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AVOIDING TWO CONSECUTIVE BLOCKS OF SAME SIZE AND
SAME SUM OVER \BbbZ \bftwo \ast 
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Abstract. A long standing question asks whether \BbbZ is uniformly 2-repetitive, that is, whether
or not there is an infinite sequence over a finite subset of \BbbZ avoiding two consecutive blocks of the
same size and same sum [J. Justin, J. Combin. Theory Ser. A, 12 (1972), pp. 357--367], [G. Pirillo
and S. Varricchio, Semigroup Forum, 49 (1994), pp. 125--129]. Cassaigne et al. [J. ACM, 61 (2014),
10] showed that \BbbZ is not uniformly 3-repetitive. We show that \BbbZ 2 is not uniformly 2-repetitive.
Moreover, this problem is related to a question from M\"akel\"a in combinatorics on words, and we
answer a weak version of it.
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1. Introduction. Let k \geq 2 be an integer, and let (G,+) be a group. An
additive kth power is a nonempty word w1 . . . wk over \Sigma \subseteq G such that for every

i \in \{ 2, . . . , k\} , | wi| = | w1| and
\sum 

wi =
\sum 

w1 (where
\sum 

v =
\sum | v| 

i=1 v[i]). Using the
terminology of Pirillo and Varricchio [13], we say that a group (G,+) is k-uniformly
repetitive if every infinite word over a finite subset of G contains an additive kth
power as a factor. It is a long standing question whether \BbbZ is uniformly 2-repetitive
or not [8, 13]. Cassaigne et al. [3] showed that there is an infinite word over the finite
alphabet \{ 0, 1, 3, 4\} \subseteq \BbbZ without additive 3rd powers, that is, \BbbZ is not uniformly
3-repetitive. In section 6 we show the following theorem.

Theorem 8. \BbbZ 2 is not uniformly 2-repetitive.

When (G,+) is the abelian-free group generated by the elements of \Sigma we talk
about abelian repetitions. The avoidability of abelian repetitions has been studied
since a question from Erd\H os arose [6, 7]. An abelian square is any nonempty word
uv where u and v are permutations of each other. Erd\H os asked whether there is an
infinite abelian-square-free word over an alphabet of size 4. Ker\"anen gave a positive
answer to Erd\H os's question in 1992 by giving an 85-uniform morphism, found with
the assistance of a computer, whose fixed point is abelian-square-free [10].

Erd\H os also asked if it is possible to construct a word over 2 letters which con-
tains only small squares. Entringer, Jackson, and Schatz gave a positive answer to
this question [5]. They also showed that every infinite word over 2 letters contains
arbitrarily long abelian squares. This naturally leads to the following question from
M\"akel\"a (see [11]).

Problem 1. Can you avoid abelian squares of the form uv where | u| \geq 2 over
three letters? Computer experiments show that you can avoid these patterns at least
in words of length 450.

We show that the answer is positive if we replace 2 by 6.

\ast Received by the editors September 26, 2017; accepted for publication (in revised form) June 29,
2018; published electronically October 4, 2018.

http://www.siam.org/journals/sidma/32-4/M114937.html
\dagger LIP, ENSL, 69364 Lyon, France (michael.rao@ens-lyon.fr, matthieu.rosenfeld@gmail.com).

2381

http://www.siam.org/journals/sidma/32-4/M114937.html
mailto:michael.rao@ens-lyon.fr
mailto:matthieu.rosenfeld@gmail.com


2382 MICHA\"EL RAO AND MATTHIEU ROSENFELD

Theorem 11. There is an infinite word over 3 letters avoiding an abelian square
of period more than 5.

The proofs of Theorems 8 and 11 are close in spirit (in fact, both theorems imply
independently that \BbbZ 3 is not 2-repetitive). Moreover, the proofs are both based on
explicit constructions using the following morphism:

h6 :

\left\{   a \rightarrow ace, b \rightarrow adf,
c \rightarrow bdf, d \rightarrow bdc,
e \rightarrow afe, f \rightarrow bce.

First, we need to show the following theorem.

Theorem 5. h\omega 
6 (a) is abelian-square-free.

In section 4 we describe an algorithm to decide if a morphic word avoids abelian
powers, and use it to show Theorem 5. This algorithm generalizes the previously
known ones [2, 4], and can decide on a wider class of morphisms which includes h6.
In section 5, we explain how to extend the decidability to additive and long abelian
powers. Finally, in section 6, we give the results and the constructions.

2. Preliminaries. We use terminology and notation of Lothaire [12]. An alpha-
bet \Sigma is a finite set of letters, and a word is a (finite or infinite) sequence of letters.
The set of finite words is denoted by \Sigma \ast and the empty word by \varepsilon . One can also view
\Sigma \ast equipped with the concatenation as the free monoid over \Sigma .

For any word w, we denote by | w| the length of w, and for any letter a \in \Sigma , | w| a
is the number of occurrences of a in w. The Parikh vector of a word w \in \Sigma \ast , denoted
by \Psi (w), is the vector indexed by \Sigma such that for every a \in \Sigma , \Psi (w)[a] = | w| a. Two
words u and v are abelian equivalent, denoted by u \approx a v, if they are permutations
of each other, or equivalently if \Psi (u) = \Psi (v). For any integer k \geq 2, an abelian
kth power is a word w that can be written w = w1w2 . . . wk with \forall i \in \{ 2, . . . , k\} ,
wi \approx a w1. Its period is | wi| . An abelian square (resp., cube) is an abelian 2nd power
(resp., abelian 3rd power). A word is abelian-kth-power-free, or avoids abelian kth
powers, if none of its nonempty factors are an abelian kth power.

Let (G,+) be a group, and let \Phi : (\Sigma \ast , .) \rightarrow (G,+) be a morphism. Two words u
and v are \Phi -equivalent, denoted u \approx \Phi v, if \Phi (u) = \Phi (v). For any k \geq 2, a kth power
modulo \Phi is a word w = w1w2 . . . wk with \forall i \in \{ 2, . . . , k\} , wi \approx \Phi w1. If, moreover,
| w1| = | w2| = \cdot \cdot \cdot = | wk| , then it is a uniform kth power modulo \Phi . A square modulo
\Phi (resp., cube modulo \Phi ) is a 2nd power (resp., 3rd power) modulo \Phi . In this article,
we only consider groups (G,+) = (\BbbZ d,+) for some d > 0. We say that (G,+) is
k-repetitive (resp., uniformly k-repetitive) if for any alphabet \Sigma and any morphism
\Phi : (\Sigma \ast , .) \rightarrow (G,+) every infinite word over \Sigma contains a k-power modulo \Phi (resp.,
a uniform k-power modulo \Phi ). Note that, for any integers n and k, if (\BbbZ n+1,+) is
k-repetitive, then (\BbbZ n,+) is uniformly k-repetitive. Uniform kth powers modulo \Phi 
are sometimes called additive kth powers, without mention of the morphism \Phi , if the
value of \Phi (a) is clear from the context. \Phi can be seen as a linear map from the
Parikh vector of a word to \BbbZ d. Therefore, we can associate to \Phi the matrix F\Phi such
that \forall w \in \Sigma \ast , \Phi (w) = F\Phi \Psi (w). Note that if d = | \Sigma | and F\Phi is invertible, then two
words are abelian-equivalent if and only if they are \Phi -equivalent. An application of
Szemer\'edi's theorem shows that for d = 1, for any finite alphabet \Sigma , and for k \in \BbbN ,
it is not possible to avoid kth power modulo \Phi over \Sigma , that is, (\BbbZ ,+) is k-repetitive
for any k. On the other hand, whether \BbbZ is uniformly 2-repetitive or not is a long
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standing open question [8, 13], and Cassaigne et al. showed that \BbbZ is not uniformly
3-repetitive [3]. We show on Theorem 8 that \BbbZ 2 is not uniformly 2-repetitive.

Let Suff(w) (resp., Pref(w), Fact(w)) be the set of suffixes (resp., prefixes, factors)
of w. For any morphism h, let Suff(h) = \cup a\in \Sigma Suff(h(a)), Pref(h) = \cup a\in \Sigma Pref(h(a)),
and Fact(h) = \cup a\in \Sigma Fact(h(a)).

