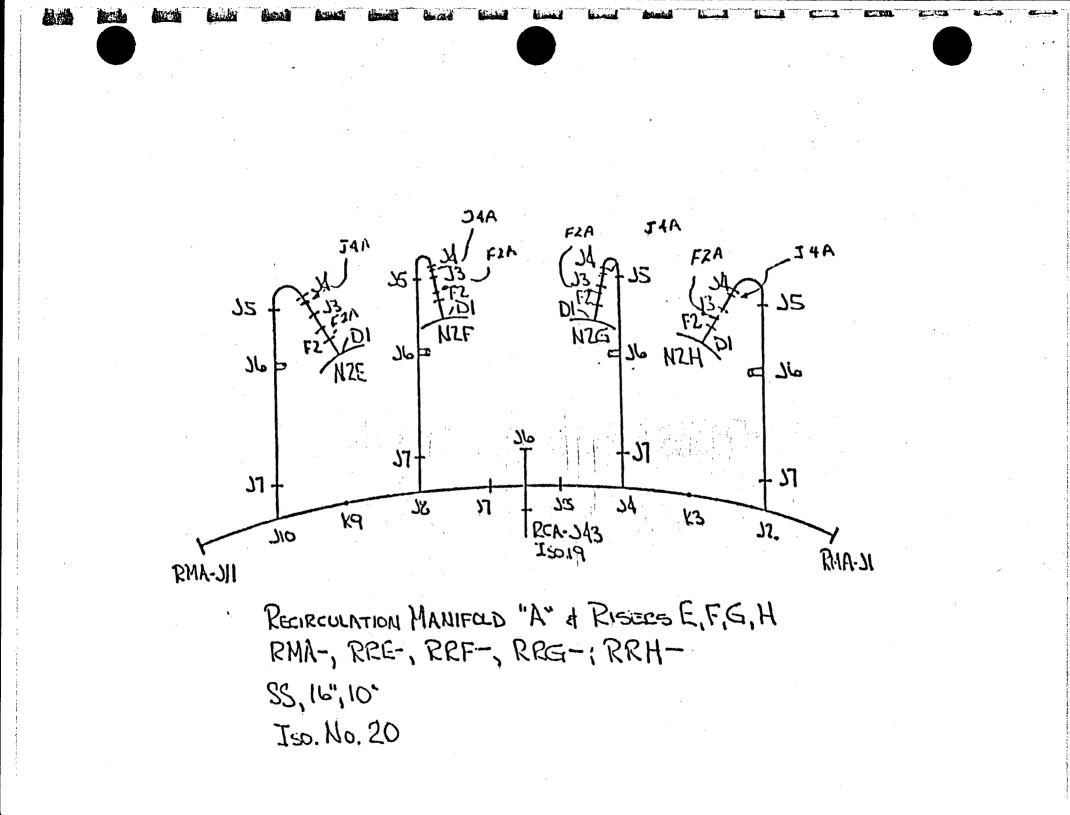
Attachment 4 summarizes the results of 1981 and 1982 recirculation system inspections. These inspections were conducted with functionally equivalent UT examination techniques as is discussed in the response to items 1 and 4b, above.

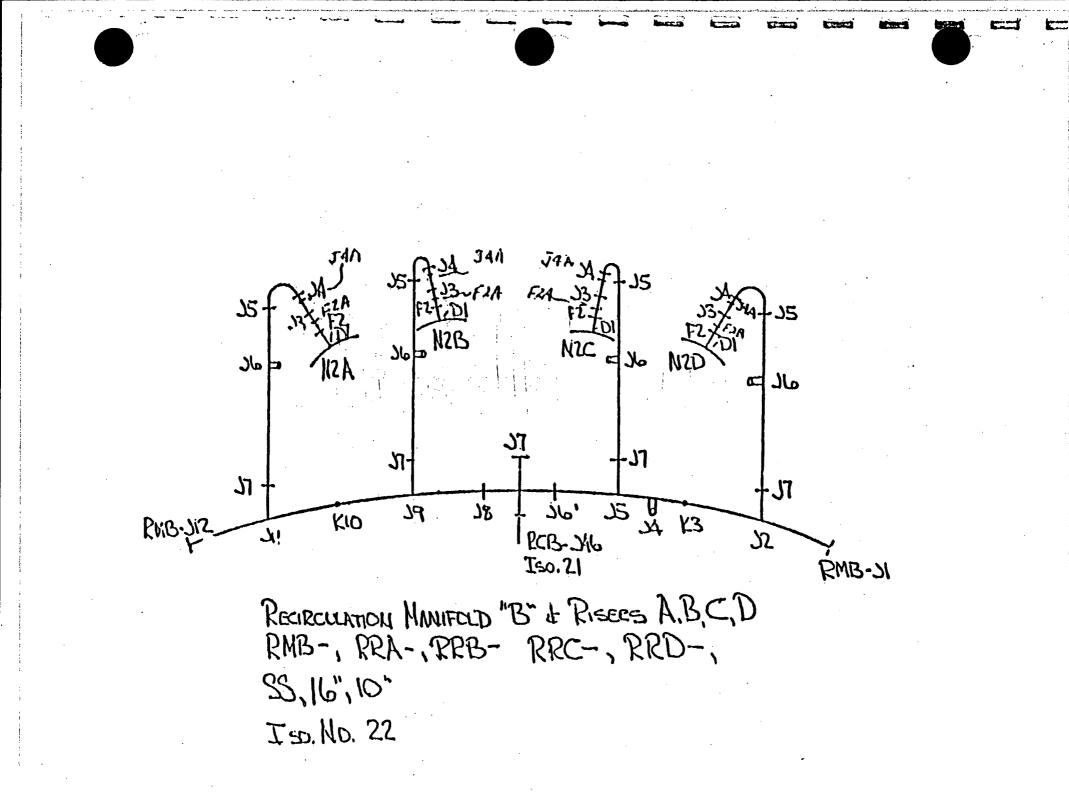
IEB 82-03, Item 4d

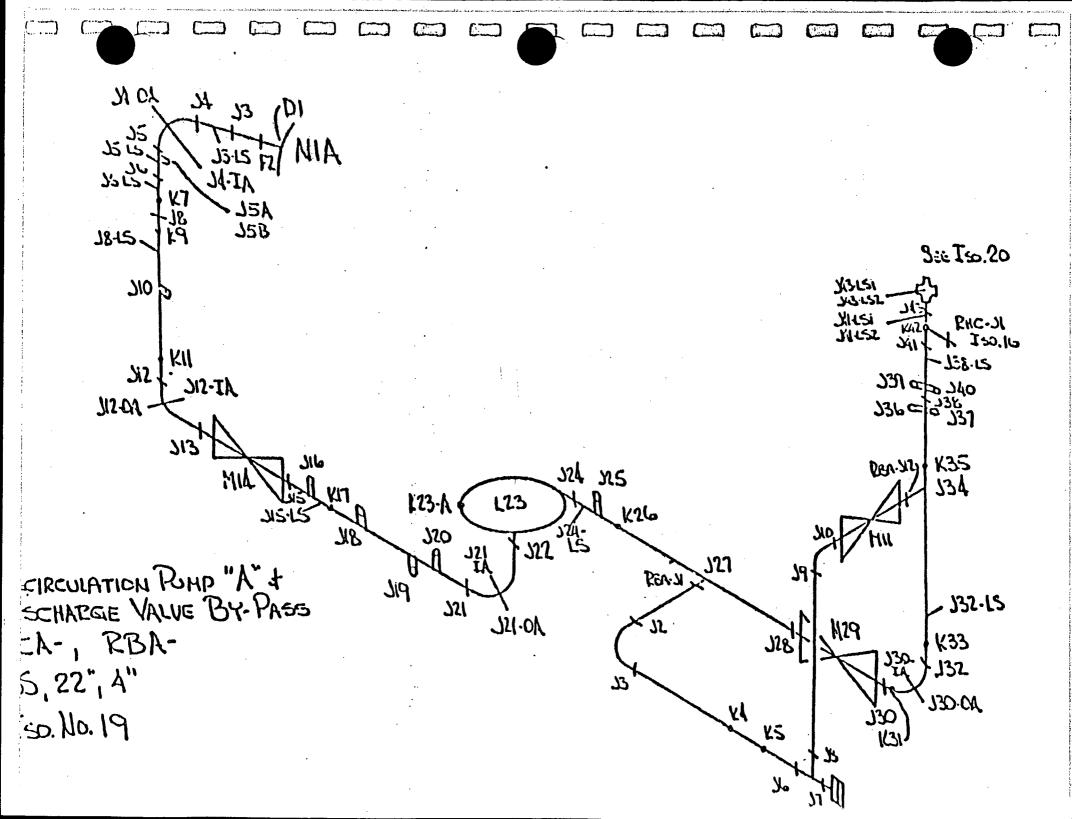
d. An evaluation of the crack-detection capability of ultrasonic methodology used or planned to be used to examine recirculation system piping welds. This evaluation should result from conducting the demonstration required in Action Item 1 above, and should include a comparison of the service-induced pipe crack sample to those welds actually examined in the licensee's plant in terms of pipe wall thickness and diameter, weld geometry, and materials.

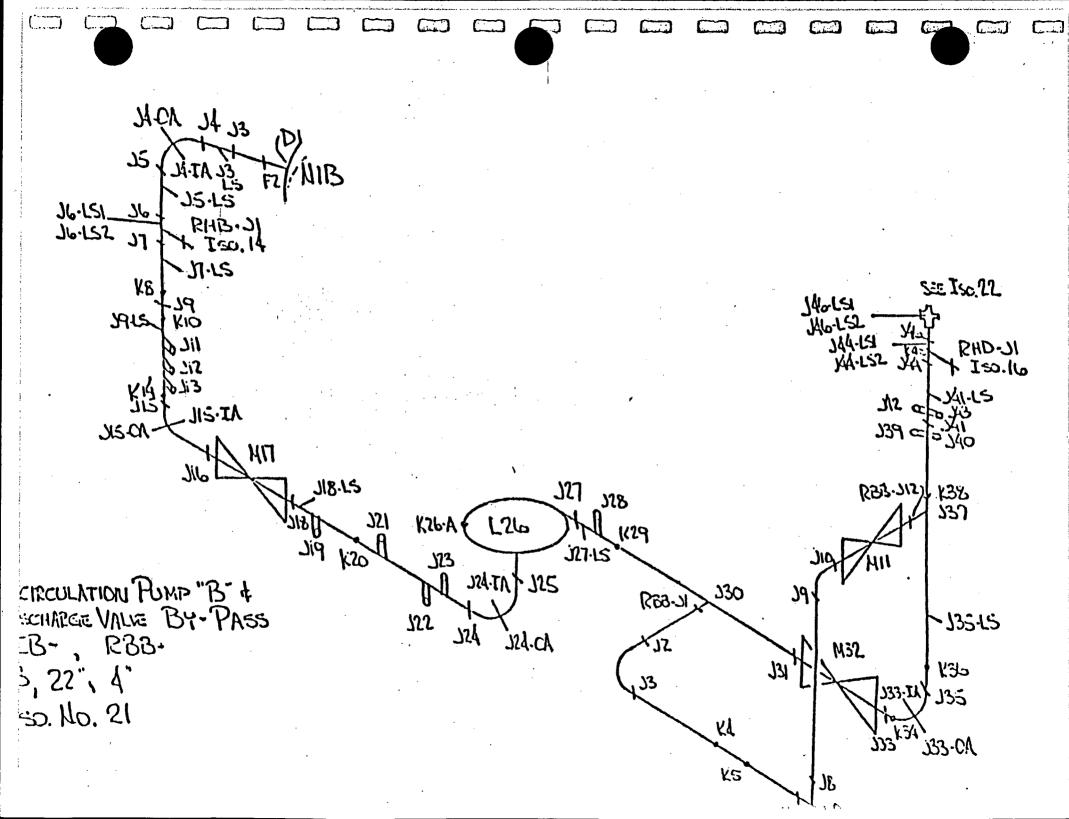
(5) Attachment 1

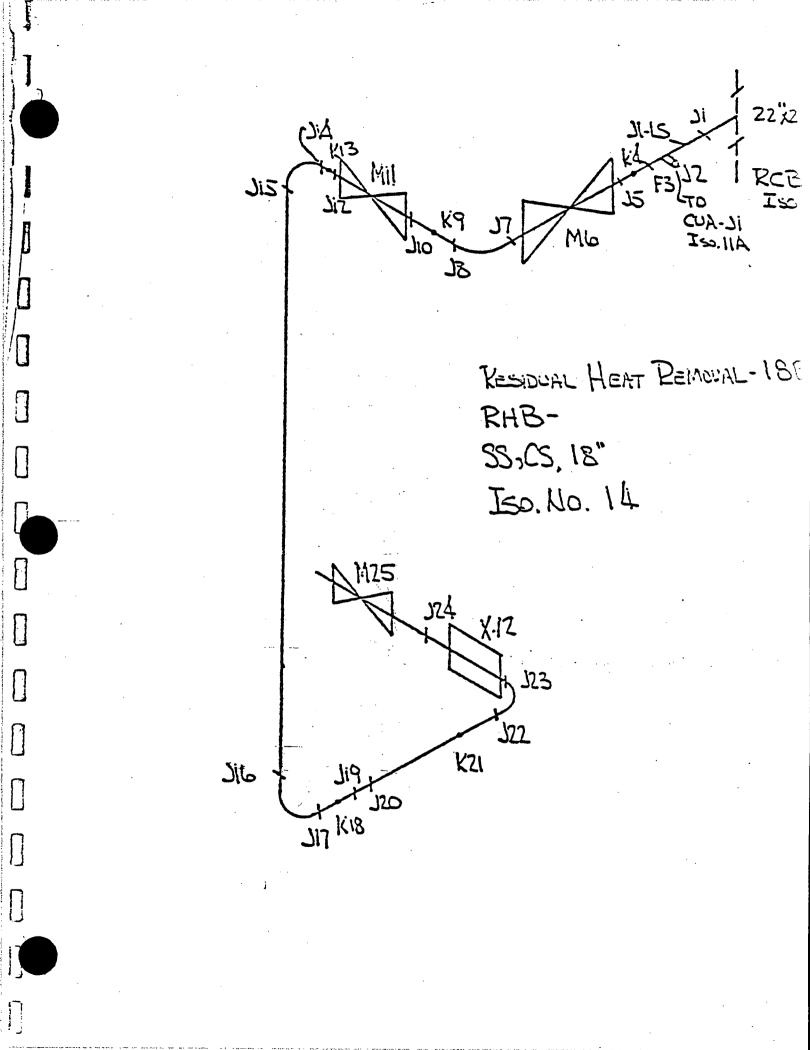
Response to Item 4d:

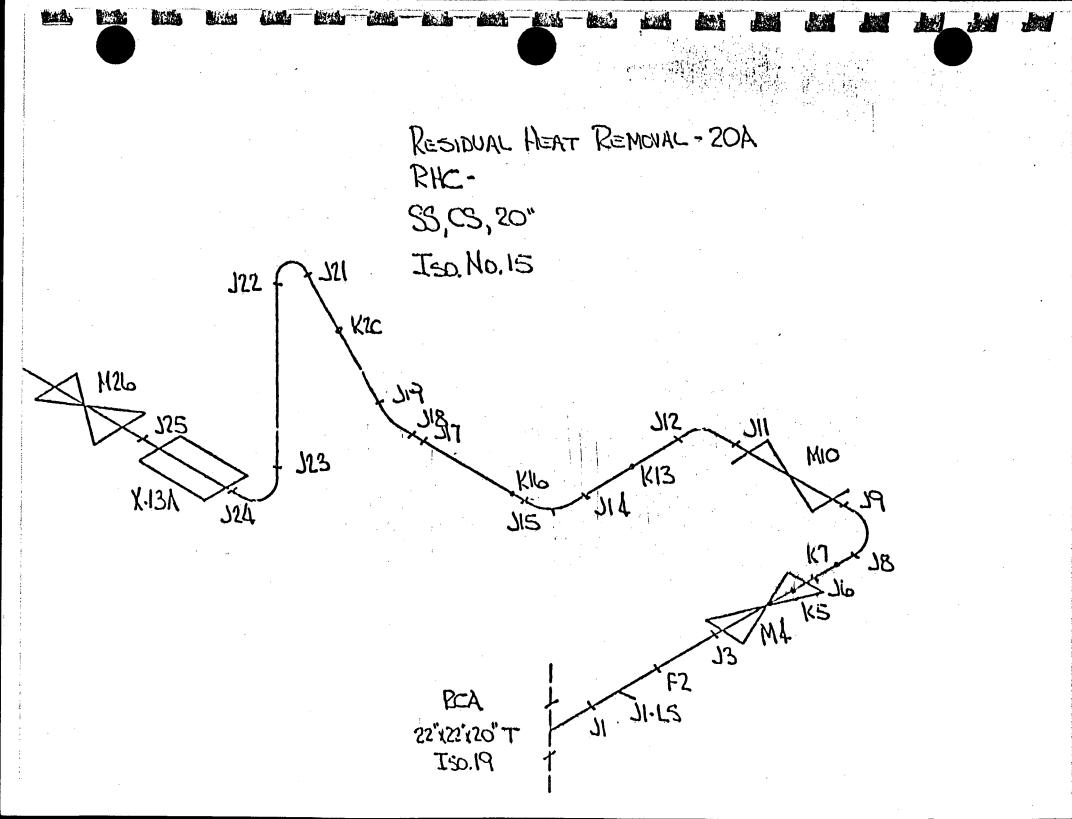

The requested information will be provided in a future submittal prior to DAEC resuming power operations following Cycle 7 refueling outage.

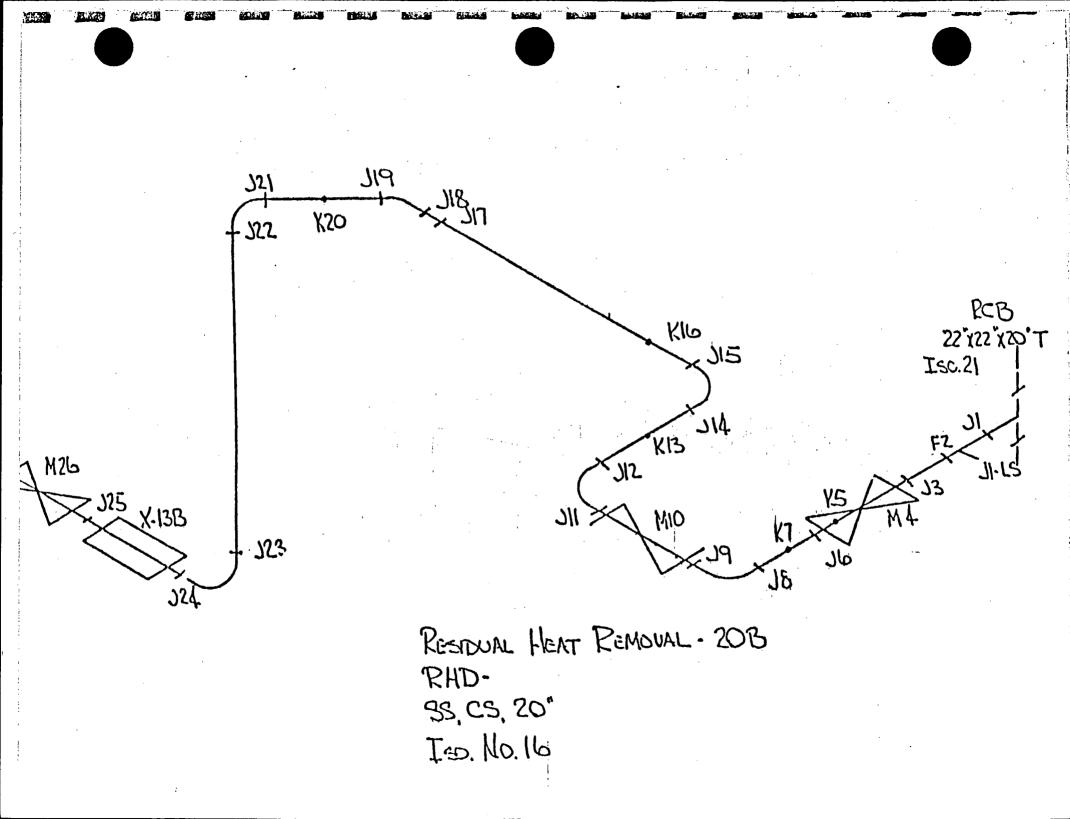

	0 - 1.20 RRA-J7 (5,7) RRD-J7 (5)	1.21 - 1.50 STRESS RULE INDEX 1.51 - 2.00 2.0 RCA-J18 (7) RMA-J4 (5) RMA-J8 (5) RMA-J10 (5) RMA-J2 (5) RMA-J8 (5)
+ 010.	RRE-J7 (3) RRF-J7 (5) RRH-J7 (5)	RMA-J10 (5) RMA-J2 (5) RMB-J5 (5) RRG-J7 (5) RMB-J11 (5) RMB-J9 (5) RCB-J21 (5) RMB-J2 (5) RRB-J7 (5) RMB-J2 (5)
.060069	RCA-J27 (5) RBA-J7* (5) RCB-J30 (5) RHC-F2 (7) RHD-F2 (2)	RCA-J34 (5) RBB-J1# (5) RRA/H-J5 (8 WELDS)(5) RBA-J1* (5,7) RBB-J7* (5) RBA-J6* (5,7) RRE-J4 (6) RBB-J12* (5,7) RBA-J8* (5,7) RRF-J4 (6) RHC-J1 (7) RRG-J4 (5,7) RRC-J4 (6,7) RHD-J1 (2) RRH-J4 (5,7) RRD-J4 (5,7) RHD-J1 (2) RRA-J4 (6) RCB-J3 (5) RRB-J4 (6) (H1GH SUSCEPTIBILITY)
.0 50059	RCA-J7 (7) RCB-J27 (4) RCA-J15 RCB-J31 (3) RCA-J24 (4) RCB-J41 RCA-J28 (3) RMB-J1 RCA-J38 RMB-J12 (3) RMA-J1 RHB-J1 (1) RMA-J11 (3) RRA/H-J4A (8 WELDS) A,B,E,F (6) C,D,G,H (5,7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. 035 - . 049	RCA-J3 (1) RCA-J6 (1) RCB-J3 (1) RCB-J9 (1) RCB-J18	RCA-J4 (1) RCB-J24 (7) RCA-J22 (4) RCA-J5 (1) RCB-J46 (2) RBA-J10# (5) RBA-J12# (5,7) RCB-J25 (7) RCB-J4 (1) RCB-J25 (7) RCB-J5 (1) REGION 11 RCB-J15 (1) REGION 111 MODERATE SUSCEPTIBILITY (1) (1)
<.035	RHB-F3 (1) RCA-F2 (1) RCB-F2 (1) RRA/H-F2A (8 WELDS) -A,B,E,F (6) -C,D,G,H (5,7)	REGION I (LOW SUSCEPTIBILITY)


(3) Last examination in 1978


CARBON CONTENT (\$) ATTACHMENT 2


, ·





NG-82-2653 December 1, 1982

IOW-20-004

Attachment 3

STRESS CORROSION CRACKING EVALUATION PROGRAM

DUANE ARNOLD ENERGY CENTER

Prepared for: Iowa Electric Light & Power Company

> Prepared by: NUTECH San Jose, California

Prepared by:

y D. Martin B. Martin, P.E.

