Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbonate-rich crust subduction drives the deep carbon and chlorine cycles

Abstract

The flux balances of carbon and chlorine between subduction into the deep mantle and volcanic emissions into the atmosphere are crucial for the habitability of our planet1,2. However, pervasive loss of fluids from subducting slabs has been thought to cut off the delivery of both carbon and chlorine to the deep mantle owing to their high mobility under hydrous conditions3,4. Our new high-pressure experiments show that most carbonates (>75 wt%) in carbonate-rich crustal rocks—one of the main subducting carbon reservoirs—survive devolatilization and hydrous melting in cold and warm subduction zones, indicating that their subduction has driven the deep carbon cycle since the Mesoproterozoic. We found that KCl and NaCl, respectively, become stable phases crystallizing from hydrous carbonatite melts with low chlorine solubility in warm and hot subduction zones, resulting in the sequestration of chlorine in the solid residue in downwelling slabs. Accordingly, the subduction of carbonate-rich rocks facilitated highly effective recycling of both chlorine and carbon into the deep mantle at intermediate stages of Earth’s history and led to declining atmospheric pCO2 and the formation of carbon-rich and chlorine-rich mantle reservoirs since the Mesoproterozoic. This period of optimal carbon and chlorine subduction may explain the ages of eclogitic diamonds and the formation of the HIMU mantle source.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The hydrous melting of carbonate-rich crustal rocks relative to subduction slab surface geotherms.
Fig. 2: Modal abundances of experimental phases at 5 GPa.
Fig. 3: Key compositional features of experimental minerals and melts.
Fig. 4: Evolution of surface and deep carbon and chlorine controlled by subduction regime through time.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the paper or in the supplementary files and are also available at https://doi.org/10.6084/m9.figshare.22698292.v1Source data are provided with this paper.

References

  1. Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  ADS  CAS  Google Scholar 

  3. Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. 112, E3997–E4006 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnes, J. D., Manning, C. E., Scambelluri, M. & Selverstone, J. in The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle (eds Harlov, D. E. & Aranovich, L.) 545–590 (Springer, 2018).

  5. Foley, S. F. & Fische, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Article  ADS  CAS  Google Scholar 

  6. Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanyu, T. et al. Tiny droplets of ocean island basalts unveil Earth’s deep chlorine cycle. Nat. Commun. 10, 60 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).

    Article  ADS  CAS  Google Scholar 

  11. Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poli, S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 8, 633–636 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Schettino, E. & Poli, S. in Carbon in Earth’s Interior (eds Manning, C. E., Lin, J.-F. & Mao, W. L.) 209–221 (American Geophysical Union, 2020).

  14. Martin, L. A. J. & Hermann, J. Experimental phase relations in altered oceanic crust: implications for carbon recycling at subduction zones. J. Petrol. 59, 299–320 (2018).

    Article  ADS  CAS  Google Scholar 

  15. Grassi, D. & Schmidt, M. W. The melting of carbonated pelites from 70 to 700 km depth. J. Petrol. 52, 765–789 (2011).

    Article  ADS  CAS  Google Scholar 

  16. Chen, X. et al. Melting of carbonated pelite at 5.5–15.5 GPa: implications for the origin of alkali-rich carbonatites and the deep water and carbon cycles. Contrib. Mineral. Petrol. 177, 2 (2021).

    Article  ADS  Google Scholar 

  17. Plank, T. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 607–629 (Elsevier, 2014).

  18. Staudigel, H., Plank. T., White, B. & Schmincke, H.-U. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 19–38 (American Geophysical Union, 2013).

  19. Van den Bleeken, G. & Koga, K. T. Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F–Cl cycling through subduction zones. Geochim. Cosmochim. Acta 171, 353–373 (2015).

    Article  ADS  Google Scholar 

  20. Li, H. & Hermann, J. Apatite as an indicator of fluid salinity: an experimental study of chlorine and fluorine partitioning in subducted sediments. Geochim. Cosmochim. Acta 166, 267–297 (2015).

    Article  ADS  CAS  Google Scholar 

  21. Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411, 293–296 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kendrick, M. A., Scambelluri, M., Honda, M. & Phillips, D. High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat. Geosci. 4, 807–812 (2011).

