GA-A14032

Work done by
Report written by:
R. H. Boonstra
S. S. Clark
J. V. Del Bene
D. W. Graumann
R. Katz
J. F. Petersen
J. C. Saeger
M. Troost

F

The TAC2D computer code is described herein as it existed on June, 1976. The code has been in continuous development for 8 years and in its presented form has been applied successfully by General Atomic Company to the kind of problems discussed later in this report. However, the development and improvement of the code are being continued, so that duplication of results (or ever clase agreement) between problems run with the code as published and the code as it existed efther before or after this time is not necessarily to be expected.

ACKNOWLEDGEMENT

The original TAC2D user's manual was written by J. F. Petersen under a contract with the U.S. Atomic Energy Commission and contains a description of the original TAC2D code together with certain improvements also made under USAEC contract. The document is entitled "TAC2D, A General Purpose Two-Dimensional Heat Transfer Computer Code - User's Manual', USAEC Report GA-8868, Gulf General Atomic, 6 September 1969. Since the writing of the original user's manual, various additional changes and improvements have been made to the code and it has been verified according to General Atomic Guide Standard GA-3-23. The work was performed as part of the HTGR Design, Verification and Support activities. This report updates the original user's manual and provides a single reference for the use of the verified code.

ABSTRACT

TAC2D is a code for calculating steady-state and transient temperatures in two-dimensional problems by the finite difference method. It is written entirely in Fortran V. The configuration of the body to be analyzed is described in the rectangular, cylindrical or circular (polar) coordinate system by orthogonal lines of constant coordinate called grid lines. The grid lines specify an array of nodal elements. Nodal points are defined as lying midway between the bounding grid lines of these elements. A finite difference equation is formulated for each nodal point in terms of its capacitance, heat generation and heat flow paths to neighboring nodal points. A system of these equations is solved by an implicit method which is the most efficient known at this time.

Some advantages of the code are:

1. The geometrical input is simple.
2. The input of thermal parameters is by Fortran V arithmetic statement functions. Many of the calculation variables (time, local temperature, local position, etc.) are available for use in these functions.
3. Internal and external flowing coolants may be used.
4. There may be internal and external thermal radfation.
5. There is a wide selection of optional output.

The principal limitations of the code are:

1. The grid line system must be orthogonal in the rectangular, cylindrical or circular coordinate system. Therefore, the sides of the nodal elements must also be orthogonal. The entire problem must be bounded by four grid lines in one of the coordinate systems. Difficulties in treating irregular boundaries can be overcome to some extent through the use of materials having specially chosen properties.
2. All radiation is treated one-dimensionally.
3. There is no provision for change of phase. This special heat transfer situation could be included by extension of the existing programming.

TAC2D has been assigned production status and has been verified according to Guide Standard GA-3-23 (see Reference 9). The machine requirement is a 65 K Univac 1110 , or equivalent. In addition to input-output, a maximum of four and a minimum of no tapes are required depending upon the code options being used. The operating system under which the code has been successfully used is EXEC 8 as modified for General Atomic. Running time depends upon the size of the problem and is not easily defined.

TABLE OF CONTENTS

ABSTRACT $1 i$
TABLE OF CONTENTS iv
LIST OF FIGURES vii

1. INTRODUCTION 1
2. INPUT DEFINITION
2.1 Geometry and Materials 5
2.1.1 Grid Lines and Points 5
2.1.2 Thermal Parameters 7
2.1.3 Boundaries and Blocks 8
2.1.4 Coolant Blocks 8
2.1.5 Gaps 11
2.1.6 Gap Lines 12
2.2 Initial Temperatures 12
2.2.1 Specified 12
2.2.2 Previou'sly Punched Temperatures 13
2.3 The Time Variable 13
2.3.1 Initial Time Value 13
2.3.2 Time Incrementation 13
2.3.3 Initial Iteration 14
2.4 The Steady-State Option 15
2.4.1 Method 15
2.4.2 Instabilities 20
2.4.3 Unacceptable Temperature Tolerances 22
2.5 Thermal Parameter Functions 23
2.5.1 Function Names 23
2.5.2 Function Variables 25
2.5.3 Default Function Values 29
2.5.4 Interconnection of Coolants 29
2.5.5 Function Control Constants 30
2.5.6 Additional Arithmetic Statement Functions 31
2.5.7 Function Subprograms 31
2.6 The Gap Expansion Option 31
2.7 The Iterate Option 34
3. OUTPUT AND OUTPUT CONTROL
3.1 General 37
\% 3.2 Basic Output 37
3.3 Auxiliary Output 38
3.3.1 Overlay 38
3.3.2 Overall Heat Balances. 39
3.3.3 Residuals 40
3.4 Optional Output 40
3.4.1 Decimal Temperatures 40
3.4.2 Geometry Factors, Effective Conductivities and Effective Conductances 40
3.4.3 Heat Rates and Heat Fluxes 41
3.4.4 Surface Temperatures 42
3.4.5 Punched Output 43
3,4.6 Tape Output 43
3.4.7 Gap Thicknesses 43
3.5 Print Format Control 43
3.6 Special Output 44
4. INPUT FORMULATION
4.1 Data Groups 45
4.1.1 Thermal Parameter Functions 45
4.1.2 Titles 47
4.1.3 Indicators 47
4.1.4 X Grid Lines 51
4.1.5 Y Grid Lines 51
4.1.6 Block Information 52
4.1.7 Specified Initial Temperatures 58
4.1.8 Coolant Limits 60
4.1.9 Time History 64
4.1.10 Function Control Constants 66
4.1.11 Previously Punched Temperatures 66
4.1.12 End Data Card 69
4.2 Card Input for a Computer Run 69
4.3 Performance of a Computer Run 85
4.3.1 Execution Time and Printed Page Limits for Use with the Univac 1110 Computer 85
4.3.2 Error Messages 85
Table of Contents (continued)
5. TRUNCATION AND ROUNDOFF ERRORS
5.1 Stability of Solution 87
5.1.1 Basic Considerations 87
5.1.2 Practical Approaches 88
5.2 Finite Difference Formulation 90
5.2.1 All Results 90
5.2.1.1 Grid Spacing 90
5.2.2 Transient Results 91
5.2.2.1 Nonlinearity in Time 91
5.2.2.2 Evaluation of Time and Temperature Dependent Quantities 91
5.2.2.3 Solution for Coolant Temperatures 93
5.3 Radiation - TAC2D Versions A and B 93
5.3.1 The B Version 94
5.3.2 The A Version 96
5.3.3 One-Dimensional Treatment of Radiation 98
5.4 Roundoff Errors 99
6. TECHNIQUES
6.1 Boundary Conditions 100
6.1.1 Adiabatic Boundary 100
6.1.2 Constant Temperature Boundary 101
6.1.3 Boundary With Radiation 101
6.1.4 Boundary or Coolant With Arbitrarily
Specified Temperatures 102
6.2 Irregular External Boundaries 103
6.3 Internal Dummy Materials 106
6.4 Functional Dependence of Thermal Parameters 106
APPENDIX A: Program Error Messages 109
APPENDIX B: Example Use of Additional Arithmetic Statement Functions 113
APPENDIX C: Example Use of Function Subprograms 115
APPENDIX D: Restrictions on the Assignment of Names 117
APPENDIX E: Dimensional Limits 124
APPENDIX F: Dumping 126
APPENDIX G: Output Data Tape 128
APPENDIX H: Example Problem 131
APPENDIX I: Long Input 200
REFERENCES 202

LIST OF FIGURES

Page
Fig. 1 - Coordinate Systems 2
Fig. 2 - Typical Problem Geometry in Cartesian Coordinates 6
Fig. 3 - Coolant Flows in the Normal Direction 10
Fig. 4 - The Response of Two Nodes of a Hypothetical Thermal Model 18
Fig. 5 - Gap and Coolant Limitations 56
Fig. 6 - TAC2D Code - Error in Steady State Centerline Temperature for an Infinitely Long Cylinder With Heat Generation as a Function of Uniform Grid Spacing 92
Fig. 7 - Irregular External Boundaries, Example 1 104
Fig. 8 - Irregular External Boundaries, Example 2 105
Fig. H-1 - Helium Circulator Blower 132
Fig. H-2 - TAC2D Thermal Model of Helium Circulator Blower Disc 133

1. INTRODUCTION

The digital computer code TAC2D* was developed at General Atomic for obtaining temperature solutions in the wide variety of twodimensional thernal systems which are encountered in the field of nuclear engineering. Code calculations are governed by the heat conduction equation:

$$
\nabla \cdot k \nabla T+\dot{q}^{\prime \prime \prime}=\frac{\partial}{\partial t} \rho c T
$$

where
k is thermal conductivity, Btu/hr-ft- ${ }^{\circ} \mathrm{F}$
T is local temperature, ${ }^{\circ} \mathrm{F}$
$\dot{q}^{\prime \prime \prime}$ is volumetric heat generation rate, Btu/hr-ft ${ }^{3}$
p is density, $\mathrm{lb} / \mathrm{ft}^{3}$
c is specific heat, $B t u / 1 b-{ }^{\circ} \mathrm{F}$
t is time, hr

This equation is replaced by an equivalent set of linear finite difference equations, which is solved for the local temperatures at given points in time by the implicit numerical method given in Ref. 1. Steady-state results are found by performing an iterative calculation until thermal equilibrium is attained. An option is available for performing this steady state calculation as efficiently as possible. In the finite difference equations, the local value of k may be an effective overall thermal conductivity which includes the effects of convection and/or radiation.

The problem must be modeled within the geometry envelopes of one of the three coordinate systems shown in Fig. 1. The choice depends

* The acronym TAC2D stands for "Thermal Analysis Code - Two Dimensional".

Fig. 1. Coordinate systems
upon whether it is best described as a rectangle, a polar rectangle or a cylinder. The code includes provision for both internal and external coolants. Use of internal coolants is optional but coolants flowing on the four outer surfaces must always be included to describe boundary conditions by assigning appropriate values to the coolant thermal parameters. There is provision for internal thermal radiation but its treatment is one-dimensional.

The purpose of this document is to provide all information required for the use of TAC2D. The mathematical formulations used and a programer's description of the code are given in Ref. 2.

TAC2D is actually one of two generalized heat transfer codes which have been developed at General Atomic. The other code is TAC3D which is a three-dimensional version of TAC2D and is described in Refs. 3 and 4. Although the following background remarks are written with reference to TAC2D, they apply as well to TAC3D.

A code was needed which could be easily used by persons not familiar with computer science. Toward this end, care was taken to keep all input and output within the scope of engineering terminology. Also, a system of input checking and easily interpreted error messages was included. As a final step, this user's manual has been prepared to provide a comprehensive guide to code application and input. The result of the above provisions is that the user may be detached from programming and computer system aspects of the problem solution. However, an understanding of FORTRAN statement functions would be helpful when specifying thermal properties.

The features most desired in codes such as TAC2D are generality, simplicity of input and economy of computer time. Generality can usually be increased only by partially sacrificing the latter two features. TAC2D was formulated under the basic philosophy of obtaining a trade-off among all three features which would be an optimum for
economical solution of thermal problems typically encountered in the nuclear field.

General purpose heat transfer codes are usually developed in terms of a network of points connected by thermal resistances. In most codes, the arrangement of these points may be purely arbitrary. A high degree of generality is obtained at the expense of input simplicity since an individual set of data must usually be supplied for each point. If, on the other hand, it is chosen to confine the problem within the geometry envelope of one of the three coordinate systems shown in Fig. 1, the input complexity may be greatly reduced. The entire geometry and subdivision can be def ined by giving the coordinates of constant coordinate lines, or grid lines, such as those illustrated in the figure. If the points are defined as lying midway between adjacent grid lines, then a region of points can be established by giving the four bounding grid lines of that region. Other input data such as that required to specify the resistances can be given in condensed form by referring to these regions rather than to the individual points which they contain. The above approach was used because experience had indicated that a majority of the two-dimensional thermal systems for which temperature calculations were being performed at General Atomic could be modeled within one of the geometry envelopes shown in Fig. 1. Furthermore, the computational algorithm applied in the solution for the point temperatures is the most efficient known and could not have been used had complete generality been maintained in the arrangement of the points.

Some of the definitions and instructions which follow are presented in terms of Cartesian coordinates (Fig. 1) only. These may be translated to the other two systems by means of the following correspondences:

```
circular coordinates
        x = radial; y = theta
cylindrical coordinates
        x = radial; y = axial
```


2. INPUT DEFINITION

2.1 GEOMETRY AND THERMAL PARAMETERS

This section describes how the system of calculation points is established and how the sets of thermal parameters governing the behavior of these points are identified and located.

2.1.1 Grid Lines and Points

In any of the three coordinate systems shown in Fig. 1 there are two sets of grid lines which are defined as lines along which the value of one of the two coordinates remains constant. Grid lines are the primary means by which the problem is subdivided and are specified as input by giving their constant coordinate values. The two extreme value grid lines of each set are the external boundaries of the problem. The lower value of each set may, but need not, be equal to zero. No grid line may have a negative value.

The relationship of the calculation points to the grid lines is illustrated in Fig_{8}. 2. The points are of two types, internal and external. An internal point is located midway between the adjacent grid lines of either coordinate direction. The temperature calculated for the point will be the temperature at the location given by the point coordinates. An external point is located outside of an external boundary midway between the two adjacent grid lines which are normal to that boundary. The temperature calculated for an external point is the temperature of the external source or sink directly adjacent to the point. The temperatures of external points reflect local boundary conditions only.

Fig. 2. Typical problem geometry in Cartesian courdinates

2.1.2 Thermal Parameters

Every part of a problem is defined by one of the following sets of thermal parameters. These sets are labeled materials, coolants, and gases. Their assigned thermal parameters are:

MATERIALS

thermal conductivities in the X and Y directions volumetric specific heat
emissivities in the $+\mathrm{X},-\mathrm{X},+\mathrm{Y}$ or -Y directions volumetric heat generation rate
thermal expansion in the $+X,-X,+Y$ or $-Y$ directions temperature (if known - see Section 6.2)

COOLANTS

specific heat capacity (constant pressure)
Reynolds number
heat transfer coefficient
inlet temperature or temperature profile
mass flow rate

GASES
thermal conductivity

Coolants are flowing coolants in that the temperatures of points in coolants are influenced by an inlet temperature, a flow rate and a specific heat. Gases (in gaps) are stagnant. Their presence serves only to modify the thermal resistances between points which are adjacent in solids. As is discussed in 2.1 .5 , gases contain no points.

There is provision in the program for fifteen different members In each set. They are identified by number. Each of the materials,
coolants and gases used is assigned a number 1 through 15. Not all of the member numbers must be used, but two members of the same set must always be assigned different numbers whenever any of their thermal parameters are not identical.

The actual values of the thermal parameters are given by Fortran V arithmetic statement functions as described in Section 2.5.

2.1.3 Boundaries and Blocks

The highest and lowest index value grid lines in either coordinate direction (a total of four) are always the external boundaries of the problem as previously discussed in 2.1.1. Either all or a part of any other grid line may be designated to be a boundary. The primary purpose of these boundaries) is to subdivide the problem into regions which have the same thermal parameters. These regions are called blocks. Blocks and boundaries are illustrated in Fig. 2. A block is described by . giving the values of its high and low index boundaries in both coordinate directions and defining its thermal parameters.

Blocks are either internal or external. A block is internal if none of its boundaries are coincident and it contains only internal points. It is external if either of its two boundaries in the same coordinate direction (i.e. high $X,{ }^{\prime}$ low X, or high Y, low Y) are coincident and it contains only external points. Internal blocks may contain either materials or coolants. External blocks may contain only coolants. They are used to specify the boundary conditions of the problem in terms of the thermal parameters given for the coolants which they contain.

2.1.4 Coolant Blocks

Coolant block temperatures are determined by finite difference solution of the heat balance equation

$$
d \dot{q}=W C_{p} d T_{c}
$$

where
$\dot{\mathrm{q}}$ is heat transferred to the coolant from adjacent material
\quad points, $\mathrm{Btu} / \mathrm{hr}$
W is coolant mass flow rate, $\mathrm{lb} / \mathrm{hr}$
C_{P} is coolant specific heat capacity (constant pressure),
T_{C} is coolant temperature, ${ }^{\circ} \mathrm{F}$

Coolants may flow parallel to either of the two coordinate axes as illustrated in Fig. 2. The flow direction may be either positive (In the direction of increasing coordinate value) or negative. Coolants may also flow normal to the plane of the problem as illustrated in Fig. 3. In this case the sign of the flow direction is immaterial.

Perfect transverse mixing is assumed for all coolants. Therefore, all points lying on the same plane perpendicular to the flow direction in an internal coolant block will be at the same temperature.

Heat transfer in coolant blocks occurs only at the block boundaries which are parallel to the flow direction and only in a direction perpendicular to the boundary at which heat is being transferred. For external blocks the heat transfer is by convection at the external boundaries of the problem. For internal coolant blocks it is by convection at the block boundaries and by radiation between opposite bluck boundaries. The radiation is calculated onedimensionally on the basis of the equations

$$
\frac{q_{r}}{A}=F_{1-2} \sigma\left(T_{1}^{4}-T_{2}^{4}\right) ; \mathcal{F}_{1-2}=\frac{1}{\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1}
$$

TYPICAL PROBLEM WHERE
I INTERNAL AND 2 EXTERNAL COOLANT BLOCKS FLOW IN
THE NORMAL DIRECTION

VIEW A-A

VIEW B-B

VIEW C-C

LEGEND:

Y///, DENOTES AN INTERNAL OR EXTERNAL COOLANT BLOCK HAVING NORMAL FLOW

DENOTES A COOLANT FLOWING IN THE INDICATED DIRECTION

GRID LINE
BLOCK BOUNDARY OR EXTERNAL BOUNDARY

- INTERNAL POINT

A EXTERNAL POINT

NOTES:

1. ONLY THE POINTS IN THE NORMAL FLOW COOLANT BLOCKS ARE SHOWN.
2. THE DIMENSION H IS THE DEPTH OF THE PROBLEM IN THE NORMAL PLANE.
3. COOLANTS WITH NORMAL FLOWS ARE ALLOWED ONLY WHEN THE "B'' VERSION OF THE CODE IS USED. SEE SECTION 5.3.

Fig. 3. Coolant flows in the normal direction
where

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{r}} \text { is heat transferred by radiation from surface } 1 \text { to } \\
& \quad \text { surface } 2 \text {, Btu/hr } \\
& \mathrm{A} \text { is area of the heat transfer surface located at the } \\
& \quad \text { lowest value of the coordinate perpendicular to } \\
& \text { the direction of radiant heat flow, } \mathrm{ft}^{2} \\
& \mathrm{~T}_{1} \text { is temperature of surface } 1,{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{2} \text { is temperature of surface } 2,{ }^{\circ} \mathrm{R} \\
& \sigma \text { is Stefan-Boltzmann constant, . } 1713 \times 10^{-8} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}^{4} \\
& \boldsymbol{J}_{1-2} \text { is overall radiant interchange factor between } \\
& \varepsilon_{1} \text { is emissivity of surface } 1 \text {, dimensionless } \\
& \varepsilon_{2} \text { is emissivity of surface } 2 \text {, dimensionless }
\end{aligned}
$$

2.1.5 Gaps

On boundaries between adjacent material blocks, narrow open spaces or gaps may be defined as illustrated in Fig. 2. These gaps contain the gases previously discussed. A gap is specified on the high boundary of a material block in either coordinate direction by giving its thickness and the number of the gas which it contains. It is implied that a gap is narrow because its thickness should be less than the distance between the boundary and the points adjacent to that boundary.

Heat transfer across a gap is by radiation between its surfaces and by conduction through the gas. This heat transfer is purely onedimensional. Radiation is calculated on the basis of the same equations as given in 2.1 .4 for coolant blocks. A gap contains no points and its lower surface is neither a grid line nor a boundary. A gap is used only to define the thermal resistance which is added in series to that associated with conduction between adjacent points.

In performing the calculation for points adjacent to a gap it is assumed that over its thickness the gap has actually replaced the block material. Heat generation, thermal resistance and capacitance in the block material are adjusted accordingly.

The TAC2D code is able to account for dimensional changes in gap sizes due to thermal expansion. Section 2.6 describes this feature of the code.

2.1.6 Gap Lines

A gap line is defined as a grid line any portion of which is coincident with a coolant block boundary or an interface between two different materials, or along any portion of which there is a gap. From this definition, it follows that the external boundaries are always gap lines.

2.2 INITIAL TEMPERATURES

Since a transient or iterative calculation is always performed, the initial temperatures of the points must be specified unless a uniform default value of $0^{\circ} \mathrm{F}$ is desired.

2.2.1 Specified Initial Temperatures

Regions enclosing points having the same initial temperatures may easily be defined. This is done by giving the values of the bounding grid lines and the initial temperature. The regions are of two types depending upon whether they contain internal or external points.

An internal point region is always located by four different grid line values. There may be as many such regions as there are internal points or there may be as few as one. Every internal point must be part of some region.

An external point region is located by four grid lines, two of which are coincident and are an external boundary. There may be as many external point regions as there are external points in the problem. All external points need not be included in a region, but those which are not are automatically assigned an initial temperature of $460^{\circ} \mathrm{R}$.

2.2.2 Previously Punched Temperatures

If the calculation for a problem is run up to a certain point in time, results at this time may be punched on cards as part of the output. These results include all point temperatures, coolant terminal temperatures and the time. This deck may be used as initial temperature input for a succeeding problem. When so used, it will supersede the specified values described in 2.2.1. The basic purpose of the punched output is to enable a long calculation to be performed in several computer runs. However, the punched output of one problem may be used in another problem so long as both have the same number of points in both coordinate directions.

2.3 THE TIME VARIABLE

2.3.1 Initial Time Value

The time scale begins at zero if the initial temperatures are specified by regions as described in 2.2.1. If a deck of previously punched temperatures is being used, the time scale begins at the time indicated in hours on the first card of the deck. This time may be changed to zero or any other desired value by re-punching the card.

2.3.2 Time Incrementation

The time scale of the problem is broken down into finite increments called tine steps. The array of point temperatures
is calculated at times corresponding to the ends of each of these time steps. The calculation for each time step is called an iteration. Groups of equal and adjacent time steps are called time periods. The time incrementation of the problem is specified by giving the end of each time period and the value of the time step which is to be used within it. The beginning of the first time period is the initial time value discussed in 2.3.1.

In performing the calculation, the current time (i.e. the time corresponding to the end of the current iteration) is determined as

$$
\begin{aligned}
& \text { current }=\begin{array}{l}
\text { initial time } \\
\text { value }
\end{array}+\sum \begin{array}{l}
\text { all preceeding }
\end{array}+\begin{array}{l}
\text { current time steps }
\end{array} .
\end{aligned}
$$

Within any time period, the time step given for that period is used until the current time equals or exceeds the specified end of the period. Therefore, if the length of a time period is not exactly divisible by its time step, the remainder is replaced by one whole time step and the end of the current period is accordingly moved forward from its specified value.

2.3.3 Initial Iteration

Some values within the program are initialized on the first iteration of a problem. This first iteration is always performed before the input time steps are recognized and is over an extremely small time step of 10^{-10} seconds. It is not included in the iteration count. It is included in determining the current location on the time scale but its effect should be negligible.
$\because:$ -

2.4 THE STEADY STATE OPTION

2.4.1 Method

Steady state results are determined with this option by solving a psuedo-transient problem. Time steps and material specific heat functions need not be given as input. Instead, values designed to effect rapid convergence are calculated within the code. The following steps are carried out for each steady state iteration:

1. Determine a psuedo capacitance value for each material point. These values are chosen such that all material points will tend to have approximately the same stability characteristics in the solution for material point temperatures.
2. Assign an iteration parameter (pseudo-transient time step) as an increasing function of iterations performed. Assign a value of DTFAC for the initial iteration parameter. DTFAC is a user-specified parameter having a default value of unity. Allow the iteration parameter to increase to DTMAX, also user-specified and having a default value of 500 .
3. Solve for all temperatures
4. Inspect the temperature results for instability as evidenced by negative or extremely large values. If instability is found, reduce the iteration parameter to a value of $1 / 10$ the initial value. Allow the iteration parameter to increase to a maximum value of $1 / 5$ the value of which the instability was encountered.

The value of the residual, R, for a material point is

$$
R=\frac{q c}{q k_{1}+q k_{2}+q k_{3}+q k_{4}+q g}
$$

where all terms on the right hand side are absolute values at the point and
qc $\left(=\rho V c \frac{\partial T}{\partial t}\right)$ is rate of heat storage, Btu/hr
qg ($=\dot{q}^{\prime \prime \prime} \mathrm{V}$) is rate of heat generation, Btu/hr $q k_{1}$ through $q k_{4}$ are rates of heat conduction from the point to each of its four neighboring points, Btu/hr

The steady state iterations are terminated when the residual at every material point is less than TOL, a user-specified parameter having a default value of 0.01 . The residuals are computed every nine iterations. This "odd-even" check helps to insure that oscillations in temperatures are detected and that a false convergence is avoided. Points contained in certain classes of dummy materials are not considered either in setting specific heats or in checking residuals for convergence. Such materials require special identification as described in 4.1.1.

If some residual is still greater than TOL after 150 iterations without an instability, the specific heat of that point is calculated according to the method presented in Ref. 6. This method effects accelerated convergence of slowly responding material points by weighting the characteristic conductances towards the conductance value in the direction of maximum heat transfer. This technique is applied only to those material points which have not yet satisfied the residual tolerance.

When the convergence criteria are satisfied, the program proceeds with the perturbation technique. This procedure was developed to provide upper and lower bounds on the steady-state temperatures and is an effective tool for determining proximity to steady-state. An arbitrarily chosen temperature increment, DELT (default value is presently $1^{\circ} \mathrm{F}$) is added to the current temperature of each calculation node (excluding coolants and dumny materials). Refer to Fig. 4. Ten iterations are performed with the iteration parameter reduced by a factor of 50 to insure that no numerical oscillations will occur. The temperature of each nodal point is then compared with the initially perturbed result, which has been stored on a computer drum. If the temperature of a node has decreased, an indicator is flagged for that node meaning that it has passed the first perturbation test. The nodes which failed the test are again perturbed upward by the amount DELT. The whole nodal array is then stored, iterated upon 10 times and then checked against the stored value. This positive perturbation continues until all nodes when upwardly perturbed return to a lower level after 10 iterations. These temperature results are printed as the upper most bound of the solution.

The temperatures are then perturbed negatively by DELT degrees Fahrenheit, stored on drum and iterated upon 10 times. A test is now made to see if a node has increased or decreased in temperature. If it increases, the node is flagged as having passed the perturbation test, if not, the negative perturbation procedure is repeated. When all points have passed the negative perturbation test, the results are printed as the lower temperature bound on the solution.

Even if the convergence criteria are not satisfied, the perturbation may be initiated under one of the following circumstances: 1) the number of iterations has exceeded $2 * I T M A X / 3$, where ITMAX is a user-specified parameter (default value-10,000) indicating the

Fig. 4. The response of two of a hypothetical thermal model
maximum number of allowed iterations before a series of twenty final smoothing iterations is performed; 2) the problem has limited computer time left; 3) small oscillations in some temperatures persist even after many (e.g. 300) iterations without an instability. These may be damped out by the perturbation procedure or the final smoothing iterations.

After the perturbation, the iteration parameter is reset to its prior value and twenty final smoothing iterations are performed. The psuedo capacitances remain fixed at their last computed values while the iteration parameter is again reduced, this time by a factor of ten, and held constant. The purpose of the smoothing iterations is to eliminate any small oscillations which may be present at the time convergence is attained.

Temperature results are printed for the last steady-state iteration, the upper and lower temperature bounds, and for every fifth smoothing iteration. It is important to inspect these results for any evidence of instability. Residuals are printed for the last smoothing iteration. These should always be inspected to insure that no values have increased to greater than TOL during the smoothing iterations. In addition, a message is printed at the beginning of each steady-state run which provides guidelines to help the user determine if the solution is valid.

The steady-state parameters which may be supplied by the user are summarized below, along with their default values. Input format is given in Section 4.2.

Parameter	Definition	Default Value
DELT	The magnitude of the temperature perturbation	$1^{\circ} \mathrm{F}$
TOL	The residual tolerance	0.01
DTFAC	The initial iteration parameter	1.0
DTMAX	The maximum iteration parameter	500.0
ITMAX	The maximum allowable iterations before final smoothing	10,000

2.4.2 Instabilities

The Peaceman-Rachford alternating direction implicit solution used in TAC2D has been shown to be unconditionally stable for problems involving constant properties, no heat sources, uniform grid spacing, constant temperature boundaries, etc. However, most "real" problems usually violate at least one of these conditions. Temperature dependent thermal properties and other non-linearities such as radiation influence the stability characteristics of the solution and may require the user to override the default values of the iteration parameters DTFAC and DTMAX. In general, the stronger the dependence of thermal properties on temperature, the smaller should be the quantities DTFAC and DTMAX. Thermal conductivities with weak temperature dependence usually do not require the parameters to be changed from the default values; however, several test problems involving strongly temperature-dependent heat generation rates required that DTFAC and DTMAX each be reduced two orders of magnitude to obtain satisfactory'solutions.

As described before the code attempts to check for instabilities and automatically reduces the iteration parameter if they are
encountered. However, oscillations which slowly increase in magnitude may be encountered which TAC2D is unable to detect. The program will continue iterating without satisfying the residual tolerance. Eventually, the problem will encounter the warning time or exceed the maximum alluwable iterations. The perturbation may or may not be initlated. If it is initiated and completed, a satisfactory solution may be obtained. Otherwise a warning message is printed; however, the final temperature results may not necessarily be invalid.

When there is sufficient doubt as to the validity of the final printed temperature results, it is recommended that the parameters DTFAC and DTMAX be reduced at least one order of magnitude and the problem rerun. The computer run time could be increased, if possible, to insure that the problem has enough time to converge to a solution. Similarly, the parameter ITMAX could be increased to allow more iterations, unless the default value of 10,000 is being used in which case ITMAX is obviously not a controlling factor. If a punched deck has been obtained it may be used to provide initial temperatures for the next run.

There is also a possibility that the perturbation scheme will cause numerical instabilities. If this happens, it is probably caused by (1) the perturbation being applied too early in the solution and/or (2) the perturbation temperature being too large. One or both of the above could cause the solution scheme to become unstable; therefore, the optional control of these variables by the user has been provided.

The initiation of the perturbation is governed by either the residual tolerance, TOL, being satisfied or the maximum number of iterations, ITMAX, being reached. Recall that the default values of TOL and ITMAX are 0.01 and 10,000 , respectively. It is obviously unlikely that ITMAX is being reached unless the user has set a lower value. By appropriately reducing $T O L$, the perturbation can be forced to be applied later in the solution. See Section 4.2 on instructions for the input of TOL.

A perturbation which is too large can also initiate instabilities. The present default value of DELT ($1^{\circ} \mathrm{F}$) was not varied in the current investigation; therefore, the effect of changes in DELT is unknown. It is doubtful that any improvement in the results can be obtained by increasing DELT. However, it may be necessary to decrease DELT in cases where the typical temperature differences of the grid are less than $100^{\circ} \mathrm{F}$.

2.4.3 Unacceptable Temperature Tolerances

In certain cases the printed upper and lower temperature bounds of the steady-state solution may be outside the acceptable ifaits set by the user. This can be a result of not iterating close enough to the proper solution and/or a result of having perturbed the solution more than was necessary. Both problems can be overcome by respecifying one or both of the parameters TOL and DELT.

First, the perturbation quantity DELT should be re-specified equal to or less than 25% to 30% of the acceptable temperature tolerance, e.g., $0.25^{\circ} \mathrm{F}$ if $\pm 1^{\circ} \mathrm{F}$ is desired (two to four perturbations are required regardless of the proximity to steady state). Second, the tolerance TOL should be reduced so that when it is multiplied by the maximum temperature difference of the grid, the product is equal to or less than the desired tolerance. For: example, if a solution to a thermal model with approximately
$1000^{\circ} \mathrm{F}$ temperature differences is desired to within $\pm 1^{\circ} \mathrm{F}$, a tolerance of 0.001 should be specified. If none of the above changes correct the problem, it may be possible to decrease the range of the temperature bound by merely performing more iterations; i.e., by continuing a run with a pre-punched temperature deck.

2.5 THERMAL PARAMETER FUNCTIONS

The actual values of the thermal parameters discussed in 2.1.2 are given by Fortran V arithmetic statement functions. These functions are inserted into the program by recompiling two subroutines, MADATA and FLODAT each time a problem is run. The functions for materials and gases are inserted into MADATA, and those for coolants are, inserted into FLODAT. On the Univac 1110 computer system, it has been found that the cost of recompiling these subroutines is generally not a controlling factor in establishing the total cost of a TAC2D computer run.

2.5.1 Function Names

The function names contain the basic name of the thermal parameter being defined, the member number within the material, coolant or gas set and a dummy argument X. The names and definitions of the functions which may be specified for each of the three sets are given below. The dash indicates any of the integers 1 through 15 representing the member numbers. Members of the same set must be assigned different numbers whenever any of their corresponding thermal parameters cannot be defined identically. For coolants, the signed flow direction number is a thermal parameter within the scope of this restriction.

Function Name	Definition	Units
TMAT - (X)*	temperature (if known)	${ }^{\circ} \mathrm{R}$
RC $\mathrm{NN}^{\text {- }}$ (X)	thermal conductivity in the X (or radial) direction	Btu/hr-ft- ${ }^{\circ} \mathrm{R}$
$A C \varnothing N-(X)$	thermal conductivity in the Y (or theta, or axial) direction	Btu/hr-ft- ${ }^{\circ} \mathrm{R}$
SPEC - (X)	volumetric specific heat	Btu/ft ${ }^{3}-{ }^{\circ} \mathrm{R}$
EMRH - (X)	emissivity in the +X (or + radial) direction	dimensionless
EMRL - (X)	emissivity in the - X (or - radial) direction	dimensionless
EMAH - (X)	emissivity in the $+Y$ (or + theta, or + axial) direction	dimensionless
EMAL - (X)	```emissivity in the - Y (or - theta, or - axial) direction```	dimensionless
HEAT - (X)	volumetric heat generation rate	$B t u / h r-f t^{3}$
EXRH - (X)**	thermal expansion of the +X (or + radial) boundary	$f t$
EXRL - (X)**	thermal expansion of the - X (or - radial) boundary	ft
EXAH - (X)**	thermal expansion of the $+Y$ (or + theta, or + axial) boundary	```ft (radians for circular coordinates)```
EXAL - (X)**	thermal expansion of the -Y (or - theta, or - axial) boundary	ft (radians for circular coordinates)

[^0]** These functions require use of the gap expansion option. See Section 2.6.

COOLANTS

Function Name	Definition	Units
SPH - (X)	specific heat capacity	$\mathrm{Btu} / 1 \mathrm{~b}-{ }^{\circ} \mathrm{R}$
REYN - (X)	Reynolds number	dimensionless
H - $\mathrm{A}(\mathrm{X})$,	heat transfer coefficient	$\mathrm{Btu} / \mathrm{hr}-\mathrm{f} \mathrm{t}^{2}-{ }^{\circ} \mathrm{R}$
$\mathrm{H}-\mathrm{B}(\mathrm{X})$,	in a specified low (A),	
$\mathrm{H}-\mathrm{C}(\mathrm{X})$	middle (B), or high (C) range of Reynolds number	
TIN - $\mathrm{A}(\mathrm{X}),{ }^{*}$	inlet temperature in a	${ }^{\circ} \mathrm{R}$
TIN - B (X),	specified low (A), middle	
TIN - C (X)	(B), or high (C) range of one of the variables time, mass flow rate or outlet temperature	
FLD - A (X)	mass flow rate in a	Ib/hr
FLD - $\mathrm{B}(\mathrm{X})$	specified low (A), middle	
$F L \emptyset$ - C(X)	(B), or high (C) range of one of the variables time, outlet temperature or inlet temperature	

GASES
Function Name
Definition
GCøN - (X)
thermal conductivity

Units

Btu/hr-ft- ${ }^{\circ} R$

2.5.2 Function Variables

The thermal parameter functions may be constants or they may be dependent upon current local values of some of the calculation variables. Definitions of these variables and their allowed uses are given below for each of the three sets.

[^1]
MATERIALS

* For materials, DR has five different definitions depending upon the function in which it is to be used. Similarly, FTR and FTZ eacir have two different definitions.
** DR, FTR and FTZ are labeled to indicate which of the definitions apply to each function.

MATERIALS (cont.)

