SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20

TASK ORDER: 040601-6, 040603-3

SRR: 25978, 25997 SDG: 245431, 245613 CASE: CNWRA

VTSR: May 28, June 02, 2004 PROJECT#: 10542.02.002

Certificates of Analysis

FISHER SCIENTIFIC TRACEMETAL GRADE NITRIC ACID CERTIFICATE OF ANALYSIS

Catalog No. A509	Release Date:	1104020 February, 2004 February, 2007
Tests	<u>Units</u>	<u>Value</u>
Assay	%	70%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	ppb	<0.1
Arsenic	Bipilio	<0.1
Barium	ppb	<0.1
Beryllium	ppb	<0.1
Bismuth	abp	<0.1
Boron	ppb	<1
Cadmium	pipib	<0.1
Calcium	ppb	<1
Chromium	ppb	<0.2
Cobalt	ppb	<0.1
Copper	ppb	<0.1
iron	ppb	<1
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.2
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickei	ppb	<0.1
Potassium	ppb	<0.2
Selenium	ppio	<0.1
Silver	ppb	<0.1
Sodium	ppb	<0.2
Strontium	ppb	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	▼ 0.1
2mc	ppb	<0.2
Zirconium	ppb	<0.1

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

8 Mckduy

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INDRGANIC LABS/RADCHEM LABS
DATE RECEIVED: 05/05/04

DATE EXPIRED: 05/05/04

DATE OPENED: 05/05/04

INDRG: 4558-4563-F0: F53373

010323 M 9-20-07

FISHER SCIENTIFIC TRACEMETAL GRADE HYDROCHLORIC ACID

CERTIFICATE OF ANALYSIS

Catalog No. A508 Lot No: 4103101
Release Date: January, 2004
Expiry Date: January, 2007

	Expiry Date: Jan	ша гу, 2007
Tests	Units	Yalue
Assay	%	35%
Color	APHA	<10
Aluminum	ppb	<0.5
Antim ony	ppb	<0.1
Arsenic	ppb	<0.1
Barium	ppb	<0.1
Beryllium	ppb	⋖ 0.1
Bismuth	ppb	<0.1
Boron	ppb	<0.5
Cadmium	ppb	<0.1
Calcium	ppb	<0.5
Chromium	ppb	<0.1
Cobalt	ppb	<0.1
Copper	ppto	<0.1
iron	ppb	<0.5
Lead	ppb	<0.1
Lithium	ppb	<0.1
Magnesium	ppb	<0.5
Manganese	ppb	<0.1
Mercury	ppb	<0.2
Molybdenum	ppb	<0.1
Nickel	ppb	≪0.1
Potass ium	ppb	<0.1
Seienium	ppb	<0.1
Silver	ppb	<0.1
Sodium	ppb	≪0.5
Stronti um	dqq	<0.1
Thorium	ppb	<0.1
Tin	ppb	<0.1
Titanium	ppb	<0.1
Uranium	ppb	<0.1
Vanadium	ppb	<0.1
Zinc	ppb	<0.5
Zirconium	ppb	<0.1

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

3 M: Kelvey

Dr. B. McKelvey QA/QC Manager

Fisher Scientific Chemical Division Pittsburgh, PA., 15275 Phone (412) 490-8300

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: 05/05/04

DATE OPENED: 05/05/04

INDRG: 4552-4557_PO: F53373

Certificate of Reference Material

Catalog Number:

SPIKE-1

Lot No.: 25-23AS

Description:

Spike Sample Standard 1

Matrix:

5% Nitric Acid/tr Tartaric Acid - HF

This ASSURÂNCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Al	200	199.51	3101a	Pb	50	49.98	3128
As	200	199.89	3103a	Sb	50	50.02	3102a
Ba	200	199.68	3104a	V	50	49.95	3165
Se	200	200.10	3149	Zn	50	50.02	3168a
TL	200	200.07	3158	Cu	25	25.34	3114
Fe	100	99.91	3126a	Cr	20	20.04	3112a
Co	50	50.25	3113	Ag	5	5.00	3151
Mn	50	49.98	3132	Be	5	5.00	3105a
Ni	50	50.11	3136	Çđ	5	4.99	3108

Spex Reference Multi: Lot #2-61BD, 17-55AS, 19-85ASREF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: OCT -- 2003 Certifying Officer: N. Kochenakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPCXertificate™

Certificate of Reference Alaterial

Catalog Number:

ICAL-1

Lot No.: 25-178AS

Description:

Instrument Calibration Standard 1

Matrix:

5% Nitric Acid

This **ASSURANCE** ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	4,984.92	3109a
K	5,000	4,990.26	3141a
Mg	5,000	4,991.82	3131a
Na	5,000	4,998.07	3152a

Spex Reference Multi: Lot #10-100AS, 12-113AS, 5-198VY, 6-28VY-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: _____ Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

10,000 µg/mL Scandium IN 5% HNO, (abs)

Catalog Number: CGSC10-1and CGSC10-5

		INORGANIC LABS/RADCHEM LABS
Lot Number: T-SC02053		DATE RECEIVED: 09/34/03
		DATE EXPIRED: 10/01/2004
Starting Material:	Sc ₂ O ₃	DATE OPENED: 09/24/03

Starting Material Purity: 99.999% 632-5721 Starting Material Lot No:

20V 4006/1s /a4/03 F'0: F5aa3a

estimated errors.

 $\sum S_i$ = The summation of all significant

CERTIFIED CONCENTRATION: 10,047 \pm 29 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (
$$\bar{x}$$
) = $\sum_{n} x_n$, Uncertainty (\pm) = $2[(\sum_s j^2]^{1/2}]$ (n) $(\bar{x})^{1/2}$

(x) = mean x_i = individual results n = number of measurements

Classical Wet Assay: 10,047 ± 29 µg/mL Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 9994 ± 41 µg/mL

Method: inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3148a.

The independent samples t-test was used to determine if *here is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

<u>o</u>	Αl	< 0.070	<u>M</u>	Dу	< 0.0060	<u>M</u>	Li	<0.010	<u>M</u>	Pr	< 0.00030	<u>M</u>	Te	< 0.030
M	Sb	< 0.00050	M	Er	< 0.0050	<u>M</u>	Lu	< 0.00040	<u>M</u>	Re	< 0.0010	<u>M</u>	Tb	< 0.00030
M	As	< 0.010	<u>M</u>	Eu	< 0.0030	M	Mg	< 0.030	M	Rh	< 0.0010	M	TI	< 0.0010
M	Ba	< 0.010	M	Gd	< 0.0010	M	Mn	< 0.0040	<u>M</u>	Rb	< 0.0010	<u>M</u>	Th	0.028
M	Be	< 0.00050	M	Ga	<0.0010	į	Hg		M	Ru	< 0.0020	<u>M</u>	Tm	< 0.00040
M	Bi	0.043	M	Ge	< 0.0060	<u>M</u>	Mo	< 0.0020	<u>M</u>	Sm	< 0.0010	<u>M</u>	Sn	< 0.0050
0	В	< 0.034	<u>M</u>	Au	< 0.0030	<u>M</u>	Nd	< 0.0020	<u>s</u>	Sc		Ū	Ti	
<u>M</u>	Cd	< 0.0030	M	Hf	0.030	<u>0</u>	Ni	< 0.084	<u>o</u>	Se	< 0.67	<u>M</u>	W	< 0.010
Q	Ca	0.17	<u>M</u>	Ho	< 0.00050	M	Nb	< 0.00050	<u>o</u>	Si	< 0.034	<u>M</u>	U	< 0.0020
M	Ce	< 0.0050	M	in	< 0.0010	<u>n</u>	Os		<u>M</u>	Ag	0.0050	<u>M</u>	٧	< 0.0020
M	Cs	< 0.00030	M	le	< 0.0050	M	₽d	< 0.0050	<u>o</u>	Na	< 0.16	<u>M</u>	Yb	< 0.0010
M	Çr	< 0.0050	<u>o</u>	Fe	< 0.16	į	P		<u>M</u>	Sr	< 0.00050	<u>M</u>	Y	< 0.040
M	Co	< 0.0030	<u>M</u>	La	< 0.00050	<u>M</u>	Pt	< 0.0020	ņ	S		M	Zn	0.075
M	Cu	<0.0060	M	Pb	0.0050	<u>o</u>	K	< 5.01	M	Ta	< 0.0070	M	Zr	0.32
М -	chec	ked by ICP-MS	0 - 0	heck	ed by ICP-OES	i - sp	oectra	l interference	n - no	t che	cked for	s - solution	stand	ard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.073 g/mL

(over)

QA:KL #ev.0212030H

Paul R. Haines

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KFMA), Norway (NCS), Poland(PCBC), Portugal (APCER)

Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 6. 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21

months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to

contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903 E-MAIL IVtech@ivstandards.com

Certificate of Reference Material

Catalog Number: PLB9-2X/2Y/2T

Lot No. 10-119B

Description:

1000 mg/L Boron

Matrix:

H20

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3107

The CRM is prepared gravimetrically using high purity (NH4)2B4O7-4H2O Lot# 08001E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1001 mg/L

Method: Titration with Sodium Hydroxide using Phenolphthalein as indicator. Sodium Hydroxide

standardized against Potassium Biphthalate NIST SRM #84k

Instrumental Analysis by ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.001 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.06	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Re	< 0.001
Ag	0.002	Ga	< 0.001	Rb	< 0.001
Ba	< 0.001	In	< 0.001	Sr	< 0.001
Be	< 0.001	K	<0.06	Sb	< 0.001
Bi	0.03	Li	< 0.001	Si	0.01
Cd	< 0.001	Mn	< 0.001	Ti	< 0.001
Co	< 0.001	Mo	< 0.001	TI	< 0.001
Ca	0.001	Mg	< 0.001	V	0.003
Cr	< 0.001	Na	0.01	Zr	< 0.001
		Ni	0.001	Zn	0.004

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Ark 04 Cert

Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dilutent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as

X = x+/-U where X = True value (Labeled Value), U= Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE EXPIRED: 01/30/300
DATE OPENED: 01/33/00
INORG: 4439 FO: F5

SPEXertificate

Certificate of Reference Alaterial

Catalog Number: PLLI2-2X/2Y

Lot No. 10-12LI

Description:

1000 mg/L Lithium

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3129a

The CRM is prepared gravimetrically using high purity Lithium Carconate Lot# 03021A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Li2SO4.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.014 @ 22.2 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.001	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.007	Re	< 0.001
Ag ·	< 0.003	Ga	< 0.001	Rb	< 0.001
В	<0.008	In	< 0.001	Sr	< 0.001
Ba	0.001	K	0.20	Sb	< 0.001
Be	< 0.001	Mn	< 0.001	Si	0.007
Bi	< 0.001	Mo	< 0.001	Ti	< 0.001
Ca	0.017	Mg	< 0.001	Tl	< 0.001
Cr	< 0.001	Na	0.01	V	< 0.001
Cd	0.008	Ni	< 0.001	Zr	< 0.001
Co	< 0.001			Zn	0.035

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: ______ Certifying Officer: N. Kockertakofa

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEXertificate

Certificate of Reference Material

Catalog Number: PLMO9-2X/2Y/2T

Lot No. 10-74MO

Description:

1000 mg/L Molybdenum

Matrix:

H₂O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L Certified Value is Traceable to: NIST SRM #3134

The CRM is prepared gravimetrically using high purity (NH4)6Mo7(O)24 Lot# 03011C. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 998 mg/L

Method: Precipitation using 8 Hydroxy Quinoline, filter, dry and weigh as MoO2 (C9H6NO)2.

Instrumental Analysis by ICP spectrometer:

999 mg/L

Uncertified Properties:

Density: 0.9989 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	0.003	. Pb	0.002
As	0.04	Fe	<0.10	Re	0.03
Ag	< 0.001	Ga	< 0.001	Rb	< 0.001
В	< 0.006	In	< 0.001	Sr	< 0.001
Ba	0.001	K	0.01	Sb	0.005
Ве	<0.01	Li	< 0.001	Si	<0.50
Bi	< 0.001	Mg	0.10	Ti	0.004
Ca	0.01	Mn	0.001	TI	< 0.001
Cr	< 0.002	Na	0.007	v	0.003
Cd	<0.10	Ni	< 0.001	Zr	< 0.001
Co	0.002			Zn	0.009

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: __

WN U4

Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_i=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Alaterial

Catalog Number: PLP9-2X/2Y/2T Lot No. 9-150P

Description: 1000 mg/L Phosphorus

Matrix: H2O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3139a

The CRM is prepared gravimetrically using high purity (NH4)H2(PO4) Lot# W1002B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7.

Instrumentation Analysis By ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 0.9996 @ 24.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	< 0.001	Pb	<0.001
As	0.001	Fe	< 0.001	Rb	< 0.001
Ag	< 0.002	Ga	< 0.001	Re	< 0.001
В	< 0.002	In	< 0.001	Sn	< 0.001
Ba	< 0.001	K	0.006	Sr	< 0.001
Be	< 0.001	Li	< 0.001	Sb	0.004
Bi	< 0.001	Mg	< 0.001	Ti	0.004
Ca	0.004	Mn	< 0.001	TI	< 0.001
Cr	< 0.008	Mo	< 0.001	V	< 0.006
Cd	< 0.001	Na	0.003	Zr	< 0.001
Со	< 0.001	Ni	< 0.001	Zn	0.07

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample, (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_* = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com

Always Providing Superior Quality . . . Unparalleled Service™

Certificate of Reference Material

Catalog Number: PLSI9-2X/2Y/2T

Lot No. 10-07SI

Description:

1000 mg/L Silicon

Matrix:

H2O / 0.4% F-

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #3150

The CRM is prepared gravimetrically using high purity (NH4)2SiF6 Lot# 02021D. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Precipitation using Ammonium Molybdate and 8-Hydroxy Quinoline. Filter, dry, and weigh as

(C9H7ON)4(H4)[Si(Mo12O40)]

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.010 @ 26.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	<0.001	Рb	< 0.001
As	<0.001	Fe	0.020	Rb	<0.001
Ag	<0.001	Ga	<0.001	Re	<0.001
В	< 0.003	In	< 0.001	Sr	<0.001
Ba	< 0.001	K	<0.010	Sb	0.03
Be	< 0.001	Li	< 0.001	Ti	< 0.001
Bi	< 0.001	Mg	<0.001	TI	<0.001
Ca	0.018	Mn	<0.001	V	< 0.001
Cr	< 0.002	Мо	<0.001	Zr	0.05
Cd	< 0.001	Na	0.02	Zn	0.06
Co	< 0.001	Ni	0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: 103 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_a = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLTI9-2X/2Y/2T Lot No. 10-38TI

Description: 1000 mg/L Titanium **Matrix:** H2O/ 0.24% F-

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement: 3.0mg/L Certified Value is Traceable to: NIST SRM #3162a

The CRM is prepared gravimetrically using high purity (NH4)2TiF6 Lot# 02021E. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as TiO2.

Instrumentation Analysis By ICP spectrometer: 999 mg/L Uncertified Properties:

Density: 1.001 @ 22.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Çu	<0.10	Pb	<0.001
As	< 0.001	Fe	< 0.01	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	0.003	In	< 0.001	Si	0.52
Ba	< 0.001	K	< 0.01	Sr	0.001
Be	< 0.001	Li	< 0.001	Sъ	< 0.001
Bi	< 0.001	Mg	< 0.001	Ti	< 0.001
Ca	0.013	Mn	< 0.001	v	< 0.001
Cr	< 0.003	Mo	< 0.001	Zr	0.01
Cd	< 0.001	Na	0.02	Zn	0.03
Co	0.002	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: US Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLSR2-2X/2Y/2T

Lot No. 9-166SR

Description:

1000 mg/L Strontium in 2% HNO3

Matrix:

2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3153a

The CRM is prepared gravimetrically using high purity Strontium Carbonate Lot# 02001B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.010 @ 22.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	< 0.001	Pb	< 0.001
As	< 0.001	Fe	0.001	Rb	< 0.001
Ag	< 0.002	Ga	< 0.001	Re	< 0.001
В	< 0.003	In	< 0.001	Si	0.043
Ba	0.008	K	0.10	Sb	< 0.001
Be	< 0.001	Li	0.007	Ti	< 0.002
Bi	< 0.001	Mg	< 0.003	Tl	< 0.001
Ca	0.014	Mn	< 0.001	v	< 0.001
Cr	0.001	Mo	< 0.001	Zr	< 0.001
Cd	< 0.001	Na	0.01	Zn	0.04
Co	< 0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT -- 2003

Certifying Officer: N. Koch estakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components ue and ue √Σui²

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLSN5-2X/2Y/2T

Lot No. 10-87SN

Description:

1000 mg/L Tin

Matrix:

20% HCL

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/-3.0mg/L

Certified Value is Traceable to: NIST SRM 3161a

The CRM is prepared gravimetrically using high purity Tin Metal certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Lot#

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1004 mg/L

Method: Precipitation using Ammonium Hydroxide. Filter, ignite, and weigh as SnO2.

Instrumental Analysis by ICP spectrometer:

1001 mg/L

Uncertified Properties:

Density: 1.034 @24.8C Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.003	Cu	0.001	Pb	0.004
As	< 0.20	Fe	0.18	Rb	< 0.001
Ag	0.006	Ga	< 0.001	Re	< 0.001
В	< 0.002	In	0.05	Si	0.20
Ba	0.004	K	< 0.20	Sr	< 0.001
Ве	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.004	Ti	0.009
Ca	0.02	Mn	0.003	TI	< 0.001
Cr	0.02	Mo	< 0.001	V	< 0.40
Cd	0.002	Na	0.02	Zr	< 0.001
Co	0.007	Ni	0.06	Zn	0.05

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Certifying Officer: N. Kocherakola Date of Certification:

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k = s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e = \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Certificate of Reference Material

Catalog Number: PLBI4-2X/2Y

Lot No. 10-68BI

Description:

1000 mg/L Bismuth

Matrix:

10% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below

Certified Value: 1001 mg/L

Uncertainty Associated with Measurement:

+/-3.0mg/L

Certified Value is Traceable to:

NIST SRM 3106

The CRM is prepared gravimetrically using high purity Bismuth Metal Lot# 04941B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA standardized against Pb(NO3)2 NIST

SRM #928.

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 1.052@23.1 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.006	Cu	0.002	Pb	0.009
As	< 0.001	Fe	0.001	Re	< 0.001
Ag	< 0.001	Ga	< 0.001	Rb	< 0.001
В	< 0.003	In	< 0.001	Sr	< 0.001
Ba	< 0.001	K	0.002	Sb	0.002
Be	< 0.001	Li	< 0.001	Si	< 0.01
Cd	< 0.001	Mn	< 0.001	Ti	< 0.001
Co	< 0.001	Mo	< 0.001	TI	< 0.001
Ca	0.006	Mg	0.002	V	< 0.001
Cr	< 0.001	Na	0.009	Zr	< 0.001
		Ni	0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

FFR "

FEB '04

Date of Certification:

Certifying Officer: N. Kocherlakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

Lot No. 10-27LA

Description:

1000 mg/L Lanthanum

Matrix:

2% HNO3

This ASSURANCE [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1000 mg/L

Uncertainty Associated with Measurement:

+/-3.0mg/L

Certified Value is Traceable to:

NIST SRM #3127a

The CRM is prepared gravimetrically using high purity La(NO3)3-6H2O Lot# 03951B. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 999 mg/L

Uncertified Properties:

Density: 1.010 @ 22.3 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.02	Lu	< 0.001	Th	< 0.001
Ca	0.029	Mn	< 0.001	Tm	< 0.001
Dy	< 0.001	Mo	< 0.001	Ti	< 0.001
Er	< 0.001	Nd	< 0.001	Tb	< 0.001
Eu	< 0.001	Ni	< 0.001	Ta	< 0.001
Fe	0.005	Na	0.01	TI	< 0.001
Gd	< 0.001	Pr	< 0.001	v	< 0.001
Ga	< 0.001	Rb	<0.001	W	< 0.001
Hf	< 0.001	Sc	0.002	Y	< 0.001
Но	< 0.001	Sm	< 0.001	Yb	< 0.001
In	< 0.001			Zr	< 0.001

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

IAN '04

Certifying Officer: N. Kochevlakol

TE RECEIVED: 01/20/2014

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

DATE RECEIVED: 01/33/04
DATE EXPIRED: 01/30/3005

SPEXertificate

Certificate of Reference Material

Catalog Number: PLY2-2X/2Y/2T Lot No. 9-152Y

Description: 1,000 mg/L Yttrium

Matrix: 2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3167a.

The CRM is prepared gravimetrically using high purity Yttrium Oxide Lot# 08001A. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1002 mg/L

Method: EDTA titration using Methyl Thymol Blue as indicator. EDTA standardized against Pb(NO3)2

NIST SRM #928.

Instrumentation Analysis By ICP spectrometer: 1001 mg/L

Uncertified Properties:

Density: 1.010 @ 24.8 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
- Ce	<0.001	- La	< 0.001	Tb	< 0.001
Ca	0.007	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Tl	< 0.001
Er	< 0.001	Mo	< 0.001	Th	< 0.001
Eu	< 0.001	Nd	< 0.001	Ta	< 0.001
Fe	0.003	Ni	< 0.001	Ti	< 0.001
Gd	< 0.001	Na	0.005	V	< 0.001
Ga	< 0.001	Pr	< 0.001	W	< 0.001
Hf	< 0.001	Rb	< 0.001	Yb	< 0.001
Но	< 0.001	Sc	< 0.001	Zr	0.003
In	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 35: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact the certifying organization.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 35, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The uncertainty of the certified value listed on the reverse of this document is the total uncertainty U. U = 2U. + B mg/L

Where U_c = combined uncertainty components associated with volumetric and gravimetric factors, B is the uncertainty component of two independent methods of analysis (including the systematic and random uncertainties)

95% confidence limits = $X \pm t_{0.05} \sqrt{\Sigma U_c^2}$ where X = grand mean

 $t_{0.05}$ = the percentile of the student's t distribution for (k-1) degrees of freedom.

Certification Traveler Report:

All certified values reported were derived from the Traveler Report identified by the lot number of this CRM. For further information contact the certifying organization.

Legal Notice:

SPEXertificate

Certificate of Reference Material

Catalog Number: PLPD3-2X/2Y

Lot No. 10-108PD

Description:

1000 mg/L Palladium

Matrix:

10% HCl

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1002.5 mg/L

Uncertainty Associated with Measurement:

Certified Value is Traceable to: NIST SRM 3138

The CRM is prepared gravimetrically using high purity Palladium Powder 01021A. The Lot# certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1002 mg/L

Method: Precipitation using Glyoxime. Filter, dry, and weigh as Pd(C4H7O2N2)2

Instrumental Analysis by ICP spectrometer:

1003 mg/L

Uncertified Properties:

Density: 1.017 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.01	Fe	0.024	Re	<0.001
Au	0.003	Ga	< 0.001	Rh	0.001
Ag	0.005	Ir	< 0.001	Rb	< 0.001
В	< 0.002	In	< 0.001	Ru	< 0.001
Be	< 0.003	Mg	0.008	Sn	0.007
Bi	< 0.001	Mn	< 0.001	Te	< 0.002
Ca	0.014	Na	0.02	Ti	< 0.001
Cd	< 0.001	Ni	< 0.001	W	< 0.001
Co	0.004	Pb	0.002	Zr	< 0.001
Cr	< 0.003	Pt	< 0.001	Zn	1.0
Cu	0.001				

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₁=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

010353

SPEXertificate

Certificate of Reference Material

Catalog Number: PLS9-2X/2Y/2T

Lot No. 8-74S

Description:

1000 mg/L Sulfur

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1003 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3154

The CRM is prepared gravimetrically using high purity Ammonium Sulfate Lot# 05891M. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1003 mg/L

Method: Precipitation using barium chloride, filter, ignite and weigh as BaS04.

Instrumentation Analysis By ICP spectrometer: 1003 mg/L

Uncertified Properties:

Density: 1.007 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	< 0.001	Cu	<0.001	Pb	0.002
As	< 0.001	Fe	0.008	Rb	<0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	< 0.004	In	< 0.001	Sn	< 0.001
Ba	< 0.001	K	< 0.001	Sr	<0.001
Be	< 0.001	Li	< 0.001	Sb	< 0.001
Bi	< 0.001	Mg	0.005	Ti	< 0.002
Ca	0.009	Mn	< 0.001	T!	< 0.001
Cr	< 0.004	Mo	< 0.001	v	< 0.001
Cd	< 0.001	Na	0.02	Zr	< 0.001
Co	< 0.001	Ni	< 0.001	Zn	0.0075

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochertakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_4 = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kuc where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

SPEXertificate

Certificate of Reference Alaterial

Catalog Number: PLTH2-2X/2Y Lot No. 10-24TH

Description: 1000 mg/L Thorium

Matrix: 2% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM #3159

The CRM is prepared gravimetrically using high purity Th(NO3)4-4H2O Lot# 01851R. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: EDTA titration using Xylenol Orange as indicator. EDTA syandardized against Pb(NO3)2 NIST

SRM #928.

Instrumentation Analysis By ICP spectrometer: 998 mg/L

Uncertified Properties:

Density: 1.010 @ 22.0 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Ce	0.01	La	0.003	Tb	< 0.001
Ca	0.27	Lu	< 0.001	Tm	< 0.001
Dy	< 0.001	Mn	< 0.001	Ti	< 0.002
Er	< 0.001	Mo	< 0.001	Ta	< 0.001
Eu	< 0.001	Nd	0.003	Tl	< 0.001
Fe	< 0.01	Ni	< 0.001	v	< 0.001
Gd	< 0.001	Na	0.04	W	< 0.001
Ga	< 0.001	Pr	< 0.001	Y	0.002
Hf	< 0.001	Rb	< 0.001	Yb	< 0.001
Ho	< 0.001	Sc	< 0.03	Zr	< 0.001
In	< 0.001	Sm	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where $X = T_{TU}$ value (Labeled Value), $U = E_{TU}$ Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

010357

SPEXertificate

Certificate of Reference Material

Catalog Number: PLU2-2X/2Y

9-179U Lot No.

Description:

1000 mg/L Uranium

Matrix:

2% HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 999.5 mg/L

Uncertainty Associated with Measurement: +/-3 mg/L

Certified Value is Traceable to: NIST SRM 3164.

The CRM is prepared gravimetrically using high purity Uranium Oxide certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L

Method: Evaporate to dryness. Ignite and weigh as U3O8.

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.005	Cu	0.02	Pb	0.004
As	0.06	Fe	0.011	Rb	< 0.001
Ag	< 0.001	Ga	< 0.001	Re	< 0.001
В	< 0.005	In	< 0.001	Si	< 0.10
Ba	0.004	K	0.008	Sr	0.003
Be	< 0.001	Li	< 0.001	Sb	0.003
Bi	< 0.001	Mg	0.003	Ti	< 0.001
Ca	0.012	Mn	0.003	Tl	< 0.001
Cr	< 0.010	Mo	0.006	V	< 0.003
Cd	< 0.001	Na	0.10	Zr	< 0.001
Co	< 0.001	Ni	< 0.001	Zn	0.008

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JUN

Certifying Officer: N. Kochertaku

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com

SPCXertificate

Certificate of Reference Material

Catalog Number: PLW9-2X/2Y

Lot No. 9-177W

Description:

1000 mg/L Tungsten

Matrix:

H2O

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1,000 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L

Certified Value is Traceable to: NIST SRM 3163

The CRM is prepared gravimetrically using high purity Ammonium Tungstate Lot# 02001H. The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Fume with Sulfuric Acid to dryness. Ignite and weigh as WO3.

Instrumentation Analysis By ICP spectrometer: 1000 mg/L

Uncertified Properties:

Density: 0.9979 @ 23.7 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.002	Cu	< 0.001	Pb	< 0.001
As	0.01	Fe	< 0.01	Rb	< 0.001
Ag	< 0.003	Ga	< 0.001	Re	0.004
В	< 0.005	In	< 0.001	Si	.56
Ba	< 0.001	K	0.05	Sr	< 0.001
Be	< 0.001	Li	< 0.001	Sb	0.001
Bi	< 0.001	Mg	< 0.001	Ti	< 0.001
Ca	0.009	Mn	< 0.001	TI	< 0.001
Cr	< 0.001	Mo	0.005	V	0.001
Cd	< 0.001	Na	0.03	Zr	< 0.001
Co	0.001	Ni	< 0.001	Zn	0.01

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kocherlakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s2m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • **1-800-LAB-SPEX** • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

SPCXertificate

Certificate of Reference Alaterial

Catalog Number: PLZR2-2X/2Y/2T 10-05ZR Lot No.

1000 mg/L Zirconium Description:

2% HNO3 Matrix:

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/-3.0 mg/L

Certified Value is Traceable to: **NIST SRM 3169**

11011C. The The CRM is prepared gravimetrically using high purity Zirconyl Nitrate Lot# certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as ZrO2.

Instrumentation Analysis By ICP spectrometer: 997 mg/L

Uncertified Properties:

Density: 1.010 @ 23.6 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.03	Cu	0.002	Pb	0.002
As	< 0.001	Fe	0.017	Rb	< 0.001
Ag	< 0.05	Ga	< 0.001	Re	< 0.001
В	< 0.004	In	< 0.001	Si	0.10
Ba	< 0.001	K	0.10	Sr	< 0.001
Be	< 0.001	Li	0.002	Sb	< 0.001
Bi	< 0.001	Mg	0.003	Ti	< 0.001
Ca	0.11	Mn	< 0.001	TI	< 0.001
Cr	< 0.009	Мо	< 0.001	V	< 0.001
Cd	0.004	Na	0.04	Zn	0.02
Co	< 0.001	Ni	< 0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Certifying Officer: N. Kocherlakola Date of Certification:

010362

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = \text{mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination$

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate *

Certificate of Reference Alaterial

Catalog Number: PLNA2-3X/3Y

Lot No. U8-128NA

Description:

10,000 mg/L Sodium

Matrix:

5% HNO3

This ASSURANCE © certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 9998 mg/L

Uncertainty Associated with Measurement: +/- 30 mg/L

Certified Value is Traceable to: NIST SRM 3152a.

The CRM is prepared gravimetrically using high purity Sodium Carbonate Lot# 02021A . The certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 9998 mg/L

Method: Evaporate to dryness. Fume with Sulfuric Acid. Ignite and weigh as Na2SO4.

Instrumentation Analysis By ICP spectrometer: 9998 mg/L

Uncertified Properties:

Density: 1.049 @ 23.9 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.02	Cu	0.003	Pb	<0.001
As	< 0.003	Fe	0.03	Re	< 0.001
Ag	< 0.03	Ga	< 0.001	Rb	< 0.001
В	< 0.03	In	< 0.001	Sr	< 0.002
Ba	0.03	K	0.14	Sb	< 0.001
Be	< 0.02	Li	< 0.002	Sn	< 0.001
Bi	< 0.001	Mg	0.30	Ti	< 0.004
Ca	0.52	Mn	0.008	TI	< 0.001
Cr	< 0.004	Mo	< 0.001	V	< 0.001
Cd	< 0.001	Ni	< 0.002	Zr	< 0.001
Co	< 0.001			Zn	<0.03


Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: U4 Certifying Officer: N. Kochertakota

E RECEIVED: 01/39/64

E CPENED: 01/39/64

E CPENED: 01/39/64

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s=s^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_a is obtained by combining the individual element standard uncertainty components u_i and $u_{ce} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

CERTIFIED

203 Norcross Avenue • Metu

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

SPEXertificate***

Certificate of Reference Material

Catalog Number:

ICV-2A

Lot No.: 24-84AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This **ASSURANCE** ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	2,000	2,005.40	3109a	Ni	500	500.58	3136
K	2,000	1,997.89	3141a	V	500	504.23	3165
Mg	2,000	1,992.26	3131a	Cr	200	203.21	3112a
Na	2,000	1,992.99	3152a	Cu	200	199.75	3114
Al	1,000	1,005.90	3101a	Ag	100	100.46	3151
Ba	1,000	1,001.51	3104a	Be	100	100.04	3105a
Fe	1,000	1,003.17	3126a	Mn	100	100.64	3132
Co	500	505.10	3113	Zn	100	100.52	3168a

Spex Reference Multi: Lot #4-63BD, 14-125AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: Certifying Officer: N. Kochertakota

© 2000 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_e=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_c where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{cz} \sqrt{\sum u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service ...

SPEXertificate

Certificate of Reference Material

Catalog Number: PLSB7-2X/2Y/2T

Lot No. 10-43SB

Description:

1000 mg/L Antimony

Matrix:

H2O/0.6Tart.Acid/tr.HNO3

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1004 mg/L

+/-3.0mg/L Uncertainty Associated with Measurement:

Certified Value is Traceable to: NIST SRM 3102a

The CRM is prepared gravimetrically using high purity Antimony Metal Lot# certified value listed is the average of values obtained by classical wet assay and ICP spectrometer analysis

Refer to side 2 for details of measurement uncertainties.

1005 mg/L Classical Wet Assay:

Method: Evaporate to dryness. Fume with Nitric Acid. Ignite and weigh as Sb2O4.

