

REPORT SUPPLEMENT No. 1

Received w/Ltr Dated,9-9-71

SEPTEMBER 1971

APPENDIX - A:	TRANSPORT OF CONTAMINANTS IN THE HUDSON RIVER ABOVE INDIAN POINT STATION Quirk, Lawler and Matusky Engineers May 1966
APPENDIX - B:	HYDROLOGY OF INDIAN POINT SITE AND SURROUNDING AREA Metcalf and Eddy Engineers October 1965
APPENDIX - C:	A MICROMETEOROLOGICAL SURVEY OF THE BUCHANAN, NEW YORK AREA New York University - College of Engineering November 1965
APPENDIX - D:	EVALUATION OF POTENTLAL RADIATION HA ZARD RESULTING FROM ASSUMED RELEASE OR RADIOACTIVE WASTES TO ATMOSPHERE FROM PROPOSED BUCHANAN NUCLEAR POWER PLANT New York University - College of Engineering April 1957
APPENDIX - E:	SUMMARY OF CLIMATOLOGICAL DATA AT BUCHANAN, NEW YORK New York University - College of Engineering March 1958
APPENDIX - F:	1980 PROJECTIONS OF POPULATION AND LAND USE FOR AN AREA CIRCUMSCRIBED BY A 55-MILE RADIUS FROM BUCHANAN, NEW YORK Regional Economic Development Institute, Incorporated November 1965
APPENDIX - G:	WIND OBSERVATIONS AT INDIAN POINT 26 November 1969-1 October 1970 New York University - School of Engineering and Science May 1971
APPENDIX - H:	LETTER FROM WESTCHESTER COUNTRY DEPARTMENT OF PLANNING

November 1970
APPENDIX - I: PERMITS RELATING TO INDIAN POINT UNIT NO. 2
APPENDIX - J: EFFECT OF INDIAN POINT COOLING WATER DISCHARGE ON HUDSON RIVER TEMPERATURE DISTRIBUTION

Quirk, Lawler and Matusky Engineers
January 1968

TABLE OF APPENDICES (Continued)
APPENDIX - K: EFFECT OF INDIAN POINT COOLING WATER DISCHARGE ON HUD-
SON RIVER TEMPERATURE DISTRIBUTION
Quirk, Lawler and Matusky Engineers

APPENDIX - L: INDIAN POINT MODEL STUDIES
Alden Research Laboratories
March 1969
APPENDIX - M: EFFECT OF SUBMERGED DISCHARGE OF INDIAN POINT COOLING WATER ON HUDSON RIVER TEMPERATURE DISTRIBUTION

Quirk, Lawler and Matusky Engineers October 1969

APPENDIX - N: INFLUENCE OF HUDSON RIVER NET NON-TIDAL FLOW ON TEMPERATURE DISTRIBUTION
Quirk, Lawler and Matusky Engineers October 1969

APPENDIX - O: INDIAN POINT COOLING WATER STUDIES: MODEL NO. 2
Alden Research Laboratories May 1969

APPENDIX - P :
INDIAN POINT ECOLOGICAL SURVEY: REPORT I
Raytheon Company
June - December 1969
APPENDIX - Q: INDIAN POINT ECOLOGICAL SURVEY: REPORT II
Raytheon Company
January - June 1970
APPENDIX - R: HUDSON RIVER AT INDIAN POINT
New York University Medical Center - Institute of Environmental Mecicine

APPENDIX - S:
FISH PROTECTION AT INDIAN POINT UNIT NO. 1
Consolidated Edison Co. of New York
November 1970
APPENDIX - T: COST EXPENDITURES ON ENVIRONMENTAL STUDIES
APPENDIX - U: ENVIRONMENTAL MONITORING SURVEY
APPENDIX - V: CONSOLIDATED EDISON INDIAN POINT REACTOR POST OPERATIONAL SURVEY: AUGUST 1965
Division of Environmental Health Services New York State Department of Health

TABLE OF APPENDICES (Continued)

APPENDIX - W:	CONSOLIDATED EDISON INDIAN POINT REACTOR ENVIRONMENTAL AND POST OPERATION SURVEY: JULY 1966 Division of Environmental Health Services New York State Department of Health
APPENDIX - X:	TECHNICAL SPECIFICATION - INDIAN POINT UNIT NO. 2
Section 3.9: Effluent Release	
APPENDIX - Y:	MANMADE RADIONUCLIDES IN THE HUDSON RIVER ESTUARY New York University Medical Center - Institute of Environmental Medicine November 1970

DATA REPORT FOR

 JUNE - DECEMBER 1969 (Revised Edition)Ecology of Thermal Additions
Lower Hudson River Cooperative Fishery Study
Vicinity of Indian Point, Buchanan, New York 1970

for
Consolidated Edison of New York
by the
Marine Research Laboratory
New London, Conn.
of

RAYTHEON COMPANY

SUBMARINE SIGNAL DIVISION
Portsmouth, Rhode Island

TABLE OF CONTENTS

TABLE OF CONTENTS (Cont)

LIST OF ILLUSTRATIONS

Figure		Page
3-1	Station Locations	3-2
5-1	Radiometric Surface Temperature Survey Flight Lines	5-2
5-2	Boat-Occupied Bathythermograph Profile Station During Overflight	5
5-3	Surface Isotherms Based on Radiometric Temperature Data, Ebb Tide 24 Sept. 1969.	5-4
5-4	Overflight Bathythermograph Profiles Vicinity of Stony Point (Channel Between Stations 15 and 9), Ebb Tide	5-5
5-5	Overflight Bathythermograph Profiles Mid-Channel Off Plant Site (Vicinity of Station 11), Flood Tide.	5-5
5-6	Overflight Bathythermograph Profiles South End of Iona Island (Vicinity of Station 13), Flood Tide.	5-6
5-7	Average Daily Output, Indian Point - Unit One	5-6
5-8	In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Stations 4 and 6	5-7
5-9	In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Stations 4 and 6	5-7
5-10	In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Station 10	5-8
5-11	In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Station 10	5-8
5-12	In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Station 11	5-9
5-13	In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Station 11	5-9
5-14	In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Stations 13 and 14 .	5-10
5-15	In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Stations 13 and 14 .	5-10

LIST OF ILLUSTRATIONS (Cont)

Figure		Page
5-16	Effluent Water Tidal Recycling Tracings (Old Outfall Configuration)	5-12
5-17	Horizontal and Vertical Bathythermograph Data, Unit 1 Plume Survey, 17 Sept. 1969 (at Section A-A', Figure 5-19)	5-14
5-18	Horizontal and Vertical Bathythermograph Data, Unit 1 Plume Survey, 19 Sept. 1969 (at Section A-A', Figure 5-20)	5-14
5-1.9	Surface Isotherms of Unit 1 Plume	5-15
5-20	Surface Isotherms of Unit 1 Plume	5-15
5-21	Vertical Cross-Section of Unit 1 Plume Along Transect A-A'	5-17
5-22	Vertical Cross-Section of Unit 1 Plume Along Transect A-A'	5-17
6-1	Rainfall Recorded at Peekskill Waterworks (1969)	6-2
6-2	Average Discharge Over Federal Dam at Troy N. Y. (1969)	6-2
7-1	Overlap Trends Bottom Trawl Data Station 10, June \& July 1969	7-34
7-2	Overlap Trends Bottom Trawl Data Station 10, August .	7-34
7-3	Overlap Trends Bottom Trawl Data Station 10, September	7-35
7-4	Overlap Trends Bottom Trawl Data Station 10, October	7-35
7-5	Overlap Trends Bottom Trawl Data Station 10, November	7-36
7-6	Overlap Trends Bottom Trawl Data Station 10, December	7-36
7-7	Overlap Trends on Bottom Trawl Data, Station 10	7-55
7-8	Overlap Trends on Surface Trawl Data, Station 10	7-55
7-9	Overlap Trends on Bottom Trawl Data, Station 9	7-56
7-10	Overlap Trends on Bottom Trawl Data, Station 12	7-56
7-11	Overlap Trends on Beach Seine Data, Station 34	7-59
7-12	Overlap Trends on Beach Seine Data, Station 33	7-59
7-13	Species Occurrence by Station (Bottom Trawls) .	7-61
7-14	Species Occurrence by Station (Surface Trawls)	7-62
7-15	Species Occurrence by Station (Beach Seines)	7-63
7-16	Species Diversity Per Beach Seine/Bottom Trawl Collections (1969)	7-73
7-17	Species Diversity Per Surface/Bottom Trawls, Station 10	7-73
7-18	August/November Abundance of Spio Setosa	7-85
7-19	August/November Abundance of Cyathura Polita	7-85
7-20	Seasonal Abundance of Balanus and Congeria in Reference to Salinity	7-87
7-21	Zooplankton Seasonal Variation of Total Species	7-88
7-22	Seasonal Abundance of Zooplankton	7-89
7-23	Zooplankton Seasonal Variation of Species by the River Mile	7-90
7-24	Bottom Zooplankton, Average Distribution of Cyclops . . .	7-92
7-25	Bottom Zooplankton, Average Distribution of Neomysis . .	7-92
7-26	Bottom Zooplankton, Average Distribution of Eurytemora	7-93
7-27	Bottom Trawl Invertebrates Distribution by Sampling Stations .	7-93

LIST OF TABLES

Table		Page
4-1	Trawling, Benthic Grab and Monthly Zooplankton Sampling Stations	4-2
4-2	Beach Seine Sampling Stations	4-3
4-3	Samples Collected in 1969 .	4-4
4-4	1969 Invertebrate Samples Collected	4-5
4-5	Succession Panel/Thorson Bottle Stations	4-6
7-1	Average Number Caught/7 Minutes, Grand Average of Station Averages (Bottom Trawls)	7-6
7-2	Average Number Caught/7 Minutes, Grand Average of Station Averages (Surface Trawls)	7-7
7-3	Average Number Caught/Haul, Grand Average of Station Averages (Beach Seine)	7-8
7-4	Species of Fish Collected by the Indian Point Ecological Survey Through December 1969	7-9
7-5	Average Number Alewife Caught/7 Minutes (Bottom Trawls)	7-11
7-6	Average Number Alewife Caught/7 Minutes (Surface Trawls)	7-12
7-7	Average Number Alewife Caught/Haul (Seines and Plant Site)	7-13
7-8	Average Number Blueback Herring Caught/7 Minutes (Bottom Trawls).	7-16
7-9	Average Number Blueback Herring Caught/7 Minutes (Surface Trawls).	7-17
7-10	Average Number Blueback Herring Caught/Haul (Seines and Plant Site)	7-18
7-11	Average Number Americal Shad Caught/7 Minutes (Bottom Trawls)	7-19
7-12	Average Number Americal Shad Caught/Haul (Beach Seines)	7-20
7-13	Average Number Bay Anchovy Caught $/ 7$ Minutes (Bottom Trawls)	7-22
7-14	Average Number Bay Anchovy Caught/7 Minutes (Surface Trawls)	7-23
7-15	Average Number Striped Bass Caught/7 Minutes (Bottom Trawls)	7-25
7-16	Average Number Striped Bass Caught/Haul (Seines and Plant Site)	7-26
7-17	Average Number Tomcod Caught $/ 7$ Minutes (Bottom Trawls)	7-28
7-18	Average Number White Perch Caught/7 Minutes (Bottom Trawls)	7-30
7-19	Average Number White Perch Caught/Haul (Seines and Plant Site)	7-31
7-20	Average Community Overlap (\%) June-December, 1969 (Bottom Trawls).	7-39
7-20A	Community Overlap (\%) June-July, 1969 (Bottom Trawls)	7-40
7-20B	Community Overlap (\%) August, 1969 (Bottom Trawls)	7-41
7-20C	Community Overlap (\%) September, 1969 (Bottom Trawls)	7-42
$7-20 \mathrm{D}$	Community Overlap (\%) October, 1969 (Bottom Trawls)	7-43
$7-20 \mathrm{E}$	Community Overlap (\%) November, 1969 (Bottom Trawls)	7-44
7-20F	Community Overlap (\%) December, 1969 (Bottom Trawls)	7-45
7-21	Average Community Overlap (\%) August-December, 1969 (Surface Trawls).	7-46

LIST OF TABLES (Cont)

Table		Page
7-21A	Community Overlap (\%) September, 1969 (Surface Trawls)*.	7-47
7-21B	Community Overlap (\%) October, 1969 (Surface Trawls)	7-48
7-21C	Community Overlap (\%) November, 1969 (Surface Trawls)	7-49
7-21D	Community Overlap (\%) December, 1969 (Surface Trawls)	7-50
7-22	Average Community Overlap (\%), June-December 1969 (Beach Seines)	
7-22A	Community Overlap (\%) June-July, 1969 (Beach Seines)	7-52
7-22B	Overlap (\%) August, 1969 (Beach Seines)	7-52
7-22C	Community Overlap (\%) September, 1969 (Beach Seines)	7-53
7-22D	Community Overlap (\%), October 1969 (Beach Seines).	7-53
7-22E	Community Overlap (\%) November, 1969 (Beach Seines)	7-54
7-22F	Community Overlap (\%) December, 1969 (Beach Seines)	7-54
7-23	Percent Abundance Based on the Average Number Caught/Species/7 Minutes (Bottom Trawl Data)	-58
7-24	Total Number of Fish Species (Bottom Trawls)	7-66
7-25	Total Number of Fish Species (Surface Trawls)	7-67
7-26	Total Number of Fish Species (Beach Seines)	7-68
7-27	Average Fish Species Diversity (Bottom Trawls)	7-70
7-28	Average Fish Species Diversity (Surface Trawls)	7-71
7-29	Average Fish Species Diversity (Beach Seines)	7-72
7-30	Species of Invertebrates Most Commonly Collected Through December, 1969	7-75
7-31	Species of Invertebrates Collected Through December, 1969 (Benthic Grabs)	7-76
7-32	Species of Invertebrates Collected Through December, 1969 (Zooplankton Nets)	7-77
7-33	Species of Invertebrates Collected Through December, 1969 (Trawls, Seines, Panels)	7-78
7-34	Benthic Grabs-All Stations Average Number Organisms Caught Per Species Per Sample, 1969	7-79
7-35	Succession Panels-All Stations Average Number Caught Per Panel, 1969 .	7-80
7-36	Thorson Jars-All Stations Average Number Caught, 1969	7-81
7-37	Zooplankton-All Monthly Stations Average Number Caught Per Tow (1969)	7-82
7-38	Trawls/Seines-All Stations Average Number Invertebrates Caught Per Tow, 1969.	7-83

1.0 SUMMARY (JUNE-DECEMBER 1969, DATA REPORT)*

The temperature data collected during the overflight surveys and the biological sampling program indicate that essentially isothermal conditions exist throughout the study area except in the immediate vicinity of the thermal plumes issuing from the Lovett and Indian Point power plants. During the summer months, river temperatures ranged from 72 to 82 degrees F with peak temperatures occurring in August. A 10-degree F per month decline in river temperature was observed from September to December at which time the river temperature stabilized at about 32 degrees F.

The surface temperature overflight data indicate an average plume width of around 600 feet. The main concentration of heated effluent from the Indian Point plant ranged about $1 / 4$ to $1 / 2$ mile upstream and downstream of the plant.

The Automatic Environmental Systems water quality monitor data indicate a Delta T across the plant of 8 to 9 degrees F which increases to about 9 to 10 degrees F during apparent recirculation of 3 to 4 hours duration caused by the flooding tide.

Temperature data collected during a detailed survey of the Indian Point thermal plume on 17 and 19 September indicate that the plume did not extend more than 650 feet across-river in front of the plant. The depth to the base (thickness) of the heated effluent never exceeded 15 feet once the plume left bottom in the immediate vicinity of the outfall. The plume configuration appears to be primarily controlled by tide. Wind was also observed to have an important effect and may at times result in a submerged tongue of effluent water.

Salinity is perhaps the most variable environmental parameter in the study area. There are vertical, horizontal, tidal, daily and seasonal fluctuations. These fluctuations may have a range of 0 to $2 \mathrm{ppt}, 0$ to $4 \mathrm{ppt}, 0$ to $1.5 \mathrm{ppt}, 0$ to 3 ppt , and 5 to 7 parts per thousand, respectively. The most radical change in salinity occurred throughout the study area during : Jovember 6 through 20. At Indian Point (station 10) the salinity dropped from about 6.5 ppt on the 6 th to 0.3 ppt on the 20th. This change is attributed to extensive local rainfall and major releases over the Federal Dam at Troy, New York, in early November.

[^0]The surface values of dissolved oxygen generally were slightly higher ($0.1-0.4 \mathrm{mg} / \mathrm{l}$) than bottom concentrations. Yet, in many instances the surface and bottom concentrations were equivalent. A steady inc rease in dissolved oxygen was observed from about $4 \mathrm{mg} / \mathrm{l}$ in September to nearly $10 \mathrm{mg} / 1$ in late December. The in situ dissolved oxygen readings are consistently below saturation values.

There is generally a noticeable drop in dissolved oxygen across the power plant. For example, in early November values of 5.3 ppm were recorded at the intake versus 3.7 ppm at the outfall. Since both of the se readings represent less than 50 percent saturation at the corresponding temperatures, it is unlikely that heat accounts for the drop in concentration due to differential oxygen solubilities.

The pH readings across the power plant are quite stable with the intake pH ranging around 7.2 and the outfall about 7.4.

Numerically and in declining order, the most important finfish species within the study area are the bay anchovy, white perch, striped bass, tomcod, alewife, blueback herring and hogchoker. These seven species constituted 95 percent of the bottom trawl collections. The pelagic species - bay anchovy, blueback herring and alewife-comprised 97 percent of the surface trawl collections. The striped bass, white perch, alewife, spottail shiner, blueback herring and the Atlantic silverside accounted for 93 percent of the fish caught in beach seines.

The key fish species selected by the Technical Committee for special attention (laboratory studies, weight measurements, etc.) are the alewife, American shad, blueback herring, striped bass, white perch and tomcod. The bay anchovy was also cited as a key species for bioassay studies.

Very limited numbers of young-of-the-year American shad were caught in our gear during the summer-fall of 1969. Young-of-the-year alewife and blueback herring are caught throughout the study area from June through November. The peak concentrations for the alewife occurred in Augustand September whereas those for the blueback herring occurred in October. and November. Very few of these two river herrings were caught in December. The blueback herring is considerably more abundant in the surface waters than the alewife.

The striped bass and white perch are about equal in numerical importance in the bottom trawl and beach seine collections. However, the white perch appears to have a greater preference for the shoal areas, whereas the striped bass prefers the near shore areas. These two species occur only rarely in the surface waters. They are generally composed of mixed year groups.

The tomcod ranks third numerically in the bottom trawl collections with a preference for the deeper channel stations. Its appearance in beach seine collections only during November and December is probably related to spawning activity.

The bay anchovy is numerically the most important fish. It comprised 43 percent of the bottom trawl catches and 68 percent of the surface trawls. It occurred only seldom in beach seine collections. Peak concentrations in the Indian Point area occurred in September. An abrupt decrease and general disappearance of the bay anchovy from the study area occurred during November through December.

Generally, both higher abundances and total numbers of species are found in the fish populations during August through October. The highest total number of species occurred in October for all three types of gear (surface trawls, bottom trawls, and beach seines) which collected 21, 26 and 28 species, respectively.* A marked decrease in the overall abundance and number of species, particularly in the surface and shoal populations was observed during November and December. A total of 43 species of fish were collected from June through December 1969.

The Simpson species diversity index indicates that the shore-fish communities have generally the highest diversity followed closely by the bottom-trawl communities. The collections from the surface waters have distinctly lower diversities. The higher average species diversity during October supports the previous indications provided by the total number of species data (limited numbers of observations during some months may also have an effect).

A community overlap index for comparing the proportional species compositional similarity between station pairs suggests that depth is the dominant factor controlling the distribution of the fish species within the study area. River mile plays a noticeably less important role.

[^1]This community overlap technique also revealed the extent of faunal redundancy among stations and, therefore, provides a biological basis for pooling the data among similar stations in order to increase the sample size from a statistical point of view. Data on the average number caught per unit effort per gear type plus the fairly uniform degree of community overlap among the surface trawl collections indicate that the areal and vertical distribution of the key pelagic species could be adequately monitored by surface trawling at fewer stations than is presently done. The effort saved could be redirected to, for example, increased sampling frequency of other gear types.

An analysis of the fish species caught per station suggests the existence of two faunal communities within the study area. The narrowing and deepening of the river in the vicinity of Stony Point (mile 40) appears to represent the natural boundary between a community to the north characterized by higher concentrations of species that prefer deeper and fresher waters, and a community to the south (Haverstraw Bay) characterized by those species preferring shoaler and more saline waters.

Daytime samples of zooplankton at five channel stations indicate significantly higher concentrations in the bottom tows. Copepods accounted for 65 to 70 percent of the individuals collected in both surface and bottom tows. The copepods, Cyclops, and the mysid, Neomysis americana, are also abundant in the zooplankton. The seasonal nature of the zooplankton was reflected by the appearance of different invertebrate larval forms in different months.

The succession panels indicate that the encrusting fauna is not very diverse nor abundant. The barnacle Balanus improvisus occurs primarily in the more saline Haverstraw Bay. The bivalve Congeria leucophaeta and the hydroid Campanularia are also important encrusting forms. Comparison of the rather sparse fauna on the panels located at the intake and outfall areas at the power plant did not reveal any striking dissimilarities.

The polychaete Spio setosa and the isopod Cyathura polita were the two major benthic organisms collected by the bottom grab.

Since the Thorson bottles did not accumulate any significant or repeatable numbers of animals, their biological usefulness to this study appears limited.

2.0 INTRODUCTION

Raytheon Company's Marine Research Laboratory has been contracted by the Consolidated Edison Company of New York to study the ecology of the Hudson River in the vicinity of its nuclear electric power generating station at Indian Point, Buchanan, New York. The main emphasis of this study is directed towards an evaluation of possible ecological effects caused by the discharge of heated effluents into the river.

The report summarizes the results of the research efforts conducted during the months of June through December 1969. A copy of the raw data summary tabulations and statistics has been delivered to the Technical Committee. This committee, which is composed of state and federal fishery scientists, provides continuing technical evaluation of this study to the Policy Committee for the Lower Hudson River Cooperative Fishery Studies. The Policy Committee is responsible for the overall direction and guidance of the research efforts.

3.0 STUDY AREA DESCRIPTION

3.1 Geography-Bathymetry

This study encompasses 12 miles of the Hudson River from Croton Point on the south at river mile 35 to the Bear Mountain Bridge on the north at river mile 47 (Figure 3-1). The study area varies from the broad,shallow Haverstraw Bay, which is approximately 3 miles wide by 4 miles long, to the narrow, gorge-like topography in the vicinity of the Bear Mountain Bridge. The natural river channel ranges in depth from 30 feet on the south to some 130 feet on the north. The principal shoals occur on the east side of Haverstraw Bay with average depths of 8 to 10 feet. Less extensive shoals occur on the west side of Haverstraw Bay and in Peekskill Bay which average about 4 feet in depth at mean low water.

3.2 Hydrology

The approximately $22,000 \mathrm{cfs}$ average annual freshwater runoff which passes through the study area is dwarfed by tidal flows which generally range between 200,000 to 300,000 cfs . About 60 percent of the freshwater runoff entering the area was contributed by the drainage basins above the Federal Dam at Troy, New York. The mean tidal range in the study area is 3 to 4 feet. Tidal currents average 0.8 knots on the flood and 1.2 knots on the ebb tide. A comparison of the tide table time difference indicates that a given tide stage occurs at the northern end of the study area about 25 to 35 minutes later than at the southern end. Seasonally, the salt-water front (defined as the location of the 50 ppm chloride concentration which is equivalent to about 0.1 ppt salinity) has been observed by others to move upstream and downstream through a reach of about 50 miles or approximately from Chelsea to Yonkers in response to changing freshwater inflow. During a tidal cycle this front may move through a distance of 3 to 15 miles depending on the particular tidal cycle, season and the location of the salt-water front in the estuary.

Figure 3-1. Station Locations

3.3 Power Plants

The Consolidated Edison power facilities will be composed of three pressurized water nuclear units with a total designed capacity of about 2,085 megawatts (MW). At present, only unit 1 with a capacity of 285 megawatts is operational. This unit requires 300,000 gallons per minute of cooling water which it discharges at a temperature of about 9 degrees F above ambient river temperature. This constitutes a utilization of less than 0.2 percent of the total adjacent tidal river flow.

Indian Point unit 2 with a designed output of 875 MW is scheduled to become operational in late 1970. Unit 3 with a capacity of 925 MW is scheduled for late 1971. Proposals are now being considered for two additional units with capacities of 1115 MW each to be located at the Trap Rock quarry which is $3 / 4$ of a mile south of the present site.*

Located across the river on the west shore and about a mile south of the Indian Point facilities, is the Lovett power station owned by Orange and Rockland Utilities, Inc. This is a fossil-fueled plant with a present capacity of 314 MW .

3.4 Municipalities

The principal municipalities within the study area are Peekskill (river mile 44) with a population of 19,000 , Stony Point (river mile 40) with a population of 15,000 , Haverstraw (river mile 37) with a population of 23,000 , and Croton-on-Hudson which is on the east shore across the bay from Haverstraw and which has a population of 7500 .

* Inaian roinl stalion

Unit 1	$300,000 \mathrm{gpm}$	(existing)
Unit 2	$920,000 \mathrm{gpm}$	(tentative 1971)
Unit 3	$920,000 \mathrm{gpm}$	(tentative 1973)
Unit 4	$875,000 \mathrm{gpm}$	(proposed)
Unit 5	$875,000 \mathrm{gpm}$	(proposed)

Lovett Station
Units 1-5

$$
316,700 \mathrm{gpm} \text { total }
$$

(existing)

4.0 SAMPLING STATIONS

Initially, 14 trawling and 7 beach seining stations were selected to provide the geographic and depth control necessary to evaluate the present effects of the heated effluent from unit 1 as well as the projected impacts from units 2 and 3 . With the announcement of proposals for units 4 and 5 to be located at the Trap Rock quarry about $3 / 4$ mile south of unit 1 , it was decided in November by the Technical Committee to drop trawling stations 1 and 2 at river mile 29. In exchange, trawl station 16 and seine station 39 in the immediate vicinity of the Trap Rock quarry were added. Trawl station 15 and seine station 38 had been added (in October) downstream of the Lovett power station as analogs of stations 10 and 34 at Indian Point. The locations of all stations (except 1 and 2) are shown in Figure 3-1 and descriptions of bottom type and topography are summarized in Tables 4-1 and 4-2.

The number of fish collections taken at each station per month are summarized in Table 4-3. The invertebrate collections are summarized in Table 4-4.

In addition to the fourteen trawling stations (3 to 16) and the nine beach seining stations (31 to 39), six stations (51,53 to 57) have been established for the placement of succession panels and Thorson bottles. (See Table 4-5 for descriptions.) Station 51 represents the intake forebay at the Indian Point plant, station 52 the revolving screen discharge sluiceway and station 53 the effluent canal.

Table 4-1. Trawling, Benthic Grab and Monthly Zooplankton Sampling Stations

S T A			$\begin{aligned} & \mathrm{D} * \\ & \mathbf{P} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Common Name and Bottom Description
1	29	1	10	Tappan Zee Flats - This station is mostly brown silt, slightly sandy and rocky. Frequently oyster shells in considerable numbers are collected in the bottom trawl.
2	29	3	26	Tappan Zee Channel - Mostly black sticky silt with some sand. Clumps of the hydroid, Campanularia that carry a great number of amphipods are frequently collected in the bottom trawl.
5	36	1	12	Dolphin - Bottom at this station is quite hard, consisting of brown mud, sand and a great many oyster shells. This station yields the greatest volume of shells netted at any station.
3	35	3	10	Potato Rock - Bottom is mostly hard grey clay and hard sand. Oyster shells are often netted in great quantity.
4	35	2	34	Croton Point Channel - Bottom is black-grey silt and mud. Campanularia colonies full of amphipods are frequently collected.
6	38	2	30	Buoy "R 16" - Bottom here is grey silt with some clay. Colonies of hydroids (Campanularia) are frequently collected.
7	38	3	11	Oscawana Island - Bottom here is grey silt and hard sand. At the southern end, rocks are netted on occasion.
8	39	1	12	Stony Point Bay - Bottom here is grey-brown silt and slightly sandy. The bottom trawls occasionally hang up on solid objects suspected to be old mooring blocks. Oyster shells are collected on occasion but not in great numbers.
9	40	3	12	Greens Cove - Bottom here is brown-black silt that is very soft. Sunken logs are occasionally netted and net hang-ups occur, but irregularly.
15	40	1	45	Lovett-Bottom here is grey clay with some silt. The 45^{\prime} contour is often difficult to follow at this station because the bottom slopes quickly to 60 and 65 feet, especially at the southern end of this station.
16	41	3	45	Trap Rock - The bottom at this station is mostly cinders. Debris of all kinds collects here, i.e., leaves, bottles, trees, rope, domestic garbage, etc. On occasion, rocks weighing up to 40 pounds have been netted. Bottom contour, however, is easy to follow.
11	42	2	50	Reserve Fleet - Bottom here is mostly black silt that is broken with a great deal of cinders. Net hang-ups occasionally occur from what may be debris dumped from the reserve fleet.
10	42	3	45	Con Ed Plant - Bottom here consists of some broken ledge, rocks at the southern end mixed with small rocks that are smooth and round from abrasion. A considerable amount of cinder exists here. Hang-ups occur with regularity at this station and everything from trees to boulders is netted here; leaves are common. The rest of the bottom is grey-brown silt broken with pebbles and rocks. Definitely not good bottom.
13	45	1	50	Round Island-Bottom here is mostly clay with black-brown silt. Occasionally, at the southern end of the station, rocks will be netted. The 55^{\prime} contour at the northern end of the station is occasionally difficult to follow due to a steep slope.
12	44	3	12	Peekskill Bay - The bottom here is brown, grey sticky silt. Logs are occasionally netted. A major problem at this station is caused by the sticky mud that will not easily flush itself through the fine mesh of an innerliner in the cod end of the bottom trawl. Potamogeton is abundant in the shoaler water during summer and autumn.
14	47	$\cdot 3$	47	Bear Mt. Bridge - Bottom here is black silt with some sand and an occurrence of organic detritus. The 45^{\prime} contour is easy to follow until the southern end of the station where a very sharp slope occurs. Frequently, debris and logs are brought up from the southern end at a point just north of the bridge.

[^2]Table 4-2. Beach Seine Sampling Stations

S \mathbf{T} \mathbf{A}	M I L E	S I T E	Common Name and Bottom Description
31	35	1	Dolphin Beach - This beach is coarse dark sand bounded at both ends by rock. Slope of the beach is steep ($1: 4$)
32	35	3	Croton Beach - The bottom here is part of Croton Beach and is mostly sand and silt. Cans and bottles are sometimes collected. Beach is shoal and slope is gradual (1:10).
38	40	1	Quarry Beach - Bottom all sand that is free from debris. Slope is $1: 5$. Some rocks are at the North end of station and on occasion cause hang-ups.
33	40	3	Verplanck Pt. -This beach is mostly small gravel with some rocks. Broken glass occurs in considerable quantities and can be traced to a source 150 feet from the station where frequent refreshments are consumed by the public. Beach is bounded to the north by a bulkhead. Slope here is $1: 5$. Tidal currents existing at this station often make a seine set very difficult.
39	41	3	Trap Rock Beach - Bottom is sandy with occurrence of occasional debris. North end of station is bounded by cut-off piles. Southern end of station is bounded by rocks and piles. Hang-ups occur when tidal current is strong and carries the net toward either end of the beach.
-35	43	1	Reserve Fleet Beach - The beach at this station is gravel with some occurrence of rocks. The gravel beach ends shortly below the low water mark where soft sticky mud prevails. In only 2 to 3 feet of water, the aquatic weed Potamogeton is found in abundance. During high water there is no beach and willow trees and honeysuckle outcrop over the water. The slope is shallow (1:10).
34	42	3	Gas Line Beach-This beach consists of small patches of hard sand; the rest of the beach is rocky with silt. Fresh water runoff occurs through a gulley located at the south end of the beach. The slope of the beach is steep (1:4). Soft mud exists below the low water mark.
36	44	3	Lumber Co. Beach - The beach here consists of coarse black sand. This is a short beach that is bounded on the south by a bulkhead and on the north by broken piles. The slope of the beach is steep (1:4). Little vegetation is present.
37	47	1	Ft. Montgomery - This beach is generally small rocks and gravel broken with patches of coarse sand. The beach is short and does not exist at high tide. Below the low water mark, this station is dominated by mud. The beach slope is steep ($1: 4$). Small shrubs and trees shade the water at high tide. Hang-ups frequently occur by rocks near the barge at the north end of the station.

Table 4-3. Samples Collected in 1969

BOTTOM TRAWLS	S	M	S	D						
	T	L E	T E	T \mathbf{H}	June July	Aug.	Sept.	Oct.	Nov.	Dec.
	1	29	1	10	5	5	2	2		
	2	29	3	26	5	5	2	1		
	5	36	1	12	3	6	1	1	1	1
	3	35	3	10	12	7	2	1	2	1
	4	35	2	34	9	7	2	1	2	1
	6	38	2	30	4	4	2	2	1	1
	7	38	3	11.	5	4	3	1	1	2
	8	39	1	12	3	4	4	5	5	2
	9	40	3	12	3	5	3	4	4	2
	15	40	1	45			1	7	4	3
	16	41	3	45			1		2	2
	11	42	2	50	3	4	4	7	3	3
	10	42	3	45	3	5	4	5	3	8
	13	45	1	50	6	6	2	1		1
	12	44	3	12	6	6	4	6	3	4
	14	47	3	47	3	4	2	1	1	1
	1	29	1	10				1		
	2	29	3	26				1		
	5	36	1	12						
	3	35	3	10				2	2	1
	4	35	2	34				1	3	2
	6	38	2	30				2	2	2
	7	38	3	11		4	1	2	2	2
	8	39	1	12			2	1	4	3
	9	40	3	12			2	4	4	3
	15	40	1	45			3	1	4	4
	16	41	3	45					1	4
	11	42	2	50			2	2	4	3
	10	42	3	45	-	2	3	1	4	4
	13	45	1	50				2	2	1
	12	44	3	12		1	1	1	3	2
	14	47	3	47				1		
	31	35	1			4	2	2	2	
	32	35	3		2	5	2	3	2	
	38	40	1				1	6	5	6
	33	40	3		2	5	3	5	5	6
	39	41	3						3	5
	35	43	1		2	4	3	8	5	6
	34	42	3			8	3	6	6	6
	36	44	3		2	5	2	2	2	1
	37	47	1		3	4	2	2	2	1
息	Forebay						3	8	3	6
	Sluice Effluent						1	2	3	5
								1		1

Table 4－4． 1969 Invertebrate Samples Collected

	$\stackrel{4}{4}$	$\stackrel{\text { 쏯 }}{\underset{\Sigma}{2}}$	$\underset{\sim}{5} \mid$		SURFACE						BOTTOM					
					岸䳐		$\stackrel{\underset{\sim}{\mid}}{\underset{\sim}{\omega}}$	$\overline{8}$	艺	$\begin{aligned} & \text { U } \\ & \text { 品 } \end{aligned}$	$\sum_{\substack{\text { 山 }}}^{\substack{3}}$	Uِ	$\begin{aligned} & \dot{A} \\ & \stackrel{H}{\omega} \end{aligned}$	Y	方	U
	$\left[\begin{array}{l} 54 \\ 55 \\ 56 \\ 51 \\ 53 \\ 57 \end{array}\right.$	38 40 41 42 42 43	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\left(\begin{array}{l} 14 \\ 10 \\ 49 \\ 26 \\ 18 \\ 15 \end{array}\right.$			1	1 1 1 1 Δ Δ	1 1 1 1 Δ Δ	1 $*$ $*$ 1 Δ Δ Δ			1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1 1	
	$\begin{gathered} 1 \\ 2 \\ 5 \\ 3 \\ 4 \\ 6 \\ 7 \\ 7 \\ 11 \\ 10 \\ 14 \end{gathered}$	29 29 36 35 35 38 38 42 42 47	$\begin{aligned} & 1 \\ & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	10 26 12 10 34 30 11 50 45 47		1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1	＊＊		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1	＊＊
	$\begin{aligned} & 54 \\ & 55 \\ & 56 \\ & 51 \\ & 53 \\ & 57 \end{aligned}$	$\begin{aligned} & 38 \\ & 40 \\ & 41 \\ & 42 \\ & 42 \\ & 43 \end{aligned}$	$\left(\begin{array}{l} 1 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \end{array}\right)$	$\left\lvert\, \begin{aligned} & 14 \\ & 10 \\ & 49 \\ & 26 \\ & 18 \\ & 15 \end{aligned}\right.$									1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 1 1	1 $*$ 1 1 1 1
	5 3 4 6 7 8 9 15 16 11 10 13 12 14	$\begin{aligned} & 36 \\ & 35 \\ & 35 \\ & 38 \\ & 38 \\ & 39 \\ & 40 \\ & 40 \\ & 41 \\ & 42 \\ & 42 \\ & 45 \\ & 44 \\ & 47 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 1 \\ & 1 \\ & 3 \\ & 1 \\ & 3 \\ & 2 \\ & 3 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$	$\|$12 10 34 30 11 12 12 45 45 50 45 50 12 47										3 3	1 3 3 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1

＊lost by ice abrasion．
＊＊the river ice built up faster than expected and thereby prevented the normally scheduled end of the month sampling
Δ in shallow water only one panel 4 feet off the bottom is set．

Table 4-5. Succession Panel/Thorson Bottle Stations

Sta No.	Location and Exposure	Method of Attachment	M. L. W. River Depth (ft)
7^{*}	1200 yards due West of Oscawana Island; southerly exposure	tied to a gill-net stake	10
13^{*}	The middle of the eastern face of the dock located at Round Island; north east exposure	tied to beam joist under the dock	12
51	100^{\prime} from the northern corner of the Con Ed dock; westerly exposure	tied to a bar screen which is part of the fore- bay perimeter	26
53	On the outside face of the 'old' efflu- ent canal bulkhead, 1 foot from the edge of the opening; westerly exposure	tied through bulkhead	14
54	Hung under a scaffold walk 50' to the west side of the loading chute of National Gypsum Plant at Grassy Point; southerly exposure	tied to an 'I" beam	
55	At the range marker located in Green's Cove and 550 yards S.E. from the most easterly tip of Verplanck Point; south- west exposure	tied from a horizontal that joins the tripod legs of the range marker	14
56	At the westernmost ship of the southern- most tier of ships in the reserve fleet. 500 yards due south of the over-river power lines; southerly exposure	tied from the anchor chain	60
57	At the dolphins located 75 yards from the shore at Charles Point; southerly exposure	tied from a piling	7

[^3]
5.0 TEMPERATURE STUDIES

During the summer and fall of 1969, the primary sources of temperature data were the monthly aerial overflights, the biological sampling program and the automatic monitoring of the intake and outfall temperatures. In addition, a fine-grained survey of the plume structure in the immediate vicinity of the outfall was conducted on 17 and 19 September.

5.1 Infrared Overflight/Bathythermograph Surveys

Twelve overflight surface temperature surveys using an airborne-infrared radiometer were flown from August through December. One day each month was selected such that the times of maximum flood and ebb tides occurred during daylight hours. It had been shown previously that the maximum extent of the thermal plume issuing from a power plant is reached under maximum current conditions rather than at times of high and low-slack water.: These overflight surveys were conducted on 6 and 27 August, 24 September, 24 October, 21 November and 22 December.

On each overflight, which is scheduled to bracket the time of maximum current, a total of 38 miles is flown in transects which criss-cross the Hudson from the Tappan Zee to the Bear Mountain Bridges (Figure 5-1). This aerial survey, which measures actual surface termperatures and records them continuously on a strip chart, requires slightly less than one hour to complete.

Concurrently with the aerial survey, three boats and crews are collecting vertical temperature profile data at 75 predesignated locations. Electronic bathythermographs which are coupled to $\mathrm{X}-\mathrm{Y}$ pen recorders are used to produce a hard copy of the vertical temperature profile. Since 50 of these profiles are located upstream of the Indian Point plant during the flood tide and a corresponding 50 profiles are located downstream during the ebb, a total of 125 different river locations are profiled during the day of the comparison overflights. The same 25 locations in the immediate vicinity of the plant are occupied on both tides (Figure 5-2).

Figure 5-1. Radiometric Surface Temperature Survey Flight Lines

5.1.1 Monthly Overflights-Results

The surface temperature overflight data from August through December 1969 indicate that the Indian Point plume generally averaged about 600 feet in width. The upstream or downstream extent of the main concentration of heat ranged around $1 / 4$ to $1 / 2$ mile. The thermal plume from the Lovett power station generally exceeded that from Indian Point both in terms of areal extent and surface temperature. While the Lovett plume has a comparable width, its main concentration of heat was observed to have an upstream/downstream range two to three times that of Indian Point. Seasonally the thermal plumes from these two power plants are observed to undergo a general decrease of areal extent with decreasing river temperature.

The surface isotherm map of the ebb tide on 24 September illustrates the type of contour maps produced from the overflight data (Figure 5-3). The original contour map is six times larger than shown herein. Copies of the Indian Point section of each of the original surface isotherm maps have already been included in the monthly reports following each overflight.

The vertical temperature profile data from the boat surveys accompanying the overflights indicated that the river is essentially isothermal during late summer-fall (Figures 5-4 through 5-6). The only significant thermal structure was associated directly with the power plant plumes and, on occasion, certain shoal areas such as Peekskill Bay and Green's Cove. The tidal flow apparently keeps the river well mixed.

5.2 In Situ Temperature Data

The temperature data collected in conjunction with the biological sampling program likewise indicate that generally isothermal conditions exist at each sampling station. The expected exceptions are stations 10 and 15 which are located in the immediate vicinity of the Indian Point and Lovett power stations. Here the differences between surface and bottom temperature range from 0 to 2 degrees F. The average daily power output of the Indian Point plant as a measure of thermal loading to the river is summarized in Figure 5-7. A comparison of the seasonal temperature distributions among the channel stations reveals no marked or consistent temperature differences and likewise suggests rather uniform temperature conditions throughout the study area (Figures 5-8 through 5-15). Even a comparison of the surface

Figure 5-4. Overflight Bathythermograph Profiles Vicinity of Stony Point (Channel Between Stations 15 and 9), Ebb Tide

Figure 5-5. Overflight Bathythermograph Profiles Mid-Channel Off Plant Site (Vicinity of Station 11), Flood Tide

Figure 5-6. Overflight Bathythermograph Profiles South End of Iona Island (Vicinity of Station 13), Flood Tide

Figure 5-7. Average Daily Output, Indian Point - Unit One

- = STATION 4
$x=$ STATION 6
Figure 5-8. In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Stations 4 and 6

- = STATION 4

Figure 5-9. In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Stations 4 and 6

Figure 5-10. In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Station 10

Figure 5-11. In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Station 10

Figure 5-12. In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Station 11

Figure 5-13. In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Station 11

- = STATION 13

Figure 5-14. In Situ Environmental Data (1969), Collected During Biological Sampling, Surface, Stations 13 and 14

- = STATION 13
$x=$ STATION 14 .
Figure 5-15. In Situ Environmental Data (1969), Collected During Biological Sampling, Bottom, Stations 13 and 14
temperature distribution from lower Haverstraw Bay with the bottom temperatures at the stations in the vicinity of the Bear Mountain Bridge revealed no discernable differences. During 1969, the July, August and early September temperatures ranged about 72 to 82 degrees F with the peak temperatures occurring in August. Thereafter, the river temperature underwent a steady decline of about 10 degrees F per month until it reached 32 degrees F in late December.

5.3 Automatic Environmental Systems (Temperature Data)

An Automatic Environmental Systems (AES) water quality monitoring system (Model SM1200) continuously monitors temperature, dissolved oxygen and pH of the water directly in front of Unit 1 intake at $133 / 4$ feet below mean low water. In addition, temperature, dissolved oxygen, pH , salinity and cupric ion are monitored in water pumped directly from the effluent canal from a depth of $51 / 2$ feet below mean low water. The data from these 8 probes are individually recorded every three minutes on a strip chart recorder. The system was installed on 30 September.

The temperature data from the AES records appear to indicate a natural recycling of the effluent waters through the intake forebay with the outfall configuration as it existed in the fall of 1969. At this time, the surface outfall was located some 300 feet south of the intake forebay.

Approximately one hour after low slack water, the intake temperature exhibits an abrupt increase of 2.3 to 4.0 degrees F within a period of about 15 minutes (Figure 5-16). This abrupt increase is attributed to the tidal shift of the effluent plume upstream by the incoming tide.

Recirculation of plume water through the plant is suggested by an equally abrupt increase in the temperature (1.4 to 3 . 1 degrees F) measured at the end of the effluent canal. The smaller increase of outfall versus intake temperatures signifies that ambient river water as well as plume water is being pumped into the plant simultaneously. This increase in the outfall temperature lags that at the intake (Figure 5-16). The main part of the recirculation continues for 3 to 4 hours with the final return to ambient conditions in 5 to 6 hours, again, being tidal controlled.

Figure 5-16. Effluent Water Tidal Recycling Tracings (Old Outfall Configuration)

The normal Delta T across the plant with unit 1 in operation averages about 8 to 9 degrees F above ambient. However, under conditions of recirculation this Delta T increases another degree F. The December data indicate somewhat higher Delta T's (11.1 to 11.5 degrees F) than previous months under conditions of tidal recirculation. This situation is probably attributable to the operation of the installed effluent recirculation system (which is used to prevent the icing of the intake screens) in addition to the tidal induced recirculation.

5.4 Intensive Thermal Plume Survey

Intensive three-dimensional mapping of the thermal plume from unit 1 was conducted on 17 and 19 September 1969. This mapping was in preparation for the intended deployment of the thermal chain monitoring systems in the vicinity of the then active outfall located 130 feet south of the southern edge of Consolidated Edison pier. This outfall was closed off in January 1970. The new outfall is now located 890 feet downstream of the pier.

The survey times were chosen to cover a full tidal cycle. Thus the across-river plume extent could be measured at slack water and the up and downstream extent at max ebb and flood currents.

A grid system of 19 polystyrene buoys exhibiting identification markings was deployed to facilitate positive position control of the collected data. A total of 32 electronic bathythermograph profiles were collected on September 17th from max flood current to high slack water; and on the 19 th, 49 profiles were made straddling max ebb current. In addition, 20 plume crossings of continuous surface temperature recordings were made following the rectangular coordinates of the buoy grid (Figures 5-17 and 5-18).

The influence of the wind and tide upon the areal dispersion of the heated effluent is readily apparent from a comparison of the surface isotherm maps from September 17th and 19th (Figures 5-19 and 5-20). Under the slight northwest wind (10 mph) and max flood current condition of the recording period of September 17th, the leading edge of the plume (defined as 1 degree F above ambient isotherm) extends 650 feet across-stream and 550 feet upstream. With the high northwest wind (25 mph and gusts to 32 mph) and max ebb current conditions for

Figure 5-17. Horizontal and Vertical Bathythermograph Data, Unit 1 Plume Survey, 17 Sept. 1969 (at Section A-A', Figure 5-19)

* Profile taken at intermediate point between buoys.
** Profile not taken at this buoy as outside of plume pattern.
Figure 5-18. Horizontal and Vertical Bathythermograph Data, Unit 1 Plume Survey, 19 Sept. 1969 (at Section A-A', Figure 5-20)

Figure 5-19. Surface Isotherms of Unit 1 Plume

Figure 5-20. Surface Isotherms of Unit 1 Plume
the September 19th recording period, there is no extension of the plume upstream beyond the southern edge of the pier. The across-stream extension was reduced to 450 feet.

While it is probable that these differences in areal extent between the 17 th and 19th are more directly related to the inherent tidal changes, the wind does appear to deform the shape of the plume's leading edges. A comparison of the cross sections indicates that the acrossriver surface expansion of the plume was impeded by the strong northwest wind conditions on the 19th. This resulted in a submerged tongue of effluent water which protruded in the direction of the river channel some 40 feet in length. The cool wedge above the tongue had a maximum depth of 4 feet (Figures 5-21 and 5-22).

From this two-day survey, it is observed that the leading edge of the plume did extend as much as 650 feet across-stream and the depth to the base of the heated effluent never exceeded 15 feet once the plume left bottom in the immediate vicinity of the outfall.

Figure 5-21. Vertical Cross-Section of Unit 1 Plume Along Transect A-A'

Figure 5-22. Vertical Cross-Section of Unit 1 Plume Along Transect A-A'

6.0 WATER CHEMISTRY

6.1 Salinity

Salinity is perhaps the most variable parameter within the study area. There are tidal, daily and seasonal variations. For example, in the vicinity of Indian Point the tidal fluctuations of salinity may range around 1 to 1.5 ppt , whereas the salinity may vary several parts per thousand over a few days and as much as 5 to 7 ppt from early to late fall (reference Figures 5-8 through 5-15).

6.1.1 Salinity-In Situ Data

The salinity data collected in conjunction with the biological sampling program indicate that the bottom waters are generally more saline than the surface, which is to be expected in an estuary. However, the difference is usually less than a part per thousand. Occasionally differences of 1 to 2 ppt are observed between the surface and bottom salinities at the deeper channel stations, particularly in the warmer months when the salt front tends to be located north of the study area (Figures 5-8 through 5-15). There is a south to north decline in both surface and bottom salinity of 2 to 4 ppt during the warmer months. This river mile gradient is greatly reduced under conditions of low salinity characteristic of the colder months.

On the basis of bottom salinity data, the salt-water front appears to have temporarily retreated south of Indian Point (stations 10 and 11) around November 20th but remained north of upper Haverstraw Bay (station 6) where bottom salinities of about 1 ppt were still being recorded. This retreat is attributed to extensive local rainfall (cumulative 2.4 inches) and major discharges over the Federal Dam at Troy, New York, during early November (Figures 6-1 and 6-2). This cycle of rainfall and major discharges over the Federal Dam followed by marked drop in bottom salinities occurred again in December. By the 18th of December the salt-water front appears to have retreated to the southern end of the study area as bottom salinities of 0.16 and 0.07 ppt were recorded at stations 4 (river mile 35) and 6 (river mile 38), respectively.

Figure 6-1. Rainfall Recorded at Peekskill Waterworks (1969)

Figure 6-2. Average Discharge Over Federal Dam at Troy N.Y. (1969)

6.1.2 Salinity-Automatic Environmental Systems Data

Unlike temperature, salinity readings never really stabilize to the point where one can speak of ambient conditions. Rather, salinity varies with a low amplitude sinusoidal rhythm that mirrors that of the tide with salinity maxima occurring about 12 hours apart. The salinity minima occur about an hour after low slack. The abrupt increase in intake forebay temperature at this same time (which signals the turn of the tide) likewise marks the onset of increasing salinity (Figure 5-16).

The tidal induced salinity fluctuations are very apparent on the AES records. For example, on October 13 through 14 the salinity readings at the outfall were seen to vary from 4.84 to 3.70 to 5.16 to 4.00 to 5.00 to 3.75 to 4.80 ppt . This tidal variation of 1.0 to 1.5 ppt accounts for much of the scatter observed in the in situ data.

The AES salinity data supplements as well as confirms the seasonal trends observed in the in situ data (Figures 5-8 through 5-15). For example, the AES data indicate that it was mid-day on 8 November when the river salinity began a major decline from around 4 ppt to around 0.5 ppt early on the 15 th . Values of 0.1 to 0.2 ppt persisted until the evening flood tide on 2 December brought in a major influx of saline water with peak values of 1.7 ppt . In succeeding days salinities of 2 to 3 ppt were recorded, but on the evening of 11 December, the river salinity again declined and thereafter generally averaged less than 0.5 ppt .

6.2 Dissolved Oxygen

6.2.1 Dissolved Oxygen-In Situ Data

The dissolved oxygen data collected in conjunction with the biological sampling program indicate that the surface values, in general, are slightly (0.1 to $0.4 \mathrm{mg} / \mathrm{l}$) higher than the bottom concentrations. Yet, in many instances the surface and bottom concentrations are equivalent (Figures 5-8 through 5-15). There are no marked or consistent river mile gradients in the dissolved oxygen concentrations among the channel stations.

Seasonally, a very distinct and inverse correlation occurs between the dissolved oxygen and the temperature parameters. Opposed to the steady decline of temperature throughout the fall months is a steady increase of dissolved oxygen from about $4 \mathrm{mg} / 1 \mathrm{in}$ September to values approaching $10 \mathrm{mg} / 1$ in late December. The August dissolved oxygen minima appear to stabilize at values between 4 and $5 \mathrm{mg} / \mathrm{l}$ (ppm).

The observed dissolved oxygen values are consistently far below saturation values.

6.2.2 Dissolved Oxygen-Automatic Environmental System Data

Like temperature, the dissolved oxygen concentrations are fairly stable on a daily basis. Minor semicycle fluctuations of generally less than 0.2 parts per million (ppm) occur within a day's record but there is no consistent correlation with tidal rhythm. On occasions, slight decreases in dissolved oxygen are noted by the intake probe and seem to be associated with the onset of tidal ebb currents. This suggests a source of increased BOD upstream of the plant.

There is generally a significant drop in dissolved oxygen across the power plant. For example, in early November the intake concentrations ranged around 5.3 ppm whereas at the outfall the values ran around 3.7 ppm for a Delta D. O. of minus 1.8 ppm . Yet, in both instances, the observed values were less than 50% of the potential saturation values. Thus, the decreased saturation limits normally associated with an increase in heat do not seem to account for the drop in concentration:*

6.3 pH-Automatic Environmental System Data

The pH readings are quite stable over long periods of time with reliable readings seldom recorded below 7.0 or above 8.0. Generally, the intake pH averages about 7.2 and the outfall pH about 7.4.

[^4]There are on occasions curious dips in the outfall pH readings which show no obvious correlation with any internal plant operations investigated, e.g., chlorination. These characteristics, sawtooth-shaped dips of 0.5 pH units, last about 30 minutes and occur erratically about once every day or so.

7.0 FIELD BIOLOGY

7. 1 Introduction

There are two main levels from which ecological changes can be evaluated. One is at the individual species level in which environmental changes can be evaluated as to their significance for a particular species. This is the concept of key species and it is generally applied to those species considered of eritical importance from one or more aspects, e.g., commercial, recreational, aesthetic, biological, etc.

The second concept involves the evaluation of environmental changes from the perturbations they produce at the community level. Under this concept, environmental modifications are signalled by shifts in both the kinds and amounts of organisms living in an area. These community shifts can be recognized by monitoring such parameters as the compositional similarity among stations, the total number of species caught and species diversity.

7.2 Sampling Gear (Procedures)

A variety of methods were employed in sampling fish populations during the first six months of the project. Emphasis was placed on trawling (bottom and surface) and beach seining, with limited gill netting. Mid-water trawling (with gear inherited from the Cornwall Project) was attempted without success.

Water temperature, weather conditions, dissolved oxygen and salinity were recorded with each collection.

7.2.1 Bottom Trawls

Bottom trawls (25-foot semiballoon trawls) were constructed as follows: 26-foot headrope; 31-foot footrope; nylon net, 1-1/2 inch stretch mesh, no. 9 thread body; 1-1/4 inch stretch mesh, no. 15 thread codend, rigged with aninner liner of $1 / 4$-inch stretch mesh, no. 42 knotless nylon netting; head and footropes of $3 / 8$ inch diameter Poly-dac net rope with legs extended 4 feet and wire ring thimbles spliced in at each end; six $1 / 2 \times 3$-inch Ark floats spliced
evenly on center bosom of headrope; one-eighth inchgalvanized chain hung loop style on footrope; net treated in green copper net preservative on completion; trawl boards (doors), 36 inches in length and 17 inches in width.

Bottom trawls were routinely made at 16 stations between Tappan Zee and Bear Mountain Bridges from June through December 1969. Initially, the trawl duration was 10 minutes, but was changed to 7 minutes on August 8, 1969 because of large catches of fishes. Seven-minute tows at 4 knots cover a distance of approximately $1 / 2$ nautical mile. Tow speeds varied between 3 and 4 knots depending on bottom types and the current. Direction of the tows were opposite the tidal current except at slack tide when tows are made upstream (because of the net downstream flow of water) or when strong winds made it difficult to tow against the current. Towing against the current provides for easier retrieval of the net if it becomes snagged on an underwater object. For each one foot of river depth, 3 to $31 / 2$ feet of towing cable is used depending on current velocity and bottom type.

7.2.2 Surface Trawls

A semiballoon bottom trawl was converted to a surface trawl in the following manner: 1) invert net, 2) remove chain on footrope and replace it with floats from headrope, 3) replace headrope floats with $2-\mathrm{oz}$. lead weights, and 4) tie floats to the doors.

Surface trawls were made from August through December at the same stations set up for bottom trawling. Tows were 10 minutes in duration along a sinuous course at approximately 3 knots in a southerly or northerly direction against the direction of tidal flow or high winds. Two hundred feet of towing cable (to the gantry) are used in addition to the 40 -foot bridles.

7.2.3 Beach Seines

A $75^{\prime} \times 8^{\prime} \times 1 / 4^{\prime \prime}$ square mesh seine without bag was used in June, July, August and early September, at which time a $100^{\prime} \times 10^{\prime} \times 3 / 8^{\prime \prime}$ square mesh seine with $1 / 4^{\prime \prime}$ square mesh bag arrived on site. Seine collections since September 10, 1969 have been made with the 100 -foot seine. Seine collections with the 75 -foot net were made by 2 men wading to depths of 4 feet.

The collections with the 100 -foot seine were made by setting the net in a semicircle 30 to 50 feet from shore from an outboard motorboat, generally the small Boston Whaler. The opening of the semicircle is toward the shore and the net is hauled to the shore by hand.*

7.2.4 Benthic Grabs

The Emory type bottom grab covers an area of $250 \mathrm{~cm}^{2}\left(5^{\prime \prime} \times 8^{\prime \prime}=40 \mathrm{in}^{2}\right)$ when the jaws are fully opened and has a capacity of $2500 \mathrm{~cm}^{3}\left(160 \mathrm{in}^{3}\right)$; in appearance, this apparatus resembles half an elliptical cylinder. This grab was used to collect the monthly benthic samples from August through December. Each sample was fixed in neutral Formalin and then washed on a $0.3 \times 0.5 \mathrm{~mm}$ mesh screen. The organisms were retained and later identified and counted with the aid of a binocular microscope.

7.2.5 Zooplankton

Monthly surface and bottom zooplankton collections in 1969 were made at channel trawling stations. A half-meter, $0.3 \times 0.5 \mathrm{~mm}$ mesh net (not metered) was used. The plankton collections were fixed in 5 percent neutral Formalin and counted with a Sedgwick-Rafter cell, Whipple disk and binocular microscope.

7.2.6 Succession Panels and Thorson Bottles

Materials - The succession panels were made of white pine. Panels measuring 1 "thick, by $4^{\prime \prime}$ wide by $10^{\prime \prime}$ long were used for the sampling period from 20 August, 1969 to 18 September, 1969. From the period of 18 September, 1969 through 7 January, 1970 the panels used were $1 \times 5 \times 8$ inches in dimension.

The panels were secured to a 2×2-inch strip. The strip was made into a cross with the panels secured to the horizontal arm; the vertical arm was attached to a mooring line by means of half-inch steel staples.

Thorson bottles were modified from commercially available 1 quart polyethylene containers. Each container measured $5-1 / 2^{\prime \prime} \mathrm{h}$ by $4^{\prime \prime} \mathrm{w}$ by $4^{\prime \prime} 1$. A $2-1 / 2$-inch diameter hole was cut in the top of the container to enhance retention of settling organisms.

* Due to the change in gear from 75 - to 100 -foot seines, it is not possible to precisely compare the June to mid September data with those from mid-September through December.

This apparatus was used in the following manner. Each set of panels was hung by a quarter-inch nylon or polypropylene line from an existing structure at various river locations. The line was secured at the river bottom by use of cement mooring blocks. No slack was allowed in the anchoring line in order to make the panel as stationary as possible.

The first group of panels was set 21 August 1969 and collected 22 September 1969. At stations 7, 13, 51 and 53 a single panel was set 4 feet below the mean low water mark and a single panel was set 4 feet from the bottom. At the surface and bottom of each station, a Thorson bottle was attached to the vertical support, below the horizontal arm, by means of vinyl tape. Thorson bottles were collected from stations 7, 13, and 53 in September.

A completely new set of panels and Thorson bottles was set out October 1, 1969. Each set of panels had four panels mounted in the same fashion as the panels used in September. Stations numbered $51,53,54,55,56$ and 57 were occupied at this time (Figure 3-1). Again the panels were mounted 4 feet below the mean low water mark and 4 feet from the bottom. If a station has 12 feet of water or less at mean low tide, only one panel was placed at 4 feet from the bottom.

Thorson bottles were employed only with the bottom panels at each station. At each station, of the four panels in each set, one was collected 11 November, one collected 1 December, one collected 6 January 1970 and one collected 31 March 1970. The Thorson bottles were replaced when 11 November samples were taken; this procedure was repeated again on 1 December. When the Thorson bottles were collected on 6 January 1970, they were not replaced.

7.3 Results on the Species Level

7.3.1 General

Monthly averages by species of individuals caught per unit effort per gear type reveal the overall spatial and seasonal distributional patterns for the species collected within the study area. These data also provide a basis for evaluating the effectiveness/selectivity of the various gear types for each species. These monthly averages represent the grand average of all the individual station averages of number caught per unit effort.

Numerically and in declining order the most important finfish species within the study area are the bay anchovy, white perch, striped bass, tomcod, alewife, blueback herring and hogchoker (Tables 7-1 through 7-3). During the summer through fall of 1969, these seven
species constituted 95 percent of the fish caught in the bottom trawls, 98 percent of those in the surface trawls and 70 percent of the fish netted in beach seines. Forty-three fish species were recorded during this time interval (Table 7-4). The species codes used follow those of the Oornwall Project. (Jensen, A. C., Editor. 1970 Hudson Fisheries Investigations 19651968. Hudson River Policy Committee, c/o New York State Department of Environmental Conservation).

Spatially, the river herrings, alewife and blueback are the most ubiquitous species. They are caught in significant concentrations by surface trawls, bottom trawls and seines and, thus, are important constituents of both the river and shore-fish populations. Conversely, the fact that the Atlantic silverside and the spottail shiner compose 23 percent of the beach seine catch but only minor portions of the trawl catches implies that these are important shore species. Since the two river herrings and the bay anchovy comprise 97 percent of the surface trawl catch, these are obviously pelagic species. That these pelagic species also comprise 54 percent of the bottom trawls can partially be explained as a result of bottom trawling with a six-foot deep net in the shoal areas 10 to 12 feet deep. Moreover, since this type of trawl continues to fish both during the setting and retrieving phases of a tow, pelagic species are also caught in the deeper-water bottom trawls.

Seasonally, the June through December data indicate that both higher abundances and total number of species are found in the fish populations during the late summer through early fall (August to October) as shown in Tables 7-1 through 7-3. The highest total number of species occurred in October for all three types of gear (surface trawls, bottom trawls and seines) which collected 21,26 and 28 species, respectively.* Although 30 species were collected in the August bottom trawls, 4 of these species occurred only once during the month and not at all in the preceding or succeeding months. Moreover, 3 of the 4 species were represented by only single specimens. That this peaking of number of species in all three gear types in October that cannot be attributed directly to a fluctuation in sampling effort (Tables 4-3 and 4-4) lends support to the biological validity of this trend as well as to the adequacy of the baseline sampling intensity. A marked decrease in the overall abundance and number of species, particularly in the surface and shoal water fish populations, is observed during November and December.

Only insignificant numbers of surface trawl samples were collected before September (Table 4-3).

Table 7-1. Average Number Caught/7 Minutes, Grand Average of Station Averages
(Bottom Trawls)

	Species Name	1969					
Code		$\begin{array}{\|l} \hline \text { June/ } \\ \text { July } \\ \hline \end{array}$	Aug	Sept	Oct	Nov	Dec
* 1	Alewife	43	138	72	50	11	1
2	Bay anchovy	41	783	691	26	p	P
* 3	American shad	P	P	P	P	P	
4	Bluefish	P	P	P	P		
5	Bluegill		P	P		P	P
6	Brown bullhead	P	P	P	p	1	P
7	Pumpkinseed	P	P	P	P		P
9	Carp		P	P	P	P	
10	American eel	11	10	9	17	6	P
11	Goldfish				P	P	
12	Golden shiner		P	P	P		
13	Hogchoker	5	10	38	31	157	12
14	Johnny darter	1	1	P	P	2	3
15	Banded killifish						
18	Mummichog						
19	Menhaden, Atlantic		P	2	10	P	
*22	Blueback herring	1	34	3	56	11	P
23	White sucker	P	P			1	1
24	Atlantic silverside		P		P	P	
25	American smelt	14	18	5	4	9	1
27	Shortnose sturgeon		P			P	
28	Spottail shiner	2	6	6	2	4	35
29	Atlantic sturgeon	P	P	P	1	1	P
*30	Striped bass	118	84	55	86	23	6
31	Fourspine stickleback		P				
*32	Atlantic tomcod	115	76	34	35	76	38
34	White catfish	P	P	P	P	2	P
*35	White perch	35	52	56	80	117	117
36	Yellow perch	P	P	P	P	P	1
39	Northern pipefish	1	P	P	P		
41	Atlantic needlefish						
42	Crevalle jack	P	P	1	P		
45	Weakfish	1	1	2	1	P	
70	Sturgeon, unidentified	P	P				
72	Winter flounder	P					
Miscel							
$\begin{aligned} & 21 \\ & 74 \end{aligned}$	Chain pickerel Lamprey, sea		P				p
TOTAL		23	30	25	26	24	19

Note: unidentified not included in total species count

* = 'key" species
$\mathrm{P}=$ presence less than 1

Table 7-2. Average Number Caught/7 Minutes, Grand Average of Station Averages (Surface Trawls)

Note: $P=$ presence less than 1

* $=$ key species

Table 7-3. Average Number Caught/Haul, Grand Average of Station Averages (Beach Seine) ${ }^{\dagger}$

Species Code	Species Name	1969					
		June/ July	Aug	Sept	Oct	Nov	Dec
* 1	Alewife	4	13	19	51	36	P
2	Bay anchovy		1	1	2		
* 3	American shad		1	2	1	P	
4	Bluefish		P	P	P		
5	Bluegill		P	P	1	P	P
6	Brown bullhead					P	
7	Pumpkinseed	1	P	2	1	1	P
9	Carp			P	P	P	P
10	American eel			P	1	P	
11	Goldfish	P		P	P	P	P
12	Golden shiner	P	P		1	2	
13	Hogchoker		P	P	P		
14	Johnny darter	P	1	1	2	3	1
15	Banded killifish		P	1	3	2	P
18	Mummichog	1	1	P	P	P	P
19	Menhaden, Atlantic		P	3	3	P	P
*22	Blueback herring	11	11	24	27	15	1
23	White sucker			P	P	P	P
24	Atlantic silverside	5	23	27	17	1	
25	American smelt						
27	Shortnose sturgeon						
28	Spottail shiner	2	5	8	38	31	12
29	Atlantic sturgeon					31	12
*30	Striped bass	7	18	11	80	39	9
31	Fourspine stickleback				P	1	1
*32	Atlantic tomeod				P	1	1
34	White catfish				P		
*35	White perch	15	15	21	57	30	
36	Yellow perch			21	P	P	P
39	Northern pipefish		1			P	
41	Atlantic needlefish						
42	Crevalle jack		P	1	P		
45	Weakfish		P	1	P		
70	Sturgeon, unidentified						
72	Winter flounder						
Miscell							
17	Largemouth bass		P		P	P	
21	Chain pickerel		P	P			
33	Unidentified		P				
40	Redbreast sunfish				P		
71	Northern porgy				P	P	
73	Tidewater silverside					P	
TOTAL SPECIES		11	21	22	28	25	17

Note: $P=$ presence less than 1 * = key species
$\boldsymbol{t}=$ no compensation for seine size change in midSeptember.

Table 7-4. Species of Fish Collected by the Indian Point Ecological Survey Through

		Abundance
Petromyzonidae-lampreys		
Sea lamprey	Petromyzon marinus	R
Acipenseridae-sturgeons		
Shortnose sturgeon	Acipenser brevirostrum	U
Atlantic sturgeon	Acipenser oxyrhynchus	U
Clupeidae-herrings		
Blueback herring	Alosa aestivalis	c
Alewife	Alosa pseudoharengus	A
American shad	Alosa sapidissima	U
Atlantic Menhaden	Brevoortia tyrannus	c
Engraulidae-anchovies		
Bay anchovy	Anchoa mitchilli	C
Osmeridae-smelts		
Rainbow smelt	Osmerus mordax	C to U
Esoćidae-pikes		
Chain pickerel	Esox niger	R
Cyprinidae-minnows and carps		
Goldfish	Carassius auratus	U
Carp	Cyprinus carpio	U
Golden shiner	Notemigonus crysoleucas	R
Common shiner	Notropis cornutus	R
Spottail shiner	Notropis hudsonius	C
Catostomidae-suckers		
White sucker	Catostomus commersoni	U
Ictaluridae-freshwater catfishes		
White catfish	$\underline{\text { cetalurus }}$ catus	U to C
Brown bullhead	Ictalurus nebulosus	U to C
Anguillidae-freshwater cels		
American eel	Anguilla rostrata	A
Belonidae-needlefishes		
Atlantic needlefish	Strongylura marina	C*
Cyprinolontidne-killifishes		
Banded killifish Mummichog		U to C
Mummichog	Fundulus heteroclitus	U to C
\cdots - Gadidàe-condishes and hakess		
Silver hake	Merluccius bilinearis	R
Atlantic tom cod	Microgadus tomcod	A
Gasterosteidic-sticklebacks		
Fourspine stickleback	Apeltes yuadracus	U
Syngnathidae-pipefishes and seahorses		
Northern pipefish	Syngmathus fuscus	C to U
Serranidac-sea basses		
White perch	Morone americanus	A
Striped bass	Morone saxatilis	A
Centrarchidae-sunfishes		
Pumpkinseed	Lepomis gibbosus	U to C
Bluegill	Lepomis macrochirus	U
Redbreast sunfish	Lepomus auritus	R
Largemouth bass	Micropterus salmoides	R
Percidae-perches		
Johnny darter Yellow perch	Etheostoma nigrum Perca flavescens	$\begin{aligned} & \mathrm{U} \text { to } \mathrm{C} \\ & \mathrm{U} \text { to } \mathrm{C} \end{aligned}$
Pomatomidae-bluefishes		
Bluefish	Pomatomus saltatrix	U
Carangidae-jacks, scads, and pompanos		
Crevalle jack	Caranx hippos	U
Weakfish	Cynoscion regalis	U
Sparidae-porgies		
Scup	Stenotomus chrysops	R
Mugilidae-mullets		
Striped mullet	Mugil cephalus	R
Atherinidae-silversides		
Atlantic silverside	Menidia menidia	C
Tidewater silverside	Menidia berylina	U
	ye flounders	
Winter flounder	$\begin{aligned} & \text { Pseudopleuronectes } \\ & \text { americanus } \end{aligned}$	U
Hogchoker	Trinectes maculatus	C

Legend

A - abundant - readily caught in trawl or seine and in great numbers
C - common - readily caught in trawl or seine
U - uncommon - caught in trawl or seine, but only occasionally and/or not in
R - rare

* - commonly observed in the effluent watrs

7.3.2 Key Species

On March 5, 1970, the Technical Committee selected the alewife, American shad, blueback herring, striped bass, white perch and tomcod as key species for this study. The bay anchovy was also cited as a key species for bioassay studies. The term key species as used in this study denotes that special attention (laboratory studies, weight/measurements, etc.) will be given to those species so designated in order to evaluate more thoroughly the effects of thermal additions on their biology.

7.3.2.1 Alewife, Alosa pseudoharengus (Wilson)

The alewife is an anadromous species which enters the Hudson River in the spring (March to June) to spawn. Spawning takes place upriver from the study area at temperatures between 50 and 60 degrees F. It is a prolific spawner producing demersal, adhesive eggs. After spawning, the adult returns to the ocean where most of its life is spent. The young remain in the river throughout the first summer of their lives and migrate downstream in the late summer and autumn to the ocean. Here they mature in several years and then return to rivers to spawn.

The alewife, like other herrings, is primarily a plankton feeder and a schooling species; its general geographic range spans South Carolina and Nova Scotia. It is of minor commercial importance in the Hudson River. This species is important as a forage fish.

Numerically, the alewife ranks third among the number of fish caught in surface trawls and in beach seines, comprising 11 percent of the former and 17 percent of the latter. In the bottom trawl collections, this species ranks fourth and comprises 9 percent of the fish caught.

Young-of-the-year alewife are caught throughout the study area from June through November. In December this species was not recorded in any of the samples from Haverstraw Bay or upstream from Peekskill Bay. The December presence of limited numbers of alewife only in the general area between the Lovett and Indian Point power stations alludes to a possible correlation to the heated effluents (Tables 7-5 through 7-7). Occasional older specimens of this species were recorded in the screen washings from the Indian Point plant.

Table 7-5. Average Number Alewife Caught/7 Minutes (Bottom Trawls)

	S	M	S							
	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	3	6	11	96		
	5	36	1	12.	30	45	15	144	31	0
	3	35	3	10	8	25	50	27	5	0
	7	38	3	11	11	191	182	5	28	0
	8	39	1	12	160	725	24	263	17	0
	9	40	3	12	104	482	46	18	14	0
	12	44	3	12	250	344	599	110	10	1
	2	29	3	26	1	7	0	20		
	4	35	2	34	7	22	7.	1	23	0
	6	38	2	30	15	58	19	19	0	0
	15	40	1	45			39	6	1	1
崽	16	41	3	45			104		7	2
	11	42	2	50	1	2	15	16	5	6
	10	42	3	45	1	13	18	9	P	2
	13	45	1	50	2	3	14	12		0
	14	47	3	47	2	15	12	6	0	0
Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *	Grand Avg No. Cght Pent Avg Cght * Avg Pcnt Occ *				43	138	72	50	11	1
					11	11	7	12	3	P
					60	88	83	94	68	17

blank = no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-6. Average Number Alewife Caught/7 Minutes (Surface Trawls)

	$\begin{gathered} \mathrm{S} \\ \mathbf{T} \\ \mathbf{A} \end{gathered}$	$\begin{aligned} & \mathbf{M} \\ & \mathbf{I} \\ & \mathbf{L} \\ & \mathbf{E} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	1969					
					June/ July	Aug	Sept	Oct	Nov	Dec
	1	29	1	10				10		
	5	36	1	12						
	3	35	3	10				22	P	0
	7	38	3	11		11	0	4	1	0
	8	39	1	12			15	8	6	0
	9	40	3	12			92	0	4	0
	12	44	3	12		6	0	24	9	0
$\begin{aligned} & \text { D } \\ & \text { 品 } \end{aligned}$	2	29	3	26				0		
	4	35	2	34				0	3	0
	6	38	2	30				11	0	0
	15	40	1	45			2	0	6	P
	16	41	3	45					52	1
	11	42	2	50			3	5	4	0
	10	42	3	45		78	16	20	45	1
	13	45	1	50				7	24	0
	14	47	3	47				13		
	Grand Avg No. Cght Pcnt Avg Cght * Avg Pent Occ *					32	18	9	13	P
						17	9	4	16	7
						67	36	65	66	9

blank = no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-7. Average Number Alewife Caught/Haul (Seines and Plant Site) ${ }^{\dagger}$

	S								
		L E	T	$\begin{aligned} & \hline \text { June/. } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	31	35	1		10	3	32	221	
	32	35	3	3	18.	78	205	2	
	38	40	1			0	9	2	P
	33	40	3	4	31	13	20	6	0
	39	41	3					69	0
	35	43	1	3	. 3	56	77	1	0
	34	42	3		3	0	2	22	1
	36	44	3	2	24	0	32	6	0
	37	47	1	11	4	1	35	1	0
Grand Avg No. Cght Pent Avg Cght* Avg Pent Occ *				5	13	19	51	36	P
				11	14	16	18	22	P
				60	86	38	80	59	05
	Forebay Sluice Effluent					28	19	P	0
						39	100	54	5
							0		0
	Avg Pent Occ					100	63	67	20

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1
*see Appendix A for explanation of terms.
$t=$ no compensation for seine size change in mid-September.

The surface trawl data indicate that the alewife is fairly well distributed amongst Stations 7, 10, and 12 in August and throughout the study area in September and October (Table 7-6). Bottom trawls in the shoal areas contain consistently higher concentrations of alewife than those taken at the deeper channel stations. However, this may only indicate that the bottom trawl is functioning as a pseudo-surface trawl in these 10 to 12 -foot depths rather than a shoal preference by this species (Tables 7-5 through 7-7).

Greater numbers of alewife caught by bottom trawls at the upstream shoal stations 7, 8, 9 and 12 than at stations 2, 3 and 5 in the vicinity of Croton Point suggested an upstream preference through September (Table 7-5). This tends to even out during October through

November as total numbers decrease markedly, correlating with the expected seaward movement of this species.

The alewife is most successfully and consistently caught by bottom trawling; beach seining is less successful and surface trawling is least successful. (See Tables 7-5 through 7-7.)

7.3.2.2 Blueback Herring, Alosa aestivalis (Mitchill)

The blueback herring is closely related to the alewife, It is an anadromous species which spawns upriver from the study area at about the same time as the alewife. The spawning run of the blueback herring begins later and lasts longer than the alewife. Spawning occurs between 70 and 75 degrees F with demersal and adhesive eggs. Adults return to the sea after spawning and young-of-the-year migrate to the sea in late summer and autumn.

The blueback herring's geographic range spans between the coasts of Florida and Nova Scotia; this species is generally a plankton feeder but also feeds on small plants and animals. It is a schooling species which is probably important as a forage fish.

Numerically, young-of-the-year blueback herring ranks second in surface trawl collections, fifth in beach seine samples and sixth in bottom trawls, comprising 18, 12 and 3 percent of the fish caught, respectively. Since a third again as many blueback herring as alewife were caught in surface trawls compared to three times as many alewife as blueback herring caught in bottom trawls, there is the suggestion that the blueback herring has a stronger preference for the surface waters than does its close relative the alewife. This suggestion is
also supported by the distinctly higher percent occurrence of the blueback herring in surface trawls (79 to 97 percent) versus bottom trawls (34 to 67 percent) during the months of August through November.

The peak concentrations for the alewife occur in August through September (bottom trawls) and those of the blueback herring occur in October through November (surface and bottom trawls) (Tables 7-8 through 7-10). The blueback herring declines markedly in abundance from November to December, but slightly less so than the alewife. As with the alewife, the limited numbers of blueback herring remaining in the study area during December occur in the area between upper Haverstraw Bay and Indian Point.

The blueback herring is most successfully and consistently caught by surface trawling. Moderate success is found with beach seining, but bottom trawling produces generally limited and erratic results.

7.3.2.3 American Shad, Alosa sapidissima (Wilson)

This anadromous species ascends rivers to spawn, mostly in tidal freshwater, from April to June. Eggs are demersal and nonadhesive. Adults may spawn more than once and return to sea after spawning. The young remain in the river until autumn when they migrate to the ocean. Maturity takes place in three to four years at sea. While at sea, shad are schooling fish.

The geographic range of the shad spans between Florida and the St. Lawrence River; this species is primarily a plankton feeder, but it also eats a variety of plants and animals. The shad is an important commercial food species in the Hudson River, but not as important a sport fish as in other areas. Shad runs vary in size from year to year and 1969 was a good year in the Hudson as far as the commercial fishermen are concerned. There was a large spawning run, but juvenile survival may have been reduced by excessive rain and freshwater run-off in August.

Only young-of-the-year shad were collected within the study area during June through December 1969 and then in very limited numbers (Tables 7-11 and 7-12). One hundred and five specimens were collected by beach seines during August through October. Bottom trawling produced 26

Table 7-8. Average Number Blueback Herring Caught/7 Minutes (Bottom Trawls)

	$\begin{gathered} \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathbf{E} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathrm{H} \end{aligned}$	1969					
					June/ July	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	P	P	0	6		
	5	36	1	12	P	1	0	21	1	0
	3	35	3	10	P	0	0	0	5	0
	7	38	3	11	P	2	0	0	5	0
	8	39	1	12	P	134	1	25	9	1
	9	40	3	12	0	25	7	625	105	0
	12	44	3	12	15	306	39	58	1	0
$\begin{aligned} & \text { n } \\ & \text { 屸 } \\ & \text { A } \end{aligned}$	2	29	3	26	0	0	0	30		
	4	35	2	34	0	0	1	0	5	0
	6	38	2	30	1	P	0	6	0	0
	15	40	1	45			0	13	7	2
	16	41	3	45			0		1	1
	11	42	2	50	P	1	0	32	1	0
	10	42	3	45	0	3	4	19	1	1
	13	45	1	50	P	2	0	3		0
	14	47	3	47	P	0	1	8	5	0
	Grand Avg No. Cght Pent Avg Cght *				1	34	3	56	11	P
					P	3	P	14	3	P
	Avg Pent Occ *				21	34	23	64	67	15

blank = no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7－9．Average Number Blueback Herring Caught／7 Minutes
（Surface Trawls）

	S		S	D						
	A	$\begin{aligned} & \mathrm{L} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10				6		
	5	36	1	12						
B	3	35	3	10				27	48	0
曽	7	38	3	11		3	0	56	14	P
胥	8	39	1	12			19	2	20	7
	9	40	3	12		－	7	31	72	5
	12	44	3	12		6	40	1	11	P
	2	29	3	26				4		
	4	35	2	34				24	16	0
	6	38	2	30				5	32	0
	15	40	1	45			13	127	11	6
勻	16	41	3	45					41	P
	11	42	2	50			24	104	50	1
	10	42	3	45		4	4	5	407	1
	13	45	1	50				49	55	0
	14	47	3	47				24		
Grand Avg No．Cght Pent Avg Cght＊ Avg Pent Occ＊	Grand Avg No．Cght Pent Avg Cght＊ Avg Pent Occ＊					4	15	33	65	2
					2	8	15	82	72	
					92	79	97	87	26	

blank＝no samples， $0=$ species absence，$P=$ presence less than 1
＊see Appendix A for explanation of terms．

Table 7-10. Average Number Blueback Herring Caught/Haul (Seines and Plant Site) ${ }^{\dagger}$

	$\begin{gathered} \hline \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	1969					
				June/ July	Aug	Sept	Oct	Nov	Dec
	31	35	1		0	0	0	44	
	32	35	3	0	2	3	0	0	
	38	40	1			20	60	1	0
	33	40	3	16	8	16	89	4	6
	39	41	3					1	P
	35	43	1	5	2	0	1	37	0
	34	42	3		7	70	28	42	1.
	36	44	3	5	50	42	8	5	0
	37	47	1	9	5	43	35	2	0
Grand Avg No. Cght Pent Avg Cght* Avg Pcnt Occ*				7	11	24	27	15	1
				15	12	20	10	9	4
				60	46	61	41	51	10
	Forebay Sluice Effluent					1	1	0	P
						7	1	63	9
							0		0
	Avg Pent Occ					67	30	50	26

blank = no samples, $0=$ species absence, $P=$ presence less than 1
*see Appendix A for explanation of terms.
$\dagger=$ no compensation for seine size change in mid-September

Table 7-11. Average Number American Shad Caught/7 Minutes (Bottom Trawls)

	$\begin{aligned} & \hline \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{I} \\ \mathbf{L} \\ \mathbf{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathbf{P} \\ \mathrm{~T} \\ \mathrm{H} \\ \hline \end{gathered}$	1969					
					$\begin{aligned} & \hline \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	0	P	1	0		
	5	36	1	12	0	P	0	0	0	0
	3	35	3	10	P	P	1	0	0	0
	7	38	3	11	0	0	0	0	0	0
	8	39	1	12	0	0	0	P	P	0
	9	40	3	12	0	0	0	P	0	0
	12	44	3	12	0	0	0	P	0	0
$\begin{aligned} & \text { A } \\ & \text { y } \\ & \text { Ma } \end{aligned}$	2	29	3	26	0	0	0	0		
	4	35	2	34	0	0	2	0	0	0
	6	38	2	30	0	P	0	0	0	0
	15	40	1	45			0	P	P	0
	16	41	3	45			0		0	0
	11	42	2	50	0	0	0	P	0	0 -
	10	42	3	45	0	P	0	P	0	0
	13	45	1	50	0	P	0	0	0	0
	14	47	3	47	0	0	0	0	0	0
Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *					P	P	P	P	P	0
					P	P	P	P	P	0
					01	09	10	09	04	0

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-12. Average Number American Shad Caught/Haul (Beach Seines) ${ }^{\dagger}$

S	M	S						
A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{E} \end{aligned}$	June/ July	Aug	Sept	Oct	Nov	Dec
31	35	1		1	6	1	0	
32	35	3	0	1	1	0	0	
38	40	1			0	3	0	0
33	40	3	0	1	3	P	P	0
39	41	3					0	0
35	43	1	0	P	0	0	0	0
34	42	3		1	P	1	P	0
36	44	3	0	3	3	0	0	0
37	47	1	0	1	0	1	0	0
Grand Avg No. Cght Pent Avg Cght* Avg Pent Occ*			0	1	2	1	P	0
			0	1	1	P	P	0
			0	50	38	22	05	0

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1
*see Appendix A for explanation of terms.
$t=$ no compensation for seine size change in mid-September
specimens and surface trawling only 3. No specimens were collected in December and only
1 occurred in a bottom trawl during July. The shad caught in bottom trawls were larger (72 to 145 mm) than those obtained by seining (62 to 96 mm). However, these few data do not provide a sufficient basis for establishing trends at this time.

7.3.2.4 Bay Anchovy, Anchoa mitchilli (Valenciennes)

The bay anchovy is a schooling species found in coastal salt waters and brackish waters (ranging from Mexico to Maine). .This species has a long spawning season from late spring to September in the New York area. Eggs are buoyant when spawned, but gradually become demersal. Young-of-the-year fish, immatures and adults are abundant from late spring to early autumn in the lower Hudson River.

Young and adults of this pelagic schooling species are an important food item for larger carnivorous fishes.

The anchovy numerically is by far the most abundant fish caught by trawls within the study area. This species comprised 43 percent of the bottom trawl and 68 percent of the surface trawl catches. It comprised less than a percent of the beach seine populations, occurring only in small numbers in 11 catches from August through October.

The highest concentrations of the anchovy were observed during the months of August through October and were confined primarily to Haverstraw Bay (Tables 7-13 and 7-14). There appears to be a general dispersal of the anchovy population from lower Haverstraw Bay in July throughout the entire Bay during August. The anchovy was caught in every surface and bottom trawl sample taken in September. There is an abrupt decrease and general disappearance of the anchovy from the study area during November and December. This species occurred at only 3 of the 14 bottom trawl stations sampled during December and the three stations $(10,11,15)$ were located in the immediate vicinity of the Indian Point and Lovett power plants (Table 7-13). Yet, the implied correlation of the species with heated effluents is weakened by the complete absence of this species from all surface trawl collections in December (Table 7-14).

Table 7-13. Average Number Bay Anchovy Caught/7 Minutes
(Bottom Trawls)

	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \hline \mathbf{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	1969					
					$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
$\begin{aligned} & \text { 若 } \\ & \text { H } \\ & \text { S } \\ & \text { 岂 } \end{aligned}$	1	29	1	10	84	3620	918	9		
	5	36	1	12	233	1248	14	0	0	0
	3	35	3	10	93	521	2820	0	0	0
	7	38	3	11	13	182	1423	0	0	0
	8	39	1	12	14	185	622	40	P	0
	9	40	3	12	24	3376	1298	6	1	0
	12	44	3	12	17	7	3161	31	0	0
$$	2	29	3	26	27	356	58	10		
	4	35	2	34	66	570	135	13	2	0
	6	38	2	30	3	818	283	22	0	0
	15	40	1	45			11	82	2	1
	16	41	3	45			90		0	0
	11	42	2	50	0	38	114	88	P	2
	10	42	3	45	P	32	75	84	0	P
	13	45	1	50	P	1	25	0		0
	14	47	3	47	0	3	16	6	0	0
	Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *				41	783	691	26	P	P
					10	64	71	6	P	P
					51	83	100	66	12	09

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-14. Average Number Bay Anchovy Caught/7 Minutes
(Surface Trawls)

	S									
	A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \hline \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10				498		
	5	36	1	12						
	3	35	3	10				122	0	0
Hel	7	38	3	11		432	365	113	P	0
至	8	39	1	12			77	0	P	0
	9	40	3	12			226	0	1	0
	12	44	3	12		0	45	0	0	0
	2	29	3	26				476		
	4	35	2	34				605	2	0
	6	38	2	30				263	1	0
	15	40	1	45			80	1	0	0
M	16	41	3	45					0	0
	11	42	2	50			96	2	0	0
	10	42	3	45		8	213	14	0	0
	13	45	1	50				8	1	0
	14	47	3	47				6		
Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *	Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *					146	157	151	P	0
					78	80	70	P	0	
					50	1	75	23	0	

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

7.3.2.5 Striped Bass, Morone saxatilis (Walbaum)

The striped bass is an anadromous species, ascending rivers in the spring to spawn; its general geographic range spans from northern Florida to New Brunswick. Spawning occurs from May to June in the Hudson River in fresh to slightly brackish waters. The eggs are demersal to semibuoyant, nonadhesive and are laid when water temperatures range between 58 and 67 degrees F. After spawning, adults generally return to sea. Larvae and young-of-the-year remain in freshwaters and estuaries. Striped bass in the Hudson may remain in the estuary for two to three years before migrating to the sea. During winter, adults and young are found in the lower Hudson. Young striped bass are very abundant in the Hudson River.

This species is very important in the Hudson because of commercial, sportfishing and aesthetic values.

Striped bass comprise ten percent of the bottom trawl samples and rank third in numbers caught. It is the most important species in the shore population, comprising 22 percent of the beach seine collections. Striped bass occur only rarely in surface trawls.

This species, like white perch, shows a definite preference for the bottom waters in shoal areas (Tables 7-15 and 7-16). Only small numbers were collected in the bottom trawls at the channel stations north of Stony Point whereas large numbers are caught in Haverstraw Bay and at shoal station 12 in Peekskill Bay. Striped bass during the summer-fall of 1969 occurred in 63 to 90 percent of all bottom trawl collections. Except for July (60 percent) and December (42 percent), this species occurred in 90 to 99 percent of all beach seine samples.

Seasonally, the higher concentrations of striped bass in bottom trawls are observed during the warmer months (July through October) with a general decline occurring in November through December (Table 7-15). In the seine collections, the higher numbers are noted in the October through November samples (Table 7-16). This species becomes nearly ubiquitous in the bottom and shore populations in October when it occurs in 90 percent of the bottom trawl collections and 99 percent of the seine samples.

Table 7-15. Average Number Striped Bass Caught/7 Minutes

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-16. Average Number Striped Bass Caught/Haul (Seines and Plant Site) ${ }^{\dagger}$

$\begin{aligned} & \text { N } \\ & \underset{末}{\#} \end{aligned}$									
		L	T	$\begin{gathered} \text { June/ } \\ \text { July } \end{gathered}$	Aug	Sept	Oct	Nov	Dec
	31	35	1		32	19	228	70	
	32	35	3	6	15	20	256	101	
	38	40	1			1	19	79	32
	33	40	3	13	19	13	63	35	3
	39	41	3					37	15
	35	43	1	2	1	5	4	10	1
	34	42	3		49	12	25	17	12
	36	44	3	0	7	1	29	2	0
	37	47	1	17	4	16	17	2	0
Grand Avg No. Cght Pent Avg Cght* Avg Pent Occ*				8	18	11	80	39	9
				17	20	9	28	24	33
				60	90	90	99	93	42
	Forebay Sluice Effluent					12	16	15	42
						41	24	25	31
							P		0
	Avg Pent Occ					100	100	100	91

blank = no samples, $0=$ species absence, $P=$ presence less than 1
*see Appendix A for explanation of terms.
$t=$ no compensation for seine size change in mid-September

7.3.2.6 Atlantic Tomcod, Microgadus tomcod (Walbaum)

The tomcod has been reported as far south as Virginia, but is not abundant south of New York, although its general geographic range is between Virginia and Canada. It is a coastal benthic species that spawns demersal and adhesive eggs in estuaries. Spawning occurs in the Hudson River from December through February; adults and young are found in the river throughout the year.

Tomcod feed on a variety of organisms including small crustaceans, especially shrimp and amphipods, worms, small mollusks, squids and small fish. There is no commercial value for this fish in the Hudson. Some sportsfishermen catch this species.

Within the study area tomcod comprised 10 percent of the bottom fish samples (18 percent if anchovy is excluded), ranging third in numbers caught with a definite preference for the deeper water channel areas. This species occurred only rarely in surface trawls (1 to 3 specimens in 4 tows) (Table 7-2) and only a few specimens in the beach seines during November and December (Table 7-3). This latter occurrence may be related to the overall decrease in river temperature and/or preliminary spawning activity.

The seasonal trends in the average number of tomcod caught in bottom trawls at a station indicate that for the channel stations the higher concentrations generally occur during July and August. These higher concentrations show an apparent down-river shift from the vicinity of Iona Island (station 13) in July to Haverstraw Bay in October. On the other hand, for the shoal stations the higher concentrations occur during November through December, e.g., stations 5, 8, 9 and 12 (Table 7-17). This late fall increase in numbers in shoal areas also appears to be accompanied by more uniform dispersion of the tomcod over the river bottom. The average percent occurrence, which is a measure of the geographic dispersion of a species within the study area, indicates that whereas tomcod occur in only 58 percent of the samples during August, they occur in every bottom trawl collection during November and December (Table 7-17). Again, this has a possible correlation with spawning activity.

Table 7-17. Average Number Tomcod Caught/7 Minutes (Bottom Trawls)

	S									
	A	L	$\begin{aligned} & \mathrm{T} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	67	2	1	156		
	5	36	1	12	4	16	9	2	168	69
	3	35	3	10	24	1	1	0	13	3
A	7	38	3	11	98	P	1	3	50	7
采	8	39	1	12	10	0	P	7	70	153
	9	40	3	12	2	20	1	6	76	11
	12	44	3	12	2	1	0	P	26	26
	2	29	3	26	141	238	275	120		
	4	35	2	34	141	251	4	126	135	13
	6	38	2	30	104	23	28	30	208	1
	15	40	1	45			106	38	54	57
品	16	41	3	45			22		39	67
A	11	42	2	50	234	307	17	1	83	57
	10	42	3	45	513	145	29	3	40	35
	13	45	1	50	187	50	23	6		11.
	14	47	3	47	77	16	22	32	29	24
Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *	Grand Avg No. Cght Pent Avg Cght * Avg Pent Occ *				115	76	34	35	76	38
					29	6	3	9	18	18
					88	58	67	71	100	100

blank = no samples, $0=$ species absence, $\mathbf{P}=$ presence less than 1

* see Appendix A for explanation of terms.

7.3.2.7 White Perch, Morone americana (Gmelin)

This species is found in fresh, brackish and coastal saltwater between South Carolina and Nova Scotia. Spawning of demersal and adhesive eggs occurs in fresh and brackish water from April to June, depending on geographic location, and at water temperatures between 45 and 60 degrees F. Young and adults remain in fresh or brackish waters. They are not bottom fish except in winter when they congregate in the deeper parts of bays and rivers where they remain sluggish until spring. During spring, summer and autumn, localized wandering occurs. This species feeds on invertebrates and small fish.

This is one of most abundant species in the lower Hudson River and is found throughout the year in all life stages. People fish for the white perch from shore in many localities.

Numerically, white perch ranks second only to bay anchovy in the bottom trawl collections and second only to striped bass in the seines. It comprises 13 percent of the former and 19 percent of the latter. This species occurs only rarely in surface trawl samples.

White perch, like the striped bass, prefers the bottom waters in shoal areas. However, comparisons of the average percent occurrence in bottom trawls and beach seines indicate that the white perch has a greater preference for the river shoals versus that of the striped bass for the near shore areas (Tables 7-15, 7-16, 7-18 and 7-19).

Seasonally, in the bottom trawls the white perch exhibits moderate concentrations in the warmer months (July through September) and generally higher concentrations from October through December. This trend is reversed for striped bass. Like the striped bass, the peak numbers of white perch in the seine collections are recorded during October through November. In December, the white perch shows a more rapid disappearance from the shore populations than does the striped bass.

Table 7-18. Average Number White Perch Caught/7 Minutes (Bottom Trawls)

		\mathbf{M}	S	D						
	A	$\begin{aligned} & \mathbf{L} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	June/ July	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	18	24	17	218		
	5	36	1	12	33	61	64	126	270	20
	3	35	3	10	32	13	20	65	15	3
H	7	38	3	11	57	46	51	173	212	49
胥	8	39	1	12	108	78	60	24	180	602
	9	40	3	12	55	212	281	348	423	101
	12	44	3	12	91	229	331	106	237	309
	2	29	3	26	27	14	20	30		
	4	35	2	34	16	10	1	18	38	64
	6	38	2	30	37	25	4	34	40	43
	15	40	1	45			3	42	15	44
国	16	41	3	45			0		17	101
	11	42	2	50	12	1	2	2	12	264
	10	42	3	45	4	2	9	1	40	28
	15	45	1	50	1.	2	9	4		8
	14	47	3	47	5	10	17	16	27	7
Grand Avg No. Cght Pcnt Avg Cght * Avg Pent Occ *	Grand Avg No. Cght Pcnt Avg Cght * Avg Pent Occ *				35	52	56	80	117	117
					9	4	6	20	28	54
					94	76	75	87	98	100

blank = no samples, $0=$ species absence, $P=$ presence less than 1

* see Appendix A for explanation of terms.

Table 7-19. Average Number White Perch Caught/Haul (Seines and Plant Site) ${ }^{\boldsymbol{\dagger}}$

blank $=$ no samples, $0=$ species absence, $P=$ presence less than 1
*see Appendix A for explanation of terms.
**(100 in forebay and sluice)
$t=$ no compensation for seine size change in mid-September

7.4 Results at the Community Level

7.4.1 Community Overlap Index

The community overlap index has appeared in the literature under many aliases, such as percent overlap and index of overlap.* This index is a measure of the proportional overlap between percent frequency histograms of the species assemblages at two stations. Here, the values of average number caught per species per unit effort at a station for a type gear and month are first percentized. This percent species composition is then compared with the percent composition from another station by matching species and summing the lower percentage between each species pair (i.e., the amount of overlap) until all pairs have been compared. Thus, this index of compositional similarity ranges from 0 which signifies that the stations being compared have no species in common to a value of 100 (i.e., 100 percent) in which there is a perfect match in terms of both species and proportions,**

A minor weakness of this index is that it is not very sensitive to the fluctuations among the rarer and, therefore, presumably less important species. However, this is balanced by the usefulness of this index as an easily understood measure of the general faunal similarity between station pairs. Moreover, because this index is based on percentized data, it facilitates the comparison of the fauna collected with the different gear types.***

* Ruddiman, Tolderlund and Be 1970. Foraminiferal evidence of a modern warming of the North Atlantic Ocean. Deep Sea Research, Volume 17, pages 141-155.
Raney 1969. An ecological study of the Delaware River in the vicinity of Artificial Island. Ichthyological Associates, Delaware Progress Report I (June-December 1968).
** Consider the following hypothetical situation. At Station X in August, species A, B and C comprise 20,50 and 30 percent respectively, of the average number of fish caught per unit effort by bottom trawls. At Station Y during August, species A, B and C constitute 40,10 and 50 percent, respectively. The amount of overlap between the species is 20,10 and 30 percent, respectively. Summing these overlaps results in a community overlap index of 60 between Stations X and Y based on the bottom trawl data for August.
*** In the future, the community overlap index could be utilized to compare differences related to other factors such as day vs night sampling and relative catch data at various tide stages.

7.4.1.1 Monthly Community Overlap

Station 10 is located in the immediate vicinity of the Indian Point power station in 45 feet of water (Figure 3-1). An examination of the monthly community overlap indices using the botton trawl data at this station as a reference (Figures 7-1 through 7-6) indicates the following hierachy of decreasing faunal similarity:
a) channel stations immediate vicinity of Indian Point - most similar
b) up-river channel stations
c) down-river channel stations
d) shoal stations
e) surface trawl collections
f) seine collections - least similar.

This hierarchy suggests that depth is the dominant factor controlling the general distribution of the fish species within the study area.

The constriction of the river in the vicinity of Stony Point and the concomitant up-stream increase in depth creates a habitat change which is reflected in the fish community characteristic of the northern half of the study area and that characteristic of Haverstraw Bay. This is to say, a community characteristic of water depths (station depths) averaging 45 to 50 feet and one characteristic of water depths less than 35 feet and averaging 10 to 12 feet.

Figure 7-1. Overlap Trends Bottom Trawl Data Station 10, June \& July 1969

Figure 7-2. Overlap Trends Bottom Trawl
Data Station 10, August

Figure 7-3. Overlap Trends Bottom Trawl
Data Station 10, September

Figure 7-4. Overlap Trends Bottom Trawl Data Station 10, Octaber

Figure 7-5. Overlap Trends Bottom

Figure 7-6. Overlap Trends Bottom
Trawl Data Station 10, December

The existence of two major fish communities is supported by the fact that the amount of overlap with station 10 exhibited by the channel stations north of Stony Point is noticeably greater than that of the stations to the south (Figures 7-1 through 7-6). This is true during: July, August, September and December. In October, except for stations 11 and 15 in the immediate vicinity of Indian Point, there are no important overlaps. In November, major overlaps (82 to 84 percent) occur between the Haverstraw channel stations 4,6 , and 10 . This is attributable primarily to a brief influx of hogchoker at these stations.

The effect of river mile in this particular situation is shown by an ansis of the trends of overlap both above and below Indian Point (Figures 7-1 through 7-6). For example, a monthly comparison of stations 13 (mile 45) and 14 (mile 47) reveals that in 4 out of 5 cases there is a 6 to 14 percent decrease in the amount of overlap with station 10 from station 13 to 14. While it is doubtful that these small differences in themselves are significant, there is the suggestion of a trend of decreasing overlap with increasing distance from station 10.

However, similar comparisons between station 10 and stations 6 (mile 38), 4 (mile 35) and 2 (mile 29) seem to contradict this trend. Here the average overlap values are 44, 49, and 48 percent, respectively. This contradiction appears to be the result of localized conditions at station 6 which result in generally lower tomcod concentrations here than at stations 4 and 2 (Table 7-17). In those months in which station 10 is characterized by significant proportions of tomcod (July through August and in December) there are correspondingly higher values of overlap with stations 4 and 2 than with station 6.*

Thus, at station 10 the monthly community overlap values based on bottom-trawl data indicate that depth is the principal factor controlling community structure during the summerfall of 1969. River mile has a less obvious effect on the community structure.

[^5]
7.4.1.2 Average Community Overlap

Averages of monthly community overlap values summarize the patterns of faunal similarity among stations during summer-fall 1969. Only within-gear values have been tabulated (Tables 7-20 through 7-22) although among-gear values have been calculated and selected values are shown on accompanying figures.

Monthly trends can be visualized in the average overlap map based on the bottom trawl data from station 10 (Figure 7-7). Marked differences noted earlier between the area north of Stony Point and the Haverstraw Bay area are readily apparent. The within-area (shoal versus channel) differences are also obvious.

Aside from the highest overlap with the immediately adjacent station 11 (74 percent), the next highest average overlap (63 percent) occurs with the bottom fauna at station 15 in the . immediate vicinity of the Lovett power station. The implication that this similarity between stations 10 and 15 is somehow related to their proximity to a power station can only be considered speculation at this stage of investigation and could equally well be explained by the geographic proximity.

The shore populations samples by the seine have little resemblance to either the deep water bottom trawl or the surface trawl populations. In both c ses the average amount of overiap never exceeds 26 percent (Figures 7-7 and 7-8). On the other hand there is a noticeable increase in the similarity between the bottom fish populations in shoal waters and the shore populations. For example, comparisons of average overlap made separately on the bottom trawl data at station 9 (mile 40) and station 12 (mile 44) show ranges of 20 to 48 percent overlap with the seine populations. Still, the distinction between the shoal and shore populations is readily apparent (Figures 7-9 and 7-10).