M. D. Sullivan

Issued by:

Axline, P

Reviewed and Approved by:

P. C. Riccardella, P.E.

Date: April 23, 1980

nutech

IOW-20-004

STRESS CORROSION CRACKING EVALUATION PROGRAM

DUANE ARNOLD ENERGY CENTER

Prepared for: Iowa Electric Light & Power Company

> Prepared by: NUTECH San Jose, California

Prepared by:

.

<u>hey B. Marten</u> Martin, P.E.

M. D. Sullivan

Issued by:

W. Axline, P.E.

Reviewed and Approved by:

P. C. Riccardella, P.E.

Date: April 23, 1980

ABSTRACT

An intergranular stress corrosion cracking (IGSCC) survey of the austenitic stainless steel piping in the recirculation system and RHR system of the Duane Arnold Energy Center has been completed. The primary objective of the survey was to assist Iowa Electric Light & Power in its inservice inspection program by identifying the weld joints which are most susceptible to IGSCC. In the survey, material properties and fabrication data from the plant records were compiled for each joint. The Stress Rule Index (SRI), a method of evaluating the sustained stress level at the inside surface weld HAZ, was calculated for each The materials data and SRI were then used to rank each joint. weld joint according to its relative susceptibility to IGSCC. An IGSCC Susceptibility Matrix was developed as a means of ranking the weld joints. Through this matrix each weld joint is categorized into one of three regions. Region I represents combinations of SRI and material chemistry which have thus farproven to be immune to IGSCC. Regions II and III represent combinations more susceptible to IGSCC.

In addition to the ranking, all weld joints were categorized as conforming, nonconforming, or service-sensitive according to the guidelines given in NUREG-0313, Revision 0, the Nuclear Regulatory Commission document related to IGSCC of BWR piping.

The following summary highlights the results of the survey.

1. Of a total of 117 welds ≥10 inches in diameter, 19 welds were found to meet the requirements for conforming material as defined in NUREG-0313. Of the remaining 98 nonconforming welds, 4 were identified as having a high resistance to IGSCC because the base materials contained a carbon content between 0.035%

IOW-20-004

]

Ľ

and 0.050% or because they are believed to have been fabricated using an inside surface water spray cooling technique.

- None of the large diameter pipes (≥10 inches diameter) were in service-sensitive lines.
- 3. All of the 26, 4 inch diameter welds were found to contain base material defined as nonconforming by NUREG-0313, and 18 of these were located in servicesensitive lines. Two of these 18 welds have high resistance to IGSCC because the carbon content of base material was between 0.035% and 0.050%.
- 4. Forty-seven weld joints (33% of the total welds) were categorized in Region I of the IGSCC Susceptibility Matrix, representing the least susceptible welds. The remainder of the weld joints were evenly divided between Regions II and III.

 \Box

TABLE OF CONTENTS

<u> </u>	Page
ABSTRACT	i
TABLE OF CONTENTS	lii
1.0 INTRODUCTION AND PROGRAM OBJECTIVE	1
2.0 REVIEW OF PLANT RECORDS	2
3.0 REVIEW OF METALLURGICAL VARIABLES	3
Figure 3-1 Carbon Content Versus Time to Failure in Type-304 Stainless Steel Pipe Tests	8
Table 3-2 Summary of Metallurgical Evaluation Results	9
4.0 STRESS RULE EVALUATION	.10
5.0 IDENTIFICATION OF LOW FAILURE PROBABILITY JOINTS	.11
Figure 5-1 IGSCC Susceptibility Matrix	.13
APPENDIX A: SCC Evaluation Tables	
APPENDIX B Stress Rule Index Evaluation Summary	
APPENDIX C ISI Isometric Drawings	

J

]

1.0 INTRODUCTION AND PROGRAM OBJECTIVE

 $\left(\right)$

 $\left[\right]$

J

 \int

 \square

As a result of the stress corrosion cracking incidents in welded austenitic stainless steel primary coolant piping in Boiling Water Reactors (BWRs) in recent years, Iowa Electric Light and Power instituted a program with NUTECH to evaluate the stress corrosion cracking propensity of stainless steel welds in the recirculation and residual heat removal (RHR) systems at the Duane Arnold Energy Center (DAEC). The objective of the program is to perform a review of plant fabrication records, a metallurgical review of these records to evaluate factors important to intergranular stress corrosion cracking (IGSCC) in the BWR environment, and a Stress Rule evaluation to assist in identifying those joints which are potentially susceptible to IGSCC. The ultimate program aim is to provide input to the DAEC Inservice Inspection Program so that the proper attention can be focused on those joints which are most susceptible to IGSCC. The identification of potentially susceptible pipe locations will also enable Iowa Electric to prepare for potential incidents by providing a repair or replacement plan to address the problem where it may exist. Additionally, this program will assist in addressing, in a more meaningful way, the concerns of the Nuclear Regulatory Commission published in NUREG-0313 and NUREG-0531 regarding materials selection and processing guidelines for BWRs.

The program is divided into the following four major tasks:

Task 1. Review of Plant Records
Task 2. Review of Metallurgical Variables
Task 3. Stress Rule Evaluation
Task 4. Identification of Low Failure Probability Joints

The following sections provide a brief description of the work performed under each of the above mentioned tasks.

1

IOW-20-004

2.0 REVIEW OF PLANT RECORDS

]

The objective of this task activity was to obtain and review all plant records required to complete the detailed evaluations described in Tasks 2 and 3. These records included piping fabrication and isometric drawings, stress reports, material certifications, fabrication procedures, and records regarding repairs and replacements.

An extremely complete and well-compiled set of fabrication records for the entire recirculation system were supplied to NUTECH by Mr. K. V. Harrington of Iowa Electric, greatly facilitating this task activity.

IOW-20-004

3.0 REVIEW OF METALLURGICAL VARIABLES

The objective of this task was to identify, for each stainless steel joint in the recirculation and RHR systems, the material chemistry, significant fabrication practices that may have an effect on the joint's susceptibility to IGSCC, and determine the NUREG-0313 status. A detailed compilation of this information is presented in the Stress Corrosion Cracking Evaluation Tables included as Appendix A to this report.

3.1 <u>Material Chemistry</u>

Ĵ

 \bigcup

 $\left[\right]$

Certified material test reports were located for each component of the subject piping systems. The material specification and the associated carbon content are identified in SCC Evaluation Tables, Appendix A.

Unstabilized wrought austenitic stainless steel with a carbon content less than 0.035% has been demonstrated to be highly resistant to stress corrosion cracking and is acceptable to the NRC for installation in BWR piping systems, as stated in NUREG-0313. Welds between materials with a carbon content in the 0.035% to 0.050% range are identified in the SCC Evaluation Tables as having high resistance to IGSCC. While no NRC credit can be taken for these welds relative to NUREG-0313 guidelines, we feel it is appropriate, based on field failure data and the EPRI sponsored pipe test and laboratory test data, to identify these joints as highly resistant to IGSCC. The General Electric test data presented in Figure 3-1 illustrates that at these carbon levels Type 304 stainless steel is highly resistant to IGSCC.

Ferritic steels and cast stainless steels have also been demonstrated to be highly resistant to IGSCC and are acceptable materials for installation in BWR piping systems. Inconel (Alloy 600), not addressed specifically in NUREG-0313, is considered as

IOW-20-004

3

a conforming material in this evaluation. In the uncreviced condition this material has provided satisfactory performance in the BWR environment.

3.2 Significant Fabrication Practices

1

Ĵ

A review of the fabrication procedures revealed that the large diameter shop welds may have been fabricated using an inside surface water spray cooling technique. The pipe fabricator, Southwest Fabricating and Welding Co., commonly uses the spray cool technique to maintain interpass temperature when welding stainless steel pipe having a wall thickness greater than 0.75 in.⁽¹⁾ The main purpose for employing this technique was to control interpass temperature, however, the technique is similar to that currently being studied as a fabrication remedy for stress corrosion cracking mitigation.

This technique, also called heat sink welding (HSW), is used to produce axial compressive residual stress on the inside pipe surface in the weld heat affected zone. The first two layers are deposited by the gas tungsten arc process in the normal manner. The remainder of the weld is made while the inside surface is being cooled by either a water spray or by filling the pipe with flowing water.

It has been documented in General Electric Company's pipe tests on small diameter piping that as much as an order of magnitude performance improvement may be possible for heat sink welded joints.⁽²⁾ A separate program, supported by the Electric Power

IOW-20-004

⁽¹⁾ Robert Pearson, Southwest Fabricating and Welding Co., Private Communication

⁽²⁾ R. Hughes, Qualification of Solution Heat Treatment, Corrosion Resistant Cladding and Heat Sink Welding. Seminar on Countermeasures for BWR Pipe Cracking, January 22-24, 1980.

Research Institute, is currently underway to evaluate the residual stress benefit for large diameter piping fabricated using this process.

Although no NRC credit can currently be taken for heat sink welded joints in relation to the augmented ISI requirements of NUREG-0313, these welds are specifically highlighted in the SCC Evaluation Tables because of their potentially high resistance to IGSCC. It should also be noted that, although the shop welding procedure used in fabricating the Duane Arnold spools requires interpass temperature control, and allows water spray cooling, specific documentation describing the detailed process and verifying its use on each of the shop welds has not been located. Follow-up discussions with the pipe fabricator will be necessary to provide adequate assurance that the water spray cooling technique was, in fact, employed for each shop weld.

3.3 <u>NUREG-0313</u> Evaluation

J

 \int

 \int

Ŋ

IJ

 \int

An evaluation of the metallurgical data compiled for each joint was conducted with respect to the NRC technical positions established in NUREG-0313, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping," published in July 1977.

The SCC Evaluation Tables identify the NUREG-0313 status of each joint based on the following criteria.

<u>Conforming</u> - joints for which each of the adjoining parent materials are one of the following highly resistant materials; ferritic steels, "Nuclear Grade" or L-Grade Type 304 or 316 austenitic stainless steel (<0.035% Carbon), or cast stainless steels. Regular grades of 304 or 316 stainless steel are not

IOW-20-004

considered conforming unless the as-installed piping, including the weld, is in the solution annealed condition.

<u>Nonconforming</u> - all joints not meeting the above criteria. These joints are subject to augmented inservice inspection requirements as identified in NUREG-0313.

<u>Service Sensitive</u> - nonconforming joints in lines designated by the NRC as having experienced cracking of a generic nature, or that are considered to be particularly susceptible to cracking because of a combination of high local stress material condition, and high oxygen content in lines which have relatively stagnant, intermittent, or low flow coolant. Included in this category of piping runs are: core spray lines, recirculation bypass lines, CRD hydraulic return lines, isolation condenser lines, and shutdown heat exchanger lines. A higher degree of augmented inspection is required for these lines.

A revision of NUREG-0313, currently issued for review and comment, proposes to add recirculation riser piping and internal attachment welds to the service sensitive category.

3.4 <u>Summary</u>

3

Û

[]

 $\left(\right)$

The overall metallurgical review consisted of an examination of 136 joints in the recirculation system and 7 joints in the residual heat removal system. Of the 143 total joints, 19 were evaluated as conforming, 106 were nonconforming, and 18 were both nonconforming and in service sensitive lines.

Of a total of 117 welds greater than or equal to 10 inches in diameter, 19 welds were found to meet the requirements for conforming material as defined in NUREG-0313. Of the remaining 98 nonconforming welds, 34 were identified as having a high resistance to IGSCC because the base materials contained a carbon content between 0.035% and 0.050% or because they are believed to

IOW-20-004

have been fabricated using an inside surface water cooling technique.

All of the 26, 4-inch diameter welds were found to contain base material defined as nonconforming by NUREG-0313, and 18 of these were located in service sensitive lines. Two of these 18 welds were designated as having a high resistance to IGSCC because the carbon content of the base material was between 0.035% and 0.050%.

Table 3-2 provides a tabular summary of the metallurgical evaluation results.

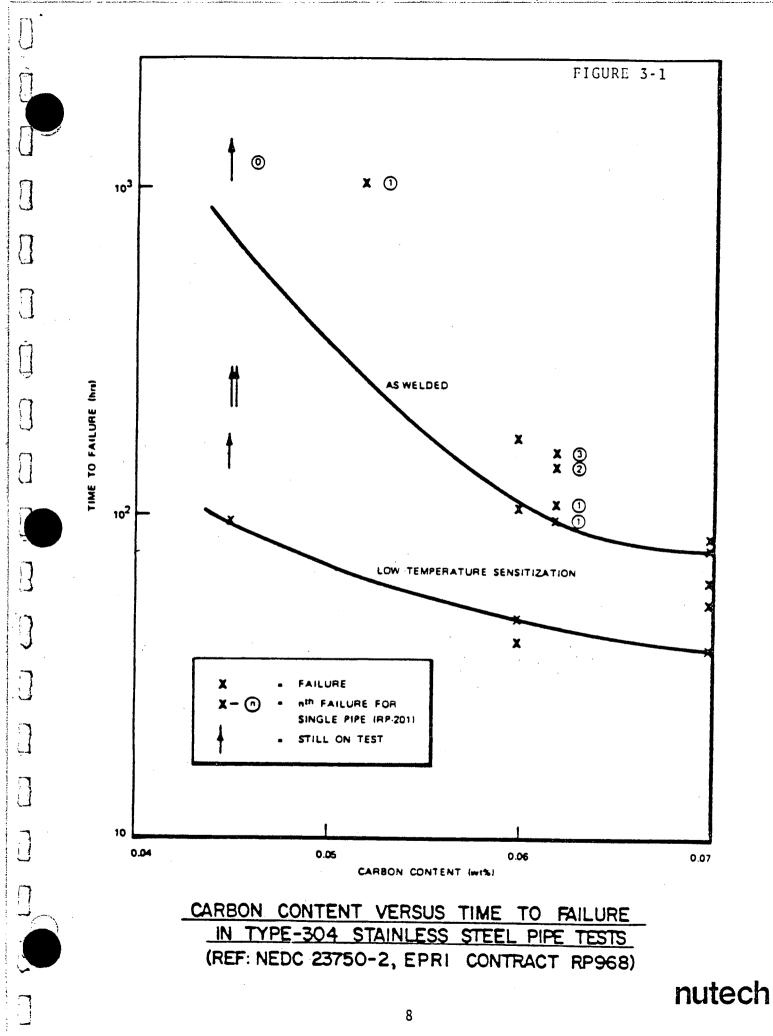
IOW-20-004

Ĵ

 $\hat{\Box}$

 \int

 \Box


 \int

R

Π

 \prod

[]

· ····

SUMMARY OF METALLURGICAL EVALUATION RESULTS

SYSTEM	DIA	TOTAL WELDS	TOTAL CONFORMING WELDS	NON-CONF. WELDS SHOP WATER SPRAY COOLED*	NON-CONF. WELDS WITH .035 <%C <.050	TOTAL NON- CONFORMING WELDS	TOTAL NON- CONFORMING ξ SERVICE SENSITIVE
RECIRCULATION SUCTION	22	23	2	10	15	21	0
RECIRCULATION DISCHARGE	22	16	0	6	1	16	0
RECIRCULATION RING HEADER	16	8	0	8	0	8	0
RECIRCULATION RISERS	10	64	16	0	0	48	0
RECIRCULATION BYPASS	4	18	0	0	2	0	18
RECIRCULATION BRANCH CONNECTIONS	4	7	0	0	0	7	0
RESIDUAL HEAT REMOVAL	20 18- 4	4 2 1	0 1 0	0 0 0	0 0 0	4 1 1	0 0 0
TOTAL		143	19	24 * *	18**	106	18

*The use of water spray cooling not yet fully verified.

**Each column includes six joints that satisfy both criteria (i.e., .035 < %C <.050 and shop water spray cooled.)

v

4.0 <u>STRESS RULE EVALUATION</u>

To provide a further means of determining a joint's susceptability to IGSCC, a Stress Rule Index (SRI) evaluation was performed for each joint being studied. The Stress Rule Index is determined in the following manner. The axial stress components resulting from sustained loading conditions (i.e. pressure, deadweight, and steady state thermal expansion) are derived from the elemental force and moment tables of the original Duane Arnold piping stress analysis. These are combined with residual stress estimates and input to the General Electric Company developed Stress Rule Index equation shown below.

 $\frac{P_m + P_b}{S_y} + \frac{Q + F \text{ (Resid)}}{S_y + .002E} = SRI$

Where

[]

 \int

 $\left[\right]$

P_m = Primary Membrane Stress P_b = Primary Bending Stress S_y = Code Yield Strength Q = Sustained Secondary Stress F = Sustained Peak Stress E = Elastic Modulus Resid = Weld Residual Stress

For non-creviced welds, General Electric Company has determined that if the index is less than unity, susceptibility to stress corrosion cracking is mitigated; for crevices, a value somewhat lower than unity may be more suitable. To this date, IGSCC events have not been observed in joints exhibiting a SRI less than 1.2.

The SRI evaluation was facilitated by the use of a NUTECH computer program (SCORE) which calculates the SRI given the appropriate forces and moments from the piping stress report. The SRI for each joint is given in the SCC Evaluation Tables. Detailed results of the SRI evaluation are included in Appendix B.

IOW-20-004

5.0 IDENTIFICATION OF LOW FAILURE PROBABILITY JOINTS

Three main considerations must be taken into account in determining the susceptibility of a joint to intergranular stress corrosion; material properties, stress, and environment. In this report, we have quantitatively addressed two of these three For both material properties and stress, there exists factors. sufficient analysis, laboratory data, and field experience to provide a basis for determining relative susceptibility. The environmental factor has only been addressed in that stagnant, low flow lines (service sensitive) are considered more susceptible to IGSCC. The degree to which one of these three ingredients must be present for IGSCC to occur is variable, making it extremely difficult to combine what is known about each of these factors to define an absolute scale of susceptibility. There are also other known variables that effect the susceptibility of sensitized austentic stainless steel to IGSCC. These other variables, which must be factored into a final determination of susceptibility, include such effects as cold work, counterbore grinding crevices, temperature, pH, etc. EPRI is currently sponsoring research that may lead to more refined techniques for quantifying the susceptibility of various piping joints.

To provide a rudimentary means of ranking each weld, the IGSCC Susceptibility Matrix was developed. It displays the relative susceptibility of each weld based on the information that has been compiled in this study regarding material properties and stress conditions. Figure 5-1 shows the placement of the recirculation and RHR system welds in the matrix based on the stress rule index calculated for that joint and the highest carbon content of the base material on either side of the weld.

The IGSCC Susceptibility Matrix is divided into three regions labeled I, II, and III. Region I contains welds that are either

IOW-20-004

I

1

 \Box

 $\left[\right]$

Π

15

conforming from a material standpoint (less than 0.035% carbon as defined in NUREG-0313) or have a stress rule index less than 1.2. (IGSCC events have not been observed in weld joints with a SRI < 1.2.) Welds in this region are considered to be the least susceptible to IGSCC.

Region II defines an intermediate zone encompassing welds which exhibit considerable margin to failure, relative to Region III welds, but are somewhat more susceptible than Region I welds. Finally, Region III represents the most susceptible welds, those having the smallest margin to failure.