Instrumental Analysis by ICP spectrometer: 1002 mg/L

Uncertified Properties:

Density: 1.046 @ 25.5 Degrees Celsius

Trace Metallic Impurities in the Actual Solution via ICP / ICPMS Analysis:

Element	mg/L	Element	mg/L	Element	mg/L
Al	0.03	Cu	0.002	Pb	0.009
As	<0.001	Fe	0.03	Rb	< 0.001
Ag	< 0.001	Ga	<0.001	Re	< 0.001
В	< 0.004	In	< 0.001	Sr	< 0.001
Ba	< 0.001	K	0.01	Si	<0.01
Be	< 0.001	Li	< 0.001	Ti	< 0.003
Bi	0.002	Mg	0.005	Tl	< 0.001
Ca	0.14	Mn	< 0.001	V	< 0.001
Cr	< 0.002	Mo	< 0.001	Zr	< 0.001
Cd	< 0.001	Na	0.005	Zn	0.02
Co	< 0.001	Ni	<0.001		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

NOV - - 2003

Date of Certification:

Certifying Officer: N. Kochertakol

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Reference Alaterial

Catalog Number:

ICV-2C

Lot No.: 24-85AS

Description:

Initial Calibration Verification Standard II

Matrix:

5% Nitric Acid

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	497.85	3103a
Pb	500	495.41	3128
Se	500	501.98	3149
TL	500	501.89	3158
Cd	100	99.77	3108

Spex Reference Multi: Lot #4-51BDREF, 15-39AS, 11-173AS

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/- 2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kochestakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^{\pm}}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA
732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647
CRMSales@spexcsp.com • www.spexcsp.com
Always Providing Superior Quality . . . Unparalleled Service™

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website; www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

Custom-Grade 10000 µg/mL Aluminum in 5% (abs) HNO3 **DESCRIPTION OF CRM** 2.0

Catalog Number:

CGAL10-1 and CGAL10-5

Lot Number:

W-AL04008

Starting Material:

Al metal

Starting Material Purity (%):

99.998460

INORGANIC LABS/RADCHEM LABS \$ 1.00 a

Starting Material Lot No

607116

DATE RECEIVED: 08/06/03

Matrix:

5% (abs) HNO3

DATE EXPIRED: 09/01/2004 V05
DATE OFENED: 08/26/05
INDRG: 4280 F0: F5234

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

10070 ± 31 µg/mL

Certified Density:

1.059 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (= *22 X)

x, = individual results

n = number of measurements

Uncertainty $(\pm) = 2[(er5)^2]^{10}$

BS = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SPIM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

The property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

10006 ± 55 µg/mL

ICP Assay NIST SRM 3101a Lot Number: 992003

Assay Method #2

10070 ± 31 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>s</u>	ΑI			1	M	Đу	<	0.02695	0	Li		0.00011	M	Pr	<	0.00135	!	<u>/</u>	Te	<	0.13473
M	Sb	<	0.00225	!	M	Er	<	0.02245	M	Lu	<	0.00180	М	Re	<	0.00449	!	<u>√</u>	Tb	<	0.00135
М	As	<	0.04491	į	M	Ευ	<	0.01347	ō	Mg		0.00470	<u>M</u>	Rh	<	0.00449	<u>!</u>	<u>v</u>	TI	<	0.00449
M	Ва	<	0.04491	į	M	Gd	<	0.00449	M	Mn	<	0.01796	M	Rb	<	0.00449	!	M	Th	<	0.00449
0	Ве	<	0.00017	į	M	Ga	<	0.00449	Q	Hg	<	0.00700	M	Ru	<	0.00898	<u> </u>	<u>vi</u>	Tm	<	0.00180
М	Bi	<	0.00180	ļ	M	Ge	<	0.02695	M	Мо	<	0.00898	M	Sm	<	0.00449	!	M	Sn	<	0.02245
ō	В		0.01164	!	M	Au	<	0.01347	M	Nd	<	0.00898	M	Sc	<	0.04491	!	<u> </u>	Ti	<	0.22454
<u>M</u>	Cd	<	0.01347	Į	<u>M</u>	Hf	<	0.00898	Q	NI	<	0.00600	M	Se	<	0.03593	!	M	W	<	0.04491
<u>o</u>	Са		0.01903		<u>v</u>	Но	<	0.00225	M	Nb	<	0.00225	<u>0</u>	Si		0.07389	!	<u>v</u>	υ	<	0.00898
M	Се	<	0.02245	!	0	In	<	0.03000	n	Os			M	Ag	<	0.00898	!	M	٧	<	0.00898
M	Cs	<	0.00135		M	lr	<	0.02245	M	Pd	<	0.02245	Q	Na		0.03359	!	M	Yb	<	0.00449
<u>o</u>	Cr		0.00336		0	Fe		0.00493	ō	P	<	0.03000	M	Sr	<	0.00225		М	Υ	<	0.17963
M	Co	<	0.01347		M	La	<	0.00225	М	Pt	<	0.00898	Q	s	<	0.10000	ļ <u>i</u>	M	Zn	<	0.08982
M	Çu	<	0.02695		M	Pb	<	0.01347	<u>o</u>	ĸ		0.02911	M	Та	<	0.03144		М	Zr	<	0.02245
M - (Check	(ed	by ICP-MS	C	- (Chec	kec	by ICP-OES	1-8	pect	al l	nterference	n - 1	Not C	hed	ked For	s	- 8	Soluti	ดก	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 26.98154; +3, 6; A(H,O).**

Chemical Compatibility - Soluble in HCl, HNO, HF and H,SO. Avoid neutral media. Soluble in strongly basic NaOH forming the A(OH), (H,O), species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO₃ / LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO₂); α- Al₂O₃ (Na₂CO₂ fusion in Pt^a); γ- Al₂O₃ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt^a followed by HCI dissolution); Organic Matrices (sulfunic/peroxide digestion or nitric / sulfunic/peroxide digestion digestion or nitric / sulfunic/peroxide digestion or nitric / sulfunic/peroxide digestion digestio

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at afforcs.)
ICP-OES 394,401 nm	0.05 / 0.006 µg/mL	1	atom	U, Ce
ICP-OES 396.152 nm	0.03 / 0.006 µg/mL	1	atom	Mo, Zr, Ce
ICP-OES 167,078 nm	0.1 / 0.009 µg/mL	1	ion	Fe
ICP-MS 27 amu	30 ppt	n.ta	M'	'*C'*N, "*C"N, 'H'*C"N, 'B'*O, **Ct*', **Fe*'

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous. 9.0

QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), ireland (NSAi), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC	LABS/RADCHE	M LABSPS DOF 3
DATE RECEIV	ED: 08/a	6/03
NULL EXPLIKE	D: 09/0	1/2004 105
DAIF OPENED	:08/	ag /03
INORG:433	<u> </u>	F53334

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 13, 2003

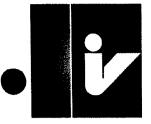
Expiration Date:

1 2004-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Strutters known in Park Aain

20

organic ventures 1

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Custom-Grade 10000 µg/mL Calcium in 1.4% (abs) HNO3

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%):	CGCA10-1, CGCA10-2 W-CA03022 CaO 99.999389	, and CGCA10-5
	Starting Material Lot No Matrix:	C27L01 1.4% (abs) HNO ₃	INORGANIC LABS/RADCHEM LABSPy 2007 DATE RECEIVED:01/20/04
3.0	CERTIFIED VALUES AND L	JNCERTAINTIES	DATE EXPIRED: 03/01/3005 VOS

INORG: 4436 PD: F58303

Certified Density:

DESCRIPTION OF CRM

9968 ± 18 µg/mL

1.038 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the

Certifled Value (C) = exx

calculation of the certified value and the uncertainty:

Certified Concentration:

(C)≡= mean

x_i = individual results

Uncertainty (±) = 2[(2/5)]

n = number of measurements

ES = The summation of all significant estimated errors (Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1 4.1 .

9968 ± 18 µg/mL

ICP Assay NIST SRM 3109a Lot Number: 000622

Assay Method #2

9973 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

<u>Q</u> Al 0.00013	<u>M</u> Dy < 0.03067	Q Li 0.00011	<u>M</u> Pr < 0.00153	<u>M</u> Te < 0.15333
M Sb < 0.00256	M Er < 0.02556	<u>M</u> Lu < 0.00204	<u>M</u> Re < 0.00511	M Tb < 0.00153
M As < 0.05111	<u>M</u> Eu < 0.01533	<u>O</u> Mg 0.03453	M Rh < 0.00511	M Ti < 0.00511
Q Ba 0.00063	M Gd < 0.00511	Q Mn < 0.00030	M Rb < 0.00511	M Th < 0.00511
Q Be < 0.00009	M Ga < 0.00511	Q Hg < 0.01100	M Ru < 0.01022	<u>M</u> Tm < 0.00204
<u>M</u> Bi < 0.00204	M Ge < 0.03067	M Mo < 0.01022	M Sm < 0.00511	M Sn < 0.02556
<u>Q</u> B < 0.00054	M Au < 0.01533	M Nd < 0.01022	<u>Q</u> Sc < 0.00002	<u>M</u> Ti < 0.25555
<u>O</u> Cd < 0.00450	M Hf < 0.01022	Q Ni < 0.00230	<u>Q</u> Se < 0.00620	<u>M</u> W < 0.05111
<u>S</u> Ca	M Ho < 0.00256	M Nb < 0.00256	Q Si 0.00253	<u>M</u> U < 0.01022
M Ce < 0.02556	<u>O</u> In < 0.00200	n Os	M Ag < 0.01022	Q V < 0.00090
M Cs < 0.00153	<u>M</u> Ir < 0.02556	M Pd < 0.02556	<u>Q</u> Na < 0.00010	M Yb < 0.00511
<u>O</u> Cr 0.00183	<u>O</u> Fe < 0.00110	Q P < 0.00480	<u>Q</u> Sr 0.02021	M Y < 0.20444
Q Co < 0.00120	M La < 0.00256	M Pt < 0.01022	<u>Q</u> \$ 0.01053	Q Zn 0.02232
O Cu < 0.00400	M Pb < 0.01533	<u>Q</u> K < 0.00170	<u>M</u> Ta < 0.03578	M Zr < 0.02556
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078, +2; 6, Ca(H₂O), '

Chernical Compatibility - Soluble in HCl and HNO. Avoid H.SO., HF, H.PO. and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tunastate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Ca Containing Samples (Preparation and Solution) - Metal (best dissolved in diluted HNO,) Ores (Carbonate fusion in Pt* followed by HCI dissolution); Organic Matrices (dry ash and dissolution in dilute HCI. Do not heat when dissolving to avoid precipitation of SiO₂). The exide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCI or HNO₂. The sulfates (gypsum, anhydrite, etc.), certain silicates and complex compounds require fusion with Na₂CO₂ followed by HCI / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at albor	ncs.)
ICP-OES	393.366 nm	0.0002 / 0.00004 µg/mL	1	ion	U, Ce	·
ICP-OES	396.847 nm	0.0005 / 0.00006 µg/mL	1	ion	Th	
ICP-OES	422.673 nm	0.01 / 0.001 µg/mL	1	atom	Ge	
ICP-MS	44 amu	1200 ppt	n/a	M.	"OziaC" sizlino" (izkis	

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	B/RADCHEM LABSPS. 2.43
NATE DECEMBER.	401/2010
DATE EXPIRED:	09/01/3005 VPS
DATE OPENED:	01/90/04
INORG: 4436	F0: _F5a3o3

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

1 2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm strutten knowen de Park Acim

1 iv labs inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Iron in 3.5% (abs) HNO3 2.0

Catalog Number:

CGFE10-1, CGFE10-2, and CGFE10-5

Lot Number: Starting Material:

W-FE03030 Fe metal

Starting Material Purity (%):

99.999569

Starting Material Lot No

Matrix:

3.0

23166 3.5% (abs) HNO₃

INDRGANIC LABS/RADCHEM LABS**P3.1.042**

DATE RECEIVED: 00/05/04

DATE EXPIRED: 03/01/3005 DATE OPENED: 00/05/04

INDRG: 4470 PD: F50303

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: $10,016 \pm 25 \,\mu g/mL$

Certified Density: 1.050 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (ロ) = exx

(□) = mean

 $x_i = individual results$

n = number of measurements

Uncertainty $(\pm) = 2[(2rs_i)^2]^{1/2}$

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

🗅 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $10,031 \pm 33 \,\mu g/mL$

ICP Assay NIST SRM 3126a Lot Number: 000606

Assay Method #2

10,016 ± 25 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked dally using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al < 0.	.00270 <u>M</u>	Dy <	0.02413	<u>0</u>	LI	<	0.00003	M	Pr	<	0.00121	<u>M</u>	Te	<	0.12066
M Sb < 0.	.00201 <u>M</u>	Er <	0.02011	M	Lu	<	0.00161	<u>M</u>	Re	<	0.00402	<u>M</u>	Tb	<	0.00121
<u>M</u> As < 0.	04022 <u>M</u>	Eu <	0.01207	<u>o</u>	Mg	<	0.00006	M	Rh	<	0.00402	M	TI	<	0.00402
<u>M</u> Ba < 0.	04022 <u>M</u>	Gd <	0.00402	<u>0</u>	Mn	<	0.02000	M	Rb	<	0.00402	M	Th	<	0.00402
<u>O</u> Be < 0.	.00005 <u>M</u>	Ga <	0.00402	Q	Hg	<	0.01100	M	Ru	<	0.00804	<u>M</u>	Tm	<	0.00161
<u>M</u> Bi < 0.	.00161 <u>i</u>	Ge	į	. <u>M</u>	Мо	<	0.00804	M	Sm	<	0.00402	M	Sn	<	0.02011
<u>O</u> B < 0.	. <u>M</u> 00000	Au <	0.01207	M	Nd	<	0.00804	M	Sc	<	0.04022	M	Ti	<	0.20109
M Cd < 0.	.01207 <u>M</u>	Hf <	0.00804	0	Ni	<	0.05000	M	Se	<	0.03218	M	W	<	0.04022
<u>O</u> Ca 0.	.00291 <u>M</u>	Ho <	0.00201	M	Nb	<	0.00201	ō	Si	<	0.01000	<u>M</u>	U	<	0.00804
<u>M</u> Ce < 0.	.02011 <u>M</u>	in <	0.04022	<u>n</u>	Os			M	Ag	<	0.00804	M	٧	<	0.00804
<u>M</u> Cs < 0.	.00121 <u>M</u>	lr <	0.02011	М	Pd	<	0.02011	<u>0</u>	Na		0.00776	M	Yb	<	0.00402
<u>M</u> Cr < 0.	.02011 <u>s</u>	Fe		i	Р			M	Sr	<	0.00201	M	Y	<	0.16087
O Co < 0	.00110 <u>M</u>	La <	0.00201	M	Pt	<	0.00804	0	s	<	0.07200	M	Zn		0.04876
<u>M</u> Cu < 0.	.02413 <u>M</u>	Pb <	0.01207	0	κ	<	0.00170	M	Та	<	0.02815	M	Zr	<	0.02011
M - Checked by	ICP-MS O - C	hecke	d by ICP-OES	i-S	pectr	al I	nterference	n - î	Not C	hed	ked For	s - S	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010381

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 = €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 55.847; +3; 6; Fe(H₂O),"

Charrical Competibility - Stable in HCI, HNO, H, SO, HF and H, PO. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ /LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCl), Oxides (If the oxide has been at a high temperature then Na₂CO₂ fusion in Pt^a followed by HCl dissolution otherwise dissolve in dilute HCl), Ores (See Oxides above using only the fusion approach).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	238.204 nm	0.005 / 0.001 µg/ml.	1	ion	Ru, Co
ICP-OES	239.562 nm	0.005 / 0.001 µg/ml.	1	ion	Co, W, Cr
ICP-OES	259.940 nm	0.006 / 0.001 µg/ml.	1	ion	Hf, Nb
ICP-MS	56 amu	970 ppt	n/a	M'	"'Ar' 'N 'H, "'Ar' 'O, "'Ar' 'O'H, "'Ar' 'O, "'C! 'O'H, "Ca"O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers'
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INURGANIC LABS	/RADCHEM LABSP 304 3
DATE RECEIVED:_	03/04205 702
DATE EXPIRED:	03/01/2005 103
DATE OPENED:	03/35/04
INDRG: 4470	PU: F53303

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 20, 2003

Expiration Date:

EXPIRES 18205

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten Known an Paux Aaim

inorganic ventures labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Potassium in 1.4% (abs) HNO3 2.0

Catalog Number:

CGK10-1, CGK10-2, and CGK10-5

Lot Number:

W-K02111

Starting Material:

KNO3

Starting Material Purity (%):

99.997230

INORGANIC LABS/RADDHEM LABS

DATE RECEIVED: 11/5/03 DATE EXPIRED: __

Starting Material Lot No

K18J19

Matrix:

1.4% (abs) HNO3

INORG: 4300 PO: FS 3050

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $9930 \pm 9 \, \mu g/mL$

Certified Density:

1.024 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (□) = @x

(DI = mean

x_i = individual results

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

#S = The summetion of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

9926 ± 62 µg/mL

ICP Assay NIST SRM 3141a Lot Number: 891312

Assay Method #2

9930 ± 9 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.; 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL 5.0

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

O AI < 0.00090	M Dy < 0.02400	O Li < 0.00003	M Pr < 0.00120	<u>M</u> Te < 0.11998
M Sb < 0.00200	<u>M</u> Er < 0.02000	M Lu < 0.00160	M Re < 0.00400	<u>M</u> Tb < 0.00120
<u>M</u> As < 0.03999	M Eu < 0.01200	<u>O</u> Mg 0.00100	M Rh < 0.00400	<u>M</u> TI < 0.00400
<u>M</u> Ba < 0.03999	<u>M</u> Gd < 0.00400	O Mn < 0.00003	M Rb 0.49948	M Th < 0.00400
<u>O</u> Be < 0.00020	<u>M</u> Ga < 0.00400	O Hg < 0.01500	<u>M</u> Ru < 0.00800	<u>M</u> Tm < 0.00160
M BI < 0.00160	<u>O</u> Ge < 0.00150	M Mo < 0.00800	M Sm < 0.00400	<u>M</u> Sn < 0.02000
O B < 0.00060	O Au < 0.00300	M Nd < 0.00800	<u>O</u> Sc < 0.00002	<u>O</u> Ti < 0.00070
<u>M</u> Cd < 0.01200	M Hf < 0.00800	O Ni < 0.00230	<u>O</u> Se < 0.05000	<u>M</u> W < 0.03999
<u>O</u> Ca 0.00075	<u>M</u> Ho < 0.00200	M Nb < 0.00200	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00800
<u>M</u> Ce < 0.02000	<u>M</u> in < 0.03999	<u>n</u> Os	<u>M</u> Ag < 0.00800	<u>O</u> V < 0.00090
M Cs < 0.00120	M Ir < 0.02000	M Pd < 0.02000	<u>O</u> Na 0.21730	<u>M</u> Yb < 0.00400
<u>M</u> Cr < 0.02000	O Fe 0.00212	<u>O</u> P < 0.00250	<u>M</u> Sr < 0.00200	<u>M</u> Y < 0.15998
<u>M</u> Co < 0.01200	M La < 0.00200	<u>M</u> Pt < 0.00800	<u>O</u> S < 0.07200	<u>O</u> Zn 0.00050
<u>M</u> Cu < 0.02400	M Pb < 0.01200	<u>s</u> K	<u>M</u> Ta < 0.02800	\underline{M} Zr < 0.02000
M - Checked by ICP-MS	O - Checked by ICP-OES	- Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following: ...

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ℃. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 29.0983; +1; (6); K'(eq)

(Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNO, H₂SO, and HF aqueous matrices. Avoid use of HClO, due to insolubility of the perchlorate. Stable with all metals and inorganic anions except ClO.:

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, / LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very repidly in water), Ores (Sodium carbonate fusion in Pt* followed by HCl dissolution-blank levels of K in sodium carbonate critical), Organic Matrices (Sulfuric/peroxide digastion.)

Atomic Spectroscopic information (ICP-OES ILL, a are given as radial/adat view):

	PRUINC 3	JOURNAL BIR	いいはいい いくしゃくじつ か	CONTRACT AND AND A		
Technique/Line			Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afternos.)
	ICP-OES	766.490 nm	0.4 / 0.001 µg/mL	1	atom	2 [™] order radiation from R.E.s on some optical designs
	ICP-OES	771.531 nm	1.0 / 0.03 µg/mL	1	atom	2 [™] order radiation from R.E.s on some optical designs
	ICP-OES	404.721 nm	1.1 / 0.05 µg/mL	1	atom	<u>U, Ce, </u>
	ICP-MS	39 amu	10 ppt	n.la	Μ¹	**ArH, **Na**O, **Se**

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

010385

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf-life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOF	RGANIC LAB RECEIVED: EXPIRED:_ OPENED:_	S/RADCHEM	LABS
DATE	RECEIVED:	111.5/43	39,0
DATE	EXPIRED:_	12/1/204	\mathcal{M}
DATE	OPENED:	11/5/13	tion where were made before collect points balled become report
INOR	4336	PO: E	5 2) 58

Certification Date: January 30, 2003

Expiration Date:

182004-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

1.0

ventures labs inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis of

inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 **DESCRIPTION OF CRM** Custom-Grade 10000 µg/mL Magneslum in 1.4% (abs) HNO3

Catalog Number:

CGMG10-1 and CGMG10-5

Lot Number:

T-MG03006

Starting Material:

Mg metal

Starting Material Purity (%):

99,9968

INDRGANIC LABS/RADCHEM LABSPg. 1 of 2 DATE RECEIVED: __OT/31/63

Starting Material Lot No

RML91191

Matrix:

1.4% (abs) HNO₃

DATE EXPIRED: 08/01/2014 192 DATE OPENED: 08/01/03

INORG: 4304 FD: F53391

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

9921 ± 20 µg/mL

Certified Density:

1.050 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(x) = \underline{\lambda}x$

(x) = mean

x = individual results

Uncertainty (±) = $2(2s)^{3/2}$

n = number of measurements S = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

ersy Weller Ch

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certifled value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

9998 ± 20 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

9921 ± 20 µg/mL

ICP Assay NIST SRM 3131a Lot Number: 991107

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION in-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.02454	М	Dy	<	0.02455	Q	Li		0.00797	М	Pr	<	0.00123	M	Te	<	0.12275
M	Sb		0.00306	М	Er	<	0.02046	M	Lu	<	0.00164	M	Re	<	0.00409	M	Tb	<	0.00123
M	As	<	0.04092	M	Eu	<	0.01228	<u>s</u>	Mg			М	Rh	<	0.00409	M	ŦI	<	0.00409
M	Ва	<	0.04092	М	Gd	<	0.00409	M	Mn	<	0.01637	M	Rb	<	0.00409	M	Th	<	0.00409
Q	Be	<	0.00017	М	Ga	<	0.00409	Q	Hg	<	0.00900	М	Ru	<	0.00818	M	Tm	<	0.00164
М	Bi	<	0.00164	М	Ge	<	0.02455	M	Мо	<	0.00818	М	Sm	<	0.00409	М	Sn	<	0.02046
<u>0</u>	В		0.00871	М	Au	<	0.01228	M	Nd	<	0.00818	М	Sc	<	0.04092	Q	Ti		0.10206
M	Cd	<	0.01228	М	Hf	<	0.00818	Q	Ni		0.01404	М	Se	<	0.03273	M	W	<	0.04092
Q	Ca		0.01070	M	Но	<	0.00205	M	Nb	<	0.00205	Ō	Si		0.03186	М	U	<	0.00818
М	Ce	<	0.02046	M	In	<	0.04092	Ω	Os			М	Ag	<	0.00818	М	٧	<	0.00818
M	Cs	<	0.00123	M	ir	<	0.02046	M	Pđ	<	0.02046	<u>o</u>	Na		0.01817	M	Yb	<	0.00409
Q	Cr		0.02315	Q	Fe		0.02467	Q	P	<	0.01600	М	Sr	<	0.00205	М	Y	<	0.16367
М	Co	<	0.01228	М	La	<	0.00205	M	Pt	<	0.00818	n	s			Q	Zn		0.01892
Q	Cu		0.00672	Q	Pb		0.03236	Q	ĸ	<	0.05000	M	Ta	<	0.02864	M	Zr	<	0.02046
M - C	heck	ed i	by ICP-MS	0 -	Chec	ked	by ICP-OES	1- S	pectra	al Ir	nterference	n - 1	Not C	nec	ked For	s - S	Solutio	ın S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.305; +2; 6; Mg(H₂O); 2

Chemical Compatibility - Soluble in HCl, HNO_a, and H,SO_a avoid HF, H₂PO_a and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO $_{1}$ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO $_{1}$ / LDPE container.

Mg Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO_a); Oxide (Readily soluble in above compatible aqueous acidic solutions); Ores (Carbonate fusion in Pt^a followed by HCI dissolution); Organic Matrices (Sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line Estimated D.L. On	rder Type	Interferences (underlined indicates severe et = concs.)
ICP-OES 279.553 nm 0.0002 / 0.00003 µg/mL 1	ion	Th
ICP-OES 280.270 nm 0.0003 / 0.00005 µg/mL 1		Ü.V
ICP-OES 285.213 nm 0.002 / 0.00003 µg/mL 1		U, Hf, Cr, Zr
ICP-MS 24 amu 42 ppt n/s		(Lino) 47[12 47Ca12

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)
Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)
Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCRC), Poland (APCER), Singapore (PSR), Slovenia (SIQ), Spain (APCER), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SiQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:
Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finiand (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KQLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS/	RADCH	EM	LABST	B. 2 of 2
DATE	RECEIV	ZED:	07/	31/5	33	
DATE	EXPIRE	ED:	08/0	21/2	P00	VOS
DATE	OPENE);;	08/0	77TC	<u>3</u>	
INORG	490	4	_PO:_	F-	52391	

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2002

Expiration Date:

01 22 00 4

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Lleber Neuman Knowen der Park Lain

1.0

20.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

T-NA03006

Starting Material:

Na2CO3

Starting Material Purity (%):

99.999936

DATE RECEIVED: 07/3/03

Starting Material Lot No.

42095

DATE EXPIRED: 08/01/3004 YOU

Matrix:

1.4% (abs) HNO3

DATE OPENED: 08/01/03 INORG: 4805 PO: F58391

INORGANIC LABS/RADCHEM LABS \$1 & 2

alo. **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $10,005 \pm 7 \,\mu g/mL$

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(D) = mean

x = individual results

Uncertainty (±) = $2[(2x-5)]^{1/2}$

n = number of measurements

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

0. TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $10,067 \pm 75 \mu g/mL$

ICP Assay NIST SRM 3152a Lot Number: 990907

Assay Method #2

10,005 ± 7 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked dally using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not callbrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al < 0.00090	<u>M</u> Dy < 0.02499	<u>O</u> Li < 0.00003	<u>M</u> Pr < 0.00125	<u>M</u> Te < 0.12494
<u>M</u> Sb < 0.00208	<u>M</u> Er < 0.02082	M Lu < 0.00167	<u>M</u> Re < 0.00417	<u>M</u> Tb < 0.00125
M As < 0.04165	<u>M</u> Eu < 0.01249	<u>O</u> Mg 0.00015	M Rh < 0.00417	<u>M</u> Tì < 0.00417
<u>M</u> Ba < 0.04165	M Gd < 0.00417	O Mn < 0.00003	M Rb < 0.00417	<u>M</u> Th < 0.00417
O Be < 0.00020	<u>M</u> Ga < 0.00417	<u>O</u> Hg < 0.01500	<u>M</u> Ru < 0.00833	<u>M</u> Tm < 0.00167
M Bi < 0.00167	<u>O</u> Ge < 0.00150	<u>M</u> Mo < 0.00833	<u>M</u> Sm < 0.00417	<u>M</u> Sn < 0.02082
O B < 0.00060	<u>O</u> Au < 0.00300	M Nd < 0.00833	O Sc < 0.00002	<u>O</u> Ti < 0.00070
M Cd < 0.01249	<u>M</u> Hf < 0.00833	<u>O</u> Ni < 0.00230	O Se < 0.05000	<u>M</u> W < 0.04165
O Ca 0.00160	<u>M</u> Ho < 0.00208	M Nb < 0.00208	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00833
<u>M</u> Ce < 0.02082	<u>M</u> In < 0.04165	<u>n</u> Os	<u>M</u> Ag < 0.00833	<u>O</u> V < 0.00090
M Cs 0.00104	<u>M</u> Ir < 0.02082	M Pd < 0.02082	<u>S</u> Na	M Yb < 0.00417
M Cr < 0.02082	<u>O</u> Fe < 0.00110	O P < 0.04000	<u>M</u> Sr < 0.00208	<u>M</u> Y < 0.16658
M Co < 0.01249	<u>M</u> La < 0.00208	M Pt < 0.00833	<u>O</u> S < 0.07200	O Zn 0.00130
O Cu < 0.00140	M Pb < 0.01249	Q K 0.00873	<u>M</u> Ta < 0.02915	<u>M</u> Zr < 0.02082
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4™€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (8); Ne'(aq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCl, HNO_a, H₂SO_a and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO_a / LDPE container.

Na Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water). Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical). Organic Matrices (Sulfuric / peroxide digestion or nitric/sulfuric/perchloric acid decomposition).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

<u>Technique/Line</u>		Line	Estimated D.L.	Order	Noe	Interferences (underlined indicates severe at affoncs.)
	ICP-OES	589.595 nm	0.07 / 0.00009 µg/ml.	1	atom	2 rd order radiation from R.E.s on some optical designs
	ICP-OES	588,995 nm	0.03 / 0.006 µg/mL	1	atom	2 nd order radiation from R.E.s on some optical designs
	ICP-OES	330.237 nm	2.0 / 0.09 µg/mL	1		Pd. Zn
	ICP-MS	23 amu	310 pat	n/a	M'	ANTI 12 ANCIE 12

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

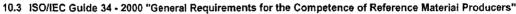
10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001;2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-ml, low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INDRGANIC LABB/RADCHEM LABS \$-3012 DATE RECEIVED: ___OI/31/03_ DATE EXPIRED: 08/01/2004 DATE OPENED: _____08/01/03 INDRG: 4805 PO: F583

Certification Date: January 24, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debble Newman, LIMS Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Alebbi Newman Known in in Park Lain

Certificate of Analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Lithium in 0.1% HNO₃ (abs)

Catalog Number: CGLI1-1, CGLI1-2 and CGLI1-5

Lot Number: W-LI02066

Starting Material: Starting Material Purity: Starting Material Lot No: Li,CO3 99.999% 1053

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: ____OG/ao/o3 DATE EXPIRED: 07/01/2004 VO DATE OPENED: ___________________ INORG: 4149 PO: F52370

CERTIFIED CONCENTRATION: 998 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$

Uncertainty $(\pm) = 2[(\sum_{s})^2]^{1/2}$

 $(\bar{x}) = mean$

 $x_i = individual results$

n = number of measurements $\sum S_i = The summation of all significant$ estimated errors.

Classical Wet Assay: 998 ± 2 µg/mL

Method: Gravimetric as the Sulfate vs NIST weights #822/254143-94.

Instrument Analysis: 1000 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3129a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

0	Αl	< 0.010	M	Dy	< 0.00060	100	<u>s</u>	Li	fat, in the		M	Pr	< 0.000030	Q	Te	< 0.0090
M	Sb	< 0.000050	M	Er	< 0.00050		M	Lu	< 0.000040		M	Re	< 0.00010	<u>M</u>	Tb	< 0.000030
Q	As	< 0.044	M	Eu	< 0.00030		0	Mg	< 0.00010		M	Rh	< 0.00010	M	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010		<u>o</u>	Μn	< 0.00020	Arrya I	Μ.	Rb	< 0.00010	M	Th	< 0.00010
Q	Ве	< 0.000050	M	Ga	< 0.00010		<u>o</u>	Hg	< 0.0070		M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060		M	Мо	< 0.00020		M	Sm '	< 0.00010	M	Sn	< 0.00050
Q	В	< 0.0060	<u>0</u>	Au	< 0.010		M	Nd	< 0.00020		M	Sc	< 0.0010	<u>o</u>	Ti	< 0.00030
Q	Cd	< 0.0018	M	Hf	< 0.00020		<u>0</u>	Ni	< 0.0040		<u>0</u>	Se	< 0.020	M	W	< 0.0010
0	Ca	0.051	M	Ho	< 0.000050		M	Nb	< 0.000050		Q	Si	0.023	<u>M</u>	U	< 0.00020
M	Ce	< 0.00050	0	In	< 0.030		п.	Os			0	Ag	< 0.0040	<u>o</u>	٧	< 0.0010
M	Cs	0.0018	M	lr.	< 0.00050		M	Pđ	< 0.00050		0	Na	< 0.10	<u>M</u>	Yb	< 0.00010
Q	Cr	< 0.0020	0	Fe	< 0.0020		Q	P	< 0.030	1	<u>o</u>	Sr	< 0.0010	<u>M</u>	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050		M	Pt	< 0.00020	1	0	S	< 0.050	<u>o</u>	Zn	< 0.030
M	Cu	< 0.00060	M	Pb	< 0.00030		0	K	0.0070		M	Ta	< 0.00070	M	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.004 g/mL

O - checked by ICP-OES

(over)

s - solution standard element

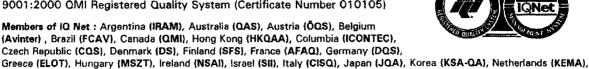
QA:KL N.V.022403DN

M - checked by ICP-MS

Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903

Technical Support: 800-569-6799


Quality Assurance Manager

n - not checked for

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference-2. Materials Production - Accredited A2LA Certificate 883.02

Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 3. ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing -Accredited A2LA Certificate 883.01
- 4, MIL-STD-45662A
- 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities 5.
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance 6. Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

FAX 1-732-901-1903

TECHNICAL SUPPORT

TEL 1-800-569-6799

All customers are encouraged to contact us for technical support for the proper use of our products.

E-MAIL IVtech@ivstandards.com

INT'L 1-732-901-1900

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Cadmium in 2% (abs) HNO3

Catalog Number:

CGCD1-1, CGCD1-2, and CGCD1-5

Lot Number:

W-CD01127

Starting Material:

Cd shot

Starting Material Purity (%): Starting Material Lot No 99.998904

Matrix:

C14M30 2% (abs) HNO3

DATE EXPIRED: 03/01/3005 VOS

3.0 CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 03/35/04 INDRG: 4467 PD: F53333

Certified Concentration:

1007 ± 2 µg/mL

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = 92X

(□) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(ars_1)^2]^{1/2}$

271/2 ES = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1007 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

 $1005 \pm 5 \, \mu g/mL$

ICP Assay NIST SRM 3108 Lot Number: 890312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al	<	0.00090	M	Dу	<	0.01191	<u>o</u>	Li	<	0.00002	M	Pr	<	0.00060	0	Те	<	0.00700
<u>M</u>	Sb		0.00039	M	Er	<	0.00993	<u>M</u>	Lu	<	0.00079	M	Re	<	0.00199	<u>M</u>	Tb	<	0.00060
M	As	<	0.01985	M	Eu	<	0.00596	<u>0</u>	Mg		0.00002	M	Rh	<	0.00199	M	TI	<	0.00199
M	Ва	<	0.01985	M	Gd	<	0.00199	M	Mn	<	0.00794	<u>M</u>	Rb	<	0.00199	M	Th	<	0.00199
M	Ве	<	0.00099	M	Ga	<	0.00199	<u>0</u>	Hg	<	0.01200	M	Ru	<	0.00397	М	Tm	<	0.00079
M	Bi	<	0.00079	M	Ge	<	0.01191	M	Мо	<	0.00397	<u>M</u>	Sm	<	0.00199	M	Sn	<	0.00993
Q	8	<	0.00900	M	Au	<	0.00596	M	Nd	<	0.00397	<u>M</u>	Sc	<	0.01985	<u>M</u>	Ti	<	0.09925
<u>s</u>	Cd			M	Hf	<	0.00397	Q	Ni	<	0.00300	<u>M</u>	Se	<	0.01588	M	W	<	0.01985
Ō	Ca		0.00378	M	Но	<	0.00099	M	Nb	<	0.00099	ō	Si	<	0.00340	M	U	<	0.00397
M	Се	<	0.00993	<u>0</u>	In	<	0.00200	Ū	Os			М	Ag	<	0.00397	<u>M</u>	٧	<	0.00397
M	Cs	<	0.00060	М	Ir	<	0.00993	· <u>M</u>	Pd		0.00691	М	Na	<	0.19849	M	Yb	<	0.00199
M	Сг	<	0.00993	0	Fe	<	0.00110	Q	P	<	0.00300	<u>M</u>	\$r	<	0.00099	<u>M</u>	Y	<	0.07940
M	Со	<	0.00596	M	La	<	0.00099	M	Pt	<	0.00397	0	s	<	0.03000	ō	Zn		0.00040
M	Cu	<	0.01191	M	Pb	<	0.00596	Q	ĸ		0.00015	<u>M</u>	Ta	<	0.01389	M	Zr	<	0.00993
M - C	heck	ed	by ICP-MS	٥-	Chec	kec	by ICP-OES	i - S	pect	ral I	nterference	n - 1	Not C	hed	cked For	s - S	Soluti	on:	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4-€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 112.41; +2; 4;Cd,(OH) (aq)" and Cd(OH)(aq)" Chemical Compatibility - Stable in HCl, HNO, H,SO., and HF. Avoid basic media forming insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in acidic media. The sulfide, carbonate, oxalate, phosphate, and cyanide are insoluble in water and soluble in HCl, HNO, and NH.OH. The chloride, bromide and iodide are soluble inwater. Cdl, us one of the few iodides soluble in ethanol. All compounds of Cd are soluble in excess Nal, due to the formation of the complex ion, Cdl.*: Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO,/LDPE container.

