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23

SUMMARY24

B-cell Acute Lymphoblastic Leukemia is the most prevalent form of childhood25

cancer, with approximately 15% of patients undergoing relapse after initial26

treatment. Further advancements depend on novel therapies and more precise27

risk stratification criteria. In the context of computational flow cytometry and28

machine learning, this paper aims to explore the potential prognostic value of29

flow cytometry data at diagnosis, a relatively unexplored direction for relapse30

prediction in this disease. To this end, we collected a dataset of 252 patients31

from three hospitals and implemented a comprehensive pipeline for32

multicenter data integration, feature extraction, and patient classification,33

comparing the results with existing algorithms from the literature. The analysis34

revealed no significant differences in immunophenotypic patterns between35

relapse and non-relapse patients and suggests the need for alternative36

approaches to handle flow cytometry data in relapse prediction.37

INTRODUCTION38

B-cell progenitor Acute Lymphoblastic Leukemia (BCP-ALL) stands as the most39

prevalent pediatric cancer, impacting approximately 40,000 children globally each40

year. Recent clinical trials report survival rates exceeding 90%1. However, the41

remaining 15% experience relapse or refractory disease, with this subset facing a42

significantly worse prognosis2. The advancements in overall survival over the past43
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decades can be attributed to the implementation of intensive multi-agent44

chemotherapy regimens tailored to specific risk groups. These groups are identified45

through cytomorphology, molecular biology, cytogenetics, and immunology3. Despite46

these strides, the latest data suggests that improvements in overall survival will not47

be reached by further adjusting regimes or incorporating novel chemotherapeutic48

agents. Instead, hopes for finally achieving a manageable disease lie in49

immunotherapies for relapsed patients and refined risk stratification criteria at50

diagnosis4. New strategies are therefore necessary to identify and select patients51

unresponsive to standard chemotherapy and who are at a heightened risk of relapse,52

given the inaccuracies of current risk allocation schemes5.53

Quantitation of minimal residual disease levels early during therapy, either by flow54

cytometry (FC) or by clonospecific qPCR, has been consistently reported as a major55

prognostic factor6,7. Despite the fact that FC generates an extensive dataset of56

single-cell information, it is currently not utilized in risk stratification. In other words,57

the immunophenotype of the leukemic clone at diagnosis lacks prognostic value.58

Several factors impede the comprehensive exploitation of this type of data. One of59

them is the inherent challenge of managing high-dimensional data, especially in the60

clinical setting8. Another reason is the difficulty in gathering a sufficiently large61

retrospective cohort of patients. Indeed, the lack of prognostic value means that they62

are less frequently published than other clinical and pathologic information and63

therefore stored more casually. Lastly, despite ongoing efforts to standardize64

instruments and protocols9,10, differences in adherence to standards, cytometer65

settings, and calibration continue to pose significant challenges for multicenter data66

integration11.67

The recent emergence of computational flow cytometry12 has paved the way for68

automated and more thorough analyses of this type of data. This interdisciplinary69

field brings together flow cytometry with modern pattern recognition and statistical70

techniques for data processing and analysis. In combination with machine learning,71

these techniques can be applied for survival or relapse prediction, sample72

classification, or subpopulation detection13. Surprisingly, there is a notable lack of73

applications of these tools in the context of BCP-ALL, with only a few published74

works. For instance, a study by Reiter et al.14 gathered a dataset of 337 bone marrow75

samples and employed supervised machine learning to automate minimal residual76

disease assessment on day +15. Good et al.15 compiled data from 54 patients and77

developed a classifier that organized cells based on developmental stage and78

achieved a high accuracy in relapse prediction15. Two additional preliminary works79

from our group complete this landscape16,17, one based on percentile differences of80

marker expression and the other on topological data analysis.81

In this work, we set out to fill this gap and determine whether standard flow82

cytometry panels at the time of diagnosis contain prognostic information. To this end83

we collected the largest database of FC data of children with BCP-ALL for a84

computational analysis yet. We integrated tools from computational flow cytometry for85

data preprocessing and normalization and designed a comprehensive pipeline for86
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feature extraction and classification. We identified cellular subpopulations across the87

cohort of patients and we assessed the prognostic value of cell abundance and88

marker expression with a variety of metrics. We additionally contrasted and89

confirmed our results with other algorithms for biomarker discovery already presented90

in the literature. Contrary to our initial hypothesis, our results dismiss the utility of91

differential expression and distribution-based feature engineering for FC-based92

classification. We conclude the study by offering insights into the absence of93

discernible differences between relapse and non-relapse patients and proposing94

potential avenues for further exploration in this line of research.95

RESULTS96

Patient cohort is representative of childhood BCP-ALL population97

We collected data from 252 patients from three hospitals, diagnosed between 201198

and 2022. Risk stratification criteria, treatment protocols, and outcomes are detailed99

in the ‘Methods’ section. Table S1 shows their clinicopathologic characteristics. The100

full cohort presents a relapse rate of 17,5%, in line with recent world-wide reports18.101

Most patients present a common immunophenotype and belong to the intermediate102

risk group. The frequency of genetic alterations is also within common ranges reported103

in European countries19. After preprocessing and filtering (see ‘Methods’ and Figure104

S1), 188 patients were retained for analysis. Their clinicopathologic characteristics105

are shown in Table 1. The only relevant differences with respect to the full cohort are106

a lower proportion of high-risk patients (2.7% VS 4.0%) and a higher percentage of107

relapse patients (20.2% VS 17.5%), still within reported ranges.108

Normalization and merging allows integration of multi-center, multi-sample flow109

cytometry data110

The cornerstone of the study is FC data at diagnosis. The joint analysis of multicenter111

data presents several challenges that needed to be addressed prior to the112

classification part of the study. Although FC panels for BCP-ALL are now113

standardized10, we needed to account for differences arising from the use of different114

cytometers, changes in machine calibration with time and other batch effects.115

Furthermore, due to the maximum number of fluorochromes that can be used in a116

single experiment, each patient’s sample is split in different tubes or aliquots that117

needed to be integrated if all protein markers were to be analysed together.118

These sources of inter-center and inter-aliquot heterogeneity were addressed here119

by means of a modified min-max transformation and a quantile normalization step120

(Figure S2, see ‘Methods’). As for the combination of several FC files into a single121

file, various methods have already been developed, relying mostly on nearest122

neighbor imputation and clustering-based imputation. In order to choose the most123

suitable method we used the Earth Mover Distance (EMD) to compare the distribution124

of a marker in the original tube versus the imputed file20, following a recent review on125
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Dataset 1 (HVR)
(N=46)

Dataset 2 (HVA)
(N=47)

Dataset 3 (HNJ)
(N=95)

Total
(N=188)

Sex - no. (%)
Male 27 (58.7) 24 (51.1) 44 (46.3) 95 (50.5)
Female 19 (41.3) 23 (48.9) 51 (53.7) 93 (49.5)

Age at diagnosis - yr
Median 3 5 4 4
Range 0 - 13 0 - 15 0 - 16 0 - 16

Long term status -no. (%)
Relapse 11 (23.9) 4 (8.5) 23 (24.2) 38 (20.2)
No relapse 35 (76.1) 43 (91.5) 72 (75.8) 150 (79.8)

Immunophenotype - no. (%)
Common 29 (63.0) 36 (76.6) 88 (92.6) 153 (81.4)
Pre-B 14 (30.4) 9 (19.1) 4 (4.2) 27 (14.4)
Pro-B 2 (4.3) 2 (4.3) 3 (3.2) 7 (3.7)
Mixed 1 (2.2) 0 (0) 0 (0) 1 (0.5)

Bone Marrow blasts
at diagnosis - %

Median 80.4 78.8 85.0 81.7
Range 10.0 - 96.3 25.6 - 95.0 30.0 - 99.0 10.0 - 99.0

Leukocytes - cell/nL
Median 8.29 7.16 11.07 8.61
Range 1.61 - 214.21 0.54 - 336.19 0.21 - 294.0 0.21 - 336.19

Central Nervous System
involvement - no. (%)

Yes 2 (4.3) 2 (4.3) 10 (10.5) 14 (7.4)
No 44 (95.7) 45 (95.7) 85 (89.5) 174 (92.6)

Risk at diagnosis - no. (%)
High 1 (2.2) 3 (6.4) 1 (1.1) 5 (2.7)
Intermediate 20 (43.5) 24 (51.1) 76 (80.0) 120 (63.9)
Low 25 (54.3) 20 (42.5) 18 (18.9) 63 (33.4)

Karyotype - no. (%)
High hyperdiploidy (>50) 12 (26.2) 2 (4.2) 12 (12.6) 26 (13.8)
Hyperdiploidy (47-50) 3 (6.5) 1 (2.1) 10 (10.5) 14 (7.4)
Normal (46) 16 (34.8) 7 (14.9) 40 (42.1) 63 (33.5)
Hypodiploidy (40-45) 2 (4.3) 0 (0) 5 (5.3) 7 (3.7)
Low hypodiploidy (<40) 1 (2.2) 0 (0) 0 (0) 1 (0.6)
No metaphases 11 (24.0) 6 (12.8) 26 (27.4) 43 (22.9)
No information 1 (2.2) 31 (66.0) 2 (2.1) 34 (18.1)

Chromosomic alterations - no. (%)
ETV6/RUNX1 t(12;21) 7 (15.2) 10 (21.3) 24 (25.2) 41 (21.8)
TCF3/PBX1 t(1;19) 1 (2.2) 1 (2.1) 4 (4.2) 6 (3.2)
MLL rearrangement 4 (8.7) 1 (2.1) 1 (1.1) 6 (3.2)
BCR/ABL1 t(9;22) 0 (0) 0 (0) 2 (2.1) 2 (1.1)
No alterations 32 (69.6) 34 (72.3) 63 (66.3) 129 (68.6)
No information 2 (4.3) 1 (2.1) 1 (1.1) 4 (2.1)

