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Fixed Point Analysis of Douglas--Rachford Splitting for Ptychography and Phase
Retrieval\ast 

Albert Fannjiang\dagger and Zheqing Zhang\ddagger 

Abstract. Douglas--Rachford splitting (DRS) methods based on the proximal point algorithms for the Poisson
and Gaussian log-likelihood functions are proposed for ptychography and phase retrieval. Fixed
point analysis shows that the DRS iterated sequences are always bounded explicitly in terms of
the step size and that the fixed points are attracting if and only if the fixed points are regular
solutions. This alleviates two major drawbacks of the classical Douglas--Rachford algorithm: slow
convergence when the feasibility problem is consistent and divergent behavior when the feasibility
problem is inconsistent. Fixed point analysis also leads to a simple, explicit expression for the optimal
step size in terms of the spectral gap of an underlying matrix. When applied to the challenging
problem of blind ptychography, which seeks to recover both the object and the probe simultaneously,
alternating minimization with the DRS inner loops, even with a far from optimal step size, converges
geometrically under the nearly minimum conditions established in the uniqueness theory.
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1. Introduction. Phase retrieval may be posed as an inverse problem in which an object
vector with certain properties is to be reconstructed from the intensities of its Fourier trans-
form. By encoding the properties and the Fourier intensities as constraint sets, phase retrieval
can be cast as a feasibility problem, i.e., the problem of finding a point in the intersection of
the constraint sets. The challenge is that the intensities of the Fourier transform result in a
nonconvex constraint set (a high dimensional torus of variable radii).

Projection algorithms comprise a general class of iterative methods for solving feasibility
problems by projecting onto each of the constraint sets at each step [1]. The most basic
projection algorithm is von Neumann's alternating projections (AP) (a.k.a. error reduction in
phase retrieval [23]). However, AP tends to stagnate when applied to phase retrieval, resulting
in poor performance.

A better method than AP is the classical Douglas--Rachford algorithm (a.k.a. averaged
alternating reflections (AAR)) [13, 25, 35, 25], which apparently can avoid the stagnation
problem in many nonconvex problems. When applied to phase retrieval, the classical Douglas--
Rachford algorithm is a special case of Fienup's hybrid-input-output algorithm [3, 23].
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610 ALBERT FANNJIANG AND ZHEQING ZHANG

Figure 1. Simplified ptychographic set-up showing a Cartesian grid used for the overlapping raster scan
positions [43]. See Appendix A for details.

In addition to the standard phase retrieval, AAR has been applied to ptychography under
the name of difference map [51, 50, 54]. Ptychography uses a localized coherent probe to illu-
minate different parts of an unknown extended object and collect multiple diffraction patterns
as measurement data (Figure 1). The redundant information in the overlap between adjacent
illuminated spots is then exploited to improve phase retrieval methods [47, 44]. Recently
ptychography has been extended to the Fourier domain [57, 45]. In Fourier ptychography,
illumination angles are scanned sequentially with a programmable array source with the dif-
fraction pattern measured at each angle [53, 32]. Tilted illumination samples different regions
of Fourier space, as in synthetic-aperture and structured-illumination imaging.

Local, linear convergence of AAR as applied to phase retrieval as well as ptychography
was recently proved in [9, 10]. Conditions for global convergence, however, are not known.
Numerical evidence points to a sublinear rate when convergence happens. On the other hand,
for inconsistent feasibility problems, AAR iteration is known to diverge to infinity even in
the convex case (see Proposition 2.1(ii)). This poses a great challenge to AAR when the data
contain noise because in phase retrieval the dimension of the measurement data is much higher
than that of the unknown object (an overdetermined system).

The purpose of this work is to develop reconstruction schemes based on more general
Douglas--Rachford splitting (DRS) with adjustable step sizes, perform the fixed point analysis,
and demonstrate numerical convergence. AAR is the limiting case of DRS.

The DRS method is an optimization method based on proximal operators, a natural
extension of projections, and is closely related to the alternating direction method of mul-
tipliers (ADMM). The performance of DRS and ADMM in the nonconvex setting depends
sensitively on the choice of the loss functions as well as the step sizes. Typically, global
convergence of DRS requires a loss function possessing a uniformly Lipschitz gradient and
sufficiently large step sizes [9, 33, 30], both of which, however, tend to hinder the performance
of DRS.D
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FIXED POINT ANALYSIS OF DOUGLAS--RACHFORD SPLITTING 611

In this paper, the loss functions are based on the log-likelihood function for the most
important Poisson noise, which does not have a uniformly Lipschitz gradient, with an optimal
step size, which is necessarily quite large.

We show by a fixed point analysis that the DRS method is well-behaved in the sense
that the DRS iterated sequences are always bounded (explicitly in terms of the step size) and
that the fixed points are attracting if and only if the fixed points are regular solutions. In
other words, the DRS methods remove AAR's two major drawbacks: slow convergence when
the feasibility problem is consistent and divergent behavior when the feasibility problem is
inconsistent.

Moreover, the fixed point analysis leads to the determination of the optimal step size and,
along with it, simple and efficient algorithms with no tuning parameter (averaged projection-
reflection). The main application considered is the more challenging form of ptychography
called blind ptychography which seeks to recover both the unknown object and the probe
function simultaneously. When properly initialized, the DRS algorithms with the optimal step
size converge globally and geometrically to the true solution modulo the inherent ambiguities.

The rest of the paper is organized as follows. In section 3, we introduce the DRS method
as the key ingredient of our reconstruction algorithms, Gaussian-DRS and Poisson-DRS. We
give the fixed point and stability analysis in sections 4, 5, and 6. In section 7, we discuss
the selection of the optimal step size. In section 8, we discuss the application to blind pty-
chography, and in section 9, we present numerical experiments. In Appendix A, we discuss
the structure of the measurement matrices. In Appendix B, we show that Gaussian-DRS is
an asymptotic form of Poisson-DRS. In Appendix D we give a perturbation analysis for the
Poisson DRS. In Appendix E, we analyze the eigenstructure of the measurement matrices.
We conclude in section 10. A preliminary version of the present work is given in [20].

2. Averaged alternating reflections. The classical Douglas--Rachford algorithm is based
on the following characterization of convex feasibility problems.

Let X and Y be the constraint sets. Let PX be the projection onto X and RX = 2PX  - I
the corresponding reflector. PY and RY are defined likewise. Then [26]

u \in X \cap Y if and only if u = RY RXu.(2.1)

The latter fixed point equation motivates the Peaceman--Rachford (PR) method: For k =
0, 1, 2, . . .

uk+1 = RY RXyk.

The classical Douglas--Rachford algorithm is the averaged version of PR: For k = 0, 1, 2, . . .

uk+1 =
1

2
uk +

1

2
RY RXuk,(2.2)

hence the name averaged alternating reflections.
A standard result for AAR in the convex case is this.

Proposition 2.1 (see [5]). Suppose X and Y are closed and convex sets of a finite-
dimensional vector space E. Let \{ uk\} be an AAR-iterated sequence for any u1 \in E. Then
one of the following alternatives holds:D
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612 ALBERT FANNJIANG AND ZHEQING ZHANG

(i) X \cap Y \not = \emptyset and (uk) converges to a point u such that PXu \in X \cap Y ;
(ii) X \cap Y = \emptyset and \| uk\| \rightarrow \infty .

In the consistent case (i), the limit point u is a fixed point of the AAR map (2.2), which
after projection is in X \cap Y . However, the convergence rate of AAR is in general sublinear
[29, 2]. The inconsistent case (ii) arises from noisy data or modeling errors resulting in
divergent AAR iterated sequences, a major drawback of AAR since the inconsistent case is
prevalent with noisy data because of the higher dimension of data compared to the object.

The AAR map (2.2) is often written in the form

uk+1 = uk + PY RXuk  - PXuk,(2.3)

which is equivalent to the three-step iteration

yk = PXuk;(2.4)

zk = PY (2yk  - uk) = PY RXuk,(2.5)

uk+1 = uk + zk  - yk.(2.6)

2.1. Phase retrieval as feasibility. For any finite-dimensional vector u, define its modulus
vector | u| as | u| [j] = | u[j]| and its phase vector sgn(u) as

sgn(u)[j] =

\biggl\{ 
1 if u[j] = 0,

u[j]/| u[j]| else,

where j is the index for the vector component. Because of the value of sgn(u) where u[j] = 0
is arbitrarily selected, such points are points of discontinuity of the sgn function.

In phase retrieval including ptychography, we can write the given data b as

b = | u| with u = Af(2.7)

for some measurement matrix A and unknown object f . For phase retrieval and ptychography,
A has some special features described in Appendix A. For most of the subsequent analysis,
however, these special features are not relevant.

Let O be the object space, typically a finite-dimensional complex vector space, and X =
AO. Since the object is a two-dimensional, complex-valued image, we let O = \BbbC n2

, where n
is the number of pixels in each dimension.

Let N be the total number of data. The data manifold

Y := \{ u \in \BbbC N : | u| = b\} 

is an N (real) dimensional torus. For phase retrieval it is necessary that N > 2n2. Without
loss of generality we assume that A has a full rank.

The problem of phase retrieval and ptychography can be formulated as the feasibility
problem

Find u \in X \cap Y,(2.8)

in the transform domain \BbbC N instead of the object domain \BbbC n2
.
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Let us clarify the meaning of solution in the transform domain since A is overdetermining.
Let \odot denote the componentwise (Hadamard) product and we can write

PXu = AA+u,PY u = b\odot sgn(u),(2.9)

RX = 2PX  - I,RY = 2PY  - I,

where A+ := (A\ast A) - 1A\ast is the pseudoinverse of A.
We refer to u = e\mathrm{i}\alpha Af, \alpha \in \BbbR , as the true solution (in the transform domain), up to a

constant phase factor e\mathrm{i}\alpha . We say that u is a generalized solution (in the transform domain)
if

| \^u| = b, \^u := PXu.

Accordingly, the alternative (i) in Proposition 2.1 means that if a convex feasibility problem
is consistent, then every AAR iterated sequence converges to a generalized solution and hence
every fixed point is a generalized solution.

Typically a generalized solution u is neither a feasible solution (since | u| may not equal b)
nor unique (since A is overdetermining) and, if PXz = 0, u+ z is also a generalized solution.
We call u a regular solution if u is a generalized solution and PXu = u.

Let \^u = PXu for a generalized solution u. Since PX \^u = \^u and | \^u| = b, \^u is a regular
solution. Let us state this simple fact for easy reference.

Proposition 2.2. If u is a generalized solution, then PXu is a regular solution.

The goal of the inverse problem (2.7) is the unique determination of f , up to a constant
phase factor, from the given data b. In other words, uniqueness holds if, and only if, all regular
solutions \^u have the form

\^u = e\mathrm{i}\alpha Af(2.10)

or equivalently, any generalized solution u is an element of the (2N - 2n2)-dimensional manifold

\{ e\mathrm{i}\alpha Af  - z : PXz = 0, z \in \BbbC N , \alpha \in \BbbR \} .(2.11)

In the transform domain, the uniqueness is characterized by the uniqueness of the regular
solution, up to a constant phase factor. Geometrically, uniqueness means that the intersection
X \cap Y is a circle (parametrized e\mathrm{i}\alpha times Af).

As proved in [9], when the uniqueness (2.11) holds, the fixed point set of the AAR map
(2.2) is exactly the continuum set

\{ u = e\mathrm{i}\alpha Af  - z : PXz = 0, sgn(u) = \alpha + sgn(Af), z \in \BbbC N , \alpha \in \BbbR \} .(2.12)

In (2.12), the phase relation sgn(u) = \alpha + sgn(Af) implies that z = \eta \odot sgn(u), \eta \in \BbbR N , b +
\eta \geq 0. So the set (2.12) can be written as

\{ e\mathrm{i}\alpha (b - \eta )\odot sgn(Af) : PX(\eta \odot sgn(Af)) = 0, b+ \eta \geq 0, \eta \in \BbbR N , \alpha \in \BbbR \} ,(2.13)

which is an (N  - 2n2) real-dimensional set, a much larger set than the circle \{ e\mathrm{i}\alpha Af : \alpha \in \BbbR \} 
for a given f . On the other hand, the fixed point set (2.13) is N -dimensional lower than the
set (2.11) of generalized solutions.D

ow
nl

oa
de

d 
05

/2
6/

20
 to

 1
69

.2
37

.4
5.

