

Entergy Nuclear Northeast Indian Point Energy Center 450 Broadway, GSB P.O. Box 249 Buchanan, NY 10511-0249 Tel 914 734 6700

J. E. Pollock Site Vice President Administration

July 9, 2008

Re: Indian Point Unit 2 Docket 50-247

NL-08-101

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

SUBJECT: Proposed Changes to Indian Point 2 Technical Specifications Regarding Diesel Generator Endurance Test Surveillance

References: 1. NRC Letter regarding Issuance of Amendment for Indian Point Nuclear Generating Unit No. 2 (TAC No. 76009), May 9, 1991.

- 2. Entergy Letter NL-07-038 regarding "Proposed Changes to Indian Point 2 Technical Specifications Regarding Diesel Generator Endurance Test Surveillance," dated March 22, 2007.
- 3. Entergy Letter NL-07-128 regarding "Reply to Request for Additional Information Regarding Proposed Technical Specification Changes for the Diesel Generator Endurance Test Surveillance (TAC MD4923)," dated November 13, 2007.
- 4. NRC Letter requesting additional information regarding "Amendment Application to Modify Technical Specifications for the Diesel Generator Endurance Test (TAC No. MD4923)" dated February 7, 2008.
- 5. Entergy Letter NL-08-067 regarding "Withdrawal of License Amendment Request (LAR) for Indian Point Unit 2 Regarding Emergency Diesel Generator Endurance Test," dated April 10, 2008.

Dear Sir or Madam:

Pursuant to 10 CFR 50.90, Entergy Nuclear Operations, Inc, (Entergy) hereby requests an amendment to the Technical Specifications (TS) for Indian Point Nuclear Generating Unit 2 (IP2). The proposed change will revise the test acceptance criteria specified in Surveillance Requirement (SR) 3.8.1.10 for the Diesel Generator endurance test surveillance. Changes in the load ranges and power factors specified for the test are proposed for consistency with the associated safety analyses.

The changes to the load ranges are bounded by those previously approved by the NRC staff in a license amendment, Reference 1. These load ranges were changed in a non-conservative manner and non-conservative power factors were put into the TS during the conversion to standard technical specifications (Amendment 238 approved November 3, 2003).

A proposed change to the TS was submitted in Reference 2 and a response to additional information was submitted in Reference 3. Entergy was unable to respond to an additional request for information, Reference 4, and withdrew the proposed amendment, Reference 5, consistent with NRC policies.

Entergy has evaluated the proposed change in accordance with 10 CFR 50.91 (a)(1) using the criteria of 10 CFR 50.92 (c) and Entergy has determined that this proposed change involves no significant hazards considerations, as described in Attachment 1. The proposed changes to the Technical Specifications are shown in Attachment 2. Attachments 1 and 2 are consistent with the information submitted in References 2 and 3. Planned changes to the TS Bases are provided in Attachment 3. Attachment 3 includes the changes discussed in Reference 3. Responses to the request for additional information are included in Attachment 4. Attachment 4 contains 8 enclosures for information being submitted to support the responses. A copy of this application and the associated attachments are being submitted to the designated New York State official.

Entergy requests approval of the proposed amendment by October 15, 2008. Entergy is preparing a one time TS change allowing testing in compliance with the proposed change in anticipation that this schedule may not be met. Entergy tested to the proposed TS criteria in refuel outage 18 per the guidance of Administrative Letter 98-10. However, the test which demonstrates strict compliance with the TS was done in refuel outage 17 and the grace period expires November 1, 2008. There are no new commitments being made in this submittal. If you have any questions or require additional information, please contact Mr. Robert Walpole, IPEC Licensing Manager at (914) 734-6710.

I declare under penalty of perjury that the foregoing is true and correct. Executed on $\frac{1-9-08}{1-9-08}$.

Sincerely,

Patientel. Course for

J. E. Pollock Site Vice President Indian Point Energy Center

Attachments:

- 1: Analysis of Proposed Technical Specification Changes Regarding Diesel Generator Endurance Test Surveillance
- 2: Markup of Technical Specification Page for Proposed Changes Regarding Diesel Generator Endurance Test Surveillance

3: Proposed Changes to Technical Specification Bases Section 3.8.1 Regarding Diesel Generator Endurance Test Surveillance – For Information

4: Response to Request For Additional Information on February 7, 2008

cc:

Mr. John P. Boska, Senior Project Manager, NRC NRR DORL Mr. Samuel J. Collins, Regional Administrator, NRC Region 1 NRC Resident Inspector, IP2 Mr. Paul D. Tonko, President, NYSERDA

Mr. Paul Eddy, New York State Dept. of Public Service

ATTACHMENT 1 TO NL-08-101

ANALYSIS OF PROPOSED TECHNICAL SPECIFICATION CHANGES

REGARDING

DIESEL GENERATOR ENDURANCE TEST SURVEILLANCE

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

1.0 DESCRIPTION

Entergy Nuclear Operations, Inc (Entergy) is requesting an amendment to Operating License DPR-26, Docket No. 50-247 for Indian Point Nuclear Generating Unit No. 2 (IP2). The proposed change will revise the test acceptance criteria specified in SR 3.8.1.10 for the Diesel Generator endurance run surveillance. Changes in the load ranges and power factors specified for the test are proposed for consistency with the associated safety analyses. The proposed changes are the result of corrective actions taken by Entergy to address NRC inspection results reported in Reference 1.

The specific proposed changes are listed in the following section.

2.0 PROPOSED CHANGES

The surveillance test acceptance criteria in Diesel Generator Surveillance SR 3.8.1.10 will be revised as follows:

A. The required **load ranges** will be changed as follows:

FROM:

- a. For \geq 2 hours loaded \geq 1837 kW and \leq 1925 kW and
- b. For the remaining hours of the test loaded \geq 1575 kW and \leq 1750 kW.

TO:

- a. For \geq 15 minutes and \leq 30 minutes loaded \geq 2270 kW and \leq 2300 kW, and
- b. For \geq 105 minutes and \leq 2 hours loaded \geq 2050 kW and \leq 2100 kW, and
- c. For the remaining hours of the test loaded \geq 1700 kW and \leq 1750 KW.

B. The **power factor** limits will be changed as follows:

FROM:

 \leq 0.85 (applicable for all three DGs)

TO:

 \leq 0.88 (applicable to DGs 21 and 23) \leq 0.87 (applicable to DG 22)

The Technical Specification markup page for these changes is provided in Attachment 2. The Technical Specification Bases changes needed to reflect these proposed new test values are found in Attachment 3 for information.

3.0 BACKGROUND

3.1 Load Range

IP2 Improved Technical Specification (ITS) surveillance SR 3.8.1.10 is a test of the emergency diesel generators, similar to Standard Technical Specification (STS, Reference 2) surveillance SR 3.8.1.14. This surveillance requires that each DG be started and loaded for a specified period of time at specified loading conditions, which include kilowatt (kW) output and power factor. Prior to conversion to ITS, the IP2 Custom Technical Specifications (CTS) contained a requirement for diesel testing (Specification 4.6.A.2) which stated:

"At each Refueling Interval (R###), each diesel shall be manually started, synchronized and loaded up to its continuous (nameplate) and short term ratings."

The CTS Bases stated:

"Each diesel is rated for operation for 0.5 hours of operation out of any 24 hours at 2300 kW plus 2.0 hours of operation out of any 24 hours at 2100 kW with the remaining 21.5 hours of operation out of any twenty four hours at 1750 kW."

This CTS testing requirement was established in IP2 License Amendment 153 (Reference 3) which reflected the installation of a plant modification designed to provide for an increase in the DG short-term rating.

During the conversion to ITS for IP2 (Reference 4), the CTS requirement was expanded to specify test acceptance criteria in the technical specification surveillance; acceptance criteria for test duration and power factor were added. In addition, the loading requirement for this test was modified to specify two test intervals; one at a load range that corresponds to 90% - 100% of the DG continuous rating and the other at a load range that corresponds to 105% - 110% of the DG continuous rating.

During NRC inspection activities described in Reference 1, questions were raised regarding the adequacy of the load ranges specified in ITS SR 3.8.1.10 to demonstrate the capability of the DGs to operate at the peak loading conditions identified in plant safety analyses for the limiting design basis accident (DBA). As a result Entergy acknowledged the need to submit a license amendment request to establish new load ranges that would bound the peak accident loads. Entergy is proposing to establish load ranges based on the diesel ratings previously described in amendment 153, and Entergy has verified that the proposed new load ranges bound the peak accident loads. The values for the peak accident loads are included on Table One, which provides a comparison of the various DG loading values discussed in this section.

3.2 Power Factor

While investigating the above changes regarding DG kW loading, Entergy also determined that a change to the power factor test value is also appropriate. At IP2, the emergency diesel generator and associated electrical distribution system is a 480 volt system. Surveillance testing cannot be performed using the 480 V loads that would be powered under an accident scenario; rather the

NL-08-101 Docket 50-247 Attachment 1 Page 3 of 7

TABLE ONE COMPARISON OF VARIOUS DIESEL GENERATOR LOADING VALUES

DG Rating (Note A)	Continuous Rating 1750 kW						120-Minute Rating 2100 kW				30-Min Rating 2300 kW				
					•							•			•
Peak DG Loading										•	DG 22 2076 kV	V .		DG 23 94 kW	DG 21 2268 kW
for limiting DBA							, , , , , , , , , , , , , , , , , , , 				•			•	•
Existing SR 3.8.1.10		$ \geq 1575 kW \text{ to } \leq 1750 kW $ For the remaining hours of the ≥ 8 -hour test (= 90% - 100% of Continuous Rating) $ \geq 1837 kW \text{ to } \leq 192$ For ≥ 2 hours (= 105% - 110% of Continuous Rating)		hours - 110% o	f			•		•					
							♦								
Proposed new SR				17	00 kW to 50 kW e remainir	ha					2050 kW 2100 kW				270 kW to 2300 kW
				hour	rs of the lour test	'y	•				≥105 to ≤120 min			Fo	r <u>≥</u> 15 to 30 min
		•			♦						♦	•			♦ ♦
Kw scale 15	00kw	157	5 10	 650	1725	180)0 18	, 75 1	950	202	25 2	100	21	75 2	 250 23

Note A: These rating are based on limitations imposed on the diesel engine, circuit breaker, and bus portions of the DG which are more limiting_then the rating of the generator portion of the DG, which is rated for continuous operation at 2875 KVa.

NL-08-101 Docket 50-247 Attachment 1 Page 4 of 7

loading of the DG must be accomplished by picking up load from the offsite grid. This involves step-up transformers from 480 V to 6.9 kV and then additional step-up to either 13.8 kV or 138 kV, depending on which feeder circuits are available between the station and the grid. This testing configuration can make it difficult to establish a low power factor test configuration and maintain other electrical parameters within operational limits of the DG. As part of the review of the electrical loading study to address the kW limit issue, Entergy has determined that there is margin between the existing technical specification power factor test requirement and the analysis power factor for the limiting load scenarios. Therefore, the proposed change will eliminate unnecessary conservatism from the test and provide greater ability to perform the test without crediting the technical specification note regarding limitations on power factor caused by grid conditions.

4.0 TECHNICAL ANALYSIS

4.1 Load Range

The peak DG loading conditions reported in this LAR are based on the current version of the Indian Point 2 Emergency Diesel Generator Loading Study. The methodology consists of an evaluation of emergency safeguards equipment powered from the 480 Vac emergency safeguards bus under hypothetical accident scenarios which also involve loss of normal offsite power. The evaluation accounts for the time-dependent electrical power requirements of various safeguards components as the accident scenario progresses.

The evaluation concludes that the limiting loading condition occurs for the LBLOCA scenario during the time period when plant operators are implementing the recirculation switch sequencing activity that completes the transition from injection flow (refueling water storage tank via the safety injection pumps) to recirculation flow (recirculation sump via recirculation pumps). This activity occurs at approximately 40 minutes after the initiation of the accident sequence. In addition, the evaluation accounts for the single-failure of one of the DGs. The duration of the peak loading condition is limited to a few minutes, associated with the elapsed time between operator actuation of one switch (switch 4) that starts the required recirculation pump and operator actuation of another switch (switch 7) that secures the running safety injection pump. The resulting peak loading for each DG is as follows:

DG	Peak Load
21	2268 kW, with loss of DG 23
22	2076 kW, with loss of DG 23
23	2194 kW, with loss of DG 21

The peak loading conditions are bounded by the DG short-term (30-minute) rating limit of 2300 kW. The proposed new SR acceptance criterion of \geq 2270 kW to \leq 2300 kW for \geq 15 to \leq 30 minutes also bounds these peak loading conditions, without exceeding the DG 30-minute rating limit.

In addition to peak loading conditions, the load study evaluation considers the time dependent electrical power demands with respect to the other DG rating values. The evaluation concludes that the 2-hour rating and continuous rating limits for the DG bound the electrical requirements of the hypothetical accident scenarios and the proposed new SR acceptance criteria provide assurance that the DGs can perform at these rated limits.

4.2 Power Factor

The existing ITS SR acceptance criterion for power factor (≤ 0.85) was determined based on engineering judgment. Prior to ITS (CTS), a test acceptance criterion for power factor was not specified. During tests conducted since ITS implementation, it was determined that procedure limits set for certain DG operating parameters (e.g., generator field amps and output voltage) served as a constraint in some cases to consistently achieve the new power factor acceptance criterion. Therefore Entergy performed further engineering evaluations regarding power factor and procedure limits on DG operating parameters.

The evaluation accounted for peak loading conditions from the DG loading study discussed in Section 4.1 and information from motor data sheets for the safeguards equipment motors rated at \geq 50 kW. Affected motors include those associated with the Service Water Pumps, Safety Injection Pumps, Residual Heat Removal Pumps, Recirculation Pumps, Auxiliary Feedwater Pumps, and Containment Recirculation Fans. Loads smaller than 50 kW were not considered due to the negligible impact on the overall power factor. The evaluation concluded that the existing technical specification power factor test requirement is overly conservative with respect to the DG loading requirements under hypothetical accident scenarios. Therefore the proposed new values of \leq 0.87 (for DG 22) and \leq 0.88 (for DGs 21 and 23) are more appropriate test acceptance criteria.

Entergy has determined that these power factor values are achievable under the test conditions applicable for this surveillance, based on a review of past test results and recent implementation of procedure changes regarding generator operating limits to be used for this test.

5.0 REGULATORY ANALYSIS

5.1 No Significant Hazards Consideration

Entergy Nuclear Operations, Inc. (Entergy) has evaluated the safety significance of the proposed change to the Indian Point 2 Technical Specification that revises EDG load testing and power factor requirements. This proposed change has been evaluated according to the criteria of 10 CFR 50.92, "Issuance of Amendment". Entergy has determined that the subject change does not involve a Significant Hazards Consideration as discussed below:

1. Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?

No. The proposed change revises the acceptance criteria to be applied to an existing surveillance test of the facility emergency diesel generators (DGs). Performing a surveillance test is not an accident initiator and does not increase the probability of an accident occurring. The proposed new acceptance criteria will assure that the DGs are capable of carrying the peak electrical loading assumed in the various existing safety analyses which take credit for the operation of the DGs. Establishing acceptance criteria that bound existing analyses validates the related assumption used in those analyses

regarding the capability of equipment to mitigate accident conditions. Therefore the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the change create the possibility of a new or different kind of accident from any accident previously evaluated?

No. The proposed change revises the test acceptance criteria for a specific performance test conducted on the existing DGs. The proposed change does not involve installation of new equipment or modification of existing equipment, so no new equipment failure modes are introduced. The proposed revision to the DG surveillance test acceptance criteria also is not a change to the way that the equipment or facility is operated and no new accident initiators are created. Therefore the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Does the proposed change involve a significant reduction in a margin of safety?

No. The conduct of performance tests on safety-related plant equipment is a means of assuring that the equipment is capable of maintaining the margin of safety established in the safety analyses for the facility. The proposed change in the DG technical specification surveillance test acceptance criteria is consistent with values assumed in existing safety analyses and is consistent with the design rating of the DGs. Therefore the proposed change does not involve a significant reduction in a margin of safety.

Based on the above, Entergy concludes that the proposed amendment to the Indian Point 2 Technical Specifications presents no significant hazards consideration under the standards set forth in 10 CFR 50.92 (c), and, accordingly, a finding of "no significant hazards consideration" is justified.

5.2 Applicable Regulatory Reguirements / Criteria

General Design Criterion (GDC) 17; "Electric Power Systems" requires that onsite electric power systems have sufficient independence, capacity, capability, redundancy, and testability to ensure that (1) specified acceptable fuel design limits and design conditions of the reactor coolant pressure boundary are not exceeded as a result of anticipated operational occurrences and (2) the core is cooled and containment integrity and other vital functions are maintained in the event of postulated accidents, assuming a single failure.

GDC 18; "Inspection and Testing of Electric Power Systems" requires that electric power systems important to safety be designed to permit appropriate periodic inspection and testing to assess the continuity of the systems and the condition of their components.

IP2 Final Safety Analysis Report (FSAR) section 8.1 describes how the requirements of GDC 17 and 18 are met at IP2. Also, Technical Specification section 3.8.1 contains testing requirements for the DGs.

Regulatory Guide 1.9, Revision 3 describes methods for meeting the above requirements based on NRC staff endorsement of IEEE Standard 387-1984, with exceptions as stated in the Regulatory Guide. Regulatory Position 2.2 describes various DG tests, including test 2.2.9 for the Endurance and Margin Test. The loading requirements for this test are specified as a percentage of the continuous rating of the DGs, and these load ranges (105% - 110% of continuous rating and 90% - 100% of continuous rating) are specified in the existing technical specification surveillance requirement (SR) 3.8.1.10.

IP2 License Amendment 153 established the current continuous and short-term ratings of the DGs. The Technical Specification in effect at that time (4.6.A.2) stated that at each refueling outage, each DG shall be manually started, synchronized and loaded up to its continuous and short term ratings. This testing requirement was implemented in plant surveillance procedures.

In the conversion to Improved Technical Specifications (Reference 4) Entergy adopted test ranges based on Regulatory Guide 1.9. However, these ranges do not bound the peak DBA loading. Therefore, Entergy is proposing to revise the test load ranges specified for SR 3.8.1.10 based on the continuous and short term ratings defined in License Amendment 153. Testing at these ranges will assure that applicable criteria are met.

5.3 Environmental Considerations

The proposed changes to the IP2 Technical Specifications do not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.

6.0 **PRECEDENCE**

IP2 License Amendment 153 established requirements for testing the DGs at the continuous and short term ratings.

7.0 **REFERENCES**

- 1. NRC Inspection Report 05000247 / 2006-003, dated August 11, 2006. (NCV 2006-003-05 and -08)
- 2. Standard Technical Specifications for Westinghouse plants, NUREG 1431.
- 3. NRC letter to Consolidated Edison Company; "Issuance of Amendment 153 for Indian Point Nuclear Generating Unit 2," dated May 9, 1991.
- 4. NRC letter to Entergy; regarding issuance of Amendment 238 for Indian Point Nuclear Generating Unit 2, dated November 21, 2003.

ATTACHMENT 2 TO NL-08-101

MARKUP OF TECHNICAL SPECIFICATION PAGE FOR PROPOSED CHANGES

REGARDING

DIESEL GENERATOR ENDURANCE TEST SURVEILLANCE

Affected Page: 3.8.1-8 Amendment 238

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247 SURVEILLANCE REQUIREMENTS (continued)

	SURVEILLANCE	FREQUENCY
SR 3.8.1.10	- NOTES - 1. Momentary transients outside the load and	
	 power factor ranges do not invalidate this test. 2. This SR shall not normally be performed in MODE 1 or 2. However, this Surveillance may be performed to reestablish OPERABILITY provided an assessment determines the safety of the plant is maintained or enhanced. 	
	3. If performed with DG synchronized with offsite power, it shall be performed at a power factor of ≤ 0.88 for DG 21, ≤ 0.87 for DG 22, and ≤ 0.88 for DG 23 ≤ 0.85 . However, if grid conditions do not permit, the power factor limit is not required to be met. Under this condition the power factor shall be maintained as close to the limit as practicable.	
INSERT A	Verify each DG operating at a power factor as stated in Note 3 \leq 0.85 operates for \geq 8 hours:	24 months
	a. For ≥ 2 hours loaded ≥ 1837 kW and ≤ 1925 kW and	
\	b. For the remaining hours of the test loaded \geq 1575 kW and \leq 1750 kW.	
SR 3.8.1.11		
· · · ·	- NOTE - Load sequence timers associated with equipment that has automatic initiation capability disabled are not required to be OPERABLE.	
	Verify each load sequence timer relay functions within the required design interval.	24 months

INSERT A, for SR 3.8.1.10

- a. For \geq 15 minutes and \leq 30 minutes loaded \geq 2270 kW and \leq 2300 kW, and
- b. For \geq 105 minutes and \leq 2 hours loaded \geq 2050 kW and \leq 2100 kW, and
- c. For the remaining hours of the test loaded \geq 1700 kW and \leq 1750 kW.

ATTACHMENT 3 TO NL-08-101

PROPOSED CHANGES TO TECHNICAL SPECIFICATION BASES SECTION 3.8.1 REGARDING DIESEL GENERATOR ENDURANCE TEST SURVEILLANCE

- FOR INFORMATION

Additions – bold and italic Deletion – line through

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.1 AC Sources - Operating

BASES

BACKGROUND

The unit AC Electrical Power Distribution System AC sources consist of the following: two offsite circuits (a 138 kV circuit and a 13.8 kV circuit), each of which has a preferred and backup feeder; and, the onsite standby power circuit consisting of three diesel generators. As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems.

The plant distribution system is configured around 6.9 kV buses Nos. 1, 2, 3, 4, 5, and 6. All offsite power to the safeguards buses enters the plant via 6.9 kV buses Nos. 5 and 6. 6.9 kV buses Nos. 5 and 6 are normally supplied by the 138 kV offsite circuit but may be supplied by the 13.8 kV offsite circuit. When the plant is operating, 6.9 kV buses 1, 2, 3, and 4 (which supply power to the four reactor coolant pumps) typically receive power from the main generator via the unit auxiliary transformer (UAT). However, when the main generator or UAT is not capable of supporting this arrangement, 6.9 kV buses 1 and 2 receive offsite power via 6.9 kV bus 5 and 6.9 kV buses 3 and 4 receive offsite power via 6.9 kV bus 6. Following a unit trip, 6.9 kV buses 1, 2, 3, and 4 will auto transfer (dead fast transfer) to 6.9 kV buses 5 and 6 in order to receive offsite power.

The 6.9 kV buses Nos. 2, 3, 5 and 6 supply power to the 480 V safeguards power buses using 6.9 kV/480 V station service transformers (SSTs) as follows:

- a. 6.9 kV bus 5 supplies 480 V bus 5A via SST 5;
- b. 6.9 kV bus 6 supplies 480 V bus 6A via SST 6;
- c. 6.9 kV bus 2 supplies 480 V bus 2A via SST 2; and,
- d. 6.9 kV bus 3 supplies 480 V bus 3A via SST 3.

The onsite AC Power Distribution System begins with the four 480 V safeguards power buses 5A, 6A, 2A and 3A. The four 480 V safeguards power buses can be supplied by either of the two offsite circuits or the emergency diesel generators. The onsite Power Distribution System is divided into the following:

 Three safeguards power trains (trains) consisting of the 480 volt safeguards bus(es) and associated AC electrical power distribution subsystems;

INDIAN POINT 2

BACKGROUND (continued)

- b. Four 125 volt DC bus subsystems; and
- c. Four 118 volt vital AC instrument subsystems.

The three safeguards power trains are designed so that any two trains are capable of meeting minimum requirements for accident mitigation and/or safe shutdown. The three safeguards power trains are as follows:

- a. train 5A (480 volt bus 5A and associated DG 21);
- b. train 6A (480 volt bus 6A and associated DG 23); and
- c. train 2A/3A (480 volt buses 2A and 3A and associated DG 22).

OFFSITE SOURCES

An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite 480 V ESF bus(es). A detailed description of the offsite power network and the circuits to the 480 V safeguards buses is found in the UFSAR, Chapter 8 (Ref. 2).

Offsite power is supplied from the offsite transmission network to the plant by two electrically and physically separated circuits (a 138 kV circuit and a 13.8 kV circuit). All offsite power enters the plant via 6.9 kV buses Nos. 5 and 6 which are normally connected to the 138 kV offsite circuit but have the ability to be connected to the 13.8 kV offsite circuit. The 138 kV offsite circuit satisfies the requirement in GDC 17 that at least one of the two required circuits can, within a few seconds, provide power to safety-related equipment following a loss-of-coolant accident. The 13.8 kV offsite circuit is considered a delayed access circuit because operator action is normally required to supply offsite power to the plant using the 13.8 kV offsite source.

Both the 138 kV offsite circuit and the 13.8 kV offsite circuit have a preferred and a backup feeder that connects the circuit to the Buchanan substation. For both the 138 kV and 13.8 kV offsite circuits, the preferred IP2 feeder is the backup IP3 feeder and the backup IP2 feeder is the preferred IP3 feeder.

For the 138 kV offsite circuit, IP2 and IP3 each have a dedicated Station Auxiliary Transformer (SAT) that can be supplied by either the preferred or the backup 138 kV feeder. The 138 kV offsite circuit, including the SAT used exclusively for IP2, is designed to supply all IP2 loads, including 4 operating RCPs and ESF loads, when using either the preferred (95332) or backup (95331) feeder. There are no restrictions when IP2 and IP3 are both using the same 138 kV feeder concurrently.

INDIAN POINT 2

Revision 3

BACKGROUND (continued)

For the 13.8 kV offsite circuit, there is a 13.8 kV/6.9 kV auto-transformer associated with feeder 13W92 and a 13.8 kV/6.9 kV auto-transformer associated with feeder 13W93. Feeder 13W92 and its associated auto-transformer is the preferred feeder for the IP2 13.8 kV circuit and the backup feeder for the IP3 13.8 kV circuit. Feeder 13W93 and its associated auto-transformer is the backup feeder for the IP2 13.8 kV circuit and the preferred feeder for the IP3 13.8 kV circuit.

Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the transformer supplying offsite power to the onsite Distribution System. Within 1 minute after the initiating signal is received, all automatic and permanently connected loads needed to recover the unit or maintain it in a safe condition are returned to service via individual load timers associated with each large load.

ONSITE SOURCES

The onsite standby power source consists of three 480 V diesel generators (DGs) with a separate DG dedicated to each of the safeguards power trains. Safeguards power train 5A (480 V bus 5A) is supported by DG 21; safeguards power train 6A (480 V bus 6A) is supported by DG 23; and, safeguards power train 2A/3A (480 V buses 2A and 3A) is supported by DG 22. A DG starts automatically on a safety injection (SI) signal or on an ESF bus degraded voltage or undervoltage signal (refer to LCO 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation"). After the DG has started, it will automatically tie to its respective bus after offsite power is tripped as a consequence of ESF bus 5A or 6A undervoltage or degraded voltage, coincident with an SI signal or unit trip. The DGs will also start and operate in the standby mode without tying to the ESF bus on an SI signal alone. Following the trip of offsite power, an undervoltage signal strips nonpermanent loads from the ESF bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by individual load timers. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG by automatic load application.

INDIAN POINT 2

Revision 3

BACKGROUND (continued)

In the event of a loss of the 138 kV offsite circuit, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a loss of coolant accident (LOCA).

Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the DG in the process. Within 1 minute after the initiating signal is received, all loads needed to recover the unit or maintain it in a safe condition are returned to service.

Ratings for DGs 21, 22 and 23 are consistent with the requirements of Regulatory Guide 1.9 (Ref. 3). Each diesel generator consists of an Alco Model 16-251-E engine coupled to a Westinghouse 900 rpm, 3-phase, 60-cycle, 480 V generator. Each diesel generator has a capability of 1750 kW (continuous), 2300 kW for 1/2 hour in any 24 hour period, and 2100 kW for 2 hours in any 24 hour period. There is a sequential limitation whereby it is unacceptable to operate DGs for two hours at 2100 kW followed by operating at 2300 kW for a half hour. Any other combination of the above ratings is acceptable. The ESF loads that are powered from the 480 V ESF buses are listed in Reference 2. *INSERT A*

APPLICABLE SAFETY ANALYSES The initial conditions of DBA and transient analyses in the UFSAR, Chapter 6 (Ref. 4) and Chapter 14 (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems.

The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This results in maintaining at least 2 of the 3 safeguards power trains energized from either onsite or offsite AC sources during accident conditions in the event of:

a. An assumed loss of all offsite power or all onsite AC power and

b. A worst case single failure.

The AC sources satisfy Criterion 3 of 10 CFR 50.36.

INDIAN POINT 2

LCO

Two qualified circuits between the offsite transmission network and the onsite Electrical Power System and separate and independent DGs for each train ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Qualified offsite circuits are those that are described in the UFSAR and are part of the licensing basis for the unit. In addition, required individual load timers for ESF loads must be OPERABLE unless associated with equipment that has automatic initiation capability disabled.

Each offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses.

There are two qualified circuits from the transmission network at the Buchanan substation to the onsite electric distribution system. Each of these circuits must be supported by a circuit from the offsite network into the Buchanan substation that is physically independent from the other circuit to the extent practical. The circuits into the Buchanan substation that satisfy these requirements are 96951, 96952 and 95891. The 138 kV connection to Buchanan substation from the Westchester Refuse Energy Services Company (RESCO) plant may not be used to satisfy requirements for a circuit from the offsite network into the Buchanan substation.

The 138 kV offsite circuit consists of the following:

- Either 138 kV feeder 95332 (the preferred feeder for IP2 and the backup feeder for IP3) or 138 kV feeder 95331 (the backup feeder for IP2 and the preferred feeder for IP3);
- b. The 138 kV/6.9 kV station auxiliary transformer including the automatic tap changer, circuit breakers ST5 and ST6 which supply 6.9 kV buses 5 and 6, and
- c. The following components which are common to both the 138 kV and 13.8 kV offsite circuits:

BASES		 •
LCO (continued)		

- The supply to 480 V bus 5A consisting of 6.9 kV bus 5, circuit breaker SS5, station service transformer 5, and circuit breaker 52/5A;
- ii. The supply to 480 V bus 6A consisting of 6.9 kV bus 6, circuit breaker SS6, station service transformer 6, and circuit breaker 6A;
- The supply to 480 V bus 2A consisting of 6.9 kV bus 5, circuit breaker UT2-ST5 (including fast transfer function), 6.9 kV bus 2, circuit breaker SS2, station service transformer 2, and circuit breaker 52/2A; and
- iv. The supply to 480 V bus 3A consisting of 6.9 kV bus 6, circuit breaker UT3-ST6 (including fast transfer function), 6.9 kV bus 3, circuit breaker SS3, station service transformer 3, and circuit breaker 52/3A.

LCO 3.8.1 is modified by a Note that requires that the automatic transfer function for 6.9 kV buses 1, 2, 3, and 4 from the UAT (main generator) to 6.9 kV buses 5 and 6 (the 138 offsite circuit) to be OPERABLE whenever the 138 kV offsite circuit is being used to supply 6.9 kV bus 5 and 6 and the Unit Auxiliary Transformer (main generator) is supplying 6.9 kV bus 1, 2, 3 or 4. This is necessary to ensure that safeguards power train 2A/3A (480 volt buses 2A and 3A) will be transferred automatically from the UAT (main generator) to 6.9 kV buses 5 and 6 (the 138 offsite circuit) following a plant trip.

The 13.8 kV offsite circuit consists of the following:

- a. Either 13.8 kV feeder 13W92 and its associated 13.8/6.9 kV autotransformer (the preferred for IP2 and the backup feeder for IP3) or 13.8 kV feeder 13W93 and its associated 13.8/6.9 kV autotransformer (the backup for IP2 and the preferred feeder for IP3),
- b. Circuit breakers GT25 and GT26, which supply 6.9 kV buses 5 and 6, and
- c. The following components which are common to both the 138 kV and 13.8 kV offsite circuits:

BASES	 	•	
LCO (continued)			

- i. The supply to 480 V bus 5A consisting of 6.9 kV bus 5, circuit breaker SS5, station service transformer 5, and circuit breaker 52/5A;
- ii. The supply to 480 V bus 6A consisting of 6.9 kV bus 6, circuit breaker SS6, station service transformer 6, and circuit breaker 6A;
- iii. The supply to 480 V bus 2A consisting of 6.9 kV bus 5, circuit breaker UT2-ST5 (not including fast transfer function), 6.9 kV bus 2, circuit breaker SS2, station service transformer 2, and circuit breaker 52/2A; and
- iv. The supply to 480 V bus 3A consisting of 6.9 kV bus 6, circuit breaker UT3-ST6 (not including the fast transfer function), 6.9 kV bus 3, circuit breaker SS3, station service transformer 3, and circuit breaker 52/3A.

If the 13.8 kV offsite circuit is being used to supply 6.9 kV bus 5 and/or 6 and the Unit Auxiliary Transformer (main generator) is supplying 6.9 kV bus 1, 2, 3 or 4, the automatic transfer of 6.9 kV buses 1, 2, 3, and 4 from the UAT (main generator) to 6.9 kV buses 5 and 6 (the 13.8 offsite circuit) must be disabled. This is necessary because neither the preferred or the backup 13.8 kV/6.9 kV auto-transformer is capable of supplying all 4 operating RCPs. This requirement is not intended to preclude supplying 6.9 kV buses 1, 2, 3, and 4 using the 13.8 kV offsite circuit via the 13.8 kV/6.9 kV auto-transformers once sufficient loads have been stripped from 6.9 kV buses 1, 2, 3, and 4 to assure that the 13.8 kV/6.9 kV auto-transformer will not be overloaded by these manual actions.

If IP3 and IP2 are both using a single 13.8 kV feeder (13W92 or 13W93), administrative controls are used to ensure that the 13.8 kV/6.9 kV auto-transformer load restrictions will not be exceeded.

Operability of the offsite power sources requires the ability to provide the required capacity during design basis conditions. The minimum offsite voltage necessary to provide the required capacity was determined, using system load flow studies with conservative assumptions (Reference 11), to be greater than or equal to 136 kV and 13.4 kV for the 138 kV and 13.8 kV circuits, respectively. Upon notification by Con Ed that these limits are not met, the LCO is considered not met at the time of the initial alarm. When the grid monitoring system is operating the minimum acceptable voltage varies with grid conditions and Con Ed will provide notification.

INDIAN POINT 2

BASES	· · · · · · · · · · · · · · · · · · ·					
LCO (continued)	Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This will be accomplished within 10 seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses.					
	Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY.					
	The AC sources in safeguards power train must be separate and independent (to the extent possible) of the AC sources in the other train For the DGs, separation and independence are complete.					
	For the offsite AC sources, separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus and not violate separation criteria. An offsite circuit that is not connected to an ESF bus is required to have OPERABLE automatic or manua transfer capability to the ESF buses to support OPERABILITY of tha circuit.					
APPLICABILITY	The AC sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:					
	 Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients and 					
	b. Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.					
	The AC power requirements for MODES 5 and 6 are covered in LCO 3.8.2, "AC Sources - Shutdown."					
ACTIONS	A Note prohibits the application of LCO 3.0.4.b to an inoperable DG or the 138 kV offsite circuit. There is an increased risk associated with entering a MODE or other specified condition in the Applicability with an inoperable DG. This also applies to the 138 kV offsite circuit which is the only immediate access offsite circuit. Therefore, the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment					

addressing inoperable systems and components, should not be applied in these circumstances.

<u>A.1</u>

To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the OPERABILITY of the remaining required offsite circuit on a more frequent basis. For activities that will require entry into the associated Condition, performance of SR 3.8.1.1 for the offsite circuit(s) could be completed up to 8 hours prior to entry into the Condition. Performance of this SR before entry into the Condition can be credited to establish the accelerated Frequency and therefore is equivalent to performing the SR within 1 hour after entry into the Condition. The LCO Bases describes the components and features which comprise the offsite circuits. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered.

<u>A.2</u>

Required Action A.2, which applies only if the 13.8 kV offsite power circuit is being used to feed 6.9 kV buses 5 or 6 and the UAT is supplying 6.9 kV bus 1, 2, 3 or 4, prevents the automatic transfer of 6.9 kV buses 1, 2, 3, and 4 from the UAT to the 13.8 kV offsite power circuit after a unit trip. Transfer of buses 1, 2, 3, and 4 from the UAT to the 13.8 kV offsite power circuit could result in overloading the 13.8 kV/6.9 kV autotransformer. This requirement is not intended to preclude supplying 6.9 kV buses 1, 2, 3, and 4 using the 13.8 kV offsite circuit via the 13.8 kV/6.9 kV auto-transformers once sufficient loads have been stripped from 6.9 kV buses 1, 2, 3, and 4 to assure that the 13.8 kV/6.9 kV auto-transformer will not be overloaded. Automatic transfer of buses 1, 2, 3, and 4 can be disabled by placing 6.9 kV bus tie breaker control switches 1-5, 2-5, 3-6, and 4-6 in the "pull-out" position. These breaker control switches should be "tagged" in the pull-out position if this condition is expected to last more than one full shift.

Although the auto-transfer feature is normally disabled prior to placing the 13.8 kV offsite power circuit in service, a Completion Time of 1 hour ensures that the 13.8 kV circuit meets requirements for OPERABILITY promptly when the alternate offsite circuit is configured to support the response of ESF functions.

INDIAN POINT 2

Revision 3

ACTIONS (continued)

Required Action A.3, which only applies if the train will not be automatically powered from an offsite source, is intended to provide assurance that an event coincident with a single failure of the associated DG will not result in a complete loss of redundant required features. When one or more offsite sources are inoperable, a train may not be automatically powered from an

offsite source if: 1) the automatic transfer of 6.9 kV buses 1, 2, 3, and 4 to 6.9 kV bus 5 and 6 is disabled; or 2) the immediate access circuit (138 kV) is inoperable and the delayed access circuit (13.8 kV) is not aligned to replace the inoperable circuit.

Required safety features are designed with a redundant safety feature that is powered from a different safeguards power train. Therefore, if a required safety feature is supported by an inoperable offsite circuit, then the failure of the DG associated with that required safety feature will not result in the loss of a safety function because the safety function will be accomplished by the redundant safety feature that is powered from a different safeguards power train. However, if a required safety feature is supported by an inoperable offsite circuit and the redundant safety feature that is powered from a different safeguards power train is also inoperable, then the failure of the DG associated with that required safety feature will result in the loss of a safety function. Required Action A.3 ensures that appropriate compensatory measures are taken for a Condition where the loss of a DG could result in the loss of a safety function when an offsite circuit is not OPERABLE.

The turbine driven auxiliary feedwater pump is not required to be considered a redundant required feature, and, therefore, required to be determined OPERABLE by this Required Action, because the design is such that the remaining OPERABLE motor driven auxiliary feedwater pump is by itself capable (without any reliance on the motor driven auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis.

The Completion Time for Required Action A.3 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

INDIAN POINT 2

Revision 3

BASES		
ACTIONS (continued)		

- a. The train will not have offsite power automatically supplying its loads following a trip of the main turbine generator or following the loss of the immediate access offsite circuit, and
- b. A required feature powered from a different safeguards power train is inoperable.

If at any time during the existence of Condition A (one offsite circuit inoperable) a redundant required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

Discovering that offsite power is not automatically available to one train of the onsite Class 1E Electrical Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with the other train that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the two remaining safeguards power trains of the onsite Distribution System. The 24 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

<u>A.4</u>

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the unit safety systems. In this Condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Distribution System.

The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

ACTIONS (continued)

<u>B.1</u>

To ensure a highly reliable power source remains with an inoperable DG, it is necessary to verify the availability of the offsite circuits on a more frequent basis. For activities that will require entry into the associated Condition, performance of SR 3.8.1.1 for the offsite circuit(s) could be completed up to 8 hours prior to entry into the Condition. Performance of this SR before entry into the Condition can be credited to establish the accelerated Frequency and therefore is equivalent to performing the SR within 1 hour after entry into the Condition. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if an offsite circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions and Required Actions must then be entered.

<u>B.2</u>

Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of redundant required features. Required safety features are designed with a redundant safety feature that is powered from a different safeguards power train. Therefore, if a required safety feature is supported by an inoperable DG, then the failure of the offsite circuit will not result in the loss of a safety function because the safety function will be accomplished by the redundant safety feature that is powered from a different safeguards power train (and DG). However, if a required safety feature is supported by an inoperable DG and the redundant safety feature that is powered from a different safeguards power train is also inoperable, then a loss of offsite power will result in the loss of a safety function. Required Action B.2 ensures that appropriate compensatory measures are taken for a Condition where the loss of offsite power could result in the loss of a safety function when a DG is not OPERABLE.

The turbine driven auxiliary feedwater pump is not required to be considered a redundant required feature, and, therefore, not required to be determined OPERABLE by this Required Action, because the design is such that the remaining OPERABLE motor driven auxiliary feedwater pump is by itself capable (without any reliance on the motor driven auxiliary feedwater pump powered by the emergency bus associated with the inoperable diesel generator) of providing 100% of the auxiliary feedwater flow assumed in the safety analysis.

ACTIONS (continued)

The Completion Time for Required Action B.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. An inoperable DG exists and
- b. A required feature powered from a different safeguards power train is inoperable.

If at any time during the existence of this Condition (one DG inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked.

Discovering one required DG inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with either OPERABLE DG, results in starting the Completion Time for the Required Action. A Completion Time of four hours from the discovery of these events existing concurrently is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown.

In this Condition, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

B.3.1 and B.3.2

Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DG(s). If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DGs, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), the other DG(s) would be declared inoperable upon discovery and Condition E of LCO 3.8.1 would be entered. Once the failure is repaired, the common

INDIAN POINT 2

Revision 3

ACTIONS (continued)

cause failure no longer exists, and Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of that DG.

In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the plant corrective action program will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B.

According to Generic Letter 84-15 (Ref. 10), 24 hours is reasonable to confirm that the OPERABLE DGs are not affected by the same problem as the inoperable DG.

<u>B.4</u>

In Condition B, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Distribution System. The 7 day Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

C.1 and C.2

Required Action C.1, which applies when two offsite circuits are inoperable, is intended to provide assurance that an event with a coincident single failure will not result in a complete loss of redundant required safety functions. The Completion Time for this failure of redundant required features is reduced to 12 hours from that allowed for one train without offsite power (Required Action A.3). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that three complete safeguards power trains are OPERABLE. When a redundant required feature is not OPERABLE, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are powered from redundant AC safety trains. This includes motor driven auxiliary feedwater pumps. Single train features, such as turbine driven auxiliary pumps, are not included as discussed in the Bases for Required Action A.3.

ACTIONS (continued)

The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

- a. All required offsite circuits are inoperable and
- b. A required feature is inoperable.

If at any time during the existence of Condition C (two offsite circuits inoperable) a required feature becomes inoperable, this Completion Time begins to be tracked.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources.

Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this level of degradation:

- a. The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure and
- b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source.

With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of

ACTIONS (continued)

the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria.

According to Reference 6, with the available offsite AC sources, two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A.

D.1 and D.2

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Similarly, when the UAT is being used to supply 6.9 kV bus 1, 2, 3 or 4 and the 13.8 kV offsite circuit is being used to supply 6.9 kV buses 5 and 6, the autotransfer function is disabled. Therefore, 480 V safeguards buses 2A and 3A (safeguards train 2A/3A) will not be automatically re-energized with offsite power following a plant trip until connected to the offsite circuit by operator action. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC offsite or DG source to any train, the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems - Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of one offsite circuit and one DG. without regard to whether a train is or would be de-energized. LCO 3.8.9 provides the appropriate restrictions for a train that is or would be de-energized.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours.

In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

ACTIONS (continued)

<u>E.1</u>

With two or more DGs inoperable, the remaining standby AC sources are not adequate to satisfy accident analysis assumptions. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown (the immediate shutdown could cause grid instability, which could result in a total loss of AC power). Since any inadvertent generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation.

According to Reference 6, with two or more DGs inoperable, operation may continue for a period that should not exceed 2 hours.

F.1 and F.2

If the inoperable AC electric power sources cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems.

G.1 and H.1

Conditions G and H correspond to a level of degradation in which all redundancy in the AC electrical power supplies has been lost or a loss of safety function has already occurred. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown.

SURVEILLANCE

REQUIREMENTS

The AC sources are designed to permit inspection and testing of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, Appendix A, GDC 18 (Ref. 7). Periodic component tests are supplemented by functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3) and Regulatory Guide 1.137 (Ref. 8), as addressed in the UFSAR.

Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. The minimum steady state output voltage of 428 V is the value determined to be acceptable in the analysis of the degraded grid condition. This value allows for voltage drops to the terminals of 480 V motors. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of 500 V is equal to the maximum operating voltage specified for 480 V circuit breakers. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to $\pm 2\%$ of the 60 Hz nominal frequency and are derived from the recommendations given in Regulatory Guide 1.9 (Ref. 3).

<u>SR 3.8.1.1</u>

This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The lineup check verifies breaker alignment between 480 V buses 5A and 6A and the point where the 138 kV and 13.8 kV feeders being used to satisfy this LCO lose their identity in the offsite network. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because 6.9 kV bus status and 13.8 kV circuit status is displayed in the control room. For breakers that do not have position indication in the control room, this SR is satisfied by telephone communication with Consolidated Edison personnel capable of confirming the status of the offsite circuits. This SR includes confirmation of the requirement for two independent circuits (i.e., 96951, 96952 or 95891) into the Buchanan substation.

INDIAN POINT 2

Revision 3

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.8.1.2</u>

This SR helps to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the unit in a safe shutdown condition.

To minimize the wear on moving parts that do not get lubricated when the engine is not running, this SR is modified by a Note to indicate that all DG starts for the Surveillance may be preceded by an engine prelube period.

For the purpose of SR 3.8.1.2 testing, the DGs are started from standby conditions. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations.

SR 3.8.1.2 requires that, at a 31 day Frequency, the DG starts from standby conditions and achieves required voltage and frequency within 10 seconds. The 10 second start requirement supports the assumptions of the design basis LOCA analysis in the UFSAR, Chapter 14 (Ref. 5).

In addition to the SR requirements, the time for the DG to reach steady state operation is periodically monitored and the trend evaluated to identify degradation of governor and voltage regulator performance.

The 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.9 (Ref. 3). This Frequency provides adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing. DG 21 and DG 23 have redundant air start motors and both air start motors are actuated by both channels of the start logic. DGG 21 and DG 23 are operable when either air start motor is operable; however, this SR will not demonstrate that both air start motors are independently capable of starting the DG. If an air start motor is not capable of performing its intended function, a DG is inoperable until a timed start is conducted using the remaining air start motor. Alternately, this SR may be performed using one air start motor (i.e. redundant air start with either air start motor. The foregoing does not apply to DG 22 as the starting logic is not actuated by both channels. With either air start motor inoperable DG 22 is also inoperable.

SURVEILLANCE REQUIREMENTS (continued)

<u>SR 3.8.1.3</u>

This Surveillance verifies that the DGs are capable of synchronizing with the offsite electrical system and accepting loads greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source.

Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between 0.8 lagging and 1.0. The 0.8 value is the design rating of the machine, while the 1.0 is an operational limitation to ensure circulating currents are minimized. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.9 (Ref. 3).

This SR is modified by four Notes. Note 1 indicates that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized. Note 2 states that momentary transients, because of changing bus loads, do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations. Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start, without an intervening shutdown, must precede this test to credit satisfactory performance.

<u>SR. 3.8.1.4</u>

This SR provides verification that the level of fuel oil in the day tank is at or above the level at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and ensures adequate fuel oil for approximately 53 minutes of DG operation at full load.

A 24 hour Frequency is needed because the day tank level alarm is not set to alarm when the day tank level falls just below the minimum required level. Instead, the day tank level alarm is set to indicate a lower level indicative of a failure of the transfer pump after allowing sufficient time for manually

SURVEILLANCE REQUIREMENTS (continued)

restoring power to the transfer pumps which are stripped following a Safety Injection signal or undervoltage signal on buses 5A or 6A. The 24 hour Frequency is acceptable because operators would be aware of any large uses of fuel oil during this period.

<u>SR 3.8.1.5</u>

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel oil day tanks once every 31 days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent

checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 8). This SR is for preventative maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during the performance of this Surveillance.

<u>SR 3.8.1.6</u>

This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. This is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE.

The IP2 design includes the following backup feature. If a fuel oil transfer pump fails to refill the day tank, one of the fuel oil transfer pumps associated with a different DG will receive an automatic starting signal and will fill the day tank for the affected DG via the common makeup line to all three diesel-generator fuel-oil day tanks. This backup feature is not required for DG OPERABILITY; however, the feature is tested because its existence is part of the justification for the 92 day SR Frequency. Therefore, the need for accelerated testing of the transfer function should be evaluated when this backup feature is out of service.

SURVEILLANCE REQUIREMENTS (continued)

The Frequency for this SR is 92 days. The 92 day Frequency corresponds to the testing requirements for pumps as contained in the ASME Code, Section XI.

<u>SR 3.8.1.7</u>

Transfer of each offsite power supply from the 138 kV offsite circuit to the 13.8 kV offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The 24 month Frequency of the Surveillance is based on engineering judgment, taking into consideration the unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced.

<u>SR 3.8.1.8</u>

Verification that 6.9 kV buses 2 and 3 will auto transfer (dead fast transfer) from the Unit Auxiliary Transformer (the main generator) to 6.9 kV buses 5 and 6 (the offsite circuit) following a loss of voltage on 6.9 kV buses 2 and 3 is needed to confirm the OPERABILITY of a function assumed to operate to provide offsite power to safeguards power train 2A/3A following a trip of the main generator. (Note that when the main generator trips on over-frequency, the transfer is blocked by an over-frequency transfer interrupt circuit provided for bus protection of out of phase transfer.)

An actual demonstration of this feature requires the tripping the main generator while the reactor is at power with the main generator supplying 6.9 kV buses 2 and 3. Credit may be taken for planned plant trips or for unplanned events that satisfy this SR. Other than

INDIAN POINT 2

SURVEILLANCE REQUIREMENTS (continued)

planned plant trips or unplanned events, Note 1 specifies that this SR is not normally performed in MODE 1 or 2 because performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced.

In lieu of actually initiating a circuit transfer, this SR may be satisfied by testing that adequately shows the capability of the transfer. This transfer testing may include any sequence of sequential, overlapping, or total steps so that the entire transfer sequence is verified.

The 24 month Frequency is based on engineering judgement taking into consideration the plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle length.

Note 2 specifies that this SR is required to be met only when the 138 kV offsite circuit is supplying 6.9 kV bus 5 and 6 and the Unit Auxiliary Transformer is supplying 6.9 kV bus 1, 2, 3 or 4. This is acceptable because the feature being tested does not perform a safety function if the 138 kV offsite circuit is already supplying 6.9 kV buses 2 and 3. Likewise, if the 13.8 kV circuit is supplying 6.9 kV buses 5 or 6, then the feature being tested by this SR is required to be disabled by Required Action A.2.

<u>SR 3.8.1.9</u>

This Surveillance demonstrates that DG noncritical protective functions are bypassed on a loss of voltage signal concurrent with an ESF actuation test signal, and critical protective functions (engine overspeed, low lube oil pressure, high crankcase pressure, and start failure relay (engine overcrank)) trip the DG to avert substantial damage to the DG unit. The noncritical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG.

SURVEILLANCE REQUIREMENTS (continued)

The 24 month Frequency is based on engineering judgment, taking into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

<u>SR 3.8.1.10</u>

IEEE-387-1995 (Ref. 9) requires demonstration **This surveillance demonstrates** once per 24 months that the DGs can start and run continuously at full load capability for an interval of not less than 8 hours, where \geq 15 minutes and \leq 30 minutes loaded \geq 2270 kW and \leq 2300 kW, the ½ hour rating, followed by \geq 105 minutes and \leq 2 hours loaded at \geq 2050 kW and \leq 2100kW, the 2 hour rating, and the remainder of the time \geq 1700 kW and \leq 1750 kW, the continuous rating. \rightarrow 2 hours of which is at a load equivalent to 105% to 110% of the continuous duty rating (1837 kW to 1925 kW) and the remainder of the time at a load equivalent to 90% to 100% of the continuous duty rating of the DG (1750 kW). The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelubricating and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR. **The load interval is consistent** with the recommendations of IEEE 387-1995 (Ref. 9).

This SR does not require **s** that the DG is **be** operated at the peak load expected during an accident. The load band is provided to avoid routine

INDIAN POINT 2

SURVEILLANCE REQUIREMENTS (continued)

overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain to demonstrate DG OPERABILITY.

The 24 month Frequency is consistent with the recommendations of Reference 9, takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This Surveillance is modified by three Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the power factor limit will not invalidate the test. The reason for Note 2 is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems.

This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed Surveillance, a successful Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when the Surveillance is performed in MODE 1 or 2. Risk insights or deterministic methods may be used for this assessment.

Note 3 ensures that the DG is tested under load conditions that are as close to design basis conditions as possible. When synchronized with offsite power, testing should be performed at a power factor of ≤ 0.858 for DG 21 and 22 and ≤ 0.87 for DG 22. This power factor is representative of the actual inductive loading a DG would see under design basis accident conditions. Under certain conditions, however, Note 3 allows the surveillance to be conducted ast another power factor—other_than ≤ 0.85 . These conditions occur when grid voltage is high, and the additional field excitation needed to get the power factor to— ≤ 0.85 desired values results in voltages on the emergency busses that are too high. Under these conditions, the power factor should be maintained as

INDIAN POINT 2

Revision 3

SURVEILLANCE REQUIREMENTS (continued)

close as practicable to 0.85 the desired values while still maintaining acceptable voltage limits on the emergency busses. In other circumstances, the grid voltage may be such that the DG excitation levels needed to obtain a power factor of 0.85 as desired may not cause unacceptable voltages on the emergency busses, but the excitation levels are in excess of those recommended for the DG. In such cases, the power factor shall be maintained close as practicable to 0.85 the desired values without exceeding the DG excitation limits.

<u>SR 3.8.1.11</u>

Under accident conditions loads are sequentially connected to the bus by the individual load timers to prevent overloading of the DGs or offsite circuits due to high motor starting currents. The design load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage or the offsite circuit to restore voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses.

The Frequency of 24 months is based on engineering judgment, taking into consideration operating experience that has shown that these components usually pass the SR. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note that specifies that load timers associated with equipment that has automatic initiation capability disabled are not required to be OPERABLE. This note is needed because these time delay relays affect the OPERABILITY of both the AC sources (offsite power and DG) and the specific load that the relay starts. If a timer fails to start a required load or if a timer starts the load later than assumed in the analysis, then the required load is not OPERABLE. If a timer starts the load outside the design interval (early or late), then the DG and offsite source are not OPERABLE because overlap of equipment starts may cause an offsite source to exceed limits for voltage or current or a DG to exceed limits for voltage, current or frequency. Therefore, when an individual load sequence timer is not OPERABLE, it is conservative to disable the automatic initiation capability of that component (and declare the specific component inoperable) rather than declare the associated DG and offsite circuit inoperable because of the following: the potential for adverse impact on the DG by simultaneous start of ESF equipment is eliminated; all other loads powered from the safeguards power train are available to respond to the event; and, the load with the inoperable timer remains available for a manual start after the one minute completion of the normal starting sequence.

SURVEILLANCE REQUIREMENTS (continued)

If a load sequence timer is inoperable and the automatic initiation capability of that component has not been disabled, Condition D applies

because both the associated DG and the 138 kV offsite circuit are inoperable until automatic initiation capability of the associated component has been disabled.

<u>SR 3.8.1.12</u>

In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded.

This Surveillance demonstrates the DG operation during a loss of offsite power actuation test signal in conjunction with an ESF actuation signal. This SR verifies all actions encountered from an ESF signal concurrent with the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time.

The DG autostart time of 10 seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability is achieved.

The requirement to verify the connection and power supply of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or residual heat removal (RHR) systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation.

In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

INDIAN POINT 2

Revision 3

SURVEILLANCE REQUIREMENTS (continued)

BASES

The Frequency of 24 months takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of 24 months.

This SR is modified by three Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations for DGs.

The reason for Note 2 is that the performance of the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. This restriction from normally performing the Surveillance in MODE 1 or 2 is further amplified to allow portions of the Surveillance to be performed for the purpose of reestablishing OPERABILITY (e.g. post work testing following corrective maintenance, corrective modification, deficient or incomplete surveillance testing, and other unanticipated OPERABILITY concerns) provided an assessment determines plant safety is maintained or enhanced. This assessment shall, as a minimum, consider the potential outcomes and transients associated with a failed partial Surveillance, a successful partial Surveillance, and a perturbation of the offsite or onsite system when they are tied together or operated independently for the partial. Surveillance; as well as the operator procedures available to cope with these outcomes. These shall be measured against the avoided risk of a plant shutdown and startup to determine that plant safety is maintained or enhanced when portions of the Surveillance are performed in MODE 1 or 2. Risk insights or deterministic methods may be used for the assessment.

The reason for Note 3 is to allow the SR to be conducted with only one safeguards train at a time or with two or three safeguards trains concurrently. Allowing the LOOP/LOCA test to be conducted using one safeguards power train and one DG at a time is acceptable because the safeguards power trains are designed to respond to this event independently. Therefore, an individual test for each safeguards power train will provide an adequate verification of plant response to this event.

Simultaneous testing of all three safeguards power trains is acceptable as long as the following plant conditions are established:

a. All three DGs are available;

SURVEILLANCE REQUIREMENTS (continued)

- b. Redundant decay heat removal capability is available, preferably including passive decay heat removal capability;
- c. No offsite power circuits are inoperable; and
- d. No activities that are precursors to events requiring AC power for mitigation (e.g., fuel handling accident or inadvertent RCS draindown) are conducted during performance of this test.

<u>SR 3.8.1.13</u>

This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously.

The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3).

This SR is modified by two Notes. The reason for Note 1 is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is to allow SR 3.8.1.12 to satisfy the requirements of this SR if SR 3.8.1.12 is performed with more than one safeguards power train concurrently.

- REFERENCES 1. 10 CFR 50, Appendix A, GDC 17.
 - 2. UFSAR, Chapter 8.
 - 3. Regulatory Guide 1.9, Rev. 3, July 1993.
 - 4. UFSAR, Chapter 6.
 - 5. UFSAR, Chapter 14.
 - 6. Regulatory Guide 1.93, Rev. 0, December 1974.
 - 7. 10 CFR 50, Appendix A, GDC 18.
 - 8. Regulatory Guide 1.137.

