Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanofeather ruthenium nitride electrodes for electrochemical capacitors

Subjects

Abstract

Fast charging is a critical concern for the next generation of electrochemical energy storage devices, driving extensive research on new electrode materials for electrochemical capacitors and micro-supercapacitors. Here we introduce a significant advance in producing thick ruthenium nitride pseudocapacitive films fabricated using a sputter deposition method. These films deliver over 0.8 F cm–2 (~500 F cm–3) with a time constant below 6 s. By utilizing an original electrochemical oxidation process, the volumetric capacitance doubles (1,200 F cm–3) without sacrificing cycling stability. This enables an extended operating potential window up to 0.85 V versus Hg/HgO, resulting in a boost to 3.2 F cm–2 (3,200 F cm–3). Operando X-ray absorption spectroscopy and transmission electron microscopy analyses reveal novel insights into the electrochemical oxidation process. The charge storage mechanism takes advantage of the high electrical conductivity and the morphology of cubic ruthenium nitride and Ru phases in the feather-like core, leading to high electrical conductivity in combination with high capacity. Accordingly, we have developed an analysis that relates capacity to time constant as a means of identifying materials capable of retaining high capacity at high charge/discharge rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the design and deposition of the nanofeather RuN electrode for an MSC.
Fig. 2: Structural and chemical analyses of thin RuN films.
Fig. 3: Structural and electrochemical analyses of thick RuN films.
Fig. 4: EOP on a RuN electrode.
Fig. 5: Investigation of EOP by operando XAS under synchrotron beam, TEM analyses and related electrochemical performance after oxidation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Lethien, C., Le Bideau, J. & Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the Internet of Things. Energy Environ. Sci. 12, 96–115 (2019).

    Article  Google Scholar 

  2. Raj, A. & Steingart, D. Review—power sources for the Internet of Things. J. Electrochem. Soc. 165, B3130–B3136 (2018).

    Article  CAS  Google Scholar 

  3. Dinh, K. H., Roussel, P. & Lethien, C. Advances on microsupercapacitors: real fast miniaturized devices toward technological dreams for powering embedded electronics? ACS Omega 8, 8977–8990 (2022).

    Article  Google Scholar 

  4. Shao, Y. et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 138–147 (2010).

    Google Scholar 

  6. Liu, T. ‐C., Pell, W. G., Conway, B. E. & Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors: comparison with ruthenium oxide. J. Electrochem. Soc. 145, 1882–1888 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

    Article  CAS  Google Scholar 

  8. Hallot, M., Demortière, A., Roussel, P. & Lethien, C. Sputtered LiMn1.5Ni0.5O4 thin films for Li-ion micro-batteries with high energy and rate capabilities. Energy Storage Mater. 15, 396–406 (2018).

    Article  Google Scholar 

  9. Robert, K. et al. Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy Environ. Sci. 13, 949–957 (2020).

    Article  CAS  Google Scholar 

  10. Jrondi, A. et al. Major improvement in the cycling ability of pseudocapacitive vanadium nitride films for micro-supercapacitor. Adv. Energy Mater. 13, 2203462 (2023).

    Article  CAS  Google Scholar 

  11. Achour, A. et al. Titanium nitride films for micro-supercapacitors: effect of surface chemistry and film morphology on the capacitance. J. Power Sources 300, 525–532 (2015).

    Article  ADS  CAS  Google Scholar 

  12. Freixas, J. et al. Sputtered titanium nitride: a bifunctional material for Li-ion microbatteries. J. Electrochem. Soc. 162, A493–A500 (2015).

    Article  CAS  Google Scholar 

  13. Cui, H. et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv. Sci. 2, 1500126 (2015).

    Article  Google Scholar 

  14. Chen, L., Liu, C. & Zhang, Z. Novel [111] oriented γ-Mo2N thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors. Electrochim. Acta 245, 237–248 (2017).

    Article  CAS  Google Scholar 

  15. Ouendi, S. et al. Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Energy Storage Mater. 20, 243–252 (2019).

    Article  Google Scholar 

  16. Arif, M., Sanger, A. & Singh, A. Sputter deposited chromium nitride thin electrodes for supercapacitor applications. Mater. Lett. 220, 213–217 (2018).

