
NUREG-1824 EPRI 1011999
Final Report

Verification and Validation
of Selected F;ire _Models for
Nuclear Power Plant
Applications

Volume 5:
Consolidated Fire Growth and Smoke
Transport Model (CFAST)

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001

~U.SANRC

Electric Power Research Institute
3420 Hillview Avenue
Palo Alto, CA 94303

RESAELECTRIC POWER
CO~rai IRESEARCH INSTITUTE



AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http://www. nrc.gov/reading-rm.html.
Publicly released records include, to name a few,
NUREG-series publications; Federal Register notices;
applicant, licensee, and vendor documents and
correspondence; NRC correspondence and internal
memoranda; bulletins and information notices;
inspection and investigative reports; licensee event
reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents

U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250 -

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: U.S. Nuclear Regulatory Commission

Office of Administration
Mail, Distribution and Messenger Team
Washington, DC 20555-0001

E-mail: DISTRIBUTIONc(,nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
http://www. nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries includeall open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at-

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from-

American National Standards Institute
11 West 4 2nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated
only in laws; NRC regulations; licenses, including
technical specifications; or orders, not in
NUREG-series publications. The views expressed
in contractor-prepared publications in this series are
not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the
staff (NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of
conferences (NUREG/CP-XXXX), (3) reports
resulting from international agreements
(NUREG/IA-XXXX), (4) brochures
(NUREG/BR-XXXX), and (5) compilations of legal
decisions and orders of the Commission and Atomic
and Safety Licensing Boards and of Directors'
decisions under Section 2.206 of NRC's regulations
(NUREG-0750).

'1



Verification & Validation of Selected
Fire Models for Nuclear Power Plant
Applications
Volume 5: Consolidated Fire Growth and Smoke
Transport Model (CFAST)

NUREG-1824 EPRI 1011999

Final Report

May 2007

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research (RES)
Two White Flint North, 11545 Rockville Pike
Rockville, MD 20852-2738

U.S. NRC-RES Project Manager
M. H. Salley

Electric Power Research Institute (EPRI)
3420 Hillview Avenue
Palo Alto, CA 94303

EPRI Project Manager
R.P. Kassawara



DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN
ACCOUNT OF WORK SPONSORED OR COSPONSORED; BY THE ELECTRIC POWER
RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI NOR ANY MEMBER OF EPRI, ANY
COSPONSOR, THE ORGANI4TION(S) BELOW, OR ANY,;PE•SON ACTING ON BEHALF
OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR
IMPLIED, (I)WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS,
METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (11) THAT SUCH
USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS,
INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (111) THAT THIS DOCUMENT
IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY
WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY
EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR
ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED
IN THIS DOCUMENT.

ORGANIZATION(S) THAT PREPARED THIS DOCUMENT:

U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

Science Applications International Corporation

National Institute of Standards and Technology

NOTE
For further information about EPRI, call the EPRI Customer Assistance Center at
800.313.3774 or
e-mail askepri@epr.com.

Electric Power Research Institute, EPRI, and TOGETHER.. SHAPING THE FUTURE OF
ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.



CITATIONS

This report was prepared by

U.S. Nuclear Regulatory Commission, Electric Power Research Institute (EPRI)
Office of Nuclear Regulatory Research (RES) 3420 Hillview Avenue
Two White Flint North, 11545 Rockville Pike Palo Alto, CA 94303
Rockville, MD 20852-273 8 Science Applications International Corp (SAIC)

Principal Investigators: 4920 El Camino Real
K. Hill Los Altos, CA 94022
J. Dreisbach Principal Investigators:

F. Joglar
B. Najafi

National Institute of Standards and Technology
Building Fire Research Laboratory (BFRL)
100 Bureau Drive, Stop 8600
Gaithersburg, MD 20899-8600

Principal Investigators:
K McGrattan
R. Peacock
A. Hamins
Volume 1, Main Report: B. Najafi, F. Joglar, J. Dreisbach
Volume 2, Experimental Uncertainty: A. Hamins, K. McGrattan
Volume 3, FDTS: J. Dreisbach, K. Hill
Volume 4, FIVE-Revl: F. Joglar
Volume 5, CFAST: R. Peacock, P. Reneke (NIST)
Volume 6, MAGIC: F. Joglar, B. Guatier (EdF), L. Gay (EdF), J. Texeraud (EdF)
Volume 7, FDS: K. McGrattan

This report describes research sponsored jointly by U.S. Nuclear Regulatory Commission, Office
of Nuclear Regulatory Research (RES) and Electric Power Research Institute (EPRI).

The report is a corporate document that should be cited in the literature in the following manner:

Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications,
Volume 5: Consolidated Fire and Smoke Transport Model (CFAST), U.S. Nuclear Regulatory
Commission, Office of Nuclear Regulatory Research (RES), Rockville, MD, 2007, and Electric
Power Research Institute (EPRI), Palo Alto, CA, NUREG-1824 and EPRI 1011999.

iii





ABSTRACT

There is a movement to introduce risk-informed and performance-based analyses into fire protection
engineering practice, both domestically and worldwide. This movement exists in the general
fire protection community, as well as the nuclear power plant (NPP) fire protection community.
The U.S. Nuclear Regulatory Commission (NRC) has used risk-informed insights as part of its
regulatory decision making since the 1990's.

In 2002, the National Fire Protection Association (NFPA) developed NFPA 805, Performance-
Based Standard for Fire Protection for Light-Water Reactor Electric Generating Plants,
2001 Edition. In July 2004, the NRC amended its fire protection requirements in Title 10,
Section 50.48, of the Code of Federal Regulations (10 CFR 50.48) to permit existing reactor
licensees to voluntarily adopt fire protection requirements contained in NFPA 805 as an alternative
to the existing deterministic fire protection requirements. In addition, the NPP fire protection
community has been using risk-informed, performance-based (RI/PB) approaches and insights to
support fire protection decision-making in general.

One key tool needed to further the use of RI/PB fire protection is the availability of verified and
validated fire models that can reliably predict the consequences of fires. Section 2.4.1.2 of
NFPA 805 requires that only fire models acceptable to the Authority Having Jurisdiction (AHJ)
shall be used in fire modeling calculations. Furthermore, Sections 2.4.1.2.2 and 2.4.1.2.3 of
NFPA 805 state that fire models shall only be applied within the limitations of the given model,
and shall be verified and validated.

This report is the first effort to document the verification and validation (V&V) of five fire models
that are commonly used in NPP applications. The project was performed in accordance with the
guidelines that the American Society for Testing and Materials (ASTM) set forth in ASTM E 1355,
Standard Guide for Evaluating the Predictive Capability of Deterministic Fire Models.
The results of this V&V are reported in the form of ranges of accuracies for the fire model
predictions.
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FOREWORD

Fire modeling and fire dynamics calculations are used in a number of fire hazards analysis (FHA) studies and
documents, including fire risk analysis (FRA) calculations; compliance with and exemptions to the regulatory
requirements for fire protection in 10 CFR Part 50; the Significance Determination Process (SDP) used in the
inspection program conducted by the U.S. Nuclear Regulatory Commission (NRC); and, most recently, the
risk-informed performance-based (RI/PB) voluntary fire protection licensing basis established under
10 CFR 50.48(c). The RI/PB method is based on the National Fire Protection Association (NFPA)
Standard 805, Performance-Based Standard for Fire Protection for Light- Water Reactor Generating Plants.

The seven volumes of this NUREG-series report provide technical documentation concerning the predictive
capabilities of a specific set of fire dynamics calculation tools and fire models for the analysis of fire hazards in
postulated nuclear power plant (NPP) scenarios. Under a joint memorandum of understanding (MOU), the NRC
Office of Nuclear Regulatory Research (RES) and the Electric Power Research Institute (EPRI) agreed to develop
this technical document for NPP application of these fire modeling tools. The objectives of this agreement
include creating a library of typical NPP fire scenarios and providing information on the ability of specific fire models
to predict the consequences of those typical NPP fire scenarios. To meet these objectives, RES and EPRI initiated
this collaborative project to provide an evaluation, in the form of verification and validation (V&V), for a set of five
commonly available fire modeling tools.

The road map for this project was derived from NFPA 805 and the American Society for Testing and Materials
(ASTM) Standard E 1355, Standard Guide for Evaluating the Predictive Capability of Deterministic Fire
Models. These industry standards form the methodology and process used to perform this study. Technical
review of fire models is also necessary to ensure that those using the models can accurately assess the adequacy of
the scientific and technical bases for the models, select models that are appropriate for a desired use, and understand
the levels of confidence that can be attributed to the results predicted by the models. This work was performed
using state-of-the-art fire dynamics calculation methods/models and the most applicable fire test data. Future
improvements in the fire dynamics calculation methods/models and additional fire test data may impact the results
presented in the seven volumes of this report.

This document does not constitute regulatory requirements, and NRC participation in this study neither
constitutes nor implies regulatory approval of applications based on the analysis contained in this text.
The analyses documented in this report represent the combined efforts of individuals from RES and EPRI.
Both organizations provided specialists in the use of fire models and other FHA tools to support this work.
The results from this combined effort do not constitute either a regulatory position or regulatory guidance.
Rather, these results are intended to provide technical analysis of the predictive capabilities of five fire
dynamic calculation tools, and they may also help, to identify areas where further research and analysis are needed.

Brian W. Sheron, Director
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
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REPORT SUMMARY

This report documents the verification and validation (V&V) of five selected fire models
commonly used in support of risk-informed and performance-based (RI/PB) fire protection
at nuclear power plants (NPPs).

Background
Since the 1990s, when it became the policy of the NRC to use risk-informed methods to make
regulatory decisions where possible, the nuclear power industry has been moving from prescriptive
rules and practices toward the use of risk information to supplement decision-making. Several
initiatives have furthered this transition in the area of fire protection. In 2001, the National Fire
Protection Association (NFPA) completed the development of NFPA Standard 805,
Performance-Based Standard for Fire Protection for Light- Water Reactor Electric Generating
Plants, 2001 Edition. Effective July 16, 2004, the NRC amended its fire protection requirements
in Title 10, Section 50.48(c), of the Code of Federal Regulations [ 10 CFR 50.48(c)] to permit
existing reactor licensees to voluntarily adopt fire protection requirements contained in NFPA
805 as an alternative to the existing deterministic fire protection requirements. RI/PB fire
protection often relies on fire modeling for determining the consequence of fires. NFPA 805
requires that the "fire models shall be verified and validated," and "only fire models that are
acceptable to the Authority Having Jurisdiction (AHJ) shall be used in fire modeling
calculations."

Objectives
" To perform V&V studies of selected fire models using a consistent methodology (ASTM I

1335)

" To investigate the specific fire modeling issue of interest to NPP fire protection applications

" To quantify fire model predictive capabilities to the extent that can be supported by
comparison with selected and available experimental data.

Approach
This project team performed V&V studies on five selected models: (1) NRC's NUREG-1805
Fire Dynamics Tools (FDTS), (2) EPRI's Fire-Induced Vulnerability Evaluation Revision I
(FIVE-Revl), (3) National Institute of Standards and Technology's (NIST) Consolidated Model
of Fire Growth and Smoke Transport (CFAST), (4) Electricit6 de France's (EdF) MAGIC, and
(5) NIST's Fire Dynamics Simulator (FDS). The team based these studies on the guidelines of
the ASTM E 1355, Standard Guide for Evaluating the Predictive Capability of Deterministic
Fire Models. The scope of these V&V studies was limited to the capabilities of the selected fire
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models and did not cover certain potential fire scenarios that fall outside the capabilities of these
fire models.

Results

The results of this study are presented in the form of relative differences between fire model
predictions and experimental data for fire modeling attributes such as plume temperature that are
important to NPP fire modeling applications. While the relative differences sometimes show
agreement, they also show both under-prediction and over-prediction in some circumstances.
These relative differences are affected by the capabilities of the models, the availability of
accurate applicable experimental data, and the experimental uncertainty of these data. The
project team used the relative differences, in combination with some engineering judgment as to
the appropriateness of the model and the agreement between model and experiment, to produce a
graded characterization of each fire model's capability to predict attributes important to NPP fire
modeling applications.

This report does not provide relative differences for all known fire scenarios in NPP applications.
This incompleteness is attributable to a combination of model capability and lack of relevant
experimental data. The first problem can be addressed by improving the fire models, while the
second problem calls for more applicable fire experiments.

EPRI Perspective
The use of fire models to support fire protection decision-making requires a good understanding
of their limitations and predictive capabilities. While this report makes considerable progress
toward this goal, it also points to ranges of accuracies in the predictive capability of these fire
models that could limit their use in fire modeling applications. Use of these fire models presents
challenges that should be addressed if the fire protection community is to realize the full benefit
of fire modeling and performance-based fire protection. Persisting problems require both short-
term and long-term solutions. In the short-term, users need to be educated on how the results of
this work may affect known applications of fire modeling, perhaps through pilot application of
the findings of this report and documentation of the resulting lessons learned. In the long-term,
additional work on improving the models and performing additional experiments should be
considered.

Keywords

Fire Fire Modeling
Verification and Validation (V&V) Performance-Based
Risk-Informed Regulation Fire Hazard Analysis (FHA)
Fire Safety Fire Protection
Nuclear Power Plant Fire Probabilistic Risk Assessment (PRA)
Fire Probabilistic Safety Assessment (PSA)
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PREFACE

This report is presented in seven volumes. Volume 1, the Main Report, provides general
background information, programmatic and technical overviews, and project insights and
conclusions. Volume 2 quantifies the uncertainty of the experiments used in the V&V study of
these five fire models. Volumes 3 through 6 provide detailed discussions of the verification and
validation (V&V) of the following five fire models:

Volume 3 Fire Dynamics Tools (FDTS)

Volume 4 Fire-Induced Vulnerability Evaluation, Revision 1 (FIVE-Revl)

Volume 5 Consolidated Model of Fire Growth and Smoke Transport (CFAST)

Volume 6 MAGIC

Volume 7 Fire Dynamics Simulator (FDS)
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1
INTRODUCTION

As the use of fire modeling tools increases in support of day-to-day nuclear power plant (NPP)
applications including fire risk studies, the importance of verification and validation (V&V)
studies for these tools also increases. V&V studies provide the fire modeling analysts increased
confidence in applying analytical tools by quantifying and discussing the performance of the
given model in predicting the fire conditions measured in a particular experiment. The underlying
assumptions, capabilities, and limitations of the model are discussed and evaluated as part of
the V&V study.

The main objective of this volume is to document a V&V study for the Consolidated Fire Growth
and Smoke Transport (CFAST) zone model. As such, this report describes the equations that
constitute the model, the physical bases for those equations, and an evaluation of the sensitivity
and predictive capability of the model.

CFAST is a two-zone fire model capable of predicting the fire-induced environmental conditions
as a function of time for single- or multi-compartment scenarios. Toward that end, the CFAST
software calculates the temperature and evolving distribution of smoke and fire gases throughout
a building during a user-prescribed fire. The model was developed, and is maintained, by the
Fire Research Division of the National Institute of Standards and Technology (NIST), which
officially released the latest version of the CFAST model in 2004.

CFAST is a zone model, in that it subdivides each compartment into two zones, or control volumes,
in order to numerically solve differential equations, and the two volumes are assumed to be
homogeneous within each zone. This two-zone approach has evolved from observations of
layering in actual fires and real-scale fire experiments. The approximate solution of the mass
and energy balances of each zone, together with the ideal gas law and the equation of heat
conduction into the walls, attempts to simulate the environmental conditions generated by a fire.

To accompany the model and simplify its use, NIST has developed a Technical Reference Guide
[Ref. 1] that provides a detailed description of the models and numerical solutions in CFAST. That
guide also documents a V&V study for the broad applications of CFAST (without specific reference to
NPPs). That study was conducted at the request of the U.S. Nuclear Regulatory Commission
(NRC), in accordance with ASTM E 1355, Standard Guide for Evaluating the Predictive
Capability of Deterministic Fire Models [Ref. 2], issued by the American Society for Testing and
Materials (ASTM). As such, this report extensively references both the CFAST Technical
Reference Guide and ASTM E 1355.
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Introduction

Consistent with the CFAST Technical Reference Guide and ASTM E 1355, this report is
structured as follows:

* Chapter 2 provides qualitative background information about CFAST and the V&V process.

* Chapter 3 presents a brief technical description of CFAST, including a review of the
underlying physics and chemistry.

* Chapter 4 documents the mathematical and numerical robustness of CFAST, which involves
verifying that the implementation of the model matches the stated documentation.

* Chapter 5 presents a sensitivity analysis, for which the researchers defined a base case scenario
and varied selected input parameters in order to explore CFAST capabilities for modeling
typical characteristics of NPP fire scenarios.

Chapter 6 presents the results of the validation study in the form of percent differences
between CFAST simulations and experimental data for relevant attributes of enclosure fires
in NPPs.

Appendix A presents the technical details supporting the calculated accuracies discussed
in Chapter 6.

Appendix B presents all of the CFAST input files for the simulations in this V&V study.
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2
MODEL DEFINITION

This chapter provides qualitative background information about CFAST and the V&V process,
as outlined by ASTM E 1355 [Ref. 2]. The definitive description of the CFAST model,
including its developers, equations, assumptions, inputs, and outputs can be found in the CFAST
Technical Reference Guide [Ref. 1], which also follows the guidelines for ASTM E 1355.

2.1 Name and Version of the Model

This V&V study focused on Version 6.0.10 of the Consolidated Fire Growth and Smoke Transport
(CFAST) Model. Most of the code is written in FORTRAN 90. Chapter 2 of the CFAST
Technical Reference Guide [Ref. 1] provides a more detailed description of the evolution
of the model.

2.2 Type of Model

CFAST is a two-zone fire model that predicts the fire-induced environment as a function of time
for single- or multi-compartment scenarios. CFAST subdivides each compartment into two zones
(or volumes) in order to numerically solve differential equations, and the two volumes are assumed
to be uniform in temperature and species concentration. The approximate solution of the
conservation equations for each zone, together with the ideal gas law and the equation of heat
conduction into the walls, attempts to simulate the environmental conditions generated by a fire.

2.3 Model Developers

The CFAST model was developed, and is maintained, by the Fire Research Division of NIST.
The developers include Walter Jones, Richard Peacock, Glenn Forney, Rebecca Portier,
Paul Reneke, John Hoover, and John Klote.

2.4 Relevant Publications

Relevant publications concerning CFAST include the CFAST Technical Reference Guide
[Ref. 1] and User's Guide [Ref. 3]. The Technical Reference Guide describes the underlying
physical principles, provides a comparison with experimental data, and describes the limitations
of the model. The User's Guide describes how to use the model. In addition, numerous related
documents available at http://cfast.nist.gov provide a wealth of information concerning
Versions 2, 3, 4 and 5 of both the model and its user interface.
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2.5 Governing Equations and Assumptions

Section 2.1.5 and Chapter 3 of the CFAST Technical Reference Guide [Ref. 1] fully describe
the equations and assumptions associated with the CFAST model. The general equations solved
by the CFAST model include conservation of mass and energy. The model does not explicitly solve
the momentum equation, except for use of the Bernoulli equation for the flow velocity at vents.
These equations are solved as ordinary differential equations.

The CFAST model is implemented based on two general assumptions: (1) two zones per
compartment provide a reasonable approximation of the scenario being evaluated, and
(2) the complete momentum equation is not needed to solve the set of equations associated with
the model. Consequently, the two zones have uniform properties. That is, the temperature
and gas concentrations are assumed to be constant throughout the zone; the properties
only change as a function of time.

2.6 Input Data Required to Run the Model

All of the data required to run the CFAST model reside in a primary data file, which the user creates.
Some instances may require databases of information on objects, thermophysical properties
of boundaries, and sample prescribed fire descriptions. In general, the data files contain
the following information:

* compartment dimensions (height, width, length)

* construction materials of the compartment (e.g., concrete, gypsum)

" material properties (e.g., thermal conductivity, specific heat, density, thickness, heat of combustion)

* dimensions and positions of horizontal and vertical flow openings such as doors, windows,
and vents

" mechanical ventilation specifications

* fire properties (e.g., heat release rate, lower oxygen limit, and species production rates as a
function of time)

* sprinkler and detector specifications

* positions, sizes, and characteristics of targets

The CFAST User's Guide [Ref. 3] provides a complete description of the required input
parameters. Some of these parameters have default values included in the model, which are
intended to be representative for a range of fire scenarios. Unless explicitly noted, default values
were used for parameters not specifically included in this validation study.
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2.7 Property Data

Required inputs for CFAST include a number of material properties related to compartment
bounding surfaces, objects (called targets) placed in compartments for calculation of object
surface temperature and heat flux to the objects, or fire sources. For compartment surfaces
and targets, CFAST needs the density, thermal conductivity, specific heat, and emissivity.

For fire sources, CFAST needs to know the pyrolysis rate of fuel, the heat of combustion,
stochiometric fuel-oxygen ratio, yields of important combustion products in a simplified
combustion reaction (carbon monoxide, carbon dioxide, soot, and others), and the fraction
of energy released in the form of thermal radiation.

These properties are commonly available in fire protection engineering and materials handbooks.
Experimentally determined property data may also be available for certain scenarios. However,
depending on the application, properties for specific materials may not be readily available. A small
file distributed with the CFAST software contains a database with thermal properties of common
materials. These data are given as examples, and users should verify the accuracy and
appropriateness of the data.