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

614 ALBERT FANNJIANG AND ZHEQING ZHANG

A more intuitive characterization of the fixed points can be obtained by applying RX to
the set (2.13). Since

RX [e\mathrm{i}\alpha (b - \eta )\odot sgn(Af)] = e\mathrm{i}\alpha (b+ \eta )\odot sgn(Af)

amounting to the sign change in front of \eta , the image set of (2.13) under the map RX is

\{ e\mathrm{i}\alpha (b+ \eta )\odot sgn(Af) : PX(\eta \odot sgn(Af)) = 0, b+ \eta \geq 0, \eta \in \BbbR N , \alpha \in \BbbR \} .(2.14)

The set (2.14) is the fixed point set of the alternative form of AAR:

xk+1 =
1

2
xk +

1

2
RXRY xk(2.15)

in terms of xk := RXuk. The expression (2.14) says that the fixed points of (2.15) are
generalized solutions with the ``correct"" Fourier phase.

However, the boundary points of the fixed point set (2.14) are degenerate in the sense that
they have vanishing components, i.e., (b+\eta )[j] = 0 for some j, and can slow down convergence
[24]. Such points are points of discontinuity of the AAR map (2.15) because they are points
of discontinuity of PY = b\odot sgn(\cdot ) (see also the comment below (3.15)). Indeed, even though
AAR converges linearly in the vicinity of the true solution, numerical evidence suggests that
globally (starting with a random initial guess) AAR converges sublinearly (cf. [29, 2]). Due to
the nonuniformity of convergence, the additional step of applying PX (Proposition 2.1(i)) at
the ``right timing"" of the iterated process can jumpstart the geometric convergence regime [9].

3. Douglas--Rachford splitting. DRS is an optimization method for solving the following
minimization problem:

(3.1) min
u

K(u) + L(u),

where the loss functions L and K represent the data constraint Y and the object constraint
X, respectively.

To deal with the divergence behavior of AAR (Proposition 2.1(ii)) in the case of, e.g.,
noisy data, we consider the Poisson log-likelihood cost functions [52, 6]

Poisson: L(u) =
\sum 
i

| u[i]| 2  - b2[i] ln | u[i]| 2(3.2)

based on the maximum likelihood principle for the Poisson noise model. The Poisson noise
is the most prevalent noise in X-ray coherent diffraction. There is, however, a disadvantage
of working with (3.2), i.e., it has a divergent derivative where u(i) vanishes but b(i) does not.
This roughness can be softened by considering an asymptotic form

Gaussian: L(u) =
1

2
\| | u|  - b\| 2.(3.3)

In Appendix B, we show that the Poisson log-likelihood function (3.2) is asymptotically
reducible to (3.3). With the constraint u = Ag, g is a stationary point in the object do-
main if and only if

g = A\ast [sgn(Ag)\odot b].

In the noiseless case, | Af | = b and hence f is a stationary point by the isometry of A. On
the other hand, with noisy data there is no regular solution to | Ax| = b with high probability
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(since A has many more rows than columns) and f is unlikely to be a stationary point (since
the stationarity equation imposes extra constraints on noise).
Moreover, the Hessian of (3.3) at u = Af is positive semi-definite and has one-dimensional
eigenspace spanned by if associated with eigenvalue zero [9, 10, 11].

Expanding the loss function (3.3)

L(u) =
1

2
\| u\| 2  - 

\sum 
j

b[j]| u[j]| + 1

2
\| b\| 2(3.4)

we see that L has a bounded subdifferential where u[j] vanishes but b[j] does not. There are
various tricks to further smooth out (3.3), e.g., by introducing an additional regularization
parameter as

L(u) =
1

2
\| 
\sqrt{} 
| u| 2 + \epsilon  - 

\sqrt{} 
b2 + \epsilon \| 2, \epsilon > 0(3.5)

(see, e.g., [8]).
Besides the Poisson noise, a type of noise due to interference from multiple scattering can

be modeled as complex circularly symmetric Gaussian noise, resulting in the signal model

b = | Af + \eta | ,(3.6)

where \eta is a complex circularly symmetric Gaussian noise. Squaring the expression, we obtain

b2 = | Af | 2 + | \eta | 2 + 2\Re (\eta \odot Af).

Suppose | \eta | \ll | Af | so that | \eta | 2 \ll 2\Re (\eta \odot Af). Then

b2 \approx | Af | 2 + 2\Re (\eta \odot Af).(3.7)

Equation (3.7) says that at the photon counting level, the noise appears additive and Gaussian
but with variance proportional to | Af | 2, the Poisson noise in the asymptotic regime discussed
in Appendix B. Therefore the loss function (3.3) is suitable for this case too.

The maximum likelihood scheme is a variance stabilization scheme which uniformizes the
probability distribution for every pixel regardless of the measured intensity value [31]. See
[28, 56] for more choices of loss functions.

The amplitude-based Gaussian loss function (3.3) is well known to outperform the intensity-
based loss function 1

2\| | u| 
2  - b2\| 2, even though the latter is more smooth [55]. Due to the

nondifferentiability of both K and L, the global convergence property of the proposed DRS
optimization is beyond the current framework of analysis [33]. The ptychographic iterative
engines PIE [21, 22, 48], ePIE [40], and rPIE [38], are also related to the minibatch gradient
method for the amplitude-based cost function (3.3).

For K, we let K(u) be the indicator function of the range of A, i.e., a ``hard"" constraint.
When the corresponding feasibility problem is consistent (feasible), there exist u \in \BbbC N

such that | u| = b and u = Ag for some g \in \BbbC n2
, which are exactly the global minimizers of

(3.1), realizing the minimum value 0, as well as the regular solutions defined in section 2.1.
When the corresponding feasibility problem is inconsistent (infeasible), the minimum value

of (3.1) is unknown and the global minimizers are harder to characterize.
DRS is based on the proximal operator which is a generalization of projection. The

proximal point relative to a function G is given by
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616 ALBERT FANNJIANG AND ZHEQING ZHANG

proxG(u) := argmin
x

G(x) +
1

2
\| x - u\| 2.

With the loss functions (3.2) or (3.3), PX is replaced by PK/\rho and PY by PL/\rho , respectively,
with the step size \gamma = 1/\rho . The three-step procedure (2.4)--(2.6) is replaced by

vl = proxK/\rho (ul);(3.8)

wl = proxL/\rho (2vl  - ul),(3.9)

ul+1 = ul + wl  - vl(3.10)

for l = 1, 2, 3 . . ..
For convex optimization, DRS (3.8)--(3.10) is equivalent to ADMM applied to the dual

problem to (3.1). In Appendix C, we show that for phase retrieval they are essentially equiv-
alent to each other.

For our choice of K, proxK/\rho (u) = PXu = AA+u is independent of \rho . This should
be contrasted with the choice of the more smooth distance function adopted in [33] for the
tractability of convergence analysis (see more discussion in section 10).

If we define the reflector \scrR Y corresponding to proxL/\rho (u) as

\scrR Y u := 2 proxL/\rho (u) - u,(3.11)

then we can write the system (3.8)--(3.10) as

uk+1 =
1

2
uk +

1

2
\scrR Y RXuk,(3.12)

which is equivalent to

xk+1 =
1

2
xk +

1

2
RX\scrR Y xk(3.13)

in terms of xk := RXuk. In other words, the order of carrying out proxL/\rho and proxK/\rho does
not matter in the current DRS set-up.

For the Gaussian loss function (3.3), the proximal point can be explicitly derived,

proxL/\rho (u) =
1

\rho + 1
b\odot sgn(u) +

\rho 

\rho + 1
u

=
1

\rho + 1
(b+ \rho | u| )\odot sgn(u),

an averaged projection with the relaxation parameter \rho . Now we are ready to give the most
compact and explicit representation of the Gaussian DRS map:

uk+1 =
uk

\rho + 1
+

\rho  - 1

\rho + 1
PXuk +

1

\rho + 1
PY RXuk,(3.14)

:= \Gamma (uk)

which can be compared with AAR in the form (2.3).
For the Poisson case the DRS map has a more complicated form,

uk+1 =
1

2
uk  - 

1

\rho + 2
RXuk +

\rho 

2(\rho + 2)

\biggl[ 
| RXuk| 2 +

8(2 + \rho )

\rho 2
b2
\biggr] 1/2

\odot sgn
\Bigl( 
RXuk

\Bigr) 
(3.15)

:= \Pi (uk),

where b2 is the vector with component b2[j] = (b[j])2 \forall j.D
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Note that \Gamma (u) and \Pi (u) are continuous except where RXu vanishes but b does not due
to arbitrariness of the value of the sgn function at zero.

After the iteration is terminated with the terminal vector u\ast , the object estimate is
obtained by

f\ast = A+u\ast .(3.16)

We shall refer to DRS with the Poisson log-likelihood function (3.15) and the Gaussian
version (3.14) by Poisson-DRS and Gaussian-DRS, respectively. The computation involved
in Gaussian-DRS and Poisson-DRS are mostly pixelwise operations (hence efficient) except
for the pseudoinverse A+ which can be computed efficiently (see Appendix A).

In the limiting case of \rho = 0, both Gaussian-DRS and Poisson-DRS become the AAR
algorithm.

4. Fixed points. For simplicity of presentation, we shall focus on the case of the Gaussian
DRS.

By definition, all fixed points u satisfy the equation

u = \Gamma (u)(4.1)

and hence after some algebra by (3.14)

PXu+ \rho P\bot 
Xu = b\odot sgn(RXu).(4.2)

The main result of this section is that the iteration of \Gamma always produces a sequence
bounded in norm by

\| b\| 
min\{ \rho , 1\} 

for \rho > 0

(Theorem 4.6) with slightly better bounds on the fixed points (Corollary 4.7). Therefore,
Gaussian-DRS is free of the divergence problem associated with AAR in the infeasible case.

It is often convenient to perform the analysis in terms of the pair of variables u and
x := RXu. Here are some basic relations between u and x.

Proposition 4.1. For any u \in \BbbC N , x := RXu satisfies

u = RXx,PXu = PXx, P\bot 
Xu =  - P\bot 

Xx.

Proof. First note that

RXx = 2PXx - x = 2PXu - (2PXu - u) = u.

Moreover,

PXx = PXRXu = PX(2PXu - u) = 2PXu - PXu = PXu

and

P\bot 
Xx = x - PXx = 2PXu - u - PXx = 2PXu - u - PXu = PXu - u =  - P\bot 

Xu.D
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618 ALBERT FANNJIANG AND ZHEQING ZHANG

Proposition 4.2. Any u \in \BbbC N is a generalized solution if and only if x := RXu is a gener-
alized solution.

Proof. If u is a generalized solution, then PXu = PXx by Proposition 4.1. Now that x is
a generalized solution, the converse is also true by the same argument.

Proposition 4.3. If u is a generalized solution, then PXu is a regular solution and a fixed
point.

Proof. Let \^u = PXu. By Proposition 2.2 \^u is a regular solution. Moreover \Gamma (u) becomes

1

2
\^u+

\rho  - 1

2(\rho + 1)
\^u+

1

\rho + 1
b\odot sgn(\^u) =

1

2
\^u+

\rho  - 1

2(\rho + 1)
\^u+

1

\rho + 1
\^u,

which equals \^u. Therefore \^u is a fixed point.

Proposition 4.4. Suppose PXu = u. Then u is a regular solution if, and only if, u is a fixed
point.

Proof. Under the assumption PXu = u, u = RXu and \Gamma (u) becomes

1

2
u+

\rho  - 1

2(\rho + 1)
u+

1

\rho + 1
b\odot sgn

\bigl( 
u) =

\rho 

1 + \rho 
u+

1

\rho + 1
b\odot sgn

\bigl( 
u).(4.3)

Therefore, if u is a fixed point, then (4.2) implies

u = b\odot sgn(u)

and hence | u| = b, i.e., u is a regular solution.
On the other hand, if | u| = b, then the right-hand side of (4.3) becomes

\rho 

1 + \rho 
u+

1

\rho + 1
b\odot sgn

\bigl( 
u) =

\rho 

1 + \rho 
u+

1

\rho + 1
u = u,

implying that u is a fixed point.

Writing
I = PX + P\bot 

X and RX = PX  - P\bot 
X

and using Proposition 4.1 we can put the Gaussian-DRS map and the fixed point equation in
the following forms.