Function Name

EXRH - (X)	$\left.D R^{4}\right), \mathrm{FTR}^{2)}, \mathrm{HR}$
EXRL - (X)	
EXAH - (X)	$\mathrm{DR}^{5}, \mathrm{FTZ}^{2)}, \mathrm{HR}$
EXAL - (X)	

COOLANTS

Variable Name	Definition	Units
DR	temperature of a point in a coolant	${ }^{\circ} \mathrm{R}$
HR	time	hr
FTR	X (or radial) coordinate of a point. Only defined for coolants flowing parallel to the X (radial) axis	ft
FTZ	Y (or theta, or axial) coordinate of a point. Only defined for coolants flowing parallel to the Y (or theta, or axial) axis	ft
ST	local temperature of a coolant block boundary	${ }^{\circ} \mathrm{R}$
RE	Reynolds number at a point in a coolant	dimensionless
TIN	inlet temperature of a coolant	${ }^{\circ} \mathrm{R}$
TøUT	outlet temperature of a coolant	${ }^{\circ} \mathrm{R}$
FR	flow rate of a coolant	1b/hr
Function Name	Allowed Variables*	
SPH - (X)	DR, FTR, FTZ, TIN, TØUT, FR	
REYN - (X)	DR, HR, FTR, FTZ, ST, TIN, TøUT, FR	

[^2]
Function Name

Allowed Variables

H-A(X),	
H-B(X),	DR, HR, FTR, FTZ,ST, RE, TIN, T¢UT, FR
$\mathrm{H}-\mathrm{C}(\mathrm{X})$	
TIN - $A(X)$	HR, TøUT, FR, FTR, FTZ**
$\begin{aligned} & \text { TIN }-B(X), \\ & \operatorname{TIN}-C(X) \end{aligned}$	HR,TØUT, FR
FLD - $\mathrm{A}(\mathrm{X})$,	
FLD - B (X)	HR,TIN, T¢UT
FLD - C (X)	

GASES

Variable Name	Definition	Units
DR	local linear average of the two surface temperatures of a gap	${ }^{\circ} \mathrm{R}$
STGL	surface temperature on the low side of a gap	${ }^{\circ} \mathrm{R}$
STGH	surface temperature on the high side of a gap	${ }^{\circ} \mathrm{R}$
HR	time	hr
FTR	X (or radial) coordinate of a point	$f t$
FTZ	Y (or theta, or axial) coordinate of a point	$f t$ (radians for a theta coordinate)
Function Name	Allowed Variables	
GCDN - (X)	DR,STGL, STGH, HR, FTR,FTZ	

[^3]
2.5.3 Default Function Values

Not all of the thermal parameters are used in every problem. Functions need not be specified for those which are not used. If no function is specified for a parameter which is used, then that parameter will automatically be set equal to a default value as indicated below.

$$
\begin{aligned}
& \text { TMAT - }(X)=0 . * \\
& R C \emptyset N-(X), A C \emptyset N-(X)=10^{-6} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{R} \\
& \text { SPEC - }(X)=1 . B t u / f t^{3}-{ }^{\circ} R \\
& \text { EMRH - (X), EMRL - (X), EMAH - (X), EMAL - (X) }=10^{-6} \\
& \text { dimensionless }
\end{aligned}
$$

2.5.4 Interconnection of Coolants

Special functions may be used to define inlet temperatures such that the inlet temperature of one coolant is equal to the outlet temperature of another. As an example, the inlet temperatures of coolants 3, 5 and 2 can be defined as follows:

[^4]\[

$$
\begin{aligned}
& \operatorname{TIN} 3 A(X)=560 \\
& \operatorname{TIN} 5 A(X)=T \phi(3) \\
& \operatorname{TIN} 2 A(X)=T \phi(5)
\end{aligned}
$$
\]

The result is that in the A, or low range of inlet temperature, the inlet of coolant 3 is $560 .{ }^{\circ} \mathrm{R}$, the inlet of 5 is the outlet of 3 and the inlet of 2 is the outlet of 5. As few as two and as many as all fifteen coolants may be interconnected in the manner illustrated. Although the example is for the A range of inlet temperature such interconnections may also be made for the B and C range functions. The blocks containing the interconnected coolants need not necessarily be adjacent. Extreme caution should be used when coolants are interconnected for a transient calculation. A large truncation error can be developed if the time steps are not taken sufficiently small. The error is discussed in 5.2.2.2.

2.5.5 Function Control Constants

The need to recompile Subroutines MADATA and FLODAT for each different set of thermal parameters imposes a limitation on using the computer to do several different problems, or consecutive cases, in one run. This limitation is partially overcome by the availability of the function control constants Al through A18 which may be used in the parameter functions. A typical use of these constants is illustrated by the example given below.

Subroutine MADATA:

$$
\operatorname{RCON} 3(X)=A 5 *(\text { function } 1)+A 9 *(\text { function } 2)
$$

Problem inputs:

Problem No.	$\frac{A 5}{1 .}$	$\frac{\text { A9 }}{1}$
2	1.	0.
	0.	1.

> Effectively, $R C \emptyset N 3(X)=$ function 1 for problem 1 and $R C \emptyset N 3(X)=$ function 2 for problem 2 .

In addition to the 18 control constants which the user may input, there are also the control constants A19 and $\mathrm{A} 20(\mathrm{I}), \mathrm{I}=1,100$. These constants are included in common and are available to be used as desired. They may be assigned values in the subroutines MADATA, FLODAT and CUSTOM (see Section 3.6). If they are assigned values in MADATA or FLODAT, this must be done after all thermal parameter functions have been assigned, according to the rules of FORTRAN.

2.5.6 Additional Arithmetic Statement Functions

Additional functions may be defined and used in one or more of the thermal parameter functions. They are arithmetic statement functions contalning dummy arguments. Their use is illustrated in Appendix B. If an additional function is used in material and gas functions and also in coolant functions, it must be inserted into both Subroutines MADATA and FLODAT.

2.5.7 Function Subprograms

Some desired thermal parameter formulations cannot easily be expressed by the exclusive use of arithmetic statement functions. Step functions are an example. In such cases, function subprograms which contain any legitimate Fortran operations may be used as illustrated in Appendix C.

2.6 THE GAP EXPANSION OPTION

In most engineering applications the dimensional changes occurring when materials are heated or cooled are generally less than 1% of the initial length. The change in thermal resistance of the material
itself due to the different conduction length is negligible. When two bodies are separated by a small fluid filled gap, the change in dimension of the gap can be a significant fraction of the original gap width. This change in gap width causes a change in the conduction resistance across the gap, and can have a substantial effect on the overall system thermal resistance.

The GAP EXPANSION option allows for thermally induced changes in the gap width and the gap thermal resistance in the TAC2D thermal analysis code.

The basic equation used to calculate the change in length due to thermal expansion is:

$$
\begin{equation*}
\Delta L=\alpha L\left(T-T_{0}\right) \tag{2.6.1}
\end{equation*}
$$

where: $\alpha=$ coefficient of thermal expansion
$L=$ reference length
T. = volumetric average temperature

$$
T_{0}=\text { temperature at which reference length is specified }
$$

This expression is applicable to linear growth of unrestrained bodies and should be used with care for other configurations.

In the current application, \bar{T} for a radial gap is defined as the volumetric average temperature of all radial nodes between axial grids J and $J+1$ in the material block adjacent to the gap. For an axial gap, \bar{T} is the volumetric average temperature of all axial nodes between radial grids I and $I+1$ in the material block adjacent to the gap.

Use of the gap expansion option is initiated by using a TAC2D option card GAP EXPANSION. As some gaps may close because of the
thermal expansion characteristics of the adjacent materials, a single minimum allowable gap may be specified for all X or radial gaps on this option card along with another minimum allowable gap for all Y , axial, or theta gaps. The expression GAP EXPANSION appears on the option card in A format beginning in Column 7, while the minimum allowable radial (or X) gap (in inches) and the minimum allowable axial (or Y or θ) gap (in inches or radians) are specified beginning in Columns 25 and 31, respectively, in F 6.0 format. See Section 4.2, "CARD INPUT FOR A COMPUTER RUN", for clarification.

The expansion characteristics of the gap are defined via the functions EXRH - (X), EXRL - (X), EXAH - (X), and EXAL - (X) in the MADATA subroutine. The functions EXRH - (X) and EXRL - (X) define the radial (or X) boundary movement (in feet) on the high and low radial sides of the blocks; whereas, the functions EXAH - (X) and EXAL - (X) define the axial (or Y or θ) boundary movement (in feet or radians) on the high and low axial sides of the blocks.

It should be noted that the above four expansion functions are more than just the coefficient of thermal expansion α; they are the entire right side of Eq. (2.6.1), and they include α, the reference length, and the reference temperatures.

The volumetric average temperature $\overline{\mathrm{T}}$ is calculated within the MADATA subroutine and is available as DR in degrees Rankine. The radial and axial distances from the origin to each gap are available as FTR and FTZ in feet.

Thermal models are often constructed such that the axes of the model coincide with the fixed axes of the real body. It is then convenient to specify the reference length as FTR or FTZ. As an example, consider a two-dimensional $\mathrm{R}-\mathrm{Z}$ model of a cylindrical body. If the expansion coefficient were 6×10^{-6} inches/inch ${ }^{\circ} R$
and all gaps specified in the input were defined at room temperature ($530^{\circ} \mathrm{R}$), the radial boundary movement for Material 3 would appear in the subroutine MADATA as:

$$
\operatorname{EXRH} 3(X)=6 . E-6 * F T R *(D R-530 .) .
$$

It is exmphasized that the length term in the expansion functions EXRH - (X), EXRL - (X), EXAH - (X), and EXAL - (X) is always the distance from the moveable boundary to the fixed (or assumed fixed) line of the body. It may not necessarily be FTR or FTZ.

The final gap widths of a TAC2D run are printed when GAP EXPANSION is specified. An option ALL GAPS is available which prints the gaps at each temperature printout. This option is specified on an option card in A format beginning in Column 7. (See 4.1.3, "Option Indicators")

2.7 THE ITERATE OPTION

The ITERATE option causes the program to repeat a complete steady-state calculation until a specified nodal point temperature is attained. Results of a secant iteration method are fed into the main calculation through a parameter PAR which is applied by the code user to one or more of the input thermal parameter functions. Examples are

```
HEAT3(X) = 3.5 E6 * PAR
GC\emptysetN5(X) = (1.29 E-4 * DR ** 0.674)/PAR
TIN2A(X) = 700.0 * PAR
```

The input variables (given on the option card) and their uses are:

```
PAR1 - The initial values of PAR. For the first iteration cycle \(\operatorname{PAR}=\) PAR1. A value of 1.0 is usually applicable but any value consistent with the other input may be used.
DELPAR - The change to be made to PARI for the second iteration cycle according to PAR \(=(1+\) DELPAR \()\) * PARI. The sign of DELPAR should be positive if the user expects the temperature of the particular point to increase with increasing PAR and should be negative if the temperature will decrease with increasing PAR.
TCONV - The temperatures, in degrees Rankine to which
the program is to iterate.
RLOC - The radial point index at which TCONV is defined.
ZLOC - The axial point index at which TCONV is defined.
PMT - The convergence tolerance for TCONV in degrees Rankine. The input value is always positive. The problem will terminate when the temperature at RLOC and ZLOC falls within the range of TCONV \(\pm\) PMT.
The ITERATE option is engaged by including a single option card anywhere among the other option cards for the problem. The card contains the alpha-numeric characters ITERATE in Columns 7-13 followed by the values of PMT, DELPAR, TCONV, RLOC, ZLOC and PAR1 in that order. These are given as floating point numbers in 6 column words with the first word starting in Column 25 (see Section
``` 4.2).

The thermal parameter functions may contain PAR only when the ITERATE option is engaged. In the normal calculation mode,. PAR is not set and will probably be equal to zero.

The ITERATE option is intended to be used as a sizing tool. Therefore, the convergence tolerance PMT should probably be on the order of several degrees. The option may be unable to adjust the calculation fine enough to satisfy smaller convergence tolerances.
3. OUTPUT AND OUTPUT CONTROL

\subsection*{3.1 GENERAL}

The initial pages of a problem output contain a description of the problem, mostly in tabular form. Also, the input cards are printed, one card per line, to insure the exact reproducibility of the input at a later date. Examples of printed output are available In the example problem of Appendix \(H\). Most of the calculation results are presented as matrices of point conditions. Values for individual points are located by index numbers printed along the edges of the matrices. The coordinate value corresponding to each index is given in the problem description. The extreme high and low index values in either coordinate direction represent the external points.

\subsection*{3.2 BASIC OUTPUT}

The basic output is matrices of the temperatures at all calculation points with each matrix corresponding to a given point in time. Printed with each matrix are the terminal temperatures and flow rates of the coolants. If the time steps of a problem are given as input, then the frequency of iterations for which basic output will be printed is also given as input. If the problem is being run under the steady-state options, basic output will be printed only for the upper and lower temperature bounds and for the smoothing iterations described in Section 2.4 and then only for every fifth of the latter. Basic output will always be printed for the final iteration of a problem regardless of the method under which the calculation is being performed.

All basic output values are converted to integers before they are printed. Temperatures are converted from their calculated real values, RTR, in \({ }^{\circ} R\) to integers, ITF, in \({ }^{\circ} \mathrm{F}\) by means of the following expression
```

ITF = RTR - 459.5

```

The result is that remainders greater than or equal to \(.5^{\circ} \mathrm{R}\) are rounded upward while those less than \(.5^{\circ} \mathrm{R}\) are rounded downward.

In materials, a point temperature is the calculated temperature of the material at the location given by the coordinates of the point. In coolants, a point temperature is a mean effective coolant temperature evaluated over the interval between the two grid lines which bound the point and are normal to the flow direction. The mean effective value is that calculated for the condition of constant wall (or adjacent material block boundary) temperatures over the interval. Therefore, the location of a coolant point temperature along the flow direction is not exactly that given by the point coordinate. However, unless the grid lines are very widely spaced along the flow direction, locating the coolant temperatures by the point coordinates if sufficiently accurate for most engineering purposes.

In the case of a point in a normal flow coolant, the temperature printed is also a mean effective value based on the constant wall temperature condition. Here, however, the interval of evaluation is the specified depth normal to the plane of the problem.

\subsection*{3.3 AUXILIARY OUTPUT}

\subsection*{3.3.1 Overlay}

To facilitate interpretation of basic output, an overlay form is always printed. The'boundaries are outlined by series of identifying symbols. The precise symbols are dependent on the printer; however, the usual set is as follows:

O boundary with gap adjacent
* boundary with coolant adjacent
- boundary with no gap or coolant adjacent

A scale is used which will cause the lines generated to fall between the appropriate point temperatures in a basic output matrix. This diagram can be traced onto a sheet of transparent paper which can then be laid over any basic output matrix. The resulting display contains no dimensional information but is useful for a quick qualitative evaluation of results.

\subsection*{3.3.2 Overall Heat Balance}

An overall heat balance is always printed for the last iteration of a problem. Three quantities are itemized and totaled: 1) the heat generation rate for each block; 2) the heat gained (or lost) by each coolant block; 3) the heat gained (or lost) by dummy material blocks (see Section 6.2). A quantity which may be called the "residual heat" (RESIDH) is calculated as follows:
\[
\begin{aligned}
\text { RESIDH }= & \text { (Heat generated }) \text { - (Heat gained by coolants } \\
& + \text { Heat gained by dummy materials). }
\end{aligned}
\]

In other words, RESIDH is the difference between the overall heat gained and the overall heat lost by the system. It should approach zero as thermal equilibrium is attained. On a more practical basis it should be no more than some small percentage of the overall heat gained (or lost) by the system. The "small percentage" is defined by the user. Generally \(1 \%\) is considered adequate; however, certain problems may require a smaller value for acceptable results. If the overall heat balance does not satisfy this condition, a steadystate solution should not be assumed unless some acceptable explanation can be found (see Section 5.4).

\subsection*{3.3.3 Residuals}

When the steady-state option is being used, a matrix of residuals for all points in the problem will always be printed. If convergence is obtained, the residuals will be those corresponding to the last smoothing iteration. If convergence is not obtained, the last available values are printed.

Residuals for coolant points and certain dumy material points are not considered in determining convergence. Zeros are printed for coolants and extremely high values (9.999E11) for dummy materials.

\subsection*{3.4. OPTIONAL OUTPUT}

There are six types of optional output which are described below. Some of the optional output quantities reflect a depth normal to the plane of the calculation. If the problem contains a normal flow coolant, this depth is the value \(H\) described in 2.1.4 and Fig. 3. Otherwise, it is 1 foot.

\subsection*{3.4.1 Decimal Temperatures}

All basic output is printed in floating point numbers rather than integers. The calculated temperatures, \(R T R\), in \({ }^{\circ} R\) are converted to the printed values, RTF, in \({ }^{\circ} \mathrm{R}\) by means of the following expression
\[
\operatorname{RTF}=\operatorname{RTR}-460.0
\]

\subsection*{3.4.2 Geometry Factors, Effective Conductivities and Effective Conductances}

The heat rate between points 1 and 2 in either coordinate direction is given by
\[
q=K\left(T_{1}-T_{2}\right)
\]
where
\(q\) is the heat rate, \(B t u / h r\)
\(T\) is point temperature, \({ }^{\circ} \mathrm{F}\)
K is thermal conductance, \(\mathrm{Btu} / \mathrm{hr}-{ }^{\circ} \mathrm{F}\)

K may be factored
\[
K=(G)(C)
\]
where
\(G\) is component of \(K\) which depends purely on geometry, ft
\(C\) is component of \(K\) which depends on temperatures and thermal parameters, Btu/hr-ft- \({ }^{\circ} \mathrm{F}\)
\(G\) is called the geometry factor. \(C\) is called the effective conductivity.
\(G, C\), and \(K\) in each of the two coordinate directions are printed as matrices of point values. The value given for a point is the value between that point and its next higher indexed neighbor. \(C\). and \(K\) may be printed efther for the last iteration only or for all iterations where basic output is printed.

If the option of printing \(G\) is used, node volumes will also be printed as a matrix of the volumes associated with each of the points.

\subsection*{3.4.3 Heat Rates and Heat Fluxes}

The heat rates defined in 3.4 .2 and the associated heat fluxes are printed in the same form as the effective conductivities. The heat fluxes, \(q^{\prime \prime}\), are determined from the heat rates by
\[
q^{\prime \prime}=\frac{q}{A}
\]
where \(A=\) heat flow area at the grid line between the points, \(f t^{2}\). Heat rates and heat fluxes may be printed either for the last iteration only or for all iterations where basic output is printed.

\subsection*{3.4.4 Surface Temperatures}

Surface temperatures are printed as integers using the conversion previously given for the point temperatures. The values printed are the temperatures of the gap* 1 ines which are external boundaries and the temperatures of the portions of gap lines which are adjacent to gaps or coolant blocks or are coincident with material interfaces. This output is given as two separate matrices, one for the gap lines of each coordinate direction. The point indices of the other direction and the grid line indices of the gap lines are printed along the edges of the matrices. Both the grid line and point indices are related to their coordinate system values in a separate output tabulation.

In the case of a gap line adjacent to a gap or coincident with a material interface, there are two surface temperatures at any location along the gap line. They will be printed as a pair of numbers in a single matrix location. No surface temperatures are calculated over portions of gap lines which are not actually adjacent to a gap or are not coincident with a material interface coolant. These locations are therefore blank in the printed matrices. Surface temperatures may be printed either for the last iteration only or for all iterations where basic output is printed.

\footnotetext{
* Gap lines are special cases of grid lines as defined in 2.1.6.
}

\subsection*{3.4.5 Punched Output}

The point temperature and coolant terminal temperature results of the last iteration may be obtained as a deck of punched cards. This card deck may then be used as initial temperature input for another computer run as described in 2.2.2.

If convergence is not attained for a problem being run under the steady-state option, the last available set of temperatures will be punched automatically. For all other cases, punched temperatures are produced only if the punch option is used.

Card images of the punched temperature deck are printed in the output.

\subsection*{3.4.6 Tape Output}

A tape containing problem geometry and temperature data may be created as a part of the output. The data and its arrangement on the tape are described in Appendix \(G\). The tape option has been designed primarily to automate the input of code results to plotting routines.

\subsection*{3.4.7 Gap Thicknesses}

If the gap expansion option is being used (see Section 2.6), the gap thicknesses will be printed for both coordinate directions. The printing may be done either for the last iteration only or for all iterations where basic output is printed.

\subsection*{3.5 PRINT FORMAT CONTROL}

The normal format for printing output matrices is with the \(X\) (or radial) coordinate increasing from left to right across the page and \(Y\) (or theta, or axial) coordinate increasing from bottom to top
up the page. An option is available through which the latter directions can be reversed so that all matrices are oriented in the fourth quadrant. of the coordinate system being used.

\subsection*{3.6 SPECIAL OUTPUT}

The program contains a subroutine named CUSTOM which is always called inmediately after the printing of basic output. This subroutine contains all the common elements of the program but has no executable statements other than RETURN. By compiling the required Fortran instructions into CUSTOM, calculations using the variables in common may be performed and the results printed. A list of names which must not be defined in CUSTOM is given in Appendix D.
4. INPUT FORMULATION

The input is subdivided into data groups. Instructions for formulating each of these groups are given in Section 4.1. Instructions for arranging the groups into a "ready to run" card input are given in Section 4.2. A further aid to input formulation is the input card listing given for the example problem of Appendix \(H\).

\subsection*{4.1 DATA GROUPS}

Card descriptions, pertinent dimensional limits and special notes applicable to setting up each of the input groups are given below. The maximum values of some of the dimensional limits are given in terms of the symbols IQ, JQ, IGQ, JGQ, and LQ. The definitions of these symbols and their assigned values are discussed in Appendix E.
4.1.1 Thermal Parameter Functions (See all of Section 2.5)

\section*{Card Description}

The arithmetic statement functions are given on individual cards (and continuations if required) according to the rules of Fortran \(V\). This data group must contain only arithmetic statement functions as described in Section 2.5, and coment cards. The group of functions for materials and gases may be arranged in any order. The group of functions for coolants may also be arranged in any order. An exception is that a statement function used on the right hand side of an equal sign must have been defined previously within that group.

\section*{Limits on the Number of Functions}

No arithmetic statement functions need be given. In this case, all thermal parameters relevant to the problem will have the constant standard values defined in 2.5.3.

There may be more arithmetic statement functions than those for the 375 function names defined in 2.5.1. This can occur when additional arithmetic statement functions are used as described in 2.5.6. Therefore, the allowable maximum number of arithmetic statement functions cannot be generally specified.

NOTES:
1. Only those thermal parameters which are relevant to the problem need be defined.
2. Radiation between a set of internal coolant block boundaries will be totally excluded from the calculation whenever the emissivity of the material adjacent to either boundary is \(10^{-6}\) (the standard function value) or less. By "totally excluded" it is meant that the calculation will be performed using an algorithm which takes no account of radiation.
3. If the steady state option is being used, the material volumetric specific heat functions, SPEC - (X), may be omitted. If included, they will have no effect on the problem results. There is an exception to the above rule for dumy materials which are intended to retain their initial temperatures. In this case the function SPEC - (X) must be assigned a value of \(10^{6} \mathrm{Btu} / \mathrm{ft}^{3}-{ }^{\circ} \mathrm{R}\) or greater.
4. If the steady state option is being used, all time dependent functions will be evaluated at -1.0 hours.

\subsection*{4.1.2 Titles}

Each title card represents one line of title information. The title cards will be printed at the beginning of the problem output in the order of their input sequence. The first title card will be printed at the top of every output page.

\section*{Card Description}

Title cards may contain any alphanumeric information in columns 1-72. A blank card follows the title cards.

Limits

Number of title cards
\(\frac{\text { Minimum }}{1} \quad \frac{\text { Maximum }}{\text { no limit }}\)

\section*{NOTES:}
1. Each title card must contain at least one character in columns 1-72.
2. A special title card, with the characters \$WARN\$ in columns 1-6, allows the user to override the default value of the warn time, which is 20 sec . The desired warn time (in seconds) is then entered in columns \(11-12\) with integer format. See 4.3.1 for a discussion of the warn time.

\subsection*{4.1.3 Indicators}

Certain items of information required to define the problem and specify the desired output are given by means of the indicator words and word groups described below.

One of the three coordinate systems shown in Fig. 1 must be specified by means of the following indicator word groups.

\author{
Indicator \\ RECTANGULAR GEOMETRY \\ CIRCULAR GEOMETRY \\ CYLINDRICAL GEOMETRY
}

Coordinate System
cartesian
circular
cylindrical

\section*{Option Indicators}

The steady state option (Section 2.4), the gap expansion option (Section 2.6), the iterate option (Section 2.7) and any of the output options described in Sections 3.4 and 3.5 may be specified by means of the following indicators.

Indicator
STEADY STATE

ALL DECIMAL TEMPERATURES

RESISTANCES

CONDUCTIVITIES

\section*{Option}

Use the steady state option; calculate the steady state solution only.

Print decimal rather than integer temperatures for all iterations where basic output is printed.

Print geometry factors and node volumes.

Print effective conducti.vities and effective conductances for the last iteration.

ALL CONDUCTIVITIES

HEAT FLUXES

ALL HEAT FLUXES

SURFACE TEMPERATURES

ALL SURFACE TEMPERATURES

PUNCH

TAPE

INVERSE PRINT

GAP EXPANSION

\section*{Option}

Print effective conductivities and effective conductances for all iterations where basic output is printed.

Print heat rates and heat fluxes for the last iteration.

Print heat rates and heat fluxes for all iterations where basic output is printed.

Print surface temperatures for the last iteration.

Print surface temperatures for all iterations where basic output is printed.

Punch temperatures for the last Iteration.

Prepare a tape containing problem geometry data and results.

Print all output matrices with the coordinate directions reversed as described in Section 3.5.

Account for dimensional changes in gaps due to thermal expansion of materials; print gap thicknesses for the last iteration.

Indicator

ALL GAPS

CENTIGRADE

ITERATE

LONG INPUT

\section*{Option}

Used with GAP EXPANSION option; print gap thicknesses for all iterations where basic output is printed.

Print all output temperatures in degrees Centigrade.

Perform a series of steady-state calculations until a specified nodal point temperature is attained.

Accept input cards in the original, longer format (See Appendix I).

\section*{Card Description}

There is one indicator per card, starting in column 7. The indicators may be abbreviated to the first 6 characters, e.g. ALL HEAT FLUXES to ALL HE. The cards may be arranged in any order. A blank card follows the option indicators.

\section*{Limits}

The coordinate system indicator must always be given. All or none of the other indicators may be given.

NOTES:
1. The steady state, gap expansion and iterate options may require additional user specified parameters on the indicator cards. See Section 4.2, "CARD INPUT FOR A COMPUTER RUN".
2. If the long input option is used refer to Appendix I.

\subsection*{4.1.4 X Grid Lines (See 2.1.1)}

Each \(X\) (radial) grid line is defined by giving its coordinate value in inches.

\section*{Card Description}

Give the X grid lines in ascending sequence. Use format 6 E 12.4. Use as many cards as required. A blank card follows the X grid lines.

\section*{Limits}

Number of X grid lines
\(\frac{\text { Minimum }}{3} \quad \frac{\text { Maximum }}{\text { (IQ-1) }}\)

\subsection*{4.1.5 Y Grid Lines (See 2.1.1)}

Each Y (theta, axial) grid line is defined by giving its coordinate value in inches or in degrees if circular geometry is used.

\section*{Card Description}

Give the Y grid lines in ascending sequence. Use format 6E12.4. Use as many cards as required. A blank card follows the \(Y\) grid lines.

\section*{Limits}
Number of \(Y\) grid lines \(\frac{\text { Minimum }}{3} \quad \frac{\text { Maximum }}{\text { (JQ-1) }}\)

NOTES:
1. Theta grid lines may extend over a complete circle but there will be no thermal connection between points adjacent to theta \(=0^{\circ}\) and theta \(=360^{\circ}\).

\subsection*{4.1.6 Block Information (See 2.1.3 through 2.1.6 and 2.5.1)}

A block is described by the following data:
1. Material number, any of 1.0 through 15.0 , for material blocks.
2. Negative coolant number, any of -1.0 through -15.0 for coolant blocks.
3. Flow direction number for coolant blocks.
4. Depth of problem, \(H\), in inches or degrees for coolant blocks (see 2.1.4 and Fig. 3).
5. The grid line values of its boundaries given in inches or in degrees for the theta coordinate.
6. Gaps located on the high block boundaries in either coordinate direction.
a) gas thickness in inches, or in degrees for the theta coordinate
b) gas number, any of 1.0 through 15.0 for the gas contained in the gap.

The flow direction number, item 3 above, is one of the following indicators:

Indicator
1.0
2.0 parallel to the \(Y\) (theta, axial) axis 3.0 normal to the plane of the problem

\begin{abstract}
The indicators 1.0 and 2.0 are positive when the coolant is flowing in the positive coordinate direction. They are negative for flows of opposite direction. The indicator 3.0 is always positive since it is immaterial whether a normal coolant is flowing into or out of the plane of the problem.
\end{abstract}

Blocks must be specified such that every internal point is contained in some internal block and every external point is contained in some external block.

\section*{Card Description}

The data of each block are given on a set of one or two cards. Format 5El2.4, 2F6.0 is used. The sets may be arranged in any order.* A blank card follows the last set.

\section*{First Card}

Columns
1-12 low X (radial) boundary
13-24 high X (radial) boundary
25-36 low \(Y\) (theta, axial) boundary
37-48 high Y (theta, axial) boundary
49-60 material number or negative coolant number
61-66 flow direction number for a coolant block; not used for a material block
67-72 depth of problem for coolant blocks; not used for material blocks.

For external blocks, the high and low boundaries of one coordinate direction are the same and are an external boundary.

\footnotetext{
* For certain cases, the code may draw the overlay (See 3.3.1) incorrectly if the coolant blocks are not placed after the material blocks. This does not affect the problem execution.
}

\section*{Second Card}

Columns
1-12 \(X\) (radial) gap thickness on the high \(X\) boundary
13-24 \(X\) (radial) gas gas number, any of 1 though 15
25-36 \(Y\) (theta, axial) gap thickness on the high \(Y\) boundary
37-48 Y (theta, axial) gap gas number, any of 1 through 15

49-72 not used

If only one of the high block boundaries has a gap, the words for the other gap thickness and gas number are left blank. If there is neither a radial nor an axial gap, this card is omitted entirely.

Blank Card (after the last set)

Limits

\section*{Minimum}

Number of blocks:
total
5
internal 1
external
number of block
boundaries in the \(X\) direction
number of block 2 boundaries in the \(Y\) direction
number of gap lines 2 in the \(X\) direction number of gap lines 2 in the \(Y\) direction
number of materials 1
number of coolants 2
number of gases 0
2

2

Maximum

\section*{LQ}

LQ less number of external blocks

LQ less number of internal blocks
(\(\mathrm{L} Q-1\))
(JQ-1)

2 IGQ

JGQ

15
215
\(0 \quad 15\)
1. External blocks must be specified so as to completely cover all four external boundaries. The external blocks must contain only coolants. This includes the cases of the low radial boundary at 0 inches and of the high and low theta boundaries on the coincidence of \(0^{\circ}\) and \(360^{\circ}\).
2. Materials, gases, and coolants must be assigned different numbers whenever any of their corresponding thermal parameters cannot be defined identically. For coolants, the signed flow direction number is a thermal parameter within the scope of this limitation.
3. The thickness of a gap must be less than the distance between the high block boundary at which it is defined and the grid line adjacent to the low side of that boundary. This limitation is illustrated in Item a of Fig. 5. Preferably, \(t\) should be much less than d/2.
4. There may be no gaps on an external boundary or on a boundary adjacent to an internal coolant.
5. Two internal coolant blocks having the same flow direction may not have a common boundary which is parallel to that flow direction as illustrated in Item b of Fig. 5. Within the scope of this limitation, two flow directions are considered the same if they differ only in sign.
6. A coolant block must contain at least one grid line perpendicular to the flow direction of its coolant as illustrated in Item \(c\) of Fig. 5. An exception is a coolant block having normal flow.

\footnotetext{
* The information in some notes was previously given in Chapter 2 and is restated here to help prevent errors in input formulation.
}
(a) LIMITATION ON GAP THICKNESS

(c) MINIMUM GRIO LINE REQUIREMENT FOR COOLANT BLOCKS

(b) LIMITATION ON ADJACENT internal coolants

(d) ADIABATIC BOUNDARIES OF AN
INTERNAL COOLANT BLOCK

(e) LIMITATION ON USING HEAT TRANSFER COEFFICIENT AS A FUNCTION OF SURFACE TEMPERATURE FOR INTERNAL COOLANT BLOCKS H--(X) IS A FUNCTION OF ST

\[
h_{1}-h_{2} \cdot h\left(\frac{T s_{1}+r s_{2}}{2}\right)
\]
\[
H_{1} h\left(T s_{1}\right): h_{2} \cdot h\left(T s_{2}\right)
\]

Fig. 5. Gap and coolant limitations
7. For internal coolant blocks having a flow direction within the plane of the problem (1.e. not in the normal direction), heat transfer occurs only at the block boundaries which are parallel to the flow direction. This is illustrated in Item d of Fig. 5.
8. The coolant material in an internal coolant block may have a heat transfer coefficient, \(H--(X)\), which is defined as a function of surface temperature ST. If two opposite boundaries of the block are separated by at least two sets of points, the temperatures of these two boundaries will be used to calculate separate heat transfer coefficients for each. If two opposite boundaries of the block are separated by only one set of points, the average of the two boundary temperatures will be used to calculate one heat transfer coefficient which is applied to both boundaries. This limitation is illustrated in Item \(e\) of Fig. 5.
9. For coolants, the inlet temperature, flow rate and specific heat are identified by coolant number only. Thus it is not possible to specify different values of these thermal parameters for different blocks having the same coolant number. The values will be the same for all blocks and will be equal to those calculated for the coolant block which was given last in the input card sequence.
10. Coolant outlet temperatures printed in the output are identified by coolant number only. If the same numbered coolant is used in two different blocks, then the outlet temperature printed is that for the block which was given last in the block description input card sequence. However, the actual outlet temperatures used in the code will be the correct values for each block.
11. To specify different values of problem depth, \(H\), for different coolant blocks is meaningless. The \(H\) given for the last coolant block in the block description input card sequence will be used for the entire problem. If \(H\) is not specified a value of 12 inches is assumed for rectangular or circular geometry, and \(360^{\circ}\) for cylindrical geometry.
12. Normal flow coolants are allowed only if the " B " version of the code is used. See Section 5.3.

The following sections of input (4.1.7-4.1.11) are optional in that all, some or none of them may be required for a particular problem. In each case the result of omitting one is described. Note that each section contains a heading card at the beginning and a blank card at the end. These sections may be input in any order.

\subsection*{4.1.7 Specified Initial Temperatures (See 2.2.1)}

Each initial temperature region is specified by giving the values of its bounding grid lines in inches (or in degrees for the theta coordinate) and its initial temperature in \({ }^{\circ} \mathrm{F}\). All internal points must be contained within an internal point region. Only external points for which an initial temperature other than \(460^{\circ} \mathrm{R}\) is desired need be contained within an external point region.

\section*{Card Description}

The data of each initial temperature region are given on one card. Format 6E12.4 is used. There may be as many cards as necessary. A header card precedes the data and a blank card follows it.

\section*{Header Card}

Columns
7-18 INITIAL TEMP

\section*{Data Cards}
\begin{tabular}{ll}
Columns & \\
1-12 & low \(X\) (radial) bounding grid line \\
\(13-24\) & high X (radial) bounding grid line \\
\(25-36\) & low \(Y\) (theta, axial) bounding grid line \\
\(37-48\) & high \(Y\) (theta, axial) bounding grid line \\
\(49-60\) & initial temperature of the region, \({ }^{\circ} \mathrm{F}\) \\
\(61-72\) & not used
\end{tabular}

For external point regions, one set of high and low bounding grid lines are the same and are an external boundary.

\section*{Blank Card}

\section*{Limits}
```

number of internal
point regions
point regions
$\frac{\text { Minimum }}{1}$
0

```
number of external 0 number of external

Maximum
number of internal points
number of external points

\section*{NOTES:}
1. If this section of input is omitted, all temperatures except those specified otherwise in MADATA and FLøDAT will be \(0^{\circ} \mathrm{F}\) initially, unless a punched deck (4.1.11) is included.
2. Omit the header card and the blank card if this section of input is omitted.
3. If a punched deck (4.1.11) follows this section of input, the punched deck will be used as initial temperature data. If the order is reversed, the INITIAL TEMP cards will be used.
4. If this section of input is included, all internal points must be assigned a temperature.
4.1.8 Coolant Limits (see 2.5.1 and 2.5.2 under coolants)

Under the coolant thermal parameter function names given in 2.5.1, it is seen that heat transfer coefficient, mass flow rate and inlet temperature each have three separate names as; for example, the names \(H-A(X), H-B(X)\) and \(H-C(X)\) assigned to the heat transfer coefficient. The purpose of these names is to permit the functions to be defined differently in three ranges of an allowed variable. The variables and the limits of their ranges are specified in this data group. An indicator, called a dependence number, is used to identify the variable for which the ranges are being given.

\section*{Card Description}

The dependence numbers and limits for each coolant are given on a set of three cards. The sets may be in any order. Format 6E12.4 is used. A header card precedes the data and a blank card follows it.

\section*{Header Card}

Columns
7-15 FLØW DATA

Data Cards (3 per coolant)

\section*{First Card}

This card identifies the coolant and gives the limits for functions \(\mathrm{H}-\mathrm{A}(\mathrm{X}), \mathrm{H}-\mathrm{B}(\mathrm{X})\), and \(\mathrm{H}-\mathrm{C}(\mathrm{X})\). Reynolds number is the only allowed variable. Therefore, no dependence number is required.