Other variables, as discussed earlier, can enter in to increase or decrease the susceptibility to IGSCC. Two of the more important factors to be considered for Duane Arnold are the effects of shop water spray cooling and whether specific welds are in service sensitive piping. Welds that are believed to have been shop water spray cooled are underlined in the matrix. These welds are potentially highly resistant to IGSCC because of favorable residual stress distribution. If this is verified and actual measurements determine the extent to which these stresses are reduced, the stress rule index may be significantly lowered, thus shifting the position of the underlined welds to the left. The other important factor to consider is whether welds are in service sensitive piping. Welds which are both nonconfoming and in service sensitive piping are identified in the matrix with an asterisk. These welds are potentially more susceptible to IGSCC than other welds of the same matrix position.

IOW-20-004

[]

0

Π

 $\left[\right]$

11

 $\left\{ \right\}$

 $\left[\right]$

STRESS RULE INDEX

5

		0 - 1.20	1.21 - 1.50	1.51 - 2.00	2.01 +
	• 070 +	RRA-J7 RRD-J7 RRE-J7 RRF-J7 RRH-J7	RCA - J18 RMA - J10 RRG - J7 RCB - J21 RRB - J7 RRC - J7	RMA - J4 RMA - J2 RMB - J11 RMB - J2	RMA-J8 RMB-J5 RMB-J9
(%)	.060069	RCA - J27 RBA - J7* RCB - J30 RHC - F2 RHD - F2	RCA-J34 RBB-J1* RBA-J1* RBB-J7* RRE-J4 RBB-J12* RRF-J4 RHC-J1 RRC-J4 RHD-J1 RRD-J4 RCB-J37	RRA/H-J5 (8 welds) RBA-J6* RBA-J8* RBB-J6* RRG-J4 RBB-J8* RRH-J4 RRA-J4 RRB-J4 REGIO (HIGH SUSC	N III EPTIBILITY)
CARBON CONTENT	.050059	RCA-J7 RCB-J27 RCA-J15 RCB-J31 RCA-J24 RCB-J41 RCA-J28 RMB-J1 RCA-J38 RME-J12 RMA-J1 RHB-J1 RMA-J11 RHB-J1 RRA/H-J4A (8 welds)	RCA-J12 RNA-J5 RCB-J24 RCA-J13 RNA-J7 RNB-J7 RCA-J21 RBA-J2* RNB-J6 RCA-J30 RBA-J3* <u>RNB-J8</u> RCA-J32 RCB-J6 RBB-J2* RCA-J41 RCB-J7 RBB-J3* RCA-J43 RCB-J7 RBB-J3* RCA-J43 RCB-J35 RNA-J6 RCB-J35 RRA/H-J3 (8 welds)	RBA-J9* RBB-J9*	
CV	.035049	RCA-J3 RCA-J6 RCB-J3 RCB-J9 RCB-J18	RCA-J4 RCB-J24 RCA-J5 RCB-J46 RBA-J12* RCB-J4 - RCB-J5 RCB-J15 RCB-J16 (MODERATE SUS	RCA-J22 RBA-J10* RCB-J25 RBB-J10* ON II SCEPT1BILITY)	
	<.035	RHB-F3 RCA-F2 RCB-F2 RRA/H-F2A (8 welds)	REGI (LOW SUSCE	ION I EPTIBILITY)	

* IN SERVICE SEMSITIVE LINES XXX SHOP WATER SPRAY COOLED

Ę

J

0

J

Ŋ

J

3

[]

 $\left[\right]$

 \Box

IER SPRAT COULED

FIGURE 5-1

IGSCC SUSCEPTIBILITY MATRIX

nutech

APPENDIX A

J

0

0

C

J

 \Box

0

IJ

[]

 $\left[\right]$

 $\left[\right]$

SCC EVALUATION TABLES

Proposed for IOWA ELECTI LIGHT & POW COMPANY	NC		S	STRESS	CORROSION DUANE ARNO				E	V	۹L	UA		nutech
line no. R	CA			system RECIRCULAT	ION SUCTION - LOOP A								revision - date 0 4/11/80	page A1
WELD NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELO WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT MENT	HEAT NUMOER	CARBON CONTENT (%)	55	NURE 0313 STATU N C 0 0 N N F		STRESS RULE INOEX		MENTS
				RECIRC. SUCTION NOZZLE (N1A)	FORCED SA-508 CL.2 LOW ALLOY STEEL		NA							
RCA-F2	22	NOZ-SE	SW								x	1.01		
	_			SAFE-END (N1A)	FORGED SA-336 GR F8	7	M57 S	0.023						
RCA-J3	22	SE-P	FW							0.		1.03	LOWER 1C HIGH RESISTANC	E TO IGSCC
				PIPE (5-1)	RGW A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045					: : :	
RCA-J4	22	P-E	SW			<u> </u>				0+		1.30	LOWER &C & SHOP WA	TER SPRAY COOLE
				ELBOW(90°LR)	R&W A403-WP304W FROM A240	2	300223	0.049						
RCA-J5	22	E-P	SW							8+		1.32	LOWER &C & SHOP WA	TER SPRAY COOLEI
				PIPE (5-2)	R&W A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045						
RCA-J6	2 2	P-P	FW							8+		0.90	LOWER AC HIGH RESISTANCE TO	IGSCC
				PIPE (6-1)	RIW A358 CL.1 FROM A240 T304	1	2P2470-1A	0.045						
RCA-J7	22	P-P	SW							8+		0.87	SHOP WATER SPRAY C	OOLED
				PIPE (6-2)	R&W A358 CL.1 FROM A240 T304	1	300069-1B	p . 050						
RCA-J12	22	P-E	SW	·						8+		1.30	SHOP WATER SPRAY C	OOLED
				ELBOW(90°LR)	R&W A403-WP304W FROM A240	2	300223	0.049						
RCA-J B	22	E-V	FW							8+		1.33	LOWER IC TO CASTIN HIGH RESISTANCE TO	
				VALVE (MO-F023A)	CAST A351-65 GR CF-8	7	40298	0.05				[98 FERRITE	

Prepared for IOWA ELECT LIGHT & POV COMPANY	RIC /ER			STRESS	CORROSION DUANE ARNO				E	.VA	\L	UA [.]		Propared by nutec
LINE NO.	RCA			SYSTEM RECIRCULA	tion suction - Loop A (Co	N'T)							REVISION - DATE O 4/11/80	PAGE A2
WELD NUMBER	DIA. (IN)	WELO Type	SHOP OR FIELO WELD	COMPDNENT	MATERIAL TYPE & SPECIFICATION	HEAT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	S S	NUREG 0313 STATU N C 0 0 N N F	s C	STRESS RULE INOEX		MENTS
RCA-J15	22	V-P	FW	PIPE (4-1)	R&W A358 CL.1 FROM	1	300069-1B	0.050		x		0.96		
RCA-J21	22	P-E	SW	ELBOW(90°SR)	A240 T304 R&W A403-WP304W-1967 FROM A240	3	K51142-3	0.048		8+		1.43	SHOP WATER SPRAY C	OOLED
RCA-J22	22	E-Pp	FW	PUMP	CAST A351 GR. CF8M	7	51510 or 50448	0.06 0.05		8≁	· · · · · · · · · · · · · · · · · · ·	1.63	LOVER &C TO CASTIN HIGH RESISTANCE TO 144 FERRITE	G GSCC
				PIPE (5-2)	R&W A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045					SPOOL 5-2 ALSO SHO	WN ON PG. A1
RCA-J5A	4	BPC	SW	WELDOLIT 22'' X 4''	FORGED A182-F304	6	812680 (496E)	0.060		X				
RCA-J18	4	BPC	SW	PIPE (4-1)	RGW A358 CL.1 FROM A240 T304	1	300069-1B	0.050				1.32	SPOOL ALSO SHOWN O	N PG. A2

Preparad for OWA ELECTR LIGHT & POW COMPANY			S	TRESS	CORROSION DUANE ARNO				E	VA		UAI	rion nutech
LINE NO.	RC	A		RECIRCULAT	ion discharge - loop a				•				REVISION - DATE PAGE O 4/11/80 A3
WELD NUMBER	DIA. (IN)	WELO TYPE	SHOP OR FIELO WELO	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)		NUREG 0313 STATU N C D O N N F	5	STRESS RULE INDEX	COMMENTS
				РИМР	CAST A351 CF8M	7	51510 or 50448	0.06 0.05					144 FERRITE
RCA-J24	22	Բը-Բ	FW -	PIPE (7-1)	R&W A358 CL.1 FROM A240 T304	1	300075-1B	0.058		Х		0.98	
RCA-J28	22	P-V	FW				· · · · · · · · · · · · · · · · · · ·			x		0.97	
RCA-J30	22	V-E	FW	VALVE (MO-F03IA)	CAST A351-65 GR. CF8	7	44266	0.04		x		1.27	18% FERRITE
				ELBOW(90°LR)	REW A403-WP304W FROM A240	2	600324-1A	0.055			•		
RCA-J32	22	E-P	SW	PIPE (9-1)	REW A358 CL.1 FROM	1	300 075-1 B	0.058		8+		1.26	SHOP WATER SPRAY COOLED
RCA-J38	22	P-P	SW		A240 T304					x		0.89	
				PIPE (9-1)	R&W A358 CL.1 FROM A240 T304	1	300075-IB	0.058	 				FLOW RESTRICTER WELDED TO PIPE I.D
RCA-J41	22	P-T	SW	REDUCING TEE 22"X22"X20"	R&W A403-WP304W FROM A240	2	6003241	0.055		0+		1.25	SHOP WATER SPRAY COOLED 20" OUTLET EXTRUDED PRIOR TO INFAT TREATMENT
RCA-J43	22	T-Cr	FW			-		- 		x		1.33	· · · · · · · · · · · · · · · · · · ·
				REDUCING CROSS 22X22X16X16	RGW A403-WP304W FROM A240-69	2	582533-1	0.040					16" OUTLETS EXTRUDED PRIOR TO HEAT TREATMENT
R1AJ6	22	Cr-Cp	SW		R&W A403-WP-304-67	-		 		8+		1.22	SHOP WATER SPRAY COOLED

and the second second

للمالية والمعادية و

Propored for DWA ELECTR GHT & PDW COMPANY	IC		S	STRESS	CORROSION DUANE ARNO				E	VA		UA.	TION	nutech
INE ND.	RM	1A		system RECIRCULAT	Ion ring header - loop a								REVISION - DATE 0 4/11/80	page A5
WELD NUMBER	01A. (IN)	WELO TYPE	SHOP OR FIELD WELO	COMPDNENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	55	NUREG 0313 TATD N C 0 D N N F	C	STRESS RULE INOEX		NENTS
· .				WELD CAP	R&W A403-WP304-67 FRUM A240	3	K51404-4D).050						
(A-JI	16	C -lidr	SW									0,96	SHOP WATER SPRAY C	DOLED
				RING HEADER 24-1	R&W A358 CL.1 FROM A240-67 T304	1	600120-1B	.059					RISER OUTLETS EXTR HEAT TREATMENT	UDED PRIOR TO
8-1A-J5	16	lkir-Cr	SW									1.42	SHOP WATER SPRAY C	OOLED
				REDUCING CROSS 2/2X22X16X16	R&W A403 WP-304W FROM A240-69	2	582533-1	. 040					ALSO SHOWN ON PG.	A3
&IA-J7	16	Cr-lidr	SW									1.37	SHOP WATER SPRAY C	OOLED
				RING HEADER	RGW A358 CL.1 FROM	1	600120-1B	. 059					RISER OUTLETS EXTR HEAT TREATMENT	UDED PRIOR TO
RM-JII	16	Hdr-Cp	SW									0.96	SHOP WATER SPRAY O	OOLED
				WELD CAP	R&W A403-WP304-67 FROM A240	3	K51404-4D	.050						
	_													
		•												
			1					1						
								0						<u></u>
	1							1		1				
								0						
										0 +				
								p						

Praparad for IOWA ELECTR LIGHT & POW COMPANY		,	S	TRESS	CORROSION DUANE ARNO				E	V	AL	UAI	nutech
LINE NO.	RR	E		system RECIRCULA	ition risers - Loop a	(1	N2E)						REVISION - DATE PAGE O 4/11/80 A6
WELO NUMBER	01A. (IN)	WELO TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)		NUREI 0313 STATU N C 0 0 N N F	S	STRESS RULE INDEX	COMMENTS
		· · ·		16" RING HEADER (24-2)	R&W A358 CL.1 FROM A240 T304	1	600120-1B						ALSO SHOWN ON PG. A5
RMA-J10	10	lkir-A	SW							x		1.40	· · · · · · · · · · · · · · · · · · ·
				ADAPTER	FORGED A182-F304	6	52624	0.070					· · · · · · · · · · · · · · · · · · ·
RRE-J7	10	A-P	FW		(34.0 A 774 TD764		2076.07	0.053		X		1.11	
DDC IC		D C		PIPE (12-2)	SMLS A376-TP304	5	2P3687	0.051		x			
RRE-J5	10	P-E	SW	ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061				1.56	
RRE-J4	10	E-P	SW	· · · · · · · · · · · · · · · · · · ·						X		1.39	
				PIPE (12-1)	SMLS A376-TP304	5	2P3399	0.055					
RRE-J4A	10	P-P	FW							x		0.98	
				PIPE (12-1)	SMLS A376-TP304	5	2P3399	0.055					PORTION OF SPOOL 12-1 WAS CUT OUT AND REWELDED IN 1978
RRE-J3	10	P-P	FW					<u> </u>		x		1.23	
				SAFE-END EXTENSION	FORGED SA-336 GR, F8	7	M53S	0.030					
RRE-F2A	10	P-SE	FW								X	1.02	
			 	SAFE-END (N2E)	SMLS SB-166 INCONFL	7	NX8927	0.07				 	SAFE-END REPLACED IN 1978
RRE-F2	10	SE-NOZ	FW			<u> </u>		_		<u> </u>	X	1.03	· · · · · · · · · · · · · · · · · · ·

Proposed for IOWA ELECTI LIGHT & POW COMPANY	AIC ·		S	STRESS					E	V	AL	UAT	rion r	ruperal by nutecl
LINE NO.	RRF			system RECIRCULAT	ion risers - loop a	(N2F)						REVISION - DATE 0 4/11/80	page A7
WELO NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 Specification	HE AT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)		NURE 0313 STATU N C 0 0 N N F		STRESS RULE INDEX	COM	MENTS
				16" RING IDEADER (24-2)	R&W A358 CL.1 FROM A240 T304	1	60012 0- IB	0.059					ALSO SHOWN ON PG.	A5
R/N-J8	10	lkir-A	SW							X		2.05		
				ADAPTER	FORGED A182-F304	6	52624	0.070						
RRF-J7	10	A-P	FW	··				<u> </u>		x		1.20		
				PIPE (13-2)	SMLS A376-TP304	5	2P3271	0.061						
RRF-J5	10	P-E	SW			·				x		1.70		
				ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0 .0 61						
RRF-J4	10	E-P	SW							x		1.41		
				PIPE (13-1)	SMLS A376 TP304	5	⁻ 2P3687	0.051						
RRF-J4A	10	P-P	FW						·	x		0.98		÷
				PIPE (13-1)	SMLS A376 TP304	5	2P3687	0.051					PORTION OF SPOOL 1 AND REWELDED IN 19	3-1 WAS СИТ ООТ 78
RRF-J3	10.	P-P -	FW							x		1.23		
				SAFE-END EXTENSION	FORGED SA-336 GR. F8	7	M53S	0.030						
RRF-F2A	10	P-SE	FW.								x	1.02		
				SAFE-END (N2F)	SMLS SB-166 INCONEL	7	NX8927	0.07					SAFE-END REPLACED	IN 1978
RRF-172	10	SE-NOZ	FW								x	1.03		
				RECERC INLET NOZZLE	FORGED SA-508 CL.2 LOW ALLOY STEEL		NA							

Prepared for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	V	٩L	UA.		Propand by nutech
LINE NO.	RRG			system RECIRCULA	tion risers - Loop A (N2)	G)						0	REVISION - DATE 4/11/80	page A8
WELO NUMBER	DIA (IN)	WELD TYPE	SHOP OR FIELD WELD	COMPDNENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	SS	NURE 0313 STATU N C D D N N F	C	STRESS RULE INDEX	COM	MENTS
				16" RING ITEADER (24-1)	R&W A358 CL.2 FROM A240 T304	1	600120-1B	0.059					ALSO SHOWN ON AS	
RMA-J4	10	lkir-A	SW	ADAPTER						<u>x</u>		1.51		
RRG-J7	10	A-P	FW		FORGED A182-F304	6	52624	0.070		x				<u></u>
				PIPE (14-2)	SMLS A376-TP304	5	2P3271	0.061		^		1.22		
RRG-JS	10	P-E	SW			-	· · · · ·			X		1.68		
				ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061				1.00		
RRG-J4	10	E-P	SW							Х		1.53		
				PIPE (14-1)	SMLS A376-TP304	5	2P3687	0.051						
RRG-J4A	10	P-P	FW							х		0.98		
				PIPE (14-1)	SMLS A376-TP304	5	2P3687	0.051					PORTION OF SPOOL 14 AND REWELDED IN 19	
RRG-J3	10	P-P	FW							x		1.23		
				SAFE-END EXTENSION	FORGED SA-336 CR. F8	7	M53S	0.030						
RRG-F2A	10	P-SE	FW								x	1.02		
				SAFE-END _(N2G)	SMLS SB-166 INCONEL	7	NX9923	0.06					SAFE-END REPLACED	N 1978
RRG- F2	10	SE-NOZ	FW	RECIRC INLET	· · · ·						x	1.03		

Preparad for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	V	AL	UA'	TION	Property by nutect
LINE NO.	RRI	ł		system REC I RCUL	ATION RISERS - LOOP A	(N2H)							REVISION - DATE 0 4/11/80	page A9
WELD NUMBER	01A. (IN)	WELO TYPE	SHDP DR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	S S	NURE 0313 STATL N C 0 0 N N F		STRESS RULE INDEX	COM	MENTS
· · · · · · · · · · · · · · · · · · ·				16" R1NG HEADER (24-1)	R&W A358 CL.1 FROM A240 T304	1	600120-1B	0.059					ALSO SHOWN ON PG. ,	45
ic4A-J2	10	lidr-A	SW	ADAPTER	FORGED A182-F304	6	52624	0.070		x		1.90		
RRII-J7	10	A-P	FW				52024	0.070		x	-	1.14		
				PIPE (15-2)	SMLS A376-TP304	5	2P3687	0.051						
RRH-J5	10	P-E	SW	· · · · · · · · · · · · · · · · · · ·						x		1.55	· · · · · · · · · · · · · · · · · · ·	
				ELBOW	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061				 	· · · · · · · · · · · · · · · · · · ·	
RRH-J4	10	E-P	SW		· · · · · · · · · · · · · · · · · · ·	ļ				x		1.57		·····
				PIPE (15-1)	SMLS A376-TP304	5	2P3687	0.051						
RRI-J4A	10	P-P	FW	PIPE (15-1)	SWLS A376-TP304	5	2P3687	0.051		X		0.98	PORTION OF SPOOL D CUTOUT AND REWELD	15-1 WAS 2D IN 1978
RRII-J3	10	P-P	FW		· · · · · · · · · · · · · · · · · · ·			1		x		1.23		
				SAFE-END EXTENSION	FORGED SA-336 GR. F8	7	M53S	0.030						
RRI-F2A	10	P-SE	IW	· · · · · · · · · · · · · · · · · · ·							x	1.02		
				SAFE-IND (N2H)	SMLS SB-166 INCONEL	7	NX9923	0.06	 		<u> </u>		SAFE-END REPLACED	IN 1978
RRH-F2	10	SI:-NOZ	FW			1					x	1.03	· .	

