Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiological and clinical insights from reservoir-excess pressure analysis

Abstract

There is a growing body of evidence indicating that reservoir-excess pressure model parameters provide physiological and clinical insights above and beyond standard blood pressure (BP) and pulse waveform analysis. This information has never been collectively examined and was the aim of this review. Cardiovascular disease is the leading cause of mortality worldwide, with BP as the greatest cardiovascular disease risk factor. However, brachial systolic and diastolic BP provide limited information on the underlying BP waveform, missing important BP-related cardiovascular risk. A comprehensive analysis of the BP waveform is provided by parameters derived via the reservoir-excess pressure model, which include reservoir pressure, excess pressure, and systolic and diastolic rate constants and Pinfinity. These parameters, derived from the arterial BP waveform, provide information on the underlying arterial physiology and ventricular–arterial interactions otherwise missed by conventional BP and waveform indices. Application of the reservoir-excess pressure model in the clinical setting may facilitate a better understanding and earlier identification of cardiovascular dysfunction associated with disease. Indeed, reservoir-excess pressure parameters have been associated with sub-clinical markers of end-organ damage, cardiac and vascular dysfunction, and future cardiovascular events and mortality beyond conventional risk factors. In the future, greater understanding is needed on how the underlying physiology of the reservoir-excess pressure parameters informs cardiovascular disease risk prediction over conventional BP and waveform indices. Additional consideration should be given to the application of the reservoir-excess pressure model in clinical practice using new technologies embedded into conventional BP assessment methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional blood pressure (BP) assessment methods employ the automated or manual auscultatory method to derive values for systolic and diastolic BP and provide little information on the underlying arterial BP waveform.
Fig. 2: Intra-arterial aortic blood pressure measured continuously over one cardiac cycle and overlaid with parameters derived via conventional pulse-wave analysis.
Fig. 3: Parameters derived from an ensemble averaged intra-arterial aortic blood pressure waveform via reservoir excess pressure analysis.
Fig. 4: Relationship of reservoir pressure (dashed line) derived via the reservoir-excess pressure model and aortic volume measured via ultrasound in nine individuals undergoing coronary artery bypass surgery (left).

Similar content being viewed by others

References

  1. World Health Organization. Global Health Estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. Geneva, 2018. https://www.who.int/healthinfo/global_burden_disease/estimates/en/.

  2. Sidney S, Quesenberry CP, Jaffe MG, Sorel M, Nguyen-Huynh MN, Kushi LH, et al. Recent trends in cardiovascular mortality in the United States and public health goals. JAMA Cardiol. 2016;1:594.

    Article  PubMed  Google Scholar 

  3. Lopez AD, Adair T. Is the long-term decline in cardiovascular-disease mortality in high-income countries over? Evidence from national vital statistics. Int J Epidemiol. 2019;48:1815–23.

    Article  PubMed  Google Scholar 

  4. Campbell NRC, Schutte AE, Varghese CV, Ordunez P, Zhang X, Khan T, et al. São Paulo call to action for the prevention and control of high blood pressure: 2020. J Clin Hypertens. 2019;21:1744–52.

    Article  Google Scholar 

  5. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:2287–323.

    Article  PubMed  Google Scholar 

  6. Flint AC, Conell C, Ren X, Banki NM, Chan SL, Rao VA, et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med. 2019;381:243–51.

    Article  PubMed  Google Scholar 

  7. Kontis V, Cobb LK, Mathers CD, Frieden TR, Ezzati M, Danaei G. Three public health interventions could save 94 million lives in 25 years. Circulation. 2019;140:715–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zanchetti A, Mancia G. The centenary of blood pressure measurement: a tribute to scipione riva-rocci. J Hypertens. 1996;14:1–12.

    Article  PubMed  Google Scholar 

  9. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al. Measurement of blood pressure in humans: a scientific statement from the american heart association. Hypertension. 2019;73:E35–66.

    Article  CAS  PubMed  Google Scholar 

  10. Zanchetti A. Bottom blood pressure or bottom cardiovascular risk? How far can cardiovascular risk be reduced? J Hypertens. 2009;27:1509–20.

    Article  CAS  PubMed  Google Scholar 

  11. Sluyter JD, Hughes AD, Camargo CA, Thom SAM, Parker KH, Hametner B, et al. Identification of distinct arterial waveform clusters and a longitudinal evaluation of their clinical usefulness. Hypertension. 2019;74:921–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011;2011:1–14.

