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Preface

This volume contains the proceedings of the Tenth International Workshop on Fixed Points in Com-
puter Science (FICS 2015) which took place on September 11thand 12th, 2015 in Berlin, Germany, as a
satellite event of the conference Computer Science Logic (CSL 2015).

Fixed points play a fundamental role in several areas of computer science. They are used to jus-
tify (co)recursive definitions and associated reasoning techniques. The construction and properties of
fixed points have been investigated in many different settings such as: design and implementation of
programming languages, logics, verification, databases. The aim of this workshop is to provide a forum
for researchers to present their results to those members ofthe computer science and logic communities
who study or apply the theory of fixed points.

The editors thank all authors who submitted papers to FICS 2015 (successful or not), and the pro-
gram committee members Ulrich Berger, Dietmar Berwanger, Filippo Bonchi, Venanzio Capretta, Krish-
nendu Chatterjee, Kaustuv Chaudhuri, Thomas Colcombet, Makoto Hamana, Radu Mardare, Henryk
Michalewski, Andrzej Murawski, Alexandra Silva and Sam Staton for their work in selecting the 11
papers of this volume. Every submission was evaluated by three or four reviewers (we are thankful to
all the external anonymous reviewers that were involved butrefrain from listing them here). Some of the
papers were re-reviewed after revision.

Apart from presentations of the accepted papers, we are delighted that FICS 2015 featured two
invited talks: Bartek Klin on the decidability of certain infinite constraint satisfaction problems and James
Worrell on the decidability of certain variants of the Skolem Problem for linear recurrence sequences.
Many thanks to them for having accepted the invitation.

We could also offer the FICS’15 audience the two invited talks of the colocated annual meeting of
the GI-Fachgruppe “Logik in der Informatik”, given by Ulrich Schöpp and Michael Elberfeld. Thanks
to them and the organizers of that meeting for making this possible.

Finally, we would like to express our deep gratitude to CSL 2015 for local organization and to EACSL
and ANR (“Agence Nationale de la Recherche”, France) for funding FICS 2015.

Ralph Matthes,
Matteo Mio
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Topological Dynamics and Decidability of Infinite Constraint
Satisfaction

Bartek Klin
Warsaw University

A group is called extremely amenable if every action of it on acompact space has a fixpoint. One
example, shown by Pestov, is the automorphism group of the total order of rational numbers. This fact
is used to establish the decidability of certain infinite constraint satisfaction problems, based on nominal
sets due to Pitts.

This talk is roughly based on the paper [KKOT15].
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Reachability Problems for Continuous
Linear Dynamical Systems

James Worrell
Department of Computer Science, Oxford University, UK

This talk is about reachability problems for continuous-time linear dynamical systems. A central
decision problem in this area is the Continuous Skolem Problem [BDJB10], which asks whether a real-
valued function satisfying an ordinary linear differential equation has a zero. This can be seen as a con-
tinuous analog of the Skolem Problem for linear recurrence sequences [HHHK05], which asks whether
the sequence satisfying a given recurrence has a zero term. For both the discrete and continuous versions
of the Skolem Problem, decidability is open.

We show that the Continuous Skolem Problem lies at the heart of many natural verification questions
on linear dynamical systems, such as continuous-time Markov chains and linear hybrid automata. We
describe some recent work, done in collaboration with Chonev and Ouaknine [COW15a, COW15b],
that uses results in transcendence theory and real algebraic geometry to obtain decidability for certain
variants of the problem. In particular, we consider a bounded version of the Continuous Skolem Problem,
corresponding to time-bounded reachability. We prove decidability of the bounded problem assuming
Schanuel’s conjecture, one of the main conjectures in transcendence theory. We describe some partial
decidability results in the unbounded case and discuss mathematical obstacles to proving decidability of
the Continuous Skolem Problem in full generality.

References

[BDJB10] Paul C. Bell, Jean-Charles Delvenne, Raphaël M. Jungers, and Vincent D. Blondel. The Continuous
Skolem-Pisot Problem.Theoretical Computer Science, 411(40-42):3625–3634, 2010.

[COW15a] Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the decidability of the Bounded Continuous
Skolem Problem.CoRR, abs/1506.00695, 2015.

[COW15b] Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the decidability of the continuous infinite
zeros problem.CoRR, abs/1507.03632, 2015.

[HHHK05] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s Problem – on the border between
decidability and undecidability. Technical Report 683, Turku Centre for Computer Science, 2005.
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Dependent Inductive and Coinductive Types are Fibrational
Dialgebras

Henning Basold
Radboud University, iCIS, Intelligent Systems

CWI, Amsterdam, The Netherlands

h.basold@cs.ru.nl

In this paper, I establish the categorical structure necessary to interpret dependent inductive and
coinductive types. It is well-known that dependent type theories à la Martin-Löf can be interpreted
using fibrations. Modern theorem provers, however, are based on more sophisticated type systems
that allow the definition of powerful inductive dependent types (known as inductive families) and,
somewhat limited, coinductive dependent types. I define a class of functors on fibrations and show
how data type definitions correspond to initial and final dialgebras for these functors. This description
is also a proposal of how coinductive types should be treated in type theories, as they appear here
simply as dual of inductive types. Finally, I show how dependent data types correspond to algebras
and coalgebras, and give the correspondence to dependent polynomial functors.

1 Introduction

It is a well-established fact that the semantics of inductive data types without term dependencies can be
given by initial algebras, whereas the semantics of coinductive types can be given by final coalgebras.
However, for types that depend on terms, the situation is not as clear-cut.

Partial answers for inductive types can be found in [3, 8, 9, 11, 14, 19, 20], where semantics have
been given for inductive types through polynomial functors in the category of set families or in locally
Cartesian closed categories. Similarly, semantics for non-dependent coinductive types have been given
in [1, 2, 6] by using polynomial functors on locally Cartesian closed categories. Finally, an interpretation
for Martin-Löf type theory (without recursive type definitions) has been given in [21] and corrected
in [16].

So far, we are, however, lacking a full picture of dependent coinductive types that arise as duals
of dependent inductive types. To actually get such a picture, I extend in the present work Hagino’s
idea [13], of using dialgebras to describe data types, to dependent types. This emphasises the actual
structure behind (co)inductive types as their are used in systems like Agda.1 Moreover, dialgebras allow
for a direct interpretation of types in this categorical setup, without going through translations into, for
example, polynomial functors.

Having defined the structures we need to interpret dependent data types, it is natural to ask whether
this structure is actually sensible. The idea, pursued here, is that we want to obtain initial and final
dialgebras from initial algebras and final coalgebras for polynomial functors. This is achieved by showing
that the dialgebras in this work correspond to algebras and coalgebras, and that their fixed points can be
constructed from fixed points of polynomial functors (in the sense of [12]).

1It should be noted that, for example, Coq treats coinductive types differently. In fact, the route taken in Agda with copatterns
and in this work is much better behaved.
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To summarise, this paper makes the following contributions. First, we get a precise description of
the categorical structure necessary to interpret inductive and coinductive data types, which can be seen as
categorical semantics for an extension of the inductive and (copattern-based) coinductive types of Agda.
The second contribution is a reduction to fixed points of polynomial functors.

What has been left out, because of space constraints, is an analysis of the structures needed to obtain
induction and coinduction principles. Moreover, to be able to get a sound interpretation, with respect to
type equality of dependent types, we need to require a Beck-Chevalley condition. This condition can be
formulated for general (co)inductive types, but is also not given here.

Related work As already mentioned, there is an enormous body of work on obtaining semantics for
(dependent) inductive, and to some extent, coinductive types, see [3, 11, 14, 20]. In the present
work, we will mostly draw from [2] and [12]. Categorical semantics for basic Martin-Löf type
theory have been developed, for example, in [16]. An interpretation, closer to the present work, is
given in terms of fibrations by Jacobs [17]. In the first part of the paper, we develop everything on
rather arbitrary fibrations, which makes the involved structure more apparent. Only in the second
part, where we reduce data types to polynomial functors, we will work with slice categories, since
most of the work on polynomial functors in that setting [2, 12]. Last, but not least, the starting idea
of this paper is of course inspired by the dialgebras of Hagino [13]. These have also been applied
to give semantics to induction-induction [4] schemes.

Outline The rest of the paper is structured as follows. In Section 2, we analyse a typical example of
a dependent inductive type, namely vectors, that is, lists indexed by their length. We develop
from this example a description of inductive and coinductive dependent data types in terms of
dialgebras in fibrations. This leads to the requirements on a fibration, given in Section 3, that
allow the interpretation of data types. In the same section, we show how dependent and fibre-
wise (co)products arise canonically in such a structure, and we give an example of a coinductive
type (partial streams) that can only be treated in Agda through a cumbersome encoding. The
reduction of dependent data types to polynomial functors is carried out in Section 4, and finish
with concluding remarks in Section 5.

Acknowledgement I would like to thank the anonymous reviewers, who gave very valuable feedback
and pointed me to some more literature.

2 Fibrations and Dependent Data Types

In this section we introduce dependent data types as initial and final dialgebras of certain functors on
fibres of fibrations. We go through this setup step by step.

Let us start with dialgebras and their homomorphisms.

Definition 2.1. Let C and D be categories and F,G : C→D functors. An (F,G)-dialgebra is a morphism
c : FA→GA in D, where A is an object in C. Given dialgebras c : FA→GA and d : FB→GB, a morphism
h : A→B is said to be a (dialgebra) homomorphism from c to d, if Gh ◦ c= d ◦ Fh. This allows us to form
a category DiAlg (F,G), in which objects are pairs (A,c) with A ∈ C and c : FA→ GA, and morphisms
are dialgebra homomorphisms.

The following example shows that dialgebras arise naturally from data types.

Example 2.2. Let A be a set, we denote by An the n-fold product of A, that is, lists of length n. Vectors
over A are given by the set family VecA = {An}n∈N, which is an object in the category SetN of families
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indexed by N. In general, this category is given for a set I by

SetI =

{
objects X = {Xi}i∈I

morphisms f = { fi : Xi→ Yi}i∈I
.

Vectors come with two constructors: nil : 1→ A0 for the empty vector and prefixing consn : A×An→
An+1 of vectors with elements of A. We note that nil : {1} → {A0} is a morphism in the category Set1

of families indexed by the one-element set 1, whereas cons = {consn} : {A×An}n∈N→ {An+1}n∈N is a
morphism in SetN.

Let F,G : SetN→ Set1×SetN be the functors into the product of Set1 and SetN with

F(X) = ({1},{A×Xn}n∈N) G(X) = ({X0},{Xn+1}n∈N).

Using these, we find that (nil,cons) : F(VecA)→G(VecA) is an (F,G)-dialgebra, in fact, it is the initial
(F,G)-dialgebra.

Definition 2.3. An (F,G)-dialgebra c : FA→GA is called initial, if for every (F,G)-dialgebra d : FB→
GB there is a unique homomorphism h from c to d, the inductive extension of d. Dually, (A,c) is final,
provided there is a unique homomorphism h from any other dialgebra (B,d) into c. Here, h is the
coinductive extension of d.

Having found the algebraic structure underlying vectors, we continue by exploring how we can han-
dle the change of indices in the constructors. It turns out that this is most conveniently done by using
fibrations.

Definition 2.4. Let P : E→ B be a functor, where the E is called the total category and B the base
category. A morphism f : A→ B in E is said to be cartesian over u : I→ J, provided that i) P f = u, and
ii) for all g : C→ B in E and v : PC→ I with Pg = u◦ v there is a unique h : C→ A such that f ◦h = g.
For P to be a fibration, we require that for every B∈E and u : I→ PB in B, there is a cartesian morphism
f : A→ B over u. Finally, a fibration is cloven, if it comes with a unique choice for A and f , in which
case we denote A by u∗B and f by uB, as displayed in the diagram on the right.

C

u∗B B E

PC

I PB B

g

!h
uB

PPg

v
u

At first sight, this definition is arguably intimidating to someone
who has never been exposed to fibrations. The idea is that the base
category B contains as objects the indices of objects in E, and as
morphisms substitutions. The result of carrying out a substitution on
indices, is captured by the Cartesian lifting property. Let us illustrate
this on set families. We define Fam(Set) to be the category

Fam(Set) =

{
objects (I,X : I→ Set), I a set
morphisms (u, f ) : (I,X)→ (J,Y ) with u : I→ J and { fi : Xi→ Yu(i)}i∈I

in which composition is defined by

(v,g)◦ (u, f ) =
(

v◦u,{Xi
fi−→ Yu(i)

gu(i)−−→ Zv(u(i))}i∈I

)
.

A concrete object is the pair (N,VecA), where VecA is the family of vectors from Ex. 2.2.
We define a cloven fibration on set families. Let P : Fam(Set)→ Set be the projection on the first

component, that is, P(I,X) = I and P(u, f ) = u. For a family (J,Y ) and a function u : I→ J, we define
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u∗Y = {Yu(i)}i∈I and uY =
(
u,{id : Yu(i)→ Yu(i)}i∈I

)
. Then, for each (w,g) : (K,Z)→ (J,Y ) and v : K→ I

with w = u ◦ v, we can define the morphism (K,Z)→ (I,u∗Y ) to be (v,h) with hk : Zk → Yu(v(k)) and
hk = gk, since u(v(k)) = w(k).

An important concept is the fibre above an object I ∈ B, given by the category

PI =

{
objects A ∈ E with P(A) = I
morphisms f : A→ B with P( f ) = idI

.

In a cloven fibration, we can use the Cartesian lifting to define for each u : I→ J in B a functor u∗ : PJ→
PI , together with natural isomorphisms IdPI

∼= id∗I and u∗ ◦v∗ ∼= (v◦u)∗, see [17, Sec. 1.4]. The functor
u∗ is called reindexing along u.

Assumption 2.5. We assume all fibrations to be cloven in this work.

We are now in the position to take a more abstract look at our initial example.

Example 2.6. First, we note that the fibre of Fam(Set) above I is isomorphic to SetI . Let then z : 1→N
and s : N→ N be z(∗) = 0 and s(n) = n+ 1, giving us reindexing functors z∗ : SetN → Set1 and s∗ :
SetN→ SetN. By their definition, z∗(X) = {X0} and s∗(X) = {Xn+1}n∈N, hence the functor G, we used
to describe vectors as dialgebra, is G = 〈z∗,s∗〉. In Sec. 3, we address the structure of F .

We generalise this situation to account for arbitrary data types.

Definition 2.7. Let P : E→ B be a fibration. A (dependent) data type signature, parameterised by a
category C, is a pair (F,u) consisting of

• a functor F : C×PI → D with D = ∏n
k=1 PJk for some n ∈ N and Jk, I ∈ B, and

• a family u of n morphisms in B with uk : Jk→ I for k = 1, . . . ,n.

A family u as above induces a functor 〈u∗1, . . . ,u∗n〉 : PI → D, which we will often denote by Gu. This
will enable us to define data types for such signatures, but let us first look at an example for the case
C = 1, that is, if F : PI → D is not parameterised.

Example 2.8. A fibration P : E→ B is said to have dependent coproducts and products, if for each
f : I→ J in B there are functors

∐
f and ∏ f from PI to PJ that are respectively left and right adjoint to

f ∗. For each X ∈ PI , we can define a signature, such that
∐

f (X) and ∏ f (X) arise as data types for these
signatures, as follows. Define the constant functor

KX : PJ → PI KX(Y ) = X KX(g) = idX .

Then (KX , f ) is the signature for coproducts and products. For example, the unit η of the adjunction∐
f a f ∗ will be the initial (KX , f ∗)-dialgebra ηX : KX(

∐
f (X))→ f ∗(

∐
f (X)), using that KX(

∐
f (X)) =

X . We come back to this in Ex. 2.10.

To define data types in general, we allow them to have additional parameters, that is, we allow
signatures (F,u), where F : C×PI→D and C is a non-trivial category. Let us first fix some notation. We
put F(V,−)(X) = F(V,X) for V ∈ C, which is a functor PI → D. Assume that the initial (F(V,−),Gu)-
dialgebra αV : F(V,ΦV )→ Gu(ΦV ) and final (Gu,F(V,−))-dialgebra ξV : Gu(ΩV )→ F(V,ΩV ) exist.
Then we can define functors µ(F̂ , Ĝu) : C→ PI and ν(Ĝu, F̂) : C→ PI , analogous to [18], by

µ(F̂ , Ĝu)(V ) = ΦV µ(F̂ , Ĝu)( f : V →W ) = (αW ◦F( f , idΦW ))

ν(Ĝu, F̂)(V ) = ΩV ν(Ĝu, F̂)( f : V →W ) = (F( f , idΩV )◦ξV )
∼ ,
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where the bar and tilde superscripts denote the inductive and coinductive extensions, that is, the unique
homomorphism given by initiality and finality, respectively. The reason for the notation µ(F̂ , Ĝu) and
ν(Ĝu, F̂) is that these are initial and final dialgebras for the functors

F̂ , Ĝu : [C,PI]→ [C,D] F̂(H) = F ◦ 〈IdC,H〉 Ĝu(H) = Gu ◦H

on functor categories. That the families αV and ξV are natural in V follows directly from the definition of
the functorial action as (co)inductive extensions. Hence, they give rise to dialgebras α : F̂(µ(F̂ , Ĝu))⇒
Ĝu(µ(F̂ , Ĝu)) and ξ : Ĝu(ν(Ĝu, F̂))⇒ F̂(ν(Ĝu, F̂)).

Definition 2.9. Let (F,u) be a data type signature. An inductive data type (IDT) for (F,u) is an initial
(F̂ , Ĝu)-dialgebra with carrier µ(F̂ , Ĝu). Dually, a coinductive data type (CDT) for (F,u) is a final
(Ĝu, F̂)-dialgebra, note the order, with the carrier being denoted by ν(Ĝu, F̂). If C = 1, we drop the hats
from the notation.

Example 2.10. We turn the definition of the product and coproduct from Ex. 2.8 into actual functors. The
observation we use is that the projection functor π1 : PI ×PJ → PI gives us a “parameterised” constant
functor: KJ

A = π1(A,−). If we are given f : I → J in B, then we use the signature (π1, f ), and define∐
f = µ(π̂1, f̂ ∗) and ∏ f = ν( f̂ ∗, π̂1). We check the details of this definition in Thm. 3.2.

3 Data Type Completeness

We now define a class of signatures and functors that should be seen as categorical language for, what is
usually called, strictly positive types [3], positive generalised abstract data types [14] or descriptions [8,
9]. Note, however, that none of these treat coinductive types. A non-dependent version of strictly positive
types that include coinductive types are given in [2].

Let us first introduce some notation. Given categories C1 and C2 and an object A ∈C1, we denote by
KC1

A : C1→ C2 the functor mapping constantly to A. The projections on product categories are denoted,
as usual, by πk : C1×C2→ Ck. Using these notations, we can define what we understand to be a data
type by mutual induction.

Definition 3.1. A fibration P : E→ B is data type complete, if all IDTs and CDTs for strictly positive
signatures (F,u) ∈S exist, where S is given by the following rule.

D = ∏n
i=1 PJi F ∈DC×PI→D u = (u1 : J1→ I, . . . ,un : Jn→ I)

(F,u) ∈SC×PI→D

The functors in D are given by the following rules, assuming that P is data type complete.

A ∈ PJ

KPI
A ∈DPI→PJ

C = ∏n
i=1 PIi

πk ∈DC→PIk

f : J→ I in B
f ∗ ∈DPI→PJ

F1 ∈DPI→PK F2 ∈DPK→PJ

F2 ◦F1 ∈DPI→PJ

Fi ∈DPI→PJi
i = 1,2

〈F1,F2〉 ∈DPI→PJ1×PJ2

(F,u) ∈SC×PI→D

µ(F̂ , Ĝu) ∈DC→PI

(F,u) ∈SC×PI→D

ν(Ĝu, F̂) ∈DC→PI

This mutual induction is well-defined, as it can be stratified in the nesting of fixed points.

As a first sanity check, we show that a data type complete fibration has, both, fibrewise and dependent
(co)products. These are instances of the following, more general, result.
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Theorem 3.2. Suppose P : E→B is a data type complete fibration. Let C=∏m
i=1 PKi and π1 : C×PI→C

be the first projection. If Gu : PI→C is such that (π1,u) is a signature, then we have the following adjoint
situation:

µ(π̂1, Ĝu) a Gu a ν(Ĝu, π̂1).

Proof. We only show how the adjoint transposes are obtained in the case of inductive types. Concretely,
for a tuple V ∈ C and an object A ∈ PI , we need to prove the correspondence

f : µ(π̂1, Ĝu)(V )−→ A in PI

g : V −→ GuA in C

Let us use the notation H = µ(π̂1, Ĝu), then the choice of π1 implies that the initial (π̂1, Ĝu)-dialgebra
is of type α : IdC ⇒ Gu ◦H, since π̂1(H) = π1 ◦ 〈IdC,H〉 = IdC and Ĝu(H) = Gu ◦H. This allows

us to use as transpose of f the morphism V αV−→ Gu(H(V ))
Gu f−−→ GuA. As transpose of g, we use the

inductive extension of π̂1(KC
A )(V ) = V

g−→ GuA = Ĝu(KC
A )(V ). The proof that this correspondence is

natural and bijective follows straightforwardly from initiality. For coinductive types, the result is given
by duality.

This gives fibrewise coproducts by +I = µ(π̂1, Ĝu) and products by ×I = ν(Ĝu, π̂1), using u =
(idI, idI). Dependent (co)products along f : I→ J use u = f , see Ex. 2.10.

There are many more examples of data types that exist in a data type complete fibration. We describe
three fundamental ones.
Example 3.3. 1. The first example are initial and final objects inside the fibres PI . Since an initial

object is characterised by having a unique morphism to every other object, we define it as an initial
dialgebra, namely 0I = µ(Id, id∗I ). Then there is, for each A ∈ PI , a unique morphism !A : 0I → A
given as inductive extension of idA. Dually, we define the terminal object 1I in PI to be ν(id∗I , Id)
and for each A the corresponding unique morphism !A : A→ 1I as the coinductive extension of idA.

Note that this also follows from Thm. 3.2, if we require that (co)inductive data types also exist
if C = 1 (the empty product) and u = {} (empty family of morphisms). This allows us to define
the initial and final object as functors 1→ PI .

2. There are several definable notions of equality, provided that B has binary products. A generic one
is propositional equality Eq : PI→ PI×I , the left adjoint to the contraction functor δ ∗ : PI×I→ PI ,
which is induced by the diagonal δ : I → I × I. Thus it is given by the dependent coproduct
Eq =

∐
δ and the constructor reflX : X → δ ∗(EqX).

3. Assume that there is an object Aω in B of streams over A, together with projections to head and
tail. Then we can define bisimilarity between streams as CDT for the signature

F,Gu : P(Aω )2 → P(Aω )2×P(Aω )2

F =
〈
(hd×hd)∗ ◦KEq(A),(tl× tl)∗

〉
and u = (idAω×Aω , idAω×Aω ).

Note that there is a category Rel(E) of binary relations in E by forming the pullback of P along
∆ : B→ B with ∆(I) = I× I, see [15]. Then we can reinterpret F and Gu by

F,Gu : Rel(E)Aω → Rel(E)Aω ×Rel(E)Aω

F = 〈hd# ◦KEq(A), tl
#〉 and Gu = 〈id#

Aω , id#
Aω 〉,
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where (−)# is reindexing in Rel(E). The final (Gu,F)-dialgebra is a pair of morphisms

(hd∼A : BisimA→ hd#(Eq(A)), tl∼A : BisimA→ tl#(BisimA)).

BisimA should be thought of to consist of all bisimilarity proofs. Coinductive extensions yield the
usual coinduction proof principle, allowing us to prove bisimilarity by establishing a bisimulation
relation R ∈ Rel(E)Aω together with h : R→ hd#(Eq(A)) and t : R→ tl#(R), saying that the heads
of related streams are equal and that the tails of related streams are again related.

The last example, we give, shall illustrate the additional capabilities of CDTs in the present setup
over those currently available in Agda. However, one should note that coinductive types in Agda provide
extra power in the sense that destructors can refer to each other. This is equivalent to having a strong
coproduct [17, Sec. 10.1 and Def. 10.5.2], which we do not require in the setup of this work and thus A
proof of this equivalence is left out because of space constraints.

Example 3.4. A partial stream is a stream together with a, possibly infinite, depth up to which it is
defined. Assume that there is an object N∞ of natural numbers extended with infinity and a successor
map s∞ : N∞→ N∞ in B, we will see how these can be defined below. Then partial streams correspond
to the following type declaration.

codata PStr (A : Set) : N∞→ Set where
hd : (n : N∞)→ PStr (s∞ n)→ A
tl : (n : N∞)→ PStr (s∞ n)→ PStr n

In an explicit, set-theoretic notation, we can define them as a family indexed by n ∈ N∞:

PStr(A)n = {s : N⇀ A | ∀k < n.k ∈ doms∧∀k ≥ n.k 6∈ doms},

where the order on N∞ is given by extending that of the natural numbers with ∞ as strict top element,
i.e., such that k < ∞ for all k ∈ N.

The interpretation of PStr(A) for A∈P1 in a data type complete fibration is given, similarly to vectors,
as the carrier of the final (Gu,F)-dialgebra, where

Gu,F : PN∞ → PN∞×PN∞ Gu = 〈s∗∞,s∗∞〉 F =
〈

KN∞

A
, Id
〉

and A = !∗N∞(A) ∈ PN∞ is the weakening of A using !N∞ : N∞ → 1. The idea of this signature is that
the head and tail of partial streams are defined only on those partial streams that are defined in, at
least, the first position. On set families, partial streams are given by the dialgebra ξ = (hd, tl) with
hdn : PStr(A)(s∞ n)→ A and tln : PStr(A)(s∞ n)→ PStr(A)n for every n ∈ N∞.

We can make this construction functorial in A, using the same “trick” as for sums and products. To
this end, we define the functor H : P1×PN∞ → PN∞ ×PN∞ with H = 〈!N∞ ◦π1,π2〉, where π1 and π2
are corresponding projection functors, so that H(A,X) = F(X). This gives, by data type completeness,
rise to a functor ν(Ĝu, F̂) : PN∞ → PN∞ , which we denote by PStr, together with a pair (hd, tl) of natural
transformations.

We have seen in the examples above that we would often like to use a data type again as index, which
means that we need a mechanism to turn a data type in E into an index in B. This is provided by, so
called, comprehension.
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Definition 3.5 (See [17, Lem. 1.8.8, Def. 10.4.7] and [10]). Let P : E→ B be a fibration. If each fibre
PI has a final object 1I and these are preserved by reindexing, then there is a fibred final object functor
1(−) : B→ E. (Note that then P(1I) = I.) P is a comprehension category with unit (CCU), if 1(−) has a
right adjoint {−} : E→ B, the comprehension. This gives rise to a functor P : E→ B→ into the arrow
category over B, by mapping A 7→ P(εA) : {A}→ P(A), where ε : 1{−}⇒ Id is the counit of 1(−) a {−}.
We often denote P(A) by πA and call it the projection of A. Finally, P is said to be a full CCU, if P is
full.

Note that, in a data type complete category, we can define final objects in each fibre, the preservation
of them needs to be required separately.

Example 3.6. In Fam(Set), the final object functor is given by 1I = (I,{1}i∈I), where 1 is the singleton
set. Comprehension is defined to be {(I,X)} =∐i∈I Xi and the projections πI map then an element of∐

i∈I Xi to its component i ∈ I.

Using comprehension, we can give a general account to dependent data types.

Definition 3.7. We say that a fibration P : E→ B is a data type closed category (DTCC), if it is a CCU,
has a terminal object in B and is data type complete.

As already mentioned, the purpose of introducing comprehension is that it allows us to use data
types defined in E again as index. The terminal object in B is used to introduce data types without
dependencies, like the natural numbers. Let us reiterate on Ex. 3.4.

Example 3.8. Recall that we assumed the existence of extended naturals N∞ and the successor map s∞
on them to define partial streams. We are now in the position to define, in a data type closed category,
everything from scratch as follows.

Having defined + : P1×P1→ P1, see Thm. 3.2, we put N∞ = ν(Id,1+ Id) and find the predecessor
pred as the final dialgebra on N∞. The successor s∞ arises as the coinductive extension (N∞,κ2)→
(N∞,pred), where κ2 is the coproduct inclusion. Partial streams PStr : P{N∞}→ P{N∞} are then given, as
in Ex. 3.4, by the final (Ĝ, F̂)-dialgebra with G = 〈{s∞}∗,{s∞}∗〉 and F = 〈!N∞ ◦π1,π2〉.

4 Constructing Data Types

In this section, we show how some data types can be constructed through polynomial functors, where I
draw from the vast amount of work on polynomial functors that exists in the literature, see [2, 12]. The
construction works by, first, reducing dialgebras to (co)algebras and, second, constructing the necessary
initial algebras and final coalgebras as fixed points of polynomial functors analogously to the construc-
tion of strictly positive types in [2]. This result works thus far only for data types that, if at all, only
use dependent coinductive types at the top-level. Nesting of dependent inductive and non-dependent
coinductive types works, however, in full generality.

Before we come to polynomial functors and their fixed points, we show that inductive and coinductive
data types actually correspond to initial algebras and final coalgebras, respectively.

Theorem 4.1. Let P : E→ B be a fibration with fibrewise coproducts and dependent sums. If (F,u) with
F : PI → PJ1×·· ·×PJn is a signature, then there is an isomorphism

DiAlg (F,Gu)∼= Alg

(∐

u1

◦F1 +I · · ·+I

∐

un

◦Fn

)
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where Fk = πk ◦F is the kth component of F. In particular, existence of inductive data types and initial
algebras coincide. Dually, if P has fibrewise and dependent products, then

DiAlg (Gu,F)∼= CoAlg

(
∏
u1

◦F1×I · · ·×I ∏
un

◦Fn

)
.

In particular, existence of coinductive data types and final coalgebras coincide.

Proof. The first result is given by a simple application of the adjunctions
∐n

k=1 a ∆n between the (fibre-
wise) coproduct and the diagonal, and

∐
uk
a u∗k :

FX −→ GuX (in PJ1×·· ·×PJn)

(
∐

u1
(F1X), . . . ,

∐
un
(FnX))−→ ∆nX (in Pn

I )

∐n
k=1
∐

uk
(FkX)−→ X (in PI)

That (di)algebra homomorphisms are preserved follows at once from naturality of the used Hom-set
isomorphisms. The correspondence for coinductive types follows by duality.

To be able to reuse existing work, we work in the following with the codomain fibration cod : B→→B
for a category B with pullbacks. Moreover, we assume that B is locally Cartesian closed, which is
equivalent to say that cod : B→ → B is a closed comprehension category, that is, it is a full CCU with
products and coproducts, and B has a final object, see [17, Thm 10.5.5]. Finally, we need disjoint
coproducts in B, which gives us an equivalence B/I+J ' B/I×B/J, see [17, Prop. 1.5.4].

Definition 4.2. A dependent polynomial P indexed by I on variables indexed by J is given by a triple of
morphisms

B A

J I
s

f
t

If J = I = 1, f is said to be a (non-dependent) polynomial. The extension of P is given by the composite

JPK = B/J
s∗−→ B/B

∏ f−→ B/A

∐
t−→ B/I,

which we denote by J f K if f is non-dependent. A functor F : B/J → B/I is a dependent polynomial
functor, if there is a dependent polynomial P such that F ∼= JPK.

Remark 4.3. Note that polynomials are called containers by Abbott et al. [2, 1], and a polynomial P =

1 !←− B
f−→ A !−→ 1 would be written as A . f . Container morphisms, however, are different from those of

dependent polynomials, as the latter correspond strong natural transformations [12, Prop. 2.9], whereas
the former are in exact correspondence with all natural transformations between extensions [2, Thm.
3.4].

Because of this relation, we will apply results for containers that do not involve morphisms to poly-
nomials. In particular, [2, Prop. 4.1] gives us that we can construct final coalgebras for polynomial
functors from initial algebras for polynomial functors. The former are called M-types and are denoted by
M f for f : A→ B, whereas the latter are W-types and denoted by Wf .
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Assumption 4.4. We assume that B is closed under the formation of W-types, thus is a Martin-Löf
category in the terminology of [2].

By the above remark, B then also has all M-types.
Analogously to how [11, Thm. 12] extends [20, Prop. 3.8], we extend here [6, Thm 3.3]. As it was

pointed out by one reviewer, this result is actually in [5], the published version of [6].

Theorem 4.5. If B has finite limits, then every dependent polynomial functor has a final coalgebra in
B/I.

Proof. Let P = I s←− B
f−→ A t−→ I be a dependent polynomial, we construct, analogously to [11] the final

coalgebra V of JPK as an equaliser as in the following diagram, in which f × I is a shorthand for B×
I

f×idI−−−→ A× I and M f×I is the carrier of the final J f × IK-coalgebra.

V M f M f×I
g

u1

u2

First, we give u1 and u2, whose definitions are summarised in the following diagrams.

M f M f×I

J f K(M f )

J f × IK(M f ) J f × IK(M f×I)

u1

ξ f

ξ f×I

pM f

J f × IK(u1)

M f M f×I M f×I

J f × IK(M f×I)

J f × IK(M f×I×B) J f × IK(M f×I)

u1

u2

ξ f×I

ψ

ξ f×I

ΣA×IK

J f × IK(φ)

These diagrams shall indicate that u1 is given as coinductive extensions and ψ as one-step definition
(which can be defined using coproducts), using that M f×I is a final coalgebra. The maps involved in
the diagram are given as follows, which we sometimes spell out in the internal language of cod, see for
example [1], as this is sometimes more readable.

• p : ΣAΠ f ⇒ ΣA×IΠ f×I is the natural transformation that maps (a,v) to (a, t(a),v). It is given by
the extension Jα,β K : J f K⇒ J f × IK of the morphism of polynomials [12]

B A

B× I A× I

f

β α

f × I

where α = 〈id, t〉 and β = 〈id, t ◦ f 〉.
• The map K : Π f×I(M f×I)→Π f×I(M f×I×B) is given as transpose of 〈εM f×I ,π1◦π〉 : ( f × I)∗(Π f×I(M f×I))→

M f×I×B, where ε is the counit of the product (evaluation) and π is the context projection. In the
internal language K is given by K v = λ (b, i).(v(b, i),b).
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• φ : M f×I×B→M f×I is constructed as coinductive extension as in the following diagram

M f×I×B M f×I

J f × IK(M f×I)×B

J f × IK(M f×I×B) J f × IK(M f×I)

ξ f×I × id

φ

ξ f×I

e

J f × IK(φ)

Here e is given by e((a, i,v),b) = (a,sb,λ (b′,sb).(v(b′, i),b′)).

The important property, which allows us to prove that ξ f : M f → J f K(M f ) restricts to ξ ′ : V → JPK(V )
and that ξ ′ is a final coalgebra, is that x : Vi ⇐⇒ ξ f x = (a : A,v : Π f M f ), t a = i and (∀b : B. f b = a⇒
vb : Vsb). The direction from left to right is given by simple a calculation, whereas the other direction
can be proved by establishing a bisimulation and between u1 x and u2 x.

Hence V , given as a subobject of M f , is indeed the final JPK-coalgebra in B/I.

Combining this with [2, Prop. 4.1], we have that the existence of final coalgebras for dependent
polynomial functors follows from the existence of initial algebras of (non-dependent) polynomial func-
tors. This gives us the possibility of interpreting non-nested fixed points in any Martin-Löf category as
follows.

First, we observe that the equivalence B/I+J ' B/I×B/J allows us to rewrite the functors from
Thm. 4.1 to a form that is closer to polynomial functors:

∐

u1

◦F1 +I · · ·+I

∐

un

◦Fn ∼=
∐

u

F ′

∏
u1

◦F1×I · · ·×I ∏
un

◦Fn ∼= ∏
u

F ′,

where J = J1 + · · ·+ Jn, u : J→ I is given by the cotupling [u1, . . . ,un] and F ′ : B/I→ B/J is given by
F ′ = 〈F1, . . . ,Fn〉 : B/I→∏n

i=1 B/Ji ' B/J. Thus, if we establish that F ′ is a polynomial functor, we get
that

∐
u F ′ and ∏u F ′ are polynomial functors, see [1]. For non-nested fixed points, that is, Fk is either a

constant functor, given by composition or reindexing, this is immediate, as dependent polynomials can
be composed and are closed under constant functors and reindexing, see [12].

We say that a dependent polynomial is parametric, if it is of the following form.

K + I B A Is f t

Such polynomials represent polynomial functors B/K×B/I→B/I and allow us speak about nested fixed
points just as we have done in Sec. 2. What thus remains is that fixed points of parametric dependent
polynomial functors, in the sense of Sec. 2, are again dependent polynomial functors.

The proof of this is literally the same as that for containers [1, Sec. 5.3-5.5] or non-dependent poly-
nomials [11], except that we need to check some extra conditions regarding the indexing.

Theorem 4.6. Initial algebras and final coalgebras of parametric, dependent polynomial functors are
again dependent polynomial functors.
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Proof. Let

F = J B A I

G = I D C I

s f t

u g v

be dependent polynomials and H(X ,Y ) = JFK×I JGK be the parametric dependent polynomial functor in
question. Assuming that there is a polynomial

J Q P Ix h y

so that for K =
∐

y ∏h x∗ we have K(X)∼= H(X ,K(X)), we can calculate, as in [1], that we need to have
isomorphisms

ψ : A×I JGK(P)∼= P

ϕ : B+
∐

g

ε∗Q∼= ψ∗(Q)

where B+
∐

g ε∗Q is, as in loc. cit., is an abbreviation for Ba +
∐

d:Dc
Q(r d) in the context (a,(c,r)) :

A×I JGK(P). If K(X) shall be an initial algebra, ψ must an initial algebra as well, whereas if K(X)
shall be a final coalgebra, ψ must be one. The isomorphism ϕ is given as the initial (ψ−1)∗(B+

∐
g ε∗)-

algebra in both cases, see [1]. This we use to define x : Q→ J as the inductive extension of the map
[s,π2] : (ψ−1)∗(B+

∐
g ε∗ J)→ J. Given these definitions, the following diagrams commute.

A×I JGK(P) P

I

ψ

y

B+
∐

g ε∗Q ψ∗Q

J

ϕ

[s,x◦π2]

This gives us that the isomorphism given in the proofs of [1, Prop. 5.3.1, Prop. 5.4.2] also work for the
dependent polynomial case. The rest of the proofs in loc. cit. go then through, as well. Thus K is in both
cases again given by a dependent polynomial.

Summing up, we are left with the following result.

Corollary 4.7. All data types for strictly positive signatures can be constructed in any Martin-Löf cate-
gory.

Let us see, by means of an example, how the construction in the proof of Thm. 4.5 works intuitively.

Example 4.8. Recall from Ex. 3.4 that partial streams are given by the declaration

codata PStr (A : Set) : N∞→ Set where
hd : (n : N∞)→ PStr (s∞ n)→ A
tl : (n : N∞)→ PStr (s∞ n)→ PStr n

By Thm. 4.1, we can construct PStr as the final coalgebra of F : B/1×B/N∞ → B/N∞ with F(A,X) =

∏s∞ !∗A×∏s∞ X . Note that F is isomorphic to B/1×B/N∞ ' B/1+N∞
JPK−−→ B/N∞, where P is the polyno-

mial

P = 1+N∞ g←− 2×N∞ f−→ N∞ id−→ N∞ g(i,k) =

{
κ1∗, i = 1
κ2k, i = 2

f (i,k) = s∞ k.
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If we now fix an object A ∈ B/1, then F(A,−)∼= JP′K for the polynomial P′ given by

P′ = N∞ π←−∑
N∞

∑
s∞

∏
s∞

!∗A
f ′−→∑

N∞
∏
s∞

!∗A π−→ N∞,

where π is the projection on the index of a dependent sum and f ′(n,(s∞ n,v)) = (s∞ n,v).
Recall that we construct in Thm. 4.5 the final coalgebra of JP′K as a subobject of M f ′ . Below, we

present three trees that are elements of M f ′ , where only the second and third are actually selected by the
equaliser taken in Thm. 4.5.

(3,a0)

(∞,a1)

(15,a2)

...

(2,3,a0)

(∞,∞,a1)

(14,15,a2)

f ′ (3,b0)

(2,b1)

(1,b2)

(0,⊥)

(2,3,b0)

(1,2,b1)

(0,1,b2)

3 π

2
π

π

1

0

(∞,c0)

(∞,c1)

(∞,c2)

...

(∞,∞,c0)

(∞,∞,c1)

(∞,∞,c2)

Here we denote a pair (k,v) : ∑N∞ ∏s∞ !∗A with k = s∞ n and vn = a by (k,a), or if k = 0 by (0,⊥).
Moreover, we indicate the matching of indices in the second tree, which is used to form the equaliser.
Note that the second tree is an element of PStr(A)3, whereas the third is in PStr(A)∞.

5 Conclusion and Future Work

We have seen how dependent inductive and coinductive types with type constructors, in the style of
Agda, can be given semantics in terms of data type closed categories (DTCC), with the restriction that
destructors of coinductive types are not allowed to refer to each other. This situation is summed up in the
following table.

Condition Use/Implications
Cloven fibration Definition of signatures and data types
Data type completeness Construction of types indexed by objects in base (e.g., vectors for

N ∈ B) and types agnostic of indices (e.g., initial and final objects,
sums and products)

Data type closedness Constructed types as index; Full interpretation of data types

Moreover, we have shown that a large part of these data types can be constructed as fixed points of
polynomial functors.

Let us finish by discussing directions for future work. First, a full interpretation of syntactic data
types has also still to be carried out. Here one has to be careful with type equality, which is usually
dealt with using split fibrations and a Beck-Chevalley condition. The latter can be defined generally for
the data types of this work, in needs to be checked, however, whether this condition is sufficient for
giving a sound interpretation. Finally, the idea of using dialgebras has found its way into the syntax of
higher inductive types [7], though in that work the used format of dialgebras is likely to be too liberal to
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guarantee the existence of semantics. The reason is that the shape of dialgebras used in the present work
ensures that we can construct data types from (co)coalgebras, whereas this is not the case in [7]. Thus it
is to be investigated what the right notion of dialgebras is for capturing higher (co)inductive types, such
that their semantics in terms of trees can always be constructed.
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Two distinct research approaches have been proposed for assigning a purely extensional semantics
to higher-order logic programming. The former approach uses classical domain-theoretic tools while
the latter builds on a fixed-point construction defined on a syntactic instantiation of the source pro-
gram. The relationships between these two approaches had not been investigated until now. In
this paper we demonstrate that for a very broad class of programs, namely the class ofdefinitional
programsintroduced by W. W. Wadge, the two approaches coincide (withrespect to ground atoms
that involve symbols of the program). On the other hand, we argue that if existential higher-order
variables are allowed to appear in the bodies of program rules, the two approaches are in general dif-
ferent. The results of the paper contribute to a better understanding of the semantics of higher-order
logic programming.

1 Introduction

Extensional higher-order logic programming has been proposed [10, 1, 2, 7, 5, 4] as a promising general-
ization of classical logic programming. The key idea behindthis paradigm is that the predicates defined
in a program essentially denote sets and therefore one can use standard extensional set theory in order
to understand their meaning and reason about them. The main difference between the extensional and
the more traditionalintensionalapproaches to higher-order logic programming [9, 6] is thatthe latter
approaches have a much richer syntax and expressive capabilities but a non-extensional semantics.

Actually, despite the fact that only very few articles have been written regarding extensionality in
higher-order logic programming, two main semantic approaches can be identified. The work described
in [10, 7, 5, 4] uses classical domain-theoretic tools in order to capture the meaning of higher-order logic
programs. On the other hand, the work presented in [1, 2] builds on a fixed-point construction defined on
a syntactic instantiation of the source program in order to achieve an extensional semantics. Until now,
the relationships between the above two approaches had not yet been investigated.

In this paper we demonstrate that for a very broad class of programs, namely the class ofdefinitional
programsintroduced by W. W. Wadge [10], the two approaches coincide.Intuitively, this means that
for any given definitional program, the sets of true ground atoms of the program are identical under the
two different semantic approaches. This result is interesting since it suggests that definitional programs
are of fundamental importance for the further study of extensional higher-order logic programming. On
the other hand, we argue that if we try to slightly extend the source language, the two approaches give
different results in general. Overall, the results of the paper contribute to a better understanding of the

∗This research was supported by the project “Handling Uncertainty in Data Intensive Applications”, co-financed by the
European Union (European Social Fund) and Greek national funds, through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) - Research Program: THALES, Investing in knowledge
society through the European Social Fund.
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semantics of higher-order logic programming and pave the road for designing a realistic extensional
higher-order logic programming language.

The rest of the paper is organized as follows. Section 2 briefly introduces extensional higher-order
logic programming and presents in an intuitive way the two existing approaches for assigning meaning
to programs of this paradigm. Section 3 contains backgroundmaterial, namely the syntax of definitional
programs and the formal details behind the two aforementioned semantic approaches. Section 4 demon-
strates the equivalence of the two semantics for definitional programs. Finally, Section 5 concludes the
paper with discussion regarding non-definitional programsand with pointers to future work.

2 Intuitive Overview of the two Extensional Approaches

In this section we introduce extensional higher-order logic programming and present the two existing
approaches for assigning meaning to programs of this paradigm. Since these two proposals were initially
introduced by W. W. Wadge and M. Bezem respectively, we will refer to them asWadge’s semantics
andBezem’s semanticsrespectively. The key idea behind both approaches is that inorder to achieve
an extensional semantics, one has to consider a fragment of higher-order logic programming that has a
restricted syntax.

2.1 Extensional Higher-Order Logic Programming

The main differences between extensional and intensional higher-order logic programming can be easily
understood through two simple examples (borrowed from [5]). Due to space limitations, we avoid a more
extensive discussion of this issue; the interested reader can consult [5].

Example 1. Suppose we have a database of professions, both of their membership and their status. We
might have rules such as:

engineer(tom).

engineer(sally).

programmer(harry).

with engineer andprogrammer used as predicates. In intensional higher-order logic programming we
could also have rules in which these are arguments, eg:

profession(engineer).

profession(programmer).

Now supposetom andsally are also avid users of Twitter. We could have rules:

tweeter(tom).

tweeter(sally).

The predicatestweeter and engineer are equal as sets (since they are true for the same objects,
namelytom andsally). If we attempted to understand the above program from an extensional point
of view, then we would have to accept thatprofession(tweeter) must also hold (sincetweeter and
engineer are indistinguishable as sets). It is clear that the extensional interpretation in this case is com-
pletely unnatural. The program can however be understood intensionally: the predicateprofession is
true of thenameengineer (which is different than the nametweeter).

On the other hand, there are cases where predicates can be understood extensionally:
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Example 2. Consider a program that consists only of the following rule:

p(Q):-Q(0),Q(1).

In an extensional language, predicatep above can be intuitively understood in purely set-theoretic terms:
p is the set of all those sets that contain both0 and1.

It should be noted that the above program is also a syntactically acceptable program of the existing
intensional logic programming languages. The difference is that in an extensional language the above
program has a purely set-theoretic semantics.

From the above examples it can be understood that extensional higher-order logic programming
sacrifices some of the rich syntax of intensional higher-order logic programming in order to achieve
semantic clarity.

2.2 Wadge’s Semantics

The first proposal for an extensional semantics for higher-order logic programming was given in [10]
(and later refined and extended in [7, 5, 4]). The basic idea behind Wadge’s approach is that if we
consider a properly restricted higher-order logic programming language, then we can use standard ideas
from denotational semantics in order to assign an extensional meaning to programs. The basic syntactic
assumptions introduced by Wadge in [10] are the following:
• In the head of every rule in a program, each argument of predicate type must be a variable; all such

variables must be distinct.

• The only variables of predicate type that can appear in the body of a rule, are variables that appear
in its head.

Programs that satisfy the above restrictions are nameddefinitional in [10].
Example 3. The program1:

p(a).

q(b).

r(P,Q):-P(a),Q(b).

is definitional because the arguments of predicate type in the head of the rule forr are distinct variables.
Moreover, the only predicate variables that appear in the body of the same rule, are the variables in its
head (namelyP andQ).
Example 4. The program:

q(a).

r(q).

is not definitional because the predicate constantq appears as an argument in the second clause. For a
similar reason, the program in Example 1 is not definitional.The program:

p(Q,Q):-Q(a).

is also not definitional because the predicate variableQ is used twice in the head of the above rule. Finally,
the program:

p(a):-Q(a).

is not definitional because the predicate variableQ that appears in the body of the above rule, does not
appear in the head of the rule.

1For simplicity reasons, the syntax that we use in our exampleprograms is Prolog-like. The syntax that we adopt in the next
section is slightly different and more convenient for the theoretical developments that follow.
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As it is argued in [10], if a program satisfies the above two syntactic restrictions, then it has aunique
minimum model(this notion will be precisely defined in Section 3). Consider again the program of
Example 3. In the minimum model of this program, the meaning of predicatep is the relation{a}
and the meaning of predicateq is the relation{b}. On the other hand, the meaning of predicater

in the minimum model is a relation that contains the pairs({a},{b}), ({a,b},{b}), ({a},{a,b}) and
({a,b},{a,b}). As remarked by W. W. Wadge (and formally demonstrated in [7,5]), the minimum
model of every definitional program is monotonic and continuous2. Intuitively, monotonicity means that
if in the minimum model the meaning of a predicate is true of a relation, then it is also true of every
superset of this relation. For example, we see that since themeaning ofr is true of({a},{b}), then it is
also true of({a,b},{b}) (because{a,b} is a superset of{a}).

The minimum model of a given definitional program can be constructed as the least fixed-point of an
operator that is associated with the program, called theimmediate consequence operatorof the program.
As it is demonstrated in [10, 7], the immediate consequence operator is monotonic, and this guarantees
the existence of the least fixed-point which is constructed by a bottom-up iterative procedure (more
formal details will be given in the next section).

Example 5. Consider the definitional program:

q(a).

q(b).

p(Q):-Q(a).

id(R)(X):-R(X).

In the minimum model of the above program, the meaning ofq is the relation{a,b}. The meaning ofp is
the set of all relations that contain (at least)a; more formally, it is the relation{r | a∈ r}. The meaning of
id is the set of all pairs(r,d) such thatd belongs tor; more formally, it is the relation{(r,d) | d∈ r}.

Notice that in the construction of the minimum model, all predicates are initially assigned the empty
relation. The rules of the program are then used in order to improve the meaning assigned to each
predicate symbol. More specifically, at each step of the fixed-point computation, the meaning of each
predicate symbol either stabilizes or it becomes richer than the previous step.

Example 6. Consider again the definitional program of the previous example. In the iterative construc-
tion of the minimum model, all predicates are initially assigned the empty relation (of the corresponding
type). After the first step of the construction, the meaning assigned to predicateq is the relation{a,b}
due to the first two facts of the program. At this same step, themeaning ofp becomes the relation
{r | a ∈ r}. Also, the meaning ofid becomes equal to the relation{(r,d) | d ∈ r}. Additional itera-
tions will not alter the relations we have obtained at the first step; in other words, we have reached the
fixed-point of the bottom-up computation.

In the above example, we obtained the meaning of the program in just one step. If the source program
contained recursive definitions, convergence to the least fixed-point would in general require more steps.

2.3 Bezem’s Semantics

In [1, 2], M. Bezem proposed an alternative extensional semantics for higher-order logic programs.
Again, the syntax of the source language has to be appropriately restricted. Actually, the class of pro-
grams adopted in [1, 2] is a proper superset of the class of definitional programs. In particular, Bezem
proposes the class ofhoapata programswhich extend definitional programs:

2The notion of continuity will not play any role in the remaining part of this paper.
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• A predicate variable that appears in the body of a rule, need not necessarily appear in the head of
that rule.

• The head of a rule can be an atom that starts with a predicate variable.

Example 7. All definitional programs of the previous subsection are also hoapata. The following non-
definitional program of Example 4 is hoapata:

p(a):-Q(a).

Intuitively, the above program states thatp is true ofa if there exists a predicate that is defined in the
program that is true ofa. We will use this program in our discussion at the end of the paper.

The following program is also hoapata (but not definitional):

P(a,b).

Intuitively, the above program states that every binary relation is true of the pair(a,b).

Given a hoapata program, the starting idea behind Bezem’s approach is to take its “ground instantia-
tion” in which we replace variables with well-typed terms ofthe Herbrand Universe of the program (ie.,
terms that can be created using only predicate and individual constants that appear in the program). For
example, given the program:

q(a).

q(b).

p(Q):-Q(a).

id(R)(X):-R(X).

the ground instantiation is the following infinite “program”:

q(a).

q(b).

p(q):-q(a).

id(q)(a):-q(a).

p(id(q)):-id(q)(a).

id(id(q))(a):-id(q)(a).

p(id(id(q))):-id(id(q))(a).

· · ·

One can now treat the new program as an infinite propositionalone (ie., each ground atom can be seen as
a propositional one). This implies that we can use the standard least fixed-point construction of classical
logic programming (see for example [8]) in order to compute the set of atoms that should be taken as
“true”. In our example, the least fixed-point will contain atoms such asq(a), q(b), p(q), id(q)(a),
p(id(q)), and so on.

A main contribution of Bezem’s work was that he established that the least fixed-point of the ground
instantiation of every hoapata program isextensional. This notion can intuitively be explained as follows.
It is obvious in the above example that the relationsq andid(q) are equal (they are both true of only
the constanta, and therefore they both correspond to the relation{a}). Therefore, we would expect that
(for example) ifp(q) is true thenp(id(q)) is also true becauseq andid(q) should be considered as
interchangeable. This property of “interchangeability” is formally defined in [1, 2] and it is demonstrated
that it holds in the least fixed-point of the immediate consequence operator of the ground instance of every
hoapata program.
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2.4 The Differences Between the two Approaches

It is not hard to see that the two semantic approaches outlined in the previous subsections, have some
important differences. First, they operate on different source languages. Therefore, in order to compare
them we have to restrict Bezem’s approach to the class of definitional programs3.

The main difference however between the two approaches is the way that the least fixed-point of the
immediate consequence operator is constructed in each case. In Wadge’s semantics the construction starts
by initially assigning to every predicate constant the empty relation; these relations are then improved
at each step until they converge to their final meaning. In other words, Wadge’s semanticsmanipulates
relations. On the other hand, Bezem’s semantics works with the ground instantiation of the source
program and, at first sight, it appears to have a more syntactic flavor. In our running example, Wadge’s
approach converges in a single step while Bezem’s approach takes an infinite number of steps in order
to converge. However, one can easily verify that the ground atoms that belong to the least fixed-point
under Bezem’s semantics, are also true in the minimum model under Wadge’s semantics. This poses the
question whether under both approaches, the sets of ground atoms that are true, are identical. This is the
question that we answer positively in the rest of the paper.

3 Definitional Programs and their Semantics

In this section we define the source languageH of definitional higher-order logic programs. Moreover,
we present in a formal way the two different extensional semantics that have been proposed for such
programs, namely Wadge’s and Bezem’s semantics respectively.

3.1 Syntax

The languageH is based on a simple type system that supports two base types:o, the boolean domain,
andι , the domain of individuals (data objects). The composite types are partitioned into three classes:
functional (assigned to function symbols), predicate (assigned to predicate symbols) and argument (as-
signed to parameters of predicates).

Definition 1. A type can either be functional, argument, or predicate, denoted byσ , ρ andπ respectively
and defined as:

σ := ι | (ι → σ)

π := o | (ρ → π)
ρ := ι | π

We will useτ to denote an arbitrary type (either functional, argument orpredicate one). As usual,
the binary operator→ is right-associative. A functional type that is different thanι will often be written
in the formιn→ ι , n≥ 1. Moreover, it can be easily seen that every predicate typeπ can be written in
the formρ1→ ··· → ρn→ o, n≥ 0 (for n= 0 we assume thatπ = o).

We proceed by defining the syntax ofH :

Definition 2. The alphabet of the higher-order languageH consists of the following:

1. Predicate variables of every predicate typeπ (denoted by capital letters such asP,Q,R, . . .).

3Actually, we could alternatively extend Wadge’s approach to a broader class of programs. Such an extension has already
been performed in [5], and we will discuss its repercussionsin the concluding section.
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2. Individual variables of typeι (denoted by capital letters such asX,Y,Z, . . .).

3. Predicate constants of every predicate typeπ (denoted by lowercase letters such asp,q, r, . . .).

4. Individual constants of typeι (denoted by lowercase letters such asa,b,c, . . .).

5. Function symbols of every functional typeσ 6= ι (denoted by lowercase letters such asf,g,h, . . .).

6. The logical conjunction constant∧, the inverse implication constant←, the left and right paren-
theses, and the equality constant≈ for comparing terms of typeι .

The set consisting of the predicate variables and the individual variables ofH will be called the
set ofargument variablesof H . Argument variables will be usually denoted byV and its subscripted
versions.

Definition 3. The set oftermsof the higher-order languageH is defined as follows:

• Every predicate variable (respectively predicate constant) of type π is a term of typeπ; every
individual variable (respectively individual constant) of type ι is a term of typeι ;

• if f is ann-ary function symbol andE1, . . . ,En are terms of typeι then(f E1 · · ·En) is a term of
typeι ;

• if E1 is a term of typeρ→ π andE2 a term of typeρ then(E1 E2) is a term of typeπ.

Definition 4. The set ofexpressionsof the higher-order languageH is defined as follows:

• A term of typeρ is an expression of typeρ ;

• if E1 andE2 are terms of typeι , then(E1≈ E2) is an expression of typeo.

We writevars(E) to denote the set of all the variables inE. Expressions (respectively terms) that have
no variables will often be referred to asground expressions(respectivelyground terms). Expressions of
typeo will often be referred to asatoms. We will omit parentheses when no confusion arises. To denote
that an expressionE has typeρ we will often writeE : ρ .

Definition 5. A clauseis a formulap V1 · · ·Vn←E1∧·· ·∧Em, wherep is a predicate constant,p V1 · · ·Vn

is a term of typeo andE1, . . . ,Em are expressions of typeo. The termp V1 · · ·Vn is called theheadof the
clause, the variablesV1, . . . ,Vn are theformal parametersof the clause and the conjunctionE1∧·· ·∧Em

is itsbody. A definitional clauseis a clause that additionally satisfies the following two restrictions:

1. All the formal parameters are distinct variables (ie., for all i, j such that 1≤ i, j ≤ n, Vi 6= V j ).

2. The only variables that can appear in the body of the clauseare its formal parameters and possibly
some additional individual variables (namely variables oftypeι).

A programP is a set of definitional program clauses.

In the rest of the paper, when we refer to “clauses” we will mean definitional ones. For simplicity, we
will follow the usual logic programming convention and we will write p V1 · · ·Vn← E1, . . . ,Em instead
of p V1 · · ·Vn← E1∧ ·· ·∧Em.

Our syntax differs slightly from the Prolog-like syntax that we have used in Section 2. However, one
can easily verify that we can transform every program from the former syntax to the latter.