A morphism h is nonerasing if there is no a such that h(a) = \varepsilon . A morphism
h : \Sigma \ast \mapsto \rightarrow \Sigma \ast is prolongable at a \in \Sigma if h(a) = as for some s \in \Sigma +. In this case the
sequence (hi(a))i\in \BbbN converges toward the infinite word w = ash(s)h2(s)h3(s) . . . . If
the morphism is nonerasing, w is infinite, and we say that w is a pure morphic word
generated by h, denoted by h\omega (a). Note that every pure morphic word generated by
a morphism h is a fixed point of h. A morphic word is the image of a pure morphic
word by a second morphism.

To a morphism h on \Sigma \ast , we associate a matrix Mh on \Sigma \times \Sigma such that (Mh)a,b =
| h(b)| a. The eigenvalues of h are the eigenvalues of Mh.

For any morphism h : \Sigma \ast \mapsto \rightarrow \Sigma \ast , let Fact\infty (h) = \cup \infty 
i=1 Fact(h

i). We say that
h is primitive if there exists k \in \BbbN such that \forall a \in \Sigma , hk(a) contains all of the
letters of \Sigma (that is, Mh is primitive). If h is primitive, then for any letter a \in \Sigma ,
Fact\infty (h) = \cup \infty 

i=1 Fact(h
i(a)), and we can use that fact to show the following property.

Proposition 1. Let h be a primitive morphism on \Sigma \ast prolongable at a; then
Fact(h\omega (a)) = Fact\infty (h).

Proof. Since h is prolongable at a there is, by definition, a nonempty word
s \in \Sigma + such that h(a) = as and h\omega (a) = h(a)h(s)h2(s) . . . . Remark that \forall i,
h(a)h(s)h2(s) . . . hi(s) = hi+1(a). Thus, by primitivity of h, Fact(h\omega (a)) = \cup \infty 

i=1

Fact(hi(a)) = Fact\infty (h).

In the rest of this section we recall some classical notions from linear algebra.

Jordan decomposition. A Jordan block Jn(\lambda ) is an n \times n matrix with \lambda \in \BbbC 
on the diagonal, 1 on top of the diagonal, and 0 elsewhere:

Jn(\lambda ) =

\left(      
\lambda 1

\lambda 1 0
0 . . . 1

\lambda 

\right)      .

We recall the following well-known proposition (see [1]).

Proposition 2 (Jordan decomposition). For any n\times n matrix M on \BbbC , there
is an invertible n \times n matrix P and an n \times n matrix J such that M = PJP - 1, and
the matrix J is as follows:\left(     

Jn1
(\lambda 1)

Jn2
(\lambda 2) 0

0
. . .

Jnp
(\lambda p)

\right)     ,

where the Jni(\lambda i) are Jordan blocks on the diagonal. PJP - 1 is a Jordan decomposi-
tion of M .

The \lambda i, i \in \{ 1, . . . , p\} , are the (not necessarily distinct) eigenvalues of M . The
set of columns from P are generalized eigenvectors of M .
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Note that for every k \geq 0, (Jn(\lambda ))
k is the n\times nmatrixM withMi,j =

\bigl( 
k

j - i

\bigr) 
\lambda k - j+i,

with
\bigl( 
a
b

\bigr) 
= 0 if a < b or b < 0. Thus, if | \lambda | < 1,

\sum \infty 
k=0(Jn(\lambda ))

k is the matrix N where
Ni,j = (1  - \lambda )i - j - 1 if j \geq i, and 0 otherwise. We can easily deduce from these
observations the series of kth powers of a matrix in Jordan normal form, and its sum.

Smith decomposition. The Smith decomposition is useful to solve systems of
linear Diophantine equations.

Proposition 3 (Smith decomposition). For any matrix M \in \BbbZ n\times m, there are
U \in \BbbZ n\times n, D \in \BbbZ n\times m, and V \in \BbbZ m\times m such that

\bullet D is diagonal, i.e., Di,j = 0 if i \not = j),
\bullet U and V are unimodular, i.e., their determinant is 1 or  - 1),
\bullet M = UDV .

Since U and V are unimodular, they are invertible over the integers. If one wants
to find integer solutions x of the equation Mx = y, where M is an integer matrix
and y an integer vector, one can use the Smith decomposition UDV of M . One can
suppose without loss of generality (w.l.o.g.) that n = m. Otherwise, one can fill in
with zeros. Then DV x = U - 1y. Integer vectors in ker(M) form a lattice \Lambda . The set
of columns i in V  - 1 such that Di,i = 0 gives a basis of \Lambda . Let y\prime = U - 1y, which is
also an integer vector. Finding the solution x\prime of Dx\prime = y\prime is easy, since D is diagonal.
The set of solutions is nonempty if and only if for every i, y\prime 

i is a multiple of Di,i.
One can take x\bfzero = V  - 1x\prime 

\bfzero as a particular solution to Mx\bfzero = y, with (x\prime 
\bfzero )i = 0 if

Di,i = 0, and (x\prime 
\bfzero )i = y\prime 

i/Di,i otherwise. The set of solutions is given by x\bfzero + \Lambda .

For any vector x we denote by | | x| | its Euclidean norm. For any complex matrix

M , let | | M | | be its norm induced by the Euclidean norm, that is, | | M | | = sup
\bigl\{ | | M\bfx | | 

| | \bfx | | :

x \not =  - \rightarrow 
0
\bigr\} 
. Let M\ast be the conjugate transpose of the matrix M . We will use the

following classical proposition from linear algebra (see [1]).

Proposition 4. Let M be a matrix, and let \mu min (resp., \mu max) be the minimum
(resp., maximum) over the eigenvalues of M\ast M (which are all real and nonnegative).
Then for any x,

\mu min| | x| | 2 \leq | | Mx| | 2 \leq \mu max| | x| | 2.
For any vector x, we also denote by | | x| | 1 its L1 norm, that is, the sum of the

absolute value of its coordinates. The L1 norm is useful for us because of the following
property: for any w \in \Sigma \ast , | w| = | | \Psi (w)| | 1.

3. Templates. The notion of templates was first introduced by Currie and Ram-
persad for their decision algorithm [4]. A k-template is a (2k)-tuple of the form
t = [a1, . . . , ak+1,d1, . . . ,dk - 1] where \forall i, ai \in \Sigma \cup \{ \varepsilon \} and di \in \BbbZ n. A word
w = a1w1a2w2 . . . wkak+1, where wi \in \Sigma \ast , is a realization of (or realizes) the template
t if \forall i \in \{ 1, . . . , k - 1\} , \Psi (wi+1) - \Psi (wi) = di. A template t is realizable by h if there
is a word in Fact\infty (h) which realizes t.

Using the notion of k-templates, we can give another equivalent definition of
abelian kth powers.

Proposition 5. Let k \geq 2 be an integer. A nonempty word is an abelian kth

power if and only if it realizes the k-template [\varepsilon , . . . , \varepsilon ,
 - \rightarrow 
0 , . . . ,

 - \rightarrow 
0 ].

Let t\prime = [a\prime 1, . . . , a
\prime 
k+1,d

\prime 
1, . . . ,d

\prime 
k - 1] and t = [a1, . . . , ak+1,d1, . . . ,dk - 1] be two

k-templates, and let h be a morphism. We say that t\prime is a parent by h of t if there
are p1, s1, . . . , pk+1, sk+1 \in \Sigma \ast such that

\bullet \forall i \in \{ 1, . . . , k + 1\} , h(a\prime i) = piaisi,
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\bullet \forall i \in \{ 1, . . . , k  - 1\} , di = Mhd
\prime 
i +\Psi (si+1pi+2) - \Psi (sipi+1).

We denote by Parh(t) the set of parents by h of t. We will show in Proposition 1 that
for any t\prime \in Parh(t), if t

\prime is realized by a word w, then t is realized by a factor of h(w).
In Proposition 2 we show that if t is realized by a long enough word from Fact\infty (h),
then there is a realizable template t\prime \in Parh(t).

A template t\prime is an ancestor by h of a template t if there exists n \geq 1 and a
sequence of templates t = t1, t2, . . . , tn = t\prime such that for any i, ti+1 is a parent by h
of ti. A template t\prime is a realizable ancestor by h of a template t if t\prime is an ancestor
by h of t and if t\prime is realizable by h. For a template t, we denote by Anch(t) (resp.,
Ranch(t)) the set of all the ancestors (resp., realizable ancestors) by h of t. We may
omit ``by h"" when the morphism is clear from the context.