Proposition 4.5. The Gaussian-DRS map \Gamma is equivalent to

PXuk+1 =
\rho 

\rho + 1
PXuk +

1

\rho + 1
PXPY xk,(4.4)

P\bot 
Xuk+1 =

1

\rho + 1
P\bot 
Xuk +

1

\rho + 1
P\bot 
XPY xk,(4.5)

where xk := RXuk. Therefore any fixed point u satisfies

PXx = PXPY x,(4.6)

 - \rho P\bot 
Xx = P\bot 

XPY x,(4.7)D
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FIXED POINT ANALYSIS OF DOUGLAS--RACHFORD SPLITTING 619

where x := RXu, or equivalently

PXx - \rho P\bot 
Xx = b\odot sgn(x),(4.8)

PXx+ \rho P\bot 
Xx = RX (b\odot sgn(x)) .(4.9)

Next we show that the Gaussian-DRS map \Gamma with \rho > 0 always produces a bounded
iterated sequence, in contrast to the divergence behavior of AAR given in Proposition 2.1(ii).

Theorem 4.6. Let uk+1 := \Gamma (uk), k \in \BbbN , and xk := RXuk. Then, for \rho > 0, \{ uk\} and
\{ xk\} are bounded sequences. Moreover,

lim sup
k\rightarrow \infty 

\| uk\| = lim sup
k\rightarrow \infty 

\| xk\| \leq \| b\| 
min\{ \rho , 1\} 

for \rho > 0(4.10)

and hence all fixed points u satisfy

\| u\| \leq \| b\| 
min\{ \rho , 1\} 

for \rho > 0.(4.11)

Proof. Since PX is an orthogonal projection, we have

\| xk\| = \| uk\| =
\sqrt{} 
\| PXxk\| 2 + \| P\bot 

Xxk\| 2.

By Proposition 4.5 we then have the estimates

\| uk+1\| \leq 
\bigm\| \bigm\| \bigm\| \bigm\| 1

\rho + 1
P\bot 
Xuk +

\rho 

\rho + 1
PXuk

\bigm\| \bigm\| \bigm\| \bigm\| +
1

\rho + 1
\| PY xk\| (4.12)

=

\biggl[ 
1

(\rho + 1)2
\| P\bot 

Xuk\| 2 +
\rho 2

(\rho + 1)2
\| PXuk\| 2

\biggr] 1/2
+

1

\rho + 1
\| PY xk\| 

\leq max\{ \rho , 1\} 
\rho + 1

\| uk\| +
1

\rho + 1
\| b\| .

Hence, iterating (4.12) for \rho \geq 1 we obtain

\| uk+1\| \leq \rho k

(\rho + 1)k
\| u1\| +

\| b\| 
\rho + 1

k - 1\sum 
j=0

\rho j

(1 + \rho )j

and, after passing to the limit, the upper bound (4.10).
On the other hand, for \rho < 1,

\| uk+1\| \leq 1

(\rho + 1)k
\| u1\| + \| b\| 

k\sum 
j=1

1

(\rho + 1)j

implying (4.10).

We can improve (4.11) slightly by Proposition 4.5.D
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620 ALBERT FANNJIANG AND ZHEQING ZHANG

Corollary 4.7. For any fixed point u, let x := RXu. Then

\| u\| = \| x\| < \| b\| if \rho > 1(4.13)

and

\| b\| < \| u\| = \| x\| \leq \| b\| /\rho if \rho \in (0, 1)(4.14)

unless PXx = x (or equivalently PXu = u), in which case u = x is a regular solution.
On the other hand, for \rho = 1, \| u\| = \| x\| = \| b\| for any fixed point u.

Proof. By (4.8) and that PX is an orthogonal projection, we have

\| PXx\| 2 + \rho \| P\bot 
Xx\| 2 = \| b\| 2,(4.15)

which implies

\| u\| = \| x\| 
\biggl\{ 
< \| b\| for \rho > 1
> \| b\| for \rho < 1

if \| P\bot 
Xx\| \not = 0.(4.16)

If \| P\bot 
Xx\| = 0, then x = PXx and (4.8) becomes x = b\odot sgn(x), implying | x| = b. Likewise,

x = PXx implies that u = x.
Moreover, by (4.11), \| u\| = \| x\| \leq \| b\| /\rho for \rho \in (0, 1). Hence (4.16) can be further

strengthened to the statement (4.13)--(4.14).
For \rho = 1, (4.15) implies that \| x\| = \| b\| .

In Appendix D we give a perturbation analysis for the similar result in the Poisson case
with small \rho .

5. Stability analysis. When the uniqueness (2.11) holds, the fixed point set of AAR
(\rho = 0) is explicitly given in (2.12). For \rho > 0, the fixed point set is much harder to charac-
terize explicitly. Instead, we show that the desirable fixed points (i.e., regular solutions) are
automatically distinguished from the other nonsolutional fixed points by their stability type.

We say that a fixed point is attracting if the spectral radius of the subdifferential map
is at most 1 and nonattracting if otherwise. Because a constant phase factor is an inherent
ambiguity, any reasonable iterative map has at least one-dimensional center manifold. We
say that a fixed point is strictly attracting if the center manifold is one-dimensional, i.e., a
positive spectral gap between the second singular value of the subdifferential map and 1 (see
section 6).

Roughly speaking, we shall prove that for \rho \geq 1 all attracting fixed points must be regular
solutions (Theorem 5.2) and that for \rho \geq 0 all regular solutions are attracting (Theorem 5.4).
In other words, for \rho \geq 1, we need not be concerned with the problem of stagnation near a
fixed point that is not a regular solution (a common problem with AP). Moreover, we know
that the regular solutions are strictly attracting under additional mild conditions (Corollary
6.2). On the other hand, the problem of divergence (associated with AAR) when the data
constraint is infeasible does not arise for Gaussian-DRS in view of Theorem 4.6.D
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Proposition 5.1. Let x := RXu and assume | x| > 0. Set

\Omega = diag(sgn(x)), \~PX = \Omega \ast PX\Omega , \~RX = \Omega \ast RX\Omega .(5.1)

Then

lim
\epsilon \rightarrow 0

\Omega \ast (\Gamma (u+ \epsilon v) - \Gamma (u))/\epsilon = JA(\eta ), \eta = \Omega \ast v,

where

JA(\eta ) =
1

2
\eta +

\rho  - 1

2(\rho + 1)
\~RX\eta +

i

\rho + 1

b

| x| 
\odot \Im 

\Bigl[ 
\~RX\eta 

\Bigr] 
.(5.2)

Proof. The key observation is that the derivative of sgn(c) = c/| c| \in \BbbC , c \not = 0, is given by

lim
\epsilon \rightarrow 0

1

\epsilon 

\biggl[ 
c+ \epsilon a

| c+ \epsilon a| 
 - c

| c| 

\biggr] 
= lim

\epsilon \rightarrow 0

sgn(c)

\epsilon 

\biggl[ 
1 + \epsilon a/c

| 1 + \epsilon a/c| 
 - 1

\biggr] 
= i\Im [a/c] sgn(c)

= i\Im [sgn(\=c)a]
sgn(c)

| c| 

for any a \in \BbbC , where \Im denotes the imaginary part. So we have

lim
\epsilon \rightarrow 0

1

\epsilon 
(\Gamma (u+ \epsilon v) - \Gamma (u)) =

1

2
v +

\rho  - 1

2(\rho + 1)
RXv +

i

\rho + 1

b

| x| 
\odot \Omega \Im [\Omega \ast RXv] ,

which, in terms of \eta = \Omega \ast v and the notation (5.1), becomes \Omega times JA in (5.2).

The following result says that for \rho \geq 1 all the nonsolution fixed points are nonattracting.

Theorem 5.2. Let \rho \geq 1. Let u be a fixed point such that x := RXu has no vanishing
components. Suppose

\| JA(\eta )\| \leq \| \eta \| \forall \eta \in \BbbC N .(5.3)

Then

x = PXx = b\odot sgn(x),(5.4)

implying u = x is a regular solution.

Remark 5.3. Previous results [9] suggest that when the regular solution is unique up to
a constant factor, all AAR fixed points in (2.14) are attracting in the sense (5.3). In other
words, Theorem 5.2 is likely false for \rho = 0.

Proof. In view of Proposition 4.5, it suffices to show that P\bot 
Xx = 0.

We prove the statement by contradiction. Suppose P\bot 
Xx \not = 0.

By (4.8) and the Pythogoras theorem we have

\| PXx\| 22 + \rho 2\| P\bot 
Xx\| 2 = \| b\| 2(5.5)D
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622 ALBERT FANNJIANG AND ZHEQING ZHANG

and hence \| b\| \geq \| x\| for \rho \geq 1. Applying \Omega \ast we rewrite (4.9) as

\~PX | x| + \rho (| x|  - \~PX | x| ) = \~RXb.(5.6)

On the other hand, applying \~PX on (5.6) we have

\~PX | x| = \~PXb

and hence by (5.6)

\~PX | x| = \~PXb =
\rho | x| 
1 + \rho 

+
b

1 + \rho 
.(5.7)

We now show that \| JA(\eta )\| > \| \eta \| for any \eta such that

\~RX\eta = i \~PXb =
i\rho 

1 + \rho 
| x| + i

1 + \rho 
b.(5.8)

To this end, it is more convenient to write JA in (5.2) in terms \xi := \~RX\eta . With a slight abuse
of notation we write

JA(\xi ) = \~PX\xi  - \xi 

\rho + 1
+

i

\rho + 1

b

| x| 
\odot \Im (\xi ),(5.9)

where we have used the properties in Proposition 4.1.
Since \| \xi \| = \| \eta \| , our goal is to show \| JA(\xi )\| > \| \xi \| .
First we make an observation that will be useful later. We claim that

\rho \| x\| 2 = \| b\| 2 + (\rho  - 1)| x| \cdot b,(5.10)

where ``\cdot "" denotes the (real) scalar product between two vectors. By (5.7),

\~P\bot 
X b = b - \~PXb =

\rho 

1 + \rho 
(| b|  - | x| ),

and hence by the Pythogoras theorem

\| b\| 2 = \| \~PXb\| 2 + \| \~P\bot 
X b\| 2

=

\bigm\| \bigm\| \bigm\| \bigm\| \rho | x| 
1 + \rho 

+
b

1 + \rho 

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \bigm\| \bigm\| \bigm\| \bigm\| \rho 

1 + \rho 
(| b|  - | x| )

\bigm\| \bigm\| \bigm\| \bigm\| 2
=

2\rho 2

(\rho + 1)2
\| x\| 2 + 2\rho (1 - \rho )

(\rho + 1)2
| x| \cdot b+ \rho 2 + 1

(\rho + 1)2
\| b\| 2,

which becomes (5.10) after rearrangement.
Next, note that by (5.8)

\~PX\xi = \~PX\eta = i \~PXb = \xi ,

which is purely imaginary, and hence

JA(\xi ) =
\rho 

\rho + 1
\xi +

i

\rho + 1

b

| x| 
\odot \xi (5.11)

by (5.9).D
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After some tedious but straightforward algebra with (5.8) and (5.11), we see that \| JA(\xi )\| >
\| \xi \| is equivalent to the inequality

0 < (5\rho 2  - 2\rho  - 1)\| b\| 2 + (2\rho 3  - 4\rho 2  - 2\rho )| x| \cdot b+ 4\rho 
b

| x| 
\cdot b2 +

\bigm\| \bigm\| \bigm\| \bigm\| b2

| x| 

\bigm\| \bigm\| \bigm\| \bigm\| 2  - \rho 2(2\rho + 1)\| x\| 2,

which by (5.10) reduces to

0 < (3\rho 2  - 3\rho  - 1)\| b\| 2  - (3\rho 2 + \rho )| x| \cdot b+ 4\rho 
b

| x| 
\cdot b2 +

\bigm\| \bigm\| \bigm\| \bigm\| b2

| x| 

\bigm\| \bigm\| \bigm\| \bigm\| 2 .(5.12)

To proceed, we note that the assumption \~P\bot 
Xx \not = 0 implies | x| \not = b, \| x\| < \| b\| and moreover

| x| , b are not a multiple of each other. So by the Cauchy--Schwarz inequality we have\bigm\| \bigm\| \bigm\| \bigm\| b2

| x| 

\bigm\| \bigm\| \bigm\| \bigm\| >
\| b\| 2

\| x\| 
,

b

| x| 
\cdot b2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| b3/2

| x| 1/2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

>
\| b\| 4

\| | x| 1/2 \odot b1/2\| 2
=

\| b\| 4

| x| \cdot b
,

and hence the last two terms on the right-hand side of (5.12) have the strict lower bound

4\rho 
b

| x| 
\cdot b2 +

\bigm\| \bigm\| \bigm\| \bigm\| b2

| x| 

\bigm\| \bigm\| \bigm\| \bigm\| 2 > 4\rho 
\| b\| 4

| x| \cdot b
+

\| b\| 4

\| x\| 2
(5.13)

> (1 + 4\rho )\| b\| 2,

where we have used the fact \| b\| \geq \| x\| due to \rho \geq 1.
In view of (5.13) the right-hand side of (5.12) is strictly greater than

(3\rho 2  - 3\rho  - 1)\| b\| 2  - (3\rho 2 + \rho )\| b\| 2 + (1 + 4\rho )\| b\| 2 = 0.