Definition 6. For a programP, we define the Herbrand universe for every argument typeρ , denoted
by UP,ρ to be the set of all ground terms of typeρ , that can be formed out of the individual constants,
function symbols and predicate constants in the program.

In the following, we will often talk about the “ground instantiation of a program”. This notion is
formally defined below.
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Definition 7. A ground substitutionθ is a finite set of the form{V1/E1, . . . ,Vn/En} where theVi ’s
are different argument variables and eachEi is a ground term having the same type asVi. We write
dom(θ) = {V1, . . . ,Vn} to denote the domain ofθ .

We can now define the application of a substitution to an expression.

Definition 8. Let θ be a substitution andE be an expression. Then,Eθ is an expression obtained fromE
as follows:

• Eθ = E if E is a predicate or individual constant;

• Vθ = θ(V) if V ∈ dom(θ); otherwise,Vθ = V;

• (f E1 · · ·En)θ = (f E1θ · · ·Enθ);

• (E1 E2)θ = (E1θ E2θ);

• (E1≈ E2)θ = (E1θ ≈ E2θ).

Definition 9. Let E be an expression andθ be a ground substitution such thatvars(E) ⊆ dom(θ).
Then, the ground expressionEθ is called aground instantiationof E. A ground instantiation of a
clausep V1 · · ·Vn← E1, . . . ,Em with respect to a ground substitutionθ is the formula(p V1 · · ·Vn)θ ←
E1θ , . . . ,Emθ . Theground instantiation of a programP is the (possibly infinite) set that contains all the
ground instantiations of the clauses ofP with respect to all possible ground substitutions.

3.2 Wadge’s Semantics

The key idea behind Wadge’s semantics is (intuitively) to assign to program predicates monotonic re-
lations. In the following, given posetsA andB, we write [A

m→ B] to denote the set of all monotonic
relations fromA to B.

Before specifying the semantics of expressions ofH we need to provide the set-theoretic meaning
of the types of expressions ofH with respect to an underlying domain. It is customary in logic pro-
gramming to take the underlying domain to be the Herbrand universeUP,ι . In the following definition
we define simultaneously and recursively two things: the semanticsJτK of a typeτ and a corresponding
partial order⊑τ on the elements ofJτK. We adopt the usual ordering of the truth valuesfalseandtrue,
i.e. false≤ false, true≤ true andfalse≤ true.

Definition 10. Let P be a program. Then,

• JιK=UP,ι and⊑ι is the trivial partial order that relates every element to itself;

• Jιn→ ιK =Un
P,ι →UP,ι . A partial order for this case is not needed;

• JoK = {false, true} and⊑o is the partial order≤ on truth values;

• Jρ → πK = [JρK m→ JπK] and⊑ρ→π is the partial order defined as follows: for allf ,g∈ Jρ → πK,
f ⊑ρ→π g iff f (d)⊑π g(d) for all d ∈ JρK.

We now proceed to define Herbrand interpretations and states.

Definition 11. A Herbrand interpretationI of a programP is an interpretation such that:

1. for every individual constantc that appears inP, I(c) = c;

2. for every predicate constantp : π that appears inP, I(p) ∈ JπK;
3. for everyn-ary function symbolf that appears inP and for all t1, . . . tn ∈ UP,ι , I(f) t1 · · ·tn =

f t1 · · · tn.
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Definition 12. A Herbrand statesof a programP is a function that assigns to each argument variableV
of typeρ , an elements(V) ∈ JρK.

In the following,s[V/d] is used to denote a state that is identical tos the only difference being that
the new state assigns toV the valued.

Definition 13. Let P be a program,I be a Herbrand interpretation ofP andsbe a Herbrand state. Then,
the semantics of the expressions ofP is defined as follows:

1. JVKs(I) = s(V) if V is a variable;

2. JcKs(I) = I(c) if c is an individual constant;

3. JpKs(I) = I(p) if p is a predicate constant;

4. J(f E1 · · ·En)Ks(I) = I(f) JE1Ks(I) · · ·JEnKs(I);

5. J(E1 E2)Ks(I) = JE1Ks(I) JE2Ks(I);

6. J(E1≈ E2)Ks(I) = true if JE1Ks(I) = JE2Ks(I) andfalseotherwise.

For ground expressionsE we will often write JEK(I) instead ofJEKs(I) since the meaning ofE is
independent ofs.

It is straightforward to confirm that the above definition assigns to every expression an element of
the corresponding semantic domain, as stated in the following lemma:

Lemma 1. LetP be a program and letE : ρ be an expression. Also, let I be a Herbrand interpretation
and s be a Herbrand state. ThenJEKs(I) ∈ JρK.
Definition 14. Let P be a program andM be a Herbrand interpretation ofP. Then,M is a Herbrand
model ofP iff for every clausep V1 · · ·Vn← E1, . . .Em in P and for every Herbrand states, if for all
i ∈ {1, . . . ,m}, JEiKs(M) = true thenJp V1 · · ·VnKs(M) = true.

In the following we denote the set of Herbrand interpretations of a programP with IP. We define a
partial order onIP as follows: for allI ,J ∈IP, I ⊑IP

J iff for every predicatep : π that appears inP,
I(p) ⊑π J(p). Similarly, we denote the set of Herbrand states withSP and we define a partial order as
follows: for all s1,s2 ∈SP, s1⊑SP

s2 iff for all variablesV : ρ , s1(V)⊑ρ s2(V). The following lemmata
are straightforward to establish:

Lemma 2. LetP be a program. Then,(IP,⊑IP
) is a complete lattice.

Lemma 3. LetP be a program and letE : ρ be an expression. Let I,J be Herbrand interpretations and
s,s′ be Herbrand states. Then,

1. If I ⊑IP
J thenJEKs(I)⊑ρ JEKs(J).

2. If s⊑SP
s′ thenJEKs(I)⊑ρ JEKs′(I).

We can now define theimmediate consequence operatorfor H programs, which generalizes the
corresponding operator for classical (first-order) programs [8].

Definition 15. Let P be a program. The mappingTP : IP→ IP is called theimmediate consequence
operator forP and is defined for every predicatep : ρ1→ ··· → ρn→ o anddi ∈ JρiK as

TP(I)(p) d1 · · ·dn =





true there exists a clausep V1 · · ·Vn← E1, . . .Em such that

for every states, JEiKs[V1/d1,...,Vn/dn](I) = true for all i ∈ {1, . . . ,m}
false otherwise.

It is not hard to see thatTP is a monotonic function, and this leads to the following theorem [10, 7]:

Theorem 1. Let P be a program. Then MP = lfp(TP) is the minimum, with respect to⊑IP
, Herbrand

model ofP.
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3.3 Bezem’s Semantics

In contrast to Wadge’s semantics which proceeds by constructing the meaning of predicates as relations,
Bezem’s approach takes a (seemingly) more syntax-orientedapproach. In particular, Bezem’s approach
builds on the ground instantiation of the source program in order to retrieve the meaning of the program.
In our definitions below, we follow relatively closely the exposition given in [1, 2, 3].

Definition 16. Let P be a program and letGr(P) be its ground instantiation. An interpretationI for
Gr(P) is defined as a subset ofUP,o by the usual convention that, for anyA ∈UP,o, I(A) = true iff A ∈ I .
We also extend the interpretationI for every(E1 ≈ E2) atom as follows:I(E1 ≈ E2) = true if E1 = E2

andfalseotherwise.

Observe that the meaning of(E1≈ E2) is fixed and independent of the interpretation.

Definition 17. We define the immediate consequence operator,TGr(P), of P as follows:

TGr(P)(I)(A) =





true if there exists a clauseA← E1, . . . ,Em in Gr(P)

such thatI(Ei) = true for all i ∈ {1, . . . ,m}
false otherwise.

As it is well established in bibliography (for example [8]),the least fixed-point of the immediate
consequence operator of a propositional program exists andis the minimum, with respect to set inclusion
and equivalently≤, model ofGr(P). This fixed-point, which we will henceforth denote byMGr(P), is
shown in [1, 2] to be directly related to a notion of a model capable of capturing the perceived semantics
of the higher-order programP. In particular, this model by definition assigns to all ground atoms the
same truth values asMGr(P). It is therefore justified that we restrict our attention toMGr(P), instead of
the aforementioned higher-order model, in our attempt to prove the equivalence of Bezem’s semantics
and Wadge’s semantics.

The following definition and subsequent theorem obtained in[3], identify a property ofMGr(P) that
we will need in the next section.

Definition 18. Let P be a program and letMGr(P) be the≤-minimum model ofGr(P). For every
argument typeρ we define a corresponding partial order as follows: for typeι , we define�ι as syntactical
equality, i.e.E �ι E for all E ∈UP,ι . For typeo, E �o E

′ iff MGr(P)(E) ≤MGr(P)(E
′). For a predicate

type of the formρ → π, E�ρ→π E′ iff ED�π E′D for all D ∈UP,ρ .

Theorem 2(�-Monotonicity Property). [3] Let P be a program andMGr(P) be the≤-minimum model
of Gr(P). Then for allE ∈UP,ρ→π and allD,D′ ∈UP,ρ such thatD�ρ D′, it holdsED �π ED′.

4 Equivalence of the two Semantics

In this section we demonstrate that the two semantics presented in the previous section, are equivalent for
definitional programs. To help us transcend the differencesbetween these approaches, we introduce two
key notions, namely that of theground restrictionof a higher-order interpretation and its complementary
notion of thesemantic extensionof ground expressions. But first we present the followingSubstitution
Lemma, which will be useful in the proofs of later results.

Lemma 4 (Substitution Lemma). LetP be a program and I be a Herbrand interpretation ofP. Also let
E be an expression andθ be a ground substitution with vars(E) ⊆ dom(θ). If s is a Herbrand state such
that, for allV ∈ vars(E), s(V) = Jθ(V)K(I), thenJEKs(I) = JEθK(I).
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Proof. By a structural induction onE. For the basis case, ifE= p or E= c then the statement reduces to
an identity and ifE=V then it holds by assumption. For the induction step, we first examine the case that
E = (f E1 · · · En); thenJEKs(I) = I(f) JE1Ks(I) · · · JEnKs(I) andJEθK(I) = I(f) JE1θK(I) · · · JEnθK(I).
By the induction hypothesis,JE1Ks(I) = JE1θK(I), . . . ,JEnKs(I) = JEnθK(I), thus we haveJEKs(I) =
JEθK(I). Now consider the case thatE = E1E2. We haveJEKs(I) = JE1Ks(I)JE2Ks(I) and JEθK(I) =
JE1θK(I)JE2θK(I). Again, applying the induction hypothesis, we conclude that JEKs(I) = JEθK(I). Fi-
nally, if E = (E1 ≈ E2) we have thatJEKs(I) = true iff JE1Ks(I) = JE2Ks(I), which, by the induction
hypothesis, holds iffJE1θK(I) = JE2θK(I). Moreover, we haveJEθK(I) = true iff JE1θK(I) = JE2θK(I),
therefore we conclude thatJEKs(I) = true iff JEθK(I) = true.

Given a Herbrand interpretationI of a definitional program, it is straightforward to devise a corre-
sponding interpretation of the ground instantiation of theprogram, by restrictingI to only assigning truth
values to ground atoms. As expected, such a restriction of a model of the program produces a model of
its ground instantiation. This idea is formalized in the following definition and theorem.

Definition 19. Let P be a program,I be a Herbrand interpretation ofP andGr(P) be the ground instan-
tiation ofP. We define theground restrictionof I , which we denote byI |Gr(P), to be an interpretation of
Gr(P), such that, for every ground atomA, I |Gr(P)(A) = JAK(I).
Theorem 3. LetP be a program andGr(P) be its ground instantiation. Also let M be a Herbrand model
of P and M|Gr(P) be the ground restriction of M. Then M|Gr(P) is a model ofGr(P).

Proof. By definition, each clause inGr(P) is of the formpE1 · · · En← B1θ , . . . ,Bkθ , i.e. the ground
instantiation of a clausepV1 · · · Vn ← B1, . . . ,Bk in P with respect to a ground substitutionθ , such
that dom(θ) includesV1, . . . ,Vn and all other (individual) variables appearing in the body of the clause
andθ(Vi) = Ei , for all i ∈ {1, . . . ,n}. Let s be a Herbrand state such thats(V) = Jθ(V)K(M), for all
V ∈ dom(θ). By the Substitution Lemma (Lemma 4) and the definition ofM|Gr(P), JpV1 · · · VnKs(M) =
JpE1 · · · EnK(M) = M|Gr(P)(pE1 · · · En). Similarly, for each atomBi in the body of the clause, we
haveJBiKs(M) = JBiθK(M) = M|Gr(P)(Biθ),1 ≤ i ≤ k. Consequently, ifM|Gr(P)(Biθ) = true for all
i ∈ {1, . . . ,k}, we also have thatJBiKs(M) = true,1 ≤ i ≤ k. As M is a model ofP, this implies that
JpV1 · · · VnKs(M) = M|Gr(P)(pE1 · · · En) = true and thereforeM|Gr(P) is a model ofGr(P).

The above theorem is of course useful in connecting the⊑IP
-minimum Herbrand model of a program

to its ground instantiation. However, in order to prove the equivalence of the two semantics under
consideration, we will also need to go in the opposite direction and connect the≤-minimum model of
the ground program to the higher-order program. To this end we introduce the previously mentioned
semantic extensionsof a ground expression.

Definition 20. Let P be a program andMGr(P) be the≤-minimum model ofGr(P). Let E be a ground
expression of argument typeρ andd be an element ofJρK. We will say thatd is a semantic extension of
E and writed✄ρ E if

• ρ = ι andd = E;

• ρ = o andd = MGr(P)(E);

• ρ = ρ ′→ π and for alld′ ∈ Jρ ′K andE′ ∈UP,ρ ′, such thatd′✄ρ ′ E
′, it holds thatd d′✄π EE

′.

Compared to that of the ground restriction presented earlier, the notion of extending a syntactic
object to the realm of semantic elements, is more complicated. In fact, even the existence of a semantic
extension is not immediately obvious. The next lemma guarantees that not only can such an extension
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be constructed for any expression of the language, but it also has an interesting property of mirroring
the ordering of semantic objects with respect to⊑τ in a corresponding ordering of the expressions with
respect to�τ .

Lemma 5. LetP be a program,Gr(P) be its ground instantiation andMGr(P) be the≤-minimum model
of Gr(P). For every argument typeρ and every ground termE ∈UP,ρ

1. There exists e∈ JρK such that e✄ρ E.

2. For all e,e′ ∈ JρK and allE′ ∈UP,ρ , if e✄ρ E, e′✄ρ E
′ and e⊑ρ e′, thenE�ρ E′.

Proof. We prove both statements simultaneously, performing an induction on the structure ofρ . Specif-
ically, the first statement is proven by showing that in each case we can construct a functioneof typeρ ,
which is monotonic with respect to⊑ρ and satisfiese✄ρ E.

In the basis case, the construction ofe for types ι ando is trivial. Also, if ρ = ι , then both✄ρ
and⊑ρ reduce to equality, so we haveE = E′, which in this case is equivalent toE �ρ E′. On the
other hand, forρ = o, ✄ρ identifies with equality, while⊑ρ and�ρ identify with ≤, so we have that
MGr(P)(E) = e≤ e′ = MGr(P)(E

′) impliesE�ρ E′.
For a more complex typeρ = ρ1→ ··· → ρn→ o, n> 0, we can easily constructe, as follows:

ee1 · · · en =





true, if there existd1, . . . ,dn and ground termsD1, . . . ,Dn such that,

for all i,di ⊑ρi ei ,di ✄ρi Di andMGr(P)(ED1 · · · Dn) = true

false, otherwise.

To see thate is monotonic, considere1, . . . ,en,e′1, . . . ,e
′
n, such thate1 ⊑ρ1 e′1, . . . ,en ⊑ρn e′n and observe

that ee1 · · · en = true implies ee′1 · · · e′n = true, due to the transitivity of⊑ρi . We will now show that
e✄ρ E, i.e. for all e1, . . . ,en and E1, . . . ,En such thate1 ✄ρ1 E1, . . . ,en ✄ρn En, it holds ee1 · · · en =
MGr(P)(EE1 · · · En). This is trivial if MGr(P)(E E1 · · · En) = true, sinceei ⊑ρi ei . Let us now examine the
case thatMGr(P)(E E1 · · · En) = false. For the sake of contradiction, assumeee1 · · · en = true. Then, by
the construction ofe, there must existd1, . . . ,dn andD1, . . . ,Dn such that, for alli, di ⊑ρi ei , di ✄ρi Di and
MGr(P)(ED1 · · · Dn) = true. By the induction hypothesis, we have thatDi �ρi Ei , for all i ∈ {1, . . . ,n}.
This, by the�-Monotonicity Property ofMGr(P) (Theorem 2), yields thatMGr(P)(ED1 · · · Dn) = true≤
MGr(P)(E E1 · · · En) = false, which is obviously a contradiction. Therefore it has to be thatee1 · · · en =
false.

Finally, in order to prove the second statement and concludethe induction step, we need to show
that for all termsD1 ∈ UP,ρ1, . . . ,Dn ∈ UP,ρn, it holds E D1 · · · Dn �o E′ D1 · · · Dn. By the induction
hypothesis, there existd1, . . . ,dn, such thatd1✄ρ1 D1, . . . ,dn✄ρn Dn. Becausee✄ρ E andE D1 · · · Dn is
of typeo, we havee d1 · · · dn =MGr(P)(E D1 · · · Dn) by definition. Similarly, we also havee′ d1 · · · dn =
MGr(P)(E

′ D1 · · · Dn). Moreover, bye⊑ρ e′ we have thate d1 · · · dn ⊑o e′ d1 · · · dn. This yields the
desired result, since⊑o identifies with�o.

The following variation of the Substitution Lemma states that if the building elements of an expres-
sion are assigned meanings that are semantic extensions of their syntactic counterparts, then the meaning
of the expression is itself a semantic extension of the expression.

Lemma 6. LetP be a program,Gr(P) be its ground instantiation and I be a Herbrand interpretation of
P. Also, letE be an expression of some argument typeρ and let s be a Herbrand state andθ be a ground
substitution, both with domain vars(E). If, for all predicatesp of typeπ appearing inE, JpK(I)✄π p and,
for all variablesV of typeρ ′ in vars(E), s(V)✄ρ ′ θ(V), thenJEKs(I)✄ρ Eθ .
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Proof. The proof is by induction on the structure ofE. The basis casesE = p andE = V hold by
assumption andE = c : ι is trivial. For the first case of the induction step, letE = (f E1 · · · En), where
E1, . . . ,En are of typeι . By the induction hypothesis, we have thatJE1Ks(I)✄ι E1θ , . . . ,JEnKs(I)✄ι Enθ .
As ✄ι is defined as equality, we have thatJEKs(I) = I(f) JE1Ks(I) · · · JEnKs(I) = f E1θ · · · Enθ = Eθ
and thereforeJEKs(I)✄ι Eθ . For the second case, letE = E1E2, whereE1 is of typeρ1 = ρ2→ π and
E2 is of typeρ2; then,JEKs(I) = JE1Ks(I)JE2Ks(I). By the induction hypothesis,JE1Ks(I)✄ρ2→π E1θ and
JE2Ks(I)✄ρ2 E2θ , thus, by definition,JEKs(I) = JE1Ks(I) JE2Ks(I)✄π E1θ E2θ = (E1E2)θ = Eθ . Finally,
we have the case thatE= (E1≈ E2), whereE1 andE2 are both of typeι . The induction hypothesis yields
JE1Ks(I)✄ι E1θ andJE2Ks(I)✄ι E2θ or, since✄ι is defined as equality,JE1Ks(I) = E1θ andJE2Ks(I) =
E2θ . ThenJE1Ks(I) = JE2Ks(I) iff E1θ = E2θ and, equivalently,JEKs(I) = true iff Eθ = true, which
impliesJEKs(I)✄oEθ .

We are now ready to present the main result of this paper. The theorem establishes the equivalence
of Wadge’s semantics and Bezem’s semantics, in stating thattheir respective minimum models assign
the same meaning to all ground atoms.

Theorem 4. LetP be a program and letGr(P) be its ground instantiation. Let MP be the⊑IP
-minimum

Herbrand model ofP and letMGr(P) be the≤-minimum model ofGr(P). Then, for everyA ∈UP,o it
holdsJAK(MP) = MGr(P)(A).

Proof. We will construct an interpretationN for P and prove some key properties for this interpretation.
Then we will utilize these properties to prove the desired result. The definition ofN is as follows:

For everyp : ρ1→ ··· → ρn→ o and alld1 ∈ Jρ1K, . . . ,dn ∈ JρnK

N(p)d1 · · · dn =





false, if there existe1, . . . ,en and ground termsE1, . . . ,En such that,

for all i,di ⊑ρi ei ,ei ✄ρi Ei andMGr(P)(pE1 · · · En) = false

true, otherwise

Observe thatN is a valid Herbrand interpretation ofP, in the sense that it assigns elements inJπK (i.e.
functions that are monotonic with respect to⊑π ) to every predicate of typeπ in P. Indeed, if it was not so,
then for some predicatep : π = ρ1→ ··· → ρn→ o, there would exist tuples(d1, . . . ,dn) and(d′1, . . . ,d

′
n)

with d1⊑ρ1 d′1, . . . ,dn⊑ρn d′n, such thatN(p)d1 · · · dn = trueandN(p)d′1 · · · d′n = false. By definition, the
fact thatN(p)d′1 · · · d′n is assigned the valuefalse, would imply that there existe1, . . . ,en andE1, . . . ,En

as in the above definition, such thatMGr(P)(pE1 · · · En) = false and d′1 ⊑ρ1 e1, . . . ,d′n ⊑ρn en. Being
that⊑ρi are transitive relations, the latter yields thatd1 ⊑ρ1 e1, . . . ,dn ⊑ρn en. Therefore, by definition,
N(p)d1 · · · dn should also evaluate tofalse, which constitutes a contradiction and thus confirms that the
meaning ofp is monotonic with respect to⊑π .

It is also straightforward to see thatN(p)✄π p, i.e. for alld1, . . . ,dn and all ground termsD1, . . . ,Dn

such thatd1 ✄ρ1 D1, . . . ,dn ✄ρn Dn, we haveN(p)d1 · · · dn = MGr(P)(p D1 · · · Dn). Becausedi ⊑ρi di ,
this holds trivially if MGr(P)(p D1 · · · Dn) = false. Now let MGr(P)(p D1 · · · Dn) = true and assume,
for the sake of contradiction, thatN(p)d1 · · · dn = false. Then, by the definition ofN, there must exist
e1, . . . ,en andE1, . . . ,En such that, for alli, di ⊑ρi ei , ei ✄ρi Ei andMGr(P)(pE1 · · · En) = false. Thus,
by the second part of Lemma 5, for alli, Di �ρi Ei and, by the�-Monotonicity Property ofMGr(P),
MGr(P)(pD1 · · · Dn) ≤MGr(P)(p E1 · · · En), which is obviously a contradiction. Thus we conclude that
N(p)d1 · · · dn = true.

Next we prove thatN is a model ofP. Let pV1 · · · Vn ← B1, . . . ,Bk be a clause inP and let
{V1, . . . ,Vn,X1, . . . ,Xm}, with Vi : ρi , for all i ∈ {1, . . . ,n}, andXi : ι , for all i ∈ {1, . . . ,m}, be the set of
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variables appearing in the clause. Then, it suffices to show that, for any tuple(d1, . . . ,dn) of arguments
and any Herbrand statessuch thats(Vi) = di for all i ∈ {1, . . . ,n}, N(p)d1 · · · dn = falseimplies that, for
at least onej ∈ {1, . . . ,k}, JB jKs(N) = false. Again, by the definition ofN, we see that ifN(p)d1 · · · dn =
false, then there existe1, . . . ,en and ground termsE1, . . . ,En such thatMGr(P)(pE1 · · · En) = false, d1⊑ρ1

e1, . . . ,dn ⊑ρn en ande1✄ρ1 E1, . . . ,dn ✄ρn En. Let θ be a ground substitution such thatθ(Vi) = Ei for
all i ∈ {1, . . . ,n} and, for all i ∈ {1, . . . ,m}, θ(Xi) = s(Xi); then there exists a ground instantiation
pE1 · · · En← B1θ , . . . ,Bkθ of the above clause inGr(P). As MGr(P) is a model of the ground program,
MGr(P)(pE1 · · · En) = falseimplies that there exists at least onej ∈ {1, . . . ,k} such thatMGr(P)(B jθ) =
false. We are going to show that the latter implies thatJB jKs(N) = false, which proves thatN is a model
of P. Indeed, lets′ be a Herbrand state such thats′(Vi) = ei ✄ρi θ(Vi) = Ei for all i ∈ {1, . . . ,n} and
s′(Xi) = θ(Xi) = s(Xi) for all i ∈ {1, . . . ,m}. As we have shown earlier,N(p′)✄π ′ p

′ for any predi-
catep′ : π ′, thus by Lemma 6 we getJB jKs′(N)✄o B jθ . SinceB j is of type o, the latter reduces to
JB jKs′(N) = MGr(P)(B jθ) = false. Also, becausedi ⊑ρi ei , i.e. s⊑SP

s′, by the second part of Lemma 3
we getJB jKs(N)⊑o JB jKs′(N), which makesJB jKs(N) = false.

Now we can proceed to prove that, for allA ∈UP,o, JAK(MP) = MGr(P)(A). Let A be of the form
p E1 · · · En, wherep : ρ1→ ··· → ρn→ o∈ P and letd1 = JE1K(MP), . . . ,dn = JEnK(MP). As we have
shown,N is a Herbrand model ofP, while MP is the minimum, with respect to⊑IP

, of all Herbrand
models ofP, therefore we have thatMP ⊑IP

N. By definition, this gives us thatMP(p) d1 · · · dn ⊑o

N(p) d1 · · · dn (1) and, by the first part of Lemma 3, thatd1⊑ρ1 JE1K(N), . . . ,dn⊑ρn JEnK(N) (2). More-
over, for all predicatesp′ : π ′ in P, we haveN(p′)✄π ′ p

′ and thus, by Lemma 6, takings and θ
to be empty, we getJEiK(N)✄ρi Ei ,1 ≤ i ≤ n. In conjunction with (2), the latter suggests that if
MGr(P)(p E1 · · · En) = false then N(p) d1 · · · dn = false, or, in other words, thatN(p) d1 · · · dn ≤
MGr(P)(p E1 · · · En). Because of (1), this makes it thatMP(p) d1 · · · dn ≤MGr(P)(p E1 · · · En) (3).
On the other hand, by Theorem 3,MP|Gr(P) is a model ofGr(P) and thereforeMGr(P)(p E1 · · · En) ≤
MP|Gr(P)(p E1 · · · En), sinceMGr(P) is the minimum model ofGr(P). By the definition ofGr(P)
and the meaning of application, the latter becomesMGr(P)(p E1 · · · En) ≤ MP|Gr(P)(p E1 · · · En) =
MP(p E1 · · · En) = MP(p) JE1K(MP) · · · JEnK(MP) = MP(p) d1 · · · dn. The last relation and (3) can only
be true simultaneously, if all the above relations hold as equalities, in particular ifMGr(P)(p E1 · · · En) =
Jp E1 · · · EnK(MP).

5 Discussion

We have considered the two existing extensional approachesto the semantics of higher-order logic pro-
gramming, and have demonstrated that they coincide for the class of definitional programs. It is therefore
natural to wonder whether the two semantic approaches continue to coincide if we extend the class of
programs we consider. Unfortunately this is not the case, aswe discuss below.

A seemingly mild extension to our source language would be toallow higher-order predicate vari-
ables that are not formal parameters of a clause, to appear inits body. Such programs are legitimate under
Bezem’s semantics (ie., they belong to the hoapata class). Moreover, a recent extension of Wadge’s se-
mantics [5] also allows such programs. However, for this extended class of programs the equivalence of
the two semantic approaches no longer holds as the followingexample illustrates.

Example 8. Consider the following extended program:

p(a):-Q(a).
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Following Bezem’s semantics, we initially take the ground instantiation of the program, namely:

p(a):-p(a).

and then compute the least model of the above program which assigns to the atomp(a) the valuefalse.
On the other hand, under the approach in [5], the atomp(a) has the valuetrue in the minimum Herbrand
model of the initial program. This is due to the fact that under the semantics of [5], our initial program
reads (intuitively speaking) as follows: “p(a) is true if there exists a relation that is true ofa”; actually,
there exists one such relation, namely the set{a}. This discrepancy between the two semantics is due to
the fact that Wadge’s semantics is based onsetsand not solely on the syntactic entities that appear in the
program.

Future work includes the extension of Bezem’s approach to higher-order logic programs with nega-
tion. An extension of Wadge’s approach for such programs hasrecently been performed in [4]. More
generally, the addition of negation to higher-order logic programming appears to offer an interesting and
nontrivial area of research, which we are currently pursuing.

References

[1] Marc Bezem (1999):Extensionality of Simply Typed Logic Programs. In Danny De Schreye, editor:Logic
Programming: The 1999 International Conference, Las Cruces, New Mexico, USA, November 29 - Decem-
ber 4, 1999, MIT Press, pp. 395–410.

[2] Marc Bezem (2001):An Improved Extensionality Criterion for Higher-Order Logic Programs. In Laurent
Fribourg, editor:Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference
of the EACSL, Paris, France, September 10-13, 2001, Proceedings, Lecture Notes in Computer Science2142,
Springer, pp. 203–216, doi:10.1007/3-540-44802-0_15.

[3] Marc Bezem (2002):Hoapata programs are monotonic. In: Proceedings NWPT02, Institute of Cybernetics
at TTU, Tallinn, pp. 18–20.
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Usual termination proofs for a functional program require to check all the possible reduction paths.
Due to an exponential gap between the height and size of such the reduction tree, no naive formal-
ization of termination proofs yields a connection to the polynomial complexity of the given program.
We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its
normal form, which is defined as the least fixed point of a monotone operator. We show that termina-
tion proofs for programs reducing under lexicographic pathorders (LPOs for short) and polynomially
quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields
an alternative proof of the fact that every function computed by an LPO-terminating, polynomially
quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal
since every polynomial-space computable function can be computed by such a program. The crucial
observation is that inductive definitions of minimal function graphs under LPO-terminating programs
can be approximated with transfinite induction along LPOs.

1 Introduction

1.1 Motivation

The termination of a program states that any reduction underthe program leads to a normal form. Recent
developments in termination analysis of first order functional programs, or ofterm rewrite systemsmore
specifically, have drawn interest in computational resource analysis, i.e., not just the termination but
also the estimation of time/space-resources required to execute a given program, which includes the
polynomial run-space complexity analysis. Usual termination proofs for a program require to check all
the possible reduction paths under the program. Due to an exponential gap between theheightandsize
of such the reduction tree, no naive termination proof yields a connection to the polynomial complexity
of the given program. For the sake of optimal termination proofs, it seems necessary to discuss “all the
possible reduction paths” by means of an alternative notionsmaller in size than reduction trees.

1.2 Backgrounds

Stemming from [21], there are various functional characterizations of polynomial-space computable
functions [14, 16, 17, 9], Those characterizations state that every poly-space computable function can
be defined by a finite set of equations, i.e., by a functional program. Orienting those equations suitably,
such programs reduce under a termination order, thelexicographic path orders(LPOs for short). The
well-founded-ness of LPOs yields the termination of the reducing programs.

∗The author is supported by Grants-in-Aid for JSPS Fellows (Grant No. 25·726).
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In the seminal work [5], it was discussed, depending on the choice of a termination order, what
mathematical axiom is necessary to formalize termination proofs by the termination order within Peano
arithmetic PA that axiomatizes ordered semi-rings with mathematical induction. In case ofmultiset path
orders (MPOs for short), termination proofs can be formalized in the fragment of PA with induction
restricted to computably enumerable sets. This yields an alternative proof of the fact that every function
computed by an MPO-terminating program is primitive recursive, cf. [10]. The formalization is optimal
since every primitive recursive function can be computed byan MPO-terminating program. In case of
LPOs, termination proofs can be formalized in the fragment with induction restricted to expressions of
the form “f is total” for some computable functionf . The formalization is optimal in the same sense as
in case of MPOs, cf. [22].

In more recent works [3, 4], MPOs and LPOs are combined withpolynomial quasi-interpretations
(PQIs for short). Unlike (strict) polynomial interpretations [2], the existence of a quasi-interpretation
does not tell us anything about termination. However, combined with these termination orders, the
PQI can be a powerful method in computational resource analysis. Indeed, those functional programs
characterizing poly-space computable functions that was motioned above admit PQIs. This means that
every poly-space computable function can be computed by an LPO-terminating program that admits a
PQI. Moreover, conversely, every function computed by sucha program is computable in polynomial
space [3, Theorem 1].

1.3 Outline

In Section 2 we fix the syntax of first order functional programs and the semantics in accordance with the
syntax. In Section 3 we present the definitions of LPOs and PQIs together with some examples, stating
an application to poly-space computable functions (Theorem 1, [3, Theorem 1]). In Section 4 we present
the framework of formalization. For an underlying formal system, a second order system U1

2 of bounded
arithmetic [6], which can be regarded as a weak fragment of PA, seems suitable since it is known that
the system U12 is complete for poly-space computable functions (Theorem 2.2).

In [5], the termination of a program reducing under an LPO<lpo is deduced by showing that, given
a termt, a tree containing all the possible reduction chains starting with t is well founded under<lpo.
The same construction of such reduction trees does not work in U1

2 essentially because the exponentiation
m 7→ 2m is not available. We lift the problem employing the notion ofminimal function graph[12, 11, 15],
a set of pairs of a term and its normal form. Given a termt, instead of constructing a reduction tree rooted
at t, we construct a (subset of a) minimal function graph that stores the pair oft and a normal form of
t. Typically, a minimal function graph is inductively defined, or in other words defined as the least fixed
point of a monotone operator. Let us recall that the set of natural numbers is the least fixed point of the
operatorm∈ Γ(X)⇐⇒ m= 0∨∃n∈ X s.t. m= n+1. As seen from this example, many instances of
inductive definitions are induced by operators of the formt ∈ Γ(X)⇐⇒∃s1, . . . ,sk ∈ X · · · . Crucially, a
minimal function graph under a program reducing under an LPO<lpo can be defined as the least fixed
point of such an operator but alsot ∈ Γ(X) ⇐⇒ ∃s1, . . . ,sk ∈ X ∧ s1, . . . ,sk <lpo t · · · holds. Thanks to
the additional conditions1, . . . ,sk <lpo t, the minimal function graphs under the program can be defined
by <lpo-transfinite induction as well as inductive definitions. In Section 5 this idea is discussed in more
details.

In the main section, Section 6, the full details about the formalization are given. Most of the effort
is devoted to deduce in U12 an appropriate form of transfinite induction along LPOs (Lemma 5). Based
on the idea above, we then construct a minimal function graphG for a given programR reducing under
an LPO<lpo by <lpo-transfinite induction (Theorem 3). SinceG stores all the pairs of a term and its
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R-normal form, this means the termination of the programR.
In Section 7 it is shown that the formalization presented in Section 6 yields that every function com-

puted by an LPO-terminating program that admits a PQI is poly-space computable (Corollary 3). This
shows that the formalization is optimal since such programscan only compute poly-space computable
functions as mentioned in Section 1.2.

2 Syntax and semantics of first order functional programs

Throughout the paper, aprogramdenotes aterm rewrite system. We sometimes use unusual notations or
formulations for the sake of simplification. More precise, widely accepted formulations can be found,
e.g., in [20].

Definition 1 (Constuctor-, basic-, terms, rewrite rules, sizes of terms). Let C andD be disjoint finite
signatures, respectively ofconstructorsanddefinedsymbols, andV a countably infinite set ofvariables.
We assume thatC contains at least one constant. The setsT(C∪D,V) of terms, T(C,V) of constructor
terms,B(C∪D,V) of basicterms andR(C∪D,V) of rewrite rulesare distinguished as follows.

(Terms) t ::= x | c(t1, . . . , tl ) | f (t1, . . . , tl ) ∈ T(C∪D,V);
(Constructor terms) s ::= x | c(s1, . . . ,sk) ∈ T(C,V);
(Basic terms) u ::= f (s1, . . . ,sk) ∈ B(C∪D,V);
(Rewrite rules) ρ ::= u→ t ∈ R(C∪D,V),

wherex∈ V, c∈C, f ∈ D, t, t1, . . . , tl ∈ T(C∪D,V), s1, . . . ,sk ∈ T(C,V) andu∈ B(C∪D,V). For such
a classS(F,V) of terms,S(F) denotes the subset of closed terms. Thesize‖t‖ of a termt is defined as
‖x‖ = 1 for a variablex and‖ f (t1, . . . , tk)‖= 1+∑k

j=1‖t j‖.

Definition 2 (Substitutions, quasi-reducible programs, rewrite relations). A programR is a finite subset
of R(C∪D,V) consisting of rewrite rules of the forml → r such that the variables occurring inr occur in
l as well. A mappingθ : V →S(F,V) from variables to a setS(F,V) of terms is called asubstitution. For
a termt ∈ S(F,V), tθ denotes the result of replacing every variablex with θ(x). A programR is quasi-
reducibleif, for any closed basic termt ∈ B(C∪F), there exist a rulel → r ∈ R and a substitutionθ :
V → T(C) such thatt = lθ . We restrict reductions to those undercall-by-valueevaluation, orinnermost
reductions more precisely. For three termst,u,v, we write t[u/v] to denote the result of replacing an
occurrence ofv with u. It will not be indicated which occurrence ofv is replaced if no confusion likely
arises. We writet i−→R s if s= t[rθ/lθ ] holds for some rulel → r ∈ R and constructor substitution
θ : V → T(C). We write i−→∗

R to denote the reflexive and transitive closure ofi−→R andt i−→!
R s if t i−→∗

R s
ands is a normal form. By definition, for any quasi-reducible programR, if t i−→!

R s andt is closed, then
s∈ T(C) holds.

A programR computesa function if any closed basic term has a unique normal form inT(C). In this
case, for everyk-ary function symbolf ∈D, a function[| f |] : T(C)k →T(C) is defined by[| f |](s1, . . . ,sk)=
s⇐⇒ f (s1, . . . ,sk)

i−→!
R s.

3 Lexicographic path orders and quasi-interpretations

Lexicographic path orders arerecursive path orderswith lexicographic status only, whose variant was
introduced in [13]. Recursive path orders with multiset status only were introduced in [8] and a modern
formulation with both multiset and lexicographic status can be found in [20, page 211]. Let<F be a
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(strict) precedence, a well-founded partial order on a signatureF = C∪D. We always assume that every
constructor is<F-minimal. Thelexicographic path order(LPO for short)<lpo induced by<F is defined
recursively by the following three rules.

1.
s6lpo ti

s<lpo g(t1, . . . , tl )
(i ∈ {1, . . . , l})

2.
s1 <lpo g(t1, . . . , tl ) · · · sk <lpo g(t1, . . . , tl )

f (s1, . . . ,sk)<lpo g(t1, . . . , tl )
( f <F g∈ D)

3.
s1 = t1 · · · si−1 = ti−1 si <lpo ti si+1 <lpo t · · · sk <lpo t

f (s1, . . . ,sk)<lpo f (t1, . . . , tk) = t
( f ∈ D)

We say that a programR reduces under<lpo if r <lpo l holds for each rulel → r ∈ R and thatR
is LPO-terminatingif there exists an LPO under whichR reduces. We writes<〈i〉

lpo t if s<lpo t results

as an instance of the aboveith case (i = 1,2,3). Corollary 1 is a consequence of the definition of LPOs,
following from <F-minimality of constructors.

Corollary 1. If s<lpo t and t∈ T(C), then s<〈1〉
lpo t and s∈ T(C).

A quasi-interpretation(| · |) for a signatureF is a mapping fromF to functions over naturals ful-
filling (i) (| f |) : Nk → N for eachk-ary function symbolf ∈ F, (ii) (| f |)(. . . ,m, . . . ) ≤ (| f |)(. . . ,n, . . . )
wheneverm < n, (iii) mj ≤ (| f |)(m1, . . . ,mk) for any j ∈ {1, . . . ,k}, and (iv) 0< (| f |) if f is a con-
stant. A quasi-interpretation(| · |) for a signatureF is extended to closed termsT(F) by (| f (t1, . . . , tk)|) =
(| f |)((|t1|), . . . ,(|tk|)). Such an interpretation(| · |) is called a quasi-interpretation for a programR if (|rθ |) ≤
(|lθ |) holds for each rulel → r ∈ R and for any constructor substitutionθ : V → T(C). A programR ad-
mits a polynomial quasi-interpretation(PQI for short) if there exists a quasi-interpretation(| · |) for R such
that(| f |) is polynomially bounded for eachf ∈ F. A PQI (| · |) is calledkind0 (oradditive[4]) if, for each
constructorc∈ C, (|c|)(m1, . . . ,mk) = d+∑k

j=1mj holds for some constantd > 0. An LPO-terminating

programR is called anLPOPoly(0)-program ifR admits a kind 0 PQI.

Theorem 1([3]). Every function computed by an LPOPoly(0)-program is computable in polynomial space.

Conversely, every polynomial-space computable function can be computed by an LPOPoly(0)-program
[3, Theorem 1]. In [4] various examples of programs admitting (kind 0) PQIs are illustrated, including
LPOPoly(0)-programsRlcs andRQBF below.

Example1. The length of thelongest common subsequencesof two strings can be computed by a program
Rlcs [4, Example 6], which consists of the following rewrite rules defined over a signatureF = C∪D
whereC = {0,s,ε ,a,b} andD = {max, lcs}.

max(x,0) → x max(s(x),s(y)) → s(max(x,y))
max(0,y) → y
lcs(x,ε) → 0 lcs(i(x), i(y)) → s(lcs(x,y)) (i ∈ {a,b})
lcs(ε ,y) → 0 lcs(i(x), j(y)) → max(lcs(x, j(y)), lcs(i(x),y)) (i 6= j ∈ {a,b})

Natural numbers are built of0 ands and strings ofa andb asa(u) = au for a stringu ∈ {a,b}∗. The
symbolε denotes the empty string. Define a precedence<F on F by max <F lcs. Assuming that every
constructor is<F-minimal, the programRlcs reduces under the LPO<lpo induced by<F. For instance,
the orientationmax(lcs(x,b(y)), lcs(a(x),y))<lpo lcs(a(x),b(y)) can be deduced as follows. The orienta-
tion y<〈1〉

lpo b(y) yieldslcs(a(x),y)<〈3〉
lpo lcs(a(x),b(y)) while x<〈1〉

lpo a(x) andb(y)<〈1〉
lpo lcs(a(x),b(y)) yield
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lcs(x,b(y))<〈3〉
lpo lcs(a(x),b(y)). These together withmax<F lcs yieldmax(lcs(x,b(y)), lcs(a(x),y))<〈2〉

lpo

lcs(a(x),b(y)). It can be seen that the programRlcs admits the kind 0 PQI(| · |) defined by

(|0|) = (|ε |) = 1,

(|s|)(x) = (|a|)(x) = (|b|)(x) = 1+x,

(|max|)(x,y) = (|lcs|)(x,y) = max(x,y).

This is exemplified as(|max(lcs(x,b(y)), lcs(a(x),y))|) = max
(

max(x,1+y),max(1+x,y)
)
≤ max(1+

x,1+y) = (|lcs(a(x),b(y))|). Thus Theorem 1 implies that the function[|lcs|] can be computed in polyno-
mial space.

Example2. The Quantified Boolean Formula(QBF) problem can be solved by a programRQBF [4,
Example 36], which consists of the following rewrite rules defined over a signatureF = C∪D where
C = {0,s,nil,cons,⊤,⊥,var,¬,∨,∃} andD = {=,not,or, in,verify,qbf}.

not(⊤) → ⊥ not(⊥) → ⊤
or(⊤,x) → ⊤ or(⊥,x) → x

0= 0 → ⊤ s(x) = 0 → ⊥
0= s(x) → ⊥ s(x) = s(y) → x= y
in(x,nil) → ⊥ in(x,cons(y,ys)) → or(x= y, in(x,ys))

verify(var(x),xs) → in(x,xs)
verify(¬x,xs) → not(verify(x,xs))

verify(x∨y,xs) → or (verify(x,xs),verify(y,xs))
verify ((∃x)y,xs) → or (verify(y,cons(x,xs)),verify(y,xs))

qbf(x) → verify(x,nil)

The symbol⊤ denotes the true Boolean value while⊥ the false one. Boolean variables are encoded with
{0,s}-terms, i.e., with naturals. Formulas are built from variables operatingvar, ¬, ∨ or ∃. Without loss
of generality, we can assume that every QBF is built up in thisway. As usual, terms of the forms=(s, t),
¬(t), ∨(s, t) and∃(s, t) are respectively denoted ass= t, ¬t, s∨ t and(∃s)t. By definition, for a Boolean
formulaϕ with Boolean variablesx1, . . . ,xk, [|verify|](ϕ , [· · · ]) =⊤ holds if and only ifϕ is true with the
truth assignment thatx j =⊤ if x j appears in the list[· · · ] andx j =⊥ otherwise.

Define a precedence<F overF by not,or,= <F in <F verify <F qbf. Assuming<F-minimality of
constructor, the programRQBF reduces under the LPO<lpo induced by<F. For instance, the orienta-
tion or(verify(y,cons(x,xs)),verify(y,xs)) <lpo verify(∃(x,y),xs) can be deduced as follows. As well as
xs<〈1〉

lpo verify(∃(x,y),xs), the orientationx <〈1〉
lpo ∃(x,y) yields x <〈1〉

lpo verify(∃(x,y),xs). These together

with the assumptioncons <F verify yield cons(x,xs) <〈2〉
lpo verify(∃(x,y),xs). This together withy<〈1〉

lpo

∃(x,y) yields verify(y,cons(x,xs)) <〈3〉
lpo verify(∃(x,y),xs) as well asverify(y,xs) <〈3〉

lpo verify(∃(x,y),xs).
These orientations together with the assumptionor <F verify now allow us to deduce the desired orien-
tationor(verify(y,cons(x,xs)),verify(y,xs)) <〈2〉

lpo verify(∃(x,y),xs).
Furthermore, let us define a PQI(| · |) for the signatureF by

(|c|) = 1 if c is a constant,
(|x1, . . . ,xk|) = 1+∑k

j=1x j if c∈ C with arity> 0,
(| f |)(x1, . . . ,xk) = maxk

j=1x j if f ∈ D\{verify,qbf},
(|verify|)(x,y) = x+y,

(|qbf|)(x) = x+1.
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Clearly the PQI(| · |) is kind 0. Then the programRQBF admits the PQI. This is exemplified by the rule
above as(|or(verify(y,cons(x,xs)),verify(y,xs))|) = max

(
y+(1+ x+ xs),y+ xs

)
= (1+ x+ y)+ xs=

(|verify(∃(x,y),xs)|). Thus Theorem 1 implies that the function[|qbf|] can be computed in polynomial
space. This is consistent with the well known fact that the QBF problem is PSPACE-complete.

4 A systemU1
2 of second order bounded arithmetic

In this section, we present the basics of second order bounded arithmetic following [1]. The original
formulation is traced back to [6]. The non-logical languageLBA of first order bounded arithmetic consists
of the constant 0, the successor S, the addition+, the multiplication·, |x| = ⌈log2(x+1)⌉, the division
by two ⌊x/2⌋, the smash #(x,y) = 2|x|·|y| and≤. It is easy to see that|m| is equal to the number of bits in
the binary representation of a naturalm. In addition to these usual symbols, we assume that the language
LBA contains max(x,y). The assumption makes no change if an underlying system is sufficiently strong.

Definition 3 (Sharply-, bounded quantifiers, bounded formulas, S1
2). Quantifiers of the form∃x(x ≤

t ∧ ·· ·) or ∀x(x≤ t → ··· ) for some termt are calledboundedand quantifiers of the form(Qx≤ |t|) · · ·
are calledsharplybounded.Bounded formulascontain no unbounded first order quantifiers. The classes
Σb

i (i ∈N) of bounded formulas are defined by counting the number of alternations of bounded quantifiers
starting with an existential one, but ignoring sharply bounded ones. For eachi ∈N, the first order system
Si

2 of bounded arithmetic is axiomatized with a setBASIC of open axioms defining theLBA-symbols
together with the schema(Σb

i -PIND) of bit-wise induction forΣb
i -formulas.

ϕ(0)∧∀x
(
ϕ(⌊x/2⌋)→ ϕ(x)

)
→∀xϕ(x) (ϕ ∈ Φ) (Φ-PIND)

The precise definition of the basic axiomsBASIC can be found, e.g., in [7, page 101].

Definition 4 (Second order bounded formulas, U1
2). In addition to the first order language, the language

of second order bounded arithmetic contains second order variablesX,Y,Z, . . . ranging over sets and
the membership relation∈. In contrast to the classesΣb

i , the classesΣb,1
i of second order bounded

formulas are defined by counting alternations of second order quantifiers starting with an existential
one, but ignoring first order ones. By definition,Σb,1

0 is the class of bounded formulas with no second

order quantifiers. The second order system U1
2 is axiomatized withBASIC, (Σb,1

1 -PIND) and the axiom
(Σb,1

0 -CA) of comprehension forΣb,1
0 -formulas.

∀~x ∀~X ∃Y(∀y≤ t)
(
y∈Y ↔ ϕ(y,~x,~X)

)
(ϕ ∈ Φ) (Φ-CA)

Unlike first order ones, second order quantifiers have no explicit bounding. However, due to the
presence of a bounding termt in the schema(Σb,1

0 -CA), one can only deduce the existence of a set with
a bounded domain.

Example3. The axiom(Σb,1
0 -CA) of comprehension allows us to transform given sets~X into another set

Y via Σb,1
0 -definable operations without inessential encodings. For an easy example, assume that two sets

U andV encode binary strings respectively of lengthm andn in such a way thatj ∈U ⇔ “the j th bit of
the stringU is 1” and j 6∈U ⇔ “the j th bit of the stringU is 0” for each j < m. Then theconcatenation
W =UaV, the stringU followed byV, is defined by(Σb,1

0 -CA) as follows.

(∀ j < m+n)
[

j ∈W ↔
(
( j < m∧ j ∈U)∨ (m≤ j ∧ j −m∈V)

)]
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Definition 5 (Definable functions in formal systems). Let T be one of the formal systems defined above
andΦ be a class of bounded formulas. A functionf :Nk →N is Φ-definable in Tif there exists a formula
ϕ(x1, . . . ,xk,y) ∈ Φ with no other free variables such thatϕ(~x,y) expresses the relationf (~x) = y (under
the standard semantics) andT proves the sentence∀~x ∃!yϕ(~x,y).

Theorem 2([6]). 1. A function isΣb
1-definable inS1

2 if and only if it is computable in polynomial
time.

2. A function isΣb,1
1 -definable inU1

2 if and only if it is computable in polynomial space.

To readers who are not familiar with second order bounded arithmetic, it might be of interest to
outline the proof that every polynomial-space computable function can be defined in U12. The argument
is commonly known as thedivide-and-conquermethod, which was originally used to show the classical
inclusion NPSPACE⊆ PSPACE [18].

Proof of the “if” direction of Theorem 2.2 (Outline).Suppose that a functionf : Nk → N is computable
in polynomial space. This means that there exist a deterministic Turing machineM and a polynomial
p : Nk → N such that, for any inputsm1, . . . ,mk, f (m1, . . . ,mk) can be computed byM while the head
of M only visits a number of cells bounded byp(|m1|, . . . , |mk|). Then, since the number of possible
configurations underM on inputsm1, . . . ,mk is bounded by 2q(|m1|,...,|mk|) for some polynomialq, the
computation terminates in a step bounded by 2q(|~m|) as well.

Let ψM(m1, . . . ,mk,n,w0,W) denote aΣb,1
0 -formula expressing that the setW encodes the concate-

nation w1
a· · ·aw2|n| of configurations underM, wherew j is the next configuration ofw j−1, writing

w j = NextM(w j−1) (1 ≤ j ≤ 2|n|). Reasoning informally in U12, the Σb,1
1 -formula ϕ(~m,n) :≡ (∀w ≤

2p(|~m|))∃WψM(~m,n,w,W) can be deduced by(Σb,1
1 -PIND) on n. In casen= 0, W can be defined iden-

tical toNextM(w). For the induction step, given a configurationw0 ≤ 2p(|~m|), the induction hypothesis
yields a setU such thatψM(~m,⌊n/2⌋,w0,U) holds. Another instance of the induction hypothesis yields
a setV such thatψM(~m,⌊n/2⌋,w2|n|−1,V) holds. Since 2|n| = 2|n|−1 + 2|n|−1, ψM(~m,n,w0,W) holds for
the setW :=UaV.

Now instantiatingn with 2q(|~m|) yields a setW such thatψM(~m,2q(|~m|), InitM(~m),W) holds for the
initial configurationInitM(~m) on inputs~m. The setW yields the final configuration and thus the result
f (~m) of the computation. The uniqueness of the result can be deduced in U1

2 accordingly.

The “only if” direction of Theorem 2.2 follows from a bit moregeneral statement.

Lemma 1. If U1
2 proves∃yϕ(x1, . . . ,xk,y) for a Σb,1

1 -formulaϕ(x1, . . . ,xk,y) with no other free variables,
then there exists a function f: Nk → N such that, for any naturals~m= m1, . . . ,mk ∈ N, (i) f (~m) is
computable with the use of space bounded by a polynomial in|m1|, . . . , |mk|, and (ii) ϕ(~m, f (~m)) holds
under the standard semantics, where mdenotes the numeralSm(0) for a natural m.

It is also known that the second order system axiomatized with the schema(Σb,1
1 -IND), instead of

(Σb,1
1 -PIND), of the usual inductionϕ(0)∧∀x(ϕ(x)→ ϕ(S(x)))→∀xϕ(x) for Σb,1

1 -formulas, called V12,
captures the exponential-time computable functions of polynomial growth rate in the sense of Theorem 2.
Though there is no common notion about what is bounded arithmetic, the exponential functionm 7→ 2m

is not definable in any existing system of bounded arithmetic.

5 Minimal function graphs

Theminimal function graphsemantics was described in [12] as denotational semantics,cf. [23, Chap-
ter 9], and afterward used for termination analysis of functional programs without exponential size-
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explosions in [11, Chapter 24.2] and [15]. In this section, we explain how minimal function graphs
work, how they are defined inductively, and how they can be defined without inductive definitions.

To see how minimal function graphs work, consider the program Rlcs in Example 1. Let us observe
that the following reduction starting with the basic termlcs(a(a(ε)),b(b(ε))) is possible.

lcs(a(a(ε)),b(b(ε)))
i−→Rlcs

max(lcs(a(ε),b(b(ε))), lcs(a(a(ε)),b(ε)))
i−→Rlcs

max(lcs(a(ε),b(b(ε))),max(lcs(a(ε),b(ε)), lcs(a(a(ε)),ε)))
i−→Rlcs

max(max(lcs(ε ,b(b(ε))), lcs(a(ε),b(ε))),max(lcs(a(ε),b(ε)), lcs(a(a(ε)),ε)))

In the reduction, the termt := lcs(a(ε),b(ε)) is duplicated, and hence costly re-computations potentially
occur. For the same reason, there can be an exponential explosion in the size of the reduction tree rooted
at lcs(a(a(ε)),b(b(ε))) that contains all the possible rewriting sequences starting with the basic term.
A minimal function graphG, or cachein other words, is defined so thatG stores pairs of a basic term
and its normal form. Thus, once the termt is normalized to0 (because the two stringsa andb have no
common subsequence), the pair〈t,0〉 is stored inG and any other reduction oft can be simulated by
replacing the occurrence oft with 0.

Given a programR, a (variant of) minimal function graphG is defined as the least fixed point of the
following operatorΓ overP(B(F)×T(C)), whereX ⊆ B(F)×T(C).

〈t,s〉 ∈ Γ(X) :⇐⇒ ∃l → r ∈ R,∃θ : V → T(C),∃〈t0,s0〉, . . . ,〈t‖r‖−1,s‖r‖−1〉 ∈ X s.t.
t = lθ & s=

(
(rθ)[s0/t0] · · ·

)
[s‖r‖−1/t‖r‖−1]

The operatorΓ is monotone, i.e.,X ⊆Y ⇒ Γ(X)⊆ Γ(Y), and hence there exists the least fixed point of
Γ. Suppose thatR is quasi-reducible. On one side, the fixed-ness ofG yields thatt i−→!

R s⇒ 〈t,s〉 ∈ G.
On the other side, since the set{〈t,s〉 | t ∈ B(F) & t i−→!

R s} is a fixed point ofΓ, the least-ness ofG yields
that 〈t,s〉 ∈ G ⇒ t i−→!

R s. Thus, to conclude that every closed basic term has an (innermost)R-normal
form, it suffices to show that, for every termt ∈ B(F), there exists a terms such that〈t,s〉 ∈ G. Now
there are two important observations.

1. It suffices to show that, for every termt ∈ B(F), there exist asubset Gt ⊆ G and a terms such
that 〈t,s〉 ∈ Gt . If t = lθ ands=

(
(rθ)[s0/t0] · · ·

)
[s‖r‖−1/t‖r‖−1] as in the definition ofΓ above

and, for eachj < ‖r‖, 〈t j ,sj〉 ∈ Gt j holds for such a setGt j ⊆ G, thenGt can be simply defined as
Gt = {〈t,s〉}∪Gt0 ∪ ·· ·∪Gt‖r‖−1

.1

2. Additionally suppose that the programR reduces under an LPO<lpo. Then it turns out that the
definition ofΓ is equivalent to a form restricted in such a way thatt j <lpo t for each j < ‖r‖.2

For these reasons, the schema(∀t ∈ B(F))
(
(∀s<lpo t)ϕ(s)→ ϕ(t)

)
→ (∀t ∈ B(F))ϕ(t) of transfinite

induction along<lpo will imply the termination of a quasi-reducible LPO-terminating programR in the
sense above.

6 Formalizing LPO-termination proofs under PQIs in U1
2

In this section, we show that, ifR is a quasi-reducible LPOPoly(0)-program, then an innermostR-normal
form of any closed basic term can be found in the system U1

2 (Theorem 3).

1To be precise, in [11, 15], theminimal function graphwas used to denote such a subsetGt for a given basict.
2Namely, every function computed by an<lpo-reducing program is defined recursively along<lpo. Therefore, as a reviewer

pointed out, in this case the minimal function graphs can be regarded as fixed-point semantics for recursive definitions of
functions, cf. [19, Chapter 10].
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Given a programR over a signatureF = C∪D, we use the notationVR to denote the finite set
{x∈V | x appears in some ruleρ ∈R} of variables. Letp·q be anefficientbinary encoding forT(F,VR)-
terms. The efficiency means that:

(i) t 7→ ptq is Σb,1
0 -definable in U1

2.

(ii) There exists a polynomial (term)p(x) with a free variablex such that|ptq| ≤ p(‖t‖) (provably)
holds for anyt ∈ T(F,VR).