Table 1. Summary of clinicopathologic characteristics of patients retained for analysis. HVR = Virgen del Rocío Hospital, HVA
= Virgen de la Arrixaca Hospital, HNJ = Niño Jesus Hopital.

the topic21. We compared the basic approach22 (direct nearest neighbor imputation)126

with the algorithms cytoBackBone23 (non-ambiguous nearest neighbor imputation),127

CYTOFmerge24 (median of 50 nearest neighbor imputation) and cyCombine25128

(imputation by drawing from probability density estimates). Figure 1A shows the EMD129

of all patients for each method and each marker. Ideally, the merged marker would130

display the same distribution as the actual measurements. Figures 1B and 1C show131

the tradeoff between merging quality, number of cells per aliquots and runtime. The132

conclusion was that the basic approach (direct nearest neighbor imputation)133
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performed better and faster than the other methodologies, preserving the maximum134

number of cells. CyCombine and cytoBackBone performed similarly, with longer135

computation time associated with the removal of ambiguous cells. The conclusions136

were the same across hospitals (Figures S3 and S4). In the light of this result, we137

chose to continue the analysis with the basic approach and repeat it with the138

cyCombine method in order to confirm the stability of the results.139

Figure 1. Comparison of file merging methods. A. Boxplots summarizing the distributions of Earth’s
Mover Distance (EMD) for each marker. The box includes median (horizontal line) and interquartile
range (IQR). B. Dots represents the runtime for each patient, with the x-axis displaying the number of
cells per patient. Marker size represents the ratio between the number of cells to merge and the number
of cells in the resulting file. Inset displays accumulated computation time for the complete cohort. C.
Comparison between average EMD and runtime per cell. Marker size represents the ratio between the
number of cells to merge and the number of cells in the resulting file, averaging all patients. Patients
analysed here belong to hospital HNJ. Similar results are obtained for hospitals HVA and HVR (Figures
S3 and S4).
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Clustering and dimensionality reduction techniques reveal common structure140

and subpopulations across patients141

After preprocessing, file merging and patient selection, the final set of FC markers142

included B-cell markers CD19, CD10 and CD20; pan-leukocyte markers CD45 and143

CD38; hematopoietic stem cell marker CD34 and myeloid markers CD58 and CD66c.144

The next step was to visualize the structure of the bone marrow of all patients. Cell145

subpopulations can be obtained by means of clustering techniques, which replace the146

traditional manual analysis or ‘gating’26. Here, we pooled all the files together and147

clustered via FlowSOM27. This algorithm produces a low dimensional visualization of148

the structure of the data in two steps. Firstly, it clusters on a higher resolution, which149

we manually set to 50 clusters (the influence of this number of clusters on the results150

will be explored later). Secondly, it obtains an optimal lower number of metaclusters151

by aggregating with consensus clustering. It then creates a minimum spanning tree152

visualization in which each cluster is represented by a node, and similar clusters are153

linked. This is shown in Figure 2. Marker expression per cluster is shown in Figure154

2A, while Figure 2B represents the metacluster to which each cluster belongs. Each155

metacluster is identified with a cell subpopulation that can be manually annotated. The156

number of patients that contribute to each cluster is shown in Figure 2C, split in relapse157

(R) and non-relapse patients (NR).158

To visualize the clustering information on a single-cell level we used UMAP. This159

dimensionality reduction technique computes a two-dimensional representation that160

preserves the structure of the cell subpopulations28. The result is shown in Figure 2D.161

Each cell is colored according to FlowSOM metacluster. For comparison, the marker162

expression of each region of the UMAP embedding is shown in Figure 2E. We note163

that both FlowSOM and UMAP yield a similar structure, as shown by the proximity of164

the different metaclusters and UMAP regions. FlowSOM obtained an optimal number165

of 8 metaclusters. There were two main metaclusters (1 and 2) that comprised most166

of the CD19+ cells and that we identified with the leukemic clone. These are immature167

B-cells with intermediate expression of CD45 and heterogeneous expression of CD34168

and CD38. The two metaclusters were distinguished by relative expression of CD66c.169

We also assigned metacluster 6 to the leukemic cell population, distinguished from170

the other two by a negative expression of CD10. These metaclusters contained the171

majority of cells since the bone marrow of BCP-ALL patients at diagnosis are almost172

fully invaded. Metacluster 8, with a high expression of CD45 and CD20, represents173

healthy, mature B-cells. The remaining metaclusters represent other bone marrow174

cell types, including T-cells with high expression of CD45 (metacluster 7) and myeloid175

subpopulations (metaclusters 3, 4 and 5). While these subpopulations are seldom176

considered in B-cell malignancies, here we also explored them for prognostic value.177

With respect to the robustness and generality of these results, we note that most of the178

clusters contained more than 80% of the patients. When considering the metacluster179

scale, virtually all patients contribute to all cell subpopulations, with the exception of the180

minor myeloid subpopulations (metacluster 4). This confirmed that all patients adhere181

to the global structure described in this section.182
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Figure 2. Clustering and visualization of flow cytometry data. A.Minimum spanning tree generated
by FlowSOM. Each node represents a cluster, and similar clusters are linked. Pie plot represent the
relative expression of protein markers within each cluster. B. Minimum spanning tree generated by
FlowSOM. Color denotes the metacluster to which each cluster belongs. C. Number of patients per
cluster colored according to outcome (R=relapse, NR=non-relapse). Clusters are sorted according to
the metacluster they belong to (vertical bar on the left). Vertical dashed line represents the maximum
amount of patients. D. Single-cell UMAP embedding. Each cell is colored according to the FlowSOM
metacluster it belongs to. E. Single-cell UMAP embedding. Each cell is colored according to relative
marker expression.

Individual patient cells per cluster are unable to predict relapse183

Figure 2C shows that only a number of clusters contain a proportion of relapse184

patients above the baseline 20%, without any particular cluster being dominated by185

either relapse or non-relapse patients. To investigate the predictive power of cell186

abundance per cluster, however, we had to check not only the number of patients but187

also how many cells each patient contributed with. The idea was to test if relapse188

patients tended to participate more in a subset of clusters, or if instead all patients189

contributed equally. To do so, we calculated the percentage of cells per cluster for190

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Results of abundance-based classification. A. Comparison of cell percentage per cluster
between relapse (R) and non-relapse (NR) patients. Boxplot includes median and IQR. The scale has
been transformed with an inverse hyperbolic sine for clarity. Black box and asterisk denote clusters with
significant differences in cell abundance (two-sided Kolmogorov-Smirnov test). B. Classification results
in terms of Area Under the Precision Recall Curve using information from all clusters. The shaded region
represents the standard deviation of 10 repetitions of the classification routine. Horizontal dashed line
represents the baseline precision. C. Classification results in terms of Area Under the Precision Recall
Curve using information from clusters with significant differences in cells per cluster (shown in color in
the minimum spanning tree). D. Classification results in terms of Area Under the Precision Recall Curve
using information from all clusters, for a new FlowSOM clustering with 400 clusters. E. Classification
results in terms of Area Under the Precision Recall Curve using information from clusters with significant
differences in cells per cluster (shown in color in the minimum spanning tree), for the new FlowSOM
clustering with 400 clusters.

every patient, and the results are shown in Figure 3A. Only one cluster (cluster 32 in191

metacluster 1) exhibited statistical significance (p<0.05), as determined by a192

two-sided Kolmogorov-Smirnov test.193

This, however, was insufficient to conclude the lack of predictive power of the194
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number of cells per cluster. Indeed, although each cluster individually did not present195

clear differences, non-linear interactions between all clusters could create a region in196

which relapse patients are more clearly distinguished. We tested this by building a197

classifier for relapse prediction that uses cells per cluster as input. We implemented a198

nested cross-validation scheme and included four supervised machine learning199

algorithms: Naive Bayes, Random Forest, K-Nearest-Neighbors and linear Support200

Vector Machine. For robustness, we repeated the classification 10 times. More201

details about the classification routine can be consulted in the ‘Methods’ section. The202

average Precision-Recall curve obtained is shown in Figure 3B. We used the Area203

Under the Precision-Recall Curve (AUCPR) to summarize the result. This is204

equivalent to the average precision of the classifier and can be interpreted as the205

probability that a predicted relapse is a true relapse. Its value was close to the206

baseline precision, which is the proportion of relapse patients in our dataset (0.202,207

Table 1). This means that the features used for classification had no prognostic value.208

We repeated the classification but using only the cluster in which significant209

differences were found (Figure 3C). We obtained a higher precision compared to210

using all information, although still close to the baseline classifier. To explore the211

possibility of finding more relevant prognostic information, we repeated the clustering212

with 400 FlowSOM clusters. When using all clusters, the classification results were213

almost identical to the 50 cluster case (Figure 3D). We finally repeated the214

classification using only the significant clusters (Figure 3E). This scenario reported215

the highest performance, but still far from a significant enhancement compared to the216

baseline classifier. We finally assessed the reliability of these results by performing217

stability and overfitting checks (Figure S5).218

Relative marker expression is similar between relapse and non-relapse patients219

across cell subpopulations220

Following the assessment of the prognostic significance of cell abundance, we turned221

to marker expression within each cell subpopulation. The distributions depicted in222