Proposed for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS CORROSION CRACKING EVALUATION DUANE ARNOLD ENERGY CENTER									rion I	nutech	
LINE NO.	RBA			SYSTEM RECIRCU	RECIRCULATION BYPASS LINE - LOOP A							REVISION - DATE D 4/11/80	page A10		
WELD NUMBER	DIA. (IN)	WELO TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	S S E E N V S	NURE 0313 STATU N C 0 0 N N F	S C N F	STRESS RULE INDEX	COM	MENTS	
				WELDOLET	FORGED A182-F304	6	812680 (496E)	0.060					ALSO SHOWN ON PG. A4		
RBA-J1	4	WOL-P	FW						x	x		1.22			
				PIPE	SMLS A376-TP304	5	2P3535	0.053							
RBA-J2	4	P-E	SW	· · · · · · · · · · · · · · · · · · ·					x	x		1.40	· · · · · · · · · · · · · · · · · · ·		
				ELBOW(90°LR)	SMLS A403-WP304-67 FROM A376	3	20257 CFRO	0.047							
RBA-J3	4	E-P	รพ่						x	x		1,50	· · · · · · · · · · · · · · · · · · ·		
				PIPE	SMLS A376-TP304	5	2P3371	0.057							
RBA-J6	4	P-T	FW						x	x		1.83			
				TEE	SMLS A403-WP304W-67 FROM A312	3	37368 CFRP	0.060							
RBA-J7	4	T-FL	SW						x	x		1,16			
	<u> </u>			WN FLANGE (900 ≢LONG)	FORGED A182-F316	4	E1460	0.060							
			-	BLIND FLANCE	FORGED A182-F316	4	E1460	0.060							
· · · · · · · · · · · · · · · · · · ·								-	 	i					
				TEE	SMLS A403-WP304W-67 FROM A312	3	37368 CFRP	0.060					ALSO SHOWN ON PG.	A4	
RBA-J8	4	T-P	FW						x	x		1.94			

Praparad for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	VA		UAT	rion Preparad by nutech
LINE ND.		RBA		system RECIRCUL	ATION BYPASS LINE - L	00P A	(Con't)						REVISION - DATE PAGE 0 4/11/80 A11
WELD NUMBER	DIA. (IN)	WELD TYPE	SHOP DR FIELD WELO	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	55	NUREG 0313 STATU: N C 0 0 N N F	S C O N F	STRESS RULE INOEX	COMMENTS
				ELBOW(90°LR)	SMLS A403-WP304W-67 FROM A312	3	20257 CFRO	0.047					
RBA-J10	.4	E-V	FW						0+	x		1.52	LOWER AC TO CASTING HIGH RESISTANCE TO IGSCC
	·			VALVE (MO-F032A)	CAST A351-65 GR. CF8	7	41706	0.08					81 FERRITE
RBA-J12	4	V-WOL	FW						x	x		1.31	· · · · · · · · · · · · · · · · · · ·
				WELDOLET	FORGED A182-F304	6	812680 (876E)	0.060					ALSO SHOWN ON PG. A4
					<u> </u>		·					· · · · · ·	
		·											
			·		· · · · · · · · · · · · · · · · · · ·								
		<u> </u>					<u> </u>		 				

Proposed for OWA ELECTR IGHT & POW COMPANY	JIC .		S	TRESS	CORROSION DUANE ARNO				E	VA		UAI		Propand by nutech
line no.	RCB			SYSTEM RECIRCULA	ATION SUCTION - LOOP	B						0	REVISION - DATE) 4/11/80	page A12
WELD NUMBER	DIA. (IN)	WELO TYPE	SHOP OR FIELO WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	S	NUREG 0313 TATU N C 0 0 N N F	s	STRESS RULE INDEX	COM	MENTS
				RECIRC. SUCTION NOZZLE (NIB)	FORCED SA-508 CL.2 LOW ALLOY STEEL		NA							
RCB-F2	22	NOZ-SE	ŚŴ	SAFE-END	FORGED SA-336 GR, F8	7	M57S	0.023			<u>х</u>	0.97		
RCB-J3	27	SE-P	FW	(N1B)			6/6M	0.023		₿+		1.01	LOWER &C	T TO TOSCO
			1.00	PIPE (1-1)	R&W A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045						
RCBJ4	22	P-E	SW							0+		1.35	LOWER IC & SHOP WI	
,				ELBOW(90°LR)	R&W A403-WP304W FROM A240	2	300223	0.049						THE COLLER
RCB-J5	22	E-P	SW							8+		1.24	LOWER &C & SHOP W HIGH RESISTANCE TO	IGSCC
				PIPE (1-2)	REW A358 CL.1 FROM A240 T304	1	2P2470-1A	0.045						
RCB-J6	22	Р-Т	FW							x		1.24	and the second	
	_			REDUCING TEE 22"X22"X18"	R&W A403-WP304W FROM A240-69	2	6003241	0.055					18" OUTLET EXTRUD HEAT TREATMENT	ED PRIOR TO
RCB-J7	22	T-P	SW					ļ		0+		1.32	SHOP WATER SPRAY C	OOLED
		•	 	PIPE (1-2)	RGW A358 CL.1 FROM A240 T304	1	2P2470-1A	0.045		_			LOWER &C & SHOP WA	TED CODAY MAILED
RCB-J9	22	P-P	SW	PIPE (2-1)	RGW A358 CL. 1 FROM	1	2P2431-1A	0.040		8+		0.89	ILIMER IC & SHOP WA	
RCB-JI5	22	P-E	17W		A240 T304					 →		1.31	LOWER &C HIGH RESISTANCE TO	IGSCC
		<u> </u>		ELBOW (90°LR)	REW A403-WP304W FROM A240	2	300223	0.049		1	1			

. .

Proparad for IOWA ELECTR LIGHT & POW COMPANY	IC		S	STRESS	CORROSION DUANE ARNO				E	V	۱L	UAI		Propute by nutech
LINE NO.	RCE	· }		system RECIRCU	ATION SUCTION - LOOP	B (Cor	ч'т)						REVISION - DATE O 4/11/80	page A13
WELD NUMBER	01A. (1N)	WELD TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	5 5	NURE(0313 STATU N C 0 0 N N F	S C	STRESS RULE INDEX	COM	MENTS
		-		VALVE (MO-F023B)	CAST A351-65 CR. CF8	7	39839	0.06					114 FERRITE	
RCB-J18	22	V-P	FW							0+		0.96	LOWER &C TO CASTIN	NG D IGSCC
				PIPE (3-1)	R&W A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045						
RCB-J24	22	Р- Е	SW							0 +			LOWER &C & SHOP WA	
			,	ELBOW(90°SR)	RGW A403-WP304W-67 FROM A240 T304	3	K51142-3	0.048						
RCB-J25	22	E-Pp	FW							8 +		1,57	LOWER IC TO CASTIN	
				PUMP	CAST A351 GR, CF8M	7	51510 or 50448	0.06 0.05					141 FERRITE	
	<u> </u>						·							
													· · · · · · · · · · · · · · · · · · ·	
				PIPE (3-1)	R&W A358 CL.1 FROM A240 T304	1	2P2470-4A	0.045						
RCB-J21	4	BPC	SW							x		1.32		
				FLANCE (900# LNW)	FORGED A182-69 F-304	4	41167	0.070					DECONTAMINATION FL	ANGE
	-			BLIND FLANCE	FORCED A182-69 F-304	4	41167	0.070					·····	
						 								
						.							·	

Prapared for IOWA ELECTR LIGHT & POW COMPANY			S	TRESS	CORROSION DUANE ARNO				E	V	AL	UAT		nutech
LINE NO.	RCB			SYSTEM RECIRCUL	ATION DISCHARGE - LOO	DP B						0	REVISION - DATE 4/11/80	page A14
WELO NUMBER	DIA. (IN)	WELD TYPE	SHOP DR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	55	NURE 0313 STATU N C 0 0 N N F	S C	STRESS RULE INDEX	COM	IMENTS
· <u>·</u> ······				PUMP	CAST A351 CF8M	7	51510 or 50448	0.06 0.05					141 FERRITE	
RCB-J27	22	Рр-Р	F₩		· · · · · · · · · · · · · · · · · · ·					X		0.97		· · · · · ·
				PIPE(8-1)	R&W A358 CL.1 FROM A240 T304	1	300075-1C	0.058						
RCB-J31	22	·P-V	FW							x		0.96		
				VALVE (MO-F031B)	CAST A351-65 GR, CF8	7	44691	0.04					154 FERRITE	· ·
RCB-J33	22	V-E	FW							x		1.24		
				ELBOW(90°LR)	R&W A403-WP304W FIXOM A240	2	600324-1A	0.055						
RCB-J35	22	E-P	SW							0+		1.22	SHOP WATER SPRAY C	COOLED
				PIPE (10-1)	R&W A358 CL, 1 FROM A240 T304	1.	300075-1C	0.058						
RCB-J41	22	P-P	SW							x		0,90		
				PIPE (10-1)	R&W A358 CL.1 FROM A240 T304	1	300075-1C	0.058					FLOW RESTRICTER WE	LDED TO PIPE I.D.
RCB-J44	22	P-T	SW	к <u>и</u>						0+		1.43	SHOP WATER SPRAY C	
		•		REDUCING TEE 22X22X20	R&W A403-WP304W FROM A240-69	2	6825331	0.040					20" OUTLET EXTRUD HEAT TREATMENT	ED PRIOR TO
RCBJ46	22	T-Cr	₽₩							0+		1.33	LOWER &C CONTENT - RESISTANCE TO IGSC	
				REDUCTING CROSS 22X22X16X16	R&W_A403-WP304W FIXIM_A240-69	2	6825331	0.040					16" OUTLETS EXTRU HEAT TREATHENT	
RAB-J7	22	Cr-Cp	SW							0+		1.22	SHOP WATER SPRAY C	COOLED
				WELD CAP	RGW A403-67 Filiam A240 T304	3	600225-1A	0.058						

Prepered for OWA ELECTF IGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	V	٩L	UA [.]		Propagad by nutech
LINE NO.	RCI	B		SYSTEM RECIRCUL	NTION DISCHARGE - LOO	РВ (С	Сом'т)						REVISION - OATE) 4/11/80	page A15
WELD NUMBER	01A. (1N)	WELD TYPE	SHOP DR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)		NUREE 0313 STATU N C D O N N F	S	STRESS RULE INDEX		MENTS
<u></u>				22" PIPE (8-1)	R&W A358 CL.1 FROM A240 T304	1	300075-1C	0.058					ALSO SHOWN ON PG. /	A14
RCB-J30	4	BPC	SW		· · · ·					x		1.08		
				WELDOLET 22"X4"	FORGED A182-F304	6	812680 (496E)	0.060					BRANCH CONNECTION DISCHARGE VALVE BY	
<u> </u>														
	1													
				22" PIPE (10-1)	R&W A358 CL.2 FROM A240 T304	1	300075-1C	0.058					also shown on pg.	A14
RCB-J37	4	BPC	SW	· .		<u>`</u>				x		1.25		
				WELDOLET 22"X4"	FORGED A182-F304	6	812680 (496E)	0.060					BRANCH CONNECTION DISCHARGE VALVE BY	
						<u> </u>						ļ		
·····		 								<u> </u>		 		
		· ·						<u> </u>		<u> </u> .				
								<u> </u>		 		 		
<u></u>	_							<u> </u>		<u> </u>		 		·
			1											

Prepared for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	V	٩L	UAI		Propute by nutech
LINE NO.	RMB			SYSTEM RECIRCULAT	TION RING HEADER - L	.00P B							REVISION - OATE 0 4/11/80	page A16
WELO NUMBER	DIA. (1N)	WELD TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	5	NURE 0313 STATU N C 0 O N N F	s	STRESS RULE INDEX	COM	MENTS
				WELD CAP	R&W A403-WP304W-67 FROM A240	3	K51404-4D	0.050						
RAB-J1	16	Cp-1klr	SW	······································	·				•	0+		0.96	SHOP WATER SPRAY C	COOLED
				RING HEADER (11-1)	R&W A358 CL.1 1'ROM A240-67 T304	1	600120-1B	0.059					RISER OUTLETS EXT HEAT TREATMENT	
RMB-J6	16	tidr-Cr	SW							6+		1.45	SHOP WATER SPRAY C	OOLED
			-	REDUCING CROSS 22X22X16X16	R&W A403-WP304W FROM A240-69	2	6825331	0.040					ALSO SHOWN ON PG.	B14
RAB-18	16	Cr-Hdr	SW							6+		1.35	SHOP WATER SPRAY C	OOLED
				RING HEADER (11-2)	R&W A358 CL.1 FROM A240-67 T304	1	60012 0-1 B	0.059					RISER OUTLETS EXT HEAT TREATMENT	RUDED PRIOR TO
RAB-J12	16	lkir-Cp	SW							0+		0.96	SHOP WATER SPRAY C	OOLED
				WELD CAP	R&W A403-WP304W-67 FROM A240	3	K51404-4D	0.050						
				······································										<u></u>
														······
	-					-								
								1						

;

RRA RECIRCULATION RISERS - LOOP B (N2A) O WELD NUMBER DIA (IN) WELD TYPE SMOP FIELD WELD COMPONENT MATERIAL TYPE 6 SPECIFICATION HE AT TREAT. MANAGE CARBON MUMBER CARBON STATUS (N) STATUS STATUS STATUS STRESS NUMBER NUMBER 01A WELD (IN) SMOP FIELD WELD COMPONENT MATERIAL TYPE 6 SPECIFICATION HE AT TREAT. MUMBER HE AT MUMBER CARBON (N) STRESS STRESS NUMBER STRESS NUMBER NUMBER NUMBER STRESS NUMBER STRESS NUM	nutech	AT	_U	AL	EV					CORROSION DUANE ARNO	TRESS	S		IIC	Preparad for IOWA ELECTF LIGHT & POW COMPANY
WELD DIA WELD SHOP FIELD COMPONENT MATERIAL TYPE 5 SPECIFICATION HE AT MAMBER HE AT MUMBER HE AT MUMBER HE AT MUMBER Component Sectoritation STATES SPECIFICATION HE AT MUMBER HE AT MUMBER HE AT MUMBER States SPECIFICATION States MULE 1 1 1 1 1 1 00120-1B 0.059 1 1 0 1 1 0 0.059 1 1 0 1 1 0 0.0120-1B 0.059 1 1 1 0 0 1 1 1 0 0 1	REVISION - DATE PAGE O 4/11/80 A17	C					<u> </u>)	(N2A)	TION RISERS - LOOP B				RA	
Image: state stat	COMMENTS	ULE	R		0313 Statu STATU	11 5	, cor	HEAT NUMBER	TREAT		COMPONENT	DR FIELD	WELD TYPE	DIA. (IN)	
Image: Participant and presented in the pre	SPOOL 11-2 ALSO SHOWN ON PG. A16				<u>}</u>		во	600120-1	1						
RRA-J7 10 A-P FW Image: SMLS A376 - TP304		.95	$\frac{1}{1}$	-	X	0	0	52624	6	FORGED A182-F304	ADAPTER	SW	lkdr-A	10	R(B-J11
RRA-J5 I0 P-E SW ICL REW ICL ILL		16		+	x							FW	A-P	10	RRA-J7
IO IO <thio< th=""> IO IO <thi< td=""><td></td><td></td><td>+-</td><td>+</td><td></td><td>1</td><td></td><td>2P3687</td><td>5</td><td>SMLS A376 - TP304</td><td>PIPE (16-2)</td><td>ସ୍ଥ</td><td>D-F</td><td>10</td><td>RRA-J5</td></thi<></thio<>			+-	+		1		2P3687	5	SMLS A376 - TP304	PIPE (16-2)	ସ୍ଥ	D-F	10	RRA-J5
Image: Second		<u></u>			Ť	1	. 0	37845-1A	3		ELBOW(90°LR)				· · · ·
RRA-J4A 10 P-P FW Image: state stat		.63	1	-	<u> </u>			203399	ς	Qui S A 376-TP 304	PIPF (16-1)	SW	E-P	10	R!{A-J4
PRA-J3 10 P-P FW SAFE-END Expects of 17 cm 2 2 2 3 0 0 3 1.23 <td></td> <td></td> <td>0,</td> <td>+</td> <td>x</td> <td>1</td> <td></td> <td>LI 3335</td> <td></td> <td></td> <td></td> <td>FW</td> <td>P-P</td> <td>10</td> <td>RRA- J4A</td>			0,	+	x	1		LI 3335				FW	P-P	10	RRA- J4A
SAFE-END FUNCTION OF THE SAFE	PORTION OF SPOOL 16-1 WAS CUT OUT AND REPLACED IN 1978					5	0	2P3399	5	SMLS A376-TP304	PIPE (16-1)				
EXTENSION CONCERNENCE OF PLASS 0.030		23			<u> </u>	- 	0.	M53S	7	FORGED SA-336 CR, F8	SAFE-END EXTENSION	FW	Р-Р	10	RRA-J3
RRA-F2A 10 P-SE FW X I.02	· · · · · · · · · · · · · · · · · · ·	02	<u>x I.</u>	x								FW	P-SE	10	RRA- F2A
SAFE-END (N2A) SMLS SB-166 INCONEL 7 NX9923 0.06 RRA-F2 10 SE-NOZ EW X L 03	SAFE-IND REPLACED IN 1978					5	0	NX9923	7	SMLS SB-166 INCONEL			· · ·	_	

;

1 -

Prepared for IOWA ELECTF LIGHT & POW COMPANY	NIC		S	STRESS	CORROSION DUANE ARNO				E	V/	AL.	UA'		nutech
LINE NO.	RB			SYSTEM RECIRCUL	ATION RISERS - LOOP I	B (N2I	3)						REVISION - DATE 0 4/11/80	PAGE A18
WELO NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 Specification	HE AT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	SEAS	lõ Ö	IS I C	STRESS RULE INDEX	COM	IME NTS
				16" RING HEADER (11-2)	R&W A358 CL.1 FROM A240-67 T304	1	600120-1B	0.059	•				SPOOL 11-2 ALSO S	IOWN ON PG. A16
R1B-J9	10	lidr-A	SW	ADAPTER	FORCED A182-F304	6	52624	0.070		x		2.19		
RRB-J7	10	A-P	FW							x		1.25		
				PIPE (17-2)	SMLS A376 - TP304	5	2P3687	0.051		 		 		
RRB-J5	10	P-E	SW	ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061		X		1.75		
RRB-J4	10	E-P	SW							x		1.59		
			· ·	PIPE (17-1)	SMLS A376 - TP304	5	2P3399	0.055			 			
RRB-J4A	10	P-P	FW	P1PE (17-1)	SMLS A376 - TP304	5	2P3399	0.055		X		0,98	PORTION OF SPOOL AND REPLACED IN 1	
RKB-J3	10	P-P	FW	SAFE-END	EODCED CA 376 CD EQ	7	M53S	0.030		x		1.23		· · · · · · · · · · · · · · · · · · ·
RRB-F2A	10	P-SE	FW	EXTENSION	FORGED SA-336 GR. F8		CCI1	0.030		-	x	1.02		
				SAFE-END (N2B)	SMLS SB-166 INCONEL	7	NX9923	0.06					SAFE-END REPLACED	IN 1978
RRB-F2	10	SE-NOZ	FW	RECIRC. INLET							x	1.03		н

COMPANY	IIC ER		S	TRESS	CORROSION DUANE ARNO				E	V/		UA1		nutec
LINE NO.	RRC			SYSTEM RECIRCUL	ATION RISERS - LOOP I	3 (N2C	.)		•				REVISION - DATE 0 4/11/80	PAGE A19
WELD NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELO	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT	HEAT NUMBER	CARBON		NUREI 0313 STATU	S	STRESS		MENTS
NUMBER	1001	1112	WELO		SI LUN ICATION	MENT	NUMBER	(%)	E E R N V S	00 NN	O N F	INCEX		
				16" RING HEADER (11-1)	R&W A358 CL.1 FROM A240-67 T304	1	600120-1B	0.059					SPOOL 11-1 ALSO SH	OWN ON PG. Al
I&B-J5	10	lkir-A	SW							x		2.10		
				ADAPTER	FORGED A182-F304	6	52624	0.070					- -	
RRC-J7	no	A-P	FW		······································					x		1.24		
				PIPE (18-2)	SMLS A376 TP304	5	2P3687	0.051						
RRC-J5	10	P-E	SW	×		1	· · · · · · · · · · · · · · · · · · ·	1		X		1.73		
				ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061						
RRC-J4	10	E-P	SW							X		1.40		
				PIPE (18-1)	SMLS A376-TP304/	5	2P3399	0.055						
RRC-J4A	10	P-P	FW							x		0.98		
				PIPE (18-1)	SMLS A376-TP304	5	2P 3 399	0.055					PORTION OF SPOOL 1 AND REPLACED IN 19	8-1 WAS CUT OU 78
KRC-J3	10	P-P	FW							X		1.23		
				SAFE-END EXTENSION	FORGED SA-336 GR. F8	7	M53S	0.030						
KRC- F2A	10	P-ȘE	FW								x	1.02		
				SAFE-END (N2C)	SMLS SB-166 INCONEL	7	NX9923	0.06					SAFE-END REPLACED	IN 1978
RRC-F2	10	SE-NOZ	FW								x	1.03		
				RECIRC. INLET NOZZLE	FORGED SA-508 CL.2 LOW ALLOY STEEL		NA						· · · · · · · · · · · · · · · · · · ·	

