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Preface

This volume contains the proceedings of the Tenth IntesnatiWorkshop on Fixed Points in Com-
puter Science (FICS 2015) which took place on Septemberdrid2th, 2015 in Berlin, Germany, as a
satellite event of the conference Computer Science LogBl(£015).

Fixed points play a fundamental role in several areas of ctenpscience. They are used to jus-
tify (co)recursive definitions and associated reasonicrigues. The construction and properties of
fixed points have been investigated in many different ggdtisuch as: design and implementation of
programming languages, logics, verification, databaske.alm of this workshop is to provide a forum
for researchers to present their results to those membéne abmputer science and logic communities
who study or apply the theory of fixed points.

The editors thank all authors who submitted papers to FICIS Z8uccessful or not), and the pro-
gram committee members Ulrich Berger, Dietmar Berwangkpg® Bonchi, Venanzio Capretta, Krish-
nendu Chatterjee, Kaustuv Chaudhuri, Thomas ColcombekotdaHamana, Radu Mardare, Henryk
Michalewski, Andrzej Murawski, Alexandra Silva and Samt&tafor their work in selecting the 11
papers of this volume. Every submission was evaluated kethr four reviewers (we are thankful to
all the external anonymous reviewers that were involveddfuain from listing them here). Some of the
papers were re-reviewed after revision.

Apart from presentations of the accepted papers, we arghteti that FICS 2015 featured two
invited talks: Bartek Klin on the decidability of certairfiimite constraint satisfaction problems and James
Worrell on the decidability of certain variants of the Skuolé&roblem for linear recurrence sequences.
Many thanks to them for having accepted the invitation.

We could also offer the FICS’15 audience the two invitedgaik the colocated annual meeting of
the Gl-Fachgruppe “Logik in der Informatik”, given by UllicSchopp and Michael Elberfeld. Thanks
to them and the organizers of that meeting for making thisiptes

Finally, we would like to express our deep gratitude to CS1L2for local organization and to EACSL
and ANR (“Agence Nationale de la Recherche”, France) fodig FICS 2015.

Ralph Matthes,

Matteo Mio
R. Matthes, M. Mio (Eds.): Fixed Points © R. Matthes & M. Mio
in Computer Science 2015 (FICS 2015) This work is licensed under the

EPTCS 191, 2015, pp. ii—ii, doi:10.4204/EPTCS.191.0 Creative Commons Attribution License.



Topological Dynamics and Decidability of Infinite Constraint
Satisfaction

Bartek Klin

Warsaw University

A group is called extremely amenable if every action of it ocoampact space has a fixpoint. One
example, shown by Pestov, is the automorphism group of tiaédoder of rational numbers. This fact
is used to establish the decidability of certain infinite stoaint satisfaction problems, based on nominal
sets due to Pitts.

This talk is roughly based on the paper [KKOT15].
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Reachability Problemsfor Continuous
Linear Dynamical Systems

James Worrell
Department of Computer Science, Oxford University, UK

This talk is about reachability problems for continuousdilinear dynamical systems. A central
decision problem in this area is the Continuous Skolem BrBDJB10], which asks whether a real-
valued function satisfying an ordinary linear differehgguation has a zero. This can be seen as a con-
tinuous analog of the Skolem Problem for linear recurremopiences [HHHKO5], which asks whether
the sequence satisfying a given recurrence has a zero terboth the discrete and continuous versions
of the Skolem Problem, decidability is open.

We show that the Continuous Skolem Problem lies at the héarainy natural verification questions
on linear dynamical systems, such as continuous-time Matkains and linear hybrid automata. We
describe some recent work, done in collaboration with Chhared Ouaknine [COW15a, COW15b],
that uses results in transcendence theory and real algejgametry to obtain decidability for certain
variants of the problem. In particular, we consider a bodnggsion of the Continuous Skolem Problem,
corresponding to time-bounded reachability. We provedtlity of the bounded problem assuming
Schanuel’s conjecture, one of the main conjectures in ¢ermgence theory. We describe some partial
decidability results in the unbounded case and discussemetical obstacles to proving decidability of
the Continuous Skolem Problem in full generality.
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Dependent Inductive and Coinductive Types are Fibrational
Dialgebras

Henning Basold
Radboud University, iCIS, Intelligent Systems
CWI, Amsterdam, The Netherlands
h.basold@cs.ru.nl

In this paper, I establish the categorical structure necessary to interpret dependent inductive and
coinductive types. It is well-known that dependent type theories a la Martin-Lof can be interpreted
using fibrations. Modern theorem provers, however, are based on more sophisticated type systems
that allow the definition of powerful inductive dependent types (known as inductive families) and,
somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show
how data type definitions correspond to initial and final dialgebras for these functors. This description
is also a proposal of how coinductive types should be treated in type theories, as they appear here
simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras
and coalgebras, and give the correspondence to dependent polynomial functors.

1 Introduction

It is a well-established fact that the semantics of inductive data types without term dependencies can be
given by initial algebras, whereas the semantics of coinductive types can be given by final coalgebras.
However, for types that depend on terms, the situation is not as clear-cut.

Partial answers for inductive types can be found in [3, 8, 9, 11, 14, 19, 20], where semantics have
been given for inductive types through polynomial functors in the category of set families or in locally
Cartesian closed categories. Similarly, semantics for non-dependent coinductive types have been given
in [1, 2, 6] by using polynomial functors on locally Cartesian closed categories. Finally, an interpretation
for Martin-Lof type theory (without recursive type definitions) has been given in [21] and corrected
in [16].

So far, we are, however, lacking a full picture of dependent coinductive types that arise as duals
of dependent inductive types. To actually get such a picture, I extend in the present work Hagino’s
idea [13], of using dialgebras to describe data types, to dependent types. This emphasises the actual
structure behind (co)inductive types as their are used in systems like Agda.! Moreover, dialgebras allow
for a direct interpretation of types in this categorical setup, without going through translations into, for
example, polynomial functors.

Having defined the structures we need to interpret dependent data types, it is natural to ask whether
this structure is actually sensible. The idea, pursued here, is that we want to obtain initial and final
dialgebras from initial algebras and final coalgebras for polynomial functors. This is achieved by showing
that the dialgebras in this work correspond to algebras and coalgebras, and that their fixed points can be
constructed from fixed points of polynomial functors (in the sense of [12]).

11t should be noted that, for example, Coq treats coinductive types differently. In fact, the route taken in Agda with copatterns
and in this work is much better behaved.

R. Matthes, M. Mio (Eds.): Fixed Points © H. Basold
in Computer Science 2015 (FICS 2015) This work is licensed under the
EPTCS 191, 2015, pp. 3-17, doi:10.4204/EPTCS.191.3 Creative Commons Attribution License.



4 Dependent Dialgebras

To summarise, this paper makes the following contributions. First, we get a precise description of
the categorical structure necessary to interpret inductive and coinductive data types, which can be seen as
categorical semantics for an extension of the inductive and (copattern-based) coinductive types of Agda.
The second contribution is a reduction to fixed points of polynomial functors.

What has been left out, because of space constraints, is an analysis of the structures needed to obtain
induction and coinduction principles. Moreover, to be able to get a sound interpretation, with respect to
type equality of dependent types, we need to require a Beck-Chevalley condition. This condition can be
formulated for general (co)inductive types, but is also not given here.

Related work As already mentioned, there is an enormous body of work on obtaining semantics for
(dependent) inductive, and to some extent, coinductive types, see [3, 11, 14, 20]. In the present
work, we will mostly draw from [2] and [12]. Categorical semantics for basic Martin-Lof type
theory have been developed, for example, in [16]. An interpretation, closer to the present work, is
given in terms of fibrations by Jacobs [17]. In the first part of the paper, we develop everything on
rather arbitrary fibrations, which makes the involved structure more apparent. Only in the second
part, where we reduce data types to polynomial functors, we will work with slice categories, since
most of the work on polynomial functors in that setting [2, 12]. Last, but not least, the starting idea
of this paper is of course inspired by the dialgebras of Hagino [13]. These have also been applied
to give semantics to induction-induction [4] schemes.

QOutline The rest of the paper is structured as follows. In Section 2, we analyse a typical example of
a dependent inductive type, namely vectors, that is, lists indexed by their length. We develop
from this example a description of inductive and coinductive dependent data types in terms of
dialgebras in fibrations. This leads to the requirements on a fibration, given in Section 3, that
allow the interpretation of data types. In the same section, we show how dependent and fibre-
wise (co)products arise canonically in such a structure, and we give an example of a coinductive
type (partial streams) that can only be treated in Agda through a cumbersome encoding. The
reduction of dependent data types to polynomial functors is carried out in Section 4, and finish
with concluding remarks in Section 5.

Acknowledgement I would like to thank the anonymous reviewers, who gave very valuable feedback
and pointed me to some more literature.

2 Fibrations and Dependent Data Types

In this section we introduce dependent data types as initial and final dialgebras of certain functors on
fibres of fibrations. We go through this setup step by step.
Let us start with dialgebras and their homomorphisms.

Definition 2.1. Let C and D be categories and F,G : C — D functors. An (F, G)-dialgebra is a morphism
¢:FA — GAin D, where A is an object in C. Given dialgebras ¢ : FA — GA and d : FB — GB, a morphism
h:A — Bis said to be a (dialgebra) homomorphism from c to d, if Gh o ¢ =d o Fh. This allows us to form
a category DiAlg (F,G), in which objects are pairs (A,c) with A € C and ¢ : FA — GA, and morphisms
are dialgebra homomorphisms.

The following example shows that dialgebras arise naturally from data types.

Example 2.2. Let A be a set, we denote by A” the n-fold product of A, that is, lists of length n. Vectors
over A are given by the set family VecA = {A"},cn, which is an object in the category Set" of families
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indexed by N. In general, this category is given for a set I by

Set! — objects X ={Xi}ier
morphisms  f = {fi: X; = Yi}ics

Vectors come with two constructors: nil : 1 — A° for the empty vector and prefixing cons, : A x A" —
A" of vectors with elements of A. We note that nil : {1} — {A°} is a morphism in the category Set!
of families indexed by the one-element set 1, whereas cons = {cons,, } : {A x A"} ey — {A" "} ,en is a
morphism in Set" .

Let F,G : Set — Set! x Set" be the functors into the product of Set! and Set" with

FX) = ({1}, {AxXa}nen)  G(X) = ({Xo}s {Xut1 }nen)-

Using these, we find that (nil,cons) : F(VecA) — G(VecA) is an (F, G)-dialgebra, in fact, it is the initial
(F,G)-dialgebra.

Definition 2.3. An (F,G)-dialgebra c : FA — GA is called initial, if for every (F,G)-dialgebrad : FB —
GB there is a unique homomorphism % from c¢ to d, the inductive extension of d. Dually, (A,c¢) is final,
provided there is a unique homomorphism 4 from any other dialgebra (B,d) into c¢. Here, h is the
coinductive extension of d.

Having found the algebraic structure underlying vectors, we continue by exploring how we can han-
dle the change of indices in the constructors. It turns out that this is most conveniently done by using
fibrations.

Definition 2.4. Let P : E — B be a functor, where the E is called the total category and B the base
category. A morphism f : A — B in E is said to be cartesian over u : I — J, provided that i) Pf = u, and
ii) forall g:C — Bin E and v: PC — I with Pg = uov there is a unique h : C — A such that foh =g.
For P to be a fibration, we require that for every B € E and u : I — PB in B, there is a cartesian morphism
f A — B over u. Finally, a fibration is cloven, if it comes with a unique choice for A and f, in which
case we denote A by u* B and f by uB, as displayed in the diagram on the right.

At first sight, this definition is arguably intimidating to someone

8
who has never been exposed to fibrations. The idea is that the base C‘m
category B contains as objects the indices of objects in E, and as T u'B — B E
morphisms substitutions. The result of carrying out a substitution on Pg »
indices, is captured by the Cartesian lifting property. Let us illustrate PC \

this on set families. We define Fam(Set) to be the category I— PB B

objects (I,X :1— Set), I aset

Fam(Set) =
(Set) {morphisms (u, ) : (I,X) = (J,Y) withu: I — Jand {f; : X; = Y, ) }iex

in which composition is defined by

fi 8u(i)
(v,g)o(u, f)= (VO u A X; = Yy — Zv(u(i))}iel) .

A concrete object is the pair (N, VecA), where VecA is the family of vectors from Ex. 2.2.
We define a cloven fibration on set families. Let P : Fam(Set) — Set be the projection on the first
component, that is, P(1,X) = I and P(u, f) = u. For a family (/,Y) and a function u : I — J, we define
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u'Y ={Y¥, ;) bier and @Y = (u,{id : Y,(;y = Y, }iex). Then, for each (w,g) : (K,Z) = (J,Y) and v: K — 1
with w = uov, we can define the morphism (K,Z) — (I,u"Y) to be (v,h) with hy : Zx — Y, ) and
hy = gk, since u(v(k)) = w(k).

An important concept is the fibre above an object I € B, given by the category

P — objects A € E with P(A) =
"\ morphisms  f:A — B with P(f) =id;

In a cloven fibration, we can use the Cartesian lifting to define for each u : I — J in B a functor u* : Py —
P;, together with natural isomorphisms Idp, = id; and u*ov* = (vou)*, see [17, Sec. 1.4]. The functor
u* is called reindexing along u.

Assumption 2.5. We assume all fibrations to be cloven in this work.
We are now in the position to take a more abstract look at our initial example.

Example 2.6. First, we note that the fibre of Fam(Set) above I is isomorphic to Set’. Let thenz: 1 — N
and s : N — N be z(*) = 0 and s(n) = n+ 1, giving us reindexing functors z* : Set" — Set! and s* :
Set" — Set". By their definition, z*(X) = {Xo} and s*(X) = {X,.1 1 }ncn. hence the functor G, we used
to describe vectors as dialgebra, is G = (z*,s*). In Sec. 3, we address the structure of F'.

We generalise this situation to account for arbitrary data types.

Definition 2.7. Let P: E — B be a fibration. A (dependent) data type signature, parameterised by a
category C, is a pair (F,u) consisting of

e afunctor F : CxP; — D with D =[J;_, P,, for some n € N and J;,/ € B, and
e a family u of n morphisms in B with uy : Jy = I fork=1,...,n.

A family u as above induces a functor (7, ...,u;) : P; — D, which we will often denote by G,,. This
will enable us to define data types for such signatures, but let us first look at an example for the case
C =1, thatis, if F : P; — D is not parameterised.

Example 2.8. A fibration P : E — B is said to have dependent coproducts and products, if for each
f:1—J in B there are functors [ | ¢ and [T from Py to P; that are respectively left and right adjoint to
f*. For each X € Py, we can define a signature, such that [ [ (X) and [];(X) arise as data types for these
signatures, as follows. Define the constant functor

KxiP]—)P[ Kx(Y):X Kx(g):idx.

Then (Ky, f) is the signature for coproducts and products. For example, the unit ) of the adjunction

[1, - f* will be the initial (K, f*)-dialgebra nx : Kx ([ [ (X)) — f*(I1;(X)), using that Kx (][ (X)) =
X. We come back to this in Ex. 2.10. U

To define data types in general, we allow them to have additional parameters, that is, we allow
signatures (F,u), where F : C x P; — D and C is a non-trivial category. Let us first fix some notation. We
put F(V,—)(X) = F(V,X) for V € C, which is a functor P; — D. Assume that the initial (F(V,—),G,)-
dialgebra ay : F(V,®y) — G,(Pv) and final (G, F(V,—))-dialgebra Sy : G,(Qv) — F(V,Qy) exist.

)
—~

Then we can define functors u(F,G,) : C — P; and v(G,,F) : C — Py, analogous to [18], by

F.G,)(V)=dy W(F,G)(f:V = W)= (awoF(f,ide,))

u)
v(Gu, F)(V) = Qy V(G F)(f:V = W) = (F(f,ida,)o&)",
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where the bar and tilde superscripts denote the inductive and coinductive extensions, that is, the unique
homomorphism given by initiality and finality, respectively. The reason for the notation u(F,G,) and
v(G,, F) is that these are initial and final dialgebras for the functors

F.G,:[C,P]—[C,D] F(H)=Fo(ldc,H)  Gu(H)=G,oH

on functor categories. That the families oy and &y are natural in V follows directly from the definition of
the functorial action as (co)inductive extensions. Hence, they give rise to dialgebras o: F(u(F, c?u)) =
Gu(i(F,Gy)) and E: G,(v(Gy,F)) = F(v(Gy, F)).

Definition 2.9. Let (F,u) be a data type signature. An inductive data type (IDT) for (F,u) is an initial
(F,G,)-dialgebra with carrier yu(F,G,). Dually, a coinductive data type (CDT) for (F,u) is a final
(é\u, F)-dialgebra, note the order, with the carrier being denoted by v(é;, F). If C =1, we drop the hats
from the notation.

Example 2.10. We turn the definition of the product and coproduct from Ex. 2.8 into actual functors. The
observation we use is that the projection functor 7; : P; X P; — P; gives us a “parameterised” constant
functor: K3 = mi(A,—). If we are given f : 1 — J in B, then we use the signature (7, f), and define
[1, = (@, f*) and [Ty = v(f*, 7). We check the details of this definition in Thm. 3.2.

3 Data Type Completeness

We now define a class of signatures and functors that should be seen as categorical language for, what is
usually called, strictly positive types [3], positive generalised abstract data types [14] or descriptions [8,
9]. Note, however, that none of these treat coinductive types. A non-dependent version of strictly positive
types that include coinductive types are given in [2].

Let us first introduce some notation. Given categories C; and C; and an object A € C;, we denote by
Kfl : C; — C; the functor mapping constantly to A. The projections on product categories are denoted,
as usual, by 7 : C; x C; — C;. Using these notations, we can define what we understand to be a data
type by mutual induction.

Definition 3.1. A fibration P : E — B is data type complete, if all IDTs and CDTs for strictly positive
signatures (F,u) € . exist, where .# is given by the following rule.
D:H?ZIPJI. FG.@CXP,_)D u:(u1:J1—>I,...,un:Jn—>I)
(F,u) € Ycxp;—D
The functors in & are given by the following rules, assuming that P is data type complete.

AcPy C=[1-,P, f:J—=IinB F € Pp_p, B € Dpisp,
KY€ Do p, T E D), e pp, F,oF € Zp,—p,

F €I,  i=12  (Fu)€Fexpsp  (Fu) € Soxpop
<F17F2> € %1%1’/1 xPy, .u(ﬁv Gu) € -@C%PI V(Gu;f) € QC%PI

This mutual induction is well-defined, as it can be stratified in the nesting of fixed points.

As a first sanity check, we show that a data type complete fibration has, both, fibrewise and dependent
(co)products. These are instances of the following, more general, result.



8 Dependent Dialgebras

Theorem 3.2. Suppose P: E — B is a data type complete fibration. Let C=[[/_, Px, and 7 : CxP; — C
be the first projection. If G, : Py — C is such that (7 ,u) is a signature, then we have the following adjoint

situation. . L
w(m,G,) 4G, 4v(Gy, 7).

Proof. We only show how the adjoint transposes are obtained in the case of inductive types. Concretely,
for a tuple V € C and an object A € P;, we need to prove the correspondence

—

fiou@,G)(V)—A P

g: V—G,A inC

Let us use the notation H = u (7, GT,) then the choice of 7y implies that the initial (m, a\u)—dialgebra
is of type a: Idc = G, o H, since 7j(H) = m o (Idc,H) = Id¢ and G,(H) = G, 0 H. This allows

us to use as transpose of f the morphism V =% G,(H(V)) AN G,A. As transpose of g, we use the

inductive extension of 7 (K$) (V) =V % G,A= é\u(Kf)(V) The proof that this correspondence is
natural and bijective follows straightforwardly from initiality. For coinductive types, the result is given
by duality. 0

This gives fibrewise coproducts by +; = (7, Z;\u) and products by x; = V(é;, 1), using u =

(id;,id;). Dependent (co)products along f : I — J use u = f, see Ex. 2.10.

There are many more examples of data types that exist in a data type complete fibration. We describe
three fundamental ones.

Example 3.3. 1. The first example are initial and final objects inside the fibres P;. Since an initial
object is characterised by having a unique morphism fo every other object, we define it as an initial
dialgebra, namely 0; = p(1d,id}). Then there is, for each A € Py, a unique morphism 4 : 0; — A
given as inductive extension of id4. Dually, we define the terminal object 1; in P; to be v(id;,Id)
and for each A the corresponding unique morphism !4 : A — 1; as the coinductive extension of idy4.

Note that this also follows from Thm. 3.2, if we require that (co)inductive data types also exist
if C =1 (the empty product) and u = {} (empty family of morphisms). This allows us to define
the initial and final object as functors 1 — P;.

2. There are several definable notions of equality, provided that B has binary products. A generic one
is propositional equality Eq : P; — P;., the left adjoint to the contraction functor 8* : Py«; — Py,
which is induced by the diagonal 6 : I — I x I. Thus it is given by the dependent coproduct
Eq = [[s and the constructor refly : X — 6*(EqX).

3. Assume that there is an object A® in B of streams over A, together with projections to head and
tail. Then we can define bisimilarity between streams as CDT for the signature

F, GM : P(Aa))z — P(Aa))z X P(Aw)z
F = ((hd x hd)* oK (4), (1 x t1)*) and  u = (idgoxa0,idgoxa0).

Note that there is a category Rel(E) of binary relations in E by forming the pullback of P along
A:B — B with A(I) =1 x I, see [15]. Then we can reinterpret F' and G, by

F,G, :Rel(E) 0 — Rel(E) 0 x Rel(E) 0
F = (hd*oKgqn),t0*)  and G, = (id}o,id}),



H. Basold 9

where (—)* is reindexing in Rel(E). The final (G,, F)-dialgebra is a pair of morphisms
(hdy : Bisimy — hd*(Eq(A)),tl} : Bisimy — tI* (Bisimy)).

Bisimy should be thought of to consist of all bisimilarity proofs. Coinductive extensions yield the
usual coinduction proof principle, allowing us to prove bisimilarity by establishing a bisimulation
relation R € Rel(E) ., together with /1 : R — hd*(Eq(A)) and ¢ : R — tI*(R), saying that the heads
of related streams are equal and that the tails of related streams are again related.

The last example, we give, shall illustrate the additional capabilities of CDTs in the present setup
over those currently available in Agda. However, one should note that coinductive types in Agda provide
extra power in the sense that destructors can refer to each other. This is equivalent to having a strong
coproduct [17, Sec. 10.1 and Def. 10.5.2], which we do not require in the setup of this work and thus A
proof of this equivalence is left out because of space constraints.

Example 3.4. A partial stream is a stream together with a, possibly infinite, depth up to which it is
defined. Assume that there is an object N™ of natural numbers extended with infinity and a successor
map Se : N — N* in B, we will see how these can be defined below. Then partial streams correspond
to the following type declaration.

codata PStr (A : Set) : N — Set where
hd : (n : N*) — PStr (s n) = A
tl : (n: N*)— PStr (s n) — PStrn

In an explicit, set-theoretic notation, we can define them as a family indexed by n € N*:
PStr(A), = {s: N —=A|Vk <n.k € doms AVk > n.k ¢ doms},

where the order on N is given by extending that of the natural numbers with oo as strict top element,
i.e., such that k < e for all k € N.

The interpretation of PStr(A) for A € Py in a data type complete fibration is given, similarly to vectors,
as the carrier of the final (G,, F)-dialgebra, where

GuF : Py — Pye x Py Gy = (s5,5%)  F = <KAN°°,Id>

and A = '§=(A) € Py= is the weakening of A using !y~ : N* — 1. The idea of this signature is that
the head and tail of partial streams are defined only on those partial streams that are defined in, at
least, the first position. On set families, partial streams are given by the dialgebra & = (hd,tl) with
hd,, : PStr(A) ., — A and tl, : PStr(A) .,y — PStr(A), for every n € N~.

We can make this construction functorial in A, using the same “trick” as for sums and products. To
this end, we define the functor H : Py X Py~ — Pn= X Py with H = (I~ 0 7y, ), where 7 and 7
are corresponding projection functors, so that H(A,X) = F(X). This gives, by data type completeness,
rise to a functor v(f};, F) : Py~ — Py, which we denote by PStr, together with a pair (hd, tl) of natural
transformations. O

We have seen in the examples above that we would often like to use a data type again as index, which
means that we need a mechanism to turn a data type in E into an index in B. This is provided by, so
called, comprehension.
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Definition 3.5 (See [17, Lem. 1.8.8, Def. 10.4.7] and [10]). Let P : E — B be a fibration. If each fibre
P; has a final object 1; and these are preserved by reindexing, then there is a fibred final object functor
1(7) : B — E. (Note that then P(1;) =1.) P is a comprehension category with unit (CCU), if 1(7) has a
right adjoint {—} : E — B, the comprehension. This gives rise to a functor & : E — B~ into the arrow
category over B, by mapping A — P(&4) : {A} — P(A), where €: 1,_, = Idis the counitof 1 _, {-}.
We often denote &?(A) by w4 and call it the projection of A. Finally, P is said to be a full CCU, if & is
full.

Note that, in a data type complete category, we can define final objects in each fibre, the preservation
of them needs to be required separately.

Example 3.6. In Fam(Set), the final object functor is given by 1, = (1,{1};cs), where 1 is the singleton
set. Comprehension is defined to be {(/,X)} = [[;.,; X; and the projections 7; map then an element of
[1;c; Xi to its component i € 1.

Using comprehension, we can give a general account to dependent data types.

Definition 3.7. We say that a fibration P : E — B is a data type closed category (DTCC), if it is a CCU,
has a terminal object in B and is data type complete.

As already mentioned, the purpose of introducing comprehension is that it allows us to use data
types defined in E again as index. The terminal object in B is used to introduce data types without
dependencies, like the natural numbers. Let us reiterate on Ex. 3.4.

Example 3.8. Recall that we assumed the existence of extended naturals N* and the successor map Se
on them to define partial streams. We are now in the position to define, in a data type closed category,
everything from scratch as follows.

Having defined + : Py x Py — Py, see Thm. 3.2, we put N* = v(Id, 1+ 1d) and find the predecessor
pred as the final dialgebra on N™. The successor s.. arises as the coinductive extension (N, k) —
(N>, pred), where K is the coproduct inclusion. Partial streams PStr : P(n~y = Pyn~) are then given, as

in Ex. 3.4, by the final (G, F)-dialgebra with G = ({s..}", {5..}") and F = (In=o0 7}, 7). O

4 Constructing Data Types

In this section, we show how some data types can be constructed through polynomial functors, where I
draw from the vast amount of work on polynomial functors that exists in the literature, see [2, 12]. The
construction works by, first, reducing dialgebras to (co)algebras and, second, constructing the necessary
initial algebras and final coalgebras as fixed points of polynomial functors analogously to the construc-
tion of strictly positive types in [2]. This result works thus far only for data types that, if at all, only
use dependent coinductive types at the top-level. Nesting of dependent inductive and non-dependent
coinductive types works, however, in full generality.

Before we come to polynomial functors and their fixed points, we show that inductive and coinductive
data types actually correspond to initial algebras and final coalgebras, respectively.

Theorem 4.1. Let P : E — B be a fibration with fibrewise coproducts and dependent sums. If (F,u) with
F :P; =Py x---xPj is asignature, then there is an isomorphism

DiAlg (F,G,) = Alg (HoFl +1~-+,Han>
Un

ui
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where Fi, = m, o F is the kth component of F. In particular, existence of inductive data types and initial
algebras coincide. Dually, if P has fibrewise and dependent products, then

DiAlg (G,,F) = CoAlg (HoFl Xpo-- x,Han> .
uj Un
In particular, existence of coinductive data types and final coalgebras coincide.

Proof. The first result is given by a simple application of the adjunctions [ [;_, - A, between the (fibre-
wise) coproduct and the diagonal, and H“k —uy:

FX — G,X (iIlP]1 Xoees XP]H)

(I, (FX),.... 1, (FaX)) — AX  (in P)

[T [, (FX) — X (in Py)

That (di)algebra homomorphisms are preserved follows at once from naturality of the used Hom-set
isomorphisms. The correspondence for coinductive types follows by duality. O

To be able to reuse existing work, we work in the following with the codomain fibration cod : B~ — B
for a category B with pullbacks. Moreover, we assume that B is locally Cartesian closed, which is
equivalent to say that cod : B~ — B is a closed comprehension category, that is, it is a full CCU with
products and coproducts, and B has a final object, see [17, Thm 10.5.5]. Finally, we need disjoint
coproducts in B, which gives us an equivalence B/1+7 ~B/1 x B/J, see [17, Prop. 1.5.4].

Definition 4.2. A dependent polynomial P indexed by I on variables indexed by J is given by a triple of
morphisms

If J=1=1, fis said to be a (non-dependent) polynomial. The extension of P is given by the composite

[Pl =B/ B/s 5 B/a LBy,

which we denote by [f] if f is non-dependent. A functor F : B/s — B/I is a dependent polynomial
functor, if there is a dependent polynomial P such that F = [P].

Remark 4.3. Note that polynomials are called containers by Abbott et al. [2, 1], and a polynomial P =

1 <—' B i> A L) 1 would be written as A> f. Container morphisms, however, are different from those of
dependent polynomials, as the latter correspond strong natural transformations [12, Prop. 2.9], whereas
the former are in exact correspondence with all natural transformations between extensions [2, Thm.
3.4].

Because of this relation, we will apply results for containers that do not involve morphisms to poly-
nomials. In particular, [2, Prop. 4.1] gives us that we can construct final coalgebras for polynomial
functors from initial algebras for polynomial functors. The former are called M-fypes and are denoted by
M;y for f: A — B, whereas the latter are W-rypes and denoted by Wy.
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Assumption 4.4. We assume that B is closed under the formation of W-types, thus is a Martin-Lof
category in the terminology of [2].

By the above remark, B then also has all M-types.
Analogously to how [11, Thm. 12] extends [20, Prop. 3.8], we extend here [6, Thm 3.3]. As it was
pointed out by one reviewer, this result is actually in [5], the published version of [6].

Theorem 4.5. If B has finite limits, then every dependent polynomial functor has a final coalgebra in
B/

Proof. LetP=1<B i> AL Ibea dependent polynomial, we construct, analogously to [11] the final
coalgebra V of [P] as an equaliser as in the following diagram, in which f x I is a shorthand for B x

1% A 1 and My is the carrier of the final [[f x I]-coalgebra.

ui
v —2 My My
u

First, we give u; and u;, whose definitions are summarised in the following diagrams.

u

My Myxi My = My My
| [3r
[f1(Mp) S Lf < I (Myx1) Epx
l”M" FAX,K
1 x 11(p) L s 1) (M) Lf x 1My x B) L [ 1) (M)

These diagrams shall indicate that u; is given as coinductive extensions and y as one-step definition
(which can be defined using coproducts), using that My, is a final coalgebra. The maps involved in
the diagram are given as follows, which we sometimes spell out in the internal language of cod, see for
example [1], as this is sometimes more readable.

o p:Xully = Y41y is the natural transformation that maps (a,v) to (a,t(a),v). It is given by
the extension [a, B] : [f] = [f x I] of the morphism of polynomials [12]

B—L 4

fxI
Bx] ——AxI

where a = (id,#) and 8 = (id,7 o f).

e Themap K : Iy, ;(Myyxy) — I pu i (M x B) is given as transpose of <8MfX,, mom) : (f xI)* (M (Myxp)) —
My, 1 x B, where € is the counit of the product (evaluation) and 7 is the context projection. In the
internal language K is given by Kv = A(b,i).(v(b,i),b).
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® ¢ :Mpsy; X B— Mgy is constructed as coinductive extension as in the following diagram

U

Mf><1 X B Mf><1
léfxl xid
[[fXIﬂ(MfXI) X B Erxt
l [ > 11(9)

[f > I[(Mx1 x B) = [f x 1] (M 1)

Here e is given by e((a,i,v),b) = (a,sb,A(b',sb).(v (b ,i),b")).

The important property, which allows us to prove that §¢ : My — [ f] (M) restricts to ' : V — [P](V)
and that &’ is a final coalgebra, is that x: V; <= &sx=(a:A,v:II;My),ta=iand (Vb:B.fb=a=
vb : Vp). The direction from left to right is given by simple a calculation, whereas the other direction
can be proved by establishing a bisimulation and between u; x and u5 x.

Hence V, given as a subobject of My, is indeed the final [P]-coalgebra in B/1. O

Combining this with [2, Prop. 4.1], we have that the existence of final coalgebras for dependent
polynomial functors follows from the existence of initial algebras of (non-dependent) polynomial func-
tors. This gives us the possibility of interpreting non-nested fixed points in any Martin-Lof category as
follows.

First, we observe that the equivalence B/1+s ~ B/1 x B/J allows us to rewrite the functors from
Thm. 4.1 to a form that is closer to polynomial functors:

HOF1 +1-"+1H0Fn§HF/

up Up u
[TeF xi--xi[JeF = ]F',
uj Uy u

where J =J; + -+ +J,, u:J — I is given by the cotupling [u,...,u,] and F’ : B/1 — B/J is given by
F'=(F,....F,) :B/1 =[], B/s; ~B/J. Thus, if we establish that F’ is a polynomial functor, we get
that [ [, F’ and [], F’ are polynomial functors, see [1]. For non-nested fixed points, that is, Fj is either a
constant functor, given by composition or reindexing, this is immediate, as dependent polynomials can
be composed and are closed under constant functors and reindexing, see [12].

We say that a dependent polynomial is parametric, if it is of the following form.

K+l p—T yp_1

1

Such polynomials represent polynomial functors B/x x B/ — B /1 and allow us speak about nested fixed
points just as we have done in Sec. 2. What thus remains is that fixed points of parametric dependent
polynomial functors, in the sense of Sec. 2, are again dependent polynomial functors.

The proof of this is literally the same as that for containers [1, Sec. 5.3-5.5] or non-dependent poly-
nomials [11], except that we need to check some extra conditions regarding the indexing.

Theorem 4.6. Initial algebras and final coalgebras of parametric, dependent polynomial functors are
again dependent polynomial functors.
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Proof. Let

s B f A t

£ sCc—2

F=J
G=1+*—D

be dependent polynomials and H(X,Y) = [F] X, [G] be the parametric dependent polynomial functor in
question. Assuming that there is a polynomial

h y

P 1

J+——— Q0

so that for K =[] [T,x" we have K(X) = H(X,K(X)), we can calculate, as in [1], that we need to have
isomorphisms

v Ax[G](P)=P
9:B+][e 0=y (Q)

where B+ [[,€"Q is, as in loc. cit., is an abbreviation for B, + [ [, Q(rd) in the context (a, (c,r)) :
A x;[G](P). If K(X) shall be an initial algebra, y must an initial algebra as well, whereas if K(X)
shall be a final coalgebra, ¥ must be one. The isomorphism ¢ is given as the initial (y~!)*(B + Hg €)-
algebra in both cases, see [1]. This we use to define x : Q — J as the inductive extension of the map
[s, 2] : (y1)*(B+ [1,€"J) — J. Given these definitions, the following diagrams commute.

Ax/[G](P) —F—— P B+[[,e°0 ——— y*Q
\1/ sm /

This gives us that the isomorphism given in the proofs of [1, Prop. 5.3.1, Prop. 5.4.2] also work for the
dependent polynomial case. The rest of the proofs in loc. cit. go then through, as well. Thus K is in both
cases again given by a dependent polynomial. O

Summing up, we are left with the following result.

Corollary 4.7. All data types for strictly positive signatures can be constructed in any Martin-Lof cate-
gory.
Let us see, by means of an example, how the construction in the proof of Thm. 4.5 works intuitively.

Example 4.8. Recall from Ex. 3.4 that partial streams are given by the declaration

codata PStr (A : Set) : N* — Set where
d: (n: N*)— PStr (s n) > A
1 : (n: N*)— PStr (s, n) — PStrn

By Thm. 4.1, we can construct PStr as the final coalgebra of F : B/1 x B/N> — B/n= with F(A,X) =

[T, " A x I, X. Note that F is isomorphic to B/1 x B/N~ ~ B /14N~ ﬂ) B/N=, where P is the polyno-

mial

o id . Kk, =1 .
P=1+N"E2x N LN N~ g(ik) = . F(i,k) = swk.
Kk, i=2
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If we now fix an object A € B/1, then F (A, —) = [P'] for the polynomial P’ given by

P=N"EYY[raL Y ]rasNe,

N S0 Soo N> S

where 7 is the projection on the index of a dependent sum and f'(n, (swn,v)) = (5wn,Vv).

Recall that we construct in Thm. 4.5 the final coalgebra of [P'] as a subobject of M. Below, we
present three trees that are elements of My, where only the second and third are actually selected by the
equaliser taken in Thm. 4.5.

T

f’r (3,a0) 3 ~ (3.60) (o0, ¢0)

(2,3,a0) o (235 (e0,00,0)
(o0,a1) 25— (2,by) (o0,c1)

(o0, 00,a1) (1,2,b1) (e0;00,¢1)
(15,a2) 1 (1,b2) (00,02)

(14,15,a,) (0,1,b2) (0,00,¢2)

0 (0,L1)

Here we denote a pair (k,v) : Yn=[I,. !*A with k = sen and vin = a by (k,a), or if k =0 by (0,L).
Moreover, we indicate the matching of indices in the second tree, which is used to form the equaliser.
Note that the second tree is an element of PStr(A) 3, whereas the third is in PStr(A) c. O

5 Conclusion and Future Work

We have seen how dependent inductive and coinductive types with type constructors, in the style of
Agda, can be given semantics in terms of data type closed categories (DTCC), with the restriction that
destructors of coinductive types are not allowed to refer to each other. This situation is summed up in the
following table.

Condition Use/Implications

Cloven fibration Definition of signatures and data types

Data type completeness | Construction of types indexed by objects in base (e.g., vectors for
N € B) and types agnostic of indices (e.g., initial and final objects,
sums and products)

Data type closedness Constructed types as index; Full interpretation of data types

Moreover, we have shown that a large part of these data types can be constructed as fixed points of
polynomial functors.

Let us finish by discussing directions for future work. First, a full interpretation of syntactic data
types has also still to be carried out. Here one has to be careful with type equality, which is usually
dealt with using split fibrations and a Beck-Chevalley condition. The latter can be defined generally for
the data types of this work, in needs to be checked, however, whether this condition is sufficient for
giving a sound interpretation. Finally, the idea of using dialgebras has found its way into the syntax of
higher inductive types [7], though in that work the used format of dialgebras is likely to be too liberal to
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guarantee the existence of semantics. The reason is that the shape of dialgebras used in the present work
ensures that we can construct data types from (co)coalgebras, whereas this is not the case in [7]. Thus it
is to be investigated what the right notion of dialgebras is for capturing higher (co)inductive types, such
that their semantics in terms of trees can always be constructed.
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Two distinct research approaches have been proposed fgnagsa purely extensional semantics
to higher-order logic programming. The former approaclsaassical domain-theoretic tools while
the latter builds on a fixed-point construction defined onraastic instantiation of the source pro-
gram. The relationships between these two approaches hdgero investigated until now. In
this paper we demonstrate that for a very broad class of anegirnamely the class dgfinitional
programsintroduced by W. W. Wadge, the two approaches coincide (réifipect to ground atoms
that involve symbols of the program). On the other hand, wei@that if existential higher-order
variables are allowed to appear in the bodies of prograns rthe two approaches are in general dif-
ferent. The results of the paper contribute to a better staeding of the semantics of higher-order
logic programming.

1 Introduction

Extensional higher-order logic programming has been mep¢10, 1, 2, 7, 5, 4] as a promising general-
ization of classical logic programming. The key idea behnd paradigm is that the predicates defined
in a program essentially denote sets and therefore one eastarsdard extensional set theory in order
to understand their meaning and reason about them. The nif@redce between the extensional and
the more traditionalntensionalapproaches to higher-order logic programming [9, 6] is thatlatter
approaches have a much richer syntax and expressive gapaliilit a non-extensional semantics.

Actually, despite the fact that only very few articles haweeib written regarding extensionality in
higher-order logic programming, two main semantic appneaaan be identified. The work described
in[10, 7, 5, 4] uses classical domain-theoretic tools ireotd capture the meaning of higher-order logic
programs. On the other hand, the work presented in [1, 2ii&wih a fixed-point construction defined on
a syntactic instantiation of the source program in orderctieve an extensional semantics. Until now,
the relationships between the above two approaches haanbégn investigated.

In this paper we demonstrate that for a very broad class gfranos, namely the class définitional
programsintroduced by W. W. Wadge [10], the two approaches coinciauitively, this means that
for any given definitional program, the sets of true grouraires of the program are identical under the
two different semantic approaches. This result is intergtince it suggests that definitional programs
are of fundamental importance for the further study of esimmal higher-order logic programming. On
the other hand, we argue that if we try to slightly extend thierse language, the two approaches give
different results in general. Overall, the results of thpgracontribute to a better understanding of the

*This research was supported by the project “Handling Uadsst in Data Intensive Applications”, co-financed by the
European Union (European Social Fund) and Greek nationdsftthrough the Operational Program “Education and Lifglo
Learning” of the National Strategic Reference FrameworlSR¥) - Research Program: THALES, Investing in knowledge
society through the European Social Fund.
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EPTCS 191, 2015, pp. 18-32, doi:10.4204/EPTCS.191.4
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semantics of higher-order logic programming and pave tlael for designing a realistic extensional
higher-order logic programming language.

The rest of the paper is organized as follows. Section 2 Briefftoduces extensional higher-order
logic programming and presents in an intuitive way the twisténg approaches for assigning meaning
to programs of this paradigm. Section 3 contains backgronatgrial, namely the syntax of definitional
programs and the formal details behind the two aforemeati@@mantic approaches. Section 4 demon-
strates the equivalence of the two semantics for definitipragrams. Finally, Section 5 concludes the
paper with discussion regarding non-definitional programs with pointers to future work.

2 Intuitive Overview of the two Extensional Approaches

In this section we introduce extensional higher-orderdgmiogramming and present the two existing
approaches for assigning meaning to programs of this garadsince these two proposals were initially
introduced by W. W. Wadge and M. Bezem respectively, we eiler to them asVadge's semantics
and Bezem’s semantiagspectively. The key idea behind both approaches is thatder to achieve
an extensional semantics, one has to consider a fragmeidtadrkorder logic programming that has a
restricted syntax.

2.1 Extensional Higher-Order Logic Programming

The main differences between extensional and intensiaghehorder logic programming can be easily
understood through two simple examples (borrowed from [Bije to space limitations, we avoid a more
extensive discussion of this issue; the interested readecansult [5].

Example 1. Suppose we have a database of professions, both of their enghifp and their status. We
might have rules such as:

engineer(tom) .

engineer(sally).

programmer (harry) .

with engineer andprogrammer used as predicates. In intensional higher-order logicraragiing we
could also have rules in which these are arguments, eg:

profession(engineer).
profession(programmer) .

Now supposeom andsally are also avid users of Twitter. We could have rules:

tweeter(tom) .
tweeter(sally).

The predicatesweeter and engineer are equal as sets (since they are true for the same objects,
namelytom andsally). If we attempted to understand the above program from ansiinal point

of view, then we would have to accept thatofession(tweeter) must also hold (sinceweeter and
engineer are indistinguishable as sets). Itis clear that the ext@asinterpretation in this case is com-
pletely unnatural. The program can however be understdedsionally: the predicatgerofession is

true of thenameengineer (which is different than the nameieeter). O

On the other hand, there are cases where predicates candrstood extensionally:



20 Equivalence of two Definitional Higher-Order LP Semantics

Example 2. Consider a program that consists only of the following rule:
p(Q) :-QC0),Q(1).

In an extensional language, predicatabove can be intuitively understood in purely set-theortetims:
p is the set of all those sets that contain botind1.

It should be noted that the above program is also a syntigtmeceptable program of the existing
intensional logic programming languages. The differerscéhat in an extensional language the above
program has a purely set-theoretic semantics. O

From the above examples it can be understood that extehdiagiger-order logic programming
sacrifices some of the rich syntax of intensional higheeoidgic programming in order to achieve
semantic clarity.

2.2 Wadge’s Semantics

The first proposal for an extensional semantics for highdenlogic programming was given in [10]
(and later refined and extended in [7, 5, 4]). The basic iddandeWadge’'s approach is that if we
consider a properly restricted higher-order logic prograng language, then we can use standard ideas
from denotational semantics in order to assign an exteakimpaning to programs. The basic syntactic
assumptions introduced by Wadge in [10] are the following:
¢ Inthe head of every rule in a program, each argument of paisgliype must be a variable; all such
variables must be distinct.

e The only variables of predicate type that can appear in tidg bba rule, are variables that appear
in its head.
Programs that satisfy the above restrictions are naseéiditionalin [10].
Example 3. The progrant:
p(a).
q(b).
r(P,Q):-P(a),Q(b).
is definitional because the arguments of predicate typecitnétad of the rule far are distinct variables.
Moreover, the only predicate variables that appear in thy lmd the same rule, are the variables in its
head (namely andQ). O
Example 4. The program:
q(a).
r(q) .
is not definitional because the predicate constgappears as an argument in the second clause. For a
similar reason, the program in Example 1 is not definitiofi&le program:

p(Q,Q :-Qa).

is also not definitional because the predicate variflidaused twice in the head of the above rule. Finally,
the program:

p(a):-Q(a).
is not definitional because the predicate varidbtbat appears in the body of the above rule, does not
appear in the head of the rule. O

1For simplicity reasons, the syntax that we use in our examigrams is Prolog-like. The syntax that we adopt in the next
section is slightly different and more convenient for thedtetical developments that follow.
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Asitis argued in [10], if a program satisfies the above twaagtic restrictions, then it hasumique
minimum mode(this notion will be precisely defined in Section 3). Considgain the program of
Example 3. In the minimum model of this program, the meanihgredicatep is the relation{a}
and the meaning of predicatgis the relation{b}. On the other hand, the meaning of predicate
in the minimum model is a relation that contains the péfrs},{b}), ({a,b},{b}), ({a},{a,b}) and
({a,b},{a,b}). As remarked by W. W. Wadge (and formally demonstrated irb[y, the minimum
model of every definitional program is monotonic and cording. Intuitively, monotonicity means that
if in the minimum model the meaning of a predicate is true oélatron, then it is also true of every
superset of this relation. For example, we see that sincendaming ofr is true of({a},{b}), thenitis
also true of({a,b},{b}) (becausda,b} is a superset ofa}).

The minimum model of a given definitional program can be qoiestd as the least fixed-point of an
operator that is associated with the program, calledntimediate consequence operatdithe program.
As it is demonstrated in [10, 7], the immediate consequepegator is monotonic, and this guarantees
the existence of the least fixed-point which is constructedatbottom-up iterative procedure (more
formal details will be given in the next section).

Example 5. Consider the definitional program:

qa).

q(b).
p(Q:-Q(a).
id(R) (X) :-R(X).

In the minimum model of the above program, the meaningistthe relation{a,b}. The meaning op is
the set of all relations that contain (at leastjnore formally, it is the relatiodr | a € r}. The meaning of
idis the set of all pairér,d) such thatd belongs ta; more formally, it is the relatiog(r,d) |[der}. O

Notice that in the construction of the minimum model, allgicates are initially assigned the empty
relation. The rules of the program are then used in order fwore the meaning assigned to each
predicate symbol. More specifically, at each step of the fp@idt computation, the meaning of each
predicate symbol either stabilizes or it becomes richan tha previous step.

Example 6. Consider again the definitional program of the previous gtamin the iterative construc-
tion of the minimum model, all predicates are initially agsd the empty relation (of the corresponding
type). After the first step of the construction, the meanisgjgned to predicate is the relation{a,b}
due to the first two facts of the program. At this same step,ntkaning ofp becomes the relation
{r | aer}. Also, the meaning oid becomes equal to the relatidiir,d) | d € r}. Additional itera-
tions will not alter the relations we have obtained at the tsp; in other words, we have reached the
fixed-point of the bottom-up computation. O

In the above example, we obtained the meaning of the progrgustione step. If the source program
contained recursive definitions, convergence to the leeastpoint would in general require more steps.

2.3 Bezem'’s Semantics

In [1, 2], M. Bezem proposed an alternative extensional sgicgfor higher-order logic programs.
Again, the syntax of the source language has to be apprelyriagstricted. Actually, the class of pro-
grams adopted in [1, 2] is a proper superset of the class afitiefial programs. In particular, Bezem
proposes the class bbapata programsvhich extend definitional programs:

2The notion of continuity will not play any role in the remaigi part of this paper.
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e A predicate variable that appears in the body of a rule, ne¢diecessarily appear in the head of
that rule.

e The head of a rule can be an atom that starts with a predicatbia

Example 7. All definitional programs of the previous subsection are dlsapata. The following non-
definitional program of Example 4 is hoapata:

p(a):-Q(a).

Intuitively, the above program states thais true ofa if there exists a predicate that is defined in the
program that is true of. We will use this program in our discussion at the end of theepa
The following program is also hoapata (but not definitional)

P(a,b).

Intuitively, the above program states that every binargtieh is true of the paifa,b). O

Given a hoapata program, the starting idea behind Bezermi®agh is to take its “ground instantia-
tion” in which we replace variables with well-typed termstloé Herbrand Universe of the program (ie.,
terms that can be created using only predicate and indivishrestants that appear in the program). For
example, given the program:

qa).

q(b).
p(Q:-Q(a).
id(R) (X) : -R(X) .

the ground instantiation is the following infinite “program

qa).

q(b).

p(q):-q(a).

id(qg) (a):-q(a).
p(id(q)):-id(q) (a).
id(id(q)) (a) :-id(qg) (a).
p(id(id(q))) :-id(id(q)) (a) .

One can now treat the new program as an infinite propositimmakie., each ground atom can be seen as
a propositional one). This implies that we can use the stardast fixed-point construction of classical
logic programming (see for example [8]) in order to comptie $et of atoms that should be taken as
“true”. In our example, the least fixed-point will contairoats such ag(a), q(b), p(q), id(q) (a),
p(id(qg)), and so on.

A main contribution of Bezem’s work was that he establistied the least fixed-point of the ground
instantiation of every hoapata prograneigensional This notion can intuitively be explained as follows.
It is obvious in the above example that the relatigrendid(q) are equal (they are both true of only
the constang, and therefore they both correspond to the relafief). Therefore, we would expect that
(for example) ifp(q) is true thenp (id(q)) is also true becausgandid(q) should be considered as
interchangeable. This property of “interchangeabilityfarmally defined in [1, 2] and it is demonstrated
that it holds in the least fixed-point of the immediate consege operator of the ground instance of every
hoapata program.
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2.4 The Differences Between the two Approaches

It is not hard to see that the two semantic approaches odtiméhe previous subsections, have some
important differences. First, they operate on differentrse languages. Therefore, in order to compare
them we have to restrict Bezem’s approach to the class ofitiefial programs3.

The main difference however between the two approaches isdly that the least fixed-point of the
immediate consequence operator is constructed in eachlnasladge’s semantics the construction starts
by initially assigning to every predicate constant the gmptation; these relations are then improved
at each step until they converge to their final meaning. lemoiords, Wadge’s semantiosanipulates
relations On the other hand, Bezem’s semantics works with the groosthmtiation of the source
program and, at first sight, it appears to have a more syaot#éatior. In our running example, Wadge’s
approach converges in a single step while Bezem'’s appr@kes &an infinite number of steps in order
to converge. However, one can easily verify that the grouncha that belong to the least fixed-point
under Bezem'’s semantics, are also true in the minimum modnWadge’s semantics. This poses the
question whether under both approaches, the sets of graamd @hat are true, are identical. This is the
question that we answer positively in the rest of the paper.

3 Definitional Programs and their Semantics

In this section we define the source languageof definitional higher-order logic programs. Moreover,
we present in a formal way the two different extensional sgios that have been proposed for such
programs, namely Wadge's and Bezem’s semantics respgctive

3.1 Syntax

The language”” is based on a simple type system that supports two base typi& boolean domain,
and1, the domain of individuals (data objects). The composipes$yare partitioned into three classes:
functional (assigned to function symbols), predicatei¢gesl to predicate symbols) and argument (as-
signed to parameters of predicates).