Columns
1-12 absolute value of coolant number
13-24 Reynolds number limit 1
25-36 Reynolds number limit 2
37-48 Reynolds number limit 3
49-60 Reynolds number 1 imit 4
61-72 not used

The Reynolds number limits must be given in ascending sequence,

\section*{Second Card}

This card gives the limits for the functions FLO-A(X), FLO-B(X) and \(\operatorname{FLO}-C(X)\) and identifies the variable for which these limits are being given. The variable is identified by assigning one of the following values to the flow dependence number:
\begin{tabular}{cl}
Flow dependence number \\
0.0 & \multicolumn{1}{c}{ Meaning } \\
1.0 & \begin{tabular}{l}
no limits given; only the function \\
FLO-A \((X)\) is to be used
\end{tabular} \\
2.0 & \begin{tabular}{l}
the limits are values of current \\
time in hours \\
the limits are values of coolant \\
outlet temperature in \({ }^{\circ} \mathrm{F}\)
\end{tabular} \\
3.0 & \begin{tabular}{l}
the limits are values of coolant \\
inlet temperature in \({ }^{\circ} \mathrm{F}\)
\end{tabular}
\end{tabular}

The arrangement of values on the second card is:
\begin{tabular}{ll}
Columns & \\
\(1-12\) & flow dependence number \\
\(13-24\) & limit 1 \\
\(25-36\) & limit 2 \\
\(37-48\) & limit 3 \\
\(49-60\) & limit 4 \\
\(61-72\) & not used
\end{tabular}

If the flow dependence number is 0.0 , columns \(13-72\) are left blank. Third Card

This card gives the limits for the functions TIN-A(X), TIN-B(X) and TIN-C(X) and identifies the variable for which these limits are being given. The variable is identified by assigning one of the following values to the inlet temperature dependence number:

Inlet temperature dependence number
0.0
1.0 the limits are values of current time in hours
2.0 the limits are values of coolant flow rate in \(1 \mathrm{~b} / \mathrm{hr}\)
3.0 the limits are values of coolant outlet temperature in \({ }^{\circ} \mathrm{F}\).

The arrangement of values on the third card is:
\begin{tabular}{ll}
Columns & \\
1-12 & inlet temperature dependence number \\
\(13-24\) & limit 1 \\
\(25-36\) & 1imit 2
\end{tabular}

\section*{Columns}
\begin{tabular}{ll}
\(37-48\) & limit 3 \\
\(49-60\) & limit 4 \\
\(61-72\) & not used
\end{tabular}

If the inlet temperature dependence number is 0.0 , columns 13-72 are left blank.

Blank Card (after the last set)

\section*{Limits}

Minimum Maximum

> number of sets of coolant limit cards

0 15

NOTES:
1. If this section of input is omitted, all the flows will have Reynolds number 1 imits of \(0,10^{20}, 10^{20}\), and \(10^{20}\); a flow dependence number of 0 ; and an inlet temperature dependence number of 0 . In other words, only the functions H-A (X), FLO-A (X) and TIN-A(X) will be used. If any flow has limits different from the above default values, the three data cards must be supplied for that flow and each card must have all four limits specified.
2. Omit the header card and the blank card if this section of input is omitted.
3. The coolant inlet and exit temperature limits are given in \({ }^{\circ} \mathrm{F}\). When formulating the functions \(F L \emptyset-A, B, C(X)\) and TIN-A,B,C(X) it should be remembered that the variables TIN and TめUT, whose ranges are defined by these limits are in \({ }^{\circ} \mathrm{R}\).

\subsection*{4.1.9 Time History (See Sections 2.3 and 3.1)}

The purposes of this data group are to specify the time incrementation of the problem and to designate the iterations where basic output is to be printed. If the steady-state option is being used, this data group may be omitted. If included, it will be ignored in performing the calculation. The time incrementation is given by defining the time periods as discussed in 2.3.2. The time units used are identified by means of the following indicators:
\begin{tabular}{ccc}
Indicator & & \begin{tabular}{c}
Units \\
1.0 \\
\end{tabular} \\
& & seconds \\
2.0 & & minutes \\
3.0 & & hours
\end{tabular}

The iterations where basic output is to be printed are designated by giving a print frequency number for each time period. If the print frequency number for a time period is X .0 then basic output will be printed every Xth iteration within that period. In addition, basic output will be printed for the last iteration performed within each time period unless the print frequency for that period is 0.0 . If the print frequency for all time periods is 0.0 , then no basic output will be printed except that for the very last iteration of the problem. It is recommended that the length of each time period be made exactly divisible by its time step. If this is not done, the ends of the time periods will be adjusted as described in 2.3.2, making it difficult to obtain basic output at desired times.

\section*{Card Description}

Each time period is described on a single card. Format 6E12.4 is used. A header card precedes the data and a blank card follows it.

\section*{Header Card}
Columns
7-16 TIME STEPS
Data CardsColumns
1-12 end of period
13-24 time step
25-36 print frequency number
37-48 time unit indicator
49-72 not used

The cards must be arranged in ascending time sequence.

\section*{Blank Card}

\section*{Limits}
number of time periods \(\quad \frac{\text { Minimum }}{1} \quad \frac{\text { Maximum }}{20}\)

\section*{NOTES:}
1. All of Chapter 5 should be read before formulating the time history input for a problem.
2. If a problem is to be continued in another computer run using previously punched temperatures, the time period cards of the preceding run may, but need not, be removed.
3. If the steady-state option is being used, the time history data group may be omitted. In this case the header card and blank card must also be omitted. If time period cards are inadvertently included in the input, they will be ignored.

\section*{Card Description}

If no constants are used, this section of input may be omitted; otherwise, three cards must be supplied. In addition, a header card precedes the data and a blank card follows it.

\section*{Header Card}

Columns
7-16 PARAMETERS

\section*{Data Cards}

Give the function control constants in the sequence Al through Al8. Use format 6E12.4. Leave blank columns for any constant which is not used.

\section*{Blank Card}

NOTES:
1. Omit the header card and blank card if this section of input is omitted.
4.1.11 Previously Punched Temperatures (See 2.2.2, 2.3.1 and 3.4.5)

This data group is included only when it is desired to supersede the specified initial temperature input described in 4.1 .7 (see Notes 1 and 3 of 4.1 .7) with the point and coolant terminal temperature results of a preceding calculation. Although the required input cards are punched by the computer system, it may be desired to change
individual values on these cards. Therefore, a card description is given.

\section*{Card Description}

The deck punched by the computer system consists of three card sets arranged in the same order in which they are described below. A header card precedes the deck and a blank card follows it.

Header Card

Columns
7-18 PUNCHED TEMP

Card Set 1

There is only one card in the first card set. The format is E12.6, 3F12.1.

Columns
1-12 time, hours (notes 1 and 2)
13-24 number of radial points in the problem
25-36 number of axial points in the problem
37-48 iteration number (Notes 1 and 2)

\section*{Card Set 2}

The values contained in the second card set are the temperatures in \({ }^{\circ} \mathrm{R}\) of all the points, both internal and external, in the problem. There are as many cards as required to list all of the temperatures using format 6E12.6. The point temperatiare array is called \(T(I, J)\) where \(I\) is the \(X\) (radial) point index and \(J\) is the \(Y\) (theta, axial) point index. The values in the \(T(I, J)\) array are listed continuously with the index \(I\) varying most frequently.

\section*{Card Set 3}

The values contained in the third card set are the coolant terminal temperatures in \({ }^{\circ} R\). Inlet and outlet temperatures are given for all fifteen coolants with values of \(0.0^{\circ} \mathrm{R}\) being given for those which are not included in the problem. Format 6E12.6 is used and it follows that there are always six cards in this set. The inlet temperatures of coolants 1 through 15 are listed in order on the first three cards and their outlet temperatures are listed similarly on the last three.

\section*{Blank Card}

\section*{NOTES:}
1. The time and the iteration number given in the first card set are the values at the final iteration of the problem from which the previously punched temperatures were obtained. The time given here will be the initial time for the problem in which the previously punched temperatures are to be used. The time history data group described in 4.1 .9 must contain time periods which end at times greater than this value. Both the time and the iteration number may be set to any desired value by repunching the card on which they appear.
2. If a punched temperature deck is part of the input for a problem to be run under the steady-state option, the time and iteration number must both be zero. Zeros will always be punched for these values when the punching is done under the steady-state option.
3. The previously punched temperature deck ends with a number of blank cards. They are included to separate it from
other jobs which may precede it through the punching equipment. Remove unnecessary blank cards before using the deck.
4. Omit the header and the blank card if this section of input is omitted.

\subsection*{4.1.12 END DATA Card}

This card, consisting of the characters END DATA in columns 7-14, must be included. It is the last card of the input.

\subsection*{4.2 CARD INPUT FOR A COMPUTER RUN}

The actual input for a computer run is set up by arranging control, cards, blank cards and the previously described data groups in the sequence given below. The control cards shown are those for running on the Univac 1110 computer from the catalog file TAC2D*TFMAB-76-1 which contains the absolute element, the symbolic elements for Subroutines MADATA, FL \(\emptyset D A T\), and CUSTOM, and the relocatable elements for all other code routines. The left hand margin represents column one of these control cards.

In addition, a convenient card-by-card description of all input sections (\(4.1 .2-4.1 .12\)) is included. Formats, units, default values and short explanatory notes are provided. For a full explanation of the input the user should refer to the appropriate section.

Col. 1
\(\downarrow\)
VASG, AX TAC2D*TFMAB-76-1.
\(\nabla\) ASG,T 15,U,XXXX (Note 1)
\(\nabla C \emptyset P Y \quad\) TAC2D*TFMAB-76-1.,TPF\&
\(\nabla\) FREE \(\quad\) TAC2D*TFMAB-76-1.
\(\nabla A D D, P\). DRUM (Note 2)
VHDG, P THERMAL PARAMETER FUNCTIONS (optional)
\(\nabla F \emptyset R, W S\) MADATA/S,MADATA/S,MADATA/S (Note 3)
-20
Material and gas thermal parameter functions (4.1.1 and Note 4)
\(\nabla F \emptyset R, W S \quad F L \emptyset D A T / S, F L \emptyset D A T / S, F L \emptyset D A T / S \quad\) (Note 3)
-20
Coolant thermal parameter functions (4.1.1)
\(\nabla F \emptyset R, W S \quad \operatorname{CUST} \emptyset M / S, \operatorname{CUST} \emptyset M / S, \operatorname{CUST} \emptyset M / S \quad\) (3.6 and Note 5) -20

User supplied programming

Function Subprograms if used (see Appendix C)

DPREP
TMAP,S TAC2D/i,TAC2D/ABS,TAC2D/i
where \(1=A\) or \(B\) (Note 6)

DPRT, T
VHDG,P any alphanumeric heading in cols. 13-72 (Note 7)
\(\nabla \times\) TAC2D/ABS (Note 8)

Input sections \(4.1 .2-4.1 .12\)
1. Include this card only when the option TAPE (3.4.6, 4.1.3 and Appendix G) is being used. \(X X X X=\) reel number.
2. The drum card is required only when the steady-state or gap expansion option is being used. If it is included when none of these options is being used, there will be no computer charge for drum usage.
3. The \(S\) option may be omitted (\(\nabla F \emptyset R, W\)) to suppress the listing of MADATA and/or FLØDAT; however, FORTRAN diagnostic messages will also be suppressed. It is recommended that the \(S\) option be used during the initial check-out of a run. The FOR cards for Subroutines MADATA and FLØDAT need not be included in a case where no thermal parameter functions are given.
4. If the steady-state option is being used, both the material volumetric specific heat functions SPEC-(X) (except as discussed in 4.1.1, Note 3) and the time history data group may be omitted. If included, they will be ignored.
5. Omit this section if no additional programming is required.
6. MAP card
a. Either the " \(A\) " or the " \(B\) " version of the TAC2D code may be used. Refer to Section 5.3 for a discussion of the differences between the two versions.
b. The \(S\) option lists address limits for the subroutines and is useful in debugging a run. The \(N\) option will suppress this listing.
c. The MAP card is not required if no FOR cards have been included.
7. This heading card, which is optional, causes the specified heading to be printed along a single line at the top of every output page produced after program execution. Printed on the next line will be the first problem title card.
8. The name TAC2D/ABS appearing on the execute card is the name of the absolute element in the standard versions of the code. For special versions this name may be different. The name of the execute card must be the same as the name of the absolute element on the version being used.
\begin{tabular}{|l|l|}
\hline Word & \(1-12\) \\
\hline Column & \(1-72\) \\
\hline Format & 12 A 6 \\
& \\
\begin{tabular}{l}
Title Cards \\
Section 4.1.2
\end{tabular} & Any Descriptive Title \\
& \\
\hline Symbol & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Word & 1 & & 2 & \\
\hline Column & 1-6 & 7-10 & 11-12 & \\
\hline Format & A6 & & 12 & \\
\hline Warn Time Card Section 4.1.2 & \$WARN\% & \[
\begin{aligned}
& \text { B } \\
& \text { L } \\
& \text { A } \\
& \text { N } \\
& \text { K }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Warn Time } \\
& (\mathrm{Sec})
\end{aligned}
\] & \\
\hline Symbol & ZZ(1) & & IWRN & \\
\hline
\end{tabular}

Optional. If
omitted, IWRN \(=\)
20. This card
may be located anywhere within the title card set.
\begin{tabular}{|l|l|}
\hline & \\
\hline & \\
\hline & \\
& \\
& \\
& \\
\hline & \\
\hline
\end{tabular}

Required.
\begin{tabular}{|c|c|c|}
\hline Word & 1 & 2-12 \\
\hline Column & 1-6 & 7-72 \\
\hline Format & & 1146 \\
\hline \begin{tabular}{l}
Option Cards \\
Section 4.1.3
\end{tabular} & B
L
A
N
K & Options. See following cards for specific format of certain options. The indicators, beginning in col. 7, may be abbreviated to the first six characters. \\
\hline Symbol & & OPTION(I) \\
\hline
\end{tabular}

Use as many option cards as desired. They may be in any order. One option card indicating the geometry. type is required.

Required.
\begin{tabular}{|c|c|c|c|}
\hline ```
Y Grid Line
 Cards
Section 4.1.5
``` & \[
\begin{gathered}
\text { Axial-Y-theta } \\
\text { grid line } 1 \\
\left(\text { in. or }{ }^{\circ}\right)
\end{gathered}
\] & Axial-Y-theta grid line 2
\[
\left(\text { in. or }{ }^{\circ}\right)
\] & ...etc. \\
\hline Symbol & 2L(1) & ZL(2) & ...etc. \\
\hline
\end{tabular}

Six grid lines per card.
Minimum \(=3\)
Maximum \(=\mathrm{JQ}-1\)
(See Appendix
E)
\begin{tabular}{|l|l|l|}
\hline & & \\
\hline & & \\
& & \\
& & \\
\hline
\end{tabular}

Required.
\(\qquad\) \(3: x+x\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Word & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline Column & 1-12 & 13-24 & 25-36 & 37-48 & 49-60 & 61-66 & 67-72 & \\
\hline Format & E12,4 & E12.4 & E12,4 & E12,4 & E12.4 & E12.4 & E12,4 & \\
\hline Block Description Card 1 Section 4.1.6 & \begin{tabular}{l}
Low \\
radial-X \\
boundary \\
of block \\
(in.)
\end{tabular} & \begin{tabular}{l}
High \\
radial-X \\
boundary \\
of block \\
(in.)
\end{tabular} & Low axial-Ytheta boundary of block (in. or \({ }^{\circ}\) ) & High axial-Ytheta boundary of block (in. or \({ }^{\circ}\) ) & Material no. or negative coolant no. & Coolant flow direction no. & Problem depth (in. or \({ }^{\circ}\) ) & \\
\hline Symbol & RBL (K) & RBH (K) & ZBL (K) & ZBH(K) & MB (K) & IPATH (N) & HEIGHT & \\
\hline
\end{tabular}

Cols. 61-72 may be specified only for coolant blocks. If left blank, HEIGHT defaults to \(360^{\circ}\) (cylindrical geometry) or 12 in. (rectangular, circular geometry).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Word & 1 & 2 & 3 & 4 & \\
\hline Column & 1-12 & 13-24 & 25-36 & 37-48 & \\
\hline Format & E12.4 & E12.4 & E12.4 & E12.4 & \\
\hline Block Description Card 2 Section 4.1.6 & Radial-X gap thickness (in.) & \begin{tabular}{l}
Radial-X \\
gap \\
material \\
no.
\end{tabular} & Axial-Ytheta gap thickness (in. or \({ }^{\circ}\) ) & Axial-Ytheta gap material no. & \\
\hline Symbol & RDG(K) & MGR(K) & ZDG (K) & MGZ (K) & \\
\hline
\end{tabular}


Required.

The following sections (4.1.7-4.1.11) may be input in any order
\begin{tabular}{|c|c|c|c|}
\hline Word & 1 & 2-3 & \\
\hline Column & 1-6 & 7-18 & \\
\hline Format & & 2A6 & \\
\hline \begin{tabular}{l}
Initial \\
Temperature Heading Card Section 4.1.7
\end{tabular} & \[
\begin{aligned}
& \text { B } \\
& \text { L } \\
& \text { A } \\
& \text { N } \\
& \text { K }
\end{aligned}
\] & INITIAL TEMP & If this card and the next set of cards are-omitted, all temperatures (except those specified in MADATA and FLøDAT) will be \(0^{\circ} \mathrm{F}\) initially, unless a punched deck (4.1.11) is used. \\
\hline Symbol & & OP( I\()\) & \\
\hline
\end{tabular}

\section*{Optional (see} explanation)

If this card and the next set of cards are-omitted, all temperatures (except those specified in MADATA deck (4.1.11) is used.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & Word & 1 & 2 & 3 & 4 & 5 & \\
\hline & Column & 1-12 & 13-24 & 25-36 & 37-48 & 49-60 & \\
\hline & Format & E12.4 & E12.4 & E12.4 & E12. 4 & E12.4 & \\
\hline \multirow[t]{2}{*}{-} & \begin{tabular}{l}
Initial \\
Temperature \\
Data Cards \\
Section 4.1.7
\end{tabular} & \begin{tabular}{l}
Low \\
radial-X \\
boundary \\
of region (in.)
\end{tabular} & \begin{tabular}{l}
High \\
radial-X \\
boundary \\
of region (in.)
\end{tabular} & \begin{tabular}{l}
Low \\
axial-Y- \\
theta \\
boundary \\
of region \\
(in. or \({ }^{\circ}\) )
\end{tabular} & High axial-Ytheta boundary of region (in. or \({ }^{\circ}\) ) & Temperature of region \(\left({ }^{\circ} \mathrm{F}\right)\) & - \\
\hline & Symbol & RMIN & RMAX & 2MIN & 2MAX & TEM & \\
\hline
\end{tabular}

Optional (see previous explanation). Use as many cards as necessary.
\begin{tabular}{|c|c|}
\hline & \\
\hline & \\
\hline & BLANK CARD \\
& \\
& \\
& \\
\hline
\end{tabular}

Required only if preceding set of cards is included.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Word & 1 & 22 & 3 & 4 & 5 & \\
\hline Column & 1-12 & 13-24 & 25-36 & 37-48 & 49-60 & \\
\hline Format & E12, 4 & E12, 4 & E12.4 & E12.4 & E12.4 & \\
\hline \begin{tabular}{l}
Coolant Limits Card 3 \\
Section 4.1.8
\end{tabular} & Inlet temperature dependence no. & \[
\begin{aligned}
& \text { Limit } 1 \\
& (\mathrm{hr}, 1 \mathrm{~b} / \mathrm{hr} \\
& \text { or } \left.{ }^{\circ} \mathrm{F}\right)
\end{aligned}
\] & \[
\begin{gathered}
\text { Limit } 2 \\
(\mathrm{hr}, 1 \mathrm{~b} / \mathrm{hr} \\
\left.\mathrm{or}{ }^{\mathrm{o}} \mathrm{~F}\right)
\end{gathered}
\] & \begin{tabular}{l}
Limit 3 \\
(hr, lb/hr or \({ }^{\circ} \mathrm{F}\) )
\end{tabular} & \[
\begin{gathered}
\text { Limit } 4 \\
(\mathrm{hr}, \mathrm{lb} / \mathrm{hr} \\
\text { or } \left.{ }^{\circ} \mathrm{F}\right)
\end{gathered}
\] & \\
\hline Symbol & \(\operatorname{TINDEP}\) (N) & TLIM1 (N) & TLIM2(N) & TLIM3(N) & TLIM4(N) & \\
\hline
\end{tabular}

Optional Ifits for inlet temperature functions. See heading card.

\begin{tabular}{|c|c|c|c|}
\hline Word & 1 & 2-3 & \\
\hline Column & 1-6 & 7-16 & \\
\hline Format & & A6, \({ }^{\text {a }}\) & \\
\hline Time History Heading Card Section 4.1.9 & \[
\begin{aligned}
& \text { B } \\
& \text { L } \\
& \text { A } \\
& \text { N } \\
& \text { K }
\end{aligned}
\] & TIME STEPS & This card and the following set of cards are required only for a transient run. If included with a steady state run they will be ignored. \\
\hline Symbol & & OP(I) & \\
\hline
\end{tabular}
explanation)
Required only if preceding set of cards has been included. It is placed after the final group of three
\begin{tabular}{|c|c|c|c|c|c|}
\hline Word & 1 & 2 & 3 & 4 & \\
\hline Column & 1-12 & 13-24 & 25-36 & 37-48 & \\
\hline Format & E12. 4 & E12. 4 & E12.4 & E12.4 & \\
\hline Time History Data Cards Section 4.1.9 & End of time period \(M\) (sec, min or hr ) & \begin{tabular}{l}
Time step \\
(sec, min or hr )
\end{tabular} & Print frequency number & \begin{tabular}{l}
Unit \\
indicator \\
\(1.0=\mathrm{sec}\) \\
\(2.0=\mathrm{min}\) \\
\(3.0=\mathrm{hr}\)
\end{tabular} & . \\
\hline Symbol & FTIME (M) & DTIME(M) & ITAPE(M) & IUNIT & \\
\hline
\end{tabular}


Required only if preceding set of cards has been included.
\begin{tabular}{|c|c|c|c|}
\hline Word & 1 & 2-3 & \\
\hline Column & 1-6 & 7-16 & \\
\hline Format & & A6,A4 & \\
\hline \begin{tabular}{l}
Function Control \\
Constants \\
(Parameters) \\
Heading Card \\
Section 4.1.10
\end{tabular} & \[
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~L} \\
& \mathrm{~A} \\
& \mathrm{~N} \\
& \mathrm{~K}
\end{aligned}
\] & PARAMETERS & Omit this and the following cards if the parameters are not used. A total of 18 parameters is allowed, 6 per card. If any parameter is specified, all-three cards must be included. \\
\hline Symbol & & OP (I) & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|}
\hline Word & 1 & 2 & ...etc. \\
\hline Column & \(1-12\) & \(13-24\) & ...etc. \\
\hline Format & E12.4 & E12.4 & ...etc. \\
\hline & & \\
\begin{tabular}{l} 
Function Control \\
Constants \\
Data Cards \\
Section 4.1.10
\end{tabular} & \begin{tabular}{l} 
Value of \\
parameter \\
Al
\end{tabular} & \begin{tabular}{l} 
Value of \\
parameter \\
A2
\end{tabular} & \(\ldots\). ..etc. \\
& & & \\
\hline Symbol & & \\
\hline
\end{tabular}

Optional. If
included, this set must have
three cards.
See previous
remarks.


Required only if preceding set of cards
has been
included.
\begin{tabular}{|c|c|c|c|}
\hline Word & 1 & 2-3 & \\
\hline Column & 1-6 & 7-18 & \\
\hline Format & & 2 A 6 & \\
\hline \begin{tabular}{l}
Previously \\
Punched \\
Temperatures \\
Heading Card \\
Section 4.1.11
\end{tabular} & \[
\begin{aligned}
& \mathrm{B} \\
& \mathrm{~L} \\
& \mathrm{~A} \\
& \mathrm{~N} \\
& \mathrm{~K}
\end{aligned}
\] & PUNCHED TEMP & This card and the following cards are required if a punched deck specifies the initial temperatures. If a punched deck follows the INITIAL TEMP cards (4.1.7), the punched deck is used. If the INITIAL TEMP cards follow the punched deck, the INITIAL TEMP cards are used. \\
\hline Symbol & & OP(I) & \(\because\) \\
\hline
\end{tabular}

Optional. See explanation.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Word & 1 & 2 & 3 & 4 & \\
\hline Column & 1-12 & 13-24 & 25-36 & 37-48 & \\
\hline Format & E12.6 & F12.1 & F12.1 & F12.1 & \\
\hline \begin{tabular}{l}
Previously \\
Punched \\
Temperatures \\
Card 1 \\
Section 4.1.11
\end{tabular} & \begin{tabular}{l}
Current \\
time \\
(hr)
\end{tabular} & Number of radial points in the problem & Number of axial points in the problem & Iteration number & \\
\hline Symbol & CURTI & IAMAX & JAMAX & NITER & \\
\hline
\end{tabular}

Optional. See
explanation on
heading card.
This card is
the first card
of a punched
deck.


Optional. See explanation on heading card.


Required only if the preceding set of cards has been included.


\subsection*{4.3 PERFORMANCE OF A COMPUTER RUN}

\subsection*{4.3.1 Execution Time and Printed Page Limits for Use With the Univac 1110 Computer}

The maximum allowed execution time and the maximum number of pages of printed output must be included in the run request for a problem. The program calls the computer library subroutine WARN before beginning each iteration. In WARN, the elapsed running time is compared with the allowed execution time. When the difference between the two becomes less than the user specified warning time, no further iterations are performed. Instead, the program is directed to preparation of basic and specified optional output (including punched temperatures) for the current iteration. A warning time of 20 seconds is automatically assigned at the beginning of the run and should be adequate to allow for preparation of all possible output. To change this value, see 4.1.2. Note that the warning time is effectively subtracted from the allowed execution time. If, for instance, warning and allowed execution times of 10 and 300 seconds, respectively are given, the time available to complete the calculation is only 290 seconds. It is good practice to give a warning time so that none of the available results will be lost if the required execution time exceeds the maximum specified.

\subsection*{4.3.2 Error Messages}

If the calculations of a problem cannot be performed according to the logic of the code, error messages will be printed. These are of two types; system error messages and program error messages. System error messages on the Univac 1110 give a description of some
abnormal condition within the computer system. An example is the words "floating point overflow at" followed by an octal number which is the instruction address where the overflow occurred. Program error messages originate from write statements within the program itself. They are printed when some rule of input formulation has been violated and when difficulty is encountered in performing the calculations. Diagnostic information is provided with certain error messages to aid debugging; for other error messages only identifiers consisting of the subroutine name from which the message was written and the message number are printed. These identifiers are related to error descriptions in Appendix A.

\section*{5. TRUNCATION AND ROUNDOFF ERRORS}

\subsection*{5.1 STABILITY OF SOLUTION}

\subsection*{5.1.1 Basic Considerations}

The solution of the matrix of point temperatures will become unstable when the temperature change at some point is greater than that required for thermal equilibrium with its four neighboring points. The stability criterion for explicit methods of solution is
\[
\Delta t_{i}=\frac{C_{i}}{\sum_{j=1}^{4} k_{j i}}
\]
where
\(\Delta t_{i}\) is the maximum stable time step for point \(i\), hr
\(C_{i}\) is the thermal capacitance of point \(i, B t u /{ }^{\circ} R\)
\(K_{j i}\) is the thermal conductance between point 1 and its
neighboring point \(j, B t u / h r-{ }^{\circ} R\)

In TAC2D, an implicit method of solution is used for which the stability criterion cannot be clearly defined. It can only be stated that the stable time step is proportional to the same parameter as for an explicit formulation. That is,
\[
\Delta t_{i} \alpha \frac{C_{i}}{\sum_{j=1}^{4} K_{j i}}
\]

As will be discussed in 5.2.2.3, the temperature calculation for the . points in coolants is decoupled from that for the points in materials. The implicit solution is performed only for the material point temperatures. The coolant point temperatures are calculated after the material point temperatures; however, this calculation may have an influence on stability.

If the time step, \(\Delta t\), is sufficiently greater than \(\Delta t_{i}\), the error due to instability at point i will appear as a diverging oscillation. Although the value of \(\Delta t\) at which this occurs cannot be predicted for the method of solution used in TAC2D, it will be referred to as \(\Delta t^{*}\).

A most desirable approach to the stability problem would be to keep time steps less than the mindmum value of \(\Delta t_{i}\) among all material points in the problem. This approach is not possible because \(\Delta t_{i}\) values cannot be computed beforehand for the implicit method of solution used. However, the previously stated proportionality provides some qualitative basis upon which it may be endeavored to make all \(\Delta t_{i}\) values as large as possible in designing the calculation model for any given problem.

\subsection*{5.1.2 Practical Approaches}

In steady-state calculations, the transient solution is not of interest. Stability related errors which may occur because \(\Delta t\) exceeds some \(\Delta t_{i}\) are not important so long as a solution which satisfies thermal equilibrium is finally obtained. The only concern is that \(\Delta t\) always remains less than \(\Delta t^{*}\) so that diverging oscillations will not develop and cause the calculation to be terminated before reaching steady state. The code includes a steady state option which may be used to obtain steady state solutions efficiently. Under this option, described in Section

2,4 , the variable \(\Delta t\) takes on values approaching \(\Delta t *\). Because it no longer has any significance as a unit of time, it is renamed an "iteration parameter". It is used to perform the computations up to a point where the approximate steady state solution has been reached. This iteration parameter is obtained by an automated process wherein it is increased for each iteration unless current results indicate that diverging oscillations are beginning to occur. In this case, it is reduced.

The stability related error which is incurred when \(\Delta t\) exceeds \(\Delta t_{i}\) at points \(i\) is a part of the transient solution. Therefore, if the transient solution is of interest, \(\Delta t\) much be chosen sufficiently small that this error becomes neglibigle. As previously stated, the \(\Delta t_{i}\) values cannot be calculated for the implicit method of solution used in TAC2D. However, the initial minimum value of \(\Delta t_{i}\) over the points 1 must be less than the initial value of \(\Delta t *\), which can be bracketed for any problem by running a time test case. The problem is run, starting at time zero, through successive time periods each of which is subdivided by a larger time step than that of the period which precedes it. A time history suggested by experience is:
\begin{tabular}{cc} 
End of Time Period & \\
\cline { 1 - 3 } .01 sec & \\
0.1 sec & .001 sec \\
1.0 sec & 0.1 sec \\
10.0 sec & 1.0 sec \\
100.0 sec & 10.0 sec \\
10.0 min & 1.0 min \\
30.0 min & 2.0 min \\
80.0 min & 5.0 min
\end{tabular}

Within one of these time periods, diverging oscillations should develop and terminate the problem. A dump of the common element MISCXX is specified as described in Appendix•F and from this dump,
the time period within which the problem terminated can be identified. The time step values of this and the preceding time periods are the limits of a range within which the infial value of \(\Delta t^{*}\) should lie. It is recommended that the problem be run with time steps no greater than one-half the mean value of these two limits. If thermal parameters which determine the \(C_{i}\) and \(K_{j i}\) in the proportionality of 5.1.1 are strongly temperature and/or time dependent, it is possible that both \(\Delta t^{*}\) and the \(\Delta t_{i}\) can decrease as the calculation progresses. In such, cases, the time step value indicated above should be gradually reduced throughout the calculation. The procedure outlined above is intended only to provide an approximate estimate of the maximum time step which may be used. Assurance that errors related to stability are negligible within a transient solution can be obtained only by rerunning the problem with smaller time steps until the results obtained at corresponding times do not differ appreciably.

\subsection*{5.2 FINITE DIFFERENCE FORMULATION}

All results will contain errors because distance dependent quantities are treated as constant over finite intervals rather than as continuously distributed. Transient results contain further errors because time dependent quantities are treated in the same manner. Those sources of error which could affect calculation results most significantly are discussed below. For a more detailed discussion, see any standard reference such as Ref. 5. Errors due to all of these sources will become negligible if time steps andor grid spacing are made sufficiently small.

\subsection*{5.2.1 All Results}
5.2.1.1. Grid Spacing. There is always an error which is due to the fact that thermal conductances connect discrete points while thermal capacitances and heat sources are considered as being concentrated at
these points, The error cannot be described in general terms. The data of Fig. 6 provides a rough guideline for setting up the grid spacing of a problem but it should be regarded as quantitative only for the onedimensional steady state solution on which it is based.

\subsection*{5.2.2 Transient Results}
5.2.2.1 Nonlinearity in Time. The heat balance equations which are solved for the material point temperatures are formulated under the assumption that these temperatures vary linearly with time over each time step. The error in the transient solution due to this assumption remains negligible only if the time steps are taken sufficiently small.

\subsection*{5.2.2.2 Evaluation of Time and Temperature Dependent Quantities.}

Time and temperature dependent components of the conductances, capacitances and heat sources are evaluated only once for each iteration. Time dependent quantities are evaluated at the time midpoint of the iteration. Temperature dependent quantities to be used in a given iteration are evaluated from the temperatures at the beginning of the iteration (i.e. the temperature results of the preceding iteration).

Particular caution should be used when a coolant inlet temperature is a function of a coolant exit temperature since the two will be out of phase by the amount which exit temperature changes over the current iteration. If \(N\) coolants are interconnected as discussed in 2.5.4, the inlet temperature of the Nth coolant will be \(N\) iterations out of phase with the current iteration. Large errors can be developed unless the time steps are taken appropriately small. As explained in 2.3.3, some variables have arbitrary initial values on the first iteration of a problem, and therefore, this first iteration is automatically


Fig. 6. TAC2D code - error in steady state centerline temnerature for an infinitely long cylinder with heat generation as a function of uniform grid spacing
taken over an extremely small time step. Among these variables are coolant inlet temperatures and coolant block boundary temperatures. From this and the preceding discussion, it follows that if there are \(N\) interconnected coolants, then \(N\) iterations must be performed before all have a real inlet temperature. Therefore, time step input should include \(N-1\) extremely small (i.e. \(1 \times 10^{-10}\) sec time step) iterations. As explained in 2.2.2, a previously punched temperature distribution includes real initial values for coolant inlet and exit temperatures. Therefore, when previously punched temperature input is included for a problem with interconnected coolants, these additional small initial iterations are not required.

\begin{abstract}
5.2.2.3 Solution for Coolant Temperatures. In solving for the remperatures of material points, the temperature variation of coolant points over the time step is neglected. The coolant point temperatures remain constant while the solution for the material points is performed. The coolant point temperatures are then calculated to satisfy a heat balance with the material points adjacent to the coolant block boundaries. Particular attention must be given to choosing appropriately small time steps when coolant temperatures are expected to change rapidiy.
\end{abstract}

\subsection*{5.3 RADIATION-TAC2D VERSIONS A AND B}

The current TAC2D program contains two versions; \(A\) and \(B\). The principal difference between them is in the method of computing the radiation across an internal coolant block. The \(B\) version uses an effective heat transfer coefficient method which may lead to instabilities. The A version was developed to eliminate these instabilities and handles the radiation by treating it as a heat source. However, normal coolants cannot be used with this version.

Since the \(B\) version is the earlier of the two, it is discussed first.

\subsection*{5.3.1 The B Version}

Referring to the remarks of Section 5.2.2.3, the error in the solution for coolant temperatures may be intensified when there is radiation across an internal coolant block. In the B version of TAC2D the heat transported by radiation at an internal coolant block boundary is accounted for in the value used for the overall conductances adjacent to that boundary. Whenever radiation is present, the unit value of the overall conductance between a material point and an internal coolant point contains a component
\[
h_{r}=\frac{f_{1-2}\left(T_{s_{1}}{ }^{4}-T_{s_{2}}{ }^{4}\right)}{T_{1}-T_{c_{1}}}
\]
where
\(h_{r}\) is the component of overall unit conductance representing radiation, \(B t u / h r f^{2}{ }^{\circ} R\)
\(\mathrm{T}_{1}\) is the temperature of the material point, \({ }^{\circ} \mathrm{R}\)
\(\mathrm{T}_{\mathrm{c}_{1}}\) is the temperature of the internal coolant point adjacent to the material point, \({ }^{\circ} \mathrm{R}\)
\(T_{S_{1}}\) is the local temperature of the internal coolant block boundary separating the material point at \(\mathrm{T}_{1}\) and the coolant point at \(\mathrm{T}_{\mathrm{c}_{1}},{ }^{\circ} \mathrm{R}\)
\(T_{s_{2}}\) is the local temperature of the internal coolant block boundary directly opposite the location of \(\mathrm{T}_{\mathrm{s}_{1}},{ }^{\circ} \mathrm{R}\)
\(\boldsymbol{T}_{1-2}\) is the overall interchange factor for one-dimensional radiation between the temperatures \(\mathrm{T}_{\mathrm{S}_{1}}\) and \(\mathrm{T}_{\mathrm{S}_{2}}\), dimensionless

Within a given iteration, the \(T_{1}\) used to calculate \(h_{r}\) is the value from the preceding iteration, whereas the \(T_{1}\) used to calculate coolant temperatures is the value obtained from the current iteration.

The result is that when coolant temperatures are calculated there is an inconsistency between \(h_{r}\) and the value of \(T_{1}-T_{c_{1}}\) on which \(h_{r}\) is based. In calculations where an internal coolant temperature closely approaches the adjacent material temperature, \(h_{r}\) becomes large and also sensitive to very small changes in \(T_{1}-T_{c}\). Under this condition, an unusually large error may be incurred in the calculation of coolant temperatures. Therefore, in problems where internal coolant temperatures, approach adjacent material temperatures, particular attention should be given to eliminating any dependent of transient results upon the size of the time step.

The error described may become so large that the calculation is teminated due to some condition such as a floating point overflow. So that all such problems may be run to completion, the code includes the following checks and arbitrary corrective measures which are applied in calculating overall conductances and coolant temperatures for the case of radiation across an internal coolant block:
1. All values of \(T_{1}-T_{C_{1}}\) are checked before overall conductances between materials and internal coolants are calculated. At locations where \(\left|T_{1}-T_{C_{1}}\right|<0.10^{\circ} \mathrm{R}\) on either boundary of the coolant block, all heat transfer by radiation is excluded for the iteration being performed.
2. The exit temperature calculated for each coolant node is checked to determine if it lies within limits dictated by the inlet temperature and the adjacent material point temperatures. If it is outside these limits the point (i.e. the mean) and the exit temperatures for the node are set equal to the inlet temperature. In other words, if an error is detected, the coolant node is treated as being adiabatic for the current iteration. This is done so that coolant temperature errors will not be propagated to adjacent coolant nodes.

Unless the steady state option is being used, one of the error messages given in Appendix A under Subroutines CONDUC and COOL is printed whenever either of the above corrective measures is applied. If the steady state option is being used, the messages are printed only when the corrective measures are applied during the smoothing iterations described in Section 2.4. The messages give the times and locations where corrective measures were applied so that if they are printed some judgement as to the validity of results can be made.

Instabilities may result from these corrective measures since radiation may be included on one iteration and neglected on the next iteration. If results are not considered satisfactory, the corrective measures can usually be eliminated from the solution by rerunning the problem with smaller time steps.

\subsection*{5.3.2 The A Version}

In the A version of TAC2D the effective heat transfer conductance method is replaced by a method whereby radiation is treated as energy source and sink terms at the nodes immediately adjacent to the coolant block: The calculation procedure at each iteration or time step is performed by first calling subroutine RAD which performs the following calculations:
1. The current net radiative heat flux between the adjacent materials at each section of surface along the flow direction is evaluated and stored for later use in evaluating surface temperatures.
2. At the same time, the material nodes adjacent to this section of the flow channel are identified and the internal heat generation rates for these nodes are increased or decreased by an amount equal to the radiative heat transfer \(q_{r}\) (see Section 2.1.4).

The RAD subroutine calls another subroutine AREA to evaluate the area used to calculate the net heat transfer rate. The TAC2D code then proceeds to calculate the new diffusion node temperatures as in the \(B\) version except that the calculation of an effective thermal conductance at a radiative fluid flow boundary is not performed. Also, the calculation procedure deviates slightly from the \(B\) version in the calculation of the new fluid temperature and material surface temperatures at the new time step. With the A version the material surface temperatures are recalculated simultaneously with the fluid temperatures while treating the previously stored radiative heat transfer rates as known quantities. By using the previously calculated radiation term, the necessity of iterating for surface temperatures in terms containing the temperature to the fourth power is eliminated. This procedure is only in error if the surface temperatures change by large magnitudes during a time step. However, the error is not accumulative. The result is only in error in that the radiative transport calculation lags the thermal diffusion calculation by a single time step. The error can be made as small as desired by appropriately reducing the time steps. There is no error when steady state is reached.

The calculation begins the next time step by evaluating the new radiative heat transfer rate and continues through the steps as described above.

The results of test cases utilizing this radiation algorithm show that (1) the predicted temperature distributions are the same as those predicted by the \(B\) version utilizing the effective conductance method when there were not fluid temperatures equal to adjacent material temperatures, and (2) the method is capable of handling cases where the temperature of the fluid and adjacent: materials are identical, when the other method failed to produce acceptable results.

This radiation algorithm can introduce some errors in the results if a large percentage of the energy radiated to a block is convected away by the coolant, i.e., it is not conducted through the block. This error can be made totally negligible if grid lines are placed near the radiating boundaries, \(1 . e .\), the heat sources are placed near the surface of the block.

A restriction on the use of the \(A\) version is that it cannot be used with problems involving normal coolants. If this is attempted, an error message is printed and program execution terminates. For normal coolant problems the \(B\) version must be used.

\subsection*{5.3.3 One-Dimensional Treatment of Radiation}

In both versions \(A\) and \(B\) the radiation across gaps and internal coolant blocks is calculated under assumptions consistent with onedimensional radiation across a narrow region. These assumptions are:
1. Radiation occurs only along lines parallel to one of the two coordinate directions.
2. The geometrical view factor is 1.0 .
3. The mean effective area for heat transfer (both radiation and conduction) across gaps in the radial direction may be defined as that at the high radial boundary of the gap.

Errors due to the above assumptions can become significant for radiation across internal coolant blocks and gaps which are not narrow.

\subsection*{5.4 ROUNDOFF ERRORS}

Single precision is used throughout the code. Therefore, only eight significant figures are available. Situations can develop where temperature differences in the heat balance equations are so small that they appear only beyond the eighth significant figure. Changes in point temperatures between successive iterations are then lost in the roundoff. In running a problem under these conditions an apparent convergence will be obtained but if further iterations are performed using a smaller time step, the solution will change.

Probably the most common situation involving roundoff error arises in problems where the thermal conductivities of some materials are very high. The heat balance contains terms involving products of conductances and point temperature differences. If the conductances are large, due to large thermal conductivities, the true temperature difference components of these terms can become so small as to appear only beyond the eighth figure. The same problem has been observed at coolant boundaries with large conductances. The roundoff errors in temperatures may cause the final heat balance to be grossly in error even when the printed temperature distribution is valid.

\section*{6. TECHNIQUES}

Many of the apparent limitations of the program can be overcome through techniques such as those described in the following sections and in Ref. 2. These techniques involve the use of materials having thermal parameters which are chosen to impose some desired condition on a problem. Such materia?s are called dummies because they are not physically present in the system being modeled.
-
Dummy materials are often specified with extreme' (i.e. very high or very low) values of one or more thermal parameters. For dummy solid materials it is important to consider the effect of extreme values on the maximum stable time step. As indicated by the proportionality in 5.1.1, high thermal conductivity and/or low volume specific heat tend to reduce the maximum stable time step at any point where they are applied. Therefore, in using dummy materials with such extreme parameters, it should be insured that they are no more extreme than required to impose the desired conditions.

\subsection*{6.1 BOUNDARY CONDITIONS}

All boundary conditions must be described in terms of thermal parameters of coolants contained in the external blocks. Some \({ }^{-}\)special cases are illustrated below.

\subsection*{6.1.1 Adiabatic Boundary}

A coolant having very low heat transfer coefficient is required. The other coolant parameters are not important. The standard coolant function values
\[
\begin{array}{ll}
\mathrm{H}-\mathrm{A}(\mathrm{X})=10^{-6} & \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R} \\
\mathrm{TIN}-\mathrm{A}(\mathrm{X})=460 . & { }^{\circ} \mathrm{R} \\
\mathrm{FLO}-\mathrm{A}(\mathrm{X})=10^{6} & \mathrm{lb} / \mathrm{hr} \\
\mathrm{SPH}-(\mathrm{X})=1 . & \mathrm{Btu} / 1 \mathrm{~b}-{ }^{\circ} \mathrm{R}
\end{array}
\]
are usually adequate for defining an adiabatic boundary. As discussed in 2.5.3, these values will automatically be used if definitions of these functions are simply omitted in the thermal parameter function input.

\subsection*{6.1.2 Constant Temperature Boundary}

The coolant must be isothermal at the desired boundary temperature and must also have a very high heat transfer coefficient.
```