Without loss of generality, we can assume that:

(iii) ‖t‖ ≤ |ptq|.
(iv) |psq|< |ptq| if s is a proper subterm oft.

Such an encoding can be defined, for example, by representingterms as directed graphs not as trees.

Lemma 2. The relation<lpo is Σb,1
0 -definable inU1

2.

Proof (Sketch).It suffices to show that, given two termssandt, the relation “there exists a derivation tree
according to the rules 1–3 (on page 36) that results ins<lpo t” is Σb,1

0 -definable in U1
2. Let T denote such

a derivation tree resulting ins<lpo t. By induction according to the inductive definition of<lpo it can be
shown that the number of nodes inT is bounded by‖s‖·‖t‖. Hence, by the assumption (ii) on the encod-
ingp·q, the codepTq of T is polynomially bounded in‖s‖·‖t‖ and thus inpsq·ptq. On the other hand, by
definition, the relations0 <lpo t0 between two termss0 andt0 is reduced to a tuplesj <lpo t j ( j = 1, . . . ,k)
of relations between some subtermss1, . . . ,sk of s0 and subtermst1, . . . , tk of t0. Thanks to the assumption
(iv) on the encodingp·q, |psjq|+ |pt jq|< |ps0q|+ |pt0q|, i.e., 2|psjq|+|pt j q| ≤ ⌊

(
2|ps0q|+|pt0q|)/2⌋, holds for

any j ∈ {1, . . . ,k}. From these observations, it can be seen that the construction of the derivation treeT
is performed in U12, and hence the relations<lpo t is Σb,1

0 -definable in U1
2.

As observed in [5], in which an optimal LPO-termination proof was described, every programR
reducing under an LPO<lpo already reduces under a finite restriction<ℓ of <lpo for someℓ ∈ N and
every quantifier of the form(Qs<ℓ t) can be regarded as a bounded one. Adopting the restriction, we
introduce an even more restrictive relation<ℓ (ℓ ∈N) motivated by the following properties of PQIs.

Proposition 1. Let (| · |) be a kind0 PQI and t∈ B(F). Then the following two properties hold.

1. (|t|)≤ p(|ptq|) holds for some polynomial p.

2. Suppose additionally that a programR admits the PQI(| · |) and that t i−→∗
R s holds. If s∈ T(C),

then‖s‖ ≤ (|t|) holds. If s= f (s1, . . . ,sk) ∈ B(F), then‖sj‖ ≤ (|t|) holds for each j∈ {1, . . . ,k}.

Proof. PROPERTY 1. Let t = g(t1, . . . , tl ). Since the PQI(| · |) is kind 0, one can find a constantd
depending only on the setC of constructors and the PQI(| · |) such that(|t j |) ≤ d · ‖t j‖ holds for any
j ∈ {1, . . . , l}. This yields a polynomialp such that(|t|) ≤ p(‖t‖) and thus(|t|) ≤ p(|ptq|) holds by the
assumption (iii) on the encodingp·q.

PROPERTY 2. In cases∈ T(C), ‖s‖ ≤ (|s|) ≤ (|t|) holds. In cases= f (s1, . . . ,sk) ∈ B(F), ‖sj‖ ≤
(|sj |)≤ (|s|)≤ (|t|) holds for eachj ∈ {1, . . . ,k}.

Definition 6 (Tℓ(C), Bℓ(F), <ℓ, <lex
ℓ ). Let Tℓ(C) denote a set{t ∈ T(C) | ‖t‖ ≤ ℓ} of constructor terms

andBℓ(F) a set{ f (t1, . . . , tk) ∈ B(F) | ‖t1‖, . . . ,‖tk‖ ≤ ℓ} of basic terms. Then we writes<ℓ t if s<lpo t
and additionallys∈ Tℓ(C)∪Bℓ(F) hold. We use the notations<〈i〉

ℓ t (i = 1,2,3) accordingly. Moreover,
we define alexicographic extension<lex

ℓ of <ℓ overT(C). For constructor termss1, . . . ,sk, t1, . . . , tk, we
write (s1, . . . ,sk) <

lex
ℓ (t1, . . . , tk) if there exists an indexi ∈ {1, . . . ,k} such thatsj = t j for every j < i,

si <
〈1〉
ℓ ti, andsj ∈ Tℓ(C) for every j > i.
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Corollary 2 follows from the definitions of<ℓ and<lex
ℓ and from<F-minimality of constructors.

Corollary 2. For two basic terms f(s1, . . . ,sk), f (t1, . . . , tk) ∈ Bℓ(F), f(s1, . . . ,sk)<
〈3〉
ℓ f (t1, . . . , tk) holds

if and only if(s1, . . . ,sk)<
lex
ℓ (t1, . . . , tk) holds.

For most of interesting LPOPoly(0)-programs including Example 1 and 2, interpreting polynomials
consist of+, ·, maxkj=1 x j together with additional constants. This motivates us to formalize PQIs limiting
interpreting polynomial terms to those built up only from 0,S,+, · and max to make the formalization
easier. Then the constraints (ii) and (iii) on PQIs follow from defining axioms for these function symbols.

Let us consider a reductiont0 i−→∗
R t i−→∗

R s under a programR admitting a kind 0 PQI(| · |), where
t0, t ∈ B(F) ands∈ T(C)∪B(F). If s<lpo t for some LPO<lpo, then Proposition 1 yields a polynomial
p such thats<p(|pt0q|) t holds by Definition 6. Hence we can assume thatℓ is (the result of substituting
t0 for) a polynomialp(|x|). More precisely,ℓ can be expressed by anLBA-term built up from 0 and
|x|, |y|, |z|, . . . by S,+ and · . By assumption,ℓ does not contain # nor⌊·/2⌋. Thusℓ = ℓ(x1, . . . ,xk)
denotes a polynomial with non-negative coefficients in|x1|, . . . , |xk|. Sinceℓ contains no smash # in
particular, 2p(ℓ) can be regarded as anLBA-term for any polynomialp(x). By the assumption (ii) on
the encodingp·q, |ptq| is polynomially bounded in the size‖t‖ of t, and henceptq ≤ 2p(‖t‖) for some
polynomial p(x). Therefore any quantifier of the forms(Qs<ℓ t), (Qt ∈ Tℓ(C)) and(Qt ∈ Bℓ(F)) can
be treated as a bounded one.

We deduce the schema (TIΣb,1
1
(Bℓ(F),<ℓ)) of <ℓ-transfinite induction overBℓ(F) for Σb,1

1 -formulas

(Lemma 5). Since the relationf (s1, . . . ,sk) <
〈3〉
ℓ f (t1, . . . , tk) relies on the comparison(s1, . . . ,sk) <

lex
ℓ

(t1, . . . , tk) by Corollary 2, we previously have to deduce the schema (TIΣb,1
1
(Tℓ(C)k,<lex

ℓ )) of <lex
ℓ -

transfinite induction overk-tuples ofTℓ(C)-terms (Lemma 4). We start with deducing the instance in the
base casek= 1.

Lemma 3. The following schema of<ℓ-transfinite induction overTℓ(C) holds inU1
2, whereϕ ∈ Σb,1

1 .

(∀t ∈ Tℓ(C))
(
(∀s<ℓ t)ϕ(s)→ ϕ(t)

)
→ (∀t ∈ Tℓ(C))ϕ(t) (TIΣb,1

1
(Tℓ(C),<ℓ))

Proof. Reason in U12. Suppose(∀t ∈ Tℓ(C))
(
(∀s<ℓ t)ϕ(s) → ϕ(t)

)
and lett ∈ Tℓ(C). We show that

ϕ(t) holds by(Σb,1
1 -PIND) onptq. The caseptq= 0 trivially holds. Supposeptq> 0 for induction step.

By assumption, it suffices to show thatϕ(s) holds for anys<ℓ t. Thus lets<ℓ t. Sincet ∈ Tℓ(C), s is a
proper subterm oft by Corollary 1 and<F-minimality of constructors. Thus, the assumption (iv) on the
encodingp·q yieldspsq≤ ⌊ptq/2⌋, and henceϕ(s) holds by induction hypothesis.

Remark1. In the proof of Lemma 3, we employed a bit-wise form ofcourse of valuesinductionϕ(0)∧
∀t
(
∀s(psq ≤ ⌊ptq/2⌋ → ϕ(s)) → ϕ(t)

)
→ ∀tϕ(t) for a Σb,1

1 -formula ϕ(x), which is not an instance of

(Σb,1
1 -PIND). Formally, one should apply(Σb,1

1 -PIND) for theΣb,1
1 -formulaψ(x)≡∀t

(
ptq≤ 2|x| →ϕ(t)

)

to deduce(∀t ∈ Tℓ(C))ϕ(t). To ease presentation, we will use similar informal arguments in the sequel.

Lemma 4. The schema(TIΣb,1
1
(Tℓ(C),<ℓ)) can be extended to tuples ofTℓ(C)-terms, i.e., the following

schema holds inU1
2, whereϕ(~t)≡ ϕ(t1, . . . , tk) ∈ Σb,1

1 .

(∀~t ∈ Tℓ(C))
(
(∀~s<lex

ℓ ~t)ϕ(~s)→ ϕ(~t)
)
→ (∀~t ∈ Tℓ(C))ϕ(~t) (TIΣb,1

1
(Tℓ(C)k,<lex

ℓ ))

Proof. We show that the schema (TIΣb,1
1
(Tℓ(C)k,<lex

ℓ )) holds in U1
2 by (meta) induction onk≥ 1. In case

k= 1, the schema is an instance of (TIΣb,1
1
(Tℓ(C),<ℓ)). Suppose thatk> 1 and (TIΣb,1

1
(Tℓ(C)k−1,<lex

ℓ ))
holds by induction hypothesis. Assume that

(∀t1, . . . , tk ∈ Tℓ(C))
(
(∀(s1, . . . ,sk)<

lex
ℓ (t1, . . . , tk))ϕ(s1, . . . ,sk)→ ϕ(t1, . . . , tk)

)
(1)
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holds for someΣb,1
1 -formula ϕ(t1, . . . , tk). Let ϕ<lex

ℓ
(t, t2, . . . , tk), ψ(t) andψ<ℓ

(t) denoteΣb,1
1 -formulas

specified as follows.

ϕ<lex
ℓ
(t, t2, . . . , tk) :≡ t2, . . . , tk ∈ Tℓ(C)∧

(
∀(s2, . . . ,sk)<

lex
ℓ (t2, . . . , tk)

)
ϕ(t,s2, . . . ,sk);

ψ(t) :≡ (∀t2, . . . , tk ∈ Tℓ(C))ϕ(t, t2, . . . , tk);
ψ<ℓ

(t) :≡ t ∈ Tℓ(C)∧ (∀s<ℓ t)ψ(s).

Note, in particular, thatψ(t) is still a Σb,1
1 -formula since every quantifier of the form(∀s∈ Tℓ(C)) can

be regarded as a bounded one under which the classΣb,1
1 is closed. One can see thatϕ<lex

ℓ
(t, t2, . . . , tk)

andψ<ℓ
(t) imply t, t2, . . . , tk ∈ Tℓ(C) and

(
∀(s,s2, . . . ,sk)<

lex
ℓ (t, t2, . . . , tk)

)
ϕ(s,s2, . . . ,sk). Hence, by the

assumption (1),ψ<ℓ
(t) implies(∀t2, . . . , tk ∈ Tℓ(C))

(
ϕ<lex

ℓ
(t, t2, . . . , tk)→ ϕ(t, t2, . . . , tk)

)
, which denotes

(∀t2, . . . , tk ∈ Tℓ(C))
(
(∀(s2, . . . ,sk)<

lex
ℓ (t2, . . . , tk))ϕ(t,s1, . . . ,sk)→ ϕ(t, t2, . . . , tk)

)
.

This together with (TIΣb,1
1
(Tℓ(C)k−1,<lex

ℓ )) yields(∀t2, . . . , tk ∈ Tℓ(C))ϕ(t, t2, . . . , tk), denotingψ(t). This

means that(∀t ∈ Tℓ(C))
(
(∀s<ℓ t)ψ(s) → ψ(t)

)
holds. Sinceψ(t) ∈ Σb,1

1 as noted above, this together
with (TIΣb,1

1
(Tℓ(C),<ℓ)) yields(∀t ∈ Tℓ(C))ψ(t) and thus(∀t1, . . . , tk ∈ Tℓ(C))ϕ(t1, . . . , tk) holds.

Lemma 5. LetF = C∪D. The<ℓ-transfinite induction overBℓ(F) holds inU1
2, whereϕ ∈ Σb,1

1 .

(∀t ∈ Bℓ(F))
(
(∀s∈ Bℓ(F))(s<ℓ t → ϕ(s))→ ϕ(t)

)
→ (∀t ∈ Bℓ(F))ϕ(t) (TIΣb,1

1
(Bℓ(F),<ℓ))

Given a precedence<F on the finite signatureF, let rk : F → N denote therank, a finite function
compatible with<F: rk( f )< rk(g)⇔ f <F g.

Proof. Reason in U12. Assume the premise of (TIΣb,1
1
(Bℓ(F),<ℓ)):

(∀t ∈ Bℓ(F))
(
(∀s∈ Bℓ(F))(s<ℓ t → ϕ(s))→ ϕ(t)

)
(2)

Let g∈ D. We show that(∀t1, . . . , tl ∈ Tℓ(C))ϕ(g(t1, . . . , tl )) holds by(Σb,1
1 -PIND) on 2rk(g), or in other

words by finitary induction onrk(g). Let t1, . . . , tl ∈ Tℓ(C) andt := g(t1, . . . , tl ). By the assumption (2),
it suffices to show thatϕ(s) holds for anys∈ Bℓ(F) such thats<ℓ t. Thus, lets∈ Bℓ(F) ands<ℓ t.

CASE. s<〈1〉
ℓ t: In this cases6ℓ ti for somei ∈ {1, . . . , l}. Sinceti ∈ Tℓ(C), s∈ Tℓ(C) as well by

Corollary 1, and hence this case is excluded.
CASE. s:= f (s1, . . . ,sk)<

〈2〉
ℓ t: In this case,f <F g and hencerk( f )< rk(g). This allows us to reason

as 2rk(g) ≤ 2rk( f )−1 = ⌊2rk( f )/2⌋. Thus the induction hypothesis yieldsϕ(s).
CASE. s := g(s1, . . . ,sl )<

〈3〉
ℓ t: We show that the following condition holds.

(∀v1, . . . ,vl ∈ Tℓ(C))
(
(∀(u1, . . . ,ul )<

lex
ℓ (v1, . . . ,vl ))ϕ(g(u1, . . . ,ul ))→ ϕ(g(v1, . . . ,vl ))

)
(3)

Let v1, . . . ,vl ∈ Tℓ(C). By Corollary 2, the premise(∀(u1, . . . ,ul ) <
lex
ℓ (v1, . . . ,vl ))ϕ(g(u1, . . . ,ul ) of (3)

yields
(
∀s′ <〈3〉

ℓ g(v1, . . . ,vl )
)

ϕ(s′). On the other side, the previous two cases yield(∀s′ ∈ Bℓ(F))
(
s′ <〈i〉

ℓ

g(v1, . . . ,vl ) → ϕ(s′)
)
(i = 1,2) and hence(∀s′ ∈ Bℓ(F))

(
s′ <ℓ g(v1, . . . ,vl )→ ϕ(s′)

)
holds. Therefore

ϕ(g(v1, . . . ,vl )) holds by the assumption (2), yielding the statement (3). Since (3) is the premise of an
instance of the schema(TIΣb,1

1
(Tℓ(C)l ,<lex

ℓ )), Lemma 4 yields(∀v1, . . . ,vl ∈ Tℓ(C))ϕ(g(v1, . . . ,vl )), and

thusϕ(g(s1, . . . ,sl )) holds in particular.
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To derive, from (TIΣb,1
1
(Bℓ(F),<ℓ)), the existence of a minimal function graph under an LPO-terminating

program, we need the following technical lemma.

Lemma 6. (in U1
2) Let (| · |) be a kind0 PQI for a signatureF = C∪D, t ∈ B(F), s∈ T(F) and<lpo an

LPO induced by a precedence<F. If s<lpo t and(|s|) ≤ (|t|) ≤ ℓ, then, for any basic subterm t′ of s and
for any s′ ∈ T(C) such that(|s′|)≤ (|t ′|), v<ℓ t holds for any basic subterm v of s[s′/t ′].

Proof. By <F-minimality of constructors,s′ <lpo t ′ holds. Hences[s′/t ′] <lpo t from the assumption
s<lpo t. This yieldsv <lpo t by the definition of LPOs. Writev = f (v1, . . . ,vk) for some f ∈ D and
v1, . . . ,vk ∈ T(C). Let i ∈ {1, . . . ,k}. Then‖vi‖ ≤ (|vi |) ≤ (|v|) ≤ (|s[s′/t ′]|) ≤ (|t|). The last inequality
follows from the monotonicity (ii) of the PQI(| · |). This yields‖vi‖ ≤ ℓ and hencev<ℓ t.

Theorem 3. (in U1
2) Suppose thatR is a quasi-reducible LPOPoly(0)-program. Then, for any basic term

t, there exists a minimal function graph G (in the sense of Section 5) such that that〈t,s〉 ∈ G holds for
an R-normal form s of t.

Proof. Suppose thatR is a quasi-reducible LPOPoly(0)-program witnessed by an LPO<lpo and a kind
0 PQI(| · |) and that<ℓ is a finite restriction of<lpo. Let ψℓ(x,y,X) denote aΣb,1

0 -formula with no free
variables other thanx, y andX expressing thatX ⊆ Bℓ(F)×Tℓ(C) is a set of pairs of terms such that
〈x,y〉 ∈ X, and, for any〈t,s〉 ∈ X, (|s|)≤ (|t|)≤ ℓ and∃l → r ∈ R, ∃θ : VR → Tℓ(C) s.t. t = lθ and one of
the following cases holds.

1. s= rθ ∈ Tℓ(C).

2. ∃
〈
〈t j ,sj〉 ∈ X | j < ‖r‖

〉
s.t. s=

(
(rθ)[s0/t0] · · ·

)
[s‖r‖−1/t‖r‖−1], wheres′[u/v] is identical if nov

occurs ins′.

Note that, sinceVR is a finite set of variables,∃θ : VR → Tℓ(C) can be regarded as a (first order) bounded
quantifier. By Proposition 1.1, we can find a polynomial termp(x) such that(|t|)≤ p(|ptq|) holds for any
t ∈B(F). The rest of the proof is devoted to deduce(∀t ∈B(F))(∃s∈Tℓ(C))∃G ψp(|ptq|)(t,s,G) for such

a bounding polynomialp. Fix an input basic termt0 ∈ B(F) and letϕℓ(t) denote theΣb,1
1 -formula(∃s∈

Tℓ(C))∃G ψℓ(t,s,G), whereℓ= p(|pt0q|). Sincet0 ∈ Bℓ(F), it suffices to deduce(∀t ∈ Bℓ(F))ϕℓ(t). By
Lemma 5, this follows from(∀t ∈ Bℓ(F))

(
(∀s∈ Bℓ(F))(s<ℓ t → ϕℓ(s))→ ϕℓ(t)

)
, which is the premise

of an instance of (TIΣb,1
1
(Bℓ(F),<ℓ)). Thus lett ∈ Bℓ(F) and assume the condition

(∀s∈ Bℓ(F))(s<ℓ t → ϕℓ(s)). (4)

SinceR is quasi-reducible, there exist a rulel → r ∈ R and a substitutionθ : VR → Tℓ(C) such that
t = lθ . The remaining argument splits into two cases depending on the shape ofrθ .

CASE 1. rθ ∈ Tℓ(C): In this caseψℓ(t, rθ ,G) holds for the singletonG := {〈t, rθ〉}.
CASE 2. rθ 6∈ Tℓ(C): In this case there exists a basic subtermv0 of rθ . Fix a termu0 ∈ Tℓ(C) such

that(|u0|)≤ (|v0|). We show the following claim by finitary induction onm< ‖r‖.

Claim 1. There exists a sequence
〈
〈t j ,sj ,G j〉 | j ≤ m

〉
of triplets such that, for each j≤ m, (i) t j <ℓ t,

(ii) ψℓ(t j ,sj ,G j) holds, and(iii)
(
(rθ)[s0/t0] · · ·

)
[sj/t j ] is not identical to

(
(rθ)[s0/t0] · · ·

)
[sj−1/t j−1] as

long as
(
(rθ)[s0/t0] · · ·

)
[sj−1/t j−1] has a basic subterm.

In the base casem= 0, let t0 be an arbitrary basic subterm ofrθ . Then, since(|rθ |) ≤ (|lθ |), t0 <ℓ t
follows from the definition of LPOs. Hence, by the assumption(4), there exist a terms0 ∈ Tℓ(C) and
a setG0 such thatψℓ(t0,s0,G0) holds. Clearly,(rθ)[s0/t0] is not identical torθ . For induction step,
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suppose that there exists a sequence
〈
〈t j ,sj ,G j〉 | j ≤ m

〉
fulfilling the conditions (i)–(iii) in the claim. In

case that
(
(rθ)[s0/t0] · · ·

)
[sm/tm] has no basic subterm, let(tm+1,sm+1) = (v0,u0). Otherwise, lettm+1 be

an arbitrary basic subterm. Thentm+1 <ℓ t holds by Lemma 6. Hence, as in the base case, the assumption
(4) yields a termsm+1 ∈ Tℓ(C) and a setGm+1 such thatψℓ(tm+1,sm+1,Gm+1) holds. By the choice of
tm+1,

(
(rθ)[s0/t0] · · ·

)
[sm+1/tm+1] is not identical to

(
(rθ)[s0/t0] · · ·

)
[sm/tm].

Now let s :=
(
(rθ)[s0/t0] · · ·

)
[s‖r‖−1/t‖r‖−1] for a sequence

〈
〈t j ,sj ,G j〉 | j < ‖r‖

〉
witnessing the

claim in casem= ‖r‖ − 1. Thens∈ Tℓ(C) since |{ f ∈ D | f appears in
(
(rθ)[s0/t0] · · ·

)
[sj/t j ]}| ≤

‖r‖ − ( j + 1) holds for eachj < ‖r‖ by the condition (iii) in the claim. Defining a setG by G =

{〈t,s〉}∪
(⋃

j<‖r‖G j

)
now allows us to concludeψℓ(t,s,G).

7 Application

In the last section, to convince readers that the formalization of termination proofs described in Theo-
rem 3 for LPOPoly(0)-programs is optimal, we show that the formalization yieldsan alternative proof of
Theorem 1, i.e., that LPOPoly(0)-programs can only compute polynomial-space computable functions.

The next lemma ensures that the setG constructed in Theorem 3 is indeed a minimal function graph.

Lemma 7. Suppose thatR is a quasi-reducible LPOPoly(0)-program. Letψℓ(x,y,X) denote theΣb,1
0 -

formula defined in the proof of Theorem 3. Then, for any t∈ B(F) and for any t∈ T(C), t i−→!
R s if and

only if ∃G ψp(|ptq|)(t,s,G) holds under the standard semantics.

Proof. Let R reduce under an LPO<lpo. For the “if” direction, it can be shown that(∀t ∈ B(F))(∀s∈
T(C))

(
∃G ψp(|ptq|)(t,s,G)⇒ t i−→!

R s
)

holds by (external) transfinite induction along<lpo. For the “only
if” direction, it can be shown that(∀t ∈ B(F))(∀s∈ T(C))

(
t i−→m

R s⇒ ∃G ψp(|ptq|)(t,s,G)
)

holds by
induction onm, where i−→m

R denotes them-fold iteration of i−→R.

Now Theorem 3 and Lemma 7 yield an alternative proof of (a variant of) Theorem 1.

Corollary 3. Every function computed by a quasi-reducible LPOPoly(0)-program is computable in poly-
nomial space.

Proof. By Theorem 3, U12 proves the formula

QR(R)∧LPO(R,<lpo)∧PQI(R,(| · |))→ (∀t ∈ B(F))(∃s∈ Tp(|ptq|)(C))∃G ψp(|ptq|)(t,s,G),

whereQR(R), LPO(R,<lpo) andPQI(R,(| · |)) respectively express that anyB(F)-term is reducible,R
reduces under<lpo, and(∀(l → r) ∈ R)(∀θ : VR → T(C))(|rθ |) ≤ (|lθ |). By Lemma 2,LPO(R,<lpo)

can be expressed with aΣb,1
0 -formula, but neitherQR(R) norPQI(R,(| · |)) is literally expressible with a

bounded formula. Nonetheless, the proof can be easily modified to a proof of the statement

(∀t ∈ B(F))(∃s∈ Tℓ(C))
(
QRℓ(R)∧LPO(R,<lpo)∧PQIℓ(R,(| · |))→∃G ψℓ(t,s,G)

)
,

where ℓ = p(|ptq|), andQRℓ(R) and PQIℓ(R,(| · |)) respectively express that anyBℓ(F)-term is re-
ducible, and(∀(l → r) ∈ R)(∀θ : VR → Tℓ(C))(|rθ |) ≤ (|lθ |). Both QRℓ(R) andPQIℓ(R,(| · |)) can be
regarded asΣb,1

0 -formulas, and hence the formulaϕℓ(t,s) :≡ QRℓ(R)∧LPO(R,<lpo)∧PQIℓ(R,(| · |))→
∃G ψℓ(t,s,G) lies in Σb,1

1 .
Now suppose that a function[|f|] : T(C)k → T(C) is computed by a quasi-reducible LPOPoly(0)-

programR for somek-ary function symbolf ∈ D. Then Lemma 1 yields a polynomial-space computable
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function f :Nk →N such thatϕp(|pf(t1,...,tkq|)
(
f(t1, . . . , tk), f (pt1q, . . . ,ptkq)

)
holds for anyt1, . . . , tk ∈T(C)

under the standard semantics. Hence, by assumption,ψp(|pf(t1,...,tkq|)
(
f(t1, . . . , tk), f (pt1q, . . . ,ptkq),G

)

holds for some setG⊆ B(F)×T(C). By Lemma 7, this means the correspondence[|f|](t1, . . . , tk) = s⇔
f (pt1q, . . . ,ptkq)= psq. Therefore,p[|f|](t1, . . . , tk)q can be computed with space bounded by a polynomial
in |pt1q|, . . . , |ptkq| and thus bounded by a polynomial in‖t1‖, . . . ,‖tk‖.

8 Conclusion

This work is concerned with optimal termination proofs for functional programs in the hope of establish-
ing logical foundations of computational resource analysis. Optimal termination proofs were limited for
programs that compute functions lying in complexity classes closed under exponentiation. In this paper,
employing the notion of minimal function graph, we showed that termination proofs under LPOPoly(0)-
programs can be optimally formalized in the second order system U1

2 of bounded arithmetic that is com-
plete for polynomial-space computable functions, liftingthe limitation. The crucial idea is that inductive
definitions of minimal function graphs under LPOPoly(0)-programs can be approximated with transfinite
induction along LPOs. As a small consequence, compared to the original result, Theorem 1, when we
say “a programR computes a function”, the quasi-reducibility ofR is explicitly needed to enable the
formalization.

Finally, let us call a programR anMPOPoly(0) one if R reduces under an MPO (with product status
only) andR admits a kind 0 PQI. In [4, Theorem 42], Theorem 1 is refined so that a function can be
computed by an MPOPoly(0)-program if and only if it is computable in polynomial time. The program
Rlcs described in Example 1 is an example of MPOPoly(0)-programs, and hence the length of the longest
common subsequences is computable even in polynomial time.By Theorem 2.1, it is quite natural to
expect that minimal function graphs under MPOPoly(0)-programs can be constructed in the first order
system S12. However, we then somehow have to adopt the formulaϕℓ(t,s) ≡ QRℓ(R)∧ LPO(R,<lpo

)∧PQIℓ(R,(| · |)) → ∃G ψℓ(t,s,G) (in the proof of Corollary 3) to aΣb
1-formula, which is clearly more

involved than the present case.
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Energy problems are important in the formal analysis of embedded or autonomous systems. Using
recent results on ∗-continuous Kleene ω-algebras, we show here that energy problems can be solved
by algebraic manipulations on the transition matrix of energy automata. To this end, we prove general
results about certain classes of finitely additive functions on complete lattices which should be of a
more general interest.

1 Introduction

Energy problems are concerned with the question whether a given system admits infinite schedules
during which (1) certain tasks can be repeatedly accomplished and (2) the system never runs out of
energy (or other specified resources). These are important in areas such as embedded systems or au-
tonomous systems and, starting with [4], have attracted some attention in recent years, for example
in [3, 5–8, 16, 19, 23, 24].

With the purpose of generalizing some of the above approaches, we have in [12,17] introduced energy
automata. These are finite automata whose transitions are labeled with energy functions which specify
how energy values change from one system state to another. Using the theory of semiring-weighted
automata [9], we have shown in [12] that energy problems in such automata can be solved in a simple
static way which only involves manipulations of energy functions.

In order to put the work of [12] on a more solid theoretical footing and with an eye to future general-
izations, we have recently introduced a new algebraic structure of ∗-continuous Kleene ω-algebras [10]
(see also [11] for the long version). We show here that energy functions form such a ∗-continuous Kleene
ω-algebra. Using the fact, proven in [10], that for automata with transition weights in ∗-continuous
Kleene ω-algebras, reachability and Büchi acceptance can be computed by algebraic manipulations on
the transition matrix of the automaton, the results from [12] follow.

2 Energy Automata

The transition labels on the energy automata which we consider in the paper, will be functions which
model transformations of energy levels between system states. Such transformations have the (natural)
properties that below a certain energy level, the transition might be disabled (not enough energy is avail-
able to perform the transition), and an increase in input energy always yields at least the same increase
in output energy. Thus the following definition:

∗The work of the first author was supported by the National Foundation of Hungary for Scientific Research, Grant no.
K 108448. The work of the second and third authors was supported by ANR MALTHY, grant no. ANR-13-INSE-0003 from
the French National Research Foundation, and by the EU FP7 SENSATION project, grant no. 318490 (FP7-ICT-2011-8).
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x 7→ x+2;x≥ 2

x 7→ x+3;x > 1

x 7→ 2x−2;x≥ 1
x 7→ x−1;x > 1

x 7→ x+1;x≥ 0

Figure 1: A simple energy automaton.

Definition 1 An energy function is a partial function f :R≥0 ⇀R≥0 which is defined on a closed interval
[l f ,∞[ or on an open interval ]l f ,∞[, for some lower bound l f ≥ 0, and such that for all x≤ y for which f
is defined,

y f ≥ x f + y− x . (1)

The class of all energy functions is denoted by F .

Note that we write function composition and application in diagrammatical order, from left to right,
in this paper. Hence we write f ;g, or simply f g, for the composition g ◦ f and x; f or x f for function
application f (x). This is because we will be concerned with algebras of functions, in which function
composition is multiplication, and where it is customary to write multiplication in diagrammatical order.

Thus energy functions are strictly increasing, and in points where they are differentiable, the deriva-
tive is at least 1. The inverse functions to energy functions exist, but are generally not energy functions.
Energy functions can be composed, where it is understood that for a composition f g, the interval of
definition is {x ∈R≥0 | x f and x f g defined}.
Lemma 1 Let f ∈F and x∈R≥0. If x f < x, then there is N ∈N for which x f N is not defined. If x f > x,
then for all P ∈R there is N ∈N for which x f N ≥ P.

Proof In the first case, we have x− x f = M > 0. Using (1), we see that x f n+1 ≤ x f n−M for all n ∈N
for which x f n+1 is defined. Hence (x f n)n∈N decreases without bound, so that there must be N ∈N such
that x f N is undefined.

In the second case, we have x f − x = M > 0. Again using (1), we see that x f n+1 > x f n +M for all
n ∈N. Hence (x f n)n∈N increases without bound, so that for any P ∈R there must be N ∈N for which
x f N ≥ P. �

Note that property (1) is not only sufficient for Lemma 1, but in a sense also necessary: if 0 < α <
1 and f : R≥0 → R≥0 is the function x f = 1+αx, then x f n = ∑n−1

i=0 α i +αnx for all n ∈ N, hence
limn→∞ x f n = 1

1−α , so Lemma 1 does not hold for f . On the other hand, y f = x f +α(y−x) for all x≤ y,
so (1) “almost” holds.

Definition 2 An energy automaton (S,s0,T,F) consists of a finite set S of states, with initial state s0 ∈ S,
a finite set T ⊆ S×F ×S of transitions labeled with energy functions, and a subset F ⊆ S of acceptance
states.

We show an example of a simple energy automaton in Fig. 1. Here we use inequalities to give the
definition intervals of energy functions.

A finite path in an energy automaton is a finite sequence of transitions π = (s0, f1,s1),(s1, f2,s2), . . . ,
(sn−1, fn,sn). We use fπ to denote the combined energy function f1 f2 · · · fn of such a finite path. We will
also use infinite paths, but note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair q = (s,x) with s ∈ S and x ∈ R≥0. A transition
between global states is of the form ((s,x), f ,(s′,x′)) such that (s, f ,s′) ∈ T and x′ = f (x). A (finite or
infinite) run of (S,T ) is a path in the graph of global states and transitions.
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We are ready to state the decision problems with which our main concern will lie. As the input to a
decision problem must be in some way finitely representable, we will state them for subclasses F ′ ⊆F
of computable energy functions; an F ′-automaton is an energy automaton (S,T ) with T ⊆ S×F ′×S.

Problem 1 (Reachability) Given a subset F ′ ⊆ F of computable functions, an F ′-automaton A =
(S,s0,T,F) and a computable initial energy x0 ∈ R≥0: does there exist a finite run of A from (s0,x0)
which ends in a state in F?

Problem 2 (Büchi acceptance) Given a subset F ′ ⊆ F of computable functions, an F ′-automaton
A = (S,s0,T,F) and a computable initial energy x0 ∈ R≥0: does there exist an infinite run of A from
(s0,x0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.

3 Algebraic Preliminaries

We now turn our attention to the algebraic setting of ∗-continuous Kleene algebras and related structures,
before revisiting energy automata in Section 6. In this section we review some results on ∗-continuous
Kleene algebras and ∗-continuous Kleene ω-algebras.

3.1 ∗-Continuous Kleene ω-Algebras

A semiring [1, 18] S = (S,+, ·,0,1) consists of a commutative monoid (S,+,0) and a monoid (S, ·,1)
such that the distributive laws

x(y+ z) = xy+ xz

(y+ z)x = yx+ zx

and the zero laws
0 · x = 0 = x ·0

hold for all x,y,z ∈ S. It follows that the product operation distributes over all finite sums.
An idempotent semiring is a semiring S whose sum operation is idempotent, so that x+ x = x for all

x ∈ S. Each idempotent semiring S is partially ordered by the relation x ≤ y iff x+ y = y, and then sum
and product preserve the partial order and 0 is the least element. Moreover, for all x,y ∈ S, x+ y is the
least upper bound of the set {x,y}. Accordingly, in an idempotent semiring S, we will usually denote the
sum operation by ∨ and 0 by ⊥.

A Kleene algebra [22] is an idempotent semiring S = (S,∨, ·,⊥,1) equipped with a star operation
∗ : S→ S such that for all x,y ∈ S, yx∗ is the least solution of the fixed point equation z = zx∨ y and x∗y
is the least solution of the fixed point equation z = xz∨ y with respect to the natural order.

A ∗-continuous Kleene algebra [22] is a Kleene algebra S = (S,∨, ·,∗ ,⊥,1) in which the infinite
suprema

∨{xn | n≥ 0} exist for all x ∈ S, x∗ =
∨{xn | n≥ 0} for every x ∈ S, and product preserves such

suprema:
y
(∨

n≥0

xn)=
∨

n≥0

yxn and
(∨

n≥0

xn)y =
∨

n≥0

xny

for all x,y ∈ S.
A continuous Kleene algebra is a Kleene algebra S = (S,∨, ·,∗ ,⊥,1) in which all suprema

∨
X ,

X ⊆ S, exist and are preserved by products, i.e., y(
∨

X) =
∨

yX and (
∨

X)y =
∨

Xy for all X ⊆ S, y ∈



Z. Ésik, U. Fahrenberg and A. Legay 51

S. ∗-continuous Kleene algebras are hence a generalization of continuous Kleene algebras. There are
interesting Kleene algebras which are ∗-continuous but not continuous, for example the Kleene algebra
of all regular languages over some alphabet.

A semiring-semimodule pair [2,14] (S,V ) consists of a semiring S = (S,+, ·,0,1) and a commutative
monoid V = (V,+,0) which is equipped with a left S-action S×V →V , (s,v) 7→ sv, satisfying

(s+ s′)v = sv+ s′v s(v+ v′) = sv+ sv′

(ss′)v = s(s′v) 0s = 0

s0 = 0 1v = v

for all s,s′ ∈ S and v ∈V . In that case, we also call V a (left) S-semimodule. If S is idempotent, then also
V is idempotent, so that we then write V = (V,∨,⊥).

A generalized ∗-continuous Kleene algebra [10] is a semiring-semimodule pair (S,V ) where S =
(S,∨, ·,∗ ,⊥,1) is a ∗-continuous Kleene algebra such that

xy∗v =
∨

n≥0

xynv

for all x,y ∈ S and v ∈V .
A ∗-continuous Kleene ω-algebra [10] consists of a generalized ∗-continuous Kleene algebra (S,V )

together with an infinite product operation Sω →V which maps every infinite sequence x0,x1, . . . in S to
an element ∏n≥0 xn of V . The infinite product is subject to the following conditions:

(C1) For all x0,x1, . . . ∈ S, ∏
n≥0

xn = x0 ∏
n≥0

xn+1.

(C2) Let x0,x1, . . . ∈ S and 0 = n0 ≤ n1 ≤ ·· · a sequence which increases without a bound. Let yk =
xnk · · ·xnk+1−1 for all k ≥ 0. Then ∏

n≥0
xn = ∏

k≥0
yk.

(C3) For all x0,x1, . . . ,y,z ∈ S, ∏
n≥0

(xn(y∨ z)) =
∨

x′0,x
′
1,...∈{y,z}

∏
n≥0

xnx′n.

(C4) For all x,y0,y1, . . . ∈ S, ∏
n≥0

x∗yn =
∨

k0,k1,...≥0
∏
n≥0

xknyn.

A continuous Kleene ω-algebra [14] is a semiring-semimodule pair (S,V ) in which S is a continuous
Kleene algebra, V is a complete lattice, and the S-action on V preserves all suprema in either argument,
together with an infinite product as above which satisfies conditions (C1) and (C2) above and preserves
all suprema: ∏n≥0(

∨
Xn) =

∨{∏n≥0 xn | xn ∈ Xn,n≥ 0} for all X0,X1, . . .⊆ S (this property implies (C3)
and (C4) above). ∗-continuous Kleene ω-algebras are hence a generalization of continuous Kleene ω-
algebras. We have in [10] given an example, based on regular languages of finite and infinite words, of a
∗-continuous Kleene ω-algebra which is not a continuous Kleene ω-algebra. In Section 6 we will show
that energy functions give raise to another such example.

3.2 Matrix Semiring-Semimodule Pairs

For any semiring S and n≥ 1, we can form the matrix semiring Sn×n whose elements are n×n-matrices of
elements of S and whose sum and product are given as the usual matrix sum and product. It is known [21]
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that when S is a ∗-continuous Kleene algebra, then Sn×n is also a ∗-continuous Kleene algebra, with the
∗-operation defined by

M∗i, j =
∨

m≥0

∨

1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm, j

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. The above infinite supremum exists, as it is taken over a regular set,
see [13, Thm. 9] and [10, Lemma 4]. Also, if n ≥ 2 and M =

(
a b
c d

)
, where a and d are square matrices

of dimension less than n, then

M∗ =
(

(a∨bd∗c)∗ (a∨bd∗c)∗bd∗

(d∨ ca∗b)∗ca∗ (d∨ ca∗b)∗

)
. (2)

For any semiring-semimodule pair (S,V ) and n ≥ 1, we can form the matrix semiring-semimodule
pair (Sn×n,V n) whose elements are n×n-matrices of elements of S and n-dimensional (column) vectors
of elements of V , with the action of Sn×n on V n given by the usual matrix-vector product.

When (S,V ) is a ∗-continuous Kleene ω-algebra, then (Sn×n,V n) is a generalized ∗-continuous
Kleene algebra [10]. By [10, Lemma 17], there is an ω-operation on Sn×n defined by

Mω
i =

∨

1≤k1,k2,...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Sn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
(

a b
c d

)
, where a and d are square matrices of

dimension less than n, then

Mω =

(
(a∨bd∗c)ω ∨ (a∨bd∗c)∗bdω

(d∨ ca∗b)ω ∨ (d∨ ca∗b)∗caω

)
.

3.3 Weighted automata

Let (S,V ) be a ∗-continuous Kleene ω-algebra and A ⊆ S a subset. We write 〈A〉 for the set of all finite
suprema a1∨·· ·∨am with ai ∈ A for each i = 1, . . . ,m.

A weighted automaton [15] over A of dimension n≥ 1 is a tuple (α,M,k), where α ∈ {⊥,1}n is the
initial vector, M ∈ 〈A〉n×n is the transition matrix, and k is an integer 0 ≤ k ≤ n. Combinatorially, this
may be represented as a transition system whose set of states is {1, . . . ,n}. For any pair of states i, j, the
transitions from i to j are determined by the entry Mi, j of the transition matrix: if Mi, j = a1 ∨ ·· · ∨ am,
then there are m transitions from i to j, respectively labeled a1, . . . ,an. The states i with αi = 1 are initial,
and the states {1, . . . ,k} are accepting.

The finite behavior of a weighted automaton A = (α,M,k) is defined to be

|A|= αM∗κ ,

where κ ∈ {⊥,1}n is the vector given by κi = 1 for i ≤ k and κi = ⊥ for i > k. (Note that α has to be
used as a row vector for this multiplication to make sense.) It is clear by (2) that |A| is the supremum of
the products of the transition labels along all paths in A from any initial to any accepting state.

The Büchi behavior of a weighted automaton A = (α,M,k) is defined to be

‖A‖= α
(

(a+bd∗c)ω

d∗c(a+bd∗c)ω

)
,

where a∈ 〈A〉k×k, b∈ 〈A〉k×(n−k), c∈ 〈A〉(n−k)×n and d ∈ 〈A〉(n−k)×(n−k) are such that M =
(

a b
c d

)
. By [10,

Thm. 20], ‖A‖ is the supremum of the products of the transition labels along all infinite paths in A from
any initial state which infinitely often visit an accepting state.
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4 Generalized ∗-continuous Kleene Algebras of Functions

In the following two sections our aim is to establish properties which ensure that semiring-semimodule
pairs of functions form ∗-continuous Kleene ω-algebras. We will use these properties in Section 6 to
show that energy functions form a ∗-continuous Kleene ω-algebra.

Let L and L′ be complete lattices with bottom and top elements ⊥ and >. Then a function f : L→ L′

is said to be finitely additive if ⊥ f = ⊥ and (x∨ y) f = x f ∨ y f for all x,y ∈ L. (Recall that we write
function application and composition in the diagrammatic order, from left to right.) When f : L→ L′ is
finitely additive, then (

∨
X) f =

∨
X f for all finite sets X ⊆ L.

Consider the collection FinAddL,L′ of all finitely additive functions f : L→ L′, ordered pointwise.
Since the (pointwise) supremum of any set of finitely additive functions is finitely additive, FinAddL,L′

is also a complete lattice, in which the supremum of any set of functions can be constructed pointwise.
The least and greatest elements are the constant functions with value ⊥ and >, respectively. By an abuse
of notation, we will denote these functions by ⊥ and > as well.

Definition 3 A function f ∈ FinAddL,L′ is said to be >-continuous if f = ⊥ or for all X ⊆ L with∨
X =>, also

∨
X f =>.

Note that if f 6=⊥ is >-continuous, then > f =>. The functions id and ⊥ are >-continuous. Also,
the (pointwise) supremum of any set of >-continuous functions is again >-continuous.

We will first be concerned with functions in FinAddL,L, which we just denote FinAddL. Since the
composition of finitely additive functions is finitely additive and the identity function id over L is finitely
additive, and since composition of finitely additive functions distributes over finite suprema, FinAddL,
equipped with the operation ∨ (binary supremum), ; (composition), and the constant function ⊥ and the
identity function id as 1, is an idempotent semiring. It follows that when f is finitely additive, then so is
f ∗ =

∨
n≥0 f n. Moreover, f ≤ f ∗ and f ∗ ≤ g∗ whenever f ≤ g. Below we will usually write just f g for

the composition f ;g.

Lemma 2 Let S be any subsemiring of FinAddL closed under the ∗-operation. Then S is a ∗-continuous
Kleene algebra iff for all g,h ∈ S, g∗h =

∨
n≥0 gnh.

Proof Suppose that the above condition holds. We need to show that f (
∨

n≥0 gn)h =
∨

n≥0 f gnh for
all f ,g,h ∈ S. But f (

∨
n≥0 gn)h = f (

∨
n≥0 gnh) by assumption, and we conclude that f (

∨
n≥0 gnh) =∨

n≥0 f gnh since the supremum is pointwise. �

Compositions of >-continuous functions in FinAddL are again >-continuous, so that the collection
of all >-continuous functions in FinAddL is itself an idempotent semiring.

Definition 4 A function f ∈ FinAddL is said to be locally ∗-closed if for each x ∈ L, either x f ∗ = > or
there exists N ≥ 0 such that x f ∗ = x∨·· ·∨ x f N .

The functions id and ⊥ are locally ∗-closed. As the next example demonstrates, compositions of
locally ∗-closed (and >-continuous) functions are not necessarily locally ∗-closed.

Example 1 Let L be the following complete lattice (the linear sum of three infinite chains):

⊥< x0 < x1 < · · ·< y0 < y1 < · · ·< z0 < z1 < · · ·<>

Since L is a chain, a function L→ L is finitely additive iff it is monotone and preserves ⊥.
Let f ,g : L→ L be the following functions. First, ⊥ f = ⊥g = ⊥ and > f = >g = >. Moreover,

xi f = yi, yi f = zig = > and xig = ⊥, yig = xi+1, and zig = > for all i. Then f ,g are monotone, u f ∗ =
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u∨u f ∨u f 2 and ug∗ = u∨ug for all u ∈ L. Also, f and g are >-continuous, since if
∨

X => then either
> ∈ X or X ∩{z0,z1, . . .} is infinite, but then

∨
X f =

∨
Xg = >. However, f g is not locally ∗-closed,

since x0( f g)∗ = x0∨ x0( f g)∨ x0( f g)2 · · ·= x0∨ x1∨·· ·= y0. �
Lemma 3 Let f ∈ FinAddL be locally ∗-closed. Then also f ∗ is locally ∗-closed. If f is additionally
>-continuous, then so is f ∗.

Proof We prove that x f ∗∗ = x∨ x f ∗ = x f ∗ for all x ∈ L. Indeed, this is clear when x f ∗ = >, since
f ∗ ≤ f ∗∗. Otherwise x f ∗ =

∨
k≤n x f k for some n≥ 0.

By finite additivity, it follows that x f ∗ f ∗ =
∨

k≤n x f k f ∗. But for each k, x f k f ∗ = x f k∨ x f k+1∨·· · ≤
x f ∗, thus x f ∗ = x f ∗ f ∗ and x f ∗ = x f ∗∗. It follows that f ∗ is locally ∗-closed.

Suppose now that f is additionally >-continuous. We need to show that f ∗ is also >-continuous. To
this end, let X ⊆ L with

∨
X = >. Since x ≤ x f ∗ for all x ∈ X , it holds that

∨
X f ∗ ≥ ∨X = >. Thus∨

X f ∗ =>. �
Proposition 4 Let S be any subsemiring of FinAddL closed under the ∗-operation. If each f ∈ S is
locally ∗-closed and >-continuous, then S is a ∗-continuous Kleene algebra.

Proof Suppose that g,h ∈ S. By Lemma 2, it suffices to show that g∗h =
∨

n≥0 gnh. Since this is clear
when h = ⊥, assume that h 6= ⊥. As gnh ≤ g∗h for all n ≥ 0, it holds that

∨
n≥0 gnh ≤ g∗h. To prove

the opposite inequality, suppose that x ∈ L. If xg∗ = >, then
∨

n≥0 xgn = >, so
∨

n≥0 xgnh = > by >-
continuity. Thus, xg∗h =>=

∨
n≥0 xgnh.

Suppose that xg∗ 6=>. Then there is m≥ 0 with

xg∗h = (x∨·· ·∨ xgm)h = xh∨·· ·∨ xgmh≤
∨

n≥0

xgnh = x(
∨

n≥0

gnh) . �

Now define a left action of FinAddL on FinAddL,L′ by f v = f ;v, for all f ∈ FinAddL and v ∈
FinAddL,L′ . It is a routine matter to check that FinAddL,L′ , equipped with the above action, the bi-
nary supremum operation ∨ and the constant ⊥ is an (idempotent) left FinAddL-semimodule, that is,
(FinAddL,FinAddL,L′) is a semiring-semimodule pair.

Lemma 5 Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′ an S-semimodule.
Then (S,V ) is a generalized ∗-continuous Kleene algebra iff for all f ∈ S and v ∈V , f ∗v =

∨
n≥0 f nv.

Proof Similar to the proof of Lemma 2 �
Proposition 6 Let S⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′ an S-semimodule.
If each f ∈ S is locally ∗-closed and >-continuous and each v ∈ V is >-continuous, then (S,V ) is a
generalized ∗-continuous Kleene algebra.

Proof Similar to the proof of Proposition 4. �

5 ∗-continuous Kleene ω-Algebras of Functions

In this section, let L be an arbitrary complete lattice and L′ = 2, the 2-element lattice {⊥,>}. We define
an infinite product FinAddω

L → FinAddL,2. Let f0, f1, . . . ∈ FinAddL be an infinite sequence and define
v = ∏n≥0 fn : L→ 2 by

xv =

{
⊥ if there is n≥ 0 such that x f0 · · · fn =⊥,
> otherwise
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for all x ∈ L. We will write ∏n≥k fn, for k ≥ 0, as a shorthand for ∏n≥0 fn+k.
It is easy to see that ∏n≥0 fn is finitely additive. Indeed, ⊥∏n≥0 fn = ⊥ clearly holds, and for

all x ≤ y ∈ L, x∏n≥0 fn ≤ y∏n≥0 fn. Thus, to prove that (x∨ y)∏n≥0 fn = x∏n≥0 fn ∨ y∏n≥0 fn for all
x,y∈ L, it suffices to show that if x∏n≥0 fn = y∏n≥0 fn =⊥, then (x∨y)∏n≥0 fn =⊥. But if x∏n≥0 fn =
y∏n≥0 fn = ⊥, then there exist m,k ≥ 0 such that x f0 · · · fm = y f0 · · · fk = ⊥. Let n = max{m,k}. We
have (x∨ y) f0 · · · fn = x f0 · · · fn∨ y f0 · · · fn =⊥, and thus (x∨ y)∏n≥0 fn =⊥.

It is clear that this infinite product satisfies conditions (C1) and (C2) in the definition of ∗-continuous
Kleene ω-algebra. Below we show that also (C3) and (C4) hold.

Lemma 7 For all f0, f1, . . . ,g0,g1, . . . ∈ FinAddL,

∏
n≥0

( fn∨gn) =
∨

hn∈{ fn,gn}
∏
n≥0

hn .

Proof Since infinite product is monotone, the term on the right-hand side of the equation is less than
or equal to the term on the left-hand side. To prove that equality holds, let x ∈ L and suppose that
x∏n≥0( fn ∨ gn) = >. It suffices to show that there is a choice of the functions hn ∈ { fn,gn} such that
x∏n≥0 hn =>.

Consider the infinite ordered binary tree where each node at level n ≥ 0 is the source of an edge
labeled fn and an edge labeled gn, ordered as indicated. We can assign to each node u the composition
hu of the functions that occur as the labels of the edges along the unique path from the root to that node.

Let us mark a node u if xhu 6= ⊥. As x∏n≥0( fn ∨ gn) = >, each level contains a marked node.
Moreover, whenever a node is marked and has a predecessor, its predecessor is also marked. By König’s
lemma [20] there is an infinite path going through marked nodes. This infinite path gives rise to the
sequence h0,h1, . . . with x∏n≥0 hn =>. �
Lemma 8 Let f ∈ FinAddL and v ∈ FinAddL,2 such that f is locally ∗-closed and v is >-continuous. If
x f ∗v =>, then there exists k ≥ 0 such that x f kv =>.

Proof If x f ∗ =
∨N

n=0 x f n for some N ≥ 0, then x f ∗v =
∨N

n=0 x f nv = > implies the claim of the lemma.
If x f ∗ =>, then >-continuity of v implies that

∨
n≥0 x f nv =>, which again implies the claim. �

Lemma 9 Let f ,g0,g1, . . . ∈ FinAddL be locally ∗-closed and >-continuous such that for each m ≥ 0,
gm ∏n≥m+1 f ∗gn ∈ FinAddL,2 is >-continuous. Then

∏
n≥0

f ∗gn =
∨

k0,k1,...≥0
∏
n≥0

f kngn .

Proof As infinite product is monotone, the term on the right-hand side of the equation is less than or equal
to the term on the left-hand side. To prove that equality holds, let x∈ L and suppose that x∏n≥0 f ∗gn =>.
We want to show that there exist integers k0,k1, . . .≥ 0 such that x∏n≥0 f kngn =>.

Let x0 = x. By Lemma 8, x∏n≥0 f ∗gn = x0 f ∗g0 ∏n≥1 f ∗gn => implies that there is k0 ≥ 0 for which
x0 f k0g0 ∏n≥1 f ∗gn = >. We finish the proof by induction. Assume we have k0, . . . ,km ≥ 0 such that
x f k0g0 · · · f kmgm ∏n≥m+1 f ∗gn => and let xm+1 = x f k0g0 · · · f kmgm. Then xm+1 f ∗gm+1 ∏n≥m+2 f ∗gn =>
implies, using Lemma 8, that there exists km+1 ≥ 0 for which xm+1 f km+1gm+1 ∏n≥m+2 f ∗gn =>. �
Proposition 10 Let S ⊆ FinAddL and V ⊆ FinAddL,2 such that (S,V ) is a generalized ∗-continuous
Kleene algebra of locally ∗-closed and>-continuous functions L→ L and>-continuous functions L→ 2.
If ∏n≥0 fn ∈ V for all sequences f0, f1, . . . of functions in S, then (S,V ) is a ∗-continuous Kleene ω-
algebra.
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Proof This is clear from Lemmas 7 and 9. �

We finish the section by a lemma which exhibits a condition on the lattice L which ensures that
infinite products of locally ∗-closed and >-continuous functions are again >-continuous.

Lemma 11 Assume that L has the property that whenever
∨

X => for some X ⊆ L, then for all x <>
in L there is y ∈ X with x≤ y. If f0, f1, . . . ∈ FinAddL is a sequence of locally ∗-closed and >-continuous
functions, then ∏n≥0 fn ∈ FinAddL,2 is >-continuous.

Proof Let v = ∏n≥0 fn. We already know that v is finitely additive. We need to show that if v 6=⊥, then
v is >-continuous. But if v 6=⊥, then there is some x <> with xv =>, i.e., such that x f0 · · · fn >⊥ for
all n. By assumption, there is some y ∈ X with x ≤ y. It follows that y f0 · · · fn ≥ x f0 · · · fn > ⊥ for all n
and thus

∨
Xv =>. �

6 Energy Automata Revisited

We finish this paper by showing how the setting developed in the last sections can be applied to solve
the energy problems of Section 2. Let L = [0,>]⊥ be the complete lattice of nonnegative real numbers
together with > = ∞ and an extra bottom element ⊥, and extend the usual order and operations on real
numbers to L by declaring that ⊥ < x < >, ⊥− x = ⊥ and >+ x = > for all x ∈ R≥0. Note that L
satisfies the precondition of Lemma 11.

We extend the definition of energy function:

Definition 5 An extended energy function is a mapping f : L→ L for which⊥ f =⊥,> f =⊥ if x f =⊥
for all x < > and > f = > otherwise, and y f ≥ x f + y− x whenever ⊥ < x < y < >. The set of such
functions is denoted E .

Every energy function f :R≥0 ⇀R≥0 as of Definition 1 gives rise to an extended energy function
f̃ : L→ L given by ⊥ f̃ = ⊥, x f̃ = ⊥ if x f is undefined, x f̃ = x f otherwise for x ∈R≥0, and > f̃ = >.
This defines an embedding F ↪→ E .

The definition entails that for all f ∈ E and all x < y∈ L, x f => implies y f => and y f =⊥ implies
x f = ⊥. Note that E is closed under (pointwise) binary supremum ∨ and composition and contains the
functions ⊥ and id.

Lemma 12 Extended energy functions are finitely additive and >-continuous, hence E ⊆ FinAddL is a
semiring.

Proof Finite additivity follows from monotonicity. For >-continuity, let X ⊆ L such that
∨

X = > and
f ∈ E , f 6= ⊥. We have X 6= {⊥}, so let x0 ∈ X \ {⊥} and, for all n ≥ 0, xn = x0 + n. Let yn = xn f . If
yn = ⊥ for all n ≥ 0, then also n f = ⊥ for all n ≥ 0 (as xn ≥ n), hence f = ⊥. We must thus have an
index N for which yN >⊥. But then yN+k ≥ yN + k for all k ≥ 0, hence

∨
X f =>. �

Lemma 13 For f ∈ E , f ∗ is given by x f ∗ = x if x f ≤ x and x f ∗ = > if x f > x. Hence f is locally
∗-closed and f ∗ ∈ E .

Proof We have ⊥ f ∗ = ⊥ and > f ∗ = >. Let x 6= ⊥,>. If x f ≤ x, then x f n ≤ x for all n ≥ 0, so that
x ≤ ∨n≥0 x f n ≤ x, whence x f ∗ = x. If x f > x, then let a = x f − x > 0. We have x f ≥ x+ a, hence
x f n ≥ x+na for all n≥ 0, so that x f ∗ =

∨
n≥0 x f n =>. �

Not all locally ∗-closed functions f : L→ L are energy functions: the function f defined by x f = 1
for x < 1 and x f = x for x≥ 1 is locally ∗-closed, but f /∈ E .
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Corollary 14 E is a ∗-continuous Kleene algebra.

Proof This is clear by Proposition 4. �

Remark It is not true that E is a continuous Kleene algebra: Let fn,g∈E be defined by x fn = x+1− 1
n+1

for x ≥ 0, n ≥ 0 and xg = x for x ≥ 1, xg = ⊥ for x < 1. Then 0(
∨

n≥0 fn)g = (
∨

n≥0 0 fn)g = 1g = 1,
whereas 0

∨
n≥0( fng) =

∨
n≥0(0 fng) =

∨
n≥0((1− 1

n+1)g) =⊥.