Prepared for OWA ELECTRI IGHT & POWE COMPANY			S	TRESS	CORROSION DUANE ARNOL				E'	V A	\L!	JAT	rion i	nutech
LINE NO.	RRD)		system RECIRCULAT	TION RISERS - LOOP B	(N2D))				•	0	REVISION - DATE 4/11/80	page A2D
WELO	DIA.	WELD	SHOP	COMPONENT	• MATERIAL TYPE &	HE AT TREAT-	j HEAI	CARBON	s	NUREG 0313 STATUS	s	STRESS RULE	СОМ	MENTS
NUMBER	(IN)	TYPE	FIELD WELO		SPECIFICATION	MENT	NUMBER	(%)	Ë Ë R N V S	N C D D N N F	CONF	INOEX		
				16" RING HEADER (11-1)	R&W A358 CL.1 FROM A240-67 T304	1	600120-1B	0.059					SPOOL 11-1 ALSO SIK	DWN ON PG. A16
RAB-J2	10	ikir-A	SW			['	'	<u> </u>		x		1.83		
		\square		ADAPTER	FORGED A182-F304	6	52624	0.070						
RRD-J7	10	A-P	FW			['		[]		x	\square'	1.13		
				PIPE (19-2)	SMLS A376-TP304 \	5	2P3687	0.051				<u> </u>		
RRD-J5	10	P-E	SW					,		X	\Box	1.58		
				ELBOW(90°LR)	R&W A403-WP304W-67 FROM A240	3	37845-1A	0.061			\Box			
IRD-J4	10	E-P	SW			<u> </u>		[!		x	\Box'	1.44		
		1		PIPE (19-1)	SMLS A376-TP304	5	2P3399	0.055			$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$			
RRD-J4A	10	P-P	FW			ļ,		1		x	\Box	0.98		
				PIPE (19-1)	SMLS A376-TP304	5	2P3399	0.055					PORTION OF SPOOL 17 AND REWELDED IN 197	
RRD-J 3	10	P-P	FW					<u> </u>		x	L_'	1.23		
		[SAFE-END EXTENSION	FORGED SA-336 GR. F8	7	M53S	0.030						
RRD-F2A	10	P-SE	FW	·							(x /	1.02		
				SAFE-END (N2D)	SMLS SB-166 INCONEL	7	NX9923	0.06					SAFE-END REPLACED	IN 1978
RRD- F2	0	SE-NOZ	IW					′	'		x	1.03		
	Τ.'		['	RECIRC. INLET NOZZŁE	FORGED SA-508 CL.2 LOW ALLOY STEEL		NA			[]	ĺ '			

Prepared for IOWA ELECTE LIGHT & POW COMPANY			e,	STRESS	CORROSION DUANE ARNO				E		AL	UA [.]		Property by nutech
LINE NO. . R	BB	:		system RECIRCU	LATION BYPASS LINE -	LOOP B							REVISION - DATE O 4/11/80	PAGE A21
WELD NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELD WELD		MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	s s	NURE 0313 STATU N C 0 0 N N F	IS C	STRESS RULE INOEX	COM	MENTS
				WELDOLET 22''X4''	FORGED A182-F304	6	812680 (496E)	0.060					ALSO SHOWN ON PG.	A15
RBB-J1	4	WOL-P	FW						x	x		1.23		
				PIPE	SMLS A376-TP304	5	2P3371	0. 057						
RBB-J2	4	P-E	SW						x	x		1.39		······································
				ELBOW(90°LR)	SMLS A403-WP304W-67 FROM A312	3	20257 CFRO	0.047						
RBB-J3	4	E-P	SW						x	x_		1.50		
•				РІРЕ	SMLS A376-TP304	5	2P3371	0.057						
RBB-J6	4	P-T	₽₩						x	x		1.86		
				TEE	SMLS A403-WP304W-67 FROM A312	3	37 368 <u>CFIV</u>	0.060						
RBB-J7	4	T-FL	SW						x	x		1.29		
				WN FLANGE (900#-LONG)	FORGED A182-F316	4	E1460	0,060						
				BLIND FLANGE	FORGED A182-F316	4	E1460	0.060						
•		i · I		1										
		-		THE	SMLS A403-WP304W-67 FROM A312	3	37368 CFRP	0.060					ALSO SHOWN ON PG. A	.14
RBB-J8	4	T-P	1-M		·		,		x	x		1.99		

Proposed for IOWA ELECTI LIGHT & POW COMPANY	RIC		S	STRESS	CORROSION DUANE ARNO				E	V	٩L	UA		Propared by nutecl
LINE NO.	RBI	3		system RECIRCU	ILATION BYPASS LINE -	LOOP I	В (Сом'т)						REVISION - DATE 0 4/11/80	page A22
WELO NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELO WELO	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	5.5	NURE 0313 STATU N C 0 0 N N F	S	STRES: RULE INDEX	S CON	IMENTS
				ELBOW(90°LR)	SMLS A403-WP304W-67 FROM A376	3	20257 CFRO	0.047						
RBB-J10	4	E-V	FW						8+	X		1.52	LOWER &C TO CA	STING E TO IGSCC
				VALVE (MO-F032A)	CAST A351-65 GR. CF8	7	41706	0.08					81 FERRITE	
RBB-J12	4	V-WOL	FW						x	X		1.25		
	_	- 		WELDOLET 22''X4''	FORGED A182-F304	6	812680 (496E)	0.060					ALSO SHOWN ON PG.	A15
						_								
• • • • • • • • • • • • • • • • • • • •	_					- 	:							
									<u> </u>				· · · · · · · · · · · · · · · · · · ·	
	-													
												·		
 														
	-					· · ·		-						
		l <u></u>			·	-		1	 					
- 														
						1		-						
					-				-					

i

Prepared for IOWA ELECTR LIGHT & POW COMPANY			S	STRESS	CORROSION DUANE ARNO				E	V#		UAI		nutech
LINE NO.	R	HB		system RESIDUAL HE	AT REMOVAL – LOOP B							C	REVISION - DATE) 4/11/80	page B1
WELO NUMBER	DIA. (IN)	WELO TYPE	SHOP OR FIELO WELO	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	S S E R S E R S	NURE 0313 TATU N C 0 0 N N F	5 COT+	STRESS RULE INDEX	COMI	MENTS
<u></u>				22"x22"x18" TEE	R&W A403 - WP 304 W FROM A240	2	6003241	0.055					TEE ALSO SHOWN ON "B" RECIRC SUCTION	
RI (B-J1	18	Т-Р	FW							x	_	1,18		
				PIPE (P1)	RGW A358 TP304 CL. 1	4	328258	0.033					· · · · · · · · · · · · · · · · · · ·	
RIB-F3	18	P-P	SW	·							X	0.82		
				PIPE (P2)	SMLS A333 GR. 6 CARBON STEEL		NA							
					• • • • • • • • • • • • • • • • • • •									
				PIPE (P1)	R&W A358 TP304 CL. 1	7	328258	0.033						
RIB-J2	4	BPC	SW		· · · · · · · · · · · · · · · · · · ·	-		-		x				
		(P-WOL)		WELDOLET 18"x4"	FORGED A182 F304	7	110G	0.05					BRANCH CONNECTION CLEAN-UP SUCTION I	
				·····										

Prepared for IOWA ELECTR LIGHT & POW COMPANY	IC		S	STRESS					E	VA	\L	UA	TION	utech
LINE NO.	RHC			system RESIDUAL HE	at removal - loop a	(20A)							REVISION - DATE 0 4/11/80	page B2
WELO NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELD WELD	COMPONENT	MATERIAL TYPE 6 SPECIFICATION	HE AT TREAT MENT	HEAT NUMBER	CARBON CONTENT (%)	SS	NUREC 0313 5TATU N C 0 0 N N F	C	STRES: RULE INOEX	CộMI	AENTS
				22x22x20" TEE	R&W A403-WP 304 W FRCM A240	2	6003241	0.055					TEE ALSO SHOWN ON "A" RECIRC DISCUAL	
KIC-J1	20	T- P	FW	PIPE (P1)	R&W A358 TP304 CL, 1	7	318435	0.060		x		1.28		
RHC- F2	20	P-P	SW							x		0.84		
				PIPE (P2)	SMLS A333 GR, 6 CARBON STEEL		NA							
	-			· · · · · · · · · · · · · · · · · · ·										
							,							
	_				· · · · · · · · · · · · · · · · · · ·									
	-					-	<u> </u>							<u></u>
·····					· · · · · · · · · · · · · · · · · · ·									
	-													

Prepared for IOWA ELECTR LIGHT & POW COMPANY				STRESS	CORROSION DUANE ARNOL			•	E	VA		UA1		nutech
LINE NO.	RH	D		system RESIDUAL H	SIDUAL HEAT REMOVAL - LOOP B (20B)								REVISION - DATE O 4/11/80	page B3
WELD NUMBER	DIA. (IN)	WELD TYPE	SHOP OR FIELD WELD	COMPDNENT	MATERIAL TYPE 6 SPECIFICATION	HEAT TREAT- MENT	HEAT NUMBER	CARBON CONTENT (%)	S S L R S L R S	NUREC 0313 TATU N C 0 0 N N F	S C O N F	STRESS RULE INOEX	COM	MENTS
<u>, , , , , , , , , , , , , , , , , , , </u>				22''x22''x20'' TEE	EXTRUDED A403 - WP304W FROM A240	2	6825331	0.040					TEE ALSO SHOWN ON "B" RECIRC DISCHAR	PG. A14 RGE L1NE
ID-J1	20	T-P	FW		·. ·					X		1,29		
				PIPE (P 1)	R&W A358 TP304 CL. 1	7	318435	0,060						
11D-F2	20	P-P	SW							X		0.84		
				P1PE (P2)	SMLS A333 GR. 6 CARBON STEEL		NA						·	
								ļ						
												·		
					·									<u> </u>
					· · · · · · · · · · · · · · · · · · ·									,
				· · · · · · · · · · · · · · · · · · ·				· · ·	 					
								_						
												 		
		<u></u>			· · · · · · · · · · · · · · · · · · ·									
			ļ				1		1	{		I		

الجيحية بدياجا بالمتعاقي بالاع

the state of the s

APPENDIX B

]

]

]

STRESS RULE INDEX EVALUATION SUMMARY

• • • • • • • • • • •	*******	• • • • • • • • • •	* * * * * * * *	• • • • • • •	• • • • • • •	******	VE	S C O R Eksion 1					••••				•
••••••	•••••	• • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •	KEY FO	••••••• R· S TRE S	S RULE I	INDEX EV	ALUATION	- SUNN	******** ARY *****	*******	******	•••••••	· • • • • • • • • • • • • • • • • • • •	••••••	*
· · · · · · · · · · · ·	••••	,	••••••••••••••••••••••••••••••••••••••	••••													
			51 0 10	IS Pi	I Weld pe Fabr	Number icator'	s Weld I	Number									
		HLLD	TYPE	Co	mponent	s Adjoi	ning Wei	Ld									
		PIPE	S 1 Z E	Pi	pe Diam	eter (i	n.)										
		NDD	E ND	NS	C Stres	s Analy	sis Mod	e Number									
		COMP	TYPE	Co	mponent	Type U	sed in	Determin	ing NB-	3600 Pip	oing Str	ess Ind	ices				
		61	/ 82)													
		C1 .	/ 62	- {	NB-	3600 Pi	ping St	ress Ind	lices								
		KL.	/ K2)													
		51(P	RESI	· Pr	essure	Stress	Intensi	ty (psi)	I								
		\$1	(DH)	De	ad Weig	ht Stre	ss Inte	nsity (p	si)								
		SLUT	HERD	Th	ermal S	tress I	ntensit	y (psi)									
		PM	• PB	Pr	imary S	tress I	ntensit	y (psi)									
		РМ+ РВ	+Q+F	Pr	imary p	lus Sec	ondary	plus Pea	k Stres	s Intens	sity (ps	1)					
		û	+ F	Se	condary	plus P	eak Str	ess Inte	ensity (psi)							
		RES	1 57	We	ld Resi	dual St	ress (p	si)		t L							
		YIEL	DST	Co	de Mini	mum Yie	ld Stre	ngth of	Piping	Materia	l at 550	⁰ F (psi)				
		HOD.	ELA.		-		-	ng Matei					·				
			, PR }					mary Sti									
			,SEC					ondary S			t						
	·	SHE T			•		ule Ind		~ ~ ~ ~ ~ ~ ~ ~								
																	·

									(E1.)
**************************************	• • • • • • • • • • • • • • • • • • •	**************	VERS Arnold Reciri	C O R E ION 1.0.0 Culation piping. Ex Evaluation -	*********	· · · · · · · · · · · · · · · · · · ·	•••••	PAGE 29 04/01/80	
•	NELO ID	RCA-J3 Al	RCA-J4 R5-N-A1-A	RCA-J5 RS-N-A1-B	RCA-J6 A2	RCA-J7 RS-N-A2-C			
	WELD TYPE	SE-P	P-E	E-P	P-P	P-P			
	PIPE SIZE	22.00	22.00	22.00	22.00	22.00			
	NODE NO	104	15A	20A	A2	SNAZC			
	COMP TYPE	TRANS	ELBOWLR	ELBOWLR	PIPE	PIPE			
	81 / 82	.50/1.00	1.00/3.52	1.00/3.52	.50/1.00	.50/1.00			·
-	C1 / C2	1.37/1.50	1.23/4.70	1.23/4.70	1.10/1.00	1.10/1.00			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SILPRESI	12388.70	12388.70	12388.70	12388.70	12388.70			
	ST (DW)	716.42	140.12	344.64	215.70	0.00			
	SICTHERI	1145.68	1038.97	699.63	543.29	0.00			
	PM + PB	6910.7B	12892.15	13602.37	6410.06	6194.35	•		
	PN+P8+Q+F	25432.10	28324.31	27184.80	17719.27	16353.09			
	Q + F	18521.33	15442.16	13582.43	11309.22	10158.74			
	RESI ST	28000.00	28000.00	28000.00	28000.00	28000.00			
	VIELD ST	18800.00	16800.00	18800.00	18800.00	18800.00			
	MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	SRI.PRI	. 3676	.6852	• 7235	. 3410	• 3295			
	SRI+SEC	.6633	•6194	. 5929		•5441			
	SHI TOTAL	1.0309	1.3047	1.3164		. 8736			

						CI) 63			
* * * * * * * * * * * * * * * * * * *	•••••	************	VERSI Arnold Recirc	0 R E 0N 1.0.0 ULATION PIPING. ************************************	*********	• • • • • • • • • • • • • • • • • • • •	•••••	PAGE 30 04/01/B0 ***********	ť
	151 Weld 10	RCA-J12 RS-N-A2-8	RCA-J13 A3	RCA-J15 A4	RCA-J18 RS-N-A3-A	RCA-J21 RS-N-A3-0			
	WELD TYPE	P-E	E-V	V-P	BPC	P – E			
•	PIPE SIZE	22.00	22.00	22.00	22.00	22.00			
	NODE NO	35A	40 A	55A	60A	65A			
	COMP TYPE	ELBOWLR	ELBOWLR	TR AN S	BRANRUN	ELBOWSR			
	81 / 82	1.00/3.52	1.00/3.52	.50/1.00	1.00/1.00	1.00/4.62			
	C1 / C2	1.23/4.70	1.23/4.70	1.37/1.50	2.00/1.00	1.46/6.15			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SI(PRES)	12388.70	12388.70	12388.70	12388.70	12388.70			
:	SI (DW)	412.59	481.50	176.64	63.29	504.37			
;	SI (THER)	402.18	507.15	450.15	440.38	431.85			
	PM + PB	13841.66	14084.37	6371.00	12452-00	14716.4B			
	PM+PB+Q+F	25245.06	26714.77	22102.43	30639.51	32083.63			
	9 + F	11403.39	12630.40	15731.44	18187.51	17367.16			
	RESI ST	28000.00	28000.00	28000.00	28000.00	28000.00			
	VIELD ST	18800.00	18800.00	18800.00	18800-00	18800.00	4		
	MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	SRI, PRI	.7363	. 7 4 9 2	. 3389	.6623	.7828			
		.5618				. 6469			
	SRT TOTAL	1.2981				1.4297			

			3 📖 📖				S		
* * * * * * * * * * * * * * * * * * *	••••••	********	VERS ARNOLD RECIR	••••••••• C O R E ION 1.0.0 Culation piping •••••••••••••• Ex Evaluation	************	· • • • • • • • • • • • • • • • • • • •	•••••	PAGE 31 * 04/01/80 *	
	ISI WELD ID	RCA-J22 A5	R C A J 2 4 A 6	RCA-J27 RD-A-A1-A	RCA-J28 A7	RCA-J30 A8			
	WELD TYPE	E-PP	PP-P	8PC	P-V	V-E			
	PIPE SIZE	22.00	22.00	6.00	22.00	22.00			
	NOOE NU	70A	90 A	95A	100A	115A			
	COMP TYPE	ELBONSR	TRANS	TEE	TRANS	ELBOWLR			
	81 / 82	1.00/4.62	.50/1.00	1.00/2.35	.50/1.00	1.00/3.18			
	C1 / C2	1.46/6.15	1.36/1.48	1.50/3.13	1.36/1.48	1.23/4.24			
	K1 / K2	1.20/1.89	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SI(PRES)	12388.70	12748.55	3987.40	12748.55	12748.55			
	SI (DW)	1061.17	294.64	179.63	94.27	227.62			
	SICTHER)	526.47	436.32	2766.79	365-14	505.85			
	PM + PB	17286.24	6668.91	4409.40	6468.55	13472.78			
	PM+PB+Q+F	39299-10	22814-02	23790.24	22088.29	24459.25			
	Q + F	22012.85	16145.10	19380.84	15619.74	10986.46			
	RESI ST	28000.00	28000.00	34000.00	28000.00	28000.00			
	VIELD ST	18800.00	18800.00	16800.00	18800.00	18600.00			•
	MDO. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	5R I + PR I	.9195	. 3547	• 2 3 4 5	. 3441	.7166			
	SRI+SEC			. 8324					
	SHI TOTAL	1.6326	. 9842	1.0670	• 9660	1.2725			

• • NUTECH •	••••••	UÜANE	VERS	••••••••••••••• C U R E ION 1.0.0 Culation piping ••••••	•••••• •LDOP A & U ••••••	• • • • • • • • • • • • • • • • • • • •	*****	•••••••••••••• PAGE 32 • 04/01/80 •	
•	****	2 • • • • • • • • • • • • • • • • •	STRESS RULE INDI	EX EVALUATION -	SUNNARY ***************	• • • • • • • • • • • • • • • • • • • •	*******	* * * * * * * * * * * * * *	
	ISI WELD (D	RCA-J32 RD-N-A2-A	RCA-J34 KO-N-A2-B	RBA-JI Alb	RBA-JZ RD-N-A8-A	R8A-J3 KD-N-A8-8			
	AELD TYPE	E-P	BPC	WOL-P	P-E	E-P			
	PIPE SIZE	22.00	6.00	4.00	4.00	4.00			
	NODE NO	1204	125A	A18	130A	135A			
	COMP TYPE	ELBUWLR	TEE	PIPE	EL8OWLR	ELBOWLR			
	81 / 82	1.00/3.10	1.00/2.35	.50/1.00	1.00/2.43	1.00/2.43			
	C1 / C2	1.23/4.24	1.50/3.13	1.10/1.00	1.27/3.24	1.27/3.24			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1-20/1-80	1.20/1.80			
	SI(PRES)	12748.55	3987.40	8031.90	8031.90	8031.90			
	ST (DW)	208.79	1115.00	591.19	76.24	155.46			
	SICTHERI	444.87	2860.58	9106.6B	3049.46	4088.63			
	PM + PB	13412.87	6606.90	4607.14	8217.26	8409.89	*		
	PM+PB+Q+F	23849.85	29593.08	28058.27	30437.64	36963.89			
	0 + F	10436,99	22986.19	23451.13	22220.38	28554.00			-
	REST ST	28000.00	39000.00	45000.00	45000.00	45000.00			
	ALEFD 21	00.00861	18800.00	18800.00	18800.00	18800.00			
	400. ELA.	25666000.00	25566000.00	25666000.00	25666000.00	25666000.00			•
	SK1, PR1	.7135	. 3514	. 2451	.4371	. 4473			
	SHI, SEC	. 5441		. 4750	.4585	1.0488			
	SKI TUTAL	1.2615	1.2353	1.2211	1.3956	I • 4961			

									É.			(LEI)		
**************************************	• • • • • • • • • • • • • •	••••••••••	******	ARNOLD R TRESS RULE	VERSIO ECIRCU	********	P:ING+L ++++++	*******	· • • • • • • •	••••••• ••••••	• • • • • • • • • • • • • • • • • • •	••••••	PAGE 04/01/	
	ISI WELD ID	RBA-J Alg	16	- RBA-J8 A20		R 8 4 - J 7 R D - N - A 9	- A	R8A-J9 RD-N-A1	0-4	R8A-J A21	10			
	WELD TYPE	P-T		T-P		T-FL		P-E		E- ▼				
	PIPE SIZE	4.00)	4.00		4.00		4.00	٠	4.00				
	NODE NO	140A		140A		140A		150A		155A				
	COMP TYPE	TEE		TEE		TEE		ELBOWLR	l	ELBOW	LR			
	81 / 82	1.00	/1.69	1.00/1	• 69	1.00/1	• 69	1.00/2	. 43	1.00	/2.43			
	C1 / C2	1.50	/2.26	1.50/2	• 26	1.50/2	.26	1.27/3	• 24	1.27	/3.24			
	K1 / K2	1.20	/1.80	1.20/1	.80	1.20/1.	. 80	1.20/1	.80	1.20	/1.80			
	SI(PRES)	80	31.90	8031	.90	8031.	. 90	8031	• 90	80	31.90			
	SI (DW)	· 4	59.35	1446	.17	0.	.00	740	• 30	4	05.85			
	SI(THER)	105	90.04	10406	, 92	0.	.00	5588	. 41	38	9.88			
	PH + PB	88	09.42	10479	.74	8031.	.90	9831	. 86	90	18.69			
	P#+P8+Q+F	593	43.71	62608	• 58	14457.	. 42	49128	.28	372	5.23			
	Q + F	505	34.30	52128	.83	6425	.52	39296	•42	2824	16.54			
	RESI ST	450	D0.00	45000	• 00	45000	.00	+500 0	•00	450	00.00		×	
	VIELO ST	188	00.00	18800	•00	18800.	.00	18800	•00	1880	00.00			
	MOD. ELA.	256660	00.00	25666000	•00	25666000	.00	25666000	•00	256660	00.00			
	SRI+PRI	•	4686	.55	 74	.427	72	•52	30	• • • • •	797			
	SRI,SEC	1.	3622	1.38			33		20	1.0)444			
	SRI TOTAL		8308	1.94		1.160		1.72	49	1.!	5241			