H-A(X) = very high
TIN-A(X) = desired boundary temperature
[FLO-A(X)] x [SPH-(X)] = very high

```

\subsection*{6.1.3 Boundary With Radiation}

Radiation at an external boundary can be modeled by using a dummy coolant whose heat transfer coefficient is a function of surface temperature, ST. As an example, consider a case where it is desired to transfer heat at an external boundary by combined convection and radiation. Convection between the local boundary and bulk coolant temperature, \(T_{w}\) and \(T_{c}\), respectively is described by a film coefficient, \(h_{c}\). There is radiant heat exchange with some surface which is in thermal equilibrium with the coolant. This radiation is one-dimensional and is described by an interchange factor, \(F\), and the Stefan-Boltzmann constant, \(\sigma\). The combined heat transfer is described by an effective overall heat transfer coefficient, \(h_{e}\) which is
\[
\text { If } \quad \begin{aligned}
& h_{e}=\frac{F \sigma\left(T_{w}^{4}-T_{c}^{4}\right)}{\left(T_{w}-T_{c}\right)}+h_{c} \\
& h_{c}=10 . \mathrm{Btu} / \mathrm{hr}-f t^{2}-{ }^{\circ} R \\
& F=.50 \\
& \sigma=.1713 \times 10^{-8} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{20} \mathrm{R}^{4}
\end{aligned}
\]
then the combined heat transfer can be described by inputting the following function for the heat transfer coefficient of the coolant:
\[
\mathrm{H}-\mathrm{A}(\mathrm{X})=.50 * .1713 \mathrm{E}-8 *(\mathrm{ST} * * 4-\mathrm{DR} * * 4) /(\mathrm{ST}-\mathrm{DR})+10 .
\]
where ST is the local surface temperature and DR is the local coolant temperature both in \({ }^{\circ} R\). If there is no convection, the term representing \(h_{c}\) is simply not included. The external sourcesink temperature need not be the local coolant temperature. It may be constant or it may be defined by an additional arithmetic statement function using any of the variables which are allowed in \(H-A(X)\). Either of these would be substituted for \(D R\) in the above function.

\subsection*{6.1.4 Boundary or Coolant with Arbitrarily Specified Temperatures}

This situation may arise when boundary or coolant temperatures are known independently from another thermal analysis.

A coolant with a known temperature profile is handled by using the inlet temperature and specific heat functions in the following way:
\[
\begin{aligned}
& \text { TIN-A }(X)= \text { desired coolant temperature as a function of: } \\
& \text { radial position (FTR) for radial coolants } \\
& \quad \text { axial position (FTZ) for axial coolants } \\
& S P H-(X)=10^{10} .
\end{aligned}
\]

Note that TIN-A(X) has been modified so that it is no longer an "inlet" temperature but the temperature at all points in the coolant.

To specify a boundary with a known temperature distribution, simply follow the above instructions for the coolant at the boundary and assign the heat transfer coefficient \(H-A(X)\) a very high value (e.g. \(10^{6}\) ).

\subsection*{6.2 IRREGULAR EXTERNAL BOUNDARIES}

As discussed in 2.1.3, each of the four external boundaries must coincide continuously with one of the four extreme grid lines. This limitation can be overcome to some extent by using dumay materials in regions between the external boundaries dictated by extreme grid lines and the true external boundaries of the problem. The thermal parameters of these dummy materials can be selected to impose the desired boundary conditions.

Examples 1 and 2 of this technique are given in Figs. 7 and 8, respectively. In example 1 a dummy material is used to simulate the constant temperature coolant, and gaps are used to simulate the heat transfer coefficients. The dummy material is simply assigned the constant coolant temperature \(T_{c}\). This temperature will override the initial temperature specified for that region (4.1.7).

Example 2 illustrates the use of internal coolants to impose desired conditions on an external boundary which has, of necessity, been compromised from its true configuration. A partial compensation for the boundary distortion is made by applying the heat transfer area correction to \(h\) as indicated in Fig. 8.

Dummy materials could be used in example 2 but use of dummy internal coolants in example 1 would require unnecessary compromise

TRUE CONFIGURATION


MODEL FOR TAC2O INPUT


\section*{DUMMY THERMAL PARAMETERS}

MATERIALS
\(\operatorname{TMATI}(X)=\operatorname{TC}\)
INITIAL TEMPERATURE OF \(1=\) ANYTHING
GASES
\(\left.\begin{array}{l}\operatorname{GCONI}(x)=h_{1} t_{1} \\ \operatorname{GCON} 2(x)=h_{2} t_{2}\end{array}\right]\) NO RADIATION: ALL EMISSIVITIES \(=0\)
COOLANTS
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l} 
COOLANT \\
NUMBER
\end{tabular} & \(H-A(X)\) & \(T I N \_A(X)\) & \(F L O \_A(X)\) & \(S P H \_(X)\) \\
\hline 1 & \(10^{-6}\) & 460 & \(10^{6}\) & 1.0 \\
\hline 2 & \(h_{3}\) & \(T_{c}\) & \begin{tabular}{c} 
VERY \\
HIGH
\end{tabular} & 1.0 \\
\hline
\end{tabular}

COOLANT I IS AN ADIABATIC BOUNDARY COOLANT AS DESCRIBED IN 6.1.1.
EXCEPT FOR FLOW DIRECTION COOLANT 2 IS NOT ACTUALLY A DUMMY.

Fig. 7. Irregular external boundarles, Example 1
```



```

TRUE CONFIGURATION


\section*{DUMMY MATERIAL THERMAL PARAMETERS}
\begin{tabular}{|c|c|c|c|c|}
\hline COOLANT NUMBER & \(H_{\sim} A(X)\) & TIN_A(X) & FLO _ \(A(X)\) & SPH _ ( X ) \\
\hline 1 & \(\left(n^{\prime}\right)\left(\begin{array}{l}\frac{l_{1}}{l_{1}}\end{array}\right)\) & \({ }^{\text {c }}\) c & \begin{tabular}{l}
VERY \\
HIGH
\end{tabular} & 1.0 \\
\hline 2 & \((h)\left(\frac{l_{2}}{\ell_{21}}\right)\) & \({ }^{\top}{ }_{c}\) & \begin{tabular}{l}
VERY \\
HIGH
\end{tabular} & 1.0 \\
\hline 3 & \((\mathrm{n})\binom{\mathrm{l}_{3}}{\mathrm{l}_{3}}\) & \({ }^{\text {r }}\) c & \begin{tabular}{l}
VERY \\
HIGH
\end{tabular} & 1.0 \\
\hline 4 & \(10^{-6}\) & 460.0 & \(10^{6}\) & 1.0 \\
\hline
\end{tabular}

COOLANT 4 IS AN ADIABATIC BOUNDARY COOLANT AS DESCRIBED IN 6.1.1

Fig. 8. Irregular external boundaries, Example 2
of the true boundary conditions. To fill the dummy region of example 1 with coolant blocks would require that some part of either the \(h_{1}\) or the \(h_{2}\) surface be adiabatic. This is because coolant block heat transfer occurs only normal to the flow direction as illustrated in Item d of Fig. 5. If there is a choice of techniques, that of using internal coolants is preferable. The principal reason is that the high themal conductivity required for the dummy materials can cause stability problems and round-off errors as discussed in Chapter 5.

\subsection*{6.3 INTERNAL DUMMY MATERIALS}

Dummy material and coolant techniques can be applied in describing special internal conditions for a problem. Examples are internal sources and sinks or internal voids. These can be modeled by dummy materials or coolants having extreme values of the appropriate thermal parameters.

\subsection*{6.4 FUNCTIONAL DEPENDENCE OF THERMAL PARAMETERS}

As discussed in Section 2.5, thermal parameters may be functions of certain variables, e.g. temperature, position, time, etc. Sometimes the functional dependence can be expressed with a single equation. Often, however, an analytical relationship is not known; the information is available only as tabular data. To handle this situation the function subprogram TERP is used. Interpolation is performed between the data points and may be a linear, parabolic or higher order fit.

The subprogram is called by the following FORTRAN statement:
\[
\text { function }=\operatorname{TERP}(X, Y, N, Z, I)
\]
where
\begin{tabular}{rl} 
function \(=\) & one of the thermal parameter functions \\
X & \(=\) the array of independent variable values \\
\(\mathrm{Y} \quad=\) & the array of dependent variable values \\
N & \(=\) the size of arrays \(X\) and \(Y\) \\
\(=\) & independent variable for which a value of \\
\(\mathrm{I} \quad\) & the dependent variable is to be computed \\
\(=\) & number of \(\quad(2=\) linear \()\) \\
& points to \(\quad(3=\) parabolic \()\) \\
& be used \(\quad\) (etc.)
\end{tabular}

As an example, suppose the thermal conductivity \(R C \not \subset N-(X)\) of material
\begin{tabular}{cc} 
Temp. ( \(\left.{ }^{\circ} \mathrm{F}\right)\) & Conductivity (Btu/hr-ft- \({ }^{\circ} \mathrm{F}\) ) \\
\hline 100 & 0.0275 \\
200 & 0.0308 \\
300 & 0.0342 \\
400 & 0.0384
\end{tabular}

The following FORTRAN statements would be included in subroutine MADATA for material 4:

DIMENSI \(\emptyset\) N TEMP (4) , C \(\varnothing\) ND (4)*
DATA TEMP \(/ 100.0,200.0,300.0,400.0 /\)
DATA C \(\emptyset\) ND \(/ 0.0275,0.0308,0.0342,0.0384 /\)
\(\operatorname{RC} \mathrm{N}^{2}(\mathrm{X})=\operatorname{TERP}(\operatorname{TEMP}, \mathrm{C} \Phi \mathrm{ND}, 4, \mathrm{DR}-460 ., 2)\)

Note that DR-460. is used since the tabular data temperatures are in \({ }^{\circ} \mathrm{F}\).

\footnotetext{
* See Appendix D, "Restrictions on the Assignment of Names"
}

Function subprograms supplied by the user may also be used to define variable thermal properties. Their usage is described in Appendix C.

\section*{APPENDIX A}

\section*{PROGRAM ERROR MESSAGES}SUBROUTINE BOUNDA
BOUNDA1 THE LOW BOUNDARY FOR A BLOCK IS TOO LARGE ORLaRGER THAN THE LARGEST BOUNDARY DEFINED IN thatDIMENSION.BOUNDA2 THE HIGH BOUNDARY OF A BLOCK IS LARGER THAN THELARGEST BOUNDARY DEFINED IN THAT DIMENSION.BOUNDA3 AN INTERNAL COOLANT HAS TWO BOUNDARIES WHICH ARECOINCIDENT
SUBROUTINE CHECKCHECK1 THERE ARE TOO MANY RADIAL-X POINTS AND GRID LINESCHECK2 THERE ARE TOO MANY AXIAL-Y-THETA POINTS AND GRID LINESCHECK 4 THE RADIAL-X GRID DATA IS OUT OF ORDER
    CHECK 5 THE AXIAL-Y-THETA GRID DATA IS OUT OF ORDER
    CHECK7 THERE ARE TOO MANY BLOCKS.
    CHECK8 THE LOW RADIAL-X BOUNDARY IS LARGER THAN THE HIGHRADIAL-X BOUNDARY FOR SOME BLOCKCHECK9 - THE LOW AXIAL-Y-THETA BOUNDARY IS GREATER THAN THEHIGH AXIAL-Y-THETA BOUNDARY FOR SOME BLOCK
CHECKI1 THE MATERIAL NUMBER FOR A BLOCK IS LARGER THAN THEMAXIMUM NUMBER OF MATERIALS AND COOLANTS ALLOWED.
CHECK12 A RADIAL-X GAP MATERIAL NUMBER IS TOO HIGH
CHECK13 AN AXIAL-Y-THETA GAP MATERIAL NUMBER IS TOO HIGHSUBROUTINE FLODAT

FLODAT1 THE INDEPENDENT VALUE LIES OUTSIDE THE FLOW RATEFUNCTION RANGES.FLODAT2 THE INDEPENDENT VALUE LIES OUTSIDE THE INLETTEMPERATURE FUNCTION RANGES.
FLODAT3 THE REYNOLDS NUMBER LIES OUTSIDE THE SPECIFIED RANGES.

SUBROUTINE FLOWCA

FLOWCA1 THE REYNOLDS NUMBER LIMITS ARE NOT IN SEQUENCE
FLOWCA2 THE FLOWRATE LIMITS ARE NOT IN SEQUENCE
FLOWCA3 THE INLET TEMPERATURE LIMITS ARE NOT IN SEQUENCE

SUBROUTINE GEOMET
GEOMET1 SOME POINT HAS A NEGATIVE CALCULATED VOLUME.

SUBROUTINE GRID
GRID1 THERE ARE MORE GRIDLINES THAN AILOWED IN ONE OFTHE DIMENSI( \(\because:\). A BLANK CARD HAS BEEN LEET OUT.

SUBROUTINE INITEM
INITEMI THE TEMPERATURE BLOCK'S LOWER RADIAL-X BOUNDARY DOESNOT COINCIDE WITH ANY OF THE RADIAL-X GRID BOUNDARIES
THE TEMPERATURE BLOCK'S UPPER RADIAL-X BOUNDARY DOESNOT COINCIDE WITH ANY OF THE RADIAL-X GRID BOUNDARIESINITEM3 THE TEMPERATURE BLOCK'S LOWER AXIAL-Y-THETA BOUNDARYdOES NOT COINCIDE WITH ANY OF THE AXIAL-Y-THETAGRID BOUNDARIESINITEM4 THE TEMPERATURE BLOCK'S UPPER AXIAL-Y-THETA BOUNDARYdoes not coincide with any of the axial-y-thetaGRID BOUNDARIESINITEM7 AN INITIAL TEMPERATURE HAS NOT BEEN ASSIGNED TO SOMEINTERNAL POINT.SUBROTTTTNE TNPUT
INPUT1 THE GEOMETRY TYPE DESIRED HAS BEEN MISSPELLED.INPUT2 NORMAL FLOW NOT ALLOWED IN THIS VERSION OF THE CODEINPUT3 THE LOW RADIAL-X BLOCK BOUNDARY OF SOME BLOCK DOESNOT COINCIDE WITH A RADIAL-X GRID LINEINPUT4 THE HIGH RADIAL-X BLOCK BOUNDARY OF SOME BLOCK DOESNOT COINCIDE WITH A RADIAL-X GRID LINEINPUTS THE LOW AXIAL-Y-THETA BLOCK BOUNDARY OF SOME BLOCKdoes not coincide with a axial-y-THETA grid lineINPUT6 THE HIGH AXIAL-Y-THETA BLOCK BOUNDARY OF SOME BLOCKdoes not coincide with a axial-y-THETA grid line
```

MP2 1. THE CURRENT TIME OF THE PREVIOUSLY PUNCHED TEMPERATURE DISTRIBUTION IS GREATER THAN THE ENDING TIME OF ANY GIVEN TIMESTEP.

```


```

SUBROUTINE POINTS

```

```

 POINTS1 A PART OF THE SYSTEM WAS NOT DESCRIBED BY ANY BLOCK.
 POINTS2 THERE ARE TOO MANY RADIAL-X GAPS.
 POINTS3 THERE ARE TOO MANY AXIAL-Y-THETA GAPS.
 POINTSS A PART OF THE SYSTEM HAS BEEN DESCRIBED BY MORE THAN
 ONE BLOCK.
 POINTS6 NO FLOW DIRECTION HAS BEEN ASSIGNED FOR SOME COOLANT.
 POINTS7 1. AN EXTERNAL COOLANT IS FLOWING INTO A RADIAL-X
 BOUNDARY,OR
 2. AN INTERNAL RADIAL-X FLOW COOLANT BLOCK IS NOT
 TRAVERSED BY AT LEAST ONE RADIAL-X GRID LINE.
 POINTS8 1. AN EXTERNAL COOLANT IS FLOWING INTO AN AXIAL-Y-
 THETA BOUNDARY OR
 2. AN INTERNAL AXIAL-Y-THETA FLOW COOLANT BLOCK IS
 NOT TRAVERSED BY AT LEAST ONE AXIAL-Y-THETA
 GRID LINE.
 POINTS9 A GAP HAS BEEN SPECIFIED ON THE HIGH RADIAL-X
 BOUNDARY OF A COOLANT.
 POINTS10 A GAP HAS BEEN SPECIFIED ON THE LOW RADIAL-X
 BOUNDARY OF A COOLANT.
 POINTSIl A GAP HAS BEEN SPECIFIED ON THE HIGH AXIAL-Y-THETA
 BOUNDARY OF A COOLANT.
 POINTS12 A GAP HAS BEEN SPECIFIED ON THE LOW AXIAL-Y-THETA
 BOUNDARY OF A COOLANT.
    ```
SUBROUTINE PRETEM


PRETEM1 THE PROBEM SIZE DOES NOT MATCH THE INITIAL TEMPERATURE DISTRIBUTION DATA
 SUBROUTINE SURT

SURT 1 INSTABILITY ENCOUNTERED WHILE CALCULATING THE RADIAL-X BOUNDARY TEMPERATURES OF A GAP. USE A SMALLER TIME STEP.
SURT 2 INSTABILITY ENCOUNTERED WHILE CALCULATING THE AXIAL-Y-THETA BOUNDARY TEMPERATURES OF A GAP. USE A SMALLER TIME STEP.

\section*{SUBROUTINE TIME}


\section*{APPENDIX B}

\section*{Example Use of Additional Arithmetic Statement Functions}

A typical use of additional functions would be to calculate the Reynolds numbers and heat transfer coefficients of coolants with properties evaluated at the mean film temperature. An example of this is given below where the additional functions TFILM(X), \(C \varnothing N(X)\), VIS (X), CP (X) AND \(P R(X)\) are used to define the coolant parameter functions REYN2(X), REYN7(X), \(\mathrm{H} 2 \mathrm{~A}(\mathrm{X})\) and H7A(X).
```

TFILM(X) = (ST + DR)/2.
C\emptysetN(X)}=1.29\textrm{E}-3*TFILM(X)**.67
VIS(X) = 6.9E-4*TFILM(X)**.674
CP(X) = 1.242
PR(X)=CP(X)*VIS (X)/C\emptysetN (X)
REYN2(X) = 4.*FR/(.524*VIS(X))
REYN7 (X) = 4.*FR/(1.048*VIS (X))
H2A(X) = .021*(RE**.8)*(PR(X)**.4)*(C\emptysetN(X)/.167)
H7A(X) = .021*(RE**.8)*(PR(X)**.4)*(C\emptysetN(X)/.333)

```

NOTES
1. If an additional function is used in the definition of a thermal parameter function (e.g. \(P R(X)\) in \(H 2 A(X)\) above), the variables allowed when defining the additional function are only those which are allowed for the corresponding thermal parameter function. Thus, since \(P R(X)\) is defined in terms of ST and DR, it may be used to define \(\mathrm{H} 2 \mathrm{~A}(\mathrm{X})\), but not \(\mathrm{FL} \varnothing 2 \mathrm{~A}(\mathrm{X})\).
2. One additional function may be used in several different thermal parameter functions provided that in the sequences of statements inserted into MADATA and/or FLODAT its definition always precedes its use.
3. See Appendix \(D\) for names which may not be used as additional function names.

\section*{APPENDIX C}

\section*{Example Use of Function Subprograms}

It is desired that the specific heat of material 3 be defined in two different temperature ranges:
```

 SPEC3(X) = 490.*(6.364E-5*(DR-460.)+.107) for DR < 960o
 SPEC3(X) = 490.*(3.333E-5*(DR-460.)+.119) for DR }\geq960\mp@subsup{}{}{\circ}
)

```

This will be done using a function subprogram named VSH.

In the material parameter function statements assign:
```

SREC3(X) = VSH(DR)

```

At the location shown in Section 4.2 for function subprograms, place the following cards:

VHDG, \(P\) any alphanumeric heading in Cols. 13-72 (Note 1)
\(\nabla F \emptyset R, I S \quad V S H / S, V S H / S \quad\) (Note 1)
FUNCTION VSH(TEM)
IF (TEM.GE.960.) GØ TØ 10
\(\mathrm{VSH}=490 . *(6.364 \mathrm{E}-5 *(\mathrm{TEM}-460)+.107\).
RETURN
\(10 \mathrm{VSH}=490 . *(3.333 \mathrm{E}-5 *(\mathrm{TEM}-460)+.119\).
RETURN
END
1. The first two lines in the above example are control cards for the Univac 1110 computer.
2. There may be more than one variable in the function calling sequence. An example is a thermal parameter function
\[
\operatorname{HEAT} 9(X)=\operatorname{HGF}(D R, F T Z)
\]
which could be evaluated from the function subprogram labeled
\[
\text { FUNCTIØN HGF }(T E M, Z)
\]

In the Fortran programming of HGF, TEM corresponds to DR and \(Z\) corresponds to FTZ .
3. A function subprogram name may be used like an additional arithmetic statement function in that it may be used in several different parameter functions. For example
```

SPEC3(X) = VSH(DR)
SPEC6(X) = 1.10*VSH(DR)

```
4. The variables in the function subprogram's calling sequence must be only those which are allowed for the thermal parameter functions in which they are used.
5. See Appendix \(D\) for names which may not be used as the names of function subprograms. There is no restriction on the names which may be used within the subprogram.

\section*{APPENDIX D \\ Restrictions on the Assignment of Names}

Fortran names may have to be created in the following cases:
1. When using Subroutine CUSTOM as described in Section 3.6.
2. When using additional arithmetic statement functions to define the thermal parameter functions as described in 2.5.6 and Appendix B.
3. When using function subprograms to define the thermal parameter functions as described in 2.5 .7 and Appendix C.
4. When using arrays with Subroutine TERP as described in Section 6.4.

It is necessary to avoid redefining names which are a part of the code. Those names which can be inadvertently redefined within the above usages are tabulated below. The names included in common should never be redefined. The names defined in Subroutines MADATA and FLODAT should not be used for the names of additional arrays in those subroutines or for arithmetic statement functions or function subprograms.
\begin{tabular}{|c|c|c|}
\hline NAME & INCLUDED IN COMMON & DEFINED IN MADATA AND FLODAT \\
\hline ATG & & * \\
\hline Al-Al8 & * & \\
\hline B & & * \\
\hline C & & * \\
\hline CARD & * & \\
\hline CONR & * & \\
\hline CONZ & * & \\
\hline CS1-CS7 & * & \\
\hline CURTI & * & \\
\hline DATI & * & \\
\hline DELPAR \} & * & \\
\hline DELR & * & \\
\hline DELZ & * & \\
\hline DP & * & \\
\hline DR & * & \\
\hline DT & * & \\
\hline DTIME & * & . \\
\hline FIRST & * & \\
\hline FLIM1-FLIM4 & * & \\
\hline FLODEP & * & \\
\hline FLOW & * & \\
\hline FR & * & \\
\hline FTIME & * & 1 \\
\hline FTR & * & \\
\hline FTZ & * & \\
\hline GAPR & * & \\
\hline GAPZ & * & \\
\hline GAS & * & \\
\hline GK & * & - \\
\hline HC & & * \\
\hline HEIGHT & * & \\
\hline HR & * & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline NAME & INCLUDED IN COMMON & DEFINED IN MADATA AND FLODAT \\
\hline 1 & & * \\
\hline IA & & * \\
\hline ICOUNT & * & \\
\hline IDEN & & * \\
\hline IDENT & & * \\
\hline IERROR & * & \\
\hline IF & * & \\
\hline IFIRST & & * \\
\hline IFLO & * & \\
\hline IFLODA & & * \\
\hline IGHS & * & \\
\hline IGLS & * & \\
\hline IGQ & * & \\
\hline IGR & * & \\
\hline IH & * & \\
\hline IHS & * & \\
\hline IL & * & \\
\hline ILS & * & \\
\hline IM & * & \\
\hline IMAX & * & \\
\hline IMI & * & . \\
\hline IP & & * \\
\hline IPATH & * & . \\
\hline IQ & * & , \\
\hline IR & & * \\
\hline ISHAPE & * & \\
\hline IT & . & * \\
\hline ITAPE & * & \\
\hline ITER & * & \\
\hline ITI & * & \\
\hline ITIN & * & \\
\hline ITO & * & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline NAME & INCLUDED IN COMMON & DEFINED IN MADATA AND FLODAT & \\
\hline J & & * & \\
\hline JGHS & * & & \\
\hline JGLS & * & & \\
\hline JGQ & * & & \\
\hline JGZ & * & & \\
\hline JH & * & & \\
\hline JHS & * & & \\
\hline JL & * & & \\
\hline JLS & * & & \\
\hline JM & * & & . \\
\hline JMAX & * & & \\
\hline JMI & * & & - \\
\hline JQ & * & & \\
\hline KNOWN & & * & \\
\hline KR & * & & - \\
\hline KVT & * & & \\
\hline K2 & * & & \\
\hline L & & * & \\
\hline LASTIP & * & & \\
\hline LMAX & * & & \\
\hline LQ & * & & - \\
\hline M & & * & \\
\hline MATRG & * & & : \\
\hline MATZG & * & & \\
\hline MAXFLO & * & & , \\
\hline MAXMAT & * & & \\
\hline MAXNB & * & & \\
\hline MAXRG & * & & \\
\hline MAXRP & * & & \\
\hline MAXZG & * & & \\
\hline MAXZP & * & & - \\
\hline MB & * & & - \\
\hline MGR & * & & \\
\hline MGZ & * & & - \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline NAME & INCLUDED IN COMMON & DEFINED IN MADATA AND FLODAT \\
\hline THIGH & & * \\
\hline THIGHS & & * \\
\hline TI & * & \\
\hline TIN & * & \\
\hline TINDEP & * & \\
\hline TK & & * \\
\hline TLIM1-TLIM4 & * & \\
\hline TLOW & & * \\
\hline TLOWCP & & * \\
\hline T0 & * & , \\
\hline TOUT & * & - \\
\hline TT & * & \\
\hline V & * & \\
\hline VOL & & * \\
\hline W & * & \\
\hline X & & * \\
\hline Y & & * \\
\hline ZA & * & \\
\hline ZATIOB & * & - \\
\hline ZATIOH & * & \\
\hline ZATIOK & * & \\
\hline 2BBTH & * & \\
\hline ZBBTL & * & \\
\hline ZBH & * & \\
\hline ZBL & * & \\
\hline ZDG & * & , \\
\hline ZEMH & * & \\
\hline ZEML & * & \\
\hline ZL & * & \\
\hline ZLN & * & \\
\hline ZLOC & * & \\
\hline 2P & * & \\
\hline
\end{tabular}

\section*{Dimensional Limits}

Computer core capacity available for array storage is distributed according to the values assigned to the following parameters:
```

IQ - number of X (radial) polnts
JQ - number of Y (theta,axial) points
IGQ - number of X (radial) gap lines
JGQ - number of Y (theta,axial) gap lines
LQ - number of blocks

```

In the standard version of TAC2D the values are:
\[
\begin{aligned}
& I Q=40, J Q=45 \\
& I G Q=34, J G Q=34 \\
& L Q=150
\end{aligned}
\]

The values of the above parameters are defined in each subroutine by a single Fortran statement. It is relatively simple to change these values and compile a special version of the code which has different dimensional limits than the standard version.

The constraint on changing the parameter values is
\[
\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4 \leq \mathrm{CLIM}
\]
where
\[
\begin{aligned}
& P 1=7 \times I G Q \times J Q \\
& P 2=7 \times J G Q \times I Q \\
& P 3=9 \times I Q \times J Q \\
& P 4=5 \times L Q \\
& C L I M=37000
\end{aligned}
\]
and

The above value of CLIM is approximate and applicable to the Univac 1110 computer installation at General Atomic. It includes an allowance for storage of the arithmetic statement functions (Section 2.5) to be compiled into Subroutines MADATA and FLODAT by the code user.

\section*{APPENDIX F}

Dumping

Values of program variables at the termination of a computer run can be printed by means of a core dump. The most useful types of dumps are described below. Descriptions of dumps and dump cards are directly applicable only to the Univac 1110 computer finstallation at General Atomic.
1. Full Core Dump

Sometimes a problem fails to run successfully on the computer and the cause is not apparent from error messages alone. Assistance will have to be sought from a person familiar with the program and the computer system on which it is being used. The following card* will give a dump on error with decimal conversion of the core configuration at the time of the error.

VPMD, BREL
The output pages required for dumps are not included in the page count which is subject to the specified maximum number of output pages.
2. Dump of a Given Common Element

If it is known which variables are of interest, it is possible to dump only the named common elements which contain those variables. One of the most frequent applications for such a limited dump is in the running

\footnotetext{
* The dump cards discussed in this appendix are always placed on the back of the input data deck. The dump card is the last card.
}
of a time test case. Here it is expected that the problem will terminate on a system error with no output results for the current iteration. However, the only results needed are the time and number of current iteration. These variables, named CURTI and NITER, respectively, are contained in the common element named MISCXX. The following card will give a dump of this element on error:
\(\nabla\) PMD,RE MISCXX
The dump is contained in less than one printed page.