The average community overlap values for the surface trawl data at station 10 indicate that the two faunal communities, suggested by the bottom trawl data, do not exist in the surface waters (Figure 7-8). Rather, all surface trawl stations have an overlap with station 10 that ranges from 37 to 61 percent. In 8 out of 12 stations the overlap exceeds 50 percent. The dissimilarity between the surface and bottom populations at station 10 is further evidenced by the fact that there was only an average of 24 percent overlap between the surface and bottom populations.

Table 7-20. Average Community Overlap (\%) June-December, 1969
(Bottom Trawls)

Table 7-20A. Community Overlap (\%) June-July, 1969 (Bottom Trawls)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Community Overlap (\%)															
				1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	51	64	59	69	67	71	39	44	0	0	37	28	31	28	39
2	29	3	26	51	X	20	27	77	61	49	18	23	0	0	71	64	65	16	72
5	36	1	12	64	20	X	75	38	37	46	63	61	0	0	7	3	5	31	10
3	35	3	10	59	27	75	X	37	40	50	73	59	0	0	13	9	11	28	15
4	35	2	34	69	77	38	37	X	63	53	18	23	0	0	63	55	57	18	66
6	38	2	30	67	61	37	40	63	X	82	47	47	0	0	52	45	45	39	56
7	38	3	11	71	49	46	50	53	82	X	54	57	0	0	38	30	32	40	41
8	39	1	12	39	18	63	73	18	47	54	X	80	0	0	9	4	6	54	11
9	40	3	12	44	23	61	59	23	47	57	80	X	0	0	8	4	6	67	11
15	40	1	45	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0	0
16	41	3	45	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0
11	42	2	50	37	71	7	13	63	52	38	9	8	0	0	X	90	91	6	95
10	42	3	45	28	64	3	9	55	45	30	4	4	0	0	90	X	93	2	87
± 3	45	1	50	31	65	5	11	57	45	32	6	6	0	0	91	93	X	3	88
12	44	3	12	28	16	31	28	18	39	40	54	67	0	0	6	2	3	X	9
14	47	3	47	39	72	10	15	66	56	41	11	11	0	0	95	87	88	9	X

Table 7-20B. Community Overlap (\%) August, 1969 (Bottom Trawls)

\mathbf{S}	\mathbf{M}	\mathbf{S}	D	Community Overlap (\%)															
	E	E	H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	49	85	85	62	68	31	18	82	0	0	9	17	3	3	5
2	29	3	26	49	X	59	58	84	59	38	24	53	0	0	45	53	47	11	36
5	36	1	12	85	59	X	96	67	81	44	28	90	0	0	12	22	8	17	14
3	35	3	10	85	58	96	X	66	82	45	27	89	0	0	11	22	7	17	12
4	35	2	34	62	84	67	66	X	67	34	21	65	0	0	41	50	40	9	34
6	38	2	30	68	59	81	82	67	X	60	28	76	0	0	12	24	8	20	13
7	38	3	11	31	38	44	45	34	60	X	58	48	0	0	10	24	7	51	29
8	39	1	12	18	24	28	27	21	28	58	X	35	0	0	10	24	7	54	28
9	40	3	12	82	53	90	89	65	76	48	35	X	0	0	11	24	7	21	21
15	40	1	45	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0	0
16	41	3	45	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0
11	42	2	50	9	45	12	11	41	12	10	10	11	0	0	X	84	53	5	41
10	42	3	45	17	53	22	22	50	24	24	24	24	0	0	84	X	48	14	40
13	45	1	50	3	47	8	7	40	8	7	7	7	0	0	53	48	X	10	64
12	44	3	12	3	11	17	17	9	20	51	54	21	0	0	5	14	10	X	33
14	47	3	47	5	36	14	12	34	13	29	28	21	0	0	41	40	64	33	X

Table 7-20C. Community Overlap (\%) September, 1969 (Bottom Trawls)

S	M	S	D	Community Overlap (\%)															
	E	E	H	1	2	5	3	4	6	7	8	9	15	16	11	10	$1: 3$	12	14
1	29	1	10	X	13	19	90	62	80	90	91	78	7	37	68	23	29	78	15
2	29	3	26	13	X	17	12	20	26	14	15	15	70	31	32	52	59	15	50
5	36	1	12	19	17	X	10	14	20	26	23	40	19	20	22	21	30	23	32
3	35	3	10	90	12	10	X	63	80	81	86	69	7	37	67	21	27	77	14
4	35	2	34	62	20	14	63	X	74	64	64	64	22	50	73	33	40	64	30
6	38	2	30	80	26	20	80	74	X	84	82	70	27	54	85	38	44	80	31
7	38	3	11	90	14	26	81	64	84	X	89	80	15	45	75	26	89	88	42
8	39	1	12	91	15	23	86	64	82	89	X	81	9	39	70	26	37	86	23
9	40	3	12	78	15.	40	69	64	70	80	81	X	8	38	69	25	37	78	25
15	40	1	45	7	70	19	7	22	27	15	-9	8	X	43	39	42	66	19	57
16	41	3	45	37	31	20	37	50	54	45	39	38	43	X	66	42	61	49	43
11	42	2	50	68	32	22	67	73	85	75	70	69	39	66	X	42	56	75	44
10	42	3	45	23	52	21	21	33	38	26	26	25	42	42	42	X	57	27	49
13	45	1	50	29	50	30	27	40	44	39	37	37	66	61	56	57	X	46	71
12	44	3	12	78	15	23	77	64	80	88	86	78	19	49	75	27	47	X	27
14	47	3	47	15	50	32	14	30	31	22	23	25	57	43	44	49	71	27	X

Table 7-20D. Community Overlap (\%) October, 1969 (Bottom Trawls)

S	M	S	D	Community Overlap (\%)															
			H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	41	65	55	63	67	63	37	45	39	0	16	24	33	48	30
2	29	3	26	41	X	18	13	56	40	13	28	17	53	0	17	23	49	31	64
5	36	1	12	65	18	X	54	38	69	70	46	37	25	0	17	22	27	30	15
3	35	3	10	55	13	54	X	18	33	63	44	43	19	0	13	18	22	53	9
4	35	2	34	63	56	38	18	X	63	39	26	19	43	0	8	21	35	16	44
6	38	2	30	67	40	69	33	63	X	62	41	31	51	0	23	35	34	37	38
7	38	3	11	63	13	70	63	39	62	X	23	44	21	0	4	14	10	35	11
8	39	1	12	37	28	46	44	26	41	23	X	27	26	0	31	37	28	59	18
9	40	3	12	45	17	37	43	19	31	44	27	X	26	0	27	28	12	50	14
15	40	1	45	39	53	25	19	43	51	21	26	26	X	0	42	50	43	34	43
16	41	3	45	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0
11	42	2	50	16	17	17	13	8	23	4	31	27	42	0	X	82	18	39	15
10	42	3	45	24	23	22	18	21	35	14	37	28	50	0	82	X	16	36	17
13	45	1	50	33	49	27	22	35	34	10	28	12	43	0	18	16	X	27	76
12	44	3	12	48	31	50	58	16	37	35	59	50	34	0	39	36	27	X	19
14	47	3	47	30	64	15	9		38	11	18	14	53	0	15	17	76	19	X

Table 7-20E. Community Overlap (\%) November, 1969 (Bottom Trawls)

S	M	\mathbf{S}	D	Community Overlap (\%)															
	E	E	H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	29	3	26	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	36	1	12	0	0	X	75	25	25	76	87	65	30	58	23	37	0	72	65
3	35	3	10	0	0	75	X	25	24	66	69	63	31	60	22	35	0	57	70
4	35	2	34	0	0	25	25	X	94	24	30	20	89	41	90	84	0	15	42
6	38	2	30	0	0	25	24	94	X	20	28	17	91	40	90	82	0	11	43
7	38	3	11	0	0	76	66	24	20	X	81	82	24	46	20	34	0	73	54
8	39	1	12	0	0	87	69	30	28	81	X	70	33	51	25	38	0	77	61
9	40	3	12	0	0	65	63	20	17	82	70	X	22	37	17	30	0	69	52
15	40	1	45	0	0	30	31	89	91	24	33	22	X	45	88	87	0	15	50
16	41	3	45	0	0	58	60	41	40	46	51	37	45	X	37	49	0	32	73
11	42	2	50	0	0	23	22	90	90	20	25	17	88	37	X	83	0	12	40
10	42	3	45	0	0	37	35	84	82	34	38	30	87	49	83	X	0	26	54
13	45	1	50	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0	0
12	44	3	12	0	0	72	57	15	11	73	77	69	15	32	12	26	0	X	43
14	47	3	47	0	0	65	70	42	43	54	61	52	50	73	40	54	0	43	X

Table 7-20F. Community Overlap (\%) December, 1969 (Bottom Trawls)

S	M	S	D	Community Overlap (\%)															
			H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	29	3	26	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	36	1	12	0	0	X	58	37	22	33	40	47	51	58	32	63	70	26	82
3	35.	3	10	0	0	58	X	41.	26	34	44	37	45	45	36	43	52	29	46
4	35	2	34	0	0	37	41	X	83	91	95	57	43	75	79	53	54	43	41
6	38	2	30	0	0	22	26	83	X	83	81	56	33	62	71	42	40	42	26
7	38	3	11	0	0	33	34	91	83	X	90	64	37	69	75	47	49	50	34
8	39	1	12	0	. 0	40	44	95	81.	90	X	57	46	78	78	56	58	44	44
9	40	3	12	0	0	27	37	57	56	64	57	X	34	59	59	44	52	75	28
15	40	1	45	0	0	51	45	43	33	37	46	34	X	62	60	71	57	30	56
16	41	3	45	0	0	58	45	75	62	69	78	59	62	X	74	77	76	44	62
11	42	2	50	0	0	32	36	79	71	75	78	59	50	74	X	- 64	52	42	36
10	42	3	45	0	0	63	43	53	42	47	56	44	71	77	64	X	82	40	68
13	45	1	50	0	0	70	52	54	40	49	58	52	57	76	52	82	X	. 43	74
12	44	3	12	0	0	26	29	43	42	50	44	75	30	34	42	40	43	X	
14	47	3	47	0	0	82	46	41	26	34	44	28	56	62	36	: 68	74		χ

Table 7-21. Average Community Overlap (\%) August-December, 1969
(Surface Trawls)

Table 7-21A. Community Overlap (\%) September, 1969 (Surface Trawls)*

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Community Overlap (\%)															
				1	2	5	3	4	6	7	8	9	15	16	11	10	13	2	14
1	29	1	10	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	29	3	26	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	36	1	12	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0
3	35	3	10	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0
4	35	2	34	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0
6	38	2	30	0	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0
7	38	3	11	0	0	0	0	0	0	X	69	68	83	0	67	90	0	3	0
8	39	1	12	0	0	0	0	0	0	69	X	83	85	0	85	77	0		0
9	40	3	12	0	0	0	0	0	0	68	83	X	73	0	72	77	0	5	0
15	40	1	45	0	0	0	0	0	0	83	85	73	X	0	82	87	0	6	0
16	41	3	45	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0
11	42	2	50	0	0	0	0	0	0	67	85	72	82	0	X	71	0	0	0
10	42	3	45	0	0	0	0	0	0	90	77	77	87	0	71	X	0	5	0
13	45	1	50	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0	0
12	44	3	12	0	0	0	0	0	0	53	70	55	66	0	70	55	0	X	0
14	47	3	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X

Too few collections in August for useful presentation.

Table 7-21B. Community Overlap (\%) October, 1969 (Surface Trawls)

S	M	S	D	Community Overlap (\%)															
			H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	97	0	72	92	96	58	7	5	3	0	6	38	17	3	18
2	29	3	26	97	X	0	69	91	93	55	4	4	2	0	3	36	14	1	15
5	36	1	12	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0
3	35	3	10	72	69	0	X	74	77	74	24	20	16	0	22	59	39	15	46
4	35	2	34	92	91	0	74	X	94	64	12	10	5	0	6	39	16	1	21
6	38	2	30	96	93	0	77	94	X	60	11	7	3	0	8	41	19	5	22
7	38	3	11	58	55	0	74	64	60	X	27	33	27	0	30	49	41	3	45
8	39	1	12	7	4	0	24	12	11	27	X	12	5	0	10	23	18	24	35
9	40	3	12	5	4	0	20	10	7	33	12	X	93	0	93	14	75	1	51
15	40	1	45	3	2	0	16	5	3	27	5	93	X	0	93	13	74	1	45
16	41	3	45	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0
11	42	2	50	6	3	0	22	6	8	30	10	93	93	0	X	19	81	6	52
10	42	3	45	38	36	0	59	39	41	49	23	15	13	0	19	X	38	23	54
13	45	1	50	17	14	0	39	16	19	41	18	75	74	0	81	38	X	12	71
12	44	3	12	3	1	0	15	1	5	3	24	1	1	0	6	23	12	X	27
14	47	3	47	18	15	0	46	21	22	45	35	51	45	0	52	54	71	27	x

Table 7-21C. Community Overlap (\%) November, 1969 (Surface Trawls)

\mathbf{S}	\mathbf{M}	\mathbf{S}	D	Community Overlap (\%)															
	E		H	1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	29	3	26	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	36	1	12	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0
3	35	3	10	0	0	0	X	64	95	88	72	93	63	45	93	91	67	52	0
4	35	2	34	0	0	0	64	X	67	74	80	69	75	56	71	73	78	68	0
6	38	2	30	0	0	0	95	67	X	90	74	94	64	34	93	90	70	54	0
7	38	3	11	0	0	0	88	74	90	X	80	93	70	51	94	94	75	60	0
8	39	1	12	0	0	0	72	80	74	80	X	78	87	66	79	81	90	78	0
9	40	3	12	0	0	0	93	69	94	93	78	X	68	49	97	95	72	57	. 0
15	40	1	45	0	0	0	63	75	64	70	87	68	X	78	70	:72	93	89	0
16	41	3	45	0	0	0	45	56	44	51	66	49	78	X	52	54	74	85	0
11	42	2	50	0	0	0	93	71	93	94	79	97	70	52	X	97	74.	54	0
10	42	3	45	0	0	0	91	73	90	94	81	95	72	54	97	X	76	61	0
13	45	1	50	0	0	0	67	78	70	75	90	72	93	74	74	76	X	83	0
12	44	3	12	0	0	0	52	68	54	60	78	57	89	85	59	61	83	X	0
14	47	3	47	0	0		0	0	0	0	0	0	0	0		0	0	0	

Table 7-21D. Community Overlap (\%) December, 1969 (Surface Trawls)

S	M	S	D	Community Overlap (\%)															
	E	E		1	2	5	3	4	6	7	8	9	15	16	11	10	13	12	14
1	29	1	10	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	29	3	26	0	X	0	0	0	0	0	0	- 0	. 0	0	0	0	0	0	0
5	36	1	12	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0
3	35	3	10	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0
4	35	2	34	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0
6	38	2	30	0	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0
7	38	3	11	0	0	0	0	0	0	X	50	50	53	15	50	59	0	50	0
8	39	1	12	0	0	0	0	0	0	50	X	94	88	18	78	53	0	50	0
9	40	3	12	0	0	0	0	0	0	50	94	X		15	75	47	0	50	0
15	40	1	45	0	0	0	0	0	0	53	88	92	X	21	75	55	3	53	0
16	41	3	45	0	0	0	0	0	0	15	18	15	21	X	31	51	15	31	0
11	42	2	50	0	0	0	0	0	0	50	78	75	75	31	X	53	0	50	0
10	42	3	45	0	0	0	0	0	0	59	53	47	55	51	53	X	12	59	0
13	45	1	50	0	0	0	0	0	0	0	0	0	3	15	0	12	X	50	0
12	44	3	12	0	0	0	0	0	0	50	50	50	53	31	50	59	50	X	0
14	47	3	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X

Table 7-22. Average Community Overlap (\%), June-December 1969 (Beach Seines)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$		Average Community Overlap (\%)								
				31	32	38	33	39	35	34	36	37
31	35.	1			42	44	52	45	24	41	22	25
32	35	3		4	X	43	50	39	47	37	38	38
38	40	1		3	3	X	66	69	29	51	24	33
33	40	3		4	5	4	X	57	40	55	32	45
39	41	3		1	1	2	2	X	46	63	21	31
35	43	1			5.	4	6	2	X	43	32	46
34	42	3			4	4	5	2	5	X	43	55
36	44	3			5	4	6	2	6	5	X	46
37	47	1			5	4	6	2	6	5	6	X

Table 7-22A. Community Overlap (\%) June-July, 1969 (Beach Seines)

$\begin{gathered} \mathbf{S} \\ \mathrm{T} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$			Sein						
			Community Overlap (\%)								
			31	32	38	33	39	35	34	36	37
31	35	1	X	0	0	0	0	0	0	0	0
32	35	3	0	X	0	38	0	17	0	45	25
38	40	1	0	0	X	0	0	0	0	0	0
33	40	3	0	38	0	X	0	55	0	22	68
39	41	3	0	0	0	0	X	0	0	0	0
35	43	1	0	17	0	55	0	X	0	14	57
34	42	3	0	0	0	0	0	0	X	0	0
36	44	3	0	45	0	22	0	14	0	X	26
37	47	1	0	25	0	68	0	57	0	26	X

Table 7-22B. Overlap (\%) August, 1969 (Beach Seines)

$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \end{aligned}$	S	Community Overlap (\%)								
		E	31	32	38	33	39	35	34	36	37
31	35	1	X	60	0	62	0	28	48	23	30
32	35	3	60	x	0	59	0	32	34	37	43
38	40	1	0	0	X	0	0	0	0	0	0
33	40	3	62	59	0	X	0	36	47	40	43
39	41	3	0	0	0	0	X	0	0	0	0
35	43	1	28	32	0	36	0	X	32	42	44
34	42	3	48	34	0	47	0	32	X	32	51
36	44	3	23	37	0	40	0	42	32	X	58
37	47	1	30	43	0	43	0	44	51	58	X

Table 7-22C. Community Overlap (\%) September, 1969 (Beach Seines)

$\begin{array}{\|l} \hline \mathrm{S} \\ \mathrm{~T} \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \end{aligned}$	Community Overlap(\%)								
	E	E	31	32	38	33	39	35	34	36	37
31	35	1	X	30	69	58	0	12	28	6	23
32	35	3	20	X	15	37	0	79	24	19	25
38	40	1	69	15	X	59	0	13	45	28	30
33	40	3	58	37	59	X	0	28	57	37	49
39	41	3	0	0	0	0	X	0	0	0	0
35	43	1	12	79	13	28	0	X	16	22	22
34	42	3	28	24	45	57	0	16	X	72	76
36	44	3	6	19	28	37	0	22	72	X	73
37	47	1	23	25	30	49	0	22	76	73	X

Table 7-22D. Community Overlap (\%), October 1969
(Beach Seines)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \end{aligned}$	Community Overlap (\%)								
	E		31	32	38	33	39	35	34	36	37
31	35	1	X	65	35	51	0	32	43	37	41
32	35	3	65	X	38	54	0	64	44	47	63
38	40	1	35	38	X	74	0	30	64	37	59
33	40	3	51	54	74	x	0	31	71	38	60
39	41	3	0	0	0	0	X	0	0	0	0
35	43	1	32	64	30	31	0	X	33	54	61
34	42	3	43	44	64	71	0	33	X	54	53
36	44	3	37	47	37	38	0	54.	54	X	51
37	47	1	. 41	63	59	60	0	61	53	51	x

Table 7-22E. Community Overlap (\%) November, 1969
(Beach Seines)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	Ine								
			Community Overlap (\%)								
			31	32	38	33	39	35	34	36	37
31	35	1	X	26	27	36	45	25	46	20	8
32	35	3	26	X	75	64	39	42	47	42	35
38	40	1	27	75	X	83	59	42	32	30	20
33	40	3	36	64	83	X	62	49	52	44	26
39	41	3	45	39	59	62	X	43	58	37	22
35	43	1	25	42	42	49	43	X	70	52	38
34	42	3	46	47	42	52	58	70	X	52	33
36	44	3	20	42	30	44	37	52	52	X	70
37	47	1	8	35	20	26	22	38	33	70	X

Table 7-22F. Community Overlap (\%) December, 1969 (Beach Seines)

	M	S	Community Overlap (\%)								
	E	E	31	32	38	33	39	35	34	36	37
31	35	1	X	0	0	0	0	0	0	0	0
32	35	3	0	X	0	0	0	0	0	0	0
38	40	1	0	0	X	48	79	32	52	1	23
33	40	3	0	0	48	X	52	41.	50	10	24
39	. 41	3	0	0	79	52	X	50	68	4	40
35	43	1	0	0	32	41	50	X	62	11	51
34	42	3	0	0	52	50	68	62	X	2	64
36	44	3	0	0	1	10	4	11	2	X	0
37	47	1	0	0	23	24	40	51	64	0	X

Figure 7-7. Overlap Trends on
Bottom Trawl Data, Station 10

Figure 7-8. Overlap Trends on
Surface Trawl Data, Station 10

Figure 7-9. Overlap Trends on Bottom Trawl Data, Station 9

Figure 7-10. Overlap Trends on Bottom Trawl Data, Station 12

7.4.1.3 Station Redundancy

Average community overlap indices can also be used to evaluate general faunal redundancy among stations. For example, the major faunal components of both the surface and bottom populations at stations 11,15 and 16 average greater than 50 percent overlap with the corresponding populations at station 10 (Figures 7-7 and 7-8). That these high values are indicative of similarity among the major faunal components is confirmed by an examination of the actual percent composition data for the bottom trawls from these stations (Table 7-23). Thus, it would be biologically legitimate to pool the data from these stations if it were desired to increase the sample size in the immediate vicinity of Indian Point from a statistical point of view.

Likewise, it is observed that there is a high degree of faunal redundancy among the bottom populations at shoal station 12 and stations 8 and 9 (Figure 7-10) and among shoal station 9 and stations 5, 3, 7, 8 and 12 (Figure 7-9). Seine station 34 in the immediate vicinity of the Indian Point power station could reasonably be pooled with stations $39,38,33$ and 3,7 (Figure 7-11). Seine station 33 has a high degree of faunal similarity with stations 38, 39, and 34 (Figure 7-12).

7.4.1.4 Gear Redundancy

There are no major community overlaps among the gear types-surface trawl, bottom trawl and seine. However, on the basis of efficiency in collection of the key pelagic fish species, the bottom trawl is as effective as the surface trawl in collecting two of the three primary pelagic species, namely, alewife and anchovy (Tables 7-5, 7-6, 7-7, 7-13 and 7-14). Blueback herring are better caught by surface trawling. The fairly ubiquitous abundance distribution of the latter species during the months of August through November (Tables 7-8, 7-9 and 7-10), coupled with the more uniform community overlap among the surface trawl stations (compared to bottom trawl data), suggest that the areal distribution of the blueback herring as well as the vertical distribution of all the pelagic species could be adequately monitored by surface trawling at fewer stations than is presently done. The saved effort could be redirected to, for example, increased sampling frequency elsewhere, if this indication should be confirmed by subsequent data collected throughout the year.

R914

Table 7-23. Percent Abundance Based on the Average Number Caught/Species/7 Minutes (Bottom Trawl Data)

Station		October		November				December			
			1115	10	11	15	16	10	11	15	16
Species											
Code	Name										
1	Alewife	6	112	P	1	P	9	2	2	1	1
2	Bay anchovy		$59 \quad 29$	0	P	1	0	P	P	1	0
3	American shad	P	$\mathrm{P} \quad \mathrm{P}$	0	0	P	0	0	0	0	0
10	American eel	P	P 2	4	2	2	2	1	1	1	P
13	Hogchoker	1	P 21	61	76	65	14	11	19	36	2
14	Johnny darter	0	P P	P	0	0	0	P	0	0	P
19	Menhaden, Atlantic	3	2 P	0	1	1	0	0	0	0	0
22	Blueback herring		215	P	P	3	1	2	0	1	P
25	American smelt	6	29	P	P	1	1	2	1	2	P
28	Spottail shiner		$0 \quad \mathrm{P}$	0	0	0	0	0	0	0	P
30	Striped bass		13	P	P	P	0	0	1	2	2
32	Atlantic tomcod	2	$1 \begin{array}{ll}14\end{array}$	16	17	21	51	46	14	32	37
35	White perch		115		3	6	21	36	62	24	56
	Miscellaneous		20	3	0	0	1	0	0	0	2
Total No. Species			$14 \quad 17$	10	13	14	8	11	10	11	10
Avg Total No. Cght		151	149280	245	490	259	77	87		179	179
Overlap with Station 10		100	$82 \quad 50$	100	83	87	49	100	64	71	77

$\mathbf{P}=$ presence less than 1

Figure 7-11. Overlap Trends on

Figure 7-12. Overlap Trends on
Beach Seine Data, Station 33

7.4.2 Two Faunal Communities

An analysis of the actual fish species caught per gear per station during June through December 1969, plus a consideration of the cumulative number of species caught at each station adds further support to the suggestion that there are two major faunal communities within the bottom and shore populations. As discussed under the section on community overlap, the vicinity of Stony Point appears to represent a natural demarkation between a "Haverstraw Bay" community and a community characteristic of the upper half of the study area. On the basis of presence or absence, there were 9 species caught at every bottom trawl station; 3 (possibly 5) species at every surface trawl station and 9 at every beach seine station with a total of 5 occurring at all bottom trawl and seine stations (Figures 7-13 through 7-15).

Ubiquitous Species

Bottom Trawl
Beach Seine
Species

Rank
4
6
2
3
7
1
3
5
8

Species
alewife 3
blueback
5
white perch 2
striped bass 1
American eel 9
spottail shiner 4
menhaden 7
American shad 8
Atlantic silverside 6

These ubiquitous species comprise the numerically most important species in the study area. The distinction between the upstream and Haverstraw Bay communities is most easily recognized by the general restriction of the fresher-water species only to the northern nalf of the study area. Fresher-water species caught at bottom trawl stations are carp, white sucker, yellow perch, brown bullhead and Johnny darter; those caught at beach seine stations are carp, white sucker, yellow perch, bluegill, pumpkinseed, goldfish and golden shiner.

Trawl stations 8 and 9 and seine stations 33 and 38 , which are located in the vicinity of Stony Point, represent the transition zone between these two faunal areas. This is signified

SPECIES OCCURRENCE BY STATION*

June - December 1969
Bottom Trawl

Species

 Code Name| 2 | Bay anchovy | | | | | | | | | | | | | | | | | | |
| :---: |
| 35 | Banded Killifish | | | | | | | | | | | | | | | | | | |
| 32 | Atlantic tomcod | | | | | | | | | | | | | | | | | | |
| 30 | Striped bass | | | | | | | | | | | | | | | | | | |
| 1 | Alewife | | | | | | | | | | | | | | | | | | |
| 13 | Hogchoker | | | | | | | | | | | | | | | | | | |
| 33 | Blueback herring | | | | | | | | | | | | | | | | | | |
| 10 | American eel | | | | | | | | | | | | | | | | | | |
| 25 | American smelt | | | | | | | | | | | | | | | | | | |
| 19 | Menhaden, Atlantic | | | | | | | | | | | | | | | | | | |
| 45 | Weakfish | | | | | | | | | | | | | | | | | | |
| 39 | Northern pipefish | | | | | | | | | | | | | | | | | | |
| 4 | Bluefish | | | | | | | | | | | | | | | | | | |
| 28 | Spottail shiner | | | | | | | | | | | | | | | | | | |
| 34 | White catfish | | | | | | | | | | | | | | | | | | |
| 3 | American shad | | | | | | | | | | | | | | | | | | |
| 42 | Crevalle jack | | | | | | | | | | | | | | | | | | |
| 7 | Pumpkinseed | | | | | | | | | | | | | | | | | | |
| 5 | Bluegill | | | | | | | | | | | | | | | | | | |
| 29 | Atlantic sturgeon | | | | | | | | | | | | | | | | | | |
| 27 | Shortnose sturgeon | | | | | | | | | | | | | | | | | | |
| 70 | Sturgeon, unident. | | | | | | | | | | | | | | | | | | |
| |
| 14 | Johnny darter | | | ND | D | D | | | | | | | | | | | | | |
| 9 | Carp | | | | N | N | | | | | | | | | | | | | |
| 23 | White sucker | | | | N/D | N/D | | | | | | | | | | | | | |
| 24 | Atlantic silverside | | | | | N | | | | | | | | | | | | | |
| 36 | Yellow perch | | | | | | | | | | | | | | | | | | |
| 6 | Brown bullhead | | | | | | | | | | | | | | | | | | |
| |
| 72 | Winter flounder | | | | | | | | | | | | | | | | | | |
| 12 | Golden shiner | | | | | | | | | | | | | | | | | | |
| 11 | Goldfish | | | | | | | | | | | | | | | | | | |
| 74 | Lamprey, sea | | | | | | | | | | | | | | | | | | |
| 21 | Chain pickerel | | | | | | | | | | | | | | | | | | |
| 31 | Fourspine stickleback | | | | | | | | | | | | | | | | | | |
| |
| Tot | Number of Species | 17 | 16 | 17 | 19 | 26 | 2 | 3 | 27 | 13 | | 8 | 17 | 17 | 13 | 21 | 18 | 21 | 20 |

[^6]Figure 7-13. Species Occurrence by Station (Bottom Trawls)

SPECIES OCCURRENCE BY STATION*

August - December 1969
Surface Trawls

Species
 Code Name

2	Bay anchovy
22	Blueback herring
19	Menhaden, Atlantic
1	Alewife
30	Striped bass
35	White perch
25	American smelt
10	American eel
13	Hogchoker
32	Atlantic tomcod
28	Spottail shiner
24	Atlantic silversid
34	White catfish
45	Weakfish
9	Carp
42	Crevalle jack
3	American shad
23	White sucker
7	Pumpkinseed
14	Johnny darter
36	Yellow perch
11	Goldfish
15	Banded killifish
71	Northern porgy

Total Number of Species

*cf. Table 4-3 Number of Samples Taken
$N=$ November only, $D=$ December only, () = Uncertain value

Note: Rare species at Station 12 occurred in only one October tow - gear appeared to be functioning normally.

Figure 7-14. Species Occurrence by Station (Surface Trawls)

SPECIES OCCURRENCE BY STATION*

June - December 1969 Beach Seines									
Name	Station								
	31	32	33	38	39	34	35	36	37
30 Striped bass									
35 White perch									
1 Alewife									
28 Spottail shiner									
22 Blueback herring									
10 American eel									
3 American shad					- -				
19 Menhaden, Atlantic									
24 Atlantic silverside	N				--				
14 Johnny darter									
2 Bay anchovy									
42 Crevalle jack									
32 Atlantic tomcod	N	N	N/D	N/D	N/D	D	N/D		
4 Bluefish									
34 White catfish									
15 Banded killifish									N
13 Hogchoker									
18 Mummichog						.			
9 Carp					-			N	
7 Pumpkinseed	N				--				
5. Bluegill					- -				
12 Golden shiner									
36 Yellow perch									
11 Goldfish				D					
23 White sucker			D	D					
73 Tidewater silverside									
39 Northern pipefish			N						
31 Fourspine stickleback				N					
40 Redbreast sunfish									
71 Northern porgy									
17 Largemouth bass									
21 Chain pickerel									
6 Brown bullhead							N		N
TOTAL NUMBER OF SPECIES	18	18	21	21	(15)	20	28	22	20

*cf. Table 4-3 Number of Samples Taken
$\mathrm{N}=$ November only, $\mathrm{D}=$ December only, () = Uncertain value

Figure 7-15. Species Occurrence by Station (Beach Seines)
both by the increased number of species occurring at these stations and by the fact that none of the fresher-water species occur south of the Stony Point area during the summer-early fall conditions of higher river salinities (Figures 5-8 through 5-15). With the onset of decreasing river salinities in late fall, several of these species appear to migrate several miles down-river (Figures 7-13 through 7-15).

The most distinctive case of seasonal migration occurs with the tomcod which were observed in the shore populations only during November and December (Figure 7-15). During November an average of from 1 to 3 tomcod were collected per beach seine haul at Stations 31, 32, 38, 33, 39 and 35. None were collected at Stations 34, 36, and 37. In December an average of from 1 to 2 tomcod were collected at Stations 33, 39, 35 and 34. Six individuals on the average were collected at Station 38, while no tomcod were caught at Stations 36 and 37. This occurrence of Atlantic tomcod in the beach seine collections only during November and December may possibly be related to spawning activity (see also Figure 7-15). The bottom trawl data indicated a general preference of this species for the deeper-water channel stations (Table 7-17). This shoaling of a fish which otherwise prefers channel depths is thought to be related to spawning activity.

7.4.3 Faunal Diversity

In addition to evaluating environmental changes by monitoring shifts in compositional similarity (via community overlap), changes in the environment can also be evaluated on the basis of faunal diversity. Decreasing faunal diversity not directly attributable to expected or natural fluctuations is generally taken as a signal of environmental deterioration. In this study faunal diversity will be monitored by counts of the number of species collected and by a species diversity index which takes into account the distribution of individuals among the species.

7.4.3.1 Number of Species

The number of species as a measure of faunal diversity can be considered from several aspects: a) the average number of species per catch, b) the total number of species per station and c) the total number of species within the study area.

One of the inherent weaknesses with the number of species as a measure of diversity is the well known increase in the number of species with increased sample size and/or sampling frequency (cf. Tables 4-3 and 4-4). This increase generally reflects the detection of the rarer species.

This effect of sample frequency on the number of species is readily apparent in the following comparisons based on bottom trawls of 7 minutes duration collected during October. At stations 11, 10 and 13 there were 7, 5, and 1 samples collected, respectively. These yielded a total of 14,12 and 7 species for the month. This implies a direct relationship between the number of samples and total number of species. On the other hand, the average number of species caught per trawl was 6,7 and 7 species with ranges for the month of 2 to 9,2 to 10 and 7 species, respectively. This suggests that a single bottom trawl, on the average, underestimates by about one-half the actual number of species present within a month. Hence, a minimum of 2 samples and preferably 3 to 4 samples per month are needed at a station to ensure the sampling of most all the species present.

The seasonal fluctuations in the total number of species collected per month at a station, in general, reflect a trend towards a peaking of values during October (Tables 7-24 through 7-26). This trend was also observed in the monthly totals for the entire study area. Another seasonal trend is a distinct decrease in the total species occurring at the shoal stations with the onset of colder temperatures and lower salinities in November through December.

Finally, there are the natural segregations of fish into bottom, pelagic and shore habitats. Thus, out of the 43 species collected throughout the study area during June through December 1969, the bottom trawls and beach seines obtained atal of only 33 species each, and the surface trawls a total of only 24 species (Tables 7-1 through 7-3). Moreover, at any given station during this summer - fall period the maximum number of species caught was 27 by bottom trawl, 25 by beach seine and 13 by surface trawl.

7.4.3.2 Species Diversity

Equally important to the number of species as a measure of faunal diversity is a consideration of the distribution of individuals among the species. The species diversity index employed here gives a measure of the probability that two individuals picked at random and

Table 7-24. Total Number of Fish Species (Bottom Trawls)

	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{I} \\ \mathbf{L} \\ \mathbf{E} \end{gathered}$	$\begin{gathered} \mathbf{S} \\ \mathbf{I} \\ \mathbf{T} \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \hline \mathbf{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathbf{H} \\ & \hline \end{aligned}$	1969					
					$\begin{gathered} \text { Jume/ } \\ \text { July } \end{gathered}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10	14	14	11	9		
	5	36	1	12	10	15	8	9	8	4
	3	35	3	10	13	10	10	3	. 10	4
	7	38	3	11	12	12	11	6	9	6
	8	39	1	12	15	9	13	16	17	8
	9	40	3	12	19	21	17	20	15	13
$\begin{array}{\|l\|} \hline \text { A } \\ \text { 畚 } \end{array}$	2	29	3	26	9	11	6	10		
	4	35	2	34	15	13	13	10	10	4
	6	38	2	30	10	12	10	11	7	4
	15	40	1	45			9	17	14	11
	16	41	3	45			8		8	10
	11	42	2	50	9	11	12	14	13	10
	10	42	3	45	9	14	11	12	10	11
	13	45	1	50	10	15	14	7		3
	14	47	3	47	8	15	13	12	10	3
	Total Species for Menth									
					23	30	25	26	24	19

Table 7-25. . Total Number of Fish Species (Surface Trawls)

	\mathbf{S}	M	S	D						
	A	$\begin{aligned} & \mathbf{L} \\ & \mathbf{E} \end{aligned}$	T	$\begin{aligned} & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \hline \text { June/ } \\ & \text { July } \\ & \hline \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10				5		
	5	36	1	12						
B	3	35	3	10				6	2	0
\|	7	38	3	11		5	1	6	5	2
穹	8	39	1	12			4	8	7	4
	9	40	3	12			10	3	8	2
	12	44	3	12		5	2	13	7	2
	2	29	3	26				3		
	4	35	2	34				3	7	0
	6	38	2	30				7	5	0
	15	40	1	45	.		5	3	5	5
$\stackrel{y}{9} \mid$	16	41	3	45					2	4
	11	42	2	50			10	7	3	2
	10	42	3	45		6	6	6	5	6
	13	45	1	50				6	8	1
								9		
Total Species for Month	Total Species for Month									
						0	12	21	13	7

Table 7-26. Total Number of Fish Species (Beach Seines)

	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	1969					
				June/ July	Aug	Sept	Oct	Nov	Dec
	31	35	1		8	6	11	9	
	32	35	3	6	14	10	11	6	
	38	40	1			6	14	12	9
	33	40	3	6	8	11	17	13	8
	39	41	3					9	6
	35	43	1	7	10	14	24	16	11
	34	42	3		8	11	13	12	9
	36	44	3	5	12	13	14	16	2
	37	47	1	8	12	9	14	11	1
Total Species for Month				11	22	22	28	25	17
	Forebay Sluice* Effluent					5	11	7	6
						10	15	15	19
							1		4
	Total Species for Month					11	17	16	19

*Sluice which receives the washings from the traveling screens
independently from a sample will be of the same species (Simpson, 1949). In order to make the value of the diversity index increase with increasing diversity, the Simpson index has been subtracted from unity.

$$
1-\frac{\sum_{i=1}^{x} n_{i}\left(n_{i}-1\right)}{N(N-1)}
$$

where: n equals the number of individuals in species $n_{1}, n_{2}, n_{3}--n_{x}$
N equals the total number of individuals in the sample.
Thus, this index varies from zero for a sample in which every individual belongs to the same species (a probability of one that two individuals chosen at random belong to the same species) to unity for a sample in which every individual represents a different species.

In terms of this index, a decrease in value does not necessarily mean a decrease in the number of species. An increase in dominance by a species will also cause a decrease in its value.

A third factor which affects the value of this diversity index (the probability of species equivalence) is the total number of individuals in a sample. A catch with few individuals tends to increase the value of this index by decreasing the probability that the two individuals will be of the same species. For example, in a catch of 40 fish with 20 individuals per species, the Simpson probability equals 0.487 giving a diversity index value of 0.513 . For a catch of of 400 fish with 200 individuals per species, the Simpson value is 0.498 giving a diversity index value of 0.502 .

For the purpose of discussion, a diversity index value of 0.500 , which is intermediate between the extremes of zero and unity, has been chosen as a boundary value between "low" and "high" diversity. This value of 0.500 approximates a situation of two equally dominant species. If the data in Tables 7-27 through 7-29 are "contoured" as either falling above 0.500 (high diversity) or below (low diversity), then the following observations can be made. On this basis the shore fish communities are seen to have the generally highest diversity followed closely by the river bottom communities. The fish communities of the surface waters have a distinctly low average diversity (Tables 7-27 through 7-29). The generally higher average

Table 7－27．Average Fish Species Diversity（Bottom Trawls）

	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{I} \\ \mathbf{L} \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \mathbf{S} \\ & \mathbf{I} \\ & \mathbf{T} \\ & \mathbf{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	1969					
					$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
$\begin{aligned} & \text { 莫 } \\ & \text { 总 } \\ & \text { 欪 } \end{aligned}$	1	29	1	10	． 573	． 699	． 193	． 727		
	5	36	1	12	． 271	． 315	． 657	． 628	． 675	． 566
	3	35	3	10	． 555	． 359	． 366	． 547	． 782	． 791
	7	38	3	11	． 469	． 647	． 406	． 540	． 580	． 525
	8	39	1	12	． 582	． 540	． 556	． 503	． 709	． 447
	9	40	3	12	． 739	． 775	． 422	． 548	． 443	． 533
	12	44	3	12	． 681	． 678	． 645	． 621	． 607	． 435
$\begin{array}{\|l} \text { 只 } \\ \text { 勾 } \\ \hline 日 ⿴ \end{array}$	2	29	3	26	． 663	． 434	． 458	． 831		
	4	35	2	34	． 443	． 411	． 577	． 761	． 501	． 353
	6	38	2	30	． 556	． 205	． 346	． 695	． 467	． 164
	15	40	1	45			． 759	． 619	． 601	． 649
	16	41	3	45			． 708		． 628	． 447
	11	42	2	50	． 345	． 474	． 414	． 460	． 309	． 438
	10	42	3	45	． 173	． 427	． 613	． 639	． 593	． 541
	13	45	1	50	． 175	． 681	． 671	． 598		． 600
	14	47	3	47	． 355	． 731	． 769	． 686	． 765.	.401

species diversity throughout the study area in the fish collections from the bottom trawls， surface trawls and beach seines in October supports the previous indications provided by data on total number of species，which also show a peak in October（Tables 7－24 through 7－26）．

Table 7-28. Average Fish Species Diversity (Surface Trawls)

	$\begin{aligned} & \mathbf{S} \\ & \mathbf{T} \\ & \mathbf{A} \end{aligned}$	$\begin{aligned} & \mathbf{M} \\ & \mathbf{I} \\ & \mathbf{L} \\ & \mathbf{E} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathbf{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathbf{H} \\ & \hline \end{aligned}$	1969					
					$\begin{aligned} & \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
	1	29	1	10				. 130		
	5	36	1	12						
	3	35	3	10				. 500	. 020	. 000
	7	38	3	11		. 175	. 000	. 551	. 407	. 000
	8	39	1	12			. 439	. 809	. 327	. 073
	9	40	3	12			. 303	. 227	. 263	. 053
	12	44	3.	12		. 750	. 502	. 733	. 201	. 500
A号号	2	29	3	26				. 074		
	4	35	2	34				. 223	. 642	. 000
	6	38	2	30				. 204	. 422	. 000
	15	40	1	45			. 351	. 032	. 227	. 265
	16	41	3	45					. 497	. 167
	11	42	2	50			. 481	. 347	. 237	. 000
	10	42	3	45		. 185	. 273	. 672	. 151	. 383
	13	45	1	50				. 431	. 194	. 000
	14	47	3	47				. 739		

Table 7-29. Average Fish Species Diversity (Beach Seines)

$\begin{gathered} \mathbf{S} \\ \mathbf{T} \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathbf{T} \\ \mathbf{E} \end{gathered}$	1969					
			$\begin{aligned} & \hline \text { June/ } \\ & \text { July } \end{aligned}$	Aug	Sept	Oct	Nov	Dec
31	35	1		. 630	. 440	. 581	. 287	
32	35	3	. 390	. 636	. 495	. 740	. 528	
38	40	1			. 480	. 514	. 664	. 131
33	40	3	. 735	. 631	. 597	. 592	. 696	. 421
39	41	3					. 747	. 363
35	43	1	. 744	. 637	. 642	. 717	. 652	. 754
34	42	3		. 491	. 525	. 648	. 616	. 560
36	44	3	. 425	. 630	. 694	. 650	. 757.	. 667
37	47	1	. 515	. 694	. 689	. 764	. 639	. 000

Figure 7-16. Species Diversity Per Beach Seine/Bottom Trawl Collections (1969)

Figure 7-17. Species Diversity Per Surface/Bottom Trawls, Station 10

The wide scatter of diversity values from the surface waters is attributed to the schooling tendencies of the pelagic fish. This schooling results in wide variations of dominance among the few species caught consistently by surface trawls. The shore and bottom populations tend to have less variation in diversity from catch to catch (Figures 7-16 and 7-17).

Although the surface trawl data are not very complete for the summer months, there is the slight suggestion that higher diversities occur in the surface water during the warmer months compared to the colder months of November-December. Conversely, the bottom collections indicate a reversal of this situation with generally lower diversities in the summer months compared to the November-December data, particularly in Haverstraw Bay (Tables 7-27 through 7-29). In December noticeably higher diversities in the surface trawl collections are observed in Indian Point vicinity (stations 15, 16, 10 and 12) compared to Haverstraw Bay. A possible relationship to thermal additions is suggested by the higher values at stations 15 (Lovett) and 10 (Indian Point) compared to 16 which is located midway between the aforementioned (15 and 10), and station 11 which is on the opposite side of the channel from station 10 (Tables 7-27 and 7-28).

The probable effect of bottom habitat, and/or salinity on diversity is shown by the consistently lower values for seine station 34 compared to stations 35 and 36 (Tables 7-22 through 7-29). For example, during the warmer more saline months, white sucker, a fresherwater species, was recorded only at stations 35 and 36 and not at station 34 (Figure 7-15).

7.5 Invertebrates

The distribution and abundance of invertebrates at Indian Point is being evaluated through the use of a variety of gear types. In the fish sampling program, invertebrates were captured in beach seines, and surface and bottom trawls. In addition, monthly samples were collected with an Emory type benthic grab, zooplankton nets, and Thorson jars and settlement/succession panels. Not surprisingly, each piece of gear seems to be selective in efficiency in capturing different species. (See Tables 7-30, 7-31, 7-32 and 7-33.)

Table 7-30. Species of Invertebrates Most Commonly Collected Through December, 1969

Collecting Gear	Species	Group
Trawls	Crangon septemspinosa Rhithropanopeus harrisii	Decapod Decapod
Seines	Callinectes sapidus Palaemonetes intermedius	Decapod Decapod
Exposure panels	Balanus improvisus Congeria leucophaeta	Cirripede Mollusc
Benthic grabs	Spio setosa Cyathura polita	Polychaete Isopod
Zooplankton nets	Copepods Cladocerans Mysids Larval stages	
Thorson jars	None	

7.5.1 Overall Numerical Importance

The overall relative numerical importance of the major species within the study area has been determined through a compilation of the monthly averages of numbers caught per unit effort for each gear type (Tables 7-34 through 7-38). The segregation of the samples by depth due to selective sampling by each gear type permits an evaluation of differences in surface and bottom abundances.

Differences with depth are clearest in the zooplankton. Most of the zooplankton were taken in bottom tows, probably because samples in the first six months were collected exclusively during daylight hours. Zooplankton show a predominately negative reaction to bright daylight conditions. At both surface and bottom the copepods comprise 65 to 70 percent of the individuals collected. At the bottom cladocerans rank second (16 percent), while at the surface polychaete larvae rank second (20 percent). Since larvae are only temporary members of the plankton, their abundance should be interpreted with caution.

Depth differences are seen in the exposure panel fauna as well. Surface panel populations appear to be dominated by the amphipod, Gammarus, while on the bottom panels Balanus are most abundant.

Table 7-31. Species of Invertebrates Collected through December, 1969 (Benthic Grabs)

Benthic Grab	Abundance
Polychaeta, segmented worms, marine Spio setosa (tentacle worm) Prionospio spp. (gold crown worm)	$\begin{aligned} & \mathrm{C} \\ & \mathrm{U} \end{aligned}$
Oligochaeta Chaetogaster spp.	U
Nemertea, round worms Unidentified	R
Turbellaria, flat worms Unidentified	R
Crustacea Balanus improvisus (barnacle) Edotea montosa (isopod, sowbug) Cyathura polita (isopod, stick sowbug) Corophium volutator (amphipod, scud) Gammarus fasciatus (amphipod, scud) Hyalella azteca (amphipod, scud) Rhithropanopeus harrisii (mud crab)	$\begin{aligned} & \mathrm{U} \\ & \mathrm{U} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{U} \\ & \mathrm{U} \\ & \mathrm{U} \end{aligned}$
Mollusca Congeria leucophaeta (mussel)	
Diptera Tendipes tentans (midge) Chaoborus albipes (midge)	U R

C = common - readily caught
$\mathrm{U}=$ uncommon- caught only occasionally and/or not in any numbers
$\mathrm{R}=$ rare

Table 7-32. Species of Invertebrates Collected through December, 1969 (Zooplankton Nets)

Zooplankton	Abundance
Crustacea	
Crangon septemspinosa (snapping shrimp)	R
Pontocrates norvegicus (scud)	U
Gammarus fasciatus (scud)	U
Neomysis americana (ghost shrimp)	C
Edotea montosa (sowbug)	R
Cyathura polita (stick sowbug)	R
Barnacle cyprid	R
Crab zoea	U
Crab megalops	U
Rhithropanopeus harrisii (mud crab)	R
Callinectes sapidus (blue crab)	R
Cyclops spp. (copepod)	C
Eurytemor a spp. (copepod)	C
Copepodid	U
Daphnia spp. (water flea)	U
Diaphanosoma spp. (water flea)	R
Hydrozoa	
Gonionemus murbachii (jellyfish)	C
Podocoryne carnea (jellyfish)	U
Polychaeta, segmented worms	
Nectochaete larvae	C
Nemertea, round worms	.
Unidentified	R
Diptera	
Chaoborus albipes (midge)	U
Tendipes tentans (midge)	R

Table 7-33. Species of Invertebrates Collected through December, 1969 (Trawls, Seines, Panels)

Trawls and Seines	Abundance
Crustacea Crangon septemspinosa (snapping shrimp) Palaemonetes intermedius (shrimp) Livoneca ovalis (fantail sowbug) Rhithropanopeus harrisii (mud crab) Callinectes sapidus (blue crab) Gammarus fasciatus (scud)	$\begin{gathered} \mathrm{C} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{U} \\ \mathrm{U} \\ \mathrm{U} \end{gathered}$
Succession Panels	Abundance
Crustacea Balanus improvisus (barnacle) Gammarus fasciatus (scud) Rhithropanopeus harrisii (mud crab) Edotea montosa (sowbug)	$\begin{gathered} \mathrm{C} \\ \mathrm{C} \\ \mathrm{U} \\ \mathrm{R} \end{gathered}$
Diptera Tendipes tentans (midge)	R
Hydrozoa Campanularia calceolifera Cordylophora lacustris	$\begin{gathered} \mathrm{C} \\ \mathrm{U} \end{gathered}$
Mollusca Congeria leucophaeta (mussel)	C

Table 7-34. Benthic Grabs-All Stations Average Number Organisms Caught Per Species Per Sample, 1969

Group	SPP Code	Name	1969				
			Aug	Sept	Oct	Nov	Dec
Polychaete	283	S. setosa	11	19	19	8	13
Polychaete	284	Prionospio	0	0	7	4	17
Nemertean	260	Nemertean	1	P	1	P	P
Cirripede	383	B. improvisus	1	25	63	87	0
Amphipod	363	G. fasciatus	P	4	P	0	9
- Amphipod	365	H. azteca	P	0	35	5	8
Amphipod	362	C. volutator	0	0	0	0	0
Molluse	572	C. leucophaeta	0	1	2	4	0
Molluse	570	Spat	0	0	6	57	0
Isopod	504	E. montosa	P	0	1	0	1
Isopod	502	C. polita	3	2	7	2	6
Diptera	303	T. tentans	0	0	2	2	4
Diptera	302	C. albipes	0	0	P	P	P
Ectoproct	671	E. crustulenta	0	0	P	0	0
Total Number of Species			7	6	13	10	9

$\mathbf{P}=$ presence less than 1

Table 7-35. Succession Panels-All Stations Average Number Caught Per Panel, 1969

		Group	$\begin{aligned} & \text { SPP } \\ & \text { Code } \end{aligned}$	Name	Sept*	Oct	Nov	Dec
$\begin{aligned} & \text { む. } \\ & \text { H゙ } \\ & \text { En } \end{aligned}$		Cirripede	383	B. improvisus	106	29	26	5
		Mollusc	572	C. leucophaeta	11	P	1	P
		Amphipod	363	G. fasciatus	350	0	1	1
		Decapod	467	R. harrisii	0	0	0	0
		Diptera	303	T. tentans	0	0	0	0
	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 * \\ & 0_{0}^{*} \\ & \hline \end{aligned}$	Hydroid Hydroid	$\begin{aligned} & 223 \\ & 222 \end{aligned}$	$\begin{aligned} & \text { Campanularia } \\ & \text { Cordylophora } \end{aligned}$	$\begin{array}{r} 33 \\ 0 \end{array}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	0	1 0
		Cirripede	383	B. improvisus	62	59	52	16
		Mollusc	572	C. leucophaeta	9	0	0	0
		Amphipod	363	G. fasciatus	159	0	3	0
		Decapod	467	R. harrisii	1	0	0	0
		Diptera	303	T. tentans	0	0	0	0
	\%	Hydroid	223	Campanularia				2
		Hydroid	222	Cordylophora	0	0	15	0

P = presence less than 1

* one panel only
** \% of panel covered

Table 7-36. Thorson Jars-All Stations Average Number Caught, 1969

Group	$\begin{aligned} & \text { SPP } \\ & \text { Code } \end{aligned}$	Name	Sept	Oct	Nov	Dec
Polychaete	283	S. Setosa	6	1	0	P
Polychaete	284	Prionospio	0	1	0	P
Nemertean	260	Nemertean	0	0	0	0
Cirripede	383	B. improvisus	0	0	0	0
Amphipod	363	G. fasciatus	2	7	8	7
Amphipod	365	H. azteca	0	1	0	0
Amphipod	362	C. volutator	0	0	0	P
Molluse	572	C. leucophaeta	3	P	0	0
Mollusc	570	Spat	P	160	0	0
Isopod	504	E. montosa	P	0	P	P
Isopod	502	C. polita	0	0	0	0
Diptera	303	T. tentans	1	P	0	0
Diptera	302	C. albipes	0	0	0	0
Ectoproct	671	E. crustulenta	0	0	0	P
Total Number of Species			6	7	2	7

$\mathrm{P}=$ presence less than 1

Table 7-37. Zooplankton-All Monthly Sations Average Number Caught Per Tow (1969)

Group	SPP Code	Name	Surface						Bottom					
			July*	Aug	Sept	Oct	Nov	Dec**	July	Aug	Sept	Oct	Nov	Dec
Decapod	464	Crangon		0	0	0	0		0					
Decapod	467	B. harrisii		0	0	0	0		0	P	P 0	0	0	
Decapod	466	Callinectes		0	0	0	0		0	0	p	0	0	
Decapod	460	Crab zoea		8	0	0	0		53	4	0	0	0	
Decapod	460	Crab megalops		0	0	0	0		0	0	0	0	0	
Amphipod	363	Gammarus		2	0	0	0		0	201	19	9	87	
Amphipod	364	Pontocrates		P	0	0	0		0	29	6	0	326	
Copepod	420	Copepodid		P	0	14	106		0	50	2960	260	980	
Copepod	421	Eurytemora		13	0	0	158		1560	152	544	870	772	
Copepod	422	Cyclops		2	0	103	0		330000	538	544 5865	870 2120	772 22	
Mysid	521	Neomysis		2	0	0	0		2277	111	- 259	179	0	
Cladocera	402	Diaphanosoma		0	0	0	25		5505	363				
Cladocera	401	Daphnia		1	P	0	25		-	- 0	1280	0	682	
Diptera	302	Chaoborus-larva		1	0	0	0		0	22	0	0	845	
Diptera	302	Chaoborus-pupa		0	0	0	0		0	7	0	0	0	
Diptera	303	Tendipes		P	0	0	0		0	0	0	0	P	
Isopod	504	Edotea		0	0	0	0		0	1	4	0	${ }_{22}$	
Isopod	502	Cyathura		0	0	0	0		0	1	0	0	0	
Hydrozoan	221	Gonionemus		0	0	0	0		8	0	47	6	0	
Hydrozoan		Podocoryne		0	0	0	0		0	0	8	0	0	
Polychaete	280	Nectochaete		0	0	117	0		0	0	0	1130	0	
Cirripede	380	Cypris		0	0	0	0				800	0	0	
Total Number of Species				10	1	3	4		6	14	13	7	9	

$\mathbf{P}=$ presence less than 1

* = bottom samples only collected in July
*** river ice built up, preventing scheduled sampling in December

Table 7-38. Trawls/Seines-All Stations Average Number Invertebrates Caught Per Tow, 1969

	Code	Name	June/ July	Aug	Sept	Oct	Nov	Dec
$\begin{aligned} & \text { n } \\ & \text { B } \\ & \underset{H}{c} \\ & H \\ & \text { g } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 464 \\ & 465 \\ & 466 \\ & 467 \end{aligned}$	DECAPODS: Crangon septemspinosa Palaemonetes intermedius Callinectes sapidus Rhithropanopeus harrisii	$\begin{array}{r} 94 \\ 0 \\ 0 \\ \mathrm{P} \end{array}$	$\begin{array}{r} 43 \\ \mathrm{P} \\ 0 \\ 2 \end{array}$	$\begin{array}{r} 99 \\ 1 \\ \mathrm{P} \\ 1 \end{array}$	$\begin{array}{r} 151 \\ 1 \\ P \\ 1 \end{array}$	$\begin{gathered} 70 \\ 2 \\ 2 \\ 2 \end{gathered}$	$\begin{array}{r} 135 \\ \mathrm{P} \\ \mathrm{P} \\ 1 \end{array}$
	$\begin{aligned} & 464 \\ & 465 \\ & 466 \\ & 467 \end{aligned}$	DECAPODS: Crangon septemspinosa Palaemonetes intermedius Callinectes sapidus Rhithropanopeus harrisii	*	**	$\begin{array}{r} 26 \\ \mathrm{P} \\ 0 \\ 0 \end{array}$	$\begin{gathered} 42 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	P 1 0 0
	464 465 466 467	DECAPODS: Crangon septemspinosa Palaemonetes intermedius Callinectes sapidus Rhithropanopeus harrisii	**	**	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & P \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	P 1 0 1

$$
\begin{aligned}
P & =\text { presence less than } 1 \\
* & =\text { no surface trawls in June/July } \\
* * & =\text { invertebrates not retained }
\end{aligned}
$$

This is somewhat misleading because the mobile Gammarus are associated with profuse hydroid settlement at one station (station 7). The barnacle Balanus, the bivalve Congeria, and the hydroid Campanularia are the major sessile forms, and therefore, the best indicators of recruitment. If Gammarus is eliminated and the percentages recalculated, Balanus accounts for 90 to 95 percent of the individuals settling on the panels.

The benthic grab percentage abundances show Spio setosa predominating. This agrees with qualitative evaluations. The high Balanus percentage results from a large number of individuals at stations 3 and 5 where Balanus is recovered attached to oyster shells; at other stations there seems to be no (very little) suitable hard substrate for barnacle attachment; the occurrence of this organism in benthic grabs implies considerable water movement in the area. Any tendency to silt deposition would preclude Balanus settlement or survival. The water must move swiftly enough to keep the silt suspended, and to provide food for Balanus, a filter feeder. These sessile animals are dependent upon the suspended organic matter carried in the water. Cyathura polita, on the other hand, is never numerous but is ubiquitous in the study area.

The Thorson jars appear to be dominated by mollusc spat. These results appear to be anomalous as average values are dominated by a large number of individuals at one station (station 56) one month. In this environment the usefulness of the Thorson jars in demonstrating biological diversity has yet to be demonstrated. Rather, the Thorson jars appear to be most useful as a monitor of the monthly accumulations of suspended sediment.

7.5.2 Species Distribution Patterns

7.5.2.1 Benthic Grabs

The benthic infauna of the study area is remarkably uniform. The distributions of the two major benthic inhabitants, the polychaete Spio setosa and the isopod Cyathura polita, during August, and November, 1969, are shown in Figures 7-18 and 7-19. Sediment type may be the most important influence on distribution. Both species are less abundant among the shells and pebbles of stations 5,10 or 16 and the heavy organic debris of station 14 , than

Figure 7-18. August/November
Abundance of Spio Setosa

Figure 7-19. August/November Abundance of Cyathura Polita
in the more silty clay sediments of other stations. Since Spio is found throughout the study area, salinity is probably not critical. Abundance of both species is generally reduced throughout the study area in winter; neither completely disappears, however, and a population of Spio, equalling approximately one-fourth the high August densities, remains in the vicinity of Indian Point.

7.5.2.2 Succession Panels

Although the encrusting fauna is neither very diverse nor abundant, some patterns do appear in the study area. The influence of season is obvious at once (Figure 7-20); settlement of the barnacle, Balanus improvisus, declines in December by more than fifty percent compared to October values (correlated well with lower water temperatures). The correlation with salinity can be seen in the October, November and December data (Figure 7-20); as salinity decreases (river mile increases) the number of Balanus improvisus settling drops off sharply, and does so repeatedly each month. Comparing panels from intake and outfall areas at the power plant site has not revealed any striking dissimilarities in either species composition or abundance; it will be extremely interesting to maintain these data stations as added generating units come on line.

7.5.2.3 Thorson Jars

It appears that no generalities can be drawn from the Thorson jars at this time. They have not accumulated any significant or repeatable numbers of animals, with the exception of Gammarus fasciatus. While Gammarus is mobile and not a member of the benthic infauna which the Thorson jar is designed to sample, it is of significant abundance.

7.5.2.4 Zooplankton

The most diverse group of invertebrates is found in the zooplankton. Since the zooplankton includes the larval forms of most of the estuarine fauna, analysis can give an indication of spawning times and duration.

Figure 7-20. Seasonal Abundance of Balanus and Congeria in Reference to Salinity

Trophically the zooplankton convert phytoplankton into a form agreeable to carnivores and into detritus which supports benthic communities. Many carnivores, especially finfish, depend largely upon the zooplankton.

It could be expected that the zooplankton of the Hudson River study area would give the first clues regarding abnormalities of the environment. Aside from the grossest, unmistakable perturbations (fish kills), the zooplankton will be among the first fauna to reflect the effects of more subtle environmental modifications.

The seasonal nature of the zooplankton is reflected in the various larval forms which appear month to month (Figure 7-22). For example, Chaoborus larvae and pupae are relatively high in number in August, but disappear in succeeding months. Barnacle cyprids are abundant in September and polychaete larvae appear in October. Another seasonal trend is that of a decline in the total number of zooplankton species from a high of 19 in August to a low of 9 in October and 10 in November (Figure 7-21). When the data are plotted by month by river mile (Figure 7-23), the seasonal decline in species diversity is again obvious. In the

```
O = SURFACE
X = BOTTOM
```


Figure 7-21. Zooplankton Seasonal Variation of Total Species

Figure 7-23. Zooplankton Seasonal Variation of Species by the River Mile
months of October and November the number of species in the vicinity of the plant site (river mile 42) is higher than at surrounding stations. This may be associated with thermal addition in the area, and should be followed as a potential indicator.

The average July through November distributions of Cyclops (Figure 7-24) and Neomysis (Figure 7-25), two of the major components of the holoplankton, show their lowest densities in the Peekskill to Haverstraw vicinity respectively. They are both important food sources for fish and are numerically significant members of the plankton as well. The distribution of the second major copepod, Eurytemora (Figure 7-26), appears to be governed by salinity. It is most abundant where salinity is highest, that is, in the lower reaches of Haverstraw Bay.

7.5.3 Invertebrates From Fish Trawls/Seines, 1969

Prior to September, 1969, invertebrates from fish trawls/seines were not retained systematically, but were kept for qualitative evaluation. Invertebrates captured in the fish sampling program are enumerated in Tables 7-30 through 7-35.

The shrimp Crangon septemspinosa is the most abundant organism and is captured primarily in the bottom trawls. Crangon has been captured through the study area (Figure 7-27) channel stations ($4,6,10,11,13,14$ and 15) showing higher numerical densities than shoal stations (3, 5, 7, 8, 9 and 12). The highest concentrations of Crangon on a monthly basis shift slightly upstream in winter. That is, the August/September average for stations 10 and 11 is 58 , while the November/December average is 85 . Crangon is probably a major source of food for many of the fish in the study area.

The other shrimp, Palaemonetes, is not especially abundant. There is an indication that it is more commonly collected by beach seines in near shore waters than elsewhere in trawls.

Although neither Callinectes nor Rhithropanopeus (crabs) are commonly collected, Callinectes is the more abundant. It is collected most consistently in the seines. Callinectes appears to be largely limited to shallow, shoreline areas. Rhithropanopeus, on the other hand, is found throughout the study area but not in large numbers.

These invertebrates captured by the fishing gear are not captured by other methods yet may be the bulk of the fish diet in the study area. This is especially true of Crangon.

Figure 7-24. Bottom Zooplankton, Average Distribution of Cyclops

Figure 7-25. Bottom Zooplankton, Average Distribution of Neomysis

Figure 7-26. Bottom Zooplankton,
Average Distribution of Eurytemora
Fi gure 7-27. Bottom Trawl Invertebrates
Distribution by Sampling Stations

APPENDIX A GLOSSARY OF DATA ANALYSIS TERMS

A. 1 Average Percent Occurrence (Avg. Pcnt Occ)-(e.g., Tables 7-5 through 7-7)

A grand average of station values of the number of samples in which a species occurred divided by the number of samples taken at a station.

N
where:
$\mathrm{N}=$ number of stations
A. 2 Community Overlap-A measure of the proportional overlap between percent frequency histograms of the species assemblages at two stations.
A. 3 "DPTH"-depth of the water in feet at a station
A. 4 Mile-river mile above the Battery (lower Manhattan)

A. 5 Percent Average Caught (Pent. Avg. Cght)-(e.g., Tables 7-5 through 7-7)

The percent of the total fish population within the study a rea represented by a species and based on the grand average of station averages of the number caught per unit effort for each species.

Percent Average Caught $=\frac{\text { average number caught per unit effort of a species }}{\sum_{x=1}^{n} \text { average number caught per unit effort of species } x} \times 100$
where:

$$
\mathrm{n}=\text { number of species }
$$

A. 6 Site $-1=$ west, $2=$ center, $3=$ east side of river
DATA REPORT FOR
JANUARY - JUNE 1970
(Revised Edition)
Ecology of Thermal Additions
Lower Hudson River Cooperative Fishery StudyVicinity of Indian Point, Buchanan, New York1970for
Consolidated Edison of New York
by the
Marine Research Laboratory
New London, Conn.
of
RAYTHEON COMPANY
SUBMARINE SIGNAL DIVISIONPortsmouth, Rhode Island

TABLE OF CONTENTS

Section
1.0
2.0
3.0
3.1
3.2
3.3
4.0
5.0
5.1
5.2
5.2.2 Tide Stage Height Instrument

AES/Digitec Interface
Temperature Chains
5.3.1 History of Test Operations -3
5.3 Temperature Chains 5 5-3 5-3
5.3.2 Electronic Evaluation, Redesign and Reassembly 5-4
5.3.3 Reinstallation of Temperature Chains and Electronics . 5-5
5.3.4 Temperature Chain Performance
6.0 TEMPERATURE STUDIES 5-7
6.1 Temperature-Infrared Overflight/Bathythermograph Surveys 6-1

- -1
6.3 Temperature-Automated Environmental System 6-1
6.4 Temperature-Moored Sensors Data 6-3
6.4.1 Statistical Analysis of Temperature Chain Sampling Rate 6-3
7.0 WATER CHEMISTRY 7-1
7.1 Salinity 7-1
7.1.1 Salinity-In-Situ Data for Biological Surveys. 7-1
7.1 .2 Salinity-Automated Environmental Systems 7-1
7.2 Oxygen Data 7-2
7.2.1 Dissolved Oxygen-In-Situ Data from Biological Surveys 7-2
7.2.2 Dissolved Oxygen-Automated Environmental System 7-2
7.3 pH-Automated Environmental Systems 7-3
7.4 Chlorine 7-3
7.5 Copper-Automated Environmental System 7-4
7.6 Statistical Analysis of Digital Sampling Rates 7-4

Page 1-1 2-1 3-1
Geography/Bathymetry 3-1 3-1
.
.
Power Plants 3-2
SAMPLING STATIONS 4-1
ELECTRONICS SYSTEMS 5-1
Introduction 5-15.2.3 AES/Digitec Interface

5.2 Hi Al 5-1
Automated Environmental System 5-1Temperature Chain Performance-7

TABLE OF CONTENTS (Cont)

TABLE OF CONTENTS (Cont)

LIST OF ILLUSTRATIONS

Figure
3-1 Finfish, Succession Panel and Benthic Invertebrate Station Locations 3-4
Page
3-2 Average Daily Output 1970, Indian Point-Unit One 3-5
4-1 Plankton Station Locations 4-7
5-1 Site Locations of Electronic Installations 5-9
5-2 Automated Environmental System (AES) Operational History-1970. 5-9Automated Environmental System (AES) Maintenance Record
5-4 Water Stage Height Installation 5-115-10
5-5 AES/Digitec Interface
5-6 Transmitter and Sensor Test Assembly 5-13
5-7 Electronics Evaluation Results (Sample Sheet) 5-14
5-8 Temperature Linearity Check 5-15
5-9 Temperature Sensor Buoy System Locations 5-16
5-10 Upstream Buoy-Bottom Profile 5-17
5-11 Middle Buoy-Bottom Profile 5-17
5-12 Downstream Buoy-Bottom Profile 5-18
5-13 Original Cross-Stream Buoy-Bottom Profile 5-18
5-14 Thermal Chain Buoy Configurations 5-19
5-15 Cable Routing Diagram for Thermal Chains 5-20
5-16 Electronics Wiring Diagram 5-21
5-17 Temperature Chain Operational History 5-22
6-1 In-Situ Data-Stony Point Transect 6-12
6-2 In-Situ Data-Indian Point Transect 6-13
6-3 In-Situ Data-Round Island Transect 6-14
6-4 Automated Environmental System 0800-Temperature Data-1970 6-15
6-5 Thermal Chain 0800 Data-Upstream Buoy-1970 6-16
6-6 Thermal Chain 0800 Data-Middle Buoy-1970 6-17
6-7
Thermal Chain 0800 Data-Downstream Buoy-1970 6-18
6-8 Thermal Chain 0800 Data-Cross-Stream Buoy-1970. 6-19
6-9 Thermal Chain 0800 Data-Effluent Canal-1970 6-20
6-10 Thermal Chain Data Collected on May 27, 1970 6-216-11 Difference between Mean and Standard Deviation for Different SamplingIntervals6-22

A-1 B-1 C-1 D-1 D-4

LIST OF ILLUSTRATIONS (Cont)

Figure		Page
10-1	Exposure Panels and Thorson Bottles (1970)	10-32
10-2	Indian Point Fish Trap . . -	3
10-3	Alewife (Surface Trawls)	34
10-4	Alewife (Bottom Trawls)	4
10-5	American Smelt (Bottom Trawls).	4
10-6	Spottail Shiner (Beach Seines) .	
10-7	American Eel (Bottom Trawls)	
10-8	Atlantic Tomcod (Bottom Trawls)	
10-9	White Perch (Bottom Trawls) -	
10-10	Striped Bass (Bottom Trawls) .	
10-11	Striped Bass (Beach Seines)	10-36
10-12	Hogchoker (Bottom Trawls)	
10-13	Succession Panels - Total Counts of Balanus improvisus, June 1	
10-14	Spio setosa (x) and Cyathura polita (0) Collected in Benthic Grabs	10-37
11-1	Raytheon On-Site Wet Lab at Indian Point	20
11-2	Large Thermal Effluent Choice Apparatus	1
11-3	Small Thermal Effluent Choice Apparatus	2
11-4	Flow Pattern Within Thermal Effluent Choice Apparatus	3
11-5	Indian Point-Hudson River Ecology Study (Data Sheet)	11-24
11-6	Preference Behavior of Atlantic Tomcod (Choice Experiments)	11-25
11-7	Preference Behavior of White Perch (Choice Experiments)	11-26
11-8	Preference Behavior of Banded Killifish (Choice Experiments)	11-27
11-9	Preference Behavior of Striped Bass (Choice Experiments)	28
11-10	Preference Behavior of Spottail Shiner (Choice Experiments)	11-29
11-11	Preference Behavior of Threespine Stickleback (Choice Experiments)	11-30
11-12	Temperature Data (${ }^{\circ} \mathrm{F}$) (Choice Experiments) -	11-31
11-13	Dissolved Oxygen (ppm) and pH Data (Choice Experiments)	11-32
11-14	Thermal Shock Apparatus .	11-33
11-15	Procedural Sequence (Thermal Shock Experiment)	11-3

LIST OF TABLES

Table

4-3
4-4
4-5
6-1
7-1

4-1 Spring 1970 Weekly Plankton Sampling Stations 4-2
4-2 Trawling, Zooplankton and Benthic Grab Sampling Stations • • . 4-3
Beach Seine Sampling Stations
4-4

Page

Succession Panel/Thorson Bottle Sampling Stations 4-5
Locations of All Sampling Stations4-6

Statistical Parameters of Temperature Chain Data-May 27-June 2, 1970 6-8
Statistical Parameters of Selected Automated Environmental System Data
19-21 June 1970

LIST OF TABLES (Cont)

Table		Page
8-1	Synopsis of Sonic Tagging of American Shad	8-4
8-2	River Temperatures at Buoy Sensors at 1130 Hours (May 20, 1970)	9
8-3	Numbers of Shad Caught in Gill Nets, 1970	8-11
8	Gill Net Catch Statistics for Shad, 1970	8-12
8-5	Catch Statistics for Shad Caught at Stations 10 and 11, 1970	3
9	Zooplankton Samples Collected, January - June 1970	13
9-2	Relative Abundance of Identified Planktonic Organisms, Jan-June 1970	9-14
9-3	Average Number per 1000 Cubic Meters-Gammarus fasciatus Plankton Net No. 0 Mesh (0.5 mm)	9-15
9-4	Average Number per 1000 Cubic Meters-Pontocrates norvegicus Plankt Net No. 0 Mesh (). 5 mm).	9-16
9	Average Number per 1000 Cubic Meters-Atlantic Tomcod Plankton Net No. 0 Mesh (0.5 mm).	9-17
9-6	Average Number per 1000 Cubic Meters-Neomysis americanus Plankton Net No. 0 Mesh (0.5 mm).	9-18
9-7	Average Number per 1000 Cubic Meters-Leptocheirus pinguis	9-19
9-8	Average Number per 1000 Cubic Meters-American Smelt Plankton Net No. 0 Mesh (0.5 mm).	9-20
9-9	Average Number per 1000 Cubic Meters-American Eel Plankton Net No. 0 Mesh (0.5 mm)	9-21
9-10	Average Number per 1000 Cubic Meters-Clupeids Plankton Net No. 0 Mesh (0.5 mm).	9-22
9-11	Average Number per 100 Cubic Meters -Striped Bass Plankton Net No. 0 Mesh (0.5 mm) .	9-23
9-12	Average Number per 1000 Cubic Meters-White Perch Plankton Net No. 0 Mesh (0.5 mm) .	9-24
9-13	Average Number per 1000 Cubic Meters-Bay Anchovy Plankton Net No. 0 Mesh (0.5 mm) .	9-25
9-14	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 -White Perch	9-26
9-15	Diurnal Comparisons of Average No. $11000 \mathrm{~m}^{3}$ at Station 22-Clupeids	9-27
9-16	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22-Bay Anchovy	9-28
9-17	Diurnal Comparisons of Average No. $1000 \mathrm{~m}^{3}$ at Station 22-Gammarus	9-29
9-18	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 -Pontocrates	9-30
9-19	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station $22-$ Atlantic Tomcod	9-31
9-20	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22-Striped Bass	9-32
9-21	Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station $22-$ Neomysis	9-33
9-22	Selected Planktonic Species Collected Outside the Primary Study Area	9-34
10-1	Schedule and Procedure for 1970 Succession Panels	10-12
10-2	Trawl, Seine and Effluent Samples Collected, January- June 1970	10-13

LIST OF TABLES (Cont)

Table		Page
10-3	Total Numbers of Fish Species Caught by Trawls and Seines, January-June 1970	10-14
10-4	Fish Species Collected by the Indian Point Ecological Survey, JanuaryJune 1970	10-15
10-5	Average Number Blueback Herring Caught/7 Minutes (Surface Trawls)	10-16
10-6	Average Number Blueback Herring Caught/7 Minutes (Bottom Trawls)	16
10-7	Average Number Blueback Herring Caught/Haul (Seines)	17
10-8	Average Number Alewife Caught/7 Minutes (Surface Trawls)	10-17
10-9	Average Number Alewife Caught/7 Minutes (Bottom Trawls)	10-18
10-10	Average Number Alewife Caught/Haul (Seines) .	10-18
10-11	Average Number Bay Anchovy Caught/7 Minutes (Surface Trawls)	10-19
10-12	Average Number Bay Anchovy Caught/7 Minutes (Bottom Trawls)	10-19
10-13	Average Number Bay Anchovy Caught/Haul (Seines)	10-20
10-14	Average Number Tomcod Caught/7 Minutes (Bottom Trawls)	10-20
10-15	Average Number Tomcod Caught/Haul (Seines)	10-21
10-16	Average Number White Perch Caught/7 Minutes (Surface Trawls)	10-21
10-17	Average Number White Perch Caught/7 Minutes (Bottom Trawls)	10-22
10-18	Average Number White Perch Caught/Haul (Seines)	10-22
10-19	Average Number Striped Bass Caught/7 Minutes (Surface Trawls)	10-23
10-20	Average Number Striped Bass Caught/7 Minutes (Bottom Trawls)	10-23
10-21	Average Number of Striped Bass Caught/Haul (Seines)	24
10-22	Fish Species Collected in the Fish Trap in the Effluent Canal, February-June, 1970	10-25
10-23	Total Number of Invertebrate (Non-Plankton) Samples Collected January - June, 1970 .	10-25
10-24	Species Most Representative of Each Gear Type	10-26
10-25	Invertebrates Collected by Succession Panels, January - June 1970	10-26
10-26	Species of Invertebrates Collected by Benthic Grabs, January-June 1970	-27
10-27	Species of Invertebrates Collected by Thorson Bottles Jan-June 1970	10-27
10-28	Species of Invertebrates Collected by Trawls and Seines, Jan-June 1.970	10-27
10-29	Succession Panels. Average Number Caught per Panel. All Stations Sampled. Jan-June, 1970	10-28
10-30	Benthic Grabs. Average Number Caught per Sample-All Stations Sampled, Jan-June, 1970	10-28
10-31	Thorson Bottles-Average Number Caught-All Stations Sampled, April-June 1970	10-29
10-32	Species-Average Catch per Tow for Trawls and Seines January, 1970	10-30
10-33	Thorson Bottle Sediment Volumes in Milliliters, April-June 1970 .	10-31
11-1.	List of Key Species of Fishes and Invertebrates Selected for Laboratory Experiements	11-12
11-2	Thermal Effluent Choice Experiments, Summary Results	11-13
11-3	Thermal Effluent Choice Experiments, Atlantic Tomcod.	11-14

11-4 Thermal Effluent Choice Experiments, White Perch 11-15
11-5 Thermal Effluent Choice Experiments, Banded Killifish 11-16
11-6 Thermal Effluent Choice Experiments, Striped Bass 11-16
11-7 Thermal Effluent Choice Experiments, Spottail Shiner 11-17
11-8 Thermal Effluent Choice Experiments, Threespine Stickleback . . 11-18
11-9 Thermal Effluent Choice Experiments, Johnny Darter 11-18
11-10 Thermal Effluent Choice Experiments 11-19

ADDENDUM

After completion of this report, the identification of the following species was verified:
a) Leptocheirus pinguis is correet
b) Pontocrates norvegicus should be Monoculoides sp.
c) Sampling depth at the bottom for Stations 12 and 22 should be 8 and 41 feet respectively for Tables 9-1, 9-3 through 9-13.

1.0 SUMMARY (JANUARY-JUNE 1970; DATA REPORT)

The temperature data collected during the biological sampling program and from the temperature sensor buoys indicated that essentially isothermal conditions existed throughout the study area except in the immediate vicinity: of the thermal plumes issuing from the Lovett and Indian Point generating stations. During January and February the river was essentially frozen over in the study area. From March through June, river temperatures increased from 32 to 73 degrees Fahrenheit with about a 10 -degree F per month gradient.

The Indian Point Unit I operated from January to March 20 when it went off-line for refueling operations. On May 20 the plant went on-line for one day and had to shut down for mechanical repairs. The plant did not operate during the remainder of this six month period.

Temperature sensing probes recorded data in the vicinity of the plume.
Salinity was perhaps the most variable environmental parameter in the study area. There were vertical, horizontal, tidal and seasonal fluctuations.

The salinity at the plant site ranged from about 0 ppt to about 4 ppt during the six month period.

Dissolved oxygen concentrations were around $10 \mathrm{mg} / 1$ during the winter months and decreased when the river water temperatures increased. By June the dissolved oxygen had declined to about $4 \mathrm{mg} / 1$.

Four American shad were sonic tagged and tracked past the plant site in May. Three of them were tracked when the plant was off the line and the fourth when the plant was on-line. Shad were also gill netted in the plant vicinity. These data indicated that shad utilized the natural river channel in the vicinity of the plant site during their spawning migration. A total of eleven shad were sonic tagged.

Zooplankton sampling was emphasized during the spring. A total of 755 plankton samples were collected and analyses of spatial distribution, diurnal vertical migration and community overlap were conducted for selected species.

Bottom and surface trawling and beach seining were limited during the period. The most abundant species were the white perch and Atlantic tomcod.

Non-plankton invertebrates collected with fishing gear, succession panels, Thorson bottles and benthic grabs were less abundant than during the previous six month period. The Thorson bottles did not accumulate any significant or repeatable numbers of animals.

Laboratory studies were conducted on species choice for effluent and river water. Data were collected on species behavior when the plant was not operating and on May 20, when it. was on-line. A total of 122 "Thermal Effluent Choice" experiments were conducted.

2.0 INTRODUCTION

This is the second six month data report of the continuing Indian Point Ecological Study by Raytheon Company's Marine Research Laboratory for the Consolidated Edison Company of New York. The purpose of this study is to evaluate the present and future ecological effects of heated effluents discharged into the Hudson River in the vicinity of the Consolidated Edison Company nuclear electric power generating station at Indian Point, Buchanan, New York. A Technical Committee of state and federal fishery scientists provides continuing technical evaluation of this study to the Policy Committee for the Lower Hudson River Cooperative Fishery Studies. Overall direction and guidance of the research efforts is the responsibility of the Policy Committee.

This report summarizes the results of the research efforts conducted during the months of January through June, 1970. Major emphasis during this period was placed on zooplankton, sonic tagging of shad, and laboratory behavior studies of fishes and invertebrates. A copy of the raw data summary tabulations and statistics has been delivered to the Technical Committee.

3.0 STUDY AREA DESCRIPTION

3.1 Geography/Bathymetry

This study encompasses 12 miles of the Hudson River from Croton Point on the south at river mile 35 to the Bear Mountain Bridge on the north at river mile 47 (Figure 3-1). In the northern half of the study area the river is narrow and has a natural river channel which ranges in depth from about 40 to 130 feet. Consolidated Edison's nuclear generating station is located at river mile 42 in an area which is primarily river channel with depths of 40 to 60 feet. Peekskill Bay is located north of the generating station and is a small shoal area which averages about 4 feet in depth at mean low water.

The southern part of the study area is Haverstraw Bay which is broad, shallow and approximately 3 miles wide by 4 miles long. The natural river channel is about 30 feet in depth and approximately three-fifths of a mile wide. Extensive shoal areas occur on the east side of the bay and less extensive shoals on the west side with average depths of 8 to 10 feet at mean low water.

3.2 Hydrology

Maximum tidal flows, which generally range between 200,000 and $300,000 \mathrm{cfs}$, dwarf the approximately 22,000 cfs average annual freshwater runoff which passes through the study area. About 60 percent of the freshwater runoff entering the area is contributed by the drainage basins above the Federal Dam at Troy, New York. The mean tidal range in the study area is 3 to 4 feet. Tidal currents average 0.8 knots on the flood and 1.2 knots on the ebb tide. A given tide stage occurs at the northern end of the study area about 25 to 35 minutes later than at the southern end.

Seasonally, the salt-water front has been observed by others to move upstream and downstream through a reach of about 50 miles or approximately from Chelsea to Yonkers in response to changing freshwater inflow. ${ }^{1}$

During a tidal cycle, this front may move through a distance of $\mathbf{3}$ to 15 miles depending on the particular tidal cycle, season and location of the salt-water front in the estuary. Salinity varied from about 0 ppt to about 4 ppt , but was generally less than 1 ppt , in the vicinity of the nuclear generating station, during the winter and spring runoff.

From January to March 1970, floe ice remained in the study area. Solid ice remained in the shoal areas until early March.

3.3 Power Plants

The Consolidated Edison nuclear generating Unit 1 was on-line during most of January, February and March, but shut down on March 20, 1970 for routine refueling operations (Figure 3-2). On May 20, with refueling completed, the plant went on-line but had to shut down the same day for mechanical repairs. The plant was shut down during the remainder of the 6 -month period. Thus, during most of the spring study period the plant was not operating and natural river conditions without heated effluents persisted in the plant vicinity.

Indian Point Unit 1 has a capacity of 285 megawatts and requires 300,000 gallons per minute (gpm) of cooling water. Unit 2 is scheduled to become operational in 1971 and will require an additional $920,000 \mathrm{gpm}$ of cooling water. Unit 3 is scheduled for 1973 and will use another $920,000 \mathrm{gpm}$. This will result in a total of $2,140,000 \mathrm{gpm}$ of cooling water which will be discharged through a single effluent canal. Units 2 and 3 have been delayed

Hudson River Ecology, 1966. Hudson River Valley Commission, New York. 325 p.
The Hudson River Estuary. A preliminary investigation of flow and water-quality characteristics. G. L. Giese and J.W. Barr, 1967. Water Resources Comm. N. Y. Bull, 61, 39 p.
in construction and the operational dates are tentative. Units 4 and 5 have been proposed for construction about $3 / 4$ of a mile south of Units 1 through 3 and each will require about $875,000 \mathrm{gpm}$ of cooling water.

The Lovett power station (owned by Orange and Rockland Utilities, Inc.) across the river on the west shore and about a mile south of the Indian Point facilities is a fossilfueled plant consisting of 5 units with a present capacity of 461 MW which requires $316,700 \mathrm{gpm}$ of cooling water. An additional power station is under construction at Bowline Point on the western shore of Haverstraw Bay, 4 miles south of Indian Point.

Figure 3-1. Finfish, Succession Panel and Benthic Invertebrate Station Locations

Figure 3-2. Average Daily Output 1970, Indian Point - Unit One

4.0 SAMPLING STATIONS

The 14 trawling stations (Stations 3 through 16) that were utilized during the fall and winter of 1969 have been continued through June, 1970 without change (Figure 3-1). Upon the initiation of the spring plankton program, trawl Stations $4,6,9,15,10,11,12,13$ and 14 doubled as plankton and trawl stations. The eff luent canal, Station 53, was also utilized as a plankton station. Stations 4,6 , and 14 served as monthly plankton stations, as in 1969. Stations $20,21,22$ and 23 were added as plankton stations.

The stations were set up in three basic transects (Figure 4-1). Each transect has a mid-river deep station, a close-to-shore deep station and one shallow water station. Stations 21, 11, 10 and 22 transect the river at the plant site. Station 22 starts in the vicinity of the forebay intake and runs north and Station 10 is located adjacent to the effluent canal and runs south. Two miles south of the plant Stations 15,20 and 9 transect the river and Stations 13, 23 and 12 transect the river two miles north of the plant.

A summary description of the spring plankton stations arranged by transect is given in Table 4-1. Table 4-2 gives a summary description of the trawl and zooplankton, and benthic sampling stations.

The beach seine Stations 31 through 39 are the same as those utilized in 1969 with one exception. Station 39 was moved in June 1970, 100 yards to the south of its original location because it was learned that the proposed site of the effluent canal for Units 4 and 5 coincided with the original location of this station. A summary description of the seine stations is listed in Table 4-3.

The Succession Panel and Thorson Bottle stations (51, 53 to 57) are the same as those utilized in 1969, except that Station 53 was moved from its original position in the "old" effluent canal to the mouth of the new effluent canal. Station 13 has been redesignated as Station 58 to prevent confusion with trawl Station 13. Table 4-4 lists and describes the Succession Panel and Thorson Bottle stations.

The location and common names of all sampling stations are listed in Table 4-5.

Table 4-1. Spring 1970 Weekly Plankton Sampling Stations

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M}^{*} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & S^{*} \\ & I^{\prime} \\ & \text { T } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \mathrm{D}^{*} \\ & \mathrm{p} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Common Name and Bottom Description
15	${ }^{40}$	1	45	Loveti-Bottom here is grey clay with some silt. The 45' contour is often difficult to follow at this station hecause the bottom slopes abruptly to 60 and 65 feet, especially at the southerm end of this station:
20	40.	2	8^{80}	Stony Pt. Channel-The sediment is mostly black silt. The southern end has assorted stones and shell fragments mixed with small amounts of coarse sand.
9	40	3	12	Greens Cove-Bottom consists of brown-black silt that is very soft.
21	42	1	15	Inside Reserve Flect-The bottom consists of brown-yellow silt with a few stones and many shells and fragments on the southern end.
11	42	2	50	Reserve Fleet-Bottom here is mostly black silt that is broken with a great deal of cinders.
10	. 42	3	45.	Con Ed Plant-Bottom consists of some broken ledge, rocks at the southern end mixed with small rocks that are smooth and round from abrasion. A considerable amount of cinder exists here. The rest of the bottom is grey-brown silt broken with pebbles and rocks.
22	42	3	45	Indian PL. - The bottom here is quite variable with fine black mud and silt with some coarse sand at the northern end. Midstation has rocks, gravel and coarse sand. The southern end has mostly black silt with some shell fragments and coarse sand.
53	42	3	17	Effluent Canal-The bottom is mostly rocks and gravel with some black-brown silt.
13	45	1	50	Round Island-Bottom here is mostly clay with black-brown silt. The 55' contour at the northern end of the station is occasionally difficult to follow due to a steep slope.
23	44	2	80	Roa Hook Channel-Fine brown-black silt prevails throughout the station with some stone and shell fragments at the southern end.
12	44	3	12	Peekskill Bay-The bottom here is brown, grey sticky silt. Potamogeton is abundant in the shoaler water during summer and autumn.

*See Appendix A for explanation of terms.

Table 4-2. Trawling, Zooplankton and Benthic Grab Sampling Stations

S T A	$\begin{gathered} \mathrm{M} \\ \mathrm{l} \\ \mathrm{~L} \\ \mathbf{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{p} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Common Name and Bottom Description
5	36	1	12	Dolphin - Bottom at this station is quite hard, consisting of brown mud, sind and a great many oyster shells. This station yields the greatest volume of shells netted at any station.
3	35	3	10	Potato Rock - Bottom is mostly hard grey clay and hard sand. Oyster shells are often netted in great quantity.
4	35	2	34	Croton Point Channel - Bottom is black-grey silt and mud. Campanularia colonies full of amphipods are frequently collected.
6	38	2	30	Buoy "H 16" - Bottom here is grey silt with some clay. Colonies if hyilroids (Campanularia) frequently collected.
7	38	3	11	Oscawana Island - Bottom here is grey silt and hard sand. At the southern end, rocks are netted on occasion.
8	39	1	12	Stony Point Bay - Buttom here is grey-brown silt and slightly sandy. The bottom trawls occasionally hang up on solid objects suspected to be old mooring blocks. Oyster shells are collected on occasion but not in great numbers.
9	40	3	12	Greens Cove - Bottom here is brown-black silt that is very soft. Sunken logs are occasionally netted and net hang-ups occur, but irregularly.
15	40	1	45	Lovett - Bottom here is grey clay with some silt. The 45' contour is often difficult to follow at this station because the bottom slopes quickly to 60 and 65 feet, especially at the southern end of this station.
16	41	3	45	Trap Rock - The bottom at this station is mostly cinders. Debris of all kinds collects here, i, c., leaves, bottles, trees, rope, domestic garbage, etc. On occasion, rocks weighting up to 40 pounds have been netted. Bottom contour, however, is easy to follow.
11	42.	2	50	Reserve Fleet - Bottom here is mostly black silt that is broken with a great deal of cinders. Net hang-ups occasionally occur from what may be debris dumped from the reserve fleet.
10	42	3	45	Con Ed Plant - Bottom here Consists of some broken ledge, rocks at the southern end mixed with small rocks that are smooth and round from abrasion. A considerable amount of cinder exists here. llang-ups occur with regularity at this station and everything from trees to boulders is netted here; leaves are common. The rest of the bottom is grey-brown silt broken with pebbles and rocks. Definitely not good bottom.
13	45	1	50	Round Island - Bottom here is mostly clay with black-brown silt. Occasionally, at the southern end of the station, rocks will be netted. The 55' contour at the northern end of the station is occasionally difficult to follow due to a steep slope.
12	44	3	12	Peekskill Bay - The bottom here is brown, grey sticky silt. Logs are occasionally netted. A major problem at this station is caused by the sticky mud that will not easily flush itself through the fine mesh of an innerliner in the cod end of the bottom trawl. Potamogeton is abundant in the shoaler water during summer and autumn.
14	55	3	47	Bear Mt. Bridge - Bottom here is black silt with some sand and an occurence of organic detritus. The 45' contour is easy to follow until the southern end of the station where a very sharp slope occurs. Frequently, debris and logs are brought up from the southern end at a point just north of the bridge.

Table 4-3. Beach Seine Sampling Stations

$\begin{aligned} & \mathrm{s} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	Common Name and Bottom Description
31	35	1	Dolphin Beach - This beach is coarse dark sand and bounded at both ends by rock. Slope of the beach is steep (1:4).
32	35	3	Croton Beach.- The bottom here is part of Croton Beach and is mostly sand and silt. Cans and bottles are sometimes collected. Beach is shoal and slope is gradual ($1: 10$).
38	40	1	Quarry Beach - Bottom is all sand that is free from debris. Slope is $1: 15$. Some rocks are at the North end of station and on occasion cause hang-ups.
33	40	3	Verplanck Pt. - This beach is mostly small gravel with some rocks. Broken glass occurs in considerable quantities and can be traced to a source 150 feet from the station where frequent refreshments are consumed by the public. Beach is bounded to the north by a bulkhead. Slope here is $1: 5$. Tidal currents existing at this station often makes a seine set very difficult.
39	41	3	Trap Rock Beach - Bottom is mostly gravel with some rocks exposed at low tide. Large rocks limit the northern end with Verplanck boat launching ramp acting as the southern boundary. The slope is $1: 10$. Hang-ups occur when the tide is out.
35	43	1	Rescrve Fleet Beach - The beach at this station is gravel with some occurrence of rocks. The gravel beach ends shortly below the low water mark where soft sticky mud prevails. In only 2 to 3 fect of water, the aquatic weed Potamogeton is found in abundance. During high water there is no beach and willow trees and honeysuckle outcrop over the water. The slope is shallow $(1: 10)$.
34	42	3	Gas Line Beach - This beach consists of small patches of hard sand; the rest of the beach is rocky with silt. Fresh water run-off occurs through a gulley located at the south end of the beach. The slope of the beach is steep (1:4). Soft mud exists below the low water mark.
36	44	3	Lumber Co. Beach - The beach here consists of coarse black sand. This is a short beach that is bounded on the south by a bulkhead and on the north by broken piles. The slope of the beach is steep (1:4). Little vegetation is present.
37	47	1	Ft. Montgomery - This beach is generally small rocks and gravel broken with patches of coarse sand. The beach is short and does not exist at high tide. Below the low water mark, this station is dominated by mud. The beach slope is steep ($1: 4$). Small shrubs and trees shade the water at high tide. Hand-ups frequently occur by rocks near the barge at the north end of the station.

Table 4-4. Succession Panel/Thorson Bottle Sampling Stations

$\begin{gathered} \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{P} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	Location and Exposure	Method of Attachment
54	38	1	20	Hung under a scaffold walk 50 ' to the west side of the loading chute of National Gypsum Plant at Grassy Pt; southerly exposure	Tied to an "I' beam
55	40	3	14	At the range marker located in Green's Cove and 550 yds S. E. from the most westerly tip of Verplanck Pt; southwest exposure	Tied from a beam that joins the tripod legs of the range marker
56	41	2	60	At the westernmost ship of the southernmost tier of ships in the reserve fleet. Five hundred yards due south of the over-river power lines; southerly exposure	Tied from the anchor chain
51	42	3	26	100^{\prime} from the northern corner of the Con Ed dock; westerly exposure	Tied to a bar screen which is part of the forebay perimeter
53	42	3	17	On the inside face of the "new" effluent canal eastern bulkhead; westerly exposure	Tied through bulkhead
57	43	3	7	At the dolphins located 75 yards from the shore at Charles Pt; southerly exposure	Tied from a piling
58	45	1	10	The middle of the southern face of the dock located at Round Island; southerly exposure	Tied to beam joist under the dock

Table 4-5. Locations of All Sampling Stations

s A	$\begin{aligned} & \mathbf{M} \\ & \mathbf{1} \\ & \mathbf{L} \\ & \mathbf{E} \end{aligned}$	8 1 	$\begin{aligned} & \mathbf{D} \\ & \mathbf{P} \\ & \mathbf{T} \\ & \mathbf{H} \end{aligned}$	Ponston	Common Name - Locationa
3	35	3	10	$\begin{aligned} & 41^{\circ} 111^{\prime} 07^{\prime} \mathrm{N} \\ & 73^{\circ} 55^{\prime} 09^{\prime} \mathrm{W} \end{aligned}$	Potato Rock - 1250 yarde weat of Pitato Rock bucy R"4". Transect lo moutherat.
4	35	2	34	$\begin{aligned} & 41^{\circ} 111^{101} 1^{\prime W} \\ & 73^{\circ} 56^{\prime} 58^{\prime} W \end{aligned}$	Croton Point Chennel - Transect is asuthenat from buay $\mathrm{R}^{\prime 2} 12$ ".
5	36	1	12	$\begin{aligned} & 41^{\circ} 11^{\prime} 14^{\prime \prime} \mathrm{W} \\ & 73^{\circ} 56^{\prime} 50^{\prime} \mathrm{W} \end{aligned}$	Dolphin - Southeant tranacct from dolphin in 8W Haverstraw Ray.
6	${ }^{34}$	2	30	$\begin{aligned} & 41^{\circ} 13^{\prime} 199^{\prime} \mathrm{N} \\ & 73^{\circ} 57 \cdot 10^{\prime} \mathrm{w} \end{aligned}$	Byay $\mathrm{A}^{\prime \prime} 16^{\prime \prime}$ - SSE tranaect from buoy 11 " $16^{\prime \prime}$ In N Haverstraw Hay Channel.
7	38	3	11	$\begin{aligned} & 41^{\circ} 13^{\prime} 34^{\prime} \mathrm{N} \\ & 73^{\circ} 56^{2} 27^{\prime} \mathrm{W} \end{aligned}$	Oacawna faland - NE tranaect in SSE from Havoratraw Bay bearing 066, 1200 yds from R"16".
8	39	1	12	$\begin{aligned} & 41^{\circ} 14^{\prime} 14^{\prime} \mathrm{N} \\ & 73^{\circ} 5 \mathrm{~S}^{\prime} 07 \mathrm{~W} \end{aligned}$	Stony Point Bay - SSE tranuect 500 yds from Stony Polnt light " 17 ", bearing 168.
9	40	3	12		Greoga Cove - Bearing 04B, 1000 yde from Stony Pt. Hght "I7".
10	42	3	45	$\begin{aligned} & 41^{\prime} 16^{\prime} 14 \mathrm{~N} \\ & 73^{\prime} 57.23 \cdot \mathrm{w} \end{aligned}$	$\frac{\text { Con Ed Plant }}{\text { sw trensect. }}-200 \text { yda off Con Ell pièr. }$
11	42	2	50	$\begin{aligned} & 41^{\circ} 16^{\prime} 16^{\prime} \mathrm{W} \\ & 73^{\circ} 55^{\prime} \cdot 43^{\prime} \mathrm{W} \end{aligned}$	Renerve Fit. - $\mathbf{0} 00$ yds off Con Eit mur. SW transect (parallei in Reserve Fleet).
12	44	3	12	$\begin{aligned} & 41^{\circ} 17^{\prime} 30 \cdot \mathrm{~N} \\ & 73^{\circ} 56^{\prime} 34^{\prime} \mathrm{W} \end{aligned}$	$\begin{aligned} & \text { Peckskill Bay }-1000 \text { yde north of Pcekskill } \\ & \text { Ray Hight "IA". Transect io } \mathrm{N}-\mathrm{S} . \end{aligned}$
13	45	1	50	$\begin{aligned} & 41^{\circ} 18^{\prime} 02^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 06^{\prime} \mathrm{W} \end{aligned}$	Round :sland - SE from Round Island.
14	47	3	4	$\begin{aligned} & 41^{\circ} 19^{\prime} 44^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 42^{\prime} \mathrm{W} \end{aligned}$	Bear Mountain Bridge - 1000 yda NE of brdge and 100 feet off east shore. Transect ta almost paralled to shure toward bridge.
15	40	1	45	$\begin{aligned} & 41^{\circ} 15^{\prime} 05^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 39^{\prime} \mathrm{W} \end{aligned}$	Lovott - Between Stony Point and Rock Quarry at Tompking Cuve.
16	41	3	45	$\begin{aligned} & 41^{\circ} 15^{\prime} 37^{\prime} \mathrm{N} \\ & 73^{\circ} 59^{\prime} 022^{\prime} \mathrm{w} \end{aligned}$	Trap Rock - 200 yarde sowth from overhead power cables south tuwarde verplanck Point.
20	40	2	80	$\begin{aligned} & 41^{\circ} 14^{\prime} 48^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 10^{\prime} \mathrm{W} \end{aligned}$	Stony Ph. Channel - midchannel 400 yda fror Stony Pt. light " 17 " courses bearing $334^{\circ} \mathrm{T}$ from south end.
21	42	1	15	$\begin{aligned} & 41^{c} 16^{\prime} 30^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 04^{\prime} \mathrm{W} \end{aligned}$	Inside Reaerve FIL. - 275 yds from West bank and inside Reserve FIt. Bearing $4: 1^{\circ} \mathrm{T}$.
22	42	3	45	$\begin{aligned} & 41^{\circ} 16^{\prime 2} 22^{\prime \prime} \mathrm{N} \\ & 73^{\circ} 57^{\prime} 14^{\prime} \mathrm{W} \end{aligned}$	Indian Pt. - 100 yds from east bank olf Indian Point, bearing $41^{\circ} \mathrm{T}$.
23	44	2	н0	$\begin{aligned} & 41^{\circ} 17^{\prime} 38^{\prime} \mathrm{W} \\ & 73^{\circ} 57^{\prime} 16^{\prime \prime} \mathrm{W} \end{aligned}$	Roa Hook Channel - 300-400 yth from East bank off Roa Hoik, bearing $327^{\circ} \mathrm{T}$.
31	35	1		$\begin{aligned} & 41^{\circ} 10^{\prime} 35^{\prime \prime} \mathrm{N} \\ & 73^{\circ} 56^{\prime} 33^{W} \mathrm{~W} \end{aligned}$	Dolphin Beach - bench sw Haverstraw Ray bearing 280, 550 yds from light "11".
32	35	3		$\begin{aligned} & 41^{\circ} 11^{\prime} 23^{\prime} \mathrm{W} \\ & 73^{\circ} 53^{\prime} 30^{\prime} \mathrm{w} \end{aligned}$	Croton Beach - beach north end of Croton Pt. public beach at harmon.
33	40	3		$\begin{aligned} & 41^{\circ} 14^{\prime} 56^{\prime \prime N} \\ & 73^{\circ} 57^{\prime} 55^{\prime \prime W} \end{aligned}$	Verplanck Pt. - beach at end of Verplanck Fr. east of bulkhrad,
34	42	3		$\begin{aligned} & 41^{\circ} 16^{\prime} 00 \times \mathrm{N} \\ & 73^{\circ} 57^{2} 27^{\prime \prime} \mathrm{W} \end{aligned}$	Cas Line Beach - beach 500 yds south of Indian Pt. Plant (Gas Co, betch).
35	43	1.		$4^{\circ} 16^{144 " N}$ $73^{\circ} 58^{\circ} 04^{\prime \prime}$ W	Reserve fleet Beach - beach on south shore of Jones. P. fuat north of RR bridge.
36	44	3		$\begin{aligned} & 41^{\circ} 17^{\prime} 19^{\prime} \mathrm{N} \\ & 73^{\circ} 55^{\prime} 52^{\prime} \mathrm{W} \end{aligned}$	$\frac{\text { Lumber Co. Beach - beach in NE corner of }}{\text { Peekakity Bay }}$ fokekit Bay
37	47	1		$\begin{aligned} & 41^{\circ} 22^{\prime} 35^{\prime \prime N} \\ & 73^{\circ} 59^{\prime} 00^{\prime} \mathrm{W} \end{aligned}$	Ft. Montgomery - beach wouth of Fort Montgomery Marina,
34	40	1		$\begin{aligned} & 41^{\circ} 14^{\prime} 56^{\prime \prime} \mathrm{N} \\ & 73^{\circ} 58^{4} \cdot 3^{\prime}{ }^{2} \end{aligned}$	Guarry Beach - beach south of rock quarry at Tomblas Cove.
39	41	3		$\begin{aligned} & 41^{\circ} 15^{\prime} 21^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 00^{\prime} \mathrm{w} \end{aligned}$	Trap Rack Besch - beach south of quarry at
51	42	3	${ }^{26}$	$\begin{aligned} & 41^{\circ} 16^{\prime} 14^{\prime \prime} \mathrm{N} \\ & 73^{\circ} 57^{\prime} 14^{\prime \prime} \mathrm{W} \end{aligned}$	Forebay-Indian Pt. Plani \#1 water intake
52	42	3	26	$\begin{aligned} & 41^{\circ} 16^{\prime} 14^{\prime} \mathrm{N} \\ & 73^{\circ} 57^{\prime} 14^{\prime \prime} \mathrm{w} \end{aligned}$	Sluiceway - Indian PR. Plant "1 screen washing aluice.
53	42	3	17	$\begin{aligned} & 41^{\circ} 16^{\prime} 12^{\prime} \mathrm{N} \\ & 73^{\circ} 57^{\prime} 13^{\prime} \mathrm{W} \end{aligned}$	
54	38	1	20	$\begin{aligned} & 41^{\circ} 13^{\prime} 355^{\prime N} \mathrm{~N} \\ & 73^{\circ} 57^{\prime 4} \cdot \mathbf{W} \end{aligned}$	Grassy Point - Quarry plant at Grasay Polnt (under dock).
55	40	3	14	$\begin{aligned} & 41^{\circ} 15^{\prime} 19^{\prime} \mathrm{N} \\ & 73^{\circ} 57^{\prime} 59^{\prime} \mathrm{w} \end{aligned}$	Rance Markar - Range marker at Grecs's Cove.
56	41	2	60	$\begin{aligned} & 41^{\circ} 15^{\prime} 63^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 26^{\prime} \mathrm{W} \end{aligned}$	Anchor Chaln - anchor chatn western-most ohdp, southern tier north of Lovett Plant.
57	43	3	7	$\begin{aligned} & 41^{\circ} 177^{\prime} 14^{\prime} \mathrm{N} \\ & 73^{\circ} 566^{3} \cdot 35^{2} \end{aligned}$	Peakakill Bay - Dolphin at Fleischmann's dock, Peekskill Bay.
58	45	1	10	$\begin{aligned} & 41^{\circ} 18^{\prime} 03^{\prime} \mathrm{N} \\ & 73^{\circ} 58^{\prime} 09^{\prime} \mathrm{W} \end{aligned}$	Round Ialand

NOTE: A atation a defined here may deacribe a goographic point or a line of travel depending on the ype of ampling: for example, a bottom grab anmple veraus a trawl cample. (A trawl atation average about $1 / 2$ mille in lengethe) The positiona denote the locatlon of the trawl trantect northern pointa. All

All position/hocation dats based on the November 67 (Ath) edition of the U.S. Coast and Geodetic urvey Cher No, 282.