In other words, (5.12) holds indeed and the proof for \| JA(\xi )\| > \| \xi \| is complete.
This clearly contradicts the assumption (5.3). Therefore, P\bot 

Xx = 0 and the desired result
(5.4) follows from Propositions 4.4 and 4.5.

The next result says that for any \rho \geq 0, all regular solutions are attracting fixed points.

Theorem 5.4. Let \rho \geq 0. Let u be a nonvanishing regular solution. Then

\| JA(\eta )\| \leq \| \eta \| (5.14)

\forall \eta \in \BbbC N and the equality holds in the direction \pm ib (and possibly elsewhere on the unit sphere).

Proof. By Proposition 4.4, x := RXu = u is a fixed point. By Proposition 4.5,

u = b\odot sgn(u) = Ag for some g.

Rewriting JA(\eta ) in (5.2) as

JA(\eta ) = \~PX\eta  - 1

\rho + 1
\~RX\eta +

i

1 + \rho 

b

| x| 
\odot \Im 

\Bigl( 
\~RX\eta 

\Bigr) 
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624 ALBERT FANNJIANG AND ZHEQING ZHANG

and using | x| = b we obtain

JA(\eta ) = \~PX\eta  - 1

1 + \rho 
\Re 
\bigl( 
\~RX\eta 

\bigr) 
,

where \Re denotes the real part. We now show that \| JA(\eta )\| \leq \| \eta \| \forall \eta .
To proceed, we shall write \~PX = HH\ast where H is an isometry. This can be done for the

matrix C := \Omega \ast A via the QR decomposition. In our setting, the measurement matrix of each
diffraction pattern has orthogonal columns and so does the total measurement matrix. Hence
the R factor of C is a diagonal matrix with the norms of the columns of C on the diagonal
(see Appendix A). For ease of notation, we may assume that \Omega \ast A = H.

Note that \biggl[ 
\Re [H]  - \Im [H]
\Im [H] \Re [H]

\biggr] 
(5.15)

is real isometric because H is complex isometric. Define

(5.16) \scrH :=
\bigl[ 
\Re [H] \Im [H]

\bigr] 
\in \BbbR N\times 2n2

.

As in the set-up detailed in Appendix A let the object be an n\times n square image and \BbbC n2

the object domain.
By Proposition E.4 in Appendix E, HH\ast can be block-diagonalized into one (N  - 2n2)\times 

(N  - 2n2) zero-block and 2n2 2\times 2 blocks of the form\biggl[ 
\lambda 2
k \lambda k\lambda 2n2+1 - k

\lambda k\lambda 2n2+1 - k \lambda 2
2n2+1 - k

\biggr] 
, k = 1, 2, . . . , 2n2,(5.17)

in the orthonormal basis \{ \eta k, i\eta 2n2+1 - k : k = 1, 2, . . . , 2n2\} where \eta k \in \BbbR N are the right
singular vectors, corresponding to the singular values \lambda k, of \scrH .

Moreover, the complete set of singular values satisfy

1 = \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda 2n2 = \lambda 2n2+1 = \cdot \cdot \cdot = \lambda N = 0,(5.18)

\lambda 2
k + \lambda 2

2n2+1 - k = 1.(5.19)

In view of the block-diagonal nature of HH\ast , we shall analyze JA(\eta ) in the 2-dim spaces
spanned by the orthonormal basis \{ \eta k, i\eta 2n2+1 - k\} one k at a time.

For any fixed k and any z1, z2 \in \BbbC let

\eta = z1\eta k + iz2\eta 2n2+1 - k

= \Re [z1]\eta k + \Re [z2]i\eta 2n2+1 - k + \Im [z1]i\eta k  - \Im [z2]\eta 2n2+1 - k.

We shall use the basis \{ \eta k, i\eta 2n2+1 - k, i\eta k, - \eta 2n2+1 - k\} for expressing \eta and JA(\eta ).
We obtain

JA(\eta ) =
\bigl( 
\lambda 2
kz1 + \lambda k\lambda 2n2+1 - kz2

\bigr) 
\eta k +

\bigl( 
\lambda k\lambda 2n2+1 - kz1 + \lambda 2

2n2+1 - kz2
\bigr) 
i\eta 2n2+1 - k(5.20)

+
1

1 + \rho 

\bigl[ 
(1 - 2\lambda 2

k)\Re (z1) - 2\lambda k\lambda 2n2+1 - k\Re (z2)
\bigr] 
\eta k

+
1

1 + \rho 

\bigl[ 
2\lambda k\lambda 2n2+1 - k\Im (z1) - (1 - 2\lambda 2

2n2+1 - k)\Im (z2)
\bigr] 
\eta 2n2+1 - k.
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Next we treat (5.20) as a linear function of \Re (z1),\Re (z2),\Im (z1),\Im (z2) with real coefficients in
the basis \{ \eta k, i\eta 2n2+1 - k, i\eta k, - \eta 2n2+1 - k\} and represent JA by a 4 \times 4 matrix which is block-
diagonalized into two 2\times 2 blocks:\Biggl[ 

1
1+\rho + \rho  - 1

\rho +1\lambda 
2
k

\rho  - 1
\rho +1\lambda k\lambda 2n2+1 - k

\lambda k\lambda 2n2+1 - k \lambda 2
2n2+1 - k

\Biggr] 
,

\biggl[ 
\lambda 2
k \lambda k\lambda 2n2+1 - k

\rho  - 1
\rho +1\lambda k\lambda 2n2+1 - k

1
\rho +1 + \rho  - 1

\rho +1\lambda 
2
2n2+1 - k

\biggr] 
(5.21)

with the former of (5.21) acting on \Re (z1),\Re (z2) and the latter acting on \Im (z1),\Im (z2).
The eigenvalues of the matrices in (5.21) are, respectively,

1

2(\rho + 1)

\Bigl[ 
\rho + 2\lambda 2

2n2+1 - k \pm 
\sqrt{} 
\rho 2  - 4\lambda 2

k\lambda 
2
2n2+1 - k

\Bigr] 
,(5.22)

1

2(\rho + 1)

\Bigl[ 
\rho + 2\lambda 2

k \pm 
\sqrt{} 
\rho 2  - 4\lambda 2

k\lambda 
2
2n2+1 - k

\Bigr] 
.(5.23)

Because the two expressions are symmetrical with respect to the exchange of index (k \updownarrow 
2n2 + 1 - k), it suffices to analyze (5.22), which, with the + sign, equals 1 at k = 2n2 (recall
\lambda 2n2 = 0). Next we show that 1 is the largest eigenvalue among all k and \rho \in [0,\infty ).

Note that (5.22) is real-valued for any \lambda k \in [0, 1] if and only if \rho \geq 1. Hence, for \rho \geq 1,
the maximum eigenvalue is 1 and occurs at k = 2n2.

For \rho < 1 and \rho 2  - 4\lambda 2
k + 4\lambda 4

k \geq 0, the maximum value of (5.22) can be bounded as

1

2(\rho + 1)

\biggl[ 
\rho + 2(1 - \lambda 2

k) +
\sqrt{} 

\rho 2  - 4\lambda 2
k(1 - \lambda 2

k)

\biggr] 
(5.24)

\leq 1

2(\rho + 1)

\bigl[ 
\rho + 2(1 - \lambda 2

k) + \rho 
\bigr] 

= 1 - 
\lambda 2
k

\rho + 1
\leq 1

since 4\lambda 2
k(1 - \lambda 2

k) \geq 0. Hence the expression (5.22) achieves the maximum value 1 at k = 2n2.
For \rho < 1 and \rho 2  - 4\lambda 2

k + 4\lambda 4
k \leq 0, the modulus of (5.22) equals\sqrt{} 

1 - \lambda 2
k

1 + \rho 
\leq 1.(5.25)

By Proposition E.1, \eta 1 = b, \~PX(ib) = ib, \~RX(ib) = ib and hence JA(ib) = ib. However,
argmax\| \eta \| =1 | JA(\eta )| may contain points other than \pm ib/\| b\| since we do not know if \lambda 2 < 1
without additional conditions (see section 6). The proof is complete.

6. Spectral gap. To derive a positive spectral gap (\lambda 2 < \lambda 1 = 1), we need some details
of the ptychographic set-up (Appendix A).

Let \scrT be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by \mu \bft the t-shifted probe \forall t \in \scrT and \scrM \bft the domain of \mu \bft . Let f \bft be the object
restricted to \scrM \bft . For convenience, we assume the periodic boundary condition on the whole
object domain \scrM = \cup \bft \in \scrT \scrM \bft when \mu \bft crosses over the boundary of \scrM .D
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626 ALBERT FANNJIANG AND ZHEQING ZHANG

(a) (b)

Figure 2. A complete undirected graph (a) representing four connected object parts (b) where the gray level
indicates the number of coverages by the mask in four scan positions.

Two blocks \scrM \bft and \scrM \bft \prime are said to be connected if the minimum overlap condition

\#\{ \scrM \bft \cap \scrM \bft \prime \cap supp(f)\} \geq 2

is satisfied. Let \scrG be the undirected graph with the nodes corresponding to \{ \scrM \bft : t \in \scrT \} 
and the edges between any pair of connected nodes (see Figure 2).

Now we recall the following spectral gap theorem [10] (Proposition 3.5 and the subsequent
remark).

Proposition 6.1 (see [10]). In addition to the above assumptions, suppose supp(f) is not
a subset of a line. Let u (and hence x := RXu) be a regular solution. Let \lambda 2 be the second
largest singular value of \scrH defined in (5.16). If the graph \scrG is connected, then \lambda 2 < 1.

Some theoretical bounds for \lambda 2 can be found in [10].
Using Proposition 6.1, we can sharpen the result of Theorem 5.4 as follows.

Corollary 6.2. Under the assumptions of Proposition 6.1, the second largest singular value
of JA is strictly less than 1 and achieves the minimum value

\lambda 2\surd 
1 + \rho \ast 

at \rho \ast = 2\lambda 2

\sqrt{} 
1 - \lambda 2

2 \in [0, 1].(6.1)

Moreover, the second largest singular value of JA is an increasing function of \rho in the range
[\rho \ast ,\infty ) and a decreasing function in the range of [0, \rho \ast ].

Remark 6.3. By arithmetic-geometric-mean inequality,

\rho \ast \leq 2\times 1

2

\sqrt{} 
\lambda 2
2 + 1 - \lambda 2

2 = 1,

where the equality holds only when \lambda 2
2 = 1/2.

As \lambda 2
2 tends to 1, \rho \ast tends to 0, and as \lambda 2

2 tends to
1
2 , \rho \ast tends to 1. Recall that \lambda 

2
2+\lambda 2

2n2 - 1 =

1 and hence [1/2, 1] is the proper range of \lambda 2
2.D
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Proof. Our discussion splits into several cases. By the identity \lambda 2
2 = 1 - \lambda 2

2n2 - 1, we have

\lambda 2
2(1 - \lambda 2

2) = \lambda 2
2n2 - 1(1 - \lambda 2

2n2 - 1) and \lambda 2
2 \geq 1/2.