Figure 4A portray the aggregated marker expression for relapse and non-relapse223

patients within each metacluster. The patient-specific distributions that contribute to224

these aggregated distributions are shown in Figure S6. Most markers across the225

majority of metaclusters did not exhibit noteworthy disparities between the relapse226

and non-relapse groups. The exceptions are metacluster 4, which showed227

underexression of CD10 and overexpression of CD20 in relapse patients, as well as228

more general differences in markers CD38, CD45 and CD58; and metacluster 6,229

which displayed differences in CD10 and CD34. These metaclusters are associated230

with minor subpopulations and part of the leukemic clone respectively. It remained to231

be seen that the significance of these disparities were reproducible at an232

individual-patient level, rather than being confined to the population level. Following233

the rationale of the previous section, we aimed to test whether individual patients’234

marker expression could predict relapse.235

To address this, we summarized the marker expression distributions of each236
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patient within every metacluster using the median and the first four statistical237

moments: Mean, standard deviation, skewness and kurtosis (Statistical moments of238

order 1 to 4). This procedure produced five distinct datasets, each corresponding to a239

specific metric, where each row encapsulated a patient’s marker distribution240

summary. Additionally, we constructed a combined dataset with all features to241

explore whether a combination of metrics would yield more informative results.242

Furthermore, we created a final dataset comprising exclusively those features243

displaying statistically significant differences, as done in the previous section244

(Kolmogorov Smirnov test, α = 0.05). We used the classification routine to check the245

Figure 4. Expression-based classification. A. Aggregated marker expression of relapse and non-
relapse patients per metacluster. B. Classification results in terms of AUCPR. Black dashed line
represents baseline precision. Color denotes metacluster. Circles represents the average precision
obtained when using all the distribution metrics together to train the classifier. Asterisk represents
the same average precision when using only those features with significant differences according to
a Kolmogorov-Smirnov statistical test (α = 0.05). C. Classification results in terms of AUCPR for a
subset of patients (N=158) with an increased number of markers. D. Classification results in terms of
AUCPR for a higher resolution clustering (400 FlowSOM clusters, 20 metaclusters).
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predictive power of each dataset. A summary of the workflow followed in this section246

is shown in Figure S7. The results are shown in Figure 4B. For each metacluster, we247

show the average precision (equivalent to AUCPR) obtained by using all the248

information versus only the features with significant differences, as done in the249

previous section with cell abundance. We also show the same information for the full250

cohort, without segregating by metaclusters. The results for individual metrics251

(median, mean, standard deviation, skewness and kurtosis) are shown in Figure S8.252

The conclusion is straightforward: the information contained in marker expression253

distribution lacks predictive capacity, given that the majority of AUCPRs marginally254

exceeded the baseline precision. The best result was a precision of 42% when using255

only the significant features in metacluster 5, which correspond to myeloid cells.256

Notably, the leukemic clone metaclusters (1, 2 and 6) contained no prognostic257

information.258

We explored the possibility that the observed outcome could stem from an259

insufficiency of detail in the information under examination for each patient. To260

address this, we repeated the analysis incorporating two alterations. Firstly, we261

expanded the set of markers selected for analysis. However, this came at a cost: the262

patient count diminished from 188 to 158. Employing the same clusters identified in263

the original analysis, we searched for differences within the new markers (IgM,264

cyTDT, cyMPO, cyCD3, CD13, CD22, CD3, CD33), but the improvement in the265

predictive power of the routine was negligible: we obtained an increment of 5% of266

precision on average (Figure 4C). In subsequent investigation, we studied whether267

the challenge laid not in marker quantity but rather in the size of the clusters. Using268

the initial set of 8 markers, we reconsidered the 400-cluster outcome from the269

previous section, which resulted in 20 metaclusters. Two of the metaclusters (3 and270

19) lacked enough patients to reliably estimate performance. For the remaining271

metaclusters, the improvement was also unremarkable, especially in clusters272

associated with the leukemic clone (red and blue colors) (Figure 4D). The best result273

was an average precision of 50%, slightly superior than the best precision in the274

default analysis but in a different subpopulation. The reliability of this set of results275

was also assessed as in the previous section by calculating the stability of the276

classifier (Figure S8).277

To conclude, we performed two additional analyses. We first considered whether278

the preprocessing of the data could be responsible for the lack of predictive279

information. To explore this, we replicated the analysis using the cyCombine280

algorithm for file matching (see ‘Methods’), and our findings concurred with the281

conclusions detailed earlier (Figure S9). Lastly, we considered only those patients282

which were initially diagnosed as intermediate risk, to check if the more intensive283

treatment received by high risk patients could bias the results. This resulted in a284

reduced cohort of 119 patients. The results were also similar to the above (Figure285

S10). Hence, irrespective of treatment received, preprocessing technique employed,286

number of markers considered, cluster size and distribution metric, marker287

expression of FC data at diagnosis failed to predict relapse.288
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Biomarker discovery algorithms from the literature support the findings of the289

main analysis290

We contrasted our findings with other algorithms from the literature designed for291

biomarker discovery and outcome prediction. A description of their functionality and292

implementation can be found in the ‘Methods’ section. The results for each of them293

are shown in Figure 5. The first example is Cydar29, which is designed for differential294

abundance discovery. The clusters (hyperspheres in Cydar terminology) with a295

sufficient number of cells are projected onto the UMAP embedding employed in the296

previous sections (Figure 2). Those hyperspheres with significant differences in297

abundance (according to a lasso-regularized logistic regression) are plotted with298

wider radius and colored according to the fold change in abundance between both299

group of patients (Figure 5A). To check the predictive power of such hyperspheres,300

we extracted the number of cells per patient and hypersphere and ran the301

classification routine previously described, with results similar to the best models in302

the previous section (Figure 5B). The difference here is that due to the lower size of303

the clusters (hyperspheres), there are less patients per cluster (Figure 5C), which304

makes the results less generalizable. The second example is Citrus30. The results for305

both abundance and median expression (Figure 5D) indicate the lack of predictive306

information, regardless of regularization threshold. In both cases the null classifier307

(no features, leftmost regularization threshold) was the best classifier, with an error of308

20.2%. This number is the proportion of relapse patients in our dataset, which means309

the algorithm was classifying all patients as non-relapse. Further, the False Discovery310

Rate shows all the characteristics of a classifier unable to discriminate31. The Citrus311

algorithm also reports the clusters with potential predictive capacity (Figure S11A-B).312

The third example is cellCNN32, which uses a convolutional neural network. We313

complemented it with a nested loop that allowed us to provide two conclusions: First,314

the lack of a inner validation routine makes the algorithm more prone to overfitting, as315

we see in the comparison between the accuracies of the inner and outer loops316

(Figure 5E). Second, the performance in terms of AUCPR did not improve previous317

tests (Figure 5F). This algorithm also reports the characteristics of the most318

significant cells, which are included in Figure S11C-D. Finally, we tested Diffcyt26 on319

the metaclusters that were already obtained by FlowSOM (Figure 2). This algorithm320

showed no significant differences in cell abundance per metacluster (Figure 5G) but it321

did detect significant differences in expression (Figure 5H). On closer inspection, we322

noticed that those significant features were the ones that displayed differences in323

aggregated marker expression (Figure 4A). We already showed how this sum of324

distributions does not necessarily entail that individual patients follow the same trend325

(see Figure S7) and that a classifier could still be unable to properly predict relapse,326

as shown in Figures 4B-C.327

The conclusion of this section is that other algorithms that aim for the same goal as328

this study and follow a comparable methodology are also unable to detect differences329

between relapse and non-relapse patients. This applies to analyses centered on both330

cell abundance and marker expression.331
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Figure 5. Results from other biomarker discovery algorithms. A. Cydar hyperspheres (black)
projected on UMAP embedding from Figure 2C (gray). Significant hyperspheres are colored according
to fold change in abundance. B. Classification results from the cell abundance of the significant
hyperspheres. Interpretation is as in Figure 3B-E. C. Number of patients in significant cydar
hyperspheres split in relapse (R) and non-relapse (NR). Top row displays the reference of 188 patients
(38 relapses). D. Citrus results for median expression (left) and abundance (right). Represented are
cross-validation error rate (Red) and false discovery rate (blue). Green dot represents the error rate of
the best model according to the minimum cross-validation error rate. Orange rhomboid represents the
error rate of the best model according to the one standard deviation criterion. Yellow triangle represents
the best model according to the lowest compatible false discovery rate. E. Comparison between the
accuracy in the outer and inner loops of the CellCNN algorithm. F. AUCPR curve in the outer loop of the
CellCNN algorithm. G. Diffcyt differential abundance test. Each row contains the individual patient cell
percentage in a metacluster (1 to 8). The algorithm includes the fold change between status (relapse R
in red vs non-relapse NR in blue) and the statistical significance of the results (gray vs green) H. Diffcyt
differential expression test. Row annotation includes the marker and the metacluster in which significant
differences were found.
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DISCUSSION332

Approximately 15% of children diagnosed with BCP-ALL will suffer relapse or333

refractory disease, and the prognosis for this subgroup is significantly worsened.334

Despite advancements in therapy through refined chemotherapy regimens, the335

potential for further therapeutic success appears rooted in alternative treatments or336

more precise risk assessment upon diagnosis. This underscores the importance of337

enhancing our capability to anticipate disease progression at the individual patient338

level. In this investigation, we have compiled an extensive FC database for childhood339

BCP-ALL. A total of 252 patients from three hospitals participated in the study, with340