Cd Containing Samples (Preparation and Solution) - Metal (soluble in HNO,); Oxides (Soluble in HCl or HNO,); Ores (Dissolve in HCl / HNO, then take to tumes with H,SO.. The silica and lead sulfate are filtered off after addition of water.); Organic based (dry ash at 450 € and dissolve ash in HCl) (sulfuric/peroxide acid digestion).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	Wester obserts of the second s											
Technique/Line			Estimated D.L.	Order	Type	Interferences (underlined indicates severe at alboncs.)						
	ICP-OES	214.438 nm	0.003 / 0.0003 µg/mL	1	ion	Pt, ir						
	ICP-OES	228.802 nm	0.003 / 0.0003 µg/mL	1	atom	Co, Ir, <u>As,</u> Pt						
	ICP-OES	226.502 nm	0.003 / 0.0003 µg/mL	1	ion	r						
	ICP-MS	111 amu	11 ppt	n/a	M.	*Mo"O						

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Reland (SCS), September (ABCER), Singapore (ASR), Slovenia (SIQ), Spain (AFNOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

		ABS/RADU				٥
DATE R	ECEIVE	D: 0a : 03	/25/9	4		
DATE E	XPIRED	: 03	101/a	$\infty 5$	VOS	
		6.5				
		PO:				

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 24, 2003

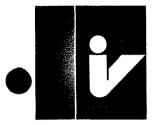
Expiration Date:

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

for Stutten Known in Pour Daine

2 0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0		•	•
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGCO1-1, CGCO1-2, W-QCO01114 Co powder 99.995670 22897 2% (abs) HNO3	INORGANIC LABS/RADCHEM LABS B. 1& 3
3.0	CERTIFIED VALUES AND U	JNCERTAINTIES	DATE OPENED: 03/01/2005 VO
	Certified Concentration:	1002 ± 3 µg/mL	TNORG: 4468 PU: F59393

Custom-Grade 1000 µg/mL Cobalt in 2% (abs) HNO3

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

Certified Density:

DESCRIPTION OF CRM

(C) = mean

1.016 g/mL (measured at 22° C)

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha - 5)^2]^{1/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 998 ± 4 µg/mL

ICP Assay NIST SRM 3181 Lot Number: 000630

Assay Method #2

1002 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION - The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99,9985% efficient for the removal of particles down to 0.3 µm.

				1
<u>O</u> Ai 0.00025	<u>M</u> Dy < 0.02419	Q Li 0.00001	<u>M</u> Pr < 0.00121	<u>M</u> Te < 0.12097
<u>M</u> Sb < 0.00202	<u>M</u> Er < 0.02016	<u>M</u> Lu < 0.00161	<u>M</u> Re < 0.00403	M Tb < 0.00121
Q As < 0.10000	<u>M</u> Eu < 0.01210	<u>O</u> Mg 0.00045	M Rh < 0.00403	<u>M</u> TI < 0.00403
<u>M</u> Ba < 0.04032	<u>M</u> Gd < 0.00403	Q Mn 0.00003	<u>M</u> Rb < 0.00403	M Th < 0.00403
M Be < 0.00202	<u>M</u> Ga < 0.00403	<u>Q</u> Hg < 0.05000	M Ru < 0.00807	<u>M</u> Tm < 0.00161
M Bi < 0.00161	<u>M</u> Ge < 0.02419	<u>M</u> Mo < 0.00807	<u>M</u> Sm < 0.00403	<u>M</u> Sn < 0.02016
<u>O</u> B < 0.04000	<u>M</u> Au < 0.01210	M Nd < 0.00807	M Sc < 0.04032	<u>M</u> Ti < 0.20162
<u>M</u> Cd < 0.01210	<u>M</u> Hf < 0.00807	Q Ni < 0.02000	<u>M</u> Se < 0.03226	<u>M</u> W < 0.04032
<u>O</u> Ca 0.00325	<u>M</u> Ho < 0.00202	M Nb < 0.00202	<u>O</u> Si < 0.00400	<u>M</u> U < 0.00807
<u>M</u> Ce < 0.02016	<u>M</u> In < 0.04032	n Os	M Ag < 0.00807	<u>M</u> V < 0.00807
M Cs < 0.00121	<u>M</u> Ir < 0.02016	M Pd < 0.02016	O Na 0.00138	M Yb < 0.00403
<u>M</u> Cr < 0.02016	<u>Q</u> Fe 0.00875	<u>n</u> P	M Sr < 0.00202	<u>M</u> Y < 0.16129
<u>s</u> Co	M La < 0.00202	M Pt < 0.00807	<u>n</u> S	<u>M</u> Zn < 0.08065
M Cu < 0.02419	M Pb < 0.01210	Q K 0.03000	<u>M</u> Ta < 0.02823	<u>M</u> Zr < 0.02016
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

ICP-OES

ICP-MS

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

0.01/.002 µg/mL

2 ppt

For detection limit and linearity studies

237,862 nm

59 amu

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.9332; +2; 6; Co(H,O),"

Chemical Competibility - Stable in HCI, HNO., H, SO., HF, H, PO. . Avoid basic media. Stable with most metals and inorganic

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container. Co Containing Samples (Preparation and Solution) - Metal (soluble in HNO₁); Oxides (Soluble in HCI); Ores (Dissolve in HCI/HNO₂).

Atomic Spect	roscopic Infor	mation (ICP-OES D	.L.s are g	Nuen as	<u>racial/axial</u> view):	
Technique/Lir	ne	Estimated D.L.	Order	Type	interferences (underlined indicates	severe at walconcs.)
ICP-OES 23	36,892 nm	0.017.002 µg/mL	1	ion	Fe, W, Ta	
ICP-OES 22	28.616 nm	0.017.001 µg/mL	1	ion		

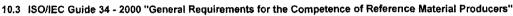
W, Re, Al, Ta "'Ca"O'H, "'Ar"O'H, "'Ar"Na, "'Ca"O, "Mg"Cl ion n/a

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

010403

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:


Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Police (CORC), Police (APACE), Since (CSR), Solvenia (SIC), Social (APACE), Suitander (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 28, 2003

Expiration Date:

EXPIRES

INO	RGANIC LABS	/RADCHEM	LABS ¹	Pg.⊋⊍€a
DATE	RECEIVED:	03/61/6	<u>1005</u>	700
DATE	OPENED:	09/95/9	24	
INOR	G: 4468	PO:_ <u>F5</u>	<u> 2656</u>	

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

CertifyIng Officer:

Paul Gaines, Chemist, Senior Technical Director

John Strutten Known in in Park Lain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis of

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Manganese in 2% (abs) HNO3 2.0

Catalog Number:

CGMN1-1, CGMN1-2, and CGMN1-5

Lot Number:

W-MN02036

Starting Material:

Mn pieces

Starting Material Purity (%): Starting Material Lot No

99.995300 21563

Matrix:

3.0

INORGANIC LABS/RADCHEM LABS 7314 a DATE RECEIVED: ____O\(\dol \lambda \l

2% (abs) HNO3

DATE EXPIRED: QQ/QJ/acco5 NOS

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 01/30/64 INORG: 4434 PD: £53301

Certified Concentration:

 $1000 \pm 2 \mu g/mL$

Certified Density:

1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(ers)]^{1/2}$

BS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1 4.1

 $1000 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3132 Lot Number: 890903

Assay Method #2

1003 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u>	Al		0.00221	М	Dy	<	0.02471	Q	Li		0.00020	M	Pr	<	0.00124	<u>M</u>	Те	<	0.12355
M	Sb	<	0.00206	М	Er	<	0.02059	M	Lu	<	0.00165	M	Re	<	0.00412	М	Tb	<	0.00124
M	As	<	0.04118	М	Eu	<	0.01236	Q	Mg		0.03350	M	Rh	<	0.00412	M	TI	<	0.00412
M	Ва	<	0.04118	M	Gd	<	0.00412	<u>\$</u>	Mn			M	Rb	<	0.00412	M	Th	<	0.00412
M	Ве	<	0.00206	Q	Ga	<	0.05000	į	Hg			М	Ru	<	0.00824	M	Tm	<	0.00165
M	Bi	<	0.00165	Q	Ge	<	0.00300	M	Мо	<	0.00824	M	Sm	<	0.00412	M	Sn	<	0.02059
Q	В		0.00295	М	Au	<	0.01236	M	Nd	<	0.00824	M	Sc	<	0.04118	M	Ti	<	0.20592
<u>M</u>	Cd	<	0.01236	<u>M</u>	Hf	<	0.00824	M	Ni	<	0.03295	M	Se	<	0.03295	M	W	<	0.04118
Q	Ca		0.00340	<u>M</u>	Но	<	0.00206	<u>M</u>	Nb	<	0.00206	Q	Si		0.00275	М	U	<	0.00824
M	Се	<	0.02059	<u>M</u>	In	<	0.04118	n	Os			M	Ag	<	0.00824	M	٧	<	0.00824
M	Cs	<	0.00124	M	lr	<	0.02059	M	Pd	<	0.02059	Ω	Na		0.00225	M	Yb	<	0.00412
M	Сг	<	0.02059	Q	Fe	<	0.01000	i	P			<u>M</u>	\$r	<	0.00206	М	Υ	<	0.16474
<u>M</u>	Со	<	0.01236	M	La	<	0.00206	M	Pt	<	0.00824	l	s			Q	Zn		0.00250
M	Cu	<	0.02471	M	Pb	<	0.01236	Q	K		0.00105	M	Та	<	0.02883	M	Zr	<	0.02059
м - С	Check	æd	by ICP-MS	0-	Chec	kec	by ICP-OES	i-S	pecti	al l	nterference	n - 1	Not (he	cked For	s - S	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 54.9380; +2; 6; Mn(H₂O),²¹

Chemical Compatibility - Stable in HCl, HNO₁, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₁ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5 % HNO₂/LDPE container.

Min Containing Samples (Preparation and Solution) - Metal (Soluble in dilute acids); Oxides (Soluble in dilute acids); Oxides (Soluble in dilute acids); Ores (Dissolve with HCI. If silica is present add HF and then tume off silica by adding H₂SO₂ and heat to SO₂ tumes - dense white tumes)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

	TAGE OF		incertification of the manufacture of the second								
Technique/Line		Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at afforcs.)					
	ICP-OES	257,610nm	0.0014 / 0.00002 µg/mL	1	ion	Ce, W, Re					
	ICP-OES	259,373 nm	0.0016 / 0.00002 µg/mL	1	ion	U, Ta, Mo, Fe, Nb					
	ICP-OES	260.569 nm	0.0021 /0.00002 µg/mL	1	ion	Co					
	ICP-MS	55 amu	10 ppt	n/a	M'	""Ar' "N'H, ""K""O, ""CI""O, ""Ar' "N, ""Ar' "O, ""Ar' "O'H ,					
			••			**Ar'*O'H, **CI''O'H, **Na**S					

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LAB	BYRADCHEM LABSP3, 3& 2
DATE RECEIVED:	40/06/10
DATE EXPIRED:	03/01/3005 VOS
DATE OPENED:	01/30/04
INORG: 4434	F0: <u>F5a30</u>)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: August 04, 2003

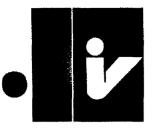
Expiration Date:

1£2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutten known de Paux Aaim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Vanadium in 1.4% HNO₃ (abs)

Catalog Number: CGV1-1, CGV1-2 and CGV1-5

Lot Number: T-V02032

Starting Material: Starting Material Purity; Starting Material Lot No: Vanadium Pentoxide 99.999%

46

INORGANIC LABS/RADCHEM LABS

DATE RECEIVED: 1/5/13
DATE EXPIRED: 1/4/1/2004

DATE OPEŅED:

ORG: **432** PC

CERTIFIED CONCENTRATION: 990 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \frac{\sum x_i}{n}$

Uncertainty (±) = $2[(\sum_s)^2]^{1/2}$

(∑) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 993 \pm 4 μ g/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 990 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3165.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to $0.3~\mu m$.

M	Ai	0.0095	M	Dγ	< 0.00060	M	Li	<0.0010	<u>M</u>	Pr	< 0.000030	M	Te	< 0.0030
M	Sb	0.042	M	Er	< 0.00050	M	Ļu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	M	Mg	0.0089	M	Rh	< 0.00010	<u>M</u>	Tì	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	i	Mn		<u>M</u>	RЬ	< 0.00010	M	Th	< 0.00010
M	Ве	<0.000050	M	Ga	< 0.00010	į	Hg		M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	<u>M</u>	Ge	< 0.00060	M	Mo	0.016	M	Sm	< 0.00010	M	Sn	< 0.00050
M	В	< 0.0070	M	Αu	< 0.00030	M	Nd	< 0.00020	M	Sc	< 0.0010	M	Ti	< 0.0050
M	Cđ	<0.00030	M	Hf	< 0.00020	ō	Ni	< 0.050	<u>0</u>	Se	< 0.40	M	W	0.00055
<u>o</u>	Ca	< 0.010	M	Ho	< 0.000050	M	Nb	0.00024	<u>0</u>	Si	< 0.030	M	U	0.0011
M	Ce	< 0.00050	Q	in	< 0.070	<u>n</u> _	Os		M	Ag	0.00044	<u>s</u>	٧	
M	Cs	<0.000030	M	ir	< 0.00050	M	Pd	< 0.00050	Q	Na	< 0.090	M	Υb	< 0.00010
Ō	Cr	< 0.020	<u>o</u>	Fe	< 0.050	į	P		M	Sr	<0.000050	M	Υ	< 0.0040
o	Co	< 0.050	M	La	< 0.000050	M	Pt	< 0.00020	n.	\$		M	Zn	0.0041
M	Cu	<0.00060	M	Pb	<0.00030	ņ	K		<u>M</u>	Ta	< 0.00070	M	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.015 g/mL

O - checked by ICP-OES

(over)

s - solution standard element

QA:KLR#.0822020K

M - checked by ICP-MS

Quality Assurance Manager

Paul R. Haines

n - not checked for

EXPIRES 187

QUALITY STANDARD DOCUMENTATION

1. ISO 9001 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium
(Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech
Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece
(ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR),
Switzerland (SQS)

- 2. ISO Guide 25 A2LA .Accredited (Certificate Number 0883-01)
- 3. MII-STD-45662A
- 4. 10CFR50 Appendix B
- 5. 10CFR21

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the

standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 FAX 1-732-901-1903 E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Zinc in 1.4% (abs) HNO3 2.0

Catalog Number:

CGZN1-1, CGZN1-2, and CGZN1-5

Lot Number:

W-ZN02018

Starting Material:

Zn shot

INORGANIC LABS/RADCHEM LABS

Starting Material Purity (%):

99.999889

DATE RECEIVED:

_12]/ DATE EXPIRED:

Starting Material Lot No

J17L26

DATE OPENED:

Matrix:

1.4% (abs) HNO₃

11/5/03 INDRG: 43/9

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $1006 \pm 3 \,\mu g/mL$

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

x, = Individual results

Uncertainty $(\pm) = 2((2+5))^2(1/2)$

n = number of measurements

BS = The summation of all significant estimated errors.

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SPM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

at "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

1) This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

1002 ± 6 µg/mL

ICP Assay NIST SRM 3168a Lot Number: 001402

Assay Method #2

 $1006 \pm 3 \,\mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.; 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al < 0.00200	<u>M</u> Dy < 0.02440	<u>O</u> LI 0.00001 <u>M</u> Pr < 0.00122	<u>M</u> Te < 0.12198
M Sb < 0.00203	<u>M</u> Er < 0.02033	M Lu < 0.00163 M Re < 0.00407	<u>M</u> Tb < 0.00122
M As < 0.04066	<u>M</u> Eu < 0.01220	<u>O</u> Mg 0.00011 <u>M</u> Rh < 0.00407	<u>M</u> T1 < 0.00407
M Ba < 0.04066	M Gd < 0.00407	M Mn < 0.01626 M Rb < 0.00407	<u>M</u> Th < 0.00407
<u>M</u> Be < 0.00203	M Ga < 0.00407	<u>O</u> Hg < 0.01000 <u>M</u> Ru < 0.00813	<u>M</u> Tm < 0.00163
<u>M</u> Bi < 0.00163	<u>M</u> Ge < 0.02440	M Mo < 0.00813 M Sm < 0.00407	<u>M</u> Sn < 0.02033
<u>O</u> B 0.00015	<u>M</u> Au < 0.01220	M Nd < 0.00813 M Sc < 0.04066	<u>M</u> Ti < 0.20331
M Cd < 0.01220	M Hf < 0.00813	<u>O</u> Ni 0.00009 <u>M</u> Se < 0.03253	<u>M</u> W < 0.04066
<u>O</u> Ca 0.00022	<u>M</u> Ho < 0.00203	M Nb < 0.00203 O Si < 0.00400	<u>M</u> U < 0.00813
<u>M</u> Ce < 0.02033	<u>M</u> In < 0.04066	<u>n</u> Os <u>M</u> Ag < 0.00813	<u>M</u> V < 0.00813
<u>M</u> Cs < 0.00122	<u>M</u> ir < 0.02033	M Pd < 0.02033 O Na 0.00055	<u>M</u> Yb < 0.00407
<u>O</u> Cr < 0.00100	O Fe 0.00005	O P < 0.00300 M Sr < 0.00203	<u>M</u> Y < 0.16264
<u>M</u> Co < 0.01220	<u>M</u> La < 0.00203	<u>M</u> Pt < 0.00813 <u>Q</u> S < 0.02000	<u>s</u> Zn
<u>Q</u> Cu < 0.00050	M Pb < 0.01220	<u>O</u> K 0.00018 <u>M</u> Ta < 0.02846	\underline{M} Zr < 0.02033
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 mc. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 65.39; +2; 4; Zn(OH)(eq)**

Chemical Competibility - Stable in HCI, HNO, H,SO. HF, H,PO. Avoid basic media that promotes the formation of insoluble carbonate and hydroxide. Stable with most metals and inorganic anions in addic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO, /LDPE container.

Zn Containing Samples (Preparation and Solution) - Metal (Soluble in HNO,); Oxides (Soluble in HCl.), Ores (Dissolve in HCl.), AHNO,); Organic based (Dry esh at 450 € and dissolve ash in HCl.) (Sulfuric/peroxide add digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

 Technique/Line
 Estimated 0.L.
 Order Image (Line Included Inclu

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCRC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

INORGANIC LABS/RADCHEM LABS

DATE RECEIVED: 1/5/03
DATE EXPIRED: 12/1/204
DATE OPENED: 11/5/03

INORG: 43/9 _____PO:__

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μg/mL Silver in 3.5% HNO₃ (abs)

Catalog Number: CGAG1-1, CGAG1-2 and CGAG1-5

Lot Number: T-AG02015

Starting Material: Starting Material Purity:

Starting Material Lot No:

Silver Metal 99.999% F15102

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: ______08/06/03_ DATE EXPIRED: 09/01/2004 VOS DATE OPENED: 08/06/03 INORG: 4000 PO: F50004

CERTIFIED CONCENTRATION: 1001 \pm 2 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum_{x} x_i$

Uncertainty (±) = $2[(\sum_s j^2]^{1/2}]$

n - not checked for

 $(\bar{x}) = mean$

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1004 ± 3 µg/mL

Method: Volhard Titration vs NIST SRM 999a Potassium Chloride

Instrument Analysis: 1001 ± 2 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3151.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN µg/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

0	Al	< 0.00010		Dy	< 0.00060	_	Li	< 0.000030	<u>M</u>	Pr	< 0.000030	0	Ta	< 0.030
Q	M	C0.00010	M	Ly		Ö	L			, ,		⊻		
M	Sb	< 0.000050	M	Er	< 0.00050	M	Lu	<0.000040	M	Re	< 0.00010	<u>M</u>	ТЪ	< 0.000030
0	As	< 0.0050	M	Eu	< 0.00030	<u>o</u>	Mg	< 0.000040	M	Rh	< 0.00010	M	TI	< 0.00010
M	Ва	< 0.0010	M	Gd	< 0.00010	Q	Mn	< 0.00030	<u>M</u>	Rb	< 0.00010	M	Th	<0.00010
<u>o</u>	Ве	< 0.00050	M	Ga	< 0.00010	<u>o</u>	Hg	0.00090	M	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	8i	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	< 0.00010	M	Sก	< 0.00050
Ō	B	< 0.0020	Ω	Au	< 0.012	M	Nd	< 0.00020	<u>M</u>	Sc	< 0.0010	<u>o</u>	Ti	<0.00070
0	Cd	< 0.0020	M	Hf	< 0.00020	Ō	Ni	< 0.0070	<u>o</u>	Se	< 0.036	M	W	< 0.0010
Ō	Св	< 0.000050	M	Но	< 0.000050	M	Nb	< 0.000050	Ω	Si	< 0.0030	M	U	< 0.00020
M	Сe	< 0.00050	<u>0</u>	In	< 0.020	<u>n</u>	Os		县	Ag		M	٧	< 0.00020
M	Cs	< 0.000030	M	ir	< 0.00050	M	Pd	< 0.00050	<u>0</u>	Na	< 0.090	M	Υb	< 0.00010
0	Ċr	< 0.0020	<u>o</u>	Fe	< 0.00070	Ω	Ρ	< 0.030	<u>M</u>	Sr	< 0.000050	M	Υ	< 0.0040
M	Co	< 0.00030	M	Le	< 0.000050	<u>M</u>	Pŧ	< 0.00020	<u>o</u>	S	< 0.020	Ω	Zn	< 0.0010
M	Cu	< 0.00060	M	Pb	< 0.00030	ō	K	< 0.0060	<u>M</u>	Ta	< 0.00070	<u>M</u>	Zr	< 0.00050

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.024 g/mL

O - checked by ICP-OES

QA:KL Nov.00210200

M - checked by ICP-MS

Paul R. Haines Quality Assurance Manager

Expires:

s - solution standard element

QUALITY STANDARD DOCUMENTATION

1.ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium
(Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic
(CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT),

Ireland (NSAI), Israel (SII), Italy (CISO), Japan (IQA), Korae (KSA-QA), Netherlands (KEMA), Norway (NSAII)

Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

2.ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate 883.02

3.ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate 883.01

4.MIL-STD-45662A

5.10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licencing of Production and Utilization Facilities 6.10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -<u>The date after which a standard solution should not be used.</u> A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Arsenic in 1.4% (abs) HNO3 2.0

Catalog Number:

CGAS1-1, CGAS1-2, and CGAS1-5

Lot Number:

W-AS02022

Starting Material:

POLYCRYSTALINE LUMP

Starting Material Purity (%):

99.998994

Starting Material Lot No

23115

Matrix:

3.0

1.4% (abs) HNO3

INORGANIC LABS/RADCHEM LABS% 142

DATE RECEIVED: 01/30/04

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: 03/01/3005 VO DATE OFENED: OV/ao/04

Certified Concentration:

1014 ± 3 µg/mL

INURG: 4433 PU: F52301

Certified Density:

1.012 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (ロコ = 💁 🗓

(□) = mean

 $x_1 = individual results$

n = number of measurements

Uncertainty $(\pm) = 2[(\alpha - 5)]$

BS = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

The "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1014 \pm 3 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3103a Lot Number: 891003

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI 0.00038	<u>M</u> Dy < 0.01596	<u>O</u> Li 0.00009 <u>M</u> Pr < 0.00080	<u>M</u> Te < 0.07978
<u>O</u> Sb < 0.01000	M Er < 0.01330	<u>M</u> Lu < 0.00106 <u>O</u> Re < 0.01000	<u>M</u> Tb < 0.00080
<u>s</u> As	M Eu < 0.00798	O Mg 0.00009 M Rh < 0.00266	<u>M</u> TI < 0.00266
<u>M</u> Ba < 0.02660	M Gd < 0.00266	<u>O</u> Mn < 0.00003 <u>M</u> Rb < 0.00266	M Th < 0.00266
<u>M</u> Be < 0.00133	M Ga < 0.00266	<u>O</u> Hg < 0.01200 <u>M</u> Ru < 0.00532	<u>M</u> Tm < 0.00106
M Bi < 0.00106	M Ge < 0.01596	<u>M</u> Mo < 0.00532 <u>M</u> Sm < 0.00266	<u>O</u> Sn 0.00049
<u>O</u> B < 0.01200	M Au < 0.00798	<u>M</u> Nd < 0.00532 <u>M</u> Sc < 0.02660	<u>M</u> Ti < 0.13297
M Cd < 0.00798	M Hf < 0.00532	<u>M</u> Ni < 0.02128 <u>M</u> Se < 0.02128	<u>M</u> W < 0.02660
O Ca 0.00189	M Ho < 0.00133	<u>O</u> Nb < 0.00200 <u>O</u> Sì 0.00415	<u>M</u> U < 0.00532
<u>M</u> Ce < 0.01330	<u>M</u> In < 0.02660	<u>n</u> Os <u>M</u> Ag < 0.00532	M V < 0.00532
M Cs < 0.00080	<u>M</u> ir < 0.01330	<u>M</u> Pd < 0.01330 <u>O</u> Na 0.00159	M Yb < 0.00266
<u>M</u> Cr < 0.01330	O Fe < 0.00110	<u>O</u> P < 0.00260 <u>M</u> Sr < 0.00133	<u>M</u> Y < 0.10638
<u>M</u> Co < 0.00798	M La < 0.00133	<u>M</u> Pt < 0.00532 <u>Q</u> S < 0.02500	<u>O</u> Zn 0.00057
<u>M</u> Cu < 0.01596	M Pb < 0.00798	<u>О</u> К 0.00132 <u>М</u> Та < 0.01862	<u>M</u> Zr < 0.01330
M - Checked by ICP-MS	O - Checked by ICP-OES	I - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 74.9216; mix of +3 and +5; 6; H, AsO. and HASO,

Chemical Compatibility -Arsenic has no cationic chemistry. It is soluble in HCl, HNO₄,H₂PO₄, H₃SO₄ and HF aqueous matrices water and NH₄OH . It is stable with most inorganic anions (forms arsenate when boiled with chromate) but many cationic metals form the insoluble arsenates under pH neutral conditions. When fluorinated and / or under acidic conditions arsenate formation is typically not a problem at moderate to low concentrations.

Stability - 2-100 ppb levels stable for months alone or mixed with other elements at equivalent levels in 1% HNO. / LDPE container, 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

As Containing Samples (Preparation and Solution) - As" (soluble in 1:1 H.O / HNO.) Oxides (the oxide exists in crystelline and amorphous forms where the amorphoric form is more water soluble. The oxides typically dissolve in dilute addic solutions when boiled), Minerals (One gram of powered sample is fused in a Niº crucible with 10 grams of a 1:1 mix of K₂CO₂ and KNO₂ and the melt extracted with hot water); Organic Matrices (0.2 to 0.5 grams of the sample are fused with 15 grams of a 1:1 Na₂CO₂ /Na₂O₂ mix in a Ni^a crucible. The fuseate is extracted with water and addited with HNO₂)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

Technique	/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	189.042 nm	0.05 / 0.005 µg/mL	1	atom	Cr
ICP-OES	193.696 nm	0.1 / 0.01 µg/mL	1	atom	V, Ge
ICP-OES	228.812 nm	0.1 / 0.01 µg/mL	1	etom	Cd, Pt, Ir, Co "APPCI, 2*Co"O, "Ar"Ar"H, "Ar"CI, "Ar"K, '"Nd2", '"Sm2"
ICP-MS	75 amu	20 ppt	n/a	M'	aveci' 25C0.20' aveav.H' ave.ci' avek', ave; 'aze.

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	RADCHEM LABS79.242
DATE RECEIVED:	01/20/04
DATE EXPIRED:	09/01/3005 402
DATE OPENED:	40106110
	_FU: _ E5 330\

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 01, 2003

Expiration Date:

EXPIRES 112005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folh Strutten knowen en Paux Lain

NORG:

ventures organic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles." DATE

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Lead in 0.35% (abs) HNO3 2.0

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

W-PB02114

Starting Material:

Pb(NO3)2

Starting Material Purity (%):

Starting Material Lot No

99.999974 22150

Matrix:

0.35% (abs) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1006 \pm 2 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is the wet assay value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (C) = exx

(C)1 = mean

 $x_i = individual results$

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1005 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3128 Lot Number: 991504

Assay Method #2

1006 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

<u>o</u>	Al	<	0.00270	M	Dу	<	0.01193	Ō	Li	<	0.00002	М	Pr	<	0.00060	<u>M</u>	Te	<	0.05965
<u>M</u>	Sb	<	0.00099	M	Er	<	0.00994	M	Lu	<	0.00080	M	Re	<	0.00199	М	Tb	<	0.00060
M	As	<	0.01989	М	Eu	<	0.00597	Q	Mg		0.00008	ō	Rh	<	0.00900	0	Ti		0.00130
<u>M</u>	Ва	<	0.01989	M	Gđ	<	0.00199	<u>M</u>	Mn	<	0.00795	М	Rb	<	0.00199	M	Th	<	0.00199
M	Ве	<	0.00099	M	Ga	<	0.00199	<u>0</u>	Hg	<	0.01500	M	Ru	<	0.00398	М	Tm	<	08000.0
<u>0</u>	Bi	<	0.02000	м	Ge	<	0.01193	М	Мо	<	0.00398	M	Sm	<	0.00199	M	Sn	<	0.00994
ō	В	<	0.04000	M	Au	<	0.00597	<u>M</u>	Nd	<	0.00398	M	Sc	<	0.01989	M	Ti	<	0.09942
<u>M</u>	Cd	<	0.00597	M	Hf	<	0.00398	М	Ni	<	0.01591	М	Se	<	0.01591	M	W	<	0.01989
Ō	Са		0.00009	<u>M</u>	Но	<	0.00099	M	Nb	<	0.00099	0	SI	<	0.00340	M	U	<	0.00398
M	Се	<	0.00994	M	In	<	0.01989	Ū	Os			М	Ag	<	0.00398	M	٧	<	0.00398
M	Cs	<	0.00060	M	lr	<	0.00994	M	Pd	<	0.00994	0	Na	<	0.00600	M	Υb	<	0.00199
<u>M</u>	Cr	<	0.00994	으	Fe		0.00011	O	P	<	0.00500	M	Sr	<	0.00099	M	Υ	<	0.07954
M	Со	<	0.00597	M	La	<	0.00099	<u>M</u>	Pt	<	0.00398	<u>o</u>	\$	<	0.10000	M	Zn	<	0.03977
M	Cu	<	0.01193	<u>s</u>	Pb			Q	ĸ	<	0.00180	M	Ta	<	0.01392	M	Zr	<	0.00994
M - Ch	heck	ed	by ICP-MS	0-	Chec	жeс	by ICP-OES	1-8	pect	ral I	nterference	n - I	Not C	hec	ked For	s-	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010423

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 207.2; +2; 6; Pb(H₂O), 12

Chemical Compatibility - Soluble in HCl, HF and HNO₃. Avoid H₂SO₄. Stable with most metals and inorganic anions forming insoluble carbonate, borate, sulfate, sulfate, sulfate, phosphate, oxalate, chromate, tannate, indate, and cyanide in neutral aqueous media

Stability - 2-100 ppb levels stable for months in 1% HNO₂ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNOs / LDPE container.

Pb Containing Samples (Preparation and Solution) - Metal (Best dissolved in 1:1 H.O / HNO₃) Oxides (The many different Pb oxides are soluble in HNO₃ with the exception of PbO₂ which is soluble in HCl or HF); Ores and Alloys (Best attacked using 1:1 H₂O / HNO₃), Organic Matrices (Dry ash and dissolve in dilute HCl.).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at authorics.)
ICP-OES	168.215 nm	0.03 / 0.003 µg/mL	1	ion	Co
ICP-OES	220.353 nm	0.04 / 0.006 ugant.	1	ion	Bi, Nb
ICP-OES	217.000 nm	0.09 / 0.03 µg/mL	1	atom	W, Ir, Hf, Sb, Th
ICP-MS	208 amu	5 ppt	n/a	Μ'	' <u>™</u> Pt'•O, '' ¹⁹ *Os'•O

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopen , and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical i *nstability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases træinspiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life.

 Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOR	GANIC	LABS/	RADCH	EM LABS >	92
DATE	RECEIV	ED:	11/3/03		U
DATE	EXPIRE	D: _//	11/04	DA.	
DATE	OPENED	:17	3/13		···
INORG	: 431	3	_PO:	F52258	

Certification Date: Januar > 23, 2003

Expiration Date: EXP

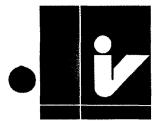
EXPIRES 3.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:


Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Main

follow Strutter

ventures inorqanic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

of analysis certificate

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Antimony in 0.7% (abs) HNO3 / 3% Tartaric Acid 2.0

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

W-SB02078

Starting Material:

Sb shot

Starting Material Purity (%): Starting Material Lot No

99.989188 D17L24

Matrix:

0.7% (abs) HNO3 / 3% Tartaric Acid

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: $1005 \pm 2 \mu g/mL$

Certified Density:

1.019 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = 22'X

(C) = mean

 $x_i = individual results$

n = number of measurements

Uncertainty (±) = $2[(\alpha + s_1)^2]^{1/2}$

ES = The summation of all significant estimated errors (Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6,10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1005 \pm 2 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3102a Lot Number: 990707

Assay Method #2

1000 µa/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INORGANIC LABS/	RADCHEM LABS Post of 3
DATE RECEIVED:	02/35/04
DATE EXPIRED:	03/01/a05 VIIS
DATE OPENED:	09/35/04
INOKG: 4464	_FO: _F53333

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q AI 0.04519	<u>M</u> Dy < 0.00597	Q Li 0.00004 <u>M</u> Pr <	0.00030 <u>M</u> Te < 0.02983
<u>S</u> Sb	M Er < 0.00497	M Lu < 0.00040 M Re <	0.00099 <u>M</u> Tb < 0.00030
M As < 0.00994	<u>M</u> Eu < 0.00298	<u>Q</u> Mg 0.00171 <u>M</u> Rh <	0.00099 <u>M</u> Ti 0.00040
<u>O</u> Ba 0.00003	<u>M</u> Gd < 0.00099	Q Mn 0.00321 M Rb <	0.00099 <u>M</u> Th < 0.00099
Q Be < 0.00001	<u>M</u> Ga < 0.00099	Q Hg < 0.01500 M Ru <	0.00199 <u>M</u> Tm < 0.00040
M Bi 0.00170	<u>M</u> Ge < 0.00597	M Mo < 0.00199 M Sm <	0.00099 <u>M</u> Sn 0.00050
<u>O</u> B 0.00100	<u>M</u> Au < 0.00298	M Nd < 0.00199 Q Sc <	0.00016 Q Ti 0.00131
M Cd < 0.00298	<u>M</u> Hf < 0.00199	Q Ni 0.00100 <u>M</u> Se <	0.49711 <u>M</u> W < 0.00994
<u>Q</u> Ca 0.00884	<u>M</u> Ho < 0.00050	M Nb < 0.00050 Q Si	0.00502 <u>M</u> U < 0.00199
<u>O</u> Ce < 0.00300	<u>M</u> In < 0.00994	<u>n</u> Os <u>M</u> Ag <	0.00199 <u>M</u> V < 0.00199
<u>M</u> Cs < 0.00030	M Ir < 0.00497	M Pd < 0.00497 Q Na	0.00362 <u>M</u> Yb < 0.00099
O Cr 0.00954	<u>О</u> Fe 0.01306	Q P < 0.04000 M Sr <	0.00050 <u>M</u> Y < 0.03977
<u>M</u> Co < 0.00298	<u>O</u> La < 0.00120	M Pt < 0.00199 i S	<u>Q</u> Zn 0.00141
O Cu 0.00321	M Pb 0.00060	O K 0.01004 M Ta <	0.00696 <u>M</u> Zr < 0.00497
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Che	cked For s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 121.75; +3; & Sb(O)C.H.O.*

Charmical Competibility - Stable in concentrated HCI, dilute or concentrated HF. Stable in dilute HNO₃ as the fluoride or tartrate complex. Avoid basic media. Stable with most metals and inorganic anions in acidic media as the tartrate provided the acidity is not too high or the acid is oxidizing causing loss of the stabilizing tartrate ion. The fluoride complex of antimony is stable in strong acid but you should only mix with other metals that are fluorinated.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LOPE container. 1-10,000 ppm solutions chemically stable for years in 1-2% HNO_a / LOPE container.

Sb Containing Samples (Preparation and Solution) - Metal and elloys (Soluble in H₂O / HF / HNO₃ mixture), Oxides (Soluble in HCl and tartaric acid or H₂O / HF / HNO₃ mixtures), Ores (Fusion with Na₂CO₃ in Pt⁹ followed by dissolving the fuseate in a H₂O / HF / HNO₃ mixture); Organic based (Sulfuric acid / hydrogen peroxide digestion)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu		Estimated D.L.	Order	Type	Interferences (underlined indicates severe at afforcs.)
ICP-OES	206.833 nm	0.03 / 0.003 µg/mL	1	atom	<u>Ta,</u> Cr, Ge, Hf
ICP-OES	217.581 nm	0.05 / 0.005 µg/mL	1	atom	Nb, W, Re, Fe,
ICP-OES	231.147 nm	0.06 / 0.006 µg/mL	1	atom	Ni, Co Pt
ICP-MS	121 amu	5 ppt	n.ta	M'	' ^m Pd' [#] O ₁

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS).

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC LABS	FRADCHEM LABS Ry Doff Q
DATE	RECEIVED:	09/95/04
DATE	EXPIRED:	03/01/2005 105
		03/35/04
INORG	# 4464 # # # # # # # # # # # # # # # # #	FO: F53333

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

EXPIRES

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten known in Paux Dain

1.0

2l0

31.0

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Selenium in 1.4% (abs) HNO3

Catalog Number: CGSE1-1, CGSE1-2, and CGSE1-5

Lot Number: T-SE01102
Starting Material: Se shot

Starting Material Purity (%): 99.9971 INORGANIC LABS/RADCHEM LABS 1.4-4 2

Starting Material Lot No C09L08

DATE RECEIVED: 00/20/03

DATE EXPIRED: 07/01/2004 V05

Matrix: 1.4% (abs) HNO3 DATE OPENED: 96/03/03 INDRG: 4150 PO: F50370

CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 995 ± 3 µg/mL

Certified Density: 1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

calculation of the certified value and the differently.

Certified Value ($\Box i = \underline{e_T x_i}$ ($\Box i = mean$) n $x_i = individual results$

n = number of measurements

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

© "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 995 ± 3 μg/mL (Avg. 2 runs)

ICP Assay NIST SRM 3149 Lot Number: 992106

Assay Method #2 1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI	0.00017	<u>M</u> Dy < 0.01196	<u>O</u> Li < 0.00003	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.05981
M Sb	0.00160	<u>M</u> Er < 0.00997	<u>M</u> Lu < 0.00080	<u>Q</u> Re < 0.00900	<u>M</u> Tb < 0.00060
O As	< 0.00500	<u>M</u> Eu < 0.00598	<u>O</u> Mg < 0.00003	M Rh < 0.00199	<u>M</u> TI < 0.00199
М Ва	< 0.01994	<u>M</u> Gd < 0.00199	<u>M</u> Mn < 0.00798	M Rb < 0.00199	M Th < 0.00199
<u>Q</u> Be	< 0.00009	M Ga < 0.00199	O Hg 0,01950	<u>O</u> Ru 0.00220	<u>M</u> Tm < 0.00080
M Bi	< 0.00080	<u>M</u> Ge < 0.01196	O Mo < 0.00400	<u>M</u> Sm < 0.00199	<u>M</u> Sn < 0.00997
<u>о</u> в	< 0.00006	<u>M</u> Au < 0.00598	M Nd < 0.00399	M Sc < 0.01994	<u>M</u> Ti < 0.09969
M Cd	< 0.00598	M Hf < 0.00399	O Ni < 0.00090	<u>S</u> Se	<u>M</u> W < 0.01994
O Ca	0.00200	<u>M</u> Ho < 0.00100	Q Nb < 0.00400	Q Si 0.00055	<u>M</u> U < 0.00399
M Ce	< 0.00997	M in < 0.01994	<u>n</u> Os	M Ag 0.00070	<u>M</u> V < 0.00399
M Cs	< 0.00060	<u>M</u> ir < 0.00997	M Pd < 0.00997	O Na 0.00355	<u>M</u> Yb < 0.00199
M Cr	< 0.00997	O Fe 0.00060	O P < 0.00300	M Sr < 0.00100	<u>M</u> Y < 0.07975
М Со	< 0.00598	M La < 0.00100	M Pt < 0.00399	<u>o</u> s 0.00500	<u>M</u> Zn < 0.03988
M Cu	< 0.01196	M Pb < 0.00598	<u>о</u> к 0.00070	<u>M</u> Ta < 0.01396	O Zr < 0.00040
M - Check	ed by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010431

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -78.96; +4; 6; H,SeOs

Chemical Compatibility - Soluble in HCl, HNO₄, H₂PO₄, H₃SO₄ and HF aqueous matrices and water. It is stable with most inorganic anions but many estionic metals form the insoluble selenites under pH neutral conditions. When fluorinated and/or under acidic conditions precipitation is typically not a problem at moderate to low concentrations.

Stability - 2.100 ppb levels - stable for morths alone or mixed with other elements at equivalent levels - in 1 % HNO₃ / LDPE container, 1.10,000 ppm solutions chemically stable for years in 1.5% HNO₃ / LDPE container.

Se Containing Samples (Preparation and Solution) - Metal (Solution in HNO₃); Oxides (Readily soluble in water); Minerals and alloys (Acid digestion with HNO₃ or HNO₃ / HF) Organic Matrices (Acid digestion with hot concentrated H₂SO₄ accompanied by the careful dropwise addition of H₂O₃ until clear)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	e/Line	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe at validonos.)
ICP-OES	196.026 nm	0.08 / 0.006 µg/mL	1	atom	Fe
ICP-OES	203.985 nm	0.2 / 0.05 µg/mL	1	atom	Sb, lr, Cr, Ta
ICP-OES	206.279 nm	0.3 / 0.16 µg/mL	1	atom	Cr, <u>Pt</u>
ICP-MS	82 amu	200 ppt	n/a	М"	'*C**Cl ₂
	ICP-OES ICP-OES ICP-OES	Technique/Line ICP-OES 196.026 nm ICP-OES 203.985 nm ICP-OES 206.279 nm ICP-MS 82 amu	ICP-OES 196.026 nm 0.08 / 0.006 µg/mL ICP-OES 203.985 nm 0.2 / 0.05 µg/mL ICP-OES 206.279 nm 0.3 / 0.16 µg/mL	ICP-OES 196.026 nm	ICP-OES

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (NCSC), Poland (NCSC), Spring (SIQ), Spring (

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC LAB	S/RADCHEM	LABSTS 2 of 3
DATE	RECEIVED:	06/90	<u>03</u>
DATE	EXPIRED: _	07/01/	9000t vx
DATE	OPENED:	<u> </u>	/03
	3:4150		

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the Integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: November 27, 2002

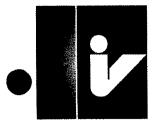
Libbi Neuman

Expiration Date: EXPIRES

01 22 00 4

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:


Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Thallium in 0.5% (abs) HNO3

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

W-QTL01094

Starting Material:

TLNO3

Starting Material Purity (%):

99.996539

Starting Material Lot No

22928

Matrix:

0.5% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS %, 446

DATE RECEIVED: ____OI/OO/OH_

DATE EXPIRED: 03/01/305

DATE OPENED: 01/20/04

3.0 CERTIFIED VALUES AND UNCERTAINTIES

INORG: 4435 FO: F5830)

Certified Concentration:

1001 ± 4 μg/mL

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(x_1-x_1)^2]^{1/2}$

1/2 ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1001 \pm 4 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3158 Lot Number: 993012

Assay Method #2

1000 ua/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>M</u> Al < 0.01000	<u>M</u> Dy < 0.00600	<u>Q</u> Li < 0.00002 <u>M</u> Pr < 0.00030	<u>M</u> Te < 0.03000
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00500	<u>M</u> Lu < 0.00040 <u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
<u>M</u> As < 0.01000	<u>M</u> Eu < 0.00300	<u>O</u> Mg 0.00012 <u>M</u> Rh < 0.00100	<u>s</u> Tl
<u>M</u> Ba < 0.01000	M Gd < 0.00100	<u>M</u> Mn < 0.00400 <u>M</u> Rb < 0.00100	<u>M</u> Th < 0.00100
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00100	Q Hg < 0.01200 M Ru < 0.00200	<u>M</u> Tm < 0.00040
M Bi < 0.00040	<u>M</u> Ge < 0.00600	<u>M</u> Mo < 0.00200 <u>M</u> Sm < 0.00100	<u>M</u> Sn < 0.00500
<u>Q</u> B < 0.00140	<u>M</u> Au < 0.00300	M Nd < 0.00200 M Sc < 0.01000	<u>M</u> Ti < 0.05000
O Cd 0.00150	<u>M</u> Hf < 0.00200	<u>M</u> Ni < 0.00800 <u>M</u> Se < 0.00800	<u>M</u> W < 0.01000
Q Ca 0.00085	<u>M</u> Ho < 0.00050	<u>M</u> Nb < 0.00050	<u>M</u> U < 0.00200
<u>M</u> Ce < 0.00500	<u>M</u> In < 0.01000	<u>n</u> Os <u>M</u> Ag 0.04000	<u>M</u> V < 0.00200
M Cs < 0.00030	<u>M</u> ir < 0.00500	<u>M</u> Pd < 0.00500	<u>M</u> Yb < 0.00100
<u>M</u> Cr < 0.00500	<u>Q</u> Fe 0.00030	<u>O</u> P < 0.00260 <u>M</u> Sr < 0.00050	<u>M</u> Y < 0.04000
<u>M</u> Co < 0.00300	<u>M</u> La < 0.00050	M Pt < 0.00200 Q S < 0.03000	O Zn 0.00110
<u>M</u> Cu < 0.00600	M Pb 0.00210	<u>Q</u> K < 0.00180 <u>M</u> Ta < 0.00700	<u>M</u> Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

010435

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 204.383; +1; 6; TI(H₂O₃."

Chemical Compatibility - Soluble in HCl, HNO,, and H,SO. Stable withmost metals and inorganic anions. The sulfite, thiocyanate and oxalete are moderately soluble; the phosphate and assenite are slightly soluble and the sulfide is insoluble. Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

TI Containing Samples (Preparation and Solution) - Metal (Best dissolved in HNO, which forms chiefly the TI' fon.) Oxide (The Ihallous oxide is readily soluble in water. The thallic oxide requires high levels of acid), Ores (Carbonate fusion in Pt* followed by HCI dissolution), Organic Matrices (Sulfuriciperoxide digestion or dry ash and dissolution in HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	190.864 nm	0.04 / 0.004 µg/mL	1	ion	V, Ti
ICP-OES	276.787 nm	0.1 / 0.01 µg/mL	1	atom	Ta, V, Fe, Cr
ICP-OES	351.924 nm	0.2 / 0.02 µg/mL	1	atom	Th, Ce, Zr
ICP-MS	205 amu	2 ppt	n/a	M.	149O24O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RVA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INO	RUANIC	LABS/	RADCHEM	LABST	みまみ タ
DATE	RECEIV	ED:	01/9010	4	min erre pet wat
DATE	EXPIRE	ED :	03/01/2	1005	702
DATE	OPENET) #	01/20/	04	
			FU: IS		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 09, 2003

Expiration Date:

EXPIRES 1 £ 2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Kebbi Newman Known an

Certificate of Analysis

JSTOM-GRADE SOLUTION

1000 µg/mL Lanthanum in 1.4% HNO₃ (abs)

Catalog Number: CGLA1-1 and CGLA1-5

Lot Number: T-QLA01057

Starting Material: Starting Material Purity: Starting Material Lot No: Lanthanum Oxide 99.999% LA-0-5-017

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 08/86/03 DATE EXPIRED: _____09/01/2004 DATE OPENED: 08/06/03 INORG: 4221 FO: F53034

CERTIFIED CONCENTRATION: 1002 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (x) =
$$\sum_{x}$$

Uncertainty (±) =
$$2\{(\sum_s)^2\}^{1/2}$$

 $x_i = individual results$

= number of measurements $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1002 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM 928 Lead Nitrate.

Instrument Analysis: 1007 ± 3 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3127a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu \mathrm{g/mL}$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm .

<u>o</u> .	Αl	< 0.040	M	Dy	<0.00060	<u>M</u>	Li	< 0.0010	<u>0</u>	Pr	< 0.020	<u>M</u>	Te	< 0.0030
M	Sb	< 0.000050	M	Er	0.0010	M	Lu	0.000040	<u>M</u>	Re	<0.00010	<u>M</u>	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	M	Mg	< 0.0030	<u>M</u>	Rh	<0.00010	M	TI	< 0.00010
0	Ba	< 0.020	M	Gđ	0.039	M	Мn	< 0.00040	<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.030	<u>M</u>	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	<u>M</u>	Sm	0.00040	M	Sn	< 0.00050
<u>0</u>	В	< 0.020	M	Au	< 0.00030	M	Nd	0.00020	<u>M</u>	Sc	< 0.0010	M	Ti	< 0.0050
<u>M</u>	Cd	< 0.00030	M	Hf	< 0.00020	<u>0</u>	Ni	< 0.050	<u>0</u>	Se	< 0.40	M	W	< 0.0010
0	Ca	< 0.010	<u>M</u>	Ho	0.00010	M	Nb	< 0.000050	Q	Si	< 0.020	<u>M</u>	U	< 0.00020
i	Се		0	in	< 0.030	<u>n</u>	Оs		M	Ag	< 0.00020	M	٧	< 0.00020
n	Cs		M	lr .	< 0.00050	M	Pd	< 0.00050	Q	Na	< 0.090	<u>M</u>	Yb	< 0.00010
M	Cr	< 0.00050	Q	Fe	< 0.050	<u>0</u>	P	< 0.050	M	Sr	< 0.000050	<u>M</u>	Υ	< 0.0040
M	Co	< 0.00030	<u>s</u>	La		M	Pţ	< 0.00020	<u>n</u>	S		M	Zn	< 0.0020
M	Cu	< 0.00060	M	Pb	< 0.00030	<u>n</u>	K		M	Ta	< 0.00070	M	Zr	< 0.00050
М -	chec	ked by ICP-MS	0 - 0	heck	ed by ICP-OES	i - sp	ectra	l interference	n - no	t chec	cked for	s - soluti	on st	andard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.009 g/mL

(over)

QA:KSL Rev.1217020N

Inorganic Ventures, Inc.

195 Lehigh Avenue • Suite 4 • Lakewood, NJ 08701 Orders: 800-669-6799 • FAX (732) 901-1903 Technical Support: 800-569-6799

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883,02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality
 Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the specified

uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL

bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date - The date after which a standard solution should not be used. A one year expiration date is

recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μ m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

TEL 1-800-569-6799

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

All described and discouraged to constant as for the similar surprises and proper and constant property.

INT'L 1-732-901-1900

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Palladium in 3.3% (abs) HCL 2.0

Catalog Number:

CGPD1-1 and CGPD1-5

Lot Number:

W-PD02019

Starting Material:

Pd(NO3)2

Starting Material Purity (%):

99.999248

Starting Material Lot No

11974A-00

Matrix:

3.0

3.3% (abs) HCL

INORGANIC LABS/RADCHEM LABS 3.100

DATE RECEIVED: ____03/01/04

DATE EXPIRED: 03/01/2005 YD DATE OPENED: 03/01/04

CERTIFIED VALUES AND UNCERTAINTIES Certified Concentration:

INORG: 4477 PO: F52333

994 ± 3 μg/mL

1.022 g/mL (measured at 22° C) **Certified Density:**

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

 $x_i = individual results$

n = number of measurements

ES = The summation of all significant estimated errors. Uncertainty (±) = $2(\alpha + 5) = 10$ (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $994 \pm 3 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3138 Lot Number: 990207

Assav Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> AI 0.00400	<u>M</u> Dy < 0.00060	<u>O</u> Li < 0.04000	<u>M</u> Pr < 0.00003	<u>Q</u> Te < 0.01300
O Sb < 0.00500	<u>M</u> Er < 0.00050	<u>M</u> Lu < 0.00004	<u>M</u> Re < 0.00010	<u>M</u> Tb < 0.00003
O As < 0.01400	<u>M</u> Eu < 0.00030	<u>O</u> Mg < 0.01100	O Rh < 0.00600	<u>M</u> TI < 0.00010
<u>M</u> Ba < 0.00100	M Gd < 0.00010	<u>O</u> Mn < 0.00650	M Rb < 0.00010	<u>M</u> Th < 0.00010
<u>O</u> Be < 0.00009	<u>M</u> Ga < 0.00010	<u>Q</u> Hg < 0.01100	<u>O</u> Ru < 0.00200	<u>M</u> Tm < 0.00004
<u>M</u> Bi < 0.00004	<u>M</u> Ge < 0.00060	<u>M</u> Mo < 0.00020	<u>M</u> Sm < 0.00010	<u>O</u> Sn < 0.00700
<u>O</u> B < 0.00090	<u>O</u> Au < 0.00300	M Nd < 0.00020	O Sc < 0.00009	<u>O</u> Ti < 0.00100
O Cd < 0.00600	<u>M</u> Hf < 0.00020	<u>O</u> Ni 0.01800	<u>M</u> Se < 0.00080	<u>M</u> W < 0.00100
<u>O</u> Ca 0.00700	M Ho < 0.00005	M Nb < 0.00005	O Si 0.00600	<u>M</u> U < 0.00020
<u>M</u> Ce < 0.00050	<u>O</u> In < 0.03300	<u>n</u> Os	<u>O</u> Ag < 0.00670	<u>M</u> V < 0.00020
M Cs < 0.00003	<u>M</u> Ir < 0.00050	<u>S</u> Pd	O Na 0.01500	<u>M</u> Yb < 0.00010
<u>O</u> Cr 0.00450	<u>O</u> Fe 0.04600	O P 0.00600	<u>M</u> Sr < 0.00005	<u>M</u> Y < 0.00400
M Co < 0.00030	<u>M</u> La < 0.00005	O Pt < 0.00600	<u>O</u> S < 0.02500	<u>O</u> Zn < 0.00060
<u>O</u> Cu 0.00360	M Pb < 0.00030	O K < 0.02000	<u>M</u> Ta < 0.00070	<u>M</u> Zr < 0.00050
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 %. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 106.42 +2; & Pd(H₂O), ²¹

Chemical Compatibility - Stable in HCl, HNO₁, H₂SO₄, HF, H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media. Avoid contact with water soluble organics such as aldehydes since Pd²⁺ is easily reduced.

Stability - 2-100 ppb levels. 2ppb Pd is stable for 1 day in 1% HNO₂ / LDPE container. 10 ppb is stable for 3 days in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for

years in 1-5% HNO₃ / LDPE container.

Pd Containing Samples (Preparation and Solution) - Metal (Soluble in HNO₃ or Aqua Regia), Oxides (Soluble in HCI), Ores (Dissolve in HCI / HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	Estimated 0.L.	Order	Type	Interferences (underlined indicates	severe at affoncs.)
ICP-OES 340.450	nm 0.04 / 0.003 µg/ml	_ 1 atom	Ce, Th	i, Zr	
ICP-OES 363.470	nm 0.05 / 0.007 µg/ml	_ 1 atom			
ICP-OES 229.65	nm 0.07 / 0.004 µg/ml	. 1 ion	Co		
ICP-MS 105 an	au 2 ppt 🗀	n/a	M'	**Ar**Cu, ***Y**O	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-ml. low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 14, 2003

Expiration Date:

INORO	SANIC LABS/	RADCHEM	LABS	6906.eA
DATE	RECEIVED:	03/01	104	
DATE E	EXPIRED:	03/01/	acco 5	V Ø)
DATE (DPENED:	-03/01/	10±	

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

010442

folm Strutten

entalin h

Paux Aaim

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 Catalog Number: CGS1-1 and CGS1-5 Lot Number: W-QS01098 INORGANIC LABS/RADCHEM LABS Starting Material: DATE RECEIVED: 11/5/03 H2SO4 DATE EXPIRED: 12/1/204_ Starting Material Purity (%): 99.999965

Custom-Grade 1000 µg/mL Sulfur in H20

Starting Material Lot No N38818 Matrix:

H₂0

DATE OPENED: (1/5/63)
INORG: 43/7 FO:

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

DESCRIPTION OF CRM

 $1010 \pm 2 \mu g/mL$

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x₁ = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 s_1)^2]^{1/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 998 ± 8 µg/mL

ICP Assay NIST SRM 3154 Lot Number: 892205

Assay Method #2

 $1010 \pm 2 \mu g/mL$

Acidimetric NIST SRM 84k Lot Number: 84k

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O Al 0.00025	<u>M</u> Dy < 0.01197	<u>O</u> Li < 0.00016	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.05984
M Sb < 0.00100	<u>M</u> Er < 0.00997	<u>M</u> Lu < 0.00080	<u>M</u> Re < 0.00200	<u>M</u> Tb < 0.00060
M As < 0.01995	<u>M</u> Eu < 0.00598	<u>O</u> Mg < 0.00004	M Rh < 0.00200	<u>M</u> TI < 0.00200
M Ba < 0.01995	M Gd < 0.00200	<u>M</u> Mn < 0.00798	M Rb < 0.00200	<u>M</u> Th < 0.00200
Q Be < 0.00200	<u>M</u> Ga < 0.00200	<u>Q</u> Hg < 0.01100	<u>M</u> Ru < 0.00399	<u>M</u> Tm < 0.00080
<u>M</u> Bi < 0.00080	M Ge < 0.01197	<u>M</u> Mo < 0.00399	M Sm < 0.00200	<u>M</u> Sn < 0.00997
<u>O</u> B < 0.00990	M Au < 0.00598	<u>M</u> Nd < 0.00399	<u>M</u> Sc < 0.01995	<u>M</u> Ti < 0.09974
M Cd < 0.00598	M Hf < 0.00399	<u>Q</u> Ni < 0.00230	<u>Q</u> Se < 0.00620	<u>M</u> W < 0.01995
Q Ca 0.00020	<u>M</u> Ho < 0.00100	M Nb < 0.00100	<u>O</u> Si < 0.00410	<u>M</u> U < 0.00399
M Ce < 0.00997	M In < 0.01995	n Os	M Ag < 0.00399	M V < 0.00399
M Cs < 0.00060	M Ir < 0.00997	<u>M</u> Pd < 0.00997	O Na < 0.00010	<u>M</u> Yb < 0.00200
M Cr < 0.00997	Q Fe 0.00015	<u>O</u> P < 0.00480	<u>M</u> Sr < 0.00100	<u>M</u> Y < 0.07979
M Co < 0.00598	<u>M</u> La < 0.00100	M Pt < 0.00399	<u>s</u> S	<u>O</u> Zn 0.00125
M Cu < 0.01197	<u>M</u> Pb < 0.00598	<u>Q</u> K < 0.00170	<u>M</u> Ta < 0.01396	M Zr < 0.00997
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 n€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 32.066, +6; 6, (\bigcirc), S(\bigcirc H),

Chemical Compatibility - Soluble in HCI, HNO, H,PO. and HF aqueous matrices water and NH.OH. Stable with all metals and inorganic anions at low to moderate ppm levels under acidic conditions except Ba and Pb and to a lesser extent Sr, and Ca. Stability - 2-100 ppb levels-stability unknown- in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in LDPE container.

S Containing Samples (Preparation and Solution) - We most often get questions about the determination of S in Rocks, Silicates and insoluble sulfates (the finely powered sample is fused in a Pt* crucible with AB* times its weight of Na,CO, + 0.5 grams KNO. The fuseate is extracted with water. Any BaSO. present in the sample is transposed by the carbonate fusion to the BaCO, which is left behind in the water-insoluble residue. If PbSO is present the fuseate should be boiled with a sodium carbonate saturated with CO, solution for 1 hour or more where the PbSO, will be transposed to the water insoluble carbonate which can be fittered off, Boiling the fuseate with a saturated carbonate solution is good insurance for samples containing Ba, Sr, and Ca. The Ba, Pb, Sr, Ca, free filtrate can be additied and measured by ICP.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axia) view):

Technique/Line		Estimated D.L.	Order	<u>Type</u>	Interferences (underlined indicates severe at afforcs.)
CP-OES	166.669nm	0.2 / 0.19 µg/mL	1	atom	\$I,B
ICP-OES	182.034 nm	0.3 / 0.024 µg/mL	1	atom	
ICP-OES	143.328 nm	0.4 / 0.035 µg/mL	1	atom	
ICP-MS	32 amu	30,000 ppt	n/a	Μ'	1'O,, 'N''O, '%''O, "N'O'H, 'N''O'H

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

INOF	RGANIC RECEIV EXPIRE	LABS/	'RADÇ	HEM L	-ABS	`
DATE	RECEIV	ÆD:	11/5/0	3		<u>~</u>
DATE	EXPIRE	D: ja	lilaa	24	DK	
DATE	OPENEI): //[5/03			
INORG	OPENET	17	_FO:	P5	<u> 2258</u>	

Certification Date: August 27, 2003

Expiration Date: EXPIRES

182004

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

follow Strutters known an Paul Aaim

Certificate of Analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Thorium in 3% HNO₃ (abs)

Catalog Number: CGTH1-1 and CGTH1-5

Lot Number: T-TH01059

Starting Material: Starting Material Purity: Starting Material Lot No: Thorium Nitrate 99.999% C01L32 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 10/08/03
DATE EXPIRED: 11/01/2004 V03
DATE OPENED: 10/08/03
INORG: 4383 PO: F53340

CERTIFIED CONCENTRATION: 1001 ± 3 µg/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value
$$(\bar{x}) = \frac{\sum x_i}{n}$$

Uncertainty (±) = $2[(\sum_{s} j^2]^{1/2}]$

(x) = mean

x = individual results

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1001 ± 3 µg/mL

Method: EDTA Titration vs NIST SRM Lead Nitrate.

Instrument Analysis: 1002 \pm 4 μ g/ml.

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3159.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN μ g/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

					1.00					and the second					
<u>o</u>	ΑI	< 0.00090	M	Dγ	0.0062		0	Li	< 0.000030	<u>M</u>	Pr	0.00037	<u>0</u>	Te	< 0.031
M	Sb	< 0.000050	M	Er	< 0.00050		M	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
Q	As	< 0.014	M	Ευ	< 0.00030		Q	Mg	< 0.000060	<u>M</u>	Rh	< 0.00010	<u>M</u>	TI	< 0.00010
M	Ba	0.0050	M	Gd	0.0054		Q	Mn	< 0.0000030	M	Rb	< 0.00010	<u>s</u>	Th	
<u>o</u>	Be	< 0.00020	M	Ga	< 0.00010	• 1	į	Hg		<u>M</u>	Ru	< 0.00020	<u>M</u>	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060		M	Мо	<0.00020	M	Sm	0.0095	<u>M</u>	Sn	< 0.00050
<u>o</u>	В	< 0.00060	M	Αu	< 0.00030	*	M	Nd	0.0026	M	Sc	< 0.0010	<u>o</u>	Ti	< 0.00092
<u>o</u>	Cd	< 0.0045	M	Hf	< 0.00020		0	Ni	< 0.0023	M	Se	< 0.010	<u>M</u>	W	< 0.0010
<u>0</u>	Са	< 0.030	M	Ho	0.00022		M	Nb	< 0.000050	0	Si	< 0.0034	<u>M</u>	U	0.074
M	Се	< 0.00050	0	In	< 0.0020		<u>n</u>	Os		M	Αg	< 0.00020	<u>M</u>	٧	< 0.00020
M	Cs	< 0.000030	M	lr	< 0.00050		M	Pd	< 0.00050	<u>o</u>	Na	< 0.00010	M	Υb	< 0.00010
<u>0</u>	Cr	< 0.00080	Q	Fe	< 0.0011		į	Р		<u>M</u>	Sr	< 0.000050	<u>M</u>	Υ	< 0.0040
M	Co	< 0.00030	M	La	< 0.000050		M	Pt	< 0.00020	<u>o</u>	\$	< 0.072	<u>o</u>	Zn	< 0.00058
M	Cu	< 0.00060	M	Pb	< 0.00030		<u>o</u>	K	< 0.0017	M	Ta	< 0.00070	M	Zr	0.0085

i - spectral interference

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.022 g/mL

O - checked by ICP-OES

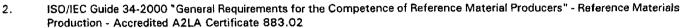
UA:KL Rev. 050802DN

M - checked by ICP-MS

over)

s - solution standard element

Technical Support: 800-569-6799


Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality
 Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues, Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeate use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic √ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials' - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Uranium in 1% (abs) HNO3 2.0

Catalog Number:

CGU1-1 and CGU1-5

Lot Number:

W-U01059

Starting Material:

UO2(NO3)2.6H2O

Starting Material Purity (%):

99.994419

Starting Material Lot No

RB0018

Matrix:

3.0

1% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS PS. 1 S. 2

DATE RECEIVED: ____OQ/Q5/CH

Certified Concentration:

CERTIFIED VALUES AND UNCERTAINTIES

997 ± 2 µg/mL

DATE EXPIRED: 03/01/305 INORG: 4473 PD: F50303

Certified Density:

1.021 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx,

(C) = mean

x_i = individual results

Uncertainty (±) = $2[(e_1 \cdot s_1)^2]^{1/2}$

n = number of measurements

#S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 " TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assav Method #1

997 ± 2 µg/mL

ICP Assay NIST SRM 3164 Lot Number: 891509

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Fiftered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

M Al 0.05166	M Dy < 0.01494	<u>M</u> Li < 0.02490	<u>M</u> Pr < 0.00075	<u>M</u> Te < 0.07470
M Sb < 0.00125	<u>M</u> Er < 0.01245	<u>M</u> Lu < 0.00100	<u>M</u> Re < 0.00249	M Tb 0.00003
<u>M</u> As < 0.02490	<u>M</u> Eu < 0.00747	<u>M</u> Mg < 0.07470	<u>M</u> Rh < 0.00249	<u>M</u> TI < 0.00249
M Ba < 0.02490	M Gd 0.00310	M Mn 0.00083	M Rb < 0.00249	M Th < 0.00249
M Be < 0.00125	<u>M</u> Ga < 0.00249	<u>i</u> Hg	<u>M</u> Ru < 0.00498	<u>M</u> Tm < 0.00100
<u>M</u> Bi < 0.00100	<u>M</u> Ge < 0.01494	<u>M</u> Mo 0.00093	<u>M</u> Sm 0.00010	<u>Q</u> Sn < 0.10000
M B < 0.17429	<u>M</u> Au < 0.00747	M Nd < 0.00498	M Sc < 0.02490	<u>M</u> Tì 0.00258
M Cd 0.00103	<u>M</u> Hf < 0.00498	M Ni < 0.01992	<u>M</u> Se < 0.01992	<u>M</u> W < 0.02490
<u>O</u> Ca 0.05395	M Ho 0.00052	M Nb < 0.00125	<u>i</u> Si	<u>s</u> U
M Ce 0.00010	<u>M</u> in < 0.02490	<u>n</u> Os	M Ag < 0.00498	<u>M</u> V < 0.00498
M Cs < 0.00075	M Ir < 0.01245	M Pd < 0.01245	<u>O</u> Na 0.00664	M Yb < 0.00249
M Cr < 0.01245	<u>M</u> Fe < 0.49798	į P	M Sr < 0.00125	<u>M</u> Y 0.00062
M Co < 0.00747	M La 0.00145	M Pt < 0.00498	į S	<u>M</u> Zn 0.00114
M Cu 0.00072	M Pb 0.00217	į K	<u>M</u> Ta < 0.01743	<u>M</u> Zr < 0.01245
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight: Valence; Coordination Number; Chemical Form in Solution - 238.0289; +6; 8; UO," (uranyl)

Chemical Corrupatibility - Soluble in HCI and HNO₁. Avoid H₂PO₂. H₂SO₂ and HF matrices should not be a problem depending upon [U]. Although the UO₂² ion is distinctly basic, any U" will precipitate in basic media. UO₃² salts are generally soluble in water and UO₃² is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF₃ and UF₄ are water soluble.

Stability - 2-100 ppb levels stable for months in 1% HNO, /LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, /LDPE container.