For \rho > 1, the larger eigenvalue in (5.22) achieves the second largest value

1

2(1 + \rho )

\biggl[ 
\rho + 2\lambda 2

2 +
\sqrt{} 
\rho 2  - 4\lambda 2

2(1 - \lambda 2
2)

\biggr] 
(6.2)

at k = 2n2  - 1 after some algebra. The expression (6.2) is strictly less than

1

2(1 + \rho )

\bigl[ 
2\rho + 2\lambda 2

2

\bigr] 
=

\rho + \lambda 2
2

\rho + 1
< 1

with the spectral gap \lambda 2 < 1.
For \rho = 1, (5.22) becomes

1

4

\bigl[ 
1 + 2(1 - \lambda 2

k)\pm | 1 - 2\lambda 2
k| 
\bigr] 
,

which achieves the second largest value

1 - \lambda 2
2n2 - 1 = \lambda 2

2 < 1(6.3)

at k = 2n2  - 1 by (5.19).
The case of \rho < 1 requires more analysis since the eigenvalue (5.22) may be real or complex.

Analyzing as in (5.24) and (5.25) we conclude that the second largest value is

1

2(\rho + 1)

\biggl[ 
\rho + 2\lambda 2

2 +
\sqrt{} 

\rho 2  - 4\lambda 2
2(1 - \lambda 2

2)

\biggr] 
if \rho \geq \rho \ast = 2\lambda 2

\sqrt{} 
1 - \lambda 2

2(6.4)

and

\lambda 2\surd 
1 + \rho 

if \rho \leq \rho \ast .(6.5)

While the expression in (6.5) is a decreasing function of \rho and less than \lambda 2, (6.4) is an increasing
function of \rho and less than (6.3) for \rho = 1.

Also, for \rho > 1, the expression (6.2), as a function of \rho , has the derivative

1

2(\rho + 1)2

\Biggl[ 
1 - 2\lambda 2

2 +
\rho + 4\lambda 2

2(1 - \lambda 2
2)\sqrt{} 

\rho 2  - 4\lambda 2
2(1 - \lambda 2

2)

\Biggr] 
>

1

2(\rho + 1)2
\bigl[ 
2 - 2\lambda 2

2

\bigr] 
> 0

and hence achieves the minimum at \rho = 1. In other words, Gaussian-DRS with \rho = 1
converges faster than Gaussian-DRS with \rho > 1.

From the preceding analysis, the second largest singular value achieves the minimum at
the crossover value \rho \ast of the two expressions in (6.4). Substituting \rho \ast in (6.4) we arrive at
(6.1).

Although it is not immediately obvious, it can be verified by elementary (but somewhat
tedious) calculus that (6.1) is less than \lambda 2

2 (for \rho = 1).
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628 ALBERT FANNJIANG AND ZHEQING ZHANG

For comparison with AAR, we note that, for \rho = 0, (6.5) is exactly \lambda 2 and hence greater
than \lambda 2

2 in (6.3), the convergence rate for \rho = 1, which coincides with the convergence rate of
AP [11]. We state this observation as a corollary.

Corollary 6.4. For the Gaussian-DRS with \rho = 1, the local convergence rate is given by \lambda 2
2,

which is smaller than the convergence rate \lambda 2 for \rho = 0.

With a positive spectral gap, this largest eigenvalue 1 in Theorem 5.4 corresponds to
the global phase factor and Corollary 6.2 can be used to prove local, linear convergence for
Gaussian-DRS with \rho \geq 0. The proof is analogous to that in [10] for phase retrieval (Theorem
5.1) and in [9] (Theorem 3.4) for ptychography for AAR (\rho = 0). But the argument is technical
in nature and omitted here for the sake of space.

7. Selection of parameter. A goal of the present work is to circumvent the divergence
behavior of AAR (as stated in Proposition 2.1(ii) for the convex case) when the feasibility
problem is inconsistent and has no (generalized or regular) solution.

Let us first examine how this problem manifests in the fixed point equation (4.2) repro-
duced here for the convenience of the reader:

PXu+ \rho P\bot 
Xu = b\odot sgn(RXu).

For \rho = 0, PXu = b\odot sgn(RXu) and, in particular, | PXu| = b, i.e., every fixed point of AAR
is a generalized solution. So if the problem is inconsistent, then no solution (generalized or
regular) exists, implying the fixed point set is empty.

The case with \rho > 0 is harder to analyze. For \rho \geq 1, however, Theorem 5.2 says that all
attracting fixed points are regular solutions and hence in the inconsistent case all fixed points
are repelling in some directions (likely partially hyperbolic with a center manifold containing at
least a circle corresponding to an arbitrary constant phase factor). In other words convergence
to a fixed point is almost impossible in the inconsistent case with \rho \geq 1. From this perspective,
Theorem 5.2 is a pessimistic result in the traditional sense of convergence analysis.

But all hope is not lost. First of all, let us recall the earlier observation that in the
inconsistent case, f is probably not a stationary point of the loss function. Hence, a convergent
iterative scheme to a stationary point may not be a good idea after all. A good iterative scheme
need not converge as long as it produces a good outcome when properly terminated, i.e., its
iterates stay in the true solution's vicinity of size comparable to the noise level.

Second, Theorem 4.6 implies that every Gaussian-DRS sequence is bounded and has a
convergent subsequence \{ ukj\} \infty j=1 with the limit, say, \^u. If, in addition,

lim
j\rightarrow \infty 

(ukj  - \Gamma (ukj )) = 0,(7.1)

then by taking the limit on both sides of the fixed point equation (4.2), one can conclude that
\^u is a fixed point. The preceding analysis tells us that in the inconsistent case (7.1) is false
for \rho \geq 1 (the case with \rho \in (0, 1) is open), suggesting that \^u is part of a more complicated
attractor.

In particular, if \^x := RX \^u does not vanish where b > 0, then, by the continuity of \Gamma at
such points, \^u1 := limj \Gamma (ukj ) exists. Assuming that RX\Gamma l(ukj ), l \geq 1, do not vanish wherever

b > 0, we obtain a set of cluster points \^ul = limj \Gamma 
l(ukj ), l \geq 1, which constitutes a new iterated

sequence, i.e., \^ul+1 = \Gamma (\^ul). This is the case of limit cycle in theory of bifurcation. If, however,
the nonvanishing assumption fails, then different orbits can branch off at discontinuities.
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(a) (b)

Figure 3. (a) The real part and (b) the imaginary part of the test image CiB.

In general, when a bounded invariant set exists (as implied by Theorem 4.6) and no fixed
point is attracting (e.g., with \rho \geq 1 in the inconsistent case), there tend to be some nontrivial
attractors (limit cycles, strange attractors, ergodic invariant domain, etc.).

Nevertheless, the nonconvergent sequence controlled by the underlying attractors may still
produce a reasonable solution under a proper termination rule. Our numerical experiments
with noisy data confirm that this is indeed the case (see Figure 12). Analyzing the properties
of such attractors is at the frontier of numerical analysis and beyond the scope of the present
work.

7.1. Phase retrieval with noiseless data. We conduct a brief exploration of the optimal
parameter for Gaussian-DRS. Our test image is 256-by-256 Cameraman+ i Barbara (CiB)
(Figure 3). The resulting test object has the phase range \pi /2.

We use three baseline algorithms as benchmark. The first is AAR.
The second is Gaussian-DRS with \rho = 1

\Gamma 1(u) =
1

2
u+

1

2
PY RXu(7.2)

(since \scrR Y in (3.11) is exactly PY with \rho = 1) given the basic guarantee that for \rho \geq 0 the
regular solutions are attracting (Theorem 5.4), that for the range \rho \geq 1 no fixed points other
than the regular solution(s) are locally attracting (Theorem 5.2), and that Gaussian-DRS
with \rho = 1 produces the best convergence rate for any \rho \geq 1 (Corollary (6.2). The contrast
between (7.2) and AAR (2.2) is noteworthy. The simplicity of the form (7.2) suggests the
name averaged projection reflection (APR) algorithm.

The other, the relaxed AAR (RAAR), is one of the best performing phase retrieval algo-
rithms defined by the map

uk+1 = \beta \Gamma 0(uk) + (1 - \beta )PY uk, \beta \in 
\biggl[ 
1

2
, 1

\biggr] 
,(7.3)
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630 ALBERT FANNJIANG AND ZHEQING ZHANG

where \Gamma 0 is the Gaussian-DRS map with \rho = 0 (i.e., AAR). RAAR becomes AAR for \beta = 1
(obviously) and AP for \beta = 1

2 (after some calculation) [41, 36, 37].
After some rearrangement the fixed point equation for RAAR can be written as

PXx+ P\bot 
Xx = \beta P\bot 

Xx+ (PX + (1 - 2\beta )P\bot 
X )PY x,

from which it follows that

PXx = PXPY x, P\bot 
Xx =  - 

\biggl( 
2\beta  - 1

1 - \beta 

\biggr) 
P\bot 
XPY x

and hence

PXx - 
\biggl( 

1 - \beta 

2\beta  - 1

\biggr) 
P\bot 
Xx = PXPY x+ P\bot 

XPY x = PY x.(7.4)

Notably this is exactly the same fixed point equation for Gaussian-DRS with the corresponding
parameter

\rho =
1 - \beta 

2\beta  - 1
\in [0,\infty )(7.5)

which tends to 0 and \infty as \beta tends to 1 and 1
2 , respectively. According to [34] the optimal \beta 

is usually between 0.8 and 0.9, corresponding to \rho = 0.125 and 0.333 according to (7.5). We
set \beta = 0.9 in Figure 4.

In the experiments, we consider the setting of nonptychographic phase retrieval with two
coded diffraction patterns; one is the plane wave (\mu = 1) and the other is \mu = exp(i\theta ) where
\theta is independent and uniformly distributed over [0, 2\pi ). The theory of uniqueness of solution,
up to a constant phase factor, is given in [16].

Figure 4 shows the relative error (RE; modulo a constant phase factor) versus iteration
of RAAR (\beta = 0.9 round-bullet solid line), APR (blue-triangle dotted line), AAR (black-star
dashed line), and Gaussian-DRS with (a) \rho = 1.1, (b) \rho = 0.5, (c) \rho = 0.3, and (d) \rho = 0.1.
Note that the AAR, APR, and RAAR lines vary slightly across different plots because of
random initialization.

The straight-line feature (in all but AAR) in the semi-log plot indicates global geometric
convergence. The case with AAR is less clear in Figure 4. But it has been shown that the
AAR sequence converges geometrically near the true object (after applying A+) but converges
in power-law (\sim k - \alpha with \alpha \in [1, 2]) from random initialization [9].

Figure 4 shows that APR outperforms AAR (consistent with the prediction of Corollary
6.4) but underperforms RAAR. By decreasing \rho to either 0.5 or 0.1, the performance of
Gaussian-DRS closely matches that of RAAR. The optimal parameter appears to lie between
0.1 and 0.5. For example, with \rho = 0.3, Gaussian-DRS significantly outperforms RAAR. The
oscillatory behavior of Gaussian-DRS in (d) is due to the dominant complex eigenvalue of JA.

8. Blind ptychography algorithm. In the next two sections we apply the DRS methods
to the more challenging problem of blind ptychography. In blind ptychography, we do not
assume the full knowledge of the probe which is to be recovered simultaneously with the
unknown object.D
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(a) \rho = 1.1, \beta = 0.9 (b) \rho = 0.5, \beta = 0.9

(c) \rho = 0.3, \beta = 0.9 (d) \rho = 0.1, \beta = 0.9

Figure 4. Reconstruction (relative) error versus iteration by various methods indicated in the legend with
random initialization. The straight-line feature (in all but AAR) in the semi-log plot indicates geometric con-
vergence.

Let \nu 0 and g = \vee \bft g
\bft be any pair of the probe and the object estimates producing the

same ptychography data as \mu 0 and f , i.e., the diffraction pattern of \nu \bft \odot g\bft is identical to that
of \mu \bft \odot f \bft where \nu \bft is the t-shift of \nu 0 and g\bft is the restriction of g to \scrM \bft . We refer to the
pair (\nu 0, g) as a blind-ptychographic solution (in the object domain) and (\mu 0, f) as the true
solution.

We can write the total measurement data as b = | \scrF (\mu 0, f)| where \scrF is the concatenated
oversampled Fourier transform acting on \{ \mu \bft \odot f \bft : t \in \scrT \} (see Appendix A), i.e., a bilinear
transformation in the direct product of the probe space and the object space. By definition,
a blind-ptychographic solution (\nu 0, g) satisfies | \scrF (\nu 0, g)| = b.