188 patients advancing to the computational analysis phase. The objective of the341

study was to examine whether patients experiencing relapse exhibit distinctive342

patterns within their FC data at diagnosis. In other words, the goal was to test if FC343

data at diagnosis has prognostic value with regards to long-term response.344

To fulfill this objective, we preprocessed and normalized the data and we carried345

out a file merging step in order to integrate the different aliquots of each patient into a346

single file, after comparing the performance of different imputation methods. We347

concluded that direct nearest neighbor imputation was the most348

distribution-preserving algorithm. We hypothesize, however, that this may be only349

applicable to the kind of data considered in this study (in terms of markers included350

and type of distributions). This is clearer after noting the differences with the351

conclusions reached in a recent review on imputation methods21. Without being352

exhaustive, the presence of a dense and homogeneous clone could make the data353

more suitable for merging algorithms of one kind, whereas more balanced or354

heterogeneous bone marrow distributions would benefit from other algorithms. The355

preprocessing step, the normalization, and the previous clustering step can also356

impact the values and range of the metrics employed to measure distribution357

differences. We therefore recommend repeating this assessment when dealing with a358

different disease or high-dimensional data of other kind.359

The selected patients were then pooled together and clustered with FlowSOM. We360

visually examined the data structure through its UMAP embedding, revealing minimal361

disparities between relapse and non-relapse patients. We extracted cell abundance362

per patient at the cluster level and summarized marker expression at the metacluster363

level by means of the first four statistical moments of the expression distribution: Mean,364

standard deviation, skewness, and kurtosis. We also computed the median of the365

distribution, a classical FC metric. All these features were input into a nested cross-366

validation scheme, which aimed to identify the optimal classifier for each dataset and367

assess its performance on unseen data. The performance of such classifiers served368

as an indicator of the prognostic value of the dataset.369

The outcome of the primary analysis directly contradicts the initial hypothesis: FC370

data obtained at diagnosis does not appear to harbor information relevant to the371

prediction of relapse. Cell abundance per cluster is unable to predict relapse, even372

when increasing the number of clusters and when using only the ones with significant373
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differences between relapse and non-relapse groups. Likewise, no distribution metric374

is able to significantly improve the baseline precision. Considering all metrics together375

in a single dataset or retaining only the ones with significant differences also failed to376

improve outcomes. We further increased the number of clusters and the number of377

markers, the latter with a reduction in the number of patients from 188 to 158, and we378

also repeated the analysis considering a different file merging algorithm, to test the379

possibility that the preprocessing routine masked differences in abundance or380

expression. Finally, we restricted the analysis to intermediate risk patients, to account381

for the possible confounding effect of the more intensive treatment received by high382

risk patients. The conclusion remained unaltered across all these studies. The most383

precise classifier was found when increasing the number of clusters and using only384

the metrics with significant differences between groups. This classifier achieved an385

average precision of 0.507. This indicates that, within this particular classifier, the386

likelihood of a predicted relapse corresponding to an actual relapse stands at 50.7%.387

The pipeline followed in this study was designed to encompass and extend388

previously published algorithms by offering a more comprehensive characterization of389

marker expression distributions and employing non-linear classifiers with a more390

rigorous resampling scheme. Despite these advancements, we verified the outcomes391

against other open-source algorithms. We specifically assessed Cydar29, Citrus30,392

Diffcyt26, and CellCNN32, which are among the most frequently referenced algorithms393

for discovery analysis in FC. Cydar, Citrus, and Diffcyt incorporate tests for differential394

abundance. Cydar identified several clusters exhibiting significant differences in395

abundance, with a performance akin to the classifiers obtained in the primary396

analysis. As a drawback, those clusters only contained a subset of the full cohort of397

patients. Citrus and Diffcyt failed to identify differences bearing prognostic value.398

These two algorithms additionally include tests for differential expression. Citrus399

identified three features, but the classifier’s performance proved inferior to the null400

model. In the case of Diffcyt, the identified features held significance at a population401

level but struggled to consistently discern individual patients. Finally, the outcomes402

from cellCNN mirrored those of the other classifiers, with performance marginally403

surpassing the baseline classifier. The aforementioned findings further underscore404

the established conclusion that the metrics used to characterize the distributions of405

surface markers fail to differentiate between patients who experience relapse and406

those who do not.407

The initial hypothesis of this study rested on the premise that the leukemic clone in408

relapsing patients differs from that of successfully treated individuals, and that such409

distinctions manifest in the immunophenotype and could then be captured through FC410

measurements. The negative outcome we have obtained in this study offers room for411

diverse interpretations. It is possible that the immunophenotype of relapsing patients412

does not exhibit distinctive characteristics. While genetic differences are known to413

play a fundamental role in the origin and potentially the relapse of leukemia33,34, these414

differences may not necessarily translate to variations in marker expression415

distributions. Rather, they may only be found through genomics, transcriptomics or416
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metabolomics. In this line, recent research has demonstrated the feasibility of417

predicting relapse in infants with MLL-rearranged ALL by single-cell transcriptomics35.418

It remains essential to conduct further investigations to ascertain the predictive419

potential of a comprehensive panel of mutations for the broader population.420

Alternatively, immunophenotypic disparities might emerge post-therapy. Such a421

scenario could be attributed to chemotherapy-induced bottleneck selection, which has422

been shown to impact the phenotype more significantly than genotype36. This could423

be probed by revisiting this study with FC data from a later time point, although this424

approach would deviate from the initial goal of refining risk stratification at diagnosis.425

With respect to the conditions of this study, it is also feasible that426

immunophenotypic distinctions exist but are only discernible within small cell427

subpopulations. Such differences might elude detection even with high-resolution428

clustering if the number of cells per patient is not increased. This hypothesis could be429

explored by imposing stricter limitations on the number of cells per patient, although430

this would inevitably reduce the total number of patients in the study. Another431

potential consideration is that immunophenotypic disparities manifest in markers432

beyond the ones routinely assessed in clinical practice. Evaluating this notion would433

require prospective studies. Finally, it can be the case that immunophenotypic434

disparities exist but are obscured by the extensive preprocessing and normalization435

required to integrate data from multiple centers. No immediate alternative exists until436

the clinical adoption of next-generation cytometers that can measure a larger number437

of markers simultaneously and are more amenable to standardization.438

Despite the scope and scale of this study, as well as the evidence gathered in439

support of the negative conclusion, there are still alternative ways of exploring the440

potential prognostic value of FC, a line of research that is still relatively unexplored for441

this particular disease. Indeed, a number of works employ machine learning442

techniques to answer questions relative to BCP-ALL, but applications for relapse443

prediction from FC data at diagnosis are still uncommon. For instance, Pan et al.37444

utilized clinical data from a cohort of 336 patients to predict relapse. However, this445

study lacked FC data and incorporated response variables (such as MRD at days 15446

and 33), thereby limiting its applicability to the diagnosis phase. A similar predictive447

framework based on clinical features was presented by Mahmood et al.38. Moving448

closer to the objectives of the present study, Good et al.15 gathered mass cytometry449

data at diagnosis to achieve a relapse prediction AUC of 0.85 using an elastic net450

model. However, their database only encompassed 54 patients, and the validation451

was confined to a single train-validation split, thereby hampering direct comparability452

with our results. Similar constraints apply to an earlier work by our own group that453

included 56 patients to identify differences in expression16. Finally, we recently454

published a framework that uses topological data analysis for feature extraction and455

includes a classifier that reached high accuracy and AUC with an increased number456

of patients (N = 96)17. This study meets the criterion of moving beyond the457

conventional feature engineering in FC and the preliminary results encourage the458

search for differences in immunophenotype of relapsing patients by means of more459
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complex methods.460

To sum up, we have performed a machine learning-based relapse classification461

study involving 252 patients diagnosed with childhood BCP-ALL. A detailed462

characterization of immunophenotype and different cluster resolutions have been463

unable to distinguish relapse from non-relapse patients, and other algorithms from the464

literature exhibited similar outcomes. We conclude that different characterizations of465

FC data are required to uncover its potential prognostic value, pending the availability466

of high-dimensional omics data at diagnosis and more advanced cytometers that467

circumvent some of the challenges found throughout our study.468

METHODS469

Study population470

252 patients and three different spanish hospitals participated in this study. We471

collected data from 116 patients from Hospital Niño Jesús, Madrid (HNJ), diagnosed472

between January 2013 and January 2022; 80 patients from Hospital Virgen de la473

Arrixaca, Murcia (HVA), diagnosed between May 2011 and July 2022; and 56 patients474

from Hospital Virgen del Rocío, Sevilla (HVR), diagnosed between January 2012 and475

July 2021. 207 patients had long-term remission and 44 patients relapsed. All476

patients are in the age range 0-19. We dropped those which continued treatment at477

another institution or that had not reached 1 year of follow up, with 211 patients finally478

proceeding to the main analysis (Figure S1). The data collected included FC files479

from bone marrow samples at diagnosis and additional clinical information: Age, sex,480

phenotype, risk group, CNS involvement, absolute lymphocyte count (ALC),481

immunophenotype and genetic information (karyotype and chromosomal482

translocations). Informed consent was obtained from the parents or legal guardians483

according to the Helsinki Declaration.484

Treatment485

Treatment was administered according to the Spanish National protocols486

SEHOP-PETHEMA 2013 and INTERFANT-06 in patients under 1 year old. Older487

patients from HVR and HVA followed the previous consecutive versions of this488

protocol (LAL/SEHOP 01 for low risk patients, LAL/SEHOP 96 for intermediate risk489

patients and LAL/SHOP 05 for high risk patients). These protocols are based on the490

Berlin–Frankfurt–Munster (BFM) backbone and consists of a four-drug induction491

phase (IA), followed by induction IB, consolidation, reinduction, and maintenance.492

High risk patients receive three specific high-risk blocks, three reinduction cycles, and493

maintenance. The total duration of therapy is 2 years.494

Risk stratification495

Risk stratification criteria is based on age, lymphocyte count at diagnosis,496

extramedullary infiltration, cytogenetics and early response to treatment.497
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SEHOP-PETHEMA 2013 assigns a low risk to patients who meet the following498

criteria: Age between 1 and 10 years, ALC less than 20 · 109 cells/liter at diagnosis,499

absence of CNS or testicular infiltration, high hyperdiploidy or presence of t(12;21),500

absence of t(1;19), no MLL rearrangement, good early response and good response501

to prednisone. High risk patients verify at least one of the following: presence of502

t(4;11), hypodiploidy, BCR-ABL rearrangement or poor early and prednisone503

response. Patients who do not meet either criteria are assigned to intermediate risk39.504