Figure 4-1. Plankton Station Location:

5.0 ELECTRONICS SYSTEMS

5.1 Introduction

The material contained in this section describes the six-month activities involving the installation, operation and maintenance of electronic systems at the power plant site. Discussions will center around the installations shown in Figure 5-1.

5.2 Automated Environmental System

5.2.1 History of Operations

The Automated Environmental System (AES) Water Quality Monitor System was installed and in operation 30 September 1969. Figure 5-2 summarizes the operational history of each of the nine sensing probes in the system since 1 January 1970. The figure shows days when valid data were recorded.

The effluent probes were inoperative at various times during the six-month period. From January 19 through 30, a shaft in the supply pump broke due to clogging and a new pump was purchased and installed. Also during this period, AES Company engineers replaced faulty parts in the effluent sample drawer. On February 1, effluent sample drawer flooded and system was off for two days. From February 5 through 11, the system was shut down to move the effluent pump 200 feet closer to plant due to effluent channel diversion. From 18 March through 17 April, 22 through 23 May and 26 May to 4 June, dissolved oxygen probe was returned to AES Company for repairs. Major problems were in calibration of the sensor due to membrane clogging plus excessive electronic drift.

Beginning 19 January, an AES maintenance schedule was established for use by the electronics technician on site. A copy of this Maintenance Record format is presented in Figure 5-?.

5.2.2 Tide Stage Height Instrument

Raytheon, using company funds, purchased an AES Water Stage Height Instrument so that the Water Quality Monitor System would record tide conditions continuously. Raytheon personnel installed the unit 27 May beneath the pier (Figure 5-1). Installation details for the truss pipe, sensor assembly and associated hardware are shown in Figure 5-4.

Three-conductor shielded cable was used to hardwire the sensor assembly to the AES. This was done to record tide-height variations in analog format on the same strip chart with the other environmental factors monitored by the AES unit. . The instrument was aligned using 1970 tide table information as a reference. Mean-low tide on the recorder chart was put at 10 feet to allow tides below this to be recorded and to prevent interference with other recorder tracings.

5.2.3 AES-Digitec Interface

Cable connections were made on 27 May between the AES monitor in Biology Lab and the Digitec punch paper tape-printer system in the Electronics Van.

Interface methods, as designed by Raytheon personnel, are shown in Figure 5-5. The 0 to 5 -volt analog signals from the AES output were handwired to the Digitec input coupled to scaler potentiometers to reduce signal levels acceptable to the scanner input. As a result of this installation, AES data are printed continuously on channels 18 to 26 of the printer tape and stored on punch tape to facilitate data processing at a later date. Installation was completed and system operational on 6 June.

5.3 Temperature Chains

5.3.1 History of Test Operations

The upstream buoy was put in place on January 7 approximately 900 feet upstream from the southwest corner of the dock after undergoing a leak test (submerged) in the river. The buoy was functioning, but no data were recorded because of a power - supply failure in the Digitec System. The power supply was returned to New London on 8 January. The complete system as installed was shut down pending return of the power supply.

On 14 January, the power supply was returned, connected, but again malfunctioned. It was again returned to MRL for repair, and replaced with a different power supply on 20 January.

On 21 January, the downstream buoy was installed approximately 1,000 feet downstream from the southwest corner of the dock. It was installed during hazardous ice conditions and arctic weather. The cable was cut, apparently by the ice, after installation. The buoy was removed on January 22 and a new cable was ordered.

The cross-stream buoy was installed on January 22, approximately 700 feet off the southwest corner of the dock. No problems were encountered with its installation.

The cross-stream and upstream buoys were connected to the Digitec System on 22 January and started recording temperatures every fifteen minutes, twenty-four hours a day. The effluent buoy began malfunctioning and was disconnected.

On 31 January, the upstream buoy was sighted approximately 1,000 feet downstream, but was still recording information. The buoy was sitting in shallow water and protruding above the surface. It was removed on 3 February. The cross-stream buoy continued to function.

On 20 February 1970, all the temperature chain electronics except for those installed on the cross-stream buoy were returned to New London for evaluation, redesign and reassembly.

5.3.2 Electronic Evaluation, Redesign and Reassembly

A detailed inspection of the sensor cable assemblies was conducted and repairs were made where necessary. Also, each transmitter was checked for proper operation with the set-up given in Figure 5-6. In the configuration, raising the power supply voltage from zero resulted in an increase in loop current (voltage on meter). A point was reached where the meter reading did not increase for a continued increase in supply voltage. This point was reached at about 27 volts supply voltage for a sensor temperature of $100^{\circ} \mathrm{F}$. When the meter reading stabilized, temperature (${ }^{\circ} \mathrm{F}$) was obtained by multiplying the reading by 10 and subtracting 25.0. This holds true only for a 625 ohm series resistor.

Most transmitter faults resulted in a failure to "limit" as the supply voltage was increased. In no case was the supply allowed to exceed 60 volts.

A sensor was simulated by attaching a 100 -ohm resistor across terminals 1 and 2 of the transmitter and shorting terminals 3 and 4 together.

During the foregoing electrical checks, five transmitters were found to be inoperative. Transmitter 66 had a faulty amplifier card and the card from spare transmitter 60 was substituted. Transmitters $61,62,63$ and 69 were found to have faulty transistors, Q201 on their control cards (shorted C-E). These transistors were replaced and transmitters 61, 63 and 69 placed back in operation. Transmitter 62 was found to have a faulty amplifier card and was not used in the current installation. A sample "Electronics Evaluation" record sheet is shown in Figure 5-7.

Following these checks, three electronic enclosure cans were assembled, one for each system. Each can had associated with it four transmitter and sensor units with cable lengths of $20,20,40$ and 80 feet.

A calibration check of each transmitter and sensor unit was then performed using the set-up of Figure 5-6. The sensors alternated between ice water bath and an accurately controlled hot water bath. Readings obtained were corrected to a National Bureau of Standards
certified thermometer readable to $0.05^{\circ} \mathrm{C}\left(.09{ }^{\circ} \mathrm{F}\right)$. Additionally, where the calibration checks showed an instrument to be in error, that instrument was calibrated to within $0.1^{\circ} \mathrm{F}$ of the bath temperature. The results of these checks were recorded on the "Electronics Evaluation"' sheet (Figure 5-7).

Each can was then sealed, pressurized at 10 psi and submerged in the MRL-New London test tank for a 24 -hour leak test. Under these conditions, a linearity check was performed for each sensor and corrected temperature readings observed at $10^{\circ} \mathrm{F}$ intervals. Results were recorded graphically as illustrated in Figure 5-8.

5.3.3 Reinstallation of Temperature Chains and Electronics

Prior to 12 March, the Asst. Technical Advisor, with the Raytheon on-site electronics technician, surveyed the area near the new effluent and determined locations to plant the buoy systems. The three locations were spaced downstream, upriver and out from the mouth of the effluent on or near the $1-2{ }^{\circ} \mathrm{F}$ contour.

On March 12, plans were initiated to reinstall three temperature-chain buoy systems minus electronics and associated cables. In the morning, three orange-colored, surfacemarker buoys were placed at the spots where the thermal chains were to be implanted. (Figure 5-9, Upstream, middle and downstream chain locations). Following this, a series of passes were made at each of these surface buoys (and later, at the new location of the original cross-stream chain) to map the bottom contours and determine water depths in the areas. A recording fathometer was used and the bottom characteristics (within a 50 foot radius of each buoy) were observed. Results are shown in Figures 5-10 through 5-13; actual locations for the thermal chains are also indicated on each Figure. The depth contours on these curves provided the information needed to rig the subsurface buoy 10 feet below the surface at mean low tide.

During the afternoon of 12 March three chains were prerigged and readied to be implanted on March 13th. Final cable length configurations and chain loactions are shown in Figure 5-14.

During the morning of 13 March, a series of measurements were made to each marker buoy using permanent land marks as guide points. These were made in case the surface buoys were unintentionally removed and location by other methods failed. Between 1300 and 1400 on 13 March-the upstream, middle and downstream units were implanted from a launching tug.

As mentioned, plans were made to locate the subsurface buoy (10 feet below surface) at low tide. Actual depths, as measured on a fathometer and with markings on the surface buoy rope, turned out to be 12^{\prime} on the upstream buoy and 11^{\prime} on the other two. After installation, marker buoys were removed and a series of sonar passes were made on each subsurface buoy to locate same acoustically. The buoys were easily detectable using this method.

On April 7 MRL personnel made final on-site preparations for installation of electronic packages to the temperature-chain buoy systems previously implanted.

Attempts were initiated on 8 April to salvage enough of the 12 conductor copper shielded cable previously used to couple to at least one system. One section long enough to reach the upstream chain was available and an electrical check showed the cable to be usable. A damaged section of the cable near the center was removed, the two ends respliced together and a connector installed on the outboard end. The shore end of the cable was run to the instrument van via a route shown in Figure 5-15.

Following this, two sections of similar type copper-shielded cable were routed from the van over the roof of the bio-lab to the pit outside the bio-lab with the intention of making all splices on new cable at this spot. This location was chosen for splicing because it is relatively dry and well protected against damage problems. Connectors were then installed on all three cables in the van and on the two remaining buoy cables.

During 9 April the cables to the three chain systems were run as shown in Figure 5-15. The repaired cable was run to the upstream chain and two new 8 conductor , \#18 stranded wire,

PVC coated cable fed the middle and downstream chains. Procedures used to make these runs were: cables were payed out from reels placed on the pier in front of the van and pulled by boat to each buoy. The cable trailing the boat was floated by Polystyrene blocks attached and spaced approximately every 100 feet. Once at the buoy location, the connector on the end of the cable was attached to a 10 -inch thick, $41 / 2$-inch long float tied to the surface marker. At this time 30 to 40 feet of cable were coiled in the boat to assure enough slack to make proper electrical connections. A second boat worked in reverse (buoy to pier) to remove floats and attached cement blocks approximately every 100 feet to sink the cable. Additionally, 12 -inch long sections of lead were wrapped around the cable to prevent lateral movement of the cable on the bottom. After completing the cable laying process, the shore ends were spliced to the copper cable run the previous day.

At the same time the cable laying job was occuring, final wiring check outs were made to the shore display electronics in the instrument van. From this, a shore-cable wiring configuration list was made as shown in Figure 5-16. In essence, matching pin numbers on the connectors at each end of the cable were tied together (A to A, B to B, etc.). A continuity check verified each wire in each cable was connected properly.

Also on 9 April, a single sensor was installed in the effluent near the AES pump and was observed to function correctly. A $0.5^{\circ} \mathrm{F}$ temperature differential was noted between the two systems probably due to temperature loss in the AES feed pipes.

Professional divers, after some difficulties, installed the electronic cans on the upstream and middle-temperature chains on 10 April. After further difficulties other divers were retained and they installed the downstream electronics on 17 April (following delays caused by wind and tide conditions).

5.3.4 Temperature Chain Performance

From 18 April to 4 June, temperature data from the sixteen sensors were recorded continuously without difficulty on the digital printer, but some difficulties were experienced
with the Digitec paper tape punch; therefore, data from digital printer were utilized until the paper tape punch was repaired.

On 4 June, during an electrical storm, ten probes became inoperative including all four on the downstream and midstream buoys and two on the upstream buoy.

On 8 June, three submerged electronic cans housing the electronics were retrieved. Continuity checks showed no electrical faults in the shore cables, also no structual damage was observed. Major faults were found in the electronic transmitters located in the cans. On 11 June, the transmitters were returned to the manufacturer for repairs.

On 23 June, the repaired transmitters were returned with a list of damaged components from which the manufacturer evaluated the damages and arrived at the following conclusionthe extensive damage to the component was due to an electrical discharge. An excessive long-term voltage of two or three times the norm could not have been thecause because there were no signs of overheating, i.e., charring or discoloration; therefore, they concluded the overvoltage was transitory in nature and of extreme magnitule such as that of a lightning strike.

During 23 June, the repaired systems were reassembled in New London and a calibration check was made with no changes observed from previous checks. At this time, steps were initiated to prevent future occurrences of this type. The shore cables from the water line to the electronic van were rerouted through an opening in the pier near the electronic van (Figure 5-15). This reduced the amount of exposed cable and used the pier as a shield against possible strikes. Additionally, voltage limiting diodes were placed across the power leads in the electronic cans to prevent transients from reaching the electronics. The downstream can was installed and operating by 30 June. The remaining two cans were placed in operation 10 July, the delay caused by delivery of new connectors for the cans.

The cross-stream buoy originally located in midriver was relocated on 23 June, midway between the upstream and midstream buoys as shown in Figure 5-9. Bottom profiles and cable lengths are given in Figures 5-13 and 5-14 for this buoy. With the relocation of this buoy, seventeen working sensors were available (sixteen surrounding and one in the effluent). Figure 5-17 illustrates days when the temperature sensors recorded vilid data.

Figure 5-1. Site Locations of Electronic Installations

Figure 5-2. Automated Environmental System (AES) Operational History - 1970

Figure 5-3. Automated Environmental System (AES) Maintenance Record

Figure 5-4. Water Stage Height Installation

Figure 5-5. AES/Digitec Interface

Figure 5-6. Transmitter and Sensor Test Assembly

Figure 5-7. Electronics Evaluation Results (Sample Sheet)

- = INDICATED TEMP (${ }^{\circ}$ F)

Figure 5-8. Temperature Linearity Check

ROUTE-ALONG SHORE CABLE REQ (SENSOR TO PIER)

- MARKER

X FINAL BUOY PLACEMENT

DOWNSTREAM__ 1450'
MIDDLE 1000
UPSTREAM ___ 450°
ORIGINAL C.S._- 700

Figure 5-9. Temperature Sensor Buoy System Locations

Figure 5-10. Upstream Buoy - Bottom Profile

Figure 5-11. Middle Buoy - Bottom Profile

Figure 5-12. Downstream Buoy - Bottom Profile

Figure 5-13. Original Cross-Stream Buoy - Bottom Profile

Figure 5-14. Thermal Chain Buoy Configurations

Figure 5-15. Cable Routing Diagram for Thermal Chains

CAN	$\begin{array}{\|l} \mathbf{~} \\ \mathbf{0} \\ \mathbf{\infty} \end{array}$	$\begin{array}{\|c\|c} \text { SENS } \\ \text { POS } \end{array}$												
			SHORE CABLE OUTBOARD CONNECTOR					COPPER INBD SHIELDED MS CABLE COLOR PIN		$\begin{aligned} & \text { INBD MS } \\ & \text { RECEPTACLE } \\ & \text { COLOR } \end{aligned}$	UTILITY PANEL		$\begin{gathered} \text { MX } \\ \text { CHAIN } \\ \text { NO. } \end{gathered}$	
			PIN	COLOR	XMTR	SENS	FUNC			TB	\#			
A	$\begin{aligned} & \underset{\rightharpoonup}{w} \\ & \stackrel{\rightharpoonup}{\Sigma} \\ & \hline \end{aligned}$	NT	$\begin{array}{\|l\|} \hline A \\ C \\ \hline \end{array}$	BLUE ORANGE	61	62	$+$	BROWN BLUE	$\begin{aligned} & A \\ & \text { C } \end{aligned}$		YELLOW BLUE	2	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	6
		TOP	$\begin{aligned} & \hline D \\ & E \\ & \hline \end{aligned}$	GREEN RED	64	65	$+$	WHITE WHITE	$\begin{aligned} & \bar{D} \\ & E \end{aligned}$	WHITE GRAY	1 5		5	
		BOTT	$\begin{array}{\|l} \hline G \\ H \\ \hline \end{array}$	WHITE BLACK	63	64	$\overline{+}$	BLUE GREEN	$\begin{aligned} & \bar{G} \\ & H \end{aligned}$	BLACK ORANGE	4 8		8	
		NB	K	GRN/BT RED/BT	69	48	$+$	WHITE ORANGE	k	WHITE/RED WHITE/BLACK	3 7		7	
		-	M	WHI/BT	-	-	SP.	WHITE	M	GREEN	-			
B		BOTT	$\begin{aligned} & A \\ & B \end{aligned}$	$\begin{gathered} \text { BLUE } \\ \text { ORANGE } \end{gathered}$	76	77	$+$	BROWN GRAY	$\begin{aligned} & A \\ & A \\ & B \end{aligned}$	$\begin{aligned} & \text { YELLOW } \\ & \text { RED } \end{aligned}$	4	$\begin{array}{\|l} \hline 4 \\ 8 \\ \hline \end{array}$	16	
		NB	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{gathered} \text { GREEN } \\ \text { RED } \end{gathered}$	66	67	$+$	WHITE WHITE	$\begin{aligned} & \bar{D} \\ & E \end{aligned}$	WHITE GRAY		3 7	15	
		TOP	$\begin{aligned} & \mathrm{G} \\ & \mathrm{H} \end{aligned}$	WHITE BLACK	65	66	+	BLUE GREEN	$\begin{aligned} & \mathrm{G} \\ & \mathrm{H} \end{aligned}$	BLACK ORANGE		$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	13	
		NT	$\begin{aligned} & K \\ & L \end{aligned}$	$\begin{aligned} & \text { RED/BT } \\ & \text { WHI/BT } \end{aligned}$	72	73	$+$	WHITE ORANGE	$\begin{aligned} & K \\ & L \end{aligned}$	WHITE/RED WHITE/BLACK		2 6	14	
C		NT	$\begin{aligned} & \hline A \\ & B \end{aligned}$	$\begin{aligned} & \text { BROWN } \\ & \text { GRAY } \end{aligned}$	68	69	$+$	NO SPLICE. USED COPPER SHIELDED CABLE FROM CAN TO VAN.	$\begin{aligned} & A \\ & A \\ & B \end{aligned}$	YELLOW RED	1	2 6	2	
		TOP	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \\ & \hline \end{aligned}$	WHITE WHITE	70	71	+		D	WHITE GRAY		1 	1	
		NB	$\begin{aligned} & \mathrm{G} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { BLUE } \\ & \text { GREEN } \\ & \hline \end{aligned}$	75	76	$+$		$\begin{aligned} & \bar{G} \\ & H \end{aligned}$	BLACK ORANGE		3 7	3	
		BOTT	$\begin{aligned} & K \\ & K \end{aligned}$	WHITE ORANGE	67	68	$+$		$\begin{aligned} & 1 \\ & K \\ & L \end{aligned}$	WHITE/RED WHITE/BLACK		$\begin{array}{\|l\|} \hline 4 \\ 8 \\ \hline \end{array}$	4	
		-	C F J M		-	-	$\begin{aligned} & \text { SP. } \\ & \text { SP. } \\ & \text { SP. } \\ & \text { SP. } \end{aligned}$		C F J M	BLUE BROWN WHI/BRN GREEN		- - - -	- - -	
		TOP		WHITE(K) WHITE(L)	78	79	+	NO SPLICE. CABLE IS THAT USED IN ORIG INSTALL. SOLID LENGTH.	$\begin{aligned} & E \\ & D \end{aligned}$	GRAY WHITE	3	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	9	
		NT		$\begin{array}{\|c\|} \hline \text { GRAY } \\ \text { WHITE }(H) \end{array}$	74	75	$\begin{aligned} & - \\ & + \end{aligned}$		$\begin{aligned} & \mathrm{B} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \text { RED } \\ \text { WHI/BRN } \end{gathered}$		2 6	10	
		NB		$\begin{gathered} \text { WHITE(D) } \\ \text { RED } \end{gathered}$	71	72	$\begin{aligned} & - \\ & + \\ & \hline \end{aligned}$		$\begin{aligned} & k \\ & k \\ & F \end{aligned}$	WHITE/RED BROWN		$\begin{aligned} & 0 \\ & \hline 7 \\ & 7 \end{aligned}$	11	
		BOTT		GREEN BROWN	73	74	$+$		$\begin{aligned} & \mathrm{H} \\ & \mathrm{~A} \end{aligned}$	ORANGE YELLOW		$\begin{aligned} & 1 \\ & 4 \\ & 8 \end{aligned}$	12	
		- - - -		BLUE WHITE BLUE(Z) ORANGE	-	-	SP. SP. SP. SP.		$\begin{aligned} & \hline C \\ & M \\ & G \\ & L \end{aligned}$	BLUE GREEN BLACK WHITE/BLACK		- - -	-	
$\begin{aligned} & \text { EFFL } \\ & \text { SEN } \end{aligned}$	Sor	$\begin{gathered} \hline \text { NEAR } \\ \text { AES } \end{gathered}$		$\begin{aligned} & \hline \text { SHIELD } \\ & \text { CT. COND. } \end{aligned}$	79	63	$\begin{aligned} & - \\ & + \end{aligned}$		-	-	5		0	

Figure 5-16. Electronics Wiring Diagram

Figure 5-17. Operational History of Temperature Sensors

6.0 TEMPERATURE STUDIES

During the January through June 1970 study period, primary sources of temperature data were the biological sampling program, the A.E.S. monitor at intake and outfall, and the chains of platinum probe temperature sensors in the river at and near the effluent canal.

6.1 Temperature-Infrared Overflight/Bathythermograph Surveys

Due to river ice conditions early in this six month period, and the plant shut-down in the latter portion, no overflight/BT surveys were carried out.

6.2 Temperature-In-Situ Data from Biological Surveys

Temperature data collected (with either salinometers and/or bucket thermometers) in conjunction with the biological sampling program continue to indicate isothermal conditions at each sampling station (e.g., note almost identical curves for surface and bottom temperatures in Figures 6-1, 6-2, and 6-3), except when Indian Point or Lovett Generating Stations were operating, and wind and tide conditions caused surface plumes to travel across adjacent collecting stations causing transient variations from the isothermal condition.

The exceedingly close similarities in monthly temperatures between Stations $9,10,11$, 12, 13, 15, 20, 21, 22 and 23 demonstrated in Figures 6-1, 6-2, and 6-3, indicate rather uniform temperature conditions throughout this study area. The seasonal increase in water temperature is clearly indicated by the monthly averages of these in-situ data. The range and number of samples for each parameter are listed in Appendix B.

6.3 Temperature-Automated Environmental System

Based on the January daily 0800 (hours) readings (Figure 6-4), an average intake temperature of $34^{\circ} \mathrm{F}$ and an outfall temperature of $46^{\circ} \mathrm{F}$ were observed. This indicated an average ΔT of about 12° for January. An increase of $3^{\circ} \mathrm{F}$ in both influent and discharge streams characterized the tidal shift. The plant recycled some of its cooling water (through pipes installed for this purpose) in cold winter months to prevent ice formation of the traveling
screens. The AES intake sensor pump was located outside of this "recirculation" area and did not supply this heated water to the sensors. This probably explains the higher, $\Delta \mathrm{T}$ $\left(12^{\circ} \mathrm{F}\right)$ compared to that observed during the previous summer/fall (8 to $9^{\circ} \mathrm{F}$).

The 0800 influent temperatures in February averaged $34^{\circ} \mathrm{F}$ while the 0800 discharge temperatures were $43^{\circ} \mathrm{F}$, representing a $9^{\circ} \mathrm{F}$ increase through the plant. The tidal pattern, mentioned above was repeated with an increase of 2.5 to $3^{\circ} \mathrm{F}$ in both the influent and discharge.

March 0800 temperature readings averaged $33^{\circ} \mathrm{F}$ for the intake and $44^{\circ} \mathrm{F}$ for the dis charge until the plant discontinued operations on 20 March.

April temperatures increased $16^{\circ} \mathrm{F}$ over the course of the month with a monthly average of $44^{\circ} \mathrm{F}$. The reactor was inoperative during April, and the intake and discharge temperatures were very close, 1 to $2^{\circ} \mathrm{F}$ difference. The discharge canal was generally warmer than the intake sample. Except for five days during this month, one or both of the plant's main circulator pumps were operating and forcing water through the effluent canal.

During May the river temperature increased by $10^{\circ} \mathrm{F}$ with a monthly average of $58^{\circ} \mathrm{F}$, based on the 0800 readings. Discharge temperatures were almost the same ($\Delta \mathrm{T}=1$ to $2^{\circ} \mathrm{F}$) except for one day, 20 May 1970 when the plant was operational. A thermal gradient of $16^{\circ} \mathrm{F}$ through the plant was measured at that time.

June temperatures varied only 0.5 to $1.5^{\circ} \mathrm{F}$ between the intake and discharge as the nuclear plant was not in operation during this month. The river temperature increased about $7^{\circ} \mathrm{F}$ during June with a monthly average of $68^{\circ} \mathrm{F}$ based on the 0800 readings.

When the power plantwas on-line (Figure 3-2), an increase of several degrees Fahrenheit was generally observed as the tide began to flood. This explains the "abnormal" peaks of 2 to 3 days duration in the otherwise "smooth" seasonal distribution of river temperature (Figure $6-4)$, i. e., these particular 0800 readings coincided with the times of active tidal recirculation of effluent water.

6.4 Temperature - Moored Sensors Data

Data collected by the "temperature chain" sensors (Figures 6-5, 6-6, 6-7, 6-8, and 6-9) tend to strongly back the suggestions provided by the 'in-situ' temperature data gathered with the biological sampling (Section 6.2).

In addition to showing the seasonal increase of water temperatures, the "chain" data again indicate extremely close readings from surface to bottom within and between all the locations (except that the effluent canal temperatures were 1 to $2^{\circ} \mathrm{F}$ higher). Thus these also indicate the usual isothermal nature of the river from surface to bottom, and the rather uniform temperature conditions obtaining horizontally as well.

6.4.1 Statistical Analysis of Temperature Chain Sampling Rate

This study was directed toward determining the optimum sampling rate for the Indian Point automatic temperature probes. Continuous data obtained between the period of 27 May and 2 June 1970 were selected for a detailed analysis. This block of data represents 144 hours of continuous data obtained at intervals of ten minutes. There were three separate buoys and one effluent probe operating, making a total of thirteen temperature sensors located at different depths. A plot of the temperature data for the first day is shown in Figure 6-10. The 60degree line is labeled for each sensor with the temperature scale being the same as that shown for the effluent sensor. For this plot the temperature scale is 10 degrees per inch or two small divisions per degree and the time scale is one hour per inch.

The temperature recorded each day was reduced to the mean, variance and standard deviation. The standard error of the mean and standard deviation were also computed. The above parameters were calculated by the following:

Mean ($\overline{\mathrm{x}}$)

$$
\overline{\mathrm{x}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} / \mathrm{n}
$$

Sum of Squares $\left(\Sigma x^{2}\right)$

$$
\Sigma x^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Standard Deviation σ

$$
\sigma=\sqrt{\Sigma \mathrm{x}^{2} / \mathrm{n}}
$$

Unbiased best estimate of the universe standard deviation

$$
\hat{\sigma}=\sqrt{\Sigma x^{2} /(n-1)} \quad \text { where } n-1=\text { degrees of freedom }
$$

Standard error of mean

$$
\hat{\sigma}_{\mathrm{x}}=\hat{\sigma} / \sqrt{\mathrm{n}}
$$

Standard error of standard deviation

$$
\hat{\sigma}_{\sigma}=\hat{\sigma} / \sqrt{2 \mathrm{n}}
$$

The results of the above are shown in Table 6-1. :The daily average temperature increased continuously during this period with the daily average increasing as much as one degree on some days. The overall increase during this period was about 3.6 degrees for the effluent and about 3.9 for each of the other sensors. The daily standard deviation varied between 0.35 and 0.85 with the larger values of standard deviation on some afternoons. There is no explanation for this occurrence.

Variation in the standard error of the mean was between 0.03 and 0.07 . This implies that the average which has been calculated was not more than 0.09 to 0.21 degrees away from the true average in 99.7 chances out of 100 .

The same statistical properties were calculated while varying the sampling rate. This was accomplished by calculating the statistical properties first with every other sample, then with every third sample, etc., until every twelfth sample was used. Using every twelfth sample was equivalent to sampling every 2 hours. The results obtained by these calculations varied only slightly from the results originally calculated. Figure 6-11 shows the variation
of the mean and standard deviation with the sampling interval. The solid line is the mean and the broken line is the standard deviation. The results shown are for sensor number 13, which was the surface sensor on buoy B (downstream buoy). This sensor was selected because it was a surface sensor and was therefore expected to be subject to more rapid temperature variation, and the temperature variation recorded on this sensor did indeed appear as wide as that from the other sensors. As seen from the figure, the difference did not exceed 0.05 degrees. This slight variation in the results implies that the statistical properties could be obtained with a much lower sampling rate.

If two samples are drawn from a given set, undoubtedly there will be a difference between the means of the sets, i.e., a difference due solely to chance variation in selection. The means which were calculated by the different sampling rates were tested to determine if there was any significant difference between them or whether the difference was merely due to chance. The standard error of the difference between two means can be calculated from the following:

$$
\sigma_{\mathrm{d}}=\sqrt{\sigma_{1}^{2} / \mathrm{n}_{1}+\sigma_{2}^{2} / \mathrm{n}_{2}}
$$

where

$$
\begin{aligned}
& \sigma_{1}=\text { standard deviation of first set } \\
& \sigma_{2}=\text { standard deviation of second set } \\
& n_{1}=\text { number of samples in first set } \\
& n_{2}=\text { number of samples in second set }
\end{aligned}
$$

The standard error of the difference is plotted in Figure 6-12 (solid line) as a function of the sampling rate. The difference in the mean is plotted on the same figure. The broken line is the 50 percent line which is equal to 0.6745 times the standard error. The actual difference in mean in all cases falls below this line which indicates that the actual difference was not significant but due to chance. The 50 percent line is the probable error and was included because of its common usage.

The temperature data form a time series and can thus be analyzed by a power spectrum analysis. This analysis identifies the frequencies at which different factors cause the record to vary. Spectrum analyses was done with the Fast Fourier Transform (FFT)*. The Fast Fourier Transform algorithm is a method for computing the complex Fourier transform

$$
A_{k}=\frac{1}{n} \sum_{j=0}^{n-1} \quad x_{j} \exp (i 2 \pi j k / N)
$$

for $k=0,1,2$, ..., $n-1$, where X_{j} are the temperature values, and A_{k} are the complex Fourier coefficients $\left(A_{k}=a_{k}+i b_{k}\right)$.

The FFT was used to calculate the power spectrum for the temperature data obtained on sensor 13 and the results are shown in Figure 6-13. The power spectrum was calculated for three different sampling rates and results of all three are shown in the figure. Only the first part of the power spectrum is plotted because all spectral density peaks are contained in this portion. The highest frequency which added any appreciable amount to the time series was the peak located at 0.2 cycles per hour. The Nyquist sampling rate (rate needed to reproduce original time series) was satisfied if the time series was sampled more often than once every 2.5 hours.** A sampling rate of once every 2 hours would be adequate and certainly once every hour would be more than adequate for the specific data analyzed. A comparison of the three spectrum analyses in Figure 6-13 shows they are in very good agreement at the main peaks. In these calculations of spectrum analysis, the total period of time was constant and the only thing which varied was the number of data points.

Figure 6-14, on the other hand, shows the result of varying the sampling interval from 10 -to- 80 minutes while holding the number of data points constant at 64 . As can be seen from the figure, a longer time record was desirable in order that lower frequency variations could be revealed.
*Cooley and Turkey, 1965. An Algorithm for the Machine Calculation of Complex Fourier
Series. Math. of Comput., Vol. 19, pp. 297-301.
IEEE Transactions on Audio and Electroäcoustics, Special Issue on Fast Fourier Transform and its Application to Digital Filtering and Spectral Analysis, Vol. AU-15, No. 2, June 1967.
**Nyquist, 1928. Certain Topics in Telegraph Transmission Theory, Transactions of the American Institute of Electrical Engineers, New York, Vol. 47, pp. 617-644.

Black, 1953. Modulation Theory D. Van Nostrand Co., Inc., New York, p. 50.

The tendency in automatic data collection is to collect much more data than are needed for any given situation. In fact, the water temperature at Indian Point was being sampled at a rate of once every 10 minutes when once an hour would more than provide an excellent history of the temperature variations during the period tested. This would also make it more convenient to analyze the long time series. The optimum sampling rate would therefore seem to be about once an hour for the data evaluated herein, however, Raytheon is presently sampling at twice this rate in order to ensure a record of possible future temperature variations not exemplified by the analyzed data.

Table 6-1. Statistical Parameters of Temperature Chain Data-May 27-June 2, 1970* (Sheet 1 of 4)

MAY 27, 1970					
$\begin{aligned} & \text { SEN- } \\ & \text { SOR } \end{aligned}$	MEAN **	$\begin{array}{cl} \text { ST } . & \text { ERROR** } \\ \text { OF } & \text { MEAN } \end{array}$	ST. DEV.**	$\begin{array}{\|lll} \hline \text { C } & \text { ST. } & \text { ERROR** } \\ \text { OF } & \text { ST. } & \text { DEV. } \\ \hline \end{array}$	$\begin{aligned} & \text { BEST EST** } \\ & \text { OF ST. DEV. } \end{aligned}$
0	61.941	0.037	0.447	0.026	0.448
1	61.358	0.033	0.396	0.023	0.39 .7
2	61.043	0.034	0.407	0.024	0.409
3	61.382	0.031	0.376	0.022	0.377
5	61.323	0.031	0.371	0.022	0.375
0	61.155	0.030	0.358	0.021	0.359
7	61.220	0.030	0.354	0.021	0.350
8	61.444	0.030	0.356	0.021	0.357
13	61.422	0.031	0.376	0.022	0.377
14	61.322	0.030	0.362	0.021	0.363
15	61.457	0.032	0.378	0.022	0.379
10	61.703	0.039	0.464	0.027	0.466
MAY 28, 1970					
0	62.717	0.026	0.308	0.018	0.309
1	62.101	0.026	0.308	0.018	0.309
2	61.794	0.027	0.323	0.019	0.324
3	62.128	0.028	0.333	0.020	0.334
5	62.080	0.026	0.305	0.018	0.306
6	61.916	0.026	0.314	0.019	0.316
7	61.980	0.025	0.295	0.018	0.296
8	62.188	0.025	0.297	0.018	0.299
13	62.176	0.027	0.322	0.019	0.324
14	62.104	0.026	0.310	0.018	0.311
15	62.223	0.026	0.313	0.019	0.314
16	62.423	0.029	0.349	0.021	0.350

Table 6-1. Statistical Parameters of Temperature Chain Data-May 27-June 2, 1970* (Sheet 2 of 4)

MAY 29, 1970					
$\begin{aligned} & \text { SEN- } \\ & \text { SOR } \\ & \hline \end{aligned}$	MEAN	ST. ERROR OF MEAN	ST. DEV.	$\begin{aligned} & \text { ST. ERROR } \\ & \text { OF ST. DEV. } \end{aligned}$	BEST LST. OF ST. DEV.
0	63.381	0.036	0.429	0.025	0.431
1	62.832	0.043	0.519	0.031	0.521
2	62.524	0.047	0.561	0.033	0.563
3	62.869	0.044	0.526	0.031	0.528
5	62.820	0.044	0.527	0.031	0.529
6	62.648	0.045	0.538	0.032	0.540
7	62.716	0.044	0.526	0.031	0.528
8	62.935	0.044	0.524	0.031	0.526
13	62.934	0.047	0.566	0.033	0.568
14	62.853	0.048	0.569	0.034	0.571
15	62.997	0.046	0.555	0.033	0.557
16	63.223	0.047	0.568	0.034	0.570
MAY 30, 1970					
0	63.444	0.028	0.335	0.020	0.336
1	63.017	0.033	0.390	0.023	0.391
2	62.719	0.033	0.400	0.024	0.401
3	63.076	0.033	0.400	0.024	0.402
5	63.025	0.036	0.431	0.025	0.433
6	62.873	0.035	0.416	0.025	0.417
7	62.946	0.036	0.426	0.025	0.427
8	63.169	0.035	0.424	0.025	0.425
13	63.164	0.037	0.437	0.026	0.438
14	63.098	0.037	0.438	0.026	0.430
15	63.236	0.037	0.442	0.026	0.443
16	63.496	0.036	0.426	0.025	0.427

Table 6-1. Statistical Parameters of Temperature Chain Data-May 27-June 2, 1970* (Sheet 3 of 4)

MAY 31, 1970					
$\begin{aligned} & \text { SEN- } \\ & \text { SOR } \end{aligned}$	MEAN	ST. ERROR OF MEAN	ST. DEV.	$\begin{gathered} \text { ST. ERROR } \\ \text { OF ST. DEV. } \end{gathered}$	$\begin{aligned} & \text { BEST EST. } \\ & \text { OF ST. DEV. } \end{aligned}$
0	63.444	0.060	0.715	0.043	0.718
1	63.161	0.049	0.576	0.034	0.578
2	62.846	0.052	0.612	0.037	0.615
3	63.195	0.053	0.625	0.037	0.627
5	63.149	0.054	0.634	0.038	0.636
6	62.979	0.055	0.647	0.039	0.650
7	63.050	0.052	0.614	0.037	0.616
8	63.253	0.052	0.610	0.036	0.612
13	63.257	0.051	0.601	0.036	0.603
14	63.190	0.051	0.609	0.036	0.611
15	63.334	0.052	0.613	0.037	0.615
16	63.580	0.055	0.656	0.039	0.659
JUNE 1; 1970					
0	64.614	0.052	0.632	0.037	0.634
1	64.178	0.053	0.643	0.038	0.645
2	63.816	0.053	0.637	0.037	0.639
3	64.209	0.056	0.675	0.040	0.678
5	64.194	0.058	0.701	0.041	0.704
6	64.027	0.061	0.739	0.043	0.742
7	64.096	0.062	0.754	0.044	0.756
8	64.307	0.064	0.769	0.045	0.772
13	64.289	0.059	0.711	0.042	0.714
14	64.239	0.063	0.758	0.044	0.761
15	64.378	0.065	0.781	0.046	0.783
16	64.628	0.070	0.848	0.050	0.851

Table 6-1. Statistical Parameters of Temperature Chain Data-May 27-June 2, 1970* (Sheet 4 of 4)

JUNE 1970					
$\begin{aligned} & \text { SEN- } \\ & \text { SOR } \end{aligned}$	MEAN	ST. ERROR OF MEAN	ST. DEV.	ST. ERROR OF ST. DEV.	BEST EST. OF ST. DEV.
0	65.549	0.051	0.552	0.036	0.554
1	65.205	0.050	0.545	0.036	0.548
2	64.806	0.051	0.559	0.036	0.562
3	65.252	0.052	0.569	0.037	0.571
5	65.225	0.055	0.601	0.039	0.603
6	65.054	0.058	0.628	0.041	0.631
7	65.113	0.058	0.635	0.041	0.638
8	65.327	0.060	0.647	0.042	0.650
13	65.314	0.057	0.616	0.040	0.619
14	65.250	0.060	0.656	0.043	0.659
15	65.396	0.062	0.674	0.044	0.677
16	65.661	0.069	0.745	0.048	0.748
*Sensor		Position			Buoy
0					Effluent
1		Top			Upstream
2		Near Top			Upstream
3		Near Bottom			Upstream
5		Top			Middle
6		Near Top			Middle
7		Near Bottom			Middle
8		Bottom			Middle
13		Top			Downstream
14		Near Top			Downstream
15		Near Bottom			Downstream
16		Bottom			Downstream

[^7]

Figure 6-2. In-Situ Data-Indian Point Transect

Figure 6-4. Automated Environmental System 0800-Temperature Data-1970

Figure 6-5. Thermal Chain 0800 Data-Upstream Buoy-1970

Figure 6-6. Thermal Chain 0800 Data-Middle Buoy-1970

Figure 6-7. Thermal Chain 0800 Data-Downstream Buoy-1970

Figure 6-8. Thermal Chain 0800 Data-Cross-Stream Buoy-1970

Figure 6-9. Thermal Chain 0800 Data-Effluent Canal-1970

Figure 6-10. Thermal Chain Data Collected on May 27, 1970

Figure 6-11. Difference between Mean and Standard Deviation for Different Sampling Intervals

Figure 6-12. Standard Error of Difference of the Mean for Different Sampling Intervals

Figure 6-13. Spectral Analysis of Thermal Chain Data from Downstream Buoy Surface Sensor-27 May-2 June 1970, Varied Number of Data Points

Figure 6-14. Spectral Analysis of Thermal Chain Data from Downstream Buoy Surface Sensor-27May-2 June 1970, Data Points Constant

7.0 WATER CHEMISTRY

7.1 Salinity

7.1.1 Salinity - In-Situ Data for Biological Surveys

During January, February and early March, no significant number of in-situ salinity measurements were made with the biological sampling inasmuch as the river was well covered with ice and dangerous to small boat operations.

In mid-late March the salinities were relatively low at the surface at the upstream transect. Bottom salinities at this transect were high in mid channel, and lower at shallower bottom stations at the channel edges. The mid and downstream transects both showed generally high salinities surface and bottom (Figures $6-1,6-2$ and $6-3$). These data may reflect the high salinities noted the latter half of the month by the AES monitor (see Section 7.1.2).

All stations showed low salinities in April at both surface and bottom, correlating with high discharges over the Federal Dam at Troy, New York (Figure 7-1).

The month of May was characterized by rising salinities. June was very similar to May with only small variations in monthly averages.

7.1.2 Salinity - Automated Environmental Systems

Salinities ranged relatively widely in January (Figure 7-2), the early January low values reflecting late December 1969 rainfall and the mid January highs following the minimal seasonal precipitation (Figure 7-3) coupled with low average discharges over the Federal Dam at Troy (Figure 7-1). The 0800 values spread between 0.05 and $2.550 / 00$. February 0800 values were consistently rather low, holding between 0.1 and $0.90 / 00$. These lows correlate with fairly high early February precipitation values at the Peekskill Water Works and increasing early February discharges over the dam at Troy, New York. There is some question as to the near term effect of winter precipitation on salinities, inasmuch as the "rainfall" reported would remain frozen for some time.

Early March salinities were low but increased sharply in the latter part of mid month. There appears to be little salinity relationship with the moderate rainfall at Peekskill that month. The highest March 0800 salinity was recorded on the 23 rd , when a value of $3.40 / 00$ was reached. April 0800 salinities were very low with the highest value recorded at $0.50 / 00$. This correlates neatly with the high seasonal Troy Dam discharges (Figure 7-1). Early May salinity values were also very low, but increased in mid month to highs of $1.50 \% 00$, and then dropped again at the end of this period. June salinities started very low, but increased to as high as 3.3 0/00.

7.2.1 Dissolved Oxygen - In-Situ Data from Biological Surveys

The dissolved oxygen data collected in conjunction with the biological sampling program (Figures 6-1, 6-2, and 6-3) continued to indicate that surface values usually are slightly higher or equivalent to the bottom concentrations; maximum variances occurred in March when differences averaged as high as $0.8 \mathrm{mg} /$ liter .

Seasonally, the distinct inverse correlation between dissolved oxygen and temperature occurred during this study period, as in the previous 6 months. The dissolved oxygen concentrations were consistently below saturation values.

Differences between stations were too small to provide a base for conclusions on marked or consistent gradients.

7.2.2 Dissolved Oxygen - Automated Environmental System

The A.E.S. dissolved oxygen monitor utilizes a porous teflon membrane covered electrode which is clogged very easily by small particles inherent in tidal waters such as the Hudson River. Drifting dissolved oxygen readings were a recurrent problem. Membranes were replaced and the system recalibrated when dissolved oxygen values varied from concentrations determined by the Winkler Method. This calibration was carried out at least once a week and in addition, the system was recalibrated whenever the daily check showed unexpected values.

Intake dissolved oxygen consistently remained higher than discharge values during plant operations (see January, February and March in Figure 7-4). Dissolved oxygen concentrations were about $0.5 \mathrm{mg} / 1$ higher in the intake than the discharge points during January, February and to 20 March. The effluent dissolved oxygen data, and hence the dissolved oxygen plots, are considered to be irrelevant after 20 March due to unscheduled and intermittent operation of the pumps circulating river water through the plant and into the effluent canal during this plant shut-down period (Figure 7-4). The major feature of the A.E.S. seasonal record was the slow drop in dissolved oxygen values with the advancing summer and increasing river water temperatures. This feature thus parallels and supports the trend observed in the in-situ data.

After the tide gauge was installed, unexplained fluctuations and a drop of dissolved oxygen were seen about 1.5 hours after maximum high tide most days in June. Circulation pump operations did not correlate. This suggests an upstream source of biological oxygen demand (BOD) which moves down to the plant intake vicinity as the tide begins to ebb.

7.3 pH - Automated Environmental Systems

The pH readings nearly always remained within one unit of neutrality. Sharp variations occured when ion exchange resins were recharged. At these times the pH dropped or increased rapidly, persisted about one hour, and then the system returned to its previous pH value. Ion exchange regeneration wastes caused less than one pH unit shift in the discharge canal. The plant regenerates a water purification resin bed periodically with caustic soda and sulfuric acid. The residue of this process is discharged into the effluent canal, occasionally without full neutralization.

7.4 Chlorine

Chlorine analyses were performed by Raytheon only on effluent water at the plant site and only during laboratory experiments (see Section 11.1.3, Results-Environmental Parameters. Inclusive dates for these analyses were 20 May through 23 June; Con Ed reported no additions of chlorine (as Sodium Hypochlorite) from late March through mid May. Standard American Society of Testing Materials (ASTM) methodology was utilized. At no time was a concentration greater than 0.1 ppm indicated. Independent analyses by Con Ed chemists supported these determinations.

7.5 Copper - Automated Environmental System

A specific ion detector monitored copper, as a part of the A.E.S. installation. So far it has not registered any copper thus indicating river concentrations are below its threshold sensitivity of $0.1 \mathrm{mg} /$ liter. Two water samples were analyzed by the A. E. S. Company in the last six-month report period. They found values of 0.001 and $0.006 \mathrm{mg} /$ liter copper.

7. 6 Statistical Analysis of Digital Sampling Rates.

The dissolved oxygen and the pH data form time series and can thus be analyzed by a power spectrum analysis. This type of analysis will identify the frequencies at which different factors cause the record to vary. The Fast Fourier Transform was used to calculate the power spectrum for the data obtained between 19 June through 22 June 1970. The sampling rate at this time was once every 10 minutes.

The results of the power spectrum analysis for the dissolved oxygen at the intake are shown in Figure 7-5. The complete power spectrum was not plotted since the first portion, which is plotted, contained all major spectral density peaks. As can be seen by the figure there was no frequency beyond 0.2 cycles/hour which had a spectrum level greater than 0.001 . The Nyquist sampling rate (sampling rate needed in order to reproduce the original time series) was satisfied if the time series was sampled at a rate a little greater than once every 2.5 hours. A sampling rate of once every 0.5 hour, which is the same sampling rate as for the temperature chain, would be more than adequate.

Figure 7-6 shows the results of the power spectrum analysis for the pH measurements at the intake for the same period of time. The lower frequencies had a much larger value for pH than dissolved oxygen, but the rate of decrease is much more rapid and there was no frequency greater than 0.1 cycle/hour with a spectrum level greater than 0.001 . The Nyquist rate was satisfied if the pH was sampled a little greater than once every five hours.

The mean, standard deviation, standard error of the mean and standard error of the standard deviation for dissolved oxygen, pH and salinity were computed and are shown in Table 7-1. The variation in the statistical properties calculated for these three days was very low with the salinity exhibiting the greatest variations. The same statistical properties
were calculated by varying the sampling rate. The properties were calculated with every sample, then with every other sample, next with every third sample, etc., until every twelth sample was used. The results obtained from sampling every hour varied only slightly from the results obtained by sampling every 10 minutes. This indicated that there was no significant difference between the statistical properties obtained by the different sampling rates and that the small difference was due to chance.

A sampling rate of once every 30 minutes would be more than adequate to completely describe these outputs of the A. E.S.

Table 7-1. Statistical Parameters of Selected Automated Environmental System Data

DATE	SAMP. RATE (MINUTES)	MEAN	ST. ERROR OF MEAN	ST. DEV.	ST. ERROR OF S. DEV.	BEST EST. OF S. DEV.
Dissolved Oxygen						
June 19	10	4.725	0.020	0.230	0.014	0.231
	60	4.736	0.049	0.229	0.034	0.234
June 20	10	4.916	0.019	0.233	0.014	0.234
	60	4.934	0.044	0.029	0.031	0.214
June 21	10	4.812	0.017	0.204	0.012	0.205
	60	4.800	0.047	0.223	0.033	0.228
pH						
June 19						0.080
	60	8.034	0.018	0.086	0.013	0.087
June 20	10	7.888	0.006	0.053	0.004	0.053.
	60	7.888	0.012	0.056	0.008	0.057
June 21	10	7.698	0.008	0.096	0.006	0.096
	60	7.692	0.020	0.097	0.014	
Salinity						
June 19	10	3.132	0.020	0.227	0.01 .4	0.228
	60	3.134	0.049	0.231	0.035	0.236
June 20	10	2.754	0.031	0.375	0.022	0.376
	60	2.755	0.078	0.372	0.055	0.380
June 21	10	2.763	0.037	0.310	0.026	0.312
	60	2.762	0.065	0.310	0.04 .6	0.317 .

Figure 7-1. Average Discharge Over Federal Dam at Troy, New York-1970

Figure 7-2. Automated Environmental System 0800 Salinity Data-1970

Figure 7-3. Rainfall Recorded at Peekskill Waterworks-1970

Figure 7-4. Automated Environmental System 0800 Dissolved Oxygen Data-1970

8.0 SONIC TAGGING/SHAD STUDIES

8.1 Introduction

A shad sonic tagging program was initiated by Raytheon personnel during the spring, 1970. The primary objective was to track shad past the Consolidated Edison nuclear generating station at Indian Point when the plant was not operating during refueling operations. The spring of 1970 offered what may have been the last opportunity to study the upstream spawning migration of American shad in the vicinity of the generating station when no heated effluent was being discharged into the river. Results from 1970 were gathered under 'base line" conditions and future studies ins ubsequent years when the plant is operating may demonstrate whether or not heated effluents cause shad to alter their migration patterns and spawning behavior.

In addition to sonic tagging, gill netting was conducted by Raytheon biologists tơ gather additional data on migration and behavior of shad, especially in the vicinity of the generating station. Commercial fishermen were also contacted for information on the spawning migration.

The tagging study area was delineated on the south by Croton Point and on the north by the Jones Point - Peekskill Bay area. Shad were tagged south of the plant site and tracked as long as they stayed within the study area. Once a fish passed the plant site and reached the northern study area boundary, it was decided that it had passed the "plume area" and was on its way upstream to the spawning grounds. Gill netting was conducted south of the plant to northern Haverstraw Bay to capture shad for tagging and in the plant vicinity for information on where shad travel in relation to the generating station (see Sections 8.4 and 8.5). Croton Point was chosen as the southern boundary because it was anticipated that shad tagged in upper Haverstraw Bay would wander about and go downstream after tagging before continuing their upstream migration. ${ }^{1}$ In the event that a tagged fish traveled south of Croton Point, it was
${ }^{1}$ Personal communication with Robert Jones, Connecticut Fish and Game Division. Sonic tagging of shad in the Connecticut River.
decided that time was best employed in tagging another fish within the study area and hoping it would go upstream quickly after tagging.

8.2 Sonic Tagging Equipment and Techniques

On March 27, 1970, a set of Smith-Root equipment, which included a sonic hydrophone Model SR-70-H, a sonic receiver Model TA-60, headphones and Model SR-69 tags arrived at Indian Point. The tags were $21 / 4$ inches long and $9 / 16$ inches diameter with pulse rates ranging from 85 to 360 per minute and signal detection about $1 / 2$ mile. The different pulse rates made it possible to separate fish should a previously tagged specimen return to the study area.

A gill net was drifted until one or several adult shad were caught. Tagging was accomplished by inserting the tag into the stomach of the fish, pushing it down through the mouth and esophagus with pencil or wood dowel. A fish was tagged while in the net and then usually cut out of the net. This was done with the fish underwater, unless it was so tangled.in the net that it had to be removed from the water in order to release it. A. fish was gently stripped to determine the sex, if possible. One lively fish would be tagged and released as quickly as. possible with minimal handling.

The fish was then tracked using the hydrophone, receiver and boat. Sightings on prominent land marks were recorded, along with depth, to accurately locate the fish and plot its course. It was possible to track a fish and remain close to it when background noises from river boat traffic, pile drivers and other construction machinery were minimal. The forward motion of the boat and sometimes the engine was stopped in order to locate the tagged fish. The clarity and loudness of the tag pulses increased as one came closer to the fish. When the tagged shad was directly below the boat, the tag pulses were loud and clear and heard in every direction when the hydrophone was rotated. This enabled a very accurate location which was plotted on chart.

Fish were usually tagged in the early morning or evening and tracked continuously (on a 24-hour basis) until the fish left the study area or were lost. Only one fish was tracked at a timë. Sonic tagging was conducted Tuesday through Friday each week from mid-April through May.

8.3 Results of Sonic Tagging

A total of 11 shad were sonic tagged and tracked between April 22 and May 20 (Table 8-1). Seven of these fish went south out of the study area, were lost or died. Four shad were tracked successfully past the Consolidated Edison generating station (Figures 8-1, 8-2, 8-3, and 8-4).

On April 22, the first shad was sonic tagged and tracked for approximately three hours in the vicinity of the tagging area in Haverstraw Bay before it was lost. During the tagging of another shad on April 22, the hydrophone stopped receiving, thus we were unable to continue the study. The manufacturer was notified and air mailed another hydrophone which arrived on April 28. At this time, it was discovered that the receiver was malfunctioning and it was not completely repaired until May 6.

During this two-week period, gill netting and balloon tagging were conducted. Fourteen shad were tracked by attaching rubber balloons to them with monofilament fishing line inserted behind the dorsal fin. These balloon-tagged fish remained in the general area where they were tagged in Haverstraw Bay and several went downstream. It appeared that shad were spending time in Haverstraw Bay before going upstream. Balloon tagging, handling and the drag of the line and balloon appeared to affect their behavior because they would wander, first in small circles, as if trying to orient themselves.

Gill netting, handling and sonic tagging apparently also affected the behavior and orientation of the fish. Shad that were sonic tagged generally remained in the tagging vicinity and wandered about until they presumably were able to orient themselves while other tagged fish went downstream after tagging. Some fish wandered about aimlessly for only a few minutes. See Appendix C for tracks of tagged fish which did not pass the plant site.

Three of the four fish were tracked past the plant when it was not operating, and followed the middle of the river (Figures 8-1, 8-2, and 8-3). The fourth fish was tracked past the plant site on May 20 when the plant was operating (Figure 8-4). This shad was tagged on the east side of the river about 600 yards south of the plant site. It first went downstream for a short distance after tagging and then headed upstream, crossing to the west side of the channel at a point slightly north of its release site. Unit 1 was operating at 225 megawatts at 1130 hours. The tide was high at Peekskill at approximately 1100 hours. Chlorination was not

Table 8-1. Synopsis of Sonic Tagging of American Shad

Tagging Date	Tag No.	Fish Sex*	Time of Tagging	Tagging Location	Fish Behavior		.Time Terminated
April 22	6	M	0905	Haverstraw Bay	Remained in tagging areasignal lost	April 22	1210 hrs
April 30	15	-	1515	Off Stony Pt.	Fish lost after tagging, receiver malfunction	April 30	1530 hrs
$\text { May } 6$	12	F	0915	Verplanck Pt.	Remained \& wandered w/in tagging area. Lost in rough weather \& interference of signal	May 6	1355 hrs
**May 7	8	F	1020	Verplanck - overhead power lines	Past plant - mid river	May 7	$\begin{array}{r} 12 \overline{15} \mathrm{hrs} \\ \text { Iona. Is. } \end{array}$
**May 7	13	F	1503	Off Verplanck, mid river	Past plant - mid channel	May 7	1640 hrs
May 12	11	-	1920	Off Verplanck Pt. Sinclaïr Oil	Fish remained in tagging area. Tag malfunctioned	May 12	2230 hrs
$\text { May } 13$	14	F	1345	Overhead power lines mid river	Fish went south, returned to tagging area, died	May 13	1800 hrs
May 13	10	M	2025	Station 16 Verplanck	Fish traveled south out of study area	May 14	1600 hrs
**May 14	9	-	2035	Overhead power lines	Past plant - mid channel, believed died	May 14	2158 hrs
May 19	7	-	1250	Off Georgia Pacific plant	West south	May 19	1512 hrs
**May 20	5	-	1025	Off Georgia Pacific plant	Past plant - west side of channel and then went south out of study area	May 21	0324 hrs

* $\mathbf{M} \doteq$ Male, $\mathbf{F}=$ Female, $-=$ Not Sexed
**Fish tracked past the plant site

Figure 8-1. First Shad Tracked Past the Plant Site, May 7, 1970

Figure 8-2. Second Shad Tracked Past the Plant Site, May 7, 1970

Figure 8-3. Third Shad Tracked Past the Plant Site, May 14, 1970

Figure 8-4. Fourth Shad Tracked Past the Plant Site, May 20, 1970
done by the plant during May and the Automated Environmental System did not record copper ions in the effluent canal. Ambient river temperature was approximately $59^{\circ} \mathrm{F}$ and the plume area was small with a maximum of 60.2° recorded at the surface of the midstream temperature sensing buoy (Table 8-2). No conclusions can be drawn as to why this shad appeared to wander near the plume area. Only one fish was tracked when the plant was operating.

Table 8-2. River Temperatures at Buoy Sensors at 1130 Hours (May 20, 1970)

Buoy	Sensor Position	Temperature ${ }^{\circ} \mathrm{F}$
Upstream	Top	59.04
	Near Top	58.63
	Near Bottom	58.77
Mid-stream	Top	60.17
	Near Top	58.94
	Near Bottom	58.97
	Bottom	58.82
Downstream	Top	58.82
	Near Top	58.56
	Near Bottom	58.35
	Bottom	57.95
Effluent		79.88

8.4 Gill-Netting Techniques

A $600^{\prime} \times 12^{\prime} \times 23 / 4^{\prime \prime}$ square mesh monofilament gill net was fabricated into 200 and 400 foot sections after its initial use on April 16 and 17. The 200 foot net was used as a surface drift net while the 400 foot net was drifted between 2 feet and 10 feet below the water's surface, depending upon the water depth.

Drift sets were made usually during the two hours around slack water. The net drifted shorter distances; was easier to handle and remained perpendicular to the current.

The primary purpose of gill netting was to obtain fish for sonic tagging. Gill netting for sonic tagging south of the plant site was considered successful if one viable shad was caught for tagging.

Additional information on the shad run was collected by gill netting in northern Haverstraw Bay, Station 16 and in the vicinity of the generating plant at Stations 10, 11, 22 and 21.

8.5 Gill-Netting Results

The first shad caught by a commercial fisherman was on April 12 (Poughkeepsie Journal). Commercial fishermen began catching a few shad in Haverstraw Bay during the week of April 12. Raytheon biologists gill netted in the vicinity of the Consolidated Edison plant site and in Haverstraw Bay on April 16 and 17, without success. Commercial fishermen in Haverstraw Bay during the week of April 20 were making profitable catches while fishermen farther upstream were not catching as many fish.

On April 22, Raytheon personnel caught 30 shad in 3 hours, 16 minutes using the 400 foot gill net. The catch per unit effort for upstream migrating shad reached its peak on May 6 and then began to decline (Tables 8-3, 8-4, and Figure 8-5).

A survey was made of the commercial gill nets between Tappan Zee Bridge and Bear Mountain Bridge on April 30. There was approximately 16,500 linear feet of gill nets in this area of the river. Commercial catches at the end of the month were averaging an estimated 100 pounds of fish per 100 feet of net per 24 hours.

From April 16 through June 4, Raytheon biologists caught 199 adult shad in 51 gill net sets averaging 45 minutes each. Ripe fish totaled 138 as opposed to 61 spent fish. The ripe fish catch was almost equal to the spent fish catch in relation to fishing effort for productive fishing days (Tables 8-3, 8-4 and Figure 8-5). Several striped bass and Atlantic sturgeon were caught incidently.

Gill net catches of shad at Stations 10 and 11 (during days when the plant was off-iine) indicate that shad utilized the river area between the Reserve Fleet and the Consolidated Edison generating station without regard to the plant when there was no heated effluent (Table 8-5).

Table 8-3. Numbers of Shad Caught in Gill Nets, 1970

Date	Total Caught	Total Females	Total Males	Total Spent	$\begin{gathered} \text { Not } \\ \text { Sexed } \end{gathered}$
April 22	30	10	18	0	2
23	7	3	1	0	3
28	7	6	1	0	0
29	13	11	2	0	0
30	22	7	13	0	2
May 1	31	13	18	0	0
6	13	9	4	0	0
7	3	3	0	0	0
12	2	1	0	0	1
13	3	2	1	0	0
14	3	2	0	1.	1
15	0	0	0	0	0
19	8	6	1	6	1
20	2	1	0	1	1
21	11	9	2	11	0
22	19	13	6	17	0
27	6	0	6	6	0
28	15	12	3	15	0
June 4	4	3	1	4	0
Total	199	111	77	61	11

Table 8-4. Gill Net Catch Statistics for Shad, 1970

Date		Total Fishing Time, Min.	$\begin{aligned} & \text { Total* } \\ & \text { Ripe } \end{aligned}$	Total * Spent	Total Fish
April 22		196	2.30	0	2.30
	23	50	2.10	0	2.10
	28	60	1.75	0	1.75
	29	80	2.44	0	2.44
	30	75	4.40	0	4.40
May	1	100	4.67	0	4.67
	6	35	5.57	0	5.57
	7	60	0.75	0	0.75
	12	330	0.11	0	0.11
	13	105	0.86	0	0.86
	14	45	1.33	0.77	2.00
	15	115	0	0	0
	19	185	0.36	0.97	1.33
	20	20	1.50	1.5	3.00
	21	180	0	1.83	1.83
	22	60	1.0	8.50	9.50
	27	130	0	1.38	1.38
	28	225	0	2.00	2.00
June	4	130	0	0.92	0.92

*Shad Caught per 100 feet of net per hour

Table 8-5. Catch Statistics for Shad Caught at Stations 10 and 11, 1970

Station 10						
Date	Hour	Total Caught	Set Time, Min.	Net Length Ft.	Number of Males	Number of Females
May $\begin{array}{rr}1 \\ & 27 \\ & 28 \\ & 28 \\ & 28\end{array}$	0742	9	30	400	6	3
	1452	1	20	200	1	0
	1130	4	60	200	2	2
	1500	1	30	200	0	1
	1605	1	15	200	0	1
June 4	1015	1	25	200	0	1
Station 11						
Date	Hour	Total Caught	Set Time, Min.	Net Length Ft.	Number of Males	Number of Females
May $\begin{array}{r} \\ 2 \\ 2 \\ 2 \\ \\ 2\end{array}$	0902	13	30	- 400	8	5
	1415	2	20	200	2	0
	1004	4	60	200	0	4
	1325	5	60	200	1	4
June 4	1505	0	60	200	0	0

Figure 8-5. American Shad Catch Per Unit Effort

On May 1, 9 ripe shad were caught at Station 10, and 13 ripe shad were netted at Station 11 for the same unit of fishing effort. During the end of May and early June, downstream migrating shad (ones which had spawned) were caught at the rate of 3.6 fish per hour per 200 feet of net at Station 10 and 3.3 fish per hour per 200 feet of net at Station 11. This data should be interpreted with caution because: 1) of the small sample size and 2) even though the unit of effort for each station is equivalent, the hour at which the catches were made was different.

A total of 199 shad were caught during the spring. One hundred and eleven were females and 77 were males. Sex was determined in the field by stripping the fish or dissection and inspection of the gonads in the laboratory. Eleven fish were not sexed because they were tagged and handling was kept at a minimum or they were sighted in the net, but lost when hauling in the net.

The peak of the spawning migration was late April and early May according to commercial fishermen and our gill-net catches (Figure 8-5). Data for Figure 8-5 are listed in Table 8-4. For the graph (Figure 8-5), any fish for which sex was not determined was considered ripe because they were caught in the early part of the season or when tagged during the latter part of the season they were caught on the south side of the gill net, heading upstream.

After the first week of May, the shad run decreased rapidly (Tables 8-3 and 8-4). Commercial shad fishermen stopped fishing about mid-month and said it was a short season this year. On May 14, we caught our first spent shad and by the third week of May almost all the shad caught were spent. The shad studies were phased out during the first week of June.

9.0 FIELD BIOLOGY - ZOOPLANKTON STUDIES

9.1 Introduction

During recent years, increased emphasis has been placed on the collection and analysis of planktonic organisms as an integral part of estuarine ecology studies. The knowledge gained from such studies can serve a multitude of purposes such as predicting future year class strength of important fish species, determining productivity of a particular water mass, or examining the natural fluctuations in populations. Plankton provides food for many of our commercially and recreationally important fish species, and many planktonic organisms have become indicators of change and gradual degradation of our water supplies. The possible effects of industrial use on aesthetically or domestically important water resources might be signalled by an examination of the plankton community.

The scientific value of plankton collections is enhanced when repeated studies have been carried out over extended periods. Initial collections, such as those provided by Raytheon's present study at Indian Point, establish important reference material to which comparisons can be made during follow-up studies.

Equally important, but not realized at the time the plankton program was implemented, has been the suspension of on-line operations of Unit \#1 until September of 1970. The plankton samples obtained during this period become more significant since they represent what may be the last plankton data collected without the influence of heated effluent from Indian Point.

9.2 Sampling Gear

The several zooplankton samples collected in January and February, when river ice conditions permitted small boat operations, were made with $0.5 \times 0.8 \mathrm{~mm}$ mesh nets used in 1969. These nets were not equipped with flow meters or net closing devices.

Commencing 1 March 1970, new plankton nets were placed into service (Figure 9-1). These were constructed from 0.5 mm (\#0 mesh) netting and rigged with a closing device which prevented contamination from depths different from those sampled. Mechanical flow meters were used to monitor the volume of water filtered during each tow.

Net design and the accessory equipment, with some modifications, were based on criteria outlined by UNESCO Working Party No. 2*. The pertinent specifications are as follows:
a) Shape - cylindrical-conical. Length of nonporous cylindrical section: 11"; side length of conical net section: $7^{\prime \prime} 1^{\prime \prime}$, tapering to cod end canvas band $4^{\prime \prime}$ wide, with diameter of $3^{\prime \prime}$.
b) Mouth Opening - $1^{\prime} 6^{\prime \prime}$ diameter (approximately $1 / 2$ meter), maintained by reinforced polyurethane cylinder.
c) Mouth Area - 1.7 square feet (255 square inches).
d) Net Material - monofilament NITEX nylon, basket weave, with mesh aperture width of 0.5 mm (\#0 mesh).
e) Canvas Attachment to Cylinder $-4.5^{\prime \prime}$ width. Secured to cylinder with hose clamps.
f) Canvas Band for Throttling Line - $7^{\prime \prime}$ width, located $2^{\prime} 1^{\prime \prime}$ below cylindrical section. Band contains 8 brass rings located at equal points around net.
g) Cod End - polyvinylchloride collecting bucket with bayonet lock-ring attachment. Volume: 16 ounces, with single window ($2^{\prime \prime} \times 13 / 4^{\prime \prime}$) of 0.5 mm monel mesh.
h) Bridle (3 each) - $1^{\prime} 6^{\prime \prime}$ long each, all secured commonly to a single eye.
i) Flow Meter - mechanical with digital counter-sècured into center of mouth opening, equidistant between anterior and posterior openings of reinforced cylinder.
j) Net Depressor - 38 lb . bronze bat-wing design for holding net at desired depth during towing. Positioned five feet below the closing-release mechanism of the bottom net.
k) Closing Release Mechanism - (see Figure 9-1) Spring loaded brass device to which the throttling line and bridles are separately attached. A solid brass messenger releases the bridle, thus closing the net by transferring the towing point of the net to the throttling line.

[^8]
9.3 Field Procedures

Ten weekly plankton stations were located along three transects across the Hudson River, in addition to one station positioned within the effluent canal (Figure 4-1). Surface and bottom plankton samples were collected at each station having a water depth less than 30 feet. At stations where water depths equalled or exceeded 30 feet, a mid-depth sample was also collected. In either case the samples were obtained simultaneously. Each middepth and bottom net was equipped with a closing release mechanism. The surface net was towed 40 feet astern on a separate towing line, while the mid-depth and bottom nets were positioned along a $1 / 8$-inch towing wire, which was weighted with a 38 pound depressor. A gasoline powered winch was used to haul the towing wire. Towing speed was adjusted so that the surface net remained just under the water's surface, approximately 2.8 knots. All nets were equipped with previously calibrated flow meters. Flow meter readings were recorded immediately before and after each tow.

The amount of towing wire paid out for mid-depth and bottom tows was predetermined for each station. This was accomplished by averaging the depth along each station and adding 50 percent to this figure. Thus, 75 feet of towing wire were paid out (to the water surface) at a station reflecting an average depth of 50 feet. The mid-depth net closing release mechanism was secured mid-way along the length of towing wire.

In order to maintain a basic continuity with the plankton studies of the "Cornwall Project", tows were of 10 minute duration and against the prevailing current. During slack tide periods, the tow direction was always upstream since net river flow is seaward.

Upon completion of the ten-minute towing period the mid-depth and bottom nets were tripped and closed at the sampling depth by messengers affixed to the towing wire. All three nets were hauled in simultaneously. Tows were repeated if flow meters jammed, nets did not close, or nets became contaminated with bottom sediment.

Each plankton collection was transferred to a 16 ounce glass jar and preserved immediately with 5 percent formalin buffered with borax (sodium tetraborate). The sample was
labeled to reflect the date, time, station number and depth. Nets were rinsed thoroughly prior to reuse to prevent contamination from previous stations.

Water temperature, dissolved oxygen and salinity data were gathered for surface, mid and bottom depths in conjunction with the collection of each sample. Weather conditions were also recorded. Samples were collected without regard to the tide stage.

The plankton sampling program was designed so that each station would be occupied each week during daylight hours, and every other week during periods of darkness. The eleven stations yielded 28 samples from each daylight sampling period and 56 samples during alternate weeks of day/night samples. In addition, monthly samples were collected at channel stations 4,6 and 14 to maintain continuity with the year-round sampling program.

As time permitted, extra samples were obtained primarily along the Indian Point transect, and less frequently at other stations. These additional plankton collections reflect the philosophy that the 1970 spring sampling season may provide the last opportunity to collect ecological data without the influence of heated effluent from the Indian Point complex. The value of these additional collections will ultimately be realized since they provide a greater frequency of sampling at selected stations. This will allow more accurate correlations to be made with physical and chemical variables of the river.

Field plankton operations commenced in mid-March when river ice oonditions permitted small boat operations. The sampling program was initiated with a planned phaseout period projected for mid-June. However, this phase-out was not executed since significant concentrations of key organisms were collected throughout June.

9.4 Laboratory Procedures

The laboratory procedure for analyzing plankton collections involved a two-step process. The first consisted of sorting each sample into the following categories:
a) Fish eggs
b) Fish larvae
c) Mysids and shrimp
d) Amphipods
e) Miscellaneous macro-invertebrates.

Unusually productive samples were sorted after first randomly subsampling the collection with a "Folsom" plankton splitter. However, prior to splitting any sample it was scanned to determine the concentration of key organisms. If a particular group was rare, those specimens were separated prior to splitting the remaining sample.

Sorted specimens were placed by category into separate four-dram vials. Labels containing pertinent data associated with each sample were placed into the respective vials. The vials were then stored by serial number in racks built specifically for this purpose. Each category was stored separately. The residue remaining after completion of this initial sorting process was returned to the sample jar with the original label. All residue, including the micro-invertebrates, plant material and detritus, has been retained and stored by date.

The second step in the laboratory analysis involved identifying and counting the organisms previously sorted into categories a through d. Each species was first separated into its various life stages. Fish larvae were placed into four categories as outlined by Mansueti and Hardy (1968).* These were yolk sac, larval, prejuvenile, and juvenile stages, respectively. Breeding condition was noted for invertebrates. Binocular stereozoom dissecting microscopes were used during this phase of the operation. All data gathered were recorded directly or, where necessary, as numerical codes on a computerized laboratory data sheet specifically designed for this purpose (Figure 9-2).

Species other than those selected for future study were included in the analysis at this time when identification was readily accomplished and/or their presence required separation from key organisms. Thus all mysids, amphipods and fish species were included in this six month plankton analysis.

[^9]No attempt was made to analyze the contents of the macro-invertebrate miscellaneous vials at this time.

9.5 Results

A total of 755 plankton samples were collected between 1 January and 30 June (Table 9-1). This total includes 8 samples collected at monthly stations during January and February. Data obtained during these winter months are questionable since floe ice and extreme weather conditions prevented efficient use of sampling equipment and caused hazardous working conditions for the field crews. Full-time weekly day and night sampling activities commenced mid-March, when floe ice left the river.

Standard field procedures, outlined in Section 9.3 were followed at all plankton stations except the effluent canal (Station 53). Intermittent operation of the main cooling water circulators considerably changed the flow pattern in the canal after Unit 1 discontinued on-line operations on 20 March.

Oblique tows were made in the effluent canal subsequent to 20 March by towing the plankton net through a sinusoidal pattern by varying the boat engine speed. This integrated depth towing technique was used to simulate the catch when normally turbulent and well mixed waters are flowing through the canal during on-line operations (see Appendix D for results).

Of the selected group of organisms collected and studied (Table 9-2) the most consistent in date of occurrence as well as numerical importance were the amphipods, Gammarus fasciatus and Portocrates norvegicus (Tables 9-3 and 9-4). Atlantic tomcod larvae, opossum shrimp (Neomysis americanus) and the amphipod, Leptocheirus pinguis, essentially comprise the bulk of remaining organisms collected (Tables 9-5, 9-6, and 9-7). Larval striped bass ${ }^{1}$, white perch ${ }^{1}$, bay anchovies and clupeids ${ }^{2}$ (blueback herring and
$\overline{1}$ Identification corroborated by Mr. Walt Muraski, N. J. Dept of Conservation. Narcote Creek Experimental Station, Absecon, New Jersey.

Identification of this family corroborated by Mrs. Alice Mansueti, Chesapeake Biological Laboratory, Solomons, Maryland.
alewife) were common only during June but their numerical importance never reached that noted for the invertebrates (Table 9-2).

Larvae of the American smelt reached a numerical peak in May in bottom and mid-depth collections (Table 9-8). This species was rarely collected in plankton samples prior to or after May indicating spawning to have occurred later than usual. This was supported by New York State Conservation Department personnel who indicated the Cold Spring Harbor spawning-run did not take place in March as expected.

Carp and goldfish were rare and collected only in June. The American eel was collected sporadically in the elver stage throughout the study area except Station 12 (Table 9-9). The presence of this species throughout the spring corresponds to the migration noted, and well documented*, which takes place in many east coast rivers following the winter months.

Sand shrimp, Crangon septemspinosa, were rare and collected only in March and again in June (Table 9-2). They were equally rare in trawl and seine collections for the entire spring season. It is interesting to note that this species was abundant in collections taken during the summer and autumn of 1969 .

9.5.1 Spatial Distribution - Invertebrates

The plankton sampling program included limited monitoring of the plankton community both north and south of the primary study area during the peak productivity period of May and June. South of the study area, this was accomplished by sampling in Haverstraw Bay at mid-channel Stations 4 and 6 (river mile 35 and 38, respectively). Tows were taken north of the study area near the Bear Mountain Bridge at channel Station 14 (river mile 47). By collecting specimens north and south of the primary study area, observation of trends in the north-south distribution of species may be enhanced, and possibly confirmed. The samples at these three stations on 4 and 25 May and 22 June serve just such a purpose.

[^10] Washington.

Gammarus fasciatus, Pontocrates norvegicus and Leptocheirus pinguis were equally distributed along the north-south axis of the river at the three main transects sampled. These findings were substantiated by collections from stations.4, 6, and 14 during May; however, L. pinguis appeared to be concentrated within the limits of the primary study area during June (Tables 9-3, 9-4, and 9-22).

The presence of the opossum shrimp, Neomysis americanus, appeared to be correlated with the salinity gradient which existed along the north-south river axis from March through June. During March this species was most generally abundant at the southern stations which offered higher salinities (Figures 6-1 through 6-3, Table 9-6). During April, however, when salinities reached their lowest values during the spring period, N . americanus was rarely collected. With increasing salinities during May, Neomysis was again generally collected at the southern stations. Increasing numbers at all stations occurred during June. Further evidence indicating the relationship of Neomysis to higher salinities was the apparent lack of this species at Station 14, the northern-most sampling area. Also, considerably greater numbers were collected from bottom tows, hence more saline waters. This is particularly true at Stations 20 and 23 during March (Table 9-6, Figures 6-1 and 6-3). Both stations are quite deep in comparison with the surrounding plankton stations (Table 4-1) which may explain the retention of high salinity waters during March correlating with the greater numbers of Neomysis collected at these areas (Figure 6-1 and 6-3).

9.5.2 Spatial Distribution Finfish Larvae

Planktonic stages of the major fish species collected during the spring period also showed distribution trends along the north-south axis of the river (Figures 9-3, 9-4, and 9-5). More clupeids were collected upstream along the northern and Indian Point transects than along the Stony Point transect (Figure 9-3, and Table 9-10). This trend may reflect the downstream migration of these species following initial growth of larvae in fresh water (Bigelow and Schroeder, op. cit.).

The distribution of striped bass larvae paralleled that for clupeids, however, not as strongly (Table 9-11 and Figure 9-4). The major spawning area for the striped bass occurs north of the study area, being concentrated approximately between river mile 50 and 80*, where salinities are considerably lower or absent. The relatively few eggs, yolk sac, and larval specimens collected within the study area substantiate the findings of the "Cornwall Project" which lists the Peekskill area as a minor spawning site for this species. Eggs were primarily collected on the northern transect and at Station 14, in greatest concentrations from bottom collections. Fewer numbers were collected from mid-depth samples, with the least number of eggs having been found in surface samples. Eggs were not collected at Stations 4 and 6 south of the study area.

White perch, primarily in the yolk sac and larval stages, were also collected more frequently at the northern stations (Table 9-12). The infrequent occurrence of this species may be related to their habit of remaining on or quite close to the bottom, hence out of reach of even the "bottom" plankton nets, which do not come in actual contact with bottom sediments.

Yolk sac, larval, and prejuvenile specimens of Atlantic tomcod were collected in slightly greater numbers along the southern transect of the study area (Figure 9-5, and Table 9-5). The spawning activity of this species occurs primarily in salt or brackish water from late November through. February. The spawning phenomenon explains the presence of major numbers of this species mostly in the yolk sac stage during March. In April the southerly concentration of this life stage was more pronounced. The distribution of prejuvenile stages of this species appeared to be equal throughout the mid-channel stations of the study area.

The bay anchovy, a pelagic species which enters estuaries during the late spring, was represented in the plankton only in June. Numbers of larvae collected during June generally indicated equal concentrations to occur across the study area (Table 9-13), as well as at

Hudson River Fisheries Investigation, 1965-1968. Report of the Policy Committee.

Stations 4, 6 and 14. However, it should be noted that eggs and yolk sac larvae of the anchovy were collected only in bottom tows at mid-channel Station 20.

Differences in distribution between shallow and deep stations were indicated for only a few species, and then only during specific life stages. This is expected since very early stages of most species are unable to compete against river currents for position. For example, yolk sac larvae of the Atlantic tomcod are more concentrated in the deeper, midchannel stations (Figure 9-5). However, the post-yolk sac stage of this species was collected in greatest numbers at Station 9 where depths rarely exceed 12 feet. This phenomenon appeared to be true for the striped bass as well since the yolk sac stage specimens were collected primarily at deep stations (Figure 9-4).

The striped bass showed a trend not noted for other species. This pertains to the unequal distribution in an east-west direction along the three transects (Figure 9-4). The greatest concentration of striped bass larvae of all stages occurred either in the mid-channel or along the west side of the river. Few specimens were collected at the east station of each transect.

Depth differences in numbers were noted among surface mid-depth and bottom samples for many species collected (Tables 9-3 through 9-13). Generally, greater concentrations of organisms occurred in bottom samples and fewer numbers in the surface and mid-depth collections. This was noted especially for the invertebrate species. Clupeids on the contrary; were primarily collected in surface samples at all stations occupied indicating the pelagic habits of these species. This was true to a lesser extent for anchovies and American eels, while the American smelt appeared to be distributed equally throughout the water column.

9.5.3 Diurnal Vertical Migration

This variation in depth distribution may be correlated with a negative reaction to bright daylight. To determine just how important this factor was, a detailed analysis based on day-night sampling was undertaken for the major species collected at Station 22. Since this station is directly adjacent to the cooling water intakes of Unit 1 , the day-night vertical migration could change the susceptability of these organisms to entrainment by the
cooling system of Unit 1. Organisms which are concentrated at or near the bottom would be more susceptible to entrainment than species higher in the water column. since the cooling water is withdrawn near the bottom. Thus, if particular organisms move into surface waters during periods of darkness, they are less likely to be caught up in the circulator system.

Considering the high turbidity of the water in the Hudson River, it was assumed that the plankton nets were equally efficient in capturing organisms during both day and night sampling. The numbers of organisms collected for the respective day/night sampling periods show interesting patterns of vertical distribution. The data are based on collections obtained every 14-15 days (Tables 9-14 through 9-21).

All species were more abundant at the surface during periods of darkness. White perch and clupeids were more concentrated at mid-depth only during daylight hours, while at the bottom and surface greater numbers were collected at night (Tables 9-14 and 9-15). In terms of total numbers collected, clupeids were less abundant in bottom samples.

The bay anchovy was collected mostly at night (Table 9-16). Day collections of this species were primarily made at the surface.

Gammarus fasciatus and Pontocrates norvegicus, both collected in great numbers at this station, are essentially canght during periods of darkness (Tables 9-17 and 9-18).

Tomcod, striped bass, and the mysid, Neomysis americanus, are the only species which showed a distinct preference of bottom waters during daylight (Tables 9-19, 9-20, and 9-21). The striped bass was never collected during daylight at the surface. The catch of N. americanus showed a similar pattern of distribution. Atlantic tomcod is the third species which showed this pattern of behavior, though to a lesser extent. During the day some tomcod larvae were collected at the surface but they primarily occurred in bottom samples. The catch considerably increased at the surface during periods of darkness.

9.5.4 Community Overlap

Community overlap comparisons were made among all the surface, mid-depth and bottom zooplankton collections. The comparisons were based on the average monthly percent compositions of the identified planktonic organisms at each station (Table 9-2).

The monthly similarities among the stations using the surface and the bottom percent compositions at Station 10 as references are shown inFigures 9-6 through 9-13.

Computer plots of the average number caught per 1000 cubic meters in the bottom, mid-depth and surface collections of the more abundant zooplanktonic species are shown in Figures 9-14 through 9-25. Each line in a figure represents the data for a station. From bottom to top of each figure the stations are ordered as follows: $4,6,15,20,9$, 21, 11, 10, 22, 13, 23, 12, 14, 51 and 53 (see Figure 4-1).

Note that each station's graph begins and ends at zero. This is an artifact of the graphing technique and should be be interpreted as an indication of the abundance trends beyond the actual data available. See Appendix D-2 for tables of community overlap.

Table 9-1. Zooplankton Samples Collected, January - June 1970

Table 9-2. Relative Abundance of Major Identified Planktonic Organisms, Jan-June 1970

$$
\text { JANUARY - JUNE } 1970
$$

NAME JAN. FEB. MAR. APR. MAY JUNE

Bay anchovy	-	-	-	-	-	C
Carp	-	-	-	-	-	R
American eel	-	-	R	U	U	R
Goldfish	-	-	-	-	-	R
American smelt	-	-	R	R	U	R
Striped bass	-	-	-	-	U	C
Atlantic tomcod	-	-	A	A	U	R
White perch	-	-	-	-	U	C
Clupeid*	-	-	-	-	U	C
Gammarus fasciatus	R	R	C	A	A	A
Pontocrates norvegicus**	-	-	C	A	A	A
Leptocheirus pinguis**	-	-	R	A	C	U
Crangon septemspinosa	-	-	R	-	-	R
Neomysis americana	-	-	U	R	C	A

[^11]Table 9-3. Average Number per 1000 Cubic Meters - Gammarus fasciatus
Plankton Net No. 0 Mesh (0.5 mm)

Table 9-4. Average Number per 1000 Cubic Meters- Pontocrates norvegicus Plankton Net No. 0 Mesh (0.5 mm)

S	$\stackrel{M}{\text { M }}$	S	SAMPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{E} \\ & \hline \end{aligned}$	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	159	342	920	221	580	1058	1003	64	716	1679	1892	796
20	40	2	0	37	71	0	139	168	100	319	1217	394	340	0	2737	2655	3541
9	40	3	0	--	8	494	115	85	569	---	---	---	---	251	1206	137	872
21	42	1	0	--	11	141	173	562	354	---	---	---	---	572	2192	430	503
11	42	2	0	25	46	166	95	212	461	264	4.59	143	218	324	2027	652	1683
10	42	3	0	22	41	5	1203	163	250	364	291	461	277	326	1124	2035	2211
22	42	3	0	25	46	166	244	362	344	716	687	389	371	998	1365	904	6311
13	45	1	0	25	46	60	53	648	836	241	620	823	649	575	230.4	862	1937
23	44	2	0	37	71	0	51	179	105	0	595	245	1607	1581	588	905	4525
12	44	3	0	--	12	224	402	73	126	---		---	---	35	1047	209	645

Table 9-5. Average Number per 1000 Cubic Meters - Atlantic Tomcod Plankton Net No. 0 Mesh (0.5 mm)

STA	M	S	$\begin{aligned} & \text { SAMPLE } \\ & \text { DEPTH } \end{aligned}$			SURFACE		MAY	JUNE	MID-DEPTH			JUNE	воттом		MAY	JUNE
	$\underset{\mathrm{E}}{\mathrm{~L}}$	$\underset{\mathrm{F}}{\mathrm{~T}}$	S	M	B	MAR	APR			MAR	APR	MAY		MAR	APR		
15	40	1	0	22	41	158	11	0	0	509	37	0	0	1602	205	2	0
20	40	2	0	37	71	132	14	0	0	683	57	0	0	1584	137	12	1
9	40	3	0		8	561	69	0	0	-	-	-	-	1373	483	0	0
21	42	1	0		11	173	74	0	0	-	-	-	-	366	145	0	0
11	42	2	0	25	46	60	47	0	0	241	171	0	0	879	92	13	0
10	42	3	0	22	41	125 ,	53	0	0	264	49.	0	1	224	148	11	0
22	42	3	0		46	228	75	0	0	712	25	0	0	561	510	0	0
13	45	1	0	25	46	256	49	0	0	828	131	0	0	465	276	0	0
23	44	2			71	45	29	0	0	432	50	1	0	524	64	16	2
12	44	3	0		12	273	41	0	0	-	-	-	-	164	69	0	0

Table 9-6. Average Number per 1000 Cubic Meters-Neomysis americanus Plankton Net No. 0 Mesh (0.5 mm)

S	M I	S I	SAMPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
A	E	E	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	0	0	25	233	20	0	30	91	117	0	270	2293
20	40	2	0	37	71	0	0	1	84	0	3	84	378	608	6	140	2147
9	40	3	0	--	8	40	0	0	214	--	-	--	---	84	17	P*	90
21	42	1	0	--	11	0	0	1	648	--	-	--	---	17	1	0	286
11	42	2	0	25	46	0	0	3	295	22	0	26	140	110	5	41	7210
10	42	3	0	22	41	0	0	0	350	34	0	61	304	128	0	103	2312
22.	42	3	0	25	46	0	0	2	117	8	0	5	199	192	0	13	4479
13	45	1	0	25	46	0	0	0	2864	14	0	0	1793	10	0	4	4112
23	44	2	0.	37	71	0	0	0	232	0	0	7	806	199	1	102	4432
12	44	3	0	--	12	0	1	0	358	--	-	-	---	. 0	0	2	208

* P DENOTES < I PER 1000 METERS 3

Table 9-7. Average Number per 1000 Cubic Meters-Leptocheirus pinguis Plankton Net No. 0 Mesh (0.5 mm)

S	M	$\stackrel{\text { I }}{ }$	SAMPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
	E	E	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	0	59	46	8	8	310	68	10	0	42	70	11
20	40	2	0	37	71	0	100	17	27	0	125	46	1.	0	419	18	21
9	40	3	0	--	8	4	445	20	1	-	---	--	--	82	1519	20	32
21	42	1	0	--	11	0	113	15	2	-	---	--	--	0	210	28	5
11	42	2	0	25	46	0	67	47	5	0	40	26	4.	0	19	75	18
10	42	3	0	22	41	0	5426	53	8	0	51.1	30	8	0	921	106	27
22	42	3	0	25	46	0	117	83	4	0	116	65	13	0	114	164	16
13	45	1	0	25	46	0	2	26	3	0	19	- 89	11	0	49	6	30
23	44	2	0	37	71	0	96	12	25	0	108	20	1	0	18	16	26
12	44	3	0	--	12	0	25	26	0	-	---	--	-	0	191	39	0

Table 9-8. Average Number per 1000 Cubic Meters-American Smelt Plankton Net No. 0 Mesh (0.5 mm)

S	$\stackrel{\mathrm{M}}{\mathrm{I}}$	S	SAMPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \end{aligned}$	E	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	0	0	1	0	0	0	1	0	0	2	4	2
20	40	2	0	37	71	0	0	1	0	0	0	2	2	0	1	4	1
9	40	3	0	--	8	0	0	0	0	-	-	-	-	0	0	P*	4
21	42	1	0	--	11	0	0	2	1	-	-	-	-	0	0	0	1
11	42	2	0	25	46	0	0	0	1	0	0	6	0	0	0	2	2
10	42	3	0	22	41	0	1	0	1	0	0	4	1	2	0	0	1
22	42	3	0	25	46	0	0	1	2	0	0	0	0	0	0	2	0
13	45	1	0	25	46	0	0	0	1	0	0	2	1	0	0	1	4
23	44	2	0	37	71	0	0	5	0	0	0	1	0	0	0	1	0
12	44	3	0	--	12	0	0	0	1	-	-	-	-	0	0	9	3

* p denotes <1 per 1000 meters ${ }^{3}$

Table 9-9. Average Number per 1000 Cubic Meters-American Eel Plankton Net No. 0 Mesh (0.5 mm) .

S T A	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \\ & \hline \end{aligned}$	SAMPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
15	40	1	0	22	41	0	4	2	0	0	0	1	0	0	0	4	1
20	40	2	0	37	71	0	1	3	0	0	0	0	0	12	3	0	1
9	40	3	0	-	8	2	1	8	0	-	-	-	-	0	0	3	0
21	42	1	0	-	11	1	14	12	0	-	-	-	-	0	3	6	1
11	42	2	0	25	46	0	1	15	1	0	2	4	0	0	0	2	1
10	42	3	0	22	41	0	0	1	0	2	0	0	0	0	1	13	0
22	42	3	0	25	46	0	1	7	0	0	0	3	0	2	0	0	0
13	45	1	0	25	46	0	1	1	0	0	0	2	0	0	0	1	0
23	44	2	0	37	71	0	4	7	0	0	2	3	0	0	0	3	0
12	44	3	0	-	12	0	0	0	0	-	-	- -	-	0	0	0	. 0

Table 9-10. Average Number per 1000 Cubic Meters-Clupeids*
Plankton Net No. 0 Mesh (0.5 mm)

S	M I	S	SANPLE DEPTH			SURFACE				MID-DEPTH				BOTTOM			
A	$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{E} \\ & \hline \end{aligned}$	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	.JUNE
15	40	1	0	22	41	0	0	34	22	0	0	12	6	0	0	3	7
20	40	2	0	37	71	0	0	15	17	0	0	5	3	0	0	1	3
9	40	3	0	-	8	0	0	46	47	-	-	--	-	0	0	19	8
21	42	1	0	-	11	0	0	36	25	-	-	--	-	0	0	1	3
11	42	2	0	25	46	0	0	26	161	0	0	5	5	0	0	12	4
10	42	3	0	22.	41	0	0	55	59	0	0	33	10	0	0	20	6
22	42	3	0	25	46	0	0	47	96	0	0	18	13	0	0	25	6
13	45	1	0	25	46	0	0	30	181	0	0	16	27	0	0	1	12
23	44	2	0	37	71	0	0	18	127	0	0	10	3	0	0	9	6
12	44	3	0	-	12	0	0	49	35	-	-	--	--	0	0	59	29

* Blueback herring and Alewife combined.

Table 9-11. Average Number per 1000 Cubic Meters - Striped Bass
Plankton Net No. 0 Mesh (0.5 mm)

S	M I	S	SAMPle DEPTH			SURFACE				MID-DEP'fH				BOTTOM			
	E	E	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	0	0	2	351	0	0	3	107	0	0	8	176
20	40	2	0	37	71	0	0	. 0	111	0	0	6	295	0	0	10	95
9	40	3	0	-	8	0	0	0	24	-	-	-	---	0	0	0	10
21	42	1	0	-	11	0	0	2	90	-	-	-	---	0	0	0	161
11	42	2	0	25	46	0	0	0	59	0	0	47	73	0	0	7	426
10	42	3	0	22	41	0	0	0	91	0	0	16	55	0	0	15	36
22	42	3	0	25	46	0	0	2	76	0	$\bigcirc 0$	11	46	0	0	8	58
13	45	1	0.	25	46	0	0	5	265	0	0	. 8	45	0	0	36	377
23	44	2	0	37	71	0	0	1	182	0	0	111	70	0	0	39	855
12	44	3	0	-	12	0	0	0	34	-	-	-- -	--	0	0	9	8

Table 9-12. Average Number per 1000 Cubic Meters-White Perch Plankton Net No. 0 Mesh (0.5 mm)

S	$\stackrel{M}{1}$	S	SAMPLE DEPTH			SURI:ACE				MID-DEPTH				BOTTOM			
	E	E	S	M	B	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE	MAR	APR	MAY	JUNE
15	40	1	0	22	41	0	0	4	24	0	0	1	17	0	0	6	17
20	40	2	0	37	71	0	0	0	9	0	0	0	31	0	0	0	14
9	40	3	0	--	8	0	0	2	12	-	-	-	--	0	0	1	7
21	42	1	0	--	11	0	0	7	23	-	-	-	--	0	0	0	15
11	42	2	0	25	46	0	0	4	29	0	0	7	26	0	0	5	77
10	42	3	0	22	41	0	0	5	24	0	0	2	21	0	0	1	12
22	42	3	0	25	46	0	0	2	23	0	0	2	4	0	0	5	12
13	45	1	0	25	46	0	0	0	21	0	0	6	53	0	0	4	76
23	44	2	0	37	71	0	0	3	18	0	0	8	21	0	0	1	76
12	44	3	0	--	12	0	0	5	9	-	-	-	--	0	0	1	21

Table 9-13. Average Number per 1000 Cubic Meters - Bay Anchovy Plankton Net No. 0 Mesh (0.5 mm)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \end{gathered}$	S	SAMPLE DEPTH			SURFACE				MID-DEPTH				воттом			
	E	E	S	M	B	MAR	APR	may	JUNE	MAR	APR	MAY	June	MAR	APR	MAY	JUNE
. 15	40	1	0	22	41	0	0	0	140	0	0	0	44	0	0	0	136
20	40	2	0	37	. 71	0	0	0	121	0	0	. 0	45	0	0	0	278
9	40	3	0	-	8	-	-	-	353	-	-	-	-	0	0	0	74
21	42	1	0	-	11	0	0	0	42	-	-	-	-	0	0	0	17
11	42	2	0	25.	46	0	0	0	93	0	0	0	0	0	0	0	94
10	42	3	0	22	41	. 0	0	0	77	0	0	0	67	0	0	0	42
22	42	3	0	25	46	0	0	0	119.	0	0	0	1	0	0	0	102
13	45	1	0	25	46	0	0	0	211	0	0	0	33	0	0 .	0	76
23	44	2	0	37	71	0	0	0	36	0	0	0	1	0	0	0	48
. 12	44	3	0	-	12	0	0	0	38	-	-	-	-	0	0	0	22

Table 9-14. Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 - White Perch

White perch				
Week	Bottom	Mid-depth	Surface	Day/Night
5 May	0	0	0 8	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
12 May	0 0	0	0 0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
19 May	0	8	0 0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
2 June	24 0	9 0	13 18	D N
16 June	16 17	11	$\begin{aligned} & 14 \\ & 46 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	0 27	0	0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
				$\begin{aligned} & \text { DDAY } \\ & \text { QNIGHT } \end{aligned}$

Note: This species not collected in plankton samples prior to 5 May at this station.

Table 9-15. Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 - Clupeids

Clupeids (Blueback herring and Alewife combined)				
Week	Bottom	Mid-depth	Surface	Day/Night
5 May	0 55	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 7 \\ 76 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
12 May	8 72	$\begin{array}{r} 15 \\ 0 \end{array}$	$\begin{array}{r} 60 \\ 206 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
19 May	21 0	$\begin{array}{r} 130 \\ 16 \end{array}$	6 20	$\begin{aligned} & \text { D } \\ & \text { in } \end{aligned}$
2 June	8	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{aligned} & 84 \\ & 54 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
16 June	0 0	45 7	$\begin{aligned} & 56 \\ & 80 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	0 0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 41 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
				$\begin{aligned} & \square \text { DAY } \\ & \triangle \text { NIGHT } \end{aligned}$

Note: This species not collected in plankton samples prior to 5 May at this station.

Table 9-16. Diurnal Comparisons of Average No. $1000 \mathrm{~m}^{3}$ at Station 22- Bay Anchovy

Bay anchovy				
Week	Bottom	Mid-depth	: Surface	Day/Night
16 June	$\begin{array}{r} 16 \\ 473 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	76 23	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	$\begin{array}{r} 0 \\ 53 \end{array}$	$\begin{aligned} & 0 \\ & 8 \end{aligned}$	$\begin{array}{r} 0 \\ 95 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
				DDAY QNIGHT

Note: This species not collected in plankton samples previous to 16 June.

