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AVOIDING TWO CONSECUTIVE BLOCKS OF SAME SIZE AND
SAME SUM OVER Z2*

MICHAEL RAOT AND MATTHIEU ROSENFELD'

Abstract. A long standing question asks whether Z is uniformly 2-repetitive, that is, whether
or not there is an infinite sequence over a finite subset of Z avoiding two consecutive blocks of the
same size and same sum [J. Justin, J. Combin. Theory Ser. A, 12 (1972), pp. 357-367], [G. Pirillo
and S. Varricchio, Semigroup Forum, 49 (1994), pp. 125-129]. Cassaigne et al. [J. ACM, 61 (2014),
10] showed that Z is not uniformly 3-repetitive. We show that Z2 is not uniformly 2-repetitive.
Moreover, this problem is related to a question from Mékela in combinatorics on words, and we
answer a weak version of it.
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1. Introduction. Let k& > 2 be an integer, and let (G,+) be a group. An
additive kth power is a nonempty word wi ...wy over 3 C G such that for every
i€ {2,...,k}, lw;| = Jw1] and Y w; = > wy (where Y v = Zlﬂlv[z]) Using the
terminology of Pirillo and Varricchio [13], we say that a group (G, +) is k-uniformly
repetitive if every infinite word over a finite subset of G contains an additive kth
power as a factor. It is a long standing question whether Z is uniformly 2-repetitive
or not [8, 13]. Cassaigne et al. [3] showed that there is an infinite word over the finite
alphabet {0,1,3,4} C Z without additive 3rd powers, that is, Z is not uniformly
3-repetitive. In section 6 we show the following theorem.

THEOREM 8. Z? is not uniformly 2-repetitive.

When (G, +) is the abelian-free group generated by the elements of ¥ we talk
about abelian repetitions. The avoidability of abelian repetitions has been studied
since a question from Erdds arose [6, 7]. An abelian square is any nonempty word
uv where u and v are permutations of each other. Erdds asked whether there is an
infinite abelian-square-free word over an alphabet of size 4. Kerénen gave a positive
answer to Erdos’s question in 1992 by giving an 85-uniform morphism, found with
the assistance of a computer, whose fixed point is abelian-square-free [10].

Erdés also asked if it is possible to construct a word over 2 letters which con-
tains only small squares. Entringer, Jackson, and Schatz gave a positive answer to
this question [5]. They also showed that every infinite word over 2 letters contains
arbitrarily long abelian squares. This naturally leads to the following question from
Maékel4 (see [11]).

PROBLEM 1. Can you avoid abelian squares of the form uv where |u| > 2 over
three letters? Computer experiments show that you can avoid these patterns at least
in words of length 450.

We show that the answer is positive if we replace 2 by 6.
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THEOREM 11. There is an infinite word over 3 letters avoiding an abelian square
of period more than 5.

The proofs of Theorems 8 and 11 are close in spirit (in fact, both theorems imply
independently that Z? is not 2-repetitive). Moreover, the proofs are both based on
explicit constructions using the following morphism:

a— ace, b— adf,
heg: < c¢— bdf, d— bde,
e — afe, f— bce.

First, we need to show the following theorem.
THEOREM 5. h¥(a) is abelian-square-free.

In section 4 we describe an algorithm to decide if a morphic word avoids abelian
powers, and use it to show Theorem 5. This algorithm generalizes the previously
known ones [2, 4], and can decide on a wider class of morphisms which includes hg.
In section 5, we explain how to extend the decidability to additive and long abelian
powers. Finally, in section 6, we give the results and the constructions.

2. Preliminaries. We use terminology and notation of Lothaire [12]. An alpha-
bet ¥ is a finite set of letters, and a word is a (finite or infinite) sequence of letters.
The set of finite words is denoted by ¥* and the empty word by €. One can also view
¥* equipped with the concatenation as the free monoid over X.

For any word w, we denote by |w| the length of w, and for any letter a € ¥, |w|,
is the number of occurrences of a in w. The Parikh vector of a word w € ¥*, denoted
by ¥(w), is the vector indexed by % such that for every a € &, ¥(w)[a] = |w|,. Two
words u and v are abelian equivalent, denoted by u ~, v, if they are permutations
of each other, or equivalently if U(u) = ¥(v). For any integer k > 2, an abelian
kth power is a word w that can be written w = wyws ... wg with Vi € {2,... k},
w; &, wy. Its period is |w;|. An abelian square (resp., cube) is an abelian 2nd power
(resp., abelian 3rd power). A word is abelian-kth-power-free, or avoids abelian kth
powers, if none of its nonempty factors are an abelian kth power.

Let (G,+) be a group, and let @ : (X*,.) — (G, +) be a morphism. Two words u
and v are ®-equivalent, denoted u =g v, if ®(u) = ®(v). For any k > 2, a kth power
modulo ® is a word w = wywsy ... wg with Vi € {2,...,k}, w; ~¢ wy. If, moreover,
|wi] = |wa] = -+ = |wg|, then it is a uniform kth power modulo ®. A square modulo
® (resp., cube modulo ®) is a 2nd power (resp., 3rd power) modulo ®. In this article,
we only consider groups (G,+) = (Z%,+) for some d > 0. We say that (G,+) is
k-repetitive (resp., uniformly k-repetitive) if for any alphabet ¥ and any morphism
®: (X*,.) = (G, +) every infinite word over ¥ contains a k-power modulo ® (resp.,
a uniform k-power modulo ®). Note that, for any integers n and k, if (Z"*1,+) is
k-repetitive, then (Z",+) is uniformly k-repetitive. Uniform kth powers modulo ®
are sometimes called additive kth powers, without mention of the morphism ®, if the
value of ®(a) is clear from the context. ® can be seen as a linear map from the
Parikh vector of a word to Z¢. Therefore, we can associate to ® the matrix Fp such
that Vw € E*, ®(w) = Fp¥(w). Note that if d = |X| and Fg is invertible, then two
words are abelian-equivalent if and only if they are ®-equivalent. An application of
Szemerédi’s theorem shows that for d = 1, for any finite alphabet X, and for k € N,
it is not possible to avoid kth power modulo ® over X, that is, (Z,+) is k-repetitive
for any k. On the other hand, whether Z is uniformly 2-repetitive or not is a long
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standing open question [8, 13|, and Cassaigne et al. showed that Z is not uniformly
3-repetitive [3]. We show on Theorem 8 that Z? is not uniformly 2-repetitive.