Definition 1. A type can either be functional, argument, or predicateptighbyo, p andrtrespectively
and defined as:

o:=1]|(—o0)
m:=o|(p—n
pi=t1|m

We will uset to denote an arbitrary type (either functional, argumenpredicate one). As usual,
the binary operator— is right-associative. A functional type that is differehtihi will often be written
in the formi™ — 1, n > 1. Moreover, it can be easily seen that every predicate typan be written in
the formp; — -+ — pn — 0, N> 0 (for n = 0 we assume that = o).

We proceed by defining the syntax.&f

Definition 2. The alphabet of the higher-order langua#é consists of the following:
1. Predicate variables of every predicate typ@enoted by capital letters suchRQ,R,...).

3Actually, we could alternatively extend Wadge's approazh broader class of programs. Such an extension has already
been performed in [5], and we will discuss its repercussiorke concluding section.



24 Equivalence of two Definitional Higher-Order LP Semantics

. Individual variables of type (denoted by capital letters suchXagsy,Z,...).

. Predicate constants of every predicate tyffdenoted by lowercase letters suchpag, r, . ..).

. Individual constants of type(denoted by lowercase letters suchads,c,...).

. Function symbols of every functional type= 1 (denoted by lowercase letters suclf agh,...).

D 01~ W N

. The logical conjunction constant, the inverse implication constawt, the left and right paren-
theses, and the equality constanfor comparing terms of type

The set consisting of the predicate variables and the iddali variables of7# will be called the

set ofargument variable®f 7. Argument variables will be usually denoted Wyand its subscripted
versions.

Definition 3. The set oftermsof the higher-order languag#” is defined as follows:
e Every predicate variable (respectively predicate comptaintype 71 is a term of typert, every
individual variable (respectively individual constanftgpe 1 is a term of type;;
e if f is ann-ary function symbol and;,...,E, are terms of type then(f E;1---E;) is a term of
typet;
e if E; is aterm of typgp — mandE; a term of typep then(E; E») is a term of typer.
Definition 4. The set ofexpressionsf the higher-order languag#”’ is defined as follows:
e Aterm of typep is an expression of type;
e if E; andE; are terms of type, then(E; ~ E>) is an expression of type

We writevars(E) to denote the set of all the variablesEnExpressions (respectively terms) that have
no variables will often be referred to geound expression§espectivelyground termy Expressions of
type o will often be referred to aatoms We will omit parentheses when no confusion arises. To @&enot
that an expressioB has typep we will often writeE : p.

Definition 5. A clauseis aformulap V1--- V< E1A--- AEm, Wherep is a predicate constamt,Vi---Vy
is a term of typeo andE;, ..., Ey, are expressions of type The termp V1 ---Vy is called theheadof the
clause, the variableg,, ..., V, are theformal parametersf the clause and the conjuncti@ga A --- AEp,
is itsbody. A definitional clausas a clause that additionally satisfies the following twdniegons:

1. All the formal parameters are distinct variables (ier dibi, j such that < i, j <n, V; # V).

2. The only variables that can appear in the body of the clatesés formal parameters and possibly
some additional individual variables (namely variablesypt ).

A programP is a set of definitional program clauses.

In the rest of the paper, when we refer to “clauses” we will meefinitional ones. For simplicity, we
will follow the usual logic programming convention and wdlwirite p Vi---Vp < E1,...,En instead
ofpVi---Vh<E1A---AEn.

Our syntax differs slightly from the Prolog-like syntax three have used in Section 2. However, one
can easily verify that we can transform every program froenfdrmer syntax to the latter.

Definition 6. For a progranP, we define the Herbrand universe for every argument fypdenoted
by Up , to be the set of all ground terms of type that can be formed out of the individual constants,
function symbols and predicate constants in the program.

In the following, we will often talk about the “ground instiation of a program”. This notion is
formally defined below.



A. Charalambidis, P. Rondogiannis & I. Symeonidou 25

Definition 7. A ground substitutiorf is a finite set of the form{V1/Es,...,Vn/En} where theV;'s
are different argument variables and e&ghs a ground term having the same type\as We write
dom0) = {Vi,...,Vn} to denote the domain &.

We can now define the application of a substitution to an esgive.

Definition 8. Let 8 be a substitution anfl be an expression. TheBRg is an expression obtained fron
as follows:

e EO =EIf Eis a predicate or individual constant;
e VO=0(V)if Vedom@); otherwise V6 =V,

e (fE1---En)0=(fE160---E0);

o (E1 E2)6 = (E16 E20);

o (E1~E»)0=(E10~E;0).

Definition 9. Let E be an expression anél be a ground substitution such theargE) C dom(8).
Then, the ground expressidff is called aground instantiationof E. A ground instantiation of a
clausep Vi ---Vy < Ei,...,Em with respect to a ground substitutiéhis the formula(p V1---Vn)0 +
E10,...,EnB. Theground instantiation of a prograrR is the (possibly infinite) set that contains all the
ground instantiations of the clausesRofvith respect to all possible ground substitutions.

3.2 Wadge’s Semantics

The key idea behind Wadge’s semantics is (intuitively) teigrs to program predicates monotonic re-
lations. In the following, given posets and B, we write [A o B] to denote the set of all monotonic
relations fromA to B.

Before specifying the semantics of expressiongiwe need to provide the set-theoretic meaning
of the types of expressions ¢# with respect to an underlying domain. It is customary in dogyo-
gramming to take the underlying domain to be the HerbrandeuseUp ;. In the following definition
we define simultaneously and recursively two things: thessgios[7] of a typet and a corresponding
partial orderC; on the elements dfr]. We adopt the usual ordering of the truth valdi@lse andtrue,

i.e. false< false true < true andfalse< true.

Definition 10. Let P be a program. Then,
e [1] =Up, and, is the trivial partial order that relates every elementselit
o [I"—1]=Ug, —Up,. Apartial order for this case is not needed;
e [o] = {falsetrue} and, is the partial ordeK on truth values;

o [o— ] =[[p] > [n]] and Cp—nis the partial order defined as follows: for dllg € [p — i,
f Cpongiff f(d) Crg(d) foralld e [p].

We now proceed to define Herbrand interpretations and states

Definition 11. A Herbrand interpretatioh of a programP is an interpretation such that:
1. for every individual constantthat appears iR, | (c) = c;
2. for every predicate constapt rrthat appears iR, | (p) € [;

3. for everyn-ary function symbof that appears i® and for allty,...th € Up,, I(f) t1 -+ th =
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Definition 12. A Herbrand stata of a progranP is a function that assigns to each argument varigble
of typep, an elemens(V) € [p].

In the following, s[V/d] is used to denote a state that is identicas tbe only difference being that
the new state assigns othe valued.
Definition 13. Let P be a programl be a Herbrand interpretation Bfands be a Herbrand state. Then,
the semantics of the expressionsPoE defined as follows:
. [V]s(l) =s(V) if V is a variable;
. [e]s(l) = I(c) if cis an individual constant;

w N P

. [p]s(1) =1 (p) if pis a predicate constant;
- [(FE2---En)[s(1) = 1(F) [Eals(1)--- [En]s(1);
- [(Ex E2)s(1) = [Ea]s(1) [E2]s(1);
6. [(E1~ E2)]s(l) =trueif [E1]s(I) = [E2]s(I) andfalseotherwise.

For ground expressions we will often write [E] (1) instead of{E]s(l) since the meaning df is
independent o$.

It is straightforward to confirm that the above definitionigss to every expression an element of
the corresponding semantic domain, as stated in the foipl@mma:

Lemma 1. LetP be a program and leE : p be an expression. Also, let | be a Herbrand interpretation
and s be a Herbrand state. Thég]s(l) € [p].

Definition 14. Let P be a program an be a Herbrand interpretation & Then,M is a Herbrand
model of P iff for every clausep V;i---V, < E1,...Ey in P and for every Herbrand stag if for all
ie{1,...,m}, [Ei]s(M) =truethen[p Vi---Vp]s(M) = true.

In the following we denote the set of Herbrand interpreteiof a progran® with .#p. We define a
partial order on#p as follows: for alll,J € .#p, | C 4, J iff for every predicatep : T that appears i,
I(p) CrJ(p). Similarly, we denote the set of Herbrand states with and we define a partial order as
follows: for all 51,8, € “p, 51 C o, S iff for all variablesV : p, s1(V) C, (V). The following lemmata
are straightforward to establish:

Lemma 2. LetP be a program. Then,.%p,C 4, ) is a complete lattice.
Lemma 3. LetP be a program and IeE : p be an expression. Letd be Herbrand interpretations and
s, S be Herbrand states. Then,

1. IfI C 4 Jthen[E]s(l) Sp [E]s(J).

2. IfsC 4, s then[E]s(l) Cp [E]s(1).

We can now define thenmediate consequence operafor .7 programs, which generalizes the
corresponding operator for classical (first-order) proggd8].

Definition 15. Let P be a program. The mapping : .%p — #p is called theimmediate consequence
operator forP and is defined for every predicate p1 — --- — pn — 0andd; € [pi] as

(2N

true there exists a claugeV; ---Vn < E1,...En such that
Te(l)(p) dp---dn= for every states, [EiJsv, /a,.....va/d, (1) = trueforalli € {1,...,m}
false otherwise.

It is not hard to see thaf is a monotonic function, and this leads to the following tleeo [10, 7]:

Theorem 1. Let P be a program. Then M= Ifp(Tp) is the minimum, with respect © ,,, Herbrand
model ofP.
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3.3 Bezem’s Semantics

In contrast to Wadge'’s semantics which proceeds by cornstguthe meaning of predicates as relations,
Bezem'’s approach takes a (seemingly) more syntax-orieagptbach. In particular, Bezem’s approach
builds on the ground instantiation of the source prograntrdeioto retrieve the meaning of the program.
In our definitions below, we follow relatively closely theposition given in [1, 2, 3].

Definition 16. Let P be a program and le&r(P) be its ground instantiation. An interpretatiorfor
Gr(P) is defined as a subsetdp , by the usual convention that, for aAyc Up o, | (A) =trueiff A e .
We also extend the interpretatidrfor every (E; ~ Ez) atom as follows:l (E; ~ E,) = trueif E; = E;
andfalseotherwise.

Observe that the meaning @, ~ E;) is fixed and independent of the interpretation.
Definition 17. We define the immediate consequence operatgyp), of P as follows:

true if there exists a claus& < E1,...,Emin Gr(P)
Tarpy(1)(A) = such that (E;j) =truefor alli € {1,...,m}
false otherwise

As it is well established in bibliography (for example [8ihe least fixed-point of the immediate
consequence operator of a propositional program existgsahd minimum, with respect to set inclusion
and equivalently<, model ofGr(P). This fixed-point, which we will henceforth denote by, p), is
shown in [1, 2] to be directly related to a notion of a modelatap of capturing the perceived semantics
of the higher-order prograr. In particular, this model by definition assigns to all grdustoms the
same truth values ag/q,p). It is therefore justified that we restrict our attention#t;, p), instead of
the aforementioned higher-order model, in our attempt twgthe equivalence of Bezem’s semantics
and Wadge’s semantics.

The following definition and subsequent theorem obtaing@]indentify a property ot Zc, ) that
we will need in the next section.

Definition 18. Let P be a program and le#Zg,p) be the <-minimum model ofGr(P). For every
argument typg we define a corresponding partial order as follows: for typee define<, as syntactical
equality, i.e.E =, E for all E € Up,. For typeo, E = E' iff .#c,p)(E) < .#cpy(E'). For a predicate
type of the formp — 1, E <. E"iff ED <;E'Dfor all D € Up .

Theorem 2(=-Monotonicity Property) [3] Let P be a program and#,p) be the<-minimum model
of Gr(P). Then for allE € Up ,_,y and allD,D’ € Up , such thatD <, D', it holdsED <, ED’.

4 Equivalence of the two Semantics

In this section we demonstrate that the two semantics plex@nthe previous section, are equivalent for
definitional programs. To help us transcend the differebedween these approaches, we introduce two
key nations, namely that of trground restrictionof a higher-order interpretation and its complementary
notion of thesemantic extensioof ground expressions. But first we present the followSupstitution
Lemmawhich will be useful in the proofs of later results.

Lemma 4 (Substitution Lemma)Let P be a program and | be a Herbrand interpretation f Also let
E be an expression an be a ground substitution with vais) C dom(0). If s is a Herbrand state such
that, for all V € vargE), s(V) = [8(V)](l), then[E]s(l) = [EO](I).
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Proof. By a structural induction o&. For the basis case,if= p or E = c then the statement reduces to
an identity and i€ =V then it holds by assumption. For the induction step, we fikat@ne the case that
E=(fEy - En); then[ELs(1) = 1 (F) [Ex]s(1) -~ [Enls(1) and[EE(1) = I(f) [E26](1) -~ [EnOI(1).
By the induction hypothesis|E1]s(1) = [E10](1),...,[En]s(l) = [EnO](l), thus we haveE]s(l) =
[EB](I). Now consider the case that= E; E,. We have[E]s(l) = [E1]s(I)[E2]s(l) and [E6](I) =
[E16](1)[E26](l). Again, applying the induction hypothesis, we conclude fieds(l1) = [EO](I). Fi-
nally, if E = (E1 = E2) we have thaflE]s(I) = true iff [E1]s(1) = [E2]s(l), which, by the induction
hypothesis, holds iffE16](1) = [E260](]). Moreover, we havéEB] (1) = trueiff [E10](l) = [E20](l),
therefore we conclude th§E]s(1) = trueiff [EQ](I) = true. O

Given a Herbrand interpretatidnof a definitional program, it is straightforward to deviseaare-
sponding interpretation of the ground instantiation ofghegram, by restrictind to only assigning truth
values to ground atoms. As expected, such a restriction addehof the program produces a model of
its ground instantiation. This idea is formalized in thddaling definition and theorem.

Definition 19. Let P be a programl, be a Herbrand interpretation BfandGr(P) be the ground instan-
tiation of P. We define theground restrictionof I, which we denote by|c,p), to be an interpretation of
Gr(P), such that, for every ground atoM |, p)(A) = [A](I).

Theorem 3. LetP be a program andsr(P) be its ground instantiation. Also let M be a Herbrand model
of P and M|, (p) be the ground restriction of M. Then i) is a model ofGr(P).

Proof. By definition, each clause iGr(P) is of the formpE; --- E, «+ B10,...,By6, i.e. the ground
instantiation of a clauseV; ---V, + By,...,Bk in P with respect to a ground substitutigh such
thatdom(8) includesVi,...,V, and all other (individual) variables appearing in the bofiyhe clause
andO(V;) =Ej, for alli € {1,...,n}. Letsbe a Herbrand state such ti&Vv) = [6(V)](M), for all
V € dom0). By the Substitution Lemma (Lemma 4) and the definitioMg, p), [pV1 -+ Va]s(M) =
[PE1 -+ En](M) = M|g,p)(pE1--- En). Similarly, for each atonB; in the body of the clause, we
have [BiJs(M) = [Bi6](M) = M|g,p)(Bi6),1 <i < k. Consequently, iM|g,p)(Bi8) = true for all

i € {1,...,k}, we also have thgBi]Js(M) =true,1 <i < k. AsM is a model ofP, this implies that
[pV1---Vn]s(M) = M]|gp)(PE1 - En) = true and thereforeM|g,p) is @ model ofGr(P). O

The above theorem is of course useful in connectingthe-minimum Herbrand model of a program
to its ground instantiation. However, in order to prove tlygliealence of the two semantics under
consideration, we will also need to go in the opposite dioacand connect thel-minimum model of
the ground program to the higher-order program. To this eadniroduce the previously mentioned
semantic extensior a ground expression.

Definition 20. Let P be a program and#g, ) be the<-minimum model ofGr(P). Let E be a ground
expression of argument tygeandd be an element dfp]. We will say thatd is a semantic extension of
E and writed >, E if

e p=1andd=E;
e D=0 andd = f//lGr(P)(E);
e p=p’' — mand foralld’ € [p'] andE’ € Up, such that >, E', it holds thatd d >, EE’.

Compared to that of the ground restriction presented eathe notion of extending a syntactic
object to the realm of semantic elements, is more compticdtefact, even the existence of a semantic
extension is not immediately obvious. The next lemma guaemnthat not only can such an extension
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be constructed for any expression of the language, butatfzs an interesting property of mirroring
the ordering of semantic objects with respectipin a corresponding ordering of the expressions with
respect to<;.

Lemma 5. LetP be a programGr(P) be its ground instantiation and/, ) be the<-minimum model
of Gr(P). For every argument type and every ground terre € Up ,

1. There exists € [p] such that e>, E.
2. Foralle€ e [p]andallE’ eUp ,, ifexp E, € >p E and e, €, thenE <, E'.

Proof. We prove both statements simultaneously, performing ancinah on the structure g¥. Specif-
ically, the first statement is proven by showing that in eaateove can construct a functiemf type p,
which is monotonic with respect 10, and satisfiegr> E.

In the basis case, the constructioneofor types: ando is trivial. Also, if p =1, then both>,
andC,, reduce to equality, so we hake= E’, which in this case is equivalent o=, E’. On the
other hand, fop = o, &>, identifies with equality, while—, and =<, identify with <, so we have that
Meepy(E) =e< € = Mg py(E') impliesE <, E'.

For a more complex type = p1 — --- — pn — 0, n > 0, we can easily construet as follows:

true, if there existdy,...,d, and ground termB4,..., Dy such that,
eg -6 = foralli,d Cp &,di>p D; and%G,(P)(E Dy --- Dp) =true
false otherwise.

To see that is monotonic, considegy, ..., e, €,...,€,, such thae; Cp, €,...,e, Cp, € and observe
thateg --- e, = true impliese¢ --- €, = true, due to the transitivity ofZ,. We will now show that
e>,E, i.e. for alley,...,ey andEy,...,Ey such thate; >, E1,...,6n>p, Ep, it holdseg --- &, =
M (py(EEy -+ En). Thisis trivial if .#c,p)(E Ey --- En) =true, sinceg Cp, €. Let us now examine the
case that#g,p)(E E; --- En) = false For the sake of contradiction, assue® - - - &, = true. Then, by
the construction oé, there must exigdy, ..., d, andDs,..., Dy such that, for all, d; Cy, &, di >, Di and
AMepy(ED1 --- Dp) = true. By the induction hypothesis, we have that=, Ej, foralli € {1,...,n}.
This, by the<-Monotonicity Property of#, ) (Theorem 2), yields thatZZg,p)(EDy - - - Dn) =true <
///G,(P)(E E1 --- E,) = false which is obviously a contradiction. Therefore it has tohaetee --- e, =
false

Finally, in order to prove the second statement and condlidenduction step, we need to show
that for all termsD1 € Up p,,...,Dn € Up ., it hOldSE Dy --- Dy <o E' Dy --- Dy. By the induction
hypothesis, there exish;, ..., d,, such that; >, D1,...,d,>p, Dn. Becauser>, E andE Dy --- Dy is
of typeo, we havee d; --- dy = .#c,(p)(E D1 --- Dp) by definition. Similarly, we also havg d; --- dy =
.///Gr(m(E’ Dy --- Dn). Moreover, byeC, € we have thae d; --- d, T, € dp --- dy. This yields the
desired result, since, identifies with=<,,. O

The following variation of the Substitution Lemma stateattifithe building elements of an expres-
sion are assigned meanings that are semantic extensidmsrogyntactic counterparts, then the meaning
of the expression is itself a semantic extension of the esiwa.

Lemma 6. LetP be a programGr(P) be its ground instantiation and | be a Herbrand interpretatiof
P. Also, letE be an expression of some argument tgpand let s be a Herbrand state arftbe a ground
substitution, both with domain vais). If, for all predicatesp of typerrappearing ing, [p] (1) >xp and,
for all variablesV of typep’ in var§(E), S(V) >, 8(V), then[E]s(I) >, EB.
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Proof. The proof is by induction on the structure Bf The basis caseE = p andE = V hold by
assumption an@ = c: 1 is trivial. For the first case of the induction step, ket (f E; --- E,), where
Ei1,...,Eq are of typer. By the induction hypothesis, we have tfj&t]s(l) >, E16, ..., [En]s(l) >/ EnB.
As >, is defined as equality, we have tH&t]s(I) = I (f) [E1]s(l) --- [En]s(l) =f E16 --- En6 = EBO
and therefordE]s(l) >, EO. For the second case, [Et= E; E,, whereE; is of typep; = p, — mand
E2 is of typepo; then,[E]s(1) = [Ex1]s(1) [E2]s(1). By the induction hypothesigE1]s(l) >p,—.~E16 and
[E2]s(l) >p, E20, thus, by definition[E]s(l) = [E1]s(l) [E2]s(l) >rE16 E20 = (E1E2)8 = EB. Finally,
we have the case thit= (E; ~ E;), whereE; andE; are both of type. The induction hypothesis yields
[E1]s(1) >, E18 and[Ez]s(l) >, E26 or, sincer>, is defined as equalityjE1]s(I) = E10 and[Ez]s(l) =
E26. Then[Ei]s(l) = [E2]s(1) iff E160 = E260 and, equivalently[E]s(I) = true iff EO = true, which
implies [E]s(l) >0 EB. O

We are now ready to present the main result of this paper. fidmém establishes the equivalence
of Wadge’s semantics and Bezem’s semantics, in statinglhleatrespective minimum models assign
the same meaning to all ground atoms.

Theorem 4. LetP be a program and leGr(P) be its ground instantiation. Let Mbe theC ,,-minimum
Herbrand model oP and let.Zg, ) be the<-minimum model oGr(P). Then, for evenA € Up, it
holds[A](Mp) = .Zgp)(A).

Proof. We will construct an interpretatioN for P and prove some key properties for this interpretation.
Then we will utilize these properties to prove the desiresiite The definition oN is as follows:

Foreveryp:p1 — --- — pp—o0and alld; € [p1],...,dn € [pn]

false if there existey,...,e, and ground termgy, ..., E, such that,
N(p)dy---dh= foralli,di Cp, &,6 > Ei and.Zg,p) (pE1 -+ En) = false
true, otherwise

Observe thal is a valid Herbrand interpretation Bf in the sense that it assigns elementgrifi(i.e.
functions that are monotonic with respectig) to every predicate of typain P. Indeed, if it was not so,
then for some predicate: m= p; — --- — pn — 0, there would exist tuple§,...,dy) and(dj,...,d})
with d; Cp, d7,...,dn Ep, dy, such thalN(p)dy -- - dy =trueandN(p)d; - - - dj, =false By definition, the
fact thatN(p)d; --- dj, is assigned the valulse would imply that there existy,...,e, andEq,...,E,
as in the above definition, such thatc,p)(pEy - - En) = falseandd; Cp, e,...,d) Ep, €1, Being
that ", are transitive relations, the latter yields tiat—,, €,...,dy Cp, €. Therefore, by definition,
N(p)d; --- dy should also evaluate false which constitutes a contradiction and thus confirms that th
meaning ofp is monotonic with respect tQ .

It is also straightforward to see thid{p) > p, i.e. for alldy,...,d, and all ground termB1,...,Dy
such thatd; >p, Dy, ...,dy >, Dn, we haveN(p)dy --- dy = Meepy(p D1--- Dn). Becaused Cy, di,
this holds trivially if .#g,p)(p D1 --- Dn) = false Now let .#g,p)(p D1 --- Dn) = true and assume,
for the sake of contradiction, thal(p)d; --- d, = false Then, by the definition oN, there must exist
€1,...,€r andEy,...,E, such that, for ali, d Cj, &, € >4 Ei and.Zg,p)(pE1 -+ En) = false Thus,
by the second part of Lemma 5, for allD; <, E;j and, by thex-Monotonicity Property of//Gr(p),
Mepy(pD1 -+ Dn) < Mg py(p E1 -+ En), Which is obviously a contradiction. Thus we conclude that
N(p)d; --- dy =true.

Next we prove thailN is a model ofP. Let pVi---V, <+ Bi,...,Bx be a clause irP and let
{V1,...,Vn,X1,...,Xm}, with V; : gy, for alli € {1,...,n}, andX; : 1, for alli € {1,...,m}, be the set of
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variables appearing in the clause. Then, it suffices to shaty tor any tuple(ds, ..., d,) of arguments
and any Herbrand stagsuch thas(V;) = d; forall i € {1,...,n}, N(p)d; - - - dy = falseimplies that, for
atleastong € {1,...,k}, [Bj[s(N) = false Again, by the definition oN, we see that iN(p)d; --- dn =
falsg then there existy, ..., €, and ground termgy, ..., E, such that#,p)(pEy - - - En) = falsg di Cp,
€1,...,0n Cp, & ande; >p, Eq,...,dyh>p En. Let 8 be a ground substitution such thé¢V;) = E; for
alli e {1,...,n} and, for alli € {1,...,m}, 6(X;) = s(X); then there exists a ground instantiation
pE1--- En < B16,...,BkO of the above clause iGr(P). As .#,p) is a model of the ground program,
Mepy(PE1 -+ En) = falseimplies that there exists at least ope {1,...,k} such that#, ) (B;6) =
false We are going to show that the latter implies tfiaj]s(N) = falsg which proves thal is a model
of P. Indeed, lets' be a Herbrand state such thetVi) = g >, 6(Vi) = forall i € {1,...,n} and
S(Xi) = 0(X;) = s(X) for all i € {1,...,m}. As we have shown earlieN(p’) > p’ for any predi-
catep’ : 17, thus by Lemma 6 we g€iBj]s(N) >, Bj6. SinceB; is of typeo, the latter reduces to
[Bjls(N) = ¢ p)(B;0) = false Also, because; C,, &, i.e.sC g, S, by the second part of Lemma 3
we get[B;]s(N) Co [Bj]s(N), which makegBj]s(N) = false

Now we can proceed to prove that, for Allc Up o, [A](Mp) = .#G.p)(A). Let A be of the form
pEi---En wherep:ps — -+ — pn— 0€ P and letd; = [E1](Mp),...,dn = [En](Mp). As we have
shown,N is a Herbrand model o?, while Mp is the minimum, with respect tg ,,, of all Herbrand
models ofP, therefore we have thaflp T », N. By definition, this gives us tha¥lp(p) di --- dn Co
N(p) d1 --- dn (1) and, by the first part of Lemma 3, thadit Cp, [E1](N),...,dn Cp, [En](N) (2). More-
over, for all predicatep’ : 7 in P, we haveN(p') >, p’ and thus, by Lemma 6, taking and 6
to be empty, we gefEiJ(N) >, Ei,1 <i < n. In conjunction with (2), the latter suggests that if
Mepy(p E1 -+ En) = falsethen N(p) d; --- dn = false or, in other words, thaN(p) dy --- dy <
Meepy(p E1 - En). Because of (1), this makes it thiftp(p) dy -+~ dy < .#G.p)(p E1 -+ En) (3).
On the other hand, by Theorem 8p|c,(p is @ model ofGr(P) and therefore#g,p)(p E1 --- En) <
Mp|Grpy(p E1 -+ En), since .Zg,p) is the minimum model ofGr(P). By the definition ofGr(P)
and the meaning of application, the latter becom#g,p)(p E1 --- En) < Mp|gpy(p E1 --- En) =
Mp(pEs --- En) =Mp(p) [E1](Mp) --- [En](Mp) = Mp(p) dy - - - dy. The last relation and (3) can only
be true simultaneously, if all the above relations hold aséties, in particular it Zc,py(p E1 -+ En) =
[p E1--- En](Mp). O

5 Discussion

We have considered the two existing extensional approaohtbe semantics of higher-order logic pro-
gramming, and have demonstrated that they coincide forldss of definitional programs. It is therefore
natural to wonder whether the two semantic approachesnuento coincide if we extend the class of
programs we consider. Unfortunately this is not the casejeadiscuss below.

A seemingly mild extension to our source language would badleav higher-order predicate vari-
ables that are not formal parameters of a clause, to appisbiody. Such programs are legitimate under
Bezem’s semantics (ie., they belong to the hoapata class)eder, a recent extension of Wadge's se-
mantics [5] also allows such programs. However, for thigeeed class of programs the equivalence of
the two semantic approaches no longer holds as the folloasagple illustrates.

Example 8. Consider the following extended program:

p(a):-Q(a).
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Following Bezem’s semantics, we initially take the grounstantiation of the program, namely:
p(a):-p(a).

and then compute the least model of the above program whgiprasto the atonp (a) the valuefalse

On the other hand, under the approach in [5], the gi6a) has the valuérue in the minimum Herbrand
model of the initial program. This is due to the fact that unithe semantics of [5], our initial program
reads (intuitively speaking) as followsp (a) is true if there exists a relation that is true=sf actually,
there exists one such relation, namely the{adt This discrepancy between the two semantics is due to
the fact that Wadge’s semantics is basedetsand not solely on the syntactic entities that appear in the
program. O

Future work includes the extension of Bezem’s approachgbdriorder logic programs with nega-
tion. An extension of Wadge's approach for such programsréeantly been performed in [4]. More
generally, the addition of negation to higher-order logisggamming appears to offer an interesting and
nontrivial area of research, which we are currently purguin
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Usual termination proofs for a functional program requaeheck all the possible reduction paths.
Due to an exponential gap between the height and size of sectetluction tree, no naive formal-
ization of termination proofs yields a connection to theypolmial complexity of the given program.
We solve this problem employing the notion of minimal fupctgraph, a set of pairs of a term and its
normal form, which is defined as the least fixed point of a monebperator. We show that termina-
tion proofs for programs reducing under lexicographic peaitters (LPOs for short) and polynomially
guasi-interpretable can be optimally performed in a weagrrent of Peano arithmetic. This yields
an alternative proof of the fact that every function comgdutg an LPO-terminating, polynomially
quasi-interpretable program is computable in polynonpatg. The formalization is indeed optimal
since every polynomial-space computable function can bgpeed by such a program. The crucial
observation is that inductive definitions of minimal furetigraphs under LPO-terminating programs
can be approximated with transfinite induction along LPOs.

1 Introduction

1.1 Motivation

The termination of a program states that any reduction utiggprogram leads to a normal form. Recent
developments in termination analysis of first order funwigorograms, or aferm rewrite systemmore
specifically, have drawn interest in computational resewnalysis, i.e., not just the termination but
also the estimation of time/space-resources required éout& a given program, which includes the
polynomial run-space complexity analysis. Usual termamaproofs for a program require to check all
the possible reduction paths under the program. Due to amexgial gap between theightandsize

of such the reduction tree, no naive termination proof w@elcconnection to the polynomial complexity
of the given program. For the sake of optimal terminationofspit seems necessary to discuss “all the
possible reduction paths” by means of an alternative natioaller in size than reduction trees.

1.2 Backgrounds

Stemming from [21], there are various functional charazations of polynomial-space computable
functions [14, 16, 17, 9], Those characterizations staaé ¢kery poly-space computable function can
be defined by a finite set of equations, i.e., by a functionadj@m. Orienting those equations suitably,
such programs reduce under a termination orderjeieographic path ordergLPOs for short). The
well-founded-ness of LPOs yields the termination of theup#oly programs.

*The author is supported by Grants-in-Aid for JSPS FellowsuGNo. 25 726).

R. Matthes, M. Mio (Eds.): Fixed Points (© Naohi Eguchi
in Computer Science 2015 (FICS 2015) This work is licensed under the
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In the seminal work [5], it was discussed, depending on trecehof a termination order, what
mathematical axiom is necessary to formalize terminatimofs by the termination order within Peano
arithmetic PA that axiomatizes ordered semi-rings withhmatatical induction. In case aifultiset path
orders (MPOs for short), termination proofs can be formalized ia fragment of PA with induction
restricted to computably enumerable sets. This yields tennaltive proof of the fact that every function
computed by an MPO-terminating program is primitive remarscf. [10]. The formalization is optimal
since every primitive recursive function can be computedbyWMPO-terminating program. In case of
LPOs, termination proofs can be formalized in the fragmeitit imduction restricted to expressions of
the form “f is total” for some computable functioh The formalization is optimal in the same sense as
in case of MPOs, cf. [22].

In more recent works [3, 4], MPOs and LPOs are combined watlynomial quasi-interpretations
(PQIs for short). Unlike (strict) polynomial interpretatis [2], the existence of a quasi-interpretation
does not tell us anything about termination. However, comtbiwith these termination orders, the
PQI can be a powerful method in computational resource aisalyndeed, those functional programs
characterizing poly-space computable functions that watsomed above admit PQIs. This means that
every poly-space computable function can be computed byRaD-terminating program that admits a
PQI. Moreover, conversely, every function computed by saighiogram is computable in polynomial
space [3, Theorem 1].

1.3 Outline

In Section 2 we fix the syntax of first order functional progsaand the semantics in accordance with the
syntax. In Section 3 we present the definitions of LPOs andsRaglether with some examples, stating
an application to poly-space computable functions (Theate[3, Theorem 1]). In Section 4 we present
the framework of formalization. For an underlying formastsm, a second order systenﬁ &f bounded
arithmetic[6], which can be regarded as a weak fragment of PA, seermabsiisince it is known that
the system is complete for poly-space computable functions (Theorezh 2

In [5], the termination of a program reducing under an LR, is deduced by showing that, given
a termt, a tree containing all the possible reduction chains statiitht is well founded undek .
The same construction of such reduction trees does not wdsk éssentially because the exponentiation
m~ 2Mis not available. We lift the problem employing the notiommhimal function grapt12, 11, 15],

a set of pairs of a term and its normal form. Given a terinstead of constructing a reduction tree rooted
att, we construct a (subset of a) minimal function graph thatest¢éhe pair ot and a normal form of

t. Typically, a minimal function graph is inductively defineat in other words defined as the least fixed
point of a monotone operator. Let us recall that the set afrahbhumbers is the least fixed point of the
operatorme I'(X) <= m=0Vv3dne€ X s.t. m=n+1. As seen from this example, many instances of
inductive definitions are induced by operators of the foraT (X) <= 3s,,...,5 € X---. Crucially, a
minimal function graph under a program reducing under an kR{ can be defined as the least fixed
point of such an operator but als@ I'(X) <= 3s1,...,5% € XASy,...,S <|po t--- holds. Thanks to
the additional conditiors;, ..., s« <jyo t, the minimal function graphs under the program can be defined
by <ipo-transfinite induction as well as inductive definitions. kc8on 5 this idea is discussed in more
details.

In the main section, Section 6, the full details about thenfalization are given. Most of the effort
is devoted to deduce indhan appropriate form of transfinite induction along LPOs (beab). Based
on the idea above, we then construct a minimal function g@pdr a given progranR reducing under
an LPO <, by <po-transfinite induction (Theorem 3). Sin€stores all the pairs of a term and its
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R-normal form, this means the termination of the prog@m

In Section 7 it is shown that the formalization presentedentf®n 6 yields that every function com-
puted by an LPO-terminating program that admits a PQI isspgce computable (Corollary 3). This
shows that the formalization is optimal since such prograarsonly compute poly-space computable
functions as mentioned in Section 1.2.

2 Syntax and semantics of first order functional programs

Throughout the paper,@ogramdenotes d@erm rewrite system\e sometimes use unusual notations or
formulations for the sake of simplification. More precisadaly accepted formulations can be found,
e.g., in [20].

Definition 1 (Constuctor-, basic-, terms, rewrite rules, sizes of tg¢rrhet C andD be disjoint finite
signatures, respectively obnstructorsanddefinedsymbols, and/ a countably infinite set ofariables

We assume thaf contains at least one constant. The g8 UD, V) of terms T(C, V) of constructor
terms,B(CUD, V) of basicterms andR(CUD, V) of rewrite rulesare distinguished as follows.

(Terms t o= X|c(ty,....t) | f(t,....4) eT(CUD V);
(Constructor terms s = X|c(s,...,%) T(C,V);
(Basic term$ u = f(s,...,%) (CU D,V);
(Rewrite ruleg p = u—t R(CuD, V)

wherexe V,ceC, f €D, t,t,...,t e T(CUD,V),s,...,% € T(C,V) andu e B(CUD, V). For such
a classS(F, V) of terms,S(F) denotes the subset of closed terms. $ize||t|| of a termt is defined as
x| = 1 for a variablex and|| f (tz,....t) [ = 1+ 354 ||t .
Definition 2 (Substitutions, quasi-reducible programs, rewrite rete. A programR is a finite subset
of R(CUD,V) consisting of rewrite rules of the form— r such that the variables occurringrimccur in
| as well. Amapping : V — S(F, V) from variables to a s&(F, V) of terms is called aubstitution For
atermt € S(F,V), t0 denotes the result of replacing every variablgith 6(x). A programR is quasi-
reducibleif, for any closed basic terrhe B(CUF), there exist a rulé — r € R and a substitutior® :
V — T(C) such that = 18. We restrict reductions to those undeil-by-valueevaluation, oinnermost
reductions more precisely. For three tertng v, we writet[u/v] to denote the result of replacing an
occurrence off with u. It will not be indicated which occurrence wofis replaced if no confusion likely
arises. We write 55 sif s=1t[r8/18] holds for some rulé — r € R and constructor substitution
6:V — T(C). We write-+% to denote the reflexive and transitive closurelgf andt 35 sif t 5 s
andsis a normal form. By definition, for any quasi-reducible g R, if t - sandt is closed, then
se T(C) holds.

A programR computes function if any closed basic term has a unique normal forfin(i@). In this
case, for everg-ary function symbof € D, a function|f] : T (C)k — T (C) is defined by| f](sy, ...,%) =
s<= f(s,...,%) kS

3 Lexicographic path orders and quasi-interpretations

Lexicographic path orders arecursive path ordersvith lexicographic status only, whose variant was
introduced in [13]. Recursive path orders with multisetusanly were introduced in [8] and a modern
formulation with both multiset and lexicographic status ¢ found in [20, page 211]. Letg be a
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(strict) precedencea well-founded partial order on a signatlire- CUD. We always assume that every
constructor is<g-minimal. Thelexicographic path orde(LPO for short)<,, induced by<r is defined
recursively by the following three rules.

S<po i ,
. ie{l,...,l
S <lpo g(tl,...,t|)( { })
St <ipo O(t1,-.-,0) -+ Sk <ipo (ta,... 1)
2. f<rgeD
(50,50 <o Oltr..1) (f<rgeb)
3. S S=t1---s51=t_1 S1'<Ipoti S—«—1<Ipot "'Sr<<lpot (fED)

f(st,...,%) <ipo T(t1,...,t) =t
We say that a prograrR reduces undek, if r <, | holds for each rulé_ —r € R and thatR
is LPO-terminatingif there exists an LPO under whidk reduces. We writs <<|';0t if s <jp0 t results
as an instance of the aboifecase (= 1,2,3). Corollary 1 is a consequence of the definition of LPOs,
following from <g-minimality of constructors.

Corollary 1. If s <jpo t and te T(C), then s<|_ t and s T(C).

A quasi-interpretation( - ) for a signatureF is a mapping fronF to functions over naturals ful-
filling (i) (f) : N — N for eachk-ary function symbolf € F, (i) (f)(...,m,...) < (f)(...,n,...)
wheneverm < n, (i) m; < (f)(my,...,my) for any j € {1,...,k}, and (iv) 0< (f)) if f is a con-
stant. A quasi-interpretatiofi- ) for a signature- is extended to closed ternigF) by (f (t1,...,t%)) =
(fD((ta),--.,(tk)). Such an interpretatiofr- ) is called a quasi-interpretation for a progréhif (ro) <
(1) holds for each rulé — r € R and for any constructor substitutigh: V — T(C). A programR ad-
mits a polynomial quasi-interpretatiofQI for short) if there exists a quasi-interpretatipr) for R such
that( f)) is polynomially bounded for eache F. A PQI (- ) is calledkind O (or additive[4]) if, for each
constructorc € C, (c)(my,...,mx) =d+ Zlle m; holds for some constamt > 0. An LPO-terminating

programR is called arLPO™Y9)-program ifR admits a kind 0 PQI.
Theorem 1([3]). Every function computed by an LB -program is computable in polynomial space.

Conversely, every polynomial-space computable functambe computed by an LF&?-program
[3, Theorem 1]. In [4] various examples of programs adnwtifkind 0) PQIs are illustrated, including
LPO™MO)_programsR s andRqgr below.

Examplel. The length of thdongest common subsequenoétwvo strings can be computed by a program
Rics [4, Example 6], which consists of the following rewrite rsildefined over a signatufe= C U D
whereC = {0,s,€,a,b} andD = {max,Ics}.

max(x,0) — X max(s(x),s(y)) — s(max(xy))

max(0,y) — Yy

les(x,€) — 0 les(i(x),i(y)) — s(les(x,y)) (i€ {a,b})
les(e,y) — 0 les(i(x),5(y)) = max(les(xj(y))les(i(x),y))  (i#] € {a,b})

Natural numbers are built @f ands and strings ob andb asa(u) = au for a stringu € {a,b}*. The
symbole denotes the empty string. Define a precedengen F by max <g Ics. Assuming that every
constructor is<g-minimal, the progranR|cs reduces under the LPQ,, induced by<g. For instance,
the orientatiormax(lcs(x,b(y)),lcs(a(x),y)) <ipo Ics(a(x),b(y)) can be deduced as follows. The orienta-
tiony <! b(y) yieldslcs(a(x),y) <\ lcs(a(x),b(y)) whilex <\ a(x) andb(y) <\ _lcs(a(x),b(y)) yield

Ipo Ipo Ipo Ipo



Naohi Eguchi 37

Ipo Ipo

lcs(a(x),b(y)). It can be seen that the progrd admits the kind 0 PQ( - ) defined by

(0)=(e) = 1.
()0 = () = (b)(¥) = 1+
(max)(xy) = flesh(xy) = max(x.y).

les(x,b(y)) <2 les(a(x), b(y)). These together withhax <g Ics yield max(lcs(x, b(y)), lcs(a(x),y)) <\
X

This is exemplified agmax(lcs(x,b(y)),les(a(x),y))) = max(max(x,1+y),max(1+x,y)) < max1+
X,1+Y) = (les(a(x),b(y))). Thus Theorem 1 implies that the functifins] can be computed in polyno-
mial space.

Example2. The Quantified Boolean Formul§QBF) problem can be solved by a progr&ger [4,
Example 36], which consists of the following rewrite rulesfided over a signaturé = C UD where
C ={0,s,nil,cons, T, L,var,—,Vv,3} andD = {=,not, or, in, verify,qbf }.

not(T) — L not(L) — T
or(T,x) — T or(L,x) — X
0=0 — T s(x)=0 — L
0=s(x) — L s(x) =s(y) — x=y
in(x,nil) — L in(X,cons(y,ys)) — or(x=yY,in(X,ys))

verify(var(X),xs) — in(X,Xs)
verify(—x,Xs) — not(verify(X,xs))
verify(XVy,xs) — or (verify(X, xs), verify (Y, Xs))
verify ((3X)y,xs) — or (verify(y,cons(X,xs)), verify (Y, Xs))
gbf(x) — verify(x,nil)

The symbolT denotes the true Boolean value whilghe false one. Boolean variables are encoded with
{0,s}-terms, i.e., with naturals. Formulas are built from vaealoperatingar, —, vV or 3. Without loss

of generality, we can assume that every QBF is built up inwlag. As usual, terms of the forms(s;t),
—(t), V(s,t) and3(s,t) are respectively denoted as-t, —t, sVt and(3s)t. By definition, for a Boolean
formula ¢ with Boolean variablesy, ..., x, [verify|(¢,[---]) = T holds if and only if¢ is true with the
truth assignment thag; = T if x; appears in the list - -] andx; = L otherwise.

Define a precedencer overF by not,or,= <p in <g verify <g gbf. Assuming<g-minimality of
constructor, the programqgr reduces under the LPQ),, induced by<g. For instance, the orienta-
tion or(verify(y, cons(X, xs)), verify (y,Xs)) <ipo verify(3(x,y),xs) can be deduced as follows. As well as
xs <|o, verify(3(xy),xs), the orientationx <’ 3(x,y) yields x <, verify(3(x,y),xs). These together
with the assumptiorons < verify yield cons(x,xs) <7 verify(3(x,y),xs). This together withy <\’
3(x,y) yields verify(y, cons(x,xs)) < verify(3(x,y),xs) as well asverify(y,xs) <7 verify(3(x,y),xs).
These orientations together with the assumptior g verify now allow us to deduce the desired orien-
tationor(verify(y, cons(x,xs)), verify (Y, Xs)) <<|f)>o verify(3(X,Y), Xs).

Furthermore, let us define a PQ!) for the signaturd- by

(c) = 1 if cis a constant,

) = 1+3%,x if ce Cwitharity >0,
C X)) = maﬁzlxj if f €D\ {verify,qbf},
) = X+,

) = Xx+1
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Clearly the PQI( - ) is kind 0. Then the prograRqgr admits the PQI. This is exemplified by the rule
above ag(or(verify(y, cons(x,xs)), verify (y,xs))) = max(y+ (1+X+X9),y+Xs) = (1+X+Y) +Xs=
(verify(3(x,y),xs)). Thus Theorem 1 implies that the functigebf] can be computed in polynomial
space. This is consistent with the well known fact that thé=@Boblem is PSPACE-complete.

4 A systemU3 of second order bounded arithmetic

In this section, we present the basics of second order bduadimetic following [1]. The original
formulation is traced back to [6]. The non-logical languags, of first order bounded arithmetic consists
of the constant 0, the successor S, the additiothe multiplication-, |x| = [log,(x+ 1)], the division
by two |x/2], the smash ¢k,y) = 2X'M and<. It is easy to see than| is equal to the number of bits in
the binary representation of a natunal In addition to these usual symbols, we assume that the ésgu
Lga contains magx,y). The assumption makes no change if an underlying systenffisisntly strong.

Definition 3 (Sharply-, bounded quantifiers, bounded formulab, Ruantifiers of the formax(x <
tA---)orvx(x<t—---) for some ternt are calledboundedand quantifiers of the forrfQx < |t|)---

are calledsharplybounded Bounded formulasontain no unbounded first order quantifiers. The classes
> (i € N) of bounded formulas are defined by counting the number efradtions of bounded quantifiers
starting with an existential one, but ignoring sharply bieshones. For eadke N, the first order system

§2 of bounded arithmetic is axiomatized with a &ASIC of open axioms defining thega-symbols
together with the schem@P-PIND) of bit-wise induction forzP-formulas.

PO)AVX(([x/2]) = (X)) = Vxp(x) (¢ € D) (®-PIND)

The precise definition of the basic axioASIC can be found, e.g., in [7, page 101].

Definition 4 (Second order bounded formulas;)UIn addition to the first order language, the language
of second order bounded arithmetic contains second ordebles X,Y,Z,... ranging over sets and
the membership relatiog. In contrast to the classe, the classeiib’1 of second order bounded
formulas are defined by counting alternations of secondragdantifiers starting with an existential
one, but ignoring first order ones. By definitiaiﬂ1 is the class of bounded formulas with no second
order quantifiers. The second order systefisJaxiomatized witrBASIC, (Zg*l-PIND) and the axiom
(231.CA) of comprehension faE5*-formulas.

VRVX Y (WY <t)(yeY < oy, X X)) (¢ € D) (D-CA)

Unlike first order ones, second order quantifiers have noi@xplounding. However, due to the
presence of a bounding ternin the schemazg’l-CA), one can only deduce the existence of a set with
a bounded domain.

Example3. The axiom(zg’l-CA) of comprehension allows us to transform given $étato another set
Y via Zg’l-definable operations without inessential encodings. Raesy example, assume that two sets
U andV encode binary strings respectively of lengttandn in such a way thaj € U < “the j bit of

the stringU is 1” and j ¢ U < “the j™ bit of the stringU is 0” for eachj < m. Then theconcatenation
W =U"V, the stringU followed byV, is defined by(zg’l-CA) as follows.

(Vi<m+n[jeW« ((j<mAajeU)v(m< jaj—meV))]



Naohi Eguchi 39

Definition 5 (Definable functions in formal systemd)et T be one of the formal systems defined above
and® be a class of bounded formulas. A functibnNK — N is ®-definable in Tif there exists a formula

¢ (xq,...,%,Y) € ® with no other free variables such thfX,y) expresses the relatiol(X) =y (under
the standard semantics) androves the sentens& 3lyg (Xy).

Theorem 2([6]). 1. A function isztl’—definable inS} if and only if it is computable in polynomial
time.

2. Afunction isZtl”l-definabIe inU3 if and only if it is computable in polynomial space.

To readers who are not familiar with second order boundetiraetic, it might be of interest to
outline the proof that every polynomial-space computablefion can be defined in%J The argument
is commonly known as thdivide-and-conquemethod, which was originally used to show the classical
inclusion NPSPACE- PSPACE [18].

Proof of the “if” direction of Theorem 2.2 (Outline)Suppose that a functioh: NK — N is computable
in polynomial space. This means that there exist a detestinTuring machineM and a polynomial
p: NK = N such that, for any inputsy, ..., m, f(my,...,mg) can be computed by while the head
of M only visits a number of cells bounded Ip¢|my|,...,|m|). Then, since the number of possible

computation terminates in a step bounded #{™ as well.

Let Ym(My,. .., mg,Nn,wo,W) denote ig’l-formula expressing that the s&t encodes the concate-
nation wy™---"W, of configurations undeM, wherew; is the next configuration ofv;_1, writing
w; = Nexty(wj_1) (1< j < 2M). Reasoning informally in & the =>!-formula ¢ (M, n) := (vw <
2P(M))3W iy (M, n,w,W) can be deduced b5 *-PIND) onn. In casen = 0, W can be defined iden-
tical to Nexty (w). For the induction step, given a configuratiap < 2P(™) the induction hypothesis
yields a set such thatyy (M, |n/2],wp,U) holds. Another instance of the induction hypothesis yields
a setV such thaty (M, [n/2],W,q-1,V) holds. Since @ = 2in=1 4 2n-1 "y (M, n,wo, W) holds for
the seW :=U"V.

Now instantiatingn with 29(M) yields a seW such thatyy (M, 290M) | Inity (M), W) holds for the
initial configurationlnity (M) on inputsm. The seW yields the final configuration and thus the result
f (M) of the computation. The uniqueness of the result can be éednd) accordingly. O

The “only if” direction of Theorem 2.2 follows from a bit mogeneral statement.

Lemma 1. If U3 proves3yd (x1, ..., %,Y) for a Z?’l-formula(p (X1,...,X,Y) with no other free variables,
then there exists a function :fNK — N such that, for any naturalgh= my,....m¢ € N, (i) f(m) is
computable with the use of space bounded by a polynomiahif. .., |my|, and(ii) ¢ (m, f(mM)) holds
under the standard semantics, wherelemotes the numer&™(0) for a natural m. -

It is also known that the second order system axiomatizel thg schemazg‘l-lND), instead of
(Zlfl-PIND), of the usual inductiop (0) AVX(¢ (X) — ¢ (S(x))) — Vx¢(x) for ij’l-formulas, called V,
captures the exponential-time computable functions ofrpmhial growth rate in the sense of Theorem 2.
Though there is no common notion about what is bounded aeitisnthe exponential functiom+— 2™
is not definable in any existing system of bounded arithmetic

5 Minimal function graphs

The minimal function graptsemantics was described in [12] as denotational semanficg23, Chap-
ter 9], and afterward used for termination analysis of fiomal programs without exponential size-
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explosions in [11, Chapter 24.2] and [15]. In this sectiom &xplain how minimal function graphs
work, how they are defined inductively, and how they can benddfivithout inductive definitions.

To see how minimal function graphs work, consider the pnogRa.s in Example 1. Let us observe
that the following reduction starting with the basic telus(a(a(€)),b(b(€))) is possible.

les(a(a(e)), b(b(€)))
“r. Max(les(a(e),b(b(g))),les(a(a(e)), b(g)))
“Rr. max(les(a(e),b(b(g))), max(lcs(a(e),b(¢)),les(a(a(€)), €)))
SR max(max(lcs(g,b(b(€))),lcs(a(g),b(€))), max(lcs(a(€),b(€)),lcs(a(a(€)),€)))

In the reduction, the tern:= Ics(a(€),b(€)) is duplicated, and hence costly re-computations poténtial
occur. For the same reason, there can be an exponentiabaxplo the size of the reduction tree rooted
atlcs(a(a(€)),b(b(g))) that contains all the possible rewriting sequences stasiith the basic term.
A minimal function graphG, or cachein other words, is defined so th@ stores pairs of a basic term
and its normal form. Thus, once the tetns normalized td (because the two stringsandb have no
common subsequence), the péir0) is stored inG and any other reduction ¢fcan be simulated by
replacing the occurrence bfwvith 0.

