Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of the glass effect and Trommsdorff effect during bulk polymerization of methyl methacrylate, ethyl methacrylate, and butyl methacrylate

Abstract

Relative concentration changes of glassy polymer and small molecules may cause vitrification. Bulk polymerization is one example where the monomer/polymer concentration changes via a chemical reaction. During bulk polymerization, reaction acceleration (Trommsdorff effect) and subsequent reaction deceleration (glass effect) may occur. Herein, we systematically investigated the Trommsdorff and glass effects of methyl methacrylate, ethyl methacrylate and butyl methacrylate. The conversion as a function of the reaction time was elucidated based on isothermal differential scanning calorimetry (DSC) data. Under all examined experimental conditions, at the onset of the Trommsdorff effect, apparent phase separation was observed. We examined these effects in conjunction with glass transition as well as the change in the amorphous structure during bulk polymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson PW. Through the glass lightly. Science. 1995;264:1615–6.

    Article  Google Scholar 

  2. Angell CA. The glass transition. Curr Opin Solid State Mater Sci. 1996;1:578–85.

    Article  CAS  Google Scholar 

  3. Debenedetti PG, Stillinger FH. Supercooled liquds and the glass transition. Nature. 2001;410:259.

    Article  CAS  PubMed  Google Scholar 

  4. Floudas G, Paluch M, Grzybowski A, Ngai K. Molecular Dynamics of Glass-Forming Systems Effects of Pressure. Springer-Verlag Berlin Heidelberg; 2010.

  5. Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman DR, et al. Soft colloids make strong glasses. Nature. 2009;462:83–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kremer F, Schönhals A. Broadband Dielectric Spectroscopy. Springer-Verlag Berlin Heidelberg; 2003.

  7. Flory PJ. Principles of Polymer Chemistry. Cornell University Press; 1953.

  8. Tanaka H. Viscoelastic phase separation. J. Phys. Condens. Matter. 2000;12:R207.

    Article  CAS  Google Scholar 

  9. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog. Polym. Sci. 2003;28:1223–70.

    Article  CAS  Google Scholar 

  10. Suzuki Y, Shinagawa Y, Kato E, Mishima R, Fukao K, Matsumoto A. Polymerization-induced vitrification and kinetic heterogenization at the onset of the Trommsdorff effect. Macromolecules. 2021;54:3293–303.

    Article  CAS  Google Scholar 

  11. Tanaka H. Unusual phase separation in a polymer solution caused by asymmetric molecular dynamics. Phys. Rev. Lett. 1993;71:3158–61.

    Article  CAS  PubMed  Google Scholar 

  12. Cognard J. Some recent progress in adhesion technology and science. Comptes Rendus Chim. 2006;9:13–24.

    Article  CAS  Google Scholar 

  13. Larson RG, Van Dyk AK, Chatterjee T, Ginzburg VV. Associative thickeners for waterborne paints: Structure, characterization, rheology, and modeling. Prog. Polym. Sci. 2022;129:101546.

    Article  CAS  Google Scholar 

  14. Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirilä P, Leskinen J, et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature. 2010;467:824–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wei MT, Elbaum-Garfinkle S, Holehouse AS, Chen CCH, Feric M, Arnold CB, et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 2017;9:1118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka H. Viscoelastic phase separation in biological cells. Commun. Phys. 2022;5:167.

    Article  CAS  Google Scholar 

  17. Aoki M, Shundo A, Yamamoto S, Tanaka K. Effect of a heterogeneous network on glass transition dynamics and solvent crack behavior of epoxy resins. Soft Matter. 2020;16:7470–8.

    Article  CAS  PubMed  Google Scholar 

  18. Shundo A, Aoki M, Yamamoto S, Tanaka K. Cross-linking effect on segmental dynamics of well-defined epoxy resins. Macromolecules. 2021;54:5950–6.

    Article  CAS  Google Scholar 

  19. Shundo A, Yamamoto S, Tanaka K. Network formation and physical properties of epoxy resins for future practical applications. JACS Au. 2022;2:1522–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trommsdorff VE, Köhle H, Lagally P. Zur polymerisation des methacrylsäuremethylesters. Die Makromol Chemie. 1948;1:169–98.

    Article  CAS  Google Scholar 

  21. O’Neil GA, Wisnudel MB, Torkelsen JM. Gel effect in free radical polymerization: Model discrimination of its cause. AIChE J. 1998;44:1226–31.

    Article  Google Scholar 

  22. Carrt M, Dorion C, Brembilla A, Viriot M, Rebizak R, Pla F. Fluorescent molecular rotors as probes for polymers. Macromol Symp. 1998;127:173–80.

    Article  Google Scholar 

  23. Tulig TJ, Tirrell M. On the onset of the Trommsdorff effect. Macromolecules. 1982;15:459–63.

    Article  CAS  Google Scholar 

  24. Tulig TJ, Tirrell M. Toward a molecular theory of the Trommsdorff effect. Macromolecules. 1981;14:1501–11.

    Article  CAS  Google Scholar 

  25. O’Neil GA, Wisnudel MB, Torkelson JM. A critical experimental examination of the gel effect in free radical polymerization: do entanglements cause autoacceleration? Macromolecules. 1996;29:7477–90.

    Article  Google Scholar 

  26. Wöll D, Braeken E, Deres A, De Schryver FC, Uji-I H, Hofkens J. Polymers and single molecule fluorescence spectroscopy, what can we learn? Chem. Soc. Rev. 2009;38:313–28.