2.8 Model Results

Once the simulation is complete, CFAST produces an output file containing all of the solution
variables. Typical outputs include (but are not limited to) the following:

" environmental conditions in the room (such as hot gas layer temperature; oxygen and smoke
concentration; and ceiling, wall, and floor temperatures)

" heat transfer-related outputs to walls and targets (such as incident convective, radiated, and
total heat fluxes)

* fire intensity and flame height

* flow velocities through vents and openings

" sprinkler activation time

2.9 Uses and Limitations of the Model

CFAST has been developed for use in solving practical fire problems in fire protection engineering,
while also providing a tool to study fundamental fire dynamics and smoke spread. It is intended
for use in system modeling of building and building components. It is not intended for detailed
study of flow within a compartment, such as is needed for smoke detector siting. It includes the
activation of sprinklers and fire suppression by water droplets.
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The most extensive use of the model is in fire and smoke spread in complex buildings. The
efficiency and computational speed are inherent in the few computation cells needed for a zone
model implementation. The use is for design and reconstruction of time-lines for fire and smoke
spread in residential, commercial, and industrial fire applications. Some applications of the
model have been for design of smoke control systems.

Compartments: CFAST is generally limited to situations where the compartment volumes
are strongly stratified. However, in order to facilitate the use of the model for preliminary
estimates when a more sophisticated calculation is ultimately needed, there are algorithms
for corridor flow, smoke detector activation, and detailed heat conduction through solid
boundaries. This model does provide for non-rectangular compartments, although the
application is intended to be limited to relatively simple spaces. There is no intent to include
complex geometries where a complex flow field is a driving force. For these applications,
computational fluid dynamics (CFD) models are appropriate.

Gas Layers: There are also limitations inherent in the assumption of stratification of the gas
layers. The zone model concept, by definition, implies a sharp boundary between the upper
and lower layers, whereas in reality, the transition is typically over about 10% of the height
of the compartment and can be larger in weakly stratified flow. For example, a burning
cigarette in a normal room is not within the purview of a zone model. While it is possible
to make predictions within 5% of the actual temperatures of the gas layers, this is not the
optimum use of the model. It is more properly used to make estimates of fire spread
(not flame spread), smoke detection and contamination, and life safety calculations.

Heat Release Rate: There are limitations inherent in the assumptions used in application
of the empirical models. As a general guideline, the heat release should not exceed about
1 MW/mi. This is a limitation on the numerical routines attributable to the coupling between
gas flow and heat transfer through boundaries (conduction, convection, and radiation).
The inherent two-layer assumption is likely to break down well before this limit is reached.

* Radiation: Because the model includes a sophisticated radiation model and ventilation
algorithms, it has further use for studying building contamination through the ventilation
system, as well as the stack effect and the effect of wind on air circulation in buildings.

* Ventilation and Leakage: In a single compartment, the ratio of the area of vents connecting
one compartment to another to the volume of the compartment should not exceed roughly
2 in-'. This is a limitation on the plug flow assumption for vents. An important limitation
arises from the uncertainty in the scenario specification. For example, leakage in buildings
is significant, and this affects flow calculations especially when wind is present and for tall
buildings. These effects can overwhelm limitations on accuracy of the implementation
of the model. The overall accuracy of the model is closely tied to the specificity, care,
and completeness with which the data are provided.
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Thermal Properties: The accuracy of the model predictions is limited by how well the user
can specify the thermophysical properties. For example, the fraction of fuel which ends up
as soot has an important effect on the radiation absorption of the gas layer and, therefore, the
relative convective versus radiative heating of the layers and walls, which in turn affects the
buoyancy and flow. There is a higher level of uncertainty of the predictions if the properties
of real materials and real fuels are unknown or difficult to obtain, or the physical processes
of combustion, radiation, and heat transfer are more complicated than their mathematical
representations in CFAST.

In addition, there are specific limitations and assumptions made in the development of the
algorithms. These are detailed in the discussion of each of these sub-models in the NIST
Technical Reference Guide [Ref. 11.
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3
THEORETICAL BASIS FOR CFAST

This chapter presents a technical description of the CFAST model, including its theoretical
background and the underlying physics and chemistry inherent in the model. The description
includes assumptions and approximations, an assessment of whether the open literature provides
sufficient scientific evidence to justify the approaches and assumptions used, and an assessment
of empirical or reference data used for constant or default values in the context of the model.
In so doing, this chapter addresses the ASTM E 1355 guidance to "verify the appropriateness
of the theoretical basis and assumptions used in the model."

Chapter 3 of the CFAST Technical Reference Guide [Ref. 1 ] presents a comprehensive
discussion concerning the theoretical basis for CFAST, including the theory underlying
the implementation of the model. In so doing, it enables the user to assess the appropriateness
of the model for specific problems. In addition, Chapter 3 of Reference 1 derives the predictive
equations for zone fire models and presents a detailed explanation of those used in CFAST
[Refs. 4 and 5].

3.1 The Two-Layer Model

CFAST is a classic two-zone fire model. For a given fire scenario, the model subdivides a compartment
into two control volumes, which include a relatively hot upper layer and a relatively cool lower layer.
In addition, mass and energy are transported between the layers via the fire plume. The lower layer is
primarily fresh air. By contrast, the hot upper layer (which is also known as the hot gas layer) is
where combustion products accumulate via the plume. Each layer has its own energy and mass
balances.

The most important assumption for the model is that each zone has uniform properties. That is,
the temperature and gas concentrations are assumed to be constant throughout the zone; the
properties only change as a function of time. The CFAST model describes the conditions in each
zone by solving equations for conservation of mass, species, and energy, along with the ideal gas
law. The Technical Reference Guide for CFAST [Ref. 1] provides a detailed discussion
concerning the specific derivation of these conservation laws.

For some applications, including long hallways or tall shafts, the two-zone assumption may not
be appropriate. CFAST includes empirical algorithms to simulate smoke flow and filling in long
corridors and for a single well-mixed volume in tall shafts.
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Theoretical Basis for CFAST

CFAST also includes the following correlations (as sub-models), based on experimental data that
are used to calculate various physical processes during a fire scenario:
* smoke production
" fire plume
" heat transfer by radiation, convection, and conduction
" natural flows through openings (vertical and horizontal)
* forced or natural ventilation
* thermal behavior of targets
* heat detectors
* water spray from sprinklers

Table 3-1. CFAST Capabilities Included in the V&V Study.

Fire Phenomena Algorithm/Methodology V&V

Predicting Hot Gas Layer Temperature Two-zone control volume model
and Smoke Layer Height in a Room Fire with uniform conditions in a Yes
With Natural Ventilation Compartment zone

Predicting Hot Gas Layer Temperature in a Two-zone control volume model
Room Fire With Forced Ventilation with uniform conditions in a Yes
Compartment zone

rTemperature in a Two-zone control volume modelPredicting Hot Gas Layer Teprtr na with uniform conditions in a Yes

Fire Room With Door Closed
zone

Estimating Burning Characteristics of a Fire, User-specified HRR and species.
Heat Release Rate, Burning Duration and Model limits burning by
Hlamea Rel t, available oxygen. Hesketstad Yes
Flame Height flame height correlation

Estimating Gas Concentrations Resulting User-specified time varying

from a Fire species yield from fire; global Yes
conservation of mass
User-specified time varying

Estimating Visibility Through Smoke smoke yield from fire; global Yes
conservation of mass

Estimating Flow Through Horizontal or Empirical correlation; ; global
Vertical Natural Flow Vents conservation of mass No

Estimating Flow Through Horizontal or global conservation of mass
Vertical Forced Flow Vents No

Point Source Radiation from
Estimating Radiant Heat Flux From Fire to a fire; four-surface radiation from
Target compartment surfaces; gray gas Yes

absorption by gas layers

(

I

I
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Theoretical Basis for CFAST

Fire Phenomena Algorithm/Methodology V&V

One dimensional heat
Estimating the Ignition Time of a Target Fuel Ondionsinsl No

conduction in solid No

Estimating Sprinkler Activation RTI Algorithm No

Suppression by Water Spray Empirical correlation No

Estimating Smoke and Heat Alarm Response One dimensional heat
Time conduction in solid No

Estimating Pressure Rise Attributable to a Global conservation of mass and
Fire in a Closed Compartment energy Yes

Estimating flow in a corridor Empirical algorithm based on
FDS simulations No

3.2 Zone Model Assumptions

The basic assumption of all zone fire models is that each compartment can be divided into a
small number of control volumes, each of which is uniform in temperature and composition.
In CFAST, all compartments have two zones, with an exception for well-mixed compartments
(such as elevator shafts) that can be modeled as a single control volume. Since a real-world
upper/lower interface is not as sharply defined as the one modeled by CFAST, the model has
a spatial uncertainty of about 10% in determining the height of the hot gas layer. Uncertainty
in layer temperature and position is discussed in detail in Volume 2.

The zone model concept best applies for an enclosure (compartment) in which the horizontal dimensions
(width and length) are similar. If the horizontal dimensions of the compartment differ too much
(i.e., the compartment looks like a corridor), the flow pattern in the room may become
asymmetrical. If the enclosure is too shallow, the temperature may have significant radial differences.
In addition, at some height, the width of the plume may become equal to the width of the room,
and the model assumptions may fail in a tall and narrow enclosure.

Users should recognize approximate limits on the ratio of the length (L), width (W), and height
(H) of the compartment as follows. If the aspect ratio (the maximum of length/width or
width/length) is greater than about 5, the corridor flow algorithm should be used to provide the
appropriate filling time. By contrast, a single zone approximation is more appropriate for tall shafts
(elevators and stairways). In addition, the researchers experimentally determined that the mixing
between a plume and lower layer (as a result of the interaction with the walls of the shaft) caused
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complete mixing. This is the inverse of the corridor problem, and occurs at an aspect ratio
(the maximum of height/width or height/length) of about 5. A recommended rule is as follows.
If the width-to-length aspect ratio (the maximum of length/width or width/length) is greater than 5,
use of the corridor flow algorithm is appropriate. If the width-to-length aspect ratio is greater
than 3 but less than 5, the corridor flow algorithm may or may not be appropriate; consider the
results from a simulation with and without the algorithm to assess its appropriateness. If the
room is not a corridor and the height aspect ratio (the maximum height/width or height/length)
is greater than 5, the single zone approximation is appropriate.

3.3 Description of Sub-Models and Correlations

This section discusses each of the sub-models incorporated in CFAST. In general, Sections 3.3.1
through 3.3.11 are organized in a manner similar to the structure of the model itself.

3.3.1 The Fire

CFAST simulates a fire as a mass of fuel that bums at a prescribed "pyrolysis" rate and releases
both energy and combustion products. The model also has the capability to simulate both
unconstrained and constrained fires. For an unconstrained fire, CFAST simulates a fire that
simply releases mass and energy at the pyrolysis rate prescribed by the user; the model neither
calculates nor tracks the products of combustion. By contrast, for a constrained fire, CFAST
calculates species production based on user-defined production yields, and both the pyrolysis rate
and the resulting energy and species generation may be limited by the oxygen available for combustion.
When sufficient oxygen is available for combustion, the heat release rate (HRR) for a
constrained fire is the same as for an unconstrained fire. Fire height is also calculated by the
model based on an available experimental correlation [Ref. 6].

CFAST also has the capability to simulate multiple fires in multiple compartments. In such instances,
CFAST treats each individual fire as an entirely separate entity, with no interaction with other fire
plumes.

The user must define fire growth because CFAST does not include a model to predict fire growth.
While this approach does not directly account for increased pyrolysis attributable to radiative
feedback from the flame or compartment, the user could prescribe such effects though multiple
simulations.

3.3.2 Plumes

CFAST models the flame and plume regions around a fuel source using McCaffrey's correlation,
which divides the flame/plume into three regions [Ref. 7]. McCaffrey estimated temperature,
velocity, and the mass entrained by the fire/plume from the lower layer into the upper layer.
McCaffrey's correlation is an extension of the common point source plume model, with a
different set of coefficients for each region. These coefficients are experimental correlations.
However, the model does not output plume temperatures. For a detailed description of
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constraints CFAST puts on air entrained into the plume, please refer to the CFAST Technical
Reference Guide [Ref. 1].

3.3.3 Ceiling Jet

CFAST uses Cooper's correlation [Ref. 8] to simulate the ceiling jet flows and convective heat
transfer from fire plume gases to the overhead ceiling surface in the room of fire origin. In so
doing, the model accounts for the effect on heat transfer as a result of the fire's location within
the room. Complete details are available in Reference 8.

3.3.4 Vent Flow

CFAST models both horizontal flow through vertical vents (doors, windows, wall vents, etc.) and
vertical flow through horizontal vents (ceiling holes, hatches, roof vents, etc.). Horizontal flow
is normally thought of when discussing fires.

Horizontal vent flow through vertical vents is determined using the pressure difference across a vent.
Flow at a given elevation may be computed using Bernoulli's law by computing the pressure
difference at that elevation and then the pressure on each side of the vent. This solution is
augmented for restricted openings by using flow coefficients from Quintiere et al. [Ref. 9]
to allow for constriction from finite door sizes. The flow (or orifice) coefficient is an empirical term,
which addresses the problem of constriction of velocity streamlines at an orifice.

Cooper's algorithm [Ref. 10] is used for computing vertical mass flow through horizontal vents.
The algorithm is based on correlations to model the two components of the flow, including a net flow
dictated by a pressure difference, and the exchange flow based on the relative densities of the gases.

There is a special case of horizontal flow in long corridors. Specifically, CFAST incorporates
a corridor flow algorithm to calculate the ceiling jet temperature and depth as a function of time
until it reaches the end of the corridor. A computational fluid dynamics model was used to develop
the correlations that CFAST uses to compute flows between corridors and compartments. A more
detailed description of this work is found in the CFAST Technical Reference Guide [Ref. 1].

The model for mechanical ventilation used in CFAST is based on the model developed by Klote
[Ref. 11]. Flow in ductwork is calculated with a mass and energy balance based on an analogy
to electrical current flow in series and parallel based on Kirchoff s law. The CFAST Technical
Reference Guide [Ref. 1] describes the modeling of ducts and fans in CFAST.

3.3.5 Heat Transfer

This section discusses radiation, convection, and conduction - the three mechanisms by which
heat is transferred between the gas layers and objects and enclosing compartment walls.
The CFAST Technical Reference Guide [Ref. 1] provides a more complete description
of the algorithms used in CFAST.
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3.3.5.1 Radiation

Radiative transfer occurs among the fire(s), gas layers, and compartment surfaces (ceiling, walls,
and floor). This transfer is a function of the temperature differences and emissivity of the gas layers,
as well as the compartment surfaces. The radiation model in CFAST assumes that (1) all zones
and surfaces radiate and absorb like a gray body, (2) the fires radiate as point sources, and
(3) the plume above the fire does not radiate at all. Radiative heat transfer is approximated using
a limited number of radiating wall surfaces (four in the fire room and two everywhere else).
The use of these and other approximations allows CFAST to perform the radiation computation
in a reasonably efficient manner [Ref. 12].

3.3.5.2 Convection

The typical correlations that CFAST uses for convective heat transfer are available in the literature.
Specifically, Atreya summarizes convective heat flux calculation methods in the SFPE handbook
[Ref. 13].

3.3.5.3 Conduction

CFAST uses a finite difference scheme from Moss and Forney [Ref. 14], which utilizes a non-uniform
spatial mesh to advance the wall temperature solution. The heat equation is discretized using
a second-order central difference for the spatial derivative and a backward difference for the time
derivative. This process is repeated until the heat flux striking the wall (calculated from the convection
and radiation algorithms) is consistent with the flux conducted into the wall (calculated using
Fourier's law). Heat transfer between compartments can be modeled by merging the connected
surfaces for the ceiling and floor compartments or for the connected horizontal compartments.

3.3.6 Targets

The calculation of the radiative heat flux to a target is similar to the radiative heat transfer calculation
discussed in Section 3.3.5.1. The main difference is that CFAST does not compute feedback
from the target to the wall surfaces or gas layers. The target is simply a probe or sensor that does not
interact with the modeled environment. The net flux striking a target can be used as a boundary
condition in order to compute the temperature of the target. The four sources of heat flux to a target
are fire radiation, radiation from walls (including the ceiling and floor), gas layer radiation,
and gas layer convection.

3.3.7 Heat Detectors

CFAST models heat detector (including sprinkler head) activation using Heskestad's method
[Ref. 15] with temperatures obtained from the ceiling jet calculation [Ref. 8]. Rooms without fires
do not have ceiling jets; therefore, detectors in such rooms use gas layer temperatures instead of
ceiling jet temperatures.
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3.3.8 Fire Suppression via Sprinklers

For sprinkler suppression, CFAST uses the simple model by Madrzykowski and Vettori [Ref 16],
which is generalized for varying sprinkler spray densities according to Evans [Ref. 17].
The suppression correlation was developed by modifying the heat release rate of a fire.
The CFAST Technical Reference Manual [Ref. 1] outlines the assumptions and limitations
of this approach.

3.3.9 Species Concentration and Deposition

The combustion chemistry scheme used in CFAST is documented in the CFAST Technical
Reference Guide [Ref. 1]. The scheme is based on a carbon-hydrogen-oxygen balance applied
in three locations. The first is in the fire and plume in the lower layer of the compartment,
the second is in the upper layer, and the third is in the vent flow between adjacent compartments.
This scheme basically solves the conservation equations for each species independently.

CFAST tracks the masses of an individual species as they are generated, transported, or mixed.
As fuel is combusted, the user-prescribed species yield defines the mass of the species to be tracked.
Each unit mass of a species produced is carried in the flow to the various rooms and accumulates
in the layers. The model keeps track of the mass of each species in each layer, and records the volume
of each layer as a function of time. The mass divided by the volume is the mass concentration,
which along with the molecular weight provides the concentration in volume percent or parts per
million (ppm) as appropriate. For hydrogen chloride, CFAST includes an empirical correlation
that allows for deposition on and absorption by material surfaces.

3.4 Review of the Theoretical Development of the Model

The current version of ASTM E 1355 includes provisions to guide assessment of the model's
theoretical basis. Those provisions include a review of the model "by one or more recognized experts
fully conversant with the chemistry and physics of fire phenomenon, but not involved with
the production of the model. Publication of the theoretical basis of the model in a peer-reviewed
journal article may be sufficient to fulfill this review" [Ref. 2]. NIST's Technical Reference Guide
for CFAST [Ref. 1] addresses the necessary elements of a review of the model's technical bases.

CFAST has been subjected to independent review both internally (at NIST) and externally.
NIST documents and products receive extensive reviews by NIST experts not associated with
development. The same reviews have been conducted on all previous versions of the model
and Technical Reference Guide over the last decade. Externally, the model's theoretical basis
has been published in peer reviewed journals [Refs. 18, 19, and 20], and conference proceedings
[Ref. 21 ]. In addition, CFAST is used worldwide by fire protection engineering firms that review
the technical details of the model related to their particular application. Some of these firms
also publish (in the open literature) reports documenting internal efforts to validate the model
for a particular use. Finally, CFAST has been reviewed and included in industry-standard handbooks
such as the Society of Fire Protection Engineers (SFPE) Handbook [Ref. 22], and referenced in
specific standards including NFPA 805 [Ref. 23] and NFPA 551 [Ref. 24].
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3.4.1 Assessment of the Completeness of Documentation

The two primary documents on CFAST are the Technical Reference Guide [Ref. 1] and Model
User's Guide [Ref. 3]. The Technical Reference Guide documents the governing equations,
assumptions, and approximations of the various sub models, and it includes a summary description
of the model structure and numerics. In addition, the Technical Reference Guide documents
a V&V study for the broad applications of CFAST (without specific reference to NPPs). That study was
conducted at the request of the U.S. Nuclear Regulatory Commission (NRC), in accordance with
ASTM E 1355 [Ref. 2]. The model User's Guide includes a description of the model input data
requirements and model results.

3.4.2 Assessment of Justification of Approaches and Assumptions

The technical approach and assumptions associated with the CFAST model have been presented
in peer-reviewed scientific literature and at technical conferences. Also, all documents released
by NIST are required to undergo an internal editorial review and approval process. In addition to
formal internal and peer review, CFAST is subjected to ongoing scrutiny because it is available
to the general public and is used internationally by those involved in technical areas such as fire
safety design and post-fire reconstruction. The source code for CFAST is also released publicly,
and has been used at various universities worldwide, both in the classroom (as a teaching tool)
and for research. As a result, flaws in the model's theoretical development and the computer
program itself have been identified and rectified. The user base continues to serve as a means to
evaluate the model, and this is as important to development of CFAST as formal internal and
external peer review processes.

3.4.3 Assessment of Constants and Default Values

No single document provides a comprehensive assessment of the numerical parameters (such as
default time step or solution convergence criteria) and physical parameters (such as empirical constants
for convective heat transfer or plume entrainment) used in CFAST. Instead, specific parameters
have been tested in various V&V studies performed at NIST and elsewhere. Numerical parameters
are extracted from the literature and do not undergo a formal review. Model users are expected
to assess the appropriateness of default values provided by CFAST and make changes to those
values if needed.
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MATHEMATICAL AND NUMERICAL ROBUSTNESS

4.1 Introduction

This chapter documents the mathematical and numerical robustness of CFAST, which involves
verifying that the implementation of the model matches the stated documentation. Specifically,
ASTM E 1355 suggests the following analyses to address the mathematical and numerical
robustness of models:

* Analytical tests involve testing the correct functioning of the model. In other words, these tests
use the code to solve a problem with a known mathematical solution. However, there are
relatively few situations for which analytical solutions are known.