Let V denote the E -semimodule of all >-continuous functions L→ 2. For f0, f1, . . . ∈ E , define the
infinite product f = ∏n≥0 fn : L→ 2 by x f =⊥ if there is an index n for which x f0 · · · fn =⊥ and x f =>
otherwise, like in Section 5. By Lemma 11, ∏n≥0 fn is >-continuous, i.e., ∏n≥0 fn ∈ V .

By Proposition 6, (E ,V ) is a generalized ∗-continuous Kleene algebra.

Corollary 15 (E ,V ) is a ∗-continuous Kleene ω-algebra.

Proof This is clear by Proposition 10. �

Remark As E is not a continuous Kleene algebra, it also holds that (E ,V ) is not a continuous Kleene
ω-algebra; in fact it is clear that there is no E -semimodule V ′ for which (E ,V ) would be a continuous
Kleene ω-algebra. The initial motivation for the work in [10] and the present paper was to generalize the
theory of continuous Kleene ω-algebras so that it would be applicable to energy functions.

Noting that energy automata are weighted automata over E in the sense of Section 3.3, we can now
solve the reachability and Büchi problem for energy automata:

Theorem 1 Let A = (α,M,k) be an energy automaton and x0 ∈R≥0. There exists a finite run of A from
an initial state to an accepting state with initial energy x0 iff x0|A|>⊥.

Theorem 2 Let A = (α,M,k) be an energy automaton and x0 ∈R≥0. There exists an infinite run of A
from an initial state which infinitely often visits an accepting state iff x0‖A‖=>.

Corollary 16 Problems 1 and 2 are decidable.

In [12], the complexity of the decision procedure has been established for important subclasses of
energy functions.

7 Conclusion and Further Work

We have shown that energy functions form a ∗-continuous Kleene ω-algebra [10], hence that ∗-continuous
Kleene ω-algebras provide a proper algebraic setting for energy problems. On our way, we have proven
more general results about properties of finitely additive functions on complete lattices which should be
of a more general interest.

There are interesting generalizations of our setting of energy automata which, we believe, can be
attacked using techniques similar to ours. One such generalization are energy problems for real time or
hybrid models, as for example treated in [3–5, 23]. Another generalization is to higher dimensions, like
in [16, 19, 24] and other papers.
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We consider relations with no order on their attributes as inDatabase Theory. An independent par-
tition of the set of attributes S of a finite relationR is any partitionX of S such that the join of
the projections ofR over the elements ofX yields R. Identifying independent partitions has many
applications and corresponds conceptually to revealing orthogonality between sets of dimensions in
multidimensional point spaces. A subset of S is termed self-correlated if there is a value of each
of its attributes such that no tuple ofR contains all those values. This paper uncovers a connection
between independence and self-correlation, showing that the maximum independent partition is the
least fixed point of a certain inflationary transformerα that operates on the finite lattice of partitions
of S. α is defined via the minimal self-correlated subsets of S. We use some additional properties
of α to show the said fixed point is still the limit of the standard approximation sequence, just as in
Kleene’s well-known fixed point theorem for continuous functions.

1 Introduction

The problem of discovering independence between sets of points in a multidimensional space is a fun-
damental problem in science. It arises naturally in many areas of Computer Science. For instance, with
respect to relational data, discovering such independenceallows exponential gains in storage space and
processing of information [11], [1], and can facilitate theproblem of machine learning [13]. With respect
to problem clusterisation of multidimensional relationaldata, finding independence helps finding the de-
sired clusters [5], [8]. Decomposing data into smaller units that are independent except at their interfaces
has been known to be essential for understanding large legacy systems [17]. Independence has also been
the subject of recent works in logic, giving rise to so-called logics of dependence and independence [4].

The concrete motivation for the present work derives from the area ofsoftware product line engi-
neering, a discipline that aims at planning for and developing afamily of products through managed
reuse in order to decrease time to market and improve software quality [12]. A software family can be
modelled as a relation whose attributes are the software’s functionalities. The various implementations
of each functionality in the form of software artefacts are the attributes’values. The individual products
of a family are thus modelled as the tuples of that relation over the attributes. In previous works [6, 15]
we considered a restricted class of software families called simple families(later on we changed the term
“families” to the more abstract term “relations”), where discovery of independence and a compositional
model checking technique are utilised to derive adivide-and-conquer verification strategy. Simple rela-
tions constitute the least class that contains the single-attribute, single-value relations and is closed under
join of relations with disjoint attribute sets and unions ofrelations over the same set of attribute names
but with disjoint value sets. In the present work we generalise these previous results to discovering in-
dependence in arbitrary relations. We investigate decompositions of a relationR with disjoint attributes
such thatRequals the join of the component relations. Every decomposition is represented by a partition
of the set of attributes ofR. Such partitions are termedindependent partitions.
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The problem of computing a maximum decomposition of this kind has previously been studied
in [10], where it is referred to asprime factorisation, and an efficient algorithmic solution is proposed. In
this paper we investigate an alternative approach that works purely on the level of the attributes ofRand
is based on the concept ofcorrelation between attributes. We have discovered a nontrivial connection
between independence and correlation and the major goal of this paper is to demonstrate that connection.

A first observation is that the decomposition problem cannotbe solved purely based on analysis
of pairs of attributes. In the aforementioned work [6] we compute dependence (or independence) in
simple relations by computing correlation between pairs ofattributes. That approach does not generalise
for arbitrary relations as we show in this paper. Our solution is to introduceself-correlationof sets
(of arbitrary cardinality) of attributes. In other words, the current notion of correlation is a hypergraph
whose hyperedges are the self-correlated sets, rather thanan ordinary graph as were the case with the
simple relations. Since self-correlated sets are upward closed under set inclusion (Proposition 2), the
minimal self-correlated sets, or themincors(Definition 4), are the foundation of our analysis. A second
observation is that mincors do not cross independent partitions (Lemma 5), hence one can safely merge
overlapping mincors to compute the maximum independent partition. In the case of simple relations
that merger indeed yields the maximum independent partition [6] but in arbitrary relations merging the
mincorsdoes notnecessarily output an independent partition, as the example on page 67 shows. We
overcome this hindrance with the help of a final important insight. LetX be the partition of the set of
attributes that results from merging overlapping mincors.The relation can be factored onX, producing a
quotient relation. In other words, the elements ofX are considered atomic now; the subsets ofX may or
may not be self-correlated in their turn, and the said quotient relation is defined via those new mincors.
We show that the procedure of identifying mincors and merging overlapping ones can be repeated on this
quotient relation and this can be iterated until stabilisation, yielding the desired maximum independent
partition.

The above insights suggest that relational decomposition can be presented in terms of a transformer
over the finite lattice of quotient relations, or conceptually even simpler, overthe lattice of the partitions
ordered by refinement, inducing the former lattice. The transformerα on partitions introduced here
essentially corresponds to identifying the mincors of the quotient relation induced by a partition, merging
the overlapping ones, and extracting from the result the corresponding partition (Definition 5). We prove
that the independent partitions correspond exactly to the fixed points ofα (Theorem 1).

If α is monotone, one can utilise two well-known fixed point theorems on complete lattices (having
in mind that monotone functions over finite lattices are continuous). First, by Tarski’s fixed point theorem
for complete lattices [16], the set of fixed points forms a lattice itself with respect to the same ordering,
hence there is a uniqueleast fixed point(LFP), which in our case would be precisely the maximum
independent partitioning that we are after. And second, onecan utilise Kleene’s fixed point theorem [7],
to the effect that the LFP can be computediteratively, starting from the bottom of the lattice,i.e. the
partition into singletons, and applyingα until stabilisation,i.e., until the fixed point is reached. It turns
out, however, thatα in general isnot monotoneas demonstrated by the example on page 70 and therefore
the above reasoning is not applicable.

On the other hand, we show thatα is inflationary (Proposition 4). The existence of a LFP is estab-
lished by showing that there exists a fixed point and the set ofall fixed points is closed under intersection
(Lemma 6). Furthermore, the downward closure of LFP,i.e., the set of all partitions refining it, is closed
underα (Lemma 8). Since the lattice is finite, these results give rise to a modified version of Kleene’s
fixed point theorem—formulated in terms of inflationary transformers rather than monotone ones (The-
orem 2)—justifying the same iterative fixed point computation procedure (Corollary 3). The proposed
characterisation reduces relational decomposition to theproblem of identifying the mincors of a relation.
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Organisation The paper is organised as follows. Section 2 recalls some known notions and results
about sets and families, partitions, lattices, fixed points, relations, attributes, and relation schemes, quo-
tient relations, and defines independent partitions of the attributes set. Section 3 develops the theory of
self-correlated sets in quotient relations and how they relate w.r.t. partition abstraction. Section 4 presents
many useful lemmas that concern independence. Section 5 defines the transformerα and contains our
main result, Theorem 2. Section 6 discusses what we currently know about the area of decomposition of
relations, also called factorisation of relations, and compares the approach and the results of this paper
with similar works. The final Section 7 draws some conclusions and outlines directions for future work.

2 Background

In this section we recall some standard set-theoretical notions and notation needed for our theoretical
developments.

2.1 Sets, covers, and partitions

In this work we consider only finite sets. The powerset of a setA is denoted byPOW(A) andP+(A) denotes
POW(A) \{ /0}. Ground setsare nonempty sets over which we construct the families that are our subject
of research.

Let A be a ground set.A family over Ais any nonempty subset ofP+(A). A family F is Sperner
family if ∀X,Y ∈ F : X 6⊆ Y. F is connectedif ∀X,Z ∈ F: X ∩Z 6= /0 or F has elementsY1, Y2, . . . ,Yk

for somek ≥ 1, such thatX ∩Y1 6= /0, Yi ∩Yi+1 6= /0 for 1≤ i ≤ k− 1, andYk ∩Z 6= /0. A connected
component of a familyis any maximal connected subfamily in it. We useCC(F) to denote the family
{∪B |B is a connected component of F}. A superfamily over Ais any nonempty subset ofP+(P+(A)).

SupposeA is a set. A cover of Ais any family F overA such that∪F = A. The set of all covers
of A is denoted byK(A). If X ∈ K(A) andY∩Z = /0 for all distinctY,Z ∈ X, we sayX is a partition
of A. If |X|= 1 the partition istrivial and if |X|= |A| the partition ispartition into singletons. Note that
CC(F) defined above is a partition of the ground set. We denote byY ⋐ X the fact that for someB⊆ A,
Y is a family overB such that every element ofY is a subset of precisely one element ofX and every
element ofX is a superset of at most one element ofY. For example, ifA= {a,b,c,d,e, f ,g,h,k} then
{{b},{c},{d,g}} ⋐ {{a,b},{c},{d,e, f ,g},{h,k}}.

The set of all partitions ofA is denoted byΠ(A). For anyP1,P2 ∈ Π(A), P1 refines P2, which we
denote byP1⊑ P2, if

∀X ∈ P1 ∃Y ∈ P2 : X ⊆Y

Conversely, we say thatP2 abstracts P1. If P1⊑ P2 andP1 6= P2 we writeP1 ⊏ P2.

2.2 Partial orders, lattices, and chains

We denote generic partial orders by “4”. If (A,4) is a poset,a least elementof A is anyx∈ A such that
∀y∈ A : x4 y anda greatest elementof A is anyx∈ A such that∀y∈ A : y4 x. A least element may not
exist but if it exists it is unique; the same holds for a greatest element. The least element is calledbottom
and is denoted by⊥. The greatest element is calledtopand is denoted by⊤. A chainin a poset(A,4) is
anyB⊆ A such that∀x,y∈ B : x4 y∨y4 x.

A lattice is a poset(A,4), shortlyA when4 is understood, such that for anyx,y ∈ A there exists a
(unique) greatest lower bound inA calledmeetand denoted byx⊓ y and a (unique) least upper bound
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in A called join and denoted byx⊔ y. Collectively,⊓ and⊔ are the lattice operations of A. They are
commutative and associative [2, pp. 8]. We generalise the lattice operations on subsets ofA in the obvious
way. A complete latticeis a lattice such that everyB⊆ A has a meet⊓B and a join⊔B. In particular,
A has a meet⊓A=⊥ and a join⊔A=⊤. Every finite lattice is complete [3, pp. 46], therefore fromnow
on by lattice we mean complete lattice. For anyx ∈ A, the sets{y ∈ A|y4 x} and{y ∈ A|x 4 y} are
calleddown-xandup-xand are denoted by↑x and↓x, respectively [3, pp. 20].

It is well-known that(Π(A),⊑) is a lattice. Furthermore,⊥ is the partition into singletons,⊤ is
the trivial partition, and for anyP1,P2 ∈ Π(A), P1⊓P2 = {X ∩Y |X ∈ P1,Y ∈ P2} \ { /0} andP1⊔P2 =
CC(P1∪P2) (see [2, pp. 15]). We extend the “⊓” notation to subsets of partitions: for anyX,Y ∈ Π(A),
for any nonemptyX′ ⊆ X and any nonemptyY′ ⊆ Y such thatX′ ∩Y′ 6= /0, X′ ⊓Y′ denotes the set
{B∩C|B∈ X′,C∈Y′}\{ /0}.

2.3 Functions and fixed points

SupposeA is a set andf : A→ A is a function. For everyx ∈ A: f 0(x)
def
= x and for everyn ∈ N+,

f n(x)
def
= f ◦ f n−1(x). For everyn∈N, f n(x) is the n-th iterate of f. A fixed pointof f is everyx∈ A such

that f (x) = x. Let (A,4) be a poset. A functionf : A→A is monotoneif ∀x,y∈ A : x4 y→ f (x)4 f (y)
and f is inflationary if ∀x∈ A : x4 f (x) [14, pp. 263].

A well-known fixed point theorem is Tarski’s fixed point theorem for continuous functions over
complete lattices [16], stating that the set of fixed points is non-empty and forms a lattice itself with
respect to the same ordering, and hence the function has a uniqueleast fixed point(LFP). Another well-
known theorem due to Kleene states the existence of an LFP forcontinuous functions on chain-complete
partial orders [7], and that the LFP can be computediteratively, starting from the bottom of the lattice
and applying the function until stabilisation.

2.4 Schemes, relations, and quotient relations

The following definitions are close to the ones in [9].A schemeis a nonempty set S= {A1, . . . ,An}
whose elements, calledthe attributes, are nonempty sets. For every attribute, its elements are said to be
its values. A relation over Sis a nonempty set of total functions{t1, t2, . . . , tp}, which we callthe tuples,
such that for 1≤ j ≤ p, t j : S→∪S, with the restriction thatt j(Ai) ∈ Ai, for 1≤ i ≤ n. We assume that
every value of every attribute occurs in at least one tuple.

The relations we have in mind are as in Relational Database Theory,i.e. with unordered tuples, rather
than as in Set Theory,i.e. with ordered tuples.

We further postulate that the said attributes are mutually disjoint sets. That allows a simplification of
the definition of relation: a relation over S is nonempty set of tuples, each tuple being ann-element set
with precisely one element from every attribute. To save space, we often write the tuples without commas
between their elements. For example, letn= 3, A1 = {a1,a2}, A2 = {b1,b2}, andA3 = {c1,c2,c3}. One
of the relations over the scheme{A1,A2,A3} is written as{{a1b1c1},{a1b2c2},{a2b2c3}}.

Let S1,S2, . . . ,Sk be schemes such that for 1≤ i < j ≤ k, ∀A∈ Si ∀B∈ Sj : A∩B= /0. Let Ri be a
relation over Si, for 1≤ i ≤ k. The join of R1, . . . , Rk is the relation

R1 ⋊⋉ R2 ⋊⋉ · · ·⋊⋉ Rk = {∪{x1,x2, . . . ,xk}|x1 ∈ R1,x2 ∈ R2, . . . ,xk ∈Rk}

The complete relationover S= {A1, . . . ,An} is⋊⋉n
i=1 {{x}|x∈Ai}. Clearly, its cardinality is∏n

i=1 |Ai|.
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Let S= {A1, . . . ,An} be a scheme.A subscheme ofS is any nonempty subset of S. The notationf
∣∣
Z

stands for the restriction off to Z, for any functionf : X→Y and anyZ⊆ X. Let R= {t1, t2, . . . , tp} be
a relation over S and let T be a subscheme of S.The projection of R onT is R↾ T = {t j

∣∣
T : 1≤ j ≤ p}.

Definition 1 (quotient relation) Let R be a relation over some schemeS. For anyX = {X1,X2, . . . ,
Xn} ∈Π(S), R/X⊆⋊⋉n

i=1 (R↾ X i) is the following relation:

∀{y1y2 . . .yn} ∈⋊⋉n
i=1(R↾ X i) :

{y1y2 . . .yn} ∈ R/X iff ∃t ∈ R∀i 1≤i≤n(t ↾ X i = yi)

We termR/X thequotient relation ofR relative toX. WhenX is understood we say simplythe quotient
relation ofR.

We emphasise the quotient relation is not over S but over a partition of S.

Here is an example of a quotient relation. Let S= {A,B,C,D}, let each attribute have precisely two
values, sayA= {a1,a2} and so on, letX1 = {{A,B},{C,D}}, letX2 = {{A},{B},{C},{D}}, and let

R′ = {{a1b1c1d1},{a1b1c2d2},{a1b2c1d2},{a2b2c1d1},{a2b2c2d2}} (1)

be a relation over S. Then

R′/X1 = {{{a1,b1}{c1,d1}},{{a1,b1}{c2,d2}},{{a1,b2}{c1,d2}},
{{a2,b2}{c1,d1}},{{a2,b2}{c2,d2}}} (2)

R′/X2 = {{{a1}{b1}{c1}{d1}},{{a1}{b1}{c2}{d2}},{{a1}{b2}{c1}{d2}},
{{a2}{b2}{c1}{d1}},{{a2}{b2}{c2}{d2}}} (3)

A quotient relation is but a grouping together of the tuples of the original relation into subtuples according
to the partition. It trivially follows that|R/X| = |R| for any relationR over any attribute set S and any
X ∈Π(S).

2.5 Independent partitions

For a given relationRover some schemeS, we are after decompositions ofR such thatR equals the join
of the obtained components. Each decomposition of this kindcorresponds to a certain partition ofS.

Definition 2 (independent partition) Let R be a relation over some scheme S. For anyX ∈Π(S), X is
an independent partition of S with respect toR if R= ⋊⋉

Y∈X
R ↾ Y. The set of all independent partitions

of S with respect to R is denoted byIΠR(S), or shortly IΠ(S) if R is understood. If a partition is not
independent, it isdependent.

Note that IΠ(S) is nonempty since it necessarily contains the trivial partition.

Proposition 1 For every independent partitionX, R/X is the complete relation overX.

Informally speaking, the object of the present study is the independent partition with the maximum
number of equivalence classes, provided it is unique.

3 Correlation in Relations

In this section we define correlation in relations and quotient relations. From now on assume an arbitrary
but fixed scheme S and relationRover it.
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3.1 Correlated subsets of ground sets

In this subsection, the ground sets are schemes.

Definition 3 (correlated subsets of schemes)LetS= {A1,A2, . . . ,An} and letT be some nonempty sub-
scheme{Ai1,Ai2, . . . ,Aim} where1≤ i1 < i2 < · · · < im ≤ n. T is self-correlated with respect toR, or
shortlycorrelated with respect toR, iff

∃x1 ∈ Ai1 ∃x2 ∈ Ai2 · · · ∃xm∈ Aim : {x1x2 · · ·xm} 6∈R↾ T (4)

We denote that fact by corrR(T) or corr(T) if R is understood. The opposite concept isuncorrelated. The
family{T⊆ A |corrR(T)}, in case it is nonempty, is calledthe correlation family ofR.

Note that no minimal correlated subset is a singleton. The following result re-states correlation of a
subscheme in terms of the projection of the relation on it.

Lemma 1 LetT⊆ S. Then corr(T) iff R ↾ T ( ⋊⋉X∈T R↾ {X}.
Proof: First assume corr(T). By Definition 3, there is an element in every attribute from Tsuch that the
tuple of those elements does not occur inR ↾ T. On the other hand, the tuples of⋊⋉X∈T R ↾ {X} are all
possible combinations of the elements of the attributes in T. Therefore,R↾ T ( ⋊⋉X∈T R↾ {X}.

In the other direction, assume¬corr(T). The negation of expression (4) in Definition 3 is but another
way to writeR↾ T = ⋊⋉X∈T R↾ {X}. �

As the next result establishes, with respect to the poset(S,⊆), every correlated subset is upward
closed, while every uncorrelated subset is downward closed.

Proposition 2 If corr(T) for someT ⊆ S then∀ZT⊆Z⊆S : corr(Z). If ¬corr(T) for someT ⊆ S then
∀ZZ⊆T : ¬corr(Z).

It is obvious that the correlation family, if it exists, is a cover of the scheme. Furthermore, it does not
exist iff the relation is complete. The interesting part of acorrelation family is the sub-family comprising
the minimal correlated sets. However, that sub-family doesnot necessarily cover the scheme. We want
to define a family that both covers the scheme—because we are ultimately interested in a partition of the
scheme—and is a Sperner family, since the implied members ofthe family are of no interest.

Definition 4 (mincor family) A mincor of R is every minimal, self-correlated with respect to R, sub-

schemeT ⊆ S. Further, mincors(R)
def
= {T ⊆ S|T is a mincor} and singletons(R)

def
= {{A}|A ∈ S∧¬∃X ∈

mincors(R) : A∈ X}. The mincor familyof R, denoted byMF(R), is MF(R) = mincors(R)∪ singletons(R).

For example, considerR′ defined in (1) on the facing page. Clearly, corrR′({A,B}) and corrR′({C,D})
because of the lacks of botha2 andb1 in any tuple and the lack of bothc2 andd1 in any tuple, respectively.
The other four two-element subsets of S are uncorrelated. Then singletons(R′) = /0 and thereforeMF(R′) =
{{A,B},{C,D}}.
Proposition 3 With respect toSand R,MF(R) exists and is unique.

If R is complete thenMF(R) consists of singletons. Clearly,MF(R) ∈ K(S), and thusCC(MF(R)) ∈Π(S).

3.2 Correlation in quotient relations

The following result establishes an important connection between self-correlation in a partition of the
scheme and self-correlation in the scheme itself. More specifically, Lemma 2 is used to prove Lemma 3,
and the latter is used in the proof of Lemma 7 on page 71.
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Lemma 2 For anyX ∈Π(S) andX′ ⊆ X:

corrR/X(X
′)↔ corrR(∪X′)

Proof: Assume corrR/X(X
′). LetX′ = {Y1,Y2, . . . ,Ym}. So,(R/X) ↾ X′ does not contain somem-tuple

{U1,U2, . . . ,Um} such thatUi ∈ R↾Yi for 1≤ i ≤m. ThenR↾ ∪X′ does not contain∪{U1,U2, . . . ,Um}.
In the other direction, assume corrR(∪X′) where∪X′ is a subset S′ of S. Let S′ = {A1,A2, . . . ,An}.

That is, R ↾ S′ does not contain somen-tuple {W1,W2, . . . ,Wn} such thatWi ∈ Ai for 1≤ i ≤ n. Let
X′ = {Y1,Y2, . . . ,Ym}. Then(R/X) ↾ X′ does not contain them-tuple{U1,U2, . . . ,Um} whereUi ∈ R↾Yi

for 1≤ i ≤m. �
As an example that illustrates Lemma 2, considerR′ andX1 on page 64. Clearly,X1 = {{A,B},{C,D}} is
self-correlated with respect tõR/X1 asR̃/X1 does not contain, among others, the tuple{{a1,b1}{c1,d2}}.
That implies∪X1 = {A,B,C,D} is self-correlated with respect tõR: since{{a1,b1}{c1,d2}} is not an
element ofR̃/X1, it must be the case that{a1b1c1d2} is not element ofR̃ (and indeed it is not). In the
other direction, the fact that{a1b1c1d2} 6∈ R̃ implies{{a1,b1}{c1,d2}} 6∈ R̃/X1.

The next result establishes that for every mincor Y of a quotient relation there is a way to pick elements
from every element of Y such that the collection of those elements is a mincor of the original relationR.

Lemma 3 ∀X ∈Π(S) ∀Y ∈ mincors(R/X) ∃Z ⋐Y : |Z|= |Y|∧∪Z ∈ mincors(R).

Proof: AssumeY ∈ mincors(R/X). Clearly, there is some Z⋐Y such that∪Z is correlated with respect
to Rbecause⋐ is reflexive and∪Y is correlated with respect toRby Lemma 2. Now consider any Z′⋐Y
such that|Z′| < |Y|. There exists someY′ ⊂Y such that Z⋐Y′. But Y′ is uncorrelated with respect
to R/X becauseY is a mincor ofR/X and so every proper subset ofY is uncorrelated with respect to
R/X. Note thatY′ being uncorrelated with respect toR/X implies∪Z′ is uncorrelated with respect toR
by Lemma 2. It follows that for any Z⋐Y such that corrR(∪Z)—and we established such a Z exists—it
is the case that|Z|= |Y|.

So, there exists a Z⋐ Y such that|Z| = |Y| and∪Z is correlated with respect toR. Furthermore,
there does not exist Z⋐ Y such that|Z| < |Y| and∪Z is correlated with respect toR. Consider any
Z̃ ⋐Y such that∪Z̃ is correlated with respect toR. As |Z̃| = |Y|, every element ofY is a superset of
precisely one element of̃Z.

First assume all elements ofZ̃ are singletons. In this case no proper subset of∪Z̃ is correlated with
respect toR. Suppose the contrary, namely that some W⊂∪Z̃ is correlated with respect toRand deduce
there is some Z′′ ⋐Y such that W= ∪Z′′, thus|Z′′|< |Y|, such that∪Z′′ is correlated with respect toR.
Since no proper subset of∪Z̃ is correlated with respect toR, ∪Z̃ is a mincor with respect toRand we are
done with the proof.

Now assume not all elements ofZ̃ are singletons. It trivially follows there exists a minimal setẐ ⋐ Z̃
such that|Ẑ|= |Z̃| (thus|Ẑ|= |Y|) such that∪Z̃ is correlated with respect toR. �

4 Results on Independent Partitions

This section provides important auxiliary results concerning independent partitions. In subsection 4.1
we investigate the connection between independence and self-correlation. In subsection 4.2 we prove the
meet of independent partitions is an independent partition.
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4.1 Independence and the mincor family

The following lemma establishes that partition independence is preserved under removal of attributes.

Lemma 4 ∀Y ∈ IΠ(S) ∀X⋐Y : X ∈ IΠR↾∪X(∪X).
Proof: Let Q = R ↾ ∪X. We prove thatQ = ⋊⋉

Z∈X
(Q ↾ Z). In one direction,Q⊆ ⋊⋉

Z∈X
(Q ↾ Z) follows

immediately from the definitions of relation join and projection. In the other direction, consider any
tuple t in ⋊⋉

Z∈X
(Q ↾ Z). Let v be any tuple in ⋊⋉

Z∈Y
(R ↾ Z) such thatt = v

∣∣
∪X. But v ∈ R becauseY is

independent and thusR= ⋊⋉
Z∈Y

(R↾ Z). As v∈ R, it follows thatv
∣∣
∪X ∈Q. But v

∣∣
∪X is t, thereforet ∈Q,

and so ⋊⋉
Z∈X

(Q ↾ Z)⊆Q. �

The next lemma is pivotal. It shows that the mincors respect independent partitions, in the sense that no
mincor can intersect more than one element of an independentpartition.

Lemma 5 ∀Y ∈ IΠ(S) ∀W ∈ mincors(R) ∃Y ∈Y : W⊆ Y.

Proof: Assume the contrary. Then there is a mincor W that has nonempty intersection with more than
one set fromY. Suppose W has nonempty intersection with preciselyt sets fromY for somet such that
2≤ t ≤ q. Let Y1, Y2, . . . , Yt be precisely those sets fromY that have nonempty intersection with W.
Let Wi = W∩Y i, for 1≤ i ≤ t. Clearly,

⋃t
i=1Wi = W. By Lemma 4:

R↾ W = ⋊⋉
1≤i≤t

R↾ Wi

Every Wi is a proper subset of W. But W is a minimal correlated set. Thatimplies ¬corr(Wi), for
1≤ i ≤ t. Apply Lemma 1 to conclude thatR↾ Wi = ⋊⋉

x∈Wi

R↾ {x}. Then,

R↾ W = ⋊⋉
1≤i≤t

⋊⋉
x∈Wi

R↾ {x}

Obviously, ⋊⋉
1≤i≤t

⋊⋉
x∈Wi

R ↾ {x} = ⋊⋉
x∈W

R ↾ {x}. Then,R ↾ W = ⋊⋉
x∈W

R ↾ {x}. By Lemma 1 that implies

¬corr(W). �
Furthermore, merging mincors also yields sets that respectindependent partitions.

Corollary 1 ∀Y ∈ IΠ(S) : CC(MF(R))⊑Y.

Proof: Assume the contrary. Then for someR on S andY ∈ IΠ(S):

∃X ∈ CC(MF(R)) ∀Y ∈Y ∃A∈ X : A 6∈ Y

First note that X is not a singleton, otherwise X would be contained in some set fromY. So,|X| ≥ 2 and
according to Definition 4, X is the union of one or more mincors, each of size≥ 2, and X is connected.
But by assumption X is not a subset of any set fromY and so there has to be some mincor W∈ X that
has nonempty intersection with at least two sets fromY . However, that contradicts Lemma 5. �

Note thatCC(MF(R)) is not necessarily an independent partition. For example, considerR′ defined in (1)
on page 64. As explained on page 65,MF(R′) = {{A,B},{C,D}} and thusCC(MF(R′)) = {{A,B},{C,D}},
too. But{{A,B},{C,D}} is not an independent partition with respect toR′. In fact, there is no indepen-
dent partition of S except for the trivial partition as|R′| is a prime number.
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Now consider another relationR′′ on the same scheme:

R′′ = {{a1b1c1d1},{a1b1c1d2},{a1b1c2d2},{a1b2c1d1},{a1b2c1d2},{a1b2c2d2},
{a2b2c1d1},{a2b2c1d2},{a2b2c2d2}}

But MF(R′′) = {{A,B},{C,D}} = CC(MF(R′′)) just as in the case ofR′. Now {{A,B},{C,D}} is an inde-
pendent partition with respect toR′′ becauseR′′ = R′′ ↾ {A,B}⋊⋉R′′ ↾ {C,D}.

So, in the case ofR′′, the connected components of the mincor family constitute an independent
partition, while that is not true forR′, although the mincor families of both relations are the same. We
conclude that computing the mincor family does not suffice toobtain an independent partition. Therefore,
we use a more involved approach in which the computation of the mincor family is but the first step
towards the computation of the maximum independent partition.

4.2 The meet of independent partitions

The following lemma allows us to define the maximum independent partition as the meet of all indepen-
dent partitions.

Lemma 6 ∀X,Y ∈ IΠ(S) : X⊓Y ∈ IΠ(S).

Proof: (sketch) Let X,Y ∈ IΠ(S). We assumeX⊔Y is connected. There is no true loss of generality
in that because the proof below can be done componentwise ifX⊔Y is not connected. Relative to an
arbitrary element ofX, sayX1, we define the familyZ= {Z0,Z1, . . . ,Zk} over S as follows.Z is a partition
of S and its elements are constructed in an ascending order ofthe index according to the following rule:

Zi =





X1, if i = 0
⋃{A\Zi−1 |A∈Y∧A∩Zi−1 6= /0}, if i is odd
⋃{A\Zi−1 |A∈ X∧A∩Zi−1 6= /0}, if i is even andi > 0

Let us defineBi =
{⋃i

j=0 Z j
}
⊓X⊓Y for 0≤ i ≤ k. Clearly,B0 = {X1}⊓Y, Bi = Bi−1∪ ({Zi}⊓X⊓Y)

for 1≤ i ≤ k andBk = X⊓Y. Furthermore,∪Bk = S and thusR↾ ∪Bk = R. We prove by induction oni
that for all i such that 0≤ i ≤ k:

R↾ ∪Bi = ⋊⋉
C∈Bi

R↾C (5)

and hence the result follows.

Basis. Let i = 0. Let the elements ofY that have nonempty intersection withX1 be calledY1, . . . ,Yj .
Obviously, there is at least one of them. The claim is thatR ↾ X1 = ⋊⋉ j

i=1R ↾ (X1∩Yi). That follows
immediately from Lemma 4.

Inductive Step.Assume the claim holds for someBi−1 such that 0≤ i−1< k and considerBi. As already
mentioned,Bi = Bi−1∪ ({Zi}⊓X⊓Y).

Without loss of generality, assumei is odd. Very informally speaking,Zi is the union of some
elements ofY that overlap with some elements (fromX) in Bi−1, minus the overlap. Therefore, we can
write Bi = Bi−1∪ ({Zi}⊓X) because under the current assumption, it isX rather thanY that dictates the
grouping together of the elements ofZi in Bi. More specifically, sincei 6= k, there are elements fromX
whose elements do not appear in the currentBi; those elements ofX dictate the aforementioned grouping.
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So,Bi is the union of two disjoint sets whose elements are fromX⊓Y, namelyBi−1 and{Zi}⊓X.
By the inductive hypothesis,R↾ ∪Bi−1 = ⋊⋉

C∈Bi−1

R↾C.

Consider{Zi}⊓X and call its elements,T1, . . . , Tm. Without loss of generality, considerT1. Our
immediate goal is to prove thatR ↾ ((∪Bi−1) ∪T1) = ⋊⋉

C∈Bi−1∪{T1}
R ↾C. Note thatT1 is a subset of some

Y′ ∈Y such thatY′ has nonempty intersection with∪Bi−1, T1 itself being disjoint withBi−1. Furthermore,
T1 is the intersection ofY′ with someX′ ∈ X. X′ is disjoint with∪Bi−1, otherwise the elements ofT1

would be part of∪Bi−1. Furthermore, every element ofBi−1 is a subset of some element ofX that is not
X′. Let the elements ofX that have subsets-elements ofBi−1 beX1, . . . , Xp. Note thatX1∪ ·· · ∪Xp =
∪Bi−1. By Lemma 4, it is the case that

R↾ (X1∪ ·· ·∪Xp∪T1) = R↾ X1⋊⋉ · · ·⋊⋉R↾ Xp⋊⋉R↾ T1 (6)

sinceT1 is a subset ofX′ andX′ is none ofX1, . . . ,Xp. However,X1∪·· ·∪Xp∪T1 = (∪Bi−1) ∪T1 by an
earlier observation andR↾ X1⋊⋉ · · ·⋊⋉R↾ Xp = ⋊⋉

C∈Bi−1

R↾C. Substitute that in equation 6 to obtain

R↾ (∪Bi−1∪T1) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1 = ⋊⋉

C∈Bi−1∪{T1}
R↾C (7)

which is what we wanted to prove with respect toT1.

We can use (7) as the basis of a nested induction. More specifically, we prove that

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tk) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tk

implies

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tk+1) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tk+1

for anyk∈ {1,2, . . . ,m−1}. The nested induction can be proved in a straightforward manner, having in
mind the proof of (7). That implies the desired:

R↾ ((∪Bi−1) ∪T1∪ ·· ·∪Tm) =

(
⋊⋉

C∈Bi−1

R↾C

)
⋊⋉R↾ T1⋊⋉ · · ·⋊⋉R↾ Tm

And that concludes the proof because∪Bi = ∪Bi−1∪T1∪ ·· ·∪Tm. �
The proof of Lemma 6 relies on the fact that all sets we consider are finite.

As a corollary of Lemma 6, the maximum independent partition, which is the object of our study, is
well-defined:⊓ IΠ(S) exists, it is unique, and is an element of IΠ(S). For notational convenience we
introduce another term for that object. We say that⊓ IΠR(S) is thefocusof R and denote it byfoc(R). A
trivial observation is that IΠR(S) coincides with↑foc(R).

5 A Fixed Point Characterisation of the Maximum IndependentPartition

In this section we identify the object of our study as the least fixed point ofα , whereα is a transformer on
the lattice of all partitions ofS. Furthermore, we present an iterative fixed point approximation procedure
for computing the maximum independent partition.
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5.1 Functionα

First we introduce a helper function. LetA be a ground set. The functionξ maps superfamilies overA to
families overA as follows. For any superfamilyF:

ξ (F) def
=

{
∪Z|Z ∈ F

}

Syntactically speaking,ξ removes the innermost pairs of parentheses. For instance, supposeA= {a,b,c,d}
andF= {{{a},{b,c}},{{d}}}. Thenξ (F) = {{a,b,c},{d}}.

We now define the central function of the present study. It takes a partition ofS, identifies the mincors
of the corresponding quotient relation, merges the overlapping mincors, and usesξ to map the result back
to a partition ofS.

Definition 5 (function α) αR : Π(S)→ Π(S), shortlyα when R is understood, is defined as follows for
anyX ∈Π(S):

αR(X)
def
= ξ (CC(MF(R/X)))

Notably, α is not monotonein general as demonstrated by the following example. LetS̃= {A,B,
C,D,E} and let each attribute have precisely two values, sayA = {a1,a2} and so on. LetQ be the
relation obtained from the complete relation overS̃ after deleting all tuples containinga1b1c1, all tuples
containingd2e2, and the tuples{a2b1c1d2e1},{a2b2c1d2e1}. In other words,

Q={{a1b1c2d1e1},{a1b1c2d1e2},{a1b1c2d2e1},{a1b2c1d1e1},{a1b2c1d1e2},{a1b2c1d2e1}
{a1b2c2d1e1},{a1b2c2d1e2},{a1b2c2d2e1},{a2b1c1d1e1},{a2b1c1d1e2},{a2b1c2d1e1}
{a2b1c2d1e2},{a2b1c2d2e1},{a2b2c1d1e1},{a2b2c1d1e2},{a2b2c2d1e1},{a2b2c2d1e2},{a2b2c2d2e1}}

Let us see which sets of attributes are self-correlated withrespect toQ. The only two-element
subset of̃S that is self-correlated is{D,E}. Further,{A,B,C} is self-correlated. It followsMF(Q) =
{{A,B,C},{D,E}}. Consider the following two partitions of̃S: X1 = {{A},{B},{C},{D},{E}} and
X2 = {{A},{B,D},{C,E}}. Obviously,X1 ⊑ X2. It is clear thatα(X1) = {{A,B,C},{D,E}}. Con-
sider α(X2). The set{{B,D},{C,E}} is self-correlated because of the lack of{b1,d2} and{c1,e2}
in any tuple, which in its turn is due to the fact thatd2 ande2 do not occur in any tuple ofR. The sets
{{A},{B,D}} and{{A},{C,E}} are uncorrelated. It follows thatα(X2) = {{A},{B,C,D,E}}, and thus
α(X1) 6⊑ α(X2).

However, we have the following property ofα that shall later be exploited.

Proposition 4 α is an inflationary function on(Π(S),⊑).

5.2 Independence and functionα

The following central result establishes that the independent partitions are precisely the fixed points ofα .

Theorem 1 ∀X ∈Π(S) : X ∈ IΠ(S)↔ α(X) = X.

Proof: In one direction, assumeX ∈ IΠ(S). R/X is complete by Proposition 1. By definition, that is
R/X = "Y∈XY. By the definition of⊲⊳, (R/X) ↾ X = ⋊⋉Y∈X(R/X) ↾ {Y}. It follows that¬corr(X) by
Lemma 1. So,mincors(R/X) = /0 andMF(R/X) = singletons(R/X) by Definition 4. ThenCC(MF(R/X)) =
{{A}|A ∈ X}. Therefore,ξ (CC(MF(R/X))) = {A|A∈ X} = X. But ξ (CC(MF(R/X))) is α(X) by defini-
tion. Therefore,α(X) = X.
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In the other direction, assumeα(X) = X. That is,ξ (CC(MF(R/X))) = X, which in its turn implies
CC(MF(R/X)) = {{A}|A∈X} becauseCC(MF(R/X)) is a superfamily such that every element from S is in
precisely one element of precisely one element of it. The remainder of the proof mirrors the above one.
�

Having in mind the observation on page 69 that IΠR(S) coincides with↑foc(R), we derive the follow-
ing corollary of Theorem 1.

Corollary 2 ↑foc(R) is closed with respect toα .

The following lemma says that the mincors of a quotient relation respect the focus of the relation in the
sense that for every mincor ofR/X, the union of its elements is a subset of some element of the focus.

Lemma 7 ∀X ∈ ↓foc(R) ∀T ∈ mincors(R/X) ∃Y ∈ foc(R) : ∪T ⊆ Y.

Proof: Assume the contrary. That is, for some partitionX that refines the focus there is a mincorT
of R/X such that∪T has nonempty intersection with at least two subsets, call them Y1 and Y2, of the
focus. Use Lemma 3 to conclude there is some Z⋐ T such that|Z| = |T| and∪Z ∈ mincors(R). Since
|Z| = |T|, it must be the case that∪Z has nonempty intersection with both Y1 and Y2. But the focus is
an independent partition. We derived that a mincor ofR, namely∪Z, intersects two distinct elements of
an independent partition. That contradicts Lemma 5 directly. �
We already established (see Proposition 4) thatα is an inflationary function. The next lemma, however,
establishes a certain restriction: the application ofα on a dependent partition can yield another dependent
partition or at most the focus, and never an independent partition “above” the focus.

Lemma 8 ↓foc(R) is closed with respect toα .

Proof: We prove that∀X ∈ ↓foc(R) : α(X)⊑ foc(R). Recall thatα(X) is a partition of S and it abstracts
X. Assume the claim is false. Then there is a partitionX such thatX⊑ ↓foc(R) butα(X) 6⊑ ↓foc(R). Then
there is some P∈ α(X) such that P has nonempty intersection with at least two elements, call them Y1
and Y2, of foc(R). However, P isξ (C) for someC that is a connected component—relative to the ground
setX—of the mincor family ofR/X. ConsiderC. It is the union of one or more mincors ofR/X, those
mincors being subsets ofX.

SinceX ⊑ foc(R), no element ofX can intersect both Y1 and Y2. It follows that at least one mincor
M ∈C is such that∪M intersects both Y1 and Y2. But that contradicts Lemma 7. �
The next and final central result allows us to compute the focus of R by an iterative application ofα ,
starting with the partition into singletons.

Theorem 2 For some m such that1≤m≤ |S|, αm(⊥) = foc(R).

Proof: Consider the sequence:

C=⊥, α(⊥), α2(⊥), . . .

It is a chain in the lattice(Π(S),⊑), asα(X) abstractsX for all X (see Proposition 4), therefore all those
elements are comparable with respect to⊑. C has only a finite number of distinct elements as the said
lattice is finite.

First note that every element ofC is in ↓foc(R). Indeed, assuming the opposite immediately contra-
dicts Lemma 8.

Then note that for everyX ∈ ↓foc(R)\{foc(R)}, it is the case thatα(X) 6= X. Assuming the opposite
impliesX is a fixed point ofα , contradicting Corollary 2. Proposition 4 implies a stronger fact: for every
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X ∈ ↓foc(R)\{foc(R)}, it is the case thatX⊏ α(X). But ↓foc(R) is a finite lattice. It follows immediately
that for some valuemnot greater than|S|, αm(⊥) equals the top of↓foc(R), viz. foc(R). �
We thus obtain Kleene’s iterative least fixed point approximation procedure [7], however for inflationary
functions instead of monotone ones.

Corollary 3 The following algorithm:

X←⊥
while X 6= α(X)

X← α(X)

return X

computes the least fixed point ofα , i.e., the maximum independent partition ofS with respect to R. �
Here is a small example illustrating the work of that algorithm. Consider S andR′ defined in (1) on

page 64.⊥ is {{A},{B},{C},{D}}. Let us computeα(⊥), that is,ξ (CC
(
MF

(
R′/⊥

))
). R′/⊥ is the same

asR′/X2 on page 64, namely:

R′/⊥= {{{a1}{b1}{c1}{d1}},{{a1}{b1}{c2}{d2}},{{a1}{b2}{c1}{d2}},
{{a2}{b2}{c1}{d1}},{{a2}{b2}{c2}{d2}}}

Let us computeCC
(
MF

(
R′/⊥

))
. Having in mind thatMF(R′) = {{A,B},{C,D}} as explained on page 65,

conclude thatCC
(
MF

(
R′/⊥

))
= {{{A,B}},{{C,D}}}. Therefore,ξ (CC

(
MF

(
R′/⊥

))
) = {{A,B},{C,D}}.

That differs from⊥ and thewhile loop is executed again.R′/α(⊥) is the same asR′/X1 on page 64,
namely:

R′/α(⊥) = {{{a1b1}{c1d1}},{{a1b1}{c2d2}},{{a1b2}{c1d2}},
{{a2b2}{c1d1}},{{a2b2}{c2d2}}}

Let us computeCC
(
MF

(
R′/α(⊥)

))
. To that end, note thatα(⊥) = {{A,B},{C,D}} is self-correlated

with respect toR′/{{A,B},{C,D}} because of the lack of, for instance, both{a1,b2} and{c1,d1} in
any tuple ofR′/α(⊥). It follows thatCC

(
MF

(
R′/α(⊥)

))
= {{{A,B},{C,D}}} and, therefore,α2(⊥) =

ξ (CC
(
MF

(
R′/α(⊥)

))
) = {{A,B,C,D}}. That differs fromα(⊥) and thewhile loop is executed once

more. At the end of that execution, it turns out thatα3(⊥) equalsα2(⊥) and the algorithm terminates,
returning as the result{{A,B,C,D}}, the trivial partition.

6 Related Work

An algorithm that factorizes a given relation into prime factors is proposed in [10, algorithm PRIME

FACTORIZATION]. It runs in timeO(mnlgn) wherem is the number of tuples andn is the number of
attributes. Sincemn is the input size, that time complexity is very close to the optimum. The theoretical
foundation of PRIME FACTORIZATION is a theorem (see [10, Proposition 10]) that says a given relation
Shas a factorF iff, with respect to any attributeA and any valuev of its domain,F is a factor of bothQ
andR whereQ andR are relations such thatQ∪R= SandQ consists precisely of the tuples in which
the value ofA is v. In other words, the approach of [10] to the problem of computing the prime factors
is “horizontal splitting” of the given relation using the selection operation from relational algebra. The
approach of this paper to that same problem is quite different. We utilise “vertical splitting”, using the
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projection operation of relational algebra. The theoretical foundation of our approach is based on the
concept of self-correlation of a subset of the attributes; that concept has no analogue in [10].

An excellent exposition of the benefits of the factorisationof relational data is [11]. The factorised
representation both saves space, where the gain can potentially be as good as exponential, and time,
speeding up the processing of information whose un-factorised representation is too big. [1] proposes a
way of decomposing relational data that is incomplete and [13] proposes factorisation of relational data
that facilitates machine learning.

Clusterisation of multidimensional data into non-intersecting classes called clusters is an important,
hard and computationally demanding problem. [5] investigates clustering in high-dimensional data by
detection of orthogonality in the latter. [8] proposes so called community discovering, which is a sort of
clusterisation, in media social networks by utilising factorisation of a relational hypergraph.

The foundation of this paper is the work of Gurovet al. [6] that investigates relational factorisation
of a restricted class of relations called there simple families. [6] introduces the concept of correlation
between the attributes and proposes a fast and practical algorithm that computes the optimum factorisa-
tion of a simple family by using a subroutine for correlation. The fundamental approach of this paper is
an extension of that, however now correlation is considerately more involved, being not a binary relation
between attributes but a relation of arbitrary arity (this is the only place where “relation” means relation
in the Set Theory sense, that is, a set of ordered tuples).

7 Conclusion

This paper illustrates the utility of fixed points to formally express maximum independence in relations
by means of minimum correlated sets of attributes. By using minimum correlated sets, we define an
inflationary transformer over a finite lattice and show the maximum independent partition is the least
fixed point of this transformer. Then we prove the downward closure of that least fixed point is closed
under the transformer. Hence, the least fixed point can be computed by applying the transformer itera-
tively from the bottom element of the lattice until stabilization. This iterative construction is the same as
Kleene’s construction, but does not rely on monotonicity ofthe transformer to guarantee that it computes
the least fixed point.

A topic for future work is to introduce a quantitative measure for the degree of independence between
sets of attributes and investigate approximate relationalfactorisation.
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[12] Klaus Pohl, Günter Böckle & Frank van der Linden (2005): Software Product Line Engineering - Founda-
tions, Principles, and Techniques. Springer, doi:10.1007/3-540-28901-1.

[13] Steffen Rendle (2013):Scaling Factorization Machines to Relational Data. PVLDB 6(5), pp. 337–348.
Available athttp://www.vldb.org/pvldb/vol6/p337-rendle.pdf.

[14] S. Roman (2008): Lattices and Ordered Sets. Springer. Available at
https://books.google.com/books?id=NZN8aum26LgC.

[15] Ina Schaefer, Dilian Gurov & Siavash Soleimanifard (2010): Compositional Algorithmic Verification of
Software Product Lines. In: Formal Methods for Components and Objects - 9th International Sympo-
sium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010. Revised Papers, pp. 184–203,
doi:10.1007/978-3-642-25271-610.

[16] Alfred Tarski (1955):A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific journal of Math-
ematics5(2), pp. 285–309, doi:10.2140/pjm.1955.5.285.

[17] Bruce W. Weide, Wayne D. Heym & Joseph E. Hollingsworth (1995):Reverse Engineering of Legacy Code
Exposed. In: Proceedings of the 17th International Conference on Software Engineering, ICSE ’95, ACM,
New York, NY, USA, pp. 327–331, doi:10.1145/225014.225045.



R. Matthes, M. Mio (Eds.): Fixed Points
in Computer Science 2015 (FICS 2015)
EPTCS 191, 2015, pp. 75–89, doi:10.4204/EPTCS.191.8

c©M. Hamana
This work is licensed under the
Creative Commons Attribution License.

Iteration Algebras for UnQL Graphs and
Completeness for Bisimulation

Makoto Hamana
Department of Computer Science, Gunma University, Japan

hamana@cs.gunma-u.ac.jp

This paper shows an application of Bloom andÉsik’s iteration algebras to model graph data in a graph
database query language. About twenty years ago, Buneman etal. developed a graph database query
language UnQL on the top of a functional meta-language UnCALfor describing and manipulating
graphs. Recently, the functional programming community has shown renewed interest in UnCAL,
because it provides an efficient graph transformation language which is useful for various applica-
tions, such as bidirectional computation. However, no mathematical semantics of UnQL/UnCAL
graphs has been developed. In this paper, we give an equational axiomatisation and algebraic seman-
tics of UnCAL graphs. The main result of this paper is to provethat completeness of our equational
axioms for UnCAL for the original bisimulation of UnCAL graphs via iteration algebras. Another
benefit of algebraic semantics is a clean characterisation of structural recursion on graphs using free
iteration algebra.

1 Introduction

Graph database is used as a back-end of various web and net services, and therefore it is one of the
important software systems in the Internet society. About twenty years ago, Buneman et al. [6, 7, 8]
developed a graph database query language UnQL (Unstructured data Query Language) on top of a
functional meta-languageUnCAL (Unstructured Calculus) for describing and manipulating graph data.
The term “unstructured” is used to refer to unstructured or semi-structured data, i.e., data having no
assumed format in a database (in contrast to relational database). Recently, the functional programming
community found a new application area of UnCAL in so-calledbidirectional transformations on graph
data, because it provides an efficient graph transformation language. The theory and practice of UnCAL
have been extended and refined in various directions (e.g. [18, 19, 17, 1]), which has increased the
importance of UnCAL.

In this paper, we give a more conceptual understanding of UnCAL using semantics of type theory
and fixed points. We give an equational axiomatisation and algebraic semantics of UnCAL graphs. The
main result of this paper is to prove completeness of our equational axioms for UnCAL for the original
bisimulation of UnCAL graphs via iteration algebras. Another benefit of algebraic semantics is a clean
characterisation of the computation mechanism of UnCAL called “structural recursion on graphs” using
free iteration algebra.

UnCAL Overview. We begin by introducing UnCAL. UnCAL deals with graphs in a graph database.
Hence, it is better to start with viewing how concrete semi-structured data is processed in UnCAL.
Consider the semi-structured datasd below which is taken from [8].
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country

It contains information about country, e.g. geography, people, government, etc.

sd ⊳ country:{name:"Luxembourg",
geography:{coordinates:{long:"49 45N", lat:"6 10E"},

area:{total:2586, land:2586}},
people:{population:425017,

ethnicGroup:"Celtic",
ethnicGroup:"Portuguese",
ethnicGroup:"Italian"},

government:{executive:{chiefOfState:{name:"Jean",..}}}}

It is depicted as a tree above,
in which edges and leaves are
labelled. Using UnCAL’s term
language for describing graphs
(and trees), this is defined by
sd shown at right. Then we can
define functions in UnCAL to
process data. For example, a
function that retrieves all ethnic groups in the graph can bedefined simply by

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

The keywordsfun denotes a function definition bystructural recursion on graphs, which is the compu-
tational mechanism of UnCAL. Executing it, we can certainlyextract:

f1(sd)  {result:"Celtic", result:"Portuguese", result:"Italian"}
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Figure 1:Graph theoretic definitions of constructors[8]

Slightly changed notation. Correspondence between the original and this paper’s:

&y= y, @= ⋄, ⊕ = 〈−,−〉, (− := −) = − ⊳ −.

The notation{· · ·:· · · , · · ·} is a part
of the UnCAL’s term language for rep-
resenting graphs. It consists of mark-
ersx, labelled edgesℓ: t , vertical com-
positionss⋄ t, horizontal compositions
〈s, t〉, other horizontal compositions
s∪ t merging roots, forming cycles
cycle(t), constants{ },( ), and defini-
tions (x ⊳ t). These term constructions
have underlying graph theoretic mean-
ing shown at th right. Namely, these
are officially defined as operations on
the ordinary representations of graphs:
(vertices set, edges set, leaves, roots)-
tuples (V,E, {y1, . . .ym}, {x1, . . . , xn}), but
we do not use the graph theoretic definitions of these operations in this paper.
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UnCAL deals with graphsmodulo bisimulation(i.e. not only modulo graph isomorphism).

〜

Figure 2:GraphG and bisimilar one

An UnCAL graph is directed and have (possibly multiple) root(s)
written & (or multiple x1 · · · xn) and leaves (writteny1 · · ·ym), and
with the roots and leaves drawn pictorially at the top and bottom,
respectively. The symbolsx,y1,y2,& in the figures and terms are
called markers, which are the names of nodes in a graph and are
used for references for cycles. Also, they are used as port names
to connect two graphs. A dotted line labelledε is called anε-edge,
which is a “virtual” edge connecting two nodes directly. This is
achieved by identifying graphs byextended bisimulation, which
ignoresε-edges suitably in UnCAL. The UnCAL graphG shown
at the left is an example. This is extended bisimilar to a graph that
reduces allε-edges. Using UnCAL’s language,G is represented
as the following termtG

tG = a :({b: x} ∪ {c: x}) ⋄ cycle(x ⊳ d :({p: y1} ∪ {q: y2} ∪ {r: x}) ).

UnCAL’s structural recursive function works also on cycle.For example, define another function

sfun f2(L:T) = a:f2(T)

that replaces every edge witha. As expected,

f2( tG )  a :({a: x} ∪ {a: x}) ⋄ cycle(x ⊳ a :({a: y1} ∪ {a: y2} ∪ {a: x}) )

where all labels are changed toa.
Another characteristic role of bisimulation is that it identifies expansion of cycles. For example, a

term cycle(& ⊳ a: &) corresponds to the graph shown below at the leftmost. It is bisimilar to the right
ones, especially the infinitely expanded graph shown at the rightmost, which has no cycle.

〜 〜 〜

These are in term notation:

cycle(& ⊳ a: &) ∼ a: cycle(& ⊳ a: &) ∼ a: a: cycle(& ⊳ a: &)

Problems. There have been no algebraic laws that establish the above expansion ofcycle. Namely,
these are merely bisimilar, and not a consequence of any algebraic law. But obviously, we expect that it
should be a consequence of the algebraic law offixed point propertyof cycle.

In the original and subsequent formulation of UnCAL [8, 17, 18, 1], there are complications of this
kind. The relationship between terms and graphs in UnCAL is not a one-to-one correspondence. No term
notation exits forε-edges and infinite graphs (generated by the cycle construct), thus the rightmost infinite
graphs of the above expansion cannot be expressed in syntax.But such an infinite graph is allowed as
a possible graph in the original formulation of UnCAL. Consequently, instead of terms, one must use
graphs and graph theoretic reasoning with care of bisimulation to reason about UnCAL. Therefore, a
property in UnCAL could not be established only using induction on terms. That fact sometime makes
some proofs about UnCAL quite complicated.
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Because UnCAL graphs are identified by bisimulation, it is necessary to use a procedure or algorithm
to check the bisimilarity as in the cycle example above. Listing some typical valid equations for the
bisimulation can be a shortcut [8, 19], but it was only sound and not completefor bisimulation.

Hence, we give an algebraic and type-theoretic formulationof UnCAL by giving equational axioms
of UnCAL graphs. In this paper, we prove completeness of our proposed axioms using iteration algebra
[4]. Thus we have acompletesyntactic axiomatisations of the equality on UnQL/UnCAL graphs, as a
set of axioms capturing the original bisimulation, withouttouching graphs,ε-edges, and the notion of
bisimulation explicitly. We prove it by connecting it with the algebraic axiomatisations of bisimulation
[3, 12].

How to model UnCAL and structural recursion. The first idea to understand UnCAL is to interpret
it as a categorical structure. We can regard edges asmorphisms(of the opposite directions), the vertical
composition⋄ as thecomposition of arrows, andcycle as afixpoint operatorin a suitable category.
Thus the target categorical structure should have a notion of fixpoint, which has been studied in iteration
theories of Bloom and́Esik [3]. In particular, iteration categories [10] are suitable, which are traced
cartesian categories [20] (monoidal version is used in Hasegawa’s modelling of cyclic sharing theories
[16, 15]) additionally satisfying the commutative identities axiom [3] (see also [25] Section 2 for a useful
overview around this).

We also need to model UnCAL’s computational mechanism: “structural recursion on graphs”. The
general form of the definition of structural recursive function is

sfun F(ℓ: t) = e (⋆)

wheree can involveF(t). The graph algorithm in [8] provide a transformation of graphs that produces
some computed graphs using the definition (⋆). It becomes a functionF satisfying the equations ([8]
Prop. 3):

F( yi ) = yi

F( ( ) ) = ( )
F( { } ) = { }

F( (x ⊳ t) ) = (x ⊳ F(t))
F( s∪ t ) = F(s) ∪ F(t)
F( 〈s, t〉 ) = 〈F(s) , F(t)〉

F( ℓ: t ) = e
F( s⋄ t ) = F(s)⋄F(t) · · · (⊲⊳) (1)
F( cycle(t) ) = cycle(F(t)) · · · (⊲⊳)

whene does not depend1 on t. This is understandable naturally as the examplef2 recurses structurally
the termtG. Combining the above categorical viewpoint,F can be understood as a functor that preserves
cycle and products (thus a traced cartesian functor). A categorical semantics of UnCAL can be given
along this idea, which will be reported elsewhere. This ideaworks for simple cases of structural recursion
such asf2.