There are two ambiguities inherent to any blind ptychography.
The first is the affine phase ambiguity. Consider the probe and object estimates

\nu 0(n) = \mu 0(n) exp( - ia - iw \cdot n), n \in \scrM 0,(8.1)

g(n) = f(n) exp(ib+ iw \cdot n), n \in \BbbZ 2
n,(8.2)D
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632 ALBERT FANNJIANG AND ZHEQING ZHANG

for any a, b \in \BbbR and w \in \BbbR 2. For any t, we have the calculation

\nu \bft (n) = \nu 0(n - t)

= \mu 0(n - t) exp( - iw \cdot (n - t)) exp( - ia)

= \mu \bft (n) exp( - iw \cdot (n - t)) exp( - ia)

and hence \forall n \in \scrM \bft , t \in \scrT 

\nu \bft (n)g\bft (n) = \mu \bft (n)f \bft (n) exp(i(b - a)) exp(iw \cdot t).(8.3)

Clearly, (8.3) implies that g and \nu 0 produce the same ptychographic data as f and \mu 0 since for
each t, \nu \bft \odot g\bft is a constant phase factor times \mu \bft \odot f \bft where \odot is the entrywise (Hadamard)
product. It is also clear that the above statement holds true regardless of the set \scrT of shifts
and the type of probe.

In addition to the affine phase ambiguity (8.1)--(8.2), a scaling factor (g = cf, \nu 0 =
c - 1\mu 0, c > 0) is inherent to any blind ptychography. Note that when the probe is exactly
known (i.e., \nu 0 = \mu 0), neither ambiguity can occur.

Besides the inherent ambiguities, blind ptychography imposes extra demands on the scan-
ning scheme. For example, there are many other ambiguities inherent to the regular raster
scan, \scrT = \{ tkl = \tau (k, l) : k, l \in \BbbZ \} , unless the step size \tau = 1. Blind ptychography with a
raster scan produces \tau -periodic ambiguities called the raster scan pathology as well as non-
periodic ambiguities associated with block phase drift. The reader to referred to [17] for a
complete analysis of ambiguities associated with the raster scan.

A conceptually simple (though not necessarily the most practical) way to remove these
ambiguities is introducing small irregular perturbations to the raster scan with \tau > m/2,
i.e., the overlap ratio greater than 50\% (see (9.5) and (9.6)). For a thorough analysis of the
conditions for blind ptychography, we refer the reader to [18, 17].

The basic strategy for blind-ptychographic reconstruction is to alternately update the
object and probe estimates starting from an initial guess as outlined in Algorithm 1 [51, 50, 19].

Algorithm 1. Alternating minimization.

1: Input: initial probe guess \mu 1 and object guess f1.
2: Update the object estimate fk+1 = argminL(Akg) s.t. g \in \BbbC n\times n.
3: Update the probe estimate \mu k+1 = argminL(Bk\nu ) s.t. \nu \in \BbbC m\times m.
4: Terminate if \| | Bk\mu k+1|  - b\| stagnates or is less than tolerance; otherwise, go back to step

2 with k \rightarrow k + 1.

We solve the inner loops (steps 2 and 3 in Algorithm 1) and update the object and probe
estimates by the DRS methods where Akh := \scrF (\mu k, h),\forall h \in \BbbC n2

, defines a matrix Ak for the
kth probe estimate \mu k and Bk\eta := \scrF (\eta , fk+1), \forall \eta \in \BbbC m2

, for the (k + 1)st image estimate
fk+1.

For ease of reference, we denote Algorithm 1 with Gaussian-DRS and Poisson-DRS by
Gaussian-DRSAM and Poisson-DRSAM, respectively.D
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8.1. Initialization. For nonconvex iterative optimization, a good initial guess or some
regularization is usually crucial for convergence [52, 6]. The initialization step is often glossed
over in the development of numerical schemes. This is even more so for blind ptychography
which is doubly nonconvex because, in addition to the phase retrieval step, extracting the
probe and the object from their product is also nonconvex.

We say that a probe estimate \nu 0 satisfies PPC(\delta ) (standing for the probe phase constraint)
if

\measuredangle (\nu 0(n), \mu 0(n)) < \delta \pi \forall n,(8.4)

where \delta \in (0, 1/2] is the uncertainty parameter.
PPC(\delta ) defines an alternative measure to the standard norm-based metric. Our default

case \delta = 0.5 with which PPC is equivalent to \Re (\=\nu 0 \odot \mu 0) > 0 (where the bar denotes the
complex conjugate) has the intuitive meaning that at every pixel \nu 0 and \mu 0 point to the same
half plane in \BbbC (Figure 5).

Our initialization method is inspired by the uniqueness theory in [18] which proves PPC
(0.5) is required to remove all ambiguities other than the inherent ones (the affine phase factor
and the constant scaling factor).

Under PPC, however, the initial probe may be significantly far away from the true probe
in norm. Even if | \mu 1(n)| = | \mu 0(n)| = const., the probe guess with uniformly distributed \phi in
( - \pi /2, \pi /2] has the RE close to\sqrt{} 

1

\pi 

\int \pi /2

 - \pi /2
| e\mathrm{i}\phi  - 1| 2d\phi =

\sqrt{} 
2

\biggl( 
1 - 2

\pi 

\biggr) 
\approx 0.8525

with high probability. We use (8.4) for selecting and quantifying initialization, instead of the
usual 2-norm. Nonblind ptychography gives rise to infinitesimally small \delta . In practice, (8.4)
needs only to hold for sufficiently large number of pixels n.

In summary, in our numerical experiments we use the following probe initialization denoted
by PPC:

\mu 1(n) = \mu 0(n) exp

\biggl[ 
i2\pi 

k \cdot n
n

\biggr] 
exp [i\phi (n)], n \in \scrM 0,(8.5)

where \phi (n) are independently and uniformly distributed on ( - \pi /2, \pi /2). In our numerical ex-
periments, PPC results in geometric convergence for any k (even though the limiting solution
may end up with a different k as allowed by linear phase ambiguity).

Figure 5. \nu 0 satisfies MPC if \nu 0(\bfn ) and \mu 0(\bfn ) form an acute angle \forall \bfn .
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634 ALBERT FANNJIANG AND ZHEQING ZHANG

9. Numerical experiments for blind ptychography. We test the DRS methods with \rho = 1
for blind ptychography and demonstrate that even with this far from optimal parameter (cf.
Corollary 6.2 and Figure 4), DRSAM converges geometrically under the nearly minimum
conditions established in the uniqueness theory [18] (see also sections 8.1 and 9.4).

The inner loops of Gaussian DRSAM become

ul+1
k =

1

2
ulk +

1

2
b\odot sgn

\bigl( 
Rku

l
k

\bigr) 
,

vl+1
k =

1

2
vlk +

1

2
b\odot sgn

\Bigl( 
Skv

l
k

\Bigr) 
,

and the inner loops of the Poisson DRSAM become

ul+1
k =

1

2
ulk  - 

1

3
Rku

l
k +

1

6
sgn

\Bigl( 
Rku

l
k

\Bigr) 
\odot 
\sqrt{} 

| Rku
l
k| 2 + 24b2,(9.1)

vl+1
k =

1

2
vlk  - 

1

3
Skv

l
k +

1

6
sgn

\Bigl( 
Skv

l
k

\Bigr) 
\odot 
\sqrt{} 

| Skv
l
k| 2 + 24b2.(9.2)

Here Rk = 2Pk  - I is the reflector corresponding to the projector Pk := AkA
+
k and Sk is the

reflector corresponding to the projector Qk := BkB
+
k . We set u1k = u\infty k - 1 where u\infty k - 1 is the

terminal value at epoch k - 1 and v1k = v\infty k - 1 where v\infty k - 1 is the terminal value at epoch k - 1.

9.1. Test objects. In addition to CiB, our second test object is randomly phased phantom
(RPP) defined by f = P \odot e\mathrm{i}\phi where P is the standard phantom (Figure 6(a)) and \{ \phi (n)\} are
independent and identically distributed (i.i.d.) uniform random variables over [0, 2\pi ]. RPP
has the maximal phase range because of its noise-like phase profile. In addition to the huge
phase range, RPP has loosely supported parts with respect to the measurement schemes (see
below) due to its thick dark margins around the oval.

(a) RPP magnitudes (b) RPP phases

Figure 6. (a) Magnitudes and (b) phases of RPP.
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The third test object is the salted RPP, the sum of RPP and the salt noise (not shown).
The salted noise is i.i.d. binomial random variables with probability 0.02 to be a complex
constant in the form of a(1+ i), a \in \BbbR , and probability 0.98 to be zero. The salt noise reduces
the support looseness without significantly changing the original image making the salted
RPP more connected with respect to the ptychographic measurement.

9.2. Probe function. We use a randomly phased probe with the unknown transmission
function \mu 0(n) = e\mathrm{i}\theta (\bfn ) where \theta (n) are random variables. Randomly phased probes have been
adopted in ptychographic experiments [42, 39, 46, 49].

We do not explore the issue of varying the probe size in the present work, which was
carried out for AAR in [10]. We fix the probe size to 60\times 60. In addition to the i.i.d. probe,
we consider a correlated probe produced by convolving the i.i.d. probe with characteristic
function of the set \{ (k1, k2) \in \BbbZ 2 : max\{ | k1| , | k2| \} \leq c \cdot m; c \in (0, 1]\} where the constant c is
a measure of the correlation length in the unit of m = 60 (Figure 7).

(a) i.i.d. probe (b) Correlated probe c = 0.4

(c) Correlated probe c = 0.7 (d) Correlated probe c = 1

Figure 7. The phase profile of (a) the i.i.d. probe and (b), (c), (d) the correlated probes of various
correlation lengths.
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636 ALBERT FANNJIANG AND ZHEQING ZHANG

(a) Perturbed grid given by (9.5) (b) Perturbed grid given by (9.6)

Figure 8. Two perturbed raster scans.

9.3. Error metrics for blind ptychography. We use relative error (RE) and relative resid-
ual (RR) as the merit metrics for the recovered image fk and probe \mu k at the kth epoch:

RE(k) = min
\alpha \in \BbbC ,\bfr \in \BbbR 2

\sqrt{} \sum 
\bfn | f(n) - \alpha e - \mathrm{i}2\pi \bfn \cdot \bfr /nfk(n)| 2

\| f\| 
,(9.3)

RR(k) =
\| b - | Akfk| \| 

\| b\| 
.(9.4)

Note that in (9.3) both the affine phase and the scaling factors are discounted.

9.4. Sampling schemes. The uniqueness theorem for blind ptychography [17] holds for
the following irregularly perturbed raster scans:

Rank-one perturbation tkl = \tau (k, l) + (\delta 1k, \delta 
2
l ), k, l \in \BbbZ ,(9.5)

where \delta 1k and \delta 2l are small random variables relative to \tau (Figure 8(a)). The other is

Full-rank perturbation tkl = \tau (k, l) + (\delta 1kl, \delta 
2
kl), k, l \in \BbbZ ,(9.6)

where \delta 1kl and \delta 2kl are small random variables relative to \tau (Figure 8(b)). Here the step size
\tau < m/2 corresponding to the overlap ratio greater than 50\%. The 50\% overlap ratio has
been proved to be a nearly minimum requirement for uniqueness with the perturbed raster
scans.

We let \delta 1k and \delta 2l in the rank-one scheme (9.5) and \delta 1kl and \delta 2kl in the full-rank scheme (9.6)
be i.i.d. uniform random variables over [[ - 4, 4]]. In other words, the adjacent probes overlap
by an average of \tau /m = 50\%.