* Code checking refers to verifying the computer code on a structural basis. This verification
can be achieved manually or by using a code-checking program to detect irregularities
and inconsistencies within the computer code.

* Numerical tests investigate the magnitude of the residuals from the solution of a numerically
solved system of equations (as an indicator of numerical accuracy) and the reduction in residuals
(as an indicator of numerical convergence).

4.2 Comparison with Analytic Solutions

Certain CFAST sub-models address phenomena that have analytical solutions, for example,
one-dimensional heat conduction through a solid or pressure increase in a sealed or slightly leaky
compartment as a result of a fire or fan. The developers of CFAST routinely use analytical
solutions to test sub-models to verify the correctness of the coding of the model as part of the
development. Such routine verification efforts are relatively simple and the results may not
always be published or included in the documentation. Two additional types of verification are
possible. The first type, discussed in Section 3, "Theoretical Basis," involves validating
individual algorithms against experimental work. The second involves simple experiments,
especially for conduction and radiation, for which the results are asymptotic (e.g., for a simple
single-compartment test case with no fire, all temperatures should equilibrate asymptotically
to a single value). Such comparisons are common and not usually published.
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4.3 Code Checking

Two standard programs have been used to check the CFAST model structure and language.
Specifically, FLINT and LINT have been applied to the entire model to verify the correctness
of the interface, undefined or incorrectly defined (or used) variables and constants,
and completeness of loops and threads.

The CFAST code has also been checked by compiling and running the model on a variety
of computer platforms. Because FORTRAN and C are implemented differently for various computers,
this represents both a numerical check as well as a syntactic check. CFAST has been compiled
for Sun (Solaris), SGI (Irix), Microsoft® Windows®-based PCs (Lahey, Digital, and Intel FORTRAN),
and Concurrent computer platforms. Within the precision afforded by the various hardware
implementations, the answers are identical.1

The CFAST Technical Reference Guide [Ref. 1] contains a detailed description of the CFAST
subroutine structure and interactions between the subroutines. A complete physical description
of the code can be found in Reference 25.

This V&V project began using version 6.0.3 of CFAST. As part of the V&V process, several
minor bugs have been corrected in this version. These include fixes to the graphical user
interface to improve object plotting, the target flux calculation, burning outside the room of fire
origin, and error checking for elements located outside a compartment. The updated version of
CFAST used in this study (6.0.10) included these fixes.

4.4 Numerical Tests

Two components of the numerical solutions of CFAST must be verified. The first is the DAE solver
(called DASSL), which has been tested for a variety of differential equations and is widely used
and accepted [Ref. 26]. The radiation and conduction routines have also been tested against
known solutions for asymptotic results.

The second component is the coupling between algorithms and the general solver. The structure
of CFAST provides close coupling that avoids most errors. The error attributable to numerical
solution is far less than that associated with the model assumptions. Also, CFAST is designed
to use 64-bit precision for real number calculations to minimize the effects of numerical error.

1 Typically, an error limit of one part in 106.
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MODEL SENSITIVITY

This chapter discusses the CFAST sensitivity analysis, which ASTM E 1355 defines as a study
of how changes in model parameters affect the results. In other words, sensitivity refers to
the rate of change of the model output with respect to input variations. The standard also indicates
that model predictions may be sensitive to (1) uncertainties in input data, (2) the level of rigor
employed in modeling the relevant physics and chemistry, and (3) the accuracy of numerical
treatments. Thus, the purpose of a sensitivity analysis is to assess the extent to which uncertainty
in the model inputs is manifested as uncertainty in the model results of interest.

Conducting a sensitivity analysis of a complex model is not a simple task. A sensitivity analysis
involves defining a base case scenario, and varying selected input parameters. The resultant variations
in the model output are then measured with respect to the base case scenario, in order to consider
the extent to which uncertainty in model inputs influences model output. Therefore, a sensitivity
analysis of CFAST should account for variations in the extensive number of input parameters
that describe the building geometry, compartment connections, construction materials,
and description of one or more fires.

ASTM E 1355 [Ref. 2] provides overall guidance on typical areas of evaluation of the sensitivity
of deterministic fire models. Chapter 5 of the CFAST Technical Reference Guide [Ref. 1]
provides a review of the sensitivity analyses that have been conducted using CFAST, with
an emphasis on uncertainty in the input. Other sensitivity investigations of CFAST are also
available in References 27, 28, and 29.

5.1 Previous Sensitivity Studies

Khoudja studied the sensitivity of an early version of the FAST model [Ref. 30] (predecessor to
CFAST) with a fractional factorial design involving 2 levels of 16 different input parameters.
The choice of values for each input parameter represented a range for each parameter.
The analysis of the FAST model showed sensitivity to heat loss to the compartment walls
and to the number of compartments in the simulation. Without the inclusion of surface
thermophysical properties, this model treats surfaces as adiabatic for conductive heat transfer.
Thus, consistent sensitivity should be expected. Sensitivity to changes in thermal properties
of the surfaces was not explored.
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Walker [Ref. 31 ] discussed the uncertainties in components of zone models and showed how
uncertainty within user-supplied data affects the results of calculations using CFAST as an
example. The study systematically varied inputs related to the fire (heat release rate, heat of
combustion, mass loss rate, radiative fraction, and species yields) and compartment geometry
(vent size and ceiling height) ranging from ±1% to ±20% of base values for a one-compartment
scenario. Heat release rate and ceiling height are seen to be the dominant input variables in the
simulations. Upper-layer temperature changed ±-10% for a ± 10% change in heat release rate.
Typical variation of ±10 seconds in time to untenable conditions for a 20% variation was noted
in the inputs for the scenarios studied.

In addition, the CFAST Technical Reference Guide demonstrates a partial sensitivity analysis
for a few CFAST input parameters. For somewhat complex fire scenarios involving four
interconnected rooms, the analysis found that upper-layer temperature and pressure are
insensitive to small (10%) variations in fire room volume, while the upper-layer volume
is neutrally sensitive. NIST's analysis also varied heat release rates to determine sensitivity
to large changes in inputs. In so doing, the analysis determined that the upper-layer temperature
is equally sensitive to heat release rate as to compartment volume. A second-level analysis
indicated a strong functional upper-layer temperature dependence on heat release rate,
but the sensitivity is less than 1 K/kW in the example case for HRRs greater than 100 kW.
The third-level analysis indicated that HRRs have more of an effect on upper-layer temperatures
than do vent areas.

Notarianni [Ref. 29] developed an iterative methodology for the treatment of uncertainty in fire-
safety engineering calculations to identify important model parameters for detailed study of
uncertainty. She defined a nine-step process to identify crucial model inputs and parameters,
select sampling methods appropriate for the important parameters, and evaluate the sensitivity
of the model to chosen outcomes. Both factorial designs and Latin hypercube sampling
are included in a case study involving the CFAST model. In a performance-based design
of a 16-story residential structure, the impact of model uncertainty on a chosen design and
inclusion of residential sprinklers in the design would effect the resulting safety of the design.
For a seven-compartment scenario representing one living unit in the structure, distributions
of input variables based on Latin hypercube sampling of selected ranges of the inputs were
developed and used as input for a series of 500 CFAST simulations for the scenario. The results
of the calculations are presented in a series of cumulative distribution functions, which show the
probability that a chosen criterion of the design is exceeded within a given time. Depending on
the evaluation criterion chosen, times to unacceptable designs varied by as little as 10 seconds
to as much as 470 seconds. To determine important input variables, Notarianni used
a multivariate correlation of the input and output variables to determine statistical significance
at a 95% confidence level. Input variables deemed important in the analysis included fire-related
inputs (growth rate, heat of combustion, position of the base of the fire, and generation rates
of products of combustion) and door opening sizes. Other inputs were determined to be less
important.
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Many of the outputs of the CFAST model are quite insensitive to uncertainty in the input
parameters for a broad range of scenarios. Not surprisingly, heat release rate was consistently
seen as the most important variable in a range of simulations. Heat release rate and related
variables such as heat of combustion or generation rates of products of combustion provide
the driving force for fire-driven flows. For CFAST, all of these are user inputs. Thus, careful
selection of these fire-related variables are necessary for accurate predictions. Other variables
related to compartment geometry such as compartment height or vent sizes, while deemed
important for the model outputs, are typically more easily defined for specific design scenarios
than fire related inputs. For some scenarios, such as typical building performance design,
these vents may need to include the effects of leakage to ensure accurate predictions. For other
scenarios, such as shipboard use or nuclear power facilities, leakage (or lack thereof) may be
more easily defined and may not be an issue in the calculations.

5.2 Sensitivity to Heat Release Rate

Of all the physical input parameters, the simulation results are most sensitive to the heat release
rate. In this section, one of the validation experiments (ICFMP Benchmark Exercise #3, Test 3)
is used to demonstrate the result of increasing and decreasing the heat release rate by 15%.
Figure 5-1 shows plots of various output quantities demonstrating their sensitivity to the change
in heat release rate. Gas and surfaces temperatures, oxygen concentration, and compartment
pressure show roughly 10% diversions from baseline, whereas the heat fluxes show roughly 20%
diversions. The height of the hot gas layer is relatively insensitive to changes in the heat release
rate. These results are expected and consistent with the analysis described in Volume 2 to assess
the sensitivity of the quantities of interest to the uncertainty in the measured heat release rate.
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6
MODEL VALIDATION

CFAST has been subjected to extensive validation studies by NIST and others. Although some
differences between the model and the experiments were evident in these studies, they are
typically explained by limitations of the model and uncertainty of the experiments. Most
prominent in the studies reviewed was the over-prediction of gas temperature often attributed to
uncertainty in soot production and radiative fraction. Still, studies typically show predictions
accurate within 10% to 25% of measurements for a range of scenarios. Like all predictive
models, the best predictions come with a clear understanding of the limitations of the model
and the inputs provided to the calculations. The CFAST Technical Reference Guide [Ref. 1]
includes a detailed discussion of these previous validation efforts.

This chapter summarizes the results of the current validation study conducted for the CFAST
model. This study focused on the predicted results of the CFAST fire model and did not include
an assessment of the user interface for the model. However, all input files used for the
simulations were prepared using the GUI and reviewed for correctness prior to the simulations.
Six experimental test series have been used in the present model evaluation. A brief description
of each is given here. Further details can be found in Volume 2 and in the individual test reports.

ICFMP BE #2: Benchmark Exercise #2 consists of eight experiments, representing three sets of
conditions, to study the movement of smoke in a large hall with a sloped ceiling. The results of
the experiments were contributed to the International Collaborative Fire Model Project (ICFMP)
for use in evaluating model predictions of fires in larger volumes representative of turbine halls
in NPPs. The tests were conducted inside the VTT Fire Test Hall, which has dimensions of 19 m
high x 27 m long x 14 m wide (62 ft x 88.5 ft x 46 ft). Each case involved a single heptane pool
fire, ranging from 2 MW to 4 MW. All three cases, representing averaged results from the eight
tests, have been used in the current V&V effort.

ICFMP BE #3: Benchmark Exercise #3, conducted as part of the ICFMP and sponsored by the
NRC, consists of 15 large-scale tests performed at NIST in June 2003. The fire sizes range from
350 kW to 2.2 MW in a compartment with dimensions 21.7 m high x 7.1 m long x 3.8 m wide,
designed to represent a variety of spaces in a NPP containing power and control cables. The
walls and ceiling were covered with two layers of marinate boards, each layer 0.0125 m (0.5 in)
thick. The floor was covered with one layer of 0.0125-m (0.5-in) thick gypsum board on top of a
0.0183-m (23/32-in) layer of plywood. The room has one door with dimensions of 2 mx 2 m (6.6 ft
x 6.6 ft), and a mechanical air injection and extraction system. Ventilation conditions and fire
size and location are varied, and the numerous experimental measurements include gas and
surface temperatures, heat fluxes, and gas velocities.
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ICFMP BE #4: Benchmark Exercise #4 consists of kerosene pool fire experiments conducted at
the Institut fir Baustoffe, Massivbau und Brandschutz (iBMB) of the Braunschweig University
of Technology in Germany. The results of two experiments were contributed to the ICFMP.
These fire experiments involve relatively large fires in a relatively small [3.6 m x 3.6 m x 5.7 m
(12 ft x 12 ft x 19 ft)] concrete enclosure. Only one of the two experiments was selected for the
present V&V study (Test 1).

ICFMP BE #5: Benchmark Exercise #5 consists of fire experiments conducted with realistically
routed cable trays in the same test compartment as BE #4. The compartment was configured
slightly differently, and the height was 5.6 m (18.4 ft) in BE #5. Only Test 4 was selected for the
present evaluation, and only the first 20 minutes, during which an ethanol pool fire pre-heated
the compartment.

FM/SNL Series: The Factory Mutual & Sandia National Laboratories (FM/SNL) Test Series is a
series of 25 fire tests conducted for the NRC by Factory Mutual Research Corporation (FMRC),
under the direction of Sandia National Laboratories (SNL). The primary purpose of these tests
was to provide data with which to validate computer models for various types of NPP compartments.
The experiments were conducted in an enclosure measuring 18 m long x 12 m wide x 6 m high
(60 ft x 40 ft x 20 ft), constructed at the FMRC fire test facility in Rhode Island. All of the tests
involved forced ventilation to simulate typical NPP installation practices. The fires consist of a
simple gas burner, a heptane pool, a methanol pool, or a polymethyl-methacrylate (PMMA) solid
fire. Four of these tests were conducted with a full-scale control room mockup in place.
Parameters varied during testing were fire intensity, enclosure ventilation rate, and fire location.
Only Tests 4, 5 and 21 were used in the present evaluation. Test 21 involved the full-scale
mockup. All were gas burner fires.

NBS Multi-Room Series: The National Bureau of Standards (NBS, now the National Institute of
Standards and Technology, NIST) Multi-Compartment Test Series consists of 45 fire tests
representing 9 different sets of conditions, with multiple replicates of each set, which were
conducted in a three-room suite. The suite consists of two relatively small rooms, connected via a
relatively long corridor. The fire source, a gas burner, is located against the rear wall of one of the
small compartments. Fire tests of 100, 300, and 500 kW were conducted, but only three 100-kW
fire experiments (Test 1OA, 1000, and IOOZ) were used for the current V&V study.

CFAST simulated all of the chosen experiments. Technical details of the calculations, including
output of the model and comparison with experimental data, are provided in Appendix A.
The results are organized by quantity as follows:

* hot gas layer (HGL) temperature and height
* ceiling jet temperature
* plume temperature
* flame height
* oxygen and carbon dioxide concentration
* smoke concentration
" compartment pressure
* radiation heat flux, total heat flux, and target temperature
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* wall heat flux and surface temperature

Comparisons of the model predictions with experimental measurements are presented as relative
differences. The relative differences are calculated as follows:

AM-AE _ (M, - Mo)-(E, -Eo)

AE (EP-ET.

where AM is the difference between the peak value (Mp) of the evaluated parameter and its
original value (Mo), and AE is the difference between the experimental observation (Ep) and its
original value (Eo). Appendix A lists the calculated relative differences for all the fire modeling
parameters listed above.

The measure of model "accuracy" used throughout this study is related to experimental
uncertainty. Volume 2 discusses this issue in detail. In brief, the accuracy of a measurement
(e.g., the gas temperature) is related to the measurement device (e.g., a thermocouple).
In addition, the accuracy of the model prediction of the gas temperature is related to
the simplified physical description of the fire and to the accuracy of the input parameters
(e.g., the specified heat release rate), which in turn are based on experimental measurements.
Ideally, the purpose of a validation study is to determine the accuracy of the model in the absence
of any errors related to the measurement of both its inputs and outputs. Because it is impossible
to eliminate experimental uncertainty, at the very least, a combination of the uncertainty in the
measurement of model inputs and output can be used as a yardstick. If the numerical prediction
falls within the range of uncertainty attributable to both the measurement of the input parameters
and the output quantities, it is not possible to quantify its accuracy further. At this stage, it is said
that the prediction is within experimental uncertainty.

Each section in this chapter contains a scatter plot that summarizes the relative difference results
for all of the predictions and measurements of the quantity under consideration. Details of the
calculations, the input assumptions, and the time histories of the predicted and measured output
are included in Appendix A. Only a brief discussion of the results is included in this chapter.
Included in the scatter plots are an estimate of the combined uncertainty for the experimental
measurements and uncertainty in the model inputs. It is important to understand that these are
simply estimates of random uncertainty and do not include systematic uncertainty in either
the experimental measurements or model predictions. Thus, these uncertainty bounds are only
guidelines to judge the predictive capability of the model along with expert engineering
judgment of the project team.

At the end of each section, a color rating is assigned to each of the output categories, indicating,
in a very broad sense, how well the model treats that particular quantity. A detailed discussion
of this rating system is included in Volume 1. For CFAST, only the Green and Yellow ratings
have been assigned to 11 of the 13 quantities of interest because these quantities fall within the
capability of the CFAST model. The color Green indicates that the research team concluded the
physics of the model accurately represent the experimental conditions, and the calculated relative
differences comparing the model and the experimental are consistent with the combined
experimental and input uncertainty. The color Yellow suggests that one exercise caution when
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using the model to evaluate this quantity - consider carefully the assumptions made by the
model, how the model has been applied, and the accuracy of its results. There is specific
discussion of model limitations for the quantities assigned a Yellow rating. Two of the
quantities, plume temperature and ceiling jet temperature, are used internally by the model for its
calculations, but are not reported as output. These were not assigned a color rating. Parameters
that are not given a color rating indicate that the model does not include output to be able to
evaluate that parameter in its as-tested version.

6.1 Hot Gas Layer (HGL) Temperature and Height

The single most important prediction a fire model can make is the temperature of the hot gas
layer (HGL). The impact of the fire is not so much a function of the heat release rate, but rather
the temperature of the compartment. A good prediction of the HGL height is largely a
consequence of a good prediction of its temperature because smoke and heat are largely
transported together and most numerical models describe the transport of both with the same
type of algorithm. Typically, CFAST slightly over-predicts the HGL temperature, most often
within experimental uncertainty. Hot gas layer height is typically within experimental
uncertainty for well-ventilated tests and near floor level for under-ventilated tests where
compartments are closed to the outside. Figure 6-1 shows a comparison of predicted and
measured values for HGL temperature and depth along with a summary of the relative difference
for all of the test series. For HGL height, only values from open-door tests are included in
Figure 6-1 and Appendix A. For closed-door tests, visual observations typically show that the
HGL fills the entire compartment volume from floor to ceiling, inconsistent with the calculated
results for the experimental data. Thus, the calculated experimental values of HGL height for
closed-door tests are not seen as appropriate for comparison to model results.

Following is a summary of the accuracy assessment for the HGL predictions of the six test
series:

ICFMP BE #2: CFAST predicts the HGL temperature and height near experimental uncertainty
for all three tests.

ICFMP BE #3: CFAST predicts the HGL temperature to within experimental uncertainty for all
of the closed-door tests except Test 17. Test 17 was a rapidly growing toluene pool fire, which
was stopped for safety reasons after 273 seconds. CFAST predicts an initial temperature rise
starting somewhat earlier and peaking somewhat higher than the experimental values, but curve
shapes match in all tests. Relative difference for the open-door tests is somewhat higher, ranging
from 13 % for Test 5 to 26 % for Test 18 (Figure 6-1 and Table A-l). CFAST predicts HGL
height to within experimental uncertainty for'the open-door tests. For the closed-door tests,
calculated CFAST values arie consistent with visual observations of smoke filling in the
compartment.

ICFMP BE #4: CFAST predicts the HGL temperature and height to within experimental
uncertainty for the single test (Test 1), but there is some discrepancy in the shapes of the curves.
It is not clear whether this is related to the measurement or the model.
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ICFMP BE #5: CFAST predicts the HGL temperature to within experimental uncertainty for the
single test (Test 4), although again there is a noticeable difference in the overall shape of the
temperature curves. HGL height is under-predicted by 20 % (Figure 6-1 and Table A-i). This is
likely because of the complicated geometry within the compartment that includes a partial height
wall that affects both plume entrainment and radiative heat transfer from the fire to surroundings.
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FM/SNL: CFAST predicts the HGL temperature to within experimental uncertainty for Tests 4
and 5. For Test 2 1, there is a 3 3% over-prediction (Figure 6-1 and Table A-l1). This is likely
because of the configuration of the fire in the test, with the fire inside a cabinet in the fire
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compartment. This complex geometry leads to an interaction between the fire and the confining
cabinet that a zone model cannot simulate.

NBS Multi-Room: CFAST predicts the HGL temperature and height to within experimental
uncertainty for many of the measurement locations in the three tests considered. The
discrepancies in various locations appear to be attributable to experimental, rather than model,
error. In particular, the calculation of HGL temperature and height are quite sensitive to the
measured temperature profile, which in these tests was determined with bare-bead thermocouples
that are subject to quite high uncertainties. Wide spacing of the thermocouples also leads to
higher uncertainty in HGL height.