4. The decision algorithm. In this section, we show the following theorem.

Theorem 1. For any primitive morphism h with no eigenvalue of absolute value
1 and any template t0, it is possible to decide whether Fact\infty (h) realizes t0.

Together with Proposition 1, Theorem 1 implies the following corollary.

Corollary 1. For any primitive morphism h with no eigenvalue of absolute
value 1 it is possible to decide whether the fixed points of h are abelian kth power-
free.

The main difference compared with the algorithm from Currie and Rampersad
[4] is that we allow h to have eigenvalues of absolute value less than 1.

We first show that for any set S such that Ranch(t0) \subseteq S \subseteq Anch(t0), Fact
\infty (h)

realizes t0 if and only if there is a small factor of Fact\infty (h) which realizes a template
in S. Then we explain how to compute such a finite set S. Since S is finite we can
check for any k-template t \in S whether a small factor realizes t and we can conclude.

4.1. Parents and preimages. The next two lemmas tell that the realizations
of the parents of a template t form the set of preimages by h of the realizations of h
up to finitely many missing factors.

Lemma 1. Let t\prime be a parent of a k-template t0, and let w \in \Sigma \ast . If w realizes t\prime ,
h(w) contains a factor that realizes t0.

Proof. Let t0 = [a1, . . . , ak+1,d1, . . . ,dk - 1] and t\prime = [a\prime 1, . . . , a
\prime 
k+1,d

\prime 
1, . . . ,d

\prime 
k - 1].

Since w realizes t\prime , there are w1, . . . , wk \in \Sigma \ast such that w = a\prime 1w1a
\prime 
2 . . . wka

\prime 
k+1, and

\forall i \in \{ 1, . . . , k  - 1\} , \Psi (wi+1) - \Psi (wi) = d\prime 
i.

Since t\prime is a parent of t0, there are p1, s1, . . . , pk+1, sk+1 \in \Sigma \ast such that
\bullet \forall i \in \{ 1, . . . , k + 1\} , h(a\prime i) = piaisi,
\bullet \forall i \in \{ 1, . . . , k  - 1\} , di = Mhd

\prime 
i +\Psi (si+1pi+2) - \Psi (sipi+1).

Thus h(w) = p1a1s1h(w1)p2a2s2h(w2) . . . h(wk)pk+1ak+1sk+1. Now let \forall i, ui =
sih(wi)pi+1; then the word u = a1u1a2u2 . . . ukak+1 is a factor of h(w). Moreover,
\forall i,

\Psi (ui+1) - \Psi (ui) = \Psi (si+1h(wi+1)pi+2) - \Psi (sih(wi)pi+1)

= \Psi (h(wi+1)) - \Psi (h(wi)) + \Psi (si+1pi+2) - \Psi (sipi+1)

= Mh (\Psi (wi+1) - \Psi (wi)) + \Psi (si+1pi+2) - \Psi (sipi+1)

= Mhd
\prime 
i +\Psi (si+1pi+2) - \Psi (sipi+1),

\Psi (ui+1) - \Psi (ui) = di.

Thus u realizes t0.
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Let \delta = maxa\in \Sigma | h(a)| and \Delta (t) = maxk - 1
i=1 | | di| | 1 for any k-template t =

[a1, . . . , ak+1,d1, . . . ,dk - 1].

Lemma 2. Let t be a k-template, and let w \in \Sigma \ast be a word which realizes t. If

| w| > k
\bigl( (k - 1)\Delta (t)

2 + \delta + 1
\bigr) 
+ 1, then for every w\prime such that w \in Fact(h(w\prime )) there is

a parent t\prime of t such that a factor of w\prime realizes t\prime .

The idea is that if the realization is long enough, then the part corresponding to
each vector is longer than \delta . This implies that the ai are images of different letters,
and we can then unfold the definitions.

Proof of Lemma 2. Let t = [a1, . . . , ak+1,d1, . . . ,dk - 1] be a k-template, and let

w \in Fact(h(w\prime )) such that | w| > k
\bigl( (k - 1)\Delta (t)

2 + \delta + 1
\bigr) 
+ 1 and w realizes t. Then

there are w1, . . . , wn \in \Sigma \ast such that w = a1w1a2w2 . . . wkak+1 and \forall i \in \{ 1, . . . , k  - 
1\} , \Psi (wi+1)  - \Psi (wi) = di. Thus for any i, j \in \{ 1, . . . , k\} such that j < i, \Psi (wi) =

\Psi (wj) +
\sum i - 1

m=j dm and, by triangular inequality, we have\bigm| \bigm| | wi|  - | wj | 
\bigm| \bigm| = \bigm| \bigm| | | \Psi (wi)| | 1  - | | \Psi (wj)| | 1

\bigm| \bigm| 
\leq | | \Psi (wi) - \Psi (wj)| | 1

\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
i - 1\sum 
m=j

dm

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
1

\leq 
i - 1\sum 
m=j

| | dm| | 1

\leq (i - j)\Delta (t).

Therefore, for any i, j \in \{ 1, . . . , k\} , | wj | \leq | i - j| \Delta (t)+| wi| . Combining this inequality

with | w| = k+1+
\sum k

m=1 | wm| , we deduce that for any i \in \{ 1, . . . , k\} , | w| \leq 
\sum k

m=1(| i - 
m| \Delta (t)+ | wi| )+k+1 \leq k(k - 1)

2 \Delta (t)+k| wi| +k+1. Then, by hypothesis, k
\bigl( (k - 1)\Delta (t)

2 +

| wi| + 1
\bigr) 
+ 1 \geq | w| > k

\bigl( (k - 1)\Delta (t)
2 + \delta + 1

\bigr) 
+ 1, and consequently \forall i, | wi| > \delta =

maxa\in \Sigma | h(a)| . We also know that w \in Fact(h(w\prime )) so there are a\prime 1, . . . , a
\prime 
k+1 \in \Sigma ,

w\prime 
1, . . . , w

\prime 
k \in \Sigma \ast , p1, . . . , pk+1 \in Pref(h), and s1, . . . , sk+1 \in Suff(h) such that

\bullet w\prime \prime = a\prime 1w
\prime 
1a

\prime 
2 . . . a

\prime 
kw

\prime 
ka

\prime 
k+1 is a factor of w\prime ,

\bullet \forall i, h(a\prime i) = piaisi,
\bullet \forall i, wi = sih(w

\prime 
i)pi+1.

Then w\prime \prime realizes t\prime = [a\prime 1, . . . , a
\prime 
k+1,\Psi (w\prime 

2) - \Psi (w\prime 
1), . . . ,\Psi (w\prime 

k) - \Psi (w\prime 
k - 1)]. Moreover,

\forall i:

di = \Psi (wi+1) - \Psi (wi),

di = \Psi (si+1h(w
\prime 
i+1)pi+2) - \Psi (sih(w

\prime 
i)pi+1),

di = Mh\Psi (w\prime 
i) - Mh\Psi (w\prime 

i) + \Psi (si+1pi+2) - \Psi (sipi+1),

di = Mh(\Psi (w\prime 
i) - \Psi (w\prime 

i)) + \Psi (si+1pi+2) - \Psi (sipi+1).

Thus t\prime is a parent of t, and t\prime is realized by w\prime \prime as a factor of w\prime .

A small realization of a k-template t is a realization w of t such that | w| <

k
\bigl( (k - 1)\Delta (t)

2 +\delta +1
\bigr) 
+1. Using Lemmas 1 and 2 we can show the following proposition.

Proposition 6. Let h be a primitive morphism, and let t0 be a k-template. Then
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the following conditions are equivalent:
1. Fact\infty (h) contains no realization t0.
2. Fact\infty (h) contains no small realizations of any elements of Anch(t0).
3. Fact\infty (h) contains no small realizations of any elements of Ranch(t0).

Proof. 2. \Leftarrow \Rightarrow 3. If a template t \in Anch(t0) is realized, then by definition t \in 
Ranch(t0) so 3 =\Rightarrow 2. The other direction is clear from Ranch(t0) \subseteq Anch(t0).