Given a progranR, a (variant of) minimal function grap@ is defined as the least fixed point of the
following operator™ over Z(B(F) x T(C)), whereX C B(F) x T (C).

t,gelNX) «—= d—-reR,30:V— T(C),H(to,So>,...,<'[H,-H,1,SH|—H,1> e Xs.t.
t=108& s=((r0)[so/to] ) [S|r|—1/t|r|-1]

The operatof” is monotone, i.eX CY = I'(X) CT(Y), and hence there exists the least fixed point of
. Suppose thaR is quasi-reducible. On one side, the fixed-nes& gields thatt -5 s= (t,s) € G.

On the other side, since the 4ét,s) |t € B(F) & t -k s} is a fixed point of, the least-ness @ yields
that (t,s) € G =t -5k s. Thus, to conclude that every closed basic term has an (st R-normal
form, it suffices to show that, for every terre B(F), there exists a terrasuch that(t,s) € G. Now
there are two important observations.

1. It suffices to show that, for every tertre B(F), there exist asubset GC G and a terms such
that (t,s) € Gi. If t =16 ands= ((r6)[so/to] - ) [Syr|-1/t|rj-1] @s in the definition of above
and, for eachj < ||r||, (tj,sj) € Gt holds for such a ség;, C G, thenG; can be simply defined as
G ={{t,9}UG,U--- UGy, =

2. Additionally suppose that the prografreduces under an LPQ,,,. Then it turns out that the
definition ofI" is equivalent to a form restricted in such a way that ,, t for eachj < ||r||.2

For these reasons, the scheftie B(F)) (Vs <ipo t)@(s) — ¢(t)) — (vt € B(F))¢(t) of transfinite
induction along<,, will imply the termination of a quasi-reducible LPO-terratmg progranR in the
sense above.

£
)

6 Formalizing LPO-termination proofs under PQIs in U%

In this section, we show that, R is a quasi-reducible LPY%-program, then an innermoR:normal
form of any closed basic term can be found in the systéniTieorem 3).

1To be precise, in [11, 15], thminimal function graptwas used to denote such a sub@efor a given basit.

2Namely, every function computed by af,.-reducing program is defined recursively along,,. Therefore, as a reviewer
pointed out, in this case the minimal function graphs candganded as fixed-point semantics for recursive definitidns o
functions, cf. [19, Chapter 10].
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Given a progranR over a signaturd= = CUD, we use the notatioNk to denote the finite set
{xeV |xappears in some ruje € R} of variables. Lef - be arefficientbinary encoding fofl (F,VR)-
terms. The efficiency means that:

(i) t— t7is =5 -definable in 4.
(i) There exists a polynomial (ternp)(x) with a free variablex such thaf™t™| < p(||t||) (provably)
holds for anyt € T(F,VR).

Without loss of generality, we can assume that:

(i) itf] < [7t7.

(iv) |"s7| < |"t7|if sis a proper subterm af
Such an encoding can be defined, for example, by represdetimg as directed graphs not as trees.
Lemma 2. The relation<,, is =5 *-definable inUJ.

Proof (Sketch).It suffices to show that, given two terraandt, the relation “there exists a derivation tree
according to the rules 1-3 (on page 36) that resulsdf, t” is Zg’l-definable in 3. Let T denote such

a derivation tree resulting 1<, t. By induction according to the inductive definition afy, it can be
shown that the number of nodesTiris bounded by|s|| - ||t||. Hence, by the assumption (ii) on the encod-
ing"™-7, the codé T of T is polynomially bounded ifjs|| - |t|| and thus if's™-"t™. On the other hand, by
definition, the relatiors <, to between two termsy andty is reduced to a tupls; <, tj (j=1,...,K)

of relations between some subterss . ., s of g and subterms, . . ., tx of tg. Thanks to the assumption
(iv) on the encoding -, |7s; |+ |t; | < ["so | +|"to |, i.e., 2'S THL T < [ (270 /2] holds for
anyj € {1,...,k}. From these observations, it can be seen that the consmuatithe derivation tre@

is performed in U, and hence the relati®i<,, t is 5 *-definable in . O

As observed in [5], in which an optimal LPO-termination preeas described, every prograR
reducing under an LPQ,, already reduces under a finite restrictian of <,, for some/ € N and
every quantifier of the forniQs <, t) can be regarded as a bounded one. Adopting the restrictien, w
introduce an even more restrictive relatian (¢ € N) motivated by the following properties of PQIs.

Proposition 1. Let( - ) be a kind0 PQI and te B(F). Then the following two properties hold.
1. (t) < p(]"t7|) holds for some polynomial p.

2. Suppose additionally that a progra® admits the PQI| - and that t-%% s holds. If sc T(C),
then||s|| < (t) holds. If s= f(sy,...,s) € B(F), then||s;j|| < (t) holds for each g {1,...,k}.

Proof. PROPERTY 1. Lett = g(ts,...,t). Since the PQI|-) is kind O, one can find a constadt
depending only on the s& of constructors and the PQI-|) such that(t;) < d- ||t;|| holds for any
j €{1,...,1}. This yields a polynomiap such that(t) < p(||t||) and thus(t) < p(|"t7|) holds by the
assumption (iii) on the encodirig™.

PROPERTY 2. In casesc T(C), |§]| < (s) < (t) holds. In cases= f(sy,...,s) € B(F), [|sj| <
(sj) < (s) < (t) holds for eachj € {1,...,k}. O

Definition 6 (T(C), B¢(F), </, </*). LetT(C) denote a seft € T(C) | ||t|| < ¢} of constructor terms
andBy(F) a set{f(t1,...,t«) € B(F) | [tz]],...,||t]| < ¢} of basic terms. Then we wrie<,t if s<jp, t
and additionallys € T,(C) UBy(F) hold. We use the notatiosr;1<<;> t (i =1,2,3) accordingly. Moreover,
we define dexicographic extensiow:'gex of <, overT(C). For constructor terms, ..., S, t1, ..., t, we
write (sg,...,%) <I (tg,..., k) if there exists an indeke {1,...,k} such thats; =t; for everyj < i,
s <} ti, ands; € T(C) for everyj > i.
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Corollary 2 follows from the definitions of, and <';X and from<g-minimality of constructors.
Corollary 2. For two basic terms sy, ..., ), f(t1,...,t%) € By(F), f(s1,...,5) < f(ty,...,t) holds
if and only if(sy,. .., ) <! (ty,...,t) holds.

For most of interesting LPEY®-programs including Example 1 and 2, interpreting polyraimi
consist of+, -, ma)%-(:]_Xj together with additional constants. This motivates ustm#dize PQIs limiting
interpreting polynomial terms to those built up only fromS)+, - and max to make the formalization
easier. Then the constraints (ii) and (iii) on PQIs folloarfr defining axioms for these function symbols.

Let us consider a reductidg - t 5% s under a progranR admitting a kind 0 PQJ( - ), where
to,t € B(F) andse T(C)UB(F). If s <, t for some LPO<,,, then Proposition 1 yields a polynomial
p such thats <, t holds by Definition 6. Hence we can assume that (the result of substituting
to for) a polynomialp(|x|). More precisely,l can be expressed by drga-term built up from 0 and
IXI,Ivl,12],... by S,+ and -. By assumption/ does not contain # nof-/2]. Thus/ = {(xq,...,X)
denotes a polynomial with non-negative coefficientgxiy,...,|X|. Sincef contains no smash # in
particular, 2() can be regarded as arga-term for any polynomialp(x). By the assumption (i) on
the encoding -7, |t 7| is polynomially bounded in the sizk| of t, and hencét™ < 2Pl for some
polynomial p(x). Therefore any quantifier of the forniQs<,t), (Qt € T,(C)) and(Qt € B,(F)) can
be treated as a bounded one.

We deduce the schemﬁl@i; (Be¢(F), <y)) of <,-transfinite induction oveB,(F) for Ztl”l-formulas

(Lemma 5). Since the relatiof(sy, ...,s) <7 f(ty,...,t) relies on the comparisofsy, .. .,s) <l
(tr,...,t) by Corollary 2, we previously have to deduce the scheffigu((T,(C)¥, <)) of <|=-
1

transfinite induction ovek-tuples ofT,(C)-terms (Lemma 4). We start with deducing the instance in the
base cask=1.

Lemma 3. The following schema af ;-transfinite induction oveT ,(C) holds inU3, where¢ < z?l.
(VteTH(C)((Fs<et)d(s) = ¢ (1)) = (VL€ T((C))o(t) (T2 (Te(C), <0))

Proof. Reason in Y. Supposgvt € T,(C))((Vs</t)¢(s) — ¢(t)) and lett € T;(C). We show that

¢ (t) holds by(ZE’l—PIND) on"t™. The casét = 0 trivially holds. Supposét™ > 0 for induction step.
By assumption, it suffices to show thfts) holds for anys <, t. Thus lets <, t. Sincet € T,(C), sis a
proper subterm df by Corollary 1 and<g-minimality of constructors. Thus, the assumption (iv) ba t
encoding - "yields"s* < ["t7/2], and hence (s) holds by induction hypothesis. O

Remarkl. In the proof of Lemma 3, we employed a bit-wise formcolrse of valuegduction¢ (0) A
VE(Vs(TsT < [Tt7/2] — ¢(s)) — d(t)) — Vi (t) for az2*-formula ¢ (x), which is not an instance of
(=)1-PIND). Formally, one should appiz}*-PIND) for the=>-formulay(x) = vt (7 < 2¥ — ¢ (t))
to deducevt € T,(C)) ¢(t). To ease presentation, we will use similar informal arguisienthe sequel.
Lemma 4. The schemaleg,l (T¢(C), <)) can be extended to tuples Df(C)-terms, i.e., the following

schema holds i3, whereg () = ¢ (ty,... . t) € =5
(e TA(C))((V8<DP(8) — ¢ (F) — (Ve To(C))$ (D) (Thoa (Te(C)*, <))
Proof. We show that the schemilgg,l(Tg(C)k, <)) holds in U; by (meta) induction ok > 1. In case

k=1, the schema is an instance . (T,(C), <¢)). Suppose that > 1 and T lsa(T,(C)* 1, <}))
1 1
holds by induction hypothesis. Assume that

(V1o b € To(C)) (V(S1s- -, S0) < (ty -, t0)) P (S1y- -, 8) — D (b, %)) 1)
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holds for somezkj’l-formulacp(tl,...,tk). Let ¢<|lex(t,t2,...,tk), Y(t) and Y, (1) denotezg’l-formulas
specified as follows.

to,...,tk € T(C)A (V(SQ, sy SK) <|Kex (tg,...,tk)) o(t,s2,. .., %);

(Vtz,. .ok E TZ(C)) ¢(t,t2,. .. ,tk);
teT(C)A(Vs<,t)y(s).

¢<I(e><<t,t2, oo tk)
Q)
lﬁU<l(t)

Note, in particular, thatp(t) is still aZ?’l-formuIa since every quantifier of the forfw's € T,(C)) can
be regarded as a bounded one under which the Effijssis closed. One can see trmi/ex(t,tz,...,tk)

andy, (t) imply t,to,... ,tx € T,(C) and(¥(5,%, ..., %) < (t,t2,..., %)) #(S.%, ..., %). Hence, by the
assumption (1), (t) implies (Vta, ... % € Tg(C))(¢<|fx(t,t2, %) = @ (t,t2,... 1)), which denotes

(V2. e € To(C) ((V(S2y -+, ) <1 (125, 1)) P (6,51, ) — P (LT, ..., 1)).

This together with Tl (T, (C)k1, <[)) yields (Vt,,... ,tc € T¢(C)) ¢ (t,t2,.. .. t), denotingy(t). This
b ,
means thatvt € T,(C))((Vs<,t)@(s) — @(t)) holds. Sincap(t) Zkl)’l as noted above, this together
with (lel;,l (Te(C),<y)) yields (vt € T,(C))y(t) and thugVty,...,tx € T¢(C))@(ty,...,t) holds. O
Lemma 5. LetF = CUD. The<,-transfinite induction oveB,(F) holds inU3, where¢ € Zlfl.
(Vt € Be(F))((Vs€ By(F))(s<et — §(s)) = ¢ (1)) — (vt € By(F))o (1) (Tho1 (Be(F), <))

Given a precedencer on the finite signaturé, let rk : F — N denote thaank, a finite function
compatible with<g: rk(f) <rk(g) < f <r Q.

Proof. Reason in J. Assume the premise of (501 (Be(F), <))
1

(Vt € Bo(F))((VseBy(F))(s</t— ¢(s) — o(t)) (2)

Letg e D. We show that¥ty,....t; € T/(C))¢(g(ts,...,t)) holds by(£21-PIND) on 2k, or in other
words by finitary induction omk(g). Letty,...,t; € T,(C) andt := g(ts,...,t). By the assumption (2),
it suffices to show thap (s) holds for anys € B;(F) such thas <, t. Thus, letse B,(F) ands < .

CASE. s<t: In this cases <, tj for somei € {1,...,1}. Sincetj € T((C), s€ T,(C) as well by
Corollary 1, and hence this case is excluded.

CASE. s:= f(s1,...,5%) <7 t: Inthis casef <¢ gand hencek(f) < rk(g). This allows us to reason
as 249 < 2k()=1 — | 2rk(f) /2] Thus the induction hypothesis yiel@$s).

CAsE. s:=9(s1,..-,9) <<§> t: We show that the following condition holds.

(W, Vi € Te(C) (V(U, ...y u) < (Va,.o )P (Q(Un, -, W) — $(9(Va,-.,W))) ()

Letvy,...,vi € T((C). By Corollary 2, the premisév(u,...,u) <';X (V1,...,v))9(9(ug,...,u) of (3)
yields (Vs < g(vi,...,)) ¢(S). On the other side, the previous two cases yigtel € B, (F))(s </
g(vi,....v) = ¢(s)) (i=1,2) and hencgVs € By(F))(s </ g(va,...,w) = ¢(s)) holds. Therefore
#(g(va,...,v)) holds by the assumption (2), yielding the statement (3)cé&{8) is the premise of an
instance of the scherr(alzlfl(Tg(C)' , <), Lemma 4 yieldgVvy,...,vi € T¢(C))$(g(va,...,w)), and

thus¢ (g(s1,...,5)) holds in particular. O
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To derive, from Tl (B((F), <¢)), the existence of a minimal function graph under an LP@xieating
1
program, we need the following technical lemma.

Lemma 6. (in U3) Let (- ) be a kind0 PQI for a signatureF = CUD, t € B(F), s€ T(F) and <y, an
LPO induced by a precedenee:-. If s <5, t and(s) < (t) < ¢, then, for any basic subtermaf s and
for any ¢ € T(C) such that(s') < (t’), v <, t holds for any basic subterm v dsgt'].

Proof. By <g-minimality of constructorss <, t’ holds. Hences[s' /t'] <jp, t from the assumption
S <ipo t. This yieldsv <5, t by the definition of LPOs. Writes = f(vy,...,%) for somef € D and
vi,...,W € T(C). Letie{1,...,k}. Then|vi| < (vi) < (v) < (g[S/t']) < (t). The last inequality

follows from the monotonicity (ii) of the PQ(- ). This yields||vi|| < ¢ and hences <, t. O

Theorem 3. (in U%) Suppose thaR is a quasi-reducible LPEY9-program. Then, for any basic term
t, there exists a minimal function graph G (in the sense ofi@e&) such that thatt,s) € G holds for
an R-normal form s of t.

Proof. Suppose thaR is a quasi-reducible LPBY®)-program witnessed by an LPQ,, and a kind

0 PQI( - ) and that<, is a finite restriction ok .. Let gy(x,y,X) denote azg’l-formula with no free
variables other thar, y and X expressing thaX C B,(F) x T,(C) is a set of pairs of terms such that
(x,y) € X, and, for any(t,s) € X, (s) < (t) <Zand3l —-r € R, 30:Vg — T/(C) s.t.t =16 and one of
the following cases holds.

1. s=r0eTyC).

2. 3({t,sp) e X | j<|Ir]l) s.t.s= ((r0)[so/to] - ) [Syr|-1/tjrj-1], wheres[u/V] is identical if nov
occurs ins'.

Note that, sinc&fk is a finite set of variables}6 : VR — T,(C) can be regarded as a (first order) bounded
quantifier. By Proposition 1.1, we can find a polynomial tgatr) such that(t) < p(|"t”|) holds for any
t € B(F). The rest of the proof is devoted to dedyvec B(F))(3s€ T,(C))3IG Yyt (t,s,G) for such

a bounding polynomiap. Fix an input basic terrty € B(F) and let¢,(t) denote thé:?’l-formula(ﬂse
T,(C))3G Yu(t,s,G), wherel = p(|"to'|). Sincetg € B,(F), it suffices to deducévt € B,(F))¢,(t). By
Lemma 5, this follows from{vt € B,(F))((Vse€ B(F))(s </t — @¢(s)) — ¢¢(t)), which is the premise
of an instance of‘(lzg‘l (B¢(F),<¢)). Thus lett € B,(F) and assume the condition

(Vse By(F))(s<¢t — ¢o(9)). 4)

SinceR is quasi-reducible, there exist a rdle+ r € R and a substitutior® : Vg — T,(C) such that
t =16. The remaining argument splits into two cases dependinh®shape of 6.

CASeE1.r0 € T,(C): In this casa(t,r6,G) holds for the singletoi := {(t,r6)}.

CAse 2. 18 ¢ T,(C): In this case there exists a basic subtegwof r6. Fix a termug € T,(C) such
that (ug) < (Vo). We show the following claim by finitary induction an < ||r||.

Claim 1. There exists a sequen¢é;,s;,G;) | j < m) of triplets such that, for each < m, (i) t; <, t,
(i) Wi(tj,s;,G;j) holds, and(iii) ((r6)[so/to]:--)[sj/tj] is not identical to((r8)[so/to] -+ ) [Sj—1/tj—1] @s
long as((r0)[so/to] -+ ) [Sj—1/tj—1] has a basic subterm.

In the base casm = 0, letty be an arbitrary basic subterm . Then, sincg[r8) < (10), to </t
follows from the definition of LPOs. Hence, by the assumpiid)) there exist a terrgy € T,(C) and
a setGq such thatyy(to, S0, Go) holds. Clearly,(r0)[so/to] is not identical tor8. For induction step,
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suppose that there exists a sequefites;,G;) | j < m) fulfilling the conditions (i)—(iii) in the claim. In
case thaf(r6)[so/to] - - ) [sm/tm] has no basic subterm, letty;1,Sm+1) = (Vo, Up). Otherwise, lety, 1 be
an arbitrary basic subterm. Thgg.1 <,t holds by Lemma 6. Hence, as in the base case, the assumption
(4) yields a ternsy,;1 € T/(C) and a seGy,;1 such thaty(tmi1,Sn+1, Gm+1) holds. By the choice of
tmi1, ((r6)[so/to] - ) [Smi1/tmy1] is not identical to( (r6)[so/to] - - ) [Sm/tm].

Now let s:= ((r6)[so/to]---)[Sjrj—1/tjrj-1] for a sequencé(t;,s;,Gj) | j <||r||) witnessing the
claim in casem = |[r|| — 1. Thense T,(C) since|{f € D | f appears ir((r6)[so/to]---)[sj/tj]}| <
Ir]l — (i +1) holds for eachj < |r|| by the condition (iii) in the claim. Defmlng as& by G=

{{t,9)} U (UJ‘<HrH G,) now allows us to concludgy(t,s,G). O

7 Application

In the last section, to convince readers that the formatinatf termination proofs described in Theo-
rem 3 for LPGYO-programs is optimal, we show that the formalization yieddsalternative proof of
Theorem 1, i.e., that LPY?-programs can only compute polynomial-space computalietifons.

The next lemma ensures that the Gatonstructed in Theorem 3 is indeed a minimal function graph.

Lemma 7. Suppose thaR is a quasi-reducible LPE®-program. Lety,(x,y, X) denote thezg’l-
formula defined in the proof of Theorem 3. Then, for amyB(F) and for any te T(C), t bk s if and
only if 3G Yp( ) (t,s,G) holds under the standard semantics.

Proof. Let R reduce under an LPQ,,. For the “if” direction, it can be shown th&t't € B(F))(Vse
T(C))(3G Wyt (t,5,G) =t 155 s) holds by (external) transfinite induction alorg,,. For the “only
if” direction, it can be shown thatvt € B(F))(Vs € T(C))(t 48 s = 3G Yy (t,5,G)) holds by
induction onm, where-> denotes then-fold iteration of-1s. O

Now Theorem 3 and Lemma 7 yield an alternative proof of (aavdrof) Theorem 1.

Corollary 3. Every function computed by a quasi-reducible 3¢ -program is computable in poly-
nomial space.

Proof. By Theorem 3, J proves the formula
QR(R) ALPO(R, <ipo) A PQI(R, (- )) = (¥t € B(F))(3S € T o) (C))3G Wit (£, G),

whereQR(R), LPO(R, <p0) andPQI(R, ( - )) respectively express that aByF)-term is reducibleR
reduces undekp,, and(V(l —r) € R)(V8 :Vr = T(C))(r8) < (18). By Lemma 2,LPO(R, <po)
can be expressed wichz%l-formula, but neitheQR(R) nor PQI(R, (- )) is literally expressible with a
bounded formula. Nonetheless, the proof can be easily neddidi a proof of the statement

(vt € B(F))(3s€ T4(C))(QR/(R) ALPO(R, <ipo) APQI¢(R, (- ) — 3G y(t,s,G)),

where ¢ = p(|"t7]), and QR/(R) and PQI/(R,(-)) respectively express that am(F)-term is re-
ducible, and(¥(l —r) € R)(V8 :Vr — T4(C))(r0) < (18). Both QR/(R) andPQI,(R,(-)) can be
regarded aig’l-formulas, and hence the formufg(t,s) := QR/(R) ALPO(R, <50) APQI/(R,(-)) —
3G g, (t,s,G) liesin Ztl”l.

Now suppose that a functioff] : T(C)k — T(C) is computed by a quasi-reducible LP©-
programR for somek-ary function symbof € D. Then Lemma 1 yields a polynomial-space computable
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function f : Nk — N such thath o (e, . ) (F(te,- - 1), F(Tt,...,"t%™)) holds for anyty ..., tx € T(C)
under the standard semantics. Hence, by assummig(mf(tlwtkj‘)(f(tl,...,tk), f(rtp,...,rtkj),G)
holds for some s&b C B(F) x T(C). By Lemma 7, this means the correspondefités, ..., t\) = s<
f("t17,...,"t ") ="s". Thereforel[f](ts,...,t) " can be computed with space bounded by a polynomial
in |"t17,...,|"t'| and thus bounded by a polynomiallita ||, ..., ||tk||- O

8 Conclusion

This work is concerned with optimal termination proofs fanétional programs in the hope of establish-
ing logical foundations of computational resource analySiptimal termination proofs were limited for
programs that compute functions lying in complexity classesed under exponentiation. In this paper,
employing the notion of minimal function graph, we showeatttermination proofs under LFEM0-
programs can be optimally formalized in the second ordeneeyik.l} of bounded arithmetic that is com-
plete for polynomial-space computable functions, liftthg limitation. The crucial idea is that inductive
definitions of minimal function graphs under Lﬁ@(o)-programs can be approximated with transfinite
induction along LPOs. As a small consequence, comparecktoriginal result, Theorem 1, when we
say “a programR computes a function”, the quasi-reducibility Bfis explicitly needed to enable the
formalization.

Finally, let us call a prograrR anMPO™Y9 one if R reduces under an MPO (with product status
only) andR admits a kind O PQI. In [4, Theorem 42], Theorem 1 is refinedhst & function can be
computed by an MPEBY9_program if and only if it is computable in polynomial time h& program
Rics described in Example 1 is an example of MB®%-programs, and hence the length of the longest
common subsequences is computable even in polynomial tBgelheorem 2.1, it is quite natural to
expect that minimal function graphs under MB%-programs can be constructed in the first order
system $. However, we then somehow have to adopt the fornfuld, s) = QR,(R) A LPO(R, <jpo
YAPQI/(R,(-)) — 3G g(t,s,G) (in the proof of Corollary 3) to &%-formula, which is clearly more
involved than the present case.
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*-Continuous Kleene ®-Algebras for Energy Problems*

Zoltan Esik Uli Fahrenberg Axel Legay

University of Szeged, Hungary Inria Rennes, France

Energy problems are important in the formal analysis of embedded or autonomous systems. Using
recent results on *-continuous Kleene w-algebras, we show here that energy problems can be solved
by algebraic manipulations on the transition matrix of energy automata. To this end, we prove general
results about certain classes of finitely additive functions on complete lattices which should be of a
more general interest.

1 Introduction

Energy problems are concerned with the question whether a given system admits infinite schedules
during which (1) certain tasks can be repeatedly accomplished and (2) the system never runs out of
energy (or other specified resources). These are important in areas such as embedded systems or au-
tonomous systems and, starting with [4], have attracted some attention in recent years, for example
in [3,5-8,16,19,23,24].

With the purpose of generalizing some of the above approaches, we have in [12,17] introduced energy
automata. These are finite automata whose transitions are labeled with energy functions which specify
how energy values change from one system state to another. Using the theory of semiring-weighted
automata [9], we have shown in [12] that energy problems in such automata can be solved in a simple
static way which only involves manipulations of energy functions.

In order to put the work of [12] on a more solid theoretical footing and with an eye to future general-
izations, we have recently introduced a new algebraic structure of *-continuous Kleene w-algebras [10]
(see also [11] for the long version). We show here that energy functions form such a *-continuous Kleene
w-algebra. Using the fact, proven in [10], that for automata with transition weights in *-continuous
Kleene w-algebras, reachability and Biichi acceptance can be computed by algebraic manipulations on
the transition matrix of the automaton, the results from [12] follow.

2 Energy Automata

The transition labels on the energy automata which we consider in the paper, will be functions which
model transformations of energy levels between system states. Such transformations have the (natural)
properties that below a certain energy level, the transition might be disabled (not enough energy is avail-
able to perform the transition), and an increase in input energy always yields at least the same increase
in output energy. Thus the following definition:

*The work of the first author was supported by the National Foundation of Hungary for Scientific Research, Grant no.
K 108448. The work of the second and third authors was supported by ANR MALTHY, grant no. ANR-13-INSE-0003 from
the French National Research Foundation, and by the EU FP7 SENSATION project, grant no. 318490 (FP7-ICT-2011-8).
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in Computer Science 2015 (FICS 2015) This work is licensed under the Creative Commons
EPTCS 191, 2015, pp. 48-59, doi:10.4204/EPTCS.191.6 Attribution-Share Alike License.



Z. Esik, U. Fahrenberg and A. Legay 49

x—=2x—2;x>1

X—=>x+2;x>2 W

x—=x+3x>1 x—=x+1;x>0

Figure 1: A simple energy automaton.

Definition 1 An energy function is a partial function f : R>o — R>¢ which is defined on a closed interval
[If,c0[ or on an open interval |/, o[, for some lower bound Iy > 0, and such that for all x <y for which f
1s defined,

yfZxf+y—x. (1)
The class of all energy functions is denoted by .%.

Note that we write function composition and application in diagrammatical order, from left to right,
in this paper. Hence we write f;g, or simply fg, for the composition go f and x; f or xf for function
application f(x). This is because we will be concerned with algebras of functions, in which function
composition is multiplication, and where it is customary to write multiplication in diagrammatical order.

Thus energy functions are strictly increasing, and in points where they are differentiable, the deriva-
tive is at least 1. The inverse functions to energy functions exist, but are generally not energy functions.
Energy functions can be composed, where it is understood that for a composition fg, the interval of
definition is {x € R>¢ | xf and xfg defined}.

Lemma 1 Let f € .% and x € R>q. If xf < x, then there is N € N for which xf" is not defined. If xf > x,
then for all P € R there is N € N for which xfN > P.

Proof In the first case, we have x — xf = M > 0. Using (1), we see that xf"T! <xf" —M foralln € N
for which xf"*! is defined. Hence (xf"),cn decreases without bound, so that there must be N € N such
that x /" is undefined.

In the second case, we have xf —x = M > 0. Again using (1), we see that xf""! > xf" + M for all
n € N. Hence (xf"),en increases without bound, so that for any P € R there must be N € N for which
xfN > P. ([

Note that property (1) is not only sufficient for Lemma 1, but in a sense also necessary: if 0 < @ <

1 and f: R>¢p — R3¢ is the function xf = 1 4 o, then xf" = ;’;01 a' + ax for all n € N, hence
lim,, e xf™ = 1, so Lemma 1 does not hold for f. On the other hand, yf = xf + ot(y —x) for all x < y,

Tl
so (1) “almost” holds.

Definition 2 An energy automaton (S,so,T,F) consists of a finite set S of states, with initial state so € S,
a finite set 7 C S x .# x S of transitions labeled with energy functions, and a subset F C S of acceptance
states.

We show an example of a simple energy automaton in Fig. 1. Here we use inequalities to give the
definition intervals of energy functions.

A finite path in an energy automaton is a finite sequence of transitions 7 = (so, f1,51), (51, /2,52), .-,
(Sn—1, fn,Sn). We use fr to denote the combined energy function f f> - - - f, of such a finite path. We will
also use infinite paths, but note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair ¢ = (s,x) with s € S and x € R>¢. A transition
between global states is of the form ((s,x), f,(s',x")) such that (s, f,s") € T and ' = f(x). A (finite or
infinite) run of (S,T) is a path in the graph of global states and transitions.
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We are ready to state the decision problems with which our main concern will lie. As the input to a
decision problem must be in some way finitely representable, we will state them for subclasses %' C .#
of computable energy functions; an .%’-automaton is an energy automaton (S,7) with 7 C S x .’ x S.

Problem 1 (Reachability) Given a subset .%’' C .% of computable functions, an .%’-automaton A =
(S,s0,T,F) and a computable initial energy xp € R>o: does there exist a finite run of A from (sg,xo)
which ends in a state in F'?

Problem 2 (Biichi acceptance) Given a subset .%’' C .# of computable functions, an .%’-automaton
A = (S,s50,T,F) and a computable initial energy xo € R>o: does there exist an infinite run of A from
(s0,X0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.

3 Algebraic Preliminaries

We now turn our attention to the algebraic setting of *-continuous Kleene algebras and related structures,
before revisiting energy automata in Section 6. In this section we review some results on *-continuous
Kleene algebras and *-continuous Kleene w-algebras.

3.1 *-Continuous Kleene w-Algebras

A semiring [1,18] S = (S,+,-,0,1) consists of a commutative monoid (S,+,0) and a monoid (S,-,1)
such that the distributive laws

x(y+z) =xy+az
(y+z)x=yx+z=x

and the zero laws
0-x=0=x-0

hold for all x,y,z € S. It follows that the product operation distributes over all finite sums.

An idempotent semiring is a semiring S whose sum operation is idempotent, so that x +x = x for all
x € . Each idempotent semiring S is partially ordered by the relation x < y iff x+y =y, and then sum
and product preserve the partial order and O is the least element. Moreover, for all x,y € S, x4y is the
least upper bound of the set {x,y}. Accordingly, in an idempotent semiring S, we will usually denote the
sum operation by V and 0 by _L.

A Kleene algebra [22] is an idempotent semiring S = (S,V,-, L, 1) equipped with a star operation
*: § — S such that for all x,y € S, yx* is the least solution of the fixed point equation z = zx V y and x*y
is the least solution of the fixed point equation z = xz V y with respect to the natural order.

A *-continuous Kleene algebra [22] is a Kleene algebra S = (S,V,-,*, L, 1) in which the infinite
suprema \/{x" | n > 0} exist for all x € S, x* = \/{x" | n > 0} for every x € S, and product preserves such

suprema: 9 \/ ) = \/ »' and \/ My = \/ X'y

n>0 n>0 n>0 n>0

for all x,y € S.
A continuous Kleene algebra is a Kleene algebra S = (S,V,-,*, 1, 1) in which all suprema VX,
X C 8, exist and are preserved by products, i.e., y(\/X) =VyX and (VX)y=VXyforall X CS,y¢€
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S. *-continuous Kleene algebras are hence a generalization of continuous Kleene algebras. There are
interesting Kleene algebras which are *-continuous but not continuous, for example the Kleene algebra
of all regular languages over some alphabet.

A semiring-semimodule pair [2,14] (S,V) consists of a semiring S = (S,+,-,0,1) and a commutative
monoid V = (V,+,0) which is equipped with a left S-action S XV — V, (s,v) > sv, satisfying

(s+s)Ww=sv+s'v s(v+V)=sv+s5/
(ss")v = s(s'v) 0s=0
s0=0 lv=v

for all s,/ € Sand v € V. In that case, we also call V a (left) S-semimodule. If S is idempotent, then also
V is idempotent, so that we then write V = (V, Vv, 1).

A generalized *-continuous Kleene algebra [10] is a semiring-semimodule pair (S,V) where S =
(S,V,-,*,1L,1)is a *-continuous Kleene algebra such that

xy'v = \/ xy"v
n>0
forallx,yc SandveV.

A *-continuous Kleene w-algebra [10] consists of a generalized *-continuous Kleene algebra (S,V)
together with an infinite product operation S“ — V which maps every infinite sequence xg,x1,... in S to
an element [],~(x, of V. The infinite product is subject to the following conditions:

(C1) For all xg,x1,... €S, Hxn =Xy Han.

n>0 n>0

(C2) Let xp,x1,... € Sand 0 =np < nj < --- a sequence which increases without a bound. Let y; =
Xpy **+Xp,—1 for all k > 0. Then Hx,, = Hyk.

n>0 k>0
(C3) Forallxp,xi,...,»,2 €S, [[abV2) = \/  []xux-
n=0 Xy, €{y,z} n>0
(C4) For all x,yo,y;,... €S, Hx*y,, = \/ ka"y,,.
n>0 ko,k1,...>0 n>0

A continuous Kleene w-algebra [14] is a semiring-semimodule pair (S, V) in which S is a continuous
Kleene algebra, V is a complete lattice, and the S-action on V preserves all suprema in either argument,
together with an infinite product as above which satisfies conditions (C1) and (C2) above and preserves
all suprema: [1,50(V X,) = V{I[1,>0%n | x4 € X,,,n > 0} for all Xo,X;,... C S (this property implies (C3)
and (C4) above). *-continuous Kleene w-algebras are hence a generalization of continuous Kleene ®-
algebras. We have in [10] given an example, based on regular languages of finite and infinite words, of a
*-continuous Kleene w-algebra which is not a continuous Kleene w-algebra. In Section 6 we will show
that energy functions give raise to another such example.

3.2 Matrix Semiring-Semimodule Pairs

For any semiring S and n > 1, we can form the matrix semiring §”*" whose elements are n X n-matrices of
elements of S and whose sum and product are given as the usual matrix sum and product. It is known [21]
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that when S is a *-continuous Kleene algebra, then $"*" is also a *-continuous Kleene algebra, with the
*-operation defined by
M;}:J = \/ \/ Mi7k1Mkl7k2 o .Mkmm/.
m>0 1<ky,....kn<n
for all M € " and 1 < i,j < n. The above infinite supremum exists, as it is taken over a regular set,
see [13, Thm. 9] and [10, Lemma 4]. Also,if n>2 and M = (f Z), where a and d are square matrices
of dimension less than n, then

dVca*b)*ca*  (dVca*b)*

For any semiring-semimodule pair (S,V) and n > 1, we can form the matrix semiring-semimodule
pair (S, V") whose elements are n x n-matrices of elements of S and n-dimensional (column) vectors
of elements of V, with the action of $"*" on V" given by the usual matrix-vector product.

When (S,V) is a *-continuous Kleene w-algebra, then ($"*",V") is a generalized *-continuous
Kleene algebra [10]. By [10, Lemma 17], there is an w-operation on $"*" defined by

MP =\ MMy,

1
1<k ka,...<n

M= (( (aVbdc)* (a\/bd*c)*bd*) . @)

forall M € " and 1 <i<n. Also, if n>2and M = (¢%), where a and d are square matrices of
dimension less than n, then
MO — (aVbd*c)®V (aVbd*c) bd®
~ \(dVca*'b)®V (dVca*b)ca® )’

3.3 Weighted automata

Let (S,V) be a *-continuous Kleene @-algebra and A C S a subset. We write (A) for the set of all finite
supremaaj V---Va, witha; € Aforeachi=1,...,m.

A weighted automaton [15] over A of dimension n > 1 is a tuple (a, M, k), where o € { L, 1}" is the
initial vector, M € (A)"*" is the transition matrix, and & is an integer 0 < k < n. Combinatorially, this
may be represented as a transition system whose set of states is {1,...,n}. For any pair of states i, j, the
transitions from i to j are determined by the entry M; ; of the transition matrix: if M; ; =a; V---Vay,
then there are m transitions from i to j, respectively labeled ay, .. .,a,. The states i with o; = 1 are initial,
and the states {1,...,k} are accepting.

The finite behavior of a weighted automaton A = (o, M, k) is defined to be

|A| = aM™k,

where k € {_L,1}" is the vector given by x; = 1 for i < k and k; = L for i > k. (Note that « has to be
used as a row vector for this multiplication to make sense.) It is clear by (2) that |A| is the supremum of
the products of the transition labels along all paths in A from any initial to any accepting state.

The Biichi behavior of a weighted automaton A = (@, M, k) is defined to be

B (a+bd*c)®
Al =« (d*c(a—i—bd*c)‘” ’
where a € (A)*k, b € (A)(=0) ¢ € (A)("=xn and d € (A)"~K)*(=K) are such that M = (¢ 4). By [10,
Thm. 20], ||A]| is the supremum of the products of the transition labels along all infinite paths in A from
any initial state which infinitely often visit an accepting state.
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4 Generalized *-continuous Kleene Algebras of Functions

In the following two sections our aim is to establish properties which ensure that semiring-semimodule
pairs of functions form *-continuous Kleene @-algebras. We will use these properties in Section 6 to
show that energy functions form a *-continuous Kleene w-algebra.

Let L and L’ be complete lattices with bottom and top elements | and T. Then a function f : L — L’
is said to be finitely additive if L f = | and (xVy)f =xfVyf for all x,y € L. (Recall that we write
function application and composition in the diagrammatic order, from left to right.) When f : L — L is
finitely additive, then (\/X)f =\ X f for all finite sets X C L.

Consider the collection FinAdd,, ;; of all finitely additive functions f : L — L', ordered pointwise.
Since the (pointwise) supremum of any set of finitely additive functions is finitely additive, FinAdd; ;/
is also a complete lattice, in which the supremum of any set of functions can be constructed pointwise.
The least and greatest elements are the constant functions with value L and T, respectively. By an abuse
of notation, we will denote these functions by L and T as well.

Definition 3 A function f € FinAdd; ;/ is said to be T-continuous if f = L or for all X C L with
VX=T,also\VXf=T.

Note that if f £ | is T-continuous, then T f = T. The functions id and | are T-continuous. Also,
the (pointwise) supremum of any set of T-continuous functions is again T -continuous.

We will first be concerned with functions in FinAdd; ;, which we just denote FinAdd;. Since the
composition of finitely additive functions is finitely additive and the identity function id over L is finitely
additive, and since composition of finitely additive functions distributes over finite suprema, FinAdd,,
equipped with the operation V (binary supremum), ; (composition), and the constant function | and the
identity function id as 1, is an idempotent semiring. It follows that when f is finitely additive, then so is
f*=V,>0f" Moreover, f < f* and f* < g* whenever f < g. Below we will usually write just fg for
the comp_osition f:8.

Lemma 2 Let S be any subsemiring of FinAddy closed under the *-operation. Then S is a *-continuous
Kleene algebra iff for all g,h € S, g*h = \/,>¢&"h.

Proof Suppose that the above condition holds. We need to show that f(\/,~0&")h = \/,>0 fg"h for
all f,g,h€S. But f(\,508")h = f(V,>0&"h) by assumption, and we conclude that f(\/,~¢g"h) =
V>0 f&"h since the supremum is pointwise. U

Compositions of T-continuous functions in FinAdd;, are again T-continuous, so that the collection
of all T-continuous functions in FinAddy is itself an idempotent semiring.
Definition 4 A function f € FinAddy, is said to be locally *-closed if for each x € L, either xf* = T or
there exists N > 0 such that xf* = x\--- VxfV.

The functions id and L are locally *-closed. As the next example demonstrates, compositions of

locally *-closed (and T-continuous) functions are not necessarily locally *-closed.

Example 1 Let L be the following complete lattice (the linear sum of three infinite chains):

I<xy<xi<- - <yy<y<---<gp<zg<--<T

Since L is a chain, a function L — L is finitely additive iff it is monotone and preserves L.
Let f,g : L — L be the following functions. First, | f = 1g= 1 and Tf = Tg = T. Moreover,
xif =vyi,vif =zg=T and x;¢ = L, y;g = xi1+1, and z;g¢ = T for all i. Then f,g are monotone, uf* =
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uVufVuf?and ug* = uVug forall u € L. Also, f and g are T-continuous, since if \/ X = T then either
T € X or X N{z0,z1,...} is infinite, but then \/ X f = \/Xg = T. However, fg is not locally *-closed,
since xo(fg)* = xo Vx0(fg) Vxo(fg)* - =xo VX1 V--- =Y. O

Lemma 3 Let f € FinAdd;, be locally *-closed. Then also f* is locally *-closed. If f is additionally
T-continuous, then so is f*.

Proof We prove that xf** = xVxf™ = xf* for all x € L. Indeed, this is clear when xf* = T, since
f* < f**. Otherwise xf* = \/kgnxfk for some n > 0.

By finite additivity, it follows that x f* f* = \/kgnxfkf*. But for each k, xf* f* = xffvxfitlv... <
xf*, thus xf* = xf* f* and xf* = xf**. It follows that f* is locally *-closed.

Suppose now that f is additionally T-continuous. We need to show that f* is also T-continuous. To
this end, let X C L with \/X = T. Since x < xf* for all x € X, it holds that \/ X f* > \/X = T. Thus

VXF=T. O

Proposition 4 Let S be any subsemiring of FinAddy closed under the *-operation. If each f € S is
locally *-closed and T -continuous, then S is a *-continuous Kleene algebra.

Proof Suppose that g,h € S. By Lemma 2, it suffices to show that g*h =\/,~(g"h. Since this is clear
when & = 1, assume that & £ 1. As g"h < g*h for all n > 0, it holds that \7n>0 g"h < g*h. To prove
the opposite inequality, suppose that x € L. If xg* =T, then \,~gxg" =T, S0 Vysoxg"h =T by T-
continuity. Thus, xg*h =T = V/,>0x8"h. - -

Suppose that xg* # T. Then there is m > 0 with

xg"h=(xV---Vxg"h=xhV---Vxg"h < \/xg”h:x(\/g”h). O
n>0 n>0

Now define a left action of FinAdd; on FinAdd; ;s by fv = f;v, for all f € FinAdd; and v €
FinAdd; ;. It is a routine matter to check that FinAdd; ;/, equipped with the above action, the bi-
nary supremum operation V and the constant | is an (idempotent) left FinAdd; -semimodule, that is,
(FinAdd,,,FinAdd; ;/) is a semiring-semimodule pair.

Lemma 5 Ler S C FinAddy be a *-continuous Kleene algebra and V C FinAddy i an S-semimodule.
Then (S,V) is a generalized *-continuous Kleene algebra iff for all f € Sandv €V, f*v=\/,5¢ f"v.

Proof Similar to the proof of Lemma 2 (]

Proposition 6 Let S C FinAdd, be a *-continuous Kleene algebra and V C FinAdd, 1 an S-semimodule.
If each f € S is locally *-closed and T-continuous and each v € V is T-continuous, then (S,V) is a
generalized *-continuous Kleene algebra.

Proof Similar to the proof of Proposition 4. O

5 *-continuous Kleene w-Algebras of Functions

In this section, let L be an arbitrary complete lattice and L' = 2, the 2-element lattice { |, T }. We define
an infinite product FinAdd? — FinAdd, ». Let fy, fi,... € FinAdd, be an infinite sequence and define

v=[l>0/fn:L—2by

1 ifthereisn > O suchthat xfy--- f, = L,
xy =
T otherwise
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for all x € L. We will write [, fu, for k > 0, as a shorthand for [],,>¢ f1&-

It is easy to see that [],>( f, is finitely additive. Indeed, L[],>¢f, = L clearly holds, and for
allx <y € L, x[T,50 fn < ¥[lus0fu- Thus, to prove that (xV y) [T,>0 fn = X[ Lis0fn VY [1i>0 fu for all
x,y € L, it suffices to show that if x[],~0 fu = Y[ 1,50 fn = L, then (xVy) [1,50 fn = L. Butif x[],>0 fu =
yIT.>0 fn = L, then there exist m,k > 0 such that xfo--- fi,, = yfo--- fx = L. Let n = max{m,k}. We
have (xVy)fo---fu=xfo- faVyfo---fn =L, and thus (xVy)[T,>0fu = L.

It is clear that this infinite product satisfies conditions (C1) and (C2) in the definition of *-continuous
Kleene w-algebra. Below we show that also (C3) and (C4) hold.

Lemma 7 Forall fy, f1,...,80,81,--- € FinAddy,

H(fn\/gn): \/ th~

n>0 hne{fn-,gn}nzo

Proof Since infinite product is monotone, the term on the right-hand side of the equation is less than
or equal to the term on the left-hand side. To prove that equality holds, let x € L and suppose that
anEO( fnVgn) = T. It suffices to show that there is a choice of the functions h, € {f,,g,} such that
X[Lisohn=T.

Consider the infinite ordered binary tree where each node at level n > 0 is the source of an edge
labeled f,, and an edge labeled g,, ordered as indicated. We can assign to each node u the composition
hy, of the functions that occur as the labels of the edges along the unique path from the root to that node.

Let us mark a node u if xh, # L. As x[1,>0(fa V gn) = T, each level contains a marked node.
Moreover, whenever a node is marked and has a predecessor, its predecessor is also marked. By Konig’s
lemma [20] there is an infinite path going through marked nodes. This infinite path gives rise to the
sequence ho,hy,... withx[[,>0h, = T. O

Lemma 8 Let f € FinAdd;, and v € FinAddy » such that f is locally *-closed and v is T -continuous. If
xf*v =T, then there exists k > 0 such that xf*v =T.

Proof If xf* = nN:() xf" for some N > 0, then xf*v = I,Y:() xf"v =T implies the claim of the lemma.
If xf* =T, then T-continuity of v implies that \/,~oxf"v = T, which again implies the claim. (]

Lemma9 Let f,g0,81,... € FinAddy, be locally *-closed and T-continuous such that for each m > 0,
gmllu>m+1 /" &n € FinAddy 3 is T-continuous. Then

[1ren= N ]/

n>0 ko,k1,...>0 n>0

Proof As infinite product is monotone, the term on the right-hand side of the equation is less than or equal
to the term on the left-hand side. To prove that equality holds, let x € L and suppose that x[],>0 f*g. = T.
We want to show that there exist integers ko, k1, ... > 0 such that x],> frng, =T.

Let xo = x. By Lemma 8, x[[,,>0 f*g» = X0f*g0[1,>1 f"g: = T implies that there is ko > 0 for which
xofgo [1,>1/°¢n = T. We finish the proof by induction. Assume we have ko,...,k, > 0 such that

xkagO - 'fkmgm Hn2m+l f*gn=T andletx,, 1| = xkagO - 'fkmgm' Then X1 f*gm+1 Hn2m+2f*8n =T
implies, using Lemma 8, that there exists k,, | > 0 for which x,, 1 f+ g, 1 [Tomafgn=T. U

Proposition 10 Let S C FinAdd;, and V C FinAddy > such that (S,V) is a generalized *-continuous
Kleene algebra of locally *-closed and T -continuous functions L — L and T -continuous functions L — 2.

If Tly>0fu €V for all sequences fo, fi,... of functions in S, then (S,V) is a *-continuous Kleene o-
algebra.
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Proof This is clear from Lemmas 7 and 9. (]

We finish the section by a lemma which exhibits a condition on the lattice L which ensures that
infinite products of locally *-closed and T -continuous functions are again T-continuous.

Lemma 11 Assume that L has the property that whenever \| X = T for some X C L, then for all x < T
inLthereisy e X withx <y. If fo, f1,-.. € FinAddy is a sequence of locally *-closed and T -continuous
functions, then [, fu € FinAdd; 3 is T-continuous.

Proof Let v =T],>0 f,- We already know that v is finitely additive. We need to show that if v # L, then
vis T-continuous. But if v # L, then there is some x < T with xv =T, i.e,, such that xfy--- f, > L for
all n. By assumption, there is some y € X with x <y. It follows that yfy--- f, > xfo--- fu > L forall n
and thus \/ Xv=TT. O

6 Energy Automata Revisited

We finish this paper by showing how the setting developed in the last sections can be applied to solve
the energy problems of Section 2. Let L = [0, T], be the complete lattice of nonnegative real numbers
together with T = oo and an extra bottom element |, and extend the usual order and operations on real
numbers to L by declaring that | <x < T, L —x= 1l and T +x =T for all x € R>(. Note that L
satisfies the precondition of Lemma 11.

We extend the definition of energy function:

Definition 5 An extended energy function is amapping f: L — Lforwhich L f=_1, Tf=1Lifxf=_1
forall x < T and Tf =T otherwise, and yf > xf +y—x whenever L < x <y < T. The set of such
functions is denoted &.

Every energy function f : R>¢p — R>¢ as of Definition 1 gives rise to an extended energy function
f:L—Lgivenby Lf= 1, xf= Lifxf is undefined, xf = xf otherwise for x € R, and Tf = T.
This defines an embedding .# — &.

The definition entails that forall f € £ andallx <y € L, xf =T implies yf = T and yf = L implies
xf = L. Note that & is closed under (pointwise) binary supremum V and composition and contains the
functions L and id.

Lemma 12 Extended energy functions are finitely additive and T -continuous, hence & C FinAddy is a
semiring.

Proof Finite additivity follows from monotonicity. For T-continuity, let X C L such that \/ X = T and
fe& f#1L. Wehave X # {L},soletxo € X\ {L} and, forall n >0, x, = xo+n. Lety, = x,f. If
v, = L for all n > 0, then also nf = | for all n > 0 (as x,, > n), hence f = 1. We must thus have an
index N for which yy > L. But then yy,; > yy+k forall k > 0, hence VX f=TT. (]

Lemma 13 For f € &, [* is given by xf* =x if xf <x and xf* =T if xf > x. Hence f is locally
*-closed and f* € &.

Proof Wehave L f*= 1 and Tf*=T. Letx# L, T. If xf <x, then xf" < x for all n > 0, so that
x < Vpsoxf" < x, whence xf* = x. If xf > x, then let a = xf —x > 0. We have xf > x+ a, hence
xf" > x+naforalln >0, so that xf* = \/,>oxf" = T. O

Not all locally *-closed functions f : L — L are energy functions: the function f defined by xf =1
for x < 1 and xf = x for x > 1 is locally *-closed, but f ¢ &.



Z. Esik, U. Fahrenberg and A. Legay 57

Corollary 14 & is a *-continuous Kleene algebra.

Proof This is clear by Proposition 4. U
Remark Itis not true that & is a continuous Kleene algebra: Let f,,, g € & be definedby xf, =x+1— nlﬁ
forx>0,n>0and xg =x forx > 1, xg = L for x < 1. Then O(V, >0 /)& = (V,>00/n)g =1g =1,

whereas OVnEO(fng) = VnZO(Ofng) = VnZO((l - nlﬁ)g> =1

Let ¥ denote the &-semimodule of all T -continuous functions L — 2. For fy, f1,... € &, define the
infinite product f = [],>0 fu : L — 2 by xf = L if there is an index n for whichxfp--- f, = Landxf =T
otherwise, like in Section 5. By Lemma 11, [, f» is T-continuous, i.e., [T,>0fn € 7.