Calculations of HGL temperature and height in the room remote from the fire have higher
relative differences than those closer to the fire. This is likely a combination of the simplified
single representative layer temperature inherent in zone models (temperature in the long corridor
of this test series varied from one end of the compartment to the other) and the calculation of
flow though doorways based on a correlation based on the pressure difference between the
connected compartments.

Summary: HGL Temperature and Height ( for fire compartment and Yellow for
compartments remote from the fire)

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of HGL temperature and height are characterized in the
Green category within the fire compartment and Yellow in compartments remote from the fire
for the following reasons:

* The two-zone assumption inherent in CFAST, modeled as a series of ordinary differential
equations that describe mass and energy conservation of flows in a multiple-compartment
structure are appropriate for the applications studied.

* The CFAST predictions of the HGL temperature and height are, with a few exceptions,
within or close to experimental uncertainty. The CFAST predictions are typical of those
found in other studies where the HGL temperature is typically somewhat over-predicted and
HGL height somewhat lower (HGL depth somewhat thicker) than experimental
measurements. These differences are likely attributable to simplifications in the model
dealing with mixing between the layers, entrainment in the fire plume, and flow through
vents. Still, predictions are mostly within 10% to 20% of experimental measurements.

" Calculation of HGL temperature and height has higher uncertainty in rooms remote from the
fire compared to those in the fire compartment. Howe ,er, this is based on the results of a
single test series.

6.2 Ceiling Jet Temperature

CFAST includes an algorithm to account for the presence of the higher gas temperatures near
the ceiling surfaces in compartments involved in a fire. In the model, this increased temperature
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has the effect of increasing the convective heat transfer to ceiling surfaces. The temperature and
velocity of the ceiling jet are available from the model by placing a heat detector at the specified
location. The ceiling jet algorithm is based on the model by Cooper [Ref. 8], with details
described in the CFAST Technical Reference Guide [Ref. 1 ]. The algorithm predicts gas
temperature and velocity under a flat, unconstrained ceiling above a fire source. Only two
of the six test series (ICFMP BE #3 and FM/SNL) involved relatively large flat ceilings. Figure
6-2 shows a comparison of predicted and measured values for ceiling jet temperature along with
a summary of the relative difference for the tests.

ICFMP BE #3: CFAST predicts ceiling jet temperature well within experimental uncertainty
for all of the tests in the series, with an average relative difference of 5%. For these tests, the fire
source was sufficiently large (relative to the compartment size) such that a well-defined ceiling
jet was evident in temperature measurements near ceiling level.

FM/SNL: With fire sizes comparable to the smaller fire sizes used in the tests in ICFMP BE #3
and compartment volumes significantly larger, measured temperature rise near the ceiling
in the FM/SNL tests was below 100 'C (212 'F) in all three tests. Hot gas layer temperatures for
these tests were below 70 'C (158 'F). CFAST consistently predicts higher ceiling jet
temperatures in the FM/SNL tests compared to experimental measurements. With a larger
compartment relative to the fire size, the ceiling jet for the FM/SNL tests is not nearly as well-
developed as those in the ICFMP BE #3. The difference between the experimental ceiling jet
temperature and HGL temperature for the FM/SNL tests is less than half that observed in the
ICFMP BE #3 tests. While the over-prediction of ceiling jet temperature could be considered
conservative for some applications, for scenarios involving sprinkler or heat detector activation,
the increased temperature in the ceiling jet would lead to shorter estimates of activation times for
the simulated sprinkler or heat detector.

Summary: Ceiling Jet Temperature (YellOw+)

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of ceiling jet temperature are characterized in the Yellow+
category for the following reasons:

* For tests with a well-defined ceiling jet layer, CFAST predicts ceiling jet temperatures well-
within experimental uncertainty.

* For tests with a less well-defined ceiling jet layer, CFAST over-predicts the ceiling jet
temperature. For the tests studies, over-predictions were noted when the HGL temperature
was below 70 'C (158 'F).
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Figure 6-2. Comparisons and Relative Differences for Ceiling Jet Temperature

6.3 Plume Temperature

,CFAST includes a plume entrainment algorithm based on the work of McCaffrey that models
the transport of combustion products released by the fire with air in the fire compartment
and movements of these gases into the upper layer in the compartment. Plume temperature
is not directly calculated nor reported from this algorithm. For this reason, comparisons
of experimentally measured plume temperatures with CFAST calculations are not appropriate
and will not be included in this report.
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6.4 Flame Height

Flame height is recorded by visual observations, photographs, or video footage. Videos from
the ICFMP BE #3 test series and photographs from BE #2 are available. It is difficult
to precisely measure the flame height, but the photos and videos allow one to make estimates
accurate to within a pan diameter.

ICFMP BE #2: The height of the visible flame in the photographs has been estimated to be
between 2.4 and 3 pan diameters [3.8 m to 4.8 m (12.5 ft to 15.7 ft)]. From the CFAST
calculations, the estimated flame height is 4.3 m (14.1 ft).

ICFMP BE #3: CFAST estimates the peak flame height to be 2.8 m (9.2 ft), roughly consistent
with the view through the doorway during the test. The test series was not designed to record
accurate measurements of flame height.

Summary: Flame Height

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of flame height are characterized in the Green category
because the model predicts the flame height consistent with visual observations of flame height
for the experiments. This is not surprising, given that CFAST simply uses a well-characterized
experimental correlation to calculate flame height.

6.5 Oxygen and Carbon Dioxide Concentration

CFAST simulates a fire as a mass of fuel that burns at a prescribed pyrolysis rate and releases
both energy and combustion products. CFAST calculates species production based on user-
defined production yields, and both the pyrolysis rate and the resulting energy and species
generation may be limited by the oxygen available for combustion. When sufficient oxygen
is available for combustion, the heat release rate for a constrained fire is the same as for an
unconstrained fire. Mass and species concentrations are tracked by the model as gases flow
through openings in a structure to other compartments in the. structure or to the outdoors.

Gas sampling data are available from ICFMP BE #3 and BE #5 (one test only). Figure 6-3
shows a comparison of predicted and measured values for oxygen and carbon dioxide
concentrations, along with a summary of the relative difference for the tests.
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Figure 6-3. Comparisons and Relative Differences for Oxygen Concentration
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ICFMP BE #3: CFAST predicts the upper-layer concentrations of oxygen and carbon dioxide
close to experimental uncertainty. For closed-door Tests 4 and 10 and open-door Tests 9 and 14,
the magnitude of relative difference is higher, under-predicting by 22% to 25% (Figure 6-3 and
Table A-2). Tests 4, 10, and 16 were closed-door tests with the mechanical ventilation system on.
The higher relative differences for these tests are likely because of a non-uniform gas layer
in the experiments with higher oxygen concentration near the mechanical ventilation inlet and
lower concentrations remote from the inlet. In CFAST, the flow from the mechanical ventilation
system is assumed to completely mix with the gases in the appropriate gas layer of a compartment.
CFAST consistently under-predicts the drop in oxygen concentration, with Tests 9 and 14

I
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showing a higher relative uncertainty than other closed-door tests. The cause of a higher-than-
average difference is not clear.

ICFMP BE #5: CFAST predicts the upper-layer oxygen and carbon dioxide concentration
in Test 4 of this test series close to experimental uncertainty.

Summary: Oxygen and Carbon Dioxide Concentration

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of oxygen and carbon dioxide concentration
are characterized in the Green category for the following reasons:

" CFAST uses a simple user-specified combustion chemistry scheme based on a prescribed
pyrolysis rate and species yields that is appropriate for the applications studied.

* CFAST predicts the major gas species close to experimental uncertainty.

6.6 Smoke Concentration

CFAST treats smoke like all other combustion products, with an overall mass balance dependent
on interrelated user-specified species yields for major combustion species. To model smoke
movement, the user prescribes the smoke yield relative to the yield of carbon monoxide.
A simple combustion chemistry scheme in the model then determines the smoke particulate
concentration in the form of an optical density. Figure 6-4 shows a comparison of predicted
and measured values for smoke concentration along with a summary of the relative difference
for the tests.

Only ICFMP BE #3 has been used to assess predictions of smoke concentration. For these tests,
the smoke yield was specified as one of the test parameters. There are two obvious trends
in the results. First, the predicted concentrations are within or near experimental uncertainties
in the open-door tests. Second, the predicted concentrations are roughly three to five times
the measured concentrations in the closed-door tests. The experimental uncertainty for these
measurements has been estimated to be 33% (see Volume 2). The closed-door tests cannot be
explained from the experimental uncertainty.

The difference between model and experiment is far more pronounced in the closed-door tests.
Given that the oxygen and carbon dioxide predictions are no worse (and indeed even better)
in the closed-door tests, there is reason to believe either that the smoke is not transported with
the other exhaust gases or the specified smoke yield, developed from free-burning experiments,
is not appropriate for the closed-door tests. These qualitative differences between the open-
and closed-door tests are consistent with the FDS predictions (see Volume 7).
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Figure 6-4. Comparisons and Relative Differences for Smoke Concentration

Summary: Smoke Concentration (Yellow)

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of smoke concentration are characterized in the Yellow
category for the following reasons:

a CFAST is capable of transporting smoke throughout a compartment, assuming that
the production rate is known and its transport properties are comparable to gaseous
exhaust products.

4

4
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CFAST typically over-predicts the smoke concentration in all of the BE #3 tests, with the
exception of Test 17. Predicted concentrations for open-door tests are within experimental
uncertainties, but those for closed-door tests are far higher. No firm conclusions can be
drawn from this single data set. The measurements in the closed-door experiments
are inconsistent with basic conservation of mass arguments, or there is a fundamental change
in the combustion process as the fire becomes oxygen-starved.

6.7 Compartment Pressure

Comparisons between measurement and prediction of compartment pressure for BE #3
are shown in Section A.7 of Appendix A to this volume. Figure 6-5 shows a comparison
of predicted and measured values for compartment pressure, along with a summary
of the relative difference for the tests.

For those tests in which the door to the compartment is open, the over-pressures are only a few
Pascals; however, when the door is closed, the over-pressures are several hundred Pascals.
For both the open- and closed-door tests, CFAST predicts the pressure to within experimental
uncertainty. The one notable exception is Test 16 (Figure 6-4 and Table A-3), which involved
a large (2.3 MW) fire with the door closed and the ventilation on. By contrast, Test 10 involved
a 1.2 MW fire with comparable geometry and ventilation. There is considerable uncertainty
in the magnitude of both the supply and return mass flow rates for Test 16. Compared to Test 16,
Test 10 involves a greater measured supply velocity and a lesser measured exhaust velocity.
This is probably the result of the higher pressure caused by the larger fire in Test 16. CFAST
does not adjust the ventilation rate based on the compartment pressure until a specified cutoff
pressure is reached. This is also the most likely explanation for the over-prediction
of compartment pressure in Test 16.

In general, prediction of pressure in CFAST in closed compartments is critically dependent
on correct specification of the leakage from the compartment. Compartments are rarely entirely
sealed, and small changes in the leakage area can produce significant changes in the predicted
over-pressure.

Summary: Compartment Pressure (6D

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of pressure are characterized in the Green category
for the following reasons:

" With one exception, CFAST predicts compartment pressures within experimental
uncertainty.

* Prediction of compartment pressure for closed-door tests is critically dependent
on correct specification of the leakage from the compartment.
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Figure 6-5. Comparisons and Relative Differences for Compartment Pressure

6.8 Radiation and Total Heat Flux to Targets and Target Temperature

Target temperature and heat flux data are available from ICFMP BE #3, #4, and #5. In BE #3,
the targets are various types of cables in various configurations - horizontal, vertical, in trays,
or free-hanging. In BE #4, the targets are three rectangular slabs of different materials
instrumented with heat flux gauges and thermocouples. In BE #5, the targets are again cables,
in this case, bundled power and control cables in a vertical ladder. Figure 6-6 shows
a comparison of predicted and measured values for radiation, total heat flux, and target
temperature, along with a summary of the relative difference for the tests.
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ICFMP BE #3: Appendix A provides nearly 200 comparisons of heat flux and surface
temperature on four different cables. It is difficult to make sweeping generalizations about
the accuracy of CFAST. At best, one can scan the figures and associated tables to get a sense
of the overall performance, which includes the following notable trends:

" The difference between predicted and measured cable surface temperatures is often within
experimental uncertainty, with exceptions most often in the values for Cable G. Accurate
prediction of the surface temperature of the cable should indicate that the flux to the target
(a combination of radiation from the fire, surrounding surfaces, and the gas layers, along with
convection from the surrounding gas) should be correspondingly accurate. For ICFMP BE #3,
the cable surface predictions show lower relative difference overall compared to the total
heat flux and (particularly) the radiative heat flux.

" Total heat flux to targets is typically predicted to within an average difference of 28%
and often under-predicted. Predictions for Cables D and G are notable exceptions,
with higher uncertainties.

" Radiative heat flux to targets is typically over-predicted compared to experimental
measurements, with higher values for closed-door tests. For the closed-door tests, this may
be a function of the over-prediction of the smoke concentration, which leads to the radiation
contribution from the hot gas layer being a larger fraction of the total heat flux compared to
the experimental values.

* For many of the experiments, the convective heat flux component, taken to be the difference
between the total heat flux and the radiative heat flux is seen to be higher than the values
typically measured in fire experiments.

ICFMP BE #4: CFAST over-predicts both the heat flux and surface temperature of three "slab"
targets located about 1 m (3.3 ft) from the fire. The trend is consistent, but it cannot be explained
solely in terms of experimental uncertainty. Again, the differences for surface temperature
are smaller than those for total heat flux.

ICFMP BE #5: Predictions and measurements of gas temperature, total heat flux, and cable
surface temperature are available at four vertical locations along a cable tray. CFAST under-
predicts heat flux by about 50%, and under-predicts the cable surface temperature by about 20%.
Although the surface temperature predictions are within experimental uncertainty, the heat flux
predictions are not. Only one test from this series has been used in the evaluation; thus, it is
difficult to draw any firm conclusions.

Summary: Radiation and Total Heat Flux to Targets and Target Temperature (Yellow)

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of target heat flux and temperature are characterized
in the Yellow category for the following reasons:
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Prediction of heat flux to targets and target surface temperature is largely dependent on local
conditions surrounding the target. Like any two-zone model, CFAST predicts an average
representative value of gas temperature in the upper and lower regions of a compartment.
In addition, CFAST does not directly predict plume temperature or its effects on targets
that may be within a fire plume. Thus, CFAST can be expected to under-predict values
near a fire source, and over-predict values for targets remote from a fire.

* Cable target surface temperature predictions are often within experimental uncertainty,
with exceptions, particularly for Cables F and G.

* Total heat flux to targets is typically predicted to within about 30%, and often under-
predicted.

* Radiative heat flux to targets is typically over-predicted compared to experimental
measurements, with higher relative difference values for closed-door tests.

6.9 Surface Heat Flux and Temperature

Heat flux and wall surface temperature measurements are available from ICFMP BE #3,
and additional wall surface temperature measurements are available from BE #4 and BE #5.
As with target heat flux and surface temperature (discussed above), there are numerous
comparisons. Figure 6-7 shows a comparison of predicted and measured values for surface
heat flux and temperature, along with a summary of the relative difference for the tests.

ICFMP BE #3: CFAST generally predicts the heat flux and surface temperature of the
compartment walls to within 10% to 30%. Typically, CFAST over-predicts the far-field fluxes
and temperatures and under-predicts the near-field measurements. This is understandable,
given that any two-zone model predicts an average representative value of gas temperature
in the upper and lower regions of a compartment. Thus, the values predicted by CFAST
should be an average of values near the fire and those farther away.

However, differences for the ceiling and (particularly) floor fluxes and temperatures are higher,
with a more pronounced difference between the near-field and far-field comparisons. In addition
to the limitations of the two-zone assumption, calculations of the flux to ceiling and floor surfaces
are further confounded by the simple point-source calculation of radiation exchange in CFAST
for the fire source. In CFAST, the fire is assumed to be a point source of energy located at the base
of the fire rather than a three-dimensional flame surface radiating to surroundings. With the fire
typically at the floor surface, this makes the calculation of flux to the floor surface inherently less
accurate than for other surfaces.

ICFMP BE #4: CFAST predicts one of the wall surface temperatures to within 8% of the
measured values, while the other is under-predicted by nearly 70% (Figure 6-7 and Table A-6).
The two points are presumably very close to the fire because the temperatures are 600 to 700 'C
(1100 to 1300 'F) above ambient. For points very close to the fire, a significant under-prediction
can be expected. The reason for the difference in the predictions is not clear.
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ICFMP BE #5: CFAST typically under-predicts wall temperatures at two locations in the
compartment by more than 50% (Figure 6-7 and Table A-6). The more complicated geometry
inside the compartment, with a partial height wall inside the compartment is a particular
challenge for the model. For example, the lowest thermocouple measurement location, TW 2-1
is hidden behind the cable tray and below the level of the partial height wall. Experimentally,
this shielded the thermocouple from nearby hot surfaces and the fire resulting in only a 4 'C
(7 'F) temperature rise. With the simple geometry modeling by CFAST, a much higher rise
is understandable. Only one test from this series has been used in the evaluation; thus, it is
difficult to draw any firm conclusions.
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Summary: Surface Heat Flux and Temperature (Yellow)

Based on the model physics and comparisons of model predictions with experimental
measurements, CFAST calculations of flame height are characterized in the Yellow category
for the following reasons:

* CFAST is capable of predicting the surface temperature of a wall, assuming that its
composition is fairly uniform and its thermal properties are well-characterized. Predictions
are typically within 10% to 30%. Generally, CFAST over-predicts the far-field fluxes
and temperatures, and under-predicts the near-field measurements. This is consistent with
the single representative layer temperature assumed by zone fire models.

" CFAST predictions of floor heat flux and temperature are particularly problematic because
of the simple point-source calculation of radiative exchange between the fire
and compartment surfaces.

6.10 Summary

This chapter presents a summary of numerous comparisons of the CFAST model with a range
of experimental results conducted as part of this V&V effort. Thirteen quantities were selected
for comparison and a color rating assigned to each of the output categories, indicating, in a very
broad sense, how well the model treats that particular quantity:

" Hot Gas Layer (HGL) Temperature and Height:

* Ceiling Jet Temperature: YellowU+

* Plume Temperature: No color assigned

* Flame Height:

* Oxygen and Carbon Dioxide Concentration: |

* Smoke Concentration: Yellow

" Compartment Pressure:

* Radiation Heat Flux, Total Heat Flux, and Target Temperature: yellow

* Wall Heat Flux and Surface Temperature: Yellow

Four of the quantities were assigned a Green rating, indicating that the research team concluded
that the physics of the model accurately represent the experimental conditions, and the calculated
relative differences comparing the model and the experimental values are consistent with the
combined experimental and input uncertainty. A few notes on the comparisons are appropriate:

The CFAST predictions of the HGL temperature and height are, with a few exceptions,
within or close to experimental uncertainty. The CFAST predictions are typical of those
found in other studies where the HGL temperature is typically somewhat over-predicted
and HGL height somewhat lower (HGL depth somewhat thicker) than experimental
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measurements. Still, predictions are mostly within 10% to 20% of experimental measurements.
Calculation of HGL temperature and height has higher uncertainty in rooms remote from
the fire (compared to those in the fire compartment).

" For most of the comparisons, CFAST predicts ceiling jet temperature well within
experimental uncertainty. For cases where the HGL temperature is below 70 'C (160 'F),
significant and consistent over-prediction was observed.

* CFAST predicts the flame height consistent with visual observations of flame height for
the experiments. This is not surprising, given that CFAST simply uses a well-characterized
experimental correlation to calculate flame height.

* Gas concentrations and compartment pressure predicted by CFAST are within or close to
experimental uncertainty.

Three of the quantities were assigned a Yellow rating, indicating that users should take caution
when using the model to evaluate the given quantity. This typically indicates limitations in
the use of the model. A few notes on the comparisons are appropriate:

" CFAST typically over-predicts smoke concentration. Predicted concentrations for open-door
tests are within experimental uncertainties, but those for closed-door tests are far higher.

* With exceptions, CFAST predicts cable surface temperatures within experimental uncertainties.
Total heat flux to targets is typically predicted to within about 30%, and often under-predicted.
Radiative heat flux to targets is typically over-predicted compared to experimental
measurements, with higher relative difference values for closed-door tests. Care should be
taken in predicting localized conditions (such as target temperature and heat flux) because of
inherent limitations in all zone fire models.

" Predictions of compartment surface temperature and heat flux are typically within 10% to 30%.
Generally, CFAST over-predicts the far-field fluxes and temperatures and under-predicts
the near-field measurements. This is consistent with the single representative layer
temperature assumed by zone fire models.

Plume temperature is not directly calculated nor reported in a CFAST calculation. This was not
assigned a color rating. Parameters that are not given a color rating indicate that the model
does not include output to permit evaluation of the given parameter in its as-tested version.