    Article  ADS  CAS  Google Scholar 

  23. Philippot, P., Agrinier, P. & Scambelluri, M. Chlorine cycling during subduction of altered oceanic crust. Earth Planet. Sci. Lett. 161, 33–44 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Scambelluri, M. & Philippot, P. Deep fluids in subduction zones. Lithos 55, 213–227 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  ADS  Google Scholar 

  26. Tsuno, K., Dasgupta, R., Danielson, L. & Righter, K. Flux of carbonate melt from deeply subducted pelitic sediments: geophysical and geochemical implications for the source of Central American volcanic arc. Geophys. Res. Lett. 39, L16307 (2012).

    Article  ADS  Google Scholar 

  27. Thomsen, T. B. & Schmidt, M. W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 267, 17–31 (2008).

    Article  ADS  CAS  Google Scholar 

  28. Litasov, K. D. & Ohtani, E. Phase relations in the peridotite–carbonate–chloride system at 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chem. Geol. 262, 29–41 (2009).

    Article  ADS  CAS  Google Scholar 

  29. Safonov, O. G., Kamenetsky, V. S. & Perchuk, L. L. Links between carbonatite and kimberlite melts in chloride–carbonate–silicate systems: experiments and application to natural assemblages. J. Petrol. 52, 1307–1331 (2010).

    Article  ADS  Google Scholar 

  30. Safonov, O. G., Perchuk, L. L. & Litvin, Y. A. Melting relations in the chloride–carbonate–silicate systems at high-pressure and the model for formation of alkalic diamond–forming liquids in the upper mantle. Earth Planet. Sci. Lett. 253, 112–128 (2007).

    Article  ADS  CAS  Google Scholar 

  31. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  ADS  Google Scholar 

  32. Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45, 169–198 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Ronov, A. B. Common tendencies in the chemical evolution of the earth’s crust, ocean and atmosphere. Geokhiniiya 8, 715–743 (1964).

    Google Scholar 

  35. Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth Sci. Rev. 207, 103172 (2020).

    Article  CAS  Google Scholar 

  36. Martin, H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753–756 (1986).

    Article  ADS  CAS  Google Scholar 

  37. Komiya, T., Hayashi, M., Maruyama, S. & Yurimoto, H. Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. Am. J. Sci. 302, 806–826 (2002).

    Article  ADS  CAS  Google Scholar 

  38. Tsujimori, T. & Ernst, W. G. Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: a review. J. Metamorph. Geol. 32, 437–454 (2014).

    Article  ADS  CAS  Google Scholar 

  39. Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambrian Res. 147, 148–155 (2006).

    Article  ADS  CAS  Google Scholar 

  40. Kah, L. C. & Riding, R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology 35, 799–802 (2007).

    Article  ADS  CAS  Google Scholar 

  41. Kanzaki, Y. & Murakami, T. Estimates of atmospheric CO2 in the Neoarchean–Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015).

    Article  ADS  CAS  Google Scholar 

  42. Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).

  43. Klein-BenDavid, O., Wirth, R. & Navon, O. TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am. Mineral. 91, 353–365 (2006).

    Article  ADS  CAS  Google Scholar 

  44. Kamenetsky, M. B. et al. Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32, 845–848 (2004).

    Article  ADS  CAS  Google Scholar 

  45. Maas, R., Kamenetsky, M. B., Sobolev, A. V., Kamenetsky, V. S. & Sobolev, N. V. Sr, Nd, and Pb isotope evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 33, 549–552 (2005).

    Article  ADS  CAS  Google Scholar 

  46. Palyanov, Y. N., Shatsky, V. S., Sobolev, N. V. & Sokol, A. G. The role of mantle ultrapotassic fluids in diamond formation. Proc. Natl Acad. Sci. 104, 9122–9127 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cabral, R. A. et al. Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem. Geophys. Geosyst. 15, 4445–4467 (2014).

    Article  ADS  CAS  Google Scholar 

  48. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  ADS  CAS  Google Scholar 

  49. Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  CAS  Google Scholar 

  50. Skora, S. et al. Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions. J. Petrol. 56, 953–980 (2015).

    Article  ADS  CAS  Google Scholar 

  51. Veizer, J. & Mackenzie, F. T. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 369–407 (Elsevier, 2003).

  52. Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res. 189, 1–17 (2011).