U Containing Samples (Preparation and Solution) - Metal (Dissolves rapidly in HCI and HNO₂). Oxide (Soluble in HNO₂); Ores (Digest for 1-2 hours with 1 gram of cre to 30 mL 1:1 HNO₂. Silica insolubles are removed by filtration after bringing the sample to turnes with conc. H₂SO₂.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at accords.)
ICP-OES	385.958 nm	0.3 / 0.01 µg/ml.	1	ion	Th, Fe
ICP-OES	367.007 nm	0.3 / 0.02 µg/mL	1	ion	Th, Ce
ICP-OES	263.553 nm	0.3 / 0.01 µg/mL	1	ion	Ce, ir, Th, Rh, W, Zr, Ta, Ti, V, Hf, Fe, Re, Ru
ICP-MS	238 amu	2 ppt	n/a	Μ'	³«Р́b1•O₃

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Rolland (NSAI), Silvania (NSAI), Silvania

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	RGANIC	LABS	/RADCH	IEM LABS	3 bg 30+ 9
DATE	RECEIV	ED:	5/60	25/07	
DATE	EXPIRE	ED:	03/0	2005 July	<u>v</u>
DATE	OPENEI) :	09/	22/07	
				_F5938	

*NOTICE TO ICP-MS USERS: The 235U in this standard is depleted. The certified abundances in Atom % are as follows:

	_	Natural Abundance	IV's Certified Abundance
	Isotope	Atom %	Atom %
Uranium	²³⁸ U	99.3	99.8 ± 0.1
	²³⁵ U	0.70	0.204 ± 0.002

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: June 10, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Known a

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, ni 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate o f analysis

Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Tungsten in 1% (abs) HNO3/1% (abs) HF 2.0

Catalog Number:

CGW1-1 and CGW1-5

INORGANIC LABS/RADCHEM LABS \$ 1000

Lot Number:

W-W01080

DATE RECEIVED: 07/31/03 DATE EXPIRED: 08/01/2004 400

Starting Material:

W Powder

DATE OPENED: 08/01/03
INORG: 4303 PD: E59383

Starting Material Purity (%):

99.990703

Starting Material Lot No Matrix:

21418,C31H46,D02J21,E03K06,D11F29 1% (abs) HNO₃/1% (abs) HF

CERTIFIED VALUES AND UNCERTAINTIES 0.

Certified Concentration:

 $1001 \pm 2 \mu g/mL$

Certified Density:

1.006 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x. = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 s_1)^2]^{1/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement, weighing, dijution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

Assay Method #1

 $1001 \pm 2 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3163 Lot Number: 990209

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos, and Sid Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.01792	<u>M</u> Dy < 0.00595	O Li < 0.00008	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02974
M Sb < 0.00050	<u>M</u> Er < 0.00496	<u>M</u> Lu < 0.00040	<u>i</u> Re	<u>M</u> Tb < 0.00030
M As < 0.00991	<u>M</u> Eu < 0.00297	O Mg 0.00120	M Rh < 0.00099	<u>M</u> TI < 0.00099
<u>M</u> Ba < 0.00991	M Gd < 0.00099	M Mn < 0.00397	M Rb < 0.00099	<u>M</u> Th < 0.00099
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00099	O Hg < 0.04778	M Ru < 0.00198	<u>M</u> Tm < 0.00040
<u>M</u> Bi < 0.00040	<u>M</u> Ge < 0.00595	<u>M</u> Mo 0.00050	<u>M</u> Sm < 0.00099	<u>M</u> Sn < 0.00496
<u>O</u> B < 1.19460	M Au < 0.00297	M Nd < 0.00198	O Sc < 0.00036	<u>M</u> Ti 0.00198
M Cd < 0.00297	M Hf < 0.00198	<u>M</u> Ni < 0.00793	<u>M</u> Se < 0.00793	<u>s</u> w
<u>O</u> Ca 0.00080	<u>M</u> Ho < 0.00050	O Nb < 0.06371	O SI < 0.01354	<u>M</u> U < 0.00198
<u>M</u> Ce < 0.00496	<u>M</u> In < 0.00991	<u>n</u> Os	M Ag < 0.00198	M V < 0.00198
<u>M</u> Cs < 0.00030	<u>M</u> Ir < 0.00496	M Pd < 0.00496	<u>O</u> Na 0.04778	<u>M</u> Yb < 0.00099
<u>M</u> Cr < 0.00496	<u>O</u> Fe < 0.03982	<u>n</u> P	M Sr < 0.00050	<u>M</u> Y < 0.03965
<u>M</u> Co < 0.00297	<u>M</u> La < 0.00050	M Pt < 0.00198	<u>n</u> \$	<u>M</u> Zn < 0.01983
<u>M</u> Cu < 0.00595	M Pb 0.00060	<u>O</u> K 0.03146	<u>O</u> Ta < 0.39820	<u>M</u> Zr 0.00079
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use, Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chamical Form in Solution - 183.85, +6; 6,7,8,9 WOF, (chemical form as

Chamical Compatibility - W is very readily hydrolyzed requiring 8.1 to 1% HF solutions for stable acidic solutions. The WOF, is soluble in % levels of HCI and HNO, provided it is in the WOF, form. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths. Is best to be mixed only with other fluorinated metals (Ti, Zr, Hf, Nb, Ta, Mo, Si, Sn, Ge). Look for yellow WO, precipitate if mixed with other transition elements at higher levels indicating instability. The yellow WO, will form over a period of weeks even in trace HF, therefore, HF levels of W multi-element blends should be ~ 1 %. Stability - 2-100 ppb levels stable (Alone or mixed with all other metals that are at comparable levels) as the WOF, or months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the WOF, or chemically stable for years in 1% HF in an

W Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO.); Oxide (Soluble in HF or NH.OH); Organic

Matrices (Dry ash at 450 € in Pt* and dissolve exide with HF).

Atomic Spectroscopic Information (ICP-OES B.L.s are given as radial/axial view):

Techniqu		Estimated D.L.	Order	<u>Ivpe</u>	Interferences (underlined indicates severe at affoncs.)
ICP-OES	207.911 nm	0.03 / 0.001 µg/mL	1	ion	Ru, In
ICP-OES	224.875 nm	0.05 / 0.005 µg/mL	1	ian	Co, Rh, Ag
ICP-OES	209,475 nm	0.05 / 0.005 µg/mL	1	ion	Mo
ICP-MS	182 am u	5 ppt	n/a	Μ.	**Er**O

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	RGANIC						
DATE	RECEIV	ED:	07/	31/03	3		
DATE	EXPIRE	D:	08/0	1/20	04	vos	
DATE	OPENED	#	08/0	77.70	3		
INORG	420	3	_PO:_	F53	38.3		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 10, 2003

Expiration Date:

EXPIRES 1:2004-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

knowner kn

labs ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Yttrium in 1.4% (abs) HNO3 2.0

Catalog Number:

CGY1-1, CGY1-2, and CGY1-5

Lot Number:

X-QY01101

Starting Material:

Y2O3

Starting Material Purity (%):

99.999727

Starting Material Lot No

99189010YL

Matrix:

1.4% (abs) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $1006 \pm 2 \mu g/mL$

Certified Density:

1.010 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(e_2 \cdot s_1)^2]^{1/2}$

BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references. usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assav Method #1

1004 ± 4 µg/mL

ICP Assay NIST SRM 3167a Lot Number: 790412

Assay Method #2

1006 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

INORGAN:	IC LABS/	RADCHEM	LABS 73.	d
DATE RECH	EIVED:	03/30/	24	
DATE EXP	RED:	<u>_04/01/3</u>	SOOD YOU	
DATE OPE	VED:	05/30	<u> </u>	
INORG:!	+513	_PO:_F	53361	

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-lMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>Q</u> Al 0.00024	M Dy < 0.00595	<u>Q</u> Li < 0.00002	M Pr < 0.00030	<u>M</u> Te < 0.02976
<u>O</u> Sb < 0.01000	M Er < 0.00496	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00099	<u>M</u> Tb < 0.00030
<u>M</u> As < 0,00992	<u>M</u> Eu < 0.00298	Q Mg 0.00015	<u>M</u> Rh < 0.00099	<u>M</u> TI < 0.00099
M Ba < 0.00992	M Gd < 0.00099	<u>O</u> Mn < 0.00002	M Rb < 0.00099	<u>M</u> Th < 0.00099
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00099	Q Hg < 0.02000	M Ru < 0.00198	<u>M</u> Tm < 0.00040
M Bi < 0.00040	M Ge < 0.00595	<u>M</u> Mo < 0.00198	<u>M</u> Sm < 0.00099	<u>M</u> Sn < 0.00496
O B 0.00013	<u>M</u> Au < 0.00298	M Nd < 0.00198	<u>O</u> Sc < 0.00003	<u>M</u> Ti < 0.04959
<u>M</u> Cd < 0.00298	M Hf < 0.00198	M Ni < 0.00794	<u>M</u> Se < 0.00794	<u>M</u> W < 0.00992
O Ca 0.00100	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>Q</u> Si 0.00170	<u>M</u> U < 0.00198
M Ce < 0.00496	<u>M</u> In < 0.00992	<u>n</u> Os	<u>Q</u> Ag < 0.02000	<u>O</u> V < 0.00080
M Cs < 0.00030	M ir < 0.00496	Q Pd < 0.10000	<u>O</u> Na < 0.05000	<u>M</u> Yb < 0.00099
M Cr < 0.00496	<u>O</u> Fe 0.00070	<u>Q</u> P < 0.07000	Q Sr < 0.00004	<u>s</u> Y
M Co < 0.00298	<u>M</u> La < 0.00050	<u>M</u> Pt < 0.00198	<u>O</u> S < 0.04300	<u>Q</u> Zn 0.00025
M Cu < 0.00595	<u>M</u> Pb < 0.00298	<u>O</u> K < 0.10000	<u>M</u> Ta < 0.00694	<u>O</u> Zr < 0.00070
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 88.9059; +3; 6; Y(OH)(H,O), '

Chemical Compatibility - Soluble in HCl, H,SO, and HNO₁. Avoid HF, H₂PO, and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, exalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO, / LDPE container.

Y Containing Samples (Preparation and Solution) - Metal (Soluble in acids), Oxide (Dissolve by heating in H₂O/HNO₂), Ores (Carbonate fusion in Pt* followed by HCl dissolution), Organic Matrices (Dry ash and dissolve in 1:1 H₂O /HCl or HNO₂).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at «Doncs.)
ICP-OES	360.073 nm	0.005 / 0.000036 µg/mL	1	ion	Ce, Th
ICP-OES	371.030 nm	0.004 / 0.00007 µg/mL	1	ion	Ce
ICP-OES	377.433 nm	0.005 / 0.0009 µg/ml.	1	ion	Ta, Th
ICP-MS	89 amu	0.8 ppt	n/a	M,	۲٬GerfO, ۱۳۲۲٬

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polyania (NCS), Spain (AFAQE), Signapore (NSB), Slovenia (SIO), Spain (AFAQE), Signapore (NSB), Slovenia (SIO), Spain (AFAQE), Signapore (NSB), Slovenia (SIO), Spain (AFAQE), Signapore (NSB), Slovenia (NSB), Spain (AFAQE), Spain (AFAQE

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10:3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	RGANIC					
DATE	RECEIV EXPIRE	ED:	03/	30/0	£	
DATE	EXPIRE	D:	04	OV:	3005	_v∞
DATE	OPENED) <u> </u>	03	/30,	10	
INORG	: 45	13	FO:	. E	5336	

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2004

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

fold Stutten known and Paux Main

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0	DESCRIPTION OF CRM	Custom-Grade 1000 µg/m	L Zirconium in H20 tr. HNO3 tr. HF
	Catalog Number: Lot Number: Starting Material: Starting Material Purity (%): Starting Material Lot No Matrix:	CGZR1-1 and CGZR1-5 W-ZR01056 ZrO2 99.994542 22855 H20 tr. HNO3 tr. HF	INORGANIC LABS/RADCHEM LABS ?>1 0 + 7
3.0	CERTIFIED VALUES AND	UNCERTAINTIES	DATE EXPIRED: 08/01/2005 V03 DATE OPENED: 01/23/04 INDRG: 4442 PD: F52306

Certified Concentration: $1004 \pm 2 \mu g/mL$

Certified Density: 0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(1⊡1 = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = 2[(2/5)]112

ES = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3169 Lot Number: 990109

Assay Method #2

1000 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy, The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al		0.01416	M	Dy	<	0.01188	Q	Li	<	0.00012	M	Pr	<	0.00059	Ņ	Į T	9 .	<	0.05942
M St	o <	0.00099	M	€r	<	0.00990	M	Lu	<	0.00079	M	Re	<	0.00198	M	Į T	.	<	0.00059
M As	5 <	0.01981	M	Eu	<	0.00594	Q	Mg	<	0.00012	M	Rh	<	0.00198	M	Į T		<	0.00198
м Ва	a <	0.01981	M	Gd	<	0.00198	Ω	Mn	<	0.00401	М	Rb	<	0.00198	Δ	T	h	<	0.00198
Q Be	e <	0.40048	М	Ga	<	0.00198	Q	Hg	<	0.04405	M	Ru	<	0.00396	V	<u> </u>	m	<	0.00079
M Bi	· •	0.00079	M	Ge	<	0.01188	Q	Мо	<	0.40048	<u>M</u>	Sm	<	0.00198	Ū	<u> </u>	n	<	0.00990
МВ	4	0.13864	М	Au	<	0.00594	M	Nd	<	0.00396	Ω	Sc	<	0.00064	2	<u> </u>	i	<	0.16019
<u>O</u> Co	d <	0.02123	<u>M</u>	Hf		0.04403	Q	Ní		0.01214	М	Se	<	0.01585	V	ı v	1	<	0.01981
Q Ca	a	0.00809	M	Ho	<	0.00099	Q	Nb	<	0.08010	Q	Si	<	0.80096	7	1 U		<	0.00396
<u>M</u> Ce	е «	0.00990	М	in	<	0.01981	n	Os			ō	Ag	<	0.40048	V	ı v		<	0.00396
M Cs	s ·	0.00059	M	ir	<	0.00990	M	Pd	<	0.00990	ō	Na	<	0.02803	Ū	<u>1</u> Y	b	<	0.00198
<u>Q</u> Cr	r <	0.00881	Q	Fe		0.00344	Q	Р	<	0.01922	M	Sr	<	0.00099	2	<u> Y</u>		<	0.00401
M C	0 4	0.00594	М	La	<	0.00099	M	Pt	<	0.00396	Q	\$	<	0.28033	2	<u> </u>	n	<	0.04005
<u>M</u> C	น -	0.01188	М	Pb	<	0.00594	Q	ĸ	<	0.00681	M	Та	<	0.01386	9	Z	f		
		by ICP-MS	0-	Chec	kec	by ICP-OES	i - S	Spect	ral l	nterference	n - 1	Not C	he	cked For	S	- Sol	utio	n S	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 91.224; +4; 6,7,8, Zr(F),*

Cherrical Compatibility - Soluble in concentrated HCI, HF, H, SO. (very hot.) and HNO.. Avoid H,PO. and neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions but precipitation with phosphate, oxalate, and tartrate with a tendency to hydrolyze forming the hydrated oxide in all dilute acids except HF

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Zr(F), + Zr(OH), F, for months in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Zn(F), chemically stable for years in 2-5% HNO, / trace HF in an LDPE container.

Zr Containing Samples (Preparation and Solution) - Metal (Soluble in H₂O / HF / HNO₂); Oxide - unlike TiO₂ the ZrO₂ is best fused in one of the following ways (Na₂O₂ in Ni*, Na₂CO₂ in Pt* or Borax in Pt*); Organic Matrices (Dry ash at 450 °C in Pt* and dissolve by tusing with Na₂CO₂ and dissolving in HF / HNO₂ / H₂O).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique/Line	e Estirnat	<u>ted D.L. Ord</u>	er Type	Interferences (underlined indicates severe at affoncs.)
ICP-OES 343.	823 nm 0.007 / 1	0.0004 µg/mL 1	ion	Hf, Nb
ICP-OES 339.	198 nm 0.008 / 1	0.0007 µg/mL 1	ion	Th, Mo
ICP-OES 272.	261 nm 0.018 /:	0.001 µg/mL 1	ion	Cr, V, Th, W
ICP-MS 90 8	amu 2 ppt	n/a	M'	**Ge"*O, **Se"*O,['"*X'* (where X = Hf, Ta, VV)]

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC). Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

		85/RADCHEM LABS P3-a of 3
DATE	RECEIVED:	#0\\S6\(i0\)
DATE	EXPIRED:_	08/01/2005 VOS
DATE	OPENED:	01/23/04
INORU	3: 4442	PO: E52306

DATE OF CERTIFICATION AND PERIOD OF VALIDITY 11.0

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 19, 2003

Expiration Date:

EXPIRES

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

for Strutten known in an Paux Dain

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM 2.0

Custom-Grade 1000 µg/mL Barium in 0.1% (abs) HNO3

Catalog Number:

CGBA1-1, CGBA1-2, and CGBA1-5

Lot Number:

W-BA02023

Starting Material:

Ba(NO3)2

Starting Material Purity (%): Starting Material Lot No

99.999730

21879

Matrix:

3.0

0.1% (abs) HNO₃

INDRGANIC LARS/RADCHEM LABS & . 1 of 2

DATE RECEIVED: 08/05/04

DATE EXPIRED: 03/01/9005 VOS

Certified Concentration:

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 03/35/04

 $1001 \pm 1 \mu g/mL$

INORG: 4465 FO: F52333

Certified Density:

0.999 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2!(e_7 \cdot s_1)^2!^{1/2}$

S = The summation of all significant estimated errors. (Most common are the error s from instrumental measurement weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assav Method #1

998 ± 4 µg/mL

ICP Assay NIST SRM 3104a Lot Number: 992907

Assay Method #2

1001 ± 1 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

	-			
Q AI 0.00011	<u>M</u> Dy < 0.01269	Q Li < 0.00400	<u>M</u> Pr < 0.00063	<u>M</u> Te < 0.06343
M Sb < 0.00106	<u>M</u> Er < 0.01057	M Lu < 0.00085	<u>M</u> Re < 0.00211	<u>O</u> Tb < 0.00390
M As < 0.02114	Q Eu < 0.00040	O Mg 0.00009	M Rh < 0.00211	<u>M</u> TI < 0.00211
<u>s</u> Ba	<u>O</u> Gd < 0.00052	<u>M</u> Mn < 0.00846	M Rb < 0.00211	<u>M</u> Th < 0.00211
<u>M</u> Be < 0.00106	M Ga < 0.00211	Q Hg < 0.01200	M Ru < 0.00423	<u>M</u> Tm < 0.00085
M Bi < 0.00085	M Ge < 0.01269	<u>M</u> Mo < 0.00423	Q Sm < 0.00071	M Sn < 0.01057
M B < 0.14800	M Au < 0.00634	<u>O</u> Nd < 0,00330	M Sc < 0.02114	<u>M</u> Ti < 0.10571
M Cd < 0.00634	<u>M</u> Hf < 0.00423	M Ni < 0.01691	<u>M</u> Se < 0.01691	M W < 0.02114
<u>O</u> Ca 0.00072	<u>M</u> Ho < 0.00106	M Nb < 0.00106	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00423
M Ce < 0.01057	<u>M</u> In < 0.02114	<u>n</u> Os	M Ag < 0.00423	<u>M</u> V < 0.00423
M Cs < 0.00063	<u>M</u> Ir < 0.01057	M Pd < 0.01057	M Na < 0.21142	<u>M</u> Yb < 0.00211
M Cr < 0.01057	<u>O</u> Fe 0.00062	<u>O</u> P < 0.00260	Q Sr 0.00379	Q Y 0.00040
M Co < 0.00634	<u>M</u> La < 0.00106	M Pt < 0.00423	<u>Q</u> S < 0.02500	<u>Q</u> Zn < 0.00039
M Cu < 0.01269	M Pb 0.00020	<u>Q</u> K < 0.00180	<u>O</u> Ta < 0.00690	<u>M</u> Zr < 0.01057
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution -137.33, +2; 6, Ba(H₂O), '2

Chemical Competibility - Soluble in HCl, and HNO₃. Avoid H₂SO₄, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate, iodate, molybdate, sulfite and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO_a / LDPE container. 1 -10,000 ppm solutions chemically stable for years in 1-3.5% HNO_a / LDPE container.

Ba Containing Samples (Preparation and Solution) - Metal(is best dissolved in diluted HNO₂) Ores(Carbonate fusion in Pt^a followed by HCl dissolution. If sulfate is present dissolve the fuseate using HCl /tartaric acid to prevent BaSO₄ precipitate). Organic Matrices (dry ash and dissolve in dilute HCI.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at affoncs.)
ICP-OES	455.403 nm	0.002 / 0.0001 µg/mL	1	ion	Zr, U
ICP-OES	233.527 nm	0.004 / 0.0003 µg/mL	1	ion	
ICP-OES	230.424 nm	0.004 / 0.0005 µg/mL	1	ion	Mo, Ir, Co
ICP-MS	138 a mu	1 ppt	n/a	M'	122Sn18O, 122Te18O

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (QQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC	LABS/RA	ADCHEM	LABSY	3.906.9
DATE RECEI	(VED:	co/a5/c	<u>'</u>	
DATE EXPIR	ED:	03/01/3	005 \	<u>000</u>
DATE OPENE	ED:	09/35/	2 1	
INORG:4	165 F	0# F5	2303	
***** **** **** ****				

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 28, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten known in Paux Jaim

inorganic ventures labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Beryllium in 2% (abs) HNO3 2.0

Catalog Number:

CGBE1-1, CGBE1-2, and CGBE1-5

Lot Number:

W-BE01104

Starting Material:

Be(OOCCH3)2

Starting Material Purity (%): Starting Material Lot No

99.999897

Matrix:

3.0

01-10-01

INDRGANIC LABS/RADCHEM LABSPS.1.42

2% (abs) HNO3

DATE RECEIVED: ___ \$\infty\$\langle 0\sqrt{0}\langle 0\hat{\delta}. DATE EXPIRED: 06/0/2005 VOS

CERTIFIED VALUES AND UNCERTAINTIES

DATE OFENED: _____OGLOVOH_____ INORG: 4590 PO: F53393

Certified Concentration:

 $1007 \pm 4 \mu g/mL$

Certified Density:

1.023 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 s_1)^2]^{1/2}$

ES = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

O "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1007 \pm 4 \mu g/mL$

ICP Assay NIST SRM 3105a Lot Number: 892707

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> AI < 0.00800	<u>M</u> Dy < 0.01305	O Li < 0.00002	<u>M</u> Pr < 0.00065	<u>M</u> Te < 0.06525
<u>M</u> Sb < 0.00109	<u>M</u> Er < 0.01087	<u>M</u> Lu < 0.00087	<u>M</u> Re < 0.00218	<u>M</u> Tb < 0.00065
<u>M</u> As < 0.02175	<u>M</u> Eu < 0.00652	Q Mg < 0.00003	M Rh < 0.00218	M TI < 0.00218
<u>M</u> Ba < 0.02175	<u>M</u> Gd < 0.00218	<u>O</u> Mn < 0.00002	M Rb < 0.00218	<u>M</u> Th < 0.00218
<u>s</u> Be	M Ga < 0.00218	<u>O</u> Hg < 0.01500	M Ru < 0.00435	<u>M</u> Tm < 0.00087
<u>M</u> Bi < 0.00087	<u>M</u> Ge < 0.01305	<u>M</u> Mo < 0.00435	M Sm < 0.00218	<u>M</u> Sn < 0.01087
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00652	M Nd < 0.00435	<u>O</u> Sc < 0.00009	<u>M</u> Ti < 0.10874
<u>M</u> Cd < 0.00652	<u>M</u> Hf < 0.00435	<u>M</u> Ni < 0.65245	<u>M</u> Se < 0.01740	<u>M</u> W < 0.02175
<u>О</u> Са 0.00164	<u>M</u> Ho < 0.00109	M Nb < 0.00109	<u>O</u> Si 0.00649	<u>M</u> U < 0.00435
<u>M</u> Ce < 0.01087	<u>M</u> In < 0.02175	<u>n</u> Os	M Ag < 0.00435	<u>M</u> V < 0.00435
<u>M</u> Cs < 0,00065	<u>M</u> Ir < 0.01087	M Pd < 0.01087	O Na 0.00368	M Yb < 0.00218
O Cr < 0.00900	<u>Q</u> Fe 0.00268	n P	<u>M</u> Sr < 0.00109	<u>M</u> Y < 0.08699
M Co < 0.00652	<u>M</u> La < 0.00109	M Pt < 0.00435	į s	<u>M</u> Zn < 0.04350
<u>M</u> Cu < 0.01305	M Pb < 0.00652	Q K < 0.10000	<u>M</u> Ta < 0.01522	<u>M</u> Zr < 0.01087
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 = €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 9.01218; +2; 4; Be'(H₂O)₄12

Chemical Compatibility - Soluble in HCl, HNO₃, H₂SO₄ and HF aqueous matrices. Stable with all metals and inorganic anions. Stability - 2-100 ppb levels stable for months in 1 % HNO₃ /LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10 % HNO₃ /LDPE container.

Be Containing Samples (Preparation and Solution) - Meta I(is best dissolved in diluted H_zSO_*), BeO (boiling nitric, hydrochloric, or sulfuric acids or KHSO_tusion). Ores (H_zSO_*)HF digestion or carbonate fusion in Pt^o), Organic Matrices (sulfuric/peroxide digestion or nitric/sulfuric/peroxide acid decomposition, or dry ashand dissolution according to the BeO procedure above). Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

TRUSTED OF	Acres (Acres)	indicional fraction of a prime				
Techniqu		Estimated D.L.		Type	Interferences (underlined indicates :	severe at 🐠Donos.)
ICP-OES		0.0003 / 0.00009 µg/mL		ion	V, Ce, U	
ICP-OES	234.861 nm	0.0003 / 0.00016 µg/mL	1	atom	Fe, Ta, Mo	
ICP-OES	313.107 nm	0.0007 / 0.0005 µg/mL	1	ion	Ce, Th, Tm	
ICP-MS	9 amu	4 ppt	n/a	M,		

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT). Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (RCRC), Betweet (ARCER), Singapore (RSR), Solvenia (SIO), Spain (AENOR), Switzerland (SOS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: January 08, 2004

Expiration Date:

INORGANIC LABS/RADCHEM LABS/3.342

DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/04

DATE OPENED: 06/01/04

INORG: 4592 PO: E53392

EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, Production Manager

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Lleber Newman Known in Paux Aaim

ventures inorganic

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 μ g/mL Chromium⁺³ in 1.4% HNO₃ (abs)

Catalog Number: CGCR(3)1-1, CGCR(3)1-2 and CGCR(3)1-5

Lot Number: W-QCR02033

Starting Material: Starting Material Purity: Starting Material Lot No: Chromium Metal 99.995%

F16122

INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 1/2/3
DATE EXPIRED: 1/2/1/3/4 INORG: 4318 ____FO:

CERTIFIED CONCENTRATION: 995 \pm 3 μ g/mL

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\Re) = $\sum x_i$

Uncertainty (±) = $2[(\sum_s)^2]^{1/2}$

(x) = mean

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Instrument Analysis: 995 ± 3 µg/mL (Avg of 3 runs)

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3112a.

Calculated Value: 1002 µg/ml.

Method: Calculated, based on starting material.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu q/mL$:

Custorn-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

Q	ΑI	0.0028	<u>M</u>	Dγ	<0.00060	<u>M</u>	Li	< 0.0010	M	Pr	< 0.000030	М	Te	< 0.0030
M	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	M	Re	< 0.00010	M	Tb	< 0.000030
M	Αş	< 0.0010	M	Eu	< 0.00030	Q	Mg	< 0.010	M	Rh	< 0.00010	M	TI	< 0.00010
M	₿a	< 0.0010	M	Gd	< 0.00010	0	Mn	< 0.050	M	Rb	0.0066	M	Th	< 0.00010
<u>M</u>	Ве	< 0.000050	M	Ga	0.00070	Q	Hg	<0.10	<u>M</u>	Ru	0.017	M	Tm	< 0.000040
M	Bi	< 0.000040	<u>M</u>	Ge	< 0.00060	M	Мо	< 0.00020	<u>M</u>	Sm	< 0.00010	<u>M</u>	Sn	< 0.00050
M	8	< 0.0070	<u>M</u>	Αu	< 0.00030	M	Nd	< 0.00020	<u>M</u>	Sc	< 0.0010	M	Ti	< 0.0050
M	Cđ	< 0.00030	<u>M</u>	Hf	< 0.00020	0	Ni	< 0.10	į	Se	•	M	w	< 0.0010
Ō	Сә	0.0011	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.10	<u>M</u>	U	< 0.00020
M	Ce	< 0.00050	Q	In	< 0.10	n	Os		<u>M</u>	Ag	0.00070	ī	ν	
M	Cs	< 0.000030	M	Ir	< 0.00050	M	Pd	< 0.00050	<u>o</u>	Na	0.016	M	Yb	< 0.00010
<u>s</u>	Cr		<u>o</u>	Fe	< 0.10	į	P		<u>M</u>	Sr	< 0.000050	<u>M</u>	Υ	< 0.0040
Q	Ço	< 0.10	<u>M</u>	La	< 0.000050	M	Pt	< 0.00020	<u>n</u>	s		<u>o</u>	Zn	< 0.10
M	Cu	< 0.00060	M	Pb	0.00039	<u>n</u>	K		M	Ta	< 0.00070	M	Zr	< 0.00050
М -	chec	ked by ICP-MS	0 - 0	check	ed by ICP-OES	i - sp	ectra	l interference	n - no	t che	cked for	s - solution	stand	ard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.010 g/mL

(over)

QA:KSL Rev. 090403JTS

Paul R. Haines

Expires:

Quality Assurance Manager

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSA)), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life - The length of time that a properly stored and packaged standard will remain within the

specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 month

Expiration Date - The date after which a standard solution should not be used. A one year expiration date recommended by most state and federal regulatory agencies. Transpiration issues

repeated use of solutions over a one year period may adversely affect the integrity of the

standar

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 μm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799 INT'L 1-732-901-1900 FAX 1-732-901-1903 E-MAIL !Vtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Copper in 2% (abs) HNO3

Catalog Number:

CGCU1-1, CGCU1-2, and CGCU1-5

Lot Number:

W-CU02064 Cu shot

Starting Material: Starting Material Purity (%):

99.999437

Starting Material Lot No

K09C13

Matrix:

3.0

2% (abs) HNO₃

INORGANIC LABS/RADCHEM LABS P3.1 of a

DATE RECEIVED: 03/01/2005 VD3

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 02/25/04 INDRG: 4469 PO: F52323

Certified Concentration: 1005

1005 ± 2 μg/mL

Certified Density: 1.014 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C)1= mean

x, = individual results

n = number of measurements

Uncertainty (±) = $2[(2x-5)^2]^{1/2}$

In a number of measurements
 In a number of measureme

(Most common are the error sfrom instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

 $1005 \pm 2 \mu g/mL$

ICP Assay NIST SRM 3114 Lot Number: 891811

Assay Method #2

 $1005 \pm 2 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	Al	<	0.00090	M	Dy	<	0.03027	O	Li	<	0.00002	M	Pr	<	0.00151	М	Te	<	0.15134
M	Sb	<	0.00252	M	Er	<	0.02522	M	Lu	<	0.00202	М	Re	<	0.00504	М	Tb	<	0.00151
M	As	<	0.05045	M	Ευ	<	0.01513	Q	Mg		0.00001	М	Rh	<	0.00504	<u>M</u>	TI	<	0.00504
<u>M</u>	Ва	<	0.05045	М	Gd	<	0.00504	M	Mn	<	0.02018	M	Rb	<	0.00504	M	Th	<	0.00504
<u>M</u>	Ве	<	0.00252	M	Ga	<	0.00504	Q	Hg	<	0.01500	M	Ru	<	0.01009	M	Tm	<	0.00202
M	Bi	<	0.00202	М	Ge	<	0.03027	M	Мо	<	0.01009	M	Sm	<	0.00504	Q	Sn		0.00439
<u>M</u>	В	<	0.35312	<u>M</u>	Au	<	0.01513	M	Nd	<	0.01009	M	Sc	<	0.05045	M	Ti	<	0.25223
M	Cd	<	0.01513	М	Hf	<	0.01009	M	Ni	<	0.04036	M	Se	<	0.04036	М	W	<	0.05045
Q	Ca		0.00011	М	Но	<	0.00252	M	Nb	<	0.00252	<u>0</u>	Si	<	0.00340	M	U	<	0.01009
M	Се	<	0.02522	М	In	<	0.05045	ū	Os		!	M	Ag	<	0.01009	0	٧	<	0.00300
M	Cs	<	0.00151	M	lr	<	0.02522	M	Pd	<	0.02522	ō	Na		0.00044	M	Yb	<	0.00504
M	Cr	<	0.02522	Q	Fe		0.00054	0	Р	<	0.00260	M	Sr	<	0.00252	M	Υ	<	0.20178
M	Со	<	0.01513	М	La	<	0.00252	М	Pt	<	0.01009	ū	s		·	M	Zn	<	0.10089
<u>s</u>	Cu			<u>M</u>	Pb		0.00050	<u>o</u>	κ	<	0.00180	M	Ta	<	0.03531	M	Zr	<	0.02522
М - С	Check	ced	by ICP-MS	0 -	Chec	kec	by ICP-OES	i - S	Spect	ral I	nterference	n - 1	Not C	hed	ked For	s - 9	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 63.546, +2; 6, Cu(H₂O),2

Cherrical Competibility - Stable in HCI, HNO, H, SO., HF, H,PO. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Cu Containing Samples (Preparation and Solution) - Metal (soluble in HNO₃); Oxides (Soluble in HCI); Ores (Dissolve in HCI/HNO₃).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniq	ue/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	324.754 nm	0.06/.001 µg/mL	1	atom	Nb, U, Th, Mo, Hf
ICP-OES	224,700 nm	0.01/.001µg/mL	1	ion	<u>Pb,</u> Ir, NI, W
ICP-OES	219,958 nm	0.01/.002 µg/mL	1	atom	Th, Ta, Nb, U, Hf
ICP-MS	63 amu	10 ppt	n/a	M'	"Arana "Ti"O, "N'2C"CI, "O'2C"CI, "Ca"O, Ana"Ca

- HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM. 8.0
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

QUALITY STANDARD DOCUMENTATION 10.0

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INORGANIC LABS	FRADCHEM LABS 18-2 of 2
DATE RECEIVED:_	09/95/04
DATE EXPIRED:_	03/01/2005 403
DATE OPENED:	09/35/04
	PD: F53333

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: May 02, 2003

Expiration Date:

182005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten Known in an Pour Hains

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Nickel in 1.4% (abs) HNO3 2.0

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

W-NI02030

Starting Material:

Ni pieces

Starting Material Purity (%): Starting Material Lot No

99.999371

Matrix:

3.0

L06L02 1.4% (abs) HNO3

INORGANIC LABS/RADCHEM LABS 19.100

CERTIFIED VALUES AND UNCERTAINTIES

DATE RECEIVED: ____03/35/04 DATE EXPIRED: 03/01/3005
DATE OPENED: 03/05/04

Certified Concentration: $1002 \pm 2 \mu g/mL$ INORG: 4472 PO: F59393

Certified Density:

1.011 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(\alpha_1 \beta_1)^2]^{1/2}$

#S = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

☐ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assav Method #1

999 ± 5 µg/mL

ICP Assay NIST SRM 3136 Lot Number: 000612

Assay Method #2

1002 ± 2 μg/mL

EDTA NIST SRM 928 Lot Number: 880710

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>Q</u> Al < 0.00938	<u>M</u> Dy < 0.06577	<u>Q</u> Li < 0,00006 <u>M</u> Pr < 0.00329	<u>M</u> Te < 0.32886
M Sb < 0.00548	<u>M</u> Er < 0.05481	M Lu < 0.00439 M Re < 0.01096	<u>M</u> Tb < 0.00329
<u>Q</u> As < 0.01689	<u>M</u> Eu < 0.03289	<u>Q</u> Mg 0.00002 <u>M</u> Rh < 0.01096	<u>M</u> TI < 0.01096
M Ba < 0.10962	M Gd < 0.01096	<u>M</u> Mn < 0.04385 <u>M</u> Rb < 0.01096	<u>M</u> Th < 0.01096
<u>O</u> Be < 0.00626	<u>M</u> Ga < 0.01096	Q Hg < 0.03441 <u>M</u> Ru < 0.02192	<u>M</u> Tm < 0.00439
<u>M</u> Bi < 0.00439	M Ge < 0.06577	<u>M</u> Mo < 0.02192 <u>M</u> Sm < 0.01096	<u>M</u> Sn < 0.05481
<u>O</u> B < 0.03097	<u>M</u> Au < 0.03289	M Nd < 0.02192 M Sc < 0.10962	<u>M</u> Ti < 0.54811
M Cd < 0.03289	M Hf < 0.02192	<u>S</u> Ni <u>Q</u> Se < 0.01877	<u>M</u> W < 0.10962
Q Ca < 0.01157	<u>M</u> Ho < 0.00548	<u>M</u> Nb < 0.00548	<u>M</u> U < 0.02192
<u>M</u> Ce < 0.05481	<u>M</u> In < 0.10962	n Os M Ag < 0.02192	<u>M</u> V < 0.02192
M Cs < 0.00329	<u>M</u> ir < 0.05481	<u>M</u> Pd < 0.05481	<u>M</u> Yb < 0.01096
M Cr < 0.05481	<u>Q</u> Fe 0.00156	<u>Q</u> P < 0.31280 <u>M</u> Sr < 0.00548	<u>M</u> Y < 0.43849
<u>O</u> Co 0.00182	M La < 0.00548	M Pt < 0.02192 Q S < 0.07820	M Zn 0.00189
<u>M</u> Cu < 0.06577	M Pb < 0.03289	<u>Q</u> K 0.00043 <u>M</u> Ta < 0.07674	<u>M</u> Zr < 0.05481
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.69; +2; 6; Ni(H,O),"

Chemical Compatibility - Stable in HCl, HNO₁₁, H₂SO₂, HF, H₂PO₃. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

Ni Containing Samples (Preparation and Solution) - Metal (Solutie in HNO₂), Oxides (Solutie in HCl.), Ores (Dissolve in HCl.) HNO₂).