Let Suff(w) (resp., Pref(w), Fact(w)) be the set of suffixes (resp., prefixes, factors)
of w. For any morphism h, let Suff(h) = Ugex Suff(h(a)), Pref(h) = Uyexs Pref(h(a)),
and Fact(h) = Ugex Fact(h(a)).

A morphism h is nonerasing if there is no a such that h(a) = €. A morphism
h : 3* — $* is prolongable at a € ¥ if h(a) = as for some s € 3. In this case the
sequence (h'(a));en converges toward the infinite word w = ash(s)h?(s)h3(s).... If
the morphism is nonerasing, w is infinite, and we say that w is a pure morphic word
generated by h, denoted by h*(a). Note that every pure morphic word generated by
a morphism h is a fixed point of h. A morphic word is the image of a pure morphic
word by a second morphism.

To a morphism h on ¥*, we associate a matrix My on ¥ x ¥ such that (Mp)ap =
|h(b)|a- The eigenvalues of h are the eigenvalues of Mp,.

For any morphism h : ¥* + X*, let Fact™(h) = U2, Fact(h'). We say that
h is primitive if there exists k € N such that Ya € %, h¥(a) contains all of the
letters of X (that is, Mj, is primitive). If h is primitive, then for any letter a € X,
Fact™(h) = U2, Fact(h'(a)), and we can use that fact to show the following property.

PROPOSITION 1. Let h be a primitive morphism on X* prolongable at a; then
Fact(h¥(a)) = Fact®>(h).

Proof. Since h is prolongable at a there is, by definition, a nonempty word
s € X7T such that h(a) = as and h¥(a) = h(a)h(s)h*(s).... Remark that Vi,
h(a)h(s)h?(s)...h*(s) = hiT'(a). Thus, by primitivity of h, Fact(h¥(a)) = U,
Fact(h'(a)) = Fact™(h). 0

In the rest of this section we recall some classical notions from linear algebra.

Jordan decomposition. A Jordan block J,(A) is an n x n matrix with A € C
on the diagonal, 1 on top of the diagonal, and 0 elsewhere:

A

We recall the following well-known proposition (see [1]).

PROPOSITION 2 (Jordan decomposition). For any n x n matric M on C, there
is an invertible n x n matriz P and an n x n matric J such that M = PJP~, and
the matriz J is as follows:

Jnl ()‘1)
an (/\2) 0

an()‘p)
where the J,,(\;) are Jordan blocks on the diagonal. PJP~1 is a Jordan decomposi-
tion of M.

The A;, i € {1,...,p}, are the (not necessarily distinct) eigenvalues of M. The
set of columns from P are generalized eigenvectors of M.
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Note that for every k > 0, (J,,(A))¥ is the nxn matrix M with M, ; = (jfi))\k*jﬂ',
with (§) =0if a <bor b < 0. Thus, if [\] <1, Y27 1(Jn(A))* is the matrix N where
N;i; = (1 =X if j > i, and 0 otherwise. We can easily deduce from these
observations the series of kth powers of a matrix in Jordan normal form, and its sum.

Smith decomposition. The Smith decomposition is useful to solve systems of
linear Diophantine equations.

PROPOSITION 3 (Smith decomposition). For any matrizc M € Z"*™, there are
UeZ"™ ™, DeZ"™™, and V € Z™*™ such that
e D is diagonal, i.e., D; ; =0 if i # j),
o U and V are unimodular, i.e., their determinant is 1 or —1),

e M =UDV.

Since U and V' are unimodular, they are invertible over the integers. If one wants
to find integer solutions x of the equation Mx = y, where M is an integer matrix
and y an integer vector, one can use the Smith decomposition UDV of M. One can
suppose without loss of generality (w.l.0.g.) that n = m. Otherwise, one can fill in
with zeros. Then DVx = U~ ly. Integer vectors in ker(M) form a lattice A. The set
of columns i in V! such that D; ; = 0 gives a basis of A. Let y’ = U~'y, which is
also an integer vector. Finding the solution x’ of Dx’ =y’ is easy, since D is diagonal.
The set of solutions is nonempty if and only if for every 4, y’; is a multiple of D; ;.
One can take xg = V ~!xj as a particular solution to Mxg = y, with (xg); = 0 if
D;; =0, and (xg); =y';/D;; otherwise. The set of solutions is given by xg + A.

For any vector x we denote by ||x|| its Euclidean norm. For any complex matrix
M, let ||M]| be its norm induced by the Euclidean norm, that is, ||M|| = sup { [ Mx]]

[1xI]
x # ﬁ} Let M* be the conjugate transpose of the matrix M. We will use the
following classical proposition from linear algebra (see [1]).

PROPOSITION 4. Let M be a matriz, and let pumin (T€SD., maz) be the minimum
(resp., maximum) over the eigenvalues of M*M (which are all real and nonnegative).
Then for any x,

pomin | 1|[* < NIMx[* < promaal %]

For any vector x, we also denote by ||x||; its L1 norm, that is, the sum of the
absolute value of its coordinates. The L; norm is useful for us because of the following
property: for any w € ¥*, |w| = || ¥(w)]]:.

3. Templates. The notion of templates was first introduced by Currie and Ram-
persad for their decision algorithm [4]. A k-template is a (2k)-tuple of the form
t = [a1,...,a5+1,d1,...,dg_1] where Vi, a; € ¥ U {e} and d; € Z". A word
W= a1w1a9Ws . . . WEak+1, where w; € X* | is a realization of (or realizes) the template
tifvie{l,...,k—1}, ¥(w;y1) — ¥U(w;) = d;. A template ¢ is realizable by h if there
is a word in Fact®(h) which realizes t.

Using the notion of k-templates, we can give another equivalent definition of
abelian kth powers.

PROPOSITION 5. Let k > 2 be an integer. A nonempty word is an abelian kth
power if and only if it realizes the k-template [e,...,e, 0,..., 0].

Let t' = [a},...,a},d'1,...,d"x—1] and t = [a1,...,ap41,d1,...,dx_1] be two
k-templates, and let h be a morphism. We say that t' is a parent by h of t if there

are P1,S1, ..., Dk+1, Sk+1 € 2° such that
o Vi€ {1, ceey k+ 1}, h(a;) = Pp;a;S;,
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o Vi€ {1, ek — 1}, d;, = M,d’; + \I’(Si_:,_lpi_;,_g) — \IJ(Sipi+1)-
We denote by Pary,(¢) the set of parents by h of t. We will show in Proposition 1 that
for any t' € Pary,(¢), if ¢’ is realized by a word w, then ¢ is realized by a factor of h(w).
In Proposition 2 we show that if ¢ is realized by a long enough word from Fact™ (h),
then there is a realizable template t' € Pary,(t).

A template t' is an ancestor by h of a template ¢ if there exists n > 1 and a
sequence of templates ¢ = tq,to,...,t, =t such that for any 4, ¢; 11 is a parent by h
of t;. A template t’ is a realizable ancestor by h of a template ¢ if ¢’ is an ancestor
by h of t and if ¢’ is realizable by h. For a template ¢, we denote by Ancy(t) (resp.,
Rancy,(t)) the set of all the ancestors (resp., realizable ancestors) by h of t. We may
omit “by h” when the morphism is clear from the context.

4. The decision algorithm. In this section, we show the following theorem.

THEOREM 1. For any primitive morphism h with no eigenvalue of absolute value
1 and any template to, it is possible to decide whether Fact® (h) realizes tg.

Together with Proposition 1, Theorem 1 implies the following corollary.

COROLLARY 1. For any primitive morphism h with no eigenvalue of absolute
value 1 it is possible to decide whether the fixed points of h are abelian kth power-
free.

The main difference compared with the algorithm from Currie and Rampersad
[4] is that we allow h to have eigenvalues of absolute value less than 1.

We first show that for any set S such that Rancy(tg) C S C Ancy(tg), Fact®(h)
realizes t¢ if and only if there is a small factor of Fact®(h) which realizes a template
in S. Then we explain how to compute such a finite set S. Since S is finite we can
check for any k-template ¢t € S whether a small factor realizes ¢t and we can conclude.

4.1. Parents and preimages. The next two lemmas tell that the realizations
of the parents of a template ¢ form the set of preimages by h of the realizations of h
up to finitely many missing factors.

LEMMA 1. Let t’ be a parent of a k-template ty, and let w € X*. If w realizes t',
h(w) contains a factor that realizes tg.

Proof. Let to = [a1,...,ap41,d1,...,dxg—1]and t’ = [a},... a1, d"1,. .., d"k_1].
Since w realizes ¢, there are wy,...,wy € ¥* such that w = ajwyay ... wraj, ., and
Vi S {1, AN .7]€ - 1}, \Il(w,;_H) - \IJ(UM) = d;

Since t’ is a parent of tg, there are p1,$1,...,Pkr1,8k+1 € X* such that

o Vic{l,....,k+ 1}, h(a}) = pia;si,
o Vie{l,....,k—1},d; = Mpd’; + Y(si11piv2) — V(Sipit1)-
Thus h(w) = praisih(wi)p2asseh(ws) ... h(wg)pr+1ak+1Sk+1. Now let Vi u; =
sih(w;)piy1; then the word v = ajujagus ... ugags1 is a factor of h(w). Moreover,
Vi,
W(uir1) = U(u;) = W(sit1h(wir1)piva) — Y(sih(wi)piv1)
= U(h(wit1)) — Y(h(wi)) + U(sit1pi+2) — ¥ (sipit1)
= My, (V(wit1) — Y(w;)) + V(si41pi42) — Y(siDit1)
= Mpd; + U(sit1piv2) — Y(siPiv1),

Thus u realizes tg. O
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Let § = maxgex |h(a)] and A(t) = max"![|d;||; for any k-template t =
[ah'"aak—O—ladla""dk—l]'

LEMMA 2. Let t be a k-template, and let w € ¥* be a word which realizes t. If
|w| > k(w +0+41) +1, then for every w' such that w € Fact(h(w')) there is
a parent t' of t such that a factor of w' realizes t'.

The idea is that if the realization is long enough, then the part corresponding to
each vector is longer than §. This implies that the a; are images of different letters,
and we can then unfold the definitions.

Proof of Lemma 2. Let t = [ay,...,ak+1,d1,...,dr—1] be a k-template, and let
w € Fact(h(w')) such that |w| > k(w 4+ 64 1) + 1 and w realizes t. Then
there are wy,...,w, € ¥* such that w = ajwiagwsy ... wrarsq and Vi € {1,..., k —
1}, ¥(wit1) — Y(w;) = d;. Thus for any 4,5 € {1,...,k} such that j < i, U(w;) =

U(w;) + E:;:l ; dm and, by triangular inequality, we have

] = oyl = 1)l s = 1)
< () — ()
1—1
<> dn
<3 Nl
< (i- HAW).

Therefore, for any 4, j € {1,...,k}, |w;| < |i—j|A(t)+|w;|. Combining this inequality
with [w| = k+1+ 3% _ |wy,|, we deduce that for any i € {1,...,k}, Jw| < 3¢ _ (Ji—
m|A®)+|wi|)+k+1 < @A(t)—l—kmﬂ—i—k—&-l. Then, by hypothesis, k(%-ﬁ-
lwil +1) +1 > |w| > k(E=22E 4 54 1) + 1, and consequently Vi, |w;] > &6 =
maxqes [h(a)|. We also know that w € Fact(h(w')) so there are af,...,a) , € X,
wh, ..., w, € X%, p1,...,pr+1 € Pref(h), and sq,...,sp41 € Suff(h) such that

o W' = ajwiay...apwap,, is a factor of w’',

e Vi, h(al) = p;a;s;,

° Vi, w; = sih(wg)piH.
Then w” realizes t' = [a], ... ,a§€+1, U(wh) —¥(wy),. .., U(w,)—¥(wy,_,)]. Moreover,
Vi

di = V(wiy1) — ¥(w;),

d; = U(sip1h(wiy1)pive) — U(sih(w))pis1),

d; = MV (w;) — Mp¥(w;) + ¥ (sit1piv2) — U(sipit1),
d; = Mp(¥(w;) — W(w;)) + ¥(sit1piv2) — Y(siPit1)-

Thus ' is a parent of ¢, and t’ is realized by w” as a factor of w’. d

A small realization of a k-template ¢ is a realization w of ¢ such that |w| <
k((k;f‘(t) +6+ 1) +1. Using Lemmas 1 and 2 we can show the following proposition.

PROPOSITION 6. Let h be a primitive morphism, and let ty be a k-template. Then
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the following conditions are equivalent:
1. Fact™(h) contains no realization ty.
2. Fact®(h) contains no small realizations of any elements of Ancy,(to).
3. Fact™®(h) contains no small realizations of any elements of Rancy, (to).

Proof. 2. < 3. If a template t € Ancy(to) is realized, then by definition ¢ €
Rancy,(to) so 3 = 2. The other direction is clear from Rancy,(to) C Ancy (o).

1. = 2. Assume that Fact®(h) contains a small realization w of ¢ € Ancy(tg).
By definition there are t,, = t,t,—1,tn—2,...,t1 € Ancp(to) such that Vi € [0,n — 1],
t;11 € Pary(t;). Now by applying inductively Lemma 1 we get that Vi, ¢,,_; is realized
by a factor of h’(w) € Fact>(h). So, in particular, Fact>(h) contains a realization of
to.-

2. = 1. Let w € Fact®(h) be a realization of ty. By definition, there is an
integer i and a letter @ € ¥ such that w € Fact(hi(a)). If w is a small realization
of tg, then we are done since tg € Ancy(tg). If w is not a small realization, we can
apply Lemma 2, and we know that there is a parent t; of ¢y and w; € Fact(h*~!(a))
such that w; realizes t;. By Lemma 2, if w; is not a small realization of ¢; there is a
parent ty of t; and we € Fact(hi=2(a)) such that ws realizes ts.

We can apply this reasoning inductively until we get a wg, which is a small
realization of ¢;. This happens eventually since Vj € [1,i — 1], |w;| < |k~ (a)|. By
construction t; is an ancestor of tg, so we have a small realization of an ancestor

of to. O
We get the following corollary.

COROLLARY 2. Let h be a primitive morphism prolongable at a, and let tg be a
k-template. Let S be a set of k-template such that Rancy(tg) € S C Ancy(tg). Then
the following conditions are equivalent:

1. h¥(a) avoids to.
2. h¥(a) avoids every small realizations of every element of S.

Any given template only has finitely many small realizations, and we need only
compute small factors of h*(a) to compute them. If we can compute a finite set S
such that Rancy(tg) € .S C Ancy(tg), then we can decide if h¥(a) avoids tg.

In particular, Currie and Rampersad showed that if M, !is defined and has an
induced Euclidean norm smaller than 1, then Ancy(to) is finite and computable [4].
They deduced a result really similar to the following theorem.

THEOREM 2. For any primitive morphism h, if Mh_1 is defined and has induced
Euclidean norm smaller than 1, then, for any template to, it is possible to decide
whether Fact™ (h) realizes to.

In the setting of Theorem 1 My}, is not necessarily invertible, which implies that
to could have infinitely many parents and ancestors. Thus we need to find a way to
discard many elements of Ancy(tp). In fact, using the Jordan normal form of M), we
can find conditions on the vectors of the templates of Rancp (to).

4.2. Finding the set Rancy(tg) € S C Ancp(to). Let M = M, be the
matrix associated to h, i.e., Vi, j, M; ; = |h(j)|;. We recall that we have the following
equality:

Yw € X¥, ¥(h(w)) = MU (w).

We assume that M has no eigenvalue of absolute value 1. Moreover, since it is primi-
tive, it has at least one eigenvalue of absolute value greater than 1. From Proposition
2, there is an invertible matrix P and a Jordan matrix J such that M = PJP~L.
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Thus P~'M = JP~!, and for any vector x, P~'Mx = JP~'x. We define the map r
such that r(x) = P~'x and its projections Vi, 7;(x) = (P~1x);. Using this notation
we have for any w, r(¥U(h(w))) = r(M¥(w)) = Jr(¥(w)). Recall that J is as follows:

Jn1 (Al)
Iy (A2) 0

Iy (Ap)

where the J,,, (\;) are Jordan blocks on the diagonal. That is, J,,(\) is a n x n matrix
with A € C on the diagonal, 1 on top of the diagonal, and 0 elsewhere. Note that it
may happen that for i # j, A\; = A;.

Bounds on the P basis. We introduce some additional notation used in Propo-
sitions 7 and 8. Given a square matrix M and PJP~! a Jordan decomposition of
M;let b:{1,...,n} — {1,...,p} be the function that associates to an index i of M
the number corresponding to its Jordan block in the matrix J; thus Vi € {1,...,n},
Api) = Jii- Let B be the map that associates to an index ¢ the submatrix correspond-
ing to the Jordan block containing this index, Vi € {1,...,n}, B(i) = Ju,,, (Ap(s))-
For any vector x and 1 < iy < i, < n such that is is the index of the first row
of a Jordan block and i, is the index of the last row of the same block, we denote
by x[;, ;) the subvector of x starting at index is and ending at index 4., and then
(J%) ;.0 = B()x[i, ) Let Ec.(M) be the contracting eigenspace of M, that is, the
subspace generated by columns i of P such that [Ay;)| < 1. Similarly, let E.(M) be
the expanding eigenspace of M, that is, the subspace generated by columns i of P
such that [Ay(;)| > 1. Note that E.(M) and E.(M) are independent from the Jordan
decomposition we chose.

We show that for any vector x appearing on a realizable ancestor of any tem-
plate to and any i, |r;(x)| is bounded, handling separately generalized eigenvectors of
eigenvalues of absolute value less and more than 1. It implies that there are finitely
many such integer vectors, since columns of P form a basis of C".

1ssle

PROPOSITION 7. For any i such that |Ay;)| < 1, {|rs(¥(w))| : w € Fact>(h)} is
bounded.

Proof. Take i such that [Ay;)| < 1, and let i, (resp., ic) be the index that starts
(resp., ends) the Jordan block b(i) (thus is <14 <1i.). Let w be a factor of Fact>(h).

Then there is a factor w’ € Fact(h), an integer I, and for every j € {0,...,l — 1}, a
pair of words (s;,p;) € (Suff(h), Pref(h)) such that

-1 0
w={[]W(s;) | ) [ T » (@)
=0 =i

1

J

Thus

-1 -1
r(W(w)) =Y Fr(W(s;) + I (W) + Y S (p;)
j=0 J=0

and
-1

r(U(w)g,.ag = > B T(U(s;p)pi, 0. + BT (W), -
§=0
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Since lim;_ o0 (Zé‘:o B(i)7) exists, |r;(¥(w))] is bounded.

More precisely, a bound for |r;(¥(w))| can be found in the following way. Let
Y71 = {a7! : a € X} be the set of inverses of the letters of ¥. Recall that the
free group generated by ¥ is the group made of the set of words over ¥ U 71,
where the only nontrivial equalities can be deduced from the fact that Va € X,
aa™' = a7 la = e. We can also extend the notion of Parikh vector such that the
Parikh vector of the inverse of a letter counts as a negative occurrence of the letter.
Now for any a € ¥ U X! and word s, p, and f such that h(a) = pfs we have
fsh(a=Ypf = f. For all @ € ¥, a € Fact(h), since h is primitive. This implies that
for every I’ > [ one can find ¢ € X U X! and extend the sequence (55,P5)jeq0,...1-1}
to the sequence (s;,p;)jeqo,...,r—13 such that

-1

0
w=[J[#6) |0 @ | T » )
7=0

j=l'—1

Thus there is an infinite sequence (sj,p;)jen of elements in (Suff(h), Pref(h)) such
that

r(U(w))ps,i = D BO (¥ (s505)) i)
§=0

For any 4 such that [Ay;)| < 1, 7(¥(w)) is bounded by u - v, where
e u is the vector such that u;=max {|r;(¥(sp))|:(s,p) € (Suff(h), Pref(h))},

e v is the vector such that v; = (1 — [Ayy|) 71 if j € {i,...,ic} and zero
otherwise. O

Let r} = 2xmax{|r;(¥(w))| : w € Fact>*(h)}. Let Rp be the set of templates t =
[a1,...,aks1,d1,...,dg_1] such that for every i with | Xy(;y| < land j € {1,...,k—1},
ri(dy)] < i

COROLLARY 3. FEwvery k-template which is realized by h is in Rp.

We need a tight upper bound on r; for the algorithm corresponding to Theorem
1 to be efficient. The bound from the last proposition could be too loose, but we
can reach better bounds by considering the fact that (since h is primitive) for any
I > 1, k! has the same factors as h. For example, for the abelian square-free morphism
hg (section 6.1) the bound for the eigenvalue A ~ 0.33292,4+0.67077¢ is 5.9633 and
becomes 1.4394 for the eigenvalue A\2° of (hg)?°, while the observed bound on the
prefix of size approximately 1 million of a fixed point of (hg)? is 1.4341.

For any k-template to, we denote by Xy, the set of all the vectors that appear on
an ancestor of tg.

PROPOSITION 8. For every i such that |\y)| > 1, for every k-template to, {|r:(x)] :
x € Xy, } is bounded.

Proof. The proof is close to the proof of Proposition 7. Let x be a vector of
Xy,. If it is not a vector of tg, then it appears on a template ¢ which is a parent
of an ancestor t' of ty. If 2’ is the vector at the corresponding position in ', then,
by definition of parent, there are s,s',p,p’ € (Suff(h), Suff(h), Pref(h), Pref(h)) such
that ' = Mz + U(sp) — U(s'p’).

By induction there is a vector xq of tg, an integer [, and a sequence of 4-tuple of
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words (s;, 85, p;,0))o<i<i—1 € (Suff(h), Suff(h), Pref (h), Pref(h))°<*<!=1 such that

-1 -1
X0 =Y MIW(s;p;) + M'x =Y MIU(sp)).
3=0 3=0

Thus -
r(xg) = Z er(‘l/(sjpj) — \Il(s;p;)) + J'r(x).
j=0

Let is (resp., i.) be the starting (resp., ending) index of the block b(¢). Thus

isﬂle].

-1
B(i)lr(x)[is,ic] = r(XO)[iS,iE] + ZB(Z)]T(\IJ(SSPS) - \I’(Sjpj))[
§=0

Moreover, we know that B(7) is invertible so
-1

(%), i = BO)'r(x0), i) + D BE (W () — Ws;py)
§=0

[is;ie].

The only eigenvalue of B(i)~! is )\b(zl.), which has absolute value less than 1, and

thus >3°2, ||B(i)~7|| converges. Hence |I7(x)g;. ;1| can be bounded by a constant
depending only on h, P, J, and i. Thus there is a constant 77, such that Vx € Xy,
ri(X)[ <774, 0

In the subsection Computing S efficiently, we explain why we do not need to
compute a value for the bound r7, . Since the columns of P form a basis, Propositions
7 and 8 imply that the norm of any vector of a k-template from Rp N Ancy(to) is
bounded, and thus R 5N Ancy(tp) is finite. We sum up all of the interesting properties
about R N Ancy,(tg) in the next corollary.

COROLLARY 4. For any template ty and any morphism h whose matriz has no
eigenvalue of absolute value 1, we have
e Rancy(tp) € Rp N Ancy(to) C Ancy(to),
e Rp N Ancy(ty) is finite.

From Corollaries 2 and 4, we know that if we can compute R N Ancy(tp), then
we can decide whether h,(a) avoids abelian kth powers.

We can deduce from Propositions 7 and 8 a naive algorithm to compute a set S of
templates such that Rancy(tg) € .S C Ancy(tp). We first compute a set of templates
T}, whose vectors’ coordinates in basis P are bounded by r} or r, , then we compute
the parent relation inside T3, and we select the parents that are accessible from tg.
This naive algorithm is not efficient. We explain at the end of this section a more
efficient way to compute such a set S, based on the fact that for morphisms whose
fixed points avoid abelian powers, the set of ancestors Rp N Ancy(to) is usually very
small relative to T,.

We summarize the proof of Theorem 1. We know from Corollary 4 that one can
compute a set S such that Rancy(tg) € S C Ancy(tp). Moreover, from Corollary 2
we know that the following are equivalent:

1. h¥(a) avoids t.

2. h¥(a) avoids every small realizations of every elements of S.
For any integer [, we can compute every factor of h*(a) of bounded size I. Moreover,
S is finite so we can check every template of S one by one. Therefore, we can check
condition 2 with a computer. Hence one can decide whether h*(a) avoids t.
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Computing S efficiently. The following algorithm does not necessarily compute
R N Ancy(tp), but a set S such that Rancy(tg) € .S C Rp N Ancy(tp). We compute
recursively a set of templates Ay, that we initialize at {¢o}, and each time that we add
a new template ¢, we compute the set of parents of ¢t which are in Rp and add them
to Ay. At any time we have Ay, C Rp N Ancy(tg), which is finite so this algorithm
terminates. Moreover, if a parent of a template is realizable, then this template also
is realizable. It implies that, in the end, Rancy (tg) C Ay,.

We need to be able to compute a finite superset of the set of realizable parents

of a template. Let t = [a1,...,ak+1,d1,...,dr—1] be a template, and assume that
t'=la},...,a;,,,d"1,...,d'x_1] is a parent of £, and ¢’ is realizable by h. Then there
are P1,S1, .- -, Pk+1, Sk+1 € 2° such that

o Vie{l,...,k+1}, h(al) = pia;s;,

o Vie{l,....k—1},d; = Md'; + ¥(si41pi+2) — V(sipit1)-
There are finitely many ways of choosing the a} in ¢’ and finitely many ways of choosing
the s; and the p;, so we need only be able to compute the possible values of the d’; of
a template with fixed af,...,a} ., and s1,p1,...,5k41,Pr+1- (Note that this is easy
if M is invertible.)

Suppose we want to compute d’,, for some m. That is, we want to compute all
of the integer solutions x of Mx = v, where v =d,, — ¥(simt1Pm+2) + Y(SmPmt1)-
Moreover, since we are interested in realizable parents we can restrict ourselves to
solutions that respect the bounds from Proposition 7. The rest is only linear algebra.

First, we can use the Smith decomposition of M, as explained after Proposi-
tion 3, in order to find a particular solution x¢ and a basis (81,...,08x) (Where
k = dimker(M)) of the lattice A = ker(M) N Z". If this equation has no inte-
ger solution, then the template ¢ has no parents with this choice of a;, p;, and s;.
We are only interested in parents realizable by h, so we want to compute the set
X={xexo+A: Vist [Nyl <1, [ri(x)] <rj}. Since A is included in the union
of the generalized eigenspaces of eigenvalue 0, we know by Proposition 7 that X is
finite. Let B be the matrix whose columns are the elements of the basis (81, ..., (),
and let Xg = {x € Z" : xo + Bx € X}. ker(M) is generated by B but also by the
generalized eigenvectors corresponding to a null eigenvalue which are columns of P.
So there is a matrix Q made of rows of P~! such that @B is invertible. All of the rows
of Q are rows of P~1; thus from Proposition 7 there are cy,...,c. € R such that for
any x € Xpgandi € {1,...,x}, [(Q(Bx+xX0))i| < ¢; and thus [(@Bx);| < ¢;+|(@%0)ql.
Then

1QBx|* <) (ci + (@x0)i])*.

i=1

Let ¢ = Y7, (c; + |(@%0):|)?. From Proposition 4, if fi, is the smallest eigen-
value of (QB)*(QB), then pi,,:n||x||> < ||@Bx||* < c. Moreover, QB is invertible, thus
tmin 7 0, and Xp contains only integer points in the ball of radius |, /ﬁ We can

easily compute a finite superset of Xz, and thus of X, and then we can select the
elements that are actually in X. The choice of xq is significant for the sharpness of
the bound ¢; it is preferable to take an x¢ nearly orthogonal to ker(M).

5. Applications. If a morphism h has k eigenvalues of absolute value less than
1 (counting their algebraic multiplicities), then Proposition 7 tells us that the Parikh
vectors of the factors of Fact®™(h) are close to the subspace E.(Mp) of dimension
n — k. This can be useful to avoid patterns in images of Fact>(h).

If one tries to avoid a template ¢ in a morphic word g(h*), with ¢g : ¥ — ¥/ and
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|2’ < |X|, then the set of parents of ¢ is generally infinite: the set of the vectors in
the parents is close to the subspace ker(M,) of dimension |X| — |¥'| (if M, has full
rank). But if the intersection of ker(M,) with E.(Mp) is of dimension 0, then we
can generate a finite superset of the realizable parents, and decide with the algorithm
from section 4.

We can use the same idea to avoid additive powers. This is a generalization of the
method used in [3] to show that we can avoid additive cubes in a word over {0, 1,3, 4}.

We present here two applications of this method: decide if a morphic word does
not contain large abelian powers and decide if a pure morphic word avoids additive
powers. Other possible applications, such as deciding if a morphic word avoids k-
abelian powers, are not explained here, but the method can be easily generalized.

5.1. Deciding if a morphic word contains large abelian power. In this
subsection, we explain how to decide whether a morphic word g(h®(a)) avoids large
abelian kth powers.

PROPOSITION 9. Let h : ¥* — X* and g : ¥* — X'* be two morphisms, and let
My, and My be the matrices associated to those morphisms. If M), has no eigenvalue
of absolute value 1 and E.(My) Nker(M,) = {T}, then for any template t' one can
compute a finite set S that contains any template realizable by h and the parent of t/

by g.

Proof. The proof is similar to the computation of parents in section 4. Let
M), = PJP~! be a Jordan decomposition of Mj,. Let x = dimker(M,), and let
A = ker(M,) N Z". We use the Smith decomposition of M, to get the matrix B,
whose columns form an integral basis of A. Assume ¢t = [a1,...,a54+1,d1,...,dg_1] is
realizable by h and the parent of ' = [a},...,a},,d'1,...,d"s_1] by g. Then there
are Pi,Si, ..., Dk+1, Sk+1 € 2° such that

e Vi, g(a;) = piajsi,

o Vi, d'; = Myd; + ¥ (si1pi+2) — Y (siDit1)-
There are finitely many choices for the a;, s; and p;. We need to be able to compute all
the possible values for d,,, for some m with fixed a1, ...,ax+1 and p1, S1,. .., Pt1, Sk+1-
Then d,, is an integer solution of Myx = v, with v = d’ 5, + ¥ (SmPm+1)— Y (Sm+1Pm+2)-
We will see that we have only finitely many choices for d,,. As already explained in
section 3, if such a solution exists, then d,, € xg + A, and xg can be found with the
Smith decomposition of M.

Let @ be the rectangular submatrix of P~! such that the ith line of P! is a line
of Q if and only if [A,(;)| < 1. For every x € C*\ {7}, Bx € ker(M,) by definition of
B. Then, by hypothesis, Bx ¢ E.(M}) and QBx # ﬁ since the lines of @) generate
the subspace orthogonal to E.(M}). Thus we have rank(QB) = k, which implies that
there is a submatrix Q' of @ such that Q’B is invertible.

From Proposition 7, Vi € {1,...,k}, there is ¢; € R such that for any two factors
uw and v of Fact®(h), [(Q'(¥(u) — ¥(v)))i] < ¢;.

Let X = {x € xo+A: Vi€ {1,...,k}, (Q'%x);| < ¢;}. Since we are only interested
in realizable solutions, d,, has to be in X. Let Xp = {x € Z" : (x0 + Bx) € X}
and x € Xp. Then Vi, |(Q'(Bx + X0)):| < ¢; and thus |(Q'(Bx)):| < ¢ + [(Q'%0)4-
Then ||Q'Bx||? < Zizl(ci + (@'x0)i|)> = ¢. From Proposition 4, if fiy, is the
smallest eigenvalue of (Q'B)*(Q'B), we have pimn||x||* < ||Q'Bx||*> < ¢. Since Q'B

(6]

is invertible, fimin # 0 and ||x|] < T Then Xp and X are finite, and we can

easily compute them. 0
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We can easily adapt the proof of Lemma 2 to get the following proposition.