By Proposition 6, (&,7) is a generalized *-continuous Kleene algebra.

Corollary 15 (&,7) is a *-continuous Kleene m-algebra.
Proof This is clear by Proposition 10. O

Remark As & is not a continuous Kleene algebra, it also holds that (&, %) is not a continuous Kleene
w-algebra; in fact it is clear that there is no &-semimodule ¥ for which (&, %) would be a continuous
Kleene w-algebra. The initial motivation for the work in [10] and the present paper was to generalize the
theory of continuous Kleene w-algebras so that it would be applicable to energy functions.

Noting that energy automata are weighted automata over & in the sense of Section 3.3, we can now
solve the reachability and Biichi problem for energy automata:

Theorem 1 Let A = (a,M,k) be an energy automaton and xo € R>o. There exists a finite run of A from
an initial state to an accepting state with initial energy xo iff xo|A| > L.

Theorem 2 Let A = (a,M,k) be an energy automaton and xy € R>o. There exists an infinite run of A
from an initial state which infinitely often visits an accepting state iff xo||A|| = T.

Corollary 16 Problems I and 2 are decidable.

In [12], the complexity of the decision procedure has been established for important subclasses of
energy functions.

7 Conclusion and Further Work

We have shown that energy functions form a *-continuous Kleene w-algebra [10], hence that *-continuous
Kleene w-algebras provide a proper algebraic setting for energy problems. On our way, we have proven
more general results about properties of finitely additive functions on complete lattices which should be
of a more general interest.

There are interesting generalizations of our setting of energy automata which, we believe, can be
attacked using techniques similar to ours. One such generalization are energy problems for real time or
hybrid models, as for example treated in [3-5,23]. Another generalization is to higher dimensions, like
in [16,19,24] and other papers.
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We consider relations with no order on their attributes a3atabase Theory. An independent par-
tition of the set of attributes S of a finite relatiéhis any partitionX of S such that the join of
the projections oR over the elements df yieldsR. Identifying independent partitions has many
applications and corresponds conceptually to revealitftgpgonality between sets of dimensions in
multidimensional point spaces. A subset of S is termedgwifelated if there is a value of each
of its attributes such that no tuple Bfcontains all those values. This paper uncovers a connection
between independence and self-correlation, showing tieataximum independent partition is the
least fixed point of a certain inflationary transfornaethat operates on the finite lattice of partitions
of S. a is defined via the minimal self-correlated subsets of S. VWesasne additional properties
of a to show the said fixed point is still the limit of the standappeoximation sequence, just as in
Kleene’s well-known fixed point theorem for continuous ftioos.

1 Introduction

The problem of discovering independence between sets ofgim a multidimensional space is a fun-
damental problem in science. It arises naturally in mangsi# Computer Science. For instance, with
respect to relational data, discovering such independalhmes exponential gains in storage space and
processing of information [11], [1], and can facilitate greblem of machine learning [13]. With respect
to problem clusterisation of multidimensional relatiodata, finding independence helps finding the de-
sired clusters [5], [8]. Decomposing data into smallergitiiait are independent except at their interfaces
has been known to be essential for understanding largeylesyatems [17]. Independence has also been
the subject of recent works in logic, giving rise to so-aallegics of dependence and independence [4].
The concrete motivation for the present work derives fromdhea ofsoftware product line engi-
neering a discipline that aims at planning for and developinfamily of products through managed
reuse in order to decrease time to market and improve satguaality [12]. A software family can be
modelled as a relation whose attributes are the softwanestibnalities. The various implementations
of each functionality in the form of software artefacts dre attributesvalues The individual products
of a family are thus modelled as the tuples of that relatioer dre attributes. In previous works [6, 15]
we considered a restricted class of software families @allaple familieglater on we changed the term
“families” to the more abstract term “relations”), whersatvery of independence and a compositional
model checking technique are utilised to derivdivdade-and-conquer verification strateg8imple rela-
tions constitute the least class that contains the sirttfiéte, single-value relations and is closed under
join of relations with disjoint attribute sets and unionsrelations over the same set of attribute names
but with disjoint value sets. In the present work we gensealhese previous results to discovering in-
dependence in arbitrary relations. We investigate decaitipos of a relatiorR with disjoint attributes
such thaR equals the join of the component relations. Every deconipass represented by a partition
of the set of attributes dR. Such partitions are termeadependent partitions

R. Matthes, M. Mio (Eds.): Fixed Points
in Computer Science 2015 (FICS 2015) © D. Gurov, M. Markov
EPTCS 191, 2015, pp. 60-74, doi:10.4204/EPTCS.191.7
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The problem of computing a maximum decomposition of thisdkitas previously been studied
in [10], where it is referred to garime factorisationand an efficient algorithmic solution is proposed. In
this paper we investigate an alternative approach thatsyoukely on the level of the attributes Rfand
is based on the concept obrrelation between attributes. We have discovered a nontrivial cdiorec
between independence and correlation and the major gdaibgidper is to demonstrate that connection.

A first observation is that the decomposition problem carb®tsolved purely based on analysis
of pairs of attributes. In the aforementioned work [6] we puite dependence (or independence) in
simple relations by computing correlation between pairstoibutes. That approach does not generalise
for arbitrary relations as we show in this paper. Our sofui® to introduceself-correlationof sets
(of arbitrary cardinality) of attributes. In other wordbgtcurrent notion of correlation is a hypergraph
whose hyperedges are the self-correlated sets, rathemathardinary graph as were the case with the
simple relations. Since self-correlated sets are upwarsked under set inclusion (Proposition 2), the
minimal self-correlated sets, or theincors(Definition 4), are the foundation of our analysis. A second
observation is that mincors do not cross independent jpatifLemma 5), hence one can safely merge
overlapping mincors to compute the maximum independerittipar In the case of simple relations
that merger indeed yields the maximum independent partjép but in arbitrary relations merging the
mincorsdoes notnecessarily output an independent partition, as the examplpage 67 shows. We
overcome this hindrance with the help of a final importanigihs Let X be the partition of the set of
attributes that results from merging overlapping mincditse relation can be factored éf) producing a
guotient relation In other words, the elements &fare considered atomic now; the subset& ahay or
may not be self-correlated in their turn, and the said guaotielation is defined via those new mincors.
We show that the procedure of identifying mincors and meygiverlapping ones can be repeated on this
quotient relation and this can be iterated until stabilisgtyielding the desired maximum independent
partition.

The above insights suggest that relational decomposiaorbe presented in terms of a transformer
over the finite lattice of quotient relations, or concegiual’en simpler, ovethe lattice of the partitions
ordered by refinement, inducing the former lattice. Thedf@amera on partitions introduced here
essentially corresponds to identifying the mincors of thetggnt relation induced by a partition, merging
the overlapping ones, and extracting from the result theesponding partition (Definition 5). We prove
that the independent partitions correspond exactly to ¥eel fpoints ofar (Theorem 1).

If a is monotone, one can utilise two well-known fixed point tlegns on complete lattices (having
in mind that monotone functions over finite lattices are ardus). First, by Tarski's fixed point theorem
for complete lattices [16], the set of fixed points forms &datitself with respect to the same ordering,
hence there is a unigueast fixed poin{LFP), which in our case would be precisely the maximum
independent partitioning that we are after. And second,cameutilise Kleene’s fixed point theorem [7],
to the effect that the LFP can be compuitstatively, starting from the bottom of the latticég. the
partition into singletons, and applyirmg until stabilisation,i.e., until the fixed point is reached. It turns
out, however, thatr in general isxot monotones demonstrated by the example on page 70 and therefore
the above reasoning is not applicable.

On the other hand, we show thatis inflationary (Proposition 4). The existence of a LFP is estab-
lished by showing that there exists a fixed point and the sef iked points is closed under intersection
(Lemma 6). Furthermore, the downward closure of LiFeR, the set of all partitions refining it, is closed
undera (Lemma 8). Since the lattice is finite, these results give tisa modified version of Kleene's
fixed point theorem—formulated in terms of inflationary stormers rather than monotone ones (The-
orem 2)—justifying the same iterative fixed point compwtatprocedure (Corollary 3). The proposed
characterisation reduces relational decomposition tptblelem of identifying the mincors of a relation.
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Organisation The paper is organised as follows. Section 2 recalls somekmmtions and results
about sets and families, partitions, lattices, fixed poirgkations, attributes, and relation schemes, quo-
tient relations, and defines independent partitions of thiébates set. Section 3 develops the theory of
self-correlated sets in quotient relations and how theateek.r.t. partition abstraction. Section 4 presents
many useful lemmas that concern independence. Sectionrfeddfie transforman and contains our
main result, Theorem 2. Section 6 discusses what we curembhwv about the area of decomposition of
relations, also called factorisation of relations, and paras the approach and the results of this paper
with similar works. The final Section 7 draws some conclusiand outlines directions for future work.

2 Background

In this section we recall some standard set-theoreticabm®tand notation needed for our theoretical
developments.

2.1 Sets, covers, and partitions

In this work we consider only finite sets. The powerset of adstdenoted byOW(A) andP*(A) denotes
POW(A) \ {0}. Ground setsare nonempty sets over which we construct the families tteabar subject
of research.

Let A be a ground setA family over Ais any nonempty subset &f (A). A family F is Sperner
family if vX,Y e F: X €Y. Fisconnectedf YX,Ze€ F: XNZ # 0 or F has elementg, Y, ..., Y
for somek > 1, such thaXNY; #0,YiNYi,1 A0 for 1<i<k-1, andYxNnZ # 0. A connected
component of a familys any maximal connected subfamily in it. We u$é&F) to denote the family
{UB|B is a connected component of FA superfamily over As any nonempty subset Bf (P*(A)).

SupposeA is a set. A cover of Ais any family F overA such thatJF = A. The set of all covers
of Ais denoted byK(A). If X € K(A) andY NZ = 0 for all distinctY,Z € X, we sayX is a partition
of A If |X| =1 the partition igrivial and if |X| = |A| the partition igpartition into singletonsNote that
(C(F) defined above is a partition of the ground set. We denot®) iy X the fact that for som& C A,
) is a family overB such that every element 8J is a subset of precisely one element®and every
element ofX is a superset of at most one elemen2pfFor example, ifA= {a,b,c,d,e, f,g,h,k} then
{{b}.{c}.{d.g}} € {{ab}.{c}.{d.e f.g},{h.k}}.

The set of all partitions oA is denoted by1(A). For anyP,P, € M(A), P, refines B, which we
denote byP, C P, if

VXePL dYeP: XCY

Conversely, we say th& abstracts P. If P, C P, andP; # P, we writeP, C P..

2.2 Partial orders, lattices, and chains

We denote generic partial orders by™ If (A <) is a poseta least elementf A is anyx € A such that
Yy € A: x < yanda greatest elemertf A is anyx € A such that'y € A:y < x. A least element may not
exist but if it exists it is unique; the same holds for a greadement. The least element is calblettom
and is denoted by . The greatest element is call&xp and is denoted by . A chainin a posetA, x) is
anyB C Asuchthat'x,ye B:x<yvy=<x

A lattice is a posetA, <), shortly A when< is understood, such that for amyy € A there exists a
(unique) greatest lower bound Acalled meetand denoted bxmy and a (unique) least upper bound
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in A calledjoin and denoted bxLly. Collectively,m andLI arethe lattice operations of AThey are
commutative and associative [2, pp. 8]. We generalise ttiedabperations on subsetsAin the obvious
way. A complete latticas a lattice such that evef C A has a meeltiB and a joinLIB. In particular,
Ahas a meetiA= 1 and a joinLA = T. Every finite lattice is complete [3, pp. 46], therefore fraow
on by lattice we mean complete lattice. For ang A, the sets{ly € A|ly < x} and{y € A|x < y} are
calleddown-xandup-xand are denoted byx and.|X, respectively [3, pp. 20].

It is well-known that(M(A),C) is a lattice. Furthermore/ is the partition into singletons] is
the trivial partition, and for any;,P, € M(A), PP = {XNY|X € P,Y € P} \ {0} andPLUP, =
(((PLUP,) (see [2, pp. 15]). We extend thel™ notation to subsets of partitions: for ad§;Q) € M(A),
for any nonemptyX’ C X and any nonempt®)’ C 2) such thatX’ n%)’ # 0, X' 119)’ denotes the set
{BNC|Be X¥,Ce '} \{0}.

2.3 Functions and fixed points

SupposeA is a set andf : A — A is a function. For everx € A: f9(x) %" x and for everyn € N,

f"(x) o f"~1(x). For everyn € N, f(x) is the n-th iterate of f A fixed pointof f is everyx € Asuch
that f (x) = x. Let (A, <) be a poset. A functiori : A— Ais monotondf Vx,ye A:x<xy— f(X) < f(y)
andf isinflationaryif Vx € A: x < f(x) [14, pp. 263].

A well-known fixed point theorem is Tarski’s fixed point thear for continuous functions over
complete lattices [16], stating that the set of fixed poistadn-empty and forms a lattice itself with
respect to the same ordering, and hence the function hasjaaleast fixed poin{LFP). Another well-
known theorem due to Kleene states the existence of an LR#®fdinuous functions on chain-complete
partial orders [7], and that the LFP can be computerhtively, starting from the bottom of the lattice
and applying the function until stabilisation.

2.4 Schemes, relations, and quotient relations

The following definitions are close to the ones in [#). schemas a nonempty set S {Ay,...,An}
whose elements, calldte attributes are nonempty sets. For every attribute, its elements atdsae
its values A relation over Ss a nonempty set of total functiof$y, to,.. . ,tp}, which we callthe tuples
such that for I< j < p, tj : S— US, with the restriction thétj(A) € A;, for 1 <i <n. We assume that
every value of every attribute occurs in at least one tuple.

The relations we have in mind are as in Relational Databaseryh.e. with unordered tuples, rather
than as in Set Theory.e. with ordered tuples.

We further postulate that the said attributes are mutuddipiat sets. That allows a simplification of
the definition of relation: a relation over S is nonempty ddtiples, each tuple being anelement set
with precisely one element from every attribute. To savespae often write the tuples without commas
between their elements. For examplenet 3, A; = {ay, a2}, Ao = {by, by}, andAs = {c1,Cp,C3}. One
of the relations over the schenj@, Az, Az} is written as{{aibic1 }, {ai1byco}, {axbocs}}.

Let S, S,,...,S« be schemes such that for<li < j <k, VA€ SVBe Sj: ANB=10. LetR be a
relation over § for 1 <i <k. Thejoin of R, ..., R is the relation

RixRy X RKZ{U{X]_,Xz,...,XkHX]_ER]_,X2€R2,...,Xk€Rk}

The complete relationver S= {Aq,...,Aq}is x{L; {{x} |x € Ai}. Clearly, its cardinality i§]_; |Al.
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Let S={Ay,...,An} be a schemeA subscheme @ is any nonempty subset of S. The notatfc}g
stands for the restriction df to Z, for any functionf : X — Y and anyZ C X. LetR= {ty,t,,...,t,} be

arelation over S and let T be a subscheme ofl& projection of Ro isR [ T = {; \T 1< j<p}

Definition 1 (quotient relation) Let R be a relation over some schefe For any X = {X1,X>,...,
Xn} € N(S), R/x Cx,; (R X;) is the following relation:
V{y1yz...yn} € XL (R Xj) :
{y1y2...yn} € R/x iff 3t € RVii<i<n(t [ Xi =Vi)

We termR/x the quotient relation oR relative toX. WhenX is understood we say simplye quotient
relation ofR.

We emphasise the quotient relation is not over S but overtdiparof S.

Here is an example of a quotient relation. Le§A,B,C,D}, let each attribute have precisely two
values, sayA = {a;,a,} and so on, lek; = {{A,B},{C,D}}, let X, = {{A},{B},{C},{D}}, and let

R = {{aibic1th }, {asbicodz}, {@a1bocidz }, {@azbocich }, {@obocods }} (1)
be a relation over S. Then

R/x; = {{{as,b1}{c1,di}}, {{as,b1}{c2,d2}}, {{an, b2}{C1,d}},

{{az,b2}{c1,di}}, {{az,b2}{Cc2, 02} }} 2
R/x, = {{{aa}{b1}{er }{di}}, {{as }{ba}{c2}{do}}, {{as } {b2}{c1}{d2}},
HagHbH{e i}, {{az {2} {co }{d} } } 3)

A quotient relation is but a grouping together of the tupliethe original relation into subtuples according
to the partition. It trivially follows thaiR/x| = |R| for any relationR over any attribute set S and any
X en(s).

2.5 Independent partitions
For a given relatiorR over some schem®, we are after decompositions Rfsuch thaR equals the join
of the obtained components. Each decomposition of this &mtesponds to a certain partition &f

Definition 2 (independent partition) Let R be a relation over some scheme S. For @ryl1(S), X is
an independent partition of S with respectRdf R= X R[Y. The set of all independent partitions

Yex
of S with respect to R is denoted byir(S), or shortly IT(S) if R is understood. If a partition is not
independent, it islependent

Note that M(S) is nonempty since it necessarily contains the trivial fiari
Proposition 1 For every independent partitio, R/x is the complete relation ove.

Informally speaking, the object of the present study is titeependent partition with the maximum
number of equivalence classes, provided it is unique.

3 Correlation in Relations

In this section we define correlation in relations and quutielations. From now on assume an arbitrary
but fixed scheme S and relati®over it.
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3.1 Correlated subsets of ground sets

In this subsection, the ground sets are schemes.

Definition 3 (correlated subsets of schemes)etS= {A;,A;,...,As} and letT be some nonempty sub-
scheme{A,A,,,..., A} wherel <ij <iy <--- <im<n. Tis self-correlated with respect #®, or
shortly correlated with respect 1R, iff

I €A, I EA, - IXmeA,  {Xaxo - Xm} €RIT 4

We denote that fact by catT) or corr(T) if R is understood. The opposite concepingorrelated The
family {T C A|corrr(T)}, in case it is nonempty, is callétie correlation family oR.

Note that no minimal correlated subset is a singleton. Thewviing result re-states correlation of a
subscheme in terms of the projection of the relation on it.

Lemmal LetT CS. Thencor(T) iff R[ T C mxxerR[ {X}.

Proof: First assume cofT). By Definition 3, there is an element in every attribute frorauth that the
tuple of those elements does not occuRiN T. On the other hand, the tuples efxcrR [ {X} are all
possible combinations of the elements of the attributes ifhEreforeR | T C xxeTR [ {X}.

In the other direction, assumeorr(T). The negation of expression (4) in Definition 3 is but another
way towriteR | T= xxeTR | {X}. O

As the next result establishes, with respect to the p(f8et), every correlated subset is upward
closed, while every uncorrelated subset is downward closed

Proposition 2 If corr(T) for someT C S thenVZyczcs: corr(Z). If —corr(T) for someT C S then
VZzct:—corr(Z).

It is obvious that the correlation family, if it exists, is aver of the scheme. Furthermore, it does not
exist iff the relation is complete. The interesting part abarelation family is the sub-family comprising
the minimal correlated sets. However, that sub-family dugsnecessarily cover the scheme. We want
to define a family that both covers the scheme—because wdtamately interested in a partition of the
scheme—and is a Sperner family, since the implied membetedamily are of no interest.

Definition 4 (mincor family) A mincor of R is every minimal, self-correlated with respect to R, sub-

schemeT C S. Further, mincors(R) def {T C S| T is a mincor} and singletons(R) O':(Ef{{A}|A e SA-3IX €
mincors(R) : A € X}. The mincor familyof R, denoted byF(R), is MF(R) = mincors(R) Ussingletons(R).

For example, consideR defined in (1) on the facing page. Clearly, ¢pffA,B}) and corg({C,D})
because of the lacks of bo#ka andb; in any tuple and the lack of bothz andd; in any tuple, respectively.
The other four two-element subsets of S are uncorrelatednsgletons(R') = 0 and thereforélF(R') =

{{A,B},{C,D}}.
Proposition 3 With respect t&s and R MF(R) exists and is unique.

If Ris complete theMF(R) consists of singletons. ClearNF(R) € K(S), and thu£((MF(R)) € MN(S).

3.2 Correlation in quotient relations

The following result establishes an important connectietwigen self-correlation in a partition of the
scheme and self-correlation in the scheme itself. Moreipaity, Lemma 2 is used to prove Lemma 3,
and the latter is used in the proof of Lemma 7 on page 71.
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Lemma 2 ForanyX € N(S)and X’ C X:
corrr/x (X') ¢ corrp(UX')

Proof: Assume corig/ (X'). Let X' = {Y1,Y2,...,Ym}. So,(R/x) | X' does not contain sonme-tuple
{U1,Ug,...,Un} such that); e RTY; for 1 <i <m. ThenR | UX’ does not contait/{U;,Us, ... ,Un}.

In the other direction, assume cfuXx’) whereUX' is a subset ‘Sof S. Let S = {A1,Ap,...,An}.
That is,R | S’ does not contain sometuple {W;,Wb,... W} such that € A for 1 <i <n. Let
X' ={Y1,Y2,....Ym}. Then(R/x) | X' does not contain thertuple {U;,Us,...,Uyn} whereU; € R[Y;
forl<i<m. O
As an example that illustrates Lemma 2, consieandX; on page 64. Clearly§; = {{A,B},{C,D}} is
self-correlated with respect &/ x, asR/x; does not contain, among others, the tugla,, b }{c1,dz}}.
That impliesuX; = {A,B,C,D} is self-correlated with respect i since{{ay, b1 }{c1,d>}} is not an
element oR/ael, it must be the case théalblcldg} is not element oR (and indeed it is not). In the
other direction, the fact thga;b;cidz} ¢ Rimplies{{as,b;}{c1,do}} ¢ R/gg1

The next result establishes that for every mincor Y of a qunbtielation there is a way to pick elements
from every element of Y such that the collection of those eets is a mincor of the original relatid®

Lemma 3 VX € M(S) VY € mincors(R/x) 3Z € Q) : |Z] = |Y| AUZ € mincors(R).

Proof: Assume) e mincors(R/%). Clearly, there is some & ) such thatJZ is correlated with respect
to Rbecausee is reflexive andJ) is correlated with respect ®by Lemma 2. Now consider any Z 2)
such thatZ’| < |9)|. There exists som®)’ C 9) such that Ze 9)’. But®)' is uncorrelated with respect
to R/x because)) is a mincor ofR/x and so every proper subset®fis uncorrelated with respect to
R/x. Note that))’ being uncorrelated with respect®J x impliesUZ’ is uncorrelated with respect ®
by Lemma 2. It follows that for any & 2) such that cog(UZ)—and we established such a Z exists—it
is the case thdZ| = |)].

So, there exists a ) such thaiZ| = |9)| andUZ is correlated with respect . Furthermore,
there does not exist £ 2 such that|Z| < |2)| andUZ is correlated with respect t8. Consider any
Z € 9 such thatJZ is correlated with respect . As |Z| = |2)|, every element of) is a superset of
precisely one element &.

First assume all elements Bfare singletons. In this case no proper subsetdfs correlated with
respect tdR. Suppose the contrary, namely that some"WZ is correlated with respect ®and deduce
there is some Ze& 9) such that W= UZ", thus|Z"| < |9)|, such thatuZ" is correlated with respect ®.
Since no proper subset of is correlated with respect ®, UZ is a mincor with respect tB and we are
done with the proof.

Now assume not all elements Bfare singletons. It trivially follows there exists a minihsatZ € Z
such thatZ| = |Z| (thus|Z| = |9)|) such thatJZ is correlated with respect . O

4 Results on Independent Partitions
This section provides important auxiliary results congggrindependent partitions. In subsection 4.1

we investigate the connection between independence dncbsedlation. In subsection 4.2 we prove the
meet of independent partitions is an independent partition
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4.1 Independence and the mincor family

The following lemma establishes that partition indepeder preserved under removal of attributes.

Lemma4 v € IN(S) VX €Y : X € INgjux(UX).

Proof: LetQ=R[UX. We prove thaQ = x (Q [ Z). In one directionQ C x (Q [ Z) follows
Zex Zex

S S
immediately from the definitions of relation join and prdjea. In the other direction, consider any
tuplet in x (Q[ Z). Letvbe any tuple in x (R[ Z) such that = V’u3€' But v € R because)) is
ZeXx yAS) |

independent and thiB= x (R Z). Asv € R, it follows thatv| , € Q. Butv| . ist, thereforet € Q,
VASD))
andsox (Q[Z)CQ. O
Zex

The next lemma is pivotal. It shows that the mincors respetgpendent partitions, in the sense that no
mincor can intersect more than one element of an indepempaetition.

Lemma5 v € IN(S) YW € mincors(R) IY € P: W C Y.

Proof: Assume the contrary. Then there is a mincor W that has norneimjgrsection with more than
one set from}). Suppose W has nonempty intersection with precissbts from2) for somet such that
2<t<qg. LetYy, Yy ..., Y; be precisely those sets frofh that have nonempty intersection with W.
LetW; =WnNY;, for1<i<t. CIearIy,ULlwi =W. By Lemma 4:

RIW= X R[W,

1<i<t

Every W is a proper subset of W. But W is a minimal correlated set. Timalies —corr(W;), for
1<i<t. Apply Lemma 1 to conclude th& [ W; = X R {x}. Then,
XeW;

RIW= X X R[{x}

1<i<t xeW;

Obviously, X X R[{x} = X R {x}. Then,R|W = NWR I {x}. By Lemma 1 that implies
XeW XE

1<i<t xeW,;
—corr(W). O
Furthermore, merging mincors also yields sets that respdependent partitions.

Corollary 1 V9 € IT(S) : (((MF(R)) C 9.
Proof: Assume the contrary. Then for sorR®n S and) € IT1(S):

IX € ((MF(R)) VY €9 JAEX:AZY

First note that X is not a singleton, otherwise X would be aored in some set frof). So,|X| > 2 and
according to Definition 4, X is the union of one or more min¢g@ach of size> 2, and X is connected.
But by assumption X is not a subset of any set f@hand so there has to be some mincorVX that
has nonempty intersection with at least two sets flfdmHowever, that contradicts Lemma 5. O

Note that(C((MF(R)) is not necessarily an independent partition. For examplesiderR defined in (1)
on page 64. As explained on page B5(R') = {{A,B},{C,D}} and thus((MF(R)) = {{A,B},{C,D}},
too. But{{A,B},{C,D}} is not an independent partition with respecRoIn fact, there is no indepen-
dent partition of S except for the trivial partition g| is a prime number.
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Now consider another relatid®’ on the same scheme:

R' = {{aubic1dh }, {arbicida}, {a1bicady}, {arbocids }, {@aghocida }, {a1bacads b,
{aphyc1dy }, {aghocida }, {apbocody } }

ButMF(R") = {{A,B},{C,D}} = (C((MF(R")) just as in the case d&¥. Now {{A,B},{C,D}} is an inde-
pendent partition with respect B becausd&?’ =R’ | {AB} xR’ | {C,D}.

So, in the case oR’, the connected components of the mincor family constitaténdependent
partition, while that is not true foR/, although the mincor families of both relations are the saxive
conclude that computing the mincor family does not suffigghiain an independent partition. Therefore,
we use a more involved approach in which the computation @ftimcor family is but the first step
towards the computation of the maximum independent pamtiti

4.2 The meet of independent partitions

The following lemma allows us to define the maximum indepeabg@artition as the meet of all indepen-
dent partitions.

Lemma 6 VX, € IM(S): X119 € IN(S).
Proof: (sketch) Let X,2) € IT(S). We assumé& LI®) is connected. There is no true loss of generality
in that because the proof below can be done componentwige i) is not connected. Relative to an

arbitrary element ok, sayX;, we define the family = {Zy, 7, ..., 2} over S as follows3 is a partition
of S and its elements are constructed in an ascending ordiee dfdex according to the following rule:

X17 |f | == 0
Zi= < U{A\Z_1|AePANANZ_1#0}, ifiisodd
U{A\Z_1|A€e XNANZ_1#0}, ifiisevenand >0

Let us defineB; = {UijZOZj }nxnY for0<i <k Clearly,Bo={X1}M9),Bi =Bi_1U({Z}1XNY)
for 1 <i < kandByx = Xm%). FurthermoreUByx = S and thuR | UBx = R. We prove by induction on
that for alli such that i <k:

R[UB = x R[C )
CeB;

and hence the result follows.

Basis. Leti = 0. Let the elements df) that have nonempty intersect‘ion wixy be calledYy, ...,Y;.

Obviously, there is at least one of them. The claim is RatX; = x i‘:lR I (X1NY;). That follows
immediately from Lemma 4.

Inductive StepAssume the claim holds for sonBp ; such that 6Xi — 1 < kand consideB;. As already
mentionedB; = Bi_1U ({Z} MXNY).

Without loss of generality, assumes odd. Very informally speakingZ; is the union of some
elements of) that overlap with some elements (fraf) in B;_1, minus the overlap. Therefore, we can
write B; = Bi_1 U ({Z } 1 X) because under the current assumption, i igther thar®) that dictates the
grouping together of the elements&fin B;. More specifically, since # k, there are elements frof
whose elements do not appear in the curBgnthose elements ot dictate the aforementioned grouping.
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So, B; is the union of two disjoint sets whose elements are féémY), namelyB;_; and{Z} M X.
By the inductive hypothesi® [ UB;_1= x RJ[C.

CeBi_1
Consider{Z} M X and call its elementsly, ..., T,,. Without loss of generality, considds. Our
immediate goal is to prove th& | ((UBj_1) UT1) = x R[] C. Note thatT; is a subset of some

CeBi_1U{T1}
Y’ € 9) such thal'’ has nonempty intersection withB; 1, Ty itself being disjoint withB;_;. Furthermore,
T, is the intersection of’ with someX’ € X. X' is disjoint with UB;_;, otherwise the elements @i
would be part ofUB;_1. Furthermore, every element Bf 1 is a subset of some element®fthat is not
X'. Let the elements ok that have subsets-elementsByf, be Xy, ..., X,. Note thatX;U---UX, =
UB;_1. By Lemma 4, it is the case that

RI (X U-—-UXpUT) =R Xy X --- XR[ Xp X R Ty (6)

sinceT; is a subset oK’ andX' is none ofXy, ..., Xp. HoweverX;U---UX,UT; = (UB;j_1) UTy by an

earlier observation an [ Xy x --- XR [ Xp = . IEI R | C. Substitute that in equation 6 to obtain
€61

R[(UBi_luTl)_( X R[C)MR[Tl_ M R|C 7)
CeBi—1 CeBi_1U{T1}
which is what we wanted to prove with respeciTio
We can use (7) as the basis of a nested induction. More s@dlgifiwe prove that

R ((UB—1) UTqU---UTy) = ( X R[C) XRITyX --- MR Ty

CeBi_1

implies

R (UBi_1) UTiU---UTky1) = <CD§ R[C> XRITiX - MR Ty

€bi-1

foranyk € {1,2,...,m— 1}. The nested induction can be proved in a straightforwardnaamaving in
mind the proof of (7). That implies the desired:

Rl (UB_1) UThU---UTy) = (C X R[C) MRITy X - XR| T
€Bi1
And that concludes the proof becausg, = UB;_1UTiU---UTp. O
The proof of Lemma 6 relies on the fact that all sets we comsidefinite.

As a corollary of Lemma 6, the maximum independent partjtiwhich is the object of our study, is
well-defined: 1M (S) exists, it is unique, and is an element 0f(E). For notational convenience we
introduce another term for that object. We say théfflg(S) is thefocusof R and denote it byoc(R). A
trivial observation is thatlg(S) coincides withffoc(R).

5 AFixed Point Characterisation of the Maximum IndependentPartition

In this section we identify the object of our study as thetléasd point ofa, wherea is a transformer on
the lattice of all partitions o&. Furthermore, we present an iterative fixed point approtkongrocedure
for computing the maximum independent partition.
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5.1 Functiona

First we introduce a helper function. L&te a ground set. The functidnmaps superfamilies ovéyto
families overA as follows. For any superfamily:

(%) < {uz|zeF}

Syntactically speaking removes the innermost pairs of parentheses. For instangeoseA = {a,b,c,d}
and3 = {{{a},{b,c}},{{d}}}. Then{(3) = {{a,b,c},{d}}.

We now define the central function of the present study. ksakpartition o, identifies the mincors
of the corresponding quotient relation, merges the ovpittegpmincors, and use&sto map the result back
to a partition ofS.

Definition 5 (function a) agr:M(S) — MN(S), shortlya when R is understood, is defined as follows for
anyX € Nn(s):
def
ar(X) = &(CC(MF(R/x)))

Notably, a is not monotonén general as demonstrated by the following example. S.et {A B,
C,D,E} and let each attribute have precisely two values, Aay {a;,a;} and so on. LeQ be the
relation obtained from the complete relation o%eafter deleting all tuples containiragb;c;, all tuples
containingdze,, and the tuplegazb;cidze; }, {axbycidzer }. In other words,

Q= {{aibicodse1 }, {a1bicodh &}, {aibicodzer }, {arbocidier }, {arbocidien }, {anbocidoer }
{a1bocodier }, {arbocodien}, {a1bacodzer }, {asbicidier }, {abicidier }, {axbicodier }
{apbicodier}, {apbicodze }, {apbocidier |, {aphocidien}, {azbocodier }, {axbocodhen}, {ahocodaer }}

Let us see which sets of attributes are self-correlated veiipect toQ. The only two-element
subset ofS that is self-correlated i6D,E}. Further,{A,B,C} is self-correlated. It followsiF(Q) =
{{A,B,C},{D,E}}. Consider the following two partitions &: X1 = {{A},{B},{C},{D},{E}} and
X, = {{A},{B,D},{C,E}}. Obviously,X1 C X,. Itis clear thata(X1) = {{A,B,C},{D,E}}. Con-
sidera(Xz). The set{{B,D},{C,E}} is self-correlated because of the lack{df,d,} and {c1,e}
in any tuple, which in its turn is due to the fact thidgtande, do not occur in any tuple dR. The sets
{{A},{B,D}} and{{A},{C,E}} are uncorrelated. It follows that(X,) = {{A},{B,C,D,E}}, and thus
a(3€1) Z G(:{z).

However, we have the following property afthat shall later be exploited.
Proposition 4 a is an inflationary function oril1(S),C).

5.2 Independence and functioro

The following central result establishes that the indepeahgartitions are precisely the fixed pointsof
Theorem 1 VX €TI(S): X € IN(S) «» a(X) = X.

Proof: In one direction, assum& € IM(S). R/x is complete by Proposition 1. By definition, that is
R/x = XyexY. By the definition ofix, (R/%x) | X = xvex(R/%) | {Y}. It follows that—corr(X) by
Lemma 1. Somincos(R/x) = 0 andMF(R/x) = singletons(R/x) by Definition 4. Then(C((MF(R/x)) =
{{A}|A € X}. Therefore & ((((MF(R/x))) = {A|Ae€ X} =X. But&((((MF(R/x))) is a(X) by defini-
tion. Thereforep (X) = X.
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In the other direction, assunme(X) = X. That is,&((C(MF(R/x))) = X, which in its turn implies
(C(MF(R/x)) = {{A} |A € X} becausé((MF(R/x)) is a superfamily such that every element from S is in
precisely one element of precisely one element of it. Theareder of the proof mirrors the above one.
U

Having in mind the observation on page 69 thHag(S) coincides withtfoc(R), we derive the follow-
ing corollary of Theorem 1.

Corollary 2 tfoc(R) is closed with respect ta.

The following lemma says that the mincors of a quotient i@hatespect the focus of the relation in the
sense that for every mincor &% x, the union of its elements is a subset of some element of thesfo

Lemma 7 VX € [foc(R) VT € mincors(R/%) 3Y € foc(R) : UT C Y.

Proof: Assume the contrary. That is, for some partitirthat refines the focus there is a mindor
of R/x such thatUT has nonempty intersection with at least two subsets, cathtl; and Y, of the
focus. Use Lemma 3 to conclude there is some Z such thatZ| = |T| andUZ < mincors(R). Since
|Z| = |T|, it must be the case thatZ has nonempty intersection with both ¥nd Y,. But the focus is
an independent partition. We derived that a mincoRofamelyuZ, intersects two distinct elements of
an independent partition. That contradicts Lemma 5 diyectl O

We already established (see Proposition 4) thi an inflationary function. The next lemma, however,
establishes a certain restriction: the applicatioo oh a dependent partition can yield another dependent
partition or at most the focus, and never an independeritipartabove” the focus.

Lemma 8 [foc(R) is closed with respect ta.

Proof: We prove that'X € [foc(R) : a(X) C foc(R). Recall thator(X) is a partition of S and it abstracts
X. Assume the claim is false. Then there is a partifiosuch thatX C |foc(R) buta (X) Z Jfoc(R). Then
there is some B o (X) such that P has nonempty intersection with at least two elesneall them Y
and Yz, of foc(R). However, P i< (C) for someC that is a connected component—relative to the ground
setX—of the mincor family ofR/x. ConsiderC. It is the union of one or more mincors B x, those
mincors being subsets &f.

SinceX C foc(R), no element oft can intersect both Yand Y>. It follows that at least one mincor
M e C s such thatUM intersects both Y and Y,. But that contradicts Lemma 7. O

The next and final central result allows us to compute thedafiR by an iterative application ofr,
starting with the partition into singletons.

Theorem 2 For some m such that< m< |S|, a™(L) = foc(R).

Proof. Consider the sequence:
C=1,a(l), a®(L), ...

It is a chain in the lattic¢(S),C), asa (X) abstractsk for all X (see Proposition 4), therefore all those
elements are comparable with respecttoC has only a finite number of distinct elements as the said
lattice is finite.

First note that every element Gfis in Jfoc(R). Indeed, assuming the opposite immediately contra-
dicts Lemma 8.

Then note that for ever¥ € |foc(R) \ {foc(R)}, it is the case thatr (X) # X. Assuming the opposite
implies X is a fixed point of, contradicting Corollary 2. Proposition 4 implies a strentact: for every
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X € Jfoc(R) \ {foc(R)}, it is the case that C a(X). But|foc(R) is a finite lattice. It follows immediately
that for some valuen not greater tharfS|, a™(_L) equals the top offoc(R), viz. foc(R). O

We thus obtain Kleene'’s iterative least fixed point appration procedure [7], however for inflationary
functions instead of monotone ones.

Corollary 3 The following algorithm:

X+ 1

while X # a(X)
X+—a(Xx)

return X

computes the least fixed pointafi.e., the maximum independent partition®fvith respectto R. [

Here is a small example illustrating the work of that aldorit Consider S an® defined in (1) on
page 64.L is {{A},{B},{C},{D}}. Letus computer(L), thatis,& ((C(MF(R/1))). R/L is the same
asR'/x, on page 64, namely:

R/1={{{a{bi}{crH{du}}, {{a H{br Hea}{d}} {{an H{ba H{e Hd}
{{ag}{b2}{ci H{d1}}, {{ae} {b2}{co}{ o} } }

Let us computé((MF(R/1)). Having in mind thaMF(R') = {{A,B},{C,D}} as explained on page 65,
conclude thatC(MF(R'/ 1)) = {{{A,B}},{{C,D}}}. Therefore& ((C((MF(R/1))) = {{A,B},{C,D}}.
That differs from_L and thewhile loop is executed agairR/a(L) is the same aR'/x; on page 64,
namely:

R/a(L) = {{{atbi}{cidi}}, {{aubi}{c20} }, {{arbo} {c10h}},
{{agb2}{c1d1}}, {{azh2}{cod} } }

Let us computéC(MF(R'/ar(1))). To that end, note that (L) = {{A,B},{C,D}} is self-correlated
with respect td'\”/{{A7 B}, {C,D}} because of the lack of, for instance, bdt,b,} and{cy,d;} in
any tuple ofR /g(.L). It follows that(C(MF(R /a(1))) = {{{A,B},{C,D}}} and, thereforeq?(L) =
E(C(MF(R/a(L1)))) = {{A,B,C,D}}. That differs froma(L) and thewhile loop is executed once
more. At the end of that execution, it turns out th&{ L) equalsa?(_L) and the algorithm terminates,
returning as the resu{t{ A,B,C,D}}, the trivial partition.

6 Related Work

An algorithm that factorizes a given relation into primetéas is proposed in [10, algorithmrRRVME
FACTORIZATION]. It runs in timeO(mnlgn) wherem is the number of tuples amlis the number of
attributes. Sincennis the input size, that time complexity is very close to thdropm. The theoretical
foundation of RRIME FACTORIZATION is a theorem (see [10, Proposition 10]) that says a givetiogla
Shas a factoF iff, with respect to any attributéd and any value of its domain,F is a factor of bothQ
andR whereQ andR are relations such th UR = SandQ consists precisely of the tuples in which
the value ofAis v. In other words, the approach of [10] to the problem of cormguthe prime factors
is “horizontal splitting” of the given relation using thelsetion operation from relational algebra. The
approach of this paper to that same problem is quite differédfe utilise “vertical splitting”, using the
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projection operation of relational algebra. The theosttfoundation of our approach is based on the
concept of self-correlation of a subset of the attributieat toncept has no analogue in [10].

An excellent exposition of the benefits of the factorisatidmelational data is [11]. The factorised
representation both saves space, where the gain can piitebt as good as exponential, and time,
speeding up the processing of information whose un-fagdriepresentation is too big. [1] proposes a
way of decomposing relational data that is incomplete aBdlptoposes factorisation of relational data
that facilitates machine learning.

Clusterisation of multidimensional data into non-inteisey classes called clusters is an important,
hard and computationally demanding problem. [5] inveséigalustering in high-dimensional data by
detection of orthogonality in the latter. [8] proposes slblecbcommunity discovering, which is a sort of
clusterisation, in media social networks by utilising tactation of a relational hypergraph.

The foundation of this paper is the work of Guretwal. [6] that investigates relational factorisation
of a restricted class of relations called there simple feasil [6] introduces the concept of correlation
between the attributes and proposes a fast and practicaithlg that computes the optimum factorisa-
tion of a simple family by using a subroutine for correlatidrhe fundamental approach of this paper is
an extension of that, however now correlation is consiégrahore involved, being not a binary relation
between attributes but a relation of arbitrary arity (tlsishie only place where “relation” means relation
in the Set Theory sense, that is, a set of ordered tuples).

7 Conclusion

This paper illustrates the utility of fixed points to formaéxpress maximum independence in relations
by means of minimum correlated sets of attributes. By usifigimum correlated sets, we define an
inflationary transformer over a finite lattice and show thex<imaim independent partition is the least
fixed point of this transformer. Then we prove the downwargsgie of that least fixed point is closed
under the transformer. Hence, the least fixed point can bgutad by applying the transformer itera-
tively from the bottom element of the lattice until stakéliion. This iterative construction is the same as
Kleene’s construction, but does not rely on monotonicityheftransformer to guarantee that it computes
the least fixed point.

A topic for future work is to introduce a quantitative meastor the degree of independence between
sets of attributes and investigate approximate relatifazabrisation.
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This paper shows an application of Bloom drsik’s iteration algebras to model graph data in a graph
database query language. About twenty years ago, Bunenmahrdetveloped a graph database query
language UnQL on the top of a functional meta-language Un@Aldescribing and manipulating
graphs. Recently, the functional programming community $tsown renewed interest in UnCAL,
because it provides arffieient graph transformation language which is useful foiotes applica-
tions, such as bidirectional computation. However, no mm@titical semantics of UnQUNCAL
graphs has been developed. In this paper, we give an eqakdixiomatisation and algebraic seman-
tics of UnCAL graphs. The main result of this paper is to prthag completeness of our equational
axioms for UnCAL for the original bisimulation of UnCAL grap via iteration algebras. Another
benefit of algebraic semantics is a clean characterisafistmuctural recursion on graphs using free
iteration algebra.

1 Introduction

Graph database is used as a back-end of various web and vieesgiand therefore it is one of the
important software systems in the Internet society. Abaugnty years ago, Buneman et al. [6, 7, 8]
developed a graph database query language UnQL (Unskedctlata Query Language) on top of a
functional meta-languagédnCAL (Unstructured Calculus) for describing and manipulatingpd data.
The term “unstructured” is used to refer to unstructuredemisstructured data, i.e., data having no
assumed format in a database (in contrast to relationabdséd. Recently, the functional programming
community found a new application area of UnCAL in so-calbidirectional transformations on graph
data, because it provides affigient graph transformation language. The theory and pecti UnCAL
have been extended and refined in various directions (e, 1@, 17, 1]), which has increased the
importance of UnCAL.

In this paper, we give a more conceptual understanding of Aln@sing semantics of type theory
and fixed points. We give an equational axiomatisation agédkahic semantics of UnCAL graphs. The
main result of this paper is to prove completeness of ourtemned axioms for UnCAL for the original
bisimulation of UnCAL graphs via iteration algebras. Aretlbenefit of algebraic semantics is a clean
characterisation of the computation mechanism of UnCAleddistructural recursion on graphs” using
free iteration algebra.

UnCAL Overview. We begin by introducing UnCAL. UnCAL deals with graphs in agn database.
Hence, it is better to start with viewing how concrete semiefured data is processed in UnCAL.
Consider the semi-structured dat&below which is taken from [8].

R. Matthes, M. Mio (Eds.): Fixed Points © M. Hamana
in Computer Science 2015 (FICS 2015) This work is licensed under the
EPTCS 191, 2015, pp. 75-89, doi:10.44PATCS.191.8 Creative Commons Attribution License.
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country

nam geography government

"Luxembourg"

coordinates \eaa 1xgislative

10174922 "Celtic”

tgtal \and Portuguese"

"49 45N"we 10E" 2586

It contains information about country, e.g. geography, pieo government, etc.
It is depicted as a tree above
in which edges and leaves are

,sd < country:{name:"Luxembourg",
geography: {coordinates: {long:"49 45N", lat:"6 10E"},

labelled. Using UnCAL's term area:{total:2586, land:2586}},
language for describing graphg people:{population:425017,
(and trees), this is defined by ethnicGroup: "Celtic”,

. ethnicGroup: "Portuguese",
sd shown at right. Then we can ethnicGroup: "Ttalian"}

define functions in UNCAL t0 | government:{executive:{chiefOfState:{name:"Jean",..}}}}
process data. For example, a
function that retrieves all ethnic groups in the graph caddfed simply by

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

The keywords fun denotes a function definition tstructural recursion on graphsvhich is the compu-
tational mechanism of UnCAL. Executing it, we can certaiekyract:

f1(sd) ~w» {result:"Celtic", result:"Portuguese", result:"Italian"}

The notation{:--:--- c--yisapart & & i - Xlxm - & X
of the UnCAL's term language for rep- y A @@ ‘ A
resenting graphs. It consists of mark-

ersx, labelled edgeg:t, vertical com- y /G GuUG g 0 X< G
positionsseo t, horizontal compositions

(s,t), other horizontal compositions Xlé'x" XL Xm  X1.Xm % .xn?

sut merging roots, forming cycles

cycle(t), constants{},(), and defini- Y, \+° G e | 4 s G

tions (x < t). These term constructions[T\ | X1.%m_ Y1i.¥n
have underlying graph theoretic meanl-Z:-Z Yi-yn | [ YL

ing shown at th right. Namely, these Go G' (G,G") cycle(G)

are dficially defined as operations on__ ] o
Figure 1:Graph theoretic definitions of constructss

the ordinary representations of graphs: _ o _
. lightly changed notation. Correspondence between tigenatiand this paper’s:
(vertices set, edges set, leaves, roots)-

y=y, @=o, @=(--), (-i=-)=—<-
tuples ¥, E,{y1,...Ym}, {X1,..., Xa}), but
we do not use the graph theoretic definitions of these opesatn this paper.
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UnCAL deals with graphsmodulo bisimulation(i.e. not only modulo graph isomorphism).
An UnCAL graph is directed and have (possibly multiple) {ept

a‘i‘ V) written & (or multiple x; --- x,) and leaves (written; - --ym), and

=g with the roots and leaves drawn pictorially at the top anddmot
b lc respectively. The symbolg yi,Y»,& in the figures and terms are

S fe called markers, which are the names of nodes in a graph and are

e used for references for cycles. Also, they are used as porésa

VE ~ to connect two graphs. A dotted line labelle called are-edge,

d:i N which is a “virtual” edge connecting two nodes directly. 8

\ achieved by identifying graphs xtended bisimulatignwhich

ignorese-edges suitably in UnCAL. The UnCAL gragh shown
at the left is an example. This is extended bisimilar to algthpt

Y1 Y2 =7 Y1 Y2 reduces alk-edges. Using UnCAL’s languag§, is represented
Figure 2:GraphG and bisimilar one as the following ternig

tc = a:({b: x}u{c:x}) o cycle(x « d:({p:y1} u{a:y2} u{r: x})).

UnCAL's structural recursive function works also on cydt@r example, define another function
sfun f2(L:T) = a:£2(T)
that replaces every edge wiih As expected,

f2(tg) w a:(faixju{a:x}) o cycle(x « a:({fa:yi}u{a:ys}ufa: x}))

where all labels are changed4o

Another characteristic role of bisimulation is that it itiies expansion of cycles. For example, a
termcycle(& < a: &) corresponds to the graph shown below at the leftmost. lisisnidar to the right
ones, especially the infinitely expanded graph shown atigiiennost, which has no cycle.

& & &
al™ a a
Ve -

)
FDFDNDJRQ

These are in term notation:

cycle(s < a:&) ~ a:cycle(e < a:&) ~ a:a:cycle(e < a:g)

Problems. There have been no algebraic laws that establish the ab@ansion ofcycle. Namely,
these are merely bisimilar, and not a consequence of anigraigdaw. But obviously, we expect that it
should be a consequence of the algebraic lafixefl point propertyof cycle.

In the original and subsequent formulation of UnCAL [8, 18, 1], there are complications of this
kind. The relationship between terms and graphs in UnCAloisrone-to-one correspondence. No term
notation exits fok-edges and infinite graphs (generated by the cycle conkttings the rightmost infinite
graphs of the above expansion cannot be expressed in syBitdsuch an infinite graph is allowed as
a possible graph in the original formulation of UnCAL. Coggently, instead of terms, one must use
graphs and graph theoretic reasoning with care of bisinomab reason about UnCAL. Therefore, a
property in UnCAL could not be established only using indurcion terms. That fact sometime makes
some proofs about UnCAL quite complicated.
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Because UnCAL graphs are identified by bisimulation, it isassary to use a procedure or algorithm
to check the bisimilarity as in the cycle example above. ihgssome typical valid equations for the
bisimulation can be a shortcut [8, 19], but it was only sound rzot completdor bisimulation.

Hence, we give an algebraic and type-theoretic formulatfddnCAL by giving equational axioms
of UnCAL graphs. In this paper, we prove completeness of oapgsed axioms using iteration algebra
[4]. Thus we have @ompletesyntactic axiomatisations of the equality on UnQbCAL graphs, as a
set of axioms capturing the original bisimulation, witheotiching graphsg-edges, and the notion of
bisimulation explicitly. We prove it by connecting it withe algebraic axiomatisations of bisimulation
[3, 12].

How to model UnCAL and structural recursion. The first idea to understand UnCAL is to interpret
it as a categorical structure. We can regard edgesaphismgof the opposite directions), the vertical
compositione as thecomposition of arrowsandcycle as afixpoint operatorin a suitable category.
Thus the target categorical structure should have a nofiirpmint, which has been studied in iteration
theories of Bloom andEsik [3]. In particular, iteration categories [10] are abit, which are traced
cartesian categories [20] (monoidal version is used in g@sa’s modelling of cyclic sharing theories
[16, 15]) additionally satisfying the commutative ideist#t axiom [3] (see also [25] Section 2 for a useful
overview around this).

We also need to model UnCAL's computational mechanismutstral recursion on graphs”. The
general form of the definition of structural recursive fuoctis

sfun F(f:t) = e (k)

wheree can involveF(t). The graph algorithm in [8] provide a transformation of ga that produces
some computed graphs using the definitig)( It becomes a functiofr satisfying the equations ([8]
Prop. 3):

F(yi)=Yi F((x<1t))=(x< F(t) F( ¢t )=e
F(0))=0 F( sut )=F(9)uF(t) F( sot )=F(9oF({) (=) (1)
F({(})=1{} F( (s, t) )=<(F(9), F()) F( cycle(t) ) =cycle(F(t)) -+ (=)

whene does not deperidont. This is understandable naturally as the exanfleecurses structurally
the termtg. Combining the above categorical viewpoiRtcan be understood as a functor that preserves
cycle and products (thus a traced cartesian functor). A categlosEmantics of UnCAL can be given
along this idea, which will be reported elsewhere. This ideeks for simple cases of structural recursion
such asf2.