1. =\Rightarrow 2. Assume that Fact\infty (h) contains a small realization w of t \in Anch(t0).
By definition there are tn = t, tn - 1, tn - 2, . . . , t1 \in Anch(t0) such that \forall i \in [0, n  - 1],
ti+1 \in Parh(ti). Now by applying inductively Lemma 1 we get that \forall i, tn - i is realized
by a factor of hi(w) \in Fact\infty (h). So, in particular, Fact\infty (h) contains a realization of
t0.

2. =\Rightarrow 1. Let w \in Fact\infty (h) be a realization of t0. By definition, there is an
integer i and a letter a \in \Sigma such that w \in Fact(hi(a)). If w is a small realization
of t0, then we are done since t0 \in Anch(t0). If w is not a small realization, we can
apply Lemma 2, and we know that there is a parent t1 of t0 and w1 \in Fact(hi - 1(a))
such that w1 realizes t1. By Lemma 2, if w1 is not a small realization of t1 there is a
parent t2 of t1 and w2 \in Fact(hi - 2(a)) such that w2 realizes t2.

We can apply this reasoning inductively until we get a wk, which is a small
realization of tk. This happens eventually since \forall j \in [1, i  - 1], | wj | \leq | hi - j(a)| . By
construction tk is an ancestor of t0, so we have a small realization of an ancestor
of t0.

We get the following corollary.

Corollary 2. Let h be a primitive morphism prolongable at a, and let t0 be a
k-template. Let S be a set of k-template such that Ranch(t0) \subseteq S \subseteq Anch(t0). Then
the following conditions are equivalent:

1. h\omega (a) avoids t0.
2. h\omega (a) avoids every small realizations of every element of S.

Any given template only has finitely many small realizations, and we need only
compute small factors of h\omega (a) to compute them. If we can compute a finite set S
such that Ranch(t0) \subseteq S \subseteq Anch(t0), then we can decide if h\omega (a) avoids t0.

In particular, Currie and Rampersad showed that if M - 1
h is defined and has an

induced Euclidean norm smaller than 1, then Anch(t0) is finite and computable [4].
They deduced a result really similar to the following theorem.

Theorem 2. For any primitive morphism h, if M - 1
h is defined and has induced

Euclidean norm smaller than 1, then, for any template t0, it is possible to decide
whether Fact\infty (h) realizes t0.

In the setting of Theorem 1 Mh is not necessarily invertible, which implies that
t0 could have infinitely many parents and ancestors. Thus we need to find a way to
discard many elements of Anch(t0). In fact, using the Jordan normal form of Mh, we
can find conditions on the vectors of the templates of Ranch(t0).

4.2. Finding the set Ranc\bfith (\bfitt \bfzero ) \subseteq \bfitS \subseteq Anc\bfith (\bfitt \bfzero ). Let M = Mh be the
matrix associated to h, i.e., \forall i, j, Mi,j = | h(j)| i. We recall that we have the following
equality:

\forall w \in \Sigma \ast , \Psi (h(w)) = M\Psi (w).

We assume that M has no eigenvalue of absolute value 1. Moreover, since it is primi-
tive, it has at least one eigenvalue of absolute value greater than 1. From Proposition
2, there is an invertible matrix P and a Jordan matrix J such that M = PJP - 1.
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Thus P - 1M = JP - 1, and for any vector x, P - 1Mx = JP - 1x. We define the map r
such that r(x) = P - 1x and its projections \forall i, ri(x) = (P - 1x)i. Using this notation
we have for any w, r(\Psi (h(w))) = r(M\Psi (w)) = Jr(\Psi (w)). Recall that J is as follows:\left(     

Jn1
(\lambda 1)

Jn2(\lambda 2) 0

0
. . .

Jnp(\lambda p)

\right)     ,

where the Jni
(\lambda i) are Jordan blocks on the diagonal. That is, Jn(\lambda ) is a n\times n matrix

with \lambda \in \BbbC on the diagonal, 1 on top of the diagonal, and 0 elsewhere. Note that it
may happen that for i \not = j, \lambda i = \lambda j .

Bounds on the \bfitP basis. We introduce some additional notation used in Propo-
sitions 7 and 8. Given a square matrix M and PJP - 1 a Jordan decomposition of
M , let b : \{ 1, . . . , n\} \rightarrow \{ 1, . . . , p\} be the function that associates to an index i of M
the number corresponding to its Jordan block in the matrix J ; thus \forall i \in \{ 1, . . . , n\} ,
\lambda b(i) = Ji,i. Let B be the map that associates to an index i the submatrix correspond-
ing to the Jordan block containing this index, \forall i \in \{ 1, . . . , n\} , B(i) = Jnb(i)

(\lambda b(i)).
For any vector x and 1 \leq is \leq ie \leq n such that is is the index of the first row
of a Jordan block and ie is the index of the last row of the same block, we denote
by x[is,ie] the subvector of x starting at index is and ending at index ie, and then
(Jx)[is,ie] = B(i)x[is,ie]. Let Ec(M) be the contracting eigenspace of M , that is, the

subspace generated by columns i of P such that | \lambda b(i)| < 1. Similarly, let Ee(M) be
the expanding eigenspace of M , that is, the subspace generated by columns i of P
such that | \lambda b(i)| > 1. Note that Ec(M) and Ee(M) are independent from the Jordan
decomposition we chose.

We show that for any vector x appearing on a realizable ancestor of any tem-
plate t0 and any i, | ri(x)| is bounded, handling separately generalized eigenvectors of
eigenvalues of absolute value less and more than 1. It implies that there are finitely
many such integer vectors, since columns of P form a basis of \BbbC n.

Proposition 7. For any i such that | \lambda b(i)| < 1, \{ | ri(\Psi (w))| : w \in Fact\infty (h)\} is
bounded.

Proof. Take i such that | \lambda b(i)| < 1, and let is (resp., ie) be the index that starts
(resp., ends) the Jordan block b(i) (thus is \leq i \leq ie). Let w be a factor of Fact\infty (h).
Then there is a factor w\prime \in Fact(h), an integer l, and for every j \in \{ 0, . . . , l  - 1\} , a
pair of words (sj , pj) \in (Suff(h),Pref(h)) such that

w =

\left(  l - 1\prod 
j=0

hj(sj)

\right)  hl(w\prime )

\left(  0\prod 
j=l - 1

hj(pj)

\right)  .

Thus

r(\Psi (w)) =

l - 1\sum 
j=0

Jjr(\Psi (sj)) + J lr(\Psi (w\prime )) +

l - 1\sum 
j=0

Jjr(\Psi (pj))

and

r(\Psi (w))[is,ie] =

l - 1\sum 
j=0

B(i)jr(\Psi (sjpj))[is,ie] +B(i)lr(\Psi (w\prime ))[is,ie].
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Since liml\rightarrow \infty 
\bigl( \sum l

j=0 B(i)j
\bigr) 
exists, | ri(\Psi (w))| is bounded.

More precisely, a bound for | ri(\Psi (w))| can be found in the following way. Let
\Sigma  - 1 = \{ a - 1 : a \in \Sigma \} be the set of inverses of the letters of \Sigma . Recall that the
free group generated by \Sigma is the group made of the set of words over \Sigma \cup \Sigma  - 1,
where the only nontrivial equalities can be deduced from the fact that \forall a \in \Sigma ,
aa - 1 = a - 1a = \varepsilon . We can also extend the notion of Parikh vector such that the
Parikh vector of the inverse of a letter counts as a negative occurrence of the letter.
Now for any a \in \Sigma \cup \Sigma  - 1 and word s, p, and f such that h(a) = pfs we have
fsh(a - 1)pf = f . For all a \in \Sigma , a \in Fact(h), since h is primitive. This implies that
for every l\prime > l one can find a \in \Sigma \cup \Sigma  - 1 and extend the sequence (sj , pj)j\in \{ 0,...,l - 1\} 
to the sequence (sj , pj)j\in \{ 0,...,l\prime  - 1\} such that

w =

\left(  l\prime  - 1\prod 
j=0

hj(sj)

\right)  hl\prime (a)

\left(  0\prod 
j=l\prime  - 1

hj(pj)

\right)  .