Table 9－17．Diurnal Comparisons of Average No．$/ 1000 \mathrm{~m}^{3}$ at Station 22 －Gammarus

Gammarus fasciatus（Amphipod）				
Week	Bottom	Mid－depth	Surface	Day／Night
25 March	$\begin{aligned} & 343 \\ & 868 \end{aligned}$	$\begin{array}{r} 0 \\ 361 \end{array}$	$\begin{array}{r} 0 \\ 384 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
7 Apri1	$\begin{aligned} & 394 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 102 \\ & 454 \end{aligned}$	$\begin{array}{r} 32 \\ 944 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
21 April	$\begin{aligned} & 1243 \\ & 2386 \end{aligned}$	$\begin{array}{r} 0 \\ .724 \end{array}$	$\begin{array}{r} 0 \\ 784 \end{array}$	D
5 May	$\begin{array}{r} 854 \\ 1669 \end{array}$	$\begin{array}{r} 11 \\ 536 \end{array}$	$\begin{array}{r} 0 \\ 527 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
12 May	$\begin{array}{r} 0 \\ 1541 \end{array}$	$\begin{aligned} & 142 \\ & 264 \end{aligned}$	$\begin{array}{r} 0 \\ 154 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
19 May	$\begin{array}{r} 0 \\ 250 \end{array}$	$\begin{array}{r} 0 \\ 484 \end{array}$	$\begin{aligned} & 32 \\ & 47 \end{aligned}$	$\begin{gathered} \mathrm{D} \\ \mathrm{~N} \end{gathered}$
2 June	$\begin{array}{r} 8571 \\ 13445 \end{array}$	$\begin{array}{r} 44 \\ 4667 \end{array}$	$\begin{array}{r} 0 \\ 4810 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
16 June	$\begin{array}{r} 39 \\ 7867 \end{array}$	$\begin{array}{r} 730 \\ 4605 \end{array}$	$\begin{array}{r} 0 \\ 2431 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	$\begin{aligned} & 1590 \\ & 4956 \end{aligned}$	$\begin{array}{r} 0 \\ 1933 \end{array}$	$\begin{array}{r} 46 \\ 1459 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
$\begin{array}{ll} & 100 \\ 山 & \\ 0 & 75 \\ \boxed{Z} & 7 \\ 山 & \\ U & 50 \\ \frac{\alpha}{山} & \\ Q & \\ & 25 \end{array}$				DAY \square NIGHT

Table 9-18. Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 - Pontocrates

Pontocrates norvegicus (Amphipod)				
Week	Bottom	Mid-depth	Surface	Day/Night
25 March	$\begin{array}{r} 457 \\ 1333 \end{array}$	$\begin{array}{r} 0 \\ 2807 \end{array}$	$\begin{array}{r} 0 \\ 665 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
7 April	$\begin{aligned} & 189 \\ & 477 \end{aligned}$	$\begin{array}{r} 59 \\ 647 \end{array}$	$\begin{array}{r} 0 \\ 222 \end{array}$	$\stackrel{\mathrm{D}}{\mathrm{~N}}$
21 April	$\begin{aligned} & 1074 \\ & 6456 \end{aligned}$	$\begin{array}{r} 0 \\ 4495 \end{array}$	$\begin{array}{r} 0 \\ 1731 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
5 May	$\begin{aligned} & 2780 \\ & 1543 \end{aligned}$	$\begin{aligned} & 213 \\ & 871 \end{aligned}$	$\begin{array}{r} 0 \\ 1073 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
12 May	$\begin{array}{r} 0 \\ 1730 \end{array}$	$\begin{array}{r} 7 \\ 1318 \end{array}$	$\begin{array}{r} 0 \\ 77.2 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
19 May	$\begin{array}{r} 0 \\ 39.7 \end{array}$	$\begin{array}{r} 0 \\ .219 \end{array}$	$\begin{array}{r} 32 \\ 309 \end{array}$	D N
2 June	$\begin{aligned} & 508 \\ & 264 \end{aligned}$	$\begin{array}{r} 9 \\ 349 \end{array}$	$\begin{array}{r} 0 \\ 524 \end{array}$	D
16 June	$\begin{array}{r} 54 \\ 4600 \end{array}$	$\begin{array}{r} 45 \\ 1405 \end{array}$	$\begin{array}{r} 0 \\ 846 \end{array}$	D N
30 June	$\begin{array}{r} 386 \\ 5027 \end{array}$	$\begin{array}{r} 0 \\ 933 \end{array}$	$\begin{array}{r} 28 \\ 338 \end{array}$	D
				DAY ZNIGHT

Table 9－19．Diurnal Comparisons of Average No．／ $1000 \mathrm{~m}^{3}$ at Station 22 －Atlantic Tomcod

Atlantic tomcod				
Week	Bottom	Mid－depth	Surface	Day／Night
25 March	$\begin{array}{r} 1505 \\ 225 \end{array}$	$\begin{array}{r} 2533 \\ 294 \end{array}$	$\begin{aligned} & 129 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
7 April	$\begin{aligned} & 63 \\ & 23 \end{aligned}$	8 17	$\begin{aligned} & 14 \\ & 49 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
21 April	$\begin{array}{r} 3044 \\ 403 \end{array}$	$\begin{aligned} & 41 \\ & 95 \end{aligned}$	$\begin{array}{r} 46 \\ 479 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
$\begin{array}{ll} & 100 \\ 山 & \\ 0 & \\ \stackrel{4}{4} & 75 \\ \underset{\sim}{u} & \\ \underset{\sim}{u} & 50 \\ 山 己 几 & \\ & \\ \hline \end{array}$				DAY Z NIGHT

Note：Tomcod larvae not collected at Station 22 after April． Young of the year Tomcod most abundant species in bottom trawls during May and June（See Table 10－14）．

Table 9-20. Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22 - Striped Bass

Striped bass				
Week	Bottom	Mid-depth Surface	Day/Night
12 May	0 0	$\therefore \quad 0$ $\therefore \quad 8$	$\begin{array}{r} 0 \\ 0 \end{array}$	D ${ }_{\text {N }}$
19 May	0 0	0	0	D N
2 June	$\begin{array}{r} 111 \\ 25 \end{array}$	0 16	0 452	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
16 June	31 $+\quad 25$	34 $-\quad 7$	$\begin{array}{r} 0 \\ 104 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	24 18	$\begin{aligned} & 15 \\ & 17 \end{aligned}$	$\begin{array}{r} 0 \\ 14 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
		8		DAY ENIGHT

Note: This species not collected in plankton samples prior to 12 May at this station.

Table 9-21. Diurnal Comparisons of Average No. $/ 1000 \mathrm{~m}^{3}$ at Station 22- Neomysis

Neomysis americanus (Opossum shrimp)				
Week	Bottom	- Mid-depth	Surface	Day/Night
25 March	$\begin{array}{r} 705 \\ 0 \end{array}$	22 8	0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
7 April	0 0	0	0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
21 April	0 0	0 0	0 0	D
5 May	0 0	0 0	0 0	$\begin{gathered} \mathrm{D} \\ \mathrm{~N} \end{gathered}$
12 May	0 0	0	0	D N
19 May	0 22	0 47	6 0	D N
2 June	0 0	0 0	0	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
16 June	$\begin{aligned} & 132 \\ & 266 \end{aligned}$	$\begin{array}{r} 0 \\ 157 \end{array}$	$\begin{array}{r} 0 \\ 266 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
30 June	$\begin{aligned} & 4867 \\ & 2337 \end{aligned}$	$\begin{aligned} & 582 \\ & 433 \end{aligned}$	$\begin{array}{r} 0 \\ 3.78 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~N} \end{aligned}$
		B		DAY ENIGHT

Table 9-22. Selected Planktonic Species Collected Outside the Primary Study Area

$$
P=\text { denotes average of less than } 1 \text { per } 1000 \text { meters }^{3}
$$

Figure 9-2. Laboratory Data Sheet

Figure 9-3. Spatial Distribution of the Planktonic Stages of the Clupeids

Figure 9-4. Spatial Distribution of the Planktonic Stages of Striped Bass

Figure 9-5. Spatial Distribution of the Planktonic Stages of the Atlantic Tomcod

Figure 9-6. Community Overlap Bottom Zooplankton Station 10, March

Figure 9-7. Community Overlap Bottom Zooplankton Station 10, April

Figure 9-8. Community Overlap Bottom Zooplankton Station 10, May

Figure 9-9. Community Overlap Bottom Zooplankton Station 10, June
RAYTHEON
Species Station 10
Data Community Overlap
Date \qquad
Gear Surface Zooplankton
(82\% Tomcod Iarvae 15\% Gammarus)
BOWLINE PT HAVERSTRAW

Figure 9-10. Community Overlap Surface Zooplankton Station 10, March

Figure 9-11. Community Overlap Surface Zooplankton Station 10, April

Figure 9-12. Community Overlap Surface Zooplankton Station 10, May

Figure 9-13. Community Overlap Surface Zooplankton Station 10, June

Figure 9-14. Atlantic Tomcod (Bottom Zooplankton)

Figure 9-15. Atlantic Tomcod (Mid-Depth Zooplankton)

Figure 9-16. Atlantic Tomcod (Surface Zooplankton)

Figure 9-17. Pontocrates norvegicus (Bottom Zooplankton)

Figure 9-18. Pontocrates norvegicus (Mid-Depth Zooplankton)

Figure 9-19. Pontocrates norvegicus (Surface Zooplankton)

Figure 9-20. Gammarus fasciatus (Bottom Zooplankton)

Figure 9-21. Gammarus fasciatus (Mid-Depth Zooplankton)

Figure 9-22. Gammarus fasciatus (Surface Zooplankton)

Figure 9-23. Neomysis americana (Bottom Zooplankton)

Figure 9-24. Neomysis americana (Mid-Depth Zooplankton)

Figure 9-25. Neomysis americana (Surface Zooplankion)

10.0 FIELD BIOLOGY-FINFISH/INVERTEBRATE STUDIES

10.1 Introduction

Bottom trawling, surface trawling and beach seining were secondary to the plankton and sonic tagging programs during the spring. This limited sampling, however, did provide information on post-larval fish species growth and distribution, as well as data on older fishes and other invertebrate species during this six-month period. These data collected on fishes provided year-round continuity to the more intensive summer-fall finfish sampling program.

A fish trap was constructed and placed in the effluent canal in February in order to gain insight and data on fishes inhabiting or temporarily entering the canal.

Benthic grab, Succession Panel and Thorson Bottle sampling was conducted monthly except during January and February when ice conditions on the river allowed only limited sampling of the infauna and encrusting invertebrates.

All sampling was conducted without regard to the stage of the tide. Environmental data such as weather conditions and tide, as well as the surface, mid and bottom depth water temperatures, dissolved oxygen, and salinity were routinely recorded on the standard field data sheet with each biological collection.

10.2 Sampling Gear and Procedures

10.2.1 Bottom Trawls

Bottom trawl fish collections were made primarily at major stations (plant vicinity) each month from March through June, 1970. Occasional samples were collected in January and February when river ice conditions permitted. Twenty-five foot semi-balloon trawls were employed during 7-minute tows. The gear and methods for towing were identical to those in 1969.

10.2.2 Surface Trawls

Surface trawl collections were made from April through June at major trawl and plankton stations during a day and night each month. An inverted, modified 25 -foot semi-balloon trawl was towed for 10 minutes for each sample as in 1969.

10.2.3 Beach Seines

Routine beach seine collections were regularly made from March through June with a $100^{\prime} \times 10^{\prime} \times 3 / 8^{\prime \prime}$ square mesh seine with $1 / 4^{\prime \prime}$ square mesh bag. Night time collections were made each month, and day time collections almost every week at major stations.

10.2.4 Benthic Grabs

As in 1969, monthly benthic samples were collected with an Emory type bottom grab at all trawl and plankton stations except during January and February when river ice prevented sampling at each station. Samples were also collected in the forebay area of the plant and in the effluent canal.

10.2.5 Succession Panels and Thorson Bottles

Succession panels and Thorson bottles installed in September, 1969 were recovered in January and March, 1970. Panels at several stations were lost during the winter from ice abrasion.

The succession panel and Thorson bottle arrays for 1970 were designed for a $9-$ month collecting period, March through December (Figure 10-1). Nine panels, each one a pine board measuring $4^{\prime \prime} \times 10^{\prime \prime} \times 1^{\prime \prime}$, were screwed to a $2^{\prime} \times 2^{\prime} \times 42^{\prime \prime}$ wood strip. One inch separated the individual panels. The panel array was bolted to a vertical wood strip $2^{\prime \prime} \times 2^{\prime \prime} \times 32^{\prime \prime}$ (Figure 10-1).

The Thorson bottles were constructed of one-quart freezer containers measuring $51 / 2^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ with a $21 / 2^{\prime \prime}$ diameter hole cut in the top. A Thorson bottle was secured to the base of each set of bottom succession panels. Thorson bottles were not used in conjunction with surface panels.

Stations utilized in 1969 were employed for the 1970 collections. At stations with 14 feet of depth or more, two sets of panels were used. One set of panels was positioned four feet from the surface at mean low water and one four feet from the bottom with a Thorson bottle attached. At stations less than 14 feet, only one set of panels with a Thorson bottle was used and positioned four feet above the bottom. At Station 57 the panel array was placed 4 feet below the surface because the mean low water depth is only 7 feet. Thus, this panel set was compatible with other surface panel set locations. The sets of panels were secured to quarter-inch line with staples, and anchored using cement blocks. The line was tautly secured to a fixed object at the surface to keep the panels as stationary and vertical as possible.

Each time the stations were sampled, \#1 panels and the Thorson bottles were removed and replaced to give data for one month of exposure. At the same time, another panel was removed to obtain information concerning the accumulation and ecological succession of organisms during the entire sampling period (Table 10-1).

The panels and bottles were first installed at Stations 51, 54, 55 and 57 on 31 March and the next day Stations 56 and 58 were installed. The final set was placed at Station 53 (effluent canal) on 8 April, after Consolidated Edison completed their discharges of boiler compounds into the effluent canal. On the 29th and 30th of April at all stations, panel \#1 was removed and replaced with a new panel and the Thorson bottles were removed and replaced. On the 26th of May, all the \#1 panels and the panels with two months' exposure were removed and replaced. All stations were again sampled on 24 June by removing and replacing \#1 panels and the Thorson bottles, and removing a three month succession panel.

Figure 3-1 and Tables 4-4 and 4-5 give the locations, positions and descriptions of the succession panel/Thorson bottle stations.

10.2.6 Fish Trap

A fish trap was designed and built by Raytheon biologists to sample fish in the effluent canal (Figure 10-2). The original design was initiated because of the difficulty of using conventional sampling gear in narrow confines of the cement walled canal, especially with the presence of a swift current.

The frame of the trap was constructed of 1 inch steel angle iron. The overall dimensions are 6 feet long by 4 feet wide by 4 feet high. A funnel entrance, tapering to a 6 by 6 inch opening and extending 3 feet 6 inches inward, constitutes one end of the trap. A similar secondary funnel extends beyond the entrance funnel to increase the trap's retaining
efficiency. The sides were covered with $1 / 4$ inch square mesh galvanized wire hardware cloth. Two wings measuring 4 feet by 6 feet long were mounted on adjustable hinges. These wings increase the effective catching area by guiding fish into the trap.

The trap was set for the first time on 20 February 1970 in the uppermost portion of the canal adjacent to the bridge and against the east wall facing downstream. Durations of the set ranged from a few days to several weeks. Catches were small during the colder water months of February, March and April. As the river water warmed up, catches became larger with more species appearing each month, thus the set time was decreased to about one week.

10.3 Fish Results

10.3.1 Trawls and Seines

Samples during the six-month period were generally collected at stations in the plant site vicinity (Table 10-2).

During the fall of 1969 , the number of species declined when the river water cooled (Data Report I). The number of species generally increased during spring 1970, particularly at the shoal stations, as the river water temperatures increased (Table 10-3). The faunal diversity can be a measure of environmental changes and may be monitored by the number of species collected. This has the inherent weakness that there is an increase in species with increase in sample size and/or sampling frequency.

Sixteen surface trawls in April collected only two species in limited numbers in six tows. Summer resident species (bay anchovy and bluefish) began moving into the study area in May and June. By June, 43 surface trawls collected at least two species in each tow and a total of 11 species (Tables $10-2$ and $10-3$). The number of species
collected in the surface trawls in June increased because a) young-of-the-year shad, white perch, striped bass, bay anchovy, and bluefish (summer residents) moved into the area, and b) an increase in the number of shallow water collections yields shallow water species (spottail shiner and young-of-the-year white perch).

Bottom trawl catches during the six-month period did not show an increase of species as well as surface trawl and seine collections. This can be explained by the sampling frequencies (Table 10-2). A general increase of species is evident, but many of the species remain in the study area throughout the year.

Beach seine collections could not be made in January and February because of river ice conditions. Seining during the daytime collected on the average one fish per haul during March. Night sampling after mid-month produced large catches with spottail shiner the most abundant species and Johnny darter the second most abundant species. The number of species collected in beach seines increased in April (Table 10-3). Low salinities in April (because of spring runoff) increased the number of fresh water species available for collection (brown trout, golden shiner, largemouth bass, black crappie). Summer resident species moved into the shoal areas in May and June. By the end of June, 25 species had been collected in beach seines (Table 10-3).

For all fishing gear, a total of 35 species in 18 families were collected from January through June 1970 (Table 10-4).

10.3.2 Results on the Species Level

Monthly averages by individual species caught per unit effort per gear type per station revealed the overall spatial and seasonal distributional patterns for the species collected within the study area. These data also provided a basis for evaluating the effectiveness/ selectivity of the various gear types for each species. Grand averages of all the individual station averages of number caught per unit effort have also been calculated (Tables 10-5 through 10-21). Since each station is considered as a unit location within the sampling grid, these grand averages have not been weighted on the basis of the number of samples collected.

The most abundant species in the study area from January through June, 1970 were tomcod and white perch (Tables 10-5 through 10-21). Striped bass were collected throughout the period, but only in small numbers. The bay anchovy which was the most important species numerically in the fall of 1969 , was not caught in the study area until May. These were yearlings and adults. The most numerous species collected in beach seines from March through May was the spottail shiner. In June, white perch replaced the spottail shiner as the most abundant species. Golden shiner, banded killifish, and Johnny darter were commonly caught in beach seines.

Post-larval stages of blueback herring, alewife, shad, tomcod, white perch, and striped bass were avoiding capture by plankton nets in May and June, but were collected by surface and bottom trawls. Surface and bottom trawling thus enabled the collection of larval and post-larval specimens of the "key" and other species.

Computer plots of the average number caught per unit effort by month by station for selected species and gear types are shown in Figures 10-3 through 10-12. Table 10-2 should be consulted for a determination of the number of samples averaged together to produce each data point. It should be noted that each station's trace begins and ends at zero; is an artifact of the graphing technique and should not be interpreted as an indication of the abundance trends beyond the actual data available. The "deep" stations are segregated at the upper half of each figure in order of increasing river mile. The "shallow" stations, likewise, are segregated to the lower half. From bottom to top of each graph representing bottom and surface trawl catches, the station ordering is: shallow $-5,3,7,8,9,21$ and 12 ; deep $4,6,15,20,16,11,10,22,13,23$ and 14 (see Table 4-5). Graphs representing seine catches are numbered from bottom to top: $31,32,38,33,39,35,34,36,37$.

10.3.2.1 Blueback Herring, Alosa aestivalis (Mitchill)

Yearling and older individuals were not collected in the study area until May (Tables $10-5$ through $10-7$). This may be related to their spawning migration.

10.3.2.2 Alewife, Alosa pseudoharengus (Wilson)

The alewife was collected in the study area from April through June (Tables 10-8 through 10-10). Adults were migrating upstream to spawn. Yearlings also entered the study area. Specimens were caught in beach seines, bottom trawls, and surface trawls, and incidently in gill nets set for shad. Yearlings dominated the surface trawl catches. Young-of-the-year were collected in plankton tows (see Section 9.0). The bottom trawl data indicate that the yearling and adult migrating fish may prefer the shaal areas, especially Peekskill Bay (Table 10-9). This species also tends to be widely distributed in the study area.

10.3.2.3 American shad, Alosa sapidissima (Wilson)

This anadromous species spawns in the upper reaches of the Hudson River during the spring (see Section 8.0). The only young-of-the-year specimen collected during the spring was in a surface trawl sample at Station 9 in June. Two yearling shad were collected in May beach seines at Stations 34 and 36 .

10.3.2.4 Bay anchovy, Anchoa mitchilli (Valenciennes)

In the summer and autumn of 1969, the bay anchovy was the most abundant species within the study area. This year yearling and adult bay anchovy first appeared in May and were caught in limited numbers at scattered stations (Table 10-11 through 10-13).

10.3.2.5 Atlantic tomcod, Microgadus tomcod (Walbaum)

Tomcod and white perch were the most numerous species collected by fishing gear during this six-month period (Tables 10-14 and 10-15). The tomcod was most abundant at channel stations throughout the year. Low salinities in April (see Section 7.0) may have caused the fish to move downstream and account for the smaller catches.

Spawning took place during the winter months and all larval stages were collected with plankton nets from March through June (see Section 7.0). Bottom trawls began collecting young of the year in May and large catches were made in June. Young-of-the-year were
also collected in shoal areas in May and June (Tables 10-14 and 10-15). Yearlings were common in the study area, but fish older than yearlings were not numerous during the spring.

Overall, the tomcod was the most numerous species caught in May and June. In May tomeod dominated the bottom trawl catches in deep water while white perch dominated the shallow water catches (Tables 10-14 through 10-18).
10.3.2.6 White perch, Morone americana (Gmelin)

The white perch is one of the most abundant species in the lower Hudson River and is found throughout the year and in all life stages. White perch was the most numerous species collected from January through March in deep water and in April in shallow water bottom trawls (Tables 10-5 through 10-21).

A shift occurred in April and May with the largest catches of white perch in shallow water (Tables $10-17$ and $10-18$). This may be associated with spawning activity. The largest catches were made in shoal waters in June and it was the most numerous species caught in beach seines during June.

Young-of-the-year white perch were collected in June surface and bottom trawls (Tables 10-16 and 10-17).
10.3.2.7 Striped bass, Morone saxatilis (Walbaum)

The striped bass was collected from January through June 1970 in all types of fishing gear employed (Tables 10-19 through 10-21). From January through March, striped bass were collected primarily at deep water bottom trawl stations (Table 10-20). In May and June this species was concentrated in shoal areas (Tables 10-20 and 10-21). Yearlings and two year old fish were caught from January through June, and young-of-the-year fish became numerous in surface and bottom trawl catches in June.

10.4 Fish Trap Results

From February through April, catches were small, numbering less than one dozen fish per haul. Catches during these months yielded Atlantic tomcod, Johnny darter, white catfish, spottail shiner and yellow perch, in order of decreasing abundance. In February, tomcod was the only species caught. White catfish was caught for the first time in April.

June catches averaged about 22 fish per set with a total of nine species collected. The most numerous species was the white perch and the second most numerous was the American eel.

Eleven species of fish were collected in the trap from February through June (Table 10-22). The most numerous species were the white perch and the American eel.

10.5 Invertebrate (Non-plankton) Results

The distribution and abundance of invertebrates at Indian Point is being evaluated through the use of a variety of gear. In the fish sampling program, invertebrates were collected during the six-month period in beach seines, surface and bottom trawls. In addition, samples were collected with an Emory-type benthic grab, Thorson bottles, and settlement/succession panels (Tables 10-1 and 10-23). Zooplankton collections of invertebrates have been dealt with in Section 9.0 of this report.

The species collected from January through June, 1970 are listed by gear type in Tables 10-24 through 10-28.

10.5.1 Overall Numerical Importance

The overall relative numerical importance of the major species within the study area was determined through a compilation of the monthly averages of numbers caught per unit effort for each gear type (Tables 10-29 through 10-32). The segregation of the samples by depth due to selective sampling by each gear type permits an evaluation of differences in surface and bottom abundances.

The organisms encrusting the succession panels were primarily barnacles, Balanus improvisus, which were more numerous on surface panels than on bottom panels (Table 10-29). As yet, no generalities can be drawn from the long term panels. Balanus improvisus had just settled heavily on the June panels, providing a baseline for successional studies.

Benthic grab abundances showed that the polychaete worm Spio setosa, predominated (Table 10-30).

The amphipod, Gammarus fasciatus, was the most abundant animal collected by the Thorson bottles (Table 10-31). This is misleading because G. fasciatus is very mobile and therefore not indicative of mud infauna. Spio setosa and the midge, Tendipes tentans, which also were caught in the benthic grabs, are more typical of the habitat. They were not as abundant as G. fasciatus, but did occur every month. The amount of sediment collected each month was far more interesting (Table 10-33). For example, the volume of mud collected at the effluent was approximately one-third that collected at the intake. The sediment volume collected did not appear to be correlated with the sampling depth (Table 10-33). Thus, the Thorson bottles appear to be a better monitor of sediment deposition than benthic infauna. However, caution must be used in comparing the sediment volume data among stations as the local currents resulting from natural and artificial obstructions may affect the rate of accumulation.

The invertebrates collected by the fish sampling program were neither numerous nor evenly distributed among stations (Table 10-32). Sampling of fish populations was reduced because of the emphasis on the zooplankton and sonic tagging programs. For these reasons, no conclusions can be drawn concerning these invertebrates.

10.5.2 Species Distribution Patterns

Although the encrusting fauna on the succession panels was neither very diverse nor abundant, some patterns appeared in the study area. The 1970 panels were installed in March and they did not have barnacle, Balanus improvisus settlement until June (Figure 10-13). The total counts per panel varied from zero in May to almost thirty thous and in June. Growth and
competition effects will be examined throughout the summer. The numbers of barnacles settling declined as salinity declined (river mile increased) and spat settlement was especially low on the bottom panels in the vicinity of the Consolidated Edison generating station (Figure 10-13). The absence of Congeria leucophaeta from the panels this spring (Table 10-29) may indicate that settlement occurs later in the year; they occurred on the fall panels in 1969.

With a few exceptions, the polychaete worm, Spio setosa and the isopod Cyathura polita were found throughout the study area as the most common members of the benthic fauna (Figure 10-14). Cyathura polita was not as numerous as $\underline{\underline{S}}$. setosá but it was ubiquitous. Seasonally, both animals showed an expected increase in numbers in the spring.- Again, sediment type appeared to be the most important influence on distribution. Both species were less abundant among the shells and pebbles of Stations 5 or 16 and the heavy organic debris of Station 14, than in the more silty clay sediments of other stations. Since these animals were found throughout the study area, salinity is probably not critical.

It appears that no generalities can be drawn from the Thorson bottles and invertebrates collected by the fish sampling program.

Table 10-1. Schedule and Procedure for 1970 Succession Panels

MARCI 31 Panels installed at Stations 51, 54, 55 \& 57.
APRIL 1 : Panels installed at Stations 56 and 58.
8 Panels installed at Station 53.
29,30 A. Remove and replace \#1 panel (1 month exposure)..
B. Remove and replace Thorson bottle.

MAY 26 A. Remove and replace \#1 panel (1 month exposure).
B. Remove \#9 pane1 (2 month exposure).
C. Remove and replace Thorson bottle.

JUNE 24 A. Remove and replace \#1 panel (1 month exposure).
B. Remove\#\# panel (3 month exposure).
C. Remove and replace Thorson bottle.

JULY A. Remove and replace \#1 panel (1 month exposure).
B. Remove \#8 panel (4 month exposure).
C. Remove and replace Thorson bottle.

AUGUST A. Remove and replace \#1 panel (1 month exposure). B. Remove \#3 panel (5 month exposure).
C. Remove and replace Thorson bottle.

SEPTEMBER. A. Remove and replace \#1 panel (1 month exposure).
B. Remove \#7 panel (6 month exposure)
C. Remove and replace Thorson bottle

OCTOBER
A. Remove and replace \#1 (1 month exposure).
B. Remove \#4 panel (7 month exposure)
C. Remove and replace Thorson bottle

Table 10－2．Trawl，Seine and Effluent Samples Collected，January－June 1970＊

$\begin{array}{cccc} & \mathrm{M} & \mathrm{~S} & \mathrm{D} \\ \mathrm{~S} & \mathrm{I} & \mathrm{I} & \mathrm{P} \\ \mathrm{~T} & \mathrm{~L} & \mathrm{~T} & \mathrm{~T} \\ \mathrm{~A} & \mathrm{E} & \mathrm{E} & \mathrm{H} \end{array}$	Jan．	Feb．	Mar．	Apr．	May	June
$\begin{array}{llll}5 & 36 & 1 & 12\end{array}$						1
$3 \begin{array}{llll}3 & 35 & 3 & 10\end{array}$						1
－ $7 \quad 38311$				3 （1）	3	4
$\underset{3}{3} 8393112$			3	1 （1）		5 （3）
$3 \quad 9 \quad 40312$			3 （1）		1	
$\stackrel{\sim}{\square}$12 44 3 12	1		2	3（1）	1	7
Σ4 35 2 34						1
$\begin{array}{llllll}2 & 6 & 38 & 2 & 30\end{array}$				4 （2）	3	4
$\bigcirc 1540145$			$3 \times$	1		4
$\bigcirc{ }_{\circ}^{\circ} 164164135$			2			3
¢ 1142250	1	2	3	3 （1）	3	8
$\begin{array}{llll}10 & 42 & 3\end{array}$	2	1	3 （2）	3	3	6
$\begin{array}{lllll}13 & 45 & 1 & 50\end{array}$				1	1	5 （1）
1447355						$3(2)$
TOTAL	4	3	19 （3）	23 （6）	15	57 （6）
$\begin{array}{lllll}5 & 36 & 1 & 12\end{array}$						
$3 \begin{array}{llll}3 & 35 & 3 & 10\end{array}$						2
$\begin{array}{llll}7 & 388 & 3 & 11\end{array}$				2	1	4
$8 \quad 391112$						
$9 \begin{array}{llll}9 & 40 & 3 & 12\end{array}$				3	1	3
$\cdots \begin{array}{lllll}21 & 42 & 1 & 15\end{array}$						3
41244				1		3
						2
$\begin{array}{llllll}\sim & 6 & 38 & 2 & 30\end{array}$					1	4
山 15404015				2	1	4
¢ 2040280						
区 1641345				2	1	3
๙ 1142250				3	1	5 （1）
¢ 1042345				3	1	5
$\begin{array}{lllll}22 & 42 & 3 & 45\end{array}$						3
1345150						2
$\begin{array}{llllllllllll}23 & 44 & 280\end{array}$						
1447355						
TOTAL				16	7	43 （1）
$\begin{array}{llll}31 & 35 & 1\end{array}$			2			1
－ 32353			1			2
¢ 己 3840			7	4	4	5
云 33403			8 （1）	1	3	4
			8	4	4	6 （1）
$\cdots \quad 35431$			7	4	4	5
끈 34423			8	4	4	5
出 $\quad 36443$				3	4	5
岗 37471						
TOTAL			41 （1）	20	23	35 （1）
Fish Trap		3	2	1	1	5
＊Samples in parentheses are valid for environmental data only and are included in the total numbers of samples．						

Table 10-3. Total Numbers of Fish Species Caught by Trawls and Seines, January - June 1970

	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	S I T E	$\begin{aligned} & \mathrm{D} \\ & \mathrm{p} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$	JAN	FEB	MAR	APR	MAY	JUNE
	5	36	1	12						8
	3	35	3	10						7
	7	38	3	11				7	9	9
	8	39	1	12			5			8
	9	40	3	12			5	13.	7	14
	12	44	3	12	8		3	8.	10	16
	4	35	2	34						7
	6	38	2	30				6	9	11
	15	40	1	45			7	3		7
	16	41	3	45			8			8
	11	42	2	50	6	4	3	5	9	11
	10	42	3	45	7	4	2	8	9	10
	13	45	1	50				2	5	10
	14	47	3	55						3
	TOTAL SPECIES				12	5	11	17	14	20
¢	5	36	1	12						
	3	35	3	10						
	7	38	3	11				2	3	5
	8	39	1	12						
	9	40	3	12				2	2	7
	21	42	1	15						4
	12	44	3	12				1		3
	4	35	2	34						2
	6	38	2	30					1	4 3
	15	40	1	45				0	1	3
	20	40	2	80						
	16	41	3	45				1	2	3
	11	42	2	50				0	1	3
	10	42	3	45					1	5
	22.	42	3	45						5
	13	45	1	50						4
	23	44	2	80		.			-	
	14	47	3	55						
	TOTAL SPECIES							2	4	11
			1				0			2
	32	35	3				1			1
	38	40	1				7	5	11	14
	33	40	3				7	1	7	13
	39	41	3				6	8	12	12
	35	43	1				6	11	16	17
	34	42	3				8	9	15	12.
	36	44	3					11	15	13
	37	47	1							8
	TOTAL SPECIES						14	19	22	25
	```0= Species absent, but station was sampled. B1ank = station was not sampled```									

Table 10-4. Fish Species Collected by the Indian Point Ecological Survey, January - June 1970 *

Acipenseridae-sturgeons		Gadidae-codfishes and hakes	
Shortnose sturgeon	Aciperser brevirostrum	Atlantic tomeod	Microgadus tomeod *
Atlantic sturgeon	Acipenser oxyrhynchus	Squirrel hake .	Urophycis chuss
Clupeidae-herrings		Gasterosteidae-sticklebacks	
Hlueback herring	Alosa aestivalis*	Threespine stickleback	Gasterosteus aculeatus
Alewife	Alosa pseudoharengus*	Fourspine stickleback	Apeltes quadracus
American shad	Alosa sapidissima		
		Serranidae-sea basses	
Engraulidae-anchovies		Write perch	Norone americana*
Bay anchovy	Anchoa mitchilli *	Striped bass	Morone saxatilis*
Salmonidae-tr	tefishes, and graylings	Centrarchidae-sunfishes	
Brown trout	Salmo trutta	Redbreast sunfish	Lepomis auritus
		Pumpkinseed	Lepomis gibbosus
Osmeridae-smelts		Bluegill	Lepomis macrochirus
Rainbow smelt	$\underline{\text { Osmerus }}$ eperianus $^{*}(=$ mordax $)$	Largemouth bass	Micropterus salmoides
		Black crappie	iomoxis nigromaculatus
Cyprinidae-minnows and carps			
Goldfish	Carassius auratus*	Percidae-perches	
Carp	cyprinus carpio *	Johnny darter	Etheostoma olmstedii (=nigrum)
Golden shiner	Notemigonus ćrysoleucas	Yellow perch	Perca flavescens
Spottail shiner	Notropis hudsonius	Pomatomidae-bluefishes	
Emerald shiner	Notropis ${ }^{\text {atherinoides }}$ **		
	Catostomidae-suckers	Bluefish	Pomatomus saltatrix
White sucker	Catostomus commersoni	Atherinidae-silversides	
	Ictaluridae-freshwater catfishes	Atlantic silverside $\quad$ Menidia menidia	
White catfish	Ictalurus nebulosus	Soleidae-soles	
Brown bullhead			
Anguillidae-freshwater eels			
American eel	Anguilla ${ }^{\text {rostrata }}{ }^{*}$		
Cyprinodontidae-killifishes		Names of fishes according to "A List of Cormon and Scientific Names of Fishes from the United states and Canada", 1960 , Special pub. No. ${ }^{2, \text {. }}$ 2nd Edit., American Fisheries Society, except for recent revisions.   * Also collected in plankton samples	
Banded killifish	Fundulus diaphanus		
Mummichog	Fundulus heteroclitus	** Tentative identification	

Table 10-5. Average Number Blueback Herring Caught/7 Minutes (Surface Trawls)


Table 10-6. Average Number Blueback Herring Caught/7 Minutes (Bottom Trawls)

	S T A	M I L E	S I T F	D P T H	Jan.	Feb.	Mar.	$\begin{aligned} & 1970 \\ & \text { Apr. } \end{aligned}$	May	June
$\begin{aligned} & \text { 3 } \\ & \text { - } \\ & \text { 学 } \end{aligned}$	5	36	1	12						3
	3	35	3	10						34
	7	38	3	11				0	0	5
	8	39	1	12			0			0
	9	4.0	3	12			0	0	0	7
	12	44	3	12	0		0	0	0	P
品	4	35	2	34						0
	6	38	2	30				0	0	P
	15	40	1	45			0	0		0
	16	41	3	45			0			0
	11	42	2	50	0	0	0	0	0	0
	10	42	3	45	0	0	0	0	0	0
	13	45	1	50				0	0	0
	14	47	3	55						0
Grand Avg. No. Cght. Pcnt Avg. Cght* Avg. Pcnt occ.*					0	0	0	0	0	4
					0	0	0	0	0	100
					0.	0	0	0	0	22
blank $=$ no samples; $0=$ species absent $\mathrm{P}=$ present, but average less than 1   * See Appendix A for explanation of terms										

Table 10－7．Average Number Blueback Herring Caught／Haul（Seines）

$\begin{gathered} \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	Jan．	Feb．	197 Mar.	Apr ．	May	June
31	35	1			0			0
32	35	3			0			0
38	40	1			0	0	0	1
33	40	3			0	0	0	0
39	41	3			0	0	0	1
35	43	1			0	0	4	P
34	42	3			0	0	1	1
36	44	3				0	0	P
37	47	1						0
Gra	Avg	No．	ght．		0	0	1	P
Pcn	Avg	Cgh			0	0	1.6	0.5
Avg	Pent	Occ			0	0	9	14
blank $=$ no sample， $0=$ species absent $P=$ present，but average less than 1   ＊see Appendix A for explanation of terms								

Table 10－8．Average Number Alewife Caught／7 Minutes（Surface Trawls）

	M	S	D			；			
S	I	I	P						
T	L	T	T						
A	E	E	H	Jan	Feb．	Mar．	Apr．	May	June
5	36	1	12						
3	35	3	10						1
87	38	3	11				P	1	P
边 8	39	1	12						
	40	3	12				P	4	2
鹿 21	42	1	15						P
12	44	3	12				0		P
4	35	2	34						P
6	38	2	30					1	0
15	40	1	45				0	0	3
16	41	3	45				0	2	2
11	42	2	50				0	2	1
$\left\lvert\, \begin{array}{ll} A_{1} & 10 \\ \text { 眷 } 22 \\ 13 \end{array}\right.$	42	3	45				0	8	1
	42	3	45						3
	45	1	50						4
14	47	3	55						
Grand Avg．No．Cght．									
Pent Avg．Cght＊							P	3	1
Avg．Pent Occ．＊							19	82	7
$P=$ present，but average less than 1   ＊See Appendix A for explanation of terms							12	86	48

Table 10-9. Average Number Alewife Caught/7 Minutes (Bottom Trawls)

	S A	M I L E	S I T E	I P T H	Jan.	Feb.	Mar.	197 Apr	May	June
	5	36	1	12						4
	3	35	3	10						4
	7	38	3	1				1	5	9
	8	39	1	12			0			0
	9	40	3	12			0	$p$	1	10
	12	44	3	12	0		0	0	35	1
免	4	35	2	3						0
	6	38	2	30				0	$\Gamma$	P
	15	40	1	4			0	0		0
	16	41	3	4			0			0
	11	42	2	5	0	0	0	,	1.	
	10	42	3	4	0	0	0	1	0	P
	13	45	1	5				0	0	P
	14	47	3	5						0
Grand Avg. No. Cght. Pcnt Ave. Cght* Avg. Pcnt Occ.*						0	0	p	6	2
					0	0	0	0.3	3	0.6
					0	0	0	18	53	36
blank $=$ no samples, $0=$ species absent $\mathrm{P}=$ present, but average less than 1   * See Appendix A for explanation of terms										

Table 10-10. Average Number Alewife Caught/Haul (Seines)

S T A	M I L E	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	Jan.	Feb.	Mar.	, Apr.	May	June
31	35	1			0			0
32	35	3			0			4
38	40	1			0	1	3	1
33	40	3			0	0	2	$p$
39	41	3			0	1	1	1
35	43	1			0	0	1	1
3	42	3			0	0	3	4
36	44	3				0	21	20
3	47	1						0
	Avg	No.	ht.		0	P	5	3
	$\mathrm{Av}_{\mathrm{g}}$	Cgh			0	0.7	9.5	5.4
	Pcn	Occ			0.	9	52	33
blank $=$ no sample, $0=$ species absent $\mathrm{p}=\mathrm{present}$, but average less than 1   * see Appendix A for explanation of terms								

Table 10-11. Average Number Bay Anchovy Caught/7 Minutes (Surface Trawls)


Table 10-12. Average Number Bay Anchovy Caught/7 Minutes (Bottom Trawls)

	$\begin{array}{r} \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \\ \hline \end{array}$	M I L E	S I T E	D P T H	Jan.	Feb.	Mar.	$1970$   Apr.	May	June
	5	36	1	12						0
	3	35	3	10						0
	7	38	3	11				0	5	12
	8	39	1	12			0			0
	9	40	3	12			0	0	0	10
	12	44	3	12	0		0	0	0	P
$\begin{aligned} & \text { 吕 } \\ & \text { 山 } \end{aligned}$	4	35	2	34						0
	6	38	2	30				0	7	1
	15	40	1	45			0	0		0
	16	41	3	45			0			1
		42	2	50	0	0	0	0	0	1
	10	42	3	45	0	0	0	0	1	2
	13	45	1	50				0	0	0
	14	47	3	55						0
Grand Avg. No.Cght. Pent. Avg. Cght* Avg. Pcnt Occ.*					0	0	0	0	2	2
					0	0	0	0	1	0.6
					0	0	0	0	15	14
blank - no samples, $0=$ species absent $p=$ present, but average less than 1   * See Appendix A for explanation of terms										

Table 10-13. Average Number Bay Anchovy Caught/Haul (Seines)


Table 10-14. Average Number Tomcod Caught/7 Minutes (Bottom Trawls)


Table 10-15. Average Number Tomcod Caught/Haul (Seines)

$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} M \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{E} \end{gathered}$	Jan.	Feb.	1970 Mar	Apr.	May	June
31	. 35	1			0			0
32	35	3			0			0
38	40	1			P	0	0	P
33	40	3			0	0	1	4
39	41	3			0	0	0	2
35	43	1			0	0	p	P
34	42	3			P	0	0	P
36	44	3				0	P	0
37	47	1						0
Gra	Avg	No.			P	0	P	1
Pcn	Avg	Cgh			0.5	0	0.4	1.2
$\mathrm{Av}^{\text {g }}$	Pcn	Occ			6	0	14	- 27
blank $=$ no samples, $0=$ species absent $\mathrm{p}=$ present, but average less than 1   * see Appendix A for explanation of terms								

Table 10-16. Average Number White Perch Caught/7 Minutes (Surface Trawls)

		M	S	D						
	S	1	1	P						
	T	L	T	T						
	A	E	E	H	Jan.	Feb.	Mar.	Apr.	May	June
	5	36	1	12						
	3	35	3	10						0
	7	38	3	11				0	0	1
	8	39	1	12						
	9	40	3	12				0	3	4
	21	42	1	15						0
	12	44	3	12				0		0
	4	35	2	34						0
	6	38	2	30					0	P
	15	40	1	45				0	0	0
	16	41	3	45				0	0	0
	11	42	2	50				0	0	0
	10	42	3	45				0	0	0
	22	42	3	45	.					P
	13	45	1	50						0
	14	47	3	55						
Grand Avg. No. Cght.								0	0	P
Pent Avg. Cght*								0	0	1.8
Avg. Pent Occ.*								0	0	14
	blan $\mathbf{P}=$ * Se	no	A	ess	$\begin{aligned} & \text { sent } \\ & 1 \\ & \text { f term } \end{aligned}$					

Table 10-17. Average Number White Perch Caught/7 Minutes (Bottom Trawls)

	$\begin{array}{r} \mathrm{S} \\ \mathrm{~T} \\ \mathrm{~A} \\ \hline \end{array}$	M   I   L   E	S 1 $T$ E	$\begin{gathered} \mathrm{D} \\ \mathrm{P} \\ \mathrm{~T} \\ \mathrm{H} \end{gathered}$	Jan.	Feb.	Mar.	Apr.	May	June
$\begin{aligned} & \frac{3}{O} \\ & \stackrel{3}{3} \\ & \frac{1}{5} \end{aligned}$	5	36	1	12						52
	3	35	3	10						72
	7	38	3	11				167	102	87
	8	39	1	12			80			37
	9	40	3	12	-		1	75	55	39
	12	44	3	12	9		0	25	113	38
㒴	4	35	2	34						5
	6	38	2	30				4	7	11
	15	40	1	45			55	3		17
	16	41	3	45			267			2
	11	42	2.	50	177	25	143	4	49	4
	10	42	3	45	544	14	22	4	10	4
	13	45	1	50				4	15	23
	14	47	3	55						34
Grand Avg. No.Cght. Pcnt Avg.Cght* Avg. Pcnt Occ.*					243	20	81	36	50	30
					63	68	87	58	26	9
					100	100	70	94	100	92
blank = no samples, $0=$ species absent $\mathrm{P}=$ present, but average less than 1   * See Appendix A for explanation of terms										

Table 10-18. Average Number White Perch Caught/Haul (Seines)


Table 10-19. Average Number Striped Bass Caught/7 Minutes (Surface Trawls)


Table 10-20. Average Number Striped Bass Caught/7 Minutes (Bottom Trawls)

blank = no samples, $0=$ species absent
$P=$ present, but average less than 1

* See Appendix $A$ for explanation of terms

Table 10-21. Average Number of Striped Bass Caught/Haul (Seines)

S T A	$\begin{gathered} \mathrm{M} \\ \mathrm{I} \\ \mathrm{~L} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{E} \end{aligned}$	Jan.	Feb.	1970 Mar	Apr .	May	June
31	35	1			0			4
32	35	3			0			4
38	40	1			P	0	6	4
33	40	3			p	0	1	1
39	41	3			P	P	2	1
35	43	1			0	0	0	0
34	42	3			P	0	2	12
36	44	3				0	2	2
37	47	1						0
Gra	Avg	No.	ght.		P	P	2	3
Pcn	Avg	Cgh			1.1	0.1	3.7	4.8
Avg	Pcnt	Occ			10	5	39	58
blank $=$ no samples, $0=$ species absent $\mathrm{P}=$ present, but average less than 1   * see Appendix A for explanation of terms								

Table 10-22. Fish Species Collected in the Fish Trap in the Effluent Canal, February-June, 1970

	Cyprinidae	
Spottail shiner		Notropis hudsonius
	Ictaluridae	
White catfish		Ictalurus catus
	Anguillidae	
American eel		Anguilla rostrata
	Gadidae	
Atlantic tomcod		Microgadus tomcod
	Serranidae	
White perch Striped bass		Morone $\frac{\text { americana }}{\text { Morone }}$ Saxatilis
	Centrarchidae	
Pumpkinseed   Bluegill   Black crappie		Lepomis gibbosus
		Lepomis macrochirus
		Pomoxis nigromaculatus
	Percidae	
Johnny darter Yellow perch		$\frac{\text { Etheostoma }}{\text { Perca }}$ olmstedij ${ }^{\text {flaves }}$

Table 10-23 Total Number of Invertebrate (Non-Plankton) Samples Collected January - June, 1970*

MONTH		GEAR	
	Benthic   Grabs	Thorson   Jars	Succession   Panels
JAN	2	0	7
FEB	9	0	0
MARCH	8	0	11
APRIL	16	7	22
MAY	22	7	22
JUNE	20	7	

* See Table 10-2 for numbers of trawls and seines.

Table 10-24. Species Most Representative of Each Gear Type.

Collecting Gear	Species	Group	Abundance *
Trawls	Gammarus fasciatus	Amphipoda	C
	Neomysis americana	Mysidacea	U
Seines	None		
Succession Panels	Balanus improvisus	Cirripedia Diptera	C
	$\frac{\text { Tendipes }}{\text { Spio setosa }} \frac{\text { tentans }}{}$	Polychaeta	C
Benthic Grab	Cyathura polita	Isopoda	U
Thorson jars	Spio setosa	Polychaeta	C
	Tendipes tentans	Diptera	C

* We do not feel any invertebrates are collected by these gear types in sufficient numbers to be designated abundant.
$A=A b u n d a n t-r e a d i l y$ caught in great numbers
$C=$ Common - readily caught
$\mathrm{U}=$ Uncommon - caught only occasionally and/or not in any numbers

Table 10-25. Invertebrates Collected by Succession Panels; January - June 1970

SPECIES	ABUNDANCE
Crustacea	
Balanus improvisus (barnacle)	C
Tendipes tentans (midge)	C
Hydrozoa	
Campanularia calceolifera (hydroid)	

$A=A b u n d a n t-r e a d i l y ~ c a u g h t, ~ i n ~ g r e a t ~ n u m b e r s ~$
$C=$ Common - readily caught
$U=$ Uncommon - caught only occasionally and/or not in any numbers
$\mathrm{R}=$ Rare

Table 10-26. Species of Invertebrates Collected by Benthic Grabs, January - June 1970


Table 10-27. Species of Invertebrates Collected by Thorson Bottles

January - June 1970

Species	abundance
Polychaeta Spio setosa (tentacle worm) Prionospio sp. (gold crown worm)	$\begin{aligned} & c \\ & u \end{aligned}$
Amphipoda Gammarus fagciatus (amphipod) Leptocheirus pinguis (amphipod) Corophium volutator (amphipod)	C R R
```1sopoda Edutea montosa (isopud) Cyathura polita (stick sowbug)```	$\begin{aligned} & R \\ & R \end{aligned}$
Decapoda Rhithropanopeus harrisii (mud crab)	R
$\begin{gathered} \text { Diptera } \\ \text { Tendipes tentans (midge) } \end{gathered}$	
A = Abundant - readily caught, in great $\mathrm{C}=$ Common - readily caught $u=$ uncommon - caught only occasionally $R=$ Rare	numbers and/or not in any

Table 10-28. Species of Invertebrates

Collected by Trawls and Seines,

 January - June 1970

Tablé 10-29. Succession Panels. Average Number Caught per Panel. All Stations Sampled. January-June, 1970

Table 10-30. Benthic Grabs. Average Number Caught per Sample-All Stations Sampled, January-June, 1970.

Table 10-31. Thorson Bottles - Average Number Caught - All Stations Sampled, April - June 1970

GROUP	$\begin{aligned} & \text { SPP } \\ & \text { CODE } \end{aligned}$	SPECIES	APR	MAY	JUNE
Polychaeta	283	Spio setosa	2	1	1
Polychaeta	284	Prionospio sp.	P	P	0
Amphipoda	363	Gammarus fasciatus	15	6	21
Amphipoda	365	Leptocheirus pinguis	P	0	1
Amphipoda	362	Corophium volutator	0	P	0
Decapoda	467	Rhithropanopeus harrisii	0	P	0
Is opoda	504	Edotea montosa	0	0	P
I sopoda	502	Cyathura polita	P	0	0
Diptera	303	Tendipes tentans larva	2	2	9
Diptera	303	Tendipes tentans pupa	0	0	1

* No samples collected during January - March.
$\mathrm{P}=\mathrm{Present}$ but average less than 1 .

Table 10-32. Species-Average Catch per Tow for Trawls and Seines January, 1970

Table 10-33. Thorson Bottle Sediment Volumes in Milliliters, April - June 1970

$\stackrel{\leftrightarrow}{6}$	$\underset{\mathrm{y}}{\underset{\mathrm{H}}{4}}$	$\stackrel{\text { 岕 }}{\text { ¢ }}$	茍	APRIL	MAY	JUNE
54	38	1	20	208	265	354
55	40	3	14	28	25	5
56	41	2	60	172	81	15
51	42	3	26	268	330	355
53	42	3	14	66	98	120
57	43	3	7	170	132	83
58	45	1	10	252	356	410

Sta. No.
51 Forebay
26^{\prime}
1 Set of panels at 4^{\prime}
1 Set of panels at 22'
1 'fhorson bottle at 22'

Sta. No.
56 Anchor Chain 60^{\prime}

1. Set of panels at 4^{\prime}

1 Set of panels at 56'
1 Thorson bottle at 56'

53 Effluent 14^{\prime}
1 Set of panels at 10^{\prime}
1 'horson bottle at 10^{\prime}

54 Grassy Point 20'
1 Set of panels at 4^{\prime}
1 Set of panels at 16^{\prime}
1 Thorson bottle at 16'
57. Peekskill 7'

1 Set of panels at 4^{\prime}
1 'Thorson bottle at 4'

58 Round Island 10^{\prime}
1 Set of panels at 6^{\prime}
1 Thorson bottle at 6^{\prime}

55 Range Marker
1 Set of panels at 4'
1 Set of panels at 10^{\prime}
1 Thorson bottle at 10^{\prime}

Figure 10-1. Exposure Panels and Thorson Bottles (1970)

Figure 10-2. Indian Point Fish Trap

Figure 10-3. Alewife (S urface Traw/s)

Figure 10-5. American Smelt (Bottom Trawls)

Figure 10-4. Alewife (Bottom Trawls)

Figure 10-6. Spottail Shiner (Beach Seines)

Figure 10-7. American Eel (Bottom Trawls)

Figure 10-8. Atlantic Tomeod (Bottom Trawls)

Figure 10-10. Striped Bass (Bottom Trawls)

Figure 10-11. Striped Bass (Beach Seines)

Figure 10-13. Succession Panels - Total Counts of Balanus improvisus, June 1970

Figure 10-14. Spio setosa (x) and Cyathura polita (0) Collected in Benthic Grabs

11.0 LABORATORY STUDIES

A considerable store of knowledge exists on the effect of heated effluent on the aquatic environment, as evidenced by extensive bibliographies prepared on the subject by Raney and Menzell (1969) and Mihursky and Kennedy (1967).* Few studies, however, deal with behavior of organisms within the actual environment receiving the discharge. Data are specifically lacking on resident and migrating species of the Hudson River. The growing importance placed by the general public on the impact of heated effluents on the environment as well as the concentrated efforts of industry to determine and minimize these effects, lends an increased emphasis to studies of this nature.

The three units at Indian Point will discharge some 2,000, 000 gallons per minute of cooling water into the Hudson with an expected $\Delta \mathrm{T}$ of approximately $17^{\circ} \mathrm{F}$; surface water temperature increases of $1-2^{\bullet} \mathrm{F}$ may be detectable as much as ten miles below the point of discharge (Sorge, 1969 and Quirk, Lawler and Matusky, 1968).**

In consideration of the potential environmental changes associated with the on-line operation of five nuclear units, two experiments were designed which would demonstrate to a degree the effects of heated water on the behavior and viability of selected organisms (Table 11-1).

[^12]Kennedy and Mihursky, 1967. Bibliography on the Effects of Temperature in the Aquatic Environment. U. of Maryland, Natural Resources Institute. 89p. + addendum.

[^13]Quirk, Lawler and Matusky, 1968. Effect of Indian Point Cooling Water Discharge on Hudson River Temperature Distribution. A report to Consolidated Edison Company of New York, Inc. 35p. + appendix.

One experiment, entitled "Thermal Effluent Choice," deals with the behavior of organisms which come in contact with the heated plume. Basically, this experiment was designed to indicate whether an avoidance or attraction reaction takes place, and if this behavior pattern changes when the highest annual plume temperatures are reached during the months of July and August.

The second experiment entitled "Thermal Shock" was designed to determine the effects on viability and behavior of organisms whose size makes them readily susceptible to passage through the intake and condenser system of Unit 1.

All experiments conducted used continuously flowing river and effluent waters piped separately through the non-toxic, plastic pump and piping systems in the dockside research laboratory at Indian Point (Figure 11-1). The use of actual environmental conditions adds authenticity to the results and interpretation becomes more applicable to the "real" environment.

11.1 Thermal Effluent Choice Experiments

11.1.1 Apparatus

Experiments were conducted using two types of choice systems, both constructed by Raytheon personnel at Indian Point. These two systems are similar, the basic difference being one of size.

The larger apparatus, illustrated in Figure 11-2, consists of three twenty-five gallon fiberglass aquaria connected to each other by 6 -inch inside diameter PVC tubing. River water is introduced to one end tank and effluent water into the opposite end tank. Water flow is from the end tanks toward the center tank into which the experimental organisms are introduced. The center tank is provided with draining holes, enabling a positive pressure head to be maintained in both end tanks. This apparatus is used primarily for large fishes which require greater volumes of water.

The second choice system (Figure 11-3) consists of three one-gallon translucent polyethylene containers joined to each other by $17 / 16$-inch inside diameter clear plastic tubing. The hydrodynamics of this system are essentially similar to those described for the larger apparatus. This system is utilized for invertebrates and small fishes which would not require large amounts of water.

Experiments were conducted with both systems simultaneously enabling different species to be utilized under similar water conditions.

Movable partitions were located in each of the receiving tanks of the large choice apparatus to contain experimental organisms within the center tank before each trial commenced. A similar containment of organisms in the smaller choice apparatus was accomplished with a curled sheet of polyethylene which could be slid into place, effectively blocking movement into and out of the center tank.

Flow patterns were tested by introducing nontoxic rose bengal dye at different times into each of the three tanks of both systems. The dye was observed to flow only from the end tanks toward the center tank. Water from either receiving end tank does not flow into an opposite receiving tank. Further observation showed a plume effect to occur in the center tank until a homogeneous mixture resulted. Thus, the end-receiving tanks are totally segregated from each other with water entering and mixing only in the center tank as shown diagrammatically in Figure 11-4.

Since an average maximum $\triangle \mathrm{T}$ of only $9^{\circ} \mathrm{F}$ has been observed during the period Raytheon monitored water parameters for Consolidated Edison, the possibility that sufficient thermal gradients would not exist in the center tank of the choice apparatus was examined. To accomplish this a Leeds and Northrop strip chart recorder was wired to twenty submersible temperature sensing probes; each probe was accurate to within $\pm 0.25^{\circ} \mathrm{F}$. Actual heated effluent was not available during the experimental period. Thus, artificially heated water was used to test thermal patterns. Since a constant temperature could not be maintained artificially for the quantities of water required for normal use time of the choice
apparatus, actual thermal gradients were not plotted though they were observed to exist for short terms, to a lesser or greater extent, depending on depth and amount of heated water available. A cross-section at five depths was monitored within the center tank which contains a water depth of $111 / 2$ inches.

Both choice systems were located on fiberglass coated wooden draining tables. Each was leveled to insure an equal water flow and drainage across the system. Water for each choice apparatus, as well as for all observation and holding tanks, was supplied by plastic coated submersible pumps, located in the forebay and effluent canal of Unit 1. The maximum pumping capacity for each pump at the installed static head, is forty gallons per minute regulated through overflow valves. Piping systems, on/off valves, and tubing to each tank were either of PVC or polyethylene construction.

11.1.2 Procedures

Key species of invertebrates and fishes, listed in Table 11-1, were planned for use during choice experiments. Methods of collection varied with season and availability of organisms. Alternate species were used when present in sufficient numbers or when key species were not available.

Experimental procedures were essentially similar for all experiments completed. Reasons for changes in location of the choice system, frequency of water quality determinations, and time period of each trial, are explained in the section covering results.

Specimens collected in the field were transferred to holding tanks in the laboratory, each supplied with a mixture of river and effluent water. This practice was instituted so that specimens used during experiments would not be subjected to an instantaneous change of water quality which would occur if acclimation took place in either river or effluent water, alone.

Prior to initiating each trial of an experiment, the partitions in the choice apparatus were in a lowered position. Ten healthy specimens of a single species were then transferred
from holding tanks to the center tank of the choice apparatus. Occasionally, multiple species trials were completed to determine whether the presence of a second or third species caused a change in choice behavior. Also accomplished were trials in which twenty or thirty specimens were tested to determine behavior differences with greater concentrations of a single species.

The flow rate was adjusted so that equivalent volumes of river and effluent water entered the system. Either three or four gallons per minute (gpm) were used for the large apparatus and one gpm in the small apparatus. The velocity of water through the connecting tubes of the large choice apparatus was calculated to be 0.034 feet per second (fps) at three gpm and 0.045 fps at four gpm . In the small choice apparatus, a velocity of 0.197 fps was estimated for a flow rate of one gpm.

Temperature, salinity, dissolved oxygen, pH , and chlorinity determinations for each tank were made either electronically or by titration at commencement and completion of each trial. After 20 May , these parameters were measured only once during each trial unless the AES monitor showed a significant change to occur during the course of an experiment. Data were entered on a laboratory trial data sheet illustrated in Figure 11-5.

Between fifteen and twenty minutes elapsed from the time fish were placed into the center tank and the start of a choice trial before partitions were raised and the test specimens allowed a free choice during the trial-without interference from the investigator. Upon completion of the trial period, partitions were replaced. Water turbidity necessitated siphoning most of the water from each tank before results could be observed.

As a control for each trial, a second trial was undertaken with the same specimens replaced to the center tank. However, the water flow was switched so that the tank which received river water during trial \#1 would receive effluent water during trial \#2 and vice versa. This procedure would show whether a tank or water preference was demonstrated. On occasion, trials were conducted with both end tanks receiving only river water to note a difference in choice behavior, if any.

11.1.3 Results-Environmental Parameters

Heated effluent was available only on May 20 when on-line operations resumed for less than 24 hours. All trials completed previous and subsequent to this date were conducted without heated effluent. Data resulting from these latter experiments serve as baseline information of behavior in the "choice" apparatus in relation to an unheated plant discharge. Chemical additives which may be dumped into the effluent canal during off-line operations could create an attraction or avoidance reaction, and if such is the case, the results take on an increased importance.

A total of 122 "Thermal Effluent Choice" experiments were conducted between 6 April and 23 June. The species used and summarized results are tabulated in Table 11-2. Tables listing pertinent data associated with each trial have been compiled separately for a single or multiple species series of trials (Tables 11-3-11-10). Bar graphs summarizing individual trial results, plant status and experimental lighting conditions are shown in Figures 11-6 through 11-11.

With a substantial increase in water clarity during May, laboratory investigations determined that some species may be more light sensitive than others. Since slightly unequal lighting conditions were found to prevail over the large choice apparatus, the situation was corrected by equalizing the lighting as well as by painting each tank opaque and providing each tank with an opaque tank cover. All trials conducted subsequent to 1 June reflect these changes unless otherwise stated.

Four trials were conducted on the day Unit 1 resumed on-line operations (May 20). The effluent temperature for this date steadily increased to a maximum of $84.6^{\circ} \mathrm{F}$, i.e., a $\Delta \mathrm{T}$ of $23^{\circ} \mathrm{F}$ which is approximately $14.0^{\circ} \mathrm{F}$ above the normal $\Delta \mathrm{T}$ of $9^{\circ} \mathrm{F}$. The results of the trials completed in conjunction with such high effluent temperatures are significant. How ever, they should not be interpreted as relating to behavior during normal effluent temperatures.

The original experimental design included the procedure of testing each species monthly during the spring, summer and autumn. This would take into account the natural seasonal rise and fall of river temperature. The choice of experimental specimens depended on their availability, ease of capture, and whether they could be transported to, and maintained in, the laboratory in good condition in sufficient numbers. Gaps existing in data for particular species reflect these factors during the period experiments were conducted.

The temperature, pH , and dissolved oxygen data taken during each date experiments were undertaken, are shown in Figures 11-12 and 11-13. Since the effluent canal area can become somewhat stagnant in the absence of cooling water flow, the status of the cooling water circulators partially explains the varying differences between the river and effluent water characteristics for specific dates; these data are also shown with each figure.

When the plant was off-line, the greatest differential between river and effluent water occurred when both cooling water circulators were off the line, as evidenced for the period 26 April through 17 May. Differentials were lowest when both circulators were in operation (6-16 April; 18-20 May; 9-14 June). When only one circulator was on line, the differential was almost equal to that established when both were operating (17-26 April; 21 May-8 June). In addition to the normal cooling water volume of $300,000 \mathrm{gpm}$ an additional $20,500 \mathrm{gpm}$ is pumped as an auxilary flow. This additional volume passes through the plant regardless of whether none, one or both main circulators are on-line.

Measurement of residual and total chlorine in the effluent coincided with the time sodium hypochlorite compounds were introduced to the cooling water system of Unit 1. On no occasion was a concentration greater than 0.1 ppm indicated during the period experiments were undertaken. These findings were supported by Consolidated Edison chemists who made independent determinations whenever the chlorination process was initiated.

A salinity differential did not exist between the river and effluent canal. The salt content of water in the vicinity of the Indian Point site was relatively low, and rarely reached concentrations of 0.5 percent. With the exception of 20 May when Unit 1 was on the line, only
a slight temperature difference prevailed between the river and effluent water (Figure 11-12). This differential fluctuated from a low mass of less than $0.1^{\circ} \mathrm{F}$ to a rare high of approximately $2.5^{\circ} \mathrm{F}$. It is significant to note that at no time did the river water temperature exceed the temperature of the effluent water by more than $0.1^{\circ} \mathrm{F}$ while experiments were conducted. Thus during experiments the effluent water always offered a warmer environment (except on 22 May 1970, when the temperatures were equal) which could cause activity depending upon the thermal sensitivity and specific preferences of a particular species. This choice was available through the spring water temperature increase from approximately $40.0^{\circ} \mathrm{F}$ on 6 April to $73.0^{\circ} \mathrm{F}$ on 23 June.

The dissolved oxygen and pH showed considerable fluctuations compared to the relatively stable temperatures (Figures 11-12 and 11-13): Higher values were found in the effluent water during some days while in the river water during others. Fluctuations in dissolved oxygen concentrations depended on weather conditions, air temperature, tide, and if the cooling water circulators were operating. However, fluctuations in pH occurred primarily in the effluent canal and may have been related to the plant's regeneration of the water purfication resin bed which is periodically recharged with caustic soda and sulfuric acid. The residue of this process is discharged into the effluent canal, occasionally without full neutralization. This was particularly true for 19 May, although stabilization for pH was indicated during the latter part of May and most of June.

11.1.4 Results - Species Preference Data

An examination of the combined results for all species (Table 11-2) indicated that only the Atlantic tomcod showed a definite choice of river water (slightly cooler) opposed to effluent water. This was true for 13 of the 17 trials conducted with this species (Figure 11-6 and Table 11-3). In those trials in which the effluent water was chosen, the numbers of tomcod involved were small. This behavior pattern is in agreement with Bigelow and Schroeder (1953)* who state in reference to tomcod, "South of Cape Cod, most of them move out from the shore into slightly deeper (hence cooler) water in spring, coming in again in autumn, to winter in estuaries. "
${ }_{\text {Fishes of }}$ the Gulf of Maine. Bul. No. 74. U.S. F. and W. S., Washington. 1953.

Of the remaining 6 species for which sufficient data are available (striped bass, spottail shiner, white perch, banded killifish, threespine stickleback and Johnny darter) no consistent pattern of behavior was apparent (Tables 11-4 through 11-9). A general increase in activity was noted for white perch and banded killifish with increasing seasonal temperatures (Figures 11-7 and 11-8, Tables 11-4 and 11-5). This interpretation is based upon the greater number of specimens which moved from the center tank during the latter periods when experiments were conducted. The increased movement and preferred choice of effluent water by banded killifish on 20 May (Figure 11-8) is significant since Unit 1 was on-line. Relatively little movement of this species was indicated prior to this date.

Striped bass, spottail shiner and threespine stickleback did not indicate a change in activity in conjunction with rising river temperatures. With the exception of few trials these species were moderately active throughout the entire experimental period (Figures 11-9, 11-10 and 11-11, Tables 11-6, 11-7 and 11-8).

During the latter part of May, three experiments were conducted on the spottail shiner using only river water through the choice system. The results indicated that lighting over the tanks may influence the movement of this species. Of the 30 specimens used during the 3 trials, 9 chose tank " C " (the darker tank) while only 1 chose tank " A " (the better lighted tank). Since no other known variable was introduced at this time, the results appear significant (Table 11-7). For this reason the lighting was equalized for all subsequent trials with all species.

Trials conducted with two and three species simultaneously did not show a significant difference in behavior from trials in which a single species was tested. Apparently, the presence of more than one species did not change the behavior pattern noticed when a species was tested alone (Table 11-10).

Trials were completed on two additional species, not listed above. Two trials each were completed for the hogchoker and the amphipod, Gammarus fasciatus. Of the 20 specimens used during the hogchoker trials, only 2 moved from the center tank, both preferring the effluent water. Additional data are needed before conclusions can be drawn.

The two trials undertaken with amphipods created unfores een problems. Of 28 specimens utilized during the trials, 13 escaped through the overflow of the center tank. In addition, the date of each trial coincided with mating activity of Gammarus; this resulted in immediate pairing as soon as the specimens were placed in the choice apparatus. The specimens which did not escape did not move from the center tank.

Considering all species and all trials completed, one general conclusion is evident. With the exception of tomcod and banded killifish, the overwhelming majority of specimens used during the experimental period failed to indicate a preference for one water source over another (Table 11-2). Since the choice apparatus was shown to be a valid method for determining the preference of selected organisms, the reason that specimens did not "choose" is significant. This behavior is possibly related to the status of Unit 1. Considering that Unit 1 was off-line during all but four trials, no substantial difference existed between the effluent and river water throughout the experimental period. At no time did extreme temperatures or pH values occur. Dissolved oxygen concentrations were always sufficient to sustain normal activity for the species tested. Since most species tolerate a range in physical parameters in an environment, the choices offered during experiments appear insufficient to initiate a response.

11.2 Thermal Shock Experiment

This experiment was designed to simulate temperature effects of passage through the condenser system, effluent canal, and the plume of nuclear Unit 1.

The thermal shock apparatus illustrated in Figure 11-14 was constructed by Raytheon personnel at the Indian Point site. The apparatus consists of a double cradle, each section having a volurne when submerged of about ten gallons, and one gallon when not in an experimental tank. The configuration will make it possible to conduct two experiments simultaneously utilizing the same or different species with a single device.

Construction materials consisted of plexiglass stripping, plastic screening, wood stripping, and metal fasteners coated with fiberglass resin to minimize adverse effects, if any, on the experimental organisms. Accessory equipment includes twenty-five gallon fiberglass aquaria and one gallon glass holding jars for observation.

Key species of juvenile fishes and small invertebrates, as defined by the Technical and Policy Committees, will be tested (Table 11-1). However, additional species will also be utilized if available in sufficient numbers, and in absence of key species in the study area at the time of testing. Multiples of ten specimens of each species will be used to facilitate interpretation and summation of results.

The condensers of unit one contain 31, 508, \#18 gauge copper tubes, each 30 feet long with an approximately $3 / 4$ inch inside diameter. Mean velocity of the intake water approximates one foot per second (fps) which increases to 6 fps during passage through the condenser. Cooling water is than transferred to the effluent canal with a mean velocity of one fps until discharged into the river. Thus, a maximum ΔT is attained in approximately 5 seconds. The water temperature of the thermal plume steadily decreases with increased mixing and distance from the effluent canal site.

Basic experimental procedures consist of placing organisms, acclimated to ambient river temperatures, into the cradle device contained in a twenty-five gallon test tank (Figure $11-15)$. A continuous flow of river water will be maintained in the tank. The cradle is then transferred to a second twenty-five gallon test tank provided with a continuous flow of effluent water. Approximately two gallons of river water will be transferred in the bottom of the cradle so that the specimens will not have to be removed from the water or subjected to an instantaneous heat rise. The cradle will be kept in the effluent test tank for a period of time paralleling that required for the passage of a particle of water through the condenser and effluent canal (about fifteen minutes). After this phase of the experiment, river water will be mixed continuously with effluent water entering the tank so as to simulate formation of the plume and subsequent mixing in the river. This phase will last approximately fifteen minutes before effluent water flow is discontinued simulating assimilation of the effluent discharge by the river. Organisms will be observed to determine mortality, if any, and transferred to the one-gallon glass holding jars for observation for a two-day period.

Dissolved oxygen, pH , salinity, temperature and chlorine parameters will be measured at intervals throughout each experiment and observation period.

Experiments were scheduled to commence on 1 April and continue on a monthly basis until the end of October. In this way, experimental conditions would parallel the seasonal rise of the river temperature to its maximum in July and August and the gradual decrease again in the autumn.

Unit 1 suspended operations on March 20. Full on-line operations are not schedule: th conmence again until mid-September, 1970. Since heated effluent was not available during the period, the experiment was not carried out. All equipment is operational and ready to be utilized once on-line operations are resumed.

Table 11-1. List of Key Species of Fishes and Invertebrates Selected for Laboratory Experiments

FISHES

Common Name

Scientific Name

Striped bass
Morone saxatilis
White perch
Morone americana
Tomcod
Microgadus tomcod
Herrings*
Alosa aestivalis Alosa pseudoharengus

Bay anchovy (if available)
Anchoa mitchilli
American shad
Alosa sapidissima

INVERTEBRATES

Amphipod
Gammarus fasciatus
Shrimp
Crangon septemspinosus

[^14]Table 11-2. Thermal Effluent Choice Experiments, Summary Results

Legend:

```
R. = RIVER, M = MIXED, E = EFFLUENT
* small choice apparatus
```

Table 11-3. Thermal Effluent Choice Experiments, Atlantic Fomeod

$\begin{aligned} & \mathrm{T} \\ & \mathrm{R} \\ & \mathrm{I} \\ & \mathrm{~A} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1970 \\ & \text { DATE } \end{aligned}$		LVED 0 pm) M	EEN E		$\begin{aligned} & \text { RATURE } \\ & \text { C) } \\ & \hline \mathrm{M} \\ & \hline \end{aligned}$	E	R		M	E	SAL. $(0 / 00)$	R	LTS	E	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~A} \\ & \mathrm{~N} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{I} \\ & \mathrm{G} \\ & \mathrm{H} \\ & \mathrm{~T} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{I} \\ & \mathrm{R} \\ & \mathrm{C} \end{aligned}$
1.	7 Apr	10.2	10.5	10.6	4.1	4.3	4.4		. 2	7.3	7.4	0.1	5	4	1	C	on	on
2	8 Apr	9.9	9.4	10.1	4.4	4.6	4.7		. 4	7.4	7.4	0.1	3	5	2	A	on	on
3	8 Apr	11.4	10.7	-10.7	4.1	4.9	5.0		. 2	7.3	7.4	0.1	2	5	3	C	on	on
4	9 Apr	10.1	10.1	9.9	5.1	5.3	5.6		. 1	7.1	7.1	0.1	6	4	0	A	on	on
5	10 Apr	9.5	9.9	9.4	5.4	5.5	5.6		. 4	7.3	7.2	0.1	4	3	3	C	on	on
6	13 Apr	10.0	10.9	10.1	6.2	6.5	6.5		. 2	7.3	7.2	0.1	4	4	2	C	on	on
7	13 Apr	9.6	10.1	10.1	5.9	6.2	6.4		. 3	7.3	7.4	0.1	2	4	4	A	on	on
8	14 Apr	10.5	10.0	10.0	6.4	6.7	6.8		. 3	7.2	7.3	0.1	7	2	1	C	on	on
9	14 Apr	10.2	10.1	10.2	6.0	6.2	6.5		. 5	7.5	7.3	0.1	5	3	2	A	on	on
10	14 Apr	10.6	10.6	10.5	6.0	6.3	6.4		. 3	7.3	7.5	0.1	6	2	2	A	on	on
11	15 Apr	$\because 9.7$	9.2	9.5	6.5	6.8	6.9		. 4	7.2	7.3	0.1	5	3	2	C	on	on
12	15 Apr	10.0	9.9	9.7	6.5	6.8	7.1		7.3	7.4	\% 7.3	0.1	5	2	3	A	on	on
13	15 Apr	9.9	10.0	10.2	6.3	6.7	6.8		7.3	7.5	7.6	0.1	7	3	0	C	on	on
14	18 June	4:6	4.8	5.0	21.8	21.8	21.8		6.8	6.8	6.8	2.2	2	4	4	A	off	off
15	18 June	4.6	5.0	5.2	21.4	21.5	21.5		6.8	6.7	6.5	2.5	2	5	3	C	off	on
16	18 June	4.9	5.0	5.1	21.0	21.2	21.3		6.9	6.8	6.8	2.2	2	7	1	A	on	on
17	18 June	4.9	5.0	5.2	21.1	21.2	21.3		6.8	6.8	6.8	2.3	5	5	0	C		on
status of cooling water circulators																		

Table 11-4. Thermal Effluent Choice Experiments, White Perch

$\mathrm{a}=18$ specimen trial
$R=R i v e r, M=M i x e d, E=E f f l u e n t ; ~ " T a n k "$ designates effluent tank (Figure ll-2); "Circ" designates
status of cooling water circulators

Table 11-5. Thermal Effluent Choice Experiments, Banded Killifish

Plant "on the line"
$R=$ River, $M=M i x e d, f=1 f f l u \in n t ; " T a n k "$ designates effluent tank (Figure $/ 1-2$) ; "Circ" designates tatus of cooling water circulators

Table 11-6. Thermal Effluent Choice Experiments', Striped Bass

[^15]Table 11-7. Thermal Effluent Choice Experiments, Spottail Shiner

Table 11-8. Thermal Effluent Choice Experiments, Threespine Stickleback

NOTE: All trials completed in small choice apparatus
a - 5 specimen trial
 status of cooling water circulators

Table 11-9. Thermal Effluent Choice Experiments, Johnny Darter

*small chaice apparatus used (5.specimens)
a $=9$ specimen trial
$K=$ River; $M=M i x e d, E=E f f 1 u e n t ; " T a n k "$ designates effluent tank (Figure H-2) ; "Circ" designates status of cooling water circulators

Table 11-10. Thermal Effluent Choice Experiments

Figure 11-1. Raytheon On-Site Wet Lab at Indian Point

Figure 11-2. Large Thermal Effluent Choice Apparatus

Figure 11-3. Small Thermal Effluent Choice Apparatus

Figure 11-4. Flow Pattern Within Thermal Effluent Choice Apparatus

Figure 11-5. Indian Point-Hudson River Ecology Study (Data Sheet)

R RIVER
 - EFFLUENT

Figure 11-6. Preference Behavior of Atlantic Tomcod (Choice Experiments)

Figure 11-7. Preference Behavior of White Perch (Choice Experiments)

Figure 11-8. Preference Behavior of Bạded Killifish (Choice Experiments)

RIVER

- EFFLUENT

Figure 11-9. Preference Behavior of Striped Bass (Choice Experiments)

Figure 11-10. Preference Behavior of Spottail Shiner (Choice Experiments)

Figure 11-11. Preference Behavior of Threespine Stickleback (Choice Experiments)

Figure 11-12. Temperature Data (${ }^{\circ} \mathrm{F}$) (Choice Experiments)

Figure 11-13. Dissolved Oxygen (ppm) and pH Data (Choice Experiments)

Figure 11-14. Thermal Shock Apparatus

Figure 11-15. Procedural Sequence (Thermal Shock Experiment)

APPENDIX A

GLOSSARY OF TERMS

- Average Percent Occurrence (Avg. Pcnt.Occ) -(e.g., Tables 10-5 through 10-21)

A grand average of station values of the number of samples in which a species occurred divided by the number of samples taken at a station.

Average Percent Occurrence $=\underline{\sum_{x=1}^{N} \frac{\text { number of occurrences station } x}{\text { number of samples station } x}}$ X100
N
where:
$\mathrm{N}=$ number of stations

- Community Overlap-A measure of the proportional overlap between percent frequency histograms of the species assemblages at two stations.
- 'DPTH"-depth of the water in feet at a station
- Mile-river mile above the Battery (lower Manhattan)

Percent Average Caught (Pent. Avg. Cght)-(e.g., Tables 10-5 through 10-21)

The percent of the total fish population within the study area represented by a species and based on the grand average of station averages of the number caught per unit effort for each species.

Percent Average Caught $=\frac{\text { average number caught per unit effort of a species }}{\sum_{x=1}^{n} \text { average number caught per unit effort of species } x} \times 100$
where:

$$
\mathrm{n}=\text { number of species }
$$

- $\underline{\text { Site }}-1=$ west, $2=$ center, 3 = east side of river

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 1 of 6)

MARCH
Temperature $\left({ }^{\circ} \mathrm{F}\right)$
Salinity (o/oo)

Dissolved
Oxygen $(\mathrm{mg} / 1)$

$S=36.1(3) 34.5-57.0^{*}$
$B=35.9(3) 34.5-37.0^{* *}$
$S=2.4(3) 1.3-3.3$
$B=2.8(3) 1.3-3.6$
$S=10.1(3) 9.1-11.1$
$B=9.8(3) 9.5-10.0$
$36.0(2) 35.1-37.0$
$36.9(2) 36.3-37.6$
$2.0(2) 1.8-2.1$
$6.8(2) 3.5-10.0$
$11.0(2) 10.6-11.5$
$9.7(2) 9.0-10.3$
$35.6(3) 34.9-36.1$
$36.1(3) 35.7-36.5$
$2.1(3) 1.7-2.6$
$5.0(3) 2.6-9.8$
$10.8(3) 10.7-10.8$
$10.0(3) 8.6-10.9$

APRLL

Temperature ($\left.{ }^{\mathrm{O}} \mathrm{F}\right)$	$\mathrm{S}=42.7(7) 38.1-49.5$
	$\mathrm{~B}=42.3(7) 38.1-48.9$
Salinity (o/oo)	$\mathrm{S}=0.5(5) 0.1-1.4$
	$\mathrm{~B}=0.4(6) 0.0-1.4$
Dissolved	$\mathrm{S}=9.7(7) 8.9-10.6$
Oxygen $(\mathrm{mg} / 1)$	$\mathrm{B}=9.9(7.8 .9-11.1$

$$
\begin{aligned}
& 43.0(6) 37.4-50.5 \\
& 42.5(6) 37.6-48.7 \\
& 0.2(6) 0.0-0.8 \\
& 0.6(5) 0.1-2.1 \\
& 9.6(6) 7.9-10.3 \\
& 9.5(6) 7.8-10.3
\end{aligned}
$$

$$
\begin{aligned}
& 43.3(7) 37.9-52.2 \\
& 42.5(7) 37.8-48.7 \\
& 0.2(7) 0.0-0.8 \\
& 0.3(5) 0.1-1.0 \\
& 10.0(7) 8.5-10.7 \\
& 10.3(7) 8.9-10.7
\end{aligned}
$$

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 2 of 6)

MAY

Temperature (${ }^{(}{ }^{\text {F }}$)	$\begin{aligned} & \mathrm{S}=56.5(6) 52.0-60.4 \\ & \mathrm{~B}=56.0(6) 52.0-60.8 \end{aligned}$
Salinity (0/oo)	$\mathrm{S}=2.0(4) 0.2-3.5$
	$\mathrm{B}=1.5(5) 0.1-3.0$
Dissolved	$\mathrm{S}=7.6$ (6) 6.4-9.0
Oxygen(mg/1)	$\mathrm{B}=7.5$ (6) 6.5 -8.6

$57.3(8) 51.8-63.5$	$56.7(8) 53.4-61.0$
$56.1(8) 52.2-60.8$	$55.9(8) 52.2-61.0$
$1.5(7) 0.1-2.5$	$1.0(8) 0.0-2.3$
$3.0(7) 0.2-6.4$	$2.1(6) 0.1-4.1$
$7.4(8) 6.3-8.9$	$7.5(8) 6.3-8.6$
$7.2(8) 6.2-8.7$	$7.4(8) 6.2-9.0$

JUNE

Temperature (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & S=68.9(7) 66.4-72.9 \\ & B=68.6(7) 66.2-72.3 \end{aligned}$
Salinity (0/00)	$\mathrm{S}=1.6(7) 0.1-2.8$
	$\mathrm{B}=1.9(7) 0.1-2.8$
Dissolved	$\mathrm{S}=6.0(7) 5.2-6.5$
Oxygen(mg/1)	$\mathrm{B}=6.3(7) 5.1-8.2$

$69.1(8) 65.9-71.8$	$68.6(8) 66.1-71.5$
$68.2(8) 65.4-70.7$	$68.5(8) 66.1-71.2$
$1.5(8) n .1-2.7$	
$2.7(8) 0.1-6.8$	$1.4(8) 0.1-2.8$
$6.2(8) 5.6-6.9$	
$5.6(8) 3.9-6.7$	$5.9(8) 5.1-3.9$

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 3 of 6)

MARCH

Temperature (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & \mathrm{S}=35.8(3) 34.7-36.7 \\ & \mathrm{~B}=35.4(3) 34.0-36.1 \end{aligned}$	$\begin{aligned} & 34.9(5) 33.4-36.5 \\ & 34.6(5) 33.4-36.0 \end{aligned}$	$\begin{aligned} & 35.1 \text { (4) } 34.0-36.7 \\ & 35.1 \text { (4) } 34.0-36.1 \end{aligned}$	$\begin{aligned} & 35.0 \text { (} 4 \text {) } 34.0-36.5 \\ & 35.2 \text { (4) } 34.0-36.0 \end{aligned}$
Salinity (o/11)	$\mathrm{S}=2.6$ (3)1.0-3.9	1.4(5)0.3-2.2	1.4(4)0.2-2.9	1.2(4)0.4-2.4
	$\mathrm{B}=3.0$ (3)1.2-5.1	2.3(5)0.4-3.6	2.4(4)0.2-4.8	1.3(4)0.4-3.0
$\begin{aligned} & \text { Dissolved } \\ & \text { Oxygen }(\mathrm{mg} / \mathrm{l}) \end{aligned}$	$S=10.6$ (3) 10.3-11.0	10.9(5)9.9-13.0	10.4(4)10.0-11.4	8.5(4)9.9-11.2
	$\mathrm{B}=10.3$ (3) 9.7-11.0	10.5(5)9.1-11.3	10.1(4)?.4-11.2	$9.9(4) 9.8-11.5$
	APRIL			
Temperature (${ }^{\circ} \mathrm{F}$)	$\mathrm{S}=42.4(8) 3.7 .0-50.5$	41.8(8)37.2-49.1	42.4.9)37.0-50.0	42.2(8) 37.9-49.3
	$\mathrm{B}=41.9$ (8)37.0-49.1	41.4 (8)37.0-48.7	42.0(9)36.9-49.3	42.0(8) 37.8-48.9
Salinity (o/no)	$\mathrm{S}=0.2(7) 0.1-0.4$	$0.2(6) 0.0-0.3$	0.2(9)0.1-0.8	$0.2(6) 0.1-0.5$
	$\mathrm{B}=0.3(7) 0.1-0.7$	0.4(6)0.0-1.8	0.4(9)0.1-0.8	0.3(8)0.0-0.8
Dissolved	$S=10.0(8) 8.4-11.2$	9.9(8) 8.8-10.6	9.9(9)8.8-10.9	10.3(8) 8.6-11.4
Oxygen(mg/1)	$\mathrm{B}=10.0(8) 8.8-11.4$	9.6(8)8.2-11.0	9.7(9)8.8-11.0	10.0(8)8.5-11.4

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 4 of 6)
Station 21
Station 11
Station 10
Station
22

MAY				
Temperature (${ }^{\circ} \mathrm{F}$)	$\mathrm{S}=57.5$ (9) 52.2-62.2	57:1 (8) 52.0-62.6	56.2(9) 52.2-61.3.	$56.3(9) 52.2-61.0$
	$\mathrm{B}=56.3(9) 52.0-61.0$	55.8(8)52.0-61.0	55.7(9)52.0-61.5	$56.1(9) 52.2-61.2$
Salinity (0/00)	$\begin{aligned} & S=1.2(8) 0.1-2.2 \\ & B=1.4(8) 0.1-3.2 \end{aligned}$	$\begin{aligned} & 1.0(8) 0.0-2.1 \\ & 1.7(8) 0.0-5.5 \end{aligned}$	$\begin{aligned} & n .9(8) 0.1-2 . n \\ & 1.5(8) 0.2-5.0 \end{aligned}$	$\begin{aligned} & 1.2(7) 0.2-2.0 \\ & 1.4(8) 0.0-4.9 \end{aligned}$
$\begin{aligned} & \text { Dissolved } \\ & \text { Oxygen }(\mathrm{mg} / 1) \end{aligned}$	$\begin{aligned} & S=7.5(9) 6.1-9.0 \\ & B=7.4(9) 5.8-8.8 \end{aligned}$	$\begin{aligned} & 7.6(8) 6.5-8.8 \\ & 7.4(8) 6.2-8.8 \end{aligned}$	$\begin{aligned} & 7.4(8) 6.3-8.8 \\ & 7.6(9) 6.0-8.7 \end{aligned}$	$\begin{aligned} & 7.5(9) 5.8-8.8 \\ & 7.5(9) 6.1-8.7 \end{aligned}$
		JUNE		
Temperature (${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & S=68.4(8) 64.7-71.2 \\ & B=68.1(8) 64: 6-71.1 \end{aligned}$	$\begin{aligned} & 69.1(8) 65.7-71.8 \\ & 68.3(8) 64.0-71.0 \end{aligned}$	$\begin{aligned} & 68.8(10) 66.9-71.2 \\ & 68.1(10) 64.9-70.9 \end{aligned}$	$\begin{aligned} & 68.6(10) 65.5-70.9 \\ & 68.2(10) 64.6-70.7 \end{aligned}$
Salinity (o/oo)	$\begin{aligned} & S=1.2(8) 0.0-2.5 \\ & B=1.3(8) 0.1-2.8 \end{aligned}$	$\begin{aligned} & 1.3(8) 0.1-2.4 \\ & 1.8(8) 0.1-4.5 \end{aligned}$	$\begin{aligned} & 1.1(9) 0.4-2.9 \\ & 1.8(9) 0.5-4.7 \end{aligned}$	$\begin{aligned} & 1.0(10) 0.0-2.8 \\ & 1.6(9) 0.4-4.5 \end{aligned}$
$\begin{aligned} & \text { Dissolved } \\ & \text { Oxygen }(\mathrm{mg} / 1) \end{aligned}$	$\begin{aligned} & S=5.7(8) 5.1-6.4 \\ & B=5.8(8) 5.2-6.3 \end{aligned}$	$\begin{aligned} & 6.1(8) 5.2-6.8 \\ & 5.7(8) 4.6-6.6 \end{aligned}$	$\begin{aligned} & 5.9(10) 5.3-6.6 \\ & 5.5(10) 4.5-6.6 \end{aligned}$	$\begin{aligned} & 5.7(10) 5.1-6.3 \\ & 5.8(9) 4.7-6.6 \end{aligned}$

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 6 of 6)

Station 13

Station 23
Station 12

MAY

Temperature $\left({ }^{\mathrm{O}} \mathrm{F}\right)$	\cdots
	$\mathrm{S}=56.3(6) 52.0-61.3$
$\mathrm{~B}=55.9(6) 52.0-61.5$	
Salinity (o/oo)	$\mathrm{S}=0.5(4) 0.0-1.2$
	$\mathrm{~B}=1.0(5) 0.0-3.6$
Dissolved	$\mathrm{S}=7.7(6) 6.4-9.0$
Oxygen (mg/1)	$\mathrm{B}=7.4(6) 6.4-8.9$

Temperature $\left({ }^{O} F\right)$	$\mathrm{S}=68.8(8) 65.8-72.0$ $\mathrm{~B}=68.2(8) 65.1-70.9$
Salinity (o/oo)	$\mathrm{S}=0.9(7) 0.1-1.9$ Dissolved $=1.5(7) 0.3-3.7$ Oxygen $(\mathrm{mg} / \mathrm{l})$
	$\mathrm{S}=5.8(8) 5.4-6.4$
$\mathrm{~B}=5.5(8) 4.9-6.2$	

JUNE

$69.1(9) 64.3-72.5$
$68.5(9) 64.6-71.1$
$1.0(8) 0.3-2.3$
$1.6(8) 0.4-4.7$
$5.9(9) 5.2-6.3$
$5.6(9) 4.4-6.3$
68.6(8)65.8-72.0 68.2(8)65.5-71.4
1.0(7)0.3-1.6
1.3(7)0.4-2.8
5.8(8)5.1-6.5
5.8(8)5.1-6.5

Table B-1. In-Situ Temperature, Salinity and Dissolved Oxygen Data (Page 5 of 6)

MARCH

Temperature $\left({ }^{O} \mathrm{~F}\right)$	$\mathrm{S}=35.1(2) 34.5-35.8$ $\mathrm{~B}=35.0(2) 34.2-35.8$
Salinity (o/oo)	$\mathrm{S}=0.7(2) 0.5-1.0$ $\mathrm{~B}=0.9(2) 0.9-0.9$
Dissolved	
Oxygen $(\mathrm{mg} / \mathrm{l})$	$\mathrm{S}=10.6(2) 10.0-11.2$
$\mathrm{~B}=10.4(1) 10.4-10.4$	

$35.3(2) 34.5-36.1$	$35.9(3) 34.5-37.2$
$35.5(2) 34.7-36.3$	$35.6(3) 34.3-37.0$
$1.3(2) 0.9-1.6$	$1.4(3) 0.9-1.9$
$3.6(2) 2.4-4.8$	$1.4(3) 0.9-1.9$
$10.7(2) 10.5-11.0$	$10.5(3) 10.1-11.2$
$10.1(2) 9.9-10.3$	$10.0(3) 9.4-10.9$

APRIL

Temperature $\left({ }^{\circ} \mathrm{F}\right)$	$\mathrm{S}=42.5(7) 37.8-49.8$ $\mathrm{~B}=42.1(7) 37.2-49.1$
Salinity (o/oo)	$\mathrm{S}=0.5(5) 0.2-0.8$ $\mathrm{~B}=0.4(6) 0.0-0.8$
Dissolved Oxygen $(\mathrm{mg} / 1)$	$\mathrm{S}=9.8(7) 8.0-11.2$ $\mathrm{~B}=10.1(7) 8.7-11.5$

$42.4(7) 37.9-49.3$	$42.5(8) 36.7-49.6$
$42.7(6) 37.9-48.4$	$42.2(8) 36.9-48.9$
$0.4(7) 0.1-0.9$	$0.2(8) 0.1-0.7$
$0.3(7) 0.1-0.8$	$0.2(8) 0.1-0.7$
$10.1(6) 8.2-11.1$	$9.8(8) 8.7-11.2$
$9.9(7) 8.2-11.7$	$9.8(8) 7.6-11.3$

APPENDIX C

SONIC TAGGED SHAD

HUDSON RIVER - INDIAN POINT

Figure C-1. Sonic Tagged Shad on April 22, 1970. Tag No. 6

Figure C-2. Sonic Tagged Shad on May 6, 1970 (Tag No 12)

Figure C-3. Sonic Tagged Shad on May 12, 1970. Tag No. 11

Figure C-4. Sonic Tagged Shad on May 13, 1970. Tag No. 14

Figure C-5. Sonic Tagged Shad on May 13, 1970. Tag No. 10

Figure C-6. Sonic Tagged Shad on May 19,1970. Tag No. 7

APPENDIX D-1

EFFLUENT CANAL PLANKTON DATA

The data obtained from the effluent canal (Station 53) are reported separately in view of the physical restrictions and method of sampling required in this area.

Planktonic organisms entering the cooling water intake system of Unit 1 pass through the condensers and effluent canal prior to re-entering the river. Plankton collected from the canal may give an indication of species susceptibility and numbers of individuals involved. This data must be analyzed since entrainment in the cooling system may cause adverse effects on the viability of organisms. Entrained organisms will be subjected to two types of stress: a) mechanical tumbling caused by turbulence through the system, and b) an instantaneous heat rise of approximately $9-12^{\circ} \mathrm{F}$ while passing through the condensers. The problem of entrainment of organisms can be far more serious than entrapment of fishes on power plant intake screens (Nugent, 1970).*

The mean water velocity of the effluent canal is slightly greater than one foot per second (fps) when both cooling water circulators are operating, however, velocities as low as 0.30 fps occur near the bottom. When one circulator is operating, water velocity greatly decreases and when no circulators are operating, the water can become stagnant. Therefore, by utilizing the near-bottom areas, it is quite possible for some species to enter the effluent canal directly from the river while water is being discharged, or through the entire water column when cooling water circulators are off the line. We assume, however, the numbers of organisms capable of direct penetration are considerably fewer than the numbers introduced by cooling water when circulators are in operation. In addition, the future effluent canal configuration involves the jetting of water into the river through ports. The water velocities through the ports will make it virtually impossible for planktonic organisms to enter directly from the river.

[^16]The most numerous organisms were represented by the amphipods, Gammarus fasciatus, Pontocrates norvegicus, Leptocheirus pinguis, and the opossum shrimp, Neomysis americanus. All four species are primarily benthic in habit. The numbers of larval fishes were quite small; Atlantic tomcod being the most numerous. Nine fish species were collected during the 4 -month period. In general the number of species as well as the number of individuals of a given species were greater in night collections (Table D-1). The number of major species collected from the effluent canal does not parallel the number obtained from the remaining study area. Only 3, 5, 7 and 11 species were collected during March, April, May and June, respectively. The remaining 10 stations of the study area provided 8, 7, 10 and 14 species for the same period. The difference may be explained by the greater number of samples obtained from the 10 sampling stations.

Few specimens from the effluent canal were in poor condition or badly mutilated. Two of the 27 plankton samples were collected while Unit 1 was on-line (19 March).

Table D-1. Effluent Canal (Station 53) Numbers of Major Planktonic Species Collected/1000 Cubic Meters

Date	Time	Circ ${ }^{+}$					$\left.\begin{gathered} * \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$		$$		$$				
19 Mar	1604	1		7										52	
19 Mar	1245	1	7											90	
26 Mar	1348	2	6	39										55	
2 Apr	0938	2	22	112										90	
7 Apr	1659	2	114	23											
7 Apr	2217	2	1000	895	53										
9 Apr	1700	2	871	581	65										
13 Apr	1449	2	296	148	74.										
20 Apr	1715	1	215	1015								31		15	
22 Apr	0105	1	2714	6857	1143									179	
27 Apr	1540	0		398	77										
4 May	0930	0													
7 May	0032	0	3214	1286	214		286			143					
11 May	1730	0													
12 May	0305	0	2154	1154	77					154					
18 May	0940	0													
20 May	0155	2	455	455	91										
21 May	1423	1	7	15		97	15								7
25 May	1525	1													
1 June	1322	1	36	12			48								
2 June	2210	1	9815	338	31		15			15			46		
8 June	1510	1					42						42		
15 June	2302	1	4299	2030		119	15	45			15		179		60
16 June	1600	1	111				236	139	14						42
22 June	1541	0					98	33					16		
29 June	1305	0	7												
29 June	2142	0	1311	3016	131	21901							164		

*Blueback herring and alewife combined
$+0=$ both circulators off-line
$1=$ one circulator operating
$2=$ both circulators operating

Table D-2. Community Overlap (\%) of Plankton Stations, March 1970

Bottom Tows

Mid-Depth Tows

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 93 & 05 & & 07 & 66 & 61 & 32 & 0 \\
\hline 0 & 0 & 91 & 75 & 67 & & 78 & 63 & 34 & 0 \\
\hline 0 & 0 & 73 & 69 & 65 & 78 & & 73 & 50 & 0 \\
\hline 0 & 0 & 64 & 75 & 61 & 63 & 73 & & 71 & 0 \\
\hline 0 & 0 & 35 & 47 & 32 & 34 & 50 & 71 & & 0 \\
\hline
\end{array}
$$

Surface Tows

M	${ }^{n}$								F			R:			
1	:	1.		0	9	21			$1:$?2	13	\cdots	12	1	
	u	*		0	0	0		-	-	0	-	0	\because	\checkmark	
ก		\bigcirc		-	0	0			"	\cdots	a	\checkmark	\cdots	\bigcirc	
-	0			${ }^{\text {\% }}$	${ }^{8}$	зб	73		5	92	63	$3 \cdot$	4	"	
0	0	38			33	49	24		${ }^{\text {az }}$	47	75	100	\pm	0	
0	0	${ }^{5}$				72	6.		51	$\stackrel{1}{1}$	${ }^{\circ}$	33	so	0	
0	0	${ }^{88}$		9	72		3		\cdots	9	14	49	92	-	
0	-	73		4	64	74			$1{ }^{1}$	**	*	24	71	\bigcirc	
0	0	57		22	51	63	34			65	- 6	92	63	-	
0	0	92		7	${ }_{81}$	91	69		65		i2	47	97	"	
\bigcirc	${ }^{\circ}$	63		5	58	is	4		\sim	$: 2$		15	20	c	
-	0	30			${ }^{3}$	49	24		${ }^{2}$	$:$	35		+5	\cdots	
-	0	94		5	${ }^{80}$	92	7		53	\because	70	* 5		0	
\bigcirc	\cdots	-		\bigcirc	0	-		-	*	0	-	\cdots	,		

M Monthly Station

SP Stony Point
IP Indian Point
RI
Round Island

M	Monthly Station
SP	Stony Point
IP	Indian Point
RI	Round Is land

Bottom Tows

Mid-Depth Tows

Surface Tows

m	M	SP			IP				RI			$\underline{\square}$
4	6	15	20	9	21	11	10	22	13	23	12	14
	57	3	5	14	6	-	16	-	4	-	25	21
57		15	32	42	17	25	40	30	18	34	51	\cdots
3.	15	-	79	4	9	. 76	63	78	98	7	52	ss
5	32	79		64	©	87	81	91	${ }^{11}$	\cdots	72	76
14	42.	+	54		${ }^{4}$	54	70	${ }^{1}$	47	${ }^{6}$	is	${ }^{2}$
6	17	\%	∞	46		78	4	7	*	78	s	\cdots
-	25	76	87	59	78		\cdots	*	78	\square	n	7
16	40	63	81	70	64	∞		87.	63	∞	n	:
${ }^{\text {® }}$	30	76	91	61	76	95	87		77	ω	78	\pm
4	18	*	31	47	*	${ }^{10}$	as	7		7	4	\cdots
6	34	76	9	67	78	${ }^{87}$	80	\cdots	7		3	7
25	51.	52	72	74	53	72	${ }^{1}$	75	ss	73		73
21	36	63	78	62	6	77	82	$s 0$	65	7	73	

Bottom Tows

Mid-Depth Tows

13	53	62	31	16	12	9	11	10	

Surface Tows

11	M	sp			IP				H1			M
,	\%	15	20	9	21	11	10	22	13	23	12	14
	82	${ }^{8}$	9	20	2	4	5	5	3	2	2	16
${ }^{2}$		9	10	22	4	11	\%	10	6	10	4	34
:	,		75	66	65	79	${ }^{2}$	74	7	${ }^{1}$	71	\because
-	10	75		56	32	13	74	\square	35	∞	\cdots	11
20	22	66	56		${ }^{\circ}$	12	*	-s	4	57	37	3
2	4	as	33	68		n	T	\pm	\pm	01	\cdots	-
-	11	"	73	72	\because		-	*	11	\pm	:	14
5	*	${ }^{3}$	74	68	76	$*$		\cdots	\cdots	-	∞	11
5	10	74	87	${ }_{6}$	59	*	82		${ }^{*}$	77	\pm	12
3	-	7	53	62	os	71	∞	*s		*	13	7
2	10	81	∞	57	${ }_{6}$	\pm	3	77	*		-	12
2	4	${ }^{11}$	O4	57	\cdots	78	03	83	73	-		-
16	34	11	11	21	-	14	12	12	7	13	-	

M	Monthly Station
SP	Stony Point
IP	Indian Point
RI	Round Island

Institute of
 Environmental Medicine

The Consolidated Edison Company of New York

HUDSON RIVER AT INDIAN POINT

Annual Report $4 / 16 / 68$ to $4 / 15 / 69$

Principal Investigator: Gwyneth Parry Howells

New York University Medical Center

HUDSON RIVER AT INDIAN POINT April 1968 - April 1969

Consolidated Edison Company

Contract Period 4/16/68 to 4/15/70
Quarterly Report 1/17/69 to 4/15/69
Annual Report $4 / 16 / 68$ to $4 / 15 / 69$

Principal Investigator: Gwyneth Parry Howells
Co-Investigators: Dr. Theo. J. Kneip, Dale Bath, Professor H.I. Hirshfield and assisted by Elayne Musnick, Sylvia Weaver, Arthur Goldhamer, Tony Hernandez, James Miller and Dorothy Wohlgemuth.

TABLE OF CONTENTS

PAGE

INTRODUCTION 1-2
I. PHYSICAL DATA
I-1 to I-9
II. CHEMICAL DATA II-1 to II-IIIÍI. ZOOPLANKTON COLLECTIONS
III-I to III-38
IV. PHYTOPLANKTON COLLECTIONS IV-1 to IV-27
V. EFFLUENT CANAL STUDYV-1 to V-25VI. FISH SAMPLING PROGRAM
VI-1 to VI-50
VII. RADIONUCLIDE DATAVII-l to VII-40

TABLES

I-1 Channel stations: Physical data, April 1968-April 1969.
I-2 Shore statiohs: Physical data April 1968-April 1969.
II-1 Channel stations: anion concentrations, 1968.
II-2 Channel stations: trace element concentrations, 1968.
II-3 Phosphate concentrations, Loẁer Hudson River, 1968.
II-4 Nitrate concentrations, Lower Hudson River, 1968.
II-5 : Minor constituents of sea water and some fresh waters.
III-1 Dominant organisms in plankton, 1968.
IV-1 Abundance of "phytoplankton at channel stations, March 1968 to April 1969.

IV-2 Plankton abundance, Hudson River and other data.
V-1 Phytoplankton abundance in effluent canal, 1968.
V-2 Comparison of phytoplankton abundance in pier samples and effluent canal samples.
V-3 Comparison of zooplankton abundance in pier samples and effluent canal samples.
V-5 Species of periphyton and protozoa collected on fixed samplers in effluent canal.

VI-1 Tows and fish seined at each station, 1968.
VI-2 Fish, relative abundance at Indian Point, 1968.
VI-3 Fish, relative abundance at all stations 1965 to 1968.
VI-4 Fish, relative abundance at Jones Point, 1965 to 1968.
VII-1 Radionuclides in water, Indian Point, May and August 1968.
VII-2 Radionuclides in mud, Indian Point, April to December,

TABLES (con't)

VII-3 Radionuclides in Hudson River fish, June to October 1968.

VII-4 Radionuclides in 9 species of Hudson River fish, 1968.
VII-5 Radionuclides in Hudson River vegetation, east bank; 1968.

VII-6 Radionuclides in Hudson River vegetation, west bank, 1968.

VII-7 Radionuclides in Hudson River water, south of West Point, summary 1964-1968.

VII-8 Radionuclides in Hudson River water, north of West Point, summary 1965-1967.

VII-9 Radionuclides in Hudson River sediments, south of West Point, summary 1964-1968.

VII-10 Radionuclides in Hudson River sediments, north of West Point, summary data 1965-1967.

VII-ll Radionuclides in Hudson River fish, summary 1964-1968.
VII-12 Radionuclides in Hudson River vegetation, summary 19651968.

VII-13 Relative accumulation of manganese and radiomanganese in sediments and biota.