Patient outcome505

Patients are assigned to either relapse or non-relapse group. Bone marrow relapse is506

diagnosed with the same criteria as the initial diagnosis: presence of >25% of leukemic507

blasts in bone marrow. Extramedullary relapses require a biopsy of the tissue or a508

sample of cerebrospinal fluid for confirmation. For a patient to be included in the non-509

relapse group we require at least one year of disease-free survival after treatment.510

Flow cytometry data511

All data is retrospective. Bone marrow samples have been handled following512

standard clinical procedures (there is no specific design for this study). Monoclonal513

fluorochrome-conjugated antibody combinations employed at each hospital are514

shown in Tables S3-S5. Some patients presented variations from this standard515

(marker changes, additions or omissions).516

Preprocessing of flow cytometry data517

Preprocessing encompassed a manual and a computational step. The manual step518

consisted in checking each aliquot for acquisition errors and removing doublets and519

debris (Fig. S2A). At this step we required that all aliquots contain CD19 and CD45520

markers. For this reason, certain patients (mostly those diagnosed at earlier dates)521

were excluded from the study (1 from HVA and 7 from HVR). Aliquots with too little522

cells of with strong batch effects were also removed.523

The compensated files were subsequently exported to undergo the computational524

preprocessing step40. This preprocessing involved transforming data with the525

standard Logicle transform, removing margin events (this is done more efficiently526

here than manually) and renaming the channels to uniformize marker names across527

patients. Finally, each marker was normalized to the [0,1] interval by means of a528

modified max-min transformation: Instead of taking the maximum and minimum529

values, we took the 99th and 1st quantile respectively, making the normalization more530

robust to outliers. This transformation implies that we are comparing relative531

expression of a marker instead of the absolute expression.532

Finally, we had to consider the issue of backbone markers displaying inter-aliquot533

differences. Some causes of this variability are staining problems, acquisition errors534

and other batch effects. To account for this source of heterogeneity we first sampled535

10000 cells from each tube and then performed quantile normalization, a technique536
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already used in RNA-seq data to make distributions more similar. Instead of537

normalizing the whole distribution we followed the approach in the cytoNorm538

algorithm41: we performed flowSOM clustering with 5 clusters and then normalized on539

a per cluster basis (Figure S2B).540

File merging541

File merging (also file matching, panel merging or imputation) refers to the process of542

combining all the information from a FC experiment into a single file. The issue arises543

from the fact that flow cytometers can measure a limited number of colors, i.e. the544

expression of a limited number of protein cell markers. To obtain information for more545

markers, the sample is divided in several tubes or aliquots and each tube measures a546

different set of proteins, while maintaining a subset of them constant (backbone547

markers). This is enough for manual inspection of the sample but for data analysis548

the combined file allows for a much deeper analysis. Figure S2C illustrates the549

starting point and endpoint of this part of the analysis.550

Several methods have already been developed for this purpose. Most of them rely551

on nearest neighbor imputation: Backbone markers are used to find the closest552

neighbors (cells with the highest surface protein similarity), and the missing553

information is copied from the respective neighbor. This was first published by554

Pedreira et. al.22. Later works use slightly modified versions that aim to correct555

artifacts and biases: cytoBackBone23 includes the concept of acceptable and556

non-ambiguous nearest neighbors (data is only imputed if a cell’s closest neighbor is557

also the other cell’s closest neighbor) and CYTOFmerge24 used median expression558

from the closest 50 neighbors instead of the single closest one. A more recent559

method (cyCombine)25 follows a different methodology: It finds clusters in the space560

of backbone markers and then approximates the distribution of the remaining markers561

using kernel density estimation. The missing information is then imputed using562

probability draws. This is similar to other approach by Lee et. al.42, which requires563

domain knowledge but demonstrated that pre-matching clustering enhances564

performance and reduces the risk of spurious cell populations appearing in the data.565

These previous steps improve quality of merging in terms of preserving the original566

distribution at the expense of removing cells that are too exclusive of one file and that567

would otherwise impute noise.568

In light of these advances, the question arises as to which one is the most suitable569

method for conducting downstream analysis on a patient dataset. A recent570

comprehensive review delved into this question21, using an array of metrics to571

compare the performance of the different algorithms. They concluded that there is not572

a clear winner and caution needs to be taken when performing downstream analysis573

with imputed data. A similar approach was carried out by Perdersen et. al.25 when574

demonstrating the cyCombine functionality. The Earth’s Mover Distance (EMD) was575

employed to compare the distribution of a marker in the original tube versus the576

merged file. This distance, also known as Wasserstein distance, measures the577

minimum cost required to transform one distribution into another. In the context of578
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flow cytometry, this cost is associated with moving cells from one marker expression579

state to another. Lower EMD values indicate a closer match between the original and580

imputed distributions, suggesting a more accurate imputation process. Its suitability581

for comparing marker expression distributions in the context of flow cytometry was582

recently demonstrated20.583

Here, we preprocessed patients from each hospital as described above and584

imputed the missing values according to the four methods mentioned in the main text:585

Direct nearest-neighbor imputation (basic), CYTOFmerge, cytoBackBone and586

cyCombine. For the backbone markers (CD19, CD34 and CD45), since these587

markers are present in all aliquots, we measured the difference of expression in each588

aliquot with the expression in the merged file and computed the average to get an589

upper bound for acceptable inter-aliquot differences. For the remaining markers we590

computed the EMD between the expression in the merged file and the expression in591

the specific aliquot in which they were present. Other metrics that were used to592

assess the performance of the different algorithms were the ratio between cells to593

merge and final number of cells (some of the algorithms discard cells) and the594

computation time.595

Patient selection596

The selection of patients and markers that proceeded to the final study was597

conducted post-normalization and merging. This is due to the fact that certain598

aliquots were excluded during these steps, resulting in a variation in the markers599

available for each patient compared to the preprocessing phase. We first reduced600

each patient (i.e. each merged file) to 10000 cells, removing patients that did not601

reach this amount. There exists a tradeoff between the number of markers analyzed602

and the number of patients. For the main analysis, 10 markers were retained (FSC.A,603

SSC.A, CD19, CD10, CD20, CD34, CD66, CD58, CD45, CD38) for a total of 188604

patients (95 from HNJ, 46 from HVR and 47 from HVA).605

Flow cytometry visualization606

FlowSOM was run with parameters x = 5, y = 10 and maxK = 20. We consistently607

obtained an optimal number of 8 metaclusters. For UMAP, we subset 1000 cells from608

each patient and pool the subset files to obtain the embedding of the bone marrow of609

all patients. After a visual exploration, we selected UMAP hyperparameters min_dist =610

0.1, n_neighbors = 50 and the rest with default values (Figure S12).611

Feature extraction612

The most common features for analyzing flow and mass cytometry data are613

abundance (relative or absolute) and expression, measured as the median intensity614

of a marker (MFI), in general or on a per-cluster basis. This has been the case in615

most of the studies and methods used for biomarker discovery in FC data applied to616

leukemia (Table S5). However, a single number might not be enough to characterize617
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the full marker distribution and thus to discover differences in expression, intensity618

and immunophenotype. Here, we computed for each cluster not only the abundance619

and median expression but also the first four moments of the distribution (mean,620

standard deviation, skewedness, and kurtosis). We created a dataset for each621

feature and a dataset with all features together, in order to find which characterization622

is best for detecting differences in expression and to see if the combination of all623

enhances the predictive capacity. We finally created a dataset with only those624

features that present significant differences between relapse and non-relapse625

patients according to a two-tailed Kolmogorov-Smirnov test.626

Classification627

Most of the published methods for analyzing FC data (Table S5) use linear models to628

perform moderated tests in order to find significant differences in expression (median629

intensity). The exception are neural network based algorithms, which do not explicitly630

perform feature selection but include the FC file as input for the algorithm. The631

differential expression methodology is standard in transcriptomics analysis, when632

looking for genes that are overexpressed under given conditions43. For the problem633

and the hypothesis of this study, finding a significantly over- or under-expressed634

marker might not be enough to distinguish a relapse from a non-relapse patient. In635

other words, while we would be able to make a statement of the kind “relapse patients636

on average have a higher expression of marker X”, we would not be able to say637

whether a new patient belongs in the relapse or non-relapse group. Further, these638

analyses consider markers individually, but it could be the case that, while there639

might not be significant differences in MFI of a marker, we could find a region in the640

space of MFIs that separates both groups of patients.641

Without any previous knowledge about the characteristics of this region and given642

that it can be quite different depending on which metric we are considering, we could643

not say a priori which classification model was best for this task, nor which644

hyperparameters of such model were optimal. For this reason, the classification645

routine had to include some form of internal validation to make this decision based on646

the data. We did this by means of nested cross-validation44,45. This approach647

consists of two cross-validation loops, an outer loop and an inner loop. The inner loop648

is used to find the best model and its hyperparameters, and the outer loop is used to649

get an estimate of performance in unseen data. For the inner loop we performed650