Thus there is an infinite sequence (sj , pj)j\in \BbbN of elements in (Suff(h),Pref(h)) such
that

r(\Psi (w))[is,ie] =

\infty \sum 
j=0

B(i)jr(\Psi (sjpj))[is,ie].

For any i such that | \lambda b(i)| < 1, ri(\Psi (w)) is bounded by u \cdot v, where
\bullet u is the vector such that uj=max \{ | rj(\Psi (sp))| : (s, p) \in (Suff(h),Pref(h))\} ,
\bullet v is the vector such that vj = (1  - | \lambda b(i)| )i - j - 1 if j \in \{ i, . . . , ie\} and zero

otherwise.

Let r\ast i = 2\times max\{ | ri(\Psi (w))| : w \in Fact\infty (h)\} . Let \scrR B be the set of templates t =
[a1, . . . , ak+1,d1, . . . ,dk - 1] such that for every i with | \lambda b(i)| < 1 and j \in \{ 1, . . . , k - 1\} ,
| ri(dj)| \leq r\ast i .

Corollary 3. Every k-template which is realized by h is in \scrR B.

We need a tight upper bound on r\ast i for the algorithm corresponding to Theorem
1 to be efficient. The bound from the last proposition could be too loose, but we
can reach better bounds by considering the fact that (since h is primitive) for any
l > 1, hl has the same factors as h. For example, for the abelian square-free morphism
h8 (section 6.1) the bound for the eigenvalue \lambda \sim 0.33292,+0.67077i is 5.9633 and
becomes 1.4394 for the eigenvalue \lambda 20 of (h8)

20, while the observed bound on the
prefix of size approximately 1 million of a fixed point of (h8)

2 is 1.4341.
For any k-template t0, we denote by Xt0 the set of all the vectors that appear on

an ancestor of t0.

Proposition 8. For every i such that | \lambda b(i)| > 1, for every k-template t0, \{ | ri(x)| :
x \in Xt0\} is bounded.

Proof. The proof is close to the proof of Proposition 7. Let x be a vector of
Xt0 . If it is not a vector of t0, then it appears on a template t which is a parent
of an ancestor t\prime of t0. If x\prime is the vector at the corresponding position in t\prime , then,
by definition of parent, there are s, s\prime , p, p\prime \in (Suff(h),Suff(h),Pref(h),Pref(h)) such
that x\prime = Mx+\Psi (sp) - \Psi (s\prime p\prime ).

By induction there is a vector x0 of t0, an integer l, and a sequence of 4-tuple of
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words (sj , s
\prime 
j , pj , p

\prime 
j)0\leq i\leq l - 1 \in (Suff(h),Suff(h),Pref(h),Pref(h))0\leq i\leq l - 1 such that

x0 =

l - 1\sum 
j=0

M j\Psi (sjpj) +M lx - 
l - 1\sum 
j=0

M j\Psi (s\prime jp
\prime 
j).

Thus

r(x0) =

l - 1\sum 
j=0

Jjr(\Psi (sjpj) - \Psi (s\prime jp
\prime 
j)) + J lr(x).

Let is (resp., ie) be the starting (resp., ending) index of the block b(i). Thus

B(i)lr(x)[is,ie] = r(x0)[is,ie] +

l - 1\sum 
j=0

B(i)jr(\Psi (s\prime jp
\prime 
j) - \Psi (sjpj))[is,ie]

.

Moreover, we know that B(i) is invertible so

r(x)[is,ie] = B(i) - lr(x0)[is,ie] +

l - 1\sum 
j=0

B(i)j - lr(\Psi (s\prime jp
\prime 
j) - \Psi (sjpj))[is,ie]

.

The only eigenvalue of B(i) - 1 is \lambda  - 1
b(i), which has absolute value less than 1, and

thus
\sum \infty 

j=1 | | B(i) - j | | converges. Hence | | r(x)[is,ie]| | can be bounded by a constant
depending only on h, P , J , and i. Thus there is a constant r\ast i,t0 such that \forall x \in Xt0 ,
| ri(x)| \leq r\ast i,t0 .

In the subsection Computing S efficiently, we explain why we do not need to
compute a value for the bound r\ast i,t0 . Since the columns of P form a basis, Propositions
7 and 8 imply that the norm of any vector of a k-template from \scrR B \cap Anch(t0) is
bounded, and thus \scrR B\cap Anch(t0) is finite. We sum up all of the interesting properties
about \scrR B \cap Anch(t0) in the next corollary.

Corollary 4. For any template t0 and any morphism h whose matrix has no
eigenvalue of absolute value 1, we have

\bullet Ranch(t0) \subseteq \scrR B \cap Anch(t0) \subseteq Anch(t0),
\bullet \scrR B \cap Anch(t0) is finite.

From Corollaries 2 and 4, we know that if we can compute \scrR B \cap Anch(t0), then
we can decide whether h\omega (a) avoids abelian kth powers.

We can deduce from Propositions 7 and 8 a naive algorithm to compute a set S of
templates such that Ranch(t0) \subseteq S \subseteq Anch(t0). We first compute a set of templates
Tt0 whose vectors' coordinates in basis P are bounded by r\ast i or r\ast i,t0 , then we compute
the parent relation inside Tt0 and we select the parents that are accessible from t0.
This naive algorithm is not efficient. We explain at the end of this section a more
efficient way to compute such a set S, based on the fact that for morphisms whose
fixed points avoid abelian powers, the set of ancestors \scrR B \cap Anch(t0) is usually very
small relative to Tt0 .

We summarize the proof of Theorem 1. We know from Corollary 4 that one can
compute a set S such that Ranch(t0) \subseteq S \subseteq Anch(t0). Moreover, from Corollary 2
we know that the following are equivalent:

1. h\omega (a) avoids t0.
2. h\omega (a) avoids every small realizations of every elements of S.

For any integer l, we can compute every factor of h\omega (a) of bounded size l. Moreover,
S is finite so we can check every template of S one by one. Therefore, we can check
condition 2 with a computer. Hence one can decide whether h\omega (a) avoids t0.
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Computing S efficiently. The following algorithm does not necessarily compute
\scrR B \cap Anch(t0), but a set S such that Ranch(t0) \subseteq S \subseteq \scrR B \cap Anch(t0). We compute
recursively a set of templates At0 that we initialize at \{ t0\} , and each time that we add
a new template t, we compute the set of parents of t which are in \scrR B and add them
to At0 . At any time we have At0 \subseteq \scrR B \cap Anch(t0), which is finite so this algorithm
terminates. Moreover, if a parent of a template is realizable, then this template also
is realizable. It implies that, in the end, Ranch(t0) \subseteq At0 .

We need to be able to compute a finite superset of the set of realizable parents
of a template. Let t = [a1, . . . , ak+1,d1, . . . ,dk - 1] be a template, and assume that
t\prime = [a\prime 1, . . . , a

\prime 
k+1,d

\prime 
1, . . . ,d

\prime 
k - 1] is a parent of t, and t\prime is realizable by h. Then there

are p1, s1, . . . , pk+1, sk+1 \in \Sigma \ast such that
\bullet \forall i \in \{ 1, . . . , k + 1\} , h(a\prime i) = piaisi,
\bullet \forall i \in \{ 1, . . . , k  - 1\} , di = Md\prime 

i +\Psi (si+1pi+2) - \Psi (sipi+1).
There are finitely many ways of choosing the a\prime i in t\prime and finitely many ways of choosing
the si and the pi, so we need only be able to compute the possible values of the d\prime 

i of
a template with fixed a\prime 1, . . . , a

\prime 
k+1 and s1, p1, . . . , sk+1, pk+1. (Note that this is easy

if M is invertible.)
Suppose we want to compute d\prime 

m for some m. That is, we want to compute all
of the integer solutions x of Mx = v, where v = dm  - \Psi (sm+1pm+2) + \Psi (smpm+1).
Moreover, since we are interested in realizable parents we can restrict ourselves to
solutions that respect the bounds from Proposition 7. The rest is only linear algebra.