FIGURES

I-1 Channel stations, surface water temperature, 1968-69...
I-2 Channel stations, surface salinity 1968-69.
I-3 Channel stations, sech1 disc readings 1968-69.
III-1 Microcrustacea in plankton of west channel, seasonal changes in 1968.

III-2 Microcrustacea in plankton of mid channel, seasonal changes in 1968.

III-3 Microcrustacea in plankton of east channel, seasonal changes in 1968.

III-4 Seasonal changes in copepod species, July to December 1968.

III-5 Relative abundance of adult copepods at different channel stations, September and October 1968.

III-6 Abundance of adult copepods at different channel stations, September and October 1968.

IV-1 Comparison of phytoplankton species at shore and channel stations for June and October 1968.

IV-2 Seasonal changes in relative abundance of phytoplankton species at mid channel station, April 1968 to April 1969.
$\mathrm{V}-1$ Plan diagram of reactor effluent canal and sampling sites.

V-2 Abundance of phytoplankton in reactor effluent canal and in river, 1968.

V-3 Relative abundance of species of phytoplankton in reactor effluent canal 1968.

V-4 Schematic comparison of dominant species of fauna and flora of effluent canal and river.

V-5 Diagram of proposed periphyton sampling device for effluent canal.

VII-1 Radionuclides, seasonal changes in pooled mud samples.

FIGURES (con't)

VII-2 Accumulation of radionuclides in Potamogeton spp. during growing season.

VII-3 Radionuclides in pooled vegetation samples, related to distance. from reactor, 1968.

APPENDICES

III-1 Species in zooplankton collections, main channel and shore, monthly composites, 1968.

III-2 Semi-quantitative analysis of zooplankton collections, 1968.

III-3. Quantitative analysis of copepods in zooplankton, July - December 1968.

IV-1 Phytoplankton analysis, channel and shore stations, April 1968 - April. 1969.

V-1 Phytoplankton analysis of samples from reactor discharge canal and Con-Edison Pier, 1968.

VI-1 Fish seined; west bank stations of Hudson River, 'June - August 1968.

VI-2 Fish seined at Indian Point, east and west stations, March - December 1968.

VII-1 Radionuclides in individual samples of water, mud, fish and vegetation, 1968.

INTRODUCTION

Sampling at Indian Point was begun in March 1968 and continued throughout the remaining months of the year. Collections at main channel and shore stations were monthly during the whole period, with two weekly collections during the summer months; June to September.

During the first quarter of 1969 , sampling at Indian Point has been restricted by weather conditions. In January and February, monthly sampling of the river was only possible from the northern end of the pier at Consolidated Edison's plant at Indian Point. Some sampling of the discharge canal was possible in January but subsequently plant alterations interrupted our sampling program in the canal.

In March, l969, Dr. N. Della Croce from the University of Genova, Italy, visited our laboratory to give advice on methods of collection of zooplankton and interpretation of plankton data. Dr. Della Croce is an internationally known specialist in the field of planktonic microcrustacea, and has a wide experience of both marine and freshwater aquatic environments in Europe, Africa, India and North America.

Data for the quarterly period are incorporated into
the annual survey which follows. The sections include I. physical data (temperature, salinity, turbidity); II. chemical data (nutrients and trace elements); III. zooplankton data; IV phytoplankton data; V studies on discharge canal; VI. the shore-seining program for fish; VII radionuclide studies, including a summary account of data for earlier years to 1964.

The very recent acquisition of a Zeiss photomicroscope will greatiy assist in the task of identifying small plankton organisms, especially the protozoans and phytoplankton. In addition, the automatic photographing attachment should allow permanent records to be made of characteristic species of the plankton, and perhaps of plankton communities typical of each month at Indian Point. Our grateful thanks are due to Consolidated Edison for their generous gift.

I. PHYSICAL DATA

Measurements of temperature, salinity and turbidity (clarity) for three, mid-channel stations at Indian Point are summarized in Table I-1, and Figures I-1 to I-3. Similar data for east and west shore stations are listed in Table $\mathrm{I}-2$.

Temperature range recorded through the year was from 1. $1^{\circ} \mathrm{C}$ in January and March to $27.4^{\circ} \mathrm{C}$ in mid-August. During January and February much of the river was frozen, and temperatures other than at the Consolidated Edison dock must have been zero or close to freezing. Little difference in temperature was seen between shore stations and channel stations, between east, mid-channel and west-channel stations, or between surface and bottom temperatures. The maximum difference between the channel stations was $1.5^{\circ} \mathrm{C}$ (East > West) in mid-June, but the east channel station was not consistently higher than the other two, and the west channel station was the hottest of the three on four occasions. The bottom water across the river was, in general, cooler than surface water; the maximum difference observed was $1.8^{\circ} \mathrm{C}$ at the east channel station in mid-June.

Salinity through the 12 -month period varied from $0.10^{\circ} / 00$ to $5.5^{\circ} \%$, with maxima appearing in September and early March. Little difference was observed between east, mid- and west-channel stations (maximum $0.6^{0} \% 0^{\circ}$,

Sampling Date	Sampling Station (Depth, ft)	Temperature ${ }^{\circ} \mathrm{C}$ Top Bottom		$\begin{aligned} & \text { Salin } \\ & \text { Top } \end{aligned}$	$\begin{aligned} & \text { Y/oo } \\ & \text { Bottom } \\ & \hline \end{aligned}$	Clarity (ft)
July 30	East (27)	26.2	26.0	1.60	1.70	3.0
	Mid (50)	26.7	26.2	1. 40	- 1.80	3.5
	West (27)	26.0	25.8	1. 70	1.90	4.0
Aug 14	East (12)	26.8	26.7	1. 35	. 1.34	2.5
	Mid (45)	27.4	27.0	1. 20	1. 50	2.5
	West (26)	27.0	26.8	1. 30	1. 75	3.0
Aug 27	East. (13)	27.0	26.6	3.40	3.50	3.0
	Mid (52)	27.4	26.5	3. 40	4.10	3.3
	West (20)	26.9	26.926 .6	3. 50	3.50	3.3
Sept 10	East (30)	25.0	24.6	3.30	3.60	3.0
	Mid (50)	25.8	24.5	3.10	3.70	4.0
	West (18)	24.8	24.5	3.40	- 3.90	4.0
Sept 27	East (50)	24.2	24.0	4.70.	4.60	4.0
	Mid (60)	24.1	24.1	4.70	4.95	4.0
	West (30)	24.3	24.3	5.30	5.45	4.0
Oct 8	East (75)	21. 0	20.5	4.25	5.15	3.0
	Mid (75)	21.4	20.9	4. 32	4.58	3.5
	West (32)	21.3	21.2	4.10	4.18	2.8
Dec 3	East (72)	7.2	7.0	0.30	0.26	1.5
	Mid (52)	6.9	7.0	0.30	0.34	2.0
	West (27)	8.5	7.7	0.30	0.30	1. 75
Jan 14	N. Dock (20)	1.3	1.1	0.50	0.60	-

Sampling Date	Sampling Station (Depth, ft)	$\begin{aligned} & \text { Temperature }{ }^{\circ} \mathrm{C} \\ & \text { Top } \quad \text { Bottom } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Salin } \\ & \text { Top } \\ & \hline \end{aligned}$	100 Bottom	Clarity (ft)
March 13	East (45)	1. 82	1.38	4.32	4.70	2.0
	Mid (55)	1. 52	1. 52	4.45	4.92	2.5
	West (25)	1.15	1.05	4.75	4.95	2.5
April 7	East (52)	6.50	6.20	0.26	0.26	1.0
	Mid (45)	6.22	5. 52	0.20	0.22	1.0
	West (27)	6.15	5.50	0.20	0.20	1. 5

Table I-2:Physical Data: Hudson River at Indian Point

April 1968 - April 1969			
Sampling Date	Sample Site	Temperature ${ }^{\circ} \mathrm{C}$	Clarity (ft)
April 3	East	-	-
	West	6	1.2
May 15	East	16	1. 5
	West	16	2.5
June 7	East	2.0	1.0
	West	20	2.5
July 3	East	22	2.0
	West	22.	2.0
Aug 13	East	27	1. 8
	West	26.5	3.5
Sept 12	East	24.0	1. 0
	West	25.0	4.5
Oct 14	East	20	2.0
	West	20	3.0
Dec 3	East	8.0	1. 75
	West	7.5	2.5
April 15	East	10.0	1.0
	West	10.5	1. 5

west $>$ mid and east, September) even though sampling was not related to tidal phase. In general, bottom water was slightly more saline than surface water, but this situation was sometimes reversed. The maximum difference between surface and bottom water was 0.7% (mid-channel) at the end of August.

Secchi disc readings to indiciate water clarity showed a range in channel stations from 1 foot to 4 feet during the course of the year. The water was most turbid in the spring, and to a lesser extent in the late fall, coinciding with periods of maximum surface run-off. Shore stations in general were less clear than channel stations, but with a range similar to channel stations, 1 to 4.5 feet. West shore station readings indicated greater clarity on most occasions, but the mid-channel was the clearest of the channel stations.

FigureI-1: Surface Temperature, Hudson River at Indian Point 1968-69 (Mean of east, mid-channel and west station).

Figure $I-2$: Salinity at Surface, Hudson River at Indian Point 1968-69 (Mean of east mid-channel and west station).

Figure I-3: Secchi Disc Readings, Huds on River at Indian Point 1968 -69 (Mean of east mid-channel and west stations).

II CHEMICAL DATA

No further samples (beyond December 1968) have been analyzed for nutrient anions or trace elements in this period, although sampiing was resumed in March 1969. For the completeness of this report the data for 1968 are given in Tables II-1 and II-2, although this data has been reported previously.

The nutrient concenträtions in the river water through 1968 indicate levels comparable with some other polluted waters. Phosphate ranged from non-detectable (August) to $0.74 \mathrm{mg} \mathrm{PO} 4 /$ liter (April, West Station). In general the levels during the summer months appeared lower than in the spring and fall. While east, mid and westchannel stations were often quite strikingly different in phosphate concentration, there seemed little consistent pattern. The levels of concentration reported are similar to those.reported (N.Y. State Health Department) for other stations on the river (Table II-3).

Nitrate concentrations seem much more variable in the Indian Point samples during 1968, with values ranging from non-detectable to 64 mg NO 3 /liter, much greater than reported for the New York State Health Department's stations, which were generally about 2.2 mg NO 3 /liter (Table II-4).

TABLE II-1 (con't)

Sampling Date	Station	Chloride	Nitrite \& Nitrate (as Nitrate)	$\stackrel{\mathrm{N}}{\mathrm{mg} / \mathrm{l}}$	Ortho Phosphate (as $\mathrm{PO}_{4}{ }^{\text {" }}$)	Total Phosphate $\left(\text { as } \mathrm{PO}_{4}{ }^{\prime \prime}\right)$	$\underset{\mathrm{mg} / \mathrm{Total}}{ }$	N/P
$9 / 27 / 68$								
	East	2330	N. A.	-	0.22	0.66	0.21	
	Midchanne1	2368	2.3	0.52	0.16	0.39	0.13	4.0
	West	2696	N. A.	-	0.12	0.46	0.15	4.0
12/3/68	East	160	53	12	0.24	0.34	0.11	109
	Midchannel	160	62	14	0.23	0.35	0.11	127
	West	160	64 .	14	0.31	0.38	0.12	116

TABLE II-2: Huds on River at Indian Point, 1968
Trace element concentrations, p.p.b. $=\mu \mathrm{g} / 1$.
(*) $\quad=$ analysis discontinued)

TABLE II-2 (con't)

| | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sampling
 Date | Station | Cadmium | Cobalt | Chromium | Copper | Iron | Manganese | Nickel, Lead | Zinc |

Table II-3
PHOSPHATE (mg PO 4 /liter) IN HUDSON RIVER, 1968

Sampling Station	Range	Mean
Yonkers**	$0.30-7.50$	$(0.54,1$ high value excluded
Indian Point*	N.D.-0.74	0.32
Chelsea**	$0.28-0.54$	0.42
Poughkeepsie**	$0.16-0.55$	0.34
Catskill**	$0.20-0.67$	0.34
Coeymans**	$0.16-0.55$	0.34
Glenmont**	$0.13-0.64$	0.35

*Institute of Environmental Medicine. **New York State Department of Health.

Table II-4

NTRAPE (mg NO /liter) IN HUDSON RIVER, 1968

Sampling Station	Range	Mean
Yonkers**	$0.18-2.66$	1.68
Indian Point*	N.D.-64	20
Chelsea**	$1.15-2.75$	2.35
Poughkeepsie**	$1.59-3.54$	2.35
Catskill**	$1.33-2.35$	1.95
Coeymans**	$1.11-2.57$	1.73
Glenmont**	$0.75-4.83$	1.73

*Institute of Environmental Medicine.
**New York State Department of Health.

The reason for the hundred-fold increase is obscure: it is possible that laboratory contamination affected samples but not standards and this possibility is being checked. On the other hand it is also possible that some local source of nutrient material (as for instance from a yeast production plant fust north of Indian Point) is affecting the water in this region. The levels of nitrate seen are not wholly out of line with those seen in other polluted waters- for instance the River Thames water showed values as high as 28 mg NO 3 /liter (1954) for nitric nitrogen, and 50 mg NO 3 /liter (1954) for total inorganic nitrogen (if all could be expressed as nitrate). Lakes (Lake Mendota $2.2 \mathrm{mg} \mathrm{No} 3 / 1$; Linsley Pond, 2.6 mg $\mathrm{NO}_{3} /$; Esthwaite $1.7 \mathrm{mg} \mathrm{NO}_{3} / 1$) seem to have intermediate values. The decline of nitrate and other forms of nitrogen during the summer, when productivity is high, is well established for a number of water bodies. However, until the nitrate concentrations reported can be confirmed, it is precarious to draw conclusions from this data.

Trace element concentrations in water samples from Indian Point have revealed no great surprises (Table II-2). Comparative data may be derived for fresh water of the Hudson watershed or Poughkeepsie on the one hand, or for diluted sea water on the other (Table II-5). At Indian

TABLE II-5

Selected Minor Constituents in Sea Water ${ }^{1}$, N. American Fresh Water ${ }^{2}$, Hudson Watershed ${ }^{3}$ and Hudson River Water ${ }^{4}$ (concentrations, mg/liter)

Element	Sea Water (Mean)	N. Amer. Water (Median)	Hudson Watershed (Del./Catskill) (Mean).	Hudson River at Indian Pt. (Annual Mean-1968)	Hudson River at Poughkeepsie (Mean for 1962-69)
Lithium	0.2	0.0011			
Boron	4.6	0.01	0.009	,	0.034\%
Fluoride	1.3		0.86		
Magnesium	1350		1.8		
Aluminum	0.01	0.238	0.02		0.032*
Silicon	3		0.46		
Phosphorus	0.07		0.062	0.118	0.023\%
Calcium	400		7.3		
Titanium	0.001	0.0086			
Vanadium	0.002	0			
Chromium	0.00005	0.0058	0.		0.0070
Manganese	0.002	0.02	0.05	0.003	0.0026
Iron	0.01	0.3	0.05	0.012	0.044
Cobalt	0.0005	0		0.0011	
Nickel	0.002	0.01		0.0021	0.0056
Copper	0.003	0.0053	0.07	0.0041	0.025
Zinc	0.01	0	0.01	0.013	0.043
Arsenic	0.003		0.0008		0.032
Selenium	0.004		0.002		
Rubidium	0.12	0.0015			
Strontium	8	0.06		-	
Molybdenum	0.01	0.00035		.	0.009
Silver	0.0003	0.00009	0.0003		0.00064
Cadmium	0.00011		0	0.0011	0.0068
Iodine	0.06		0.003		
Barium	0.03	0.045	0.12		0.026
Lead	0.0001	0.004	$\because \quad 0$	0.019	0.014

References: 1. E. D. Goldberg, 1961
2. W. H. Durum and J. Hafety, 1963
3. New York City, Water Department, 1967
4. Our data for Indian Point,
F.W.P.C.A. data for Poughkeepsie.

* Data from U.S.P.H.S. Oct. 1962 - Sep. 1964 onl

Point, manganese (range <0.5 to 12 , mean $3 \mu \mathrm{~g} /$ liter) is similar to the concentration reported at Poughkeepsie, and higher than in sea water where manganese compounds are less soluble. Iron (range 2.7 to 50 , mean $12 \mu \mathrm{~g} /$ liter) is an element which has been demonstrated to control phytoplankton productivity in some fresh water environments. The concentrations reported for Indian Point samples are lower than those for Poughkeepsie, or watershed water, and may reflect the influence of sea water intrusion, which, as for manganese, would limit its solubility and promote sequestration on to the sediments. Concentrations of cobalt, nickel and copper are all low (means, $1-4 \mu \mathrm{~g} / \mathrm{liter}$) and it is not known how these might be of significance in this environment. The concentration of cadmium (range $\langle 0.6$ to 1.8 , mean $1.1 \mu \mathrm{~g} /$ liter) is higher than that reported for either fresh waters or sea water and confirms earlier reports (by this laboratory) for higher cadmium values in water samples taken near Yonkers. This suggests an industrial source of the element (perhaps intermittent). Similarly lead concentration (range 5 to 63, mean 1.9 ug/liter) is high, as it is in Poughkeepsie samples, and suggests that there may be an industrial source of this element. Both cadmium and lead are toxic to many forms, at varying levels of concentration. While lead
may not be readily available for absorption, cadmium, as an analog of zinc, is accumulated notably by oysters and other lamellibranchs, with the possibility that a foodchain concentrating'effect could be of significance in the environment: The involuntary accumulation of cadmium by lamellibranch filter feeders could lead to the build-up of toxic concentrations in these animals, with subsequent depletion of the species.

III ZOOPLANKTON COLLECTIONS

Zooplankton was sampled at 3 stations (east, midand west channel). at Indian Point on the Hudson River during 1968; from March until December. Samples from east and west shore stations were occasionally studied, as well as at shore stations along an 80 mile extent of the west bank in June - August. The groups most intensively studied and most commonly seen were the protozoa, rotifers, crusta- ceans and molluscs, although representatives of other groups are also recorded. Records of the monthly sampling are given in Appendix III-1 and Appendix III-2.

Protozoa are undoubtedly an important group in the economy of the river since they are often voracious bacterial and algal feeders. However, real difficulties exist in identification of species and quantification of common soft bodied members of the group is as yet almost impossible. Other than numerous Ceratium in May large numbers of any species were not seen until June, when the shelled amoebas Difflugia and Arcella were numerous at some sites, together with ciliates Colpoda, Glaucoma and Vorticella in shore and channel collections. The presence of ciliates in samples persisted through October. In September, however, the diversity and number of ciliate species in shore samples increased, with 13 species of ciliates, flagellates
and amoebas identified in this month.
Rotifers are an abundant component of the zooplankton at Indian Point, and may be important in the ecosystem as croppers of bacteria, protozoa and phytoplankton. At least 12 species have been identịfied at Indian Point in 1968. Most of these species were present in April, 1968 when the rotifer population seems to be at its most abundant and most diverse. In April, 1968, the number of rotifers was approximately 1500 organisms/liter, principally as a bloom of Notholca, with Trichocerca, Philodina and Keratella cochlearis contributing significantly. However, throughout the year Keratella cochlearis and K. quadrata appeared the most consistently present of all species. In the spring of 1969 (March) collections at Indian Point and Cornwall were also dominated by a bloom of Asplanchna, (instead of Notholca) suggesting that the spring abundance of rotifers is characteristic, even though the species composition may not always be identical.

Coelenterates in the samples are generally sporadic, both in species and in occurrence. Hydra oligactis is probably fairly common in appropriate ecological niches in the limnetic zone, and appeared in some numbers in the July sample at Indian Point. In September, 1968, the brackish water hydroid, Cordylophora, was recorded, and a marine
immigrant from coastal waters, the medusa Blackfordia, was quite common. The presence of medusae coincided with the maximum salinity recorded at Indian Point in 1968. In earlier years, other species of hydroid medusae have been seen, notably Nemopsis, and it seems that sporadic immigration into the Hudson estuary may occur at times when they are common in coastal watèrs, and at a time when the saline intrusion into the estuary is maximal.

Unidentified nematode worms are often present in Hudson River samples and may be found sporadically in appreciable numbers. It is not known if this kind of fluctuation is an indication of the degree of organic pollution. They appear more common in samples from the shore stations than in those from the channel stations.

The microcrustaceans are the most consistently predominant group in the zooplankton, and are undoubtediy of great importance in the ecosystem both as grazers of phytoplankton and as food for fish. Figures III-l to III-4 illustrate the seasonal changes observed. The group is characterized by a diversity of copepods: cyclopoid, harpacticoid, and calanoid forms. A number of species appear to be ubiquitous in the river for many miles, with a wide range of salinity, and hence are seen through the year at Indian Point, even though salinity is seasonally variable there. However, there are changes in the relative

Figure III-1 Indian Point 1968 West Side station. Relative abundance of microcrustaceans in

$\begin{array}{ll}\text { Figure III-2 Indian Point, } 1968 \text { Midchannel Station. Relative apundance of microcrustaceans in } \\ & \text { plankton tows. }\end{array}$

\qquad
Dec

Figure III-4 Seasónal changes in copepod species at Indian Point, 1968. Mid channel samples.

\square Eurytemora hirundoides
$\because \quad A \quad A \quad \because \quad \because \quad \because$ tonsa
?Epischura sp.
Ey Cyclops bicuspedatus
WUW Cyclops vernalis
Land Diaptomus sp .
abundance of the different species. Through the greater part of 1968, Eurytemora hirundoides ($=$ E. affinis?) has been the dominant copepod, with Acartia tonsa replacing it as the salinity builds up during the late summer. This latter species was also seen in the early spring, before the main spring run-off from the watershed diluted the water at Indian Point. Another. species, Epischura sp., also appeared as an indicator of rising salinity, only in October. When the salinity declined in December, so that the water at Indian Point was almost "fresh", species more typical of fresh waters appeared, viz. Diaptomus spp. and Cyclops spp. (Appendix III-3, and Figure III-4).

The abundance of copepods was estimated only for the months July to December. The maximum numbers (of adult forms) were seen in October with approximately 300 organisms/cubic meter of river water. Hence the "standing crop" of these intermediates in the food web is much smaller than that of the phytoplankton on which they feed (see Section IV).

Surprising differences in abundance and variety of the collections were seen in the different mid-channel stations. (Figures III-5 and III-6; Appendices III-2 and III-3): The reasons for the paucity of species and numbers of individuals in occasional samples from the west channel

$\begin{aligned} \text { Figure III-5 } & \text { Percentage composition of adult copepods. Salinity (} \\ & \text { *Only one specimen of Acartia found in } 3 i \text { ml sampie. }\end{aligned}$

station is not known. Some attempt to consider tidal and diurnal variations in the zooplankton at this station, and at another, mid-channel, are planned for the summer of 1969.

The Cladocera, specifically Bosmina and Daphnia, are also important microcrustacea at Indian Point, and over a large extent of the river. However, the "standing crop" is consistently considerably less than that for the copepods. Their peak during the year appears in June and July and then they diminished in numbers until they were only recorded as "rare" during August to October while salinity was increasing. They reappeared in reasonable numbers and in good condition in December (Figures III-1 to III-3). The bizarre Leptodora is an occasional ciadoceran species.at Indian Point, but is not seen as commonly here as at Cornwall, further north. Although present in June, it was not seen during the brackish phase of the year at Indian Point, indicating that its southerly extension might be limited by salinity. However, in the summer of 1967 it was recorded at Inwood.

The amphipod, Gammarus (and the rarer Monoculoides) are other important members of the crustaceans which are significant as fish food, but little is known about their seasonal abundance. The gammarids seem most common in the :
summer months, June to August, and disappear in September to reappear in December in small numbers.

Insect larvae, especially Chaoborus, Pentaneura and other chironomid larvae were fairly commonly seen in the summer and autumn months.

The zooplankton analysis shows a succession of dominant groups as the year progressed. Superimposed on this seasonal change is a change in species composition which seems related to the summer salinity change. The principal phyto- and zooplankton organisms seen through the year are summarized in Table III-l.

Tae III-1 Dominant organisms in plankton. Hudson River at Indian Point, 1968.
(Bracketed forms were barely dominant)

Tab $1 \in$ III-1 (con't)

Table III-1 (con't)

Time	West	Mid-	East	Taxanomic Group
December	Melosira	Melosira		
	Amnicola			PHYTOPLANKTON

APPENDIX III-1 Occurrence of species in zooplankton collections.

EVT	$=$ East channel station, vertical tow
WVT	$=$ West channel station, vertical tow
MVT	$=$ Mid-channel station, vertical tow
ESh.	$=$ East shore station
WSh.	$=$ West shore station
E \rightarrow W	$=$ Horizontal tow, from east to west.

MARCH 1968

X = Present
$\mathrm{N}=$ Numerous

EVT
MVT
ESH
Protozoa
Ciliata
Epistylis X
Rotifera
Asplanchnids
Philodina
N
X
Arthropoda
Copepoda
Harpactacoid
Calanoid
Cyclopoid
Nauplii
Metanauplii
Isopoda
Amphipoda
Gammarus fasciatus \mathbf{X}

```
X = Present
```

$\mathrm{N}=$ Numerous
WVT MVT E \rightarrow W

Protozoa

Flagellata

Astasiid
Ciliata
Coleps
Frontonia
Hypotrichs
Vorticellids
Nematoda
Rotifera
Philodina
Keratella
Hydatina
Rotaria
Trichocerca
Tardigrada
Arthropoda
Cladocera
Daphnia
Bosmina
Cyclops
Ostracoda
Copepoda
Nauplii
Calanoid
Cyclopoid
Harpactacoid
Amphipoda
Gammarus fasciatus

X

X

X

X
. . X
N
X
N
N
X
X
N
X
\div

X

X
X
X
X N N N
$\mathrm{X} \quad \mathrm{N}$
$\mathrm{X} \quad \mathrm{X}$
$\mathrm{X} \quad \mathrm{X}$
$\mathrm{N} \quad \mathrm{X}$

X

MVT ESH WSH

X X

Ciliata
Stentor

Rotifera
Keratella quadrata X X

Crustacea
Bosmina X
Daphnia pulex
Cyclopoid copepod
Nauplii, copepod.
$\begin{array}{ll}\mathrm{X} & \\ \mathrm{X} & \\ \mathrm{X} & \\ \mathrm{X} & \\ & \\ \end{array}$

```
X = Present
N = Numerous
```

Protozoa
Sarcodina
Arcella
Difflugia
Ciliata
Colpidium \mathbf{X}
Colpoda
Stentor $\quad \mathbf{X}$
Tetrahymenia : \mathbf{x}
Vorticella .. $\quad \mathbf{X}$
Nematoda
X
Rotifera
Kellicottia
Keratella cochlearis
Keratella quadrata
Trichocerca
Arthropoda
Cladocera
Bosmina $\mathbf{N} \quad \mathbf{N} \quad \mathbf{N} \cdots \mathbf{N}$
Daphnia . N
Copepoda
Metanauplii . X
Nauplii . . X
Calanoid \mathbf{X}. \mathbf{N}
Harpactacoid X
Amphipoda
Gammarus fasciatus $\quad \mathrm{N}$
Insecta
Chaoborus X

JULY

1968

```
X = Present
N = Numerous
```

EVT WVT MVT E.Sh. W.Sh. $E \rightarrow W$

Protozoa

Sarcodina

Arcella
Difflugia
Ameba proteus
Ciliata
Tetrahymena χ
Colpoda -
Stylonychia χ
Coelenterata
Hydra oligactis $X \quad X$
Platyhelminthes
Rhabdocoel
Rotifera
Brachionus
Kellicottia
Keratella cochlearis
Keratella quadrata
Trichocerca
Gastrotricha
Arthropoda
Cladocera
Leptodora kindti
Bosmina longirostris
Daphnia
Ostracoda
Cypris
copepoda
Nauplius
Calanoid
Cyclopoid
Harpacticoid
X
$\mathrm{X} \quad \mathrm{N}$

Amphipoda
Gammarus fasciatus
X
N
χ
χ

N
X
χ

- \quad X

Protozoa
Flagellata
Bodo
Sarcodina
Arcella
Difflugia
Ciliata
Colpidium
Lionotus
Urostyla
Platyhelminthes
Planaria
Rhabdocoel
Nematoda
Rotifera
Keratella cochlearis
Keratella quadrata
Gastrotricha
Annelida
Oligochaeta
Tubifex
Arthropoda
Cladocera
Bosmina longirostris Daphnia
Malacostraca
Crago
Ostracoda
Eypris
Copepoda
Nauplius
Calanoid
Cyclopoid
Harpactacoid
Amphipoda
Gammarus fasciatus
Insecta
Chaoborus
Mollusca
Gasteropoda
Snail
Pelecypoda
Pisidium
EVT WVT MVT E.SH. W.SH. E \rightarrow W

X χ
$x \quad x$
χ

X
$x \quad x \quad x$

X \quad X \quad X \quad X
N
$x \quad x$

χ				
χ	χ			
χ	χ	χ	χ	

		χ			
		χ			
χ	N	χ	χ	χ	N
χ		N			
N	N	N	χ	χ	N
χ	χ	χ		χ	χ
χ	χ	χ			
		χ			
N		N		χ	χ
χ					

Protozoa
Flagellata

Bodo
Sarcodina
Arcella
Difflugia
Ciliata

- Coleps
colpidium
Euplotes
Frontonia
Lionotus
Oxytricha
Paramecium
Stylonychia
Tetrahymena
Zoothamnium
Coelenterata
Cordylophora
Blackfordia
Platyhelminthes
Rhabdocoel
Nematoda
Rotifera
Brachionus
Trichocerca
Annelida
Arthropoda
Cladocera
Bosmina longirostris
Ephippium
Cirripedia
Barnacle
Malacostraca
Mysis
Copepoda
Nauplius
Calanoid
Cyclopoid
Harpacticoid
Amphipoda
Gammarus fasciatus
Insecta
Chaoborus
Insect larva
Mollusca
Gasteropoda
Snail
Mya
Clam larvae
$x \quad x \quad x$
χ
X . X
$\begin{array}{lll}\chi & \chi \quad x\end{array}$
χ
χ
χ
N.
χ
x
$\chi \quad \chi \quad \chi$
χ
χ
χ
. x

χ	χ	χ
χ		χ
χ	χ	χ

χ
χ
χ
χ
χ
X
χ
χ
X \quad X
χ
X

χ
χ
χ
χ
x
χ
χ. χ
X \quad x
χ
χ

Protozoa					
Sarcodina					
Arcella	χ	χ			χ
Difflugia	χ	χ	χ		X
Ciliata					
Euplotes $\boldsymbol{\chi}$					
Frontonia : \quad,					
Prorodon discolor χ					
Stylonychia					χ
Nematoda χ ¢					
Rotifera	χ				
Gastrotricha	X	χ	χ		
Annelida				χ	χ
Arthropoda					
Malacostraca					
Crago	χ				
Mysis	χ		χ		
Copepoda					
Nauplius	χ	χ	χ		χ
Calanoid	χ	χ	N		
Cyclopoid	χ		N		
Harpacticoid			N	χ	χ
Amphipoda					
Gammarus fasciatus	χ	χ	χ		χ
Insecta					
Insect larva					N
Zygoptera					χ
Mollusca					
Snail	N				
Clam larvae		χ	χ		

EVT WVT MVT E.SH. W.SH.

Protozoa
Sarcodina $\frac{\text { Actinocoma }}{\text { Difflugia }} \quad \mathrm{X}$
Ciliata
Coleps
X
Rotifera
Keratella cochlearis
Philodina
Arthropoda
Cladocera
Bosmina longirostris X
Copepoda
Nauplius
Calanoid
Harpacticoid
χ

Insecta
Diptera
χ
Mollusca
Gasteropoda Physa

```
Appendix III-2 ... Zooplankton Collections, Hudson River at Indian Point, 1968
    Vertical Tows. Semi quantitative analysis.
    Notes: B = "bloom" , = 400-3000 organisms<liter
    N = numerous = 200-400/liter
    C = common = 50-190/l1ter
    0 = occasional = 10-49/liter :
    R= rare = l-9/liter , , l
```

 Sampling Data Sampling Station

East Side

March 6, 1968	Microarthridion littorale (Con-Ed dodk)	N
	Nauplius Iarvae (copepoda)	
Congeria		

April 3, 1968 Nothing in sample

May 14, 1968
Keratella quadrata
Notholca sp.
Daphnia pulex
Bosmina longirostris
Gammarus fasciatus
Cyclops bicuspidatus

Mid Channel
No sample

Nematoda	0
Kellicottia	R
Notholca	B
Keratella cochlearis	R
Keratella quadrata	R
Annelid larvae	R
Daphnia pulex	R
Bosmina longirostris	R
Nauplius larvae	R
Cyclops bicuspidatus	R

Keratella quadrata R
Bosmina longirostris
R
Gammarus fasciatus
Monoculoides edwardsi $\quad R$
Nauplius larvae
0
Ectinosoma curticorne
Microarthridion littorale 0
Diaptomus sanguineus
Eurytemora hirundoides. R
Cyclops bicuspedatus C
Acartia tonsa R

West Side

No ${ }^{*}$ sample

Nematodes
Notholca sp.
Keratella cochlearis

Notholca
Keratella quadrata
Keratella cochlearis
Monoculoides edwardsi
Nauplius larvae
Ectinosoma curticorne
Microarthridion littora:
Cyclops vernalis
Eurytemora hirundoides
Laophonte sp.

June 5, 1968

July 2, 1968

Sept. 10, 1968

Nauplius larvae (copepoda) Bosmina longirostris Cyclops bicuspidatus

August 14, 1968

Keratella quadrata
Nauplius larvae
Keratella cochlearis
Bosmina longirostris
Nauplius (copepoda)
Eurytemora hirundoides
Cyclops bicuspidatus

Nematoda Nauplius larvae (copepoda)

Ectinosoma curticorne
Canuella elongata
Microarthridion littorale
Eurytemora hirundoides
Eurytemora copepodid V

O Keratella cochlearis
O Keratella quadrata
R Gammarus fasciatus Bosmina longirostris Leptodora kindti
Ectinosoma curticorne Microarthridion littoraleo Eurytemora-hirundoides copepodid V
Eurytemora lacustris
Cyclops bicuspidatus
R Nematoda
O Keratella cochlearis
C Daphnia

- Bosmina longirostris

O Chiridotea caeca Microarthridion IittoraleC Ectinosoma curticorne Cyclops vernalis
Eurytemora hirundoides
Chaborus larvae
R Daphnia pulex
O Nauplius (copepoda)
Ectinosoma curticorne
Microarthridion littoraleo Eurytemora hirundoides N
Cyclops bicuspidatus
Gammarus fasciatus Immature snail

R Nauplius larvae (copepoda:) C Bosmina longirostris R Eurytemora hirundoides Eurytemora copepodid V
$\begin{array}{ll}\text { Filinia sp. } & R \\ \text { Keratella quadrata } & R\end{array}$
Nematoda larvae (copepoda) N
Bosmina longirostris
Eurytemora lacustris
Cyclops bicuspidatus
Hydra oligactis R
Keratella cochlearis R
Gammarus fasciatus R
Microarthridion littorale 0
Cyclops vernalis 0
Eurytemora hirundoides 0
Epischura lacustris R
Diatomus oregonensis R
Chaoborus larvae 0
Daphnia pulex RMicroarthridion littoraleEurytemora hirundoides
Immature snailR

Nauplius larvae (copepoda) O
O Acartia tonsa
eO
R Microarthridion littoraleo R
R Immature snail

[^17]
APPENDIX III-3 Quantitative analysis of Copepods July - December 1968

Few young cyclops and few harpacticoids. Bosmina very numerous.

Most of the Eurytemora with egg-sac.
One specimen belonging to the family Macrothricidae (Cladocera) has been found.

Sample very poor. Few young cyclopoids and few harpacticoids have been found. Many specimens of Eurytemora with egg-sac.

Few specimens belonging to the Sididae family have been found (Diaphanosoma?).

Few naupliae and few young copepodites. Barnacle naupliae have been found.

-
Spionid larvae were present in the sample. A Chironomidae larvae was found in the subsampling.

* per ml of net sample
**per liter of river water

Date: 10/8/1968
Indian Point
Mid Channel

Depth: 75 Feet
Vertical Tow

Adult Copepods in 22.6 ml
Adult Copepods Adult Copepods Percent Eurytemora hirundoides per ml per liter**

Acartia sp.

9111
 $\overline{\sigma^{7}} 119^{230}$

O 125
or 47
4.91
5.26
10.18
5.53
7.61
2.08

우. 3
$\begin{array}{lll} & 0.13 & \\ & 0.00 & \end{array}$
$\begin{array}{lr}0.019 & 0.019 \\ 0.000 & \end{array}$
0 . 0 ㅇ.1 1
$0^{2} \quad 1$
10.04
0.04
$0.006 \quad 0.006$
0.00

406
17.96
0.7
$0.0^{0.7}$
0.2
$0.000 \quad 0.0$
27.3
1.479
$29.3^{56.7}$
30.8
1.106
11.6
42.3
11.6

$2.610 \quad 99.999 .9$

First sample almost without detritus. Barnacle naupliae and spionid larvae were present. Copepod population. looks well established. Almost all copepods with egg-sac.

Date: 12/3/1968	Indian Point			Depth: 52 Feet	
		Mid	Channel	Vertical To	
Adult Copepods in 53.2 ml			Adult Copepods per ml*	Adult Copepods per liter**	Percent
Eurytemora hirundoides		8	0.150 .26	$0.0310 .054$	27.6
	0	6^{14}	$0.11^{-0.26}$	$0.023^{-0.054}$	20.748
Cyclops vernalis	O	3.4	$0.06 \quad 0.07$	$0.013 \quad 0.015$	10.3
	0	$]^{4}$			${ }_{3.4} 12.6$
Cyclops bicuspidatus	9	. 2	$0.04 \quad 0.07$	0.0080 .015	6.912 .6
	8		$0.04-0.07$	0.008	$6.9{ }^{12.6}$
Diaptomus sp.	旱	3	0.11	0.002	10.3
	0^{\prime}	3		0.002	10.3
TOTAL		-28	0.53	$\cdots-0.111$	96.494 .2

Few harpacticoids and cyclopoid eopepods (copepodite stages) were found. Bosmina has been found fer the first time in good shape and the specimens were very large.

In this sample two different species of Daphnia were found.

Indian Point
East Shore - East Side Channel

Depth: 75 Feet
Vertical Tow

Adult Copepods in 46.6 ml
\square
\qquad per m1* per liter**

Barnacle naupliae and spionid larvae were present in the sample

IV PHYTOPLANKTON ANALYSIS

Throughout the year, samples of phytoplankton have been collected by vertical tows at three midchannel stations, by a horizontal tow, across a transect, and by hand-towing at east and west shore stations. For the most part, collectlons were made monthily, except during the summer months June to August when two weekly collections were made. However, because of the laborious work involved in counting and identifying the phytoplankton organisms, only monthly samples have been analyzed.

The method of analysis has been to sample several milliliters of concentrated field sample, and to count the organisms in a Sedgewick-Rafter counter, following the methods recommended by the Freshwater Pollution Control Administration. The organisms have been identified as to genera, and sometimes to species, and the most abundant forms recorded in terms of their relative abundance in the sample. Species appearing as threads or clumps of attached individuals have been recorded as single occurrences, following the procedure of the FWPCA.

The samples from the main channel and those from the shores show qualitative differences. Data are listed in Appendix IV-1. In general the shore collections appear to be more abundant, although it has not been possible to
abtain quantitative estimates for the shore samples. The variety of species in shore samples is quite similar to that of main channel samples, but there appear to be more pollution indicating species in the former collections (Figure IV-1). For instance, the blue green Oscillatoria appears in shore collections in June and September. Anabaena was also present, but in both shore and channel samples.

Considerable differences have been seen between the west side channel collections and other channel samples (Figure IV-I), as for zooplankton samples. The differences are not always consistent, but often the west-side sample is much poorer in both species and abundance. The phytoplankton population through the year appears to be dominated by Melosira (Figure IV-2), usually several species: granulata, ambigua, italica; varians. When salinity begins to increase in the summer, this pattern broke down, overall abundance declined, and a variety of more salt-tolerant forms appeared. The dilution of the estuarine water in November by an early snowfall led to the re-establishment of Melosira dominance, but this gave way again in early spring, before appreciable thawing, to salt-tolerant species. The thaw in late March and April diluted the salinity once more, with the reappearance of Melosira.

FIGURE IV-1 Comparison of relative abundance of species of shore and main channel stations, 1968

Apr. May June July Aug Sept Oct Nov Dec Jan Feb Mar Apr

Figure IV-2 Comparison of relative abundance of species April 1968:- April 1969 Mid-channel samples at Indian Point.

* Sample from pier on east side of channel.

The monthly changes in species and abundance in the collections may be summarized:

April: Navicula (Diatom) was present in all samples, perhaps Fesponsible for the low clarity (1 ft) of the water. There was a greater variety of species on the west side of the Fiver and little difference between the shore and channel collections. The appearance of Asterionella (Pennate Diatom) Is erratic.

May: Samples from the east side now show more variety, with some Ceratium hirundirella (green alga) present. On the west side and mid-channel in contrast, Melosira was cleariy dominant.
June: Anabaena oscillatorioides (filamentous blue green alga) was ubiquitous, with Oscillatoria (blue green alga associated with highly nutrient conditions) appearing on the west shore. July: Samples from all stations are characterized by great variety and abundance. Some benthic species, Navicula (diatom) and Cocconeis (diatom) were present in west shore samples. August: East and west populations differ markedly in both species and abundance, while shore and channel samples are similar for each side, except for benthic species in the shore samples.- The west side collections are dominated by Nitzschia (diatom) and Navicula (diatom) whereas on the east Thallassiothrix (diatom) and a variety of other diatoms are plentiful.

September: East and west side populations are again quite different, although Thallassiothrix (diatom) appears on -both sides. The west side samples contain pollution indicators, Oscillatoria tenuls (blue green) and Melosira borreri (diatom). - On the east side in contrast, Pleurosigma(diatom) and Nitzschia (diatom) are common in the channel, and Biddulphia (diatom) and Coscinodiscus (diatom) on the shore.

October: Samples were similar to those taken in September with east channel and east shore samples similar to each other (except for benthic species), but these were very different from west side and west shore samples.

December: Melosira ambigua became dominant in ail samples for the first time since July. Channel samples were similar to each other, as were shore samples. There is now more variety in shore samples.

January: A limited sample (from the northern end of the pier at Indian Point, east shore) indicates that Melosira remains dominant.

March: Nitzschia was the most predominant diatom species overall, with Melosira occupying a subsidiary place. The species of Nitzschia has changed from N. iridula, to N. paradoxa with some N. sigmoidea. A number of other marine or brackish species were present.

April: Melosira spp. were again dominant in all samples (M. varians, M. granulata, M. ambigua). Ulothrix, Nitzschia and Diatoma were also common.

The "standing crop" of phytoplankton organisms has been calculated for vertical tows in the main channel samples (Table IV-I). The peak of abundance was seen in. June, with a sharp decline in August. A minor peak was seen in December. The pattern of abundance has been compared to changes in salinity and temperature (Figure IV-3), clarity (Figure IV-4) and nutrients (Figure IV-5). There seems to be little correlation between phytoplankton -abundance and salinity or temperature changes during the year. As expected, clarity increased when numbers of phytoplankton organisms decreased, but the correlation is not a close one. A much closer relationship is shown between phytoplankton abundance and nitrogen (but see p.II-8 above), although little relation to phosphate could be seen. It is known from the literature that Melosira spp. are frequently limited by nitrate concentrations rather than other environmental factors.

The abundance of phytoplankton in Hudson River samples from Indian Point is compared with that at a number of other locations in Table IV-2. Although caution must be-exercised in comparing data derived from diverse sources;

Table IV-I
PHYTOPLANKTON, 1968-1969

- (Vertical Tows)

HUDSON RIVER AT INDIAN POINT

Date	$\begin{gathered} \text { Sample } \\ \text { Site } \end{gathered}$	Sample No.	D	N	$\begin{gathered} \mathrm{No} / \mathrm{m}^{3} \\ \text { river water } \end{gathered}$	Mean/m ${ }^{3}$
March 6	N W Pier	16	15	860	623×10^{3}	623×10^{3}
March 19	"Sluiceway"	8		1540		
April 3	W. Ind. Pt.	22	30	6340	2297×103	
April 3	Mid Ind. Pt.	20	52	3760	786×103	1364×10^{3}
April 3	E. Ind. Pt.	27	20	1850	1005×103	
May 14	W. Ind. Pt.	10	30	3580	1297×10^{3}	
May 14	Mid Ind. Pt.	12	67	3540	-574x103	2162×10^{3}
May 14	Mid Ind. Pt.	13	67	3650	592×103	2162×103
May 14	E. Ind. Pt.	9	20	8480	4609×103	
June 6	W. Ind. Pt.	4	23	9400	4443×10^{3}	
June 6	Mid Ind...-Pt.	12	44	7040	1739×103	-2594×103.
June 6	E. Ind. Pt.	3	25	3680	1600×103	
July 2	W. Ind. Prt.	35	30	21020	7616×103	
July 2	Mid Ind. Pt.	33	45	20440	4937×103	5881×10^{3}
July 2	E. Ind. Pt.	36	34	15920	5090×103	
July 10	N W Pier	42	20	5840	3174×10^{3}	
July 10	In gate	43	24	8400	3805×103	2779×10^{3}
July 10	In gate	44	24	3000	1359×103	
Hug 14	W. Ind. Pt.	52	26	500	209×10^{3}	
Aug 14	Mid Ind. Pt.	56	45	740	740×10^{3}	676×10^{3}.
Aug 14	E. Ind. Pt.	53	12	1080	1080×10^{3}	
Aug 30	N W Pler	99	29	1340	502×10^{3}	502×10^{3}
Sept 10	W. Ind. Pt.	106	18	2520	-1521×10^{3}	
Sept 10	Mid Ind. Pt.	108	50	1180	256×10^{3}	7.32×10^{3}
Sept 10	E. Ind. Pt.	103	30	1160	420×10^{3}	
-oct 8	W. Ind. Pt...	113				
Oct 8	Mid Inc. Pt.	114	75	2140	310×103	$293 \times 10^{3 \ldots}$
Oct 8	E. Ind. Pt.	112	75	1860	270×10^{3}	

Figure IV- 3
PHYTOPIANKTON ABUNDANCE: HUDSON RIVER, 1968-1969 CORRELATION WITH TEMPERATURE AND SALINITY

PLANKTON ABUNDANCE; HUDSON RIVER AND OTHER DATA

HUDSON AT INDIAN POINT, 1968
Phytoplankton (Diatoms and Algae) max. $6 \times 10^{6} / \mathrm{m}^{3}$
-Microcrustacea Adults
Zooplankton (TOTAL)
PANAMA (Allen)
Diatoms
$5 \times 10^{8} / \mathrm{m}^{3}$
COLORADO LAKES (Pennak)
Phytoplankton
$3.7 \times 10^{10} / \mathrm{m}^{3}$
LAKE ERIE, 1940-41 (Hutchins on)
Phytoplankton
$1 \times 10^{9} / \mathrm{m}^{3}$
LAKE MICHIGAN, 1938-40 (Hutchins on)
Phytoplankton

1. $5 \times 10^{9} / \mathrm{m}^{3}$

GREAT SOUTH BAY, 1952
Phytoplankton and Protozoa (Lackey) 2. $4 \times 10^{5}-2.2 \times 10^{9} / \mathrm{m}^{3}$

It is clear that phytoplankton abundance at Indian Point is generally about 100 times less than in some other environments. It is not known what factors contribute to this.

Collection to March 3lst 1969
Calculation of number of plankton organisms per unit volume of water.

Volume of cylinder
Radius of net r Depth of net haul h π
$=\pi r^{2} h$
$=0.25$ meters
$=\mathrm{D}$ (feet) $\times 0.3048$ (meters)
$=3.141$

Volume of river water sampled

$$
\begin{aligned}
& =\left(\pi \times(0.25)^{2} \times 0.3048 \times \mathrm{D}\right) \mathrm{m}^{3} \\
& =\left(0.0598 \times \mathrm{m} \mathrm{~m}^{3}\right.
\end{aligned}
$$

Organisms from this volume of water are concentrated into 650 ml .

Number of organisms in limp, N, are counted in SedgewickRafter cell.

Hence total organisms in sample $=N \times 650$ Hence, number in 1 cubic meter $=N \times 650$ D $\times 0.0598$
$=\frac{\mathrm{N}}{\mathrm{D}} \times 10870 / \mathrm{m}^{3}$

After April list 1969
Depth of net hauls routinely rom Hence volume of water sampled $=\left(\mathbb{T} \times(0.25)^{2} \times 10\right) \mathrm{m}^{3}=1.963 \mathrm{~m}^{3}$ Number of organisms in river water are: -

$$
\pi \times N \times \frac{N \times 650}{(0.25) 2} \times 10=N \times 331.13 / \mathrm{m}^{3}
$$

Appendix IV-I HUDSON RIVER AT INDIAN POINT. PHYTOPLANKTON ANALYSIS APRIL 1968

DATE	$\begin{gathered} \text { Sample } \\ \text { Site } \\ \hline \end{gathered}$	Depth (ft)	Total S-R count No. $/ \mathrm{ml}$	No. genera present	Abundant Cenera	\% Ocourrence
3-IV-68	W. Shore	1	12,780	20	Navicula	42
					Melosira	29
					Coscinodiscus	6
					Pleurosigma	4
					Others	19
3-IV-68	E. Shore	1	too silty	12	Navicula	"blooms"
					Coscinodiscus	"common"
					Melosira	"common"
					Asterionelia	"common"
2-IV-68	E. Side	20	1,850	8	Navicula	37
					Coscinodiscus	22
					Melosira	13
					Others	28
2-IV-68	Mid-	52	3,760	20	Melosira	44
					Fragilaria	20
					Asterionella	13
				1	Others	23
2-IV-68	W. Side	30	6,340	33	Melosira	23
					Navicula	13
					Ulothrix	10
					Asterionella	7
					Others	47
2-IV-68	$\underset{\text { (Horizontal) }}{W \longrightarrow E}$	$\begin{aligned} & 39.00 \\ & \text { (transect) } \end{aligned}$		29	i	
			7,850		Melosira	49
					Asterionella	10
					Ulothrix	8
				-	Fragilaria	2
				!	Others	10
					$1: 1$	
		.		:	(i) "	

PHYTOPLANKTON ANALYSIS JULY 1968

Notes: : \quad| 1 |
| :--- |
| \underline{M}. |
| tenuis |
| borrerj |

Note * silty debris. Tug passed by fust before sample taken.

```
PHYTOPLANKTON ANALYSIS JANUARY 1969
```


Notes: 1 N. paradoxa*. N. sigmoidea also present
Other species present: Melosira granulata, Thallassiothrix longissima and T. nitzschiodes* Asterionella japonica*-A. formosa* Dityluis brightwelli*

* Marine or brackish forms

v STUDIES ON THE EFFLUENT CANAL

From July 1968 until January 1969, some limited -r biological sampling häs been made of the water in the - effluent canal.- In most instances, samples were taken at the same time near the "in-gate" or from the northern corner of the pier at the reactor site. On one occasion water coming directly from the condensers was collected inside the plant. Within the effluent canal, samples were taken from several stations, as indicated in Figure V-1.

A quantitative analysis of phytoplankton has been made (Table V-l and Appendix V-l) and the results for the canal compared with those for the river at Indian Point. In general, the relative abundance of species in the canal collections is very similar to that from the main channel stations of the river, although some minor differences may be seen (Figure V-2). There is no indication that blue-green algae or other undesirable forms are more predominant in the canal samples than in the main river. (Contrast the samples from the west shore). Nor is there much indication that the organisms in the samples of the canal as a whole are more abundant than in the main channel samples (Table V-l). A comparison of seasonal changes in abundance for the canal and the river

RIVER

FIGURE V-I SAMPLING SITES ON EFFLUENT CANAL, INDIAN POINT REACTOR

table V-1

- PHYTOPLANKTON, 1968-1969

DISCHARGE CANAL AT CON EDISON, INDIAN POINT

Date	Sample Site	Sample No.	D	N.	$\begin{aligned} & \text { No } / \mathrm{m}^{3} \\ & \text { River Water } \end{aligned}$	Meari/m ${ }^{3}$
				...	- - - -	
July 10	Canal Length	45	120	12620	1143×10^{3}	1143×10^{3}
Aug 30	Canal \#l	98	18	--540	326×10^{3}	
Aug 30	Canal \#3	94	18	720	435×10^{3}	
Aug 30	Canal \#4	96	19	1380	790×10^{3}	484×10^{3}
Aug 30	Canal \#6	97	14	700	544×10^{3}	
Aug 30	Canal \#7	95	12	360	326×10^{3}	
Oct 24	Canal \#1	119	19	910*	260×10^{3}	
Oct 24	Canal \#3	118	21	800*	$\underline{207 \times 10^{3}}$	
Oct 24	Canal \#4	117	22	2020*	329×10^{3}	260×10^{3}
Oct 24	Canal \#6	121	17	990*	316×10^{3}	
Oct 24	Canal \#7	122	17	590*	189×10^{3}	-
Dec 19	Canal \#l	129	20	5500	2989×10^{3}	
Dec 19	Canal \#3	131	20	9120	4957×10^{3}	
Dッ 19	Canal \#4	128	20	8740	4750×10^{3}	3807×10^{3}
Dec 19	Canal \#6	133	25	6340	2757×10^{3}	
Dec 19	Canal \#7	132	17	5600	3581×10^{3}	
Jan 17	Canal \#6	135	17	1420	908×10^{3}	908×10^{3}

D = Depth of sample haul in feet.
$\bar{N}=$ Number of organisms in 1 ml , Sedgwick Rafter count.

* = Several tows made. Number calculated for a cubic meter has been corrected for this.
shows a remarkable similarity (Figure V-3). However, one station (\#4) is consistently more productive than the others. It is thought that the reason for this lies In a complex pattern of circulation in the canal with a contribution from the river coming directly into the discharge canal and mixing with the condensers and that an area of turbulence is created, together with relative net stasis, so that the finely particulate plankton remains suspended in the water.

The findings of a larger "standing crop" in the canal could be interpreted as an increased productivity there. The numbers of phytoplankton in samples from the canal stations pooled are a little higher than in the main -body of the river, for example; $4000 \times 10^{3} / \mathrm{m}^{3}$ compared with $3000 \times 10^{3} / \mathrm{m}^{3}$ in December. However, a part of this difference may lie in the difference in collecting dates, and a part in the non-validity of comparing pooled canal -samples with pooled river samples. A more precise comparison would be of the canal samples with the pier or "in-gate" samples taken on the same dates (Table $\mathrm{V}-2$). The abundance in these two sets of samples is remarkably similar.

It has been suggested that one of the effects of -a-thermal effluent to a water body or of an overall temperature rise would be an increase in productivity, such that the natural predators would not be able to keep the

[^18]
FIGURE V-3

PHYTOPLANKTON ABUNDANCE: HUDSON RIVER, 1968-1969

phytoplankton population in check. The water temperatures in the canal were generally recorded as $5^{\circ} \mathrm{C}$ (Julý) to $10^{\circ} \mathrm{C}$ (December) higher than in the mainstream of the river.

From a purely predictive point of view; it is possible from the little data available to evaluate the effects of the present discharge on phytoplankton productivity in the river, and to consider the future effects of operation of the proposed three units at Indian Point. At present, Unit No. l uses about 800 cfs of cooling water, while together, units 1,2 , and 3 will use about 3200 cfs , -foumtimes as much. If the present-thermal rise across-... the condensers is maintained, this flow will be raised 5° to $11^{\circ} \mathrm{C}$. If present flow increases phytoplankton productivity by 33% * in the discharge canal, but the volume of water is less than 10% of the mean net flow of the river, then presumably the productivity of the whole river would be increased by about 3%. When units 1,2 and 3 are operating together, and if the increase in temperature. across the condensers is similar, and will have a similar effect on productivity, we might expect the increment in abundance to be increased about 4 times, to 12%. This increase is obviously small, especially when the phytoplankton abundance of the Hudson is considered in the context of data from other water bodies (see-above-p.IV-13)

[^19]The extreme case might be argued by assuming that the temperature of the whole river flow is increased by ${ }^{-10} 0^{\circ} \mathrm{C}\left(\mathrm{I}^{\circ} \mathrm{F}\right)$ (considerably more than would be permitted by the proposed thermal regulations). If a $Q_{10}=2$ is assumed, following the van't Hoff Iaw, and a 100% efficiency - of conversion of the heat energy to phytoplankton production, we could expect the abundance of organisms to rise to 1.2 $\times 10^{6} / \mathrm{m}^{3}$; on average, still two orders of magnitude or fore below the levels-peported for eutrophic lakes.
-Naturally, this is an over-simplification of a hypothetical situation. The effects of temperature on productivity cannot be considered alone without reference to nutrient and trace element levels in the water. Since industrial and domestic use of the river will develop concurrently with the demand for power, all these factors must be considered in concert, not in isolation. At the same time the cropping of phytoplankton by zooplankton organisms and their subsequent loss by predation to other trophic levels in the ecosystem are of fundamental improtance in understanding the population dynamics of the area and its relation to physical factors such as temperature.

Analysis of zooplankEon in canal samples hà been qualitative only, but serves for comparison with collections
v-9
from the river. In general, as with the phytoplankton, the species seen are essentially similar to those seen in the river collections. A more precise comparison can be made between collections in the canal and at the pler on the east side (Table V-3). There is some Indication that differences in abundance of some groups may be present, but it is thought that these are more likely to reflect differences in sampling than reality. It is possible, how-… ever, that the canal fauna is richer in variety of species, \because perhaps because it represents a more sheltered and varied environment than the mainstream of the river. It may be noted that a number of fragile organisms (the medusa Blackfordia, and the opossum shrimp, Mysis oculata) have been found in the discharge canal, as well as several fish species and that these must have entered directly from the river and not through the plant. A schematic diagram to illustrate collections in the canal and at the "in-gate" is presented in Figure $V-4$.

The possibility of estimating productivity in situ In the effluent canal has been considered in the latter part of the period reported here. A number of fixed devices designed to attract "periphyton" have been tested in the effluent canal, and at other sites. In the canal, it has been-found that-some sort of protective cage-or basket is

FIGURE V-4
Schematic comparison of biota of inflow and outflow at Indian Point Reactor, July - December 1968.

DOCK AND IN-GATE
1H1H Bosmina
基 Amnicola
\|Annelid larvae
necessary to protect the units from the scouring effect of the current in the canal. Several materials have been tested for the optimum growing conditions, among them, glass slides, parafilm, white and black polyvinyl chloride plastics, teflon, "Saranwrap" and photographic film. While the black polyvinyl plastic seemed to encourage the best growth of organisms, the magnitude of difference was not so great as to outweigh the advantages of the common . glass microscope slide, which is most readily available and most easily handled. Photographic film and "Parafilm" proved useless for samplers. A final form for the periphyton sampler has been selected, and we plan to use these samplers. in the canal during the next season. (Figure V-5)

A preliminary study of the sampling devices has indicated that such devices will be selected by species present in the phytoplankton which are not necessarily seen In any great quantity in the usual routine net samples. For instance, in January 1969, when the net samples were dominated by Melosira with Nitzschia and Phormidium, the black plastic samplers yielded a mass of bacterial (?) filaments, populated by many small ciliates and flagellates. Amoebae were present, and Vorticella. Very few algae or diatoms were seen, although diatom shells were more common. Similar observations were reported for February 1969, with

Fig. 1. The phyco-periphyton collector. Ar-anchor rape; Aw-anchor weigh; Eb-elastic band; Gsglass microscope slide; Sb -slide box (top and botton cutoutl; St-styrofoam float; Sp -sampler platform.

Figure V-5 Proposed type of periphyton sampler.
(From J.W. Foerster "A Phyco-Periphyton Collector" Turtox News 47: 82, 1969).
a coating of bacterial filaments on all the sampling materials, together with amoebae, flagellates and a few diatoms. While these samplers will prove a useful adjunct to the routine net collections, it is clear that they w1ll sample a different part of the canal flora: For comparative purposes a sampler will have to be set in the river, or at the inflow to the plant.

```
APPENDIX V-1 INDIAN POINT:REACTOR - DISCHARGE CANAL il
```

PHYTOPLANKTON ANALYSIS JULY

Notes: 1 Melosira granuilata, small quantity of M. islandica 2 Asterionella formosa
3 Fragilaria crotonensis *Not possible to measure depth of tow at gates

INDIAN POINT REACTOR - DISCHARGE CANAL PHYTOPLANKTON ANALYSIS AUGUST

Date	$\begin{gathered} \text { Sample } \\ \text { Site } \end{gathered}$	Depth (ft)	S-R counts no./ml	$\begin{aligned} & \text { Calc'd. } \\ & \text { no. } / \mathrm{m}^{3} \\ & \hline \end{aligned}$	Relative Abundance		occurrence
30-VIII-68	$\begin{aligned} & \text { Canal \#1 } \\ & \mathrm{T}=31^{\circ} \mathrm{C} \end{aligned}$	*	540	$\dagger 9$			
		18		326×10^{3}	Pediastrum	20	
					Nitzschia ${ }^{1}$	15	
					Others	65	
					Total gener		9

PHYTOPLANKTON ANALYSIS AUGUST' "continued

Notes: I Nitzschia sigmoidea
2 N. paradoxa
3 Coscinodiscus denarius
4 Synedra ulna
5 Melosira granulata

Other species of diatoms present were:-
Cocconeis placentula (in clumps)
Cymbella tumida
Navicula cryptocephala
Cyclotella meneghiniana

Date	$\begin{gathered} \text { Sample } \\ \text { Site } \\ \hline \end{gathered}$	Depth (ft)	$\begin{aligned} & \mathrm{S}-\mathrm{R} \text { counts } \\ & \text { no. } / \mathrm{ml} \end{aligned}$	$\begin{aligned} & \text { Calc'd. } \\ & \text { no. } / \mathrm{m}^{3} \\ & \hline \end{aligned}$	Relative Abundance		occurrence
24-x-68	Canal \#7 $T=23.6^{\circ} \mathrm{C}$	17	590	189×10^{3}	Pleurosigma Others Total genera	$\begin{array}{r} 24 \\ 76 \\ \text { seen } \end{array}$	13
24-x-68	Pier $T=19.2^{\circ} \mathrm{C}$	32	740	251×10^{3}	Thallassiothrix 27 Pleurosigma 24 Others 49		
					Total genera	seen	9

Notes: Blackfordia (medusa) and barnacle molts seen in most canal samples
1 Thallassiothrix longissima

INDIAN POINT REACTOR - DISCHARGE CANAL
PHYTOPLANKTON ANALYSIS DECEMBER 1968

Date	$\begin{gathered} \text { Sample } \\ \text { Site } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \left(\mathrm{ft}^{\mathrm{t}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{S}-\mathrm{R} \text { counts } \\ & \text { no. } / \mathrm{ml} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Calc'd. } \\ & \text { no. } / \mathrm{m}^{3} \\ & \hline \end{aligned}$	```l}\begin{array}{l}{\mathrm{ Relative Abundance % occurrence}}```
					$\begin{array}{lr} \text { Cyclotella } & 2 \\ \text { Others } & 14 \end{array}$
					Total genera seen 16
19-XII-68	Canal \#7	17	5600	3581×10^{3}	Melosira 65
					Pleurosigma
					Nitzschia 7
	$\mathrm{T}=11.9^{\circ} \mathrm{C}$.Asterionella
					Thallassiothrix 7
				-	Others 8
		:			Total genera seen. 16
19-XII-68	Pler	30	8340	3022×10^{3}	Melosira : 72
					Nitzschia 7
	$\mathrm{T}=2.0{ }^{\circ} \mathrm{C}$				Asterionella 5
		\cdots			Thallassiothrix 4
		-			Others 12
					Total genera seen 23

Notes: l M. granulata
2 Mostly shells in all samples.
3 Or blue-green algae, unidentified

INDIAN POINT REACTOR - DISCHARGE CANAL
PHYTOPLANKTON ANALẎSIS JANUARY, 1969

Notes: * or blue-green algae, unidentified.
Melosira was M. granulata

ZOOPLANKTON IN DISCHARGE CANAL AND PIER•OR "IN-GATE"

Dàte
Pler or "In-gate" Canal (Composite)

10-VII-68

Keratella quadrata -

Ostracods

Daphnia pulex
Bosmina longirostris
Nauplius larvae
Cyclops vernalis
C. bicuspedatus

Eurytemora hirundoides
Microarthridion littorale

R Keratella cochlearis 0
Brachionus quadridentata R
Trichocerca R
NematodesR.
R
0 Leptodora kindti $\quad . \quad \rightarrow R^{2}$
C B. longirostris $\quad \therefore$ Nore
C Nauplius larvae N
$0-R$ C. vernalis: ... C
C
C E. hirundoides N
C M. hittorale c

Ectinosoma curticorne
Microarthridion littorale

Trichocerca: R
Brachionus quadridentata R
Gammarus fasciatus R
Nauplius larvae. C
R E. curticorne R
Canuella elongata $\quad R$
R M. littorale $O-R$
Eurytemora hirundoides $\because \mathrm{R}:=$
E. lacustris R

Amnicola $A \operatorname{RE}$
$A \operatorname{ARO}$
1.9-XII-68

Kellicottia
Keratella cochlearis
Bosmina longirostris

Nauplius larvae
Eurytemora hirundoides Diaptomus sp.

Notes: $\quad B=$ Bloom
$\mathrm{N}=$ Numerous
$\mathrm{C}=$ Common
$0=$ Occasional
$R=$ Rare

$R \quad$ Seison

R Piscicola R
Nematodes R
R B. longirostris R
Gammarus fasciatus R
Monoculoides edwardsii R
R Nauplius larvae $0-\mathrm{R}$
E. hirundoides $0-R$
Diaptomus sp. R
Microarthridion littorale R
Cyclops bicuspedatus R
Ectinosoma curticorne R
Canuella elongata R
Acartia tonsa "R

VI FISH PROGRAM

Shore seining for fish in the Hudson River has been carried out during 1968 in two inter-related studies. First, the summer shore seining program, sampling nine stations on the west bank of the river between Tappan Zee bridge in the south, and Cementon, in the north, has been continued along the same lines as previous years. This study is fimited to an intensive period of weekly sampling for 10 weeks in June, July and August (Table VI-1, Appendix VI-l). Secondly, a year-round monthly sampling program (using the same techniques) at one station on the east, and one: on the west bank of the river has been followed from. April to December. Collections were interrupted in January, by the freezing of the shore areas.

The data for stations in the Indian Point sector of the river through 1968 are ilisted in Appendix VI-1 and summarized in Table VI-2. The most common species of fish on the east.bank station at Buchanan, were White Perch (Roccus americanus), with alewife (Alosa pseudoharengus) and spottail shiner (Notropis hudsonius) also relatively abundant. In contrast, on the west bank of the river (south of Jones Point) the most common species was the freshwater killifish (Fundulus diaphanus), with the spot-tail shiner (Notropis hudsonius), the summer or blue-back herring (Alosa aestivalis),

Number of Tows and Computed Area (in Square Feet)
Seined at Each Station

Station (Mile)	$\begin{aligned} & \text { June } \\ & 17-18 \\ & 24-25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { July } \\ & 1-2 \\ & 7-8 \\ & \hline \end{aligned}$	$\begin{gathered} \text { July } \\ 15-16 \\ 22-23 \\ \hline \end{gathered}$	$\begin{gathered} \text { July-Aug. } \\ 29-30 \\ 5-6 \\ \hline \end{gathered}$	Aug. 12-13 19-20	Total
	South of Poughkeepsie					
IW3(26.6)						
No. of Tows	${ }^{5}$	${ }^{4}$	${ }^{5}$			$\begin{gathered} 25 \\ 100.000 \end{gathered}$
Total Area	20,000	20,000	20,000	20,000	$20,000$	$100,000$
Av.: per Tow	4,000	5,000	4,000	4,000	3,333	4,000
IIWI(41:4)						
No. of Tows	5	3	3	6	5	22
Total Area	15,000	10,000	15,000	15,000	20,000	75,000
Av. per Tow	3,000	3,333	5,000	2,500	4,000	3,409
IIW2(45.2)						
No. of Tows	1	2	2	1	1	7
Total Area	5,000	5,000	10,000	5,000	5,000	30,000
Av. per Trow	5,000	2,500	5,000	5,000	5,000	4,286
IIW2A (56.5)						
No. of Tows	2	4	3	4	2	15
Total Area	10,000	15,000	15,000	20,000	10,000	70,000
Av. per Tow	5,000	3,750.	5,000	5,000	5,000	4,667
IIIW2(67.3)						
No. of Tows	4	3	2	4	4	17
Total Area	10,000	10,000	10,000	15,000	10,000	55,000
Av. per Tow	- 2,500	3,333	5,000	3,750	2,500	3,235
	North of Poughkeepsie					
No. of Tows	${ }^{5}$	73	7 2	20, ${ }^{7}$	15, ${ }^{4}$	25,000
Total Area	15,000	7,500	7,500	20,000	15,000	- 65,000
Av. per Tow	3,000	2,500	3,750	2,857	3,750	3,095
IVW2 (95.1)						
No. of Tows	4	3	5	6	4	22
Total Area	15,000	15,000	20,000	20,000	12,500	82,500
Av. per Tow	3,750	5,000	4,000	3,333	3,150	3,750
IVW3(100.5)						
No. of Tows	3	2	2	4	5	16
Total Area	7,500	10,000	10,000	12,500	12,500	52,500
Av. per Tow	2,500	5,000	5,000	3,125	2,500	3,281
IVW4(104.7)						
No of Tows	4	3	${ }^{3}$	${ }^{5}$	15 5	70^{20}
Tc.al Area	15,000	10,000	15,000	15,000	15,000	70,000
Av, per Tow	3,750	3,333	5,000	3,000	3,000	3,500

Table VI-2: Fish relative abundance at Indian Point. (No. caught p.u.a.)

Station II-E-I 1968.

Species	Apr	May	June	July	Aug	Sept	Oct	Dec	Allyear
Spot-tail shiner	66	640	0	160	1062	480	727	1750	464
FW Killifish	177	84	0	0	31	0	54	0	44
SW Killifish	44	0	0	0	0	22	0	0	10
Johny Darter	0	0	18	80	0	0	90	250	30
White Perch	0	80	72	5120	250	783	1418	500	725
Striped bass	0	160	0	0	156	66	36	1375	84
Alewife								271	
Blue-back herring								98	
Shad								40	

Total of common spp.
Station II-W-I 1968.

Spot-tail shiner	20	1040	346	0	3000	435	66	720	368
FW Killifish	7	140	426	2640	866	2462 '	2700	560	1224
SW Killifish	0	40	133	140	533	89	33	0	68
Johnny Darter	20	40	0	20	3733	711	33	280	302
Common sunfish	6	0	26	500	0	0	133	400	90
White perch	0	20	26	40	66	17	83	0	26
Striped bass	0	0	0	0	0	26	50	200	22
Shad									2
Alewife									184
Blue-back herring									360
4-spine stickle	73	100	240	180	0	0	220	1240	136

Total of common spp.

$$
2,782
$$

and the Johnny darter (Etheostoma nigrum) was also abundant. In total catch of fish (expressed in terms of $100,000 \mathrm{ft}^{2}$ unit area seined), the west bank station was more prolific than the east bank station. This and the difference in relative abundance of different species, is to be attributed -to the inherent physical differences at the two stations rather than to other factors.

Considerable seasonal changes were observed, not only for the migrant anadromous population coming in to the river for spawning but also for species regarded as Indigenous in the area. "White perch were most often caught during the summer and fall, and this species in the catch declined to neglible numbers in the winter (and spring). The spot-tail shiner, common to both stations, was abundaṇt in August, but big catches were also reported for December (east bank) and May (west bank).

Freshwater killifish, abundant on the west bank but neglible on the east, were most abundant in July to October, in spite of the rising salinity of the water in this period.

The brackish killifish, also common on the west bank, was most abundant during the same period. Johnny Darters were insignificant on the east bank, but reached very large", numbers in August on the west bank.

Striped bass were seen at both stations, and seemed most abundant in December; this species was not seen at the west bankstation until September, but had been observed sporadically on the east bank. In May (east bank), all the young striped bass were in the $1+$ year class, but between September and october the 0 , and the $1+$ year cIa'ss were about equally represented at both stations. In December, the bulk of the young fish seemed to be in the $1+$ year class.

The summer seining program data is summarized in \cdots Tablevil- 3 , in which, following the practice of previous years, fish species at each stationare groupedinto year classes based on size frequency distribution: The catch at each station 1 sumarized for the 15 most common species collected. The spectes most commonly caught in 1968 were roughty the same as those common in previous years, but some $E \operatorname{Hatfererce}$ in the relative abundance of species can be seen; both for individualstations and for the whole river (Table VI-4). Quite wide variations can be seen in the periodi 1965 to 1968 In the numbers caught, not only of migrant fish, but also of some resident species. In general, the catch per unit of area in the four years is quite similar.

A closer comparison in the succeeding years may be made of station II-W-1 (Table VI-5). Summer data for the east bank station is also included, although this station

Average Catch* at Each Station for the 15 Species Taken Most iFrequently

*Per Unit Area (See Text).


```
TABLE VI-3
(Continued)
```

Average Catch* at Each Station for the 15 Species Taken Most Frequently

Age Group	IW3	IIW 1	ITW2	IIW2A	IIIW2	IVW1	IVW2	IVW3	IVW4	Average
Emerald Shiner										
$0+$	0	0	0	0	10	59	1	0	6	8
$1+$ or Older	1	0	0	2	50	2	96	0	0	17
Total	1	0	0	2	60	61	97	0	6	25
Freshwater Killifish										
$0+$	9	275	244	81	112	25	5	619	690	229.
1+ or Older	14	399	92	131	1540	92	43	34	164	279
Total	23	674	336	212	1652	117	48	653	754	508
Saltwater Killifish										
$0+$	32	2	518	0	3	0	0	0	0	62
$1+$ or Older	25	103	518	2	231	0	2	0	1	42
Total	57	105	1036	2	233	0	2	0	1	104
TOTAL	248	1659	2250	2108	3655	2426	5849	1982	2596	2497

*Per Unit Area (See Text.)

Table VI-4 Station II-W-I, Hudson River at Indian Point Summer collecting program.

Table VI-5 All Stations, Hudson River, 1968

Species	Relative abundance (p.u.a.)				
	1965	1966	1967	1968	
	-			-	
Spot-tail shiner	481	327	- 415	288	
Blue-back herring	273	612	- 595	647	
Alewife	65	23	103	216	
Shad	73	40	3	1	
Goldfish	107	70	60	90	
Carp :	3	1	0	a $\times \quad 31$:
Johnny Darter	336	166	329	120	
Common sunfish	89	196	338	- 224	
Golden shiner	7	120	62	- 65	
White perch	372 ..	160	302	171	
Striped bass	41	60	32	- 6	
Northern silverside	337	751	19	0	
Emerald shiner	0	0	19	- 25	
FW Killifish	470	547	1095	- 508	
SW Killifish	364	594	419	104	
Tidewater silverside	18	0	25	0	
Anchovy	160	5	0	0	
Mullet	32	0.	0	0	
Eel	28	10	0	0	
Total	3281	3646	3797	2497	

was not routinely sampled in previous years. The year 1968 seems to be characterized by a smaller number of fish in the catches, both in the river as a whole, and at individual stations. However, the reason for this may be that the annual movement of anadromous species which appeared in the summer collection period (mid-June to end of August) in previous years, did not take place at this time in 1968. However, species such as the biueback herring, alewife, silversides did not subsequently appear at stations II-E-I and II-W-l although these stations were sampled monthly. Whether this phenomenon is a temporary one or a manifestation. of a long term change cannot be deduced from the present data.

Detailed data for the 1968 collections are given In Appendix VI-l for the summer Hudson River program and in Appendix VI-2 for the year-round Indian Point program.

Appendix VI-1 Hudson River Collections, 1968

Fish seined on west bank, between Tappan Zee and Cementon.

Summary data, June-August 1968.

TABLE - 1
Length-Frequency Distribution Recorded for Spottail Shiner

StandardLwinth(Millimeters)	North of Poughkeepsie					South of Poughkeepsie.				
	Period 1			Period 2						
	No.	\%		No.	\%	NO	\%		No.	\%
10-14	-	-		-	-	1	0.3		-	-
15-19	3	2.3		1	0.5	39	12.5		29	7.4
20-24	11	8.5	-	2	1.0	70	22.4		131	33.5
25-29	17	13.1		24	11.8	18	5.8		60	15.4
30-34	5	3.9		73	35.8	4	1.3		55	14.1
35-39	-	-		60	29.4	1	0.3		85	21.8
40-44	-	-		35	17.2	-	O		23	5.9
45-49	-	-		9	4.4	8	2.6		8	2.0
50-54	1	0.8		1	0.5	41	13.1		-	2.
5-5-59	3	2.3		-	0.5	37	11.8		-	-
60-64	16	- 12.3		-	-	37	11.8		- -	7
65-69	28	21.6		-	-	22	7.0		-	-
70-74 : $=$	19	$\therefore 14.6$		-	-	5	1.6	-	--	-
75-79	12	9.2		-	-	5	1.6		-	-
80-84	5	3.9		-	-	10	3.2		-	-
85-89	7	5.2		-	-	6	1.9		-	-
90-94	2	1.5		-	-	7	2.2		-	-
95-99	. 1	0.8		-	-	4	1.3		--	:-

TABLE - 2
Length-Frequency Distribution Recorded for Striped Bass

Standard Length	riod $\frac{\text { North of Poughkeepsie }}{\text { Period }} 2$				South of Poughkeepsie					
Millimeters)	NO	\%		\%	N .	\%			$\frac{\overline{\mathrm{od}} 2}{\%}$	
10-14	-	-	-	-	-	-				
15-19	-	-	-	-	-	-			-	
20-24	-	-	-	-	-			1	2.8	
25-29	-	-	-	-	-	-		3	8.8	
- 30-34	-	-	-	-	-	-		11	30.8	1
35-39	-	-	-	-	-	-		6	16.8	
-40-44	-	-	1	10.0	-	-	,	6	16.8	
こ445-49	-	-	1	10.0	-	-		5	14.0	
50-54	-	-	-	-	-	-		2	5.6	
.55-59	-	-	4	40.0	-	-		1	2.8	
60-64	-	-	2	20.0	-	-	-	1	2.8	
65-69	-	-	1	10.0	-	-		1	2.8	
70-74	-	-	-	-	-	-		-	-	
75-79	-	-	-	-	-	-	-			
80-84	-	-	-	-	-	-				
85-89	-	-.	-	-	-	-	-			
-90-94	-	-	-	-	-	-	-	-		
95-99	-	-	-	-	-	-		-		
100-104	-	-	1	10.0						

TABLE - 3

Length-Frequency Distribution Recorded for Emerald Shiner

$24100.0 \quad 128 \quad 100.0 \quad 32 \quad 99.2$

Length-Frequency Distribution Recorded for Common Sunfish

Standard Length Millimeters)	North of Poughkeepsie				South of Poughkeepsie				
	Period 1		Period 2		Period I		-	Period 2	
	No:-	\%	No.	\%	NO.	\%		No.	\%
10-14	-	-	9	4.2	-	-		9	5.9
15-19	-	-	34	16.0	-	-		54	35.9
20-24	-	-	63	29.6	-	-		13	8.6
25-29	-	-	55	25.9	-	-		4	8.6
-30-34	-	-	24	11.3	1	0.3		5	3.3
35-39	1	1.2	16	7.5	1	0.3		7	4.6
a.40-44..	3.	3.5	3	1.4	1	0.3		. 3	2.0
- 45-49..	1	1.2	1	0.5	2	0.5		-	-
: -50-54	3	3.5	1	0.5	4	1.1		\because	0.7
55-59	- 2	- 2.3	-	--	10	2.7		1	0.7
:60-64	5-	5.8	-	-	9	2.4	-	-2	1.3
65-69		-	-	-	9	2.4		1	0.7
70-74	1	1.2	-	-	4	1.1		9	5.9
- 75-79	-	-	-	-	1	0.3		2	1.3
-.80-84	-	-	-	-	7	1.9		5	3.3
C.85-89.	1.	1.2	1	0.5	28	7.6		- 6	4.0
2. $290-94$.	5.	5.8	-	-	41	11.1	.	-8	5.3
95-99	11	12.7	1	0.5	65	17.5		8	5.3
100-104	6	6.9	1	0.5	55	14.9		2	1.3
105-109	14	16.1	2	0.9	59	15.9		4	2.6
110-114	13	15.0	2	0.9	34	9.2			0.7
115-119	8	9.2	3	1.4	23	6.2		4	2.6
120-124	5	5.8	-	-	10	2.7		2	1.3
-.125-12.9	3	3.5	-	-	3	0.8		2	1.3
130-134	1	1.2	-	-	-	.		2	1.3
-135-73.9	-	-	-	-	-	-	-	-	-
-140-44	3	3.5	-	-	-	-		-	-
145-149	-	-	-	-	-	-		-	-
150-154	1	1.2	-	-	-	-		-	-

TABLE - 5

Length-Frequency Distribution Recorded for Golden Shiner

TABLE - 6
Length-Frequency Distribution Recorded for Shad

TABLE- 7
Length-Frequency Distribution Recorded for Johnny Darter

TABLE - 8

Length-Frequency Distribution Recorded for Carp

$31 \quad 99.2$

TABLE- 9
Length-Frequency Distribution Recorded for Blueback Herring

Length-Frequency Distribution Recorded for Alewife

TOTAL $259101.2 \quad 186 \quad 100.5 .210 \quad 100.9 \quad 113 \quad .99 .5$

TABLE -11

Length-Frequency Distribution Recorded for Northern Silverside

Standard	North of Poughkeepsie				South of Poughkeepsie				
Length			Per					iod 2	
(Millimeters)	No.	\%	No.	\%	No.	\%	NO.	\cdots	
10-14	-	-	-	-	-	-	-		
15-19	-	-	-	-	-		-		
20-24	-	-	-	$-$	-	-	2	-14 3	-
25-29	-	-	-	-	-	-	2	-14.3	
30-34	-	-	-	-	-	-	2	14.3	
35-39	-	-	-	-	-	-	2	14.3	
40-44	-	-	-	-	-	-	1	14.3	
45-49	-	-	-	-	-	-	2	14.3	
50-54	-	-	-	-	-	-	2	14.3	-
55-59	-	-	-	-	-	-	-	-	
60-64	-	-	-	-	-	-	- 2	-14.3	
65-69	-	-	-	-	-	-	2	14.3	
70-74	-	-	-	-	-	\square	1	7.1	

Length-Frequency Distribution Recorded for White Perch

TABLE - 13

Length-Frequency Distribution Recorded for Goldfish

$\begin{array}{llllllllll}\text { TOTAL } & 120 & 99.4 & 286 & 100.4 & 11 & 100.1 & 56 & 100.8\end{array}$

TABLE - 14

Length-Frequency Distribution Recorded for Freshwater Killifish

		Male									
Standard			th of	keep			th of	g	keep	sie	
Length		Per	d 1	Per	d 2		d 1		Per	iod 2	
(Millimeters)		No.	\%	No.	\%	No.	\%		NO.	\%	
10-14	-	-	-	-	-	-	-		-	-	
15-19		-	-	-	-	-	-		-	- -	-
20-24	-	-	-	-	-	-	-	-	-	- -	
25-29		-	-	-	-	-	-		-	-	
30-34		-	-	-	-	-	-		-	-	
35-39	-	-	-	1	3.0	3	1.1		-	\cdots	-
40-44		-	-	-	-	34	12.9		-	-	
$\cdots \quad 45-49$.	\sim	6	13.8	3	9.0	53	20.1	-	2	$\because 5.0$	$3:$
50-54		8	18.4	5	15.0	57	21.7		7	17.5	
55-59		8	18.4	8	24.0	34	12.9		8	20.0	
60-64		9	20.7	8	24.0	27	10.3		10	25.0	
65-69	\cdots	4	9.2	7	21.0	30	11.4		8	- 20.0	?
70-7.4:		3	6.9	1	3.0	20	7.6	\therefore	4	$\therefore 10.0$	20
75-79		5	11.5	-	-	4	1.5	-	1	-2.5	-
80-84						2	0.8		-	-	
						2	0.8		-	-	

TABLE - 15

Length-Frequency Distribution Recorded for Freshwater Killifish

Length-Frequency Distribution Recorded for Freshwater Killifish

						Fem			
Standard		ch of	keep			th of	ughkee	psie	
Length		d 1		Od 2		d 1		riod 2	
(Millimeters)	No.	\%	No.		No.	\%	NO.	\%	
10-14	-	-	-	-	-	-	-	-	
15-19	-	-	-	-	-	-	-	-	
20-24	-	-	-	-	-	-	-	-	
25-29 --	-	-	-	-	-	-	3	- 3.1	-
- 30-34	-	-	-	-	1	0.3	5	- 5.2	
-35-39	-	-	11	12.1	10	2.6	11	- 11.3	
40-44	3	3.3	21	23.1	42	10.7	14	14.4	
2545-49 :	5	5.5	+ 4	4.4	87	22.2	$\pm \quad 5$	$\therefore 5.2$	$=7$
50-54	13	14.3	2	2.2	77	19.6	10	10.3	
55-59	17	18.7	5	5.5	68	17.3	13	13.4	
60-64	21	23.1	9	9.9	21	5.4	22	. .22 .7	
65-69	11	12.1	22	24.2	17	4.3	6	6.2	
-70-74	9	9.9	13	14.3	34	8.7	4	$\therefore 4.1$	\because
75-79	2	2.2	1	1.1	19	4.8	4	: 4.1	=
80-84	6	6.6	2	2.2	14	3.6 •		.	
85-89	1	1.1	1	1.1	1	0.3	-	-	
90-94	2	2.2	1	1.1	-	-	-	-	
95-99					1	0.3	-	-	

TABLE - 17
Length-Frequency Distribution Recorded for Saltwater Killifish

Female

$$
\text { TABLE - } 18
$$

Length-Frequency Distribution Recorded for Saltwater Killifish
Immature

TABLE - 19

Length-Frequency Distribution Recorced for Saltwater Killifish

Appendix VI-2 Hudson River Collections, 1968

Fish seined at Indian Point east and west shores.

Summary data, March - December 1968.

VI-32

Table 1 Fish seined on east and west shore at Indian Point, 1968.

Common Name
Freshwater killifish
Spot-tail shiner
\therefore Summer Herring Johnny darter
*. Alewife
Stickleback

- Common Sunfish

Brackish water killifish
White Perch
Striped Bass
Shad
Eel
West (IT-W-1) 612
184
180°
151 92 68 45 34 13 11
1

- 12

Spearing
Golden shiner
Common Shiner
Catfish
Yellow perch -
Bluefill Sunfish
Jack fish 3
Pipe fish
Blue fish
2
Smedt
Pickerel

East
(IT-E-I)
13
137
29
9
80
-
1
3
214
25
Pickerel

Table -3 Collections on East Shore (II-E-1)

Major occurring species					
Species	Date	\# of Tows	Area Seined (sq. ft.)	Fish caught	Relative abundance
Notropis hudsonius "Spottail Shiner"'	4/3-12/3	18	29,500	137	464
Fundulus diaphanus "Fresh-water killifish"	11	"	"	13	44
$\frac{\text { Fundulus }}{\text { "Brackish-water killifish" }}$	i	1	-"	3	10
$\frac{\text { Etheostoma }}{\text { "Johnny darter" }}$	"	- ${ }^{1}$	9	30
$\frac{\text { Lepomis }}{\text { "Common sunfish" }}$	"	11	$\because "$	1	725
$\frac{\text { Roccus }}{\text { "White }} \frac{\text { americanus }}{\text { Perch" }}$	1	"	11	214	725
$\frac{\text { Roccus saxatilis }}{\text { "Striped Bass" }}$	11	"	"	25	84
$\frac{\text { Alosa sapidissima }}{\text { "Shad" }}$	"	"	1	12	40
$\frac{\text { Alosa }}{\text { "Alew eudoharengus }}$	"	"	"	80	271
$\frac{\text { Alosa }}{\text { "Blue }} \frac{\text { aestivalis }}{\text { back herring" }}$	"	11	"	29	98

Table- 5 West Shore (II-W-I)

Spottail Shiner, Notropis hudsonius

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{aligned} & \text { Relative } \\ & 0+ \end{aligned}$	abundance $1+$ and older
4/13	(4) 50×50 (1) 50×100	15,000	3	20	-	20
5/15	(2) 50×50	5,000	52	1040	520	520
6/7	(1) 50×75	3,750	13	346	26	320
7/3	(2) 50×50	5,000	0	-	-	-
8/13	(2) 50×15	15,000	45	3000	3000	-
9/12	(3) 50×50 (1) 50×75	.11,250	49	435	373	62
10/14	(2) 30×100	6,000	4	66	-	66
12/3	(1) 50×50	2,500	18	720	160	560

Table- 6 East Shore (II-E-I)

Spottail Shiner, Notropis hudsonius

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{gathered} \text { Relative } \\ 0+ \\ \hline \end{gathered}$	abundance $1+\text { and ol }$
4/3	(3) 50×30	4,500	3	66	-	1 66
5/14	(2) 25×25	1,250	8	640	160	480
6/7	(2) 50×50	5,500	0	-	-	-
7/3	(1) 50×25	1,250	2	160	-	160
8/13	(1) 40×30 (1) 40×50	3,200	34	1062	- 750	312
9/12	(3) 50×50	7,500	36	- 480	400	80
10/14	(1) 50×50 (1) 50×60	5,500	40	727	309	418
12/13	(2) 40×10	800	14	1750	500	1250

Table -7 West Shore (II-W-I)
(4 spine) Stickleback, Apeltes quadracus

Date	\# of Tows	Area Seined (sq. ft.)	fish caught	Total Rel abundance
4/3	(4) 50×50 (1) 50×100	15,000	11	73
5/15	(2) 50×50	5,000	5	100.0
6/7	(1) 50×75	3,750	9	240.0
7/3	(2) 50×50	5,000	9	180.0
8/13	(2) 50×15	1,500	0	-
9/12	(3) 50×50 (1) 50×75	11,250	0 ¢	. . -
10/14	(2) 30×100	6,000	13	217
12/3	(1) 50×50	2,500	31	1240.0

Table -8 west Shore (II-W-I)

Fresh-water killifish, Fundulus diaphanus

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundnace	$\begin{gathered} \text { Relative } \\ 0+ \end{gathered}$	$\begin{aligned} & \text { abundance } \\ & 1+\text { and older } \end{aligned}$
4/3	(4) 50×50 (1) 50×100	15,000	1	7	-	7
5/15	(2) 50×50	5,000	7	140	-	140
$6 / 7$	(1) 50×75	3,750	16	426	-	426
7/3	(2) 50×50	5,000	132	2640	-380	2260
8/13	(2) 50×15	1,500	13	- 866	666	200
9/12	(3) 50×50 (1) 50×75	11,250	277	2462	311	2151
10/14	(2) 30×100	6,000	162	2700	933	. 1767
. $12 / 3$	(1) 50×50	2,500	14	560	240	320

```
Table- 9 East Shore (II-E-I)
```

Fresh-water killifish, Fundulus diaphanus

Date	$\begin{aligned} & \# \\ & \text { of Tows } \\ & \hline \end{aligned}$	Area Seined (sq. ft. $)$	\# fish caught	Total Rel. abundance	$\begin{gathered} \text { Relative } \\ 0+ \\ \hline \end{gathered}$	abundance $1+$ and older
4/3	(3) 50×30	4,500	8	177	44	133
5/15	(2) 25×25	1,250	1	84	-	84
6/7	(2) 50×50 (1) 50×10	5,500	0	-	-	-
7/3	(1) 500×25	1,250	0	-	-	-
8/13	(1) 40×30 (1) 40×50	3,200	1	.. 31	- :	31
9/12	(3) 50×50	7,500	0	-	-	-
10/14	(1) 50×50 (l) 50×60	5,500	3	54	-	54
12/3	(2) 40×10	800	0	-	-	-

Brackish -water killifish, Fundulus heteroclitus

		Area		Total	Relative	abundance
Date	of Tows	Seined (sq. ft.)	fish caught	Rel. abundance		$1+$ and olde
4/3	(4) 50×50	15,000	0	-	-	-
	(1) 50×100					
5/15	(2) 50×50	5,000	2	40	-	40
6/7	(1) 50×75	3,750	5	133	-	133
7/3	(2) 50×50	5,000	7	140	-	140
8/13	(2) 50×15	1,500	8	533	400	133
9/12	(3) 50×50	11,250	10	89	53	36
	(1) 50×75					
10/14	(2) 30×100	6,000	2	33	-	33
12/3	(1) 50×50	2,500	0	- -	-	-

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Date \& \# of Tows \& \begin{tabular}{l}
Area \\
Seined (sq. ft.)
\end{tabular} \& \begin{tabular}{l}
\# \\
fish caught
\end{tabular} \& \begin{tabular}{l}
Total \\
Rel. abundance
\end{tabular} \& \[
\begin{aligned}
\& \text { Relative } \\
\& 0+ \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
abundance \\
\(1+\) and older
\end{tabular} \\
\hline 4/3 \& (3) \(50 \times 30\) \& 4500 \& 2 \& 44 \& - \& 44 \\
\hline 5/15 \& (2) \(25 \times 25\) \& 1250 \& 0 \& \(\cdots\) - \& - \& - \\
\hline \(6 / 7\)

618 \& | (2) 50×50 |
| :--- |
| (1) 50×10 | \& 5500 \& 0 \& - \& . \& -

\hline 7/3 \& (1) 50×25 \& 1250 \& 0 \& .. ${ }^{-}$ \& - \& -

\hline \[
8 / 113

\] \& | (1) 40×30 |
| :--- |
| (1) 40×50 | \& 3200

7500 \& $\therefore 0$
0 \& \therefore
\therefore \& - \& -

\hline $$
9 / 12
$$ \& (3) 50×50 \& 7500 \& 1 \& -22 \& - \& 22

\hline \[
10 / 14

\] \& | (1) 50×50 |
| :--- |
| (1) 50×60 | \& 5500 \& 0 \& - . \& - \& -

\hline 12/3 \& (2) 40×40 \& 800 \& 0 \& - \& - \& -

\hline
\end{tabular}

Johnny darter, Étheostoma nigrum

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{gathered} \text { Relative } \\ 0+ \\ \hline \end{gathered}$	abundance $1+\text { older }$
4/3	(4) 50×50 (1) 50×100	15,000	3	20	-	20
5/15	(2) 50×50	5,000	2	40	-	40
6/7	(1) 50×75	3,750	-	-	-	-
7/3	(2) 50×50	5,000	1	20	-	20
8/13	(2) 50×15	1500	56	3733	3266	466
9/12	(3) 50×50 (1) 50×75	11,250	80	711	222	489
10/14	(2) 30×100	6,000	2	33	-	33
12/3	(1) 50×50	2,500	7	280	- -	280

Trable - 13 East Shore (II-E-1)

Johnny darter, Etheostoma nigrum

Date	\# of Tows	Area Seined (sq. ft.)	fish caught	Total Rel. abundance	$\begin{aligned} & \text { Relative } \\ & 0+ \\ & \hline \end{aligned}$	abundance $1+$ and older
4/3	(3) 50×30	4500	0	-	-	-
5/15	(2) 25×25	1250	0	-	-	-
6/7	(2) 50×50 (1) 50×10	5500	1	18	-	18
7/3	(1) 50×25	1250	1	80	-.	80
8/13	(1) 40×30 (1) 40×50	3200	0	-	-	-
9/12	(3) 50×50	7500	0	-	-	-
10/4	(1) 50×50 (1) 50×60	5500	5	90	-	90
12/3	(2) 40×10	800	2	250	-	250

Common Sunfish, Lepomis gibbosus

Date	\# of Tows	Area Seined (sq. ft.)	fish caught	Total Rel. abundance	$\begin{aligned} & \text { Relative } \\ & 0+ \\ & \hline \end{aligned}$	abundance $1+$ and older
4/3	(4) 50×50	15,000	1	6	-	6
	(1) 50×100					
5/15	(2) 50×50	5,000	0	- .	-	-
6/7	(1) 50×75	3750	1	26	$=$	26
7/3	(2) 50×50	5000	25	- 500	-	500
8/13	(2) 50×15	1500	0	-	-	
9/12	(3) 50×50 (1) 50×75	11,250	0	, -	$\cdots-$	-
10/14	(2) 30×100	6000	8	133	-	133
. $12 / 3$	(1) 50×50.	2500	10	400	-	400

Table -15 West Shore (II-W-1)
White Perch, Roccus americanus

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	Relative $0+$	abundance $1+$ and older
4/3	(4) 50×50 (1) 50×100	15,000	0	-	-	-
5/15	(2) 50×50	5,000	1	20	-	20
6/7	(1) 50×75	3750	2	26	-	26
7/3	(2) 50×50	5000	2	40	-	40
8/13	(2) 50×15	1500	1	66	-	66
9/12	(3) 50×50 (1) 50×75	11,250	2	17	-	17
10/14	(2) 30×100	6,000	5	83	-	83
12/3.	(1) 50×50	2500	0	- -	-	-

```
Table -16 East Shore (II-E-1)
```

White Perch, Roccus americanus

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{aligned} & \text { Relative } \\ & 0+ \\ & \hline \end{aligned}$	abundance $1+$ and older
4/3	(3) 50×30	4500	0	-	-	-
5/15	(2) 25×25	1250	1	80	-	80
6/7	(2) 50×50 (1) 50×10	5500	4	72	-	72
7/3	(1) 50×25	1250	64	5120	-	5120
8/13	(1) 40×30 (1) 40×50	3200	8	250	94	156
9/12	(3) 50×50	7500	55	733	293	440
10/14	(1) 50×50 (1) 50×60	5500	78	1418	109	1309
12/3	(2) 40×10	800	4	500	205	205

Table -17 West Shore (II-W-1)
Striped Bass, Roccus saxatilis

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{aligned} & \text { Relative } \\ & 0+ \\ & \hline \end{aligned}$	abundance $1+$ and older
4/3	$\begin{aligned} & \text { (4) } 50 \times 50 \\ & \text { (1) } 50 \times 100 \end{aligned}$	15,000	0	-	-	$1+$ and older
5/15	(2) 50×50	5,000	0	-	-	-
6/7	(1) 50×75	3750	0	-	-	
7/3	(2) 50×50	5,000	0	-	-	
8/13	(2) 50×15	1500	0	- -	-	
9/12	(3) 50×50 (1) 50×75	11,250	3	26	18	8
10/14	(2) 30×100	6,000	3	50	-	50
12 / 3	(1) 50×50	2,500	5	200	40	160

Striped, Bass, Roccus saxatilis

Date	\# of Tows	Area Seined (sq. ft.)	\# fish caught	Total Rel. abundance	$\begin{gathered} \text { Relative } \\ 0+ \end{gathered}$	abundance $1+$ and older
4/3	(3) 50×30	4500	0	- .	-	-
.5/15	(2) 25×25	1250	2	160	$-$	160
6/7	(2) 50×50 (1) 50×10	. 5500	0	-	-	-
7/3	(1) 50×25	1250	0	-	-	-
8/13	(1) 40×30 (1) 40×50	3200	5	156	63	93
9/12	(3) 50×50	7500	5	66	40	26
10/14	(1) 50×50 (1) 50×60	5500	2	36	18	18
12/3	(2) 40×10	800	11	1375	250	1125

VII RADIONUCLIDE DATA

Samples of water, mud, fish and vegetation were collected from the Indian Point region during 1968, and analyzed by γ-spectroscopy for natural and man-made nuclides. The data for individual samples appear in Appendix VII-1 and Tables 1 to 4. Șummarized data, relating grouped mud and fish samples to collection time, grouped samples of fish species, and vegetation to distance from the reactor effluent, appear in Tables VII-1 to VII-6. Finally, summary data for 1968 samples of water, mud, fish and vegetation have been compared with summary data for the years 1964 to 1967 (Tables VII-7 to VII-12). These summary data have been intercompared and recalculated on the basis of radionuclide standards prepared and used for the calibration of data in 1968. However, a difference In sampling exists for the 1968 data compared with earlier years, since only the Indian Point region was sampled in 1968. This difference is hardly significant for water samples since levels of activity are so low, but it reveals. considerable differences in the sediment data, since the muds in the vicinity of the reactor effluent appear to sequester some nuclides from the contaminated river water before they are dispersed widely in the estuary. The difference in sampling is again of little significance for fish since the species sampled are largely free to move up

Table VII-1
HUDSON RIVER WATER 1969-pCi/liter Whatman Filtered Samples SAMPLES AT INDIAN POINT STATIONS COMBINED

Average by Pool	E, W, M1d-Channel	Cs-137	Co-60	Zn-65	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-23:
May, 1969	Mean	-. 020	-. 021	-. 962	. 613	3.97	. 347	2.32	-. 343	.111
(3 Samples)	\pm S.D.*	. 024	. 134	1.53	. 211	1.13	. 194	. 77	. 205	. 097
	\pm S.D.**	. 036	. 053	1.05	. 087	. 72	. 226	.62	. 079	. 056
$\left\{\begin{array}{l}\text { August, } 1968 \\ \text { (3 Samples) }\end{array}\right.$	Mean	. 040	-. 061	-1.34	. 126	7.86	. 985	. 786	\bigcirc	. 128
	\pm S.D.*	. 072	. 051	$1.12{ }^{\circ}$. 110	. 21	1.230	. 701	. 197	. 185
	\pm S.D.**	. 039	. 041	. 57	. 058	. 61	. 162	. 390	. 063	. 046 .