9-fold cross-validation repeated 20 times to get a more robust estimate, and for the651

outer loop we performed 5-fold cross-validation, repeated 10 times. This resampling652

scheme implied that each inner fold contained 16 patients on average, with 2 of them653

belonging to the relapse group.654

We chose 4 models that are widely used and ensure that different types of655

boundaries are explored: K-Nearest Neighbors, Naïve Bayes Classifier, Random656

Forest, and Linear Support Vector Machine. Each time we trained a model we use657

random grid search to select the optimal hyperparameters (Table S6). The best658

model was selected based on the one standard deviation rule using the AUCPR659
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curve, which is more suitable for problems with unbalanced data46. Hyperparameter660

estimation and model selection were thus performed together47.661

For every dataset, the nested cross-validation routine produces 50 performance662

estimates (AUC-PR) and identifies 50 ‘best models’ (obtained from the 10 repetitions663

of 5-fold cross-validation in the outer loop). We summarized the 50 AUC-PR values by664

calculating their average, and the 50 best models by using a measure of heterogeneity665

as a surrogate of the stability of the routine. This stability measure is assigned a value of666

1 if the samemodel is consistently selected in all outer folds, and 0 if the four models are667

equally frequent. It is important to note that while this measure can indicate instability668

or unsuccessful optimization, it is possible for two models to perform nearly equally669

well in identifying the best boundary, making them equally suitable for the task at hand.670

Thus, it’s essential to consider the degree by which the top model has been selected671

and its associated level of performance.672

To sum up, for each dataset we had a measure of the predictive information it673

contains (average AUCPR) and a proxy of the reliability of this measure (stability674

index). These two metrics were employed in conjunction to assess the predictive675

information across different metrics and metaclusters. Figure S7 provides an676

overview of the feature extraction and classification steps.677

Comparison with other algorithms678

We already mentioned the existence of other algorithms and studies that aim to679

predict a clinical outcome from flow cytometry data (table S5). The way they are680

designed follows a similar pattern: All of them begin from a set of flow cytometry files681

(one per patient) and cells are clustered with a different algorithm depending on the682

method. Each cluster is summarized by means of the abundance and the median683

fluorescence intensity of a marker, and these are in turn used for classification.684

Generalized linear models are the usual choice, as many algorithms are inspired by685

RNA or DNA microarray data analysis. The exception to this two-step process are686

neural networks based algorithms, since feature extraction is performed in the inner687

layers of the network. The pipeline that we followed here aimed to generalize this688

‘classical’ approach by going beyond the typical characterization of a marker689

distribution (MFI) and by including a broader and more thorough classification routine.690

To validate the conclusions of this study, we selected four of the most cited algorithms691

and compared the results. Below we summarize the characteristics and functionality692

of the selected algorithms.693

• Cydar29 identifies differentially abundant cell populations between groups. It was694

originally proposed for mass cytometry data but can be extended to any695

multidimensional dataset. It clusters cells into hyperspheres, extracts cell696

abundance and tests for significant differences by means of a negative binomial697

generalized linear model, controlling for the spatial false discovery rate. In this698

study we subsampled 1000 cells from each patient, clustered with scaling factor699

0.2, removed hyperspheres with average counts below 5 and applied the QL700

framework to test for significant differences. After correcting for multiple testing701
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(spatial FDR<0.05), relevant hyperspheres and the respective fold changes in702

abundance were visualized on the UMAP embedding of the dataset.703

• Citrus30 identifies cell subpopulations associated with a clinical or experimental704

outcome. It clusters cells in a hierarchical manner, extracts either abundance or705

median expression and uses regularized supervised learning algorithms to identify706

clusters of interest. For this method we also subsampled 1000 cells from each707

patient. We clustered with a minimum cluster size of 5% and 5 folds and tested708

with the nearest shrunken centroids algorithm (PAMR).709

• CellCNN32 uses a convolutional neural network to detect rare cell subsets710

associated with disease. As explained above, it bypasses an explicit feature711

extraction process to go directly from the multicell inputs to the model prediction,712

drawing inspiration from multiple instance learning. We ran the convolutional713

neural network with 1000 cells, 1000 subsets, quantile normalization and scaling714

already performed and the rest of parameters with the default values. The715

default function performs hyperparameter tuning via a single train-test split. We716

further included an outer loop (20 repeats of 5-fold cross-validation) to obtain an717

unbiased estimate of performance, since a single train-test split would make the718

estimation more prone to bias.719

• Diffcyt26 employs a combination of high-resolution clustering and empirical720

Bayes moderated tests adapted from transcriptomics to perform differential721

discovery analyses. It is specifically intended for complex and/or flexible722

experimental designs. Like Citrus, each cluster is characterized by abundance723

and median marker expression and these are modelled by statistical methods724

based on the negative binomial distribution (Bayes estimation and generalized725

linear models among others). We followed a previously published workflow to726

run this framework48. We reused the FlowSOM clustering obtained in the727

visualization step of the study and used the edgeR method for differential728

abundance testing and the limma method for differential expression testing.729

Software730

Manual preprocessing step was performed by means of FlowJoTM v10.9 Software731

(BD Life Sciences). The computational step was carried out in RStudio732

(v2023.06.1+524, Posit team 2023) with the R Statistical Software (v4.2.2, R Core733

Team 2022), using packages flowCore (v2.12.2, available at Bioconductor) and734

flowWorkspace (v4.12.1, available at Bioconductor). File matching was also735

performed in R adapting the code from packages cytoBackBone736

(https://github.com/tchitchek-lab/CytoBackBone), cyCombine (v0.2.15, available at737

h t t p s : / / g i t h u b . c o m / b i o s u r f / c y C o m b i ne) and CYTOFmerge738

(https://github.com/tabdelaal/CyTOFmerge). Visualization made use of packages739

FlowSOM (v2.8.0, Bioconductor) and uwot (v0.1.16, available at CRAN).740

Classification was performed with caret (v6.0-94, CRAN) and rsample (v1.1.1, CRAN)741

packages. For the other algorithms of the literature, packages Cydar (v1.24.0,742
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Bioconductor), Citrus (v0.0.8, available at https://github.com/nolanlab/citrus) and743

Diffcyt (v1.20.0, Bioconductor) were run in R and cellCNN744

(https://github.com/eiriniar/CellCnn) was run in Python v2.7 (Python Software745

Foundation https://www.python.org/), all of them making use of the open source code746

provided at their respective websites.747

Hardware748

The computational preprocessing, file merging, visualization and feature extraction749

routines were performed on a 3,4 GHz, 4-core, 16 GB memory iMac machine. The750

classification routine was run on a 3,2 GHz, 16-core, 96 GB memory Mac Pro751

machine. Runtime per dataset was 8-9 minutes (running each outer fold in a 31-core752

parallel cluster).753

Data and code availability754

The source code and functions used in this article can be consulted at https://github.c755

om/Almr95/Relapse-Prediction. This repository also includes the preprocessed and756

merged files of the 188 patients selected for the main analysis. The full database of757

anonymized FC files is available at http://flowrepository.org/id/FR-FCM-Z7A2.758
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ACKNOWLEDGMENTS761

This work was partially supported by project PDC2022-133520-I00 funded by762

Ministerio de Ciencia e Innovación/ Agencia Estatal de investigación763

(doi:10.13039/501100011033) and European Union NextGenerationEU/PRTR; by764

project PID2022-140451OA-I00 funded by Ministerio de Ciencia e765

Innovación/Agencia Estatal de investigación (doi:10.13039/501100011033) and766

ERDF A way of making Europe; and by University of Castilla-La Mancha / ERDF, A767

way of making Europe (Applied Research Projects) under grant 2022-GRIN-34405.768

The support of Fundación Española para la Ciencia y la Tecnología (FECYT project769

PR214), Asociación Pablo Ugarte (APU, Spain) and Junta de Andalucía (Spain)770

group FQM-201 is also acknowledged. This work was also subsidized in its early771

stages by a grant for the research and biomedical innovation in the health sciences772

within the framework of the Integrated Territorial Initiative (ITI) for the province of773

Cadiz (grant number ITI-0038-2019).774

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://github.com/nolanlab/citrus
https://github.com/eiriniar/CellCnn
https://www.python.org/
https://github.com/Almr95/Relapse-Prediction
https://github.com/Almr95/Relapse-Prediction
https://github.com/Almr95/Relapse-Prediction
http://flowrepository.org/id/FR-FCM-Z7A2
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


AUTHOR CONTRIBUTIONS775

Conceptualization, V.M.P.G., M.R., and C.B.G.; Data curation, Á.M.R., R.P.G., A.N.L.,776

S.C., J.F.R.G., E.G.V., T.C.V., Á.M.Q., A.C.R., M.R.O., M.V.M.S., A.M.P., J.L.F.S. and777

C.B.G.; Formal analysis, Á.M.R.; Funding acquisition, M.R. and V.M.P.G.;778

Investigation, Á.M.R., R.P.G., A.N.L. and S.C.; Methodology, Á.M.R.; Project779

administration, C.B.G., V.M.P.G. and M.R.; Resources, T.C.V., Á.M.Q., A.C.R.,780

M.R.O., M.V.M.S., A.M.P., J.L.F.S. and C.B.G.; Software, Á.M.R.; Supervision,781

V.M.P.G. and M.R.; Writing—original draft, Á.M.R.; Writing—review & editing, Á.M.R.,782

R.P.G., A.N.L., S.C., J.F.R.G., E.G.V., T.C.V., Á.M.Q., A.C.R., M.R.O., M.V.M.S.,783

A.M.P., J.L.F.S., C.B.G., V.M.P.G. and M.R. All authors have read and agreed to the784

published version of the manuscript.785

DECLARATION OF INTERESTS786

The authors declare no conflicts of interest.787

GENERATIVE AI USAGE788

During the preparation of this work, the authors used chatGPT (powered by OpenAI’s789

language model, GPT-3.5; http://openai.com) in order to improve readability and790

language of the work. After using this tool, the authors reviewed and edited the791

content as needed and take full responsibility for the content of the published article.792