9.5. Different combinations. First we compare performance of DRSAM with different
combinations of loss functions, scanning schemes, and random probes in the case of noiselessD
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FIXED POINT ANALYSIS OF DOUGLAS--RACHFORD SPLITTING 637

(a) (b)

Figure 9. Geometric convergence to CiB at various rates for (a) four combinations of loss functions and
scanning schemes with i.i.d. probe (rank-one Poisson, rate = 0.8236; rank-one Gaussian, rate = 0.8258; full-
rank Poisson, rate = 0.7205; full-rank Gaussian, rate = 0.7373) and (b) Poisson-DRS with four probes of
different correlation lengths (rate = 0.7583 for c = 0.4; rate = 0.8394 for c = 0.7; rate = 0.7932 for c = 1;
rate = 0.7562 for i.i.d. probe).

measurements with the periodic boundary condition. We use the stopping criteria for the
inner loops,

\| | Pku
l
k|  - b\|  - \| | Pku

l+1
k |  - b\| 

\| | Pku
l
k|  - b\| 

\leq 10 - 4

with the maximum number of iterations capped at 60.
Figure 9 shows geometric decay of RE (9.3) at various rates for the test object CiB. In

particular, Figure 9(a) shows that the full-rank scheme outperforms the rank-one scheme and
that Poisson-DRS outperforms (slightly) Gaussian-DRS, while Figure 9(b) shows that the
i.i.d. probe yields the smallest rate of convergence (= 0.7562), closely followed by the rate
(= 0.7583) for c = 0.4.

9.6. Boundary conditions. The periodic boundary condition conveniently treats all dif-
fraction patterns and object pixels in the same way by assuming that \BbbZ 2

n is a (discrete) torus.
The periodic boundary condition generally forces the slope r in the affine phase ambiguity to
be integers. For three-dimensional blind tomography, however, different linear phase ramps
from different projections would collectively create enormous three-dimensional ambiguities
that are difficult to make consistent and hence it is highly desirable to remove the linear phase
ambiguity early on in the process.

To this end, we consider the nonperiodic bright-field boundary conditions taking on some
nonzero value in \scrM \setminus \BbbZ 2

n. We aim to show that the affine phase ambiguity is absent under the
bright-field boundary condition.

We test the Poisson-DRSAM with the full-rank scheme with a more stringent error metric

RE2(k) = min
\theta \in \BbbR 

\| f  - e\mathrm{i}\theta fk\| 
\| f\| 

.(9.7)
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638 ALBERT FANNJIANG AND ZHEQING ZHANG

(a) Max iteration for inner loops = 80 (b) Max iteration for inner loops = 110

Figure 10. RE2 under the bright-field condition = 255.

We also use the less tolerant stopping rule

\| | Pku
l
k|  - b\|  - \| | Pku

l+1
k |  - b\| 

\| | Pku
l
k|  - b\| 

\leq 10 - 5

for the inner loops with the maximum number of iteration capped at 80.
Figure 10 demonstrates the capability of the bright-field boundary condition (= 255) to

eliminate the linear phase ambiguity as the stronger error metric (9.7) decays geometrically
before settling down to the final level of accuracy. The final level of accuracy, however,
depends on how accurately the inner loops for each epoch are solved. For example, increasing
the maximum number of iteration from 80 (Figure 10(a)) to 110 (Figure 10(b)) significantly
enhances the final accuracy of reconstruction.

We also see that the bright-field condition enforcement has a better result on RPP than
CiB.

9.7. Comparison with rPIE. In this section, we compare the performance of DRSAM in
Figure 10(a) with that of rPIE (regularized PIE) [38], the most up-to-date version of PIE.

Instead of using all 64 diffraction patterns simultaneously to update the object and probe
estimates, rPIE uses one diffraction pattern at a time in a random order. As such rPIE is
analogous to minibatch gradient descent in machine learning. The potential benefits include
efficient memory use and a good speed boost by parallel computing resources. Unfortunately,
rPIE often fails to converge in the current setting.

To obtain reasonable results for rPIE, we make two adjustments. First, we reduce the
phase range of RPP from ( - \pi , \pi ] to ( - \pi /2, \pi /2], which is an easier object to reconstruct.
Second, for rPIE we use PPC(0.025) for the probe initialization, which restricts the probe
phase uncertainty to ( - 0.025\pi , 0.025\pi ] instead of ( - \pi /2, \pi /2].

There are three adjustable parameters in rPIE and we select these values \alpha = 0.95, \gamma \mathrm{p}\mathrm{r}\mathrm{b} =
0.95, \gamma \mathrm{o}\mathrm{b}\mathrm{j} = 0.9 (see [38] for definitions). The order of updating small patches is randomly
shuffled in each experiment. For each test image, we run 20 independent experiments and weD
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(a) rPIE with PPC(0.025) (b) Gaussian-DRSAM with PPC(0.5)

Figure 11. RE versus epoch for blind ptychography for various objects indicated in the legend by (a) rPIE
and (b) DRSAM (RPP rate = 0.8015; CiB rate = 0.7787).

present the best run in Figure 11. For ease of comparison, Figure 11(b) shows the correspond-
ing results by Gaussian-DRSAM with \rho = 1.

9.8. Poisson noise. For noisy measurement, the level of noise is measured in terms of the
noise-to-signal ratio (NSR),

NSR =
\| b - | Af | \| 

\| Af\| 
,

where A is the true measurement matrix and f the true object. Because the noise dimension
N is roughly 16 times that of the object dimension, the feasibility problem is inconsistent
with high probability.

Figure 12 shows RE versus NSR for CiB by Poisson-DRS and Gaussian-DRS with the
periodic boundary condition, i.i.d. probe, and full-rank scheme. The maximum number of
epochs in DRSAM is limited to 100. The RR stabilizes usually after 30 epochs. The (blue)
reference straight line has slope = 1. We see that the Gaussian-DRS outperforms the Poisson-
DRS, especially when the Poisson RE becomes unstable for NSR \geq 35\%. As noted in [38, 58,
11] fast convergence (with the Poisson log-likelihood function) may introduce noisy artifacts
and reduce reconstruction quality.

Most important, Figure 12 confirms that though provably nonconvergent in the incon-
sistent case, Gaussian-DRSAM with \rho = 1 can yield reasonable solutions under practical
termination rules.

10. Conclusion and discussion. We have presented and performed fixed point analysis
for DRS methods of phase retrieval and ptychography based on the proximal relaxation of
AAR with the relaxation parameter \rho .

For Gaussian-DRS, we have proved that for \rho \geq 1 all attracting fixed points must be reg-
ular solutions (Theorem 5.2) and that for \rho \geq 0 all regular solutions are attracting (Theorem
5.4). In other words, for \rho \geq 1, the problem of stagnation near a nonsolutional fixed point,D
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640 ALBERT FANNJIANG AND ZHEQING ZHANG

Figure 12. RE versus NSR for reconstruction of CiB.

a common problem with AP, is precluded. On the other hand, the problem of divergence
(associated with AAR) in the inconsistent case does not arise in view of Theorem 4.6.

In addition, we have given an explicit formula for the optimal parameter \rho \ast and the optimal
rate of convergence in terms of the spectral gap (Corollary 6.2).

When applied to standard phase retrieval with two coded diffraction patterns, Gaussian-
DRS converges geometrically from random initialization. When applied to blind ptychography,
DRSAM, even with a far from optimal step size, converges geometrically under the nearly
minimum conditions established in the uniqueness theory [18]. Our Python codes are posted
on https://github.com/AnotherdayBeaux/Blind-Ptychography-GUI.

The holy grail of optimization approach has been finding a globally convergent algorithm
whose underlying attractors are fixed points. It is worthwhile then to reflect on our results
from the global convergence perspective of [33].

We have already pointed out that the analysis in [33] is not applicable to nondifferentiable
loss functions. As discussed in section 7, this technical issue has a profound effect on the
convergence behavior in the inconsistent case: Gaussian-DRS with \rho \geq 1 does not converge,
globally or locally. This is an unexpected consequence of Theorem 5.2.

Our numerical experiments with noisy data, however, suggest that nonconvergent DRS
sequences are nevertheless well-behaved (probably due to hitherto unknown well-controlled
attractors) and produce a noise-amplification factor of about 1

2 when terminated. Analysis
of such (possibly strange) attractors and their impacts on numerics is an interesting topic for
future research and at the frontier of numerical analysis.

Moreover, the global convergence framework is typically based on the construction of a
nonincreasing merit function along the iterated sequence (i.e., Lyapunov-like function) that
requires the step size (reciprocal of \rho ) to be sufficiently small, resulting in slow convergence
in practice.
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Nice as it is, perhaps algorithmic convergence should not be our fixation in the case of
noisy data. It may be more useful, for numerical purposes, to solve the noisy phase retrieval
problem with algorithms with nontrivial (non-point-like) attractors which are necessarily non-
convergent in the traditional sense.

Appendix A. Measurement matrices. Let \BbbZ 2
n = [[0, n  - 1]]2 be the object domain con-

taining the support of the discrete object f where [[k, l]] denotes the integers between, and
including, k \leq l \in \BbbZ . Let \scrM 0 := \BbbZ 2

m,m < n, be the initial probe area, i.e., the support of the
probe \mu 0 describing the illumination field.

Let \scrT be the set of all shifts, including (0, 0), involved in the ptychographic measurement.
Denote by \mu \bft the t-shifted probe \forall t \in \scrT and \scrM \bft the domain of \mu \bft . Let f \bft be the object
restricted to \scrM \bft . We refer to each f \bft as a part of f and write f = \vee \bft f

\bft where \vee is the
``union"" of functions consistent over their common support set. In ptychography, the original
object is broken up into a set of overlapping object parts, each of which produces a \mu \bft -coded
diffraction pattern. The totality of the coded diffraction patterns is called the ptychographic
measurement data. For convenience, we assume the value zero for \mu \bft , f \bft outside of \scrM \bft and
the periodic boundary condition on \BbbZ 2

n when \mu \bft crosses over the boundary of \BbbZ 2
n.

Let the \mu -Fourier transform of f0 be written as

F 0(w) =
\sum 

\bfk \in \scrM 0

e - \mathrm{i}2\pi \bfk \cdot \bfw \mu 0(k)f0(k), w = (w1, w2) \in [0, 1]2,

and the \mu -coded diffraction pattern as

| F 0(w)| 2 =
\sum 

\bfk \in \widetilde \scrM 0

\left\{   \sum 
\bfk \prime \in \scrM 0

\mu 0(k+ k\prime )f0(k\prime + k)\mu 0(k\prime )f0(k\prime )

\right\}   e - \mathrm{i}2\pi \bfk \cdot \bfw ,(A.1)

where

\widetilde \scrM 0 = \{ (k1, k2) \in \BbbZ 2 :  - m+ 1 \leq k1 \leq m - 1, - m+ 1 \leq k2 \leq m - 1\} .

Here and below the over-line notation means complex conjugacy. In view of (A.2), we sample
the coded diffraction pattern on the grid

L =
\Bigl\{ 
(w1, w2) | wj = 0,

1

2m - 1
,

2

2m - 1
, . . . ,

2m - 2

2m - 1

\Bigr\} 
.(A.2)

We assume randomness in the phases \theta of the mask function \mu 0(n) = | \mu 0| (n)e\mathrm{i}\theta (\bfn ) where
\theta (n) are independent, continuous real-valued random variables over [0, 2\pi ). We also require
that | \mu 0| (n) \not = 0 \forall n \in \scrM 0.

Let \scrF (\nu 0, g) be the bilinear transformation representing the totality of the Fourier (mag-
nitude and phase) data for any probe \nu and object g. From \scrF (\nu 0, g) we can define two
measurement matrices. First, for a given \nu 0 \in \BbbC m2

, let A\nu be defined via the relation
Avg := \scrF (\nu 0, g) \forall g \in \BbbC n2

; second, for a given g \in \BbbC n2
, let Bg be defined via Bg\nu =

\scrF (\nu 0, g) \forall \nu 0 \in \BbbC m2
.D
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(a) Matrix A\nu (b) Matrix Bg

Figure 13. (a) A\nu is a concatenation of shifted blocks \{ \Phi diag(\nu \bft ) : \bft \in \scrT \} ; (b) Bg is a concatenation
of unshifted blocks \{ \Phi diag(g\bft ) : \bft \in \scrT \} . In both cases, each block gives rise to a coded diffraction pattern
| \Phi (\nu \bft \odot g\bft )| .

More specifically, let \Phi denote the L-sampled Fourier matrix. The measurement matrix A\nu 

is a concatenation of \{ \Phi diag(\nu \bft ) : t \in \scrT \} (Figure 13(a)). Likewise, Bg is \{ \Phi diag(g\bft ) : t \in \scrT \} 
stacked on top of each other (Figure 13(b)). Since \Phi has orthogonal columns, both A\nu and
Bg have orthogonal columns and their pseudoinverses are efficient to compute.