First, we can use the Smith decomposition of M , as explained after Proposi-
tion 3, in order to find a particular solution x\bfzero and a basis (\beta 1, . . . , \beta \kappa ) (where
\kappa = dimker(M)) of the lattice \Lambda = ker(M) \cap \BbbZ n. If this equation has no inte-
ger solution, then the template t has no parents with this choice of ai, pi, and si.
We are only interested in parents realizable by h, so we want to compute the set
X = \{ x \in x\bfzero + \Lambda : \forall i s.t. | \lambda b(i)| < 1, | ri(x)| \leq r\ast i \} . Since \Lambda is included in the union
of the generalized eigenspaces of eigenvalue 0, we know by Proposition 7 that X is
finite. Let \scrB be the matrix whose columns are the elements of the basis (\beta 1, . . . , \beta \kappa ),
and let X\scrB = \{ x \in \BbbZ \kappa : x\bfzero + \scrB x \in X\} . ker(M) is generated by \scrB but also by the
generalized eigenvectors corresponding to a null eigenvalue which are columns of P .
So there is a matrix Q made of rows of P - 1 such that Q\scrB is invertible. All of the rows
of Q are rows of P - 1; thus from Proposition 7 there are c1, . . . , c\kappa \in \BbbR such that for
any x \in X\scrB and i \in \{ 1, . . . , \kappa \} , | (Q(\scrB x+x\bfzero ))i| \leq ci and thus | (Q\scrB x)i| \leq ci+| (Qx\bfzero )i| .
Then

| | Q\scrB x| | 2 \leq 
\kappa \sum 

i=1

(ci + | (Qx\bfzero )i| )2.

Let c =
\sum \kappa 

i=1(ci + | (Qx\bfzero )i| )2. From Proposition 4, if \mu min is the smallest eigen-
value of (Q\scrB )\ast (Q\scrB ), then \mu min| | x| | 2 \leq | | Q\scrB x| | 2 \leq c. Moreover, Q\scrB is invertible, thus

\mu min \not = 0, and X\scrB contains only integer points in the ball of radius
\sqrt{} 

c
\mu min

. We can

easily compute a finite superset of X\scrB , and thus of X, and then we can select the
elements that are actually in X. The choice of x\bfzero is significant for the sharpness of
the bound c; it is preferable to take an x\bfzero nearly orthogonal to ker(M).

5. Applications. If a morphism h has k eigenvalues of absolute value less than
1 (counting their algebraic multiplicities), then Proposition 7 tells us that the Parikh
vectors of the factors of Fact\infty (h) are close to the subspace Ee(Mh) of dimension
n - k. This can be useful to avoid patterns in images of Fact\infty (h).

If one tries to avoid a template t in a morphic word g(h\infty ), with g : \Sigma \rightarrow \Sigma \prime and
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| \Sigma \prime | < | \Sigma | , then the set of parents of t is generally infinite: the set of the vectors in
the parents is close to the subspace ker(Mg) of dimension | \Sigma |  - | \Sigma \prime | (if Mg has full
rank). But if the intersection of ker(Mg) with Ee(Mh) is of dimension 0, then we
can generate a finite superset of the realizable parents, and decide with the algorithm
from section 4.

We can use the same idea to avoid additive powers. This is a generalization of the
method used in [3] to show that we can avoid additive cubes in a word over \{ 0, 1, 3, 4\} .

We present here two applications of this method: decide if a morphic word does
not contain large abelian powers and decide if a pure morphic word avoids additive
powers. Other possible applications, such as deciding if a morphic word avoids k-
abelian powers, are not explained here, but the method can be easily generalized.

5.1. Deciding if a morphic word contains large abelian power. In this
subsection, we explain how to decide whether a morphic word g(h\infty (a)) avoids large
abelian kth powers.

Proposition 9. Let h : \Sigma \ast \mapsto \rightarrow \Sigma \ast and g : \Sigma \ast \mapsto \rightarrow \Sigma \prime \ast be two morphisms, and let
Mh and Mg be the matrices associated to those morphisms. If Mh has no eigenvalue
of absolute value 1 and Ee(Mh) \cap ker(Mg) = \{  - \rightarrow 0 \} , then for any template t\prime one can
compute a finite set S that contains any template realizable by h and the parent of t\prime 

by g.

Proof. The proof is similar to the computation of parents in section 4. Let
Mh = PJP - 1 be a Jordan decomposition of Mh. Let \kappa = dimker(Mg), and let
\Lambda = ker(Mg) \cap \BbbZ \kappa . We use the Smith decomposition of Mg to get the matrix B,
whose columns form an integral basis of \Lambda . Assume t = [a1, . . . , ak+1,d1, . . . ,dk - 1] is
realizable by h and the parent of t\prime = [a\prime 1, . . . , a

\prime 
k+1,d

\prime 
1, . . . ,d

\prime 
k - 1] by g. Then there

are p1, s1, . . . , pk+1, sk+1 \in \Sigma \ast such that
\bullet \forall i, g(ai) = pia

\prime 
isi,

\bullet \forall i, d\prime 
i = Mgdi +\Psi (si+1pi+2) - \Psi (sipi+1).

There are finitely many choices for the ai, si and pi. We need to be able to compute all
the possible values for dm for somem with fixed a1, . . . , ak+1 and p1, s1, . . . , pk+1, sk+1.
Then dm is an integer solution ofMgx = v, with v = d\prime 

m+\Psi (smpm+1) - \Psi (sm+1pm+2).
We will see that we have only finitely many choices for dm. As already explained in
section 3, if such a solution exists, then dm \in x\bfzero + \Lambda , and x\bfzero can be found with the
Smith decomposition of Mg.

Let Q be the rectangular submatrix of P - 1 such that the ith line of P - 1 is a line
of Q if and only if | \lambda b(i)| < 1. For every x \in \BbbC \kappa \setminus \{  - \rightarrow 0 \} , Bx \in ker(Mg) by definition of

B. Then, by hypothesis, Bx \not \in Ee(Mh) and QBx \not =  - \rightarrow 
0 since the lines of Q generate

the subspace orthogonal to Ee(Mh). Thus we have rank(QB) = \kappa , which implies that
there is a submatrix Q\prime of Q such that Q\prime B is invertible.

From Proposition 7, \forall i \in \{ 1, . . . , \kappa \} , there is ci \in \BbbR such that for any two factors
u and v of Fact\infty (h), | (Q\prime (\Psi (u) - \Psi (v)))i| \leq ci.

LetX = \{ x \in x\bfzero +\Lambda : \forall i \in \{ 1, . . . , \kappa \} , | (Q\prime x)i| \leq ci\} . Since we are only interested
in realizable solutions, dm has to be in X. Let XB = \{ x \in \BbbZ \kappa : (x\bfzero + Bx) \in X\} 
and x \in XB . Then \forall i, | (Q\prime (Bx + x\bfzero ))i| \leq ci and thus | (Q\prime (Bx))i| \leq ci + | (Q\prime x\bfzero )i| .
Then | | Q\prime Bx| | 2 \leq 

\sum l
i=1(ci + | (Q\prime x\bfzero )i| )2 = c. From Proposition 4, if \mu min is the

smallest eigenvalue of (Q\prime B)\ast (Q\prime B), we have \mu min| | x| | 2 \leq | | Q\prime Bx| | 2 \leq c. Since Q\prime B

is invertible, \mu min \not = 0 and | | x| | \leq 
\sqrt{} 

c
\mu min

. Then XB and X are finite, and we can

easily compute them.
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We can easily adapt the proof of Lemma 2 to get the following proposition.

Proposition 10. If no parent of the k-template [\varepsilon , . . . , \varepsilon ,
 - \rightarrow 
0 , . . . ,

 - \rightarrow 
0 ] by g is re-

alizable by h, then g(Fact\infty (h)) avoids abelian kth powers of a period larger than
maxa\in \Sigma | g(a)| .