However, there is a critical mismatch between the above categorical view and UnCAL’s structural
recursion of more involved cases. Buneman et al. mentioned acondition that the above nine equations
hold only whene does notdepend ont in (⋆). Two equations marked (⊲⊳) do not hold in general ife does
depend ont (other seven equations do hold). Crucially,f1 is already this case, whereT appears as not
of the formf1(T). The following another example shows why (⊲⊳) do not hold: the structural recursive
functionaa? tests whether the argument contains “a:a:”.

sfun a?(L:T) = if L=a then true:{} else {}
sfun aa?(L:T) = if L=a then a?(T) else aa?(T)

The definition ofaa? doesdepend onT at the “then”-clause. Then we have the inequalities:

1Here “e depends ont” means thate containst other than the formF(t).
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aa?( (a:&)⋄(a:{})) = aa?( a:a:{} ) = true:{} , {} = {}⋄{} = aa?(a:&) ⋄ aa?(a:{})
aa?( cycle(a:&) ) = aa?( a:a:cycle(a:&) ) = true:{} , {} = cycle({}) = cycle(aa?(a:&))
This means thatF does not preservecycle in general, and evenis not functorial, thus the categorical
view seems not helpful to understand this pattern of recursion.

In this paper, we consideralgebraic semanticsof UnCAL using the notion of iterationΣ-algebras
[4, 12] in §3. It solve the problem mentioned above, i.e. we derive the structural recursion even when
the case thatedepends ont within the algebraic semantics.

Organisation. This paper is organised as follows. We first give a framework of equational theory for
UnCAL graphs by reformulating UnCAL graph data in a type theoretic manner in Section 2. We then
give algebraic semantics of UnCAL using iterationΣ-algebras in Section 3. We prove completeness of
our axioms for UnCAL graphs for bisimulation in Section 3.3.We further derive structural recursion
on UnCAL graphs in Section 3.5. Finally, in Section 3.6. we show several examples how structural
recursive functions on graphs are modeled.

2 UnCAL and its Equational Theory

We give a framework of equational theory for UnCAL graphs. Wereformulate UnCAL graph data in a
type theoretic manner. We do not employ the graph theoretic and operational concepts (such asε-edges,
bisimulation, and the graph theoretic definitions in Fig. 1). Instead, we give an algebraic axiomatisation
of UnCAL graphs following the tradition of categorical typetheory [9]. The syntax in this paper is
slightly modified from the original presentation [8] to reflect the categorical idea, which may be more
readable for the reader familiar with categorical type theory.

2.1 Syntax

Markers and contexts. We assume an infinite set of symbols calledmarkers, denoted by typically
x,y,z, . . .. One can understand markers as variables in a type theory. The marker denoted by& is called
the default marker, which is just a default choice of a markerhaving no special property. LetL be a
set of labels. A label ℓ is a symbol (e.g.a,b,c, . . . in Fig. 2). A context, denoted by〈〈x1, x2, . . .〉〉, is a
sequence of pairwise distinct markers . We typically useX,Y,Z, . . . for contexts. We use〈〈〉〉 for the empty
contexts,X,Y for the concatenation, and|X| for its length. We may use the vector notation~x for sequence
x1, . . . , xn. The outermost bracket〈〈 〉〉 of a context may be omitted. We may use the abbreviations for
the empty context 0= 〈〈〉〉. Note that the concatenation may need suitable renaming to satisfy pairwise
distinctness of markers.

Raw terms.

t ::= yY | ℓ: t | s⋄ t | 〈s, t〉 | cycleX(t) | { }Y | ( )Y | f | (x ⊳ t)

We assume several conventions to simplify the presentationof theory. We often omit subscripts or
superscripts such asY when they are unimportant or inferable. We identify〈〈s, t〉 , u〉 with 〈s, 〈t , u〉〉;
thus we will freely omit parentheses as〈t1 , . . . , tn〉. A constantf express a branch in a tree, and we call
the symbolf a man, because it is similar to the shape of a kanji or Chinese character meaning a man,
which is originated from the figure of a man having two legs (and the top is a head).
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(Nil)
Y ⊢ {}Y : &

(Emp)
Y ⊢ ( )Y : 〈〈〉〉 (Man)

y1,y2 ⊢f〈〈y1,y2〉〉 : &

(Com)
Y ⊢ s : Z X ⊢ t : Y

X ⊢ s⋄ t : Z
(Label)

ℓ ∈ L Y ⊢ t : &

Y ⊢ ℓ: t : &
(Mark)

Y= 〈〈y1, . . . ,yn〉〉
Y ⊢ yiY : &

(Pair)
Y ⊢ s : X1 Y ⊢ t : X2

Y ⊢ 〈s, t〉 : X1,X2
(Cyc)

Y,X ⊢ t : X

Y ⊢ cycleX(t) : X
(Def)

Y ⊢ t : &

Y ⊢ (x ⊳ t) : x

Figure 3: Typing rules

Abbreviations. We use the following abbreviations.

{s} ∪ {t} , f⋄ 〈s, t〉
π1 , x〈〈x,y〉〉
π2 , y〈〈x,y〉〉

s× t , 〈s⋄π1 , t⋄π2〉
id〈〈x〉〉 , x〈〈x〉〉

id〈〈x1,...,xn〉〉 , x1 〈〈x1〉〉× · · ·× xn 〈〈xn〉〉

∆X , 〈idX , idX〉
c , 〈π2 , π1〉

Inheriting the convention of〈−,−〉, we also identify (s× t)×u with s× (t×u), thus we omit parentheses
ast1× . . .× tn.

2.2 Typed syntax

For contextsX,Y, we inductively define a judgment relationY ⊢ t : X of terms by the typing rules in Fig.
3. We call a markerfree in t when it occurs int other than the left hand-side of a definition (x ⊳ s). In
a judgment, free markers int are always taken fromY. ThusY is a variable context (which we call the
source context) in ordinary type theory, andX is the roots (which we call thetarget contextor type). For
example, the termtG in §1 is well-typed y1,y2 ⊢ tG : &, which corresponds a graph in Fig. 2, where
the marker&is the name of the root. Whent is well-typed by the typing rules, we callt a (well-typed
UnCAL) term. We identifyt of type& with (& ⊳ t).

Definition 2.1 (Substitution) Let Y = 〈〈y1 · · · ,yk〉〉,W be contexts such that|Y| ≤ |W| andY can be em-
bedded intoW in an order-preserving manner, andY′ is the subsequence ofW deleting all ofY (NB.
|W| = |Y|+ |Y′|, Y′ is possibly empty). SupposeW ⊢ t : X, Z ⊢ si : 〈〈yi〉〉 (1 ≤ i ≤ k). Then a
substitutionZ,Y′ ⊢ t [~y 7→ ~s] : X is inductively defined as follows.

yi [~y 7→ ~s] , si

x [~y 7→ ~s] , x (if x in Y′)
{ }Y [~y 7→ ~s] , { }Z+Y′

( )Y [~y 7→ ~s] , ( )Z+Y′

(ℓ: t) [~y 7→ ~s] , ℓ: ( t [~y 7→ ~s] )

(t1 ⋄ t2) [~y 7→ ~s] , t1⋄ (t2 [~y 7→ ~s])
〈t1 , t2〉 [~y 7→ ~s] , 〈(t1 [~y 7→ ~s]) , (t2 [~y 7→ ~s])〉

cycle(t) [~y 7→ ~s] , cycle(t [~y 7→ ~s])
(x ⊳ t) [~y 7→ ~s] , (x ⊳ t [~y 7→ ~s])

f〈〈y1,y2〉〉 [y1 7→ s1,y2 7→ s2] , f〈〈y1,y2〉〉 ⋄ (s1 , s2)

Note thatt [~y 7→ ~s] denotes a meta-level substitution operation, not an explicit substitution.

2.3 Equational theory
For termsY ⊢ s : X andY ⊢ t : X, an (UnCAL) equationis of the formY ⊢ s= t : X. Hereafter, for
simplicity, we often omit the sourceX and targetY contexts, and simply writes= t for an equation, but
even such an abbreviated form, we assume that it has implicitly suitable source and target contexts and
is of the above judgemental form.
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Composition
(sub1) t ⋄ (y ⊳ s) = t [y 7→ s]

for y ⊢ t : X
Parameterised fixpoint
(fix) cycle(t) = t⋄ 〈idY,cycle(t)〉
(Bekic̆) cycle(〈t, s〉) = 〈π2,cycle(s)〉⋄

〈idY,cycle(t⋄ 〈idY,X,cycle(s)〉)〉
(natY) cycle(t)⋄ s= cycle(t⋄ (s× idX))
(natX) cycle(s⋄ t) = s⋄ cycle(t⋄ (idY× s))
(CI) cycle(〈t⋄ (idX×ρ1) , . . . , t⋄ (idX×ρm)〉)

= ∆m⋄ cycle(t⋄ (idX×∆m))

Deleting trivial cycle
(c2) cycle(f) = id
Commutative monoid
(unitLf) f⋄ ({ }0× id) = id
(assocf) f⋄ (id×f) = f⋄ (f× id)
(comf) f⋄ c = f
Degenerated bialgebra
(compa)∆⋄f = (f×f)⋄ (id× c× id)⋄ (∆×∆)
(degen) f⋄∆ = id

Figure 4: AxiomsAxGr for UnCAL graphs

Fig. 4 showsour proposed axiomsAxGr to characterise UnCAL graphs. These axioms are chosen
to soundly and completely represent the original bisimulation of graphs by the equality of this logic.
Actually, it is sound: for every axioms= t, sandt are bisimilar. But completeness is not clear only from
the axioms. We will show it in§3.

The axiom (sub1) is similar to theβ-reduction in theλ-calculus, which induces the axioms for carte-
sian product (cf. thederived theory below). The cartesian structure provides a canonical commutative
comonoid with comultiplication∆.

Two terms are paired with a common root by{s} ∪ {t} = f⋄ (s, t). The commutative monoid axioms
states that this pairing{−} ∪ {−} can be parentheses free in nested case. The degenerate bialgebra axioms
state the compatibility between the commutative monoid andcomonoid structures. The degenerated
bialgebra is suitable to model directed acyclic graphs (cf.[14] §4.5), where it is stated within a PROP
[21]. The monoid multiplicationf expresses a branch in a tree, while the comultiplication∆ expresses
a sharing. Commutativity expresses that there is no order between the branches of a node, cf. (commu∪)
in the derived theory below, and degeneration expresses that the branches of a node form a set (not a
sequence), cf. (degen’).

Parameterised fixpoint axioms axiomatise a fixpoint operator. They (minus (CI)) are known as the
axioms for Conway operators of Bloom andÉsik [3], which ensures that all equalities that holds in
cpo semantics do hold. It is also arisen in work independently of Hyland and Hasegawa [15], who
established a connection with the notion of traced cartesian categories [20]. There are equalities that
Conway operators do not satisfy, e.g.cycle(t) = cycle(t ⋄ t) does not hold only by the Conway ax-
ioms. The axiom (CI) fills this gap, which corresponds to the commutative identities of Bloom and
Ésik [3]. This form is taken from [25] and adopted to the UnCALsetting, where∆m , 〈id& , · · · , id&〉,
Y = 〈〈y1, . . . ,ym〉〉, & ⊢ ∆m : Y, X+Y ⊢ t : &, Y ⊢ ρi : Y such thatρi = 〈qi1 , . . . , qim〉 where eachqi j is
one ofY ⊢ πi : & for i = 1, . . . ,m. The axiom (c2) (and derived (c1) below) have been taken as necessary
ones for completeness for bisimulation used in several axiomatisations, e.g. [23, 5, 12].

The equational logicEL-UnCAL for UnCAL is a logic to deduce formally proved equations, called
(UnCAL) theorems. The equational logic is almost the same as ordinary one for algebraic terms. The
inference rule of the logic consists of reflexivity, symmetricity, transitivity, congruence rules for all
constructors, with the following axiom and the substitution rules.

(Ax)
(Y ⊢ s= t : X) ∈ E

Y ⊢ s= t : X
(Sub)

W ⊢ t = t′ : X Z ⊢ si = s′i : yi (1≤ i ≤ k)

Z+Y′ ⊢ t [~y 7→ ~s] = t′ [~y 7→ ~s′] : X

The set of all theorems deduced from the axiomsAxGr is called a(UnCAL) theory.
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Derived theory. The following are formally derivable from the axioms, thus are theorems.

(tmnl) t = ( )Y for all Y ⊢ t : 〈〈〉〉
(fst) π1⋄ 〈s, t〉 = s
(snd) π2⋄ 〈s, t〉 = t

(dpair) 〈t1, t2〉 ⋄ s = 〈t1 ⋄ s, t2⋄ s〉
(fsi) 〈π1,π2〉 = id
(SP) 〈π1⋄ t , π2⋄ t〉 = t

(bmul) ( )&× ( )& = ( )& ⋄f
(unitRf) f⋄ (id× {}0) = id
(c1) cycle(id) = { }0
(unR⋄) t⋄ id = t
(unL⋄) id⋄ t = t
(assoc⋄) (s⋄ t)⋄u = s⋄ (t⋄u)

(bcomul) ∆⋄ {}0 = ({ }0× {}0)
(bunit) ( )& ⋄ {}0 = id
(comm∪) {s} ∪ {t} = {t} ∪ {s}
(unit∪) {{ }} ∪ {t} = t = {t} ∪ {{ }}
(assoc∪) {{s} ∪ {t}} ∪ {u} = {s} ∪ {{t} ∪ {u}}
(degen’) {t} ∪ {t} = t

Because of the first three lines, UnCAL has the cartesian products. For (c1), the proof is

cycle(id) =(unitLf) cycle(f⋄ ({ }0× id)) =(natY) cycle(f)⋄ {}0 =(c2) id⋄ {}0. = { }0.

Lemma 2.2 Under the assumption of Def. 2.1, the following is an UnCAL theorem.

(sub) t⋄ 〈s1 , · · · , sk, idY′〉 = t [~y 7→ ~s]

3 Algebraic Semantics of UnCAL

In this section, we consider algebraic semantics of UnCAL. We also give a complete characterisation of
the structural recursion, whereecan depend ont in (⋆).

3.1 Iteration Σ-Algebras

We first review the notion of iterationΣ-algebras and various characterisation results by Bloom and Ésik.
Let Σ be a signature, i.e. a set of function symbols equipped with arities. We defineµ-terms by

t ::= x | f (t1, . . . , tn) | µx. t,

wherex is a variable. We use the convention that a function symbolf (n) ∈ Σ denotesn-ary. For a setV
of variables, we denote by T(V) the set of allµ-terms generated byV. We defineConwayCI as the set of
following equational axioms:

Conway equations µx. t[s/x] = t[ µx. s[t/x] /x],

µx.µy. t = µx. t[x/y]

Group equations associated with a groupG

µx. (t[1 · x/x], . . . , t[n · x/x])1 = µy. (x[y/x], . . . , [y/x])

Note thatthe fixed point law
µx. t = t[µx. t/x]

is an instance of the first axiom of Conway equations by takings= x. The group equations [11] known as
an alternative form of the commutative identities, are an axiom schema parameterised by a finite group
(G, ·) of ordern, whose elements are natural numbers from 1 ton. We also note that theµ-notation is
here extended on vectors (t1, . . . , tn), and (−)1 denotes the first component of a vector. Given a vector
x= (x1, . . . , xn) of distinct variables, the notationi · x= (xi·1, . . . , xi·n) is used.
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Definition 3.1 ([4]) A pre-iterationΣ-algebra(A, (| − |)A) consists of an nonempty setA and an interpre-
tation function (| − |)(−)

A : T(V)×AV→ A satisfying

(i) (| x|)ρA = ρ(x) for eachx∈ V (iii) (| t |)A = (| t′ |)A =⇒ (|µx. t |)A = (|µx. t′ |)A.

(ii) (| t[t1/x1, · · · , tn/xn] |)ρA = (| t |)ρ′A with ρ′(xi) = (| ti |)ρA, ρ′(x) = ρ(x) for x, xi

A pre-iterationΣ-algebra can be seen as aΣ-algebra (A, { fA | f ∈ Σ}) with extra operations (|µx. t |)A
for all t. A pre-iterationΣ-algebraA satisfiesan equations= t over µ-terms, if (| s|)A = (| t |)A. Let E
be a set of equations overµ-terms. Aniteration Σ-algebra is a pre-iterationΣ-algebra that satisfies all
equations inConwayCI. An iteration (Σ,E)-algebra is an iterationΣ-algebra that satisfies all equations
in E. A homomorphism of iterationΣ-algebrash : A→ B is a function such thath◦ (| t |)A = (| t |) ◦ hV

for all t. Since the variety of iterationΣ-algebras is exactly the variety of all continuousΣ-algebras ([4]
Introduction), the interpretation ofµx. t in an iterationΣ-algebra can be determined through it.

We now regard each labelℓ ∈ L as an unary function symbol. Then we consider an iterationL∪
{0(0),+(2)}-algebra. We define the axiom setAxBR by

s+ (t+u) = (s+ t)+u s+ t = t+ s t+0= t

µx. x = 0 µx. (x+y) = y for y not containingx

andAxCBR , ConwayCI ∪AxBR. We write AxCBR ⊢µ s= t if an equations= t is derivable from
AxCBR by the standard equational logicEL-µ for µ-terms. For example, idempotency is derivable:

AxCBR ⊢µ t+ t = t

The proof ist = µx.(x+ t) = (µx.(x+ t))+ t = t+ t, which uses the last axiom inAxBR and the fixed point
law. Sinceµ-terms can be regarded as a representation of process terms of regular behavior as Milner
shown in [23] (or synchronization trees [3]), the standard notion of strong bisimulation between two
µ-terms can be defined. We writes∼ t if they are bisimilar.

Theorem 3.2 ([3, 4, 12, 13])

(i) The axiom setAxCBR completely axiomatises the bisimulation, i.e.,AxCBR ⊢µ s= t ⇐⇒ s∼ t

(ii) The setT(V) of all µ-terms forms a free pre-iterationΣ-algebra over V.

(iii) The setBR of all regular L-labeled trees having V-leaves modulo bisimulation forms a free itera-
tion (L∪{0,+},AxBR)-algebra over V ([12] below Lemma 2, [24] Thm. 2).

Note thatBR stands forRegular trees moduloBisimulation, andAxBR stands for the axioms for regular
trees modulo bisimulation.

3.2 Characterising UnCAL Normal Forms

UnCAL normal forms. Given an UnCAL termt of type &, we compute thenormal formof t by the
following three rewrite rules (N.B. we do not here use the other axioms) as a rewrite system [2], which
are oriented equational axioms taken from the derived theory, AxGr and abbreviations.

(sub) t⋄ 〈s1 , · · · , sk, id〉 = t [~y 7→ ~s]
(Bekic̆) cycle(〈t, s〉) = 〈π2,cycle(s)〉 ⋄ 〈idA,cycle(t⋄ 〈idA×V,cycle(s)〉)〉
(union) f⋄ (s, t) = {s} ∪ {t}
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LetM be the set of all rewriting normal forms by the above rules, which finally erases all〈− , −〉 and⋄ in
a givent. Normal forms are uniquely determined because the rewrite rules are confluent and terminating,
hence have the unique normal form property [2]. Then by induction on terms we have that terms inM
follow the grammar

M∋ t ::= y | ℓ: t | cycleX(t) | { } | {s} ∪ {t} | (x ⊳ t).

Any outermost definition must be of the form (& ⊳ t′) by the assumption that the original givent is of
type&, thus we identity it witht′. Other definitions appear inside oft, as the following cases:

• Case{(x1 ⊳ t1)} ∪ {(x2 ⊳ t2)}. We identify it with merely{t1} ∪ {t2}, because marker namesx1, x2

are hidden by this construction.

• CaseY ⊢ cyclex(x ⊳ t′) : x. We identify it with merelycycle&(t′), because these are equivalent by
renaming of free makerx.

TheUnCAL normal formsN are obtained fromM by these identifications. It is of the form

N ∋ t ::= y | ℓ: t | cycleX(t) | { } | {s} ∪ {t}
T(V) ∋ t ::= y | ℓ(t) | µx1. . . .µxn.t | 0 | s+ t

Every normal form bijectively corresponds to aµ-term in T(V), i.e. N � T(V), because each the above
construct corresponds to the lower one, whereX= 〈〈x1, . . . , xn〉〉. Hereafter, we may identify normal forms
andµ-terms as above. Define the pair of signature and axioms by

UnC , (L∪{0,+}, AxBR).

We regard an arbitraryUnC-algebraA as analgebraic modelof UnCAL graphs. First, we show the
existence of a free model. DefineNCBR to be the quotient ofN by the congruence generated byAxCBR.

Proposition 3.3
V

η ✲ NCBR
◗◗◗◗◗ψ s

A
ψ♯

❄

NCBR forms a free iterationUnC-algebra over V. Thus for any function
ψ : V→A, there exists an uniqueUnC-algebra homomorphismψ♯ such that
the right diagram commutes, whereη is an embedding of variables.

Proposition 3.4 NCBR � BR.

Proof. By Theorem 3.2 (iii). �

3.3 Completeness of the Axioms for Bisimulation

Buneman et al. formulated that UnCAL graphs were identified by extended bisimulation, which is a
bisimulation on graphs involvingε-edges. As discussed in§1, since our approach is to use only UnCAL
terms, it suffices to consider only the standard (strong) bisimulation between UnCAL terms, as done in
[23, 3, 12, 13]. We denote by∼ bisimulation for UnCAL term.

In this subsection, we show the completeness ofAxGr for bisimulation, using the following Lemma
3.5 that reduces the problem ofEL-UnCAL to that ofEL-µ through UnCAL normal forms.AxCBR has
been shown to be complete for the bisimulation [3].

Lemma 3.5 For UnCAL normal forms n,m∈N , AxCBR ⊢µ n=m⇐⇒ Y ⊢ n=m : X is derivable from
AxGr in EL-UnCAL.
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Proof. [⇒] : By induction on proofs ofEL-µ. For every axiom inAxCBR, there exists the corresponding
axiom inAxGr or anEL-UnCAL theorem, hence it can be emulated.
[⇐] : By induction on proofs ofEL-UnCAL. Let s= t is an axiom ofEL-UnCAL. It easy to see that taking
normal forms of both side, they are equal term, or correspondto an axiom inAxCBR or EL-µ theorem.

�

Theorem 3.6 (Completeness)AxGr is sound and complete for the bisimulation, i.e.,
Y ⊢ s= t : X is derivable fromAxGr in EL-UnCAL iff s∼ t.

Proof. [⇒] : Because every axiom inAxGr is bisimilar, and the bisimulation is closed under contexts
and substitutions [8].
[⇐] : Supposes∼ t. Since for each rewrite rule for the normalisation functionnf, both sides of the rule is
bisimilar,nf preserves the bisimilarity. So we haves∼ nf(s)∼ nf(t)∼ t. SinceAxCBR is complete axioms
of bisimulation [3, 12],AxCBR ⊢µ nf(s) = nf(t). By Lemma 3.5, we have a theoremY ⊢ nf(s) = nf(t) : X.
Thuss= t is derivable. �

3.4 Interpretation in Algebraic Models

To interpret UnCAL terms and equations, we connect two freeness results in Thm. 3.2.
Since UnCAL normal formsN is isomorphic to a free pre-iteration algebra T(V), it has the
universal property. DefineT& to be the set of all well-typed UnCAL terms of type&.

T&

V
η′✲ T(V) �N

nf
❄

◗◗◗◗◗

η

s

❙
❙
❙
❙
❙
❙
❙
❙

ψ

✇

NCBR

(| − |)η
❄
� BR

A
ψ♯

❄

We definenf : T&→N by the function to compute the UnCAL normal form
of a term. Then for any derivable equationY ⊢ s= t : X in EL-UnCAL, we
haveAxCBR ⊢ nf(s) = nf(t) by Lemma 3.5, thus for all assignmentψ : V→
A,

ψ♯(|nf(s) |)η = ψ♯(|nf(t) |)η
whereη andη′ are embedding of variables.

SinceNCBR � BR, we name the isomorphisms (−) : NCBR → BR and

(−) : BR → NCBR. We write simply a normal formt to denote a represen-
tative [t] in NCBR. Thus given a normal formt (which is a syntactic term,
always finite), t is a (possibly infinite) regular tree by obtained by expand-
ing cycles int using fixpoints. Conversely, notice that sincet is a tree, there are no cycles and the original
cycles int are infinitely expanded. SinceN � T(V), the functions (−) may also be applied toµ-terms.
The iterationUnC-algebraBR has operations 0BR = { }, +BR(r, s) = { r } ∪ { s}, ℓBR(r) = ℓ(r).

3.5 Deriving structural recursion of involved case

Next we model UnCAL’s structural recursion of graphs. We usepairs of “the recursive computation” and
the history of data structure. This is similar to the technique of paramorphism [22], which is a way to
represent primitive recursion in terms of “fold” in functional programming. Our universal characterisa-
tion of graphs is the key to make this possible by the unique homomorphism from the free pre-iteration
UnC-algebraN using the above analysis.

We take a termX ⊢ eℓ(v, r) : X involving metavariablesv andr, whereeℓ(F(t), t) is the right-hand
sidee of F(ℓ: t) in (⋆) . For example, in case of the examplef1 in Introduction (see also Example 3.9),
we take

eℓ(v, r) , result: r, eℓ(F(t), t) = result: t if ℓ = ethnicGroup
eℓ(v, r) , v, eℓ(F(t), t) = F(t) if ℓ , ethnicGroup
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We construct aspecificiteration UnC-algebraBRe for {eℓ(v, r)}ℓ∈L. Let k , |X|. Without loss of
generality, we can assume thateℓ(v, r) is of the form〈t1 , · · · , tk〉 where everyti is a normal form. We
define the iterationUnC-algebraBRe= BRk×BR having operation

ℓBRe(v, r) = (eℓ(v, r), ℓ: r ), 0BRe= (~{ }, { })

and +BRe is an obvious tuple extensions of+BR. Here ~{} is the k-tuple of {}. Hereafter, we will
use this convention~o of tuple extension of an operatoro.

V
η′′✲ T(V) �N

◗◗◗◗◗

η′

s

❙
❙
❙
❙
❙
❙
❙
❙

η

✇

BR
(| − |)η′BR
❄

BRe

η♯

❄

BRk

π1
❄
�Nk

CBR

Then, two freeness results in Thm. 3.2 are depicted in the right diagram,
whereη(x) = ( x1 , · · · , xk, x). Since T(V) �N , the interpretation inBRe is
described as

(| x|)ηBRe= η(x), (| { } |)ηBRe= 0BRe, (| {s} ∪ {t} |)ηBRe= (| s|)BRe+BRe(| t |)BRe

(|ℓ: t |)ηBRe= ℓBRe((| t |)ηBRe), (|cycle(t) |)ηBRe= η
♯(cycle(t))

Now (| − |)ηBRe is characterised as the unique pre-iterationL∪ {0,+}-algebra
homomorphism from T(V) that extendsη. Defining

φ , π1◦ (| − |)ηBRe :N ✲ BRk �Nk
CBR,

it is the unique function satisfying

φ(x) = (x1, . . . , xk), φ({ }) = ~{ }, φ({s} ∪ {t}) = φ(s) ~∪ φ(t),

φ(ℓ: t) = eℓ(v, t), φ(cycle(t)) = π1◦η♯(cycle(t))

The functionφ takes normal forms of the type&. For non-normal forms, just precomposenf, i.e., define
the functionΦ :T&→Nk

CBR byΦ(s) , φ(nf(s)), thus,Φ|X| : TX→NCBR
k|X|→T k

X, becauseTX �T |X|& . In
summary, we have the following, wheres is a possibly non-normal form

Φ(s) =φ(nf(s) ) φ(x) = 〈x1 , · · · , xk〉 φ({ }) = ~{ }
Φ|X|+|Y|(〈t1 , t2〉)=Φ|X|(t1) ~× Φ|Y|(t2) φ(ℓ: t) =eℓ(φ(t), t) φ(t1∪ t2) = φ(t1) ~∪ φ(t2) (2)
Φ0(( )) = ( ) φ(cycle(t))=π1◦η♯(cycle(t))

where~× is the “zip” operator of two tuples. Here we use a mapNCBR→ Tm(V) to regard a normal form
moduloAxCBR as a term, for which any choise of representative is harmless, because UnCAL graphs
are identified by bisimulation andAxCBR axiomatises it. Identifying three kinds functionsΦ,Φ|X|,φ as
a single function (also denoted byΦ, by abuse of notion) on Tm(V), thisΦ is essentially what Buneman
et al. [8] called the structural recursion on graphs for the case thate depends ont. Actually, we could
make the characterisation more precise than [8], i.e., we obtain also the laws for the cases of⋄ (by the
caseΦ(s) = φ(nf(s))) andcycle, which tells how to compute them.

This is not merely rephrasing the known result, but also a stronger characterisation, which gives
precise understanding of the structural recursion on graphs:

(i) Buneman et al. stated that (1) without (⊲⊳) is a property ([8] Prop. 3) of a “structural recursive
function on graphs” defined by the algorithms in [8]. This property (i.e. soundness) is desirable,
but unfortunately, no completeness was given. There may be many functions that satisfy the prop-
erty. In contrast to it, our characterisation is sound andcomplete: (2) determines auniquefunction
by the universality.
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(ii) This derivation does not entailΦ(s⋄ t) =Φ(s)⋄Φ(t). It tells us that the only way to computeΦ(s⋄ t)
is to compute the normal form ofs⋄ t and then applyφ.

(iii) This analysis does not entailΦ(cycle(t)) = cycle(Φ(t)) either. The iteration algebra structure tells
us that the homomorphismφ maps a termcycle(t) to its interpretation inBRe where the cycles
are expanded in a regular tree and at the same time, labelsℓ are interpreted using the operations of
BRe.

(iv) The structure preserved by structural recursion is the(pre-)iteration algebra structure. The struc-
tural recursive functionφ is the composition of a pre-iteration algebra homomorphism, an a itera-
tion algebra homomorphism and a projection.

3.6 Examples

We may use the notation{t1, t2, . . .} as the abbreviation of{t1} ∪ {t2} ∪ · · · .

Example 3.7 ([8] Replace all labels witha) This is the example considered in Introduction.

sfun f2(L:T) = a:f2(T)

In this case, the recursion doesnot depend onT (because the right-hand side uses merelyf2(T)). We
define the iterationUnC-algebraBReby

ℓBRe(v, r) = (a: v, ℓ: r).

(We may omit over and underlines to denote the isomorphisms for simplicity). ThenΦ is the desired
structural recursive functionf2. E.g.

Φ(b: cycle(c: &)) = a:φ(cycle(c: &)) = a: π1◦η♯(c: c: · · · ) = a: (a: a: · · ·) = a: cycle(a: &)

Example 3.8 ([8] Double the children of each node)

sfun f4(L:T) = {a:f4(T)} ∪ {b:f4(T)}
Example of execution.

f4(a:b:c:{})
 {a:{ a:{a:{}, b:{}}, b:{a:{}, b:{}} }} ∪ {b:{ a:{a:{}, b:{}}, b:{a:{}, b:{}} }}
This case doesnot depend onT. We define the iterationUnC-algebraBReby

ℓBRe(v, r) = ({a: v} ∪ {b: v}, ℓ: r).

ThenΦ gives the structural recursive function defined byf4.

Example 3.9 ([8] Retrieve all ethnic groups)We revisit the example given in§1.
For the structural recursive recursive definition off1,

sfun f1(L:T) = if L = ethnicGroup then (result:T) else f1(T)

This casedoesdepend onT. Example of execution:

f1(sd)  {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}
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We define the iterationUnC-algebraBReby

ethnicGroupBRe(v, r) , (result: r, ethnicGroup: r)

ℓBRe(v, r) , (v, ℓ: r) for ℓ , ethnicGroup

ThenΦ is the structural recursive function defined byf1:

Φ (sd) = {result:"Celtic":{}, result:"Portuguese":{}, result:"Italian":{}}

Example 3.10 Consider another example in§1 of aa?. This casedoesdepend onT. We define the
iterationUnC-algebraBReby

aBRe(v, r) , (a?(r), a: r)

ℓBRe(v, r) , (v, ℓ: r) for ℓ , a.

ThenΦ gives the structural functionaa?

Φ((a:&)@(a:{})) = φ( nf((a:&)@(a:{})) ) = φ(a:a:{}) = true:{}
Φ(cycle(a:&)) = π1◦η♯(cycle(a:&)) = π1◦η♯(a:a: · · ·) = π1 (a?(a: · · ·),a: · · ·) = true : { }

4 Conclusion

In this paper, we have shown an application of Bloom andÉsik’s iteration algebras to model graph data
used in UnQL/UnCAL for describing and manipulating graphs. We have formulated UnCAL and given
an axiomatisation of UnCAL graphs that characterises the original bisimulation. We have given algebraic
semantics using Bloom and́Esik’s iteration iteration algebras. The main result of this paper was to show
that completeness of our equational axioms for UnCAL for theoriginal bisimulation of UnCAL graphs
via iteration algebras. As a consequence, we have given a clean characterisation of the computation
mechanism of UnCAL, called “structural recursion on graphs” using free iteration algebra.

Acknowledgments. I am grateful to Kazutaka Matsuda and Kazuyuki Asada for discussions about
UnCAL and its interpretation, and their helpful comments ona draft of the paper. A part of this work
was done while I was visiting National Institute of Informatics (NII) during 2013 – 2014.
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[12] Z. Ésik (2000):Axiomatizing the Least Fixed Point Operation and Binary Supremum. In: Proc. of Computer
Science Logic 2000, LNCS 1862, pp. 302–316, doi:10.1007/3-540-44622-220.
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We present a coalgebraic generalisation of Fischer and Ladner’s Propositional Dynamic Logic (PDL)
and Parikh’s Game Logic (GL). In earlier work, we proved a generic strong completeness result
for coalgebraic dynamic logics without iteration. The coalgebraic semantics of such programs is
given by a monadT, and modalities are interpreted via a predicate liftingλ whose transpose is a
monad morphism fromT to the neighbourhood monad. In this paper, we show that if themonad
T carries a complete semilattice structure, then we can definean iteration construct, and suitable
notions of diamond-likeness and box-likeness of predicate-liftings which allows for the definition
of an axiomatisation parametric inT, λ and a chosen set of pointwise program operations. As our
main result, we show that if the pointwise operations are “negation-free” and Kleisli composition
left-distributes over the induced join on Kleisli arrows, then this axiomatisation is weakly complete
with respect to the class of standard models. As special instances, we recover the weak completeness
of PDL and of dual-free Game Logic. As a modest new result we obtain completeness for dual-free
GL extended with intersection (demonic choice) of games.

1 Introduction

Propositional Dynamic Logic (PDL) [4] and its close cousin Game Logic (GL) [14] are expressive,
yet computationally well-behaved extensions of modal logics. Crucial for the increased expressiveness
of these logics is the *-operator (iteration) that allows tocompute certain, relatively simple fixpoint
properties such as reachability or safety. This feature comes at a price: completeness proofs for deduction
systems of logics with fixpoint operators are notoriously difficult. The paradigmatic example for this
phenomenon is provided by the modalµ-calculus: Walukiewicz’s completeness proof from [19] for
Kozen’s axiomatisation [10] is highly non-trivial and presently not widely understood.

Our main contribution is a completeness proof for coalgebraic dynamic logicswith iteration. We
introduced coalgebraic dynamic logics in our previous work[7] as a natural generalisation of PDL and
GL with the aim to study various dynamic logics within a uniform framework that is parametric in the
type of models under consideration, or - categorically speaking - parametric in a given monad. In [7] we
presented an initial soundness and strong completeness result for such logics. Crucially, however, this
only coverediteration-free variants. This paper provides an important next step by extending ourpre-
vious work to the coalgebraic dynamic logic with iteration.As in the case of PDL, strong completeness
fails, hence our coalgebraic dynamic logics with iterationare (only) proved weakly complete. While
the concrete instances of our general completeness result are well-known [11, 14], the abstract coalge-
braic nature of our proof allows us to provide a clear analysis of the general requirements needed for
the PDL/GL completeness proof, leading to the notions of box- and diamond-like modalities and of a
left-quantalic monad. As a modest new completeness result we obtain completeness for dual-free GL
extended by intersection (demonic choice) of games.
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At this relatively early stage of development our work has tobe mainly regarded as a proof-of-concept
result: we provide evidence for the claim that completenessproofs for so-called exogenous modal logics
can be generalised to the coalgebraic level. This opens up a number of promising directions for future
research which we will discuss in the Conclusion.

2 Coalgebraic Dynamic Logic

2.1 Coalgebraic modal logic

We assume some familiarity with the basic theory of coalgebra [16], monads and categories [13]. We
start by recalling basic notions from coalgebraic modal logic, and fixing notation. For more information
and background on coalgebraic modal logic, we refer to [12].

For a setX, we defineProp(X) to be the set of propositional formulas overX. Formally,Prop(X) is
generated by the grammar:Prop(X) ∋ ϕ ::= x∈ X | ⊤ | ¬ϕ | ϕ ∧ϕ .

A modal signatureΛ is a collection of modalities with associated arities. In this paper, we will only
consider unary modalities. For a setX, we denote byΛ(X) the set of expressionsΛ(X) = {✸x |✸ ∈ Λ}.
The setF (Λ,P0) of Λ-modal formulas overΛ and a setP0 of atomic propositions is given by:

F (Λ,P0) ∋ ϕ ::= p∈ P0 | ⊤ | ¬ϕ | ϕ ∧ϕ |✸ϕ ✸ ∈ Λ.

Let T : Set→ Set be a functor. AT-coalgebraic semanticsof F (Λ,P0) is given by associating with
each✸ ∈ Λ a predicate liftingλ : Q ⇒ Q ◦T, whereQ denotes the contravariant powerset functor. A
T-model(X,γ ,V) then consists of a carrier setX, a T-coalgebraγ : X → TX, and a valuationV : P0 →
P(X) that defines truth sets of atomic propositions as[[p]] =V(p). The truth sets of complex formulas
is defined inductively as usual with the modal case given by:[[✸ϕ ]] = γ−1(λX([[ϕ ]])).

A modal logicL = (Λ,Ax,Fr,Ru) consists of a modal signatureΛ, a collection of rank-1 axioms
Ax ⊆ Prop(Λ(Prop(P0))), a collection Fr⊆ F (Λ,P0) of frame conditions, and a collection of inference
rules Ru⊆ F (Λ,P0)×F (Λ,P0) which contains thecongruence rule: from ϕ ↔ ψ infer ✸ϕ ↔✸ψ for
any modality✸ ∈ Λ.

Given a modal logicL = (Λ,Ax,Fr,Ru), the set ofL -derivable formulas is the smallest subset
of F (Λ,P0) that contains Ax∪Fr, all propositional tautologies, is closed under modus ponens, uni-
form substitution and under applications of substitution instances of rules from Ru. For a formula
ϕ ∈ F (Λ,P0) we write ⊢L ϕ if ϕ is L -derivable. Furthermoreϕ is L -consistentif 6⊢L ¬ϕ and a
finite setΦ ⊆ F (Λ,P0) is L -consistent if the formula

∧
Φ is L -consistent.

Next, we recall the followingone-step notionsfrom the theory of coalgebraic logic. LetX be a set.

• A formula ϕ ∈ Prop(Λ(P(X))) is one-stepL -derivable, denoted⊢1
L ϕ , if ϕ is propositionally

entailed by the set{ψτ | τ : P→ P(X),ψ ∈ Ax}.

• A setΦ ⊆Prop(Λ(P(X))) is calledone-stepL -consistentif there are no formulasϕ1, . . . ,ϕn ∈Φ
such that⊢1

L ϕ1∧ ·· ·∧ϕn →⊥.

• Let T be aSet-functor and assume a predicate liftingλ✸ is given for each✸ ∈ Λ. For a formula
ϕ ∈ Prop(Λ(P(X))) theone-step semantics[[ϕ ]]1 ⊆ TX is defined by putting[[✸(U)]]1 = λ✸

X (U)
and by inductively extending this definition to Boolean combinations of boxed formulas.

• For a setΦ ⊆ Prop(Λ(P(X))) of formulas, we let[[Φ]]1 =
⋂

ϕ∈Φ[[ϕ ]]1, and we say thatΦ is one-
step satisfiableif [[Φ]]1 6= /0.
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• L is calledone-step soundif for any one-step derivable formulaϕ ∈ Prop(Λ(P(X))) we have
[[ϕ ]]1 = TX, i.e., if any such formulaϕ is one-step valid.

• L is calledone-step completeif for every finite setX and every one-step consistent setΦ ⊆
Prop(Λ(P(X))) is one-step satisfiable.

2.2 Dynamic syntax and semantics

In earlier work [7], we introduced the notion of a coalgebraic dynamic logic for programs built from
Kleisli composition, pointwise operations and tests. Herewe extend this notion to also include iteration
(Kleene star).

Throughout, we fix a countable setP0 of atomic propositions, a countable setA0 of atomic actions,
and a signatureΣ (of pointwise operations such as∪ in PDL). The setF (P0,A0,Σ) of dynamic formulas
and the setA= A(P0,A0,Σ) of complex actionsare defined by mutual induction:

F (P0,A0,Σ) ∋ ϕ ::= p∈ P0 | ⊥ | ¬ϕ | ϕ ∧ϕ | 〈α〉ϕ
A(P0,A0,Σ) ∋ α ::= a∈ A0 | α ;α | σ(α1, . . . ,αn) | α∗ | ϕ?

whereσ ∈ Σ is n-ary.
Dynamic formulas are interpreted in dynamic structures which consist of aT-coalgebraic semantics

with additional structure. Operation symbolsσ ∈ Σ will be interpreted by pointwise defined opera-
tions on(TX)X induced by natural operationsσ : Tn ⇒ T. More precisely, ifσ : Tn ⇒ T is a natural
transformation, thenσX

X : ((TX)X)n → (TX)X is defined byσX
X ( f1, . . . , fn)(x) = σX( f1(x), . . . , fn(x)). A

natural transformationΣT ⇒ T (when viewingΣ as aSet-functor) corresponds to a collection of natural
operationsσ : Tn ⇒ T, one for eachσ ∈ Σ.

In order to define composition and tests of actions/programs/games,T must be a monad(T,µ ,η)
such that action composition amounts to Kleisli composition for T. In order to define iteration of pro-
grams, we need to assume that the monad has the following property.

Definition 2.1 (Left-quantalic monad) A monad(T,µ ,η) is calledleft-quantalicif for all setsX, TX
can be equipped with a sup-lattice structure (i.e., a complete, idempotent, join semilattice). We denote
the empty join inTX by⊥TX. We also require that when this join is lifted pointwise to the Kleisli Hom-
setsK ℓ(T)(X,X), then Kleisli-composition left-distributes over joins:

∀ f ,gi : X → TX, i ∈ I : f ∗
∨

i

gi =
∨

i

f ∗gi . ⊳

It is well known that Eilenberg-Moore algebras of the powerset monadP are essentially sup-lattices,
and that relation composition left-distributes over unions of relations, henceP is left-quantalic. We
observe that one way of showing thatT is left-quantalic is to show that there is a morphism of monads
τ : P ⇒ T.

Lemma 2.2 Let (T,µ ,η) be a monad. If there is a monad morphismτ : P ⇒ T, then(T,µ ,η) is
left-quantalic.

Proof. A monad morphismτ : P ⇒ T induces a functorEM (T) → EM (P) by pre-composition.
It follows, in particular, that the freeT-algebra is mapped to a sup-lattice(TX,µX ◦ τTX). We extend
this sup-lattice structure onTX pointwise to a sup-lattice structure onK ℓ(T)(X,X), that is, for all
{gi | i ∈ I} ⊆ K ℓ(T)(X,X),

(
∨

i

gi)(x) = µX(τTX({gi(x) | i ∈ I})).
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Kleisli-composition distributes over thisτ-induced join sinceµX andT f preserve it, for all functions
f : X →Y, due to naturality ofτ , and these maps beingT-algebra morphisms. QED

Note that any natural transformationτ : P ⇒ T yields a natural transformation 1⇒ P ⇒ T, where
1⇒ P picks out the empty set, such thatT is pointed as defined in [7].

Example 2.3 The three monads of particular interest to us were describedin [7]: The powerset monad
P, the monotone neighbourhood monadM , the neighbourhood monadN . These are all left-quantalic.
For example, the transpose of the Kripke box“✷= τX : PX →MX defined byτX(U) = {V ⊆X |U ⊆V}
is a monad morphism. The join onMX induced by“✷ is intersection of neighbourhood collections.
Dually, the transpose of the Kripke diamond“✸X(U) = {V ⊆ X |U ∩V 6= /0} is also a monad morphism
P ⇒ M , and its induced join is unions of neighbourhood collections.

The generalisation of iteration for PDL-programs and GL-games is iterated Kleisli composition.
Given f : X → TX, we define for alln< ω :

f [0] = ηX, f [n+1] = f ∗ f [n], f ∗ =
∨

n<ω
f [n] (1)

Definition 2.4 (Dynamic semantics)Let T = (T,η ,µ) be a left-quantalic monad, andθ : ΣT ⇒ T a
naturalΣ-algebra. A(P0,A0,θ)-dynamicT-modelM= (X,γ0,λ ,V) consists of a setX, an interpretation
of atomic actionŝγ0 : A0 → (TX)X, a unary predicate liftingλ : Q ⇒Q◦T whose transposêλ : T ⇒N
is a monad morphism, and a valuationV : P0→P(X). We define the truth set[[ϕ ]]M of dynamic formulas
and the semanticŝγ : A→ (TX)X of complex actions inM by mutual induction:

[[p]]M =V(p), [[ϕ ∧ψ]]M = [[ϕ ]]M∩ [[ψ ]]M, [[¬ϕ]]M = X \ [[ϕ ]]M,
[[〈α〉ϕ ]]M = (γ̂(α)−1◦λX)([[ϕ ]]M),
γ̂(σ(α1, . . . ,σn)) = σX

X (γ̂(α1), . . . , γ̂(αn)) whereσ ∈ Σ is n-ary,
γ̂(α ;β ) = γ̂(α)∗ γ̂(β ) (Kleisli composition),
γ̂(α∗) = γ̂(α)∗ (Kleisli iteration),
γ̂(ϕ?)(x) = ηX(x) if x∈ [[ϕ ]]M, ⊥TX otherwise.

We say thatM validates a formulaϕ if [[ϕ ]]M = X. A coalgebraγ : X → (TX)A is standard if it is
generated by somêγ0 : A0 → (TX)X andV : P0 → P(X) as above, and we will also refer to(X,γ ,λ ,V)
as aθ -dynamicT-model. ⊳

Recall that PDL can be axiomatised using the box or using the diamond, but the two axiomatisations
differ. For example, the axioms for tests depend on which modality is used. In the general setting we
need to know whether a predicate lifting corresponds to a boxor a diamond.

Definition 2.5 (Diamond-like, Box-like) Let λ : Q ⇒ Q ◦T be a predicate lifting for a left-quantalic
monadT. We say that

• λ is diamond-likeif for all setsX, all U ⊆ X, and all{ti | i ∈ I} ⊆ TX:
∨

i∈I

ti ∈ λX(U) iff ∃i ∈ I : ti ∈ λX(U).

• λ is box-likeif for all setsX, all U ⊆ X, and all{ti | i ∈ I} ⊆ TX:
∨

i∈I

ti ∈ λX(U) iff ∀i ∈ I : ti ∈ λX(U).
⊳
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Remark 2.6 Note thatλ is diamond-like iffλX(U) is a complete filter of the semilattice TX for all
U ⊆ X. One also easily verifies thatλ is diamond-like iff its Boolean dual is box-like. It is easy to see
that if λ is diamond-like then it is also diamond-like according to our “old” definition in [7], similarly for
box-like. However, it is no longer the case that every predicate lifting is either box-like or diamond-like,
e.g., for T= P, λX(U) = {V ⊆ X | /0 6=V ⊆U} is neither.

Example 2.7 It can easily be verified that the Kripke diamond (box) is indeed diamond-like (box-like)
for P. Taking T= M , and union as join onMX (i.e., the join induced by“✸, cf. Example 2.3), then the
monotonic neighbourhood modalityλX(U)= {N∈MX |U ∈N} is diamond-like, but taking intersection
as the join onMX thenλ is box-like. Similarly,λ is diamond-like when viewed as a neighbourhood
modality forN -coalgebras with union as join. Note that this shows that diamond-likeness does not
imply monotonicity. We only have, ifλ is diamond-like, then̂λ : T ⇒ N is monotone.

We will use the following crucial lemma about the Kleisli composition and predicate liftings.

Lemma 2.8 Letλ : Q⇒Q◦T be a predicate lifting whose transposeλ̂ : T ⇒N is a monad morphism.
For all f ,g : X → TX, all x∈ X and all U⊆ X, we have

( f ∗g)(x) ∈ λX(U) ⇐⇒ f (x) ∈ λX(g
−1(λX(U)).

Proof. We have:
( f ∗g)(x) ∈ λX(U) iff µX (Tg( f (x))) ∈ λX(U)

(def. of λ̂ ) iff U ∈ λ̂X(µX(Tg( f (x)))
(λ̂ monad morph.) iff U ∈ µN

X

Ä
N λ̂X(λ̂TX(Tg( f (x))))

ä

(def. ofµN) iff ηP(X)(U) ∈ N λ̂X

Ä
λ̂TX(Tg( f (x)))

ä

(def. ofN ) iff λ̂−1
X

Ä
ηP(X)(U)

ä
∈ λ̂TX(Tg( f (x)))

(def. ofη) iff {t ∈ TX |U ∈ λ̂X(t)} ∈ λ̂TX(Tg( f (x)))
(def. of λ̂ ) iff {t ∈ TX | t ∈ λX(U)} ∈ λ̂TS(Tg( f (x)))

(naturality ofλ̂ ) iff {t ∈ TX | t ∈ λX(U)} ∈ N g(λ̂X( f (x)))
(def. ofN ) iff g−1(λX(U)) ∈ λ̂X( f (x))

iff f (x) ∈ λX(g−1(λX(U))) QED

2.3 Coalgebraic dynamic logic

Our notion of a coalgebraic dynamic logic relates to coalgebraic modal logic in the same way that PDL
relates to the basic modal logicK . In the remainder of the paper, we assume that:

• T= (T,µ ,η) is a left-quantalic monad with join
∨

: PTX → TX,

• λ : Q ⇒ Q ◦ T is a diamond-like with respect to(TX,
∨
), monotonic predicate lifting whose

transposêλ : T ⇒ N is a monad morphism,

• Σ is a signature and for eachn-ary σ ∈ Σ there is a natural operationσ : Tn ⇒ T and a natural
operationχ : N n ⇒ N such that̂λ ◦σ = χ ◦ λ̂ n. We denote byθ the collection{σ | σ ∈ Σ}.

Using the last item above, we showed in [7, section 4] how to associate to each operation symbolσ ∈ Σ
a rank-1 axiom〈σ(α1, . . . ,αn)〉p ↔ ϕ(χ̆ ,α1, . . . ,αn, p). Briefly stated, we use that aχ : N n ⇒ N
corresponds (via the Yoneda lemma) to an elementχ̆ of the free Boolean algebraN (n ·Q(2)) gener-
ated byn ·Q(2). By assigning a rank-1 formula to each of the generators, we obtain a rank-1 formula
ϕ(χ̆ ,α1, . . . ,αn, p) for eachχ . For example, the PDL axiom〈α ∪ β 〉p ↔ 〈α〉p∨ 〈β 〉p is of this kind.
Our completeness result will be restricted to positive operations.
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Definition 2.9 (Positive natural operations) We call χ : N n ⇒ N a positive operationif χ̆ can be
constructed using only∧ and∨ in N (n·Q(2)). If σ : Tn ⇒ T andχ : N n ⇒ N are such that̂λ ◦σ =

χ ◦ λ̂ n, then we callσ positive if χ is positive. The axioms for positive pointwise operations of the form
χ̆ = δ̆ ∧ ρ̆ are obtained by extending Definition 14 from [7] with a case for conjunction:

ϕ(δ̆ ∧ ρ̆,α1, . . . ,αn, p) = ϕ(δ̆ ,α1, . . . ,αn, p)∧ϕ(ρ̆,α1, . . . ,αn, p). ⊳

Example 2.10 Positive natural operations onP include union, but complement and intersection are
not natural onP. Positive natural operations onM include union and intersection, but not the natural
operation dual.

Definition 2.11 (Dynamic logic) Let L✸ = ({✸},Ax, /0,Ru) be a modal logic over the basic modal
languageF ({✸},P0). We defineΛ = {〈α〉 | α ∈ A} and let AxA =

⋃
α∈AAxα where Axα is the set of

rank-1 axioms over the labelled modal languageF (P0,A0,Σ) obtained by substituting〈α〉 for ✸ in all
the axioms in Ax. We define RuA similarly as all labelled instances of rules in Ru.

Theθ -dynamic logicoverL✸ is the modal logicL = L (θ , ; ,∗ ,?) = (Λ,Ax ′,Fr′,Ru′) where
Ax′ = AxA∪{〈σ(α1, . . . ,αn)〉p↔ ϕ(χ̆,α1, . . . ,αn, p) | σ ∈ Σ,αi ∈ A}
Fr′ = {〈α ;β 〉p↔ 〈α〉〈β 〉p | α ,β ∈ A, p∈ P0}∪

{〈α∗〉p↔ p∨〈α〉〈α∗〉p | α ∈ A}∪
{〈ψ?〉p↔ (ψ ∧ p) | ψ ∈ F (P0,A0,Σ)}

Ru′ = RuA∪
®

〈α〉ψ ∨ϕ → ψ
〈α∗〉ϕ → ψ

| α ∈ A

´
⊳

Proposition 2.12 If L✸ is sound wrt to the T-coalgebraic semantics then theθ -dynamic logicL is
sound wrt to the class of allθ -dynamicT-models. In other words, for allϕ ∈ F (P0,A0,Σ) and all
θ -dynamicT-modelsM= (X,γ0,λ ,V) we have

⊢L ϕ implies that M validatesϕ .

Proof. In [7], we showed soundness of the axioms for pointwise operations, sequential composition and
tests with respect toθ -dynamicT-models (without iteration). Soundness of the star axiom isnot difficult
to check. Soundness of the star rule can be proven as follows:SupposeM= (X,γ ,λ ,V) is aθ -dynamic
T-model such thatM validates the formula〈α〉ψ ∨ϕ → ψ . For any statex∈ X such thatx |= 〈α∗〉ϕ we
have — by standardness ofγ — that γ̂(α)∗(x) ∈ λX([[ϕ ]]). This implies

∨
j γ̂(α)[ j](x) ∈ λX([[ϕ ]]) and,

by diamond-likeness ofλ , there is aj ≥ 0 such that̂γ(α)[ j](x) ∈ λX([[ϕ ]]). Therefore, to show thatM
validates〈α∗〉ϕ → ψ , it suffices to show that for allj ≥ 0 we haveU j ⊆ [[ψ ]] where

U j = {x∈ X | γ̂(α)[ j](x) ∈ λX([[ϕ ]])}.
We prove this by induction. Forj = 0 the claim holds trivially as by assumption the premiss of the star
rule is valid and thus[[ϕ ]]⊆ [[ψ ]]. Consider now somej = i +1. Then we have

Ui+1 = {x∈ X | γ̂(α)[i+1](x) ∈ λX([[ϕ ]])}
= {x∈ X | γ̂(α)∗ γ̂(α)[i](x) ∈ λX([[ϕ ]])}

Lemma 2.8
= {x∈ X | γ̂(α)(x) ∈ λX(Ui)}
I.H.

⊆ {x∈ X | γ̂(α)(x) ∈ λX([[ψ ]])}
= [[〈α〉ψ ]]⊆ [[ψ ]] (last inclusion holds by validity of rule premiss)

QED
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3 Weak Completeness

In this section, we will show that if the base logicL✸ is one-step complete with respect to theT-
coalgebraic semantics given byλ , andθ consists of positive operations, then the dynamic logicL =
L (θ , ; ,∗ ,?) is (weakly) complete with respect to the class of allθ -dynamicT-models, i.e., everyL -
consistent formula is satisfiable in aθ -dynamicT-model. As in the completeness proof for PDL, a
satisfying model for a formulaψ will essentially be obtained from a filtration of the canonical model
through a suitable closure of{ψ}.

A setΦ ⊆ F (P0,A0,Σ) of dynamic formulas is(Fischer-Ladner) closedif it is closed under subfor-
mulas, closed under single negation, that is, ifϕ = ¬ψ ∈ Φ thenψ ∈ Φ, and ifϕ ∈ Φ is not a negation,
then¬ϕ ∈ Φ, and satisfies the following closure conditions:

1. If 〈α ;β 〉ϕ ∈ Φ then〈α〉〈β 〉ϕ ∈ Φ.

2. For all 1-step axioms〈σ(α1, . . . ,αn)〉p ↔ ϕ(χ̆,α1, . . . ,αn, p), if 〈σ(α1, . . . ,αn)〉ψ ∈ Φ then also
ϕ(χ̆,α1, . . . ,αn,ψ) ∈ Φ.

3. If 〈ψ?〉ϕ ∈ Φ thenψ ∧ϕ ∈ Φ.

4. If 〈α∗〉ϕ ∈ Φ then〈α〉〈α∗〉ϕ and〈α〉ϕ ∈ Φ.

Given a dynamic formulaψ , we denote byCl(ψ) the least set of formulas that is closed and contains
ψ . A standard argument shows thatCl(ψ) is finite.

From now on we fix a finite, closed setΦ (which may be thought of asCl(ψ) for someψ). An
L -atom overΦ is a maximallyL -consistent subset ofΦ, and we denote byS the set of allL -atoms
overΦ. Forϕ ∈ F (P0,A0,Σ) we putϕ̂ = {∆ ∈ S| ϕ ∈ ∆}.
Note that, in particular, for eachϕ 6∈ Φ we haveϕ̂ = /0. A maximallyL -consistent set (MCS)Ξ is a
maximallyL -consistent subset ofF (P0,A0,Σ). Clearly, for each MCSΞ we haveΞ∩Φ is anL -atom.
Any subset ofScan be characterised by a propositional combination of formulas inΦ. It will be useful
to have a notation for these characteristic formulas at hand.

Definition 3.1 (Characteristic formula) ForU ⊆ S, we define the characteristic formulaξU of U by

ξU =
∨

∆∈U

∧
∆

where for any∆ ∈ S,
∧

∆ is the conjunction of the elements of∆. ⊳

We will use the following fact that allows to lift one-step completeness of the base logic toL .

Lemma 3.2 If L✸ is one-step complete for T thenL is one-step complete for TA.

The proof of this lemma is analogous to the proof of the corresponding statement in [6]. The main
difference being that instead of arguing via MCSs one has to use atoms. Note that only the axioms for
pointwise operations have influence on one-step properties, as the ones for ; and∗ are not rank-1.