REFERENCES (continued)

- 9. IEEE Standard 387-1995, IEEE Standard Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations.
- 10. Generic Letter 84-15, July 2, 1984.
- 11. Calculation SGX-00073-01, dated February 6, 2004.
- 12. Indian Point Unit 2 License Amendment 153, dated May 9, 1991.

INDIAN POINT 2

INSERT A for page B 3.8.1-4:

Each diesel generator consists of an Alco Model 16-251-E engine coupled to a Westinghouse 900 rpm, 3-phase, 60-cycle, 480 V generator. The ESF loads that are powered from the 480 V ESF buses are listed in Reference 2. The DG ratings (Reference 12) are as follows:

Continuous	Normal steady-state electrical power output capability that can be maintained 24 hours/day, with no time constraint.
2-hour	An overload electrical power output capability that can be maintained for up to 2 hours in any 24-hour period.
½-hour	An overload electrical power output capability that can be maintained for up to 30 minutes in any 24 hour period.

The electrical output capabilities applicable to these three ratings are as follows:

RATING	DG LOAD	TIME CONSTRAINT
Continuous	<u>≤</u> 1750 kW	None
2-hour	<u><</u> 2100 kW	\leq 2 hours in any 24-hour period [Note A]
½-hour	<u>≤</u> 2300 kW	\leq 30 minutes in any 24-hour period [Note A]

Note A: Operation at the overload ratings is allowed only for \leq 2300 kW (1/2-hour) followed by \leq 2100 (2-hour), not vice versa.

The loading cycle ($\frac{1}{2}$ -hour, 2-hour, continuous) may be repeated in successive 24-hour periods. Operation in excess of 2300 kW, regardless of duration is not analyzed. In such cases, the DG is assumed to be inoperable and the vendor should be consulted.

ATTACHMENT 4 TO NL-08-101

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

ON FEBRUARY 7, 2008

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

(

NL-08-101 Docket 50-247 Attachment 4 Page 1 of 6

Question 1

The IP2 response to Question 2a on the EDGs in the Entergy letter dated November 13, 2007, stated, "The sequential limitation applied to the overload rating results from test and evaluation of the EDG output breaker (Westinghouse DB-75 switchgear) which has a continuous rating of 3000 A at 40° C. With the EDG upgrade to 2100 kW and 2300 kW, the equivalent amperes are 3000 A and 3300 A, respectively. Since 3300 A is above the continuous rating of the switchgear, evaluation and testing of the short-term ratings was performed. Testing was performed by Satin American Corp on a Westinghouse breaker of similar vintage and considered bus duct and switchgear sections. The limiting component was identified as the phenolic insulators on the breakers."

Question 1a

Provide documentation from the breaker and switchgear vendors/manufacturers that operation above the breaker's and switchgear's continuous rating of 3000 A is acceptable (provide time constraints for currents above 3000 A if such operation is allowed). Provide justification that the breaker is operable during worst-case accident scenarios when current exceeds 3000 A. Also provide documentation from the breaker manufacturer that there is sufficient margin in the published ratings to handle the design-basis accident (DBA) loading (for loss of offsite power (LOOP) with a large-break loss-of-coolant accident (LBLOCA) and LOOP with a small-break loss-of-coolant accident (SBLOCA)).

ENO Response:

The 480V breaker and switchgear assemblies at Indian Point Unit 2 were designed and manufactured by Westinghouse Electric. Westinghouse was originally contacted to determine if they could support the diesel generator rating upgrade, and to help demonstrate the equipments capability. But since the equipment was tested and certified in the early to late fifties, Westinghouse indicated that the required information (heat run data) could no longer be retrieved. They did provide the limiting component and its associated temperature rise, which was identified as the phenolics used to isolate and support live components from ground. Total temperature capability was indicated as 105°C. As a result of this absence of original test data, Con-Ed initiated a test program to prove equipment capabilities above the 3000 ampere rating. (details provided in Reference 1)

Operation above the breaker and switchgear rating for limited durations is permitted under ANSI standards, and C37.13 and C37.010 were referenced in the evaluations. Testing and evaluations considered temperature limitations of various insulating materials as specified in the standards, and calculations determined allowable temperature time constants and operating times. The goal was to stay within the permissible temperature limitations as indicated under "short-time load current capability" described in ANSI C37.010. These standards provide for margin above rated values for limited durations.

Testing indicated that components can safely operate within their allowable temperature limits;

- Breakers for 46 minutes at 3300 amperes (representing 2300kW), after temperature was initially stabilized with a continuous current of 2500 amperes (1750kW).
- Breakers for 80 minutes at 3400 amperes, starting at ambient temperature (40°C) with no initial loading.

- load reduction to 3000 amperes after the above tests indicated temperatures stayed within allowable limits. This test was stopped after approximately 2 hours at this value.
 - Bus duct testing showed temperatures stayed within allowable values for the above tests.

Since testing bounded worst case accident profiles, for both LBLOCA and SBLOCA, equipment was considered operable with currents exceeding 3000 amperes.

Question 1b

Provide the testing documentation (which includes set-up, procedure, sample size, and results) from Satin American Corp. Verify that the testing was performed under a 10 CFR Part 50 Appendix B program.

ENO Response:

Test documentation from Satin American is provided in Reference 2, and all work was performed in accordance with a 10CFR Part 50 Appendix B program.

Con-Ed performed a vendor evaluation prior to testing, and found the vendor acceptable for safety related work, including 1E applications and 10CFR21. Vendor was placed on the Class A approved vendor list. (see Reference 3).

Question 1c

Tables 5.3-2b, 5.5-2a, 6.1-2a, and 6.1-2c of the EDG loading calc show conditions where the loading exceeds the 2-hour short-term rating after a half-hour of operation into an event. Provide justification that the EDG output breaker and switchgear will remain operable under these accident scenarios given the sequential limitation for operating at the ratings as discussed in the TS Bases.

ENO Response:

The sequential limitation is due to thermal limits primarily on phenolics, and prohibits operation at 2100 kW (3000 amps) for <u>2 hours</u>, followed by 2300 kW (3300 amps) for the additional 30 minutes. This is based on operation at 3000 amps for a full 2 hour time period. Currents less than 3000 amps, or time periods less than the full 2 hours, produce lower heating effects and less temperature rise on the phenolics.

Testing has shown that when starting from ambient temperature, operation at 3000 amps for a full 2 hours produces a temperature rise in the phenolics of approximately 55°C. Increasing current to 3300 amps for an additional 30 minutes, could exceed the allowable temperature rise of 65°C. Reviewing the various temperature rise curves from testing at different loads, conclusions can be drawn that running at less than 3000 amps (for periods less than 2 hours) plus 3300 amps for up to 10 minutes would result in acceptable temperature rise.

EDG loading calcs show conditions where operation is within the 2-hour rating for short periods, and then load increases to within the 30 minute rating. This appears to be contrary to the sequential limitation, but loading within the 2-hour rating is for time durations much less

than 2 hours (worst case is ~ 32 minutes). Load increases to within the 30 minute rating are also less than the allowed time period (worst case is ~ 8 minutes). Based on expected time durations within the short time ratings, operation under the accident scenarios is considered acceptable.

Question 1d

Provide documentation which supports that the 480 V switchgear (including the EDG output breakers) is properly sized following the EDG upgrade modification.

ENO Response:

Operation above the 3000 ampere continuous rating for limited durations was justified based on testing and evaluations performed in References 1 and 2. Testing supported equipment operation at 2300 kW for 30 minutes, and 2100 kW for an additional 2 hours. Operation above rated values for limited durations is also consistent with industry standards from ANSI.

Question 2

Demonstrate that the worst case load profiles (and the proposed TS SR acceptance criteria) take into account the 90 kW instrument uncertainty stated on page 2-1 of the loading calculation. If not, explain how this uncertainty would be incorporated into the proposed testing given that in some instances, the added uncertainty would exceed the 2300 kW rating threshold. Consider the effects of operating the EDGs at the upper range of the allowable frequency, minimum acceptable voltage and the average power factor of the total load. These factors affect the EDG loading and current flow through the output breaker.

ENO Response:

Worst case load profiles account for automatically sequenced loading, and loads applied through use of the various recirculation switches and as required per steps in emergency operating procedures (EOPs). The intent is to show that this worst case load is within the diesel generator and switchgear ratings, and calculations consider allowable frequency variation. As such, load profile calculations do not account for instrument uncertainty. This is addressed in EOPs for manually applied loads to ensure that diesel and switchgear ratings are not exceeded.

The 90 kW instrument uncertainty applies to control room meters only. During surveillance testing, local digital meters will be used to monitor machine loading and provide more accurate readings. Their uncertainty is addressed by the allowable kW range, and margins provided in the original test program performed with Satin American.

Question 3

Provide the vendor/manufacturer's supporting documentation for the EDG short term and extended operation ratings (after the upgrade modification).

ENO Response:

Supporting documentation is provided for the GE/ALCO diesel engine (Reference 4), Westinghouse generator (Reference 5), and Basler exciter (Reference 6).

Question 4

How were the short-time ratings determined, and what are the consequences for operating the EDGs beyond these ratings (the license amendment request is proposing to test the EDGs for a half-hour beyond the 2-hour short-time rating)?

ENO Response:

The 2-hour and 30 minute ratings were determined based on the test program performed by Satin American and Con-Ed. Testing included operation at continuous load (1750kW) for temperature stability, running at 3300 amps (2300kW) until the maximum allowed temperature rise was reached, and then dropping the load to 2800 amps (<2100kW).

The 30 minute rating was conservatively determined based on taking 46 minutes to reach the maximum allowed temperature rise. Testing then continued for an additional 2 hours, at a reduced load of 2800 amps, and breaker and bus temperatures dropped to less than the allowable rises. Total test time, after temperatures stabilized with continuous load, was approximately 2 hours and 46 minutes. Testing was also performed with 3000 amps (2100kW), and similar temperature affects were observed. This was used to justify the 2-hour, 2100kW rating.

Diesel, generator, and exciter operation was determined to be acceptable for time frames longer than the test durations. Therefore, testing served as the basis for the short time ratings.

Diesel engines, with the upgraded components, are acceptable for operation at 2300 kW for 200 hours/year. No special maintenance or inspections would be required for these limits.

Generators were determined to be acceptable for continuous operation at 2300 kW (0.8pf) at 104°F, and for a maximum of 2 hours at 125°F.

Exciter was tested and analyzed based on the new ratings, and considered maximum temperature up to 126°F. All excitation system components stayed within their temperature limitations.

Question 5

What is the design basis temperature of the EDG room, and what is the peak temperature that the room will reach during a DBA? Provide the EDG vendor's derating curves for temperatures. Also, provide confirmation that the generator set is adequately rated for the peak temperatures.

ENO Response:

The design basis maximum room ambient temperature for the EDG building is 126°F (Reference 7). Peak temperatures were determined to remain within this limit for DBAs with all

diesels running, outdoor temperatures up to 93°F, and a minimum of 3 exhaust fans running (Reference 8).

Question 6

Provide the loading profile for at least 8 hours of a LOOP/SBLOCA assuming the failure of one EDG. Also provide the loading profile for the LOOP/LBLOCA and LOOP/SBLOCA for long-term operation (at least 8 hours).

ENO Response:

Detailed analysis of loading profiles for 8 hours into an event is not available in our existing studies, but the EDG loading calculation does address long term loads (greater than 2 hours). Long term loads for SBLOCA are addressed in Section 6, and conclusions indicate that long term loading is expected to remain within the continuous rating of the EDG (page 6-3). This section also addresses the amount of time that load is expected to exceed the continuous rating, and provides justification on why this is acceptable (page 6-3). Loading tables consider single failures, as well as multiple composite failures of equipment.

Similar analysis is provided for LBLOCA in Section 5, and also considers single and composite failures of equipment. Long term cooling/loading is addressed in Pages 5-41 thru 5-44, and determines the amount of time that loading is expected to be above the continuous rating of the EDG.

Question 7

The SBLOCA loading profiles show peak loads of 2300 kW (Table 6.1-2a) and 2266 kW (Table 6.1-2c). Provide documentation to support that the proposed power factor values bound these scenarios.

ENO Response:

The EDG loading calculation does not address power factors, but this was considered in Condition Reports CR-IP2-2006-03530 and CR-IP2-2006-03685. A detailed evaluation was performed on kW and kVAR loading for all three EDGs as part of an operability determination, and also determined the equivalent power factors. The analysis determined the power factors as follows; EDG21 – 0.88pf; EDG22 – 0.87pf; EDG23 – 0.88pf. (see Reference 9 for details)

Question 8

IP2 is proposing EDG load curtailment after 70 minutes into an event. Verify that the safety analyses evaluation for the worst-case scenario envelopes the core decay heat load with electrical loads curtailed or reduced.

ENO Response:

A general discussion of EDG loading versus accident analysis is provided in Section 1 of the EDG Loading Study. Original studies were in agreement with accident analyses at the time, but

in 1989 a re-evaluation was performed, and it was determined that under certain conditions accident loading on EDGs could exceed the short time rating. This resulted in upgrades to the EDGs, and the test program performed by Satin American to confirm the capabilities of breakers and bus. With the upgraded diesels, revised ratings and greater load capability, EDG loading studies and safety analyses were once again in agreement. Load curtailment after a period of time is consistent with accident analysis, automatic load sequencing, operation of recirculation switches, and the actions required by emergency operating procedures. Time frames for all expected actions are discussed throughout the EDG loading study, and appropriate references are identified in Section 9.

The PSA also considers a 24 hour mission time, and assumes EDG loading in accordance with emergency operating procedures. This includes maintaining long term loads within the continuous rating of the EDGs. These EOPs are the same procedures used to develop the EDG loading study.

References:

- 1. Calculation EGE-00006-00, "Indian Point Generating Station Emergency Diesel Generator Upgrade DB-75 Breaker & Switchgear Testing".
- 2. Satin American Report QA-1181-R01, "Report for the Thermal/Current Testing and Evaluation of Westinghouse, Type DB 480 Volt, 3000 amp, Switchgear, Air Circuit Breaker, and Bus Duct, for Class 1E Service", dated June 18, 1991.
- .3. Procurement QA Reference No 906-9, "Class A Vendor Evaluation Satin American", dated June 27, 1990.
- 4. GE Report DER-1691, "Engineering Evaluation of Increasing Overloading Capacity on the Diesel Stand-By Gen Set at Indian Point Nuclear Power Plant, Consolidated Edison Co of New York", dated October 13, 1989.
- 5. Westinghouse Engineering Report WMC-EER-90-005, "1750 kW Diesel Generator Study for the Westinghouse Energy Center", dated September 19, 1990.
- 6. Calculation EGE-00016-00, "Emergency Diesel Generator Basler Exciter Test Report".
- 7. IP2-EDG-DBD, "Emergency Diesel Generator System".
- 8. Calculation IP-CALC-06-00281, "Ventilation System for the EDG Building".
- 9. Condition Report CR-IP2-2006-03685-CA-002, "Operability Evaluation".

ATTACHMENT 4, ENCLOSURE 1 TO NL-08-101

Calculation EGE-00006-00, "Indian Point Generating Station Emergency Diesel Generator Upgrade DB-75 Breaker & Switchgear Testing"

> ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

CON EDISON CALCULATION/ANALYSIS COVER SHEET

* * *

Page 1 of 84

bsection: ROTATING MACH. + PLANT EQUIP.

Code: EGE

p.: EGE-00006-00 Calc.Type: ELECTRICAL SYSTEM

tle: INDIAN POINT GENERATING STATION EMERGENCY DIESEL GENERATOR UPGRADE DB-75 BREAKER & SWITCHGEAR TESTING

oject:MODIFICATION: NONEcument Page Count: 084Old Calc.No.: NONE

TAG NUMBERS

none)

* * * COMPONENT(S) AFFECTED * * *
Equip.Type 013 CIRCUIT BREAKER
Structure 36 TURBINE GENERATOR BUILDING
System 80 480 VOLT ELECTRICAL

eparer/Date Reviewer/Date Approval/Date Super-Confirm. (Print/Sign) Print/Sign) (Print/Sígn) cedes Required? Rev.No. BRUCE G. HURCENTE ROBERT R. BROWN RICHA RDA 9.16 R. Brown 11294

nourrence (If Required)

DESCRIPTION OF CHANGE SHEET				
Calculat:	ion No. EGE-00006 -00			
Revision Number	Description of Change	Reasons for Change		
	1			

. -.

-- --

· ···	· · · · · · · · · · · · · · · · · · ·	a construction of the August Aug		
CON EDISON	CALCULATION NO.	REVISION		
CALCULATION/ANALYSIS	EGE-00006-	00	PAGE 3	OF 2
SUMMARY SHEET	REVIEWER/DATE		CLASS	
PREPARER/DATE Sauce Harright 12/9/11/	P. ANT & BRANK	12/16/94	CLASS	
SUBJECT/TITLE INDIAN POIN	GENERATING STATION	PROJECT NO		
EMERGENCY DIESEL GENERA		2100201 110		
	•	MOD NO		REV
DB 75 BREAKER & SWITCHGE	AC 1651/44	J		
OBJECTIVE OF CALCULATION				
TO DEMONSSRATE THAT TI	HE SWITCHEEAR (DE	3-75 EDG BI	reaken) a	nd
Bus duct is capable of	Carreying the up gra	ided EDG L	sao und	t.
the postulated loading so	-	•	1	
1				
CALCULATION METHOD/ASSUMPT	TONS			
	- Charles and iterated	CE AC POUR	FR. CiRCO	1 1-7
ANSI C37,13 TEEE STANDA	1/20 POR LOCO CO2074	4 C 190 1000		
BREALERS USED IN ENCLOSE	LUZF5			
		. 1		
ANSIC37,010 IEEE APPLIC,	ATION GUIDE FORACH	ligh DocTAGE	CIRCLER	7
BREAKERS RATED ON A Sigm	1, 10, 17,	-		
	metrical Lurient BASI	S		
	· · · · · · · · · · · · · · · · · · ·			
	. *			
DESIGN BASIS AND REFERENCE	S			
ANSI 6 37.13		· .		
ANSI 637.010			5	
WOAP 12656 "EMERGENCY	DIESEL GENERATOR	, WADING	2741Dy	
	- inn 2-1		Ŭ	
SATIN American Report OF	A-1181-KOT			
•		· .		
	1	• •		
	•			
		·		
CONCLUSIONS	``````````````````````````````````````			
Design to the	1			
During test and analysis, being cappied by the for	at no time did	the longs.	a (c	11
being capaint in a			J- Carke	in j
o miner by the Drucks	ne switcher 1 co.	is the to.	ma h	. .
to Exceled Any of the co.	Journey and		j - jezin eljicim j	
- a c e o MN y or the co.	mpossesses design n	ated tempo	natura.	
	j, - 70			
				•

.....

CON EDISON	CALCULATION NO.	REVISION	
CALCULATION/ANALYSIS SHEET			PAGE 4 OF a
PREPARER/DATE	EGE-00006	00	PAGE Y OF S
Bilder + BAL Andread	REVIEWER/DATE Robert R. Brown	aluler	CLASS
		12/16/94	
	AT NE STOR ONS	PROJECT N	5.
DB-75 BREINCER & SWITCH	STATE TO WEATHE	MOD NO.	REV
	C. LITIC TESTING		
		i	
		,	
The 480 volt switchgear equipment	at the Indian Point Unit 2 Nuclea	ar Generating Statio	1
was designed and manufactured	by the Westinghouse Electric	Corporation. The	
equipment consists of the switchgea	r housing(bus, supports, enclosur	e etc), breakers (60	
DB 50's and 11 - DB 75's) along with			
This equipment was purchased and fabrication, Westinghouse was start			
introducing the DS line of switchgear	The DS line of switchgear has h	igher current carryin	, 1
capability along with solid state el	lectronic trip devices, where the	e DB breakers were	3
originally equipped with eletromecha			
Unit 2 subsequently were modified to in 1982.	o include the new electronic trip	devices (Amprectors)
The 480 volt switchgear at Indian Po			
individual breakers have various curr			
and the trip coils used. The DB-75s switchgear, 3000 amperes. The s			
contained in 2 separate housings(2			
shown In Figure one. Each bus sec			
kept in the open and racked out p Service Transformer 5 or Emergen			
section 6A is feed from either St			
independent DB-75 breakers. Bus			
and bus section 3A is feed from			
breakers. Diesel generator 22 fee independent DB-75 breakers.	eds both bus sections 2A and	3A from 2 separate	,
As not of the Dissel Concreter or	aarada tha abart tima autaut aa	nobility of the diase	.)
As part of the Diesel Generator up generators was being increased fro			
would be supplied to the switchgea			
Duct and the 480 volt switchgear, th			
new, short time overload. The origin analysis or test would be required to			a
1	• •		
Westinghouse was originally contact	led to determine if they could sup	port us in our effort t	
demonstrate the equipments capat some time in the early to late fifties,	bility. Since this equipment was Mestinghouse stated that they are	s rested and certilie	
the required information(heat run di			
and its associated temperature rise.			
support the live components from gr	ound. This material is an organic	compound which ha	s
a total temperature capability of 10			
analyzing the potential capability of it was determined that a heat run tes			,
a mus determined that a heat full tes	- cost perior calleng that 10000		
,			

.

.

CON EDISON CALCULATION/ANALYSIS SHEET	CALCULATION NO.	REVISION	PAGE 5 OF 8
PREPARER/DATE	REVIEWER/DATE Reviewer/DATE Robert, R. Brown	12/16/94	CLASS
SUBJECT/TITLE INGAN POINT	GENEPATINE STATION	PROJECT N	0.
EMERICING DIESEL GENER	ATOR UPGRADE.	MOD NO.	
DB-15 BREAKER & SWITCH	EAR TESTING	MOD NO.	REV
Satin American Corp was contrac equipment's capability. A test mo information is contained within th similar vintage (manufactured app along with one vertical section of s employed at the plant. The testing	ck up along with test plans was j le Satin American Report QA-1 roximately the same time as our switchgear containing a duplicate	ointly developed. 1 181-R01. A breake breakers) was supp of the bus work the	íhis r of lied
1)Full load heat run(3000 amperes conlinuous)		
2)) oarl duty cycle/25	500 amperes to stability; followed	by	
3300 amperes till firs	st component reaches its design y 2800 amperes to stability.	-,	
	n a cold condition until the first its design temperature limitation.		
The objectives of the test was to rating along with the thermal time of the allowable operating time, temperature, for any expected ov that the expected load profile, Westinghouse Diesel Generator S is not normally energized and i preloading concerns. The final component to reach its maximum at Power Test Inc, located in C occasions, occurring over a span	constants of the equipment. This to reach the maximum allowal rerload condition. Also, the testi as defined by the EBASCO ludy, could be met, with margin. s in the lower of the breaker test was to determine the time allowable total temperature. The calfont Pa. Testing was conduct	would allow calcula ble limiting compo- ng was to demonsi- load study and Since the EDG brea cubicles, there are a duration for the testing was condu	ntion nent trate the aker no first cted
The analysis to demonstrate the e	quipments capability is divided inl	o three sections:	
•			
	· ·		
BREA	KER		
BUS	DUCT		
SWITCHGE	AR LINEUP		
	•		
		·	
	· .		

í

CALCULATION/ANALYSIS SHEET	CALCULATION NO.	REVISION		
	EGE-COCOG	00	PAGE	OF ,
PREPARER/DATE	DDUT DUDD (DD	. 1.1.	CLASS	
BHORE AL B VOID 2/15/2 SUBJECT/TITLE INIGAN 20 mt	94 Robert R. Brown	12/16/94		
ENGRACIATION TANKAN TO M	GENERITING STATION	, PROJECT NO).	
LENCY DILSEC AENER	KATOR HPARADE	MOD NO.	·····	
DB-75 BREAKER & Switch	IKENA TESTAKE	MOD NO.		RE
· ·	an a	ې د دې ولولونو کې ولولو ولولو ولولو ولولو و ور د د د د د د د د	و بدنه مان ساله و معرف المراجع و معرفه و معرفه و معرفه و معرفه و معرفه	
The breaker of concern is the	e DB-75 which feeds the power fr	om the Emergency	Diesel	
	This breaker is rated 3000 a			
	0° C. The breaker has also been			
	evice. The breaker was segrega vable total temperature. The fi			
	ents are the phenolics that the cont			
connected to. They also pro-	vide insulation from the live comp	onents to ground. S	ince it	
	ermocouples to the phenolic witho			
material and also assuring thermocounties were attached	that we obtained an accurate to the copper at the phenolic to c	copper junction. Since	y, me ce the	
copper is the heat source, t	this is representative of the phen	iolics temperature, a	as the	
copper will be hotter than the p				
Even though Westinghouse	verbally informed us that the li	miting component (of the	
switchgear assembly was th	he phenolic insulators on the bra	eaker, and its asso	clated	
temperature limitation is 105	° C, they did not formally transm	it that information to	о Сол	
	formation was correct, Con Edison			
	of the breaker. A review of ANSI C3			
C37 010-1987, shows the va	arious classes of Insulating mate	rials and their acce	ptable	
temperature limitations. Cla	arious classes of insulating mate ass O, which is the lowest tem	perature class, has	such	
temperature limitations. Cla materiais as cotton, silk and p	ass O, which is the lowest tem paper, which is used without an in	perature class, has pregnation medium.	such This	
temperature limitations. Cla materials as cotton, silk and p material can be operated at	ass O, which is the lowest tem paper, which is used without an in t a total temperature of 90° C w	perature class, has pregnation medium. vithout degradation	such This to the	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu	ass O, which is the lowest tem paper, which is used without an in t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi	perature class, has npregnation medium. vithout degradation ials which have an ials are the same as	s such . This to the upper sthose	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the materi	perature class, has npregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspec	such This to the upper those tion of	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the mater the insulating medium was a form	perature class, has npregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspec of phenolic, which u	such This to the upper those tion of utilizes	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A p any of the impregnated materi	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the material the insulating medium was a form materials have the lowest allowabling riats, and the material observed is a	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspec of phenolic, which use e operating temperat at least a class A insi	such This to the upper those tion of utilizes ture of utating	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A n any of the impregnated material, it is conservative to	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the material the insulating medium was a form materials have the lowest allowablinates is and the material observed is a use the Class A temperature limit	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspec of phenolic, which us e operating temperat at least a class A inst tations on the non m	such This to the upper those tion of utilizes ture of utating netallic	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A n any of the impregnated materi material, it is conservative to items located within the brea	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the material the insulating medium was a form materials have the lowest allowable nats, and the material observed is a use the Class A temperature limit eaker. Our visual observations a	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which use of phenolic, which use of phenolic, which use of phenolic, which use at least a class A insu- tations on the non magnet gree with previous	s such This to the upper those tion of utilizes ture of utating netallic verbal	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A any of the impregnated materi material, it is conservative to items located within the breat communications with West	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w g class is that of Class A materi ure of 105° C. This class of materi on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which use of phenolic, which use of phenolic, which use of phenolic, which use at least a class A insu- tations on the non magnet gree with previous	s such This to the upper those tion of utilizes ture of utating netallic verbal	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A any of the impregnated materi material, it is conservative to items located within the brea- communications with West temperature rise was the phere	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w og class is that of Class A materia on medium is used to bind the material the insulating medium was a form materials have the lowest allowabl rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's.	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which use of phenolic, which use of phenolic, which use of phenolic, which use at least a class A insu- tations on the non man gree with previous ig component man	s such This to the upper those to of utilizes ture of utating netallic verbal ximum	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 15	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w og class is that of Class A materia on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a tinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man provide that com-	such This to the upper those tion of utilizes ture of utating netallic verbai ximum	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A m any of the impregnated materi material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 15 conducting joints, and other p	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w og class is that of Class A materia on medium is used to bind the material the insulating medium was a form materials have the lowest allowable nals, and the material observed is a use the Class A temperature limit eaker. Our visual observations a tinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man provide that com- heaters) have a man	such This to the upper those tion of utilizes ture of utating netallic verbai ximum	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° C	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a stinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperat at least a class A insu- tations on the non man gree with previous ig component man provide that com- heaters) have a man liver alloy, or equivale the testing, we broke	s such This to the upper to those those to those ture of utilizes ture of utating netallic verbai ximum ntacts, ximum ant can up the	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A m any of the impregnated materi material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° C breaker into the two temperat	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1)	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man (ver alloy, or equivale the testing, we broke 05° C) and current ca	s such This to the upper to those those those ture of utilizes ture of utating netallic verbai ximum ntacts, ximum ont can up the arrying	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatu in class O, but an impregnatio our equipment revealed that t impregnation. Since Class A n any of the impregnated materi material, it is conservative to items located within the bra- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° C breaker into the two temperati components(125° C). For eas	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man ver alloy, or equivale he testing, we broke 05° C) and current co- allowable temperature	s such This to the upper to those those those ture of utilizes ture of utating netallic verbal ximum ntacts, ximum ent can up the arrying ure rise	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A in any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C w	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material or medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a stinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) as of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man ver alloy, or equivale he testing, we broke 05° C) and current ca- allowable temperature of 65° C would be us n components. The	s such This to the upper to those those those ture of utilizes ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A many of the impregnated materi- material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperatic components(125° C). For eas verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a tinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non man gree with previous ig component man ver alloy, or equivale he testing, we broke 05° C) and current ca- allowable temperature of 65° C would be us n components. The	s such This to the upper to those to those to those those ture of utilizes ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is	
temperature limitations. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A many of the impregnated matering material, it is conservative to items located within the breat communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperatic components(125° C). For eas verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable nals, and the material observed is a use the Class A temperature limit eaker. Our visual observations a tinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or °C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subt	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non mail g component mail (ver alloy, or equivale he testing, we broke 05° C) and current ca- allowable temperature of 65° C would be used n components. The e in the switchgear mail ract the existing an	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation temperature from the compo-	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subto onents total temperature, allowing	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non magnet tations on tations on tatio	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation temperature from the compo-	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable nals, and the material observed is a use the Class A temperature limit eaker. Our visual observations a tinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or °C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subt	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non magnet tations on tations on tatio	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation temperature from the compo-	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subto onents total temperature, allowing	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non magnet tations on tations on tatio	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation temperature from the compo-	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subto onents total temperature, allowing	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non magnet tations on tations on tatio	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	
temperature limitalions. Cla materials as cotton, silk and p material can be operated at material. The next insulating boundary operating temperatur in class O, but an impregnation our equipment revealed that t impregnation. Since Class A is any of the impregnated materi- material, it is conservative to items located within the brea- communications with West temperature rise was the pher Table 1 of ANSI C37.13, 19 conducting joints, and other p allowable temperature of 125° also be operated up to 125° C breaker into the two temperati- components(125° C). For easi- verses maximum allowable to the 105 limitation and 85° C v for this is that the maximum 40° C. The Instrumentation temperature from the compo-	ass O, which is the lowest tem paper, which is used without an im t a total temperature of 90° C w or class is that of Class A material on medium is used to bind the material the insulating medium was a form materials have the lowest allowable rials, and the material observed is a use the Class A temperature limit eaker. Our visual observations a dinghouse in which the limitin nolic material's. 963 along with ANSI/IEEE C37.0 parts (Except thermal elements or ° C. Also, silver surfaced, silver, sil C without detrimental effects. For the ture classes; insulating materials(1) se of testing, it was decided to use temperature. A temperature rise of would be used for the 125 limitatio expected ambient air temperature in used would automatically subto onents total temperature, allowing	perature class, has pregnation medium. vithout degradation ials which have an ials are the same as erial. A visual inspect of phenolic, which the e operating temperation at least a class A insu- tations on the non magnet tations on tations on tatio	s such This to the upper to those to those to those those ture of utilizes ture of utating netallic verbai ximum ant can up the arrying ure rise sed for bases oom is mbient	

_

		CALCULATION NO.	REVISION	r
CALCULATION/	NALYSIS SHEET	EGE-00006	00	PAGE 7 OF 8
PREPARER/DAT	E	REVIEWER /DATE		CLASS
Hozowtz B.A	and 12/15/94	Robert R. Brown	12/16/94	CDAOD
SUBJECT/TITI	E INVIAN POINT G	CNERATING STATION	PROJECT N	0.
EMERGENCY	DIESEL GENERA	TOR UPGRADE	MOD NO.	REV
OB-15 BRON	FILER & SUNITCHG	EAR TESTING	MOD NO.	REV
Fi all Du tra its be all 1(te ar w ar st po m in th Fi F	gure 2 shows pictorially th owable temperature rise. Uring the first series of tests insition section of the bus du nameplate rating. This will cause of this problem, we li owed us to obtain critical da) are the temperature rise mperatures stabilized. Figu nperes applied from ambier ere the last series of tests a nperes continuous until all abilized temperature along to int. The thermal time const ultiplying it by .631 (see App tersecting point of temperature e thermal time constant. er attached Table 1, the ther ogressed, the current chang or the purpose of this analys	e breaker, its individual compo- s (3000 ampere continuous) a p loct. This prevented the equipme I be discussed in detail in the b mited the maximum applied cur ta for future tests(ie: time consta data for 2500 amperes appli ures 11 through 18 are the tem at until the temperatures stabilized. Table with the various thermal time cost att is calculated by taking the pendix A). This temperature va- ure and time. The time associa mal time constant varies slightly hinutes. This is partially due to ed as a result of the area voltag- is, a thermal time constant of 58 e constants and also provides ac	problem was noted ant from being fully bus duct section. rent to 2800 ampe- ants etc.). Figures ied from amblent perature rise data ted. Figures 19 th a for the applicatio a 1 tabulates the stabilized temper- alue is then used to the stabilized temper- alue is then used to the fact that as e changing (source minutes was used	a with the tested at However, res. This 3 through until the for 2800 arough 26 n of 3000 maximum individual ature and o find the terature is e range is s the test e voltage).
pi cc cc cc w cc di cc di cc T cc a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the	at maximum allowable temper aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 3). Table 2 shows the results of 500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b the phenolics being the limiting of the phenolic material would have	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
pi cc cc cc w cc di cc di cc T cc a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if
p c c c c c c c c c c c c T T c c a a	nenolic insulator on the bre- proponent temperature. This ach test. Using the formula alculate the maximum expec- proponents (see Appendix B as escalated from both the 2 posistent and reasonable. T ata was analyzed to determ eeded, what portions of the equirements. emperature rises presented pontinuous rating based on the dditional capacity is required	aker, which confirms Westingho is is shown in Table 1 by the ma- as delineated in ANSI/IEEEC37. ted current carrying capability of 1). Table 2 shows the results of 2500 and 2800 ampere case to d The values obtained were consi- nine if in the future, additional of the breaker would have to be 1 in table 1 indicate that the b he phenolics being the limiting	ouse's statement of aximum temperatu .010-1987, page 2 f each of the limitin of that calculation. letermine if the test istent and reasona current carrying ca e retrofitted to m preaker has a 300 component. In the	on limiting re rise for 3 we can big breaker The data t data was ble. This pability is eet those 0 ampere e future, if

7

-- -. -

				·····	
CON EDISON		CALCULATION NO.	REVISION	PAGE 🔗	OF <
CALCULATION,	ANALYSIS SHEET	EGE-00006	00		
PREPARER/D	ATĘ	REVIEWER/DATE	12/16/94	CLASS	
BHARDER TO B	Acount 12/15/94	Robert R. Brown		I	
SUBJECT/TI	TLE INDIAN FOUNT C	SCHERATING STATION			
	DIESEL GENERI		MOD NO.		RE
1515-15 1516	CARER & SWITCHE,	ERIC I CSIMIC,		· · · · · · · · · · · · · · · · · · ·	
	and the state of the	· · · · · · · · · · · · · · · · · · ·		8	•
	expected current during the le Westinghouse WCAP 12656, tabulates the various senerios duty cycles was selected. The temperatures reached stability component reached its maxin current to 2800 amperes for 2 (3000 amperes), but duplical generator is capable of 3000 a reviewed to determine that the verses time curves demonstrat not increase, but immediately s current. Therefore, we can sulta ampere run for the 2800 amp equipment limitations. Figures 27 through 34 show points during the load duty cyc 349 minute mark the current w indicates that at the 349 minute the current was increased. I phases to about the same valu all adjustments have been com that the breaker can safely op	t the breaker was subjected to bad duty cycle. The load duty "Emergency Diesel Generator I and highlights the limiting case e duty cycle utilized was 2500 a y, followed by 3400 amperes num allowable temperature rise 2 hours. The 2800 amperes do tes the load duty cycle. How amperes following the 3300 amp is is an acceptable operating tes, that when the current is rem starts to decrease to the steady so postitute the previously obtained to ere loading condition. This con the temperature verses time pi cle. Again the limiting compone as raised from 2500 amperes to a mark the temperature was up s t takes some time to raise the te of current. The 349 minute m omplete. At this point, the time ponent reached its maximum op erate for 46 minutes at 3300 arr es. The time associated wi	cycle utilized is I Loading Study" (Ap e). The most seve amperes (1750 kW (2300 kW) until e followed by redu- bes not constitute ever, the since the peres, this condition condition. The tem- oved, the tempera- tate temperature of atte temperature of emperature data of firms that we are seven atte temperature of amperature data of firms that we are seven atte temperature of atte temperature of a	based on pendix C pre of the an until all the first ucing the 2100 kW the diesel in was be in the new the 3000 in the way ince the 3 in the 395 in confirms in perature	
	temperature was the actual tir curve shows that after the 395 the current was reduced a sho 30 minutes during stability run rapidly.	ne and not the time to reduce to minute mark, the temperature ort time later. The reason is tha s, and once the current is reduce ne same test data as figures 27-	he current. A revi starts to decay event t the sampling time red, the temperature	ew of the en though e is every re decays	
	with the breaker pre-loaded an for 48 minutes. The reason for set up in the area which failed	nd stabilized at 2500 amperes, i r the difference is that during tes causing a loss of power for appro- st data is consistent with previou	t can sustain 3300 sting, there was an oximately 30 secon	amperes other test	
	should be able to operate for a the breaker was to energize component reached its maxim to demonstrate margin over	ker is at ambient temperature, is a longer time at 2300 kW. The the breaker from ambient with sum allowable temperature rise. the 3300 amperes, which repu ures 43 through 50 show the te	last of the series of 3400 amperes unt 3400 amperes wa resents 2300 kW(if tests on il the first is chosen maximum	
			· .		
Y.		•			
		· .			

CON EDISON CALCULATION/ANALYSIS SHEET	CALCULATION NO.	REVISION	PACE CO
CALCULATION/ANALISIS SHEET	EGE-00006	00	PAGE 9 01
PREPARER/DATE	REVIEWER/DATE	11/1	CLASS
B.Hozewitz B. Now 12/15/	94 Robert R. Brown	12/16/94	
SUBJECT/TITLE INDIAN POINT	GENERATING STATION	PROJECT N	0.
EMERGENCY DIESEL GENE	RATOR UPGRADE.	MOD NO	<u> </u>
DB-15 BREAKER & SUNTC		MOD NO.	1
	· .		
يامين المحر مراجع المحمو الأمنية المحمولية الراجع المراجع الم	e en anter en	يدفر حلط يتهادونه فيطرط ليتا يجاوبهم مالا ماتيندتان مميديط	and an and a second
avala 2. The time for the fu	rst component to reach its limiting te	mperature was 80	minutes.
	1 1670006 59 60000 100 11018 VEISES		
During that took it took	RA minutes for the breaker phene		naximoni
temperature once 3400 am	peres was applied to the cold (no pr		
	•		
	· · ·		
:			
	· · · · · · · · · · · · · · · · · · ·		
		·.	
· · · ·			
	· .		
· · · · · · · · · · · · · · · · · · ·			
	–		
	* <u>.</u>		
	•		
,			

CON EDISON	CALCULATION NO.	REVISION	
CALCULATION/ANALYSIS SH		00	PAGE 10 OF
PREPARER/DATE	REVIEWER/DATE	n lit lai	CLASS
B.Hozinte Be Karon 12/	5/94 Robert R. Brown	12/16/94	J
	ont GENERATING STATION	V PROJECT N	ю.
EMERGENCY DIESEL GE	ENERATOR UPGRADE.	MOD NO.	RE
DB-75 BREAKER 4 5	NITCHGEAR TESTING		
· · ·			
		en Na de Inneles por nomenda dan salam yang pengengkan pengengkan pengengkan pengengkan pengengkan pengengkan p	
	output of the diesel generator to the swill lectric Corp. The division which manufa		
	on of Westinghouse. Information co		
	ed but was not available. This bus duct		
	per phase insulated with scotchite heat		
105° C. This bus due	ing material found that it was stamped wat is a low impedance design. The p	obase relation of th	ie bus
	C-B-A. Since the internals of the swit		
	oundled together, a special transition se		
	pear to convert the A-B-C-C-B-A arrang uring testing each conductor temperature		
	as determined that the transition piece		
allowable temperature for	or the insulating material. Figure 59 sho	ws the temperature	
time curve for the transit	ion with 2800 amperes applied from amb	pient.	
Based on the above, it y	was determined that the bus had a limitir	na current capacity o	of 2800
amperes resulting from	n excessive temperatures at the trans	sition area. Testin	g was
	if other components would be limiting		
current capability of the	standing that modifications would be rec transition section	lated to blovide ruct	reased
ouncil oupability of the			
	he bus duct transition, it was determined		
to the fact, that in the ve	ertical portion, the bus duct would act like ening in the top of the switchgear, th	e a chimney and fun	nei ine normai
	demonstrate this, it was decided to blo		
	sition and cut an additional opening in		
cubicle. The opening in	the top of the cubicle was blocked for th	e 3000 ampere testir	ng.
	id us to the determination that the cause		
	y one foot away from the transition,		
	onitored of the bus duct. In this locati C rise for the 2800 ampere continuous		
	to rated temperature rise at rated cur		
confirmed that the probl	em was ventilation related and not was i	nsufficient conductor	area.
A series of tests were p	erformed where the ventilation scheme a	at the transition was	altered
by stuffing the area with	insulation. The results indicated that th	e problem was a res	triction
	the bus enclosure. This was caused		
	uvers in the bus enclosure. The proble ansition assembly with a copper transition		piacing
-	placed with copper conductors replicate		ension
and insulating material.	The three series of tests were repeated	 During the 3000 a 	umpere
stability test, the highes	t temperature rise achieved was 58° C	for the transition. The	he bus
duct approximately one	e foot away had a high temperature of	52° C. This is sh	own in
1			
1	· .		
I	· · ·		
美	· · · · · ·		

.

CALCULAT	FION/ANALYSIS SHEET	EGE-00006	00	PAGE 11
PREPARE	יים /ייע קיי	REVIEWER/DATE		CLASS
BHORNET	2 Billerouge inlist	4 Robert R. Brown	12/16/94	CURSS
SUBJECT	F/TITLE INDIAN PO.,	t GENERATING STATION	PROJECT N	
	INCY DIESEL GENE			
	BREAKER & SUNTO		MOD NO.	
	figures 60 & 61. This ten	nperature is lower than previous test	runs in that the new	w transition
	section and was transmit	itling less heat to the bus conductors	s. Table 3 shows t	the thermal
	our calculations indicate	us transition and bus duct. Based of e that the transition piece has a full	I load rating of 3190	ature rises, 6 amperes
	and the bus duct has an a	associated full load current rating of (3396 amperes.	Junpores
	Figures 62 & 63 show	the load duty cycle for the transitio	and hus duct	Ouring the
	testing, the highest temp	peratures obtained during the 3300 ar	moere portion of the	e test were
	54° C for the transition ar	nd 50° C for the bus duct. Figures 64	4 & 65 show the 34	00 ampere
	bus duct hitting 54° C also	ne transition piece having the highest	temperature or 54	C and the
	-			
ł	Lable 3 snows the mem change out of the alumit	mal time constant for the transition p num to copper has significantly imp	piece and the bus	duct. The
l i	bus duct.	and a collect to an other and the second sec		
i i i i i i i i i i i i i i i i i i i				
		• :		
İ				
		· .		
			-	
		· .		
Į				
		·		
		•		
		· ·		
		··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		
		··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	: · · · · · · · ·	
			: · · · · · · · ·	

CON EDIS CALCULAT	'ION/ANALYSIS SHEET	CALCULATION NO.	REVISION	
				PAGELS OF
PREPARE	R/DATE	REVIEWER/DATE	00	PAGE 1 2 OF <
SUBJECT	- Billion 5 12/15/94	Robert R. BRANNE	12/16/94	CLASS
EMERIC	TITLE INGIN POINT	GENERATING STATION	PROJECT N	
DB cire	NCY DIESEL GENER BREAKER	ATOR UPGRADE.		
	BREAKER & SWITCH	GEAR TESTING	MOD NO.	RE
1				
	approximately 10° C cooler. Bas	lators rated for a 85° C rise, or a upplied by Westinghouse. ANSI/ and other parts, silver surface imum temperature rise limitation of the insulators temperature ration a expected temperature of the corr s, the conductors located in the monitored to determine that their The hottest internal bus com a "B" phase) of vertical bus. The d during the 3000 ampere stabi- indicated that the other condu- sed on this it was decided to more	total temperature of IEEE C37.010 India of 85° C. This sup ing in that it should inductors. A rear of the switch associated temper ponent was the m maximum temper lity run was 75.74 ctors were operation	125° cates op or oports ld be hgear rature niddle rature ° C. ting of the
	ventilation lowered the "B" phase		00 amperes to 64.6	53°C.
	ventilation lowered the "B" phase Although without this modificati	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	53°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in
	ventilation lowered the "B" phase Although without this modificati ANSI/IEEE C37.010, this modifie	conductor temperature rise at 300 on, the equipment meets the re cation is considered a design im	00 amperes to 64.6 equirements set for	63°C. rth in

INDIAN POINT UNIT 2											
		2500 AMPERES			2800 AMPERES			13000 AMPERES			
	PHASE	MAX TEMP RISE (C)	MAXIMUM	THERMAL TIME CONSTANT (MINUTES)	MAX TEMF RISE (C)	63% OF MAXIMUM TEMPERATURE RISE (C)	THERMAL TIME CONSTANT (MINUTES)	MAX TEMP RISE (C)	63% OF MAXIMUM TEMPERATUR E RISE (C)	TIME CONSTANT	AVERAGE THERMAL TIME CONSTANT (MINUTES)
UPPER	B	46	29	1 62.5	57	36	58	1 64	40.3	59.5	60
PHENOLICS	A	43.5	27.4	61	52	33	60	61.5	38.8	58.5	60
LOWER	8	43.5	27.4	59	54	34	58.5	1 65	41.6	59	59
PHENOLICS	A	43.5	27.4	59	52	33	58.5	53	33.4	61	59
	С	43.5	27.4	59	52	33	58.5	50	31.5	60	59
MOVEABLE	В	52	32.8	1 61	1 64	40.3	60	72	45.4	59	60
PIVOTS	A	49	31	60	60	38) 59	63	40	J 59	59
	С	49	31	60	59	37	59	63	40	59	59
STATIONARY	Б	49	31	60	62	39	59.3	1 70	44	58.5	60
PIVOTS	A	48	30.2	1 59	57	36	59	j 60	38	59.5	59
	C	46	29	59	57	36	59	60	38	58.5	59
STATIONARY	5	50	31.5	61.5	62	39	1 61	1 71	45	59.5	60
MAINS	A	46	29	60	57	1 36	60	68	43	59	60
	c	46	29	60	54	34	59.5	65	41.6	1 58.5	59
MOVEABLE	8	50	1 31.5	60	63	40	60.5	69	43.5	60	60
MAINS	A	48	30.2	60	60	38	59.5	67	42.3	60	60
	С	48	30.2	60	60	1 38	59.5	65.8	41.5	59	59.5
UPPER	 	42	26.5	1 62	52	33	62	1 58	36.6	59	61.5
BREAKER	A	39	24.6	61	47	30	61.5	55.5	35	57.5	60
STABS	С	38	24	62	47.5	30	62.5	54.5	34.4	58.5	61
LOWER	5	43	27.1	59.5	54	1 34	59	66	41.6	59.5	59
BREAKER	A	42	26.5	1 59	50	31.5	58.5	i 61	38.5	1 59.5	59
STABS	C	41	26	1 58.5	50	31,5	58.5	59.5	37.5	58.5	58.5

BREPARER/DATE

Inn Point

56-36

BREAKER

24

TESTING

Ŧ

.

EMERGENCY

DICSE

GENERATOR SWITCHGEAIL

NRGRADE

ł

ENERATI

Š

STATION

PROJECT

NO.

MOD NO.

REV

12

je,

40

CLASS

REV

EEWER

VER/DATE

£,

CON EDISON CALCULATION/ANALYSIS SHEET

CALCULATION NO.

REVISION

000

PAGE

ŵ

OF SY

TABLE 1

1

CON EDISON	CALCULATION NO.	REVISION	I
CALCULATION/ANALYSIS SHEET	EGE-00006	00	PAGE 14 OF SY
PREPARER/DATE B. Hozowtz B. Hower 12/15/94 SUBJECT/TITLE INDIAN POINT G	REVIEWER/DATE	12/16/94	CLASS
SUBJECT/TITLE INDIAN POINT &	ENERATING STATION	PROJECT N	0.
EMERGENCY DIESEL GENERA DB-75 BREAKER & SWITCHG	EAR TESTING	MOD NO.	REV
an a			

· · · ·

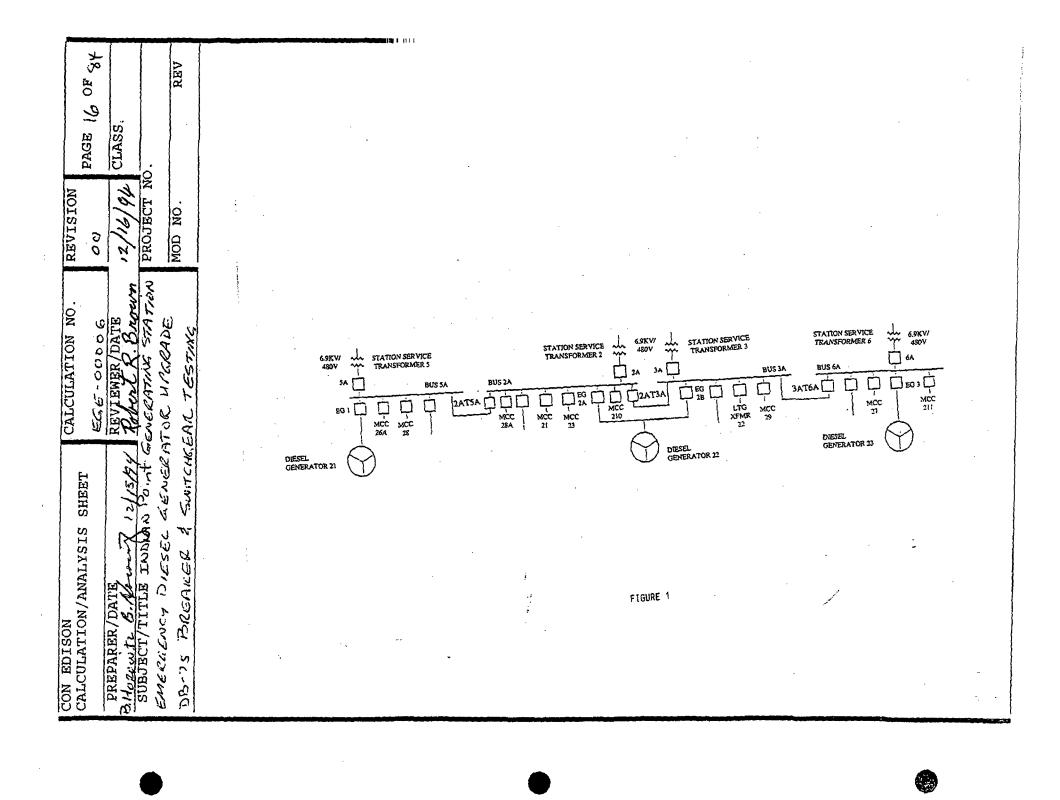
	ESCALATED FROM 2500 AMPERES TO MAX. RATING	ESCALATED FROM 2800 AMPERES TO MAX, RATING
MOVEABLE PIVOTS	3285	3290
		, ,
STATIONARY PIVOTS	3395	3342
STATIONARY MAINS	3357	3315
MOVEABLE MAINS	3357	3369
UPPER BREAKER STABS	3698	3709
LOWER BREAKER STABS	3650	3453
UPPER PHENOLICS	3011	3029
LOWER PHENOLICS	3104	3125

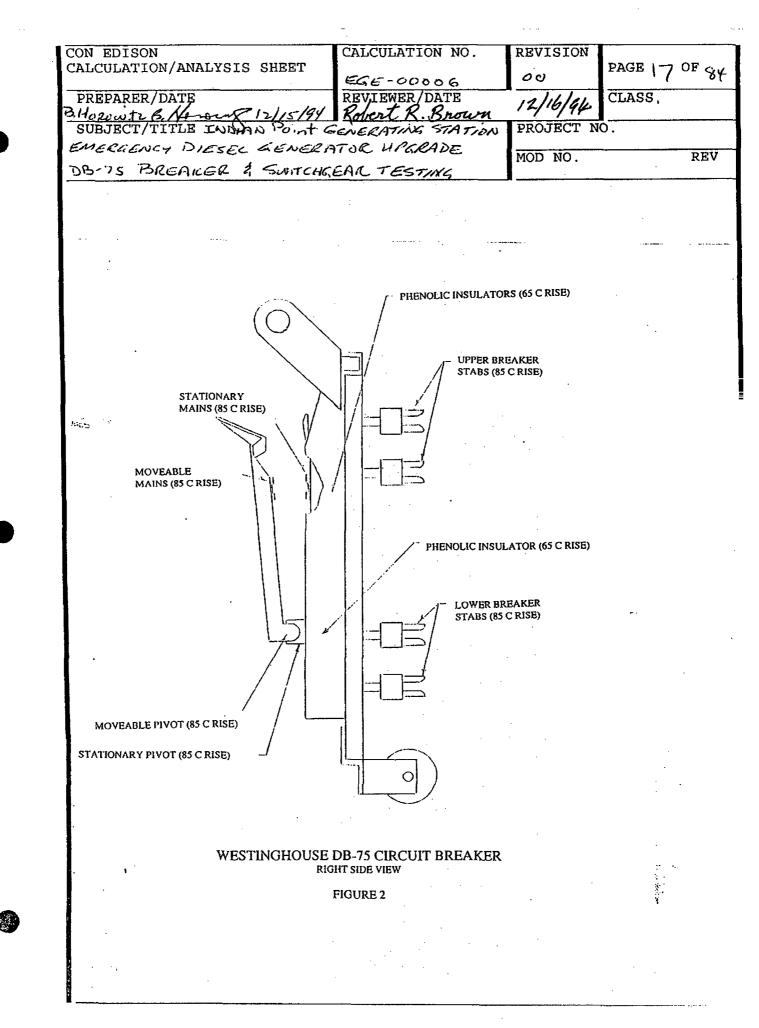
.

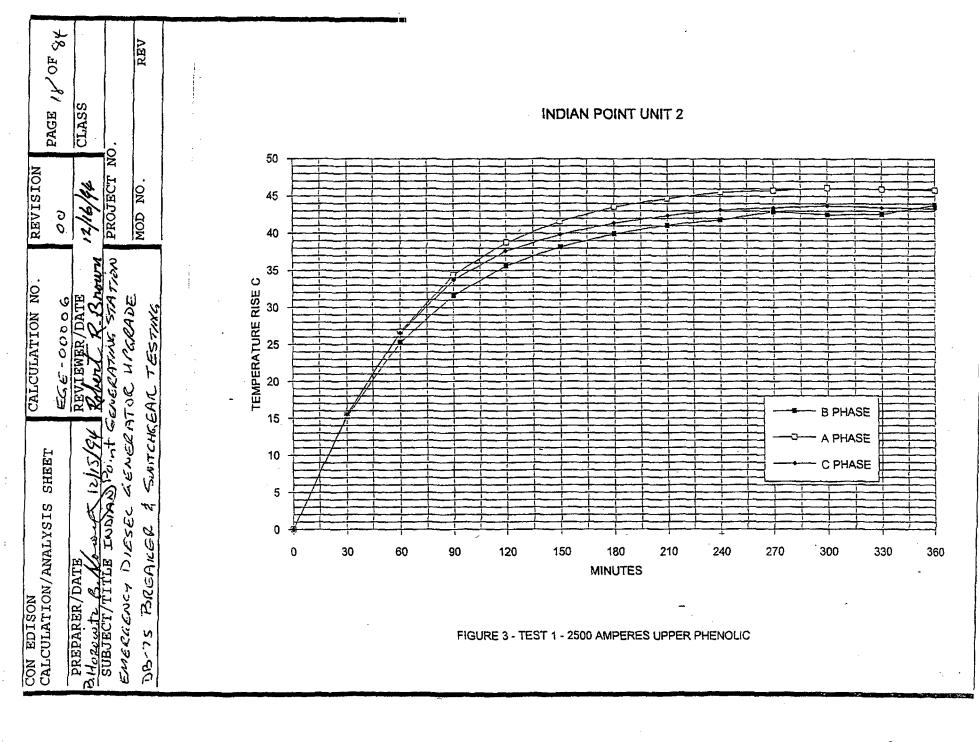
TABLE 2

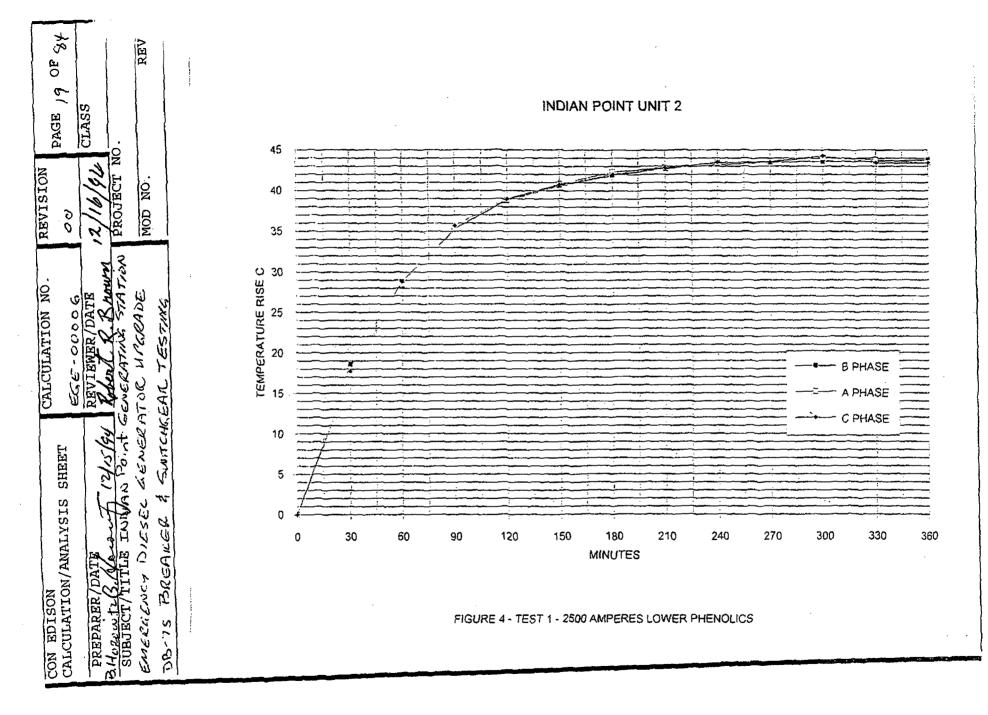
a de la companya de

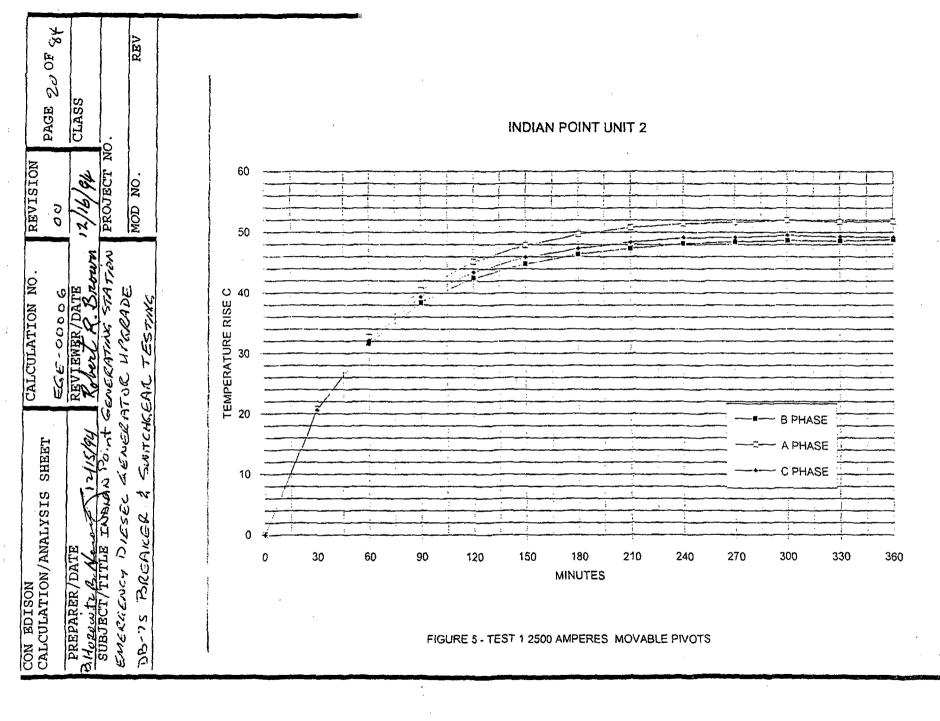
.