However, there is a critical mismatch between the aboveyodtsl view and UnCAL's structural
recursion of more involved cases. Buneman et al. mentiormmhdition that the above nine equations
hold only where does notlepend ort in (3 ). Two equations marked<) do not hold in general i€ does
depend ort (other seven equations do hold). Crucialty, is already this case, wheleappears as not
of the form£1(T). The following another example shows why)(do not hold: the structural recursive
functionaa? tests whether the argument contains4:".

sfun a?(L:T)
sfun aa?(L:T)

if L=a then true:{} else {}
if L=a then a?(T) else aa?(T)

The definition ofaa? doesdepend oIT at the “then”-clause. Then we have the inequalities:

IHere “e depends o’ means that containst other than the fornf(t).
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aa?( (a:&)oCa:{)) = aa?( a:a:{} ) = true:{} # {} = {Jo{} = aa?(a:&) ¢ aa?(a:{}
aa?( cycle(a:&) ) = aa?( a:a:cycle(a:&) ) = true:{} # {} = cycle({}) = cycle(aa?(a:&))

This means thaF does not preserveycle in general, and eveis not functorial thus the categorical
view seems not helpful to understand this pattern of regarsi

In this paper, we considerlgebraic semanticef UnCAL using the notion of iteratiox-algebras
[4, 12] in §3. It solve the problem mentioned above, i.e. we derive thettral recursion even when
the case that depends om within the algebraic semantics.

Organisation. This paper is organised as follows. We first give a framewdr&quational theory for
UnCAL graphs by reformulating UnCAL graph data in a type tiedic manner in Section 2. We then
give algebraic semantics of UnCAL using iteratibralgebras in Section 3. We prove completeness of
our axioms for UnCAL graphs for bisimulation in Section 3\8/e further derive structural recursion
on UnCAL graphs in Section 3.5. Finally, in Section 3.6. wewtseveral examples how structural
recursive functions on graphs are modeled.

2 UnCAL and its Equational Theory

We give a framework of equational theory for UnCAL graphs. Wermulate UnCAL graph data in a
type theoretic manner. We do not employ the graph theoraticoperational concepts (suchsaedges,
bisimulation, and the graph theoretic definitions in Fig. lhstead, we give an algebraic axiomatisation
of UnCAL graphs following the tradition of categorical typieeory [9]. The syntax in this paper is
slightly modified from the original presentation [8] to refléhe categorical idea, which may be more
readable for the reader familiar with categorical type thieo

2.1 Syntax

Markers and contexts. We assume an infinite set of symbols calledrkers denoted by typically
XY,z.... One can understand markers as variables in a type theoeymaker denoted by is called

the default marker, which is just a default choice of a mahearing no special property. Lét be a

set oflabels A label ¢ is a symbol (e.g.a,b,c,... in Fig. 2). Acontext denoted by(xq, Xo,...), is a
sequence of pairwise distinct markers . We typically ¥s€Z,... for contexts. We us&)) for the empty
contexts X, Y for the concatenation, and| for its length. We may use the vector notatigrfor sequence
X1,...,Xn. The outermost brackéf )) of a context may be omitted. We may use the abbreviations for
the empty context & {)). Note that the concatenation may need suitable renamingtisfyspairwise
distinctness of markers.

Raw terms.

t u= yy | &t | sot | (s, | oeyeleX®) | v | Oy | A | (x<t)

We assume several conventions to simplify the presentatiaiheory. We often omit subscripts or
superscripts such aswhen they are unimportant or inferable. We identi{g, t), uy with (s, (t, uy);
thus we will freely omit parentheses és, ..., t,). A constantA express a branch in a tree, and we call
the symbolA a man because it is similar to the shape of a kanji or Chinese cltaraneaning a man,
which is originated from the figure of a man having two leggi(dre top is a head).
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Nil) — Emp)—— Man
(NI Yr{ly 1& ( p)Y FQy O ( )yl,yz F ALy *&
Yrs:Z Xrt:Y tel Ytrt: & Y ={Y1,---» Yo
C Label) ———— Mark) ———————=—*
(Com) XESsot 1 Z (Label) YrCt & (Mark) Y FYiy &
. YFES X Yrt i X Y, Xrt : X Yrt &
Pair Cy¢) —mM8 ——— Def) —M8M ——
(Pair) Y (s, 1) : X, X2 ( y)Yl—cycIeX(t) X ( )YF(X<’t)1X
Figure 3: Typing rules
Abbreviations. We use the following abbreviations.
{stuft} = Ao(s,t) sxt 2 (somy,tom) Ax = (idy,idyx)
= Xk idey = X c = (m2,m)
T = Yy i, ) = XLy X X Xn ()

Inheriting the convention of-,—), we also identify §xt) x u with sx (t x u), thus we omit parentheses

2.2 Typed syntax

For contextsX, Y, we inductively define a judgment relatidh- t : X of terms by the typing rules in Fig.
3. We call a markefreein t when it occurs irt other than the left hand-side of a definitian{ s). In

a judgment, free markers inare always taken fronv. ThusY is a variable context (which we call the
source contextin ordinary type theory, and is the roots (which we call thiarget contexbr typd. For
example, the terrt in §1 is well-typed  y1,¥» Htg & which corresponds a graph in Fig. 2, where
the markeris the name of the root. Whdnis well-typed by the typing rules, we calla (well-typed
UnCAL) term. We identifyt of types with (& <« t).

Definition 2.1 (Substitution) LetY = (y1 ---, ¥k}, W be contexts such th@t| < |W| andY can be em-
bedded intdwW in an order-preserving manner, amtis the subsequence ¥ deleting all ofY (NB.
W] = [Y|+1Y’], Y is possibly empty). Suppos# +t : X Z+s Dy (1<i<Kk). Thena
substitutionZ, Y’ +t[y+ § : X is inductively defined as follows.

Yilym g = s (iot) [y = t1o(t2 [y 9)

X[y = x(if xinY) (t1,t2)[yr 8 = (e[ ). (2[y+ S)))
vy 9 = {}zev cycle(t) [y § = cycle(t[Y+ 9])
Ovlye 9 = Ozev X<« [y—9g = (x<«t[yr 9)

)y g = &(t[ye 9)

Ayryn [Y1 9 S1,Y2 = ] £ Agyryoy © (S, S2)

Note thatt [y — §] denotes a meta-level substitution operation, not an eikglibstitution.

2.3 Equational theory

FortermsY +r s : XandY rt : X, an(UnCAL) equatioris of the formY + s=1t : X Hereafter, for
simplicity, we often omit the sourc¥ and targety contexts, and simply write =t for an equation, but
even such an abbreviated form, we assume that it has inipktiitable source and target contexts and
is of the above judgemental form.
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Composition
(subl) to(y< 9 =t[ym g Deleting trivial cycle
for yrt : X (c2) cycle(A) =id

Parameterised fixpoint Commutative monoid
(fix) cycle(t) = to (idy, cycle(t)) (unitLA) Ao ({}pxid) =id
(Bekit) cycle({t, s)) = {2, cycle(s)) o (assoa) Ao(idx A)= Ao (AXxid)

(idy, cycle(t o (idyx, cycle(s)))) (comn) AoC=A
(naty) cycle(t) o s= cycle(to (sxidx)) Degenerated bialgebra
(natk) cycle(sot) = socycle(teo (idyxs)) (compa)do A =(AXA)o(idxcxid)o (AXA)
(Cl)  cycle({te (idx Xpq),...,to(ildxXpy)))  (degen) AoA=id

= Amocycle(to (idx X Am))

Figure 4: AxiomsAxGr for UnCAL graphs

Fig. 4 showsour proposed axiomAxGr to characterise UnCAL graphs. These axioms are chosen
to soundly and completely represent the original bisimotadf graphs by the equality of this logic.
Actually, itis sound: for every axiora=t, sandt are bisimilar. But completeness is not clear only from
the axioms. We will show it ir§3.

The axiom (subl) is similar to th&reduction in thet-calculus, which induces the axioms for carte-
sian product (cf. théerived theory below). The cartesian structure provides a canonical catative
comonoid with comultiplication\.

Two terms are paired with a common root {®yu {t} = A ¢ (s, t). The commutative monoid axioms
states that this pairinfy-} u {—} can be parentheses free in nested case. The degeneragbtaagioms
state the compatibility between the commutative monoid emmdonoid structures. The degenerated
bialgebra is suitable to model directed acyclic graphs [(t4] §4.5), where it is stated within a PROP
[21]. The monoid multiplicatiorh expresses a branch in a tree, while the comultiplicaticexpresses
a sharing. Commutativity expresses that there is no orderdes the branches of a node, cf. (comnu
in the derived theory below, and degeneration expresses that the branches okeaormd a set (not a
sequence), cf. (degen’).

Parameterised fixpoint axioms axiomatise a fixpoint operakbey (minus (Cl)) are known as the
axioms for Conway operators of Bloom afibik [3], which ensures that all equalities that holds in
cpo semantics do hold. It is also arisen in work independesitiHyland and Hasegawa [15], who
established a connection with the notion of traced cares@egories [20]. There are equalities that
Conway operators do not satisfy, e.gycle(t) = cycle(t < t) does not hold only by the Conway ax-
ioms. The axiom (CI) fills this gap, which corresponds to tbenmutative identities of Bloom and
Esik [3]. This form is taken from [25] and adopted to the UnCsetting, whereAn, = (idg, - -, idg),
Y=(Y,....ymM & FAm 1Y, X+Yrt & Y Fp; :Ysuchthap; =(qz,...,qm) where eacly; is
oneofY +x :&fori=1,...,m The axiom (c2) (and derived (c1) below) have been taken esssary
ones for completeness for bisimulation used in severahaaisations, e.g. [23, 5, 12].

The equational logiEL-UnCAL for UnCAL is a logic to deduce formally proved equations ezl
(UnCAL) theorems The equational logic is almost the same as ordinary oneldabeaic terms. The

inference rule of the logic consists of reflexivity, symnmty, transitivity, congruence rules for all
constructors, with the following axiom and the substitotiales.

(Yrs=t :X)eE (Sub)Wl—tzt/:X Zrs=g yi(l<i<k)
Yrs=t:X Z+Y rt[y— §=t[y— 8] : X

The set of all theorems deduced from the axigiré&r is called aUnCAL) theory

(Ax)
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Derived theory. The following are formally derivable from the axioms, thue theorems.

(tmnl) t =)y foralYrt ) (dpair)  (t3,tr)os = (f1ostros)

(fst) mpo(s,t) = s (fsi) (m1,712) = id

(snd) moo(s,t) = t (SP) (mot,mot)y = t

(bmul) (Xx0s = (goA  (bcomul) Aotlo = ({Jox{}o)
(UnitRA) Ao (dx{}o) = id (bunit) e o {}o = id

(c1) cycle(id) = {}o (comn) {stuft) {thu (s
(unRv) toid = t (unitu) {Bult) t={ttu{{}
(unLo) idot = t (assoo) {{stu{t}}uiu} {s}u {{t} u {u}}
(assoe) (set)ou = So(tou) (degen’) {t} u {t} =t

Because of the first three lines, UnCAL has the cartesianuystedFor (c1), the proof is
cycle(id) =M cycle(A o ({}o x id)) =) cycle(A) o {}g =@ id ¢ {}o. = {}o.
Lemma 2.2 Under the assumption of Def. 2.1, the following is an UnCAdotkm.

(sub) to(sy, -, Seidy) =t[y §

3 Algebraic Semantics of UnCAL

In this section, we consider algebraic semantics of UnCAEk.algo give a complete characterisation of
the structural recursion, wheean depend ohin ().

3.1 lteration X-Algebras

We first review the notion of iteratioB-algebras and various characterisation results by Bloahtsik.
Let X be a signature, i.e. a set of function symbols equipped witiess We defing:-terms by

to= x| f(ty,....th) | uxt,

wherex is a variable. We use the convention that a function synilidle = denotes-ary. For a seV
of variables, we denote by V| the set of alju-terms generated by. We defineConwayCl as the set of
following equational axioms:

Conway equations ux.t[s/X]
uX. uy.t

Group equations associated with a grougs
uX. (t[L-x/X],...,t[n-x/X])1

tfux qt/X] /x],
pX-t[x/Y]

py-(X[y/X......[y/x)

Note thatthe fixed point law
ux.t = tlux.t/X

is an instance of the first axiom of Conway equations by takiacg. The group equations [11] known as
an alternative form of the commutative identities, are apraxschema parameterised by a finite group
(G,-) of ordern, whose elements are natural numbers from h.t&Ve also note that the-notation is
here extended on vectorg,(..,ty), and (); denotes the first component of a vector. Given a vector
X = (X1,...,Xy) of distinct variables, the notatidnx = (X.1, ..., X.n) IS used.
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Definition 3.1 ([4]) A pre-iterationZ-algebra(A, ( — | a) consists of an nonempty s&tand an interpre-
tation function |(— |)(A‘) :T(V)x AV — A satisfying

0] (|x|)’; = p(X) for eachx e V (i) (Itha=(t'Da = (uxt)p = (uX.t'DA.
(i) (1H0ta/%, o/ %] Da = 0th3 with /(%) = (6 ), /() = p(¥) for x# X

A pre-iterationZ-algebra can be seen a&algebra A,{fa | f € Z}) with extra operationgX.t))a
for all t. A pre-iterationX-algebraA satisfiesan equations =t over u-terms, if {S)s = (t)a. LetE
be a set of equations ovgrterms. Aniteration Z-algebrais a pre-iteratior:-algebra that satisfies all
equations inConwayCl. An iteration (X, E)-algebrais an iterationz-algebra that satisfies all equations
in E. A homomorphism of iteratiorz-algebrash : A — B is a function such thato (t), = (t) ohY
for all t. Since the variety of iteratioB-algebras is exactly the variety of all continudLislgebras ([4]
Introduction), the interpretation @fx.t in an iterationz-algebra can be determined through it.

We now regard each labéle L as an unary function symbol. Then we consider an iteratian
{09, +@)-algebra. We define the axiom FetBR by

s+ (t+u) = (s+t)+u s+t =t+s t+0=t
ux.x =0 ux.(X+y) =y for y not containingx

and AxCBR = ConwayCl U AxBR. We write AXCBR +, s=1 if an equations =t is derivable from
AXCBR by the standard equational logit i for u-terms. For example, idempotency is derivable:

AXCBR F, t+t=1

The proof ist = ux.(x+1) = (ux.(x+1t)) +t = t+t, which uses the last axiom BxBR and the fixed point

law. Sinceu-terms can be regarded as a representation of process teregutar behavior as Milner

shown in [23] (or synchronization trees [3]), the standaotiom of strong bisimulation between two
u-terms can be defined. We wrige- t if they are bisimilar.

Theorem 3.2 ([3, 4,12, 13])
(i) The axiom seAxCBR completely axiomatises the bisimulation, i&xCBR +, S=t < s~t
(i) The setT(V) of all u-terms forms a free pre-iteratiob-algebra over V.

(iii) The setBR of all regular L-labeled trees having V-leaves modulo bidation forms a free itera-
tion (LU{0, +}, AxBR)-algebra over V ([12] below Lemma 2, [24] Thm. 2).

Note thatBR stands folRegular trees modulBisimulation, andAxBR stands for the axioms for regular
trees modulo bisimulation.

3.2 Characterising UnCAL Normal Forms

UnCAL normal forms. Given an UnCAL ternt of type &, we compute th@ormal formof t by the
following three rewrite rules (N.B. we do not here use theeotiixioms) as a rewrite system [2], which
are oriented equational axioms taken from the derived théxGr and abbreviations.

(sub) to(si,--,Suid) = t[y— g
(Bekit) cycle({t,s)) = {(m,cycle(s)) ¢ (ida,cycle(t o {idaxy,cycle(s))))
(union) Ao(s,t) = {stut}
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Let M be the set of all rewriting normal forms by the above rulesiciiinally erases al—, —) ande in

a givent. Normal forms are uniquely determined because the rewriés mare confluent and terminating,
hence have the unique normal form property [2]. Then by itidncon terms we have that terms. v
follow the grammar

Mstz=y | €t | cycleX) | {} | {sfu{ty | (x<t).
Any outermost definition must be of the form & t’) by the assumption that the original givers of

types, thus we identity it witht’. Other definitions appear inside pfas the following cases:

e Case{(x1 <« t1)}u{(X2 « tp)}. We identify it with merely{t1} u {to}, because marker namgg x,
are hidden by this construction.

e CaseY cycleX(x « t) : x. We identify it with merelycycle®(t’), because these are equivalent by
renaming of free makex.

TheUnCAL normal formsV are obtained froroM by these identifications. It is of the form
N 3 tu=y | &t | cycleX() I | (sult)
TV)> tu=y | ) | wpXe...upt | O | s+t
Every normal form bijectively corresponds tquaerm in T(V), i.e. N = T(V), because each the above

construct corresponds to the lower one, wheee{(X, ..., X,)). Hereafter, we may identify normal forms
andu-terms as above. Define the pair of signature and axioms by

unC £ (LU{0,+}, AxBR).

We regard an arbitrarnC-algebraA as analgebraic modebf UnCAL graphs. First, we show the
existence of a free model. Defité-gr t0 be the quotient ol by the congruence generated AwCBR.

Proposition 3.3 vV N
Ncer forms a free iterationUnC-algebra over V. Thus for any function CBR

¥V — A, there exists an uniqunC-algebra homomorphism such that \ \wﬁ
the right diagram commutes, whejés an embedding of variables. ¥

n

A
Proposition 3.4 Ncgr = BR.

Proof. By Theorem 3.2 (iii). O

3.3 Completeness of the Axioms for Bisimulation

Buneman et al. formulated that UnCAL graphs were identifigcextended bisimulatigrwhich is a
bisimulation on graphs involving-edges. As discussed §1, since our approach is to use only UnCAL
terms, it sdfices to consider only the standard (strong) bisimulatiowbeh UnCAL terms, as done in
[23, 3, 12, 13]. We denote by bisimulation for UnCAL term.

In this subsection, we show the completenessxda®r for bisimulation, using the following Lemma
3.5 that reduces the problem BE-UnCAL to that of EL-u through UnCAL normal formsAxCBR has
been shown to be complete for the bisimulation [3].

Lemma 3.5 For UnCAL normal forms me N, AXCBR +,n=m«= Y n=m : X is derivable from
AXGrin EL-UnCAL.
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Proof. [=]: By induction on proofs oEL-u. For every axiom ilAxCBR, there exists the corresponding
axiom inAxGr or anEL-UnCAL theorem, hence it can be emulated.
[<]: By induction on proofs oEL-UnCAL. Let s=tis an axiom ofEL-UnCAL. It easy to see that taking
normal forms of both side, they are equal term, or correspgorath axiom inAXCBR or EL-u theorem.

|

Theorem 3.6 (CompletenessixGr is sound and complete for the bisimulation, i.e.,
Y +s=t : X is derivable fromAxGrin EL-UnCAL iff s~t.

Proof. [=]: Because every axiom iAxGr is bisimilar, and the bisimulation is closed under contexts
and substitutions [8].

[<]: Supposes~t. Since for each rewrite rule for the normalisation functidnboth sides of the rule is
bisimilar, nf preserves the bisimilarity. So we hase nf(s) ~ nf(t) ~ t. SinceAxCBR is complete axioms

of bisimulation [3, 12] AXCBR +, nf(s) = nf(t). By Lemma 3.5, we have a theoréfn+ nf(s) = nf(t) : X.
Thuss=tis derivable. O

3.4 Interpretation in Algebraic Models

To interpret UnCAL terms and equations, we connect two feenresults in Thm. 3.2.
Since UnCAL normal formsN is isomorphic to a free pre-iteration algebraVJy( it has the
universal property. DefineTg to be the set of all well-typed UnCAL terms of type.

We definenf: 7¢ — N by the function to compute the UnCAL normal form T

of a term. Then for any derivable equati¥n s=t : X in EL-UnCAL, we nf
haveAxCBR + nf(s) = nf(t) by Lemma 3.5, thus for all assignment V — ,
A, V"L 1v) =
YAInf(9))" = yH(nf(®))" \ 0=

wheren andn’ are embedding of variables.

Since Ncgr = BR, we name the isomorphisms)(: Ncer — BR and y Ncer =B8R
(=) : BR — Ncgr. We write simply a normal fornt to denote a represen- W
tative [t] in Ncgr. Thus given a normal form (which is a syntactic term,
always finite), t is a (possibly infinite) regular tree by obtained by expand- A

ing cycles int using fixpoints. Conversely, notice that sirigs a tree, there are no cycles and the original
cycles int are infinitely expanded. Sinc®¥ = T(V), the functions £) may also be applied to-terms.

The iterationUnC-algebraBR has operationsgk = {}, +gr(r,s) = {T} u{S}, €sr(r) = (7).

3.5 Deriving structural recursion of involved case

Next we model UnCAL’s structural recursion of graphs. We paies of “the recursive computation” and
the history of data structure. This is similar to the techmigf paramorphism [22], which is a way to
represent primitive recursion in terms of “fold” in funatial programming. Our universal characterisa-
tion of graphs is the key to make this possible by the uniquadrmorphism from the free pre-iteration
UnC-algebraN using the above analysis.

We take a ternX + e/(v,r) : X involving metavariabley andr, wheree,(F(t),t) is the right-hand
sidee of F(¢:t) in (%) . For example, in case of the examglein Introduction (see also Example 3.9),

we take
e(v,r) = result:r, e(F(t),t) = result:t if £ =ethnicGroup

er(v,r) 2 v, e(F(t),t) = F(t) if £ # ethnicGroup



86 Iteration Algebras for UnQL Graphs

We construct aspecificiteration UnC-algebraBRe for {e/(v,r)},L. Let k= |X|. Without loss of
generality, we can assume th&fv,r) is of the form(ty, ---, ty) where eveny; is a normal form. We
define the iteratiounC-algebraBRe = B8R x B8R having operation

Core(V,T) = (& (V.1), £:T),  Ogge= ({J.1})
and +gge IS an obvious tuple extensions efzg. Here {? is the k-tuple of {}. Hereafter, we will
use this conventiord of tuple extension of an operatar

Then, two freeness results in Thm. 3.2 are depicted in the diagram, Vv n”’ TV = N
wheren(x) = (X1, -+, Xk, X). Since T¥) = N, the interpretation irBRe is (V)=

described as \ (- DUBR

(XDgre =1(¥), 01} Dpge = OBres  ({S}U {t} )gre = (SDgre +8re (t)5RE . BR
06 Dee = Come((tDee).  (CyCle(t) Dy, = n(cycle() .
Now ( — ’,73% is characterised as the unique pre-iteration{0, +}-algebra BRe
homomorphism from T) that extends;. Defining
T
s . K~ ask
¢2m10( — e N —— BR = Ngp, BRK EN(k:BR

it is the unique function satisfying

¢ =(xu....%).  oN={  eUsuit)=¢(9) T g(t).
o(C:t) =e(v,1),  plcycle(t)) = n1 ot (cycle(t))

The functiong takes normal forms of the tyge For non-normal forms, just precompasiei.e., define

the functiond : 7 — AKXy by ©(9) £ ¢(nf(s)), thus,0X : T — Negr™ — 7, becausay = 7.1 In

summary, we have the following, whesés a possibly non-normal form

(s) =¢(nf(s)) $0) =00 et =10
XMy, ) =0X(ty) X OM()  p(Lit)  =en(p(t). 1) ¢(iutr) = ¢(t1) T ¢(t2)  (2)
@%(()) =0 ¢(cycle(t) =1 o nf(cycle(t))

whereX is the “zip” operator of two tuples. Here we use a miégsr — Tm(V) to regard a normal form
moduloAXCBR as a term, for which any choise of representative is harmhessause UnCAL graphs
are identified by bisimulation antixCBR axiomatises it. Identifying three kinds functiods®!, ¢ as
a single function (also denoted @y by abuse of notion) on Tri(), this @ is essentially what Buneman
et al. [8] called the structural recursion on graphs for tasecthake depends on. Actually, we could
make the characterisation more precise than [8], i.e., i@mklso the laws for the cases©fby the
cased(s) = ¢(nf(s))) andcycle, which tells how to compute them.

This is not merely rephrasing the known result, but also enger characterisation, which gives
precise understanding of the structural recursion on graph

() Buneman et al. stated that (1) without)(is a property ([8] Prop. 3) of a “structural recursive
function on graphs” defined by the algorithms in [8]. Thisgedy (i.e. soundness) is desirable,
but unfortunately, no completeness was given. There maydmy iunctions that satisfy the prop-
erty. In contrast to it, our characterisation is sound emuplete (2) determines aniquefunction
by the universality.
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(i) This derivation does not entali(sot) = ®(s) o O(t). It tells us that the only way to compudEsot)
is to compute the normal form afo t and then apply.

(iii) This analysis does not entadi(cycle(t)) = cycle(d(t)) either. The iteration algebra structure tells
us that the homomorphisgh maps a terntycle(t) to its interpretation inBRe where the cycles
are expanded in a regular tree and at the same time, labetsinterpreted using the operations of
BRe.

(iv) The structure preserved by structural recursion is(fine-)iteration algebra structureThe struc-
tural recursive functio is the composition of a pre-iteration algebra homomorphisma itera-
tion algebra homomorphism and a projection.

3.6 Examples

We may use the notatidfty, t, ...} as the abbreviation ¢fi} u {to} u -+

Example 3.7 ([8] Replace all labels witha) This is the example considered in Introduction.

sfun f2(L:T) = a:£f2(T)
In this case, the recursion domet depend orT (because the right-hand side uses meflyT)). We
define the iteratiotunC-algebraBRe by

lore(V,1) = (ar v, £:r).

(We may omit over and underlines to denote the isomorphigmsiiplicity). Then® is the desired
structural recursive functiofi2. E.g.

®(b: cycle(c: &) = a:¢(cycle(c: &) = a: nlonﬁ(c:c: ---) = a:(@ar ) = a:cycle(a: &)

Example 3.8 ([8] Double the children of each node)
sfun f4(L:T) = {a:f4(T)} u {b:£f4(T)}
Example of execution.

fa(a:b:c:{P
~ fa:{ a:fa:{}, b:{}}, b:fa:{}, b:{}} }} u {b:{ a:{a:{}, b:{}}, b:{a:{}, b:{}} }}

This case doesot depend orT. We define the iterationC-algebraBRe by
Care(V, 1) = ({a: vl u {b:V}, £:1).
Then® gives the structural recursive function definedfildy

Example 3.9 ([8] Retrieve all ethnic groups\We revisit the example given igil.
For the structural recursive recursive definitionfaf

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

This casadoesdepend orT. Example of execution:

fl1(sd) ~» {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}
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We define the iteratiobnC-algebraBRe by

ethnicGroupgge(V,r) £ (result:r, ethnicGroup:r)
Lgre(V,I) = (v, £:1) for £ # ethnicGroup

Then® is the structural recursive function defined fiy.

O (sd) = {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}

Example 3.10 Consider another example §1 of aa?. This casedoesdepend orT. We define the
iterationUnC-algebraBRe by

agre(V,r) = (a?(r), a:r)
lore(V,T) = (v, £:1) for €+ a.

Then® gives the structural functioaa?

D((a:&)@(a:{)) = #(nf((a:&)@a:{})))=¢(a:a:{}) = true:{}
(D(cycle(a:&)):ﬂlonﬁ(cycle(a:&)):zrlonﬁ(a:a:---):ﬂl(a?(a:---),a:---):true:{}

4 Conclusion

In this paper, we have shown an application of Bloom Bsik’s iteration algebras to model graph data
used in UnQIUNCAL for describing and manipulating graphs. We have fdatad UnCAL and given
an axiomatisation of UnCAL graphs that characterises tiggna bisimulation. We have given algebraic
semantics using Bloom arigsik’s iteration iteration algebras. The main result of gpaper was to show
that completeness of our equational axioms for UnCAL fordtiginal bisimulation of UnCAL graphs
via iteration algebras. As a consequence, we have givenaa clearacterisation of the computation
mechanism of UnCAL, called “structural recursion on gréplsng free iteration algebra.

Acknowledgments. | am grateful to Kazutaka Matsuda and Kazuyuki Asada forudisions about
UnCAL and its interpretation, and their helpful commentseodraft of the paper. A part of this work
was done while | was visiting National Institute of Inforreast (NII) during 2013 — 2014.
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We present a coalgebraic generalisation of Fischer anddradPropositional Dynamic Logic (PDL)
and Parikh’s Game Logic (GL). In earlier work, we proved a gy@mstrong completeness result
for coalgebraic dynamic logics without iteration. The gmdiraic semantics of such programs is
given by a monad’, and modalities are interpreted via a predicate lifthgvhose transpose is a
monad morphism fronT to the neighbourhood monad. In this paper, we show that ihtbead

T carries a complete semilattice structure, then we can dafiniéeration construct, and suitable
notions of diamond-likeness and box-likeness of preditifitegs which allows for the definition

of an axiomatisation parametric ih, A and a chosen set of pointwise program operations. As our
main result, we show that if the pointwise operations areg&tien-free” and Kleisli composition
left-distributes over the induced join on Kleisli arrowiseh this axiomatisation is weakly complete
with respect to the class of standard models. As speciarists, we recover the weak completeness
of PDL and of dual-free Game Logic. As a modest new result wainkcompleteness for dual-free
GL extended with intersection (demonic choice) of games.

1 Introduction

Propositional Dynamic Logic (PDL) [4] and its close cousiar® Logic (GL) [14] are expressive,
yet computationally well-behaved extensions of modaldsgiCrucial for the increased expressiveness
of these logics is the *-operator (iteration) that allowscwmpute certain, relatively simple fixpoint
properties such as reachability or safety. This featureasoaha price: completeness proofs for deduction
systems of logics with fixpoint operators are notoriouslifidilt. The paradigmatic example for this
phenomenon is provided by the modalcalculus: Walukiewicz's completeness proof from [19] for
Kozen’s axiomatisation [10] is highly non-trivial and pegsly not widely understood.

Our main contribution is a completeness proof for coalgebdginamic logicswith iteration We
introduced coalgebraic dynamic logics in our previous waikas a natural generalisation of PDL and
GL with the aim to study various dynamic logics within a umifoframework that is parametric in the
type of models under consideration, or - categorically kipgg- parametric in a given monad. In [7] we
presented an initial soundness and strong completenads farssuch logics. Crucially, however, this
only coverediteration-free variants This paper provides an important next step by extendingooex
vious work to the coalgebraic dynamic logic with iteratidks in the case of PDL, strong completeness
fails, hence our coalgebraic dynamic logics with iteratamg (only) proved weakly complete. While
the concrete instances of our general completeness resuliedl-known [11, 14], the abstract coalge-
braic nature of our proof allows us to provide a clear analydithe general requirements needed for
the PDL/GL completeness proof, leading to the notions of lamd diamond-like modalities and of a
left-quantalic monad. As a modest new completeness resulihwain completeness for dual-free GL
extended by intersection (demonic choice) of games.
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At this relatively early stage of development our work halsganainly regarded as a proof-of-concept
result: we provide evidence for the claim that completepessfs for so-called exogenous modal logics
can be generalised to the coalgebraic level. This opens wpnder of promising directions for future
research which we will discuss in the Conclusion.

2 Coalgebraic Dynamic Logic

2.1 Coalgebraic modal logic

We assume some familiarity with the basic theory of coalggh6], monads and categories [13]. We
start by recalling basic notions from coalgebraic modaidpgnd fixing notation. For more information
and background on coalgebraic modal logic, we refer to [12].

For a seiX, we defineProp(X) to be the set of propositional formulas over Formally,Prop(X) is
generated by the grammatrop(X) > ¢ ::= xe X | T |—=¢ | p A .

A modal signature\ is a collection of modalities with associated arities. lis fpaper, we will only
consider unary modalities. For a $étwe denote by\(X) the set of expressions(X) = {Ox | & € A}
The setZ (A, Ry) of A-modal formulas oveA and a seB, of atomic propositions is given by:

FNP)2¢p =peR|T|-9[prd|[Cp CeAN

LetT: Set — Set be a functor. AT -coalgebraic semantiasf .% (/\,Py) is given by associating with
each<® € A a predicate liftingh : 2 = 20T, where2 denotes the contravariant powerset functor. A
T-model(X,y,V) then consists of a carrier skt a T-coalgebray: X — TX, and a valuatiol : Py —
Z(X) that defines truth sets of atomic propositiong ps=V(p). The truth sets of complex formulas
is defined inductively as usual with the modal case given[¥yp] = y1(Ax ([¢]))-

A modal logic.Z = (A, Ax,Fr,Ru) consists of a modal signaturg a collection of rank-1 axioms
Ax C Prop(A(Prop(Py))), a collection FIC .7 (A, Py) of frame conditions, and a collection of inference
rules RuC .% (A, Py) x % (\,Py) which contains theongruence rulefrom ¢ < g infer &¢ < O for
any modalityo € A.

Given a modal logicZ = (A, Ax,Fr,Ru), the set of.Z-derivable formulas is the smallest subset
of .#(\,Py) that contains AxJ Fr, all propositional tautologies, is closed under moduseps, uni-
form substitution and under applications of substitutiosténces of rules from Ru. For a formula
¢ € Z(N\,P) we writet-¢ ¢ if ¢ is Z-derivable. Furthermore is .Z-consistentf t/» —¢ and a
finite set® C .7 (A, Py) is -Z-consistent if the formulg\ @ is £-consistent.

Next, we recall the followingpne-step notionfom the theory of coalgebraic logic. Ltbe a set.

e Aformula ¢ € Prop(A(Z(X))) is one-stepZ-derivable denoted-L, ¢, if ¢ is propositionally
entailed by the setyt | 7: P — 2(X), € Ax}.

e Aset®d C Prop(A(Z(X))) is calledone-stepZ’-consistentf there are no formulags, ..., ¢, € ®
such that, 1A A dn— L.

e Let T be aSet-functor and assume a predicate lifting is given for each® € A. For a formula
¢ € Prop(A(Z(X))) theone-step semantidg], C T X is defined by putting©(U)], = A (U)
and by inductively extending this definition to Boolean camaltions of boxed formulas.

e For aset® C Prop(A(#(X))) of formulas, we lef[®], = Nsco[@],, and we say tha® is one-
step satisfiabléf [®]), # 0.



92 Weak Completeness of Coalgebraic Dynamic Logics

e ¢ is calledone-step sound for any one-step derivable formulg € Prop(A(Z2(X))) we have
[#]l, =TX, i.e., if any such formula is one-step valid

e 7 is calledone-step completé for every finite setX and every one-step consistent getC
Prop(A(Z(X))) is one-step satisfiable.

2.2 Dynamic syntax and semantics

In earlier work [7], we introduced the notion of a coalgebrdinamic logic for programs built from
Kleisli composition, pointwise operations and tests. Heeeextend this notion to also include iteration
(Kleene star).

Throughout, we fix a countable d&f of atomic propositions, a countable #etof atomic actions,
and a signatur& (of pointwise operations such asn PDL). The set# (Py, Ag,Z) of dynamic formulas
and the seA = A(Py, A, Z) of complex actionsre defined by mutual induction:

T (Po,A0,Z)2¢ 1= peR|L[-¢|dnd][(a)¢
A(Py,Ap,Z) >0 = aeAg|a;alo(ay,...,on) | a*|¢?

whereg € Z is n-ary.

Dynamic formulas are interpreted in dynamic structurescivisionsist of & -coalgebraic semantics
with additional structure. Operation symbase X will be interpreted by pointwise defined opera-
tions on(T X)X induced by natural operatiors: T" = T. More precisely, ifo: T" = T is a natural
transformation, thewsl : ((TX)*)" — (T X)X is defined byo (fy,. .., fn)(X) = ox (f1(X),..., fa(X)). A
natural transformatio®T = T (when viewingZ as aSet-functor) corresponds to a collection of natural
operationso: T" = T, one for eaclu € Z.

In order to define composition and tests of actions/progtganses,T must be a monadT, i, n)
such that action composition amounts to Kleisli composifior T. In order to define iteration of pro-
grams, we need to assume that the monad has the followingnyop

Definition 2.1 (Left-quantalic monad) A monad(T, u,n) is calledleft-quantalicif for all setsX, T X
can be equipped with a sup-lattice structure (i.e., a compidempotent, join semilattice). We denote
the empty join inT X by L tx. We also require that when this join is lifted pointwise te tleisli Hom-
sets.Z¢(T)(X, X), then Kleisli-composition left-distributes over joins:

vig: X—>TXiel: fx\/g=\/fxg. <
i i

Itis well known that Eilenberg-Moore algebras of the poweeérsonad? are essentially sup-lattices,
and that relation composition left-distributes over usiaf relations, hence? is left-quantalic. We
observe that one way of showing thiais left-quantalic is to show that there is a morphism of manad
: Z=T.

Lemma 2.2 Let (T,u,n) be a monad. If there is a monad morphism % = T, then(T,u,n) is
left-quantalic.

Proof. A monad morphisnt: & = T induces a functo&.# (T) — &.#(<?) by pre-composition.
It follows, in particular, that the fre@-algebra is mapped to a sup-lattiCEX, ux o Trx). We extend
this sup-lattice structure o X pointwise to a sup-lattice structure o?(T)(X,X), that is, for all
{gi[iel} C2UT)(X,X),

(V@) = px(trx({ai(x) [ €1})).
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Kleisli-composition distributes over this-induced join sinceux andT f preserve it, for all functions
f: X =Y, due to naturality of, and these maps beifigalgebra morphisms. QED

Note that any natural transformation &2 = T yields a natural transformation= & = T, where
1= 2 picks out the empty set, such thais pointed as defined in [7].

Example 2.3 The three monads of particular interest to us were describgd]: The powerset monad
&, the monotone neighbourhood monad, the neighbourhood monad”. These are all left-quantalic.
For example, the transpose of the Kripke bbx 11 : X — . X defined byx(U)={V C X |U CV}

is @ monad morphism. The join o' X induced byd is intersection of neighbourhood collections.
Dually, the transpose of the Kripke diamofg (U) = {V C X |U NV # 0} is also a monad morphism
& = ., and its induced join is unions of neighbourhood collection

The generalisation of iteration for PDL-programs and Glmnga is iterated Kleisli composition.

Given f: X — T X, we define for alh < w:
fl0 = py, finl — f £ fr="1\/ " 1)
n<w

Definition 2.4 (Dynamic semantics)Let T = (T,n,u) be a left-quantalic monad, ar@¥: 2T = T a
naturalZ-algebra. A(Py, Ao, 8)-dynamicT-model?t = (X, y,A,V) consists of a seX, an interpretation
of atomic actiongp: Ag — (T X)X, a unary predicate lifting : 2 = 20T whose transposg: T = .4
is a monad morphism, and a valuatn Py — 22(X). We define the truth sét]]™ of dynamic formulas
and the semantigg: A — (T X)X of complex actions ift by mutual induction:

[PI” =V(p), [¢A@l™=[o]" N [W]™, [-¢]™ =X\[$]™,
[{ar)g]™ = (Y(@) Fo ) ([¢]™),

ya(ay,...,on) = ox(y(ai),...,v(an)) whereg € Z is n-ary,
y(a;B) = y(a)*xy(B) (Kleisli composition)
y(a®) = y(a)* (Kleisli iteration),
Y($?)(x) = nx(x)if xe [¢]™, Ltx otherwise

We say thatht validates a formulap if [¢]™ = X. A coalgebray: X — (TX)A is standardif it is
generated by somg: Ag — (TX)X andV : Py — 2(X) as above, and we will also refer (X,y,A,V)
as af-dynamicT-model. <

Recall that PDL can be axiomatised using the box or usingidmaahd, but the two axiomatisations
differ. For example, the axioms for tests depend on whichatitydis used. In the general setting we
need to know whether a predicate lifting corresponds to ado@diamond.

Definition 2.5 (Diamond-like, Box-like) Let A: 2 = 20T be a predicate lifting for a left-quantalic
monadT. We say that

e A is diamond-likeif for all setsX, allU C X,and all{tj |ie 1} CTX:

\VtieaxU) iff Jiel:teaxU).

iel
e A is box-likeif for all setsX, allU C X,and all{tj |i €1} C TX:

\VteaxU) iff  Viel:teAkU).
iel <
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Remark 2.6 Note thatA is diamond-like iffAx(U) is a complete filter of the semilattice TX for all
U C X. One also easily verifies thatis diamond-like iff its Boolean dual is box-like. It is easysee
that if A is diamond-like then it is also diamond-like according te tald” definition in [7], similarly for
box-like. However, it is no longer the case that every pradidifting is either box-like or diamond-like,
e.g., forT=2,Ax(U) ={VCX|0+#V CU}is neither.

Example 2.7 It can easily be verified that the Kripke diamond (box) is edieliamond-like (box-like)
for &2. Taking T= .#, and union as join on#Z X (i.e., the join induced b$, cf. Example 2.3), then the
monotonic neighbourhood modality, (U) = {N € .#X |U € N} is diamond-like, but taking intersection
as the join on#X thenA is box-like. Similarly,A is diamond-like when viewed as a neighbourhood
modality for.4"-coalgebras with union as join. Note that this shows thatrhad-likeness does not
imply monotonicity. We only have Afis diamond-like, theid : T = .4” is monotone.

We will use the following crucial lemma about the Kleisli cposition and predicate liftings.

Lemma 2.8 LetA: 2= 20T be a predicate lifting whose transpoZ;e T = 4 isamonad morphism.
Forall f,g: X — TX, all xe X and allU C X, we have

(f*g)(x) € (V) <= f(x) € (g (Ax(V)).
Proof. We have:
(fxg)(x) € AxU) iff  ux(Tg(f(x)) € Ax(U)
(def.ofA) iff U e Ax(ux(Tg(f(x)))

(A monad morph.) iff U e s (JV;\X(;\TX(Tg( (X)))))
(def. of Ny iff Ny (U) € A Ax (Arx(TQ(F(¥))))
(def.of.#) iff  Ax*(nax)(U)) € Arx(To(F(X)))

(def.ofn) iff {teTX|U eAx(t)} € Arx(To(f(X)))
(def.ofA) iff {teTX|teAx(U)}€Ars(Ta(f(X))
(naturality ofA)  iff  {t € TX|t € Ax(U)} € 4 g(Ax(f(X)))
(def.of #) iff g l(Ax(U)) € Ax(f(X))
iff  f(x) € Ax(g7(Ax(U))) QED

2.3 Coalgebraic dynamic logic

Our notion of a coalgebraic dynamic logic relates to coalgiebmodal logic in the same way that PDL
relates to the basic modal lodic. In the remainder of the paper, we assume that:
T = (T,u,n) is a left-quantalic monad with joify: ZTX — TX,

e A: 2= 20T is a diamond-like with respect tfrl X,\/), monotonic predicate lifting whose
transposel : T = .4 is a monad morphism,

e 3 is a signature and for eachary g € Z there is a natural operatiom: T" = T and a natural
operationy: 4" = _4# suchthatl oo = x oA, We denote by the collection{o | g € X}.

Using the last item above, we showed in [7, section 4] how $o@iate to each operation symhmk X
a rank-1 axiom{a(ay,...,an))p <> ¢(X,01,...,0n,p). Briefly stated, we use that g: 4" = 4
corresponds (via the Yoneda lemma) to an elemgeof the free Boolean algebrat’(n- 2(2)) gener-
ated byn- 2(2). By assigning a rank-1 formula to each of the generators, ht@m a rank-1 formula
#(X,a1,...,an, p) for eachx. For example, the PDL axiorto U B)p «» (a)pV (B)p is of this kind.
Our completeness result will be restricted to positive apens.
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Definition 2.9 (Positive natural operations) We call x: .4#" = _#" a positive operationf Y can be
constructed using onlyt andV in A4 (n-2(2)). If 0: T"= T andx: 4" = .4 are such thad o0 =

X o A", then we callo positive if x is positive. The axioms for positive pointwise operatiohthe form
X = SA p are obtained by extending Definition 14 from [7] with a cased@njunction:

¢(S/\bvalv"‘7an7p):¢(37al7"'7al’17p)/\¢(bﬂala"-7an7p)' d

Example 2.10 Positive natural operations o¥? include union, but complement and intersection are
not natural on&?. Positive natural operations onZ include union and intersection, but not the natural
operation dual.

Definition 2.11 (Dynamic logic) Let %, = ({<},Ax,0,Ru) be a modal logic over the basic modal
languageZ ({<}, Py). We define = {(a) | a € A} and let Axa = (JqeaAXa Where Ax, is the set of
rank-1 axioms over the labelled modal languagéPy, Ao, %) obtained by substitutingor) for < in all
the axioms in Ax. We define Rusimilarly as all labelled instances of rules in Ru.
The 6-dynamic logicover.%, is the modal logicZ = Z(8,;,*,?) = (A,AX',Fr,RU) where
AX" = AxaU{(g(aq,...,on))p<+> ¢(X,01,...,0n0,p) | O € Z,0i € A}
F = {(a;:B)pe (a)(B)p|a,BEAPERIU
{(a")p«< pv{a){a*)p|a € AjU
{W2p< (WAp) [WeF(R,Ao2)}

RU = RuAU{ ({@Oyve—y \aeA} <
()¢ =

Proposition 2.12 If %, is sound wrt to the T-coalgebraic semantics then héynamic logic.Z is
sound wrt to the class of alb-dynamicT-models. In other words, for alp € .7 (Py,Ao,%) and all
6-dynamicT-modelst = (X, y,A,V) we have

Fe ¢ impliesthat 91 validatesg.

Proof. In [7], we showed soundness of the axioms for pointwise djpers, sequential composition and
tests with respect t8-dynamicT-models (without iteration). Soundness of the star axionoidifficult

to check. Soundness of the star rule can be proven as folBugposent = (X, y,A,V) is aB-dynamic
T-model such thai)t validates the formulda ) v ¢ — . For any statex € X such thak = (a*)¢ we
have — by standardness pf— that y(a)*(x) € Ax([¢]). This implies\/; y(a)ll(x) € Ax([¢]) and,
by diamond-likeness of, there is aj > 0 such thaty(a)lil(x) € Ax([[¢]). Therefore, to show thapt
validates(a*)¢ — , it suffices to show that for afjl > 0 we haveJ; C [y] where

Uj = {xe X | y(a)l (x) € Ax([9])}-

We prove this by induction. For= 0 the claim holds trivially as by assumption the premiss efdtar
rule is valid and thug¢] C [@]. Consider now som¢=i+ 1. Then we have

Uir = {xeX|¥(@)"(x) e (9]}

= {xeX|ya)*(a)"(x) € Ax([9])}
R {xe X | Y(a)(x) € Ax(Ui)}
(a)

€ xeX|Ya)(x) e Ay}
[a)y] < [y] (last inclusion holds by validity of rule premiss)

QED
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3 Weak Completeness

In this section, we will show that if the base logi¢; is one-step complete with respect to the
coalgebraic semantics given By and 8 consists of positive operations, then the dynamic logfic=
Z(0,;,*,?) is (weakly) complete with respect to the class of@lynamicT-models, i.e., every?-
consistent formula is satisfiable in@xdynamic T-model. As in the completeness proof for PDL, a
satisfying model for a formulas will essentially be obtained from a filtration of the canaiimodel
through a suitable closure §fy}.

A setd C .7 (P, Ao, Z) of dynamic formulas igFischer-Ladner) closed it is closed under subfor-
mulas, closed under single negation, that i} i - € ® theny € ®, and if ¢ € ® is not a negation,

then—¢ € @, and satisfies the following closure conditions:
1. If (a;B)¢ € dthen(a)(B)¢ € &.
2. For all 1-step axiomséa(ay,...,an))p <> ¢ (X,01,...,0n, P), if (a(Q1,...,an))YP € @ then also
¢ (X,01,...,00, ) € P.
3. If (Y?)p € DthenY N ¢ € D.
4. If (a*)¢ € dthen(a)(a*)¢ and(a)¢ € &.

Given a dynamic formulg, we denote byCl(y) the least set of formulas that is closed and contains
Y. A standard argument shows tI@i( ) is finite.

From now on we fix a finite, closed sét (which may be thought of a€l(y) for somey). An

Z-atom over® is a maximally.Z-consistent subset @b, and we denote b$ the set of alLZ-atoms
over®. For¢ € #(Py,As,Z) we putd = {A eS| ¢ € A}
Note that, in particular, for each ¢ ® we haved = 0. A maximally #-consistent set (MCS} is a
maximally Z’-consistent subset oF (P, Ag,Z). Clearly, for each MCS we have=N ® is an.Z-atom.
Any subset ofS can be characterised by a propositional combination of Gitemin®. It will be useful
to have a notation for these characteristic formulas at.hand

Definition 3.1 (Characteristic formula) ForU C S we define the characteristic formujg of U by

=V Aa

AcU
where for anyA € S A A is the conjunction of the elements &f <

We will use the following fact that allows to lift one-steprapleteness of the base logic 6.

Lemma 3.2 If .% is one-step complete for T thef is one-step complete forT

The proof of this lemma is analogous to the proof of the cgwading statement in [6]. The main
difference being that instead of arguing via MCSs one haséoatioms. Note that only the axioms for
pointwise operations have influence on one-step propedsthe ones for ; andare not rank-1.

3.1 Strongly coherent models

As in the finitary completeness proof of PDL [11] and the fimitedel construction in [18], we need a
coalgebra structure on the $0f all .Z-atoms overd that satisfies a certain coherence condition which
ensures that a truth lemma can be proved.
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Definition 3.3 (Coherent structure) A coalgebray: S— (TS is coherentif for all ' € Sand all
(yped, V) eAs(d) iff (a)perl. <

Lemma 3.4 (Truth lemma) Lety: S— (T 9" be a coherent structure map and define a valuation V
Py — Z(9) for propositional variables g Py by putting (p) = p. For eachll € S and$ € ® we have

(Sy,V),l=¢ iff perl.

The lemma follows from a standard induction argument on thetire of the formula - the base case
is a immediate consequence of the definition of the valuatiminduction step for the modal operators
follows from coherence.

In order to prove coherence for iteration programis we need the following stronger form of co-
herence, which is inspired by the completeness proof offitealGame Logic in [14].

Definition 3.5 (Strongly coherent structure) We say that: S— (T 9” is strongly coherent foo € A
ifforall T eSandallu CS y(a)(l) eAsU) iff (a)éy AT is.Z-consistent. <

In the remainder of this subsection, we prove the followirgtence result.

Proposition 3.6 If %, is one-step complete for T, then there existg & — (TS” which is strongly
coherent for alla € A.

Let (—)*: Prop(A(Z(S))) — Prop(A(Prop(®))) be the substitution map induced by taklng= &,
forallU € Z(S). Conversely, lef—)s: Prop(A(Prop(®))) — Prop(A(Z(S))) be the substitution map
induced by takingl's = Sand for ally € Prop(®), ys={A € S|Atp_ Y}.

Lemma 3.7 (Derivability) For all ¢ € Prop(A(Prop(®))),
1. FL ¢s implies g (¢s) .
2. by (99 © 9.

Proof. Claim 1:For all ¢y € Prop(A(2(9))), L, ¢ implies that- o /%
Itis clear that Item 1 follows from Claim 1 - let us now provea®h 1. Suppose thatl, ¢, ie., assume
that ¢ is one-stepZ-derivable. By the definition of one-step derivability,sfmeans that the s¢x o |
X € Ax,0 : P — 2(S)} propositionally entailsp. This implies thaty* is a propositional consequence
of the setW = {xo* | x € Ax,0 : P — 2(S}. Any formula xo* € W can be written ag(t with
T: P — Prop(®) defined ag(p) = &4(p) - in other words, all elements ¥ are substitution instances
of Z-axioms, /¢ is a propositional consequenceWfand hence, a¥ is closed under propositional
reasoning and uniform substitution, we get * as required.