References793

1. Pui, C.-H., Yang, J. J., Hunger, S. P., Pieters, R., Schrappe, M., Biondi, A., Vora, A., Baruchel, A.,794

Silverman, L. B., Schmiegelow, K., et al. (2015). Childhood acute lymphoblastic leukemia: Progress795

through collaboration. Journal of Clinical Oncology 33, 2938. https://doi.org/10.1200/jco.2014.59.796

1636.797

2. Ceppi, F., Cazzaniga, G., Colombini, A., Biondi, A., and Conter, V. (2015). Risk factors for relapse in798

childhood acute lymphoblastic leukemia: prediction and prevention. Expert Review of Hematology799

8, 57–70. https://doi.org/10.1586/17474086.2015.978281.800

3. Schultz, K. R., Pullen, D. J., Sather, H. N., Shuster, J. J., Devidas, M., Borowitz, M. J., Carroll, A. J.,801

Heerema, N. A., Rubnitz, J. E., Loh, M. L., et al. (2007). Risk-and response-based classification of802

childhood B-precursor acute lymphoblastic leukemia: A combined analysis of prognostic markers803

from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109, 926–804

935. https://doi.org/10.1182/blood-2006-01-024729.805

4. Talleur, A. C., Pui, C.-H., and Karol, S. E. (2023). What Is Next in Pediatric B-Cell Precursor Acute806

Lymphoblastic Leukemia. Lymphatics 1, 34–44. https://doi.org/10.3390/lymphatics1010005.807

5. Teachey, D. T. and Hunger, S. P. (2013). Predicting relapse risk in childhood acute lymphoblastic808

leukaemia. British Journal of Haematology 162, 606–620. https://doi.org/10.1111/bjh.12442.809

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

http://openai.com
https://doi.org/10.1200/jco.2014.59.1636
https://doi.org/10.1200/jco.2014.59.1636
https://doi.org/10.1200/jco.2014.59.1636
https://doi.org/10.1586/17474086.2015.978281
https://doi.org/10.1182/blood-2006-01-024729
https://doi.org/10.3390/lymphatics1010005
https://doi.org/10.1111/bjh.12442
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Basso, G., Veltroni, M., Valsecchi, M. G., Dworzak, M. N., Ratei, R., Silvestri, D., Benetello, A.,810

Buldini, B., Maglia, O., Masera, G., et al. (2009). Risk of relapse of childhood acute lymphoblastic811

leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow.812

Journal of Clinical Oncology 27, 5168–5174. https://doi.org/10.1200/jco.2008.20.8934.813

7. Dongen, J. J. van, Velden, V. H. van der, Brüggemann, M., and Orfao, A. (2015). Minimal residual814

disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized815

technologies. Blood, The Journal of the American Society of Hematology 125, 3996–4009.816

8. Pedreira, C. E., Costa, E. S., Lecrevisse, Q., van Dongen, J. J., and Orfao, A. (2013). Overview817

of clinical flow cytometry data analysis: recent advances and future challenges. Trends in818

Biotechnology 31, 415–425. https://doi.org/10.1016/j.tibtech.2013.04.008.819

9. Kalina, T., Flores-Montero, J., Van Der Velden, V., Martin-Ayuso, M., Böttcher, S., Ritgen, M.,820

Almeida, J., Lhermitte, L., Asnafi, V., Mendonça, A., et al. (2012). EuroFlow standardization of821

flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26, 1986–2010.822

https://doi.org/https://doi.org/10.1038/leu.2012.122.823

10. Van Dongen, J., Lhermitte, L., Böttcher, S., Almeida, J., Van Der Velden, V., Flores-Montero, J.,824

Rawstron, A., Asnafi, V., Lecrevisse, Q., Lucio, P., et al. (2012). EuroFlow antibody panels for825

standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant826

leukocytes. Leukemia 26, 1908–1975. https://doi.org/https://doi.org/10.1038/leu.2012.120.827

11. Duetz, C., Bachas, C., Westers, T. M., and van de Loosdrecht, A. A. (2020). Computational analysis828

of flow cytometry data in hematological malignancies: future clinical practice? Current Opinion in829

Oncology 32, 162–169. https://doi.org/10.1097/cco.0000000000000607.830

12. Saeys, Y., Van Gassen, S., and Lambrecht, B. N. (2016). Computational flow cytometry: helping831

to make sense of high-dimensional immunology data. Nature Reviews Immunology 16, 449. https:832

//doi.org/10.1038/nri.2016.56.833

13. Robinson, J. P., Rajwa, B., Patsekin, V., and Davisson, V. J. (2012). Computational analysis of834

high-throughput flow cytometry data. Expert Opinion on Drug Discovery 7, 679–693. https://doi.835

org/10.1517/17460441.2012.693475.836

14. Reiter, M., Diem, M., Schumich, A., Maurer-Granofszky, M., Karawajew, L., Rossi, G. J., Ratei, R.,837

Groeneveld-Krentz, S., and Sajaroff, O. E. (2019). Automated flow cytometric mrd assessment in838

childhood acute b- lymphoblastic leukemia using supervised machine learning. Cytometry Part A839

95, 966–975. https://doi.org/10.1002/cyto.a.23852.840

15. Good, Z., Sarno, J., Jager, A., Samusik, N., Aghaeepour, N., Simonds, E. F., White, L., Lacayo,841

N. J., Fantl, W. J., Fazio, G., et al. (2018). Single-cell developmental classification of b cell precursor842

acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nature Medicine 24, 474.843

https://doi.org/10.1038/nm.4505.844

16. Chulián, S., Martínez-Rubio, Á., Pérez-García, V. M., Rosa, M., Blázquez Goñi, C., Rodríguez845

Gutiérrez, J. F., Hermosín-Ramos, L., Molinos Quintana, Á., Caballero-Velázquez, T., Ramírez-846

Orellana, M., et al. (2020). High-dimensional analysis of single-cell flow cytometry data predicts847

relapse in childhood acute lymphoblastic leukaemia. Cancers 13, 17. https: / /doi .org/10.3390/848

cancers13010017.849

17. Chulián, S., Stolz, B. J., Martínez-Rubio, Á., Blázquez Goñi, C., Rodríguez Gutiérrez, J. F.,850

Caballero Velázquez, T., Molinos Quintana, Á., Ramírez Orellana, M., Castillo Robleda, A.,851

Fuster Soler, J. L., et al. (2023). The shape of cancer relapse: Topological data analysis predicts852

recurrence in paediatric acute lymphoblastic leukaemia. PLoS Computational Biology 19,853

e1011329. https://doi.org/10.1371/journal.pcbi.1011329.854

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://doi.org/10.1200/jco.2008.20.8934
https://doi.org/10.1016/j.tibtech.2013.04.008
https://doi.org/https://doi.org/10.1038/leu.2012.122
https://doi.org/https://doi.org/10.1038/leu.2012.120
https://doi.org/10.1097/cco.0000000000000607
https://doi.org/10.1038/nri.2016.56
https://doi.org/10.1038/nri.2016.56
https://doi.org/10.1038/nri.2016.56
https://doi.org/10.1517/17460441.2012.693475
https://doi.org/10.1517/17460441.2012.693475
https://doi.org/10.1517/17460441.2012.693475
https://doi.org/10.1002/cyto.a.23852
https://doi.org/10.1038/nm.4505
https://doi.org/10.3390/cancers13010017
https://doi.org/10.3390/cancers13010017
https://doi.org/10.3390/cancers13010017
https://doi.org/10.1371/journal.pcbi.1011329
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


18. Pui, C.-H., Yang, J. J., Bhakta, N., and Rodriguez-Galindo, C. (2018). Global efforts toward the cure855

of childhood acute lymphoblastic leukaemia. The Lancet Child & Adolescent Health 2, 440–454.856

https://doi.org/10.1016/s2352-4642(18)30066-x.857

19. Agarwal, M., Seth, R., and Chatterjee, T. (2021). Recent advances in molecular diagnosis and858

prognosis of childhood B cell lineage acute lymphoblastic leukemia (B-ALL). Indian Journal of859

Hematology and Blood Transfusion 37, 10–20. https://doi.org/10.1007/s12288-020-01295-8.860

20. Orlova, D. Y., Zimmerman, N., Meehan, S., Meehan, C., Waters, J., Ghosn, E. E., Filatenkov, A.,861

Kolyagin, G. A., Gernez, Y., Tsuda, S., et al. (2016). Earth mover’s distance (EMD): a true metric862

for comparing biomarker expression levels in cell populations. PLoS One 11, e0151859. https :863

//doi.org/10.1371/journal.pone.0151859.864

21. Mocking, T., Duetz, C., van Kuijk, B., Westers, T., Cloos, J., and Bachas, C. (2023). Merging and865

imputation of flow cytometry data: a critical assessment. Cytometry Part A. https://doi.org/10.1002/866

cyto.a.24774.867

22. Pedreira, C. E., Costa, E. S., Barrena, S., Lecrevisse, Q., Almeida, J., van Dongen, J. J., and Orfao,868

A. (2008). Generation of flow cytometry data files with a potentially infinite number of dimensions.869

Cytometry Part A 73, 834–846. https://doi.org/10.1002/cyto.a.20608.870

23. Leite Pereira, A., Lambotte, O., Le Grand, R., Cosma, A., and Tchitchek, N. (2019). CytoBackBone:871

an algorithm for merging of phenotypic information from different cytometric profiles. Bioinformatics872

35, 4187–4189. https://doi.org/10.1093/bioinformatics/btz212.873

24. Abdelaal, T., Höllt, T., van Unen, V., Lelieveldt, B. P., Koning, F., Reinders, M. J., and Mahfouz,874

A. (2019). CyTOFmerge: integrating mass cytometry data across multiple panels. Bioinformatics875

35, 4063–4071. https://doi.org/10.1093/bioinformatics/btz180.876

25. Pedersen, C. B., Dam, S. H., Barnkob, M. B., Leipold, M. D., Purroy, N., Rassenti, L. Z., Kipps, T. J.,877

Nguyen, J., Lederer, J. A., Gohil, S. H., et al. (2022). cyCombine allows for robust integration of878

single-cell cytometry datasets within and across technologies. Nature Communications 13, 1698.879

https://doi.org/10.1038/s41467-022-29383-5.880

26. Weber, L. M., Nowicka, M., Soneson, C., and Robinson, M. D. (2019). diffcyt: Differential discovery881

in high-dimensional cytometry via high-resolution clustering. Communications Biology 2, 183. https:882

//doi.org/10.1038/s42003-019-0415-5.883

27. Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T.,884

and Saeys, Y. (2015). FlowSOM: Using self-organizing maps for visualization and interpretation of885

cytometry data. Cytometry Part A 87, 636–645. https://doi.org/10.1002/cyto.a.22625.886

28. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W., Ng, L. G., Ginhoux, F., and887

Newell, E. W. (2019). Dimensionality reduction for visualizing single-cell data using UMAP.888

Nature Biotechnology 37, 38–44. https://doi.org/10.1038/nbt.4314.889

29. Lun, A. T., Richard, A. C., and Marioni, J. C. (2017). Testing for differential abundance in mass890

cytometry data. Nature Methods 14, 707–709. https://doi.org/10.1038/nmeth.4295.891

30. Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J., and Nolan, G. P. (2014). Automated892

identification of stratifying signatures in cellular subpopulations. Proceedings of the National893

Academy of Sciences 111, E2770–E2777. https://doi.org/10.1073/pnas.1408792111.894

31. Polikowsky, H. G. and Drake, K. A. (2019). Supervised machine learning with CITRUS for single895

cell biomarker discovery. Mass Cytometry: Methods and Protocols, 309–332. https://doi.org/10.896

1007/978-1-4939-9454-0_20.897

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://doi.org/10.1016/s2352-4642(18)30066-x
https://doi.org/10.1007/s12288-020-01295-8
https://doi.org/10.1371/journal.pone.0151859
https://doi.org/10.1371/journal.pone.0151859
https://doi.org/10.1371/journal.pone.0151859
https://doi.org/10.1002/cyto.a.24774
https://doi.org/10.1002/cyto.a.24774
https://doi.org/10.1002/cyto.a.24774
https://doi.org/10.1002/cyto.a.20608
https://doi.org/10.1093/bioinformatics/btz212
https://doi.org/10.1093/bioinformatics/btz180
https://doi.org/10.1038/s41467-022-29383-5
https://doi.org/10.1038/s42003-019-0415-5
https://doi.org/10.1038/s42003-019-0415-5
https://doi.org/10.1038/s42003-019-0415-5
https://doi.org/10.1002/cyto.a.22625
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1038/nmeth.4295
https://doi.org/10.1073/pnas.1408792111
https://doi.org/10.1007/978-1-4939-9454-0_20
https://doi.org/10.1007/978-1-4939-9454-0_20
https://doi.org/10.1007/978-1-4939-9454-0_20
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


32. Arvaniti, E. andClaassen, M. (2017). Sensitive detection of rare disease-associated cell subsets via898

representation learning. Nature Communications 8, 14825. https://doi.org/10.1038/ncomms14825.899

33. Jan, M. and Majeti, R. (2013). Clonal evolution of acute leukemia genomes. Oncogene 32, 135–900

140. https://doi.org/10.1038/onc.2012.48.901

34. Rothenberg-Thurley, M., Amler, S., Goerlich, D., Köhnke, T., Konstandin, N. P., Schneider, S.,902

Sauerland, M. C., Herold, T., Hubmann, M., Ksienzyk, B., et al. (2017). Persistence of903

pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia.904

Leukemia, 1–27. https://doi.org/10.1038/leu.2017.350.905

35. Candelli, T., Schneider, P., Garrido Castro, P., Jones, L. A., Bodewes, E., Rockx-Brouwer, D.,906

Pieters, R., Holstege, F. C., Margaritis, T., and Stam, R. W. (2022). Identification and907

characterization of relapse-initiating cells in MLL-rearranged infant ALL by single-cell908

transcriptomics. Leukemia 36, 58–67. https://doi.org/10.1038/s41375-021-01341-y.909

36. Turati, V. A., Guerra-Assunção, J. A., Potter, N. E., Gupta, R., Ecker, S., Daneviciute, A., Tarabichi,910

M., Webster, A. P., Ding, C., May, G., et al. (2021). Chemotherapy induces canalization of cell911

state in childhood B-cell precursor acute lymphoblastic leukemia. Nature Cancer 2, 835–852. https:912

//doi.org/10.1038/s43018-021-00219-3.913

37. Pan, L., Liu, G., Lin, F., Zhong, S., Xia, H., Sun, X., and Liang, H. (2017). Machine learning914

applications for prediction of relapse in childhood acute lymphoblastic leukemia. Scientific915

Reports 7, 1–9. https://doi.org/10.1038/s41598-017-07408-0.916

38. Mahmood, N., Shahid, S., Bakhshi, T., Riaz, S., Ghufran, H., and Yaqoob, M. (2020). Identification917

of significant risks in pediatric acute lymphoblastic leukemia (ALL) through machine learning (ML)918

approach. Medical & Biological Engineering & Computing, 1–10. https://doi.org/10.1007/s11517-919

020-02245-2.920

39. Mesegué, M., Alonso-Saladrigues, A., Pérez-Jaume, S., Comes-Escoda, A., Dapena, J. L.,921

Faura, A., Conde, N., Catalá, A., Ruiz-Llobet, A., Zapico-Muñiz, E., et al. (2021). Lower incidence922

of clinical allergy with PEG-asparaginase upfront versus the sequential use of native E. coli923

asparaginase followed by PEG-ASP in pediatric patients with acute lymphoblastic leukemia.924

Hematological Oncology 39, 687–696. https://doi.org/10.1002/hon.2914/v1/review2.925

40. O’Neill, K., Aghaeepour, N., Špidlen, J., and Brinkman, R. (2013). Flow cytometry bioinformatics.926

PLoS Computational Biology 9, e1003365. https://doi.org/10.1371/journal.pcbi.1003365.927

41. Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y., and Aghaeepour, N. (2020). CytoNorm:928

a normalization algorithm for cytometry data. Cytometry Part A 97, 268–278. https://doi.org/10.929

1002/cyto.a.23904.930

42. Lee, G., Finn, W., and Scott, C. (2011). Statistical file matching of flow cytometry data. Journal of931

Biomedical Informatics 44, 663–676. https://doi.org/10.1016/j.jbi.2011.03.004.932

43. Law, C. W., Alhamdoosh, M., Su, S., Smyth, G. K., and Ritchie, M. E. (2016). RNA-seq analysis933

is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research 5. https:/ /doi.org/10.12688/934

f1000research.9005.3.935

44. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the936

Royal Statistical Society: Series B (Methodological) 36, 111–133. https://doi.org/10.1111/j.2517-937

6161.1974.tb00994.x.938

45. Cawley, G. C. and Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection939

bias in performance evaluation. The Journal of Machine Learning Research 11, 2079–2107.940

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://doi.org/10.1038/ncomms14825
https://doi.org/10.1038/onc.2012.48
https://doi.org/10.1038/leu.2017.350
https://doi.org/10.1038/s41375-021-01341-y
https://doi.org/10.1038/s43018-021-00219-3
https://doi.org/10.1038/s43018-021-00219-3
https://doi.org/10.1038/s43018-021-00219-3
https://doi.org/10.1038/s41598-017-07408-0
https://doi.org/10.1007/s11517-020-02245-2
https://doi.org/10.1007/s11517-020-02245-2
https://doi.org/10.1007/s11517-020-02245-2
https://doi.org/10.1002/hon.2914/v1/review2
https://doi.org/10.1371/journal.pcbi.1003365
https://doi.org/10.1002/cyto.a.23904
https://doi.org/10.1002/cyto.a.23904
https://doi.org/10.1002/cyto.a.23904
https://doi.org/10.1016/j.jbi.2011.03.004
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.12688/f1000research.9005.3
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/


46. Jeni, L. A., Cohn, J. F., and De La Torre, F. (2013). “Facing imbalanced data–recommendations941

for the use of performance metrics”. 2013 Humaine association conference on affective computing942

and intelligent interaction. IEEE, 245–251. https://doi.org/10.1109/acii.2013.47.943

47. Wainer, J. and Cawley, G. (2021). Nested cross-validation when selecting classifiers is overzealous944

for most practical applications. Expert Systems With Applications 182, 115222. https://doi.org/10.945

1016/j.eswa.2021.115222.946

48. Nowicka, M., Krieg, C., Crowell, H. L., Weber, L. M., Hartmann, F. J., Guglietta, S., Becher, B.,947

Levesque, M. P., and Robinson, M. D. (2017). CyTOF workflow: differential discovery in948

high-throughput high-dimensional cytometry datasets. F1000Research 6.949

https://doi.org/10.12688/f1000research.11622.4.950

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306015doi: medRxiv preprint 

https://doi.org/10.1109/acii.2013.47
https://doi.org/10.1016/j.eswa.2021.115222
https://doi.org/10.1016/j.eswa.2021.115222
https://doi.org/10.1016/j.eswa.2021.115222
https://doi.org/10.12688/f1000research.11622.4
https://doi.org/10.1101/2024.04.18.24306015
http://creativecommons.org/licenses/by-nc-nd/4.0/

	SUMMARY
	INTRODUCTION
	RESULTS
	DISCUSSION
	METHODS
	SUPPLEMENTAL INFORMATION
	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	DECLARATION OF INTERESTS
	GENERATIVE AI USAGE