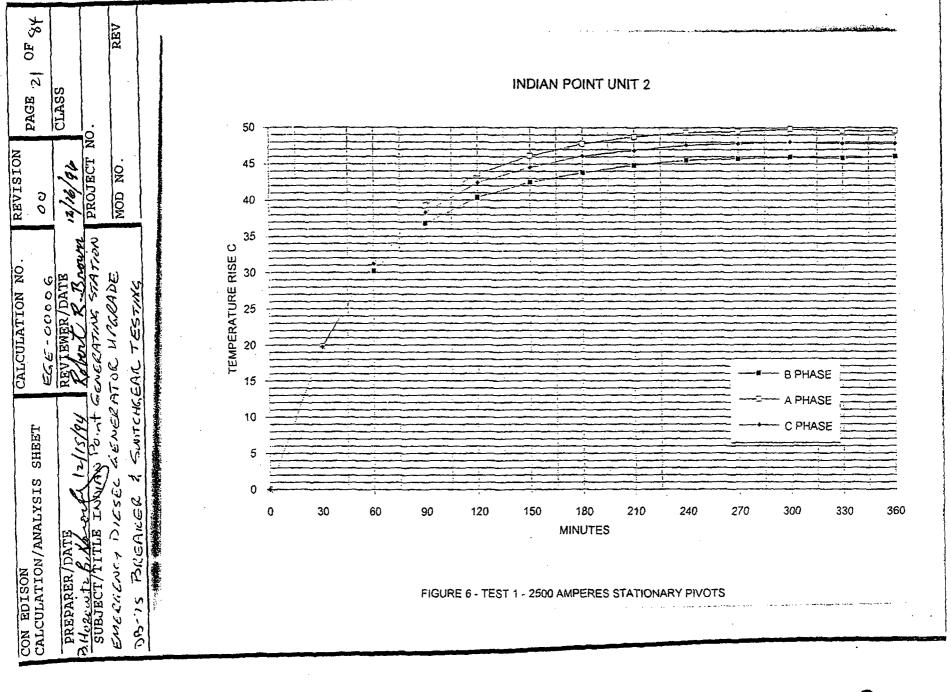

CON EDISON			CALCUL	ATION NO.	REVISION	
CALCULATION/AN	EGE-	00006	0.0	PAGE 15 OF SY		
PREPARER/DATE	REVIEW	ERZDATE		CLASS		
B.Hozowtz B.No	with 12/	15/94	Robert	R. Brown	12/16/94	
SUBJECT/TITLE					D PROJECT N	ю.
EMERIENCY D					MOD NO.	REV
DB-75 BREAM	<u>:64 2 50</u>	VITCHG	CEAR TO	ESTING	-	101000
		· · ·	3000 AMPE			
			MAX TEMP RISE (C)	63% OF MAXIMUM	THERMAL	
				TEMPERATURE	CONSTANT	
				RISE (C)	(MINUTES)	
		PHASE				·
	BUS DUCT	B-1	57	36	60	
	808 0001	6-1	5/			
	TRANSITION	8-2	. 55	35	61	
		A-1	. 55	35	63	
		A-2	58	37	63	
		C-1	44.5	28	60	
		C-2	42	27	66	
				\$		
	BUS DUCT	B-1	52	33	52.5	
	NON-	B-2	50.5	32	52.5	
	TRANSITION					
		A-1	. 46	29	52	
1		A-2	48	30	52.5	
		C-1	34	21	52.5	
l .		C-2	32	20	52.5	

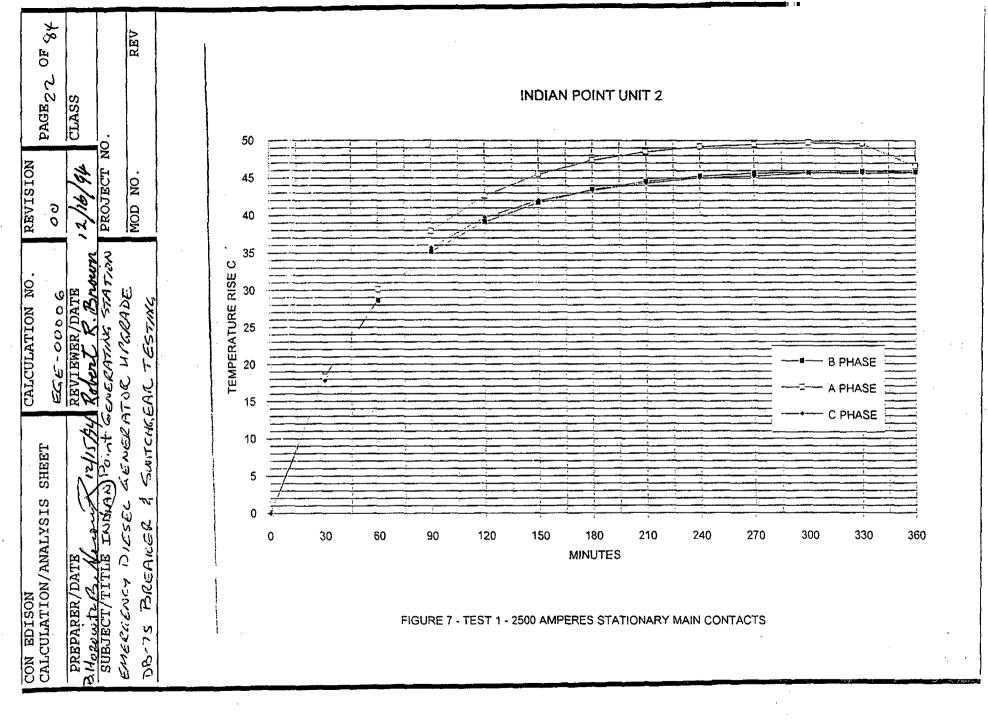

•

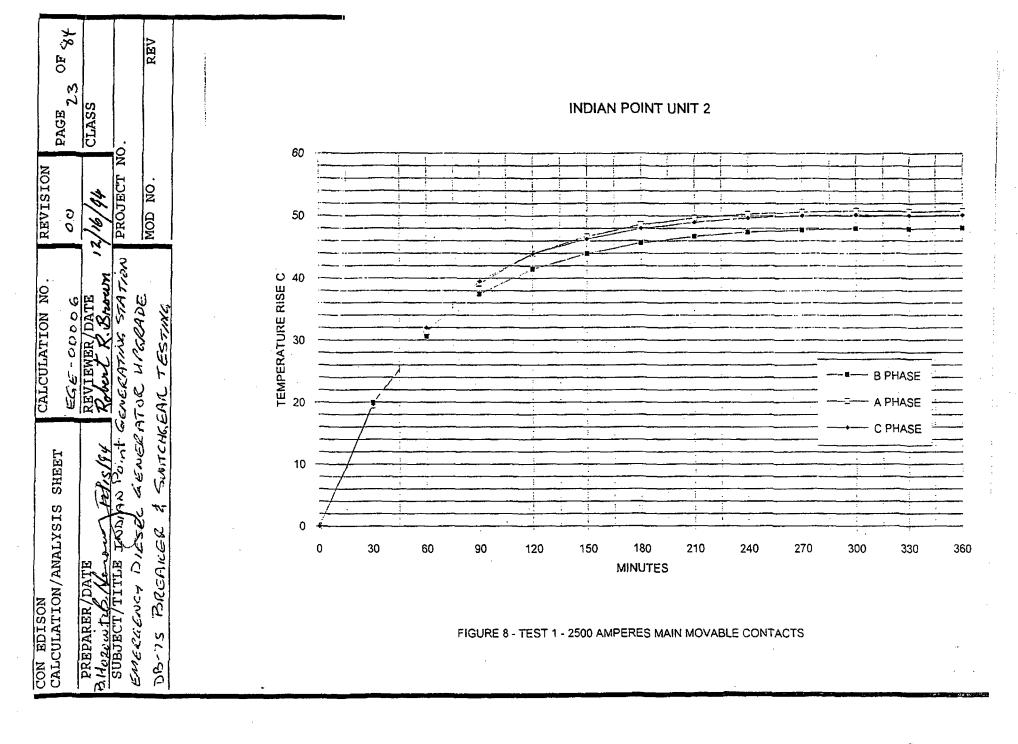

·····

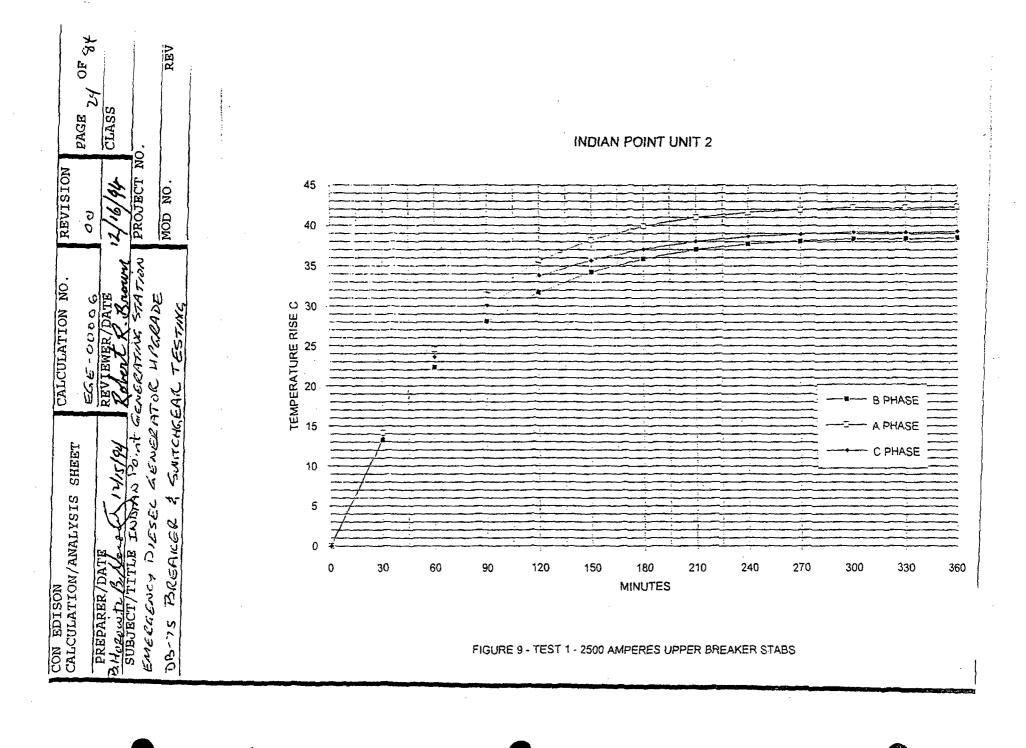

.

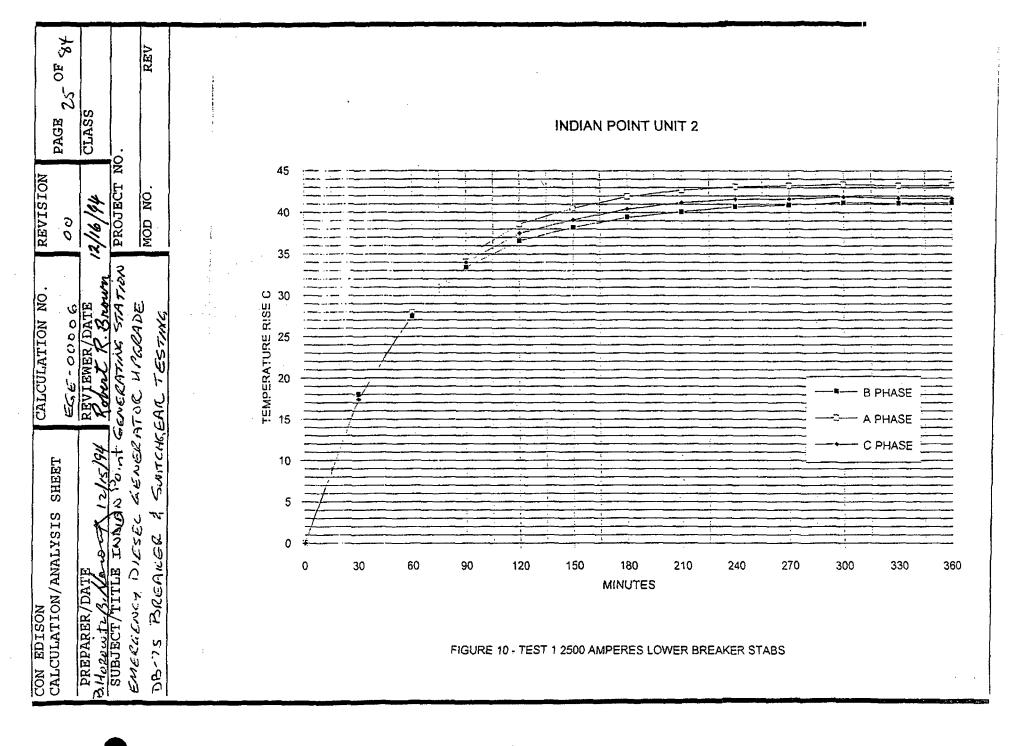

--- · ·

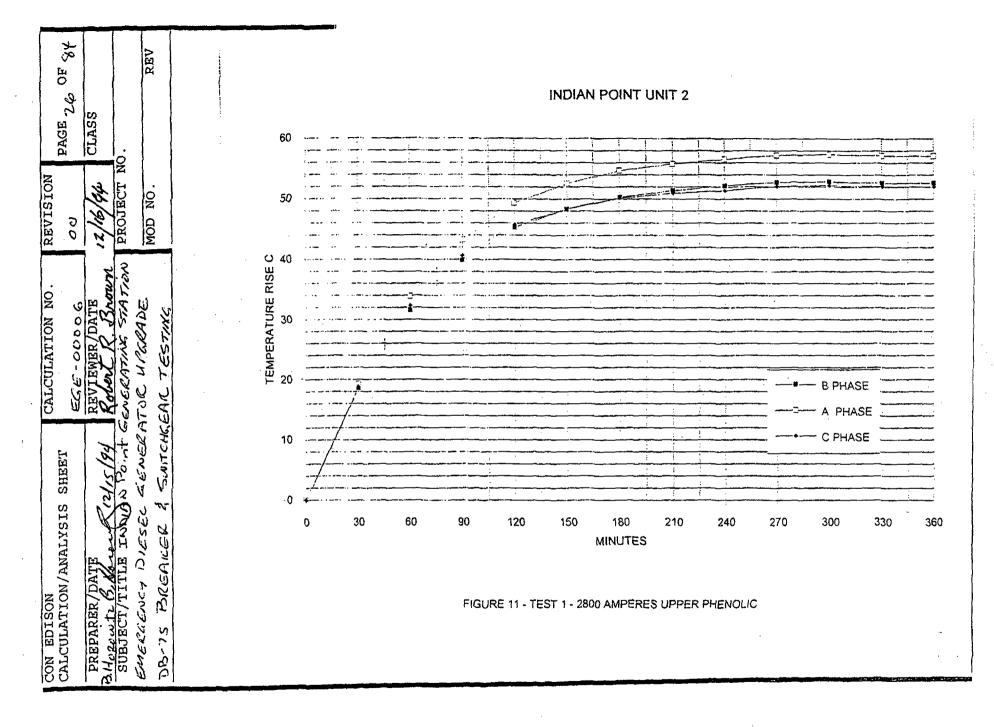


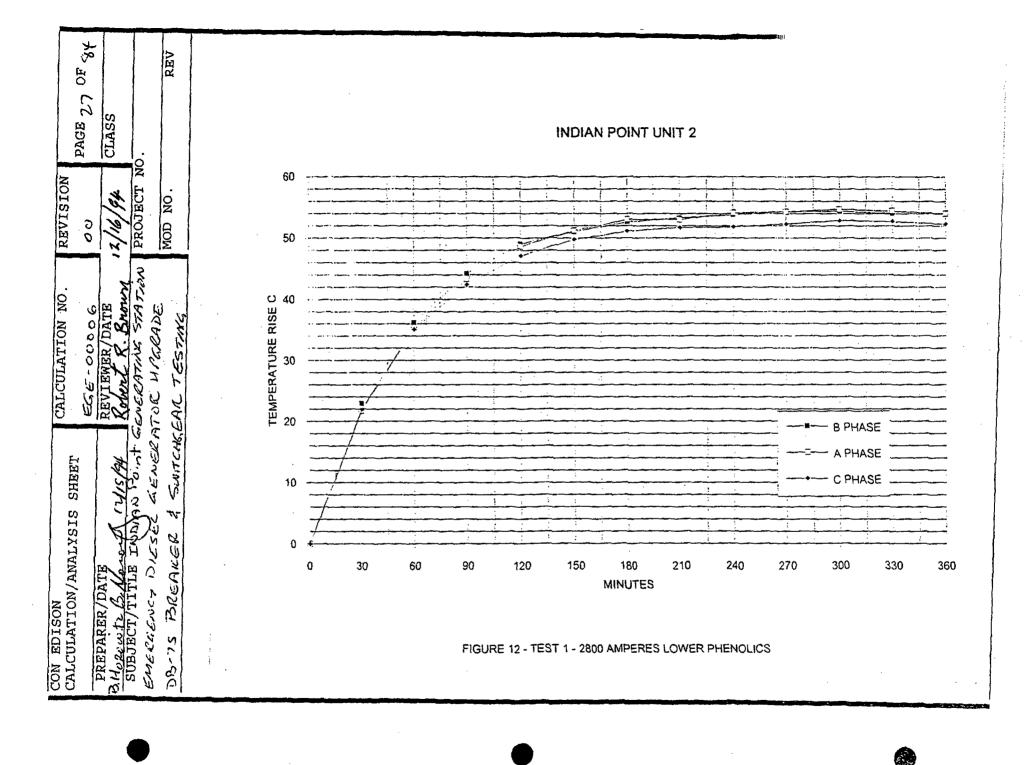


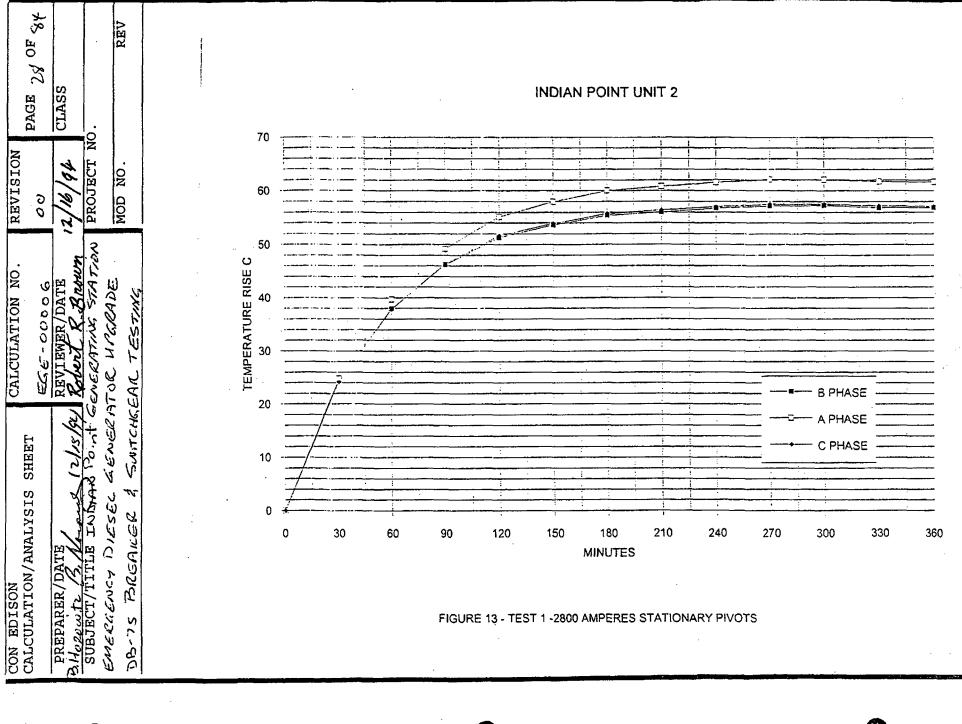


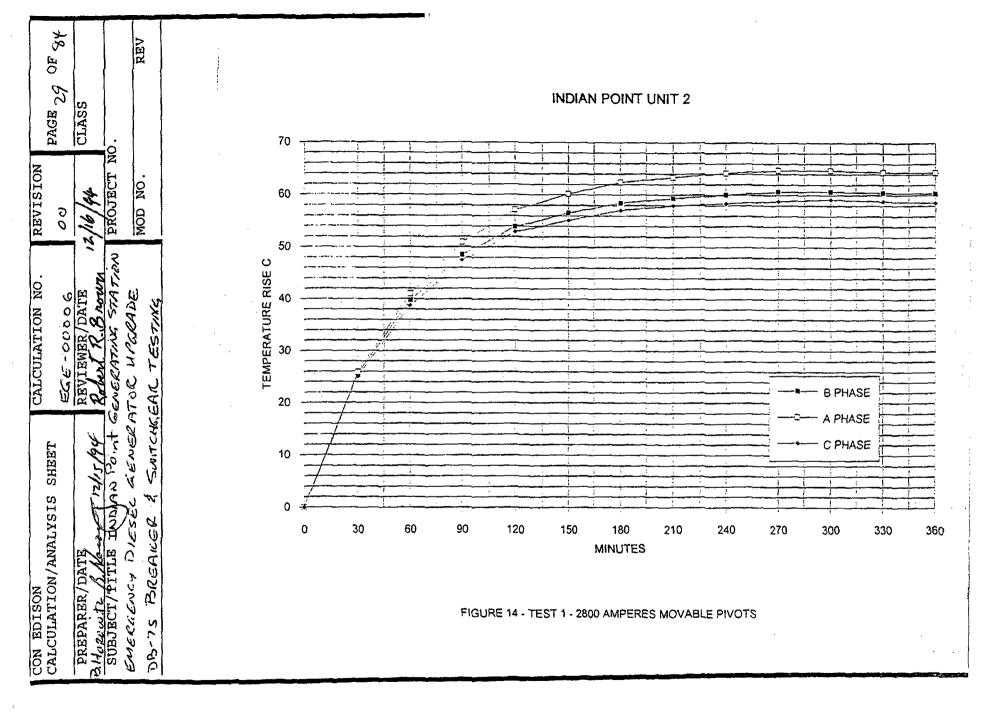


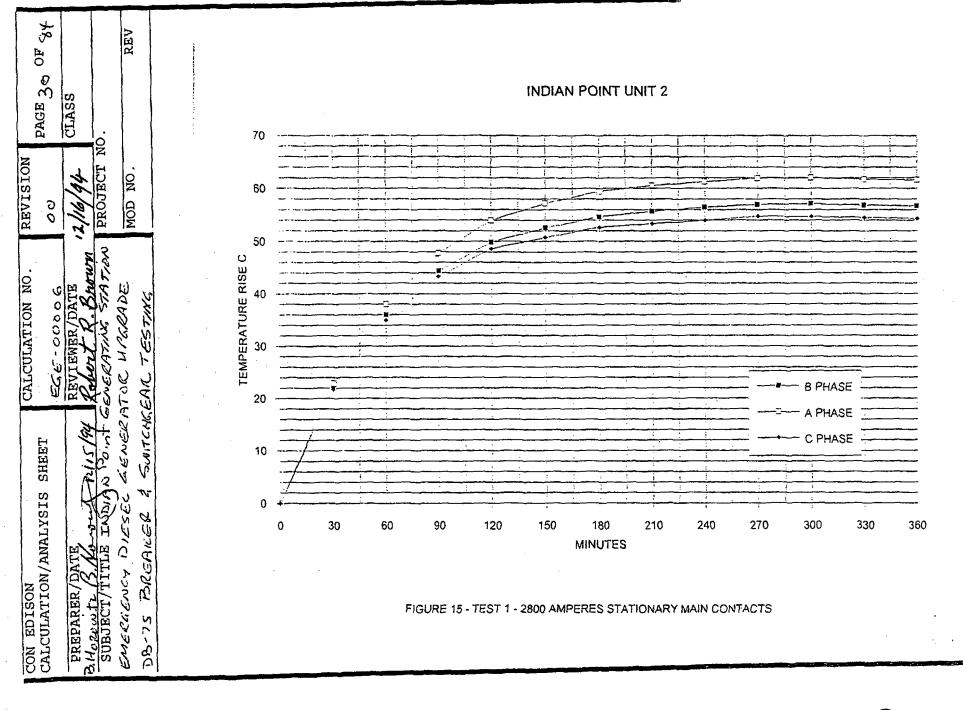


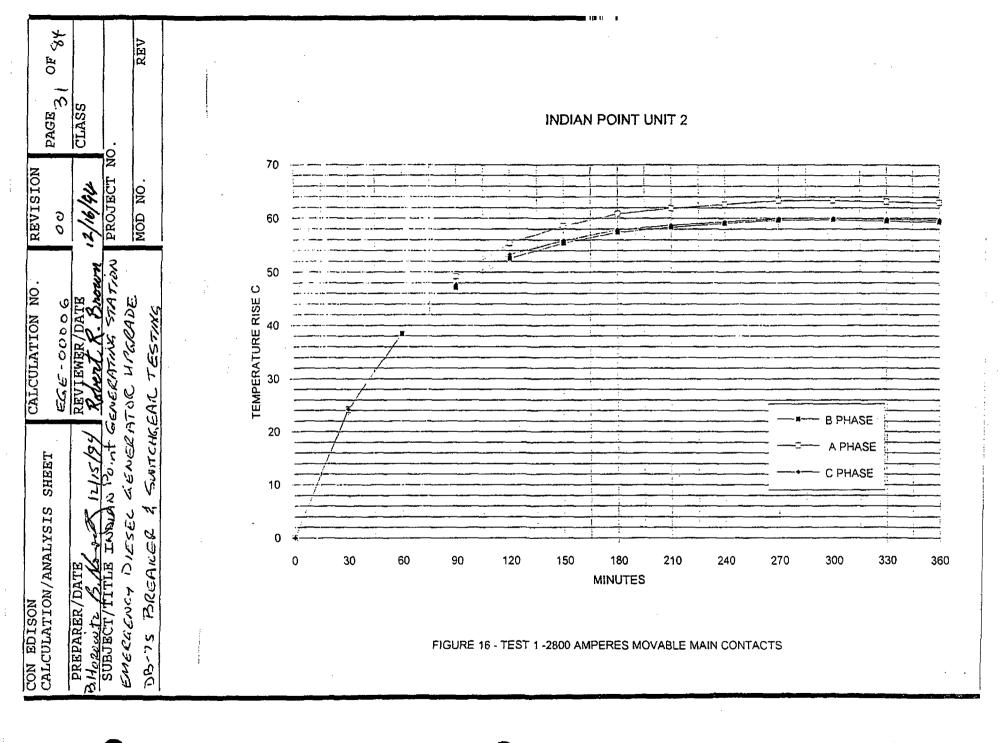


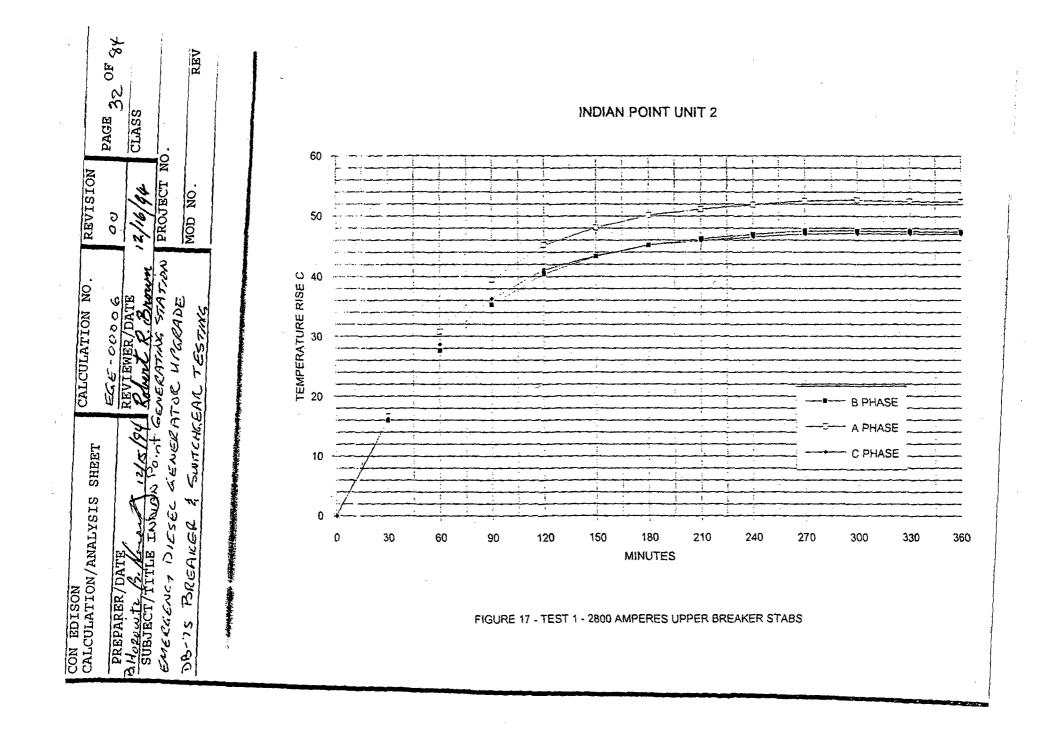


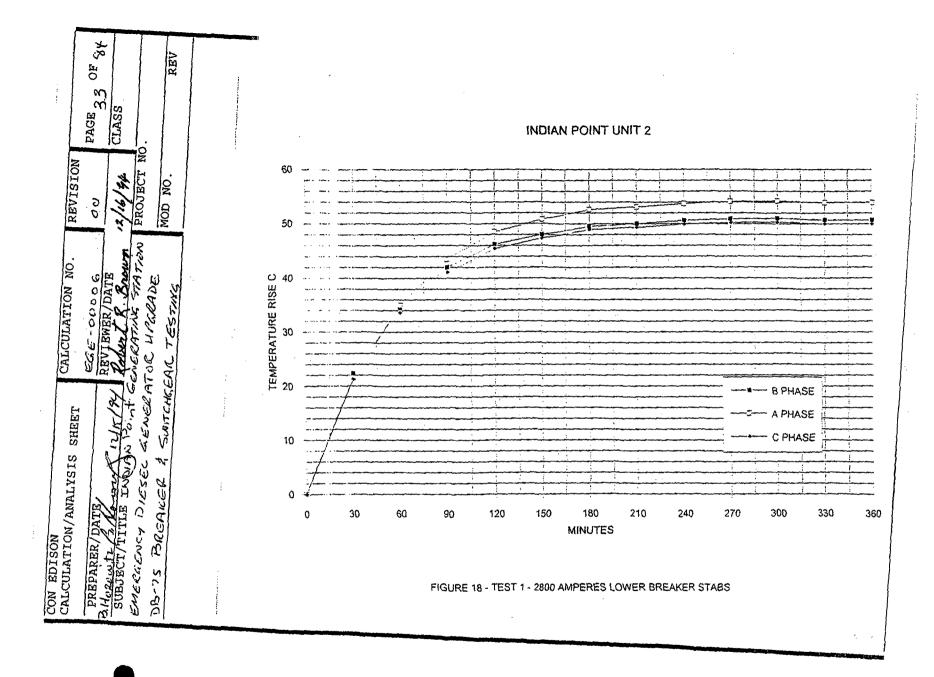




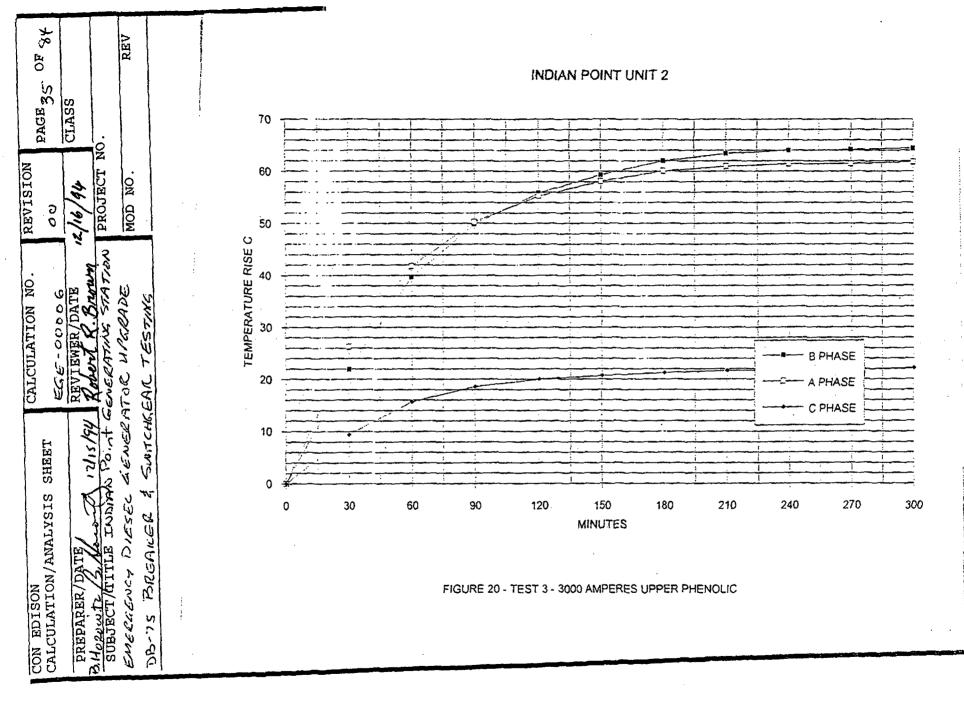


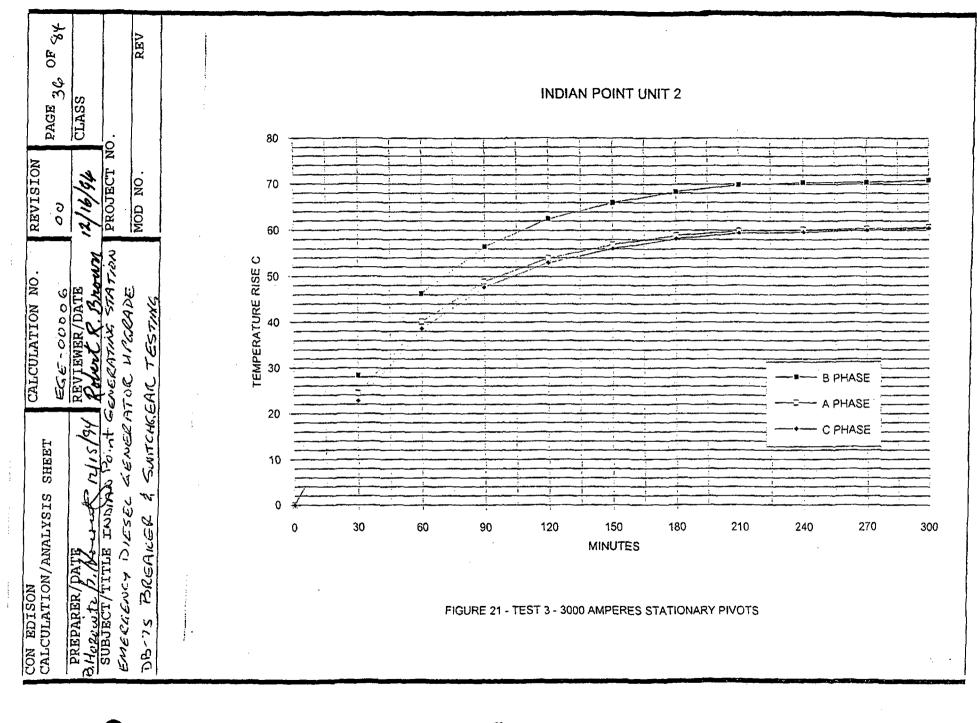


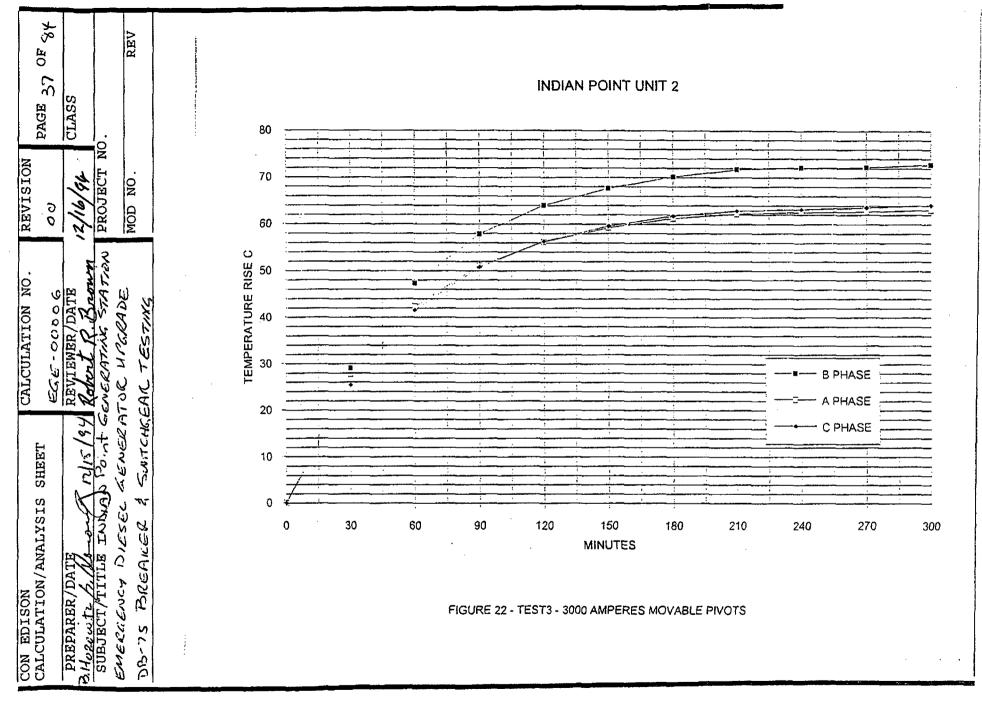


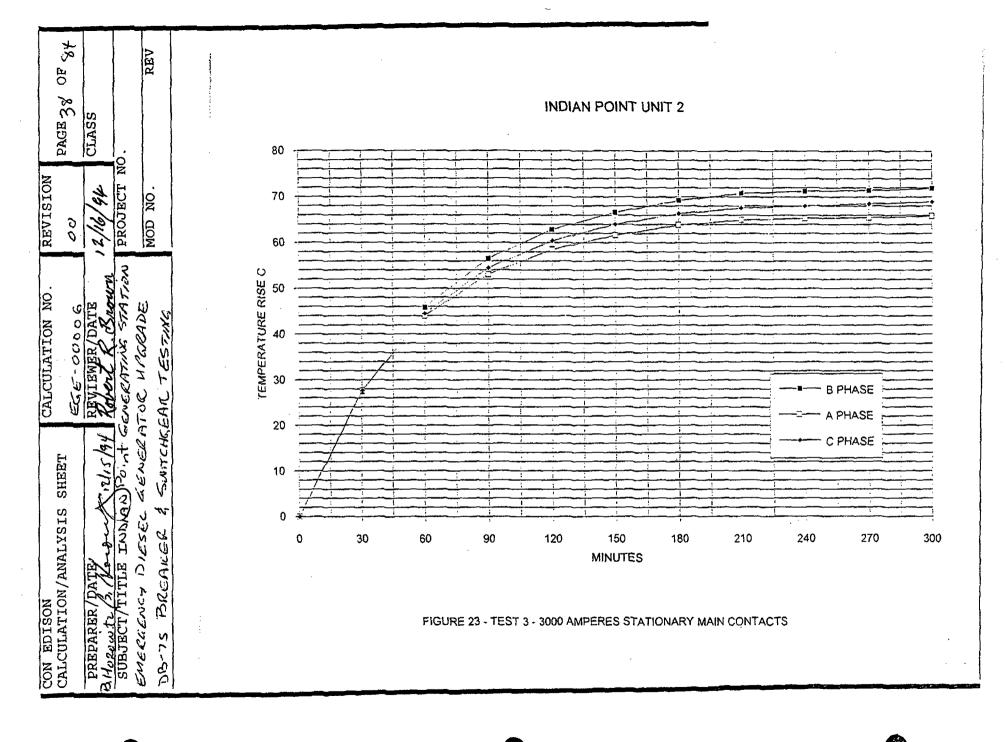


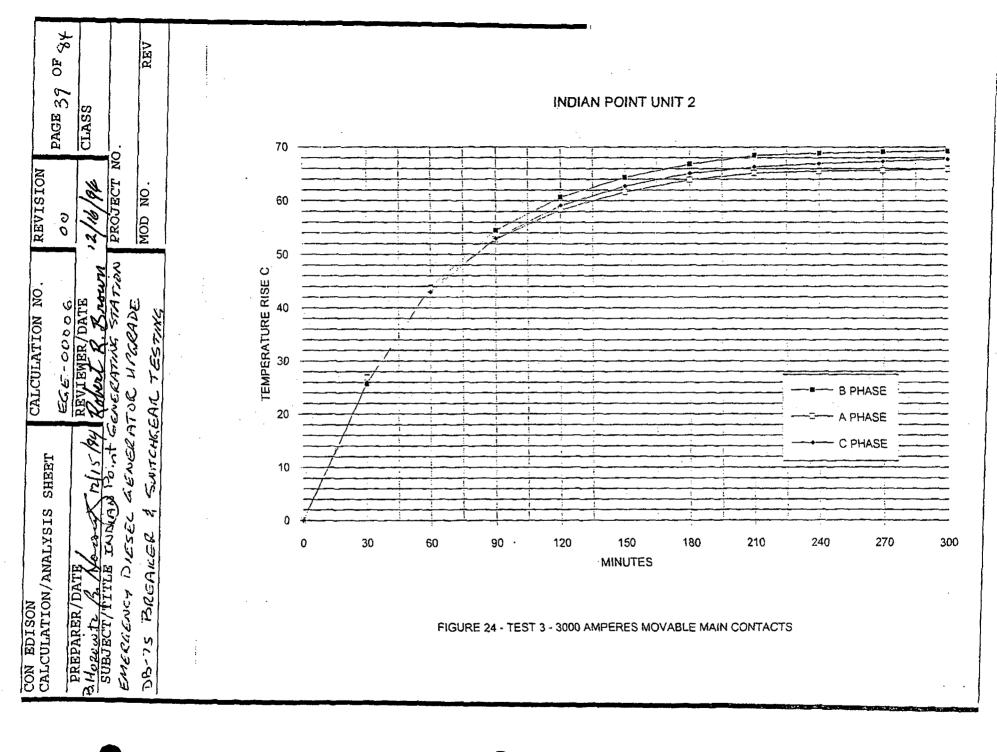


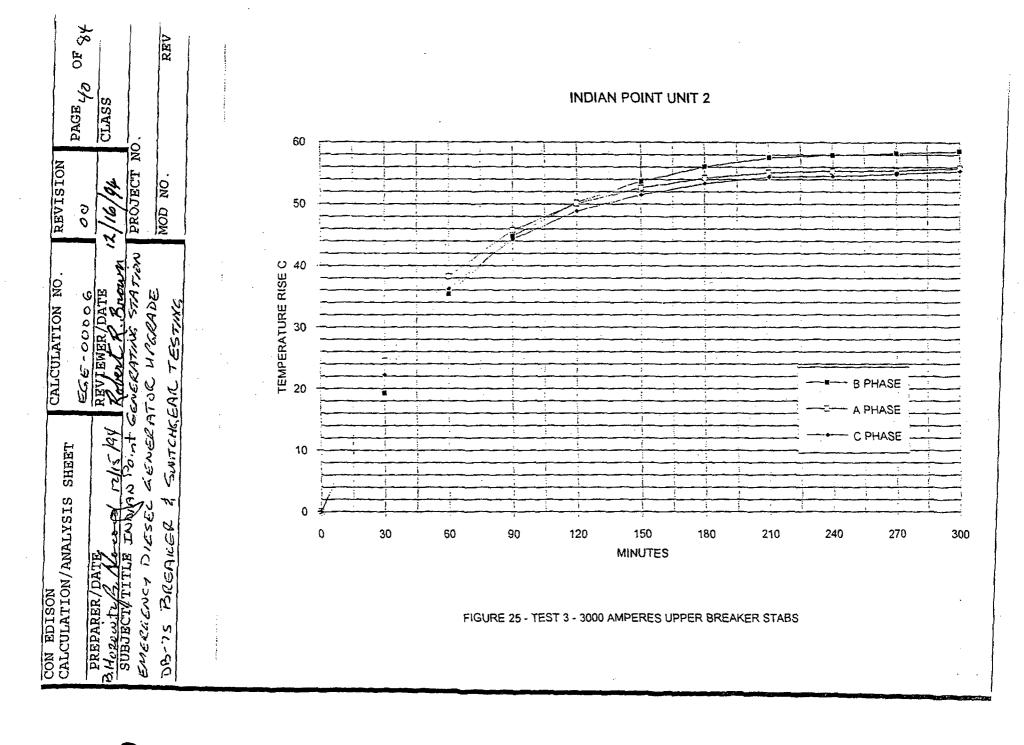


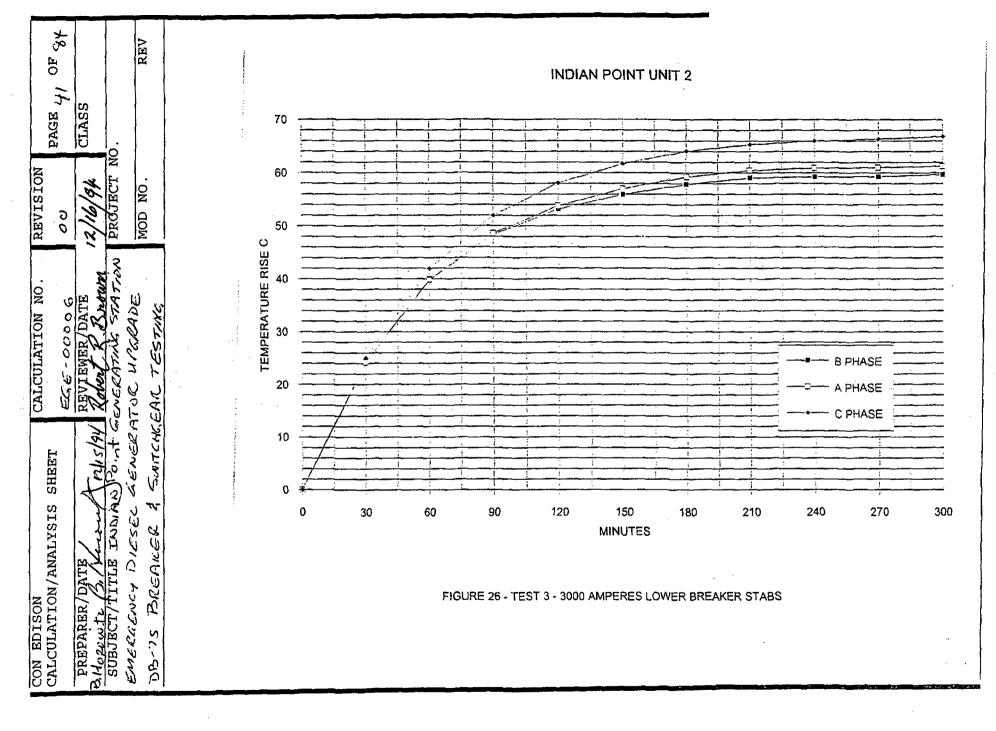


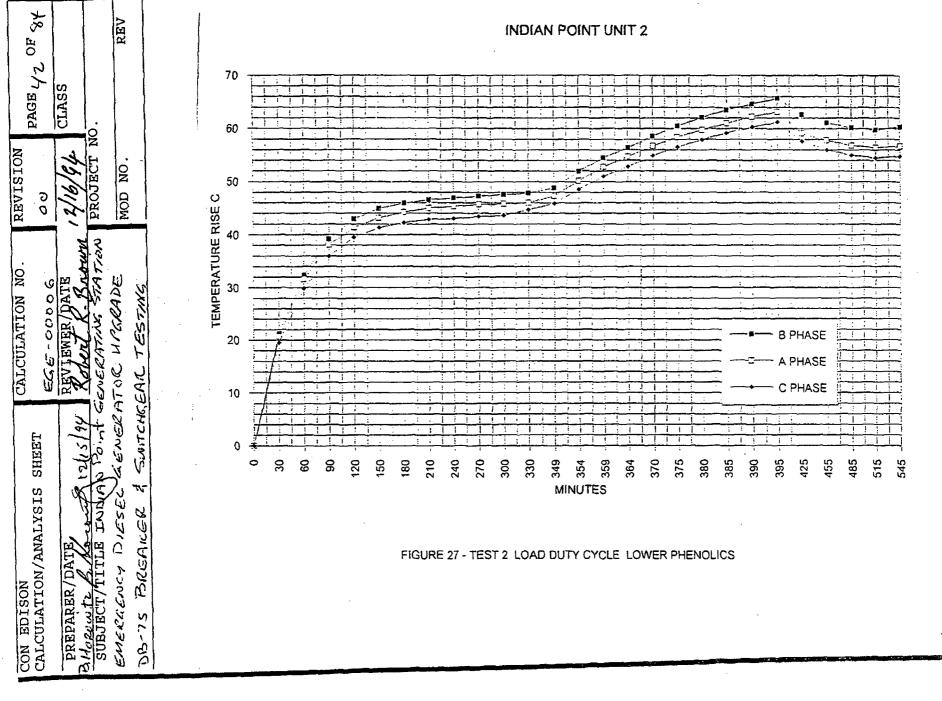


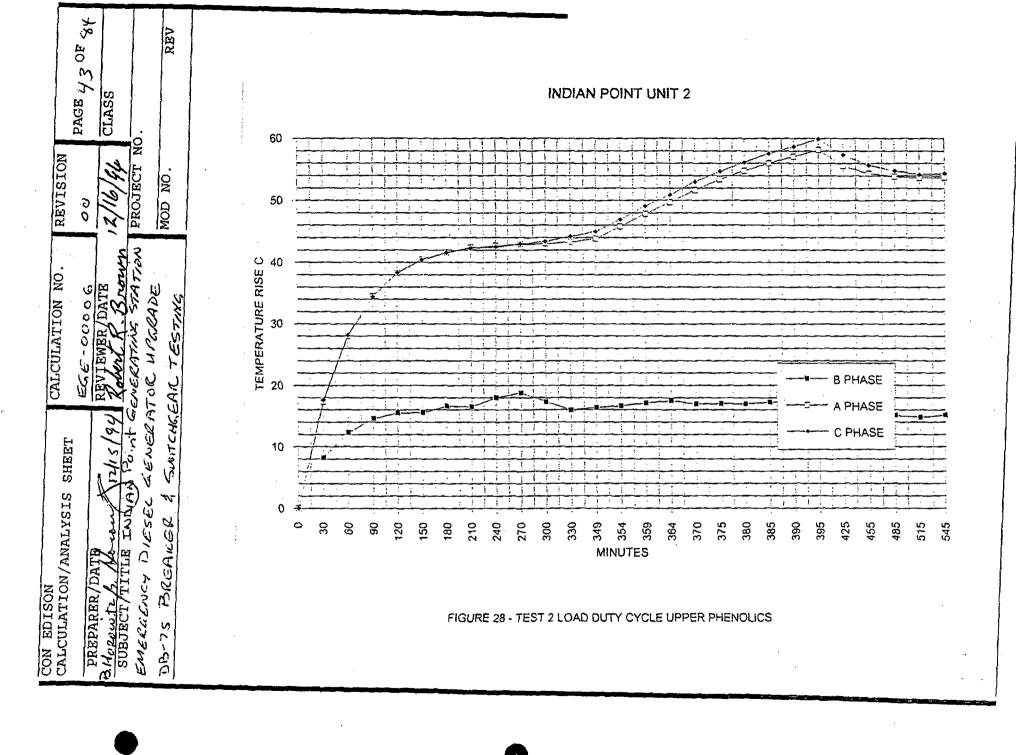


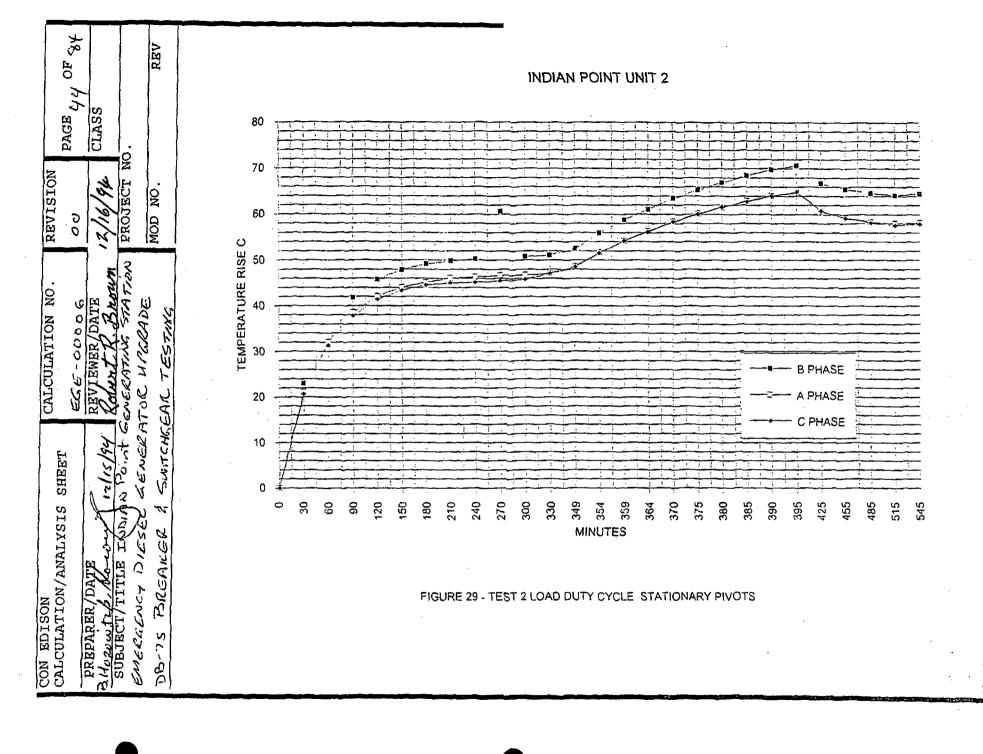

.