CFAST predictions in this validation study were consistent with numerous earlier studies, which
show that the use of the model is appropriate in a wide range of fire scenarios. The CFAST model
has been subjected to extensive evaluation studies by NIST and others. Although differences
between the model and the experiments were evident in these studies, most differences can be
explained by limitations of the model as well as of the experiments. Like all predictive models,
the best predictions come with a clear understanding of the limitations of the model and the inputs
provided to perform the calculations.
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A
TECHNICAL DETAILS OF CFAST VALIDATION STUDY

This appendix provides comparisons of CFAST predictions and experimental measurements
for the six series of fire experiments under consideration. Each section to follow contains
an assessment of the model predictions for the following quantities:

A. 1 Hot Gas Layer Temperature and Height

A.2 Ceiling Jet Temperature

A.3 Plume Temperature

A.4 Flame Height

A.5 Oxygen and Carbon Dioxide Concentration

A.6 Smoke Concentration

A.7 Compartment Pressure

A.8 Target Heat Flux and Surface Temperature

A.9 Wall Heat Flux and Surface Temperature

Volume 2 includes a detailed discussion of the uncertainties associated with both
the experimental data and model predictions presented in this appendix.
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Technical Details of CFAST Validation Study

A.1 Hot Gas Layer Temperature and Height

CFAST is a classic two-zone fire model. For a given fire scenario, the model subdivides
a compartment into two control volumes, which include a relatively hot upper layer and
a relatively cool lower layer. In addition, CFAST adds a zone for the fire plume. The lower
layer is primarily fresh air. By contrast, the hot upper layer (which is also known as the hot gas
layer) is where combustion products accumulate via the plume. Each layer has its own energy
and mass balances.

Within a compartment, each zone has homogeneous properties. That is, the temperature and gas
concentrations are assumed to be constant throughout the zone; the properties only change
as a function of time. The CFAST model describes the conditions in each zone by solving
equations for conservation of mass, species, and energy, along with the ideal gas law.
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Technical Details of CFAST Validation Study

ICFMP BE #2

The HGL temperature and depth were calculated from the averaged gas temperatures from three
vertical thermocouple arrays using the standard reduction method. There were 10 thermocouples
in each vertical array, spaced 2 m (6.6 ft) apart in the lower two-thirds of the hall, and 1 m (3.3 ft)
apart near the ceiling. Figure A-I presents a snapshot from one of the simulations.

A"k..w46 Bh ii7Z

|TJ

I

T•I .-

Figure A-1. Cut-Away View of the Simulation of ICFMP BE #2, Case 2
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Figure A-2. Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #2
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Technical Details of CFAST Validation Study

ICFMP BE #3

BE #3 consists of 15 liquid spray fire tests with different heat release rate, pan locations, and
ventilation conditions. The basic geometry and numerical grid are shown in Figure A-3.
Gas temperatures were measured using seven floor-to-ceiling thermocouple arrays (or "trees")
distributed throughout the compartment. The average HGL temperature and height were
calculated using thermocouple Trees 1, 2, 3, 5, 6 and 7. Tree 4 was not used because one of its
thermocouples (4-9) malfunctioned during most of the experiments.

t4

P

Uquid spray fire

Figure A-3. Snapshot of Simulation of ICFMP BE #3, Test 3

A few observations about the simulations:

* In the closed-door tests, the HGL layer descended all the way to the floor. However,
the reduction method, used on the measured temperatures, does not account for the formation
of a single layer and, therefore, does not indicate that the layer dropped all the way to
the floor. This is not a flaw in the measurements, but rather in the data reduction method.

* The HGL reduction method produces spurious results in the first few minutes of each test
because no clear layer has yet formed.
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Figure A-7. Hot Gas Layer (HGL) Temperature and Height, ICFMP BE #3, Open-Door Tests

A-9



Technical Details of CFAST Validation Study

ICFMP BE #4

ICFMP BE #4 consisted of two experiments, of which one (Test 1) was chosen for validation.
Compared to the other experiments, this fire was relatively large in a relatively small
compartment. Thus, its HGL temperature was considerably higher than the other fire tests under
study. As shown in Figure A-8, the compartment geometry is fairly simple, with a single large
vent from the compartment.

Figure A-8. Snapshot of the Simulation of ICFMP BE #4, Test I

The HGL temperature prediction, while matching the experiment in maximum value, has a
noticeably different shape than the measured profile, both in the first 5 minutes and following
extinction. The HGL height prediction is distinctly different in the first 10 minutes and differs
by about 40% after that time. There appears to be an error in the reduction of the experimental
data.
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ICFMP BE #5

BE #5 was performed in the same fire test facility as BE #4. Figure A-10 displays the overall
geometry of the compartment, as idealized by FDS. Only one of the experiments from this test
series was used in the evaluation, Test 4, and only the first 20 minutes of the test, during the
"pre-heating" stage when only the ethanol pool fire was active. The burner was lit after that
point, and the cables began to bum.

Figure A-10. Snapshot of the Simulation of ICFMP BE #5, Test 4
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FM/SNL Test Series

Tests 4, 5, and 21 from the FM/SNL test series were selected for comparison. The HGL temperature
and height were calculated using the standard method. The thermocouple arrays that are referred
to as Sectors 1, 2, and 3 were averaged (with an equal weighting for each) for Tests 4 and 5.
For Test 21, only Sectors 1 and 3 were used, as Sector 2 fell within the smoke plume.

S

Figure A-12. Snapshot from Simulation of FMISNL Test 5

Note the following:

" The experimental HGL heights are somewhat noisy because of the effect of ventilation ducts
in the upper layer. The corresponding predicted HGL heights are consistently lower than
experimental measurements, typically approaching floor level by the end of the test. This is
likely a combination of the calculation technique for the experimental measurements and
rules for flow from mechanical vents in the CFAST model.

" The ventilation was turned off after 9 minutes in Test 5, the effect of which was a slight
increase in the measured HGL temperature.
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NBS Multi-Room Test Series

This series of experiments consisted of two relatively small rooms connected by a long corridor.
The fire was located in one of the rooms. Eight vertical arrays of thermocouples were positioned
throughout the test space (one in the burn room, one near the door of the bum room, three in the
corridor, one in the exit to the outside at the far end of the corridor, one near the door of the other
or "target" room, and one inside the target room). Four of the eight arrays were selected for
comparison with model prediction (the array in the bum room, the array in the middle of the
corridor, the array at the far end of the corridor, and the array in the target room). In Tests IOOA
and 1000, the target room was closed, in which case, the array in the exit doorway was used.

The standard reduction method was not used to compute the experimental HGL temperature or
height for this test series. Rather, the test director reduced the layer information individually for
the eight thermocouple arrays using an alternative method [Ref. 32].

Burm room

Figure A-14. Snapshot from Simulation of NBS Multi-Room Test IOOZ
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Table A-i. Relative Differences for. Hot Gas Layer (HGL) Temperature-and Height

Measurement Exp CFAST Expe" e CFAST Relferve
Series Test Potn (C m

Case 1,- 55 62 4-.14 "
WU Case 2" 86 99 1,56.

Case 3. 83! 91 , 13.9' 14.9 8,
Tes 1 _____ 1231 135W. 1
Test'. If __,__ .117 133 iý..3
Test.2 229 235 •2 . -" "' - °
Test8 & __ , 218 233 "
Test 4 _______ 24 22~ 9 .11

Test-•10 • 198 221 •.•..
Te6st,13 ______ 290, 311

W Test 16 .. __________ 2689. 290 . 8,, . . .',

Test1 1351 143 A )
Test 3 207 243 2.8

e.t- 204 241 18 2.9., 2.8

Tek ,5 175:• •30 2.7198.130
Test.14 208 242 6 2.9 28

Tet 5 ______ 2101 242MA , 1 2'9 2.8Test :1 __ • 193 24, . '2.9 2.8 - 30W:,
Testl,18 .- 4'1 3,"'"4 i.••'= Y "'•• ,•,,193:•,•;;• , 24 2.9, :.' 2.81 ••••••,%

BE4 TestI. ... ... .. 700 .602 ,! 42 51 21
BE5 Test44: ..... _ 151 172'.' '. ,, 4.3 3.5

Test-4 _ _ 59 69- - . .
~z Test 5 ___J_ 44. 49,t ~I'"

TesUTl _____ 6 88 . 33?`
Bum Room .259. 237 9 1.3 1.3 -

MVIO. ACorridor 18 86', 88 21 < A-, 1.2. 1.2 -%.

Cornidor 38 77 88 4 13 1.2
1Cbrdor Exit 74 , 88. • 1.2 1.2

BumRoom 312 -336,331 -336
a3 MV1000 Corridor 18 106 75 : --3."-
z Corridor 38. 99 75 ,, -2,

____Corridor Exit ~
Bum.Room 286 240 '16, 1.3 1.3. 71

MV100Z Corridor 18 67 164 1.2 1.5Corridor 38 67 64 r 1.2 15
Target Room 37 33 - 1.4 2.1

A-20



Technical Details of CFAST Validation Study

A.2 Ceiling Jet Temperature

CFAST includes an algorithm to account for the presence of the higher gas temperatures near the
ceiling surfaces in compartments involved in a fire. In the model, this increased temperature has
the effect of increasing the convective heat transfer to ceiling surfaces. Temperature and
velocity of the ceiling jet is available from the model by placing a heat detector at the specified
location. The ceiling jet algorithm is based on the model by Cooper [Ref. 8], with details
described in the CFAST Technical Reference Guide [Ref. 1]. The algorithm predicts gas
temperature and velocity under a flat, unconstrained ceiling above a fire source. Only two of the
six test series (ICFMP BE #3 and FM/SNL) involved relatively large flat ceilings.

ICFMP BE #3 Test Series
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Figure A-18. Ceiling Jet Temperature, ICFMP BE #3, Closed-Door Tests
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FM / SNL Test Series
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Figure A-21. Ceiling Jet Temperature, FM/SNL Tests
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Table A-2. Relative Differiences for Ceiling, Jet Temperature

Measurement Exp CFASTSeries Test Positon Di*fe.e, c,.

Test 1 155 -135
Test-7 1 391 133 -
Test 2 27t. 235 ,
Test.8 "4#" 233.8
Test 4 229 .222 ` . Z'

,' Test 10.i •"" •' 218 21 j.•i:i8• k:•.,,,• " 3o<•.24 .•,••$;

Test I.....0 "3
W Test 16 :•"'• see 27. .8 29.0 , ;

Test 17 2%"

:-..::...~~56 1. . . .:S e3-: 7 .v143- -8 . ý,V-• ;

Tet3~_______24'1 24 W~Y

. :est9 __ __ _ 235 241, 3

.Test 5 _1____ 208 9 l-~"
Test 14. d______ 4 4~~

TestS ________244 242
Test 186 235. -243 . ,

Test4 Sec1 82 133'. 2~'
_ ___ Sec3 66,ý 102

Z) -Seci 0 1 0l"--1 bl
S TestS e3 5 5 ~ 4'

Test 21 Sec 1 75 159 ~~4~~
____ ______3SJ-3 77 12 ý~1~

A.3 Plume Temperature.

CFAST includLes aplume entrainment algorithm based on the work of McCaffrey [Ref. 7], which
models te mixing of combustio6nprodu cts released by the fre! withkair in the fire compartment
and movements of these gases intoth eupper layer.in the compartment Plume temperature is not
directly calculated nor reported ina CFAST calculation. For this reason, comparisons of
experimentally measured plume temperatures with CFAST calculations are not appropriate
and are not included in this report.
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A.4 Flame Height

Flame height is recorded by visual observations, photographs or video footage. Videos from the
ICFMP BE #3 test series and photographs from BE #2 are available. It is difficult to precisely
measure the flame height, but the photos and videos allow oneto make estimates accurate to
within a pan diameter.

ICFMP BE #2

Figure A-22 contains photographs of the actual fire. The height of the visible flame in the
photographs has been estimated to be between 2.4 and 3 pan diameters [3.8 m to 4.8 m (12.5 ft
to 15.7 ft)]. From the CFAST calculations, the estimated flame height is 4.3 m (14.1 ft).
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Figure A-22. Photographs of Heptane Pan Fires, ICFMP BE #2, Case 2
(Courtesy, Simo Hostikka, VTT Building and Transport, Espoo, Finland)
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ICFMP BE #3

No measurements were made of the flame height during BE #3, but numerous photographs were
taken through the doorway, which measured 2 m x 2 m (6.6 ft x 6.6 ft). During BE #3, Test 3,
the peak flame height was estimated to be 2.8 m (9.2 ft), roughly consistent with the view
through the doorway in the figure below.

Figure A-23. Photograph and Simulation of ICFMP BE #3, Test 3,
as seen through the 2 m x 2 m doorway (Courtesy of Francisco Joglar, SAIC)
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A.5 Oxygen Concentration

CFAST simulates a fire as a mass of fuel that bums at a prescribed "pyrolysis" rate and releases
both energy and combustion products. CFAST calculates species production based on user-
defined production yields, and both the pyrolysis rate and the resulting energy and species
generation may be limited by the oxygen available for combustion. When sufficient oxygen
is available for combustion, the heat release rate (HRR) for a constrained fire is the same as
for an unconstrained fire. Mass and species concentrations are tracked by the model as gases
flow through openings in a structure to other compartments in the structure or to the outdoors.

The following pages present comparisons of oxygen and carbon dioxide concentration
predictions with measurement for BE #3 and BE #5. In BE #3, there were two oxygen
measurements, one in the upper layer, one in the lower layer. There was only one carbon dioxide
measurement in the upper layer. For BE #5, Test 4, a plot of upper-layer oxygen and carbon
dioxide is included along with the results for BE #3.

Not surprisingly, the accuracy of the gas species predictions is comparable to that of the HGL
temperature. After all, CFAST uses the same basic algorithm for transport, regardless of
whether it is the transport of heat or mass.
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Figure A-24. Oxygen and Carbon Dioxide Concentration, ICFMP BE #3, Closed-Door Tests
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Figure A-25. Oxygen and Carbon Dioxide Concentration, ICFMP BE #3, Open-Door Tests
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Table A-3. Relative Differences for Oxygen and Carbon Dioxide Concentration

Senes Test
Exp

:(molar
fractJon)

CFAST

(molar
fraction)I I. I,

II . I .- - I -. .

Test 1 10.065 i G.076

M

Test 7- 0.064:; -,. , 0.073
Test 2 0.092., ; 0401,.
Test 8i 0.096. 0.098.
Test 4 0.079: . 0.060'
Test 10 0.079 ý: " 0.059,
Test. 00 r13 .101 011 1075
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A.6 Smoke Concentration

CFAST treats smoke like all other combustion products, with. an overall mass balance dependent
on interrelated user'-specified species yields for major combustion species. To model smoke
movement, the user prescribes the smoke yield relative to the yield of carbon monoxide.
A simple combustion chemistry scheme in the model then determines the Smoke particulate
concentration in the form of an optical density. For BE #3, the smoke yield was specified as one
of the test parameters.

Figure A-26 and Figure A-27 contain comparisons of measured andpredicted smoke concentration
at one measuring station in the upper layer. There are two obvious trends in the figures. First,
the predicted concentrations average 22% higher than the measured in the open-door tests,
within experimental uncertainty witl a single exception for Testý 14. Second, the predicted
concentrations are roughly three time's the measured concentrations in the closed-door tests.

A-32



Technical Details of CFAST Validation Study

E

0
E
U)

Smoke Concentration

250 ICFMP BE #3, Test 1

200

150

100 "

50 .
0 -"- ~ '~e•S k oe

350
Smoke Concentration
If'=%AO QC W1 T- 7

E
a 250

Z' 200

150

0 100
E

50

0 0 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (mint

4-
E
M
E

Q

E
U)

50uu
Smoke Concentration
ICFMP BE #3, Test 2 ...........................

400

300

200

100

0

E
E

2'

0

E
C/3

5u0
Smoke Concentration
ICFMP BE #3, Test 8
4 0 0.. .... ."

200

100

0 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (min)

300
Smoke Concentration

250 ICFMP BE #3, Test 4

E

E 200

" . CFAST Te OD I=• 150 . ' "..:.

100
0Co 50.... . .

50
m 50 • • .......................

0 5 10 15 20 25 30

Time (min)

300

250

200

150
oa
0

Smoke Concentration
ICFMP BE #3, Test 10

E., I-
I CFAST r- ý OD I _j

0
E
u) 5

30

25

E 20

0.

0 5 10 15 20 25 30

Time (min)

0

Smoke Concentration

io ICFMP BE #3, Test 16

00 '

nr ;-

Guu

-500.
E

E 400

" 300

I 200
0E

Co 100

0-

Smok,
ICFMI

a Concentration
P BE #3, Test 13

100

E
U) 50

E, T- . &Ik. C..
CFAST Tý n W

.CFASTm 
o eO

5 10 15 20 25 30

Time (min)
0 5 10 15 20 25 30

Time (min)

Figure A-26. Smoke Concentration, lCFMP BE #3, Closed-Door Tests
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Figure A-27. Smoke Concentration, ICFMP BE #3, Open-Door Tests
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Table A-4. Relative Differences for Smoke Concentration

Series Test Exp CFAST

Test1; 42 .321 -j.7W2-.
Test 7 55. 307 " r,""
Test 2. 128 420 228-
Test.8 100 41.1f 4 3

:::Test4,' 80 177 ; :.22 .'-
Test 1 71 177 ~1O

Test'13 224 480' >:.:'."
w ",Test 16. 1397" 204 .

Test17, 353 1590. ;.35
.,T est.3 : 11 81 14 0 .. 44-. ,'

" :Test9 !17. 139 ! .19-
Jest 5 87.- .91
Test .14 91 139 , 5 ,
Test 15 124 140 _""13-;
Test 18, 110. 140 1ý 27ý.j

A.7 CompartmentPressure

Experimental measurements for room presue are available only frbm the ICFMP BE #3 test series.
The pressure within the compart was me at a single pointnear the floor. In the simulations
of the closed-door tests, the compartment is assumed to leak via'asmall vent near. the ceiling
with an area consistent with the measured leakage area.

Comparisons between measurement and prediction are shown in-Figure A-28 and Figure A-29.
For those tests in which the- door to the compartment is open, the over-pressures are only a few
Pascals, whereas when the door is closed, the over-pressures are several hundred Pascals.

In general, the predicted pressures are oftcomparable.magnitude to the measured pressures and,
in most cases, differences can be explained using the reported uncertainties in the leakage area
and the fact that the leakage area changed from test to test because-of the thermal stress on the
compartment walls: The one notable exception is Test 16. This experiment was performed with
the door closed and the ventilation on, and there is considerable uncertainty in the magnitude of
both the supply and return mass flow, rates.

A-35



Technical Details of CFAST Validation Study

80

60

40

& 20

-20

-40

-60

Compartment Pressure
I BM7,E.I,, Test I

...

- E~~h,.s~o J

a
0~

2

a
0~

60
Compartment Pressure

40 A ICFMP BE #3, Test 7

20

-2=0 ....- FS rre•PelEpTm''vlCrp .........................................t " "

-20

-40-

-60
0 5 10 15 20 25 30

Time (min)

-Ov

0 5 10 15 20 25 30

Time (min)

400
Compartment Pressure

Al. ICFMP BE #3, Test 2
200

O. 0

-200
0-

-400

-600
C

200

100

0

-lOO

-200-

• -300
0-

-400

-500

-600

300

200

100

0
-100

a -200
0.

-300

-400

-500

Compartment Pressure
ICFAP RE #-3, Test 8

-I eC ATT4Co-=pP
....CFAST Tn• •Pressre

= _-~IC~Ip
.sTrI-~p.s~~

I 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (min)

100 Compartment Pressure

0ICFMP BE #3, Test 10 .0:..'......Compartment Pressure

-) -E,pT-s~vCDmfpP
.CFAST Tkne VS P- 1UV

................ v - .................. .......................
aý -100

-200-

-300-

-400-

-500

CFAST Tý Pýý

0 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (min)

400

200
Compartment Pressure

400

200

0

Compartment Pressure
-BE #9, Tet 1

ax

a)

-40

-60

-80

-100

U

'0 V _

10

10

0 -Esph, s.olpP
CFAST r- . Pr-. 

1
,I

a.

-200

-400-

-600

-1000 -E~pr-..CVSpP
CFAST TIPV In POswO I

0U 1',nn J

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (min)Time (min)

Figure A-28. Compartment Pressure, ICFMP BE #3, Closed-Door Tests
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Figure A-29. Compartment Pressure, ICFMP BE #3, Open-Door Tests
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Table A-S. Relative Differences for Compartment Pressure

Series Test Exp CFASTne

(Pa) (Pa) •%
Test 1 •58 .42
Testt 7:. 46., 29 ' -3
Test2' 290 266, kt'4
Test8. 189 2133: .. .
Test 4 57 76 x 6.
Tbest;lO , : 49,. 45 .,
Test:13, 232 336 4 .

W Test 16: .81 309. L'30-28&7r3r ...
Test,'.17 1951' 138 V':•-",. .
Teast3. -1.9 -2. 1 %4O :
Test 9 -2.0G -2Z 71'"I
Test-5 -1.8 -2.0 - ,,Q'W
Test14 -2.1 -2.1 ,
Test 15 -2.4 -2.2 • -&
Test 18 - -2.0 -2.1

I

A-38



Technical Details of CFAST Validation Study

A.8 Target Temperature and Heat Flux

Target temperature and heat flux data are available from ICFMP BE #3, #4, and #5. In BE #3,
the targets are various types of cables in various configurations - horizontal, vertical, in trays,
or free-hanging. In BE #4, the targets are three rectangular slabs of different materials
instrumented with heat flux gauges and thermocouples. In BE #5, the targets are again cables,
in this case, bundled power and control cables in a vertical ladder.

ICFMP BE #3

For each of the four cable targets considered, measurements of the target surface temperature
and total heat flux are compared for Control Cable B, Horizontal Cable Tray D, Power Cable F,
and Vertical Cable Tray G.