    Article  Google Scholar 

  13. Marey E-J. Physiologie Médicale de La Circulation Du Sang: Basée Sur l’étude Graphique Des Mouvements Du Coeur et Du Pouls Artériel Avec Application Aux Maladies de l’appareil Circulatoire. 1st ed. In: Delahaye A (ed.) Paris: Adrien Delahaye; 1863.

  14. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71.

    Article  PubMed  Google Scholar 

  15. Dart AM, Gatzka CD, Kingwell BA, Willson K, Cameron JD, Liang Y-L, et al. Brachial blood pressure but not carotid arterial waveforms predict cardiovascular events in elderly female hypertensives. Hypertension. 2006;47:785–90.

    Article  CAS  PubMed  Google Scholar 

  16. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension. 2005;45:980–5.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes AD, Park C, Davies J, Francis D, McG Thom SA, Mayet J, et al. Limitations of augmentation index in the assessment of wave reflection in normotensive healthy individuals. PLoS ONE. 2013;8:e59371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharman JE, Davies JE, Jenkins C, Marwick TH. Augmentation index, left ventricular contractility, and wave reflection. Hypertension. 2009;54:1099–105.

    Article  CAS  PubMed  Google Scholar 

  20. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness. Hypertension. 2015;66:698–722.

    Article  CAS  PubMed  Google Scholar 

  21. Sharman JE, Qasem AM, Hanekom L, Gill DS, Lim R, Marwick TH. Radial pressure waveform dP/dt max is a poor indicator of left ventricular systolic function. Eur J Clin Invest. 2007;37:276–81.

    Article  CAS  PubMed  Google Scholar 

  22. Gao M, Rose WC, Fetics B, Kass DA, Chen C, Mukkamala R. A simple adaptive transfer function for deriving the central blood pressure waveform from a radial blood pressure waveform. Sci Rep. 2016;6:33230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen C-H, Nevo E, Fetics B, Pak PH, Yin FCP, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Circulation. 1997;95:1827–36.

    Article  CAS  PubMed  Google Scholar 

  24. Karamanoglu M, O’Rouke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14:160–7.

    Article  CAS  PubMed  Google Scholar 

  25. Pauca AL, Kon ND, O’Rourke MF. The second peak of the radial artery pressure wave represents aortic systolic pressure in hypertensive and elderly patients. Br J Anaesth. 2004;92:651–7.

    Article  CAS  PubMed  Google Scholar 

  26. Xiao H, Butlin M, Qasem A, Tan I, Li D, Avolio AP. N-point moving average: a special generalized transfer function method for estimation of central aortic blood pressure. IEEE Trans Biomed Eng. 2018;65:1226–34.

    Article  PubMed  Google Scholar 

  27. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a Brachial Cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58:825–32.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J-J, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol. 2003;284:H1358–68.

    Article  CAS  PubMed  Google Scholar 

  29. Aguado-Sierra J, Alastruey J, Wang J-J, Hadjiloizou N, Davies J, Parker KH. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. Proc Inst Mech Eng Part H. 2008;222:403–16.

    Article  CAS  Google Scholar 

  30. Sagawa K, Lie RK, Schaefer J. Translation of Otto Frank’s paper ’Die Grundform des Arteriellen Pulses’ Zeitschrift für Biologie 37: 483-526 (1899). J Mol Cell Cardiol. 1990;22:253–4.

    Article  CAS  PubMed  Google Scholar 

  31. Wang J-J, Flewitt JA, Shrive NG, Parker KH, Tyberg JV. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am J Physiol Circ Physiol. 2006;290:H154–62.

    Article  CAS  Google Scholar 

  32. Hughes AD, Parker KH. The modified arterial reservoir: an update with consideration of asymptotic pressure (P ∞) and zero-flow pressure (P zf). Proc Inst Mech Eng Part H. 2020;44:095441192091755.

    Google Scholar 

  33. Schultz MG, Davies JE, Hardikar A, Pitt S, Moraldo M, Dhutia N, et al. Aortic reservoir pressure corresponds to cyclic changes in aortic volume: physiological validation in humans. Arterioscler Thromb Vasc Biol. 2014;34:1597–603.