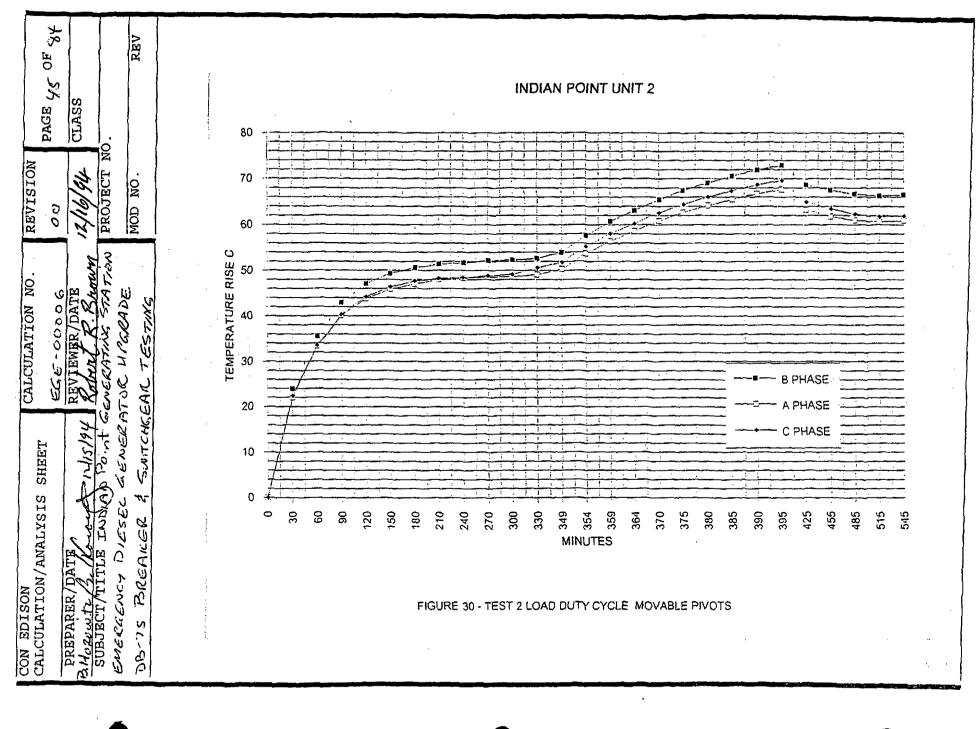

.

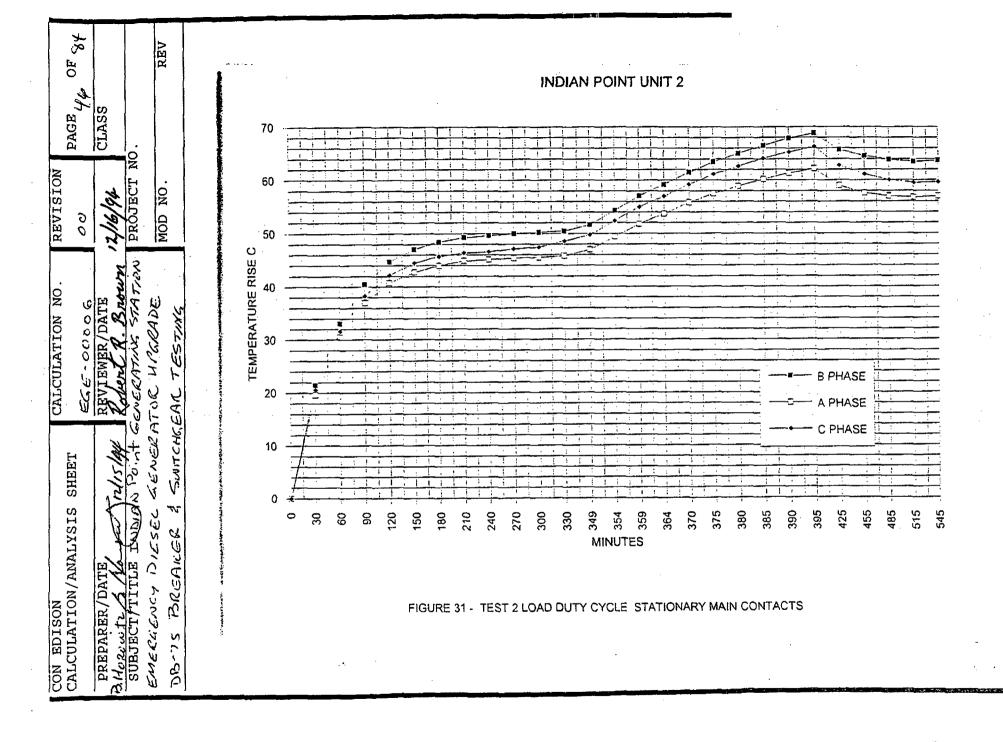


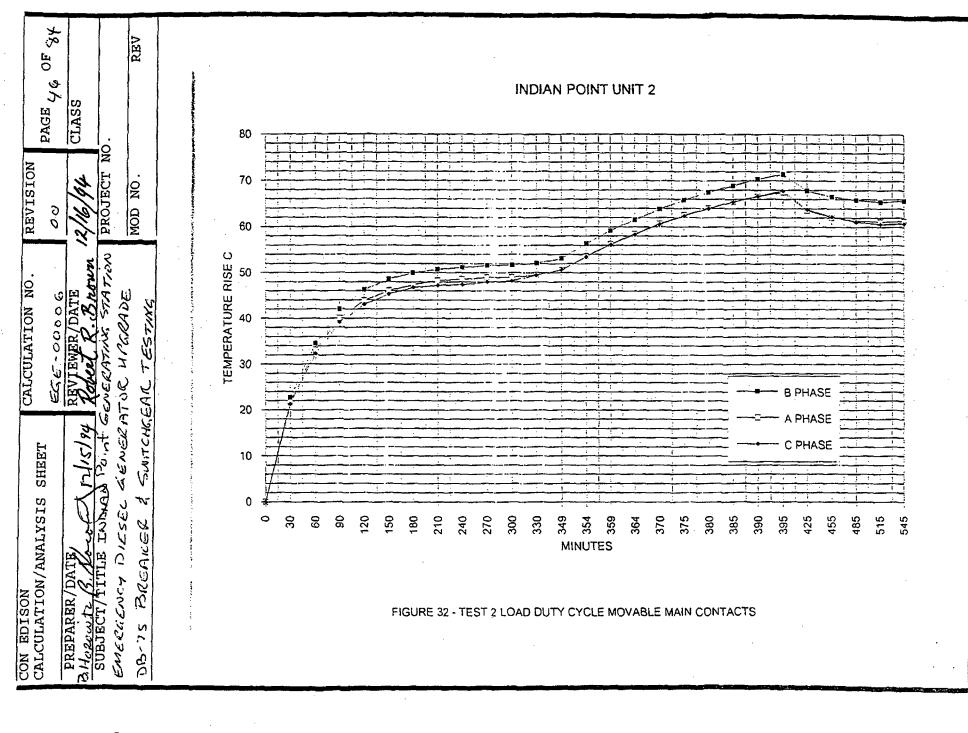


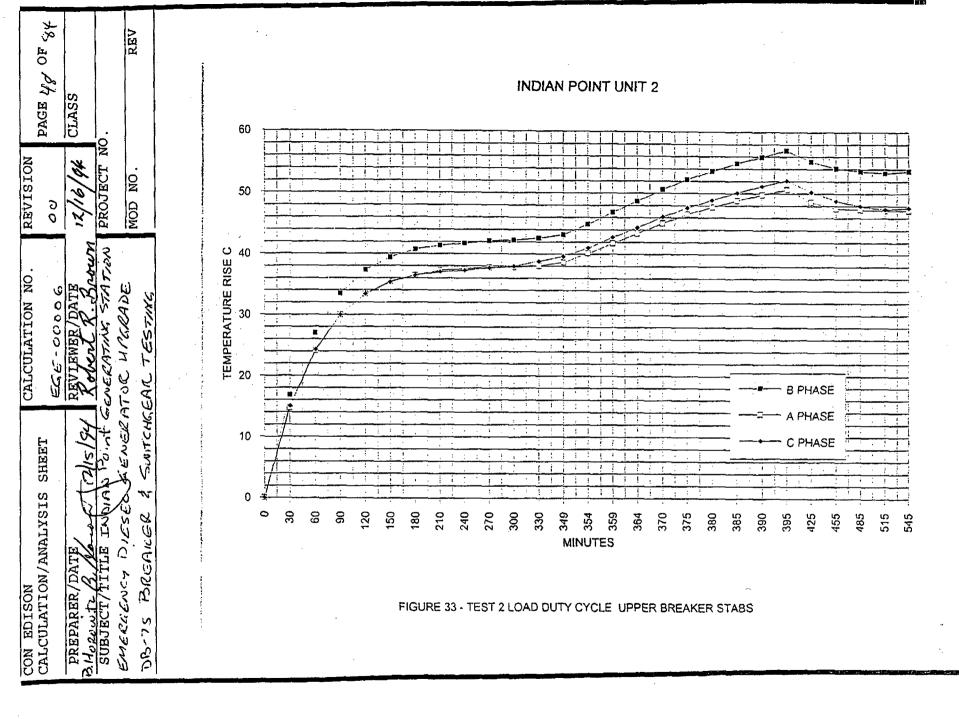


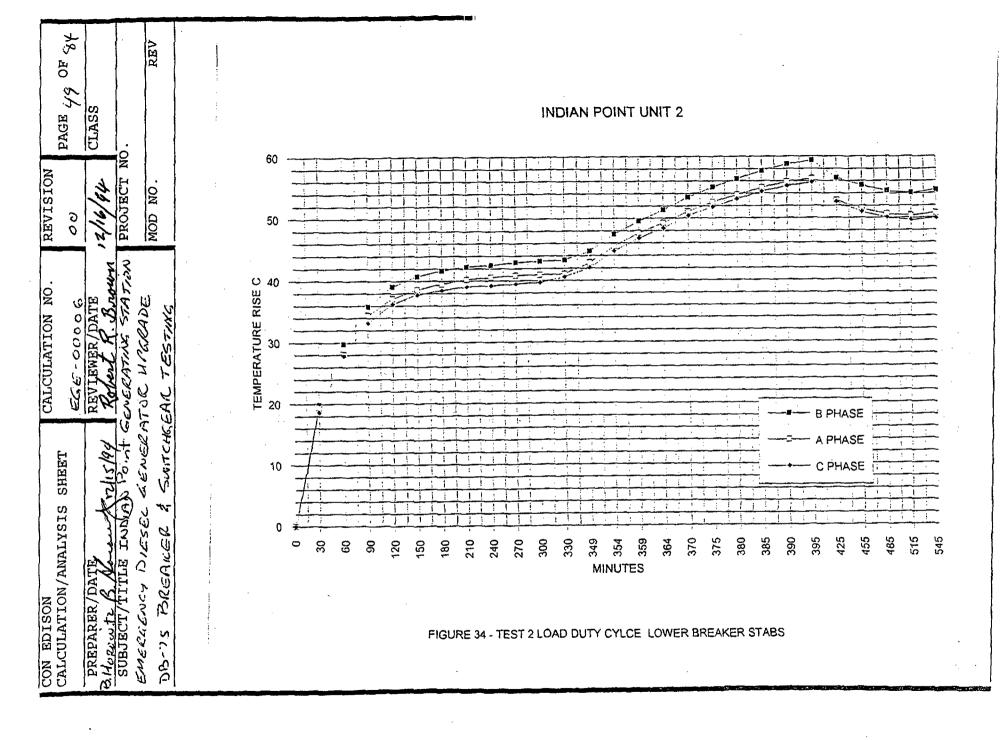

· · · ·

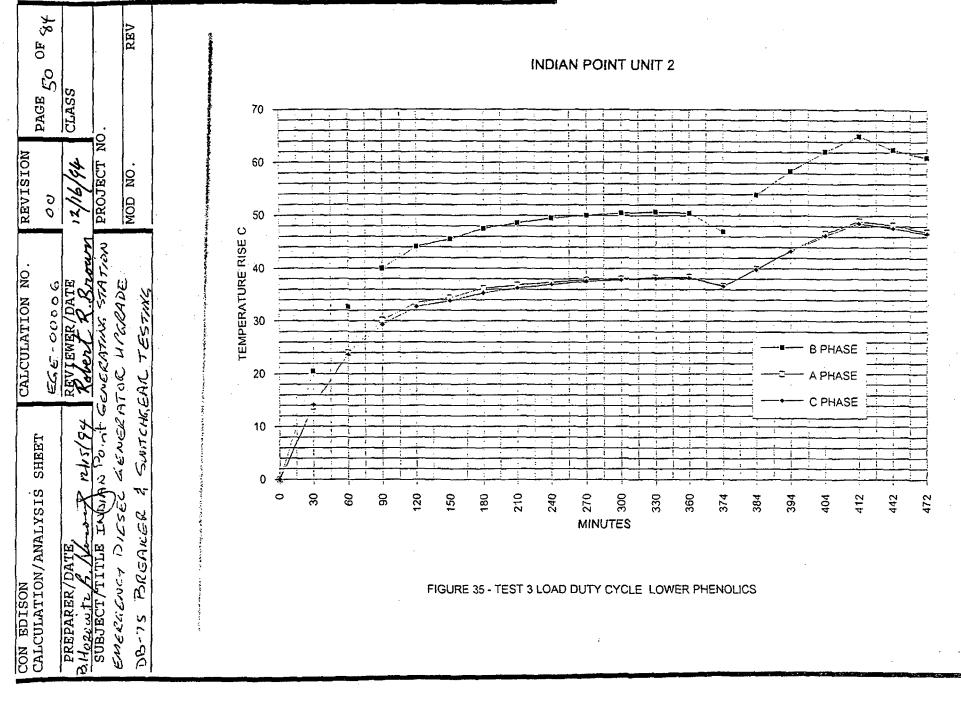


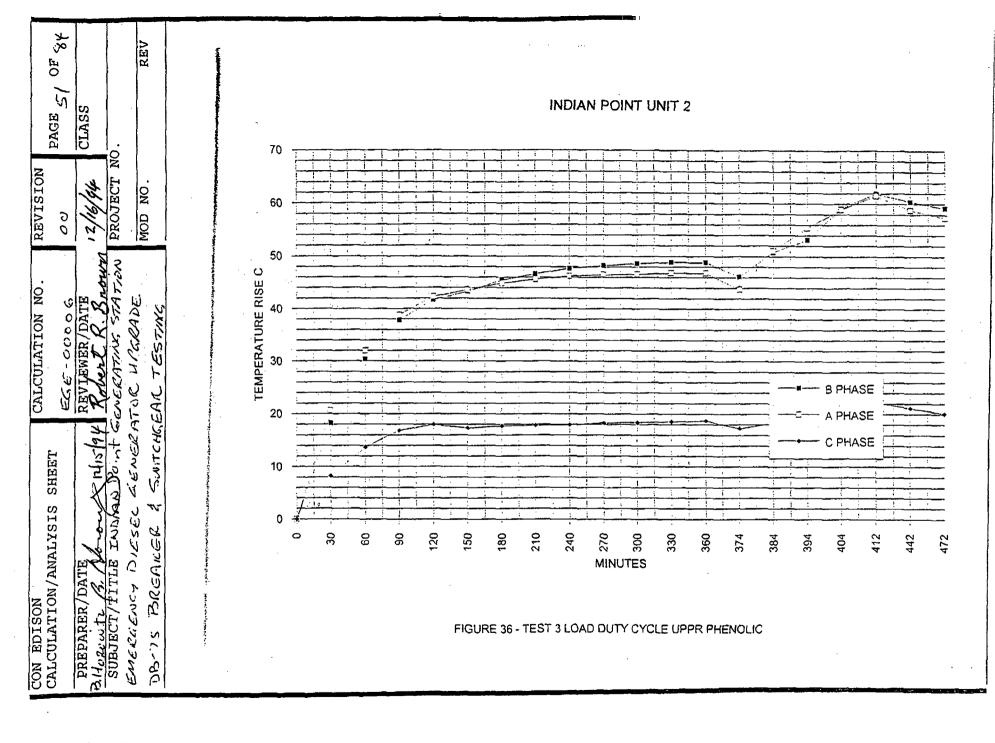


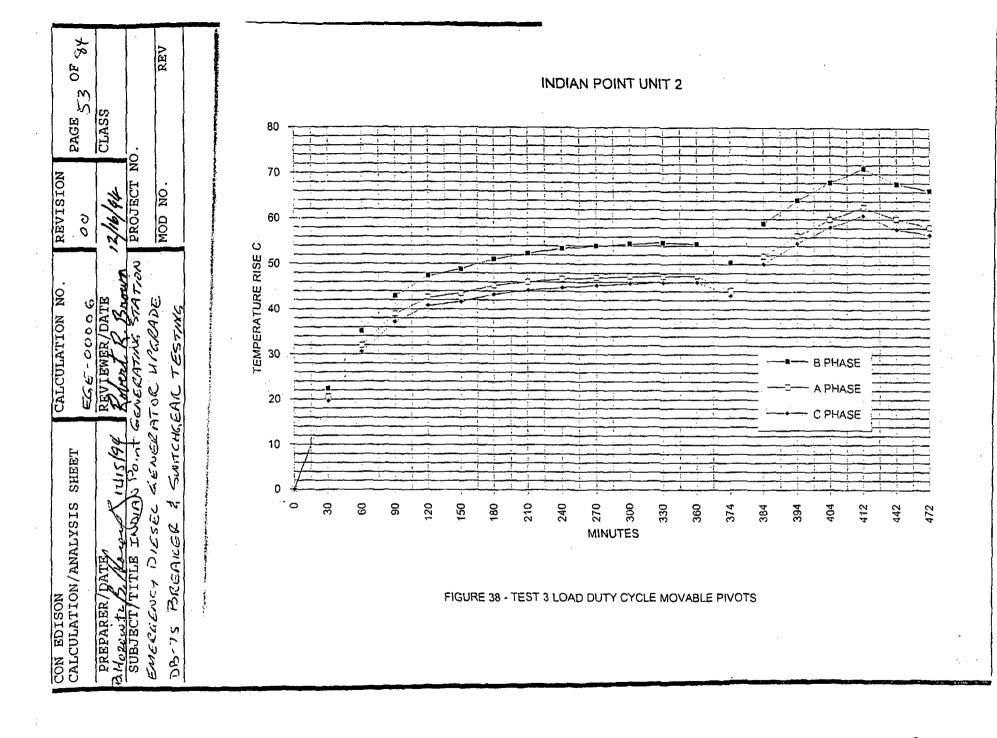


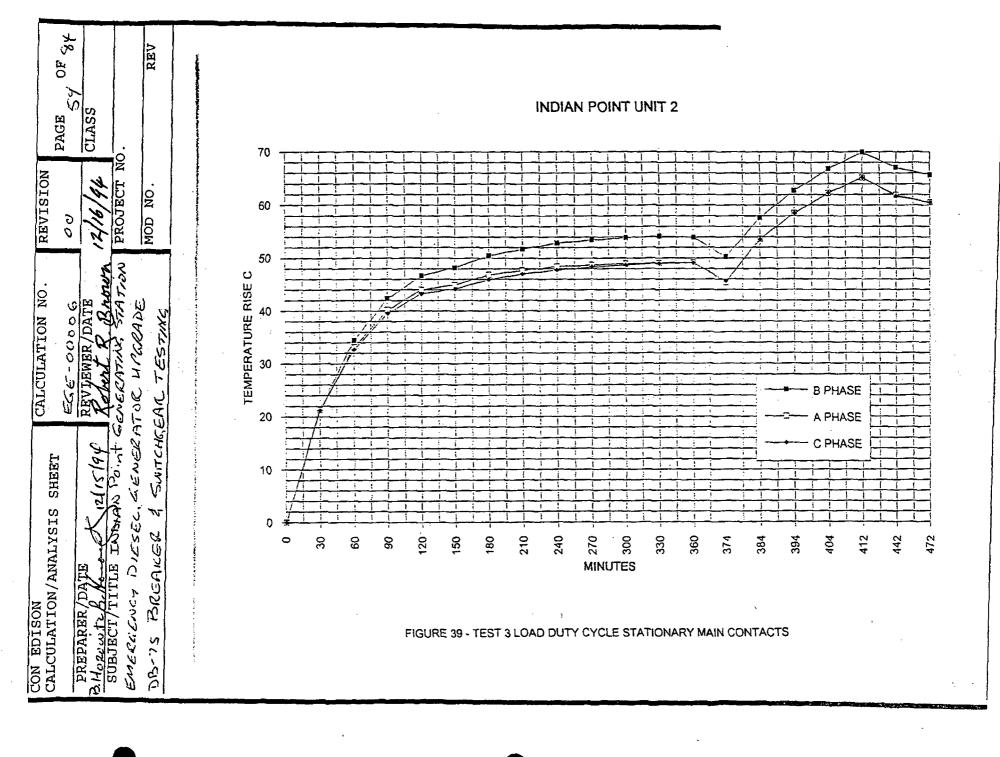


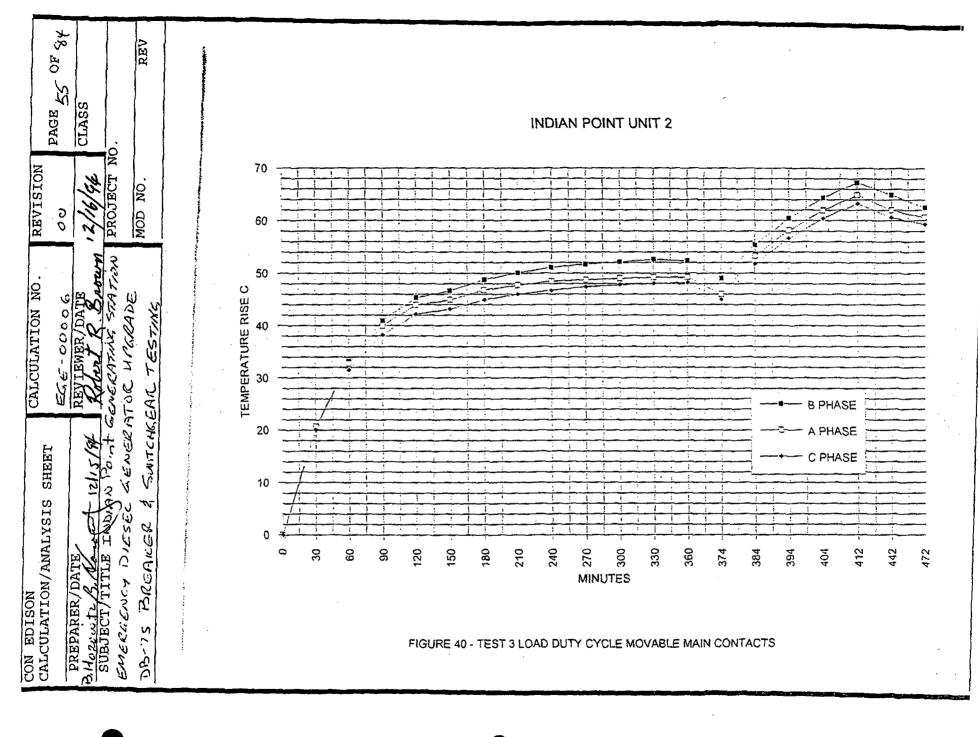


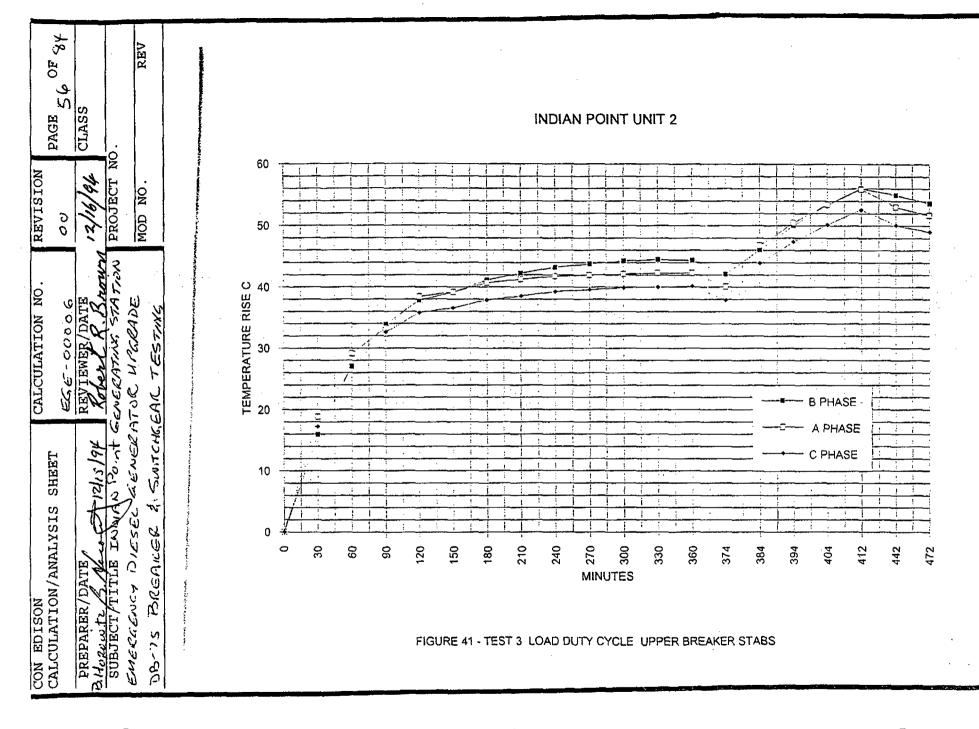


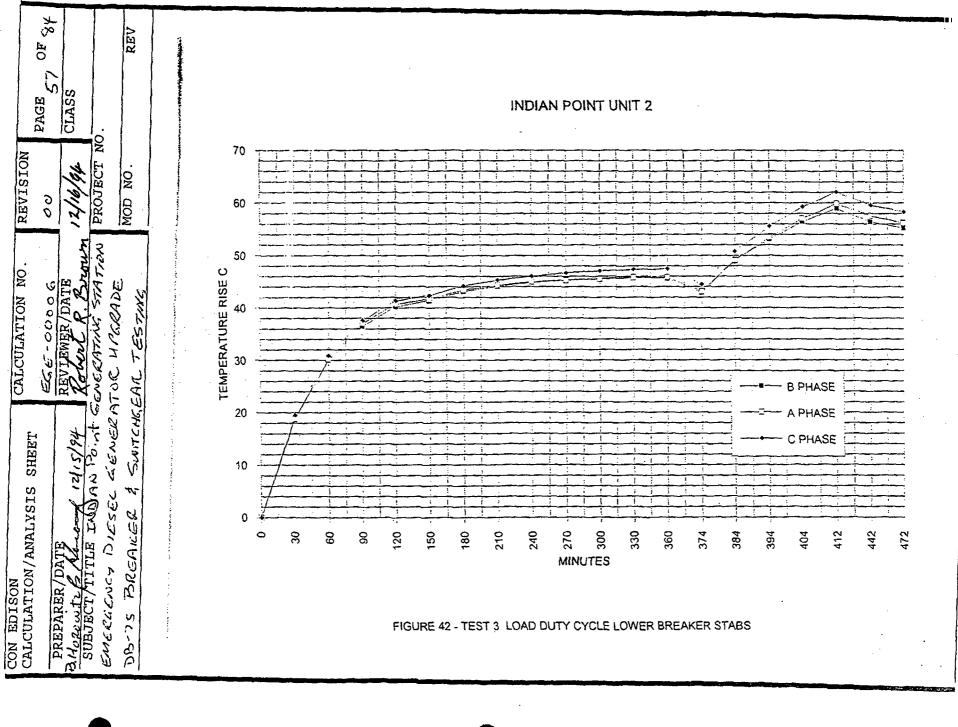


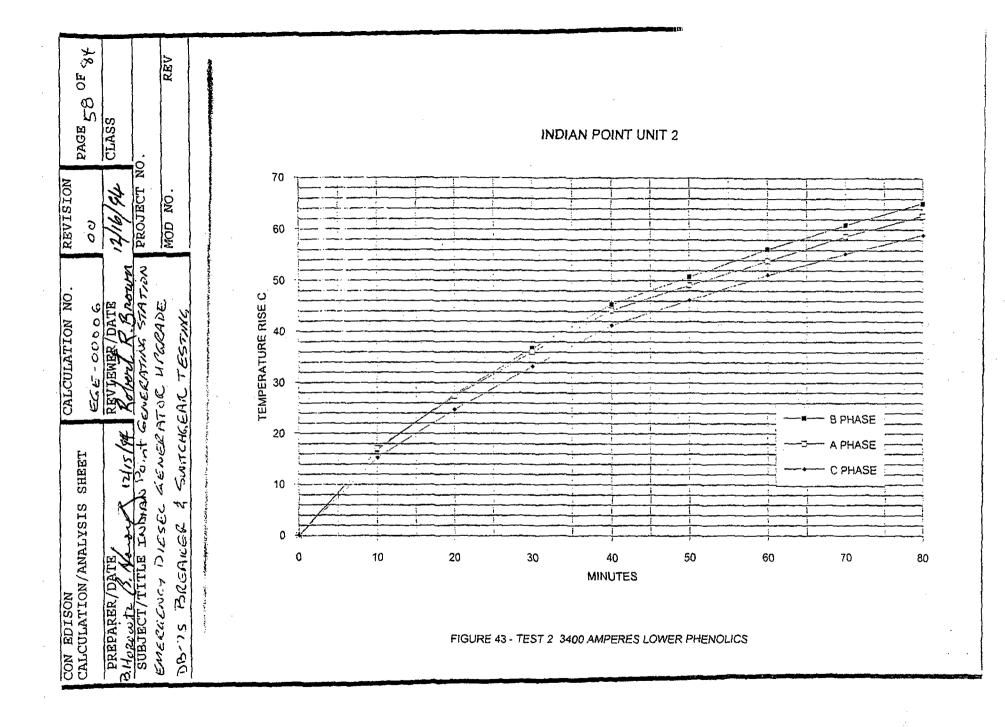

•

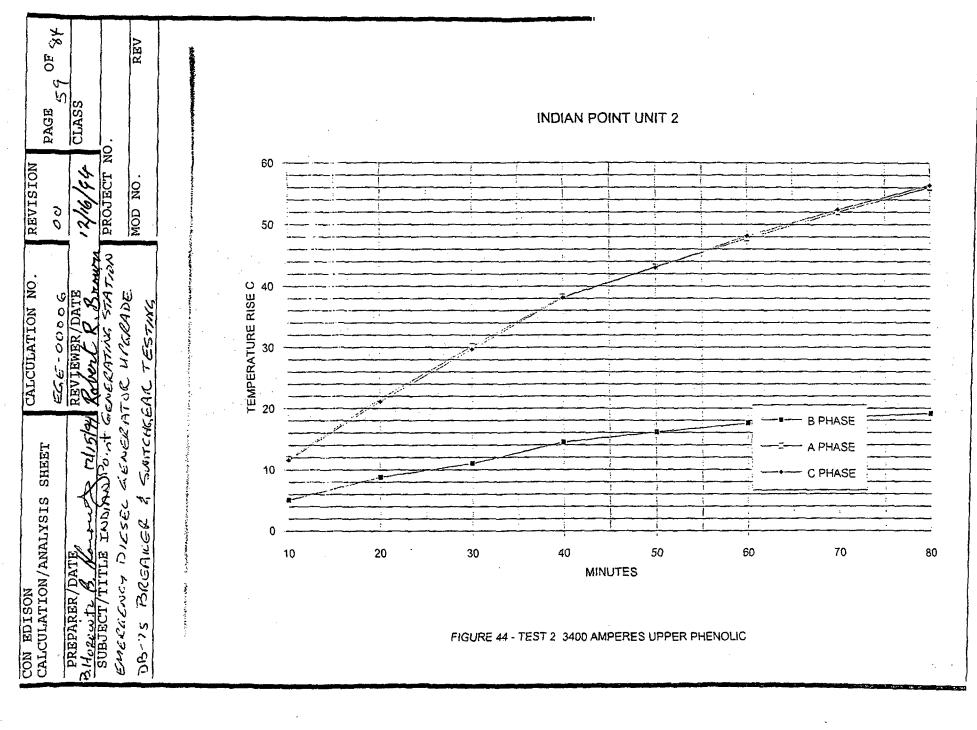


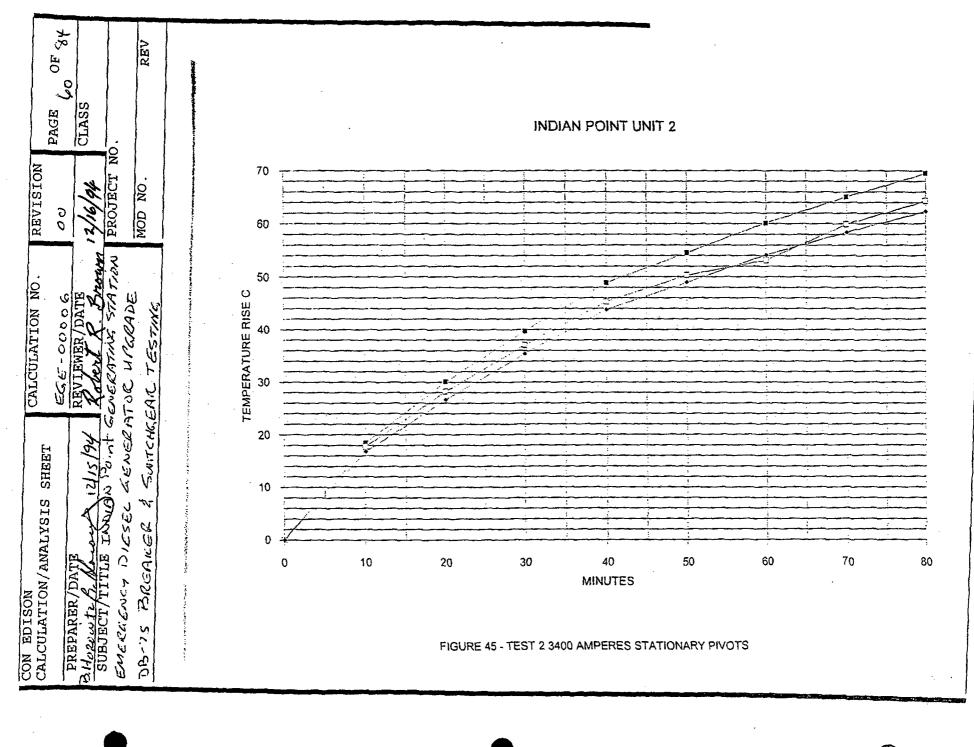



2 ^{OF} SF REV	
ABVISION PAGE 5: OU PROJECT NO. MOD NO.	INDIAN POINT UNIT 2
ELGE-COOOG ELGE-COOOG REVIEWER/DATE REVIEWER/DATE REVIEWER/DATE REVIEWER/DATE REVIEWER/DATE REVIEWER/DATE A.C. TESTING A.C. TESTING	50 50 40 30 50 50 50 50 50 50 50 50 50 5
SHEET IC/15/94 No 100.07 Ge	20
CON EDISON CALCULATION/ANALYSIS PREPARER/DATE Reparent Date SUBJECT/TITLE INNIA SUBJECT/TITLE INNIA EMEERENCY DIESEC DB-75 BREAKER 2	0 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

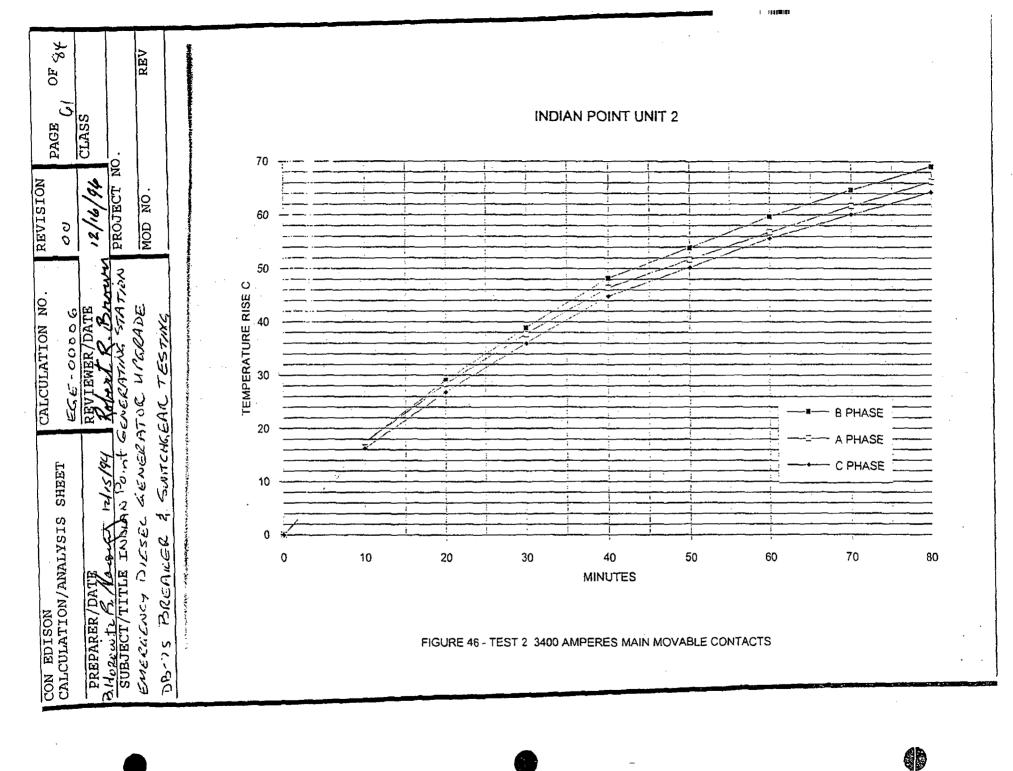


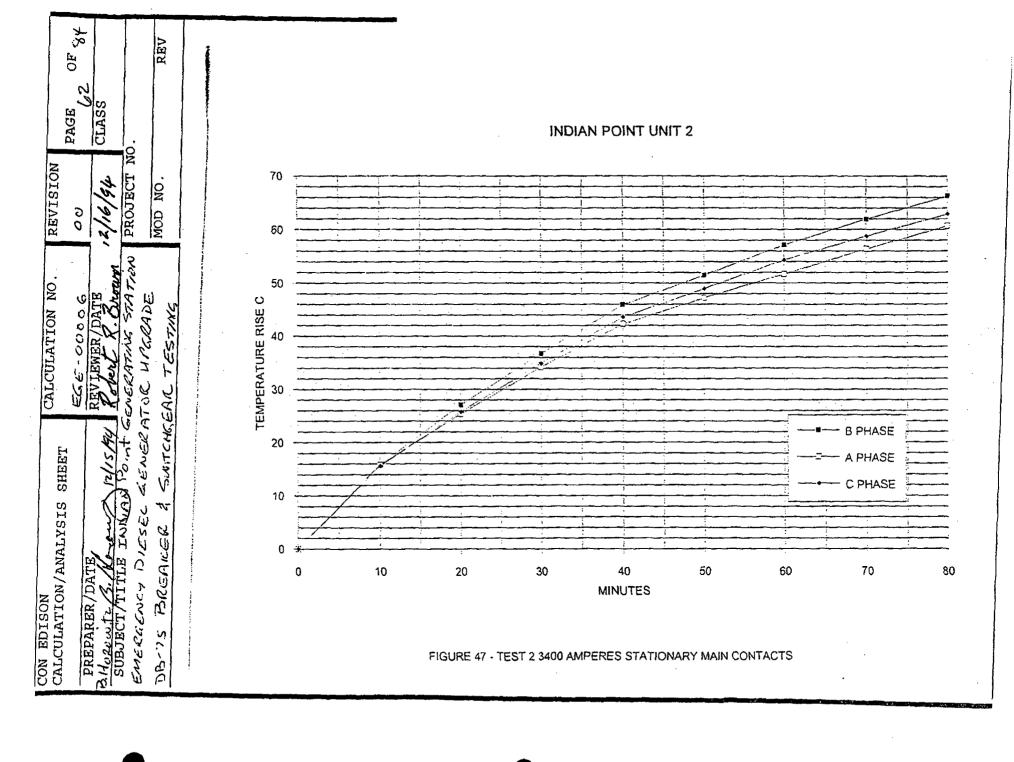


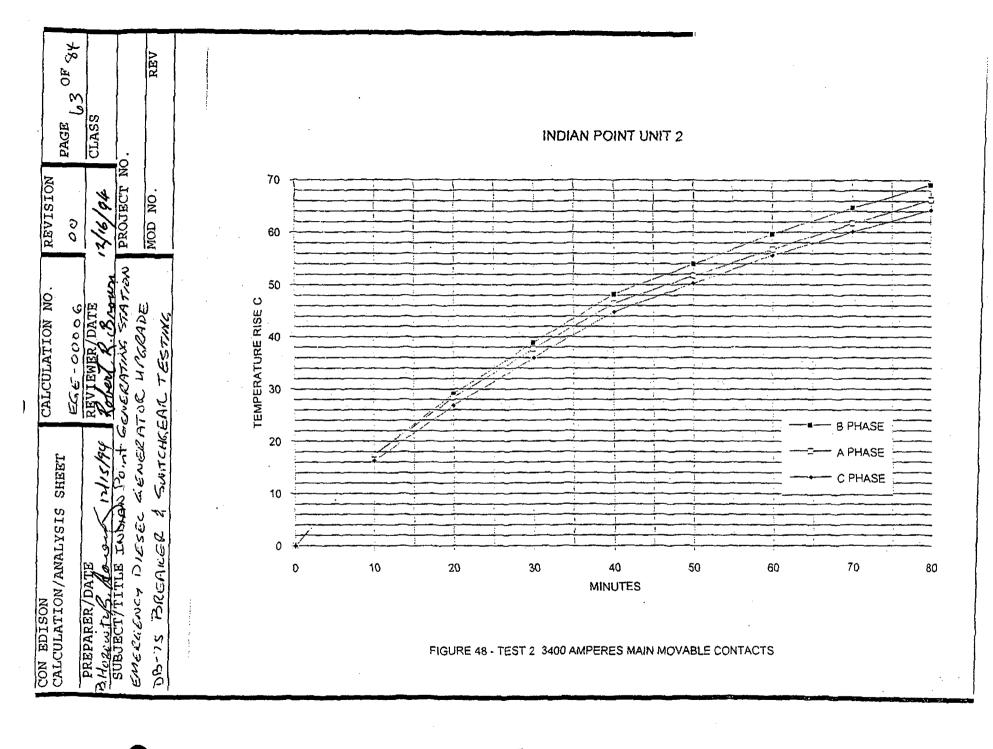


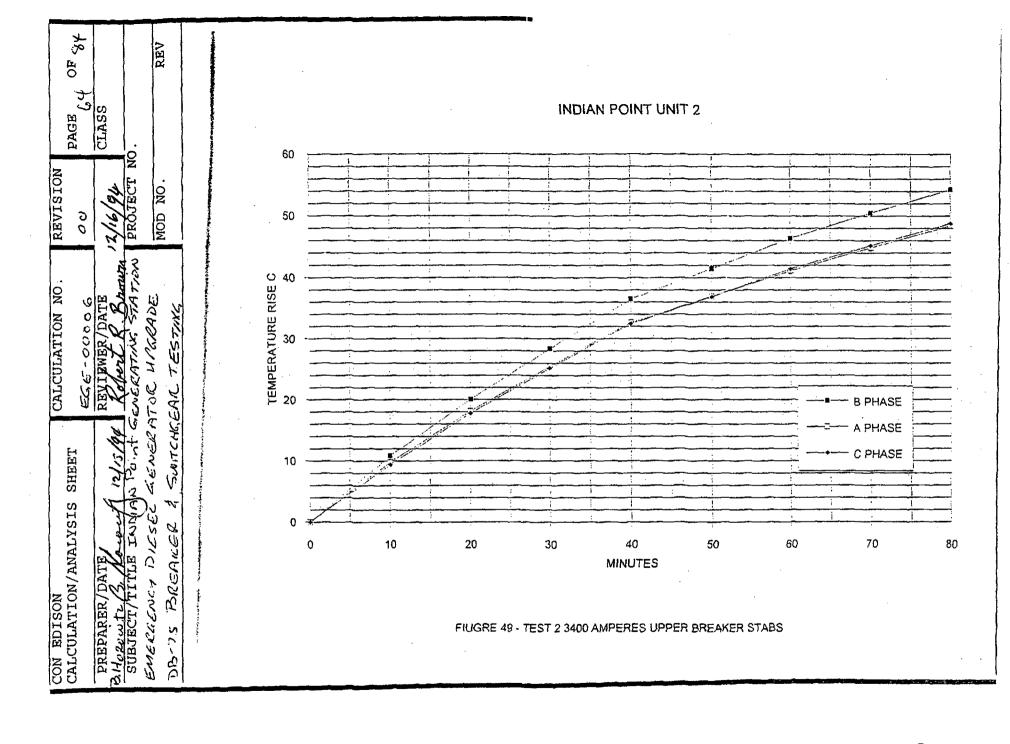


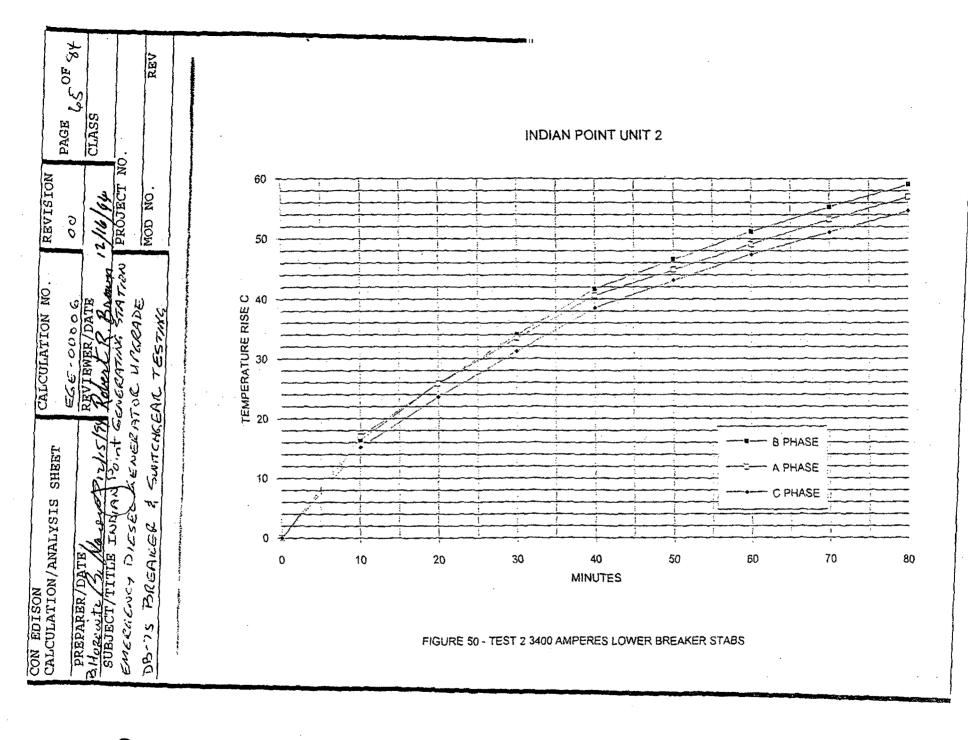
.