It remains to prove item 2. We prove that for élie Prop(®),

F2 ¢ < (9 ()

Item 2 then follows by applying the congruence rule and psdjmmal logic. For (2), it is easy to see
that for all ¢ € Prop(®), Fp (¢s)! — ¢ and hence-» (¢s)* — ¢. For the other implication, suppose
towards a contradiction that A —(¢s)* is Z-consistent. Then there is a maximali§-consistent set
such thatp, —(¢s)* € =. TakeA := =N ®. We have

forall ¢ € Prop(®): ArpLy or AbpL— (3)
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The proof is by induction ony. The base case wherg € @ is trivial. If ¢ = —¢/, then by LH.
AbpL g or Ap. —¢/ and it follows thatA -p — or AtpL . If Y = Yy A Y, then by |.H. we have:

(A |—p|_ (.,U]_ or A |—p|_ —|l‘Ul) and (A |—p|_ Lllz or A |—p|_ —|(.,Uz).

Considering all four combinations yieldst-p| 41 A o or Abp =(Wi A Uh).

From (3) andg € =, we obtain thath -p| ¢. On the other hand, from(¢s)* € = it follows that
A e (9s)?, and hence, becausgs)’ = \/{AA| A€ SAp. ¢}, we haved i/p ¢. Thus we have a
contradiction, and we conclude thiai, —(¢s)? is .Z-inconsistent which proves thaty ¢ — (¢s)*. QED

Lemma 3.8 (Existence lemma)Assume thatZ,, is one-step complete for T. Foralle Aand alll € S
there isaf r € T(S) such that for all UC S,

1. IfM g (a)éy then b r € Ag(U).
2. fT kg —=(a)éy thenr € Ag(U).
3. IfT e ()& and(a)éy AT is L-consistent, thenytr € As(U).
It follows that for alla € Aand alll” € S there is agr € T(S) such that for all UC S,

tar €As(U) iff [ A(a)éy is Z-consistent 4

Proof. We spell out the details of the proof for the case thad a diamond-like lifting. For the case that
A is box-like the roles of the positive and negative formulaghe form (a)¢ and—(a)¢ in the proof
have to be switched. We now turn to the proof of the lemma.

Suppose for a contradiction that thereniss A andl" € Ssuch that nd € T Ssatisfies conditions 1
and 2 of the lemma. Consider the formula

¢(M) =\/{{a)éx | X C ST FpL~(a)éx} Vv \/{~(a)éx | X CST FpL (a)éx}

and note that
¢(Ms=\/{(a)X | XS ST kpL =(a)éx} vV \/{=(a)X | X C ST tp (a)éx}

Then by our assumption am andl” we have[[¢ (MN)s]), = (T S”. Recall from Lemma 3.2 that one-step
completeness af/,, implies one-step completeness.&f wrt TA. Therefore we obtain that}g ¢(MNs
and thus, by Lemma 3.7, thety ¢ (I'). This yields a contradiction with our assumption thais .-
consistent. For eadh € Sanda € Awe fix an elemeng, € T Ssatisfying conditions 1 and 2.

Consider now™ € Sand letU C Sbe such thaf I/, (a)éy and(a)éy AT is Z-consistent. As
(a)éu AT is Z-consistent the sdt(a)éy FU{—(a)éx | T FpL —(a)éx } is Z-consistent and we can eas-
ily show - using Lemma 3.7 - that the sgio)U } U{—(a)X | T FpL —(a)éx} is one-stepZ-consistent.
Therefore by one-step completeness#tthere must be afr y € (TS such that

fru E A (@)U U{=(a)X | T Fpu~(a)éx})
or, equivalently,
fru(a) € (({As(U)}U{S\As(X) | T FpL—(a)éx}).
Using the fact thaf is diamond-like we can now easily verify that for edcle Sanda € A the join

tar :=Vuez fru(a)Vvsyrwith=={U CX|T /¢ (a)éy and(a)éy AT is Z-consisten} satisfies all
conditions of the lemma. QED

Proposition 3.6 now follows immediately from Lemma 3.8 biitg y(a)(I") :=tq r for all a € Ao.
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3.2 Standard, coherent models

We saw in the previous subsection that one-step completemssires the existence of a strongly coherent
structure. However, this structure is not necessarilydstech We now show that from a strongly coherent
structure, we can obtain a standard model which satisfiassilie@ coherence condition by extending the
strongly structure inductively from atomic actions to altians a € A and proving that the resulting
structure maygy: S— (T 9A is coherent.

We start by defining &: S— (T 9 which is almost standard. For technical reasons, we dgfore
tests from® in terms of membership. Once we prove that truth is membe tl@mma 3.16), it follows
thaty is standard. This way we avoid a mutual induction argument.

Definition 3.9 (Coherent dynamic structure) Let yp: S— (TS” be the strongly coherent structure
that exists by Proposition 3.6. Defige S— (T 94 inductively as follows:

y(a) = w(a) for a € Ag
ns(fy if¢er and ¢
yeA(r) = ¢ ns(h) #redfxyy) and ¢ ¢
1lTs otherwise.
ylo(ay,...,an)(T) = os(y(ar)(T),....¥(an)(F)))
ya®)(F) = yla)"(T)
whereV is the canonical valuatiovi(p) = {A € S| pe A}. Q

The rest of the section will be dedicated to proving thad in fact coherent. This can be done largely
similarly to what we did in our previous work [6] for the ite¢i@n-free case. The main difference is ob-
viously the presence of theoperator. Here a crucial role is played by the following mimme operator
on Z(S) that allows us to formalise a logic-induced notion of redulits.

Definition 3.10 (Fg) ForB € AandX C Swe define an operator

Ff: 28 — 28
Y — {AeS|AA(B)& consistenfUX

It is easy to see that this is a monotone operator, its legstifikwill be denoted b}ZE. <
Lemma 3.11 For all A € S and all XC S we haveA A <B>EZ§ is consistent = Ae Zi-j.

Proof. This is an immediate consequence of the fact #jais a fixpoint ofF5'. QED
The following technical lemma is required for the inductpw@of of the first coherence Lemma 3.14.
Lemma 3.12 Let 3 € A be an action such that for alll € S and all XC S we have

' A{B)&x consistent =  y(I') € Ag(X).

Thenr™ € Zj impliesy(B*)(") € As(X).
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Proof. This proof is using our assumption thais diamond-like. Recall first that by definition we have
Y(B*) = y(B)*, thus we need to show thgtB)*(I') € As(X). LetY ={A € S| y(B)*(A) € As(X)}. In
order to prove our claim it suffices to show t@(Y) CY, ie, thatY is a prefixed point oF[;( (asZE‘ is
the smallest such prefixed point andz%sg Y is equivalent to the claim of the lemma). Ue& Fﬁ‘ (Y).
We need to show thdt € Y. In casel € X we haveyP(") = n(I') € As($) because)(I") € As($)

is equivalent ta” € X asA is a monad morphism. Suppose now that (3)¢&y is consistent. By our
assumption o8 this implies that

Y(B)(T) € As(Y) = As({A [ V(B)*(B) € As(X)})-

Using Lemma 2.8 this implies
(Y(B)*¥(B)")(I) € As(X)
and

Y(B)=Y(B)* (T \/ v(B)")( \/ y(B) (T

where the last equality follows from the fact that we are wugkmth a monadl whose Kleisli compo-
sition left-distributes over joins. A& is assumed to be diamond-like, it follows that there jssal such
thaty(B) (") € As(X) and thud™ € Y as required. QED

We are now ready to prove two crucial coherence lemmas. Asrgvalimately only interested in the
truth of formulas ind® we can confine ourselves to what we aalevantactions:

Definition 3.13 (Relevant test, relevant action)A test¢? is calledrelevantif ¢ € ®. An actiona € A
is calledrelevantif it only contains relevant tests. <

The following lemma proves the first half of the announcedecehce.
Lemma 3.14 For all relevant actionsx € A,T" € S and all XC S we have
I A{a)éx consistent = y(a)(I) € Ag(X).

Proof. By induction ona. The base case holds trivially §gs strongly coherent for all atomic actions.
Leta = ¢? for somep € ® (here we can assungec ® as we only consider relevant actions) and suppose
I A (@?)éx is consistent for som¥ C S. Then, ask is diamond-like, we havé A ¢ A &x is consistent.
This implies¢ € " andl” € X. As ¢ € I, we have by the definition gf thaty(¢?)(I") = ns(I") and thus
I e X impliesy(¢?)(I") € As(X) as required.

For ann-ary pointwise operatioo € %, we want to show that

[ A(O(0a,...,0n))Ex consistent = aS(Y(a1)(I),...,Y(an)(N)) € As(X)

Using theg-axiom and thad o 0 = X oAM, this is equivalent to

o~

FCAQ(X,01,...,0n,Ex) consistent = XeXS(X(V(al)(F)),...,)\(V(an)(r))) 5)

and (5) can be proved by induction grin a manner very similar to the one used in the proof of Lemma
27 in [6].

Supposeda is of the forma = Po; B1 and supposé A (fo; B1)éu is consistent for some C S
Using the compositionality axiom we have, (fo; B1)éu < (Bo)(B1)éu. Thereforel” A (Bo)(B1)éu is



H.H. Hansen & C. Kupke 101

consistent. This implies in turn th&tA (Bo)(T A (B1)éu) is consistent and, dsy T <> \/acs \A by

Lemma 3.7, we obtain thdt A (Bo) ((VaesAB) A (B1)éu) and thusl” A (Bo) (Vaes A(AA (B1)éu)) is
consistent. Clearly the latter implies tHat\ (o) (\/acy A(AA (B1)&u)) is consistent folf := {A € S|
AN (B1)éu consistent. Therefore we also haveA (Bo) &y is consistent. Now we apply the induction
hypothesis to get

V(Bo) (M) € As(Y) = As({A € S| AA (B1) &y consistent) C As({A € S| (B1)(A) € As(U)})

and by Lemma 2.8 we conclude thao; B1) (") = V(Bo) * V(B1) (") € As(U).
Suppose nover = 3*. It follows from Lemma 3.12 and the |.H. ghthatl" € ZI)B( impliesy(B*)(I) €

As(X). Therefore it suffices to prove thBtA (3*)&x is consistent implie§ € Zé.
Suppose that A (8*)&x is consistent and recall theinduction rule:
BV -y
(B =Y

Our claim is that

= (B)&zx v &x — &2 (+)

Before we prove ) let us see why it suffices to complete the proof: -H) (holds, we can apply the
induction rule in order to obtain

- (B)Ex — &zx. (6)

By assumption we have A (3*)&x. Together with (6) this implies thdt A ‘EZE are consistent and thus,
by Lemma 3.11, thaft € ZE as required.

Proof of (+): Suppose for a contradiction that) does not hold. This implies th@(mfzg VEx) A
ﬁfz; is consistent. We distinguish two cases.
Case 1<B>EZ§ A ﬁfz; is consistent. Then there is a maximal consistenEseich thal(B)sz , ﬁfzg €=,
Let A:==N®. By definition and (3) we know thah - ﬂfzé and thusA € S\ Zl)3<' Furthermore
AN <B>EZ§ is consistent. The latter implies, again by Lemma 3.11,M1sat2§ which is a contradiction
and we conclude the(ﬁﬁzg A ﬁfzg cannot be consistent.
Case 2&x A wfzg is consistent. Again - using a similar argument to the previcase - this implies that

there is an atomh € S\ ZZ;( such thatA A &x is consistent. But the latter entails that X C Zﬁ( which
yields an obvious contradiction. QED

Lemma 3.15 For all (a)¢ € d and alll” € S we have

ya)M)eAs(p) = (a)perl.

Proof. Again this is proven by induction oa. Let a = ¢? and supposg(?)(I") € As(¢) for some
(Y?)¢ € ®. As A is diamond-like, we havg(?)(I") # L and thus, by the definition df, we have
Y el andns(l) € As(d). The latter implied” € ¢, ie,¢ €I'. Bothy € I and¢ € I imply, using the
axiomt g (Y?)¢ <~ YA @, that(P?)¢ €T as required.

Let a be of the forma = B* and letl" € Sbe such tha‘;?( )(M) € As(@). Theny(a) =y(B)* and
thus we have/(B)* (") € As($). This means thay/; y(B)U(T) € As(). By diamond-likeness of this
is equivalent to the existence of ofe> 0 such thaf(B)l1(I") € As().
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In casej = 0 we can easily see thate @, ie, ¢ € I' which implies - using the axion¥3)(3*)¢ Vv

¢) < (B*)¢ -that(B")¢p €T
Suppose now = m+1, ie, y(B)™ () e As(¢). By Lemma 2.8 this implies that

V(B)(T) € As({A | V(B)™ (D) € As(9)}).

—

By I.H. onmwe have{A | y(B)™(A) € A($)} C (B*)¢ and hence, by monotonicity &f, that

Y(B)(T) € As((B*)9).

By I.H. on 8 this implies that3) (3*)¢ € I and thus - using again the same axiom as in the base case -
that(B*)¢ €T. QED

Lemma 3.16 (Dynamic truth lemma) The coalgebra structurg : S— (TS from Def. 3.9 together
with the valuation V: P — 2(S) given by (p) = p for p € P, forms a6-dynamicT-model such that
for all ¢ € ® we have[¢p] = ¢.

Proof. It follows from Lemma 3.14 and Lemma 3.15 that for @) ¢ € ® we have
(g el iff  yla)(l)eAs(d).

Therefore it follows by Lemma 3.4 th@p] = ¢ for all ¢ € ® as required. In particular this shows that
the resulting model i§-dynamic, since for all relevant tesp® we havep € I' iff I € [¢]. QED

Theorem 3.17 If %, = ({<¢},Ax,0,Ru) is one-step complete with respect to the T-coalgebraic se-
mantics given by\, and 08 consists of positive operations, then the dynamic lagie= .£(6,;,*,?) is
(weakly) complete with respect to the class oftatlynamicT-models.

Proof. Assume thaty is an.Z-consistent formula. Le$ be the set ofZ’-atoms overd = Cl(y) and
lety: S— (TS be defined as in Definition 3.9 aiithe valuation given by (p) = p for p € Py. By
Lemma 3.16 M = (S y,A,V) is a 8-dynamicT-model. Sincey is .Z-consistent there is af’-atom
A € Sthat containgp and hence by the Dynamic Truth Lemma 3.846is true atA in M. QED

As corollaries to our main theorem we obtain completenasa fmmber of concrete dynamic modal
logics.

Corollary 3.18 (i) We recover the classic result that PDL is complete witbpert toU-dynamic &?-
models from the fact that the diamond version of the modat IKgs one-step complete with respect
to & (cf. [17]), U is a positive natural operation o2, and the Kripke diamondx (U) = {V € &X |

V NU # 0} is monotonic and its transpose is a monad morphism. (i) igakis base logicZ, the
monotonic modal logid1 with semantics given by the usual monotonic neighbourhoedigate lifting
Ax(U) ={N e .#X |U € N} with rank-1 axiomatisatiolx = { (pA Q) — <p}, itis well known that
% Is one-step complete fov7, see also [6]. SinceJ is a positive natural operation o7, we get
that dual-free GL is complete with respectitedynamic.#-models. (iii) Similarly, dual-free GL with
intersection is complete with respectuion-dynamic.#-models.
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4 Conclusion

There are several ways in which to continue our researcitlyive will look for other, new examples
that fit into our general coalgebraic framework. A first go@hdidate seems to be the filter monad
Z (cf. [5, 8, 20]). It is easy to see that taking upsets yieldsanad morphisnt: &2 = % and the
induced join on# X is intersection of filters. We note that filters are not clogeder unions (only under
updirected unions), so is not a natural operation a&. Taking.%, to be the diamond version of
modal logicK, andA: 2 = 20.% to beAx(U) = {F € #X | X\U ¢ F} (i.e., the dual of the usual
neigbourhood modality), the¥,, is complete with respect to the class of &tcoalgebras, since any
Kripke model(X,p: X — #X,V) is pointwise equivalent with th&#-model (X,Top: X — .ZX,V),
hence anyp that can be falsified in a Kripke model can also be falsifiedfilter coalgebra, cf. [2]. We
conjecture that?s, is one-step complete foF andA. From this, a completeness result would follow for
a new PDL-like logic for the filter monad with intersection actions.

Secondly, we will study variations of our coalgebraic fravoek to monads that carry quantitative
information to cover important cases such as probabilestid weighted transition systems. We expect
that we need to switch to a multivalued logic, using for exbnip(1) as truth value object, as in [3].
In general, we would also like to better understand how oogerous logics relate to the endogenous
coalgebraic logics of [3] and the weakest preconditionsiragifrom state-and-effect triangles in, e.g., [8,
9]. One difference is that in [3], the monddis assumed to be commutative. This condition ensures that
the Kleisli category is enriched over Eilenberg-Moore hlgs. This could be an interesting approach
to obtaining a “canonical” algebra of program operationgnethough, Eilenberg-Moore algebras do
not have canonical representations in terms of operatiodseguations. Moreover, one of our main
example monads, the monotonic neighbourhood monad is moneative, but it is still amenable to
our framework.

Finally, our most ambitious aim will be to extend our coalgeb framework to a completeness proof
which will entail completeness of full GL which remains areoproblem [15]. One reason that this is a
difficult problem is that, unlike PDL, full GL is able to exg®fixpoints of arbitrary alternation depth [1].
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The Arity Hierarchy in the Polyadic u-Calculus
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The polyadic u-calculus is a modal fixpoint logic whose formulas define relations of nodes rather
than just sets in labelled transition systems. It can express exactly the polynomial-time computable
and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with
respect to expressive power inside the polyadic u-calculus: for every level of fixpoint alternation,
greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation
argument.

1 Introduction

The modal p-calculus £, is a well-studied logic [14, 4, 5], obtained by adding restricted second-order
quantification in the form of least and greatest fixpoints to a multi-modal logic interpreted over labelled
transition systems. A formula of the modal p-calculus is thus interpreted in a state of such transi-
tion systems which means that such formulas define sets of states in transition systems. For example,
vX.uY{ayX v (b)Y defines the set of all states from which there is a path with labels ‘a’ and ‘b’ that
contains infinitely many occurrences of the symbol ‘a’.

The polyadic p-calculus £} is a much less known extension of the modal p-calculus whose formulas
define relations rather than sets of states. They are interpreted in a tuple of states rather than a single
state, and there are modal operators for each position in this tuple. Thus, one states “the third state has an
‘a’-successors” for instance rather than just “there is an ‘a’-successors.” Combining such simple modal
statements with fixpoint quantifiers yields an expressive logic with interesting applications: the polyadic
p-calculus was first defined by Andersen [2] and used as a logic for defining process equivalences like
bisimilarity [15, 16]. Later it was re-invented by Otto under the name Higher-Dimensional p-Calculus
[19] and shown to capture the complexity class P over bisimulation-invariant class of finite graphs. L.e. a
bisimulation-invariant property of finite graphs can be computed in polynomial time iff it is definable in
L.

There is a natural hierarchy in L7 given by fragments of bounded arity. The polyadic u-calculus
itself can be seen as a fragment of FO+LFP, i.e. First-Order Logic extended with fixpoint quantifiers.
The translation naturally extends the standard translation of modal logic into first-order formulas with
one free variable, seen as the point of reference for the interpretation of the property expressed by the
modal formula. Polyadic formulas get interpreted in tuples of states, hence they can be seen as special
first-order formulas with several free variables. The arity of a polyadic formula is then the minimal
number of free variables needed to express this property in FO+LFP or, equivalently, the length of the
tuples used to interpret the formula.

The aim of this article is to show that the hierarchy formed by fragments of bounded arity, denoted
L},, Lﬁ, ...1s strict. This is not too surprising when taken literally: clearly, any satisfiable but non-valid
formula in .Ellj“ is not equivalent to any formula in Lllj since the former get interpreted in k+1-tuples and
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the latter only in k-tuples. We therefore need to employ a convention that allows different fragments to
be compared with respect to expressive power and still yields a meaningful hierarchy result. We consider
formulas that are interpreted in a single state at the top-level, regardless of their arity. I.e. we show that
for every k > 1 there is a Ll'j” -formula @y, such that there is no .EZ -formula ¢ which yields
T,08,...,9) v iff T,(s,...,5) F Os1
—_——

~——
k times k+1 times

for all labelled transition systems 7~ and all their states s.

Arity hierarchies have been studied before, most notably by Grohe for fixpoint extensions of first-
order logic including FO+LFP [10]. Even though each Lllj can be embedded into FO+LFP, the arity
hierarchy in £} does not follow immediately from the one in FO+LFP. Grohe constructs formulas of arity
k+1 in FO+LFP — they belong to the smaller FO+TC already — and shows that they are not equivalent
to any formulas of arity k in FO+LFP — not even the much larger FO+sPFP. However, these witnessing
formulas are not bisimulation-invariant since they express a relation formed by the transitive closure of a
clique relation and being a clique is clearly not bisimulation-invariant. Hence, these witnessing formulas
are not expressible in £; and therefore the arity hierarchy is not transferred immediately.

It could of course be checked whether the proof used to show the arity hierarchy in FO+LFP could
be adapted to work for L7 as well. It would require the search for a similar witnessing property and the
adaption of the Ehrenfeucht-Fraissé argument to the polyadic u-calculus. Such model comparison games
exist for the modal u-calculus [21] but using them to obtain inexpressibility results has proved to be quite
difficult.

Instead we use a simple diagonalisation argument in order to obtain a strictness result regarding arity
hierarchies. A k-ary formula ¢ can be seen syntactically as a labelled transition system 7, roughly based
on the syntax-tree representation. We can then define a k+1-ary formula that simulates the evaluation of
¢ on 7, and accepts those 7, which are not accepted by ¢ itself. Hence, we need to find a generic way
of dualising the operators in ¢. This is no particular problem, for instance, when one sees a disjunction
then one needs to check both disjuncts, for a conjunction one only needs to check one of them. However,
fixpoint formulas may hold or not because of infinite recursive unfoldings through fixpoint operators.
This needs to be dualised as well, and the only way that we can see to do this is to equip the simulating
formula with a fixpoint structure that is at least as rich as the one of the simulated formula. Consequently,
we obtain an arity hierarchy relative to the alternation hierarchy. This does not happen for extensions of
First-Order Logic since it is known that there is no alternation hierarchy: every FO+LFP formula can be
expressed with a single least fixpoint operator only [12, 23]. The situation for modal logics is different:
more fixpoint alternation generally gives higher expressive power, at least so in the modal u-calculus [6],
and presumably then so in £ as well.

The rest of this paper is organised as follows. In Section 2 we recall the polyadic u-calculus and
necessary tools like fixpoint alternation and model checking games. In Section 3 we prove the hierarchy
results, and in Section 4 we conclude with a discussion on further work.

2 The Polyadic u-Calculus

Labelled Transition Systems. Let Prop={p,q,...} and Act={a,b,...} be two fixed, countably infinite
sets of atomic propositions and action names. A labeled transition system (LTS) over Prop and Act is a
tuple 7~ = (S,—, A, 57) where S is a set of states, — C S x Actx S is the transition relation, A : § — 2P
labels the states with atomic propositions, and s; is some designated starting state. We will write s -1
instead of (s,a,t) € —.
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The Syntax of L,‘f. Let Var = {X,Y,...} be an infinite set of second-order variables. The syntax of the
polyadic modal p-calculus L7 is similar to that of the ordinary modal p-calculus. However, modalities
and propositions are relativised to a natural number pointing at a position in a tuple of states used to
interpret the formula.

A replacement is a k : N — N which acts like the identity function on almost all arguments. We
write N --> N to denote the space of all replacements. Such a replacement is then written as {k(i) <
i1,...,k(im) < i} when iy <... <iy, are all those indices for which we have «(i;) # i;. We will sometimes
allow ourselves to deviate from this and to use some shorter but equally intuitive notation for such
functions. For instance {1 < 2} should denote the swap between 1 and 2, i.e. it abbreviates {2 «— 1,1 « 2}.

For technical convenience, we define the logic directly in positive normal form. Formulas are then
given by the grammar

o == p@I-pA)|X[eVelerg|{a)ip|lalip|uX.o | vX.p| ke

where p € Prop, a € Act, 1 > i € N and « is a replacement. We require that every second-order variable
gets bound by a unique fixpoint quantifier u or v. Then for every formula ¢ there is a function fp, which
maps each second-order variable X occurring in ¢ to its unique binding formula fp,(X) = nX.y.

The set Sub(yp) of subformulas of ¢ is defined as usual, with Sub(uX.¢) = {uX.¢} U Sub(p) for instance.

Later we will use the abbreviation £ — ¢ when ¢ is a literal g(i) or =g(i). This behaves like ordi-
nary implication — note that we have defined the logic in positive normal form and can therefore not
simply introduce implication via negation — for such formulas when seen as £ V ¢ where ell is the usual
complementary literal to £.

The arity of a formula ¢, denoted ar(y) is the largest index i occurring in the operators p(i), {a);, [al;
and {«} in any of its subformulas. The fragment of arity & is L,’j :={¢|ar(p) <k}. Hence, ¢ :=vX.{(a){2 &
1}X has arity 2 and it therefore belongs to all fragments Lﬁ, Lﬁ, etc., because it defines a relation of arity
2 which can also be seen as a relation of higher arity in which the 3rd, 4th, etc. components of its tuples
are simply unrestrained.

The Semantics of £;. Formulas of Lﬁ are interpreted in k-tuples of states of a transition system 7 =

(S,—,A,s7). An interpretation p : Var — 25 “ is neede in order to define this inductively and give a
meaning to formulas with free variables. For each Ll’j—formula ©, [I(p]]z— is a k-ary relation of states in 7,
namely the relation defined by ¢ under the assumption that its free variables are interpreted by p.
PO = {(s1.eens0) | p € Asi)
[=pON) = {(s1.e.mn80) | p & A(s))
X1 = p(x)
Tevyl] = [ell] Uiyl
Teryll] = [el] Nlvl)
[[(a)igo]];r = {(S15.. 80 | At st si—orand (S1,..., Si—150, Sis1s---> k) € [[<p]]Z}
[laliell] = {(s1,....s) | Ve if s;=5 ¢ then (s1,....8io1,8 Sic1,.... 50 € [@]l] )
Xl = [ JIRCS* el iy g SR
vXell] = | JIRSS 11Dy p 2 R)
[kell] = A(Sen)s- - Se) | (51,0 5%) € [l )
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Note that the partial order C makes S* a complete lattice with meets and joins given by () and | J, and the
semantics of fixpoint formulas is then well-defined according to the Knaster-Tarski Theorem [13, 22].

We also write 77, s1,..., Sk Fp ¢ instead of (s1,...,5,) € [[go]];r. If ¢ has no free second-order variables
then we also drop p. In Section 3 we will often consider situations with tuples of the form (s,...,s)
of some length k derivable from the context. We will then simply write 7,5 |= ¢ as a short form for
T,8,....,8 E .

Two formulas ¢,y € L,’j are equivalent, written ¢ = i, if IIgo]]Z = lllp]]z for any 7~ and corresponding
variable interpretation p. Note that two formulas can be equivalent even if they do not belong to the same
arity fragment: if ¢ € £% and y € £ and k # K’ then ¢, ¢ € Ljfa"{k’k'}, i.e. we can interpret the one of
smaller arity as a formula of larger arity that simply does not constrain the additional elements in the
tuples of the relation it defines.

Examples. The standard example of a £-formula, indeed a Lﬁ—formula, is the one defining bisimilar-
ity.
o = vX( \ p() = p@)ACN lalianX) All & 20X
peProp acAct

It is indeed the case that 77, 5,7 = ¢ iff s ~ £, i.e. s and ¢ are bisimilar in 7.

As a second example consider an 7 with an edge relation flight and two atomic propositions warm
and safe. When seeing the nodes of the LTS as cities (which can or cannot be warm and/or safe and are
potentially linked by direct flight connections), then

{3 « 1} A (flight)uX.warm(2) A safe(2) A {flight)1p. A ({3 « 1}e- V [flight], X) A {2 « 3}X

yields all triples (s,¢,u) of cities such that there is a roundtrip from ¢ which only traverses through warm
and safe cities that can be reached from city s in one step — in case someone in s wants to come and
visit — such that the trip can be traversed in both directions. This description of course uses equality
(“roundtrip”) on cities which is not available in the logic. Instead we use bisimilarity in the formula, so
for instance “roundtrip from #” is to be understood as a trip starting in ¢ and ending in a city that cannot
be distinguished from ¢ with the means of bisimilarity.

Fixpoint Alternation. The proof of the arity hierarchy carried out in Section 3 needs a closer look
at the dependencies of fixpoints inside a formula. This phenomenon is well-understood leading to the
notion of alternation hierarchy [9, 18]. We give a brief intoduction to fixpoint alternation that is sufficient
for the purposes of the next section.

Letk>1and p € Lﬁ be fixed. For two variables X,Y € Sub(yp) we write X >, Y if X has a free
occurrence in fp,(¥). We use >, to denote the strict part of its transitive closure. E.g. in

@ :=uX.p)V{bY1(vY.q(1) AvY' .(uZ.Y' Vv {a) 1 Z) A [b],Y)

we have X >, Y >, Y’ >, Z even though there is no free occurrence of X in the fixpoint formula for Z.
Names of variables do not matter but their fixpoint types do. So we abstract this chain of fixpoint
dependencies into a chain u >, v >, v >, u. The alternation type of a formula is a maximal descending
chain of variables (represented by their fixpoint types) such that adjacent types in this chain are different.
The alternation type of ¢ above is therefore just (u,v,u). We then define the alternation hierarchy as
follows: XX, respectively TT¥, consists of all formulas of arity k and alternation type of length at most m

such that the m-th last in this chain is u, respectively v, if it exists. For instance, the formula ¢ above
belongs to X2 and thefore also to X2, and IT2, for all m > 3. It does not belong to IT3.
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Each variable X occuring in ¢ is also given an alternation depth ad,(X). It is the index in a maximal
chain of dependencies X, >, ... >, X; such that adjacent variables have different fixpoint types. E.g. in
the example above we have ad(X) = 3, ad,(Y) = ad,(Y') = 2 and ad,(Z) = 1.

The next observation is easy to see.

Lemma 1. Let ¢ € =X and X € Sub(p) be one of its fixpoint variables. Then the fixpoint type of X is
uniquely determined by ad,(X), namely it is y if m and i are both odd or both even, otherwise it is v.

Model Checking Games. We briefly recall model checking games for the polyadic u-calculus [15].
They are defined in the same style as the model checking games for the modal p-calculus [20] as a game
played between players VERIFIER and REFUTER on the product space of an LTS and a formula. Such
games can be used to reason about the satisfaction of a formula in a structure since both satisfaction and
non-satisfaction are reduced to the existence of winning strategies for one of the players in these model
checking games.

As with the modal p-calculus games, the model checking games for the polyadic u-calculus are
nothing more than parity games. However, they are played using k pebbles in the LTS and one pebble on
the set of subformulas of the input formula. Hence, a configuration is a k+ 1-tuple written sy,..., Sk F ¢
where the s; are states of the underlying LTS 7 = (S,—, 4, s;) and ¢ is a subformula of the underlying
formula ¢.

The rules are as follows.

¢ In a configuration of the form s1,..., s; F ¥ Vi,, player VERIFIER chooses an i € {1,2} and the play
continues with s1,..., st F ;. Intuitively, VERIFIER moves the formula pebble to a disjunct from the
current disjunction.

e Likewise, in a configuration of the form si,..., s F ¥1 AyY,, player REFUTER chooses such an i.
Here, this can be seen as refuter moving the formula pebble.

e In a configuration of the form sy, ..., s; F (@), player VERIFIER chooses a ¢ such that s; —5 ¢ and the
play continues with sy,...,8;_1,%,Si+1,..., 8k F . Intuitively, VERIFIER moves the i-the state pebble
along an outgoing a-transition. The other k — 1 pebbles that are on states remain where they are.
The formula pebble is also moved to the next subformula.

o Likewise, in a configuration of the form s1,..., s¢ F [a];¥, player REFUTER chooses such a 7.

e Inaconfiguration of the form si,..., sk F nX.y or s1,..., s + X such that fp,(X) = nX.¢, the formula
pebble is simply moved to i, i.e. the play continues with s,...,s; F .

A player wins a play if the opponent cannot carry out a move anymore. Moreover, VERIFIER wins a
play that reaches a configuration of the form s1,...,sg F (i) if g € A(s;). If, on the other hand, g ¢ A(s;)
then player RErUTER wins this play. Finally, there are infinite plays, and the winner is determines by the
necessarily unique outermost fixpoint variable (i.e. the largest with respect to >,) that occurs infinitely
often in this play. If its fixpoint type is v, then VERIFIER wins, otherwise it is ¢ and REFUTER wins.

The main advantage of these model checking games is the characterisation of the satisfaction relation
via winning strategies in parity games (which they essentially are).

Proposition 2 ([15]). Player VERIFIER has a winning strategy in the game in T and a closed ¢, starting
in the configuration sy,...,Sk - @ iff 7,81, Sk E ¢.
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3 The Arity Hierarchy

3.1 The Principle Construction

The aim of this section is to show that 13,11’-5/21’--- forms a strict hierarchy with respect to expressive
power. The principles underlying the proof are easily explained: first we associate with each .Ll'j—formula
¢ an LTS 7, with a designated starting state which we also call ¢. Then we construct a closed Lﬁ”—
formula that, when given a 7, reads off what ¢ is from 7, and simulates its evaluation on it, checking
that it does not hold on itself.

We first present the constructions principally, then discuss what results are achieved with the details
of these constructions, and finally optimise the constructions such that the desired hierarchy result is
achieved. We use a singleton Act wich means that we simply write s — ¢ instead of s—= ¢ for the single
action name ‘a’. Likewise, we write <; and O; instead of (a); and [a];.

Construction of 7,. Let k > 1 be fixed and take an arbitrary closed ¢ € .[:/'j. We assume that the set
of propositions underlying ¢ is Prop = {go,q1,42,...}. The construction of 7, is largely based on the
syntax-tree, respectively syntax-DAG of ¢. We have 7, = (Sub(¢),—,4,¢) with transitions given as
follows.

U1 O —Y; for every ¥ ©¥; € Sub(p),® € {A,V} and every i € {1,2}
oY Y for every @y € Sub(p),® € {¢;,0;,k} and every i € {1,...,k}
nX.y—y for every nX.y € Sub(yp) and i € {u, v}
X —y for every X € Sub(y) such that fp,(X) = nX.y

Thus, the graph structure of 7, is indeed almost the one of the syntax-DAG of ¢ except for additional
edges from fixpoint variables to their defining fixpoint formula.

The labelling of the nodes in 7, remains to be defined. Remember that the ultimate goal is to
construct a formula ®**! which simulates the evaluation of ¢ on 7 o- We will use k pebbles in order
to simulate the k pebbles used in ¢, and one additional pebble in order to store the subformula that is
currently in question. Note that the satisfaction of a (closed) formula on an LTS only depends on the
satisfaction of its subformulas. The position of this additional pebble will determine which subformula
is currently evaluated. We therefore need to make the kind of subformula at a node in 7, visible to a
formula that is interpreted over it. This is what the state labels will be used for. Let

Propy :={p7;.p3; 1 1 i<k jeNyU{p", p  ulp?. pP 11 <i<kU{p[" |0<i<m}U{pf |keN->N}.

The labelling in 7, is given as follows. Note that Prop is countably infinite.

p}ti € A(g;(i)) for every positive literal ¢ (i) € Sub(y)
P € Ag (@) for every negative literal —~g ;(i) € Sub(¢p)
p" €AY AY2) for every ¥ Ay € Sub(y)

P’ €AWV Y2) for every 1 V ¢ € Sub(y)

pY € AOW) for every O € Sub(p),1 <i<k

p7 € AOwy) for every O € Sub(p),1 <i<k

PP e Aky) for every k € Sub(¢),k : N --> N
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pfp € AnX.y), AX) for every nX., X € Sub(¢),n € {u,v} with ad,(X) =i

With those labels a formula can see what the subformula at a node is that it is interpreted over, for
instance whether it is a formula with a replacement modality as the principle operator, etc.

The construction of the simulating formulas. Next we construct formulas that simulate a ¢ on its
own LTs representation 7, and check that they do not satisfy themselves. The trick is simple: if ¢ € Lfl
then we use k pebbles to simulate what ¢ would do with its k pebbles, and one additional pebble to check
wich subformula we are currently evaluating. We let this pebble move through the syntax-DAG in a form
that is dual to the semantics of the actual operators in the underlying ¢; for instance in a conjunction we
look for one conjunct, in a disjunction we continue with both disjuncts. We will use several fixpoint
variables to dualise the fixpoint condition similar to the way it is done in the Walukiewcz formulas that
express the winning conditions in parity games [24].
Let m >0 and k > 1 be fixed. We construct a formula ®*+! € £f¢+l as follows.

k
O = VXXt X\ \ PRk 1) = =g(0)
i=1 jeN

k

VAV (ZETTG
i=1 jeN

A prk+1) = O Xy

A pYk+1) = Ok X
k

AN\ pEl+1) 5 i Xy
i=1
k

A\ PR+ T) = OiDk X
i=1

A\ PRKk+1) > KDk X
KEN-->N

m
A N\ PP k+1) = O Xi)
i=1

where n = v if m is odd and 17 = u otherwise.

Remark 1. Of course, ®**! is not a formula strictly speaking because of the potentially infinite con-
junctions in the first two clauses. There is an easy way to fix this: we assume a finite set of atomic
propositions {p,q,...}. Then a finite conjunction obviously suffices and ®*! is indeed a formula. How-
ever, we need to address the issue of choice of atomic propositions in Section 3.2 below anyway. So for
the moment we simply accept the small flaw about infinite conjunctions as an intermediate step and as a
means to separate the principles from the details in this construction.

Note that this problem does not arise in the clause with the p;> since k is fixed, and x can at most
change the first k pebbles. Hence, there are only finitely many such «.

We need two observations about ®%+!. The first, a syntactic one, is easy to verify.

k1 ket
Lemma 3. For every m >0 and every k > 1 we have @, e I}
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The second one is of a semantic nature and states that ®*! does what it is supposed to do.

Lemmad. Let m>0, k> 1 and ¢ € =X, Then we have To9E O F T o b .

Proof. We argue using model checking games for £;.

“<” Suppose we have 7, ¢ I~ ¢, i.e. REFUTER has a winning strategy for the game G played on 7,
k pebbles initially placed on the node ¢ in it, and the Ll'j—formula @ itself. This gives rise to a strategy
for player VERIFIER in the game G’ played on 7, now k+ 1 pebbles placed on node ¢ initially, and the
formula ®%*+!. The fact that each node in 7, , satisfies exactly on atomic proposition of the kind p* and at
most one i or at most on k means that any play which REruTer does not lose immediately selects a clause
in ®**1 carries out some operation on the pebbles and then loops through some fixpoint variable.

It is not hard to see that VERIFIER can use REFUTER’s strategy from G to follow the operations carried
out on the pebbles prescribed by each clause without losing. For instance, if the third clause demands
her to choose a successor for the k + 1-st pebble then she takes the one that represents the conjunct that
ReruTER would chose in the same situation in G. This way, every play in G’ that conforms to her strategy
has an underlying play in G that conforms to REFUTER’s strategy there. If that one is won by REFUTER
because VERIFIER got stuck at some point then this can only be because the play reached a position of the
form (sy,..., sx) - Oy and s; has no successor. In the corresponding play in G’, pebble £+ 1 will be on
a node with label p?, and this requires REFUTER to move the i-th pebble to a successor which equally he
cannot. Notice that the clause with p? contains the operator O and vice-versa. Thus, VERIFIER wins the
corresponding play in G-

Suppose that the underlying play in G is won by RErUTER because the largest fixpoint variable X that
is seen infinitely often is of type u. Then we must have ad,(X) = i for some 7, and then the play in G’
will infinitely often go through positions that are labelled with pl.FP, and it will eventually not go through
positions that are labelled with p!.:,P with i’ > i anymore. All that remains to be seen in this case is that
the largest variable seen infinitely often in the play on ®**! is of type v. This is a direct consequence of
Lemma 1. Hence, VERIFIER wins such plays, too, which shows that her strategy derived from REFUTER’s
winning strategy in G is winning for her in G'.

“=" This is shown by contraposition in the same way now assuming a winning strategy for VERIFIER
in the game on 7, and ¢ and turning it into a winning strategy for REFUTER in the game on 7, and Ok,

Lemma 5. Let m >0 and k > 1. There is no ¢ € X, such that ¢ = ®k+!.

Proof. Suppose there was such a ¢. Then we would have

Topke it ToeEoN iff T.elke
first because of the assumed equivalence and second because of Lemma 4.

Thus, we could summarise the findings from these lemmas and also uses the observation that the
entire construction is equally possible for formula in TT¥, then yielding a ®**! € T¥*1 Then we get that
for all m >0 and k > 1 we have =f 2 IT5! and IT}, 2 =51, Consequently, we have % ¢ £*1 and
Hk C Hk+1

m = ""m41"
The reason why we do not formally state this as a theorem (yet) is discussed next.

3.2 The Hierarchy over a Fixed Small Signature

Consider what is happing with the set of atomic propositions in the construction of the previous Sec-
tion 3.1. We have already seen in Remark 1 that the construction does not work for an infinite set of



M. Lange 113

atomic propositions Prop. Even if this is finite, then the construction does work but it has the following
effect: we simulate a formula with k pebbles over Prop by a formula with k+ 1 pebbles over PropU Prop,.
It is not surprising that we obtain formulas over this extended signature which cannot be expressed over
the smaller one. In order to argue that the hierarchy of inexpressibility as laid out in the previous sec-
tion is truly meaningful we would need Prop = Prop U Prop,, or, at least, that the two sets have equal
cardinality so that some bijection between them could be used as an encoding.

In the following we will show how the construction can be fixed such that it works over a fixed finite
set

Prop, := {p*,p™,p"p",p% p", 07", PP, p*, p°)
of atomic propositions. Thus, we do not encore the index of propositions, the level in the fixpoint
hierarchy, and the kind of operation on pebbles in those propositions anymore. Instead we will encode
this missing information in the graph structure of 7, (rather than in its labels). For the replacement
modalities k we need a little preparation.

A replacement « is called simple if it is of the form {i « j} or {i & j}. A formula is called normalised
if every replacement in it is simple. The following is a simple consequence of the fact that every function
k : N --> N that leaves all numbers greater than k untouched, can be constructed by a sequence of swaps
between i, j < k, followed by some simple mappings from some i to a j.

Lemma 6. Let m >0, k> 1. Every ¢ € Zﬁp respectively Hf‘n is equivalent to a normalised ¢’ € an,
respectively Hln‘l.

We therefore assume that from now on, all formulas ¢ to be simulated are normalised. We change
the construction of 7, as follows.

1. Suppose there is a state s of the form g ;(i) or =g (i), necessarily labeled with p}ti or pi;. Replace
the proposition by p*, respectively p~, and add a new finite path of length i + j to this node such
that the (i — 1)-st new state has the label p°.

g R g—f;—‘—‘
p;z p*

Let kgye :={k < 1,1 < 2,...,k—1 « k} and consider the formula

searchPeb := (p* Aq;(1))V ke Ors1 (P° Aqi(D)V Ky O 1 (P AGi(I) V.. Kgye (P Agj(1))..))

ey
with k— 1 occurrences of kg . It is true in s at pebble k + 1 with the additional path iff g;(i) was
true in s with the original construction. The first part of this new path is used to shift the pebbles
until the i-th has become the first and then, instead of checking whether the i-th pebble is on a
state satisfiying g;, we can now check the first one instead. Note that this formulas moves pebble
number & + 1 along this new path but the other k pebbles remain where they are; apart from being
cyclically changed around.

We can of course equally construct such a formula that mimicks the checking of —¢ (7).

Finally, we also need to use the remaining path to read off the encoding of j. This can easily be
done as follows.

searchProp ; := qo(1) V Orr1(q1(1) V 1 (q2(D) V... g1 (gr-2(1) V Orv1gn-1(1)) ..))
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This formula is then used instead of g;(1) in (1), and the resulting formula is used instead of g ;(i)
in the clause for Py in @1, Hence, this clase simply becomes

AP searchPeb[searchProp/q(1)]

where Y[y /x’] denotes the formula that results from ¢ by replacing every subformula y’ with y.

An edge of the form nX.W —y¢ or X — is replaced in similar style by a sequence of i edges,
marking the last state after them with p®. Then we can replace the label pr with pFP in the first
state, and the corresponding clause in ®%*! with

AP = O (PP A XDV Ot (P° A X)) V Okt .V Ogr 1 (P A X))

. An edge of the form ¢;y — ¥ or O — ¥ is replaced by a sequence of 2i edges via new states, and

p* must hold after i and after 2i steps. The trick to use here is to cycle the first k£ pebbles until the
i-th one becomes the first, then execute the corresponding action for the i-pebble on the first one
instead, and then cycle them back again. Let k¢, be as above and kg :={2 < 1,3 < 2,...,1 < k}.
Then we can replace the clause for p? in ®k+1 by

..Ap® = (p° AOps1(01g0Back v KC(_yC(p. AOge1(01goBack V ...(p° AOgy101g0Back) . . .)))
with exactly k — 1 occurrences of kg, and
goBack := O 1((p* AX1) V Koy Ok 1(P* AXD V.. Ok 1 (P A XD)..)

with exactly k — 1 occurrences of K.

Likewise, we can use the same trick to eliminate the dependence on i of the formula ®%*! in the
clause for pf which is equally replaced by p“, and those paths of length 2i can be used to decode
the value i from the graph structure instead of reading it straight off the atomic proposition.

Finally, we can use the same trick in a slightly more elaborate fashion to handle replacement
modailities of the form {i < j} and {i < j}. We mark nodes in 7, that correspond to the form by
PP and those that correspond to the latter by pSV. A swap of the form {i < j} can be handled as
follows: assume i < j.

(a) Cyclically shift the pebbles 1, ...,k for i positions to the left.

(b) Cyclically shift the pebbles 2,...,k for j—i— 1 positions to the left.

(c) Swap pebbles 1 and 2.

(d) Cyclically shift the pebbles 2,...,k for j—i— 1 positions to the right.

(e) Cyclically shift the pebbles 1,...,k for i positions to the right.
Hence, we replace a transition of the form {i « j}¥ — by a path of length 2j—2 and mark the

states at positions i, j— 1, 2j—2 and the last one with p*® so that we can, like above, construct a
formula that mimicks the five steps above to carry out the swapping of pebbles i and j.

The construction for replacements of the form {i < j} is similar. Again, the trick is to cycle i and j
to positions 1 and 2, carry the replacement out on these fixed positions, and cycle the pebbles back
again. These eliminates the dependence of ®%+! on propositions which carry such a value.
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With this being done, ®*! becomes a formula that is defined over a fixed set Prop, of atomic proposi-
tions of size 10, and we can use it to simulate formulas ¢ € =¥ over the same Prop,. Then the inexpress-
ibility result of the previous section becomes meaningful. Using standard encoding techniques we can
break the resul down to L over two atomic propositions only, using binary encoding, or a single one,
using unary encoding. The atomic propositions can also be eliminated entirely by appending certain fi-
nite trees to the states in which they hold such that these trees are checkable using fixpoint-free formulas
of L. Hence, we get the following.

Theorem 7. For all m >0 and k > 1 we have ¥, 2 I and TIX, 2 =X+, Consequently, we have =k ¢

m

Zﬁ;r]l and TTIK, ¢ Hf‘ntrll. These results hold independently of the underlying signature Prop and Act.

m =

4 Conclusion and Further Work

We have shown that the arity hierarchy in the polyadic u-calculus, a modal fixpoint logic for specifying
bisimulation-invariant relational properties of states in transition systems, is strict in the sense that higher
arity gives higher expressive power provided that one is allowed to use a little bit more fixpoint alternation
k¢ Z'r‘nﬂl). If alternation must not increase then higher arity yields not necessarily more but different
expressiveness (ZX 2 TTE+H),

Obviously, the exact effects on expressive power that should be attributed to arity and to fixpoint
alternation need to be separated. A first step would be to prove the strictness of the alternation hierarchy
within each LZ. For k =1, i.e. the ordinary u-calculus, this is known for arbitrary and in particular for
finite transition systems [6, 17]. Subsequently, the result could be shown for several other classes of
transition systems, for instance binary trees [3, 7], nested words [11] and graphs whose edge relation
satisfies certain properties like being transitive for instance [8, 1].

We suspect that not only is the alternation hierarchy within each £,’j also strict, but equally that
Arnold’s proof [3] using a similar diagonalisation argument for £, can be extended. It relies on the
interreducibility between model checking for £, and parity games [20] and in particular the existence of
the Walukiewicz formulas defining winning regions in parity games [24]. It is known [15] that the model
checking problem for Lﬁ and any k > 1 can equally be reduced to a parity game, and it seems feasible to
extend the construction of the Walukiewicz formulas to higher arity. This would use similar principles
as those underlying the construction of ®*+! in Section 3.

Model checking Lﬁ can also be reduced to model checking £, directly using k-products of transition
systems, i.e. there is a translation of lel-formulas to £,-formulas that preserves truth under taking k-fold
products of transition systems [19, 15]. Hence, the question of the strictness of the alternation hierarchy
in Lﬁ is equivalent to the question after the strictness of the £, alternation hierarchy over the class of all
k-fold products of transition systems.
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This paper studies the relationship between disjunctivafa syntactic normal form for the modal
U calculus, and the alternation hierarchy. First it shows #lladisjunctive formulas which have
equivalent tableau have the same syntactic alternatiothddgowever, tableau equivalence only
preserves alternation depth for the disjunctive fragmémre are disjunctive formulas with arbi-
trarily high alternation depth that are tableau equivaleiternation-free non-disjunctive formulas.
Conversely, there are non-disjunctive formulas of arhlfrdigh alternation depth that are tableau
equivalent to disjunctive formulas without alternatiombis answers negatively the so far open ques-
tion of whether disjunctive form preserves alternationtdef@he classes of formulas studied here
illustrate a previously undocumented type of avoidablaagtic complexity which may contribute
to our understanding of why deciding the alternation higmgis still an open problem.

1 Introduction

The modalu calculus [2],L, is a modal logic augmented with its namesake least fixpgatator
and the dual greatest fixpoint operator, Alternating between these two operators gives the logic it
great expressivity [1] while both model checking and saisfity remain pleasingly decidable. The
complexity of model checking is, at least currently, tiedhlie number of such alternations, called the
alternation depth of the formula being checked [10]. Thebjam of deciding the least number of
alternations required to express a property, also knowheaRabin-Mostowski index problem, is a long
standing open problem.

Disjunctive normal form is a syntactic restriction bp formulas which first appeared in [9] and was
then used as a tool for proving completeness of Kozen's adiaation [14]. It is based on the tableau
decomposition of a formula which forces it to be in many waysliawehaved, making it a useful tool
for various manipulations. For instance, satisfiabilityl &ynthesis are straight-forward for disjunctive
formulas. In [5] it is used to analyse modg| from a logician’s perspective. More recently, disjunctive
form was found to allow for simple formula optimisation: if@mula is equivalent to a formula with-
out greatest fixpoints, then such a formula is easily prodidmesimple syntactic manipulation on the
disjunctive form of the formula [11].

Each of these results uses the fact that any formula can déetieéfly transformed into an equivalent
disjunctive formula with the same tableau — indeed, digjuadorm is perhaps the closest one gets to
a canonical normal form fok,,. The transformation itself, described in [9], is involveddat has so
far been an open question whether it preserves the altenndéipth of formulas. If this was the case, it
would be sufficient to study the long-standing open probléth® decidability of the alternation hierar-
chy on this well-behaved fragment.

In this paper, we show that although the disjunctive fragroéh,, is itself well-behaved with respect
to the alternation hierarchy, the transformation into ksloot preserve alternation depth.