Atornic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	ALine	Estimated D.L.	Order	Type	Interferences (underlined indicates	severe at 🔞 🖺 oncs.)
ICP-OES	221.647 nm	0.01 / 0.0009 µg/mL	1	,	 -	
ICP-OES	232.003 nm	0.02 / 0.006 µg/mL 1	atom	<u>Cr</u> , Re,	Os, Nb, Ag, Pt, Fe	
ICP-OES	231.604 nm	0.02 / 0.002 µg/mL 1	ion	Sb, Ta,		
ICP-MS	60 amu	100 ppt	n/a	₩,	"Ca'"O'H , "Ca'"O, "Na"Cl	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous

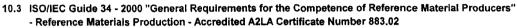
10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)


Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

INORGANIC LABS/RADCHEM LABS Pg. 24 2
DATE RECEIVED: Q2/25/04
DATE EXPIRED: C3/01/2005 V0)
DATE OFENED: Q2/25/04
INORG: 4472 FO: F52323

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Stutten known in in Paux Dain

1.0

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Boron in H20 2.0

Catalog Number:

CGB1-1, CGB1-2, and CGB1-5

Lot Number:

W-B02042

Starting Material:

H3BO3

Starting Material Purity (%):

99.99998

INORGANIC LABS/RADCHEM LABSTO 10-50

Starting Material Lot No

OV0133

DATE RECEIVED: 07/31/03

Matrix:

H₂0

DATE EXPIRED: 08/01/2004 VOS

DATE OPENED: 08/01/03 INORG: 4001 PD: E50383

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

999 ± 2 ug/mL

Certified Density:

1.001 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(C) = mean

x, = individual results

n = number of measurements

S = The summation of all significant estimated errors. Uncertainty $(\pm) \approx 2[(e_2 \cdot s_1)^2]^{1/2}$

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1 $999 \pm 2 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3107 Lot Number: 991907

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240/P144
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

0	Al	<	0.00090	М	Dy	<	0.00600	<u>0</u>	Li	<	0.00002	M	Pr	<	0.00030	W	Те	<	0.03000
M	Sb	<	0.00050	M	Er	<	0.00500	M	Lu	<	0.00040	М	Re	<	0.00100	M	Tb	<	0.00030
M	As	<	0.01000	M	Eu	<	0.00300	ō	Mg	<	0.00006	M	Rh	<	0.00100	М	TI	<	0.00100
<u>o</u>	Ва	<	0.00010	M	Gd	<	0.00100	<u>o</u>	Mn	<	0.00002	M	Rb	<	0.00100	M	Th	<	0.00100
<u>o</u>	Ве	<	0.00017	Q	Ga	<	0.00160	ō	Hg	<	0.01500	<u>M</u>	Ru	<	0.00200	M	Tm	<	0.00040
M	Bi	<	0.00040	М	Ge	<	0.00600	M	Mo	<	0.00200	M	Sm	<	0.00100	М	Sn	<	0.00500
<u>\$</u>	В			W	Au	<	0.00300	M	Nd	<	0.00200	ō	Sc	<	0.00002	M	Ti	<	0.05000
M	Cd	<	0.00300	W	Hf	<	0.00200	Q	Ni	<	0.00230	0	Se	<	0.00620	M	W	<	0.01000
ō	Ca	<	0.00007	М	Но	<	0.00050	M	Nb	<	0.90050	ō	SI		0.00067	M	IJ	<	0.00200
<u>0</u>	Ce	<	0.00300	M	ln	<	0.01000	Ū	Os			M	Ag	<	0.00200	0	٧	<	0.00083
М	Cs	<	0.00030	M	ŧr	<	0.00500	М	Pd	<	0.00500	0	Na	<	0.00010	М	Yb	<	0.00100
M	Cr	<	0.00500	0	Fe	<	0.00110	0	P	<	0.00250	M	Sr	<	0.00050	М	Υ	<	0.04000
0	Co	<	0.00110	M	La	<	0.00050	<u>M</u>	Pt	<	0.00200	ō	s	<	0.10000	Q	Zn	<	0.00019
M	Cu	<	0.00600	M	Pb	<	0.00300	<u>o</u>	ĸ	<	0.00300	M	Ta	<	0.00700	<u>M</u>	Zr	<	0.00500
M - 0	Check	æd	by ICP-MS	0-	Che	cked	by ICP-OES	1-8	pect	ral I	Interference	n - I	Not C	he	cked For	s - S	Soluti	on	Standard Elemei

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional Intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 10.811; +3; 4; B(OH), and B(OH), "

Chamical Compatibility - Moderately soluble in HCl, HNO_a, H₂SO_a and HF aqueous matrices and very soluble in NH₄OH. Stable with all metals and inorganic anions at low-to-moderate ppm levels.

Stability - 2-100 ppb levels stable for months in 1% HNO_a /LDPE container. 1-1,000 ppm solutions chemically stable for years in 1% HNO_a /LDPE container. 1000 -10,000 ppm stable for years in dilute NH₂OH /LDPE container.

B Containing Samples (Preparation and Solution) - Metal (Crystalline form is scarcely attacked by acids or alkaline solutions; amorphous form is soluble in conc. HNO₂ or H₂SO₂); B(OH)₂ (water soluble); Ores(avoid acid digestions and use caustic fusions in Pt→, Organic Matrices (dry ash mixed with Na₂CO₂ in Pt→at 450→€ then increase heat to 1000→€ to fuse; or perform a Na₂O₂ tusion in a Ni¬crucible / Parr bomb).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniqu	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at validoncs.)
ICP-OES	249.773 nm	0.003 / 0.001 µg/mL	1	atom	W, Ce, Co, Th, Ta, Mn, Mo, Fe
ICP-OES	249.678 nm	0.004 / 0.003 µg/mL	1	atom	Os,W,Co,Cr,Hf
ICP-OES	208.959 nm	0.007 / 0.0005 µg/mL	1	atom	Mo
ICP-MS	11amu	700 ppt	n/a	M'	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INO	RGANIC L	ABS/RADC	HEM LAB	5Pg.ada
DATE	RECEIVE	D:	131/03	
DATE	EXPIRED	08	£0061101	V05
DATE	OPENED:	80	101/03	*******************************
INORG	3: 4301	FO:	F5338	3

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 21, 2003

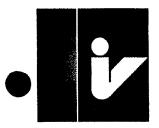
Expiration Date:

102004

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant


Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Paux Main

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Molybdenum in H20 tr. NH4OH 2.0

Catalog Number:

CGMO1-1, CGMO1-2, and CGMO1-5

Lot Number:

W-MO01132

Starting Material:

(NH4)6Mo7O24xH2O

Starting Material Purity (%):

99.995947

Starting Material Lot No

21410

Matrix:

3.0

H₂0 tr. NH₄OH

INORGANIC LABS/RADDHEM LABS \$142

DATE RECEIVED: ____03/35/04

CERTIFIED VALUES AND UNCERTAINTIES

DATE EXPIRED: 03/01/2005 VOS DATE OPENED: _____03/35/04

 $1004 \pm 2 \mu g/mL$

Certified Concentration:

INORG: 4471 FO: F50333

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = erx

(□) = mean

x_i = individual results

Uncertainty (±) = $2[(ars_i)^2]^{1/2}$

n = number of measurements **ES** = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

 "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

1004 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3134 Lot Number: 891307

Assay Method #2

1008 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/ml.

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

												,								
Ō	ΑI	<	0.05000		М	Dу	<	0.01198	<u>0</u>	Li	<	0.01000	Q	Pr	<	0.10000	i	Те		
M	Sb		0.00939		M	Er	<	0.00998	M	Lu	<	0.00080	М	Re	<	0.00200	<u>M</u>	Tb	<	0.00060
M	As	<	0.01997		M	Eu	<	0.00599	Q	Mg	<	0.05000	M	Rh	<	0.00200	M	TI	<	0.00200
M	Ва	<	0.01997		M	Gd	<	0.00200	M	Mn	<	0.00799	М	Rb		0.02445	<u>M</u>	Th	<	0.00200
M	Ве	<	0.00100		M	Ga	<	0.00200	i	Hg			M	Ru	<	0.00399	M	Tm	<	0.00080
M	Bi	<	0.00080		M	Ge	<	0.01198	<u>s</u>	Мо			M	Sm	<	0.00200	M	Sn	<	0.00998
Q	В	<	0.50000		M	Au	<	0.00599	Q	Nd	<	0.05000	Q	Sc	<	0.05000	Q	Ti	<	0.00500
Q	Cd	<	0.50000		M	Hf	<	0.00399	M	Ni	<	0.01597	М	Se	<	0.01597	М	W		0.05576
Q	Ca		0.00026		М	Но	<	0.00100	Q	Nb	<	0.10000	Q	Si	<	0.10000	<u>M</u>	U	<	0.00399
Q	Се	<	0.05000		M	in		0.00235	n	Os			M	Ag	<	0.00399	M	٧	<	0.00399
M	Cs	<	0.00060		M	lr	<	0.00998	M	Pd	<	0.00998	Q	Na	<	0.10000	<u>M</u>	Yb	<	0.00200
M	Cr	<	0.00998		Q	Fe	<	0.50000	į	P			M	Sr	<	0.00100	M	Υ	<	0.07987
M	Со	<	0.00599		M	La	<	0.00100	M	Pt	<	0.00399	ì	s			<u>M</u>	Zn	<	0.03993
M	Cu	<	0.01198		М	Pb	<	0.00599	Q	ĸ		0.00980	M	Ta	<	0.01398	М	Zr	<	0.00998
M - C	heck	ed	by ICP-MS	(o -	Chec	ked	by ICP-OES	i-S	pecti	ral I	nterference	n - I	Not C	hed	ked For	s - S	Solutio	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 ℃. Do not pipet from container. Do not return

portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 95.94; +6; 6,7,8,9; [MoO.] (chemical form as received)

Chemical Competibility - Mo is received in a NH.OH matrix giving the operator the option of using HCl or HF to stabilize addic solutions. The [MoO.]* is soluble in concentrated HCl [MoOC]*, dilute HF / HNO, [MoOF.]* and basic media [MoO.]*. Stable at ppm levels with some metals provided it is fluorinated. Do not mix with Alkaline or Rare Earths when HF is present. Stable with most inorganic anions provided it is in the [MoO.] chemical form.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the [MoOF,]* for months in 1% HNO. / LDPE container. 1-10,000 ppm single element solutions as the [MoO.] → chemically stable for years in 1% NH.OH in a LDPE container.

Mo Containing Samples (Preparation and Solution) - Metal (Soluble in HF / HNO, or hot dilute HCI); Oxide (soluble in HF or NH.OH); Organic Matrices (Dry ash at 450 € in Pt* and dissolve oxide with HF or HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

interferences (underlined indicates severe at withouts.) Os, Hf Estimated D.L. 0.008 / 0.0002 µg/mL Technique/Line ICP-OES 202.030 nm Order Type ion ICP-OES 203.844 nm 0.012 / 0.002 µg/mL ion ICP-OES 204.598 nm 0.012 / 0.001 µg/mL ion ir Ta "AM"K"O, "Br"O, "OS", "Pt" ICP-MS 95 amu 3 ppt nh M

- 8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INOF	GANIL L	ABS/RADC	HEM LABS	b3.3 2 2
DATE	RECEIVE):o <u>/</u>	25/04	*** **** ****
DATE	EXPIRED	03/	01/2005	V03
		(S)		
		PO:		

DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 23, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm strutten Knowen de Park Sain

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Phosphorus in H₂0

Catalog Number: CGP1-1, CGP1-2 and CGP1-5

Lot Number: W-P01123

Starting Material: Starting Material Purity: Starting Material Lot No: Phosphoric Acid 99.999% J18804 INORGANIC LABS/RADCHEM LABS

DATE RECEIVED: 06/01/04

DATE EXPIRED: 06/01/04

DATE OPENED: 06/01/04

INORG: 4593 PO: E53393

CERTIFIED CONCENTRATION: 1006 \pm 4 μ g/mL

The Certified Value is the wet assay value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \frac{\sum x}{n}$

Uncertainty (\pm) = $2[(\sum_{s})^2]^{1/2}$

 $(\bar{x}) = mean$

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Classical Wet Assay: 1006 ± 4 µg/mL

Method: Acidimetric Titration vs NIST SRM 84k KHP.

Instrument Analysis: 1002 ± 4 µg/mL

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3139a.

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN ua/mL:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	Al	< 0.040	M	Dγ	< 0.00060	М	Li	< 0.0010	M	Pr	< 0.000030	<u>M</u>	Te	< 0.0030
_				•								_		
M	Sb	0.012	M	Er	< 0.00050	M	Lu	< 0.000040	<u>M</u>	Re	< 0.00010	M	Tb	< 0.000030
M	As	< 0.0010	M	Eu	< 0.00030	<u>M</u>	Mg	< 0.0030	M	Rh	< 0.00010	M	Ti	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	M	Mn	< 0.00040	M	Rb	<0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	0.00070	Q	Hg	< 0.020	M	Ru	< 0.00020	M	Tm	< 0.000040
М	Bi	< 0.000040	M	Ge	< 0.00060	M	Мо	< 0.00020	M	Sm	<0.00010	M	\$n	< 0.00050
M	В	< 0.0070	M	Au	< 0.00030	<u>M</u>	Nd	< 0.00020	ū	Sc		<u>n</u>	Ti	
M	Cd	<0,00030	M	Hf	< 0.00020	0	Ni	< 0.050	Ω	Se	< 0.40	<u>M</u>	W	< 0.0010
<u>o</u>	Ca	< 0.010	M	Ho	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.020	M	U	< 0.00020
M	Ce	< 0.00050	M	In	< 0.030	<u>n</u>	Os		M	Αg	< 0.00020	M	٧	< 0.00020
M	Cs	< 0.000030	M	ŀr	< 0.00050	M	Pd	< 0.00050	Ō	Na	< 0.090	M	Yb	< 0.00010
M	Cr	< 0.00050	0	Fe	< 0.050	<u>s</u>	Р		M	Sr	< 0.000050	<u>M</u>	Y	< 0.0040
M	Co	<0.00030	M	La	<0.000050	M	Pt	< 0.00020	<u>n</u>	S		M	Zn	0.0035
<u>M</u>	Cu	0.080	M	₽b	< 0.00030	<u>n</u>	K		M	Ta	< 0.00070	M	Zr	< 0.00050

M - checked by ICP-MS O - checked by ICP-OES i

i - spectral interference

n - not checked for

s - solution standard element

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.001 g/mL

(over)

QA:KL REV.030804DN

Paul R. Haines

Quality Assurance Manager

Expires:

112005

QUALITY STANDARD DOCUMENTATION

1. ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production - Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
 Please contact our Quality Assurance Department for further information and copies of documents pertaining to our
 Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date is recommended by most state and federal regulatory agencies. Transpiration issues and repeated use of solutions over a one year period may adversely affect the integrity of standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2

m filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceabl to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT


All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Silicon in H20 tr. HNO3 tr. HF

Catalog Number:

CGSI1-1, CGSI1-2, and CGSI1-5

Lot Number:

W-SI02082

Starting Material:

SiO2

Starting Material Purity (%):

99.996367

Starting Material Lot No

C05310C

Matrix:

3.0

H₂0 tr. HNO₃ tr. HF

INORGANIC LABS/RADCHEM LABS& 143

DATE RECEIVED: 01/20/04

DATE EXPIRED: 02/01/2005 VOS

CERTIFIED VALUES AND UNCERTAINTIES

DATE OPENED: 0/20/04 INORG: 4437 PO: F52303

Certified Concentration:

 $1000 \pm 5 \mu g/mL$

Certified Density:

1.002 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx.

(C) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(ars)]^{1/2}$

271/2 BS = The summation of all significant estimated errors.

(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

 $1000 \pm 5 \mu g/mL (Avg 2 runs)$

ICP Assay NIST SRM 3150 Lot Number: 991108

Assay Method #2

1001 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>o</u>	A!		0.02730	М	Dy	<	0.01358	<u>0</u>	Li	<	0.00009	M	Pr	<	0.00068	M	Te	<	0.06791
M	Sb	<	0.00113	М	Er	<	0.01132	M	Lu	<	0.00091	M	Re	<	0.00226	<u>M</u>	Tb	<	0.00068
M	As	<	0.02264	<u>M</u>	Eu	<	0.00679	Q	Mg	<	0.04991	M	Rh	<	0.00226	M	TI	<	0.00226
M	Ва	<	0.02264	<u>M</u>	Gd	<	0.00226	M	Mn	<	0.00906	M	Rb	<	0.00226	M	Th	<	0.00226
Q	Ве	<	0.00091	М	Ga	<	0.00226	<u>0</u>	Hg	<	0.04991	M	Ru	<	0.00453	M	Tm	<	0.00091
<u>M</u>	Bi	<	0.00091	М	Ge	<	0.01358	M	Мо	<	0.00453	M	Sm	<	0.00226	M	Sn	<	0.01132
Ō	В		0.02409	M	Au	<	0.00679	M	Nd	<	0.00453	0	Sc	<	0.00091	0	Ti		0.01325
M	Cd	<	0.00679	M	Hf	<	0.00453	<u>o</u>	Ni	<	0.01044	М	Se	<	0.01811	<u>M</u>	W	<	0.02264
ō	Ca		0.00135	M	Ho	<	0.00113	M	Nb	<	0.00113	<u>s</u>	Si			M	U	<	0.00453
M	Се	<	0.01132	М	In	<	0.02264	<u>n</u>	Os			M	Ag	<	0.00453	0	٧	<	0.00408
M	Cs	<	0.00068	М	lr	<	0.01132	M	Pd	<	0.01132	0	Na		0.02008	M	Yb	<	0.00226
<u>o</u>	Cr	<	0.00681	<u>o</u>	Fe	<	0.00499	<u>o</u>	Ρ	<	0.02269	0	Sr	<	0.00032	M	Y	<	0.09055
M	Со	<	0.00679	М	La	<	0.00113	M	Pt	<	0.00453	0	s	<	0.11342	M	Zn	<	0.04528
ō	Cu	<	0.00454	<u>M</u>	Pb	<	0.00679	Q	ĸ	<	0.00771	<u>M</u>	Та		0.00200	M	Zr	<	0.01132
M - C	heck	ed	by ICP-MS	0 -	Chec	kec	by ICP-OES	i - S	pect	al I	nterference	n - f	Not C	he	cked For	s - :	Soluti	on :	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 28.0855; +4; 6; Si(OH)_(F),²
Chemical Compatibility - Soluble in HCl, HF, H₂PO₄ H₂SO₄ and HNO₃ as the Si(OH)_(F),². Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F away (i.e. Do not mix with Alkaline or Rare Earths, or high levels of transition elements unless they are fluorinated). Stable with most inorganic anions with a tendency to hydrolyze forming silicic acid (silicic

acid is soluble up to ~100 ppm in water) in all dilute acids except HF.

Stability - 2-100 ppb levels - stability unknown - (alone or mixed with all other metals) as the Si(OH),(F).* 1-10,000 ppm single element solutions as the Si(OH),(F).* chemically stable for years in 2-5 % HNOs, / trace HF in a LDPE container.

Si Containing Samples (Preparation and Solution) - Metal (Soluble in 1:1:1 H₂) / HF / HNOs), Oxide - SiOs, amorphic (Dissolve by heating in 1:1:1 H₃O / HF / HNOs), Oxide - quartz (Fuse in Pt*with NasCOs), Geological Samples (Fuse in Pt*with NasCOs followed by HCl solution of the fuseste). Organic Matrices containing silicates and non volatile silicon compounds (Dry ash at 450°C in Pt* and dissolve by gently warming with 1:1:1 H₂O / HF / H₂SOs or fuse / ash with NasCOs and dissolve fuseste with HCl / H₂O). Silicone Oils - dimethyl silicones depolymentize to form volatile monomer units when heated (Measure directly in alcoholic KOH / xylene mixture where sample is treated first with the KOH at 60-100 °C to "unzip" the SiO-Si polymeric structure or digest with concentrated H₂SOsH₂O₂ followed by cooling and dissolution of the dehydrated silica with HF.) Note that the direct analysis of silicone oils in an organic solvent will result in false high results due to high vapor pressure of volatile monomer units like hexamethyloyclotrisiloxane. The KOH forms the K₂Si(CH₃SO salt which is not volatile at room temperature.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

T	echnique.	Line	Estimated D.L.	Order	Type	interferences (underlined indicates severe at valoncs.)
R	P-OES	251.611 nm	0.012 / 0.003 µg/mL	1	ion	Ta, U, Zn, Th
- 10	CP-OES	212.412 nm	0.02 / 0.01 µg/mL	1	ion	Hf, Os, <u>Mo</u> , Ta
10	CP-OES	288.158 nm	0.03 / 0.004 µg/mL 1	ion	Ta, Ce,	Cr, Cd, Th
10	CP-MS	28 amu	4000 - 8000 ppt	n/a	M'	''N•, '°C "O

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

- 10.3 ISO/IEC Guide 34 2000 "General Requirements for the Competence of Reference Material Producers"
 - Reference Materials Production Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

IMOF	RGANIC	LABS	/RADCHEM	1 LABS	Bracta
DATE	RECEIV	ED:	OVAC	40	
DATE	EXPIRE	(I):	09/01/	aco 5	V05
DATE	OPENED	2	01/30	104	
			PO:1		

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 24, 2003

Expiration Date:

1£2005

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By: Katalin Le, QC Supervisor

Certifying Officer: Paul Gaines, Chemist, Senior Technical Director

John Stutten Known an Park Lains

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

CUSTOM-GRADE SOLUTION

1000 µg/mL Titanium in 1.4% HNO₃ (abs) tr. HF

Catalog Number: CGTI1-1, CGTI1-2 and CGTI1-5

This standard should not be prepared or stored in glass.

Lot Number: T-TI02039

Starting Material: Starting Material Purity: Starting Material Lot No: Titanium Metal 99.999% F29l14 INORGANIC LABS/RADCHEM LABS
DATE RECEIVED: 11/24/03
DATE EXPIRED: 12/01/2004 voo
DATE OPENED: 11/25/03
INORG: 4330 PO: F52079

CERTIFIED CONCENTRATION: 1010 \pm 3 μ g/mL

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (\bar{x}) = $\frac{\sum x_i}{n}$

Uncertainty (±) = $2[(\sum_{s} i)^2]^{1/2}$ (n)^{1/2}

M Pr

< 0.000030

 $(\bar{x}) = mean$

 $x_i = individual results$

n = number of measurements

 $\sum S_i$ = The summation of all significant estimated errors.

Calculated Value: 1002 µg/mL

Method: Calculated, based on starting material.

Instrument Analysis: 1010 ± 3 µg/mL (Average of 3 runs)

M by <0.00060

Method: Inductively Coupled Plasma Spectroscopy (ICP) vs NIST SRM 3162a.

TRACE METALLIC IMPURITIES DETERMINED BY ICP-MS AND ICP-OES IN $\mu g/mL$:

Custom-Grade solutions tested for trace metallic impurities by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μ m.

ñ	Al	< 0.010	141	υγ	< 0.00000	IAI	LI	< 0.00 to	141		~0.000050	101	* 6	~ 0.0000
M	Sb	< 0.000050	M	Er	< 0.00050	<u>M</u>	Lu	< 0.000040	M	Re	< 0.00010	<u>M</u>	Τb	< 0.000030
M	As	< 0.0010	M	Ęu	< 0.00030	Q	Mg	< 0.020	M	Rh	< 0.00010	<u>M</u>	TI	< 0.00010
M	Ba	< 0.0010	M	Gd	< 0.00010	M	Mn	0.0020	<u>M</u>	Rb	< 0.00010	M	Th	< 0.00010
M	Be	< 0.000050	M	Ga	< 0.00010	<u>o</u>	Hg	< 0.050	M	Ru	< 0.00020	M	Tm	< 0.000040
M	Bi	< 0.000040	M	Ge	< 0.00060	M	Mo	< 0.00020	M	Sm	< 0.00010	M	Sn	< 0.00050
ō	В	< 0.050	<u>M</u>	Au	< 0.00030	M	Nd	< 0.00020	0	Sc	< 0.0020	<u> 5</u>	Ti	
м	Cd	< 0.00030	M	Hf	< 0.00020	0	Ni	< 0.050	Q	Şe	< 0.40	<u>M</u>	W	<0.0010
ō	Ca	< 0.010	м	Но	< 0.000050	M	Nb	< 0.000050	<u>o</u>	Si	< 0.010	M	Ų	< 0.00020
м	Ce	< 0.00050	ō	In	< 0.020	<u> </u>	Os		M	Ag	< 0.00020	<u>M</u>	٧	< 0.00020
м	Cs	< 0.000030	M	١r	< 0.00050	M	Pd	< 0.00050	Q	Na	0.12	<u>M</u>	Yb	< 0.00010
M	Cr	<0,00050	ō	Fe	< 0.010	ī	₽		M	Sr	< 0.000050	M	Υ	<0,0040
M	Co	< 0.00030	M	La	< 0.000050	M	Pt	< 0.00020	L	s		<u>M</u>	Zn	0.19
ō	Cu	<0.040	M	Pb	< 0.00030	<u>n</u>	K	0.23	M	Ta	< 0.00070	M	Zr	<0.00050
Μ.	chac	ked by ICP-MS	0.0	heck	ed by ICP-OFS	i - sr	ectra	al interference	n - no	t che	cked for	s - solution	stanc	lard element

<0.0010

ANALYZED DENSITY OF SOLUTION (measured at 22°C): 1.011 g/mL

OA:KL Bev 0505020N

ΔI

ZO 010

(over)

< 0.0030

Quelity Assurance Manager

Expires:

QUALITY STANDARD DOCUMENTATION

ISO 9001:2000 QMI Registered Quality System (Certificate Number 010105)

Members of IQ Net: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

- 2. ISO/IEC Guide 34-2000 "General Requirements for the Competence of Reference Material Producers" Reference Materials Production Accredited A2LA Certificate 883.02
- ISO/IEC17025-1999 "General Requirements for the Competence of Testing and Calibration" Chemical Testing -Accredited A2LA Certificate 883.01
- 4. MIL-STD-45662A
- 5. 10CFR50 Appendix B Nuclear Regulatory Commission Domestic Licencing of Production and Utilization Facilities
- 6. 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance Please contact our Quality Assurance Department for further information and copies of documents pertaining to our Quality Standard certifications.

STABILITY/ EXPIRATION DOCUMENTATION

Shelf Life -

The length of time that a properly stored and packaged standard will remain within the specified uncertainty. Shelf life is affected by chemical stability and transpiration issues. Inorganic Ventures' Standard Solutions are chemically stable indefinitely. Transpiration loss is linear with time and limits the time a standard can be used with confidence. The smaller the bottle the higher the rate of transpiration. Inorganic Ventures' studies indicate that the shelf life of our 500 mL bottle is 4 years and the shelf life of our 125 mL bottle is 21 months.

Expiration Date -

The date after which a standard solution should not be used. A one year expiration date recommended by most state and federal regulatory agencies. Transpiration issues a repeated use of solutions over a one year period may adversely affect the integrity of the standard.

PACKAGING DOCUMENTATION

Purified acid, 18 megohm double deionized water that has been filtered through a 0.2 µm filter and in-house procedure IV-PACK-001 is used to clean all bottles. Contact us for technical information relating to contamination issues in packaging materials.

GLASSWARE CALIBRATION

In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

BALANCE CALIBRATION

All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 428359B and 454678. The NIST test number is 822/260017-98.

All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-8.

THERMOMETER CALIBRATION

The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.

TECHNICAL SUPPORT

All customers are encouraged to contact us for technical support for the proper use of our products.

TEL 1-800-569-6799

INT'L 1-732-901-1900

FAX 1-732-901-1903

E-MAIL IVtech@ivstandards.com

inorganic ventures

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate analysis o f

Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(les) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."

2.0 **DESCRIPTION OF CRM**

Custom-Grade 1000 µg/mL Strontium in 0.1% (abs) HNO3

Catalog Number:

CGSR1-1, CGSR1-2, and CGSR1-5

Lot Number:

T-SR01123

Starting Material:

SrCO3

INDRGANIC LABS/RADCHEM LABS%-1460

Starting Material Purity (%):

99,9951

DATE RECEIVED: 06/80/03

Starting Material Lot No

22593

DATE EXPIRED: 07/01/0004 V00 DATE OPENED: 06/03/03

Matrix:

0.1% (abs) HNO₃

INDRG: 4154 PD: F52370

3.10 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

 $998 \pm 2 \, \mu g/mL$

Certified Density:

1.000 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \sum x$

(x) = mean

x = individual results

n = number of measurements

 \sum S = The summation of all significant estimated errors. (Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

41

Assay Method #1

998 ± 2 µg/mL

EDTA NIST SRM 928 Lot Number: 880710

Assay Method #2

1002 ± 8 µg/mL

ICP Assay NIST SRM 3153a Lot Number: 990906

- BALANCE CALIBRATION All balances are checked daily using In-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The In-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL 5.0

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q Al < 0.00090	M Dy < 0.00600	Q LI < 0.00003	M Pr < 0.00030	<u>O</u> Te < 0.10000
M Sb < 0.00050	M Er < 0.00500	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
Q As < 0.00500	<u>M</u> Eu < 0.00300	Q Mg 0.00037	<u>O</u> Rh < 0.00600	M TI < 0.00100
M Ba 0.04001	M Gd < 0.00100	Q Mn 0.00018	i Rb	M Th < 0.00100
<u>Q</u> Be < 0.00009	M Ga < 0.00100	Q Hg < 0.01500	<u>O</u> Ru < 0.00300	<u>M</u> Tm < 0.00040
M BI < 0.00040	<u>M</u> Ge < 0.00600	M Mo < 0.00200	<u>M</u> Sm < 0.00100	<u>M</u> Sn < 0.00500
<u>O</u> B < 0.00060	M Au < 0.00300	M Nd < 0.00200	M Sc < 0.01000	<u>M</u> Ti < 0.05001
M Cd < 0.00300	M Hf < 0.00200	Q Ni < 0.00300	<u>O</u> Se < 0.05000	<u>M</u> W < 0.01000
<u>Q</u> Ca 0.03600	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>Q</u> Si _{0.00056}	M U < 0.00200
<u>M</u> Ce < 0.00500	<u>Q</u> In < 0.00200	n Os	M Ag < 0.00200	<u>M</u> V < 0.00200
M Cs < 0.00030	<u>M</u> ir < 0.00500	<u>O</u> Pd < 0.00400	Q Na 0.00520	M Yb < 0.00100
<u>Q</u> Cr < 0.00080	<u>O</u> Fe 0.00080	<u>O</u> P < 0.00480	<u>s</u> Sr	<u>O</u> Y < 0.00004
M Co < 0.00300	M La < 0.00050	M Pt < 0.00200	n S	<u>M</u> Zn < 0.02000
Q Cu < 0.00140	M Pb < 0.00300	<u>O</u> K < 0.00170	<u>M</u> Ta < _{0.00700}	\underline{M} Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 **INTENDED USE**

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For Interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightity sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 87.62; +2; 6; Sr(H₂O), '2

Chemical Compatibility - Soluble in HCl, and HNCl. Avoid H, SOl, HF and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, oxide, fluoride, sulfate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1 - 3.5% HNO₃ / LDPE container.