    Article  CAS  Google Scholar 

  17. Haye, E. et al. Achieving on chip micro-supercapacitors based on CrN deposited by bipolar magnetron sputtering at glancing angle. Electrochim. Acta 324, 134890 (2019).

    Article  CAS  Google Scholar 

  18. Asbani, B., Robert, K., Roussel, P., Brousse, T. & Lethien, C. Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films. Energy Storage Mater. 37, 207–214 (2021).

    Article  Google Scholar 

  19. Bouhtiyya, S. et al. Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scr. Mater. 68, 659–662 (2013).

    Article  CAS  Google Scholar 

  20. Zhang, Y. et al. Diverse ruthenium nitrides stabilized under pressure: a theoretical prediction. Sci. Rep. 6, 33506 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lesel, B. K., Ko, J. S., Dunn, B. & Tolbert, S. H. Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 10, 7572–7581 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Iwama, E., Kisu, K., Naoi, W., Simon, P. & Naoi, K. Enhanced Hybrid Supercapacitors Utilizing Nanostructured Metal Oxides. Metal Oxides in Supercapacitors (Elsevier, 2017).

  24. Robert, K. et al. On chip interdigitated micro-supercapacitors based on sputtered bifunctional vanadium nitride thin films with finely tuned inter- and intracolumnar porosities. Adv. Mater. Technol. 3, 1800036 (2018).

    Article  Google Scholar 

  25. Gao, J. S. et al. NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor. Chem. Eng. J. 388, 124368 (2020).

    Article  CAS  Google Scholar 

  26. Bandgar, S. B. et al. Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Appl. Energy Mater. 1, 638–648 (2018).

    Article  CAS  Google Scholar 

  27. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    Article  CAS  Google Scholar 

  28. Brousse, T., Belanger, D. & Long, J. W. To be or not to be pseudocapacitive?. J. Electrochem. Soc. 162, A5185–A5189 (2015).

    Article  CAS  Google Scholar 

  29. Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Choi, C. et al. Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule 5, P2466–2478 (2021).

  32. Morel, A., Borjon-Piron, Y., Porto, R. L., Brousse, T. & Bélanger, D. Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J. Electrochem. Soc. 163, A1077–A1082 (2016).

    Article  CAS  Google Scholar 

  33. Thornton, J. A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974).

    Article  ADS  CAS  Google Scholar 

  34. Buvat, G. et al. A first outlook of sputtered FeWO4 thin films for micro-supercapacitor electrodes. J. Electrochem. Soc. 168, 030524 (2021).

    Article  ADS  CAS  Google Scholar 

  35. Jolayemi, B., Buvat, G., Brousse, T., Roussel, P. & Lethien, C. Sputtered (Fe,Mn)3O4 spinel oxide thin films for micro-supercapacitor. J. Electrochem. Soc. 169, 110524 (2022).

    Article  ADS  CAS  Google Scholar 

  36. Brien, V., Miska, P., Bolle, B. & Pigeat, P. Columnar growth of ALN by r.f. magnetron sputtering: role of the {1 0 1¯ 3} planes. J. Cryst. Growth 307, 245–252 (2007).

    Article  ADS  CAS  Google Scholar 

  37. Ardizzone, S., Fregonara, G. & Trasatti, S. ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990).

    Article  CAS  Google Scholar 

  38. Asbani, B. et al. Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Mater. 42, 259–267 (2021).

    Article  Google Scholar 

  39. Sun, H. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Mathis, T. S. et al. Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019).

    Article  CAS  Google Scholar 

  41. Goubard-Bretesché, N. et al. Unveiling pseudocapacitive charge storage behavior in FeWO4 electrode material by operando X-ray absorption spectroscopy. Small 16, 2002855 (2020).

    Article  Google Scholar 

  42. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  43. Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T. & Rolison, D. R. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering. J. Phys. Chem. B 106, 12677–12683 (2002).