\section*{APPENDIX G}

\section*{Output Data Tape}

The data contained in the names defined below is written on a tape whenever the tape option is specified in the input of a problem.
\begin{tabular}{|c|c|}
\hline CURTI & current time, hr. \\
\hline FLOW (M) & flow rate of coolant \(M\), \(\mathrm{lb} / \mathrm{hr}\) \\
\hline IGR(I) & index of the gapline at radial gridline I \\
\hline IH (K) & highest radial point index in block K \\
\hline IL (K) & lowest radial point index in block K \\
\hline ILEN & an integer which is always 1 \\
\hline IMAX & total number of radial points \\
\hline ISHPAE & coordinate system indicator: \(0=\) cylindrical, \(1=\) rectangular, \(2=\) circular \\
\hline JGZ (J) & index of the gapline at axial gridline \(J\) \\
\hline JH (K) & highest axial point index in block \(K\) \\
\hline JL (K) & lowest axial point index in block \(K\) \\
\hline JMAX & total number of axial points \\
\hline LMAX & total number of blocks (material and coolant) \\
\hline MAXFLO & maxinum number of coolants (15) \\
\hline MB (K) & number of the material or coolant in block K \\
\hline NITER & current iteration number \\
\hline NRG & total number of radial gaplines \\
\hline NZG & total number of axial gaplines \\
\hline RBBTH (IG, J) & temperature at axial point level \(J\) of the radial boundary of a block bounded on its high radial side by radial gapline \(I G,{ }^{\circ} R\) \\
\hline \(\operatorname{RBBTL}(\mathrm{IG}, \mathrm{J})\) & temperature at axial point level \(J\) of the radial boundary of a block bounded on its low radial side by radial gapline \(I G,{ }^{\circ} R\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline RL (I) & radial grid line coordinate, ft \\
\hline \(T(1, J)\) & temperature at radial point level I, axial point level \(\mathrm{J},{ }^{\circ} \mathrm{R}\) \\
\hline TI (M) & inlet temperature of coolant \(\mathrm{M},{ }^{\circ} \mathrm{R}\) \\
\hline T0 (M) & outlet temperature of coolant \(M,{ }^{\circ} \mathrm{R}\) \\
\hline ZA(I) & an array of 12 Hollerith words which contains the information on the first problem title card \\
\hline ZBBTH(JG, I) & temperature at radial point level I of the axial boundary of a block bounded on its high axial side by axial gapline \(J G,{ }^{\circ} R\) \\
\hline ZBBTL (JG, I) & temperature at radial point level I of the axial boundary of a block bounded on its low axial side by axial gapline JG, \({ }^{\circ} \mathrm{R}\) \\
\hline ZL (J) & axial grid line coordinate, ft \\
\hline
\end{tabular}

All of the above names. which begin with the letters I through \(N\) contain integers. All other names contain floating point numbers except ZA which contains Hollerith words.

The data is written on tape unit 15 by executing the following write statements:
```

WRITE(15) ISHAPE,ILEN, IMAX,JMAX,IMAX,MAXFLO,NRG,N2G,
WRITE(15) NITER,CURTI,
((RBBTL(IG,J), RBBTH(IG,J),IG=1,NRG),J=1,JMAX),
((ZBBTL (JG,I),ZBBTH (JG,I) ,JG=1,NZG),I=1,IMAX),
(FLOW(M),TI(M),TO(M),M=1,MAXFLO),
((T(I,J),I=1, IMAX), J=1,JMAX)

```
1
2
3
1
2
3
4

The first statement is executed one time as soon as all the input data has been processed and the geometrical constants calculated. The second statement is then executed each time basic output is printed.

Whenever the tape option is specified a data tape number XXXX must be assigned by means of the following card:
\(\nabla A S G, T \quad 15, U, X X X X\)

This card may be placed immediately after the program catalog file assign card in the card sequence given in Section 4.2 .

\section*{APPENDIX H}

\section*{Example Problem}

The TAC2D program input and output is illustrated by means of a sample problem in which the steady-state temperature distribution is calculated for a helium circulator blower disk.

The blower disk, which is part of the helium circulator shown in Fig. \(\mathrm{H}-1\), is heated on one side by helium maintained at \(680^{\circ} \mathrm{F}\) and cooled on the other side by a helium bleed flow. There is also heat conducted into the outer radial edge of the disk from the blades of the circulator blower, and the blower shaft, maintained at \(175^{\circ} \mathrm{F}\), acts as an additional heat sink.

Fig. H-2 shows the model for the TAC2D analysis of the blower disk. The cylindrical coordinate system is used. Because of requirements by the code, the outside boundaries of the model form a right circular cylinder. The following statements describe the mafor assumptions made in formulating the model:
1. A two-dimensional axisymmetric temperature distribution was assumed.
2. The model does not include the circulator blades. Instead, the outer radial edge of the disk was maintained at \(680^{\circ} \mathrm{F}\).
3. The effect of the mounting bolts was neglected, since they occur periodically and are insulated from the disk.


Fig. H-1, Helium clrculator blower

NOTE:
Z DIRECTION REVERSED IN EXAMPLE PROBLEM OUTPUT.


Fig. H-2. TAC2D thermal model of helium circulator blocer disc
4. Although the heat transfer coefficient between the helium and the disk on each radial face of the disk varies continuously with the radial distance, discrete discontinuous values were used, as shown in Fig. H-2.

As illustrated in Fig. H-2, the entire model is sub: ivided into blocks, identified by the heavy solid and dotted lines, which may have different sets of thermal parameters. The model is further subdivided by the radial and axial grid lines, as indicated by the light lines extending across the entire model. Nodal points, for which the temperatures are calculated, are located midway between these grid Ines. The material and coolant blocks must have regular bounda 2 which coincide with the grid lines. The location of gaps withta che model is indicated by the broken lines consisting of the long and short dashes. These gaps are always located on the high radial or high axial boundary of a block.

A listing of the input cards for the problem appear ollowing this text. As the analytical model is described furthe: feference can be made to this input listing.

Blocks 1 through 5, labeled with the number in eac: block, are included in the model to \(f i l l\) the regions between the \(d: \because\) and the external boundaries, and are composed of material numbe: \(\therefore\). They are also used to describe the boundary conditions on the Left hand face of the disk. The constant temperature condition o \(680^{\circ} \mathrm{F}\) is attained by assigning this temperature (TMAT2 \((X)=1140\).\() to the\) material in these blocks. The heat transfer coefficien: : etween this helium and the blower disk are simulated by gaps. chicknesses and thermal conductivities of these gaps (GCON1(.), CCON2(X), and GCON3 (X) are chosen such that their unit conductanc.s are equal to the appropriate heat transfer coefficients.

The blower disk is comprised of blocks 6 through 11 , \(\therefore\) it is specified by material number 1. As shown by RCON1 (X), the Eiermal conductivity of this material is a function of the local ernperature DR.

Block number 12 represents the helium enclosed in \(a \quad . \quad\) with natural circulation affected by the centrifugal force fie: . The natural convection coefficient for this circulation was ca. iviated as \(85 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} \mathrm{t}^{\circ} \mathrm{F}\). The heat transfer coefficient betwee: helium and the blower disk was simulated by gaps along the io hand edge and outer radial edge of block number 12 , although the left hand edge actually belongs to block number 8. T: ... transfer coefficient between the helium and the blower sho modeled with a coolant as will be shown later. The therm:. . .ductivity of block 12 , which contains material number \(3, \therefore\) w. : \(e\) relatively high \((\operatorname{RCON} 3(X)=A C O N 3(X)=500\).\() so that no \because: \because\) gradients occur across the void. This simulates the mix: to the natural circulation.

The helium bleed flow is represented by the coolant :... 13 through 16. The coolant numbers for these blocks are 6 t . 9 , respectively. As indicated in the coolant thermal param. the flow rate for these coolants is \(50 \mathrm{lbm} / \mathrm{hr}\) and the specif: : is \(1.24 \mathrm{Btu} / \mathrm{bbm}^{\circ} \mathrm{F}\). The heat transfer coefficients vary from coolant to the next as indicated in Fig. \(\mathrm{H}-2\), and the inl: perature of each coolant is set equal to the outlet temper u . of the preceding coolant, except for the inlet coolant, i.e. int number 6.

Blocks 17 through 19 represent the steel separator pl. These blocks all contain material number 5 , which has the of carbon steel. Block 20 simulates the insulation and c . at s material number 4.

The external boundary conditions are specified wit. blocks 21 through 24, and according to the requirements of TAC2D, the: must be coolant blocks. Furthermore, as external blocks, the are fact lines, i.e. one dimension of each block has a zero le, h. Coolant numbers 1 through 5 are used for these external blocks. S.ace the boundary conditions are already partially described by ainnal coolants and constant temperature material blocks, some of hese external coolants are dummies which have zero heat tr: sfer cuefficient and therefore produce an adiabatic boundary cor: tion.

Exceptions are coolants 1 and 2 which apply, respecti: y, :long the high radial boundary and along the portion of the boundary between the 1 imits \(r=0\) and \(r=3.25 \mathrm{in} .7 \ldots\) hig. radial boundary is maintained constant at \(680^{\circ} \mathrm{F}\) by specifyln a hi in flow rate, \(a\) high specific heat, and a high heat transfer affi ient for coolant number 1. The constant blower shaft tem: tur of \(175^{\circ} \mathrm{F}\) is maintained by also giving coolant number 2 a low rate and a high specific heat. Here, however, the true he \(\therefore\) : :efer coefficient between the helium enclosed in the cavit. nd \(t: b\) lower shaft is used.

Additional remarks are now given concerning the whe cards.* This listing may be examined with reference : instructions given in Chapter 4.
1. Six options are specified. The first CYLI:" CAL \(\cdots\) METRY, is required, and the second STEADY STATE, f , f steady state option which produces only tho ....state solution. Note that default values of the : : : parameters are used. The remaining options al : the the desired output.

\footnotetext{
* It is important to realize that the thermal parar: :er inctions are FORTRAN statements belonging to the subroutines: '. ATA and FLODAT, whereas the cards following the XQT TAC2D/. ard are FORTRAN data cards.
}
3. The cards with the label B give block informat: i. One or two cards are used per block. The first card s cifies the block boundaries, material number or nega: : coolant number, and flow direction if the block contadis coolant. For example, block 13 contains coolant number is it flows in the negative axial direction ( -2.0 ). The \(s\). ind card, if required, gives gap information.
4. The coolant specification cards have been omit: since the heat transfer coefficients, flow rates ant let temperatures of the coolants are constants. ? : insures that the A ranges of the \(H\), FLO and TIN funct: are used.
5. No tine history cards are included because : : : yady state option was used. The three function control ir .. ants cards have also been omitted since the consta not used.

Directly following the input listing is the output: the TAC2D run for this problem. It is complete with the except. : at pages relating primarily to the computer system have been \(\because \because\). Specific items which should be noted are:
1. A message indicating that this TAC2D code has b i verified according to General Atomic Guide Standard \(\quad 3 \cdots 3\) (see Reference 9).
2. A page indicating the code array size and the ions selected.
3. The block description giving the block dimet. : the material or coolant number, and the gap info: \(n\). Note that the block number is assigned according \(t c\) order of the blocks in the data list.
4. The boundary overlay page, which aids in loc: ing the block boundaries on the output temperature arr \(v\).
5. The nodal volumes, and the radial and axial zetric conduction factors between two neighboring in es; that is, the effective " \(A / \Delta X\) " values.
6. The radial and axial nodal point, grid line, 1 gapline locations. Each of these is numbered for la. identification.
7. The coolant specification page.
8. The initial temperature distribution.
9. A listing of the complete data input deck.
10. A message indicating that the steady state opt on is being used. The values of the steady state parame: \(s\) are given along with guidelines to determine the valic: of the solution.
11. Upper and lower temperature bounds for the ste dy state solution.
12. Temperature array printouts for the last ste state iteration and for the fifth, tenth, fifteent and twentieth smoothing iterations. On the fina? -emperature array printout (i.e. that for the twent it smoothing iteration) the blower disk and other essenti:: features were drawn with aid of the boundary overlay. ote that the standard temperature array printout is \(\therefore \therefore\) with an integer format. Also included on these pages are coolant data, number of iterations, and the current \(\therefore\) : iteration parameter.
13. A printing of the residuals at each point excep: the coolant points. Extremely high residuals (e.g. 9.9999.) correspond to the constant temperature dumm material 2 a. should be ignored.
14. The surface temperatures at the radial and axia aps, coolant boundaries, or interfaces between diff: t materials. For an external coolant boundary, : \(\quad\) the one surface temperature is given. For internal :oolant channels and gaps, a pair of surface temperatu: are given corresponding to the temperature on each le of the coolant channel or gap. When a printed su:. : \(e\) temperature coincides with the inlet or outlet perature of a flowing coolant, its value is meani: .. :s and should be ignored. Such temperatures have a 12. drawn through them on the printout for this problem.
15. The heat rate (Btu/hr) and heat flux (Btu/hr-f. between neighboring points in both the radial and axio: rections. A positive number indicates that the heat flo: in the positive coordinate direction and a negative \(n c\). \(r\) in the negative coordinate direction. Note that at as atic boundaries, the heat flow is not identically \(0, \quad\) instead a very small number. This results because an atic boundary actually contains an \(h=10^{-6} \mathrm{Btu} / \mathrm{hr}-\mathrm{F}\). A similar situation occurs for the conduction be sto coolant points in the direction of the coolant. w.
16. The effective radial and axial conductivities. effective conductivity is that a value which \(\gamma \therefore\) the heat flow between the two nodal points when :al. ied by the corresponding geometric factor and the:. 1 point temperature difference.
17. The radial and axial thermal conductances. thermal
conductance between two points equals the efloctive conductivity between these points multiplim the corresponding geometric factor.

\section*{TAC2D EXAMPLE PROBLEM INPUT CARD LISIING}
```

3ASg;ax Tac20*TFMAB-7b-1.
ACOPY TAC20*TFNAG-76-1.,TPFS.
AFREE TACZOETFAAB-76-1.
2ADO\&P .ORUM
thermal parameter functions
madata/S,madata/S,mADATA/S
aFOR.*S
-20
c the following statenents define the material thermal properties
MATERIAL I IS INCONEL
RCON1(x)=4.27E-3*(OR-460.)*8.3
ACON1(x)=RCON1(X)
material z IS heliun ar 680 oEg.
malz(x)=1140.
acierial 3 is heliUM with Natural Circulation
RCON3(x)=500.
CON3(x)=500
CON3(x)=500
AATERIAL 4 IS INSULATION
CON4(x)=.05
COn4(x)=.05
C MATERIAL 5 IS CARBON STEEL
RCONS(X)=31.88-2.739E-3*(0R-460.)-6.264E-6*(OR-460.1**2
CONS{(x)=RCONS(x)
GAP GAS l GIVES AN EFFECTIVE H=437
GCON1(x)=437.*.0001/12
GGAP GAS 2 GIVES AN EFFECIIVE H=T23
GON2(XI=723.*-0001/12
GGAPGAS 3 GIVES AN EFFECIIVE H=9O5
GCON3(x)=905.*.0001/12
C GAP GAS 4 GIVES AN EFFECTIVE H=85
GOR,USON4(x)=85.*.0001/12
af OR.W
c The following statehents define the coolant thermal properties
C Simul:igS the helium cifgulator flon ano blower glades at gbo deg.
FLOIA(x)=1.F8
SPH:(x)=1.E4
HA(X)=1.ES
:!::1:
NAULAL CONYECIION H=0S
FLO2A(x)=1.E8
SPH2(x)=1.EH
SPH2(x)=1,
H2A(x)=85.
1N2A(x)=635
COOLANTS 3.4. AND 5 REPRESENT THE ADIAgATIC BOUNOARIES
COOLANTS 6; 7, %. ANO P REPRESENT THE OLEED FLOW AND
ARE INTERNAL COOLANT BLOCKS 13, 14, 15, AND 16, RESPECTIVELY
FLObA{x)=50
SPHG(x)=1.20

```

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3.25 & 3.375 & 2.25 & 4.0 & -6. & -2. & 813-1 \\
\hline 3.25 & 8.0 & 2.125 & 2.25 & -7. & 1. & 814-1 \\
\hline 7. 75 & 8.0 & 2.25 & 4.0 & -8. & 2. & 815-1 \\
\hline 8. 0 & 9.0 & 3.25 & 4.0 & -9. & 1. & 816-1 \\
\hline 3. 375 & 3.75 & 2.375 & 4.0 & 5. & & 817-1 \\
\hline 3.375 & 7.75 & 2.25 & 2.375 & 5. & & 818-1 \\
\hline 7.625 & 7.75 & 2.375 & 4.0 & 5. & & 819-1 \\
\hline 3.75 & 7.625 & 2.375 & 4.0 & 4. & & 820-1 \\
\hline 0. & 9.0 & 0. & 0. & -3. & 1. & 821-1 \\
\hline 0. & 0. & 0. & 4.0 & -4. & 2. & 822-1 \\
\hline 9.0 & 9.0 & 0. & 4.0 & -1. & 2. & 823-1 \\
\hline 0. & 3.0 & 4.0 & 4.0 & -2. & 1. & 824-1 \\
\hline 3.0 & 9.0 & 4.0 & 4.0 & -5. & 1. & \[
\begin{aligned}
& 825-1 \\
& \text { BLANK }
\end{aligned}
\] \\
\hline 0. & \[
\begin{aligned}
& \text { AL TEMP } \\
& 9.0
\end{aligned}
\] & 0. & 4.0 & 680. & & IT-1 \\
\hline & & & & & & BLANK \\
\hline
\end{tabular}
\(\because\)
paczo．







 －TAC2n＊TAre？ －taczn．Taczo． －tarznaraczn．
 －taczn．taczo． －taczo．raczn． －TAC2n＋TAC20． －Tarenatactan． －Tacznararon． －TAC2n＊Pacz20．
 －tacinaiac？n． －TACDf）TAC －TACアn．PaC2n＊ －tar2netac2n． －Taczo．tac，20＊ －Tacznaiationa tacroaracro． －Tar． 0 orar．2n． －Taczorraczn．
 ＊Taczn．tacran＊ tacroraczna ＊TAC2D＊TAC2n＊
TAC2D＊Faczo＊ －TAC？ －racineracio． －taciznararin． －Tačnitarzo． －Tt－2r．Thtar
\(\qquad\)
－iurn．i：©


 THERFAL ANALYSIS COOE，TACZ？．THE AOHLICAFLE RICONENTATJIN IS：
 IIINAL HFAT TRANGFE日 COCE IISARS MaVe UAL，GB－A14032．JULY 1S，197t． TAC20．a CEEAFRAL PISQPISSF．．．Cllot． MATHFIATICAL FIRMIILATICIAS AVC PZUI－ C．KAFMERS GIIDE，GA－9ZDZ，SEDT，17， THE TACZD CIIDE，VFASIION TFMAMC \(75-1\) THE TACZO CIINE，VFHSIIN TFMAMC 7 COI
FANT C：CTIVE VERIFICATIUN AID HENCH MARK OQNRLENS．FA－AI3MI5．JUNE， 1775.
2．PETEHSON，J．F．

3．NORCLIS，S．．WILLIAMS，K．

THIS CONE VFRBIIM HAS RFFN AVAIIABLF SINCF O－7－7h．TI IS TAE
 APE STIRED UNDER TME SSINCOLE ALFA NANF IF TACXIAFFMAHITA－I，ALFA

 SIIनR！MTINF MACATA／S，FL！DAT／S．ANO（UST！M／S．ACCESS T！）MADATA


 taczintaczo．

rarciotacson tacro．raczo．
 －itaczatacra＊ TAC2U．TAC2D＊ －IAC20＊TAC20． －TACzN．FACZU． －Tac20．Taczu＊ ＊taricitaczu＊ ＊TAC2n．TACPO． flarzo．Iar．z． －Tačia＊Taczo． －TAC20．Ta（2）＊ －tacriatac？o．
 －IAC2！\(A T A C 20 *\)
－TAC2D．TAC20． －taczo．taczo．
 ＊TAC？n＊1a（？）＊ ＊Tacznalac．zo＊ ＊TAC2．＊TAC20＊ －TAC21．TAC20． TAC2り．Taczoa －Tacza． racznataczda tacznataczo．


 －1Arco．raczu＊ －iarezorar．an＊ taceonatac（2）． －1＾にな．14：20．
 Taczo． \(1 \&\) Cこの．


1ヵcevataciou Taczratarezi） －iarcriatacpo． －Tarearitaczo． tačl＊TAC20．


 －TAC2身TAC 2



taczo example problem nutput


STEANYOSTATE TEMDERATIJRE IN A HELIUM CIRCULATOR BLONER OISC (WARN TIME IS SET AT 20 SFCONDS)

OPYIONS
CYLINDAICAL GPGMETRY
steany state
cnanuetivities
HESISTANCES
HFAT FLUXFS
SIIRFACE TEMDERATURES

ThIS is a Smfirt input run setup.
IISE A LONG INPUY OPTION CARO FGR A REGILAR RUN SETUP.

steady-state temperature in a helium circillator bloner disc

BIUNOARY DVERLAY
* where ciolants are paesent
" Where gaps aye present
- where gaps of cumlants not present
the radial(i) grio lings are horizontal THE AXIAL (J) grio lines are vertical


\section*{NEIDE VOLUMES（FT＊＊3）}
the ranial（I）ojhfctinn is horizontal
THE AXIAL（J）DIRECTION IS VEPYICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 17 & 0.0090 & 0.0007 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & \(0.040 n\) & 0.0000 & 0.0000 \\
\hline & 16 & 0.0100 & 2．2935－04 & 6．88n4－04 & \(1.1705-03\) & 1.8391 .03 & 2．20195003 & 1.0653 .03 & 5.0459 .04 & 1． \(8216=03\) & 2．7271－03 \\
\hline & 15 & 0.10700 & 2．2435－04 & 6．84n4－04 & 1．174．5－133 & 1．8391－03 & 2．2085－03 & \(1.0053-03\) & 5．0459－04 & & \\
\hline & 14 & 0.0000 & 2． \(2935-04\) & O．AB04－1） 4 & 1．1715－03 & \(1.8391-03\) & 2．2045－03 & \(1.0653-03\) & 5．0459－04 & 1.8216003
\(1.8210-03\) & 2．7271－03
\(2.7271-03\) \\
\hline & 13 & 0.11000 & 1．5277－04 & 4．SA70－04 &  & 1．22n1－03 & 9．4724－0．3 & 7．101R－04 & 3.7639 .04 & \(1.2144-03\) & \(2.721-03\)
\(1.8181-03\) \\
\hline & 12 & 0.0700 & \(1.5290-24\) & 4． \(5 \times 711004\) & 7．n035－04 & 1．2261－n3 & 1．4724－n3 & 7．101日－1） & 5．7639－04 & 1.2144 .03 & 1．8181－n \\
\hline & 11 & 0.6000 & 7．6349－05 & 2． \(2716-54\) & 3．R9，\({ }^{\text {P7－04 }}\) & \(0.1254-04\) & 7．3572－114 & \(3.5509-04\) & 1． HE （ion4 & －．0720－04 & \(9.0903-04\) \\
\hline & 10
9 & 0.0000
0.0000 & 7． \(54110-165\) & 2．ech9－n4 & \(3.9712-04\) & 6．133．3－04 & 7．3n31－0is & 3.55190004 & 1． \(\mathrm{H}+2 \mathrm{n}=04\) & H．j72v－04 & \(9.0903-04\) \\
\hline & 8 & 0.00110 &  & a． 5970004 & 7．R035－i4 & 1． \(2201-19\) & 1．4726－03 & 7．1018－94 & 3．7639－04 & 1.2144003 & \(1.8181=03\) \\
\hline & 7 & 0.0000
0.6000 & 1.5219014
\(1.5 ? 00004\) & \(4.587 n-04\)
\(4.5470-04\) & \(7.4035-044\)
\(7.4035-04\) & 1． \(2251-03\) & 1.47 シカーn3 & 7．1014－04 & 3．7039．04 & 1.2144003 & \(1.8181-03\) \\
\hline & 6 & 0.0000 & 1．5290－n4 & －． 5 － 7 fiona & 7．4035－04 & 1． 2 201－03 & 1.4726003 & 7．1018－04 & 3．7639－14 & 1.2144 .03 & 1．8191－03 \\
\hline & 5 & 0.01000 & 1.5290004 & 4．5870－04 & 7．An35－04 & \(1.22 n 1-03\)
\(1.236)=03\) & \(1.4726-03\)
\(1.4726-03\) & 7．1018．04 & S．763\％－04 & 1．2144－03 & 1．8181－03 \\
\hline & 4 & 0.0000 & 1．52R4－（14 & 4．5Ac1－n4 & 7．79世8－n4 & \(1.22 n 1=03\) & 1．4726－03 & & 3.7639 .04
3.7659 .04 & 1.2144003 & \(1.8181-113\) \\
\hline & 3 & 0.9000 & 1．9112－na & 5．7337－04 & \(9.7504-04\) & 1．5326－03 & 1． 2008 （0） & 7．09M5－04
\(9.8772-04\) & 3.7659 .04
4.7049 .04 & 1.2144 .03
\(1.5180-03\) & \(1.8181-03\)
\(2.2726-03\) \\
\hline & 2 & C．0n00 & 1．9112－04 & 5．73．17－n4 & 9.7544 .04 & 1．533n－03 & 1．RUOR－O3 & 8．8772－04 & 4.7049 .04 & 1.5140 .03 & 1.2720003
\(2.2726-03\) \\
\hline & 1 & c．0nor & 0.8000 & 0.0000 & －0000 & \(0.000 n\) & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline \(\stackrel{\sim}{5}\) & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 17 & 0.0000 & \(0.0 n 00\) & \(0.0 ヶ 90\) & 0．anon & 9． 70000 & 0.0000 & 0.0000 & 0.11000 & （1．0700 & \\
\hline & 16 & 3．168ロ－03 & 3．4089－03 & 3.710970 .3 & 4．1：005003 & 4.4315 .03 & 4.7724 .03 & 3．8030－03 & 1．3103－03 & 2．0445－03 & \(3.6740-03\) \\
\hline & 15 & 3． 1080803 & 3．4080－n3 & 3．7497－03 & 4．110：18－03 & \(4.4315-n 3\) & \(4.7724-03\) & 3.4030 .03 & \(1.3103-03\) & 2．6A145－03 & 3.6740 .03 \\
\hline & 14 & 3．6asnons & 3．4のシャーへ3 & 3．7477－03 & 4．001n－113 & 4.431 － 0 － 3 & \(4.7724-113\) & 3． Ca 30 －03 & 1．3103－03 & 2．6845－05 & 3.6740 .03
3.5740 .03 \\
\hline & 13 & 2．11053－03 & 2．2724－03 &  & 2．7271－03 & 2．9543－n3 & 3．1P1n－（1） & 2．5353－05 & 0．7352－04 & \(1.7890-63\) & 3.5740 .03
\(2.4443-03\) \\
\hline & 12 & 2．9453－03 & 2． 2725003 & 2． 5 のコx－0！ & 2．7371－03 & 2．9543－03 & 3．1R15－13 & 2．4353－03 & 4．7352－0．4 & \(1.709 n=03\) & 2．4493－03 \\
\hline & ， & 1．יン？ & ！：？－¢ & ！：M：On？ & \(1.535-35\) &  &  & 1．2．77－05 & 4．3ヵ76－04 & H． \(91482-04\) & 1．2247－03 \\
\hline & & \(\therefore\) ○ ？－－！ & 1．\(\because \vdots!\) & ○，？un－： & \(\therefore\) asenos & 1．：372－19 & 1． \(501,4-03\) & 1．8ヶッ7－03 & 4．jn7h－nu & 8．9ax2－04 & 1．2247－1）3 \\
\hline & & &  & \(\therefore \because \therefore=\)－ &  & ¢ ¢ ¢ ？－\％ & \(\therefore .:=10-013\) & 2． \(5: 54-03\) & A．；3 3－ 14 & 1．7M9n－03 & 2．4495－03 \\
\hline & ＇ & ？¢ ¢ ¢ ¢ ¢ & ？．2） 2 －\({ }^{\text {a }}\) & ，\(\quad\) ara－n &  & 2，50300\％ & ＇\(\quad=6, \ldots \%\) & 2．434．0： & －783 2 －04 & \(\therefore 3 \times 40-03\) & ？．4401－03 \\
\hline & 5 & & & & \(\therefore 1\) & －．\({ }^{\prime}\) &  &  & Q．7332－06 & 1． \(7840-03\) & 2．4493－03 \\
\hline & & ，10．0．3． & 2－． & 3．0．0．an： & \(\because 20000\) & こどった！ &  &  & －．7317．90 & 1．294？－03 & \(? .44030\) ？ \\
\hline & & ， & ；\(\because: \ldots\) & \(\cdots\) & 7 ． & 1 \(\quad \therefore \quad \therefore\) & & － & \(\because \because . \square\) & & \\
\hline & & 0．0nnn & 2．¢n：－． & \(\cdots \mathrm{ara}\) & nonomo & \(\because-0 j\) & \(\therefore \ldots\) & \[
3.1092
\] & 94－65 &  & \(3.0017-3\) \\
\hline & & 1： & 12 & \(\therefore 3\) & ！ & 15 & 10 & \(i\) & 18 & 19 & \(\therefore 0\) \\
\hline & 17 & 0.0000 & B．NOUN & 0.0009 & & & & & & & \\
\hline & 16 & 3．93n日－03 & 3.9755003 & 0.0000 & & & & & & & \\
\hline & 15 & \(3.9400-03\) & 3．9755－03 & 0.0000 & & & & & & & \\
\hline & 14 & 3．94rinal 3 & 3．9755－13 & 0.0000 & & & & & & & \\
\hline & 13 & 2．9272－03 & 2．0513－03 & 0.0000 & & & & & & & \\
\hline & 12 & 2．0271－03 & 2．6503－03 & 0.0000 & & & & & & & \\
\hline & 11 & \(1.3135-03\) & 1．3252－n3 & 0.0000 & & & & & & & \\
\hline
\end{tabular}

\section*{TAC2D FXAYPLE DRIRLEM NUTPUT}
\begin{tabular}{cccc}
10 & \(1.3135-03\) & \(1.3252-03\) & 0.0000 \\
9 & \(2.6271-03\) & \(2.6503-03\) & 0.0000 \\
8 & \(2.0271-03\) & 2.0503 .03 & 0.0000 \\
7 & \(2.0271-03\) & \(2.6503-0.3\) & 0.0000 \\
6 & \(2.6271-03\) & \(2.6503-03\) & 0.0000 \\
5 & \(2.6271-03\) & \(2.6503-03\) & 0.10900 \\
4 & \(2.0271-03\) & \(2.6503-133\) & 0.0000 \\
3 & \(3.2839-03\) & \(3.3129-03\) & 0.0000 \\
2 & 3.2839 .03 & 3.3129 .03 & 0.0000 \\
1 & 0.0000 & 0.0000 & 0.0000 \\
& 21 & 22 & 23
\end{tabular}

TME RADIAL（I）OIRECTINN IS MORIZONTAL TME AXIAL（J）DIRECTION IS VERTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 17 & 0.0900 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & \(0.0 n 00\) & 0.10000 & 0.0000 \\
\hline & 16 & 1．9109－n2 & 1．7873－01 & 3．8140－01 & S．5317－01 & 7．4575．01 & \(1.3432+00\) & \(3.3697+00\) & 2．54cb＋00 & \(1.6951+00\) & 1.6670000 \\
\hline & 15 & \(1.910^{\circ}-12\) & \(1.7873-111\) & 3．8189－01 & 5．5317．01 & 7．4575－n1 & \(1.3432+00\) & \(3.3697+00\) & 2．008t＋00 & \(1.6951+00\) & \(1.6670+00\) \\
\hline & 14 & 1.0100 .02 & 1．7873－n！ & 3． H （An－1） & 5．5317－01 & 7．4575－n1 & 1．3432＋nn & 3．3547＋00 & 2．69nt＋00 & 1．6951＋09 & 1．0070＊00 \\
\hline & 13 & 1．274n－02 & 1．1915－01 & 2．5．154－n） & 3．の世150（1） & \(4.9717-11\) & 8．9546－n1 & 2．2465＋00 & 1．7901－00 & \(1.1301+00\) & 1．1114000 \\
\hline & 12 & 1．？74n－n？ & 1．1015－01 & ？．5．4．5－01 & 3．6F7R－年1 & 4．9717－n1 & 8．9546－01 & 2．2465＊n0 & 1．70．71001 & 1.131 .1 .00 & 1．1114＋00 \\
\hline & 11 & 0．3nd7－03 & 5．752世－i2 & 1．2717－01 &  & P．4439－01 & \(4.47 \cdot 88.11\) & 1．1232＋100 & \(8.9954-11\) & 5.0504001 & 5．5568－01 \\
\hline & 10 & －． \(3 n 48 \mathrm{~m} 33\) & S．jcln－it & 1．2727－01 & 1．8439－01 & 2．4R5R－01 & 4．4773－01 & \(1.1232+00\) & \(8.995 \mathrm{~J}=01\) & 5．0504－01 & S．590H－01 \\
\hline & 9 & 1．2740－02 & 1.1915011 & 2．5454－01 & 3．6879－01 & \(4.9717-11\) & R． 4511601 & 2． \(2405+00\) & \(1.7091+01\) & \(1.1301+00\) & \(1.1114+00\) \\
\hline & 8 & 1．274C－122 & 1．1915－0．1 & 2．5454－011 & 3．6K7M－C！ & \(4.9717-01\) & 8．9546－01 & 2．2465400 & 1．799．1＋00 & \(1.1301+00\) & \(1.1110+00\) \\
\hline & 7 & 1．27an＝n2 & \(1.1015=11\) & 2．5．1613－01 & \(3.6878=01\) & 4．9717－01 & \(8.9546-01\) & 2．2405＋00 & \(1.7991+00\) & \(1.1301+150\) & \(1.1114+00\) \\
\hline & 6 & \(1.2740=n 2\) & 1．1015－01 & 2． 5 atsu－01 & 3．\(n \mathrm{~K} 7 \mathrm{H}=01\) & 4．9717－01 & \(8.9546=01\) & 2． 24 a \(5+00\) & \(1.7971+100\) & \(1.13111+00\) & \(1.1114+07\) \\
\hline & 5 & \(1.2740-02\) & 1．1015－21 & 2．5454－01 & \(3.0478=01\) & 4．0717－01 & R．054t－01 & 2． \(2455+00\) & \(1.7049+00\) & \(1.1301+00\) & \(1.1114+00\) \\
\hline & 4 & \(1.2734-02\) & 1．1010－19 & 2．5443－01 & 3．0871－01 & 4．0717－01 & R．4540－ 11 & 2． \(2465+00\) & 1.7941400 & \(1.1301+00\) & \(1.1114+00\) \\
\hline & 3 & \(1.5924=02\) & \(1.4594-01\) & 3．1A17－01 & \(4.6097-01\) & 6．2146－01 & \(1.1193+00\) & 2．8081＋00 & 2．246a＋00 & \(1.4126+00\) & 1．3892＋00 \\
\hline & 2 & \(1.5924=172\) & 1．4R74－01 & 3．1R17－01 & \(4.0097-01\) & 0.2146001 & \(1.1103+00\) & 2．2081＋00 & 2．2499＋00 & \(1.4126+0 n\) & 1．3892＋00 \\
\hline & 1 & 0.0000 & ？．0010 & c．onon & 0.0000 & a．anon & 0.0000 & 0.0000 & 0.0000 & 1.0000 & 0.0000 \\
\hline \multirow{24}{*}{\[
\underset{\sim}{\omega}
\]} & & 1 & \(?\) & 3 & 4 & 5 & \(\theta\) & 7 & 8 & 9 & 10 \\
\hline & 17 & C．anco & 0.0000 & 0.1000 & 0.0 nnin & n．0000 & 0.10000 & 0.0000 & 0.0000 & C．00no & 0.0000 \\
\hline & 10 & 1．863n＋no & 2．1．alitan & 2．Phamann & 2．1531＋00 & 2．n44cion & 3．23R940 & \(5.9390+10\) & H．1441＋00 & \(5.4295+100\) & \(4.883 ?+00\) \\
\hline & 15 &  & ？．i）moment & 2．25hroun & 2．0いい。0！ & \(2.0495+110\) & \(3.23 \mu R+C O\) & 5.0300 .70 & \(0.1401+00\) & 5．4245400 & \(4.8832+00\) \\
\hline & \(:^{1 /}\) & ！．4．3．．．． & 2．\(\because+1 \cdot 1 \cdot \mathrm{ra}\) & － & 2．053！ 00 & \(\therefore .6495+00\) & 3． \(23 \rightarrow 4+0 n\) & \(5.73017+110\) & \(8.1051+00\) & 5．\(-295+00\) & 4．H832＋n0 \\
\hline & ， & ＋．\％：－－ & 1．3） 31000 & －Auncon & 1．35．．n & ！，7nnstan & \(?: 59 ?+n n\) & 3．750\％：30 & \(5.4321+00\) & 3．4147＋01） & 3． \(2.55>+00\) \\
\hline & \(\cdots\) & \(\uparrow\) & \(\because\) ：\(\because\) & ．\(\because \cdot\). & & \(\because \cdot \mathrm{O}\) & －\(\because \because n\) & \[
\because \because \quad \therefore \quad
\] & ¢，？？？ & \[
\because 96700
\] & \[
3 \text { ? }
\] \\
\hline & it &  & & &  & ：\(\because\) & \(\therefore\)＂ & \(\therefore \because 70 \quad \because\) &  & \(\therefore\) ¢ 088.50 & 1．027：00 \\
\hline & ！ & \(\cdots \cdots \cdots\) & \(\cdots: \cdot \cdots\) &  & ，\(\because \cdot \cdots\) & \(\cdots\)－\(\because\)－ &  & ：\(\because=\cdots\) &  & \(\therefore \therefore 147.00\) & －，スs：00 \\
\hline & ． & － & ．．． & ，1．．．\({ }^{\text {a }}\) & ， & \(\cdots\) & \(\therefore\)－ &  & － & \[
\text { . } 143: 1 .
\] & З．c．，jum \\
\hline & & & &  & & & & & & & \[
3.25 \div 5+00
\] \\
\hline & & \(\cdots\) & ¢ ！： &  & & \(\cdots\) & \(\cdots 30000\) & －\(\because \cdot \cdots ?\) & 5．032：： & \[
197+110
\] & \(\cdots\)－sseno \\
\hline & \multirow{5}{*}{；} & & & & & & & & ．； & \(\because\) & \\
\hline & & 1. & & － & & & & & c．7931． & \(\therefore 2.00\) & －．．．．－－ 0 \\
\hline & & 1. & －：． & & & \[
\because 0
\] & & & \[
\because 1901
\] & \(\because 24000\) & \(\because, \because \quad \because 00\) \\
\hline & & －\(\cdot\) & ，．． & ， & ．．． & \(\therefore \cdots\) & & & \(\therefore 0.3\). & \(\because 2000\) & －wose \\
\hline & & 11 & 1 ？ & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline & 17 & 0.0000 & 0.0000 & 0.0000 & & & & & \multirow[t]{7}{*}{} & & \\
\hline & 16 & \＄．0796－10 & \(1.0612+01\) & 0.0000 & & & & & & & \\
\hline & 15 & 5.9796000 & \(1.0012+01\) & 0.0008 & & & & & & & \\
\hline & 14 & 5.3746400 & 1．0012＋n1 & 0．0non & & & & & & & \\
\hline & 15 & \(3.3004+00\) & \(7.0744+110\) & 0.0090 & & & & & & & \\
\hline & 12 & \(3.34 n 4+00\) & \(7.0744+00\) & 0.0000 & & & & & & & \\
\hline & 11 & \(1.6932+00\) & 3.3372000 & 0.0000 & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{cccc}
10 & \(1.6932+00\) & 3.5372400 & 0.0000 \\
9 & \(3.3864+00\) & \(7.0744+00\) & 0.0007 \\
8 & \(3.3864+70\) & \(7.0744+110\) & 0.0000 \\
7 & \(3.3464+00\) & 7.0744400 & 0.0000 \\
6 & \(3.3864+00\) & \(7.0744+00\) & 0.0000 \\
5 & \(3.3864+00\) & \(7.0744+00\) & 0.0000 \\
4 & \(3.3804+00\) & \(7.0744+00\) & 0.0000 \\
3 & \(4.2330+00\) & \(8.8429+00\) & 0.0000 \\
2 & \(4.2330+00\) & \(8.8429+00\) & 0.0000 \\
1 & 0.0000 & 0.0000 & 0.0000 \\
& 21 & 22 & 23
\end{tabular}