    Article  CAS  PubMed  Google Scholar 

  34. Woodard T, Sigurdsson S, Gotal JD, Torjesen AA, Inker LA, Aspelund T, et al. Mediation analysis of aortic stiffness and renal microvascular function. J Am Soc Nephrol. 2015;26:1181–7.

    Article  CAS  PubMed  Google Scholar 

  35. Climie RE, van Sloten TT, Bruno R-M, Taddei S, Empana J-P, Stehouwer CDA, et al. Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. Hypertension. 2019;73:1138–49.

    Article  CAS  PubMed  Google Scholar 

  36. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease. J Am Coll Cardiol. 2019;74:1237–63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parker KH, Alastruey J, Stan G-B. Arterial reservoir-excess pressure and ventricular work. Med Biol Eng Comput. 2012;50:419–24.

    Article  PubMed  Google Scholar 

  38. Alastruey J. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovasc Eng. 2010;10:176–89.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang J-J, de Vries G, Tyberg JV. Estimation of left ventricular stroke volume by impedance cardiography: its relation to the aortic reservoir. Exp Physiol. 2013;98:1213–24.

    Article  PubMed  Google Scholar 

  40. Davies JE, Lacy P, Tillin T, Collier D, Cruickshank JK, Francis DP, et al. Excess pressure integral predicts cardiovascular events independent of other risk factors in the conduit artery functional evaluation substudy of Anglo-Scandinavian cardiac outcomes trial. Hypertension. 2014;64:60–68.

    Article  CAS  PubMed  Google Scholar 

  41. Schultz MG, Hughes AD, Davies JE, Sharman JE. Associations and clinical relevance of aortic-brachial artery stiffness mismatch, aortic reservoir function, and central pressure augmentation. Am J Physiol Circ Physiol. 2015;309:H1225–33.

    Article  CAS  Google Scholar 

  42. Peng X, Schultz MG, Picone DS, Black JA, Dwyer N, Roberts-Thomson P, et al. Arterial reservoir characteristics and central-to-peripheral blood pressure amplification in the human upper limb. J Hypertens. 2017;35:1825–31.

    Article  CAS  PubMed  Google Scholar 

  43. Narayan O, Parker KH, Davies JE, Hughes AD, Meredith IT, Cameron JD. Reservoir pressure analysis of aortic blood pressure: an in-vivo study at five locations in humans. J Hypertens. 2017;35:2025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hametner B, Wassertheurer S, Hughes AD, Parker KH, Weber T, Eber B. Reservoir and excess pressures predict cardiovascular events in high-risk patients. Int J Cardiol. 2014;171:31–6.

    Article  PubMed  Google Scholar 

  45. Cheng HM, Chuang SY, Wang JJ, Shih YT, Wang HN, Huang CJ, et al. Prognostic significance of mechanical biomarkers derived from pulse wave analysis for predicting long-term cardiovascular mortality in two population-based cohorts. Int J Cardiol. 2016;215:388–95.

    Article  PubMed  Google Scholar 

  46. Behnam V, Rong J, Larson MG, Gotal JD, Benjamin EJ, Hamburg NM, et al. Windkessel measures derived from pressure waveforms only: the Framingham Heart Study. J Am Heart Assoc. 2019;8:e012300.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fortier C, Côté G, Mac‐Way F, Goupil R, Desbiens L, Desjardins M, et al. Prognostic value of carotid and radial artery reservoir‐wave parameters in end‐stage renal disease. J Am Heart Assoc. 2019;8:e012314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park CM, Korolkova O, Davies JE, Parker KH, Siggers JH, March K, et al. Arterial pressure: agreement between a brachial cuff-based device and radial tonometry. J Hypertens. 2014;32:865–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michail M, Narayan O, Parker KH, Cameron JD. Relationship of aortic excess pressure obtained using pressure-only reservoir pressure analysis to directly measured aortic flow in humans. Physiol Meas. 2018;39:064006.

    Article  PubMed  Google Scholar 

  50. Armstrong MK, Schultz MG, Hughes AD, Picone DS, Black JA, Dwyer N, et al. Excess pressure as an analogue of blood flow velocity. J Hypertens. 2020;39:1–7.

