POO-CMC IDLING PROGRAM

Purpose:

1. To maintain the CMC in a condition of readiness for entry into other programs.
2. To update the CSM and LM state vectors every four time steps.

Assumptions:

1. This program is automatically selected by V96E, which may be done during any program. State vector integration is permanently inhibited following V96E. Normal integration functions will resume after selection of any program or extended verb. POO integration will resume when P00 is reselected. Usage of V96 can cause incorrect W-matrix and state vector synchronization.
2. Program changes are inhibited during integration periods and program alarm 1520_{8} will occur if a change is attempted when inhibited.

Sequence of Events:
V37E00E

V06N38E

Optional Display

V06N38 \quad Time of State Vector Being Integrated	$00 \times X \times \mathrm{h}$
	$000 \times \times \mathrm{min}$
	$0 \times X . \times \times \mathrm{s}$

P01-PRELAUNCH OR SERVICE-INITIALIZATION PROGRAM
Purpose:

1. To initialize the platform for the prelaunch programs.
2. To provide an initial stable member orientation for Gyrocompassing (PO2).

Assumptions:

1. Erasable locations have been properly initialized. (Azimuth, +1 ; Latitude, +1 ; LAUNCHAZ, +1; IMU compensation parameters).

Sequence of Events:
V37E01E
No Att Light - ON, then OFF. Initializes the system and coarse aligns the platform to the desired orientation.
AGC advances to P02.

P02-PRELAUNCH OR SERVICE--GYROCOMPASSING PROGRAM
Purpose:

1. To provide the proper stable member orientation for launch.

Assumptions:

1. This program may be interrupted to perform the Prelaunch or Service-Optical Verification of Gyrocompassing program (P03).
2. V75 will be keyed in and displayed during this program to permit crew backup of the liftoff discrete.
3. The program is automatically selected by the Initialization program (P01).
4. This program has the capability (via V78E) to change the launch azimuth of the stable member while gyrocompassing.

P02 (continued)

Sequence of Event

P02 entered automatically from P01.
Vertical erect for 640 seconds, then gyrocompass

V78E Opti

Flashing XSM Launch Azimuth V06N29

V21E. Enter new launch azimuth
Vertical erect for 320 seconds, then gyrocompas
V75E Optional at Liftoff if automatic Liftoff discrete is not received
AGC advances to P11 at liftoff.

P03-PRELAUNCH OR SERVICE-OPTICAL VERIFICATION
OF GYROCOMPASSING
Purpose:
To provide an optical check for verification of alignment of the stable member
during gyrocompassing prior

Assumptions:

1. The astronaut has zeroed the optics just prior to program (P03) selection

A minimum of 45 minutes between V78E and P03 (V65E) assures proper damping
of transients. of transients.
3. In order to prematurely terminate this program and return to P02 the astronaut may
key in V34E on any flashing display.

Sequence of Events:
Zero Optics for 15 seconds.
V65E

P03 displayed.

Flashing Target Azimuth Target Elevation Target ID

Target 1 coordinates.
V24E. Change azimuth and elevation if desired
PRO

Flashing
 V6N41 Target Azimuth
 Target Elevation

Target 2 coordinates.
$\times \times \times \times \times \mathrm{deg}$ 00002

V24E. Change azimuth and elevation if desired.
Optics Mode - CMC.
PRO

CMC drives optics LOS to Target 1
Flashing
V51
Optics to Manual - Mark on Target 1
Flashing Checklist Code
equest terminate Mark sequence.

MARK REJECT
(If mark was unsatisfactory), and recycle to Flashing V51
PRO (if mark was satisfactory), and continue.
CMC drives optics LOS to Target 2.

Flashin V51

Optics to Manual - Mark on Target 2.

Flashing V50N25

Checklist Code
Terminate mark sequence.
MARK REJECT
(If mark was unsatisfactory), and recycle to previous Flashing V51.
PRO (If mark was satisfactory), and continue.

Flashing	Alignment Error	$X \times X X X X$ deg
V06N93	In Delta Gyro Angles	$Y \times X . X X X$ deg
		$Z \times X . X X X$ deg

Displays $Y_{S M}$ and $X_{S M}$ leveling error and $X_{S M}$ azimuth error.
V 24 E to zero Y and X leveling errors.
PRO Torques Z gyro to eliminate azimuth error.
V34E Terminates optical verification and returns to P02.

P06-CMC POWER DOWN PROGRAM

Purpose:

1. To transfer the CMC from the operate to the standby condition.

Assumptions

1. If the computer power is switched off, the AGC Update program (P27) would have to be done to update the state vector and computer clock time.
2. The AGC is capable of maintaining an accurate value of ground elapsed time (GET) for only 23 hours when in the Standby mode. If the AGC is not brought out of the standby condition to the running condition at least once within 23 hours, the AGC value of GET must be updated.
3. Once the program has been selected, the AGC must be put in Standby. When PO6 appears, the AGC will not honor a new program request (V37EXXE), a terminate (V34E), or an ENTER in response to the request for standby.
Sequence of Events:
V37E06E

Flashing Checklist Code V50N25

Power down AGC.
If IMU power off desired - (CB). IMU Operate - open.
PRO Until Standby light on.
TURN.ON
Standby light on
PRO Until Standby light off.

$$
\begin{aligned}
& \text { Flashing } \\
& \text { V37 }
\end{aligned}
$$

OOE Select POO
If IMU power up desired - (CB). IMU Operate - close
No Att light on for 90 seconds.

Purpose:

1. To indicate to the astronaut that the AGC has received the liftoff discrete.
2. To generate an attitude error indication on the FDAI error needles, scaled for the 50/15 setting; from liftoff to the beginning of pitchover/rollout the attitude error is equal to the difference between the current vehicle attitude and the attitude stored at liftoff. During pitchover/rollout the attitude error is equal to the difference between the current vehicle attitude and the AGC nominal computation of vehicle attitude based on the stored polynomials in pitch and roll.
3. To display AGC computed trajectory parameters.
4. AGC takeover of Saturn during Boost
a. Automatic Control-First Stage Only: should the saturn platform fail the astronaut may set the LV Guidance Switch to the CMC position. This stores the current attitude errors as a bias. The Attitude Error routine for each cycle thereafter will compute the attitude error, subtract the bias, and transmit the difference information to the Saturn Instrumentation Unit (IU) for steering
b. Manual Control-The astronaut may select the Saturn stick function via V46E (DAP configuration $=3$). This will terminate the Attitude Error routine.

Assumptions:

1. The program is normally automatically selected by the Gyrocompassing program (P02) when the AGC receives the liftoff discrete from the SIVB. In the backup case it would have been selected by keying in V75 ENTER.
2. The orbit parameter display routine is available by keying in V82E.

Sequence of Events:
V75 Enter is not keyed unless the liftoff discrete fails and P11 does not start automatically.
P11 displayed - Average G on.

V06N62	Inertial Velocity Magnitude	$\times X X X X . \mathrm{ft} / \mathrm{s}$
	Altitude Rate	$\times \times X \times X . \mathrm{ft} / \mathrm{s}$
	Altitude	$X \times X X . \mathrm{nmi}$

Pitch/roll polynomial start at liftoff +10.97 seconds.
Terminate polynomial at liftoff +155.22 seconds.
V82E Orbital parameter display.

Flashing	Apogee Altitude	$\times \times X \times \times \mathrm{nmi}$
V16N44	Perigee Altitude	$\times \times \times \times \times \mathrm{nmi}$
	TFF	$\times X b \times X \mathrm{~min} / \mathrm{s}$

PRO
V37E00E
Average G off. P00 is selected.
V46E While in P11 will terminate polynomial computations and enable the RHC to steer the Saturn vehicle through the AGC interface.

P15-TLI INITIATE/CUTOFF

Purpose:

1. Provide backup for initiation of Saturn Time Base 6 (TB6), S-IVB, injection sequence start.
2. Provide TLI burn monitor capability during a Saturn IU controlled TLI maneuver (Saturn DAP in IU/Display Operational Mode).
3. Provide automatic TLI shutdown capability during a CMC controlled TLI maneuver (Saturn DAP in CMC/Steer Operational Mode)

Assumptions:

1. The TLI target parameters VI C/O (velocity magnitude at cutoff), TB6 (GET of TB6 initiation), and DTF (a bias to compensate for tailoff Delta V and actuator delays) are all available.

Sequence of Events:
V37E15E
Flashing
00XXX h

V25E to Load desired TB6 time.
PRO

Flashing

V06N14 Velocity Magnitude at S-IVB Cutoff
XXXXX.ft/s
V21E to Load desired velocity magnitude
PRO

V06N95	Time From TLI Ignition (TFI)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	Velocity to be Gained (Vg)	$\times \times \times \times \times . \mathrm{ft} / \mathrm{s}$
	Velocity Magnitude (VMAGI)	$\times \times X X X . \mathrm{ft} / \mathrm{s}$

UPLINK activity Light and S-IVB injection sequence start discrete ON for 10 seconds tB6 start time (TIG minus 9 minutes 38 seconds).
SKKY blanks for 5 seconds at TIG minus 105 seconds.
Average G on at TIG minus 100 seconds.
Average G on at
At ignition plus 10 seconds, R1 equals time from cutoff (TFC).
At ignition plus 10 seconds, R 1 equals time from cu
S-IVB cutoff discrete issued when VI C/O attained.
Flashing
V16N95 Same as N95 above but TFC display frozen.
PRO
Flashing
V37 Select New Program

Purpose:

1. Control CSM attitude/optics or attitude rates depending on which of the following five options is selected.

Option 0 - Point a specified S/C vector along the LOS to the LM without constraining rotation about the vector (VECPOINT). This option is used to acquire the LM in the SXT field of view and to point the CSM transponder at the LM.
Option 1 - Point a specified S/C vector at a specified celestial body without constraining rotation about the vector (VECPOINT).
Option 2 - Perform rotation about a specified S / C vector at a specified rate and beginning at a specified time. This option is normally used to effect PTC or initiate pitchover for landmark tracking.
Option 4 - Point a specified S/C vector along the LOS to the LM while constraining rotation about the vector (three-axis). This option is used to acquire the LM in the SXT field of view and to point the CSM transponder at the LM.
Option 5 - Point a specified S/C vector at a specified celestial body while constraining rotation about the vector (three-axis).
2. Update the LM or CSM State vector on the basis of optical tracking data and/or VHF range data (Options 0 and 4 only).

Assumptions:

1. The GNCS is normally in control of the vehicle in the Auto mode. If the astronaut assumes control of the vehicle with the RHC, the CSM will remain at the attitude it is driven to. Regardless of mode selection the CMC will calculate the desired tracking attitude.
2. The LM is maintaining a preferred tracking attitude to correctly orient the optical beacon (Options 0 or 4).
3. During rendezvous, W-matrix initialization is enabled by keying V93E, a fresh start (V36E), uplinked state vector update, automatically during MINKEY, and upon entering P22, P23, or P24.
4. The optics and VHF ranging mark counters are used to count the number of marks, by source, which are used to update either state vector. The counters are zeroed by W-matrix initialization, completion of P37, and by a fresh start.
5. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events:

Option 4 may be initiated automatically by the MINKEY controller.
The sequence will start at MANEUVER below if automatic initiation. V37E20E

Flashing Option ID Code
 V04N06 Tracking Option Code

00024
0000X
V22E to Load desired option:
= Rendezvous (VECPOINT)
1 = Celestial body (VECPOINT)
$2=$ Rotation (PTC/ORB rate)
$=$ Rendezvous (Three-axis)
= Celestial body (Three-axis)
(Option 4 assumed for MINKEY rendezvous)
PRO

Flashing	GAMMA	$X X X \times X \mathrm{deg}$
VO6N78	RHO	$\times \times X \times \times \mathrm{deg}$
	OMICRON	$\times X X . X X \operatorname{deg}$

V25E to Load the desired coordinates.
GAMMA, RHO are rotational coordinates of the desired
pointing axis or axis of rotation. The coordinates represent
Euler rotations of the $S / C+X$ axis about the $+Z$ axis and then about the new $+Y$ axis.

PRO

Flashing Desired Rate (Option 2 only
 Desired Deadband

COAS pointing	$=0^{\circ}, 0^{\circ}$
Optics pointing	$=0^{\circ},-35^{\circ}$
PTC rotation	$=0^{\circ}, 0^{\circ}$
O	

Optics coordinates are assumed for rendezvous but may be changed at anytime.)
OMICRON is an attitude constraint about the pointing vector for three-axis options. It is ignored in VECPOINT options.
$\begin{aligned} 0^{\circ} & =\text { Heatshield forward/heads up } \\ 180^{\circ} & =\text { Apex forward/heads down }\end{aligned}$

V24E to Load desired rate and deadband.
PRO to appropriate option
CELESTIAL BODY TRACK

Flashing V01N70
 Star ID Code

000XX
V21E to load desired Star Code.
If Star Code $\neq 00$, Go to MANEUVER

Flashing	Unit position vector
V06N88	of desired planet

$\begin{array}{ll}X & X X X X X \\ Y & X X X X X \\ Z & X X X X X\end{array}$
Z. XXXXX

V25E to load position vector.
PRO to MANEUVER

[^0]

$X X X . X X \operatorname{deg}$ (+ north)
$\times X X . X X \operatorname{deg}(+$ east)
$X \times X X X \operatorname{nmi}$
XXXXXb nmi
$\times \times X X X . f / / \mathrm{s}$
$X X X . X X \operatorname{deg}$

\footnotetext{
ENTER $\begin{aligned} & \text { Terminates automaneuver routine. If rendezvous option go to appropriate } \\ & \text { marking sequence, otherwise go to TERMINATE. }\end{aligned}$
OPTICS MARKING
The rendezvous sighting mark routine is called automatically. Proceed with
optics marking.
VHF RANGE MARKING
If MIN KEY controller active, VHF marking is initiated automatically when the
range is within 327.67 mi. V87E Sets VHF Range Flag manually
Enables ranging marks for use
V87E Sets VHF Range Flag manually.
Enables ranging marks for use by R22 at 1 -minute intervals.
V88E Resets VHF Range Flag manually.
Disables ranging marks. Use V87E to Tenable.
V88E Resets VHF Range Flag manually
Disables ranging marks. Use V87E to Tenable.
BACKUP COAS MARKING
V54E Calls the backup sighting mark routine.