									'
••••••••••••••••••••••••••••••••••••••	************	******	VERSI	CORE Ion 1.0.0		· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • •	••••••••••• • PAGE 34 •	
• • • • • • • • • • • • • • • • • • • •	•••••••	*************	E ARNOLD _ RECIRC ++++++++++++++++++++++++++++++++++++	************	***************	· • • • • • • • • • • • • • • • • • • •	,	04/01/80 * ***********************************	
	IST Weld To	R8A-J12 A22	R C A-J 3 8 R D-N-A 2-E	RCA-J41 RD-N-A2-C	RCA-J43 A9	RHA-J6 RD-N-A3-E			
	WELD TYPE	V-WOL	P-P	P-T	T-CR	CR-CP			
	PIPE SIZE	4.00	22.00	22.00	22.00	22.00			
	NODE NO	167A	173A	175A	180A	185A			
	COMP TYPE	TRANS	PIPE	TEE	TEE	TEE			
· .	B1 / B2	.50/1.00	.50/1.00	1.00/2.35	1.00/2.35	1.00/2.35			
	C1 / C2	1.34/1.45	1.10/1.00	1.50/3.13	1.50/3.13	1.50/3.13			
	K1 / K2	1.20/1.00	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SI(PRES)	8031.90	12748.55	12748.55	12748.55	12748.55			
	SI (DW)	1623.18	5.23	98 . 4 8	398.75	0.00			
	SI(THER)	5460.72	195.91	219.90	511.41	0.00			
	PM + PB	5639.13	6379.51	12979.91	13685.35	12748.55			
	PM+PB+Q+F	31448.36	17190-16	24742.49	28079.1B	22947.40			
	Q + F	25809.23	10810.65	11762.59	14393.84	10198.84			
	RESI ST	45000.00	28000.0D	28000.00	28000.00	28000.00			
	VIELD ST	18800.00	18800.00	18800.00	18800.00	18800.00			
	NOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	SRI+PRI	. 3000	.3393	. 6904	.7279	.6781			
	SRI,SEC	1.0097	.5534	• 5670	.6045	.5447			
	SRI TOTAL	1.3096	. 8927		1.3324	1.2228			

					هنه هن		
• • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	**************	VERSI ARNOLD RECIRC	O R E ON L.O.O CULATION PIPING X EVALUATION -	,	· · · · · · · · · · · · · · · · · · ·	• PAGE - 36 04/01/80 •
	ISI WELO ID	RMA-J2 RD-N-A3-8	RRH-J7 A13	RMA-J1 R0-N-A3-A	RRH-J5 RD-N-A7-8	RRH - J4 RD -N-A7-C	
	WELD TYPE	HDR-A	A-P	CP-HDR	P-E	E-P	
	PIPE SIZE	10.00	10.00	16.00	10.00	10.00	
	NODE NO	215A	ADATR	220A	225A	2 30 A	
	COMP TYPE	TEE	PIPE	TRANS	ELBOWLR	ELBOWLR	
	81 / 82	1.00/2.31	.50/1.00	.50/1.00	1.00/3.18	1.00/3.18	
	C1 / C2	1.50/3.09	1.10/1.00	1.36/1.40	1.26/4.24	1.26/4.24	
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	
	SI(PRES)	11930.12	11930.12	12482.49	11930.12	11930.12	
	51 (OW)	135.20	133.65	0.00	158.63	132.51	
	SI(THER)	7874.17	7874.17	0.00	2840.50	3098.50	
	PM + PB	12243.10	6098.71	6241.25	12434.55	12351.48	
	PM+P8+Q+F	65971.68	30161.83	20405.23	40896.90	42666.56	
	Q + F	53728.58	24063.12	14163.98	28462.35	30315.08	
	RESI. ST	33500.00	33500.00	30000.00	33500.00	33500.00	
	VIELO ST	18800.00	18800.00	18800.00	18800.00	18800.00	
	M00. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00	
	SRI, PRI	• 6512	• 3244	• 3 3 2 0	.6614	•6570	
	SRI, SEC		.8208	.6297			
	SRI TOTAL	1.8950	1.1452		1.5449	1.5669	

S C O R E	•
VERSION 1.0.0	PAGE 37 +
DUANE ARNOLD RECIRCULATION PIPING+LOOP A & B	04/01/80 +
* * * * * * * * * * * * * * * * * * * *	,
STRESS RULE INDEX EVALUATION - SUMMARY	٠
•	VERSION 1.0.0 DUANE ARNOLD RECIRCULATION PIPING.LOOP A & B

ISI WELD ID	RMA-J7 RD-N-A3-F	RMA-J8 RD-N-A3-G	RKF-J7 All	RRF-J5 R0-N-A5-B	RRF-J4 RD-N-A5-C
WELD TYPE	CR-HDR	HDR-A	A-P	P-E	E-P
PIPE SIZE	16.00	10.00	10.00	10.00	10.00
NODE NO	2374	240A	AUATR	245A	250A
COMP TYPE	TEE	TEE	PIPE	ELBOWLR	ELBOWLR
81 / 82	1.00/2.35	1.00/2.31	.50/1.00	1.00/3.18	1.00/3.18
C1 / C2	1.50/3.13	1.50/3.09	1.10/1.00	1.26/4.24	1.26/4.24
K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80
SI (PRES)	12482.49	11930.12	11930.12	11930.12	11930.12
ST (DW)	145.50	882+20	882.20	612.61	218.54
SI(THER)	1380.76	8263.53	8263,53	3276.00	1492.08
PM + P8	12824.32	13972.29	6847.26	13878.17	12625.06
PM+P8+Q+F	31074.07	72284.89	32210.06	47685.28	31063.16
Q + F	18249.76	58312.60	25362.80	33807,11	18438.10
RESI, ST	30000.00	33500.00	33500.00	33500.00	33500.00
VIELO ST	18800.00	18800.00	18800.00	18800.00	18800-00
MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00
SRI, PRI	.6821	, 7432	• 3642	. 7382	.6715
SRI,SEC	• 6880	1.3091	. 8393	.9597	• 7406
RT TOTAL		2.0523	1.2035	1.6979	1.4121

									C,
••••• • • NUTECH • • • •	• • • • • • • • • • • • • • • • • • •	*********		**********	***********	•••••	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	
	ISI WELO ID	R MA-J5 RO-N-A3-D	RMA-J4 RD-N-A3-C	RR G- J7 A12	RRG-J5 RD-N-A6-B	RRG-J4 RD-N-A6-C			
	WELD TYPE	HDR-CR	HD R-A	A-P	P-E	E-P			
	PIPE SIZE	16.00	10.00	10.00	10.00	10.00			
	NODE NO	187A	190A	ADATR	195A	200A			
	COMP TYPE	TEE	TEE	PIPE	ELBOWLR	ELBOWLR			
	81 / 82	1.00/2.35	1.00/2.31	.50/1.00	1.00/3.18	1.00/3.18			
	C1 / C2	1.50/3.13	1.50/3.09	1.10/1.00	1.26/4.24	1.26/4.24			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SI (PRES)	12482.49	11930.12	11930.12	11930.12	11930.12			
	SI (DW)	167.25	870.40	870.40	567.81	227.12			
	SI(THER)	1941.48	9150-02	9150.02	3204.63	2603.61			
	PM + PB	12875.42	13944.97	6835.46	13735.73	12652.34			
	PM+PB+Q+F	34358.26	77144.38	33784.50	46798.68	39611.68			
	Q + F	21482.84	63199.40	26949.04	33062.95	26959.33			
	RESI ST	30000.00	33500.00	33500.00	33500.00	33500.00			
	VIELO ST	18800.00	18800.00	10800.00	18800.00	18800.00			
	M00. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	5KI.PRI	. 6849	.7418	• 3636	.7306	.6730			
	SR I + SEC	.7341	1.3788	.8619	.9441	.8621			
	SRI TUTAL	1.4189	2.1206	1.2255	1.6797	1.5351			

• • • • • • • • • • • • • • • • • • •			DUANE ARNOLD	S C O R'E VERSION 1.0. RECIRCULATION	0 PIPING+LOOP A	£A		04	+ GE 38 + /01/80 +
• • • • • • • • • • • • • • • • • • •			STRESS R	••••••••••••••••• ule Index evalu ••••••••••	ATION - SUMMAR	Y		••••••••••••••	•
	IST HELD I	RMA-J D RD-N-				- 15 N-44-8	RRE-J4 RD-N-A4-C		

≈ELO 10	RD-N-A3-H	A10	RD-N-A3-J	RO-N-A4-B	RD-N-A4-C
WELO TYPE	HUR-A	A-P	HDR-CP	P-E	E-P
PIPE SIZE	10.00	10.00	16.00	10.00	10.00
NUDE NO	265A	ADATR	270A	275A	280A
COMP TYPE	TEE	PIPE	TRANS	ELBOWLR	ELBOWLR
61 / 62	1.00/2.31	.50/1.00	.50/1.00	1.00/3.18	1.00/3.18
C1 / C2	1.50/3.09	1.10/1.00	1.36/1.48	1.26/4.24	1.26/4.24
K1 / K2	1.20/1.80	1.20/1.80	1.20/1.60	1.20/1.80	1.20/1.80
SI(PRES)	11930.12	11930-12	12482.49	11930.12	11930.12
SI LOWD	164.86	164.86	0.00	122.30	27.31
SI(THER)	6357.08	6357.08	0.00	3020.30	1726.56
PM + PB	12323.31	6134.91	6241.25	12319.01	12016.96
PM+PB+Q+F	57735.75	27496.24	20405.23	41991.79	31393.27
9 + F	45412.44	21361.33	14163.98	29672.78	19376.30
REST ST	33500.00	33500.00	30000.00	33500.00	33500.00
YIELD ST	18800.00	18800.00	18800.00	18800.00	18800.00
	25666000.00				
	. 6555		,		
SHI, SEC	1.1252				
SRI FOTAL	1.780/		. 4617	Ì.5560	-

														<u> (175</u>)			
• • • • • • • • • • • • • • •	********* TECH ********	• • • • • • • • • •	•••••	• • • • • • • • •	• • • • • • • • • • •	******	<u> </u> 	VERSIO RECIRCU	0 R F 3N 1.0.0 JLATION I 000000000000000000000000000000000000	P1PING.L	.00P A E	B • • • • • • • •		•••••	· • • • • • • • • • • • • • • • • • • •	PAGE 39 04/01/80	•
****	• • • • • • • • •	• • • • • • • • •	******	******	******	******	******	******	******	******	•••••	******		******	• • • • • • • •	•••••	••
			ISI Weld I	D	RC8-J3 81		RC8-34 .KS-N-8		KCB-J KS-N-E		RC8-J6 62		RCB-J RS-N-i				
		-	ELD TYP	E	SE-P		P-E		E-P		P-1		T -P				
		P	IPE SIZ	E	22.00		22.00		22.00		22.00		22.00				
			NODE N	0	LOB		158		208		238		238				
		C	OMP TYP	É	TRANS		ELBOWL	R ·	ELBOWL	R	TEE	. •	TEE				
			 81 / R	 2	.50/1	•00	1.00/	3.52	1.00/	/3.52	1.00/	2.59	1.00/	/2.59			
			C1 / C	2	1.37/1	•50	1.23/	4.70	1.23/	4.70	1,50/	3.45	1.50/	3.45			
			K1 / K	2	1.20/1	. 80	1.20/	1.80	1.20/	1.80	1.20/	1.80	1.20/	1.80			
			SLIPRES	3	12388	.70	. 1238	8.70	1238	38.70	1238	8.70	1230	8.70			
		•	51 ID#	3	628	.10	39	0.10	5	9.94		0.00	37	17.71			
			SLITHER)	843	•00	86	6.06	68	10.35	40	0.09	57	17.96			
			PM + P	B	6822	.45	1376	2.48	1254	9.78	1238	8.70	1330	6.67			
		P	M+PB+Q+I	F	24378	.17	2897	5.73	2461	5.61	2478	5.84	2823	8.21			
			Q + (F	17555	.72	1521	3.25	1201	5.83	1239	7.14	1487	11.54			
			RESE S	r	29000	.00	2800	0.00	2400	0.00	2800	0.00	2800	00.00			
			VIELD S	T	19900	.00	18800	00.00	1080	0.00	1880	0.00	1880	0.00			
		41	DD. ELA	•	25666000	•00	25666000	0.00	2566600	0.00	2566600	Ú•00	2566600	0.00			
						******					.						
			SKL,PR			29			• • • •		• 6	590	• 1	110			
			SK1+SE(,	96			د.			760	•6	113			
		 51	RI TOFAL		1.01			62	1.2	408		350	1.3	223			

• • NUTECH		* * * * * * * * * * * * * * * * *	VERSI ARNOLD RECIRC	: Q Ŕ E DN 1.0.0 Culation Piping	**************	· · · · · · · · · · · · · · · · · · ·	• PAGE 40 • 04/01/80 •
• • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••	TRESS RULE INDE	X EVALUATION -	SUMMARY ••••••••	•••••	• • • • • • • • • • • • • • • • • • • •
	ISI WELD IO	RCJ-J4 RS-N-82-A1	RCU-J15 RS-N-B2-E	KC8-J16 83	RCB J18 84	RCU-J21 RS-N-03-A	
	WELD TYPE	P-P	P-E	E-V	V-P	8 P C	
• * *	PIPE SIZE	22.00	22.00	22.00	22.00	22.00	
	NODE NO	NB2A1	358	40B	558	608	
	COMP TYPE	PIPE	ELBOWLR	ELBOWLR	TRANS	BRANRUN	
	61 / 62	.50/1.00	1.00/3.52	1.00/3.52	.50/1.00	1.00/1.00	
	C1 / C2	1.10/1.00	1.23/4.70	1.23/4.70	1.37/1.50	2.00/1.00	
	K1 / K2	1.20/1.00	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	
	SIIPRESI	12368.70	12388.70	12388.70	12388.70	12388.70	
	SI (DW)	110.77	352.63	465.27	211.92	103.13	
	SLITHERI	306.75	610.02	506.64	379.84	345.30	
	PM + PB	6305.13	13630.52	14027.21	6406.27	12491.83	
	PM+PB+Q+F	17248.63	26495.02	26573.34	22007.99	30540.06	
	Q + F	10943.51	12864.50	12546.12	15601.72	18048.23	
	RESE ST	28000.00	24000.00	28000.00	28000.00	28000.00	
	VIELD ST	18800.00	18800.00	18800.00	18800.00	18800.00	
	MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00	
	 SR1.PR1	• 3354		. 7461		. 6645	
		. 5553					
	SRE TOTAL	. 8997			. 4625	1.3211	

						erre distr.			
••••••••••••••••••••• • NUTECH •	• • • • • • • • • • • • • • • • •	***********	VERSI ARNDLD RECIRC	0 R E 0N 1.0.0 ULATION PIPING,	*****	· · · · · · · · · · · · · · · · · · ·	••••••••	PAGE 41 • 04/01/80 •	
•	• • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * *	***********************	X EVALUATION -	204484	•••••	******	•••••••	
	IST WELD ID	RCB-J24 RS-N-83-D	KC8-J25 85	RC 8- J27 86	RC 8- J 30 RD-N-8 1- A	RC8-J31 87			
	HELD TYPE	₽÷E	E-PP	P P - P	BPC	P-V			
	PIPE SIZE	22.00	22.00	22.00	6.00	22.00			
	NODE NO	658	708	908	958	1008			
	COMP TYPE	ELBUWSR	EL BOWSK	TRANS	TEE	TRANS			
· .	81 / 82	1.00/4.62	1.00/4.62	.50/1.00	1.00/2.35	.50/1.00			
	C1 / C2	1.46/6.15	1.46/6.15	1.36/1.48	1.50/3.13	1.36/1.48			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	STIPRESI	12388.70	12388.70	12748.55	3987.40	12748.55			
	SE EDWI	445.10	975.82	253.73	199.77	48.20			
	SILTHERI	277.13	335.77	226.75	2873.99	231.29	·		
	рм + РВ	14442.93	16892.31	6628.00	4456.73	6422.48			
	PM+PB+Q+F	29713.34	36241.40	22144.58	24508.27	21607.42			
	Q + F	15270.41	19349.09	15516.58	20051.54	15184.95			
	RESI ST	28000.00	28000.00	28000.00	39000.00	28000.00			
	VIELD ST	18900.00	18400.00	18800.00	18800.00	18800.00			
	MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
				است خله مين بين مين مين است است جي الله مي است الله است ال	*****				
	SRL+PRL				.2371				
	SR1+SEC	.6170							
	SRI TUTAL	1.3852			1.0791	.9574			

• NUTECH •	*********	••••	• • • • • • • • •	• • • • • • • • •	• • • • • • • •		- VERSI	• • • • • • • • • 0		••••••••	8	•••••	•••••••	*******	PAGE 43 04/01/80	••
•	••••	•••••	•••••	•••••	\$1 • • • • • • •	RESS RU	LE INDE	X EVALUA	TION -	SUMMARY		*******	•••••	********	••••••	** * **
		ISI WELD		80-4-13 888-13		819	6	R88-J 820	B	Ř 8 8 – J R D – N –		R88 RD-N-	9 -810-A			
	•	ELD TY	PE	E-P		P – T		T-P		T-FL		P-E				
	P	PIPE SI	lE	4.00		4.00		4.00		4.00		4.00)			
		NODE	0	1358		1408		1408		1458		1508				
	C	OMP TVI	PE	ELBOWL	R	TEE		TEE		TEE		ELBON	LR			
				1.00/			/1.64		/1.69							
		c1 / 0		1.27/			/2.26				/1.69		/2.43			
		K1 / H		1.20/			/1.80		/2.26 /1.80		/2.26		/3.24			
		SLIPRES			1.90		91.90		31.90		/1.80		/1.80			
		SI 100			3.68	·	7.39				31.90		31.90			
		SITUE			7.79		56.86		52.36		29.63		46.35			
		- PM + P			4.18		9.95		10.63		0.00		74.30			
		M+P8+Q+		3741			53.99		76.40		74.68		46.56			
		0 +		2896			4.04		26.83		40.10		64.76			
		RESI S		4500			0.00		50.43		65.41		18.20			
		VIELD S		1880			00.00		0.00		00.00		00.00			
								2566600			00.00		00.00			
		SR L , PH	 l	• 4 *	 49 /	.4	702	• •	679		 5199	•	 5238			
		SRI,SE		1.0	546	1.3	904	1.4	180	•	7681	1.	2094			
		RE TOTA)43		606	1.9			2 8 8 0		 7332			

• • NUTECH •	•••••••••••	• • • • • • • • • • • • • • • • • • • •	VERSI ARNOLD RECIRC *********	C D R E UN 1.0.0 CULATION PIPING X EVALUATION -	**************	• • • • • • • • • • • • • • • • • •	•••••	PAGE 42 04/01/80))))
••••	******	••••••	*****		•••••	• • • • • • • • • • • • • • •	******	***********	•
	151 WELD 1D	RC8-J33 88	R C B - J 3 5 K D - N - H Z - A	RCB-J37 RD-N-82-8	R 88-J1 818	R88-J2 RD-N-88-A			
	WELD TYPE	V-E	E-P	8 P C	WOL-P	P-E			
	PIPE SILE	22.00	22.00	6.00	4.00	4.00			
	NUDE NO	1150	1208	1256	818	1308			
	COMP TYPE	ELBOALR	ELBOHLR	TEE	PIPE	ELBONLR			
	81 / 82	1.00/3.18	1.00/3.18	1.00/2.35	.50/1.00	1.00/2.43			
	C1 / C2	1.23/4.24	1.23/4.24	1.50/3.13	1.10/1.00	1.27/3.24			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SLIPRESD	12748.55	12748.55	3987.40	8031.90	8031.90			
	ST (OW)	223.04	172.81	1124.39	657.56	73.86			
	SECTHERS	246.12	175.00	2993.71	9459.36	3011.41			
	PM + PB	13458.21	13298.39	6628.94	4673.50	8211.47			
	PM+PB+Q+F	22440.95	21514.32	30396.60	28812.56	30201.72			
	Q + F	8982.74	8215.93	23767.66	24139.05	21990.24			
	RESI ST	28000.00	28000.00	34000.00	45000.00	45000.00			
	AIELD SA	16800.00	18800.00	14400.00	18800.00	18800.00			
	MUD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
					*****	و الله الله الله الله الله الله الله الل			
		. 7159				• 4368			
	SHI,SEC	. 52 / 3				. 9552			
	SXE FOTAL	1.2432		1.2476	1.2344	1.3920			

ر در در در مرد از در از		name a caleba hasharan suria suria akana undu yunin	a antipation and finance and a second state of the order of the second state of the se	and a set of the start of the start start start and a set of the start		rastanti ant san an abhan an sairinn an sairinn a sairin a dhan an an sairi	enterning hereit in her internities descent and a second second and a second second second second second second