3.1 Strongly coherent models

As in the finitary completeness proof of PDL [11] and the finitemodel construction in [18], we need a
coalgebra structure on the setSof all L -atoms overΦ that satisfies a certain coherence condition which
ensures that a truth lemma can be proved.
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Definition 3.3 (Coherent structure) A coalgebraγ : S→ (TS)A is coherentif for all Γ ∈ S and all
〈α〉ϕ ∈ Φ, γ̂(α)(Γ) ∈ λS(ϕ̂) iff 〈α〉ϕ ∈ Γ. ⊳

Lemma 3.4 (Truth lemma) Let γ : S→ (TS)A be a coherent structure map and define a valuation V:
P0 → P(S) for propositional variables p∈ P0 by putting V(p) = p̂. For eachΓ ∈ S andϕ ∈ Φ we have

(S,γ ,V),Γ |= ϕ iff ϕ ∈ Γ.

The lemma follows from a standard induction argument on the structure of the formulaϕ - the base case
is a immediate consequence of the definition of the valuation, the induction step for the modal operators
follows from coherence.

In order to prove coherence for iteration programsα∗, we need the following stronger form of co-
herence, which is inspired by the completeness proof of dual-free Game Logic in [14].

Definition 3.5 (Strongly coherent structure) We say thatγ : S→ (TS)A is strongly coherent forα ∈ A
if for all Γ ∈ Sand allU ⊆ S: γ̂(α)(Γ) ∈ λS(U) iff 〈α〉ξU ∧Γ is L -consistent. ⊳

In the remainder of this subsection, we prove the following existence result.

Proposition 3.6 If L✸ is one-step complete for T , then there exists aγ : S→ (TS)A which is strongly
coherent for allα ∈ A.

Let (−)♯ : Prop(Λ(P(S)))→Prop(Λ(Prop(Φ))) be the substitution map induced by takingU ♯= ξU

for all U ∈P(S). Conversely, let(−)S: Prop(Λ(Prop(Φ)))→ Prop(Λ(P(S))) be the substitution map
induced by taking⊤S= Sand for allψ ∈ Prop(Φ), ψS= {∆ ∈ S| ∆ ⊢PL ψ}.

Lemma 3.7 (Derivability) For all ϕ ∈ Prop(Λ(Prop(Φ))),

1. ⊢1
L ϕS implies ⊢L (ϕS)

♯.

2. ⊢L (ϕS)
♯ ↔ ϕ .

Proof. Claim 1:For all ψ ∈ Prop(Λ(P(S))), ⊢1
L ψ implies that⊢L ψ♯.

It is clear that Item 1 follows from Claim 1 - let us now prove Claim 1: Suppose that⊢1
L ψ , ie., assume

thatψ is one-stepL -derivable. By the definition of one-step derivability, this means that the set{χσ |
χ ∈ Ax,σ : P→ P(S)} propositionally entailsψ . This implies thatψ♯ is a propositional consequence
of the setW = {χσ ♯ | χ ∈ Ax,σ : P → P(S)}. Any formula χσ ♯ ∈ W can be written asχτ with
τ : P→ Prop(Φ) defined asτ(p) = ξσ(p) - in other words, all elements ofW are substitution instances
of L -axioms,ψ♯ is a propositional consequence ofW and hence, asL is closed under propositional
reasoning and uniform substitution, we get⊢L ψ♯ as required.

It remains to prove item 2. We prove that for allϕ ∈ Prop(Φ),

⊢L ϕ ↔ (ϕS)
♯ (2)

Item 2 then follows by applying the congruence rule and propositional logic. For (2), it is easy to see
that for allϕ ∈ Prop(Φ), ⊢PL (ϕS)

♯ → ϕ and hence⊢L (ϕS)
♯ → ϕ . For the other implication, suppose

towards a contradiction thatϕ ∧¬(ϕS)
♯ is L -consistent. Then there is a maximallyL -consistent setΞ

such thatϕ ,¬(ϕS)
♯ ∈ Ξ. Take∆ := Ξ∩Φ. We have

for all ψ ∈ Prop(Φ) : ∆ ⊢PL ψ or ∆ ⊢PL ¬ψ (3)
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The proof is by induction onψ . The base case whereψ ∈ Φ is trivial. If ψ = ¬ψ ′, then by I.H.
∆ ⊢PL ψ ′ or ∆ ⊢PL ¬ψ ′ and it follows that∆ ⊢PL ¬ψ or ∆ ⊢PL ψ . If ψ = ψ1∧ψ2, then by I.H. we have:

(∆ ⊢PL ψ1 or ∆ ⊢PL ¬ψ1) and (∆ ⊢PL ψ2 or ∆ ⊢PL ¬ψ2).

Considering all four combinations yields∆ ⊢PL ψ1∧ψ2 or ∆ ⊢PL ¬(ψ1∧ψ2).
From (3) andϕ ∈ Ξ, we obtain that∆ ⊢PL ϕ . On the other hand, from¬(ϕS)

♯ ∈ Ξ it follows that
∆ 6⊢PL (ϕS)

♯, and hence, because(ϕS)
♯ =

∨{∧∆ | ∆ ∈ S,∆ ⊢PL ϕ}, we have∆ 6⊢PL ϕ . Thus we have a
contradiction, and we conclude thatϕ ∧¬(ϕS)

♯ is L -inconsistent which proves that⊢L ϕ → (ϕS)
♯. QED

Lemma 3.8 (Existence lemma)Assume thatL✸ is one-step complete for T . For allα ∈A and allΓ∈S
there is a tα ,Γ ∈ T(S) such that for all U⊆ S,

1. If Γ ⊢L 〈α〉ξU then tα ,Γ ∈ λS(U).

2. If Γ ⊢L ¬〈α〉ξU then tα ,Γ ∈ λS(U).

3. If Γ 6⊢L 〈α〉ξU and〈α〉ξU ∧Γ is L -consistent, then tα ,Γ ∈ λS(U).

It follows that for allα ∈ A and allΓ ∈ S there is a tα ,Γ ∈ T(S) such that for all U⊆ S,

tα ,Γ ∈ λS(U) iff Γ∧〈α〉ξU is L -consistent. (4)

Proof. We spell out the details of the proof for the case thatλ is a diamond-like lifting. For the case that
λ is box-like the roles of the positive and negative formulas of the form 〈α〉ϕ and¬〈α〉ϕ in the proof
have to be switched. We now turn to the proof of the lemma.

Suppose for a contradiction that there isα ∈ A andΓ ∈ Ssuch that not ∈ TSsatisfies conditions 1
and 2 of the lemma. Consider the formula

ϕ(Γ) =
∨

{〈α〉ξX | X ⊆ S,Γ ⊢PL ¬〈α〉ξX}∨
∨

{¬〈α〉ξX | X ⊆ S,Γ ⊢PL 〈α〉ξX}

and note that

ϕ(Γ)S=
∨

{〈α〉X | X ⊆ S,Γ ⊢PL ¬〈α〉ξX}∨
∨

{¬〈α〉X | X ⊆ S,Γ ⊢PL 〈α〉ξX}

Then by our assumption onα andΓ we have[[ϕ(Γ)S]]1 = (TS)A. Recall from Lemma 3.2 that one-step
completeness ofL✸ implies one-step completeness ofL wrt TA. Therefore we obtain that⊢1

L ϕ(Γ)S

and thus, by Lemma 3.7, that⊢L ϕ(Γ). This yields a contradiction with our assumption thatΓ is L -
consistent. For eachΓ ∈ Sandα ∈ A we fix an elementsα ,Γ ∈ TSsatisfying conditions 1 and 2.

Consider nowΓ ∈ S and letU ⊆ S be such thatΓ 6⊢L 〈α〉ξU and 〈α〉ξU ∧Γ is L -consistent. As
〈α〉ξU ∧Γ is L -consistent the set{〈α〉ξU}∪{¬〈α〉ξX | Γ ⊢PL ¬〈α〉ξX} is L -consistent and we can eas-
ily show - using Lemma 3.7 - that the set{〈α〉U}∪{¬〈α〉X | Γ ⊢PL ¬〈α〉ξX} is one-stepL -consistent.
Therefore by one-step completeness ofL there must be anfΓ,U ∈ (TS)A such that

fΓ,U |=1
∧

({〈α〉U}∪{¬〈α〉X | Γ ⊢PL ¬〈α〉ξX})

or, equivalently,
fΓ,U (α) ∈

⋂
({λS(U)}∪{S\λS(X) | Γ ⊢PL ¬〈α〉ξX}) .

Using the fact thatλ is diamond-like we can now easily verify that for eachΓ ∈ S andα ∈ A the join
tα ,Γ :=

∨
U∈Ξ fΓ,U (α)∨sα ,Γ with Ξ = {U ⊆X | Γ 6⊢L 〈α〉ξU and〈α〉ξU ∧Γ is L -consistent} satisfies all

conditions of the lemma. QED

Proposition 3.6 now follows immediately from Lemma 3.8 by taking γ̂(α)(Γ) := tα ,Γ for all α ∈ A0.
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3.2 Standard, coherent models

We saw in the previous subsection that one-step completeness ensures the existence of a strongly coherent
structure. However, this structure is not necessarily standard. We now show that from a strongly coherent
structure, we can obtain a standard model which satisfies theusual coherence condition by extending the
strongly structure inductively from atomic actions to all actions α ∈ A and proving that the resulting
structure mapγ : S→ (TS)A is coherent.

We start by defining aγ : S→ (TS)A which is almost standard. For technical reasons, we defineγ on
tests fromΦ in terms of membership. Once we prove that truth is membership (Lemma 3.16), it follows
thatγ is standard. This way we avoid a mutual induction argument.

Definition 3.9 (Coherent dynamic structure) Let γ0 : S→ (TS)A be the strongly coherent structure
that exists by Proposition 3.6. Defineγ : S→ (TS)A inductively as follows:

γ̂(α) := γ̂0(α) for α ∈ A0

γ̂(ϕ?)(Γ) :=





ηS(Γ) if ϕ ∈ Γ and ϕ ∈ Φ
ηS(Γ) if Γ ∈ [[ϕ ]](X,γ ,V) and ϕ 6∈ Φ
⊥TS otherwise.

γ̂(σ(α1, . . . ,αn))(Γ) := σS(γ̂(α1)(Γ), . . . , γ̂(αn)(Γ)))
γ̂(α∗)(Γ) := γ̂(α)∗(Γ)

whereV is the canonical valuationV(p) = {∆ ∈ S| p∈ ∆}. ⊳

The rest of the section will be dedicated to proving thatγ is in fact coherent. This can be done largely
similarly to what we did in our previous work [6] for the iteration-free case. The main difference is ob-
viously the presence of the∗-operator. Here a crucial role is played by the following monotone operator
onP(S) that allows us to formalise a logic-induced notion of reachability.

Definition 3.10 (FX
β ) Forβ ∈ A andX ⊆ Swe define an operator

FX
β : PS → PS

Y 7→ {∆ ∈ S| ∆∧〈β 〉ξY consistent}∪X

It is easy to see that this is a monotone operator, its least fixpoint will be denoted byZX
β . ⊳

Lemma 3.11 For all ∆ ∈ S and all X⊆ S we have:∆∧〈β 〉ξZX
β

is consistent ⇒ ∆ ∈ ZX
β .

Proof. This is an immediate consequence of the fact thatZX
β is a fixpoint ofFX

β . QED

The following technical lemma is required for the inductiveproof of the first coherence Lemma 3.14.

Lemma 3.12 Let β ∈ A be an action such that for allΓ ∈ S and all X⊆ S we have

Γ∧〈β 〉ξX consistent ⇒ γ̂(Γ) ∈ λS(X).

ThenΓ ∈ ZX
β impliesγ̂(β ∗)(Γ) ∈ λS(X).
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Proof. This proof is using our assumption thatλ is diamond-like. Recall first that by definition we have
γ̂(β ∗) = γ̂(β )∗, thus we need to show thatγ̂(β )∗(Γ) ∈ λS(X). LetY = {∆ ∈ S| γ̂(β )∗(∆) ∈ λS(X)}. In
order to prove our claim it suffices to show thatFX

β (Y)⊆Y, ie, thatY is a prefixed point ofFX
β (asZX

β is

the smallest such prefixed point and asZX
β ⊆Y is equivalent to the claim of the lemma). LetΓ ∈ FX

β (Y).

We need to show thatΓ ∈ Y. In caseΓ ∈ X we haveγ̂0(Γ) = η(Γ) ∈ λS(ϕ̂) becauseη(Γ) ∈ λS(ϕ̂)
is equivalent toΓ ∈ X as λ̂ is a monad morphism. Suppose now thatΓ∧ 〈β 〉ξY is consistent. By our
assumption onβ this implies that

γ̂(β )(Γ) ∈ λS(Y) = λS({∆ | γ̂(β )∗(∆) ∈ λS(X)}).

Using Lemma 2.8 this implies
(γ̂(β )∗ γ̂(β )∗)(Γ) ∈ λS(X)

and
γ̂(β )∗ γ̂(β )∗(Γ) = (γ̂(β )∗

∨

i

γ̂(β )[i])(Γ) =
∨

i

γ̂(β )[i+1](Γ)

where the last equality follows from the fact that we are working with a monadT whose Kleisli compo-
sition left-distributes over joins. Asλ is assumed to be diamond-like, it follows that there is aj ≥ 1 such
that γ̂(β )[ j](Γ) ∈ λS(X) and thusΓ ∈Y as required. QED

We are now ready to prove two crucial coherence lemmas. As we are ultimately only interested in the
truth of formulas inΦ we can confine ourselves to what we callrelevantactions:

Definition 3.13 (Relevant test, relevant action)A testϕ? is calledrelevantif ϕ ∈ Φ. An actionα ∈ A
is calledrelevantif it only contains relevant tests. ⊳

The following lemma proves the first half of the announced coherence.

Lemma 3.14 For all relevant actionsα ∈ A, Γ ∈ S and all X⊆ S we have

Γ∧〈α〉ξX consistent ⇒ γ̂(α)(Γ) ∈ λS(X).

Proof. By induction onα . The base case holds trivially asγ is strongly coherent for all atomic actions.
Let α =ϕ? for someϕ ∈Φ (here we can assumeϕ ∈Φ as we only consider relevant actions) and suppose
Γ∧〈ϕ?〉ξX is consistent for someX ⊆ S. Then, asλ is diamond-like, we haveΓ∧ϕ ∧ ξX is consistent.
This impliesϕ ∈ Γ andΓ ∈ X. As ϕ ∈ Γ, we have by the definition ofγ that γ̂(ϕ?)(Γ) = ηS(Γ) and thus
Γ ∈ X implies γ̂(ϕ?)(Γ) ∈ λS(X) as required.

For ann-ary pointwise operationσ ∈ Σ, we want to show that

Γ∧〈σ(αa, . . . ,αn)〉ξX consistent ⇒ σS
S(γ̂(α1)(Γ), . . . , γ̂(αn)(Γ)) ∈ λS(X)

Using theσ -axiom and that̂λ ◦σ = χ ◦ λ̂ n, this is equivalent to

Γ∧ϕ(χ̆,α1, . . . ,αn,ξX) consistent ⇒ X ∈ χS(λ̂ (γ̂(α1)(Γ)), . . . , λ̂ (γ̂(αn)(Γ))) (5)

and (5) can be proved by induction onχ̆ in a manner very similar to the one used in the proof of Lemma
27 in [6].

Supposeα is of the formα = β0;β1 and supposeΓ ∧ 〈β0;β1〉ξU is consistent for someU ⊆ S.
Using the compositionality axiom we have⊢L 〈β0;β1〉ξU ↔ 〈β0〉〈β1〉ξU . ThereforeΓ∧ 〈β0〉〈β1〉ξU is
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consistent. This implies in turn thatΓ∧ 〈β0〉(⊤∧ 〈β1〉ξU ) is consistent and, as⊢L ⊤ ↔ ∨
∆∈S

∧
∆ by

Lemma 3.7, we obtain thatΓ∧ 〈β0〉((
∨

∆∈S
∧

∆)∧〈β1〉ξU) and thusΓ∧ 〈β0〉(
∨

∆∈S
∧
(∆∧〈β1〉ξU)) is

consistent. Clearly the latter implies thatΓ∧ 〈β0〉(
∨

∆∈Y
∧
(∆∧〈β1〉ξU)) is consistent forY := {∆ ∈ S|

∆∧ 〈β1〉ξU consistent}. Therefore we also haveΓ∧ 〈β0〉ξY is consistent. Now we apply the induction
hypothesis to get

γ̂(β0)(Γ) ∈ λS(Y) = λS({∆ ∈ S| ∆∧〈β1〉ξU consistent})
I.H.

⊆ λS({∆ ∈ S| γ̂(β1)(∆) ∈ λS(U)})

and by Lemma 2.8 we conclude thatγ̂(β0;β1)(Γ) = γ̂(β0)∗ γ̂(β1)(Γ) ∈ λS(U).
Suppose nowα = β ∗. It follows from Lemma 3.12 and the I.H. onβ thatΓ ∈ ZX

β implies γ̂(β ∗)(Γ)∈
λS(X). Therefore it suffices to prove thatΓ∧〈β ∗〉ξX is consistent impliesΓ ∈ ZX

β .
Suppose thatΓ∧〈β ∗〉ξX is consistent and recall the⋄-induction rule:

⊢ 〈β 〉ψ ∨ϕ → ψ
⊢ 〈β ∗〉ϕ → ψ

Our claim is that
⊢ 〈β 〉ξZX

β
∨ ξX → ξZX

β
(+)

Before we prove (+) let us see why it suffices to complete the proof: If (+) holds, we can apply the
induction rule in order to obtain

⊢ 〈β ∗〉ξX → ξZX
β
. (6)

By assumption we haveΓ∧〈β ∗〉ξX. Together with (6) this implies thatΓ∧ ξZX
β

are consistent and thus,

by Lemma 3.11, thatΓ ∈ ZX
β as required.

Proof of (+): Suppose for a contradiction that (+) does not hold. This implies that(〈β 〉ξZX
β
∨ ξX)∧

¬ξZX
β

is consistent. We distinguish two cases.

Case 1〈β 〉ξZX
β
∧¬ξZX

β
is consistent. Then there is a maximal consistent setΞ such that〈β 〉ξZX

β
,¬ξZX

β
∈Ξ.

Let ∆ := Ξ∩Φ. By definition and (3) we know that∆ ⊢L ¬ξZX
β

and thus∆ ∈ S\ZX
β . Furthermore

∆∧〈β 〉ξZX
β

is consistent. The latter implies, again by Lemma 3.11, that∆ ∈ ZX
β which is a contradiction

and we conclude that〈β 〉ξZX
β
∧¬ξZX

β
cannot be consistent.

Case 2ξX ∧¬ξZX
β

is consistent. Again - using a similar argument to the previous case - this implies that

there is an atom∆ ∈ S\ZX
β such that∆∧ ξX is consistent. But the latter entails that∆ ∈ X ⊆ ZX

β which
yields an obvious contradiction. QED

Lemma 3.15 For all 〈α〉ϕ ∈ Φ and all Γ ∈ S we have

γ̂(α)(Γ) ∈ λS(ϕ̂) ⇒ 〈α〉ϕ ∈ Γ.

Proof. Again this is proven by induction onα . Let α = ψ? and supposêγ(ψ?)(Γ) ∈ λS(ϕ̂) for some
〈ψ?〉ϕ ∈ Φ. As λ is diamond-like, we havêγ(ψ?)(Γ) 6= ⊥ and thus, by the definition of̂γ , we have
ψ ∈ Γ andηS(Γ) ∈ λS(ϕ̂). The latter impliesΓ ∈ ϕ̂, ie, ϕ ∈ Γ. Both ψ ∈ Γ andϕ ∈ Γ imply, using the
axiom⊢L 〈ψ?〉ϕ ↔ ψ ∧ϕ , that〈ψ?〉ϕ ∈ Γ as required.

Let α be of the formα = β ∗ and letΓ ∈ Sbe such that̂γ(α)(Γ) ∈ λS(ϕ̂). Thenγ̂(α) = γ̂(β )∗ and
thus we havêγ(β )∗(Γ) ∈ λS(ϕ̂). This means that

∨
j γ̂(β )[ j](Γ) ∈ λS(ϕ̂). By diamond-likeness ofλ this

is equivalent to the existence of onej ≥ 0 such that̂γ(β )[ j](Γ) ∈ λS(ϕ̂).



102 Weak Completeness of Coalgebraic Dynamic Logics

In casej = 0 we can easily see thatΓ ∈ ϕ̂ , ie, ϕ ∈ Γ which implies - using the axiom(〈β 〉〈β ∗〉ϕ ∨
ϕ)↔ 〈β ∗〉ϕ - that〈β ∗〉ϕ ∈ Γ.

Suppose nowj = m+1, ie, γ̂(β )[m+1](Γ) ∈ λS(ϕ̂). By Lemma 2.8 this implies that

γ̂(β )(Γ) ∈ λS

Ä
{∆ | γ̂(β )[m](∆) ∈ λS(ϕ̂)}

ä
.

By I.H. on mwe have{∆ | γ̂(β )[m](∆) ∈ λ (ϕ̂)} ⊆÷〈β ∗〉ϕ and hence, by monotonicity ofλ , that

γ̂(β )(Γ) ∈ λS(
÷〈β ∗〉ϕ).

By I.H. on β this implies that〈β 〉〈β ∗〉ϕ ∈ Γ and thus - using again the same axiom as in the base case -
that〈β ∗〉ϕ ∈ Γ. QED

Lemma 3.16 (Dynamic truth lemma) The coalgebra structureγ : S→ (TS)A from Def. 3.9 together
with the valuation V: P→ P(S) given by V(p) = p̂ for p∈ P0 forms aθ -dynamicT-model such that
for all ϕ ∈ Φ we have[[ϕ ]] = ϕ̂ .

Proof. It follows from Lemma 3.14 and Lemma 3.15 that for all〈α〉ϕ ∈ Φ we have

〈α〉ϕ ∈ Γ iff γ̂(α)(Γ) ∈ λS(ϕ̂).

Therefore it follows by Lemma 3.4 that[[ϕ ]] = ϕ̂ for all ϕ ∈ Φ as required. In particular this shows that
the resulting model isθ -dynamic, since for all relevant testsϕ? we haveϕ ∈ Γ iff Γ ∈ [[ϕ ]]. QED

Theorem 3.17 If L✸ = ({✸},Ax, /0,Ru) is one-step complete with respect to the T-coalgebraic se-
mantics given byλ , andθ consists of positive operations, then the dynamic logicL = L (θ , ; ,∗ ,?) is
(weakly) complete with respect to the class of allθ -dynamicT-models.

Proof. Assume thatψ is anL -consistent formula. LetS be the set ofL -atoms overΦ = Cl(ψ) and
let γ : S→ (TS)A be defined as in Definition 3.9 andV the valuation given byV(p) = p̂ for p∈ P0. By
Lemma 3.16,M = (S,γ ,λ ,V) is a θ -dynamicT-model. Sinceψ is L -consistent there is anL -atom
∆ ∈ S that containsψ and hence by the Dynamic Truth Lemma 3.16,ψ is true at∆ in M. QED

As corollaries to our main theorem we obtain completeness for a number of concrete dynamic modal
logics.

Corollary 3.18 (i) We recover the classic result that PDL is complete with respect to∪-dynamicP-
models from the fact that the diamond version of the modal logic K is one-step complete with respect
to P (cf. [17]), ∪ is a positive natural operation onP, and the Kripke diamondλX(U) = {V ∈ PX |
V ∩U 6= /0} is monotonic and its transpose is a monad morphism. (ii) Taking as base logicL✸ the
monotonic modal logicM with semantics given by the usual monotonic neighbourhood predicate lifting
λX(U) = {N ∈ MX |U ∈ N} with rank-1 axiomatisationAx = {✸(p∧q)→✸p}, it is well known that
L✸ is one-step complete forM , see also [6]. Since∪ is a positive natural operation onM , we get
that dual-free GL is complete with respect to∪-dynamicM -models. (iii) Similarly, dual-free GL with
intersection is complete with respect to∪,∩-dynamicM -models.
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4 Conclusion

There are several ways in which to continue our research. Firstly we will look for other, new examples
that fit into our general coalgebraic framework. A first good candidate seems to be the filter monad
F (cf. [5, 8, 20]). It is easy to see that taking upsets yields a monad morphismτ : P ⇒ F and the
induced join onFX is intersection of filters. We note that filters are not closedunder unions (only under
updirected unions), so∪ is not a natural operation onF . Taking L✸ to be the diamond version of
modal logicK , andλ : Q ⇒ Q ◦F to beλX(U) = {F ∈ FX | X \U 6∈ F} (i.e., the dual of the usual
neigbourhood modality), thenL✸ is complete with respect to the class of allF -coalgebras, since any
Kripke model(X,ρ : X → PX,V) is pointwise equivalent with theF -model(X,τ ◦ρ : X → FX,V),
hence anyϕ that can be falsified in a Kripke model can also be falsified in afilter coalgebra, cf. [2]. We
conjecture thatL✸ is one-step complete forF andλ . From this, a completeness result would follow for
a new PDL-like logic for the filter monad with intersection onactions.

Secondly, we will study variations of our coalgebraic framework to monads that carry quantitative
information to cover important cases such as probabilisticand weighted transition systems. We expect
that we need to switch to a multivalued logic, using for example T(1) as truth value object, as in [3].
In general, we would also like to better understand how our exogenous logics relate to the endogenous
coalgebraic logics of [3] and the weakest preconditions arising from state-and-effect triangles in, e.g., [8,
9]. One difference is that in [3], the monadT is assumed to be commutative. This condition ensures that
the Kleisli category is enriched over Eilenberg-Moore algebras. This could be an interesting approach
to obtaining a “canonical” algebra of program operations, even though, Eilenberg-Moore algebras do
not have canonical representations in terms of operations and equations. Moreover, one of our main
example monads, the monotonic neighbourhood monad is not commutative, but it is still amenable to
our framework.

Finally, our most ambitious aim will be to extend our coalgebraic framework to a completeness proof
which will entail completeness of full GL which remains an open problem [15]. One reason that this is a
difficult problem is that, unlike PDL, full GL is able to express fixpoints of arbitrary alternation depth [1].
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The Arity Hierarchy in the Polyadic µ-Calculus

Martin Lange
School of Electrical Engineering and Computer Science, University of Kassel, Germany

The polyadic µ-calculus is a modal fixpoint logic whose formulas define relations of nodes rather
than just sets in labelled transition systems. It can express exactly the polynomial-time computable
and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with
respect to expressive power inside the polyadic µ-calculus: for every level of fixpoint alternation,
greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation
argument.

1 Introduction

The modal µ-calculus Lµ is a well-studied logic [14, 4, 5], obtained by adding restricted second-order
quantification in the form of least and greatest fixpoints to a multi-modal logic interpreted over labelled
transition systems. A formula of the modal µ-calculus is thus interpreted in a state of such transi-
tion systems which means that such formulas define sets of states in transition systems. For example,
νX.µY.〈a〉X ∨ 〈b〉Y defines the set of all states from which there is a path with labels ‘a’ and ‘b’ that
contains infinitely many occurrences of the symbol ‘a’.

The polyadic µ-calculus Lωµ is a much less known extension of the modal µ-calculus whose formulas
define relations rather than sets of states. They are interpreted in a tuple of states rather than a single
state, and there are modal operators for each position in this tuple. Thus, one states “the third state has an
‘a’-successors” for instance rather than just “there is an ‘a’-successors.” Combining such simple modal
statements with fixpoint quantifiers yields an expressive logic with interesting applications: the polyadic
µ-calculus was first defined by Andersen [2] and used as a logic for defining process equivalences like
bisimilarity [15, 16]. Later it was re-invented by Otto under the name Higher-Dimensional µ-Calculus
[19] and shown to capture the complexity class P over bisimulation-invariant class of finite graphs. I.e. a
bisimulation-invariant property of finite graphs can be computed in polynomial time iff it is definable in
Lωµ .

There is a natural hierarchy in Lωµ given by fragments of bounded arity. The polyadic µ-calculus
itself can be seen as a fragment of FO+LFP, i.e. First-Order Logic extended with fixpoint quantifiers.
The translation naturally extends the standard translation of modal logic into first-order formulas with
one free variable, seen as the point of reference for the interpretation of the property expressed by the
modal formula. Polyadic formulas get interpreted in tuples of states, hence they can be seen as special
first-order formulas with several free variables. The arity of a polyadic formula is then the minimal
number of free variables needed to express this property in FO+LFP or, equivalently, the length of the
tuples used to interpret the formula.

The aim of this article is to show that the hierarchy formed by fragments of bounded arity, denoted
L1
µ, L2

µ, . . . is strict. This is not too surprising when taken literally: clearly, any satisfiable but non-valid
formula in Lk+1

µ is not equivalent to any formula in Lk
µ since the former get interpreted in k+1-tuples and

∗The European Research Council has provided financial support under the European Community’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement no 259267.
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the latter only in k-tuples. We therefore need to employ a convention that allows different fragments to
be compared with respect to expressive power and still yields a meaningful hierarchy result. We consider
formulas that are interpreted in a single state at the top-level, regardless of their arity. I.e. we show that
for every k ≥ 1 there is a Lk+1

µ -formula Φk+1 such that there is no Lk
µ-formula ψ which yields

T , (s, . . . , s︸ ︷︷ ︸
k times

) |= ψ iff T , ( s, . . . , s︸ ︷︷ ︸
k+1 times

) |= Φk+1

for all labelled transition systems T and all their states s.
Arity hierarchies have been studied before, most notably by Grohe for fixpoint extensions of first-

order logic including FO+LFP [10]. Even though each Lk
µ can be embedded into FO+LFP, the arity

hierarchy inLωµ does not follow immediately from the one in FO+LFP. Grohe constructs formulas of arity
k + 1 in FO+LFP – they belong to the smaller FO+TC already – and shows that they are not equivalent
to any formulas of arity k in FO+LFP – not even the much larger FO+sPFP. However, these witnessing
formulas are not bisimulation-invariant since they express a relation formed by the transitive closure of a
clique relation and being a clique is clearly not bisimulation-invariant. Hence, these witnessing formulas
are not expressible in Lωµ and therefore the arity hierarchy is not transferred immediately.

It could of course be checked whether the proof used to show the arity hierarchy in FO+LFP could
be adapted to work for Lωµ as well. It would require the search for a similar witnessing property and the
adaption of the Ehrenfeucht-Fraı̈ssé argument to the polyadic µ-calculus. Such model comparison games
exist for the modal µ-calculus [21] but using them to obtain inexpressibility results has proved to be quite
difficult.

Instead we use a simple diagonalisation argument in order to obtain a strictness result regarding arity
hierarchies. A k-ary formula ϕ can be seen syntactically as a labelled transition system Tϕ, roughly based
on the syntax-tree representation. We can then define a k+1-ary formula that simulates the evaluation of
ϕ on Tϕ and accepts those Tϕ which are not accepted by ϕ itself. Hence, we need to find a generic way
of dualising the operators in ϕ. This is no particular problem, for instance, when one sees a disjunction
then one needs to check both disjuncts, for a conjunction one only needs to check one of them. However,
fixpoint formulas may hold or not because of infinite recursive unfoldings through fixpoint operators.
This needs to be dualised as well, and the only way that we can see to do this is to equip the simulating
formula with a fixpoint structure that is at least as rich as the one of the simulated formula. Consequently,
we obtain an arity hierarchy relative to the alternation hierarchy. This does not happen for extensions of
First-Order Logic since it is known that there is no alternation hierarchy: every FO+LFP formula can be
expressed with a single least fixpoint operator only [12, 23]. The situation for modal logics is different:
more fixpoint alternation generally gives higher expressive power, at least so in the modal µ-calculus [6],
and presumably then so in Lωµ as well.

The rest of this paper is organised as follows. In Section 2 we recall the polyadic µ-calculus and
necessary tools like fixpoint alternation and model checking games. In Section 3 we prove the hierarchy
results, and in Section 4 we conclude with a discussion on further work.

2 The Polyadic µ-Calculus

Labelled Transition Systems. Let Prop = {p,q, . . .} and Act = {a,b, . . .} be two fixed, countably infinite
sets of atomic propositions and action names. A labeled transition system (LTS) over Prop and Act is a
tuple T = (S ,−→,λ, sI) where S is a set of states, −→ ⊆ S ×Act×S is the transition relation, λ : S → 2Prop

labels the states with atomic propositions, and sI is some designated starting state. We will write s a−−→ t
instead of (s,a, t) ∈ −→.
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The Syntax of Lωµ . Let Var = {X,Y, . . .} be an infinite set of second-order variables. The syntax of the
polyadic modal µ-calculus Lωµ is similar to that of the ordinary modal µ-calculus. However, modalities
and propositions are relativised to a natural number pointing at a position in a tuple of states used to
interpret the formula.

A replacement is a κ : N→ N which acts like the identity function on almost all arguments. We
write Nd N to denote the space of all replacements. Such a replacement is then written as {κ(i1)←
i1, . . . , κ(im)← im} when i1 < . . . < im are all those indices for which we have κ(i j) , i j. We will sometimes
allow ourselves to deviate from this and to use some shorter but equally intuitive notation for such
functions. For instance {1↔ 2} should denote the swap between 1 and 2, i.e. it abbreviates {2← 1,1← 2}.

For technical convenience, we define the logic directly in positive normal form. Formulas are then
given by the grammar

ϕ ::= p(i) | ¬p(i) | X | ϕ∨ϕ | ϕ∧ϕ | 〈a〉iϕ | [a]iϕ | µX.ϕ | νX.ϕ | κϕ
where p ∈ Prop, a ∈ Act, 1 ≥ i ∈ N and κ is a replacement. We require that every second-order variable
gets bound by a unique fixpoint quantifier µ or ν. Then for every formula ϕ there is a function fpϕ which
maps each second-order variable X occurring in ϕ to its unique binding formula fpϕ(X) = ηX.ψ.

The set Sub(ϕ) of subformulas of ϕ is defined as usual, with Sub(µX.ϕ) = {µX.ϕ}∪Sub(ϕ) for instance.
Later we will use the abbreviation `→ ϕ when ` is a literal q(i) or ¬q(i). This behaves like ordi-

nary implication – note that we have defined the logic in positive normal form and can therefore not
simply introduce implication via negation – for such formulas when seen as ¯̀∨ϕ where ēll is the usual
complementary literal to `.

The arity of a formula ϕ, denoted ar(ϕ) is the largest index i occurring in the operators p(i), 〈a〉i, [a]i

and {κ} in any of its subformulas. The fragment of arity k isLk
µ := {ϕ | ar(ϕ)≤ k}. Hence, ϕ := νX.〈a〉1{2↔

1}X has arity 2 and it therefore belongs to all fragments L2
µ, L3

µ, etc., because it defines a relation of arity
2 which can also be seen as a relation of higher arity in which the 3rd, 4th, etc. components of its tuples
are simply unrestrained.

The Semantics of Lωµ . Formulas of Lk
µ are interpreted in k-tuples of states of a transition system T =

(S ,−→,λ, sI). An interpretation ρ : Var → 2S k
is neede in order to define this inductively and give a

meaning to formulas with free variables. For each Lk
µ-formula ϕ, [[ϕ]]Tρ is a k-ary relation of states in T ,

namely the relation defined by ϕ under the assumption that its free variables are interpreted by ρ.

[[p(i)]]Tρ := {(s1, . . . , sk) | p ∈ λ(si)}
[[¬p(i)]]Tρ := {(s1, . . . , sk) | p < λ(si)}

[[X]]Tρ := ρ(X)

[[ϕ∨ψ]]Tρ := [[ϕ]]Tρ ∪ [[ψ]]Tρ
[[ϕ∧ψ]]Tρ := [[ϕ]]Tρ ∩ [[ψ]]Tρ
[[〈a〉iϕ]]Tρ := {(s1, . . . , sk) | ∃t s.t. si

a−−→ t and (s1, . . . , si−1, t, si+1, . . . , sk) ∈ [[ϕ]]Tρ }
[[[a]iϕ]]Tρ := {(s1, . . . , sk) | ∀t : if si

a−−→ t then (s1, . . . , si−1, t, si+1, . . . , sk) ∈ [[ϕ]]Tρ }
[[µX.ϕ]]Tρ :=

⋂
{R ⊆ S k | [[ϕ]]Tρ[X 7→R] ⊆ R}

[[νX.ϕ]]Tρ :=
⋃
{R ⊆ S k | [[ϕ]]Tρ[X 7→R] ⊇ R}

[[κϕ]]Tρ := {(sκ(1), . . . , sκ(k)) | (s1, . . . , sk) ∈ [[ϕ]]Tρ }
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Note that the partial order ⊆makes S k a complete lattice with meets and joins given by
⋂

and
⋃

, and the
semantics of fixpoint formulas is then well-defined according to the Knaster-Tarski Theorem [13, 22].

We also write T , s1, . . . , sk |=ρ ϕ instead of (s1, . . . , sk) ∈ [[ϕ]]Tρ . If ϕ has no free second-order variables
then we also drop ρ. In Section 3 we will often consider situations with tuples of the form (s, . . . , s)
of some length k derivable from the context. We will then simply write T , s |= ϕ as a short form for
T , s, . . . , s |= ϕ.

Two formulas ϕ,ψ ∈ Lk
µ are equivalent, written ϕ ≡ ψ, if [[ϕ]]Tρ = [[ψ]]Tρ for any T and corresponding

variable interpretation ρ. Note that two formulas can be equivalent even if they do not belong to the same
arity fragment: if ϕ ∈ Lk

µ and ψ ∈ Lk′
µ and k , k′ then ϕ,ψ ∈ Lmax{k,k′}

µ , i.e. we can interpret the one of
smaller arity as a formula of larger arity that simply does not constrain the additional elements in the
tuples of the relation it defines.

Examples. The standard example of a Lωµ -formula, indeed a L2
µ-formula, is the one defining bisimilar-

ity.
ϕ∼ := νX.

( ∧

p∈Prop

p(1)→ p(2)
)∧ (

∧

a∈Act

[a]1〈a〉2X
)∧{1↔ 2}X

It is indeed the case that T , s, t |= ϕ∼ iff s ∼ t, i.e. s and t are bisimilar in T .
As a second example consider an Twith an edge relation flight and two atomic propositions warm

and safe. When seeing the nodes of the LTS as cities (which can or cannot be warm and/or safe and are
potentially linked by direct flight connections), then

{3← 1}ϕ∼∧〈flight〉2µX.warm(2)∧safe(2)∧〈flight〉1ϕ∼∧ ({3← 1}ϕ∼∨ [flight]2X)∧{2← 3}X
yields all triples (s, t,u) of cities such that there is a roundtrip from t which only traverses through warm
and safe cities that can be reached from city s in one step – in case someone in s wants to come and
visit – such that the trip can be traversed in both directions. This description of course uses equality
(“roundtrip”) on cities which is not available in the logic. Instead we use bisimilarity in the formula, so
for instance “roundtrip from t” is to be understood as a trip starting in t and ending in a city that cannot
be distinguished from t with the means of bisimilarity.

Fixpoint Alternation. The proof of the arity hierarchy carried out in Section 3 needs a closer look
at the dependencies of fixpoints inside a formula. This phenomenon is well-understood leading to the
notion of alternation hierarchy [9, 18]. We give a brief intoduction to fixpoint alternation that is sufficient
for the purposes of the next section.

Let k ≥ 1 and ϕ ∈ Lk
µ be fixed. For two variables X,Y ∈ Sub(ϕ) we write X ≥ϕ Y if X has a free

occurrence in fpϕ(Y). We use >ϕ to denote the strict part of its transitive closure. E.g. in

ϕ := µX.p(2)∨〈b〉1(νY.q(1)∧ νY ′.(µZ.Y ′∨〈a〉1Z)∧ [b]2Y)

we have X >ϕ Y >ϕ Y ′ >ϕ Z even though there is no free occurrence of X in the fixpoint formula for Z.
Names of variables do not matter but their fixpoint types do. So we abstract this chain of fixpoint

dependencies into a chain µ >ϕ ν >ϕ ν >ϕ µ. The alternation type of a formula is a maximal descending
chain of variables (represented by their fixpoint types) such that adjacent types in this chain are different.
The alternation type of ϕ above is therefore just (µ,ν,µ). We then define the alternation hierarchy as
follows: Σk

m, respectively Πk
m consists of all formulas of arity k and alternation type of length at most m

such that the m-th last in this chain is µ, respectively ν, if it exists. For instance, the formula ϕ above
belongs to Σ2

3 and thefore also to Σ2
m and Π2

m for all m > 3. It does not belong to Π2
2.
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Each variable X occuring in ϕ is also given an alternation depth adϕ(X). It is the index in a maximal
chain of dependencies Xm >ϕ . . . >ϕ X1 such that adjacent variables have different fixpoint types. E.g. in
the example above we have adϕ(X) = 3, adϕ(Y) = adϕ(Y ′) = 2 and adϕ(Z) = 1.

The next observation is easy to see.

Lemma 1. Let ϕ ∈ Σk
m and X ∈ Sub(ϕ) be one of its fixpoint variables. Then the fixpoint type of X is

uniquely determined by adϕ(X), namely it is µ if m and i are both odd or both even, otherwise it is ν.

Model Checking Games. We briefly recall model checking games for the polyadic µ-calculus [15].
They are defined in the same style as the model checking games for the modal µ-calculus [20] as a game
played between players Verifier and Refuter on the product space of an LTS and a formula. Such
games can be used to reason about the satisfaction of a formula in a structure since both satisfaction and
non-satisfaction are reduced to the existence of winning strategies for one of the players in these model
checking games.

As with the modal µ-calculus games, the model checking games for the polyadic µ-calculus are
nothing more than parity games. However, they are played using k pebbles in the LTS and one pebble on
the set of subformulas of the input formula. Hence, a configuration is a k + 1-tuple written s1, . . . , sk ` ψ
where the si are states of the underlying LTS T = (S ,−→,λ, sI) and ψ is a subformula of the underlying
formula ϕ.

The rules are as follows.

• In a configuration of the form s1, . . . , sk ` ψ1∨ψ2, player Verifier chooses an i ∈ {1,2} and the play
continues with s1, . . . , sk ` ψi. Intuitively, Verifiermoves the formula pebble to a disjunct from the
current disjunction.

• Likewise, in a configuration of the form s1, . . . , sk ` ψ1 ∧ψ2, player Refuter chooses such an i.
Here, this can be seen as refuter moving the formula pebble.

• In a configuration of the form s1, . . . , sk ` 〈a〉iψ, player Verifier chooses a t such that si
a−−→ t and the

play continues with s1, . . . , si−1, t, si+1, . . . , sk ` ψ. Intuitively, Verifier moves the i-the state pebble
along an outgoing a-transition. The other k− 1 pebbles that are on states remain where they are.
The formula pebble is also moved to the next subformula.

• Likewise, in a configuration of the form s1, . . . , sk ` [a]iψ, player Refuter chooses such a t.

• In a configuration of the form s1, . . . , sk ` ηX.ψ or s1, . . . , sk ` X such that fpϕ(X) = ηX.ψ, the formula
pebble is simply moved to ψ, i.e. the play continues with s1, . . . , sk ` ψ.

A player wins a play if the opponent cannot carry out a move anymore. Moreover, Verifier wins a
play that reaches a configuration of the form s1, . . . , sk ` q(i) if q ∈ λ(si). If, on the other hand, q < λ(si)
then player Refuter wins this play. Finally, there are infinite plays, and the winner is determines by the
necessarily unique outermost fixpoint variable (i.e. the largest with respect to >ϕ) that occurs infinitely
often in this play. If its fixpoint type is ν, then Verifier wins, otherwise it is µ and Refuter wins.

The main advantage of these model checking games is the characterisation of the satisfaction relation
via winning strategies in parity games (which they essentially are).

Proposition 2 ([15]). Player Verifier has a winning strategy in the game in T and a closed ϕ, starting
in the configuration s1, . . . , sk ` ϕ iff T , s1, . . . , sk |= ϕ.
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3 The Arity Hierarchy

3.1 The Principle Construction

The aim of this section is to show that L1
µ,L2

µ, . . . forms a strict hierarchy with respect to expressive
power. The principles underlying the proof are easily explained: first we associate with each Lk

µ-formula
ϕ an LTS Tϕ with a designated starting state which we also call ϕ. Then we construct a closed Lk+1

µ -
formula that, when given a Tϕ, reads off what ϕ is from Tϕ and simulates its evaluation on it, checking
that it does not hold on itself.

We first present the constructions principally, then discuss what results are achieved with the details
of these constructions, and finally optimise the constructions such that the desired hierarchy result is
achieved. We use a singleton Act wich means that we simply write s−→ t instead of s a−−→ t for the single
action name ‘a’. Likewise, we write ^i and �i instead of 〈a〉i and [a]i.

Construction of Tϕ. Let k ≥ 1 be fixed and take an arbitrary closed ϕ ∈ Lk
µ. We assume that the set

of propositions underlying ϕ is Prop = {q0,q1,q2, . . .}. The construction of Tϕ is largely based on the
syntax-tree, respectively syntax-DAG of ϕ. We have Tϕ = (Sub(ϕ),−→,λ,ϕ) with transitions given as
follows.

ψ1 �ψ2−→ψi for every ψ1 �ψ2 ∈ Sub(ϕ),� ∈ {∧,∨} and every i ∈ {1,2}
�ψ−→ψ for every �ψ ∈ Sub(ϕ),� ∈ {^i,�i, κ} and every i ∈ {1, . . . ,k}
ηX.ψ−→ψ for every ηX.ψ ∈ Sub(ϕ) and η ∈ {µ,ν}

X−→ψ for every X ∈ Sub(ϕ) such that fpϕ(X) = ηX.ψ

Thus, the graph structure of Tϕ is indeed almost the one of the syntax-DAG of ϕ except for additional
edges from fixpoint variables to their defining fixpoint formula.

The labelling of the nodes in Tϕ remains to be defined. Remember that the ultimate goal is to
construct a formula Φk+1 which simulates the evaluation of ϕ on Tϕ. We will use k pebbles in order
to simulate the k pebbles used in ϕ, and one additional pebble in order to store the subformula that is
currently in question. Note that the satisfaction of a (closed) formula on an LTS only depends on the
satisfaction of its subformulas. The position of this additional pebble will determine which subformula
is currently evaluated. We therefore need to make the kind of subformula at a node in Tϕ visible to a
formula that is interpreted over it. This is what the state labels will be used for. Let

Prop0 := {p+
j,i, p

−
j,i | 1 ≤ i ≤ k, j ∈N}∪ {p∧, p∨}∪ {p^i , p�i | 1 ≤ i ≤ k}∪ {pFP

i | 0 ≤ i ≤m}∪ {prp
κ | κ ∈NdN} .

The labelling in Tϕ is given as follows. Note that Prop is countably infinite.

p+
j,i ∈ λ(q j(i)) for every positive literal q j(i) ∈ Sub(ϕ)

p−j,i ∈ λ(q j(i)) for every negative literal ¬q j(i) ∈ Sub(ϕ)

p∧ ∈ λ(ψ1∧ψ2) for every ψ1∧ψ2 ∈ Sub(ϕ)

p∨ ∈ λ(ψ1∨ψ2) for every ψ1∨ψ2 ∈ Sub(ϕ)

p^i ∈ λ(^iψ) for every ^iψ ∈ Sub(ϕ),1 ≤ i ≤ k

p�i ∈ λ(�iψ) for every �iψ ∈ Sub(ϕ),1 ≤ i ≤ k

prp
κ ∈ λ(κψ) for every κψ ∈ Sub(ϕ), κ : Nd N
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pFP
i ∈ λ(ηX.ψ),λ(X) for every ηX.ψ,X ∈ Sub(ϕ),η ∈ {µ,ν} with adϕ(X) = i

With those labels a formula can see what the subformula at a node is that it is interpreted over, for
instance whether it is a formula with a replacement modality as the principle operator, etc.

The construction of the simulating formulas. Next we construct formulas that simulate a ϕ on its
own LTs representation Tϕ and check that they do not satisfy themselves. The trick is simple: if ϕ ∈ Lk

µ

then we use k pebbles to simulate what ϕ would do with its k pebbles, and one additional pebble to check
wich subformula we are currently evaluating. We let this pebble move through the syntax-DAG in a form
that is dual to the semantics of the actual operators in the underlying ϕ; for instance in a conjunction we
look for one conjunct, in a disjunction we continue with both disjuncts. We will use several fixpoint
variables to dualise the fixpoint condition similar to the way it is done in the Walukiewcz formulas that
express the winning conditions in parity games [24].

Let m ≥ 0 and k ≥ 1 be fixed. We construct a formula Φk+1
m ∈ Lk+1

µ as follows.

Φk+1
m := νXm.µXm−1 . . .ηX1.

( k∧

i=1

∧

j∈N
p+

j,i(k + 1)→¬q j(i)

∧
k∧

i=1

∧

j∈N
p−j,i(k + 1)→ q j(i)

∧ p∧(k + 1)→ ^k+1X1

∧ p∨(k + 1)→ �k+1X1

∧
k∧

i=1

p^i (k + 1)→ �i�k+1X1

∧
k∧

i=1

p�i (k + 1)→ ^i�k+1X1

∧
∧

κ∈NdN
prp
κ (k + 1)→ κ�k+1X1

∧
m∧

i=1

pFP
i (k + 1)→ �k+1Xi

)

where η = ν if m is odd and η = µ otherwise.

Remark 1. Of course, Φk+1
m is not a formula strictly speaking because of the potentially infinite con-

junctions in the first two clauses. There is an easy way to fix this: we assume a finite set of atomic
propositions {p,q, . . .}. Then a finite conjunction obviously suffices and Φk+1

m is indeed a formula. How-
ever, we need to address the issue of choice of atomic propositions in Section 3.2 below anyway. So for
the moment we simply accept the small flaw about infinite conjunctions as an intermediate step and as a
means to separate the principles from the details in this construction.

Note that this problem does not arise in the clause with the prp
κ since k is fixed, and κ can at most

change the first k pebbles. Hence, there are only finitely many such κ.

We need two observations about Φk+1
m . The first, a syntactic one, is easy to verify.

Lemma 3. For every m ≥ 0 and every k ≥ 1 we have Φk+1
m ∈ Πk+1

m .
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The second one is of a semantic nature and states that Φk+1
m does what it is supposed to do.

Lemma 4. Let m ≥ 0, k ≥ 1 and ϕ ∈ Σk
m. Then we have Tϕ,ϕ |= Φk+1

m iff Tϕ,ϕ 6|= ϕ.

Proof. We argue using model checking games for Lωµ .
“⇐” Suppose we have Tϕ,ϕ 6|= ϕ, i.e. Refuter has a winning strategy for the game G played on Tϕ,

k pebbles initially placed on the node ϕ in it, and the Lk
µ-formula ϕ itself. This gives rise to a strategy

for player Verifier in the game G′ played on Tϕ, now k + 1 pebbles placed on node ϕ initially, and the
formula Φk+1

m . The fact that each node in Tϕ satisfies exactly on atomic proposition of the kind p∗ and at
most one i or at most on κ means that any play which Refuter does not lose immediately selects a clause
in Φk+1

m , carries out some operation on the pebbles and then loops through some fixpoint variable.
It is not hard to see that Verifier can use Refuter’s strategy from G to follow the operations carried

out on the pebbles prescribed by each clause without losing. For instance, if the third clause demands
her to choose a successor for the k + 1-st pebble then she takes the one that represents the conjunct that
Refuter would chose in the same situation in G. This way, every play in G′ that conforms to her strategy
has an underlying play in G that conforms to Refuter’s strategy there. If that one is won by Refuter
because Verifier got stuck at some point then this can only be because the play reached a position of the
form (s1, . . . , sk) ` ^iψ and si has no successor. In the corresponding play in G′, pebble k + 1 will be on
a node with label p^i , and this requires Refuter to move the i-th pebble to a successor which equally he
cannot. Notice that the clause with p^i contains the operator � and vice-versa. Thus, Verifier wins the
corresponding play in G′.

Suppose that the underlying play in G is won by Refuter because the largest fixpoint variable X that
is seen infinitely often is of type µ. Then we must have adϕ(X) = i for some i, and then the play in G′
will infinitely often go through positions that are labelled with pFP

i , and it will eventually not go through
positions that are labelled with pFP

i′ with i′ > i anymore. All that remains to be seen in this case is that
the largest variable seen infinitely often in the play on Φk+1

m is of type ν. This is a direct consequence of
Lemma 1. Hence, Verifier wins such plays, too, which shows that her strategy derived from Refuter’s
winning strategy in G is winning for her in G′.

“⇒” This is shown by contraposition in the same way now assuming a winning strategy for Verifier
in the game on Tϕ and ϕ and turning it into a winning strategy for Refuter in the game on Tϕ and Φk+1

m .

Lemma 5. Let m ≥ 0 and k ≥ 1. There is no ϕ ∈ Σk
m such that ϕ ≡ Φk+1

m .

Proof. Suppose there was such a ϕ. Then we would have

Tϕ,ϕ |= ϕ iff Tϕ,ϕ |= Φk+1
m iff Tϕ,ϕ 6|= ϕ

first because of the assumed equivalence and second because of Lemma 4.

Thus, we could summarise the findings from these lemmas and also uses the observation that the
entire construction is equally possible for formula in Πk

m then yielding a Φk+1
m ∈ Σk+1

m . Then we get that
for all m ≥ 0 and k ≥ 1 we have Σk

m + Πk+1
m and Πk

m + Σk+1
m . Consequently, we have Σk

m ( Σk+1
m+1 and

Πk
m ( Πk+1

m+1.
The reason why we do not formally state this as a theorem (yet) is discussed next.

3.2 The Hierarchy over a Fixed Small Signature

Consider what is happing with the set of atomic propositions in the construction of the previous Sec-
tion 3.1. We have already seen in Remark 1 that the construction does not work for an infinite set of
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atomic propositions Prop. Even if this is finite, then the construction does work but it has the following
effect: we simulate a formula with k pebbles over Prop by a formula with k+1 pebbles over Prop∪Prop0.
It is not surprising that we obtain formulas over this extended signature which cannot be expressed over
the smaller one. In order to argue that the hierarchy of inexpressibility as laid out in the previous sec-
tion is truly meaningful we would need Prop = Prop∪Prop0 or, at least, that the two sets have equal
cardinality so that some bijection between them could be used as an encoding.

In the following we will show how the construction can be fixed such that it works over a fixed finite
set

Prop1 := {p+, p−, p∧, p∨, p^, p�, pFP, prp, psw, p•}
of atomic propositions. Thus, we do not encore the index of propositions, the level in the fixpoint
hierarchy, and the kind of operation on pebbles in those propositions anymore. Instead we will encode
this missing information in the graph structure of Tϕ (rather than in its labels). For the replacement
modalities κ we need a little preparation.

A replacement κ is called simple if it is of the form {i← j} or {i↔ j}. A formula is called normalised
if every replacement in it is simple. The following is a simple consequence of the fact that every function
κ : Nd N that leaves all numbers greater than k untouched, can be constructed by a sequence of swaps
between i, j ≤ k, followed by some simple mappings from some i to a j.

Lemma 6. Let m ≥ 0, k ≥ 1. Every ϕ ∈ Σk
m, respectively Πk

m is equivalent to a normalised ϕ′ ∈ Σk
m,

respectively Πk
m.

We therefore assume that from now on, all formulas ϕ to be simulated are normalised. We change
the construction of Tϕ as follows.

1. Suppose there is a state s of the form q j(i) or ¬q j(i), necessarily labeled with p+
j,i or p−j,i. Replace

the proposition by p+, respectively p−, and add a new finite path of length i + j to this node such
that the (i−1)-st new state has the label p•.

p+
3,2

...

p+

...
p•

Let κ←cyc := {k← 1,1← 2, . . . ,k−1← k} and consider the formula

searchPeb := (p•∧q j(1))∨κ←cyc^k+1((p•∧q j(1))∨κ←cyc^k+1((p•∧q j(1))∨ . . . κ←cyc^k+1(p•∧q j(1)) . . .))
(1)

with k− 1 occurrences of κ←cyc. It is true in s at pebble k + 1 with the additional path iff q j(i) was
true in s with the original construction. The first part of this new path is used to shift the pebbles
until the i-th has become the first and then, instead of checking whether the i-th pebble is on a
state satisfiying q j, we can now check the first one instead. Note that this formulas moves pebble
number k + 1 along this new path but the other k pebbles remain where they are; apart from being
cyclically changed around.
We can of course equally construct such a formula that mimicks the checking of ¬q j(i).
Finally, we also need to use the remaining path to read off the encoding of j. This can easily be
done as follows.

searchProp j := q0(1)∨^k+1(q1(1)∨^k+1(q2(1)∨ . . .^k+1(qh−2(1)∨^k+1qh−1(1)) . . .))
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This formula is then used instead of q j(1) in (1), and the resulting formula is used instead of q j(i)
in the clause for p−j,i in Φk+1

m . Hence, this clase simply becomes

. . .∧ p−j,i→ searchPeb[searchProp/q j(1)]

where ψ[χ/χ′] denotes the formula that results from ψ by replacing every subformula χ′ with χ.

2. An edge of the form ηX.ψ−→ψ or X−→ψ is replaced in similar style by a sequence of i edges,
marking the last state after them with p•. Then we can replace the label pFP

i with pFP in the first
state, and the corresponding clause in Φk+1

m with

. . .∧ pFP→ �k+1((p•∧X1)∨�k+1((p•∧X2)∨�k+1(. . .∨�k+1(p•∧Xm) . . .)))

3. An edge of the form ^iψ−→ψ or �iψ−→ψ is replaced by a sequence of 2i edges via new states, and
p• must hold after i and after 2i steps. The trick to use here is to cycle the first k pebbles until the
i-th one becomes the first, then execute the corresponding action for the i-pebble on the first one
instead, and then cycle them back again. Let κ←cyc be as above and κ→cyc := {2← 1,3← 2, . . . ,1← k}.
Then we can replace the clause for p^i in Φk+1

m by

. . .∧ p^→ (p•∧�k+1(�1goBack∨ κ←cyc(p•∧�k+1(�1goBack∨ . . . (p•∧�k+1�1goBack) . . .)))

with exactly k−1 occurrences of κ←cyc and

goBack := �k+1((p•∧X1)∨ κ→cyc�k+1((p•∧X1)∨ . . .�k+1(p•∧X1) . . .))

with exactly k−1 occurrences of κ→cyc.

Likewise, we can use the same trick to eliminate the dependence on i of the formula Φk+1
m in the

clause for p�i which is equally replaced by p�, and those paths of length 2i can be used to decode
the value i from the graph structure instead of reading it straight off the atomic proposition.

4. Finally, we can use the same trick in a slightly more elaborate fashion to handle replacement
modailities of the form {i← j} and {i↔ j}. We mark nodes in Tϕ that correspond to the form by
prp and those that correspond to the latter by psw. A swap of the form {i↔ j} can be handled as
follows: assume i < j.