    Article  ADS  CAS  Google Scholar 

  54. Kasting, J. F. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34, 205–229 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. 115, 4105–4110 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Article  ADS  CAS  Google Scholar 

  57. Coogan, L. A. & Gillis, K. M. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosyst. 14, 1771–1786 (2013).

    Article  ADS  CAS  Google Scholar 

  58. Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    Article  ADS  CAS  Google Scholar 

  59. Dick, H. J. B., MacLeod, C. J., Blum, P. & the Expedition 360 Scientists. Expedition 360 Preliminary Report: Southwest Indian Ridge Lower Crust and Moho. International Ocean Discovery Program. https://doi.org/10.14379/iodp.pr.360.2016 (2016).

  60. Tsuno, K. & Dasgupta, R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction. Earth Planet. Sci. Lett. 319, 185–196 (2012).

    Article  ADS  Google Scholar 

  61. Mann, U. & Schmidt, M. W. Melting of pelitic sediments at subarc depths: 1. Flux vs. fluid-absent melting and a parameterization of melt productivity. Chem. Geol. 404, 150–167 (2015).

    Article  ADS  CAS  Google Scholar 

  62. Dasgupta, R., Hirschmann, M. M. & Dellas, N. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib. Mineral. Petrol. 149, 288–305 (2005).

    Article  ADS  CAS  Google Scholar 

  63. Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357–368 (2003).

    Article  ADS  CAS  Google Scholar 

  64. Kiseeva, E. S. et al. An experimental study of carbonated eclogite at 3·5–5·5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J. Petrol. 53, 727–759 (2012).

    Article  ADS  CAS  Google Scholar 

  65. Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Chen, C. F., Förster, M. W., Foley, S. F. & Liu, Y. S. Massive carbon storage in convergent margins initiated by subduction of limestone. Nat. Commun. 12, 4463 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Förster, M. W., Foley, S. F., Marschall, H. R., Alard, O. & Buhre, S. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds. Sci. Adv. 5, eaau2620 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  68. Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

    Article  ADS  Google Scholar 

  69. Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).

    Article  ADS  CAS  Google Scholar 

  70. Staudigel, H., Hart, S. R., Schmincke, H.-U. & Smith, B. M. Cretaceous ocean crust at DSDP Sites 417 and 418: carbon uptake from weathering versus loss by magmatic outgassing. Geochim. Cosmochim. Acta 53, 3091–3094 (1989).

    Article  ADS  CAS  Google Scholar 

  71. Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    Article  ADS  Google Scholar 

  72. He, T. et al. Determination of Cl, Br, and I in geological materials by sector field inductively coupled plasma mass spectrometry. Anal. Chem. 91, 8109–8114 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Yaxley, G. M. & Brey, G. P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib. Mineral. Petrol. 146, 606–619 (2004).

    Article  ADS  CAS  Google Scholar 

  74. Franzolin, E., Schmidt, M. W. & Poli, S. Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contrib. Mineral. Petrol. 161, 213–227 (2011).

    Article  ADS  CAS  Google Scholar 

  75. Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 49, 717–740 (2008).

    Article  ADS  CAS  Google Scholar 

  76. Saha, S. & Dasgupta, R. Phase relations of a depleted peridotite fluxed by a CO2-H2O fluid—implications for the stability of partial melts versus volatile-bearing mineral phases in the cratonic mantle. J. Geophys. Res. Solid Earth 124, 10089–10106 (2019).

    Article  CAS  Google Scholar 

  77. Carpentier, M., Chauvel, C., Maury, R. C. & Mattielli, N. The “zircon effect” as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth Planet. Sci. Lett. 287, 86–99 (2009).

    Article  ADS  CAS  Google Scholar 

  78. Poli, S. Melting carbonated epidote eclogites: carbonatites from subducting slabs. Prog. Earth Planet. Sci. 3, 27 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.F.F. and C.C. are funded by ARC grant FL180100134 and S.S.S. by Macquarie University support funds for the FL project. M.W.F. is funded by Macquarie University grant MQRF0001074-2020. The Ocean Discovery Project provided the marine limestone and sediment samples. We acknowledge the facilities of the Centre for Advanced Microscopy at the Australian National University, Canberra. We thank Z. Hu and T. He for analysis of Cl contents of the starting materials. We acknowledge I. Ezad for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.C., M.W.F. and S.F.F. designed the study. C.C. and S.S.S. carried out the experiments. C.C. and M.W.F. performed analytical measurements. C.C. wrote the manuscript and all authors contributed to interpreting data and revising the manuscript.