The condition of Proposition 10 can be easily checked by a computer using Propo-
sition 9 and Theorem 1. If one wants to decide whether g(Fact\infty (h)) avoids abelian
kth powers of period at least p \leq maxa\in \Sigma | g(a)| , then one can use Proposition 10
and check if g(Fact\infty (h)) does not contain an abelian kth power of period l for every
p \leq l < maxa\in \Sigma | g(a)| . If p > maxa\in \Sigma | g(a)| , then one can take a large enough integer
k such that p \leq maxa\in \Sigma | g(hk(a))| and do the computation on g\circ hk instead of g. Note
that if Ee(Mh)\cap ker(Mg) = \{  - \rightarrow 0 \} , then for every k \in \BbbN , Ee(Mh)\cap ker(Mg\circ hk) = \{  - \rightarrow 0 \} .
Otherwise, for the sake of contradiction let x \in (Ee(Mh) \cap ker(Mg\circ hk)) \setminus \{  - \rightarrow 0 \} . Then

Mk
hx \in ker(Mg). Moreover, x \in Ee(Mh) \setminus \{  - \rightarrow 0 \} , so Mk

hx \in Ee(Mh) and Mk
hx \not =  - \rightarrow 

0 .
Thus Mk

hx \in Ee(Mh) \cap ker(Mg) \setminus \{  - \rightarrow 0 \} , and we have a contradiction.
Consequently we have the following theorem.

Theorem 3. Let h : \Sigma \ast \rightarrow \Sigma \ast be a primitive morphism with no eigenvalue of
absolute value 1, let g : \Sigma \ast \rightarrow \Sigma \prime \ast be a morphism, and let p, k \in \BbbN . If Ee(Mh) \cap 
ker(Mg) = \{  - \rightarrow 0 \} , then one can decide whether g(h\infty (a)) avoids abelian kth powers of
period larger than p.

In section 6.4, we present a morphic word over 3 letters which avoids abelian
squares of period more than 5.

5.2. Deciding if a pure morphic word avoids additive powers on \BbbZ \bfitd . In
this part we consider the morphism \Phi : (\Sigma \ast , .) \rightarrow (\BbbZ d,+) with d \in \BbbN . Let the matrix
F\Phi be such that \forall w, \Phi (w) = F\Phi \Psi (w).

Proposition 11. If Mh has no eigenvalue of absolute value 1 and Ee(Mh) \cap 
ker(F\Phi ) = \{  - \rightarrow 0 \} , then one can compute a finite set of templates S such that each kth
power modulo \Phi in Fact\infty (h) is a realization of a template in S.

Proof. Let \kappa = dimker(F\Phi ), and let \Lambda = ker(F\Phi ) \cap \BbbZ d. By definition any kth
power modulo \Phi realizes at least one template of the form t = [\varepsilon , . . . , \varepsilon ,d1, . . . ,dk - 1],
where \forall i, di \in \Lambda . We use the Smith decomposition of F\Phi , as explained after Propo-
sition 3, to get the matrix B, whose columns form an integral basis of \Lambda .

Let Q be the rectangular submatrix of P - 1 such that the ith line of P - 1 is a
line of Q if and only if | \lambda b(i)| < 1. By definition of B, for every x \in \BbbC \kappa \setminus \{  - \rightarrow 0 \} ,
Bx \in ker(F\Phi ); then, by hypothesis, Bx \not \in Ee(Mh). Since the lines of Q generate the

subspace orthogonal to Ee(Mh), QBx \not =  - \rightarrow 
0 . Thus we have rank(QB) = \kappa , which

implies that there is a submatrix Q\prime of Q such that Q\prime B is invertible.
For all i \in \{ 1, . . . , \kappa \} , let pi be the function such that \forall vector x, pi(x) = (Q\prime x)i.

From Proposition 7, \forall i \in \{ 1, . . . , \kappa \} , there is ci \in \BbbR such that for any two factors u
and v of Fact\infty (h), | pi(\Psi (u) - \Psi (v))| \leq ci.

Let X = \{ x \in \Lambda : \forall i \in \{ 1, . . . , \kappa \} , | pi(x)| \leq ci\} . Since we are only interested in
realizable templates for S, we can add the following condition: \forall i, di \in X.

Let XB = \{ x \in \BbbZ \kappa : Bx \in X\} and x \in XB . Then \forall i, | pi(Bx)| \leq ci, and then

| | Q\prime Bx| | 2 \leq 
\sum l

i=1 c
2
i = c. From Proposition 4, if \mu min is the smallest eigenvalue of

(Q\prime B)\ast (Q\prime B), we have \mu min| | x| | 2 \leq | | Q\prime Bx| | 2 \leq c. Since Q\prime B is invertible, \mu min \not = 0

and | | x| | \leq 
\sqrt{} 

c
\mu min

. Then XB and X are finite, and we can easily compute them.

Therefore, we can compute S = \{ [\varepsilon , . . . , \varepsilon ,d1, . . . ,dk - 1] : \forall i,di \in X\} .
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From Theorem 1 we know that for any given template we can decide whether it is
avoided by a word generated by a primitive morphism with no eigenvalue of absolute
value 1. We can deduce the following result.

Theorem 4. Let h : \Sigma \ast \rightarrow \Sigma \ast be a primitive morphism with no eigenvalue of
absolute value 1, and let \Phi : \Sigma \ast \rightarrow \BbbZ d be a morphism. If Ee(Mh) \cap ker(\Phi ) = \{  - \rightarrow 0 \} ,
then one can decide whether every word in Fact\infty (h) avoids kth powers modulo \Phi .

The conditions from Theorem 4 seem restrictive, but we can apply this theorem
to every morphic word avoiding additive powers that we found. It seems reasonable
to think that the condition Ee(Mh) \cap ker(\Phi ) = \{  - \rightarrow 0 \} is necessary in order to generate
a word avoiding kth power modulo \Phi . But for the sake of completeness, we ask the
following question.

Problem 2. Is there an algorithm deciding kth power modulo \Phi freeness of (pure)
morphic words?

6. Results. In this section we use the algorithms described in sections 4 and
5 to show that additive squares are avoidable over \BbbZ 2, and that abelian squares of
period more than 5 are avoidable over the ternary alphabet. We also give some other
new results about additive power avoidability and long 2-abelian power avoidability.

6.1. Abelian-square-free pure morphic words. Let h6 be the following mor-
phism:

h6 :

\left\{   a \rightarrow ace, b \rightarrow adf,
c \rightarrow bdf, d \rightarrow bdc,
e \rightarrow afe, f \rightarrow bce.

Theorem 5. h\omega 
6 (a) is abelian square-free.

We provide a computer program1 that applies the algorithm described in the
previous section in order to show Theorem 5.

The matrix associated has the following eigenvalues: 0 (with algebraic multiplicity
3), 3,

\surd 
3, and  - 

\surd 
3. A Jordan decomposition of Mh6 is PJP - 1, with

J =

\left[       
0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 3 0 0

0 0 0 0
\surd 
3 0

0 0 0 0 0  - 
\surd 
3

\right]       and P =

\left[          

 - 1
2 0  - 1 1 2+

\surd 
3 2 - 

\surd 
3

1
2  - 1 0 1  - 2 - 

\surd 
3

\surd 
3 - 2

 - 1
2 1  - 1 1  - 1  - 1

0 0 1 1  - 3 - 2
\surd 
3 2

\surd 
3 - 3

0 1
2 1 1 3+2

\surd 
3 3 - 2

\surd 
3

1
2  - 1

2 0 1 1 1

\right]          
.

The bounds on r\ast i , i \in \{ 1, 2, 3\} , computed as explained in the proof of Proposition

7 on (h6)
2, are, respectively, 4, 4

3 , and
4
3 . The template [\varepsilon , \varepsilon , \varepsilon ,

 - \rightarrow 
0 ] has 28514 parents

with respect to those bounds, and it has 48459 different ancestors including itself.
None of the factors of h\omega 

6 (a) is a small realization of a forbidden template so we can
conclude that h\omega 

6 (a) avoids abelian squares.
From Proposition 7, the Parikh vectors of the factors of h\omega 

6 (a) are close to a
subspace of dimension 3. The conditions from Theorem 3 explain why finding this
morphism is the first step in showing that long abelian squares are avoidable over
the ternary alphabet. It seems hard to find simpler morphisms with this property; in
particular we are interested in the following question.

1The code can be found in the supplementary materials (M114937 01.zip [local/web 11.4KB]).

M114937_01.zip
http://epubs.siam.org/doi/suppl/10.1137/17M1149377/suppl_file/M114937_01.zip
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Problem 3. Is there an abelian square-free pure morphic word over 4 or 5 letters
generated by a morphism with only 3 eigenvalues of norm at least 1?

In fact, for similar reasons, a positive answer to the following question could help
show that additive squares are avoidable over \BbbZ .