(a) Cyclically shift the pebbles 1, . . . ,k for i positions to the left.

(b) Cyclically shift the pebbles 2, . . . ,k for j− i−1 positions to the left.

(c) Swap pebbles 1 and 2.

(d) Cyclically shift the pebbles 2, . . . ,k for j− i−1 positions to the right.

(e) Cyclically shift the pebbles 1, . . . ,k for i positions to the right.

Hence, we replace a transition of the form {i← j}ψ−→ψ by a path of length 2 j− 2 and mark the
states at positions i, j− 1, 2 j− 2 and the last one with p• so that we can, like above, construct a
formula that mimicks the five steps above to carry out the swapping of pebbles i and j.

The construction for replacements of the form {i← j} is similar. Again, the trick is to cycle i and j
to positions 1 and 2, carry the replacement out on these fixed positions, and cycle the pebbles back
again. These eliminates the dependence of Φk+1

m on propositions which carry such a value.
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With this being done, Φk+1
m becomes a formula that is defined over a fixed set Prop1 of atomic proposi-

tions of size 10, and we can use it to simulate formulas ϕ ∈ Σk
m over the same Prop1. Then the inexpress-

ibility result of the previous section becomes meaningful. Using standard encoding techniques we can
break the resul down to Lωµ over two atomic propositions only, using binary encoding, or a single one,
using unary encoding. The atomic propositions can also be eliminated entirely by appending certain fi-
nite trees to the states in which they hold such that these trees are checkable using fixpoint-free formulas
of Lωµ . Hence, we get the following.

Theorem 7. For all m ≥ 0 and k ≥ 1 we have Σk
m + Πk+1

m and Πk
m + Σk+1

m . Consequently, we have Σk
m (

Σk+1
m+1 and Πk

m ( Πk+1
m+1. These results hold independently of the underlying signature Prop and Act.

4 Conclusion and Further Work

We have shown that the arity hierarchy in the polyadic µ-calculus, a modal fixpoint logic for specifying
bisimulation-invariant relational properties of states in transition systems, is strict in the sense that higher
arity gives higher expressive power provided that one is allowed to use a little bit more fixpoint alternation
(Σk

m ( Σk+1
m+1). If alternation must not increase then higher arity yields not necessarily more but different

expressiveness (Σk
m + Πk+1

m ).
Obviously, the exact effects on expressive power that should be attributed to arity and to fixpoint

alternation need to be separated. A first step would be to prove the strictness of the alternation hierarchy
within each Lk

µ. For k = 1, i.e. the ordinary µ-calculus, this is known for arbitrary and in particular for
finite transition systems [6, 17]. Subsequently, the result could be shown for several other classes of
transition systems, for instance binary trees [3, 7], nested words [11] and graphs whose edge relation
satisfies certain properties like being transitive for instance [8, 1].

We suspect that not only is the alternation hierarchy within each Lk
µ also strict, but equally that

Arnold’s proof [3] using a similar diagonalisation argument for Lµ can be extended. It relies on the
interreducibility between model checking for Lµ and parity games [20] and in particular the existence of
the Walukiewicz formulas defining winning regions in parity games [24]. It is known [15] that the model
checking problem for Lk

µ and any k ≥ 1 can equally be reduced to a parity game, and it seems feasible to
extend the construction of the Walukiewicz formulas to higher arity. This would use similar principles
as those underlying the construction of Φk+1

m in Section 3.
Model checkingLk

µ can also be reduced to model checkingLµ directly using k-products of transition
systems, i.e. there is a translation of Lk

µ-formulas to Lµ-formulas that preserves truth under taking k-fold
products of transition systems [19, 15]. Hence, the question of the strictness of the alternation hierarchy
in Lk

µ is equivalent to the question after the strictness of the Lµ alternation hierarchy over the class of all
k-fold products of transition systems.
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This paper studies the relationship between disjunctive form, a syntactic normal form for the modal
µ calculus, and the alternation hierarchy. First it shows that all disjunctive formulas which have
equivalent tableau have the same syntactic alternation depth. However, tableau equivalence only
preserves alternation depth for the disjunctive fragment:there are disjunctive formulas with arbi-
trarily high alternation depth that are tableau equivalentto alternation-free non-disjunctive formulas.
Conversely, there are non-disjunctive formulas of arbitrarily high alternation depth that are tableau
equivalent to disjunctive formulas without alternations.This answers negatively the so far open ques-
tion of whether disjunctive form preserves alternation depth. The classes of formulas studied here
illustrate a previously undocumented type of avoidable syntactic complexity which may contribute
to our understanding of why deciding the alternation hierarchy is still an open problem.

1 Introduction

The modalµ calculus [2],Lµ , is a modal logic augmented with its namesake least fixpoint operatorµ
and the dual greatest fixpoint operator,ν . Alternating between these two operators gives the logic its
great expressivity [1] while both model checking and satisfiability remain pleasingly decidable. The
complexity of model checking is, at least currently, tied tothe number of such alternations, called the
alternation depth of the formula being checked [10]. The problem of deciding the least number of
alternations required to express a property, also known as the Rabin-Mostowski index problem, is a long
standing open problem.

Disjunctive normal form is a syntactic restriction onLµ formulas which first appeared in [9] and was
then used as a tool for proving completeness of Kozen’s axiomatization [14]. It is based on the tableau
decomposition of a formula which forces it to be in many ways well-behaved, making it a useful tool
for various manipulations. For instance, satisfiability and synthesis are straight-forward for disjunctive
formulas. In [5] it is used to analyse modalLµ from a logician’s perspective. More recently, disjunctive
form was found to allow for simple formula optimisation: if aformula is equivalent to a formula with-
out greatest fixpoints, then such a formula is easily produced by simple syntactic manipulation on the
disjunctive form of the formula [11].

Each of these results uses the fact that any formula can be effectively transformed into an equivalent
disjunctive formula with the same tableau – indeed, disjunctive form is perhaps the closest one gets to
a canonical normal form forLµ . The transformation itself, described in [9], is involved and it has so
far been an open question whether it preserves the alternation depth of formulas. If this was the case, it
would be sufficient to study the long-standing open problem of the decidability of the alternation hierar-
chy on this well-behaved fragment.

In this paper, we show that although the disjunctive fragment of Lµ is itself well-behaved with respect
to the alternation hierarchy, the transformation into it does not preserve alternation depth.
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The transformation into disjunctive form takes the tableaudecomposition of a formula, and produces
a disjunctive formula that generates the same tableau. The first contribution of this paper is to show
that all disjunctive formulas generating the same tableau have the same alternation depth. This result
brings some clarity to the transformation into disjunctiveform since one of the more difficult steps of the
construction is representing the parity of infinite paths ofthe tableau with a finite priority assignment.
The result presented here means that all valid choices are just as good, as all yield a disjunctive formula of
the same alternation depth. As a result, the alternation hierarchy is decidable for the disjunctive fragment
of Lµ with respect to tableau equivalence, a stricter notion of equivalence than semantic equivalence, as
defined in [14].

The second contribution of this paper is to show that this does not extend to non-disjunctive formulas.
Not only does tableau equivalence not preserve alternationdepth in general, but the alternation depth of a
formula does not guaranteeanyupper bound on the alternation depth of equivalent disjunctive formulas.
Indeed, for arbitrarily largen, there are formulas with a single alternation which are tableau equivalent
only to disjunctive formulas with at leastn alternations.

Conversely, there are formulas ofLµ with arbitrarily large alternation depth which are tableauequiv-
alent to a disjunctive formula without alternations. This shows that the alternation depths of tableau
equivalent formulas are only directly related within the disjunctive fragment.

The signficance of these results in twofold. First, they outline the limits of what can be achieved
using disjunctive form: disjunctive form does not preservealternation depth so despite being a useful
tool for satisfiability-related problems, it is unlikely tobe of much help in contexts where the alternation
depth of a formula matters, such as model-checking or formula optimisation beyond the first levels of
the alternation hierarchy.

Secondly, and perhaps most significantly, these results impact our understanding of the alternation
hierarchy. This paper’s results imply that deciding the alternation hierarchy for the disjunctive fragment
of Lµ , an open but easier problem, is not sufficient for deciding the alternation hierarchy in the general
case. The counterexamples used to show this illustrate a previously undocumented type of accidental
complexity which appears to be difficult to identify. These may shed light on why deciding the alternation
hierarchy is still an open problem and examplify a category of formulas with unnecessary alternations
which need to be tackled with novel methods.

Related work Deciding the modalµ alternation hierarchy is exactly equivalent to deciding the Rabin-
Mostowski index of alternating parity automata. The corresponding problem has also been studied for
automata operating on words [3] and automata which are deterministic [13, 12], or non-deterministic
[4, 7] rather than alternating. As will be highlighted throughout this paper, many of the methods used
here are similar to methods applied to different types of automata.

2 Preliminaries

2.1 The modalµ calculus

For clarity and conciseness, the semantics ofLµ are given directly in terms of parity games. As is well
documented in the literature, this approach is equivalent to the standard semantics [2]. The following
definitions are fairly standard, although we draw the reader’s attention to the use of the less typical
modality→B in the syntax ofLµ and the unusual but equivalent definition of alternation depth.
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Definition 1. (Lµ) Given a set of atomic propositionsProp= {P,Q, ...} and a set of fixpoint variables
Var = {X,Y, ...} , the syntax ofLµ is given by:

φ :=⊤ | ⊥ | P | ¬P | X | φ ∧φ | φ ∨φ | →B whereB is a set of formulas| µX.φ | νX.φ

The modality→B replaces the more usual modalities♦φ and�φ . If B is a set of formulas,→B
stands for(

∧
φ∈B ♦φ)∧�∨

φ∈B φ : every formula inB must be realised in some successor state and each
successor state must realise at least one of the formulas inB. The modalities♦φ and�φ are expressed
in this syntax by→{φ ,⊤} and→{φ}∨→⊥ respectively, where⊥ denotes the empty set.

Without loss of expressivity, this syntax only allows for formulas in positive form: negation is only
applied to propositions. Furthermore, without loss of expressivity, but perhaps conciseness, we require
all formulas to be guarded: all fixpoint variables are withinthe scope of a modality within their binding
formula. For the sake of clarity, we restrict our study to theuni-modal case but expect the multi-modal
case to behave broadly speaking similarly. To minimise the use of brackets, the scope of fixpoint bindings
should be understood to extend as far as possible.

Definition 2. (Structures)A structureM = (S,s0,R,P) consists of a set of statesS, rooted at some initial
states0 ∈ S, and a successor relationR⊆ S×Sbetween the states. Every states is associated with a set
of propositionsP(s)⊆ Prop which it is said to satisfy.

Definition 3. (Parity games)A parity game is a potentially infinite two-player game on a finite graph
G = (V0,V1,E,vI ,Ω) of which the verticesV0∪V1 are partitioned between the two players Even and Odd
and annotated with positive integer priorities viaΩ : V0∪V1 → N. The even player and her opponent,
the odd player, move a token along the edgesE ⊆V0∪V1×V0∪V1 of the graph starting from an initial
positionvI ∈ V0 ∪V1, each choosing the next position when the token is on a vertexin their partition.
Some positionsp might have no successors in which case they are winning for the player of the parity
of Ω(p). A play consists of the potentially infinite sequence of vertices visited by the token. For finite
plays, the last visited parity decides the winner of the play. For infinite play, the parity of the highest
priority visited infinitely often decides the winner of the game: Even wins if the highest priority visited
infinitely often is even; otherwise Odd wins. Note that sincesome readers may be used to an equivalent
definition using the lowest priority to define the winner, whenever possible, “most significant” will be
used to indicate the highest priority.

Definition 4. (Strategies)A positional strategyσ for one of the players inG = (V0,V1,E,vI ,Ω) is a
mapping from the player’s positionss, in V0 for Even and inV1 for Odd, in the game to a successor
positions′ such that(s,s′) ∈ E. A play respects a player’s strategyσ if the successor of any position in
the play belonging to the player is the one dictated byσ . If σ is Even’s strategy andτ is Odd’s strategy
then there is a unique playσ ×τ respecting both strategies from every position. The winnerof the parity
game at a position is the player who has a strategyσ , said to be a winning strategy, such that they
win σ × τ from that position for any counter-strategyτ . The following states that such strategies are
sufficient: players do not need to take into account the history of a play to play optimally.

Fact 5. Parity games are positionally determined: for every position either Even or Odd has a winning
strategy [6].

This means that strategies gain nothing from looking at the whole play rather than just the current
position. As a consequence, we may take a strategy to be memoryless: it is a mapping from a player’s
positions to a successor.
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For anyLµ formulaφ and a structureM we define a parity gameM ×φ , constructed in polynomial
time, and say thatM satisfiesφ , writtenM |= φ , if and only if the Even player has a winning strategy
in M ×φ .

Definition 6. (Model-checking parity game)For any formulaφ of modalµ , and a modelM , define a
parity gameM × φ with positions(s,ψ) wheres is a state ofM andψ is either a proper subformula
of φ , or the formula

∨
B, or the formula♦ψ for any→B and ψ ∈ B in φ . The initial position is

(s0,φ) wheres0 is the root ofM . Positions(s,ψ) whereψ is a disjunction or♦ψ ′ belong to Even while
conjunctions and positions→B belong to Odd. Other positions have at most one successor; let them be
Even’s although the identity of their owner is irrelevant. There are edges from(s,ψ ∨ψ ′) and(s,ψ ∧ψ ′)
to both(s,ψ) and(s,ψ ′); from (s,µX.φ) and(s,νX.φ) to (s,φ); from (s,X) to (s,νX.ψ) if X is bound
by ν , or (s,µX.ψ) if it is bound byµ ; finally, from (s,→B) to every(s′,

∨
B) where(s,s′) is an edge in

M , and also to every(s,♦ψ) whereψ ∈ B and from(s,♦ψ) to every(s′,ψ) where(s,s′) is an edge in
the modelM . Positions(s,P),(s,¬P),(s,⊤) and(s,⊥) have no successors. The parity function assigns
an even priority to(s,⊤) and also to(s,P) if ssatisfiesP in M and to(s,¬P) if sdoes not satisfyP in M ;
otherwise(s,P) and(s,¬P) receive odd priorities, along with(s,⊥). Fixpoint variables are given positive
integer priorities such thatν-bound variables receive even priorities whileµ-bound variables receive odd
priorities. Furthermore, wheneverX has priorityi, Y has priority j andi < j, X must not appear free in
the formulaψ bindingY in µY.ψ or νY.ψ . In other words, inner fixpoints receive lower, less significant
priorities while outer fixpoint receive high priorities. Other nodes receive the least priority used, 0 or 1.

We now use parity games to define the semantics ofLµ .

Definition 7. (Satisfaction relation)A structureM , rooted ats0 is said to satisfy a formulaΨ of Lµ ,
written M |= Ψ if and only if the Even player has a winning strategy from(s0,Ψ) in M ×Ψ .

Note that the definition of the model-checking parity game requires a priority assignment to fixpoint
variables in a formula that satisfies the conditions thatν-variables receive even priorities,µ-variables
receive odd priorities and wheneverX has priorityi, Y has priority j and i < j, X must not appear free
in the formulaψ binding Y in µY.ψ or νY.ψ . For any formula, there are several valid assignments.
For example, one could assign a distinct priority to every fixpoint, with the highest priority going to the
outermost bound fixpoint and the priorities decreasing the further into the formula a fixpoint is bound.
We further restrict a parity assignment to be surjective into an initial fragment ofN: if a priority is
unused, all greater priorities can be reduced by 2. We define the alternation depth of a formula to be
the minimal valid assignment. Although variations of this definition exists, our motivation is to match
closely the alternations required in the model checking parity game.

Definition 8. Let a priority assignment be a functionΩ : Var → {0...n} for some integern, which is
surjective on at least{1, ...,n}, such that ifΩ(X) < Ω(Y) thenX does not appear free in the formula
binding Y and the parity ofΩ(X) is even forν-bound variables and odd forµ-bound variables. We
don’t require the priority 0 to be used, but include it in the co-domain for simplicity. In this paper, we
take the alternation depth of a formula to be the co-domain ofthe least priority assignment of a formula.
The correspondance with the priorities of the model checking parity game should make it clear that
this definition is equivalent to the more typical syntactic ones in the literature, for example in [2]. An
alternation free formula is a formula which has both priority assignements with co-domain{0,1} and
{0,1,2} where 0 is not used.

Deciding whether a formula is equivalent to a formula with smaller alternation depth is a long stand-
ing open problem.
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2.2 Tableau decomposition

Definition 9. (Tableau)A tableauT = (T,L) of a formulaΨ consists of a potentially infinite treeT of
which each noden has a labelL(n) ⊆ sf(Ψ) wheresf(Ψ) is the set of proper subformulas ofΨ. The
labelling respects the following tableau rules with the restriction that the modal rule is only applied where
no other rule is applicable.

{Γ,φ ,ψ}
(∧){Γ,ψ ∧φ}

{Γ,φ} {Γ,ψ}
(∨){Γ,ψ ∨φ}

{Γ,φ}
(σ) with σ ∈ {µ ,ν}{Γ,σX.φ}

{Γ,φ}
(X) whereX is a fixpoint variable bound byσX.φ , with σ ∈ {µ ,ν}{Γ,X}

{ψ}∪{∨B|→B ∈ Γ,B 6= B′} for every→B′ ∈ Γ,ψ ∈ B′
(→){Γ}

Note that each branching node is either a choice node, corresponding to a disjunction, or a modal
node. Although the rules only contain a binary disjunctive rule, we may write, for the sake conciseness,
a sequence of binary choice nodes as a single step. Also note that when a modal rule is applied, all
formulas in a label are either modal formulas or literals, that is to say propositional variables and their
negations. The latter form the modal node’s set of literal and are a semantically important component of
the tableau. An inconsistent set of literals is equivalent to ⊥ and a node with such a set of literals in its
label has no successors.

Sequences of subformulas along a path in the tableau are called traces and correspond to plays in the
model checking parity game. Aµ-trace is a trace winning for the Odd player.

Definition 10. (µ-trace)Given an infinite branch in a tableau, that is to say a sequencen0n1... of nodes
starting at the root, whereni+1 is a child ofni , a trace on it is an infinite sequencef0 f1... of formulas
satisfying the following: each formula is taken from the label of the corresponding node,fi ∈ L(ni) for
all i ≥ 0; successive formulasfi and fi+1 are identical if fi is not the formula that the tableau rule from
ni to ni+1 acts on; if the tableau rule fromni to ni+1 is a disjunction, conjunction, or fixpoint binding
elimination acting onfi , then fi+1 is an immediate subformula offi ; if the tableau rule fromni to ni+1 is
a modality, thenfi has to be a formula→B and fi+1 is either

∨
B or a formulaψ ∈ B; if the tableau

rule fromni to ni+1 is a fixpoint regeneration acting on the fixpoint variablefi , then fi+1 is the binding
formula for fi. A trace is aµ-trace if the most significant fixpoint variable that regenerates infinitely
often on it is aµ-variable.

Since labels are to be thought of as conjuncts, it is sufficient for an infinite path in a tableau to allow
oneµ-trace for the infinite path to be winning for the Odd player.

Definition 11. (Parity of a path)An infinite path in a tableau is said to be even if there are noµ-traces
on it, otherwise it is said to be odd.

Note that the order of applications of the tableau rules is non deterministic so a formula may appear
to have more than one tableau. However, tableau equivalence, defined next, only looks at the structure of
branching, whether branching nodes are modal or disjunctive, the literals at modal nodes and the parity
of infinite paths, so a formula has a unique tableau, up to tableau equivalence. We define tableau cores
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to be the semantic elements of the tableau – node types, literals at modal nodes, branching structure and
the parity of infinite paths – which do not depend on the syntaxof the generating formula. Finally, we
define trees with back edges which are finite representationsof tableau cores.

Definition 12. (Tableau core)A tableau core isC = (C,Ω) whereC is a potentially infinite but still
finitely branching tree of which the nodes are either modal nodes or disjunctive nodes and modal nodes
are decorated with a set of literals.Ω is a parity assignment with a finite prefix ofN as co-domain. An
infinite path inC is of the parity of the most significant priority seen infinitely often. C = (C,Ω) is a
tableau core forT = (T,L) if once the sequences of disjunctions inT are collapsed into one non-binary
disjunction there is a bijectionb between the branching nodes ofT and the nodes ofC which respects
the following: the successor relation in the sense thatb(i) is a child ofb( j) in C if and only if i is a child
of j in T, whether nodes are modal or disjunctive, the literals at modal nodes, and the parity of infinite
paths. That is to say, if a path inT maps to a path inC then the highest priority seen infinitely often on
the path inC is even if and only if the path inT has noµ-trace.

Definition 13. (Tableau equivalence)Two tableaus(T0,L0) and(T1,L0) are equivalent if their cores are
bisimilar with respect to their branching structure, whether nodes are disjunctive or modal, the literals
at modal nodes and the parity of infinite branches. Two formulas are tableau equivalent if they generate
equivalent tableaus.

Definition 14. (Tree with back edges)Tableaus are potentially infinite but regular, so they allowfinite
representations. A finite representation of a tableauA = (A,Ω) is a finite tree with back edges,A which
is bisimilar to the core of the tableau. Every node is either amodal node or a disjunctive node and modal
nodes are associated with a set of literals. The tree has a priority assignmentΩ which assigns priorities
to nodes such that the highest priority on an infinite path is of the parity of that path.

To summarise, a tableauT is a potentially infinite tree labelled with sets of subformulas – it is
specific to the formula which labels its root; a tableau core,C is a potentially infinite object which
carries the same semantics but is not specific to one formula;finally, a tree with back edges, calledA
because of its resemblance to alternating parity automata,is a finite representation of a tableau core.
The next section will present the one-to-one correspondence between disjunctive formulas and trees with
back edges.

Theorem 15. [9] Tableau equivalent formulas are semantically equivalent.

Note that tableau equivalence is a stricter notion than semantic equivalence;ψ ∨¬ψ and⊤ have
different tableau for example.

2.3 Disjunctive normal form

Disjunctive form was introduced in [9] as a syntactic restriction on the use of conjunctions. It forces
a formula to follow a simple structure of alternating disjunctions and modalities where modalities are
qualified with a conjunction of propositions. Such formulasare in many ways well-behaved and easier
to manipulate than arbitraryLµ formulas.

Definition 16. (Disjunctive formulas)The set of disjunctive form formulas of (unimodal)Lµ is the
smallest setF satisfying:

• ⊥,⊤, propositional variables and their negations are inF ;

• If ψ ∈ F andφ ∈ F thenψ ∨φ ∈ F ;

• If A is a set of literals andB ⊆ F (B is finite), then
∧

A ∧→B ∈ F ;
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• µX.ψ andνX.ψ as long asψ ∈ F .

Every formula is known to be equivalent to an effectively computable formula in disjunctive form [9].
The transformation into disjunctive form involves taking the formula’s tableau decomposition and com-
pressing the node labels into a single subformula. The tricky part is finding a tree with back edges and its
priority assignment to represent the tableau finitely, including the parity of infinite paths. The transfor-
mation then turns the tree with back edges into a disjunctiveformula with alternation depth dependent on
the priority assignment. Conversely, a disjunctive formula and its minimal priority assignment induces a
tree with back edges representing its tableau. The minimal priority function required to finitely represent
a tableau is therefore equivalent to the minimal alternation depth of a disjunctive formula generating
the tableau. The following theorem recalls the construction of disjunctive formulas from trees with back
edges labelled with priorities from [9] and shows that the alternation depth of the resulting formula stems
from the priority assignment of the tree with back edges.

Theorem 17. Let A = (A,Ω) be a tree with back edges that is bisimilar to a core of the tableauT
with priority assignmentΩ with co-domain{0...q}. Then there is a disjunctive formula with alternation
depth{0...q} which generates a tableau equivalent toT .

Proof. First of all, we constructA ′ = (A′,Ω′), bisimilar toA but with a priority assignment with the
following property: on all paths from root to leaf, the priorities of nodes that are the targets of back edges
occur in decreasing order. This is straight-forward by looking at the infinite tableau coreA unfolds into,
remembering which nodes stem from the same node inA and their priority assigned byΩ. First consider
all branches that see the highest priorityq infinitely often and cut them short by creating back edges at
nodes of priorityq, pointing to the bisimilar ancestor node (also of priorityq) that is closest to the root.
Then repeat this for each priority in decreasing order, but for each priorityq− 1 treat the ancestor of
priority q that back edges point to (if it exists) as the root, so that nodes that have back edges pointing
to them end up in decreasing order of priority. Note that every cycle is now dominated by the priority of
the first node from the root seen infinitely often.

The disjunctive formula is then obtained by assigning a subformula f (n) to every node ofA as
follows. If n is a leaf with literalsQ, then f (n) =

∧
Q; if n is a disjunctive node with childrenn0 and

n1, then f (n) = f (n0)∨ f (n1); if n is the source of a back edge of which the target ism, then f (n) = Xm

whereXm is a fixpoint variable; ifn is a modal node, thenf (n) =
∧

Q∧→B whereQ is the set of literals
atn andB is the set off (ni) for ni children ofn; other nodes inherit the formula assigned to their unique
child. If n is the target of a back edge,f (n) is obtained as previously detailed but in addition, it bindsthe
fixpoint variableXn with a ν-binding if n is of even parity and with aµ-binding otherwise.

If r is the root node ofA′, then f (r) is a disjunctive formula that generates a tableau that is equivalent
to T . This should be clear from the fact that the tableau off (n) consists of the infinite tree generated
by A′ and the labellingL(n) = { f (n)} for all n. Ω′ restricted to the target of back edges is a priority
assignment for the disjunctive formulaΨ = f (n) since it respects the parity of paths and on each branch
the priorities occur in decreasing order. This guarantees that if Ω′(X) < Ω′(Y) thenX is not free in the
formula bindingY.

ThereforeΨ has a tableau that is equivalent toT and accepts a priority assignment with co-domain
{0...q}.

Conversely, a disjunctive formula induces a tree with back edges generating its tableau by taking its
tableau until each branch reaches a fixpoint variable which is the source of a back edge to its binding
formula. The priority assignment of the formula is also a priority assignment for the tree with back-edges.
This yields a one-to-one correspondence between trees withback edges and disjunctive formulas.
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3 Tableau equivalence preserves alternation depth for disjunctive Lµ

This section argues that all disjunctive formulas generating the same tableauT have the same alternation
depth. The structures used to identify the alternation depth are similar to ones found in [8] to compute the
Rabin-Mostowski index of a parity games and the flowers described in [12] to find the Rabin-Mostowski
index of non-deterministic automata. Here I show that tableau equivalence preserves these structures and
consequently also the alternation depth of disjunctive formulas.

Definition 18 describes a witness showing that the priority assignmentΩ of a tree with back edges
A = (A,Ω) representingT requires at leastq priorities. This witness is preserved by bisimulation with
respect to node type, literals and parity of infinite branches. Since all finite representations of a tableau
T are bisimilar with respect to these criteria, they all have the same maximal witness, indicating the
least number of prioritiesT can be represented with.

Informally, the witness of strictness is a series of cycles of alternating parity where each cycle is
contained within the next.

Definition 18. (q-witness)A q-witness in a tree with back edges(A,Ω) representing a tableauT consists
of q cyclesc1...cq such that for eachi ≤ q, the cycleci is of the parity ofi and for all 0< i < q, the cycle
ci is a subcycle ofci+1.

Lemma 19. If a tree with back edges(A,Ω) has a q-witness, then the co-domain of the priority assign-
mentΩ has at least q elements.

Proof. Given aq-witnessc1...cq, for every pair of cyclesci andci+1, since they are of different parity and
ci is contained inci+1, the dominant priority onci+1 must be strictly larger than the dominant priority on
ci . Therefore there must be at leastq priorities in the cyclecq which contains all the other cycles of the
witness.

Lemma 20. If a tree with back edgesA representing a tableuT does not have a q-witness, then there is
an tree with back edgesA ′ which also representsT but has a priority assignment with fewer priorities.

Proof. Assume a tree with back edgesA = (A,Ω) representingT with a priority assignment with co-
domain{0...q} does not have aq witness. LetSq be the set of nodes of priorityq. Let Si−1 for 1< i ≤ q
be the set of nodes of priorityi −1 which appear as the second highest priority in a cycle whereall the
nodes of highest priority are inSi , and as the nodes of highest priority in some cycle. Note thatif S1

was non-empty, then there would be aq-witness, soS1 and consequentlyS0 must be empty. Then define
a new priority function as follows: the new priority function Ω′ is asΩ, except for nodes in anySi –
these receive the priorityi −2 instead of the priorityi. SinceS1 andS0 are empty, this is possible whilst
keeping all priorities positive.Ω′ with co-domain{0...q− 1} preserves the parity of infinite branches
since there are no cycles in which the priority of all dominant nodes is decreased more than the priority
of all sub-dominant nodes and each node retains the same parity. Therefore, if a finite representation of
T does not have aq-witness, then there is a finite representationA ′ = (A,Ω′) with a smaller priority
assignment.

Lemma 21. All tableau equivalent trees with back edges have the same q-witnesses: for all q, either all
or none of the trees with back edges representing a same tableau T have a q-witness.

Proof. First we recall that ifA is the finite representation ofT induced by a disjunctive formulaΨ
then the tableau ofT is an infinite tree bisimilar toA with respect to node type, literals and parity of
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infinite branches. Hence any finite representation ofT is bisimilar toA . It then suffices to show that
q-witnesses are preserved under bisimulation. This is straight-forward: letA ′ be bisimilar to a finite
tree with back edgesA with respect to node type, literals at modal nodes and the parity of infinite paths.
Then infinite paths inA are bisimilar to infinite paths inA ′. Since bothA andA ′ are finite, an infinite
path stemming from a cycle inA is bisimilar to a cycle inA ′. A q-witness contains at least one node
which lies on all the cycles of the witness. IfA hasq cycles, call the node on all of its cyclesn and
consider (one of) the deepest node(s)n′ in A ′ bisimilar ton. That is to say, choosen′ such that if another
node bisimilar ton′ is reachable fromn′, it must be an ancestor ofn′. Sincen′ is bisimilar ton, there
must be a cyclec′i bisimilar to eachci reachable fromn′. Sincen′ is maximally deep, it is contained in
each of these cyclesc′i . Then, aq-witness can be reconstructed inA ′ by taking the cyclec′1, and then
for eachi > 0 the cycle consisting of allc′j , j ≤ i . Since allc′i cycles haven′ in common, there is a cycle
combiningc′j , j ≤ i for any i. Since bisimulation respects the parity of cycles, this yields aq-witness in
A ′.

Theorem 22. All disjunctive formulas with tableauT have the same alternation depth.

Proof. All trees with back edges representing the same tableauT have the same maximal witness,
from the previous lemma, so from Lemma 20 they accept a minimal priority function with domain
{0...q}. Since a disjunctive formula induces a tree with back edges with a minimal priority function
corresponding to the formula’s alternation depth, any two disjunctive formulas that are tableau equivalent
must have the same alternation depth.

This concludes the proof that tableau equivalence preserves alternation depth on disjunctive formulas.
The restriction to disjunctive formulas is crucial: as the next section shows, in the general case tableau
equivalent formulas may have vastly different alternationdepths.

4 Disjunctive form does not preserve alternation depth

Every formula has a tableau which allows it to be turned into asemantically equivalent disjunctive
formula. This section studies the relationship between a formula’s alternation depth and the alternation
depth of its tableau equivalent disjunctive form. As the previous section shows, any two disjunctive
formulas with the same tableau have the same alternation depth; therefore comparing a non-disjunctive
formula to any tableau equivalent disjunctive formula willdo.

The first subsection demonstrates that not only does disjunctive form not preserve alternation depth,
but also that there is no hope for bounding the alternation depth of disjunctive formulas with respect to
their semantic alternation depth: for anyn there are one alternation formulas which are tableau equiva-
lent to n alternation disjunctive formulas. In other words, the alternation depth of aLµ formula, when
transformed into disjunctive form, can be arbitrarily large. Conversely, as shown in the second subsec-
tion, formulas of arbitrarily large alternation depth can be tableau equivalent to a disjunctive formula
without alternations. Hence the alternation depth of tableau equivalent formulas are only related within
the disjunctive fragment.

4.1 Disjunctive formulas with large alternation depth

While the main theorem is proved by Example 27, the Examples 23 and 25 leading up to it should give
the interested reader some intuition about the mechanics which lead the tableau of a formula to have
higher alternation depth than one might expect.
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*
Y,X W

→{Y}, Ā,→{X} Ā,→{W}
→{Y}, Ā∧→{X} Ā ∧→{W}

*
Y Z

→{Y},A A,→{Z}
→{Y},A A ∧→{Z}

* →{Y},(Ā∧→{X})∨A (Ā∧→{W})∨ (A ∧→{Z})
νY.→{Y}∧µX.(Ā∧→{X})∨A νZ.µW.(Ā∧→{W})∨ (A ∧→{Z})

Figure 4.1: Tableaus forνY.→{Y}∧µX.(Ā∧→{X})∨A andνZ.µW.(Ā∧→{W})∨ (A ∧→{Z})

Example 23. The first example is a rather simple one: a disjunctive formula with one alternation that
can be expressed in non-disjunctive form without any alternations. The disjunctive formulaνX.µY.(A∧
→{X})∨ (Ā∧→{Y}) signifies that all paths are infinite andA occurs infinitely often on all paths. Com-
pare it to the formulaνX.→{X}∧µY.(Ā∧→{Y})∨A which is alternation free.

The tableaus of both these formulas are shown side by side in Figure 4.1. Both branches regenerate
into either exactly the ancestral node marked * or a node thatreaches a node identical to the one marked
* in a single non branching step.
The cores of the two tableaus, that is to say their branching nodes, are clearly isomorphic with respect to
the node type and branching structure. Furthermore, for both formulas, there isµ-trace on any path that
only goes through the left hand branch infinitely often. There is noµ trace onanypath that goes through
the right hand path infinitely often, for either formula. As aresult, both tableaus agree on the parity of
infinite branches. The two formulas are tableau equivalent and therefore also semantically equivalent.

Remark 24. Observe that there is nothing obviously inefficient about how the disjunctive formula han-
dles alternations. Indeed, simply inverting the order of the fixpoints yields a formulas which can not be
expressed without an alternation:µX.νY.A∧→{X}∨ Ā∧→{Y}.

While the above example proves that disjunctive form does not preserve alternation, it must be noted
that the alternating parity automata corresponding to these formulas require in both cases two priorities,
although only one requires an alternation. The next exampleshows formulas in which the number of
priorities is not preserved either.

Example 25. This example and the following ones will be built on one-alternation formulas consisting
of single µ/ν alternations embedded in one another without interfering with each other, i.e. all free
variables within the inner formulaφ1 are bound by the inner fixpoint bindings. This means that the
formula accepts a priority assignment with co-domain{0,1}. Without further ado, consider the formula
in question:

α = µX0.νY0.(A∧→{X0})∨ (B∧→{Y0)∧µX1.νY1.(C∧→{X1})∨ (D∧→{Y1})∨E

The following Lemma shows it to be equivalent to a formula which requires a priority assignment
with co-domain{0...3}.

Lemma 26. The formulaα is tableau equivalent to a disjunctive formula which requires a parity as-
signment with co-domain{0...3}:

β = µX0.νY0.µX1.νY1.(A∧C∧→{X0})∨ (A∧D∧→{X0})∨ (A∧E∧→{X0})
∨(B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

(4.1)
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*
Y0,Y1

(B,→{Y0},D,→{Y1})
(B∧→{Y0}), (D∧→{Y1})

*
Y0,X1

(B,→{Y0},C,→{X1})
(B∧→{Y0}), (C∧→{X1})

*
Y0

(B,→{Y0},E)
(B∧→{Y0},E)

(B∧→{Y0}),(C∧→{X1})∨ (D∧→{Y1})∨E

*
X0,Y1

(A,→{X0},D,→{Y1})
(A∧→{X0}), (D∧→{Y1})

*
X0,X1

(A,→{X0},C,→{X1})
(A∧→{X0}), (C∧→{X1})

*
X0

(A,→{X0},E)
(A∧→{X0},E)

(A∧→{X0}),(C∧→{X1})∨ (D∧→{Y1})∨E

*(A∧→{X0})∨ (B∧→{Y0}),(C∧→{X1})∨ (D∧→{Y1})∨E

µX0.νY0.(A∧→{X0})∨ (B∧→{Y0})∧µX1νY1(C∧→{X1})∨ (D∧→{Y1})∨E

Figure 4.2: Tableau forα

*
Y1

(B,D,→{Y1})
(B∧D∧→{Y1})

*
X1

(B,C,→{X1})
(B∧C∧→{X1})

*
Y0

(B,E,→{Y0})
(B∧E∧→{Y0})

(B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

*
X0

(A,D,→{X0})
(A∧D∧→{X0})

*
X0

(A,C,→{X0})
(A∧C∧→{X0})

*
X0

(A,E,→{X0})
(A∧E∧→{X0})

(A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})
* (A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})∨ (B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

µX0.νY0.µX1.νY1.(A∧E∧→{X0})∨ (A∧D∧→{X0})∨ (A∧C∧→{X0})∨ (B∧E∧→{Y0})∨ (B∧C∧→{X1})∨ (B∧D∧→{Y1})

Figure 4.3: Tableau forβ

Proof. The tableaus for both formulas are written out in Figures 4.2and 4.3. The two tableaus are iso-
morphic with respect to branching structure, node type and the literals at modal nodes. To prove their
equivalence, it is therefore sufficient to argue that this isomorphism also preserves the parity of infinite
branches, that is to say that there is aµ-trace in an infinite path of one if and only if there is aµ-trace in
the corresponding infinite path of the other.

To do so, we look, case by case, at the combinations of branches that a path can see infinitely often
and check which have aµ trace in each tableau. First argue that the three right-mostbranches in both
tableaus are such that any path that sees them infinitely often has aµ-trace. This is witnessed in both
cases by the least fixpoint variableX0 which will dominate any trace it appears on and appears on a trace
on all paths going through one of these branches infinitely often. So, in both tableaus, any path going
through one of the right-most branches infinitely often is ofodd parity. Now consider the branch that
ends inY0 before regenerating to the node marked * in both tableaus. All traces on paths that go infinitely
often through this branch will seeY0 regenerate infinitely often. Therefore in both tableaus, a path going
through this branch infinitely has aµ trace if and only if it also goes through one of the three rightmost
branches infinitely often. Now consider the fifth branch fromthe right, the branch that regeneratesY0,X1

in one case and justX1 in the other. In both tableaus, a path that goes through this branch infinitely often
will have aµ trace unless it goes through theY0 branch infinitely often and doesn’t go through one of the
three right-most branches infinitely often. Finally, in both tableaus, a branch that only sees the left-most
branch infinitely often is of even parity since such a path does not admit anyµ-traces. However, if a
path sees this branch and some other branches infinitely often, its parity is determined by one of the
previously analysed cases. Since we have analysed all the infinite paths on these tableaus and concluded
that in each case the parity of a path is the same in both tableaus, this concludes the proof that the two
tableaus are equivalent.

The above example yields a disjunctive formula of alternation depth{0...3} which semantically only
requires alternation depth{0,1}. This proves that disjunctive form does not preserve the number of
priorities the model checking game of a formula requires.
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The next step is to generalise the construction of Example 25to arbitrarily many alternations to
prove that there is no bound on the number of alternations of adisjunctive formula tableau equivalent to
a non-disjunctive formula ofn alternations. To do so, we will first define the one-alternation formulas
αn inductively, based on the formula of Example 25. We then argue that the tableau ofαn admits a
(2n+1)-witness, proving thatαn is not tableau equivalent to any disjunctive formula of lessthan 2n+1
alternations. Due to the argument pertaining to traces in increasingly large tableaus, its details are,
inevitably, quite involved. However, the mechanics of the tableaus ofαn are not difficult; writing down
the tableau ofα2 and working out its disjunctive form should suffice to gain anintuition of the proof to
follow.

Example 27. In order to defineαn for anyn define:

a1 = µX1.νY1.((A1∧→{X1})∨ (B1∧→{Y1})∨E1)∧
µX0.νY0.(A0∧→{X0})∨ (B0∧→{Y0})∨E0

ai+1 = µXi+1.νYi+1.((Ai+1∧→{Xi+1})∨ (Bi+1∧→{Yi+1})∨Ei+1)∧ai

(4.2)

Then, define:

αn = µXn.νYn.((An∧→{Xn})∨ (Bn∧→{Yn}))∧an−1

In other words, the formula consists of nested clausesµXi.νYi .((Ai ∧→{Xi})∨ (Bi ∧→{Yi})∨Ei) con-
nected by conjunctions where the outmost clause does not have a∨E.

As the formula grows, its tableau becomes unwieldy, but its structure remains constant: it is just as
the tableau ofα with more branches. Figure 4.2 can be used as reference.

The tableau of anyαn follows this structure:

• The first choice node{(An∧→{Xn}∨Bn∧→{Yn}), ...,(A0∧→{X0}∨B0∧→{Y0}∨E0)} branches
into 2×3n modal nodes – ignoring the modalities attached to each literals for a moment, this is the
decomposition of(An∨Bn)∧ (An−1∨Bn−1∨En−1)...∧ (A0∨B0∨E0) into one large disjunction.

• Each choice leads to a modal node with some choice of propositional variables consisting of one
of An andBn and then for everyi < n one ofAi,Bi or Ei.

• These modal nodes have a single successor each, consisting of a set of fixpoint variables. In every
case, one of these isYn or Xn and there is only ever at most one fixpoint variable out of{Xi,Yi} for
eachi. These nodes will be referred to as regeneration nodes. Whena regeneration node does not
containXi norYi for somei, this corresponds toEi having been chosen rather thanAi or Bi.

• Nodes consisting of a set of fixpoint variables all regenerate, give or take a couple of non-branching
steps, into the same choice node, identical to the ancestralchoice node labelled:

{(An∧→{Xn}∨Bn∧→{Yn}), ...,(A0∧→{X0}∨B0∧→{Y0}∨E0)}

• An infinite trace in this tableau sees infinitely often only fixpoint variablesYi and/orXi for some
i. As a consequence if a path goes infinitely often through a regeneration node which does not
containXi or Yi , then there is no trace that seesXi infinitely often on that path.

Lemma 28. The formulaαn is tableau equivalent only to disjunctive formulas which require a priority
assignment with2n+1 priorities.
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Proof. Using the above observations, we will show that the tableau for this formula requires at least
2n+1 alternating fixpoints. We describe a priority assignment to a subset of the nodes of the tableau of
αn such that on the paths within this subset, a path is even if andonly if the most significant priority seen
infinitely often is even. We then argue that this subset constitutes a 2n+1-witness.

Consider the paths of the tableau which only contain the following regeneration nodes:
• For all i, the nodes regenerating exactlyYnYn−1...Yi , and

• For all i the nodes regenerating exactlyYn...Yi+1XiYi−1...Y0.
For eachi, assign priority 2i to the node regeneratingYn...Yi and 2i + 1 to the node regenerating

Yn...Yi+1,Xi ,Yi−1, ...Y0. We now prove that this priority assignment is such that a path within this sub-
tableau is even if and only if the highest priority seen infinitely often is even.

First consider the nodesYn...Yi , which have been assigned even priority. A path that sees such a node
infinitely often can only have aµ-trace if it sees a node regerating someXj , j > i infinitely often. Such
a node would have an odd priority greater thanYn...Yi . Therefore, if the most significant priority seen
infinitely often is even, the path has noµ trace. Conversely, if a path seesYn...Xi...Y0 infinitely often and
no Yn...Yj where j > i infinitely often, then there is a trace which only regenerated Xi andYi infinitely
often. This is aµ trace sinceXi is more significant thanYi . This priority assignment therefore describes
the parity of infinite paths on this subset of paths ofT .

Any assignment of priorities ontoT should, on this subset of paths, agree in parity with the above
priority assignment. However, in any tree with back edges generating this tableau, this subset of paths
constitutes a 2n+ 1 witness:c0 is a cycle that only seesYn...Y0, c1 containsc0 and also seesYn...X1Y0

infinitely often and for alli > 1, the cyclec2i is one containingc2i−1 andYn...Yi while c2i+1 is one
containingc2i andYn...Xi...Y0. Each cyclec j is dominated by the priorityj, makingc0, ...,c2i+1 a 2i +1-
witness. Thus, using Theorem 22 any disjunctive formula with tableauT must require at least 2n+1
priorities.

This concludes the proof that for arbitraryn, there are one-alternationLµ formulas which are tableau
equivalent to disjunctive formulas withn alternations.

4.2 Disjunctive formulas with small alternation depth

The previous section showed that transforming a formula into disjunctive form can increase its alternation
depth. The converse is much easier to show: there are very simple formulas for which the transformation
into disjunctive form eliminates all alternations.
Lemma 29. For any formulaψ , the formula(µX.→{X}∨→⊥)∧ψ is tableau equivalent to a disjunc-
tive formula withoutν-operators.

Proof. The semantics of(µX.→{X}∨→⊥)∧ψ are that a structure must not have infinite paths andψ
must hold. ConsiderT , the tableau for(µX.→{X}∨→⊥)∧ψ . It is easy to see that every modal node
will either contain→{X} or→⊥. The latter case terminates that branch of the tableau, while the former
will populate every successor node withX which will then regenerate into(→{X}∨→⊥). As a result,
all infinite paths have aµ trace; there are no even infinite paths. Any disjunctive formula generatingT
will therefore only require theµ operator.

Taking ψ to be a formula of arbitrarily high alternation depth,(µX.→{X}∨→⊥)∧ψ shows that
the transformation into disjunctive form can reduce the alternation depth an arbitrarily large amount.
Together with the previous section, this concludes the argument that there are no bounds on the difference
in alternation depth of tableau equivalent formulas.
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5 Discussion

To summarise, we have studied how tableau decomposition andthe transformation into disjunctive form
affects the alternation depth of a formula. The first observation is that within the confines of the dis-
junctive fragment ofLµ , alternation depth is very well-behaved with respect to tableau equivalence: any
two tableau equivalent disjunctive formulas have the same alternation depth. However, the story is quite
different forLµ without the restriction to disjunctive form: the alternation depth of aLµ formula can not
be used to predict any bounds on the alternation depth of tableau equivalent disjunctive formulas and
vice versa.

Part of the significance of this result are the implications for our understanding of the alternation
hierarchy.

The formulas in Section 4 illutrate some of the different types of accidental complexity which
any procedure for deciding the alternation hierarchy wouldneed to somehow overcome. The formula
(µX.→{X}∨⊥)∧ψ , from Lemma 29 which is semantically aν-free formula for anyψ is an example
of a type of accidental complexity which the tableau decomposition eliminates. However, the formula in
Example 23 illustrate a more subtle form of accidental complexity that is immune to disjunctive form:
νX.µY.(A∧→{X})∨ (Ā∧→{Y}) is semantically alternation free while the syntactically almost identi-
cal formulaµX.νY.(A∧→{X})∨ (Ā∧→{Y}) is not. These formulas pinpoint a very specific challenge
facing algorithms that try to reduce the alternation depth of formulas; as such, they are valuable case
studies for those seeking to understand theLµ alternation hierarchy.

Finally, we showed that the following is decidable: for anyLµ formula, the least alternation depth
of a tableau equivalent disjunctive formula is decidable. This raises the question of whether the same is
true if we lift the restriction to disjunctive form, but keepthe restriction to tableau equivalence: for aLµ
formula, is the least alternation depth of any tableau equivalent formula decidable? Tableau equivalence
is a stricter equivalence to semantic equivalence, so this problem is likely to be easier than deciding
the alternation hierarchy with respect to semantic equivalence but it would still be a considerable step
towards understanding accidental complexity inLµ .

Acknowledgements I thank the anonymous reviewers for their thoughtful comments, which have
helped improve the presentation of this paper and relate this work to similar results for other automata.
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In the modalµ-calculus, a formula is well-formed if each recursive variable occurs underneath an
even number of negations. By means of De Morgan’s laws, it is easy to transform any well-formed
formulaϕ into an equivalent formula without negations – the negationnormal form ofϕ . Moreover,
if ϕ is of sizen, the negation normal form ofϕ is of the same sizeO(n). The full modalµ-calculus
and the negation normal form fragment are thus equally expressive and concise.

In this paper we extend this result to the higher-order modalfixed point logic (HFL), an extension
of the modalµ-calculus with higher-order recursive predicate transformers. We present a procedure
that converts a formula of sizen into an equivalent formula without negations of sizeO(n2) in the
worst case andO(n) when the number of variables of the formula is fixed.

1 Introduction

Negation normal forms are commonplace in many logical formalisms. To quote only two examples,
in first-order logic, negation normal form is required by Skolemization, a procedure that distinguishes
between existential and universal quantifiers; in the modalµ-calculus, the negation normal form ensures
the existence of the fixed points. More generally, the negation normal form helps identifying the po-
larities [15] of the subformulas of a given formula; for instance, in the modalµ-calculus, a formula in
negation normal form syntactically describes the schema ofa parity game.

Converting a formula in a formula without negations – or withnegations at the atoms only – is
usually easy. By means of De Morgan’s laws, negations can be “pushed to the leaves” of the formula.
For the modalµ-calculus without propositional variables, this process completely eliminates negations,
because well-formed formulas are formulas where recursivevariables occur underneath an even number
of negations. Moreover, in the modalµ-calculus, ifϕ is of sizen, the negation normal form ofϕ is of
the same sizeO(n).

The higher-order fixed point modal logic (HFL) [20] is the higher-order extension of the modal
µ-calculus. In HFL, formulas denote either predicates, or (higher-order) predicate transformers, each
being possibly defined recursively as (higher-order) fixed points. Since HFL was introduced, it was
never suggested that negation could be eliminated from the logic. On the contrary, Viswananthan and
Viswanathan [20] motivated HFL with an example expressing aform of rely guarantee that uses negation,
and they strove to make sure that HFL formulas are correctly restricted so that fixed points always exist.
Negation normal forms in HFL would however be interesting: they would simplify the design of two-
player games for HFL model-checking [3], they could help defining a local model-checking algorithms
for HFL, they might help to define the alternation depth of a HFL formula, etc.

We show that HFL actually admits negation elimination, and that like for the modalµ-calculus,
every HFL formula can be converted into a formula in negationnormal form. The negation elimination
procedure is more involved due to higher-orderness. As a witness of this increased complexity, our
negation elimination procedure has a worst-case quadraticblow-up in the size of the formula, whereas
for theµ-calculus the negation normal form is of linear size in the original formula.
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Related Work Other examples of higher-order recursive objects are the higher-order pushdown au-
tomata [17, 4], or the higher-order recursion schemes (HORS) [6, 12, 5, 18]. Whereas the decidability of
HFL model-checking against finite transition systems is rather simple, it took more time to understand
the decidability of HORS model-checking against the ordinary (order 0) modalµ-calculus. This situation
actually benefited to HORS: the intense research on HORS produced several optimized algorithms and
implementations of HORS model-checking [2, 9, 19], whereasHFL model-checking remains a rather
theoretical and unexplored topic. HORS can be thought as recursive formulas with no boolean connec-
tives and least fixed points everywhere. On the opposite, HFLallows any kinds of boolean connectives,
and in particular a form of “higher-order alternation”.

Outline We recall the definition of HFL and all useful background about it in Section 2. In Section 3,
we sketch the ideas driving our negation elimination and introduce the notion of monotonization, a corre-
spondence between arbitrary functions and monotone ones that is at the core of our negation elimination
procedure. We formally define the negation elimination procedure in Section 4, and make some conclud-
ing remarks in Section 5.

2 The Higher-Order Modal Fixed Point Logic

We assume an infinite setVar = {X,Y,Z, . . .} of variables, and a finite setΣ = {a,b, . . .} of labels. For-
mulasϕ ,ψ , of the Higher-Order Modal Fixed Point Logic (HFL) are defined by the following grammar

ϕ ,ψ ::=⊤ | ϕ ∨ψ | ¬ϕ | 〈a〉ϕ | X | λXτ ,v. ϕ | ϕ ψ | µXτ . ϕ

where a typeτ is either the ground typeProp or an arrow typeσ v → τ , and thevariance vis either+
(monotone), or− (antitone), or 0 (unrestricted). For instance,τ1 =(Prop−→Prop)+ → (Prop0 →Prop)
is a type, andϕ1 = λFProp−→Prop,+. λYProp,0. µZProp. (F ¬Y)∨ 〈a〉(Z∨¬Y) is a formula. The sets
fv(ϕ) andbv(ϕ) of free and bound variables ofϕ are defined as expected:fv(X) = {X}, bv(X) = /0,
fv(λX. ϕ) = fv(µX. ϕ) = fv(ϕ) \ {X}, bv(λX. ϕ) = bv(µX. ϕ) = bv(ϕ)∪ {X}, etc. A formula is
closedif fv(ϕ) = /0. For simplicity, we restrict our attention to formulasϕ without variable masking, i.e.
such that for every subformulaλX. ψ (resp.µX. ψ), it holds thatX 6∈ bv(ψ).

Another example is the formulaϕ2 = (λFProp−→Prop,+. µXProp. F X) (λYProp,−. ¬Y). This formula
can beβ -reduced to the modalµ-calculus formulaϕ ′

2 = µXProp. ¬X, which does not have a fixed point
semantics. Avoiding ill-formed HFL formulas such asϕ2 cannot just rely on counting the number of
negations betweenµX and the occurence ofX, it should also take into account function applications and
the context of a subformula.

A type judgement is a tupleΓ ⊢ ϕ : τ , whereΓ is a set of assumptions of the formXv : τ . The typing
environment¬Γ is the one in which every assumptionXv : τ is replaced withX−v : τ , where−+ = −,
−−=+, and−0= 0. A formulaϕ is well-typed and has typeτ if the type judgement⊢ ϕ : τ is derivable
from the rules defined in Fig. 1. Intuitively, the type judgementXv1

1 : τ1, . . . ,Xvn
n : τn ⊢ ϕ : τ is derivable if

asssuming thatXi has typeτi , it may be infered thatϕ has typeτ and thatϕ , viewed as a function ofXi,
has variancevi . For instance,⊢ ϕ1 : τ1, whereϕ1 andτ1 are the formula and the type we defined above,
but ϕ2 cannot be typed, even with different type annotations.

Proposition 1 [20] If Γ ⊢ ϕ : τ and Γ ⊢ ϕ : τ ′ are derivable, thenτ = τ ′, and the two derivations
coincide.
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Γ ⊢ ⊤ : Prop

Γ ⊢ ϕ : τ Γ ⊢ ψ : τ
Γ ⊢ ϕ ∨ψ : τ

¬Γ ⊢ ϕ : τ
Γ ⊢ ¬ϕ : τ

Γ ⊢ ϕ : Prop

Γ ⊢ 〈a〉ϕ : Prop

v∈ {+,0}
Γ , Xv : τ ⊢ X : τ

Γ,Xv : σ ⊢ ϕ : τ
Γ ⊢ λXv,σ . ϕ : σ v → τ

Γ,X+ : τ ⊢ ϕ : τ
Γ ⊢ µXτ . ϕ : τ

Γ ⊢ ϕ : σ+ → τ Γ ⊢ ψ : σ
Γ ⊢ ϕ ψ : τ

Γ ⊢ ϕ : σ− → τ ¬Γ ⊢ ψ : σ
Γ ⊢ ϕ ψ : τ

Γ ⊢ ϕ : σ0 → τ Γ ⊢ ψ : σ ¬Γ ⊢ ψ : σ
Γ ⊢ ϕ ψ : τ

Figure 1: The type system of HFL.

If ϕ is a well-typed closed formula andψ is a subformula ofϕ , we writetype(ψ/ϕ) for the type of
ψ in (the type derivation of)ϕ .

A labeled transition system (LTS) is a tupleT = (S,δ ) whereS is a set of states andδ ⊆ S×Σ×S
is a transition relation. For every typeτ and every LTST = (S,δ ), the complete Boolean ringT JτK of
interpretations of closed formulas of typeτ is defined by induction onτ : T JPropK= 2S, andT Jσ v→ τK
is the complete Boolean ring of all total functionsf : T JσK → T JτK that have variancev, where all
Boolean operations on functions are understood pointwise.Note that sinceT JτK is a complete Boolean
ring, it is also a complete lattice, and any monotone function f : T JτK → T JτK admits a unique least
fixed point.

A T -valuationρ is a function that sends every variable of typeτ to some element ofT JτK. More
precisely, we say thatρ is well-typed according to some typing environmentΓ, which we writeρ |= Γ,
if ρ(X) ∈ T JτK for everyXv : τ in Γ. The semanticsT JΓ ⊢ ϕ : τK of a derivable typing judgement is
a function that associates to everyρ |= Γ an interpretationT JΓ ⊢ ϕ : τK(ρ) in T JτK; this interpretation
is defined as expected by induction on the derivation tree (see [20] for details). For a well-typed closed
formulaϕ of typeProp, a LTST = (S,δ ) and a states∈ S, We writes |=T ϕ if s∈ T J⊢ ϕ : PropK.
Example 1 Let τ3 = (Prop+ → Prop)+ → Prop+ → Prop andϕ3 =

(
µFτ3. λGProp+→Prop,XProp. (G X)∨

(
F (λYProp.G (G Y)) X

))
(λZProp. 〈a〉Z) 〈b〉⊤.

Then s|= ϕ3 iff there is n≥ 0 such that there is a path of the form a2n
b starting at s. Since{a2n

b | n≥ 0}
is not a regular language, the property expressed byϕ3 cannot be expressed in the modalµ-calculus.

Proposition 2 [20] Let T = (S,δ ) be a LTS and let s,s′ ∈ S be two bisimilar states ofT . Then for any
closed formulaϕ of typeProp, s|=T ϕ iff s′ |=T ϕ .

We assume the standard notations∧, [a] andνX. (.) for the conjunction, the necessity modality, and
the greatest fixed point, defined as the duals of∨, 〈a〉 andµX. (.) respectively.

Definition 1 (Negation Normal Form) A HFL formula is in negation normal form if it is derivable from
the grammar

ϕ ,ψ ::= ⊤ | ⊥ | ϕ ∨ψ | ϕ ∧ψ | 〈a〉ϕ | [a]ϕ | X | λXσ .ϕ | ϕ ψ | µXτ .ϕ | νXτ .ϕ

where theτ aremonotonetypes, i.e. types where all variances are equal to+.
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Note that since all variances are+, we omit them when writting formulas in negation normal form.
We say that two formulasϕ ,ψ are equivalent,ϕ ≡ ψ , if for every type environmentΓ, for every LTS

T , for all typeτ , the judgementΓ ⊢ ϕ : τ is derivable iffΓ ⊢ ψ : τ is, and in that caseT JΓ ⊢ ϕ : τK =
T JΓ ⊢ ψ : τK.

Model-Checking We briefly recall the results known about the data complexityof HFL model-checking
(see also the results of Langeet alon the combined complexity [1] or the descriptive complexity [14] of
HFL and extensions).

Note that ifT = (S,δ ) is a finite LTS, then for all typeτ , the Boolean ringT JτK is a finite set, and
every element ofT JτK can be representedin extension. Moreover, the least fixed point of a monotone
function f : T JτK → T JτK can be computed by iteratingf at mostn times, wheren is the size of the
finite boolean ringT JτK.

The orderord(τ) of a typeτ is defined asord(Prop)= 0 andord(σ v→ τ)=max(ord(τ),1+ord(σ)).
We writeHFL(k) to denote the set of closed HFL formulasϕ of typeProp such that all type annotations
in ϕ are of order at mostk. For every fixedϕ ∈ HFL(k), we callMC(ϕ) the problem of deciding, given
a LTST and a statesof T , wethers |=T ϕ .

Theorem 3 [1] For every k≥ 1, for everyϕ ∈HFL(k), the problemMC(ϕ) is in k-EXPTIME, and there
is a ψk ∈ HFL(k) such thatMC(ψk) is k-EXPTIME hard.

3 Monotonization

In order to define a negation elimination procedure, the firstidea is probably to reason like in the modal
µ-calculus, and try to “push the negations to the leaves”. Indeed, there are De Morgan laws for all logical
connectives, including abstraction and application, since

¬(ϕ ψ) ≡ (¬ϕ) ψ and ¬(λXv,τ .ψ) ≡ λX−v,τ .¬ψ .

In the modalµ-calculus, this idea is enough, because the “negation counting” criterion ensures that each
pushed negation eventually reaches another negation and both anihilate. This does not happen for HFL.
Consider for instance the formulaϕ4 =

(
µXProp0→Prop. λYProp,0. (¬Y)∨

(
X (〈a〉Y)

))
⊤.

The negation already is at the leaf, butϕ4 is not in negation normal form. By fixed point unfolding,
one can check thatϕ4 is equivalent to the infinite disjunct

∨
n≥0[a]

n⊥, and thus could be expressed by
µXProp.[a]X. The generalization of this strategy for arbitrary formulas would be interesting, but it is
unclear to us how it would be defined.

We follow another approach: we do not try to unfold fixed points nor to applyβ -reductions during
negation elimination, but we stick to the structure of the formula. In particular, in our approach a sub-
formula denoting a functionf is mapped to a subformula denoting a functionf ′ in the negation normal
form. Note that even iff is not monotone,f ′ must be monotone since it is a subformula of a formula in
negation normal form. We callf ′ amonotonizationof f .

Examples Before we formaly define monotonization, we illustrate its principles on some examples.
First, consider again the above formulaϕ4. This formula contains the functionλYProp,0. (¬Y)∨(

X (〈a〉Y)
)
. This function is unrestricted (neither monotone nor antitone). The monotonization of this
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function will be the functionλYProp,+,Y
Prop,+

.Y∨
(
X (〈a〉Y)

)
. To obtain this function, a duplicateY of

Y is introduced, and is used in place of¬Y. Finally, the formulaϕ ′
4 =

(
µXProp→Prop→Prop. λYProp,Y

Prop
. Y∨

(
X (〈a〉Y) ([a]Y)

))
⊤ ⊥

can be used as a negation normal form ofϕ4. Note that the parameter⊤ that was passed to the recursive
function inϕ4 is duplicated inϕ ′

4, with one duplicate that has been negated (the⊥ formula).
More generally, whenever a function is of typeσ0 → τ , we transform it into a function of type

σ+
t → σ+

t → τt that takes two arguments of typeσt (the translation ofσ ). Later, when this function is
applied, we make sure that its argument is duplicated, one time positively, the other negatively.

Duplicating arguments might cause an exponential blow-up.For instance, for the formulaϕ5 =

(λXProp. X∨〈a〉¬X)
(
(λYProp,0. Y∨〈b〉¬Y) ⊤

)

if we duplicated arguments naively, we could get the formulaϕ ′
5 =

(λXProp,X
Prop

. X∨〈a〉X)
(
(λYProp,Y

Prop
. Y∨〈b〉Y) ⊤ ⊥

) (
(λYProp,Y

Prop
. Y∧ [b]Y) ⊤ ⊥

)

where the original⊤ formula has been duplicated. If it occurred underneathn+ 2 applications of an
unrestricted function, we would have 2n copies of⊤. We will come back to this problem in Section 4.

Let us now observe how monotonization works for functions that are antitone. In general, iff is
an antitone function, both the “negation at the caller”f1(x) = ¬ f (x) and the “negation at the callee”
f2(x) = f (¬x) are two monotone functions that faithfully representf . Actually, both of them might be
needed by our negation elimination procedure.

Consider the formulaϕ6 =

(λFProp−→Prop,+.µXProp.F (¬X)) (λYProp,−.¬〈a〉Y).

In order to compute the negation normal form ofϕ6, we may representλYProp,−.¬〈a〉Y by its “negation
at the callee”, yielding the formulaϕ ′

6 =

(λFProp→Prop.µXProp.F X) (λY
Prop

.[a]Y).

Conversely, consider the formulaϕ7 =

(λFProp−→Prop,−. µXProp. (¬F) X) (λYProp,−. ¬〈a〉Y).

The only difference withϕ6 is that the negation is now in front ofF instead ofX. In that case, “negation
at the callee” does not help eliminating negations. But “negation at the caller” does, and yields the
negation normal formϕ ′

7 =

(λF
Prop→Prop

. µXProp. F X) (λYProp. 〈a〉Y).

These examples suggest a negation elimination that proceeds along possibly different strategies in
the case of an applicationϕ ψ , depending on the semantics ofϕ andψ . In the next section, we explain
how the strategy is determined by the type ofϕ . For now, we focus on making more formal our notion
of monotonization.
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exp(Prop) = Prop
exp(τ+ → σ) = exp(τ)+ → exp(σ)
exp(τ− → σ) = exp(τ)+ → exp(σ)
exp(τ0 → σ) = exp(τ)+ → exp(τ)+ → exp(σ)

exp(Γ1,Γ2) = exp(Γ1),exp(Γ2)
exp(X+ : τ) = X+ : exp(τ)
exp(X− : τ) = X

+
: exp(τ)

exp(X0 : τ) = X+ : exp(τ),X+
: exp(τ)

Figure 2: Expansion of types and typing environments towards monotonization.

Monotonization Relations We saw that our negation elimination bases on the ability to faithfully
represent a predicate transformerϕ by a monotone predicate transformerψ ; in this case, we will say that
ψ is a monotonizationof ϕ . We now aim at defining formally this notion. More precisely,we aim at
defining the relation⊳ such thatϕ ⊳ψ holds if ψ is a monotonization ofϕ .

First of all,⊳ relates a formula of typeτ to a formula of typeexp(τ) as defined in Fig. 2: the number
of arguments ofϕ is duplicated ifϕ is unrestricted, otherwise it remains the same, and of course ψ is
monotone in all of its arguments.

In Fig. 2, we also associate to every typing environmentΓ the typing environmentexp(Γ) with all
variances set to+, obtained after renaming all variables with variance− in their bared version, and
duplicating all variables with variance 0. In the remainder, we always implicitly assume that we translate
formulas and typing environments that do not initially contain bared variables.

The relation⊳ is then defined coinductively, in a similar way as logical relations for theλ -calculus.
Let Rbe a binary relation among typing judgements of the formΓ ⊢ ϕ : τ . The relationR is well-typed if
(Γ ⊢ ϕ : τ)R(Γ′ ⊢ ϕ ′ : τ ′) impliesΓ′ = exp(Γ) andτ ′ = exp(τ). WhenR is well typed, we writeϕRΓ,τϕ ′

instead of(Γ ⊢ ϕ : τ)R(Γ′ ⊢ ϕ ′ : τ ′).

Definition 2 A binary relation R among typing judgements is amonotonization relationif it is well-
typed, and for all formulasϕ ,ϕ ′, for all Γ,τ such thatϕ RΓ,τ ϕ ′,

1. if ϕ ,ϕ ′ are closed andτ = Prop, thenϕ ≡ ϕ ′;

2. if Γ = Γ′,X+ : σ , then(λXσ ,+. ϕ)RΓ′,σ+→τ (λXexp(σ),+. ϕ ′);

3. if Γ = Γ′,X− : σ , then(λXσ ,−. ϕ)RΓ′,σ−→τ (λX
exp(σ),+

. ϕ ′);

4. if Γ = Γ′,X0 : σ , then(λXσ ,0. ϕ)RΓ′,σ0→τ (λXexp(σ),+,X
exp(σ),+

. ϕ ′);

5. if τ = σ+ → υ , then for allψ ,ψ ′ such thatψ RΓ,σ ψ ′, (ϕ ψ)RΓ,υ (ϕ ′ ψ ′);

6. if τ = σ− → υ , then for allψ ,ψ ′,ψ ′′ such thatψ RΓ,σ ψ ′ andψ ′ ≡ ¬ψ ′′, (ϕ ψ)RΓ,υ (ϕ ′ ψ ′′);

7. if τ = σ0 → υ , then for allψ ,ψ ′,ψ ′′ such thatψ RΓ,σ ψ ′ andψ ′ ≡ ¬ψ ′′, (ϕ ψ)RΓ,υ (ϕ ′ ψ ′ ψ ′′).

If (Ri)i∈I is a family of monotonization relation, then so is
⋃

i∈I Ri; we write⊳ for the largest mono-
tonization relation.

Example 2 Considerϕ = (λXProp,−. ¬X). Thenϕ ⊳Prop−→Prop (λX
Prop,+

. X). Consider alsoψ =

(λXProp,0. X∧¬X). Thenψ ⊳ (λXProp,+,X
Prop,+

. ⊥) andψ ⊳ (λXProp,+,X
Prop,+

. X∧X).
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tr+(⊤) = ⊤
tr−(⊤) = ⊥
tr+(X) = X
tr−(X) = X
trv(¬ψ) = tr−v(ψ)

tr+(〈a〉ψ) = 〈a〉tr+(ψ)
tr−(〈a〉ψ) = [a]tr−(ψ)

tr+(ψ1∨ψ2) = tr+(ψ1)∨ tr+(ψ2)
tr−(ψ1∨ψ2) = tr−(ψ1)∧ tr−(ψ2)

trv(λXτ ,+. ψ) = λXexp(τ). trv(ψ)

trv(λXτ ,−. ψ) = λX
exp(τ)

. trv(ψ)

trv(λXτ ,0. ψ) = λXexp(τ),X
exp(τ)

. trv(ψ)

tr+(µXτ . ψ) = µXexp(τ). tr+(ψ)

tr−(µXτ . ψ) = νX
exp(τ)

. tr−(ψ)

trv(ψ1 ψ2) =





trv(ψ1) tr+(ψ2) if type(ψ1/ϕ) = σ+ → η
trv(ψ1) tr−(ψ2) if type(ψ1/ϕ) = σ− → η
trv(ψ1) tr+(ψ2) tr−(ψ2) if type(ψ1/ϕ) = σ0 → η

Figure 3: Type-Directed Negation Elimination

4 Negation Elimination

Our negation elimination procedure proceeds in two steps: first, a formulaϕ is translated into a formula
tr+(ϕ) that denotes the monotonization ofϕ ; then,tr+(ϕ) is concisely represented in order to avoid an
exponential blow-up.

The transformationtr+(.) is presented in Figure 3. The transformation proceeds by structural in-
duction on the formula, and is defined as a mutual induction with the companion transformationtr−(.).
Whenever a negation is encountered, it is eliminated and thedual transformation is used. As a conse-
quence, wethertr+(.) or tr−(.) should be used for a given subformula depends on the polarity[15] of
this subformula.

Lemma 4 Let ϕ be a fixed closed formula of typeProp. For every subformulaψ of ϕ , let tr+(ψ) and
tr−(ψ) be defined as in Figure 3, and letΓ ⊢ ψ : τ be the type judgement associated toψ in the type
derivation ofϕ . Then the following statements hold.

1. exp(Γ) ⊢ tr+(ψ) : exp(τ) andexp(¬Γ) ⊢ tr−(ψ) : exp(τ).
2. ψ ⊳Γ,τ tr+(ψ) andψ ⊳Γ,τ ¬tr−(ψ).

Proof: By induction onψ . We only detail the point 1 in the case ofψ = ψ1 ψ2 with type(ψ1/ϕ) =
σ− → τ . Let us assume the two statements hold forψ1 and ψ2 by induction hypothesis. LetΓ be
such thatΓ ⊢ ψ : τ , Γ ⊢ ψ1 : σ− → τ , and¬Γ ⊢ ψ2 : σ . By induction hypothesis, the judgements
exp(Γ) ⊢ tr+(ψ1) : exp(σ− → τ) andexp(¬¬Γ) ⊢ tr−(ψ2) : exp(σ) are derivable. Sinceexp(σ− →
τ) = exp(σ)+ → exp(τ) and¬¬Γ = Γ, the typing rule for function application in the monotone case of
Fig. 1 yieldsexp(Γ) ⊢ tr+(ψ1) tr−(ψ2) : exp(τ), which shows statement 1 fortr+(.). The case fortr−(.)
is similar. �
Corollary 5 If ϕ is a closed formula of typeProp, thenϕ ≡ tr+(ϕ) and tr+(ϕ) is in negation normal
form.

As observed in Section 3, the duplication of the arguments inthe casev= 0 of the monotonization
of ϕψ may cause an exponential blow-up in the size of the formula. However, this blow-up does not
happen if we allow some sharing of identical subformulas.

Let ϕ be a fixed closed formula. We say that two subformulasψ1 andψ2 of ϕ are identical if they
are syntactically equivalent and if moreover they have the same type and are in a same typing context,
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i.e. if the type derivation ofϕ goes through the judgementsΓi ⊢ ψi : τi for syntactically equivalentΓi and
τi . For instance, in the formula

(λXProp→Prop. X)
(
(λX(Prop→Prop)→(Prop→Prop). X)

(
(λYProp→Prop.Y) ⊤

))

any two distinct subformulas are not identical (including the subformulas restricted toX). We calldag
sizeof ϕ the number of non-identical subformulas ofϕ .

Lemma 6 There is a logspace computable functionshare(.) that associates to every closed formulaϕ
of dag size n a closed formulashare(ϕ) of tree sizeO(n· |vars(ϕ)|) such thatϕ ≡ share(ϕ).

Proof: Let ϕ be fixed, and letϕ1 . . . ,ϕn be an enumeration of all subformulas ofϕ such that ifϕi

is a strict subformula ofϕ j , then i < j. In particular, we must haveϕ = ϕn. Pick some fresh vari-
ablesX1,X2, . . . ,Xn ∈ Var and let υi = type(ϕi/ϕ). For every i = 1, . . .n, let Y1,σ1,v1, . . .Yk,σk,vk

be a fixed enumeration of the free variables ofϕi , their types and their variances, and letλi(ψ) =
λYσ1,v1

1 , . . . ,Yσk,vk
k . ψ and @i(ψ) = ψ Y1 . . . Yk. Finally, let τi = σ v1

1 → . . .σ vk
k → υi . For every sub-

formulaψ of ϕ , let ‖ψ‖ be defined by case analysis on the first logical connective ofψ :

• if ψ = ϕi = ηYσ . ϕ j , whereη ∈ {λ ,µ ,ν}, then‖ψ‖= λi
(
ηYσ . @j(Xj)

)
;

• if ψ = ϕi = ϕ j ⊕ϕk, where⊕ ∈ {∨,∧,application}, then‖ψ‖= λi
(
@j(Xj)⊕@k(Xk)

)
;

• if ψ = ϕi =♠ϕ j , where♠ ∈ {¬,〈a〉, [a]}, then‖ψ‖= λi
(
♠(@j(Xj))

)
;

• otherwise‖ϕi‖= λi(ϕi).

Finally, let share(ϕ) = let Xτ1
1 = ‖ϕ1‖ in let Xτ2

2 = ‖ϕ2‖ in . . . let Xτn−1
n−1 = ‖ϕn−1‖ in ‖ϕn‖ where

let Xτ = ψ in ψ ′ is a macro for(λXτ . ψ ′) ψ . Thenshare(ϕ) has the desired properties. �

Theorem 7 There is a logspace-computable functionnnf(.) that associates to every closed HFL formula
ϕ (without variable masking) of typeProp a closed formulannf(ϕ) such that

1. ϕ ≡ nnf(ϕ),

2. nnf(ϕ) is in negation normal form, and

3. |nnf(ϕ)|= O(|ϕ | · |vars(ϕ)|),
where|ψ | denotes the size of the tree representation ofψ (i.e. the number of symbols inψ), andvars(ϕ)=
fv(ϕ)∪bv(ϕ) is the set of variables that occur inϕ .

Proof: Let nnf(ϕ) = share(tr+(ϕ)). This function is logspace computable (tr+(ϕ) can be computed
“on-the-fly”) andnnf(ϕ) is of sizeO(|ϕ | · |vars(ϕ)|) by Figure 3 and Lemma 6. The formulatr+(ϕ) is
in negation normal form, andshare(.) does not introduce new negations, sonnf(ϕ) is in negation normal
form. Looking back at Figure 3, it can be checked that its dag size is linear in the dag size ofϕ , so the tree
size ofnnf(ϕ) is linear in the tree size ofϕ . Moreover,nnf(ϕ)≡ tr+(ϕ) by Lemma 6, andtr+(ϕ)≡ ϕ
by Corollary 5. �

5 Conclusion

We have considered the higher-order modal fixed point logic [20] (HFL) and its fragment without nega-
tions, and we have shown that both formalisms are equally expressive. More precisely, we have defined
a procedure for transforming any closed HFL formulaϕ denoting a state predicate into an equivalent
formula nnf(ϕ) without negations of sizeO(|ϕ | · |vars(ϕ)|). The procedure works in two phases: in a
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first phase, a transformation we calledmonotonizationeliminates all negations and represents arbitrary
functions of typeτ → σ by functions of typeτ → τ → σ by distinguishing positive and negative usage
of the function parameter. The price to pay for this transformation is an exponential blow-up in the size
of the formula. If the formula is represented as a circuit, however, the blow-up is only linear. The sec-
ond phase of our negation elimination procedure thus consists in implementing the sharing of common
subformulas using higher-orderness. Thanks to this secondphase, our procedure yields a negation-free
formulannf(ϕ) of sizeO(size(ϕ) · |vars(ϕ)|), hence quadratic in the worst case in the size of the original
formulaϕ .

Typed versus Untyped Negation Elimination Our monotonization procedure istype-directed: the
monotonization ofϕ ψ depends on the variance ofϕ , that is statically determined by looking at the type
of ϕ . One might wonder if we could give a negation elimination that would not be type-directed. A way
to approach this question is to consider an untyped conservative extension of the logic where we do not
have to care about the existence of the fixed points – for instance, one might want to interpreteµX.ϕ(X)
as the inflationary “fixed point” [7]. We believe that we couldadapt our monotonization procedure to this
setting, and it would indeed become a bit simpler: we could always monotonizeϕ ψ “pessimistically”,
as ifϕ were neither a monotone nor an antitone function. For instance, the formulaµX.(λY.Y) X would
be translated intoµX.(λY,Y.Y) X ¬X.

In our typed setting, it is crucial to use the type-directed monotonization we developed, because
monotizing pessimistically might yield ill-typed formulas. In an untyped setting, a pessimistic mono-
tonization is possible, but it yields less concise formulas, and it looses the desirable property that
nnf(nnf(ϕ)) = nnf(ϕ).

So types, and more precisely variances, seem quite unavoidable. However, strictly speaking, the
monotonization we introduced isvariance-directed, and not really type-directed. In particular, our mono-
tonization might be extended to the untyped setting, relying on some other static analysis than types to
determine the variances of all functional subformulas.

Sharing and Quadratic Blow-Up The idea of sharing subterms of aλ -term is reminiscent to im-
plementations ofλ -terms based on hash-consing [8, 11] and to compilations of the λ calculus into
interaction nets [13, 16, 10]. We showed how sharing can be represented directly in theλ -calculus,
whereas hash-consing and interaction nets are concerned with representing sharing either in memory or
as a circuit. We compile typedλ -terms into typedλ -terms; a consequence is that we do not manage to
share subterms that are syntactically identical but have either different types or are typed using different
type assumptions for their free variables. This is another difference with hash consing and interaction
nets, where syntactic equality is enough to allow sharing subterms. It might be the case that we could
allow more sharing if we did not compile into a simply typedλ -calculus but in a ML-like language with
polymorphic types.

An interesting issue is the quadratic blow-up of our implementation of “λ -circuits”. One might
wonder wether a more succinct negation elimination is possible, in particular a negation elimination with
linear blow-up. To answer this problem, it would help to answer the following simpler problem:given a
λ -term t with n syntactically distinct subterms, is there an effectively computableλ -term t′ of sizeO(n)
such that t=βη t ′? We leave that problem for future work.
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In functional programming, datatypes à la carte provide a convenient modular representation of re-
cursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to
implement this technique in proof assistants that are based on type theory, like Coq. The reason is
that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly
positive. The known work-around of impredicative encodings is problematic, insofar as it impedes
conventional inductive reasoning. Weak induction principles can be used instead, but they consider-
ably complicate proofs.

This paper proposes a novel and simpler technique to reason inductively about impredicative
encodings, based on Mendler-style induction. This technique involves dispensing with dependent
induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations.
A case study on proving subject reduction for structural operational semantics illustrates that the
approach enables modular proofs, and that these proofs are essentially similar to conventional ones.

1 Introduction

Developing high-quality software artifacts, including programs as well as programming languages, can
be very expensive, and so can formally proving their properties. This makes it highly desirable to max-
imise reuse and extensibility. Modularity plays an essential role in this context: a component is modular
whenever it can be specified independently of the whole collection – therefore, a modular characterisa-
tion of an artifact implies that its extension does not require changes to what is already in stock.

In functional programming, it is natural to rely on a structured characterisation of components based
on recursive datatypes. However, conventional datatypes are not extensible – each one fixes a closed set
of constructors with respect to which case analysis may have to be exhaustive, hence each case implicitly
depends on the whole collection. An elegant solution to this tension between structural characterisa-
tion and modularity, also known as the expression problem, has been found with the notion of modular
datatype (MDT) – i.e., datatypes à la carte, introduced in Haskell by Swierstra [16]. The definition of an
MDT consists of two distinct parts: the grammar, as a non-recursive structure based on a functor, and the
recursive datatype, as the recursive closure of the functor by a type-level fixed point. Grammar functors
behave as modules, as they can be defined independently and combined together by coproduct.

In Haskell, an MDT can be easily implemented in terms of conventional datatypes, which can be
used to define the grammar as well as the recursive closure (as recalled in Section 2). However, Haskell’s
datatype definition of the type-level fixpoint operator is not strictly positive, and therefore it is problem-
atic from the point of view of less liberal type systems. As a general-purpose programming language,
Haskell relies on types that do not enforce totality (i.e., either termination or productivity). This makes
type checking easier in the presence of non-termination. Unfortunately, allowing for non-total programs
can lead to inconsistency under a program-as-proof interpretation. For this reason, proof assistants based
on the Curry-Howard correspondence are usually based on more restrictive type systems. Proof assis-
tants such as Coq, Agda, Isabelle and Twelf, for instance, rely on a syntactic criterion of monotonicity
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which ensures totality, by requiring that all the occurrences of an inductive datatype in its definition are
strictly positive – hence incompatibly with the Haskell-style representation of MDTs.

Coq is a theorem prover based on the calculus of inductive constructions (CIC) [3] which extends
the calculus of constructions (CC) [5] with inductive and coinductive definitions. CC, the most expres-
sive system of the lambda cube [2], allows for types depending on terms, type-level functions and full
parametric polymorphism, hence also for definitions that are impredicative, in the sense of referring in
their bodies to collections that are being defined. One of the main approaches to represent MDT in Coq,
due to Delaware, Oliveira and Schrijvers [7] and implemented in the MTC/3MT framework [6], takes
advantage of impredicativity, and relies on the Church encoding of fixed points (as recalled in Section 3).
Another promising approach, due to Keuchel and Schrijvers [11], relies on containers – it is predicative,
but it involves a more indirect representation of types. Church encodings are purely based on CC and
do not involve any extra-logical machinery – however, they rather complicate inductive reasoning. Im-
predicative definitions have an eliminative character that hides term structure, hence making it harder to
reason by induction. The solution proposed by Delaware et al. is quite general – however, it relies on
proof algebras that pack terms together with proofs using Σ-types, and this leads to inductive proofs that
have a significant overhead with respect to the conventional, non-modular ones.

This paper proposes a novel solution to the problem of reasoning inductively with impredicatively
encoded MDT, based on the use of Mendler-style induction [12, 18, 1]. Mendler’s characterisation of
iteration makes it possible to encode an induction principle within the impredicative encoding of an
MDT. Unlike Delaware et al., we use Mendler algebras as proof algebras. This leads to inductive proofs
that are straightforwardly modular and ultimately closer to conventional ones (Section 4). Although
this approach cannot handle dependent induction, this limitation is of little consequence as long as we
are reasoning about relational formulations. Nonetheless, this may make it necessary to lift inductive
datatypes to inductively defined predicates, in order to use them as inductive arguments in proofs.

In order to reason inductively on relations, we clearly need to rely on functor shapes that can rep-
resent them as well as mutual dependencies. Such need is highlighted throughout a case study on the
formalisation of a language based on structural operational semantics (Section 5, Coq implementation
available [17]). The language, for which we prove type preservation, has a definition that involves mutual
dependency between expressions and declarations.

2 Datatypes a-la-carte

MDTs as introduced by Swierstra [16] are essentially a functional programming application of the initial
algebra semantics of inductive types. This consists of associating an inductive datatype to an endofunctor
in a base category, then interpreting it as the initial object in the category of algebras determined by the
functor [9, 19].

In its simplest form, taking sets (S) as the base category, each inductive datatype ρ : S can be associ-
ated with a covariant endofunctor (signature functor), i.e. a map F : S→ S for which there exists a map
(functor map) fmapF {A B} : (A→ B)→ (F A→ F B) that preserves identities and composition, with
A, B : S (always treated as implicit parameters). Semantically, an algebra determined by F (F-algebra) is
a pair 〈C,φ〉where C : S is the carrier and φ : F C→C is the structure map. F C can be understood as the
denotation of a grammar based on signature F , given carrier C. The initial object 〈µF, inF〉, where inF is
an isomorphism and thus has an inverse outF , gives the denotation of ρ obtained as the fixpoint closure
of F . In this way, the non-recursive structural characterisation of ρ , which essentially corresponds to
case analysis, is separated from its recursive closure. For instance, in a functional language which allows
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for datatype definitions with data constructors and Haskell-style destructors (while we mainly rely on
Coq-style and standard algebraic notation), the following

dt def ρ = c1 (τ1[ρ/A]) | . . . | ck (τk[ρ/A]) (1)

can be decomposed in

dt def F A = c1 (τ1) | . . . | ck (τk) (2)

and

ρ =d f Fix F (3)

where Fix F is the syntactic representation of µF , i.e.

dt def Fix F = in (out : F (Fix F)) (4)

For each F-algebra 〈C, f 〉, the unique incoming algebra morphism from the initial algebra is determined
by the unique mediating map foldF,C, f : µF → C. Syntactically, this corresponds to the definition of
fold F C : (F C→C)→ (Fix F →C) as a recursive function.

fold F C f x =d f f (fmap F (fold F C f ) (out x)) (5)

Functors are composable by coproduct (+), i.e., if F1,F2 : S→ S are functors, so is F1+F2, with

dt def (F1+F2) C = inl (F1 C) | inr (F2 C) (6)

This results in a modular definition of the inductive datatype Fix (F1+F2) – not to be confused with
Fix F1+Fix F2. In connection with coproducts, Haskell implementations of MDTs rely on type classes to
automate injections and projections, using smart constructors and class constraints to express subsump-
tion between functors. As a concrete example, following Swierstra [16], the conventional datatype

dt def Trm = lit (Int) | add (Trm∗Trm) (7)

can be decomposed into two modules

dt def TrmG1 C = lit (Int) dt def TrmG2 C = add (C ∗C) (8)

and thus modularly defined:

TrmG =d f TrmG1+TrmG2 Trm =d f Fix TrmG (9)

Moreover, given a notion of value and a conventional recursive definition of evaluation

dt def Val = val (vv : Int) eval : Trm→ Val
eval (lit x) =d f val x
eval (add (e1,e2)) =d f val ((vv ◦ eval e1)+(vv ◦ eval e2))

(10)

the latter can be represented by an algebra and modularly decomposed as follows, allowing for a modular
definition of the dynamic semantics.

evalG1 : TrmG1 Val→ Val evalG1 (lit x) =d f val x
evalG2 : TrmG2 Val→ Val evalG2 (add (x1,x2)) =d f val ((vv x1)+(vv x2))
evalG : TrmG Val→ Val evalG (inl e) =d f evalG1 e

evalG (inr e) =d f evalG2 e

(11)

eval e =d f fold TrmG Val evalG e (12)
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3 Impredicative encoding

The MDT representation discussed so far works well with Haskell, but not with Coq. Representing F as
an inductive datatype is not problematic, but this is not so for the fixpoint closure. Since the constructor
of Fix F has type F (Fix F)→ Fix F , the datatype has a non-strictly positive occurrence in its definition,
as parameter of the argument type – hence it is rejected by Coq. There is an analogous issue with the
definition of fold, which is not structurally recursive. The solution to this problem adopted by Delaware
et al. in [7], which we summarise here, goes back to Pfenning and Paulin-Mohring [13] in relying on a
Church-style encoding of fixpoint operators, thus requiring impredicative definitions.

From the point of view of a type theoretic representation, the type of an algebra (that we may call
Church algebra, or conventional algebra) can be identified with the type of its structure map.

AlgC F C =d f F C→C (13)

If the initiality property of fixed points is weakened to an existence property, a fixpoint operator can be
regarded as a function that maps an algebra to its carrier. An abstract definition of the type-level fixpoint
operator FixC : (S→ S)→ S can then be given, as elimination rule for F-algebras, impredicatively with
respect to S (this requires the impredicative set option in Coq, as used in MTC/3MT [7]).

FixC F =d f ∀A : S. AlgC F A→ A (14)

The map foldC F C : AlgC F C→ FixC F →C, corresponding to the elimination of a fixpoint value, can
now be defined as the application of that value.

foldC F C f x =d f x C f (15)

Relying on the functoriality of F , the in-map inC F : F(Fix F)→ Fix F and the out-map outC F : Fix F→
F(Fix F) can be defined as functions.

inC F =d f λx A f . f (fmap F (foldC F A f ) x) (16)

outC F =d f foldC F (F(Fix F)) (fmap F (inC F)) (17)

Notice that the definition of foldC F C f does not guarantee the uniqueness of the mediating map – it
rather corresponds to a condition called quasi-initiality by Wadler [19]. In order to obtain uniqueness,
hence to ensure that inC is an isomorphism, the following implication needs to be proved for F [7, 11, 10].

(∀x : FixC F. h (inC F x) = f (fmap F h x)) → (h = foldC F C f ) (18)

Semantically, the impredicative encoding of the fixed points is closely associated with a constructor,
usually called build, that allows for an alternative interpretation of inductive datatypes in terms of limit
constructions, provably equivalent to the initial algebra semantics [8].

3.1 Indexed algebras

A relation can be represented as a function from the type of its tupled arguments to the type P of propo-
sitions. From the point of view of initial semantics, assuming P can be represented as a category, the
modular representation of inductively defined relations only requires a shift of base category. Given a
type K (i.e., K : Type) and assuming it can be represented as a small category, we can take the category
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of diagrams of type K in P as the base category for the relations of type K → P. In such category, an
endofunctor R : (K→ P) → (K→ P) that here we call indexed functor, is then associated with a map
(indexed functor map) that preserves identities and composition.

fmapI K R : ∀ {A B : K→ P}. (∀w : K. A w→ B w)→ (∀w : K. R A w→ R B w) (19)

From the point of view of the impredicative encoding, an R-algebra can be characterised as an indexed
map, given a carrier D : K→ P.

AlgCI K R D =d f ∀w : K. R D w→ D w (20)

The corresponding fixpoint operator has type ((K→ P) → K→ P)→ K→ P.

FixCI K R (w : K) =d f ∀A : K→ P. AlgCI K R A → A w (21)

The structuring operators can be defined as follows:

foldCI K R : ∀A ( f : AlgCI K R A) (w : K). FixCI K R w→ A w =d f λA f w e. e A f (22)

inCI K R (w : K) : R (FixCI K R) w→ FixCI K R w =d f
λx A f . f w (fmapI K R (foldCI K R A f ) w x)

(23)

outCI K R (w : K) : FixCI K R w→ R (FixCI K R) w =d f
foldCI K R (R (FixCI K R)) (fmapI K R (inCI K R)) w

(24)

3.2 Proof algebras

The impredicative encoding makes it comparatively easy to represent MDTs in Coq, but leaves us with
the problem of how to reason inductively about them. Unlike the in-map of the categorical semantics,
inC is not a constructor – therefore, structural induction cannot be applied to a term of type FixC F . Let
P : T → P be a property and T the representation of an inductive datatype in the following goal, which
we assume to be semantically provable by induction on T .

Γ,w : T ` g : P w (25)

However, given T =d f Fix
C F and the impredicative definition of FixC, the type T is not syntactically

inductive, and no conventional induction principle can be applied. Nevertheless, we can prove

∀v : T. ∃w : F T. P v = P (inC F w) (26)

as this follows from the equality v = inC F (outC F v) which can be proved, provided inC F is shown
to be an isomorphism – e.g., by proving (18). Rewriting (25) with (26), we obtain

Γ,w : F T ` g′ : P (inC F w) (27)

Here it is possible to apply induction on w, since F T is an inductive datatype: however, what we actually
get is case analysis – the recursive arguments in F T are hidden in the same sense as before, as they have
type T rather than F T .
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The solution adopted by Delaware et al. in [7], implemented in Coq and supported by MTC/3MT
consists of packing an existential copy of the inductive term together with a proof that it satisfies the prop-
erty, using Σ types. This involves replacing the conventional proof with one based on the representation
of the goal as an algebra, i.e., a proof algebra.

Γ ` f : AlgC F (Σv. P v) (28)

By folding such an algebra, one obtains

Γ,w : T ` foldC F (Σv. P v) f w : Σv. P v (29)

which states something weaker than the original goal (25). Nonetheless, under conditions associated
with well-formed proof algebras in [7], (28) can be strengthened to (25). This technique is quite general,
and it can be applied to inductive proofs in which the goals may depend on the inductive argument (i.e.,
it can deal with dependent induction). However, the proofs that are obtained in this way are essentially
factored into two non-trivial parts – the application of a weak induction principle and a well-formedness
proof – and therefore are quite different from conventional inductive ones.

3.3 Looking for a simpler solution

A natural question arises: is it possible to sacrifice some of the generality of the MTC approach, to obtain
proofs that look more familiar? The whole point of using Σ types is to hide dependencies: a solution
that does not involve them and so a positive answer to our question appear more feasible, when we can
dispense with the use of dependent induction, by finding an alternative, equivalent formulation of the
goal. In our schematic example (25) we get such reformulation, when we can find S, Q : T → P and an
indexed functor R : (T → P)→ T → P such that S =d f Fix

CI T R, the following equivalence holds

there exists t s.t. Γ ` t : ∀w : T. S w→ Q w iff there exists t ′ s.t. Γ ` t ′ : ∀w : T. P w (30)

and the following is semantically provable, as the new goal, by induction on h:

Γ, w : T, h : S w ` l : Q w (31)

Intuitively, this means that the dependency of the proof on w can be lifted to a type dependency, given a
sufficiently close analogy between T as modular inductive datatype and S as modular inductive predicate,
therefore by rather using h of type S w as inductive argument. Again, we need to expose the inductive
structure by shifting to

Γ, w : T, h : R (FixCI T R) w ` l′ : Q w (32)

and this is not problematic. However, as before, we end up stuck with case analysis rather than proper
induction. In order to solve this problem, we need to look at an alternative encoding of fixed points, based
on Mendler-style induction [12, 1]. In fact, Mendler’s approach makes it possible to build induction
principles into impredicatively encoded fixed points. Notice that Mendler algebras are used by Delaware
et al. [7], but have a different purpose there (i.e., controlling the order of evaluation), from the one we
are proposing here.
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4 Mendler algebras

We first present the Mendler-style semantics of inductive datatypes by introducing Mendler algebras as
a category, following Uustalu and Vene [18]. Given a covariant functor F : S→ S, a Mendler algebra is
a pair 〈C,Ψ〉 where C : S is the carrier and Ψ A : (A→C)→ (F A→C), for each A : S, is a map from
morphisms to morphisms satisfying Ψ A f = (Ψ C idC) · (fmap F f ), with f a morphism from A to C.
A morphism between Mendler algebras 〈C1,Ψ1〉 and 〈C2,Ψ2〉, is a morphism h : C1→C2 that satisfies
h ·Ψ1 C1 idC1 = Ψ2 C1 h. The Mendler algebra semantics has been proved equivalent to the conventional
one by Uustalu et al.. Assume F such that the conventional initial F-algebra 〈µF, inF〉 exists. Given the
abbreviation

pre inF C (m : C→ µF) =d f inF · (fmap F m) : (F C→ µF) (33)

we can prove the equation

inF = pre inF µF id (34)

by the isomorphic character of inF . The Mendler algebra 〈µF, pre inF〉 can thus be shown to be the
initial object in its category, and therefore used as alternative interpretation of the inductive datatype
associated with F . For each Mendler algebra 〈C,Ψ〉, the unique incoming morphism from the initial
Mendler F-algebra can be defined

mfold F C Ψ x =d f Ψ (µF) (mfold F C Ψ) (outF x) (35)

Unlike the conventional fixpoint operator, the Mendler one can be encoded in Coq as an inductive
datatype (though using the impredicative option).

dt def MFix F = pre in (C : S) (b : C→MFix F) (c : F C) (36)

However in, as defined by equation (34) in this setting, is still not a constructor, and the definition of
mfold is not structurally recursive. Therefore, also in this case, it seems more convenient to resort to an
impredicative encoding, following [12, 7].

4.1 Impredicative Mendler algebra encoding

Mendler algebras can be characterised impredicatively by the type of their structure maps, and a fixpoint
operator can be defined as in the conventional case [12, 7].

AlgM F C =d f ∀A. (A→C)→ (F A→C) (37)

FixM F =d f ∀C. AlgM F C→C (38)

Unlike the conventional case, the type of a Mendler algebra can be read as specification of an iteration
step, where the bound type variable A represents the type of the recursive calls. The corresponding fold
operator

foldM F C f x =d f x C f (39)

indeed has type

foldM F C : (∀A. (A→C)→ (F A→C))→ (FixM F)→C (40)
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which can represent an induction principle, under the assumption that the argument to the induction
hypothesis is only used therein without further analysis [12, 1]. In-maps and out-maps can be defined as
follows

inM F (x : F(FixM F)) : FixM F =d f λA ( f : AlgM F A). f (FixM F) (foldM F A f ) x (41)

outM F (x : FixM F) : F (FixM F) =d f x (F (FixM F))
(λA (r : A→ F (FixM F)) (a : F A). fmap F (λy : A. inM F (r y)) a)

(42)

As in the conventional case, impredicative fixpoint definitions give us quasi-initiality. The uniqueness
condition of foldM F A f that is needed for initiality, in a way which parallels (18), is given by

(∀x : F (FixM F). h (inM F x) = f (FixM F) h x) → h = foldM F A f (43)

to be proven for a fixed F , for every A : S, f : AlgM F A and h : FixM F → A [18].

4.2 Indexed Mendler algebras

As before, we need indexed algebras to deal with relations. The definitions are similar to the conventional
ones, with K a type, R : (K→ P)→ (K→ P) an indexed functor, and D : K→ P an indexed carrier.

AlgMI K R D =d f ∀A. (∀w : K. A w→ D w)→∀w : K. R A w→ D w (44)

FixMI K R w =d f ∀A. AlgMI K R A→ A w (45)

foldMI K R D ( f : AlgMI K R D) (w : K) (x : FixMI K R w) =d f x D f (46)

inMI K R (w : K) (x : R (FixMI K R) w) : FixMI K R w =d f
λA ( f : AlgMI K R A). f (FixMI K R) (foldMI K R A f ) w x

(47)

outMI K R (w : K) (x : FixMI K R w) : R (FixMI K R) w =
x (R (FixMI K R)) (λ A (r : ∀v. A v→ R (FixMI K R) v)

(w : K) (a : R A w). fmapI R (λy : A w. inMI K R w (r w y)) a)
(48)

As an example, we can define inductively a relation Eval : (Trm∗Val)→ P that agrees with eval.

dt def EvalG (A : (Trm∗Val)→ P) : (Trm∗Val)→ P =
ev1 : ∀x : Int. EvalG A (lit x,val x)
ev2 : ∀e1 e2 : Trm,x1 x2 : Val. A(e1,x1) ∧ A(e2,x2)→

EvalG A (add(e1,e2),val((vv x1)+(vv x2)))

(49)

Eval =d f FixMI (Trm∗Val) EvalG (50)
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4.3 Proof algebras, Mendler-style

Reconsider the schematic example in Section 3.2: the problem in (32) was the missing induction hypoth-
esis, that cannot be obtained by appealing to the standard inductive principle, as the recursive occurrences
are wrapped in a non-inductive type. Intuitively, this can be fixed by giving such an hypothesis explicitly.
This would give us a generic representation of the step lemma in our inductive proof.

Γ, h0 : ∀v : T. FixCI T R v→ Q v, w : T, h1 : R (FixCI T R) w ` q : Q w (51)

However, here the type of h0 is actually too specific to be that of the induction hypothesis with respect to
h1 – as a result, the sequent is too weak to take us to the main goal (31). At this point, Mendler’s intuition
comes into play: under the assumption that the argument passed to the induction hypothesis is used only
there, without further case analysis, and that therefore we make no use of its type structure, its type can
be represented by a fresh type variable – the key feature of Mendler-style induction [12, 1]. We can then
strengthen (51) to the following, more abstract goal.

Γ, A : Type, h0 : ∀v : T. A v→ Q v, w : T, h1 : R A w ` p : Q w (52)

Given f =d f λA h0 w h1. p, the above is equivalent to

Γ ` f : AlgMI T R Q (53)

Now we have an indexed Mendler algebra. The original goal, equivalent to (25) by a reformulation of
(30) with S = FixMI T R, can then be obtained by folding, without need of further adjustments.

Γ ` foldMI T R Q f : ∀w : T. S w→ Q w (54)

In order to prove (52), case analysis (as provided in Coq e.g. by inversion and destruct tactics [3])
can be applied to h1, allowing us to reason on the structure of R A w. This actually results in doing
induction on that structure, as the induction hypothesis h0 is already there. In this way, we can minimise
the overhead of combining inductive proofs with modular datatypes. Proving an inductive lemma boils
down to constructing the appropriate Mendler algebra – the rest is either conventional, or comes for free.
In connection with MDT, such algebras can be regarded as proof modules, that can be composed together
in the usual sense of case analysis on coproducts [16, 7], in the same straightforward way as evaluation
algebras (the original motivating example by Swierstra [16]). This sounds attractive, from the point of
view of the applications in which the relational aspect is predominant, such as structural operational
semantics.

4.4 Problematic aspects

Which could be the downsides of the Mendler-based approach? As already observed, relying on im-
predicative encodings gives us for free only a weak semantics of inductive datatypes, i.e., a quasi-initial
one. However, initiality is needed virtually everywhere in our proofs, to ensure in-maps and out-maps
are inverses, i.e.

(A) outM F (inM F x) = x (B) inM F (outM F x) = x (55)

and similarly for the indexed case. In order to get proper initial semantics, functor-specific proofs of
properties such as (43) for base category S, or the corresponding one for K→ P, need to be carried out.
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This may be regarded as a general weakness of impredicative approaches including MTC/3MT [7, 6],
as remarked by Keuchel and Schrijvers [11]. Nonetheless, in discussing the well-formedness of Church
encodings [7], Delaware et al. argue that dealing with this issue is not too hard, as indeed MTC provides
automation for doing so.

A more specific problem is related to the iterative character of Mendler-style recursion, and corre-
spondingly, to the non-dependent character of Mendler-style induction. Mendler algebras make it pos-
sible to factor induction into case analysis and folding, but this restricts induction, in the sense of what
is called Mendler iteration by Abel, Matthes and Uustalu [1]: the argument of the induction hypothesis
cannot be used anywhere else, effectively ruling out dependent induction. This means there are problems
that cannot be solved in their original form. As an example, MTC [7] proves the type soundness of a lan-
guage with a dynamic semantics that is recursively defined as a total evaluation function. This problem
can be reformulated with respect to our concrete example in Section 2, using our definition of eval (12).

Γ,e : Trm, t : Typ ` k : TypOf (e, t)→ TypOf (lit◦ vv (eval e), t) (56)

Using the MTC approach, (56) can be proved by dependent induction on the structure of term e. Given
dt def Typ = N and assuming for simplicity TypOf is a conventional inductive predicate

dt def TypOf : Trm∗Typ→ P =
tof1 : ∀v : Val. TypOf (lit◦ vv v, N)
tof2 : ∀e1 e2 : Trm. TypOf (e1,N)∧TypOf (e2,N)→ TypOf (add(e1,e2),N)

(57)

the proof is ultimately based on a proof algebra of type AlgC TrmG (Σe. ∀t : Typ. TypOf (e, t)→
TypOf (lit◦vv (eval e), t)), although as already noticed, folding this algebra only gives us the backbone
of the whole proof.

This is not possible using our Mendler-style approach, as we cannot deal with the dependency of the
goal on the inductive argument e. What we can do instead, is to rely on the relational formulation of
evaluation given by Eval (50), which can be shown to satisfy (30), and prove

Γ,e : Trm,v : Val, t : Typ, h : Eval (e,v) ` l : TypOf (e, t)→ TypOf (lit◦ vv v, t) (58)

reasoning by induction on the structure of Eval. This reformulation of the goal essentially matches (31).
In this case, a proof can be obtained by simply folding an indexed Mendler algebra of type AlgMI (Trm∗
Val) EvalG (λ (e,v). ∀t : Typ. TypOf (e, t)→ TypOf (lit◦vv v, t)), which provides our instance of (53).

An alternative way to obtain a relational equivalent of (56) is to lift the modular datatype Trm to a
modular predicate IsTrm : (TrmG Trm)→ P, with IsTrm =d f FixMI (TrmG Trm) IsTrmG, where

dt def IsTrmG A = isLit : ∀x : Int. IsTrmG A (lit x)
| isAdd : ∀e1 e2 : Trm. A e1 ∧ A e2 → IsTrmG A (add (e1,e2))

(59)

and then prove

Γ,e : Trm,w : IsTrm e, t : Typ ` k : TypOf (e, t)→ TypOf (lit◦ vv (eval e), t) (60)

reasoning by Mendler induction on w. Notice that eval in the MTC example [7] is actually defined as
the fold of a Mendler algebra, rather than a conventional one, in order to allow for control over the
evaluation order – this is related to the form of their semantics though, and completely unrelated to our
use of Mendler-style induction.
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5 Case study

The use of relational formulations appears particularly natural in specifications based on small-step rules
in the style of SOS, originally introduced by Plotkin [14]. Yet in order to formulate each relation mod-
ularly, we need to build encodings based on functors that reflect the structure of those relations. This
inevitably makes things more complex, especially when we have to deal with mutually inductive defi-
nitions. In order to test the applicability of Mendler proof algebras to the formalisation of a semantic
framework, we have formalised a language L with a comparatively rich syntactic structure, including
types (Typ), patterns (Pat), declarations (Dec) and expressions (Exp), as well as value environments
(EnvE) and typing environments (EnvT). We rely on SOS to give a partial specification of the language:
partial, insofar as we do not specify any behaviour in case of pattern matching failure – therefore, we
cannot prove type soundness, which in fact does not hold. However, we can still prove type preservation
– and this suffices for us, as an example of the structural complexity we are aiming at.

The full language specification is available with the Coq formalisation in the companion code at
[17]. Here we outline the specification using conventional dataytpes. The Coq formalisation is entirely
based on modular datatypes, although for simplicity we rely on monolithic functors (we have not yet
implemented the smart constructor mechanism that facilitates the use of coproducts).

dt def Typ = ty(IdT) | Typ⇒Typ | type env(EnvT)
dt def Pat = vrp(Id,Typ) | cnp(Id,Typ) | applyp(Pat,Pat)
dt def Dec = env(EnvE) |match(Pat,Exp) | join(Dec,Dec)
dt def Exp = vr(Id) | cn(Id,Typ) | closure(EnvE,Pat,Exp)

| apply(Exp,Exp) | scope(Dec,Exp)

(61)

Env A =d f Id→ option A EnvT =d f Env Typ EnvE =d f Env Exp (62)

The language L is based on simply typed lambda calculus with pattern matching and first class environ-
ments. We use two sets of identifiers – IdT for type variables and Id for object variables and constants.
Constants and pattern variables are annotated with types. ⇒ is the usual function type constructor. We
use closures instead of lambda abstractions to ensure values are closed terms and avoid dealing with sub-
stitution. Abstraction is defined over patterns (rather than simply over variables). Matching patterns with
expressions give declarations, which may evaluate to environments. Declarations can be joined together
and used in scope expressions. Values can be specified as follows.

Data values : h ∈ cn(x,τ) | apply(h,v)
Values : v ∈ closure(ρ, p,e) | h (63)

The typing relations have the following signatures. Notice that patterns and values can be typed in a
context-free way, unlike expressions and declarations.

Patterns : TypOPat : Pat∗Typ→ P
Environments : TypOEnv : EnvE ∗EnvT→ P
Declarations : TypODec : EnvT ∗Dec∗Typ→ P
Expressions : TypOExp : EnvT ∗Exp∗Typ→ P

(64)

The transition relations have the following signatures.

Declarations : DecStep : EnvE ∗Dec∗Dec→ P
Expressions : ExpStep : EnvE ∗Exp∗Exp→ P

(65)
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Expressions and declarations may depend on each other, and therefore can only have a mutually inductive
definition. Analogously, the definitions of the typing relations and of the transition relations for these
two syntactic categories involve mutual induction. Therefore we need to introduce functors to reason
about mutually inductively defined sets, as well as mutually inductively defined relations.

5.1 Mutually inductive sets

Two mutually recursive datatypes in the base category S, can be represented in terms of bi-functors
F1, F2 : S ∗S→ S, where bi-functoriality is expressed as existence of a map fmapD which satisfies the
appropriate form of the usual preservation properties.

fmapD : ∀ {A1 A2 B1 B2 : S} ( f1 : A1→ B1) ( f2 : A2→ B2). F (A1,A2)→ F (B1,B2) (66)

fmapD g1 g2 (fmapD f1 f2) = fmapD (g1 · f1) (g2 · f2)
fmapD idA idB = idFAB

(67)

The definitions of Mendler bi-algebra, fixpoint and fold operators can be given using pairs.

AlgD (F1,F2) (C1,C2) =d f (∀A1 A2. (A1→C1)→ (A2→C2)→ F1 (A1,A2)→C1,
∀A1 A2. (A1→C1)→ (A2→C2)→ F2 (A1,A2)→C2)

(68)

FixD (F1,F2) =d f (∀A1 A2. Alg
D (F1,F2) (A1,A2)→ A1,

∀A1 A2. Alg
D (F1,F2) (A1,A2)→ A2)

(69)

foldD1 (F1,F2) (C1,C2) ( f : AlgD (F1,F2) (C1,C2)) :
fst (FixD (F1,F2))→C1 =d f λe. e C1 C2 f

(70)

foldD2 (F1,F2) (C1,C2) ( f : AlgD (F1,F2) (C1,C2)) :
snd (FixD (F1,F2))→C2 =d f λe. e C1 C2 f

(71)

All the syntactic categories of L can then be represented as MDTs, using bi-functors for mutually
defined Decl and Exp.

dt def TypG T = ty(IdT) | T⇒T | type env (EnvT T ) Typ =d f FixM TypG
dt def PatG P = vrp(Id,T ) | cnp(Id,T ) | applyp(P,P) Pat =d f FixM PatG
dt def DecG D E = env(Env E) |match(Pat,E) | join(D,D)
dt def ExpG D E = vr(Id) | cn(Id,Typ) | closure(Env E,Pat,E) | apply(E,E) | scope(D,E)

Dec =d f fst (FixD (DecG,ExpG)) Exp =d f snd (FixD (DecG,ExpG))

(72)

5.2 Mutually inductive relations

Given types K1,K2, two mutually recursive relations depending on such types in base categories K1→ P,
K2→ P, can be represented by indexed bi-functors R1,R2, with

R1 K1 : (K1→ P)∗ (K2→ P)→ (K1→ P) R2 K1 : (K1→ P)∗ (K2→ P)→ (K2→ P) (73)
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characterised by maps

fmapH1 (K1,K2) R1 : ∀ {A1 A2 : K1→ P} {B1 B2 : K2→ P}.
(∀w : K1. A1 w→ B1 w)→ (∀w : K2. A2 w→ B2 w)→

∀w : K1. R1 (A1,A2) w→ R1 (B1,B2) w
(74)

fmapH2 (K1,K2) R2 : ∀ {A1 A2 : K1→ P} {B1 B2 : K2→ P}.
(∀w : K1. A1 w→ B1 w)→ (∀w : K2. A2 w→ B2 w)→

∀w : K2. R2 (A1,A2) w→ R2 (B1,B2) w
(75)

Given carriers D1 : K1 → P, D2 : K2 → P, we can now define indexed Mendler bi-algebras and the
associated notions (see [17] for more details).

AlgH (K1,K2) (R1,R2) (D1,D2) =d f
(∀A1 A2. (∀w : K1. A1 w→ D1 w)→ (∀w : K2. A2 w→ D2 w)→

∀w : K1. R1 (A1,A2) w→ D1 w,
∀A1 A2. (∀w : K1. A1 w→ D1 w)→ (∀w : K2. A2 w→ D2 w)→

∀w : K2. R2 (A1,A2) w→ D2 w)

(76)

FixH (K1,K2) (R1,R2) =d f
(λw : K1. ∀A1 A2. Alg

H (K1,K2) (R1,R2) (A1,A2)→ A1 w,
λw : K2. ∀A1 A2. Alg

H (K1,K2) (R1,R2) (A1,A2)→ A2 w)
(77)

foldH1 (K1,K2) (R1,R2) (D1,D2) ( f : AlgH (K1,K2) (R1,R2) (D1,D2)) (w : K1) :
fst (FixH (K1,K2) (R1,R2)) w→ D1 w =d f λw e. e D1 D2 f

(78)

foldH2 (K1,K2) (R1,R2) (D1,D2) ( f : AlgH (K1,K2) (R1,R2) (D1,D2)) (w : K2) :
snd (FixH (K1,K2) (R1,R2)) w→ D2 w =d f λw e. e D1 D2 f

(79)

While the typing relations for patterns TypOPat can be represented modularly using an indexed functor
and FixI, the corresponding relations for declarations and expressions, i.e. TypODec and TypOExp
respectively, are mutually defined and therefore need to be represented as indexed bi-functors closed
by FixH. Such is also the case for DecStep and ExpStep, which can be defined as follows, given the
corresponding indexed bi-functors DecStepG : (EnvE∗Dec∗Dec→P, EnvE∗Exp∗Exp→P)→ EnvE∗
Dec∗Dec→P, and ExpStepG : (EnvE∗Dec∗Dec→P, EnvE∗Exp∗Exp→P)→EnvE∗Exp∗Exp→P.

DecStep =d f fst (FixH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp) (DecStepG, ExpStepG)) (80)

ExpStep =d f snd (FixH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp) (DecStepG, ExpStepG)) (81)

5.3 Type preservation

Type preservation in L can be expressed as follows

Γ,ρ : EnvE ` (∀(d1 d2 : Dec). DecStep (ρ,d1,d2)→ DecTSafe (ρ,d1,d2)
∧ (∀(e1 e2 : Exp). ExpStep (ρ,e1,e2)→ ExpTSafe (ρ,e1,e2)

(82)
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where

DecTSafe (ρ,d1,d2) =d f ∀(t : Typ) (γ : EnvT).
TypOEnv (ρ,γ)→ TypODec (γ,d1, t)→ TypODec (γ,d2, t)

ExpTSafe (ρ,e1,e2) =d f ∀(t : Typ) (γ : EnvT).
TypOEnv (ρ,γ)→ TypOExp (γ,e1, t)→ TypOExp (γ,e2, t)

(83)

The context Γ includes premises of shape

(IN x = IN y) → (x = y) (84)

where IN is the in-map for one of the datatypes – such premises can be discharged when the correspond-
ing initiality conditions (43) are proven. It also includes premises of shape

∀x : DG, IsDG x. (85)

where DG is the unfolding of a modular datatype D, and IsDG is the unfolding of a modular predicate IsD
that represents the relational lifting of D, in the sense of our example (59). Such premises are needed,
as the proof involves sublemmas that are proved by induction on the syntactic categories – and so, for
instance, TypG Typ has to be lifted to IsTypG : (TypG Typ→ P)→ TypG Typ→ P.

Crucially, the pair of DecTSafe and ExpTSafe can be a carrier for the indexed bi-functor determined
by DecStep and ExpStep. In order to prove type preservation by mutual induction on the structure
of DecStep and ExpStep, we define an indexed Mendler bi-algebra that has (DecTSafe,ExpTSafe) as
indexed carrier, where the index types are EnvE ∗Dec∗Dec and EnvE ∗Exp∗Exp

TPAlg =d f AlgH (EnvE ∗Dec∗Dec, EnvE ∗Exp∗Exp)
(DecStepG, ExpStepG) (DecTSafe, ExpTSafe)

(86)

After finding proofs f1 : fst TPAlg and f2 : snd TPAlg, we can construct a proof of (82) by applying to
them foldH1 and foldH2 , respectively (see [17] for details).

6 Conclusion

Motivated by the importance of modularity in program development, semantics and verification, we have
discussed the use of MDTs, their semantic foundations and their impredicative encoding along the lines
of existing work [7, 11, 16]. We have shown how impredicative MDT encodings based on Mendler
algebras can be used to reason about inductively defined relations, in a way that is comparatively close to
a more conventional style of reasoning based on closed datatypes, by providing a simpler notion of proof
algebra, if less general, than the one proposed by Delaware et al. [7]. Our approach can be regarded as a
novel application of Mendler-style induction [12, 1, 18], as well as a technique that could be integrated in
existing frameworks based on the impredicative encoding, such as MTC/3MT [7, 6]. Mendler’s original
insight [12] was in the semantics of inductive datatypes – the case made here, is for using that insight as
a modular proof technique. From the point of view of possible applications to semantics and verification
in frameworks such as OTT [15], the relational style that can be supported seems to fit in well with SOS
and in particular with component-based approaches, such as the one proposed by Churchill, Mosses,
Sculthorpe and Torrini [4]. Our plans for future work include integrating our technique in MTC/3MT,
and comparing this approach with the container-based one proposed by Keuchel and Schrijvers [11].
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