96-W0

 Maneuver vehicle at orbital rate for trat Maneuver vehicle at orbital rate for tracking.
OPTICS Mode - Manual

OPTICS Mode - Manual
$\substack{\text { Flashing } \\ \text { V51 } \\ \text { Request marks. }}$

Э008 \forall
V22E to correct data.
(Insure B corresponds to the mark on offset landing site or is set to zero.)
MARK
${ }_{\text {Offset landing site mark followed by V52E. }}^{\text {Request marks. }}$ landing sitashing
Flash
V50N25
 V05N71 PRO Flashing Same as N89 above. Flashing
V06N89

V25E to correct data.

Assumptions:
. There are two types of landmark tracking methods:
to the AGC by latitude, longitude/2, and altitude, and the tracking of a lunar
landmark made known to the AGC by its latitude, longitude/2, and altitude. b. "Unknown" Landmark Tracking-The tracking of a landmark or surface feature identified to the AGC as an unknown landmark, one whose coordinates are not
2. There are two types of landing site mapping methods:
a. Landing Site Designation-Track and mark on an unknown landmark. Store the resulting coordinates in Landmark Code 01. If mapping only is desired (tante vector calculation or corrections), the astronaut need take only one mark.
b. Landing Site Offset-While tracking and marking on a primary landmark (known (at least one mark on the primary landmark must have been made prior to this), of the offset landing site in Landmark Code 01. Acquisition of a landmark may be aided by the AGC

Acquisition of a preloaded landing site may be aided by keying Landmark Code 01
5. The Ground Track Determination program (P21) is available to aid the crew in choosing appropriate landmarks prior to selection of this program.

The Ground Track Determination program (P21) is available to the crew following
this program to provide updated ground track information.
7. Possible attitude control methods might be as follows (in all cases care must be
taken to monitor possible impending IMU gimbal lock).
a. Manual control by the pilot or navigator with the rotational hand controller.
b. Manual rate control by the navigator with the minimum impulse control in the

Aütomatic pitchover maneuver via P20, Option 2.
Selection of this program will terminate Options 0 and 4 of P20.
Sequence of Events:
V37E22E

If expected MGA is greater than 60 degrees, exit P22 and realign IMU (P52).

23 (continued)

MARK
LOS and SLOS superimposed on star. Flashing Trunnion Bias
(R2) $\mathrm{XX} . \mathrm{XXX}$ deg V06N8
Mark may be repeated for additional bias computations.
PRO V32E will recycle to Flashing V50N25

Flashing	Star ID Code	$000 \times \mathrm{X}$
VO5N70	Landmark ID	ABCDE
	Horizon ID	$00 F G 0$

V25E to load desired data
ABDE $=$ not used
$C=1$ (earth landmark), 2 (lunar landmark)
$F=1$ (earth horizon), 2 (lunar horizon)
$\mathrm{G}=1$ (near horizon), 2 (far horizon)
(if $\mathrm{R} 2 \neq 0, \mathrm{R} 3=0$) or (if $\mathrm{R} 2=0, R 3 \neq 0$) if PLANET/HOR sighting, go to Flashing V06N88. If STAR/HOR sighting, go to Flashing V50N25.

Latitude of Landmark	$\times \times \times \times \times \mathrm{deg}$
Longitude/2	$\times \times \times \times \times \mathrm{deg}$
Altitude	$\times \times \times \times \times \mathrm{nm}$

V25E to load landmark coordinates.
Ung, go to Flashing
Unit Planet Vector

```
\(x \times x \times x\)
\(x \times x \times x\) \(x \times X X X\)
\(x \times x \times x\)
```

V25E to load planet vector
PRO
Flashing Checklist Code
V50N25
Request automaneuver LLOS to LMK/HOR.
PRO Specifies a 3-axis maneuver. ENTER may be used to specify VECPOINT computed maneuver.

V50N18
PRO

V06N18	Same as N18 above. Maneuver in process.
Flashing	Same as N18 above. Maneuver complete.
V50N18	

A V94E may be used to reacquire the landmark with an automaneuver.
OPTICS Mode - CMC
ENTER
Terminate automaneuver and autoposition.
Optics SLOS to the selected STAR/PLANET
V06N92 Desired Optics Angles

Shaft $\quad \mathrm{XXX} . \mathrm{XX}$ deg
Trunnion $X X . X X X$ deg
OPTICS Mode - Manual
V51
V51
MARK
Flashing Checklist Code
0016

PRO Terminate mark sequence.

```
Flashing
V05N71
```

V25E to correct data.
PRO If PLANET/HOR sighting, go to Flashing V06N88.
If STAR/HOR sighting, go to Flashing V06N49.

Flashing

V06N89 Same as N89 above
V25E to correct landmark coordinates
PRO If Star/LMK sighting, go to Flashing V06N49

Flashing Same as N88 above. V06N88

V 25 E to correct planet vector.
PRO State vector update computed.

Flashing Delta R
 V06N49 Delta V

XXX.XX nmi
$X X X X . X \mathrm{ft} / \mathrm{s}$
Magnitude of the position and velocity vector changes displayed for astronaut approval.
PRO Accept data. V32E reject data, go to Flashing V37.
Flashing Select New Program.
V37

P24-RATE AIDED OPTICS TRACKING PROGRAM

Purpose:

1. To locate and acquire a given landmark via the automatic optics positioning routine (R52) with the Optics Mode switch in the CMC position.
2. When acquired, to track the given landmark via the rate-aided optics feature of the automatic optics positioning routine with the optics in the Manual position.
3. To obtain and downlink to the ground an unlimited number of sighting marks on the chosen landmark and to update the landmark coordinates.

Assumptions:

1. The coordinates of the landmark are known approximately.
2. At low altitudes, tracking may be facilitated by manually initiating a pitch-over maneuver via P20, Option 2.
3. The astronaut will assist in the tracking of the chosen landmark when in the rate-aided mode (Optics switch in Manual) by supplying inputs via the optics hand controller.
4. Selection of this program will terminate Options 0 and 4 of P20.

Sequence of Events:

V37E24E

Flashing
 Flashing

Landmark Latitude
Longitude $/ 2$
Altitude
$X X . X X X$ deg
$X X . X X X$ deg
XXX.XX nm

V25E to load approximate landmark coordinates.

ZERO OPTICS for 15 seconds

OPTICS Mode - CMC

PRO

V06N92 Desired Optics Angles

Shaft $\quad X X X . X X$ deg
Trunnion $X X . X X X$ de

AGC will auto-position the optics LOS to the landmark. The AGC will update the desired optics angles each 0.05 second plus integration time.

OPTICS Mode - Manual
Flashing
V51
AGC will now compute optics drive rates to maintain
the landmark track by back differencing the desired optics angles and compensating for computational and system delays. Desired optics angles are updated with state vector and landmark updates.
Adjust tracking rate with optics hand controller
Provide a manual optics drive assist to trim the AGC commanded drive rate for aligning the target and reticle. AGC commanded rates are updated through subsequent marking and landmark updates.
MARK
Unlimited marking is accepted. Marks are transmitted downlink and are used to update
the landmark coordinates when the number of R52 cycles since the last landmark update reaches a prelaunch erasable value. The landmark update is subsequently used to update the desired optics drive rate and maintain the landmark track.

PRO Terminates Program.
Flashing Select New Program
V37

P27-AGC UPDATE PROGRAM

Purpose:

1. To insert information into the AGC via the digital uplink by transmission from the ground or via the DSKY keyboard by crew manual input.

Assumptions:

1. AGC updates are of four categories:
a. Provide an update for AGC liftoff time (V70).
b. Provide an octal increment for the AGC clock only (V73).
c. Provide load capability for a block of sequential erasable locations (1-18 nclusive locations whose address is specified) (V71).
d. Provide load capability for 1-9 inclusive individually specified erasable locations (V72).
2. Update is allowed in the CSM when the AGC is in P00, P02 or P20 (Options 1,2 or 5), and if the DSKY is available.
3. The UPTEL Accept/Block switch must be in Accept for telemetry update.
4. The automatic mode of update is program selection and update via the ground by uplink transmission. The only difference between this and manual selection by the astronaut is that the DSKY responses are keyed in by the astronaut rather than transmitted.

Sequence of Events:

Select P00 if P00, P02, P20 (Options 1, 2, or 5) not selected.
Up Telemetry switch - Accept Enable Uplink.
Uplink Acty light - On Program selected via Uplink. Mode window displays 27.

Returns to program selected prior to P27 update
Up Telemetry switch - Block Disable uplink.

P29-TIME OF LONGITUDE

Purpose:

1. To provide the astronaut with an estimated time of passage over a selected longitude.

Assumptions:

1. This program may be selected while the CSM is in either earth or lunar orbit to find the time of longitude of either the CSM or LM.
2. This program assumes the vehicle whose ground track parameters are calculated remains in freefall from the selected start time until the time of longitude crossing

Sequence of Events:
V37E29E

Flashing	Option ID Code	00002
V04N06	Vehicle Option (1-CSM, 2-LM)	$0000 \times$

V22E to load desired vehicle code.
PRO

Flashing	GET at which CMC	$00 \times \times \times \mathrm{h}$
VO6N34	begins search (all 0's for	$000 \times \times \mathrm{min}$
	present time)	$0 \times X . \times \times \mathrm{s}$

V25E to load desired time.
PRO

Flashing Desired Longitude (R2)

$X X X, X X$ deg

V22E to load desired longitude.
PRO

Flashing	Time of longitude crossing	$00 \times \times \times \mathrm{h}$
V06N34	by specified vehicle	$000 \times \times \mathrm{min}$

$000 \times \times$ min 0XX.XX s
$X X X, X X \operatorname{deg}$ $X X X, X X$ deg $X \times X X \times \mathrm{nmi}$

PRO V32E to Flashing V04N06 to recycle.

Flashing

V37 Select New Program

P30-EXTERNAL DELTA V PROGRAM

Purpose:

1. To accept targeting parameters obtained from a source(s) external to the AGC and compute therefrom the required velocity and other initial conditions required by the AGC for execution of the desired maneuver. The targeting parameters inserted into the AGC are the time of ignition (TIG) and the impulsive ΔV along CSM local vertical axes at TIG.

Assumptions:

1. Target parameters (TIG and $\Delta V(L V)$) may have been loaded from the ground during a prior execution of P27.
2. External Delta V flag is set during the program to designate to the thrusting program that external Delta V steering is to be used.

Sequence of Events:

V37E30E

Flashing Ground Elapsed Time of Ignition (TIG) V06N33 \qquad
V25E to load desired TIG.
PRO
Flashing
Impulsive Delta V at TIG in Local Vertical Coordinates

V25E to load desired Delta V .
PRO

Flashing	Mark Counter (VHF-Optics)	XXbXX marks
V16N45	Time from Ignition (TFI)	XXbXX min/s
	Middle Gimbal Angle at TIG with	XXX.XX deg
	Vehicle + X Axis in Direction of Thrust	

If the REFSMMAT flag is reset (that is, the IMU is not aligned) MGA will equal -00002 . PRO

31-HEIGHT ADJUSTMENT MANEUVER (HAM) PROGRAM

Purpose:

1. To calculate the parameters associated with the Height Adjust Maneuver (HAM) for Delta V burns.
2. To store the HAM target parameters for use by the desired thrusting program

Assumptions:

1. At a selected TPI time the line of sight between the CSM and the LM is selected to be prescribed angle (E) from the horizontal plane defined at the active position
2. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
3. HAM burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at HAM ignition.
4. The pericenter altitude of the orbit following CSI and CDH must be greater than $35,000 \mathrm{ft}$ (lunar orbit) or 85 nmi (earth orbit) for successful completion of the program.
5. The CSI and CDH maneuvers are originally assumed to be parallel to the plane of the LM orbit. Out-of-plane parameters are computed for TIG (HAM) and displayed. In addition, the N81 display is modified to establish an antinode at HAM.
6. If P20 is in operation while the program is operating, the astronaut may hold at any flashing display and turn on the rendezvous sighting mark routine, take optics marks and/or allow VHF ranging marks to accumulate.
7. TIG (HAM) is computed to be 180 degrees central angle before TIG (CSI).
8. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program (P20).
9. The external Delta V flag is set during this program to designate to the thrusting program that external Delta V steering is to be used.
10. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events
If entered automatically by MINKEY controller, go to MANEUVER.

V37E31E

Note: If P20 rendezvous option is not running, P20 Option 4 is activated now. Flashing MINKEY Rendezvous Option V50N25 Checklist Code

PRO Elects MINKEY automatic rendezvous sequencing
ENTER Elects manual sequencing.
MANEUVER
Note: P20 (R61) will maintain tracking attitude computations. If the attitude error becomes greater than 10 degrees, the astronaut will be alerted by:
UPLINK ACTY light on
If the tracking attitude error is less than 10 degrees, proceed to TARGETING.
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and he LOS to the target with no angular constraint abou the pointing vector.
20 Options 4 \& 5 - Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis along the LOS to the target and constrain the rotation about the pointing vector.