角

THE RAOIAL(I) DTRFCTIMN IS NORIZINTAL THE AXIAL (J) DIRECTION IS VERTICAL

\begin{tabular}{|c|c|c|c|}
\hline 10 & 1.2106+01 & 1.2213 .01 & 0.0000 \\
\hline 0 & \(8.1704+00\) & A. \(1415+00\) & 0.0000 \\
\hline 8 & 6.0524 .00 & \(6.1003+00\) & \(0.0 n 00\) \\
\hline 7 & \(6.052 A+00\) & \(6.1063+00\) & 0.0000 \\
\hline 6 & 6.052 \({ }^{\text {a }}+00\) & \(0.1063+10\) & 0.0000 \\
\hline 5 & 6.0529+00 & -.1003+00 & 0.0100 \\
\hline 4 & 6.052R+00 & \(6.1003+00\) & 0.0000 \\
\hline 3 & 5.3803+00 & 5.4278+00 & 0.0000 \\
\hline 2 & \(4.8423+00\) & 4. \(4 \mathrm{AS51+00}\) & 0.0000 \\
\hline 1 & 9.6R45+00 & \(9.7701+00\) & 0.0000 \\
\hline & 21 & 22 & 23 \\
\hline
\end{tabular}
steady-státe temperature in -melium circulaíor blúwer disc

RADIAL RDUNNADY ASSIGNMENTS
\begin{tabular}{|c|c|c|c|}
\hline seduence NUMBER & \[
\begin{aligned}
& \text { POINY } \\
& \text { GOCATIGN } \\
& \text { (INCHES) }
\end{aligned}
\] & GRID LINE LOCATION (INCNES) & BOUNDARY NUMEER AT a material jnterface A CODLANT DR A GAP \\
\hline 1 & .00001 & & \\
\hline 1 & & .00008 & 1 \\
\hline 2 & .29000 & & \\
\hline 2 & & . 58000 & \\
\hline 3 & .87000 & & \\
\hline 3 & & 1.16000 & \\
\hline 4 & 1.45500 & & \\
\hline 4 & & 1.75000 & 2 \\
\hline 5 & 2.07500 & & \\
\hline 5 & & 2.40900 & \\
\hline 6 & 2.70000 & & \\
\hline 6 & & 3.00000 & 3 \\
\hline 7 & 3.12500 & & \\
\hline 7 & & 3.25000 & 4 \\
\hline 8 & 3.31250 & & \\
\hline 8 & & 3.37500 & 5 \\
\hline 9 & 3.56250 & & \\
\hline 9 & & 3.75000 & 0 \\
\hline 10 & 4.00900 & & \\
\hline 10 & & 4.25000 & \\
\hline 12 & 4.50000 & & \\
\hline \(12^{11}\) & & 4.75000 & \\
\hline 1212 & 5.00000 & 5.25000 & \\
\hline 13 & 5.50000 & & \\
\hline 13 & & 5.75000 & \\
\hline 14 & 6.00000 & & \\
\hline 14 & & 6.25000 & \({ }^{-}\) \\
\hline 15 & 6.50000 & & \\
\hline 15 & & 0.75000 & \\
\hline 16 & 7.00000 & & \\
\hline 16 & & 7.25000 & \\
\hline 17 & 7.43750 & & \\
\hline 17 & & 7.02500 & 7 \\
\hline 18 & 7.68750 & & \\
\hline 18 & & 7.75000 & 8 \\
\hline 10 & 7. 27500 & & \\
\hline 19 & & A.00000 & 9 \\
\hline 20 & 8. 16500 & & \\
\hline 20 & & 8.330^0 & \\
\hline 21 & 8.50000 & & \\
\hline 21 & & 8.67000 & \\
\hline 22 & 8.83500 & & \\
\hline 22 & & 9.00000 & 10 \\
\hline 23 & 9.00000 & & \\
\hline
\end{tabular}

AXIAL BUUNDARY ASSIGNMENTS

```

 SPECIFICATIONS FIR CUNLANT I
 THE CONLANY IS FLOWING IN THE PIISITIVE AXIAL DIRECTIDN
 THE FEYNOLIS NUMHER LIMITS ANE 0.0000 1.0000+20 1.0000+20 1.0000020
 OO STEP CHANGES IN FLON
 NN STEO CHANGES IN INLET TEMPERATIJRE
 SPECIFICATIUNS FDR CUNLANT 2
 THF. CTMLANT IS FLOMIMG IN THE PNSITIVE RANIAL DIRECTION
 THE REY!OTLS NUMAER LIMTTS ARE 0.0000 1.0000420 1.0000420 -1.0000420
 H\cap STED CmANGES IN FLON
 NO STEP CMANGES IV INLET TEMPERATIIRE
 SPECIFICATINHS FISR CONLANT 3
 ThE CONLAA,T IS FLONING IN THE PIJSITIVE RADIAL DIRECTION
H THE REYNOLTS NUMRER LIMITS AGE 0.CONO 1.0000+20 1.0000+20 1.0000420
NO STEP CHANGES IN FLOA
NO STEP CHANGES IN INLET TEMPENATURE
SPECIFICATITINS FOCR CJMLANP 4
ThF COMLAFY IS fliming in the pIISITIVE AXIAL DIRECTION
THE QFYNIMINS NUMHFR LIMITS ARE
NO STED CHANGES IN FINN
NO STEP Chafgeg in trilet teumehature
SPECIFICATIINNS FIN COMLANT S

```


```

NT STFP CMANGES IN FLON
HN STEP CMA:OGES IN INLET TE:PEEKATUPF
SPECJFICATINwS FOQ COMLANY 6
TME COMLANT IS FLGMING IN TME NEGATIVE AXIAL DIRECTION
THE REYY S NUNHERLIVITS ARE 0.NONO , 1.9000+20 2000+20 1.0000420

```

NO STEP \(\qquad\)

SPECIFICATENNS FOR COMLANT 7
THE CONLAFIY IS FLOWINT IN THE PNSITIVE RADIAL OIRECTION THE REYMOLDS NUMBER LIMITS ARE 0.0000 1,0000420 NO STFP CHANGES IN FL!IW
NI) STED CHANGES IN INLET TEMPERATURE

SPECIFICATIONS FIR CONLAMT 6
THE COMLAAT IS FLIWIMG IN THE POSTTIVE AXIAL OIRECTION
NO STEP CHANGES IM FLMA
NO STEP CHAVGES IN INLET TEMPEhature

SDECJFICATICINS FIR EOULAA:T 9
THE CHOLANT IS FLIWING If THE PNSITIVE RADIAL DIRECTION
TNE REYNTILDS NUMAFR LIMITS ARE \(0.0000 \quad 1.0000\)
VI STEP CHANGES IN FLINO 0.0000
NO STEP CHANGES IN INLET TEMPERATURE


PRORLEM INPUT CAPNS



\section*{TACZD EXAMPLE OROBLEM DUTPUY}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3.0000 & 9.0000 & 4.0000 & 4.0000 & -5.0000 & 1.00 & \[
\begin{array}{r}
.00 B 25-1 \\
B L A V K
\end{array}
\] \\
\hline INITIAL & TEMP & & & & & \\
\hline . 00000 & 9.00000 & .00000 & 4.00000 & ORO.00000 & & IT-1 \\
\hline End Dat & & & & & & BLANK \\
\hline
\end{tabular}




THIS VERSIIN TF TACZD USES A NFW STEAOY STATE SULUTION PROCEDURE.
IT SHCLL
BDUNNS, AS WFLL AS THE FINAL SILUTION. IN URDFR TO INSIRE THAT YOU
HAVE A PROPER STEAOY SIATE SOLUTIDN, YOU BHOULD CHECK YDUR RESULTS
IN THE FOLLOWING NAYS:
1.) IS THE LAST ITERATION NLIMBER LESS THAN 10000 ?
2.) 19 THE RESIDUAL LESS THAN . 1000-OI?
3.) ONES THE FINAI. E:UFRGY RALANCE AGFFE NITTHIN 1. COU X?
4.) IS EACH TEMDEFATIJE (IF THE FIMAL RESULT RETWEEN THE UPPER AND LONER ROUNDS ?
5.) MAS THE RIJN RIIRMALGY TERKIAATFO,E.G.THE HARNING TIME LIMIT WAS NOT ENCUUNTERED ?

IF THE ANSMFH TO ALL OF THE AMIVE IS TRUE, THEN YOUN SOLUTION SHIJULD
BE A VALIO STFAOY STATE QESULT AT LEAST XITTHIN TKE RQINTFD
UPOFR ANU LGAER TEMPEHATHRE HMINDS. IF THF ANSNER TH ANY IIAF IS FALSE,
THE RESULTS AEE NII NFCESSAPILY INVALIO. HJWFVER, INSPECT YOUR RESULTS FUR
INCOMSISTENCIESI IRSERVF THE UPRER AND LOWER TEMPERATIJRE ROUNDS.

HOTE: THF CUPRFNT VAI IIFS IF THE STEAIY STATE PARAMETERS ARE:
\begin{tabular}{|c|c|c|c|c|}
\hline DELT & 1.000 & DEG F P¢G & PERTIGHATIUN & \\
\hline POL 2 & \(.1000-01\) & ALLONAPIE & fracilional energy & indalalanice. \\
\hline 17max \(=\) & 110000 & MAX ITE! & ATIUSS HEFORE FINAL & Sm: JOTHIMG. \\
\hline DTFAC= & 1.000 &  & IT.QATITI PGAAMETER & \\
\hline DTMAX \(=\) & 5un.0 & \(104 \times 1+1 /{ }^{\text {a }}\) & IT\& PaTIOR. DARA"ETER & \\
\hline
\end{tabular}
 STEANY STATE SHLUTICA NITR TKT: TAC2O VEKSIOA, PLFASE CONTACT:
THFM SFCTION, GYSIFMS AUALYSTS HRANCH



 *****ATTENTIUV*****ATTENTIIN*****ATTEATITR!*****ATTEATIMA*****ATYENTIGH*****ATTENTIUN*****ATTENTIUN*****ATTENTIUN*****



 *****ATTENTION*****ATTENTION*****ATTENTIGN*****ATYENTION*****ATTENTIUN*****ATTENTIUN*****ATTENTION*****ATTENTION*****

POSITIVE PERTIJRGATION MAS BEEN INITIATEO...ANC COMPLETED IN . \(3 \mathbf{1 5} \mathbf{3 5} 20\) MS.
THESF RESULTS REPRFSFMY \(\triangle N\) UPPFR TEMPERATURE BUUND-THFDE WEFE 1 I.DFG F PERTURBATIUNS
THE GACIAL(I) DIRFCTINN IS HORITONTAL
THE AXIAL (J) OIRFCTINN IS VENTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & & 0 & 175 & 175 & 175 & 175 & 175 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 0 & 0 & 0 & 0 & 0 \\
\hline 16 & & 0 & 297 & 207 & 207 & 297 & 297 & 239 & 179 & 224 & 269 & 343 & 404 & 456 & 502 & 544 & 583 & 018 & 634 & 63 ? & 635 & 642 & 653 & 680 \\
\hline 15 & & 0 & 298 & 298 & 298 & ? 98 & 207 & 2.5 & 188 & 228 & 213 & 346 & 400 & 457 & 502 & 543 & 582 & 015 & 029 & 631 & 035 & 642 & 6) 3 & 680 \\
\hline 14 & & \(n\) & 279 & 200 & 209 & 248 & 298 & ? 51 & 190 & 236 & 261 & 353 & 410 & 460 & 503 & 542 & 579 & 013 & 029 & 6.32 & 640 & 052 & bo8 & 680 \\
\hline 13 & & 0 & 300 & 300 & 209 & 290 & 299 & 248 & 204 & 246 & 293 & 361 & 415 & ath? & 503 & 540 & 574 & 61) 7 & 624 & 629 & 642 & 656 & 671 & 680 \\
\hline 12 & & 0 & 300 & 307 & 300 & 3U1 & 299 & 325 & 21? & 256 & 308 & 369 & 420 & 465 & 504 & 538 & 570 & 598 & 617 & 623 & 602 & 658 & 673 & 680 \\
\hline 11 & & 0 & 477 & a75 & 472 & 403 & 434 & 374 & 219 & 2ヶ4 & 317 & 374 & 423 & 46k & 504 & 538 & 367 & 591 & 607 & 617 & has & 660 & 073 & 680 \\
\hline 10 & & 0 & 491 & 490 & \(44_{6}\) & 1977 & 453 & 404 & 232 & 208 & 320 & 370 & 423 & 4n7 & 505 & 538 & 567 & 589 & 000 & 611 & -04 & 661 & 674 & 060 \\
\hline 9 & & 0 & 513 & 512 & 508 & 501 & 478 & dan & 413 & 405 & 424 & 403 & 497 & 527 & 552 & 575 & 500 & 614 & 224 & 633 & 650 & 663 & 675 & 680 \\
\hline 8 & & 0 & 542 & 541 & 538 & 532 & S14 & 501 & 405 & 492 & 505 & 52 \({ }^{\text {H }}\) & 550 & 570 & 5月n & 002 & 017 & 631 & 039 & 645 & ¢50 & 6to & 670 & 080 \\
\hline 7 & & 0 & 572 & 571 & 549 & 565 & 559 & 5n! & 564 & 568 & 577 & 590 & \(0 \cap 3\) & 613 & b18 & 628 & t. 33 & 647 & 052 & 6Sn & oh3 & 670 & 077 & 6HO \\
\hline 6 & , & 0 & 601 & 600 & 500 & 590 & 599 & 014 & 633 & 64? & 645 & \(65 n\) & 654 & 657 & 649 & 4, 3 & 658 & on 3 & 6h5 & H07 & 669 & 673 & 678 & 680 \\
\hline 5 & & 0 & O30 & 030 & 030 & 632 & \(6 \times 5\) & 651 & 680 & hro & 980 & 680 & ofin & 680 & 6R & 680 & BRO & 080 & OHO & 680 & 675 & 67 H & 078 & 680 \\
\hline 4 & & 0 & ORO & 681 & Q80 & 6, 6 & 645 & 672 & 680 & GHO & 680 & 680 & 680 & 6ro & bRU & 680 & -80 & OBO & OHO & 6 HO & 077 & \(n 77\) & 679 & 680 \\
\hline 3 & & 0 & GRO & 680 & GRO & 000 & 680 & 640 & \% 80 & 6RO & 650 & 680 & ORO & Oro & ORO & 6 O 0 & 640 & hen & 680 & 630 & 678 & 678 & 679 & 680 \\
\hline 2 & & 0 & ORO & ARO & 050 & \(6 H^{\circ} 0\) & O80 & 080 & hBi & 080 & h80 & 680 & 685 & 680 & ORO & 680 & 680 & -60. & 080 & 680 & ORO & 660 & 681 & 680 \\
\hline 1 & & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}
\(\stackrel{\sim}{\sim}\)

THESE TESULTS REPPESFNT A LOMER TEMPERATURE AIUNHOTHERE WEDE 219.80 MS．
THE RADIAL（I）DIRECTION IS HOHIZINNTAL
THE AXIAL（J）OIRECTION IS VERIICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 0 & 175 & 175 & 175 & 175 & 175 & ก & 0 & 0 & 0 & 0 & & & & & & & & & & & & \\
\hline 16 & 0 & 290 & 395 & 295 & 295 & 295 & 237 & 179 & 224 & 269 & 343 & 404 & 456 & 502 & 0
544 & 583 & 0 & \({ }^{0}\) & \({ }^{0}\) & 0 & 0 & 0 & 0 \\
\hline 15 & 0 & 290 & 298 & 296 & 290 & 296 & 244 & 188 & 228 & 273 & 346 & 404 & 456 & 502 & 544 & 583 & 017 & 932 & 632 & 635 & 042 & 653 & 080 \\
\hline 14 & 0 & 297 & 297 & 297 & 297 & 796 & 2 nO & 190 & 236 & 2 P & 346
352 & 410 & 457
459 & 502 & 543 & 582
579 & 017 & 632 & 633 & 635 & A42 & 653 & 680 \\
\hline 13 & 0 & 208 & 20R & 297 & 297 & 297 & 207 & 204 & 246 & 293 & 35 & 415 & 459 & 503 & 54 ？ & 579
575 & 614 & \(\bigcirc 30\) & 632 & 640 & 651 & 607 & 680 \\
\hline 12 & 0 & 298 & P98 & 298 & 298 & 298 & 324 & 20 & & 2 & 301 & 415 & 462 & 503 & 540 & 575 & （117 & 025 & 628 & カu2 & 65n & 671 & 680 \\
\hline 11 & 0 & 476 & 474 & 471 & \(46 ?\) & 437 & 373 & 219 & & & 369 & 430 & 465 & 504 & 538 & 570 & 590 & \(0: 7\) & 02.3 & 042 & 658 & 673 & 6HO \\
\hline 10 & 0 & 440 & 489 & 485 & 476 & \(45 ?\) & 404 & 231 & 307 & 9 & 373 & 423 & 086 & 504 & 537 & 567 & 591 & 207 & 617 & 645 & 600 & 673 & 680 \\
\hline \(\bigcirc\) & 0 & 512 & 511 & 517 & 499 & 477 & 439 & 413 & 0115 & 420 & 374 & 423 & 467 & 505 & 538 & 507 & 549 & 000 & 611 & 648 & 6ヵ1 & 674 & 680 \\
\hline 8 & 0 & 542 & \(54 \%\) & 538 & 531 & 517 & 501 & 494 & 491 & 505 & 463
528 & 497 & 527 & 552 & 575 & 596 & C14 & 02：1 & 033 & 050 & H03 & 675 & 680 \\
\hline 7 & 0 & 571 & 57 n & SAR & 505 & 559 & Stho & Sh4 & 56A & 577 & 590 & ¢ 0 & 570 & 480 & 602 & 017 & 631 & 039 & 045 & 650 & 6 to & 076 & 680 \\
\hline 6 & 0 & 601 & bon & 500 & 509 & 590 & 614 & 032 & －42 & clis & HSO & － 54 & 61 & 0 & A & 638 & 647 & 652 & 650 & 6 C 3 & 670 & 677 & 680 \\
\hline 5 & 0 & 630 & b30 & h20 & \(63 ?\) & 634 & 651 & ORU & 690 & 680 & 6R0 & & & & & 658 & 603 & 665 & 667 & \(66^{9}\) & 673 & 678 & ORO \\
\hline 4 & 0 & 680 & han & brid & nos & カns & 672 & cro & 9HG & 650 & GAn & & 6 ： & 6 OR & 680 & 680 & nhe & 680 & 080 & 67） & 670 & 679 & 680 \\
\hline 3 & 0 & 680 & 680 & 680 & 6 H0 & 680 & 680 & क80 & 680 & 680 & 680 & & & & & ORO & OH0 & \(\left.0^{8}\right)^{\text {）}}\) & 680 & 678 & 678 & 679 & －80 \\
\hline 2 & 0 & 680 & 680 & 6RO & 680 & 680 & BRO & 680 & 680 & 68\％ & －80 & \(\bigcirc\) & ¢ & －80 & 680 & 680 & 6 6） & 680 & 680 & 679 & 679 & 680 & 680 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 680
0 & 680 & 680 & 680
0 & 679 & 679
0 & \[
680
\] & \[
680
\] \\
\hline & 1 & 2 & 3 & 4 & \＄ & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}

STEADY－STATE TEMPERATURE．IN A HELIUM CIRCULATUR BLOWER DISC


THE CURKENT ITERATION PARAMETER IS 19.93 ．IOO：ITERATIUNS HAVE BEEN PERFIRMEU，

TEMPERATURES（F）
THE RADIAL（I）OIRFCTIDN IS HIJRITIOITAL
TME AXIAL（J）DIOFCTION IS VEOTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 17 & 0 & 175 & 175 & 175 & 175 & 175 & 0 & \(1)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline & 16 & 0 & 297 & 29n & \(20 . n\) & 275 & 296 & 238 & 177 & 324 & 264 & 343 & 405 & 457 & 50？ & 544 & \(\begin{array}{r}0 \\ \hline 84\end{array}\) & 0
619 & 0
634 & 633 & 630 & 0
643 & 0
654 & 080 \\
\hline & 15 & 0 & 207 & 297 & 297 & 247 & 207 & 219 & 1 AR & 223 & 273 & 39 n & 4 n 7 & 458 & & 5414 & 5 A 3 & A1H & ¢3 3 & 633 & 630 & 643 & 654 & 680 \\
\hline & 14 & 0 & 209 & ？9A & 298 & 248 & 207 & 2，0 & 106 & \(23 n\) & 2¢1 & 353 & 411 & 400 & 503 & 512 & 5 bu & －15 & n33 & ¢33 & 630 & 64 3 & 654 & 680 \\
\hline & 13 & 0 & 294 & 290 & 20\％ & \％）4 & 20 C & ？ 7 & 204 & 2みの & 203 & 301 & ain & \(4+\) ？ & 503 & Sun & 575 & －1／\({ }^{\text {A }}\) & h31 & 633 & out & 033 & 60\％ & 680 \\
\hline & 12 & 0 & 209 & 299 & 299 & 299 & 200 & 324 & 212 & 25n & 30 H & 3nO & 420 & 405 & 504 & 53 R & 5711 & 599 & － & ¢ 3 & かん2 & b， 6 & b） & 80 \\
\hline & 11 & 0 & 476 & 475 & 471 & 463 & 437 & 373 & 219 & 2ヵム & 319 & 374 & 423 & 400 & 505 & 53 A & 5ん7 & 591 & 607 & \(\rightarrow 17\) & 845 & ato & 673 & 680
680 \\
\hline \(\stackrel{\sim}{\circ}\) & 10 & 0 & 491 & 459 & 490 & 417 & 452 & 404 & 232 & 267 & 320 & 374 & 423 & 407 & 505 & 538 & Sh7 & \(5 \times 9\) & 000 & 611 & 64 A & 661 & 674 & 680
680 \\
\hline f & 9 & 0 & 513 & 511 & 408 & 490 & 477 & 440 & 413 & 4.14 & 428 & 4ち3 & 497 & 527 & \(55 ?\) & 575 & 590 & 614 & m24 & 033 & 650 & ba 3 & 675 & 6880
680 \\
\hline & 8 & 0 & S42 & 541 & \(53 \mu\) & 532 & 518 & 501 & 495 & 402 & 505 & 5．2 & 550 & 570 & SAO & 602 & 0.17 & 231 & 634 & 645 & 650 & 6ヵ力 & 070 & 6880 \\
\hline & 7 & 0 & 571 & 570 & 58,0 & 5 Sh & \(5 ¢ 9\) & 500 & 56.4 & SAR & 577 & 590 & 60 3 & 613 & 018 & \(n \geq 8\) & 634 & b47 & 052 & obs & on3 & b70 & 677 & 680 \\
\hline & 5 & 0 & 691
030 & 400
630 & 509
5314 & 579
\(63 ?\) & 509
034 & 6110 & O32
680 & 6＂2 & 646 & 650 & 054
480 & 577 & －49 & 653 & A58 & to3 & 065 & 6¢7 & On9 & 673 & 078 & bfo \\
\hline & 4 & 0 & 680 & 勺AC & （A） & COS & O． 5 & 671 & \(\bigcirc 0\) & hno & 6HO & \(6^{40}\) & hRO & 680 & 680 & bतの & 680 & OH2 & 080 & 680 & 075 & 670 & 679 & 060 \\
\hline & 3 & 0 & 690 & Ofin & の80 & OHO & hro & 650 & ORA & ban & 681） & 689
680 & han & 680 & ORO & hRO & ORO & OHO & 680 & 680 & 678 & 678 & 679 & 680 \\
\hline & 2 & 0 & 680 & hbo & ORO & ASO & OHO & 680 & t80 & 680 & －80 & －80 & & & & 68 & （8） & 680 & 680 & 680 & 679 & 670 & 680 & 680 \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 680
0 & ORO & 679
0 & 679
0 & 680
0 & \[
\begin{array}{r}
680 \\
0
\end{array}
\] \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 1.6 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline COOLANT & NIIMBER & & & CODLAN & Femperaturfs（F） & & & \\
\hline coolant & NHMBER & \[
\begin{aligned}
& \text { INLET } \\
& \text { OAO }
\end{aligned}
\] & \[
080
\] & FLOW（LE／HR）
100000000 & COULANT NUMEER & \begin{tabular}{l}
INLET \\
175
\end{tabular} & \begin{tabular}{l}
OUTLET \\
175
\end{tabular} & FLOW（LH／HK） 10N000000 \\
\hline 3 & & 0 & 0 & 1000000 & 4 & 0 & 0 & 1000000 \\
\hline 5 & & 0 & 0 & 1000000 & 6 & 175 & 222 & 50 \\
\hline 7 & & 2？？ & 615 & 50 & 8 & 016 & 633 & 50 \\
\hline 9 & & 633 & 658 & 50 & & & & \\
\hline
\end{tabular}

THE CURRENT ITERATION PARAMETER IS 19.93 ．
105 ITERATIONS HAVE BEEN PERFORMED．

TEMPERATHRES（F）
the radial（i）ojrection is moriziontal
the axial（J）diafctigin is vertical
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 175 & 175 & 175 & 175 & 175 & 0 & 0 & 0 & 0 & 0 & 0 & ก & 0 & 0 & 0 & 0 & 0 & \(u\) & 0 & 0 & 0 & 0 \\
\hline 0 & 290 & 246 & 290 & 296 & \(20^{\circ}\) & 238 & 177 & 234 & 269 & 343 & 404 & 456 & 502 & 544 & 584 & 619 & 031 & 633 & 630 & 643 & hS4 & CHO \\
\hline 0 & 297 & 297 & 207 & 297 & 29n & 245 & 109 & 2？ & 273 & 34m & 406 & 457 & 502 & 543 & SH2 & 617 & 032 & 633 & H30 & nu3 & 054 & O80 \\
\hline 0 & 208 & 294 & 20R & 29R & 277 & 260 & 100 & \(23 n\) & 281 & 353 & 110 & 4.0 & 503 & 542 & 579 & 014 & 0315 & 032 & 641 & 05？ & 065 & ＋80 \\
\hline 0 & 209 & 290 & 208 & 29R & 298 & P87 & 204 & 246 & 293 & 301 & 415 & 462 & 503 & 5411 & 575 & 007 & 024 & －6is & 042 & 050 & 671 & 680 \\
\hline 0 & 290 & 299 & 209 & 299 & 290 & 325 & 212 & 250 & 31.8 & 369 & 420 & 465 & 504 & 538 & 570 & 594． & 017 & 623 & 642 & 658 & 673 & 680 \\
\hline 0 & 476 & 475 & 471 & 463 & 437 & 373 & 219 & 26．4 & 319 & 374 & \(4>3\) & anb & 504 & 537 & 567 & 591 & 607 & 617 & ＊45 & 650 & 673 & 680 \\
\hline 0 & 401 & 480 & \(4 \mathrm{H6}\) & 477 & 15 & 404 & 232 & 207 & 320 & 374 & 423 & 4ヶ7 & 505 & 538 & 567 & 5ヵ9 & 000 & 610 & 048 & OOI & 074 & 680 \\
\hline 0 & 513 & 511 & 518 & 499 & 477 & 439 & 413 & 405 & 429 & \(40^{\text {a }}\) & 497 & 527 & 552 & 5.75 & 590 & 014 & 024 & 033 & 050 & hb 3 & 675 & 680 \\
\hline 0 & 542 & 541 & 538 & 532 & 518 & 501 & 495 & 492 & 595 & 524 & 550 & 570 & 596 & （i）？ & W11 & A 31 & 639 & 245 & H50 & bnb & 670 & 680 \\
\hline 0 & 571 & 570 & 569 & 565 & 559 & SnO & 564 & 569 & 577 & 590 & 003 & 613 & 018 & n28 & －38 & 647 & 632 & chos & ma 3 & －7） & 877 & ＋80 \\
\hline 0 & 601 & 600 & 599 & 599 & 509 & 514 & 632 & 642 & 646 & 650 & －54 & 657 & 649 & 653 & －58 & 663 & 065 & ne 7 & eno & 673 & 078 & OBO \\
\hline 0 & 630 & 630 & 030 & H32 & 034 & 651 & 6\％0 & 680 & 680 & 680 & 680 & 660 & OHO & \(6{ }^{60}\) & O50 & 600 & 08.1 & － BCO & 075 & 676 & 679 & 680 \\
\hline 0 & 680 & क BC & 680 & hos & 665 & 67.2 & 080 & 580 & 980 & 680 & OBO & GBA & SRO & 6Rn & 680 & 630 & ORJ & bHO & 071 & 678 & 079 & bHO \\
\hline 0 & 680 & \({ }^{680}\) & 680 & GAO & OHO & ¢80 & nHO & 680 & 080. & 680 & 680 & ORO & 6月0 & 660 & 680 & 630 & ORO & bot & 079 & 679 & 680 & 680 \\
\hline 0 & 080 & 680 & 680 & 680 & 6 AO & 680 & GRO & 680 & 680 & OHO & 6AO & 680 & 680 & 680 & 680 & 080 & 080 & 680 & 079 & 679 & 080 & 680 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & \(\checkmark\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(\checkmark\) & 0 & 0 & 0 & 0 \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & A & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}

\section*{STEADY-STATE PEMPERATURE IN A HELIUM CIRCULATUR BLUWER DISC}


THE CURHENT ITEHATION PLRAMETER IS 19.93 . IIO ITERATIONS HAVE BEEN PERFURMEO.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline COOLAN & NUMBER & INLET & OUPLET & FLOW CORLANT & TEMPERATURES (F) CIIOLANT NUMEER & INLE & & FLOM (LB/HR) \\
\hline 1 & & 680 & GAE & 100000000 & 2 & 175 & \[
175
\] & \[
100000000
\] \\
\hline 3 & & 0 & 0 & 1000000 & 4 & 0 & 0 & 1000000 \\
\hline 5 & & 0 & 0 & 1000000 & 6 & 175 & 222 & 50 \\
\hline 7 & & 222
033 & 616
659 & 50
50 & 8 & 016 & 033 & 50 \\
\hline
\end{tabular}

THE CURHENT ITERATION PARAMETER IS 19.93 - IIS ITERATIONS MAVE BEFEN PEKFORMEU.

steady－state temperature in a helium circulatior blower disc
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline COOLANT & NUMBER & INLET & outiet & FLOM (LB/AR) COOLANT & TEMPERATURES（F） coolant number & INLET & OUTLET & FLOw（LH／HR） \\
\hline 1 & & 6RO & 680 & 1000nooro & ？ 2 & 175 & 175 & 100000000 \\
\hline 3 & & － & 0 & 1000000 & 4 & 0 & 0 & 1000000 \\
\hline 5 & & 0 & 0 & 1000080 & 0 & 175 & 222 & 50 \\
\hline 7 & & 222 & 616 & 50 & 8 & 616 & 633 & 50 \\
\hline 9 & & 633 & 657 & 50 & & & & \\
\hline the current & Ent ItER & ION Pat & IER IS & 9.93 & 120 & terat & have been & PERFORMED． \\
\hline
\end{tabular}

TEMFERATIRES（F）
THE RAOIAL（I）DIRECTIC：IS HORIZIIHTAL
THE AXIAL（J）DIRECTITA：IS VERTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 17 & 0 & 175 & 175 & 175 & 175 & 175 & 0 & \(\cup\) & 0 & 0 & 0 & 0 & 0 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 16 & \(1)\) & \(20^{\circ}\) & 29月 & 200 & 276 & 200 & 238 & 170 & 224 & 269 & 343 & 404 & 450 & 50 ？ & 544 & 583 & b18 & 033 & 632 & 635 & nut & 0.53 & 680 \\
\hline & 15 & 0 & 297 & 207 & 297 & 297 & 290 & 345 & 1 18 & 238 & 273 & 346 & 400 & 457 & 502 & 543 & 582 & 616 & 630 & b 32 & 035 & 642 & 653 & 080 \\
\hline & 14 & 0 & 298 & 209 & 298 & 297 & 297 & 200 & 196 & 23n & 281 & 353 & 410 & 459 & 502 & 541 & 574 & 613 & 024 & 032 & 600 & \(65 ?\) & 0.7 & 680 \\
\hline & 13 & 0 & 299 & ？ 44 & 208 & 294 & 20f & 287 & 204 & ？ 46 & 293 & 3 nl & 415 & 4ヵ？ & 503 & 540 & 574 & （1）7 & 024 & ¢28 & 641 & 050 & 071 & －80 \\
\hline & 12 & 0 & 299 & 209 & 290 & 200 & 208 & 325 & 212 & 255 & 308 & \(3+9\) & 470 & 465 & 5014 & 534 & 570 & 548 & 017 & 637 & B42 & bSich & 673 & － 80 \\
\hline & 11 & 0 & 476 & 475 & 471 & 403 & 437 & 373 & 219 & 264 & 310 & 774 & 4 3 & 46t & 504 & 537 & 507 & 591 & 007 & 617 & 645 & ban & 073 & 680 \\
\hline \(\cdots\) & 10 & 0 & 491 & 449 & \(4{ }^{9} 0\) & 477 & \(45 ?\) & 404 & 212 & 267 & 320 & 374 & 423 & 467 & 505 & 538 & 567 & 569 & 600 & 610 & hUA & かわ！ & M 74 & 680 \\
\hline \(\infty\) & 9 & 0 & 513 & 511 & 5 t 3 H & 199 & 477 & \(43^{\circ}\) & 413 & 405 & 424 & 463 & 497 & 527 & 552 & 575 & 596 & 614 & 02． & 633 & hat & 603 & 075 & 680 \\
\hline & 8 & 0 & 542 & 541 & 538 & 53？ & 518 & 501 & 495 & 6：92 & 5リ5 & 528 & 550 & 570 & 5nn & tu2 & 611 & 631 & 037 & 645 & － 56 & htos & n7t & n80 \\
\hline & 7 & 0 & 571 & 577 & 569 & 505 & 550 & 500 & 564 & Sor & 577 & 590 & 603 & 613 & 618 & \(n{ }^{n} 8\) & 638 & n47 & 952 & 656 & on 3 & A70 & 577 & 040 \\
\hline & 0 & 0 & 001 & 601 & 579 & 540 & 509 & 014 & 632 & 642 & 646 & 650 & 654 & 657 & 649 & 053 & 658 & no3 & t，65 & 667 & ona & 073 & 078 & 080 \\
\hline & 5 & 0 & 630 & h30 & 030 & －32 & 0314 & 651 & ORO & BAO & n8） & の日の & A80 & G40 & 690 & GHO & 680 & hyo & OHO & \(6{ }^{40}\) & 675 & 670 & n 79 & 680 \\
\hline & 4 & \(n\) & ORO & tan & 690 & 665 & 065 & 672 & GRO & bRO & 080 & H80 & nRy & 680 & 680 & O80 & 680 & OHO & OR1） & 680 & 078 & 078 & 679 & 6H0 \\
\hline & 3 & 0 & \({ }^{\text {a }}\) AO & 680 & 6 － 0 & 6H0 & gra & 680 & 680 & 680 & 680 & 0 HO & ARA & 680 & 680 & 680 & 580 & \(n 80\) & 680 & 650 & 679 & 679 & O80 & 680 \\
\hline & 2 & \(n\) & BRO & 6 90 & 080 & 6SO & 680 & 630 & 680 & A 80 & 680 & 690 & －815 & 080 & 680 & A80 & bio & 680 & ORO & 680 & 079 & 679 & －80 & 680 \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline COOL ANT & VUMAER & 1NLET & OUTLET & FLON (LR/HR) CONLANT & pemperatures（F） COOLANT NUMBER & INLET & OHTLET & FLUW．（LB／HR） \\
\hline 1 & & 080 & 080 & 100000000 & － 2 & 175 & 175 & 100000000 \\
\hline 3 & & 0 & 0 & 1006000 & 4 & 0 & 0 & 1000000 \\
\hline 5 & & 0 & 0 & 1000000 & 6 & 175 & 222 & 50 \\
\hline 7 & & 222 & 616 & 50 & 8 & 616 & 633 & 50 \\
\hline 9 & & 633 & 657 & 50 & & & & \\
\hline THE CURRE & ENT ITERA & ON P：R & TER IS & ． 93 & 120 & ITERATIUNS & have been & PERFORMED． \\
\hline
\end{tabular}