R. Matthes, M. Mio (Eds.): Fixed Points © M.K. Lehtinen
in Computer Science 2015 (FICS 2015) This work is licensed under the
EPTCS 191, 2015, pp. 117-131, doi:10.4204/EPTCS.191.11 Creative Commons Attribution License.
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The transformation into disjunctive form takes the tabldacomposition of a formula, and produces
a disjunctive formula that generates the same tableau. Ttec@intribution of this paper is to show
that all disjunctive formulas generating the same tableate the same alternation depth. This result
brings some clarity to the transformation into disjuncfisan since one of the more difficult steps of the
construction is representing the parity of infinite pathghaf tableau with a finite priority assignment.
The result presented here means that all valid choices strag@good, as all yield a disjunctive formula of
the same alternation depth. As a result, the alternatioaifuiey is decidable for the disjunctive fragment
of L, with respect to tableau equivalence, a stricter notion afvadence than semantic equivalence, as
defined in [14].

The second contribution of this paper is to show that thisamé extend to non-disjunctive formulas.
Not only does tableau equivalence not preserve alterndapth in general, but the alternation depth of a
formula does not guarante@my upper bound on the alternation depth of equivalent disjuadébrmulas.
Indeed, for arbitrarily larg®, there are formulas with a single alternation which aredablequivalent
only to disjunctive formulas with at leastalternations.

Conversely, there are formulaslof with arbitrarily large alternation depth which are tableuiv-
alent to a disjunctive formula without alternations. Thi®ws that the alternation depths of tableau
equivalent formulas are only directly related within thejdnctive fragment.

The signficance of these results in twofold. First, theyioatthe limits of what can be achieved
using disjunctive form: disjunctive form does not presealternation depth so despite being a useful
tool for satisfiability-related problems, it is unlikely b® of much help in contexts where the alternation
depth of a formula matters, such as model-checking or famoptimisation beyond the first levels of
the alternation hierarchy.

Secondly, and perhaps most significantly, these resultadimpur understanding of the alternation
hierarchy. This paper’s results imply that deciding theralation hierarchy for the disjunctive fragment
of L, an open but easier problem, is not sufficient for decidirggatternation hierarchy in the general
case. The counterexamples used to show this illustratevéopsty undocumented type of accidental
complexity which appears to be difficult to identify. Thesaynshed light on why deciding the alternation
hierarchy is still an open problem and examplify a categdrioomulas with unnecessary alternations
which need to be tackled with novel methods.

Related work Deciding the modal: alternation hierarchy is exactly equivalent to deciding Rabin-
Mostowski index of alternating parity automata. The cquoesling problem has also been studied for
automata operating on words [3] and automata which arerdétistic [13, 12], or non-deterministic
[4, 7] rather than alternating. As will be highlighted thghout this paper, many of the methods used
here are similar to methods applied to different types obatta.

2 Preliminaries

2.1 The modalu calculus

For clarity and conciseness, the semantickpaire given directly in terms of parity games. As is well
documented in the literature, this approach is equivalerhe standard semantics [2]. The following
definitions are fairly standard, although we draw the readsitention to the use of the less typical
modality —% in the syntax oL, and the unusual but equivalent definition of alternatiortiilep
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Definition 1. (L,) Given a set of atomic propositior&op = {P,Q,...} and a set of fixpoint variables
Var = {X,Y,...} , the syntax ot , is given by:

@ =T|L[P|-P[X|oA@|@Ve|—% whereZis aset of formulas uX.¢ | vX.¢

The modality— % replaces the more usual modalitieg andOe. If Z is a set of formulas;»%#
stands fo( A\ yecz O @) AV g 5 @: every formula in must be realised in some successor state and each
successor state must realise at least one of the formul&s the modalities) @ andCg are expressed
in this syntax by—{@, T} and—{¢} vV — L respectively, where_ denotes the empty set.

Without loss of expressivity, this syntax only allows forraulas in positive form: negation is only
applied to propositions. Furthermore, without loss of esgivity, but perhaps conciseness, we require
all formulas to be guarded: all fixpoint variables are witthie scope of a modality within their binding
formula. For the sake of clarity, we restrict our study to tilemodal case but expect the multi-modal
case to behave broadly speaking similarly. To minimise teeaf brackets, the scope of fixpoint bindings
should be understood to extend as far as possible.

Definition 2. (Structures)A structure.Z = (S %, R, P) consists of a set of stat&srooted at some initial
statesy € S, and a successor relatibhC Sx Sbetween the states. Every statis associated with a set
of propositionsP(s) C Propwhich it is said to satisfy.

Definition 3. (Parity games)A parity game is a potentially infinite two-player game on atéirgraph

¢ = (Mo, V1, E, v, Q) of which the vertice¥UV; are partitioned between the two players Even and Odd
and annotated with positive integer priorities ¥a Vo UV, — N. The even player and her opponent,
the odd player, move a token along the edges Vp UV1 x Vo UV, of the graph starting from an initial
positionv; € VpUVy, each choosing the next position when the token is on a vértéxeir partition.
Some positiong might have no successors in which case they are winning épldyer of the parity

of Q(p). A play consists of the potentially infinite sequence of ieext visited by the token. For finite
plays, the last visited parity decides the winner of the plagr infinite play, the parity of the highest
priority visited infinitely often decides the winner of tharge: Even wins if the highest priority visited
infinitely often is even; otherwise Odd wins. Note that sisoene readers may be used to an equivalent
definition using the lowest priority to define the winner, wheer possible, “most significant” will be
used to indicate the highest priority.

Definition 4. (Strategies)A positional strategyo for one of the players ¥ = (Vp,V1,E,v,Q) is a
mapping from the player’s positiorss in Vp for Even and inv; for Odd, in the game to a successor
positions' such that(s,s') € E. A play respects a player’s strategyif the successor of any position in
the play belonging to the player is the one dictatedbyf o is Even’s strategy and is Odd’s strategy
then there is a unique play x 1 respecting both strategies from every position. The withé¢hne parity
game at a position is the player who has a stratggysaid to be a winning strategy, such that they
win o x T from that position for any counter-strategy The following states that such strategies are
sufficient: players do not need to take into account the thjisiba play to play optimally.

Fact 5. Parity games are positionally determined: for every positeither Even or Odd has a winning
strategy [6].

This means that strategies gain nothing from looking at thelevplay rather than just the current
position. As a consequence, we may take a strategy to be rgs®r it is a mapping from a player’s
positions to a successor.
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For anyL, formula¢ and a structureZ we define a parity game? x ¢, constructed in polynomial
time, and say that# satisfiesp, written.# |= @, if and only if the Even player has a winning strategy
in.Z x .

Definition 6. (Model-checking parity gamejor any formulag of modal u, and a model#, define a
parity game.# x @ with positions(s, ) wheres is a state of# andy is either a proper subformula
of @, or the formula\/ 4, or the formulaQy for any —%# and ¢ € % in @. The initial position is
(s0, @) Wheres, is the root of.#. Positions(s, /) wherey is a disjunction oK)/ belong to Even while
conjunctions and positions: % belong to Odd. Other positions have at most one successthgla be
Even’s although the identity of their owner is irrelevanhefe are edges frofs, ¢ vV ¢') and (s, A Y')

to both(s, ) and(s,¢/'); from (s, uX.@) and(s, vX.) to (s,@); from (s, X) to (s,vX.g) if X is bound
by v, or (s,uX.¢) if it is bound byy; finally, from (s,—2%) to every(s,\/ #Z) where(s,s) is an edge in
4, and also to everys, Q) wherey € # and from(s, Q) to every(s, ) where(s,s) is an edge in
the model#. Positions(s,P),(s,—P), (s, T) and(s, L) have no successors. The parity function assigns
an even priority tqs, T) and also tds, P) if ssatisfied? in .# and to(s, —P) if sdoes not satisf{? in .#;
otherwise(s, P) and(s,—P) receive odd priorities, along witfs, L ). Fixpoint variables are given positive
integer priorities such that-bound variables receive even priorities whildoound variables receive odd
priorities. Furthermore, whenev&rhas priorityi, Y has priority j andi < j, X must not appear free in
the formulay bindingY in Y. or vY.4y. In other words, inner fixpoints receive lower, less sigaific
priorities while outer fixpoint receive high priorities. l@r nodes receive the least priority used, 0 or 1.

We now use parity games to define the semantids,of

Definition 7. (Satisfaction relation)A structure.#, rooted ats, is said to satisfy a formul& of L,
written .# = W if and only if the Even player has a winning strategy frégg W) in .#Z x ¥ .

Note that the definition of the model-checking parity gantnees a priority assignment to fixpoint
variables in a formula that satisfies the conditions thaariables receive even prioritieg-variables
receive odd priorities and whenevérhas priorityi, Y has priority j andi < j, X must not appear free
in the formulay bindingY in uY.y or vY.y. For any formula, there are several valid assignments.
For example, one could assign a distinct priority to evergdirt, with the highest priority going to the
outermost bound fixpoint and the priorities decreasing thhér into the formula a fixpoint is bound.
We further restrict a parity assignment to be surjective i initial fragment ofN: if a priority is
unused, all greater priorities can be reduced by 2. We ddfim@lfternation depth of a formula to be
the minimal valid assignment. Although variations of thefidition exists, our motivation is to match
closely the alternations required in the model checkingygame.

Definition 8. Let a priority assignment be a functidd : Var — {0...n} for some integen, which is
surjective on at leastl, ...,n}, such that ifQ(X) < Q(Y) then X does not appear free in the formula
binding Y and the parity ofQ(X) is even forv-bound variables and odd fqr-bound variables. We
don’t require the priority O to be used, but include it in tleedomain for simplicity. In this paper, we
take the alternation depth of a formula to be the co-domathefeast priority assignment of a formula.
The correspondance with the priorities of the model cheglgarity game should make it clear that
this definition is equivalent to the more typical syntacties in the literature, for example in [2]. An
alternation free formula is a formula which has both prioassignements with co-doma{®,1} and
{0,1,2} where 0 is not used.

Deciding whether a formula is equivalent to a formula withedler alternation depth is a long stand-
ing open problem.
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2.2 Tableau decomposition

Definition 9. (Tableau)A tableau.7 = (T,L) of a formulaW¥ consists of a potentially infinite trée of
which each node has a labeL(n) C sf(W) wheresf(W) is the set of proper subformulas £ The
labelling respects the following tableau rules with thdrieion that the modal rule is only applied where
no other rule is applicable.

{r, o} {r,op  {ry} {r, o} :

ungy mover ) Foxey OWMoc iy
{1 @} ) wherex is a fixpoint variable bound byX..¢, with
X point variable bound bgX.¢, with o € {u,v}

{Wru{VB|=B T, %+ A} forevery=%A €l Y c B

! (=)

Note that each branching node is either a choice node, pameag to a disjunction, or a modal
node. Although the rules only contain a binary disjunctivie ywe may write, for the sake conciseness,
a sequence of binary choice nodes as a single step. Also lmattevhen a modal rule is applied, all
formulas in a label are either modal formulas or literalsit fils to say propositional variables and their
negations. The latter form the modal node’s set of literdl are a semantically important component of
the tableau. An inconsistent set of literals is equivalent tand a node with such a set of literals in its
label has no successors.

Sequences of subformulas along a path in the tableau aeel ¢tedces and correspond to plays in the
model checking parity game. A-trace is a trace winning for the Odd player.

Definition 10. (u-trace) Given an infinite branch in a tableau, that is to say a sequegrge.. of nodes
starting at the root, wheng, 1 is a child ofn;, a trace on it is an infinite sequendgf;... of formulas
satisfying the following: each formula is taken from thedhbf the corresponding nodé, € L(n;) for
all i > 0; successive formulak and fi.; are identical iff; is not the formula that the tableau rule from
n; to ni, 1 acts on; if the tableau rule from to nj,1 is a disjunction, conjunction, or fixpoint binding
elimination acting orf;, thenfi1 is an immediate subformula df; if the tableau rule fronm; to nj 1 is

a modality, thenf; has to be a formula>% and f, 1 is either\/ % or a formulay € %; if the tableau
rule fromn; to ni;1 is a fixpoint regeneration acting on the fixpoint variafjlethen f; 1 is the binding
formula for fi. A trace is au-trace if the most significant fixpoint variable that regextes infinitely
often on it is au-variable.

Since labels are to be thought of as conjuncts, it is suffid@ran infinite path in a tableau to allow
one u-trace for the infinite path to be winning for the Odd player.

Definition 11. (Parity of a path)An infinite path in a tableau is said to be even if there areiricaces
on it, otherwise it is said to be odd.

Note that the order of applications of the tableau rules isaeterministic so a formula may appear
to have more than one tableau. However, tableau equivaldatined next, only looks at the structure of
branching, whether branching nodes are modal or disjumnctine literals at modal nodes and the parity
of infinite paths, so a formula has a unique tableau, up t@tabéquivalence. We define tableau cores
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to be the semantic elements of the tableau — node types|ditar modal nodes, branching structure and
the parity of infinite paths — which do not depend on the syafiathe generating formula. Finally, we
define trees with back edges which are finite representatibtableau cores.

Definition 12. (Tableau core)A tableau core i6” = (C,Q) whereC is a potentially infinite but still
finitely branching tree of which the nodes are either modalesoor disjunctive nodes and modal nodes
are decorated with a set of literal. is a parity assignment with a finite prefix dfas co-domain. An
infinite path in% is of the parity of the most significant priority seen infiljteften. ¥ = (C,Q) is a
tableau core for7 = (T,L) if once the sequences of disjunctionsdnhare collapsed into one non-binary
disjunction there is a bijectioh between the branching nodes©fand the nodes d@ which respects
the following: the successor relation in the sense iigtis a child ofb(j) in C if and only ifi is a child

of j in T, whether nodes are modal or disjunctive, the literals atahonddes, and the parity of infinite
paths. That is to say, if a path iff maps to a path i then the highest priority seen infinitely often on
the path in& is even if and only if the path it¥” has nou-trace.

Definition 13. (Tableau equivalencélwo tableaug.%,Lo) and(.71,Lo) are equivalent if their cores are
bisimilar with respect to their branching structure, wieethodes are disjunctive or modal, the literals
at modal nodes and the parity of infinite branches. Two foamalre tableau equivalent if they generate
equivalent tableaus.

Definition 14. (Tree with back edges)ableaus are potentially infinite but regular, so they alfovite
representations. A finite representation of a tableas (A, Q) is a finite tree with back edge,which

is bisimilar to the core of the tableau. Every node is eitheroalal node or a disjunctive node and modal
nodes are associated with a set of literals. The tree has@tprssignmenf) which assigns priorities
to nodes such that the highest priority on an infinite path the parity of that path.

To summarise, a tablead is a potentially infinite tree labelled with sets of subfota®u— it is
specific to the formula which labels its root; a tableau c@feis a potentially infinite object which
carries the same semantics but is not specific to one forrfinklly, a tree with back edges, called
because of its resemblance to alternating parity autonsa finite representation of a tableau core.
The next section will present the one-to-one corresporelbrtveen disjunctive formulas and trees with
back edges.

Theorem 15. [9] Tableau equivalent formulas are semantically equivle

Note that tableau equivalence is a stricter notion than sémeaquivalenceyy v —¢ and T have
different tableau for example.

2.3 Disjunctive normal form

Disjunctive form was introduced in [9] as a syntactic resion on the use of conjunctions. It forces

a formula to follow a simple structure of alternating disjtions and modalities where modalities are
qualified with a conjunction of propositions. Such formutaie in many ways well-behaved and easier
to manipulate than arbitraty,, formulas.

Definition 16. (Disjunctive formulas)The set of disjunctive form formulas of (unimoddl), is the
smallest set# satisfying:

e |, T, propositional variables and their negations are#in
o If Y #andpec .7 theny Vv pc .7,
e If o7 is a set of literals and8 C .# (4 is finite), then\ o/ N >% € F ;
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e uX.andvX.y aslong ag) € .#.

Every formula is known to be equivalent to an effectively gutable formula in disjunctive form [9].
The transformation into disjunctive form involves takirg tformula’s tableau decomposition and com-
pressing the node labels into a single subformula. Theytpekt is finding a tree with back edges and its
priority assignment to represent the tableau finitely,udiig the parity of infinite paths. The transfor-
mation then turns the tree with back edges into a disjunébirraula with alternation depth dependent on
the priority assignment. Conversely, a disjunctive foranad its minimal priority assignment induces a
tree with back edges representing its tableau. The mininnaiify function required to finitely represent
a tableau is therefore equivalent to the minimal altermatiepth of a disjunctive formula generating
the tableau. The following theorem recalls the constractibdisjunctive formulas from trees with back
edges labelled with priorities from [9] and shows that theralation depth of the resulting formula stems
from the priority assignment of the tree with back edges.

Theorem 17. Let &7 = (A, Q) be a tree with back edges that is bisimilar to a core of thedabl.7
with priority assignmenf with co-domair{0...q}. Then there is a disjunctive formula with alternation
depth{0...q} which generates a tableau equivalent¥a

Proof. First of all, we construct?’ = (A, Q’), bisimilar to.<# but with a priority assignment with the
following property: on all paths from root to leaf, the pitas of nodes that are the targets of back edges
occur in decreasing order. This is straight-forward by loglat the infinite tableau core” unfolds into,
remembering which nodes stem from the same nod# and their priority assigned iY. First consider
all branches that see the highest prioqtinfinitely often and cut them short by creating back edges at
nodes of priorityg, pointing to the bisimilar ancestor node (also of priomjythat is closest to the root.
Then repeat this for each priority in decreasing order, butfich priorityq— 1 treat the ancestor of
priority g that back edges point to (if it exists) as the root, so thaesdtat have back edges pointing
to them end up in decreasing order of priority. Note thatewegcle is now dominated by the priority of
the first node from the root seen infinitely often.

The disjunctive formula is then obtained by assigning a @ubiila f(n) to every node ofA as
follows. If nis a leaf with literalsQ, then f(n) = AQ; if nis a disjunctive node with childreng and
ni, thenf(n) = f(ng) v f(ny); if nis the source of a back edge of which the targenhishen f (n) = Xp,
whereXy is a fixpoint variable; ifhis a modal node, thefi(n) = A QA —2% whereQ is the set of literals
atnandZ is the set off (n;) for n; children ofn; other nodes inherit the formula assigned to their unique
child. If nis the target of a back edgé(n) is obtained as previously detailed but in addition, it bittas
fixpoint variableX, with a v-binding if n is of even parity and with @-binding otherwise.

If r is the root node of', thenf(r) is a disjunctive formula that generates a tableau that ivalgumt
to .7. This should be clear from the fact that the tablead @f) consists of the infinite tree generated
by A" and the labelling-(n) = {f(n)} for all n. Q' restricted to the target of back edges is a priority
assignment for the disjunctive formua= f(n) since it respects the parity of paths and on each branch
the priorities occur in decreasing order. This guaranteasit Q'(X) < Q'(Y) thenX is not free in the
formula bindingy.

ThereforeW has a tableau that is equivalent#band accepts a priority assignment with co-domain

{0...q}. O

Conversely, a disjunctive formula induces a tree with baigies generating its tableau by taking its
tableau until each branch reaches a fixpoint variable wtidhe source of a back edge to its binding
formula. The priority assignment of the formula is also @pty assignment for the tree with back-edges.
This yields a one-to-one correspondence between treedadthedges and disjunctive formulas.



124 Disjunctive form and the modal alternation hierarchy

3 Tableau equivalence preserves alternation depth for disinctive L,

This section argues that all disjunctive formulas genegdfie same tablea? have the same alternation
depth. The structures used to identify the alternationtdap similar to ones found in [8] to compute the
Rabin-Mostowski index of a parity games and the flowers desdrin [12] to find the Rabin-Mostowski
index of non-deterministic automata. Here | show that tllequivalence preserves these structures and
consequently also the alternation depth of disjunctivenfdas.

Definition 18 describes a witness showing that the priori#signmentQ of a tree with back edges
o/ = (A, Q) representing” requires at leasy priorities. This witness is preserved by bisimulation with
respect to node type, literals and parity of infinite braiscH&ince all finite representations of a tableau
Z are bisimilar with respect to these criteria, they all hdwe same maximal witness, indicating the
least number of priorities” can be represented with.

Informally, the witness of strictness is a series of cyclealternating parity where each cycle is
contained within the next.

Definition 18. (g-witness)A g-witness in a tree with back edges, Q) representing a tablea? consists
of g cyclesc;...cq such that for each< g, the cyclec; is of the parity ofi and for all 0< i < g, the cycle
¢ is a subcycle o€ .

Lemma 19. If a tree with back edgefA, Q) has a g-witness, then the co-domain of the priority assign-
mentQ has at least g elements.

Proof. Given ag-witnessc; ...Cq, for every pair of cycles; andc;. 1, since they are of different parity and
¢i is contained irti 1, the dominant priority o, ; must be strictly larger than the dominant priority on
¢i. Therefore there must be at leagpriorities in the cyclecy which contains all the other cycles of the
witness. O

Lemma 20. If a tree with back edges’ representing a tablew does not have a g-witness, then there is
an tree with back edges’’ which also represent$” but has a priority assignment with fewer priorities.

Proof. Assume a tree with back edgeg = (A, Q) representingZ with a priority assignment with co-
domain{0...q} does not have gwitness. LetS; be the set of nodes of priority. LetS_1 for 1 <i <q

be the set of nodes of priorify— 1 which appear as the second highest priority in a cycle wakitbe
nodes of highest priority are if, and as the nodes of highest priority in some cycle. Noteith&t
was non-empty, then there would be-avitness, sd&; and consequentl$ must be empty. Then define
a new priority function as follows: the new priority funatid)’ is asQ, except for nodes in ang —
these receive the priority— 2 instead of the priority. SinceS, andSy are empty, this is possible whilst
keeping all priorities positiveQ’ with co-domain{0...q— 1} preserves the parity of infinite branches
since there are no cycles in which the priority of all dominamdes is decreased more than the priority
of all sub-dominant nodes and each node retains the samg gdrerefore, if a finite representation of
7 does not have g-witness, then there is a finite representatigh= (A, Q') with a smaller priority
assignment. O

Lemma 21. All tableau equivalent trees with back edges have the samigngsses: for all g, either all
or none of the trees with back edges representing a sameatabffehave a g-witness.

Proof. First we recall that ife7 is the finite representation of induced by a disjunctive formul®
then the tableau af7 is an infinite tree bisimilar ta with respect to node type, literals and parity of
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infinite branches. Hence any finite representatiorois bisimilar to.«7. It then suffices to show that
g-witnesses are preserved under bisimulation. This isgéttdorward: lete’ be bisimilar to a finite
tree with back edges” with respect to node type, literals at modal nodes and thgypdrinfinite paths.
Then infinite paths in are bisimilar to infinite paths in7’. Since bothZ and.«’ are finite, an infinite
path stemming from a cycle i is bisimilar to a cycle ineZ’. A g-witness contains at least one node
which lies on all the cycles of the witness. 4f hasq cycles, call the node on all of its cyclesand
consider (one of) the deepest node{sh <7’ bisimilar ton. That is to say, choos# such that if another
node bisimilar to' is reachable fronw', it must be an ancestor of. Sincer' is bisimilar ton, there
must be a cycle] bisimilar to eactt; reachable fromn'. Sincen’ is maximally deep, it is contained in
each of these cycleg. Then, ag-witness can be reconstructed.dff by taking the cyclec;, and then
for eachi > 0 the cycle consisting of ad’j, j <i. Since allc/ cycles haver in common, there is a cycle
combiningc’j,j <i for anyi. Since bisimulation respects the parity of cycles, thisdgeag-witness in
. O

Theorem 22. All disjunctive formulas with tableaw have the same alternation depth.

Proof. All trees with back edges representing the same tablgahave the same maximal withess,
from the previous lemma, so from Lemma 20 they accept a minpmarity function with domain
{0...q}. Since a disjunctive formula induces a tree with back edgés a'minimal priority function
corresponding to the formula’s alternation depth, any tispudctive formulas that are tableau equivalent
must have the same alternation depth. O

This concludes the proof that tableau equivalence presefternation depth on disjunctive formulas.
The restriction to disjunctive formulas is crucial: as thexinsection shows, in the general case tableau
equivalent formulas may have vastly different alternatiepths.

4 Disjunctive form does not preserve alternation depth

Every formula has a tableau which allows it to be turned inteemantically equivalent disjunctive
formula. This section studies the relationship betweerratita’s alternation depth and the alternation
depth of its tableau equivalent disjunctive form. As thevimes section shows, any two disjunctive
formulas with the same tableau have the same alternatiah;diyerefore comparing a non-disjunctive
formula to any tableau equivalent disjunctive formula \di.

The first subsection demonstrates that not only does disperform not preserve alternation depth,
but also that there is no hope for bounding the alternatigrihdef disjunctive formulas with respect to
their semantic alternation depth: for anghere are one alternation formulas which are tableau equiva
lent to n alternation disjunctive formulas. In other words, the ralégion depth of 4, formula, when
transformed into disjunctive form, can be arbitrarily krgConversely, as shown in the second subsec-
tion, formulas of arbitrarily large alternation depth cam thbleau equivalent to a disjunctive formula
without alternations. Hence the alternation depth of @llequivalent formulas are only related within
the disjunctive fragment.

4.1 Disjunctive formulas with large alternation depth

While the main theorem is proved by Example 27, the Exampesn?l 25 leading up to it should give
the interested reader some intuition about the mechanioshvisad the tableau of a formula to have
higher alternation depth than one might expect.
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*
*

X W v 7
—{YLA={X} A —{W} SIYLA A, {2
—{Y}LAAN={X} AA={W} —{Y}LA AA—={Z}

* SIYLAAS{XH VA (AA={WHV(AA—={Z)})
VY. {Y} A UX.(AA—={X}) VA VZ.uW.(A_\/\—>{W})\/(A/\—>{Z})

Figure 4.1: Tableaus farY.—{Y} A uX.(AA —{X}) VAandvZ.uW.(A A —={W}) V (AA—{Z})

Example 23. The first example is a rather simple one: a disjunctive foenwith one alternation that
can be expressed in non-disjunctive form without any adtéons. The disjunctive formulaX.uY.(AA
—{X}) v (AN—={Y}) signifies that all paths are infinite aAdoccurs infinitely often on all paths. Com-
pare it to the formulasX.—{X} A uY.(AA ={Y}) V Awhich is alternation free.

The tableaus of both these formulas are shown side by sidigime=4.1. Both branches regenerate
into either exactly the ancestral node marked * or a noderéizathes a node identical to the one marked
*in a single non branching step.

The cores of the two tableaus, that is to say their branchinigs, are clearly isomorphic with respect to
the node type and branching structure. Furthermore, fdr footnulas, there igi-trace on any path that
only goes through the left hand branch infinitely often. Biemoy trace oranypath that goes through
the right hand path infinitely often, for either formula. Asesult, both tableaus agree on the parity of
infinite branches. The two formulas are tableau equivaledtthaerefore also semantically equivalent.

Remark 24. Observe that there is nothing obviously inefficient abowt lttwe disjunctive formula han-
dles alternations. Indeed, simply inverting the order effirpoints yields a formulas which can not be
expressed without an alternationX.vY.AA —{X} VAA —={Y}.

While the above example proves that disjunctive form do¢preserve alternation, it must be noted
that the alternating parity automata corresponding toetfi@snulas require in both cases two priorities,
although only one requires an alternation. The next exasipbevs formulas in which the humber of
priorities is not preserved either.

Example 25. This example and the following ones will be built on one-alggion formulas consisting

of single u/v alternations embedded in one another without interferiith @ach other, i.e. all free
variables within the inner formulay are bound by the inner fixpoint bindings. This means that the
formula accepts a priority assignment with co-domgnl}. Without further ado, consider the formula
in question:

a = uXo.VYo.(AA —={Xo}) V (BA —={Yo) A uX1.VY1.(CA —{X1}) V(DA —={Y1}) VE
The following Lemma shows it to be equivalent to a formula ebhiequires a priority assignment
with co-domain{0...3}.
Lemma 26. The formulaa is tableau equivalent to a disjunctive formula which reqsimla parity as-

signment with co-domaif0...3}:

B = uXo.VYo.uX1.VY1.(AANCA —={Xo}) V (AAD A —={Xo}) V(AANEA ={Xo})

V(BAEA—={Yo})V (BACA—={X})V(BADA—{Y1}) 41
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* * * * * *
Yo, V1 Yo, X1 Yo Xo,Y1 X0, X1 Xo
(B,+{¥0},D,~{"1}) (B,—{Yo},C,—»{X1}) (B,~{¥},E) (A —{X},D,~{¥"1}) (A ={%},C,=»{X1}) (A ={%},E)
(BA={Yo}),(DA={W1}) (BA—={Yo}),(CA—={X1}) (BA—={Yo},E) (AA={Xo}),(DA{W1}) (AA={Xo}),(CA—={X1}) (AN ={X%},E)
(BA={Y0}), (CA={X})V(DA={N1})VE (AA={X0}), (CA={X})V (DA} VE

*(AA={Xo}) V (BA={Yo}), (CA={X1}) V(DA=>{V1}) VE
X0 Vo (AA — {Xo}) V (BA—{Yo}) A XeVY1(C A —{X}) V (DA —{Y1}) VE

Figure 4.2: Tableau four

* * * * * *

Y1 X1 Yo Xo Xo Xo
(B.D,—{11}) (B.C,—={X}) (B,E,—~{Yo}) (A.D,={Xo}) (A.C,—{X}) (AE,—{X})
(BADA—={Y1}) (BACA—={X1}) (BAEA—={Yo}) (AADA—={Xo}) (AANCA—={X0}) (AAEA—={X0})
(BAEA—={Yo})V(BACA—={X1})V(BADA—{Y1}) (ANEA—={Xo}) V(AADA—={Xo}) V(AACA—={Xo})

* (ANEA—={Xo}) V(AADA—={Xo}) V(AACA—={Xo}) V(BAEA —={Yo}) V(BACA —={X1})V(BADA—{Y1})
HX0.VY0. UX1.VY1.(AAEA ={X0}) V (AADA —={Xo}) V(AACA —={Xo}) V (BAEA—={Y0}) V(BACA—={X1}) V(BADA—={Y1})

Figure 4.3: Tableau foB

Proof. The tableaus for both formulas are written out in Figuresah@ 4.3. The two tableaus are iso-
morphic with respect to branching structure, node type hmnditerals at modal nodes. To prove their
equivalence, it is therefore sufficient to argue that thisrisrphism also preserves the parity of infinite
branches, that is to say that there ig-#race in an infinite path of one if and only if there igierace in
the corresponding infinite path of the other.

To do so, we look, case by case, at the combinations of braribaéa path can see infinitely often
and check which have @ trace in each tableau. First argue that the three right-tmmastches in both
tableaus are such that any path that sees them infinitely btie au-trace. This is withessed in both
cases by the least fixpoint variabtg which will dominate any trace it appears on and appears aca tr
on all paths going through one of these branches infinitelgnofSo, in both tableaus, any path going
through one of the right-most branches infinitely often isodfl parity. Now consider the branch that
ends inYy before regenerating to the node marked * in both tableaugrales on paths that go infinitely
often through this branch will seg regenerate infinitely often. Therefore in both tableausath poing
through this branch infinitely hasgatrace if and only if it also goes through one of the three rigbst
branches infinitely often. Now consider the fifth branch fribra right, the branch that regeneravgsX;
in one case and jugg; in the other. In both tableaus, a path that goes through thigch infinitely often
will have apu trace unless it goes through thgbranch infinitely often and doesn’t go through one of the
three right-most branches infinitely often. Finally, inlbédbleaus, a branch that only sees the left-most
branch infinitely often is of even parity since such a pathsdoet admit anyu-traces. However, if a
path sees this branch and some other branches infinitely, afteparity is determined by one of the
previously analysed cases. Since we have analysed allfthgarpaths on these tableaus and concluded
that in each case the parity of a path is the same in both tahl#iais concludes the proof that the two
tableaus are equivalent. O

The above example yields a disjunctive formula of alteoratiepth{0...3} which semantically only
requires alternation deptf0,1}. This proves that disjunctive form does not preserve thebaimnof
priorities the model checking game of a formula requires.
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The next step is to generalise the construction of Exampléo2&rbitrarily many alternations to
prove that there is no bound on the number of alternationsdigjanctive formula tableau equivalent to
a non-disjunctive formula ofi alternations. To do so, we will first define the one-alteorafiormulas
o, inductively, based on the formula of Example 25. We then artat the tableau o, admits a
(2n+ 1)-witness, proving thatr, is not tableau equivalent to any disjunctive formula of lgss 21+ 1
alternations. Due to the argument pertaining to traces dreasingly large tableaus, its details are,
inevitably, quite involved. However, the mechanics of thieléaus oftr,, are not difficult; writing down
the tableau ofr, and working out its disjunctive form should suffice to gainimtniition of the proof to
follow.

Example 27. In order to definex,, for anyn define:

a = [.le.VYl.((Al A —>{X1}) V (Bl/\ —>{Y1}) vV El)/\
PXo.vY0.(Ao A —{Xo}) V (BoA —={Yo}) V Eo (4.2)
841 = UXit1VYir1 (A A ={Xi11}) V (Bisa A—={Yi11}) VEi11) A&

Then, define:
On = X0 VY. ((An A —={Xn}) V (Bn A ={Yn})) Aan-1

In other words, the formula consists of nested claysésvY;.((A A —{X}) V (BiA—={Y}) VE;) con-
nected by conjunctions where the outmost clause does netéhalz.

As the formula grows, its tableau becomes unwieldy, buttiteciure remains constant: it is just as
the tableau ofr with more branches. Figure 4.2 can be used as reference.
The tableau of ang,, follows this structure:

e The first choice nod@(AnA—{Xn} VB A—={Ya}), ..., (Ao A—{Xo} VBoA—={Yo} VEp) } branches
into 2x 3" modal nodes — ignoring the modalities attached to eaclal#¢déor a moment, this is the
decomposition of A,V Bp) A (An—1V Bn_1VEn_1)... A (AgV Bp V Ep) into one large disjunction.

e Each choice leads to a modal node with some choice of progositvariables consisting of one
of A, andB,, and then for every < n one ofA;, B; or E;.

e These modal nodes have a single successor each, consistisgtoof fixpoint variables. In every
case, one of these Y§ or X, and there is only ever at most one fixpoint variable outXfY;} for
eachi. These nodes will be referred to as regeneration nodes. Whegeneration node does not
containX; norY; for somei, this corresponds tg; having been chosen rather thanor B;.

¢ Nodes consisting of a set of fixpoint variables all regememgite or take a couple of non-branching
steps, into the same choice node, identical to the ancesinaie node labelled:

{(AnA={X} VB A —={Yn}),..., (Ao A —={Xo} VBoA—{Yo} VEp)}

e An infinite trace in this tableau sees infinitely often onlypfint variablesy; and/orX; for some
i. As a consequence if a path goes infinitely often through anegtion node which does not
containX; orY;, then there is no trace that segsnfinitely often on that path.

Lemma 28. The formulaa,, is tableau equivalent only to disjunctive formulas whicfuiee a priority
assignment witt2n+ 1 priorities.
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Proof. Using the above observations, we will show that the tableauHis formula requires at least
2n+ 1 alternating fixpoints. We describe a priority assignmerd subset of the nodes of the tableau of
o, such that on the paths within this subset, a path is even ibalydf the most significant priority seen
infinitely often is even. We then argue that this subset domss a 21+ 1-witness.

Consider the paths of the tableau which only contain theotig regeneration nodes:

e Foralli, the nodes regenerating exacthy,,_1...Y;, and

e For alli the nodes regenerating exactly..Yi;1%Y;_1...Yo.

For eachi, assign priority 2to the node regenerating,...Y; and 2 + 1 to the node regenerating
Yn...Yii1, X%, Yi—1,...Yo. We now prove that this priority assignment is such that & pathin this sub-
tableau is even if and only if the highest priority seen inélyi often is even.

First consider the nodéé...Y;, which have been assigned even priority. A path that sedssnode
infinitely often can only have p-trace if it sees a node regerating soXje j > i infinitely often. Such
a node would have an odd priority greater th@n.Y;. Therefore, if the most significant priority seen
infinitely often is even, the path has potrace. Conversely, if a path segs..X;...Yy infinitely often and
no Y,...Y; where j > i infinitely often, then there is a trace which only regenatateandy; infinitely
often. This is gu trace since; is more significant thal. This priority assignment therefore describes
the parity of infinite paths on this subset of pathsZof

Any assignment of priorities ont@ should, on this subset of paths, agree in parity with the @bov
priority assignment. However, in any tree with back edgeseggting this tableau, this subset of paths
constitutes a 2+ 1 witness:cy is a cycle that only see%,...Yy, ¢1 containscy and also seey,...X1Yp
infinitely often and for alli > 1, the cyclecy is one containingcy 1 and Y;...Y; while ¢y.1 is one
containingcy andY;...X;...Yo. Each cyclec; is dominated by the priority, makingco, ...,Coi 1 a 4 + 1-
witness. Thus, using Theorem 22 any disjunctive formuldnwableau. must require at leastri2- 1
priorities. O

This concludes the proof that for arbitramythere are one-alternatidr, formulas which are tableau
equivalent to disjunctive formulas withalternations.

4.2 Disjunctive formulas with small alternation depth

The previous section showed that transforming a formutadigjunctive form can increase its alternation
depth. The converse is much easier to show: there are vepyesformulas for which the transformation
into disjunctive form eliminates all alternations.

Lemma 29. For any formulay, the formula(uX.—{X} vV —_L) A ¢ is tableau equivalent to a disjunc-
tive formula withoutv-operators.

Proof. The semantics ofuX.—{X} vV —_L) A ¢ are that a structure must not have infinite paths @nd
must hold. Considef” , the tableau fo(uX.—{X} Vv —_L) A . Itis easy to see that every modal node
will either contain—{X} or —_L. The latter case terminates that branch of the tableaue\el former
will populate every successor node wKhwhich will then regenerate intob—{X} v —_1). As a resullt,
all infinite paths have @ trace; there are no even infinite paths. Any disjunctive fdengenerating7
will therefore only require thet operator. O

Taking @ to be a formula of arbitrarily high alternation deptiuX.—{X} v —_L1) A ¢ shows that
the transformation into disjunctive form can reduce therakition depth an arbitrarily large amount.
Together with the previous section, this concludes theraeg that there are no bounds on the difference
in alternation depth of tableau equivalent formulas.
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5 Discussion

To summarise, we have studied how tableau decompositiothartdansformation into disjunctive form
affects the alternation depth of a formula. The first obd@kais that within the confines of the dis-
junctive fragment ot ;, alternation depth is very well-behaved with respect téet@ equivalence: any
two tableau equivalent disjunctive formulas have the sadteenation depth. However, the story is quite
different forL, without the restriction to disjunctive form: the altermatidepth of &, formula can not
be used to predict any bounds on the alternation depth aéaabequivalent disjunctive formulas and
vice versa.

Part of the significance of this result are the implicatioos dur understanding of the alternation
hierarchy.

The formulas in Section 4 illutrate some of the differentaypof accidental complexity which
any procedure for deciding the alternation hierarchy waddd to somehow overcome. The formula
(UX.—{X}V L) Ay, from Lemma 29 which is semanticallyvafree formula for anyp is an example
of a type of accidental complexity which the tableau decositiom eliminates. However, the formula in
Example 23 illustrate a more subtle form of accidental caxipf that is immune to disjunctive form:
vX.uY.(AAN—={X})V (AAN—={Y}) is semantically alternation free while the syntactically@st identi-
cal formulauX.vY.(AA—={X})V (AA—{Y}) is not. These formulas pinpoint a very specific challenge
facing algorithms that try to reduce the alternation degtfoomulas; as such, they are valuable case
studies for those seeking to understandlthelternation hierarchy.

Finally, we showed that the following is decidable: for dnyformula, the least alternation depth
of a tableau equivalent disjunctive formula is decidablkisTaises the question of whether the same is
true if we lift the restriction to disjunctive form, but kedipe restriction to tableau equivalence: fdra
formula, is the least alternation depth of any tableau edeit formula decidable? Tableau equivalence
is a stricter equivalence to semantic equivalence, so tioiklgm is likely to be easier than deciding
the alternation hierarchy with respect to semantic egena but it would still be a considerable step
towards understanding accidental complexity jn

Acknowledgements | thank the anonymous reviewers for their thoughtful comtsemhich have
helped improve the presentation of this paper and relasentbik to similar results for other automata.
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In the modalu-calculus, a formula is well-formed if each recursive valgaoccurs underneath an
even number of negations. By means of De Morgan’s laws, sy ¢o transform any well-formed
formula¢ into an equivalent formula without negations — the negatiomal form of¢. Moreover,

if ¢ is of sizen, the negation normal form @f is of the same siz&'(n). The full modalu-calculus
and the negation normal form fragment are thus equally espre and concise.

In this paper we extend this result to the higher-order mfixkedi point logic (HFL), an extension
of the modalu-calculus with higher-order recursive predicate transfens. We present a procedure
that converts a formula of sizeinto an equivalent formula without negations of sizén?) in the
worst case and’(n) when the number of variables of the formula is fixed.

1 Introduction

Negation normal forms are commonplace in many logical fdismes. To quote only two examples,
in first-order logic, negation normal form is required by koization, a procedure that distinguishes
between existential and universal quantifiers; in the mpdedlculus, the negation normal form ensures
the existence of the fixed points. More generally, the negatiormal form helps identifying the po-
larities [15] of the subformulas of a given formula; for iaste, in the modgl-calculus, a formula in
negation normal form syntactically describes the schenzapafrity game.

Converting a formula in a formula without negations — or wigations at the atoms only — is
usually easy. By means of De Morgan’s laws, negations carpbstied to the leaves” of the formula.
For the modalu-calculus without propositional variables, this processipletely eliminates negations,
because well-formed formulas are formulas where recuksiviables occur underneath an even number
of negations. Moreover, in the modatcalculus, if¢ is of sizen, the negation normal form af is of
the same sizé'(n).

The higher-order fixed point modal logic (HFL) [20] is the hay-order extension of the modal
u-calculus. In HFL, formulas denote either predicates, ayhir-order) predicate transformers, each
being possibly defined recursively as (higher-order) fixedhts. Since HFL was introduced, it was
never suggested that negation could be eliminated fromatdie.| On the contrary, Viswananthan and
Viswanathan [20] motivated HFL with an example expressifaym of rely guarantee that uses negation,
and they strove to make sure that HFL formulas are correesiiricted so that fixed points always exist.
Negation normal forms in HFL would however be interestirtgeyt would simplify the design of two-
player games for HFL model-checking [3], they could helprdafi a local model-checking algorithms
for HFL, they might help to define the alternation depth of d_ Hérmula, etc.

We show that HFL actually admits negation elimination, amat tike for the modalu-calculus,
every HFL formula can be converted into a formula in negatiormal form. The negation elimination
procedure is more involved due to higher-orderness. As mew# of this increased complexity, our
negation elimination procedure has a worst-case quadiatic-up in the size of the formula, whereas
for the u-calculus the negation normal form is of linear size in thigioal formula.

R. Matthes, M. Mio (Eds.): Fixed Points © E. Lozes
in Computer Science 2015 (FICS 2015) This work is licensed under the
EPTCS 191, 2015, pp. 132-142, doi:10.4204/EPTCS.191.12 Creative Commons Attribution License.
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Related Work Other examples of higher-order recursive objects are thleeiorder pushdown au-
tomata [17, 4], or the higher-order recursion schemes (HP®R32, 5, 18]. Whereas the decidability of
HFL model-checking against finite transition systems ieeasimple, it took more time to understand
the decidability of HORS model-checking against the ondirfarder 0) modali-calculus. This situation
actually benefited to HORS: the intense research on HORSupealdseveral optimized algorithms and
implementations of HORS model-checking [2, 9, 19], wherdd&t model-checking remains a rather
theoretical and unexplored topic. HORS can be thought assie formulas with no boolean connec-
tives and least fixed points everywhere. On the opposite, &llBws any kinds of boolean connectives,
and in particular a form of “higher-order alternation”.

Outline  We recall the definition of HFL and all useful background atbin Section 2. In Section 3,
we sketch the ideas driving our negation elimination aneduce the notion of monotonization, a corre-
spondence between arbitrary functions and monotone oatistat the core of our negation elimination
procedure. We formally define the negation elimination pthge in Section 4, and make some conclud-
ing remarks in Section 5.

2 The Higher-Order Modal Fixed Point Logic

We assume an infinite s¥tr = {X,Y,Z,...} of variables, and a finite s&= {a,b,... } of labels. For-
mulas¢, g, of the Higher-Order Modal Fixed Point Logic (HFL) are defirtgy the following grammar

¢ =T oV |- [(@¢[X[AXT. 0] ¢|uX". ¢

where a typer is either the ground typBrop or an arrow types¥ — 1, and thevariance vis either+
(monotone), or- (antitone), or 0 (unrestricted). For instances= (Prop~ — Prop)t — (Prop® — Prop)
is a type, andpy = AFProp =Propt jyProp0 7Prop (F —y) v (a)(Z Vv —Y) is a formula. The sets
fv(¢) andbv(¢) of free and bound variables @f are defined as expecteéi(X) = {X}, bv(X) = 0,
fv(AX. @) = fv(uX. @) =fv(p)\ {X}, bv(AX. ¢) = bv(uX. ¢) = bv(¢)U{X}, etc. A formula is
closedif fv(¢) = 0. For simplicity, we restrict our attention to formulésvithout variable masking.e.
such that for every subformubaX. ¢ (resp.uX. ¢), it holds thatX ¢ bv(y).

Another example is the formuli, = (AFProp =Prop+ X Prop F X) (AYPror:—, Y). This formula
can beB-reduced to the modal-calculus formulap;, = uXPror . —X, which does not have a fixed point
semantics. Avoiding ill-formed HFL formulas such és cannot just rely on counting the number of
negations betweenX and the occurence of, it should also take into account function applications and
the context of a subformula.

A type judgement is a tuplE - ¢ : T, wherel is a set of assumptions of the foiY : 7. The typing
environment=[ is the one in which every assumptiofY : T is replaced with XV : 7, where—+ = —,

—— =+4,and—0=0. Aformula¢ is well-typed and has typeif the type judgemerntt ¢ : T is derivable
from the rules defined in Fig. 1. Intuitively, the type judwwnxi’l (T1,..., XN T @ Tis derivable if
asssuming thaX; has typer;, it may be infered thap has typer and thatg, viewed as a function of;,
has variance;. For instancel- ¢, : 71, where¢, andrt; are the formula and the type we defined above,
but ¢, cannot be typed, even with different type annotations.

Proposition 1 [20] If T+ ¢ : 1 andl - ¢ : 1/ are derivable, therr = 1/, and the two derivations
coincide.
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Fr-¢:r1 r-yg:t -THo¢:1 ¢ :Prop ve {+,0}
=T :Prop rovy:t Fr—¢:r1 Mk (a)¢ : Prop r,xXV:teX:r
rX¥:ok¢:1 rXT:tkHo¢:t r-¢:0" =1 TFY: O
FrEAXYY . ¢:0" =1 FrFuxXt ¢:t FrFoyw:t
r¢:0- -1 -THY:o r-¢:0°-1 T+Fy:0 -THY:o
Fr-¢y:t FrCoy:t

Figure 1: The type system of HFL.

If ¢ is a well-typed closed formula anflis a subformula ofp, we writetype(y/¢) for the type of
Y in (the type derivation of}.

A labeled transition system (LTS) is a tupté = (S, &) whereSis a set of states amlC Sx X x S
is a transition relation. For every tygeand every LTS7 = (S,d), the complete Boolean ring’[1] of
interpretations of closed formulas of typés defined by induction on: .7 [Prop] = 25, and.7 [¢" — 1]
is the complete Boolean ring of all total functioris .7 [o] — .7 [1] that have variance, where all
Boolean operations on functions are understood pointWisge that since” [1] is a complete Boolean
ring, it is also a complete lattice, and any monotone fumcfio .7 [1] — .7 [1] admits a unique least
fixed point.

A Z-valuationp is a function that sends every variable of typto some element o7 [1]. More
precisely, we say that is well-typed according to some typing environmé&ntwhich we writep =T,
if p(X) € 7[1] for everyX": 1inT. The semantics7 [l - ¢ : 7] of a derivable typing judgement is
a function that associates to evgry=I" an interpretationZ [l - ¢ : 1](p) in Z[1]; this interpretation
is defined as expected by induction on the derivation tree [@] for details). For a well-typed closed
formula¢ of type Prop, a LTS.7 = (S,0) and a stats € S We writes|=~ ¢ if s€ .7+ ¢ : Prop].

Example 1 Let 13 = (Prop™ — Prop)™ — Prop™ — Prop and ¢z =
(UF™. AGPrP' =Prop xProp (G x) v/ (F (AYP™P G (G Y)) X)) (AZ""°P. (2)Z) (b)T.

Then g= ¢ iff there is n> 0 such that there is a path of the form b starting at s. Sincéa®' b | n> 0}
is not a regular language, the property expressedbgannot be expressed in the mogatalculus.

Proposition 2 [20] Let .7 = (S d) be aLTS and let,s' € S be two bisimilar states of . Then for any
closed formulap of typeProp, sE=4 ¢ iff S =45 ¢.

We assume the standard notatianga) andvX. (.) for the conjunction, the necessity modality, and
the greatest fixed point, defined as the duals ofa) anduX. (.) respectively.

Definition 1 (Negation Normal Form) A HFL formula is in negation normal form if it is derivable fro
the grammar

@ s=T|Llovylory|@¢|[al¢ [X[AXTd[¢ ¢|uX ¢ |vX ¢

where ther are monotonetypes, i.e. types where all variances are equat-to
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Note that since all variances afe we omit them when writting formulas in negation normal form

We say that two formulag, ( are equivalentp = ¢, if for every type environmert, for every LTS
7, for all typet, the judgemenf I ¢ : 1 is derivable iffl - ¢ : Tis, and in that cas& [T + ¢ : 1] =
Tr=y:1].

Model-Checking We briefly recall the results known about the data complexitgFFL model-checking
(see also the results of Langeal on the combined complexity [1] or the descriptive comphexit4] of
HFL and extensions).

Note that if. 7 = (S d) is a finite LTS, then for all type, the Boolean ring7 [7] is a finite set, and
every element of7 1] can be representad extension Moreover, the least fixed point of a monotone
function f : .7 [t] — 7[1] can be computed by iteratinat mostn times, wheren is the size of the
finite boolean ring7 [1].

The ordeiord(1) of atyper is defined asrd(Prop) = 0 andord (0¥ — 1) = max(ord(7),1+ord(0)).
We write HFL (K) to denote the set of closed HFL formulgf type Prop such that all type annotations
in ¢ are of order at mosk. For every fixedp € HFL(k), we callMC(¢) the problem of deciding, given
alTS.7 and a stats of .7, wethers|=4 ¢.

Theorem 3 [1] For every k> 1, for every¢ € HFL(k), the problemMC(¢) is in k-EXPTIME, and there
is a Y € HFL(K) such thatMC(yx) is k-EXPTIME hard.

3 Monotonization

In order to define a negation elimination procedure, theifiest is probably to reason like in the modal
u-calculus, and try to “push the negations to the leaves’eduld there are De Morgan laws for all logical
connectives, including abstraction and application,einc

—|(¢ L)U) = (—|¢) (II and ﬁ(/\XV’T.L,U) = /\Xiv’r._!q./.

In the modalu-calculus, this idea is enough, because the “negation cwirdriterion ensures that each
pushed negation eventually reaches another negation éinébibilate. This does not happen for HFL.
Consider for instance the formudg =

(uXProp’=Prop AyProp0 () v/ (X ((a)Y))) T.

The negation already is at the leaf, kg is not in negation normal form. By fixed point unfolding,
one can check thap, is equivalent to the infinite disjundf~o[a"L, and thus could be expressed by
uxPrep [a]X. The generalization of this strategy for arbitrary fornsulgould be interesting, but it is
unclear to us how it would be defined.

We follow another approach: we do not try to unfold fixed pginor to applyB-reductions during
negation elimination, but we stick to the structure of tharfola. In particular, in our approach a sub-
formula denoting a functiori is mapped to a subformula denoting a functidnn the negation normal
form. Note that even if is not monotonef’ must be monotone since it is a subformula of a formula in
negation normal form. We cafl’ amonotonizatiorof f.