V58E
Request automaneuver execution.

Flashing	Desired FDAI angles for	OG(R)	$\times \times \times . \times \times \mathrm{deg}$
V50N18	automaneuver	IG (P)	$\times \times \times \times \times \mathrm{deg}$
		MG (Y)	$\times \times \times . \times \times \mathrm{deg}$

PRO

V06N18 Maneuver in progress

If MINKEY sequence, go to TARGETING when maneuver is completed

Flashing V50N18
 Maneuver Complete (manual sequence)

 V50N18ENTER Terminates automaneuver routine, go to TARGETING

TARGETING

Flashing
GET of CSI Ignition TIG (CSI)
$00 \times \times \times \mathrm{h}$ $000 \times \times$ min $0 \times \times \times \times$ s

V25E to load desired TIG.
PRO

Flashing
 VO6N5 \quad Apsidal Crossing Elevation Angle CENTANG

$0000 \times$

 $X \times \times . \times \times$ deg $X X X \times X$ deg25E to load desired data.
Apsidal crossing is the future line of apsis crossing where TIG (CDH) is to occur. levation angle is the angle between the CSM/LM LOS and the CSM local horizontal lane at TIG (TPI).
CENTANG is an option code where R3 $\neq 0$ specifies TIG (CDH) to occur at N (180) degrees from CSI maneuver and $N=$ number entered in R1

Flashing \quad GET of TPI Ignition TIG (TPI)	$00 \times \times \times \mathrm{h}$
V06N37	
	$000 \times \times \mathrm{min}$
	$0 \times X . \times \times \mathrm{s}$

V25E to modify TIG
PRO

Flashing	GET of HAM Ignition TIG (HAM)	$00 \times \times \times \mathrm{h}$
V06N33		$000 \times \times \mathrm{min}$
		$0 \times X . \times \times \mathrm{s}$

V25E to modify TIG.
PRO

Flashing Mark Counter (VHF-Optics)
 V16N45 Time from Ignition TFI (HAM) MGA

Mark counter updated by P20 which is running in the background
MGA is displayed on the final pass through the program.
PRO Sets Final flag to execute final pass through program
V32E Continues but Final flag not set. Alarm Codes 00600 through 00606 may occur. If an alarm occurs, V32E recyc to V06N11 where the INPUT parameters may be adjusted for a new solution.

Flashing	Out-of-Plane Position (Y), Active Vehicle	$X X X . X X \mathrm{nmi}$
V06N90	Out-of-Plane Velocity (YDOT), Active Vehicle	XXXX.X ft/s
	Out-of-Plane Velocity (YDOT), Passive	
	Vehicle	

PRO

Flashing	Delta V at TIG (HAM)	X	$X X X X . X \mathrm{ft} / \mathrm{s}$
V06N81	In Local Vertical Coordinates	Y	$\times \times X X . X \mathrm{ft} / \mathrm{s}$
		Z	$X X X X . X \mathrm{ft} / \mathrm{s}$

V25E to modify Delta V.
PRO If Final flag not set go to previous flashing V16N45

Flashing	Mark Counter (VHF-Optics)	$\times X b \times X$
V16N45	TFI (HAM)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	MGA	XXX. XX deg

MGA will be the MGA at TIG (HAM). If the IMU is not aligned, MGA will be -00002.
f MINKEY controller is active, W matrix reinitialization is performed and the appropriate burn program is initiated.

If Delta V solution $<7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 41$ is initiated.
If Delta V solution $\geq 7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 40$ is initiated.
Flashing
V37
Select New Program (manual sequence)

Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers: the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To store the CSI target parameters for use by the desired thrusting program.

Assumptions

1. At a selected TPI time the line of sight between the CSM and the LM is selected to be a prescribed angle (E) from the horizontal plane defined at the active position.
2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits.
5. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition
6. The pericenter altitude of the orbit following CSI and CDH must be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are originally assumed to be paralled to the plane of the LM orbit. However, out-of-plane parameters are computed for TIG (CSI) and displayed. In addition, the N81 display is modified to establish an antinode at CSI
8. If P20 is in operation while the program is operating, the astronaut may hold at any flashing display and take optics marks and/or allow VHF ranging marks to accumulate.
9. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program (P20)
10. The external Delta V flag is set during this program to designate to the thrustin program that external Delta V steering is to be used.
11. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events

If entered automatically by MINKEY controller, go to MANEUVER

V37E32E

Note: If P20 rendezvous option is not running, P20 Option 4 is activated now.
Flashing MINKEY Rendezvous Option
V50N25 Checklist Code
00017
PRO Elects MINKEY automatic rendezvous sequencing
ENTER Elects manual sequencing.
MANEUVER
Note: P20 (R61) will maintain tracking attitude computations. If the attitude error becomes greater than 10 degrees, the astronaut will be alerted by:
UPLINK ACTY light on
If the tracking attitude error is less than 10 degrees, proceed to TARGETING.
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and the LOS to the target with no angular constraint abou the pointing vector.
P20 Options 4 \& 5- Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis along angles required to align the vehicre pointing axis along
the LOS to the target and constrain the rotation about the pointing vector.

P32 (continued)

V58E
Request automaneuver execution.

Flashing	Desired FDAI angles for	OG(R)	$\times X X, X \times \operatorname{deg}$
V50N18	automaneuver	IG (P)	$\times \times X, \times \times \operatorname{deg}$
		$M Y(P)$	$X X X, X X \operatorname{deg}$

PRO

V06N18 Maneuver in progress

If MINKEY sequence, go to TARGETING when maneuver is completed.
Flashing Maneuver Complete (manual sequence)
V50N18
ENTER Terminates automaneuver routine, go to TARGETING
TARGETING

Flashing	$00 \times \times \times \mathrm{h}$
V06N11	
	$000 \times \times \mathrm{min}$
$0 \times X . \times \times \mathrm{s}$	

V25E to load desired TIG.
PRO

Flashing	Apsidal Crossing
V06N55	Elevation Angle
	CENTANG

0000x XXX.XX deg $X X X . X X$ deg
V25E to load desired data.
Apsidal crossing is the future line of apsis crossing where TIG (CDH) is to occur.
Elevation angle is the angle between the CSM/LM LOS and the CSM local horizontal plane at TIG (TPI)
(For LM solution (P72) angle is between LM/CSM LOS and the LM local horizontal) CENTANG is an option code where R3 $\neq 0$ specifies TIG (CDH) to occur at $\mathrm{N}(180)$ degrees from CSI maneuver and $\mathrm{N}=$ number entered in R1.
PRO

Flashing	GET of TPI Ignition TIG (TPI)
V06N37	
	$00 \times \times \times \mathrm{h}$
$0 \times X \times \mathrm{min}$	

V25E to load desired TIG.
PRO

Flashing	Mark Counter (VHF-Optics)	$\times \times b \times \times$
V16N45	Time from Ignition TFI (CSI)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	MGA	-00001

Mark Counter updated by P20 which may be running in the background.
MGA is only displayed on the final pass through the program.

P32 (continued)

PRO Set Final flag.
V32 continues in program but Final flag is not set. Used when another pass is desired. Alarm Codes 00600 through 00606 may occur. If an alarm occurs, V32E recycles to V06N11 where the input parameters may be adjusted for a new solution. If automatic MINKEY sequence, go to flashing V06N90.

Flashing	Delta Altitude at TIG (CDH)	$\times \times \times \times \times \mathrm{nmi}$
V06N75	Delta Time of TIG (CSI/CDH)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	Delta Time of TIG (CDH/TPI)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$

TIG $(C D H)$ is available by keying VO6N13E.
PRO
$\begin{array}{lll}\text { Flashing } & \text { Out-of-Plane Position (Y) Active Vehicle } & X X X . X X \mathrm{nmi} \\ \text { V06N90 } & \text { Out-of-Plane Velocity (YDOT) Active Vehicle } & \times X X X . X \mathrm{ft} / \mathrm{s} \\ & \text { Out-of-Plane Velocity (YDOT) Passive Vehicle } & X X X X . X \mathrm{ft} / \mathrm{s}\end{array}$
PRO

Flashing	Delta V at TIG (CSI)	X	$X \times X X . X \mathrm{ft} / \mathrm{s}$
V06N81	In Local Vertical Coordinates	Y	$\times \times \times \times . X \mathrm{ft} / \mathrm{s}$
		Z	$X X X X . X \mathrm{ft} / \mathrm{s}$

PRO If automatic MINKEY sequence, go to Flashing V16N45.

Flashing	Delta V at TIG (CDH)	X	$X X X X . X \mathrm{ft} / \mathrm{s}$
V06N82	In Local Vertical Coordinates	Y	$\times \times \times \times . X \mathrm{ft} / \mathrm{s}$
		Z	$X X X X . X \mathrm{ft} / \mathrm{s}$

If Final flag is reset, go to previous Flashing V16N45.

Flashing	Mark Counter (VHF-Optics)	XXbXX
V16N45	TFI (CSI)	$\times \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$
	MGA	XXX. \times X deg

MGA will be the MGA at TIG (CSI). If the IMU is not aligned, MGA will be -00002. (For LM solution (P72) MGA is always -00002 on the final pass.)
PRO
If MINKEY controller is active, W-matrix reinitialization is performed and the appropriate burn program is initiated.

If Delta V solution $\leq 7 \mathrm{ft} / \mathrm{s}$, P41 is initiated.
If Delta V solution $\geqq 7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 40$ is initiated.

Flashing

V37
Select New Program (manual sequence)

P33-CSM CONSTANT DELTA ALTITUDE (CDH) PROGRAM

Purpose:

1. To calculate parameters associated with the Constant Delta Altitude maneuver (CDH), for Delta V burns.
2. To store the CDH target parameters for use by the desired thrusting program.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence Initiation (CSI) program (P32). Therefore
a. At a selected TPI time (now in storage) the line of sight between the CSM and the LM was selected to be a prescribed angle (E) (now in storage) from the horizontal plane defined at the active vehicle position.
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit)
g. The CSI and CDH maneuvers were assumed to be paralled to the plane of the LM orbit. However, out-of-plane parameters are computed for TIG (CDH) and displayed. In addition, the N81 display is modified to establish an antinode at CDH.
2. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program (P20)
4. The external Delta \vee flag is set during this program to designate to the thrusting program that external Delta V steering is to be used
5. This program may be selected manually or internally by the MINKEY controller

Sequence of Events:

If entered automatically by MINKEY controller, go to MANEUVER. V37E33E

Note: If P20 rendezvous option is not running, P20 Option 4 is activated now.
Flashing MINKEY Rendezvous Option
V50N25 Checklist Code
PRO Elects MINKEY automatic rendezvous sequencing. ENTER Elects manual seauencing.
MANEUVER
Note: P20 (R61) will maintain tracking attitude computations. If the attitud
error becomes greater than 10 degrees, the astronaut will be alerted by:
UPLINK ACTY light on
If tracking attitude error is less than 10 degrees, proceed to TARGETING.
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and the LOS to the target with no angular constraint about the pointing vector.
P20 Options 4 \& 5- Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis along the LOS to the target and constrain the rotation about the pointing vector.

V58E

Request automaneuver execution.

PRO
V06N18 Maneuver in progress
If MINKEY sequence, go to TARGETING when maneuver is completed.
Flashing Maneuver Complete (manual sequence)
V50N18
ENTER Terminates automaneuver routine, go to TARGETING
TARGETING
Flashing
VO6N13
GET of CDH Ignition TIG (CDH)
$00 \times X \times \mathrm{h}$
$000 \times \times \mathrm{min}$
$0 X X . X X \mathrm{~s}$

V25E to correct desired TIG
PRO

Flashing	Mark Counter (VHF-Optics)	XXbXX
V16N45	Time from Ignition TFI (CDH)	$\times \times \mathrm{BXX} \min / \mathrm{s}$
	MGA	-00001

Mark counter is updated by P20 which may be running in the background.
MGA is only displayed on the final pass.
PRO Set Final flag.
V32E continues in program but Final flag is not set. Used when another pass is desired.
If an Alarm occurs, a V32E may be used to recycle to V06N13 and readjust TIG.
If automatic MINKEY sequence, go to Flashing V06N90.

Flashing	Delta Altitude at TIG (CDH)	$\times \times \times \times \times \mathrm{nmi}$
V06N75	Delta Time of TIG (CDH/TPI)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	Delta Time of TIG (TPI/Nom TPI)	

TIG (TPI) is available by keying V06N37E.
PRO

Flashing V06N90	Out-of-Plane Position (Y) Active Vehicle Out-of-Plane Velocity (YDOT) Active Vehicle Out-of-Plane Velocity (YDOT) Passive Vehicle		$\mathrm{XXX} \times \mathrm{Xnmi}$ XXXX. $\mathrm{Xft} / \mathrm{s}$ XXXX. Xf /s
Flashing V06N81	Delta V at TIG (CDH) in Local Vertical Coordinates	X	XXXX. $\mathrm{ft}^{\text {f/s }}$
		Y	XXXX. $\mathrm{Xft/s}$
		z	XXXX. $\mathrm{Xft/s}$

PRO If Final flag is reset go to previous Flashing V16N45.

$\begin{aligned} & \text { Flashing } \\ & \text { V16N45 } \end{aligned}$	Mark Counter (VHF-Optics) TFI (CDH) MGA	$\begin{aligned} & \times \times \mathrm{b} \times \times \\ & \times \times \mathrm{b} \times \times \min / \mathrm{s} \\ & \times \times X . \times \times \operatorname{deg} \end{aligned}$

MGA will be the MGA at TIG (CDH). If the IMU is not aligned, MGA will be -00002. (For LM solution (P73) MGA is always -00002 on the final pass.)
PRO
If MINKEY controller is active, W-matrix reinitialization is performed and the appropriate burn program is initiated

If Delta V solution $\leqslant 7 \mathrm{ft} / \mathrm{s}$, P41 is initiated
If Delta V solution $\geq 7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 40$ is initiated.
Flashing
V37
Select New Program (manual sequence)

34-CSM TRANSFER PHASE INITIATION (TPI)

 TARGETING PROGRAM
Purpose:

1. To calculate the required Delta V and other initial conditions required by the $A G C$ for execution of the Transfer Phase Initiation maneuver. Given:
a. TIG (TPI) or the Elevation angle (E) of the CSM/LM LOS at TIG (TPI).
b. Central angle of transfer (CENTANG) from TIG (TPI) to intercept time (TIG(TPF)).
2. To calculate TIG (TPI) given E or E given $T I G$ (TPI).
3. To store the TPI target parameters for use by the desired thrusting program.

Assumptions

1. The program must be done over a tracking station for real-time ground participation in AGC data input and output.
2. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of VO6 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. When determining the initial position and velocity of the target at intercept time, either conic or precision integration may be used. The time difference for computation is approximately $10: 1$ (that is, conic integration is 10 times faster than precision integration).
5. ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program.
6. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.
7. The Delta V in LOS coordinates is available in N59.
8. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events:

If entered automatically by MINKEY controller, go to MANEUVER V37E34E

Note: If P20 rendezvous option is not running, P20 Option 4 is activated now. Flashing MINKEY Rendezvous Option V50N25 Checklist Code

pzous sequencing

Elects manual sequencing.

Note: P20 (R61) will maintain tracking attitude computations. If the attitude error becomes greater than 10 degrees, the astronaut will be alerted by:
UPLINK ACTY light on
If tracking attitude error is less than 10 degrees, proceed to TARGETING
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and the LOS to the target with no angular constraint about the pointing vector
P20 Options 4 \& 5- Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis alon the LOS to the target and constrain the rotation about the pointing vector.
V58E
Request automaneuver execution.

Flashing	Desired FDAI angles for	$O G(R)$	$\times \times X \times X \times \mathrm{deg}$
V50N18	automaneuver	IG (P)	$\times \times \times \times \times \times$ deg
		$M G(Y)$	$\times \times X \times \times$ deg

PRO
V06N18 Maneuver in progres
If MINKEY sequence, go to TARGETING when maneuver is completed
Flashing Maneuver Complete (manual sequence)
V50N18
ENTER Terminate automaneuver routine, go to TARGETING

TARGETING

Flashing V06N37

GET of TPI Ignition TIG (TPI)
$00 \times \times \times \mathrm{h}$ $000 \times \times \min$
$\times \times \times \times \mathrm{s}$

V25E to correct desired TIG.
PRO

Flashing Number of Precision Offsets levation Angle ENTANG

0000x
XXX.XX deg
XXX.XX deg

V25E to load desired data.
Number of precision offsets is an integration code where $X=0$ specifies integration of a conic trajectory to generate the target vector and $\mathrm{X} \neq 0$ specifies precision integration to generate the target vector. If precision integration is desired,
X should equal 2.
Elevation angle is the angle between the CSM/LM LOS and the CSM local horizontal at TIG (TPI). E should $=+00000$ if E is to be computed at TIG specified. for LM solution (P74) the angle is between the LM/CSM LOS and the LM loca ENTANG
time of intercept. PRO

$$
\begin{array}{ll}
\text { Flashing } & \text { Mark Counter (VHF-Optics) } \\
\text { V16N45 } & \text { TFI (TPI) } \\
& \text { MGA at TIG (TPI) }
\end{array}
$$

$\times \times b \times x$
$\underset{-00001}{\times \times b \times \times} \mathrm{min} / \mathrm{s}$
Mark counter is updated by P20 which may be running in the background. MGA is -1 until the final pass of the program.
PRO Set Final flag. V32E continues in program but Final flag is not set. Used when another pass is desired.

COMPUTE ELEVATION ANGLE FOR GIVEN TIG.

If elevation angle above was $=0$,
Flashing Same as N55 above, except elevation angle has V06N55 been computed.
COMPUTE TIG FOR GIVEN ELEVATION ANGLE. If elevation angle above was $\neq 0$,

Flashing	Time of Ignition for Specified	$00 \times \times \times \mathrm{h}$
V06N37	Elevation Angle TIG (TPI)	$000 \times \times \mathrm{min}$
		$0 \times X \times \times \mathrm{s}$

f MINKEY FINAL PASS, set $\mathrm{E}=0$ and go to COMPUTE ELEVATION ANGLE FOR GIVEN TIG above.
Note: If alarm 00611 occurs, PRO to TARGETING at start of program.

PRO
$\begin{array}{ll}\text { Flashing } & \text { Pericenter Altitude (Post-TP } \\ \text { V06N58 } & \text { Delta } V \text { Required for TPI }\end{array}$
XXXX. Xnm
XXXX.Xft/s
XXXX.Xft/s

$$
\text { Flashing Delta } V \text { at TIG (TPI) in }
$$

$X X X X X . X f t / s$
Y
$X X X X . X f t / s$
Z XXXX. $\mathrm{Xft} / \mathrm{s}$

PRO If Final flag is reset, go to previous Flashing V16N45.

Flashing	Mark Counter (VHF-Optics)	$\times X b \times \times$
V16N45	TFI (TPI)	$\times \times b \times \times \min / \mathrm{s}$
	MGA	XXX. \quad.

MGA will be the expected MGA at TIG (TPI). If the IMU is not aligned, MGA will be -00002. (For LM solution (P74), MGA is always -00002 on the final pass.)

PRO
If MINKEY controller is active, W-matrix reinitialization is performed and the appropriate burn program is initiated.

If Delta V solution $<7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 41$ is initiated.
f Delta V solution $\geq 7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 40$ is initiated.
Flashing
V37
Select New Program (manual sequence)

P35-CSM TRANSFER PHASE MIDCOURSE (TPM) TARGETING PROGRAM

Purpose

1. To calculate the required Delta V and other initial conditions required by the AGC for CSM execution of the next midcourse correction of the transfer phase of an active CSM rendezvous.

Assumptions:

1. If P 20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
2. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.

The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone, the astronaut should reassess the input targeting parameters based upon Deita V and the expected maneuver time.
3. The time of intercept (T (INT) was defined by previous completion of the Transfer Phase Initiation (TPI) program ($\mathrm{P}-34$) and is presently available in AGC storage.
4. ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program.
5. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used
6. The Delta V in LOS coordinates is available in N59
7. The program may be selected manually or internally by the MINKEY controller

Sequence of Events:

If entered automatically by MINKEY controller, go to MANEUVER.
V37E35E
Note: If P20 rendezvous option is not running, P20 Option 4 is activated now.
Flashing MINKEY Rendezvous Option
V50N25 Checklist Code
00017
PRO Elects MINKEY automatic rendezvous sequencing.
ENTER Elects manual sequencing
MANEUVER
Note: \quad P20 (R61) will maintain tracking attitude computations. If the attitude error becomes greater than 10 degrees, the astronaut will be alerted by:

UPLINK ACTY light on

If the tracking attitude error is less than 10 degrees, proceed to TARGETING.
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and the LOS to the target with no angular constraint about the pointing vector.
P20 Options 4 \& 5- Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis along the LOS to the target and constrain the rotation about the pointing vector.

P35 (continued)

V58E
Request automaneuver execution.

Flashing	Desired FDAI angles for	OG(R)	$\times X X . X X \mathrm{deg}$
V50N18	automaneuver	IG (P)	$\times \times X \times X \mathrm{deg}$
		MG (Y)	$\times X X X X \mathrm{deg}$

PRO
V06N18 Maneuver in progress
If MINKEY sequence, go to TARGETING when maneuver is completed.
Flashing Maneuver Complete (manual sequence)
V50N18
ENTER Terminates automaneuver routine, go to TARGETING

TARGETING

Flashing	Mark Counters (VHF-Optics)	$\times \times b \times \times$
V16N45	TFI (TPM)	$\times \times b \times \times \mathrm{min} / \mathrm{s}$
	MGA	-00001

Mark counter is updated by P20, which may be running in the background. MGA is -1 until the final pass through program.
PRO Set Final flag. V32E continues but Final flag is not set. Used when another pass is desired.

Flashing	Delta V at TIG (TPM)	X	$\times X X X . X \mathrm{ft} / \mathrm{s}$
V06N81	in Local Vertical Coordinates	Y	$\times \times \times \times . X \mathrm{ft} / \mathrm{s}$
		Z	$X X X X . X \mathrm{ft} / \mathrm{s}$

PRO If Final flag is reset, go to previous Flashing V16N45.

Flashing	Mark Counter (VHF-Optics)
V16N45	TFI (TPM)

XXbXX
$X \times b \times \times \min / \mathrm{s}$
$X X X . X X \operatorname{deg}$
MGA will be expected MGA at TIG (TPI). If the IMU is not aligned, MGA wil be -00002. (For LM solution (P75) MGA is always -00002 on the final pass.)

PRO
If MINKEY controller is active, W-matrix reinitialization is performed and the appropriate burn program is initiated.

If Delta V solution $<7 \mathrm{ft} / \mathrm{s}$, P41 is initiated.
f Delta V solution $\geq 7 \mathrm{ft} / \mathrm{s}, \mathrm{P} 40$ is initiated
Flashing
V37
Select New Program (manual sequence)

Purpose:

1. To calculate parameters associated with the plane change (PC) maneuver for Delta V burns.
2. To store the PC target parameters for use by the desired thrusting program.

Assumptions:

1. This program assumes a stored TIG (CSI) by completion of the Coelliptic Sequence Initiation (CSI) program (P32), an uplinked TIG (CSI) or crew loaded TIG (CSI) in N11.
2. If P20 is in operation while this program is in operation, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. The ISS need not be on to complete this progam unless automatic state vector updating is desired by the Universal Tracking program (P20).
4. This program is normally used to target a plane change burn between CSI and CDH at the midpoint (90 degrees central angle after TIG (CSI)).
5. The external Delta V flag is set during this program to designate to the thrusting program that external Delta V steering is to be used.
6. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events:

If entered automatically by MINKEY controller, go to MANEUVER.

V37E36E

Note: If P20 rendezvous option is not running, P20 Option 4 is activated now
Flashing MINKEY Rendezvous Option

V50N25 Checklist Code
00017

PRO Elects MINKEY automatic rendezvous sequencing.

ENTER Elects manual sequencing.

MANEUVER

Note: \quad P20 (R61) will maintain tracking attitude computations. If the attitude error becomes greater than 10 degrees, the astronaut will be alerted by UPLINK ACTY light on
If the tracking attitude error is less than 10 degrees, proceed to TARGETING.
The attitude error is defined as:
P20 Options 0 \& 1 - Angular error between the vehicle pointing axis and the LOS to the target with no angular constraint about the pointing vector

P20 Options 4 \& 5- Angular errors between the actual and desired gimbal angles required to align the vehicle pointing axis along the LOS to the target and constrain the rotation abou the pointing vector.
V58E
Request automaneuver execution.

Flashing	Desired FDAI angles for	OG(R)	$\times \times X \times \times \mathrm{deg}$
V50N18	automaneuver	IG(P)	$\times \times \times \times \times \mathrm{deg}$
		MG (Y)	$\times \times X \times \times \mathrm{deg}$

P36 (continued)

V06N18 Maneuver in progres
If MINKEY sequence, go to TARGETING when maneuver is completed

Flashing
 Maneuver Complete (manual sequence)

 V50N18ENTER Terminates automaneuver routine, go to TARGETING
TARGETING

Flashing	$00 \times \times \times \mathrm{h}$
V06N33	
	$000 \times \times \mathrm{min}$
$0 \times \times \times \times \mathrm{s}$	

V25E to modify TIG
PRO

		XXbXX
Flashing	Mark Counter (VHF-Optics)	XXbXX min/s
V16N45	Time From Ignition TFI (PC)	-00001

Mark Counter is updated by P20 which may be running in the background MGA is only displayed on the final pass.

PRO Sets Final flag.
V32E Continues in program but Final flag is not set. Used when another pass is desired.

	Out-of-Plane Position (Y) CSM		$\mathrm{XXX} . \mathrm{XX}$ nmi XXXX. Xf /s XXXX. $\mathrm{Xft} / \mathrm{s}$
V06N90	Out-of-Plane Velocity (YDOT) CSM		
	Out-of-Plane Velocity (YDOT) LM		
Flashing	Delta V at TIG (PC)	X	XXXX. ${ }^{\text {d }}$
V06N81	In Local Vertical Coordinates		XXX

V25E to modify Delta V
PRO If Final flag is reset, go to previous Flashing V16N45.

Flashing	Mark Counter (VHF-Optics)	XXbXX
V16N45	TFI (PC)	XXbXX min/s
	MGA	XXX.XX deg

MGA will be the MGA at TIG (PC). If the IMU is not aligned, MGA will be $\cdot 00002$.
PRO If Manual Sequence, go to Flashing V37
I MINKEY controller is active, W-matrix reinitialization is performed and Delta V (N81) magnitude is tested:

If DV magnitude $=0$, MINKEY initiates P76
If DV magnitude >0, MINKEY initiates P52 for possible realignment to new orientation to avoid gimbal lock for +X -axis burn. Go to P52 (PC Realign).
may elect to perform a Y -axis RCS burn, if the Delta V is small, to bypass realigning the IMU. This option is available in P52 (PC Realign) If the IMU is reoriented for a PC maneuver, it is returned to its original orientation by P52 as controlled by the MINKEY sequencer.

Flashing

V37

P37-RETURN TO EARTH

Purpose:

1. This program will compute a return-to-earth trajectory providing the CSM is outside the lunar sphere of influence at the time of ignition.
2. This program computes and displays a preliminary series of parameters based on a conic trajectory and:
a. Astronaut specified time of ignition.
b. Astronaut specified maximum change in velocity.
c. Astronaut specified reentry angle.

These parameters are:
a. Time from ignition to reentry.
b. Reentry inertial velocity.
c. Reentry flight path angle.
d. Latitude of splash.
e. Longitude of splash.
f. Delta V (LV).
3. When the initial display is satisfactory to the astronaut, the program recomputes the same data, using applicable perturbations to the conic trajectory, and displays the new values.
4. Upon final acceptance by the astronaut, the program computes and stores the target parameters for return to earth for use by the SPS program (P40) or RCS program (P41).
5. Based upon the specified propulsion system the following are displayed:
a. Middle gimbal angle at ignition (MGA).
b. Time of ignition (TIG)
c. Time from ignition (TFI).

Assumptions:

1. This program assumes that contact with the ground is unavailable, and is completely self-contained.
2. If value of VPRED entered in Noun 60 is less than the minimum required to return to earth, the Delta V required vector will be computed based on a minimum value. If the value entered is greater than the minimum required to return to earth, then the astronaut desired value will be used to compute the Delta V required vector. The computed Delta V required vector will be displayed in Noun 81.
3. The DAP Data Load routine (R03) should be performed prior to completion of this program.
4. The reentry range calculation provided by the AUGE KUGEL routine may be overwritten by a pad loaded single precision erasable.
5. The external Delta V flag is reset during this program to designate to the thrusting program that Lambert steering is to be used.

Sequence of Events:

V37E37E

V25E to load desired TIG.
PRO

Flashing	Blank	$\overline{x \times \times} \times \times . \mathrm{ft} / \mathrm{s}$
V06N60	VPRED	
	GAMMA EI	

V25E to load desired data.
UPRED is the maximum allowable velocity change for RTE. Zero is entered to compute the minimum ΔV to conserve fuel. See Assumption 2, GAMMA EI is the desired flight path angle between the inertial velocity vector and the local horizontal at Entry Interface (EI) altitude of 400,000 ft

Flashing	Impact Latitude	$\times \times X . X \times \operatorname{deg}$ (+ north
V06N61	Impact Longitude	$\times \times \times . \times \times$ deg (+ east)

To change the desired landing site longitude the maximum velocity change (VPRED) put is adjusted. The AGC-calculated minimum Vg is available by keying V06N40 (R2) ncreasing this value and entering it (\pm) into west or (+) east. To adjust input paral ind
PRO

Flashing	Transfer Time from TIG (RTE)	$00 \times \times \times$
V06N39	to El	$000 \times \times \mathrm{min}$

To change transfer time. V32E to recycle to V06N33 and readjust input parameters.

Flashing	Blank	
VO6N60	VPRED	$\times \times \times \mathrm{ft} / \mathrm{s}$
	GAMMA EI	$\times \times X . \times X \mathrm{deg}$

VPRED is the predicted inertial velocity at Entry Interface (EI).
32 to recycle to V06N33

Flashing	Delta \vee at TIG (RTE)	$\times \times X \times X . X \mathrm{ft} / \mathrm{s}$
V06N81	in Local Vertical Coordinates	$Y \times X \times X . \times \mathrm{ft} / \mathrm{s}$
		$Z \times X \times X . X \mathrm{ft} / \mathrm{s}$

If first pass through program recycle to Flashing V06N61.

Flashing	Option Code (specify propulsion system)	00007
V04NO6	Propulsion Code (1-SPS, 2-RCS)	0000 X

V22E to load desired option

00XXX h
V06N33
$000 \times \times$ min
0XX.XX s
PRO

Flashing	Mark Counter (VHF-Optics)	Not meaningfu V16N45
	TFI (RTE)	$\times \times \mathrm{BXX}$ min/s
	MGA	$\times \times X . X \times$ deg

ande at TIG or .00002 if the IMU is not aligned.

Flashing \quad Select New Program.

P40-SPS PROGRAM

Purpose:

1. To compute a preferred IMU orientation and a preferred vehicle attitude for an SPS thrusting maneuver and to maneuver the vehicle to the thrusting attitude.
2. To calculate and display the gimbal angles which would result from the present IMU orientation if the vehicle were maneuvered to the preferred vehicle attitude for an SPS thrusting maneuver. The crew is thereby given an opportunity to perform the maneuver with:
a. The present IMU orientation (not recommended if middle gimbal angle is greater than 45 degrees). If the IMU has not been aligned within the last 3 hours, realignment is desirable.
b. A new orientation achieved by selection of P52.
3. To control the GNCS during countdown, ignition, thrusting, and thrust termination of a GNCS controlled SPS maneuver.

Assumptions:

1. The target parameters have been calculated and stored in the AGC by prior execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either set or reset the external Delta V steering flag. For external Delta V steering, VG is calculated once for the specified time of ignition. Thereafter, both during thrusting and until the crew notifies the AGC trim thrusting has been completed, the AGC updates VG only as a result of compensated accelerometer inputs.
For Lambert steering, VG is calculated and updated similarly; however, it is also updated periodically by Lambert solutions to correct for changes in the CSM state vector.
3. The TTE clock is set to count to zero at TIG.
4. Engine ignition may be slipped beyond the established TIG if desired by the crew or if integration can not be completed on time.
5. The SPS thrusting program does not monitor the SC control discrete (Channel 31, Bit 15) during thrusting. This means that the AGC will continue to generate engine actuator commands, SPS Engine On discrete, and FDAI attitude error needle commands until the AGC solution indicates Engine Off at which time these commands and the Engine On discrete are terminated. However, this program is not written to take into account the situation where control may be taken away from the GNCS and then given back, and it is not recommended. In event control is taken away from the GNCS, the AGC will only be responsible for computation of position and velocity.
6. The value of Delta V required will be stored in the local vertical coordinate system and is available during this program until average g turn-on by keying in V06 N81E.
7. The Orbit Parameter Display routine (R30) may be called during this program by keying in V82E.
8. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events:

If entered automatically by MINKEY controller, go to Flashing V50N 18.
Maneuver to pad burn attitude and check SXT and boresight stars using optics angles on pad.
V37E40E

Flashing	Desired FDAI Angles for
V50N18	Automaneuver

$\begin{array}{ll}\text { OG(R) } & \times \times X \times \times \operatorname{deg} \\ \text { IG(P) } & \times \times \times \times \times \operatorname{deg}\end{array}$ MG(Y) $\quad \times \times \times . X \times$ deg

PRO

V06N18 Same as N18 above.

Maneuver is in process; final FDAI angles displayed.

$$
\begin{aligned}
& \text { Flashing } \quad \text { Same as N18 above. } \\
& \text { V50N18 }
\end{aligned}
$$

V50N18 Automaneuver is completed.

SCS-GDC aligned to IMU for backup attitude reference.
SPS gimbal drive motors energized.
S/C Control to SCS; SPS servo check and manual drive check performed
S/C Control to CMC.
PRO
Flashing Same as N18 above.
ENTER
Flashing Gimbal Slew Test Option.
V50N25 Checklist Code
PRO Slews SPS gimbal ± 2 degrees; ENTER - Bypasses gimbal slew test.
SPS gimbals commanded to trim angles (P, Y)
V06N40 Time from Ignition/Cutoff (TF)
Velocity to be Gained (Vg)
XXbXX min/s
$\times \times \times \times \times \mathrm{ft} / \mathrm{s}$
$\times \times \times \times \times \mathrm{ft} / \mathrm{s}$
DSKY blanks at TIG . 35 seconds, and V06N40 resumes at TIG -30 seconds. Average G on.
Ullage initiated with THC if required.
Flashing Same as N40 above at TIG - 5 seconds.
V99N40 Astronaut approval of ignition requested.
PRO Ignition approved.
V06N40 Same as N40 above.
Ignition at TIG.
TVC DAP activated
SPS engine cutoff; burn complete.
DAP off
Flashing V16N40
Vame as 40 above.
Flashing $\quad \mathrm{Vg}_{\mathrm{g}}$ Residuals in Control
$\begin{array}{lll}\text { Flashing } & \mathrm{Vg} \text { Residuals in Control } & \mathrm{X} \\ \text { V16N85 } & \text { System (body) Coordinates } & Y \times X \times \mathrm{Xt} / \mathrm{s} \\ & & \mathrm{XXXX} \times \mathrm{ft} / \mathrm{s}\end{array}$
TRIM $\vee \mathrm{g}$ residuals with THC if required.
PRO If MINKEY controller is active, P76 is entered.
Flashing
(Manual Sequenc
V82E Request orbital parameter display.

Flashing	Apocenter Altitude, Ha	$\times \times \times \times \times \mathrm{nmi}$
V16N44	Pericenter Altitude, Hp	$\times \times \times \times \times \mathrm{nmi}$
	TFF	$\times \times b \times \times \mathrm{min} / \mathrm{s}$

PRO
Flashing
V37
Select New Program.
verage G off.

$$
\begin{aligned}
& \text { Flashing } \\
& \text { V37 }
\end{aligned} \text { (Manual Sequence) }
$$

[^1]1. This program is normally used during rendezvous final phase. If the crew desires to wenford (IdL) uo!pe!

Range, Range Rate, and Theta may be displayed during this program by calling the
Range, Range Rate, and Phi may be displayed during this program by calling the
The Orbit Parameter Display routine may be called during this program by keying in

 and AVERAGE G at a minimum.
Sequence of Events:
V37E47E
$x \times x \times \times \mathrm{ft} / \mathrm{s}$
$\times \times \times \times \times \mathrm{ft} / \mathrm{s}$
$x \times \times \times \times \mathrm{ft} / \mathrm{s}$ n
\times
\times
$\times \times$
$\times \times$
\times
\times
\times
\times

$x>N$
nce of Events:
47E
Average G On

\quad| Flashing |
| :--- | :--- | :--- | :--- |

\quad| Delta V |
| :--- |
| V16N Accumulated in Control |
| Coordinate System |

Display of integrated acceleration during thrusting.
XXXXX. ft
$\times \times \times \times \times \mathrm{ft}$
XXXX. ft

$\stackrel{\underset{C}{c}}{\stackrel{-}{\times}}$

$\begin{array}{ll}\text { V16N62 } & \begin{array}{l}\text { Magnitude of Inertial Velocity (VI) } \\ \text { Rate of Change of Altitude (HDOT) }\end{array} \\ \text { R }\end{array}$

V16N62E

$$
\begin{aligned}
& x \times \times \times \times \mathrm{ft} / \mathrm{s} \\
& \times \times \times \times \times \times \mathrm{ft} / \mathrm{s} \\
& \times \times \mathrm{b} \times \mathrm{min} / \mathrm{s}
\end{aligned}
$$

 Rendezvous Parameter Display routine No. 2 (R34) with V85E.
4. VI, H, and H-dot may be called by keying in V16 N62E.
$+$
7. This program may be selected manually or internally by the MINKEY controller. Sequence of Events:
If entered automatically by MINKEY controller, go to Flashing V50N 18.
Maneuver to pad burn attitude and check SXT and boresight stars using

V37E41E

Request maneuver to computed burn attitude.
PRO
V06N18 Same as N 18 above.
Automaneuver in process; final FDAl angle
maneuver in process; final FDAI angles displayed.
Flashing Same as N18 above. Maneuver is complete.
V50N18
V16N85
Velocity to be Gained in Control
System (body) Coordinates (Vg)
$s / 2 f$
$s / 2 \%$
$s / 2 f$

R
ENTER
Flashing
V16N85
Null Vg with THC at TIG.

1. Compute a preferred IMU orientation and preferred vehicle attitude for an RCS
thrusting maneuver and to maneuver the vehicle to the thrusting attitude.
2. Calculate the gimbal angles which would result from the present IMU orientation if
the vehicle $+X$ axis were aligned to the thrust vector. The crew is thereby given an
opportunity to perform the maneuver with:
a. The present IMU orientation (not recommended if middle gimbal angle is greater
than 45 degrees). If the IMU has not been aligned within the last 3 hours,
realignment is desirable.
b. A new orientation achieved by selection of P52.
3. Provide suitable displays for manual execution of the thrusting maneuver.

Assumptions:

1. The target parameters have been calculated and stored in the AGC by prior
execution of a prethrusting program.
2. The required steering equations are identified by the prior prethrust program, which either set or reset the external Delta V steering flag. For external Delta V steering,
$V G$ is calculated once for the specified time of ignition. Thereafter, both during thrusting and until the crew notifies the AGC trim thrusting has been completed, the
AGC updates VG only as a result of compensated accelerometer inputs.

For Lambert steering, VG is calculated and updated similarly. However, it is also vector.
3. The TTE clock is set to count to zero at TIG.
4. Translation initiation may be slipped beyond the established TIG if desired by the
5. The value of Delta V required will be stored in the local vertical coordinate system The Orbit Parameter Display routine (R 30) may be called during this program by
keying in V82E.

KEY REL
Flashing \quad Same as N83 above.
V16N83

V83E Rendezvous parameter display at crew option.

Flashing	Range of CSM to LM	$\times \times X . \times \times \mathrm{nmi}$
V16N54	Range Rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
	Angle Between CSM $+\times$ Axis and	$\times \times X . \times \times \mathrm{deg}$
	Local Horizontal (Theta)	

PRO
V85E Rendezvous parameter display at crew option.

Flashing	Range of CSM to LM	$\times \times \times . \times \times \mathrm{nmi}$
V16N53	Range Rate	$\times \times \times \times . \times \mathrm{ft} / \mathrm{s}$
	Angle Between Optics SLOS and the	$\times \times X . \times \times \mathrm{deg}$
	l.ocal Horizontal (PHI)	

PRO
V82E Orbital parameter display

	Flashing V16N44	Apocenter Altitude Pericenter Altitude TFF
PRO	Flashing V16N83	Same as N83 above.
PRO		
	Flashing V37	Select New Program.

Average G off

P51-IMU ORIENTATION DETERMINATION PROGRAM

Purpose:

1. To determine the inertial orientation of the IMU using sightings on two celestial bodies using the scanning telescope or the sextant.

Assumptions:

1. Time and RCS fuel may be saved, and subsequent IMU alignment decisions greatly simplified if this program is performed in such a way as to leave the IMU inertially stabilized at an orientation as close as possible to the optimum orientation required by future AGC programs.

Sequence of Events

V37E51E

Flashing	Check list Code
V50N25	Perform Celestial Body Acquisition

00015

ENTER To Bypass Coarse Align PRO to Flashing V51.

V41N22	Desired Gimbal Angles to Coarse Align to	OG	000.00 deg
		IG	000.00 deg
	MG	000.00 deg	

No Att light on.
No Att light off when coarse align complete

$$
\begin{aligned}
& \text { lashing } \\
& \text { V51 }
\end{aligned} \text { Request mark. }
$$

ZERO OPTICS for 15 seconds.
OPTICS Mode - Manual
MARK

Flashing	Checklist Code
V50N25	Request terminate mark sequence.

V50N25 Perform Celestial Body Acquisition

Coarse Align to

MARK REJECT and recycle to Flashing V51 if not satisfactory.

PRO

21E load correct star code
PRO If Star Code $\neq 0$ and first mark, recycle to Flashing V51.
If Star Code $\neq 0$ and second mark, go to Flashing V06N05.
Flashing Unit Vector Specifies Planet
V06N88 Position

V25E to load planet vector.
PRO If first mark, recycle to Flashing V51.

```
Flashing Star Angle Difference*
```

V06N05

PRO V32E to recycle to start of program.
REFSMMAT flag set.
Flashing Select New Program.
V37
*Acceptable N05 Limits

STAR/STAR	SXT	0.03°
	SCT	0.11°
STAR/PLANET	SXT	$0.18{ }^{\circ}$
	SCT	0.21

Purpose:

1. To align the IMU from a "known" orientation to one of four orientations selected by the astronaut using sightings on two celestial bodies with the scanning telescope or the sextant:
a. Preferred Orientation (00001)

An optimum orientation for a previously calculated maneuver. This orientation must be calculated and stored by a previously selected program or previously
uplinked via P27.
b. Landing Site Orientation (00004)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(R_{L S}\right) \\
& Y_{S M}=\text { Unit }\left(Z_{S M} \times X_{S M}\right) \\
& Z_{S M}=\text { Unit }\left(H_{C S M} \times X_{S M}\right)
\end{aligned}
$$

where
The origin is the center of the moon.
$R_{1 S}=$ The position of the most recently defined landing site at time T (align) selected by the astronaut
$H_{C S M}=$ The angular momentum vector of the CSM ($\mathrm{R}_{\mathrm{CSM}} \times \mathrm{V}_{\mathrm{CSM}}$) at time T (align) selected by the astronaut.
The landing site option is used for aligning the CSM and LM stable members to the same orientation prior to LM/CSM separation and prior to LM ascent from the lunar surface.
c. Nominal Orientation (00002)
$\mathrm{X}_{\mathrm{SM}}=$ Unit $\left(\mathrm{Y}_{\mathrm{SM}} \times \mathrm{Z}_{\mathrm{SM}}\right.$
$Y_{S M}=$ Unit (V \times R)
$Z_{S M}=$ Unit ($-R$)
where
$R=$ The geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T (align) selected by the astronaut.
$\mathrm{V}=$ the inertial velocity vector at time T (align) selected by the astronaut.
d. REFSMMAT (00003)

The present IMU orientation differs from that to which it was last aligned due to gyro drift. This option realigns the $I M E$ to its previous alignment orientation (REFSMMAT).
2. To align the $I M U$ to a predetermined orientation suitable for a plane change (PC) maneuver and to realign the IMU after the maneuver to the pre-PC orientation.

$$
\begin{aligned}
& X_{S M}=U_{\text {nit }}\left(X_{S M O} \cos 45^{\circ}+Y_{S M O} \sin 45^{\circ}\right) \text { for first maneuver } \\
& X_{S M}=U_{\text {nit }}\left(X_{S M O} \cos 45^{\circ} \cdot Y_{S M O} \cos 45^{\circ}\right) \text { for second maneuver } \\
& Y_{S M}=U_{\text {nit }}\left(Z_{S M} \times X_{S M}\right) \\
& Z_{S M}=Z_{S M O}
\end{aligned}
$$

where subscript ' 0 ' refers to the orientation existing before the alignment.

Assumptions:

1. If the CMC Mode switch is in CMC-Attitude Hold during the Gyro Torquing routine (R55), the DAP will maneuver the vehicle to follow the platform.
2. An option is provided to point the sextant LOS at astronaut or AGC selected stars either manually by crew input or automatically under AGC control.
3. This program may be selected manually or internally by the MINKEY controller in conjunction with the plane change maneuver

Sequence of Events

if entered automatically by MINKEY controller, go to PC REALIGN V37E52

Flashing	Option ID Code	00001
V04NO6	Alignment Option	$0000 \times$
	1-preferred, 2-nominal	
	3-REFSMMAT, 4-landing site	

V22E to key in desired alignment option.
PRO To appropriate option.
PC REALIGN
Flashing Gimbal angles which will
result from pulse torque to
OG $\quad \underset{\times x \times}{ } \times \times \times \times d$
G $\quad \times \times X . X X$ d
MG $\mathrm{XXX} . \mathrm{XX}$ deg

If MGA is not satisfactory, maneuver vehicle and V32E to recompute N22 angles. PRO If N 22 angles are satisfactory.

Flashing MINKEY Pulse Torque Option
 V50N25 Checklist Code

00020
ENTER If this is first reorientation maneuver, the pulse torque to PC orientation is bypassed and MINKEY enters the RCS Burn program (P41). If this is the second reorientation maneuver, alarm 00402 is generated. The platform must be torqued to its original orientation.
PRO Commence with pulse torquing

V16N20	Present ICDU Angles
	OG $\times \times \times \times \times \operatorname{deg}$
	IG $\times \times \times \times \times \operatorname{deg}$

pon completion of pulse torquing to new orientation, the MINKEY controller will initiate:

1. P41 if pre-plane change burn and if Delta $V \leq 7 \mathrm{ft} / \mathrm{s}$
2. P40 if pre-plane change burn and if Delta $V \geqslant 7 \mathrm{ft} / \mathrm{s}$
3. P33 if plane-change maneuver completed (second pulse torque)

LANDING SITE OPTION (00004)

$$
\begin{array}{lll}
\hline \text { Flashing } & \text { GET of Landing Site Coordinate } & 00 \times \times \times \mathrm{h} \\
\text { V06N34 } & \text { System T(Align) } & 000 \times \times \text { mil } \\
& 0 \times X . \times \times \times \text { s }
\end{array}
$$

V25E to load desired T(Align).

Flashing	Latitude of Landing Site	XX. ${ }^{\text {PXX }}$ deg (+ north
V06N89	Longitude/2	XX. ${ }^{\text {PXX }}$ deg (+ east)
	Altitude	XXX. XX nmi

V25E to load landing site coordinates.
PRO To Preferred Option

NOMINAL OPTION (00002)

$$
\begin{array}{ll}
\text { Flashing } & \text { Same as N34 above, except GET of position and } \\
\text { v06N34 } & \text { velocity vectors defining nominal coordinate sys }
\end{array}
$$

PRO To Preferred Option
PREFERRED OPTION (00001)

Flashing	Desired Gimbal Angles for New	OG	$\times X X . X X \mathrm{deg}$
V06N22	Orientation at Present Vehicle	IG	$\times \times \times \times \times \mathrm{deg}$
	Attitude	MG	XXX.XX deg

f the new orientation yields gimbal lock, maneuver vehicle and V32E to recompute N22) desired gimbal angles.

P52 (continued)

PRO

Flashing Coarse Align Option
 V50N25 Checklist Code

CMC Mode Switch - FREE
(Avoids maneuvering vehicle) - Key in ENTER or PRO
Gyro Torque Only
ENTER
Torques gyros to achieve new orientation (maintains attitude reference).

Go to RECHECK when torquing is complete.
Coarse Align Only
PRO Coarse aligns gimbals to achieve new orientation (lose attitude reference). No Att light ON until coarse align complete.
Go to REFSMMAT option when No Att light out.
REFSMMAT OPTION (00003)
Flashing \quad Checklist Code
00015

Request Celestial Body acquisition.
PRO AGC will select two available stars. Use ENTER to specify crew selection of stars.
MARK SEQUENCE
Flashing
V01N70
000XX

V21E to key in star code.
ZERO OPTICS for 15 seconds.
OPTICS Mode - CMC
PRO For Planet $X X=00$; if $X X \neq 00$, go to V06N92 display.

Flashing	Unit Vector Specifies	X	.$X X X X X$
V06N88	Planet Position	Y	$\times X X X X$
		Z	.$X X X X X$

V25E to specify desired planet vector.
PRO
V06N92 Desired Optics Angles

$$
\begin{array}{ll}
\text { Shaft } & X \times X . \times \times \operatorname{deg} \\
\text { Trunnion } & \times \times . X \times \times \operatorname{deg}
\end{array}
$$

CMC drives optics LOS to target.
OPTICS Mode - Manual

> Flashing Request Mark.

V51
Mark on Target
Flashing Checklist Code
V50N25

PRO Marking was okay, if not MARK REJECT.

Flashing	Star ID Code of Body
V01N71	Marked On

V21EXXE if not correct
PRO If Star Code $\neq 0$ and first MARK, recycle to MARK SEQUENCE If Star Code $\neq 0$ and second MARK, go to Flashing VO6NO5

Flashing Same as N88 above.

V06N88

net vector.
PRO If first MARK recycle to MARK SEQUENCE.
Flashing Star Angle Difference*
XXX.XX deg
not satisfactory, V32E, and go to RECHECK.
PRO

Flashing	Gyro Torque Angles to Fine Align	X	XX.XXX deg
V06N93		Y	$\times X . X X X$ deg
	Z	$X X . X X X$ deg	

CMC Mode Switch - Free (Avoids maneuvering vehicle when torquing gyros).
PRO Torque gyros. V32E to bypass gyro torquing.

RECHECK

Flashing V50N25
Checklist Code
Fine Alignment Option

PRO Recycles to REFSMMAT option for check on alignment.
ENTER

Flashing Select New Program
 V37

*Acceptable N05 Limits

STAR/STAR	SXT	$0.03{ }^{\circ}$
	SCT	0.11°
STAR/PLANET	SXT	$0.18^{\circ}{ }^{\circ}$
	SCT	0.21

P53-BACKUP IMU ORIENTATION DETERMINATION PROGRAM
Purpose:

1. To determine the inertial orientation of the IMU using a backup optical device

Assumptions:

1. This program is identical to P51 except that R56 is called in place of R53.
2. Time and RCS fuel may be saved and subsequent IMU alignment decisions greatly simplified if this program is performed in such a way as to leave the IMU inertially stabilized at an orientation as close as possible to the optimum orientation required by future AGC programs.

Sequence of Events:

V37E53E

$$
\begin{array}{ll}
\text { Flashing } & \text { Checkist Codes } \\
\text { V50N25 } & \text { Perform Cody acquisition. }
\end{array}
$$

00015
ENTER To bypass coarse align, PRO to Flashing V06N94.

$$
\begin{array}{ll}
\text { V41N22 } & \begin{array}{l}
\text { Desired Gimbal Angles } \\
\text { to Coarse Align to }
\end{array}
\end{array}
$$

No Att light on.
No Att light off when coarse align complete,
Flashing
V06N94
Optics Angle Coordinates
for Alternate LOS
Shaft $\quad X X X . X X \operatorname{deg}$ Trunnion $X X . X X X$ deg

V24E to load LOS coordinates.
PRO

Flashing Request Mark.

V53
ENTER
Does alternate LOS mark.

$$
\begin{array}{ll}
\text { Flashing } & \text { Checklist Code } \\
\text { V50N25 } & \text { Terminate Mark Sequence }
\end{array}
$$

PRO Key ENTER to reject mark and recycle to Flashing V53

Flashing Celestial Body Code

V21E to load star code.
PRO If Star Code $\neq 0$ and first mark, recycle to Flashing V06N94
If Star Code $\neq 0$ and second mark, go to Flashing V06N05.

Flashing	Unit Vector Specifies	X	.$\times \mathrm{XXXXX}$
V06N88	Planet Position	Y	.$\times \times \times \times \mathrm{X}$
	Z	. XXXXX	

V25E to load planet vector.
$X X X . X X$ deg

$$
\begin{aligned}
& \text { Flashing Star Angle Difference* } \\
& \text { V06N05 }
\end{aligned}
$$

PRO If first mark, recycle to Flashing V06N94.

$$
X X X . X X \text { des }
$$

V06N05
to recycle to start of program.
Set REFSMMAT flag.
$\underset{V}{\text { Flashing }} \quad$ Select New Program.
*Acceptable N05 Limits

[^2]
P54-BACKUP IMU REALIGN PROGRAM

Purpose:

1. To align the IMU from a "known" orientation to one of four orientations selected by the astronaut using sightings on two celestial bodies with a backup optical device:
a. Preferred Orientation (00001)

An optimum orientation for a previously calculated maneuver. This orientation must be calculated and stored by a previously selected program or previously uplinked via P27.
b. Landing Site Orientation (00004)

$$
\begin{aligned}
& X_{S M}=\text { Unit }\left(R_{L S}\right) \\
& Y_{S M}=\text { Unit }\left(Z_{S M} \times X_{S M}\right) \\
& Z_{S M}=\text { Unit }\left(H_{C S M} \times X_{S M}\right)
\end{aligned}
$$

where
The origin is the center of the moon.
$R_{L S}=$ The position of the most recently defined landing site at time T (align) selected by the astronaut.
$H_{C S M}=$ The angular momentum vector of the CSM ($\left.R_{C S M} \times V_{C S M}\right)$ at time T (align) selected by the astronaut.

The Landing Site option is used for aligning the CSM and LM stable members to the same orientation prior to LM/CSM separation and prior to LM ascent from the lunar surface.
c. Nominal Orientation (00002)

$$
\begin{aligned}
& X_{\mathrm{SM}}=\text { Unit }\left(\mathrm{Y}_{\mathrm{SM}} \times \mathrm{Z}_{\mathrm{SM}}\right) \\
& \mathrm{Y}_{\mathrm{SM}}=\text { Unit }(\mathrm{V} \times \mathrm{R}) \\
& \mathrm{Z}_{\mathrm{SM}}=\text { Unit }(-\mathrm{R})
\end{aligned}
$$

where
$R=$ The geocentric (earth orbit) or selenocentric (lunar orbit) radius vector at time T (align) selected by the astronaut.
$\mathrm{V}=$ The inertial velocity vector at time T (align) selected by the astronaut.

d. REFSMMAT (00003)

The present IMU orientation differs from that to which it was last aligned due to gyro drift. This option realigns the IMU to its previous alignment orientation (REFSMMAT).

Assumptions:

1. If the CMC Mode switch is in CMC-Attitude Hold during the Gyro Torquing routine (R55), the DAP will maneuver the vehicle to follow the platform.
2. This program is identical to P52 except that R56 is called in place of R52 and R53.

Sequence of Events:
V37E54E

Flashing
V04N06
Option ID Code
Alignment Option
1-preferred, 2-nominal,
3-REFSMMAT, 4-landing site.

00001 0000X
1-preferred, 2-nominal,
3-REFSMMAT, 4-landing site.

PRO To appropriate option.

LANDING SITE OPTION (00004)

Flashing	GET of Landing Site Coordinate
VO6N34	System T(Align)

$00 \times \times \times \mathrm{h}$
$000 \times \times$ min $0 \times X . X X$ s
V25E to load desired T(Align).
PRO

Flashing	Latitude of Landing Site
V06N89	Longitude/2
	Altitude

XX.XXX deg (+ north) $X X . X X X \operatorname{deg}(+$ east $)$ XXX.XX nmi

V25E to load landing site coordinates.
PRO To Preferred option.
NOMINAL OPTION (00002)
Flashing Same as N34 above except GET of position and velocity V06N34 vectors defining nominal coordinate system.
PRO To Preferred option.

PREFERRED OPTION (00001)

Flashing	Desired Gimbal Angles for New
V06N22	Orientation at Present Vehicle
	Attitude

$\begin{array}{ll}\text { OG } & X \times X . X \times \text { deg } \\ \text { IG } & X \times X . X X \operatorname{deg}\end{array}$
MG $X X X . X X$ deg
If the new orientation yields gimbal lock, maneuver vehicle and $V 32 E$ to recompute (N22) desired gimbal angles.
PRO

$$
\begin{array}{ll}
\text { Flashing } & \text { Checklist Code } \\
\text { V50N25 } & \text { Coarse Align Option }
\end{array}
$$

CMC Mode switch - Free (avoids maneuvering vehicle). Key in ENTER or ENTER

Torques gyros to achieve new orientation (maintains attitude reference).
V16N20 Monitor Gimbal Angles

$$
\begin{array}{ll}
\text { OG } & \text { XXX.XX deg } \\
\text { IG } & \text { XXX.XX deg } \\
\text { MG } & \text { XXX.XXdeg }
\end{array}
$$

$$
\text { MG } \quad X \times X . X \times \mathrm{deg}
$$

Go to RECHECK when torquing is complete.
PRO Coarse aligns gimbal to achieve new orientation (loses attitude reference).
No Att light - on.
No Att light - off when coarse align is complete, go to REFSMMAT option.

REFSMMAT OPTION (00003)

Flashing \quad Checklist Code
V50N25

Request Celestial Body acquisition.
PRO AGC will select two available stars. Use ENTER to specify crew selection of stars. MARK SEQUENCE

```
Flashing Star ID Code
```


P54 (continued)

PRO If Star Code $\neq 0$, go to Flashing V06N94.

Flashing	Unit Vector Specifies	X	$\times X \times X X$
V06N88	Planet Position	Y	$\times X \times X X$
		Z	.$X X X X X$

V25E to load desired planet vector.
PRO
Flashing \quad Optics Angles for Alternate LOS
V06N94
V24E to load LOS coordinates.
PRO

$$
\begin{aligned}
& \text { Flashing } \quad \text { Request Mark } \\
& \text { V53 }
\end{aligned}
$$

ENTER
Does alternate LOS mark.

Flashing	Checklist Code
V50N25	Terminate Mark Sequence

PRO Key ENTER to reject MARK and recycle to Flashing V53.
Flashing Celestial Body Code of Body
$000 x x$
V01N71 Marked On

$$
\begin{array}{ll}
\text { Shaft } & X X X . X X \operatorname{deg} \\
\text { Trunnion } & X X . X \times X \operatorname{deg}
\end{array}
$$

V21E to correct star code.
PRO If Star Code $\neq 0$ and first mark, recycle to Mark Sequence.
If Star Code $\neq 0$ and second mark, go to Flashing V06N05
Flashing Same as N88 above.
V06N88
V25E to correct planet vector.
PRO If first mark, recycle to Mark Sequence.
Flashing Star Angle Difference
XXX.XX deg

V06N05
PRO If N05 unsatisfactory, V32E and go to RECHECK

Flashing	Gyro Torque Angles to Fine Align	X
V06N93		YX.XXX deg
		Z
		$X X . X X X \operatorname{deg}$

CMC Mode Switch - Free
(Avoids maneuvering vehicle when torquing gyros.)
PRO Torques gyros. (V32E to bypass gyro torquing.)
RECHECK

$$
\begin{array}{ll}
\text { Flashing } & \text { Checklist Code } \\
\text { V50N25 } & \text { Fine Alignment Option }
\end{array}
$$

PRO Recycles to REFSMMAT option for check on alignment. ENTER

Terminate Program
Flashing Select New Program
$V 37$
V37
*Acceptable NO5 Limits
$\begin{array}{lll}\text { STAR/STAR } & \text { COAS } & 0.70^{\circ} \\ \text { STAR/PLANET } & \text { COAS } & 0.72^{\circ}\end{array}$

V21E to load star code.

P61-ENTRY-PREPARATION PROGRAM

Purpose:

1. To start navigation, check IMU alignment, and provide entry monitor system initialization data.

Assumptions:

1. The program is entered with adequate freefall time to complete the maneuvers from a worst case starting attitude.
2. The ISS is on and precisely aligned to a satisfactory orientation.

Sequence of Events:
V37E61E
Average G On

Flashing	Impact Latitude	$\times \times \times . \times \times \mathrm{deg}$
V06N61	Impact Longitude	$\times \times \times \times \times \mathrm{deg}$
	Roll Attitude Code	$\pm 0000 \times$
	$X=+1$ - heads up/lift vector down	
	$\mathrm{X}=-1$ - heads down/lift vector up (normal)	

V25E to load entry data.
PRO

$$
\begin{array}{ll}
\text { Flashing } & \text { GMax } \\
\text { V06N60 } & \text { VPRED }
\end{array}
$$

$$
X \times X \times X \mathrm{~g}
$$

$$
X \times X \times X \text {. } \mathrm{ft} / \mathrm{s}
$$

$$
X X X . X X \text { deg }
$$

GMAX is the maximum predicted acceleration for ENTRY at nominal bank angle (L/D ratio $=0.18$). VPRED is the predicted inertial velocity at Entry Interface (EI) altitude of 400 k ft . GAMMA EI is the flight path angle between the inertial velocity vector and the local horizontal at EI altitude of 400 k ft .
PRO

Flashing	RTOGO	XXXX.X nmi
V16N63	VIO	XXXXX.ft/s
	TFE	$\times \times \mathrm{b} \times \times \mathrm{min} / \mathrm{s}$

RTOGO is the range to go from a preloaded altitude of 290,626 feet to splash.
This is approximately 0.05 g altitude. VIO is the predicted velocity at 290,626 feet. TFE is the time until 290,626-foot altitude is reached.
RTOGO and VIO may be used for EMS initialization if pad values not available.
PRO
AGC advances to P62.

Purpose:

1. To notify crew when the GNCS is prepared for CM/SM separation.
2. To orient the CM to the correct attitude for atmospheric entry.

Assumptions:

1. The program is entered with adequate freefall time to accomplish $\mathrm{CM} / \mathrm{SM}$ separation and complete the maneuver from a worst case starting attitude.
2. The IMU is satisfactorily aligned for entry.
3. The program is automatically selected by the Entry-Preparation program (P61) or it may be selected manually.
4. The astronaut may monitor N63 (RTOGO, VIO, TFE) by keying in V16 N63 E.

Sequence of Events:

V37E62E

If entered manually; normally entered automatically from P61.
Average G on. Normally on from P61.
Flashing \quad Checklist Code
V50N25

Perform CM/SM separation.
Maneuver to Separation Attitude.
SC Control to SCS.
CM/SM Separation - On
Maneuver to Horizon Track Attitude.
PRO
Entry DAP Activated

Flashing	Impact Latitude	
V06N61	Impact Longitude	XXX.XX deg
	Roll Attitude	XXX.XX deg
	$X=+1$ - heads up/lift vector down	$\pm 0000 \times$
	$X=-1$ - heads down/lift vector up (normal)	

V25E to load desired data.
PRO If angle of attack of CM is within 45 degrees of desired, go to P63.

V06N22	Desired Gimbal Angles	OG(R)	$X X X . X X$ deg
		IG(P)	$X \times X . \times \times$ deg
		$\mathrm{MG}(\mathrm{Y})$	XXX. \times X deg

Roll angle depends on heads up/down option. Pitch depends on the desired angle of attack into the atmosphere. When CM is within 45 degrees of desired advance to P63.
AGC Advances to P63.

P63-ENTRY-INITIALIZATION PROGRAM

Purpose:

1. To initialize the entry equations.
2. To continue to hold the CM to the correct attitude with respect to the atmosphere for the onset of entry deceleration.
3. To establish entry DSKY displays.
4. To sense 0.05 g and display this event to the crew by selecting the Entry-Post 0.05 g program (P64).

Assumptions:

1. The program is automatically selected by the Entry-CM/SM Separation and Preentry Maneuver program (P62).

Sequence of Events:
P63 entered automatically from P62.

V06N64	Drag Acceleration Inertial Velocity Range to Splash

XXX.XX g
$X X X X X . \mathrm{ft} / \mathrm{s}$
$\times \times X \times \times \mathrm{nmi}$ (+ is overshoot)

OPTIONAL DISPLAYS
V16N68E

V16N68
Commanded Bank Angle (Beta)
Inertial Velocity (VI)
Altitude Rate of Change (HDOT)

V16N63
Range from EMS Altitude (RTOGO)
Inertial Velocity at EMS Altitude
Time to go Until EMS Altitude
V16N74 Commanded Bank Angle (Beta)
Inertial Velocity
Drag Acceleration
XXX.XX deg XXXXX.ft/s XXXXX.ft/s
$X \times X \times \times \mathrm{nmi}$ $X \times X X X . \mathrm{ft} / \mathrm{s}$ $\mathrm{XXb} \times \mathrm{Xmin} / \mathrm{s}$
$X X X . X X$ deg
$X X X X X . \mathrm{ft} / \mathrm{s}$
$X X X . X X \mathrm{~g}$
Manual track of horizon reduces pitch error needle as pitch attitude approaches the desired angle of attack.

SC Control Switch - CMC/Auto.
Entry DAP now controlling vehicle attitude.
$\mathrm{G} \& \mathrm{~N}$ system senses 0.05 g drag acceleration.
AGC advanced to P64.

P64-ENTRY-POST 0.05 G PROGRAM

Purpose

1. To start entry guidance at 0.05 g selecting roll attitude, constant drag level, and drag threshold, KA, which are keyed to the 0.05 g point.
2. Select final phase (P 67) when 0.2 g occurs if $\mathrm{V}<27,000 \mathrm{ft} / \mathrm{s}$ at 0.05 g .
3. Iterate for upcontrol solution (P65) if $V>27,000 \mathrm{ft} / \mathrm{s}$ and if altitude rate and drag level conditions are satisfied.
4. Select final phase (P67) if no upcontrol solution exists with VL $>18,000 \mathrm{ft} / \mathrm{s}$.
5. To continue entry DSKY displays.

Assumptions:

1. The program is automatically selected by the Entry-Initialization program (P63)

Sequence of Events:

P64 entered automatically from P63 at 0.05 g .