\section*{TEMPERATIRFS（F}

THE RAOTAL（I）DIRECTITN IS HORIZINTAL
THE AXIAL（J）CIDECTITA IS VERTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 175 & 175 & 175 & 175 & 175 & 0 & ） & 0 & 0 & 0 & 0 & 0 & 0 & \(1)\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 290 & 276 & 206 & 246 & 200 & 239 & 179 & 224 & P69 & 343 & 404 & 456 & 502 & 544 &  & 614 & 633 & 632 & 635 & 642 & 653 & 680 \\
\hline \(n\) & 297 & 297 & 297 & 277 & 296 & 245 & 198 & ？ 28 & 273 & 346 & 496 & 457 & 502 & 543 & 582 & 616 & 0310 & 632 & 635 & huz & 053 & 680 \\
\hline 0 & 298 & 294 & 298 & 207 & 297 & 2bo & 196 & 236 & 2 Fl & 253 & 410 & 450 & 502 & 541 & 579 & 613 & 029 & 032 & 640 & n5 & 667 & 680 \\
\hline 0 & 299 & 299 & 208 & 798 & 298 & この7 & 2.14 & 24n & 293 & 701 & 415 & 4 ¢2 & 503 & 540 & 374 & 607 & n24 & 42k & 641 & 656 & 671 & 650 \\
\hline 0 & 209 & 299 & 299 & 209 & 208 & 324 & ？ \(1 ?\) & 255 & 30 R & 3n9 & 429 & 465 & 512 & 538 & 570 & 591 & 017 & 622 & 06.2 & 658 & 073 & 680 \\
\hline 0 & 470 & 475 & 471 & 403 & 437 & 373 & 219 & 204 & 319 & 374 & 423 & 4nh & 50.4 & 537 & 567 & 591 & 607 & 6 17 & 645 & 000 & 673 & \(\bigcirc 80\) \\
\hline 0 & 491 & \(4 \mathrm{HO}^{\text {a }}\) & AR & 477 & 457 & 404 & 232 & \(2 \times 7\) & 320 & 374 & 423 & 467 & 505 & 538. & 567 & 587 & 6010 & 610 & 048 & 6ns & 074 & 650 \\
\hline 0 & 513 & 511 & 50 H & 490 & 477 & 439 & 413 & 4.15 & 128 & 463 & 497 & 527 & 552 & 575 & 590 & 611 & 624 & H33 & 650 & ba 3 & 675 & 680 \\
\hline 0 & 542 & 541 & 538 & 537 & 518 & 501 & 405 & 142 & 505 & 52.8 & 550 & 570 & 546 & 602 & C17 & 631 & 634 & 645 & 050 & 666 & 070 & 680 \\
\hline 0 & 571 & 570 & \(5 \square 9\) & 5n5 & 599 & 5nis & 504 & Sth & 577 & \(50 \%\) & 603 & 613 & 610 & 624 & 万34 & h 47 & \(65 ?\) & 456 & nh3 & 670 & 677 & SRO \\
\hline 0 & 001 & OU0 & 599 & 599 & 599 & 614 & 632 & A4？ & 646 & nsn & คโ4 & 657 & ＋49 & 653 & bud & 603 & 005 & h67 & OnO & 673 & 078 & OHO \\
\hline 0 & \(\bigcirc 30\) & 630 & 230 & 63？ & 034 & 6St & BRO & ¢？ 0 & ¢ 80 & 680 & 680 & 680 & ARO & 6ing & 6月： & no 0 & OnJ & OHO & 075 & 070 & 679 & ABO \\
\hline 0 & OR： & 680 & 080 & 605 & nin 5 & H72 & 6AO & 640 & 6 \(\mathrm{HO}_{0}\) & 680 & 6RO & 6ヘ̄0 & ヵ8C & 680 & OHV & 0 － 0 & A80 & OHC & 078 & 678 & 674 & 680 \\
\hline 0 & 640 & bR J & ORO & 680 & h8！ & 980 & OHO & noto & 690 & \(\bigcirc 80\) & ORO & 680 & 690 & 680 & GRU & 6811 & OHJ & 万80 & 079 & 679 & ORO & 680 \\
\hline 0 & 680 & 681） & \({ }^{\circ} \mathrm{HC}\) & 688 & 6RG & 680 & OHO & 680 & \(6{ }^{40}\) & ory & BRO & \(6{ }^{4} 0\) & 680 & 680 & 6RO & 680 & ORO & － 40 & 079 & 079 & 680 & 080 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & ？ & \(n\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \(\dot{C}\) & 3 & 4 & 5 & \(b\) & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 14 & 20 & 21 & 22 & 23 \\
\hline
\end{tabular}

STEADY－STATE TEMPERATURE IN A HELIUM．CIRCULATUR BLOHER DISC
PHE CURRENT YIME IS 797.0180 MNURS \(=47821.0791\) MINUTES \(=2869204.75000\) SECONDS 120 ITERATIONS MAVE BEEN PERFORMED


RESTIUUALS
THE RAIIIAL（I）DIRETTION IS MCOITUNTAL THE AXIAL（J）OIDFCTION IS VERTICAL
\begin{tabular}{|c|c|}
\hline 0.01000 & 0.0000 \\
\hline 2．7991－00 & 2．746月， 00 \\
\hline 1．7400－114 & 1．50411064 \\
\hline 1．421500．14 & 1．7947－0．4 \\
\hline 1．0743－04 & 1． \\
\hline 1． \(25483-06\) &  \\
\hline 7． 6 ¢R2－n7 & 6．431）＝07 \\
\hline  & 3．2399－1） \\
\hline  & 1．2tく2－nt \\
\hline 2．1377－00 & 1．9174－70 \\
\hline \(1.2034-26\) & 9．6553－07 \\
\hline  & 9．6＇〇n7－n7 \\
\hline 5．70F3－07 & 4．5H1t－07 \\
\hline 9.0990 .11 & \(9.9000+11\) \\
\hline \(9.0000+11\) & \(9.9099+11\) \\
\hline \(9.9009+11\) & \(9.9099+11\) \\
\hline 0.0000 & 0.0000 \\
\hline
\end{tabular}

3
\begin{tabular}{|c|}
\hline \[
2.7261=
\] \\
\hline 1.40 \\
\hline \\
\hline 1.717 \\
\hline 3nd \\
\hline \\
\hline 2.174 \\
\hline R． 1 \\
\hline \\
\hline \\
\hline 4.3121 \\
\hline 4.1170 \\
\hline 424 \\
\hline 4． 2040 \\
\hline 99 \\
\hline ． 01300 \\
\hline
\end{tabular}

5
0.
1.
5
7
2
1
4
1
3.
9.
4.
1.
3
0.00
1.8
5.3
7.140
2.
1.
4.
1.
3.
9.
0.
\begin{tabular}{|c|c|}
\hline 0.0000 & 0.0000 \\
\hline 1．R1330－06 & \(0.4727-07\) \\
\hline 5．3400－10 & 0.5579 .07 \\
\hline 7．M903－00 & 9.73 69－07 \\
\hline 2．5565－15 & 7．A5M1－07 \\
\hline 1．3415－16 & 3．9425－07 \\
\hline 4．3203－1，7 & 2．4214．07 \\
\hline 1．250．1－00 & 2．9954－0．7 \\
\hline \(3.85 \mathrm{SS-07}\) & 3．1333－07 \\
\hline 9．74i9－07 & \(4.8932-07\) \\
\hline 4．0．6．7－07 & 2．0075－07 \\
\hline 1． \(\operatorname{tan9-117}\) & －1．3n1R007 \\
\hline \(3.1030-07\) & 9．0000 \\
\hline 2．9315－08 & 3，4079－0才 \\
\hline 9.9999 .11 & \(9.9940+11\) \\
\hline 9．9999＋11 & \(0.4999+11\) \\
\hline 0.0000 & 0.0000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0.0000 & 0.0000 & 0.0000 \\
\hline 10.0000 & 9．3707－07 & 2．8179．07 \\
\hline 0.0000 & 1．5n30－07 & 1.6050 .06 \\
\hline 0.00 .10 & 1．5702－131 & S．5291－07 \\
\hline C．00．00 & 2．7583－07 & 5.0400 .07 \\
\hline 0.2000 & 5．65B5－07 & 3．0710－07 \\
\hline 0.0000 & 2．96カ9－u7 & 5．2．607－07 \\
\hline －いいいO & 3．0000 & 0.0000 \\
\hline 4．O？n5－0H & S．9A4）＝08 & 3．4643－08 \\
\hline  & 3．4450－07 & 2．8191007 \\
\hline 1.4733 .07 & A． 4534008 & 7．5354－08 \\
\hline 1．170？－07 & 3．カカロ5－08 & 2．1457－08 \\
\hline －9．4944＋11 & 9．9299＋11 & \(9.9499+11\) \\
\hline 9．9009＋11 & \(9.9999+11\) & \(9.9999+11\) \\
\hline 9．9979＋11 & 9．0990＋11 & \(9.9999+11\) \\
\hline 9．9999＋11 & 9．9999＋11 & \(9.9999+11\) \\
\hline 0.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}

6
7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17. & 0.0000 & \(\bigcirc .0000\) & 0.0000 & 0.0000 & 0． \(0^{\text {anon }}\) & 0.0000 & 0.0010 & 0.0000 & 0.0000 & 0.0000 \\
\hline 10 & 3．5775．07 & －5ヶ9ア－07 & 1．2364－75 & 2．10n9－06 & 3．4519－0n & 4． \(2963-06\) & 3.2070000 & 2．3558－07 & 0.0000 & 0.0000 \\
\hline 15 & 2．2142－．36 &  & －1704－06 & H． 7793 －0h & \(1.2190-115\) & \(2.454 \mathrm{~K}-6.5\) & 9．4232－05 & 2．78．） 4 －（14 & 0.0000 & 0.0000 \\
\hline 14 & 1．य190．nt & 2．65？3－136 & 4．3n01－nt & 6.7731000 & 9．44n8－110 & \(1.3423-05\) & ？．7170．05 & 7.1203005 & 0.11000 & 4.6215005 \\
\hline 13 & 1．0n41－06 & 1．7711－0．6 &  & \(4.447 n-08\) & 6．59hs－06 & R．1579000 & 9．8078－07 & \(5.4805=05\) & 0.0000 & 1．7699－06 \\
\hline 12 & 8．43J0．n7 & 8．0957－07 & 1．2．110－06 & 1.9324006 & 3．0504－110 & 3．1011－06 & 5．0238－76 & 5.10900005 & 0.00000 & 4.8746006 \\
\hline 11 & 4.5310007 & \(5.51 \times 9.117\) & 7．1017－07 & 9.9321 .07 & 1．2037－136 & 5．4137－07 & 4．0424－90 & 1．4477－05 & 3． 1 ， 000 & \(4.1034-06\) \\
\hline 10 & 0.0000 & 0.0010 & 1．nums & 0.000 n &  & 0.0000 & 0.0000 & 0．00） & 0.0000 & 3．4974－96 \\
\hline 9 & 4．134A－08 & 7．0314．0R & 1.7433007 & 3．2004－07 & 3．9738－07 & 1．3730－07 & 9．A1） 0 －07 & 1．93：19－06 & 2．0318－06 & \(1.8900-06\) \\
\hline 8 & 2．7104－07 & 2．6540－07 & 3．13＋0．07 & 3． \(4464-1.7\) & 3．4533－07 & A．thna－0A & 6．4132－07 & \(1.1871-00\) & 1．477r－06 & \(1.0442-06\) \\
\hline 7 & 6．198n－08 & B．4046003 & 5．9n76－0日 & 5．4750－118 & 0.0000 & 3．0518－07 & 8．54135－07 & 1.3179 .00 & 1．5121－06 & 1.6541006 \\
\hline 6 & 3．1080－08 & 0.0000 & 0.10000 & \(2.10 .14=08\) & 7．51H4－07 & 2.0649 .07 & \(4.5523-07\) & 0．1943－07 & 7．8041－07 & 1．4254－00 \\
\hline 5 & \(9.9097+11\) & \(9.0099+11\) & 9．4000＋ 11 & 9．0n90＋11 & 9．4090 +11 & \(9.9999+11\) & \(9.9999+11\) & \(9.4099+11\) & \(9.9999+11\) & 4．4087－07 \\
\hline  & \(9.9090+11\) & \(9.0099+11\) & \(9.9909+11\) & \(9.9000+11\) & \(0.9400+11\) & 9．9999＋11 & \(9.9989+11\) & \(9.9090+11\) & \(9.9999+11\) & 1．0077－06 \\
\hline \(\underset{1}{ } 3\) & \(9.9990+11\) & \(9.9999+11\) & \(9.9099+11\) & \(9.9999+11\) & 9．9949＋11 & 9．9999＋11 & 9．9999＋11 & \(9.9999+11\) & \(9.9999+11\) & 5．2561－07 \\
\hline 12 & \(9.9999+11\) & \(9.9999+11\) & \(9.9090+11\) & \(9.9990+11\) & \(9.9990+11\) & \(9.9990+11\) & \(9.9949+11\) & \(9.9949+11\) & 9．9099＋11 & 0.0000 \\
\hline 1 & 0.0020 & 0.0000 & 0.0000 & \(0.000 n\) & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 17 & 0.0000 & 0.0000 & n.unon \\
\hline 16 & 0.0000 & \(0.000 n\) & 0.01000 \\
\hline 15 & \(0.0 n \cdot 10\) & c.onv? & U.finno \\
\hline 14 & 1.8413 .05 & 4.8.050-06 & \(0.1010 ?\) \\
\hline 13 & 8.47n3-05 & 4.5237006 & 0.3500 \\
\hline 12 & \(2.953 n-06\) & 2.40.7600h & v.00go \\
\hline 11 & 7.n990-n7 & \(9.989 \mathrm{Cl} \mathrm{Cl}^{7}\) & 0.0001 \\
\hline 10 & 4.7183 -07 & 4.5723-197 & \(0.1002 n\) \\
\hline - & 7.7201-07 & \(8.1011-08\) & 0.e.jor \\
\hline 8 & 1.1090000 & 2.8911-037 & \(0.000 n\) \\
\hline 7 & 1.5473 -116 & 7.4037 .97 & - onco \\
\hline 0 & 1.1604000 & 6.9522-n7 & 0.0630 \\
\hline 5 & 5.7ヶn)-n7 & 2.7n? 0 -07 & 0.00108 \\
\hline 4 & 1.0079-06 & 3.0000 & 0.06100 \\
\hline N 3 & 0.10000 & \(8.3894=07\) & 0.00 n \\
\hline N 2 & 0.0000 & 0.0000 & \(0.0 n 108\) \\
\hline 1 & 0.0003 & 0.0000 & 0.0000 \\
\hline & 21 & 22 & 23 \\
\hline
\end{tabular}






\section*{steadyegtate pemperatijae in a helium cipculator blower disc}

TME CURRENY TIME IS 797.0180 HIUAS \(=47821.0791\) MINUTES \(=2869264.750 \cap O\) SECONDS I2O ITERATIONS HAVE BEEN PERFORMED
```

MEAT FLUX IN RADIAL DIRECTINN GASEN ON THE AREA IIF GRIUIINE (I)
AETMEEN PIINTS (I,J) AND (I+I.J) (BTU/HR-FT**Z)

```

THE RADIAL(T) DIDECTION IS HORIZINTAL THE AXIAL (J) OIDECTICN IS VERTICAL
\begin{tabular}{|c|}
\hline \(0.000 n\) \\
\hline 7.0194*)2 \\
\hline \(7.1004+02\) \\
\hline 7. 2h17+12 \\
\hline 7.5642402 \\
\hline 7.9145+0? \\
\hline 2.711A+12 \\
\hline 2. \(0230+02\) \\
\hline 2.84124. 32 \\
\hline \(2.4423+012\) \\
\hline 1. \(9001+02\) \\
\hline 1.23n0ヶr.2 \\
\hline n.6.605+01 \\
\hline U.0000 \\
\hline 2.2737+00 \\
\hline 2.8737+10 \\
\hline 0.0000 \\
\hline
\end{tabular}

2


3
\[
\begin{aligned}
& 0.00 n 0 \\
& 2.1287+0.3 \\
& 2.0773+03 \\
& 2.0274+n 3 \\
& 2.61447+03 \\
& 2.1813+03 \\
& 1.7710+03 \\
& 1.7604+0,3 \\
& 1.6705+03 \\
& 1.2645+03 \\
& 0.8077+02 \\
& 6.4077+01 \\
& -5.4738+02 \\
& 3.3010+03 \\
& -2.9477+00 \\
& -2.9477+00 \\
& 0.0000
\end{aligned}
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
0.0000
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{2. \(\mathrm{H} 448 \mathrm{C}+03\)} \\
\hline \multicolumn{2}{|l|}{2.05R1+03} \\
\hline \multicolumn{2}{|l|}{2.13n1+03} \\
\hline \multicolumn{2}{|l|}{2.1313+013} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & 4. \(22055+\) \\
\hline \multicolumn{2}{|l|}{4.3nncto3} \\
\hline \multicolumn{2}{|l|}{2. \(\mathrm{F}: 184+03\)} \\
\hline \multicolumn{2}{|l|}{\(1.203 t+03\)} \\
\hline \multicolumn{2}{|l|}{\(4.752^{2}+0\)} \\
\hline \multicolumn{2}{|l|}{-4.929R+02} \\
\hline \multicolumn{2}{|l|}{1.2743} \\
\hline \multicolumn{2}{|l|}{0.0000} \\
\hline \multicolumn{2}{|l|}{0.0000} \\
\hline \multicolumn{2}{|l|}{0.0000} \\
\hline
\end{tabular}
0.0000
\(4.4812+03\)
\(4.0001+03\)
\(2.8651+03\)
\(4.1230+02\)
\(-2.7491+03\)
\(1.7643+C 4\)
\(1.3308+04\)
\(1.11720+04\)
\(4.7748+03\)
\(-3.4416+02\)
\(-4.5247+03\)
\(=4.9390+03\)
\(-1.8745+03\)
\(4.1753+00\)
\(4.1753+00\)
0.0000

6
0.0000
\(5.4704+03\)
\(5.3353+03\)
\(5.0993+03\)
\(7.8332+03\)
\(1.0631+04\)
\(1.4545+04\)
\(3.3439-04\)
\(1.7112+04\)
\(4.1716+03\)
\(-2.4525+03\)
\(-1.2554+04\)
\(-1.2456+04\)
\(-3.6299+03\)
\(=9.6490+00\)
\(-9.6090+00\)
0.0000

7
0.0000
\(=4.4694+03\)
\(-4.0418+03\)
\(-3.9490+03\)
\(-4.1814+03\)
\(-4.3444+03\)
\(-4.4947+03\)
\(-1.7515-05\)
\(3.9645+03\)
\(1.5601+03\)
\(-2.1534+03\)
\(-4.9600+03\)
0.1000
\(-1.4913+01\)
\(-7.4506+00\)
\(-7.4506+00\)
0.0000
\begin{tabular}{|c|c|}
\hline & 000 \\
\hline & . \(10015+10\) \\
\hline & \(11975+02\) \\
\hline & . \(1086+02\) \\
\hline & . 10 H5+02 \\
\hline & -1.2490+02 \\
\hline & \(4.6590+04\) \\
\hline & -1.4n10-05 \\
\hline & 59 \\
\hline & -3.8nus \\
\hline & -2.n122 \\
\hline & 1.31100 \\
\hline & -8. \(4309+00\) \\
\hline & \(4.2154+00\) \\
\hline & 8.43, \(49+00\) \\
\hline & \(8.4309+00\) \\
\hline & 0.0000 \\
\hline
\end{tabular}
0.0000 - \(8.9104+01\) \(-8.8028+01\) \(-8.5631+01\) -R.1127+01 \(-7.3619+01\) \(-3.9315+04\) -1.2812-05 - H. 4R45+03 \(-5.69113+03\) \(-3.3214+03\) \(-1.1264+03\) \(3.0579+00\) \(3.0579+00\)
\(-3.0579+00\) \(=3.6579+00\) \(-3.6574+00\)
\(-7.3158+00\) 0.0000
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & C．9009 & 0.0900 & U． 1000 & 2．0000 & n． 10000 & 0.0000 & & & & \\
\hline 16 & －7． \(54.45+11\) & －5．2317－01 & －5．4734＋0！ & －5．0．01－3＋0） & －4．7455＋01 & －4．7587＋01 & －4．7749＋01 & 9．4068 +02 & 3.10060
-1.3352008 & \[
\begin{gathered}
0.0000 \\
-2.4092=00
\end{gathered}
\] \\
\hline 15 & －7．2172．01 & \(-b .1178+n 1\) & －5．3n5ctol & － 4.647 Col & －4．0．50 \(2+01\) & \(-4.0479+n 1\)
-4.01 & －4． \(7749+01\) & \(9.4068+02\)
\(-7.0955+02\) & \[
\begin{aligned}
& -1.3352-08 \\
& -1.0011=05
\end{aligned}
\] & \[
\begin{aligned}
& -2.4092=00 \\
& -2.4092=06
\end{aligned}
\] \\
\hline 14 & －6．9404＋1）1 & -5. सR \(71+01\) & －5．15buchi & －－．n7nconi & －4．4757＋01 & －4．05cutnl & －5．19？\({ }^{-501}\) & －7．0935＋02
\(=1.0851+03\) & \(-1.0011-03\)
\(-3.4 n 36+03\) & \[
\begin{aligned}
& -2.4092-06 \\
& -4.6276+03
\end{aligned}
\] \\
\hline 13 & －0．5472＋01 & －5．00103＋r．1 & －4．9170＋ni & －－．3＇55＋01 & － \(0.1516+61\) & -4.5
\(-4.4 ア 99+41\) & \(-5.119 ?+01\)
\(-5.4023+01\) & －1．0R51＋03
\(=2.452(1+05\) & \(-3.4636+03\)
\(-5.6715+03\) & \[
\begin{aligned}
& -4.5276+03 \\
& =5.0419+03
\end{aligned}
\] \\
\hline 12 & －\(n \cdot 1 ? 08+01\) & －5．3nin＋n1 & －4．tadit＋ri & －4．1190＋01 & －3． \(\operatorname{inh} 7+01\) & －3．9210＋ 01 & \(-5.0023+01\)
\(-5.0083+01\) & \(-2,45211+05\)
\(-3,4 n ? 2+03\) & \(-5.6715+03\)
\(-5.0749+03\) & \[
\begin{aligned}
& =5.0419+03 \\
& =6.2062+03
\end{aligned}
\] \\
\hline 11 & \(-3.50+2+04\)
\(-1.12 .3-05\) & －3．0円arana & －2．0．0546＋04 & －2．27m＋644 & －2． \(20110+04\) & －1．8725＋64 & － \(2.1415+04\) & －7．23s3＋03 & －1．1147＋04 & -6.2062 .03
\(-6.0050-03\) \\
\hline 10
9 & \[
\begin{aligned}
& -1.1 R+3=05 \\
& -H .3431+03
\end{aligned}
\] & \(-1.950 R-i 5\)
\(-7.5743+03\) & －9．1 \(200-0^{\text {a }}\) & － \(7.4571-\mathrm{Ch}\) & －6． \(2741-0 \mathrm{C}\) & \(-5.9971-0_{0}\) & －5．5187－0．0 & － \(6.815 \times-170\) & －3．5n06－05 & \[
\begin{aligned}
& -6.0056+03 \\
& -5.2418+03
\end{aligned}
\] \\
\hline 8 & \[
\begin{aligned}
& -1.3431+03 \\
& -5.7305+03
\end{aligned}
\] & \(-7.5742+03\)
\(-5.0459+73\) & \(-0.44+1+n 3\)
\(-4.4251+n 3\) & \(-5.93 n h+13\)
\(-4.1032+03\) & \(-5.4 R S A+n 3\)
\(-4.1001+n 3\) & \(-5.17+1 .+03\) & \(-5.536 A+03\) & \(-6.1955+03\) & －7．7756＋03 & \[
-5.21700 n 3
\] \\
\hline 7 & －3．3351＋03 & \(-2.7757+03\) & －1．322R＋03 & －2．4570＋03 & －4． \(0011+n 3\)
\(-2.7 n 14+03\) & \(-4.1172+03\)
\(-2.733+03\) & \(-4.2447+03\)
\(-2.440+03\) & －4．4931＋03 & －4． \(2904+03\) & － \(1.1204+03\) \\
\hline 6 & －1．099hen3 & －7．2020＋02 & \(2.0192+03\) & －9．6449＋02 & －1．3n67＋03 & \(-2.7333+03\)
\(-1.4178+03\) & －2．M140 +03 & －2．0747＋03 & -2.8940403
\(-0.2984+02\) & \(-2.8141+03\)
\(-1.4938+03\) \\
\hline 5 & 0.0000 & 0.0000 & \(3.6598+00\) & \(-7.3203+10\) & 3． \(66044+00\) & \(4.106 n+00\) & 0．i）000 & －9．404S＋00 & －0． \(2084+02\)
\(2.0427-05\) & \[
\begin{aligned}
& -1.4938+03 \\
& -2.4848+02
\end{aligned}
\] \\
\hline － 4 & \(3.6587+00\) & \(3.6593+00\) & 0.0000 & －3．nかって＋90 & 3． 1 ODO & H． \(3319+00\) & －7．2634＋00 & －9．4045＋00 & 2．0n60003 & \[
\begin{aligned}
& -2.4848+02 \\
& -5.2748+00
\end{aligned}
\] \\
\hline V 3 & \(-3.6587+00\) & \(3.6593+00\) & 3．659a＋00 & 0.0 （10） & －3．6n0aton & 4． \(1630+00\) & －1．4527＋01 & \(9.51945+00\) & \[
4.7139+02
\] & \[
\begin{array}{r}
-5.2748+00 \\
5.1351+01
\end{array}
\] \\
\hline 2 & C．0n00 & 7．31A7＋00 & 0.6000 & 1．nuoo & －3．0004＋00 & \(4.1060+00\) & －7．2635＋00 & \(-9.4045+00\) & 2．7061＋02 & \[
\begin{aligned}
& 5.1351+01 \\
& 4.7540+01
\end{aligned}
\] \\
\hline 1 & 0.0000 & 0.0000 & 0.1000 & 0.0700 & 0.0000 & 0.0000 & 0.0000 & 0.0000 － & 0.0000 & 0.0000 \\
\hline & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 17 & 0.0000 & 0.0000 & 0.0000 \\
\hline 16 & -3.9503-80 & \(-1.9344-177\) & 0.00000 \\
\hline 15 & -3.95n3-7n & -1.934t-n7 & 0.0000 \\
\hline 14 & -0.3371+03 & -9.9813+03 & 0.1000 \\
\hline 13 & \(-6.1730+03\) & -7.0329+03 & 6.1000 \\
\hline \(1 ?\) & \(-5.9451+03\) & -5.91115+n3 & 0.0000 \\
\hline 11 & \(-5.4301+03\) & -5.3n93+03 & \(0.000 n\) \\
\hline 10 & -5.0443+03 & -4.0314, 03 & 0.0090 \\
\hline 9 & \(=4.5940403\) & -4.3717+03 & O.coun \\
\hline 8 & -3.73n7+113 & \(-3.5401+03\) & 0.0000 \\
\hline 7 & -2.7734+03 & \(-2.703 \mathrm{H}+03\) & 0.0300 \\
\hline 0 & \(-1.4312+03\) & \(-1.8910+93\) & g. U0ian \\
\hline 5 & -1.0437+n3 & -1.191 1.93 & 0.0 ano \\
\hline 4 & -5.721a+12 & \(-7.1092+n 2\) & 0.0000 \\
\hline \(\infty\) & -2.9139+02 & -3.969R+ 22 & 0.0000 \\
\hline \(\bigcirc 2\) & -1.7441402 & \(-2.5000+02\) & \(0.000 n\) \\
\hline 1 & 0.0000 & 0.0000 & 0.6000 \\
\hline & 21 & 22 & 23 \\
\hline
\end{tabular}

THE CURRENT TIME 13 797.0:80 HOURS - 4YE21.U791 MINUTES E 2869264.75000 SECONDS IZO ITERATIONS HAVE BEEN PERFORMED

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 17. & 0.9000 & 0.0910 & 0.0000 & 0.0900 & 0.0000 & 0.1000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 16 & 3.3n7t-05 & 4.410n-ns & 5.4746-05 & 6.5097-115 & 7.7054-05 & A.9112-05 & 7.5253-05 & 2.05n1-05 & 3.4754-07 & 4.7808007 \\
\hline & 15 & 4. \(2045-11\) & 3.5Aoz-ni & 2.1218-01 & \(4.3175-02\) & -1.73n1-01 &  & -5.1215-01 & \(-1.1335+02\) & -1.7623-08 & 0.0000 \\
\hline & 14 & \(1.0005+00\) & 7.0011-01 & 4.1909-11 & 8.1707-02 & -3.1317-01 & -7.1394-11 & -5.0551-01 & -5.14730+01 & 2.7453-09 & 2.354.) 02 \\
\hline & 13 & 1. \(5+n \rightarrow+00\) & 1.3sn \(4+110\) & \(0.17{ }^{0} 001\) & \(1.5030-01\) & -4.73H0-01 & -1.2077+00 & \(-1.4115+00\) & -2.1715+1)2 & -1.3425-07 & \(0.7229+01\) \\
\hline & 12 & 1.927t00 & 1.? \(262+10\) & 7.5?au- 1 & 2.3100-01 & \(-3.3437-01\) & \(-1.7516+00\) & -2.4761+(1) & -4.0235+02 & -2.1906-07 & 5.1575*01 \\
\hline & 11 & ?.1的7+00 & 1.330^400 & 8.4 Din-01 & 3.5R92-01 & -4.9000-1) & -? . 0 R 30+00 & - \(0.2490+00\) & -7.3351+02 & -2.4039-07 & \(1.9297+02\) \\
\hline & 10 & 5.0R5n+C0 & ?. ค \(1137+01\) & 5.1912+01 & \(5.6105+01\) & 3.9A2 \({ }^{4}+\) ni & \(-0.0496+00\) & -1.5403+02 & -1.5nn4+n2 & -3.5840-09 & \(4.0050+02\) \\
\hline & 9 & 3.2051+03 & 2.9483+ 03 & 2.n319+03 & 2. \(2 \sim 5 R+03\) & \(1.9537+03\) & 1.tet 3b*03 & \(1.1389+05\) & \(3.7796+02\) & \(7.2140+02\) & \(1.0848+02\) \\
\hline & 8 & 3.1no3+03 & 2.949n+03 & 2.0545+03 & 2.2059+03 & \(1.9530+03\) & 1.n77A+03 & 1.UARas 0 S & 3. 22 n4+02 & 5.5928+02 & \(3.7201+02\) \\
\hline & 7 & 3.132A+03 & \(2.4550+03\) & 2.n97?+03 & \(2.2345+03\) & \(1.9367+03\) & \(1.6013+03\) & \(1.0480+03\) & 2.4044+02 & \(5.11143+02\) & \(4.2541+12\) \\
\hline & 0 & \(3.1139+03\) & ?.9n97+03 & 2.773? 03 & 2.1499+03 & 1. \(91153+0.3\) & \(1.6400+03\) & \(1.01285+03\) & 2.9354+02 & \(5.0215+02\) & 4. \(2144+02\) \\
\hline & 5 & 3.1n97403 & \(2.9844+03\) & 2.041n+05 & \(1.9475+03\) & 1. \(\mathrm{H} 714 \mathrm{4}+3\) & \(1.0325+03\) & 1.023n+03 & \(2.9831+02\) & \(5.3323+02\) & \(3.6683+02\) \\
\hline \(\infty\) & 4 & 7.1006-01 & 0.0000 & -8.7985-1: & 0.0000 & - \(1.035 n+00\) & 0.0000 & -8.9133-01 & 0.00 OS & 0.0000 & 1.5400*02 \\
\hline N & 3 & -6.3016-01 & 7.1018-01 & 7.1120-01 & 0.0000 & -9.2323-01 & 0.0000 & 7.9229-01 & 5.4595-01 & 0.0000 & 6.9733-01 \\
\hline & 2 & 5.7524 .01 & 0.0000 & -7.1308-01 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & -2.4568-01 & S.0313-08 & 2.3547 .01 \\
\hline & 1 & -6.6759-05 & -7.4177-05 & -8.1594.05 & -8.9012-05 & -9.6430-05 & -1.0385-04 & \(-8.2753-05\) & -2.3512-05 & -5.8390-05 & -7.9872-05 \\
\hline & & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}

0.00010
0.0000
0.0000 \(0.00: 0\) 0.00100 0.12000 u.nncon \(0.0 n i n\)
\(0.000 n\) 0.0von \(0 . r i l o u\) . 019, 0 0.0 .200 0.0000 \(0.0010 n\) 0.00リo 1.0000 a.ooun 0.0900 23

STEAOYOSTATE TEMPERATURE IN A MELIUM CIRCULATUR BLOWER DISC
THE CURRENT TIME IS 797.01RO MNURS \(=47821.0791\) MINUTES \(=2869264.75000\) SECONOS
120 ITERATIONS HAVE BEEN PERFORMED


THE QADIAL(I) DIRECTION IS HOQIZONTAL
THE AXIAL (J) OTRECTITN IS VERTICAL
\begin{tabular}{|c|c|}
\hline 17 & 0.0000 \\
\hline 16 & 0.0000 \\
\hline 15 & 0.0000 \\
\hline 14 & 0.2000 \\
\hline 13 & n. noun \\
\hline 12 & \(0.00 n 0\) \\
\hline 11 & \(0 . c n 00\) \\
\hline 10 & 0.10015 \\
\hline 9 & 0.0000 \\
\hline 8 & 0.0000 \\
\hline 7 & 6.0000 \\
\hline 6 & 0.0000 \\
\hline 5 & 0.11000 \\
\hline 4 & 0.0000 \\
\hline \(\cdots 3\) & 0.0000 \\
\hline \(\stackrel{\infty}{\sim}\) & 0.1000 \\
\hline 1 & 0.0000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0.000n & 0.0000 & 0.0000 \\
\hline 1.n274+114 & 1.02AP + O 4 & \(1.19770+04\) \\
\hline 1.1727+04 & \(1.1210+04\) & 1.1709+114 \\
\hline 1.2117+n4 & \(1.2002+04\) & 1. \(20055+14\) \\
\hline 1.310? \({ }^{\text {a }}\) +4 4 & 1.3111 1 + 04 & 1.26n9+04 \\
\hline 1.3F31+14 & \(1.3733+04\) & 1.3659+04 \\
\hline \(1.430 n+34\) & 1.4790+04 & 1. \(40 \geqslant 02+04\) \\
\hline 1. \(4514+04\) & 1.4457+04 & \(1.4338+114\) \\
\hline 1.4n35+04 & 1.4n3n+04 & 1.tnoltau \\
\hline 1. \(H\) RRCAM 4 & 1.4nn9+04 & \(1.5769+04\) \\
\hline 1. \(5005+04\) & 1.53:16+04 & 1.57i \(9+04\) \\
\hline 1.5259+04 & 1. \(542 \mathrm{M}+04\) & \(1.55^{\circ} 17+n 4\) \\
\hline 1.5365+114 & 1.5511+04 & 1.5AH4+0.4 \\
\hline 1.5422404 & \(1.55 \% 1+04\) & \(1.5590+04\) \\
\hline 6. \(5104+00\) & 0.0000 & \(-6.5104+00\) \\
\hline 0.0000 & 0.6000 & 9.0000 \\
\hline -0.90nO-04 & -0.8000-04 & -6.6000-n4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 0.0000 & 0.0000 \\
\hline 1.0.0.57+04 & 1.0230404 \\
\hline 1.1291+94 & 1.1692+ 1.4 \\
\hline \(1.2161+04\) & 1. 2813+114 \\
\hline 1. 2 . \(13+04\) & \(1.3404+04\) \\
\hline 1.3955.114 & 1. 3 ? \(67+114\) \\
\hline 1,3232+04 & \(1.120 t+04\) \\
\hline \(1.4141+04\) & \(1.44 * 1+04\) \\
\hline \(1.4030+04\) & 1.6648404 \\
\hline 1.6300+04 & \(2.0056+04\) \\
\hline \(1.71114+04\) & 2.1223+04 \\
\hline \(1.7457+04\) & 2.Jn) \({ }^{\text {a }}\) +04 \\
\hline \(1.7413+114\) & 1.4539+34 \\
\hline 1.7372*n4 & \(1.01135+04\) \\
\hline 1.6? \(27+04\) & 1.5612+04 \\
\hline 0.0000 & 0.0000 \\
\hline -6.800n-04 & -6.8000-04 \\
\hline
\end{tabular}
\begin{tabular}{l}
0.0000 \\
\(2.3781-04\) \\
\(2.0771+03\) \\
\(4.64127+03\) \\
\(9.8708+03\) \\
\(1.7244+04\) \\
\(3.0267+04\) \\
\(2.9357+04\) \\
\(2.2928+04\) \\
\(3.0430+04\) \\
\(3.0188+04\) \\
\(2.7007+04\) \\
\(1.9260+04\) \\
\(1.1049+04\) \\
\(9.0705+03\) \\
9.0000 \\
\hline \(6.8000=04\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0.0030
\(1.144 *-060\)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{2.60311-00} \\
\hline \multicolumn{2}{|l|}{2,7025-00} \\
\hline \multicolumn{2}{|l|}{\(2.9830-06\)} \\
\hline \multicolumn{2}{|l|}{3.7578=00} \\
\hline \multicolumn{2}{|l|}{\(0.4926=00\)} \\
\hline \multicolumn{2}{|l|}{1.20n0.07} \\
\hline \multicolumn{2}{|l|}{6.5657+04} \\
\hline \multicolumn{2}{|l|}{'1.02)2+04} \\
\hline \multicolumn{2}{|l|}{3.5202+04} \\
\hline \multicolumn{2}{|l|}{\(3.5427+04\)
\(5.0154+04\)} \\
\hline \multicolumn{2}{|l|}{S.015R+04} \\
\hline \multicolumn{2}{|l|}{0.0000} \\
\hline \multicolumn{2}{|l|}{\(6.5104+00\)} \\
\hline \multicolumn{2}{|l|}{0.0010} \\
\hline & 8000 \\
\hline
\end{tabular}
0.0000
\(2.2423-04\)
\(4.0943+03\)
\(7.8322+03\)
\(1.1494+114\)
\(1.4053+04\)
\(1.6748+04\)
\(1.7414+03\)
\(4.9700+04\)
\(4.2504+04\)
\(3.4452+04\)
\(3.4379+04\)
\(4.0545+04\)
\(1.4048+01\)
0.0000
0.0100
\(-6.8000-04\)
0.0000
2. \(04 \mathrm{H} 8-04\)
b.4219+00
\(1.3390+01\)
2.3110+01
\(3.4689+01\)
\(5.0014+01\)
\(5.3154+02\)
\(5.3154+02\)
\(3.9274+04\)
\(3.9274+04\)
\(3.7856+04\)
\(3.7856+04\)
\(3.0652+04\)
\(3.0652+04\)
3.0112 .04
\(3.0125+04\) \(-7.3242+00\)
\(-0.5104+00\)
0.0000
\(-6.8000=04\)
9
10