CFAST does not have a detailed model of the heat transfer within the bundled, cylindrical,
non-homogenous cables. CFAST assumes all cable targets to be rectangular homogeneous slabs
of thickness comparable to the diameter of the individual cables. Material properties for the targets
are assumed to be those of the covering material for the respective cables.
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Figure A-31. Thermal Environment near Cable B, ICFMP BE #3, Tests 2 and 8
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Figure A-38. Thermal Environment near Cable Tray D, lCFMP BE #3, Tests 2 and 8

A-48



Technical Details of CFAST Validation Study

10

8

E

n-4

"a

F Total Heat Flux to Cable Tray D
ICFMP BE #3, Test 4

10
Total Heat Flux to Cable Tray D
ICFMP BE #3, Test 10

CFA.T aeý. Cý 1O19"
.CFAST Tk- . Ub C. D R.

-Eý, Ti, " CU ToC Fba I
-Eo T-o . C.0W Rad Goge 7 6

LL

CFAST n- wCýodeO Fka
.CFAST TkM " ,07D

-, ) o p To,-C Coil TCd 7,
E. EoTh,.-CCý leolG.oC7

4 {
A I

0 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (min)

400

300 -

200

E

100

0-

Cable Tray D Surface Temperature
ICFMP BE #3, Test 4

Cable Tray D Surface Temperature
ICFMP BE #3, Test 10

.......................

300

S200

Ea)
100

0

300

.• 200
CLE
p-lOO

............... 
* ..............

- EoPTin,ovs -Ts-12
.CFAST Tmn -oCbi.D0To-n

- Eop Time- O-D-Ts-12
...... CFAST Time n_ C"be D Temp

0 5 10 15 20 25 30

Time (min)

0 5 10 15 20 25 30

Time (min)

Figure A-39. Thermal Environment near Cable Tray D, ICFMP BE #3, Tests 4 and 10
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Figure A-41. Thermal Environment near Cable Tray D, ICFMP BE #3, Tests 3 and 9
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Figure A-43. Thermal Environment near Cable Tray D, ICFMP BE #3, Tests 15 and 18
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Figure A-53. Thermal Environment near Vertical Cable Tray G, ICFMP BE #3, Tests 4 and 10
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Figure A-56. Thermal Environment near Vertical Cable Tray G, ICFMP BE #3, Tests 5 and 14
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Figure A-57. Thermal Environment near Vertical Cable Tray G, ICFMP BE #3, Tests 15 and 18
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ICFMP BE #4

Targets in BE #4, Test I were three material probes made of concrete, aerated concrete and steel.
Sensor M29 represents the aerated concrete material while Sensors M33 and M34 represent the
concrete and steel materials respectively.

Figure A-58. Location of Three Slab Targets in ICFMP BE #4
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Figure A-59. Heat Flux and Surface Temperatures of Target Slabs, ICFMP BE #4, Test I
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ICFMP BE #5

A vertical cable tray was positioned near a wall opposite the fire. Heat flux gauges were inserted
in between two bundles of cables (one containing power cables, and the other containing control
cables). The following pages present plots of the gas temperature, heat flux, and cable surface
temperatures at three vertical locations along the tray.
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Table A-6. Relative Differences for Radiation and Total Heat Flux to Targets and Target Temperature
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Test Cable Ex CFAST Duffi FT p Exb CFAST ,Diff x CFAST . Diff; .
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A.9 Heat Flux and Surface Temperature of Compartment Walls

Heat fluxes and surfaces temperatures at compartment walls, floor, and ceiling are available from
ICFMP BE #3. This category is similar to that of the previous section, "Heat Flux and Surface
Temperature of Targets," with the exception that the focus here is on compartment walls,
ceilings, and floors.

ICFMP BE #3

Thirty-six heat flux gauges were positioned at various locations on all four walls of the
compartment, plus the ceiling and floor. Comparisons between measured and predicted heat
fluxes and surface temperatures are shown on the following pages for a selected number of
locations. More than half of the measurement points were in roughly the same relative location
to the fire and hence the measurements and predictions were similar. For this reason, data for the
east and north walls are shown because the data from the south and west walls are comparable.
Data from the south wall are used in cases where the corresponding instrument on the north wall
failed, or in cases where the fire was positioned close to the south wall. The heat flux gauges
used on the compartment walls measured the net (not total) heat flux.
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Figure A-61. Long Wall Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-63. Long Wall Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-68. Short Wall Heat Flux and Surface Temperature, ICFMP BE #3, Open-Door Tests
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Figure A-69. Ceiling Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-70. Ceiling Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-71. Ceiling Heat Flux and Surface Temperature, ICFMP BE #3, Open-Door Tests
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Figure A-72. Ceiling Heat Flux and Surface Temperature, ICFMP BE #3, Open-Door Tests
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Figure A-73. Floor Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-74. Floor Heat Flux and Surface Temperature, ICFMP BE #3, Closed-Door Tests
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Figure A-75. Floor Heat Flux and Surface Temperature, ICFMP BE #3, Open-Door Tests
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Figure A-76. Floor Heat Flux and Surface Temperature, ICFMP BE #3, Open-Door Tests
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ICFMP BE #4

Thermocouples are positioned against the back wall of the compartment. Because the fire leans
toward the back wall, temperatures measured by the thermocouples are considerably higher than
those in other tests and higher than those predicted by the CFAST model that does not include
the effects of an non-symmetric, wind-aided plume.
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Figure A-77. Back Wall Surface Temperature, ICFMP BE #4, Test I
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ICFMP BE #5

Wall surface temperatures are measured in two locations in the BE #5 test series. The
thermocouples labeled TW 1 -x (Wall Chain 1) are against the back wall; those labeled TW 2-x
(Wall Chain 2) are behind the vertical cable tray. Seven thermocouples are in each chain, spaced
0.8 m (2.6 ft) apart. In Figure A-78, the lowest (1), middle (4), and highest (7) locations are used
for comparison.
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Figure A-78. Back and Side Wall Surface Temperatures, ICFMP BE #5, Test I
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Table A-7. Relative Differences. for Surface Heat Flux and Temperature

Series Test Measurement Exp CFAST •Djff Exp CFAST '" •D....
PositionW(

BE3 Test 1 Long Wall 1.4A 1.7 54, 89 1 1 64, ý ý,i
1.8. 1.7 68 89 J31

Short Wall 1.3 1.7 602,32!' 55 89
1.7 .1.7 1."3'2¢ 71 89 L 26

Floor 0.9 J 1.4 " 38 71 'A.....
2.4. 1.3 ---jý- 77 69 12-1-

Ceiling 1.,9 1.7 81 92
3.8 1 .7 f 176. 91 -49

Test 7 'Long Wall 1.4 1.6 ',19?;• 53 87 " 63
1, .9 1-14 70 87 2

Short Wall 1.2 1.6:%~ 4 58 58!ý
.1.8 1.6. ,.9[ .70 87 24

*Floor 0.9 13 36 69 ___

2.3. 1.3 .- 44 78 67 -. 4 -
Ceiling, 1.9 1.7 80! 89 ..: 2.

______ __________ ______ ~191 88
Test 2 Long Wall 3.8 44 t 96:. 96 150 ....

.__._._1 4.5' 43 • 120 151 261"•
Short Wall 3.6 44 . 4. 2i't' 110 150

_.___.,_ 4.6 4.4 . 125 2151 - 20
Floor 2.6. 37 , 4i. . 74 127. _ 71 "

-_8.9. 3.5 . 156 124* .- 21
Ceiling 5.6 4& 5 4,5 14 154 ,. .

__.145 4 4 ,0 308 152 J -5.

Test 8 Long Wall 3.8 4.3 .• 13 95 149 . 5.
3.3 4.3 i 3.'J 132 149 13

Short Wall 2.5 4.3 '76i V 109 148 ' "36.
________. 4.7 4.3 - : -8. 125 149 r i
Floor 2.6. 3.6 , .. 71125.. ..

8.6 3;5 o,$6 ,. 148 121 ".8-.
Ceiling 6.1 4.4 , ; 148 153 _._'612: 4,34 -7:•• .. i

___ 12.9 .4327,, 325 150 -54
Test 4 Long Wall 3.4 4.0 >i6 97 150' 54,

__ _ 13.5 4.0 . .!3 146 152 4
Short Wall 3.3 4.0 "'".!21. 106 149 41

4.0 3.9 .' -1: 121 150 24
Floor 2.5 3.3 15 -, " ':'• 76 130 -7

8.5 3.2 -62k 152 127 -16
Ceiling 5.1 4.0 - 147 153 4

6.0 4.0 . .-3 180 153 -15
Test 10 Long Wall 3.3 3.9 94 150 59

I. 4-I . 4 4
3.5 •3.9 13 163 151

Short Wall 3.1 3.9 -26 I 106 149 '41
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Series Test Measurement, Exp CFAST Exp CFAST D,,.:
Position*)

____-/r) ___ ____ iW/¶1iY (CC) (*0) 0__Y
3.9 3.9 1.17 150 28

Floor 2.3 3.3 ,, , 1 ,30 8i
_ 7.9 3.2 -,•j5 j 127, [ -2O

Ceiling ,4.8 4.0 7" 138 153 11 ~
4 I!*~.... 4 9.

221 153
Test 13 Long Wall '_ _____ .110 195

___ ___ _______ • •-• ! 199 198 - .
Short Wall _.,__ -1277 194 ____53_',T

_______ 2'~ 145 :196 5
Floor _____-__ , 89 166 87,

________ _____149 161 ___

Ceiling ___ <f 319 197 -38
____________ ________ 498 197:. -60:

Test 16 Long Wall ____107 175 64,,'0'

S217: 180 -. 1717
Short Wall ______., '., 123 '175 ' "42

.141-.:' 176 24Floor. _______ , 80 148 85-,.

146 144 -1
Ceiling! ",- . , 284 178 -37'

,_____________% ;W 441 180 -59
Test 17 Long Wall 1.5 2.1 :" ,45". 39 53 36.

0.9, 2.3"3 !,8w-kU 82, 65 -2,.
Short Wall 1.6 7-271-, •35! 56 52 <i-9=

____________ 1.9 2.1 ýý4I;:, 61 -54 ~ 1~
Floor 0.9 1.4 .',2-,, 24 34 $ 4O:\

1.5 1.3 .I it1K,.1 527 33 ___-.__

Ceiling *.Ži,/f. ' 69 58 -16
230230 -65 -72__

Test 3 LongWall 3.5 4.5 , :';j•4 2- "14 187 `264
.4.3 1 5.0 -.172 203 18

Short Wall '2.5 &36- Iv4:': -, 87 152.A 74
4.4 4.6 i ''3. - .-" 146 191 - ,.-

Floor 2.0 3.2' z y62,.2 54 143 _,___,,

4.1 3.1 2 119 139 .Ceiling 4.6. 4.7 . . 155 194 2

9.9 4.8 ' 287 197 .- 31.
Test 9 Long Wall 3.4 4.3 25.~ 113 184 63

4.2 4.8 .178 200 .12,'
Short Wall 2.4 3.4 42 88 148 68'1 .__ ___ "_____ .______ : 135 188 J '39
Floor 1.9 3.0 ' 59 53 139 '161

_______ 3.9 2.9 •"25 122 135 Ij 10
Ceiling 5.5 4.5 204 191 -ý6:

I I'. -~.. -- I
9.4 4-.6 290 194 -33A .1 __________ I _________
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Series Test Measurement Exp. J CFAST Erff•, Exp;.'. CFAST IT',Dlff;,•'-ý'
Position..___°cc

_____ ________ kW/ii2 ýk(~/a)'. (OC) (OC) (4
Test 5 Long Wall 2.7.7 3. 1 4,1i4 -,,/. I, 94 146 5 5!<

I I I I . . . .. .

3.8 3.7 I;:. 155 168 9~
Short Wall 2.0, 2.5 2 71 116 L.62z,

_ 3.3 3.1 118 •148 , 26
Floor 1.4 22 ,56• ' 42. 107 L

• i._10.1 . 1 -19: 171 104 _.3__.

I Ceiling 3.4 I _ 3.2 2, , 125. 151 2 . ,
667.." 3.4 I.•49,, 263 .159% 40..

Test 14 Long Wall 613:5 4.3 , 114 1 84 6,
.... 8.1 2 25.7. ' " . 255 222-4. ....

Short Wall 2.4 3.5. • • 8 .-149. ,, -
-4.5 4. ",' 148 14895 &9- __-

Floor 1.9 3.1 64,,'46 52, 141 ' 16.
3.0: 3.0: . 1 104 137 3.,

Ceiling 4.7 4.5 , -.-- 3,1 158 192 22•,,;:,.,,,
9.0 4.8 4, ;-46 , 352 200

Test 15 Long Wall 3.6 . 4.1 ,, , 220: 183 - -17 .
T_______,_ 7.5 '4.2 - - 205 188

Short Wall 2.6 3.3 . 96 145 .,50
4.7". 4.2. 510,• 151 -187 . 2,•

Floor 61.9. .29. - - ' 52. 137 T, f61
. ._'5.2 2.8 • 132 132

Ceiling:. -1 22,
__..... __............__,_ *287 . 186

Test 18 Long Wall 3.4, '4.3 118 185
I '1.7. I - 4

:tt- -,. • 312- 248 I',' ' r 2 . `

Short-Wall 2.6 3.5 :,3 .:¶ 94. 154' 84
-4.7 [ 4.5 . .153 . 190- ,24&-

Floor 1.8 3.1 . , 4, 50 141
3.1 3. 107 - 137 29

Ceiling 4.5 A .;5 145 193 K', 3W týZ`
4. I~ 7~71. 4 . +

250 194 * -23k
BE4 Test I M19 . ' 59.546.

_____._.___ M20 _ _ 7___ 7 722 238 2,-67£".
BE5 TestA4 TW 1-1 '__-_.__ , 56 37 -34

TW 2-1 .4 24 4 1

TW1-4 ______ 87 36 -58
TW 2-4 ____,__ .--.,_68 35 -' -49
TW 1-7 .... '": 83
TW 2-7 - : 72 37 -49%
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B
CFAST INPUT FILES

This appendix includes the CFAST input files used for the simulations in this V&V study.

They are organized by test series, as follows:

B. I ICFMP Benchmark Exercise #2

B.2 ICFMP Benchmark Exercise #3

B.3 ICFMP Benchmark Exercise #4

B.4 ICFMP Benchmark Exercise #5

B.5 FM /SNL Test Series

B.6 NBS Test Series
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CFAST Input Files

B.1 ICFMP Benchmark Exercise #2

Case 1, Input File

VERSN,6,ICFMP 2 Test 1 Leakage vents only

!!Environmental Keywords

TIMES, 600, -10,0,10,1
EAMB, 293.15, 101300, 0
TAMB, 293.15,101300,0,50

LIMO2,10
WIND, 0, 10, 0.16
CJET, WALLS
I t

!!Compartment keywords

COMPA,Compartment 1,13.8,27,19,0,0,0,SteelBE2,ConcreteBE2,SteelBE2
ROOMA, 1,4,372.6,372.6,51.3,51.3
ROOMH, 1,4,0,12,17.1,19

!!vent keywords
i i

HVENT, 1,2,1,0.71,0.71,0,1,6.55,0,4,1
HVENT, 1, 2,2,0.71,0.71,0, 1, 6.55, 0,2,1
HVENT, 1, 2,3, 0.71,12.71,12, 1, 6.55, 0,4,1
HVENT,1,2,4,0.71,12.71,12,1,6.55,0,2,1
I i

!!fire keywords

OBJECT,NRC BE2 1,1,7.2,16,0,1,1,0,0,0,1

Case 1, Fire Definition File

NRC BE2 1
7,0,0,0,0,1.08,0,0.19,0.0026,0.0049,0,0,0
0.1002,13,1245000,0.0279148,0,1.08,0,0.19,0.0026,0.0049,0,0,0
395.15,90,1709000,0.03831838,0,1.08,0,0.19,0.0026,0.0049,0,0,0
295.15,288,1858000,0.04165919,0,1.08,0,0.19,0.0026,0.0049,0,0,0
0,327,1783000,0.03997758,0,1.08,0,0.19,0.0026,0.0049,0,0,0
0.35,409,1356000,0.03040359,0,1.08,0,0.19,0.0026,0.0049,0,0,0
10000,438,0,0,0,1.08,0,0.19,0.0026,0.0049,0,0,0

1
1
0.25
4.46E+07
METHANE
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CFAST Input Files

Case 2, Input File

VERSN,6,ICFMP 2 Test 2 Leakage vents only

!!Environmental Keywords

TIMES, 600, -10,0,10,1
EAMB, 293.15,101300,0
TAMB,293.15,101300,0,50
LIMO2, 10
WIND, 0,10,0.16
CJET, WALLS

!!Compartment keywords

COMPA,Compartment 1,13.8,27,19,0,0,0,SteelBE2,ConcreteBE2,SteelBE2
ROOMA, 1,4,372.6,372.6,51.3,51.3
ROOMH, 1,4,0,12,17.1,19

!!vent keywords

HVENT, 1, 2, 1, 0.71, 0.71,0, 1, 6.55,0,4,1
HVENT, 1, 2,2, 0.71,0.71, 0, 1, 6.55, 0,2,1
HVENT, 1, 2,3,0.71,12.71,12, 1, 6.55,0,4,1
HVENT, 1,2,4,0.71,12.71,12,1, 6.55,0,2,1
iII

!fire keywords

OBJECT,NRC BE2 2,1,7.2,16,0,1,1,0,0,0,1

Case 2, Fire Definition File

NRC BE2 2
9,0,0,0,0,2.01,0,0.19,0.0026,0.0049,0,0,0
0.1002,14,2151000,0.0482287,0,2.01,0,0.19,0.0026,0.0049,0,0,0
395.15,30,2542000,0.05699551,0,2.01,0,0.19,0.0026,0.0049,0,0,0
295.15,91,3063000,0.06867713,0,2.01,0,0.19,0.0026,0.O049,o,0,o
0,193,3259000,0.07307175,0,2.01,0,0.19,0.0026,0.0049,0,0,0
0.35,282,3129000,0.07015695,0,2.01,0,0.19,0.0026,0.0049,0,0,0
10000,340,2737000,0.06136771,0,2.01,0,0.19,0.0026,0.0049,0,0,0
1,372,2275000,0.05100897,0,2.01,0,0.19,0.0026,0.0049,0,0,0
1,395,0,0,0,2.o01,0,0.19,0.0026,0.0049,0,0,0
0.25
4.46E+07
METHANE
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Case 3, Input File

VERSN,6,ICFMP 3 Test 3 Leakage vents and mechanical ventilation
I1

!!Environmental Keywords
11

TIMES, 600,-10,0,10,1
EAMB,293.15,101300,0
TAMB, 293.15,101300,0,50
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
II

!!Compartment keywords
II

COMPA,Compartment 1,13.8,27,19,0,0,0,SteelBE2,ConcreteBE2,SteelBE2
ROOMA, 1,4,372.6,372.6,51.3,51.3
ROOMH, 1,4,0,12,17.1,19
11

!!vent keywords

HVENT, 1,2,1,0.71,0.71,0,1,6.55,0,4,1
HVENT, 1,2,2,0.71,0.71,0,1,6.55,0,2,1
HVENT,1,2,3,0.71,12.71,12,1,6.55,0,4,1
HVENT, 1,2,4,0.71,12.71,12,1,6.55,0,2,1
HVENT, 1,2,5,0.8,4,0,1,8.9,8.9,1,1
HVENT, 1, 2,6, 0.8,4, 0, 1, 8.9, 8.9, 3, 1
MVENT, 1,2,1, H, 12,3.14, H, 12,3.14,11,200,300,1
11

!!fire keywords
I1

OBJECT,NRC BE2 3,1,7.2,16,0,1,1,0,0,0,1

Case 3, Fire Definition File

NRC BE2 3
8,0,0,0,0,2.01,0,0.19,0.0026,0.0049,0,0,0
0.1002,13,2426000,0.05439462,0,2.01,0,0.19,0.0026,0.0049,0,0,0
395.15,63,3184000,0.07139014,0,2.01,0,0.19,0.0026,0.0049,0,0,0
295.15,166,3601000,0.08073991,0,2.01,0,0.19,0.0026,0.0049,0,0,0
0,256,3639000,0.08159193,0,2.01,0,0.19,0.0026,0.0049,0,0,0
0.35,292,3450000,0.07735426,0,2.01,0,0.19,0.0026,0.0049,0,0,0
10000,330,2654000,0.05950673,0,2.01,0,0.19,0.0026,0.0049,0,0,0
1,345,0,0,0,2.01,0,0.19,0.0026,0.0049,0,0,0
1
0.25
4.46E+07
METHANE
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CFAST Input Files

B.2 ICFMP Benchmark Exercise #3

Test 1, Input File
VERSN, 6,"BE 3, Test 1, XPE Cable, Heptane, Door Closed, MV Off"

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB,295.15,101300,0
TAMB, 295.15,101300,0,34
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords
iI

