

The impact of azithromycin therapy on antimicrobial resistance

Preliminary results

Ms. Regina Esinam Abotsi

BPharm., MPharm., PhD candidate

Supervisors: Dr. Felix Dube, UCT

Prof. Mark Nicol, UWA

Outline

Introduction

Aim and objectives

Laboratory investigation

Results

Conclusions & next steps

Acknowledgements

Introduction and rationale

- Azithromycin has anti-inflammatory and anti-bacterial properties and shown to be beneficial in other forms chronic lung diseases.
- Long-term use has been associated with antimicrobial resistance in common respiratory pathogens. 1,2,3,4,5
- There are **conflicting reports** on the effect of this therapy on prevalence of respiratory bacteria, extent and persistence of macrolide resistance. 1,2,4,5
 - ✓ may be explained by pre-treatment antimicrobial resistance levels, dose and duration of therapy and adherence.⁴
 - ✓ necessitate an independent assessment of this phenomenon within the BREATHE trial.
- Development of resistance is of concern because of
 - ✓ transmission of resistant isolates to community & healthcare centers participants regularly visit.^{2,6}
 - ✓ development of drug-resistant infections which may be difficult to treat.6

Aim

To determine the effect of long-term azithromycin therapy on the **prevalence** of clinically relevant respiratory bacteria and associated **antimicrobial resistance** in participants within the BREATHE trial.

Specific objectives

- I. To assess the proportion of participants colonized in the nasopharynx (NP) and sputa by clinically relevant bacteria (*S. pneumoniae*, *S. aureus*, *H. influenzae* and *M. catarrhalis*) in each trial arm [azithromycin(AZM) and placebo] at all timepoints.
- 2. To compare, between the trial arms, the proportion of isolates resistant to macrolides and other relevant antimicrobials at all timepoints.

Laboratory investigation

Objective 1
Bacteria prevalence

Objective 2Antimicrobial resistance

Figure 1. Flow chart of the laboratory investigations. ¹STGG: Skimmed milk tryptone glucose glycerol, ²BHB: Bacitracin-heated blood agar

Number of samples collected

Timepoint	Trial arm	No. participants	NP		Sputum	
			No. collected (% of total participants)	No. cultured (% of total collected)	No. collected (% of total participants)	No. cultured (% of total collected)
Baseline	AZM	173	168 (97%)	168 (100%)	167 (97%)	166 (99%)
Baseline	Placebo	174	171 (98%)	171 (100%)	169 (97%)	164 (97%)
12 months	AZM	164	159 (97%)	159 (100%)	157 (96%)	148 (94%)
12 months	Placebo	160	153 (96%)	153 (100%)	149 (93%)	143 (96%)
18 months	AZM	134	128 (96%)	118 (92%)	127 (95%)	117 (92%)
18 months	Placebo	120	115 (96%)	105 (91%)	115 (96%)	107 (93%)
Totals						
All	AZM	471	455 (97%)	445 (98%)	451 (96%)	431 (96%)
All	Placebo	454	439 (97%)	429 (98%)	433 (95%)	414 (96%)
Grand total	Both	925	894 (97%)	874 (98%)	884 (96%)	845 (96%)

Bacteria prevalence in NP

Figure 2. Bar plot of the NP prevalence of respiratory bacteria isolated at all timepoints from \underline{AZM} (baseline; n=168, 12 months; n=159, 18 months; n=118) and **Placebo** (baseline; n=171, 12 months; n=153, 18 months; n=105) arms of trial. *p < 0.01, *** p < 0.0001

Bacteria prevalence in sputa

Figure 3. Bar plot of the sputum prevalence of respiratory bacteria isolated at all timepoints from \underline{AZM} [baseline(n=166), 12 months (n=148), 18 months (n=117)] and $\underline{Placebo}$ [baseline(n=164), 12 months (n=143), 18 months (n=107)] arms of trial. *** p < 0.0001

Antimicrobial resistance of *S. pneumoniae* from NP

Figure 4. Bar plot of the percentage resistance of *S. pneumoniae* from NP swabs at all timepoints from \underline{AZM} [baseline (n=74), 12 months (n=29), 18 months (n=41)] and $\underline{Placebo}$ [baseline (n=83), 12 months (n=63), 18 months (n=37)] arms of trial. ** p < 0.001, *** p < 0.0001

Antimicrobial resistance of S. pneumoniae from sputa

Figure 5. Bar plot of the percentage resistance of *S. pneumoniae* from sputa at all timepoints from <u>AZM</u> [baseline (n=43), 12 months (n=17), 18 months (n=20)] and <u>Placebo</u> [baseline (n=38), 12 months (n=35), 18 months (n=26)] arms of trial.

Antimicrobial resistance of S. aureus from NP

Figure 6. Bar plot of the percentage resistance of *S. aureus* from NP swabs at all timepoints from \underline{AZM} [baseline (n=45), 12 months (n=34), 18 months (n=23)] and $\underline{Placebo}$ [baseline (n=36), 12 months (n=31), 18 months (n=26)] arms of trial. *p < 0.01, *** p < 0.0001

Antimicrobial resistance of S. aureus from sputa

Figure 7. Bar plot of the percentage resistance of *S. aureus* from sputa at all timepoints from \underline{AZM} [baseline (n=51), 12 months (n=46), 18 months (n=40)] and $\underline{Placebo}$ [baseline (n=46), 12 months (n=37), 18 months (n=36)] arms of trial. *p < 0.01, *** p < 0.001, *** p < 0.0001

Conclusions & next steps

In conclusion,

- Long-term azithromycin therapy:
 - ✓ reduce the respiratory carriage of *S. pneumoniae*, *H. influenzae* and *M. catarrhalis* but not *S. aureus*. This effect did not persist 6 months after therapy cessation.
 - ✓ increased azithromycin and tetracycline resistance in *S. pneumoniae* and *S. aureus* (and clindamycin resistance) but not *H. influenzae* and *M. catarrhalis*. Effect reversed at 6 months in *S. pneumoniae* but not *S. aureus*.

Next steps:

- Whole genome sequencing of S. pneumoniae and S. aureus to characterise
 - ✓ Mechanisms underlying antimicrobial resistance: Key in understanding transmissibility and treatment strategies
 - ✓ Serotypes and lineages of *S. pneumoniae*: Provide data that will advise vaccine formulation strategies
 - ✓ Population structure: Will improve preparedness and response to future outbreaks of disease caused by Ab-R bacteria

Acknowledgements

Dr. Felix Dube

Prof. Mark Nicol

Trial participants

Charmaine Barthus