PROPOSITION 10. If no parent of the k-template [e, . .. ,5,6, .. ,ﬁ] by g is re-
alizable by h, then g(Fact®™(h)) avoids abelian kth powers of a period larger than
max,es |g(a)|.

The condition of Proposition 10 can be easily checked by a computer using Propo-
sition 9 and Theorem 1. If one wants to decide whether g(Fact®(h)) avoids abelian
kth powers of period at least p < max,ex|g(a)|, then one can use Proposition 10
and check if g(Fact>(h)) does not contain an abelian kth power of period [ for every
p <1 < maxgex |g(a)|. If p > max,ex |g(a)|, then one can take a large enough integer
k such that p < max,ex |g(h*(a))| and do the computation on goh* instead of g. Note
that if E.(My) Nker(My) = {0}, then for every k € N, Eo(Mj,) Nker(Myopr) = {0}
Otherwise, for the sake of contradiction let x € (Ee(Mp) Nker(Myopr)) \ {0}. Then
MFx € ker(M,). Moreover, x € E.(My)\ {T}, so MFx € E.(M) and Mfx # 0.
Thus M}x € E.(My,) Nker(M,) \ {7}, and we have a contradiction.

Consequently we have the following theorem.

THEOREM 3. Let h : X* — X* be a primitive morphism with no eigenvalue of
absolute value 1, let g : X* — X be a morphism, and let p,k € N. If E.(My) N
ker(M,) = {0}, then one can decide whether g(h®(a)) avoids abelian kth powers of
period larger than p.

In section 6.4, we present a morphic word over 3 letters which avoids abelian
squares of period more than 5.

5.2. Deciding if a pure morphic word avoids additive powers on Z%. In
this part we consider the morphism ® : (X*,.) — (Z%,+) with d € N. Let the matrix
Fg be such that Yw, ®(w) = FoeU(w).

PROPOSITION 11. If M}, has no eigenvalue of absolute value 1 and E.(My) N
ker(Fy) = {T}, then one can compute a finite set of templates S such that each kth
power modulo ® in Fact®(h) is a realization of a template in S.

Proof. Let k = dimker(Fy), and let A = ker(F3) N Z%. By definition any kth
power modulo ® realizes at least one template of the form ¢t = [e,...,e,dy,...,dg_1],
where Vi, d; € A. We use the Smith decomposition of Fg, as explained after Propo-
sition 3, to get the matrix B, whose columns form an integral basis of A.

Let @ be the rectangular submatrix of P~! such that the ith line of P7! is a
line of @ if and only if |Ay;)| < 1. By definition of B, for every x € C* \ {0},
Bx € ker(Fg); then, by hypothesis, Bx ¢ E.(Mj). Since the lines of @) generate the
subspace orthogonal to E.(M},), QBx # ﬁ Thus we have rank(QB) = &, which
implies that there is a submatrix Q' of @ such that Q'B is invertible.

For all i € {1,...,k}, let p; be the function such that ¥ vector x, p;(x) = (Q'x);.
From Proposition 7, Vi € {1,...,k}, there is ¢; € R such that for any two factors u
and v of Fact®(h), |p;(¥(u) — ¥(v))| < ¢.

Let X ={xeA:Vie{l,...,x}, |pi(x)| < ¢} Since we are only interested in
realizable templates for S, we can add the following condition: Vi, d; € X.

Let Xp = {x € Z" : Bx € X} and x € Xp. Then Vi, |p;(Bx)| < ¢;, and then
||Q'Bx||? < Zézl ¢? = c¢. From Proposition 4, if ft;,, is the smallest eigenvalue of
(Q'B)*(Q'B), we have fimin||x||? < ||Q'Bx||? < c. Since Q'B is invertible, i, # 0

and ||x]| < ,/-—=<—. Then Xp and X are finite, and we can easily compute them.

Pmin
Therefore, we can compute S = {[e,...,e,dy,...,dg_1] : Vi, d; € X}. d
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From Theorem 1 we know that for any given template we can decide whether it is
avoided by a word generated by a primitive morphism with no eigenvalue of absolute
value 1. We can deduce the following result.

THEOREM 4. Let h : ¥* — X* be a primitive morphism with no eigenvalue of
absolute value 1, and let ® : ©* — Z2 be a morphism. If E.(My) Nker(®) = {7},
then one can decide whether every word in Fact™ (h) avoids kth powers modulo ®.

The conditions from Theorem 4 seem restrictive, but we can apply this theorem
to every morphic word avoiding additive powers that we found. It seems reasonable
to think that the condition E.(Mj,) Nker(®) = {7} is necessary in order to generate
a word avoiding kth power modulo ®. But for the sake of completeness, we ask the
following question.

PROBLEM 2. [s there an algorithm deciding kth power modulo ® freeness of (pure)
morphic words?

6. Results. In this section we use the algorithms described in sections 4 and
5 to show that additive squares are avoidable over Z2, and that abelian squares of
period more than 5 are avoidable over the ternary alphabet. We also give some other
new results about additive power avoidability and long 2-abelian power avoidability.

6.1. Abelian-square-free pure morphic words. Let hg be the following mor-
phism:

a— ace, b— adf,
heg:< c— bdf, d— bde,
e— afe, f—  bce.

THEOREM 5. h{(a) is abelian square-free.

We provide a computer program! that applies the algorithm described in the
previous section in order to show Theorem 5.

The matrix associated has the following eigenvalues: 0 (with algebraic multiplicity
3), 3, V3, and —/3. A Jordan decomposition of My, is PJP~!, with

f—% 0 —11 24+v3 2-V3 ]

0100 0 O
0000 0 0 I -101 —2-v3 V3-2
0000 0 O -1 1 11 -1 -1

J="100030 o and P =

0 0 1 1-3-2+/32+3-3
0000+3 0

0 3 11 3+2v3 3-2V3
0000 0 —/3

L1 -1 o011 1 1

The bounds on 7}, ¢ € {1,2, 3}, computed as explained in the proof of Proposition

7 on (hg)?, are, respectively, 4, %, and %. The template [¢, ¢, €, 6}] has 28514 parents
with respect to those bounds, and it has 48459 different ancestors including itself.
None of the factors of h§(a) is a small realization of a forbidden template so we can
conclude that h§(a) avoids abelian squares.