    Article  PubMed  Google Scholar 

  27. Stempfle B, Dill M, Winterhalder MJ, Müllen K, Wöll D. Single molecule diffusion and its heterogeneity during the bulk radical polymerization of styrene and methyl methacrylate. Polym Chem. 2012;3:2456–63.

    Article  CAS  Google Scholar 

  28. Nölle JM, Primpke S, Müllen K, Vana P, Wöll D. Diffusion of single molecular and macromolecular probes during the free radical bulk polymerization of MMA-towards a better understanding of the Trommsdorff effect on a molecular level. Polym Chem. 2016;7:4100–5.

    Article  Google Scholar 

  29. Suzuki Y, Cousins DS, Shinagawa Y, Bell RT, Matsumoto A, Stebner AP. Phase separation during bulk polymerization of methyl methacrylate. Polym J. 2019;51:423–31.

    Article  CAS  Google Scholar 

  30. Suzuki Y, Mishima R, Matsumoto A. Bulk polymerization kinetics of methyl methacrylate at broad temperature range investigated by differential scanning calorimetry. Int J Chem Kinet. 2022;54:361–70.

    Article  CAS  Google Scholar 

  31. Javdanitehran M, Berg DC, Duemichen E, Ziegmann G. An iterative approach for isothermal curing kinetics modelling of an epoxy resin system. Thermochim Acta. 2016;623:72–79.

    Article  CAS  Google Scholar 

  32. Achilias DS, Karabela MM, Varkopoulou EA, Sideridou ID. Cure kinetics study of two epoxy systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). J Macromol Sci Part A Pure Appl Chem. 2012;49:630–8.

    Article  CAS  Google Scholar 

  33. He B, Viktoria M, Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy. 2004;29:1785–804.

    Article  CAS  Google Scholar 

  34. Otsu T, Yamada B, Ishikawa T. Determination of absolute rate constants for elementary reactions in radical polymerization of diethyl fumarate. Macromolecules. 1991;24:415–9.

    Article  CAS  Google Scholar 

  35. Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Olaj OF, et al. Critically evaluated rate coefficients for free-radical polymerization, 2: Propagation rate coefficients for methyl methacrylate. Macromol Chem Phys. 1997;198:1545–60.

    Article  CAS  Google Scholar 

  36. Brandrup J, Immergut EH, Grulke EA. Polymer Handbook. Wiley; 2003.

  37. Achilias DS. A review of modeling of diffusion controlled polymerization reactions. Macromol Theory Simulations. 2007;16:319–47.

    Article  CAS  Google Scholar 

  38. Verros GD, Achilias DS. Modeling gel effect in branched polymer systems: free-radical solution homopolymerization of vinyl acetate. J Appl Polym Sci. 2009;116:2658–67.

    Google Scholar 

  39. Dainton FS, Ivin KJ, Walmsley DAG. The heats of polymerization of some cyclic and ethylenic compounds. Trans Faraday Soc. 1960;56:1784–92.

    Article  CAS  Google Scholar 

  40. Pijpers TFJ, Mathot VBF, Goderis B, Scherrenberg RL, Van der Vegte EW. High-speed calorimetry for the study of the kinetics of (De)vitrification, crystallization, and melting of macromolecules. Macromolecules. 2002;35:3601–13.

    Article  CAS  Google Scholar 

  41. Suzuki Y, Duran H, Steinhart M, Butt HJ, Floudas G. Homogeneous crystallization and local dynamics of poly(ethylene oxide) (PEO) confined to nanoporous alumina. Soft Matter. 2013;9:2621–8.

    Article  CAS  Google Scholar 

  42. Hiemenz PC, Lodge TP. Polymer Chemistry, 2nd ed. CRC Press, Taylor & Francis Group; 2007.

  43. Lovell R, Mitchell GR, Windle AH. Wide-angle X-ray scattering study of structural parameters in non-crystalline polymers. Faraday Discuss Chem Soc. 1979;68:46–57.

    Article  Google Scholar 

  44. Lovell R, Windle AH. Determination of the local conformation of PMMA from wide-angle X-ray scattering. Polymer. 1981;22:175–84.

    Article  CAS  Google Scholar 

  45. Mitchell GR, Windle AH. Structure of polystyrene glasses. Polymer. 1984;25:906–20.

    Article  CAS  Google Scholar 

  46. Pipertzis A, Hess A, Weis P, Papamokos G, Koynov K, Wu S, et al. Multiple segmental processes in polymers with cis and trans stereoregular configurations. ACS Macro Lett. 2018;7:11–5.

    Article  CAS  PubMed  Google Scholar 

  47. Beiner M, Schröter K, Hempel E, Reissig S, Donth E. Multiple glass transition and nanophase separation in poly(n-alkyl methacrylate) homopolymers. Macromolecules. 1999;32:6278–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The synchrotron radiation experiments were performed at BL40B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2020A1144 and 2021A1069). The authors acknowledge experimental support received from Dr. Noboru Ohta and Dr. Hiroshi Sekiguchi at SPring-8. YS acknowledges the financial support by JSPS KAKENHI Grant Number 22K14015 and the 2022 Osaka Metropolitan University (OMU) Strategic Research Promotion Project (Young Researcher).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhito Suzuki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y., Mishima, R., Kato, E. et al. Analysis of the glass effect and Trommsdorff effect during bulk polymerization of methyl methacrylate, ethyl methacrylate, and butyl methacrylate. Polym J 55, 229–238 (2023). https://doi.org/10.1038/s41428-022-00746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00746-5

This article is cited by

Search

Quick links