Sr Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO $_3$); Ores (Carbonate fusion in Pto followed by HCi dissolution); Organic Matrices (Dry ash and dissolution in dilute HCI).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Estimated D.L 0.0004 / 0.00006 µg/mL 0.0008 / 0.00004 µg/mL 0.07 / 0.003 µg/mL Technique/Line ICP-OES 407,771 nm Order Type Interferences (underlined indicates severe at = concs.) ion U, Ce ICP-OES 421.552 nm ICP-OES 460.733 nm Rb 1 ion Ce atom 72Ge16O, 176Yb12, 176Lu12, 176Hf12 ICP-MS 88 amu 1200 ppt M n/a

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:
Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MiL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: October 31, 2002

Expiration Date:

EXPIRES 0112004

INDRGANIC LABS/RADCHEM LABS % 2 42

DATE RECEIVED: 06/20/03

DATE EXPIRED: 07/01/2004 VØD

DATE OPENED: 06/23/03

INDRG: 4154 PD: \$52370

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Debbie Newman, QA Administrator

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Lleber Newman Known ha Paul Haim

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903

e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Tin in H20 tr. HNO3 tr. HF

Catalog Number:

CGSN1-1, CGSN1-2, and CGSN1-5

Lot Number:

X-SN01115

Starting Material:

Sn Shot

Starting Material Purity (%): Starting Material Lot No

99.999438 G12M23

Matrix:

H₂0 tr. HNO₃ tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $995 \pm 2 \mu g/mL$

Certified Density:

0.998 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(C) = mean

n

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(e_1 s_1)^2]^{1/2}$

n)1/2

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement,

weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1

Assay Method #1

995 ± 2 μg/mL (Avg 2 runs)

ICP Assay NIST SRM 3161a Lot Number: 993107

Assay Method #2

998 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

INOR	GANIC	LABS	RADCHEM	LABSPg.1ofa
DATE	RECEI	/ED:	03/30/	214
DATE	FXPIRE	ED:	U4/U1/c	CON CON
DATE	OPENE):	_03/30/	04
TNORG	: 45	19	FU: F	53361

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

O AI 0.00050	<u>M</u> Dy < 0.01205	Q Li < 0.00002	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.06026
O Sb < 0.01000	<u>M</u> Er < 0.01004	<u>M</u> Lu < 0.00080	<u>M</u> Re < 0.00201	<u>M</u> Tb < 0.00060
<u>M</u> As < 0.02009	<u>M</u> Eu < 0.00603	<u>O</u> Mg < 0.00003	<u>M</u> Rh < 0.00201	<u>M</u> Tl < 0.00201
<u>O</u> Ba < 0.00070	M Gd < 0.00201	<u>M</u> Mn < 0.00804	M Rb < 0.00201	M Th < 0.00201
<u>M</u> Be < 0.00100	<u>M</u> Ga < 0.00201	<u>O</u> Hg < 0.01500	<u>M</u> Ru < 0.00402	<u>M</u> Tm < 0.00080
M Bi < 0.00080	<u>M</u> Ge < 0.01205	M Mo < 0.00402	M Sm < 0.00201	<u>ş</u> Sn
<u>O</u> B < 0.01200	<u>M</u> Au < 0.00603	M Nd < 0.00402	<u>M</u> Sc < 0.02009	<u>M</u> Ti < 0.10043
<u>O</u> Cd 0.00009	<u>M</u> Hf < 0.00402	<u>Q</u> Ni < 0.01000	<u>M</u> Se < 0.01607	<u>M</u> W < 0.02009
<u>O</u> Ca < 0.00150	<u>M</u> Ho < 0.00100	<u>M</u> Nb < 0.00100	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00402
<u>M</u> Ce < 0.01004	<u>M</u> in < 0.02009	<u>n</u> Os	<u>M</u> Ag < 0.00402	<u>M</u> V < 0.00402
<u>M</u> Cs < 0.00060	<u>M</u> Ir < 0.01004	<u>M</u> Pd < 0.01004	Q Na < 0.00010	<u>M</u> Yb < 0.00201
<u>M</u> Cr < 0.01004	<u>O</u> Fe < 0.00110	<u>Q</u> P < 0.00500	<u>M</u> Sr < 0.00100	<u>M</u> Y < 0.08035
<u>O</u> Co < 0.00200	<u>M</u> La < 0.00100	<u>M</u> Pt < 0.00402	<u>n</u> S	<u>M</u> Zn < 0.04017
<u>M</u> Cu < 0.01205	M Pb 0.00593	<u>O</u> K < 0.00200	<u>M</u> Ta < 0.01406	M Zr < 0.01004
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 €. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 118.710; +4; 4,5, 6,7,8 Sh(OH),F,*

Chemical Competibility - Soluble in HCl and dilute HF / HNO₁. Avoid neutral to basic media. Unstable at ppm levels with metals that would pull F away. (i.e. Do not mix with Alkaline or Rare Earths or high levels of transition elements unless they are fluorinated.) Stable with most inorganic anions provided it is in the chemical form shown above.

Stability - 2-100 ppb levels stable (alone or mixed with all other metals that are at comparable levels) as the Sn(OH), F, for 1 year in 1% HNO, / LDPE container. 1-10,000 ppm single element solutions as the Sn(OH), F, otherwically stable for years in 2-5% HNO, / trace HF in a LDPE container.

Sn Containing Samples (Preparation and Solution) - Metal (Solutie in HF /HNO, or HCl); Oxides - SnO (soluble in HCl), SnO, -very resistent to all acids including HF (Fusion with equal parts of Na,CO, and S. It is then soluble in water or clilute acids as the thiostamate.); Alloys (Treat first 0.1 g with 10 mL conc. H,SO, to boiling until the alloy disintegrates and nearly all of the sulfuric acid is expelled. Then add 100 mL O, free water and 50 mL of conc. HCl or transfer to a plastic container and add 1 mL HF in either case warming gently to bring about solution.); Organic Matrices (Volatility and precipitation of the insoluble stannic oxide are problems. Consultation of the literature should be made for individual matrices / Sn compounds.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Estimated D.L. 0.03 / 0.003 µg/mL Technique/Line ICP-OES 189.989 nm Interferences (underlined indicates severe at addoncs.) Order <u>Type</u> on W, Mo, Rh , Ta, Co '*Te, '*Ru"O, '*Pd"O ICP-OES 242.949 nm 0,1 / 0.01 µg/mL 1 atom ICP-MS 120 amu 5 ppt n/a M.

HF Note: This standard should not be prepared or stored in glass.

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS),

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

	IN	OR	GA	ΝI	Ci	.ABS	/RAI)CHI	ΞM	LABS	P3-20-62
D	ΑT	E	RE	Œ	IVE	D:	Q	3/3	0/9	$\mathcal{P}_{\mathcal{C}}$	700
D	AT	E.	EXI	PΙ	REI) :	O	4/C	21/2	3005	700
D)	AT	E	OPE	EM	EI):		C	3/2	3O/	04	
ĭ	NO	RG	# R	4	51	9	FC):	··F	533	6)

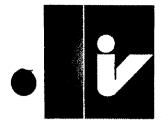
11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: February 11, 2004

Expiration Date:

EXPIRES 1/2015


12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant

Certificate Approved By: Katalin Le, QC Manager

Certifying Officer: Paul Gaines, Chemist, Senior Technical Director

fold Stutten Known in in

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statistical Principles."

2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Bismuth in 3.5% (abs) HNO3

Catalog Number:

CGBI1-1 and CGBI1-5

Lot Number:

W-BI01089

Starting Material:

Bi needles

Starting Material Purity (%):

99.999090

INORGANIC LABS/RADCHEM LABS %. 1.4 2

Starting Material Lot No

G25L16

DATE RECEIVED: 07/31/03
DATE EXPIRED: 08/01/3004 VOS

Matrix:

3.5% (abs) HNO₃

DATE OPENED: 08/01/03 INORG: 4900 PO: F50383

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1002 \pm 4 \mu g/mL$

Certified Density:

1.026 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (C) = exx

(□) = mean

x_i = individual results

n = number of measurements

Uncertainty (±) = $2[(2/5)^{2}]^{1/2}$

S = The summation of all significant estimated errors.
(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the

NIST SRM certificate of analysis.)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

☐ This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1 Assay Method #1

1002 ± 4 µg/mL (Avg 2 runs)

ICP Assay NIST SRM 3106 Lot Number: 991212

Assay Method #2

1002 µg/mL

Gravimetric NIST SRM Lot Number: See Sec. 4.2

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annualty by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

		-		
O AI 0.00012	<u>M</u> Dy < 0.01202	<u>O</u> Li < 0.00002	<u>M</u> Pr < 0.00060	<u>M</u> Te < 0.06008
<u>M</u> Sb < 0.00100	<u>M</u> Er < 0.01001	M Lu < 0.00080	<u>M</u> Re < 0.00200	<u>M</u> Tb < 0.00060
<u>M</u> As < 0.02003	<u>M</u> Eu < 0.00601	O Mg 0.00070	M Rh < 0.00200	<u>M</u> TI < 0.00200
<u>M</u> Ba < 0.02003	M Gd < 0.00200	<u>O</u> Mn < 0.00020	M Rb < 0.00200	<u>M</u> Th < 0.00200
<u>M</u> Be < 0.00100	<u>M</u> Ga < 0.00200	<u>O</u> Hg < 0.01500	M Ru < 0.00401	<u>M</u> Tm < 0.00080
<u>s</u> Bl	<u>M</u> Ge < 0.01202	<u>M</u> Mo < 0.00401	<u>M</u> Sm < 0.00200	<u>M</u> Sn < 0.01001
<u>M</u> B < 0.14018	<u>M</u> Au < 0.00601	M Nd < 0.00401	M Sc < 0.02003	<u>M</u> Ti < 0.10013
O Cd 0.00017	M Hf < 0.00401	M Ni < 0.01602	<u>м</u> Se < 0.01602	<u>M</u> W < 0.02003
O Ca 0.00245	<u>M</u> Ho < 0.00100	M Nb < 0.00100	O Si 0.00105	<u>M</u> U < 0.00401
M Ce < 0.01001	<u>O</u> In 0.00105	<u>n</u> Os	M Ag < 0.00401	<u>M</u> V < 0.00401
M Cs < 0.00060	<u>M</u> ir < 0.01001	O Pd < 0.00400	O Na 0.00240	<u>M</u> Yb < 0.00200
O Cr 0.00020	<u>O</u> Fe 0.00014	<u>O</u> P < 0.01000	<u>M</u> Sr < 0.00100	<u>M</u> Y < 0.08011
M Co < 0.00601	<u>M</u> La < 0.00100	M Pt < 0.00401	<u>o</u> s < 0.03000	<u>O</u> Zn 0.00008
O Cu 0.00014	O Pb 0.00135	<u>о</u> к 0.00039	<u>M</u> Ta < 0.01402	<u>M</u> Zr < 0.01001
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4~€. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 208.9804; +3, 6; Bi(O)(H₂O),"

Chemical Compatibility - Stable in HCl, HNO, H,SO, and HF. Audid basic media forming insoluble hydroxide. Stable with most metals and inorganic anions in acidic media. Many satis that are insoluble in water are soluble in HCl, HNO, and HF. The major problem with Bi' is its tendency to hydrolyze at higher concentrations or in dilute acid. Nitric acid solutions should be 5% to hold the Bi in solution in the 100 to 10000 µg/mL concentration range

Stability - 2:100 ppb levels stable for months in 1 % HNO, /LDPE container: 1-10,000 ppm solutions chemically stable for years in 5 - 7% HNO, /LDPE container.

Bi Containing Samples (Preparation and Solution) - Metal (soluble in HNO,); Oxides (Soluble in HNO,) Alloys (Dissolve in conc. 4:1 HCl /HNO, Heating may be required.) Organic based (dry ash at 450 % and dissolve ash in HNO, or acid digestion with conc. hat sulfuric acid adding hydrogen peroxide dropwise and carefully until dear.)

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at according)
ICP-OES	223.061 nm	0.04 / 0.005 µg/mL	1	atom	Th, Ir, TI Cu
ICP-OES	306.772 nm	0.08 / 0.01 µg/mL	1	atom	<u>Th</u> , U, <i>Z</i> r, Hf, Fe
ICP-OES	222.825 nm	0.1 / 0.02 µg/mL	1	atom	<u>Cr, Hf,</u> Ce, Os
ICP-MS	209 amu	2 ppt	n/a	Μ'	131 K 16 O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditación, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Polynol (APCER), Singapore (PSR), Slovenia (SIQ), Spain (AFAQR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"

- Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission
 - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

INDR	GANIC LABS/	'RADCHEM	LABSPS. 2 of 3
DATE	RECEIVED:	07/31/0	3
DATE	RECEIVED:EXPIRED:	08/01/3	ω4 VOS
DATE	OPENED:	0/10/80	3
		PO: F 5	

ACE II

10.0

DATE OF CERTIFICATION AND PERIOD OF VALIDITY 11.0

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: March 28, 2003

Expiration Date:

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

JoAnn Struthers, QA Administrative Assistant

Certificate Approved By:

Katalin Le, QC Supervisor

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

folm Strutten Known in Paux Aain

166	PROJECT NO. BOOK NO.	100	TITLE	Nitrot	e-N	STD	
Work co	ntinued from Page	109					
	SwRI®						
				in the second		0105	
5 [[06-01-164	Nitrete	<u>-N , 100</u>	mg/L	<u>uc.</u>		
del	0.04930 uted to	g Sodu 100 ml I	m nitn DI.	ti (Uld	uch Lot	06721HI	Unorg 29.
0 ,	Balance	#34					
.,							
5							
					*		
			WY				
			JAK '				
		1 9	91				
		JAPA			ر برای در این است. این از این این است. این		
		My,					
In anticonomic reasons of	fiebindery88yrs.com					Work continued to	Page
SIGNATUR	MASKA		and the second second second			DAIL C	16/04
DISCLOSE	o to and understood	el.	DATE OS	UDY WITNES	55	DATE	·

Certificate of Analysis

THE RIGHT CHEMICALS THE RIGHT CHEMISTRY

INORGANIC LABS/RADCHEM LABS

DATE RECEIVED: 03/37/03

DATE EXPIRED: 03/37/30/3 Y05

DATE OPENED: 04/10/03

INORG: 4033 PD: 330/76E

Sodium carbonate, ACS primary standard, 99.95-100.05% (dried basis) 010512

Stock Number: 33377 Lot Number: L06M34

Analysis

Test	Limits	Results
Assay (dried basis)	99.95 – 100.05 %	100.0 %
Insoluble	0.01 % max	< 0.01 %
Loss on heating (285°C)	1.0 % max	< 0.05 %
Chloride	0.001 % max	< 0.001 %
Nitrogen compounds	0.001 % max	< 0.001 %
Phosphate	0.001 % max	< 0.001 %
Silica	0.005 % max	< 0.005 %
Sulfur compounds	0.003 % max	< 0.003 %
NH ₄ OH precipitate	0.01 % max	< 0.01 %
Potassium	0.005 % max	< 0.001 %
Calcium	0.02 % max	< 0.01 %
Magnesium	0.004 % max	< 0.004 %
Heavy metals (as Pb)	0.0005 % max	< 0.0005
2102.5		%
Iron	0.0005 % max	< 0.0005
	***************************************	%

Traceable to NIST? Yes

Certified by:

Quality Control:

30 Bond Street • Ward Hill, MA 01835-8099 USA • Telephone: (978) 521-6300 • Fax: (978) 521-6350

Toll-free Catalog Sales: (800) 343-0660 • Technical Services: (800) 343-7276 • Specialty/Bulk Sales: (888) 343-8025

www.alfa.com • email: info@alfa.com

010513

1001 West Saint Paul Avenue Milwaukee, WI 53233 USA Tel.: 800-558-9160 • (414) 273-3850 Fax: 800-962-9591 • (414) 273-4979

e-mail: aldrich@sial.com

Certificate of Analysis

SOUTHWEST RESEARCH INST DANNY RAMIREZ 6220 CULEBRA RD SAN ANTONIO TX 78238

PRODUCT NUMBER: 236527-500G

LOT NUMBER: 15308EI

PO NBR: 130686E

PRODUCT NAME: SODIUM HYDROGENCARBONATE, 99.7+%,

A.C.S. REAGENT

FORMULA: NAHCO3

FORMULA WEIGHT: 84.01

APPEARANCE WHITE POWDER

TITRATION 100.3 % (WITH HCL)

ICP ASSAY CONFIRMS SODIUM COMPONENT

INSOLUBLE MATTER 0.001% *

CALCIUM 0.0050%

CHLORIDE 0.0014% *

IRON < 0.0001% *

HEAVY METALS <5PPM (AS PB) *

POTASSIUM <0.0020 % *

MAGNESIUM 0.00025%

AMMONIUM <5PPM *

PHOSPHATE <0.001% *

CALCIUM, MAGNESIUM & 0.016% * R2O3 PRECIPITATE

CONTINUED ON NEXT PAGE

ALDRICH CHEMICAL COMPANY DAVID SWESSEL JANUARY 5, 2001

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.

Aldrich brand products are sold exclusively through Sigma-Aldrich, Inc.

Organics and Inorganics for Chemical Synthesis.

Certificate of Analysis

THE RIGHT CHEMICALS THE RIGHT CHEMISTRY

INDRGANIC LABS/RADCHEM LABS

DATE RECEIVED: 03/37/03

DATE EXPIRED: 03/37/30/3 010514

DATE OPENED: 04/10/03

INDRG: 4033 PD: 330/76E

Sodium carbonate, ACS primary standard, 99.95-100.05% (dried basis)

Stock Number: 33377 Lot Number: L06M34

Analysis

Test	Limits	Results
Assay (dried basis) Insoluble Loss on heating (285°C)	99.95 – 100.05 % 0.01 % max 1.0 % max	100.0 % < 0.01 % < 0.05 %
Chloride Nitrogen compounds	0.001 % max 0.001 % max 0.001 % max	< 0.001 % < 0.001 % < 0.001 % < 0.001 %
Phosphate Silica Sulfur compounds	0.005 % max 0.003 % max	< 0.005 % < 0.003 %
NH₄OH precipitate Potassium Calcium	0.01 % max 0.005 % max 0.02 % max	< 0.01 % < 0.001 % < 0.01 %
Magnesium Heavy metals (as Pb)	0.004 % max 0.0005 % max	< 0.004 % < 0.0005 %
Iron	0.0005 % max	< 0.0005 %

Traceable to NIST? Yes

Certified by:

Quality Control:

Alfa Aesar

30 Bond Street • Ward Hill, MA 01835-8099 USA • Telephone: (978) 521-6300 • Fax: (978) 521-6350
Toll-free Catalog Sales: (800) 343-0660 • Technical Services: (800) 343-7276 • Specialty/Bulk Sales: (888) 343-8025
www.alfa.com • email: info@alfa.com

SPEXertificate

Certificate of Reference Material

Catalog Number: AS-F9-2X/2Y

Lot No. 25-5AS

Description:

1000 mg/L Fluoride

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/ Certified Value is Traceable to: **NIST SRM 3183**

The CRM is prepared gravimetrically using high purity Sodium Fluoride Lot# M44142 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

997 mg/L

Method: Potentiometric using Fluoride combination electrode

Instrumentation Analysis By Ion Chromatography: 999 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L
Br	<0.2	NO3	<0.2
C1	<10	PO4	<1
NO2	<0.2	SO4	<0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherlakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k₂=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^{-i}}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

010517

SPEXertificate

Certificate of Reference Alaterial

Catalog Number: AS-CL9-2X/2Y

Lot No. 7-147VY

Description:

1000 mg/L Chloride

Matrix:

H₂O

This ASSURANCE ® certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM 3182

The CRM is prepared gravimetrically using high puritySodium Chloride Lot# 004723 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L

Method: Gravimetry: Precipitation using AgNO3, filtering, drying and weighing as AgCl.

Instrumentation Analysis By Ion Chromatography:997 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
F	< 0.05	Br	<0.1
PO4	<0.05	NO3	<0.1
SO4	< 0.05	NO2	< 0.2

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: N. Kocherakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Reference Material

Catalog Number: AS-NO2N9-2X/2Y

Lot No. 7-158VY

Description:

1000 mg/L Nitrite-N

Matrix:

H₂O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for lon Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 1001.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L Certified Value is Traceable to: SPEX CRM 0902

The CRM is prepared gravimetrically using high purity Sodium Nitrite Lot# 0791R. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000mg/L

Method: Titration with KMNO4 that was standardized against Sodium Oxalate NIST SRM 40h.

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L
Br	<20	NO3	<40
Cl	<20	PO4	<0.8
F	< 0.4	SO4	<0.4

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: MAR -- 2004 Certifying Officer: N. Kocherakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_i=5^2m$ is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

DATE RECEIVED: _____05/29/03
DATE EXPIRED: _____05/20/20
DATE OPENED: _____05/20/20

SPEXertificate**

Certificate of Reference Material

Catalog Number:

AS-BR9-2X/2Y

Lot No.: 23-52AS

Description:

1000 mg/L of Bromide

Matrix:

 H_2O

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Bromide (Br): 999 mg/L ± 3 mg/L

Traceable to: SPEX CRM 19-45AS

The CRM is prepared gravimetrically using high purity Sodium Bromide (NaBr) Lot#017400 The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1,002 mg/L

Method: Gravimetric analysis by precipitation using Silver Nitrate, filtering, drying and

weighing as AgBr.

Instrumental Analysis by Ion Chromatography: 996 mg/L

Trace Anion Impurities in the Actual Solution via IC Analysis:

Element	mg/L
F-	< 0.02
BrO_3	< 0.02
NO ₂	< 0.05
NO ₃	< 0.05
PO_4^{-3}	< 0.20
Cl-	<1.50
SO₄⁻²	< 0.05

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% of the certified concentration value for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

MAY - - 703

Date of Certification: Ce

Certifying Officer: N. Kochenakola

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k, = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service***

SPEXertificate *

Certificate of Reference Alaterial

Catalog Number: AS-NO3N9-2X/2Y

Lot No. 25-65AS

Description:

1000 mg/L Nitrate Nitrogen

Matrix:

H2O

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 1003.5 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L

Certified Value is Traceable to: NIST SRM 3185

The CRM is prepared gravimetrically using high purity Sodium Nitrate Lot# M14156. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

1004 mg/L

Method: Precipitate using Nitron Acetate, filter, dry and weigh as C20H16N4HNO3

Instrumentation Analysis By Ion Chromatography: 1003 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Ion	mg/L	Ion	mg/L	
Br	<0.5	NO2	<0.2	
Cl	<0.2	PO4	<2.0	
F	<0.05	SO4	<0.5	


Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN - - 2004

Certifying Officer: N. Kochertakota

TE RECEIVED: 01/06/04
TE EXPIRED: 01/06/05 V
TE OPENED: 01/06/04

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, = 2m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k₁ = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=ku_e where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e-}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

SPEXertificate

Certificate of Reference Material

Catalog Number: AS-PO4P9-2X/2Y

Lot No. 7-145VY

Description:

1000 mg/L Phosphate-P

Matrix:

H20

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3 mg/L Certified Value is Traceable to: NIST SRM #318b

The CRM is prepared gravimetrically using high purityKH2PO4 Lot# V35142 . The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 998 mg/L

Method: Precipitation using Magnesia Mixture. Filter, ignite, and weigh as Mg2P2O7

Instrumentation Analysis By Ion Chromatography: 998 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/I	
Cl	<3.0	Br	< 0.3	
F	<0.2	NO3	<0.5	
NO2	<0.3	SO4	<0.5	

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

JAN - - 2004

Certifying Officer: N. Kochertakota

DATE RECEIVED: ___01/06/04___

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k_s=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

Certificate of Reference Material

Catalog Number: AS-SO49-2X/2Y

Lot No. 7-149VY

Description:

1000 mg/L Sulfate

Matrix:

H20

This ASSURANCE ®certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevent to the certified properties listed below.

Certified Value: 997 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/ Certified Value is Traceable to: NIST SRM 3181

The CRM is prepared gravimetrically using high purity Potassium Sulfate Lot# X34146. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay:

998 mg/L

Method: Precipitated using Barium Chloride, filtered, ignited and weighed as BaSO4

Instrumentation Analysis By Ion Chromatography: 996 mg/L

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

Element	mg/L	Element	mg/L
Br	<0.01	МО3	<0.01
CI	<0.01	PO4	<0.10
F·	<0.005		
NO2	<0:01		

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

MAY - - '03

Certifying Officer: N. Kochertakola

NURGANIC LABS/RADCHEM LABS NTE RECEIVED: ____05/20/2004

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_i = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 CRMSales@spexcsp.com • www.spexcsp.com Always Providing Superior Quality . . . Unparalleled Service™

SPEXertificate™

Certificate of Reference Material

Catalog Number:

ICMIX2-100

Lot No.: 25-145AS

Description:

IC Instrument Check Standard 2

Matrix:

H₂O

This ASSURANCE ©certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single ion concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ION Chromatography:

Analyte	Labeled (mg/L)	Measured (mg/L)	NIST SRM
F-	100	100	3183
Cl	200	200	3182
Br ⁻	400	399	3184
NO_3^-	400	402	3185
HPO ₄ -2	600	600	3186
SO_4^{-2}	400	399	3181

Spex Reference Multi: Lot #IC6-77VY

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: APR - - 2004 Certifying Officer: N. Kochertakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{ee} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

146 PROJECT NO. BOOK NO. CH Work continued from Page 010531 SwRI® -104 Nitrite-N, 101mg/L F Nithte-(Spex 23-23A8, 1000ma)

H20. 10 15 20 25 30 35 Work continued to Page DATE DATE 4/12/04 WITNESS

010532

Certificate of Reference Material

Catalog Number:

AS-NO₂9-2X/2Y

Lot No.: 23-23AS

Description:

1000 mg/L of Nitrite

Matrix:

H₂O

This ASSURANCE *certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for lon Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Nitrite (NO₂): 1000.5 mg/L + 3 mg/L

Traceable to: SPEX CRM 0601NO₂

The CRM is prepared gravimetrically using high purity Sodium Nitrite (NaNO₂) Lot#0791R. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 1000 mg/L

Method: Titrimetric analysis using KMnO₄. KMnO₄ standardized with As₂O₃ NIST SRM #83d.

Instrumental Analysis by Ion Chromatography: 1001 mg/L

Trace Anion Impurities in the Actual Solution via IC Analysis:

Element	mg/L		
F	<0.2		
SO₄⁻²	< 0.2		
Cl	<0.5		
PO_4^{-3}	<0.5		
Br ⁻	<10.0		
NO^2	<10.0		

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% of the certified concentration value for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification: NN -- '03 Certifying Officer: N. Kochestakota

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k,=3 m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U = Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

ISO 9001 CERTIFIED

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647

CRMSales@spexcsp.com • www.spexcsp.com

Always Providing Superior Quality . . . Unparalleled Service™

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT CLIENT: Division 20 010534

TASK ORDER: 040601-6, 040603-3

SRR: 25978, 25997 SDG: 245431, 245613 CASE: CNWRA

VTSR: May 28, June 02, 2004 PROJECT#: 10542.02.002

Pipette Calibrations

Book/Page: 03 031

SwRl – Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

010535

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

Eppendorf #	True Value (uL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value]
Lab30	1000	1.0088	1.0069	1.0055	1.01	100.71]
TMA1	1000	1.0043		1.0023	1.00	100.28	1
TMA2	10 00	1.0064	1.005	1.0048	1.01	100.54	I
TMA3	1000	OUT	OF	SERVICE			1
TMA6	1 0 00	NOT	FOUND				
TMB1	900	0.9014	0.9018	0.9005	0.90	100.14	
TMC1	800	0.7999			0.80	100.07	1
TMDD1	750	0.7543			0.75	100.50	
TMD1	700	0.6974			0.70	99.31	1
TMD2	700	0.7059			0.71	100.81	1
TME1	600	0.5979			0.60	99.38	ł
TMF2	500	0.5	0.4965	74156 0.4969	0.50	99.50 99.56 1050	1/01/04
TMF5	500	0.5039			0.50	100.64	, - , .
ICF1	500	0.4974		0.4954	0.50	99.33	
L30-500	500	0.5038			0.50	100.42	
TMG3	400	0.3941	0.3949		0.39	9 8.69	
TMH1	300	OUT	OF	SERVICE			
TMH2	300	0.2974	0.2971	0.2959	0.30	98.93	
TMJ1	250	0.2484	0.248		0.25	99.27	
TMJ2	250	0.2487	0.2484		0.25	99.41	
TMJ3	250	0.2501	0.2495	0.2491	0.25	99.83	
TMK2	200 -	0.2007	0.2007	0.2006	0.20	100.33	
TML1	150	0.1487	0.1488		0.15	99.13	
TMM1	120	0.1206	0.1206	0.1202	0.12	100.39	
TMN3	100	0.1001	0.1	0.1	0.10	100.03	
ICN1	100	0.1005	0.1005		0.10	100.63	
TMQ1	80	0.08	0.0797	0.0799	80.0	99.83	
TMR1	70	OUT	OF	SERVICE			
TMS1	60	OUT	OF	SERVICE			
LAB-30A	50	NOT	FOUND				
TMU1	40	0.0398	0.0398	0.0403	0.04	99.92	
TMU2	40	0.0397	0.0396	0.0395	0.04	99.00	
TMV1	30	0.0297	0.0296		0.03	98.89	,
L30-20	20	0.0203	0.0203	0.0202	0.02	101.33	
TMW1	25	0.0253	0.0249		0.03	100.27	
TMY1	15	OUT	OF	SERVICE			

FRM-246 (Rev 1/Mar 03)

010536

Book/Page <u>33 032</u>

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

Eppendorf #	True Value (μL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)
Lab30	1000	1.0088	1.0069	1.0055
TMA1	1000	1,0043	1.0018	1.0023
TMA2	1000	1.0064	1.005	1.0048
TMA3	1000	out	OF	Str Nic
TMA6	1000	N07	Found	
TMB1	900	,9014	.9018	.9005
TMC1	800	7999	,8004	,8014
TMDD1	750	7543	,7532	.7538
TMD1	700	10974	,10946	169360
TMD2	700	.7059	.7054	7058
TME1	600	5979	5961	,5948
TMF2	500	,5000	149510	.49109
TMF5	500	,5039	,5035	,5022
ICF1	500	4974	. 4971	4954
L30-500	500	,5038	50/5	,5010
TMG3	400	, 3941	3949	.3953
TMH1	300	out	€ (F	Serice
TMH2	300	. 2974	,2971	2959
TMJ1	250	,2484	.2480	,2481
TMJ2	250	. 2487	,2484	,2185
TMJ3	250	2501	.2495	,2491
TMK2	200	.2007	.2007	2006
TML1	150	1487	,1488	1486
TMM1	120	,1206	11204	,1200
TMN3	100	1001	,/000	.1000
ICN1	100	,1005	.1005	.1009
TMQ1	80	.0800	10797	, 0799
TMR1	70	out	9±	Struct Struct
TMS1	60	out	AF	Service
LAB-30A	50	N)81	FOUND , 0398	
TMU1	40	0398	,0398	.0403
TMU2	40	0397 .0297 .0203	,0394	10395
TMV1	30	:0297	,0296	,0297
L30-20	20	,0203	,0203	,0297 .0202
TMW1	25	,0253	0249 8F	,0250
TMY1	15	Out	78	SHIVIE

Analyst:	~ Will	9		Date:	5-28-04
1	Valo	1000		Date:	401/0570
-			EDM 2436	· (Poy 3/Mai	· 03)

Book/page:	0.6	027	
------------	-----	-----	--

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010537

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100				<u> </u>	
	200					
	20			10/10/		
ADJ200-C	100		100	01101		
	200					
	20		3.7			
ADJ200-D	100					
	200					
	20	0.0197	0.0196	0.0196	0.020	98.17
ADJ200-G	100	0.1011	0.1010	0.1007	0.101	100.93
	200	0.1994	0.1993	0.1995	0.199	99.70
	20	0.0204	0.0204	0.0201	0.020	101.50
ADJ200-H	100	0.1009	0.1008	0.1019	0.101	101.20
	200	0.1990	0.1991	0.1990	0.199	99.52
	20	0.0203	0.0203	0.0202	0.020	101.33
ADJ200-J	100	0.1011	0.1013	0.1008	0.101	101.07
	200	0.2015	0.2011	0.2008	0.201	100.57
	20					
ADJ200	100					
	200					
	20			1161		
ADJ200	100		(1. 06/0)	10		
	200		1.4.00			<u> </u>
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: _____ diH20 Temperature (° C) 010538

Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
[ADJ200-A	100			
		200		. 15	4
		20		- 1234	
	ADJ200-C	100		051	
		200	/		
		20			
	ADJ200-D	100			
3		200			
		20	0.0197	0.0196	0.0196
200	ADJ200-G	100	0.1011	0.1010	0.1007
7		200	0.1994	0.1993	0.1995
		20	0.0204	0.0204	0.0201
	ADJ200-H	100	0.1009	01008	0.1019
1		200	0.1990	0 1991	0.1990
0		20	0.0203	8.0263	0.0202
20	ADJ200-J	100	0.1011	0.1013	0.1008
		200	0.2015	0.7011	0.2008
		20			
	ADJ200-K	100		128/04	
		200		IV. OSTERY	
		20		Y-	
L	ADJ200	100			
		200			

Analyst: Now Delication of the Control of the Contr

Date: 05 28 04

Date: 06/30/04

Book/page:_	, see	0	6	:	0	2	9	

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010539

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0200	0.0203	0.0202	0.020	100.83
ADJ200-A	100	0.0982	0.0985	0.0989	0.099	98.53
	200	0.2007	0.2001	0.2011	0.201	100.32
	20	0.0199	0.0201	0.0199	0.020	99.83
ADJ200-C	100	0.0986	0.0991	0.0991	0.099	98 .93
	200	0.1993	0.1994	0.1993	0.199	99.67
	20	0.0199	0.0204	0.0202	0.020	100.83
ADJ200-D	100	0.0997	0.0997	0.0998	0.100	99.73
	200	0.1991	0.1992	0.1996	0.199	9 9.65
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100					
	200					
	20					
ADJ200-J	100					
	200					
	20	0.0199	0.0200	0.0202	0.020	100.17
ADJ200-K	100	.0.1004	0.1003	0.0999	0.100	100.20
	200	0.2018	0.1998	0.1996	0.200	100.20
	20					
ADJ200	100					
	200					
	20					
ADJ200	100					
	200					

FRM-247a (Rev 4/Apr 04)

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 21

ſ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	,0300	.0203	. 0202
	ADJ200-A	100	. 0982	.0985	.0989
		200	. 2007	, 2001	,2011
		20	0199	,0201	.0199
	ADJ200-C	100	0986	,0991	,0991
		200	.1993	, 1994	. 1993
		20	0199	.0204	. 0202
	ADJ200-D	100	,0997	. 0997	.0998
3		200	.1991	. 1992	,1996
		20			
200	ADJ200-G	100			
N		200			
		20			
	ADJ200-H	100			4
3		200		6.4-0	
0		20		Qee	
20	ADJ200-J	100		7	
		200			
[20	. 0199	.0200	0202
	ADJ200-K	100	,1004	,1003	.0999
		200	,2018	11998	,1996
		20		N6-4-04	
	ADJ200	100	1 4	200	
		200	J		