    Article  CAS  Google Scholar 

  44. Yoshida, N. et al. Unveiling the origin of unusual pseudocapacitance of RuO2·nH2O from its hierarchical nanostructure by small-angle X-ray scattering. J. Phys. Chem. C 117, 12003–12009 (2013).

    Article  CAS  Google Scholar 

  45. Pech, D. et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Létiche, M. et al. Sputtered titanium carbide thick film for high areal energy on chip carbon‐based micro-supercapacitors. Adv. Funct. Mater. 27, 1606813 (2017).

    Article  Google Scholar 

  47. Brousse, K. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes. J. Power Sources 328, 520–526 (2016).

    Article  ADS  CAS  Google Scholar 

  48. Huang, P. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors Flexible power for flexible electronics. Science 351, 691–695 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Arico, C. et al. Fast electrochemical storage process in sputtered Nb2O5 porous thin films. ACS Nano 13, 5826–5832 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Come, J. et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes. J. Electrochem. Soc. 161, A718–A725 (2014).

    Article  CAS  Google Scholar 

  52. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Douard, C. et al. Electrode design for MnO2-based aqueous electrochemical capacitors: Influence of porosity and mass loading. Materials 14, 2990 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 1–6 (2017).

    Article  Google Scholar 

  55. de la Peña, F. et al. Hyperspy. Zenodo https://zenodo.org/records/7090040 (2022).

  56. Feng, J., Xu, H. & Yan, S. Online robust PCA via stochastic optimization. Adv. Neural Inf. Process. Syst. 26, 404–412 (2013).

  57. Briois, V. et al. ROCK: the new quick-EXAFS beamline at SOLEIL. J. Phys.: Conf. Ser. 712, 012149 (2016).

    Google Scholar 

  58. Lesage, C. et al. High pressure cell for edge jumping X-ray absorption spectroscopy: applications to industrial liquid sulfidation of hydrotreatment catalysts. Catal. Today 336, 63–73 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 847568. We would like to thank the French National Research Agency (STORE-EX Labex Project ANR-10-LABX-76-01 and ARTEMIS ANR project). The French RENATECH network, the NANOFUTUR EquipEx+ program and the University of Lille are greatly acknowledged for supporting the Center of MicroNanoFabrication (CMNF) facility from IEMN. The Chevreul Institute (FR CNRS 2638) is thanked for providing access to X-ray and TEM facilities. It is funded by the ‘Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation’, Region ‘Hauts-de-France’, ERDF program of the European Union and ‘Métropole Européenne de Lille’. The XAS measurements were supported by a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (reference: ANR-10-EQPX45). We acknowledge SOLEIL for the provision of the synchrotron radiation facilities (ROCK beamline, proposal no. 20220111). We also wish to thank the Department of Materials Science and Engineering (UCLA) for the use of their XPS facilities. This work received funding from the CPER Hauts-de-France projects, IMITECH and MEL.

Author information

Authors and Affiliations

Authors

Contributions

H.D.K., I.R.-J., P.R. and C.L. were involved in the deposition of ruthenium films by sputtering techniques (methodology, investigation, formal analysis, visualization), their structural and morphological analyses and the writing of the original draft. H.D.K., H.M. and C.L. participated in the investigations of the electrochemical properties in aqueous electrolytes. A.B. investigated the chemical properties of the RuN films by GDOES. M.H., A.T. and M.M. were involved in the TEM analyses and the writing of the original draft. A.I., C.D., C.L. and T.B. were involved in the design of the XAS cells, data processing of the XAS spectra and the writing of the original draft. G.W. and B.D. were involved in the study of RuN films by XPS analyses and the writing of the original draft. P.R. and C.L. were involved in the resources, conceptualization, methodology, validation, writing of the original draft, editing, supervision, funding acquisition and project administration processes. G.W., B.D., T.B., P.R. and C.L. were involved in the revision process of the initial draft.

Corresponding authors

Correspondence to Pascal Roussel or Christophe Lethien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Simon Fleischmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh Khac, H., Whang, G., Iadecola, A. et al. Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01816-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01816-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing