

Intel® Server Products and Solutions

Intel® Visual Compute Accelerator

Product Family

Software Guide

Reference for setting up Intel® Visual Compute Accelerator product family software.

Rev 2.3

December 2018

<Blank page>

Intel® Visual Compute Accelerator Software Guide

 3

Document Revision History

Date Revision Changes

December 2018 2.3 Aligned with Intel® VCA Software 2.3 public release.

July 2018 2.2 Aligned with Intel® VCA Software 2.2 public release.

May 2018 2.1.5 Aligned with Intel® VCA Software 2.1 public release.

Feburary 2018 2.1.1 Added clarifications, details and rearranged sections.

November 2017 2.1 Updated sections A.2 and A.4.2.3.

November 2017 2.0 Aligned with 2.0 VCA software public release. New features: supports XEN and KVM; support

Windows OS baremetal images; support blockIO devices; support kernel crash dump;

support m.2.

July 2017 1.6 Reorganized chapters and sections. Applied new formatting and edited for clarity.

March 2017 1.5.0 Aligned with 1.5 VCA Software public Release. VCA Software 1.5 is the first release which

supports both VCA1283LVV and VCA1585LMV.

October 2016 1.3.0 Aligned with 1.3 VCA Software Public Release.

July 2016 1.2.2 Fixed incorrect documentation in section 7.18; Fixed typos; Changed vca_os_repo to

local_repo in section 14 to synch with build_scripts values.

July 2016 1.2.1 Fixed typos and broken references; Added Bridge Configuration section; Expanded vcactl

config section

May 2016 1.2.0 Aligned with 1.2 VCA Software Public Release

December 2015 1.01 Minor corrections

November 2015 1.0 First Public Release

Intel® Visual Compute Accelerator Software Guide

4

Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service

activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your

system manufacturer or retailer or learn more at intel.com.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel

products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which

includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Iris, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation

http://www.intel.com/design/literature.htm

Intel® Visual Compute Accelerator Software Guide

 5

Table of Contents

1. Introduction ... 11

1.1 Notes on Example Commands ... 11

2. Intel® Visual Compute Accelerator Overview ... 12

3. Architecture Overview ... 14

3.1 Hardware Architecture ... 14

3.2 Software Architecture .. 15

3.2.1 Software Support Matrix ... 17

4. System Setup... 20

4.1 Configuring the Host System .. 20

4.1.1 Configure the Host BIOS ... 20

4.1.2 Install the Operating System ... 20

4.1.3 Configure Network Settings ... 21

4.2 Physical Installation of the Intel® VCA Card .. 21

4.2.1 Optional Hardware (Intel® VCA 2 only) ... 21

4.3 Installing Intel® VCA Software ... 21

4.3.1 Required Software ... 22

4.3.2 Required Firmware .. 22

4.3.3 Optional Software .. 22

4.3.4 Install VCA Software on Host .. 22

4.3.5 Updating EEPROM ... 24

4.3.6 Updating BIOS ... 24

4.4 Enabling Virtual Network .. 25

4.4.1 Configuring Nodes for Bridged Mode Operation .. 25

4.4.2 Creating NAT .. 27

4.5 Booting the Intel® VCA Card .. 28

4.5.1 Intel® VCA Volatile Reference Package ... 30

4.5.2 Intel® VCA Persistent over BlockIO (Intel® VCA software version 2.0 and above) 30

4.5.3 Intel® VCA Persistent over NFS (Intel® VCA software version 1.5 and lower only) 31

4.5.4 Manually Creating a Persistent File System Using NFS .. 33

4.5.5 Running Baremetal Image on Intel® VCA ... 35

4.5.6 Running KVM Virtulization on Intel® VCA .. 36

4.5.7 Running KVM-GT Virtualization on Intel® VCA .. 49

4.5.8 Running XEN Virtualization on Intel® VCA ... 51

4.5.9 Using Block Devices (via BlockIO) ... 62

5. Using the Intel® VCA Product Family Software .. 66

5.1 Using Intel® Media Server Studio ... 66

5.2 Running a Sample Transcode ... 67

6. Intel® VCA Utility (vcactl) ... 69

6.1 Introduction to vcactl ... 69

Intel® Visual Compute Accelerator Software Guide

6

6.2 vcactl Usage ... 69

6.3 Command Line Reference .. 69

6.3.1 vcactl help ... 69

6.3.2 vcactl wait-BIOS.. 70

6.3.3 vcactl status .. 70

6.3.4 vcactl update-BIOS .. 71

6.3.5 vcactl recover-BIOS (Intel® VCA 2 only) .. 72

6.3.6 vcactl update-EEPROM... 72

6.3.7 vcactl reset... 73

6.3.8 vcactl boot ... 73

6.3.9 vcactl reboot .. 74

6.3.10 vcactl wait ... 74

6.3.11 vcactl temp ... 75

6.3.12 vcactl blockio open ... 76

6.3.13 vcactl blockio list ... 76

6.3.14 vcactl blockio close... 76

6.3.15 vcactl network ... 77

6.3.16 vcactl ICMP-watchdog... 77

6.3.17 vcactl update-MAC ... 77

6.3.18 vcactl script .. 77

6.3.19 vcactl clear-SMB-event-log .. 78

6.3.20 vcactl config .. 78

6.3.21 vcactl config-use ... 80

6.3.22 vcactl config-show .. 80

6.3.23 vcactl config-default .. 80

6.3.24 vcactl info-hw ... 81

6.3.25 vcactl info-system .. 81

6.3.26 vcactl pwrbtn-short (only for Intel® VCA 2) ... 81

6.3.27 vcactl pwrbtn-long (only for Intel® VCA 2) .. 82

6.3.28 vcactl os-shutdown .. 82

6.3.29 vcactl get-BIOS-cfg ... 82

6.3.30 vcactl set-BIOS-cfg ... 82

6.3.31 vcactl info ... 83

7. IP Multicast with Intel® VCA Nodes... 84

7.1 Multicast Routing with mrouted... 84

7.1.1 Notes on mrouted .. 84

7.1.2 Example Configuration for Xen Domain U .. 84

7.1.3 Preparing for Multicasts .. 86

7.1.4 Restarting mrouted Daemon ... 86

7.2 Sample Usage .. 87

8. vca_config.xml File ... 89

Intel® Visual Compute Accelerator Software Guide

 7

8.1 Global Section ... 89

8.2 Card Section ... 90

9. Troubleshooting ... 92

9.1 Intel® VCA Debug Logs ... 92

9.2 Reading Intel® VCA Events with vca_elog.py Script ... 92

9.2.1 Prerequisites .. 92

9.2.2 Script Usage.. 93

9.2.3 Displaying Events ... 93

9.2.4 Event Types .. 95

9.2.5 Displaying Statistics .. 95

9.2.6 Saving a File and Parsing a Saved FIle .. 96

9.3 Using Kernel Crash Dump on Intel® VCA .. 96

9.3.1 Crash Dump on Linux* ... 96

9.3.2 Crash Dump on Windows* ... 96

10. Quick Validation of VCA SW .. 98

10.1 AVC Transcoding Benchmark for Simultaneous AVC-AVC Transcodes ... 98

10.2 Temperature Profile .. 99

Appendix A. Creating a Custom OS Image ... 100

A.1. Overview ... 100

A.2. Getting Tools and Build Scripts... 100

A.2.1. Ubuntu* Tools .. 100

A.2.2. CentOS* Tools .. 100

A.2.3 Windows Tools ... 101

A.2.4. Build Scripts .. 101

A.3. Software Archives or Repositories ... 104

A.3.1. Ubuntu* Software Archives ... 105

A.3.2. CentOS* Repositories .. 106

A.4. Building Images .. 109

A.4.1 Building a Single Image .. 109

A.4.2 Building a Complete Set of Production or Reference Images .. 110

Appendix B. CentOS* Tips and Tricks ... 113

B.1. Installing CentOS* ... 113

B.2. SSH Passwordless Configuration ... 114

B.3. Setting Up Hostnames .. 115

B.4. Creating a Local yum Repository ... 116

B.5. Creating NFS Share .. 117

B.6. Setting System Time .. 119

B.7. Configuring Network Time Protocol (NTP) ... 120

B.8. Turn On Affinity ... 120

B.9. Host BIOS Additional Configuration ... 121

B.10. Configuring Microsoft Windows* Client Access to VNCViewer ... 121

Intel® Visual Compute Accelerator Software Guide

8

B.11. Install and Configure VNC ... 122

B.12. Launching VNC ... 123

Appendix C. Ubuntu* Tips and Tricks. .. 124

C.1. Installing Ubuntu* ... 124

C.2. Enable root login on Ubuntu* .. 125

C.3. SSH Passwordless Configuration ... 125

C.4. Setting Up Hostnames .. 126

C.5. Creating NFS Share .. 126

C.6. Setting System Time .. 128

C.7. Configuring Network Time Protocol (NTP) ... 129

C.8. Turn On Affinity ... 129

C.9. Configuring Microsoft Windows* Client Access to VNCViewer ... 130

C.10. Install and Configure VNC ... 130

C.11. Launching VNC ... 131

Appendix D. Build Intel® VCA Modules in Custom Kernel .. 133

Appendix E. Resizing Persistent VCA Boot image ... 134

E.1. Introduction ... 134

E.2. Commandline Options .. 135

E.3. Examples ... 135

Appendix F. Glossary ... 136

Intel® Visual Compute Accelerator Software Guide

 9

List of Figures

Figure 1. Hardware architecture of Intel® VCA 2 card .. 14

Figure 2. The relation between host server, Intel® VCA card, and Intel® VCA nodes .. 15

Figure 3. Software architecture of Intel® VCA ... 15

Figure 4. Network connectivity and management interface of the Intel® VCA .. 16

Figure 5. Software stack with the virtualization technologies supported by Intel® VCA .. 17

Figure 6. Check for Intel® VCA kernel ... 23

Figure 7. Intel® VCA card in BIOS is up and running status .. 24

Figure 8. Process to boot Intel® VCA card ... 28

Figure 9. Connect to node using Remote Desktop Connection .. 36

Figure 10. Windows* setup screen .. 39

Figure 11. Select type of installation .. 40

Figure 12. Select installation location .. 40

Figure 13. Update Ethernet controller driver .. 41

Figure 14. Browse for Ethernet controller driver software .. 42

Figure 15. Browse for driver on computer .. 42

Figure 16. Select virtio-win CD drive ... 43

Figure 17. Select Red Hat VirtIO Ethernet Adapter ... 44

Figure 18. Red Had VirtIO properties.. 44

Figure 19. ipconfig in Windows PowerShell* ... 45

Figure 20. Enable pinging in Windows PowerShell* .. 46

Figure 21. System info .. 46

Figure 22. Advanced system settings ... 47

Figure 23. Allow remote connections ... 48

Figure 24. Remote desktop connection... 49

Figure 25. Security certificate warning ... 49

Figure 26. Find DomU ID using xl list command ... 54

Figure 27. Find DomU MAC address using xl network-list command ... 55

Figure 28. Find DomU IP address using tcpdump command .. 56

Figure 29. Start remote desktop connection ... 57

Figure 30. Remote desktop connection local resources options ... 57

Figure 31. Remote desktop connection drive selection ... 58

Figure 32. Xen PV network adapter installed .. 58

Figure 33. Install Intel® Media Server Studio 2017 ... 59

Figure 34. Select Intel® graphics driver .. 60

Figure 35. Install Intel® graphics driver .. 60

Figure 36. Iris® Pro graphics installed ... 61

Figure 37. Windows* disk management option ... 63

Figure 38. Disk management window .. 64

Figure 39. Successful drive configuration in Windows*.. 65

Intel® Visual Compute Accelerator Software Guide

10

Figure 40. vcactl help example .. 70

Figure 41. vcactl wait-BIOS example .. 70

Figure 42. vcactl status example .. 70

Figure 43. vcactl update-BIOS example ... 72

Figure 44. vcactl update-EEPROM example ... 72

Figure 45. vcactl reset example ... 73

Figure 46. vcactl boot example .. 73

Figure 47. vcactl reboot example .. 74

Figure 48. vcactl temp example .. 75

Figure 49. vcactl blockio list example .. 76

Figure 50. vcactl config-show example ... 80

Figure 51. vcactl info-hw example .. 81

Figure 52. vcactl info-system example ... 81

Figure 53. Suggested network addressing for DomU usage .. 85

Figure 54. Enable kernel crash dump on Windows* .. 97

Figure 55. Temperature profile while transcoding ... 99

Figure 56. Example of dependencies resolved using yum for package installation... 101

Figure 57. Xen driver directory with driver certificate file ... 112

Figure 58. Intel® VCA source files .. 133

Figure 59. Partitions in Intel® VCA 2 persistent image ... 134

List of Tables

Table 1. Intel® VCA (VCA1283LVV) card specifications .. 12

Table 2. Intel® VCA 2 (VCA1585LMV) card specifications .. 12

Table 3. Intel® VCA software host operating system support matrix .. 17

Table 4. Intel® Media Server Studio version support matrix ... 17

Table 5. Intel® VCA software version 2.3 support matrix Node OS .. 18

Table 6. Intel® VCA software version 2.2 support matrix Node OS .. 18

Table 7. Intel® VCA software version 2.1 support matrix Node OS .. 18

Table 8. Intel® VCA software version 1.5 HF support matrix Node OS ... 19

Table 9. Intel® VCA software version 1.3 HF support matrix Node OS ... 19

Table 10. vca_kvmgtctl commands ... 50

Table 11. Options for vca_start command ... 62

Table 12. vcactl config parameters .. 78

Table 13. Transcoding benchmark results ... 98

Table 14. create_image.sh parameters ... 103

Table 15. create_sw_archives.sh parameters ... 105

Table 16. Local repositories .. 106

Intel® Visual Compute Accelerator Software Guide

 11

1. Introduction

This document is intended to be a reference for installing and using Intel® Visual Compute Accelerator

(Intel® VCA) product family software.

1.1 Notes on Example Commands

When performing the steps throughout this guide, the following prompts may be encountered.

 Request for user password.

[sudo] password for user

Enter the user’s password to complete the command. Requires that the user be allowed to run

commands with sudo. This prompt will not necessarily be displayed every time sudo is invoked, but

is usually displayed upon first use and, by default, after a failure to issue a subsequent sudo

command within five minutes.

 Check for host authenticity.

The authenticity of host ‘hostname’ can’t be established.

ECDSA key fingerprint is he:x :st:ri:ng: o:f :ch:ar:ac:te:rs.

Are you sure you want to continue connecting (yes/no)?

If this is a trusted remote system, type yes and press <Enter>. Otherwise, press <Ctrl+C> or type no

and press <Enter>.

Finally, please keep in mind that many commands are too long to fit on a single line of this formatted

document, but should be entered on the command line without carriage returns or line feeds where this

document format arbitrarily places those.

Intel® Visual Compute Accelerator Software Guide

12

2. Intel® Visual Compute Accelerator Overview

The Intel® Visual Compute Accelerator (Intel® VCA) family equips Intel® Xeon® Scalable processor and Intel®

Xeon® processor E5-based platforms with Iris® Pro Graphics and Intel® Quick Sync Video media transcode

capabilities. Comprised of three Intel Xeon processors, this PCIe* add-in card delivers outstanding total cost

of ownership and is supported by a rich ecosystem of server OEMs, ISVs, and solutions. Applications include:

 Broadcast – Ultra-high channel density with high visual quality.

 Remotely rendered graphics – High video quality, low latency graphics for enterprise productivity and

anytime anywhere gaming.

 Multi-party communication – Video-enabled B2B, B2C, and C2C communication with massive scaling

Table 1. Intel® VCA (VCA1283LVV) card specifications

Feature Description

Form factor Full-length, full-height, double-width PCIe* card

CPU (3) Intel® Xeon® E3-1200v4 product family processors, 47 W TDP, 2.9 GHz, 4 cores

Graphics GT3e, Iris® Pro Graphics P6300, 128 MB eDRAM

Memory DDR3L (1.35V) ECC SODIMMs, 2 channels per CPU, Up to 32 GB per CPU

PCIe* configuration Gen3, x16, 4 lanes per CPU

BIOS 16 MB SPI flash

Operating system support on host  CentOS* 7.2 for Intel® VCA software versions 1.3 and 1.5

 CentOS* 7.3 for Intel® VCA software version 2.0

 CentOS* 7.4 for Intel® VCA software versions 1.3 Hot Fix (HF), 1.5 HF, and 2.1

 Ubuntu* 16.04.3 for Intel® VCA software version 2.1

Operating system support on card  CentOS* 7.2 for Intel® VCA software versions 1.3, 1.5, and 2.0

 CentOS* 7.4 for Intel® VCA software versions 1.3 HF, 1.5 HF, and 2.1

 Ubuntu* 16.04.3 for Intel® VCA software version 2.1

 Windows Server* 2016

 Windows* 10

Hypervisor support on card  Xen (Intel® VCA software versions 1.3 or earlier, and 2.0)

 KVM (Intel® VCA software versions 1.3 or earlier, and 2.0 or later)

Table 2. Intel® VCA 2 (VCA1585LMV) card specifications

Feature Description

Form factor Full-length, full-height, double-width PCIe* card

CPU (3) Intel® Xeon® E3-1500v5 product family processors, 45 W TDP, 3.0 GHz, 4 cores

Graphics GT4e, Iris® Pro Graphics P580, 128 MB eDRAM

Memory DDR4 ECC SODIMMs or non-ECC SODIMMS, 2 channels per CPU, pp to 64 GB per CPU

PCIe* configuration Gen3, x16, 8 lanes per CPU

BIOS 16 MB SPI flash

Operating system support on host  CentOS* 7.2 for Intel® VCA software version 1.5

 CentOS* 7.3 for Intel® VCA software version 2.0

 CentOS* 7.4 for Intel® VCA software versions 1.3 Hot Fix (HF), 1.5 HF, 2.1, 2.2 and 2.3

 Ubuntu* 16.04.3 for Intel® VCA software version 2.1, 2.2 and 2.3

Operating system support on card  CentOS* 7.2 for Intel® VCA software versions 1.5 and 2.0

 CentOS* 7.4 for Intel® VCA software versions 1.3 HF, 1.5 HF, 2.1, 2.2 and 2.3

 Ubuntu* 16.04.3 for Intel® VCA software version 2.1, 2.2 and 2.3

 Windows Server* 2016

 Windows* 10

Intel® Visual Compute Accelerator Software Guide

 13

Feature Description

Hypervisor support on card  Xen (Intel® VCA software versions 1.3 or earlier, and 2.0)

 KVM (Intel® VCA software versions 1.3 or earlier, and 2.0 or later)

 KVMGT (Intel® VCA software versions 2.1 or later)

Intel® Visual Compute Accelerator Software Guide

14

3. Architecture Overview

The Intel® VCA card consists of three Intel® Xeon® E3 processors with Iris® Pro graphics and Intel® Quick Sync

Video. Each Intel Xeon E3 processor is an independent, fully functioning embedded server on the card.

3.1 Hardware Architecture

Figure 1. Hardware architecture of Intel® VCA 2 card

Figure 1 illustrates the hardware architecture of Intel® VCA 2 card. The hardware architecture of Intel® VCA is

similar. The Intel® VCA connects with the host through a PCIe* bridge (PEX8749). Each Intel® VCA card

consists of three Intel Xeon E3-1585L processors (with Iris Pro graphics P580) with PCH, DIMM, and boot

flash. These three Intel Xeon E3-1585L processors work independently and can be used as three

media/graphics servers. Throughout this document each of these processors is referred to as an Intel® VCA

node. Thus, each Intel® VCA card consists of three nodes, which act and process data as separate computers,

each governed by its own, independent copy of the operating system. Figure 2 illustrates this concept with

two Intel® VCA cards in the host server.

Intel® Visual Compute Accelerator Software Guide

 15

Figure 2. The relation between host server, Intel® VCA card, and Intel® VCA nodes

3.2 Software Architecture

Figure 3. Software architecture of Intel® VCA

Figure 3 illustrates the software architecture of Intel® VCA product family. It should be noted that the Intel®

VCA communicates with host through a virtual network over PCIe* and over block IO over PCIe*. So, logically,

the Intel® VCA has a three Intel Xeon E3 processor systems, each running its own OS instance that are

connected over virtual network and block IO to host the system. Therefore, the programming model of Intel®

VCA is not the same as a usual PCIe* accelerator. Instead, Intel® VCA should be used as a network-based

accelerator. Figure 3 also shows the software stack of Intel® VCA product family.

The host initiates booting and serves as the management point for the nodes by means of a dedicated, out of

band management interface (Figure 4). The host is also responsible for providing configuration for the nodes

and for ensuring their network connectivity. The nodes are connected to the host by dedicated virtual

Ethernet links. The IP addresses of the nodes can be assigned either by the host from a predefined, non-

routable IP address pool or by an external DHCP server. The latter requires creating a virtual bridge from the

node virtual Ethernet interface and the host network interface.

Host

Server
Intel® VCA Card

Node Node Node

Intel® VCA Card

Node Node Node

Intel® VCA

PCIe* card

E 5 Server System

BMC
BMC FW

E 5
 CPU s

Host OS

3 rd Party Media Solution

Intel® VCA Host Drivers

 Intel® VCA card boot manager

E 3 CPU + GPU

SPS ME
FW

E 3
 OS

VCA UEFI

3 rd party media
application

 Intel® VCA drivers

Intel® Media Server

Studio

E 3 CPU + GPU

E 3
 OS

VCA UEFI

3 rd party media
application

Intel® VCA drivers

E 3 CPU + GPU

E 3
 OS

VCA UEFI

3 rd party media
application

 Intel® VCA drivers
SPS ME

FW

Network and Block IO
communication

OS provisioning and card
management

Thermal monitoring
SunrisePT-H

SPS ME
FW

Intel® Media Server
Studio

Intel® Media Server
Studio

SunrisePT-H

SunrisePT-H

Intel® Visual Compute Accelerator Software Guide

16

Figure 4. Network connectivity and management interface of the Intel® VCA

The host stores disk images with the operating system for the nodes. Thorough out this document, these

operating system images are referred to as VCA boot images, or just images. Different mechanisms are used

to provide these images for the nodes to boot, resulting in persistent VCA boot images and volatile VCA boot

images. Persistent VCA boot images can be modified by the booted node; the images preserve these

modifications across node reboots and therefore the images resemble a traditional disk from the node’s

point of view. The volatile VCA boot images are provided by the host by means of a RAMDisk and therefore,

while allowing modifications by a running node, they do not preserve any state across node reboots.

The framework for Intel® VCA application software is Intel® Media Server Studio

(https://software.intel.com/en-us/intel-media-server-studio), which provides software to innovate and

optimize enterprise-grade video delivery and cloud graphics applications and solutions for data center,

cloud, and network usages. Intel Media Server Studio consists of Intel® Media SDK and Intel® SDK for

OpenCL*. Application programs are on top of Intel Media Server Studio. The bottom layers are operating

system media framework (eg, libva for Linux*) and Intel® graphics drivers.

Intel® VCA strategy is to test the Intel® VCA software stack against the most recent, publicly released Intel

Media Server Studio to provide the reference Intel® VCA software stack. But some customers may want to

keep older Intel Media Server Studio releases, which have been well tested in their environment, or may have

access to non-public (e.g. obtained under NDA) Intel Media Server Studio releases. To cover such needs, the

production VCA software stack does not include Intel Media Server Studio.

Every node may either run a simple operating system, or may run a hypervisor to provide some number of

virtual machines with hardware support for video transcoding applications (Figure 5). Only hypervisors

running in Linux operating system are supported in Intel® VCA software. The hypervisors currently available

are KVM, KVMGT (also known as KVM GVT-G), and Xen and are provided by CentOS* or Ubuntu*.

The Intel® VCA software includes the Intel® VCA boot images with modified kernels of the operating systems

which run directly on the nodes, and the Intel® VCA boot images for the guest operating systems.

Intel® VCA Card Intel® VCA Card

https://software.intel.com/en-us/intel-media-server-studio

Intel® Visual Compute Accelerator Software Guide

 17

Figure 5. Software stack with the virtualization technologies supported by Intel® VCA

3.2.1 Software Support Matrix

Following tables summarize the host and node OSes supported with Intel® VCA and Intel® VCA 2. Table 5

and Table 6 summarizes the supported node OS software versions for Intel® VCA and Intel® VCA 2. The Intel

Media Server Studio column indicates if Intel Media Server Studio is enabled (reference) or disabled

(production). The Features column designates persistent baremetal images by VCA_DISK. Volatile images are

described by the name of the virtualization technology used (KVM, KVMGT, or XEN) or by baremetal if no

virtualization is provided. For the virtualized volatile images, the guest operating system is further indicated

as Windows 10 Enterprise*, Windows Server 2016*, or DomU (Linux*).

Table 3. Intel® VCA software host operating system support matrix

Operating System Kernel Version Intel® VCA Software Support

CentOS* 7.4
4.14.20 2.3

3.10.0-693.11.6 1.3 HF, 1.5 HF, 2.1, and 2.2

Debian* 8.7

4.4.115 1.5 HF

4.4.122 2.1, 2.2

4.14.20 2.3

Ubuntu* 16.04.3 LTS
4.14.20 2.3

4.4.98 (4.4.0-112.135) 2.1, and 2.2

CentOS* 7.0 Only kernel patches for kernel 3.10.107 2.1, 2.2, and 2.3

Table 4. Intel® Media Server Studio version support matrix

Intel® VCA Software Version Intel® Media Server Studio Version in Reference Package

1.3, 1.5, 2.0 Community Edition 2017R2, SDK 2017 16.5.2

1.3 HF, 1.5 HF Community Edition 2017R3, SDK 2017 16.5.2

2.1 Community Edition 2017R3, SDK 2017 16.5.2

2.2 Community Edition 2018R1, SDK 2018 16.8

2.3 Community Edition 2018R2 HF1, SDK 2018 16.9

Intel® VCA

Card Node
Intel® VCA
Card Node

Intel® VCA Card Node Intel® VCA
Card Node

The OS runs on bare

metal (no virtualization).

The OS can be CentOS*,

Ubuntu*, Windows 10* or

Windows Server 2016*

Up to 1 virtual machine

supported. Guest OS can

be Windows 10* or

Windows Server 2016*

Up to 7 virtual machines

supported. Guest OS can

be Windows 10*

Up to 1 virtual machine

supported. Guest OS can

be CentOS* 7.3,

Windows 10* or

Windows Server 2016*

Intel® Visual Compute Accelerator Software Guide

18

Table 5. Intel® VCA software version 2.3 support matrix Node OS

Operating System

(kernel version)

Intel® Media Server

Studio Support

Feature

(image type)

Guest Operating

System

Supported

Intel® VCA Card

CentOS* 7.4

(4.14.20)
Reference

baremetal (volatile) - Intel® VCA 2

vca-disk

(persistent, 24 GB)
-

Intel® VCA 2

Ubuntu* 16.04.3 LTS

(4.14.20)
Reference

baremetal (volatile) - Intel® VCA 2

vca-disk

(persistent, 24 GB)
-

Intel® VCA 2

Windows 10 (GPT) 1 Production Baremetal (volatile) - Intel® VCA 2

Windows Server 2016

(GPT) 1
Production Baremetal (volatile) - Intel® VCA 2

1 The operating system image needs to be built by the user. Details are provided in Appendix A.
2. Size of the image can be changed using the script provided. Details are provided in

Table 6. Intel® VCA software version 2.2 support matrix Node OS

Operating System

(kernel version)

Intel® Media Server

Studio Support

Feature

(image type)

Guest Operating

System

Supported

Intel® VCA Card

CentOS* 7.4

(3.10.0-693.11.6.el7)

Reference

baremetal (volatile) - Intel® VCA, Intel® VCA 2

vca-disk

(persistent, 50 GB)
- Intel® VCA, Intel® VCA 2

Production KVM hypervisor

Windows 10* (GPT) Intel® VCA, Intel® VCA 2

Windows Server

2016* (GPT)
Intel® VCA, Intel® VCA 2

Ubuntu* 16.04.3 LTS

(4.13.0-32.35)

Production KVMGT hypervisor

Windows 10 (MBR) Intel® VCA, Intel® VCA 2

Windows Server

2016 (MBR)
Intel® VCA, Intel® VCA 2

Linux* 1 Intel® VCA, Intel® VCA 2

Reference

baremetal (volatile) - Intel® VCA, Intel® VCA 2

vca-disk

(persistent, 24 GB)
- Intel® VCA, Intel® VCA 2

Windows 10 (GPT) 1 Production Baremetal (volatile) - Intel® VCA, Intel® VCA 2

Windows Server 2016

(GPT) 1
Production Baremetal (volatile) - Intel® VCA, Intel® VCA 2

1 The operating system image needs to be built by the user. Details are provided in Appendix A.

Table 7. Intel® VCA software version 2.1 support matrix Node OS

Operating System

(kernel version)

Intel® Media

Server Studio

Support

Feature

(image type)
Guest Operating System

Supported

Intel® VCA Card

CentOS* 7.4

(3.10.0-693.11.6.el7)

Reference

baremetal (volatile) - Intel® VCA, Intel® VCA 2

vca-disk

(persistent, 50 GB)
- Intel® VCA, Intel® VCA 2

Production KVM hypervisor
Windows 10* (GPT) Intel® VCA, Intel® VCA 2

Windows Server 2016* (GPT) Intel® VCA, Intel® VCA 2

Intel® Visual Compute Accelerator Software Guide

 19

Operating System

(kernel version)

Intel® Media

Server Studio

Support

Feature

(image type)
Guest Operating System

Supported

Intel® VCA Card

Ubuntu* 16.04.3 LTS

(4.13.0-32.35)
Production KVMGT hypervisor

Windows 10 (MBR) Intel® VCA, Intel® VCA 2

Windows Server 2016 (MBR) Intel® VCA, Intel® VCA 2

Linux* 1 Intel® VCA, Intel® VCA 2

Ubuntu* 16.04.3 LTS

(4.4.98 (4.4.0-

112.135))

Reference

baremetal (volatile) - Intel® VCA, Intel® VCA 2

vca-disk

(persistent, 24 GB)
-

Intel® VCA, Intel® VCA 2

Windows 10 (GPT) 1 Production Baremetal (volatile) - Intel® VCA, Intel® VCA 2

Windows Server 2016

(GPT) 1
Production Baremetal (volatile) - Intel® VCA, Intel® VCA 2

1 The operating system image needs to be built by the user. Details are provided in Appendix A.

Table 8. Intel® VCA software version 1.5 HF support matrix Node OS

Operating System

(kernel version)

Intel® Media Server

Studio Support

Feature

(image type)

Guest Operating

System

Supported

Intel® VCA Card

CentOS* 7.4

(3.10.0-693)

Reference Baremetal (volatile) - Intel® VCA, Intel® VCA 2

 Persistent over NFS - Intel® VCA, Intel® VCA 2

Production Baremetal (volatile) - Intel® VCA, Intel® VCA 2

CentOS* 7.4

(4.4.115)
Reference

Baremetal (volatile) - Intel® VCA, Intel® VCA 2

Persistent over NFS - Intel® VCA, Intel® VCA 2

Table 9. Intel® VCA software version 1.3 HF support matrix Node OS

Operating System

(kernel version)

Intel® Media Server

Studio Support

Feature

(image type)

Guest Operating

System

Supported

Intel® VCA Card

CentOS* 7.4

(3.10.0-693)

Reference
Baremetal (volatile) - Intel® VCA

Persistent over NFS - Intel® VCA

Production

Baremetal (volatile) - Intel® VCA

KVM hypervisor

Windows 10* (GPT) 1 Intel® VCA

Windows Server 2016*

(GPT) 1
Intel® VCA

1 The operating system image needs to be built by the user. Details are provided in Appendix A.

Intel® Visual Compute Accelerator Software Guide

20

4. System Setup

Generally setting up Intel® VCA card for use requires following steps:

 Configure Host System (Refer to Section 4.1 for details)

o Changing Host Server BIOS settings

o Host OS Configuration

 Setting up Host Server with required software (Refer to Section 4.3 for details)

 Enabling Virtual Network (Refer to Section 4.4 for details)

 Booting the CPUs on the VCA card with OS image (refer to Section 4.5 for details)

 Configuration of network for nodes (Refer to Section 4.4 for details)

 Install Intel Media Server Studio and Applications (refer to Section 5 For details)

4.1 Configuring the Host System

4.1.1 Configure the Host BIOS

The host system BIOS must be configured to enable large Memory-Mapped Input/Output (MMIO), and allow

for large per-device BAR allocations. BAR must have 64-bit address enabled.

The minimum requirements for BAR and MMIO are:

 MMIO mapping above 4 GB is enabled

 Minimum MMIO size is 4 GB/CPU (node)

For example, on Intel® Server Board S2600WT based systems, this can be enabled in BIOS setup by

configuring the following two options on the PCI Configuration screen.

 Set Memory Mapped Above 4 GB to Enabled

 Set Memory Mapped IO size to 256 GB or higher

The specific wording in the BIOS setting of non-Intel produced motherboards may vary, but the ability to

enable large MMIO range is required for proper operation of Intel® VCA. Please see the Intel® VCA

VCA1283LVV/VCA1585LMV Product Specification and Hardware User Guide document for further details

regarding host system BIOS feature requirements. The minimum requirements for BAR size and MMIO size

are dependent up on the VCA SW version as listed below.

For VCA SW 2.0 on host:

 MMIO >= (12 GB + 768 KB) per Intel® VCA card Installed in the host

 BAR >= 4 GB per CPU

For VCA SW 1.5 or less on host:

 MMIO >= (3 GB + 768 KB) per Intel® VCA card Installed in the Host

 BAR >= 1GB per CPU

4.1.2 Install the Operating System

For supported operating system versions, refer to Table 1, Table 2, and Table 6.

4.1.2.1 Install CentOS*

When installing CentOS* on the host system, make sure to select Development and Creative Workstation as

the base environment. (Refer to Appendix B.1 for steps and details.) Make sure the user created during install

has administrator rights and the root partition is big enough to store operating system images for multiple

nodes.

Intel® Visual Compute Accelerator Software Guide

 21

4.1.2.2 Install Ubuntu*

When installing Ubuntu* on the host system, refer to Appendix C.1 for steps and details. Additional software

modules listed in Appendix C.1 should be installed.

4.1.3 Configure Network Settings

Use the following guidelines to configure the host network settings.

 Ensure that the host can access the external network. Add necessary proxy settings if the host

requires a proxy to connect to external network.

o For CentOS* follow steps in Appendix B.1 step 18.

o For Ubuntu* follow steps in Appendix C.1 step 13.

 Disable the NetworkManager service. This is critical since the service may block communication

between the host and Intel® VCA card. Use the following commands to disable the service.

sudo systemctl disable NetworkManager

sudo systemctl stop NetworkManager

If the network is no longer present in Ubuntu*, add following lines to /etc/network/interfaces.

auto networkdevname #replace networkdevname to proper dev name

iface networkdevname inet dhcp #example provided here is with dhcp, for

static additional steps are required

4.2 Physical Installation of the Intel® VCA Card

Refer to the Intel® VCA Quick Start Guide included in the box for instructions on how to quickly install the

Intel® VCA card into the host server. The Intel® VCA Quick Start Guide can also be found at

https://www.intel.com/ . Search for “Support for Intel® Visual Compute Accelerator” and select corresponding

Intel® VCA version. Click on “Install & setup” to take you to a link to quick start guide. Make sure host BIOS

setup is complete before inserting the Intel® VCA card in to the server.

4.2.1 Optional Hardware (Intel® VCA 2 only)

The Intel® VCA 2 card provides an M.2 socket for memory card size 42 mm. M.2 drives can be used like

ordinary storage to, for example, boot an operating system image. Below are steps to prepare the M.2 drive.

1. Check available disk :

fdisk –l

2. Find disk named /dev/nvme0n1

3. Mount disk. For example:

mount /dev/nvme0n1p1 /mnt/m.2

4. Check if disk is mounted:

df

4.3 Installing Intel® VCA Software

Download the Intel® VCA product family software from https://downloadcenter.intel.com. There are several

packages available to download:

 Intel® Visual Compute Accelerator VCA1283LVV/VCA1585LMV Host Files

 Intel® Visual Compute Accelerator EEPROM Update

 Intel® Visual Compute Accelerator BIOS Update

 Intel® Visual Compute Accelerator Volatile Reference Package

 Intel® Visual Compute Accelerator Persistent Reference Package

https://www.intel.com/
https://downloadcenter.intel.com/search?keyword=VCA

Intel® Visual Compute Accelerator Software Guide

22

 Intel® Visual Compute Accelerator Persistent Production Package

 Intel® Visual Compute Accelerator Kernel Development Package

The host files (kernel, Intel® VCA daemon, and VCASS drivers), EEPROM and BIOS update packages are

always needed for a new Intel® VCA software installation. Other packages can be downloaded based on the

system design after going through the detailed explanation in Section 4.5. Typically, only one of the volatile

and persistent reference packages are necessary. The kernel development package is only necessary for

kernel development.

4.3.1 Required Software

 Intel® Visual Compute Accelerator VCA1283LVV/VCA1585LMV host files appropriate for the

operating system in use. Refer to the release notes for proper filenames.

o Updated kernel

 For CentOS*: kernel-<kernel_ver>_<version>.VCA.x86_64.rpm

 For Ubuntu*: linux-image-<kernel_ver>.<version>_amd64.deb

o Intel® VCA user-space applications

 For CentOS*: daemon-vca-<version>.x86_64.rpm

 For Ubuntu*: daemon-vca-<version>-amd64.deb

o VCASS drivers (vcass-modules-<kernel_ver>-<version>.VCA-<version>-

0.x86_64.rpm)

o Boot images (can be downloaded later; refer to Section 4.5 for details)

4.3.2 Required Firmware

 Basic I/O system for Intel® VCA card (VCA-BIOS-<version>.img)

o “Intel Visual Compute Accelerator VCA1283LVV/VCA1585LMV BIOS Update”

 EEPROM for Intel® VCA card for PLX configuration (eeprom_<version>.bin)

o “Intel Visual Compute Accelerator EEPROM Update”

4.3.3 Optional Software

To run sample transcodes, download Intel® Media Server Studio and sample code from

https://software.intel.com/en-us/intel-media-server-studio.

4.3.4 Install VCA Software on Host

To install the software, perform the following steps:

1. Boot the host system and log in to operating system.

2. Copy the downloaded packages to a temporary folder on the host server.

3. If booted into a graphical interface, open a terminal session.

4. Change directory to the temporary folder where the packages were copied.

5. If updating from a previous version, remove the older RPMs with the following command:

o For CentOS*:

rpm -qa | grep -e daemon-vca -e vcass-modules | xargs yum -y erase

o For Ubuntu*:

dpkg --list | grep vca | xargs apt-get remove

Purging of these packages also required with apt-get purge pkg-name.

6. Unzip the downloaded packages.

7. Install the updated kernel packages.

o For CentOS*

sudo yum -y localinstall kernel-*rpm

https://software.intel.com/en-us/intel-media-server-studio

Intel® Visual Compute Accelerator Software Guide

 23

o For Ubuntu*

sudo dpkg -i linux-image-<kernel_ver>.<version>.amd64.deb

8. Configure the new kernel to be the default at boot. This step is very important to boot the operating

system with proper kernel.

o For CentOS*

sudo grub2-set-default 0

o For Ubuntu*

 Set default kernel GRUB_DEFAULT in /etc/default/grub. Find the name of kernel

name and versions in /boot/grub/grub.cfg. (Search for gnulinux-advanced and

vca-advanced.)

GRUB_DEFAULT="gnulinux-advanced-716b90f8-9b3c-428a-aaca-

318038803998>gnulinux-4.4.0-1.2.1.106.vca-advanced-716b90f8-

9b3c-428a-aaca-318038803998"

 Reload grub

sudo update-grub

 Reboot host

9. Install the Intel® VCA driver and utility.

o For CentOS*

sudo yum -y localinstall vcass-modules*rpm

sudo yum -y localinstall daemon-vca*rpm

o For Ubuntu*

sudo dpkg -i vcass-modules*.deb

sudo dpkg -i daemon-vca*.deb

10. Reboot the system to enable the new kernel.

sudo reboot

11. After reboot, confirm that the expected Intel® VCA kernel is being used.

uname –r | grep –i vca

The command should return the Intel® VCA kernel as shown in Figure 6. In this example, the Intel®

VCA software version is 1.5.12.VCA and the CentOS*/Ubuntu* kernel version is 3.10.0-

327.el7.centos.

Figure 6. Check for Intel® VCA kernel

12. Add a user to the vcausers group so that sudo is not required for vcactl use. Refer to section 6.1.

usermod -aG vcausers <username>

Note: To add a username to vcausers, a relogin or reboot is required.

Intel® Visual Compute Accelerator Software Guide

24

13. Confirm that the Intel® VCA cards are detected and the BIOS is up and running as shown in Figure 7.

vcactl wait-BIOS

Figure 7. Intel® VCA card in BIOS is up and running status

If Intel® VCA is not in BIOS is up and running status, do not continue with the procedure. Instead,

double check the hardware and software installation.

4.3.5 Updating EEPROM

To update the EEPROM, perform the following steps.

1. Unzip the downloaded Intel® Visual Compute Accelerator EEPROM Update package

2. Reset the node using the following command:

sudo vcactl reset

3. Wait for the reset to complete; the command sudo vcactl wait-BIOS or sudo vcactl status

returns bios_up when ready.

4. Run the following command:

sudo vcactl update-EEPROM <EEPROM file name>

5. When the last command finishes successfully, reboot the host. After rebooting, the software

installation is complete.

4.3.6 Updating BIOS

To update the BIOS, perform the following steps.

1. Power on the host.

2. Unzip the downloaded Intel® Visual Compute Accelerator BIOS update package

3. Reset the node using the following command:

sudo vcactl reset

4. Wait for the reset to complete; the command sudo vcactl wait-BIOS or sudo vcactl status

returns bios_up when ready.

5. Run the following command:

sudo vcactl update-BIOS <BIOS file name>

6. Wait for the update to complete; the command sudo vcactl wait-BIOS or sudo vcactl

status returns bios_up when ready.

7. After BIOS update is complete, the node(s) reboot to come online with the new BIOS version.

8. When the last command finishes successfully, G3 (mechanical off) is necessary. To perform G3,

execute the power off command on the host and then disconnect from the power supply for 15

seconds.

Intel® Visual Compute Accelerator Software Guide

 25

4.4 Enabling Virtual Network

VCA uses host server’s Ethernet Network to communicate with external devices. Intel® VCA can work in two

network configurations. Bridged mode or NAT, With DHCP or with static IP addressing. Following sections

provide details on how to setup the Host and Nodes for these operations. An Intel® VCA network stack

implements standard network device and thus is capable of sending and receiving packets to multicast

addresses as well as Internet Group Management Protocol (IGMP) packets. Instructions on how to setup

multicast are available in Section 7.

4.4.1 Configuring Nodes for Bridged Mode Operation

Configuring a network bridge containing virtual Ethernet adapters to Intel® VCA nodes and some physical

network interfaces allows for direct connecting Intel® VCA nodes to the external network without need of

configuring routing mechanisms at the host to which the Intel® VCA card is inserted. Such a network is flatter

and nodes must use IP addresses from a common pool. The addresses can be configured statically per each

node, or dynamically assigned by a DHCP server located somewhere in local network.

The Intel® VCA stack is flexible and setting for each node is independent. In effect different combinations are

possible:

 All nodes can be assigned to same bridge or to different ones; some nodes can be connected to

bridges, while others use only a local virtual network.

 Some nodes can be configured to use dynamic addressing (DHCP), while other use static addressing.

Do not There is no sense to combine node not connected to bridge with DHCP, as DHCP server would

be required to be place on VCA card host server

Several steps must be taken to properly configure nodes for bridged network operation. The host must

configure a bridge interface and bring that interface online. The node configuration must be updated to

point to the bridge interface, take a new IP information, and, if using persistent boot image, be provided with

the NFS server and shared directory information. The steps are detailed below. Steps 1 to 3 are different for

different OSes, from step 4 they are common.

4.4.1.1 Set Up Bridge for CentOS*

1. Create a bridge configuration file (e.g. /etc/sysconfig/network-scripts/ifcfg-virbr0-vca)

containing the following lines.

DEVICE=virbr0-vca

TYPE=Bridge

BOOTPROTO=dhcp

ONBOOT=yes

NM_CONTROLLED=no

2. Modify the main interface file (e.g. /etc/sysconfig/network-scripts/ifcfg-enp3s0f0) to

contain the following lines. The main interface is the interface physically connected to the network.

DEVICE=enp3s0f0

TYPE=Ethernet

BOOTPROTO=dhcp

ONBOOT=yes

NM_CONTROLLED=no

BRIDGE=virbr0-vca

UUID=UUID_OF_DEVICE

Intel® Visual Compute Accelerator Software Guide

26

3. Restart the network.

systemctl restart network

Continue with step 4 below.

4.4.1.2 Set Up Bridge for Ubuntu*

Make sure bridge-utils are installed on the system before following these steps.

1. Create a bridge configuration in file /etc/network/interfaces by adding new network interface:

auto virbr0-vca

iface virbr0-vca inet dhcp

bridge_ports ieth0 #Replace ieth0 with the network card name

2. Bring up the bridge

ifup virbr0-vca

3. Restart the host.

reboot

4. Configure Intel® VCA nodes to use the new network bridge.

vcactl config bridge-interface virbr0-vca

5. Increase the MTU size of the main network interface used in step 2.

Note: This steps needs to be done every time host server is rebooted.

Virtual Ethernet links to Intel® VCA nodes already set to a high MTU value; the default value for

normal Ethernet is only 1500. Use the following command, where enp3s0f0 is the main network

interface, to set the maximum MTU value (ABCD); for a high enough value, if ifconfig returns an

error and look at the dmesg output for Ethernet to find the maximum value for ABCD. Typically 9000

is a good value for ABCD.

ifconfig enp3s0f0 mtu ABCD #replace enp3s0f0 with main network interface

name

6. Configure the IP scheme for the Intel® VCA nodes.

o For DHCP configuration, use the following command.

vcactl config ip dhcp

o For static configuration, the IP addresses for nodes can be set after booting the nodes. Use the

following commands replacing II.JJ.KK.NN with the appropriate IP addresses for each

card_id and cpu_id. Replace YY with the bitmask of the node.

vcactl config [<card_id> <cpu_id>] ip II.JJ.KK.NN

vcactl config mask YY

Set the gateway II.JJ.KK.GG and host II.JJ.KK.HH IP addresses and replace ZZ with the

bitmask of the host.

vcactl config gateway II.JJ.KK.GG

vcactl config host-ip II.JJ.KK.HH

vcactl config host-mask ZZ

Intel® Visual Compute Accelerator Software Guide

 27

7. Configure the Intel® VCA nodes with NFS host information (for persistent images).

o If the host is used as the NFS server, follow the steps (1 to 4) listed in Appendix B.5.

o If using the default host directory, use the following command replacing II.JJ.KK.SS with

the server’s IP address or fully-qualified domain name if DNS is supported on the network.

vcactl config nfs-server II.JJ.KK.SS

o If using a custom NFS host directory, use the following command to configure the node with

that information. Note that a separate file system should be used for each node, so it is

strongly recommended that the %s variable (node-name) be included in the path on the

server. Also X and Y should be replaced with the card and node values, respectively, for the

specific node being modified.

vcactl config X Y nfs-path /path/on/server

8. Copy configuration of the host to each node

scp /etc/resolv.conf root@<node ip address>:/etc/resolv.conf

9. Setup proxies on the nodes

export https_proxy=http://<your_proxy>:<your_proxy_port>

4.4.2 Creating NAT

To create NAT, follow the steps below. Some steps need to be run after booting the nodes.

On the host:

1. Disable the firewall. (It is possible to add rules to the firewall instead of disabling firewall, but there is

no one rule for all applications. It depends on firewall configuration.)

systemctl stop firewalld.service

systemctl disable firewalld.service

systemctl status firewalld.service

2. Enable forwarding in kernel.

echo 1 > /proc/sys/net/ipv4/ip_forward

3. Following steps needs to be performed after booting the nodes and getting IP address of each node

o Add rules to NAT (Change X to the appropriate value (e.g. 3 for 172.31.3.1).)

iptables -t nat -A POSTROUTING -s 172.31.X.0/24 -d 0/0 -j MASQUERADE

o Copy configuration to the host. Change X to the appropriate value (e.g. 3 for 172.31.3.1).

scp /etc/resolv.conf root@172.31.X.1:/etc/resolv.conf

On the card:

After booting the nodes, set up proxies for the nodes:

export https_proxy=http://<your_proxy>:<your_proxy_port>

Intel® Visual Compute Accelerator Software Guide

28

4.5 Booting the Intel® VCA Card

Figure 8. Process to boot Intel® VCA card

During boot, the provided Intel® VCA control utility (vcactl) takes the boot image and, with help from a

bootloader incorporated into the firmware on the card, loads it into a RAM disk and initiates boot.

Following explains different terms in the package names available at Intel download center:

 Volatile Packages: Images from these packages load the entire operating system within a RAMDisk.

As this is read only memory, changes are not persistent across reboot. If one or more folders need to

be persistent, use a persistent package or see Section 4.5.4 on to manually create a persistent file

system using NFS.

 Persistent Packages: Images from these packages boot a minimal image and all other folders are

mounted back to a share on the host. The names of the folders and share must be exactly as

described in each section.

 Production Packages: Images in these packages do not contain Intel Media Server Studio drivers and

are built using production kernel (without Intel Media Server Studio patches). Images in these

packages are for customers who want to install their own Intel Media Server Studio.

 Reference Packages: Images in these packages contain reference kernel (including Intel Media Server

Studio patches) and contains the latest publicly released Intel Media Server Studio Community

Edition (without media samples package) at the time of image creation. If a later version of Intel Media

Server Studio drivers are available, it is customer responsibility to update to later versions.

Intel provides boot images with different combinations of the above definitions, in the Intel® VCA Volatile

Reference Package, the Intel® VCA Persistent Reference Package, and the Intel® VCA Persistent Production

Packages. All of these boot images also create a virtual network between the devices.

The above packages contain different boot image types:

 Custom image – See Appendix A for instructions on how to build a custom image.

 Baremetal images (basic option, plain image) – Baremetal CentOS* 7.x image. This image loads the

entire operating system within a RAMDisk. As this is read only memory, changes are not persistent. If

Host System

Embedded CentOS
Embedded CentOS

vcactl
utility

Intel® VCA virtual

network driver

Host control app

CentOS* or Windows*

boot image

Intel®

Xeon® E3

Processor

Intel®

Xeon® E3

Processor

Intel®

Xeon® E3

processor

(BIOS) Bootloader

Intel® VCA virtual network driver

Intel® Media Server Studio drivers

Intel® Xeon®

E5 processor

CentOS* or Windows* boot image

RAM disk

Intel® Visual Compute Accelerator Software Guide

 29

one or more folders need to be persistent, use a persistent package or see Section 4.5.4 on to

manually create a persistent file system using NFS.

 Persistent images with BlockIO - These type of images have .vcad file extensions and are valid from

Intel® VCA software version 2.0 and higher. The persistent image keeps operating system

configurations made on the node even after power-cycle through blockio drivers.

 Persistent image with rootfs – Persistent image with option of remounting root filesystem via NFS

service, with Intel® VCA software version 1.5 and lower.

 Xen image – This image boots Xen hypervisor and CentOS* in domain 0. The user can then load any

supported guest operating system to DomU. The image contains a reference kernel, but does not

contain Intel Media Server Studio (as graphics are accessed from the DomU operating system).

 KVM image – This image boots KVM hypervisor and CentOS* in domain 0. The user can then load any

supported guest operating system to DomU. The image contains a reference kernel, but does not

contain Intel Media Server Studio (as graphics are accessed from the DomU operating system).

 KVM-GT image – This image boots KVM-GT hypervisor and CentOS*/Ubuntu* in domain 0. The user

can then load any supported guest operating system to DomU. The image contains a reference

kernel, but does not contain Intel Media Server Studio (as graphics are accessed from the DomU

operating system).

General boot sequence after the BIOS is up and running includes:

 Pre-boot setup (BlockIO, NFS, etc.)

o Baremetal – No specific setup required.

o BlockIO – Step 2 of Section 4.5.2.

o NFS – Steps 1 to 6 of Section 4.5.3 or 4.5.4.

 Boot image.

vcactl boot [<card_id> <cpu_id>] [os_image_file.img/vcablkN]

 Get Network IP. Wait for vcactl wait to return net_device_ready.

vcactl network ip <card-ID> <CPU-ID>

 Nodes are ready to be used.

General shutting down sequence after the operating system is up and running includes:

 Shutdown operating system gracefully.

o For Intel® VCA 2 (operating system shutdown and power off)

vcactl pwrbtn-short [<card_id> <cpu_id>]

o For Intel® VCA

vcactl os-shutdown <card_id> <cpu_id>

 Post-shutdown setup (close BlockIO, etc.). Wait for operating system to shut down on nodes.

o BlockIO

vcactl blockio close <card_id> <cpu_id> [vcablk<N>]

 Reset

o For Intel® VCA 2 (to power on node from power off)

vcactl pwrbtn-short [<card_id> <cpu_id>]

o For Intel® VCA

vcactl reset [<card_id> <cpu_id>]

Intel® Visual Compute Accelerator Software Guide

30

4.5.1 Intel® VCA Volatile Reference Package

Before using the Intel® VCA Volatile Reference Package, verify that the nodes are ready for boot by opening a

terminal session and using the command sudo vcactl wait-BIOS. All nodes must be indicated as up and

running before continuing.

Perform the following steps to use the Intel® VCA Volatile Reference Package. These steps use the Intel® VCA

utility vcactl. For detailed information on the vcactl utility, refer to Section 6.

1. Use the following commands, depending on the card model, to boot the OS on Intel® VCA.

o For Intel® VCA 2:

vcactl boot <card_ID> <CPU_ID> vca_baremetal_4p4_<version>.img

vcactl wait <card_ID> <CPU_ID>

o For Intel® VCA:

vcactl boot <card_ID> <CPU_ID> vca_baremetal_<version>.img

vcactl wait <card_ID> <CPU_ID>

The <card_ID> and <CPU_ID> parameters are optional. If they are not provided, the command

boots all Intel® VCA cards and all CPUs on those cards.

If the vcactl wait command returns net_device_ready, the Intel® VCA booted successfully.

Otherwise, it reports a boot failure and related error messages.

2. Determine the Intel® VCA card IP address.

vcactl network ip <card-ID> <CPU-ID>

3. Log in to Intel® VCA. Login password vistal.

ssh root@<IP addr of VCA>

The bare metal volatile image loads the entire OS within a RAMDisk. As this is read-only memory, changes

are not persistent. If one or more folders need to be persistent, please refer to section 4.5.2, 4.5.3, or 4.5.4.

4.5.2 Intel® VCA Persistent over BlockIO (Intel® VCA software version 2.0 and above)

Intel® VCA software version 2.0 introduces a new type of persistent image. This new image does not need

NFS protocol to work; instead, all read/write operations are handled by the BlockIO driver. Using BlockIO

devices is explained in Section 4.5.9.

The boot process is as follows:

1. Extract the persistent image copy for each node. Make sure that each node has its own copy; the

extracted .vcad file needs 50 GB (24 GB for Ubuntu* OS image) of free disk space.

tar -xf vca_disk_X_Y_Z.tar.gz –C <destination directory>

or

gzip –d vca_disk_X_Y_Z.gz

where X_Y_Z represents the Intel® VCA software version, kernel version, and operating system type.

2. Add the extracted vca_disk image (eg. vca_disk_4p4_centos7.2_2.0.283.vcad) as the

primary BlockIO device. (The vcablk0 device is used to boot nodes and for simple storage

purposes.) All the nodes can be booted with same vcablk0, but each node needs to have its own

copy of the .vcad file and the following command needs to be issued for each card-ID and node-ID

along with the corresponding path to each node file.

sudo vcactl blockio open <card-ID> <node-ID> vcablk0 RW <path to vca disk

(.vcad) file>

Intel® Visual Compute Accelerator Software Guide

 31

3. Boot the card using the vcactl boot command.

sudo vcactl boot <card-ID> <node-ID> vcablk0

4.5.3 Intel® VCA Persistent over NFS (Intel® VCA software version 1.5 and lower only)

Note: After setup is complete and the operating system using a persistent file image is booted on Intel® VCA

nodes, it is important to not restart the NFS on the host. This could cause a kernel panic for the nodes

booted on the card.

This section describes the required configuration of the host to enable use of the persistent file image for

Intel® VCA software versions 1.5 and lower. The setup here is required exactly as it is listed, including folder

names. Failure to set up exactly as described causes the operating system to not boot properly and be

unusable. See Section 4.5.4 for information on how to manually set up persistent storage for a bare metal

image file.

1. Set up NFS server on the host or any server, for information on setting up a CentOS* 7 NFS server on

host, see Section B.5.

2. Create NFS mount points with the node’s file system.

sudo mkdir /mnt/vca_node_00

sudo mkdir /mnt/vca_node_01

sudo mkdir /mnt/vca_node_02

sudo mkdir /mnt/vca_node_10

sudo mkdir /mnt/vca_node_11

sudo mkdir /mnt/vca_node_12

The directory, which is used for NFS exports, is hard-coded in a persistent file system boot image for

the card. It consists of /mnt/ and the hostname of the node (vca_node_00, vca_node_01 and so

on). So as seen above, the full path of the exported mount point for node 0 on card 0 is

/mnt/vca_node_00. The hostname of the node can be changed in the

/etc/vca_config.d/vca_*_default.sh scripts for each of the node; if changed here, the NFS

mount point must be changed to match. The /mnt/ prefix cannot be changed.

A configuration with two Intel® VCA cards is assumed. If using more than two cards, create additional

folders as necessary. If using only one card, enter only the first three lines above.

3. Create or update /etc/exports with:

/mnt/vca_node_00 *(rw,sync,no_root_squash,no_all_squash)

/mnt/vca_node_01 *(rw,sync,no_root_squash,no_all_squash)

/mnt/vca_node_02 *(rw,sync,no_root_squash,no_all_squash)

/mnt/vca_node_10 *(rw,sync,no_root_squash,no_all_squash)

/mnt/vca_node_11 *(rw,sync,no_root_squash,no_all_squash)

/mnt/vca_node_12 *(rw,sync,no_root_squash,no_all_squash)

A configuration with two Intel® VCA cards is assumed. If using more than two cards, append additional

lines as necessary. If using only one card, enter only the first three lines above.

4. Export the directories in /etc/exports.

sudo exportfs –a

5. Copy the contents of vca_rootfs_{build_version}-tree.tar.gz into each mount point.

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_00

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_01

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_02

Intel® Visual Compute Accelerator Software Guide

32

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_10

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_11

sudo tar xf vca_rootfs-tree.tar.gz -C /mnt/vca_node_12

A configuration with two Intel® VCA cards is assumed. If using more than two cards, append additional

lines as necessary. If using only one card, enter only the first three lines above.

6. Start the server.

sudo systemctl enable rpcbind

sudo systemctl enable nfs-server

sudo systemctl start rpcbind

sudo systemctl start nfs

7. Make sure the firewall is properly configured.

o Determine which zones are active.

sudo firewall-cmd --get-active-zones

o Add NFS to the active zones.

sudo firewall-cmd --permanent --zone=<ZONES_FROM_PREVIOS_COMMAND> --add-

service=nfs

sudo firewall-cmd --reload

8. Boot the card using the vcactl boot command.

o For Intel® VCA 2:

sudo vcactl boot <card-ID> <node-ID> VCA_persistent_4.4_<version>.img

o For Intel® VCA:

sudo vcactl boot <card-ID> <node-ID> VCA_persistent_<version>.img

9. Verify net_device_ready for each node by using the vcactl wait command.

Intel® Visual Compute Accelerator Software Guide

 33

4.5.4 Manually Creating a Persistent File System Using NFS

Note: After setup is complete and the OS using a persistent file image is booted on Intel® VCA nodes, it is

important that users do not restart the NFS on the host. This could cause a kernel panic for the nodes

booted on the card.

This section describes how to manually set up a persistent file system if using the persistent image described

in Section 4.5.3 cannot be used. Unlike using the persistent image, if following these steps, the user needs to

mount back to the host on each reboot of the card. All commands are written with IPs from static

configurations; for DHCP configurations, proper IP addresses need to be used along with the NFS server

address and host address.

1. Set up either host or any other server as the NFS server. For information on setting up a CentOS* 7

host as NFS server, see Section B.5.

2. Boot the nodes.

sudo vcactl boot vca_baremetal_<version>.img

Wait for the nodes to be ready. (The sudo vcactl status command should show all nodes as

net_device_ready.)

Get IP address of nodes with following command

vcactl network ip <card-ID> <CPU-ID>

ip a

This command should show ethX network devices for each Intel® VCA node.

3. Configure CentOS* for passwordless SSH as detailed in section B.2. Test the configuration by using

the following command. Change the 1 2 3 to match the number of nodes in the system and

172.31.x.1 to the IP address of the node.(e.g. 1 2 3 4 5 6 for six nodes).

for i in 1 2 3 ; do ssh root@172.31.${i}.1 hostname ; done

The command should not prompt for a password and return the hostname for each node.

4. Set up the NFS folders, update /etc/exports, and export the file system with a single command.

Change the 1 2 3 to match the number of nodes in the system (e.g. 1 2 3 4 5 6 for six nodes).

Note: The following is a helpful script to perform steps 4-5. If using this script, skip to step 8.

sudo bash

for i in 1 2 3 ; do for j in root etc home opt srv usr var; do mkdir -p

/media/share/node${i}/${j} ; if [`grep -c /media/share/node${i}

/etc/exports` -eq "0"] ; then echo "/media/share/node${i}

*(no_root_squash,rw)" >> /etc/exports; fi ; if [`grep -c

/media/share/node${i}/${j} /etc/exports` -eq "0"] ; then echo

"/media/share/node${i}/${j} *(no_root_squash,rw)" >> /etc/exports ;

fi ; done ; done ; exportfs –a

exit

5. (Skip this step if the script in step 3 was executed.) Set up NFS shares folders.

sudo mkdir –p /media/share/node1/root

sudo mkdir –p /media/share/node1/etc

sudo mkdir –p /media/share/node1/home

sudo mkdir –p /media/share/node1/opt

sudo mkdir –p /media/share/node1/srv

Intel® Visual Compute Accelerator Software Guide

34

sudo mkdir –p /media/share/node1/usr

sudo mkdir –p /media/share/node1/var

Repeat for each folder that is to be made persistent. Repeat for each node in the system.

6. (Skip this step if the script in step 3 was executed.) Create or update /etc/exports with:

/media/share/node1 *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/root *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/etc *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/home *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/opt *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/srv *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/usr *(rw,sync,no_root_squash,no_all_squash)

/media/share/node1/var *(rw,sync,no_root_squash,no_all_squash)

Repeat for each node in the system.

7. (Skip this step if the script in step 3 was executed.) Export the file systems.

sudo exportfs -a

8. Copy the directories from the nodes to the host shares. The following script goes into each node and

each folder and copies the content back to the host. Again, change the 1 2 3 to match the number

of nodes to be processed and change the list of directories (root etc home opt srv usr var)

to include all folders to be made persistent. 172.31.${i}.1 is the IP address of the nodes and

172.31.${i}.254 is the NFS server in use, either the host or other NFS server.

for i in 1 2 3 ; do for j in root etc home opt srv usr var ; do ssh

root@172.31.${i}.1 "mount 172.31.${i}.254:/media/share/node${i} /mnt ;

cp -af /${j} /mnt/ ; umount /mnt" ; done ; done

9. Mount the directories to the nodes. This step must be done on every reboot. Again, change the 1 2 3

to match the number of nodes to be processed and change the list of directories (root etc home

opt srv usr var) to include all folders to be made persistent.

for i in 1 2 3 ; do for j in root home opt srv usr var etc; do ssh

root@172.31.${i}.1 "cd / ; mount

172.31.${i}.254:/media/share/node${i}/${j} /${j}" ; done ; done

10. Verify that the shares are mounted. This step is recommended on every reboot. Again, change the 1

2 3 to match the number of nodes to be processed. Review the output to verify that the expected

directories and mounted via NFS.

for i in 1 2 3 ; do ssh root@172.31.${i}.1 "mount" ; done

Software can now be installed to the nodes normally. If using yum, the steps in section B.4 should be

followed to configure a local yum repository. On each subsequent reboot, step 9 is required and step 10 is

recommended.

Intel® Visual Compute Accelerator Software Guide

 35

4.5.5 Running Baremetal Image on Intel® VCA

The baremetal version is available for Linux (CentOS*), Windows* 10, and Windows Server* 2016 images.

4.5.5.1 Running Linux* Baremetal Image

1. Run image on selected nodes.

vcactl boot <card_ID> <node_ID> vca_baremetal_<version>.img

2. Check IP address of nodes.

vcactl network ip <card-ID> <node-ID>

3. Connect to the node via ssh (default password is vista1).

ssh root@<ip-address>

Note: It is recommended to change the password using the passwd command.

4.5.5.2 Running Windows* Baremetal Image

Intel does not distribute Windows baremetal images. For information on creating a Windows baremetal

image, refer to section A.4.

1. Unzip the image (e.g. in /home/Win_images). Make sure that each VCA node has its own copy of

vca_windows*.img.

mkdir /home/Win_images

cd /home/Win_images

unzip vca_windows_10_*<version>.zip

2. Open image via blockIO.

vcactl blockio open <card_id> <cpu_id> vcablk0 RW

vca_windows_10_baremetal_<version>.img

3. Run Windows on node. After first boot to Windows, the OS reboots. Wait for net_device_ready

status.

vcactl boot <card_id> <cpu_id> vcablk0

4. Check IP address of nodes.

vcactl network ip <card-ID> <node-ID>

5. Connect to the node (e.g. via Remote Desktop Connection). The default user is Administrator and

the password is vista12#.

Intel® Visual Compute Accelerator Software Guide

36

Figure 9. Connect to node using Remote Desktop Connection

Note: It is recommended to change the password.

4.5.6 Running KVM Virtulization on Intel® VCA

4.5.6.1 Running Windows* Baremetal on Node via KVM Hypervisor

1. Set up either host or any other server as the NFS server. For information on setting up a CentOS* 7

host as NFS server, see Section B.5.

2. Create NFS mount points in the node's filesystem.

sudo mkdir /mnt/kvm

Note: Any folder can be created to host the Dom U files. For this document, /mnt/kvm is used as an

example. If a different folder is selected, change the below occurrences of /mnt/kvm, as well.

3. Create or update /etc/exports. This is needed for the nodes to have access.

/mnt/kvm *(rw,sync,no_root_squash,no_all_squash)

4. Export the directories in /etc/exports.

sudo exportfs -a

5. Run KVM on node.

vcactl boot <card_ID> <node_ID> vca_kvm_<OS_version>_<version>.img

6. Run Windows Baremetal.

a. On Host run following command to start Windows VM on node.

vca_start_card_kvm.sh -p /mnt/kvm/ -c <card_ID> -n <node_ID> -i

vca_windows_10_baremetal_<version>.img --kvm_vnc_port 5900 -b --

boot-uefi

boot-uefi is required, if the Windows image is created with steps specified in Appendix A.4.

b. Log in to node system (hypervisor system – Linux) using SSH.

c. Turn off firewall on node system (on Linux) (necessary if using RDP).

sudo sysctld firewall stop

Intel® Visual Compute Accelerator Software Guide

 37

d. Log into Windows (e.g. via RDP). The default user is Administrator and the password is

vista12# (if the Windows image is created with steps specified in Appendix A.4).

4.5.6.2 Configuring and Creating an Image

Note: This method of creating a Windows guest operating system for KVM is deprecated. Instead, use the

Windows image created as a Windows baremetal operating system as described in Section A.4.

The Intel® VCA can be run in a virtualized environment. Users may want to run in virtualized environment to

run applications in an OS other than CentOS* 7.2 or to use virtualization orchestration tools to start their

application. A single VM per node on the Intel® VCA card is the only supported configuration at this time. This

section describes how to boot the KVM hypervisor and load a guest OS.

IMPORTANT: After setup is completed and operating system booted on Intel® VCA nodes, it is important to

not restart the NFS service on the host. This could cause a kernel panic for the nodes booted on the card.

Configure NFS Server

To set-up CentOS* 7 NFS server, see Section B.5.

1. Create NFS mount points in the node's filesystem.

sudo mkdir /mnt/kvm

Note: Any folder can be created to host the DomU files. For this document, /mnt/kvm is used as an example.

If a different folder is selected, change the below occurrences of /mnt/kvm, as well.

2. Create or update /etc/exports.

/mnt/kvm *(rw,sync,no_root_squash,no_all_squash)

3. Export the directories in /etc/exports.

sudo exportfs -a

4. Copy scripts to boot DomU to mount folder.

sudo cp /usr/sbin/vca_start_card_kvm.sh /mnt/kvm/

5. Start the NFS server.

sudo systemctl enable rpcbind

sudo systemctl enable nfs-server

sudo systemctl start rpcbind

sudo systemctl start nfs

6. Make sure the firewall is properly configured.

sudo firewall-cmd --permanent --zone=`sudo firewall-cmd --get-default-zone`

--add-service=nfs

firewall-cmd --permanent --zone=public --add-service vnc-server

sudo firewall-cmd ––reload

Intel® Visual Compute Accelerator Software Guide

38

Create Bootable DomU Image

To create a bootable DomU image using an installation ISO file of an OS, follow the instructions in this

section. This example creates a DomU image using Windows* 10; the installation of Windows Server 2016 is

analogous.

1. Boot KVM hypervisor on VCA.

sudo vcactl boot <card_ID> <node_ID> vca_kvm_<version>.img

2. Find the IP address of the KVM hypervisor.

sudo vcactl network ip <card_ID> <node_ID>

3. SSH to the VCA node with above IP address. The default user name is root and default password is

vista1.

4. On the VCA node, Configure the firewall to allow VNC service by executing the following commands

on both the VCA node and host.

firewall-cmd --permanent --zone=public --add-service vnc-server

firewall-cmd --reload

5. Create an empty disk image at shared folder /mnt/kvm. The container needs to be at least 10 GB, but

at least 20 GB is recommended. The sample name (win10.img) may be changed.

sudo dd if=/dev/zero of=win10.img bs=1 count=0 seek=20G

6. Assuming an ISO file of Windows 10 named en_windows_10_enterprise_x64_dvd.iso, copy

the iso file to shared folder /mnt/kvm and run following commands as root.

sudo ./vca_start_card_kvm.sh -c <card_ID> -n <node_ID> -i win10.img --

install en_windows_10_enterprise_x64_dvd.iso --kvm_vnc_port 5900 -g -p

/mnt/kvm

Note: The command ./vca_start_card_kvm.sh –help prints a list of command options.

7. When Creating domain... | 0 B 00:02 is printed out by the ./vca_start_card_kvm.sh

command, connect a VNC client (e.g. tightVNC viewer) to host_ip:5900 where host_ip is the IP

address of VCA host platform. The VNC client must support Ctrl-Alt-Del.

Intel® Visual Compute Accelerator Software Guide

 39

8. In Windows setup, press Next (Figure 10) and then choose Install now.

Figure 10. Windows* setup screen

9. Enter the Windows activation key and accept the license terms.

Intel® Visual Compute Accelerator Software Guide

40

10. Choose Install Windows only (advanced) for the type of installation (Figure 11).

Figure 11. Select type of installation

11. On the screen with available drives, click Next to start installation (Figure 12).

Figure 12. Select installation location

Intel® Visual Compute Accelerator Software Guide

 41

12. After Windows is installed, configure the personalization settings as they are presented such as

region, keyboard layout, network connection, login information, and privacy settings.

13. Right click on the Windows button and shut down the VM. This triggers KVM hypervisor to destroy

the current Windows 10 guest.

Now we have a bootable image of Windows 10 (win10.img in the example).

Configure Bootable Image

To further configure this image, perform the following steps.

1. On the host platform download the latest stable drivers in form of virtio-win iso file (virtio-win-

<version>.iso) from https://fedoraproject.org/wiki/Windows_Virtio_Drivers.

2. Copy virtio-win-<version>.iso to shared folder /mnt/kvm and create KVM guest with

win2k12.img and virtio-win-<version>.iso.

sudo ./vca_start_card_kvm.sh -n <node-ID> -c <card-ID> -i win10.img --

kvm_vnc_port 5900 -g -p /mnt/kvm --cdrom virtio-win-<version>.iso

After booting, virtio-win-<version>.iso is seen as a CD-ROM.

3. Right click on the Windows button and choose Device Manager.

4. Right click Ethernet Controller in Other devices and select Update driver (Figure 13).

Figure 13. Update Ethernet controller driver

https://fedoraproject.org/wiki/Windows_Virtio_Drivers

Intel® Visual Compute Accelerator Software Guide

42

5. Select Browse my computer for driver software (Figure 14).

Figure 14. Browse for Ethernet controller driver software

6. Check the box Include subfolders and click the Browse button (Figure 15).

Figure 15. Browse for driver on computer

Intel® Visual Compute Accelerator Software Guide

 43

7. Select the CD drive with virtio-win (Figure 16). Click OK, then Next, then Install.

Figure 16. Select virtio-win CD drive

8. After installing the Ethernet driver, repeat the same steps for PCI Device in Other devices to install

the VirtIO Ballon driver.

Intel® Visual Compute Accelerator Software Guide

44

9. Open the Device Manager. Right click Red Hat VirtIO Ethernet Adapter under Network Adapters and

select Properties (Figure 17).

Figure 17. Select Red Hat VirtIO Ethernet Adapter

10. On the Advanced tab select Init MTU Size and specify a value of 65500 (Figure 18).

Figure 18. Red Had VirtIO properties

Intel® Visual Compute Accelerator Software Guide

 45

11. The KVM guest obtains its address from the KVM DHCP server. To verify, open Windows PowerShell*

and invoke ipconfig command (Figure 19).

Figure 19. ipconfig in Windows PowerShell*

12. By default, KVM guest (Win10 in this example) does not respond to pings. To enable pinging, add

proper firewall rule using PowerShell (Figure 20).

Import-Module NetSecurity

New-NetFirewallRule -Name Allow_Ping -DisplayName “Allow Ping” -Description

“Packet Internet Groper ICMPv4” -Protocol ICMPv4 -IcmpType 8 -Enabled

True -Profile Any -Action Allow

Intel® Visual Compute Accelerator Software Guide

46

Figure 20. Enable pinging in Windows PowerShell*

13. Enable Remote Desktop Connection at KVM guest. In VNC, right click on the Windows icon and select

System. Under Related settings, select System info (Figure 21) and then select Advanced system

settings (Figure 22).

Figure 21. System info

Intel® Visual Compute Accelerator Software Guide

 47

Figure 22. Advanced system settings

14. In the Remote tab check Allow remote connections to this computer and click OK (Figure 23).

Note: The firewall must be also be configured to allow remote desktop connection.

Intel® Visual Compute Accelerator Software Guide

48

Figure 23. Allow remote connections

15. Shut down the guest. The bootable KVM guest image (win2k12.img) is now configured with remote

desktop connection (RDP) enabled.

Connect to Guest with Remote Desktop Client

To use RDP, first enable the network bridge so that external computers (other than VCA host) can also access

KVM guest. Before performing these steps, follow the instructions in Section 0 to configure the nodes for

bridged mode operation.

1. Create KVM guest with -b and --card-mac options.

sudo ./vca_start_card_kvm.sh –b –card-mac -n <node-ID> -c <card-ID> -i

win10.img --kvm_vnc_port 5900 --vm_rdp_port 5901 -g -p /mnt/kvm

2. To find the IP address of the KVM guest, connect to the guest through VNC with address

IP_hypervisor. In Windows PowerShell, run the command ipconfig to find the guest’s IP

address.

3. Connect to guest with a remote desktop client (Figure 24). If a warning appears select Don’t ask me

again for connections to the computer and click Yes (Figure 25).

Intel® Visual Compute Accelerator Software Guide

 49

Figure 24. Remote desktop connection

Figure 25. Security certificate warning

Windows 10 is now successfully running as a KVM guest.

There are few small differences between Windows 10 and Windows Server 2016. If there are any problems

with Windows installation, visit https://support.microsoft.com/en-us.

Install Graphics Driver

To use hardware accelerated media and graphics processing, the Intel® Graphics Driver (the default display

driver of KVM does not support Intel media and graphics hardware) must be installed. The recommend

approach to install Intel Graphics Driver is through installation of Intel® Media Server Studio (the community

version is free to use), since Intel Graphics Driver is included in Intel Media Server Studio.

After successfully installing the Intel Graphics Driver, Iris® Pro Graphics should appear in the Device Manager.

4.5.7 Running KVM-GT Virtualization on Intel® VCA

IMPORTANT: After setup is completed, and operating system booted on Intel® VCA nodes, it is important

that users do not restart the NFS service on the host. This could cause a kernel panic for the nodes booted

on the card.

KVM-GT virtualization is supported only on Intel® VCA 2 (VCA1585LMV) card. Maximum number of VMs

supported are 7, when aperture size is greater than or equal to 1024MB. If more than 4VMs are required, it is

required to have at least 32GB of RAM per node.

https://support.microsoft.com/en-us

Intel® Visual Compute Accelerator Software Guide

50

4.5.7.1 Running Windows* Baremetal on Node via KVMGT Hypervisor

1. Set up either host or any other server as NFS server, for information on setting up Ubuntu* host as

NFS server, see section C.5

2. Setup bridging for the nodes as described in section 4.4.1

3. Create NFS mount points in the node's filesystem.

sudo mkdir /mnt/kvmgt

Note: Any folder can be created to host the Dom U files. For this document, /mnt/kvmgt is used as an

example. If a different folder is selected, change the below occurrences of /mnt/kvmgt, as well.

4. Create or update /etc/exports. This is needed for the nodes to have access.

/mnt/kvmgt *(rw,sync,no_root_squash,no_all_squash,no_subtree_check)

5. Export the directories in /etc/exports.

sudo exportfs -a

6. Aperture size should be equal or higher than 512MB to use more than 2 VMs. Following command

sets the Aperture size for nodes

vcactl set-BIOS-cfg gpu-aperture 1024

7. Wait until BIOS is up and running on the nodes

8. Boot the nodes with KVMGT image.

vcactl boot <card_ID> <node_ID> vca_kvmgt_<version>.img

9. Wait until nodes are booted up

vcactl wait <card_ID> <node_ID>

10. vca_kvmgtctl is used to create, manage, and remove the VMs for KVMGT on the host. The

following table gives the different command descriptions. The node password needs to be entered

during the execution of the included commands.

Table 10. vca_kvmgtctl commands

Function Description Command

Drivers Show available drivers /usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x drivers

Help Print help /usr/sbin/vca_kvmgtctl.sh -h

Info Show info about actual configuration /usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x info

Remove unused Remove unused device /usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -

x remove_unused

Set max GPU freq Set min GPU freq in MHz (should be

lower than 1150)

/usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x

set_max_freq <value>

Set min GPU freq Set min GPU freq in MHz (should be

higher than 350)

/usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x

set_min_freq <value>

Start VM Start vm from selected img /usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -m <vm_id> -x

start <img_path> <img_name> <mount_dir> <host_ip>

Status Show VM status with IP, Mac /usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x status

11. Run Windows Baremetal.

a. Make sure there is a separate image for each VM in /mnt/kvmgt (the NFS directory created

above).

Intel® Visual Compute Accelerator Software Guide

 51

b. On the host, run following command to start VM on node. The node password needs to be

entered during the execution of following command.

/usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -m <vm_id> -x start <img_path>

<img_name> <mount_dir> <host_ip>

ex.

/usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -m 1 -x start /mnt/sda

win_10_<version>.img /mnt/disk1 10.91.100.100

/usr/sbin/vca_kvmgtctl.sh -c 0 -n 0 -x status shows the VM IP address, MAC

address and VNC port number. The default VNC port is vm_id+10.

c. Turn off the firewall on the node system (on Linux) (necessary if using RDP/VNCviewer).

sudo sysctld firewall stop

d. Log into Windows (e.g. via VNCviewer/RDP). The default user is Administrator and the

password is vista12#.

e. In vca_kvmgtctl.sh, the MAC address is reserved automatically from node MAC address.

Ex. Node mac: 12:34:56: 78: 90:ab

VM1 mac: 12:34:56: (7+vm_id+1)8: 90:ab

4.5.8 Running XEN Virtualization on Intel® VCA

IMPORTANT: After setup is completed, and operating system booted on Intel® VCA nodes, it is important

that users do not restart the NFS service on the host. This could cause a kernel panic for the nodes booted

on the card.

Intel® VCA can be run in a virtualized environment. Users may want to run in virtualized environment to run

applications in an OS other than CentOS* 7.2 or to use virtualization orchestration tools to start their

application. A single VM per node on the Intel® VCA card is the only supported configuration at this time. This

section describes how to boot the XEN hypervisor and load a guest OS.

Intel® Visual Compute Accelerator Software Guide

52

4.5.8.1 Configure NFS Server

1. Set up either host or any other server as NFS server, for information on setting up a CentOS* 7 host

as NFS server, see section B.5.

2. Create NFS mount points with node's filesystem (setup for two cards).

sudo mkdir /mnt/xen

Note: Any folder can be created to host the DomU files. For this document, /mnt/xen is used as an example.

If a different folder is selected, change the below occurrences of /mnt/xen, as well.

3. Create or update /etc/exports.

/mnt/xen *(rw,sync,no_root_squash,no_all_squash)

4. Export the directories in /etc/exports.

sudo exportfs -a

5. Copy the DomU image and required scripts to the mount folder.

sudo tar -zxvf vca_domu_<version>.tar.gz -C /mnt/xen/

sudo cp /usr/sbin/vca_start_card_domu.sh /mnt/xen/

sudo cp /usr/lib/vca/card_gfx_vm.hvm /mnt/xen

sudo cp /usr/lib/vca/card_vm.hvm /mnt/xen

6. Start the NFS server.

sudo systemctl enable rpcbind

sudo systemctl enable nfs-server

sudo systemctl start rpcbind

sudo systemctl start nfs

7. Make sure the firewall is properly configured.

sudo firewall-cmd --permanent --zone=`sudo firewall-cmd --get-default-zone`

--add-service=nfs

firewall-cmd --permanent --zone=public --add-service vnc-server

sudo firewall-cmd –reload

4.5.8.2 Prepare Image

This procedure assumes a bootable DomU image win10.img. To create a bootable image from a Windows

ISO file, refer to Section 4.5.6. Before performing these steps, follow the instructions in Section 0 to

configure the nodes for bridged mode operation.

1. Boot VCA nodes with the Xen image.

o For Intel® VCA 2:

sudo vcactl boot vca_xen_4.4p_<version>.img

o For Intel® VCA:

sudo vcactl boot vca_xen_<version>.img

2. Wait for the nodes to be ready. The command sudo vcactl status should show the node status

as net_device_ready.

3. Copy win10.img to the shared folder /mnt/xen.

4. On the Intel® VCA host platform, boot the Windows VM DomU image with the emulated network.

vca_start_card_domu.sh -c <card_ID> -n <node_ID> -p <path to image at E5> -b

--card-mac -i <guest_image_name> -f card_vm.hvm --legacy-net

Intel® Visual Compute Accelerator Software Guide

 53

For example,

vca_start_card_domu.sh -c 0 -n 0 -p /mnt/xen -b --card-mac -i win10.img -f

card_vm.hvm --legacy-net

5. Find the IP address of the Xen hypervisor using the command vcactl network ip and then log in

to the hypervisor using SSH.

ssh <IP_of_hypervisor>

6. Configure the firewall on the node.

firewall-cmd --permanent --zone=public --add-service vnc-server

firewall-cmd -–reload

4.5.8.3 Install PV Drivers

Install the Xen network PV drivers to replace the emulated network driver for better performance.

1. Download the following drivers from https://www.xenproject.org/downloads/windows-pv-

drivers/winpv-drivers-81/winpv-drivers-810.html:

o Bus driver (xenbus.tar)

o Network class driver (xenvif.tar)

o Network device driver (xennet.tar)

2. Untar these driver files to /mnt/xen.

https://www.xenproject.org/downloads/windows-pv-drivers/winpv-drivers-81/winpv-drivers-810.html
https://www.xenproject.org/downloads/windows-pv-drivers/winpv-drivers-81/winpv-drivers-810.html

Intel® Visual Compute Accelerator Software Guide

54

3. To find the DomU ID, use the command xl list. The ID is listed as shown in Figure 26.

Figure 26. Find DomU ID using xl list command

Intel® Visual Compute Accelerator Software Guide

 55

4. To find the DomU MAC address, run the following command still on the hypervisor (Figure 27).

xl network-list <ID of domU>

Figure 27. Find DomU MAC address using xl network-list command

Intel® Visual Compute Accelerator Software Guide

56

5. Find the DomU IP address (Figure 28).

tcpdump –n –i eth0 ether src <MAC address> -vv

Figure 28. Find DomU IP address using tcpdump command

Intel® Visual Compute Accelerator Software Guide

 57

6. Start remote desktop connection. Enter the DomU IP address and click Show options (do not click

Connect) (Figure 29).

Figure 29. Start remote desktop connection

7. Go to the Local Resources tab and click the More button under Local devices and resources (Figure

30).

Figure 30. Remote desktop connection local resources options

Intel® Visual Compute Accelerator Software Guide

58

8. In the newly opened window, check the drive containing the unpacked PV drivers (xenbus, xenvif,

and xennet) (Figure 31). Click OK to close the window and then Connect to start the connection.

Figure 31. Remote desktop connection drive selection

9. Log in to the Windows guest. In file explorer, locate the drive and directory containing the unpacked

PV drivers (xenbus, xenvif, and xennet). For example, the directory for xenbus is

C:\Downloads\xenbus\x64.

10. Double-click dpinst to install all three PV drivers and reboot Windows guest.

11. After rebooting, open Device Manager and verify that Xen PV Network Device is used instead of

e1000. Ignore missing drivers for XENBUS IFACE and XENBUS VBD.

Figure 32. Xen PV network adapter installed

Intel® Visual Compute Accelerator Software Guide

 59

12. Shut down DomU and start it again (from the E5 host) with enabled graphics passthrough and

without emulated network adapter (i.e., do not use the --legacy-net option).

vca_start_card_domu.sh -c <card ID> -n <node ID> -p <path to image at E5> -b

--card-mac -i <guest_image_file> -f card_gfx_vm.hvm -g

For example,

vca_start_card_domu.sh -c 0 -n 0 -p /mnt/xen -b --card-mac -i win2k12.img -f

card_gfx_vm.hvm -g

4.5.8.4 Install Display Drivers

Perform the following steps to replace the Microsoft* basic display driver with the Intel display driver

bundled with Intel Media Server Studio.

1. Connect to the Windows guest using a remote desktop connection.

2. Install the Intel display driver by running MediaServerStudioEssentials2017.exe (Figure 33).

Figure 33. Install Intel® Media Server Studio 2017

Intel® Visual Compute Accelerator Software Guide

60

3. Select Graphics Driver and click Next (Figure 34). Click Next again to start installation (Figure 35).

Figure 34. Select Intel® graphics driver

Figure 35. Install Intel® graphics driver

Intel® Visual Compute Accelerator Software Guide

 61

If installation is successful, Iris Pro graphics is shown in the Device Manager under Display adapters (Figure

36).

Figure 36. Iris® Pro graphics installed

4.5.8.5 Start DomU for Linux* OS

To start DomU with graphic passthrough enabled on node 0 and card 0:

vca_start_card_domu.sh –p <NFS share> –g –f card_gvx_vm.hvm –c 0 –n 0 –i

vca_domu_1.img

To start DomU without graphic passthrough enabled:

vca_start_card_domu.sh –p <NFS share> –f card_vm.hvm –c 0 –n 0 –i

vca_domu_1.img

Change –c, -n, and –i parameters for different nodes. The –c parameter is the card to start the VM on

starting with 0, the –n parameter is the CPU within that card to start the VM on starting with 0, and the –i

parameter is the name of the image used to boot.

For a set of options for the vca_start command, see Table 11. If the DomU IP address is not changed by

the parameter below, the default IP is 172.31.X.2 where X is the node starting with 1.

Intel® Visual Compute Accelerator Software Guide

62

Table 11. Options for vca_start command

Option Operand Description

-f filename VM configuration file. Must be located within NFS shared directory

-g Enable graphics passthrough

-p Path NFS share location (path at host); using /share if not configured

-a IP Card's IP address (if other than VCA xml defined is used)

-h IP Host's IP address (if other than VCA xml defined is used)

-u IP DomU IP address (if other than default is used); this is for routing purposes only

-N IP NFS address (if different than host)

-c ID Card ID (0, 1, 2, 3, etc.); using 0 if not provided

-n ID
Node ID (CPU at card; 0, 1, 2); using 0 if not provided; used to generate DomU MAC address (if not

provided with -m option) and host's address (if not provided by -a/-h)

-i filename VM image filename. Overrides image configured in VCA xml file

-b Use network bridging instead of routing

-k filename Kernel image filename. For booting VMs without bootloader (doesn't support graphics pass-through)

-r filename InitRamFs image name. For booting VMs without bootloader (doesn't support graphics pass-through)

4.5.8.6 Add Routing on Dom0 on Each Node

Note: This should not be required for configurations using the network bridging feature of software release

1.2 or later.

To add routing on each node, connect to node:

ssh 172.31.x.1

where X is the number of the node starting with 1 (i.e., 172.31.1.1 for first node, 172.31.2.1 for second

node, etc.)

Add a route to get to the outside network through the host by executing the command:

route add 172.31.1.253 gw 172.31.1.254

4.5.9 Using Block Devices (via BlockIO)

Block devices can be in four states:

 Disable – There is nothing open.

 Enable – Something is open but not used yet.

 Inactive – Something is open but not working.

 Active – Something is open and working.

Devices named vcablk0 are dedicated to operating system booting. Devices named vcablk1 through

vcablk7 can be prepared to use as additional drives except for operating system booting.

To prepare devices vcablk1 through vcablk7 for Windows OS, perform the following steps:

1. Find and open the drive.

vcactl blockio open <card_ID> <node_ID> vcablkN RW|RO <drive_path>

2. Boot the system on the same node on vcablk0.

vcactl blockio open <card_ID> <node_ID> vcablk0 RW <image_path>

vcactl boot <card_ID> <node_ID> vcablk0

3. Log in to the system (e.g., via Remote Desktop Connection).

Intel® Visual Compute Accelerator Software Guide

 63

4. Right-click the Start icon and choose Disk Management (Figure 37).

Figure 37. Windows* disk management option

Intel® Visual Compute Accelerator Software Guide

64

5. In the Disk Management window, the disk should be visible as Unknown and Unallocated as shown in

Figure 38 (Disk 1). Right-click the Disk 1 label and select Initialize Disk.

Figure 38. Disk management window

6. Choose partition style and click OK

7. Right-click on the Disk 1 label, select New Simple Volume, and follow the on-screen instructions.

Intel® Visual Compute Accelerator Software Guide

 65

8. After successful configuration, the disk should be visible as a normal partition as shown in Figure 39.

Figure 39. Successful drive configuration in Windows*

To prepare devices vcablk1 through vcablk7 for Linux CentOS*, perform the following steps:

1. Find the drive.

2. Swap the drive into proper file system using the mkfs.<file_system> <drive_path> command.

3. Open the drive.

vcactl blockio open <card_ID> <node_ID> vcablkN RW|RO <drive_path>

4. Boot the system on the same node on vcablk0.

vcactl blockio open <card_ID> <node_ID> vcablk0 RW <image_path>

vcactl boot <card_ID> <node_ID> vcablk0

5. Log in to the system via SSH.

6. Mount the drive.

mount /dev/vcablkN /mnt/

Intel® Visual Compute Accelerator Software Guide

66

5. Using the Intel® VCA Product Family Software

5.1 Using Intel® Media Server Studio

The main software framework for Intel® VCA is Intel® Media Server Studio. Intel® VCA boot reference images

in both the volatile and persistent reference packages have pre-installed Intel Media Server Studio 2018 R1

(Community Edition). On Intel® VCA boot production images in both the volatile and persistent packages,

Intel® Media Server Studio needs to be installed. To develop applications for video processing, use Intel®

Quick Sync Video. OpenCL* is also supported.

To use Intel Media Server Studio on an Intel® VCA card, simply log in Intel® VCA (by SSH or remote

desktop/VNC). Then develop or run Intel Media Server Studio programs like on other Intel platforms with

Intel Media Server Studio.

More information on Intel Media Server Studio 2018 R1 can be found at https://software.intel.com/en-

us/intel-media-server-studio.

Note: Intel® VCA releases may not have the latest Intel Media Server Studio release. If a newer version is

available, follow the instructions with the release to perform the upgrade.

Intel® VCA strategy is to test the Intel® VCA software stack against the most recent, publicly released Intel

Media Server Studio to provide the reference Intel® VCA software stack. But some customers may want to

keep older Intel Media Server Studio releases, which have been well tested in their environment, or may have

access to non-public (e.g. obtained under NDA) Intel Media Server Studio releases. To cover such needs, the

production VCA software stack does not include Intel Media Server Studio.

Intel Media Server Studio contains two main parts (in terms of driver form):

 An open source Kernel Mode Drivers (KMD).

 A binary User Mode Drivers (UMD) and libraries, to be installed only.

To use Intel Media Server Studio on a production image, first start Intel Media Server Studio at the Intel® VCA

node. Perform the following steps after each reset of an Intel® VCA node, unless a persistent filesystem

image is in use.

1. Boot a production image. Change the directory to where the Intel® VCA files are placed.

sudo vcactl boot vca_baremetal_production_<build version>.img

2. Copy Intel Media Server Studio components to the Intel® VCA node. Change the directory to

SDK<year>Production<version> inside the Intel Media Server Studio location. This folder should

contain a collection of RPMs and other files. The example below assumes copying files to /root/ but

any folder may be used. Repeat for each node.

scp -r CentOS root@<node's ip>:/root/

3. If devel packages from Intel Media Server Studio need to be installed (to compile other components

to work with Intel Media Server Studio, for example, external h265 codec), also copy the kernel-

headers package from the build, after changing directory to the location of the kernel-headers

package.

scp kernel-headers-3.10.0_<kernel version>.x86_64.rpm \ root@<node's ip>:~

Change directory to where Intel® VCA software packages are installed. Copy Intel Media Server Studio

kernel mode driver to the Intel® VCA node. Repeat for each node.

scp -r kmod-ukmd-<version>.rpm root@<node's ip>:/root/

https://software.intel.com/en-us/intel-media-server-studio
https://software.intel.com/en-us/intel-media-server-studio

Intel® Visual Compute Accelerator Software Guide

 67

4. Install Intel Media Server Studio at the Intel® VCA node. Log in to each Intel® VCA node using SSH.

ssh root@<Node IP Address>

Note: Before running commands on the nodes, including yum, make sure that the nodes are able to access a

valid yum repository. An example of setting up a local yum repository on the host and enabling the clients to

access it may be found in Section B.4.

To install kernel mode driver, change to directory where kmod-ukmd-<version>.rpm is located.

rpm –ivh kmod-ukmd-<version>.rpm

Install Intel Media Server Studio (only executables, without devel packages). Change directory to

where Intel Media Server Studio RPMs were placed above.

ls *.rpm | grep -iv devel |grep libdrm|xargs rpm --force -ivh

ls *rpm | grep -iv samples | grep -iv devel | grep -iv kmod | xargs yum -y

localinstall

Or install Intel Media Server Studio with devel packages.

ls *rpm | grep -iv samples | xargs yum -y localinstall

Note: This requires additional packages not part of the CentOS* core distribution, which must be acquired

and installed separately.

To properly set environmental variables, log out from the session and log in again using SSH.

5.2 Running a Sample Transcode

To run a sample transcode, Intel Media Server Studio must be installed.

1. Ensure the file MediaSamples_Linux_6.0.16043175.175.tar.bz2 is on the host system, and

cd to the directory containing this file.

2. Unpack the samples tarball with the following command:

tar jxf MediaSamples_Linux_6.0.16043175.175.tar.bz2

3. Verify the nodes are fully operational before continuing (see previous sections of the document).

4. Copy the unpacked samples files to a node. To test on more than one node repeat this command for

each subsequent node (e.g. 172.31.2.1, 172.31.3.1, etc.).

scp –r MediaSamples_Linux_6.0.16043175.175 \ root@172.31.1.1:/root/

5. Connect to the node (this, and the following two steps, should be run together if testing on nodes

beyond the first; as before, change the third octet as in the previous step).

ssh root@172.31.1.1

6. Change into the correct directory.

cd MediaSamples_Linux_6.0.16043175.175/samples/_bin

7. Run the sample transcode.

./x64/sample_multi_transcode_drm –i::h264 content/test_stream.264 –o::h264

out.h264

Intel® Visual Compute Accelerator Software Guide

68

8. Transcode should run without error and should take less than 0.1 seconds to complete. Verification

of successful transcode can be achieved by comparing the output of the command

md5sum out.h264

with the output of the command

24be5fc13bab5bbbc9417842cbdc0e90 out.h264

Intel® Visual Compute Accelerator Software Guide

 69

6. Intel® VCA Utility (vcactl)

6.1 Introduction to vcactl

The vcactl utility allows the user to interact with the Intel® VCA card and nodes. To execute the utility, the

user must be either a member of the special group vcausers, which is created during utility installation; a

member of the sudoers group (that is, they must have sudo privileges on the system); or a user with root

privileges. In the first and last cases (a member of vcausers or a root user), no extra commands must be

typed. In the second case (a member of the sudoers group), all commands must be prepended by sudo

(sudo followed by a space character).

To add a user to the vcausers group, use the following command as either root or a root-privileged user

(e.g., a sudoers user using sudo):

usermod -aG vcausers <username>

Note : To add a username to vcausers, a relogin or reboot is required.

6.2 vcactl Usage

Use the following syntax and structure to use the vcactl utility.

vcactl [execution_mode] command [subcommand] [card_id [cpu_id]]

[command_params]

The available execution modes are:

-v : log verbose level set to DEBUG

-vv : log verbose level set to FULL-INFO

--skip-modprobe-check : turn off checking whether vca device is ready

--force : force command execution (WARNING: you do it at your own risk!)

6.3 Command Line Reference

6.3.1 vcactl help

Usage

vcactl help

Description

Prints out help information about how to use vcactl.

Intel® Visual Compute Accelerator Software Guide

70

Figure 40. vcactl help example

6.3.2 vcactl wait-BIOS

Usage

vcactl wait-BIOS [<card_id> <cpu_id>]

Description

Waits for CPU <card_id> <cpu_id> to enter BIOS is up and running mode, typically used after host

reboot or vcactl reset command.

Reports an error if CPU cannot enter BIOS is up and running mode.

Figure 41. vcactl wait-BIOS example

6.3.3 vcactl status

Usage

vcactl status [<card_id> <cpu_id>]

Description

Reads the status of the CPUs in the system. Normally this command should return bios_up. Use <card

id> to read all CPUs on the specified card. Use <card id> <cpu id> to read the status of the specified

CPU.

Figure 42. vcactl status example

Intel® Visual Compute Accelerator Software Guide

 71

Result

Result Description

link_down
if card CPU is down due to any reason if CPU link to PLX is down (usually means that PLX

eprom is invalid)(for VCA1283LVV)

power_off if card CPU is switched off or shutdown

powering_down If card CPU is shutting down

bios_down
CPU BIOS failed upon initialization or still booting (usually when memory training fails such

state is reported).

bios_up Link is up and BIOS is ready for handshake.

bios_ready Handshake has succeeded with BIOS.

bios_done BIOS is in a temporary state after allocating resources for completing the operation.

flashing BIOS is being updated.

booting OS is being booted.

drv_probe_done Main PCIe* driver has been loaded.

drv_probe_error Main PCIe* driver couldn’t be loaded.

dhcp_in_progress Card is obtaining IP address from DHCP.

dhcp_done Card obtained IP address from DHCP.

dhcp_error Card could not obtain IP address from DHCP.

nfs_mount_done Card mounted NFS resources.

nfs_mount_error Card could not mount NFS resources.

os_ready OS boot completed.

net_device_up Intel® VCA network stack is up but OS is not yet loaded.

net_device_down Intel® VCA network stack has been switched off.

net_device_ready Intel® VCA network stack is up, OS is booted, and IP address is assigned.

net_device_no_ip
Intel® VCA network stack is up and OS is booted, but IP address is not assigned (for example,

DHCP response has been not received).

resetting Intel® VCA CPU is being reset.

error Error occurred different than the specific errors listed above.

For the Intel® VCA card (1283LVV), if the jumper on the card is set for Golden BIOS, vcactl status shows

this information (only in bios_up state). For User BIOS, no additional information is displayed.

6.3.4 vcactl update-BIOS

Usage

vcactl update-BIOS [<card_id> <cpu_id>] <biosImageFile>

Description

Updates BIOS (flash SPI user BIOS partition) on specified CPU(s) in the system. Before running this

command, CPUs must be in the bios_up or bios_ready state. (Use vcactl reset and vcactl wait-

BIOS to force CPUs to enter the bios_up state.) Host reboot is not required after vcactl update-BIOS.

G3 (mechanical off) is required after vcactl update-BIOS. (To perform G3, execute the power off

command on the host and then disconnect from the power supply for 15 seconds.)

Intel® Visual Compute Accelerator Software Guide

72

Figure 43. vcactl update-BIOS example

Result

The CPU status transitions from bios_up or bios_ready to flashing and completes in the bios_ready

state. A temporary state of bios_done may be reported, as well.

For Intel® VCA 1283LVV only, if the jumper on the card is set for Golden BIOS, vcactl update_BIOS shows

a warning that the next boot will be done on Golden BIOS and not the updated user BIOS.

Card: 0 Cpu: 0 - Warning: Jumper selects GOLD BIOS. Next reboot will boot

it.

If there is a failure, an error status is reported (via the vcactl status command).

6.3.5 vcactl recover-BIOS (Intel® VCA 2 only)

Usage

vcactl recover-BIOS <biosImageFile>

Description

Updates BIOS via the Gold BIOS image. Use when in need of recovery. Before running this command, the

Intel® VCA 2 nodes must be in the bios_up state. This command may take much longer than the standard

BIOS update.

6.3.6 vcactl update-EEPROM

Usage

vcactl update-EEPROM [<card_id>] <eepromImageFile>

Description

Updates PCIe* firmware on all Intel® VCA cards or on the specified card. After successful completion of the

command, the host system is rebooted to work with the new firmware on the card. This command requires

root privileges. The Intel® VCA nodes must be in the bios_up state before running this command.

Figure 44. vcactl update-EEPROM example

Intel® Visual Compute Accelerator Software Guide

 73

Result

The EEPROMs on the card(s) are updated upon successful completion, at which point a reboot of the system

is required.

If there is a failure, an error status is reported after completion of the command. In these circumstances, a

retry of the update is strongly recommended prior to any reboot; otherwise, the card may be damaged.

6.3.7 vcactl reset

Usage

vcactl reset [<card_id> <cpu_id>]

Description

Resets the specified CPUs to bios_up state. Run vcactl wait-BIOS after vcactl reset to wait for

vcactl reset to complete. Normally, the CPUs should enter the BIOS is up and running mode.

Figure 45. vcactl reset example

6.3.8 vcactl boot

Usage

vcactl boot [<card_id> <cpu_id>] [os_image_file.img|vcablk0 (for vca-disk)]

Description

Boots the operating system from Leverage Boot Protocol. Image is from the default location (see the vcactl

config os-image command in section 6.3.20) or from the image file specified in the command. The

command requires that the card CPU is in the bios_up or bios_ready state. Use vcactl wait to wait for

the completion of the vcactl boot command.

It is possible to use the last-os-image field as a parameter to boot

Figure 46. vcactl boot example

Result

During the OS boot, the reported state is booting (the bios_done state may be visible, also). On

successful completion, each CPU is in the net_device_ready state. If there is a failure, the specific error

cause is reported (via the vcactl status command) as one of drv_probe_error, dhcp_error,

nfs_mount_error, net_device_no_ip, or generic error.

Intel® Visual Compute Accelerator Software Guide

74

6.3.9 vcactl reboot

Usage

vcactl reboot [<card_id> <cpu_id>] [os_image_file.img]

Description

Reboots the OS (resets the CPU and boots the selected OS) from the host via Leverage Boot Protocol. Image

is from the default location (see the vcactl config os-image command in section 6.3.20) or from the

image file specified in the command. The image file should have group access set to vcausers, otherwise

wait will give TIMEOUT. Use vcactl wait to wait for the completion of the vcactl boot command.

Figure 47. vcactl reboot example

Result

During the OS boot, the reported state is link_down, dio_down, bios_up, bios_ready, booting,

net_device_up, dhcp_in_progress, or os_ready (the bios_done, mod_probe_done, dhcp_done,

and nfs_mount_done states may be visible for a short time, also). On successful completion, each CPU is

in the net_device_ready state. If there is a failure, the specific error cause is reported (via the vcactl

status command) as one of drv_probe_error, dhcp_error, nfs_mount_error, net_device_no_ip,

or generic error.

6.3.10 vcactl wait

Usage

vcactl wait [<card_id> <cpu_id>]

Description

Waits until the OS boot is completed on the specified CPUs. This command is typically used after vcactl boot

or vcactl reboot to report booting status.

Result

The command completes when the OS boot is done; otherwise, it is blocking. On successful boot, all CPUs

finish in the net_device_ready state. If there is a failure, the specific error cause is reported as one of

drv_probe_error, dhcp_error, nfs_mount_error, net_device_no_ip, or generic error.

Intel® Visual Compute Accelerator Software Guide

 75

6.3.11 vcactl temp

Usage

vcactl temp [<card_id> <cpu_id>]

Description

Retrieves the temperature of one or more CPUs in the system. If no card or CPU is specified, the command

returns the temperature of all nodes on all cards.

Result

The current card output temperature and the node processor temperatures are reported for each card.

Figure 48. vcactl temp example

Intel® Visual Compute Accelerator Software Guide

76

6.3.12 vcactl blockio open

Usage

vcactl blockio open <card_id> <cpu_id> [vcablk<N>] [[RO|RW

<file_path>]|[ramdisk <size_mb>]]

where 0 ≤ N < 8.

Description

Opens block IO device.

Examples

vcactl blockio open 0 1 vcablk3 ramdisk 20

vcactl blockio open 0 1 vcablk3 RO ~/disk.img

6.3.13 vcactl blockio list

Usage

vcactl blockio list <card_id> <cpu_id>

vcactl blockio list <blockio_id>

Description

Lists block IO devices.

Figure 49. vcactl blockio list example

6.3.14 vcactl blockio close

Usage

vcactl blockio close <card_id> <cpu_id> [vcablk<N>]

where 0 ≤ N < 8.

Description

Closes block IO device.

Examples

vcactl blockio close 0 1 vcablk3

vcactl blockio close vcablk0

Intel® Visual Compute Accelerator Software Guide

 77

6.3.15 vcactl network

Usage

vcactl network <subcommand> [<card_id> <cpu_id>]

Description

Reads current network configuration of the card CPU to learn the IP address assigned by DHCP and the MAC

addresses of the network interfaces of the Dom0 OS and DomU OS. The subcommands are the following

and work on all or on the specified node:

 ip – Displays IP address of the (specified) node's eth0 interface.

 ip6 – Displays IP v6 address of the (specified) node's eth0 interface.

 mac – Displays MAC address of the (specified) node's eth0 interface so that user may configure DHCP

server with that information.

 vm-mac – Displays MAC address of the DomU virtual network interface of the (specified) node's so

that DHCP server can be set accordingly.

 all – Displays all information of the (specified) node's eth0 interface.

 stats – Displays statistics of the (specified) node's eth0 interface.

 dhcp-renew – Forces renewal of DHCP address for (specified) nodes.

6.3.16 vcactl ICMP-watchdog

Usage

vcactl ICMP-watchdog <1/0> [<card_id> <cpu_id>] [<ip_address>]

Description

Enables (1) or disables (0) ICMP watchdog service on the host that pings the specified node. The ICMP ping

address is selected according to the current configuration. Optionally, the command may explicitly specify

the IP address, so that the command can be used to monitor DomU activity.

6.3.17 vcactl update-MAC

Usage

vcactl update-MAC <card_id> <cpu_id> <macAddressCanonical>

Description

Updates MAC address (flash SPI GBE partition) on the specified CPU in the system. card_id and cpu_id are

mandatory parameters for this command.

Command should be executed only in bios_up state.

Result

Status of the CPU transitions from bios_up or bios_ready to flashing and completes in the

bios_ready state. If there is a failure, an error status is reported (via the vcactl status command).

6.3.18 vcactl script

Usage

vcactl script [<card_id> <cpu_id>] <scriptFile>

Description

Configures a bash script for the card CPU to perform Linux user-specific configuration that might be any

configuration action such as:

 IP address assignment per virtIO interface or enabling the DHCP client

 Starting DomU guest OS

Intel® Visual Compute Accelerator Software Guide

78

6.3.19 vcactl clear-SMB-event-log

Usage

vcactl clear-SMB-event-log <card_id> <smbId>

Description

Clears the SMB log that can be accessed by the vca_elog.py tool on nodes. The node should be in the

bios_up or bios_ready state.

6.3.20 vcactl config

Usage

vcactl config [<card_id> <cpu_id>] <parameter-name> <parameter-value>

The available options and settings are listed in Table 12.

Table 12. vcactl config parameters

Parameter Name Available Values Description

Global options

auto-boot 1 – enable, 0 – disable Enable/disable auto booting. Note that for auto-boot to work, the

directory containing the boot image and all its parent directories

must either be world-readable or be owned by the vcausers

group.

debug-enabled 1 – enable, 0 – disable Enable/disable debug commands.

link-up-timeout-ms # of milliseconds Set timeout for link-up after reset in milliseconds. Default is 2000

milliseconds (2 seconds)

handshake-irq-timeout-

ms
of milliseconds Set timeout for link-up after reset in milliseconds. Default is

30000 milliseconds (30 seconds).

alloc-timeout-ms # of milliseconds Set timeout for RAMDISK allocation in BIOS. Default 100 is

milliseconds.

cmd-timeout-ms # of milliseconds Set timeout for LBP command reaction in BIOS. Default is 1000

milliseconds.

mac-write-timeout-ms # of milliseconds Set timeout for MAC update command processing time in BIOS.

Default 1000 milliseconds.

default-daemon-script Name and path to daemon

script file

Name and path to daemon script file that is executed upon

watchdog expiration.

wait-cmd-timeout-s # of seconds Set timeout for WAIT command in vcactl (time needed to boot OS

up). Default is 160 seconds.

wait-bios-cmd-timeout-

s
of seconds Set timeout for WAIT-BIOS command in vcactl for BIOS UP time

needed. Default is 300 seconds.

wait-bios-cmd-

flashing-s
of seconds Set timeout for WAIT-BIOS command in vcactl for completion of

BIOS update. Default is 1200 seconds.

ICMP-ping-interval-s # of seconds Set ICMP watchdog period. Default is 1 second.

ICMP-response-timeout-

s
of seconds Set ICMP response timeout. Default is 10 second.

va-min-free-memory-

enabled
1 – enable, 0 – disable Enable/disable minimum value (512 MB) of non-cached memory

by Linux OS filesystem. This ensures that there will be enough free

space to allocate buffers needed by virtual network over PCIe*.

Option refers to host system.

Per card node options

os-image Path to image Path to bootable OS image

last-os-image Path to image (not user-

configurable)

Shows last booted image on node

Intel® Visual Compute Accelerator Software Guide

 79

Parameter Name Available Values Description

script Path to script Path and script file name that is executed on card after OS image

has been booted successfully.
/etc/vca_config.d/vca_<slot_id><cpu_id>_default.sh

daemon-script Path to script Name and path to daemon script file that is executed upon

watchdog expiration.

ip IP address or dhcp Set the node IP address or enable DHCP operation. Default is

172.31.<slot_id * 3 + cpu_id + 1>.1.

To enable DHCP (since Intel® VCA Software Release 1.2.) for

automatic IP address assignment, set to dhcp. Enabling DHCP is

allowed only if the node is already added to an existent bridge

interface.

mask # of bits Set mask length in bits. Default is 24 bits.

gateway IP address Set gateway address. Default is 172.31.<slot_id * 3 + cpu_id +

1>.254.

host-ip IP address Set host IP address Default is 172.31.<slot_id * 3 + cpu_id +

1>.254.

host-mask # of bits Set host mask length in bits. Default is 24 bits.

cpu-max-freq-non-turbo # of 100 MHz Set CPU maximum frequency. Default is 0 (turbo enabled).

bridge-interface Name of the bridge

network interface on the

host or none to disable

bridging

To enable bridging to the node, use the name of an existent bridge

interface (for example, vcabr0). To disable bridging to the node,

use none. Disabling is allowed if DHCP is disabled (meaning that

the IP address already has a static value). The command is

available since Intel® VCA Software Release 1.2.

node-name Name of the node Provide a unique name for each node in the system.

nfs-server IP address or FQDN of NFS

host for persistent image

boot

Provide a path for the node to access persistent boot filesystem

over the network. If using FQDN, name resolution must be

operational

nfs-path Path on NFS server where

persistent filesystem is

stored

Path to share on the NFS server. Use %s to indicate "node-name"

value in the path.

block-devs N/A This is a section which describes some additional information

about each defined VCA block device. By default there is only one

entry: vcablk0. Another devices will appear if you add them using

‘vcactl blockio open’ command.

vcablk<N> N/A It is a root entry for each defined block device (where 0 ≤ N < 8).

mode RW – read/write, RO –

read-only, ramdisk –

device will be created into

RAM

This is a way (RW or RO) how VCA block device will be created.

User can choose if block device may be read-only or with

read/write permissions.

path Path to block device. Path to file used as VCA BlockIO device.

ramdisk-size-mb Size of block device

created inside node RAM.

VCA BlockIO device can be also created in node RAM memory (for

example as SWAP partition as RAM is very fast memory type).

enabled 1 – enable, 0 – disable Option used to enable/disable block device. All enabled devices

will be created/opened during booting node phase.

va-min-free-memory-

enabled-node
1 – enable, 0 – disable Enable/disable minimum value (512 MB) of non-cached memory

by Linux OS filesystem. This ensures that there will be enough free

space to allocate buffers needed by virtual network over PCIe*.

Option refers to node system (Linux only).

Intel® Visual Compute Accelerator Software Guide

80

6.3.21 vcactl config-use

Usage

vcactl config-use

Description

Triggers the vcactld daemon to use the last configuration.

6.3.22 vcactl config-show

Usage

vcactl config-show [<card_id> <cpu_id>] <parameter-name> <parameter-value>

Description

Shows the current configuration of the vcactld daemon.

Figure 50. vcactl config-show example

6.3.23 vcactl config-default

Usage

vcactl config-default

Description

Restores the vcactld daemon to default values.

Intel® Visual Compute Accelerator Software Guide

 81

6.3.24 vcactl info-hw

Usage

vcactl info-hw

Description

Displays hardware information for the Intel® VCA card including if the card is GEN 1 or GEN 2 and its EEPROM

version.

Figure 51. vcactl info-hw example

6.3.25 vcactl info-system

Usage

vcactl info-system

Description

Displays information of the software installed on the Intel® VCA card including version and build date.

Figure 52. vcactl info-system example

6.3.26 vcactl pwrbtn-short (only for Intel® VCA 2)

Usage

vcactl pwrbtn-short <card_id> <cpu_id>

Description

 Power button toggle of CPU <cpu_id>

 Shutdown active OS on the specified CPUs or turn CPU on when it’s off. Command imitates short

press the power button.

Result

 Command completes when CPU is off or on depending on previous state. All CPUs finish in

power_off state in case of shutting down or in bios_up or bios_ready state when CPUs were off.

Intel® Visual Compute Accelerator Software Guide

82

6.3.27 vcactl pwrbtn-long (only for Intel® VCA 2)

Usage

vcactl pwrbtn-long <card_id> <cpu_id>

Description

 Power button override five seconds on CPU <cpu_id> to cut off Intel® VCA power supply

immediately; the OS can be damaged. For comparison, vcactl pwrbtn-short first shuts down the

OS gracefully, then cuts off Intel® VCA power supply.

 Normally, vcactl pwrbtn-short should be used to power off Intel® VCA. The vcactl pwrbtn-

long command is only used when Intel® VCA is in strange mode and vcactl pwrbtn-short

cannott power off the Intel® VCA card.

 CPU <cpu_id> is in power_off status until next vcactl pwrbtn-short.

Result

 Command completes when all CPUs finish in power_off state.

6.3.28 vcactl os-shutdown

Usage

vcactl os-shutdown <card_id> <cpu_id>

Description

Shuts down the running operating system on the specified CPU.

It is not recommended to use the os-shutdown command in combination with pwrbtn-short. (After using

os-shutdown, it is necessary to wait some time before executing the pwrbtn-short command again to

bring up CPU power.)

6.3.29 vcactl get-BIOS-cfg

Usage

vcactl get-BIOS-cfg <card_id> <cpu_id> [bios_cfg_name]

Description

Read BIOS configuration of the specified CPU. Available configurations to be read are:

 sgx

 gpu-aperture

 tdp.

Example

vcactl get-BIOS-cfg 0 1 sgx

6.3.30 vcactl set-BIOS-cfg

Usage

vcactl set-BIOS-cfg <card_id> <cpu_id> <bios_cfg_name> <bios_cfg_value>

Description

Set/change BIOS configuration of specified CPU. Available configurations to be read are:

 sgx: Enable/disable Intel® Software Guard Extensions. Set to enable or disable.

 gpu-aperture: Megabytes of graphics memory. Set to 128, 256, 512, 1024, 2048, or 4096.

 tdp: Set to 0 to 11, where zero means base value, 1 means base value + 1, etc.

The following restrictions apply:

Intel® Visual Compute Accelerator Software Guide

 83

 sgx works only with 512 gpu-aperture size or less.

 sgx and tdp are supported on Intel® VCA 2 only.

 Maximum gpu-aperture for Intel® VCA (VCA1283LVV) is 1024.

Examples

vcactl set-BIOS-cfg 1 0 sgx enable

vcactl set-BIOS-cfg gpu-aperture 1024

6.3.31 vcactl info

Usage

vcactl info <subcmd> [<card_id> <cpu_id>]

Description

Command allows to read specific information about either Intel® VCA SW/FW or Node OS. The

subcommands are the following and work on all or on the specified node:

 BIOS: Displays BIOS version of the Intel® VCA2 nodes.

 hw: Displays hardware information for the Intel® VCA card including if the card is GEN 1 or GEN 2 and

its EEPROM version.

 system: Displays information of the software installed on the Intel® VCA card including version and

build date.

 node-os: Displays information of node OS on the Intel® VCA card.

Examples

vcactl info hw

vcactl info BIOS

Intel® Visual Compute Accelerator Software Guide

84

7. IP Multicast with Intel® VCA Nodes

An Intel® VCA network stack implements standard network device and thus is capable of sending and

receiving packets to multicast addresses as well as Internet Group Management Protocol (IGMP) packets.

Default Intel® VCA topology consists of separate sub-networks for each node. In such a setup, the host

system must act as a multicast router for the nodes to be able to reach each other via multicast.

7.1 Multicast Routing with mrouted

This section contains example configurations for multicast routing using an mrouted daemon.

7.1.1 Notes on mrouted

mrouted is a daemon used to manage dynamic multicast routing, using Distance Vector Multicast Routing

Protocol (DVMRP). It is an open source tool, released on Stanford's license, available at
http://troglobit.github.io/mrouted.html.

Several limitations of the mrouted daemon have been discovered.

 Relies only on network addressing and masks and does not analyze routing tables.

 Does not support interfaces with 32-bit masks.

 Ignores network interface if its IP range is a sub-range or other interface address range. For example,

interface eth0 172.31.1.1/32 would not be considered for routing if xenif0 172.31.1.2/24 is

present.

 Requires network addressing to be changed when DomU is used on host or VCA nodes so that all

networks are separated (see section 7.1.2).

 Scans for network interfaces only during daemon start.

 Must be manually started by user, when all VCA nodes intended for multicast using are already up

(can connect to their unicast addresses); because of this, mrouted cannot be a service auto started

within host OS boot.

 Does not detect interface down and up.

 Needs to be restarted after bringing up the node when any VCA node using multicast is reset.

 Clears multicast routing table at exit.

 Requires all clients to re-register into multicast group when restarted; otherwise they are not able to

receive multicast messages.

 Results in multicast messages sent by the host that cannot be received by the card's nodes. (This

limitation is under investigation, as network packet analysis shows that multicast packets arrive to the

nodes.)

7.1.2 Example Configuration for Xen Domain U

If DomU needs to be used, network addresses of host and card interfaces need to be changed, as well as

mask width. This is the implication of the mrouted limitation that confines operation only on networks with

exclusive address ranges. Suggested network addressing is shown in Figure 53.

http://troglobit.github.io/mrouted.html

Intel® Visual Compute Accelerator Software Guide

 85

Host Dom0 VCA Node Dom0

PC
Ie

ethX
172.31.Y.65/25

eth0
172.31.Y.100/26

Host DomU

xenifX
172.31.Y.254/30

eth0
172.31.Y.253/32

VCA Node DomU

eth0
172.31.Y.2/32

xenifX
172.31.Y.1/30

Figure 53. Suggested network addressing for DomU usage

The settings must be manually applied. This can be done by simple copying

/etc/vca_config.d/vca_xen_multicast_config.xml to /etc/vca_config.d/vca_config.xml

prior to the card nodes booting.

Intel® Visual Compute Accelerator Software Guide

86

7.1.3 Preparing for Multicasts

1. Before using multicasts for the first time, user must install mrouted daemon on the host. The RPM

package can be found within the Intel® VCA release in INSTALL\Binaries\mrouted\ directory.

2. Boot an Intel® VCA node using the vcactl boot command (baremetal or Xen image).

3. Start the domain.

o If Xen domain U is required on the Intel® VCA node, start it with the --multicast option.

vca_start_card_domu.sh -p <nfs path> -c <card id> -n <CPU ID> -i

<image name> -f <config file name> --multicast

o To start DomU on the host, no additional parameters are needed for multicast support.

vca_start_host_domu.sh -c <card id> -n <CPU ID> -i <image name> -f

<config file name>

4. Start the mrouted daemon:

mrouted

Note: After restarting DomU on the host, the mrouted daemon on the host needs to be restarted. There is no

such need when restarting DomU on the card (assuming that the Dom0 on card has not been restarted).

7.1.4 Restarting mrouted Daemon

There is no option to restart the mrouted daemon. Instead, kill the existing instance with system tools and

start the daemon manually once again.

killall mrouted

mrouted

7.1.4.1 Checking Multicast Routes

To check registered multicast groups known to mrouted on available network adapters, use the following

command.

mrouted -r

A sample output looks like the following.

vifs_with_neighbors = 1

[This host is a leaf]

Virtual Interface Table

Vif Name Local-Address M Thr Rate Flags

 0 eth0 172.31.1.100 subnet: 172.31.1.64/26 1 1 0

 peers: 172.31.1.65 (3.255) [0] have-genid up

1:34:37

 group host (time left): 224.94.1.1 172.31.1.100 (

0:03:40)

 224.0.0.2 172.31.1.65 (

0:03:39)

 224.0.0.4 172.31.1.65 (

0:03:40)

 IGMP querier: 172.31.1.65 up 1:34:32 last heard

0:00:45 ago

 Nbr bitmaps: 0x0000000000000001

 pkts/bytes in : 1913/2831956

Intel® Visual Compute Accelerator Software Guide

 87

 pkts/bytes out: 0/0

 1 xenif0 172.31.1.1 subnet: 172.31.1.0/30 1 1 0

querier leaf

 group host (time left): 224.94.1.2 172.31.1.2 (

0:03:39)

 224.0.0.4 172.31.1.1 (

0:03:37)

 224.0.0.2 172.31.1.1 (

0:03:37)

 IGMP querier: 172.31.1.1 (this system)

 Nbr bitmaps: 0x0000000000000000

 pkts/bytes in : 0/0

 pkts/bytes out: 540/808920

Multicast Routing Table (9 entries)

 Origin-Subnet From-Gateway Metric Tmr Fl In-Vif Out-Vifs

 172.31.1.0/30 1 75 .. 1 0*

 172.31.1.64/26 1 75 .. 0 1*

 192.168.122/24 172.31.1.65 2 25 .. 0 1*

 172.31.6/24 172.31.1.65 2 25 .. 0 1*

 172.31.5/24 172.31.1.65 2 25 .. 0 1*

 172.31.4/24 172.31.1.65 2 25 .. 0 1*

 172.31.3/24 172.31.1.65 2 25 .. 0 1*

 172.31.2/24 172.31.1.65 2 25 .. 0 1*

 10.102.108/23 172.31.1.65 2 25 .. 0 1*

The virtual interface table shows a list of all managed interfaces (here: eth0 and xenif0) with their

addresses and subnet masks. For each interface, registered multicast groups are shown (eth0:

224.94.1.1, 224.0.0.2 and 224.0.0.4; xenif0: 224.94.1.2, 224.0.0.4 and 224.0.0.2)

To check all active routings use the following command.

ip mroute

The following is a sample output.

(172.31.1.100, 224.94.1.1) Iif: eth0

(10.102.109.202, 224.94.1.2) Iif: eth0 Oifs: xenif0

This means that only a single stream is active, transmitting data to multicast group 224.94.1.2, originated

by an external host with address 10.102.109.202, received on eth0 interface and passed to xenif0

interface (because xenif0 interface has registered to 224.94.1.2 group).

7.2 Sample Usage

A sample application supporting multicasts is the iperf tool. (Please note that iperf3 does not support

multicast, only iperf does.) All images delivered with the Intel® VCA release already contain iperf. On the

host it might be required to install it manually.

To start multicast listener invoke:

iperf -s -u -B <group address> -i 1

for example:

iperf -s -u -B 224.94.1.1 -i 1

Intel® Visual Compute Accelerator Software Guide

88

To start multicast transmitter invoke:

iperf –c <group address> -u -T 32 -t 3 -i 1

for example:

iperf -c 224.94.1.1 -u -T 32 -t 3 -i 1

Order of operations is the following:

1. Boot host.

2. Boot card's nodes (and DomUs, if needed).

3. Start mrouted daemon.

4. On all nodes and on server, stop firewalld service (or provide proper firewall exceptions for IGMP

and iperf 5001 port).

5. Start iperf multicast listeners on selected nodes.

6. Start iperf multicast transmitters.

Intel® Visual Compute Accelerator Software Guide

 89

8. vca_config.xml File

The vca_config.xml file, located at /etc/vca_config.d/vca_config.xml, contains the configuration

information for interaction with the Intel® Visual Compute Accelerator and its nodes from the host. This

section serves as a brief overview of the sections and most important parts of the file.

The file is broken into two primary sections: global configuration, and card (node) configuration.

Note that most, if not all, of the configuration options stored in this file are accessible via the command line

utility vcactl config, discussed in Section 6.3.20.

8.1 Global Section

The global section of the XML file consists of the following lines:

<global>

 <auto-boot>1</auto-boot>

 <debug-enabled>0</debug-enabled>

 <link-up-timeout-ms>2000</link-up-timeout-ms>

 <handshake-irq-timeout-ms>30000</handshake-irq-timeout-ms>

 <alloc-timeout-ms>100</alloc-timeout-ms>

 <cmd-timeout-ms>1000</cmd-timeout-ms>

 <mac-write-timeout-ms>1000</mac-write-timeout-ms>

 <default-daemon-script/>

 <wait-cmd-timeout-s>60</wait-cmd-timeout-s>

 <wait-bios-cmd-timeout-s>120</wait-bios-cmd-timeout-s>

 <wait-bios-cmd-flashing-s>1200</wait-bios-cmd-flashing-s>

 <ICMP-ping-inverval-s>1</ICMP-ping-inverval-s>

 <ICMP-response-timeout-s>10</ICMP-response-timeout-s>

</global>

A description of each line is below:

 auto-boot

o 1: Attempts to boot the last-os-image (see next section) on each node at operating system

boot time.

o 0: Brings the nodes to bios_ready, but does not attempt to boot the nodes automatically.

 debug-enabled:

o 0: Show no additional debug information.

o 1: Allows additional debug information to be made available through a debug daughter card,

primarily used for issue investigation.

 link-up-timeout-ms: Sets the delay, in milliseconds, that the Intel® VCA software waits for the

node’s network link to become responsive before reporting a timeout.

 handshake-irq-timeout-ms: Sets the delay, in milliseconds, that the Intel® VCA software waits for

the node to complete handshake negotiation before reporting a timeout.

 alloc-timeout-ms: Sets the delay, in milliseconds, that the Intel® VCA software waits for the node

allocation before reporting a timeout.

 cmd-timeout-ms: Sets the delay, in milliseconds, that the Intel® VCA software waits for the node to

respond to a command before reporting a timeout.

 mac-write-timeout-ms: Sets the delay, in milliseconds, that the Intel® VCA software waits for a

MAC reprogramming process to complete before reporting a timeout.

 default-daemon-script: Allows for a custom script to be run at daemon invocation.

Intel® Visual Compute Accelerator Software Guide

90

 wait-cmd-timeout-s: Sets the delay, in seconds, that the Intel® VCA software waits for the node to

report status OK during the vcactl wait command invocation before reporting a timeout.

 wait-bios-cmd-timeout-s: Sets the delay, in seconds, that the Intel® VCA software waits for the

node to report status OK during the vcactl wait-BIOS command invocation before reporting a

timeout.

 wait-bios-cmd-flashing-s: Sets the delay, in seconds, that the Intel® VCA software waits for the

node BIOS update to report status OK before reporting a timeout.

 ICMP-ping-interval-s: Sets the delay, in seconds, that the Intel® VCA software waits between

each attempt to send a ping packet to the node.

 ICMP-response-timeout-s: Sets the delay, in seconds, that the Intel® VCA software waits for node

to report status OK to each ping request.

8.2 Card Section

The card section of the XML file consists of multiple sections, each starting with <card id="X"> and ending

with </card> (where X increments from 0 for the first card in the system). Within each card section are three

node sections, which begin with <cpu id="Y"> and end with </cpu> (where Y increments from 0 for the

first node in the first card, and continues iterating through all card sections in the file). A node section

contains the following lines:

<cpu id="0">

 <os-image/>

 <last-os-image>/media/vca/vca_baremetal_centos7.1_1.2.img</last-os-image>

 <script/>

 <daemon-script/>

 <ip>172.31.1.1</ip>

 <mask>24</mask>

 <gateway>172.31.1.254</gateway>

 <host-ip>172.31.1.254</host-ip>

 <host-mask>24</host-mask>

 <cpu-max-freq-non-turbo>0</cpu-max-freq-non-turbo>

 <bridge-interface/>

 <node-name>vca_node_00</node-name>

 <nfs-server>172.31.1.254</nfs-server>

 <nfs-path>/mnt/%s</nfs-path>

</cpu>

A description of each line is below:

 last-os-image: Provides the path and file name of the image most recently booted to the node.

 ip: The IP address to be assigned to the node, or dhcp

Note: Only set to DHCP if bridging is enabled to an external network with a DHCP server.

 mask: The network mask bit value if the IP address is statically assigned; ignored if ip is dhcp.

 gateway: The host IP address; ignored if ip is dhcp.

 host-ip: The host IP address for the connection to this node; ignored if ip is dhcp.

 host-mask: The network mask bit value for the host IP address if IP address is statically assigned

(should be the same as the mask field); ignored if ip is dhcp.

 cpu-max-freq-non-turbo:

o 0: Does not limit CPU maximum (non-turbo) frequency.

Intel® Visual Compute Accelerator Software Guide

 91

o Non-zero value: Limits node’s CPU maximum (non-turbo) frequency. Setting this to a low

value could cause the node to become functionally useless as the processor is moving too

slowly.

 bridge-interface: The bridge interface on the host (e.g., virbr0) to enable bridging from the

node to the outside of the host. Leave unset (as shown above) to run in host-only networking.

 node-name: The hostname value for the node.

 nfs-server: The IP address or DNS name of the NFS server used for remote file storage.

 nfs-path: The path on the NFS server where the node accesses files. %s is an alias to node-name.

Intel® Visual Compute Accelerator Software Guide

92

9. Troubleshooting

9.1 Intel® VCA Debug Logs

From Intel® VCA software version 2.1, a new package is provided to collect different logs from host server.

For any issue, install this package, collect logs, and attach them to issue ticket. The following command

installs the vcaDebug RPM.

 For CentOS*

sudo yum -y localinstall vcadebug*rpm

 For Ubuntu*

sudo dpkg -i <vcaDebug_package>.deb

vcadebug packlogs

packlogs creates a ZIP archive with various logs and system information. The following files (if they exist)

and process outputs are registered in the ZIP archive.

o /var/log/vca_ifup_log

o /var/log/vcactld

o /var/log/vca/vcactld.log

o /var/log/vca/vca_ifup.log

o /var/log/vca/vcactl.log

o /var/log/vca/vcactl.log.old

o /etc/vca_config.d/vca_config.xml

o /etc/exports exports.log

o dmesg

o ifconfig

o systemctl status vcactl

o systemctl status NetworkManager

o vcactl info system

o vcactl info hw

o vcactl info BIOS

o rpm -qa --pipe "grep -i vca"

o uname -a

9.2 Reading Intel® VCA Events with vca_elog.py Script

The vca_elog Python script prints SMBIOS Type 15 events. These events are logged by BIOS in its NVRAM

area. They can be viewed in the BIOS event log or by this script.

By default, this tool displays only error events.

9.2.1 Prerequisites

A Python interpreter must be installed on nodes on which this script is to be run. This has already been

performed on all Intel® VCA Reference OS images.

The script is primarily designed to run on Intel® VCA nodes, although it may be also run on other computers

to offline interpret previous uploaded NVRAM area (use the –i option).

To install a Python interpreter on a CentOS* computer, invoke the following command:

sudo yum install python

Intel® Visual Compute Accelerator Software Guide

 93

9.2.2 Script Usage

When the script is installed on the image, use the following command to execute the script.

vca_elog.py [options]

The command with all arguments is given below.

vca_elog.py [-h] [-e | -a | -t TYPE [TYPE ...] | -p] [-s] [-d DOWNLOAD_LOG |

-i INPUT_FILE] [--debug] [-v]

The optional arguments are defined below.

-h, --help show this help message and exit

-e, --errors print error events only

-a, --all print all events

-t TYPE [TYPE ...], --types TYPE [TYPE ...]

 print specified events only

-p, --print_types print event types with associated numbers for use

with --types option

-s, --statistics print events statistics

-d DOWNLOAD_LOG, --download_log DOWNLOAD_LOG

 download log data from NVRAM to binary file

-i INPUT_FILE, --input_file INPUT_FILE

 parse file downloaded with download_log option

--debug print additional debug information

-v, --version print version and exit; ignores other options

To print this help, use the following command:

vca_elog.py -h

9.2.3 Displaying Events

By default the script displays only error events, so the outputs of following two commands are identical.

vca_elog.py

vca_elog.py –e

The following is an example output showing errors only.

Single Bit ECC Memory Error

 Date: 2015-07-29 11:35:49

 S1:C1:D0

Single Bit ECC Memory Error

 Date: 2015-07-29 11:36:08

 S1:C0:D1

Single Bit ECC Memory Error

 Date: 2015-07-29 11:36:14

 S1:C1:D1

...

Use the parameter –t TYPE [TYPE…] to print specified events only.

vca_elog.py –t 1 2 0x17

The following is an example output from the preceding command.

System Boot

 Date: 2015-07-29 10:07:49

OEM0

Intel® Visual Compute Accelerator Software Guide

94

 Date: 2015-07-29 10:07:49

OEM0

 Date: 2015-07-29 10:07:49

System Boot

 Date: 2015-07-29 11:30:41

Single Bit ECC Memory Error

 Date: 2015-07-29 11:35:49

 S1:C1:D0

Single Bit ECC Memory Error

 Date: 2015-07-29 11:36:08

 S1:C0:D1

Single Bit ECC Memory Error

 Date: 2015-07-29 11:36:14

 S1:C1:D1

...

Each event report has two or three lines and are generally formatted in the following way.

Event name

Date: YYYY-MM-DD HH:MM:SS/no valid date

[data]

The first line is the name of the event and may be one of the following strings.

 Single Bit ECC Memory Error

 Multi Bit ECC Memory Error

 Parity Memory Error

 Bus Time Out

 I/O Channel Check

 Software NMI

 POST Memory Resize

 POST Errors

 PCI Parity Error

 PCI System Error

 CPU Failure

 EISA Failsafe Timer Timeout

 Correctable Memory Log Disabled

 Logging Disabled for Event Type

 System Limit Exceeded

 Asyn HW Timer Expired

 System Configuration Information

 Hard Disk Information

 System Reconfigured

 Uncorrectable CPU Complex Error

 Log Area Reset

 System Boot

 OEM0

 OEM1

 OEM2

The second line is the date of the event. The date is printed in format YYYY-MM-DD HH:MM:SS or no valid

date is printed when the date is not set properly.

Intel® Visual Compute Accelerator Software Guide

 95

The last line is the custom data of the event. This version of software (1.5) only prints data for event types

Single Bit ECC Memory Error and Multi Bit ECC Memory Error.

9.2.4 Event Types

To identify which IDs can be used with –t options, –p may be used. Output for the –p option is the following.

 Type's ID

 Name dec hex Class

 Single Bit ECC Memory Error 1 0x01 error

 Multi Bit ECC Memory Error 2 0x02 error

 Parity Memory Error 3 0x03 error

 Bus Time Out 4 0x04 error

 I/O Channel Check 5 0x05 status

 Software NMI 6 0x06 status

 POST Memory Resize 7 0x07 status

 POST Errors 8 0x08 error

 PCI Parity Error 9 0x09 error

 PCI System Error 10 0x0a error

 CPU Failure 11 0x0b error

 EISA Failsafe Timer Timeout 12 0x0c error

 Correctable Memory Log Disabled 13 0x0d status

 Logging Disabled for Event Type 14 0x0e status

 System Limit Exceeded 16 0x10 status

 Asyn HW Timer Expired 17 0x11 status

 System Configuration Information 18 0x12 status

 Hard Disk Information 19 0x13 status

 System Reconfigured 20 0x14 status

 Uncorrectable CPU Complex Error 21 0x15 error

 Log Area Reset 22 0x16 status

 System Boot 23 0x17 status

 OEM0 224 0xe0 oem

 OEM1 225 0xe1 oem

 OEM2 226 0xe2 oem

9.2.5 Displaying Statistics

Use the –s option to display statistics. The following is an example output.

Nb of log events: 279

Events statistics:

 Type's ID

 Name dec hex Class Nb

 Single Bit ECC Memory Error 1 0x01 error 266

 Multi Bit ECC Memory Error 2 0x02 error 0

 Parity Memory Error 3 0x03 error 0

 Bus Time Out 4 0x04 error 0

 I/O Channel Check 5 0x05 status 0

 Software NMI 6 0x06 status 0

 POST Memory Resize 7 0x07 status 0

 POST Errors 8 0x08 error 0

 PCI Parity Error 9 0x09 error 0

 PCI System Error 10 0x0a error 0

Intel® Visual Compute Accelerator Software Guide

96

 CPU Failure 11 0x0b error 0

 EISA Failsafe Timer Timeout 12 0x0c error 0

 Correctable Memory Log Disabled 13 0x0d status 0

 Logging Disabled for Event Type 14 0x0e status 0

 System Limit Exceeded 16 0x10 status 0

 Asyn HW Timer Expired 17 0x11 status 0

 System Configuration Information 18 0x12 status 0

 Hard Disk Information 19 0x13 status 0

 System Reconfigured 20 0x14 status 0

 Uncorrectable CPU Complex Error 21 0x15 error 0

 Log Area Reset 22 0x16 status 0

 System Boot 23 0x17 status 3

 OEM0 224 0xe0 oem 10

 OEM1 225 0xe1 oem 0

 OEM2 226 0xe2 oem 0

To print event report with statistics, -e, -a, and –t options may be used with –s.

9.2.6 Saving a File and Parsing a Saved FIle

It may be useful for reporting issues to a support team to save an event area from the NVRAM to a file. To do

this, use the following command.

vca_elog.py -d nvram_log15.bin

The script confirms a properly completed dump with the following information.

Log successfully downloaded to file nvram_log15.bin

When the tool cannot save the area to a file, the following information is displayed.

Cannot open output binary file /invalid/path/filename/data.extension

To parse a previously stored file, use the following command.

vca_elog.py –i nvram_log15.bin

By default, only error are printed. To print all events or specified types, use options –a or –t with –i.

9.3 Using Kernel Crash Dump on Intel® VCA

In case of OS crash, it is possible to get back logs. Logs are useful for finding the cause of crash.

9.3.1 Crash Dump on Linux*

Kernel crash dump on Linux is supported by kdump. Logs after a crash are placed by default in /var/crash.

(It is possible to change the directory.) Sample path:

/var/crash/127.0.0.1-2017-07-06-10\:16\:05/

9.3.2 Crash Dump on Windows*

To enable kernel crash dump on Windows, it is necessary to configure the environment.

1. In the Control Panel, open System settings.

2. Select Advanced system settings.

3. Click Settings under Startup and Recovery.

4. Select Kernel memory dump and check the option shown in Figure 54.

Intel® Visual Compute Accelerator Software Guide

 97

Figure 54. Enable kernel crash dump on Windows*

To read the crash dump logs, download the NotMyFault tool from https://technet.microsoft.com/en-

us/sysinternals/notmyfault.aspx.

After a crash, copy the file from C:\windows\mempory.dmp to the folder where WindDbg is placed (e.g.
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Windows Kits\Debugging Tools

for Windows (X64)). Then turn on WinDbg and select File > Open Crash Dump.

https://technet.microsoft.com/en-us/sysinternals/notmyfault.aspx
https://technet.microsoft.com/en-us/sysinternals/notmyfault.aspx

Intel® Visual Compute Accelerator Software Guide

98

10. Quick Validation of VCA SW

To quickly validate the server setup and Intel® VCA SW, Intel® Visual Compute Accelerator AVC benchmark

script is available to download. Please go through the readme.txt file for the requirements and usage once

downloaded.

For this section, the following example configuration is assumed:

 Host

o System: 2U x 2 GPU server

o CPU: 2x Intel® Xeon® E5-2630 v4

o Memory: 16 GB per socket (2x DDR4 8 GB 2400 MHz DIMMs)

o Fans set to meet CFM requirements defined in section 3.3 of VCA2 HW Guide at card inlet

temperature 35 °C.

 Intel® VCA

o System: Intel VCA 2

o Memory: 32 GB per node (2x DDR4 16 GB 2133 MHz DIMMs)

o VCA SW version: VCA SW 2.1.292

10.1 AVC Transcoding Benchmark for Simultaneous AVC-AVC Transcodes

This test attempts to extract the maximum number of simultaneous AVC transcodes while maintaining a

minimum of 30 FPS using Intel® Media Server Studio and a web-available video sample.

 Target: Most number of simultaneous AVC transcodes achieved while keeping 30 FPS (real-time)

 Test configuration: 1x Intel VCA 2 with all 3 nodes running simultaneous transcoding

 Environment: Bare metal, non-persistent image

 Card OS: CentOS and Ubuntu

 Transcoding software: Intel Media Server Studio 2018 R1 (available at https://software.intel.com/

en-us/intel-media-server-studio)

 Script files: Script files to execute benchmarking is available at

https://downloadcenter.intel.com/search?keyword=VCA and select Intel® Visual Compute Accelerator

AVC benchmark script

 PAR file details:

-async 3 -hw -u 7 -cqp -qpi 24 -qpp 26 -qpb 28 -gop_size 61 -dist 3 -i::h264

/input/big_buck_bunny_1080p.h264 -o::h264 /dev/null

 Results: Results are printed on the screen and can be obtained from log file in tools\h264\logs

directory.

Table 13. Transcoding benchmark results

Card: 0 Node: 0 IP Address: w.x.y.z achieved_fps: >=30 Streams: 17

Card: 0 Node: 1 IP Address: w.x.y1.z1 achieved_fps: >=30 Streams: 17

Card: 0 Node: 2 IP Address: w.x.y2.z2 achieved_fps: >=30 Streams: 17

https://software.intel.com/en-us/intel-media-server-studio
https://software.intel.com/en-us/intel-media-server-studio
https://downloadcenter.intel.com/search?keyword=VCA

Intel® Visual Compute Accelerator Software Guide

 99

10.2 Temperature Profile

The temperature while booted in idle mode is ~35 °C. Temperature during workload is expected to reach

~60 °C. During transcoding workload, the script runs the load more times to ensure frame rate achieved is

correct. Also longer input file is used during temperature profile. Temperature values from the VCA nodes

are captured for every 10ms during the avc_benchmark script in a log file (avc_benchmark_temp_log.txt) and

sorted along the Card and CPU in log file (avc_benchmark_sorted_temp.txt). Each VCA node has 4 cores and

each core temperature is captured. If the average temperature is captured is higher than ~60 °C, the possible

cause of temperature is CFM requirements may not be met. Check the fan settings in BIOS. For example, on

Intel® Server Board S2600WT based systems, this can be enabled in BIOS setup by configuring the following

two options on the PCI Configuration screen.

 Set Advanced->System Acoustic and Performance Configuration->Set Fan Profile as Performance

 Set Advanced->System Acoustic and Performance Configuration->Set PWM Offset as 80

Figure 55. Temperature profile while transcoding

0

10

20

30

40

50

60

70

1
4

3
6

8
7

1
1

3
0

6
1

7
4

1
2

1
7

6
2

6
1

1
3

0
4

6
3

4
8

1
3

9
1

6
4

3
5

1
4

7
8

6
5

2
2

1
5

6
5

6
6

0
9

1
6

5
2

6
6

9
6

1
7

3
9

6
7

8
3

1
8

2
6

6
8

7
0

1
9

1
3

6
9

5
7

1
1

0
0

0
6

1
0

4
4

1
1

0
8

7
6

1
1

3
1

1
1

1
7

4
6

1
2

1
8

1
1

2
6

1
6

1
3

0
5

1
1

3
4

8
6

1
3

9
2

1
1

4
3

5
6

1
4

7
9

1
1

5
2

2
6

Te
m

p
er

at
u

re
 (

o
C

)

Time Sample
Card 0 CPU 0: 1 - 5214 Card 0 CPU 1: 5215 - 10428 Card 0 CPU 2: 10429 - 15632

Core 0 Core 1 Core 2 Core 3

Intel® Visual Compute Accelerator Software Guide

100

Appendix A. Creating a Custom OS Image

A.1. Overview

The Intel® VCA card provisions the OS to the card CPU over the PCIe* bus. The Intel® VCA’s BIOS exposes a

memory buffer to which the host copies the selected OS image. The following components are copied to

each node when boot is requested:

 EFI bootloader

 Kernel image

 Initial RAM File System (InitRAMFS) image

InitRAMFS is responsible for early system configuration, mounting the main Root File System (RootFS) and

root pivoting to this mounted RootFS. In the Intel® VCA environment, there are two strategies for

provisioning RootFS:

 Volatile OS file system – The RootFS image is embedded in the InitRamFS image. InitRamFS is

responsible for extracting the RootFS and mounting it onto a RAM disk.

 Persistent OS file system – The RootFS image is provisioned over NFS. InitRamFS establishes virtual

network over PCIe*, mounts a remote NFS share, and switches to that remote root directory.

This chapter covers the process required to create a customized operating system image appropriate for

booting the Intel® VCA nodes. Creating the custom images requires:

 Getting additional tools and build scripts.

 Setting up software archives or local repositories.

 Building images.

A.2. Getting Tools and Build Scripts

A.2.1. Ubuntu* Tools

To create a custom image, the following software packages must be added to a server installation of

Ubuntu* 16.04:

autoconf bc bridge-utils build-essential checkinstall cmake debootstrap

dracut fakeroot gdisk git kernel-wedge libboost-all-dev libc6-dev

libc6:i386 libfdt-dev liblzma-dev libncurses5:i386 libpixman-1-dev

libsdl1.2-dev libsdl1.2-dev libspice-server-dev libssl-dev libssl-dev

libstdc++6:i386 libtool openssl python-dev socat tightvncserver uml-

utilities uuid uuid-runtime vim x11vnc xtightvncviewer zip

[sudo] apt-get install <package_name> [<package_name> …]

A.2.2. CentOS* Tools

To create a custom image, the following software packages must be added to the “Development and

Creative Workstation” software environment of CentOS* 7.4 (1708):

acpica-tools asciidoc audit-libs-devel binutils-devel bison boost-devel

bzip2-devel cmake createrepo dev86 discount e2fsprogs-devel edk2.git

edk2.git-ovmf-x64 elfutils-devel fakeroot gdisk glibc-devel glibc-

devel.i686 gnutls-devel gtk2-devel hfsplus-tools hmaccalc ipxe-roms-qemu

java-1.8.0-openjdk-devel libaio-devel libcurl-devel libidn-devel libnl3-

devel libuuid-devel libX11-devel livecd-tools ncurses-devel net-tools

newt-devel nodejs numactl-devel openssl-devel pciutils-devel perl-

ExtUtils-Embed perl-generators pesign python-devel python-imgcreate qemu-

Intel® Visual Compute Accelerator Software Guide

 101

firmware-jenkins SDL-devel seabios-bin systemd-devel texi2html texinfo

texlive-latex transfig xmlto yajl-devel zlib-devel

[sudo] yum –y install <package_name> [<package_name> …]

Using yum for package installation automatically resolves and installs any dependencies needed for the tools

to function properly as shown in Figure 56.

Figure 56. Example of dependencies resolved using yum for package installation

A.2.3 Windows Tools

The following hardware and software resources are required to create Windows images.

 Windows installation ISO (for example, en_windows_10_enterprise_version_1703_updated_

march_2017_x64_dvd_10189290.iso).

 Windows Server 2012/2016 system to perform build. System should be at least as up-to-date as the

installation ISOs used to create the images and all Microsoft* updates that are available should be

installed.

 Oracle VM VirtualBox software (available at https://www.virtualbox.org/wiki/Downloads).

 Hyper V Server Role installed.

 Windows Assessment and Deployment Kit (Windows ADK) version 10 (available at

https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit).

 45 GB of free space. (This is the default amount; the actual amount depends on container size.)

 Intel® graphics driver (for example, from https://downloadcenter.intel.com/product/88352/

Intel-Iris-Pro-Graphics-P580).

 OpenSSH, NetKVM drivers, or Xen drivers if required by intended use.

 Powershell script for image creation (vca_create_vhd_windows.ps1).

A.2.4. Build Scripts

Build scripts may be downloaded from Intel’s public website under the Intel® VCA downloads section. The

file name is build_scripts-<version>.tar.gz. Copy this file to the host system, then uncompress it

with the following command.

tar xf build_scripts-<version>.tar.gz

This command creates a directory matching the filename with the .tar.gz extensions. Change to this

directory. Within the directory are the following scripts.

https://www.virtualbox.org/wiki/Downloads
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://downloadcenter.intel.com/product/88352/Intel-Iris-Pro-Graphics-P580
https://downloadcenter.intel.com/product/88352/Intel-Iris-Pro-Graphics-P580

Intel® Visual Compute Accelerator Software Guide

102

 create_image.sh – Main script, generates an image based on the provided set of parameters and

configuration files.

 generate_vca_production_image_<OS version>_<kernal version>.sh – Wrapper script

that invokes create_image.sh with parameters to generate a set of production images (currently,

only a volatile bare metal image without Intel® Media Sever Studio).

 generate_vca_reference_image_<OS version>_<kernel version>.sh – Wrapper script

that invokes create_image.sh with parameters to generate a set of reference images (currently, a

volatile bare metal with Intel Media Server Studio, a persistent bare metal with Intel Media Server

Studio, a XEN Dom0 without Intel Media Server Studio, and a Xen DomU with Intel Media Server

Studio).

 create_local_repo.sh – Helper script, used to quickly generate repository containing Intel® VCA

rpms.

 dracut_module – Directory containing internal scripts used in the creation of initramfs. Do not

modify.

 grub_cfgs – Directory containing config files for the GRUB bootloader to be installed in image.

o grub_production_baremetal.cfg – Config file for production volatile bare metal image

(without Intel Media Server Studio).

o grub_production_kvm.cfg – Config file for production volatile KVM (“Dom0”) image

(without Intel Media Server Studio).

o grub_reference_baremetal.cfg – Config file for reference volatile bare metal image (with

Intel Media Server Studio).

o grub_reference_dom0.cfg – Config file for reference XEN Dom0 image (without Intel

Media Server Studio).

o grub_reference_domu.cfg – Config file for reference XEN DomU image (with Intel Media

Server Studio).

o grub_reference_kvm.cfg – Config file for production volatile KVM (Dom0) image (with

Intel Media Server Studio).

o grub_reference_persistent.cfg – Config file for reference persistent bare metal image

(with Intel Media Server Studio).

o grub_vca_disk.cfg – config file for persistent blockIO image

 ks_files – Directory containing kickstart configuration files, which contain all the configuration

details for a complete installation (e.g., list of packages to be installed, admin password, post

installation custom scripts, etc.).

o vv_production_baremetal.ks – Kickstart file for production volatile bare metal image

(without Intel Media Server Studio).

o vv_production_kvm.ks – Kickstart file for production volatile KVM (Dom0) image (without

Intel Media Server Studio).

o vv_reference_baremetal.ks – Kickstart file for reference volatile bare metal image (with

Intel Media Server Studio).

o vv_reference_dom0.ks – Kickstart file for reference XEN Dom0 image (without Intel Media

Server Studio).

o vv_reference_domu.ks – Kickstart file for reference XEN DomU image (with Intel Media

Server Studio).

o vv_reference_kvm.ks – Kickstart file for production volatile KVM (“Dom0”) image (with

Intel Media Server Studio).

o vv_reference_persistent.ks – Kickstart file for reference persistent bare metal image

(with Intel Media Server Studio).

o mv_production_baremetal.ks – Kickstart file for production volatile bare metal image

(without Intel Media Server Studio).

Intel® Visual Compute Accelerator Software Guide

 103

o mv_production_kvm.ks – Kickstart file for production volatile KVM (“Dom0”) image

(without Intel Media Server Studio).

o mv_reference_baremetal.ks – Kickstart file for reference volatile bare metal image

(without Intel Media Server Studio).

o mv_reference_dom0.ks – Kickstart file for reference XEN Dom0 image (withoutout Intel

Media Server Studio).

o mv_reference_domu.ks – Kickstart file for reference XEN DomU image (without Intel Media

Server Studio).

o mv_reference_kvm.ks – Kickstart file for production volatile KVM (“Dom0”) image (without

Intel Media Server Studio).

o mv_reference_persistent.ks – Kickstart file for reference persistent bare metal image

(without Intel Media Server Studio).

o vca_disk_<kernel version>_reference.ks – Kickstart file for reference persistent

blockIO image.

o vca_disk_<kernel version>.ks – Kickstart file for persistent blockIO image.

 persistent_files – Directory containing internal scripts used during preparation of persistent

images. Do not modify.

 windows – Directory containing scripts used during preparation of Windows images.

A.2.4.1 Main Script (create_image.sh) Invocation

The script create_image.sh is the primary script used to build a custom image. Before invocation, the

repositories (see Section REF _Ref512604889 \r \h 1.1A.3.2) must be created and made available to the host

system. There are three levels of priority for parameters used by this script, which are, in order of

precedence:

1. Parameters passed to the script on the command line. These override all lower priority parameters.

2. Parameters passed to the script as an environment variable. These override all lower priority

parameters, but do not override command line parameters.

3. Parameters passed as defaults from within the script. These override no other parameters, but are

present to allow the user to not be required to enter all the parameters on every invocation of the

utility.

The –image-type parameter is required and does not have a default value, so attempting to invoke the

script without this command-line provided parameter results in an error message.

Table 14 provides a list of all available parameters and their related environment variables, default values,

and descriptions.

Table 14. create_image.sh parameters

Parameter Environment Variable Default Value Description

--image-type <type> VCA_IMG_TYPE Undefined Selects image creation strategy,

which may be one of the

following <types>:

 volatile-bm
 persistent-bm

 volatile-dom0

 domu

This option must be provided

on the command line or by a

global variable.

Intel® Visual Compute Accelerator Software Guide

104

Parameter Environment Variable Default Value Description

-h

--help
Undefined Undefined Prints help screen with options

list.

--kernel <version> VCA_KERNEL_VERSION Automatically obtained from

kernel in vca_build repo

Kernel version, used to

generate a valid GRUB config; if

not defined, automatically

obtained from a kernel located

in vca build repo.

--version <version> VCA_VERSION_NAME Undefined Version appended to image

name.

--grub-cfg <filename> VCA_GRUB_CFG One of the existing files from

the grub_cfgs directory,

selected based on value of
VCA_IMAGE_TYPE

GRUB config file to be

embedded in custom OS image.

--ks-file VCA_KS_FILE One of the existing files from

the ks_files directory,

selected based on value of
VCA_IMAGE_TYPE

Kickstart file used to create OS

image.

--compressor <name> VCA_DRACUT_COMPRESSOR Undefined Optional external compression

engine to be passed to dracut

as –compress.

--image-name <name> VCA_ISO_IMG depending on VCA_IMG_TYPE:

vca_baremetal, vca_xen,

vca_domu, vca_persistent

Name of the output file.

--out-dir <path> VCA_OUT_DIR ./out Directory where created images

are stored.

--tmp-dir <path> VCA_TMP_DIR ./tmp Directory where files

temporarily required by the

build process are stored.

--os-repo <path> VCA_OS_REPO file:/usr/lib/vv_repos_

CentOS7.1/local_repo
Repository containing the base

CentOS* 7.2 files.

--extras-repo <path> VCA_EXTRAS_REPO file:/usr/lib/vv_repos_

CentOS7.1/extras_repo
Optional repository containing

extra rpms (e.g., validation tools,

utilities, applications, etc.).

--build-repo <path> VCA_BUILD_REPO file:/usr/lib/vv_repos_

CentOS7.1/vv_repo
Repository containing rpms

from the build.

Note: If utilizing environment variables, but invoking the create_image.sh script via sudo, use the

-E option of sudo (for example, sudo –E ./create_image.sh <options>) to properly pass the

environment variables to the sudo instance.

A.3. Software Archives or Repositories

For purposes of automated image building, it is recommended that software archives or local repositories be

used, as remote repositories:

 Increase build time (several hundred megabytes must be downloaded for each image from

repositories; invocation of the reference build script would invoke this download five times),

 Lead to inconsistent package versions between image builds, as the external repositories may update

at any time without notice, and

 Require a machine with consistent and unlimited access to Internet.

Intel® Visual Compute Accelerator Software Guide

 105

A.3.1. Ubuntu* Software Archives

The process of creating Ubuntu* images to be booted on the Intel® VCA card nodes is based on applying

consecutive layers of software archives (SAs). An SA contains software in controlled, well-defined version to

be installed. The SA also contains installation scripts used to customize the installation of the software.

A software archive can consist of software packages, apt-get dependencies database, custom files,

information file, and custom pre-installation and post-installation scripts. The notion of SA has been

introduced to guarantee that the dependencies database is up-to-date with the version of the included

packages, and that software and the corresponding installation scripts are kept together.

The first SA to apply is called bootstrap and consists of the basic OS files necessary for a minimal booting

Ubuntu* system. The next SA to apply is called base. It extends this minimal OS with tools necessary for the

VCA software installation. The next SA to apply is called vca and contains the VCA software packages. The

other SAs are optional, and include:

 mss – for installing Intel MSS SDK software

 kvmgt – for installing Intel GVT-G enabled KVM software.

The software archives have dependencies, which means that they must be applied strictly in the order

specified above. Software archives must also be created in the same order, in which they are applied.

Software archives are created with create_sw_archives.sh script. The script requires root privileges to run.

Table 15. create_sw_archives.sh parameters

Parameter Example Values Description

-d, --descr <descrptn> -d "UBUNTU 16.04 "

--descr "UBUNTU 16.04.3 "
OS version description, for which the SA is prepared.

-h

--help
Undefined Prints help screen with options list.

-i, --in-dir <dir> --in-dir .

--in-dir tmp/vca_sas

-i /home/vca/sa

The input directory containing existing predecessor SAs

which will be used during creation the requested SA.

-k, --kernel <version> --kernel 4.4.98-

1.2.1.217.vca

-k 4.4.0-1.2.1.182.vca

Kernel version, for which the SA is created, as returned

by ‘uname –r’ in the final image after booting

-m, --mss <dir> --mss tmp/mss

--mss /home/vca/mss

-m .

Name of directory containing the MSS installation files.

Only needed when requesting the creation of the mss

SA, or any of its predecessors in the process of creation

of a VCA bootable image.

-o, --out-dir <dir> --out-dir ./out

--out_dir /tmp/out

-o /tmp

The name of the destination directory for the SAs

created. By default the current directory is assumed.

-t, --target <name> --target bootstrap

--target vca

-t kvmgt

The name of the SA to be created. Additionally, all the

SAs will be created which follow the indicated SA in the

process of creation of a VCA bootable image. Supported

names:

 bootstrap, base, vca, mss, kvmgt.

-v, --vca <dir> --vca tmp/vca_pkgs

--vca /home/vca/pkgs

-v .

Name of directory containing the VCA *.deb files. Only

needed when requesting the creation of the vca SA, or

any of its predecessors in the process of creation of a

VCA bootable image.

Usage examples:

To create the following SAs: bootstrap, base, vca, mss, and kvmgt in /tmp/b in one shot, i.e. not using any

existing SAs:

Intel® Visual Compute Accelerator Software Guide

106

create_sw_archives.sh -d "UBUNTU 16.04" -o /tmp/b -k 4.4.0-1.2.1.182.vca -t

bootstrap -v /tmp/vca_pkgs_dir -m /tmp/mss_instal_dir

To create in /tmp/o the base SA (using existing bootstrap SA from /tmp/b), and thus to create vca, mss, and

kvmgt SAa as well:

create_sw_archives.sh -d "UBUNTU 16.04" -o /tmp/o -k 4.4.98-1.2.1.217.vca -t

base -v /tmp/v -m /tmp/m/custom -i /tmp/b

To create only the kvmgt SA in /tmp/o , using existing bootstrap, base, and vca SAs from /tmp/b:

create_sw_archives.sh -d "UBUNTU 16.04" -o /tmp/o -k 4.4.98-1.2.1.217.vca -t

kvmgt -v /tmp/v -m /tmp/m/custom -i /tmp/b

A.3.2. CentOS* Repositories

This chapter assumes the location of the repositories (as noted in the default column of Table 14) is:

/usr/lib/vv_repos_CentOS7.x/

where x is the supported version of CentOS*.

If a different directory structure is used (e.g., /var/www/html/repos), substitute that directory throughout

the following instructions.

The current kickstart files use the following local repositories:

Table 16. Local repositories

Name Location Description

vca_os_repo /usr/lib/vca/repos/CentOS7.x/os_repo Local version of CentOS* repository, with official

packages only.

vca_extras /usr/lib/vca/repos/CentOS7.x/extras_repo Additional packages, not from CentOS*

repository, not created by development team or

changing very rarely.

vca /usr/lib/vca/repos/build_repo Often (each build) changing packages, delivered

by development team.

Such repositories may be physically located on a local hard disk or be a link to an NFS repository at some

other location.

A.3.2.1 Creating a Local vca_os_repo Repository

If the directions in section B.4 of this document for setting up a local yum repository have been followed,

please run the following commands to create the required directory structure and mount the DVD ISO to the

local_repo directory:

sudo mkdir -p \

/usr/lib/vca/repos/CentOS7.x/{local_repo,extras_repo,vca_build_repo}

sudo mount --bind /var/www/html/centos7.x \

/usr/lib/ vca/repos/CentOS7.x/os_repo

If the directions in section B.4 have not yet been executed, the following instructions may be followed to

create a local repository:

1. Download the "Everything" CentOS* 7.x ISO, CentOS-7-x86_64-Everything-yyyy.iso. where

yyyy is based on x version. This can be found on a mirror download site listed at:

http://vault.centos.org/notonvault.html.

2. Run the following command to create the repository directories:

sudo mkdir –p \

http://vault.centos.org/notonvault.html

Intel® Visual Compute Accelerator Software Guide

 107

/usr/lib/vca/repos/CentOS7.x/{local_repo,extras_repo,vca_build_repo}

3. Run the following command to mount the ISO as the OS repository:

sudo mount CentOS-7-x86_64_Everything-yyyy-01.iso \

/usr/lib/vca/repos/CentOS7.x/os_repo

If using a non-default directory location, the environment variable VCA_OS_REPO, or the command-line

parameter --os-repo must be set to the correct location. For example,

 file:/var/www/html/cent7.x/base for a local file path, or

 http://localhost/cent7.x/base for a web address.

Note: This OS image creation process supports only the pre-build addition of packages in .rpm format. It

does not support automatic inclusion of packages in any other format, nor of "tarballs" or similar archives.

A.3.2.2 Creating a Local vca_build_repo Repository

This repository contains essential Intel® VCA packages, changing with almost every build. Therefore the

repository needs to be updated very often. It contains at a minimum:

 Intel® VCA kernel (kernel RPM file)

 Intel® VCA software stack (vcass RPM file)

Please see the PackageList.txt file available at the Intel® VCA download page to see which rpms are used

in each type of image build; rpm files other than the two listed above should be placed in the extras_repo

repository, discussed later in this document. Also note that there are two distinct kernel packages (reference

and production), and only one type of kernel shall be placed in the repositories before attempting the build

of the custom OS image.

If the directory already exists and contains some older packages, remove them all.

sudo rm -rf /usr/lib/vca/repos/build_repo/*

Copy all desired rpm files (packages) to the directory /usr/lib/vca/repos/build_repo. Once all

desired rpm files are in the directory, create the repository with the following command:

sudo createrepo /usr/lib/vca/repos/build_repo

If using a non-default directory location, the environment variable VCA_BUILD_REPO, or the command-line

parameter --build-repo must be set to the correct location. For example,

 file:/var/www/html/cent7.x/vca for a local file path, or

 http://localhost/cent7.x/vca for a web address.

Automated Creation of the vca_build_repo

The build_scripts package includes a script create_local_repo.sh that may be used to

automatically create this repository.

Note: This script deletes all files from the /usr/lib/vca/repos/build_repo directory to avoid

accidental presence of multiple kernel versions. Use this script with caution. Additionally, this script currently

does not support command line parameter --build-repo, so if it is desired that a custom location for this

repository be used, the environment variable VCA_BUILD_REPO must be set.

The following are example uses of the script.

Example 1:

[sudo] ./create_local_repo.sh -r <package_directory>

Intel® Visual Compute Accelerator Software Guide

108

Example 2:

[sudo] ./create_local_repo.sh -r <package_diretory> \

-r <binaries_directory> -r <xen_directory>

A.3.2.3 Creating a Local Extras Repository

The following packages are copied to a final repository named extras_repo and is intended for packages

with a slow change cycle (including packages produced by both Intel and third parties). Sample packages for

the repo may be:

 Validation tools:
o iperf

o iperf3

o fio

 Intel® Media SDK (required for reference images.):
o intel-linux-media

o intel-opencl-1.2

o intel-opencl-1.2-devel

 Xen packages:
o xen

o xen-hypervisor

o xen-runtime

Copy all desired .rpm files (packages) to the directory:

/usr/lib/vca/repos/CentOS7.x/extras_repo

Once all desired .rpm files are in the directory, create the repository with the following command:

sudo createrepo/usr/lib/vca/repos/CentOS7.x/extras_repo

If using a non-default directory location, the environment variable VCA_EXTRAS_REPO, or the command-line

parameter --extras-repo must be set to the correct location. For example,

 file:/var/www/html/cent7.x/vca_extras for a local file path, or

 http://localhost/cent7.x/vca_extras for a web address.

Once the packages are correctly stored in the repository directory, and the createrepo command has

successfully created the required repository indexes, any custom packages added to the extras_repo

repository must be added to the appropriate kickstart file, under the %packages header. Modify each of

each relevant kickstart files as follows:

1. Open the kickstart file (in the ks_files directory) for editing.

2. Locate the line that begins with %packages

3. And add a line below that line with the name of the package to be installed from the extras_repo.

(Provide only one package name per line.)

4. Save the file, exit the editor, and modify any additional kickstart config files, as needed.

Skipping the Local Extras Repository

If there is no requirement for extra packages to be installed, the extras_repo can be commented out of

each relevant kickstart files as follows:

1. Open the kickstart file (in the ks_files directory) for editing.

2. Locate the line that begins with repo-name=extras_repo.

3. Insert a hash character (#) as the first character of the line, so it begins instead with

#repo-name=extras_repo.

4. Save the file, exit the editor, and modify any additional kickstart config files, as needed.

Intel® Visual Compute Accelerator Software Guide

 109

A.4. Building Images

To create an OS image, the script generate_vv_image.sh must be called with a proper set of parameters.

The only mandatory parameter is --image-type <type>. All other parameters may remain at default

values. However, defaults for volatile bare metal are configured for a production set of RPMs; for all other

image types, defaults are configured for reference sets of RPMs. So for full control over the process, it is

advised to provide at least:

 kickstart file to be used (e.g., --ks-file ks_files/vv_reference_baremetal.ks)

 grub config file to be used (e.g., --grub-cfg grub_cfgs/grub_reference_baremetal.cfg)

A.4.1 Building a Single Image

The following sections cover the specific command line required to build each of the single images

supported by the generate_vv_image.sh script. Each section contains a single command to be typed on a

single line. It assumes that the repositories have been correctly set up, that the current directory is the

build_scripts-<version> directory, and that the user has sudo privileges if not root.

 Creating Production Volatile Baremetal Image

[sudo -E] ./create_image.sh --image-type volatile-bm --grub-cfg

grub_cfgs/grub_production_baremetal.cfg --ks-file

ks_files/<vv,mv>_production_baremetal.ks

 Creating Production Volatile KVM (DOM0) Image

[sudo -E] ./create_image.sh --image-type volatile-bm --grub-cfg

grub_cfgs/grub_production_kvm.cfg --ks-file

ks_files/<vv,mv>_production_kvm.ks

 Creating Production vca-disk Over BlockIO Image

[sudo -E] ./create_image.sh --add-rootfs --image-type vca-disk --grub-cfg

grub_cfgs/grub_vca_disk.cfg --ks-file ks_files/vv_production_vca_disk.ks

 Creating Reference Volatile Baremetal Image

[sudo -E] ./create_image.sh --image-type volatile-bm --grub-cfg

grub_cfgs/grub_reference_baremetal.cfg --ks-file

ks_files/<vv,mv>_reference_baremetal.ks

 Creating Reference Persistent Baremetal Image

[sudo -E] ./create_image.sh --image-type persistent-bm --grub-cfg

grub_cfgs/grub_reference_persistent.cfg --ks-file

ks_files/<vv,mv>_reference_persistent.ks

 Creating Reference Xen Dom0 Volatile Image

[sudo -E] ./create_image.sh --image-type volatile-dom0 --grub-cfg

grub_cfgs/grub_reference_dom0.cfg --ks-file

ks_files/<vv,mv>_reference_dom0.ks

 Creating Reference Xen DomU Persistent Image

[sudo -E] ./create_image.sh --image-type domu --grub-cfg

grub_cfgs/grub_reference_domu.cfg --ks-file

ks_files/<vv,mv>_reference_domu.ks

Intel® Visual Compute Accelerator Software Guide

110

 Creating Reference vca-disk Over BlockIO Image

[sudo -E] ./create_image.sh --add-rootfs --image-type vca-disk --grub-cfg

grub_cfgs/grub_vca_disk.cfg --ks-file ks_files/mv_reference_vca_disk.ks

 Creating Reference volatile image on Ubuntu*

Example of calling the scripts to build an Ubuntu* volatile image with Intel Media Server Studio:

[sudo -E] ./create_image.sh

 --bootstrap deb.tar --archive base.tar --archive vca.tar --archive

mss.tar

 --image-type volatile-bm

 --grub-cfg grub_cfgs/grub_baremetal.cfg

 --image-name "vca_baremetal_k4.4.98_ubuntu16.04.3_2.1.3.img

 --out-dir ./out

 --descr "UBUNTU 16.04.3"

 --kernel 4.4.98-1.2.1.3.vca

A.4.2 Building a Complete Set of Production or Reference Images

There are two wrapper scripts –

generate_vv_production_image.sh/generate_mv_production_image.sh and

generate_vv_reference_image.sh/generate_mv_reference_image.sh – that may be used to

create a complete set of images by a single script invocation. Each script accepts only a single optional

parameter: the build version to append to the image names.

Note: Each script, when invoked, removes all files from the ./out (or user-specified output) directory; do not

invoke this script before verifying desired built images have been moved from this location to a safe location.

To use a custom repository location (or custom set of repository locations), define the appropriate

environment variables VCA_OS_REPO, VCA_EXTRAS_REPO, and VCA_BUILD_REPO.

A.4.2.1 Creating production images

Currently, there is only a single production image: the production_volatile_baremetal image. If future

releases of the software support additional production images, the build scripts released with that version of

the software will allow for the automated building of those additional production images.

[sudo -E] ./generate_vca_production_image.sh [version]

A.4.2.2 Creating reference images

Currently, the reference image set is comprised of the following images:

 Volatile baremetal

 Persistent baremetal

 Volatile Dom0

 Volatile DomU

It requires (at least) the packages: mrouted, the rpm files from the latest version of Intel Media Server Studio

SDK, and the rpm files from Xen Intel® VCA package.

[sudo -E] ./generate_vca_reference_image.sh [version]

Intel® Visual Compute Accelerator Software Guide

 111

A.4.2.3 Creating Windows* Baremetal Images

Windows baremetal images are dedicated for BlockIO/KVM or Xen depending on the boot_part_type

parameter set. GUID Partition Table (GPT) can be used for BlockIO or KVM, Master Boot Record (MBR) for

KVM or Xen. For instructions how to use this image, refer to Sections 4.5.5.2 and 4.5.6.1.

Image Creation Script Parameters

 -iso – Path to Windows installation iso file.

 -output_dir – Directory which will contain compressed resulting img for VCA (if not specified,

default directory name is out).

 -mount_dir – Directory to which wim file from windows installation iso will be mounted during

image creation (if not specified, default directory name is mount_dir).

 -tmp_dir – Directory used for temporary files (if not specified, default directory name is tmp).

 -driver_dir – Directory containing VCA drivers (available with build release). This directory needs

to contain the Win8.1Release-x64 folder, as the folder name is hardcoded.

 -vcagent_dir – Directory containing VCAgent (available with build release). This directory should

contain VCAgent.* files.

 -answer_file – Path to Windows answerfile (same as unattend file).

 -dism_path – Path to dism file (from Windows ADK).

 -vca_image_version – Added to resulting file name (default is 0.0.0).

 -gfx_drv_dir – Path to directory containing Intel graphics driver for Intel Iris.

 -win_edition – Windows edition to be incorporated into img file (for example ServerStandard or

Enterprise).

 -netkvm_drv_dir – If image is going to be used on KVM, it specifies path to NetKVM driver

directory (optional).

 -xen_driver_dir – If image is going to be used on Xen, it specifies path to Xen driver directory

(containing XenBus, XenNet, and Xenvif) (optional).

 -openssh_dir – Path to OpenSSH installation files directory, if it is to be installed (optional).

Hardcoded in AutoUnattend.xml file for setupssh-7.4p1-1.exe.

 -virtualbox –Path to VBoxManage.exe file.

 -vhd_size – Resulting image size in GB. Recommended minimum size is 11 GB.

 -boot_part_type – Type of created image (GPT for BlockIO or KVM and MBR for KVM/Xen).

 -zip_img – Name of zip file containing resulting Windows image file (optional). Default is

vca_windows_baremetal.zip.

Installation of Xen Drivers During Image Creation

If there is such requirement, Xen drivers can be added to the Windows image file. However, the installation

process can only be run during the first boot of Windows, through the use of answerfile

(AutoUnattend.xml). There is no available option to silently install those drivers and, as such, installation

requires approval of the Xen driver certificate. To overcome this obstacle, answerfile assumes that, in the

directory in which the Xen drivers reside, there is a Xen driver certificate (hardcoded as

xen_certificate.cer) that can be automatically installed and approved; the drivers then install silently,

without user interaction. Said certificate can be obtained through installation of any of three required Xen

drivers (xenbus, xennet, or xenvif) and then copied from the Microsoft Management Console into a .cer

file. The Xen driver directory should look like this:

Intel® Visual Compute Accelerator Software Guide

112

Figure 57. Xen driver directory with driver certificate file

Creation of BlockIO/KVM Windows Images

Once all required software and files are present, image creation is quite straightforward. The script has to be

executed with parameters specified above. It results in a zipped .img file created in the output directory.

This file can be booted (depending on parameters provided) on BlockIO/KVM/Xen.

Directories tmp_dir, out_dir, and mount_dir can be specified on a different drives (SSD or M.2) to speed

up image building process. If not defined, they are created in the same directory in which the PowerShell

script is executed.

An example use of the image building script is below:

.\vca_create_windows_image.ps1 -iso

.\en_windows_server_2016_x64_dvd_9718492.iso -driver_dir

.\VcaKmdWin\Win8.1Release-x64 -vcagent_dir .\VCAgent -answer_file

.\answer_files\WS2016\AutoUnattend.xml -gfx_drv_dir

.\GFX_driver_20.19.15.4549_BDW_SKL -dism_path 'C:\Program Files

(x86)\Windows Kits\10\Assessment and Deployment Kit\Deployment

Tools\x86\DISM\dism.exe' -win_edition ServerStandard -virtualbox

'C:\Program Files\Oracle\VirtualBox\VBoxManage.exe' -vhd_size 11GB -

boot_part_type GPT -xen_driver_dir .\Xen -openssh_dir .\OpenSSH -

netkvm_drv_dir .\NetKVM\2k16 -tmp_dir d:\tmp -mount_dir d:\mount_dir -

zip_img vca_windows_server_2016_baremetal_MBR.zip

Windows Image Resizing

If required, images or containers can be resized simply by running following command:

dd if=/dev/zero bs=1M count=4000 >> ./binary.img

The count parameter depends on the amount of space to be added. After resizing the file, the image should

be booted and the disk resized normally in Windows disk manager using unallocated space.

Intel® Visual Compute Accelerator Software Guide

 113

Appendix B. CentOS* Tips and Tricks

This section goes through several useful CentOS* configurations to assist the user in setting up optional

components on the Intel® VCA. Scripts have been written below to save time. These scripts are not

supported nor guaranteed to work and may stop working on future versions. Intel will make a best effort

attempt to keep this section up to date.

B.1. Installing CentOS*

1. Connect CentOS* (Required version) install media to server.

2. Boot server. If necessary, select install media as boot device.

3. At the CentOS* 7 boot menu, select Install CentOS 7 (up-arrow key, or press <I>), then press <Enter>

to load the installer, which takes a couple of moments.

4. At the WELCOME TO CENTOS 7 menu, select the language (and dialect, if appropriate), then click the

Continue button in the lower right corner of the screen.

5. At the INSTALLATION SUMMARY menu, click INSTALLATION DESTINATION.

6. At the INSTALLATION DESTINATION screen:

o Below Device Selection, click the <size>240GB (e.g. 240GB) host OS drive.

o Below Other Storage Options > Partitioning, select I will configure partitioning.

o Click the Done button in the upper left corner of the screen.

7. At the MANUAL PARTITIONING screen:

o Click the Click here to create them automatically link.

o Click the /home partition at the top of the left side.

o Click the – button at the bottom of the left side.

o Click the / partition.

o On the right side, delete the contents of the Desired Capacity text box.

o Click the Update Settings button in the middle of the right side of the screen.

o Click the Done button in the upper left corner of the screen.

o At the SUMMARY OF CHANGES dialog box, click the Accept Changes button in the lower right

corner of the dialog box.

8. At the INSTALLATION SUMMARY screen, click Software Selection.

o From the left pane, Base Environment, select Development and Creative Workstation.

o From the right pane, Add-Ons for Selected Environment, select File and Storage Server, and

Development Tools.

o Click the Done button in the upper left corner of the screen.

9. At the INSTALLATION SUMMARY screen, click NETWORK & HOSTNAME.

o Select the connected network device (e.g., "Ethernet (enp3s0f0)"). Note that disconnected network

devices are marked as unplugged.

o Click the slider button so that it is On.

o Enter a system name in the Hostname text box in the lower left corner of the screen.

o Click the Done button in the upper left corner of the screen

10. At the INSTALLATION SUMMARY screen, click the Begin Installation button in the lower right corner

of the screen.

11. At the CONFIGURATION screen, click ROOT PASSWORD.

o Enter a secure password in both the Root Password and Confirm text boxes. (Note that the pre-

loaded test image uses the insecure password vista1.)

o Click the Done button in the upper left corner of the screen. (Note that insecure passwords

require the Done button be clicked twice.)

12. At the CONFIGURATION screen, click USER CREATION.

o Enter the user's Full name and Username in the appropriate text boxes.

Intel® Visual Compute Accelerator Software Guide

114

o If the user should be configured with sudo access at creation, check the Make this user

administrator checkbox.

o Enter a secure password in both the Password and Confirm password text boxes. (Note that the

pre-loaded test image uses the username vista and the insecure password vista1 and the user

is configured for sudo use.)

o Click the Done button in the upper left corner of the screen. (Note that insecure passwords

require the Done button be clicked twice.)

13. Once the installation completes, a Reboot button is displayed in the lower right corner of the screen.

When that is displayed, click the Reboot button, then disconnect the installation media from the

server when the POST screen is displayed.

14. When the OS loads, an INITIAL SETUP screen is displayed.

15. At the INITIAL SETUP screen, click LICENSE INFORMATION (below LOCALIZATION).

o At the License Agreement screen, click the checkbox next to I accept the license agreement.

o Click the Done button in the upper left corner of the screen.

16. At the INITIAL SETUP screen, click the FINISH CONFIGURATION button in the lower right corner of

the screen.

17. At the Kdump screen, click the Forward button in the lower right corner of the screen.

18. Setup network proxy if it is required.

a. Add following to the end of /etc/profile.

export http_proxy=http://serveraddrs:port

export https_proxy=https://serveraddrs:port

export ftp_proxy=ftp://servraddrs:port

export socks_proxy=http://servraddrs:port

export HTTP_PROXY=http://servraddrs:port

export HTTPS_PROXY=https://servraddrs:port

export FTP_PROXY=ftp://servraddrs:port

export SOCKS_PROXY=http://servraddrs:port

b. Run the following command to set the proxy.

source /etc/profile

c. Edit /etc/yum.conf with proxy settings.

proxy=http://proxy_address:port/

d. Edit /etc/wgetrc with proxy settings.

http_proxy=http://serveraddrs:port

https_proxy=https://serveraddrs:port

ftp_proxy=ftp://servraddrs:port

B.2. SSH Passwordless Configuration

First, create the SSH password-less files by issuing the following commands once for each host.

cd

sudo ssh-keygen

Press <Enter> at each prompt until the system returns to the command prompt.

sudo cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys

sudo chmod 600 /root/.ssh/authorized_keys

sudo cp -af /root/.ssh ~/

sudo chown -R `whoami`:`whoami` ~/.ssh

Intel® Visual Compute Accelerator Software Guide

 115

Next, copy the .ssh directory to each Intel® VCA node. Complete this process each time volatile nodes boot

if not using a persistent filesystem through NFS. At the Are you sure you want to continue connecting

prompt, type yes and then press <Enter>. At the password prompt, enter the password vista1. (This is the

password for the root user on the Intel® VCA node). The following command copies the directory to all three

nodes. Enter the password at each prompt.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do scp -r .ssh

root@172.31.${i}.1:/root/ ; done

Note: The quote before ip enumeration and after -l is a black tick. On an en_US keyboard, it is the key

left of <1> on the number row (an unshifted ~).

The following steps complete the same function without using a “for” loop. Run each line as appropriate for

the number of nodes in the system.

scp -r .ssh root@172.31.1.1:/root/

scp -r .ssh root@172.31.2.1:/root/

scp -r .ssh root@172.31.3.1:/root/

scp -r .ssh root@172.31.4.1:/root/

scp -r .ssh root@172.31.5.1:/root/

scp -r .ssh root@172.31.6.1:/root/

B.3. Setting Up Hostnames

To set the hostnames, issue the following command for each Intel® VCA node.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "hostname node${i}.localdomain ; echo

node${i}.localdomain > /etc/hostname" ; done

The following steps complete the same function without using a “for” loop. Run each line as appropriate for

the number of nodes in the system.

ssh root@172.31.1.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.2.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.3.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.4.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.5.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.6.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

Intel® Visual Compute Accelerator Software Guide

116

B.4. Creating a Local yum Repository

1. Copy the CentOS* 7 ISO to the system.

2. Issue the following command to mount the ISO to /media. Change the name CentOS-7.iso to the

ISO filename on the system.

sudo mount -o loop CentOS-7.iso /media

3. Issue the following commands to install the web server. If prompted for password, enter host

password setup as user. Start the service and open the firewall.

ssh root@localhost 'echo [localbase] > /etc/yum.repos.d/base.repo'

ssh root@localhost 'echo name=localbase >> /etc/yum.repos.d/base.repo'

ssh root@localhost 'echo baseurl=file:///media >>

/etc/yum.repos.d/base.repo'

ssh root@localhost 'echo gpgcheck=0 >> /etc/yum.repos.d/base.repo'

sudo yum -y install --disablerepo=* --enablerepo=localbase httpd

sudo systemctl enable httpd

sudo systemctl start httpd

for i in public external dmz work home internal trusted; do sudo firewall-

cmd --zone=$i --add-service=http --permanent ; done

sudo firewall-cmd --reload

4. Issue the following commands to remount the ISO to the web server file structure, and mount it on

reboots. Note that the last command in this step currently causes the system to fail boot; please see

the next step for workaround.

sudo umount /media

sudo mkdir /var/www/html/centos70

sudo mount -o loop CentOS-7.iso /var/www/html/centos70

ssh root@localhost "echo mount -o loop /home/vista/vvgold/CentOS-7.iso

/var/www/html/centos70" >> /etc/rc.local

5. Modify the local repo file to point to the new location under /var/www/html/centos70.

sudo sed -i -e s=media=var/www/html/centos70= /etc/yum.repos.d/base.repo

6. Make sure any repos previously loaded on the nodes are moved somewhere safe.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "mv /etc/yum.repos.d/* /home" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "mv /etc/yum.repos.d/* /home"

ssh root@172.31.2.1 "mv /etc/yum.repos.d/* /home"

ssh root@172.31.3.1 "mv /etc/yum.repos.d/* /home"

ssh root@172.31.4.1 "mv /etc/yum.repos.d/* /home"

ssh root@172.31.5.1 "mv /etc/yum.repos.d/* /home"

ssh root@172.31.6.1 "mv /etc/yum.repos.d/* /home"

7. Create a repository file to copy to the Intel® VCA nodes.

echo [host] > vv.repo

echo name=host >> vv.repo

echo baseurl=http://172.31.1.254/centos70/ >> vv.repo

echo gpgcheck=0 >> vv.repo

8. Copy it to the nodes and fix up nodes to point to the right IP address.

Intel® Visual Compute Accelerator Software Guide

 117

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do scp vv.repo

root@172.31.${i}.1:/etc/yum.repos.d/ ; done

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "sed -i -e s/1.1.254/1.${i}.254/

/etc/yum.repos.d/vv.repo" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

scp vv.repo root@172.31.1.1:/etc/yum.repos.d/

ssh root@172.31.1.1 "sed -i -e s/1.1.254/1.1.254/ /etc/yum.repos.d/vv.repo"

scp vv.repo root@172.31.2.1:/etc/yum.repos.d/

ssh root@172.31.2.1 "sed -i -e s/1.1.254/1.2.254/ /etc/yum.repos.d/vv.repo"

scp vv.repo root@172.31.3.1:/etc/yum.repos.d/

ssh root@172.31.3.1 "sed -i -e s/1.1.254/1.3.254/ /etc/yum.repos.d/vv.repo"

scp vv.repo root@172.31.4.1:/etc/yum.repos.d/

ssh root@172.31.4.1 "sed -i -e s/1.1.254/1.4.254/ /etc/yum.repos.d/vv.repo"

scp vv.repo root@172.31.5.1:/etc/yum.repos.d/

ssh root@172.31.5.1 "sed -i -e s/1.1.254/1.5.254/ /etc/yum.repos.d/vv.repo"

scp vv.repo root@172.31.6.1:/etc/yum.repos.d/

ssh root@172.31.6.1 "sed -i -e s/1.1.254/1.6.254/ /etc/yum.repos.d/vv.repo"

9. (Optional) Verify each node is able to see the yum repository.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum repolist" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum repolist"

ssh root@172.31.2.1 "yum repolist"

ssh root@172.31.3.1 "yum repolist"

ssh root@172.31.4.1 "yum repolist"

ssh root@172.31.5.1 "yum repolist"

ssh root@172.31.6.1 "yum repolist"

B.5. Creating NFS Share

1. Install NFS on the host system.

sudo yum -y install --disablerepo=* --enablerepo=localbase nfs-utils

2. Open up the firewall to allow NFS access.

for i in public external dmz work home internal trusted; do sudo firewall-

cmd --zone=$i --add-service=nfs --permanent ; done

sudo firewall-cmd --reload

3. Share a directory in /etc/exports. This example uses /tmp; replace with selected share directory in

these steps.

ssh root@localhost "echo '/tmp *(no_root_squash,rw)' >> /etc/exports"

4. Reset NFS service (fully stop and disable, then enable and start) to avoid possible issues.

sudo systemctl stop nfs-server

sudo systemctl disable nfs-server

sudo systemctl enable rpcbind

Intel® Visual Compute Accelerator Software Guide

118

sudo systemctl enable nfs-server

sudo systemctl start rpcbind

sudo systemctl start nfs-server

Note that restarting NSF using presented commands or by:

service nfs stop

service nfs restart

can hang booted Dom0 DomU images. It is recommended to prepare NFS before booting the OS or

to use a safer command:

exportsfs ––a

5. Install NFS on the Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum -y install nfs-utils" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum -y install nfs-utils"

ssh root@172.31.2.1 "yum -y install nfs-utils"

ssh root@172.31.3.1 "yum -y install nfs-utils"

ssh root@172.31.4.1 "yum -y install nfs-utils"

ssh root@172.31.5.1 "yum -y install nfs-utils"

ssh root@172.31.6.1 "yum -y install nfs-utils"

6. Mount the share on the Intel® VCA nodes. This command mounts to the /media directory on the

nodes; change /tmp in the command to the directory shared in step 4, and /media in the command

to the directory to which the NFS share should be mounted.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "mount 172.31.${i}.254:/tmp /media" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "mount 172.31.1.254:/tmp /media"

ssh root@172.31.2.1 "mount 172.31.2.254:/tmp /media"

ssh root@172.31.3.1 "mount 172.31.3.254:/tmp /media"

ssh root@172.31.4.1 "mount 172.31.4.254:/tmp /media"

ssh root@172.31.5.1 "mount 172.31.5.254:/tmp /media"

ssh root@172.31.6.1 "mount 172.31.6.254:/tmp /media"

Intel® Visual Compute Accelerator Software Guide

 119

B.6. Setting System Time

1. Set host system time zone. . To find the correct time zone name, run the command timedatectl list-

timezones. As an example, for the Pacific Time Zone, set to America/Los_Angeles.

sudo timedatectl set-timezone America/Los_Angeles

2. Set host system time. Replace MM with the current two-digit month; DD with the current two-digit date;

HH with the current two-digit, 24-hour format hour; MM with the current two-digit minute; and YYYY

with the current four-digit year. For example, 032316522015 sets the time to 4:52 pm on 23 March

2015.

sudo date MMDDHHMMYYYY

sudo hwclock --systohc

3. Set node time zones

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)); do ssh

root@172.31.${i}.1 "timedatectl set-timezone America/Los_Angeles" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.2.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.3.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.4.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.5.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.6.1 "timedatectl set-timezone America/Los_Angeles"

4. Get the current host system time and push it to the nodes.

NOW=`date +%m%d%H%M%Y` ; for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++

)) ; do ssh root@172.31.${i}.1 "date $NOW" & done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.1.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.2.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.3.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.4.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.5.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.6.1 "date $NOW"

Intel® Visual Compute Accelerator Software Guide

120

B.7. Configuring Network Time Protocol (NTP)

1. Install NTP package on host system. Each command starts with sudo or ssh; enter on a single line.

sudo yum -y install --disablerepo=* --enablerepo=localbase ntp

2. Configure NTP server on host system. Each command starts with sudo or ssh; enter on a single line.

sudo sed -i -e 's/^server/#server/' /etc/ntp.conf

ssh root@localhost 'echo "server 127.0.0.1" >> /etc/ntp.conf'

ssh root@localhost 'echo "restrict 172.31.0.0 mask 255.255.0.0 nomodify

notrap" >> /etc/ntp.conf'

sudo systemctl restart ntpd

sudo systemctl enable ntpd

3. Install and configure NTP package on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.${i}.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.1.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.2.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.2.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.3.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.3.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.4.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.4.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.5.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.5.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.6.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.6.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

B.8. Turn On Affinity

Affinity setting can be changed on the host to balance simultaneous transfers between the host and all

nodes. It is recommended to turn it on.

1. Open the file /etc/sysconfig/irqbalance.

2. Find the line:

#IRQBALANCE_ARGS=

3. Change this line to (do not forget to remove #):

IRQBALANCE_ARGS="-h exact"

4. Save the file and reboot the host.

Intel® Visual Compute Accelerator Software Guide

 121

B.9. Host BIOS Additional Configuration

It is recommended to set BIOS parameters (if available) to following settings:

 Memory Mapped IO above 4GB: Enabled

 Memory Mapped IO size: 256GB

B.10. Configuring Microsoft Windows* Client Access to VNCViewer

Before performing the following steps, install Xming (http://sourceforge.net/projects/xming/) and PuTTY

(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html) on the Windows client.

1. Launch XMing.

2. Launch PuTTY.

3. Enter the IP address of the Intel® VCA host system in the Host Name (or IP address) text box.

4. Enter a name for the system in the Saved Sessions text box.

5. In the left-side navigation pane, open Expand Connection -> SSH, then click X11 below SSH.

6. In the right-side settings pane, check the Enable X11 forwarding checkbox, then enter :0 in the X

display location text box.

7. In the left-side navigation pane, click Window.

8. In the right-side settings pane, enter 10000 in the Lines of scrollback text box (replacing whatever

value is there; standard default is 200).

9. In the left-side navigation pane, scroll to the top, and click Session.

10. In the right-side settings pane, click the Save button next to the Saved Sessions list.

11. At any future point, the connection to the Intel® VCA system can be opened by launching PuTTY then

either:

a. Double-clicking the name from the Saved Sessions list, or

b. Clicking the name from the Saved Sessions list, then clicking Load, and then clicking Open.

http://sourceforge.net/projects/xming/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Intel® Visual Compute Accelerator Software Guide

122

B.11. Install and Configure VNC

1. Install and configure the VNC package on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.2.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.3.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.4.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.5.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.6.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

2. Install the VNC client package on the host.

sudo yum -y install --disablerepo=* --enablerepo=localbase tigervnc

3. Configure the firewall on the nodes.

for i in 1 2 3 4 5 6 ; do ssh root@172.31.${i}.1 \

"firewall-cmd --permanent --add-port=5901/tcp ; \

firewall-cmd –reload"; done

Intel® Visual Compute Accelerator Software Guide

 123

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.2.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.3.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.4.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.5.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.6.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

4. Configure the firewall on the host.

sudo firewall-cmd --permanent --add-port=5901/tcp

sudo firewall-cmd –reload

B.12. Launching VNC

1. Launch the VNC server on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "vncserver &" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "vncserver &"

ssh root@172.31.2.1 "vncserver &"

ssh root@172.31.3.1 "vncserver &"

ssh root@172.31.4.1 "vncserver &"

ssh root@172.31.5.1 "vncserver &"

ssh root@172.31.6.1 "vncserver &"

2. Connect to the host with PuTTY from a Windows client, and launch VNCViewer.

a. Launch PuTTY on the Windows client.

b. Double-click the session saved in the previous section.

c. Log in as root, with the root user's password.

d. Issue the command.

vncviewer 172.31.X.1:5901

where X is replaced by the node number to which a connection is desired. Note that 5901 may

be 5902 or 5903.

Note: This command fails if Xming is not running on the Windows client before the VNCViewer command is

issued.

Intel® Visual Compute Accelerator Software Guide

124

Appendix C. Ubuntu* Tips and Tricks.

C.1. Installing Ubuntu*

1. Connect Ubuntu* OS (Required version) install media to server.

2. Boot server. If necessary, select install media as boot device.

3. At the Ubuntu* boot menu, select Install Ubuntu (down-arrow key), then press <Enter> to load the

installer, which takes a couple of moments.

4. At the WELCOME menu, select the language (and dialect, if appropriate), then click the Continue

button in the lower right corner of the screen.

5. At the Preparing to Install Ubuntu menu, select Download updates while installing Ubuntu and

Install third-party software for graphics and Wi-Fi hardware, Flash, MP3 and other media, then

click the Continue button.

6. At the Installation Type screen select:

o Erase disk and install Ubuntu.

o Use LVM with the new Ubuntu installation.

o Click the Install Now button.

7. At the Write the Changes to Disks? screen, click Continue.

8. At the Where are you? screen select your location and click Continue.

9. At the Keyboard layout screen select your keyboard layout and click Continue.

10. At the Who are you? screen:

o Enter the user's Full name and Username in the appropriate text boxes.

o Enter a secure password in both the Password and Confirm password text boxes.

o Click the Continue button.

11. Once the installation completes, a Restart Now button is displayed. When that is displayed, click the

Restart Now button, then disconnect the installation media from the server when the POST screen is

displayed.

12. When the operating system loads, login into the system with the credentials created during install.

13. Ensure that the host can access the external network. Add necessary proxy settings in case the host

requires a proxy to connect to external network.

a. Add following lines with proper serveraddrs:port to /etc/environment file (use sudo).

http_proxy=http://serveraddrs:port

https_proxy=https://serveraddrs:port

ftp_proxy=ftp://servraddrs:port

socks_proxy=http://servraddrs:port

no_proxy=localhost,127.0.0.0/8

HTTP_PROXY=http://servraddrs:port

HTTPS_PROXY=https://servraddrs:port

FTP_PROXY=ftp://servraddrs:port

SOCKS_PROXY=http://servraddrs:port

NO_PROXY=localhost,127.0.0.0/8

Create or edit /etc/apt/apt.conf with proxy settings.

Acquire::http::Proxy "http://proxy_address:8080/";

Acquire::ftp::Proxy "ftp://proxy_address:8080/";

b. For some programs that support higher level APIs that enable autoproxy use the following

commands if gsettings exists. Please use proper autoproxy_url:port

sudo gsettings set org.gnome.system.proxy mode 'auto'

sudo gsettings set org.gnome.system.proxy autoconfig-url

'http://autoproxy_url:port'

Intel® Visual Compute Accelerator Software Guide

 125

sudo gsettings set org.gnome.system.proxy ignore-hosts "['localhost',

'127.0.0.0/8', '*.local']"

gsettings set org.gnome.system.proxy mode 'auto'

gsettings set org.gnome.system.proxy autoconfig-url

'http://autoproxy_url:port'

gsettings set org.gnome.system.proxy ignore-hosts "['localhost',

'127.0.0.0/8', '*.local']"

14. Reboot the system and check whether external network can be accessed.

15. Update the operating system, if necessary.

sudo apt-get update

TIP: Use sudo –i to log in as root so sudo is not required.

16. Install additional software required for VCA: ipcalc, bridge-utils, libboost-thread-dev,

libboost-filesystem1.58.0, openssh-server and sshpass.

sudo apt-get install ipcalc

sudo apt-get install bridge-utils

sudo apt-get install openssh-server

sudo apt-get install libboost-thread-dev

sudo apt-get install libboost-filesystem1.58.0

sudo apt-get install sshpass

C.2. Enable root login on Ubuntu*

Install openssh-server with following command, if it is not already installed.

sudo apt-get install openssh-server

After install complete, edit /etc/ssh/sshd_config.

PermitRootLogin yes

Execute following commands to restart the ssh

sudo systemctl restart ssh

sudo systemctl restart sshd

Set root password

sudo passwd

Login to the operating system as root.

C.3. SSH Passwordless Configuration

First, create the SSH password-less files by issuing the following commands once for each host.

cd

sudo ssh-keygen

Press <Enter> at each prompt until the system returns to the command prompt.

sudo cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys

sudo chmod 600 /root/.ssh/authorized_keys

sudo cp -af /root/.ssh ~/

sudo chown -R `whoami`:`whoami` ~/.ssh

Intel® Visual Compute Accelerator Software Guide

126

Next, copy the .ssh directory to each Intel® VCA node. Complete this process each time volatile nodes boot

if not using a persistent filesystem through NFS. At the Are you sure you want to continue connecting

prompt, type yes and then press <Enter>. At the password prompt, enter the password vista1. (This is the

password for the root user on the Intel® VCA node). The following command copies the directory to all three

nodes. Enter the password at each prompt.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do scp -r .ssh

root@172.31.${i}.1:/root/ ; done

Note: The character before sudo and after -l is a black tick. On an en_US keyboard, it is the key left of <1>

on the number row (an unshifted ~).

The following steps complete the same function without using a “for” loop. Run each line as appropriate for

the number of nodes in the system.

scp -r .ssh root@172.31.1.1:/root/

scp -r .ssh root@172.31.2.1:/root/

scp -r .ssh root@172.31.3.1:/root/

scp -r .ssh root@172.31.4.1:/root/

scp -r .ssh root@172.31.5.1:/root/

scp -r .ssh root@172.31.6.1:/root/

C.4. Setting Up Hostnames

To set the hostnames, issue the following command for each Intel® VCA node.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "hostname node${i}.localdomain ; echo

node${i}.localdomain > /etc/hostname" ; done

The following steps complete the same function without using a “for” loop. Run each line as appropriate for

the number of nodes in the system.

ssh root@172.31.1.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.2.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.3.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.4.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.5.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

ssh root@172.31.6.1 "hostname node1.localdomain ; echo node1.localdomain >

/etc/hostname"

C.5. Creating NFS Share

1. Install NFS on the host system.

sudo apt-get install rpcbind nfs-kernel-server

2. Share a directory in /etc/exports. This example uses /mnt; replace with selected share directory in

these steps.

ssh root@localhost "echo '/mnt *(rw,sync,no_root_squash,

no_all_squash,no_subtree_check)' >> /etc/exports"

Intel® Visual Compute Accelerator Software Guide

 127

3. Reset NFS service (fully stop and disable, then enable and start) to avoid possible issues.

sudo systemctl stop nfs-server

sudo systemctl disable nfs-server

sudo systemctl enable rpcbind

sudo systemctl enable nfs-server

sudo systemctl start rpcbind

sudo systemctl start nfs-server

Note that restarting NSF using presented commands or by:

service nfs stop

service nfs restart

can hang booted Dom0 DomU images. It is recommended to prepare NFS before booting the

operating system or to use a safer command:

exportsfs –ra

4. Install NFS on the Intel® VCA nodes. (Make sure nodes can access external network)

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "apt-get install nfs-kernel-server" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "apt-get install nfs-kernel-server"

ssh root@172.31.2.1 "apt-get install nfs-kernel-server"

ssh root@172.31.3.1 "apt-get install nfs-kernel-server"

ssh root@172.31.4.1 "apt-get install nfs-kernel-server"

ssh root@172.31.5.1 "apt-get install nfs-kernel-server"

ssh root@172.31.6.1 "apt-get install nfs-kernel-server"

5. Mount the share on the Intel® VCA nodes. This command mounts to the /media directory on the

nodes; change /tmp in the command to the directory shared in step 4, and /media in the command

to the directory to which the NFS share should be mounted. 172.31.${i}.254, is the NFS server

address (host or others)

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "mount 172.31.${i}.254:/tmp /media" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "mount 172.31.1.254:/tmp /media"

ssh root@172.31.2.1 "mount 172.31.2.254:/tmp /media"

ssh root@172.31.3.1 "mount 172.31.3.254:/tmp /media"

ssh root@172.31.4.1 "mount 172.31.4.254:/tmp /media"

ssh root@172.31.5.1 "mount 172.31.5.254:/tmp /media"

ssh root@172.31.6.1 "mount 172.31.6.254:/tmp /media"

Intel® Visual Compute Accelerator Software Guide

128

C.6. Setting System Time

1. Set host system time zone. . To find the correct time zone name, run the command timedatectl list-

timezones. As an example, for the Pacific Time Zone, set to America/Los_Angeles.

sudo timedatectl set-timezone America/Los_Angeles

2. Set host system time. Replace MM with the current two-digit month; DD with the current two-digit date;

HH with the current two-digit, 24-hour format hour; MM with the current two-digit minute; and YYYY

with the current four-digit year. For example, 032316522015 sets the time to 4:52 pm on 23 March

2015.

sudo date MMDDHHMMYYYY

sudo hwclock –systohc

3. Set node time zones

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)); do ssh

root@172.31.${i}.1 "timedatectl set-timezone America/Los_Angeles" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.2.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.3.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.4.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.5.1 "timedatectl set-timezone America/Los_Angeles"

ssh root@172.31.6.1 "timedatectl set-timezone America/Los_Angeles"

4. Get the current host system time and push it to the nodes.

NOW=`date +%m%d%H%M%Y` ; for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++

)) ; do ssh root@172.31.${i}.1 "date $NOW" & done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.1.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.2.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.3.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.4.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.5.1 "date $NOW"

NOW=`date +%m%d%H%M%Y` ; ssh root@172.31.6.1 "date $NOW"

Intel® Visual Compute Accelerator Software Guide

 129

C.7. Configuring Network Time Protocol (NTP)

1. Install NTP package on host system. Each command starts with sudo or ssh; enter on a single line.

sudo yum -y install --disablerepo=* --enablerepo=localbase ntp

2. Configure NTP server on host system. Each command starts with sudo or ssh; enter on a single line.

sudo sed -i -e 's/^server/#server/' /etc/ntp.conf

ssh root@localhost 'echo "server 127.0.0.1" >> /etc/ntp.conf'

ssh root@localhost 'echo "restrict 172.31.0.0 mask 255.255.0.0 nomodify

notrap" >> /etc/ntp.conf'

sudo systemctl restart ntpd

sudo systemctl enable ntpd

3. Install and configure NTP package on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.${i}.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.1.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.2.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.2.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.3.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.3.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.4.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.4.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.5.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.5.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

ssh root@172.31.6.1 "yum -y install ntp; sed -i -e 's/^server/#server/'

/etc/ntp.conf ; echo server 172.31.6.254 >> /etc/ntp.conf ; systemctl

enable ntpd; systemctl restart ntpd"

C.8. Turn On Affinity

Affinity setting can be changed on the host to balance simultaneous transfers between the host and all

nodes. It is recommended to turn it on.

1. Open the file /etc/sysconfig/irqbalance.

2. Find the line:

#IRQBALANCE_ARGS=

3. Change this line to (do not forget to remove #):

IRQBALANCE_ARGS="-h exact"

4. Save the file and reboot the host.

Intel® Visual Compute Accelerator Software Guide

130

C.9. Configuring Microsoft Windows* Client Access to VNCViewer

Before performing the following steps, install Xming (http://sourceforge.net/projects/xming/) and PuTTY

(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html) on the Windows client.

1. Launch XMing.

2. Launch PuTTY.

3. Enter the IP address of the Intel® VCA host system in the Host Name (or IP address) text box.

4. Enter a name for the system in the Saved Sessions text box.

5. In the left-side navigation pane, open Expand Connection -> SSH, then click X11 below SSH.

6. In the right-side settings pane, check the Enable X11 forwarding checkbox, then enter :0 in the X

display location text box.

7. In the left-side navigation pane, click Window.

8. In the right-side settings pane, enter 10000 in the Lines of scrollback text box (replacing whatever

value is there; standard default is 200).

9. In the left-side navigation pane, scroll to the top, and click Session.

10. In the right-side settings pane, click the Save button next to the Saved Sessions list.

11. At any future point, the connection to the Intel® VCA system can be opened by launching PuTTY then

either:

a. Double-clicking the name from the Saved Sessions list, or

b. Clicking the name from the Saved Sessions list, then clicking Load, and then clicking Open.

C.10. Install and Configure VNC

1. Install and configure the VNC package on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.2.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.3.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.4.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

http://sourceforge.net/projects/xming/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Intel® Visual Compute Accelerator Software Guide

 131

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.5.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

ssh root@172.31.6.1 "yum -y install tigervnc-server xauth; cp

/lib/systemd/system/vncserver@.service

/etc/systemd/system/vncserver@:1.service; sed -i -e s='<USER>'=root=

/etc/systemd/system/vncserver@:1.service; echo vista1 > /tmp/passwd;

vncpasswd -f < /tmp/passwd > .vnc/passwd; chmod 600 .vnc/passwd"

2. Install the VNC client package on the host.

sudo yum -y install --disablerepo=* --enablerepo=localbase tigervnc

3. Configure the firewall on the nodes.

for i in 1 2 3 4 5 6 ; do ssh root@172.31.${i}.1 \

"firewall-cmd --permanent --add-port=5901/tcp ; \

firewall-cmd –reload"; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.2.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.3.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.4.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.5.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

ssh root@172.31.6.1 "firewall-cmd --permanent --add-port=5901/tcp ;

firewall-cmd –reload"

4. Configure the firewall on the host.

sudo firewall-cmd --permanent --add-port=5901/tcp

sudo firewall-cmd –reload

C.11. Launching VNC

1. Launch the VNC server on Intel® VCA nodes.

for ((i=1 ; i<=`sudo vcactl status | wc -l` ; i++)) ; do ssh

root@172.31.${i}.1 "vncserver &" ; done

The following steps complete the same function without the "for" loop; run each line, as appropriate

for the number of nodes in the system.

ssh root@172.31.1.1 "vncserver &"

ssh root@172.31.2.1 "vncserver &"

ssh root@172.31.3.1 "vncserver &"

ssh root@172.31.4.1 "vncserver &"

Intel® Visual Compute Accelerator Software Guide

132

ssh root@172.31.5.1 "vncserver &"

ssh root@172.31.6.1 "vncserver &"

2. Connect to the host with PuTTY from a Windows client, and launch VNCViewer.

a. Launch PuTTY on the Windows client.

b. Double-click the session saved in the previous section.

c. Log in as root, with the root user's password.

d. Issue the command.

vncviewer 172.31.X.1:5901

where X is replaced by the node number to which a connection is desired. Note that 5901 may

be 5902 or 5903.

Note: This command fails if Xming is not running on the Windows client before the VNCViewer command is

issued.

Intel® Visual Compute Accelerator Software Guide

 133

Appendix D. Build Intel® VCA Modules in Custom Kernel

Intel® VCA modules (vcass module and daemon vca (app)) can be built for a custom non-supported

kernels by following the procedure given in this appendix.

First, download Intel® VCA source files from https://downloadcenter.intel.com. Multiple versions of these

files are available; select the required version. Download the .zip file that contains the source of the Intel®

VCA modules. For example, version 2.0.283 contains the files shown in Figure 58.

Figure 58. Intel® VCA source files

Unzip and install the vcass-modules and daemon-vca source .rpm files and follow the steps depending

on the operating system.

For Ubuntu*:

1. Install package named linux-headers*.deb which comes with the kernel .deb package.

2. Install usual compilation tools: cmake, gcc, and checkinstall.

3. Compile modules. Replace <vcamodules-dir> and <buildscripts-dir> with appropriate paths.

Cd <vcamodules-dir>

KVER=$(uname -r) # works if you are building for currently booted kernel,

otherwise set accordingly

OS=UBUNTU PKG_VER=2.1.999 KERNEL_NAME=$KVER

KERNEL_PATH=/lib/modules/$KVER/build

<buildscripts-dir>/quickbuild/generate_modules.sh # build modules deb

4. At the end of the building process, the .deb file name is printed.

For CentOS*:

1. Install following tools: rpm2cpio, make, and gcc.

2. Install kernel-devel.rpm from custom kernel provider

3. Compile modules. Replace <vcamodules-dir> and <buildscripts-dir> with appropriate paths.

cd <vcamodules-dir>

DEVEL_RPM=<kernel-devel-rpm-file-full-path> OS=CENTOS PKG_VER=2.1.999

<buildscripts-dir>/quickbuild/generate_modules.sh

https://downloadcenter.intel.com/search?keyword=vca

Intel® Visual Compute Accelerator Software Guide

134

Appendix E. Resizing Persistent VCA Boot image

Intel® VCA persistent boot images can be resized using the script vca_image_resize.sh provided as part

of daemon-vca rpm package and is in /usr/sbin/.

E.1. Introduction

vca_image_resize.sh script resizes block-io based Intel® VCA persistent bootable image by resizing its

root partition. Intel® VCA persistent image contains two partitions (Boot partition and Root partition) as

shown in Figure 59.

Boot Partition: a static UEFI boot partition (EFI System Partition, ESP) with a fixed size of 100MB. The size of

100MB this the minimum dictated by the UEAFI standard and is also entirely sufficient for booting VCA

nodes

Root Partition: a resizable Linux partition hosting the root file system of the Linux operating system used

on VCA nodes.

Figure 59. Partitions in Intel® VCA 2 persistent image

Root partition is the only partition accessible to Intel® VCA node after booting the nodes, so it should not be

made too small. Other file systems can be added to Intel® VCA nodes by NFS mounting remote directories

and/or additional block-io devices described in previous sections. The root file system should be enough to

hold all installed binaries, configuration files, user data and system logs.

Current Intel® VCA persistent image can’t be made smaller than the boot partition, some organizational data,

storage required for the Linux partition of the image, and the maximum space required for application usage.

Intel® VCA persistent boot image resides on the host file system or storage connected to host server.

Increasing the size of any file can be done in two ways: by completely allocating the required space in disk

blocks from underlying storage or by creating a sparse file. For a sparse file, the disk space is not allocated

until the blocks are actually written to, but the requested blocks of file data are linked to a single fictitious storage

block filled with zeroes. All the blocks of file data remain linked to this fictitious storage block as long as these data

blocks are not actually written to. Thus for some time after creation, the file does NOT require more storage, while its

internal structure foresees the exact storage space for future needs. Only during later use of the file, when actually

witting to the file data blocks, they gradually get assigned to real disk storage blocks.

When requesting the script vca_image_resize.sh to grow the Intel® VCA boot image as a sparse file, the

resulting file will require less storage from the underlying device. Also, the image will be grown significantly

Intel® Visual Compute Accelerator Software Guide

 135

quicker than without requesting to use the sparse file feature. Specific options applied to tools used during

local copying may also spare copy time during administrative tasks (e.g. “cp --sparse=always”). This may

often be advantageous at the initial stages of preparing, multiplying and transferring the image. But as the

image will typically grow during usage to its defined size, enough storage space must be provided for it in the

underlying device to prevent Intel® VCA node failures. When growing Intel® VCA boot image as a non-sparse

file, the resize will take more time and more space, and may fail due to insufficient disk space on the

underlying device. If the disk storage at the beginning of growing Intel® VCA boot image is not sufficient, the

script issues a warning and continues in the hope that the caller will make additional disk space available

before imminent failure.

The final size of the Intel® VCA persistent boot image may not be exactly the same as requested size due to

boot partition size, partition structures and alignments (rounded up or down).

E.2. Commandline Options

Note: The script vca_image_resize.sh is based on the assumption that the image has been

created with the VCA tools.

The image is resized in-place, so user should consider making a backup copy of the image first.

The image should not be mounted, nor booted, nor used in any other way during resize.

This script has been tested on CentOS. For running on CentOS the following software packages are

required: gdisk, gnucoreutils, findutils, e2fsprogs, kpartx, gawk, util-linux.

-d <number> Debug level. The number must be integer. Value 0 means no debug, higher values increase

debug verbosity. The default debug level is ${DEBUG_LEVEL}

-i <path> Image path. The image will be resized in-place. The image cannot be used during resize.

-n <number> The new size of the root partition in the image. Can be an integer or a real number. The

default size unit is GB.

-s Create a sparse output file. Sparse files require less space initially as they are allowed to contain holes.

With writes to the holes of the file during its latter usage, the file gradually grows to eventually occupy its

size defined with option -n.

-u <letter> A (lowercase or uppercase) letter describing the units of the new size. Supported values are: B

for bytes, K for 1024 bytes, M for 1024 Kbytes, or G for 1024 Mbytes. This parameter is optional. The default

size unit is GB.

-y Spare the usual safety warnings about avoiding to modify a file concurrently

E.3. Examples

Resize the VCA boot image named image10g.vcad to 15 GB, in place, creating a sparse file:

vca_image_resize.sh -n 15 -s -i image10g.vcad

Resize the VCA boot image named image10g.vcad to 2000MB, in place, creating a non-sparse file,

with no debug messages and no safety warnings:

vca_image_resize.sh -d 0 -n 2000 -u M -y -i image10g.vcad

Intel® Visual Compute Accelerator Software Guide

136

Appendix F. Glossary

Term Definition

AVC Advanced Video Coding

BIOS Basic Input/Output System

DHCP Dynamic Host Configuration Protocol

ECC Error Correction Code

EFI Extensible Firmware Interface

GPT GUID Partition Table

HEVC High Efficiency Video Coding

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

ISV Independent Software Vendor

MBR Master Boot Record

NFS Network File System

NTP Network Time Protocol

NVRAM Non-Volatile RAM

OpenCL* Open Computing Language

PCH Platform Controller Hub

PCIe* PCI Express*

SDK Software Development Kit

SSH Secure Shell

Intel® VCA Intel® Visual Compute Accelerator

VNC Virtual Network Computing