*S.D. due to pooling samples
**S.D. due to counting

Hudson River Mud $1968 \mathrm{pCl} / \mathrm{g}$ Dry Weight. Monthly averages at Indian Point stations combined. \pm standard error due to counting

	Date	Cs-137	Co-60		$\mathrm{zn}-65$	$\mathrm{Mn}-54$	K-40	Ce-144	Ru-106	Ra-226	Th-232
	2 April	$\begin{array}{r} 1.39 \\ \pm .08 \end{array}$	$\begin{gathered} .36 \\ \pm .07 \end{gathered}$		$\begin{aligned} & 3.54 \\ & \pm 1.03 \end{aligned}$	$\begin{array}{r} 1.19 \\ \pm .11 \end{array}$	$\begin{aligned} & 14.5 \\ & +1.0 \end{aligned}$	$\begin{array}{r} -1.68 \\ \pm 3.68 \end{array}$	$\begin{array}{r} 1.76 \\ \pm .79 \end{array}$	$\begin{aligned} & .80 \\ & \pm .09 \end{aligned}$	$\begin{aligned} & .86 \\ & \pm .08 \end{aligned}$
'	14 May	1.94 $\pm .08$	1.25 $\pm .08$		5.42 +1.00	4.21 $\pm .13$	$\begin{aligned} & 17.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & 3.76 \\ & \pm 3.55 \end{aligned}$	$\begin{aligned} & 1.81 \\ & \pm .77 \end{aligned}$	$\begin{array}{r} .98 \\ \pm .10 \end{array}$	$\begin{aligned} & 1.07 \\ & \pm .08 \end{aligned}$
$\underset{H}{H}$	4 June	2.36 $\pm .09$	1.37 $\pm .09$	1	5.24 +.99	4.46 +.12	18.6 +1.1	$\begin{aligned} & 6.60 \\ & +3.53 \end{aligned}$	1.01 $\pm .77$	$\begin{gathered} .91 \\ \pm .10 \end{gathered}$	$\begin{array}{r} 1.22 \\ \pm .08 \end{array}$
$\stackrel{1}{\omega}$	2 July	$\begin{aligned} & 2.18 \\ & \pm .10 \end{aligned}$	$\begin{array}{r} 1.74 \\ +.08 \end{array}$		$\begin{aligned} & 4.02 \\ & +1.03 \end{aligned}$	$\begin{array}{r} 4.21 \\ \pm .13 \end{array}$	$\begin{array}{r} 17.0 \\ \pm 1.2 \end{array}$	$\begin{aligned} & 7.47 \\ & +3.66 \end{aligned}$	$\begin{array}{r} 2.23 \\ \pm .82 \end{array}$	$\begin{array}{r} 1.10 \\ \pm .11 \end{array}$	$\begin{array}{r} 1.18 \\ \pm .09 \end{array}$
	13 Aug	$\begin{array}{r} 2.66 \\ \pm .10 \end{array}$	$\begin{array}{r} 2.20 \\ \pm .09 \end{array}$		$\begin{aligned} & 4.69 \\ & \pm 1.00 \end{aligned}$	$\begin{array}{r} 5.02 \\ \pm .14 \end{array}$	$\begin{array}{r} 17.2 \\ +1.2 \end{array}$	$\begin{aligned} & 6.79 \\ & +3.56 \end{aligned}$	$\begin{array}{r} 2.84 \\ \pm .81 \end{array}$	$\begin{aligned} & 1: 20 \\ & \pm .12 \end{aligned}$	$\begin{array}{r} 1.07 \\ \pm .10 \end{array}$
	10 Sept	$\begin{array}{r} 1.51 \\ \pm .05 \end{array}$	$\begin{gathered} .12 \\ \pm .05 \end{gathered}$		$\begin{array}{r} 1.66 \\ \pm .73 \end{array}$	$\begin{aligned} & .71 \\ & \pm .07 \end{aligned}$	$\begin{aligned} & 19.1 \\ & \pm .8 \end{aligned}$	$\begin{aligned} & 1.24 \\ & \pm .28 \end{aligned}$	$\begin{array}{r} 1.33 \\ \pm .48 \end{array}$	$\begin{array}{r} 1.12 \\ \pm .08 \end{array}$	$\begin{array}{r} 1.35 \\ \pm .06 \end{array}$
	8 Oct	$\begin{array}{r} 1.37 \\ \pm .07 \end{array}$	$\begin{gathered} .86 \\ \pm .06 \end{gathered}$		$\begin{array}{r} 1.82 \\ \pm .55 \end{array}$	$\begin{aligned} & 1.75 \\ & \pm .07 \end{aligned}$	$\begin{aligned} & 16.4 \\ & \pm .90 \end{aligned}$	$\begin{array}{r} -1.33 \\ +2.07 \end{array}$	$\begin{gathered} .78 \\ \pm .49 \end{gathered}$	$\begin{array}{r} .99 \\ +.08 \end{array}$	$\begin{gathered} .98 \\ \pm .07 \end{gathered}$
	3 Dec	$\begin{array}{r} 1.14 \\ \pm .05 \end{array}$	$\begin{gathered} .11 \\ \pm .04 \end{gathered}$		$\begin{gathered} .31 \\ \pm .52 \end{gathered}$	$\begin{gathered} .49 \\ \pm .05 \end{gathered}$	$\begin{aligned} & 19.4 \\ & \pm .7 \end{aligned}$	$\begin{aligned} & 1.25 \\ & \pm .20 \end{aligned}$	$\begin{gathered} .41 \\ \pm .37 \end{gathered}$	$\begin{gathered} .83 \\ \pm .07 \end{gathered}$	$\begin{array}{r} 1.12 \\ \pm .05 \end{array}$

Table VII-3

Hudson River Fish $1968 \mathrm{pCl} / \mathrm{g}$ Wet Weight. Average of all species and stations

Month Collected	No. Samples	Cs-137	Co-60	Zn -65	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-23?
June '68	8	$\begin{aligned} & .032 \\ & \pm .010 \end{aligned}$	$\begin{gathered} .003 \\ \pm .007 \end{gathered}$	$\begin{aligned} & -.026 \\ & \pm .079 \end{aligned}$	$\begin{gathered} .018 \\ \pm .017 \end{gathered}$	$\begin{aligned} & 1.36 \\ & \pm .26 \end{aligned}$	$\begin{array}{r} -.113 \\ \pm .246 \end{array}$	$\begin{gathered} .070 \\ \pm .030 \end{gathered}$	$\begin{aligned} & .009 \\ & +.010 \end{aligned}$	$\begin{array}{r} .010 \\ +.008 \end{array}$
Juiy '68	6	$\begin{array}{r} .032 \\ \pm .017 \end{array}$	$\begin{aligned} & .007 \\ & \pm .006 \end{aligned}$	$\begin{gathered} .001 \\ \pm .040 \end{gathered}$	$\begin{gathered} .015 \\ +.014 \end{gathered}$	$\begin{gathered} 1.39 \\ \pm .38 \end{gathered}$	$\begin{aligned} & 0.42 \\ & \pm .115 \end{aligned}$	$\begin{gathered} .049 \\ \pm .039 \end{gathered}$	$\begin{gathered} .009 \\ \pm .002 \end{gathered}$	$\begin{gathered} .003 \\ \pm .003 \end{gathered}$
Sept ${ }^{\prime} 68$	2	$\begin{aligned} & .019 \\ & \pm .013 \end{aligned}$	$\begin{gathered} .009 \\ \pm .003 \end{gathered}$	$\begin{gathered} .036 \\ \pm .008 \end{gathered}$	$\begin{gathered} .093 \\ \pm .049 \end{gathered}$	$\begin{aligned} & 2.15 \\ & \pm .27 \end{aligned}$	$\begin{gathered} .212 \\ \pm .004 \end{gathered}$	$\begin{gathered} .010 \\ \pm .018 \end{gathered}$	$\begin{aligned} & .014 \\ & \pm .001 \end{aligned}$	$\begin{aligned} & . .001 \\ & \pm .001 \end{aligned}$
Oct '68	3	$\begin{aligned} & .022 \\ & \pm .009 \end{aligned}$	$\begin{gathered} .003 \\ \pm .001 \end{gathered}$	$\begin{aligned} & .037 \\ & \pm .026 \end{aligned}$	$\begin{gathered} .029 \\ \pm .011 \end{gathered}$	$\begin{aligned} & 1.89 \\ & \pm .36 \end{aligned}$	$\begin{gathered} .002 \\ \pm .040 \end{gathered}$	$\begin{gathered} .014 \\ \pm .027 \end{gathered}$	$\begin{gathered} .009 \\ \pm .007 \end{gathered}$	$\begin{gathered} .002 \\ \pm .002 \end{gathered}$

+Standard error due to pooling: of samples.

Table VII-4

Hudson River Fish $1968 \mathrm{pCl} / \mathrm{g}$ Wet Weight. All collections averaged for species (standard error for $n>l$ is due to pooling)

Species	No. of Samples	Cs-137	Co-60	2n-65	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-232
Bullheads	$\mathrm{n}=1$	$\begin{gathered} .025 \\ \pm .004 \end{gathered}$	$\begin{gathered} .009 \\ \pm .003 \end{gathered}$	$\begin{gathered} .045 \\ \pm .039 \end{gathered}$	$\begin{aligned} & .017 \\ & \pm .004 \end{aligned}$	$\begin{aligned} & 1.53 \\ & \pm .06 \end{aligned}$	$\begin{aligned} & -.055 \\ & \pm .135 \end{aligned}$	$\begin{gathered} .025 \\ \pm .032 \end{gathered}$	$\begin{gathered} .003 \\ \pm .004 \end{gathered}$	$\begin{gathered} .006 \\ \pm .004 \end{gathered}$
White Perch	$n=7$	$\begin{gathered} .037 \\ \pm .014 \end{gathered}$	$\begin{gathered} .001 \\ \pm .007 \end{gathered}$	$.001$	$\begin{gathered} .026 \\ \pm .018 \end{gathered}$	$\begin{aligned} & 1.68 \\ & \pm .32 \end{aligned}$	$\begin{gathered} .083 \\ \pm .106 \end{gathered}$	$\begin{gathered} .058 \\ \pm .049 \end{gathered}$	$\begin{array}{r} .011 \\ .004 \end{array}$	$\begin{aligned} & .004 \\ & \pm .003 \end{aligned}$
Pumpkinseed	$\mathrm{n}=2$	$\begin{gathered} .033 \\ \pm .005 \end{gathered}$	$\begin{gathered} .002 \\ \pm .008 \end{gathered}$	$\begin{array}{r} -.003 \\ \pm .076 \end{array}$	$\begin{gathered} .015 \\ \pm .027 \end{gathered}$	$\begin{array}{r} 1.59 \\ \pm .15 \end{array}$	$\begin{aligned} & -.220 \\ & \pm .116 \end{aligned}$	$\begin{gathered} .080 \\ \pm .025 \end{gathered}$	$\begin{gathered} .009 \\ \pm .001 \end{gathered}$	$\begin{gathered} .009 \\ \pm .003 \end{gathered}$
Fresh Water Killifish	$n=3$	$\begin{aligned} & .024 \\ & \pm .020 \end{aligned}$	$\begin{gathered} .010 \\ \pm .005 \end{gathered}$	$\begin{array}{r} -.069 \\ \pm .112 \end{array}$	$\begin{gathered} .059 \\ \pm .064 \end{gathered}$	$\begin{array}{r} 1.41 \\ \pm .81 \end{array}$	$\begin{array}{r} -.138 \\ \pm .427 \end{array}$	$\begin{gathered} .049 \\ \pm .028 \end{gathered}$	$\begin{gathered} .014 \\ \pm .018 \end{gathered}$	$\begin{gathered} .014 \\ \pm .013 \end{gathered}$
Common Sunfish	$\mathrm{n}=2$	$\begin{gathered} .022 \\ \pm .006 \end{gathered}$	$\begin{gathered} .007 \\ \pm .002 \end{gathered}$	$\begin{gathered} .002 \\ \pm .059 \end{gathered}$	$\begin{gathered} .014 \\ \pm .017 \end{gathered}$	$\begin{aligned} & 1.11 \\ & \pm .04 \end{aligned}$	$\begin{gathered} .076 \\ \pm .134 \end{gathered}$	$\begin{aligned} & .025 \\ & \pm .012 \end{aligned}$	$\begin{gathered} .008 \\ \pm .001 \end{gathered}$	$\begin{gathered} .003 \\ \pm .001 \end{gathered}$
Red Bellied Sunfish	$\mathrm{n}=1$	$\begin{gathered} .033 \\ \pm .005 \end{gathered}$	$\begin{gathered} .010 \\ \pm .005 \end{gathered}$	$\begin{array}{r} .035 \\ \pm .049 \end{array}$	$\begin{gathered} .013 \\ \pm .006 \end{gathered}$	$\begin{aligned} & 1.02 \\ & \pm .07 \end{aligned}$	$\begin{array}{r} -.086 \\ \pm .177 \end{array}$	$\begin{gathered} .078 \\ +.044 \end{gathered}$	$\begin{gathered} .006 \\ \pm .006 \end{gathered}$	$\begin{gathered} .002 \\ \pm .005 \end{gathered}$
Golden Shiner	$\mathrm{n}=1$	$\begin{aligned} & .017 \\ & \pm .005 \end{aligned}$	$\begin{gathered} .006 \\ \pm .005 \end{gathered}$	$\begin{gathered} .008 \\ \pm .056 \end{gathered}$	$\begin{gathered} .006 \\ \pm .006 \end{gathered}$	$\begin{aligned} & 1.44 \\ & \pm .09 \end{aligned}$	$\begin{gathered} .071 \\ \pm .202 \end{gathered}$	$\begin{gathered} .043 \\ \pm .050 \end{gathered}$	$\begin{gathered} .010 \\ \pm .007 \end{gathered}$	$\begin{gathered} .001 \\ \pm .006 \end{gathered}$
Alewife	$\mathrm{n}=1$	$\begin{gathered} .022 \\ \pm .033 \end{gathered}$	$\begin{gathered} .004 \\ \pm .003 \end{gathered}$	$\begin{gathered} .065 \\ \pm .025 \end{gathered}$	$\begin{gathered} .038 \\ \pm .003 \end{gathered}$	$\begin{array}{r} 2.25 \\ \pm .05 \end{array}$	$\begin{gathered} .008 \\ \pm .092 \end{gathered}$	$\begin{aligned} & . .015 \\ & \pm .022 \end{aligned}$	$\begin{gathered} .007 \\ \pm .004 \end{gathered}$	$\begin{gathered} .004 \\ \pm .003 \end{gathered}$
Hogchoker	$\mathrm{n}=1$	$\begin{gathered} .015 \\ \pm .002 \end{gathered}$	$\begin{gathered} .002 \\ \pm .002 \end{gathered}$	$\begin{gathered} .032 \\ \pm .019 \end{gathered}$	$\begin{gathered} .017 \\ \pm .002 \end{gathered}$	$\begin{array}{r} 1.48 \\ \pm .04 \end{array}$	$\begin{gathered} .040 \\ \pm .071 \end{gathered}$	$\begin{gathered} .017 \\ \pm .017 \end{gathered}$	$\begin{gathered} .005 \\ \pm .003 \end{gathered}$	$\begin{aligned} & -.000 \\ & \pm .002 \end{aligned}$

```
Table VII-5 (con't)
```

Hudson RIver Vegetation 1968. Average pCi/g Wet Weight for all species Aug. 2l-Sept. 17
EAST BANK ONLY

Miles from Battery Park	No. of Samples	Cs-137	Co-60	$\mathrm{Zn}-65$	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-232
52.9	3	$\begin{aligned} & .024 \\ & +.003 \\ & (.007) \end{aligned}$	$\begin{aligned} & .022 \\ & +.003 \\ & (.006) \end{aligned}$	$\begin{aligned} & .033 \\ & +.026 \\ & (.006) \end{aligned}$	$\begin{aligned} & .798 \\ & +.006 \\ & (.173) \end{aligned}$	$\begin{aligned} & 1.95 \\ & +.04 \\ & \mathbf{T} .34) \end{aligned}$	$\begin{aligned} & .332 \\ & +.102 \\ & \mathbf{T} .332) \end{aligned}$	$\begin{aligned} & .109 \\ & +.053 \\ & (.037) \end{aligned}$	$\begin{aligned} & .091 \\ & +.004 \\ & (.012) \end{aligned}$	$\begin{aligned} & .027 \\ & +.003 \\ & \text { (.009) } \end{aligned}$

Hiudson River Vegetation 1968. Average pCl/g wet Weight for all species Aug. 21-Sept. 17
hest bank oniy
(...) pounting standard error

Miles from Battery Park	No. of Samples	Cs-137	Co-60	Zn-65	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-232
35.5	2	$\begin{aligned} & .009 \\ & +.012 \\ & (.008) \end{aligned}$	$\begin{aligned} & .105 \\ & +.011 \\ & (.054) \end{aligned}$	$\begin{aligned} & .168 \\ & \pm .104 \\ & \text { T.045) } \end{aligned}$	$\begin{aligned} & 4.48 \\ & \pm .042 \\ & (2.33) \end{aligned}$	$\begin{aligned} & 1.11 \\ & +.14 \\ & (.134) \end{aligned}$	$\begin{gathered} .560 \\ +.455 \\ \mathbf{T} .211) \end{gathered}$	$\begin{aligned} & .170 \\ & +.118 \\ & \text { (.018) } \end{aligned}$	$\begin{aligned} & .096 \\ & +.014 \\ & (.041) \end{aligned}$	$\begin{aligned} & .014 \\ & +.013 \\ & (.006) \end{aligned}$
38.1	2	$\begin{aligned} & .005 \\ & +.015 \\ & \text { (0.10) } \end{aligned}$	$\begin{gathered} .145 \\ +.015 \\ (0.19) \end{gathered}$	$\begin{aligned} & .295 \\ & +.130 \\ & (.083) \end{aligned}$	$\begin{aligned} & 5.49 \\ & +.054 \\ & \mathbf{T} .57) \end{aligned}$	$\begin{aligned} & 2.18 \\ & +.20 \\ & +.58) \end{aligned}$	$\begin{aligned} & 1.40 \\ & +.548 \\ & \text { (. } 52) \end{aligned}$	$\begin{aligned} & .228 \\ & +.152 \\ & (.078) \end{aligned}$	$\begin{aligned} & \text {. } 103 \\ & \text { +.023 } \\ & \text { T.048) } \end{aligned}$	$\begin{aligned} & .010 \\ & +.018 \\ & (.024) \end{aligned}$
Ц. 39.2	1	$\begin{gathered} .008 \\ \pm .007 \end{gathered}$	$\begin{gathered} .002 \\ \pm .006 \end{gathered}$	$\begin{array}{r} -.047 \\ \pm .058 \end{array}$	$\begin{gathered} .902 \\ \pm .015 \end{gathered}$	$\begin{gathered} .240 \\ \pm .082 \end{gathered}$	$\begin{array}{r} 1.04 \\ \pm .23 \end{array}$	$\begin{gathered} .383 \\ \pm .063 \end{gathered}$	$\begin{gathered} .034 \\ \pm .010 \end{gathered}$	$\begin{gathered} .008 \\ \pm .007 \end{gathered}$
1. 40.2	2	$\begin{aligned} & -.001 \\ & +.008 \\ & \text { T.003) } \end{aligned}$	$\begin{gathered} .126 \\ +.008 \\ (.043) \end{gathered}$	$\begin{gathered} .197 \\ +.071 \\ \text { (.064) } \end{gathered}$	$\begin{aligned} & 4.06 \\ & +.032 \\ & (1.77) \end{aligned}$	$\begin{aligned} & 1.37 \\ & +.11 \\ & \mathbf{+} .33) \end{aligned}$	$\begin{aligned} & .533 \\ & +.307 \\ & (.140) . \end{aligned}$	$\begin{aligned} & .112 \\ & +.086 \\ & \mathbf{T . 0 6 9)} \end{aligned}$	$\begin{aligned} & .047 \\ & +.013 \\ & 7.000) \end{aligned}$	$\begin{aligned} & -.004 \\ & +.010 \\ & \mathbf{T . 0 0 9)} \end{aligned}$
- 44.3	4	$\begin{aligned} & .009 \\ & +.008 \\ & (.007) \end{aligned}$	$\begin{aligned} & .121 \\ & +.007 \\ & (.034) \end{aligned}$	$\begin{aligned} & .211 \\ & +.071 \\ & (.038) \end{aligned}$	$\begin{aligned} & 3.24 \\ & \mathbf{+ . 0 2 4} \\ & \mathbf{T} .908) \end{aligned}$	$\begin{aligned} & 1.76 \\ & +.10 \\ & +.27) \end{aligned}$	$\begin{gathered} .598 \\ +.291 \\ (.483) \end{gathered}$	$\begin{aligned} & .182 \\ & +.071 \\ & \mathbf{T . 0 9 9)} \end{aligned}$	$\begin{gathered} .145 \\ +.011 \\ (.093) \end{gathered}$	$\begin{aligned} & .029 \\ & +.009 \\ & \mathbf{T . 0 1 9)} \end{aligned}$
45.2	3	$\begin{aligned} & .024 \\ & \pm .005 \\ & \text { (.015) } \end{aligned}$	$\begin{aligned} & .052 \\ & +.004 \\ & (.005) \end{aligned}$	$\begin{aligned} & .088 \\ & +.042 \\ & (.027) \end{aligned}$	$\begin{aligned} & 1.48 \\ & +.01 \\ & \text { (.26) } \end{aligned}$	$\begin{aligned} & 1.91 \\ & +.06 \\ & +.24) \end{aligned}$	$\begin{aligned} & .657 \\ & +.161 \\ & \uparrow .157) \end{aligned}$	$\begin{aligned} & .082 \\ & +.040 \\ & \mathbf{T . 0 2 4)} \end{aligned}$	$\begin{gathered} .088 \\ +.006 \\ (.024) \end{gathered}$	$\begin{gathered} .026 \\ +.005 \\ \text { (.016) } \end{gathered}$
48.2	3	$\begin{aligned} & .026 \\ & +.007 \\ & \tau .009) \end{aligned}$	$\begin{aligned} & .058 \\ & +.007 \\ & (.021) \end{aligned}$	$\begin{aligned} & .158 \\ & +.072 \\ & \uparrow .106) \end{aligned}$	$\begin{aligned} & 1.76 \\ & +.02 \\ & 7.80) \end{aligned}$	$\begin{aligned} & 2.05 \\ & +.10 \\ & \text { (.37) } \end{aligned}$	$\begin{gathered} .386 \\ +.265 \\ +. .659) \end{gathered}$	$\begin{aligned} & .130 \\ & +.065 \\ & (0.39) \end{aligned}$	$\begin{aligned} & .137 \\ & +.010 \\ & \mathbf{T} .035) \end{aligned}$	$\begin{gathered} .030 \\ +.008 \\ \mathbf{T . 0 0 9)} \end{gathered}$
50:9	3	$\begin{gathered} .016 \\ +.005 \\ +.009) \end{gathered}$	$\begin{gathered} .038 \\ +.005 \\ \mathbf{T . 0 0 6)} \end{gathered}$	$\begin{aligned} & .131 \\ & +.047 \\ & (.058) \end{aligned}$	$\begin{aligned} & 1.61 \\ & +.013 \\ & \mathbf{T} .53) \end{aligned}$	$\begin{aligned} & 1.89 \\ & +.076 \\ & (.404) \end{aligned}$	$\begin{gathered} .947 \\ +.186 \\ +.731) \end{gathered}$	$\begin{aligned} & .122 \\ & +.047 \\ & (.014) \end{aligned}$	$\begin{aligned} & .146 \\ & +.008 \\ & (.069) \end{aligned}$	$\begin{aligned} & .034 \\ & +.007 \\ & (.008) \end{aligned}$

Table VII-7

Radionuclide Concentration in Hudson River Water: South of West Point
Summary Data: 1964-1968

Radionuclide		1964 Con	$\frac{\text { entration i }}{1965}$	$\frac{\mathrm{pCi} / \text { Iiter }}{1966}$	1967	1968 -
40_{K}	Mean	$29.54+2.14$	$34.20+3.82$	16.97+0.58	7.43+0.67	5.81+0.46
	Range	ND $\quad 45.74$	1.34-65.56	$1.90-22.82$	ND $=37.42$.	2.66-7.86
	Ratio*	8/9	$7 / 7$	19/19	9/11	6/6
${ }^{226} \mathrm{Ra}$	Mean	0.01 ± 0.07	$0.50+0.23$	$0.11+0.04$	$0.20+0.05$	<0.05
	Range	ND $=0.12$	ND -2.06	ND $=0.55$	ND $=1.48$	ND -0.15
	Ratio	2/9	4/7	9/19	6/11	1/6
2288 Ra	Mean -	$0.93+0.29$	$0.30+0.18$	$0.08+0.03$	$0.17+0.03$	$0.12+.04$
	Range	ND $=2.96$	ND -1.11	ND $=0.34$	ND $=1.10$	ND $=0.34$
	Ratio	8/9	4/7	9/19	9/11	5/6
54 Mn	Mean	0.36 ± 0.12	0.01 ± 0.11	$0.09+0.03$	0.07 ± 0.04	0.37 ± 0.05
	Range	ND -1.25	ND $=0.05$	ND $=0.23$	ND $=0.17$	$0.04=0.78$
	Ratio	5/9	$1 / 7$	9/19	10/11	$6 / 6$
${ }^{60}$ Co	Mean	0.11 ± 0.09	0.17 ± 0.18	0.08+0.03	0.07 ± 0.04	$0.00+0.03$
	Range	ND $=0.70$	ND $=0.60$	ND $=0.32$	ND $=0.33$	ND $=0.13$
	Ratio	2/9	$3 / 7$	9/19	9/11	1/6 :
${ }^{106} \mathrm{Ru}$	Mean	2.77 ± 1.45	1.55 ± 0.67	0.30 ± 0.14	0.27 ± 0.09	$0.78+0.19$
	Range	ND -13.60	ND $=5.08$	ND -1.92	ND $=0.80$	0.10-1.50
	Ratio	4/9	3/7	8/19	8/11	6/6 -
${ }^{137}$ Cs	Mean	1.24 ± 0.21	0.94 ± 0.29	$0.12+0.04$	$0.22+0.04$	$0.01+0.03$
	Range	ND -3.70	0.01 -1.90	$\mathrm{ND}=0.40$	ND -1.76	ND -0. 13
	Ratio	8/9	7/7	15/19	9/11	3/6
${ }^{144} \mathrm{Ce}$	Mean	$0.52+0.34$	1.32 ± 0.66	$0.12+0.09$	$0.34+0.11$	0.83+0.17
	Range	ND -3.92	ND $=3.20$	ND $=0.48$	ND $=2.66$	$0.06-2.95$
	Ratio	3/9	5/7	10/19	7/11	6/6

*Ratio $=\mathbb{N o}$. of samples containing measurable activity/total No. of samples analyzed.
ND : = None detected.

* .. = Indian Point stations only for 1968, May and August samples.
VII-9

Table VII-8

Radionuclide Concentrations in Hudson River water: North of West Point Summary Data: 1965-1967

Badionuclide		Concentration in pCi/liter			
		1965	1966	1967	
${ }^{40} \mathrm{~K}$	Mean	$1.55+0.49$	$1.57+0.44$	$1.23+0.24$	
	Range	ND $=8.51$	ND $=5.40$	ND $=3.63$	
	Ratio*	7/18	12/19	13/15	*
$226_{\text {Ra }}$	Mean	$0.09+0.04$	$0.11+0.05$	$0.04+0.02$	
	Range	ND $=0.34$	ND $=0.46$	ND $=0.16$	
	Ratio	6/18	12/19	8/15	
228 Ra	Mean	$0.09+0.04$	$0.07+0.03$	0.03+0.01	
	Range	ND $=0.33$	ND $=0.44$	ND $=0.14$	-
	Ratio	13/18	9/19	6/15	
$5^{4} \mathrm{Mn}$	Mean	$0.11+0.05$	0.06 ± 0.02	$0.04+0.02$	
	Range	ND $=0.44$	ND $=0.36$	ND $=0.15$	
	Ratio	11/18	6/19	10/15	
${ }^{60} \mathrm{Co}$	Mean	$0.08+0.04$	$0.06+0.03$	$0.02+0.01$	
	Range	ND $=0.35$	ND $=0.34$	ND $=0.07$	
	Ratio	9/18	7/19	7/15	
${ }^{106} \mathrm{Ru}$	Mean	0.27 ± 0.16	0.47 ± 0.17	$0.16+0.05$	
	Range	ND -1.69	ND -2.40	ND $=0.49$	
	Ratio	7/18	11/19	9/15	$?$
${ }^{137}$ Cs	Mean	$0.19+0.05$	$0.10+0.03$	0.03+0.01	
	Range	ND $=0.50$	ND $=0.27$	ND $=0.08$	-
	Ratio	13/18	14/19	9/15	
${ }^{144} \mathrm{Ce}$	Mean	0.48 ± 0.15	0.30 ± 0.11	$0.12+0.04$	\cdots
	Range	ND $=1.68$	ND $=0.80$	ND $=0.43$	
	Ratio	12/18	13/19	9/15 .	:

*Ratio $=$ No. of samples containing measurable activity/total No. of samples analyzed.

ND $=$ None detected.

Radionuclide Concentrations in Hudson River Sediments: South of West Point

Summary Data: 1964-1968

Radionuclide		Concentration in pCi/g Dry Weight				1968**
		1964	$\underline{1965}$	1966 .	1967	
${ }^{40} \mathrm{~K}$	Mean	$12.45+0.36$	$13.38+0.32$	14.39+0.46	12.69+0.36	17.37+.45
	Range	5.48-16.43	6.24-21.99	8.11-18.19	$3.50=21.51$	14.6-21:0 0^{\prime},
	Ratio*	11/11	19/19	12/12	14/14	15/15
${ }^{22} 6_{\mathrm{Ra}}$	Mean	0.28 ± 0.02	$0.76+0.03$	$0.74+0.04$	$0.72+0.03$	1.06+. 05
	Range	0.09-0.42	$0.30=1.24$	0.41 -1. 08	0.28 -1.01	0.74-1.27
	Ratio	11/11	19/19	12/12	14/14	15/15 -
228 Ra	Mean	$0.709+0.05$	0.69+0.02	$0.99+0.04$	$0.92 \div 0.03$	$1.16+.04$
	Range	0.06-I. 39	$0.03=1.09$	$0.63-1.37$	$0.27=1.62$	$0.77-1.41$
	Ratio	11/11	19/19	12/12	14/14	15/15
$5^{4} \mathrm{Mn}$	Mean	$0.83+0.03$	$0.13+0.03$	$0.16+0.02$	$0.35+0.02$	$3.21 \pm .05$
	Range	ND -5.17	ND $-\overline{0} .37$	ND -0̄. 32	ND $-\overline{2} .85$	0.43 -10.4
	Ratio	8/11	15/19	11/12	13/14.	15/15
${ }^{60} \mathrm{Co}$	Mean		$0.07+0.02$	$0.08+0.03$	$0.18+0.02$	$1.24+.03$
	Range	ND	ND -0. 25	ND $-\overline{0} .19$	ND $-\overline{0} .80$	ND. $-\overline{3} .48$
	Ratio	0/11	12/19	7/12	12/14	14/15
106 Ru	Mean	$4.54+0.39$	$0.81+0.01$	0.43+0.15i3	$0.55+0.10$	$0.82+.16$
	Range	1.43-11.20	ND - -2.79	ND -I. 98	ND -1. 81	ND -2. 12
	Ratio	11/11	16/19	8/12	11/14	13/15.
${ }^{137}$ Cs	Mean	$0.94+0.03$	$1.12+0.02$	$0.88+0.05$	$0.91+0.02$	$2.16+.04 \cdots$
	Range	$0.17-2.80$	0.09-2.63	0.31 ∓ 2.12	$0.19-2.49$	$0.24=3.88$
	Ratio	11/11	19/19	12/12	14/14	15/15 \ldots
${ }^{144} \mathrm{Ce}$	Mean	$2.38+.12$	$0.99+0.08$	$0.47+0.07$	$0.28+0.06$	
	Range	$0.52=7.73$	ND - $\overline{2} .52$	ND -2. 10	$0.02=0.79$	ND -17.1 - .
	Ratio	11/11	18/19	9/12	14/14	13/15.

[^20]Table VII-10

Radionuclide Concentrations in Hudson River Sediments: North of West Point --

Surmary Data: 1965-1967

Radionuclide

	\because	1965	1966	$\underline{1967}$
${ }^{40} \mathrm{~K}$	Mean	$14.20+0.35$	12.39+0.30	9.23+0.26
--	Range	7.85-23.43	8.49-15.80	$5.21=12.54$
	Ratio*	20/20	19/19	11/11
$226_{R a}$	Mean	$0.76+0.07$	$0.74+0.03$	$0.55+0.02$
	Range	$0.43-1.13$	$0.55 \overline{=1.04}$	$0.25=0.77$
	Ratio	20/20	19/19	11/11
$228{ }_{\text {Ra }}$	Mean	$0.72+0.02$	$0.84+0.02$	0.69+0.02
	Range	0.46 -1.13	$0.47 \overline{-1.15}$	$0.27-1.09$
	Ratio	20/20	19/19	11/11
${ }^{54} \mathrm{Mn}$	Mean	0.08 ± 0.03	$0.08+0.02$	0.05+0.02
	Range	ND $=0.18$	ND $=0.24$	ND $=0.15$
	Ratio	15/20	13/19	9/11
$60_{\text {Co }}$	Mean	$0.02+0.01$	<0.004	0.02+0.01
	Range	ND $=0.10$	ND -0.07	ND $=0.07$
	Ratio	7/20	4/19	5/11
${ }^{106} \text { Ru }$	Mean	0.62 ± 0.10	$0.31+0.09$	$0.11+0.06$
	Range	ND -2.66	ND -1.41	ND $=0.42$
	Ratio	13/20	12/19	7/11
${ }^{137}$ Cs	Mean	0.74 ± 0.03	0.49 ± 0.02	0.33+0.02
	Range	0.01-2.31	ND -1.30	$0.07=0.93$
	Ratio	20/20	15/19	11/11
${ }^{144} \mathrm{Ce}$	Mean	0.70 ± 0.09	0.44 ± 0.06	$0,18 \pm 0.04$
	Range	ND -1.71	ND $=1.05$	ND $=0.42$
:	Ratio	19/20	18/19	10/11

*Ratio $=$ No. of samples containing measurable activity/total No. of samples analyzed.
ND = Mone detected.

Radionuclide Concentrations in Hudson River Fish
Summary Data: 1964-1968

Radionuclides

Concentration in $\mathrm{pCl} / \mathrm{g}$ Wet Weight					
-	1964	1965	1966	1967	1968**
Mean	$0.58+0.02$	0.54 ± 0.04	1.20+0.02	$0.66+0.02$	$1.51+0.02$
Range	ND -2.1	ND -1.4	0.28-3.13	$0.32 \overline{-1.22}$	$0.84-2.30$
Ratio*	47/50	41/44	50/50	16/16	19/19
Mean	$0.002+0.001$	$0.014+0.005$	$0.02+0.00$	$0.02+0.00$	$0.10+0.002$
Range	ND $=0.02$	ND $=0.089$	ND $=0.10$	$0.008-0.03$	ND $=0.032$
Ratio	28/50	26/44	35/50	16/16	18/19
Mean	$0.01+0.003$	$0.007+0.003$	$0.008+0.001$	$0.003+0.00$	0.005 ± 0.001
Range	ND $=0.05$	ND $=0.08$	IND $=0.05$	ND $=0.01$	ND $=0.025$
Ratio	47/50	17/44	29/50	5/16	18/19
Mean	$0.017+0.001$	$0.023+0.006$	$0.016+0.002$	$0.003+0.00$	0.027 ± 0.002
Range	ND $=0.04$	ND $=0.16$	ND $=0.06$	ND $=0.02$	ND -0.127
Ratio	48/50	33/44	38/50	6/16	18/19
Mean	<0.001	$0.01 .0+0.005$	$0.002+0.001$	0.003 ± 0.001	$0.005+0.001$
Range	ND -0.01	ND $=0.16$	ND =0.02	ND $=0.01$	ND $=0.022$
Rätio	11/50	19/44	-7/50	5/16	14/19
Mean	0.077 ± 0.014	$0.092+0.024$	$0.029+0.009$	$0.04+0.01$	$0.024+0.002$
Range	ND =0.42	ND $\overline{-1.50}$	ND $=0.15$	$0.01=0.07$	ND 0.064
Ratio	41/50	30/44	34/50	16/16	17/19
Mean	$0.036+0.001$	$0.041+0.005$	0.029 ± 0.002	$0.02+0.00$	$0.031+0.001$
Range	ND $=0.09$	ND $=0.13$	ND $=0.16$	$0.01=0.10$	$0.011=0.07$
Ratio	49/50	42/44	49/50	16/16	19/19
Mean	$0.038+0.003$	$0.042+0.014$	$0.012+0.004$	0.01 ± 0.00	<0.045
Range	ND $=0.14$	ND $=0.51$	ND $=0.59$	ND -0.03	ND -0.266
Ratio	43/50	22/44	27/50	6/16	9/19

*Ratio $=$ NO. of samples containing activity/total No. of samples.
ND = None detected.
** $=1968$ Samples from June to October.

Table VII-12

Radionuclide Concentration in Hudson River Vegetation

Summary Data: 1965-1968

[^21]and down the river. For vegetation samples, collections were made between Cold Spring in the north to Grassy Point in the south, and can be equated with the samples collected in previous years.

Water samples for May and August only were analyzed. Little consistent or significant difference can be seen between samples from east, mid or west channel stations. The major contributor to activity is the potassium-40 component of stable potassium, and this increases with increasing salinity of the water. - Values of $k-40$ for 1968, like 1967, were considerably less than in the years 1964 to 1966 when drought conditions increased the sea water incursion. Levels of the natural nuclides, radium226 and thorium, were similar to those seen in previous ". years. Manganese-54, known to be released from the reactor, was high in 1968, as it was in 1964, and this could be related to known releases from the plant. Cobalt60, presumably derived from fall-out and present in other years, was virtually undetectable in 1968. Ruthenium-i06 was higher than the previous few years, but not so high as in 1964. Cesium-137, derived from the diminishing fallout, was very small. Cerium-144, a minor activation product,minn a was a little higher than in most former years.

Apart from potassium-40, manganese-54 was the major nuclide in muds and was consistently high in the samples collected throughout the year. Cerium-144 was occasionally high, but the computer analysis sometimes gave negative estimates of its activity. Some zinc-65 appeared in the mud samples, presumably derived from fall-out.* East shore samples (closest to the reactor effruent) were consistently higher (especially in manganese-54) than other samples. The mud samples were higher in manganese-54 than in previous years, but this undoubtedly reflects differences in the sampling schedule (see above). Cobalt-60, cesium-i37 and cerium-144 were also a little higher than in previous years.

There were observable changes in the levels of activity of manganese-54, zinc-65 and cerium-144 in the muds during the progress of the year (Figure VII-I). It is not known if this reflects only intermittent releases from the plant, or other unrelated environmental changes, such as the changing salinity which could affect sequestration of colloidal material on to the sediment particles.

Fish species were sampled individually from June through October, from both east and west shore stations. No consistent differences were observed between the nine different species, even though some of these were summer

* Reevaluation of the γ-spectroscopy suggests that the peak attributed to zinc-65 is due to iron-59 in all samples.

Figure VII-1 Pooled (E,W and Mid-channel) mud samples

migrants and some year-round residents: some were carnivores, others mixed feeders. The principal contributor to total radioactivity was pptassium-40 ($0.85-2.34 \mathrm{pCi} / \mathrm{g}$ wet weight). Other nuclides (Zn-65, Mn-54, Cs-137, Co-60, Ra-226 and Th-232) were all $0.1 \mathrm{pCi} / \mathrm{g}$ wet weight or less. The levels of individual nuclides varied little from estimates of previous years. Such differences as were seen probably reflect the different species sampled, or different sizes .. of fish sampled, rather than different environmental conditions. Hence the fish do not seem to reflect environmental changes since time of collections, sampling site, or feeding regime do not seem to affect radionuclide levels in the fish significantly.

Rooted shore plants were collected from June through September (the extent of the growing season), and individual species were sampled separately (Appendix VII-l, Table 4): In the vicinity of the reactor effluent, manganese-54 was the largest contributor to the total radioactivity. There Is evidence of an increase in manganese-54 levels (Figure VII-. 2) as well as in cobalt-60 and ruthenium-106 during the growing season. Other nuclides, for example cesium-137, do... not seem to show such seasonal increases.

During the summer months, the plants were sampled extensively, not only from the routine east and west shore stations at Indian Point, but at a series of stations on both

Figure VII-2 Accumulation of nuclides in Potamogeton species during growing season.

east and west banks between Grassy Point, 38 miles north of Battery Park, and Cold Spring, 53 miles north of Battery Park. .The levels of manganese-54 in the plants were highest at stations nearest, to the reactor effluent, as demonstrated In previous years; a similar distribution was observed for cobalt-60 and to a lesser extent for ruthenium-106. Other nuclides, for instance, cesium-137, did not show such a pattern of distribution (Figure VII-3). This pattern of distribution was much less obvious in samples collected from the west bank.

Compared with earlier years of sampling, the vegetation shows considerably higher levels of some nuciides, notably manganese-54, and to a lesser extent, cobalt-60, ruthenium106, and cerium-144. It is thought that this is related to known releases from the reactor in the early part of 1968 , but since the releases apparently occurred before the initiation of the growing season, the correlation is not a simple one. Whether the plants take up the nuciides, particularly manganese, from soluble or particulate material. in the ambient water, or if it is derived by a single or multiple process from the bottom sediments, is not clear.

It is certain, however, that the species of plants sampled are effective accumulators of some radionuclides, in particular manganese-54. This accumulation reflects the

Miles from Battery Park
Pooled vegetation samples, east bank only.
plants' ability to accumulate stable manganese and other similar elements. For this reason, the plants perform a useful_role as environmental monitors of radioactivity.in_ the water, often when water activity is so low as to be difficult to measure in reasonably small sample volumes. The ability of the plants, or other biota, to take up radiomanganese or other nuclides, can be predicted by their. ability to take up the stable elements, as revealed by their stable element concentration.

The relation between the stable element or radionuclide concentration in animals and plants, and the level of the element or its isotope in the ambient water has been called the "concentration factor", the extent to which an animal or plant can accumulate an element or its isotope from the surrounding medium. Some attempt has been made to define this "concentration factor" for manganese for several classes of biota in the river (Table VII-13) for stable and radioactive manganese. However, a number of problems arises. In the first place, the concentration factor should be similar for all isotopes of an element since the mechanisms for accumulation are the same; only for isotopes of hydrogen, and doubtfully for carbon, is there evidence for a mass effect an which would discriminate between the isotopes. Hence the

Table VII-l3 , MANGANESE LEVELS IN WATER, MUD AND BIOTA

> HUDSON RIVER; 1965-1968

		MANGANESE	MANGANESE-54	$\frac{\mathrm{Mn}^{54} \mathrm{pCi}}{\mathrm{Mn} 53 \mathrm{pg}}$
	WATER:	soluble 0.5-12 $\mu \mathrm{g} / 1$ total ca. $1 \mathrm{mg} / 1$	0.18,0.01-0.37 pCi/1	0.18×10^{-9}
	MUD	$\begin{aligned} & 1.52 \mathrm{mg} / \mathrm{g} \mathrm{dry} \\ & (C F \mathrm{l}=1500) \end{aligned}$	$\begin{aligned} & 0.93,0.13-3.2 . \mathrm{pCi} / \mathrm{g} \\ & \text { (CF 5000). } \end{aligned}$	0. 61×10^{-9}
S	PLANTS	$2.3 \mathrm{mg} / \mathrm{g}$ wet (CF 2300)	1.6,0.41-4.3 pCi/g (CF 9000)	0. 7×10^{-9}
$\begin{gathered} \mathbf{1} \\ \underset{\omega}{\omega} \end{gathered}$	FISH	$\begin{aligned} & 0.006 \mathrm{mg} / \mathrm{g} \text { wet } \\ & \text { (CF 6) } \end{aligned}$	$\begin{aligned} & 0.017,0.003-0.027 \mathrm{pCi} / \mathrm{g} \\ & \quad \text { (CF 1000) } \end{aligned}$	2. 8×10^{-9}
	CLAMS	ca. $0.005 \mathrm{mg} / \mathrm{g}$ wet (CF 5)	```0.13 pCi/g (1965 only) (CF 7000)```	26×10^{-9}

CF is concentration factor, ratio of concentration in sample to concentration in water.
concentration factors for stable manganese and radioactive manganese should be the same, if equilibrium has been reached. Secondly, the level of concentration in the ambient medium is rarely known with as much accuracy as that of the biological samples. The reason is that concentrations are generally several orders of magnitude lower, and hence the accuracy of determination is often less, unless very large samples are concentrated. Another difficulty lies in determining that part of the element which is available. For instance, in the case of manganese (Table VII-13) the soluble, stable,-manganese (remaining after millipore filtration) is of the order of $10 \mathrm{ug} /$ liter, but total manganese (including.colloidal forms) is thought to be about $1 \mathrm{mg} /$ liter. Radioactive manganese on the other hand, has been determined from a Whatman paper filtered sample, which would not retain colloids, but would retain particulates. Hence the comparable samples have $1 \mathrm{mg} \mathrm{Mn} / \mathrm{z}$. liter and $0.18 \mathrm{pCi} \mathrm{Mn}-54 /$ liter. A still further complexity in determining concentration factors is that the water concentrations are rarely stable, but fluctuate so that it is difficult to define a level of concentration which may be termed characteristic of long periods.

In addition, the concentration factor implies that ambient water is the principal source of an element or nuclide, that entry through the diet is relatively insignificant, and that homeostatic mechanisms are also relatively unimportant in determining the equilibrium concentrations in animal or plant tissues.

In general, although the concentration factor gives some indication of the accumulation powers of the biota, the concept of specific activity (the ratio of radionucilde concentration to stable element concentration) seems more meaningful. In the Indian Point environment, it is clear. that the rooted plants serve as efficient integrating monitors of environmental manganese (in any form) because they have mechanisms for sequestrating stable manganese. At the same time the fish, which like other vertebrates, have a limited absorption of manganese in the gut to supply the animal's requirements, do not accumulate stable or radioactive manganese to any large extent. Hence the concentration of stable manganese in fish tissues is small, and this limits the level of concentration of radiomanganese that can be acheived by the fish. Clams, on the other hand, $=-$ which may contain plant foodstuffs unabsorbed, or phagocytosed in the digestive system, have greater powers of accumulation even though the element may not be physiologically incorporated into their tissues. However, the specific activities
of stable to radioactive manganese still reveal inconsistencies, or lack of agreement with the theory tbat at equilibrium the specific activity should reach
...............i a stable level, since the ratios for fish and clams are out of line with those for mud and vegetation. The inconsistencies may be resolved with further investigation of the water and biota from Indian Point, since some of the stable manganese concentrations used in Table VII-13 are derived from literature values for other species. In addition, it is not sure whether the plants or animals sampled at Indian Point are in equilibrium with respect to manganese-54, although they must be for stable manganese.

Appendix VII-1

Radionuclide Data for individual samples of water, mud, vegetation and fish, 1968.

Hudson River later 1968 Indian Point Stations Whatman Filtered Individual Samples. Mean \pm standard error due to counting
pCl/IIter

Table 2
Hudson River Mud 1968 Indian Point Stations. Individual Samples Mean \pm standard error due to counting .
$\mathrm{pCl} / \mathrm{g}$ Dry Weight

Table 2 (c.on't) . Hudson River Mud 1968 Indian Point Stations Individual Samples

Table 2 (con't) Hudson River Mud 1968 Indian Point Stations Individual Samples
pCi/g Dry

Sample	Site	$\begin{aligned} & \text { Dry } \\ & \text { Weight } \end{aligned}$	Cs-137	Co-60	Zn-65	Mn-54	$\mathrm{K}-40$	Zr-95	Ce-144	Ru-106	Ra-226	Th-232
$\begin{aligned} & \# 65 \mathrm{M} \\ & 3 \mathrm{Dec} \end{aligned}$	II-W-I	16.30	$\begin{gathered} 0.887 \\ \pm .0780 \end{gathered}$	$\begin{aligned} & -0.0870 \\ & \pm .0777 \end{aligned}$	$\begin{aligned} & 1.44 \\ & \pm .926 \end{aligned}$	$\begin{array}{r} 0.105 \\ \pm .083 \end{array}$	$\begin{aligned} & 20.1 \\ & \pm 2.23 \end{aligned}$	$\begin{aligned} & -0.139 \\ & \pm .140 \end{aligned}$	$\begin{array}{r} 1.05 \\ \pm .35 \end{array}$	$\begin{array}{r} 0.211 \\ \pm .658 \end{array}$	$\begin{array}{r} 0.943 \\ +.125 \end{array}$	$\begin{aligned} & 1.27 \\ & +.088 \end{aligned}$
$\begin{aligned} & \text { \#66m } \\ & 3 \mathrm{Dec} \end{aligned}$	Indian Pt. Mid-Channel	15.98	$\begin{aligned} & 2.09 \\ & \pm .0923 \end{aligned}$	$\begin{gathered} 0.326 \\ \pm .0861 \end{gathered}$	$\begin{array}{r} 0.878 \\ \pm .987 \end{array}$	$\begin{aligned} & 0.990 \\ & \pm .0970 \end{aligned}$	$\begin{aligned} & 17.9 \\ & \pm 1.30 \end{aligned}$	$\begin{array}{r} 0.842 \\ \pm .160 \end{array}$	$\begin{aligned} & 2.01 \\ & \pm .388 \end{aligned}$	$\begin{array}{r} 0.716 \\ \pm .713 \end{array}$	$\begin{aligned} & 1.04 \\ & +.136 \end{aligned}$	$\begin{aligned} & 1.07 \\ & \pm .0942 \end{aligned}$
$\begin{aligned} & \# 67 \mathrm{M} \\ & 3 \mathrm{Dec} \end{aligned}$	II-E-1	19.57	$\begin{aligned} & 0.447 \\ & \pm .0623 \end{aligned}$	$\begin{array}{r} 0.0837 \\ \pm .0648 \end{array}$	$\begin{aligned} & -1.40 \\ & \pm .771 \end{aligned}$	$\begin{gathered} 0.366 \\ \pm .0704 \end{gathered}$	$\begin{array}{r} 20.29 \\ \pm 1.04 \end{array}$	$\begin{aligned} & 0.0617 \\ & \pm .118 \end{aligned}$	$\begin{array}{r} 0.692 \\ \pm .299 \end{array}$	$\begin{aligned} & 0.303 \\ & \pm .536 \end{aligned}$	$\begin{aligned} & 0.504 \\ & \pm .105 \end{aligned}$	$\begin{aligned} & 1.02 \\ & \pm .0723 \end{aligned}$

Table 3 Hudson River Fish $1968 \mathrm{pCi} / \mathrm{g}$ Wet Weight Individual Samples

$$
\text { (} n \text { is number of fish in sample) }
$$

Sample	Date Site	Cs-137	Co-60	2n-65	Mn-54	K-40	Ce-144.	Ru-106	Ra-226	Th-232
4R	17 June	0.025	. 009	. 045	. 017	1.53	-. 055	. 025	.003	. 006
Builheads	II-W-i	$\pm .004$	$\pm .003$	$\pm .039$	$\pm .004$	$\pm .06$	$\pm .135$	$\pm .032$		$\pm .004$
$n=9$										
	17 June	. 035	-. 004	. 022	. 017	1.35	.184	. 060	. 006	. 005
White Perch	II-W-1	$\pm .004$	$\pm .004$	$\pm .046$	$\pm .005$	$\pm .07$	$\pm .166$	$\pm .040$	$\pm .006$	$\pm .004$
$\mathrm{n}=31$										
6R	17 June	. 036	-. 004	. 051	. 034	1.69 -	-. 138	:062	. 008	. 007
Rumpkinseed	II-W-1	$\pm .006$	$\pm .005$	$\pm .062$	$\pm .007$	$\pm .09$	$\pm .223$	$\pm .054$	$\pm .008$	$\pm .006$
$\mathrm{n}=10$										
7R	17 June	. 015	. 005	-. 071	. 047	. 854	-. 015	. 046	0.004	. 018
Fresh Water	II-W-1	$\pm .006$	$\pm .006$	$\pm .072$	$\pm .008$	$\pm .095$	$\pm .760$	$\pm .065$	$\pm .009$	$\pm .007$
Killifish										
8 R	17 June	. 028	-0.002	. 031	. 023	1.33	. 044	. 060	. 006	. 005
White Perch	I-W-3	$\pm .005$	$\pm .004$	$\pm .057$	$\pm .006$	$\pm .08$	$\pm .201$	$\pm .048$	$\pm .007$	$\pm .005$
$\mathrm{n}=20$										
	17 June	. 043	-. 003	-. 052	. 008	1.57	-. 009	.128	.011	. 004
White perch	II-W-2a	$\pm .005$	$\pm .005$	$\pm .054$	$\pm .006$.	$\pm .08$	$\pm .197$	$\pm .047$	$\pm .007$	$\pm .005$
$\mathrm{n}=9$.										
10R	17 June	. 046	. 014	-. 180	. 003	1.04	-. 613	. 078	. 032	. 025
Fresh Water	II-W-2a	$\pm .014$	$\pm .013$	$\pm .157$	$\pm .017$	$\pm .20$	$\pm .566$	$\pm .136$	$\pm .020$	$\pm .015$
Killifish - $\quad . \quad$ -										
11R	17 June	0.029	. 007	-. 056	-. 004	1.48	-. 302	. 097	. 010	
Pumpkinseed	II-W-2a	+.004	$\pm .004$	$\pm .050$	$\pm .005$	$\pm .07$	$\pm .178$	$\pm .043$	$\pm .006$	$\pm .004$
$\mathrm{n}=50$, 19,					+	-	: ${ }^{\prime}$	-)	
	ti	(i)			: '	i	$\because 4$			

Table 3 (con't) Hudson River Fish $1968 \mathrm{pCl} / \mathrm{g}$ Wet Weight Individual Samples

Table 3 (con't) Hudson River Fish $1908 \mathrm{pCl} / \mathrm{g}$ wet weight Individual Samples

Table 4 Hudson River Aquatic Vegetation 1968. Individual Samples pCi/g wet weight

le 4 (con't)

'uable 4 (con't)

$\begin{aligned} & 52 R \\ & \text { P. pectinatus } \\ & 17 \text { Sept } 68 \end{aligned}$	Iona Island	45.2W	$\begin{gathered} .039 \\ \pm .008 \end{gathered}$	$\begin{aligned} & .057 \\ & \pm .008 \end{aligned}$	$\begin{aligned} & .068 \\ & \pm .073 \end{aligned}$	$\begin{array}{r} 1.71 \\ \pm .02 \end{array}$	$\begin{array}{r} 2.17 \\ \pm .12 \end{array}$	$\begin{aligned} & .629 \\ & \pm .286 \end{aligned}$	$\begin{aligned} & .073 \\ & \pm .071 \end{aligned}$	$\begin{aligned} & .114 \\ & \pm .012 \end{aligned}$	$\begin{gathered} .043 \\ \pm .009 \end{gathered}$
53R	Manitou	47.0E	. 023	. 072	. 071	2.17	2.37	. 651	. 100	. 126	. 039
$\frac{\text { P. }}{17}$ crispus			$\pm .008$	$\pm .008$	$\pm .071$	$\pm .02$	$\pm .12$.	$\pm .283$	$\pm .072$	$\pm .012$	$\pm .009$
	Manitou	47.0E	. 013	. 082	. 155	2.4ε	1.98	. 668	. 182	. 135	. 037
$\frac{\text { Myriophy11um } \mathrm{sp} .}{17 \text { Sept } 68}$			$\pm .008$	$\pm .008$	$\pm .075$	$\pm .02$	$\pm .12$	\pm :291	$\pm .076$	$\pm .013$	$\pm .009$
55R	Manitou	47.0E	. 018	. 090	. 243	3.05	2.35	. 896	. 162	. 208	. 053
$\frac{\text { P. }}{17}$ pectinatus			± 010	$\pm .009$	$\pm .089$	$\pm .029$	$\pm .14$	$\pm .345$	$\pm .090$	$\pm .015$	$\pm .011$
56R	cold	52.9E.	. 026	. 019	. 038	. 661	1.67	. 162	. 079	. 077	. 028
$\frac{P}{17} \frac{\text { chispus }}{\text { Sept }}$	Spring		$\pm .003$	$\pm .003$	$\pm .032$	$\pm .007$	$\pm .05$	$\pm .124$	$\pm .028$	$\pm .005$	$\pm .003$
${ }^{57 R}$	${ }_{\text {cold }}$					740			150	101	
$\frac{\text { P. }}{\text { I7 }} \frac{\text { perfollatus }}{\text { Sept } 68}$	Spring		$\pm .004$	$\pm .005$	$\pm .046$	$\pm .010$	$\pm .08$	$\pm .181$	$\pm .040$	$\pm .007$	$\begin{aligned} & .035 \\ & \pm .005 \end{aligned}$
	4	! . :			4	.	:		1		

T! le 4 (con't)

Sample No. Species Date Coll.	$\begin{aligned} & \text { Coll. } \\ & \text { Site } \\ & \hline \end{aligned}$	Miles from Battery Par	$\mathrm{Cs}-137$	Co-60	2n-65	Mn-54	K-40	Ce-144	Ru-106	Ra-226	Th-232
\#58R.	Fish	44.OE	. 013	. 179	. 144	3.99	1.75	. 075	. 198	. 161	. 038
P. perfoliatus	Island		$\pm .011$	$\pm .012$	$\pm .104$	$\pm .04$	$\pm .14$	$\pm .440$	$\pm .106$	$\pm .017$	$\pm .013$
17 Sept'68	!								1		
59R	Fish	44.0E	. 011	. 183	. 225	4.56	1.64	-. 293	.216	. 161	. 034
$\frac{\text { Myriophy1lum }}{17 \text { spept'68 }}$	Island		$\pm .015$	$\pm .016$	$\pm .143$	$\pm .06$	$\pm .19$	$\pm .607$	$\pm .149$	$\pm .024$	$\pm .018$
60R	Iona	44.3W	. 006	. 151	. 267	4.31	2.15	. 851	. 274	. 269	. 050
$\frac{\text { P. }}{17} \frac{\text { pectinatus }}{\text { Sept' } 68}$	Island		$\pm .019$	$\pm .019$	$\pm .182$	$\pm .06$	$\pm .25$	$\pm .754$	$\pm .181$	$\pm .030$	$\pm .022$
61R	Iona	44.3W	. 020	.149	. 180	3.67.	1.67	-. 120	. 261	. 161	. 039
$\frac{\text { P. }}{17} \frac{\text { perfoliatus }}{\text { Sept }{ }^{\prime} 68}$	Island		$\pm .014$	$\pm .015$	$\pm .139$	$\pm .05$	$\pm .19$	$\pm .579$	$\pm .139$	$\pm .022$	$\pm .016$
62R	west	50.9W	. 026	. 032	. 064	1.02	2.26	. 252	. 106	. 083	. 036
$\frac{\mathrm{P}}{17} \cdot \frac{\text { perfoliatus }}{\text { Sept } 168}$	Point		$\pm .007$	$\pm .006$	$\pm .059$	$\pm .02$	$\pm .11$	$\pm .232$	$\pm .058$	$\pm .009$	$\pm .007$
63R	West	50.9W	. 008	. 039	. 166	2.04	1.96	1.71	. 130	. 219	. 041
$\frac{\mathrm{P}}{17} \frac{\text { pectinatus }}{\text { Sept'68 }}$	Point		$\pm .011$	$\pm .010$	$\pm .096$	$\pm .03$	$\pm .15$	$\pm .38$	$\pm .096$	$\pm .016$	$\pm .015$
64 R	West	50.9W	. 013	. 043	. 162	1.78	1.46	. 880	. 130	. 135	. 025
$\frac{\text { Potamogeton }}{17 \text { sept } 68}$	Point		$\pm .009$	$\pm .009$	$\pm .084$	$\pm .02$	$\pm .13$	$\pm .337$	$\pm .086$	$\pm .014$	$\pm .011$
65R	Peekskill	43.0E	. 038	. 271	. 095	5.36	1.79	. 069	. 294	. 201	. 083
P. perfoliatus			$\pm .008$	$\pm .008$	$\pm .104$	$\pm .03$	$\pm .11$	$\pm .041$	$\pm .084$	$\pm .014$	$\pm .009$
17 Sept'68		0.			\pm	,			-		
66R	Peekskill	43.0E	. 008	. 137	. 299.	3.73	1.04	-. 664	. 291	. 141	. 024
Myriophyllum sp.			$\pm .070$	$\pm .021$	$\pm .194$	$\pm .07$	$\pm .25$	$\pm .814$	$\pm .201$	$\pm .032$	$\pm .024$
1	:	8. 4			i^{\prime}	1	15	$\therefore 1$	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		

CONTENTS

Page
Summary 1
Introduction 4
Original configuration of Unit No. 1 intake and discharge structures 4
Early efforts and difficulties with fish protection 9
The development and installation of fine meshed fixed screens 16
1969-1970 fish protection problem 19
Technical Task Force and Indian Point Fish Advisory Board 23
Special studies relating to fish protection problem at Unit No. 1 25
Conclusions and proposed long range solutions 30
Appendix A A-1
Appendix B A-48

LIST OF FIGURES

Figure
Page

1. Indian Poirt Unit No. 1 cooling water intake configuration6
2. Indian Point Station intake - discharge arrangement7
3.
4.
5.

A plot of the total number and weight of fishes collected from the traveling screens at Unit No. 1 from January 12, 1970 through February 2, 1970 A-43
6.

A plot of the total number and weight of fishes collected from the traveling screens at Unit No. 1 from February 1. 1970 through February 28, 1970 A-45

7.

A plot of the total number and weight
of fishes collected from the traveling
screens at Unit No. 1 from March 1, 1970
through March 27, 1970
8. New intake proposal for Indian Point Station 33
Table

1. Tabulation of fishes washed off the traveling screens during the fixed screens test (January 27 - March 8. 1970) 17
2. Summarized results of tests to determine the effectiveness of a 0.375 inch square mesh screen at Unit No. j intakes 18
3. Estimated number of fish netted fromin front of the fixed screens atUnit No. 1 (January 28 - April 2.1970)A-4
4. Fishes collected at Unit No. 1 on the traveling screens A-5
5. Average length, average weight, and percent species composition of fishes collected on the traveling screens A-33

The Indian Point plant began operation in October, 1962. It was the first commercial nuclear power plant in the Empire State and the fourth -- and for some years later the largest -in the nation.

One problem has marred the plant's record. Despite the Company's efforts, including the expenditure of approximately two million dollars, fish have been killed at the plant, a perplexing problem not only for the people at Con Edison but for concerned State and Federal agencies, sports enthusiasts, and conservationists. The attached report discusses the problem and the Company's efforts to resolve it.

Like all steam-electric generating plants, whether nuclear or conventional, Indian Point takes in river water to condense the steam that produces electricity and discharges that river water after it has been used for this cooling purpose. Because the Hudson River is a tidal estuary some of the warm water discharged downstream can be carried a short distance upstream during flood tide into the vicinity of the cooling water intake area where it may attract fish especially during the winter. Fish have not been killed as a direct result of this warm water discharge. Nor were the fish killed because the Indian Point station is nuclear fueled. Evidence indicates that the swimming performance of the fish, particularly white perch, is impaired in cold
water, preventing them from escaping impingement on protective screens even by relatively low intake flow velocities, (average approach velocity of 0.8 fps$)$. The major change, therefore, consists of introducing a throttling procedure during the operation which will reduce the average intake velocity substantially (to approximately 0.5 fps). This is being done by partially closing the condenser outlet valves for Unit No. 1. Tests run in April, 1970 on Unit No. 1 (when the intake water temperature was $40^{\circ} \mathrm{F}$) indicate that this throttling procedure was effective in lowering the number of fish collected on the traveling screens.

The problem has been further compounded by the periodic fouling of the protective screens with trash, leaves, and fibrous material, which has reduced the effectiveness of these screens. As the screens have become fouled, the intake velocity of the water has increased, making it more difficult for the small fish to swim away from the area. Attempts to keep these screens clean during these periods of heavy fouling have been only partially successful.

Most promising at present is a new intake water concept developed by Con Edison's engineers. This scheme will include a new screening structure built farther out from the shore into the main longitudinal flow of the river. The new structure will screen water for all three units at Indian Point and permit
lower intake velocities than now exist. This will be particularly helpful during the colder parts of the year when it is believed a large number of fish congregate in the area. It is planned that this work will be completed and in operation by the spring of 1973 , at an estimated cost of $\$ 12$ million. The Company has offered to replace by stocking fish that have been killed if appropriate officials think it would be advisable and productive to do so.

The immediate need is to resolve the problem of the fish protection at Indian Point. The problem will call for continued effort and the implementation of an effective scheme.

INTRODUCTION

At various times since Indian Point Unit No. 1 ("Unit No. 1") commenced operation in October, 1962, there has been a problem with fish being killed at the intake of the station. This report provides a narrative description of this problem. The narrative is presented in chronological order and shows the continuing efforts made during the past eight years to improve the intake structure of Unit No. l so as to protect fish against injury from plant operation. Structural alterations and changes in operating procedures are explained and the effect of these changes is described.

Appendix A to this report contains data on the numbers of fish collected at the intake structure and the dates of collection. The appendix also includes data on species composition and average weight and length of the fish collected. Appendix B lists certain ecological and other studies which have been sponsored by Con Edison to date and their approximate cost to the Company. These studies are providing information useful to an understanding and resolution of the fish protection problem at Unit No. 1.

ORIGINAL CONFIGURATION OF UNIT NO. 1 INTAKE AND DISCHARGE STRUCTURES

Large volumes of water are needed by both nuclear and fossil fired power plants to condense the waste steam used in the electrical generation process. This water must be screened to prevent debris from clogging the narrow passages of the cooling
system. Two types of screens are commonly used at power plants. Widely spaced heavy bars known as a trash rack prevent large debris such as logs and floating ice from entering the intake structure and making contact with a fine mesh screen used for barring the entry of small debris. This fine mesh traveling screen consists of an endless belt of screen panels which move vertically through the inflowing water picking up the small debris. The debris which is picked up by the traveling screen is washed off by a spray system.

The original configuration of the Unit No. 1 intake structure and discharge channel is important to an understanding of the fish protection problem at this unit (Figures 1, 2A, and 3). The original arrangement consisted of four open intakes each 11 feet 2 inches wide, positioned at the water's edge. The depth of the water at the intakes is approximately 26 feet at low tide and varies with tidal changes.

A concrete skimmer wall extended from above the water level to a depth of 13 feet and 6 inches below the water surface across the front of each intake. The water was, therefore, withdrawn from the river at the bottom of each intake forebay.

Each open forebay led to a traveling screen, recessed approximately 30 feet from the water's edge. The traveling screens consisted of sections of screening with a 0.375 inch square wire mesh and a narrow lip along the length of the lower edge

Coolnc miter miake ConEleJiATEN

FIGURE 2
 indian point generating station INTAKE- DISCHARGE ARRANGEMENT

1966-1968
FIGURE B

of each section. In each forebay, approximately midway between the opening and the traveling screen there was a trash rack. Between the opening and the trash rack there was a pipe which could discharge heated condenser water into the intake flow to prevent icing of the traveling screens.

In front of the intake forebays there was a 247 foot long wharf. The intakes were located behind the north end of the wharf. This wharf was supported by many pilings and was surrounded by steel sheet piling that extended to the bottom. Slots in the bottom of sheet piling allowed water to be drawn under the wharf to the intakes.

The original discharge (Figure 2A) was located approximately 320 feet to the south of the center of the four intakes. The effluent water was discharged straight into the river.

The Unit No. 1 intake and discharge structures described above were constructed in accordance with accepted design criteria for plants in this area at the time. The changes which occurred in this original intake-discharge arrangement will be discussed later in this report along with the results of the changes in terms of fish protection.

EARLY EFFORTS AND DIFFICULTIES WITH FISH PROTECTION

Unit No. 1 went into operation in October, 1962. In March, 1963, it was observed that fish were entering the open intake forebays.

The fish congregated in these forebays and did not Jeave via the opening to the river. Many of the large fish were subsequently collected on the traveling screens. Striped bass (Roccus saxatilis), tomcod (Microgadus tomcod), and white perch (Roccus americanus) were the species observed in greatest numbers.

As a result of this situation Con Edison initiated attempts to prevent the fish from entering the intake forebays. Air bubble curtains installed in front of the forebay openings in April, 1963 were completely ineffective as fish barriers. An electrical fish screen was considered in May, 1963 and the Electric Fish Screen Company of Hollywood, California was contacted for information. This idea was not adopted because of the operating difficulties in water of changing salinity and the harmful effects to large fish when voltages are adjusted to be suitable for small fish. In July, 1963, foxwire netting was placed across all openings in the sheet piling around the wharf. These measures were ineffective as a physical barrier to the fish because the wire netting was constantly clogged with debris and gave way under heavy water hammer. Fish that congregated in the intake forebays were netted and released to the river.

Dr. Alfred Perlmutter, Professor of Fishery Biology at New York University was consulted in February, 1964. He believed that the fish were being attracted to the wharf and the intake forebays. The warm water from the discharge carried upstream by
the tide to the intakes and the sanctuary of the wharf were considered the factors attracting the fish.

Also in February, 1964, a contract was entered into with Alden Hydraulic Laboratory of Worcester Polytechnic Institute to construct a hydraulic model of a portion of the Hudson River in the vicinity of Indian Point. The purpose of this study was to determine the conditions necessary for recirculation of discharge water into the intakes and the amount of recirculation under various conditions. In addition, means of reducing or eliminating recirculation were to be evaluated.

During the major portion of the year 1964 . Unit No. 1 was not in operation due to required maintenance. Cooling water pumps were not operated during this period and hence fish were not collected on the traveling screens.

Tests were conducted by Alden Hydraulic Laboratory over a 6 month period and reported in April, 1965. The results confirmed that warm water from the discharge was being recirculated through the intakes. As a result the intake water temperature could increase as much as $6^{\circ} \mathrm{F}$ over ambient river temperature. Temperature rise was greatest near the time of high tide. A wall was then constructed which diverted the discharge flow to the south along the river bank and reduced the temperature rise to less than $1^{\circ} \mathrm{F}$ in the research model.

Dr. Perlmutter also conducted an investigation into the effect of the discharge water on the depth distribution of fish in front of the wharf from October 16, 1964 to January 13, 1965. The results were reported in February, 1965. The experiments consisted of sampling fish with two experimental fish traps at various depths in front of the wharf. The sampling was conducted for 15 days while the discharge was not operating and a subsequent period of 21 days when the discharge was operating. Two additional sampling periods of 38 days and 8 days occurred while the discharge was operating. White perch, striped bass and tomcod were the numerically dominant species of the catch. Although the data were considered fragmentary, the conclusion was that the discharge water was causing the fish to concentrate on or near the bottom. This could result in the fish finding their way under the wharf and into the intakes.

In the spring of 1965 a pneumatic sound source to repel the fish away from the intakes was rented from Bolt Associates, Inc. of East Norwalk, Connecticut. The device was employed until September, 1965 with inconclusive results. The underwater sound initially repelled fish but gradually lost its effectiveness.

Two of the trash racks were modified in 1965 with a smaller mesh to produce a screen with openings of 1×2 inches. These screens were tested in two of the intake forebays and found unsuitable because the fish became "gilled" in the screen.

In June, 1965, it was noted that coincidental with the addition of sodium hypochlorite to the intake forebays (a regular plant procedure to prevent biological growth on condenser tubes) many fish were collected on the traveling screens. The point of addition of the sodium hypochlorite line which up to this time had been in the forebay was subsequently moved to a point behind the traveling screens. Following this change it was observed that large fish were no longer collected on the traveling screens. However, small fish sometimes were unable to avoid the intake flow and were confined in the intake forebays.

In the summer of 1965, it was observed that many of the fish washed off the traveling screens were still alive. In order to protect these fish an extension was added to the sluice which carried the fish back to the river. This was not completely satisfactory because many of the dead fish discharged from the sluice were carried by the tide back to intakes.

In an effort to eliminate the sanctuary and enclosure effect of the wharf the hanging sections of sheet piling at the north and south ends of the wharf were removed by August, 1965. This change helped the fish to swim away from intakes but small fish sometimes were still, found on the traveling screens.

Beginning in the summer of 1966, efforts were made to determine what, if any, effects lighting might have in repelling the fish. First, the area beneath the wharf was kept continuously illu-
minated by floodlights. This approach was unsuccessful in repelling the fish. The wharf was then kept in darkness but this too had no measurable effect in repelling the fish.

In response to the results of the Alden Study, the discharge canal was extended downstream parallel to the shoreline (Figure $2 B$, page 7 A) a distance of 214 feet (540 feet from intakes) during the spring of 1966 to prevent recirculation of the heated effluent. Notwithstanding this change fishes still entered the forebays.

In addition to the above alteration, the lower 8 feet of the ice wall in front of each intake were removed. This increased the openings to the forebays and reduced the average approach intake velocity from approximately 1.3 feet per second to 0.8 feet per second. This alteration was made in April, 1966 in response to tests conducted in October and November, 1965. These tests showed a substantial increase in the number of small fish collected during traveling screen washings when the intake current velocity exceeded 1 foot per second (Figure 4).

It is difficult to assess the relative effectiveness of the fish protection efforts during the period 1963-1966 which are described above. These attempts to solve the problem were made at different times of the year during which the natural abundance of fish probably varied. The extended discharge was successful in reducing recirculation at high tides, and the en-

larged intake opening reduced intake velocities. However, it seemed that as long as the forebays were open fish would enter, sometimes in large numbers, and would be collected on the traveling screens.

THE DEVELOPMENT AND INSTALLATION OF FINE MESHED FIXED SCREENS

An important change in the configuration of the intakes occurred in the spring and summer of 1967 with the installation of fixed fine screens at the mouth of the intake forebays. These screens were of a 0.375 inch square wire mesh and were set at the river edge end of the intake structure. They covered the intake openings completely and left no recesses in which fish could become enclosed in the forebays. The decision to install these screens resulted from tests conducted from January through March, 1967 by Northeastern Biologists Inc. under the direction of Mr. Frank Carlson, Technical Advisor, Bureau of Sport Fisheries and Wildife of the U. S. Department of Interior. A 0.375 inch square mesh screen was placed across the opening of forebay 11 while forebays 12,13 and 14 were left unscreened. For 27 days between January 27 and March 8 the number of fish washed off. the traveling screens (0.375 inch square mesh) at each 4 hour washing was recorded (Table 1). Traveling screens 11 and 12 were counted individually. The counts of washings of traveling screens 13 and 14 were combined. Although every possible 4 hour count was not sampled during the test period (January 27 March 8), on only two occasions were comparable counts for each

[^22]

334°	32.8°	44.0°	10.0014	-mituek

$\begin{array}{llll}320^{\circ} & \begin{array}{c}370^{\circ} \\ 326\end{array} & \begin{array}{c}450^{\circ} \\ 490^{\circ}\end{array} & \begin{array}{l}330 \mathrm{Pm} \\ 3: 45 \mathrm{PM}\end{array}\end{array}$

KE $32.8^{\circ} \quad 46.6 \quad \mathrm{~s}: 20 \mathrm{Pm}$

 \qquad

no coants maOe
no counts mas due to swon smem

410

$32.1{ }^{\circ}$	32.3	470°	$3: 00 \mathrm{~m}$
325°	328°	48.2*	3:0PN
${ }^{\kappa \varepsilon}$	${ }^{34} 2^{*}$	48.70	2:40 mm
${ }_{\text {ct }}$	94* 8°	552°	1:45m

traveling screen incomplete. The fish were collected with a screen as they passed down the outlet sluice.

The total number of fish collected for all washings was much higher for the unscreened forebays (12, 13 and 14) than the screened forebay (11) (Table 2). In addition, the total for forebay 11 included three very high counts that occurred after the fixed screen had been raised for washing. The total for forebay ll, not including these three counts, was 3926 and gave a fish per screen wash average of 67 fish. These data indicated that the 0.375 inch square mesh screen was a very effective barrier to the fish entering the forebays.

TABLE 2 Summarized results of tests conducted (January - March, 1967) to determine the effectiveness of a 0.375 inch square mesh screen at Indian Point intakes.

	Screened Bay 11	BayUnscreened Bay 13 and 14 combined	
Number of washes	59	61	59
Total fish collected	7016	30180	48811
Average fish per wash	119	495	827

The fact that the counts in forebay 11 did not go to zero indicated either fish could pass through the screen or that they could enter through some other opening. The overwhelming majority of fish collected were 2 to 3 inch (less than $1 / 4 \mathrm{oz}$. each) white perch. Presumably, white perch of this size should
be held out by a 0.375 inch square mesh screen. Since the fixed screen on bay $l l$ was raised periodically for cleaning, a portal of entry was provided and this could account for the collections staying above zero.

It appeared as a result of these tests that the installation of fixed screens prevented entry of fish in large numbers into the forebays. By December, 1967 all four intake forebays were equipped with fixed screens of 0.375 inch square mesh. The screens were at the mouth of the intakes and permitted the fish to move to either side to avoid the intake flow. The approach velocity to these screens was less than 1 foot per second when the screens were clean.

1969-1970 FISH PROTECTION PROBLEM

A change in the discharge canal for Unit No. 1 was completed in November, 1967 when the downstream extension was removed to facilitate the construction of Unit No. 3 (Figure 2A, page7*). This change resulted in warm water from Unit No. 1 being discharged through the original canal.

The fixed screens functioned successfully until the winter of 1969-70 as evidenced by the periodic surveillance of the traveling screen washings. In the fall of 1969 leaf clogging of the fixed screens became severe and the screens were removed to
permit the flow of cooling water to enter the plant.

Two fish counts are available for the period in which the fixed. screens were out of service. On December 9, 1969 a New York State Conservation Department Officer inspected the intakes and reported that between 1,000 and 1,200 fish were collected from a single traveling screen washing. Raytheon Company (refer to page 27) employees collected fish from a traveling screen wash on December 16, 1969. There were an estimated 500 small fish with a total weight of 6 pounds. This collection consisted of 92% white perch, 4% striped bass, and 4% of five other species. The fixed screens were returned to service on December 26 and positioned to leave an 18 inch and later a 36 inch opening at the bottom of the intake. This was an effort to keep the screens in position but allow for the intake of cooling water in the event the screens froze. Observations indicated that the fixed screens positioned 36 inches above the bottom were ineffective as a barrier to the fish. The fish obviously had no trouble entering the intakes. A decision, therefore, was made to keep the stationary screens positioned at the bottom of the intakes except during cleaning. In order to prevent ice formation on the screens, steam was released into the water a short distance in front of the fixed screens. Unit No. 1 was shut down from January 19 to January 22, 1970 because of fish entering the forebays and to allow time for installation of the steam lines
to prevent icing of the fixed screens.

On January 26 a diver made an inspection and found that two screens were being held off the bottom by debris caught under the lower edge. This debris was removed. In an effort to clean the fixed screens and collect a minimum of the fish on the traveling screens the circulator pumps (which create the intake current) were turned off while the screens were raised.

It was apparent from these changes in operating procedure that the fish would enter any opening in the fixed screens. The fixed screens were therefore placed permanently on the bottom on January 28. A decision was made that the screens would not be raised until the clogging problem became serious.

A diver again inspected the screens for holes and discovered a large hole under the screen frame of intake ll. The hole was caused by scouring of the river bottom beneath the screens. This hole was plugged with sand cement bags. On subsequent inspections the diver found more holes under other screens and these were also plugged.

A significant change occurred in the discharge configuration on February 6. The original discharge was blocked off and the discharge water from Unit No. 1 was carried by a new discharge structure to a point 960 feet from the intake (Figure 2C, page7\%). This discharge will serve all three units when Units 2 and 3 are completed.

After the holes under the fixed screens were plugged the counts of fish from the traveling screens dropped rapidly from a peak in late January. With the fixed screens permanently positioned on the bottom debris clogging became a serious problem. An underwater jet of water directed outward from behind a screen, when the pump for that screen was shut off, did not effectively remove the debris. This debris build-up aggravated the fish problem by increasing the approach velocity to the screens. The jet washing procedure was used until February 23 and during this time 3,000 to 5,000 fish per day were netted from in front of the fixed screens.

Beginning on February 24, the fixed screen washing procedure was modified to make use of the back-up fixed screens, which are located approximately 4 feet behind the outer fixed screens and are used to screen the intake channels while the outer screens are raised to be washed.

On March 7, the plant was shut down and the outer screens were raised slowly and the fish and debris were removed. An estimated total of 120,000 small fish were netted during this cleaning of the screens.

The fibrous debris removed from the screens during early March was analyzed by the Astoria Chemical Laboratory and found to contain a high percentage of nylon fibers. The source of this material is unknown.

In an attempt to learn more about the cause of death of the fish collected at the intake, during the spring of 1970 samples of fish were sent to biologists and pathologists for examination. The four examinations performed were in agreement that there was no indication of a specific cause of death. Mucus clogging of the gills was listed as a cause of death in one case but the cause of this condition could not be established. Necropsy techniques for fish are limited and it is therefore difficult to establish the cause of death with any degree of certainty.

TECHNICAL TASK FORCE AND
INDIAN POINT FISH ADVISORY BOARD

A Technical Task Force has been formed within the Company, headed by the Company's Chief Civil Engineer and including its Environmental Engineer and the General Superintendent of the Indian Point Station. The purpose of the task force is to concentrate and coordinate Con Edison's efforts in implementing the plans and studies on fish protection. To assist the Task Force, an Indian Point Fish Advisory Board consisting of expert biologists and engineers from the United States and Great Britain was first brought together on April 19, 1970 by Con Edison.

The Board consists of:

1. Dr. Merril Eisenbud (Chairman), Director, Institute of Environmental Medicine, New York University, New York.
2. Dr. Gerald Lauer (Scientific Secretary), Assistant Director, Institute of Environmental Medicine, New York University, New York.
3. Dr. Gwyneth Howells (Member), Environmental Conservation Council, London, U. K.
4. Dr. Edward Raney (Member), Professor, Cornell University, Ithaca.
5. Mr. Herbert Riesbol (Member), Bechtel Associates, San Francisco.

The Board has been requested to provide advice to Con Edison on how to protect fish from damage from the operation of Indian Point power plant cooling systems and to evaluate the effects of the fish catch on the ecology of Hudson River. The Board has held a number of meetings with the Task Force and with other individuals and organizations outside of Con Edison.

Con Edison has reviewed with the Indian Point Fish Advisory Board the Company's overall program for Fish Protection in connection with operations of the Indian Point Plant. The Board is of the opinion that in light of present knowledge; the program provides the best immediate approach to the fish protection problem at Unit No. 1 and the most promising long range solutions to these problems for all units at Indian Point. Additional studies to expand present knowledge and assessment of ecological risks in this area are under way and the Board believes that the planned program of study is adequate to pro-
vide design parameters for future plant modifications.

> SPECIAL STUDIES RELATING TO FISH PROTECTION PROBLEM AT UNIT NO. 1

Con Edison has sponsored the studies listed below and other related studies which pertain to the fish protection at Unit No. 1. The total approximate cost to the Company of these studies is $\$ 1,398,428.00$.

Subsequent to the formation of Indian Point Fish Advisory Board in April, 1970 Bechtel Associates was retained by the Company to conduct a survey of fish screening systems. This survey was requested as a part of the Company's current efforts to improve the fish protection facilities at Indian Point. This study reviewed both the biological and engineering aspects of screening fish from water flows. The biological factors of importance pointed out in this study were the swimming performance of the species involved, their behavior in relation to water flows, and their density distribution in relation to the location of the intake. The important engineering aspects included an intake approach velocity geared to the swimming ability of the species present, an intake structure without recesses in which fish could become enclosed and a uniform intake flow without areas of high velocity.

Since debris is a problem at power plants a physical screen
barrier of some sort is needed. Results of the Bechtel study indicate that non-physical barriers to fish such as electrical screens, air bubble curtains, and light arrays are considered impractical because of their proven inefficiency at deflecting fish under all environmental conditions. A non-physical barrier, if used, would be an addition to the required debris screen.

There is no single fish protection system available which will work dependably at all plant sites. Each intake system is unique and requires a design geared to the existing biological and physical conditions.

Since June, 1970, the Ichthyological Associates is studying the swimming performance and temperature avoidance and preference of the major species of fish in the vicinity of Indian. Point.

The investigation for white perch (Roccus americanus), tide water silver side (Menidia beryllina), silverside (Membras martinica), bluefish (Pomatomus saltratrix), and mummichog (Fundulus heteroclitus) have indicated a maximum swim speed from 0.5 feet per second to 1.6 feet per second differing with size and temperature. It has also been indicated that fish prefer higher than the acclimation temperature for a wide range of temperature acclimation.

Norman Porter Associates was retained by Con Edison to provide data on water flow velocities at the intake of Unit No. 1 and
to survey and map the river bottom at Indian Point. A study of water movements in the vicinity of the intakes (Units No. 1 and 2) is also being conducted.

The velocity of water approaching the intake screens at Unit No. 1 is considered a critical factor in the fish problem. Norman Porter Associates is providing data on the approach velocity under a variety of operating conditions so that this factor can be correlated with the numbers of fish collected under each set of conditions. This information in combination with studies of the swimming speed of fish will help establish a suitable intake approach velocity.

The information on bottom contours and water movements is being gathered in preparation for the construction of a new intake structure farther out in the river. The data on water movements will be used to position the new intake structure in such a way that it will be exposed to strong tidal currents. Many fish species avoid strong tidal currents and therefore they are not likely to be in the vicinity of the intake structure.

A detailed study of the ecology of the Hudson River in the general vicinity of Indian Point supported by Con Edison has been undertaken by the Raytheon Company. This study began June, 1969 and is being carried out under the direction of the Hudson River Policy Committee, an independent body made up of representatives of the New York State Department of Environmental

Conservation, the New Jersey Department of Conservation and Economic Development, the Connecticut Department of Conservation, the U. S. Bureau of Sport Fisheries and Wildlife and the U. S. Bureau of Commercial Fisheries. The study team is resident at Indian Point.

The distribution of tishes in the Hudson River varies seasonally. A study is being conducted on the possible effects of plant operation on such distribution. Extensive sampling of small organisms in the river is being performed at intervals along a 13-mile stretch of the river, including Indian Point. Their presence will be determined by employing surface, mid-water and bottom nets of appropriate mesh size and benthos samplers. Small organisms entering Unit No. 1 through the intake and exiting through the discharge will also be sampled. The presence of large fishes throughout the same area is being determined by employment of anchored and towed nets. Key zooplankton are being separated to species. Fish in net collections are separated by species, enumerated and measured. Specimens of each species are being retained. Data from routine sampling are being entered on coded reports for automatic data processing. This phase of the program will provide valuable information on the environmental effect of operation of Unit Nos. 1, 2 and 3.

Bioassay tests are in progress to determine effects of chemicals on fish under Hudson River ambient conditions.

In 1968, the New York University Institute of Environmental Medicine began a program of investigation of the ecology of the Hudson River for Con Edison. This study is a continuation and expansion of continuing ecological studies of the river begun in 1963 with support from the U. S. Public Health Service, the New York State Department of Health, and the New York City Board of Water Supply.

The New York University ecological survey encompasses physical, chemical, biological, and radiological investigations of the aquatic habitat in the middle reaches of the river. Temperature, salinity, and turbidity are the physical parameters being measured. Nutrients and trace elements are the chemical features being investigated. Phosphate and nitrate concentrations as well as cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc were monitored through 1969. Phytoplankton, zooplankton and fish are being sampled as part of the biological work. The plankton sampling will identify the species present and the seasonal cycles of abundance for this area. The fish sampling consists of shore seining at a single station on each side of the river at Indian Point. This sampling will provide data on the species composition and relative abundance of fish in the shore areas.

The Division of Fish and Game of the New York State Department of Environmental Conservation has sent representatives (biologists and enforcement officers) to Unit No. 1 periodically to observe
and make counts of fishes collected in the plant on the traveling screens. Meetings between Con Edison and representatives of the Division of Fish and Game and the Health Department have been held from time to time to review the steps taken to solve the fish protection problem.

The Company has offered to replace by restocking all of the fish that have been killed, either in kind or in other higher grade types of fish if, the appropriate officials think it would be advisable and productive to do so.

CONCLUSIONS AND PROPOSED LONG RANGE SOLUTIONS
When fish enter an enclosed area through a narrow opening they have difficulty relocating the opening through which they entered and may be unable to leave the area. The original unit No. I intake structure was built in such a way that fish which entered could not readily leave the structure. The fish were then forced to swim against the intake flow and eventually fatigued and were collected on the traveling screens. This feature of the intake has been eliminated by opening the structure to the flow of the river and by screening the narrow forebays which lead to the intake pumps.

The fish protection problem that exists today at Indian Point is quite different from the original one when the plant began operation in 1962.

The present problem is confined to small fish which are at times unable to swim against the intake flow and become impinged against the outermost set of fixed screens.

The fishes being collected in recent years are small - generally 2 to 3 inches in lencth (less than $1 / 4 \mathrm{oz}$. each). The overwhelming majority of fishes are white perch. It is believed that the change is the result of structural modifications and changes in operating procedures at Unit No. 1 which are described throughout the body of this report. Some fish still enter the intake forebays when the outer screens are raised to be cleaned. The fish are then subject to impingement on the traveling screens.

Fish are generally abundant in the area of Indian Point and may at times congregate at the intake of Unit No. l. The discharge of warm water from any source is known to attract fish during the winter months and this could contribute to the abundance of fish life in the vicinity of the plant. The point of discharge of the warm water at Indian Point has been moved downstream away from the intake thereby decreasing the probability that fish attracted to the outfall will come within the influence of the intake.

During the winter of 1969-1970 when water temperatures were about $33^{\circ} \mathrm{F}$ the majority of fish collected were small white perch (2 to 3 inches in length). Evidence indicates that the swimming performance of the fish, particularly white perch, is impaired
in cold water, preventing them from escaping impingement even by relatively low intake flow velocities. Preliminary results of laboratory tests of the swimming performance of white perch confirm this hypothesis.

The fixed screens presently employed to prevent fishes from entering the intake forebays are effective barriers, but the approach velocity to these screens exceeds the ability of some of the small fishes (i.e., those less than 2 to 3 inches in length) to escape the flow.

During the winter of 1970-1971, the volume of water used by the plant will be reduced by using valves to reduce the flow through the condenser. This reduction in flow will reduce the average approach velocity to the fixed screens to approximately 0.5 feet per second - a point where all but the weakest fish should be able to escape. Preliminary tests of throttled flow indicate this to be an effective method of fish protection.

As a long term solution in the area of fish protection for Unit No. l as well as for the other units at Indian Point, Con Edison engineers are developing a new intake water concept. This scheme will include a new screen structure built farther out from the shore (75 to 100 feet) and more into the main longitudinal flow of the river. This structure would screen water for all three Units at Indian Point and would be designed to permit intake velocities below 0.5 feet per second during the colder parts of

the year. The attached sketch (Figure 8) shows a plan of the proposed scheme.

The main advantages of the proposed structures are:

1. To minimize recirculation effects to the intake point from the discharge outfall which is an attraction mechanism.
2. To deny access under the unloading wharf to fish, thereby eliminating the probability that the wharf is acting as an attraction.
3. To place the traveling screens out where the river's stronger currents can longitudinally wash the face of the screens.
4. To achieve low intake velocities.
5. To provide other operational benefits not directly related to fish protection such as greater unit efficiency with reduced recirculation, and removal of the existing eddying conditions which lead to greater accumulation of river debris in front of the individual units.

Engineering design and associated research and development have already begun on this project and it is hoped that the work will be completed and in operation by the spring of 1973. It is currently estimated that cost of this project will be in the range of $\$ 12,000,000$. Further work on this project will take fully into account the ecological and engineering studies referred to in this report.

APPENDIX A

The following tables contain a compilation of all available recorded fish counts made at Unit No. 1 since the plant began operation in 1962. The records relate to two types of collections. The bulk of the counts refer to fishes collected from the traveling screens. For a period of approximately two months (February through March 1970) fishes were netted from in front of the fixed screens. The number of fishes netted was estimated and is presented in Table 3. For most of the tabulated counts reported no determination was made as to the percentage of fishes collected on the traveling screens which were alive.

The method of determining the number of fishes collected from the traveling screens prior to 1970 is not known for each set of data. The traveling screens at Unit No. l physically pick up the fish which are in the intake forebays. The fish are then washed into a sluice by the screen cleaning spray. The fish can be enumerated by blocking the sluice with a screer and collecting them as they accumulate on the screen or they can be enumerated visually as they pass down the sluice. Both these methods were employed for the fish counts before January 1970, the latter procedure being used most of the time. From January 1970 to the present both fishery biologists and Unit No. 1 personnel have been employed to count fishes.

$$
\mathrm{A}-2
$$

The number of times fishes are enumerated each day is variable but this usually occurs after each period during which the traveling screens are rotated and sprayed. The traveling screens are usually rotated 6 times daily for 15 minutes each approximately 4 hours apart.

Many changes were made in the operating procedure of the unit No. 1 intakes particularly during the winter of 1969-70. Therefore, the collections reported herein were not made under a consistent set of conditions.

The following data are presented in this appendix:
Table 3. Estimated number of fishes netted from in front of the fixed screens at Indian Point Unit No. 1 (January 28 - April 2, 1970).

Table 4. Fish collected at Indian Point Unit No. 1. A compilation of fishes from the traveling screens.

Table 5. Average length and weight, and species composition of fishes collected during various intervals in April 1970 at Unit No. 1.

Figure 5. A plot of the total number and weight of fishes collected from the traveling screens at Unit No. I from January 12, 1970 through February 2, 1970.

Figure 6. A plot of the total number and weight of fishes collected from the traveling screens at Unit No. 1 from February 1, 1970 through February 28, 1970.

Figure 7. A plot of the total number and weight of fishes collected from the traveling screens at Unit No. 1 from March 1, 1970 through March 27, 1970.

Data on the species composition and average length and weight of fish collected from January 12, 1970 to the present by Raytheon Co. employees have been received by Con Edison and are now being summarized.

Table 3. Estimated number of fish netted from infront of the fixed screens at Indian Point Unit No. 1 for the period January 28 - April 2, 1970.

DAtes	COUNT (Approximate Numbers)
January 28 to February 22	3,000 to 5,000 Daily
February 23	30,000
February 24 to February 26	3,000 to 5,000 Daily
February 27	No Count
February 28	3,000
March 1	No Count
March 2	No Count
March 3	24,000
March 4	15,000
March 5	30,000
March 6 and March 7	120.000
March 8	15,000
March 9	500 to 600
March 10	4,000
March 11	900
March 12	1,000 to 2,000
March 13	5.000
March 14	1,000
March 15	550
March 16	1,000
March 17	100
March 18	200
March 19	100
March 20	No Count
March 21	No Count
March 22	No Count
March 23	1,000
March 24	300
March 25	275
March 26	300
March 27	500
March 28	600
March 29	400
March 30	500
March 31	200
April 1	200
April 2	12

Table 4 Fish collected at Indian Point Unit No. 1
on the traveling screens

Count 2237 2105 1396 3046 2957 2268 4342

YEAR 1965

Table 4 Continued
YEAR 1965

A- 8

				Table 4 Con YEAR 19				
Date	Bay	12 Mid .	4 A.M.	8 A.M.	12 Noon	4 P.M.	8 B.M.	Total Count
17 Sept	$\begin{aligned} & \mathrm{N} \\ & \mathbf{S} \end{aligned}$	$\begin{array}{r} 43 \\ 51-39 \end{array}$	$\begin{array}{r} 41 \\ 15-20 \end{array}$	$\begin{array}{r} 39 \\ 43-55 \end{array}$	$\begin{aligned} & 29 \\ & 34 \end{aligned}$	$\begin{array}{r} 7 \\ 38-45 \end{array}$	$\begin{array}{r} 15 \\ 20-15 \end{array}$	476
18 Sept	N S	$\begin{array}{r} 25 \\ 35-91 \end{array}$	$\begin{array}{r} 23 \\ 33-27 \end{array}$	$\begin{array}{r} 21 \\ 39-73 \end{array}$	$\begin{array}{r} 12 \\ 30-23 \end{array}$	$\begin{array}{r} 20 \\ 19-26 \end{array}$	$\begin{array}{r} 25 \\ 24-27 \end{array}$	492
19 Sept		$\begin{array}{r} 23 \\ 38-26 \end{array}$	$\begin{array}{r} 12 \\ 21-18 \end{array}$	$\begin{array}{r} 49 \\ 50-78 \end{array}$	$\begin{array}{r} 17 \\ 17-37 \end{array}$	$\begin{array}{r} 12 \\ 14-12 \end{array}$	$\begin{array}{r} 14 \\ 6-15 \end{array}$	458
20 Sept		23 $98-25$	19 $33-44$	$\begin{array}{r} 14 \\ 30-33 \end{array}$	$38-30$	$\begin{array}{r} 21 \\ 8-23 \end{array}$	$\begin{array}{r} 37 \\ 23-44 \end{array}$	476
21 Sept		59	15	51	47	18	95	778
22 Sept		$\begin{aligned} & 156 \\ & 215 \end{aligned}$	$\begin{array}{r} 60 \\ 365-93 \end{array}$	$\begin{array}{r} 50 \\ 125-94 \end{array}$	$\begin{array}{r} 43 \\ 49-39 \end{array}$	$\begin{array}{r} 18 \\ 38-41 \end{array}$	$\begin{array}{r} 38 \\ 29-35 \end{array}$	1,488
23 Sept		$\begin{array}{r} 260 \\ 320-270 \end{array}$	$\begin{array}{r} 75 \\ 190-185 \end{array}$	$\begin{array}{r} 63 \\ 190-209 \end{array}$	$\begin{aligned} & 46-30 \\ & 63-68 \end{aligned}$	$\begin{array}{r} 27-19 \\ 81 \end{array}$	$\begin{array}{r} 35-38 \\ 104 \end{array}$	2,348
24 Sept		$\begin{array}{r} 465 \\ 165-290 \end{array}$	$\begin{array}{r} 225-395 \\ 320 \end{array}$	$\begin{array}{r} 202-285 \\ 157 \end{array}$	$\begin{aligned} & 172 \\ & 118 \end{aligned}$	$\begin{aligned} & 56 \\ & 53 \end{aligned}$	$\begin{aligned} & 55 \\ & 24 \end{aligned}$	2,982
25 Sept		$\begin{aligned} & 235 \\ & 10 \end{aligned}$	$\begin{array}{r} 265 \\ 85 \end{array}$	$\begin{array}{r} 667 \\ 82 \end{array}$	$\begin{aligned} & 209 \\ & 382 \end{aligned}$	$\begin{aligned} & 59 \\ & 51 \end{aligned}$	$\begin{aligned} & 84 \\ & 31 \end{aligned}$	2,250
26 Sept		$\begin{array}{r} 265 \\ 90 \end{array}$	$\begin{aligned} & 410 \\ & 135 \end{aligned}$	$\begin{array}{r} 864 \\ 96 \end{array}$	$\begin{aligned} & 197 \\ & 114 \end{aligned}$	$\begin{array}{r} 115 \\ 48 \end{array}$	$\begin{array}{r} 145 \\ 33 \end{array}$	2,532
27 Sept		$\begin{array}{r} 240 \\ 65 \end{array}$	$\begin{array}{r} 385 \\ 80 \end{array}$	$\begin{aligned} & 1,250 \\ & 1,101 \end{aligned}$	$\begin{array}{r} 100 \\ 85 \end{array}$	$\begin{aligned} & 22 \\ & 13 \end{aligned}$	$\begin{aligned} & 20 \\ & 38 \end{aligned}$	2,399
28 Sept		$\begin{aligned} & 78 \\ & 45 \end{aligned}$	$\begin{gathered} 215 \\ 105 \end{gathered}$	$\begin{array}{r} 170 \\ 95 \end{array}$	$\begin{array}{r} 100 \\ 45 \end{array}$	33 26	$\begin{aligned} & 47 \\ & 19 \end{aligned}$	713
29 Sept		$\begin{array}{r} 151 \\ 43 \end{array}$	$\begin{array}{r} 287 \\ 76 \end{array}$	$\begin{array}{r} 175 \\ 75 \end{array}$	$\begin{array}{r} 115 \\ 50 \end{array}$	$\begin{aligned} & 47 . \\ & 24 \end{aligned}$	$\begin{aligned} & 57 \\ & 19 \end{aligned}$	1,119
30 Sept		$\begin{array}{r} 113 \\ 26 \end{array}$	236 55	$\begin{array}{r} 295 \\ 85 \end{array}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	$\begin{array}{r} 9 \\ 24 \end{array}$	$\begin{aligned} & 22 \\ & 26 \end{aligned}$	1,001
1 Oct		$\begin{array}{r} 169 \\ 42 \end{array}$	$\begin{array}{r} 217 \\ 71 \end{array}$	$\begin{array}{r} 100 \\ 80 \end{array}$	$\begin{array}{r} 110 \\ 48 \end{array}$	$\begin{aligned} & 61 \\ & 26 \end{aligned}$	$\begin{aligned} & 74 \\ & 25 \end{aligned}$	1,021
2 Oct		$\begin{aligned} & 96 \\ & 31 \end{aligned}$	$\begin{array}{r} 109 \\ 57 \end{array}$	$\begin{array}{r} 275 \\ 90 \end{array}$	$\begin{aligned} & 65 \\ & 54 \end{aligned}$	$\begin{aligned} & 66 \\ & 29 \end{aligned}$	$\begin{array}{r} 110 \\ 27 \end{array}$	1,009
3 Oct		$\begin{array}{r} 1.20 \\ 50 \end{array}$	175 75	$\begin{array}{r} 150 \\ 62 \end{array}$	$\begin{aligned} & 65 \\ & 53 \end{aligned}$	$\begin{aligned} & 67 \\ & 55 \end{aligned}$	$\begin{aligned} & 41 \\ & 29 \end{aligned}$	932
4 Oct		$\begin{aligned} & 57 \\ & 30 \end{aligned}$	$\begin{array}{r} 100 \\ 60 \end{array}$	$\begin{array}{r} 127 \\ 61 \end{array}$	$\begin{aligned} & 57 \\ & 33 \end{aligned}$	$\begin{aligned} & 13 \\ & 58 \end{aligned}$	$\begin{array}{r} 206 \\ 35 \end{array}$	837
5 Oct		$\begin{array}{r} 100 \\ 60 \end{array}$	150 100	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 175 \\ & 100 \end{aligned}$	$\begin{array}{r} 100 \\ 63 \end{array}$	$\begin{aligned} & 45 \\ & 27 \end{aligned}$	1,120
6 Oct		$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{array}{r} 185 \\ 95 \end{array}$	$\begin{array}{r} 210 \\ 58 \end{array}$	$\begin{aligned} & 96 \\ & 47 \end{aligned}$	$\begin{aligned} & 94 \\ & 65 \end{aligned}$	$\begin{aligned} & 63 \\ & 24 \end{aligned}$	1,187
7 Oct		$\begin{array}{r} 120 \\ 75 \end{array}$	115 50	$\begin{array}{r} 119 \\ 81 \end{array}$	$\begin{array}{r} 100 \\ 32 \end{array}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 39 \\ & 29 \end{aligned}$	777
8 Oct		$\begin{aligned} & 30 \\ & 20 \end{aligned}$	27 20	$\begin{array}{r} 5 \\ 40 \end{array}$	$\begin{aligned} & 98 \\ & 54 \end{aligned}$	$\begin{array}{r} 110 \\ 60 \end{array}$	$\begin{aligned} & 58 \\ & 36 \end{aligned}$	558
9 Oct		1.08 44	118 55	213 92	170 51	61 38	75 43	1,068

Table 4 Continued
YEAR 1965

Date	Bay	12 mid .	4 A.M.	B A.M.	12 Noon	4 P.M.	8 P.M.	Total Count
10 Oct		150	90	200	77	55		
		40	45	42	44	32	r 114	1,068
11 Oct		104	60	225	56	37		887
		35	32	41	44	48	33	887
12 Oct		170	98	320	83	60		
		70	68	245	28	44	64	750
13 Oct		210	280	312	92	116		
		86	111	142	56	65	130	1,644
14 Oct		350	190	290	95	78		
		200	86	125	75	65	71	1,736
15 Oct		210	162	295	94	25		
		140	55	93	56	75	60	1,358
16 Oct		189	130	335	98	70		
		160	150	100	42	59	90 64	1,497
17 ont		57	180	170	72	57		
		43	120	91	38	33	112	1,119
18 Oct		159	88	225.		19	120	
		88	26	81		40	120	1,254
19 Oct		165	96	137	62			
		286	80		82	40	77	853
20 Oct		0	0	0	9	3		597
		185	275	142	80	99	60	597
21 Oct		2	0	2	1	2		
		138	115	114	72	107	42	847
22 Oct		0	2	0	14		17	
		225	187	107	92	61	42	925
23 Oct		27	86	18	11	20		
		94	271	123	78	74	118	894
24 Oct		32	37	20	9			
		151	215	156	88	58	113	781
25 Oct		41	26	15	2	16	17	789
		148	136	205	88	40	55	789
26 Oct		14	24	28	21	27		
		142	243	215	85	110	114	1,116
27 Oct	$\stackrel{N}{N}$	78	62	320	42			
	5	108	114	208	104	45	126	1,439
28 Oct		66	81	330	110	110		1.750
		111	126	200	135	168	62	1.750
29 Oct		43	26	79	27	18		
		71	41	270	86	63	148	946
30 Oct		24	21	26	11	18		
		72	63	135	85	42	24	545
1 Oct		14	22	42	87	40		
		31	63	87	127	63	72	586

A-10

TABLE 4 CONTINUED

YEAR 1965

Date	Bay	12 Mid.	4 A.M.	8 A.M.	12 Noon	4P.M.	8P.M.	Total Count
1 Nov		94	76	87	16	18	87	1,006
		122	89	175	175	31	36	
2 Nov		37	22	75	10	27	20	411
		51	32	50	8	41	36	
3 Nov		37	110	45	5	12	18	588
		45	125	65	30	62	34	
4 Nov		57	27	25	10	90	152	906
		62	45	50	20	130	238	

YEAR 1966

19 April	$\begin{aligned} & \mathbf{S} \\ & \mathbf{N} \end{aligned}$							
20 April	s			133		130	4	347
	N	1		80		5	2	
21 April		3	0	51	64	17	17	290
		5	60	24	30	22	7	
22 April		21	27	34	31	20	2	290
		37	56	35	15	10	2	
23 April						57	57	214
						61	69	
24 April		26	21			23		172
		32	30			40		
25 April		180	85	230	130	31	40	1,549
		210	250	175	65	87	66	
26 April		210			55	31	30	650
		180			50	47	47	
27 April		70	21	37	30		19	373
		35	21	70	60		12	
28 April				70	62			572
				400	40			
29 April				60	40			265
				140	25			
				.				
1 May	S	60	44	120	100	13	27	1,003
	N	85	70	240	120	44	80	
2 May		33	42	31	27	26	22	564
		40	80	134	36	49	44	
3 May				88	32	18	23	367
				92	20	34	60	
4 May		75	35	175		50		1,002
		115	45	310		197		
5 May		68	20	132		27	40	648
		105	55	115		39	47	

TABLE 4. (Continued)
YEAR 1966

	Bay	12 Mid .	4 A.M.	8 A.M.	12 Noon	4 P.M.	8 P.M.	Total Count
6 May		$\begin{aligned} & 30 \\ & 55 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 131 \\ & 300 \end{aligned}$	$\begin{aligned} & 41 \\ & 28 \end{aligned}$	$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 21 \\ & 40 \end{aligned}$	737
7 May		$\begin{aligned} & 20 \\ & 65 \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{array}{r} 100 \\ 41 \end{array}$	$\begin{array}{r} 12 \\ 7 \end{array}$	$\begin{array}{r} 9 \\ 42 \end{array}$	950
8 May		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 18 \\ & 45 \end{aligned}$	$\begin{array}{r} 141 \\ 182 \end{array}$	$\begin{aligned} & 58 \\ & 50 \end{aligned}$	$\begin{aligned} & 43 \\ & 21 \end{aligned}$		503
9 May		$\begin{aligned} & 58 \\ & 65 \end{aligned}$	$\begin{aligned} & 21 \\ & 43 \end{aligned}$	62	48	$\begin{aligned} & 14 \\ & 87 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$	448
10 May		$\begin{array}{r} 27 \\ 110 \end{array}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 29 \\ & 27 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$			239
$11 . \mathrm{May}$				$\begin{aligned} & 135 \\ & 163 \end{aligned}$	$\begin{aligned} & 25 \\ & 43 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} 9 \\ 20 \end{array}$	420
12 May		$\begin{array}{r} 72 \\ 340 \end{array}$	$\begin{array}{r} 40 \\ 200 \end{array}$	$\begin{array}{r} 31 \\ 140 \end{array}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & 11 \\ & 19 \end{aligned}$	$\begin{aligned} & 10 \\ & 35 \end{aligned}$	973
13 May		$\begin{array}{r} 40 \\ 180 \end{array}$	$\begin{aligned} & 160 \\ & 120 \end{aligned}$	$\begin{array}{r} 70 \\ 127 \end{array}$	$\begin{aligned} & 40 \\ & 63 \end{aligned}$	$\begin{aligned} & 46 \\ & 97 \end{aligned}$	$\begin{aligned} & 51 \\ & 13 \end{aligned}$	1,107
14 May	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 140 \\ & 240 \end{aligned}$	$\begin{aligned} & 200 \\ & 340 \end{aligned}$	$\begin{aligned} & 145 \\ & 265 \end{aligned}$	$\begin{aligned} & 10 \\ & 41 \end{aligned}$	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 22 \\ & 68 \end{aligned}$	1.616
15 May		$\begin{array}{r} 71 \\ 123 \end{array}$	$\begin{array}{r} 68 \\ 190 \end{array}$	$\begin{aligned} & 25 \\ & 46 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	$\begin{aligned} & 11 \\ & 21 \end{aligned}$	$\begin{aligned} & 18 \\ & 40 \end{aligned}$	65.3
16 May		$\begin{aligned} & 27 \\ & 69 \end{aligned}$	$\begin{array}{r} 80 \\ 112 \end{array}$	$\begin{array}{r} 61 \\ 105 \end{array}$	$\begin{array}{r} 61 \\ .105 \end{array}$	$\begin{array}{r} 80 \\ 150 \end{array}$	$\begin{aligned} & 55 \\ & 90 \end{aligned}$	663
17 May		$\begin{array}{r} 87 \\ 212 \end{array}$	$\begin{aligned} & 42 \\ & 68 \end{aligned}$	$\begin{aligned} & 10 \\ & 22 \end{aligned}$	$\begin{array}{r} 9 \\ 15 \end{array}$	$\begin{aligned} & 14 \\ & 55 \end{aligned}$	$\begin{aligned} & 11 \\ & 30 \end{aligned}$	575
18 May		$\begin{aligned} & 75 \\ & 73 \end{aligned}$	$\begin{aligned} & 38 \\ & 56 \end{aligned}$	$\begin{aligned} & 18 \\ & 34 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	$\begin{aligned} & 30 \\ & 58 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$	478
19 May		83 133	$\begin{aligned} & 173 \\ & 250 \end{aligned}$	$\begin{aligned} & 140 \\ & 170 \end{aligned}$	$\begin{aligned} & 24 \\ & 44 \end{aligned}$	$\begin{aligned} & 50 \\ & 85 \end{aligned}$	$\begin{array}{r} 30 \\ 115 \end{array}$	1.081
20 May		$\begin{aligned} & 112 \\ & 135 \end{aligned}$	$\begin{aligned} & 82 \\ & 41 \end{aligned}$	$\begin{aligned} & 13 \\ & 24 \end{aligned}$	$\begin{aligned} & 11 \\ & 18 \end{aligned}$	$\begin{aligned} & 17 \\ & 20 \end{aligned}$	$\begin{aligned} & 28 \\ & 38 \end{aligned}$	539
21 May		$\begin{aligned} & 118 \\ & 131 \end{aligned}$	$\begin{array}{r} 98 \\ 108 \end{array}$	$\begin{aligned} & 20 \\ & 44 \end{aligned}$	$\begin{aligned} & 65 \\ & 89 \end{aligned}$	$\begin{aligned} & 28 \\ & 42 \end{aligned}$	$\begin{array}{r} 60 \\ 120 \end{array}$	769
22 May		$\begin{aligned} & 137 \\ & 150 \end{aligned}$	$\begin{aligned} & 117 \\ & 130 \end{aligned}$	$\begin{aligned} & 36 \\ & 66 \end{aligned}$	$\begin{aligned} & 26 \\ & 51 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 62 \end{aligned}$	895
23 May		$\begin{aligned} & 131 \\ & 109 \end{aligned}$	$\begin{array}{r} 98 \\ 142 \end{array}$	$\begin{aligned} & 131 \\ & 117 \end{aligned}$	$\begin{aligned} & 118 \\ & 155 \end{aligned}$	$\begin{aligned} & 215 \\ & 103 \end{aligned}$	$\begin{aligned} & 95 \\ & 76 \end{aligned}$	1,242
24 May		$\begin{aligned} & 187 \\ & 165 \end{aligned}$	$\begin{aligned} & 190 \\ & 155 \end{aligned}$	$\begin{aligned} & 250 \\ & 205 \end{aligned}$	$\begin{array}{r} 108 \\ 54 \end{array}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & 58 \\ & 46 \end{aligned}$	1,454
25 May		$\begin{aligned} & 70 \\ & 92 \end{aligned}$	$\begin{aligned} & 32 \\ & 56 \end{aligned}$	$\begin{aligned} & 54 \\ & 45 \end{aligned}$	$\begin{aligned} & 17 \\ & 29 \end{aligned}$	8 12	$\begin{aligned} & 17 \\ & 26 \end{aligned}$	458
26 May		$\begin{aligned} & 22 \\ & 36 \end{aligned}$	$\begin{aligned} & 18 \\ & 34 \end{aligned}$	$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 19 \\ & 24 \end{aligned}$	$\begin{aligned} & 22 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	305
27 May	$\begin{aligned} & \mathbf{S} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 20 \\ & 38 \end{aligned}$	$\begin{aligned} & 14 \\ & 22 \end{aligned}$	$\begin{aligned} & 42 \\ & 47 \end{aligned}$	$\begin{aligned} & 34 \\ & 52 \end{aligned}$	$\begin{aligned} & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 62 \\ & 14 \end{aligned}$	380
28 May		$\begin{aligned} & 38 \\ & 54 \end{aligned}$	$\begin{aligned} & 16 \\ & 30 \end{aligned}$	$\begin{aligned} & 36 \\ & 65 \end{aligned}$	$\begin{aligned} & 46 \\ & 32 \end{aligned}$	$\begin{aligned} & 21 \\ & 19 \end{aligned}$	$\begin{aligned} & 19 \\ & 16 \end{aligned}$	392
29 May		$\begin{aligned} & 46 \\ & 62 \end{aligned}$	$\begin{aligned} & 34 \\ & 26 \end{aligned}$	$\begin{aligned} & 17 \\ & 26 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 29 \\ & 21 \end{aligned}$	$\begin{aligned} & 24 \\ & 18 \end{aligned}$	334

table 4 CONTINUED YEAR 1966

Date	Bay	12 mdo	4 A.M.	8 A.M.	12 Noon	$4 \mathrm{P}, \mathrm{M}_{0}$	8 P.M.	Total Count
$30: \mathrm{ay}$		$\begin{aligned} & 14 \\ & 26 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	${ }_{68}^{4}$	$\begin{aligned} & 54 \\ & 44 \end{aligned}$	19	14	347
31 :ay		$\begin{aligned} & 30 \\ & 28 \end{aligned}$	$\begin{aligned} & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & 60 \\ & 71 \end{aligned}$	$\begin{aligned} & 26 \\ & 18 \end{aligned}$	$\begin{aligned} & 36 \\ & 29 . \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	371
1 June		$\begin{aligned} & 48 \\ & 36 \end{aligned}$	$\begin{aligned} & 28 \\ & 18 \end{aligned}$	$\begin{aligned} & 271 \\ & 145 \end{aligned}$	$\begin{aligned} & 97 \\ & 53 \end{aligned}$	$\begin{aligned} & 31 \\ & 15 \end{aligned}$	$\begin{array}{r} 21 \\ 9 \end{array}$	772
2 June		$\begin{aligned} & 36 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 18 \end{aligned}$	$\begin{array}{r} 54 \\ 113 \end{array}$	$\begin{aligned} & 19 \\ & 41 \end{aligned}$	$\begin{aligned} & 11 \\ & 27 \end{aligned}$	$\begin{aligned} & 23 \\ & 13 \end{aligned}$	408
3 June		$\begin{aligned} & 27 \\ & 19 \end{aligned}$	$\begin{aligned} & 32 \\ & 26 \end{aligned}$	$\begin{array}{r} 67 \\ 156 \end{array}$:	$\begin{aligned} & 36 \\ & 26 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	413
4 June		$\begin{aligned} & 21 \\ & 36 \end{aligned}$	$\begin{aligned} & 27 \\ & 42 \end{aligned}$	$\begin{aligned} & 57 \\ & 98 \end{aligned}$	$\begin{array}{r} 81 \\ 120 \end{array}$	$\begin{aligned} & 32 \\ & 56 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \end{aligned}$	632
5 June		$\begin{aligned} & 2 ? \\ & 42 \end{aligned}$	$\begin{aligned} & 29 \\ & 56 \end{aligned}$	$\begin{aligned} & 23 \\ & 40 \end{aligned}$	$\begin{aligned} & 29 \\ & 47 \end{aligned}$	$\begin{aligned} & 26 \\ & 38 \end{aligned}$		357
4 June		$\begin{aligned} & 215 \end{aligned}$	$\begin{aligned} & 18 \\ & 96 \end{aligned}$					90

During week of 7 June throlugh 14 June counts taken on 3 hr . baels were consiatently low about 15 or 20 .
16 June N N
$4 i$
17 .Tune

18 June
14
24 $\quad 38$
25
$\begin{array}{ll}25 & 85\end{array}$
19 June

20 June 48

21 June

22 June 68

23 June

24 June

25 June
No Counts

26 June
No Counts

27 June
28 June
No Counts

29 June S
\mathbf{S}
\mathbf{N}

195
135

32
67
35

200

134
248

22 : 31

202

No Counts

No Counta

29 June

A-14
 Table 4 Continued

YEAR 1966

Table 4 Continued

Year 1966

A-16

Table 4 Continued

Date		YEAR 1966				Total Count
		Bay	8 A.M.	12 Noon	4 P.M.	
	Sept.	s	657	116	133	1.484
		N	378	93	107	
	Sept.		1,015	127		1,912
			632	138		
3	Sept.		197	67	114	706
			158	79	91	
4	Sept.		392	109	58	1,101
			347	117	78	
5	Sept.		114	32	71	488
			95	86	90	
6	Sept.		361	97	51	891
			224	107	41	
7	Sept.		147	67	41	629
			166	147	61	
8	Sept.		221	82	23	642
			208	46	62	
9	Sept.		103		178	680
			117		282	
	sept.		147	55	38	401
			85	44	32	
	Sept.		335	65	27	758
			260	50	31.	
	Sept.		160	101	57	593
			125	107	43	
	Sept.		255	71	71	680
			182	49	52	
14	Sept.	S	402	72	78	1,007
		N	137	265	53	
	Sept.		605	108		1.053
			282	58		
	Sept.		334	78	107	730
				190	21	
	Sept.		187	81	96	696
			145	67	120	
	Sept.		221	91	76	757
			225	59	85	
	Sept.		251	143	54	943
			354	83	58	
	Sept.		454	107	43	1,203
			397	134	68	
	Sept.		172		170	813
			403		68	
22	Sept.		$\begin{array}{r} 355 \\ 406 \end{array}$	$\begin{aligned} & 118 \\ & 134 \end{aligned}$	$\begin{array}{r} 107 \\ 78 \end{array}$	1.198

Date	Bay	8 A.M.	12 Noon	4 P.M.	Total Count
23 Sept.		605	37	13	1,551
		614	145	137	
14 Oct.	s			150	200
	N			50	
15 Oct.					
16 Oct.					
17 Oct.	s	570	115		1,110
	N	375	50		
18 oct.	S	500	120		982
		310	52		
19 Oct.					
20 Oct.		775		152	1. 300
	N	320		53	
21 Oct.	s	1.130		555	2,703
		740		278	
22 Oct.					
23 Oct.					
24 Oct.	s	1,032		235	1,917
	N	563		87	
25 Oct.	S	682		260	1,561
		479		140	
26 Oct.	S	320	148	119	969
	N	210	93	79	
27 Oct.	s	352		253	886
	N	154		127	
28 Oct.		708			890
		182			
29 Oct.					
30 oct.					
31 Oct.		1.320		445	2,458
		189		504	
1 Nov.	S	367		512	1,253
	N	187		187	
2 Nov.	S	212		204	1,002
	N	204		382	
3 Nov.	S			230	525
	N			295	
4 Nov.	S	478			668
	N	190			

A-18
TABLE 4. (Continued)

YEAR 1966

YEAR 1966

Date	Bay	8 A.M.	12 Noon	4 P.M.	Total Count
1 Dec.	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} 603 \\ 105 / 222 \end{gathered}$	$\begin{array}{r} 452 \\ 849 / 77 \end{array}$	$\begin{gathered} 182 \\ 122 / 124 \end{gathered}$	2,736
2 Dec.		$\begin{gathered} 418 \\ 37 / 208 \end{gathered}$	$\begin{gathered} 530 \\ 319 / 117 \end{gathered}$	$\begin{gathered} 613 \\ 53 / 119 \end{gathered}$	2,414
3 Dec .	No Count				
4 Dec.	No Count				;
5 Dec.	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 200 \\ & 607 \end{aligned}$	$\begin{gathered} 1210 \\ 1103 / 115 \end{gathered}$	$\begin{gathered} 1267 \\ 232 / 76 \end{gathered}$	4,810
6 Dec.		$\begin{aligned} & 1535 \\ & 315 / 410 \end{aligned}$	$\begin{gathered} 2055 \\ 734 / 176 \end{gathered}$	$\begin{gathered} 1210 \\ 128 / 67 \end{gathered}$	6,630
7 Dec.		$\begin{gathered} 1610 \\ 405 / 870 \end{gathered}$	$\begin{gathered} 1265 \\ 175 / 235 \end{gathered}$	$\begin{gathered} 945 \\ 1240 / 230 \end{gathered}$	6,975
8 Dec.		$\begin{gathered} 1730 \\ 188 / 895 \end{gathered}$	745	$\begin{gathered} 1175 \\ 932 / 122 \end{gathered}$	5,787
9 Dec.		$\begin{gathered} 2300 \\ 289 / 603 \end{gathered}$	$\begin{gathered} 890 \\ 1000 / 1600 \end{gathered}$		6,682
10 Dec.	No Count				
11 Dec.	No Count				:
12 Dec.	No Count				!
13 Der.	No Count				\because
14 Dec .	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & 281 \\ & .235 \end{aligned}$	$\begin{aligned} & 161 \\ & 102 \end{aligned}$	$1,169$
15 Dec.	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & 524 \\ & 365 \end{aligned}$		889
16 Dec.		$\begin{aligned} & 717 \\ & 502 \end{aligned}$	$\begin{aligned} & 507 \\ & 434 \end{aligned}$		2,160
7 Dec.	No Count				"
8 Dec.	No Count				
9 Dec.		$\begin{aligned} & 403 \\ & 610 \end{aligned}$	$\begin{aligned} & 572 \\ & 807 \end{aligned}$		2,392
0 Dec.		$\begin{array}{r} 673 \\ 1023 \end{array}$	$\begin{aligned} & 478 \\ & 732 \end{aligned}$		2,906
$1 . \mathrm{Dec}$.	No Count				
2 Dec.		$\begin{aligned} & 511 \\ & 8.32 \end{aligned}$	$\begin{array}{r} 523 \\ 578 \end{array}$	$\begin{aligned} & 383 \\ & 446 \end{aligned}$	3,273

Table 4 Continued

YEAR 1967

Date	Bay	B A.M.	12 Noon	4P.M.	Total Count
3 Jan.	S	2900	775		8,935
	N	4300	960		
4 Jan.		5800		2752	12,100
		6300			
5 Jan.	No Count				
6 Jan.	" "				
7 Jan.	" "				
8 Jan.	" "				
Jan.	S		2800	1800	4,600
	N				
10 Jan.		1800	5500	1560	16,070
		1650	4200	1360	
11 Jan.		1220		1120	4.670
		1260		1070	

A-21
Table 4 Continued

YEAR 1967

Date	Bay	8 A.M.	12 Noon	4 P.M.	Total Count
12 Jan.		1550	1970	4600	16,845
		2025	2500	4200	
13 Jan.		2500	1700	2850	13,070
		2250	1370	2400	
14 Jan.	No Count				
15 Jan.	No Count				
16 Jan.		2350	760	1100	8,620
		2300	610	1500	0,620
17 Jan.		2125		1550	9,295
		2200	1020	2400	
18 Jan.	S	800	830	460	3,635
	N	780	560	205	
19 Jan.		820	1550	790	6,365
		1125	1100	980	6.365
20 Jan.		1325	930	305	4,435
		1100	620	155	
21 Jan.	No Count				
22 Jan.	No Count				
Date	Bay - No.	8A. M.	12 Noon	$4 \mathrm{P} . \mathrm{M}$.	Total Count
23 Jan.		2600	1200	680	8,260
		2250	940	590	
24 Jan.		680	470	850	3,920
		730	820	370	
25 Jan.		640	820	520	3,880
		480	910	510	
$26 \mathrm{Jan}$.		390	1550	920	6,300
		540	1700	1200	

4,693

1500

Table 4 Continued

YEAR 1967

Date	Bay	BA. M.	12 Noon	$4 \mathrm{P} . \mathrm{M}$.	Total Count
29 Jan.		33/630	74/550	28/280	2,655
		480	350	230	
30 Jan.		110/1900	75/810	32/330	5,417
		1380	570	210	
31 Jan.		85/1010	42/820	835/123	4,580
		820	610	235	

FINE SCREEN TEST INSTALLATION IN FRONT OF BAY \#11

Date	Bay	No.	8 A. M.	12 Noon	$4 \mathrm{P} . \mathrm{M}_{\text {. }}$	Total Count
1 Feb.	S	\#11/\#12	218/1660	180/1120	105/870	8,173
	N	\#13\& 14	2100	1080	840	
2 Feb.			121/900	980/1200	135/350	6,981
			1175	1140	980	
3 Feb .			145/650	85/720		3.320
4 Feb.			31/65	95/		352
			161			

5 Feb. 499

6 Feb.

7 Feb.
3 Feb.

Feb.
Feb.

11 Feb. No Counts
12 Feb.
" "
Feb. " "

142/1120
2060

13/400
370

109/870

203

51/450
63/800
4,423
783

670

Total
Count
8,173

6,981
3.320

352

1410

Total Count

2,655

5,417

4,580 235

YEAR 1967
FINE SCREEN TEST INSTALLATION IN FRONT OF BAY \#ll

TABLE 4 CONTINUED

YEAR

A-25

Table 4 Continued

YEAR 1970

Date	Time of Day	Fish Count	Total Fish
16 January	8:45 A. M.	1.561	
	12:45 P. M.	6,389	19,381
	4:05 P. M.	6,228	
	8:10 P. M.	5,203	
17 January	1:30 A. M.	6,314	6,314
27 January	8:20 A. M.	4,823	
	12:53 P. M.	4,734	
	4:40 P. M.	1,570	15,071
	8:35 P. M.	3,944	
28 January	1:01 A. M.	2,895	
	6:15 A. M.	3,545	
	8:48 A. M.	2.255	12,895
	12:41 P. M.	1,423	
	4:24 P. M.	1,033	
	8:33 P. M.	1.744	
29 January	8:40 A. M.	7,900	21,303
	12:52 P. M.	3.650	
30 January	12 Midnight	2,321	
	4:00 A. M.	1,233	10,270
	8:00 A. M.	5.683	
	4:00 P. M.	1,033	
		2,568	
		$\frac{\text { Fish Count }}{15 \mathrm{~min} .}$	
Date	Time	Act. Count	
31 January	0001	114	
	0400	34	
	0800	82	
	1200	. --	
	1600	34	
	2000	88	
		352	
1 February	0001	97	
	0400	81	
	0800	86	
	1200	73	
	1600	38	
	2000	193	

A-26
table 4 continued
YEAR 1970

YEAR 1970

Date

1 March 2 March March March 5 March

6 March
March
8. March

March 53

10 March

11 March

12 March
13 March
14 March
15 March

16
March

Date	Time	$\begin{array}{r}\text { Bay } \\ 11 \\ \hline\end{array}$
4. Abril	0800	10
	1200	-
	1600	1
	2000	1
		12
5 Anril	anco	4
	d400	0
	Qen	0
	1200	151
	1500	11
	20ne	7
		$\overline{173}$

Bay	Bay
12	13
100	100
-	-
3	4
$\frac{0}{103}$	
	9

6	10
1	2
2	15
2511	
11	101
9	12
283	

$\begin{array}{r} \text { Bay } \\ 14 \\ \hline \end{array}$	$\begin{gathered} \text { Total } \\ \text { rev } \\ \hline \end{gathered}$
-	
-	
-	
-	$\overline{228}$
	.
5	
1	
9	
\bigcirc	
4	:
r	
28	दuo

0	21
0	0
3	5
102	354
5	22
9	$\frac{22}{128}$

0000
0400
0800
1200
1600
2000
$\begin{array}{r}1 \\ 2 \\ 6 \\ 5 \\ 0 \\ 0 \\ \hline 14\end{array}$

0000	6
0400	0
0800	3
1200	111
1600	12
2000	$\frac{2}{134}$

$\begin{array}{r}4 \\ 5 \\ 8 \\ 14 \\ 1 \\ 1 \\ \hline 33\end{array}$
2
2
5
305
11
$\frac{3}{321}$
$\begin{array}{r}7 \\ 7 \\ 7 \\ 34 \\ 4 \\ 14 \\ \hline 67\end{array}$
तनर
$\overline{68 \mathrm{C}}$
8 Abril

Pate	Time	$\begin{gathered} \text { Ray } \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Bay } \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ray } \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tot.al } \\ & \text { May } \\ & \hline \end{aligned}$
9 Anril	0600	3	$?$	4	2	
	O400	2	4	5	1	
	0800	1	1	7	13	
	1200	1	6	195	215	
	1600	1	1	6	5	
	2000	$\frac{\mathrm{c}}{8}$	$\frac{2}{21}$	$\frac{1}{218}$	$\frac{5}{2}$	
				$\overline{218}$	238	485
10 Adril	nocos	1	0	0	3	
	0400	1	2	1	3	
	C800	3	3	21	$?$	
	1200	$?$	19	521	264	
	1600	1	1	6	5	
	2000	$\frac{0}{13}$	$\frac{2}{27}$	$\underline{1}$	2	
		13	27	550	284	$8 \overline{7}$
11 April	0000	2	4	5	8	
	0400	5	3	2	7	
	0800	25	10		0	
	1200	360	220	55	14	
	1600	3	1	6	3	
	2 Con	$\frac{3}{395}$	$\frac{0}{233}$	$\frac{1}{7}$	2	
		398	238	78	43	बा?
12. Abril	nomo	11	14	$3 n$	18	
	04 cos	6	8	11	5	
	0800	12	18	7	3	
	12 n 0	190	26.8	10	4	
	1600	2	2	3	1	
	2000	$\frac{1}{231}$	$\frac{3}{313}$	$\frac{2}{63}$	$\underline{2}$	
					33	640
13 Anril	0000	5	7	9	12	
	0400	4	7	2	3	
	0800	-	-	-	-	
	1200	134	99	6	¢	
	1600	0	1	2	1	
	2000	$\frac{0}{143}$	0	1	-	
		143	114	20	22	$\overline{290}$
14 April	0000	1	4	8	10	
	0400	2	1	5	4	
	0800	3	9	1	0	
	1200	25	30	7	0	
	1600	0	2	3	1	
	2000	1	1	2	1	
		32	47	26	16	121
15 April	0000	1	3	2	0	
	0400	2	2	5	1	
	0800	0	2	1	1	
	1200	13	12	12	0	
	1600	2	0	1	1	
	2000	1	3	2	1	
		19	22	23	4	68
16 April	0000	2	1	3	1	
	0400	1	2	3	2	
	0800	2	1	1	0	
	1200	2	1	5	7	
	1600	1	0	0	2	
	2000	1	2	0	1	
		9	7	12	13	41
17 April	0000	1	1	0		
	0400	2	0	3	2	
	0800	Test				
	1200					
	1600					
	2000					
		3	1	3	4	11
18 \& 19 A	Circu	alte	shut			

XEAR 1970

Date	Time	Bay	Bay	Bay	Bay	Total
		11	12	13	14	day
20 April	0000	0	0	1	0	
	0400	8	5	3	4	
	0800	1	0	1	1	
	1200	2	3	3	16	
	1600	236	116	97	196	
	2000	166	25	37	207	
		413	149	142	424	$\overline{1128}$
21 April	0000	235	20	15	50	
	0400	300	7	5	135	\cdots
	0800	754	3	5	103	
	1200	250	31	19	51	
	1600	975	18	11	510	
	2000	450	3	5	320	
		2964	82	60	1169	$\overline{4295}$
22 April	0000	350	3	5	60	
	0400	600	5	1	180	
	0800	-	-	-	-	
	1200	-	-	-	-	
	1600	838	75	46	210	
	2000	480	8	10	140	
		2268	91	62	590	$\overline{3011}$
23 April	0000	350	3	5	95	
	0400	245	4	3	115	
	0800	380	7	0	125	
	1200	206	18	17	32	
	1600	195	11	9	62	
	2000	175	8	9	60	
		1611	51	43	489	$\overline{7194}$
24 April	0000	23	0	1	7	
	0400	14	2	0	9	
	0800	29	1	2	5	
	1200	6	3	10	0	
	1600	9	0	0	4	
	2000	11	2	4	6	
		92	8	17	31	148
25 April	0000	2	0	0	3	
	0400	3	0	0	3	
	0800	7	2	0	4	
	1200	4	6	1	1.	
	1600	6	1	2	5	
	2000	8	0	1	3	
		30	9	4	19	62 :
26 April	0000	4	1	0	1	
	0400	2	0	0	1	
	0800	11	2	0	4	
	1200	11	0	4	3	
	1600	т				
	2000	28	3	4	9	4

tABLE 4. (Continued)
YEAR 1970

Date	Time	$\begin{aligned} & \text { Bay } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 14 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Day } \\ \hline \end{gathered}$
13 June	0000	2	6	4	2	
	0400	4	3	2	5	
	0800	2	0	0	0	
	1200	-	-	-	-	
	1600	0	1	0	0	
	2000	2	5	1	0	
		10	15	7	7	39
14 June	0000	-	-	-	-	
	0400	-	-	-	-	
	0800	-	-	-	-	
	1200	-	-	-	-	
	1600	-	-	-	-	
	2000	-	-	-	-	
		-	-	-	-	-
15 June	0000	1	3	0	0	
	0400	-	-	-	-	
	0800	0	8	5	0	
	1200	-	-	-	-	
	1600	-	-	-	-	
	2000	$=$	-	-		
		1	11	5	0	$\overline{17}$

Bay 12

pate	Species	verage length (mmol	Average Weight \qquad (a)	\% Composition	Species	Average Length - (mm)	Average Weight (a)	\% Composition
$\begin{aligned} & \text { Apr 4-5 } \\ & \text { Apr } 6-7 \\ & 1970 \end{aligned}$	White Perch	74.82	5.17	77.9	White Perch	75.83	4.95	74.51
	Smelt	135.5	9.53	3.87	Smelt	135.7	17.3	3.34
	Spottail Shiner 79.2		4.58	9.2	Spottail Shiner	80.88	4.97	11.28
	romeod	173.3	40.0	. 72	Tomeod	135.75	16.75	. 55
	White Catfish	. 150.0	37.0	. 48	White Catfish	253.8	486.0	. 27
	Striped Bass	89.36	6.89	4.6	Striped Bass	100.64	9.35	4.87
	Yeliow Bullhead	ad 94.0	10.0	. 48	Yellow Bullhead	186.05	167	. 27
	Pumpkinseed	104.6	31.6	1.21	Pumpkinseed	80.55	11.55	1.25
	Killifish	0	0	0	Killifish	58.5	Neg.	. 27
	Stickleback	0	0	0	Stickleback	0	0	0
	Eel	0	0	0	Eel	304.8	Did Not Take	. 13
	Golden Shiner	0	0	0	Golden Shiner	118.0	14.66	1.11
	Catfish	93.0	11.0	. 72	Catfish	128.5	74.0	1.39
	Yellow Perch	0	0	0	Yellow Perch	192.0	86.0	. 13
-	Goldfish	0	0	0	Goldfish	84.33	11.0	. 41
	Unidentified BAY 13	98.0	9.5	. 72	$\begin{gathered} \text { Unidentified } \\ \underline{\underline{\text { BAY } 14}} \end{gathered}$	85.5	8.0	. 13
	White Perch	75.64	5.17	75.80	White Perch	75.80	6.15	76.53
	Smelt	137.8	13.5	3.33	Smelt	135.3	15.0	6.12
	Spottail Shiner	r 79.15	3.3	11.91.	Spottail Shiner	72.0	3.85	10.20
	Tomeod	153.55	21.77	1.19	Tomcod	0	0	0
	White Catfish	74.0	Neg.	. 11	White Catfish	0	0	0
	Striped Bass	96.11	9.73	3.21	Striped Bass	101.4	10.2	6.12
	Yellow Bullhead	d 97	1.3	. 11	Yellow Bullhead	0	0	0.
	Pumpkinseed	77.0	9.0	. 11	Pumpkinseed	133.0	44.0	1.02
	Killifish	0	0	0	Killifish	0	0	0
,	Stickleback	61.0	Neg.	. 47	Stickleback	0	0	0
	Eel	482.6	262.0	. 23	Eel	0	0	0
	Golden Shiner	162.33	43.83	. 71	Golden Shiner	0	0	0
	Catfish	157.15	81.07	1.66	Catfish	0	0	0
	Yellow perch	0	0	0	Yellow Perch	0	0	0
	Goldfish	80.0	9.12	. 95	Goldfish	0	0	0
	Unidentified	50.0	8.0	. 11	Unidentified	0	0	0

Bay 11
Bay 12

Date	Species	Average Length (mm)	$\left.\begin{array}{c}\text { Average } \\ \text { Weight } \\ \text { (g) }\end{array}\right)$	\% comp.	Species	$\begin{gathered} \text { Average } \\ \text { Length } \\ \text { (muil) } \end{gathered}$	Average Weight (g)	\% comp.
Apr. 14, 15, 16. 1970	White Perch	78.58	6.57	64.86	White Perch	78.36	5.94	69.76
	Smelt	129	17	2.70	Smelt	0	0	0
	Spottail Shiner	69.55	2.81	24.32	Spottail Shiner	79	4.67	20.93
	Sunfish	0	0	0	Sunfish	66	4.20	2.32
	Killifish	87	7.80	2.70	Killifish	65	2.40	2.32
	Catfish	0	0	0	Catfish	0	0	0
	Yellow Perch	0	0	0	Yellow Perch	68	3.10	2.32
	Goldfish	87	11.00	2.70	Goldfish	69	4.30	2.32
	Sturgeon	152.4	Dia Not	2.70	Sturgeon	0	0	0
	BAY 13		Take		BAY			
	White Perch	75.87	5.46	57.14	White Perch	60.00	2.80	100.00
	Smelt	140	24.2	14.28	Smelt	0	0	0
	Spottail Shiner	75.66	4.30	21.42	Spottail Shiner	0	0	0
	Sunfish	0	0	0	Sunfish	0	0	0
	Killifish	0	0	0	Killifish	0	0°	0
	Catfish	277	256.50	7.14	Catfish	0	0	0
	Yellow Perch	0	0	0	Yellow perch	0	0	0
	Goldfish	0	0	0	Goldfish	0	0	0
	Sturgeon	0	0	0	Sturgeon	0	0	0
	Bay 11				Bay			

$\begin{aligned} & \text { Apr. } 20 . \\ & 1970 \end{aligned}$	White Perch	0	0	0	White Perch	60.50	2.45	100.00
	Smelt	72.50	2.35	100.00	Smelt	0	0	0
	Catfish	0	0	0	Catfish	0	0	0
	Bay 13				Bay 14			
	White Perch	70.0	4.40	50	White Perch	76.55	6.96	95.23
	Smelt	0	0	0	Smelt	0	0	0
	Catfish	342.90	561.8	50	Catfish	131	17.2	4.76

Table 5 Continued

Date	Species	Average Length (mum)	Average Weight \qquad (g)	\% comp.	Species	Average Length (mm)	Averag Weight (g)	\% comp.
$\begin{aligned} & \text { Apr. 21, } \\ & 22,23 . \\ & 1970 \end{aligned}$	White Perch	98.28	18.92	52.51	White Perch	79	5.66	30
	Smelt	109.86	8.85	15.82	Smelt	90.28	5.85	70
	Spottail Shiner	84	5.13	4.31	Spottail Shiner	0	0	0
	Tomeod	144.83	17.65	4.31	Tomcod	0	0	0
	Striped Bass	94:09	8.80	15.10	Striped Bass	0	0	0
	Sunfish	93	12.80	. 71	Sunfish	0	0	0
	Catfish	86.16	5.33	4.31	Catfish	0	0	0
	Goldfish	88	9.90	. 71	Goldfish	0	0	0
	Shad	130	15.3	. 71	Shad	0	0	0
	Blueback Herring	171	30	. 71	Blueback Herring	0	0	0
	Crappie	0	0	0	Crappie	0	-0	0
	Yellow Perch	93	9.10	.71	Yellow Perch	0	0	0
	Alewife	0	. 0	0	Alewife	0	0	0

Bay 13
Bay 14

Bay 13
Bay 14

White Perch	78.71	7.34	63.63	White Perch	155.22	57.44	62.50
Smelt	70	2.20	9.09	Smelt	147	16.50	6.25
Spottail Shiner	83.5	5.50	9.09	Spottail Shiner	79	3.30	6.25
White Catfish	0	0	0	White Catfish	320	440.9	6.25
Striped Bass	93	6.90	9.09	Striped Bass	0	0	0
Eel	355.60	114.70	9.09	Eel.	0	0	0
Golden Shiner	0	0	0	Golden Shiner	0	0	0
Catfish	0	0	0	Catfish	60	1.80	6.25
Johnny Darter	0	0	0	Johnny Darter	0	0	0
\lewife	0	0	0	Alewife	291	256.2	6.23
Hogchoker	0	0	0	Hogchoker	137	43.7	6.23

table 5 Continued

A-39
-

Date	Time	$\begin{gathered} \text { Bay } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Bay } \\ 12 \\ \hline \end{gathered}$	$\begin{array}{r} \text { Bay } \\ 13 \\ \hline \end{array}$	$\begin{aligned} & \text { Bay } \\ & 14 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Day } \\ \hline \end{gathered}$	Bay	Tomicod	Anchovy	$\begin{gathered} \text { Striped } \\ \text { Bass } \\ \hline \end{gathered}$	White Perch	Other \& Unidentified
August 7, 1970	0800	$\bigcirc 3$	5	2	0		11	96.9/73.7				3.1
	1200	26	30	4	0		12	98.0/77.5				2.0
	1600	7	39	5	2		13	76.9/81.4				33.1
	2000	10	32	1	0		14	-/-				-
		46	106	12	2	166		.				
August 8, 1970	0000	4	5	7	3		11					
	0400	2	8	8	1		12					
No F-	0800	0	22	1	2		13	No observations				
screen	1200	6	3	5	0		14					
wash	1600	0	1	0	0					.	-	
	2000	1	3	0	0						.	
		13	42	21	6	82						
August 9, 1970	0000	1	4	2	5		11					
	0400	0	5	3	4		12					
No Fscreen wash	0800	1	3	5	0		13	No Observations				
	1200	0	6	3	3		14					
	1600	0	15	6	1			.				
	2000	1	8	2	0							
		3	41	21	13	78				.		
August 10, 1970	0000	1	3	6	3		11					.
	0400	2	6	4	2		12			:		
	0800	1	18	6	5		13	No observations				
	1200	39	58	4	2		14					
	1600	20	32	1	0					,		
	2000	5	19	3	1							
		68	136	24	13	241						
-11, 1970	0000	7	3	4	7		11	44.4/84.5	11.1/81.5	5.5/246.5	5.5/81.0	33.3
	0400	3	5	0	2		12	48.5/89.0	17.8/76.4	7.9/70.3	3.9/47.8	21.8
	0800	-	50	74	36		13	3.9/119.7	32.9/77.7	35.5/50.9	23.7/53.1	3.9
	1200.	36	51	2	3		14	33.3/96.2	33.3/77.9	10.3/44.8	7.7/52.0	15.4
	1600	0	0	0	0							\because
	2000	2	7	3	1							
		48	116	83	49	296						

$\begin{aligned} & \text { A-40 } \\ & 5 \text { CONTINUED } \end{aligned}$												
. .							./. Composition Species			/ Ave	ge Length	(MM)
\checkmark Date	Time	$\begin{aligned} & \text { Bay } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Bay } \\ & 13 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Bay } \\ 14 \\ \hline \end{gathered}$	Total Day	Bay	Tomicod	Anchovy	$\begin{gathered} \text { Striped } \\ \text { Bags } \\ \hline \end{gathered}$	White Perch	Other \& Unidentified
August 12, 1970	0000	11	15	9	36		11	23.2/104.5	57.3/75.0	1.2/53.0	1.2/54.0	17.1
	0400	8	11	0	4		12	3.8/97.3	79.7/57.3	11.5/52.4	2.2/49.8	2.9
	0800	82	1376	82	52		13	2.4/98.0	55.4/77.3	24.1/52.4	14.6/45.3	3.6
	1200	7	36	0	1		14	8.0/ 97.8	69.2/74.0	9.6/52.2	-/-	13.5
	1600	5	10	2	4							
	2000	4	9	1	3							.
$:$		$\overline{117}$	$\overline{1457}$	94	$\frac{100}{}$	$\overline{1768}$						
August 13, 1970	0000	2	6	0	3		11	45.2/90.1	23.8/76.6	2.4/62	$2.4 / 47$	26.2
	0400	0	8	2	5		12	38.4/97.5	14.3/75.9	1.8/43.2	1.8/43.2	44.6
,	0800	42	112	7	8		13	-/-	$71.4 / 75.5$	14.3/45.0	-1-	14.3
	1200		-	-	-		14	25.0/-	12.5/73.0	25.0/44.5	-1-	37.5
:	1600	1	4	0	0							
\%	- 2000	9	19	11	2			-				
		54	149	20	18	241						
August 14. 1970	0000	5	15	12	7		11	-/-	66.6/77.3	-1-	16.6/45	16.7
	0400	2	8	8	0		12	64.3/92.6	7.1/76	-10	7.1/60	21.4
	0800	5	5	3	0		13	33.3/16.0	33.3/60	-1/	-1/	33.3
,	1200	54	50	2	4		14	60.0/96.3	20.0/79	- -	20.0/53	-
	1600	1	1	0	0							.
	2000	0	8	0	5							
$؟$		67	87	25	16	195		,			.	
August 15, 1970	0000	9	102	10	11		11	66.2/88.2	16.9/61.8	1.4/110	2.8/49.0	12.7
	0400	4	50	6	2		12	89.6/90.0	$6.0 / 73.7$	0.4/43	$0.4 / 55$	4.0
	0800	5	21	3	1		13	63.0/106.8	14.8/74.8	$3.7 / 55$	3.7/45	14.8
	1200	47	59	2	5		14	54.2/91.8	33.3/65.8	4.2/44	-/-	8.3
	1600	2	8	4	1							
	2000	4	9	2	4							
		71	249	27	24	371		.				
Aug̣ust 16, 1970	0000	45	414	55	432	.	11	85.7/87.9	10.9/77.4	0.4/266.0	$0.4 / 46.5$	2.6
	0400	71	566	26	79		12	95.4/89.2	2.5/77.3	0.4/158.8	$0.07 / 45$	1.6
	0800	11	99	8	8		13	85.4/88.2	8.9/71.6	$0.8 / 55$	$0.8 / 41$	4.1
\vdots	1200	378	280	21	22		14	94.6/89.3	3.9/75.7	0.2/230	0.9/49.0	0
	1600	13	44	7	13							
	2000	9	38	6	5							
\vdots		547	1441	123	559	2670						

FIGURE 5. A plot of the total number and weight of fish collected from the traveling screens at Unit No. I from January 12, 1970 through February 2. 1970.

FIGURE 6. A plot of the total number andweight of fishes collected from the travel-ing screens at Unit No. 1 from February 1 ,1970 through February 28, 1970.

0

FIGURE 7. A plot of the total number and weight of fishes collected from the traveling screens at Unit No. 1 from March 1, 1970 through March 28, 1970.

APPENDIX B

Following is a list of certain ecological and other studies which have been sponsored by Con Edison to date and their approximate cost to the Company.
(a) Studies by Raytheon Company \$ 591,600.00

1. Fish community studies
2. Plankton communities
3. Benthic samples
4. Water chemistry
(b) Studies by New York University \$ 168.725.00
5. Fish community studies
6. Plankton communities
7. Aquatic radioecology
8. Aquatic microbiology
9. Water chemistry
(c) Studies by Ichthyological Associates \$ 43,500.00
10. Swimming speed investigations
11. Temperature preference and
avoidance studies
(d) Studies by Northeastern Biologists, Inc.. $\$ 385,340.00$
12. Studies of striped bass egg and larval stages
13. Studies of young of the year of major species of fish
(e) Studies by Bechtel Corporation $\$ 35,000.00$
14. Fish protection devices
(f) Studies by Norman Porter Associates $\$ \quad 37,300.00$
15. Studies on intake velocity
16. Studies on water movement at intakes
(g) Alden Hydraulic Labs $\$ \quad 76.963 .00$
17. Hudson River Hydraulic Model No. 1
(h) Other Miscellaneous Studies $\$ \quad 60.000 .00$

APPENDIX - T COST EXPENDITURES ON ENVIRONMENTAL STUDIES

Following is a list of certain ecological and other studies which have been sponsored by Con Edison to date and their approximate cost to the Company.
(a) Studies by Raytheon Company \$ 591, 600.00
(b) Studies by New York University \$ 168,725.00
(c) Studies by Ichthyological Associates \$ $43,500.00$
(d) Studies by Northeastern Biologists, Inc \$ $385,340.00$
(e) Studies by Bechtel Corporation \$ 35,000.00
(f) Studies by Norman Porter Associates \$ 37,300.00
(g) Alden Research Laboratories* \$ 262,757.00
(h) Studies by QLM* \$ 69,847.00
(i) Other Miscellaneous Studies \$ 60,000.00

Applicability

Applies to routine testing of the plant environs.

Objective

To establish a sampling schedule which will recognize changes in radioactivity in the environs, and assure that effluent releases are kept as low as practicable and within allowable limits.

Specification

1. Liquid Discharges

The survey for liquid discharges shall be conducted in accordance with Table 4.10-1 as specified below:
a. If the gross beta-ganma activity of the station releases to the river is less than 1% of MPC during the month just ended, the environmental survey shall be conducted in accordance with Progran 1 for the subsequent month.
b. If the gross beta-gamma activity of the station releases to the river is greater than 1% of MPC but less than 10% of MPC during the month just ended, the environmental survey shall be conducted in accordance with Program 2 for the subsequent month. If the samples taken under Program 2 do not indicate any significant increase in environmental radioactivity, the survey shall revert to Program 1.
c. If the gross beta-gamma activity of the station releases to the river is greater than 10% of MPC during the month just ended, the environmental survey shall be conducted in accordance
with Program 3 for the subsequent month. If the samples taken under Program. 3 do not indicate any significant increase in envi ronmental radioactivity, the survey shall revert to Program 2.
d. Irrespective of release levels, once each year the survey shall be taken under Program 3 for a 3 month continuous period.
2. Gaseous Discharges

The survey for the gaseous discharges shall be conducted in accordance with Table 4.10-2 as specified below:
a. If the average release rate from the plant vent is less than 1% of the annual allowable release rate as specified in Paragraph 3.9-Cl during the month just ended, the environmental survey shall be conducted in accordance with Program 1 for the subsequent month.
b. If the average release rate from the plant vent is greater than 1% but less than 10% of the annual allowatle release rate as specified in Paragraph 3.9-Cl during the month just ended, the environmental survey shall be conducted in accordance with Program 2 for the subsequent month. If the samples taken under Program 2 do not indicate any significant increase in environmental radioactivity, the survey shall revert to Program 1.
c. If the average release rate from the plant vent is greater than 10% of the annual allowable release rate as specified in Paragraph 3.9-Cl during the month just ended, the environmental survey shall be conducted in accordance with Program 3 for the subsequent month. If the samples taken under Program 3 do not indicate any significant increase in environmental radioactivity, the survey shall revert to Program 2.
d. Irrespective of release levels, once each year the survey shall be taken under Program 3 for a 3 month continuous period.

Basis

Programs for monitoring the adjacent area of the Hudson River will be conducted by the Consolidated Edison Company, by the New York State Department of Health, and by the New York University Institute of Environmental Medicine. The New York State program includes measurement of samples of air, water, milk and wildlife. The New York University Medical Center research program includes the biology of the Hudson River, the distribution and abundance of fish in the river, pesticides and radio-ecological studies.

A nineteen month study which began in June, 1969 is being conducted by Raytheon for the Hudson River Policy Committee. The Committee consists of the New York State Conservation Department, the New Jersey Department of Conservation and Economic Development, the U. S. Bureau of Sport Fisheries and Wildife, the U. S. Bureau of Commercial Fisheries, and the Connecticut Conservation Department. The objectives of the study are; (1) to determine the seasonal distribution of fish and key organisms within and outside of the areas to be exposed to the heated and otherwise altered discharge from Units 1,2 , and 3 ; (2) to determine the effects of temperature rise and chemical additives on the survival and behavior of screenable and non-screenable fish and organisms in the area; (3) to catalog physical and chemical characteristics of the estuary often associated, with observed changes in the biota; i.e., temperature, salinity, conductivity, dissolved and suspended solids, dissolved oxygen, and physical alternations.

The various studies mentioned above include measurements of radioactivity in fresh water, river water, river sediments, fish, milk, aquatic vegetation, vegetation, soil, and air in the vicinity of the Indian Point Station.

The cavironmental monitoring program conducted by the Consolidated Edison Company will supply sufficient data to determine the compliance of the Indian Point Station with the requirements of lOCFR20. The schedules for liquid and gaseous discharges will insure that changes in the environmental radioactivity will be detected.

Although the design of the proposed facility and administrative controls will be such that gaseous and liquid effluents will be released in accordance with the requirements of $10 C F R 20$, the environmental momitoring program of the Consolidated Edison company provides a redundant meams of insuring that the operation of the proposed facility does not pose any undue risk to the health and safety of the public. The New York State and New York University programs provide an independent means of verifying the proposed facilities compliance with 10CFR20.

Environmental Monitoring Survey - Liquid Discharges ${ }^{+}$

+Samples will be taken whenever biologically available.
*Minimum equipment sensitivity shall be those given in FSAR Table 11.11-1.
Nomenclature for Sample Frequency

W	- Weekly
TW	- Twice Weekly
D	- Daily
M	- Monthly
MC	- Monthly Composite
TM	- Twice Monthly
SSF	- Once each in Spring, Summer and Fall
MDGS . - Monthly During the Growing Season.	

Nomenclature for Analysis
GBC
E Gross Beta-Gamma
GSA - Gamma Spectromete nalysis
T - Tritium
RA

- Radiochemical Analysis to determine biologically important laotopes.

+Samples will be taken whenever biologically avajlable.
*Tritium analysis will be performed provided sufficient wet deposition occurs.
**Minimum equipment sensitivities shall be those given in FSAR Table 11.11-1

+Samples will be taken whenever biologically avaflable.
*Tritium analysis will be performed provided sufficient wet deposition occurs.
**Minimum equipment sensitivities shall be those given in FSAR Table 11.11-1

Table 4.10-2 (Continued)
Environmental Monitoring Survey - Gaseous Discharge
Nomenclature for Sample Frequency

M	- Monthly
TM	- Twice Monthly
W	- Weekly
TW	- Twice Weekly
MC	- Monthly Composite
A	- Annually
SSF	- Once each in Spring, Summer and Fall
MDGS - Monthly During the Growing Season	
MSL - Monthly at Selected Locations	
WSL - Weekly at Selected Locations	

Nomenclature for Analysis

```
GBG - Gross Beta-Gamma
GSA - Gamma Spectroneter Analysis
RA - Radiochemical Analysis to determine biologically inportant isotopes
T - Tritium
GGB - Gross Gamma Background
```


CONSOLIDATED EDISON

 INDIAN POINT REACTOR

DIVISION OF ENVIRONMENTAL HEALTH SERVICES
 NEW YORK STATE DEPARTMENT OF HEALTH

HOLLIS S. INGRAHAM, M.D. COMMISSIONER

DIVISION OF
ENVIRONMENTAL HEALTH SERVICES

STATE OF NEW YORK DEPARTMENT OF HEALTH

84 HOLLAND AVENUE
ALBANY, NEW YORK 12208

MEREDITH H. THOMPSON, D. ENG.
ASSISTANT COMMISSIONER

BUREAU OF
RADIOLOGICAL HEALTH SERVICES SHERWOOD DAVIES. B.C.E., M.P.H.

DIRECTOR

August 30, 1965
Dr. Meredith H. Thompson
Assistant Commissioner Division of Environmental Health Services 84 Holland Avenue Albany 8, New York

Re: Post-Operational Environmental Survey Village of Buchanan, Westchester County

Dear Doctor Thompson:
This is the first report on the post-operational survey in the vicinity of the Consolidated Edison Thorium Reactor located in the Village of Buchanan, Westchester County. Descriptions of survey sites and analyses performed are contained and sampling results are brought up-to-date.

The report was prepared by David J. Romano, Assistant Sanitary Engineer under the direction of William J. Kelleher, Associate Sanitary Engineer, both from the Bureau of Radiological Health Services. Field work was done by representatives of the New York State Conservation Department and local health departments.

Consolidated Edison Indian Point Reactor

POST OPERATIONAL SURVEY

August, 1965

Division of Environmental Health Services

New York State Department of Health

Hollis S. Ingraham, M.D.

Commissioner
Page
Introduction 1
Survey Description. 1-2
Sampling Methods 2-4
Discussion of Results 4-5
Summary 5
Appendix
Air Sample Data. 6-7
Fallout Sample Data 8-10
Water Sample Data 11-20
Milk Sample Data. 21-24
Vegetation Sample Data 25-26
Fish Sample Data. 27
Algae Sample Data. 28
Mud Sample Data. 29
Pressurized Ionization Chamber Data. 30
Summary of Environmental Discharges 31
Map of Sampling Area 32
Figures 1-6. 33-38

Consolidated Edison Company of New York. Inc.
Post-Operational Survey
In The Vicinity of

Indian Point Station

Introduction

The Division of Environmental Health Services in cooperation with the Consolidated Edison Company of New York, the Rockland County Health Department and the Westchester County Department of Health has been monitoring environmental radioactivity in the vicinity of the Indian Point Station since the reactor went into operation on August 2, 1962. This report summarizes the environmental sampling data for the period of August 2, 1962, to December 24s 1964.

Pre-operational monitoring and site surveillance were compiled in two previous reports of the Division of Environmental Health Services both entitled, "Pre-Operational Environmental Survey In The Vicinity Of The Consolidated Edison Thorium Reactor" dated November, 1959, and June, 1962.

Survey Description

The Westchester County Department of Health, and the Rockland County Department of Health collected samples from sites in the vicinity of the reactor. Valuable assistance in sample collection from the Hudson River was provided by the Bureau of Marine Fisheries of the New York State Deparment of Conservation The type of samples taken, frequency of sampling, and sampling sites are listed below:

1. Air
2. Fallout
3. Milk
4. Water

Weekly Composite Sample
Peekskill Camp Field Filter Plant
Weekly Composite Sample
Peekskill - Camp Field Filter Plant
Monthly Grab Sample
Yorktown-Hanover Hill Farm Clarkstown - Strawtown Dairy Bedford - Guard Hill Farm Mt. Pleasant - Grasslands

Monthly Grab Sample
Clarkstown Lake De Forest Highland Falls = Bog Meadow Brook Yorktown - Croton Reservoir Clarkstown - Congers Lake Peekskill - Camp Field Filter Plant Reservoir Ossining ~ Indian Brook Reservoir Bedford - Byram Lake

Peekskill - Hudson River at Standard Brands Ossining - Hudson River at Sing Sing
5. Mud
6. Vegetation
7. Algae
8. Fish
9. Gamma

Background

Twice Yearly Sample
Croton-on-Hudson - Groton Bay
Iona Island - North End
Peekskill - Peekskill Bay
Nyack - West end of Tappan Zee Bridge
Stony Point - Hudson River opposite Con Edison
Monthly Grab Sample
Haverstraw - Letchworth Village Reservoir Clarkstown - Dreyfus Reservoir
Yorktown - Croton Reservoir
Peekskill - Camp Field Filter Plant
Ossining - Indian Brook Reservoir
Bedford - Byram Lake
Twice Yearly Sample
Croton-on-Hudson - Croton Bay
Iona Island - North End
Nyack - West end of Tappan Zee Bridge
Cortlandt - Greens Cove
Twice Yearly Sample
Croton-on-Hudson - Croton Bay
Iona Island - North End
Peekskill - Peekskill Bay
Nyack - West end of Tappan Zee Bridge Cortlandt - Greens Cove

A Reuter-Stokes RSG-9 Pressurized Ionization Chamber was used to determine gamma backgrounds at nineteen different sites in the vicinity of the reactor.

Sampling Methods

1. Air - Approximately 1 cubic foot per minute of air was drawn through a fiberglass filter paper of 2 inch diameter for a weekly period using a Gast Air Pump and the filter was analyzed at the Division of Laboratories and Research. The total measured radionuclide content of air was expressed as $\mathrm{pc} / \mathrm{M}^{3}$ of gross beta activity.
2. Fallout - A sample was collected over a week's time using a polyethylene container with an exposure area of $0.101 \mathrm{ft}^{2}$ and a depth of approximately 9 inches from the rim. The container was placed in an exposed, outside location for a period of seven days. The top was then replaced and the entire unit sent to the Division of Laboratories and Research for analysis for Iodine-131, Strontium- 89 and 90, Barium Lanthanum-140, Cesium-137 and Zirconium Niobium-95.
3. Milk - Two liter samples were taken monthly from several farms in the area of the reactor for analysis in the larinelli-type configuration used in the gamma spectrometer at the Division of Laboratories and Research. Tests were made for T-131, Ra-La-i40, Cs-13? And Potassium, Sr-89 and 90 wore analyzed by chemical separation and beta counring.
4. Water - Weekly composite and monthly grab samples were obtained at selected stations. These rere analyzed for gross beta, I-131. Cs-137, Ba-La-140, Zr-Nb-95. $\mathrm{Sr}-89$ and 90.
5. Vegetation- Samples were obtained monthly during the growing season - usually May to November. The samples consisted of various grasses. These were placed in plastic bags and analyzed at the Division of Laboratories and Research for Cs.137, I-131, Ba-La-140, Mn-54, Zr-Nb-95 and Potassium.
6. Algae - 'Twice yearly samples consisting of assorted algae were collected in May and November from the Hudson River above and below the reactor site. These were placed in plastic bags and sent to the Division of Laboratories and Research. The analyses performed for vegetation were also performed on algae samples.
7. Mud - Mud was collected twice yearly in plastic jars at the same time as the algae samples. The amount collected varied. These samples were analyzed for gross gamma.
8. Fish - Assorted species of fish.were collected by netting twice vearly at the same time as alrat and mud samples. At the Laboratorv, the sample was pround
 2r-hb-95 and Potassiur:。

Gamma scans of samples were made in the gamma spectrometer facility. This is a four port-top loading instrument, Each port houses a $4^{\prime \prime}$. $\times 4^{\prime \prime}$ NaI-Thallium activated crystal. Constant geometry for counting is maintained by using a marinelli configuration sample container. The information from each crystal is fed into 256 channels of a 512 channel

9. Gamma
Background

Nuclear Data Multi-Channel Analyzer. The range of the instrument is $\mathbf{0 - 2 . 5 6 ~ M e v ~ w i t h ~ a n ~ e n e r g y ~}$ scale of 10 Mev per channel.

- In August of 1964, personnel of the New York State Department of Health, Bureau of Radiological Health Services conducted a gamma background survey at various sites in the area around the reactor. The Reuter-Stokes RSG-9 Pressurized Ionization Chamber was used. This instrument can detect gamma radiation in the range of $1-200$ microroentgens per hour.

The instrument consists of two parts: the ionization chamber and the electronic housing which is positioned directly above the ionization chamber. The chamber is a $1 / 8^{\prime \prime}$ thick steel pressure tank with a volume of 8.2 liters filled with pure argon at 43.5 atmospheric pressure or 625 psig. The electronic housing contains its own power supply and employs a vibrating reed electrometer read out device.

The pressurized ionization chamber was calibrated with a one millicurie Radium 226 point source in equilibrium with its progeny.

The measured gamma exposure rate is due to both terrestrial, fallout and cosmic radiation. It is possible to separate the total exposure rate into these two components by reading a pressure altitude versus cosmic exposure rate chart which was derived from Atomic Energy Commission formula relating pressure altitude and cosmic ray exposure rate. The pressure altitude is determined by means of an altimeter. The terrestrial fallout portion is the difference of the total and the cosmic portion.

Discussion of Results

The gross beta activity levels in air (Figure 1) show that there were no significant differencesbetween the Peekskill station and the average for the entire State. The graphs of each are in close agreement. The higher values from the summer of 1962 to June, 1963, were due to nuclear bomb test fallout and were approximately the same as the pre-operational survey values which also showed the effects of nuclear test fallout.

Strontium 89 and 90 fallout values were practically the same for both Peekskill and the State average. Strontium 89 peaks occur identically on both Figures 2 and 5 in the late winter-early spring of 1963 ; these were due to atmospheric nuclear testing during 1962.

The gross beta activity levels in water (Figure 3) were approximately the same as those reported in the June, 1962 pre-operational report. The Glenmont Station is located on the Hudson River, south of Albany. The Lake De Forest Station is a surface water reservoir in Rockland County.

A comparison of Figures 4 and 6 indicates that there is no significant difference between the values of the Albany and Hanover Hill Farm milk stations. The spring, 1963, peaks of Strontium 89 and 90 were noted for all milk stations and were due primarily to fallout from the 1962 nuclear tests.

A summary of environmental discharges from the Indian Point Reactor has been supplied by the Consolidated Edison Company and has been included in the Appendix of this report. The values given in this table indicate that the Plant has been operating within its allowable limits.

Summary

The data collected indicates that no significant increase in the background radioactivity levels can be attributed to the operation of the Indian Point Reactor since August 2, 1962. Fallout from the nuclear bomb tests late in 1962 was the prime cause of the activity increases observed in air. fallout, water and milk for the early spring of 1963. Since nuclear testing has ceased, the activity levels in these environmental samples has decreased considerably.

Consolidated Edison Post-Operational Survey
Westchester County
Sampling Point - Camp Field Filter Plant

Collection	Gross Beta Activity (pc/m3)	Collection	Gross Beta Activity ($\mathrm{pc} / \mathrm{M}^{3}$)
8/2/62	2.0	6/27/63	8.0
8/9/62	1.0	7/3/63	9.0
8/16/62	3.0	7/11/63	6.0
8/23/62	3.0	7/18/63	5.0
8/30/62	4.0	7/25/63	7.0
9/6/62	7.0	8/1/63	8.0
9/13/62	5.0	8/8/63	7.0
9/20/62	4.0	8/15/63	4.0
9/27/62	5.0	8/22/63	3.0
10/4/62	3.0	8/29/63	4.0
10/11/62	6.0	9/5/63	4.0
10/18/62	8.0	9/12/63	3.0
10/28/62	4.0	9/19/63	2.0
11/1/62	5.0	9/26/63	3.0
11/8/62	22.0	10/3/63	3.0
11/15/62	13.0	10/10/63	2.0
11/21/62	9.0	10/31/63	$\begin{array}{r}1.0 \\ \\ \hline\end{array}$
11/29/62	14.0	11/7/63	<1.0
12/6/62	3.0	11/21/63	2.0
12/13/62	6.0	12/5/63	1.0
12/20/62	6.0	12/12/63	1.0
12/27/62	9.0	12/19/63	1.0
1/3/63	6.0	12/26/63	1.0
1/10/63	6.0	1/2/64	1.0
1/17/63	10.0	1/9/64	1.0
1/24/63	10.0	1/16/64	1.0
1/31/63	8.0	1/23/64	1.0
2/7/63	5.0	1/28/64	1.0
2/14/63	9.0	2/6/64	1.0
2/21/63	10.0	2/13/64	1.0
2/28/63	8.0	2/20/64	2.0
3/7/63	5.0	2/27/64	2.0
3/14/63	5.0	3/5/64	1.0
3/21/63	9.0	3/12/64	2.0
3/28/63	11.0	3/19/64	1.0
4/4/63	9.0	3/26/64	2.0
4/11/63	13.0	4/2/64	2.0
4/18/63	13.0	4/9/64	2.0
4/25/63	8.0	4/16/64	2.0
5/2/63	6.0	4/23/64	1.0
5/9/63	6.0	4/30/64	3.0
5/16/63	8.0	5/7/64	2.0
$5 / 23 / 63$ $5 / 29 / 63$	5.0 7.0	5/14/64 $5 / 21 / 64$	2.0
$5 / 29 / 63$ $6 / 6 / 63$	7.0 6.0	$5 / 21 / 64$ $5 / 28 / 64$	3.0 2.0
6/13/63	11.0	6/4/64	3.0
6/20/63	13.0	6/11/64	1.0

Air Samples Continued

Collection	Gross Beta Activity $\left(\mathrm{pc} / \mathrm{M}^{3}\right)$
$6 / 18 / 64$	
$6 / 25 / 64$	2.0
$7 / 2 / 64$	3.0
$7 / 9 / 64$	1.0
$7 / 16 / 64$	1.0
$7 / 30 / 64$	1.0
$8 / 6 / 64$	1.0
$8 / 13 / 64$	1.0
$8 / 20 / 64$	1.0
$8 / 27 / 64$	1.0
$9 / 3 / 64$	<1.0
$9 / 10 / 64$	1.0
$9 / 17 / 64$	1.0
$9 / 24 / 64$	<1.0
$10 / 1 / 64$	<1.0
$10 / 8 / 64$	<1.0
$10 / 15 / 64$	<1.0
$10 / 22 / 64$	2.0
$10 / 29 / 64$	
$11 / 5 / 64$	
$11 / 12 / 64$	
$11 / 19 / 64$	
$11 / 25 / 64$	
$12 / 3 / 64$	
$12 / 10 / 64$	
$12 / 17 / 64$	

Fallout Samples

Consolidated Edison Post-Operational Survey

Westchester County
Sampling Point - Camp Field Filter Plant

Collection	Results (pc/ft $/$ /day)					
	I-131	Sr-90	Sr-89	Ba-La-140	C8-137	2r-Nb-95
8/2/62		<3	<3			
8/9/62		<3	<3			
8/16/62		< 3	< 3			
8/23/62		<3	< 3			
8/30/62		<3	<3			
9/6/62		< 3	< 3			
9/13/62		<3	$\bigcirc 3$			
9/20/62		<3	<3			
9/27/62		<3	<3			
10/4/62		<3	<3			
10/11/62		<3	<3			
10/18/62		< 3	<3			
10/25/62		<3	<3			
11/1/62		<3	<3			
11/8/62		< 3	< 3			
11/15/62		< 3	< 3			
11/22/62		<3	<3			
11/29/62		<3	<3			
12/6/62		< 3	<3			
12/13/62		<3	<3			
12/20/62		<3	<3			
12/27/62	< 20	<3	20	< 20	28	
1/3/63	< 20	<3	7			
1/10/63	< 20	< 3	98	125	82	
1/17/63	< 20	< 3	35	57	24	
1/24/63	< 20	< 3	39	100	24	
1/31/63	< 20	< 3	49	38	65	
2/7/63	< 20	< 3	3	< 20	< 20	
2/14/63	< 20	< 3	10	< 20	< 20	66
2/21/63	< 20	10	22	< 20	120	<20
2/28/63	< 20	<3	14	<20	< 20	< 20
3/7/63	< 20	12	74	< 20	< 20	21
3/14/63	< 20	7	35	71	< 20	<20
3/21/63	< 20	<3	28	<20	< 20	< 20
3/28/63	< 20	<3	34	<20	< 20	22
4/4/63	< 20	<3	31	< 20	<20	31
4/11/63	< 20	2	21	< 20	<20	125
4/18/63	< 20	5	22	< 20	< 20	124
4/25/63	27	<3	23	<20	<20	193
5/2/63	<20	3	11	< 20	< 20	146
5/9/63	<20	7	94	238	< 20	400
5/16/63	< 20	7	16	<20	20	74
5/23/63	39	<3	23	<20	31	107
5/29/63	<20	<3	20	27	< 20	20
6/6/63	< 20	6	94	184	74	214

Continued

Collection	Results (pc/ft ${ }^{2} / \mathrm{day}$)					
	I-131	Sr-90	Sr-89	Ba-La-140	Cs-137	Zr-Nb-95
6/13/63	<20	4	10	<20	< 20	70
6/20/63	<20	3	28	85	- 32	46
6/27/63	< 20	<3	13	<20	<20	<20
7/3/63	<20	<3	19	<20	<20	<20
7/11/63	< 50	<3	40	59	< 50	- 58
7/18/63	<50	11	13	<50	$<.50$	<50
7/25/63	<50	<3	<3	<50	<50	<50
8/1/63	< 50	8	<3	<50	<50	<50
8/8/63	<50	14	46	<50	< 50	. 87
8/15/63	< 50	8	<3	<50	<50	<50
8/22/63	< 50	<3	<3	<50	< 50	<50
8/29/63	<20	<3	<3	<20	< 20	<20
9/5/63	< 50	<3	26	< 50	< 50	< 50
9/12/63	<50	<3	<3	<50	<50	<50
9/19/63	< 50	<3	<3	<50	< 50	<50
9/26/63	<50	<3	<3	<50	<50	<50
10/3/63	<50	<3	<3	<50	< 50	<50
10/10/63	<50	<3	<3	<50	<50	<50
10/17/63	<50	- 3	<7	<50	<50	<50
10/24/63	<50	<3	<3	<50	<50	<50
10/31/63	< 50	<3	<3	<50	< 50	- 50
11/7/63	<50	<3	<3	<50	<50	<50
11/14/63	<50	<3	<3	<50	< 50	<50
11/21/63	<50	<3	<3	<50	<50	<50
11/27/63	<50	<3	<3	<50	<50	<50
12/5/63	< 50	<3	<3	<50	<50	< 50
12/12/63	<50	<3	<3	< 50	< 50	<50
12/19/63	<50	<3	<3	<50	< 50	<50
12/26/63	<50	<3	<3	<50	< 50	<50
1/2/64	<50	<3	<3	<50	< 50	< 50
1/9/64	<50	<3	<3	<50	94	< 50
1/16/64	<50		3	< 50	<50	<50
1/23/64		5	<3			
1/28/64	<50	<3		<50	< 50	<50
2/6/64	<50	4	4	<50	< 50	< 50
2/13/64	< 50	5	<3	<50	< 50	< 50
2/20/64	<50	<3	<3	<50	< 50	<50
2/27/64	<50	<3	<3	< 50	<50	< 50
3/5/64	<50	12	<3	<50	< 50	< 50
-3/12/64	<50	<3	<3	< 50	<50	< 50
3/19/64	<50	<3	<3	<50	< 50	< 50
3/26/64	< 50	5	<3	<50	< 50	< 50
4/2/64	< 50	4	10	<50	<50	<50
4/9/64	<50	15	<3	< 50	< 50	< 50
4/16/64	< 50	3	5	<50	<50	<50
4/23/64	<50	4	<3	<50	<50	< 50

Consolidated Edison Post-Operational Survey
Continued

Collection	Results (pc/ft $/$ /day)					
	I-131	$\mathrm{Sr}-90$	Sr-89	$B a-L a=140$	Cs-137	
4/30/64	<50	3	<3	<50	<50	$<.50$
5/7/64	<50	3	< 3	<50	<50	$<\quad 50$
5/14/64	<50	28	<3	<50	<50	<50
5/21/64	<50	<3	<3	<50	<50	< 50
5/28/64	<50	<3	<3	<50	93	< 50
6/4/64	<50	<3	4	<50	<50	<50
6/11/64	<50	<3	<3	<50	<50	<50
6/18/64	<50	<3	<3	<50	<50	<50
6/25/64	<50	<3	<3	<50	<50	<50
7/2/64	<50	5	<3	<50	<50	<50
7/9/64	<50	<3	4	<50	<50	<50
7/16/64	<50	<3	<3	<30	<50	<50
7/23/64	<50	<3	<3	<50	<50	<50
7/30/64	<50	<3	4	<50	<50	<50
8/6/64	<50	<3	<3	<50	<50	<50
8/13/64	<50	- 4	<3	<50	<50	$\leqslant 50$
8/20/64	<50			<50	<50	< 50
8/27/64	<50	<3	<3	<50	<50	$<$ 50
9/3/64	<50	<3	<3	<50	<50	$\leqslant 50$
9/10/64	<50	<3	<3	<50	< 50	< 50
9/17/64	<50	9	<3	<50	<50	<50
9/24/64	<50	<3	<3	<50	<50	<50
10/1/64	<50			<50	<50	<50
10/8/64	<50	<3	<3	<50	<50	<50
10/15/64	<50	<3	<3	237	<50	<50
10/22/64	<50			<50	<50	< 50
10/29/64	<50	<3	<3		<50	$\begin{array}{r} \\ < \\ \hline\end{array}$
11/5/64	<50	<3	<3	<50	<50	<50
11/12/64	<50	12	<3	<50	<50	<50
11/19/64	<50	<3	<3	<50	<50	106
11/25/64	<50	<3	<3	<50	<50	72
12/3/64	<50			< $<$	< 50	72 <50
12/10/64	<50			<50	<50	<50
12/17/64	<20			< 20	<20	r $<$
12/23/64	<50			< 50	< 50	< 50

Consolidated Edison Post-Operational Survey

Rockland County

Water Samples
 Consolidated Edison Post-Operational Survey
 Orange County
 Sampling Point - Bog Meadow Brook

\therefore Sample Not Analyzed.

Consolidated Edison PostoOperational Survey
Westchester County
Sampling Point - Croton Reservoir

Page 14
Water Samples
Consclidated Edison Post-Operational Survey
Westchester County
Sampling Point - Hudson River at Sing Sing

Collection	Gross Beta (pc/ml)	Collection	Gross Beta ($\mathrm{pc} / \mathrm{ml}$)
$8 / 3 / 52$	0.010	11/22/63	0.047
8/17/62	0.018	11/28/63	0.079
8/31/62	0.008	12/5/63	0.044
9/14/62	0.012	12/13/63	0.016
9/28/62	0.014	12/20/63	<0.006
10/12/62	0.033	12/27/63	0.007
10/26/62	0.928	1/3/64	0.031
11/9/62	0.06	1/10/64	0.035
11/22/62	0.05	1/17/64	0.105
1217/62	<0.03	1/24/64	0.062
12/21/62	0.07	1/31:44	0.044
1/4/63	<0.06	2/7/6	0.033
1/18/63	<0.06	2/14/64	0.109
2/1/63	0.06	2/21/64	0.034
2/15/63	<0.06	2/28/64	0.026
3/1/63	<0.06	3/6/64	0.010
3/15/63	<0.06	3/13/64	0.014
3/28/63	0.028	3/20/64	0.026
4/12/63	<0.06	3/27/64	0.023
4/26/63	<0.03	4/3/64	0.017
5/10/63	<0.006	4/10/64	0.021
5/24/63	<0.03	4/17/64	0.013
5/30/63	<0.03	4/24/64	0.002
6/7/63	0.038	5/1/64	0.006
6/14/63	0.021	5/8/64	0.023
6/21/63	<0.006	5/15/64	0.068
6/28/63	0.03	5/22/64	0.012
7/4/63	0.034	5/29/64	0.029
7/12/63	0.020	6/5/64	0.038
7/18/63	0.045	6/12/64	0.032
7/26/63	0.072	6/19/64	0.034
8/2/63	0.083	6/19/64	0.047
8/9/63	0.090	7/3/64	0.057
8/16/63	0.098	7/10/64	0.054
8/23/63	0.091	7/17/64	0.048
$8.30 / 63$	0.072	7/24/64	0.052
9/6/63	0.062	7/31/64	0.058
9/13/63	*	8/7/64	0.054
9/20/63	0.031	8/14/64	0.064
9/27/63	0.071	8/21/64	0.051
10/4/63	<0.006	8/28/64	0.069
10/11/63	0.053	9/4/64	0.061
10/18/63	0.089	9/11/64	0.054
10/25/63	0.121	9/18/64	0.068
11/1/63	0.065	9/25/64	0.064
11/8/63	<0.006	10/2/64	0.086
11/15/63	0.095	10/2/64	0.052

Water Samples Continued

Collection	
$10 / 16 / 64$	
$10 / 23 / 64$	
$10 / 30 / 64$	
$11 / 6 / 64$	
$11 / 13 / 64$	
$11 / 20 / 64$	
$11 / 26 / 64$	
$12 / 4 / 64$	
$12 / 11 / 64$	
$12 / 18 / 64$	
$12 / 24 / 64$	

*Sample Not Analyzed.

Consolidated Edison Post-Operational Survey
Westchester County
Sampling Point - Hudson River at Standard Brands

Collection	Gross Beta ($\mathrm{pc} / \mathrm{ml}$)	Collection	Gross Beta (pc/m1)
8/2/62	0.006	11/21/63	0.040
8/16/62	0.023	11/28/63	0.048
8/30/62	0.033	12/5/63	0.030
9/13/62	0.026	12/12/63	0.020
9/27/62	0.010	12/19/63	0.020
10/11/62	*	12/26/63	0.012
10/25/62	0.030	1/2/64	0.015
11/8/62	0.080	1/9/54	0.025
11/22/62	0.030	1/16/64	0.024
12/6/62	0.030	1/23/64	0.031
12/20/62	0.030	1/30/64	0.032
1/3/63	0.065	2/6/64	<0.006
1/17/63	0.030	2/13/64	< 0.006
1/31/63	0.060	2/20/64	0.006
2/14/63	0.060	2/27/64	0.012
2/28/63	0.060	3/5/64	0.007
3/14/63	0.060	3/12/64	0.007
3/28/53	0.060	3/19/64	0.016
4/11/63	0.021	3/26/64	0.020
4/25/63	0.015	4/2/64	0.014
5/9/63	0.008	4/9/64	<0.012
5/23/63	0.010	4/16/64	0.045
5/30/63	0.040	4/23/64	0.007
6/6/63	0.006	4/30/64	0.005
6/13/63	0.028	5/7/64	0.008
6/20/63	0.009	5/14/64	0.005
6/27/63	0.019	5/21/64	0.012
7/4/63	0.023	5/28/64	0.016
7/11/63	0.062	6/4/64.	0.029
7/18/63	0.054	6/11/64	0.015
7/25/63	0.056	6/18/64	0.022
8/1/63	0.095	6/25/64	0.022
8/8/63	<0.003	7/2/64	0.035
8/15/63	0.057	7/9/64	0.031
8/22/63	0.085	7/16/64	0.036
8/29/63	0.072	7/23/64	0.040
9/5/63	0.077	7/30/64	0.038
9/12/63	0.010	8/6/64	0.036
9/19/63	0.019	8/13/64	0.023
9/26/63	0.012	8/20/64	0.041
10/3/63	<0.012	8/27/64	0.038
10/10/63	<0.006	9/3/64	0.036
10/17/63	<0.006	9/10/64	0.042
10/24/63	0.031	9/17/64	0.052
10/31/63	<0.012	9/25/64	0.036
11/7/63	<0.003	10/2/64	0.048
11/14/63	<0.031	10/19/64	0.032

Water Samples Continued

Collection	Gross Beta (pc/m1)
$10 / 16 / 64$	0.043
$10 / 23 / 64$	0.038
$10 / 30 / 64$	0.024
$11 / 6 / 64$	0.048
$11 / 13 / 64$	0.088
$11 / 20 / 64$	0.045
$11 / 26 / 64$	0.046
$12 / 4 / 64$	$*$
$12 / 11 / 64$	0.030
$12 / 18 / 64$	0.058
$12 / 24 / 64$	\therefore

*Sample Not Analyzed。

Page :
Water Samples
Consolidated Edison Post-Operational Survey
Westchester County

Indian Brook Reservoir		Byram Lake		
Collection	Gross Beta ($\mathrm{pc} / \mathrm{ml}$)	Collection	Grose Beta (pefmi)	m
8/9/62	0.005	8/9/62	*	
9/5/62	0.013	9/5/62	*	
10/11/62	0.013	10/10/62	0.015	
11/21/62	0.021	11/21/62	0.001	
12/13/62	0.053	12/13/62	0.028	
1/17/63	0.042	1/17/63	*	
2/19/63	0.029	2/19/63	0.009	
3/26/63	0.028	3/26/63	0.012	
4/18/63	0.012	4/17/63	*	
5/14/63	<0.06	5/14/63	*	
6/14/63	0.036	6/14/63	*	
7/16/63	0.079	7/15/63	*	
8/19/63	0.026	8/19/63	*	
9/16/63	0.013	9/16/63	*	
10/16/63	0.012	10/15/63	0.031	
11/14/63	0.028	11/14/63	0.018	
11/21/63	<0.006	12/8/63	0.008	
12/18/63	*	1/15/64	0.009	
1/15/64	0.013	2/17/64	0.003	
1/23/64	0.035	3/16/64	0.023	
2/17/64	0.016	4/16/64	0.015	
3/16/64	0.015	5/14/64	0.015	
4/16/64	0.020	6/12/64	0.010	
5/14/64	0.013	7/14/64	0.004	
6/12/64	0.007	8/21/64	0.010	
7/14/64	0.017	9/14/64	0.009	
8/20/64	0.004	10/14/64	0.010	
9/14/64	0.012	11/17/64	0.013	
10/14/64	0.007	12/15/64	0.008	
11/17/64	0.006			
12/15/64	0.007			

*Sample Not Analyzed。

Water Samples
 Consolidated Edison Post-Operational Survey

Westchester County
Sampling Point - Camp Field Filter Plant

Collection	Beta (
8/9/62	0.007
9/5/62	0.004
10/11/62	0.012
11/21/62	0.006
12/13/62	0.022
1/16/63	0.029
2/19/63	0.051
3/26/63	0.053
4/18/63	0.008
5/14/63	0.010
618/63	0.015
7/16/63	0.020
8/19/63	0.020
9/16/63	0.012
10/15/63	0.012
11/14/63	0.021
12/18/63	0.011
1/15/64	0.009
2/17/64	0.013
3/16/64	0.010
4/16/64	0.019
5/14/64	0.008
6/12/64	0.010
7/14/64	0.010
8/20/64	0.012
9/14/64	0.006
10/14/64	0.005
11/17/64	0.004
12/15/64	0.007

Water Samples

Analyses for $\mathrm{I}-131, \mathrm{Ba}-\mathrm{La}-140, \mathrm{Cs}-137$ and $\mathrm{Zr}-\mathrm{Nb}-95$ were also made on all water samples. The results were less than $20 \mathrm{pc} / 1$ unless listed in the following table.

Collection	Sampling Point	Isotope	Result (pc/l)
1/11/63	Lake DeFoseat	Cs-137	28
2/15/63	Hudson River at Sing Sing	Ba-La-140	21
2/19/63	Camp Field Filter Plant	Cs-137	34
3/14/63	Hudson River at Standard Brands	Ba-La-140	27
3/26/63	Camp Field Filter Plant	2r-Nb-95	27
3/26/63	Indian Brook Reservoir	二ratu-95	37
3/28/63	Hudson River at Standard Brands	Cs-13?	35
3/29/63	Congers Lake	I-131	21
3/29/63	Congers Lake	Ba-La-140	32
6/6/63	Hudson River at Standard Brands	Zr-Nh-95	26
6/13/63	Hudson River at Standard Brands	Zr-Nb-95	145
6/14/63	Congers Lake	2r-Nb-95	21
7/18/63	Hudson River at Standard Brands	Ba-La-140	4.

Milk Samples
Consolidated Edison Postooperational Survey
Westchester County
Sampling Point - Grasslands

Collection	Results					
	I-131	(pc $\mathrm{Sr}-90$	Sr-89	Ba-La-140	Cs-137	$\begin{aligned} & \hline \Gamma / 1 \\ & K \end{aligned}$
8/8/62	<20	8	19			
9/6/62	26	<3	17			
10/30/6?	<20	11	21	<20	52	
19/13/6?	<20	7	<3	<20	58	
12/26/62	< 20	10	<3	<20	59	
1/31/63	<20	5	5	<20	<20	
2/19/6?	<20	6	<3	<20	78	
?/95/63	<20	5	<3	< 20	20	
4/17/63	51	6	9	<20	26	
5/14/63	<20	7	22.	<20	54	1.1
$6 / 14 / 63$	<20	16	88	-20	114	
7.16/63	<20	20	52	<20	129	1.3
8/19/6.?	<20	21	40	< 20	117 94	1.2 1.4
9/16/63	<20	7	15	<20	94	1.4
10/16/63	< 90	18	<3 <3	< 20	94 103	1.3 1.7
11/14/63	<90	16	<3 <3	<20	103	1.4
19/18/63	<90	13	< 3	< 20	121	1.4
1/15/64	<90	10	5 $<\quad 3$	< 20	122	1.6
2/17/64	<20	15	<3 $<$	< 20	122	1.4
3/16/64	<20 <20	14	浐	<20 <20	102	1.9
$4 / 16 / 64$ $5 / 14 / 64$		11	<3 <3	< 20	75	1.6
$5 / 14 / 64$ $6 / 12 / 64$	< 20 <20	14	3 6	- 20	106	1.5
$6 / 12 / 64$ $7 / 15 / 64$	< 20 <20	15	<3	<20	83	1.4
9/14/64	<20	13	<3	<20	59	1.5
10/15/64	<20	10	<3	<20	66	1.7
11/17/64	<20	11	<3 <3	- 20	45 47	1.4 1.6
12/15/64	< 20	28		<20	47	1.6

Milk Samples

Consolidated Edison Post-Operational Survey

Rockland County
Sampling Point - Strawtown Diary

Collection	Results					
		($\mathrm{pc} / 1$)				g/1
	I-131	Sr-90	Sr-89	Ba-La-140	Cs-137	
10/31/62	<20	21	3	<20	53	
2/8/63	<20	3	<3	<20	36	
3/8/63	<20	< 3	4	<20	37	
4/9/63	22	4	7	<20	< 20	
5/15/63	<20	4	4	<20	30	
$6 / 12 / 63$	<20	13	26	< 20	26	
$2 / 2 / 63$	25			<20	68	1.6
9/10/63	<20	12	13	< 20	72	1.4
10/14/63	<20	13	8	< 20	67	1.7
11/13/63	<20	15	4	< 20	120	1.5
9194/64	<20	11	<3	<20	92	1.3
5/19/64	<20	12	<3	< 20	77	1.3
6/16/54	<90	13	3	<20	119	1.5
7/1.4/64	<20	21	<3	<20	62	1.8
8/18/64	<20	10	<3	< 20	43	1.6
10/5/64	<20	10	<3	<20	33	1.6
11/16/64	<20	8	<3	23	36	1.6
19/8/64	<20	9	<3	<20	37	1.6

Milk Samples
Consolidated Edion Postoperational Surwey

Westchester County

Sampling Point - Guard Hill Farm

Collection	Results					
	I-131	(pc/l)		Ba-La-140	Cs-137	$\begin{aligned} & \mathrm{g} / 1 \\ & \mathrm{~K} \\ & \hline \end{aligned}$
		Sr-90	Sr-89			
8/7/62	< 20	7	25			
10/30/62	- 46	8	26	<20	6.6	
12/13/62	<20	7	4	<20	93	
12/27/69	<20	6	6	<20	94	
1/31/63	<20	9	9	<20	69	
?/17/63		17	4			
3/76/6?	<20	5	<3	20	44	
4/18/53	<20			<20	58	1.5
5/14/63	<20	18	58	<20	91	
6/14/63	<20	42	158	<20	169	
7/16/6?	<20	54	139	<20	209	1.1
:/19/63	<20	70	134	<20	177	0.8
9/16/63	<20	20	26	<20	123	1.7
10/15/63	<20	35	42	<20	150	1.6
11/14/63	<20	28	20	<20	164	1.5
12/18/63	<20	19	9	<20	172	1.3
1/15/64	<20	25	8	<20	180	1.4
2/17/64	<20			<20	110	1.7
3/16/64	<20	24	<3	<20	126	1.4
4/16/64	<20	31.0	<3.0	<20	172	1.5
5/14/64	<20	28	13	<20	110	1.4
6/12/64	<20	41	<3	<20	144	1.5
7/14/64	<20	26	<3	<20	115	1.2
9/21/64	<20	10	<3	<20	50	1.3
9/14/64	<20	18	<3	<20	53	1.6
10/14/64	<20	20	<3	<20	63	1.6
11/17/64	<20	18	<3	<20	61	1.5
12./15/64	<20	16	<3	<20	43	1.2

Milk Samples
Consolidated Edison Post-Úperacional Survey
Westchester County
Sampling Point - Hanover Hill Farm

Vegetation Samples
 Consolidated Edison Post-Operational Survey

Rockland County
Sampling Point $=$ Letchworth Village Reservoir

Collection	Re¢ulcs			
	(pc/kg).			(g/kg)
	Cs. 137	$\mathrm{Mn}=54$	$\underline{L T}-\mathrm{Nb}-95$	K
5/21/63	< 20		67,500	7.4
6/14/63	<20		47,000	5.9
7/10/63	660		22,300	5.8
8/9/63	3900		32,800	4.4
9/12/63	3640		1,000	17.
10/9/63	4900		10,500	17.6
11/13/63	< 20		8,743	4.3
1/17/64	4750	3900	5,200	1.8
5/21/64	932	1853	1,092	2.6
6/9/64	1126	1192	<860	1.6
7/21/64	811	3844	<695	1.7
8/27/64	896	2287	<430	1.2
11/9/64	864	1686	<375	4.03
12/3/64	1140	2877	<430	2.8 .

Note: Analyses for Iodine-131 and $\mathrm{Ba}-\mathrm{La}-140$ were made. The results indicated that the amounts of these nuclides present were less than the limit of sensitivity of the spectrometer.

Vegetation Samples
Consolidated Edison Post-Operational Survey
Rockiand County
Sampling Point - Dreyfus Reservoir

Collection	Resulits			
	Cs $=137$	(pe/Lg)		$\begin{gathered} (\mathrm{g} / \mathrm{kg}) \\ \mathrm{K} \\ \hline \end{gathered}$
		$\mathrm{Mn}-54$	$\mathrm{Zr}=\mathrm{Nb}=95$	
5/21/63	<20		25000	4.4
6/14/63	<20		18400	12.8
7/10/63	1850		18050	8.6
8/9/63	272		18400	5,5
9/12/63	2610		5210	-
10/9/63	2720		9250	5.7
11/13/63	1659		\%97	3.3
1/17/64	< 2000	< 2000	2958	5.8
5/21/64	< 770	<770	995	6.7
16/9/64	<955	<955	955	4.0
7/21/64	<770	<770	<770	1.2
8/27/64	597	<463	<463	2.5
11/9/64	689	612	<400	2.1
12/3/64	946	828	<300	2.7

Note: Analyses for Iodine- 131 and $\mathrm{Ba}-\mathrm{La}-140$ were made. The results indicated that the amounts of these nuciides present were less than the limit of sensitivity of the spectrometer.

Fish Samples
Consolidated Edison Post-Operational Survey

Collection	Sampling Point	County	Results				
			$\begin{gathered} (\mathrm{pc} / \mathrm{kg}) \\ \mathrm{I}-131 \end{gathered}$	$\begin{aligned} & \hline(\mathrm{pc} / \mathrm{kg}) \\ & \mathrm{Ba}-\mathrm{La}-140 \end{aligned}$	$\begin{array}{r} (\mathrm{pc} / \mathrm{kg}) \\ \mathrm{Cs}-137 \end{array}$	$\begin{aligned} & (\mathrm{pc} / \mathrm{kg}) \\ & \mathrm{Zr}-\mathrm{Nb}-95 \end{aligned}$	$\underset{K}{(\mathrm{~g} / \mathrm{kg})}$
5/27/63	Iona Island	Rockland	49	< 20	166	81	-
10/2/63	Iona Island	Rock1 and	< 20	< 20	67	200	2.8
7/7/64	Iona Island	Rockl and	< 20	< 20	30	< 20	0.6
10/14/64	Iona Island	Rockland	<64	73	66	< 64	2.5
5/27/63	Paekskill Bay	Westchester	66	<20	128	169	-
10/2/63	Peekskill Bay	Westchester	-	-	-	-	-
7/7/64	Peekskill Bay	Westchester	<40	<40	<40	<40	0.6
5/28/63	Green's Cove	Westchester	61	< 20	102	182	-
10/3/63	Green's Cove	Westchester	≤ 20	$\leqslant 20$	51	96	3.7
7/8/64	Green's Cove	Westchester	<50	<50	<50	<50	1.7
10/15/64	Green's Cove	Westchester	< 64	<64	<64	< 64	2.9
5/27/63	Tappan Zee	Rockland	58	< 20	145	256	-
10/2/63	Tappan Zee	Rockland	-	-	-	-	-
7/7/64	Tappan Zee	Rockland	<77	< 77	<77	<77	2.0
10/14/64	Tappan Zee	Rockland	< 64	<64	< 64	< 64	2.8
5/98/63	Croton Bay	Westchester	< 20	<20	243	32	-
10/3/63	Croton Bay	Westchester	≤ 20	<20	45	69	-
7/8/64	Croton Bay	Westchester	<44	< 44	<44	< 44	-
10/15/64	Croton Bay	Westchester	< 64	< 64	65	< 64	3.3

Algae Samples
Consolidated Edison Post-Operational Survey

			Results		
Collection	Sampling Point	County	$(\mathrm{pc} / \mathrm{kg})$ $\mathrm{Mn}-54$	$(\mathrm{g} / \mathrm{kg})$ K	$(\mathrm{pc} / \mathrm{kg})$ $\mathrm{Zr}-\mathrm{Nb}-95$
$10 / 2 / 63$	Tappan Zee	Rockland	-	3.3	7450
$7 / 7 / 64$	Tappan Zee	Rockland	1819	5.9	730
$10 / 3 / 63$	Green's Cove	Westchester	-	-	-
$7 / 8 / 64$	Green's Cove	Westchester	707	6.6	<180
$10 / 2 / 63$	Iona Island	Rockland	-	-	
$7 / 7 / 64$	Iona Island	Rockland	2494	2.1	241
$10 / 14 / 64$	Iona Island	Rockland	845	-	59
$7 / 8 / 64$	Croton Bay	Westchester	356	2.4	189
$10 / 15 / 64$	Croton Bay	Westchester	72	-	<20

Note:
Iodine-131, Ba-La-140, and Cs-137 analyses were also performed. These nuclides were not detected with the exception of the following samples:

Collection	Sampling Point	Isotope	Kesult (pc/kg)
$5 / 27 / 63$	Tappan Zee	Cs-137	540
$7 / 7 / 63$	Iona Island	Cs-137	340
$10 / 2 / 63$	Tappan Zee	Cs-137	565
$7 / 8 / 64$	Greenis Cove	Cs-137	372
$10 / 15 / 64$	Croton Bay	Cs-137	43

Mud Samples
Consolidated Edison Postooperational Survey

Collection	Sampling Point	County	Gross Gamma (pc/kg)
$10 / 2 / 63$	Iona Island	Rockland	2860
$7 / 7 / 64$	Ioná Island	Rockland	7416
$10 / 7 / 63$	Tappan Zee	Rockland	5990
$7 / 7 / 64$	Tappan Zee	Rockland	3160
$10 / 7 / 63$	Peekskill Ray	Peekskill Bay	Westchester
$7 / 7 / 64$	Croton Bay	Westchester	18000
$10 / 3 / 63$	Croton Bay	Westchester	7150
$7 / 8 / 64$	Green's Cove	Westchester	7820
$10 / 3 / 63$	Green's Cove	Westchester	720
$7 / 8 / 64$	Westchester	5780	
$7 / 7 / 64$	Sockland Point	1420	

Pressurized Ionization Chamber
 Consolidated Edison Post-Operational Survey

Westchester County

Station	Date	Inst. Reading (Volts)	Cosmic Portion (ur/hr)	Total (ur/hr)
Indian Point	8/25/64	2.05	3.4	10.2
St. Patrick's Church	8/25/64	2.10	3.4	10.5
Ruchanan	8/25/64	2.20	3.4	11.0
Peekskill	8/25/64	2.35	3.4	11.8
Rear Mountain Road	8/2,4/64	2.15	3.5	10.8
Dremon Road	8/25/64	2.10	3.5	10.5
Mill Pond	8/25/64	2.20	3.5	11.0
St. Mark's School	8/25/64	2.40	3.5 :	12.0
Route 9TN	8/24/64	2.30	3.4	11.5
West Haverstraw	8/24/64	2.20	3.4	11.0
New City Park	8./24/64	2.10	3.4	10.5
Nelson Park	8/26/64	2.50	3.5	12.5
Pines Bridge	8/26/64	2.20	3.6	11.0
Granite Springs	8/27/64	2.00	3.6	10.0
Taconic Parkway	8/24/64	2.60	3.9	13.0
tiastinges-on-tre-Hudson	8/26/64	2.20	3.5	11.0
Westciester County Airport	$8 / 26 / 64$	2.20	3.6	11.0
Blue Heron Lake	8/26/64	2.50	3.6	12.5
North Salem	8/27/64	2.10	3.6	10.5

Consolidated Edison Post-Operational Survey
Summary Of Environmental Discharges From The Consolidated Edison Reactor

Year	Total Activity* Released		Amount Needed To Dilute To Operational Limits**	
	Water (curies)	Air (curies)	Water (gal/yr)	Air ($\mathrm{ft}^{3} / \mathrm{yr}$)
1962	0.131	None	1.72×10^{7}	None
1963	0.154	0.0072	2.17×10^{7}	8.46×10^{8}
1964	11.03	13.180	1.46×10^{9}	1.6×10^{12}

*Exclusive of Tritium
**Operational Limits

1) Water $=2 \times 10^{-6} \mu \mathrm{c} / \mathrm{ml}$
2) $\operatorname{Air}=3 \times 10^{-10} \mu_{\mathrm{c}} / \mathrm{ml}$

In normal plant operations $435,000,000$ gpd. is discharged * into the Hudson River while $300,000 \mathrm{cfm}$ of gas is discharged up stack. Dilution Available
Water -4×10^{5} gal/day $=1.59 \times 10^{\prime \prime}$ gallons,
Air - $3 \times 10^{5} \mathrm{ft}^{3} / \mathrm{min}=1.6 \times 10^{\prime \prime} \mathrm{ft}^{3} / \mathrm{yr}$

Meteorological conditions, from a two year on site survey by New York University, provide for a further dilution factor of 3000 under the worst conditions.

* This is the normal rate of cooling water discharged daily.

CONSOLIDATED EDISON INDIAN POINT REACTOR

ENVIRONMENTAL AND POST OPERATIONAL

SURVEY
JULY 1966

division of environmental health services

NEW YORK STATE DEPARTMENT OF HEALTH

HOLLIS S. INGRAHAM, MAD.
COMMISSIONER

STATE OF NEW YORK

DEPARTMENT OF HEALTH

84 HOLLAND AVENUE
ALBANY, NEW YORK 12208

MEREDITH H. THOMPSON, D. ENG. ASSISTANT COMMISSIONER

BUREAU OF

RADIOLOGICAL HEALTH SERVICES
SHERWOOD DAVIES. B.C.E., M.P.H.

Dr. Meredith H. Thompson
Assistant Commissioner
Division of Environmental Health Services
84 Holland Avenue
Albany. 3, New York

Re: Environmental and Post Operational Surveys, Consolidated Edison Thorium Reactor, Village of Buchanan, Westchester County.

Dear Doctor Thompson:

This report updates the environmental factors to be considered in the event of a nuclear incident, such as the location of surface water supplies, downstream industrial water users, milk processing or receiving plants, and residential areas which were published in an earlier report in April, 1962。

Post operational sampling data is also included in this report 。 Various environmental samples were collected during 1965. Sampling results to date have shown that there has been no noticable increase in radiation levels in the vicinity of the plant.

Very truly yours,

Sherwood Davies, P.E. Director of
Bureau of Radiological Health Services

Consolidated Edison Indian Point Reactor

Environmental And Post Operational Survey

July 1966

Division of Environmental Health Services New York State Department of Health

Acknowledgments

This report was prepared through the cooperation of the following State and local Department personnel:

Central Office - Bureau of Radiological Health Services

Mr. Sherwood Davies, Principal Sanitary Engineer
Mr. William Kelleher, Associate Sanitary Engineer
Mr. David J. Romano, Assistant Sanitary Engineer

Dutchess County Health Department

Mr. Henry Scoralick, Director, Division of Environmental Services

Middletown District Office

Mr. Matthias Schleifer, District Sanitary Engineer

Mr. Warren Cuddeback, Senior Sanitarian
Rockland County Health Department
Mr. George O° Keefe, Assistant Commissioner
Mr. George Giacobbe, Sanitarian

Westchester County Health Department

Mr. Richard McLaughlin, Director, Division of Sanitation
Mr. Calvin E. Weber, Senior Sanitary Engineer
Mr. Ernest Hemple, Sanitarian
Conservation Department - Bureau of Marine Fisheries
Mr. William S. Miller, Conservation Biologist
Mr . Peter Cordier, Conservation Biologist
Mr. John DeRosa, Marine Fishery Aide

Table of Contents

Page
Introduction. 1
Environmental Factors And Tabular Data. 1-2
Post Operational Sampling Data، 2
Conclusions 2
Directory Of Health Departments 3-4
Wäter Supply Data (Table 1). 5-14
Industrial Water Users On Hudson River (Table 2). 15
Milk Processing And/Or Receiving Plant Data (Table 3) 16-17
Dairy Farms - By Townships (Table 4) 18
Population Data (Table 5) 19
Air And Fallout Results - 1965 (Table 6) 20
Water Sample Data - 1965 (Table 7) 21-24
Milk Samples - 1965 (Table 8). 25
Algae, Fish, Vegetation, And Mud - 1965 (Table 9) 26
Pressurized Ionization Chamber Results - 1965 (Table 10) 27
Summary Of Environmental Discharges (Table 11) 28
Explanation Of Symbols And Abbreviations 28
Map Of Post Operational Survey Area. 29
Map Of Pressurized Ionization Chamber Survey Sites 30
Wind Roses 31
Figures.l-6. 32-37

Introduction

This report updates two earlier reports on environmental factors and on environmental surveys in the vicinity of the Consolidated Edison nuclear power reactor at Indian Point on the Hudson River. The Division of Environmental Health Services in the New York State Department of Health conducts this sampling in cooperation with Consolidated Edison, the Middletown District Office of the State Health Department, and the Rockland and Westchester County Health Departments.

Two earlier reports were entitled, "Environmental Factors To Be Considered After An Accidental Release Of Radioactivity From The Consolidated Edison Thorium Reactor," issued in April, 1962, and "Post-operational Survey,"in August, 1965. Two ; summaries of monitoring and site surveillance before the plant went into operation on. August 2, 1962, were issued in November, 1959, and June, 1962.

Environmental Factors

From the beginning the study area has been arbitrarily limited to a 314 square mile area in a 20 -mile radius from the reactor. This includes parts of five New York State counties and small areas in New Jersey and Connecticut. The following is the most recent environmental information:

1. The area has more than one million permanent residents.
2. The twelve milk processing or receiving plants in the study area receive milk from 69 dairy farms, 43 of them within the 20 -mile radius. Seven other plants located outside the study area which serve New York City receive part of their milk supply from 64 dairy farms in the study area.

Tabuìar Data

Table l lists water sources which could be contaminated by radioactive materials accidentally released into the atmosphere - surface water supplies and some shallow wells or springs. It includes ground water supplies which would not be easily contaminated. The code number in the first column uses the initial of the county and a number assigned arbitrarily to each water works within that county. Other columns is list the name of the water works, its source and the community it serves.

Table 2 is a list of industrial water users on the Hudson River located downstream from the Indian Point Reactor .

The latest data on the number of milk processing and receiving plants in the study area is included in Table 3. The number of dairy farms in each county and township is given in Table 4.

Table 5 gives population figures for various cities, towns and viliages updated census figures where these are available, population estimates otherwise.

Post Operational Sampling Data (January, 1965 - December, 1965)

The isotopic analyses on the sampies taken during 1965 are found in Tables 6-9. Weekly composite samples for air and failout were taken at the Peekskill site. Monthly water samples at different locations in the reactor vicinity were obtained. Ccliections were also made in the Hudson River of weekly composite samples at Peekskill and Ossiring. Month:y milk samples were coliected at various sites in the area.

Gamma background levels were measured by perscrrei of the New York State Department of Health, Bureau of Radiological Health Services in the area around the reactor site in October, 1965. The locations of the pressurized ionization chamber survey sites are givers on page 30. The data obtained from these atations i.s found ir Table 10 。

A summary of the erwirormental discharges from the Indian Point Reactor is in Table il. This table was prepared from data which the Bureau of Radioicgical Health Services receives from the Irdian Pcirt Reactor on a monthly basis.

A revised map showing locations of sampling stations and wind rose data is included. Wird data was obtained from a report entitied, "Air Pollution In Westchester," published by the New York State Air Pollution Control Board in December, 1965。

Conciusion:

The graphs in the report show that the Hudson Rever gross beta readings downstream from the reactor (at 0 s.aning) are higher than those upstream (at Peekskili) and that the naturai chioride or sea water content of the Hudson River, inciuding Potassium 40; is also higher for the dowrsteeam station: The drought of the past few years has increased the concentration of sea water in the jower Hudson, thereby increasing the amount of K^{40} and its gross beta activity,

Isotopic analyses of fisn, algae and vegetation samples reveaied that.few, if any isotopes, could be found in significant concentrations or above the limit of sensitivity. The concentrations (activity per unit weight) found are much smailer than the maxium permissibie concentration (MPC) allowed in drinking water for each isotope: These resuits agree with ar independent survey in 1964 by a team of faculty arid students from New York Uriversity.

The pressurized icrization chamber data shows that there has been no ircrease in gamma background sirce the last survey ir. i964.

The summary of ervirormertal discharges irdicates that the plant has been operating withir the allcwable imits.

No increase ir radicactivity was cbserved in this perold which car be attributed to the operation of the Indiar Poirt Reactcr: Positive resuits in milk are associated with past nuciear weapons testing.

The following is a list of Health Departments and personnel who could be consulted if an accidental release of radioactive materials from the reactor were to occlir：

WESTCHESTER COUNTY HEALTH DEPARTMENT（White Plains Region）		WH 9－1300 Ext。 451
Courty Office Building， 148	Avenue，White Plains	W．1300 Ext。451
Health Commissioner	William A。 Brumfield；Jrog Mc D	WH 8－4141
Directos，Di\％of Sanitation	Richard Mo McLaughling，$P_{\text {c }} E_{0}$	WH 8－1871
Senior Sanitary Engineer， Radiological Health and	Caivir E。Weberg $\mathrm{Pc}_{\text {c }}$ 。	245－2562

ROCKLAND COUNTY HEALTH DEPARTMENT（White Plains Regior） County Office Building，New City，New York

New Ci．ty 4－4663 or 4．－4911

Health Commissioner
Donald G，Dickson，M．D．
New City 4－7901
Assistant Commissioner
George E 。 $O^{\text {º Keefe，}} \mathrm{P}_{\mathrm{o}} \mathrm{E}_{\text {o }}$
New Cíty 4－7901
Asst．Director，Division of
Donald Grosso
Environmental Sanitation

MIDDLETOWN DIS TRICT OFFICE（White Plains Region）
DI amond 2－2511
34 South Street，Middletown
Health Officer
John Ao Degen，Jro，M，Di：
DIamond 3－8782
Sanj．tary Engineer
Mathias Schleifer，PoE。
DIamond 2－1691
DUTCHESS COUNTY HEALTH DEPARTMENT（White Plains Region）
$485 \cdots 9800$
236 Main Street，Poughkeepsie
Health Commissioner
Mathew A。 Vassallo，M．Do
Director，Ervironmental Sanitation H_{6} W。Scoraiick，PoE。 $485 \cdots 9800$
WHI IE PLAINS REGIONAL OFFICE
55 Church Street，White Plains
Regional Health Director
Wilinam Ro Dorovang M，D．
WH 9－3796
Regionai Director of Public Heaith Engineering

Jonn Harrisong $P_{0} E_{0} \quad$ LA $8-3738$

BUREAU OF RADIOLOGICAL HEALTH SERVICES
． 84 Holl and Avenue，Albany
Dírector
Sherwood Davies，PoE
GR 4－74i1
Assoc，Sanitary Enginneer
William Kelieher，PoE。 GR 4－2065
Asscc．Sanitary Engineer
Harry Farkas，PoE．GR 4－2067
Senior Sanitary Er．gineer
Aliari Raymordz PoE GR 4－2055

Directory of Health Departments (cont.)

Assistant Sanitary Engineer	David Romano	GR 4-2064
Assistant Sanitary Engineer	Bernard Heald	GR 4-2067
Assistant Sanitary Engineer	Ralph Dykstra	GR 4-2064
Assistant Sanitary Engineer	Kurt Anderson	GR 4-2003
Junior Sanitary Engineer	Robert Hannaford	GR 4-2055

VICINITY INDIAN POINT REACTOR
WATER SUPPLY DATA

Code No.	Water Works	Source	Type of Treatment	Communtiy Served
0-19	Stewart Field	Catskill Aqueduct	Diam. $\mathrm{E}, \mathrm{Cl}_{2}$ Open Storage	Stewart Field - U.S. Air Force Base
$0-3$ $0-6$	$\begin{aligned} & \text { Cornwall (V) } \\ & \text { Newburgh (c) } \end{aligned}$	Lake Silver \& Patton Brooks	$\begin{aligned} & \mathrm{Cl}_{2} \\ & \mathrm{Cl}_{2}, \mathrm{RSF}, \mathrm{AC}, \mathrm{~F} \end{aligned}$	```Cornwall (v) Newburgh (C) New Windsor wD# 1-5 (Aux)```
D-1	Fishkill (V)	Hell Hollow \& Clover Brooks	Cl_{2}	```Fishkill (v) Glenham WD```
0-4	Highland Falls (V)	2 Reservoirs on Highland Brook	$\mathrm{Cl}_{2}, \mathrm{RSF}$	Highland Falls (v) Aux. intake on P23 ne
0-11	U.S. Military Academy	```Popolopen & Queensboro Brooks (see map P23 se)```	$\mathrm{RSF}, \mathrm{Cl}_{2}$	U.S. Military Academy, West Point
B-1	Beacon City	Melsingah Res.	Cl_{2}	Beacon City
B-2	Beacon City	Mt. Beacon Res.	Cl_{2}	Beacon City
B-3	Beacon City	Cargill Res. or Beacon Res.	Cl_{2}	Beacon City
P-6.	Cold Springs (v)	Foundry Brook 2 Intakes	Cl_{2}	Cold Springs Nelsonville
P-7	Hiawatha Improvement Co.	Lake Oscawanna	Cl_{2}	Land of Hiawatha Improvement Co.
P-8	Hilltop WD	Lake Oscawanna	$\mathrm{PSF}, \mathrm{AC}, \mathrm{Cl}_{2}$	Hilltop WD
P-9	Wildwood Knolls WD.	Lake Oscawanna	$\mathrm{PSF}, \mathrm{CC}, \mathrm{Cl}_{2}$	Wildwood Knolls

VICINITY INDIAN POINT REACTOR Cont.
WATER SUPPLY DATA

Code No.	Water Works	Source	Type of Treatment	Community Served
$P-10$ $P-21$	Oscawanna Lake Fahnestock St. Park	Lake Oscawanna Pelton Pond	Unknown $\mathrm{Cl}_{2}, \mathrm{RSF}$	Private Usage Fahnestock St. Park
P-4	Carmel WD \#2	Lake Gleneida	Cl_{2}	Carmel WD \#2
P-11	Kirkwood Park	Infil. Gallery	Cl_{2}	Kirkwood Park
P-12	Sedgewood Club	China Pond	Cl_{2}	Sedgewood Property
P-13	Lake Gardens	Lake Mahopac	Cl_{2}	Lake Gardens Subdivision
P-16	Lake Mahopac Woods	Lake Mahopac	$\mathrm{Cl}_{2}, \mathrm{SSF}$	Lake Mahopac Woods Subdivision
P-17	Mahopac Hills	Lake Mahopac	Cl_{2}	Mahopac Hills Subdivision
P-20	Lake Mahopac	Lake Mahopac	Unknown	Private Usage
0-1	Arden Farms	Echo Lake	Cl_{2}	Arden
0-2	Chester (V)	Walton Lake	Cl_{2}	Chester (V)
0-5	Monroe (V)	Lake Mombasha	Cl_{2}	Monroe (V)
0-10	Woodbury WD	Wells, Cromwell Lake for emergency use	$\mathrm{Cl}_{2}, \mathrm{CC}$	Woodbury WD
0-12	Bear Mountain-Palisades Inter-State Park Supply	Queensboro Lake	$\mathrm{Cl}_{2}, \mathrm{RSF}$	Bear Mountain Park USMA (Aux)
0-16.	Summit, Twin \& Barnes Palisades Inter-State Park Supply	Summit Lake	Cl_{2}	Summit, Twin and Barnes Parks
0-11	U.S. Military Academy West Point	 Queensboro Brooks (see map P24 nw)	$\mathrm{RSF}, \mathrm{Cl}_{2}$	U.S. Nilitary Academy, West Point

VICINITY INDIAN POINT REACTOR CONt.
WATER SUPPLY DATA

VICINITY INDIAN POINT REACTOR Cont.
WATER SUPPLY DATA

Code No.	Water Works	Source	Type of Treatment	Community Served
$\begin{aligned} & W-22 \\ & W-21 \end{aligned}$	Croton Falls Water Dept. Butlerville	Drilled Wells Shallow Springs	No treatment No treatment	Croton Falls-No. Salem(T) Butlerville-Somers (T)
$W-7$ $W-25$	Mead Properties Ward Poundridge Reservatian	Waccabuc Lake on N.Y.C. Watershed Springs \& Shallow Wells (25)	Cl_{2} No treatment	Mead Properties Lewisboro (T) West. Co., Park Comm. Ward, Poundridge Reserva- tion Camping Areas
0-7	Sterling Forest	Reservoir	$\mathrm{Cl}_{2}, \mathrm{RSF}, \mathrm{AC}$	Sterling Forest Industríal Sites \& Subdivisions
	Sterling Lake	Sterling Lake	$\mathrm{Cl}_{2}, \mathrm{CC}$	Sterling Lake
	Blue Lake	Blue Lake	$\mathrm{Cl}_{2}, \mathrm{CC}, \mathrm{RSF}$	Blue Lake
	Greenwood Lake (V)	Greenwood Lake Emergency Use	Cl_{2}, SF	Greenwood Lake (V)
	Sterling Forest Forest Park	Greenwood Lake	Cl_{2}, PSF	Forest Park
0-8	Tuxedo (H)	Tuxedo Lake	$\mathrm{Cl}_{2}, \mathrm{CC}, \mathrm{PSF}$	Tuxedo (H)
0-9	Tuxedo Park (V)	Tuxedo Lake	Cl_{2}, \propto, PSF	Tuxedo Park (V)
R-14	Sebago Lake - Palisades Inter-State Park Supply	Lake Sebago	$\mathrm{Cl}_{2}, \mathrm{PSF}$	Lake Sebago Camp Area
0-15	Stahahe Lake - Palisades Inter-State Park Supply	Lake Stahahe	Cl_{2}	Lake Stahahe Camp Area
R-7	Hillburn (V)	Hillburn Res. -	Cl_{2} \& open storage (see map Q23 sw)	Hillburn (V)
R-8	Pothat Water Co.	Potake Pond \& Cranberry Pond(Aux.)	Cl_{2}	```Sloatsburg (V) Ramapo (H) Sterlington (H)```
R-9	St. Joseph's Home	Sheppard Pond	Cl_{2}	St. Joseph's Home - St. Mary's Villa

VICINITY INDIAN POINT REACTOR Cont.
WATER SUPPLY DATA

Code NO_{0}	Water Works	Source	Type of Treatment	Community Served
R-13	Breakneck Lake Palisades Inter-State Park Supply	Breakneck Pond	$\mathrm{Cl}_{2} ; \mathrm{PSF}$	Breakneck Pond Camp Area
R-18	Welsh Lake	Lake Welsh	Proposed Cl_{2}, RSF	Lake Welsh Campsite
R-1	Utilities \& Industries Stony Point Supply	Res. \& Well	PSF, Sed., Cl_{2}, Open Storage	```Stony Pt. (T) Haverstraw (T) Haverstraw (V) W. Haverstraw (V)```
R-3	Letchworth Village, N.Y. St. Dept. of Social Welfare	First Res.	$\mathrm{RSF}, \mathrm{Cl}_{2}$	Letchworth Village
R-5	Utilities \& Industries Thiells Res. Supply	Thiells Res.	Cl_{2}	Haverstraw (Aux.) W_{o} Haverstraw' (Aux.)
W-1	N.Y.C. Dept. Water Supply Gas \& Elec. - Croton System	Reservoirs - Croton System	Nat. Settling, Aeration, Cl_{2}	New York City Westchester Co. Communities as Noted
W-8	Ossining Water Board	Indian Brook Res.	Aeration RSF, excess Cl_{2}, de Cl_{2}, Open Storage	```Ossining (V) Ossining (T) Sing Sing Prison```
W-1C	Ossining Water Board	Old Croton Aqueduct	Same as W-8 Q24 ne	Same as W-8 Q24 ne
W-9	Croton-on-Hudson (V)	Infil. Galleries	Cl_{2}	Croton-on-Hudson (v) - NYCRR - Watering point at Harmon Croton Point Park
W-1D	Ossining Water Board	New Croton Aqueduct	Cl_{2} \& de Cl_{2}	```Ossining (V) Ossining (T) Sing Sing Prison```

VI.INITY INDIAN POINT REACTOR Cont.

WATER SUPPLY DATA

Code No.	Wa cer Works	Source	Type of Treatment	Community Served
W-15	Briarcliff Manor (V)	Shallow Wells Driven Well Gravel Packed Well	Nat. Fil., Cl_{2}, and Aeration	Briarcliff Manor (V) Morningside WD Ossining(T) Archville WD, Mt. Pleasant (T) Briar Hills WD, Mt. Pleasant (T)
W-1S	No. Tarrytown (V)	New Croton Aqueduct	Cl_{2}	No. Tarrytown (V)
W-1I	New Rochelle Water Company Pocantico Division	NYC Aqueducts Catskill or New Croton thru New Rochelle Division	Cl_{2}	Same as W-18-Q24 se
W-1J	New Rochelle Water Company New Rochelle Division	New Croton Aqueduct \& Catskill Aqueduct (Aux.)	$\mathrm{Cl}_{2}, \mathrm{CC}, \& \mathrm{~F}$	Bronxville (V) Eastchester (T) N. Pelham (V) Pelham (V) Pelham Manor (V) Tuckahoe (V)
W-1K	Irvington (V)	New Croton Aqueduct	Cl_{2}	Same as W-19-Q24 se
W-1E	Briarcliff Manor (V)	New Croton Aqueduct	Cl_{2}	Same as W-15 (Aux.) Q24 ne
W-1F	Briarcliff Manor (V)	Old Croton Aqueduct	Cl_{2}	Same as W-15 (Aux.) Q24 ne
W-1Q	New Castle District \#1	New Croton Aqueduct	Cl_{2}	New Castle(T) Water Districts
W-23	Pine Hill Crystal Springs	Springs	Cl_{2}	Pine Hills-Crystal Springs Bottled Water Co.
W-1R	Sing Sing Prison	Old Croton Aqueduct	Cl_{2}	Sing Sing Prison
W-1T	Tarrytown (V)	New Croton Aqueduct	Same as W-13 Q24 se	Same as W-13 Q24 se

VICINITY INDIAN POINT REACTOR Cont。
WATER SUPPLY DATA

Code No.	Water Works	Source	Type of Treatment	Community Served
W-1A	Stanwood WD	Croton Res.	Cl_{2}	Stanwood WD, Bedford (T), New Castle (T)
W-10	New Castle Water Co.	Guinzburg Pond	$\text { Diam. E., \& } \mathrm{Cl}_{2}$	Parts of (T's) New Castle \& No. Castle
W-11	Mt. Kisco (V)	Byram Lake	Cl_{2} \& Open Storage	Mt. Kisco (V), New Castle \#1 (Aux.)
W-11A	Mt. Kisco (V)	Shallow Wells	Cl_{2}	Same as W-11 Q25 nw
W-27	Greenwich, Conn. Port Chester Water Works	Mianus River	$\begin{aligned} & \text { Ammon, } \mathrm{Cl}_{2}, \mathrm{RSF} \\ & \& \mathrm{AC} \end{aligned}$	$\begin{array}{\|l} \text { Greenwich (C) } \\ \text { Port Chester (V) } \\ \hline \end{array}$
NJ-3	Hackensack Water Co.	Woodcliff Lake	$\mathrm{Cl}_{2}, \mathrm{RSF}$	55 communities in New Jersey
R-6	Nyack Water Supply Upper Hackensack River	Hackensack River \& De Forest Lake	Sed., $\mathrm{Cl}_{2}, \mathrm{RSF}$	Nyack (V) S. Nyack (V) Upper Nyack Clarkstown (T)
NJ-3	Hackensack Water Co.	DeForest Lake Hackensack River	$\mathrm{Cl}_{2}, \mathrm{RSF}$	55 municipalities in New Jersey
W-29	NYC Dept. Water Supply Gas Elec. - Kensico System	ReservoirsKensico System	Nat. Sett., Aeration, Cl_{2}	New York City and Westchester County communities as noted
W-13	Tarrytown (V)	Local Lakes	$\begin{aligned} & \text { PSF, } \mathrm{Cl}_{2}, \text { Open } \\ & \text { Storage } \text { (See Q24ne) } \end{aligned}$	```Tarrytown (V) Glenville WD, Greenburg(T) Eastview, Mt. Pleasant(T) No. Tarrytown (V)```
W-14	Pocantico Hills Estates	Lakes	Pre., $\mathrm{Cl}_{2}, \mathrm{RSF}, \mathrm{CC}$	Pocantico Hills Estates
W-19	Irvington (V)	Local (Aux.) Reservoirs	Cl_{2}, Open Storage	Irvington (V) E. Irvington (V)

VICINITY INDIAN POINT REACTOR Cont.

WATER SUPPLY DATA

Code No.	Water Works	Source	Type of Treatment	Community Served
W-20	White Plains (C)	Local Lakes \& Wells	$\mathrm{Cl}_{2}, \mathrm{CC}$	White Plains (C)
W-29M	White Plains (C)	Kensico Reso	Same as W-20	White Plains (C)
W-29N	No. Castle Dist. \#1	Kensico Res。	Cl_{2} \& CC	No. Castle \#l
W-18	New Rochelle Water Co. Pocantico Division	Pocantico Lake	$\mathrm{Cl}_{2} ;$ PSF \& CC	Ardsley (V) Dobbs Ferry (V) Greenburgh (T) Hastings (V) Scarsdale (V) Eastchester (V)
W-29V	Grasslands, DPW	Catskill Aqueduct	Cl_{2}	Grasslands Reservation
W-29X	Hawthorne Improvement District	Catskill Aqueduct	$\mathrm{Cl}_{2}, \mathrm{CC}$	Hawthorne, Mt. Pleasant (T)
W-29P	Valhalla WD	Catskill Aqueduct	Cl_{2}	Valhalla, Mt, Pleasant (T)
W-29T	Yonkers (C)	Catskill Aqueduct	$\mathrm{Cl}_{2}, \mathrm{~F}$	Yonkers (C)
W-29U	Scarsdale (V)	Catskill Aqueduct	$\mathrm{Cl}_{2}, \mathrm{~F}$	Scarsdale (V)
W-1I	New Rochelle Water Co. Pocantico Division	Catskill Aqueduct	$\mathrm{Cl}_{2}, \mathrm{CC}$	Same as W-18-Q24 se
W-1J	New Rochelle Water Co. New Rochelle Division	Catskill Aqueduct	$\mathrm{Cl}_{2}, \mathrm{CC}, \mathrm{F}$	$\begin{aligned} & \text { Same as } W-1 J\left(A u x_{0}\right) \\ & \text { Q24 ne } \end{aligned}$
W-17	Westchester Joint Water Works \#l	Mamáqoneck River Watershed-Intake Downstream Outside Study Area	Aeration, pre \& post $\mathrm{Cl}_{2}, \mathrm{RSF}, \mathrm{F}$	Mamaroneck (V.) Harrison (T) Mamaroneck (V) Rye (C) New Rochelle (C) Larchmont (V). Scarsdale (V) Pelham Manor (V)

VICINITY INDIAN POINT REACTOR Cont。
WATER SUPPLY DATA

VICINITY INDIAN POINT REACTOR COnt。

Code No.	Water Works *	Source	Type of Treatment	Community Served*
W-30A	Greenburgh Consolidated Water District No. 1	Delaware Aqueduct	Cl_{2}, Act. Carbon	Greenburgh (T)
W-30B	Larchmont	Delaware Aqueduct	Cl_{2}, Coag., RSF, Act. Carbon, F (supply from Aqueduct normally bypasses coagulation \& filtration equipment available)	Larchmont (V)
W-29Y	Mt. Vernon City	Hillview Reservoir	Cl_{2}	Mt. Vernon (C)
W-30C	Westchester Joint Water Works \#l	Delaware Aqueduct	$\mathrm{Cl}_{2}, \mathrm{~F}$	Same as W-17
W-29Z	Yonkers (C)	Hillview Reservoir	Cl_{2}	Yonkers (C)

* The water works and communities listed on this page take water from the Delaware Adueduct system. Part of the water in this system comes from the New York City Pumping Station at Chelsea, New York which uses the Hudson River as its water source and is located Within the 20 mile study area. Preliminary treatment includes chlorination and the addition of alum.

Consolidated Edison's Indian Point Reactor Buchanan Village, Westchester County 1965

INDUSTRIAL WATER USERS ON HUDSON RIVER BELOW INDIAN POINT

Name	Use	Quantit		Location In Miles From Indian Point
Consolidated Edison of New York, New York	Cooling	165	M.G.D.	+38.4
Refined Syrups and Sugars, Yonkers	Cooling	7	M.G.D.	+26.1
Consolidated Edison of New York, Hastings	Cooling	. 65	M.G.D.	+24.3
Anaconda Wire and Cable, Hastings	Cooling	. 2	M.G.D.	+21.4
```Nevis Laboratories, Columbia University, Irvington (V)```	Cooling	1000	G.P.M.	+15.3
Rock Industries, Haverstraw	Stone   Washing	1.5	M.G.D.	$+6.0$
Rockland Light and Power, Stony Point	Cooling   And Ash Handling	260	M.G.D.	+ 1.8
Rock Industries, Tomkins Cove	Stone   Washing	1	M.G.D.	$+1.8$
Consolidated Edison of New York, Indian Point	Cooling	400	M.G.D.	0.0
Standard Brands*   Peekskill	Cooling	4	M.G.D.	- 0.3

[^23]MILK PROCESSING AND/OR RECEIVING PLANT DATA

Processing and/or Receiving Plant	Source of Milk		Total Milk Production Qts/Day	Milk Prod.   From Study Area Qts/Day	Health Unit
	Total No. of Dairy Farms	No. of Dairy Farms Within			
DPW West. Co., Mt. Pleasant	1	1	1500	1500	Westchester County
Strawtown Dairy, New City	1	1	2000	2000	Rockland County
Penwood Farm (b), Mt. Kisco	1	1	100	100	Westchester County
Miller Dairy, W. Nyack	(c)	(c)	20000	0	-Rockland County
Crowley Milk Co., Newburgh	32	32	28000	28000	Westchester County
Petelinz Dairy, Newburgh	13	2	6000	942	Middletown District
Lakeside Dairy, Newburgh	2	2	350	350	Middletown District
Matteawan State Hospital, Beacon	1	1	1800	1800	Middletown District
Brookside Farms, Haverstraw	15 (e)	0	6000	0	Rockland County
Grey Ridge Farms, Stony Point	1	1	400	400	Rockland County
Sunny Hill, Spring Valley	1	1	450	450	Rockland County
Julia Dyckman Andrus, Home Hastings	1	1	200	200	Westchester County

VICINITY INDIAN POINT REACTOR Cont。
MILK PROCESSING AND／OR RECEIVING PLANT DATA

Processing and／or Receiving Plant	Source of Milk		Total Milk Production Qts／Day	Milk Prod。   From Study   Area   Qts／Day	HeaIth Unit
	Total No of Dairy Farms	No 。 of Dairy Farms Within			
Outside 20 Mile Radius		20 Mile Radius			
Ferndale Farms，Circleville	99	3	$62000$	2000	New York City
Deltown Foods，Slate Hill	142	6	96600	3800	New York City
Borden Farm Products；Warwick	109	35	66000	21000	New York City
Terwilleger \＆Wakefield（f）， Ridgewood，New Jersey	29	2	9750	650	New York City
Sealtest，Webster Ave．，Bronx	159 （g）	7	138600	3900	New York City
Dairymen＇s League，Woodside， Long Island	121	25	121398	12600	New York City
Sussex Milk \＆Cream，Sussex， New Jersey	74	1	36100	560	New York City

＊Indicates production was obtained by using percentage of dairy farms within study area to total dairy farms serving plant。
（b）Special A Raw Milk－Code number not available。
（c）One local herd outside 20 mile radius，remainder is purchased in a prepasturized state from a Newark， New Jersey concern．
（e）Estimate．
（f）Ice Cream only to New York City－fluid milk to local market．
（g）Estimated from average figures．
NA Not available．

# Consolidated Edison's Indian Point Reactor Buchanan Village, Westchester County 

Table 4 1965

Dairy Farms - By townships

County and Townships	Farms
Westchester County	
Bedford	4
Harrison	1
Lewisboro	4
Mt. Pleasant	1
Newcastle	1
North Salem	6
Somers	4
Yorktown	2
Yonkers	1
Rockland County	
Clarkstown	13
Orangetown	3
Ramapo	3
Stony Point	2
Putnam County	
Carmel	7
Kent	1
Patterson	10
Phillipstown	2
Putnam Valley	2
Southeast	11
Orange County	
Blooming Grove	46
Chester	36
Cornwall	8
Goshen	76
Hamptonburg	55
Monroe	10
Montgomery	99
Newburgh	18
New Windsor	39
Tuxedo	2
Warwick	125
Woodbury	2
Dutchess County	
Wappinger	12
Fishkill	3
East Fishkill	25

## Consolidated Edison's Indian Point Reactor Buchanan Village, Westchester County

 1965| Czsil Subdivision | Population | Civil Subdivision | Population |
| :---: | :---: | :---: | :---: |
| Nartchesser Courty |  | Putnam County |  |
| Beatoxd ( $T$ ) | 15,867 | Carmel ( T ) | 13,892 |
| Mt, Kisec (V) pt | 2,607 | Kent (T) | 4,961 |
| Coti,iand (T) | $3 \mathrm{~B}, 340$ | Patterijon (T) | 3,434 |
| Eochanan (V) | 2,168 | Pnisipstown ( T ) | 6,835 |
| Croton-on-Hudson (V) | 6,941 | Coid Springs (V) | 2,014 |
| reeenbusgh ( $T$ ) | 82,882 | Putnam Valiey ( $T$ ) | 4,286 |
| Axdsiey (V) | 4,486 | Southeast (T) | 8,403 |
| Dubka Fexry (V) | 10,076 | Brewster (V) | 1,574 |
| Eningerd (V) | 4,031 | Nelsonvilile (V) | 2,014 |
| Hastingsmon-Hudson (V) | 9,777 |  |  |
| fw? l gton ( ${ }^{\text {c }}$ | 5,686 | Rockiand County |  |
| lastytown (V) | 11, 280 | Clarkstown (T) | 51,549 |
| iarrison (T) | 20,433 | Upper Nyack (V) | 2,037 |
| Sewisboro (T) | 5,123 | Haverstraw (T) | 20,325 |
| Wt. Pieasant (T) | 37.220 | Haverstraw (V) | 7,263 |
| Briarciiff Manor (V) pt | 603 | W . Haverstraw (V) | 6,743 |
| No, Tammytown (V) | 8,600 | Orangetown ( T ) | 49,624 |
| Heasantrille (V) | 6,361 | Nyack (V) pt | 5,403 |
| We. Yernori (C) | 72.918 | Pierment (V) | 1,804 |
| ivem Gastle (T) | 16,351 | So. Nyack (V) | 3,382 |
| Mt. Kisco (V) pt | 4,334 | Ramapo (T) | 58,254 |
| Nomtir Castle (T) | 7,738 | Hisiburn (V) | 1,011 |
| North Salem (T) | 2,924 | Sloatsburg (V) | 2,805 |
| Osisining (T) | 31,455 | Sp, Vailey (V) | 12,854 |
| Briarciiff Manos (iv) pt | 6,185 | Suffern (V) | 6,117 |
| Ossining (V) | 21,241 | Stony Point ( $T$ ) | 11,409** |
| Peekskili (C) | 18,504 |  |  |
| Pourid Ridge (T) | 2,962 | Orange County |  |
| Scarsdale (T\&V) | 18,345 | Biocming Grove (T) | 6,380** |
| Somers (T) | 6,655 | Chester (T) | 3,984** |
| White Plains (C) | 50,040 | Cornwali (T) | 9,037** |
| Yonkers (Cj | 201,573 | Gosinen ( $T$ ) | 7,202** |
| Uarktown ( $T$ ) | 22,044 | Hamptonburgh (T) | 1,857** |
|  |  | Highiands ( T ) | 12,270*** |
| Ditchers County |  | Monroe (T) | 6,916** |
| Eeacon (C) | 14,382* | Newburgh (C) | 30,620*** |
| East Fishkill (T) | 7,696 | New Windscr (T) | 18,000** |
| Fishkiji (T) | 9,518 | Tuxedc (T) | 2,694*** |
| Fushkill (V) | 997 | Warwi.ck (T) | 14,176** |
| Wappinger ( $T$ ) | 12,036 | Woodbury (T) | 3,158** |
| Waopingers Fails (V) | 4,816 |  |  |

- Populaton estimate 5965
* . Preaininary Figures 1966 Cerous.
*..... Popuiation Estimate 1906

AIR RESULTS			FALLOUT SAMPLES			
Station And Type	Period Ending	Gross Beta ( $\mathrm{pc} / \mathrm{M}^{3}$ )	Station	Period Ending	$\begin{gathered} 5 \mathrm{r}-89 \\ \left(\mathrm{pc} / \mathrm{ft}^{2}\right. \end{gathered}$ /day)	Sr-90
Peekskill( Continuous Weekly)	1/7	$<\quad 1.0$	Peekskill (Continuous Weekly.	1/7	$<3.0$	4.0
	$1 / 14$	$<\quad 1.0$		1/14	$<3.0$	$<3.0$
	1/21	$<\quad 1,0$		1/21	$<3.0$	$<3.0$
	1/28	$\checkmark \quad 1.0$		1/28	$<3.0$	$<3.0$
	2/4	$<\quad 1.0$		2/4	$<3.0$	< 3.0
	2/18	$<\quad 1.0$		2/11	$<3.0$	11.0
	2/25	$<1.0$		2/18	< 3.0	$<3.0$
	$3 / 4$	$<\quad 1.0$		2/25	$<3.0$	$<3.0$
	$3 / 11$	$<\quad 1.0$		$3 / 4$	$<3.0$	$<3.0$
	3/18	$<1.0$		$3 / 11$	< 3.0	$<3.0$
	3/25	$<1.0$		3/18	< 3.0	< 3.0
	4/1	$<1.0$		3/25	$<3.0$	$<3.0$
	4/8	1.0		4/1	$<3.0$	$<3.0$
	4/15	$<1.0$		4/8	$<3.0$	$<3.0$
	4/22	$<\quad 1.0$		4/15	$<3.0$	$<3.0$
	4/29	$<1.0$		4/22	$<$ $<$	4.0 $<\quad 30$
	5/6	$<1.0$		4/29	$<3.0$	< 3.0
	5/13	$<1.0$		5/6	$<3.0$	< 3.0 $<\quad 3.0$
	5/20	$<1.0$		5/13	5.0 $<\quad 3.0$	
	$5 / 27$ $6 / 3$	No Resuit ${ }_{1.0}$		$5 / 20$ $5 / 27$	$<\quad 3.0$ $<\quad 3.0$	3
	6/10	1.0		6/3	$<3.0$	5.0
	$6 / 17$	1.0		6/10	4.0	$<3.0$
	6/24	1.0		6/17	$<3.0$	6.0
	7/1	1.0		6/24	5.0	$<3.0$
	7/8	1.0		7/1	$\leqslant 3.0$	< 3.0
	7/15	$<1.0$		$7 / 8$	No Result	No Result
	7/22	$<\quad 1.0$		7/15	$<3.0$	$\bigcirc 3.0$
	7/29	$<30$		7/22	$<3.0$	4.0
	8/5	No Resuit		7/29	No Result	NoResult
	8/12	$<1.0$		8/5	$\leqslant 3.0$	< 300
	8/19	$<\quad 1.0$		8/12.	$\therefore 3.0$	8.0
	8/26	$<\quad 1.0$		8/19	No Result	NoResult NoResult
	9/2	$<1.0$		$8 / 26$ $9 / 2$	No Resuit	NoResult
	9/23	$<\quad 1.0$		9/9	$<3.0$	< 3,0
	9/30	$<1.0$		9/10	$<3.0$	$<3.0$
	10/7	$<1.0$		9/23	$<3.0$	$<3.0$
	10/14	$<1.0$		9/30	$<3.0$	< 3.0
	10/21	$<1.0$		10/7	$<3.0$	< 3.0
	10/28	$<1.0$		10/14	$<3.0$	< 3.0
	11/4	$<1.0$		10/21	< 3,0	$<3.0$ $<\quad 30$
	11/12	$<1.0$		10/28	- 3.0	$<3,0$ $<300$
	31/18	$<1.0$		11/4	< 3.0	< 3.0
	11/24	- 1.0		11/18	< 3.0	$<3.0$
	12/2	$<1.0$		11.124	$<3.0$	4.0 $-\quad 30$
	12/9	$<1.0$		12/2	$\bigcirc \quad 3.0$	
	12/16	$<1.0$		12/16	¢ $<$ 3.0	$<3.0$ $<\quad 3.0$
	12/31	$<\quad 1.0$		12/2.3	$<3.0$	$<3.0$

# Consolidated Edison's Indian Point Reactor 

Buchanan Village, Westchester County
Table 7

WATER SAMPLES

Station	Period Endjing	Gross Beta (pc/1)
Highland Falls (Grab)	1/19	3.0
	2/15	3.0
	3/16	3.0
	4/21	3.0
	5/19	2. 0
	6/15	4.0
	7/20	8.0
	8/17	3.0
	9/14	4.0
	10/19	4.0
	11/16	3.0
	12/13	3.0
Clarkstown (Grab)	2/2	12.0
	3/22	6.0
	4/15	7.0
	6/1	13.0
	8/6	16.0
	12/10	6.0
Peekskill   (Camp Field Filter Plant)   (Grab)	1/18	4.0
	2/15	12.0
	3.15	3.0
	4/16	5.0
	5/17	4.0
	6/16	4.0
	$7 / 15$	3.0
	$8 / 17$	7.0
	9/15	13.0
	10/13	20
	11/15	-
	12/15	22.0
Peekskill   (Standard Brands) (weekly composite of continuous drip)	1/7	33.0
	1/14	30.0
	1/21	34.0
	1/28	31.0
	2/4	29.0
	2/11	34.0
	2/18	10.0
	$2 / 25$	9.0
	$3 / 4$ $3 / 11$	18.0
	3/18	18.0 2.0
	3/25	7.0
	4/1	23.0
	4/8	30,0
	4/15	16.0
	4/22	8.0

Consolidated Idison's Indian Point Reactor
Buchanan Village, Westchester County 1965

Table 7

WATER SAMPLES Cont.


Consolidated Edison's Indian Point Reactor Buchanan Village, Westchester County 1.965

Table 7

WATER SAMPLES Cont.

Station	Period Ending	Gross Beta (pc/l)
Ossining Cont.	5/13	14.0
	5/20	14.0
	5/2?	13.0
	6/3	23.0
	6/10	43.0
	6/17	51.0
	6/24	37.0
	7/1	49.0
	$7 / 8$	62.0
	7/15	42.0
	7/22	48.0
	7/29	61.0
	8/5	39.0
	8/12	56.0
	8/19	54.0
	8/26	54.0
	$9 / 2$	27.0
	9/9	59.0
	9/16	55.0
	9/23	62.0
	9/30	56.0
	10/7	43.0
	10/14	54.0
	10/21	34.0
	10/28	28.0
	11/4	32.0
	11/12	-
	11/18	-
	11/24	-
	12/2	17.0
	12/9	13.0
	12/16	19.0
	12/23	13.0
```Ossining (Indian Brook Reservoir) (Grab)```	1/18	8.0
	2/10	9.0
	3/15	8.0
	4/13	7.0
	$5 / 17$	4.0
	6/16	8.0
	$7 / 15$	6.0
	$8 / 17$	8.0
	10/13	6.0
	11/15	6.0
	12/15	6.0

page 24
Consolidated Edison's Indian Point Reactor
Buchanan Village, Westchester County
Table 7 1965

WATER SAMPLES Cont.

Station	Period Ending :	Gross Beta (pc/l)
$\begin{aligned} & \text { Bedford (Byram Lake) } \\ & \text { (Grab) } \end{aligned}$	$\therefore 1 / 18$	6.0
	2/16	6.0 ?
	3/15	8.0
	4/16	12.0
	5/17	4.0
	6/16	10.0
	7/15	7.0
	8/17	6.0
	9/16	7.0
	10/13	7.0
	11/18	10.0
	12/15	9.0
Yorktown (Croton Reservoir) (Grab)	1/18	6.0
	2/10	3.0
	3/15	2.0
	4/13	4.0
	5/17	2.0
	6/16	7.0
	7/15	6.0
	8/17	5.0
	9/16	4.0
	10/13	3.0
	11/15	2.0
	12/15	3.0

MILK SAMPLES

Station	Period Ending	Results (pc/l)				
		I-131	Sr-90	Sr-89	Ba-La-140	Cs-137
Clarkstown (Grab)	1/12	<20	14.0	<3.0	15.6	39.0
	2/16	24.9	10.0	<3.0	37.7	36.0
	4/26	< 20	-	-	43.6	57.3
	5/11	<20	8.0	<3.0	< 20	53.7
	6/7	< 20	6.0	<3.0	<20	43.0
	8/5	< 20	6.0	<3.0	<20	23.7
	10/6	< 20	11.0	<3.0	<20	<20
	12/2	-	9.0	<3.0	-	-
Bedford (Grab)	1/18	< 20	17.0	<3.0	<20	64:8
	2/10	< 20	14.0	<3.0	32.7	45.6
	3/15	- 20	19.0	< 3.0	< 20	51.3
	5/17.	31.6	28.0	3.0	< 20	41.7
	6/17	30.2	30.0	7.0	< 20	46.4
	7/15	< 20	22.0	9.0	< 20	50.9
	8/17	< 20	21.0	<3.0	<20	49.7
	9/15	< 20	19.0	<3.0	< 20	- 28.5
	10/13	< 20	27.0	<3.0	<20	26.3
	11/15	< 20	14.0	<3.0	<20	38.9
	12/15	< 20	11.0	<3.0	< 20	26.5
Mt. Pleasant (Grab)	1/18	- 20	16.0	<3.0	< 20	61.7
	2/10	< 20	10.0	3.0		53.2
	3/15	< 20	13.0	<3.0	< 20	49.8
	4/13	< 20	11.0	<3.0	59.7	64.9
	5/17	< 20	11.0	< 3.0	<20	46.1
	6/16	< 20	13.0	< 3.0	< 20	38.8
	7/15	< 20	12.0	<3.0	<20	35.3
	8/17	< 20	10.0	<3.0	<20	34.8
	9/15	< 20	7.0	<3.0	< 20	28.7
	10/13	< 20	10.		<20	25.5
	11/15	< 20	10.0	<3.0		26.9
	12/15	< 20	7.0	<3.0	< 20	27.1
Yorktown (Grab)	1/18	<20	17.0	<3.0	<20	46.4
	2/10	< 20	21.0	<3.0	< 20	46.2
	3/15	< 20	18.0	<3.0	<20 :	58.0
	4/16	< 20	23.0	<3.0	21.0	70.1
	$5 / 17$	< 20	21.0	$<$ 5.0 5	< 20.	63.7
	$6 / 14$	<20	18.0	5.0 <300	< 20	48.0 52.0
	$7 / 15$	< 20	26.0	<3.0	< 20	52.0
	8/17	< 20	16.0	<3.0	< 20	49.9
	9/15	< 20	<3.0	18.0 -3.0	< 20	38.0
	$10 / 13$ $11 / 15$	< 20	18.0 9.0	<3.0 <3.0	<20 <20	53.9 31.0
	12/15	< 20	19.0	<3.0	<20	40.5

Consolidated Edison's Indian Point Reactor Buchanan Village, Westchester County

Table 9
1965

Station	Date	$\begin{aligned} & \text { Cosmic Portion } \\ & (\mathrm{mr} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { Total } \\ & (\mu r / h r) \end{aligned}$
2	10/14	3.4	9.6
2	10/14	3.4	9.9
3	10/13	3.4	9.8
4	10/13	3.4	10.3
5	10/13	3.4	9.9
6	10/14	3.4	10.1
7	10/14	3.4	8.9
8	10/14	3.4	10.4
9	10/13	3.4	10.2
10	10/13	3.4	10.0
11	10/13	3.4	9.9
12	10/14	3.4	11.1
13	10/14	3.4	9.7
14	10/14.	3.5	9.1
15	10/13	3.7 .	11.0
16	10/14	3.4	9.9
17	10/14	3.5	10.1
18	10/14	3.4	10.4
19	10/14	3.5	9.1

Consolidated Edison＇s Indian Point Reactor

 Buchanan Village，Westchester County 1965Summary Of Environmental Discharges From The Indian Point Reactor

	Total Activity Released		Volume Of Water Or Air Needed For Dilution	
	Water＊（curies）	Air（curies）	Water $\left(2 \times 10^{-6} \mu \mathrm{c} / \mathrm{ml}(\mathrm{gal} / \mathrm{yr})\right.$	Air $\left(3 \times 10^{-10} \mu \mathrm{c} / \mathrm{ml}\right)\left(\mathrm{ft}^{3} / \mathrm{yr}\right)$
1962	0.131	None	1.72×10^{7}	None
1963	0.164	0.0072	2.17×10^{7}	8.46×10^{8}
1964	11.03	13.180	1.46×10^{9}	1.6×10^{12}
1965	26.31	33.048	3.48×10^{9}	3.9×10^{12}

＊Exclusive of Tritium。
The total amount of Tritium released to the Hudson River in $1965=455.4$ curies or $7.6 \times 10^{-7} \mu \mathrm{c} / \mathrm{ml}$ based upon normal rate of cooling water discharge or $1.59 \times 10^{11} \mathrm{gal} / \mathrm{yr}$ ． $=3 \times 10^{-3} \mathrm{The} \operatorname{c} / \mathrm{ml}$ ．

Normal rate of cooling water flow is $435,000,000$ gallons per day（ 1.59×10^{11} gal／yr）into the Hudson River．

Normal atmospheric discharge from plant stack is 300,000 cubic feet per minute （ $1.6 \times 10^{11} \mathrm{ft}^{3} / \mathrm{yr}$ ）。A two year site survey of meteorological conditions by New York University indicates a further dilution factor of 3,000 。

Explanation of Symbols and Abbreviations

c	＝curie $=3.7 \times 10^{10}$ disintegrations per second．	CC	＝Corrosion Control．
pc	```= picocurie = 1 }\times1\mp@subsup{0}{}{-12}\mathrm{ curie = 2.22 disintegrations per minute.```	de Cl_{2}	$=$ De－chlorination．
$\begin{aligned} & \text { uc or } \\ & \mu \mathrm{c} \end{aligned}$	$=$ microcurie $=1 \times 10^{-6}$ curie 。	Diam E	＝Diatomaceous Earth Filtration．
M^{3}	$=$ cubic meter $=35.31$ cubic feet．	F	＝Fluoridation。
1	$=1$ iter $=1.06$ quarts	Nat Filt	＝Natural Filtration。
ml	$=$ milliliter $=1 \times 10^{-3}$ liter．	$\mathrm{P} \& \mathrm{PCl}_{2}$	$=$ Pre \＆Post Chlorination。
9	＝gram。	PSF	＝Pressure Sand
kg	$=$ kilogram $=1 \times 10^{3}$ grams ．	RSF	Filtration．${ }^{\text {a }}$（ Rapid Sand Filtration．
＜	$=$ less than．	SSF	＝Slow Sand Filtration．
		Soft	＝Softening．

Stewort AFB

West. Co, Alirport

Grasslands

La Guardio

ATMOSPHERIC NUCLEAR DETONATIONS

Applicability

Applies to the release of radioactive liquids and gases from the plant.

Objective

To define the conditions for release of radioactive wastes to the circulating water discharge and to the plant vent to assure that any radioactive material released is kept as low as practicable and, in any event within the limits of 10 CFR 20 .

Specification

A. General

1. It is expected that releases of radioactive material in effluents will be kept at small fractions of the limits spectfied in 20.106 of 10CFR20. At the same time the licensee is permitted the flexibility of operation, compatible with considerations of health and safety, to assure that the Public is provided a dependable source of power even under unusual operating conditions which may temporarily result-in releases higher than such small fractions, but still within limits specified in 20.106 of locFr20. It is expected that in using this operational flexibility under unusual operating conditions the licensee will exert his best efforts to keep levels of radioactive material in effluents as low as practicable.
2. Plant equipment shall be used in conjuction with developed operating procedures to maintain surveillance of radioactive gaseous and liquid effluents produced during normal reactor operations and expected operational occurences in an effort to maintain radioactive releases to unrestricted areas as low as practicable.
3. A report shall be submitted to the Commission at the end of each six-months' period of operation as required under Specification
6.6.4. If quantities of radioactive material released during the reporting period are unusual for normal reactor operations, including expected operational occurences, the report shall cover this specifically. On the basis of such reports and any additional information the Commission may obtain from the licensee or others, the Commission may from time to time require the licensee to take such action as the Commission deems appropriate.
B. Liquid Effluents
4. The maximum instantaneous release rate of radioactive liquid effluents from the site shall be such that the concentration of radionuclides in the circulating water discharge does not exceed the limits specified in 10CFR20, Appendix B, for unrestricted areas.
5. Prior to release of radioactive effluents, a sample shall be taken, and analyzed to provide the data necessary to assure compliance with B.(1) above.
6. During release of radioactive liquid effluents, at least one condenser circulating water pump shall be in operation.
7. During release of radioactive liquid effluents, the gross activity liquid discharge monitor shall be in operation, except that the monitor may be out-of-service for 48 hours, provided that a sample shall be taken during release of each batch of discharge line effluent and analyzed.

C. Gaseous Effluents

1. The maximum instantaneous release rate of gaseous effluents for the site shall be limited as follows:

$$
\left(\frac{X}{Q}\right)_{1} \sum_{i} \frac{Q_{1 i}}{(M P C)_{i}}+\left(\frac{X}{Q}\right)_{2} \sum_{i} \frac{Q_{2 i}}{(M P C)_{i}} \leq 1.0
$$

where:

i refers to any radiaisotope
$Q_{1 i}$ is the release rate ($\mathrm{Ci} / \mathrm{sec}$) of any radioisotope 1 from Unit No. 1
Q_{21} is the release rate ($\mathrm{Ci} / \mathrm{sec}$) of any radiolsotope 1 from Unit No. 2
(MPC) $_{i}$ in units of $\mu \mathrm{Cl} / \mathrm{cc}$ as listed in Column 1, Table II of Appendix B 10CFR20, except that for isotopes of iodine and particulates with half lives greater than 8 days, the values of (MPC) ${ }_{i}$ shall be reduced by a factor of 700 .
$\left(\frac{X}{Q}\right)_{1}$ and $\left(\frac{X}{Q}\right)_{2}$ are the meterological dispersion coefficients (Sec/m ${ }^{3}$) for Units No. 1 and No. 2 respectively at the site releasing the effluent from the plant vent, air ejector discharge, and, blowdown tank vent when applicable.
$\left(\frac{X}{Q}\right)_{1}=5.88 \times 10^{-7} \mathrm{sec} / \mathrm{m}^{3}$
$\left(\frac{X}{Q}\right)_{2}=2.5 \times 10^{-5} \mathrm{sec} / \mathrm{m}^{3}$
2. Prior to release of gaseous effluents, the contents of the gas holdup tank shall be sampled and analyzed to provide the necessary data to assure compliance with Specification 3.9.C.1 above.
3. During release of gaseous effluent to the plant vent, the following conditions shall be met:
a. At least one auxiliary building exhaust fan shall be in operation.
b. The plant vent monitor shall be in operation and the vent halogen particulate monitor shall be in operation except that the plant vent monitor may be out-of-service for 48 hours. Should the vent monitor fail immediate action to stop gas decay tank release will be made.
4. The inventory of noble gases in any gas tank shall not exceed 16,500 curies of equivalent Xe-133.
5. Gaseous waste in the gas decay tank shall have as a mininum 20 days of decay time except for low radioactivity gaseous waste resulting from purge and fill operations associated with refueling and reactor startup.
6. During power operation the air ejector discharge monitor may be inoperable for 48 hours. When the monitor is inoperable samples shall be taken from the air ejector discharge and analyzed for gross activity on a daily basis, except when there is indication of primary to secondary leakage the sample shall be taken and analyzed for gross activity once per shift.
7. During the first indication of primary to secondary leakage, a determination of the partition factor for the blowdown tank shall be made. Whenever there is indication of primary to secondary leakage and any steam generator is being blown down, the blowdown line monitor shall be operable, except that it may be inoperable for 48 hours provided samples shall be taken once per shift of the blowdown effluent and analyzed for gross activity.

Basis

Liquid wastes from the radioactive Waste Disposal System are diluted in the Circulating Water System discharge prior to release to the river. ${ }^{(1)}$ With all six pumps operating, the rated capacity of the Circulating Water System is $840,000 \mathrm{gpm}$. Loss os one circulating water pump reduces the nominal flow rate by about 20%. The actual circulating water flow under various operating conditions will be calculated from the head differential across the pumps and the manufacturer's head-capacity curves. The concentrations in the circulating water discharge will be calculated from the measured concentration in the waste condensate tank, the flow rate of the waste condensate pumps, and the flow in the Circulating Water System.

It is expected that the Plant Operating Procedures will allow releases of radioactive material and effluents to be small fractions of the limits specified In $10 C F R 20$ and it is expected that the actual liquid release rates will result in a concentration in the circulating water discharge of less than $1 / 10$ MPC. Thus, discharge of liquid wastes at the specified concentrations will not result in significant exposure to members of the Public as a result of consumption of drinking water from the river, even if the effects of potable water treatment systems on reducing radioactive concentration of the water supply is neglected.

Buildup of long-lived radioisotopes in the river and reconcentration by aquatic organisms in the human food chain has also been considered. Using conservatively high estimates of reconcentration of radioisotopes in fish and of human consumption of fish, it is concluded that the release of liquid wastes may equal the lOCFR20 guidelines without causing any identificable problems. While some species of rooted vegetation, and filter feeding molluscs, concentrate some of the radioactive components of a reactor effluent in the Hudson, none of these species are used for human or animal consumption. Fish, on the other hand, while possible sources of food, do not demonstrate accumulation of the nuclides in question. For both maganese and cobalt there is a natural barrier to absorption in the gut of fish which restricts their uptake of these elements. In fact, much of the reported concentration of the radio elements may be located only in undigested gut residues rather than in the fish flesh which may be consumed. Hence, the potential contamination of diet from this source is miniscule. (4) This will be continually monitored by the environmental surveillance program (as defined in Specification 4.10). However, because of the flow in the Hudson River ${ }^{(2)}$, it is not anticipated that any appreciable reconcentration will occur.

Prior to release to the atmosphere, gaseous wastes from the radioactive Waste Disposal System are mixed in the plant vent with the flow from at least one of two auxiliary building exhaust fans. Further dilution then occurs in the atmosphere.

The formula prescribed in Specification 3.9.C.1 takes into account combined releases from the site, and assures that at any point on or beyond the site boundary the requirements of $10 C F R 20$ will be satisfied. Atmospheric dilution
is taken into account with the x / Q^{\prime} s for Indian Point Units No. 1 and No. 2 being based on the worst combination of sector yearly average meteorology and sector distance to the site boundary. For Indian Point Unit No. 1 alone, the value of x / Q of $5.88 \times 10^{-7} \mathrm{Sec} / \mathrm{m}^{3}$ would result in just achieving 10CFR20 limits at the site boundary. For Indian Point Unit No. 2 alone, the value of x / Q of $2.5 \times 10^{-5} \mathrm{sec} / \mathrm{m}^{3}$ would result in just achieving 10CFR20 limits at the site boundary. The combined formula in Specification 3.9.C.1, however, would require the release rates for any radioisotope, $Q_{1 i}$ and $Q_{2 i}$, to be limited for consideration of joint releases being limited to $10 C F R 20$ from the site.

Restricting the maximum inventory of noble gases in any gas or liquid tank to 16,500 curies equivalent $\mathrm{Xe}-133$ (or 15% of the total maximum Reactor Coolant System inventory), will result in a total off-site exposure of less than 0.5 rem for complete release of the noble gas activity stored in the tank. (3)

References

(1) FSAR Section 10.2.4
(2) FSAR Section 2.5
(3) FSAR Section 14.2.3
(4) Development of a biological monitoring system and pesticide residues in the lower Hudson River. - M. Eisenbud and G. P. Howells - Institute of Environmental Medicine New York University Medical Center - October 10, 1969.

Pifth Annual Health Physics Society Mid-Year Topical Symposium

Health Physics Aspects of Nuclear Facility Siting Idaho Falls, November 1970

MANHADE FADTONUCLIDES IN IUE HUDSON RIVER ESTUARY

Jack W. Lentsch, MeDonald E. Wremn, Theodore J. Kneip Herril Eisenbuà

Institute of Envirommental Medicine New York University Medical Center

New York, New York

MANAADE RADIONUCLIDES IN THE HUDSON RIVER ESTUARY

Jack W. Lentsch, HcDonala E. Wrem, Theodore J. Kneip, • Herril Eisenbud

Institute of Environmental Medicine New York University Medical Center New York, New York

ABSTRACT

As part of a larce scale ecological rescarch program, in procress since 1964, ve nave examined the identity, abundance, and distributions of natural, fallout, and reactor produced radionuclides in the Hudson River estuarjne. environment. The annual rates of introduction of the most commonly detected radionuclides have been estimated for the purpose of placing the importance of the various artificial and natural sources in perspective, and explaining the measured distributions in space and time.

Radionuclides investigated include isotopes of cesium, cobalt, and manganese. The Cs-l.37 content of fish is in part related to the cumulative deposition in sediments. However, cesium of recent origin appears to be more biologically available. Co-60 accumulates in estuarine sediments with limited, in any, transfer back into aquatic food chains. mon-54 deposits by sedimentation in the freshwater merinns of the estuery, but leaches from sediments during seasonal salt water intrusions. Sedimentary build-up of $\operatorname{Fin-54}$ is limited by its 303 day half-life. The maintenance of constant stable manganese concentrations by fish duxing periods of highly variable aqueous manganese concentrations is indicative of regulated uptake and loss of this element. hecordingly, the use of concentration factors to predict radionuclide concentrations in fish is not strictly appropriate for manganese. The finding that most radionuclides are at least partially associated with sedimentis further limits the applicability of the concentration factor approach, particularly for cesium.

Rooted aquatic plants concentrate all of the radionuciides measured except tritiun and are useful stationary intecrators of aqueous radioactivity levels.

Whe most mpontant radionarlides with respect to exposure of mon fron reactor releases empar to be Cs-137 and cs-13l, and the entioal pathet Engestion of fish. fhe frection of
 Ft apeara thot presont rewatatone rostricting the conconbratone of bedionuclides in cooline ratex effluents are mowe than adomate for thes equatic emvimoment.

INTRODUCTION

The Hudson River Estuary, a major body of water draining sonthwardly through New York State, has been the recipient of radioactive fallout from nuclear weapons tests and lowlevel discharges of radioactivity from a pressurized water nuclear power plant, Indian Point Unit 1 . Mcasurements of the types and quantities of radionuclides from these mamade sources, torether with measurements of radionucjides prosent naturally in the river system, have been underway since 1964. Results are used to ascertain the relative and absolute importance of the radionuclides with respect to human radjation exposure. Samples measured routinely have included water, bottom sediment, and the more abundant biological organisms.

The main region of the river selected for the study is located from HRM 30 (Hudson liver mileage measured north from the battery in New York Harbors) to HRM 50 and is centered about the Indian Point location at Hm 42 where the Indian point Unit 1 reactor has been in operation since 2962. In addjtion to Indian point Unit 1 (6.5 mHt), two reactors are under construction and two additional reactors are in the planing stage. The total generating capacity of all five reactors upon completion will be le, 984 fitt, only slightily less than the total of all commercial u. S. reactors prosently in operation.

Whe Hudson River has an abundant fish population and is fisher monemately by looal imbattanto above the heavaly pujatud Waters ned. New Yusk Ciby, mosity for anadromous species, during the spring and summer months. The water quality of the rivor has dechined over the years, but substantial jeductions of municipal and industrial polintant sources nill be achicved by about 1976 and should help restore the river. Such a restoration of water quality kould attract many mone of the $10 \frac{3}{2}$ million locel ambabiants to the hudsom for fashing, swimming, boating, and enjoyment of the river's natural scenic beauty.

Assumance of the safe operation of future multiple muctear racilities by adherence to release standards, and mantenance of well-desienod monturomemorrams serve to minimize hazards to local inhobitants and, bhocob, avoid any restrictions placed on river usage from radioactive contamination.

Hany of tho radionuctides prewont in weapoms faltout ate alsu prosent in diouid reactor wastes. Acoordingy, wodiocoological processon obsemved for radiomelides ferm eitua sounce can be applice in assosbing the potontiad impact of
 extatme radiomuchibo Iovels provide finet-band infomation
on the types, behaviors, and relative importance of those radionuclides anticipated from nuclear power expansion. Other approaches which can be taken to assess future reactor releases can be based upon stable element data or experimentally determined values of concentration factors. Results from this study indicate, however, that these latter methods are of limited value when applied to waters such as the Hudson having highly variable conditions of salinity and stable element composition. The use of concentration factors is useful and strictly appropriate only when the content of stable elements or radionuclides in biota is proportional to a steady state content in the water. Whenever biologically available sedimentary deposits exist, this condition is not necessarily fulfilled, and the use of. concentration factors alone may not produce a reasonable estimate of reconcentration.

SOURCES OF RADIOACTIVITY IN THE HUDSON RIVER
Radionuclides occur in the Hudson from natural sources, weapons fallout, and aqueous releases at nuclear facilities along the river. Amongst the naturally occurring radionuclides, $K-40$, $\mathrm{Ra}-226$, and Ra-228 are most abundant. Potiassium, a major constituent of seawater, accounts for elevated $\mathrm{K}-40$ levels in water from the more brackish areas of the system nearest the Atlantic, whereas potassium leached from terrestrial minerals contributes lesser amounts of K-40 to the freshwater areas. In the region of highest salinity near the mouth of the estuary, $K-40$ concentrations
 are found in the freshwater regions. Seasonal fluctuations in freshwater flows, rates of evaporation, and tidal influences result in seasonally variable $K-40$ concentrations at any given location. Longitudinal salinity profiles as measured along the length of the estuary during the summer of 1959 ${ }^{1}$ indicate that 100-200 Curies of $\mathrm{K}-40$ existed in the estuary at that time.

Both Ra-226 and Ra-228 are carried into the river as natural constituents of suspended material, or in soluble forms from the leaching of soils. From analysis of water one can estimate that about 0.5 Curies of Ra-226 and 0.5 Curies of Ra-228 in the form of suspended material, and from one to five Curies of dissolved Ra-226 and Ra-228, respectively, are introduced into the estuary each year.

The periodic testing of nuclear weapons in the atmosphere has contributed readily detectable quantities of artjficial radionuclides to the Hudson. The intermittancy of such tests, and the paucity of fallout deposition measurements, together with uncertainties about the contribution of terrestrial runoff to surface water radioactivity, complicate estimation of the amount of radioactivity contributed to the Hudson by fallout. However, an upper and lower bound to
such fallout contributions can be arrived at; by utilizing available fallout data and assumine deposjtion ejther on the river surface alone or on the entire drainage basin. Table 1 shows the results of such a calculation for the fission products $\operatorname{Sr}-90, \mathrm{Cs}-137$, and $\mathrm{Ce}-144$, and the activation product Mn-54, as well as for tritium. Many other radionuclides, most notably Zr-Nb-95, I-131, Ce-141, Pu-103, Ru-106, Sb-125, Ba-140, La-140, Co-60, $\mathrm{Zn}-65$, and Fe-55, have been similarly introduced into the Hudson River from weapons fallout.

The only major nuclear facility discharging low-level radioactive waste directly into the Hudson River is the Indian Point Unit 1 reactor. Knolls Atomic Power Laboratory in Schenectady, New York, contributes such wastes indirectily by way of discharge into the Mohawk River, a northern tributary of the Hudson. Measurements indicate, however, that in spite of measurable radionuclide levels in the Mohawk downstream from K.A.P.L. ${ }^{5}$, at the point of discharge into the Hudson these radionuclides are not measurable above natural and rallout radioactivity levels. ${ }^{6}$

At Indian Point low-level releases are first diluted by a nomal condenser water flow of 300,000 gpm prior to release into the Hudson. Priop to the time that individual isotope analyses were performed, the percentages of $14 P C, 10-7 \mu \mathrm{Ci} / \mathrm{ml}$, ror the unidentified mixture during 1962, 1963, 1964, 1.965 , and 1966 were $0.22,0.26,22,43$, and 70 respectively, as summarized by the USPHS. ${ }^{3}$ Detailed radiochenicaj analyses which were jnitiated in mid-1966 revealed that the MPC for the mixture released wes much largor than lotipeitme. rihe percentages of MPC during the following years of 1967, 1968, and 1.969 were $1.6,1.7$, and 4.1 respectively. ${ }^{6}$

The average monthly composition of undiluted aqueous radioactive wastes at Indian Point during 1969 is indicated in Table 2. ${ }^{\circ}$ The relative magnitudes or the undiluted fractional MPC's for the individual nuclides, i.e., C $\mathrm{C}_{\mathrm{j}} / \mathrm{MPC}_{i}$, indicate the relative inportance of each radionuclide vijth respect to radiation cxposure from drinking of water. The sum of the entries uncier $C_{j} x$ MPCi/ECi is the MPC for the identificd mixture, $8 \times 10^{-5} \mu \mathrm{Ci} / \mathrm{ml}$ in 1963 and 4.6×10^{-5} $\mu \mathrm{Ci} / \mathrm{mJ}$. in 1969. The quantities of Sr-90, Cs-137, Mn-54, Co-60, and tritium released at Indian Point on the year of maximum discharge ale show in Table $3 .{ }^{8}$

Overlooking differences in the manner or introduction of natural, fallout, and reactor-meleasea rabionaclides, one may compare tho quantities of these radionuclides which have been introduced ammally into the Hudson. lit is seen from. fable 3 that fallout on the riven surface contributed approximately the same quantities of ce-137, in-54, and tritium
during the peak year of 1963 as did Indian Point Unit 1 on the year of maximum discharee, while 400 times more Sr-90 fell out on the river surface in 1963 than the maximum annual discharge at Indian Point. The leaching of terrestrial fallout deposits could result in up to 200-fold greater introduction rates of fallout nuclides than surface deposition on the river alone, as indicated in rable 3. The ratio of the introuduction rate or each nuclide to its MPC_{W} (Table 3) is proportional to the dose contimuted by each nuclide if only the drinkire of water is considered. ns seen in Table 3 , this dose-related ratio is more than loo fold hicher for the natural radium isotopes than for any reactorproducd nuclide, and is about $10-$ fold higher for radium isotopes than for $S=-90$ falling out on the river surface. In addition to placing the various sources in perspective, the rates of radionaclide introduction are uscful in interpreting obsemved radioactivity levels, and assessing the consequences of future introducitions of similar radionuclides.

RADIOACMIVITY MEASUREMENJS

Our measurements were designed to determine the identity and spatial distribution of the radionuctides present in the physical and biological components of the hudson River ecosystem, and to assess the resultant temporal changes associated with vamiale radionuclide imputs into the river. from 1964-1967, samples were collected only between late sprime and autumn. Our primary objective then was to survey a thres diverstity of sempoe trom as dareo an arca ot tho river as possible (inom HPM 20 to H1m 100). Excopt for the activation products $\operatorname{mon} 54$ and co-60 in the immediate vicinity of Indian Point, located at HPM 42 , the concentration of radionuclides in samples of water, biota, and sedjments throughout the river was quite uniform, prompting us to concentrate our efforts in the following years on a region near Indian point, wile still majntaining several upstrean stations for control purposes.

Gammaray spectroscopy has been the principal method of dadionuclide analysis. Spectral infomation obecined with a multichannel analyser coupled to a $\|^{\prime \prime} x$ " hat vell crystal shielded by a $4^{\prime \prime}$ mercury incasement is processed by a computerized linear weighted least squares anajysis described elsememe. ${ }^{9}$ A Iimited number of samples have been periodically analyzed radiochemically for Sp-90 (Enfh solvent oxtraction and beta counting of y-90), "0 Fe-55 (solvent oxtraction and electroplatimg) il and tritium (distillation electrozvic envichment). ?

Amual averaco concentrations of the gama emititers, co-137, Co-60, and m-54, visoh wene measured in samples of botum sodimom, natur, whe fish; and rootod aquatic plants
collected near Indian Point are shown in Figures 1,2 and 3. Samples of fish, plants, mud, and water used in computing the annual averages were collected at the same sites and with approximately the same frequency in the different years. Similar species of fish and plants were analyzed each year. Values given for radionuclide concentrations in water are for the dissolved fraction of grab samples. Water samples varied in volume from 6 to 40 liters, and were collected either on a biweekly or monthly basis. Radioactivity values measured in water are a better indication of the slowly varying fallout contributions than the variable releases from Indian Point. Bottom sediment radioactivities pertain to dredgings of the upper $10-12 \mathrm{~cm}$ of chanmel and near shore areas known to have sediments of fine textures, and for this reason probably represent samples of higher activity than would samples collected at random locations including sandy as well as silty-clayey bottoms.

Available data on annual fallout deposition and reactor releases of Cs-137, $\mathrm{Hn}-54$, and $\mathrm{Co}-60$ are shown in Figure I, 2, and 3 for comparison with the resultant levels of these nuclides appearing in river samples.

From Figure 1 it is seen that during a period of decreasing deposition of Cs-l37 from weapons fallout, 1964-1966, the concentration of Cs-137 dissolved in Hudson River water decreased approximately an order of magnitude. During this same period of time, the concentrations of Cs-137 in bottom sediments remained almost constant whilp levels in fish declined only slightly: From measurements of fish at upstream control stations (Table 5), it appears that weapons fallout was the source of Cs-l37 at Indian Point during 1964, 1965, and 1966. Since the Cs-137 content of fish did not parallel the order of magnitude drop of Cs-137 dissolved in water, but instead followed more closely the Cs-137 concentrations in bottom sediments, it appears that the fish are indirectly obtaining most of their Cs-137 directly from river sediments or from food chains dependent on the bottom sediments. Gustafson studyjng freshwater lakes also came to the conclusion that bottom sediments act as a reservoir of Cs-137 which can be assimilated by fish. ${ }^{13}$ Three-fold higher Cs-137 concentrations were found in bottom-feeding fish species such as carp, suckers, and catfish than in open water feeders such as white perch, bass, and sunfish. This supports our hypothesis that part of the Cs-137 in river sediments is biolocically available.

Recent sampling has shown the Cs-137 content of suspended sediments ($>0.45 \mu$) is greater than for bottom sediment. For instance, in 1969 we found suspended sediments at upstream stations contained $3900 \mathrm{pCi} / \mathrm{kg}$ dry, while bottom sedimentis from similar locations averaged $2200 \mathrm{pCi} / \mathrm{kg}$ dry. This may
reflect the differing particle size distributions of suspended and bottom sediments. In 1970 the Cs-l37 content of plankton ranged from $65-200 \mathrm{pCi} / \mathrm{kg}$ wet or $1300-2000$ $\mathrm{pCi} / \mathrm{kg}$ dry. Thus, a hypothetical food chain for a pelagịc feeding fish could be: resuspension of bottom sediments, uptake of suspended material by plankton, and subsequent ingestion of plankton by fish. A shorter food chain such as direct ingestion of bottom organisms or other bottom detritus relatively high in Cs- 137 might account for the approximate three-fold higher content of Cs-l37 in bottom feeders.

During the later years of this study, 1966-1970, Cs-137 concentrations at upriver control stations declined below detectability in water ($<.02-.03 \mathrm{pCi} / \mathrm{l}$), but remained constant in bottom sediments. As shown in Table 5, the Cs-137 content of upstream fish decreased with an approximate 2 year half-life reaching $16 \mathrm{pCi} / \mathrm{kg}$ in 1970. Similar observations were made for Cs-137 concentrations in samples from the vicinity of Indian Point, except during 1969 and 1970 when the Cs-1. 37 content of fish from Indian Point was approximately twice the Cs-l37 content of upstream fish (Table 5). This was presumably the result of a lareer than usual release of Cs-l37 at Indian Point during 1969 and 1970.

Co-60, one of the more abundant activation products in reactor wastes (Table 2) has been found only infrequently in upriver control samples, presumably as a result of its limited production in nuclear weapons tests. The concentrations observed in íish and vaticr at indian poini are onsy slightly above our detection limits of 4 and $0.04 \mathrm{pCi} / \mathrm{kg}$ respectively. The ability of aquatic plants to concentrate cobalt has been shown in various laboratory uptake experiments ${ }^{14}$ and the concentration factor according to the usual definition was found to range from 10^{4} to 10^{5} for the plant species included in our measurements, Potamogeton, hyriophyllum and Vallisneria. As a result, aquatic plants reflect Co-60 concentrations in water that could not otherwise be easily measured.

Except for a five-fold decrease in co-60 concentrations in aquatic plants from 1964 to 1965 , the annual levels of this radionuclide in aquatic plants from the Indian Point vicinity has remained reasonably constant from 1965 through 1970. This is in agreement with a fairly constant reactor release of co-60 during the same time period.

Noterorthy amongst the Co-60 measurements is the apparent accumulation of Co-60 in botiom sediments wich has taken place through 1968. The declinc of sedimentary Co-60 in 1969 may be an indication of the attaimment of equilibria between introduction and removal rates.

Weapons fallout has contributed appreciable quantities of the activation product $\mathrm{Mn}-54$ to the Hudson both during and immediately after the period of peak thermonuclear testing (Table 1 and Figure 3). Releases of this nuclide from .. Indian Point Unit l have contributed larger quantities to the Hudson on a yearly basis, however, than fallout on the river surface alone. This has accounted for Mn-54 levels in biota and sediment at Indian Point (Figure 3) in excess of those found at upstream locations. During 1965 and 1966, for example, two-fold higher concentrations of Mn-54 were found in fish (Table 5) and bottom sediments near Indian Point, as compared to upstream samples, while aquatic plants from Indian Point showed twenty-fold higher Mn-54 concentrations. Since bottom sediments and plants were not collected upstream in 1964, and isotopic analyses of reactor wastes were not performed until 1966, it is not possible to assign the origin of the higher levels occurring in 1964 to either fallout or reactor operations. Measurements of water, bottom sediments, fish and aquatic plants on subsequent years correlate fairly well with available annual Mn-54 release data at Indian Point. Owing to its 303 day half-life, continued accumulation of Mn-54 in sediments would not be expected after several years of reasonably constant release, and in fact such accumulations have not. been found.

Detailed studies of the radioecology of manganese have been feasible due to the presence of an identifiable source of Mn-54 in the Hudson at Indian Point, and measurable levels existing in various phases of the Hudson near Indian Point. ${ }^{15}$ Or musi interest to date has been a rather unusuai observation relating to the effect of periodic saltwater intrusion into a previously freshwater area on the chemistry of stable manganese. We have found that unexpectedly, such saltwater intrusions result in a pronounced elevation of manganese concentrations dissolved in water, as shown in Figure 4 for the summer and fall of 1969. As a result of the dissolved manganese depression in the latter part of August when salinity decreased due to an unusually large but transient freshwater discharge, the concentration of stable manganese in the aquatic plant Potamogeton fell by a factor of about 5 (Figure 5). When seawater intrusion reached Indian Point in mid-September, dissolved stable manganese concentrations resumed the previously elevated values, and the manganese content of aquatic plants increased in like fashion, reflecting the manganese content of the surrounding water. Both the concentration, pCi/kg wet, and the speciric activity, $\mathrm{pCi} / \mathrm{mg} \mathrm{Mn}$, of $\mathrm{Hin}-54$ in these same plant samples, together with biweekly continuous measurements of the Mn-54 concentrations in reactor waste provide some insight into the mechanism accounting for manganese elevation in Hudson water during periods of salt water intrusion. From Figure 4 it is seen that a sustained release of Mn-54 occurring at Indian

Point throughout most of August was followed by a reduction of more than an order of magnjitude from late August through mid-November. As a result, both the Mn-54 concentration and specific activity in aquatic plants dropped from Jate August through early September. However, in mid-September the Mn-54 concentration in aquatic plants increased rapidly without a corresponding increase in release at Indian Point Unit 1 , while the Mn-54 specific activity slightly decreased. This observation can only imply that stable manganese and $\operatorname{Mn}-54$ were both introduced from a similar source which was not the reactor directly. Upstream control samples indicated no fallout input of $\mathrm{Mn}-54$. We have, therefore, concluded that the influx of seawater into a previously freshwater area resulted in the mobilization of both stable manganese and Mn-54 in bottom sediments. That manganese can be leached from bottom sediments by seawater has previously been shown by simulated leaching studies of Columbia River sediments. ${ }^{16}$

Mn-54 specific activities in fish at Indian Point during 1969 followed quite closely the specific activities measured for aquatic plants and indicate that no dilution of $\mathrm{Mn}-54$ specific activities by stable manganese occurs between uptake by plants and uptake by fish. Stable manganese concentrations remained quite constant in fish during the observed period of rapidiy changing manganese concentration in water. This implies a manganese concentration factor for fish that is inversely related to the stable manganese concentration in water. Of course, if water is not the direct source of manfanese in fish, then the concent of concentration factor has Iimited applicability.

Samples of water, sediment, fish, aquatic plants, and crabs were analyzed for Sr-90 during 1964, 1965, and 1966 (Table 4). The concentration of $\mathrm{Sr}-90$ in water decreased two-fold during this time period, while the fallout rate of $\mathrm{Sr}-90$ decreased by a factor of about 6 during the same time period (Table 1). The near absence of Sr--90 in reactor wastes (Table 2 and Table 3) together with the decreasing fallout of this nuclide and the limited remaining sedimentary. reservoir permit us to conclude that $\mathrm{Sr}-90$ will not be among the more important radionuclides in this estuarine environment in the years to come.

Sizeable quantities of tritium have been introduced annually into the Hudson by weapons fallout and lesser amounts from reactor releases (Table land Table 3). As a result predominantly of the fallout contribution, levels of tritium in Hudson River waters durine. 1967 were $1800-1900 \mathrm{pCi} / 1$, almost identical to tritium levels in surrounding freshwater lakes, $1900 \mathrm{pCi} / \mathrm{l}$, and northern Hudson twibutaries, 2000 pCi/l. ${ }^{12}$ Cessation of atmospheric weapons testing resulted in a dectinc of concentrations of tritium jin surface waters, and during the early months of 1970 Hudson River water
averaged approximately $500 \mathrm{pCi} / \mathrm{l}$, with no observable increase in water near Indian Point as compared to remote upstream locations, ${ }^{17}$

Fe-55, one of the more abundant weapons fallout activation products having half-lives greater than about one year, has been periodically measured in Hudson River samples as part of a broader program to determine dietary sources of Fe-55 in man. ${ }^{11}$ Durine 1968 and $1969 \mathrm{Fe}-55$ specific activities ranging from 1.5 to $3.8 \mathrm{pCi} / \mathrm{mg}$ Fe were measured in Hudson River fish and aquatic plants. ${ }^{18}$ Expressed in terms of wet weight concentrations, these specjfic activities translate to 2000-3000 pCi/kg for aquatic plants and 200-250 $\mathrm{pCi} / \mathrm{kg}$ for fish (white perch and sunfish). These activities are low compared to those reported in Pacific tuna during 1966 of $955 \mathrm{pCi} / \mathrm{mg}$ Fe. ${ }^{11}$ A single analysis of primary coolant at Indian Point Unit 1 indicatcd that $F e-55$ and Mn-54 were present in an approximate 1 to 6 ratio of activities, ${ }^{18}$ while deposition data for fallout of recent origin shows a $\mathrm{Fe}-55 / \mathrm{Mn}-54$ ratio of about 2 to $1 .{ }^{3}$ The predominance of $F e-55$ from fallout as compared to reactor releases accounts for the rather uniform specific activities observed throughout the Hudson.

Among the many other gamma-emitting radionuclides which are present in weapons fallout, the only ones detected with sufficient frequency to warrant mention here are the fission products $\mathrm{Ce}-144, \mathrm{Zr}-\mathrm{Nb}-95$, and Ru-103. None of these radionuclides have been identified in liauid reactor wastes. The short physical hali-lives of the latter two nuclides, 65 days and 40 days respectively, generally result in substantial measurement errors for samples not processed soon after collection: The low energy emissions from Ce-J. 44 cannot be accurately quantitated in the majority of bulk samples. However, as an indication of the present levels of these three radionuclides, measurements made during 1969 are shown in Table 6 for samples from the vicinity of Indian Point and samples from our upstream control stations. Interestingly, significantly higher levels of all threc nuclides occurred in samples collected upstream from Indian Point. This observation is possibly explained by the depletion of these radionuclides from the aqueous phase during their transport down the estuary. The higher concentrations of Ce-144, $\mathrm{Zr}-\mathrm{Nb}-95$, and Ru-103 in aquatic plants and bottom sediment as compared to fish and water may be interpreted to imply that surface adsorption processes play an important role in removing these radionuclides from solution, and hence from direct biological availability.

Only two radionuclides, $C o-58$ and $C s-134$, have been jdentified in samples near Indian Point and not in upstream control samples. Since the presence of both of these nuclides is attributable to reactor relcases, they serve
as the only unique tracers of wastes discharged into the Hudson at Indian Point. Neither of these radionuclides are cenerally found in significant amounts in fallout from nuclear weapons testing.

Long term accumulation of Co-58 is limited by its half-life, $7 l$ days, since it reaches rapid equilibrium between release rate and rate of physical decay. the long lived cobalt isotope Co-60 which has a half-life of 5.26 years, has undergone a gradual accumulation in Indian Point sediments (Figure 2). By comparing the ratio of Co-58 to Co-60 in water at the point of reactor release with the ratio of their concentrations in fish, aquatic plants, and bottom sediments (Table 7), one may conclude that the concentration of both these isotopes in biota is a reflection of the biological availability of radio-cobalt in "fresh" reactor releases, and of the non-availability of sedimentary radio-cobalt accumulations; i.e., if bottom sediments were an important source of $\mathrm{Co-58}$ and Co-60 in biota, then one would expect to find a Co-58/Co-60 ratio in biota similar to that found in bottom sediments.

A similar calculation of the ratio of Cs-l34 to Cs-137 in water at the point of reactor release and in biota and botton sediments. (Table 7) would seemingly lead to a similar conclusion; that freshly introduced cesium isotopes are more biologically available than the same isotopes present in bottom sediments. However, the difference between the Cs-134/Cs-137 ratio in biota and that in bottom sediment is not nearly as marked as is the case for co-58/ Co-60. Furthermore, measurement of the Cs-134/Cs-137 ratio in primary coolant at Indian Point Unit l yielded a value of 0.60 , compared to 0.38 in water of lower activity which was sampled continuously from the condensor discharge canal. If the Cs-134/Cs-137 ratio were 0.60 at the release point, one could conclude that during 1969 approximately 75 per cent of the Cs-137 in fish from Indian Point was due to recent reactor releases, and approximately 25 per cent, or $14 \mathrm{pCi} / \mathrm{kg}$ wet, was due to other sources, presumably past weapons fallout. Cs-137 content of fish collecied upstream during 1969 and 1970 amounted to 22 and $16 \mathrm{pCi} / \mathrm{kg}$ wet: (Table 5), respectively. Jt would thus seem that radiocesium in fish can be atiributed both to reactor releases of recent origin, as well as to residual sedimentary deposits from weapons fallout.

Among the radionuclides released in reactor wastes the largest contribution to the fraction of MPC is made by I-l3I (Table 2). We have not been able to detect this radionuclide in any Hudson River samples. However, our detection limit for $1-131$ in biota is higher than for most other eamma emitters, $15 \mathrm{pCi} / \mathrm{ke}$ wet as compared to $5 \mathrm{pCi} / \mathrm{kg}$ wet for cs-137. The higher detection limit arises from.
the necessity of switching to a different counting system witn a less favorable Geometry, an $8^{\prime \prime} \mathrm{x} 4 " \mathrm{NaI}$ crystal, in order to measure large volume samples of unashed biota.

The concentration of naturally occurring $K-40$ (Table 8) has consistently exceeded the concentrations of artificial radionuclides, both of fallout and reactor origin, in all Hudson River samples, except for aquatic plants in which higher fin-54 activities have been measured in the vicinity of Indian Point. This observation provides convincing evidence that non-specific radioactivity measurements such as gross-beta analysis yield little information about existing levels of artificial radionuclides in the Hudson River.

Relatively constant amounts of the naturally occurring radium isotopes, Ra-226 and Ra-228, have been observed in samples of bottom sediment and aquatic plants, while concentrations in water and fish have been more variable. Average concentrations in these samples are presented in Table 8. Both Ra-226 and Ra-228 have been found to be uniformly distributed spatially in the Hudson over an 80 mile length of river.

DOSTMETRIC EVALUATION

The exposure to man resulting from radioactivity in the Hudson River consists of a component from natural radioactivity and a component from artificial radioactivity. Noithor dictary buirvoga nos bioassays of lućal pujulaijuns are felt to be warranted by the low levels of artificial radionuclides in the Hudson. Edible shellfish are absent in the Hudson, and the abundant aquatic plants of the Hudson are not consumed by man. nccordingly, there is no opportunity for biological organisms of high concentrating ability to enter directly into human food supplies. Consumption of indigenouss and migratory fishes caught both recreationally and commercially in the Hudson is apparently the most important pathway by which radjonucides can be recycled to man via the aquatic food chain. Based upon average concentrations of the radionuclides Cs-137, Cs-134, Co-58, Co-60, and Mn-54 in fish at Indian Point during 1969 (Table 5) we have calculated the yearly wholebody and gastrointestinal doses to man to be $0.04 \mathrm{mrem} /$ year and $0.05 \mathrm{mrem} / \mathrm{year}$ respectively, assuming an avorage daily intake of 30 grams of fish taken solely from this location. Of the estimated $0.04 \mathrm{mrem} / \mathrm{ye}$ ar whole-bodiy dose, 0.02 mem/year is due to $\mathrm{Cs}-134$ and $0.02 \mathrm{mrem} / \mathrm{year}$ is due to Cs-137. reasurenents of rish upstream from Indian foint during 1969 showed $\mathrm{Cs-1} 37$ and $\mathrm{Zr}-\mathrm{Nb}-95$ to be the only gamina emitters present. The whole-body and $G--$ doses from consumption of such fish are estimated as 0.01 and 0.003 mrem/year, pespectively. He thus conclude that during l. 969 fallout Cs-l. 37 in rish delivers a mole-body dose of 0.01
mrem/year and releases of radioactivity at Indian Point result in radionuclide levels in fish that deliver about $0.03 \mathrm{mrem} /$ year to the whole body.

Concentrations of Ra-226 and Ra-228 in water (Table 8) amount to. 1.6 and 0.4 per cent of permissible drinking water concentrations ${ }^{9}$ In addition, 0.7 and 0.2 per cent of the permissible intake of Ra-226 and Ra-228, respectively, would result from the consumption of 30 grams of whole fish per day.

Levels of fallout $\operatorname{sr}-90$ which were measured in whole fish during 1964, 1965, and 1966 would result in bone doses of 9, 20, and $7 \mathrm{mrem} / \mathrm{year}$ respecitively, if 30 grams of whole fish were consumed each day. Fe-55, the major source of wrich is also fallout, as measured in Hudson River fish during 1968 contributes about $0.06 \mathrm{mrem} /$ year to the spleen which is the critical organ, or $0.008 \mathrm{mrem} / \mathrm{year}$ to the whole body.

In spite of the fact that the Hudson River water is potentially potable in the freshwater areas, it is used to only a linited extent as a municipal drinking water supply, mainly because of inadequate treatment of introduced sewage. The water in the vicinjty of Indian Point is sufficiently brackish throughout the summer, fall, and winter months to preclude its use for drinking purposes. The closest drinking water intake is approximately 23 miles upstream from Indian Point at Chelsea where a reserve pumping station for the New York City water sumply is Iocated, but which to date has not been used. In order for operational wastes discharged at Indian Point to be flushed by the tides upstream to Chelsea, evaporative losses in the Hudson have to approach freshwater discharge. This is a fairly common occurrence in the late summer months. When such conditions of flow prevail, the water salinity alone at Chelsea would prevent water use for drinking. Therefore, it is not conceivable that present reactor wastes could enter into a drinking water supply.

Based upon an estimated whole-body dose of $0.03 \mathrm{mrem} / \mathrm{year}$ from low-level releases at Indian Point in 1969, it is possible by a simple extrapolation to estimate the dose expected if discharges were at 100 per cent of the present MPC (mixture). During 1969 releases amounted to 4% of MPC. Discharge at 100 per cent MPC would then increase the 1969 dose estimates by about 25 times, to $0.8 \mathrm{mrem} /$ year. Furthermore, assuming proportionaljty between clectrical generation capacity, liquid radioactive waste composition, and available coolant dilution flows, the resultant dose from future multiple nuclear reactors can be estimated. For example, upon completion of the four new reactors on the ludson, two at Indian point and two directly domstream, the total generation capacity of

12,984 MWt would be about 21 times the present capacity at Indian Point Unit 1 . The above assumptions then imply that 21 times the presently maximum permissible discharge of radionuclides would be possible, and the approximate dose from fish consumption would be about $21 \times 0.8 \mathrm{mrem} /$ year or $17 \mathrm{mrem} / \mathrm{year}$. We consider this estimate to be more realistic than estimates based upon considerations of dilution and aquatic concentration factors.

SUMMARY

Measurements of radioactivity in samples of water, bottom sediment, and biota from the Hudson River have been performed over a seven year period from 1964 to 1970 . Natural radioactivity levels generally exceed the levels of artiricial radioactivity. The concentrations of most natural and artificial radionuclides are higher in bottom sediments than in water. These sediment-bound nuclides exist in physical states not available for direct uptake by consumable Hudson River biota. It appears, hovever, that recycling of at least one radionuclide, Cs-137, does occur from the sediments, a pathway not accounted for in the "concentrationfactor'l. approach. Co-60, on the other hand, apparently has accumulated in bottom sediments at the Indian Point location on the Hudson, but appears to be effectively removed from biological availability by sediment sorption. Sr-90 has been found not to be as significantly bound by sediments as Cs-137, but the diminishing contribution of Sr-90 from weapons fallout and its near absence in reactor waste do not
 manganese seem to be leached from fresh-water sedimentary deposits during seasonal periods of salt water intrusion characteristic of the Hudson.

Aquatic plants have been found to concentrate Mn-54, Co-60, Co-58, Fe-55, Zr-95-Nb-95, Ce-144, and Ru-103, but are of no dosimetric consequence since they are not consuned by man, and since muci lower concentrations of these nuclides are found in higher organisms of the aquatic food chain. These aquatic plants do serve, however, as good stationary integrators of radionuclide levels in the aqueous phase.

The critical nuclides with respect to human exposure from reactor releases at Indian Point Unit 1 have been Cs-137 and $\mathrm{Cs}-134$. During 1969, the year of hichest radiocesium discharges at Indian Point, a person consuning obout 30 grams of fish a day, all taken from this limited portion of the river, would have received a whole-body dose from reactorproduced cestium isotopes of 0.03 mrem .

A whole-body dose from fish consumption of about 0.8 mrem/ year would result from maximun permissible aqueous discharge at Endian Point Unit 1. Funther extrapolation to bypothetical 100 per cont $A P C$ nelease at all five fradian Point reactoms
allows one to conclude that, the whole-body dose from fish consumption would be 17 mem/year. Thus, it appears that present aqueous discharge standards as formulated by the USAEC are sufficient to insure exposure below the permissible 500 mrem/year whole-body limit, even as applied to releases from multiple adjacent power reactons, and to radionuclide transfers into human food supplies.

ACKHOMLBDGEMENTS
The authors wish to acknowledge Dale Bath, Dorothy Wohlemuth, Jose A. Hemandez, and Steven Jinks for their assistarce in sampling and analysis. Portions of this investigation were supported by the United States Public Health Service Bureau of Radiological Health, the New York State Department of Health and the Consolidated Edison Company of New York. The project is part of a center program supported by the National Institute of Envirommental. Health Sciences, Grant No. ES 00260.

REFERENCES

${ }^{1}$ Quirk, T.P., J.P. Lawler, F.E. Matursky. Hudson River Dispersion Characteristics. Progress report to the Consolidated Edison Co. 1965.

2 Hardy, Edward P., Joseph Rivera (eds.), Fallout Program Quarterly Summary Report, USAEC Report 'IID-4500, HASL193. 1968. (Fallout measurements at Lat. $40^{\circ} 40^{\prime} \mathrm{N}$, Long. $73^{\circ} 50^{\prime} \mathrm{W}$).
${ }^{3}$ Hardy, Edward P., Fallout Program Quarterly Sumnary Report, USAEC Report TID-4500, HASL-224. 1970. (Fallout measurements at Lat. $41^{\circ} 0^{\prime} \mathrm{N}$, Long. $74 \mathrm{~m}^{\circ} 2^{\prime} \mathrm{W}$. $\mathrm{Cs}-137$ values measured in 1963 and 1964 only; remaining Cs-l37 values computed from average Cs-1.37/Sr-90 ratio of 1.47 observed at this location and preceding location from 1961-1966).
. Tritjum and Other Envirommental Isotopes in the Hydrological Cycle, Technical Report Series No. 73 (STI/DOC/10/73), International Atomic Energy Agency, Vienna. 1967. (Computed from tritium concentrations in precipitation at Lat. $40^{\circ} 49^{\prime}$ N , Long. $96^{\circ} 41^{\prime} \mathrm{W}$ in 1961 and Lat. $41^{\circ} 47^{\prime} \mathrm{N}$, Long. $87^{\circ} 44^{\prime}$ W from 196?-1965 and amounts of precipitation at Lat. 40° $40^{\prime} \mathrm{N}$, Long. $73^{\circ} 50^{\circ} \mathrm{N}$.

5 Friend, Albert G., A.H. Story, C.R. Henderson, K. A. Busch, Behavior of Certain Radionuclides Released Into Freshwater Environments. U.S. Public Health Service Publication Nin. 000-P4-13, 1065.

6
Davies, Sherwood, Frank Cosolito, Merril Eisenbud, Radioactivity in the Hudson River, from Papers of the Symposium on Hudson River Ecology, Tuxedo, New York, 1966.

7 Logsdon, Joe E., Robert I. Chissler, Radioactive Waste Discharges to the Environment from Nuclear Power Facjlities. U.S. Public Health Service Publication BRH/DER 70-2, 1970.
${ }^{8}$ Consolidated Edison Company, Indian Point Station SemiAnnual Operations Reports, Nos. 1-13, AEC Docket 50-3 and Private Communication.

9 Liuzzi, Anthony, The Application of Weighted Least Squares Linear Estimation to the Analysis of Pulse-Height Distributions Generated by the Scintillation Counting of Gamma Rays. Ph. D. Dissertation, New York University, 1965.

10 Petrow, H.G., Rapid Determination of Strontium-90 in Bone. Ash via Solvent Extraction of Yturium-90. Analytical Chemistry 37:584, 1965.

11 Wrenn, McDonald E., N. Cohen, Iron-55 from Nuclear Fallout In the Blood of Adults: Dosimetric Implications and Development of a Model to Predict Levels in Blood. Health Physics 13:1075-1082, 1967.

12 Cosolito, Frank, Environmental Tritium Measurements; in Ecological Survey of the Hudson River. Progress Report No. 3, New York Unịversity Medical Center, 1968.

13 Gustafson, Philip.F., Cesium-137 in Freshwater Fish During 3.954-1965. Symposium on Radioccology, USAEC Report CONT-670503, pp. 249-257, 1967.

14 Jinks, S., The Distribution of $M n-54$ and Co-60 in Aquarial Ecosystems and Characteristics of Radionuclide Accumulation by Aquatic Vascular Plants. M.S. Thesis, New York University, 1970.

15 Lentsch, Jack W., The Fate of Gamma-Emitting Radionuclides Released into the Hudson River Estuary and an Evaluation of their Environmental Significance. Ph.D. Dissertation, New York University, 197l.

16 Johnson, Vernon, N. Cutshall, C. Ostcrberg, Retention of Zn-65 by Columbia River Sediment. Water Resources Rescarch 3: 99-102, 1967.

17 Cohen, L.C. Unpublished data, New York Universjty Medical Center, 1970.
1^{8} Hairr, L.M., Unpublished data, New York University Medical Center, 1970.

19 Code of Federal Regulations, Title 10, Part 20, Appendix B.

TAELE 1

Annual deposition in Curies of selected veapons fallout radionuclides on the Hudson River drainage basin and river surface. The areas of the basin and surface were taken to be $34,700 \mathrm{~km}^{2}$ and $155 \mathrm{~km}^{2}$, respectively.

YEAR	${ }^{90} \mathrm{Sr}^{2}$		${ }^{137} \mathrm{Cs}^{3}$		$144 \mathrm{Ce}^{3}$		$5^{4} \mathrm{Mn}{ }^{3}$		$3 \mathrm{H}^{4}$	
	Basin	Suris.	Basin	Surf.	Basin	Surf.	Basin	Surf.	Basin	Surf.
1954	96	0.4	140	0.6	-	-	-	-	-	-
1955	120	0.6	180	0.8	-	-	_	-		-
1956	150	0.7	230	1.0	-	-	-	-	-	-
195.7	150	0.7	230	1.0	-	-	_	-	- .	
1958	210	1.0	310	1.4	-	-	-	_	-	-
2959	300	1.3	440	2.0	-	-	-	-	-	\pm
1960	55	0.3	81	0.4	220	1	-	-	-	-
1961	84	0.4	124	0.6	1600	7	-	-	7700	34
1962	430	7.9	630	2.8	11000	47	200	0.9	97000	430
1963	830	3.7	1300	5.9	18000	78	1200	5.5	210000	920
1964	550	2.5	660	3.0	4500	20	360	1.6	110000	510
1955	190	0.9	280	1.3	760	3	57	0.3	44000	200
2966	84	0.4	220	0.6	140	1	,	. 3	-	2
1957	57	0.3	84	0.4	-	-	-	-	-	-
1963	46	0.2	67	0.3	-	-	_	_	-	
1969	46	0.2	68	0.3	-	_	_	-	-	-
1970	-	-	-	. 3	-	-	-	-	-	-
Cumulative										
through l969:	2860	12.8	4190	18.7	-	-	-	-	-	-
(Decay correc										

Table 2
Isotopic composition of Iiquic: wastes at Indian Point Unit 1 during 1969. Average of undiluted monthly concertrations, C_{i}, and undiluted fractional MPC's.

Mucisoc	$\begin{aligned} & C_{i} \\ & \times 10^{5} \mu 0 i / m I \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{MPC}_{i} \\ \times 10^{5} \mu \mathrm{Ci} / \mathrm{mI} \\ \hline \end{gathered}$	$\frac{C_{i}}{M_{i}}$	$\begin{aligned} & \frac{C_{i}}{E C_{i}} \times \mathrm{HPC}_{i} \\ & \mathrm{x} 10^{5} \mu \mathrm{Cl}_{\mathrm{i}} / \mathrm{ml} \end{aligned}$
38	2300	$\because 300$	7.6	-
24 Na	0.29	20	0.015	0.052
$54 . \mathrm{ma}$	19	10	1.9	1.7
$5^{88} \mathrm{Co}$	21	\underline{O}	2.3	1.7
$6^{60} \mathrm{Co}$	15	3	5.0	0.41
80.80	0.14	0.3	0.47	0.00038
9050	0.0066	0.03	0.22	2×10^{-6}
13405	15	0.9	17	0.12
137 cs	25	2	13	0.45
$13 \mathrm{I}_{1}$	12	0.03	390	0.0031
132	0.14	0.8	0.18	0.0010
33 I	3.5	0.1	34	0.0031

Table 3

nuclide	$\begin{aligned} & \text { Haximum } \\ & \text { Geapone } \\ & \text { Ealyout } \\ & (0 \dot{y} / y r) \end{aligned}$		maximum Reactor Reiease (Ci/yr)	Natural Influx (Ci/vr)	$\frac{\text { Curies/year }}{\text { ife }}$				
					110ut	Reactor	Naturai		
	*	\dagger				\because	\dagger		
8×-90	4	(830)	0.009	-	4×10^{6}	$\left(8 \times 10^{8}\right)$	9×10^{3}	-	
Cs-137	6	(1300)	6	-	3×10^{4}	$\left(7 \times 10^{6}\right)$	3×10^{4}	-	
Co-124		(18000)	-	-	8×10^{5}	$\left(2 \times 10^{8}\right)$	-	-	
7n-54	6	(1200)	14	-	6×10^{3}	$\left(1 \times 10^{6}\right)$	2×10^{4}	-	
5-3	920	(210000)	1100	-	3×10^{4}	$\left(7 \times 10^{6}\right)$	4×10^{4}	-	
Co-60		-	5	-		-	1×10^{4}	-	
72-226		- ..	-	- ~ 3		-	-	3×10^{7}	
20-228		-	-	~ 3		-	-	1×10^{7}	
$x-140$		-	-	>>100		-	-	-	

* Depostion on river surface.
† Depoeition on entire drainage basin.

TABLE 4

${ }^{90}$ Sr concentrations in various Hudson River Samples during 1964, 1965 and 1966.
YEAR$\mathrm{pCi} / \mathrm{kg}$ Wet
1964 Water 2.2
Bottom Sediment (pCi/kg dry) < 10
Fish 130
Aquatic Plants 300
Crabs 900
1965 Water 1.5
Bottom Seciment (pCi/kg dry) 180
Fish 320
1966 Water 1.0
Fish 100
Aquatic Plants 50

TABLE 5

Comparison of the concentration of gamma-emitting radionuclides in fish collected near the Indian point reactor with concentrations in fish collected upstrean above salt water boundary.

			/kg We			
		Cs				${ }^{60}$
Year	Indian Point	Upstream	Indian point	Unstream	Indian Point	Upstream
1964	39	32	19	18	N. D.	N. D.
1965	43	42	30	12	11	N.D.
1966	30	30	24	13	2	3
1967	20	-	4	-	3	-
1968	28	31	40	5	5	5
1969	56	22	32	N.D.	11	N.D.
1970	26	16	8	N. D.	3	N. D.

Concentrations of the fallout radionuclides ${ }^{95} \mathrm{Zr}-{ }^{95} \mathrm{Nb},{ }^{144} \mathrm{Ce}$, and 103 Ru in samples of Hudson River water, bottom sediments, aquatic plants, and fish collected during 1969 at Indian Point and at upstrees control stations. pCi/kg wet.

	${ }^{95} \mathrm{zr}-95 \mathrm{Nb}$		144 Ce		$103_{3 u}$	
	INDIAN POINT	UPSTREAM	$\begin{aligned} & \text { INDIAN } \\ & \text { POINT } \end{aligned}$	UPSTREAM	$\begin{aligned} & \text { INDIAN } \\ & \text { POINT } \end{aligned}$	UPSTREAM
WATER	0.06	0.09	1 D	0.06	ND.	0.05
Bu゙TMM SEDTMENTS ($\mathrm{pC}+\mathrm{Kg}$ dry)	160	550	430	570	150	230
AQUATIC PLANTS	110	800	70	250	5	162
FISH	7.6	8.4	ND	ND	ND	ND

TABLE 7

Average concentrations of Co-58, Co-60 and Cs-134, Cs-137, and computed isotopic ratios in Hudson River samples at Indian Point during 1969.

	${ }^{58} \mathrm{Co}$	${ }^{60} \mathrm{Co}$	$58 \mathrm{Co} / 60 \mathrm{Co}$	134 Cs	137 Cs	$134 \mathrm{cs} / 137 \mathrm{Cs}$
IMDIAN POINT DISCHARGE	1.9	2.3	0.83	0.46	1.2	0.38
CANAL WAIER						
EOTTOM SEDIMENTS	70	550	0.13	350	1820	0.19
FISH	7.8	11.4	0.68	25.6	55.8	0.46
ADUATIC PIANTS	305	404	0.76	24	57	0.42

TABIJ 8

Average concentrations of the naturally occurring radjo-
 and bottom sediments of the Hudson River

$\mathrm{pCi} / \mathrm{fg}$			
-	40_{K}	$\underline{226}$	228 Ra
WATER	j-70	0.16	0.19
BOTTOM SEDIMENTS	14,000	810	940
FISH	1,300	5	4
AQUATIC PLANTS	2,000	150	50

FIGURE 1

Average concentrations of Cs-l37 measured annually in Hudson River samples collected at Indian Point, annual fallout deposition of $\mathrm{Cs}-137$, and amual release of Cs-137 at Indian Point Unit 1.

FIGI

FIGURE 2

Average concentrations of Co-60. measured aninually in Hudson *. Piver "samples collected at Indian Point, and annual release of Co-60 at Irdian Point Unit 1.

F-2

FIGUPE 3

Average concentrations of $M n-54$ measured annually in Hudson River samples collected at Indian Point, annual fallout deposition of $\mathrm{Mn}-54$, and annual release of Mn-54 at Indian Point Unit 1.

F-3

FTGURES 4

- Concentrations of stable manganese in Hudson River water at Indian point during 1969 illustrating the strong positive correllation with water salinity expressca as chloride concentration. Releases of lin-54 at Indian Point as measumed in contimuous samples from the condensor discharge canel.

FIG-4

RIGUBE 5

Stable mancanese and Mn-54 content of the aquatic plant Potamogeton Perroliatus, expresed both on a wet weight basis and as Mr-54 specific activity. 1969 measurements near Indian point.

F-5

[^0]: * Throughout this report, the past tense should have been used in referring to data and implications thereof.

[^1]: * See qualifications on page 7-5.

[^2]: * See Appendix for explanation of terms.

[^3]: * Temporary Stations.

[^4]: *Standard Methods for the Examination of Water and Waste Water, 12th Edition, 1965. American Public Health Association.

[^5]: *See June-December, 1969 computer print-out, "Finfish Data, Matrices of Percentized Actual Counts/Unit Effort."

[^6]: *cf. Table 4-3 Number of Samples Taken
 $N=$ November only, $D=$ December only; $N / D=$ November ξ December only.

[^7]: **Calculations were carried to three decimal places to show differences.

[^8]: Zooplankton Sampling - Monographs on Oceanographic Methodology. UNESCO 1968.

[^9]: Mansueti and Hardy, 1968. An Atlas of Fish Eggs and Larvae of the Chesapeake Bay Region. Volume I.

[^10]: Bigelow and Schroeder, 1953, Fishes of the Gulf of Maine. Bul. No. 74, U.S.F. and W.S.,

[^11]: * Blueback herring and Alewife combined
 ** Positive identification pending
 A $=$ Abundant (readily caught and in great numbers)
 $\mathrm{C}=$ Common (readily caught)
 $\mathrm{U}=$ Uncommon (caught but only occasionally and/or in small numbers)
 $\mathrm{R}=$ Rare
 - = Not collected

[^12]: *Raney and Menzell, 1969. Heated Effluents and Effects on Aquatic Life with Emphasis on Fishes. Ichthyological Associates, Bull. 2. 469 p.

[^13]: **Sorge, 1969. The Status of Thermal Discharges East of the Mississippi River Chesapeake Science 10 (3-4): 131-138.

[^14]: *Blueback herring and alewives combined due to difficulty of separation while alive at this young life stage.

[^15]: $a=7$ specimen trial
 $b=11$ specimen trial
 tatus of cooling water circularors

[^16]: *Nugent, Richard. 1970. Elevated Temperatures and Electric Power Plants. Transactions of the American Fisheries Society, 99 (4): 848-849

[^17]: -and i

[^18]: * Collection from \#6 Station Only

[^19]: *Based on a comparison of standing crops in pooled canal samples with that of the river for December, 1968.

[^20]: *Ratio $=$ No. of samples containing measurable activity/total No. of samples analyzed.
 $\begin{array}{ll}N D: \quad=\text { None detected. } \\ * & =1968 \text { Data for Indian Point site only. June-October samples included }\end{array}$ for comparison with past years.

[^21]: *Ratio No. of samples containing activity/total No. of samples.
 ND = None detected
 ** $=$ Samples from June to September.

[^22]: $$
 \text { fte } 27
 $$

 है

[^23]: *Upstream