COMPA, Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3
II

!!vent keywords
ii

HVENT,1,2,1,8.47,3.82,3.81,1,0.555,0,4,1
ii

!!fire keywords
II

OBJECT,NRC BE3 1,1,10.85,3.52,0,1,1,0,0,0,1
iI

!!target and detector keywords

TARGET, 1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3, IMPLICIT, PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3, IMPLICIT, PDE
TARGET,1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,2.43,-1,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.11,5.97,3.82,0,0,-I,MARIBE3, IMPLICIT, PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3, IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,9.11,2,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET,1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2,3.2,0,0,-I,XLP C BE3,IMPLICIT, PDE
TARGET,1,10.85,1.25,2.7,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-1,XLP C BE3,IMPLICIT, PDE
TARGET, 1,10.85,0.5,2.2,0,0,-1,XLP P BE3,IMPLICIT, PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3, IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT, PDE
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CFAST Input Files

Test 1, Fire Definition File

NRC BE3 1
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,148,410000,0.009111111,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1350,410000,0.009111111,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1500,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0

0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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Test 2, Input File

VERSN,6,"BE 3, Test 2, XPE Cable, Heptane, Door Closed, MV Off"

!!Environmental Keywords
It

TIMES,1800,-10,0,10,1
EAMB,299.15,101300,0
TAMB, 299.15,101300,0,36
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords

HVENT, 1,2,1,8.29,3.82,3.81,1,0.555,0,4,1
II

!!fire keywords

OBJECT,NRC BE3 2,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET, 1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,7.04,1.87,0,-1,0,MARIBE3,IMPLICITPDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET,1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET,1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,2.43,-1,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-IMARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-IMARIBE3,IMPLICIT,PDE
TARGET,1,10.85,5.17,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,I,GYPBE3,IMPLICITPDE
TARGET,1,9.11,2,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, I,l0.85,2,3.2,0,0,-l,XLP C BE3,IMPLICIT,PDE
TARGET,I,10.85,1.25,2.7,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-I,XLP C BE3,IMPLICITPDE
TARGET, 1,10.85,0.5,2.2,0,0,-l,XLP P BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
TARGET, I,10.8,6.8,1.75,0,-I,0,XLP C BE3, IMPLICIT,PDE
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Test 2, Fire Definition File

NRC BE3 2
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,180,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,625,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,626,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4. 5E+07
METHANE

B-8



CFAST Input Files

Test 3, Input File

VERSN,6,"BE 3, Test 3, XPE Cable, Heptane, Door Open, MV Off"

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB, 303.15,101300,0
TAMB, 303.15,101300,0,34
LIM02,10
WIND, 0,10,0.16
CJET,WALLS
ii

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords

HVENT,1,2,1,2,2,0,1,2.58,0,4,1

!!fire keywords

OBJECT,NRC BE3 3,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET, 1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT, PDE
TARGET,I,12.15,7.04,1.87,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,9.55,0,1.87,0,1, 0,MARIBE3, IMPLICIT, PDE
TARGET, 1,12. 15,0,21.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET,1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET,I,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET,1,21.7,5.76,2.43,-I,0, 0,MARIBE3, IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0, -I,MARIBE3,IMPLICIT, PDE
TARGET, 1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, ,130.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3, IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,I1,GYPBE3,IMPLICITPDE
TARGET, 1,9.11,2,0,0,0, 1,GYPBE3, IMPLICIT, PDE
TARGET, 1,10.85,2.39,0,0,0, 1, GYPBE3, IMPLICIT, PDE

TARGET, 1,10.85,2,3.2,0,0,-I,XLPC CBE3,IMPLICIT,PDE
TARGET,I, 10.85,1.25,2.7,0,0,-I,PVCCBE3,IMPLICIT,PDE

TARGET,1,10.55,1.3,2.8,0,0,-1,XLP C BE3,IMPLICIT, PDE
TARGET,1,10.85,0.5,2.2,0,0,-I,XLP P BE3,IMPLICITPDE
TARGET,1,10.8,6.8,1.75,0,-I,0,XLP C_BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-I,0,XLPC_BE3,IMPLICITPDE
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CFAST Input Files

Test 3, Fire Definition File

NRC BE3 3
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0

0.1002,178,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1379,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1562,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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Test 4, Input File

VERSN,6,"BE 3, Test 4, XPE Cable, Heptane, Door Closed, MV On"
II

!!Environmental Keywords
'I

TIMES,1800,-10,0,10,1
EAMB, 300.15,101300,0
TAMB, 300.15,101300,0,44
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
iI

!!Compartment keywords
I?

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords
'I

HVENT, 1,2,1,8.29,3.82,3.81,1,0.555,0,4,1
MVENT,2,1,1,V,2.4,0.49,V,2.4,0.49,0.9,200,300,1
MVENT,1,2,2,V,2.4,0.49,V,2.4,0.49,1.7,200,300,1

!!fire keywords
II

OBJECT,NRC BE3 4,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords
1 1

TARGET, 1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET,1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,2.43,-I,0, 0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT, PDE
TARGET,1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3, IMPLICIT, PDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,1,9.11,2,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET,1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2,3.2,0, 0,,-I,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-1,XLP C BE3, IMPLICIT,PDE
TARGET,1I,10.55,1.3,2.8,0,0,-I,XLPCBE3, IMPLICIT, PDE

TARGET,1,10.85,0.5,2.2,0,0,-1,XLP P BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3, IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3, IMPLICIT,PDE
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Test 4, Fire Definition File

NRC BE3 4
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,178,1200000,0.02666667,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,814,1200000,0.02666667,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,815,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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Test 5, Input File

VERSN, 6,"BE 3, Test 5, XPE Cable, Heptane, Door Open, MV On"
II

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB,301.15,101300,0
TAMB,301.15,101300,0,37
LIM02,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords
I1

COMPACompartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords

HVENT, 1,2,1,5.8,3.82,3.81,1,0.555,0,4,1
HVENT, 1,2,2,2,2,0,1,2.58,2.58,1,1
MVENT,2,1,1,V,2.4,0.49,V,2.4,0.49,0.9,200,300,1
MVENTI,2,2,V,2.4,0.49,V,2.4,0.49,1.7,200,300,1
II

!!fire keywords

OBJECTNRC BE3 5,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET,l13.91,7.04,1.49,0,-i, 0MARIBE3,IMPLICITPDE
TARGET,1,12.15,7.04,1.87,0,-I,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICITPDE
TARGETI,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3, IMPLICIT, PDE
TARGETI,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-1,0, 0MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-i,0,0,MARIBE3,IMPLICIT,PDE
TARGET, I,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0,-iMARIBE3,IMPLICIT,PDE
TARGET, 1,9.11,5.97,3.82,0,0,-i MARIBE3,IMPLICIT,PDE
TARGETI,10.85,2.39,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICITPDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3, IMPLICIT,PDE
TARGET, 1,9.11,2,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3, IMPLICITPDE
TARGET, I,10.85,2,3.2,0,0,-IXLP C BE3,IMPLICITPDE
TARGET, 1,10.85,1.25,2.7,0,0,-IPVC C BE3,IMPLICITPDE
TARGET, 1,10.55,1.3,2.8,0,0,-IXLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,0.5,2.2,0,0,-1,XLP P BE3,IMPLICITPDE
TARGET, I,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT, PDE
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CFAST Input Files

Test 5, Fire Definition File
NRC BE3 5
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,178,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1379,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1562,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE

'1
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CFAST Input Files

Test 7, Input File

VERSN,6,"BE 3, Test 7, PVC Cable, Heptane, Door Closed, MV Off"

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB, 297.15,101300,0
TAMB,297.15,101300,0,58
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
ii

!!Compartment keywords

COMPACompartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3
i,

!!vent keywords

HVENT, 1,2,1,10.17,3.82,3.81,1,0.555,0,4,1
I,

!!fire keywords

OBJECT,NRC BE3 7,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET,1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,0,1.87,0,1,0,MARIBE3, IMPLICIT,PDE
TARGETI,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3, IMPLICIT, PDE
TARGET,1,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET,1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.11,5.97,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,1,9.11,2,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,1,10.85,2.39,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET,I,10.85,2,3.2,0,0,-I,PVC C BE3, IMPLICIT,PDE
TARGET,1,10.85,1.25,2.7,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-1,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.85,0.5,2.2,0,0,-I,PVC P BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT,PDE
TARGET,I,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT,PDE
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CFAST Input Files '

Test 7, Fire Definition File

NRC BE3 7
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,129,400000,0.008888889,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1332,400000,0.008888889,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1460,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 8, Input File

VERSN,6,"BE 3, Test 8, XPE Cable, Heptane, Door Closed, MV Off"

!!Environmental Keywords

TIMES, 1800,-10,0,10,1
EAMB,298.15,101300,0
TAMB,298.15,101300,0,63
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords
II

HVENT,I,2,1,9.21,3.82,3.81,1,0.555,0,4,1

!!fire keywords
ii

OBJECT,NRC BE3 8,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET, 1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT, PDE
TARGET,I,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET,1,12.15,0,1.87,0,1,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-1,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,2.43,-1,0,0,MARIBE3, IMPLICIT,PDE
TARGET,1,3.04,3.59,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,2.39,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,5.17,3.82,0,0,-l,MARIBE3,IMPLICIT, PDE
TARGET,1,13.02,5.97,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET,l,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,1,9.11,2,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET,I,10.85,2,3.2,0,0,-l,XLP C BE3,IMPLICIT,PDE
TARGET,I,10.85,1.25,2.7,0,0,-l,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-1,XLP C BE3, IMPLICIT, PDE
TARGET,I,10.85,0.5,2.2,0,0,-l,XLP P BE3, IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-l,0,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT, PDE
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CFAST Input Files

Test 8, Fire Definition File

NRC BE3 8
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,176,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,610,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,611,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0

0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 9, Input File

VERSN,6,"BE 3, Test 9, XPE Cable, Heptane, Door Open, MV Off"
!I

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB, 300.15,101300,0
TAMB,300.15,101300,0,62
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords

HVENT, 1,2,1,2,2,0,1,2.58,0,4,1
I I

!!fire keywords

OBJECT,NRC BE3 9,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords
1I

TARGET,1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3, IMPLICIT, PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3,,IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,2.43,-I,0, 0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-1,MARIBE3,IMPLICIT, PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT, PDE
TARGET,1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE

TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3, IMPLICIT, PDE
TARGET, 1,9.11,2,0,0,0,1,GYPBE3, IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,1,10.85,2,3.2,0,0,-I,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-1, PVC C BE3, IMPLICIT,PDE
TARGET,1,10.55,1.3,2.8,0,0,-I,XLP C BE3, IMPLICIT,PDE
TARGET,1,10.85,0.5,2.2,0,0,-I,XLPPBE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
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CFAST Input Files

Test 9, Fire Definition File

NRC BE3 9
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,175,1170000,0.026,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1376,1170000,0.026,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1560,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44

10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 10, Input File

1VERSN,6,"BE 3, Test 10, PVC Cable, Heptane, Door Closed, MV On"
'i

!!Environmental Keywords
iI

TIMES,1800,-10,0,10,1
EAMB, 300.15,101300,0
TAMB, 300.15,101300,0,63
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
I,

!!Compartment keywords

COMPA, Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3
it

!!vent keywords

HVENT, 1,2,1,10.17,3.82,3.81,1,0.555,0,4,1
MVENT,2,1,I,V,2.4,0.49,V,2.4,0.49,0.9,200,300,1
MVENT,I,2,2,V,2.4,0.49,V,2.4,0.49,1.7,200,300,1

!!fire keywords

OBJECT,NRC BE3 10,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET,1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,7.04,1.87,0,-1,0,MARIBE3,IMPLICIT, PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICITPDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,2.43,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET,I,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICITPDE
TARGETI,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGETI,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.11,5.97,3.82,0,0,-I,MARIBE3, IMPLICIT, PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3, IMPLICIT,PDE
TARGETI,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICITPDE
TARGET, 1,13.02,5.97,3.82,0,0,-1,MARIBE3, IMPLICITPDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET, 1,9.11,2,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET,I,10.85,2.39,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET,1,10.85,2,3.2,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET,1,10.85,1.25,2.7,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-1,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.85,0.5,2.2,0,0,-1,PVC P BE3,IMPLICIT, PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3, IMPLICIT, PDE
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CFAST Input Files

Test 10, Fire Definition File

NRC BE3 10

4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,176,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,826,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,827,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0

0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 13, Input File

VERSN,6,"BE 3, Test 13, XPE Cable, Heptane, Door Closed, MV Off"

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB,304.15,101300,0
TAMB, 304.15,101300,0,52
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords
II

HVENT,1,2,1,11.9,3.82,3.81,1,0.555,0,4,1
II

!!fire keywords
it

OBJECT,NRC BE3 13,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords

TARGET,1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT, PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-i,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3, IMPLICIT, PDE
TARGET,1,21.7,5.76,2.43,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT, PDE
TARGET, 1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,5.17,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET,1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET, 1,9.11,2,0,0,0,1,GYPBE3, IMPLICIT,PDE
TARGET,1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET,1,10.85,2,3.2,0,0,-I,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-1,PVC C BE3,IMPLICIT,PDE
TARGET,1,10.55,1.3,2.8,0,0,-i,XLPCBE3,IMPLICIT, PDE
TARGET,l,10.85,0.5,2.2,0,0,-I,XLP P BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT, PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLPCBE3,IMPLICIT, PDE
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CFAST Input Files

Test 13, Fire Definition File

NRC BE3 13
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,177,2330000,0..05177778,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,364,2330000,0.05177778,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,365,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 14, Input File

VERSN,6,"BE 14, Test 3, XPE Cable, Heptane, Door Open, MV Off"

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB, 301.15,101300,0
TAMB, 301.15,101300,0,61
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
I?

!!Compartment keywords
II

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3
11

!!vent keywords

HVENT, 1,2,1,2,2,0,1,2.58,0,4,1
1I

!!fire keywords
II

OBJECT,NRC BE3 14,1,10.83,5.21,0,1,1,0,0,0,1

!!target and detector keywords

TARGET, 1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,7.04,1.87,0,-I,0,MARIBE3, IMPLICIT,PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.04,3.59,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3, IMPLICIT,PDE
TARGET,1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3, IMPLICIT, PDE
TARGET,I,9.11,2,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET, 1,10.85,2,3.2,0,0,-I,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-I,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-I,XLP C BE3,IMPLICIT,PDE
TARGET,I,10.85,0.5,2.2,0,0,-1,XLP P BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-I,0,XLP C BE3, IMPLICIT, PDE
TARGET, I,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
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CFAST Input Files

Test 14, Fire Definition File

NRC BE3 14
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,176,1180000,0.02622222,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1381,1180000,0.02622222,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1567,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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CFAST Input Files

Test 15, Input File

VERSN,6,"BE 15, Test 3, PVC Cable, Heptane, Door Open, MV Off"
it

!!Environmental Keywords
It

TIMES,1800,-10,0,10,1
EAMB, 291.15,101300,0
TAMB, 291.15,101300,0,95
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords
ii

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords
11

HVENT, 1,2,1,2,2,0,1,2.58,0,4,1

!!fire keywords
I1

OBJECT,NRC BE3 15,1,10.83,5.21,0,1,1,0,0,0,1
11

!!target and detector keywords

TARGET,1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET,1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3, IMPLICIT, PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-i,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0,-IMARIBE3,IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,,-I,MARIBE3,IMPLICIT, PDE
TARGET,1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT, PDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET, 1,9.11,2,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET, 1,10.85,2,3.2,0,0,-I,PVC C BE3, IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-I,PVCCBE3, IMPLICIT,PDE
TARGET,1,10.55,1.3,2.8,0,0,-I,PVC C BE3, IMPLICIT, PDE
TARGET,I,10.85,0.5,2.2,0,0,-I,PVC P BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-I,0,XLP C BE3, IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICITPDE
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Test 15, Fire Definition File

NRC BE3 15
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,180,1180000,0.02622222,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1380,1180000,0.02622222,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1567,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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Test 16, Input File

VERSN,6,"BE 3, Test 16, PVC Cable, Heptane, Door Closed, MV On"
1I

!!Environmental Keywords

TIMES, 1800,-10,0,10,1
EAMB, 299.15,101300,0
TAMB,299.15,101300,0,55
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords
ii

HVENT, 1,2,1,10.17,3.82,3.81,1,0.555,0,4,1
MVENT, 2,1,1,V,2.4,0.49,V, 2.4,0.49,0.9,200,300,1
MVENT,1,2,2,V,2.4,0.49,V,2.4,0.49,1.7,200,300,1

!!fire keywords

OBJECT,NRC BE3 16,1,10.85,3.52,0,1,1,0,0,0,1
1I

!!target and detector keywords
1 1

TARGET, 1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT, PDE
TARGET,1,21.7,1.59,1.12,-1,0,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-i,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-1,0,0,MARIBE3, IMPLICIT,PDE
TARGET,I,21.7,5.76,2.43,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET,I,3.04,3.59,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET,I,9.11,5.97,3.82,0,0,-1,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3, IMPLICIT, PDE
TARGET, 1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, I,13.02,5.97,3.82,0,0,-I,MARIBE3, IMPLICIT,PDE

TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3, IMPLICIT,PDE
TARGET, 1,9.11,2,0,0,0, 1,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET,I,l0.85,2,3.2,0,0,-l,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.85,1.25,2.7,0,0,-1,PVC C BE3,IMPLICIT,PDE
TARGET, 1,10.55,1.3,2.8,0,0,-I,PVC C BE3,IMPLICIT, PDE
TARGET, 1,10.85,0.5,2.2,0,0,-I,PVC P BE3,IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3, IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT,PDE
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Test 16, Fire Definition File

NRC BE3 16
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,177,2300000,0.05111111,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,382,2300000,0.05111111,0,1,0,0.19,0.0026,0.0049,0,0,0

295.15,383,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0

0
0.44
10000

1
1
0.25
4.5E+07
METHANE
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Test 17, Input File

VERSN, 6,"BE 3, Test 17, PVC Cable, Toluene, Door Closed, MV Off"

!!Environmental Keywords
It

TIMES, 1800,-10,0,10,1
EAMB, 300.15,101300,0
TAMB, 300.15,101300,0,40
LIMO2,10
WIND, 0,10,0.16
CJETWALLS
ii

!!Compartment keywords
I1

COMPA, Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3

!!vent keywords

HVENT, 1,2, 1, 10.17,3.82,3.81, 1,0.555,0,4,1
II

!!fire keywords

OBJECT,NRC BE3 17,1,10.85,3.52,0,1,1,0,0,0,1

!!target and detector keywords
TI

TARGET,1,3.91,7.04,1.49,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET,I,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3, IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,12.15,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET,1,21.7,1.59,1.12,-1,0,0,MARIBE3,IMPLICIT,PDE
TARGET,1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,5.76,1.12,-1,0, 0,MARIBE3, IMPLICIT,PDE
TARGET,1,21.7,5.76,2.43,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,3.82,0,0,-l,MARIBE3, IMPLICIT,PDE
TARGET,1,9.11,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,5.17,3.82,0,0,-l,MARIBE3,IMPLICIT,PDE
TARGET, 1,13.02,5.97,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT,PDE
TARGET, 1,9.11,2,0,0,0,1,1GYPBE3, IMPLICIT,PDE
TARGET,I,10.85,2.39,0,0,0,I,GYPBE3,IMPLICIT,PDE
TARGET, 1,10.85,2,3.2,0,0,0,-I,PVC C BE3,IMPLICIT, PDE
TARGET, 1,10.85,1.25,2.7,0,0,-1,PVC C BE3,IMPLICIT, PDE
TARGET, 1,10.55,1.3,2.8,0,0, -1,PVCCBE3, IMPLICIT, PDE

TARGET, 1,10.85,0.5,2.2,0,0,-1,PVC P BE3, IMPLICIT, PDE
TARGET, 1,10.8,6.8,1.75,0,-l,0,XLP C BE3, IMPLICIT,PDE
TARGET,1,10.8,6.8,1.75,0,-1,0,XLP C BE3, IMPLICIT,PDE
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Test 17, Fire Definition File

NRC BE3 17, ,,,,,,,,,,

4,0,0,0,0,1,0,0.19,0.022,0.058,0,0,0
0.0921,181,1160000,0.02577778,0,1,0,0.19,0.022,0.058,0,0,0
395.15,272,1160000,0.02577778,0,1,0,0.19,0.022,0.058,0,0,0
295.15,273,0,0,0,1,0,0.19,0.022,0.058,0,0,0
0,,,,,,,1,,,,

0.44,,,,,,,,,,,,

10000, , , , , , , , , , ,

0.25,,,,,, ......

4.50E+07,,,,,,,,,,,,
METHANE,,,,,,,,,,,,
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Test 18, Input File

VERSN,6,"BE 3, Test 18, XPE Cable, Heptane, Door Open, MV Off"
I,

!!Environmental Keywords

TIMES,1800,-10,0,10,1
EAMB, 300.15,101300,0
TAMB, 300.15,101300,0,40
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords
I?

COMPA,Compartment 1,21.7,7.04,3.82,0,0,0,MARIBE3,GYPBE3,MARIBE3
II

!!vent keywords
II

HVENT, 1,2,1,2,2,0,1,2.58,0,4,1
it

!!fire keywords

OBJECT,NRC BE3 18,1,12.33,1.55,0,1,1,0,0,0,1

!!target and detector keywords
II

TARGET, 1,3.91,7.04,1.49,0,-1,0,MARIBE3,IMPLICIT,PDE
TARGET, I,12.15,7.04,1.87,0,-I,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,3.91,0,1.49,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,9.55,0,1.87,0,1,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,12.15,0,1.87,0,1,,0MARIBE3, IMPLICIT,PDE
TARGET, 1,21.7,1.59,1.12,-I,0,0,MARIBE3,IMPLICIT,PDE
TARGET, 1,21.7,1.59,2.43,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,1.12,-I,0,0,MARIBE3,IMPLICIT, PDE
TARGET, 1,21.7,5.76,2.43,-I,0, 0,MARIBE3,IMPLICIT, PDE
TARGET,1,3.04,3.59,3.82,0,0,-I,MARIBE3,IMPLICIT, PDE
TARGET, 1,9.11,5.97,3.82,0,0, -I,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,2.39,3.82,0,0,-I,MARIBE3,IMPLICIT,PDE
TARGET,1,10.85,5.17,3.82,0,0,-I,MARIBE3,IMPLICITPDE
TARGET,I1,13.02,5.97,3.82,0,0, -I,MARIBE3, IMPLICIT, POE

TARGET, 1,3.04,3.59,0,0,0,1,GYPBE3,IMPLICIT, PDE
TARGET,1,9.11,2,0,0,0,1,GYPBE3, IMPLICIT,PDE
TARGETI,10.85,2.39,0,0,0,1,GYPBE3,IMPLICITPDE
TARGET,1,10.85,2,3.2,0,0,-1,XLP C BE3,IMPLICIT,PDE
TARGET,1,10.85,1.25,2.7,0,0,-1,PVC C BE3,IMPLICITPDE
TARGET, 1,10.55,1.3,2.8,0,0,-1,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.85,0.5,2.2,0,0,-1,XLP P BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-1,0,XLP C BE3,IMPLICIT,PDE
TARGET, 1,10.8,6.8,1.75,0,-I,0,XLP C BE3,IMPLICIT,PDE
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Test 18, Fire Definition File

NRC BE3 18
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,178,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1379,1190000,0.02644444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1562,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.44
10000
1
1
0.25
4.5E+07
METHANE
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B.3 ICFMP Benchmark Exercise #4

Test 1, Input File

VERSN, 6,CFAST Simulation

!!Environmental Keywords

TIMES, 1800, -10,0,10,1
EAMB, 293.15,101300,0
TAMB,293.15,101300,0, 50
LIMO2,10
WIND, 0,10,0.16
CJET, WALLS

!!Compartment keywords

COMPA,Compartment 1,3.6,3.6,5.7,0,0,0,ConcreteBE4,LiteConcBE4,ConcreteBE4

!!vent keywords

HVENT, 1,2,1,0.7,3,0,1,1.8,1.8,1,1
MVENT,1,2,1,H,5.7,1.46,H,5.7,1.46,1.1,200,300,1
MVENT, 1,2,2, H, 5.7,1.46,-H,5.7,1.46,1.1,200,300,1

!!fire keywords

OBJECT,NRC BE4 1,1,1.8,1.8,0,1,1,0,0,0,1
I !

!!target and detector keywords

TARGET,1,3.6, 1.5,1.8,-i, 0,0,ConcreteBE4,IMPLICIT,PDE
TARGET,1,0,2.8, 1.7,1,0,0,SteelBE4, IMPLICIT,PDE
TARGET, 1,0,1.9,1.7,1,0,0, ConcreteBE4, IMPLICIT, PDE
TARGET, 1,0, 0.7,1.7, 1,0, 0,LiteConcBE4, IMPLICIT, PDE
TARGET, 1,2.45,3.6,1.5,0, -1,0, GYPSUM, IMPLICIT, PDE
TARGET,1,2.45,3.6,3.35,0,-1,0,GYPSUM,IMPLICIT,PDE
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Test 1, Fire Definition File

NRC BE4 1
9,0,0,0,0,1.08,0,0.18,0.0026,0.0049,0,0,0
0.165,92,119840,0.0028,0,1.08,0,0.18,0.0026,0.0049,0,0,0
395.15,180,1583600,0.037,0,1.08,0,0.18,0.0026,0.0049,0,0,0
295.15,260,2623640,0.0613,0,1.08,0,0.18,0.0026,0.0049,0,0,0
0,600,3197160,0.0747,0,1.08,0,0.18,0.0026,0.0049,0,0,0
0.35,822,3351240,0.0783,0,1.08,0,0.18,0.0026,0.0049,0,0,0
10000,870,3381200,0.079,0,1.08,0,0.18,0.0026,0.0049,0,0,0
1,1368,3518160,0.0822,0,1.08,0,0.18,0.0026,0.0049,0,0,0
1,1395,0,0,0,1.08,0,0.18,0.0026,0.0049,0,0,0
0.25
4.28E+07
METHANE
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B.4 ICFMP Benchmark Exercise #5

Test 4, Input File

VERSN, 6,CFAST Simulation
ii

!!Environmental Keywords
I1

TIMES,2300,-10,0,10,1
EAMB, 293.15,101300,0
TAMB,293.15,101300,0,50
LIMO2,10
WIND, 0,10,0.16
CJET,WALLS
i,

!!Compartment keywords
ii

COMPA,Compartment 1,3.6,3.6,5.6,0,0,0,LiteConcBE4,LiteConcBE4,ConcreteBE 4

!!vent keywords

HVENT, 1,2,1,0.7,3.6,1.4,1,1.8,1.8,1,1
HVENT, 1,2,2,0.6,1.4,0.7,1,1.8,1.8,2,1

!!fire keywords
II

OBJECT,NRC BE5 4F,I,3.05,1.75,0.6,1,1,0,0,0,1
OBJECT,NRC BE5 4B,1,0.6,2.1,0.4,1,1,0,0,0,1
II

!!target and detector keywords
1 1

TARGET,1,0.41,2.13,1.2,1,0,0,LiteConcBE4,IMPLICIT,PDE
TARGET, 1,0.41,2.13,2,1,0,0,LiteConcBE4,IMPLICIT,PDE
TARGET, 1,0.41,2.13,2.8,1,0,0,LiteConcBE4,IMPLICIT,PDE
TARGET, 1,0.41,2.13,3.6,1,0,0,LiteConcBE4,IMPLICIT,PDE
TARGET,I,0.41,2.13,4.4,1,0,0,LiteConcBE4,IMPLICITPDE
TARGET,1,0.44,2.24,1.2,1,0,0,PVC P BE4,IMPLICIT, PDE
TARGET, 1,0.44,2.24,1.6,1,0,0,PVC P BE4,IMPLICIT, PDE
TARGET,1,0.44,2.24,2,1,0,0,PVCPBE4,IMPLICIT,PDE
TARGET,1,0.44,2.24,2.4,1,0,0,PVC P BE4,IMPLICIT,PDE
TARGET,1,0.44,2.24,2.8,1,0,0,PVC P BE4,IMPLICIT,PDE
TARGET,1,0.44,2.24,3.2,1,0,0,PVC P BE4,IMPLICIT,PDE
TARGET,1,0.44,2.24,3.6,1,0,0,PVC P BE4,IMPLICIT,PDE
TARGET,I,0.44,2.24,4,1,0,0,PVCPBE4,IMPLICIT,PDE
TARGET,1,0.44,2.24,4.4,1,0,0,PVC P BE4,IMPLICIT,PDE
TARGET,1,0.44,2.05,1.2,1,0,0,PVC C BE4,IMPLICIT,PDE
TARGET, 1,0.44,2.05,1.6,1,0,0,PVC C BE4,IMPLICITPDE
TARGET, 1,0.44,2.05,2,1,0,0,PVC C BE4,IMPLICITPDE
TARGET,1,0.44,2.05,2.4,1,0,0,PVC C BE4,IMPLICITPDE
TARGET,1,0.44,2.05,2.8,1,0,0,PVC C BE4,IMPLICIT,PDE
TARGET, 1,0.44,2.05,3.2,1,0,0,PVC C BE4,IMPLICIT,PDE
TARGET,1,0.44,2.05,3.6,1,0,0,PVCCBE4,IMPLICIT,PDE
TARGET,I,0.44,2.05,4,1,0,0,PVCCBE4, IMPLICIT,PDE
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TARGET,1,0.44,2.05,4.4,1,0,0,PVC C BE4,IMPLICIT,PDE
TARGET, 1,2.6,3.6,0.4,0,-1,0,ConcreteBE4,IMPLICIT,PDE
TARGET;1,2.6,3.6,2.8,0,-1,0,ConcreteBE4,IMPLICIT,PDE
TARGET,1,2.6,3.6,5.2,0,-1,0,ConcreteBE4,IMPLICIT,PDE
TARGET, 1,0,2.2,0.4,1,0,0,ConcreteBE4,IMPLICIT, PDE
TARGET, 1,0,2.2,2.8,1,0,0,ConcreteBE4,IMPLICIT,PDE
TARGET,1,0,2.2,5.2,1,0,0,ConcreteBE4,IMPLICIT,PDE

Test 4, Fire Definition Files

NRC BE5 4F
12,0,0,0,0,0,0,0.18,0.0026,0.0049,0,0,0
0.046,60,120000,0.003921569,0,0.49,0,0.18,0.0026,0.0049,0,0,0
395.15,120,220000,0.007189543,0,0.49,0,0.18,0.0026,0.0049,0,0,0
295.15,180,280000,0.009150327,0,0.49,0,0.18,0.0026,0.0049,0,0,0
0,240,290000,0.009477125,0,0.49,0,0.18,0.0026,0.0049,0,0,0
0.2,300,300000,0.009803922,0,0.49,0,0.18,0.0026,0.0049,0,0,0
10000,480,320000,0.01045752,0,0..49,0,0.18,0.0026,0.0049,0,0,0
0.7,600,330000,0.01078431,0,0.49,0,0.18,0.0026,0.0049,0,0,0
0.7,900,340000,0.01111111,0,0.49,0,0.18,0.0026,0.0049,0,0,0
0.1,1800,360000,0.01176471,0,0.49,0,0.18,0.0026,0.0049,0,0,0
3.06E+07,2299,360000,0.01176471,0,0.49,0,0.18,0.0026,0.0049,0,0,0
METHANE,2300,0,0,0,0,0,0.18,0.0026,0.0049,0,0,0

NRC BE5 4B
7,0,0,0,0,0,0,0.18,0.0026,0.0049,0,0,0
0.165,1200,0,0,0,0,0,0.18,0.0026,0.0049,0,0,0
395.15,1201,50000,0.001168224,0,0.09,0,0.18,0.0026,0.0049,0,0,0
295.15,2100,50000,0.001168224,0,0.09,0,0.18,0.0026,0.0049,0,0,0
0,2120,100000,0.002336449,0,0.09,0,0.18,0.0026,0.0049,0,0,0
0.35,2280,100000,0.002336449,0,0.09,0,0.18,0.0026,0.0049,0,0,0
10000,2300,0,0,0,0,0,0.18,0.0026,0.0049,0,0,0
0.3
0.3
0.4
4.28E+07
METHANE
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B.5 FM / SNL Test Series

Test 4, Input File

VERSN,6,FM Test 4

!!Environmental Keywords

TIMES, 1200, -50,0,10,1
EAMB, 288.15,101300,0
TAMB, 288.15, 101300, 0,50
LIMO2, 10
WIND, 0,10,0.16
CJET, WALLS

!!Compartment keywords

COMPA,Compartment 1,18.3,12.2,6.1,0,0,0,MariniteFM,ConcreteFMMariniteFM

!!vent keywords

VVENT,2,1, 1.08,2,1
MVENT, 2,1,1, H, 4.9,0.66, H, 4.9,0.66,0.38,200,300,1

!!fire keywords
I t

OBJECT,FM SNL 4,1,12,6.1,0,1,1,0,0,0,1

Test 4, Fire Definition File

FM SNL 4
11,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,30,7968.75,0.0001770833,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15, 60,31875, 0.0007083333, 0, 1, 0,0.19, 0. 0026, 0. 0049, 0, 0,0
295.15,90,71718.75,0.00159375,0,1,0,0.19,0.0026,0.0049,0,0,0
0,120,127500,0.002833333,0,1,0,0.19,0.0026,0.0049,0,0,0
0.35,150,199218.8,0.004427084,0,1,0,0.19,0.0026,0.0049,0,0,0
10000,180,286875,0.006375,0,1,0,0.19,0.0026,0.0049,0,0,0
1,210,390468.8,0.008677085,0,i,0,0.19,0.0026,0.0049,0,0,0
1,240,510000,0.01133333,0,1,0,0.19,0.0026,0.0049,0,0,0
0.25,600,510000,0.01133333,0,1,0,0.19,0.0026,0.0049,0,0,0
4.5E+07,601,0,0,0,0,0,0.19,0.002 6,O .OO4 9 ,0,0,0
METHANE
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Test 5, Input File

VERSN,6,FM Test 5

!!Environmental Keywords

TIMES, 900, -50,0,10,1
EAMB, 293.15,101300,0
TAMB, 293.15,101300,0,50
LIMO2, 10
WIND, 0,10,0.16
CJET, WALLS

!!Compartment keywords

COMPA,Compartment 1,18.3,12.2,6.1,0,0,0,MariniteFM,ConcreteFM,MariniteFM

!!vent keywords

VVENT,2, 1,1.08,2,1
MVENT, 2, 1, 1, H,4.9, 0.66, H,4.9,0.66, 3.78,200,300,1
EVENT,M,2, 1,1,540,0,1

!!fire keywords

OBJECT,FM SNL 5,1,12,6.1,0,1,1,0,0,0,1

Test 5, Fire Definition File

FM SNL 5
4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,240,480000,0.01066667,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,540,480000,0.01066667,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,541,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0
0.35
10000
1
1
0.25
4.5E+07
METHANE
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Test 21, Input File

VERSN,6,FM Test 21

!!Environmental Keywords

TIMES, 1800, -50,0,10,1
EAMB, 288.15,101300, 0
TAMB, 288.15, i01300, 0,50
LIMO2, 10
WIND, 0, 10,0.16
CJET, WALLS

!!Compartment keywords

COMPA,Compartment 1,18.3,12.2,6.1,0,0,0,MariniteFM,ConcreteFM,MariniteFM

!!vent keywords

VVENT, 2,1,1.08,2,1
MVENT, 2,1,1, H, 4.9,0.66, H, 4.9,0.66,0.38,200,300,1

!!fire keywords

OBJECT, FM SNL 21,1,12,6.1,0,1,1,0,0,0,1

Test 21, Fire Definition File

FM SNL 21 -

4,0,0,0,0,1,0,0.19,0.0026,0.0049,0,0,0
0.1002,240,47ý0000,0.01044444,0,1,0,0.19,0.0026,0.0049,0,0,0
395.15,1140,470000,0.01044444,0,1,0,0.19,0.0026,0.0049,0,0,0
295.15,1141,0,0,0, 1,0,0.19, 0.0026,0.0049,0,0,0
0
0.35
10000
1
1

0.25
4.5E+07
METHANE
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B.6 NBS Test Series

Test MVI00A, Input File

VERSN,6,"NBS Test MV100A, Open Corridor Door, No Target Room"

!!Environmental Keywords

TIMES, 1500,-i0,0,10,1
EAMB, 296.15,101300,0
TAMB, 296.15,101300,0,45
LIMO2,10
WIND, 0, 10,0.16.
CJET, WALLS

!!Compartment keywords

COMPA,Fire Room,2.34,2.34,2.16,9.85,0,0,CeramicNBS,FireBrickNBS,CeramicNBS
COMPA,Entry to Fire
Room, 1.03,1.02,2,11.16,2.34,0,MariniteNBS, GypsumNBS,MariniteNBS
COMPA,Corridor,12.19,2.44,2.44,0,3.36,0,MariniteNBS,GypsumNBS,MariniteNBS
COMPA,Target Room,2.22,2.24,2.43,2.07,0.33,0,GypsumNBS,ConcreteNBS,GypsumNBS
COMPA,Entry to Target
Room, 0.94,0.79,2.04,2.07,2.57, 0, GypsumNBS, ConcreteNBS, GypsumNBS

!!vent keywords

HVENT, 1,2,1,0.81,1.6,0,1,1.42,0,3,1
HVENT, 2,3,1,0.81,1.6,0,1,0.11,0,3,1
HVENT, 3,6,1,0.76,2.03,0,1,0.84,0,4,1
HVENT, 3,5, 1, 0.79,2.04,0, 1,2.14,0, 1, 0
HVENT, 4,5,1,0.79,2.04,0,1,0.075,0,3,0

!!fire keywords

OBJECT,NBS MVI00A,I,I.17,0,0,1,1,0,0,0,1

Test MV100A, Fire Definition File

NBS MV100A
4,0,0,0,0,0.1156,0,0,0.07,0,0,0,0
0. 016, 10, 110000,0. 0022,0,0. 1156, 0, 0,0.07,0,0, 0,0
493,890,110000,0.0022,0,0.1156,0,0,0.07,0,0,0,0
300,900,0,0,0,0.1156,0,0,0.07,0,0,0,0
0
0.2
5
0.4
0.4
0.65

B-42



CFAST Input Files

5E+07
METHANE
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Test MV 1000, Input File

VERSN,6,"NBS Test MV1000, Closed Corridor Door, No Target Room"

!!Environmental Keywords

TIMES, 1500, -10,0,10,1
EAMB, 293.15,101300,0
TAMB, 293.15,101300,0,45
LIM02,10
WIND, 0,10,0.16
CJET,WALLS

!!Compartment keywords
Iii

COMPA,Fire Room,2.34,2.34,2.16,9.85,0,0,CeramicNBS,FireBrickNBS,CeramicNBS
COMPA,Entry to Fire
Room, 1.03,1.02,2,11.16,2.34,0,MariniteNBS,GypsumNBS,MariniteNBS
COMPA,Corridor,12.19,2.44,2.44,0,3.36,0,MariniteNBS,GypsumNBS,MariniteNBS
COMPA,Target Room,2.22,2.24,2.43,2.07,0.33,0,GypsumNBS,ConcreteNBS,GypsumNBS
COMPA,Entry to Target
Room,0.94,0.79,2.04,2.07,2.57,0,GypsumNBS,ConcreteNBS,GypsumNBS
I I

! !vent keywords

HVENT, 1, 2, 1,0.81,1.6, 0, 1, 1.42, 0,3,1
HVENT, 2,3,1,0.81,1.6,0,1,0.11,0,3,1
HVENT, 3,6,1,0.76,2.44,2.43,1,0.84,0,4,1
HVENT, 3, 5, 1, 0.79, 2.04,0, 1, 2.14,0, 1, 0
HVENT, 4,5, 1, 0.79, 2.04,0, 1, 0. 075, 0,3, 0
I i

!!fire keywords

OBJECT,NBS MV1000,1,1.17,0,0,1,1,0,0,0,1

Test MV1000, Fire Definition File

NBS MV1000
4,0,0, 0, 0,0. 1156, 0,0,0.07,0,0,0,0
0.016,10,110000,0.0022,0,0.1156,0,0,0.07,0,0,0,0
493,890,110000,0.0022,0,0.1156,0,0,0.07,0,0,0,0
300,900,0,0,0, 0. 1156, 0,0,0.07,0,0,0,0
0
0.3
5
0.4
0.4
0.65
5E+07
METHANE
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Test MV1OOZ, Input File

VERSN,6,"NBS Test MVI0OZ, Open Corridor Door, Open Target Room"

!!Environmental Keywords

TIMES, 1500, -10,0,10,1
EAMB,295.15,101300,0
TAMB,295.15, 101300,0,62
LIMO2, 10
WIND, 0,10,0.16
CJET, WALLS
I !

!!Compartment keywords

COMPAFire Room,2.34,2.34,2.16,9.85,0,0,CeramicNBS,FireBrickNBS,CeramicNBS
COMPA,Entry to Fire
Room,1.03,1.02,2,11.16,2.34,0,MariniteNBS,GypsumNBSMariniteNBS
COMPACorridor,12.19,2.44,2.44,0,3.36,0,MariniteNBS,GypsumNBSMariniteNBS
COMPATarget Room,2.22,2.24,2.43,2.07,0.33,0,GypsumNBSConcreteNBS,GypsumNBS
COMPA,Entry to Target
Room,0.94,0.79,2.04,2.07,2.57,0,GypsumNBS,ConcreteNBS,GypsumNBS

!!vent keywords
1i

HVENT, 1, 2,1i,0.81, 1.6, 0,1, 1.42,0,3,1

HVENT, 2,3,1,0.81,1.6,0,1,0.11,0,3,1
HVENT, 3,6,1,0.76,2.03,0,1,0.84,0,4,1
HVENT, 3,5,1,0.79,2.04,0,i,2.14,0,1,1
HVENT, 4,5,1,0.79,2.04,0,1,0.075,0,3,1
i 1

! !fire keywords

OBJECTNBS MV100Z,II.17,0,0,1,1,0,0,0,1

Test MVIOOZ, Fire Definition File

NBS MV100Z
4,0,0,0,0,0.1156,0,0,0.07,0,0,0,0
0.016,10,1i0000,0.0022,0,0.1156,0,0,0.07,0,0,0,0
493,890, 110000,0. 0022,0,0. 1156, 0, 0,0.07,0,0,0,0
300,900,0,0,0,0.1156,0,0,0.07,0,0,0,0
0
0.3
5
0.4
0.4
0.65
5E+07
METHANE
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