We simplify the notation by setting A = A\mu and B = Bf .

Appendix B. The Poisson versus Gaussian log-likelihood functions. Consider the Pois-
son distribution

P (n) =
\lambda ne - \lambda 

n!
.

Let n = \lambda (1 + \epsilon ) where \lambda \gg 1 and \epsilon \ll 1. Using Stirling's formula

n! \sim 
\surd 
2\pi ne - nnn

in the Poisson distribution, we obtain

P (n) \sim \lambda \lambda (1+\epsilon )e - \lambda 

\surd 
2\pi e - \lambda (1+\epsilon )[\lambda (1 + \epsilon )]\lambda (1+\epsilon )+1/2

\sim 1\surd 
2\pi \lambda e - \lambda \epsilon (1 + \epsilon )\lambda (1+\epsilon )+1/2

.

By the asymptotic
(1 + \epsilon )\lambda (1+\epsilon )+1/2 \sim e\lambda \epsilon +\lambda \epsilon 2/2

we have

P (n) \sim e - \lambda \epsilon 2/2

\surd 
2\pi \lambda 

=
e - (n - \lambda )2/(2\lambda )

\surd 
2\pi \lambda 

.(B.1)
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Namely in the low noise limit the Poisson noise is equivalent to the Gaussian noise of the
mean | Af | 2 and the variance equal to the intensity of the diffraction pattern. The overall
NSR can be tuned by varying the signal energy \| Af\| 2.

The negative log-likelihood function for the right-hand side of (B.1) is

\sum 
j

ln | u[j]| + 1

2

\bigm| \bigm| \bigm| \bigm| b[j]

| u[j]| 
 - | u[j]| 

\bigm| \bigm| \bigm| \bigm| 2 , b = noisy diffraction pattern.(B.2)

For small NSR and in the vicinity of b, we make the substitution\sqrt{} 
b[j]

| u[j]| 
\rightarrow 1, ln | u[j]| \rightarrow ln

\sqrt{} 
b[j]

to obtain

const. +
1

2

\sum 
j

\bigm| \bigm| \bigm| \sqrt{} b[j] - | u[j]| 
\bigm| \bigm| \bigm| 2 .(B.3)

Appendix C. Equivalence between DRS and ADMM. We show that ADMM applied to
the augmented Lagrangian

\scrL (y, z) = K(y) + L(z) + \lambda \ast (z  - y) +
\rho 

2
\| z  - y\| 2(C.1)

in the order alternatively as

zk+1 = argmin
z

\scrL (yk+1, z, \lambda k),(C.2)

yk+1 = argmin
x

\scrL (y, zk, \lambda k),(C.3)

\lambda k+1 = \lambda k + \rho (zk+1  - yk+1)(C.4)

is equivalent to DRS.
Let

zk+1 = argmin
z

\scrL (yk, z, \lambda k) = proxL/\rho (yk  - \lambda k/\rho ),(C.5)

yk+1 = argmin
x

\scrL (y, zk+1, \lambda k) = proxK/\rho (zk+1 + \lambda k/\rho )(C.6)

and consider the new variable

uk := zk + \lambda k - 1/\rho .

We have from (C.4) that

uk+1 = yk+1 + \lambda k+1/\rho .

By (C.6), we also have

yk+1 = PX(zk+1 + \lambda k/\rho ) = PXuk+1D
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and

yk  - \lambda k/\rho = 2yk  - uk = RXuk.

So (C.5) becomes

zk+1 = proxL/\rho (RXuk).(C.7)

Note also that by (C.4)

uk  - PXuk = \lambda k/\rho 

and hence

uk+1 = zk+1 + \lambda k/\rho = uk  - PXuk + proxL/\rho (RXuk),

which is exactly the DRS scheme (3.14) after rearrangement.

Appendix D. Perturbation analysis of Poisson-DRS. The full analysis of the Poisson-
DRS (3.15) is more challenging. Instead, we give a perturbative derivation of analogous result
to Theorem 4.6 for the Poisson-DRS with small positive \rho .

For small \rho , by keeping only the terms up to \scrO (\rho ) we obtain the perturbed DRS:

uk+1 =
1

2
uk  - 

1

2

\Bigl( 
1 - \rho 

2

\Bigr) 
RXuk + PY RXuk.(D.1)

Writing

I = PX + P\bot 
X and RX = PX  - P\bot 

X ,

we then have the estimates

\| uk+1\| \leq \| \rho 
4
PXuk +

\Bigl( 
1 - \rho 

4

\Bigr) 
P\bot 
Xuk\| + \| PY RXuk\| 

\leq 
\Bigl( 
1 - \rho 

4

\Bigr) 
\| uk\| + \| b\| 

since \rho is small. Iterating this bound, we obtain

\| uk+1\| \leq 
\Bigl( 
1 - \rho 

4

\Bigr) k
\| u1\| + \| b\| 

k - 1\sum 
j=0

\Bigl( 
1 - \rho 

4

\Bigr) j

and hence

lim sup
k\rightarrow \infty 

\| uk\| \leq 4

\rho 
\| b\| .(D.2)

Note that the small \rho limit and the Poisson-to-Gaussian limit in Appendix B do not commune,
resulting in a different constant in (D.2) from Theorem 4.6.
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Appendix E. Eigenstructure. The vector space \BbbC N = \BbbR N \oplus \BbbR i\BbbR N is isomorphic to \BbbR 2N

via the map

V (v) :=

\biggl[ 
\Re (v)
\Im (v)

\biggr] 
\forall v \in \BbbC N

and endowed with the real inner product

\langle u, v\rangle := \Re (u\ast v) = V (u)\top V (v), u, v \in \BbbC N .

We have

V (H\xi ) =

\biggl[ 
\Re [H]\Re [\xi ] + \Im [H]\Im [\xi ]
\Re [H]\Im [\xi ] - \Im [H]\Re [\xi ]

\biggr] 
=

\biggl[ 
\scrH \top V (\xi )

\scrH \top V ( - i\xi )

\biggr] 
, \xi \in \BbbC n.(E.1)

Let \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda 2n \geq \lambda 2n+1 = \cdot \cdot \cdot = \lambda N = 0 be the singular values of \scrH in
(5.16) with the corresponding right singular vectors \{ \eta k \in \BbbR N\} Nk=1 and left singular vectors
\{ \xi k \in \BbbR 2n\} 2nk=1. By definition, for k = 1, . . . , 2n,

H\ast \eta k = \lambda kG
 - 1(\xi k),(E.2)

\Re [HG - 1(\xi k)] = \lambda k\eta k.(E.3)

Proposition E.1. We have \xi 1 = V (f), \xi 2n2 = V ( - if), \lambda 1 = 1, \lambda 2n2 = 0 as well as \eta 1 =
| Af | .

Proof. Since

Hf = \Omega \ast Af = | Af | 

we have by (E.1)

\Re [Hf ] = \scrH \top \xi 1 = | Af | , \Im [Hf ] = \scrH \top \xi 2n2 = 0(E.4)

and hence the results.

Corollary E.2.

\lambda 2 = max\{ \| \Im (Hu)\| : u \in \BbbC n, u \bot if, \| u\| = 1\} (E.5)

= max\{ \| \scrH \top u\| : u \in \BbbR 2n2
, u \bot \xi 1, \| u\| = 1\} .

Proof. By (E.1),

\Im [Hu] = \scrH \top V ( - iu).

The orthogonality condition iu \bot f is equivalent to

V (x0) \bot V ( - iu).

Hence, by Proposition E.1 \xi 2 is the maximizer of the right-hand side of (E.5), yielding the
desired value \lambda 2.D
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Proposition E.3. For k = 1, . . . , 2n2,

\lambda 2
k + \lambda 2

2n2+1 - k = 1,(E.6)

\xi 2n2+1 - k = V ( - iV  - 1(\xi k)),(E.7)

\xi k = V (iV  - 1(\xi 2n2+1 - k)).(E.8)

Proof. Since H is an isometry, we have \| w\| = \| Hw\| \forall w \in \BbbC n. On the other hand, we
have

\| Hw\| 2 = \| V (Hw)\| 2 = \| \scrH \top V (w)\| 2 + \| \scrH \top V ( - iw)\| 2

and hence

\| V (w)\| 2 = \| \scrH \top V (w)\| 2 + \| \scrH \top V ( - iw)\| 2.(E.9)

Now we prove (E.6), (E.7), and (E.8) by induction.
Recall the variational characterization of the singular values/vectors

\lambda j = max \| \scrH \top u\| ,\xi j = argmax \| \scrH \top u\| , s.t. u \bot \xi 1, . . . , \xi j - 1, \| u\| = 1.(E.10)

By Proposition E.1, (E.6), (E.7), and (E.8) hold for k = 1. Suppose (E.6), (E.7), and (E.8)
hold for k = 1, . . . , j  - 1 and we now show that they also hold for k = j.

Hence by (E.9)

\lambda 2
j = max

\| u\| =1
\| \scrH \top u\| 2 = 1 - min

\| v\| =1
\| \scrH \top v\| 2, s.t. u \bot \xi 1, . . . , \xi j - 1, v = V ( - iV  - 1(u)).

The condition u \bot \xi 1, . . . , \xi j - 1 implies v \bot \xi 2n2 , . . . , \xi 2n2+2 - j and vice versa. By the dual
variational characterization to (E.10)

\lambda 2n2+1 - j = min \| \scrH \top u\| ,\xi 2n2+1 - j = argmin \| \scrH \top u\| , s.t. u \bot \xi 2n2 , . . . , \xi 2n2+2 - j , \| u\| = 1,

we have

\lambda 2
j = 1 - \lambda 2

2n2+1 - j , \xi 2n2+1 - j = V ( - iV  - 1(\xi j)).

Proposition E.4. For each k = 1, . . . , 2n2,

HH\ast \eta k = \lambda k(\lambda k\eta k + i\lambda 2n2+1 - k\eta 2n2+1 - k),(E.11)

HH\ast \eta 2n2+1 - k = \lambda 2n2+1 - k(\lambda 2n2+1 - k\eta 2n2+1 - k  - i\lambda k\eta k)(E.12)

implying

HH\ast =

\biggl[ 
\lambda 2
k \lambda k\lambda 2n2+1 - k

\lambda k\lambda 2n2+1 - k \lambda 2
2n2+1 - k

\biggr] 
in the basis of \eta k, i\eta 2n2+1 - k.D
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Proof. By definition, \scrH \eta k = \lambda k\xi k. Hence

H\ast \eta k = (\Re [H\ast ] + i\Im [H\ast ])\eta k = \lambda k(\xi 
\mathrm{R}
k + i\xi \mathrm{I}k),

where

\xi k =

\biggl[ 
\xi \mathrm{R}k
\xi \mathrm{I}k

\biggr] 
, \xi \mathrm{R}k , \xi 

\mathrm{I}
k \in \BbbR n.

On the other hand, \scrH \top \xi k = \lambda k\eta k and hence

\Re [H]\xi \mathrm{R}k  - \Im [H]\xi \mathrm{I}k = \lambda k\eta k.(E.13)

Now we compute HH\ast \eta k as follows:

HH\ast \eta k = \lambda kH(\xi \mathrm{R}k + i\xi \mathrm{I}k)(E.14)

= \lambda k(\Re [H] + i\Im [H])(\xi \mathrm{R}k + i\xi \mathrm{I}k)

= \lambda k(\Re [H]\xi \mathrm{R}k  - \Im [H]\xi \mathrm{I}k) + i\lambda k(\Re [H]\xi \mathrm{I}k + \Im [H]\xi \mathrm{R}k )

= \lambda 2
k\eta k + i\lambda k(\Re [H]\xi \mathrm{I}k + \Im [H]\xi \mathrm{R}k )

by (E.13)
Notice that

\Re (H)\xi \mathrm{I}k + \Im (H)\xi \mathrm{R}k = \scrH \top 
\biggl[ 
\Re ( - iV  - 1(\xi k))
\Im ( - iV  - 1(\xi k))

\biggr] 
(E.15)

= \scrH \top V ( - iV  - 1(\xi k))

= \scrH \top \xi 2n2+1 - k

= \lambda 2n2+1 - k\eta 2n2+1 - k

by Proposition E.3.
Putting (E.14) and (E.15) together, we have (E.11). Likewise, (E.12) follows from a similar

calculation.
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