Examples Before we formaly define monotonization, we illustrate itimpiples on some examples.
First, consider again the above formula. This formula contains the functiohYPoP0, (=Y)v
(X ((a)Y)). This function is unrestricted (neither monotone nor ant). The monotonization of this
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function will be the functiom YProp-+ YF°P* ¥ v/ (X ((a)Y)). To obtain this function, a duplicaté of
Y is introduced, and is used in place-6f. Finally, the formulap, =

(XProp-sPropPron jyProp YPP 7/ (x ((a)Y) ([aY))) T L

can be used as a negation normal fornpgf Note that the parametér that was passed to the recursive
function in¢, is duplicated ing;, with one duplicate that has been negated (tHermula).

More generally, whenever a function is of typ€ — 1, we transform it into a function of type
o" — of" — T1; that takes two arguments of tyje (the translation otr). Later, when this function is
applied, we make sure that its argument is duplicated, ome piositively, the other negatively.

Duplicating arguments might cause an exponential blowFagp.instance, for the formulés =

(AXPrP X v (@)=X)  ((AYPPO Y Vv (b)-Y) T)
if we duplicated arguments naively, we could get the fornfifla=
(AXPoP X X v @X)  ((AYPP YT P Y v (Y) T L) ((AYPP.Y P . YAbY) T 1)

where the originalT formula has been duplicated. If it occurred undernaath2 applications of an
unrestricted function, we would havé opies of T. We will come back to this problem in Section 4.
Let us now observe how monotonization works for functioret tre antitone. In general, ff is
an antitone function, both the “negation at the callé{x) = —~f(x) and the “negation at the callee”
fa(x) = f(—x) are two monotone functions that faithfully represéntActually, both of them might be
needed by our negation elimination procedure.
Consider the formulgg =

()\ F Prop~ —Prop,+ .[,lXPrOp.F (—|X)) ()\ YPFOPf —|<a>Y)

In order to compute the negation normal formggf we may represemtY P~ —(a)Y by its “negation
at the callee”, yielding the formuldy =

(AFProp—Prop 1 Prop £ 5y (AY7"P [a]Y).
Conversely, consider the formufg =
()\ FProp_HProp,f. uXProp. (ﬁF) X) ()\YPFOPﬁ. ﬁ<a>Y)

The only difference withpg is that the negation is now in front &f instead ofX. In that case, “negation
at the callee” does not help eliminating negations. But atieq at the caller” does, and yields the
negation normal forng,, =

(/\ﬁProp%PrOP. uXPrOP. fx) (AYPrOp- @y).

These examples suggest a negation elimination that preadedg possibly different strategies in
the case of an applicatiop ), depending on the semanticsgpfand . In the next section, we explain
how the strategy is determined by the typepofFor now, we focus on making more formal our notion
of monotonization.
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exp(Prop) = Prop exp(F1,M2) =exp(l1),exp(l2)
exp(Tt — 0) =exp(T)" — exp(0) exp(XT:17) =X :exp(T)

exp(T- = 0) =exp(1)" — exp(0) exp(X~:1) =X 1exp(1)

exp(1° = 0) =exp(1)" = exp(T)" = exp(0)  exp(X0:17) =XT:1exp(1),X :exp(T)

Figure 2: Expansion of types and typing environments tos/andnotonization.

Monotonization Relations We saw that our negation elimination bases on the abilityatthfully
represent a predicate transforngeby a monotone predicate transformgrin this case, we will say that
Y is amonotonizatiorof ¢. We now aim at defining formally this notion. More preciselg aim at
defining the relatiort such thatp < ¢ holds if ¢y is a monotonization op.

First of all, < relates a formula of type to a formula of typexp () as defined in Fig. 2: the number
of arguments ofp is duplicated if¢ is unrestricted, otherwise it remains the same, and of equris
monotone in all of its arguments.

In Fig. 2, we also associate to every typing environmerite typing environmengxp(I) with all
variances set ta-, obtained after renaming all variables with varianedn their bared version, and
duplicating all variables with variance 0. In the remaindez always implicitly assume that we translate
formulas and typing environments that do not initially @ntbared variables.

The relation« is then defined coinductively, in a similar way as logicahtigins for theA -calculus.
Let Rbe a binary relation among typing judgements of the férim¢ : 7. The relatiorR is well-typed if
TE¢:T)R(M+¢’: 1) impliesI’" = exp(I') andt’ = exp (7). WhenRis well typed, we writep R- ¢’
instead of T ¢ : T)R(IM ¢’ : T').

Definition 2 A binary relation R among typing judgements isn@notonization relationf it is well-
typed, and for all formulag, ¢’, for all I', T such thatp R- ¢,
1. if ¢,¢’ are closed and = Prop, then¢ = ¢’;
2. if T =T" X" : 0, then(AXT+. ¢) R g+ (AXSPO)F ¢");
3. M =", X" : 0, then(AX~. ¢) R g ,r AXTPO g1y,
ifF =", X%: 0, then(AX70. §) Re go_,r (AXSP(@)+ X gy,
ift=0"— v, thenforally,y such thaty R- s ¢/, (¢ Y)Rru (¢’ ¢');
ift=0" — v, thenforally,y',¢" such thaty Rr ; ¢' and /' = -~¢”, (¢ Y)Rr, (¢’ ¢);
if 1= 0%— v, then for ally, /', ¢ such thaty R- o ' and /' = ~¢", (¢ Y)Rry (¢’ ' Y").

N g A

If (R)ier is a family of monotonization relation, then solik.| Ri; we write< for the largest mono-
tonization relation.

Example 2 Consider¢ = (AXPP—. =X). Thend <p,,, prop (A X """ X). Consider alsoy =
(AXProPO_ X A =X). Theny < (AXProP+ X P 1) and < (AXProP+ XPF X AX).
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tr(T) =T tf+(ll/1\/‘~l’2) tr+(¢’1)\/tr+(¢’2>
tr_(T) = L r- (Vi) = tr(gn) Atr_(gp)
tr+(X) = X tr ()\XT+ l,U) Axexp() tl’v(l‘U)
tr (X) = X try(AXT. ) = AR ()
trv(~y) = troy(y) try(AXTO. ) = AXeP0 X ()
tr (@) = @tr(Y) tr+(uXT W) = puXPO tr, ()
tr_((@y) = [atr_ () (uxr Y) = VYeXp(T).tr,(L,U)
{ trv(Y1) tre (o) if type(Yn/¢)=0"—n
try(Yn gp) = ¢ tr(Yn) tr(4n) if type(yn/¢)=0" —>’7
try(Yn) try (@) tr(Yo) if type(yn/¢) = 0° —

Figure 3: Type-Directed Negation Elimination

4 Negation Elimination

Our negation elimination procedure proceeds in two stepst; & formulag is translated into a formula
tr, (¢) that denotes the monotonization ¢f then,tr (¢) is concisely represented in order to avoid an
exponential blow-up.

The transformatiortr_ (.) is presented in Figure 3. The transformation proceeds lgtsiral in-
duction on the formula, and is defined as a mutual inductidh thie companion transformatian_(.).
Whenever a negation is encountered, it is eliminated andltlaétransformation is used. As a conse-
quence, wethetr, (.) or tr_(.) should be used for a given subformula depends on the po[a&iyof
this subformula.

Lemma 4 Let ¢ be a fixed closed formula of tygrop. For every subformulay of ¢, let tr, (¢) and
r_(y) be defined as in Figure 3, and IEt- ¢ : T be the type judgement associatedytan the type
derivation of¢. Then the following statements hold.

1. exp(l) Ftro (@) :exp(1) andexp(—I) Ftr_ () : exp(T).
2. Yarotry (@) and P <r o —tr ().

Proof: By induction ony. We only detail the point 1 in the case ¢f= (s Y with type(yn/¢) =
o~ — T. Let us assume the two statements hold ggrand ¢, by induction hypothesis. Ldt be
suchthatf ¢ : 1, THYr: 0 — 1, and-I - ¢r : 0. By induction hypothesis, the judgements
exp(lM) Ftry(¢gn) i exp(o~ — 1) andexp(——I) F tr_(y») : exp(0) are derivable. Sincexp(o~ —
T) =exp(0)T — exp(1) and——I =T, the typing rule for function application in the monotonseaf
Fig. 1 yieldsexp (") Ftry () tr—(yr) : exp(T), which shows statement 1 for, (.). The case fotr_(.)
is similar. O

Corollary 5 If ¢ is a closed formula of typBrop, then¢ = tr.(¢) andtr,(¢) is in negation normal
form.

As observed in Section 3, the duplication of the argumenthércases = 0 of the monotonization
of ¢ may cause an exponential blow-up in the size of the formulaweéver, this blow-up does not
happen if we allow some sharing of identical subformulas.

Let ¢ be a fixed closed formula. We say that two subformwasnd ., of ¢ are identical if they
are syntactically equivalent and if moreover they have #mestype and are in a same typing context,
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i.e. if the type derivation o goes through the judgemeritst ¢ : 1; for syntactically equivalerit; and
Ti. For instance, in the formula

(AXPoPPron, ) ((AX(Prep-Prop)(Prom o) ) (xyPrep Py 7))

any two distinct subformulas are not identical (includihg subformulas restricted ). We calldag
sizeof ¢ the number of non-identical subformulasdof

Lemma 6 There is a logspace computable functidrare(.) that associates to every closed formgla
of dag size n a closed formusaare(¢) of tree sizeZ/(n-|vars(¢)|) such thatp = share(¢).

Proof: Let ¢ be fixed, and letp; ..., ¢, be an enumeration of all subformulas @fsuch that if¢;
is a strict subformula o, theni < j. In particular, we must havg = ¢,. Pick some fresh vari-
ables Xy, Xp,...,Xn € Var and letu; = type(¢i/¢). For everyi = 1,...n, let Yy, 01,v1,... Yk, Ok, Vk
be a fixed enumeration of the free variables¢of their types and their variances, and lgty) =
AY P LY g and @(W) = ¢ Y ... Vi Finally, letti = 0)* — ...g¢ — uj. For every sub-
formulay of ¢, let ||| be defined by case analysis on the first logical connectivg: of

if ¢ =¢i =nY. ¢;, wheren € {A,u,v}, then|y| = A (nY?. @(X)));

if Y =¢i = §; © i, whered € {Vv, A, application}, then||y|| = Ai(@;(X;) ® @(X));

if ¢ = ¢i = &, whered € {—,(a), [a]}, then||y|| = A (M@ (X))));

otherwise||¢i|| = Ai(i).

Finally, let share(¢) = let X{* = [|¢1] in let X32 = ||p2] in ... let X"} = ||¢n_1|| in ||¢n]| where
let X" =g in ¢ is a macro foAX". ¢/') . Thenshare(¢) has the desired properties. O

Theorem 7 There is a logspace-computable functiorf(.) that associates to every closed HFL formula
¢ (without variable masking) of typerop a closed formulanf(¢) such that

1. ¢ =nnf(9),

2. nnf(@) is in negation normal form, and

3. [nnf(¢)| = O(|@]-|vars(¢))),

where|| denotes the size of the tree representatiog ¢ife. the number of symbols i), andvars(¢) =
fv(¢)Ubv(¢) is the set of variables that occur i.

Proof: Let nnf(¢) = share(tr(¢)). This function is logspace computabler( (¢) can be computed
“on-the-fly”) andnnf(¢) is of size'(|¢| - |vars(¢)|) by Figure 3 and Lemma 6. The formule, (¢) is
in negation normal form, arghare(.) does not introduce new negations,sd(¢ ) is in negation normal
form. Looking back at Figure 3, it can be checked that its dzgis linear in the dag size gf, so the tree
size ofnnf(¢) is linear in the tree size af. Moreover,nnf(¢) =tr, (¢) by Lemma 6, andr,(¢) = ¢
by Corollary 5. O

5 Conclusion

We have considered the higher-order modal fixed point |a2i¢ (HFL) and its fragment without nega-

tions, and we have shown that both formalisms are equallyessjve. More precisely, we have defined
a procedure for transforming any closed HFL formglalenoting a state predicate into an equivalent
formulannf(¢) without negations of siz&(|¢|-|vars(¢)|). The procedure works in two phases: in a
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first phase, a transformation we callewnotonizatioreliminates all negations and represents arbitrary
functions of typer — o by functions of typer — 1 — o by distinguishing positive and negative usage
of the function parameter. The price to pay for this transfation is an exponential blow-up in the size
of the formula. If the formula is represented as a circuityéeer, the blow-up is only linear. The sec-
ond phase of our negation elimination procedure thus cnisismplementing the sharing of common
subformulas using higher-orderness. Thanks to this sepbasge, our procedure yields a negation-free
formulannf (@) of size&'(size(¢) - |vars(¢)|), hence quadratic in the worst case in the size of the original
formula¢.

Typed versus Untyped Negation Elimination Our monotonization procedure tgpe-directed the
monotonization ofp ¢ depends on the variance @f that is statically determined by looking at the type
of ¢. One might wonder if we could give a negation eliminatiort thauld not be type-directed. A way
to approach this question is to consider an untyped conbenextension of the logic where we do not
have to care about the existence of the fixed points — fornosteone might want to interpreteX.¢ (X)

as the inflationary “fixed point” [7]. We believe that we coaldapt our monotonization procedure to this
setting, and it would indeed become a bit simpler: we couldhgs monotonize) ¢ “pessimistically”,

as if ¢ were neither a monotone nor an antitone function. For instatine formulguX.(AY.Y) X would

be translated inttX.(AY,Y.Y) X =X,

In our typed setting, it is crucial to use the type-directednotonization we developed, because
monotizing pessimistically might yield ill-typed formwa In an untyped setting, a pessimistic mono-
tonization is possible, but it yields less concise formulasd it looses the desirable property that

nnf(nnf(¢)) = nnf(¢).

So types, and more precisely variances, seem quite uné&eid&lowever, strictly speaking, the
monotonization we introducedvariance-directedand not really type-directed. In particular, our mono-
tonization might be extended to the untyped setting, rglyin some other static analysis than types to
determine the variances of all functional subformulas.

Sharing and Quadratic Blow-Up The idea of sharing subterms ofpaterm is reminiscent to im-
plementations ofA-terms based on hash-consing [8, 11] and to compilationdhy@ft calculus into
interaction nets [13, 16, 10]. We showed how sharing can peesented directly in tha-calculus,
whereas hash-consing and interaction nets are concertiedepresenting sharing either in memory or
as a circuit. We compile typesl-terms into typed\ -terms; a consequence is that we do not manage to
share subterms that are syntactically identical but hateredifferent types or are typed using different
type assumptions for their free variables. This is anotliféerdnce with hash consing and interaction
nets, where syntactic equality is enough to allow sharifgesmns. It might be the case that we could
allow more sharing if we did not compile into a simply typ&etalculus but in a ML-like language with
polymorphic types.

An interesting issue is the quadratic blow-up of our implatagon of “A-circuits”. One might
wonder wether a more succinct negation elimination is jpessin particular a negation elimination with
linear blow-up. To answer this problem, it would help to aasthe following simpler problemgiven a
A-term t with n syntactically distinct subterms, is there #edively computabld -term t of sized'(n)
such that t=, t'? We leave that problem for future work.
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In functional programming, datatypes a la carte provide a convenient modular representation of re-
cursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to
implement this technique in proof assistants that are based on type theory, like Coq. The reason is
that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly
positive. The known work-around of impredicative encodings is problematic, insofar as it impedes
conventional inductive reasoning. Weak induction principles can be used instead, but they consider-
ably complicate proofs.

This paper proposes a novel and simpler technique to reason inductively about impredicative
encodings, based on Mendler-style induction. This technique involves dispensing with dependent
induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations.
A case study on proving subject reduction for structural operational semantics illustrates that the
approach enables modular proofs, and that these proofs are essentially similar to conventional ones.

1 Introduction

Developing high-quality software artifacts, including programs as well as programming languages, can
be very expensive, and so can formally proving their properties. This makes it highly desirable to max-
imise reuse and extensibility. Modularity plays an essential role in this context: a component is modular
whenever it can be specified independently of the whole collection — therefore, a modular characterisa-
tion of an artifact implies that its extension does not require changes to what is already in stock.

In functional programming, it is natural to rely on a structured characterisation of components based
on recursive datatypes. However, conventional datatypes are not extensible — each one fixes a closed set
of constructors with respect to which case analysis may have to be exhaustive, hence each case implicitly
depends on the whole collection. An elegant solution to this tension between structural characterisa-
tion and modularity, also known as the expression problem, has been found with the notion of modular
datatype (MDT) —i.e., datatypes a la carte, introduced in Haskell by Swierstra [16]. The definition of an
MDT consists of two distinct parts: the grammar, as a non-recursive structure based on a functor, and the
recursive datatype, as the recursive closure of the functor by a type-level fixed point. Grammar functors
behave as modules, as they can be defined independently and combined together by coproduct.

In Haskell, an MDT can be easily implemented in terms of conventional datatypes, which can be
used to define the grammar as well as the recursive closure (as recalled in Section 2). However, Haskell’s
datatype definition of the type-level fixpoint operator is not strictly positive, and therefore it is problem-
atic from the point of view of less liberal type systems. As a general-purpose programming language,
Haskell relies on types that do not enforce totality (i.e., either termination or productivity). This makes
type checking easier in the presence of non-termination. Unfortunately, allowing for non-total programs
can lead to inconsistency under a program-as-proof interpretation. For this reason, proof assistants based
on the Curry-Howard correspondence are usually based on more restrictive type systems. Proof assis-
tants such as Coq, Agda, Isabelle and Twelf, for instance, rely on a syntactic criterion of monotonicity
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which ensures totality, by requiring that all the occurrences of an inductive datatype in its definition are
strictly positive — hence incompatibly with the Haskell-style representation of MDTs.

Coq is a theorem prover based on the calculus of inductive constructions (CIC) [3] which extends
the calculus of constructions (CC) [5] with inductive and coinductive definitions. CC, the most expres-
sive system of the lambda cube [2], allows for types depending on terms, type-level functions and full
parametric polymorphism, hence also for definitions that are impredicative, in the sense of referring in
their bodies to collections that are being defined. One of the main approaches to represent MDT in Coq,
due to Delaware, Oliveira and Schrijvers [7] and implemented in the MTC/3MT framework [6], takes
advantage of impredicativity, and relies on the Church encoding of fixed points (as recalled in Section 3).
Another promising approach, due to Keuchel and Schrijvers [11], relies on containers — it is predicative,
but it involves a more indirect representation of types. Church encodings are purely based on CC and
do not involve any extra-logical machinery — however, they rather complicate inductive reasoning. Im-
predicative definitions have an eliminative character that hides term structure, hence making it harder to
reason by induction. The solution proposed by Delaware et al. is quite general — however, it relies on
proof algebras that pack terms together with proofs using X-types, and this leads to inductive proofs that
have a significant overhead with respect to the conventional, non-modular ones.

This paper proposes a novel solution to the problem of reasoning inductively with impredicatively
encoded MDT, based on the use of Mendler-style induction [12, 18, 1]. Mendler’s characterisation of
iteration makes it possible to encode an induction principle within the impredicative encoding of an
MDT. Unlike Delaware et al., we use Mendler algebras as proof algebras. This leads to inductive proofs
that are straightforwardly modular and ultimately closer to conventional ones (Section 4). Although
this approach cannot handle dependent induction, this limitation is of little consequence as long as we
are reasoning about relational formulations. Nonetheless, this may make it necessary to lift inductive
datatypes to inductively defined predicates, in order to use them as inductive arguments in proofs.

In order to reason inductively on relations, we clearly need to rely on functor shapes that can rep-
resent them as well as mutual dependencies. Such need is highlighted throughout a case study on the
formalisation of a language based on structural operational semantics (Section 5, Coq implementation
available [17]). The language, for which we prove type preservation, has a definition that involves mutual
dependency between expressions and declarations.

2 Datatypes a-la-carte

MDTs as introduced by Swierstra [16] are essentially a functional programming application of the initial
algebra semantics of inductive types. This consists of associating an inductive datatype to an endofunctor
in a base category, then interpreting it as the initial object in the category of algebras determined by the
functor [9, 19].

In its simplest form, taking sets (S) as the base category, each inductive datatype p : S can be associ-
ated with a covariant endofunctor (signature functor), i.e. amap F : S — S for which there exists a map
(functor map) fmapy {A B} : (A — B) — (F A — F B) that preserves identities and composition, with
A, B:S (always treated as implicit parameters). Semantically, an algebra determined by F (F-algebra) is
a pair (C,¢) where C : S is the carrier and ¢ : F C — C is the structure map. F C can be understood as the
denotation of a grammar based on signature F, given carrier C. The initial object (LF,inF), where ing is
an isomorphism and thus has an inverse outr, gives the denotation of p obtained as the fixpoint closure
of F. In this way, the non-recursive structural characterisation of p, which essentially corresponds to
case analysis, is separated from its recursive closure. For instance, in a functional language which allows
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for datatype definitions with data constructors and Haskell-style destructors (while we mainly rely on
Cog-style and standard algebraic notation), the following

dedef p = ci (nlp/A)) ... | ck (w[p/A]) (1)
can be decomposed in
dtdef FA = ¢y (1)) |... | ek () )
and
p =ar FixF 3)
where Fix F is the syntactic representation of UF, i.e.
dt_def Fix F = in (out: F (Fix F)) 4)

For each F-algebra (C, f), the unique incoming algebra morphism from the initial algebra is determined
by the unique mediating map foldrc s : uF — C. Syntactically, this corresponds to the definition of
fold FC: (F C— C) — (Fix F — C) as a recursive function.

fold F C fx =45 f (fmap F (fold F C f) (out x)) 3)
Functors are composable by coproduct (+), i.e., if Fi,F> : S — S are functors, so is Fj+F>, with
dt_def <F1+F2) C = inl (F] C) ‘ inr (F2 C) (6)

This results in a modular definition of the inductive datatype Fix (Fi+F>) — not to be confused with
Fix F1+Fix F>. In connection with coproducts, Haskell implementations of MDTs rely on type classes to
automate injections and projections, using smart constructors and class constraints to express subsump-
tion between functors. As a concrete example, following Swierstra [16], the conventional datatype

dt_def Trm = lit (Int) | add (Trm* Trm) (7
can be decomposed into two modules
dt_def Trmgy C = lit (Int) dt_def Trmgy C = add (C*C) ®)
and thus modularly defined:
Trmg =47 Trmgy + Trmga Trm =44 Fix Trmg )
Moreover, given a notion of value and a conventional recursive definition of evaluation
dt_def Val = val (v : Int) eval : Trm — Val
eval (litx) =4 valx (10)

eval (add (ey,e2)) =4r val ((vwoeval e;)+ (vwoeval es))

the latter can be represented by an algebra and modularly decomposed as follows, allowing for a modular
definition of the dynamic semantics.

evalgy : Trmgy Val — Val evalgy (litx) =47 valx
evalgs : Trmg, Val — Val evalgp (add (x1,x2)) =4¢ val ((w x1)+ (v x2)) (11
evalg : Trmg Val — Val evalg (inl e) =q4r evalgy e

evalg (inre) =45 evalgp e

eval e =4 fold Trmg Val evalg e (12)
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3 Impredicative encoding

The MDT representation discussed so far works well with Haskell, but not with Coq. Representing F as
an inductive datatype is not problematic, but this is not so for the fixpoint closure. Since the constructor
of Fix F has type F (Fix F) — Fix F, the datatype has a non-strictly positive occurrence in its definition,
as parameter of the argument type — hence it is rejected by Coq. There is an analogous issue with the
definition of fold, which is not structurally recursive. The solution to this problem adopted by Delaware
et al. in [7], which we summarise here, goes back to Pfenning and Paulin-Mohring [13] in relying on a
Church-style encoding of fixpoint operators, thus requiring impredicative definitions.

From the point of view of a type theoretic representation, the type of an algebra (that we may call
Church algebra, or conventional algebra) can be identified with the type of its structure map.

Algc FC =4 FC—C (13)

If the initiality property of fixed points is weakened to an existence property, a fixpoint operator can be
regarded as a function that maps an algebra to its carrier. An abstract definition of the type-level fixpoint
operator Fix® : (S — S) — S can then be given, as elimination rule for F-algebras, impredicatively with
respect to S (this requires the impredicative set option in Coq, as used in MTC/3MT [7]).

Fix“ F =4 VA:S.Alg" FA— A (14)

The map fold® F C: Alg® F C — Fix® F — C, corresponding to the elimination of a fixpoint value, can
now be defined as the application of that value.

fold“ FC fx=4;xC f (15)

Relying on the functoriality of F, the in-map in© F : F(Fix F) — Fix F and the out-map out® F : Fix F —
F(Fix F) can be defined as functions.

inCF =44 AxA f. f(fmap F (fold® F A f) x) (16)
out® F =, fold® F (F(Fix F)) (fmap F (in© F)) (17)

Notice that the definition of fold® F C f does not guarantee the uniqueness of the mediating map — it
rather corresponds to a condition called quasi-initiality by Wadler [19]. In order to obtain uniqueness,
hence to ensure that in© is an isomorphism, the following implication needs to be proved for F [7, 11, 10].

(Vx:FixC F. h(in©Fx) = f (fmap F hx)) — (h = fold® F C f) (18)

Semantically, the impredicative encoding of the fixed points is closely associated with a constructor,
usually called build, that allows for an alternative interpretation of inductive datatypes in terms of limit
constructions, provably equivalent to the initial algebra semantics [8].

3.1 Indexed algebras

A relation can be represented as a function from the type of its tupled arguments to the type P of propo-
sitions. From the point of view of initial semantics, assuming P can be represented as a category, the
modular representation of inductively defined relations only requires a shift of base category. Given a
type K (i.e., K : Type) and assuming it can be represented as a small category, we can take the category
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of diagrams of type K in P as the base category for the relations of type K — P. In such category, an
endofunctor R: (K — P) — (K — P) that here we call indexed functor, is then associated with a map
(indexed functor map) that preserves identities and composition.

fmap' KR:V{AB: K—P}.(Vw:K.Aw—=Bw)— (Yw:K.RAw —RBw) (19)

From the point of view of the impredicative encoding, an R-algebra can be characterised as an indexed
map, given a carrier D : K — P.

Alg"KRD =44 Yw:K.RDw—Dw (20)
The corresponding fixpoint operator has type (K —+P) - K —-P) — K — P.
Fix' KR(w:K) =4y VA:K—>P.AIg“KRA — Aw (21)
The structuring operators can be defined as follows:

fold“' KR: VA (f: AlgY KRA) (w:K). Fix KRw—Aw =4 M fwe.eAf  (22)

in KR (w:K):R(FxX“KR)w—Fix“ KRw =4

AxA f. fw(fmap' KR (fold” K RA f) wx) 3)

out' KR (w:K):Fix" KRw— R (FixXY KR) w =4¢

fold”' K R (R (Fix“' K R)) (fmap' K R (in“ K R)) w @4

3.2 Proof algebras

The impredicative encoding makes it comparatively easy to represent MDTs in Coq, but leaves us with
the problem of how to reason inductively about them. Unlike the in-map of the categorical semantics,
in© is not a constructor — therefore, structural induction cannot be applied to a term of type Fix® F. Let
P: T — P be a property and T the representation of an inductive datatype in the following goal, which
we assume to be semantically provable by induction on 7.

Fw:THg:Pw (25)

However, given T =4 Fix¢ F and the impredicative definition of Fix*, the type T is not syntactically
inductive, and no conventional induction principle can be applied. Nevertheless, we can prove

W:T.3w:FT.Pv = P (in® Fw) (26)

as this follows from the equality v = in® F (out® F v) which can be proved, provided in® F is shown
to be an isomorphism — e.g., by proving (18). Rewriting (25) with (26), we obtain

F,w:FTI—g’:P(inCFW) 27

Here it is possible to apply induction on w, since F' T is an inductive datatype: however, what we actually
get is case analysis — the recursive arguments in ' T are hidden in the same sense as before, as they have
type T rather than F' T.
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The solution adopted by Delaware et al. in [7], implemented in Coq and supported by MTC/3MT
consists of packing an existential copy of the inductive term together with a proof that it satisfies the prop-
erty, using X types. This involves replacing the conventional proof with one based on the representation
of the goal as an algebra, i.e., a proof algebra.

TEf: Algt F (Zv. Pv) (28)
By folding such an algebra, one obtains
C,w:THfold F (Xv. Pv) fw: Zv. Py (29)

which states something weaker than the original goal (25). Nonetheless, under conditions associated
with well-formed proof algebras in [7], (28) can be strengthened to (25). This technique is quite general,
and it can be applied to inductive proofs in which the goals may depend on the inductive argument (i.e.,
it can deal with dependent induction). However, the proofs that are obtained in this way are essentially
factored into two non-trivial parts — the application of a weak induction principle and a well-formedness
proof — and therefore are quite different from conventional inductive ones.

3.3 Looking for a simpler solution

A natural question arises: is it possible to sacrifice some of the generality of the MTC approach, to obtain
proofs that look more familiar? The whole point of using X types is to hide dependencies: a solution
that does not involve them and so a positive answer to our question appear more feasible, when we can
dispense with the use of dependent induction, by finding an alternative, equivalent formulation of the
goal. In our schematic example (25) we get such reformulation, when we can find S, O : T — P and an
indexed functor R : (T — P) — T — P such that S =, Fix®' T R, the following equivalence holds

there existsts.t. THt: Vw:T.Sw—0Ow iff there exists ¢’ s.t. T'H¢': Vw:T.Pw (30)
and the following is semantically provable, as the new goal, by induction on 4:
Fow:T,h:Swk1:0w (31)

Intuitively, this means that the dependency of the proof on w can be lifted to a type dependency, given a
sufficiently close analogy between 7" as modular inductive datatype and S as modular inductive predicate,
therefore by rather using % of type S w as inductive argument. Again, we need to expose the inductive
structure by shifting to

C,w:T,h:R(FxX“ TRYwHI':Qw (32)

and this is not problematic. However, as before, we end up stuck with case analysis rather than proper
induction. In order to solve this problem, we need to look at an alternative encoding of fixed points, based
on Mendler-style induction [12, 1]. In fact, Mendler’s approach makes it possible to build induction
principles into impredicatively encoded fixed points. Notice that Mendler algebras are used by Delaware
et al. [7], but have a different purpose there (i.e., controlling the order of evaluation), from the one we
are proposing here.
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4 Mendler algebras

We first present the Mendler-style semantics of inductive datatypes by introducing Mendler algebras as
a category, following Uustalu and Vene [18]. Given a covariant functor F : S — S, a Mendler algebra is
a pair (C,¥) where C : S is the carrierand ¥ A: (A —C) — (F A — C), foreach A : S, is a map from
morphisms to morphisms satisfying ¥ A f = (¥ Cidc) - (fmap F f), with f a morphism from A to C.
A morphism between Mendler algebras (C;, W) and (C5,¥;), is a morphism 4 : C; — C, that satisfies
h-¥ Cy idc, = W2 Cy h. The Mendler algebra semantics has been proved equivalent to the conventional
one by Uustalu ef al.. Assume F such that the conventional initial F-algebra (UF,ing) exists. Given the
abbreviation

preing C (m:C — UF) =45 ing-(fmap F m): (F C — uF) (33)
we can prove the equation
ing = pre_ing uFid (34)

by the isomorphic character of inp. The Mendler algebra (UF, pre_iny) can thus be shown to be the
initial object in its category, and therefore used as alternative interpretation of the inductive datatype
associated with F. For each Mendler algebra (C,¥), the unique incoming morphism from the initial
Mendler F-algebra can be defined

mfold F CW¥ x =45 ¥ (uF) (mfold F C W) (outr x) (35)

Unlike the conventional fixpoint operator, the Mendler one can be encoded in Coq as an inductive
datatype (though using the impredicative option).

dt_def MFix F = pre_in (C:S) (b:C — MFixF) (c: F C) (36)

However in, as defined by equation (34) in this setting, is still not a constructor, and the definition of
mfold is not structurally recursive. Therefore, also in this case, it seems more convenient to resort to an
impredicative encoding, following [12, 7].

4.1 Impredicative Mendler algebra encoding

Mendler algebras can be characterised impredicatively by the type of their structure maps, and a fixpoint
operator can be defined as in the conventional case [12, 7].

AlgMFC =4 VA. (A= C)— (FA—C) (37)
FixM F =4 VC.AlgM F C—C (38)

Unlike the conventional case, the type of a Mendler algebra can be read as specification of an iteration
step, where the bound type variable A represents the type of the recursive calls. The corresponding fold
operator

foldM F C fx =44 xC f (39)
indeed has type

foldM FC: (VA.(A—C) = (FA—C)) — (FixXMF) = C (40)
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which can represent an induction principle, under the assumption that the argument to the induction
hypothesis is only used therein without further analysis [12, 1]. In-maps and out-maps can be defined as
follows

inMF (x: F(FXM F)) :FixM F =47 AA (f: AlgM F A). f (FXM F) (foldM F A f) x (41)

outM F (x: FixM F) : F (FsxM F) =4 x (F (FixM F))

(AA (r:A— F (FoxM F)) (a: F A). fmap F (Ay: A.inM F (ry)) a) (42)

As in the conventional case, impredicative fixpoint definitions give us quasi-initiality. The uniqueness
condition of fold™ F A f that is needed for initiality, in a way which parallels (18), is given by

(vx:F (FxM F).h (ifMFx) = f(FixXMF)hx) = h = foldM FA f (43)

to be proven for a fixed F, forevery A: S, f: AlgM FAand h: FixM F — A [18].

4.2 Indexed Mendler algebras

As before, we need indexed algebras to deal with relations. The definitions are similar to the conventional
ones, with K a type, R : (K — P) — (K — P) an indexed functor, and D : K — P an indexed carrier.

AlgM KRD =4 VA. (Vw:K.Aw—Dw) —>Vw:K.RAw—Dw (44)
FixM K Rw =4 VA.AIgM KRA - A w (45)
foldM' K RD (f: AlgM K RD) (w: K) (x: FisxM KRw) =4y xD f (46)

inM KR (w:K) (x:R(FXM KR)w): FsxM K Rw =4

AA (f : AlgM K R A). f (FXM K R) (foldM' K RA f) w x “47)

outM KR (w:K) (x: FsxM KRw): R (FXM KR)w =
x (R (FiXM'KR)) (A A (r:¥v.Av— R (FsxM K R) v) (48)
(w:K) (@a:RAw).fmap' R (Ay:Aw.inM K Rw (rwy)) a)

As an example, we can define inductively a relation Eval : (Trm % Val) — P that agrees with eval.

dt_def Evalg (A: (Trm=Val) = P) : (Trm«Val) - P =
evl: Vx:Int. Evalg A (lit x,val x)
ev2: Vej ey : Trm,x; xp : Val. A(er,x1) N A(ez,x2) —
Evalg A (add(ey,ez),val((vv x1) + (v x3)))

Eval =45 FixM' (Trm« Val) Evalg (50)

(49)
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4.3 Proof algebras, Mendler-style

Reconsider the schematic example in Section 3.2: the problem in (32) was the missing induction hypoth-
esis, that cannot be obtained by appealing to the standard inductive principle, as the recursive occurrences
are wrapped in a non-inductive type. Intuitively, this can be fixed by giving such an hypothesis explicitly.
This would give us a generic representation of the step lemma in our inductive proof.

L, hop:Vv:T.Fix TRv—=Qv,w:T, b :R(FX“ TRYw - qg:Qw (51)

However, here the type of Ay is actually too specific to be that of the induction hypothesis with respect to
h; — as aresult, the sequent is too weak to take us to the main goal (31). At this point, Mendler’s intuition
comes into play: under the assumption that the argument passed to the induction hypothesis is used only
there, without further case analysis, and that therefore we make no use of its type structure, its type can
be represented by a fresh type variable — the key feature of Mendler-style induction [12, 1]. We can then
strengthen (51) to the following, more abstract goal.

I A:Type, hg:YW:T.Av—=Qv,w:T, hy :RAwF p:Qw (52)
Given f =4 AA ho w hy. p, the above is equivalent to
Lt f: AgMTRQ (53)

Now we have an indexed Mendler algebra. The original goal, equivalent to (25) by a reformulation of
(30) with S = FixM! T R, can then be obtained by folding, without need of further adjustments.

C'tfldMTROf:Vw:T.Sw—Qw (54)

In order to prove (52), case analysis (as provided in Coq e.g. by inversion and destruct tactics [3])
can be applied to Ay, allowing us to reason on the structure of R A w. This actually results in doing
induction on that structure, as the induction hypothesis g is already there. In this way, we can minimise
the overhead of combining inductive proofs with modular datatypes. Proving an inductive lemma boils
down to constructing the appropriate Mendler algebra — the rest is either conventional, or comes for free.
In connection with MDT, such algebras can be regarded as proof modules, that can be composed together
in the usual sense of case analysis on coproducts [16, 7], in the same straightforward way as evaluation
algebras (the original motivating example by Swierstra [16]). This sounds attractive, from the point of
view of the applications in which the relational aspect is predominant, such as structural operational
semantics.

4.4 Problematic aspects

Which could be the downsides of the Mendler-based approach? As already observed, relying on im-
predicative encodings gives us for free only a weak semantics of inductive datatypes, i.e., a quasi-initial
one. However, initiality is needed virtually everywhere in our proofs, to ensure in-maps and out-maps
are inverses, i.e.

(A) outM F (inM F x) = x (B) inMF (outM Fx) = x (55)

and similarly for the indexed case. In order to get proper initial semantics, functor-specific proofs of
properties such as (43) for base category S, or the corresponding one for K — P, need to be carried out.
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This may be regarded as a general weakness of impredicative approaches including MTC/3MT [7, 6],
as remarked by Keuchel and Schrijvers [11]. Nonetheless, in discussing the well-formedness of Church
encodings [7], Delaware et al. argue that dealing with this issue is not too hard, as indeed MTC provides
automation for doing so.

A more specific problem is related to the iterative character of Mendler-style recursion, and corre-
spondingly, to the non-dependent character of Mendler-style induction. Mendler algebras make it pos-
sible to factor induction into case analysis and folding, but this restricts induction, in the sense of what
is called Mendler iteration by Abel, Matthes and Uustalu [1]: the argument of the induction hypothesis
cannot be used anywhere else, effectively ruling out dependent induction. This means there are problems
that cannot be solved in their original form. As an example, MTC [7] proves the type soundness of a lan-
guage with a dynamic semantics that is recursively defined as a total evaluation function. This problem
can be reformulated with respect to our concrete example in Section 2, using our definition of eval (12).

[ye:Trm,t: Typ F k: TypOf (e, t) — TypOf (litovv (eval e), 1) (56)

Using the MTC approach, (56) can be proved by dependent induction on the structure of term e. Given
dt_def Typ = N and assuming for simplicity TypOf is a conventional inductive predicate

dt_def TypOf: TrmxTyp - P =
tofl : Vv: Val. TypOf (litovv v, N) (57)
tof2: Ve ey : Trm. TypOf (e1,N) A TypOf (e2,N) — TypOf (add(eq,e2),N)

the proof is ultimately based on a proof algebra of type Alg® Trmg (Ze. Vt : Typ. TypOf (e, t) —
TypOf (litovv (eval e), 1)), although as already noticed, folding this algebra only gives us the backbone
of the whole proof.

This is not possible using our Mendler-style approach, as we cannot deal with the dependency of the
goal on the inductive argument e. What we can do instead, is to rely on the relational formulation of
evaluation given by Eval (50), which can be shown to satisfy (30), and prove

Iye:Trm,v:Val, t: Typ, h:Eval (e,v) - [: TypOf (e, t) — TypOf (litowv v, 1) (58)

reasoning by induction on the structure of Eval. This reformulation of the goal essentially matches (31).
In this case, a proof can be obtained by simply folding an indexed Mendler algebra of type AlgM' (Trm x
Val) Evalg (A(e,v). Vt : Typ. TypOf (e, t) — TypOf (litovv v, r)), which provides our instance of (53).
An alternative way to obtain a relational equivalent of (56) is to lift the modular datatype Trm to a
modular predicate IsTrm : (Trmg Trm) — P, with IsTrm =,4¢ FixM' (Trmg Trm) IsTrmg, where

dt_def IsTrmg A = isLit: Vx:Int. IsTrmg A (lit x)

|isAdd : Ve ex: Trm. Ae; A Aey — IsTrmg A (add (eg,e2)) (59)

and then prove
[e:Trmw:lsTrme,t: Typ = k: TypOf (e, t) — TypOf (litovv (eval e), 1) (60)

reasoning by Mendler induction on w. Notice that eval in the MTC example [7] is actually defined as
the fold of a Mendler algebra, rather than a conventional one, in order to allow for control over the
evaluation order — this is related to the form of their semantics though, and completely unrelated to our
use of Mendler-style induction.
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S Case study

The use of relational formulations appears particularly natural in specifications based on small-step rules
in the style of SOS, originally introduced by Plotkin [14]. Yet in order to formulate each relation mod-
ularly, we need to build encodings based on functors that reflect the structure of those relations. This
inevitably makes things more complex, especially when we have to deal with mutually inductive defi-
nitions. In order to test the applicability of Mendler proof algebras to the formalisation of a semantic
framework, we have formalised a language £ with a comparatively rich syntactic structure, including
types (Typ), patterns (Pat), declarations (Dec) and expressions (Exp), as well as value environments
(EnvE) and typing environments (Env'). We rely on SOS to give a partial specification of the language:
partial, insofar as we do not specify any behaviour in case of pattern matching failure — therefore, we
cannot prove type soundness, which in fact does not hold. However, we can still prove type preservation
— and this suffices for us, as an example of the structural complexity we are aiming at.

The full language specification is available with the Coq formalisation in the companion code at
[17]. Here we outline the specification using conventional dataytpes. The Coq formalisation is entirely
based on modular datatypes, although for simplicity we rely on monolithic functors (we have not yet
implemented the smart constructor mechanism that facilitates the use of coproducts).

dt.def Typ = ty(IdT)| Typ=Typ | type_env(EnvT)
dt_def Pat = wvrP(ld, Typ) | cnP(ld, Typ) | applyP(Pat, Pat)
dt_def Dec = env(EnvE) | match(Pat,Exp) | join(Dec, Dec) (61)
dt_def Exp = wvr(Id)|cn(ld, Typ) | closure(EnvE, Pat, Exp)
| apply(Exp, Exp) | scope(Dec, Exp)

EnvA =47 |d — option A Env’ =4f Env Typ EnvE =4f Env Exp (62)

The language . is based on simply typed lambda calculus with pattern matching and first class environ-
ments. We use two sets of identifiers — IdT for type variables and Id for object variables and constants.
Constants and pattern variables are annotated with types. = is the usual function type constructor. We
use closures instead of lambda abstractions to ensure values are closed terms and avoid dealing with sub-
stitution. Abstraction is defined over patterns (rather than simply over variables). Matching patterns with
expressions give declarations, which may evaluate to environments. Declarations can be joined together
and used in scope expressions. Values can be specified as follows.

Data values : h € cn(x,1)]|apply(h,v)

Values : v € closure(p,p,e)|h ©3)

The typing relations have the following signatures. Notice that patterns and values can be typed in a
context-free way, unlike expressions and declarations.

Patterns : TypOPat : PatxTyp — P
Environments : TypOEnv : EnvExEnvl — P (64)
Declarations : TypODec : Env' xDecx Typ — P
Expressions : TypOExp : Env' xExp* Typ — P
The transition relations have the following signatures.
Declarations : DecStep : EnvE « Decs Dec — P 65)

Expressions : ExpStep : EnvExExp*Exp — P
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Expressions and declarations may depend on each other, and therefore can only have a mutually inductive
definition. Analogously, the definitions of the typing relations and of the transition relations for these
two syntactic categories involve mutual induction. Therefore we need to introduce functors to reason
about mutually inductively defined sets, as well as mutually inductively defined relations.

5.1 Mutually inductive sets

Two mutually recursive datatypes in the base category S, can be represented in terms of bi-functors
Fi, F,: SxS — S, where bi-functoriality is expressed as existence of a map fmap® which satisfies the
appropriate form of the usual preservation properties.

fmapP : V {A1 Ay B1 B, : S} (fi1: A1 = B1) (f2: A2 — By). F (A1,A2) = F (By,B,) (66)

fmap® g1 g2 (fmap® fi f2) = fmap® (g1 /1) (g2 f2) 67)
fmapD idA idB = idFAB

The definitions of Mendler bi-algebra, fixpoint and fold operators can be given using pairs.

AlgP (F1, ) (C1,G) =45 (YA Az, (A1 = C1) = (A2 — C2) — F (A1,A2) — i,

68

VA] As. (A] — C]) — (A2 — CQ) ) (A],AQ) — CQ) ( )

FixP (F1,F) =45 (VA As. AlgP (Fi, ) (A1,42) — Ay, 69)
VA] AQ. AIgD (F],Fz) (A],AQ) —)Az)

fold? (Fi,F) (C1,C) (f : AlgP (Fi, ) (C1,C,)) - 70)
fst (FiXD (F],Fz)) — =df Ae.eCi G f

fold? (F,F) (C1,C) (f : AlgP (Fi, ) (C1,C))) : 1)

snd (FixP (F,F)) = C, =45 Ae.eCi G f

All the syntactic categories of . can then be represented as MDTs, using bi-functors for mutually
defined Decl and Exp.

dt_def Typg T = ty(Id") | T=T | type_env (Env' T) Typ =ar FixM Typg
dt_def Patg P = vrP(1d,T) | cnP(ld, T) | applyP(P,P) Pat =, Fix" Patg
dt_def Decg D E = env(Env E) | match(Pat,E) | join(D,D) (72)
dt_def Expg D E = vr(ld) | en(ld, Typ) | closure(Env E,Pat,E) | apply(E,E) | scope(D,E)
Dec =47 fst (FixP (Decg, Expg)) Exp =4s snd (FixP (Decg, Expg))

5.2 Mutually inductive relations

Given types K1, K>, two mutually recursive relations depending on such types in base categories K| — P,
K> — P, can be represented by indexed bi-functors R;, R,, with

R1K12(K1—>P)*(K2—>P)—>(K1—>P) RzKl:(K1—>P)*(K2—>P)—>(K2—>P) (73)
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characterised by maps

fmap!! (K1,K2) Ry : V {A Ay K1 — P} {B; By: K, — P}.
(VWZK].A]W—>Blw)—>(VW1K2.A2W—>BQW)—> (74)
VWIKl.Rl (Al,Az) W—>R1 (Bl,Bz) w

fmapy (Ki,K2) Ry: V{A1 Ay: Ky — P} {B1 By: K — P}.
(VW:Kl.A1W—>Bl W)—>(VW:K2.A2W—>BQW)—> (75)
Vw : K. Ry (Al,Az) w— Ry (31,32) w

Given carriers Dy : K — P, D, : K, — P, we can now define indexed Mendler bi-algebras and the
associated notions (see [17] for more details).

AlgH (KlaKZ) (R17R2) (Dl?DZ) —df
(VAl As. (VW:Kl.Al w— Dy W) — (VW Ky, Ay w— Dy W) —
VWZKl.Rl (Al,Az) w — Dy w, (76)
VA]Az. (VW:Kl.Al w— Dy W)—)(VW:KQ.AQW—)DZ W)—>
Yw: K. Ry (Al,Az) w— D W)

FiXH (Kl,Kz) (Rl,Rz) =df
(QLW : Kl. VAI A2. AIgH (Kl,Kz) (R],Rz) (Al,Az) —)Al w, (77)
Aw: Kz. VA] Az. A|gH (Kl,Kz) (R],Rz) (A],Az) %Az W)

f0|d? (K],Kz) (R],Rz) (D],Dz) (f . AlgH (K],Kz) (R],Rz) (D],Dz)) (W : Kl) .

fst (FiXH (Kl,Kz) (Rl,Rz)) w—D;w =df Awe.e Dy D, f (78)

foldy (K1,K2) (R1,R2) (D1,D7) (f : Alg" (Ki,K2) (R1,R2) (D1,D2)) (w: Ky):

snd (Fix™ (K1, K2) (R1,R2)) w — Dy w —=qf Aw e. e Dy Dy f (79

While the typing relations for patterns TypOPat can be represented modularly using an indexed functor
and Fix!, the corresponding relations for declarations and expressions, i.e. TypODec and TypOExp
respectively, are mutually defined and therefore need to be represented as indexed bi-functors closed
by Fix". Such is also the case for DecStep and ExpStep, which can be defined as follows, given the
corresponding indexed bi-functors DecStepg : (EnvE x Dec* Dec — P, EnvE % Exp xExp — P) — EnvEx
DecxDec — P, and ExpStepg : (EnvE*DecxDec — P, EnvE xExp*Exp — P) — EnvE % Exp+Exp — P.

DecStep =, fst (Fix" (EnvE x Dec* Dec, EnvE % Exp * Exp) (DecStepg, ExpStepg)) (80)
ExpStep =4 snd (Fix" (EnvE x Decx Dec, EnvE « Exp x Exp) (DecStepg, ExpStepg)) (81)

5.3 Type preservation

Type preservation in .Z can be expressed as follows

[,p:EnvE - (V(d; da : Dec). DecStep (p,d1,d») — DecTSafe (p,d,dy)

A (V(ey ez : Exp). ExpStep (p,e1,e2) — ExpTSafe (p,eq,ez) (82)
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where

DecTSafe (p,di,d2) =45 V(t: Typ) (v:EnvT).
TypOEnv (p,y) — TypODec (y,d,t) — TypODec (y,d>,1)

ExpTSafe (p,e1,e2) =4, V(¢ : Typ) (v: Env'). (83)
TypOEnv (p,7) — TypOExp (7,e1,1) — TypOExp (7,e2,1)
The context I includes premises of shape
(INx =INy) — (x = y) (84)

where IN is the in-map for one of the datatypes — such premises can be discharged when the correspond-
ing initiality conditions (43) are proven. It also includes premises of shape

Vx:Dg,IsDg x. (85)

where Dg is the unfolding of a modular datatype D, and IsDg; is the unfolding of a modular predicate IsD
that represents the relational lifting of D, in the sense of our example (59). Such premises are needed,
as the proof involves sublemmas that are proved by induction on the syntactic categories — and so, for
instance, Typg Typ has to be lifted to IsTypg : (Typg Typ — P) — Typg Typ — P.

Crucially, the pair of DecTSafe and ExpTSafe can be a carrier for the indexed bi-functor determined
by DecStep and ExpStep. In order to prove type preservation by mutual induction on the structure
of DecStep and ExpStep, we define an indexed Mendler bi-algebra that has (DecTSafe, ExpTSafe) as
indexed carrier, where the index types are EnvE % Dec * Dec and EnvE % Exp % Exp

TPAlg =4 Alg (EnvE x Dec x Dec, EnvE x Exp % Exp)

(DecStepg, ExpStepg) (DecTSafe, ExpTSafe) (86)

After finding proofs f : fst TPAlg and f> : snd TPAlg, we can construct a proof of (82) by applying to
them fold!! and foldY, respectively (see [17] for details).

6 Conclusion

Motivated by the importance of modularity in program development, semantics and verification, we have
discussed the use of MDTs, their semantic foundations and their impredicative encoding along the lines
of existing work [7, 11, 16]. We have shown how impredicative MDT encodings based on Mendler
algebras can be used to reason about inductively defined relations, in a way that is comparatively close to
a more conventional style of reasoning based on closed datatypes, by providing a simpler notion of proof
algebra, if less general, than the one proposed by Delaware et al. [7]. Our approach can be regarded as a
novel application of Mendler-style induction [12, 1, 18], as well as a technique that could be integrated in
existing frameworks based on the impredicative encoding, such as MTC/3MT [7, 6]. Mendler’s original
insight [12] was in the semantics of inductive datatypes — the case made here, is for using that insight as
a modular proof technique. From the point of view of possible applications to semantics and verification
in frameworks such as OTT [15], the relational style that can be supported seems to fit in well with SOS
and in particular with component-based approaches, such as the one proposed by Churchill, Mosses,
Sculthorpe and Torrini [4]. Our plans for future work include integrating our technique in MTC/3MT,
and comparing this approach with the container-based one proposed by Keuchel and Schrijvers [11].
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