Corresponding author

Correspondence to Chunfei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ananya Mallik and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 The compositions of starting materials in this study compared with previous high-pressure experiments and natural sediments and altered basalts.

a, CO2 and H2O contents of starting materials from this study (CS2, CS1 and CS5) and from previous high-pressure experiments on carbonated sediments26,27,50,60,61 and oceanic crust12,14,62,63,64. The model CaO–Al2O3–SiO2–CO2–H2O system is shown for comparison13. bf, Chemical compositions of sedimentary columns subducting at global trenches17, the Lesser Antilles sediments from DODP Site 144 (ref. 77), altered oceanic crust18 and starting materials in this study. The global weighted average composition of subducted sediments (GLOSS-II)17 is shown for comparison.

Source data

Extended Data Fig. 2 Representative backscattered electron images of run products at 3 and 4 GPa.

ac, 3 GPa. di, 4 GPa. a,de, Subsolidus experiments. b,c,fi, Above-solidus experiments. Silicate melt at 3 GPa (b,c) and 4 GPa (g). Carbonatite melt at T = 900 °C and 4 GPa (f). KCl at T = 850 °C (h) and both KCl and NaCl at T = 900 °C (i).

Extended Data Fig. 3 Representative backscattered electron images of experimental charges at 5 GPa.

ac, Subsolidus experiments. di, Above-solidus experiments. KCl in carbonatite melt (f) and in the solid residues (g). NaCl in carbonatite melts (h) and in the solid residues (i).

Extended Data Fig. 4 The melting curve of carbonate-rich crustal rocks compared with those of sediments and altered basalt/gabbro.

The solidus of hydrous carbonate-rich sediments (CS2 and CS5) in this study, hydrous carbonate-free silicate sediments75, carbonated basalt/gabbro12 and average sediments26,27. The shaded areas represent the PT conditions in which carbonatite melts (CbM) are stable.

Extended Data Fig. 5 Variation of the modal abundances of experimental phases at 3 and 4 GPa for CS2.

Source data

Extended Data Fig. 6 The chemical compositions of carbonate-rich phases in the experiments.

The chemical compositions of carbonate precipitated from fluid and of calcite (a) and compositions of silicate and carbonatite melts (b) in this study. Carbonate precipitates and melts from previous experiments on hydrated carbonated gabbro12 and carbonated sediments26,27,50 are shown for comparison. The stability regions of (Mg, Fe)-calcite and siderite–magnesite solid solution are from ref. 78.

Source data

Extended Data Fig. 7 Subduction of carbonate-rich crustal rocks through time.

a, Schematic illustration showing subduction of carbonate-rich crustal rocks and replenishment of carbon and/or chlorine to cratonic mantle roots and deep sources of HIMU-type ocean island basalts (OIBs). Stability of carbonate and chloride during subduction of carbonate-rich crustal rocks influenced by the infiltration of Cl-rich fluid in the cold (b), warm (c) and hot (d) subduction regimes.

Extended Data Fig. 8 The chemical compositions of minerals in the experiments.

Major element chemistry of garnet, jadeite and carbonates showing systematic changes with temperature. Their compositions are independent of the bulk compositions of the starting materials.

Source data

Extended Data Fig. 9 Representative backscattered electron images of the experimental charges in the unpolished halves of capsules.

KCl coexists with other residual minerals as inclusions (a) and coexists with carbonatite melts (b) in the experiment at 950 °C. c, NaCl coexists with carbonatite melts in the experiment at 1,100 °C.

Extended Data Table 1 Conditions and results of experiments on carbonate-rich sediments
Extended Data Table 2 The chemical compositions of starting materials and experimental melts

Supplementary information

Supplementary Data 1

Compilation of age of eclogitic diamonds constrained by Sm–Nd and Re–Os isochrons for inclusions (n > 2) in diamonds. n = the number of inclusions for the isochron. Note that we compile the isochron ages only when n > 2.

Supplementary Data 2

Major element compositions of phengite, garnet, jadeite, aragonite, (Mg, Fe) calcite, epidote and calcite in the experiments.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Förster, M.W., Foley, S.F. et al. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles. Nature 620, 576–581 (2023). https://doi.org/10.1038/s41586-023-06211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06211-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing