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Background: Wastewater-based epidemiology (WBE) has been deployed broadly as an early warn-15

ing tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify16

communities with high transmission, enabling quick and effective response. As wastewater becomes17

an increasingly important indicator for COVID-19 transmission, more robust methods and metrics18

are needed to guide public health decision making.19

Objectives: The aim of this research was to develop and implement a mathematical framework20

to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in wastewater. We propose21

a classification scheme to assess the adequacy of model training periods based on clinical testing22

rates and assess the sensitivity of model predictions to training periods.23

Methods: We present a Bayesian deconvolution method and linear regression to estimate COVID-24

19 cases from wastewater data. We described an approach to characterize adequacy in testing during25

specific time periods and provided evidence to highlight the importance of model training periods on26

the projection of cases. We estimated the effective reproductive number (Re) directly from observed27

cases and from the reconstructed incidence of cases from wastewater. The proposed modeling28

framework was applied to three Northern California communities served by distinct wastewater29

treatment plants.30

Results: Both deconvolution and linear regression models consistently projected robust estimates31

of prevalent cases and Re from wastewater influent samples when assuming training periods with32

adequate testing. Case estimates from models that used poorer-quality training periods consistently33

underestimated observed cases.34

Discussion: Wastewater surveillance data requires robust statistical modeling methods to provide35

actionable insight for public health decision-making. We propose and validate a modeling framework36

that can provide estimates of COVID-19 cases and Re from wastewater data that can be used as37

tool for disease surveillance including quality assessment for potential training data.38
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1 Introduction39

During the early phases of the COVID-19 pandemic, caused by the severe acute respiratory syn-40

drome coronavirus 2 (SARS-CoV-2), the World Health Organization (WHO) recommended imple-41

menting mass testing programs as a containment measure. Individual diagnostic testing informs42

contact tracing and medical interventions, ideally cutting chains of transmission short and contain-43

ing outbreaks. Mass clinical screening programs can also provide valuable data on community-level44

health trends, but maintaining mass testing programs for the purpose of community-level monitor-45

ing is expensive and requires robust infrastructure with consistent availability of testing supplies46

and human resources.1 Moreover, diagnostic tests validated in low-throughput clinical settings (like47

nucleic acid amplification tests or NAATs) are not necessarily efficient platforms for constructing48

community screening programs.2 Design-wise, employing such tests for large-scale screening requires49

extensive logistical coordination over large geographic areas. This becomes especially complicated50

when the options for diagnostic tests are myriad, lack standardization, and depend heavily on local51

social landscapes. Small biases in the tests may be inflated when deployed broadly, leading to large52

spurious associations at the population level.3,453

Public health authorities are turning to wastewater-based epidemiology (WBE) as an alternative54

strategy for unbiased population-level surveillance of COVID-19. WBE uses biomarkers in wastew-55

ater to monitor trends in community-level health indices. WBE methods have been used to detect56

changes in drug consumption,5,6 dietary patterns,7 and the circulation of pathogens like poliovirus57

and norovirus.8 Measurements of SARS-CoV-2 RNA in wastewater correlate strongly with changes58

in COVID-19 prevalence in the associated communities.9–12 Since the onset of the pandemic, WBE59

of SARS-CoV-2 has been implemented in over 67 countries and 279 universities.13 In some places,60

WBE programs have detected changes in SARS-CoV-2 RNA levels in wastewater prior to changes in61

local COVID-19 hospitalization activity and spikes in NAAT screening cases.14–19 Others have used62

WBE to assess the effectiveness of public health interventions,20 and recently, WBE was used to63

predict hospitalizations and ICU admissions.21 In addition to monitoring trends, WBE can provide64

estimates of critical disease transmission parameters in the community without the biases associated65

with test-seeking behavior or poor access to testing programs.66

An ongoing challenge for WBE is developing robust data collection and interpretation methods67

that are comparable across time and geography. Variation in sampling design and sample pro-68

cessing methods, natural variability in viral shedding rates in feces, variability in wastewater flow69

volume, population fluctuations, and location-specific characteristics of wastewater management70

are all factors that make inference of new COVID-19 cases from wastewater data challenging.22–2571

Such factors will ultimately affect uncertainty estimates when modeling disease incidence and other72

public health indicators. An ideal WBE program would implement a generalized approach that pro-73

vides consistent estimates of disease burden in a targeted population, yielding pubic health metrics74

like the disease incidence, disease prevalence and/or the effective reproductive number (Re). Previ-75

ous studies that approach this problem include: simple algebraic adjustments with environmental76

constants26; estimating the total number of cases with a susceptible-exposed-infectious-recovered77

(SEIR) model informed by wastewater results11; using regression analysis to estimate the number78

of infected people9; and making near real-time estimates of Re.
10,27

79

We propose and compare two modeling approaches: a simple linear model and a Bayesian80

deconvolution approach to estimate COVID-19 incident cases from wastewater viral loads. Both81

models rely on short training periods to calibrate wastewater measurements using clinical testing82

data from a community screening program. We evaluate the impact of different training periods83

on model predictions, hypothesizing that relative rates of change in clinical testing and reported84

cases can be used to identify appropriate model training periods. We then apply the framework to85
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estimate incident cases and Re from wastewater influent data generated for three communities in86

Northern California. The methodology we describe can be generalized to other WBE systems to87

track the evolution and assess the magnitude of COVID-19 fluctuations and outbreaks in a manner88

that is comparable across programs, locations, and time.89

2 Methods90

The analytical framework was developed using data from the City of Davis (Davis) and replicated for91

the City of Woodland and the University of California Davis. Analysis includes case and wastewater92

(WW) data from December 1, 2021 to March 31, 2022. Results for the City of Woodland and UC93

Davis are presented in the Supplementary Materials section.94

2.1 Wastewater sample collection95

Staff from three Northern California wastewater treatment facilities (Davis, Woodland, and UC96

Davis) provided 24-hour composite wastewater samples 5-7 days per week. Samples were acquired97

using Teledyne ISCO 5800 refrigerated autosamplers in Davis and Woodland and a Hach Sigma98

900 autosampler for UC Davis. The autosampler in Davis was programmed to collect 400 mL of99

influent every 15 “pulses”, where one pulse was set at 10,000 gallons. An average of 24 pulses was100

expected per day based on an average daily influent flow of 3.6 million gallons per day (MGD).101

The autosampler in Woodland was programmed to acquire 100 mL of influent every 15 min over a102

24-hours period. The autosampler for UC Davis was programmed to acquire approximately 200 mL103

of influent every 20 min over a 24-hours period. The reported sample collection date corresponds104

to the date when an autosampler program was completed. Davis and UC Davis provided 12 ml105

samples in new 15-ml polypropylene centrifuge tubes. Woodland provided 1 L samples in Nalgene106

bottles that were washed, sterilized, and reused over the duration of sampling. Samples were stored107

at 4°C and transported weekly in coolers on ice to the analytical lab at UC Davis. For biosafety108

compliance, samples were placed in a water bath set at 60°C for 30 minutes and returned to 4°C109

prior to sample processing. Concentration and extraction were performed in a biosafety level 2110

(BSL2)-certified laboratory.111

2.2 Sample concentration and extraction112

The sample concentration and extraction protocol were adapted from Karthikeyan et al.28 using113

4.875 mL instead of 10 mL starting sample volume. Each wastewater sample was deposited into114

a separate well of a KingFisher 24 deep-well plate (Thermo Fisher). An extraction control blank115

(nuclease-free water) was included in 90% of the deep-well plates to assess potential contamination116

during concentration and extraction. Each well was spiked with 50 µL of NanotrapR○ Enhancement117

Reagent 1 (Ceres Nanosciences product ER1 SKU # 10111-10, 10111-30) and 5 µL of a stock of118

vaccine-strain Bovine Coronavirus (BCoV, BovilisR○ Coronavirus vaccine) containing an estimated119

1.3x108 gc/mL as measured by ddPCR. 500 µL aliquots of the initial BCoV vaccine stock, prepared120

from the suspension of lyophilized BCoV vaccine in 20 mL buffer provided with the kit, were121

stored at −80◦C prior to use. Each spiked sample was manually agitated by pipetting up and122

down at least three times using a 5 mL pipette. Samples were then incubated for 30 minutes at123

room temperature. Following incubation, concentration was carried out using 75 µL NanotrapR○
124

Magnetic Virus Particles (Ceres Nanosciences) on a KingFisher Apex robot (Thermo Scientific).125

Concentrated viruses were eluted from the NanotrapR○ beads into 400 mL of lysis buffer per sample126

from the MagMAX Microbiome Ultra Nucleic Acid Isolation Kit (Thermo Fisher). Concentrated127
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samples were extracted per the MagMAX kit manufacturer instructions in 96 deep-well plates on128

the KingFisher Apex. Samples were eluted in 100 µL of MagMAX Elution Solution. Extracts were129

typically stored on ice and immediately subjected to same-day analysis. When same-day analysis130

was not possible, extracts were immediately stored at −80◦C until analysis.131

2.3 Extract analysis by ddPCR132

Sample extracts were analyzed by digital droplet polymerase chain reaction (ddPCR) for four tar-133

gets: N1 and N2 targeting regions of the nucleocapsid (N) gene of SARS-CoV-2, and Bovine Coro-134

navirus (BCoV) and pepper mild mottle virus (PMMoV) for normalization of the SARS-CoV-2135

results. N1/N2 and BCoV/PMMoV were quantified in separate duplex assays. Due to high levels136

of PMMoV, the sample for the PMMoV/BCoV duplex was diluted 40x prior to loading. The duplex137

ddPCR amplifications were performed in 20 µL reactions on a QX ONE ddPCR System (Bio-Rad).138

Each reaction contained the following components: 1x Supermix, 20 U/µL Reverse transcriptase,139

15 mM Dithiothreitol from the One-Step RT-ddPCR Advanced Kit for Probe (Bio-Rad), 900 nM140

of each primer, 250 nM of each probe, and 5 µL of sample extract or control. The one-step ddPCR141

reaction consisted of 3 min plate equilibrium at 25◦C, 60 min reverse transcription at 50◦C, 10142

min enzyme activation at 95◦C, followed by 40 cycles of 30 s denaturation at 94◦C and 1 min143

annealing/extension at 58◦C, and then 10 min enzyme deactivation at 98◦C and 1 min droplet144

stabilization at 25◦C. Preparation and plating of ddPCR master mix were carried out in a sep-145

arate location from sample loading to avoid contamination. Sample loading was performed using146

an epMotion R○ 5075 (Eppendorf) liquid handler. Each ddPCR plate included duplicate positive147

controls (stock mixture of synthesized gene fragments containing for the four target regions) for148

each target and duplicated no-template controls (nuclease free water). Additional information on149

the ddPCR assay designs is available in Tables S1–S4. Table S1 summarizes primers, probes for150

ddPCR assays performed as part of this work. Table S2 and S3 provide the ddPCR reaction and151

20X primer/probe mix recipes. From October 21 to December 21, Cy5 and Cy5.5 were used in place152

of FAM and HEX as the fluorophores for PMMoV and BCoV, respectively. Table S4 lists details153

for the positive controls. Prior to 12/21/22 the annealing temperature was 60◦C. The selection of154

positive and negative droplet clusters in samples and controls was conducted manually based on155

visual inspection of clusters. Results were considered invalid if the distribution of positive or nega-156

tive droplets appeared abnormal in shape or if the total number of droplets generated fell below a157

threshold of 10,000 droplets in a single well. Additional information on data processing and quality158

control is provided in the Supplemental Material. We utilize N/PMMoV (the average SARS-CoV-2159

RNA concentration (N) divided by the concentration of PMMoV) as the resulting WW signal for160

subsequent model development.161

2.4 COVID-19 case data162

Healthy Davis Together (HDT) and Healthy Yolo Together (HYT) provided daily COVID-19 cases163

and total tests performed during the study period for the City of Davis, UC Davis, and Wood-164

land,from the community screening program.29,30165

Data were smoothed for the implementation of the linear model using a 7-day moving average166

(the mean of the current and the previous six days). This approach improves harmonization between167

the current WW concentration and observed cases (Figure 1B). The 7-day moving average of cases168

for the linear model is similar to a deconvolution model with equal weights (uniform shedding load169

distribution) and a shedding time of 7 days (Section 2.6.1). Rate of change for tests administered170

and positive cases were calculated from a weekly aggregation of daily test counts and positive171
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cases identified. Changes in test and case rates were then used to determine training periods with172

adequate testing.173

2.5 Smoothed wastewater signal174

To reduce uncertainty and to minimize daily fluctuations of cases observed, we applied a 10-day175

moving average for daily influent WW data (Figure 1A). We use the resulting smoothed influent176

WW data to correlate with smoothed cases (Figure 1B).

(A) (B)

Figure 1: (A) Wastewater data (N/PMMoV) and 10-day moving average (Smoothed N/PMMoV)
from December 1, 2021 to March 31, 2022. (B) Cases, 7-day moving average smoothed cases, and
10-day moving average of smoothed WW data.

177

2.6 Models178

We present two models to estimate COVID-19 cases from SARS-CoV-2 RNA in the WW. The179

first model was adapted from Huisman et al.’s approach10 and relates past infections with WW180

signal through the convolution described in Equation (3). The number of daily cases is modeled181

with a negative binomial (NB) distribution through the deconvolution (the inverse operation of182

convolution) noted in Equation (3). The second approach uses a simple linear regression to estimate183

cases (dependent variable) from WW data (independent variable). We also propose a strategy for184

selecting model training periods with adequate clinical testing to estimate parameters and improve185

estimation.186

2.6.1 Deconvolution model187

Viral RNA concentrations measured in wastewater (Ci’s) are related to the number of new infections188

per day (Ii’s) through the profile of SARS-CoV-2 RNA shedding in the wastewater by an infected189

individual days after infection or symptom onset.10 The measurement Ci of WW on day i is related190

to infections Ij on prior day j through the following convolution:191

Ci = N ·M
m−1∑
j=0

wjIi−j , i = 1, . . . , n, (1)

where wj , j = 1, . . . ,m (sums to 1) is the shedding load distribution describing the temporal192

dynamics of shedding and m is the duration of viral shedding or shedding time. The normalization193
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factor N represents the total virus shed by an infected individual during the infection period. M is194

a constant that depends on the sewer system, wastewater treatment plant, and processing pipeline.195

The measurement of viral RNA in wastewater Ci on the day i is used to estimate COVID-19 cases196

from wastewater concentration data via convolution. As noted by Huisman et al.,10 normalization197

factors N and M are difficult to measure, and they assume B = N ·M as the lowest concentration of198

the viral load or concentration from a single infection.10 The weights for shedding load distribution199

(wj) can be estimated using individual-pooled analysis of SARS-CoV-2 viral loads.31–33 Instead, we200

estimate B and corresponding weights using measured WW data and cases within a specified period201

(training period) by directly modeling the deconvolution process through a Bayesian approach.202

We model wj as follows:

wj =
fb (j)∑m−1

k=0 fb (k)
, j = 0, 1, . . . ,m− 1,

where fb (k) is the probability density function (pdf) of a random variable X with exponential203

distribution of rate parameter b. Hereafter, notation wb
j will be used instead of wj emphasizing that204

weights depends on parameter b. Notice that, if X ∼ Exp(b) then its pdf is fb (k) = be−b·k, thus:205

wb
j =

be−b·k∑m−1
k=0 be−b·k

=
e−b·k∑m−1

k=0 e−b·k
, j = 0, 1, . . . ,m− 1. (2)

Equation (1) is rewritten using Equation (2) as follows:206

Ci = B
m−1∑
j=0

wb
j × Ii−j . (3)

The deconvolution of the Equation (3) will be denoted as dec(C, B, b), where C = (C1, C2, . . . Cn)207

represents the vector of WW data and parameters B and b are described above. I = (I1, I2, . . . , In)208

correspond to daily cases counts and its theoretical expectation is given by (E(I) = µ) estimated209

in terms of the deconvolution model as µ = (µ1, µ2, . . . , µn) = dec(C, B, b). The deconvolution is210

approximated using the Richardson–Lucy algorithm.34211

212

Observational model213

We estimate the number of COVID-19 cases per day (Ii’s) using the Negative Binomial (NB) model,214

which is most relevant for overdispersed count data. In this situation, the variance exceeds the mean.215

The NB distribution describes a sequence of independent and identically distributed Bernoulli trials216

with a probability of success p before a specified (non-random) number of successes (r) occurs.217

Assuming a similar approach as in Lindén et al.,35 we reparametrized the NB distribution in terms218

of its mean µ and “overdispersion” parameters ω and α, with r = µ
ω−1+αµ and p = 1

w+αµ in the usual219

NB parametrization. We assume that Ii follows a NB distribution. Denoting the mean and variance220

as µi and σ2
i , respectively, and requiring that σ2

i = ωµi + αµ2
i > µi, we enforce overdispersion for221

suitable chosen parameters ω and α. The index of dispersion is
σ2
i

µi
= ω + αµi. Overdispersion222

concerning the Poisson distribution is achieved when ω > 1 and the index of dispersion increases223

with size if α ̸= 0; adding variability as counts increase. We found good performance fixing ω = 2224

and α = 0.05, implying higher variability for the later.225
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Using the deconvolution model and parameter as described above, we obtain the following
likelihood function with the assumed NB model:

L(θ|C, I) =
n∏

i=1

(
Ii + ri − 1

ri − 1

)
prii (1− pi)

Ii ,

where ri =
µi

ω−1+αµi
is the number of successes, pi =

1
ω+αµi

is the probability of a single success,226

and (µ1, µ2, . . . , µn) = dec(C, B, b).227

We estimate θ = (B, b) from measurements of WW data C = (C1, C2, . . . Cn) and COVID-
19 cases I = (I1, I2, . . . In). We adopt a Bayesian statistical approach, which is well suited to
model multiple sources of uncertainty and allows the incorporation of background knowledge on
the model’s parameters. In this framework, a prior distribution, πΘ(θ), is required to account for
unknown parameter θ in order to obtain the posterior distribution. For b, we assumed a Gamma
distribution with shape and scale parameters vb = 2 and Sb = 1, respectively; this assumption is
based on published data on viral shedding duration in gastrointestinal samples.36 For B, we assumed
a Gamma distribution with shape and scale parameters vM = 2 and SM = 2/1e−4, respectively;
based on the lowest viral RNA concentrations observed. Having specified the likelihood and the
prior, we use Bayes’ rule to calculate the posterior distribution,

πΘ|C,I(θ|C, I) =
πΘ(θ)L(θ|C, I)

Z(I)
,

where Z(I) =
∫
πΘ(θ)L(θ|C, I)dθ is the normalization constant. The posterior distribution is sim-228

ulated using a t-walk Markov chain Monte Carlo (MCMC) algorithm.37229

Duration of viral shedding230

The deviance information criterion (DIC) was used to select the shedding time (m). DIC is a231

Bayesian generalization of the Akaike information criterion (AIC) for model selection in a finite232

set of models, with preference given to models with lower DIC. The DIC is preferred in settings233

with Bayesian model selection problems where the model’s posterior distributions are obtained by234

MCMC simulation.38 We selected the appropriate shedding time by computing DIC in a grid search235

along the parameter space m : {6, . . . , 10}.236

2.6.2 Simple linear regression model237

We assume the following noise model,238

log(Ii) = β log(Ci) + ϵi, i = 1, . . . , n (4)

where Ii is the number of new infections on day i, Ci is the measurement of viral RNA in the239

wastewater on the ith day, and ϵi is a random residual associated with day i which is assumed to be240

distributed as N(0, σ2), with σ2 as the residual variance. This inference problem aims to estimate241

θ = (β, σ) from WW data and cases. A log-linear model is assumed to address positively skewed242

data and prevent negative fitted values.243

2.7 Selection of model training periods244

We describe whether or not testing is adequate in a particular period of observed cases by calculating245

the rate of change in tests conducted and new cases within a specific time period. We define the246
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rate of change of both tests conducted (rTi ) and confirmed positive cases (rci ) during period i as247

rci = ci/ci−1 and rTi = Ti/Ti−1, respectively, where Ti−1, Ti denote the number of tests carried248

out in two consecutive periods, and ci−1, ci denote the number of positive cases detected in these249

periods. We classify a testing period as adequate when the rate of change in testing is greater than250

the rate of change in cases; otherwise, if the rate of change in testing is lower/equal to the rate of251

change in cases, we conclude that testing is inadequate. We summarize various scenarios of testing252

adequacy in Table 1. Our determination of testing adequacy, and thus suitability for model training253

for both linear and deconvolution models, assumes that observed cases would be sufficiently close254

to actual cases when testing rates are high compared to case rates and test positivity remains low255

as determined through the community screening programs.256

Table 1: Test and case scenarios to assess adequacy in testing for training periods.
Scenario Sub-Scenario Classification

Testing and cases increase, Ti ≥ Ti−1, ci ≥ ci−1
Cases increase faster
than testing, then rTi ≤
rci

Not adequate

Testings increase faster
than cases, then rTi ≥ rci

Adequate

Testing and cases decrease, Ti < Ti−1, ci < ci−1
Testing decreases faster
than cases, then rTi <
rci )

Not adequate

Cases decrease faster
than tests, then rTi > rci

Adequate

Testing increase and cases decrease, Ti ≥
Ti−1, ci < ci−1

Then, rTi ≥ rci Adequate

Testing decrease and cases increase, Ti <
Ti−1, ci ≥ ci−1

Then, rTi ≤ rci Not adequate

2.8 Effective reproductive number257

The number of people in a population who are susceptible to infection by an infected individual at258

any particular time is denoted by Re, the effective reproductive number. This dimensionless quantity259

is sensitive to time-dependent variation due to reductions in susceptible individuals, changes in260

population immunity, and other factors. Re can be estimated by the ratio of the number of new261

infections (It) generated at time t, to the total infectious individuals at time t, given by
∑t

s=1 It−sws,262

the sum of infection incidence up to time step t − 1, weighted by the infectivity function ws. We263

implemented Cori et al.’s approach39 to estimate Re directly from observed cases and from cases264

that were estimated from the WW data.265

3 Results266

3.1 Identification of adequate training periods267

We computed the rate of change in the number of tests and cases by week for the City of Davis268

between December 1, 2021, and March 31, 2022 (Figure 2 and Table S6). Each week was compared269

with a previous week and classified as adequate whenever the rate of change in tests was greater270

than the rate of change in cases and as not adequate otherwise.271
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Figure 2 illustrates two specific training periods assumed for the analysis of the City of Davis.272

The first training period includes data from December 12, 2021 to January 8, 2022 (red region,273

denoted by TNA), and the second training period assumes data from January 9 to February 2, 2022274

(green region, TA). A training period designated by TNA (Not Adequate) corresponds to a scenario275

where test rate is consistently lower than the rate of new cases. Similarly, a training period denoted276

by TA corresponds to a scenario in which the testing rate exceeds the rate of new cases. We assess277

testing adequacy for Woodland and UC Davis (Figures S1 and S3), and similarly identified a period278

of inadequate testing prior to an observed surge in infections..279

Figure 2: Number of tests administered in the City of Davis (cyan line) and cases (black line) by
week, on a log-scale, from December 1, 2021 to March 31, 2022. The week-to-week rate of change
in cases and tests are displayed; green numbers indicate the test rate is greater than the case rate,
and red numbers are the opposite. The green and red shaded region correspond training periods
with Adequate (TA) and Not Adequate (TNA) testing, respectively.

3.2 Comparison of models to estimate public health metrics from wastewater280

data281

We applied both a deconvolution technique and a linear regression to reconstruct incident cases282

of COVID-19 from the WW data, assuming model training periods according to the adequacy of283

clinical testing efforts. We found that the magnitude of case projections and trends was sensitive to284

the assumption of the model training period for both model constructs (Figure 3), but the timing285

of peaks in cases predicted were independent of the training period. Case predictions from the286

models that assumed a training period with inadequate testing (TNA) were consistently lower than287

projections from the models that assumed a training period with adequate testing (TA). These288

results suggest that models using TNA systematically underestimated true case counts, a finding289

consistent with our expectations since fewer cases are detected during periods of inadequate clinical290

testing than when testing is adequate. Projection of cases from the models using TA aligned more291

consistently with observed cases in periods where testing was deemed adequate. The difference in292
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predictions in cases from the two training periods was particularly evident in January 2021, during293

the onset of the Omicron variant surge in Davis.294

Incident case projections from the linear model that assumed TA was able to capture the peak295

of the curve more closely than the deconvolution model, although with greater uncertainty. It is296

worth noting that results from the deconvolution and the linear models are similar because the297

linear model is fitted with the 7-day moving-average of case data. Data smoothing of this kind298

corresponds to a convolution with equal daily weights. The estimation of cases from the linear299

regression model that TNA was similar to the results of the deconvolution model, Figure 3B.300

Re monitors changes in disease transmission over time, assesses the effectiveness of interventions,301

and can be useful to guide policy decision making. Estimates of Re from the median of the predicted302

cases using the deconvolution model and the linear model are similar. In most of the time period303

assessed, Re determined from WW results are quite similar in magnitude and follow the trends304

for Re calculated using observed cases (Figure 4B). A notable difference between the Re estimated305

with the observed cases and that obtained with the WW data with both the linear model and the306

deconvolution model occurs at the end of March. At this time, the median of Re for cases is below307

1, and the median of Re with WW data for the linear and deconvolution model are above 1. A value308

of Re lower than 1 indicates that overall transmission is declining, while thresholds higher than 1309

suggest that an outbreak is expected to continue.39 The posterior analysis using the estimated Re310

from WW data thus indicates that an outbreak may have occurred in Davis that was not detected311

through clinical cases Figure S5.312

We demonstrate the adaptability of our methodology using data for Woodland and UC Davis313

and present results in the Supplemental Material (Figures S1 and S3). The trends of the observed314

cases is recovered with both models (Figures S2 and S4), yielding results consistent with those315

obtained for Davis.316

(A) (B)

Figure 3: Predicted cases assuming (A) the deconvolution and (B) the linear regression models
from WW data between December 1, 2021, and March 31, 2022. The estimated cases are displayed
in green(blue) for the deconvolution(linear) model, when the models were trained on the period
classified as adequate (TA), and in red when both models were trained on the period classified as
inadequate (TNA). Solid lines represent median estimates of cases, and 95% prediction intervals are
depicted in shaded regions.

The code implemented for the study are available in the github repository ??. Analyses were317

carried out using Python version 3.318
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(A) (B)

Figure 4: (A) Cases predicted with the linear regression model (blue) and the deconvolution model
(green) using WW data between December 1, 2021, and March 31, 2022. Both models were trained
in the period classified as appropriate (TA). (B) Effective Re of city of Davis computed with the
median of the cases estimated for the deconvolution model (blue) and the linear regression (green).

4 Discussion319

Community-wide testing has played a critical role in mitigating the COVID-19 pandemic. However,320

large-scale testing has been limited and falls further behind during surges of infections. We developed321

criteria to classify the adequacy of clinical testing in a community through time, and we applied322

the classification scheme to three Northern California communities. As was observed in many other323

communities at the time, we found that clinical testing was inadequate at the front end of the wave324

of Omicron infections that occurred during our study period. Inadequate clinical testing during325

surges of infection makes it particularly challenging to discern true levels of SARS-CoV-2 infections326

in a population. WBE can fill data gaps caused by inadequate testing programs. As clinical testing327

transitions further towards at-home self-testing, measurements of SARS-CoV-2 RNA in wastewater328

can serve as an increasingly important indicator for COVID-19 transmission.329

Myriad sources of variability and uncertainty in WW data can nevertheless impact the accuracy330

of estimates of COVID-19 cases or other public health metrics derived from WW data.40–43 Statisti-331

cally representative samples can also be difficult to obtain because of the complexity of wastewater332

collection systems and the physical challenge of ensuring consistency in sample acquisition and333

processing.44 Such challenges can limit comparability of wastewater results across different WBE334

programs. The modeling framework we described to estimate COVID-19 cases from WW data335

accounts for uncertainty and relies on short training periods using clinical testing data to calibrate336

wastewater measurements to local conditions.337

We showed that case projections reconstructed from either the Bayesian deconvolution or the338

simple linear model were generally higher than cases observed through clinical testing, particularly339

during periods with sub-optimal testing. These results are not surprising, as we expected that the340

WW models would yield case estimates higher than cases observed through screening given that341

WW is not subject to the same selection biases as testing. While both the deconvolution and linear342

regression models captured the overall trends in observed cases overall, qualitative differences were343

evident between the approaches, particularly when testing was limited. Both models identified344

steep upward trends in cases during the surge in mid-January and at the onset of the Omicron345

surge Figure 4A.346

The classification approach that we developed to assess the adequacy of model training periods347

was essential to providing robust estimates of case projections. Training periods that satisfied the348
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proposed characteristics (i.e., adequate testing) resulted in similar estimates from each of the models,349

and yielded trends that were consistent with observed cases. Case projections that assumed training350

periods with poor testing generally underestimated cases compared to projections from adequate351

training periods. While the proposed models do not seek to recover the curve of reported cases352

(an underestimate of actual cases specially in a limited testing scenario), use of adequate training353

periods for the WW models enabled us to capture trends in case counts much more closely. It is354

evident that training periods with inadequate testing introduce a downward bias into the model.355

WBE has substantially lower resource requirements than mass diagnostic testing, and WW data356

lack bias from care- and test-seeking behavior in the catchment population. WBE programs that357

determine COVID-19 public health metrics at the community level can work as a powerful and358

cost-effective complement to other, more traditional intervention methods. The analytic methods359

presented here can inform local public health policy and community-level interventions, for in-360

stance by helping to assess when initiation of clinical screening programs and non-pharmaceutical361

interventions are needed. The model can be especially valuable to fill data gaps during surges of362

infection when clinical testing is inadequate and could be used to assess when estimates of case rates363

exceed certain thresholds. WBE does come with the inherent challenge of determining the popula-364

tions being monitored, the effect of which is exacerbated if the population served is highly mobile365

(e.g., a university campus). In other words, WBE methods for tracking COVID-19 are inherently366

location-specific, whereas public screening programs are tied to the people they serve. Calibration367

of wastewater models using clinical data will be most robust in places with minimal mobility or368

within populations that are adequately described and understood.369

With screening programs winding down across the United States, finding training periods with370

adequate testing rates may not be feasible. In such cases, application of the deconvolution model for371

WBE can still highlight important trends. Where tests are only administered for clinical diagnostics,372

a periodic sentinel system could be employed to produce sufficient prevalence estimates for training373

periods. Such a system would recruit a representative sample of the population for repeated testing374

during a training period to establish a baseline, which then enables the wastewater deconvolution375

model to track incidence for an extended period of time. The same sentinel group could be called376

back later when the model needs to be updated to retrain for new situations.377

WBE surveillance systems should be cognizant that they are not unduly targeting and stig-378

matizing vulnerable communities. WBE is much less invasive than diagnostic testing and protects379

individual identities, thereby avoiding the stigmatization of individuals and not requiring individ-380

ual consent.45 Yet focusing too heavily on public surveillance efforts can negatively influence public381

perception of those being monitored.46 Mathematical models that employ machine learning, such382

as the deconvolution model described herein, must be trained with data sets that are not sampled383

by biased collection methods, else they may inadvertently reintroduce social biases into the results384

and contribute to larger inequities in public health.385
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Supplementary Material590

Results for City of Woodland591

Figure S1A illustrates data from Woodland that was used to reconstruct cases from WW. Figure592

S1B described the smoothed cases and N/PMMoV signals used to provide prediction of cases.593

Figure S1C describes the training periods used for the analysis; one with adequate testing (shaded594

in green, denoted by TA) and one in which testing was not adequate (shaded in red, denoted by595

TNA).596

(A) (B)

(C)

Figure S1: City of Woodland: (A) Wastewater data (N/PMMoV) and 10-day trimmed average
(Smoothed N/PMMov) from December 1, 2021 to March 31, 2022; (B) COVID-19 cases, 7-day
moving average (Smoothed cases) for cases, and 10-day trimmed average for WW data (Smoothed
N/PMMov); (C) Number of tests administered and cases by week, on a log-scale, from December
1, 2021 to February 1, 2022. The week-to-week rate of change in cases and tests are printed with
green labels ( shaded-region) corresponding to period of adequate testing and red labels (shaded
region) for periods in which testing is not adequate.
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(A) (B)

(C) (D)

Figure S2: City of Woodland. Reconstruction of incident cases from the deconvolution model
(A) and (B) linear regression model using WW data from December 1, 2021 to March 31, 2022. The
estimated cases are display (TA: January 13 - February 2, 2022), and red when the models are trained
on the period classified as inadequate (TNA: December 11-30, 2021). Solid lines represent median
estimates of cases, and 95% prediction intervals are depicted in shaded regions. (C) Predicted cases
using the linear regression model (blue) and the deconvolution (green) trained in the period selected
as appropriate (TA). (D) Calculation of Re from case data (black) and from cases reconstructed
from WW data using the deconvolution model (green) and the linear regression (blue).
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Results for the UC Davis Campus597

Figure S3A illustrates data from UC Davis campus that was used to reconstruct cases from WW.598

Figure S3B described the smoothed cases and N/PMMoV signals used to provide prediction of599

cases. Figure S3C describes the training periods used for the analysis; one with adequate testing600

(shaded in green, denoted by TA) and one in which testing was not adequate (shaded in red, denoted601

by TNA).602

(A) (B)

(C)

Figure S3: UC Davis Campus. (A) Wastewater data (N/PMMoV) and 10-day trimmed average
(Smoothed N/PMMov) from December 1, 2021 to March 31, 2022. (B) COVID-19 cases, 7-day
moving average (Smoothed cases) for cases, and 10-day trimmed average for WW data (Smoothed
N/PMMov). (C) Number of tests administered and cases by week, on a log-scale, from December
1, 2021 to February 1, 2022. The week-to-week rate of change in cases and tests are printed, with
green labels (and shaded-region) corresponding to period of adequate testing and red labels (and
shaded region) for inadequate testing.
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(A) (B)

(C) (D)

Figure S4: UC Davis Campus. Reconstruction of incident cases from the deconvolution (A)
and (B) linear regression models from WW data between December 1, 2021, and March 31, 2022.
The estimated cases are display (TA: January 12 - February 3, 2022), and red when the models
are trained on the period classified as inadequate (TNA: December 12, 2021 - January 3, 2022).
Solid lines represent median estimates of cases, and 95% prediction intervals are depicted in shaded
regions. (C) Predicted cases using the linear regression model (blue) and the deconvolution (green)
trained in the period selected as appropriate (TA). (d) Effective Re computed with the median of
the cases estimated for the deconvolution model (blue) and the linear regression (green).

Figure S5: City of Davis data. COVID-19 cases, 7-day moving average (Smoothed cases) for
cases, and number of tests administered from December 1, 2021 to June 1, 2022.
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Laboratory quality control and data processing603

The sensitivity of the analytical assay was assessed by determining a limit of detection (LOD) and604

a limit of blank (LOB) following protocols recommended by the ddPCR manufacturer (Bio-Rad605

Laboratories, 2020, A practical guide for evaluating detection capability using ddPCR.). Fifteen606

wastewater samples that were initially screened as negative for SARS-CoV-2 in routine wastewater607

ddPCR monitoring (i.e., extracts had less than 4 positive droplets in merged wells from duplicate608

analysis) were used to determine the lowest detectable concentrations in ostensibly blank wastewater609

samples. Selection of these extracts provided a conservative approach to determining the LOB. The610

selected extracts were re-analyzed by ddPCR to obtain data for four additional replicates for each611

sample. A non-parametric (rank order) method was then used to select the LOB, since results612

from the blank were not normally distributed. The ddPCR number of droplets from individual613

wells were tabulated from lowest to highest. The LOB was set at the value of the concentration614

measurement for the rank position corresponding to the 95th percentile, calculated as follows:615

Rank = 0.5+0.95∗(number of measurements). Since the calculated rank position was a non-integer616

value, the rank position was rounded up to provide a more conservative LOB. The theoretical LOD617

was set as LOB plus two times the standard deviation of all replicate results (Biorad, 2020). The618

LOD and LOB are reported in Table S5. In terms of droplet numbers in the blank samples, the619

highest numbers of positive droplets in the merged wells (four replicates) amongst the fifteen blank620

samples were 6 (N1) and 8 (N2). Since routine wastewater samples were analyzed in duplicate,621

3 (N1) and 4 (N2) droplets were set as the cutoff to mark samples below the droplet threshold.622

Samples were also considered below the droplet threshold if there were fewer N1 and N2 droplets623

twice the number of droplets in the extraction control blank analyzed on the same day. Runs with624

an extraction control blank that had > 15 positive droplets in either N1 or N2 were considered625

contaminated and extracts were re-processed.626

If samples passed all checks, the relative concentration of N gene was calculated as follows.627

Duplicate results for each target were merged, and the concentration of each target in the ddPCR628

reaction was calculated assuming a Poisson distribution using the QXOne Software 1.1.1 Standard629

Addition (Bio-Rad). The average SARS-CoV-2 RNA concentration in the initial wastewater sample630

was calculated from the average of the N1 and N2, corrected for sample and reagent volumes631

used, and reported as genome copies (gc) per mL wastewater. BCoV was detected in 100% of632

spiked samples, and concentrations of targets were not corrected for BCoV recovery efficiency. The633

average SARS-CoV-2 RNA concentration (N), was divided by the concentration of PMMoV. If N1634

or N2 merged droplet counts were below the minimum droplet threshold, the target was excluded635

from the average concentration. If both N1 and N2 targets were below the droplet threshold, the636

concentration was reported as 0.637
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Table S1: RT-ddPCR primers and probes used in this study.

Target Primer/probe sequence (5’, 3’) Amplicon length Source/Reference

SARS-CoV-2;
N1 gene

Forward GACCCCAAAATCAGCGAAAT
72

U.S.Centers for Disease
Control and Prevention (CDC)47

Reverse TCTGGTTACTGCCAGTTGAATCTG

Probe
ACCCCGCATTACGTTTGGTGGACC

(5’FAM/ZEN/3’Iowa Black FQ)

SARS-CoV-2;
N2 gene

Forward TTACAAACATTGGCCGCAAA
67Reverse GCGCGACATTCCGAAGAA

Probe
ACAATTTGCCCCCAGCGCTTCAG

(5’SUN/ZEN/3’Iowa Black FQ)

BCoV; Transmemb
rane gene

Forward CTGGAAGTTGGTGGAGTT
85 Decaro et al., 200848.Reverse ATTATCGGCCTAACATACATC

Probe
CCTTCATATCTATACACATCAAGTTGTT

(5’HEX/ZEN/3’Iowa Black FQ)
PMMoV;
coat protein
gene

Forward GAGTGGTTTGACCTTAACGTTTGA
68

Reverse TTGTCGGTTGCAATGCAAGT
Haramoto et al., 201349 and

This study (for probe
modification)

Probe
CCTA+C+C+GAAGCA+A+A+TG*

(5’FAM/3’Iowa Black FQ)

*The Affinity Plus™ probe (IDT) with locked nucleic acids (marked as +) was used to increase the hybridization melt
temperature of shorter sequences of the PMMoV probe.

Table S2: Preparation of the duplex One-Step RT-ddPCR reaction.
Component Volume per

reaction, µL
Final Con-
centration

Supermix (4X) 5.5 1x

Reverse transcriptase 2.2 20 U/µL

300 mM DTT 1.1 15 mM

20X P/P Mix (Ch 1 dye: FAM) 1.1 1x

20X P/P Mix (Ch2 dye: Sun (a.k.a
VIC) or HEX)

1.1 1x

Nuclease-free water 5.5 -

Subtotal (Mastermix) 16.5 -

RNA sample 5.5 -

Total volume* (Mastermix + sample)

(Volume include 10% excess in setup)

22.0 -

Table S3: Preparation of 20X primer/probe Mix (p/p Mix).

Target
Recipe

Reagent Initial concentration Volume added (µL) Final concentration

in ddPCR reaction

20X p/p Mix

Forward 100 µM 45.0 900 nM
Reverse 100 µM 45.0 900 nM
Probe 100 µM 12.5 250 nM
nuclease-free
water

- 147.5 -

Total volume 250
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Table S4: Synthesized gene fragments used for positive controls in ddPCR.
Target Sequences (5’ - 3’) Reference gene

GenBank ID

Ordered from

N1 GACGTTCGTGTTGTTTTAGATTTCATCTA

AACGAACAAACTAAAATGTCTGATAATGG

ACCCCAAAATCAGCGAAATGCACCCCGCA

TTACGTTTGGTGGACCCTCAGATTCAACT

GGCAGTAACCAGAATGGAGAACGCAGTGG

GGCGCGATCAAAACAACGTCGGCCCCAAG

GTTTACCCAATAATACTGCGTCTTGG

MN975262 Eurofins

N2 ACGTGGTCCAGAACAAACCCAAGGAAATTT

TGGGGACCAGGAACTAATCAGACAAGGAAC

TGATTACAAACATTGGCCGCAAATTGCACA

ATTTGCCCCCAGCGCTTCAGCGTTCTTCGG

AATGTCGCGCATTGGCATGGAAGTCACACC

TTCGGGAACGTGGTTGACCTACACAGGTGC

CATCAAATTGGATGACAAAG

MN975262 Eurofins

PMMoV TTTTCCCGGATGTGTAATACATTAGGCGTA

GATCCATTGGTGGCAGCAAAGGTAATGGTA

GCTGTGGTTTCAAATGAGAGTGGTTTGACC

TTAACGTTTGAGAGGCCTACCGAAGCAAAT

GTCGCACTTGCATTGCAACCGACAATTACA

TCAAAGGAGGAAGGTTCGTTGAAGATTGTG

TCGTCAGACGTAGGTGAGTC

M81413 IDT

BCoV GCCATTATCATGTGGATTGTGTATTTTGTG

AATAGTATCAGGTTGTTTATTAGAACTGGA

AGTTGGTGGAGTTTCAACCCAGAAACAAAC

AACTTGATGTGTATAGATATGAAGGGAAGG

ATGTATGTTAGGCCGATAATTGAGGACTAC

CATACCCTTACGGTCACAATAATACGTGGT

CATCTTTACATGCAAGGTAT

U00735 IDT

Table S5: Limit of Blank and Limit of Detection.
Conc(copies/mL of Wastewater)
LoB (Rank) STD Theoretical LOD

N1 13.605 5.547 24.700
N2 18.544 6.712 31.967

Conc(copies/20µL reaction)
N1 3.401 1.387 6.175
N2 4.636 1.678 7.992
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Table S6: Weekly cases for Davis between October 21, 2021 and March 31.
Sample Date Cases (C) Tests (T ) rT rc Classification

- 2021-10-24 29.0 5506.0 - -
2021-10-24 - 2021-10-31 34.0 9922.0 1.80 1.17 Adequate
2021-10-31 - 2021-11-07 25.0 10016.0 1.01 0.74 Adequate
2021-11-07 - 2021-11-14 13.0 8656.0 0.86 0.52 Adequate
2021-11-14 - 2021-11-21 20.0 9151.0 1.06 1.54 Not adequate
2021-11-21 - 2021-11-28 26.0 5286.0 0.58 1.30 Not adequate
2021-11-28 - 2021-12-05 36.0 9705.0 1.84 1.38 Adequate
2021-12-05 - 2021-12-12 19.0 9388.0 0.97 0.53 Adequate
2021-12-12 - 2021-12-19 50.0 10421.0 1.11 2.63 Not adequate
2021-12-19 - 2021-12-26 129.0 8865.0 0.85 2.58 Not adequate
2021-12-26 - 2022-01-02 450.0 11567.0 1.30 3.49 Not adequate
2022-01-02 - 2022-01-09 993.0 17659.0 1.53 2.21 Not adequate
2022-01-09 - 2022-01-16 588.0 15470.0 0.88 0.59 Adequate
2022-01-16 - 2022-01-23 433.0 13934.0 0.90 0.74 Adequate
2022-01-23 - 2022-01-30 259.0 12340.0 0.89 0.60 Adequate
2022-01-30 - 2022-02-06 157.0 10510.0 0.85 0.61 Adequate
2022-02-06 - 2022-02-13 103.0 9421.0 0.90 0.66 Adequate
2022-02-13 - 2022-02-20 67.0 8473.0 0.90 0.65 Adequate
2022-02-20 - 2022-02-27 43.0 7426.0 0.88 0.64 Adequate
2022-02-27 - 2022-03-06 38.0 7203.0 0.97 0.88 Adequate
2022-03-06 - 2022-03-13 29.0 6675.0 0.93 0.76 Adequate
2022-03-13 - 2022-03-20 25.0 6446.0 0.97 0.86 Adequate
2022-03-20 - 2022-03-27 25.0 2850.0 0.44 1.00 Not adequate
2022-03-27 - 2022-04-03 17.0 3729.0 0.53 0.32 Adequate
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