STEADY-STATE TEMPERATURF IN A HELIUM CIRCULATOR BLOWER OISG
THE CURRENT TIME IS 797.0180 MDURS E 47821.0791 MINUTES \(=2869264.75000\) SECUNDS IZOTTEAATIONS HAVE BEEN PERFORMED

EFFECTIVE RADIAL CQNDUCTIVIYY BETWEEN OOINTS (I.J) AND (I +I.J) (BTU/HROFPOF)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 0.9000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.10000 & 0.0000 & 0.0000 & C.1000 & 0.0000 \\
\hline 16 & 8.962t-12 & \(5.0000+02\) & S. \(1 \mathrm{n}_{10} 0+02\) & 5.irsoctoz & S.000n+0? & 2.4302+00 & \(1.479 H+00\) & \(2.0433 \cdot 011\) & 8.4023-02 & 5.0000 .02 \\
\hline 15 & 6.50?n-12 & \(5.00130+02\) & 5.00011+02 & 5.01030+62 & \(5.0000+1) 2\) & 2. \(\mathrm{H} 300+00\) & \(1.48 .13+00\) & 2.:43?+110 & 8.9n23-1.2 & 5.0000002 \\
\hline 14 & A.562b-12 & \(5.0000+0 ?\) & \(5.0001,1)+n ?\) & 5.1300402 & \(5.00017+02\) & 2.632h+00 & 1.4315+00 & 2. \(14.40+00\) & - 9n23-n2 & 5.0000-02 \\
\hline 13 & 8. 56 ?h-12 & 5.0000402 & \(5.0300+02\) & 5.n010 \(0+0\) ? & \(5.10000+102\) & 2.8355400 & 1.4834*00 & 2.1429+00 & H.9623-02 & \(5.0000-02\) \\
\hline 12 & 8.5n?hal? & 5.0ncctar & 5.01)0n+02 & 5.0cinctas & 5.0000+02 & 2.4301406 & 1.4H5C+00 & 2.11427+00 & A.9623-12 & 5.0000002 \\
\hline 11 & 8.5n2n-12 & \(1.0331+11\) & 1.032)+01 & 1.0294+01 & 1.0227+01 & 1.0000401 & 1.4A.22+00 & 2.1025+00 & 3.0523+01 & \(3.0179+01\) \\
\hline 10 & \(8.5636-12\) & \(1.01393+131\) & 1.03m?+01 & 1.035n+01 & 1.6.240+01 & \(1.0172+01\) & 3.11S4n-04 & 1. 10010 OH & 1.0000-04 & 1.0000-08 \\
\hline 9 & 8.562h-1? & \(1 . \operatorname{cosab}+01\) & 1. (ia) \({ }^{\text {a }}\) + 01 & 1.0150+01 & 1.1330001 & \(1.0293+01\) & 1.0139+01 & 1.0037+01 & 1.0044+01 & \(1.0200+01\) \\
\hline 8 & 8.5A2b-12 & 1.061?+01 & 1.Cかり3+01 & 1.csentu1 & \(1.0154 .3+11\) & \(1.0490+01\) & 1.0430101 & 1, 04, 22+01 & \(1.0431+01\) & \(1.0503+01\) \\
\hline 7 & 8.562h-12 & \(1.61738+n 1\) & \(1.0732+01\) & \(1.07 ? 1+01\) & 1.07n? 0 n 1 & 1.0n+59+01 & 1.racostol & \(1.0722+01\) & \(1.0747+01\) & \(1.0790+01\) \\
\hline 0 & \(8.5426-12\) & \(1.0804+01\) & 1.11801+01 & \(1.0054+01\) & 1. 0 ( \(05 R+n 1\) & \(1.08 / 6+01\) & 1.n944+01 & \(1.1150+01\) & \(1.1050+01\) & \(1.1007+01\) \\
\hline 5 & A.5n2n-12 & \(1.0040+01\) & \(1.0960+01\) & \(1.0903+01\) & \(1.1004+01\) & \(1.1029+01\) & 6. \(1343+00\) & 1.0000+04 & \(1.0000+04\) & \(1.0000+04\) \\
\hline 4 & 8.5620-12 & \(1.0000+04\) & 1.00000 04 & \(1.1449+01\) & \(1.1140+01\) & \(1.1148+01\) & \(0.7612+00\) & 1.00110 0 +04 & 1.60000004 & \(1.0000+04\) \\
\hline 3 & 8.56?0-12 & \(1.0000+04\) & \(1.0000+04\) & \(1.0000+04\) & \(1.6000+04\) & 1.0000404 & \(1.0000+04\) & 1.0000+04 & \(1.0000+04\) & \(1.0000 \$ 04\) \\
\hline 12 & 8.5026-12 & \(1.0000+04\) & \(1.0000+04\) & \(1.0000+04\) & \(1.00001+04\) & 1.0000+04 & \(1.0000+04\) & \(1.0000+04\) & 1.0000004 & 1.0000 .04 \\
\hline \(\cdots\) & 0.0009 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & \(0.0 n\) un & 0.0000 \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 0.0000 & 0.0092 & 0.0000 & n．on0n & 3.0000 & 0.0050 & 0.0000 & 0.0000 & 1）．0000 & 0.0000 \\
\hline 16 & \(5.0000-02\) & 5．11000－72 & 5．6000－02 & 5．0nciv－ij2 & 5．00000n？ & 5．0000－02 & 0．6354－02 & \(1.1024+01\) & \(1.0000-10\) & \(1.0000-08\) \\
\hline 15 & 5．（1n0n－1）2 & 5．annの－n2 & S． \(\operatorname{conon-02}\) & 5．0n00－n2 & \(5.0010-12\) & 5．0000－02 & 6．0．354－02 & \(1.1020+01\) & 1．0900－10 & 1．0000－03 \\
\hline 14 & 5．0000－C2 & 5． 10010 － 2 & 5．10019－n2 & 5．00ncor 2 & 5．000n－112 & \(5.0000-02\) & 6．6345002 & \(1.102 h+01\) & \(9.4102+00\) & \(1.1058+01\) \\
\hline 13 & 5．901n＝ 2 & 5．9）リnーい？ & S．10」n－n2 & 5．0n（0n－02 & \(5.00110-0\) ？ & 5．00010－02 & b． \(5355-02\) & 1．1029＋01 & 9，H1R840 & 1.1070401 \\
\hline 12 & 5．0nu）－02 & S．uninont & 5．1000－02 & 5．11130－112 & S．nnowan & 5．cnoc－02 & 6．0355－02 & \(1.10 .33+01\) & \(9.8204+00\) & \(1.1076+01\) \\
\hline 11 & \(2.9707+01\) & 2．9425＋ 01 & \(2.9075+01\) & 2．9．754＋01 & 2．f440 51 &  & 2．An3？ 01 & \(1.1039+01\) & 4．R24R＋00 & 1．1084＋01 \\
\hline 10 & 1．000：1－08 & \(1.0000-08\) & 1．0ncoun & 1．00000ch & 1．000n－0．4 & 1．0000－08 & \(1.0 n 0 n=03\) & 1．00．7）＝08 & 2．2903－108 & 1．1095＋01 \\
\hline 9 & \(1.0367+01\) & 1．0443＋ 1.1 & 1．0not＋01 & \(1.0705+01\) & \(1.0400+01\) & 1．11417＋01 & \(1.104 .32+01\) & \(1.0470+91\) & 1．1143＋01 & \(1.1103+01\) \\
\hline 8 &  & \(1.004 n+01\) & 1．07th＋01 & 1.10 P 34＋01 & \(1.000 ?+01\) & \(1.0960+01\) & \(1.1002+01\) & 1．1046＋01 & 1．1081＋01 & \(1.1123+01\) \\
\hline 7 & \(1.0845+01\) & \(1.0405+01\) & \(1.0020+01\) & 1．100r 0 ＋ 01 & \(1.1001+01\) & \(1.1040+01\) & \(1.196+01\) & \(1.1047+01\) & \(1.1118+01\) & \(1.1145+01\) \\
\hline 6 & \(1.1055+01\) & \(1.1099+01\) & \(1.1089+01\). & \(1.1040+01\) & 1．11909＋1） & \(1.1119+01\) & 1．1：33＋01 & 1．1147401 & \(1.1154+01\) & \(1.1166+01\) \\
\hline 5 & \(1.00000+04\) & 1．000n＋044 & \(1.0 n 9 n+04\) & 1．0000＋04 & \(1.0000+04\) & 1.0000004 & 1．0n00t04 & 1．000n＋04 & \(1, \sim 378+01\) & \(1.1185+01\) \\
\hline 4 & \(1.0000+04\) & \(1.0000+74\) & 1． \(10010+04\) & \(1.0000+04\) & \(1.0000+04\) & 1．0000＋0．4 & 1． \(00000+04\) & 1．10000＋114 & \(1.03 \mathrm{H} 3+(11\) & 1.1194 .01 \\
\hline \(\bigcirc 3\) & 1．000n＋04 & 1.0000004 & \(1.0000+04\) & \(1.0000+04\) & 1．000nt04 & 1．000nt04 & 1．0000 04 & \(1.0000+04\) & \(1.0386+01\) & \(1.1199+01\) \\
\hline \({ }_{\infty}^{\infty}\)［ & 1．000n＋04 & 1．00．70404 & 1.9000104 &  & \(1.10000+00\) & \(1.0000+04\) & \(1.0000+04\) & 1．0000＋04 & \(1.0387+01\) & \(1.1201+01\) \\
\hline \(\bigcirc 1\) & 0.0000 & 0.0100 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 17 & 0.0000 & 0.0000 & 0.0000 \\
\hline 16 & 1.0900008 & 1.0n)0-10 & 0.0 ono \\
\hline 15 & 1.00nn-n8 & 1.10)n-10 & O.anon \\
\hline 14 & \(1.1115+n 1\) & \(1.1901+n 1\) & 0.0 Ono \\
\hline 13 & \(1.1132+01\) & \(1.1077+11\) & 0.0100 \\
\hline 12 & \(1.1140+01\) & 1.1083+01 & 0.0000 \\
\hline 11 & \(1.11 .15+01\) & \(1.1005+01\) & 0.1000 \\
\hline 10 & \(1.1100+01\) & \(1.10 N R+\) II & 1). 0000 \\
\hline 9 & \(1.1155+01\) & \(1.1001+01\) & 0.0000 \\
\hline 8 & \(1.1104+01\) & \(1.1095+01\) & U.(1)00 \\
\hline 7 & \(1.1174+01\) & 1.110n+ni & o.unna \\
\hline 0 & 1. \(1124 \rightarrow n!\) & 1.111,4+11 & \(0 \cdot 0000\) \\
\hline 15 & \(1.1192+10\) & \(1.1108+01\) & 0.0000 \\
\hline \(\infty\) & \(1.1197+01\) & \(1.1110+01\) & 0.0000 \\
\hline \(\infty 3\) & \(1.120 n+01\) & \(1.1112+01\) & 0.0000 \\
\hline 2 & \(1.1201+01\) & \(1.1113+01\) & 0.0000 \\
\hline 1 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 21 & 22 & 23 \\
\hline
\end{tabular}

STEAUYOSTATE TEMPERATURE IN A HELIUM CIRCULAYOR HLOWER OISC
THE CURRENT TIME IS 797.0180 HOURS a 47821.0791 MINUTES 52869264.75000 SECONUS
120 ITERATIONS HAVE BEEN PERFORMED

EFFECTIVE AXTAL CONDUCTIVITY BETWEEN POINTS（I，J）AND（I，J＋I）（BTU／HR \(\quad\)（FTOF）
THE RADIAL（I）DIRFETION IS HDRIZONTAL THE AXIAL（J）DIRECTION IS VFRTICAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 0.0009 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & \\
\hline 10 & 0.1000 & \(1.327 n+011\) & \(1.3246+00\) & 1．3？4n＋ 00 & 1．3？46＋00 & \(1.3246+00\) & 1．5025－08 & 1．0000－10 & 1．5625－08 & 1．5625－08 \\
\hline 15 & 0.11000 & \(5 \cdot 90(10+n ?\) & \(5.0000+02\) & 5． \(5040+02\) & S．00nctor & \(5.0000+02\) & \(9.3373+00\) & 1．000c－nt & \(3.0959+111\) & \(1.5625-08\)
\(5.0000-02\) \\
\hline 14 & C． 0000 & \(5.0010+92\) & \(5.0000+02\) & \(5.90110+02\) & 5．000n＋02 & \(5.0 n 00+02\) & 9.3781400 & 1．0000－08 & \(3.0958+01\)
\(3.0705+01\) & \(5.0000-02\)
\(5.0000-02\) \\
\hline 13 & 0.3007
0.0030 & \(5.00 \cdot 00+02\)
\(5.0000+02\) & 5．0．110 5 ＋ 2 & \(5.0000+02\) & \(5.0000+02\) & \(5.0000+02\) & \(9.4573+00\) & 1.0000008 & 3．1not 01 & 5．0000－02 \\
\hline 12 & \(0.010 n\)
\(0.0 n 00\) & \(5.0090+02\)
\(1.2719+11\) & 5． \(00110+n ?\)
\(1.2715+00\) & \(3.00000+02\)
\(1.2714+119\) & 5．0ncn＋nz
\(1.2712+00\) & \(5.0000+12\)
\(1.2740+00\) & 9．40n5 0 ＋ 00 & \(1.0 n n c o n e ~\) & \(3.11799+01\) & 5.0000002 \\
\hline 10 & \(0.1000)\) & \(1.03 n 4+71\) & 1．035日＋01 & \(1.2714+(11)\)
1.03421 & \(1.2712+100\)
\(1.030 h+01\) & \(1.2796+00\)
\(1.0194+01\) & \(9.7551+00\)
\(9.7542+00\) & 1． 0 OnG－08 & 3.0754 .01 & 7．4438－12 \\
\hline 9 & 0.0060 & \(1.0457+111\) & 1．0451＊01 & 1．04stal 1 & \(1.0308+01\)
\(1.1400+01\) & \(1.0190+01\)
\(1.19302+01\) & \(9.7542+100\)
\(1.0125+01\) & \(1 . n 690-10\)
\(5 . n 626+00\) & \(5.5008+100\) & 5.4950 .03 \\
\hline 8 & 0.2008 & 1．0551＋11 & 1．0545＋01 & \(1.0532+71\) & \(1.0501+01\) & 1． \(3424+01\) & \(1.03 \mathrm{cin}+01\) & \(1.0234+n 1\) & 1．1） \(10+10\) & \(5.6780+00\)
\(1.0200+01\) \\
\hline 7 & 0.0000 & \(1.0 \times 70\)＋01 & 1．0672＋01 & \(1.0003+09\) & \(1.0541+n 1\) & 1． \(0598+01\) & \(1.0564+01\) & \(1.055 R+n 1\) & 1．0．0500－01 & \(1.0200+01\)
\(1.0008+01\) \\
\hline 6 & 9．0000 & 1．\(\left(1 R_{1}\right)^{2}+01\) & \(1.0700+01\) & \(1.0793+01\) & \(1.0785+01\) & \(1.0773+01\) & 1．0Ru7tal & \(1.0853+01\) & \(1.11 \mathrm{MN1+01}\) & \(1.0608+01\)
1.0919 \\
\hline 5 & 0.0000
0.0000 & \(1.002 A+01\) & \(1.0976+01\) & \(1.6023+01\) & \(1.097 n+01\) & \(1.0933+11\) & \(1.1001+01\) & 2．1977＋01 & 2．2us5＋01 & \(2.2042+01\) \\
\hline 3 & 0.0000
0.0009 & \(1.4357+n 0\)
\(1.003 n+04\) & \(6.4354+10\)
\(1.0 n 00+04\) & \(0.4353+00\)
\(1.0000+04\) & 1．100A＋61 & 1．1075＋01 & \(1.1123+01\) & 1．0000404 & 1． \(100110+04\) & 1．0000 004 \\
\hline 2 & 0.0009 & 1． \(00000+04\) &  & 0000＋0a & \(2.5027+01\)
\(1.0000+04\) & \(2.5033+01\) & \(2.5092+01\) & 1．0n00 04 & 1．00リの＋04 & \(1.0000+04\) \\
\hline 1 & 0.0000 & \(1.3039-08\) & 1．3n21－08 & \(1.3021-08\) & 1．3n21－08 & －000＋04 & \(1.0000+04\) & 1．00．10＋04 & \(1.0000+04\) & \(1.0000+04\) \\
\hline & & & & & & 1．3021－08 & 1.302100 & 1．3021－08 & 1．3021－08 & \(1.3021=08\) \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline & 17 & 0.6000 & 0.0800 & 0.0000 \\
\hline & 10 & 1.1000-10 & 1.nn9n-10 & 0.0000 \\
\hline & 15 & 2.0n0n-08 & ?.0.0.n-ig & ワ.0010 \\
\hline & 14 & \(1.3229+01\) & 1.3277+11 & 10.010110 \\
\hline & 13 & \(1.1080+01\) & \(1.115 t+11\) & 0.0960 \\
\hline & 12 & \(1.11115+01\) & 1.11~0+01 & 0.0000 \\
\hline & 11 & \(1.1112+01\) & \(1.1173+11\) & 0.11000 \\
\hline & 10 & 1.1120+01 & 1.1170+011 & a, Dojo \\
\hline & 9 & 1.11>A+01 & \(1.1179+91\) & 0.0000 \\
\hline & B & \(1.113 x+01\) & 1.1182+11 & 0.0000 \\
\hline & 7 & 1.115? 111 & 1.1147411 & 0.000 n \\
\hline & 6 & 1.11 n7+01 & 1.1191+01 & 0.0000 \\
\hline & 5 & \(1.1180+01\) & \(1.1145+01\) & 0.1000 \\
\hline & 4 & \(1.1100+01\) & 1.1109+61 & \(0.0 n 00\) \\
\hline N & 3 & 1.119t+01 & \(1.1201+01\) & 0.0000 \\
\hline & 2 & 1.1199+01 & \(1.1202+01\) & 0.0000 \\
\hline & 1 & 1.3021-08 & 1.3n21-0R & 0.0000 \\
\hline & & 21 & 22 & 23 \\
\hline
\end{tabular}




STEADYOSTATE TEMPERATURF IN A HELIUM CIMCULATOR BLOWER OISC
THF CLRRENT TIME IS 797.0180 HOURS 547821.0791 MIHUTES \(z 2869264.75000\) SECONOS
120 ITERATIUNS HAVE BEEN PERFURMED

AXIAL THERMAL CONDUCTANCE BETWEEN POTNTS (I,J). ANO (I.J\&I) (BTU/HR-F)
THE RADIALCII DIRECTIDN IS HOPIZINTAL
THE AXIAL (J) DIRECTIJN IS VERTICAL
\begin{tabular}{|c|c|c|c|c|}
\hline & 17 & 0.0000 & 0.0000 & 0.0700 \\
\hline & 16 & \(0.00 y 0\) & \(6.2717-01\) & 1.4065+00 \\
\hline & 15 & 0.0000 & \(1.1743+02\) & 3.522A+n2 \\
\hline & 14 & 0.0000 & \(1.1743+02\) & 3. \(53 ? \mathrm{P}+02\) \\
\hline & 13 & 0.11000 & \(1.4 n 91+n 2\) & \(4.2>73+02\) \\
\hline & 12 & (.0010 & \(1.7014+i)\) & 5. P (42+02 \\
\hline & 11 & 0.0000 & 5.0722-01 & \(1.701 A+07\) \\
\hline & 10 & 0.0000 & \(7.3019+00\) & \(2.1893+01\) \\
\hline & 9 & 0.11900 & \(4.9118+00\) & \(1.19727+01\) \\
\hline & 8 & 0.0000 & 3.7105900 & \(1.1140+01\) \\
\hline & 7 & 0.nnion & \(3.7 \mathrm{Ali+00}\) & 1.1.7R+01 \\
\hline & 6 & 0.0000 & 3.8654*00 & \(1.1413+01\) \\
\hline & 5 & 0.1000 & 3. R405400 & \(1.153 n+01\) \\
\hline & 4 & 0.0000 & 2.2-71+00 & -.Ay12+0n \\
\hline \(\stackrel{\rightharpoonup}{\circ}\) & 3 & 0.0000 & 3.13:4+03 & \(9.3941+03\) \\
\hline \(\stackrel{\circ}{6}\) & 2 & 0.0040 & \(2.0142+03\) & \(6.4547+03\) \\
\hline & 1 & 0.0000 & \(7.3391-09\) & 2.2017-08 \\
\hline & & 1 & 2 & 3 \\
\hline
\end{tabular}
\(0.0 n 011\)
\(3.1744+110\)
\(5.9931+02\)
\(5.9431+02\)
\(7.1018+112\)
\(4.0477+02\)
\(3.0478+01\)
\(3.7191+01\)
\(2.5014+01\)
\(1.8935+01\)
\(1.0989+01\)
\(1.9405+01\)
\(1.7437+191\)
\(1.1549+01\)
\(1.5960+04\)
\(1.4344+04\)
\(3.7457=08\)
4

0.0000
\(5.9913+00\)
\(1.1308+03\)
\(1.1308+03\)
\(1.3509+03\)
\(1.0941+03\)
\(5.7475+09\)
\(6.9269+01\)
\(4.6607+01\)
\(3.5367+01\)
\(3.5059+01\)
\(3.5550+01\)
\(3.7096+01\)
\(3.7576+01\)
\(7.5497+01\)
\(2.7143+04\)
\(7.0080-08\)
0.0007
\(3.4089-08\)
\(1.0178+01\)
\(1.0230+01\)
\(1.2380+01\)
\(1.5719+01\)
\(2.1282+01\)
\(3.2591+01\)
\(2.209 n+01\)
\(1.6863+01\)
\(1.724 n+01\)
\(1.7683+01\)
\(1.799 h+01\)
\(1.4193+11\)
\(3.6488+01\)
\(1.3090+04\)
\(3.4089+08\)

6
\(0.0 n 00\)
\(1.1553=10\)
\(5.7414=09\)
\(5.7814=09\)
\(0.9377=09\)
\(8.6721=09\)
\(1.1533-08\)
\(1.7344=10\)
\(6.5476+00\)
\(4.8753+00\)
\(9.1562+00\)
\(9.4115+00\)
\(1.9059+01\)
\(8.5721+03\)
\(7.7056+03\)
\(6.9377+03\)
\(1.8007=08\)
0.1009
\(5.4241-08\)
\(5.7712+01\)
\(5.7649+01\)
\(0.9074+01\)
\(8.0176+01\)
\(1.1473+02\)
\(3.0782+01\)
\(2.1098+01\)
\(2.8567+01\)
\(2.0546+01\)
\(3.0444+01\)
\(0.1711+01\)
\(2.7941+04\)
\(2.4871+04\)
\(2.2384+04\)
\(5.8291=08\)
0.0000
8.7267 .08
\(1.3963-01\)
1.3963-01
\(1.3963=01\)
\(1.6745-01\)
1.0755-01
\(2.0944-01\)
\(4.1854-01\)
\(4.1854-01\)
\(4.6035+01\)
\(3.1704+01\)
\(4.3103+01\)
\(4.4434+01\)
4. \(5045+01\)
9. \(2538+01\)
\(\cdot 2538+01\)
\(4.1888+04\)
\(3.7234+04\)
\(3.3510+04\)
\(9.7267-08\)
10

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 17 & 0.0070 & 0.0000 & 0.0000 & n．brun & 9，0¢un & 0.10000 & & & & \\
\hline 16 & 9．8175－08 & 1.09080 .17 & \(1.1997-07\) & 1．3090－07 & 1．4141－07 & 1．5272－1．7 & 1.2171017 & 4．19？0－08 & 5．4978－10 & 7．0n00 7.5243 .10 \\
\hline 15 & 1．571）－n！ & 1.7453 .01 & 1.9190 .01 & P．0044－0．1 & 2．2ntiol \({ }^{\text {a }}\) & 2．41334－01 & 1．9471－01 & \(3.7194+01\) & 2．7489－08 & \(7.5243-10\)
\(7.5243-08\) \\
\hline 14 & 1．57：4－01 & 1.7453001 & \(1.9100-n 1\) & 2．074 0.011 & 2． 2 คमロー 01 & 2．1435－01 & 1．9471－01 & S．7127＋01 & 2．7464－08 & \(7.5243-088\)
\(4.9637+01\) \\
\hline 13 & 1．285n－01 & 2．0194－01 & 2．3n37－01 & 2．5133－91 & 2．7？27－01 & 2．93？2－011 & 2．330n－01 & 4．14590＋01 & 3． 2987.00 & \(4.9637+01\)
\(4.9822+01\) \\
\hline 12 & 2．35nP－01 & 2．A1A0－ 11. & 2．479\％－01 & 3.1410001 & 3．41134－01 & 3．n052－n1 & 2．9207－01 & S． 5 Bntal & 3．2983－08 & \(4.9822+01\)
\(0.2306+01\) \\
\hline 11 & \(4.70 \times 5001\) & 5.2316001 & 5．7517－11 &  & 6． \(\sin 1{ }^{\text {a }} 01\) & 7． 3230.01 & 5．A3AR－（1） & 7．4709＋01 & 5．407 \({ }^{\text {c }}\)－08 & Q． \(23106+01\)
\(8.3113+01\) \\
\hline 10 & 5．1730＋01 & 5．7410＋61 & 6．3970401 &  & 7．43．1＋31 & A． \(01037+01\) & h． \(372 h+11\) 1 & 2．1944＋01 & 8．24ら7－10 & A． \(3113+01\)
\(1.2482+02\) \\
\hline 0 & 3．5940＋01 & \(4.10 n 40+01\) & \(4.4251+n 1\) &  & S． 2 2S55＋01 & 5．AKK \(7+\mathrm{Cl}_{1}\) & \(4.5443+01\) & \(1.508 .9+01\) & 3． \(21+3+01\) & \(1.2482+02\)
\(8.3311+01\) \\
\hline & \(4.9071+01\) & 5．5155＋01 & \(0.1235+01\) & S． \(7407+01\) & \(7.359 .4+01\) & 7．943ア＋01 & \(0.40112+01\) & 2．213？＋01 & \(4.3475+01\) & \(8.3311+01\)
\(6.2571+01\) \\
\hline 7 & \(5.03 \times 17+01\) & 5.0340401 & b．？350＋111 & H．4．007＋01 & \(7.4359+01\) & \(8.01484+n 1\) & 6．0．4417＋01 & 2． \(2253+01\) & \(4.5082+01\) & \(6.2571+01\)
\(0.2725+01\) \\
\hline \(\bigcirc\) & 5．15n1＋1） 1 & 5．7504＋11 & 6．34？ \(30+01\) & \(6.0154+01\) & \(7.5100+11\) & ＊．1125＋01 & \(6.4 H^{\text {c }}\)＋ 01 & \(2.2307+01\) & \(4.5877+01\) & \\
\hline 5 & 1．04アア．02 & \(1.1615+12\) & \(1.2778+n 2\) & t． \(3455+11\) & －． \(9320+01\) & \(7.0730+01\) & \(5.9599+0\). & 2． \(115.4+01\) & 4． \(2095+01\) & \(6.2487+01\)
\(0.3038+01\) \\
\hline \(\stackrel{1}{6}\) & \(4.712^{24} 94\) & \(5.2300+04\) & \(5.7596+04\) & \(0.2832+04\) & \(6.8 u b 8+614\) & \(7.3304+04\) & \(5.8414+04\) & \(2.0120+04\) & 4．1217＋04 & 6． \(3038+01\)
\(6.3138+01\) \\
\hline \(\checkmark 3\) & \(4.182 R+04\) & \(4.6519+04\) & \(5.1196+04\) & 5．5451＋04 & \(0.0505+04\) & \(6.5159+n 4\) & \(5.1924+04\) & \(1.1840+04\) & & －．3138＋01 \\
\hline 2 & 3．7699＋14 & \(4.18 \mathrm{H4}+04\) & 4.6117704 & \(5.10296+04\) & 5．0454＋0．4 & 5．9643＋04 & \(4.0731+04\) & \(1.0101+04\) & \(3.2973+04\) & \(5.0165+01\)
\(5.0563+01\) \\
\hline 1 & 9．8175．08 & 1.0908 .07 & 1．1999－07 & 1.3070007 & 1．4181－07 & 1．5272－07 & \(1.2170-07\) & \(4.1929-08\) & 8．5868－08 & \(5.0563+01\)
\(1.1757-07\) \\
\hline & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 17 & 0.0000 & 0.0300 & O.nnon \\
\hline 16 &  & A. 1a1R-10 & (1.0000 \\
\hline 15 & 8.0704-n8 &  & n.0n00 \\
\hline 14 & 5.3341+ 01 & \(5.4199+\) ! & 0.01710 \\
\hline 13 & S. \(3+09+1) 1\) & 5.4Sintni & \(0.0 n \mathrm{na}\) \\
\hline 12 & 6.7214401 & \(6.8 \geq n 2+01\) & 0.1000 \\
\hline 11 & H.9n7N+111 &  & 0.0000 \\
\hline 10 & 1.30か14n2 & 1. 3 A \(40+11\) ? & \(0.0 n 00\) \\
\hline 9 & \(9.4410+01\) & 9.1019+01 & 0.0000 \\
\hline \({ }^{4}\) & \(6.7115+01\) & 6.8283+71 & 0.(1)00 \\
\hline 7 & 6.75:241 & 6.8311-01 & 0.0000 \\
\hline 6 & \(0.7591+01\) & O.A3SRGU 1 & 0.0000 \\
\hline 5 & \(0.7671+01\) & S.43n3*n1 & ".0con \\
\hline 4 & \(6.7730+91\) & \(6.8382+01\) & 0.0000 \\
\hline 3 & - 023 + 01 & 6.0796 -01 & 0.0 rion \\
\hline 2 & 5.4231901 & \(5.4722+01\) & 0.0000 \\
\hline 1 & 1.2610-07 & 1.2722-07 & 0.0000 \\
\hline & 21 & 22 & 23 \\
\hline
\end{tabular}


QESIDH E (HEAT GENERATED)-(HEAT LOST/GAINED BY CUOLANTS+HEAT GAINEO/LOST BY DUMMY MATERIALS)= -9. \(3 O B 89 O S+O O\)

\section*{* \(\operatorname{AEXIT}\) LIC**002113}
ofin

\section*{APPENDIX I}

\section*{Long Input}

Earlier versions of TAC2D required a different input format than that which is used with the current version, described in Section 4.1. The old format was longer and resulted in the frequent necessity of substituting blank cards in place of data which were not needed for a TAC2D problem. The current input format was developed to eliminate this necessity and to combine the required data onto a fewer number of cards. However, the old format was retained to make the current TAC2D code compatible with earlier TAC2D models. Only the differences between the long input format and the current (short) format are noted here.
1. The LONG INPUT option card must be used (see 4.1.3).
2. Block Information (4.1.6). Each material or coolant block must be described by three cards. The first card contains the material number or negative coolant number in columns 1-12. If it is a coolant give the flow direction number in columns 13-24 and the problem depth (default value applies) in columns 25-36. Use E12.4 format. The second card contains the low and high \(X\) (radial) boundaries and the low and high \(Y\) (theta, axial) boundaries in that order, beginning in column 1, with E12.4 format. The third card gives the gap information in the same format as that for the short input. This card must be blank if there is no gap information and blank for a coolant.
3. Sections 4.1.7-4.1.11 must be input in the following order. The order may not be arbitrary.
4. Specified Initial Temperatures (4.1.7). This section of input must be included (even if a punched deck is used); however, omit the header card. Two cards are required for specifying the initial temperature of a region. The first card gives the low and high \(X\) and \(Y\) boundaries of the region (same format as second card of block information). The second card gives the temperature ( \({ }^{\circ} \mathrm{F}\) ) in columns 1-12, format E12.4.
5. Coolant Limits (4.1.8). This section of input is also optional under the long input format. However, omit the header card and retain the final blank card (even if the coolant limits are omitted).
6. Time History (4.1.9). Also optional under the long input format. However, omit the header card and retain the final blank card (even if the time history is omitted).
7. Function Control Constants (4.1.10). This section of input must be included. If no function control constants are needed give three blank cards. Omit the header card but retain the final blank card at the end of the data (in addition to the three blank cards given if the data are not needed).
8. Previously Punched Temperatures (4.1.11). Also optional under the long input format. However, omit the header card and retain the final blank card (even if the punched temperatures are omitted).
9. End Data Card (4.1.12). Omit.

\section*{REFERENCES}
1. Peaceman, D. W. and Rachford, H. H., "The Numerical Solution of Parabolic and Elliptic Differential Equations", J. Soc. Indust. Appl. Math., Vol. 3, No. 1, pp. 28-41, March, 1955.
2. Clark, S. S. and Petersen, J. F., "TAC2D, A General Purpose TwoDimensional Heat Transfer Computer Code - Mathematical Formulations and Programmer's Guide", USAEC Report GA-9262, Gulf General Atomic, September 1969.
3. Petersen, J. F., "TAC3D, A General Purpose Three-Dimensional Heat Transfer Computer Code - User's Manual", USAEC Report, GA-9263, Gulf General Atomic, 19 March 1969.
4. Clark, S. S., Del Bene, J. V. and Petersen, J. F., "TAC3D, A General Purpose Three-Dimensional Heat Transfer Computer Code Mathematical Formulations and Programmer's Guide", USAEC Report, GA-9264, Gulf General Atomic, September 1969.
5. Richtmyer, R. D., Difference Methods for Initial Value Problems. Interscience Publishers, 1957.
6. Saeger, J. C., "TAC2D Steady-State Developments", Unpublished material, Gulf General Atomic.
7. Saeger, J. C., "TAC2D Developments for Radiation Across Fluid Channels", Unpublished material, Gulf General Atomic.
8. Graumann, D. W., "Addition of GAP EXPANSION Option to the TAC2D Code", Unpublished material, Gulf General Atomic.
9. Morcos, S. M. and Williams, K. A., "The TAC2D Code, Version TFMABC-75-1. Part C: Code Verification and Benchmark Problems", GA-A134].5, General Atomic, June 1975.```


[^0]:    * If TMAT - (X) is given, thermal conductivity, specific heat and heat generation need not be specified for that material.

[^1]:    * TIN - A(X) may also be used to define a known coolant temperature profile. Sce 2.5.2, "COOLANTS - Function Name".

[^2]:    * FTR and FTZ are not allowed variables in functions which are used to define normal flow coolants.

[^3]:    * If FTR or FTZ is used to allow TIN - A(X) to define a known coolant temperature profile (see 6.1.4), SPH - (X) must be assigned a value of $10^{10}$.

[^4]:    * TMAT - (X) is not used in the program unless a non-zero value is supplied by the user.