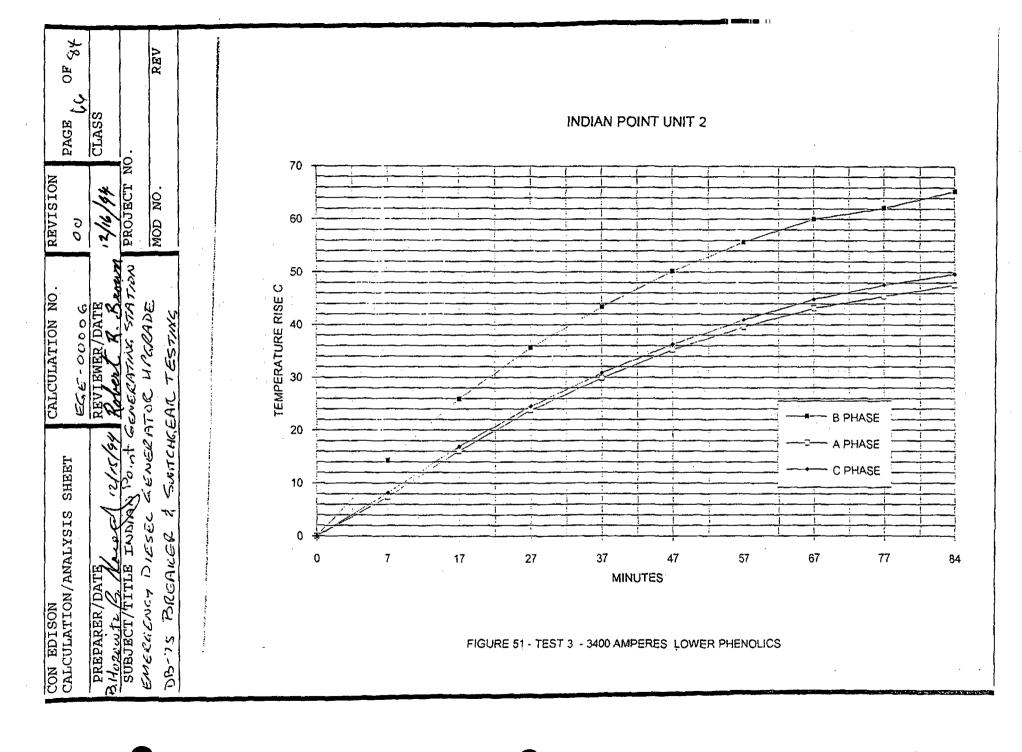


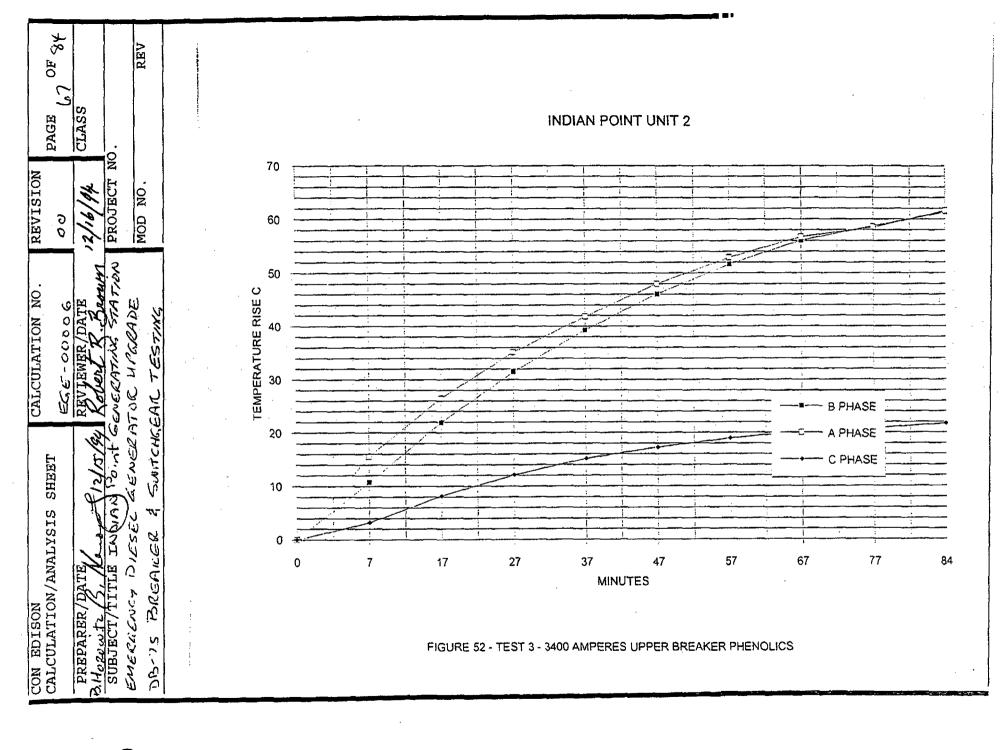


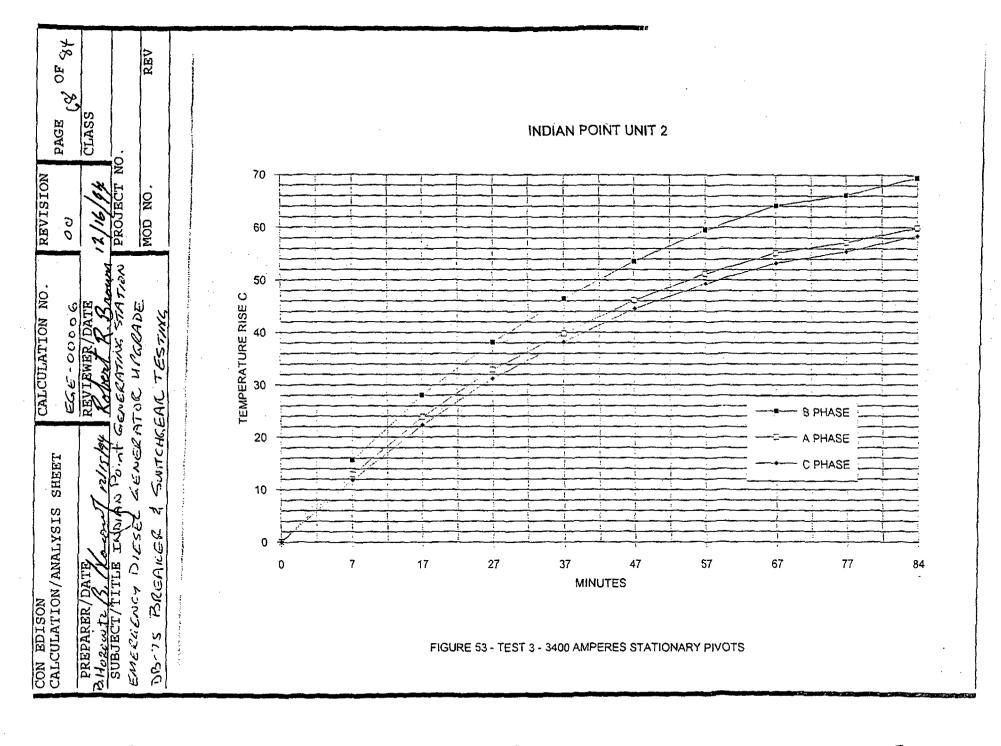


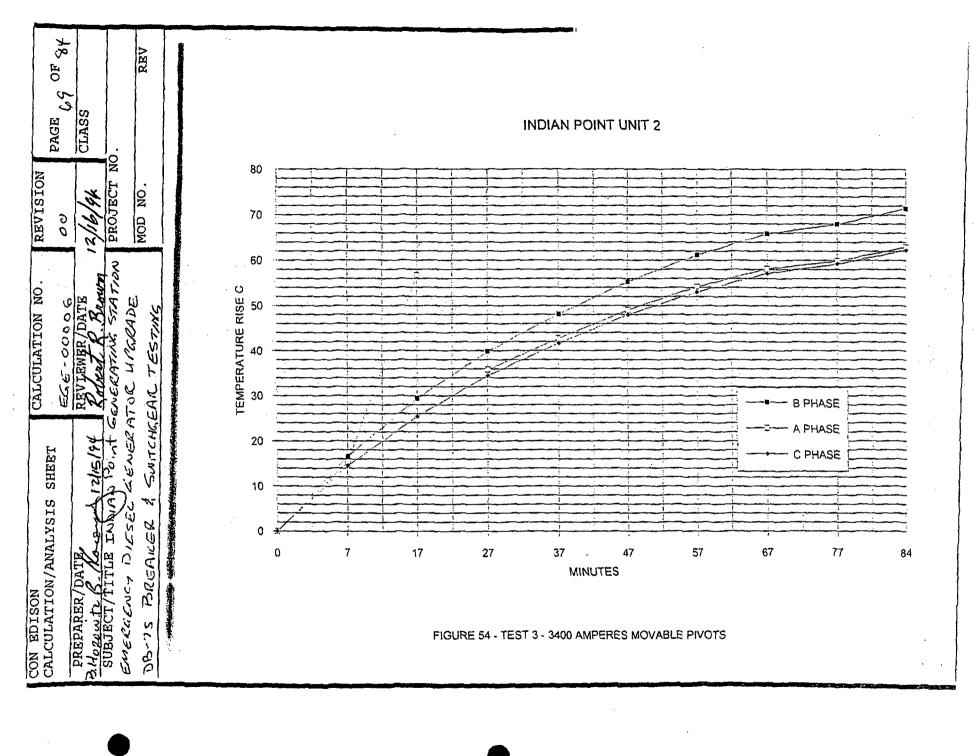

V

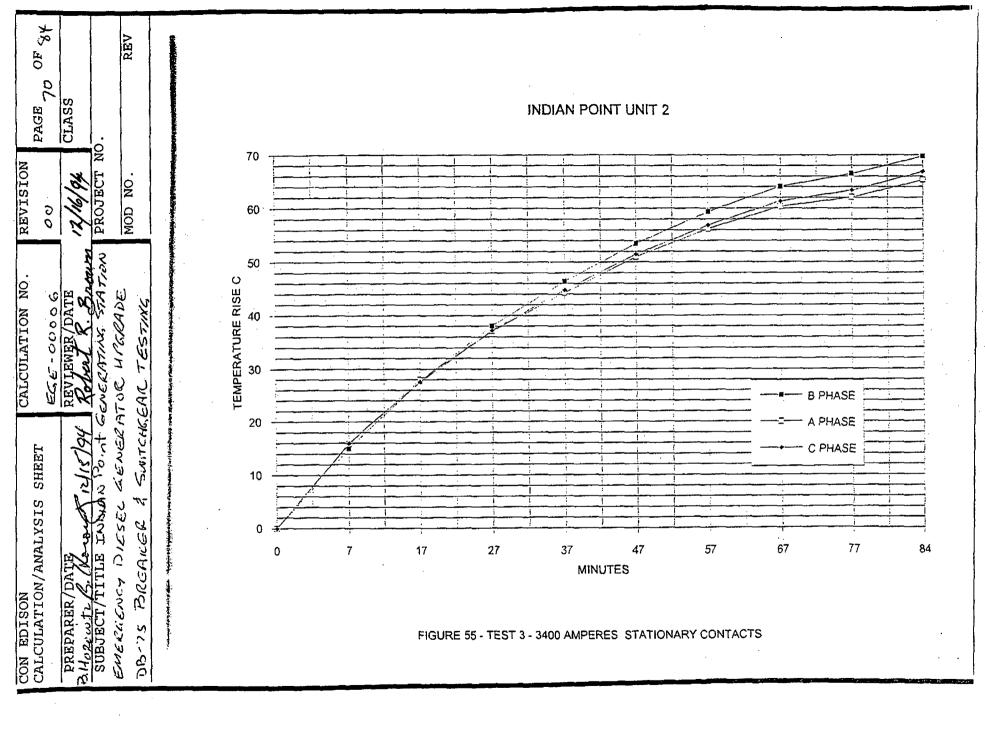


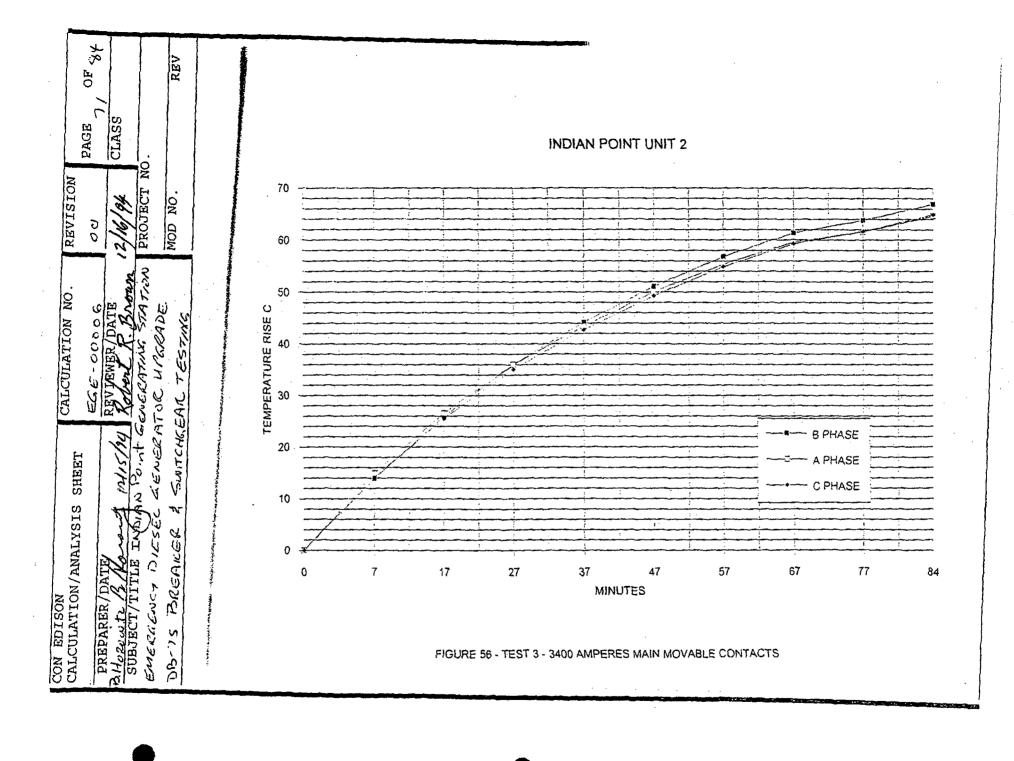


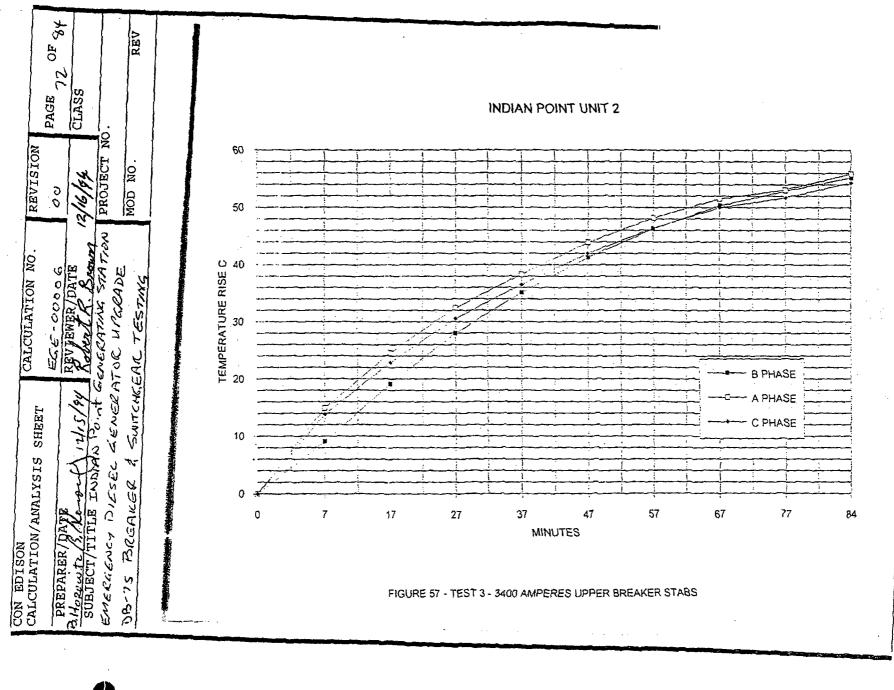

V



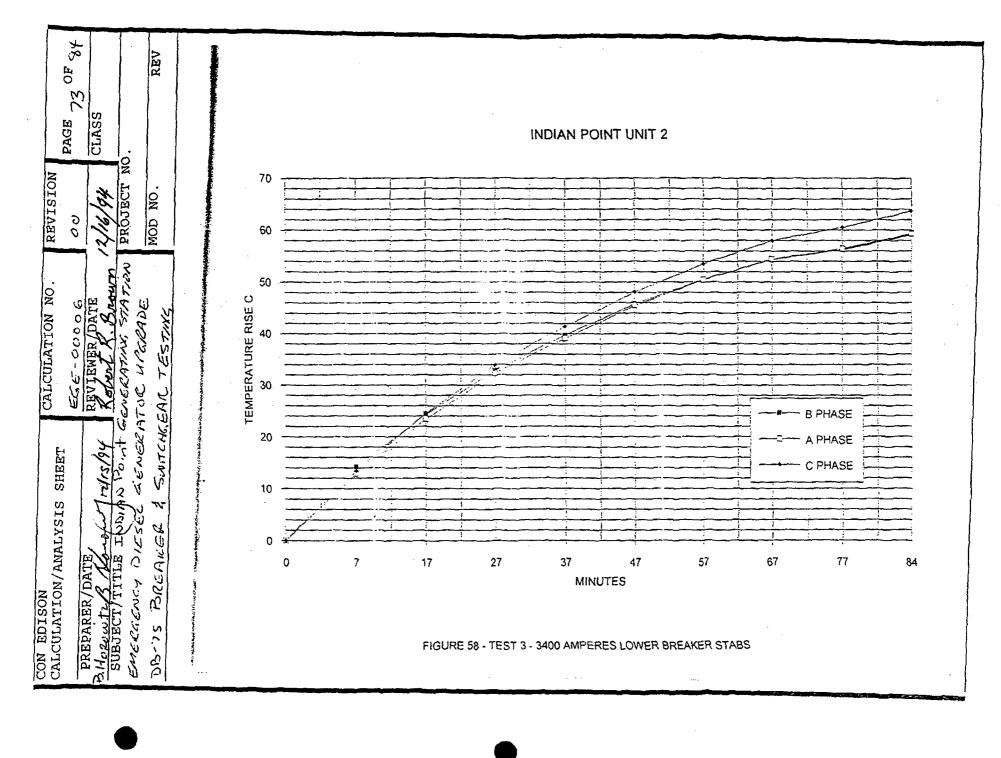


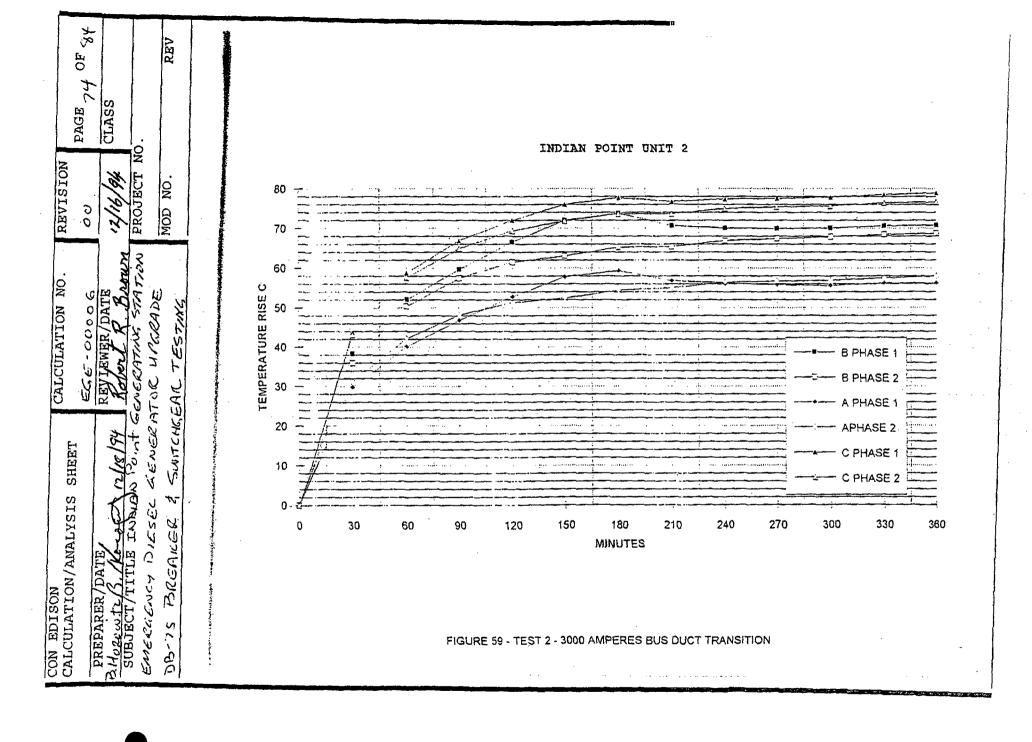



. 1

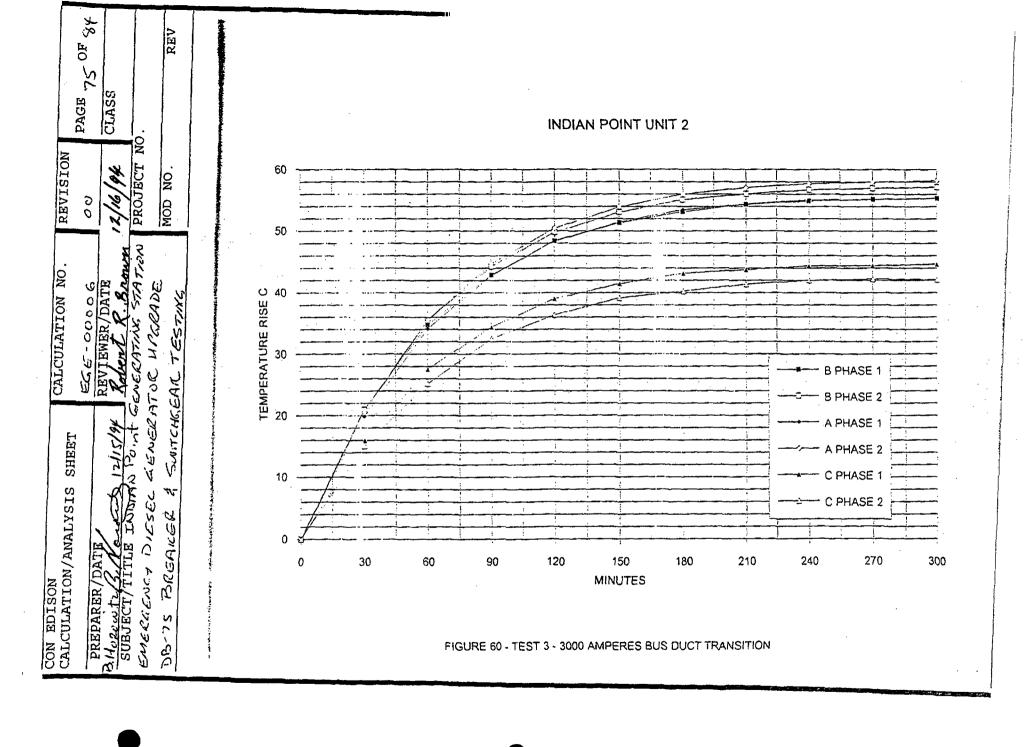


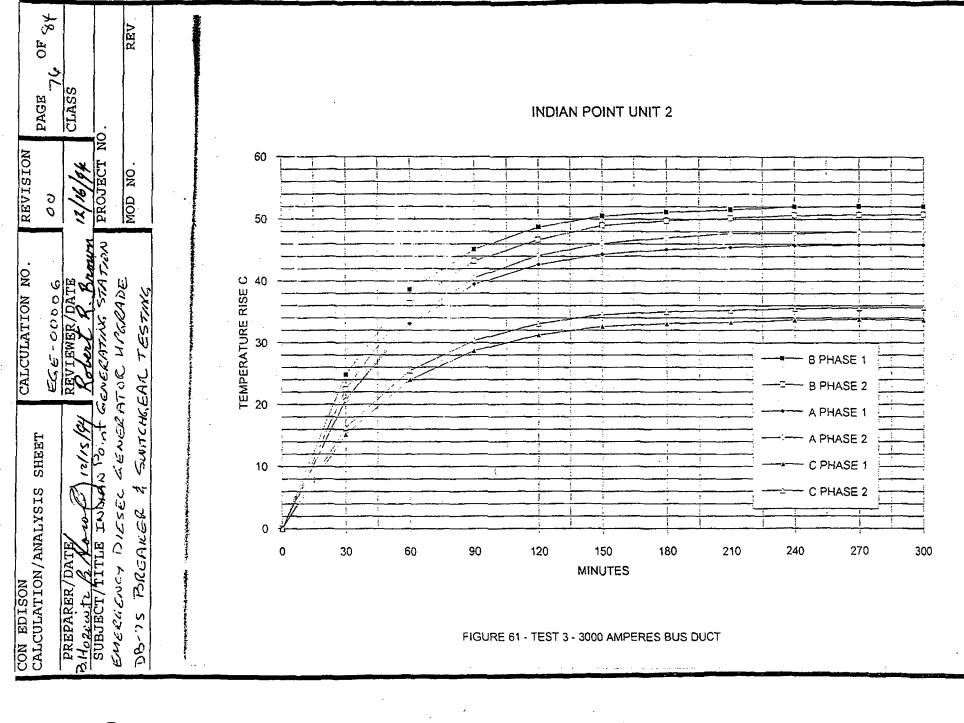
()

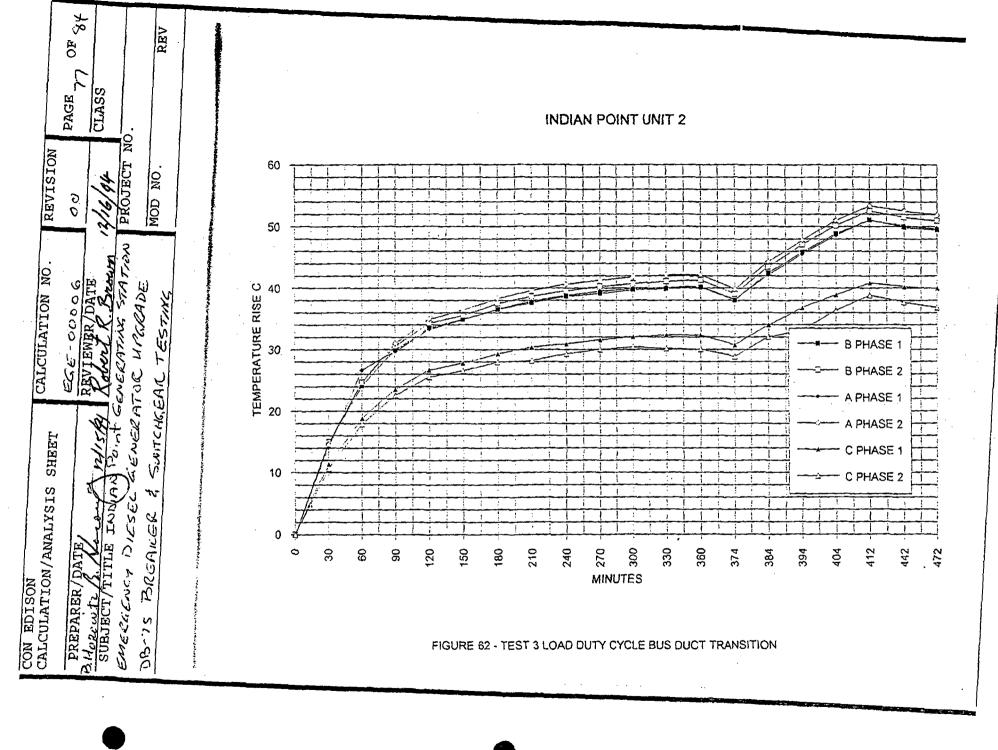


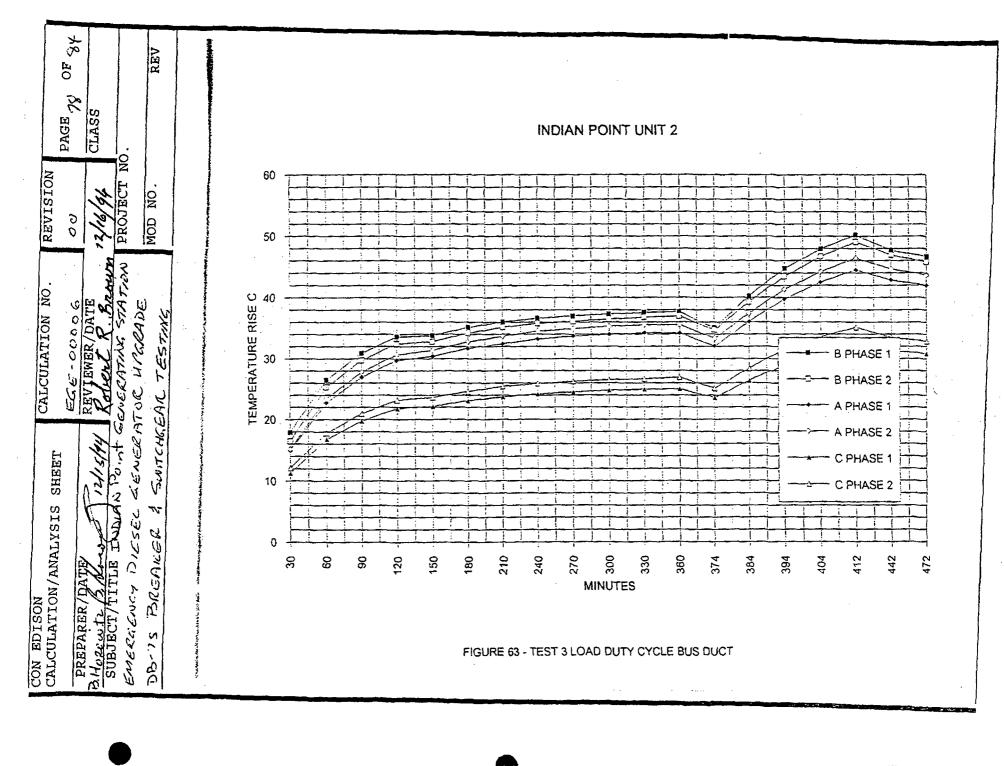


•

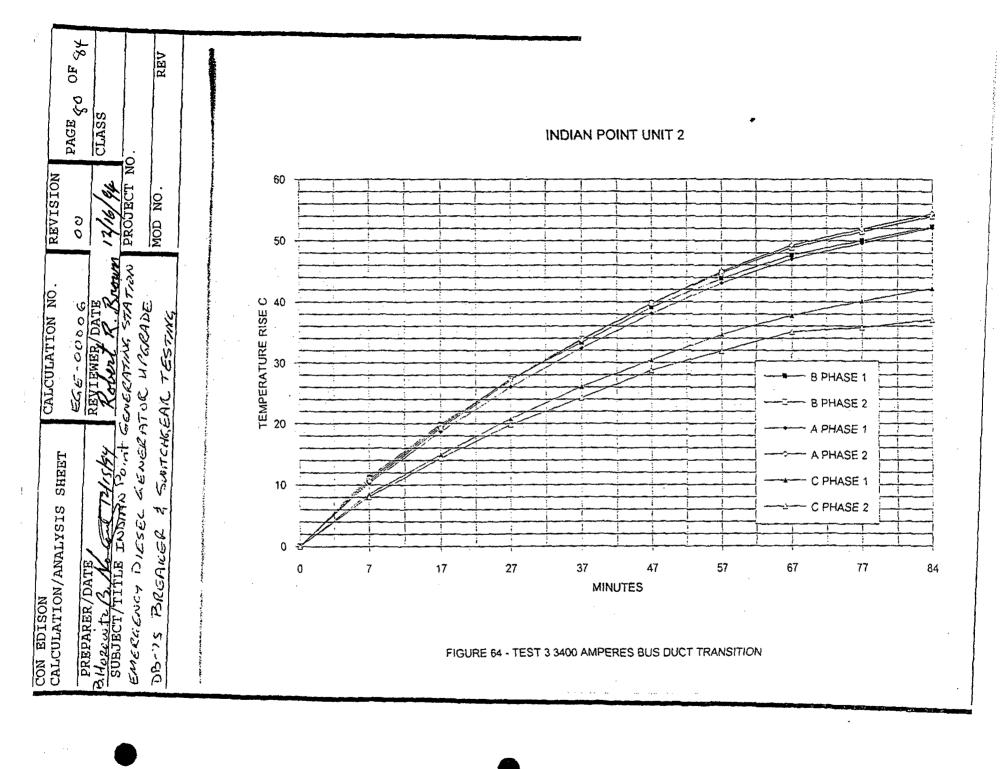

NAMES & MARKED & CONSTRUCT OF A CONSTRUCTION OF

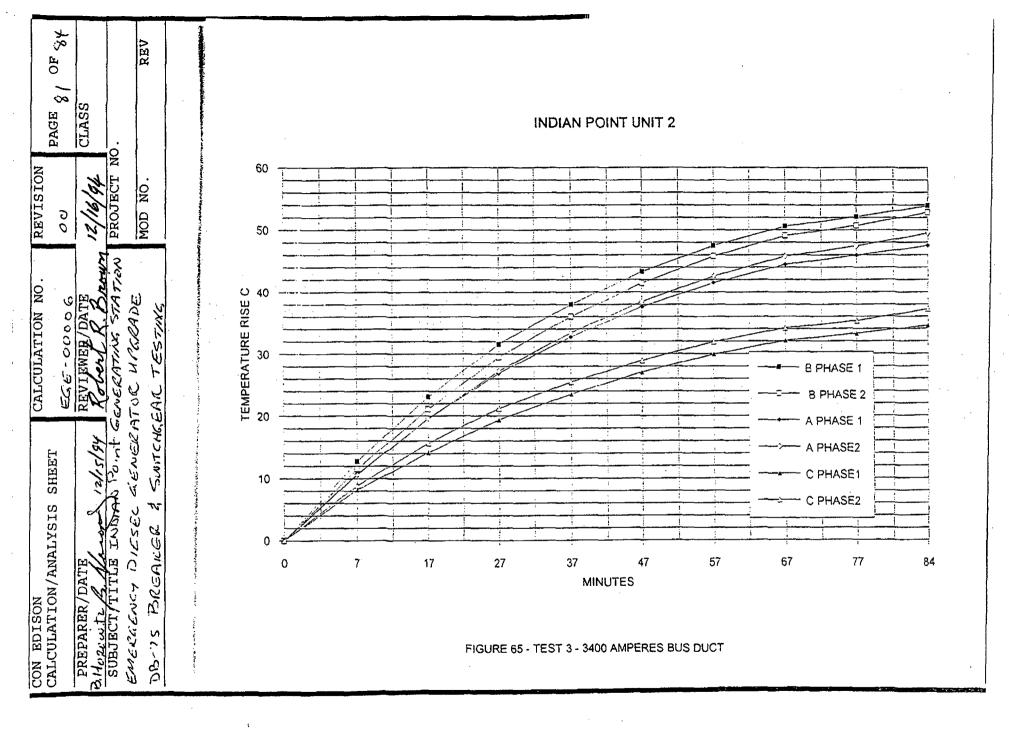

()





·





· Rage 19 missing

CON EDISON CALCULATION NO. REVISION PAGE &2 OF 84 CALCULATION/ANALYSIS SHEET 00 EGE-00006 PREPARER/DATE, REVIEWER/DATE 12/16/94 CLASS SUBJECT/TITLE ENDAN POINT GENERATING STATION and TO18/94 B.Horowtz Blan PROJECT NO. EMERGENCY DIESEL GENERATOR UPGRADE. MOD NO. REV DB-75 BREAKER & SWITCHGEAR TESTING from C37.010-1987, page 23 ал бургаал алу балар соблабол собраб собласта собласта собласта собласта собласта собработ собработ собласти со APPENDIX A THERMAL TIME CONSTANT $\Theta_i = (\Theta_s - \Theta_i) (1 - e^{-t/\tau}) + \Theta_i$ θ_t = Total temperature, in degrees Celsisus, at some time t after the current is raised from I_i to I_s $\theta_i \approx$ Total temperature, in degrees Celsius, due to continuous current I, at ambient 0, θ_{a} = Total temperature, in degrees Celsius, that would be reached if current I, were applied continously at ambient θ_{n} τ = Thermal time constant of the circuit breaker t = timeLet: t = r $e^{-t/t} = e^{-t} = 1/e = 1/2.71 = .369$ Substituting this back into the equation we obtain: $\theta_{t} = (\theta_{z} - \theta_{1}) (1 - .369) + \theta_{i}$ $\theta_{i} = (\theta_{s} - \theta_{i}) (.631) + \theta_{i}$ If the current applied from an ambient (no current preload condition) then θ_1 is equal to zero. The formula then becomes: $\theta_t = (\theta_s) (.631)$ With t equal to τ (thermal time constant), the associated temperature is .631 of the final temperature.

CALCULATION NO.	REVISION									
EGE-00006	00	PAGE 43 OF 84								
Robert R. Brown	12/16/44	CLASS								
GENERATING STATION.	PROJECT N	10.								
	MOD NO.	REV								
, EAIL I ESI/IXC,	J									
ላይ በተለያዩት በመሆን ላይ መሆን የሚገኝ የተሰማ የርጉ የተሰማ የርጉ የርጉ የርጉ የርጉ የርጉ የርጉ የርጉ የርጉ የርጉ የርጉ	and the family of the state of									
	•									
·	LITY									
987 page 23										
spot total temperat	ure from 7	lable 1, in								
lied by the breake	er during	the A hour								
peres										
The above formula is used in conjunction with the formula which calculates allowable operating time for short time overload. This formula determines the temperature at any given current based on the known rated current and its associated rated temperature rise. We can use this formula to perform the reverse. Knowing the temperature rise for a given current, can calculate the current necessary to reach the maximum allowable temperature for that component. The formula for this is then:										
Y)										
Example: For the movable pivots during the 2500 ampere test, temperature rise for B phase was 52° C. The maximum current rat based on the above temperature rise and current is as follows:										
)=3285										
)=3285										
)=3285										
)=3285										
)=3285										
)=3285										
	APPENDIX B OUS OVERLOAD CAPABIN 287 page 23 Spot total temperat ed prior to application withing time for short ried by the breake ing the application withing time for short the temperature at an out of the second the second peres d in conjunction withing time for short the temperature at an ating time for short the temperature at an int and its associat mula to perform the iven current, can com maximum allowable to or this is then: Y) pivots during the 2 se was 52° C. The maximum capability of the second perform the correct of the second the se	EGE-00006 00 REVIEWER/DATE 12/16/44 Revert R. Brown 12/16/44 GENERATING STATION PROJECT N ATOC WARADE MOD NO. GEAL TESTING MOD NO. Spot total temperature from 7 .ed prior to application of I, .rried by the breaker during ing the application of current peres d in conjunction with the for and its associated rated mula to perform the reverse. If iven current, can calculate to mula to perform the reverse. If iven current, can calculate to maximum allowable temperature Y) pivots during the 2500 ampere se was 52° C. The maximum curre								

1 2 2 2	5		N									 -				····-							
OF		1	REV	WITH ALL EDG OPERABLE WITH LOSE OF EDG				<u> 21</u>	WITH LOSS OF EDG 22				WITH LOSE OF EDG 23										
					EDG 21		EDG22		EDG23		EDG22		EDG23		EDG21		EDG23		EDG21		EDG22		
REVISION PAGE C	CLASS	NON I	0.		TIME IN MINUTES	LOAD IN KW	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS	load in Kw	LOAD IN AMPS	load in Kw	LOAD IN AMPS	LOAD IN KW	LOAD IN AMPS
IS	4	PROJECT	ON .		1	1467	2076	1811	2563	1892	2677	1811	2563	1894	2680	1492	2111	1932	2734	1469	2079	1851	2619
E C		ø Ö	MOD		5		2149	1793		1872	2649	1863	2636	1883	2665	1552	2196	1916	2711	1541	2181;	1853	2622
24		\sqrt{a}	Σ		10	1509	2135		2523	1867	2642	1875			2673	1552	2196	1916			2198		2639
		2			15		2220	1913		1885	2667	1873			2672	1536	2174	1908			2195		2636
	1.	2.3			17		2011	1903		1882	2663	1948	2757		2708	1614	2284		2742		2294		2742
ON		7	'n			1060	1500		2210		2655	1897	2684		2181	1477	2090	1940		1483			2741
	OF.	2K	PGRADE ESTING		22	1056	1494	1278		1595 2096	2257 2966	1899 1620	2687 2292	1265	2182 1790	1130 1131	1599 1600	1941 1623	2747	1486 1487			2744
CALCULATION	00		5 Ì		23		2199		2516 2508	2098	2963	2125	3007		2502	1634		2126	3008	1990			3007
AT		ИŻ,	Es l		23		2131		2493	1762	2493	2125	3007		2918	1928	2728	2120	3010	2284		2125	3007
E.	LEWER		З Г		30	1498		1754	the second s	2051	2902	1799	2546	1735		1601	2266	1800	2547	1957			2546
l <u>j</u>		32			32		2120	1754		2051	2902	1799	2546	1735		1601	2266	1800	2547		27.4	1799	2546
A S	윗 탄	NE Z	ERATUR CHREAR		34		2120		_	1704	2411	1799	2546	1735		1601	2266		2546		2768		2543
			でし		38		2120		2482	1703	2410	1797	2543		1963	1601	2266	1452	2055	1608	2275	1797	2543
ł		Ni	5 8		40	1508	2134	1754	2482	1714	2425	1798	2544	1761	2492	1655	2342	1451	2053	1608			2543
E		2 1	S C	1	45	1498	2120	1754	2482	1703	2410	1795	2540		2508	1666			2069		2290		2543
SHEET	1	5ho	a eneritie Suitche		60	1496	2117	1688	2389	1683	2382	1731	2449	1696	2400	1653	2339	1386	1961	1605	2274	1731	2449
CON EDISON CALCULATION/ANALYSIS SI	PREPARER/DATE/	TL / TITLE INSUM	DIESEC -			NOTE:		2)DAT DATEI	ia def D 11/9 Umitii	RIVED F 0 NG CA	ROM ASE	ON A WCAF	9 12650 INDIA	6 "EME N POIr	RGEN(CY DIE					ig stu	DY"	

Page 1 of 4

DESIGN VERIFICATION CHECKLIST

Answer all questions. Attach copies of all comment forms and additional sheets as needed. Checklist questions that do not apply to the items being verified shall be noted as N/A, not applicable.

*Document No. EGE-00006-00 Revision 0 INDIAN POINT GENERATING STATION EMERGENCY Title DIESEL GENERATOR UPGRADE DB 75 BREAKER & SWITCHGEOR TESTING

___ Rev____ _____ Mod No.__ Project No.___

NO.

Design Verifier____

_ Disc Engr_

Comments

Item

- Were the inputs correctly yes (Deasel Load Study & EBASCO ward studies selected and incorporated were used to solect worst case operating conditions into the design? 1.
- Are assumptions necessary 2. to perform the design activity adequately described and reasonable? Where necessary, are the assumptions identified for subsequent reverification when the detailed activities are completed?
- 3. Are the quality assurance specified?
- appropriate YES the purchase or der ferthe equipment lestery and quality specifies the appropriate Q.A. checks. In turn requirements the testing facility was also verified for Q.A.
- 4.

Are the applicable codes, yes we looked at the various standards in standards and regulatory these at the time of manufacture of the requirements, including these of manufacture of the issue and addenda properly equipment and present day standard. requirements for design The more stringent requirements were met?

For multiple design documents, subject to a single verification, enter the words "see attached list" and attach a list of all documents, their revision numbers and titles.

	Item	<u>Comments</u>
5.	Have applicable construction and operating experience been considered?	YES
6.	Have the design interface requirements been satisfied?	N/A
7.	Was an appropriate design method used?	NIA
8.	Is the output reasonable compared to the inputs?	YES
9.	Are the specified parts, equipment and processes suitable for the required application?	NA
10.	Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?	NIA
11.	Have adequate maintenance features and requirements been specified?	NVA
12.	Are accessibility and other design provisions adequate for performance of needed maintenance and repair?	N/A
13.	Has adequate accessibility been provided to perform the in- service inspection expected to be required during the plant life?	NIA

Page 3 of 4

DESIGN VERIFICATION CHECKLIST

Item

Comments

- the 14. Has design properly . considered radiation exposure to the public and plant personnel?
- 15. Are incorporated in the design documents sufficient to allow the original equipment verification that dociment verification that design requirements have been satisfactorily accomplished?
- Have adequate pre-operational and subsequent periodic test 16. requirements been appropriately specified?
- 17. Are adequate handling, storage, cleaning and shipping requirements specified?
- adequate identification 18. Are requirements specified?
- 19. Has ALARA been adequately considered using E as a quide?
- 20. Were the results of the EQ and evaluation quidelines SQ contained in Section 5.2 of OP-290-1 reviewed?
- 21. Are the applicable standards for EQ and SQ listed in the equipment specification?

the acceptance criteria The acceptance cuteria is the same as

N/A

NIA

N/A

NYA N IA

NIA

All applicable industry standard were applied

Page 4 of 4

DESIGN VERIFICATION CHECKLIST

Item

- 22. Are the vendor qualification documents for EQ and SQ requested in the equipment specification?
- 23. Have system/equipment electrical protection requirements been appropriately specified? (see EI-2028, "Protection Setting and Coordination Criteria")
- 24. Have the corrosion effects of boric acid been considered?
- 25. Are the necessary supporting calculations completed, checked and approved? Are all required calculations completed?*
- 26. Have all the affected design documents been identified?

27. Does the design satisfy the requirements of the initial request?

- 28. Have the impacts on all DBDs been considered?
- 29. Are the safety margins for the impacted systems for the proposed modification still adequate?

Comments Y65, but because of a lack of delailed analysis this colculation was performed to supplement the vendors results.

NIA

YES

YES

VES TO Determine limiting component and weight that aparating conditions do not cause it to be exceeded

NA

YES They did not charge.

* The person verifying this item may be a different person than the person(s) who reviewed the calculations for correctness. In such situations, it is not necessary to do another check of the correctness of the calculations provided the "Calculation/ Analysis Summary Sheet" is properly signed off by the reviewer.

ROBERT R. BROWN Robert R Brown 12/16/94 (print/signature) date Design Reviewer: 12/20/94 ched for Supervisory Concurrence: RICHARD M. 130664 (print/signature) (if required)

ATTACHMENT 4, ENCLOSURE 2 TO NL-08-101

Satin American Report QA-1181-R01, "Report for the Thermal/Current Testing and Evaluation of Westinghouse, Type DB 480 Volt, 3000 amp, Switchgear, Air Circuit Breaker, and Bus Duct, for Class 1E Service", dated June 18, 1991.

> ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

NL-08-101 Docket 50-247 Attachment 4, Enclosure 2 Page 1 of 1

.

The Satin American Report QA-1181-R01 is labeled proprietary. It is available for review pending response to a request to release the report.

ATTACHMENT 4, ENCLOSURE 3 TO NL-08-101

Procurement QA Reference No 906-9, "Class A Vendor Evaluation – Satin American", dated June 27, 1990.

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

.

CASS A VENDOR EVALUATION

Procurement QA Reference No.: <u>906-9</u> N_, R X, Date: <u>JUNE 27, 1990</u>; M_ Vendor Code: _____ Report Date: <u>June 27, 1990</u>

TO: John A. Nutant, Vice President Purchasing Department

FROM: Joint Committee for Vendor Evaluation

SUBJECT: Class A Vendor Evaluation

The following vendor has been evaluated in accordance with CI-240-1 for the commodity listed. Placement on the Class A approved vendor list is hereby approved based on the statement below.

22190 VENDOR			CODE	COMPEDITY DESCRIPTION
SATIN AMERICAN P.O. BOX 619 40 OLIVER TERRACE SHELTON, CONN 06484			580-0099	REBUILTBREAKERS/SWITCHGEAR & TESTING OF SAME
(203)928-6364	E.O.:	3ØC		
······································	SUPPLEMEN	TARY CA	PABILITIES APP	ROVED

 The vendor will be responsible for 10CFR21.
 Yes X, No _

 The vendor has qualified his products for 1E applications.
 Yes X, No _

 Other:
 Yes _, No _

BASIS FOR APPROVAL

X Manual Review X Verification of Implementation

_ Procedure Review

X_Past Performance ____ Other

FOR SPECIAL OA PROGRAM IMPLEMENTATION SER EXAMINER'S SUMMARY

Yes_ No X

Evaluation findings and identification of documents reviewed are listed on page 2 of this report. Purchase orders or requests for quotations placed with this vendor must contain the following statement(s): "Compliance to Satin American's QA Manual dated 10/88 is a requirement of this purchase order. Con E.J. Dadson to schedule surveillance of first order. If this is not your current manual, please send a copy of the latest revision to the office of E. J. Dadson, Manager of Procurement Quality Assurance, Room 615S, 4 Irving Place, New York, NY 10003. Overnight delivery is preferred."

Quality Assurance: Engineering Purchasind: Distribution by PQA:

Distribution by PGA: Original for Action Chief Mechanical Engineer - by Tom Talbot Purchasing Director - R. J. Ver Hoven For Information Only George Owens Jim Sheehan PQA Vendor Folder PQA Central Files

Date: Date:

Distribution by Purchasing for Information Only IP#2 QA Manager - John McAvoy Evaluation Requestor - G. BLENKLE

Procurement QA

CLASS A VENDOR EVALUATION REPORT

			E.O. #: <u>30C</u>
Q A Manual: <u>QAM</u>		Rev.:	Date: <u>10/88</u>
Evaluation Requested By: GERARD		Ext.:	
Vendor Contact: <u>R. MATTINERICH</u>	Tel.: (203)929-6364		
EVALUATION METHOD:	PERFORMED BY	EXTE	ISION
X_ OA Manual Review	<u>V FERRETTI</u>	6	277
X Facility Implementation Check	<u>V FERRETTI</u>	<u>6</u> :	277
X Past Performance Review	<u>V FERRETTI</u>	<u>6</u>	277
Other:		-	

Vendor Quality Rated QCIR's (in past five years): _____

EXAMINER'S SUMMARY:

: .

в

SEE ATTACHED REPORT

Evaluation of Satin American

Organization/Facility

Satin American 40 Oliver Terrace Shelton,Connecticut 06484 203-929-6354

Product/Service

Rebuild/Test of Breakers/Switchgear

Survey Performed by:

Vincent C. Ferretti

May 23, 1990

Date

• • •

<u>Scope</u>

An implementation survey of Satin American's QA Program dated 5/14/90 was performed. The written program was found to be in compliance with CI-240-1 and 10CFR50, Appendix B. Implementation of the QA program could not be adequately verified in all areas, as there was no nuclear work in process. A review of two nuclear jobs that were recently performed was used as the survey basis.

The following areas of the QA program were verified during the course of the survey:

Organization/QA Program

Satin American has a well defined Organization as spelled out in their written QA program. All responsibilities and authority is detailed with the QA Manager having complete responsibility for the administration of the QA program.

Procurement Document Control

All purchase orders are prepared by the purchasing department with the QA Manager reviewing all orders. PO # 7877-7,7877-8,7877-99 were reviewed to assure QA review and QA requirements were included.

2 of 4

Instructions, Procedures, Drawings

Satin American has a complete list of Standard Operating Procedures(SOPs) which augment the QA manual. SOPs are available for all areas of the QA program along with manufacturing procedures for the assembly and test operations.

Document Control

Revision levels of all documents (SOPS and QA Manual) was reviewed and found to be up to date. On reviewing travellers in previous job folders, it was noted that Satin American did not call out revision level of drawings on traveller. This was noted as an observation to Satins'QA Manager and will be followed up on for Con Edison work.

Control of Purchased Material

All purchase orders reviewed were verified to be procurements from approved vendors. Satin Americans' Approved Vendors' List was reviewed and was found to be up to date. Specific audits of Power Test and file for Echo Tech were reviewed to assure compliance with Satin's QA program. In the case of Power Test, it was noted that audit findings had yet to be closed out. A follow up will be conducted during the next visit to Satin American.

Identification and Control of Materials/Inspection Status

Travellers and tags are used to identify materials and maintain status of manufacturing and test operations.

Control of Special Processes

As the only special processes employed by Satin is brazing, this operation was verified to be controlled in accordance with SOP 9-1 which requires 4 hours training of employees performing brazing operations.

Control of Measuring and Test Equipment

Calibration of test equipment is performed by an outside approved laboratory. Verification of Satins current calibration status of Hi-pot test unit #00115 and electric test meter # 00133 was performed to assure compliance with the written program (SOP-12-1).

Nonconformances/Corrective Action

Nonconformance reports from previous jobs were reviewed to assure compliance with Satins' QA manual. Nonconformance # 5-90-001 was reviewed and was found to be in accordance with the QA program. In reviewing the past nonconformance reports, it was noted that the signature block for the Project Engineer had been inadvertently removed. As no new reports had been issued, a recommendation was made for Satin to revise the form as per the QA Manual.

QA Records

Although, QA records reviewed were found to be intact with indexes and traceability for all materials, it was noted that the files are not kept in fireproof files as required by Satin's QA Program. The QA Manager explained that Satin had just had a fire, and the new files were not available. A review of QA records will be performed during the next visit to Satin American.

Audits

Internal audits of the QA program are performed by an outside agency. Audits were found to be up to date with no outstanding findings open. It was noted that the independent auditors certification had recently expired, but since no audits had been performed since the expiration, a recommendation was made to update the auditors' certification.

Areas not checked:

Because Satin American had no nuclear work in process the following areas of their QA Program could not be verified:

Inspection, Handling, Storage and Shipping, Test Control, Design Control is limited to control of customer drawings.

Summary

During the course of this survey, it was noted that Satin Americans QA Program is written for nuclear work, with no controls over non nuclear work.

As the work presently being proposed by Satin American to Con Edison is for the IP-2 project, the writer recommends all work be performed in accordance with the written QA program. This includes rebuilding of DB-75 breaker for the Diesel Generator upgrade and testing of the subject breaker. This breaker will be a mock up (like and kind) of the type installed at Indian Point.

Additionally, it was noted during the survey, that Satin American has no written procedures for the breaker testing. However, standard test checklists are available.

Should Con Edison require a special test procedure, Con Edison Engineering should specify this requirement to Satin American.

Recommendation

٤

It is hereby recommended that Satin American be approved for the noted work with the requirement that Con Edison Engineering witness all testing both at Satin American and at Satins' vendors-Power Test and Echo Tech.

-

cc: G. Blenkle B. Horowitz

Vince derrette / jeni.

4 of 4

ATTACHMENT 4, ENCLOSURE 4 TO NL-08-101

GE Report DER-1691, "Engineering Evaluation of Increasing Overloading Capacity on the Diesel Stand-By Gen Set at Indian Point Nuclear Power Plant, Consolidated Edison Co of New York", dated October 13, 1989.

> ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

	memorandum		
		October 30,	1989 Ni 1848 MARING (10) W.
TO:	Michael Miele General Manager Indian Point Station		BS0086
FROM:	Howard Somers Project Engineer-Nuclea Central Engineering	ne 7498	
SUBJEC	T: GE/ALCO Diesel Generato	or Capacity Study	
2035 k from t hour r 90 °F c with C seasor temper may be Mr. Lu hour r for a ie. c I have Engine accurr persor The re output longe: as add	The report stated that wi W can be achieved for a ha he data presented in the r ating of 2100 kW if the di r below. Mr. Martin Lu of E/ALCO and Engineering an al basis (ie. OctMay) or ature monitoring of the di able to be performed duri also verified that the ha ating. This would, therefor half hour followed by one continuous rating = 1750 KW 2 hour rating = 1750 KW 1/2 hour rating = 2035 KW forwarded the analytical hering Department for their cy, and results concluded, and by copy of this memo. The 2205 KW which I am cun t lead item listed in the modate the 1991 Refueling (ditional information become ALCO feel an actual test of ary.	alf hour within a 24 hour report, it may be possib lesel air inlat temperat: GE/ALCO confirmed this interim rating increase interim rating contingent up- lesel air inlet. This in ing the mid cycle outage alf hour rating was in an ore, enable you to opera and half hours at 1950 in which is a state of the appropria revolution regarding i It will also be forward crently discussing with of report is nine months will but age schedule. I will is a available and as to will is	r period. However, le to obtain a half ure is limited to fact. I am pursuing either on a on daily terim modification ddition to the two te up to 2035 kW kW. te Central ts assumptions, ded to station rease the engine GE/ALCO. The hich would keep you informed hether Engineering
M. J.	Bram w/o attachment Caputo w/o Curry DeDonato w/o Durkin, Jr. w/o	C. Jackson G. Perry B. Shepard P. Szabados T. Talbot w/o	

.

.

`

Æ		REPORT DER	⁻ NBR. - <i>1691</i>
GE	NERAL ELECT	RIC CANADA INC.	
	DIESEL EN	GINEERING	
SUBJECT:	CAPACITY ON THE DIESEL	N OF INCREASING OVERLOADING STAND-BY GEN. SET AT INDIAN LANT, CONSOLIDATED EDISON CO	
COMPILED BY:	C. CATANU / M.Y.S. LU	APPROVED BY:	/ Zil
	DISTR WAYNE MORRELL DUNCAN WATT D. CAWL EY J. DOWELL C. OLIVIERA	IBUTION J. STEBBINS J. JOHNSTON J. FAIRLEY H. SOMERS (CON-ED)	
PROJECT NBR. 005699		DATE: 13 October 1989	

I INTRODUCTION:

Three stand-by diesel generating sets were installed at Indian point nuclear power generating station in the late 60's. Utility had conducted a loading study at different operating requirements, which concluded there is a need to increase the overloading capacity of the diesel stand-by generating set.

The objective of this report is to present the engineering evaluation on the diesel engine performance and diesel supporting system and the recommended course of action to modernize the diesel engine and to upgrade the supporting systems.

II DIESEL ENGINE

(1) Existing Engine and Limiting Factors

The diesel engine was sold under Alco order number DE-35211 and with following features:

- (a) 16-251E engine, rated at 1750 Kw, 900 RPM
- 730 turbocharger (b)
- (C) 4 pipe exhaust manifold
- Flat top piston 140⁰ camshaft (đ)
- (e)
- $27 \ 1/2^{\circ}$ timing (f)

Majority of engine components are common to those used on higher rated 251 engines, except components related to engine performance, i.e. turbocharger, exhaust pipe and piston. Hence, the limiting factors of the engine will be the engine performance at higher loading conditions. The analysis of the engine performance is based upon following assumptions:

- (a)
- Adequate air supply to the engine 110° max. air temperature at the engine air (b) inlet
- The back pressure to be lower than 15 inches of (C) water.

After reviewing the engine test results, turbine inlet temperature and cylinder head exhaust temperature are identified to be limiting factors preventing from having the maximum desired load from the engine.

(a) Turbine inlet temperature:

2

The average turbine inlet temperature of the 4 pipe manifold on the existing engine is given in Fig. (1). Based upon this curve, the temperature at higher loading and at different air inlet conditions are estimated. At $110^{\circ}F$ air inlet temperature, the turbine inlet temperature will reach the limit of $1250^{\circ}F$ at 2065 Kw.

(b) Cylinder head exhaust temperature:

As shown in Fig. (2), there is a difference about $180^{\circ}F$ in the average cylinder head exhaust temperature between right bank and left bank of the engine. The prime reason for this phenomenon is the cylinder grouping of the 4 pipe exhaust manifold. The result of this is the cyl. head exhaust temperature of the left bank is very close to the limit of $1100^{\circ}F$. At $110^{\circ}F$ air inlet temperature, 2035 Kw is the output limit due to the cyl. head exhaust temperature.

(2) Modernized Engine and its Performance

Since the existing engine imposes the output limitation at the overload condition, a modernization package is provided to overcome the above limiting factors on the existing engine. The basic changes on the engine are:

(a) 165 turbocharger

- (b) 8 pipe exhaust manifold
- (c) Mex. hat piston

The performance of the modernized engine is compared to that of the existing engine in the following:

- (a) In Fig. (1), the turbine inlet temperature is lower by 150° F and will not be a problem even at the maximum rating of the generator.
- (b) In Fig. (2), the cylinder head exhaust temperature is very even between the two banks and lower than the existing engine.
- (c) In Fig. (3), for a given Kw output, the modernized engine operates at a lower fuel rack setting, which translates into a fuel saving, as shown in Fig. (4).

(d) Since this study is for the overloading capacity of the diesel generating set, the basic requirement for the load pick up has not been changed and the existing engine has fulfilled this requirement. The modernized engine will have as good load pick up capability as the existing one, as illustrated in Figs (5) and (6). In Fig. (5), for a given allowable speed drop, the modernized engine can pick up more load. In Fig. (6), for a given load to be picked up, the modernized engine will take less recovery time.

3

III SUPPORTING SYSTEMS

1.

and the strength of the strength of

1. JACKET WATER AND LUBE OIL COOLING SYSTEM

1.1 DESCRIPTION

Separate cooling circuits are used for jacket water and lubricating oil. Two stacked heat exchangers, shell and tube type are used. The service water, used as coolant, enters the lube oil cooler first and the jacket water cooler after.

1.1.1 JACKET WATER CIRCUIT

The jacket water is circulated by a centrifugal pump driven by the engine.

The water out of the pump flows mostly to the engine block. A small amount of water is diverted to the turbocharger. From the engine block outlet headers the water flows to a thermostatic three-way valve set at 170° F.

This valve directs part of the water to the jacket water cooler and bypasses the rest.

The water out of the cooler is splitted between the engine after cooler and the suction of the pump.

The thermostatic value bypass and the A/C return are merging at the pump suction as well.

A high water alarm switch set at $175^{\circ}F$ and a high-high water alarm switch at $185^{\circ}F$ are installed at the engine outlet.

1.1.2 LUBRICATING OIL CIRCUIT

...

Ē

.

An engine mounted gear pump circulates the oil out of the engine sump through a thermostatic three way value set at $180^{\circ}F$. The value controls the amount of oil going to the heat exchanger.

ά

The lube oil cooler oil output merges with the thermostatic valve bypass and flows to the engine.

A pressure relief valve is mounted on the pump and a pressure control valve regulates the lube oil pressure into the engine.

Full flow filtration at the pump outlet and a duplex strainer at the engine inlet are provided.

A high lube oil alarm switch set at $185^{\circ}F$ is installed at the engine outlet.

1.2 SYSTEM LIMITS AND DESIGN CRITERIA

The following parameters are the system limits:

-	Water engine out	temperature	Max 190 F
-	Lube oil engine out	temperature	Max 210 ⁰ F

The cooling system design takes also following into account:

-	Aftercooler A/C	in water	temperature	Max	155 ⁰ F
-	A/C water flow			Max	150 GPM

-Thermostatic valve settings shall allow them to operate in their controlling range.

The heat loads considered at the design for sizing the heat exchangers were:

4 365 900 BTU/HR Jacket water cooler - Lube oil cooler 808 500 BTU/HR

This is equivalent to the specific heat loads listed below:

- -Engine heat to water 27 BTU/min/HP
- Engine heat to oil 5 BTU/min/HP

27 BTU/min/Hp specific heat load to water is retained for the higher output analysis.

5 BTU/min/HP specific heat load to oil has to be increased for a higher horsepower to 5.3 BTU/min/HP.

The original design considered 400 GPM and 85°F as worst condition for service water supply.

5

1.3 SYSTEM EVALUATION

-

1.3.1 AS DESIGNED PERFORMANCE

The system performance "as designed" was calculated for the full engine power range. The curves 7 and 8 are attached as reference.

.

1.3.2 PERFORMANCE UNDER MODIFIED CONDITIONS

New conditions are considered in the system evaluation to upgrade the diesel generator power:

Service waterMinimum flow400 GPM *Service waterMaximum Temperature95°F *Specific engine heat load to water27 BTU/min/HPSpecific engine heat load to oil5.3 BTU/min/HP

* As specified by the customer

The heat exchangers do not have plugged tubes and no additional fouling but what is provided by the initial design is allowed.

The curves 9 and 10 are showing the system performance under these conditions. Jacket water and lube oil thermostatic control valves are as per actual setting at 170° F and 180° F respectively. They are used to analyze the possibility of upgrading the power with minimum changes.

From the curves 9 and 10 the system limits are reached at the following power outputs:

	777767 7	T COMPANY
		<u>(Kw)</u>
Water engine out temperature	190 ⁰ F	>2300
Lube oil engine out temperature	205 ⁰ F	2240
After cooler in water temperature	155 ⁰ F	2090
After cooler water flow	150 GPM	1750
Jacket water thermostatic valve	fully oper	2190
Lube oil thermostatic valve	fully oper	

From the above data we conclude that at the new conditions the A/C flow is at the limit at the current power output.

Two options are available:

•.

.

and the stand of the

A) A new orifice has to be sized and a flow balance shall be performed.

6

B) Change the jacket water thermostatic value setting at 180° F.

Both these options will make possible to obtain 1950 Kw overload under the required conditions.

If option A was chosen, in order to increase the power, the change of the lube oil thermostatic valve for a 195°F setting is required. Curves 9 and 11 will apply in this configuration and the following power limits are established:

Power

	<u>Limit</u>	Power	
Water engine out temperature Lube oil engine out temperature	190 ⁰ F 205 ⁰ F 155 ⁰ F	<u>(Kw)</u> >2300 2250	
Aftercooler water in temperature Aftercooler water flow	150GPM	2090 Orifice	to
		be sized according	ly
Jacket water thermostatic valve Lube oil thermostatic valve	Fully ope Fully ope		

From the above we can see that the system will support now 2090 Kw with L.O. thermostatic valve changed and new orifice size.

The limitation factor is the water temperature at the after cooler inlet. This temperature can be reduced by changing the water thermostatic valve setting to 180°F.

The curves 11 and 12 will apply, and the power limits are as follows: Limit

	<u> </u>	FOWEL
	_	<u>Kw</u>
Water engine out temperature	190 ⁰ F	>2300
Lube oil temperature	205 ⁰ F	2250
Aftercooler water in temperature	155 ⁰ F	2205
Aftercooler flow	150 GPM	Orifice to
		be sized
		accordingly
Jacket water thermostatic valve	Fully open	n >2300
Lube oil thermostatic valve	Fully ope	n >2240

This configuration (new orifice, new water thermostatic valve - 180° F, new lube oil thermostatic valve - 195° F) makes the system capable to support 2205 Kw.

7

If option B was chosen, to increase the power above 1950 Kw, the lube oil thermostatic valve elements have to be changed for a higher setting $(195^{\circ}F)$ and a new orifice. This will bring the system to the same configuration as described by the curves 11 and 12 with the power limits as per the above table.

Then, under these configuration and conditions with 400 GPM and 95°F service water, the system will support 2205 Kw.

Power higher than 2205 Kw under the worst conditions (400 Service water GPM at 95° F) will require the heat exchangers upgraded. To size the new heat exchangers for 2300 Kw the following data shall be used:

Jacket Water Cooler:

- Heat load		5 185 700 BTU/HR	
- J.W. temperature	in	180 ⁰ F	÷
- J.W. temperature	out	130-140°F	•

Lube Oil Cooler:

-

Heat load
 L.O. temperature cooler in 200°F
 L.O. temperature cooler out 168°F

Table 1 summarizes the above, including the operational parameters and the alarm switch settings.

2. EXHAUST STACK SYSTEM

At current installation, 18 inches stack is applied, which is good for 2650 Hp (1975 Kw) engine output as shown in Fig. (13). Therefore, any increasing in the power output, the size of stack requires to change to 20 inches.

IV CONCLUSION

.

From the above analysis, the maximum output for each limiting factor can be summarized as follows:

8

- (A) Without change on the engine
 - (1) 2065 Kw due to the turbine inlet temperature
 (2) 2035 Kw due to the cyl. head exhaust temperature
- (B) Without change on the supporting systems as designed (400GPM, 85°F service water)
 - (1) 1975 Kw due to the exhaust stack
 - (2) 2000 Kw due to A/C water flow
- (C) At 400 GPM, 95^oF service water with following changes on the supporting systems:
 - (i) Exhaust stack
 - (ii) New L.O. thermostatic valve elements
 - (iii) New orifice size after the flow balance

2090 Kw due to A/C water in temperature.

(D) As (C) and new water thermostatic valve elements

2205 Kw due to A/C water in temperature

<u><u>v</u> <u>**RECOMMENDATION:**</u></u>

-

Short term and long term solutions are suggested to obtain a higher overload capability of the diesel generating set.

q

(A) Short Term:

Engine output: 1750 Kw continuous 1950 Kw 2 hr in 24 hrs 2035 Kw 1/2 hr in 24 hrs

Changes required:

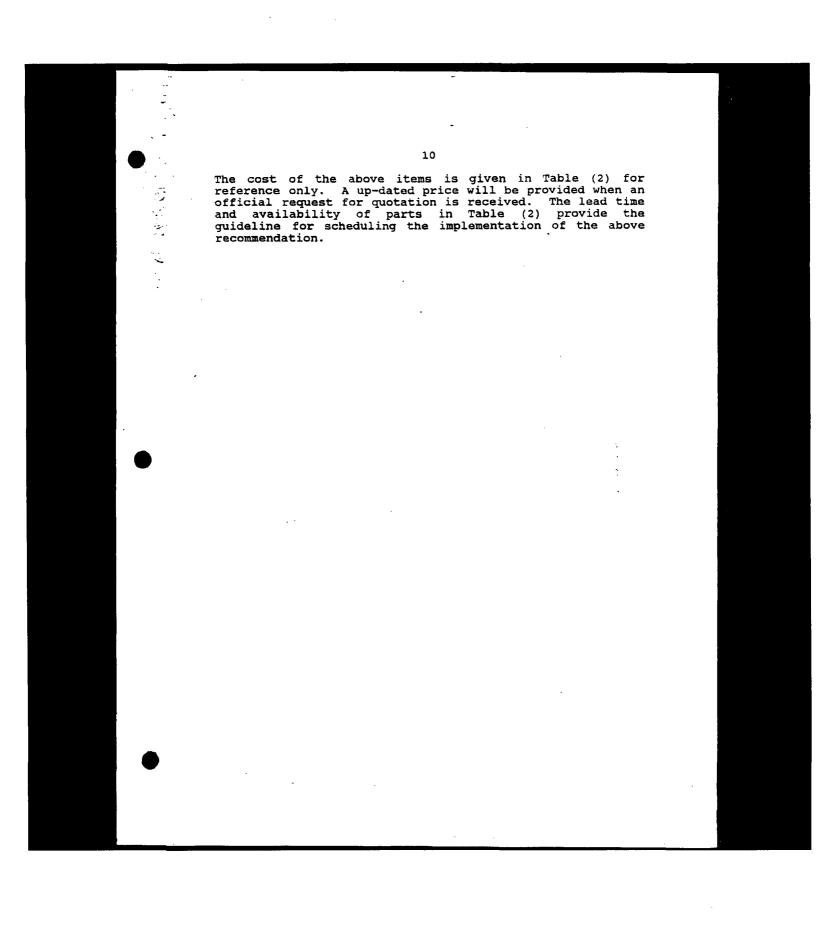
(1) Increase the stack to 20 inches

(2) Pipe the engine air inlet to outside

- (3) Apply new lube oil thermostatic valve element
- (4) Conduct the flow balance to size the orifice
- (5) Re-adjust the temperature alarm setting
- (6) Re-set the engine fuel pump setting

(B) Long Term:

Engine	output:	1750	Kw	continuous		
		1950	Kw	6000 hrs/year		
		2150	Kw	3000 hrs/year		
		2205	Kw	1000 hrs/year		


Changes required:

- Changes as described for the short term solution
 Apply the modernization kit as defined in Section
- (VI)
- (3) Apply new jacket water thermostatic valve element
- (4) Ensure the availability of the designed service water flow (400 GPM) under the worst operating condition
- (5) Install a larger capacity lube oil cooler, if the existing cooler looses its performance and needs the replacement.

VI THE ENGINE MODERNIZATION KIT

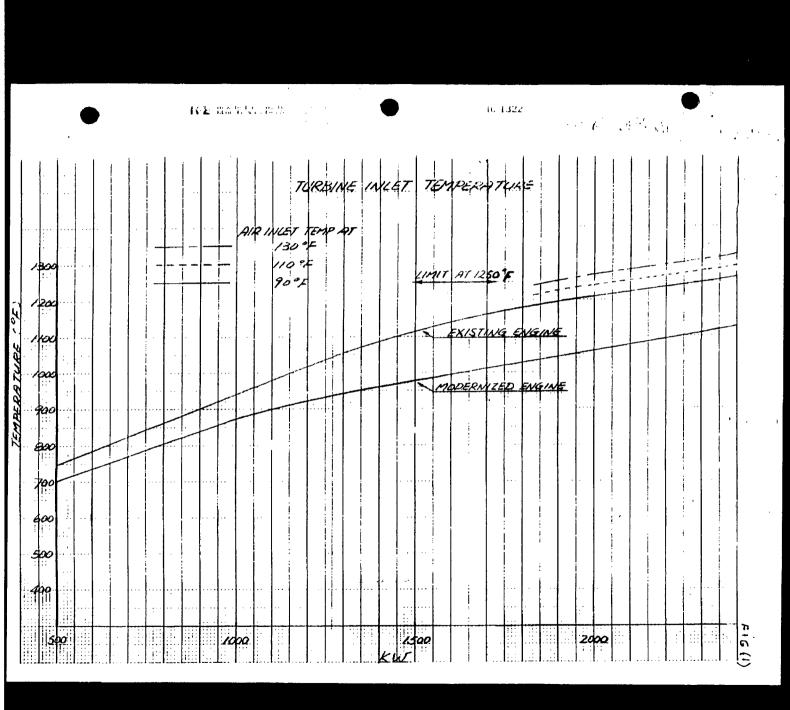
The engine modernization kit as proposed consists of three groups:

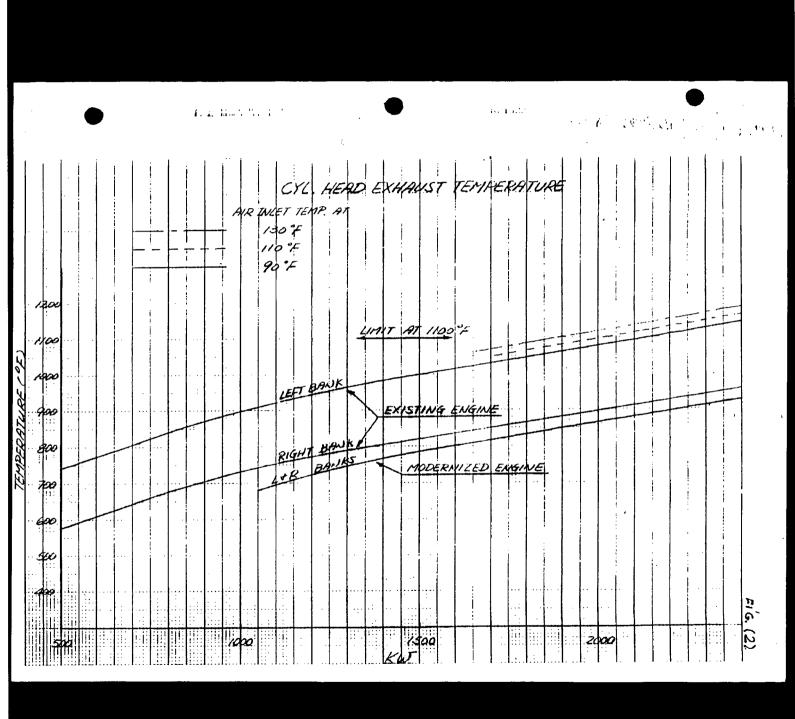
- (1) 165 turbocharger and its associated piping and connections
- (2) Mex. hat piston and matching nozzle
- (3) 8 pipe exhaust manifold

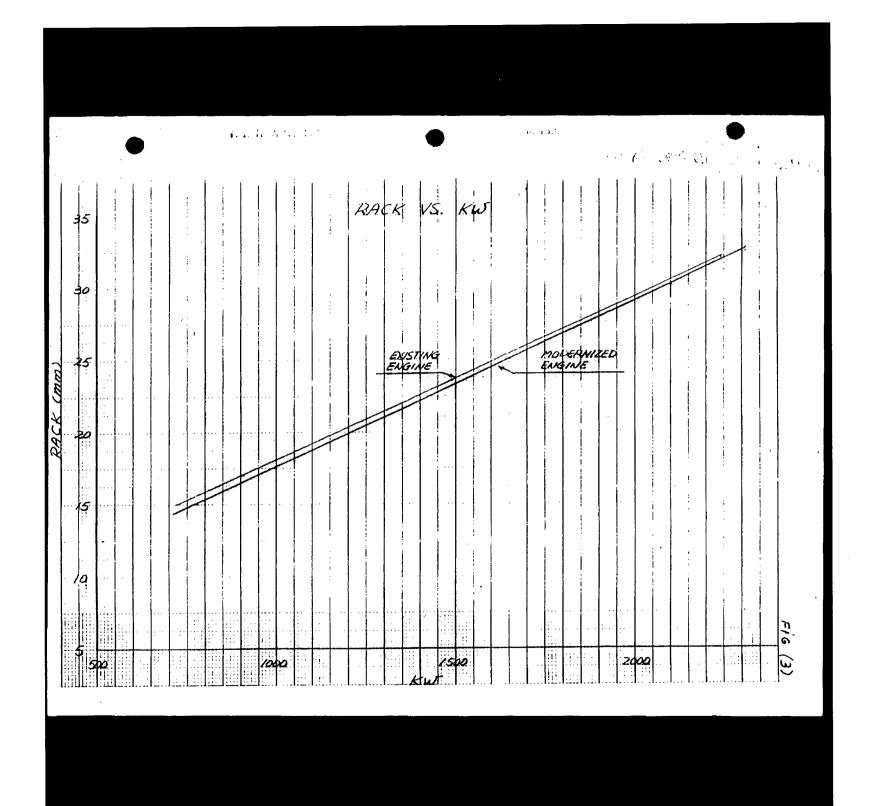
and the state of the second states

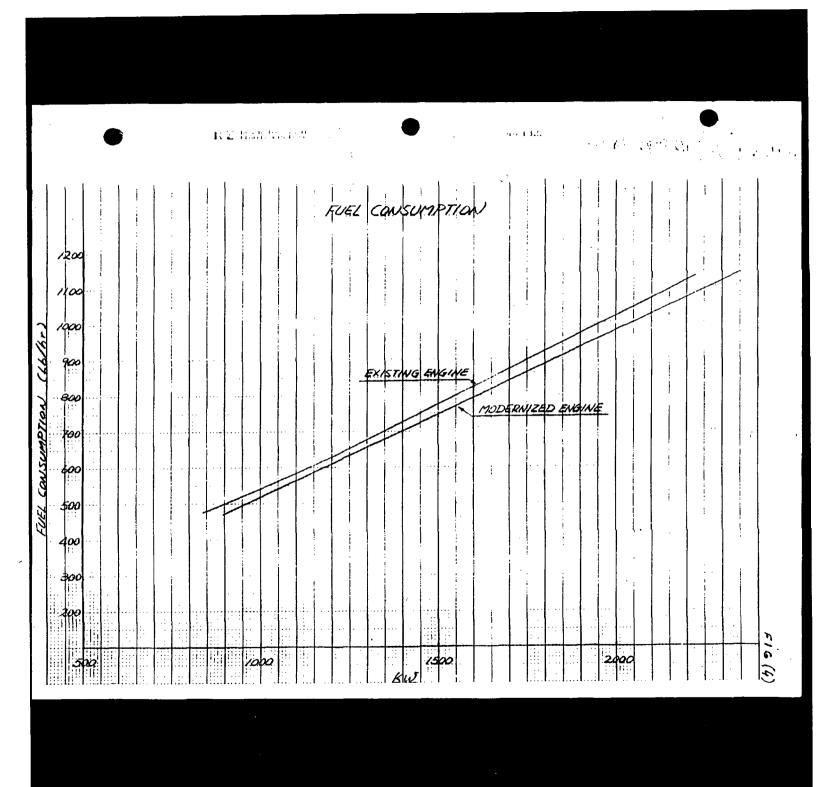
TABLE 1

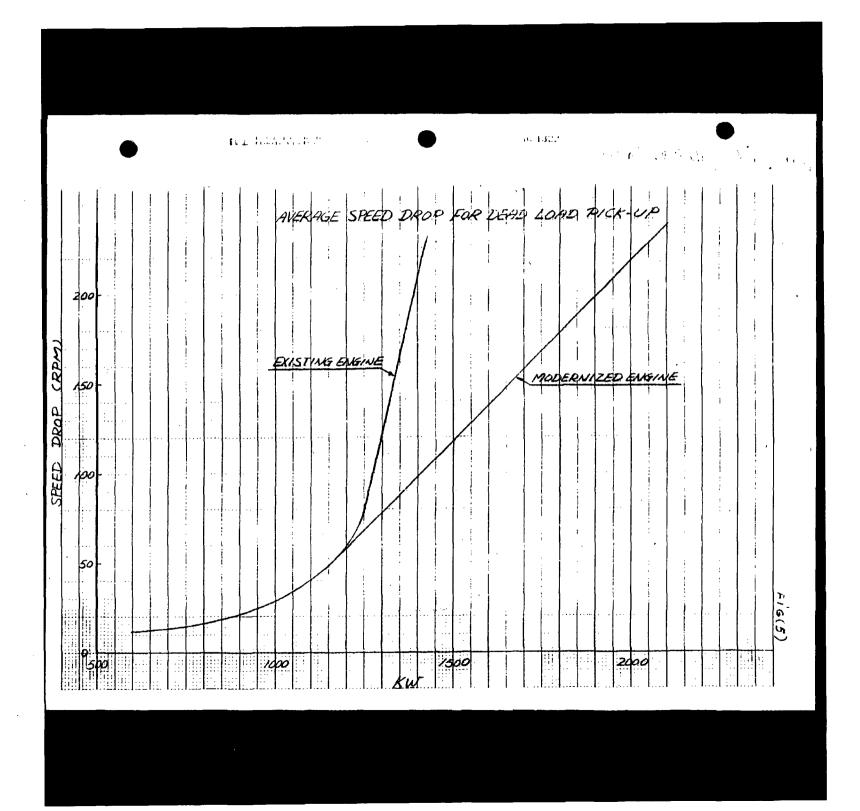
MAXIMUM POWER (KW)		1950	1950	2150	2205	2300
SERVICE WATER COND	ITIONS: FLOW (GPM) TEMP °F	400 95	400 95	400 95	400 95	400 95
CONFIGURATION		NEW ORIFICE	-NEW WATER AMOT VALVE SET: 180	-NEW ORIFICE -NEW LUBE OIL AMOT VALVE SET: 195	-NEW ORIFICE -NEW LUBE OIL AMOT VALVE SET: 195 -NEW WATER AMOT VALVE SET 180	-NEW ORUFICE -NEW LUBE OLL AMOT VALVE SET: 196 -NEW WATER AMOT VALVE SET 180 -NEW LOC -NEW LOC
HIGH WATER TEMP ALA	RM °F	180	190	190	190	185
HIGH-HIGH WATER TEM	IP ALARM °F	185	195	195	195	190
	LARM °F	195	195 .	207	210	205
MAX. HEAT LOAD TO WA	ATER BTU/HR	4 393 500	4 393 500	4 846 400	4 970 800	5 185 700
MAX. HEAT LOAD TO ON	L BTU/HR	862 400	862 400	951 300	975 750	1 017 900
WATER ENGINE OUT TE	MP °F	172.5	178.8	182	182	180
OIL ENGINE OUT TEMP	٩F	191	190	202	204	200
AFTER COOLER WATER	IN TEMP °F	148	140.7	152	155	~135

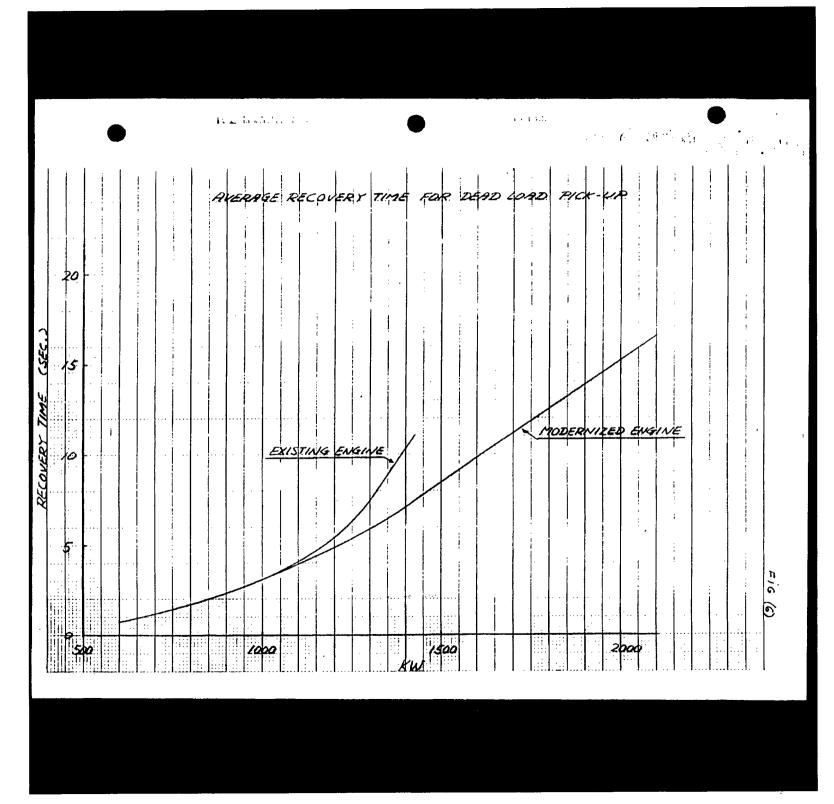

			•				
-							
-							
							PAGE
			TABLE 2				PAGE
			ENGINE MODERNIZAT	TION KIT			
			DE-352 11				
ITEM	ΔΤΥ	CAT. #	DESCRIPTION	COST	STOCK	LEAD TIME]
·		·····		US \$	ITEM	(MONTH)]
GROUP	A: TU	JRBO AND MO	UNTING				
1	1	8260038-2	165 TURBO	68888.68	N	8	
2	2	22610213	SHIMS	63.08	Y	2	
3	4	21553616	CAPSCREWS	5. 56	Y /	3	
• 4	4	2151319-1	LOCKWASHERS	1.04	Y	2	
GROUF	98: E	XPANSION JOI	NT AT TURBO DISCHARGE				
1	1	22811912	FLANGE	427.95	N	6	
2	2	21542948	"O"RINGS	37.94	Y	3	
3	1	2281677	UPPER FLANGE	378.80	Y	5	
4	1	21548737	GASKET	21.89	Y	3	
5	1	21548741	GASKET	9.33	Y	· 2	
6	19	21513510-1	CAPSCREWS	5. 89	Y	3	
7	19	2151313-1	LOCKWASHERS 1/2"	2.85	Y	2	
GROUI	°C: 8	PIPE EXHAUS	T MANIFOLDS, INLET ADAPT	ORS			
1	1	8280013	EXH. MANIFOLD	88664.64	N	8	
2	1	19710118	SLEEVE	83.89	Ν	2	
3	2	1 634017 0	CLAMPS	70.32	Y	3	
GROU	PD: N	IEX. HAT PISTO	DN	x			
1	16	24200423	MEX HAT PISTONS	23610.40	N	9	
2	-	24200517	PISTON RING SET	2547.68	Y	6	
GROU	PE:F	UEL INJECTOR	R & TIMING POINTER				
		22300128	INJECT. & HOLDERS	4564.96	Y	8	
1	16	22300120					

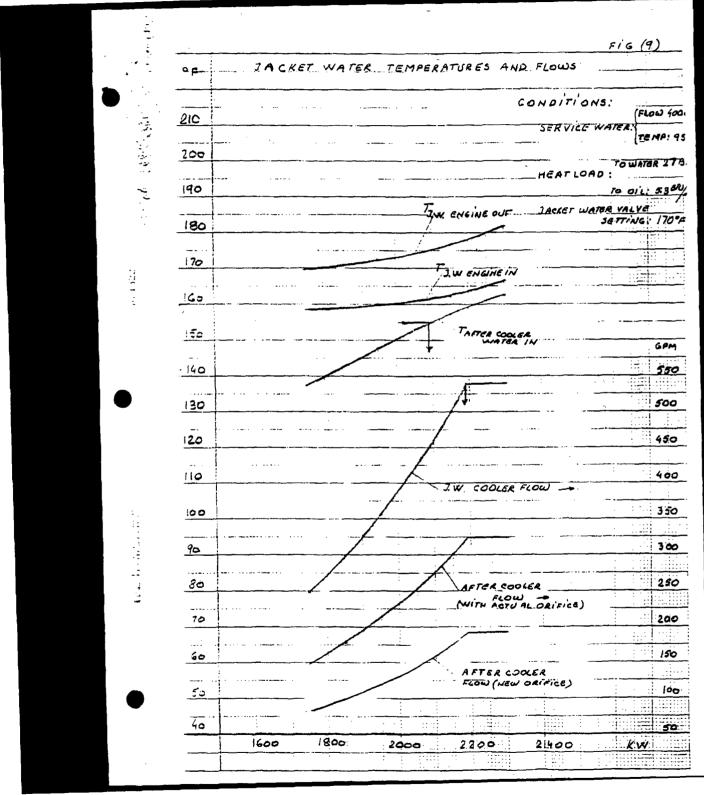

-								
				~				PAGE 2
				TABLE	. 2			PAGE 2
· ·								
_	ITEM	QTY	CAT. #	DESCRIPTION	COST	STOCK	LEAD TIME	
	0000			TURDO MAINI OLONIO	US \$	ITEM	(MONTH)	
- <u></u> -	GHOU	PF: W	ATERINLETIC	TURBO MAIN CASING				
	1	1	24031162	FLEX. HOSE	81.65	Ŷ	3	
- <u>-</u>	2	1	24012724	FLANGE	10.40	Y	3	
	3	1	2402865	"O" RING	1.69	Y	3	
	4	4	21513510-1	CAPSCREWS	1.24	Y	3	
	- 5	4	2151313-1	LOCKWASHERS	0.60	Y	2	
	GROU	IPG: W	ATER OUTLET	FROM TURBO AND GAS	INLET CASING			
	1	1	24031199	HOSE ASSY	42.32	Y	3	
	2	1	1641415	FLANGE	6.57	Ý	3	
	3	4	21555893	CAPSCREWS	4.36	Y	3	
	4	4	2151312-1	LOCKWASHERS	0.08	Y	2	
	5	1	16391358	"O" RING	1.56	Y	3	
	6	1	16397320	NIPPLE	1.47	Y	3	
	7	1	16394280	TEE	5.20	Y	3	
	8	1	16393486	ELBOW	4.60	N	3	
	9	1	16393647	NIPPLE	1.93	N	; 3	
	10	1	16412260	ADAPTER	18.07	N	3	
		1	24031198	HOSE ASSY	41.51	Y	. 2	
	GROU	JP H: W	VATER INLET T	O GAS INLET CASING				
	1 -	1	24031154	HOSE ASSY	49.78	Y	3	
	2	1	1641415	FLANGE	6.57	· '	3	
	3	1	16391358	"O" RING	1.56	Ý	3	
	4	4	21555893	CAPSCREWS	0.36	Ý	3	
	5	4	2151312-1	LOCKWASHERS	0.08	Ý	2	
	6	1	16360123	CLAMP	1.16	N	3	
	7	1	21513513-1	CAPSCREW	0.32	Y	3	
	, 8	1	2151697-1	NUT	0.32	Ŷ	3	
	9	1	2151495-1	PLAIN WASHER 1/2"	0.09	Ŷ	2	
	10	1	2151313-1	LOCKWASHER 1/2"	0.05	Y	2	
	GROU	JP1: M	OISTURE DRAI	N				
	1	1	2154434-1	GASKET	0.97	Y	3	
	2	1	24031059	PIPE	180.46	N	4	
	3	2	21555893	CAPSCREWS	0.18	Y	3	
	4	2	2151312-1	LOCKWASHERS 3/8	0.04	Y	3	
-	5	1	1639457	PIPE CAP	1.89	Y	2	

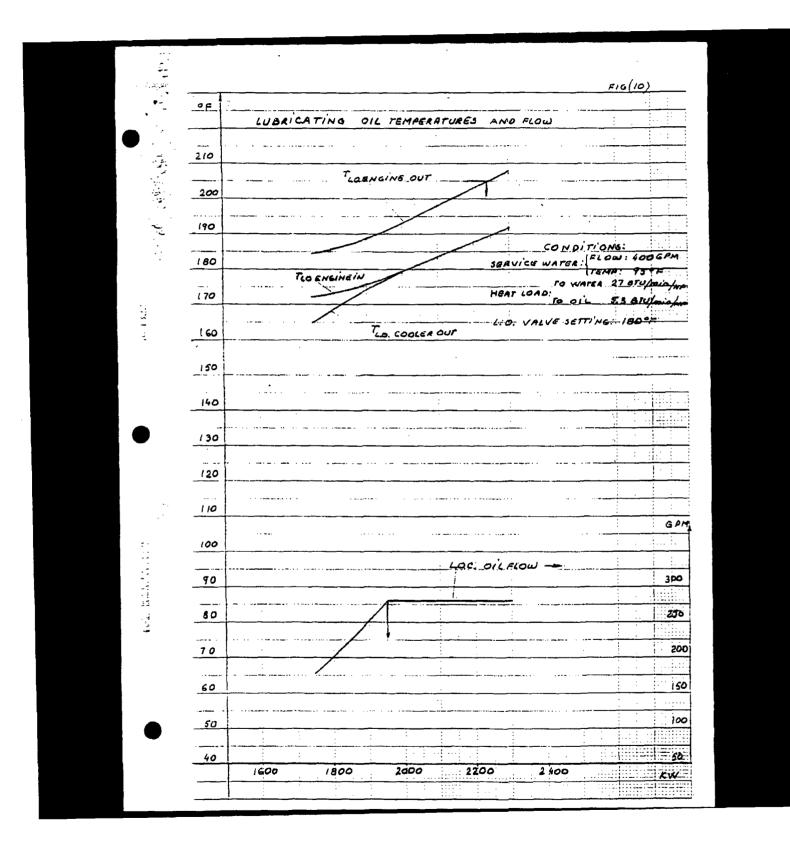

.. '


TABLE 2 Ξ, ITEM OTY CAT. # DESCRIPTION COST STOCK I LEAD TIME US \$ (MONTH) ITEM GROUP J: MODIFICATION L.O. PIPING TO CAMSHAFT 4 1 1639373 PIPE PLUG 0.80 1 Y 3 2 2 24022837 MALE CONNECTORS 20.42 N 4 3 16394020-1 TUBE 7/8 X 30" 1 55.76 Y 3 4 24030654 CLAMP 1 229.35 N 4 5 2151353-1 CAPSCREW 1 0.07 Y 3 6 2151312-1 LOCKWASHER 3/8 1 0.02 Υ 2 7 1 2403265 UNION TEE 52.57 N 3 8 24022633 1 TUBE 38.17 Ν 4 GROUP K: L.O. PIPING TO TURBO 1 24030731 FLEX. HOSE 1 25.23 Ν 2 2 24012985 HOSE CLAMP 1 2.50 Ν 3 24018336 3 1 CLAMP 17.12 Y 3 4 8401189 NIPPLE 1 1.03 Ν 3 5 16396169 90° ELBOW 1 Y 8.75 3 6 1 24020548 TUBE 64.38 Ν 3 7 FEM. CONNECTORS 24022851 2 9.52 Y 4 8 24023135 ADAPTER 1 179.40 3 N GROUP L: L.O. DRAIN FROM TURBO 1 1 24031152 HOSE ASSY 152.04 Y 3 2 24012717 FLANGE 1 8.08 Ν 3 3 1 21542920 "O" RING Y 3 0.58 4 4 21513510-1 CAPSCREWS 1.24 Y 3 5 4 2151313-1 LOCKWASHERS 6.00 Y 3 6 1 16396120 90° ELBOW Y 7.87 3 7 1 1639869 NIPPLE Y 3.71 3 24030670 8 1 CLAMP 3 2.00 Ν * GROUP M: EXHAUST ADAPTOR 1 22613824 ADAPTOR 20" 1 7180.20 Ν 7 * GROUP N: CROSSOVER PIPE 1 40E72470-1 PIPE 1 5000.00 Ν 4 NOTE THE ITEM INDICATED BY ASTERISK IS FOR COST REFERENCE ONLY, NEW DESIGN WILL BE NEEDED.

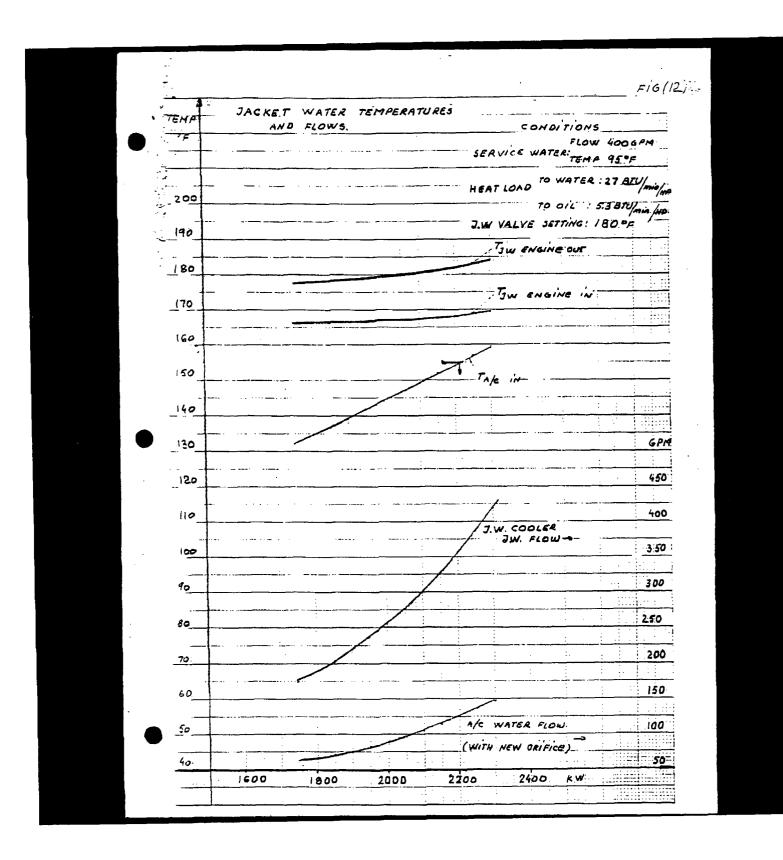

PAGE 3

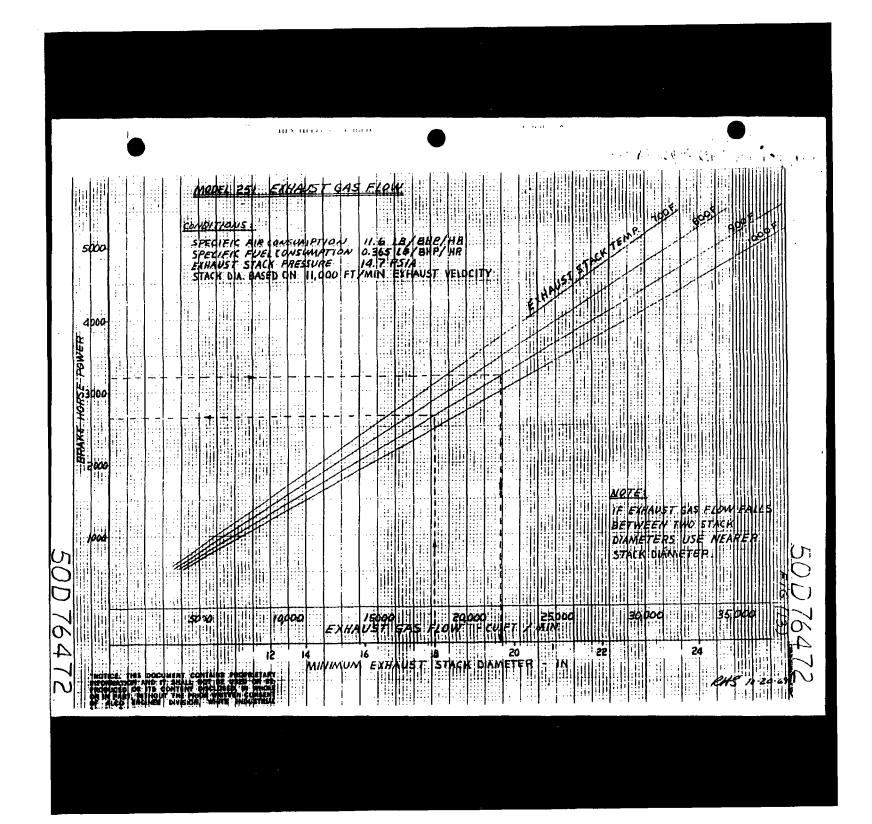






ź	i <u> (</u> 7
JACKET WATER TEMPERATURES COND AND FLOW 'ASD	1 TIQNS
SERVICE	ESIGNE
FLOU	1:4000
TEME HEAT (: 85-
TO WATER ?	7ATU/m
TO OI'L ZW.VALVE SET	an/m;
JWKVALVE SET	TING IT
<u> </u>	
To WENGING OUT	
· ···•	
TAIC IN	
	G
	<u> </u>
JWC FLOW	
	J
	2
- Ala Franki di Ala	:::::: !:::
	<u></u>
<u> </u>	
(BOC 2000 - 2300 - 2500 - 2500	


۰,



140 Itorewaine in Can Diffendi 180 Itorewaine in Itorewaine in 180 Itorewaine in Itorewaine		- 60	BRIC	ATIN	G 01	LTEM	1 PF R	TURE	S A	VD FLO	 س		
0# Too sondine out 200 Too sondine out 190 Too sondine out 190 Too not sondine out 190 Too coole out 190	TEMP				 ·:		•		. 1		'		
To envire in Can biring 190 To envire in Can biring 180 Flow : 400 Flow : 400 180 Flow : 400 Stavice wates 180 To wates 271 Stavice wates 180 To wates 271 Stavice wates 180 To wates 271 Stavice wates 180 To wates Stavice wates 180 To wates Stavice wates 180 To cooles Lo. Valve Strinks : 173 150 Stavice wates Stavice wates 130 Stavice wates Stavice wates 120 Stavice wates Stavice wates 100 Stavice wates <td></td> <td>Ē</td> <td></td>		Ē											
2bo To shaine out 190 To shaine in. Can birtights: 180 Flow : 400 180 Flow : 400 180 To ware 274 180 To cooled 180 To cooled </td <td></td>													
Zbol Image: Constraint of the second of the se										7.0 00	aine	OUT	· · · · · · · · · · · · · · · · · · ·
190 Ticeneira in Can bitriendi. 180 FLOW : 400 180 Tarre : 27 180 To write 27 170 To write 27 180 To out 53 802 160 To could 53 802 160 To could 53 802 150 To could 53 802 130 To could 54 90 120 To could 54 90	200												
Ito emaine in Can bittights: 180 Flow : 400 170 Teller: 94 170 To MATER 274 170 To MATER 274 170 To MATER 274 180 To MATER 274 170 To MATER 274 180 To MATER 274 160 To MATER 274 160 To OAD 110 To Cooler 110 To Cooler <td>· · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td>•</td> <td></td> <td></td> <td></td>	· · · ·							·		•			
180 PLOW: 400 170 TBHP: 94 170 To water 274 180 To old 58 of 0 180 To cooler	190				· · · ·	i • .							
180 FLOW: 400 170 Temp: 94 170 To warea 274 HEAT LOAD: To warea 274 160 To could 53.850 150 To could 53.850 130 To could 53.850 130 To could 53.850 120 To could 54.850 130 To could 54.850 120 To coul					Tio	ENGINE	in		2		ca	NDIT	MAT
SERVICE WATER TEHP: 94 170 To WATER 274 To WATER 274 160 To Oil 5:3.072 To Oil 5:3.072 160 To Coole 5:3.072 To Coole 5:3.072 150 To Coole 5:3.072 To Coole 5:3.072 120 To Coole 5:3.072 To Coole 5:3.072 <t< td=""><td>180</td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>	180				<u> </u>								•
170 To warea 274 160 10 contes 10 contes 150 10 contes 10 contes 150 10 contes 10 contes 150 10 contes 10 contes 140 10 contes 10 contes 150 10 contes 10 contes 140 10 contes 10 contes 110 10 contes 10 contes 120 10 contes 10 contes 110 10 contes 10 contes 100	_			-					5ER	VICE WI	TER		:
HEAT LOAD: 160 160 120 130 120 100 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>: : : : i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> To</td> <td></td> <td>:</td>	· · · · · · · · · · · · · · · · · · ·			: : : : i							 To		:
160 1.0. VALVE SETTING. 193 150 150 140 110 120 110 100 110					, ;	1			HEI	T LO	A D:	• _	
Lo cooler Lo. VALVE SETTING 193 150			· · · · · ·			<u> </u>		· · · · · · · · · · · · · · · · · · ·			7 <u>0</u> .	014.5	son
150 14i0 130 130 120 <							0 000	CR .	6.0	. VALV	e`` 52)	TING	: 795
140 130 125 110 110 110 100 100 1110 110 1110 110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110 1110	150							1 E	:				
140 130 120 110 100 70 70 70 70 50	10.0		· · · · · ·										
130 120 120 100 </td <td>14.0</td> <td><u></u></td> <td><u>.</u> </td> <td></td> <td></td> <td></td> <td><u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	14.0	<u></u>	<u>.</u> 				<u></u>						
130 120 110 100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.12.11.11</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1.12.11.11					
12b 12b 100 40 50 60 50 50 50 50 50 50 50 50 50 5		<u></u>					<u></u>						
12b 11b 100 70 70 70 70 70 70 70 60 50	<u> </u>					<u>.</u>					<u> </u>		
110 100 90 90 100 <td>·</td> <td>ļ</td> <td></td>	·	ļ											
110 100 70 80 71 100	120	<u> </u>			<u> </u>		: : :						
100 90 90 100 100 100 100 100 10	115					<u> </u>		<u> </u>	<u>.</u>		<u></u>		
100 90 50 50 50 50 50 50 50 50 50 5		<u>+</u>		 :				<u>.</u>	<u>1</u>			<u> </u>	
100 90 80 70 100		1		:			<u> </u>	<u>.</u>	<u>:</u>	<u> </u>			
90	100		<u>.</u>				<u> </u>		<u></u>				
80 76 60 50		••••••••••••••••••••••••••••••••••••••	<u>1 - 1 - 1</u> 5 - 1	<u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>		· · · · · · · · · · · · · · · · · · ·	<u>1.::.:</u>	. <u>1:::::::</u>	<u> </u>	<u>.</u>	<u></u>		
80 76 60 50				: : : :			<u>.</u>	<u> </u>	: :		:		· • · · · · · · · · · · · ·
78			1						1	4 .: ··· :			
78	80		<u>.</u>		:	<u> </u>	1.11.1.1 1.11.1		<u>∕::</u> ₹	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>			
60 50					<u></u>				2 000	LER	<u></u> :		
60 50	70		,	· · · ·				<u>/</u>	<u> </u>	<u>w </u>	• <u> </u>		
50		1111	<u>:</u> :				$ \bot $	1					
50	6.0	<u> </u>								<u>[] : : : :</u>			
		<u> </u>						<u>, i : i</u>		<u>.</u>	· · · · · · ·		
	. 50						<u>.</u>		<u> </u>				
				: :: :::::::::::::::::::::::::::::::::								- f: - ::::	
40	40										<u> </u>		

					<u> = 128</u>	
Edi	Conso SCA Living	lidated Edison Company of New Yo) Place, New York, N.Y. 10003	ark, Inc.	November 15	1990	
				•		
	Ceneral Elec 1505 Dicksor Montreal, Ca		• • •			9
	Attention:	Martin Y.S. Lu Diesel Engineering		÷		
· ;	Subject:	Indian Point 2 EDG C P.N. 03369-89	orbustion A	Air	• .	
	Reference:	G.E. Canada, Inc. Re Dated October 13, 19	port No D	ER=1691		
•	that inside diesels unde The reference required for the engine e short term s this was rec		mbustion a: d condition dicates the term solut: de". We au fying the o	ir for the s ns. at changes ions include gree that fo liesel engin	ubject "pipe pr tha les,	
	operating to report. We building by increasing to modification delivered to the maximum provide an a emergency di	m modifications to the imperatures as per Fig are upgrading the ver- increasing the exhaus the inlet air louvers 1, there will be a suf beach of the diesels room temperature unda ample margin to the op lesels at maximum load the static pressure at .25 inches of water	pures 1 & 2 tilation s st fans cap surface ar fricient vo at maximum ar the wors berating lin i (see atta	of reference ystem in the ability and ea. With th lume of air load. Furt t scenario of mits of the ched OPTIONS	en EDC iis ther, vill table	
	To approach table requi	the maximum temperatures a combination of:	ires as ind	icated in t	ne	
	- Loss of o	polant accident ifsite power emperature at max. des	sign lımit	(100 deg F)		
		ne maximum load would proximately 15 minutes		tinuous, but	cnly	

• ·. . ne constance day • .. . ٠ - -• • • • Based on the above information, we have docided to draw consustion air from inside the EDG building. Please sign below if you concur with our decision. If you have any questions or comments, please feel free to call me on 212-460-3099. Please return the signed letter to me at the above address, room 1075-3, or by fax on 212-677-5353. . Very truly yours, inthrug Set mest Engineer Concurred by: <u>/////</u>Mattin 11 ¥.5. Lu Pec. 3, 189. Diesel Enginearing c: M. Caputo J. Basile P. Duggan H. Somers R. Basu R. Louia Project File 2 ١ ł

ATTACHMENT 4, ENCLOSURE 5 TO NL-08-101

Westinghouse Engineering Report WMC-EER-90-005, "1750 kW Diesel Generator Study for the Westinghouse Energy Center", dated September 19, 1990

> ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

7.7.3.3 ACTION: YES NO____NO___ BS0070 Nuclear and Advanced Westinghouse **Energy Systems** Technology Division Electric Corporation Box 355 Pittsburgh Pennsylvania 15230-0355 IPP-90-850 IC-NATD-90-60 Mr. John A. Basile Special Nuclear Projects Consolidated Edison Company Broadway & Bleakley Avenues Buchanan, NY 10511 INDIAN POINT UNIT 2 EMERGENCY DIESEL GENERATOR (EDG) UPGRADE PROJECT Diesel Generator Study Dear John: Please find enclosed revision 1 of WMC Engineering Report WMC-EER-90-005. This study was performed due to the increased room temperatures in cortian operating scenarios. The conclusion reached in this report is that the generator can operate at 2300kw in $125^{\rm O}F$ ambient temperatures for a maximum of two hours without adverse effects on the generator set. Also included with this letter are the findings in the review of Consolidated Edison's drawing 9321-F-3007-10. If you have any questions, please feel free to contact me. Very truly yours, WESTINGHOUSE ELECTRIC CORPORATION . jid ٩ W. C. Leslie, Manager Installation, Construction & Startup Services HCD:bp **Enclosures**

. -2-IPP-90-850 J. A. Basile cc: T. DeDonato, Con Ed - w/attachment P. Duggan, Con Ed - w/attachment R. Louie, Con Ed - w/attachment W. C. Leslie, <u>W</u> - w/o attachment B. L. Palowitch, <u>W</u> - w/attachment R. M. Span, <u>W</u> - w/attachment S. P. Swigart, <u>W</u> - w/o attachment NSD Project File - w/attachment J. G. Kern, <u>M</u> Field Sales - w/o attachment Project File 16.01 - w/attachment

WESTINCHOUSE MOTOR COMPANY ROUND ROCK, TEXAS WMC Engineering Report WMC-EER-90-005 Revision 1 -- November 28, 1990 ٦ September 19, 1990 Date: Subject: 1750 KW Diesel Generator study for the Westinghouse Energy Center . . This report records the results of an engineering study done on S.O. 25090LN to re-rate the Indian Point #2 diesel generator (S.O. 3574P714) for continuous operation at 2300 KW. Abstract: .K. Wisa D.R. Routula Approved: By: D. R. Perttula J. R. Misage Manager DC & Synchronous Design Staff Engineer

.

WMC-EER-90-005 Page 2

I. INTRODUCTION

The existing 1750 KW diesel generators at Indian Point #2 had a continuous rating of 1750 KW and Class B insulation. In 1984 the Westinghouse Heavy Industry Motor Division did an engineering study under 5.0. 21754AA to determine the continuous overload rating of these generators. The conclusion was that these generators are capable of delivering 2250 KW at 0.8 power factor and 480 V continuously. This study documents the performance characteristics for continuous generator operation at 2300 KW.

II. DESCRIPTION OF THE EXISTING DIESEL GENERATORS

Туре	CS-5E
Rated active output	1750 KW
Rated apparent output	2188 KVA
Rated voltage	480 volts
Rated current	2630 amperes
Rated power factor	0.8 lagging
Rated frequency	60 HZ
Rated speed	900 RPM
Number of phases	3
Number of poles	8
Rated excitation voltage	125 Volts D.C.
Rated excitation current	112 Amps D.C.
Frame size	8-51-22
Reference ambient temperature	40°C
Class of insulation	Class B
Permissible temp. rise by thermometer	60°C
Method of cooling	Self-ventilated
Enclosure	Drip proof
Service factors	1.11

III. RESULTS OF TESTS ON 1750 KW GENERATORS

A. '	Resistances at 75°C:	
	Armature, line-to-line Field	0.001225 ohm 0.8720 ohma
в.	<u>Bfficlencies</u>:	
	Full load 3/4 load 1/2 load	96.43X 96.12X 95.19X
c.	Short Circuit Ratio	
		0.965
		·

WMC-EER-90-005 - Fage 3

.

D. Temperature Rises on Zero Power Factor Temperature Rise Test

	1
Armature voltage	480 volts
Armature current	2930 amps
Field Current	139.6 amps D.C.
Armature winding temp. rise	32.7°C by thermocouple
Field winding temp. rise	77.2°C by resistance
Stator core temp. rise	30.7°C by thermocouple
Collector rings temp. rise	36.7°C by thermometer

IV. ANALYSIS

The generators reach steady state temperature rises within 2 hours. Therefore, only maximum continuous output needs to be determined.

The effect of air temperature on surface thermal resistances, windage loss and air temperature rise being small have been neglected. The effect of rotor surface loss on field winding temperature rise being small has also been neglected.

The shaft diameter at critical section for this generator is 9.75 inch with keyway. The material is AISI 1035 carbon steel with shear yield strength of 22,800 psi. It is adequate to deliver a load of 2300 KW at 0.8 power factor. The mean shear stress will be 1160 psi which is well within the capabilities of the material.

The field excitation at 2300 KW, 0.8 power factor at 480 V is 131 amperes. The stator current for this load point is 3458 amperes. Based on the tamperature test conducted on this machine, the expected temperature rises are as follows:

Part	Calculated	Maximum permissible per NEMA MG1 Part 22 - 1980
Armature winding by detector	37°C	85°C
Field winding by resistance	69°C	80°C
Stator core by detector	34°C	1
Collector rings by thermometer	37°C	85°C

WMC-EER-90-005 Page 4

V. CONCLUSIONS

These generators are capable of delivering 2300 KW at 0.8 power factor and 480 V continuously.

The performance of the machines at this load point will be as follows:

A. Efficiencies

	Full load 3/4 load 1/2 load	96.35% 96.31% 95.79%
в.	Short Circuit Ratio	0.733
c.	Field Voltage	131 Volts D.C.
D.	Field Current	131 Amperes D.C.

VI. Addition -- (Revision 1 - November 28, 1990)

It is anticipated that, though infrequent, an operating condition will exist where the three diesels and three fans are operating at full load output. This condition will cause the ambient air temperature to reach $125^{\circ}F$ ($52^{\circ}C$). In Part IV of this report the expected rises for an ambient air temperature of $40^{\circ}C$ are listed. It is expected that the temperature rises of the armature and field windings for a $52^{\circ}C$ ambient will be $40^{\circ}C$ and $72^{\circ}C$ respectively. The total operating temperature of the field winding for this condition will be $124^{\circ}C$ ($72^{\circ}C + 52^{\circ}C$). This is $4^{\circ}C$ more than maximum permissible total operating temperature per NEMA of $120^{\circ}C$ ($80^{\circ}C$ rise over $40^{\circ}C$). However, since this operating condition is so infrequent, it will be acceptable to operate at 2300 KW with a $125^{\circ}F$ ambient for a maximum of 2 hours.

ATTACHMENT 4, ENCLOSURE 6 TO NL-08-101

Calculation EGE-00016-00, "Emergency Diesel Generator – Basler Exciter Test Report".

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

CON EDISON CALCULATION/ANALYSIS COVER SHEET

Page 1 of <u>32</u>

Subsection: ROTATING MACH. + PLANT EQUIP. Code: EGE Calc.Type: ELECTRICAL SYSTEM itle: EMERGENCY DIESEL GENERATOR - BASLER EXCITER TEST REPORT .oject: NONE Modification: NONE vocument Page Count: 032 * * * TAG NUMBERS * * * (none) * * * COMPONENT(S) AFFECTED * * * Equip.Type 028 DIESEL GENERATOR Structure 13 EMERGENCY DIESEL GENERATOR BUILDING 20 EMERGENCY DIESEL GENERATORS System lass (Check as appropriate): A ____ FP ___ MET ___ IE _X Non-Class ____

(Print/Sign)	Reviewer/Date (Print/Sign)	Approval/Date (Print/Sign)	Rev.No.	Super- cedes	Confirm. Reguired?
THUMAS J. MAGEC	BRUCE HOROWitz Bruce Horow	RICHARD BOGGIA	*	**-	
Thomas & Mayer	9/26/91		<u>4</u>		

concurrence (If Required)

CON EDISON CALCULATION/ANALYSIS SUMMARY SHEET	CALCULATION NO.	NULSION	7441
	EGE-00016	0.	2 07 2
Thomas J. Magee $9/7/91$	B. Horowitz 9/2	6/91	CLASS 1E
THOMAS U. Mayee 17 191	1120	6171	FROJECT NO.
Emergency/Diesel Generator Basler	Exciter Test Report	·	NOD NO.
OBJECTIVE OF CALCULATION		<u> </u>	
To verify that the Basler Exciter limits at the new Emergency Diese kw for 1/2 hour and 2100 kw for 2	1 Generator Iuau provine	01 1700 84.16	ontinuous, 230
	•••		•
		• • •	
			٩
		۰ , 	
Temperature data from a series of analysis or a calculation. Compo	nent analysis based on a	worst-case ro	oom ambient
temperature of 126 degrees F.		•	
			• •
			• .
			•
		· · · · ·	• .
		•	• .
		•	•
DESIGN BASIS AND REFERENCES		, ,	1
PISION BASIS AND RIFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers.	grees C for the linear r	eactors, salu	rable transform
 PISION RASIS AND REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide</u> pp 18 and 19. 	grees C for the linear r	eactors, satu	Power Transfor
 PISION BASIS AND REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 Guide 	grees C for the linear r	eactors, satu	Power Transfor
 PISION RASIS AND REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide</u> pp 18 and 19. 	grees C for the linear r For Loading Dry Type Dis Reference Series, Volum	eactors, satu <u>tribution and</u> me_4 pp.42-43.	Power Transfor
 DISIGN SASIS AND REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide</u> pp 18 and 19. 3.) EPRI Power Plant Electrical 	grees C for the linear r For Loading Dry Type Dis Reference Series, Volum	eactors, satu <u>tribution and</u> me_4 pp.42-43.	Power Transfor
 PISION RASIS and REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide pp 18 and 19.</u> 3.) EPRI Power Plant Electrical 4.) Basler Electric report The 	grees C for the linear r For Loading Dry Type Dis Reference Series, Volum	eactors, satu <u>tribution and</u> me_4 pp.42-43.	Power Transfor
 DESIGN SASIS AND REFERENCES 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide pp 18 and 19.</u> 3.) EPRI Power Plant Electrical 4.) Basler Electric report The 5.) Test Data 	For Loading Dry Type Dis Reference Series, Volum SB Exciter Regulator App Excitation System compone	eactors, satu <u>tribution and</u> <u>e 4 pp.42-43.</u> <u>olication Note</u> ents will oper	Power Transfor 2 112. May 1966 rate below
 PISION BASIS and RIVINIMUS 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide pp 18 and 19.</u> 3.) EPRI Power Plant Electrical 4.) Basler Electric report The 5.) Test Data 	For Loading Dry Type Dis Reference Series, Volum SB Exciter Regulator App Excitation System compone	eactors, satu <u>tribution and</u> <u>e 4 pp.42-43.</u> <u>olication Note</u> ents will oper	Power Transfor 2 112. May 1966 rate below
 PISION BASIS and RIVINIMUS 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide pp 18 and 19.</u> 3.) EPRI Power Plant Electrical 4.) Basler Electric report The 5.) Test Data 	For Loading Dry Type Dis Reference Series, Volum SB Exciter Regulator App Excitation System compone	eactors, satu <u>tribution and</u> <u>e 4 pp.42-43.</u> <u>olication Note</u> ents will oper	Power Transfor 2 112. May 1966 rate below
 PISION BASIS and RIVINIMUS 1.) Component temperature limit rectifier diodes and 135 de and current transformers. 2.) ANSI Appendix C57.96 <u>Guide pp 18 and 19.</u> 3.) EPRI Power Plant Electrical 4.) Basler Electric report The 5.) Test Data 	For Loading Dry Type Dis Reference Series, Volum SB Exciter Regulator App Excitation System compone	eactors, satu <u>tribution and</u> <u>e 4 pp.42-43.</u> <u>olication Note</u> ents will oper	Power Transfor 2 112. May 1966 rate below

.. .

CON EDISON CALCULATION/ANALYSIS SHEET	CALCULATION NO. EGE-00016	ALVIAJUM Q	3 us 32
Thomas J. Magee $9/7/91$	B. Horowitz 9/2	6 (91	1E
			PROJECT NO.
Emergency Diesel Generator Bas	ler Exciter Test Report	, .,	RUD HD. LE
	:		
•			
· · ·			`
INDIAN POINT	<u>F UNIT No.2 EMERGENCY</u> EXCITER SYSTEM COMPO	DIESEL GENI	ERATOR
	SUMMARY REPORT		2
•			
i e			
1			
	Fi	nal Report	
	Fi Pr	nal Report epared By The	omas J. Magee
	Pr El	epared By The ectrical Pla	omas J. Magee nt Engineering 991
	Pr El	nal Report epared By Th ectrical Pla ptember 6, 1	omas J. Magee nt Engineering 991
	Pr El	epared By The ectrical Pla	omas J. Magee nt Engineering 991
	Pr El	epared By The ectrical Pla	omas J. Magee nt Engineering 991

CON EDISON CALCULATION/MAALYSIS SIN	EG	GE-00016		0.	4	41 32
Thomas J. Magee $9/7$	7/91	. Horowitz	9/26/9	1	[[[[]]]]	E
1V24217/11166					PRUJECT N	۴,
Emergency Diesel Genera	itor Basler Exc	citer:Test Rep	ort	•		724
	د		•			
					Page	1
						·
·	•					
EXECUTIVE_SUMMA	ARY					
break in perio carrying compor during various component total	nents were m load condit l temperatur	neasured. Th ions were a res for the	eratures le measure inalyzed f worst ca	ed tempe to deter se load	rature mine ma ing sce	rrent rises ximum nario
break in perio carrying compor during various	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the
break in perio carrying compor during various component total (1750 kw contin followed by 210 new rating ca	nents were m load condit l temperatur nuous follow 00 kw for 2 h an be adequ	neasured. Th tions were a res for the ved by opera nours). The uately met	eratures le measure lnalyzed f worst ca ltion at z results o	of vari ed tempe to deter se load 2300 kw learly s	rature mine ma ing sce for 1/2 show tha	rrent rises ximum nario hour t the

•

v · · · · · · · · · · · ·

. .

CON EDISON CALCULATION/ANALYSIS SHEET	EGE-00016		0 ·	5	. 32
Thomas J. Magee 9/7/91	B. Horowitz 9/	126 (91	•	66466 1E	
4494163771763				PAUJECT NU	9
Emergency Diesel Generator Ba	sler Exciter Test Report	· · ·	و و و و و و و و و و و و و و و و و و و	NUL NO.	724
······································				Page	, 2
BAS	SLER EXCITATION SYSTE	M TESTIN	١G	-	
	Niggol, Concestore cos	sai atora	of m	againing	y tha
temperatures of sy tests conducted on objective of the t operate within its diesel generator of continuous, 2300 kw any 24 hour load pe The four major the saturable tran transformers. The p	Diesel Generators constant components on E 4/30/91 through 5/2/9 tests was to ensure to design temperature operating at its new for one-half hour an eriod. r components tested w sformers, the linear manufacturer provided 6 degrees F for the	DG 22 d 1, 6/1/9 that ead rating load r d 2100 J ere the reacton total	luring 01 and ch com with atings (w for rections rections temper	a seria 6/22/91 nponent the upg s of 17 two hou ifier di the cu rature 1	es of . The could graded 50 kw urs in .odes, urrent .imits

of the analysis performed on each component. A detailed analysis of the testing of each component follows on pages 4 through 14.

.

· ;•.

•	INDIAN POINT NO. 2 EMERGEN	NCY DIESEL GENERATOR EXCITATION	N SYSTEM TEMPERATURE EVALUATIO	N	1	Emergency Diesel	Thomas J. Magee	CON EDISON CALCULATION/ANALYSIS SUPER
COMPONENT RECTIFIER DIODES	MFR. SPECIFIED MAX. TOTAL TEMPERATURE 266 F	HAX. KORST CASE COMPONENT TEMP. RISE AS DETERMINED BY TEST/ANALYSIS 127.1 F	MAXINUM TOTAL TENP. BASED ON WORST CASE AMBIENT (126 F) 253.1 F	DESIGN MARGIN AT WORST CASE OPERATING CONDITION 12.9 F (see note 1)		Generator Basler	9/7/91	LYSIS SUERT
CURRENT TRANSFORMER LINEAR REACTORS SATURABLE TRANSFORMERS	275 F 	135 F 104.1 F 104.1 F	267 F 230.1 F 230.1 F	8 F (see note 2) 44.9 F (see note 3) 44.9 F (see note 3)		er Exciter	B. Horowitz	EGE-
VOLTAGE REGULATOR	The existing voltage regu	•	on in a 131 F ambient. The Vol			er Test Report	rowitz	EGE-00016
CONCLUSION:	ARE CAPABLE OF OPERATION	SOCIATED WITH THE BASLER EXCITS AT MAXIMUM RATED EMERGENCY DI	ESEL GENERATOR RATING		· .		9/24	
SEE PAGE 4 "RECTIFIER DIO SEE PAGE 6 "CURRENT TRANS	DE ANALYSIS" Former Analysis"	UFACTURER SPECIFIED MAXIMUM TO	JIAL IEEREXAIUXES.				.191	
	OR AND SATURABLE TRANSFORM 5990910 REV. A (CON EDISON	ER ANALYSIS" HICRO FILM NO, 335207) FOR VO	DLTAGE REGULATOR RATING INFORMA	T10N			664454 1E	••••
	•					. 1	ł	1

CON EDISON CALCULATION/ANALYSIS SIN	EGE-00016		. 7 41 32
Thomas J. Magee 9/	B. Horowitz	9/24/91	1E
1WAJIC3/717L1			PROFICT NO.
Emergency Diesel Gene	erator Basler Exciter Test	; Report	NDD HD. LEV
	•	•	Page 4
RECTIFIER DIOD	<u>ES:</u>		
1.) Test/Analy	sis Overview		
The rec	tifier diode analys	is was based	solely on the
temperature da	ta provided during tw	o separate load	runs performed
on June 1, 19		s indicate that	
	ure rise followed cha		on system iteru
Current with a		, hence, tempera	
was reached du	ring this testing. The	first test run	ature stability described below
was reached du started at app	ring this testing. The roximately 10:30 a.m.	first test run and ran for abo	ature stability described below but 2 hours. The
was reached du started at app second test ru	ring this testing. The roximately 10:30 a.m. n started at approxima	e first test run and ran for abc ately 3:15 and ra	ature stability described below but 2 hours. The an for just over
was reached du started at app second test ru two hours. The	ring this testing. The roximately 10:30 a.m.	e first test run and ran for abc ately 3:15 and ra	ature stability described below but 2 hours. The an for just over
was reached du started at app second test ru two hours. The	ring this testing. The roximately 10:30 a.m. n started at approxima temperature printout	e first test run and ran for abc ately 3:15 and ra	ature stability described below but 2 hours. The an for just over
was reached du started at app second test ru two hours. The	ring this testing. The roximately 10:30 a.m. n started at approxima temperature printout s A-1 through A-4.	e first test run and ran for abc ately 3:15 and ra	ature stability described below but 2 hours. The an for just over
was reached du started at app second test ru two hours. The shown on pages	ring this testing. The roximately 10:30 a.m. n started at approxima temperature printout A-1 through A-4.	e first test run and ran for abc ately 3:15 and ra	ature stability described below but 2 hours. The an for just over
was reached dur started at app second test run two hours. The shown on pages 2.) Test Detai a.) First Test	ring this testing. The roximately 10:30 a.m. n started at approxima temperature printout A-1 through A-4. .ls . Run	e first test run and ran for abo ately 3:15 and ra data sheets for	ature stability described below but 2 hours. The an for just over these tests are
 was reached dur started at app second test run two hours. The shown on pages 2.) Test Detain a.) First Test During the find amps could not 	ring this testing. The roximately 10:30 a.m. n started at approxima temperature printout A-1 through A-4.	e first test run and ran for abc ately 3:15 and ra data sheets for load of 3300 g he exciter on au	ature stability described below but 2 hours. The an for just over these tests are enerator stator tomatic control

regulator. (The maximum generator stator current that could be reached was a three phase stator current average of 3137 amps.) Stabilized total temperatures for the two diodes while at 2500 amps was reached, with diode #1 measuring 194.5 degrees F and diode #2 measuring 184.1 degrees F.

b.) Second Test Run

This run was conducted with the excitation system on manual control. At 4:30 p.m., after operating at 1750 kw and 2500 amps with the diode temperatures stabilized (195 F and 186 F degrees), the generator load was increased to 2300 kw and an average of 3330 stator amps for one-half hour. Since it was necessary to increase the generator output voltage to approximately 500 volts to reach the desired stator amperage of 3300 amps, the excitation system output was 141 amps for the one-half hour run. According to the generator V-curves, 126 field amps is required for 2300 kw at rated voltage and .85 power factor. Thus, this test was much more severe than the actual worst case operating duty. The maximum total temperatures reached were 222.1 and 210.3 degrees F with an average room ambient of 95 degrees F. Thus, when accounting for the worst case room ambient temperature of 126 degrees F, the total maximum diode temperature would be 253.1 F. [maximum temperature rise of 127.1 F (222.1 total - 95 ambient) + 126 F maximum room ambient = 253.1 F].

ON EDISON CALCULATION/ANALYSIS SILKET	EGE-00016	O .	8 47 32
Thomas J. Magee 9/7/91	B. Horowitz	9/24/91	64456 1E
			PRUJICT NU,
Emergency Diesel Generator	Basler Exciter Test Rep	ort	nus 10. 254
	and the second		Page 5
			-
the diode temperature	tor load was reduced es dropped rapidly a	and stabilized	at 213 F and
204 F in a 95 F room an ambient of 126 de	ambient. The tempe	ratures of the	ese diodes at
			•
3.) Test Summary			
The rectifier d	iodes are capable of	f operating at	the unaraded
diesel generator rati	ngs without exceedi	ng their desig	n temperature
limits. The margin be expected worst case	temperatures is 12.	9 degrees F. '	The rectifier
diode test data was higher than the gener	based on operation	n at 141 fiel	d amps. much
operation at 2300	kw at rated power	factor and	rated' system
voltage.			
			:
•			3
			. '
			· '
•			· ·
•	/		· · ·
•	/		· · ·
•	,		· · ·
•			· · · · · · · · · · · · · · · · · · ·
•	/		· · · · · · · · · · · · · · · · · · ·
	/		
			· · · · · · · · · · · · · · · · · · ·
	/	· · · ·	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	

ï

.

~

on roison calculation/analysis surrt	EGE-00016	ALVILIUN O	9 41	32
Thomas J. Magee 9/7/91	B. Horowitz	9/24/91	(6 8 8 8 1 E	1999 - 2012 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 -
			PAUJECT HBI	ارب ارد در در انتهای
Emergency Diesel Generator	Basler Exciter Test Re	port	ngn Hg.	281
ـــــــــــــــــــــــــــــــــــــ			Page 6	
CURRENT TRANSFORMERS				:
stabilized test tempe 2600 amps was used to for operation at 3000 calculate the 3300 am more conservative that	s performed on the rature data for the calculate the fina 0 amps and 3300 am np and 3000 amp sta n the ANSI Standard	e current tran l stabilized t ps. The equati abilized tempe: approved meth	sformers a emperature ion used t ratures wa od.	it is is
The temperature at 2600 amps is shown referenced ANSI code showing the results o	is shown on page	applicable por $A-6$ and a sum	tion of th mmary char	ne
at 2600 amps is shown referenced ANSI code	on page A-5. The a is shown on page f the calculations	applicable por $A-6$ and a sum	tion of th mmary char	ne
at 2600 amps is shown referenced ANSI code showing the results o 2.) Test/Analysis De Stabilized test f at 2600 amps was temperatures at 3300 used is more conserva	i on page A-5. The is shown on page f the calculations tails temperature data for used to calculate amps and 3000 amps tive than the ANSI al stabilized temper amps, the stabili safely calculated .96, section 96-05.0 <u>AND POWER TRANSFORM</u> 19 of this standa	A-6 and a sum A-6 and a sum is shown on pa the current to the the final s. The calcula Standard appro- ature rise for zed temperatur according to 500, the <u>GUIDE</u> <u>ERS</u> . According ard, the avera	tion of th mmary char age A-7. stabilize tion metho the currer res for ar the metho to Equation age windir	sed of the
at 2600 amps is shown referenced ANSI code showing the results o 2.) Test/Analysis De Stabilized test at 2600 amps was temperatures at 3300 used is more conserva Knowing the actua transformers at 2600 other loading can be presented in ANSI C57 <u>DRY-TYPE DISTRIBUTION</u> 96-05.610d on page conductor rise can	i on page A-5. The is shown on page f the calculations tails temperature data for used to calculate amps and 3000 amps tive than the ANSI al stabilized temper amps, the stabili safely calculated .96, section 96-05.0 <u>AND POWER TRANSFORM</u> 19 of this standa	A-6 and a sum A-6 and a sum is shown on pa the current to the the final s. The calcula Standard appro- ature rise for zed temperatur according to 500, the <u>GUIDE</u> <u>ERS</u> . According ard, the avera	tion of th mmary char age A-7. stabilize tion metho the currer res for ar the metho to Equation age windir	sedd.tydGon

- temperature at any other load in degrees C
- θco = average winding conductor rise over room air temperature at rated load in degrees C
 - Ll = any other per unit load
 - L0 = rated load
 - n = an empirical constant; for ventilated self cooled dry type, n = .8; for sealed self-cooled dry type, n = .7.

KDISON CALCULATION/ANALYSIS SIKKT	EGE-00016		0 .	10 ut	.32
Anna Arbaile Glolar	B. Horowitz	9/20 19)	6 6 m 6 8 1 E	
Thomas J. Magee 9/7/91	B. HOFOWILZ	110011		PRUJECT HU,	
	- ·· · · ·	+ Depart	• ···• • •		
Emergency Diesel Generator	Basler Exciter les	t Report		NOP NO .	
		•		· • ·	
				· Page 7	
In the EPRI Powe pages 4-42 to 4-43, t final stabilized temp is known for a given	he following equiperature of a co	uation is	used to	calculate	the
	2				
$\frac{Tc(f) - Ta}{Ta} = (Ic/Ia)$					
Tc - Ta					
where:					
Tc = conductor tempe	rature associat	ed with a	mpacity	in degrees	с
				•	
Ta = ambient tempera	LULE ASSUCIATE(I WICH IC	anu la l	n degrees	C.
Ic = conductor load	current in ampo	eres			
Ia = cable ampacity	associated with	n Tre and T	'a in amm	eres	
Although this for series, it is derived time and temperature temperature rise var a more conservative the temperature ris power of 1.6. During the test the temperature of the wye box, the location was found to be appr room temperature as diesel generator con this higher ambient, temperature. The calculation current transformer EPRI endorsed method follow on pages 8 a shown in table form	ed using the ex- re. In the E method than the varies with ting, a thermoo he ambient air n of the current coximately 6 dec measured by thr ntrol panel. As 6 degrees F i as of the final at 3300 amp and and using 2600 and 9. The res	aponential PRI refe urrent rate the ANSI St the curre couple was in the vic transfor grees F was see thermo s added to stability nd 3000 a amp stabi	relatio renced e tio squar andard me ent ratio availab inity of mers. The couples to order to order to beach fi y tempera mp loads lized temp	onship betw equation, red, making ethod in wh o raised t ble to moni the genera is temperat an the aver located at co account inal stabil atures of e based on mperature of	the the tich ich ich ich ich ich ich ich ich ich
			•		
,					

.

	······	ALVIALUM	Tue J	
ON EDISON CALCULATION/ANALYSIS SURRY	CALCULATION NO.	0.	11 41 32	2
· · · · · · · · · · · · · · · · · · ·	EGE-00016	······	CLASS AF	
Thomas J. Magee 9/7/91		9/26 (91	1E	
(Itomaa a a a a a a a a a a a a a a a a a a			REQUECT MUS	
Emergency Diesel Genera	tor Basler Exciter Test	Report · ······	nub 2000 be	V
A.) <u>A PHASE CURRE</u>	INT TRANSFORMER	······································	Page	8
i.) 3300 Amp Stab rise data from 26 condition of 52.2	ilized Temperature 500 amp testing an degrees C:	calculation usin d a worst case	g temperature room ambient	
2600 amp temperatu C, the total tempe	ere rise = 73.3 F or Parature would be 52	40.7 C. In an am .2 C + 40.7 C =	bient of 52.2 92.9 or 93 C.	
$\frac{\text{Tc}(f) - 52.2}{93 - 52.2} = (3)$	2 300/2600) ²			
Tc(f) - 52.2 = 65	.7 C	•		
Tc(f) = 117.9 C = 244.2 F				
Adding the 6 degree	e F higher wye box	ambient = 244.2	+ 6 = 250.2 F.	
ii.) Solving for t	the final stabilized	l temperature at	the 3000 amps:	
•	2			
$\frac{\text{Tc}(f) - 52.2}{93 - 52.2} = (3)$	2 000/2600)	· · · · ·		
Tc(f) - 52.2 = 54 Tc(f) = 106.5 C = 223.7 F	.3 C			
Adding the 6 degr F.	ees F higher wye bo	ox ambient = 223.	.7 + 6 = 229.7	
B.) <u>B PHASE CURR</u>	ENT_TRANSFORMER			
	inal stabilized t data from 2600 amp re of 52.2 C.			
2600 test tempera	ture rise = 83.8 F .2 C, the total ten			
$\frac{\text{Tc}(f) - 52.2}{98.8 - 52.2} = (33)$	2 800/2600)	•		
Tc(f) - 52.2 = 75 Tc(f) = 127.2 C = 261 F	5.0 C	·		
	rees F higher wye b	ox ambient = 261	+ 6 = 267 F.	

,

. . .

-

ALVISJUM 0 CALCULATION NO. 32 CON EDISON CALCULATION/ANALYSIS SILVET 12 EGE-00016 41 LLASS AEVIIHEE/UNTE 9/2019 B. Horowitz 9 191 1E Thomas J. Magee PADJECT HD. Emergency Diesel Generator Basler Exciter Test Report 114 nob Ho. Page 9 ii.) Solving for the stabilized temperature at 3000 amps: Tc(f) - 52.2 = (3000/2600)98.8 - 52.2 Tc(f) - 52.2 = 62.0 CTc(f) = 114.2 C= 237.6 FAdding the 6 degrees F higher wye box ambient = 237.6 + 6 = 243.6F. C.) C PHASE CURRENT TRANSFORMER i.) 3300 amp stabilized temperature calculation using temperature rise data from 2600 amp testing and a worst case room ambient condition of 52.2 C: 2600 amp temperature rise = 77.8 F = 43.2 C. In an ambient of 52.2 C, the total temperature would be 52.2 + 43.2 = 95.4 C 2 Tc(f) - 52.2 = (3300/2600)95.4 - 52.2 Tc(f) - 52.2 = 69.5 CTc(f) = 121.8 C' = 251.2 FAdding 6 F for higher wye box ambient = 257.2 F ii.) Solving for the final stabilized temperature at 3000 amps: 2 $\underline{Tc(f)} - \underline{52.2} = (3000/2600)$ 95.4 - 52.2 Tc(f) - 52.2 = 57.5 CTc(f) = 109.7 C= 229.5 FAdding the 6 F higher wye box ambient = 229.5 + 6 = 235.5 F.

CON EDISON CALCULATION/ANALYSIS SILKEY	EGE-00016	navisiún D	13 41 32
Thomas J. Magee $9/7/91$	B. Horowitz 9	126 191	6 kn # X 1E
			PROFICT NO.
Emergency Diesel Generator	Basler Exciter Test Rep	oort	NUD HD
	•··-••	• -	Page 10
3.) Test Summary			
		ACCOUNT THA ST	AP
calculations was more equation.	the calculations i e maximum tempera ach a final stabili Thus, an 8 degree	the ANSI stand ndicate that ture rise, t ty temperature	ation in our ard endorsed the current he B phase of 267 F if
calculations was more equation. The results of transformer with the transformer, would rea loaded at 3300 amps. worst case loading cor	the calculations i e maximum tempera ach a final stabili Thus, an 8 degree	the ANSI stand ndicate that ture rise, t ty temperature	ation in our ard endorsed the current he B phase of 267 F if
calculations was more equation. The results of transformer with the transformer, would rea loaded at 3300 amps. worst case loading cor	the calculations i e maximum tempera ach a final stabili Thus, an 8 degree	the ANSI stand ndicate that ture rise, t ty temperature	ation in our ard endorsed the current he B phase of 267 F if

÷.

•

. .

--- -

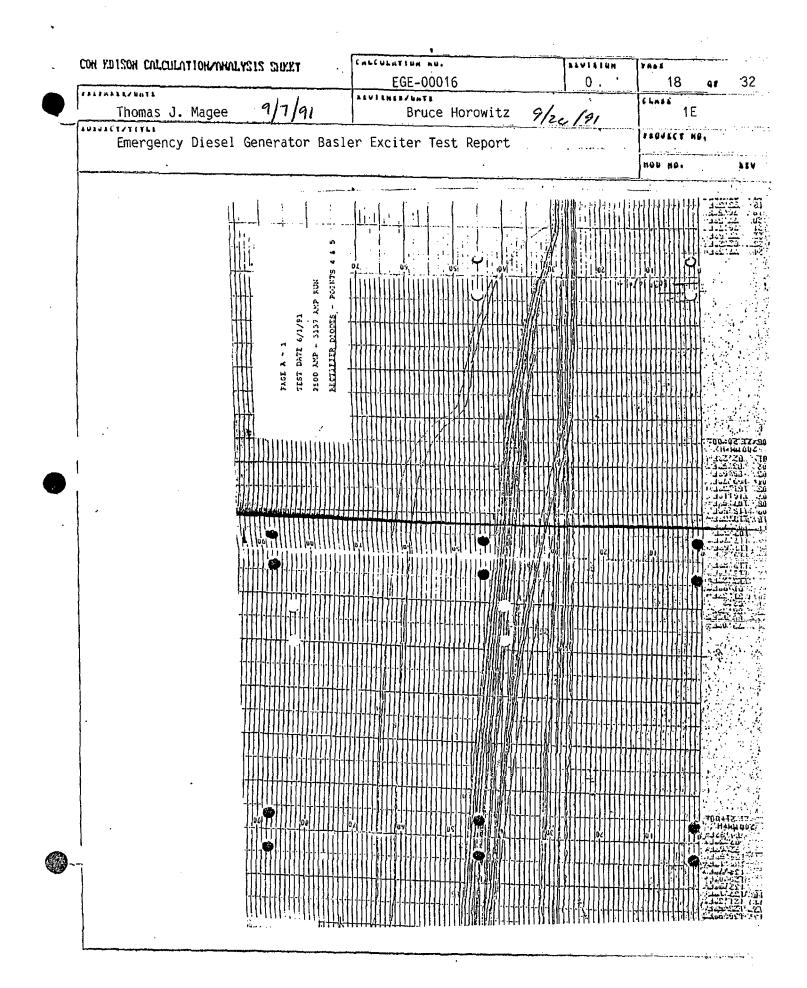
CON KUISON CALCULATION	UMUTAZIZ ZIKKA	EGE-00016	KAVISIUN O.	14 95 32
Thomas J.	Magee 9/7/91	B. Horowitz	9/26/91	sense 1E
	agee 1/1/11			PRUNKCT NO.
Emergency	Diesel Generator	Basler Exciter Test Re	eport	nuu 10
· · · · ·				Page 11
LINEAF	REACTORS AND	SATURABLE TRANSFOL	RMERS:	•
1.) Te	est/Analysis O	verview		
at the of the: Th in the informa	upgraded dies ir operation c ne linear reac shunt section	s were determined el generator rating coupled with suppor tors and saturable on of the excitat ing to their oper	s based on an u ting test data. transformers an ion system. T	nderstanding re components he following
		ion is primarily us ver for no load ope		
by the	series current	ation power at full t transformers and system as being ob	can be consider	ed due to the
transf It rema	ormers remains ains at the sam	w through the contr s steady under any s me current level (w Load power factor.	teady load on t	he generator.
temper temper	ature data. I atures throug	operation was supp These components ra hout the tests per s is shown on pages	an well below rformed. Test	their design data for the
2.) Te	st Details			
test f manufa rise t while of tem the sh on the excita requir temper	indings suppor cturer's liter hat was unaffe operating at o perature rise unt section wa generator. Du tion was raise ement, these ature change of	each test are des rt the description of rature. These compor- ected by increases for near rated loads. Was shown only when as required to incr uring the test perfo- ed to well above the components exhi- over the entire test with the highest	of operation pr lents exhibited in excitation s An increased r the current co rease, as when ormed on 6/1/91, worst case fie bited a reduc st period.	ovided in the a temperature ystem current rate of change intribution of reducing load , in which the eld excitation ced rate of
phase temper	linear react cature rise of	with the highest or. This component 104.1 F during the	: had a maximu e load run perf	um stabilized ormed on 4/30

to 5/1/91 and is used to envelope the maximum temperature rises for the saturable transformers and the B and C phase linear reactors. The following test details provide conclusions from each test:

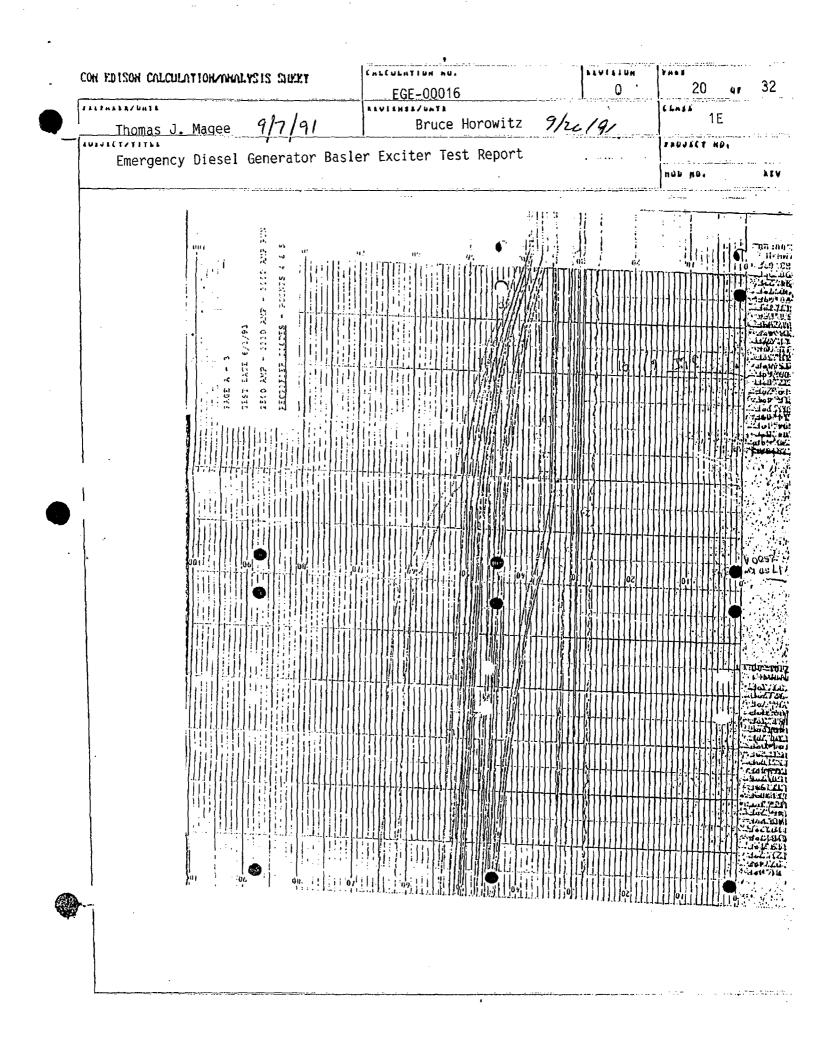
CON EDISON CALCULATION/ANALYSIS SURF	EGE-00016	0. ·	15 48 32
[* * * * * * * * * * * * * * * * * * *	ALVIENER/DATE		CLASS .
Thomas J. Magee 9/7/91	B. Horowitz 9/2	6/91	1E
IULJELT/TITLE		· · · ·	SPRAKCE HRF
Emergency Diesel Generator B	asler Exciter Test Report	• • • • • •	NUD HD. 224
			Page 12
	- 4/30/91 - 5/1/91		
Descriptio	on - Approximately an 8 the following load		
Approx. 19	57 - Start EDG and way	rm-up.	
2200 - 233	5 - Load range from 2 approximately 2		
2315 - 235	55 - Dropped load to ' amps.	750 kw and	925 stator
2355 - 019	58 - Load at 1750 kw :	and 2300 s [.]	tator amps.
0158 - 021	5 - Increased load fr 2830 stator amps		to 2300 kw and
0215 - 033	L3 - Load at 2300 kw amps.	and 2820 t	o 2830 stator
0313 - 044	46 - Load reduced to amps.	2100 kw an	d 2600 stator
Conclusion	s/Notes		
	inear reactors and sat ted within their desig		
rate resul from contr iii,	load was reduced from of change of temperatur t of an increase in the the shunt section ibution decreased with iv, v and vi also conf hunt section with load	e increase e excitatio as the s decreasin irm proper	d. This was the on contribution series section og load. Items
1750 decre F ris	load was increased fro kw and 2300 amps, temp ased and temperatures s e (172.6 - 68.5) for co rature.	erature ra tabilized	te of change at 104.1 degree
	load was increased to ratures of these compo		
maxin	00 amps and 2100 kw th num temperature stabil: (172.5 - 69.2).		

CON KUISON CALCULATION/ANALYSIS SIKKT	CHLCULATION NU.	а 6 v 1 4 1 4 м. О.	16 41 32
	EGE-00016	1 1	E LASS
Thomas J. Magee 9/7/91	B. Horowitz 9/2/9	<u>/</u>	1E
AUAULT/TIYLL			PRUJACT NU,
Emergency Diesel Generator Ba	asler Exciter Test Report		nus pas arv
			Page 13
and 20	reducing load to secur 500 amp run, temperatu to rise prior to trip	res of the	ese components
B.) <u>Test Date</u> ·	- 5/2/91		
Description	n - A continuous run at approximately 4 ho		
	pproximately 0043 hour 00 amps at approximate		t 1750 kw and
0145 - 0215	: Increased load to 23	00 kw and	2800 amps.
0215 - 0245	: Decreased load to 17	50 kw and	2250 amps.
0315 - 0415	: Increased stator amp 1750 kw load.	erage to :	2450 amps w/
0415 - 0445	: Increased load to 23	00 kw and	3050 amps.
0445 - 0458	: Decreased load to 21	.00 kw and	2850 amps.
Conclusions	/Notes:		
	ed stability at 2300 k rature rise of 91.7 de		
C.) <u>Test Date</u>	: 6/1/91		
Descriptio	n - A continuous run a 2 and 1/2 hours in following loadings:	length wi	
1020 hours	: Start engine and ward amps for 1/2 hour.		500 kw and 700
1047- 120	5: Loaded at 1750 kw	and 2500	stator amps.
1205 - 121	0: Increased load to stator amps. Remain 1240.		
Conclusions/	Notes		

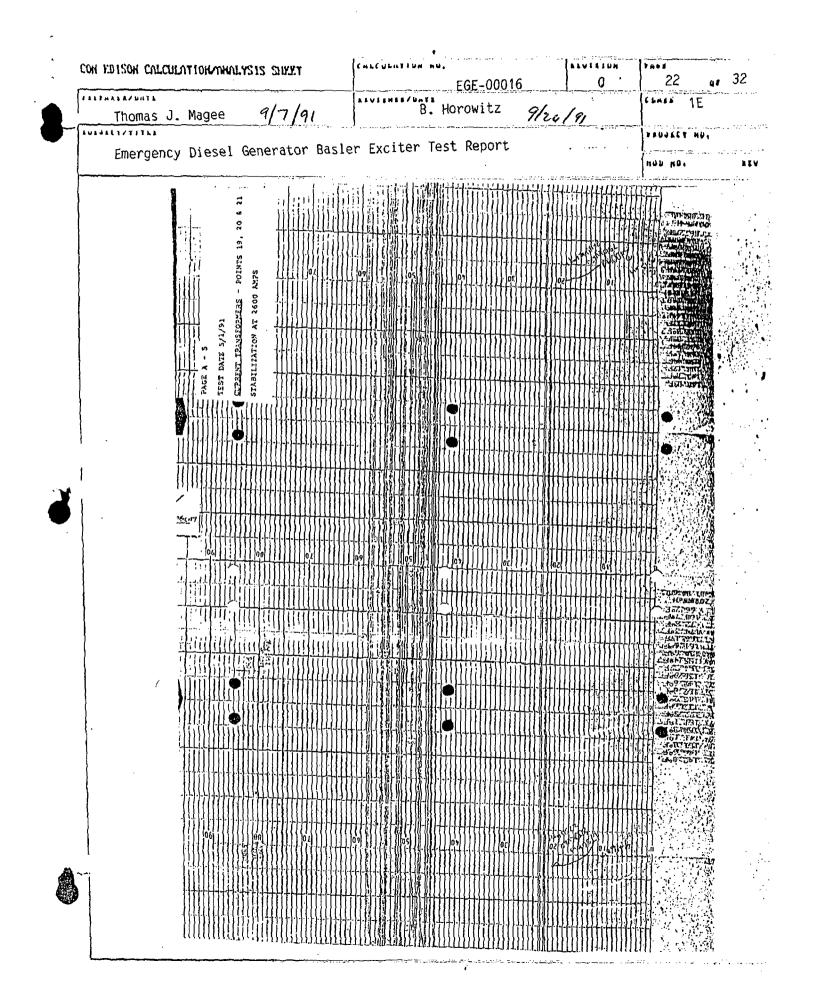
i.) At end of testing, temperature rise was 58.6 degrees F above ambient (150-91.4).


.

.


CON EDISON CALCULATION/ANALYSIS SILEET	CALCULATION NO.		******	2461	32
	EGE-00016	·····	0.	17 41	
Thomas J. Magee $9/7/91$	B. Horowitz	9/26/41		1E	
				PROJECT HUS	
Emergency Diesel Generator	Basler Exciter Tes	t _. Report	• • • • • • •	nov po.	
		•		. Page 14	•
decreased the test	re rate of char with the excep when the machir f removing the	ntion for t ne load was	he last reduce	t period portion d d in the	Df
D.) <u>Test Date:</u>	6/1/91	`			
o	continuous loa one half hours w profile:	d run for vith the fo	approxi ollowing	mately 2 a load	and
	e and gradually ely 45 minutes a was reached.				kw
1545 - 1630: I	Load held at 17	50 kw and 2	2500 sta	tor amps.	
	Load increased	to 2300 kw	and ave	rage of 3	330
1700 - 1725: I	Load reduced to	2100 kw ai	nd 3000	stator am	ps.
<u>Conclusions/No</u>	otes				
ambier	um temperature n nt (166.5-95). period.				
F. Ten	rature rise ove mperature rise ximatel <u>y</u> 6,degr	over final			ees
	of change of te ghout entire te		rise dec	creased	
3.) Test Conclusion	S		`,		
The linear reactors operating at the upg maximum stabilized t temperature rise of operate with a worst F and still have a maximum design tempe	raded emergency emperatures rea 104.1 F. Based case room ambi 44.9 degree F	diesel ge ached durin on this, ent temper	nerator ng the t these co ature o	ratings. cesting wa omponents f 126 degr	The s a can ces

•

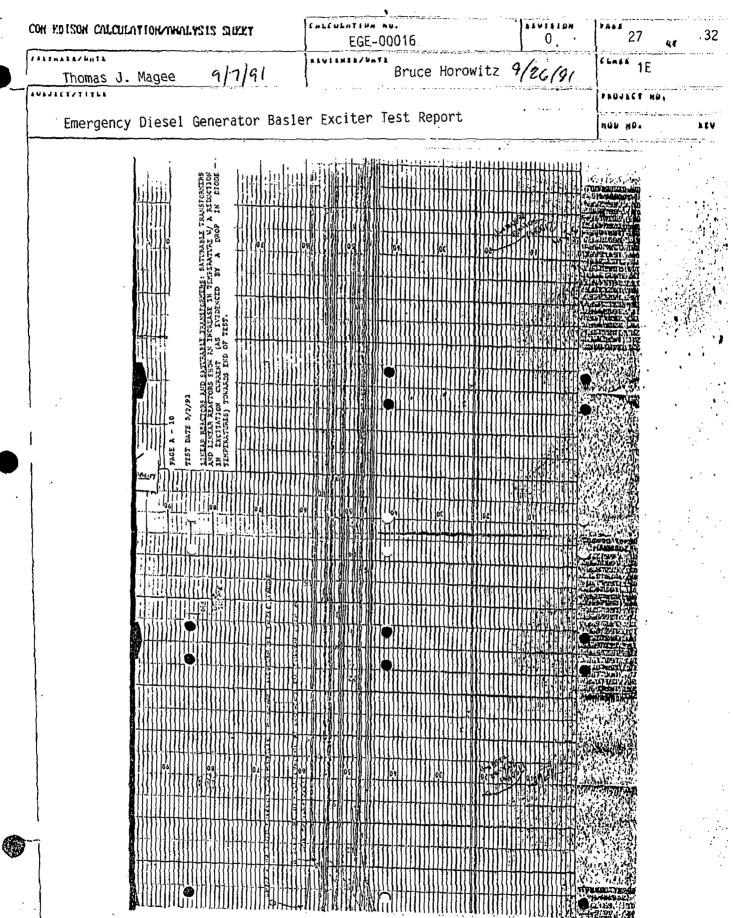

.

	S J. Ma	es remaina	· <u></u> :	17/9			EGE	-0001 / bata	5 Br	uce F	lorowi	tz 9	0. 5.10		15) <u> </u>
													2017		FRUIET	NP1
Emeng	ency Di	lesel	l Gen	erato	or Bas	iter i	IXCIU	erie	50 NC			· • ·		·		
												, <u></u>	1	<u>[</u>	4	
	· · · · · · · · · · · · · · · · · · ·					6				Hai +		ЕА-	2			
				13052					E		TES	r dat	'E 6/1	./91		
												,			AMP RU	N
					1		<u> </u>		-						- POI	
				<u></u>	<u>i</u>		· · · · · · · · · · · · · · · · · · ·				<u>Mag</u>		•			
										1		- 230U	- KM	Rurt		-
	·]			· · · · · · · · · · · · · · · · · · ·		LACE	21	37 1	
	-															
							\equiv			10						
	1		· ·· ·· · · · · · · · · · · · · · · ·				1/-									
	₹:				1	\equiv	\square			-9						
						22	<u>í </u>									
								, ,		<u> </u>		······				
			ц. 													
				T-												
			نىلىرىيە ئىلىرچەرىيە													
			1							1						
										-9						
															=	=
l																
					1											-
						-		77103-								
					 					12						
	-			·								·				
	· · · · · · · · · · · · · · · · · · ·				 	ļ										
										2						
														<u> </u>		
							<u>}</u>						30. • • •			
				- <u> </u>	<u> </u>											

	. Magee 9/7/91	B. Horowitz 9/2		PROJECT HON
Emergenc	v Diesel Generator Basi	er Exciter Test Report		NO4 NO+
Lhiergeno				
		PACE A - 4		
		TEST DATE 6/1		
			, - 130 ymb - 3000 yi	MP RUN
	The second secon			
1 •				
1				
l Bibbh				
} .				
۱ م				1
I III	in a state which the	allen an den all allen der heiten eine stellte bereite bekommen der soner im der soner im der soner im der sone Allen auf der soner im der soner i		Print of Columnia and Alexandria and

on edison calculation/analys	TANG 212	EGE-00016		LALLIN O	23 ut	
SLEALK/POIL	, 1	ASVISHER/BATE		01.	CLASS 1E	
Thomas J. Magee	9/7/91	Bru	ce Horowitz	9/26/91		
VIJICE/TITLE					PROJECT NO.	
Emergency Diesel G	ienerator Bas	ler Exciter Test	. Report		NUU NO.	·
	<u> </u>				PAGE A - 6	- •
					TAGE A - U	
·		CUIDE FOR LOADING	DRY-TYPE DISTRIR	UTION AND POWE		; ;
not be less th maximum[de	•	integrated half-hour			rmination Equa-	•
96-05.560	This method may	he used to convert		t winding condu	ctor temperature	
an irregular	load cycle, as in	Fig. 96-05,520. to a			1 1 1 1 1 1	
		case, the continuous peak 125 percent of		$a_1 = \theta_{a1} + \theta_{c1} + \theta_{c$	· ··· · ·	- Vi
		D6-01.250 shows that		- 0 • •	(Eg 96.05.610a)	{
for a ventila	ted transformer the	permissible load fol-	U,	$u_1 = \theta_{*1} + \theta_{*1}$	(Eg 96-05.610b)	4
		ercent is 128 percent; *	The hottest-spe	t winding condu		٠
• • •	•	al life expectancy.	· ·	$\frac{\theta_{s1}}{\theta_{s0}} = \left(\frac{I_{s1}}{L_0}\right)$	-	
			•	040 - [La]		
96.05.60	0. Equations fo	r Calculation of	The average w	inding conductor	(Eq 96-05.610e)	
	ature, Load, an		•		•	
	1 List of Symbols	. The following sym-		$\frac{\partial_{r_1}}{\partial_{r_2}} = \left(\frac{L_1}{L_2}\right)^2$	(Eq 96-05.610d)	
		erature in degrees C.	The time const	ant at rated had	•	
$\theta_a = $ ambia	ent lemperature			$\tau = \frac{C \theta_{rh}}{W_{h}}$		
	st-spor winding con			W _o	(Eq 96.05.610c)	
$v_A = none$	sr-shot which to	unductor temperature	where C = 0.03	15 × weight of	core and coils, in	•
		ctor temperature rise	pounds, from nat	neplate.	•	
		are, determined by re-	96-05.620 Cor	rections for l	Equations. Theo-	
$D_{\mu} = hote$		onductor to average	relically, several	corrections show	uld be made when	
wind	ling conductor temp	crature gradient	change in		h as corrections fur	
		transformer at rated al to the time required	(1) Vince cons	tant for loads of	her than rated load	
	ach 63 percent of fi	-	(2) Ultimate v period	rinding conducto	r loss at end of long	
71 == 114 4	empirical constant;	for ventilated self-	In making gen	eral calculations	based on assump-	
1	ed dry type, $n = 0$ ed dry type, $n = 0$.0.8; for scaled self-	tions of transfor	mer characterist	ics and maximum	
T = abso	dute temperature ==	0 + 273	factor of safety -	ratures which ge	nerally have a large gh for all practical	
1		ransformer, watthours	purposes are ob	ained if all the	se corrections are	
	degree C ition of load		omitici and the s	impler formulae	are used. 1.200 and 96-02 are	
$W_0 = total$	l watts loss at full los	ad and at 75 degrees C	based on the equ	ations without co	orrections, together	
	unit load live rate of aging		with averages of	data from indepe	endent sources,	•••
1	tive life expectancy	in percent	96.05.630 Tim	e Constant. 1	he concept of a	,
	· · · ·	d, normal life, or rated	transformer time	constant is based	on the assumption	
troperature	£.	•	heat sink and tha	t the temperature	a heat to a single rise of the sink is	·
	indicates any other	r load, temperature, or	an expanential fu	nction of the heat	input. The limited	:
			data uvajlable for	dry-type transfo	rmers indicate that	"i
time.	indicates initial loss	d, lemperalure, or time				
time.	indicates initial load nts.	a, temperplure, or time	the basis of these	itures may be c. assumptions.	alculated safely on	
time, Subscript i for transier Subscript r	nts. 11 indicates ultimate	load, temperature, or time	the basis of these	tures may be c. assumptions.	alculated safely on	
time, Subscript i for transier Subscript i time for tra	nts. 6 indicates ultimate ansients.		the basis of these	itures may be c. assumptions,	alculated safely on	

CON EDISON CALCULAT	IOHZNHALYSIS SILKE	T CALCULATION NO.	16	NEVISIUN O	24 gi	32
Thomas J. N	lagee 9/7/9	, ALVIENEE/UNTS Bru	ce Horowitz 9/2	0 [9]	66.056 1E	•
Emergency	Diesel Generat	or Basler Exciter Te	st Report		4403367 H0,	
					Page A-7	، بالم بالم بالم
· 🧹						
		<u>Current Trans</u>	former Summary C	<u>hart</u>		
	Current Tra <u>Phase</u>	ans. 2600 Amp <u>Test Data</u>	Calculated 3000 Amp Temp <u>0 Stability</u>	3300 7	culated Amp Temp Ability	
	λ	205.3	229.7	250.	. 2	
	В	215.8	243.6	267		
	с	209.8	235.5	257.	.2	
	Notes:					
	1.) The a	bove temperatures a	re total tempera	tures in	n degrees F	•
	F plu	oove temperatures as s an additional 6 do mbient.				
	perfo with equat tempe	alculated temperatu rmed using an equat the current ratio s ion than the ANSI s rature rise varies of 1.6.	tion in which the squared. This is Standard endorsed	e tempera more com 1 method	ature varie nservative in which t	ed :he
	tempe diese for l	alculated temperatures at the 3000 1 generator is rate /2 hour, the current ratures.	amp and 3300 am d for 2100 kw fo	p loadin r 2 hour	gs. Since t s and 2300	kw
• •••						


and anguant and a solution and and and and and a

CON EDISON CALCULATION/ANALYSIS SILKET	EGE-00016	LIVISION 0	25	41
Thomas J. Magee 9/7/91	Bruce Horowitz 9/		CLASS 1E	
40135(7/737L2			PROJECT HO.	
Emergency Diesel Generator Bas	sler Exciter Test Report			
	•	<u></u>		· ;::- •
K .]			111.1.5700-525400-64	
				1
	╡ ╕ ╴╴╴╴╴╴╴╴╴╴╴╴╴ ╴			1 1. 1 1
	┼╌┼┼┼┼┼┼┼┼╎┥╽╎╎╎╎	╶ ╴╴		
		, , , , , , , , , , , , , , , , , , ,		
	╵╵┑┙╾┿┍╶┤╶┵╴╶┽┽╕╶╪╷╼╶╷╢╠╺┶╌╍╸┍┶╍┿┵┚╪╵╢ <mark>╎╶╶</mark> ╶╌╌┶╎╢ ╞╛╝╎		The state of the s	e •
L T T D T T T T T T T T T T T T T T T T T				
				į.
		191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191 - 191		•
110 A 11 E				Ĩ
		STA 1940		1
	╴╵╴╘┶┑┍┍╵╾ <mark>┥</mark> ┇═╍╢╡╴╝╎╎╢╢╫ <mark>╪╶╢┥</mark> ╿╞┲┽╌┝╪┰╝╷┿┲╻╪┲╼┝ _╸ ╢╢			
				, , , ,
				5
				ł
	- 1 8 54 6 7 6 7 7 6 7 7 6 7 6 7 7 7 7 7 7 7 7	10 10 10 10 10 10 10 10 10 10 10 10 10 1		(·
				ļ
<u> </u>		02		
	╡╋╪╪ ╗┍╗╞╕ ┑╌┝╗╞╕╒╌┽┽╷┽┽╡╌╴╴┊╝╷╝┿┑╢╖╝╴╵┽┍┽┍┿╸╵╴╴╴╴╴╴╴			
		.		i.
The second se The second se The second sec				
				13
				í.
		· · · · · · · · · · · · · · · · · · ·		

•

· . ·

	CON KDISON CAL	CULATIOK/ANAL	ASIS SUREY	EGE-00016	,0 ·	26 91
) [Thomas	J. Magee	9/7/91	Bruce Horowitz	9/20/91	(LANS 1E
<u> </u>	1919111111111				n an	FRUJECT HUI
	Emerge	ncy Diesel	Generator Excit	er Test Report		MO. 40.
		* ++++++++++++	╅╋┽┝┽┽┽┽╪╝┽╎┼┥┟╤╕	╶		
		╶ ╋┿┾┧┿┿┾┝┶┿┿	╾╵┝┶╌┝┝┲┿ ╎ _{╋┝┥} ╎╻╽┙╕╕ <mark>┍</mark> ╋┽╵╽ _{┢┥┙}	╶┿┙╬┍╎╶╖╖╗╴╕╢╴┥╍┥╛┥┥╏╴┝╴┝╸┝╸┝╸╎╢╢╸ ╶┿┙╬┍╎╶╗╓╗╴╕╌╢╴┥╍┥╛┥┥╏╴┝╴┝╸┝╸┝╺╴┙┥┥╸┿┿┱┿	╎║╎╎ ╍┨╢┨┱╼┍╎╼╾┯╌┶╼	
		06		09 		
		┧ ╌╎╌┤╼╞╾┨╌┤╌╞╍┥╌┼╴│╾╎┥╼┥	╡ ┽╺┱╪╺┽╷┥┿╽╸╷┥╸╵╸┢╷┥╸	╡╫╪╢┽╢╬╎╎╎╶╧╠ ╕╋┿┿╢┽╢╋┝╣╔╘┶╾╠┾╬╫┿┿┱┶┿┇╶┿┿┱╍╽┼┼┿	┼╢╫╋┶┝╌┝┥┾╦╦	
			а <u>11111111111111111</u> 1 л 111111111111111111111111111111111111			
			16/06/2	┥┥┥┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙		
		6				\mathbf{O}
)	AGE THEFT				
	1		╺ ┥┤╀┼┼┼┼┽┽┥┽┽╵╵┽┟┿╡			
	1	┨ ┛╍╴┽╌╞╍┨╌┨╼┨╌┨╼┯╼┯┙╍┙	┤ ┤┥┥┥┿╪╵┥╴┿┿┱┿╵╗╗╵┿┿╛╇╌╹			
			┑╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷╷ ╶ <mark>╴<mark>╅╪╋┽┽╎┍┽╷┠┷╷╴┍┿</mark>┥╴╸</mark>			
		┫ ┛┙┥┾╵┥┾┾╵┥╴┾┿╸	┤┪┩╿┟╽╷╎╷╢╎╎ ╺┲┲ ┙╹╹╹┙┙┙┥╘╘╍╛┶┑ ┥╴			
		06	00	20 ZO		
			14 44			
				┽┯┽┽╢╌╪╱╢╺╢╞╸┽┿╚┥╴╽┝╪┶╌╢╢╟┾┽┼┾┾╴┾╸┿╸┾┥╸ ╵╵╵╵╵╵╵╵╵╵╵╴┇┇╏╵╵╵		
					╶╸╴┥╴╎╸╸┑╴╸╸╸╸╸	
					╾┤┥╎┼╆╈┽┶┼┶┼╍┿┥┷	
			╅╵╌╅┧╸┢╌┙┥╌┾╄╌┝╹╌┝┽┥╴┢┥┯╸	┿╵┽┽╢╾┥╗╝╢╌╢╌┥╶┿╶╢╌╴╱╴┍╶╸╴╴╴╸╸╸╸╸	╾┝┥╢╪┼╎┶┲┥┽┾┼┼╴	
			┿ ╹┼╆╏┇╎┼┦╎┝┨┊╞┥┤╄┥╡ ┥╽╽╽╽╎		┝╍ <mark>┝╶╢╽┝╍╍╅┟┍┍┍</mark> ┥┥╸	
1)		╸ <mark>┧╸┧╶┥┓╺╷╼╷</mark> ╼╷╼┝╼┝╼╏╼╏╼╎╼╎╌┥╍┿╍┥╼ _{┙╼}		╘╎┫╎┽┼┼┠╊┾┤╆	
9			╡╞╎╅╎┶┧╪┊╡┟┟╛ ┼┼ <u>╶</u>			
		┊┈╡┼╽╸╽┥╌┾┝┯╌┝╌┝╴	╵╕┚┥┙╎╹╎┙╻┓╸┪			

ON EDISON CALCULATIO	HANNALYSIS SIU	ĽT	CALCULATI E	GE-00016	<u></u>	BEALETON 0.	^{• 28} 41	1
Thomas J. Ma	gee 9/7	191		Ганта 	Bruce Horow	vitz <i>G/20/41</i>	6488 1E	
Emergency Di			r Excite	er Test R	eport		PADATE MP1	
Emergency D1	eser denera				• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	100 KD.	
			•		• •	•		
, <u></u>				• • 	••••			
PAGE	A - 11	·	; [<u> </u>
TEST	DATE 6/1/91	•						=
2500	АМР — 3330 АМР	- 3000 AM	PRUN					$\equiv 0$
	R REACTORS ANI COMPONENTS I	S INAFFEC	TRANSFOR	MERS: TEMP	ERATURE RISE			
CURRE	NT.	J UNALLE	·					
				<u> </u>				
				0				<u> </u>
1								<u> </u>
				P				=;
			; ;					
				0				
								=
								<u>12</u>
				0				
					N. Cont		internation of the second s	크
				20				=
								_
				6				\equiv
		¥44	من م					E.
				00				HURLEY
		ANY CLEAR						

--

	LATIOHANHALY	rsis sukkt		1	E-00016		841	0.	××•× . 2	9 41	. 3
FRIFALLE TH OTHE	1 Manaa	9/7/	A 1	AIVIINE					6 6 M 8 K		
LIIOMAS (J. Magee	<u>`/ `/ `</u>	11	<u> </u>	Bruce	e Horowi	LZ 77	-6[4]	1	E CT HP1	
Emergen	cy Diesel	Generato	r Basl	er Exci	ter Test 1	Report	• • •	···· ·	חטע א	.՝	
	<u></u>	, ··	;; . ^.	•		•	•		I	······	
-		······	· .	··· • • • • • • • • • • • • • • • • • •	····· · · · ·	• • • • • • • • • • • • • • • • • • •	· ·			.•	
		╵╵╈╹┤┼╎┲╿╅┥┿┾ ╍╍╍╍╍			┍┫╞ <u>╞</u> ╋╃┥┿┩╃┿┿┩╕╕╽ ╞	╺┝ <mark>┙</mark> ┥┾┝┥╋╋╇┝┿┦╋╇	┽┟╎┼┼┼┤ ┼╏╴╏				• •
		₩₩₩₩₩₩₩₩₩₩ ₩₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				<u>╶</u> ╵╍┝┥┥┥┥┥┥		PAGE A	 		
	A STATE OF THE	·····	╷╷╷╷ ┧╋┥┼┾╅┿┥┝ _┶	╢╵╢╸ ╢╵╴╴╋╵╼╎╍┯╷╷╴ _┺				A			
			╎┼┼┾┼┼┝┼╏	╵ <mark>╎╸</mark> ╏╴╽╴╴╸╸ ╷┝╸┠┨╌╽╼╴┝╺┥╼╴╽╶┨╶╼╴	¶1-1-1	60)		\$			
			┠┼┼┼╊┟┝┼╆		┽╌╏╌╽╌╌┙ ║╿╌┡╌╻						
6			╈╋╋╋┥┥┥┿╽╫╎╸ ╵╵╵╵╵╵╵╵	╢┝┪╬╞┱┲╞╌┍┝╌┯ ╷╢╹							
		╶			++ +- ++/β+₩s₩s- 		ji i i i i i i i i i i i i i i i i i i			÷. •	• •
		÷*1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•1•	·I₩÷⊦₽₽	╌╴╺╌╌╴			1111			•	•
		╅┽┩╌╿╌┝┢╆┝┑ ┪┝								•	•.
			┼┼┼┼┼							•••	:
N. N		╹┊┥ ╤╡ ╌╵┥ ╾╞╺ ╺┝╸	╺┿┼╍┝╍┝┵┾╌╏╍╦║╼ ╵╵╹╵╹╵╵╵╵╵╵	╪╢┼╍╍╶┧┱┹┛╍╸	-1//-1-11						•
				╈						• ,	•
		┍╵┼╛╵┢┨╼┼╷╅╎╻╴╦╸╽╺	┥┥┥ ┥╵╅╎╸╎╸╏╴┨╴								
	82.00 P.S			╎╎╹┙┙┙┙┙					4 		
	121 741			┥╏╾╎╆╎┷┶┢┥┶╊╒ ╾┝╾╋╌┯┯┿╎┭╼╢	┇╢╄╞╌╢╻┎┥╟╌╍┅╌╌ ╗╤┧╌╍╢┼┲╶╗╌┶┱╌╴	┍╋╪ _╋ ╾┿┟╸┝┲╼┿┍┿┿┱╸ ╼╖╔╧┇╢╺┲╼┝╶╄╌╌╴╴				-	· •
			╈╸╷┥┦	╃ <mark>╏╌╍┽╁╄┽╶┯┥</mark> ║	┍ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴ ╴	╾╢╌╢╌╌╌╌			· · ·	•	
					╡╫╋╌┙┢╠┝┿╅╻╌╾╌ ╿╷╔╕╷╢	┥┦╞┥┥┝╽┥		н , , , , , , , , , , , , , , , , , , ,		•	
	22 I Broart). 	++++++	╷		··· ʲ ┼┼ <mark>╎┼┽</mark> ┼┶┶┧╇╋┩ <u>↓╷╷╷</u>				:	
		┥┥┥┥┝┝┾┥┿┱┼╎╢╸		, , , , , , , , , , , , , , , , , , ,]				
		╈╋┥╢┥╵┥┥┍┢╸						H ^{aff} aberijte _{nt} e			
		╸╸╞╴╵┑╸╡╾╵╺┽╌╴╺┿╴╡╺┿ ╴╴	╺┝┥┥┝╿┿┥╿╅╸		║╸║╎┼╌╌╶╌┯╴	║╾╢╴╾		Talkartast			•
				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	╞┽┦╎╡ ┥ ┝┽┾╴┾┾ ╴╵╵╵╴			LINE OF BELLEVIE		:	
						╡╱┍╵╾┝┙╌╵╌┥╺┽╴ Ň					• .
		109 1111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				9				• •	
		┝╋╋┥╄╡┝┫┥┥ ╍╦╅╺╎╴┍╴						1			
		┼┤╴┝┑ ╕╸╸╸ ╴╴┝ <u>┥╶╷╷</u> ╶╾╸	+ -+ ? : + .	+//+		┿┥┙┙┙┿╻┿╻┿ ┽╵┽┝╅╋╋╹┽┽┨┿╋				· ·	1.1. 1.1.
1 IN 1											
				+	<i>[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]</i>						· . •

i

.....

CON FOISON CALCULATION/MAL	AZIZ ZIKKI	EGE-00016	85VI51UN O-	30 41
FALFMA3 R/ 64173	olato.	REVIENES/UNTE		f LASS
Rhomas J. Magee	9/7/91	B. Horowitz	9/2 + 191	1E
Emergency Discol	Concepton Bacl	on Evoiton Tost Donout	· • • • • • • •	
		er Exciter Test Report		nov HD.
ĺ		an ta		111111 .4-5(20) .
]02] 0v	101 101 101 101 101	100 111 100 111 100 111
		-		
	L CON	╺╴╴╴╴╸╸┓╸┓┥┥╸╶╴╷╴		
	111 23 3 196		┥┥┿╫┝╬╄ ╷╷╴╴╴╴╴╴╴╴╴╴ ╷	;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
		╡╟╎╕╸║╎╎╕ ╕ ╡		
			╋╾┲╼╴╳╢═╹╷╕╬ ╍╵╷╷┉┍ ╖╖╌┰╶╾╻╖╷╴┿┯╦┙ ╵╵	
	A TAC			
	Te/L/			
				500.472.174
(PAGE PAGE TIST PAGE PAGE	02 09 0S 0S	10	TO MALEL WAR
	╅┿┫┥╗┽┥┥┑┯┱╏┥┾╁╏╎╎╄╏┥┥┥	·····		
	╶╈┥╪╌╌┶╌┾╅╌╌┾			4440-00-11 m
	╺ [┿] ╋╫┝┶┑┾┥╵╅╫ ╹╸ ┝╵┥╇╵┾┼╴┝╶╴ ╵		· • • • • • • • • • • • • • • • • • • •	
				ALLAND
		╡ ╅┙┙┙╝┙┙╧╗┍╴╝╴╝╴╝╴╝╴╝╴╝╴╝╴		
'			02 2 01	
		╶┼╌╶╴╲╌╍╲┽╌╌╌┑┽╎╴╌╌╴┊╞╎╴┯┥╌┶╌╌┙		
			<mark>╈</mark> ╋╴ <mark>╎╔╴╏</mark> ╶┥╴ <mark>┥┑╴╴╴╴╺┍╸╸╴╴╴┍┍╛╺╶╴╸</mark>	TTOD SEZTIZA
-				
			╌┤╌╴╏ ╡┥┣╸╡╋┥ ║╶╡┥╆╼┿┥╼┿╱ <mark>┢┥┥</mark> ╼┿┿╵┿┿┿╸	

· .

	CON EDISON CALCULATION/ANALYSIS SUKET	EGE-00016	0.	31 4r 32.
	Thomas J. Magee 9/7/91	B. Horowitz 9/26	(91	154488 1E
	4U3J3CT/TCTLL			PROJECT NO.
	Emergency Diesel Generator Basl	er Exciter Test Report		nau po. a
•				
			777	
	PAG			
				8
				32
				S
				XAY
		2300		
•				S/)
				- ce
	S S S S S S S S S S S S S S S S S S S		LAN S	4
	REA I		ŝ	
	H-Z %A, P M K2			671
				8
			C.	G
			12.42 12.42	
<u> </u>				
			•	
				· · · · · · · · · · · · · · · · · · ·

LTALLIUGTS	EGE-00016		0. '	32 🧃
<u>Thomas J. Magee</u> 9/7/91	B. Horowitz	9/26/9		[LASS 1E
	Paclon Exciton Tost Don	ort.	·····	PROJECT HO.
Emergency Diesel Generator E			· · · · · · · · · · · · · · · · · · ·	nub 110.
	twεe "		····••••••••••••••••••••••••••••••••••	
			<u>)</u>	8
	3			
9	33.80		••••••••••••••••••••••••••••••••••••••	
4				
BYCE				
			17	
ŢĘST				
u				EYA .
	×			12-2-1
1				
ao 1-				
REACTOR				
r V				
L-NEAR L-NEAR				
				1.1
			in the second seco	*

ATTACHMENT 4, ENCLOSURE 7 TO NL-08-101

Calculation IP-CALC-06-00281, "Ventilation System for the EDG Building".

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

Entergy	NUCLEAR	QUALITY RELATED	ENN-DC-126	REV. 6		
	MANAGEMENT MANUAL	INFORMATIONAL USE	PAGE 3	2 OF 59		
Calculations						

CALCULATION COVER PAGE

ATTACHMENT 9.2

Sheet 1 of 1

CALCULATION COVER PAGE

	🖾 IP-2	□ IP-3 [JAF DPNP	S 🗌 VY	
Calculation No IP-CALC-06-00		This revision incorporates or Minor Calc Changes:	-	PRNs Sheet 1 of 12	
Title: Ventilatio	n System for the	e EDG Building			
Discipline: Me	chanical		Design Basis Calcula	tion? ⊠Yes [No
This calculatio	n supersedes/vo	oids calculation: GMH-0	0006-00 Rev. 0		
Modification N	o./Task No/ER	No: 1P2-06-27668			
Softwa	are used and file 5', Code:	o check this box if sprea d separately (Include C d with this calculation.	omputer Run Summar		<pre>kcel is used.)</pre>
System No./Na	ame: <u>36 / HVA</u>	C / EDG Building			
· ·	o./Name: <u>Wall F</u> nal pages if nec	ans 318, 319, 320, 321 essary)	. 322, & 323		
051/ #/0011 #			nt/Sign		DATE
REV #/DRN # .(*)	PREPARER	REVIEWER/ DESIGN VERIFIER	DESIGN VERIFIER	APPROVER	DATE
0	John Bencivenga	Victor Soohoo	Eric Anderson	Valerie Cambigianis	
	finex Beni	in Widerforfor	Eiften	Talifi	-, 1,8107
	3	4			
		· ·			
					
A Defende the f			W/DDN/// links d	_1	L.,

Refer to the Site EDMS for current status of the REV#/DRN# listed.

Entergy	NUCLEAR	QUALITY RELATED	ENN-DC-126	REV. 6
	MANAGEMENT MANUAL	INFORMATIONAL USE	PAGE 3	7 OF 59
		Calculations		

alculations

ATTACHMENT 9.6

Sheet 1 of 1

RECORD OF REVISIONS

Calculation Number: IP-CALC-06-00281

Page __2 of 12____

CALCULATION RECORD OF REVISIONS

Revision No.	Description of Change	Reason For Change
0	Initial Issue	Initial Issue

Entergy	NUCLEAR	QUALITY RELATED	ENN-DC-126	REV. 6		
	MANAGEMENT MANUAL	INFORMATIONAL USE	PAGE 3	5 OF 59		
Calculations						

Calculations

CALCULATION SUMMARY PAGE

ATTACHMENT 9.4 Sheet 1 of 1

CALCULATION SUMMARY PAGE

Page 3 of 12

Calculation No. IP-CALC-06-00281

Revision No.0

CALCULATION OBJECTIVE: To calculate the EDG Building room temperature rise above ambient temperature.

CONCLUSIONS:

At the site Design Basis ambient temperature of 93 degrees F, 3 fans are required to be operating (4 fans operable) in order to maintain the EDG Building temperature below 126 degrees F.

For temperature rise results at various conditions see section 6.8 Results.

ASSUMPTIONS: None

DESIGN INPUT DOCUMENTS:

1) FEX-00039 Rev.2 "Emergency Diesel Load Study"

2) HIMD-ER-84-020 "Engineering Report"

3) ALCO Letter dated 1/16/1968

4) Westinghouse App Guide for 3000A Bus

5) UE&C #WIP-134-9321-01-102-1 "Proposal"

6) Drawing 9321-F-3050 "3000A Diesel Gen Bus Duct"

AFFECTED DOCUMENTS: None

METHODOLOGY: Standard HVAC methodology using ASHRAE fundamentals.

Table of Contents

<u>Secti</u>	<u>on #</u>		Page #
1.0	Calc	ulation Cover Page	1
2.0	Reco	rd of Revision	2
3.0	Sum	mary Page	3
4.0	Table	e of Contents	4
5.0	List	of Effective Pages	5
6.0	Calc	ulation	6
	6.1	Background	6
	6.2	Purpose	6
	6.3	Method of Analysis	6
	6.4	Assumptions	6
	6.5	Design Input	6
	6.6	References	7
	6.7	Analysis	7
	6.8	Results	11
	6.9	Conclusions	12
Attachments			# of pages
Attac	hmen	1 Air Properties Table	1
Attac	hmen	2 ALCO Letter	1

List of Effective Pages

Page Number	Revision Number
1 to 12	0
Attachment 1	0
Attachment 2	0

٠

6.1 Background

A heat wave was experienced during the first week of August 2006 during which time the site ambient temperatures approached 100 degrees F. Several questions were raised by an NRC resident inspector regarding the Unit 2 calculation GMH-00006-00 "Ventilation System for EDG Building". CR-IP2-2006-04678 was generated on this matter. Although it was concluded that the results of GMH-00006-00 were conservative, it was decided to prepare a new calculation to eliminate the potential for future questions on the same subject.

6.2 Purpose

This calculation will determine the Emergency Diesel Generator Building (EDGB) room temperature rise with a varying number of fans operating.

6.3 Method of Analysis

The internally generated heat load in the EDGB will be determined. Then using standard HVAC equations the room temperature rise will be calculated.

6.4 Assumptions

None

6.5 Design Input

- 6.5.1 Generator Output Ratings (Ref. 6.6.1) 2300 Kw - 0.5 hour 2100 Kw - 2.0 hours 1750 Kw - 21.5 hours
- 6.5.2 Heat Loads (Ref. 6.6.6) Diesel 770,000 BTU/Hr Generator 275,000 BTU/Hr Switchgear 7150 BTU/Hr
- 6.5.3 Machine Efficiency (Ref. 6.6.5) Generator - 96.43 %
- 6.5.4 Bus Resistance (Ref. 6.6.7) 5.58 x 10⁻⁶ ohms/ft

6.5 Design Input (con't)

- 6.5.6 Diesel Combustion Air (Ref. 6.6.6) 33,075 lb/hr @ 100% load
- 6.5.7 Exhaust Fan Capacities (Ref. 6.6.4) Wall Fan 318 through 322 - 27,775 cfm (per fan) Wall Fan 323 - 29,950 cfm

6.6 <u>References</u>

6.6.1	FEX-00039 Rev.2	Emergency Diesel Load Study	
6.6.2	9321-F-3050	3000A Diesel Gen Bus Duct	
6.6.3	2001 ASHRAE Fundamentals I-P Edition		
6.6.4	ΜΑΧΙΜΟ		
6.6.5	HIMD-ER-84-020 "Engineering Report" 10/23/84		
6.6.6	ALCO Letter dated 1/16/1968		
6.6.7	Westinghouse App Guide for 3000A Bus		
6.6.8	UE&C #WIP-134-9321-01-102-1 "Proposal" 8/67		
6.6.9	Ugly's Electrical References 1993 edition		

6.7 <u>Analysis</u>

The first thing to do is to determine the amount of heat that is generated in the EDGB. For this analysis the heat generated due to hot pipes, lighting and other miscellaneous items are considered negligible compared to the heat load from the EDG and switchgear.

The major heat contributors that will be evaluated are the Diesel, the Generator, the Switchgear and the Bus. The heat rejected into the room from the equipment has been provided. Therefore only the heat rejected due to the Bus needs to be calculated. The heat load from the Bus is due to its resistance and the current it carries.

6.7.1 Room Heat Load

The average output load for each Generator will be determined based on its 24 hour profile ratings that were obtained from Ref. 6.6.1 and conservatively bounds all operating scenarios greater than 1 day duration events.

 $\begin{array}{rcl} (2300 \text{ Kw}) \ x \ (0.5 \text{ hour}) & = & 1150 \text{ KwH} \\ (2100 \text{ Kw}) \ x \ (2 \text{ hours}) & = & 4200 \text{ KwH} \\ (1750 \text{ Kw}) \ x \ (21.5 \text{ hours}) & = & \underline{37,625 \text{ KwH}} \\ & & 42,975 \text{ KwH} & \text{total in 24 hours} \end{array}$

Average generator output load (42,925 KwH) / 24 hours = 1790.6 Kw

A) Room heat load due to Bus

The heat rejected to the room from the Bus is due to its resistance losses expressed as I^2R , where I is the current and R is the resistance for each Bus.

I can be found by the equation: (Ref. 6.6.9) I/phase = (Watts) / $[(3)^{0.5}$ (Volts)(power factor)]

I/phase = (1, 790,600 watts) / [(3)^{0.5}(480 volts)(0.85)] I/phase = 2533.83 amps/phase

Power Loss/ft = $i^2 R$ Power Loss/ft = $(2533.83 \text{ amps/phase})^2 \times (5.58 \times 10^{-6} \text{ ohms/ft})$ Power Loss/ft = 35.8 watts/ft/phase

Since there are 3 phases per Bus and there is approximately 114 ft of Bus in the EDGB (Ref. 6.6.2), the heat rejected to the room from the Bus is:

Bus heat load = (35.8 watts/ft/phase) x (3 phases/Bus) x (114 ft total Bus length) Bus heat load = 12,243.6 watts = 12.24 Kw Bus heat load = (12.24 Kw) x (3413 BTU/KwH) Bus heat load = 41775.1 BTU/Hr

B) Total room heat load

The total room heat load is the total of all the major contributors.

Generators	(275,000 BTU/Hr) x (3)	=	825,000 BTU/Hr	
Diesel	(770,000 BTU/Hr) x (3)	=	2,310,000 BTU/ Hr	
Switchgear	(7,150 BTU/Hr) x (3)	=	21,450 BTU/Hr	
Bus	•		41,775 BTU/Hr	
			3,198,225 BTU/Hr	total

6.7.2 Room Temperature Rise

The temperature rise in the room is a function of the total room heat load and the amount of ventilation air flow.

From Ref 6.6.3 - pg 26.9 - equation 26:

 $\begin{array}{ll} q_{s}=(60) \ (Q) \ (p) \ (c_{p}) \ (delta \ T) \\ & \text{where} \\ Q = airflow \ rate \ (cfm) \\ p = air \ density \ (lb/ft^{3}) \\ c_{p} = specific \ heat \ of \ air \ (BTU/lb^{\circ}F) \\ & delta \ T = room \ temperature \ rise \ (^{\circ}F) \end{array}$

This equation can be represented as: $q_s = (K) (Q) (delta T)$

and rearranging to solve for temperature rise: delta $T = q_s / [(K) \times (Q)]$

where $K = (60) (c_p) (p)$

Since air density and specific heat vary slightly with temperature between 70 and 150 degrees F, results will be calculated for the site ambient design temperature of 93 degrees F as well as 100 and 105 degrees F ambient temperatures for additional information.

Air density can be calculated at varying temperature based on the ideal gas law:

 $p = (144) (P_a) / (R) (459.67 + T_a)$ [equation from Mark's Handbook] where $\begin{array}{l} R = gas \ constant \ (53.352 \ ft-lbs/lbm-^{o}R) \\ T_a = ambient \ temperature \ (degrees \ F) \\ P_a = absolute \ pressure \ (psia) \end{array}$

The specific heat of air at varying temperature was obtained from the1972 Fundamentals Volume of the ASHRAE Handbook (see Attachment 1).

Based on the above, the properties of air are as follows:

	$T_a = 93 ^{\circ}F$	$T_{a} = 100^{\circ}F$	$T_a = 105 ^{\circ}F$
Cp	0.240415	0.240459	0.240493
p	0.071770	0.070873	0.070245

With these air properties the K value in the above equation for temperature rise can be written as follows:

	$T_a = 93 ^{\circ}F$	$T_{a} = 100 ^{\circ} F$	$T_{a} = 105^{\circ}F$
K =	1.035	1.023	1.014

The amount of ventilating air flow is dependent on the number of fans operating and the amount of air drawn into the building by the Diesel for combustion.

Fan Air Flow

There are a total of 6 exhaust fans available to ventilate the EDGB. The worst case for minimum fans operating considers 1 fan out for maintenance and a failure of 1 EDG to start. This results in a minimum of 3 fans operating. In order to envelope these conditions, we will determine the room temperature rise with 2, 3, 4, and 5 fans operating.

Since 1 fan in the EDGB has a higher capacity than the other 5 fans we will consider this fan out for maintenance. This will give conservative results and they will be bounding for all combinations of operating fan. The cfm air flow per operating fan is 27,775.

Combustion Air Flow

The amount of air for combustion is determined by the Diesel and is given by the manufacturer and has a value of 33,075 lb/hr (Ref. 6.6.6). The total air flow needed by all 3 Diesels for combustion is then:

A_c (cfm) =Combustion air flow = [(33,075 lb/hr) x (3 EDG's) x (1hr/60 min)]/	33,075 lb/hr) x (3 EDG's) x (1hr/60	n)]/p
---	-------------------------------------	-------

	$T_{a} = 93 {}^{\circ}F$	$T_{a} = 100^{\circ}F$	$T_a = 105 ^{\circ}F$
р	0.071770	0.070873	0.070245
A _c _	23,042	23,334	23543

Total EDGB Air Flow

The total building air flow is the sum of the air flow from the operating fans added to the air flow required for combustion.

		10(ai EDGB AIr FI	ow (cim)
		$T_{a} = 93 ^{\circ}F$	$T_{a} = 100 ^{\circ}F$	$T_{a} = 105 ^{\circ}F$
# of operating fans	Fan flow total			
2	55,550	78,592	78,884	79,093
3	83,325	106,367	106,659	106,868
4	111,100	134,142	134,434	134,643
5	138,875	161,917	162,209	162,418

Total EDGP Air Flow (ofm)

Using the temperature rise equations developed above, the total room heat load from section 6.7.1 of this calculation and the total EDGB air flow, the room temperature rise can be calculated from the equation:

delta T= (3,198,225) / [(K) x (cfm)]

Two cases will be analyzed. Case 1 will be for all three EDG's operating and therefore the maximum number of operating fans analyzed is limited to 5 fans, allowing that 1 fan is out of service (OOS) for maintenance. Case 2 will be for two EDG's operating and therefore the maximum number of operating fans analyzed is limited to 3 fans. This accounts for 1 fan OOS for maintenance and 2 fans lost due to a failed start of an EDG.

6.8 <u>Results</u>

# of operating fans	delta T @ 93°F ambient	delta T@ 100°F ambient	delta T@ 105°F ambient
2	39.3	39.6	39.9
3	29.0	29.3	29.5
4	23.0	23.3	23.4
5	19.1	19.3	19.4

6.8.1 Case 1 (3 EDG's operating)

6.8.2 Case 2 (2 EDG's operating)

With only 2 EDG's are operating the internal heat in the EDGB will be less.

The heat load due to the Bus will be conservatively reduced by taking the 21 EDG as the non-operating EDG since it has the shortest length of Bus, 25 feet, in the EDGB. This results in a new total Bus length of 89 feet.

The new heat load is then:

Generators	(275,000 BTU/Hr) x (2)	=	550,000 BTU/Hr
Diesel	(770,000 BTU/Hr) x (2)	=	1,540,000 BTU/ Hr
Switchgear	(7,150 BTU/Hr) x (2)		14,300 BTU/Hr
Bus	(41,775 BTU/Hr) x (89/114)		32,614 BTU/Hr
			2,136,914 BTU/Hr total

The resultant room temperature rise in this case is then:

# of operating fans	delta T @ 93°F ambient	delta T@ 100°F ambient	delta T@ 105°F ambient
2	26.3	26.5	26.6
3	19.4	19.6	19.7

6.9 <u>Conclusion</u>

From the results tabulated above, it can be seen that a minimum of 3 fans are required to be operating (4 operable) in order to maintain the EDGB below the maximum allowable temperature of 126 degrees F when all 3 EDG's are operating (Case 1) at Design Basis ambient temperature of 93 degrees F. (Note: in this case, single failure is postulated as a fan failure).

Additionally, a minimum of 2 fans are required to be operating (4 operable) in order to maintain the the EDGB below the maximum allowable temperature of 126 degrees F when 2 EDG's are operating (Case 2) at Design Basis ambient temperature of 93 degrees F. (Note: in this case, single failure is postulated as an EDG failure to start. For room temperature it is conservative to postulate the worst failed start EDG is one that powers 2 EDGB fans).

Table A-4a Air-	-English Units
-----------------	----------------

	Viscosity µ,⁴ Ibm/(ft-hr)			Thermal Conductivity k, Btu/(hr-ft-F)			Specific Heat c _p , Btu/(lbm-F)				
Fahrenheit Temperature -	Saturated Liquid	Saturated Vapor	Gas, P = 1 atm	Saturated Liquid	Saturated Vapor	Gas $P = 1$ atm	Saturated Liquid	Saturated Vapor	Gas P = 0	Gas $P = 1 atm$	Fahrenheit Temperature
-352	0.7865			0.1040	0.00312				i, ay, ayan yang manantar kana kana kana kana kana kana kana ka	ana ka sa ana ana da ka pagang ka sa bardi bada di gangangan da	-352
-334	0.5348			0.0942	0.00370						-334
316	0.3993	0.0133		0.0838	0.00433		0.4690		0.2394		-316
-298	0.3194	0.0157	0.0154	0.0740	0.00497	0.00480	0.4962	0.2676	0.2394		298
-280	0.2664	0.0182	0.0171	0.0636	0.00584	0.00532	0.5268	0.2891	0.2394	0.2456	280
-262	0.2297	0.0208	0.0188	0.0537	0.00705	0.00589	0.5784	0.3440	0.2394	0.2442	262
-244	0.1815	0.0247	0.0204	0.0439	0.00890	0.00641	0.6689	0.4778	0.2394	0.2430	244
266	0.1016	0.0346	0.0220	0.0312	0.01213	0.00693			0.2394	0.2422	-226
220.6	0.05009	0.05009	0.0225	0.01964	0.01964	0.00711			0.2394	0.2420	-220.6
208			0.0236			0.00745			0.2394	0.2418	-208
-190			0.0251			0.00797			0.2394	0.2415	~190
-172			0.0266			0.00844			0.2394	0.2411	-172
136			0.0295			0.00948			0.2394	0.2406	-136
~100			0.0324			0.0105			0.2394	0.2403	~ 100
64			0.0351			0.0114			0.2396	0.2403	-64
-28			0.0375			0.0124			0.2396	0.2401	-28
8			0.0402			0.0134			0.2396	0.2401	8
44			0.0426			0.0142			0.2399	0.2403	44
80			0.0448			0.0151			0.2401	0.2403	~80
116			0.0472			0.0160			0.2403	0.2406	116
152			0.0494			0.0168			0.2406	0.2408	152
188			0.0516			0.0176			0.2411	0.2413	188
224			0.0535			0.0183			0.2415	0.2418	224
260			0.0554			0.0191			0.2420	0.2422	260
296			0.0576			0.0199			0.2427	0.2430	296
332			0.0593			0.0206			0.2434	0.2437	332
368			0.0612			0.0214			0.2442	0.2444	368
404			0.0632			0.0221			0.2449	0.2451	404
440			0.0649			0.0228			0.2458	0.2461	440
620			0.0733			0.0264			0.2511	0.2513	620

Source: Adapted by permission from ASHRAE Handbook, Fundamentals Volume, 1972.

594 Appendixes

EDG. 6. 6. 2.1 7 RECORDS MANAGEMENT SERVICES ParriFile 1221-01- 12 ALCO PRODUCTS. INCORPORATED -ECTADY, NEW YORK 12305 NOTT STREET JUN 13 53 A.B.R. Applicable to UNIT 2 1P-CALC-06-00281 Attachment 2 Pg 1 of 1 January 16, 1966 JAT 2 4/88 - C == Hr. F. W. Convey United Engineers & Constructors 1401 Arch Street ÷..., Philadelphia, Pa. Be : Your 9321-01-102-1 A1cor DE-35211 A CONTRACTOR OF Dear Sir: officiaries information given to you by phone by This letter will confirm the our Mr. Blanchards 170 550 メンチン . **}** 2. Condustion an required at full load: 33075 lb/ar. 3. Allowable amblent air temp range - minimum and maximum
a. Dissel: J202 to 130 F (amblent may go below 32°7 if
b. Generator: 07 to 130 F o
c. Switchgear: -40-F to 126 F If there are any questions, let us know. bata Franscribes Yours truly, Fron Above 770,000 Diesel generator Guitchger EDG 275,000 H. A. Delmater 7150 Engine Sales Service TIRB 1/18/07 NO:en 🗧 : Mesers: J. S. Sunkes - U.S.& C. - Pur. Dept. - Philadelphia R. Murphy - Worth. - Philadelphia L. Blanchard - Alco - Schenectady <u>.</u>___

Condition Report CR-IP2-2006-03685-CA-002, "Operability Evaluation"

ENTERGY NUCLEAR OPERATIONS, INC. INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET NO. 50-247

INFORMATIONAL USE

PAGE 23 OF 41

Operability Determinations

ATTACHMENT 9.4

OPERABILITY EVALUATION FORM

Sheet 1 of 1

Operability Evaluation	Page 1 of 24
1. Condition Report No./Operability Evaluation No.: CR-IP2-2006-03530 & 03685	
2. Summary of Operability Evaluation:	
See attached detailed Operability Evaluation.	
3. Basis for Operability Evaluation attached. 🛛	
4. Are there any other affected SSCs? 🛛 No 🗌 Yes	146
	:
5. Recommendation: 🛛 Operable; 🗌 Operable – Judgment; 🗌 Inoperable	
6. Identify any Limitations, Long Term Actions and/or Compensatory Measures to mainta	in Operability: 🛄 N/A
Yes (List WO, CA, tracking no., etc.) See attached.	
	~
Goi khink AM	· / ·
Approvals: Enitate Freened / Mit	1 July
Prepared By (Name/Date): <u>E Anderson</u> F Weinert / M Kempski	6/90/85
Additional Reviews (Assign thru CA Process) By (Name/Date): J Raffaele Gock (Hall) Additional Reviews (Assign thru CA Process) By (Name/Date)	CA No. 2 6 28 06
Additional Reviews (Assign this Criticess) By (Namerbace)	CA No
Engineering Manager Approval By (Complete only if not entered in PCRS) (Print/Sign/Date)	
Sinit Manager (Complete only if not circled in PCRS) (Print/Sigi/Date)	
(Attach additional pages as necessary)	

INFORMATIONAL USE

PAGE 23 OF 41

EN-OP-104

Operability Determinations

BASIS FOR OPERABILITY

1. Summary Statements

Component: Emergency Diesel Generators (EDG's) 21, 22 and 23

Component Safety Function: The Emergency Diesel Generators (EDG's) are designed to provide reliable power to the plant safeguards components during Design Basis Accident (DBA) conditions concurrent with a Loss of Offsite Power (LOOP) Event.

Basis for Operability:

The EDG's are operable based on a detailed review of past and present Technical Specification surveillance, preventative maintenance and post work testing as well as analytical considerations as follows:

ENGINE:

For the diesel engine, a review of the Engine PM's and Engine Signature Analysis (ESA) and recent surveillance and post work testing shows that the mechanical parameters / capability of the EDG's remain essentially unchanged since Outage 2R15. Starting with Outage 2R15, the governors on all three EDG's were replaced. Post work tests were performed on all three EDG's; however, EDG 21's governor was not fully tested to the maximum required 2300kW output of the engine. This test was subsequently performed and resulted in the inability of EDG 21 to reach its required kW output. This was documented in a Condition Report and follow-up engine adjustments and testing corrected the condition and EDG 21 was able to reach its maximum required kW output. Accordingly, all three EDG's, at present, would meet the required horsepower demand to sustain operation at 2300kW.

GENERATOR / EXCITER:

The basis for showing generator kVA (Total Power) capability is the 8 hour EDG load tests (References 9, 10 and 11) that were performed during Outage 2R15, November of 2002. These tests demonstrate compliance with the TS Surveillance Requirements that were part of the original Custom Technical Specifications (CTS) prior to implementing the Improved Technical Specifications (ITS).

No significant changes have been made to the safeguards bus loading that the generators supply, the accident loading analysis and its basis has not been modified and no physical changes have been made to the generator itself.

In consideration of the exciter, the most recent 8 hour EDG load tests (References 1, 2 and 3), that were performed during Outage 2R17, were

Operability Determinations

reviewed to verify that no equipment or component degradation has occurred since the Outage 2R15 testing was performed. Also, the rated continuous load test data from the 8 hour EDG load tests from Outage 2R15 were compared to the same continuous load test data from the Outage 2R17 tests for each generator. There were no significant differences noted in the generator / exciter parameter data for any of the generators when reviewing the tests individually and when comparing between the two sets of test data. This provides a reasonable assurance that the performance of the generator / exciter remains consistent and acceptable up to the present time.

2. References

- 1. IP2 Procedure 2-PT-R084A, Revision 8, 21 EDG 8 Hour Load Test (As performed on April 27, 2006)
- 2. IP2 Procedure 2-PT-R084B, Revision 8, 22 EDG 8 Hour Load Test (As performed on May 4, 2006)
- 3. IP2 Procedure 2-PT-R084C, Revision 7, 23 EDG 8 Hour Load Test (As performed on April 20, 2006)
- 4. Calculation FEX-00039-02, Revision 2, Emergency Diesel Generator Loading Study, (WCAP - 12655)
- 5. Calculation FEX-00143-01, Revision 1, IP2 Load Flow Analysis of the **Electrical Distribution System**
- 6. Attachments 1through 3 Calculated DBA Load Power Factor and kVA Load for EDG's 21, 22 and 23 respectively & Operator Hourly Log Data from Outage 2R17 Tests (References 1 through 3 above)
- 7. IEEE Std 387 1995 IEEE Standard Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations
- 8. USNRC Regulatory Guide 1.9, Revision 3 Selection, Design, Qualification, and Testing of Emergency Diesel Generator Units used as Class 1E Onsite Electric Power Systems at Nuclear Power Plants
- 9. IP2 Procedure PT-R84A, Revision 2, 21 EDG 8 Hour Load Test (As performed on November 18, 2002)
- 10. IP2 Procedure PT-R84B, Revision 1, 22 EDG 8 Hour Load Test (As performed on November 19, 2002)
- 11. IP2 Procedure PT-R84C, Revision 2, 23 EDG 8 Hour Load Test (As performed on November 17, 2002)
- 12. EDG 22 PWT WO IP2-06-20099 for 2-SOP-27-3.1.2
- 13. EDG 23 PWT WO IP2-02-33712 for 2PT-R084B
- 14. EDG 21 PWT 2PT-M21A
- 15. Mechanical Modification MMM-89-03369P, "EDG Upgrades"
- 16. EDG 21 WO IP2-06-24143 EDG 21 Troubleshooting
- 17. Westinghouse Memorandum NATD-IC-90-52 dated October 23, 1990 regarding IP2 generator ratings (Attachment 8)

PAGE 23 OF 41

REV.1

18. Calculation EGE-00016-00, Revision 0, "EDG - Basler Exciter Test Report" 19. Calculation FEX-00152-00, Revision 0, "EDG Generator Ratings Analysis"

3. Detailed Problem Statements

IP2 Technical Specification Surveillance Requirement (TS SR) 3.8.1.10 is an 8hour endurance run for each of the three diesel generators (EDG's) performed at a refueling interval. Entergy has been notified by NRC that the intent of this TS SR is to bound the DBA load profile. The load ranges specified in the TS SR for test acceptance criteria do not fully bound the DBA load profile.

4. Assumptions

There are no assumptions applied to this Operability Evaluation.

5. Engineering Evaluation

GENERAL INFORMATION AND DATA:

IP2 TS SR 3.8.1.10 is an 8-hour endurance run for each of the three diesel generators (EDG's) needed to be performed at each refueling interval. At present, the TS SR is to test each EDG at a power factor </= 0.85 for >/= 8 hours at the following load values:

TABLE 1 – TS SR Test Values

- 1. For >/= 2 hours at >/= 1837kW and </= 1925kW
- 2. For the remaining test duration at >/= 1575kW and </= 1750kW

The above test values are derived from the requirements of Reference 7 and 8, which contain the nuclear industry utilized basis for the application and testing of EDG's. Each IP2 EDG has a capability of 1750 kW (continuous), 2100 kW for two hours in any 24 hour period and 2300 kW for a half hour in any 24 hour period per Reference 15. There is a sequential limitation whereby it is unacceptable to operate an EDG for two hours at 2100 kW followed by operation at 2300 kW for a half hour. Any other combination of these ratings is acceptable.

Entergy has been notified by the NRC that the intent of this TS SR is to bound the DBA load profile and that the above Table 1 test values are nonconservative. The load ranges specified in the TS SR for test acceptance criteria do not fully bound the DBA load profile. The purpose of this Operability Evaluation is to show that when considering the results of past and present EDG testing, including engineering analysis of the associated recorded data, that the

EDG's are capable of supplying power to safeguards components based on calculated worst case DBA loading requirements.

Reference 4 evaluates various EDG DBA load configurations including the assumed loss of one EDG. Reference 4 is the basis for the DBA load profile. The worst case peak loading kW, for each EDG, is as follows:

TABLE 2 – Peak EDG DBA Loading

1. EDG 21 – 2268kW Recirculation Switch Sequence at T= 42 minutes with the Loss of EDG 23 assumed. Reference 4, Table 5.5-2a 2. EDG 22 – 2076kW Recirculation Switch Sequence at T = 40 minutes with the Loss of EDG 23 assumed. Reference 4, Table 5.5-2b 3. EDG 23 – 2194kW Recirculation Switch Sequence at T = 37 minutes with the Loss of EDG 21 assumed. Reference 4, Table 5.3-2b

(NOTE: Reference 4 includes a SBLOCA Scenario Load Profile which exceeds the peak kW values shown in Table 2 above. However, the scenario is extremely conservative with composite failures evaluated. In an extreme situation the load can approach the 2300kW limit. However, generally the small LOCA loads will be bounded by the large LOCA loads.)

References 1 through 3 are the EDG test procedures performed during Outage 2R17 for the purpose of satisfying the IP2 TS SR to demonstrate that the EDG's can operate at load values that simulate, as far as practical, the worst case DBA loading conditions. Test results are shown in the Operator Hourly Log Data included in Attachments 1 through 3 of this OE. These tests are run approximately every two years during scheduled Refueling Outages. During the performance of these tests Operations Personnel had difficulty reaching the required load test parameters, including maintaining power factor </= 0.85 for the duration of the test without exceeding generator parameters. The limiting generator parameters include generator output voltage and field current. The limitations are reached primarily because the EDG's are tested in parallel with the offsite power source (grid) and it is recognized that in order to get an EDG paralleled to the grid to assume more test load, including beyond its nominal continuous load rating, that it has to be operated at higher generator output voltages and field currents in order to push load flow through the grid. Further, since IP2's EDG's operate on the 480V system, which is downstream of the plant's 6.9kV System, there is the added complication that the EDG's must push load flow through the 6.9kV system as well.

ENGINE OPERABILITY EVALUATION:

In order to demonstrate the ability of the EDG's to meet the worst case Table 2 DBA peak load, which occurs for EDG 21 with the loss of EDG 23 as shown above, System Engineering has evaluated the mechanical capability of the Unit 2 EDG's. System Engineering concludes that the EDG's are capable of achieving

Operability Determinations

the required horsepower to develop a generator output of 2300kW. The basis for this conclusion is predicated on engineering judgment that has been substantiated by a review of the mechanical integrity of the diesel via Engine Signature Analysis, Preventative Maintenance (PM) schedule, and performed surveillance tests.

IPEC utilizes a condition based maintenance approach for the EDG's which combines periodic maintenance activities with Engine Signature Analysis (ESA) to insure the mechanical integrity of the diesel engines. The specifics of the ESA define the combustion and mechanical performance, as well as the material condition of the diesel. A review of the ESA's performed on EDG's 21, 22 and 23, since 2000 (2 year frequency), determined that the overall health, mechanical integrity, and combustion parameters remain unchanged and unchallenged. Minor tuning has been implemented which optimized the peak performance of the engine to maximize output and reduce engine vibrations and cylinder imbalance. Visual inspections (PM based) and vibration analysis (included with ESA) have determined the health of the turbocharger as sound. The diesels are characterized as having sound fuel and air delivery capability.

Review of the 8 Hour tests performed during 2R15 (References 9, 10 and 11) found that the diesels successfully completed the functional 1/2 Hour 2300kW test with additional thermal margin for turbocharger performance. Subsequent to 2R15, EDG work scope has been limited to PM activities which primarily focus on inspections and specific wear material/part replacement. Post work tests for the work performed have demonstrated satisfactory recovery of the diesels and are independent of maximum diesel loading. Mechanical governor replacement has been performed on all three diesels with output capability validated on EDG 22 by Reference 12 and EDG 23 by Reference 13. EDG 21's mechanical governor was replaced during 2R16 but was not cycled to 2300kW. This fact was identified during the preparation of the OE associated with CR-IP2-2006-3530. The OE identified an Immediate Action in Section 7 to test EDG 21 to 2300kW for 3 minutes to verify operation of the governor replacement similar to that performed for EDG's 22 and 23. This action was completed on June 16, 2006 via a Temporary Procedure Change to the normal monthly test procedure (Reference 14). The initial test run of EDG 21 resulted in a maximum output of 2250kW, which is less than the required 2300kW output and CR-IP2-2006-03691 was generated. Troubleshooting of the EDG governor and fuel delivery system was performed under Reference 16. The troubleshooting determined that the fuel delivery system was not optimized and adjustments were made. Subsequent to this work a second EDG 21 test to 2300kW was performed and resulted in satisfactory operation of the engine. Therefore, based on the above, there is no reason to suspect that EDG 21 will not achieve 2300 kW if required to do during accident conditions.

System Engineering concludes, through review of the PM's, PWT's, Surveillances, and ESA that the mechanical parameters/capability of the EDG's performance remains unchanged since Outage 2R15. Accordingly, the EDG's would meet the required horsepower demand to sustain operation at 2300kW.

GENERATOR / EXCITER OPERABILITY EVALUATION:

Reference 4, the EDG Loading Study, determines the worst case accident loading on IP2's EDG's for various accident scenarios. However, this study only analyzes the required kW output of the EDG's and does not address the required generator output, which is measured in kVA. The generator output, in kVA, is the vector summation of the kW output and kVAR output. In order to assess the kVA output of the generators relative to the required accident values, it is necessary to determine the expected worse case accident kVAR output. To calculate the kVAR output, the overall power factor of the accident load must be determined first. The power factor calculation is shown in Attachments 1 through 3 of this Operability Evaluation. The power factor used for this calculation is associated with the worst case peak load as shown in Table 2 above using data from Reference 5, the IP2 Load Flow Analysis, and calculating the equivalent power factor during the worst case peak output. The specific loads that are considered in the power factor calculation are those loads "running" during the time the peak is reached. The power factor data is taken from motor test data sheets for the specific motors used in the calculation. For the purpose of determining power factor, the calculations only considered running loads 50kW and above and included all major safety related motors including Auxiliary Feedwater Pumps, Service Water Pumps, SI Pumps, RHR Pumps, Recirculation Pumps and Recirculation Fans. The remaining loads on the EDG's represent a mix of lighting, heating, battery charger and small motors, including MOV's and when considered together, would not significantly change the resulting power factor value. This power factor value is then used to calculate a worst case DBA peak kVAR. The worst case peak kVA is then calculated from the vector summation of the worst case peak kW and peak kVAR. It must be emphasized that the worst case peak DBA kVA load is based on the loss of one EDG, which is the assumed single failure for the accident loading analysis. The peak DBA loads used in this OE for all three EDG's occurs during the Recirculation Switch Sequence for duration of approximately one minute at the time points shown above in Table 2 with the loss of one EDG assumed. The peak DBA loads in Reference 4 for cases where all EDG's are available are significantly less than those with the loss of one EDG, including the loss of a single safety related pump on one EDG. The following table summarizes the results of Attachments 1 through 3:

Entergy	NUCLEAR	QUALITY RELATED	EN-OP-104	
Linergy	MANAGEMENT MANUAL	INFORMATIONAL USE	PAGE 2	3 01

Operability Determinations

TABLE 3 – Summary of Results

EDG	Worst Case DBA Peak kVAR	Worst Case DBA Peak kVA
21	1224 kVAR	2577 kVA
22	1177 kVAR	2386 kVA
23	1184 kVAR	2493 kVA

The capability of the generator to produce maximum required DBA kVA output, calculated above, can be found in the review of past surveillance tests. References 9, 10 and 11 are 8 hour EDG load tests that were performed during Outage 2R15 to demonstrate compliance with the TS Surveillance Requirements that were part of the original Custom Technical Specifications (CTS) prior to implementing the Improved Technical Specification (ITS). Attachment 4 is a comparison of the worst case DBA peak loading, calculated in Attachments 1 through 3, with this load test data. Referring to the attachment, for the DBA loading, the peak kW is the values listed in Table 2, the power factor is from Attachments 1 through 3 for the respective EDG, the peak kVAR is calculated from the power factor and the peak kW, the kVA is calculated from the peak kW and peak kVAR and the load current is calculated from the kVA for the nominal safeguards bus voltage (480V) and the tested EDG output voltages (494V and 504V). For the test loading, the test kW and test kVAR is from Step 7.4 of the test procedure for each EDG, the power factor and kVA are calculated from the test kW and kVAR, and the load current is calculated from the kVA for the nominal safeguards bus voltage (480V) and the tested EDG output voltages (494V and 504V). By comparing the DBA load data for kW, kVAR, kVA, pf, and Amps to the associated test data it is concluded that the EDG testing performed prior to the implementation of ITS bounded the worst case DBA peak loading. Of particular interest is the kVA output data which shows DBA required and tested kVA output significantly higher than the generator rated kVA output of 2188kVA. IP2 generators are capable of a continuous output of 2300kW, 480 volts at 0.8pf. This corresponds to a rated kVA output of 2875kVA. This rating is documented via a memorandum from Westinghouse included in this OE as Attachment 8. This provides additional supporting documentation that the EDG's are operable and capable of performing their DBA safety function.

When reviewing the exciter performance in the most recent 2R17 EDG testing (References 1, 2 and 3), it was noted that when checking the relationship of the EDG test data for AC current and AC volts with the test data for field current, that the field current was significantly higher than the expected value extrapolated from the Synchronous Generator V Curves, included in this OE as Attachment 5. Does the test result indicate potential generator degradation?

<i>Entergy</i>	NUCLEAR MANAGEMENT MANUAL	QUALITY RELATED	EN-OP-104 REV. 1					
Entergy		INFORMATIONAL USE	PAGE 2	3 OF 41				
Onerschility Determinations								

Operability Determinations

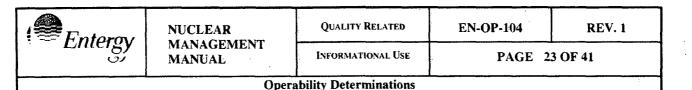

The generator field current limits specified in the TS SR test procedures are derived from the Synchronous Generator V Curves (Attachment 5) and are based on the specified TS SR test kW output (See Table 1), power factor and the associated maximum output current. For the 2R17 tests, these values are shown below in Table 4.

Table 4 – Generator TS SR Field Current Limits

TS SR Test kW	pf	Output Current	Field Current
1750kW	0.8	2631A	112A
1925kW	0.8	2894A	114A

The output current and associated field current in the above table is based on a generator voltage of 480V.

Attachment 6 is data taken from the Operator Log for the test associated with EDG 22 (Reference 2). The particular data used in the test review was at Time = 1400 hours. Using this data from Attachment 6 for AC current of 2575 amps and power factor (pf) of 0.86, enter the V Curve at a Per Unit (PU) Stator Current of 2575A/2630A = 0.98 PU. (Note: 1.0 PU Stator Current is equal to the generator rated output current or 2630A.) Move across the curve at 0.98 PU Stator Current, to an overexcited power factor equal to approximately 0.86 and then down to the PU Field Amps and the expected value is 1.9 PU or approximately 105 amps. (Note: 1.0 PU Field Amps is equal to 55 amps for the IP2 Generators.) Comparing this value from the V Curve with the recorded test value of 114A. shows that the generator field current was higher than indicated from the V Curve. The V Curve for the IP2 generators is based on a generator voltage equal to rated nameplate volts, which is 480 volts, and the field current is based on a power factor of 0.8 as shown in Table 4. The generator voltage (AC Volts) during the test was 494 volts as documented on Attachment 6. When the generator is operated in parallel mode with the grid, the field current may need to be varied through a wide range if the generator is required to maintain a near constant kW output while maintaining rated voltage. When it is necessary for the generator to assume a higher reactive load, for example during the higher output part of the test, it is necessary to raise the field current so that the generator takes on more reactive load from the system it is paralleled with. This is accomplished by raising the generator terminal voltage and monitoring the field current until the desired kVAR output is reached. (Note: Output voltage and field current adjustments have no impact on the kW output; this can only be varied by a change to the engine governor settings.)

A check of the higher output voltage versus the generator field current can be performed by review of the generator "Saturation Curves" for the IP2 generators. These curves are included in Attachment 7. Saturation Curves are provided for "No Load Saturation" and "Full Load Saturation at 0 pf". An additional check point is provided for Full Load Saturation at 0.8 pf. The Saturation Curves show the relationship between generator output voltage (Line Volts) and Field Current (Field Amps). As generator output voltage increases for a constant load, the generator field current also increases. Using the test values for AC Volts, AC Current, and power factor shown in Attachment 7 at Time = 1400 hours and by interpolation of the Saturation Curve for these values, it can be shown that the expected generator field current is approximately 114A, which is consistent with the recorded data.

The exciter operation was evaluated as part of the EDG upgrade modification performed in the early 1990's. Reference 18 is the Basler exciter test report and this report concludes that the generator field current could be operated as high as 141 amps without exceeding the worst case exciter component temperature limits. Reference 19 provides a validation of the IP2 generator V Curves and this analysis shows that the expected field current values at 480V output and 0.8pf are 112 amps for 1750kW output, 124 amps for 2100kW output and 131 amps for 2300kW output. This demonstrates that the maximum expected field current value of 131 amps at the peak EDG kW loading of 2300kW is bounded by the Basler report test results and would not be exceeded by operation at the calculated DBA peak kW loading shown in Table 2.

As a final check of generator performance consistency, the rated continuous load test data from the Outage 2R15 tests were compared to the same continuous load test data from the Outage 2R17 tests for each generator. This data is summarized in Attachment 9. There were no significant differences noted in the generator parameter data for any of the generators when comparing between the two sets of test data. This provides a reasonable assurance that the performance of the generators, including the exciters, remains consistent and acceptable up to the present time.

6. Impact on Nuclear Safety

The EDG System provides reliable 480V emergency power of sufficient capacity to those plant auxiliaries required for accident mitigation and recovery. The EDG System is designed to have sufficient capacity and redundancy to provide 480V AC power to the ESF loads during a DBA. Any two of the three EDG's have sufficient capacity to start and run a fully loaded set of engineered safeguard equipment.

The 480V Switchgear Buses 2A, 3A, 5A or 6A are automatically powered from the onsite EDG's if offsite power is not available.

PAGE 23 OF 41

EN-OP-104

Operability Determinations

The EDG's provide emergency power to 480V Switchgear Buses 5A, 2A, 3A and 6A via Supply Breakers 52/EG1, 52/EG2A, 52/EG2B and 52/EG3, respectively. Each EDG has a capability of 1750 kW (continuous), 2100 kW for two hours in any 24 hour period and 2300 kW for a half hour in any 24 hour period. There is a sequential limitation whereby it is unacceptable to operate an EDG for two hours at 2100 kW followed by operation at 2300 kW for a half hour. Any other combination of these ratings is acceptable. EDG 22 provides power to Buses 2A and 3A. EDG 21 and EDG 23 provide power to Bus 5A and 6A, respectively. Each EDG starts automatically on a Safety Injection (SI) signal or upon an undervoltage condition on its 480V switchgear bus. On a SI signal or upon undervoltage on any of the buses, the engines run at idle and can be connected to the de-energized buses by the operator from the Central Control Room (CCR). Upon blackout (loss of power to Bus 5A or 6A) plus a unit trip (with no SI), the EDG's will be automatically connected to the de-energized buses and are sequentially loaded. Any two of the three EDG's have sufficient capacity to start and run a fully loaded set of engineered safeguard equipment. The EDG's are capable of starting and load sequencing within 10 seconds after the initial start signal and have the capability of being fully loaded within 30 seconds.

Since the EDG's are considered operable there is no safety impact on the engineered safeguards equipment.

7. Immediate Actions

No further immediate actions are required.

Recently completed actions included testing EDG 21 to 2300 kW for 3 minutes during the scheduled EDG 21 monthly test. This test, which determined that additional engine adjustments were necessary, was documented in References 14, 16, and CR-IP2-2006-03691. The final testing performed via Reference 16 ultimately proved that the governor replacement on EDG 21 does not restrict the ability of the diesel engine to reach 2300 kW.

8. Long Term Actions

The long term actions will be determined upon completion of the Apparent Cause Evaluation's performed for CR-IP2-2006-03530, CR-IP2-2006-03685 associated with this OE and related CR-IP2-2006-03396.

9. Attachments

- 1. Attachment 1 Calculated DBA Load Power Factor and kVA Load for EDG 21
- 2. Attachment 2 Calculated DBA Load Power Factor and kVA Load for EDG 22

Operability Determinations

- 3. Attachment 3 Calculated DBA Load Power Factor and kVA Load for EDG 23
- 4. Attachment 4 Comparison of DBA Peak Load and CTS EDG Load Testing
- 5. Attachment 5 Synchronous Generator V- Curves for IP2 Generators
- 6. Attachment 6 Operator Log Hourly Data for EDG 22 8 Hour Test Run on 5/4/06
- 7. Attachment 7 IP2 Generator Saturation Curves
- 8. Attachment 8 Westinghouse Memorandum on Generator Ratings
- 9. Attachment 9 Comparison of Outage 2R15 and 2R17 8 Hour Continuous Rating Test Data

10. Review / Approval Prepared by: Date: ert / M Kempski derson / IA TELECON Date: Reviewed by: ele Date: Approved by S Petrosi

CR-IP2-2006-03530 and 3685 Operability Evaluation Attachment 1 Calculated DBA Load Power Factor and kVA Load for EDG 21

			Calculated	Calculated
Load ID	kW	PF	kVA	kVAR
SI Pump 21	345	0.910	379.12	157.18
CS Pump 21	350	0.906	386.31	163.51
CR Fan 21	223	0.850	262.35	138.20
CR Fan 22	223	0.850	262.35	138.20
RC Pump 21	294	0.874	336.38	163.45
ESW Pp 24	282	0.885	318.64	148.35
NSW Pp 21	282	0.885	318.64	148.35
IAC 21	56	0.830	67.47	37.63
	·			

Total = 2055 kW Calculated PF =

0.88

1094.87 kVAR

EDG Worst Case DBA Peak kW = EDG Worst Case DBA Peak kVAR = EDG Worst Case DBA Peak kVA =

2268 kW 1224 kVAR 2577 kVA

Remarks:

EDG Worst Case Peak kW = This is based on Westinghouse EDG Loading Study, FEX-00039-02, Table 5.5-2a @ T=42 minutes

EDG Worst Case DBA Peak kVAR = (EDG DBA Peak kW) X (Tan (Acos(Calculated PF))) EDG Worst Case DBA Peak kVA = Vector Sum of Peak kW and Peak kVAR PF = Power factor based on motor data sheets (Reference 5)

CR-IP2-2006-03530 and 3685 OE

Time	16:00	17:00	18:00	19:00	20:00	21:00	22:00	23:00	0:00
Field Current (A)	94	94	95	108	108	108	108	114	114
AC Current (A)	2010	2010	2010	2300	2400	2350	2300	2530	2500
AC Volts (V)	494	494	494	494	494	494	494	501	500
kW	1650	1650	1650	1690	1740	1730	1650	1900	1900
kVAR	625	625	690	1125	1190	1140	1150	1250	1300
kVA	1764.4	1764.4	1788.5	2030.2	2108.0	2071.8	2011.2	2274.3	2302.2
pf	0.935	0.935	0.923	0.832	0.825	0.835	0.820	0.835	0.825

EDG 21 Operator Log Data 2R17 8 Hour Test 2-PT-R084A Performed 4/27/06

Attachment 1 Page 2 of 2

CR-IP2-2006-03530 and 3685 Operability Evaluation Attachment 2 Calculated DBA Load Power Factor and kVA Load for EDG 22

			Calculated	f
Load ID	kW	PF	kVA	kVAR
SI Pump 22	345	0.868	397.47	197.38
AFW Pump 21	223	0.840	265.48	144.05
CR Fan 23	223	0.850	262.35	138.20
CR Fan 24	223	0.850	262.35	138.20
ESW Pump 25	282	0.885	318.64	148.35
NSW Pump 22	282	0.885	318.64	148.35
CCW Pump 22	230	0.891	258.14	117.20
IAC 22	56	0.830	67.47	37.63
· · · · · · · · · · · · · · · · · · ·				
	·			

Total = Calculated PF = 1864 kW 0.87

1069.36 kVAR

EDG Worst Case DBA Peak kW = EDG Worst Case DBA Peak kVAR = EDG Worst Case DBA Peak kVA = 2076 kW 1177 kVAR 2386 kVA

Remarks:

EDG Worst Case Peak kW = This is based on Westinghouse EDG Loading Study, FEX-00039-02, Table 5.5-2b @ T=40 minutes

EDG Worst Case DBA Peak kVAR = (EDG DBA Peak kW) X (Tan (Acos(Calculated PF))) EDG Worst Case DBA Peak kVA = Vector Sum of Peak kW and Peak kVAR

PF = Power factor based on motor data sheets (Reference 5)

CR-IP2-2006-03530 and 3685 OE

Time	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00
Field Current (A)	112	103	107	108	108	110	109	114	114
AC Current (A)	2450	2250	2300	2300	2350	2400	2400	2550	2575
AC Volts (V)	494	494	494	494	494	494	494	496	494
kW	1750	1750	1725	1700	1740	1725	1750	1850	1870
kVAR	1150	850	1000	1025	1000	1100	1020	1100	1100
kVA	2094.0	1945.5	1993.9	1985.1	2006.9	2045.9	2025.6	2152.3	2169.5
pf	0.836	0.900	0.865	0.856	0.867	0.843	0.864	0.860	0.862

EDG 22 Operator Log Data 2R17 8 Hour Test 2-PT-R084B Performed 5/4/06

Attac	hme	nt	2
Page	2	_of_	2

CR-IP2-2006-03530 and 3685 Operability Evaluation Attachment 3 Calculated DBA Load Power Factor and kVA Load for EDG 23

Load ID	kW	PF	Calculated kVA	kVAR
SI Pump 23	345			157.18
CS Pump 22	350	0.906	386.31	163.51
AFW Pump 23	223	0.840	265.48	144.05
CR Fan 25	223	0.850	262.35	138.20
RC Pump 22	294	0.874	336.38	163.45
ESW Pump 26	282	0.885	318.64	148.35
NSW Punp 23	282	0.885	318.64	148.35

Total = 1999 kW Calculated PF = 0.88 1063.09 kVAR

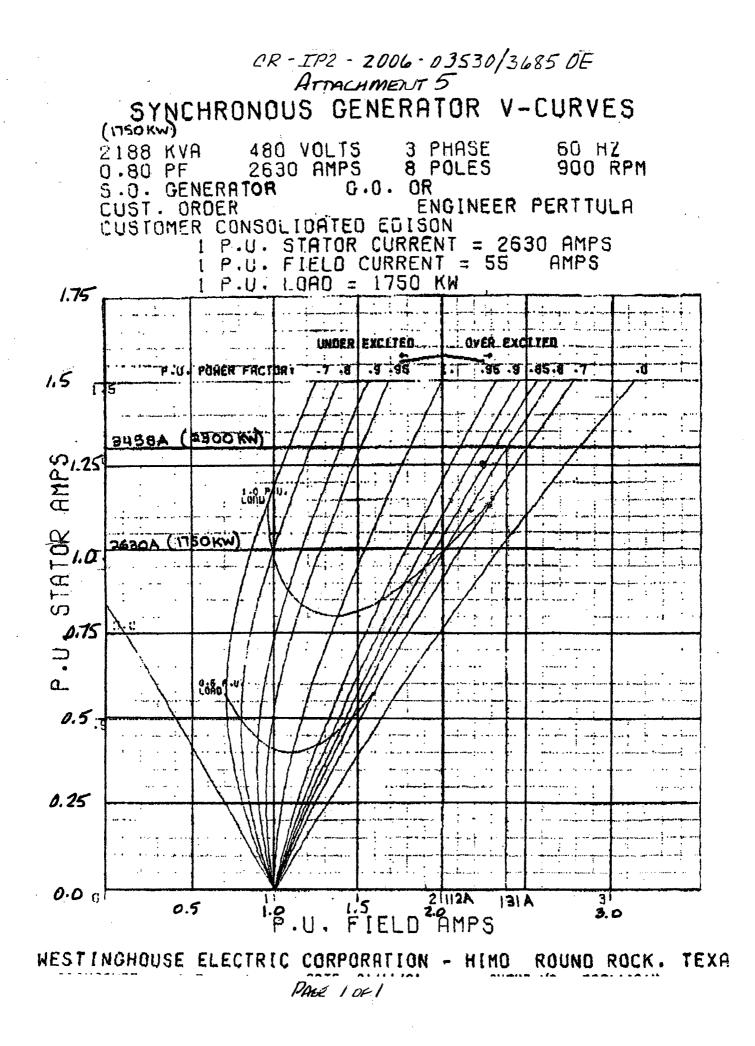
EDG Worst Case DBA Peak kW =	2194 kW
EDG Worst Case DBA Peak kVAR =	1184 kVAR
EDG Worst Case DBA Peak kVA =	2493 kVA

Remarks:

EDG Worst Case Peak kW = This is based on Westinghouse EDG Loading Study, FEX-00039-02, Table 5.3-2b @ T=37 minutes

EDG Worst Case DBA Peak kVAR = (EDG DBA Peak kW) X (Tan (Acos(Calculated PF))) EDG Worst Case DBA Peak kVA = Vector Sum of Peak kW and Peak kVAR PF = Power factor based on motor data sheets (Reference 5)

CR-IP2-2006-03530 and 3685 OE EDG 23 Operator Log Data

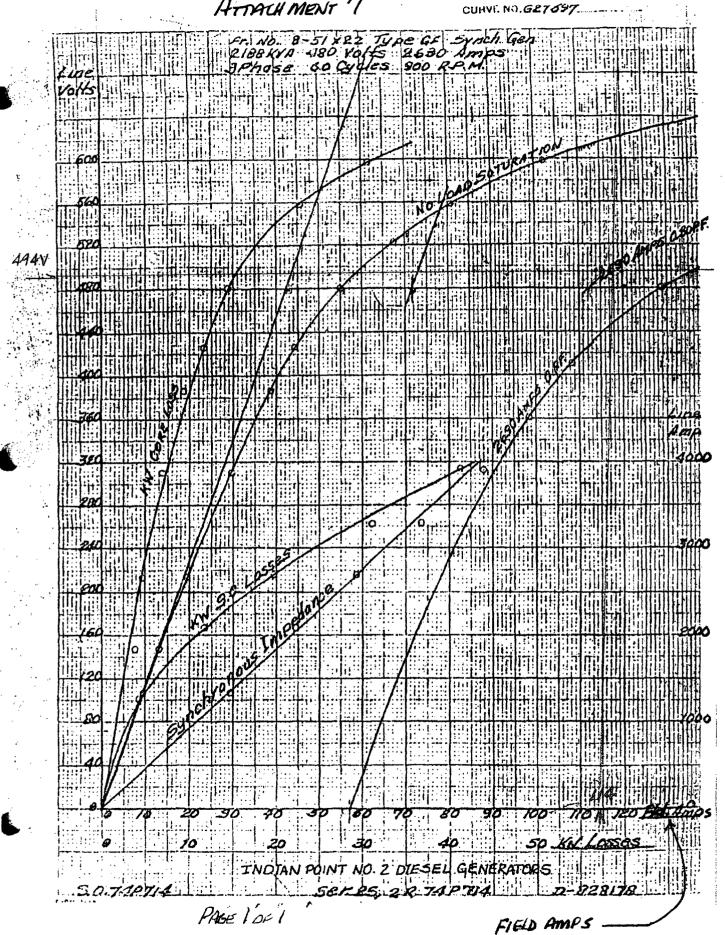

Time 4:00 8:00 10:00 11:00 3:00 5:00 7:00 6:00 9:00 Field Current (A) 108 105 105 105 110 107 114 114 114 AC Current (A) 2225 2200 2220 2350 2330 2300 2530 2550 2510 499 AC Volts (V) 494 494 494 494 494 494 500 499 kW 1650 1675 1720 1750 1725 1740 1900 1900 1898 kVAR 1200 1200 1195 1025 925 925 990 1100 1060 kVA 1942.5 1913.4 1953.0 2010.6 2045.9 2037.4 2247.2 2247.2 2242.9 pf 0.849 0.875 0.881 0.870 0.843 0.854 0.845 0.845 0.846

2R17 8 Hour Test 2-PT-R084C Performed 4/20/06

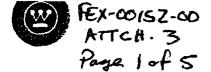
Attachment	3
Page 2 of	2

CR-IP2-2006-03530 and 3685 Operability Evaluation Attachment 4 Comparison of DBA Peak Load and CTS EDG Load Testing

EDG	Peak kW	Peak kVAR	pf	kVA	Amps (480V)	Amps (494V)	Amps (504V)
21	2268	1224	0.88	2577	3100	3012	2952
22	2076	1177	0.87	2386	2870	2789	2734
23	2194	1184	0.88	2493	2999	2914	2856
EDG	Test kW	Test kVAR	pf	kVA	Amps (480V)	Amps (494V)	Amps (504V)
21	2300	1280	0.87	2632	3166	3076	3015
22	2300	1400	0.85	2693	3239	3147	3085
23	2300	1300	0.87	2642	3178	3088	3027


CR-IP2-2006-03530 and 3685 OE

Time	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00
Field Current (A)	112	103	107	108	108	110	109	114	114
AC Current (A)	2450	2250	2300	2300	2350	2400	2400	2550	2575
AC Volts (V)	494	494	494	494	494	494	494	496	494
kW	1750	1750	1725	1700	1740	1725	1750	1850	1870
kVAR	1150	850	1000	1025	1000	1100	1020	1100	1100
kVA	2094.0	1945.5	1993.9	1985.1	2006.9	2045.9	2025.6	2152.3	2169.5
pf	0.836	0.900	0.865	0.856	0.867	0.843	0.864	0.860	0.862


EDG 22 Operator Log Data 2R17 8 Hour Test 2-PT-R084B Performed 5/4/06

Attachment <u>6</u> Page <u>1</u> of <u>1</u>

CR-IP2-2006-03530/3685 DE ATTACH MENT 7 CUHVE

Westinghouse Electric Corporation Energy Systems

Nuclear and Advanced Technology Division

Box 355 Pittsburgh Pennsylvania 15230-0355

NATD-IC-90-52

October 23, 1990

Mr. John A. Basile, General Manager Special Nuclear Projects Consolidated Edison Company of New York, Inc. Broadway & Bleakley Avenues Buchanan, NY 10511

WESTINGHOUSE MOTOR COMPANY ENGINEERING REPORT WMC-EER-90-005

Dear Mr. Basile:

Enclosed for your information is the completed study on the re-rating of the Indian Point 2 generators for the emergency diesel generators. The conclusions of the report are that the generators are capable of continuous operation at 2300 KW, 480 volts at a 0.8 power factor.

If you have further questions or comments, please advise.

Sincerely,

W. C. Íeslie, Manager Installation & Construction Services

Enclosure

CC: G. Blenkle P. Duggan A. De Donato J. Curry R. Williams H. Sager C. Vackson CR-1P2-2006-03530 \$ 3685 OE ATTACHMENT 8 PAGE 1 OF 1

CR-IP2-2006-03530 and 3685 Operability Evaluation Attachment 9 Comparison of Outage 2R15 and 2R17 8 Hour Continuous Test Data

<u>2</u> F	R15 Test Da				8 Hour Continuous		······
EDG	kW	kVAR	pf	kVA	Generator Volts	Field Amps	AC Amps
21	1750	1190	0.83	2116.3	491.0	112.0	2500.0
22	1750	1250	0.81	2150.6	494.0	107.0	2500.0
23	1750	1200	0.82	2121.9	490.0	112.0	2500.0
21	R17 Test Da	<u>ta</u>					
EDG	kW	kVAR	pf	kVA	Generator Volts	Field Amps	AC Amps
21	1740	1190	0.83	2108.0	494.0	108.0	2400.0
				0004.0	101.0	440.0	
22	1750	1150	0.84	2094.0	494.0	112.0	2450.0
23	1725	1100	0.84	2045.9	494.0	110.0	2330.0