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010541

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
AB01000 0	1000		, ,		0.000	0.00
	100		Kol.,		0.000	0.00
ADJ1000-D	500		101		0.000	0.00
AD01000 D	1000	\	1019		0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
AD31000-E	1000	7			0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
ADDITO:	1000				0.000	0.00
	100	0.0993	0.0990	0.0995	0.099	99.27
ADJ1000-G	500	0.5023	0.5018	0.5025	0.502	100.44
ADDITOL	1000	0.9953	0.9955	0.9969	0.996	99.59
	100	0.1007	0.1010	0.1009	0.101	100.87
ADJ1000-H	500	0.4933	0.4954	0.4948	0.495	98.90
ADDITOT	1000	1.0069	1.0088	1.0093	1.008	100.83
	100	0.1005	0.1009	0.1004	0.101	100.60
ADJ1000-J	500	0.4987	0.4982	0.4991	0.499	99.73
ADOTOGO	1000	1.0073	1.0061	1.0053	1.006	100.62
	100				0.000	0.00
ADJ1000	500		1/2/2/2	04	0.000	0.00
AD01000	1000	 	4 sotal		0.000	0.00
	100				0.000	0.00
ADJ1000	500		1		0.000	0.00
7001000	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

Book/page:_

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #:	Thermometer #: 601	diH20 Temperature (° C) 10542

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
. – 1000 µL	ADJ1000-C	500			
		1000		3/10/09	
i		100		10 , 28 0	
1	ADJ1000-D	500		1/20	
000 µL		1000	\	034	
		100			
	ADJ1000-E	500	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		1000			
		100			
	ADJ1000-F	500			
		1000			
12		100	0.0993	0.0990	0.0995
	ADJ1000-G	500	0.5023	0.5018	0.5025
' '.		1000	0,9953	0.9955	0.9969
3		100	0.1007	01010	0.1009
	ADJ1000-H	500	0.4933	0.4954	0.49.48
00		1000	1.0069	1.00 88	1.0093
-		100	0.1005	0.1009	0.1004
	ADJ1000-J	500	0.4997	0.4982	0.4991
		1000	1.0073	1.0061	1.0053
		100			
	ADJ1000-K	500		test as t	
		1000	/ \	DK 128/001	
		100	الأر		
	ADJ1000	500			The State St
		1000			

Analyst: No Outlife

Reviewed by:

Date: 05/30/04

D = -1-/	06	087	
Book/page:			

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010543

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100	0.1020	0.1018	0.1018	0.102	101.87
ADJ1000-C	500	0.5013	0.4982	0.4994	0.500	99.93
	1000	1.0086	1.0040	1.0018	1.005	100.48
	100	0.1014	0.1015	0.1015	0.101	101.47
ADJ1000-D	500	0.4959	0.4955	0.4956	0.496	99.13
	1000	0.9961	0.9964	0.9970	0.997	99 .65
	100	0.1018	0.1020	0.1016	0.102	101.80
ADJ1000-E	500	0.5024	0.5000	0.5012	0.501	100.24
	1000	1.0020	1.0008	1.0010	1.001	100.13
	100	0.0998	0.1014	0.1002	0.100	100.47
ADJ1000-F	500	0.4986	0.5007	0.5008	0.500	100.01
	1000	1.0036	1.0014	1.0038	1.003	100.29
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
	1000	•				
	100					
ADJ1000-J	500					
	1000					
	100	0.1010	0.1008	0.1008	0.101	100.87
ADJ1000-K	500	0.5001	0.5016	0.5011	0.501	100.19
	1000	1.0072	1.0010	1.0006	1.003	100.29
	100					
ADJ1000	500					
	1000					

FRM-247b (Rev 3/Apr 04)

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010544

Balance #: 34 Thermometer #: 601 diH20 Temperature (° C) 21

Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
1		100	,1020	,1018	.1018
ľ	ADJ1000-C	500	.5013	. 4982	.4994
Ī		1000	1.0086	1.0040	1.0018
		100	.1014	,1015	,1015
•	ADJ1000-D	500	.4959	. 1955	. 4956
ŀ		1000	,9961	,9964	,9970
		100	. 1018	. 1020	,1016
İ	ADJ1000-E	500	.5024	,5000	5012
		1000	1.0020	1.0008	1.0010
η		100	, 0998	.1014	, 1003
0	ADJ1000-F	500	.4986	,5007	. 5008
000		1000	1.0036	1.0014	1.0038
0		100			
	ADJ1000-G	500			
		1000			
7		100			
7	ADJ1000-H	500)
100		1000		1-0	4
1(100		Ow letter	
•	ADJ1000-J	500		1	
		1000			
		100	1010	,1008	, 1008
	ADJ1000-K	500	,5001	,5016	,5011
		1000	1.0072	1.0010	1.0006
		100		26.1.04	>
	ADJ1000	500		206-1-09	
		1000			

Analyst: Chille	Date: 6.4-04
Reviewed by:	Date:

Book/page:_	06	145
DOCIVERSO		

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010545

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				0.000	0.00
ADJ5000-C	2500				0.000	0.00
	5000				0.000	0.00
	500		72		0.000	0.00
ADJ5000-G	2500		1218		0.000	0.00
	5000		00/		0.000	0.00
	500			l	0.000	0.00
ADJ5000-H	2500				0.000	0.00
	5000	7			0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
	5000				0.000	0.00
	500	0.5055	0.5051	0.5038	0.505	100.96
ADJ5000-J	2500	2.5047	2.5055	2.5062	2.505	100.22
	5000	5.0189	5.0197	5.0192	5.019	100.39
	500	0.4919	0.4949	0.4965	0.494	98.89
ADJ5000-K	2500	2.5054	2.5022	2.5038	2.504	100.15
	5000	4.9911	4.9909	4.9902	4.991	99.81
	500	0.5000	0.5027	0.5034	0.502	100.41
ADJ5000-L	2500	2.4962	2.4935	2.4927	2.494	99.77
	5000	5.0209	5.0199	5.0285	5.023	100.46
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00
	500 ⁻	•	lial		0.000	0.00
ADJ5000	2500		1,104		0.000	0.00
	5000		60		0.000	0.00
	500	(1)	99		0.000	0.00
ADJ5000	2500	7			0.000	0.00
	5000				0.000	0.00
	500				0.000	0.00
ADJ5000	2500				0.000	0.00
	5000				0.000	0.00

FRM-247c (Rev 2/Mar 03)

06 146

Book/page:_

diH20 Temperature (° C)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Thermometer #:

6 011

010546

Balance #: 34 1st Reading (g) 3rd Reading (g) 2nd Reading (g) True Value (µL) Eppendorf # 500 ADJ5000-C 2500 5000 500 ADJ5000-G 2500 5000 500 ADJ5000-H 2500 5000 500 ADJ5000-I 2500 5000 0.5038 0.5055 0.505 500 2.50 55 2.5062 ADJ5000-J 2500 2,5047 5.0197 5.0192 5.0189 5000 0.4919 04965 0.4949 500 2.5022 2.5038 2.5054 ADJ5000-K 2500 4.9909 . 9902 5000 4,9911 0.5027 0,5034 0.5000 500 .4935 2.4962 ADJ5000-L 2500 5.0209 5000 500 ADJ5000-M 2500 5000 500 ADJ5000-N 2500 5000 500 2500 **ADJ5000** 5000 500

Analyst:	1. 1 av
Reviewed by:	1 Nall Cup

2500 5000

ADJ5000

Book/page:	Ω	0	6	1	4	7

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010547

POLANTO

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)		% of True Value
	500	0.5008	0.4987	0.4947	0.498	99.61
ADJ5000-C	2500	2.5098	2.4968	5.1 0 4 2.48 65	2.497 Q.	500 99.89 100.00
	5000	5.0071	5.0054	5.0121 .4948	5.008	100.16
	500			7		
ADJ5000-G	2500	OUT	OF	SERVICE		
	5000					
	500					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.5087	0.5087	0.5094	0.509	101.79
ADJ5000-I	2500	2.4992	2.5047	2.5018	2.502	100.08
	5000	5.0376	5.0204	5.0290	5.029	100.58
	500					
ADJ5000-J	2500					
	5000					
	500					
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500					
	5000					
	500	0.5028	0.5046	0.5007	0.503	100.54
ADJ5000-M	2500	2.4996	2.5021	2.5018	2.501	100.05
	5000	5.0080	5.0076	5.0001	5.005	100.10
	500	0.5029	0.5008	0.5009	0.502	100.31
ADJ5000-N	2500	2.5321	2.5118	2.5080	2.517	100.69
	5000	5.0281	5.0317	5.0218	5.027	100.54
	500					
ADJ5000	2500					
	5000			1		
	500					
ADJ5000	2500					
	5000					

FRM-247c (Rev 3/Apr 04)

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 10548

Balance #: 34 Thermometer #: GO II diH20 Temperature (° C) 2/

Γ	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	.5008	,4987	,4947
	ADJ5000-C	2500	2.5098	2.4968	3.4948
		5000	5.0071	5,0054	5.0121
		500			
Ī	ADJ5000-G	2500	OUT.	8F	SERVICE
		5000			
		500			
	ADJ5000-H	2500	out	oF	SEVUICE
		5000			
		500	,5087	,5087	.5094
	ADJ5000-I	2500	2.4992	2.5087 2.5047	.5094 2.50/8 5.0390
		5000	5-0376	5.0204	5.0290
7		500			
2000	ADJ5000-J	2500			
9		5000			
100		500			
	ADJ5000-K	2500		,,,4	
		5000		6.4-04	
		500		100	
7	ADJ5000-L	2500			
500		5000			
0		500	,5028	.5046	.5007
4,	ADJ5000-M	2500	2.4996	2.5021	2.5018
		5000	5.0080	5.0076	5.001
		500	,5029	.5008	.5009
	ADJ5000-N	2500	3.5321	2.5118	2.5080
		5000	5.0381	5.0317	5,0218
		500			
	ADJ5000	2500			
		5000	Que	6-4.04	<u> </u>
		500			
	ADJ5000	2500			
l		5000			

Analyst: Que Wills	Date:	6-4-04	
Reviewed by. Male and	Date:	07/01/04	

D 1 - /	06	141	
Book/page:			

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf#	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500				L	
ADJ5000-C	2500				-	<u> </u>
	5000					
	500					
ADJ5000-G	2500				_	
	5000					
	500			N	1317 1	19
ADJ5000-H	2500				PLET	
	5000				(
	500		Commence of the second			
ADJ5000-I	2500					
	5000		W e. e			
	500	0.5041	0.5025	0.5011	0.5026	100.51
ADJ5000-J	2500	2.5033	2.5041	2.5025	2.5033	100.13
	5000	5.0173	5.0092	5.0181	5.0149	100.30
	500	0.4999	0.5015	0.5019	0.5011	100.22
ADJ5000-K	2500	2,5019	2.5064	2.5051	2.5045	100.18
	5000	4.9910	4.9908	4.9921	4.9913	99.83
	500	0.5004	0.5013	0.5039	0.5019	100.37
ADJ5000-L	2500	2.4967	2.4936	2.4923	2.4942	99.77
	5000	5.0202	5.0197	5.0188	5.0196	100.39
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500			$\lambda = \lambda$	104	
	5000			777	9	
	500		/4	11 001		
ADJ5000	2500			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
ADJOUU						
	5000					
-	500					
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6 511 diH20 Temperature (° C) 210550

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	-		
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500)
		5000	·		J. U
		500		104	
	ADJ5000-H	2500		05/	
		5000			•
		500	`		
	ADJ5000-I	2500			
		5000		ю	
1		500	0.5041	0.5025	0.5011.
5000	ADJ5000-J	2500	2.5033	2.5041	2.5025
2		5000	5.0173	5.0092	5.0181
2		500	0.4999	0.5015	0,509
	ADJ5000-K	2500	2.5019	2.5064	2.5051
".		5000	4.9910	4.9908	4.9921
7		500	0.5004	0.5013	0.5039
7	ADJ5000-L	2500	2.4967	2.4936	24923
500		5000	5.0202	5.0197	5.0188
2		500	4		
	ADJ5000-M	2500			
		5000			
		500		\	W
	ADJ5000-N	2500		124	01
		5000		1 05	
	······································	500	(
	ADJ5000	2500			
		5000			
		500			
	ADJ5000	2500			·
		5000	(

Analyst:	Val Count	
Reviewed by:	Jole Oper	_

Date: 05 24 04

Date: 06/30/04

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010551

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Eppendon #	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
AD31000-C	1000		, ,		0.000	0.00
	100		109		0.000	0.00
ADJ1000-D	500		101		0.000	0.00
AD31000-D	1000		100		0.000	0.00
	100				0.000	0.00
ADJ1000-E	500				0.000	0.00
ADJ1000-E	1000	~			0.000	0.00
	100				0.000	0.00
ADJ1000-F	500				0.000	0.00
ADJ 1000-F	1000				0.000	0.00
	100	0.0993	0.0990	0.0995	0.099	99.27
ADJ1000-G	500	0.5023	0.5018	0.5025	0.502	100.44
ADJ 1000-G	1000	0.9953	0.9955	0.9969	0.996	99.59
	100	0.1007	0.1010	0.1009	0.101	100.87
ADJ1000-H	500	0.4933	0.4954	0.4948	0.495	98.90
ADJ 1000-N	1000	1.0069	1.0088	1.0093	1.008	100.83
	100	0.1005	0.1009	0.1004	0.101	100.60
ADJ1000-J	500	0.4987	0.4982	0.4991	0.499	99.73
AD3 1000-3	1000	1.0073	1.0061	1.0053	1.006	100.62
	100	/			0.000	0.00
AD 11000	500		1/2/11	64	0.000	0.00
ADJ1000	1000	 	4 00/014		0.000	0.00
	100				0.000	0.00
AD 14000	500				0.000	0.00
ADJ1000	1000				0.000	0.00

FRM-247b (Rev 2/Oct 03)

Book/page:	0	6	ţ	0	8	6	

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010552 diH20 Temperature (° C)

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			,
	ADJ1000-C	500		, \0\	
		1000		35/18/09	
		100		10 , 28 0	
	ADJ1000-D	500		1/20	
		1000		024	
		100			
	ADJ1000-E	500			
		1000			
7		100			
0	ADJ1000-F	500		1.	
1000		1000	1		
1	<u> </u>	100	0.0993	0.0990	0.0995
	ADJ1000-G	500	0.5023	0.5018	0.5025
'.		1000	0,9953	0.9955	0.9969
3		100	0.1007	0.1010	0.1009
	ADJ1000-H	500	0.4933	0.4954	0.4948
100		1000	1.0069	1.00 88	1.0093
-		100	0.1005	0.1009	0.1004
	ADJ1000-J	500	0.4987	0.4982	0.4991
		1000	1.0073	1.0061	1,0053
		100			
	ADJ1000-K	500		Lector 1	
		1000	/	DR 120	
		100			
ļ.	ADJ1000	500			The second secon
l		1000			

Reviewed by:

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010553

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100				<u> </u>	>
	200					
	20			Lal		
ADJ200-C	100		J 06	01 101		
	200				<u> </u>	
	20		3.1			<u></u>
ADJ200-D	100					
	200					
	20	0.0197	0.0196	0.0196	0.020	98.17
ADJ200-G	100	0.1011	0.1010	0.1007	0.101	100.93
	200	0.1994	0.1993	0.1995	0.199	99.70
	20	0.0204	0.0204	0.0201	0.020	101.50
ADJ200-H	100	0.1009	0.1008	0.1019	0.101	101.20
	200	0.1990	0.1991	0.1990	0.199	99.52
	20	0.0203	0.0203	0.0202	0.020	101.33
ADJ200-J	100	0.1011	0.1013	0.1008	0.101	101.07
	200	0.2015	0.2011	0.2008	0.201	100.57
	20					
ADJ200	100					
	200					
	20		\ \	1/6/		
ADJ200	100		10/20 12	10		
	200		1.4. 00/01	~		
	20					
ADJ200-K	100					
	200					

26/2/1/2

FRM-247a (Rev 3/Oct 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200		, 15	4
		20		(13)	
	ADJ200-C	100		0>1	
		200	/		
		20		*	
	ADJ200-D	100			
3		200			
		20	0.0197	0.0196	0.0196
200	ADJ200-G	100	0,1011	0.1010	0.1007
N		200	0.1994	0.1993	0.1995
		20	0.0204	0.0204	0.0201
	ADJ200-H	100	0.1009	0.1008	0.1019
7		200	001990	01991	०.(५५०
0		20	0.0203	0.0263	0.0202
20	ADJ200-J	100	0.1011	0.1013	0.1008
		200	0.2015	0.2011	0.2008
		20			
	ADJ200-K	100		128/01	
		200		W. OSTER	
	·····	20			
[ADJ200	100			
[200			and the state of t

Analyst: Www. Reviewed by: Wall (U)

Date: 05 28 04

Date: 06/30/04

Balance #: 34

	Eppendorf #	True Value (μL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
	ADJ1000-C	500			
		1000			
		100			
	ADJ1000-D	500		104	
		1000		, at	
		100	·	alth	
	ADJ1000-E	500		8"	
		1000	1		
H		100	W		
0	ADJ1000-F	500	/ /		
1000		1000			
0		100	0.1007	0.1003	0.1006
	ADJ1000-G	500	0.4923	0.4967	0.4971
' <u>.</u>		1000	0.9998	1-0002	0.9985
7		100	0.0997	0.0992	0.0987
7	ADJ1000-H	500	0.5023	0.5037	0.5012
100		1000	1.0010	0.9982	0.9975
1(100	0,1008	0.0983	0.0995
	ADJ1000-J	500	0.4953	0.4937	0-4963
		1000	0.9852	0.9876	0.9864
		100			
	ADJ1000-K	500		104	
		1000		111910	
		100	1 A A L	0771	
	ADJ1000	500	W FAR		
		1000			

Analyst:	Warren a. Macgeli	Date:	04/19/04
	Valer Oik	Date:	06/30/04

Book/page:	06	063	

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010556

Warren a. Maegel 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	100					
ADJ1000-C	500					
	1000					
	100					
ADJ1000-D	500					
	1000					
	100					
ADJ1000-E	500					
	1000					
	100					•
ADJ1000-F	500					
	1000					
	100	0.1007	0.1003	0.1006	0.101	100.53
ADJ1000-G	500	0.4923	0.4967	0.4971	0.495	99.07
	1000	0.9998	1.0002	0.9985	1.000	99.95
	100	0.0997	0.0992	0.0987	0.099	99.20
ADJ1000-H	500	0.5023	0.5037	0.5012	0.502	100.48
	1000	1.0010	0.9982	0.9975	0.999	99.89
	100	0.1008	0.0983	0.0995	0.100	99.53
ADJ1000-J	500	0.4953	0.4937	0.4963	0.495	99.02
	1000	0.9852	0.9876	0.9864	0.986	98.64
	100					
ADJ1000	500					
	1000					
	100					
ADJ1000-K	500					
	1000					

FRM-247b (Rev 2/Oct 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34 Thermometer #: 6011 diH20 Temperature (° C) 2010557

[Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500	ì		
		5000			
		500			
	ADJ5000-G	2500		184	
		5000		LACT.	
		500			
	ADJ5000-H	2500	1	X	
		5000	A A A		
		500	7		
	ADJ5000-I	2500			
Į		5000			
3		500	0.5053	0.5072	0.5012
9	ADJ5000-J	2500	2.4954	2.4898	2.4913
2000		5000	4.9987	5.0102	5,0035
∞		500	0.4962	0.4987	0.4979
7	ADJ5000-K	2500	2.5003	2.5018	2,4978
" <u>.</u>		5000	4.9878	4.9927	4.9951
ጚ▮		500	0.5011	0.5028	0.5002
7	ADJ5000-L	2500	2.4983	2.4998	2.5017
200	***************************************	5000	5,0234	5.0217	5.0138
<u>کا</u> ا		500			
7,	ADJ5000-M	2500			
L		5000			
L		500			
_	ADJ5000-N	2500		100	
		5000		17/41	
		500		M.	
L	ADJ5000	2500	M	8	
		5000	W.		
_		500			
L	ADJ5000	2500			
1		5000	1		

Analyst:_	Warren	a. Magagli	Date:	04/191	04
	Valu		Date: _	06/30	<i>/</i> 0 <i>/</i> 4

Book/page:	06	123

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010558

Warren a. Naegeh 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500					
ADJ5000-C	2500					
	5000					
	500					
ADJ5000-G	2500					
	5000					
	500					
ADJ5000-H	2500					
	5000					
	500					
ADJ5000-I	2500					
	5000					
	500	0.5053	0.5072	0.5012	0.505	100.91
ADJ5000-J	2500	2.4954	2.4898	2.4913	2.492	99.69
	5000	4.9987	5.0102	5.0035	5.004	100.08
	500	0.4962	0.4987	0.4979	0.498	99.52
ADJ5000-K	2500	2.5003	2.5018	2.4978	2.500	100.00
	5000	4.9878	4.9927	4.9951	4.992	99.84
	500	0.5011	0.5028	0.5002	0.501	100.27
ADJ5000-L	2500	2.4983	2.4998	2.5017	2.500	100.00
	5000	5.0234	5.0217	5.0138	5.020	100.39
	500					
ADJ5000	2500					
	5000					
	500					· · · · · · · · · · · · · · · · · · ·
ADJ5000	2500					
	5000					
	500					
ADJ5000	2500					
	5000					
	500					
ADJ5000-M	2500					
	5000					

FRM-247c (Rev 2/Mar 03)

SwRI Div. 01 - Inorganic Laboratory Adjustable Pipette Verification Log

Balance #: 34	Thermometer #: 6011	diH20 Temperature (° C) 22 1

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
	ADJ200-A	100			
		200			
		20		Lator	
	ADJ200-C	100		, oyth	
		200	1 2	Y	·
		20	WH		
	ADJ200-D	100			
3		200			
		20	0.0201	0.0203	0.0200
200	ADJ200-G	100	0.0983	0.0985	0.0985
2		200	0.1965	0.1983	0.1972
		20	0.0203	0.0701	0.0199
	ADJ200-H	100	0.0998	0.0985	0.0991
I		200	0.2003	a 1998	0.81990
0		20	0.0197	0.0199	0.0197
20	ADJ200-J	100	0.0987	0.0988	0.0993
		200	0.1998	0.1995	D. 1986
		20			
	ADJ200-K	100		1:11	
		200		14/19/07	
		20	- Ant	OTI.	
	ADJ200	100	WAN		
		200			

Analyst: Natorer a Margeli	Date: _	04/19/04
Reviewed by: Mile Of July	Date: _	00/30/04

Book/page: 06 006 a

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010560

Navoren a. Naegeli 04/30/04

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20					
ADJ200-A	100					
	200					
	20					
ADJ200-C	100				<u></u>	<u> </u>
	200					
	20					
ADJ200-D	100				<u> </u>	
	200					
	20	0.0201	0.0203	0.0200	0.020	100.67
ADJ200-G	100	0.0983	0.0985	0.0985	0.098	98.43
	200	0.1965	0.1983	0.1972	0.197	98.67
	20	0.0203	0.0201	0.0199	0.020	100.50
ADJ200-H	100	0.0998	0.0985	0.0991	0.099	99.13
	200	0.2003	0.1998	0.1990	0.200	99.85
	20	0.0197	0.0199	0.0197	0.020	98.83
ADJ200-J	100	0.0987	0.0988	0.0993	0.099	98.93
	200	0.1998	0.1995	0.1986	0.199	99.65
	20					<u></u>
ADJ200	100				<u> </u>	<u> </u>
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200-K	100					
	200					

FRM-247a (Rev 3/Oct 03)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT

CLIENT: Division 20

010561

TASK ORDER: 040601-6, 040603-3

SRR: 25978, 25997 SDG: 245431, 245613 CASE: CNWRA

VTSR: May 28, June 02, 2004 PROJECT#: 10542.02.002

Balance Calibrations

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

			TOT ED ANCE.	COMMENTS:
BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMISSION
	Bldg. 70 Lab 27	1122510787	±0.0005	
12	Std Wt (g)	Recorded Wt (g)	Operator	
Date		2.0000	KE	3N:99- J50526-
6-3-04	2.0000	2.0000	KE	m
1-4-04	2.0000		ILE	~
6-7-04	2,6000	2.0001	KE	N
6-1-04	2.0000	2.0000		~
6-8-04	2.0000	2.0000	KE	
6-9-04	2.0000	2,0001	KE	
6-10-04	2.0000	2.0001	KE	7
6-11-04	2.000	1.9999		
6-14-04		3.0000	See	
6-15-04	2.0000	2,0000	VKE.	N
6-16-04	2.0000	and re-calibrate using C	lass "S" weights	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 1 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
19	27	0068597	±0.05	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
6-2-04	10.00	10.00	Jes	5N:99-J50624-5
6-3-04	10.00	10.00	OKE	7
6-4-04	10.00	10.00	. KE	<i>N</i> .
6-7-04	10.00	18.00	KE	**
6-8-04	10.00	10.00	KE	N
6-9-04	10.00	10.00	KE	11
6-10-04	10.00	10.00	KE	//
6-11-04	10.00	10.01	KE	v
1-14-04	10.00	10.00	Jely	
6-15-04	10.00	10.01	lights .	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page # ___21____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
5-27-04	2,0000	2.0660	KE	3N:99-550526-15
5-28-04	2.000	2.000 1	KE	~
6-1-04	2,0000	210000	KE	N
6-2-04	2-0000	2-0000	Jey	~/
10-304	2-0000	2.0000	<u> </u>	
6-4-04	2,0000	2,0000	10C=	
6 6-04	2.0000	2.0000	R85	11
10-7-04	2.0000	2.0000	KE	V
6-8-04	2.0000	2.0000 2.0000	18	ν
6-9-04	2,6000	1 2 15hmata vaima Cl		

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 1 of 30

FRM-112 (Rev 2/Aug 03)

Southwest Research Institute Division 01 **BALANCE VERIFICATION LOG**

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
34	28	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
4-9-04	2.0000	3.0000	Der	SN: J50526-15
4-12-04	2-0000	2.0000	K.E	~
4-13-04	2.0000	2,000	ice	0
4-14-04	2 0000	2-6000	KΕ	~
4-15-04	7.0000	2.0000	KE.	N
4.16.04	2.0000	1.9999	146	^
4-19-04	2.6000	2,000	μE	~
4-20-04	2,0000	2.0000	KE	11
4-21-04	2 කෙරෙ	2.8000	ادي	\sim
4-22-04	2.0000	2.0000	KE	13

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page #___23_

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #	LAB#:	SERIAL #:	TOLERANCE:	COMMENTS:
34	28	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
4-9-04	J.0000	3.0000	Des	SN: J50526-15
4-12-04	2-0000	2.0000	¥.E	~
4-13-04	2.0000	2.0000	KE	C)
4-14-04	2 0000	2-0000	KE	A.
4-15-04	2.0000	2.0000	KE	N
4-16-04	2.0000	1.9999	ICE	Ar.
4-19-04	2.0000	2.0000	KE	74
4-20-04	2,0000	2-0000	KE	"
4-21-04	2 .0000	2.8000	KE	\sim
4.22-04	2.0000	2.0000	KE	ps.

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (x5896) for service.

Page #___23____

FRM-112 (Rev 1/Dec 99)

Southwest Research Institute® Division 01 **BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 27	1116031935	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
5-27-04	2,0000	2.0000	KE	32.99-550526-15
5-28-04	2,000	2.000 i	KE	<i>λ.</i>
6-1-04	2,0900	210000	XE.	N
6-2-04	2-0000	2-0000	Jei	
10-304	2.00,00	2-0000	Jev	-/
6-4-04	2,0000	2,0000	PEE	3
6 6-04	2.0000	2.0000	R85	1.1
10-7-04	2.0000	2,0000	KE	As .
6-8-04	2.0000	≥ .0000	146	V
6-9-04	2,6000	2,0000	KE	ν

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 1 of 30

FRM-112 (Rev 2/Aug 03)

SOUTHWEST RESEARCH INSTITUTE

010568

NUCLEAR PROJECT CLIENT: Division 20

TASK ORDER: 040601-6, 040603-3

SRR: 25978, 25997 SDG: 245431, 245613 CASE: CNWRA

VTSR: May 28, June 02, 2004 PROJECT#: 10542.02.002

DI Water Verification

D.I. WATER SYSTEM NOTEBOOK % SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010569

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
Staylor GOODM	10/2	18.04	V	V	<i>\sum_{\chi}</i>	1903.8	ALL OK
125/14 6:490m	OR	18,64	V	レ	V	1946,3	<u> </u>
5/26/04 6.41pm	OR	18.04	レ	V	~	1974.6	<u> </u>
SHOHLY RISEM	OR	15,04	V	V	V	1992.7	
41/04 649m	OR	18,04	V	V	V	2012,0	
613/24 6.16pm	DR	18.04	<u>'</u>	~		2029,5	
6/3/04 6:20 pm	DR	18.04	レ	~	1	2044,4	
6/4/04 5,430M	DR	18,04	V	V	1	20547	
6/7/04 5.53 pm	OR	18.05	V	V)	2072.0	
618/04 7.341M	1)R	18.05	~	2	١	2086,5	レ
c/9/04 7:10pm	OR	18,04	V	V	1	2123.7	
Glaloy 7:30em	DR	18,05		~		2134,8	レ
Cloloy Gilson	DR	18.04		L	~	2145,4	<u></u>
6/14/04 6,20pm	OR	18.05	V	~	V	2156.2	1
615/64 5780m	DR	18.04	~	~	~	2170.2	\ \
Glibley 70m	OR	18.05	V	2		2187.0	<i>W</i>

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
5/24/64 6102 pm	pR	V (14,5)		910.7	All all
Storley Gygon	DR	v (15,0)	レ	911.6	
Stabley Gillom	OK	V (15.W)	V	9/2.1	
5/22/04 8:56/M	ĎΚ	~ (15.0)	レ	9/2.3	
6/1/64 6:490m	DR	V (15.0)		912,9	
cloter girlen	PR	V 116.0)	V	913.7	
6/3/64 6: 200M	PR	V (16.5)	レ	913,9	
alylou siysom	DR	W(65)	~	914.0	
6/7/04 5:530m	DR	V (9.0)	<i>i</i>	914.0	<u> </u>
6/8/04 7:40m	DR	18,0	<u></u>	9145	nedto rul USF: Itar/P.O.
algley Dicopr	pR	λ	(17.5) V	915.0	nul P.O.
6/10/04 7.300m	DiR	X	(17.5) V	925.1	AP.O. Righed USFilter rathed
Glulay 6.18,5m	DP.	X	(125) ~	917.3	med v.o
6/14/64 6:20AM	PR		(14.0) V	920.5	trank Filter exchange ALL OK.
6/15/145180m	DR	<u></u>	(15.6) V	921.7	
6/16/64 7pm	DR	1	(15.5) V	923.2	

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010570

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
4/9/04 144000	DR	18.08	·V))	124812	
4/3/34 6330m	DR	18.04	V)		1258.9	
4/13/14 10. WAM	DR	18.63	ン	L	<i>i</i>	12607	
4/14/64 4:56/10	DR	18.04	V	w	~	1279.9	
4/15/N 13.520M	DR	15,03	レ			1289.7	
4/16/64 9.37 pm	OR	18.65)	/	1335,/	Representation of the second second
4/19/04 4. 20,1m	ρR	18:04	V		\	1361.5	
4/20/14 4143pm	Óβ	18.06	<u></u>	\	1	1381.8	
Ylaloy Siysam	DR	15,04	V	V	V	1406.2	
Ylydly 8.15pm	DR	15.03	V))	1435.6	
4/23/04 5/25 pm	DR	18.03	V	V		1460,7	
4/25/04 5.25 pm	RSS	18 64	/	V	V	1461.6	
4/26/64 6:33 pm	DR.	18.64	V	2		1482.8	
Mayers rolestr	DR	18.04	V	L	L	1490.9	
4/28/64 4/20 pm	DR	18:64	V	レ	~	1495.7	
429/04 Silipm	DR	18.04	V	V	~	1519.4	

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC LIGHTS		USAGE			
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS		
4/9/04 1:45 pm	OR	L	V	851.6			
4/12/04 6:740m	DR.	\dot{X}	i	853,1	checkingm silval, call service		
4/13/64 10 Am	DIC	X	1	857.2	redlo for Service Call		
4/14/04 951pm	DR	Х	1	571.4	USF, Her called (received po)		
4/15/64 12.50 pm	DR	<i></i>		87-5.5	tank Chotan Filter exchanged ALCOK!		
4/16/64 9:36pm	OR	V	V	877.6			
4/19/04 4/2/om	DR			879,5			
412/04 4.44AM	DR	<i>L</i>	<u></u>	88 3,0			
412164 9:460m	1)/2	U		585. l			
4/20/04 Kilbom	PR	V	L	8886.0 april			
4/23/64 5:260m	PR	└	1	88864 AM			
1/23/14 5:25m	RSS.	V		886.9			
4/86/64 6,240m	DP	V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	887.4			
4/22/14 6:24/m	012	レ	L	888.5			
4/28/64 4170 pm	0/2	V	v	887: DR4188	4 891.5		
4/24/04 5:41 sm	DIR	ا سا		593.7			

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

SOUTHWEST RESEARCH INSTITUTE

NUCLEAR PROJECT

CLIENT: Division 20

010571

TASK ORDER: 040601-6, 040603-3

SRR: 25978, 25997 SDG: 245431, 245613 CASE: CNWRA

VTSR: May 28, June 02, 2004 PROJECT#: 10542.02.002

SURVEILLANCE REPORTS From Division 30

S R

010572

Institute Quality Assurance Surveillance Report

Report Number: 2004-SR-0240		
110port 14diliber: 2004-011-0240	Page 1 of	1
	nd IC in Divis	sion 01. The client is
Trace Elemental Analysis, TAP 01-04i の4のよの3~3 Tゅらに or deに A	06-042, IC fo	or the Measurement of ci ATed with This
Ending Date: 20	04-09-10	
es S. Butcher		
Procedure: R. Spies, M. Hardy, D. Ha	arris	-
th PO number, QA Nuclear requirem g records were on file as required. W sed. Calibration of instruments was o	ents, project Vork orders, done using N	t number, tests required, methods, and PQP were NST traceable standards
N/A CAR/SCAR Num	her: N/A	
TWAT CARGOAN NUMBER		
was calibrated before running sample	es. All stand	ards were NIST
ance	Distribution: c:	Original – IQS Records C. S. Butcher (30) PM – K.Chiang (20) J. Boyd (01)
	r 040601-6,TAP 01-0406-038 Inductive Trace Elemental Analysis, TAP 01-0406 040 6 03-3 TASK or detail Astronomy of the Police of Starter of the Procedure: R. Spies, M. Hardy, D. Hardy of the Police o	Ending Date: 2004-09-10 es S. Butcher Procedure: R. Spies, M. Hardy, D. Harris O provided a work request for work performed. th PO number, QA Nuclear requirements, project grecords were on file as required. Work orders, sed. Calibration of instruments was done using N recorded, signed and reviewed by project persor. N/A CAR/SCAR Number: N/A Distribution: C:

SwRI® Form QA-125-3

Date: 9/14/04