Problem 4. Is there an abelian square-free pure morphic word generated by a
morphism with only 2 eigenvalues of norm at least 1?

Let h8 be the following morphism:

h8 :

\left\{       
a \rightarrow h, b \rightarrow g,
c \rightarrow f, d \rightarrow e,
e \rightarrow hc, f \rightarrow ac,
g \rightarrow db, h \rightarrow eb.

Theorem 6. Words in h\infty 
8 (e.g., infinite fixed points of (h8)

2) are abelian square-
free.

This morphism may also be interesting because it is a small morphism which
gives an abelian square-free word, its matrix is invertible, and it has 4 eigenvalues of
absolute value less than 1. In particular, such a morphism could be part of a simpler
construction of an abelian square-free word over 4 letters.

It would be interesting for the sake of completeness to be able to decide the
abelian kth power freeness for any morphism. We can get rid of the primitivity
condition with some technicalities, but it seems much harder to deal with eigenvalues
of absolute value exactly 1.

Problem 5. Is it decidable, for any morphism h, whether the fixed points of h
are abelian kth power-free?

In fact, we do not know of any example of interesting morphism with an eigenvalue
of norm 1 generating an abelian kth power-free word.

6.2. Additive square-free words over \BbbZ \bftwo . Let \Phi be the following morphism:

\Phi :

\left\{   a \rightarrow (1, 0, 0), b \rightarrow (1, 1, 1),
c \rightarrow (1, 2, 1), d \rightarrow (1, 0, 1),
e \rightarrow (1, 2, 0), f \rightarrow (1, 1, 0).

Theorem 7. h\omega 
6 (a) does not contain squares modulo \Phi .

We provide a computer program2 that applies the algorithm described in the
previous section to \phi (h\omega 

6 (a)).
In other words, the fixed point h\omega 

add

\bigl( \bigl( 
0
0

\bigr) \bigr) 
of the following morphism does not

contain any additive square:

hadd :

\left\{                 

\biggl( 
0
0

\biggr) 
\rightarrow 

\biggl( 
0
0

\biggr) \biggl( 
2
1

\biggr) \biggl( 
2
0

\biggr) 
,

\biggl( 
1
1

\biggr) 
\rightarrow 

\biggl( 
0
0

\biggr) \biggl( 
0
1

\biggr) \biggl( 
1
0

\biggr) 
,\biggl( 

2
1

\biggr) 
\rightarrow 

\biggl( 
1
1

\biggr) \biggl( 
0
1

\biggr) \biggl( 
1
0

\biggr) 
,

\biggl( 
0
1

\biggr) 
\rightarrow 

\biggl( 
1
1

\biggr) \biggl( 
0
1

\biggr) \biggl( 
2
1

\biggr) 
,\biggl( 

2
0

\biggr) 
\rightarrow 

\biggl( 
0
0

\biggr) \biggl( 
1
0

\biggr) \biggl( 
2
0

\biggr) 
,

\biggl( 
1
0

\biggr) 
\rightarrow 

\biggl( 
1
1

\biggr) \biggl( 
2
1

\biggr) \biggl( 
2
0

\biggr) 
.

This implies the following result.

2The code can be found in the supplementary materials (M114937 01.zip [local/web 11.4KB]).

M114937_01.zip
http://epubs.siam.org/doi/suppl/10.1137/17M1149377/suppl_file/M114937_01.zip
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Theorem 8. \BbbZ 2 is not uniformly 2-repetitive.

It seems rather natural to ask the following question.

Problem 6. What is the smallest alphabet \Sigma \subseteq \BbbZ 2 over which we can avoid
additive squares?

6.3. Additive cubes-free words over \BbbZ . Cassaigne et al. showed that the
fixed point of f : 0 \rightarrow 03, 1 \rightarrow 43, 3 \rightarrow 1, 4 \rightarrow 01, avoids additive cubes [3]. Our
algorithm is able to reach the same conclusion for this morphism. We can also use it
to show that additive cubes are avoidable over some other alphabets of size 4. Let

h4 :

\left\{       
0 \rightarrow 001,
1 \rightarrow 041,
2 \rightarrow 41,
4 \rightarrow 442,

h\prime 
4 :

\left\{       
0 \rightarrow 03,
2 \rightarrow 53,
3 \rightarrow 2,
5 \rightarrow 02,

and h\prime \prime 
4 :

\left\{       
0 \rightarrow 03,
2 \rightarrow 63,
3 \rightarrow 2,
6 \rightarrow 02.

Theorem 9. h\omega 
4 (0), h

\prime \omega 
4 (0), and h\prime \prime \omega 

4 (0) avoid additive cubes.

In fact, it seems that \{ 0, 1, 2, 3\} is the only alphabet of 4 integers over which
additive cubes are hard to avoid.

Problem 7. Are additive cubes avoidable over \{ 0, 1, 2, 3\} ?

6.4. M\"akel\"a's problem. Let g3 be the following morphism:

g3 :

\left\{               

a \rightarrow bbbaabaaac,
b \rightarrow bccacccbcc,
c \rightarrow ccccbbbcbc,
d \rightarrow ccccccccaa,
e \rightarrow bbbbbcabaa,
f \rightarrow aaaaaaabaa.

Theorem 10. The word obtained by applying g3 to the fixed point of h6, that is,
g3(h

\omega 
6 (a)), avoids abelian squares of period more than 5.

The kernel of g3 is of dimension 3, but using the bounds on the 3 null eigenvalues of

h6 we can compute that [\varepsilon , . . . , \varepsilon ,
 - \rightarrow 
0 , . . . ,

 - \rightarrow 
0 ] has at most 16214 parents by g3 realizable

by h6. This is checked using Theorem 3. This gives an answer to a weak version of
Problem 1.

Theorem 11. There is an infinite word over 3 letters avoiding abelian squares of
period more than 5.

The optimal value for this result is probably not 5, so we ask the following ques-
tion.

Problem 8. What is the smallest p \in \BbbN such that one can avoid abelian squares
of period more than p over 3 letters?

The proof technique presented here could be helpful to solve this problem. Note
that we know that 2 \leq p \leq 5. In fact, g3(h

\omega 
6 (a)) contains 34 different abelian squares.

We could also ask to minimize the number of different abelian squares.

6.5. Avoidability of long 2-abelian squares. Recently, Karhum\"aki, Saarela,
and Zamboni introduced the notion of k-abelian equivalence as a generalization of
both abelian equivalence and equality of words [9]. Two words u and v are said to
be k-abelian equivalent (for k \geq 1), denoted u \approx a,k v, if for every w \in \Sigma \ast such that
| w| \leq k, | u| w = | v| w. A word u1u2 . . . un is a k-abelian nth power if it is nonempty,
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and u1 \approx a,k u2 \approx a,k . . . \approx a,k un. Its period is | u1| . A word is said to be k-abelian-
nth-power-free if none of its factors are a k-abelian nth power. Note that when k = 1,
the k-abelian equivalence is exactly the abelian equivalence.

The existence of the word from Theorem 10 allows us to answer the following
question.

Problem 9 (see [14, 15]). Can we avoid 2-abelian squares of period at least p
on the binary alphabet, for some p \in \BbbN ?

Let h2 be the following morphism:

h2 :

\left\{   a \rightarrow 111111111000,
b \rightarrow 101011110100,
c \rightarrow 101011000000.

Theorem 12. h2(g3(h
\omega 
6 (a))) does not contain any 2-abelian square of period more

than 63.

Using the same technique as in [15] we can show, by reasoning only on h2, that
any 2-abelian square of h2(g3(h

\omega 
6 (a))) is small (shorter than 9) or has a parent real-

ized by g3(h
\omega 
6 (a)) which is an abelian square. Thus the largest 2-abelian squares of

h2(g3(h
\omega 
6 (a))) have a period of at most 12\times 7 = 84. The value 63 is then obtained by

checking all of the factors of h2(g3(h
\omega 
6 (a))) of size at most 168.

The value 63 is probably not optimal (the lower bound from [15] is 2). In fact,
it is possible to reach 60 by using a simpler second morphism, but the proof is more
complicated and requires adapting the notion of templates and parents to k-abelian
powers. The easiest way to significantly improve this result would be to improve the
upper bound on the period for M\"akel\"a's question.
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