From Proposition 7, the Parikh vectors of the factors of h§(a) are close to a
subspace of dimension 3. The conditions from Theorem 3 explain why finding this
morphism is the first step in showing that long abelian squares are avoidable over
the ternary alphabet. It seems hard to find simpler morphisms with this property; in

particular we are interested in the following question.

IThe code can be found in the supplementary materials (M114937_01.zip [local/web 11.4KB]).
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PROBLEM 3. Is there an abelian square-free pure morphic word over 4 or 5 letters
generated by a morphism with only 3 eigenvalues of norm at least 17

In fact, for similar reasons, a positive answer to the following question could help
show that additive squares are avoidable over Z.

PROBLEM 4. Is there an abelian square-free pure morphic word generated by a
morphism with only 2 eigenvalues of norm at least 17

Let hg be the following morphism:

a— h, b— g,

he - c— f, d— e,
8°) e— he, f— ac
g — db, h — eb.

THEOREM 6. Words in h® (e.g., infinite fized points of (hs)?) are abelian square-
free.

This morphism may also be interesting because it is a small morphism which
gives an abelian square-free word, its matrix is invertible, and it has 4 eigenvalues of
absolute value less than 1. In particular, such a morphism could be part of a simpler
construction of an abelian square-free word over 4 letters.

It would be interesting for the sake of completeness to be able to decide the
abelian kth power freeness for any morphism. We can get rid of the primitivity
condition with some technicalities, but it seems much harder to deal with eigenvalues
of absolute value exactly 1.

PROBLEM 5. Is it decidable, for any morphism h, whether the fixed points of h
are abelian kth power-free?

In fact, we do not know of any example of interesting morphism with an eigenvalue
of norm 1 generating an abelian kth power-free word.

6.2. Additive square-free words over Z2. Let ® be the following morphism:

a— (1,0,0), b (1,1,1),
d:{ c— (1,2,1), d— (1,0,1),
e— (1,2,0), f— (1,1,0).

THEOREM 7. h¢(a) does not contain squares modulo ®.

We provide a computer program? that applies the algorithm described in the
previous section to ¢(h¢(a)).
In other words, the fixed point h;’dd((g)) of the following morphism does not

0000 0000
et (5 (OG- OO0
- OO

2 N 0 1 2
0 0/\0/)\0)’
2The code can be found in the supplementary materials (M114937_01.zip [local/web 11.4KB]).

This implies the following result.
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THEOREM 8. Z?2 is not uniformly 2-repetitive.
It seems rather natural to ask the following question.
PROBLEM 6. What is the smallest alphabet ¥ C Z? over which we can avoid

additive squares?

6.3. Additive cubes-free words over Z. Cassaigne et al. showed that the
fixed point of f : 0 — 03,1 — 43,3 — 1,4 — 01, avoids additive cubes [3]. Our
algorithm is able to reach the same conclusion for this morphism. We can also use it
to show that additive cubes are avoidable over some other alphabets of size 4. Let

0— 001, 0— 03, 0— 03,

) 1= 041, ;) 2= 53, n. ) 2— 63,
haiq oy g1 My 35 9 and hyig g o
4 442, 5 02, 6— 02.

THEOREM 9. h%(0), hj?(0), and h{¥(0) avoid additive cubes.

In fact, it seems that {0,1,2,3} is the only alphabet of 4 integers over which
additive cubes are hard to avoid.

PROBLEM 7. Are additive cubes avoidable over {0,1,2,3}7

6.4. Mikeld’s problem. Let g3 be the following morphism:

a — bbbaabaaac,
b — bccacccbec,
¢ — ccccbbbebe,
d — ccccccccaa,
e — Dbbbbbcabaa,
f — aaaaaaabaa.

g3 :

THEOREM 10. The word obtained by applying gs to the fized point of hg, that is,
g3(hg (a)), avoids abelian squares of period more than 5.

The kernel of g3 is of dimension 3, but using the bounds on the 3 null eigenvalues of
he we can compute that [e,. .., &, ﬁ, ..., 0] has at most 16214 parents by g3 realizable
by hg. This is checked using Theorem 3. This gives an answer to a weak version of
Problem 1.

THEOREM 11. There is an infinite word over 3 letters avoiding abelian squares of
period more than 5.

The optimal value for this result is probably not 5, so we ask the following ques-
tion.

PROBLEM 8. What is the smallest p € N such that one can avoid abelian squares
of period more than p over 3 letters?

The proof technique presented here could be helpful to solve this problem. Note
that we know that 2 < p < 5. In fact, g3(h§ (a)) contains 34 different abelian squares.
We could also ask to minimize the number of different abelian squares.

6.5. Avoidability of long 2-abelian squares. Recently, Karhumiki, Saarela,
and Zamboni introduced the notion of k-abelian equivalence as a generalization of
both abelian equivalence and equality of words [9]. Two words u and v are said to
be k-abelian equivalent (for k > 1), denoted u =, v, if for every w € ¥* such that
lw] <k, |uly = |v]w. A word ujusg ... u, is a k-abelian nth power if it is nonempty,
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and w1 Rqp U2 Rk ... Rak Un. 1ts period is |ui]|. A word is said to be k-abelian-
nth-power-free if none of its factors are a k-abelian nth power. Note that when k =1,
the k-abelian equivalence is exactly the abelian equivalence.

The existence of the word from Theorem 10 allows us to answer the following
question.

PROBLEM 9 (see [14, 15]). Can we avoid 2-abelian squares of period at least p
on the binary alphabet, for some p € N?

Let ho be the following morphism:

a— 111111111000,
hy: ¢ b— 101011110100,
c — 101011000000.

THEOREM 12. ha(g3(hg(a))) does not contain any 2-abelian square of period more
than 63.

Using the same technique as in [15] we can show, by reasoning only on hs, that
any 2-abelian square of ha(gs(hg(a))) is small (shorter than 9) or has a parent real-
ized by g3(h§(a)) which is an abelian square. Thus the largest 2-abelian squares of
ha(g3(hg(a))) have a period of at most 12 x 7 = 84. The value 63 is then obtained by
checking all of the factors of ha(gs(h§(a))) of size at most 168.

The value 63 is probably not optimal (the lower bound from [15] is 2). In fact,
it is possible to reach 60 by using a simpler second morphism, but the proof is more
complicated and requires adapting the notion of templates and parents to k-abelian
powers. The easiest way to significantly improve this result would be to improve the
upper bound on the period for Mékeld’s question.
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