    Google Scholar 

  51. Climie RED, Srikanth V, Beare R, Keith LJ, Fell J, Davies JE, et al. Aortic reservoir characteristics and brain structure in people with type 2 diabetes mellitus; a cross sectional study. Cardiovasc Diabetol. 2014;13:1–9.

    Article  CAS  Google Scholar 

  52. Climie RED, Picone DS, Sharman JE. Longitudinal changes in excess pressure independently predict declining renal function among healthy individuals-a pilot study. Am J Hypertens. 2017;30:772–5.

    Article  PubMed  Google Scholar 

  53. Wang WT, Sung SH, Wang JJ, Wu CK, Lin LY, Lee JC, et al. Excess pressure integral predicts long-term all-cause mortality in stable heart failure patients. Am J Hypertens. 2017;30:271–8.

    PubMed  Google Scholar 

  54. Schneider A, Krauze T, Mińczykowski A, Dziarmaga M, Piskorski J, Szczepanik A, et al. Arterial excess–reservoir pressure integral as a predictor of cardiovascular complications in subjects with acute coronary syndrome. Pol Arch Intern Med. 2018;128:228–34.

    PubMed  Google Scholar 

  55. Narayan O, Davies JE, Hughes AD, Dart AM, Parker KH, Reid C, et al. Central aortic reservoir-wave analysis improves prediction of cardiovascular events in elderly hypertensives. Hypertension. 2015;65:629–35.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Z, Brin KP, Yin FCP. Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Physiol Heart Circ Physiol. 1986;251:H588–600.

    Article  CAS  Google Scholar 

  57. Chemla D, Lau EMT, Hervé P, Millasseau S, Brahimi M, Zhu K, et al. Influence of critical closing pressure on systemic vascular resistance and total arterial compliance: a clinical invasive study. Arch Cardiovasc Dis. 2017;110:659–66.

    Article  PubMed  Google Scholar 

  58. Armstrong MK, Schultz MG, Picone DS, Black JA, Dwyer N, Roberts-Thomson P, et al. Associations of reservoir-excess pressure parameters derived from central and peripheral arteries with kidney function. Am J Hypertens. 2020;33:325–30.

    Article  PubMed  Google Scholar 

  59. Mitchell GF, Lacourcière Y, Ouellet J-P, Izzo JL, Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  60. Torjesen AA, Sigurðsson S, Westenberg JJM, Gotal JD, Bell V, Aspelund T, et al. Pulse pressure relation to aortic and left ventricular structure in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Hypertension. 2014;64:756–61.

    Article  CAS  PubMed  Google Scholar 

  61. Peng X, Schultz MG, Picone DS, Dwyer N, Black JA, Roberts‐Thomson P, et al. Non‐invasive measurement of reservoir pressure parameters from brachial‐cuff blood pressure waveforms. J Clin Hypertens. 2018;20:1703–11.

    Article  Google Scholar 

  62. Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, et al. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. Am J Physiol Circ Physiol. 2010;298:H580–6.

    Article  CAS  Google Scholar 

  63. Piskorski J, Krauze T, Katulska K, Wykrętowicz M, Milewska A, Przymuszała D, et al. Contribution of arterial excess pressure and arterial stiffness to central augmentation pressure in healthy subjects. Int J Cardiol. 2013;168:2899–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

MGS is supported by a National Health and Medical Research Council Early Research Career Fellowship (reference 1104731). ADH receives support from the British Heart Foundation (CS/13/1/30327, PG/13/6/29934, PG/15/75/31748, CS/15/6/31468, PG/17/90/33415, IG/18/5/33958), the National Institute for Health Research University College London Hospitals Biomedical Research Centre, the UK Medical Research Council (MR/P023444/1) and works in a unit that receives support from the UK Medical Research Council (MC_UU_12019/1). DSP is supported by a Menzies Community Postdoctoral Fellowship.

Author contributions

MA—Conception, data interpretation and manuscript preparation and revision. MS—Data interpretation and critical manuscript revision. AH—Data interpretation and critical manuscript revision. DP—Data interpretation and critical manuscript revision. JS—Conception, data interpretation and critical manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Sharman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, M.K., Schultz, M.G., Hughes, A.D. et al. Physiological and clinical insights from reservoir-excess pressure analysis. J Hum Hypertens 35, 758–768 (2021). https://doi.org/10.1038/s41371-021-00515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00515-6

Search

Quick links