• • NUTECH		*********		C O R E LON 1.0.0	••••••••	•••••••••	• PAGE 44 •
•				CULATION PIPING.	LUOP & E 5		04/01/80 +
•	• • • • • • • • • • • • • • • • • • • •	\$	TRESS RULE INDE	EX EVALUATION -	SUMMARY		•
				•••			
	EST WELD ID	R83-J10 821	RB8-J12 822	RC8-J41 RD-N-82-E	RC8-J44 RD-N-82-C	RCB-J46 89	
	HELD TYPE	E-V	V-WOL	P-P	P-1	T-CR	
	PIPE SIZE	4.00	4.00	22.00	22.00	22.00	
	NODE NO	1558	1678	1738	1758	1808	
	COMP TYPE	ELBOMLR .	TRANS	PIPE	TEE	TEE	

	81 / 82	1.00/2.43	.50/1.00	.50/1.00	1.00/2.35	1.00/2.35	
	C1 / C2	1.27/3.24	1.34/1.45	1.10/1.00	1.50/3.13	1.50/3.13	
	K1 / K2	1.20/1.80	1.20/1.00	1.20/1.80	1.20/1.80	1.20/1.80	
	SLIPRESI	8031.40	8031.90	12748.55	12748.55	12748.55	
	SI (DW)	413.40	1652.74	57.24	431.51	381.12	
	SI(THER)	3793.97	3769.66	492.65	1649.72	517.30	
	РМ + РВ	9037.03	5668.69	6431.52	13762.30	13643.93	
	PM+PU+Q+F	36749.58	27101.63	17017.90	34682.07	28013.04	5-1 5-1 5-1
	Q + F	27712.55	21432.94	11386.38	20919.77	14369.11	
	RESI ST	45000.00	45000.00	2000.00	28000.00	28000.00	
	AIEFO 21	1000.00	18800.00	18400.00	18800.00	18800.00	
	MUD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00	

		.407		. 3421	.7320	.7257	
	SR L+SEC	1.0368	.9473	. 5616	.6975	.6041	
	SKI TUTAL	1.5175	1.2488		1.4296	1.3299	

												•
• • • • • • • • • • • • • • • • • • •		DUANE	AKNULD	SC VERSI Recirc	0 R E 0n 1.0. Ulation	0 Plping	LOOP A	٤ð	·		PAGE 45 04/01/80	• •
• • • • • • • • • • • • • • • • • • •		S	TRESS RE	ILE INDE	X EVALU	ATION -	SUMMARY	,				٠

151 WELD 1D	RMB-J7 RD-N-B3-E	RMB-J6 RD-N-83-0	RMB-J5 RU-N-B3-C	RRC-J7 812	RRC-J5 RD-N-86-8
HELD TYPE	CR-CP	HDR-CR	HDR-A	A-P	P-E
PIPE SIZE	22.00	16.00	10.00	10.00	10.00
NODE ND	1858	1878	1908	ADATR	1958
COMP TYPE	TEE	TEE	TEE	PIPE	ELBOWLR
81 / 82	1.00/2.54	1.00/2.59	1.00/2.31		1.00/3.18
C1 / C2	1.50/3.45	1.50/3.45	1.50/3.09	1.10/1.00	1.26/4.24
K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80
SLIPRESI	12748.55	12482.49	11930.12	11930.12	11930.12
ST (D#)	0.00	292.96	886.40	886.40	613.22
SIITHER)	0.00	1775.68	4475.73	9479.33	3591.54
PM + PB	12748.55	13241.01	13982.00	6851.45	13880.13
PM+PH+Q+F	22947.40	35323.04	75/09.42	34406.06	50098.12
4 + F	10198.84	22082.03	61727.41	27554.61	36217.98
RESEST	24000.00	30000.00	33500.00	33500.00	33500.00
VIELD ST	18800.00	18800.00	18600.00	16600.00	18800.00
NUD. ELA.	25666000.00	25666000.00	25668000.00	25666000.00	25666000.00
SR [+P4]	.67dl	.7043	. 7437	. 3644	.7383
SR1+SEC	. 5447	.7426	1.3578	. 8706	.9941
SKE TOTAL	1.2228				1.7324

1.7324

	* * * * * * * * * * * * * * *	*****			• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	•••••		•
• • NUTECH			VERS	C O R E 10n 1.0.0				4 PAGE 46 4))
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	************	************	CULATION PIPING	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	04/01/80) •
••••	• • • • • • • • • • • • • • •	******	18622 RUTE [VD	EX EVALUATION -	SUMMARY ••••••	••••••	•••••	• • • • • • • • • • • • • • •))
	ISI MELD ID	RKC-J4 KD-N-86-C	R MB-J 2 RD-N-8 3+8	КкD-J7 813	RM8-J1 R0-N-83-A	RRD-J5 RD-N-87-8			
	WELD TYPE	E-P	HDR-A	A - P	CP-HDR	P-E			
	PIPE SIZE	10.00	10.00	10.00	16.00	10.00			
	NODE NO	2008	2158	ADATR	2206	2258			
	COMP TYPE	ELBUALR	TEE	PIPE	TRANS	ELBOWLR			
	d1 / B2	1.00/3.18	1.00/2.31	•5D/1•00	.50/1.00	1.00/3.18			
	C1 / C2	1.20/4.24	1.50/3.09	1.10/1.00	1.36/1.48	1.26/4.24			
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SLIPRESI	11930.12	11930.12	11930.12	12482.49	11930.12			
	SI (Dw)	296.90	338.07	338.07	0.00	232.12			
	SICTHERD	1247.51	6603.35	6603.35	0.00	2974.12			
	рм + рв	12074.25	12712.71	6303.13	6241.25	12668.26			
	PM+PB+Q+F	29794.74	60038.48	28242.31	20405.23	42477.59	,		
	4 + F	16920.49	47325.77	21939.18	14163.98	29809.33			
	RESI ST	33500.00	33500.00	33500.00	30000.00	33500.00			
	VIELD ST	19800-00	18800.00	18800.00	18400.00	18800.00			
		25666000.00				25666000.00			
				. 3353	. 3320	.6738			
		.7189	1.1525	. 7905	.6297	. 9027			
	SRE TOTAL	1.4037	4.8287						

										\square		(assessed)			
			• • • • • • • • •	* * * * * * * *											
• • NUTECH •				DUANE A			1.0.0		DOP A E	8			••••	PAGE 47 04/01/80	•
* STRESS RULE INDEX EVALUATION - SUMMARY *															
	IST Weld ti)	KRD-J4 RD-N-87	-c	RM8-J8 RD-N-83	-F	RM&-J9 RD-N-B		RR8-J7 811		RRB-JS RD-N-B				
	WELD TYPE		E-P		CR-HOR		HDR-A		A-P		P-E				
	PIPE SIZE		10.00		16.00		10.00		10.00		10.00				
	NDOE NO)	2308		2378		2408		ADATR		2458				
	COMP TYPE	:	ELBUWLR		TEE		TEE		PIPE		ELBOWL	.R			
-				*****											
	81 / 8 2	!	1.00/3	.15	1.00/2	• 35	1.00/	2.31 ·	.50/	1.00	1.00/	3.18			
	C1 / C2		1.26/4	. 24	1.50/3	•13	1.50/	3.09	1.10/	1.00	1.26/	4.24			
	K1 / K2	2	1.20/1	• 80	1.20/1	. 80	1.20/	1.80	1.20/	1.80	1.20/	1.80			
	SLAPRESI	I	11930	.12	12482	• 49	1193	0.12	1193	0.12	1193	0.12			
	SI (OW)	I	82	• 51	52	.84	62	7.30	82	7.28	65	9.58			
	SLITHERI		2013	• 67	1314	. 65	1013	0.23	1013	0.23	361	7.92			
	PM + PE	l -	12192	• 50	12606	.63	1384	5.21	679	2.34	1402	7.54			
	PM+P8+Q+F		34005	•74	30178	. 88	8235	0.72	3547	1.28	5065	3.21			
	Q + F		21813	•24	17572	.25	6850	5.51	2867	8.94	3662	5.67			
	HEST ST		33500	.00	30000	• 00	3350	0.00	3350	0.00	3350	0.00			
	ALEFO 21		19900	.00	18800	.00	1880	0.00	1880	0.00	1880	0.00			
	MOD. ELA.	2	5666000	.00	25666000	•00	2566600	0.00	2566600	0.00	2566600	0.00			
-							****			****					
	SR1,PK1		. 64	45	.67	06	•7	364	.30	P 1 3	.7	461			
	SR1,SEC		. 78		• 6 7		1.49			866		999			
-	SHI TUTAL		1.43		1.34	 HY		009				 461			

الردية بحريبيا الرئةشيق البيعفانصافيحا بالاحتاص والا

. . .

مقدمكم بمساد

************* * NUTECH * ****************	• • • • • • • • • • • • • • • • • • •	•••••	VERSI ARNOLD RECIRC	C 0 R E IDN 1.0.0 Culation Piping Station Piping Ex Evaluation	************	••••••	•••••	PAGE 48 04/01/80	
	ISI WELD ID	RKB-J4 KD-11-B5-C	RMB-J11 RD-N-83-H	RR A- J 7 H L O	R M 8 + J 1 2 R D - N - 8 3 + J	RRA-J5 RD-N-84-8			
. .	WELD TYPE	E-P	HDR-A	A-P	HDR-CP	P-E			
	PIPE SILE	10.00	10.00	10.00	16.00	10.00			
	NODE NO	2503	2658	ADATR	2708	2758			
	COMP TYPE	ELBOWLR	TEE	PIPE	TRANS	ELBOWLR			
	81 / 82	1.00/3.18	1.00/2.31	.50/1.00	.50/1.00	1.00/3.18			
	C1 / C2	1.26/4.24	1.50/3.09	1.10/1.00	1.36/1.48	1.26/4.24			
	K1 / K2	1.20/1.d0	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80			
	SLIPRESI	11430-12	11930.12	11930.12	12482.49	11930-12			
	SI (DW)	474.77	41.87	61.87	0.00	163.19			
	SITTHERT	2605.35	8729.46	8729.46	0.00	3099.86			
	PM + PB	13439.87	12073.34	6026.93	6241.25	12449.07			
	P#+PB+Q+F	41515.03	70315.97	31572.15	20405.23	42911.14			
	9 + F	28075.17	58242.63	25545.22	14163.98	30462.07			
	RESI ST	33500.00	33500.00	33500.00	30000.00	33500.00			
	VIELD ST	. 18900-00	18800.00	18800.00	18800.00	18800.00			
	MOD. ELA.	25666000.00	25666000.00	25666000.00	25666000.00	25666000.00			
	SRI, PRI	• 7149 • 8760	.6422	. 3206					
	SRE TOTAL	1.5929	1.9503	1.1625	• 9617	1.5742			

4.3

					Ci O							()			I · C
••••• • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •	،	002M	010744	12834 – Keciko ******	• • • • • • •	, PIPING, Ation _	*******	4 4 • • • • • • • •	•••••	· · · · · · · · · · ·	•••••	PAGE 49 04/01/d0	•••
	ISI Weld 1	D	828-J4 20-9-5												
	WELD TYP		£-P												
	PIPE STA	7 E	10.00												
	NUDE !	10	2408												
	COMP TH	۰E	ELSUAL	ĸ											

	81 / E	12	1.00/	3.10											
	C1 / 0	22	1.26/	4.24										~	
	K1 / I	(2	1.20/	1.40											
	SILPRES		1193	0.12											
	ST COV	()	19	8.78											
	SEETHER	1)	351	2.64	•										
	PM + F	• 6	1256	2.23											
	P#+P8+4	F	4633	3.02											
	ų •	F	3377	0.40											
	RESIS	ат.	3350	0.00	• .										
	ALEED 2	T	1340	0.00											
	400. ELA	•	2566000	0.00				,							

	SR L+PF	1	• ti	642											
	SK I . St	C	• 9	592						<u>.</u>					
	SKE TUTA		1.6	274											

.

♦ NUTE	•••••••••••••		DU	ANE ARNOLD R		1.0.0		LET NOZ	******* !LE	******	••••	••••	PAGE 10 04/01/80	
• • • • • • •		****	*******	STRESS RU					******	••••	•••••	••••) • • • • • • • • • • • • • • • • • • •	• •
		UISI Weld TD	RRA/H-J4	A RRA/H	-13	RRA/H-F	2.4	RRA/H-J	24	RRA/H-	F2			

WELD TYPE	P-P	P-SEX	P-SE	D 5 C	55.41
				P-SE	SE-NZ
	10.00	10.00	10.00	10.00	12.00
NODE NO	WEL05	WELD6	WELD4	WELD4	WELD2
COMP TYPE	PIPE	PIPE	TRANS	TRANS	TRANS
81 / 82	.50/1.00	.50/1.00	.50/1.00	.50/1.00	.50/1.00
C1 / C2	1.10/1.00	1.10/1.00	1.36/1.48	/ 1.35/1.46	1.34/1.49
K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.80
SI(PRES)	9916.97	9916.97	9916.97	7757.14	6833.33
SI (DW)	673.30	3014.93	3251.25	2574.37	5185.24
SI(THER)	3283.88	7026.02	7442.46	5893.48	3431.22
PM + PB	5631.79	7973.41	8209.74	6452.94	8601.91
PM+P8+Q+F	20213.34	31164.11	44653.84	34819.26	33557.56
Q + F	14581.55	23190.69	36444.10	28366.32	24955.65
REST ST	33500.00	33500.00	33500.00	40000.00	36000.00
VIELO ST	18800.00	18800.00	18800.00	26130.00	28130.00
MDD. ELA.	25778000.00				
SRI+PRI	. 2996		. 4367		
SRI, SEC	.6834				
SRI TOTAL			1.4308		

****************** * * NUTECH *	••••	. 	S C O R E - VERSION 1.0.0		 **************************************
• • • • • • • • • • • • • • • • • • •		••++++++++++++++++++++++++++++++++++++	.E INDEX EVALUATION -	50000000000000000000000000000000000000	

•

. •

IST WELD ID	RCA-F2	RCB-F2
WELD TYPE	SE-NZ	SE-NZ
PIPE SIZE	12.00	12.00
NODE NO	NIA	N1B
COMP TYPE	TRANS	TRANS
81 / 82	.50/1.00	.50/1.00
C1 / C2	1.34/1.45	1.34/1.45
K1 / K2	1.20/1.80	1.20/1.80
SI(PRES)	6833.33	6833.33
ST (DW)	2085.38	1832.14
SI(THER)	2996.39	2292.12
PM + PB	5502.05	5248.81
PM+PB+Q+F	24302.30	21795.16
Q + F	18800.25	16546.35
REST ST	32000.00	32000.00
YIELD ST	18800.00	18800.00
MOD. ELA.	25778000+00	25778000.00
SRI+PRI	• 2927	.2792
SR1+SEC	•7220	•6900
SRI TOTAL	1.0147	.9692

••••••••••••••• • • NUTECH •	******************	++++++++++++++++++++++++++++++++++++++	VERSI	0 R E 0 N 1.0.0 DUAL HEAT REMDV	**************************************	• • • • • • • • • • • • • • • • •	PAGE 9 + 04/01/80 +
* **********	*****	2 ***********	TRESS RULE INDE	X EVALUATION -	504888848888 SUMMARY *********	****	• • • • • • • • • • • • • • • • • • •
	ISI Weld Id	RHC-J1	RHC-F2	RHB-J1	RHB-J2	RHB-F3	
	WELD TYPE	T-P	P-P	T-P	BP(P-WOL)	P-P	
	PIPE SIZE	20.00	20.00	18.00	18.00	18.00	
	NODE NO	175A	290A	23B	4108	415B	
	COMP TYPE	TEE	PIPE	TEE	BRANRUN	PIPE	
	B1 / B2	1.00/2.59	.50/1.00	1.00/2.59	1.00/1.00	.50/1.00	
	C1 / C2	1.50/3.45	1.10/1.00	1.50/3.45	2.00/1.00	1.10/1.00	
	K1 / K2	1.20/1.80	1.20/1.80	1.20/1.80	1.20/1.60	1.20/1.80	
	SI(PRES)	9699.32	9699.32	9605.12	9605.12	9605.12	
	SI (DW)	854.61	546.02	431.29	230.50	441.72	·
	SI(THER)	1004.44	1064.68	769.18	517.63	461.25	
	PM + PB	11912.05	5395.68	10721.80	9835.62	5244.28	
	PM+PB+Q+F	29010.94	15702.35	24748.92	24398.92	14304.11	
	Q + F	17098.89	10306-67	14027.13	14563.30	9059.83	

REST ST 28500.00 28500.00 29000.00 29000.00 29000.00 YIELD ST 18800.00 18800.00 18800.00 18800.00 18800.00 MOD. ELA. 25946000.00 25946000.00 25946000.00 25946000.00 25946000.00 SR1.PRI .6336 .2870 .5703 • 52 32 .2790 SR1.SEC .6450 .5490 .6087 .6162 .5384 SRI TOTAL 1.2787 .8360 1.1790 1.1394 .8173

÷

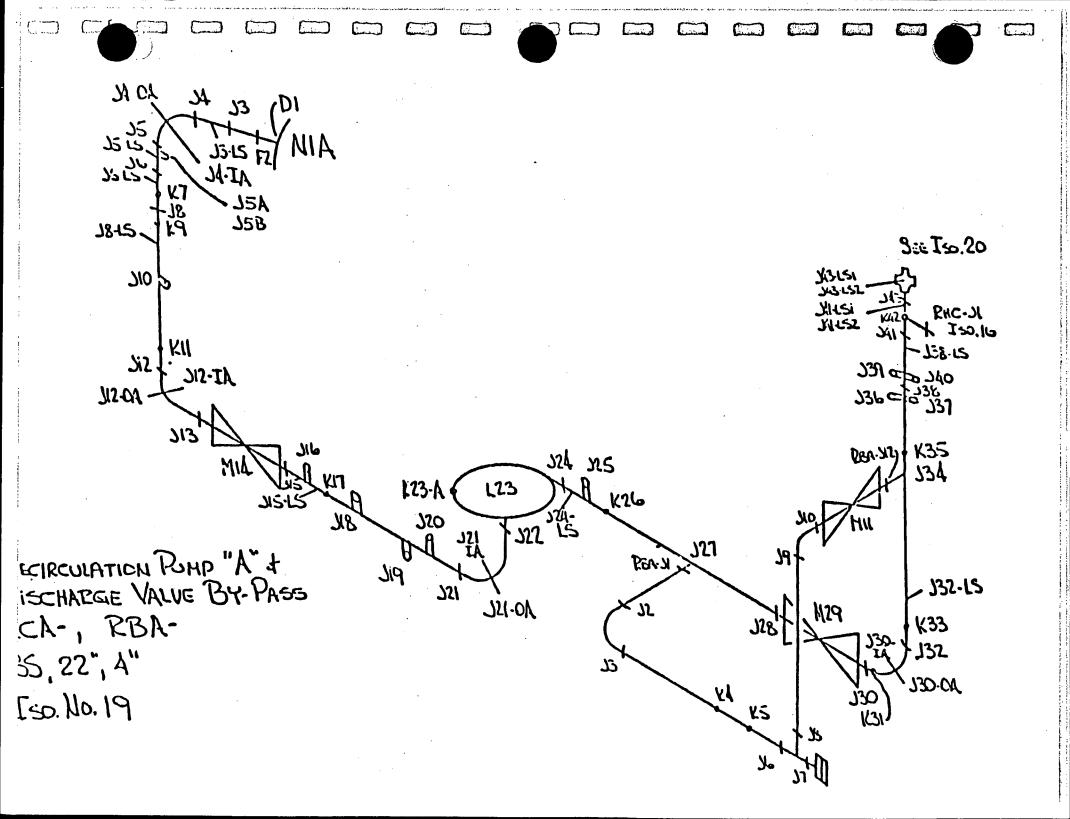
● ● NU ●	**************************************				0UANE	ARNOLD	\$ C VERSID RESID 000000	0 R E N 1.0.0 UAL HEA +++++	 T REMOVA • • • • • • • •	L P1P1N	G		•••••	••••••	••••••••••••••••••••••••••••••••••••••	
• • • • •	************	• • • • • • • •	******	*******					TION - S *******		* * * * * * * *	******	••••••	• • • • • • • •	• • • • • • • • • • • • • • •	

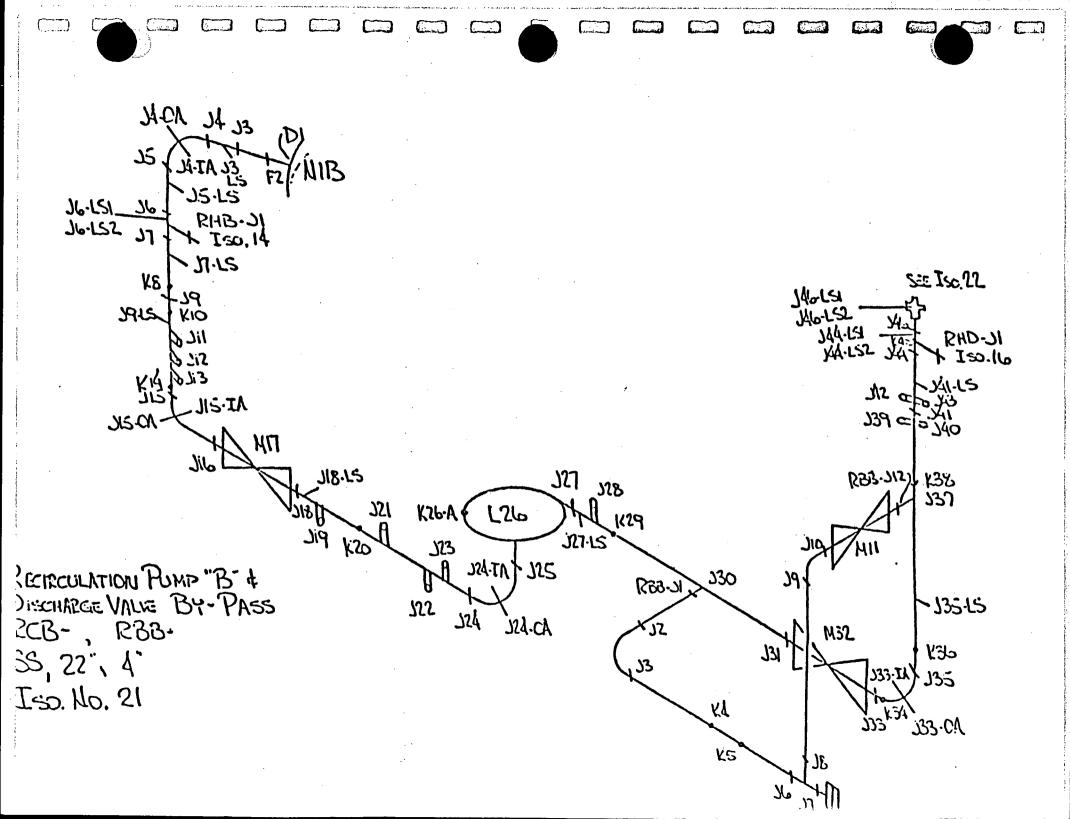
- TSI Weld Id	RHD-J1	RHD-F2
WELD TYPE	T – P	P - P
PIPE SIZE	20.00	20.00
NODE NO	175B	2908
COMP TYPE	TEE	PIPE
81 / 82	1.00/2.59	.50/1.00
C1 / C2	1.50/3.45	1.10/1.00
K1 / K2	1.20/1.80	1.20/1.60
SI(PRES)	9699.32	9699.32
SI (DW)	882.68	538.56
SICTHER)	1077.82	1128.25
PM + PB	11984.72	5388.22
PM+P8+Q+F	29641.28	15803.35
Q + F	17656.57	10415.14
REST ST	28500.00	28500.00
YIELD ST	18800.00	14800.00
	25946000.00	
SRI,PRI	.6375	.2866
SR1+SEC	• 6529	.5505
SRI TOTAL	1.2904	.8371

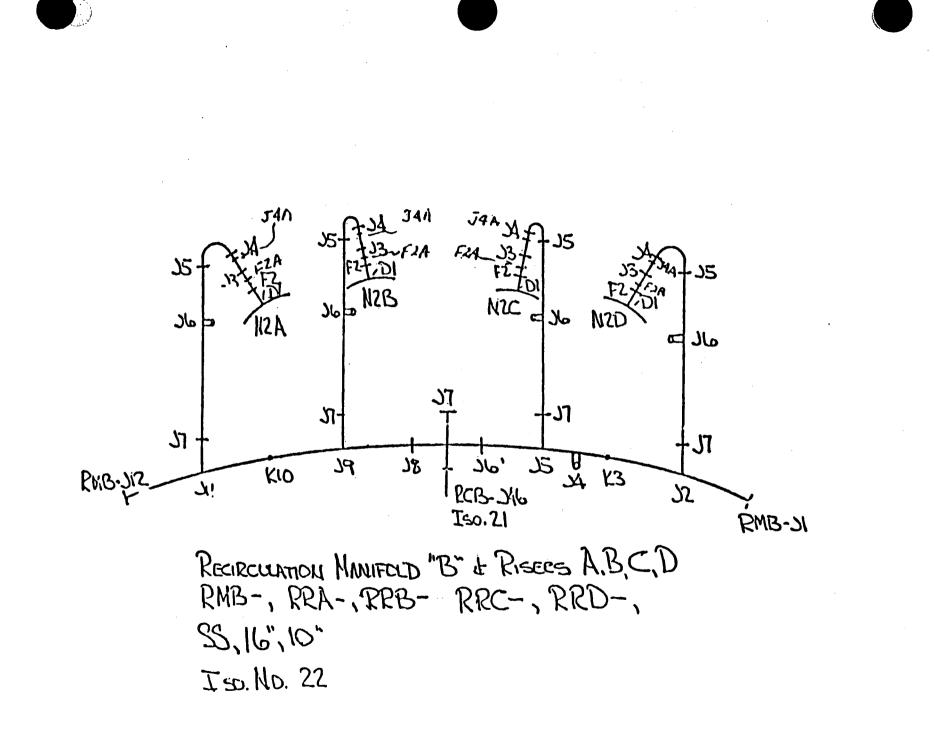
APPENDIX C

ISI ISOMETRIC DRAWINGS

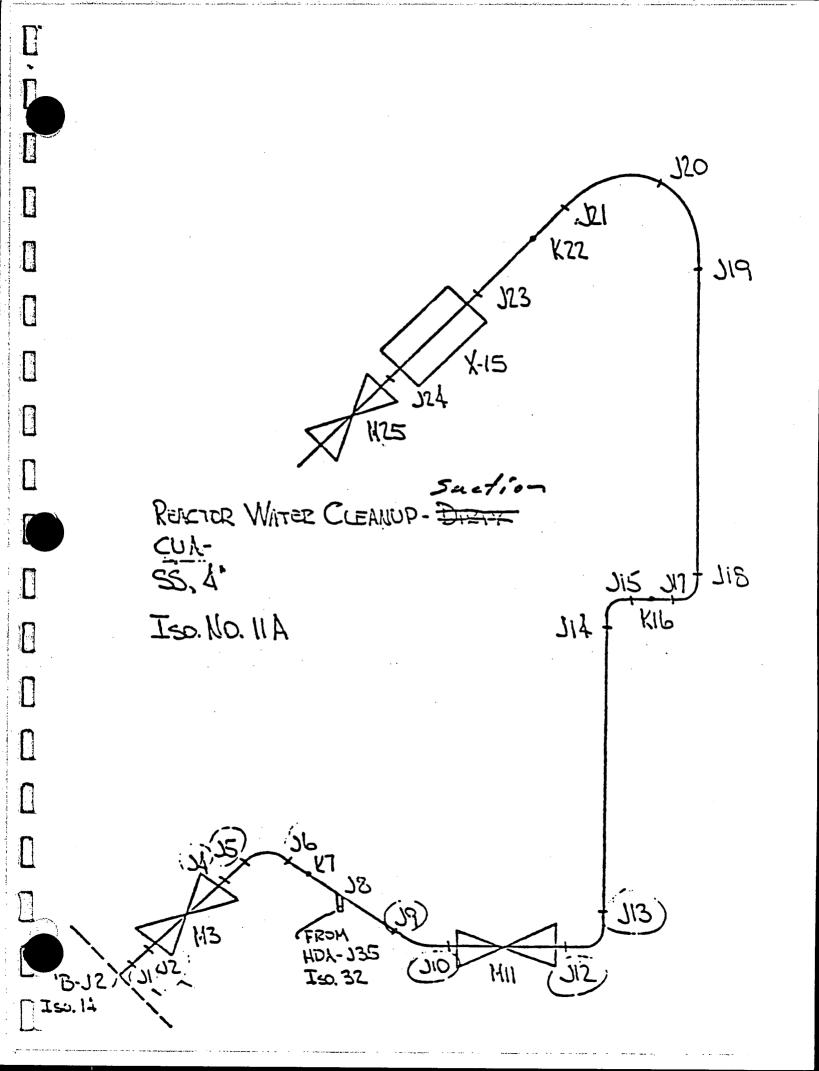
C


0


0


0

]


 $\left(\prod_{i=1}^{n} \right)$

22,22,21 ()id K13 یا۔اد لائم Mil RCB F3 Jiz Ľ, I\$2.21 TD CUA.Ji Iso.11A K٩ MЬ 710 SL KESIDUAL HEAT REMOUND-18B RHB-SS,CS, 18" ISO. NO. 14 1425 J24 X.12 723 J22 KZI حالا Jig JI7 K18 Π

NG-82-2653 December 1, 1982

ATTACHMENT 4

Summary of Recirculation System UT Results, 1981-1982

1981 - A total of 48 welds were examined with the following results:

A) 17 welds - no indications
B) 21 welds - geometry < 50% DAC
C) 5 welds - geometry 50% to 75% DAC
D) 4 welds - geometry > 75% DAC
E) *1 weld - Linear Indication

*Weld RRC-BJ4 had a linear indication ~ 3 1/4" long = 50% DAC. A decision was made to periodically monitor this weld.

1982 - A Total of 21 Welds Were Examined With The Following Results:

A) 8 Welds - Geometry < 50% DAC
B) 3 Welds - Geometry 50% to 75% DAC
C) 9 Welds - Geometry > 75% DAC
D) *1 Weld - Linear Indication

*Weld RRC-BJ4 was examined with identical results in 1981 and 1982.

ATTACHMENT 5

i

.

Iowa Electric Light and Power Company

RECEIVED

June 30, <u>1981</u> LDB 81-225 JUL 2 0 1981

EVBRATE TOOL ASSISTAND SECTION AND ADDRESS OF NO SUGARDAN

> I.E.L.P. Co. Mech/Nuclear Mr. Harold Denton, Director Office of Nuclear Reactor RegulationEngineering U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Denton:

Enclosed herewith is lowa Electric Light and Power Company's response to the requirements set forth in NUREG-0313, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping".

This submittal is in response to the February 26, 1981 letter from Mr. Darrell Elsenhut concerning implementation of NUREG-0313, Rev 1. The proposed augmented inservice inspection and technical specification amendments to be accomplished on the schedule set forth in the enclosed response are deemed adequate to comply with the requirements of the NUREG.

Very truly yours.

Larry D. Root Assistant Vice President Nuclear Generation

RECEIVEL

JUL 8198

NUCLIAR LUL

LDR/P	RFS/mb
Attac	:h.
cc:	R. Salmon
	D. Arnold
	L. LIU
	S. Tuthili
	D. McGaughy
	K. Meyer s
•	D. Mineck
	J. VanSickel
	K. Eccleston (NRC)
	NRC Resident Office
	File A-107a, LC810226

MaGaayhy Magaayhy Minaaho Ward Mayer Youngs oRehrover Bain (GE)	oBalaz Bochtel (AA) Bjorseth BBlase Ove Ellis Glucciarda Mannen Acamm Cont d	eMick BNodean Patte Pitner Salmon Shattal	aTepiy, D avan Middlesworti <u>avan Skobi</u> aWikon aYerk aYoung
--	--	--	--

Conserved condent + P.O. Boy 11 + Cettur Rapids, Jawa 52406 + 319/398-4411

.

DUANE ARNOLD ENERGY CENTER PROPOSED IMPLEMENTATION OF THE REQUIREMENTS SET FORTH IN NUREG-0313 REV 1 "TECHNICAL REPORT ON MATERIAL SELECTION AND PROCESSING GUIDELINES FOR BWR COOLANT PRESSURE BOUNDARY PIPING"

Presented below is a delineation of the requests set forth in the implementation letter for NUREG-0313, Rev 1, and a description of the proposed method to be employed by the lowa Electric Light and Power Company to meet the requests.

Requirement:

Review all of the ASME Class 1 and 2 Pressure boundary piping, safe ends, and fitting material, including weld metal, at your facility to determine if it meets the material selection, testing and processing guidelines set forth in the enclosed report.

Response:

Our review of the RCS pressure boundary piping was completed in 1978. We refer to our submittals of December 30, 1977 (1E-77-2342) and March 15, 1978 (1E-78-386).

Regulrement:

Identify to us any materials that do not meet these guidelines and propose appropriate changes to your Technical Specifications to incorporate the augmented inservice inspection requirements specified in Section IV of the enclosed report.

Response:

Attachment 1 Identifies the material which does not meet the guidelines and defines our proposed augmented inservice inspection.

Requirement:

In the case of "service sensitive" lines you should also provide your plans and schedule for the replacement, to the extent practicable, of nonconforming materials with those that conform to the staff's guidelines.

Responsa:

lowa Electric presently does not have any plans to replace the "service sensitive" lines. Confingency plans to cap or replace lines have been developed but will be implemented only if warranted by the results of the inservice inspections.

Requirement:

We request that if it is needed, you propose appropriate changes to your Technical Specifications to bring them into conformance with the enclosed report.

Response:

The model Technical Specifications have been reviewed and appropriate changes identified. A copy of the changes which lows Electric will propose is enclosed as Attachment 2. This proposed change will be submitted in a format consistent with the DAEC Technical Specifications on a schedule identified below.

Regulrement:

You should propose a schedule to accomplish the above requested actions or a description, schedule and justification for alternative actions to accomplish the objectives of this program.

Response:

lowa Electric proposes that the augmented inservice inspection program be implemented with the beginning of the next 40 month period of the current 120 month cycle. This period will begin at the end of the present cycle. The Technical Specification amendment proposed above, and included as Attachment 2, will be submitted in a manner which will support the proposed schedule. Identification of ASME Code Class 1 and 2 pressure boundary piping, safe ends, fitting material and weld material, and proposed alternate actions to accomplish the objectives of NUREG 0313 Rev. 1.

1. Conforming Material

All stainless steel safe ends and stainless steel safe end extensions are conforming material. All contain less than .035% carbon and were solution annealed. Inconel welds join the stainless steel safe ends to the nozzles. Class 1 pressure boundary piping except that identified in 2 and 3 are conforming, and all Class 2 piping is conforming.

2. Partial Non-Conformance but not Service Sensitive

The following systems are non conforming - non service sensitive in accordance with guidelines of NUREG 0313 Rev. 1.

- a. Recirculation system except the bypass pipe.
- b. RHR stainless steel transition spools to the recirculation system.
- c. Liquid level control (Reactor Vessel).
- d. Instrumentation piping (Reactor Vessel).

Stainless steel pipe and fittings in the above systems contain greater than 0.035% carbon, and the welds have not been solution annealed, therefore are non-conforming. All pipe and fittings have been solution annealed. Selection of welds for augmented in-service inspection on item "a" and "b" systems will be those most susceptible for IGSCC based on the stress rule index number. In-service inspection will be accelerated to an <u>80 month period</u>. Because pipe in items "c" and "d" are small diameter, we propose to continue inspection in accordance with ASME Section XI but the inspection cycle will be completed in 80 months.

- 3. Partial Non-Conformance and Service Sensitive
 - , The following do not conform to the criteria as stated in NUREG 0313 Rev. 1 and are considered to be service sensitive:
 - a. Recirculation system bypass.
 - b. Core spray spools that connect carbon steel pipe to stainless steel safe-end extensions at the RPV nozzles.
 - c. CRD Hydraulic return spool that connects carbon steel pipe to the RPV nozzle.
 - d. Reactor water cleanup systems.

The stainless steel pipe and fittings in the above systems contain greater than 0.035% carbon, and the welds have not been solution annealed. All pipe and fittings have been solution annealed. Augmented inservice inspection has been done on the above systems in accordance with the guidelines of NUREG 0313 Rev. 1.

Attachment 1

Attachment 2 .

MODEL TECHNICAL SPECIFICATIONS - Licensee

APPLICABILITY

Ь.

SURVEILLANCE REQUIREMENTS

4.0.1 Surveillance Requirements shall be met during the OPERATIONAL CONDITIONS or other conditions specified for individual Limiting Conditions : for Operation unless otherwise stated in an individual Surveillance Requirements.

4.0.2 Each Surveillance Requirement shall be performed within the specified time interval with:

- a. A maximum allowable extension not to exceed 25% of the surveillance interval, but
 - The combined time interval for any 3 consecutive surveillance intervals shall not exceed 3.25 times the specified surveillance interval.

4.0.3 Failure to perform a Surveillance Requirement within the specified time interval shall constitute a failure to meet the GPERABILITY requirements for a imiting Condition for Operation. Exceptions to these requirements are stated in a individual Specificatons. Surveillance requirements do not have to be performed on inoperable equipment.

4.0.4 Entry into an OPERATIONAL CONDITION or other specified applicable condition shall not be made unless the Surveillance Requirement(s) associated with the Limiting Condition for Operation have been performed within the applicable surveillance interval or as otherwise specified.

4.0.5 Surveillance Requirements for inservice inspection and testing of ASME Code Class 1, 2, & 3 components shall be applicable as follows:

- a. Inservice inspection of ASME Code Class 1, 2, and 3 components and inservice testing of ASME Code Class 1, 2, and 3 pumps and valves shall be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as required by 10 CFR 50, Section 50.55a(g), except where specific written relief has been granted by the Commission pursuant to 10 CFR 50, Section 50.55a(g) (6) (i).
- b. Surveillance intervals specified in Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda for the inservice inspection and testing activities required by the ASME Boiler and Pressure Vessel Code and applicable Addenda shall be applicable as follows in these Technical Specifications:

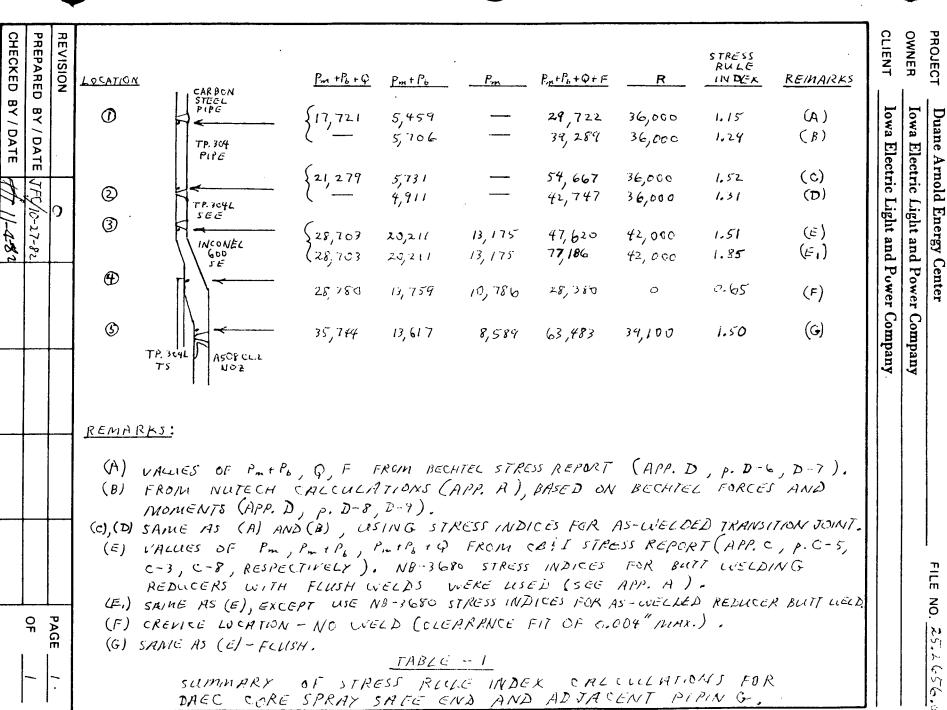
ASME Boiler and Pressure Vessel	Required frequencies					
Code and applicable Addenda	for performing inservice					
terminology for inservice	inspection and testing					
inspection and testing activities	activities					
Weekly Monthly Quarterly or every 3 months Semiannually or y 6 months Every 9 m	At least once per 7 days At least once per <u>3</u> 1 days At least once per <u>9</u> 2 days At least once per 184 days At least once per 184 days At least once per 275 days					

APPLICABILITY

SURVEILLANCE REQUIREMENTS (Continued)

- c. The provisions of Specification 4.0.2 are applicable to the above required frequencies for performing inservice inspection and testing activities.
- d. Performance of the above inservice inspection and testing activities shall be in addition to other specified Surveillance Requirements.
- e. Nothing in the ASME Boiler and Pressure Yessel Code shall be construed to supersede the requirements of any Technical Specification.
- 4.6.6 All ASME Code Class 1, and 2 lines shall conform to the guidelines stated * in the NUREG-0313, Rev. 1, "Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping," July 1980, except for the following alternative actions:
 - a. Selection of welds for augmented in-service inspection in non-conforming non-service sensitive pipe in the recirculation system will be based on the stress rule index number and carbon content. Twenty-five percent of all welds that are most susceptible to IGSCC will be inspected in an 80 month cycle.
 - b. The recirculation system riser pipe will be classified non-conforming but not service sensitive and selection of welds for augmented in-service inspection will be as designated in "a" above.
 - c. Selection of welds for augmented in-service inspection in non-conforming non-service sensitive small instrumentation and liquid level control pipe will be in accordance with ASME Section XI but the inspection cycle will be completed in 80 months.

ATTACHMENT 6


•

NG-82-2784 Dec. 21, 1982

DAEC Core Spray Safe Ends and Adjacent Piping Stress Rule Index Numbers

m Ē <u>20</u> 25.2656.0100