V06N74 Commanded Bank Angle (Beta) Inertial Velocity (VI)
Drag Acceleration (G)
$X X X . X X$ deg $X X X X X . f t / s$ XXX.XX g

OPTIONAL DISPLAYS
V16N64E
V16N64
Drag Acceleration (G)
Inertial Velocity (VI)
Range to Splash (RTOTARG)
$X \times X . X \times g$
$X X X X X . f t / s$
XXXX. Xnmi
V16N68E

$$
\begin{array}{lll}
\text { V16N68 } & \text { Commanded Bank Angle (Beta) } & \times \times X . X \times \mathrm{deg} \\
& \text { Inertial Velocity (VI) } & \times \times \times \times X . \mathrm{ft} / \mathrm{s} \\
& \text { Altitude Rate (HDOT) } & \times X X X X . \mathrm{ft} / \mathrm{s}
\end{array}
$$

AGC advances to P65 or P67.
If $\mathrm{VI} \leqslant 27 \mathrm{k} \mathrm{ft} / \mathrm{s}$ at 0.05 g , go to P 67 when 0.2 g drag is sensed.
If $\mathrm{VI} \geqslant 27 \mathrm{k} \mathrm{ft} / \mathrm{s}$, a constant drag trajectory is flown until HDOT
becomes more positive than $-700 \mathrm{ft} / \mathrm{s}$. A range-to-go check will determine
if a controlled skip (P65) phase should be entered. The entry is targeted nominally for a RTOGO at EI which will be too small to satisfy P65 requirements and P67 is entered at this point.

P65-ENTRY-UPCONTROL PROGRAM

Purpose:

1. To execute Entry-Upcontrol guidance which steers the CM to a controlled exit (skip out) condition
2. To establish Entry-Upcontrol displays which are used in conjunction with the EMS to determine for the astronaut if the backup procedures should be implemented.
3. To sense exit (drag acceleration less than $\mathrm{Q} 7 \mathrm{ft} / \mathrm{s}^{2}$) and thereupon to select the Entry-Ballistic Phase program (P66).
4. Where HDOT is negative and the V is sufficiently low (V-VL-C18 neg), the program will exit directly to P67 (Final Phase).

Assumptions:

1. This program is automatically selected by the Entry-Post 0.05 g program (P64) when constant drag control has brought range prediction to within 25 nmi of the desired range. It is skipped in earth orbit missions.

Sequence of Events
P65 entered automatically from P64.

Flashing	Commanded Bank Angle (Beta)	$\times \times X . \times \times \mathrm{deg}$
V16N69	Drag Level at Skipout (DL)	$\times \times \times \times \times \mathrm{g}$
	Skipout Velocity (VL)	$\times X X X X . \mathrm{ft} / \mathrm{s}$

PRO Manual response to N69 is not necessary to terminate P65. Selection of P66 or P67 by entry guidance provides automatic termination.

V06N74	Commanded Bank Angle (Beta) Inertial Velocity (VI) Drag Acceleration (G)	$\begin{aligned} & X X X . X X \text { deg } \\ & X X X X X . f t / s \\ & X X X . X X g \end{aligned}$
OPTIONAL DISPLAYS		
V16N64E		
V16N64	Drag Acceleration (G)	XXX. XX g
	Inertial Velocity (VI)	XXXXX. ft / s
	Range-to-Splash (RTOTARG)	XXXX. \times nmi
V16N68E		
V16N68	Commanded Bank Angle (Beta)	XXX. $\times \times$ deg
	Inertial Velocity (VI)	X \times X \times. ft / s
	Altitude Rate (HDOT)	X \times X \times. ft / s

AGC advances to P66 or P67.

P67 will be entered when HDOT is negative and the velocity is sufficiently low. P66 will be entered when exit is sensed

P66-ENTRY-BALLISTIC PROGRAM

Purpose:

1. To maintain CM attitude during ballistic (skip out) phase for atmospheric reentry.
2. To sense reentry (drag acceleration builds up to $\mathrm{Q} 7+0.5 \mathrm{ft} / \mathrm{s}^{2}$ or approximately 0.2 g) and thereupon to select the Entry-Final Phase program (P67).

Assumptions:

1. This program is automatically selected by the Entry-Upcontrol program (P65) when drag acceleration becomes less than Q7 ft/s ${ }^{2}$.

Sequence of Events:
P66 is entered automatically from P65.

V06N22	Desired Gimbal Angles to Orient the Vehicle to	OG	$\times \times X . \times \times \mathrm{deg}$
	Correct Angle of Attack	IG	$\times \times \times . \times \times \mathrm{deg}$
	MG	$\times \times X . \times \times \operatorname{deg}$	

Three-axis control of S / C is regained when acceleration falls below 0.05 g and is relinquished when the drag increases above this value.
OPTIONAL DISPLAYS
V16N64E

V16N64

V16N68E
V16N68 Commanded Bank Angle (Beta)
Inertial Velocity (VI)
Altitude Rate (HDOT)
XXX. $X \times \mathrm{deg}$

XXXXX.ft/s
$X X X X X . \mathrm{ft} / \mathrm{s}$
V16N74E
V16N74
Commanded Bank Angle (Beta)
Inertial Velocity (VI)
Drag Acceleration (G)
XXX.XX de
$X X X X X . \mathrm{ft} / \mathrm{s}$
XXX.XX

AGC advances to P67.
P 67 is entered at reentry or when approximately 0.2 g is sensed.

1. To continue entry guidance after $\mathrm{Q} 7 \mathrm{~F}+0.5 \mathrm{ft} / \mathrm{s}^{2}$ (or approximately 0.2 g) unti termination of steering when the CM velocity WRT earth $=1,000 \mathrm{ft} / \mathrm{s}$ (altitude is approximately $65,000 \mathrm{ft}$).
2. To continue entry DSKY displays.

Assumptions:

1. The program is automatically selected by:
a. P65 when HDOT is negative and the V is sufficiently low (V-VL-C18 neg).
b. P66 when drag acceleration builds up to $\mathrm{Q} 7 \mathrm{~F}+0.5 \mathrm{ft} / \mathrm{s}^{2}$ (or approximately 0.2 g).
c. P64 if no upcontrol solution exists with VL> $18,000 \mathrm{ft} / \mathrm{s}$.

Sequence of Events:
P67 is entered automatically from P64, P65, or P66.
$\begin{array}{ll}\text { V06N66 } & \begin{array}{l}\text { Commanded Bank Angle (Beta) } \\ \text { Crossrange Error }\end{array} \\ & \text { Downrange Error }\end{array}$
Downrange Error

OPTIONAL DISPLAYS

V16N64E

$$
\begin{array}{ll}
\text { V16N64 } & \text { Drag Acceleration (G) } \\
& \text { Inertial Velocity (VI) } \\
& \text { Range to Splash (RTOTARG) }
\end{array}
$$

V16N68E
V16N68 Commanded Bank Angle (Beta) Inertial Velocity (VI) Altitude Rate (HDOT)
V16N74E
$\begin{array}{ll}\text { V16N74 } & \begin{array}{l}\text { Commanded Bank Angle (Beta) } \\ \text { Inertial Velocity (VI) }\end{array}\end{array}$ nertial Velocity (VI)
Drag Accelerat
Relative velocity reaches $1,000 \mathrm{ft} / \mathrm{s}$

Flashing	Range-to-Splash (RTOTARG)	XXXX.X nmi ${ }^{+}$ov
V16N67	Present Latitude	XXX.XX deg (+ north)
	Present Longitude	XXX. $\mathrm{XX}^{\text {deg (+ east) }}$

C Control-SCS
Prevent jet firings when Drogue chutes deploy PRO

Flashing Select New Program.
V37
Average G off.

Purpose:

1. To calculate parameters associated with the following concentric flight plan maneuvers for LM execution of the maneuvers under the control of the LGC; the Coelliptic Sequence Initiation (CSI) and the Constant Delta Altitude maneuver (CDH).
2. To calculate these parameters based upon maneuver data approved and keyed into the AGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. At a selected TPI time the line of sight between the LM and the CSM is selected to be a prescribed angle (E) from the horizontal plane defined at the LM position.
2. The time between CSI ignition and CDH ignition must be computed to be greater than 10 minutes for successful completion of the program.
3. The time between CDH ignition and TPI ignition must be computed to be greater than 10 minutes for successful completion of the program.
4. CDH Delta V is selected to minimize the variation of the altitude difference between the orbits
5. CSI burn is defined such that the impulsive Delta V is in the horizontal plane defined by the active vehicle position at CSI ignition.
6. The pericenter altitude of the orbit following CSI and CDH must be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit) for successful completion of this program.
7. The CSI and CDH maneuvers are assumed to be parallel to the plane of the CSM orbit. However, out-of-plane parameters are computed for TIG(CSI) and displayed. In addition, the N81 display is modified to establish an antinode at CSI.
8. If P20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
9. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program (P20).

Sequence of Events:

V37E72E

This sequence is identical to the P32 manual sequence when entered at TARGETING. Record maneuver parameters and transmit to LM.

73-LM CONSTANT DELTA ALTITUDE (CDH)

 TARGETING PROGRAM
Purpose:

1. To calculate parameters associated with the concentric flight plan maneuvers with the exception of Coelliptic Sequence Initiation (CSI) for LM execution of the maneuvers under control of the LGC. The concentric flight plan maneuvers are the Coelliptic Sequence Initiation (CSI), the Constant Delta Altitude maneuver (CDH) the Transfer Phase Initiation (TPI), and the Transfer Phase Final (TPF) or braking maneuver.
2. To calculate these parameters based upon maneuver data approved and keyed into the AGC by the astronaut.
3. To display to the astronaut and the ground dependent variables associated with the concentric flight plan maneuvers for approval by the astronaut/ground.

Assumptions:

1. This program is based upon previous completion of the Coelliptic Sequence Initiation (CSI) program (P72). Therefore:
a. At a selected TPI time the line of sight between the LM and the CSM was selected to be a prescribed angle (E) from the horizontal plane defined at the active vehicle position.
b. The time between CSI ignition and CDH ignition was computed to be greater than 10 minutes.
c. The time between CDH ignition and TPI ignition was computed to be greater than 10 minutes.
d. The variation of the altitude difference between the orbits was minimized.
e. The CSI burn was defined such that the impulsive Delta V was in the horizontal plane defined by the active vehicle position at CSI ignition.
f. The pericenter altitudes of the orbits following CSI and CDH were computed to be greater than 35,000 feet (lunar orbit) or 85 nmi (earth orbit)
g. The CSI and CDH maneuvers were assumed to be parallel to the plane of the CSM orbit; however, out-of-plane parameters are computed for TIG(CDH) and displayed. In addition, the N81 display is modified to establish an antinode at CDH.
2. If $P 20$ is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program ($\mathbf{P 2 0}$).

Sequence of Events
V37E73E
This sequence is identical to the P33 manual sequence when entered at TARGETING. Record maneuver parameters and transmit to LM.

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the Transfer Phase Initiation maneuver, given:
a. Time of ignition (TIG(TPI)) or the elevation angle (E) of the LM/CSM LOS at TIG(TPI).
b. Central angle of transfer (CENTANG) from TIG(TPI) to intercept time TIG(TPF).
2. To calculate TIG(TPI) given E or E given $T I G(T P I)$.
3. To display to the astronaut and the ground certain dependent variables associated with the maneuver for approval by the astronaut/ground.

Assumptions:

1. The program must be done over a tracking station for real-time ground participation in AGC data input and output.
2. If P 20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
3. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone, the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
4. When determining the initial position and velocity of the target at intercept time, either conic or precision integration may be used. The time difference for computation is approximately $10: 1$ (that is, conic integration is 10 times faster than precision integration).
5. The ISS need not be on to complete this program unless automatic state vector updating is desired by the Universal Tracking program (P20).

Sequence of Events:

V37E74E
This sequence is identical to the P34 manual sequence when entered at TARGETING. Record maneuver parameters and transmit to LM.

P75-LM TRANSFER PHASE MIDCOURSE (TPM) TARGETING PROGRAM

Purpose:

1. To calculate the required Delta V and other initial conditions required by the LGC for LM execution of the next midcourse correction of the transfer phase of an active

Assumptions:

1. IF P20 is in operation while this program is operating, the astronaut may hold at any flashing display and take optics marks, and/or he may allow VHF ranging marks to accumulate.
2. Once the parameters required for computation of the maneuver have been completely specified, the value of the active vehicle central angle of transfer is computed and stored. This number will be available for display to the astronaut through the use of V06 N52.
The astronaut would call this display to verify that the central angle of transfer of the active vehicle is not within 170 to 190 degrees. If the angle is within this zone the astronaut should reassess the input targeting parameters based upon Delta V and expected maneuver time.
3. The time of intercept (T(INT)) was defined by previous completion of the LM Transfer Phase Initiation (TPI) program (P74) and is presently available in AGC storage.
4. There is no requirement for ISS operation during this program unless automatic state vector updating is desired by the Universal Tracking program (P20).

Sequence of Events

V37E75E

This sequence is identical to the P35 manual sequence when entered at TARGETING Record maneuver parameters and transmit to LM.

Purpose:

1. To provide a means of notifying the AGC that the LM has changed its orbital parameters by the execution of a thrusting maneuver.
2. To provide to the AGC the Delta V applied to the $L M$ to enable an updating of the LM state vector.

Assumptions

1. The CSM crew has the Delta V to be applied by the LM in local vertical axes at a specified TIG. These values are displayed prior to TIG by the Prethrust Targeting program in the LM. No provision is made by these thrusting programs to display th and this Delta V is not as specified or if TIG is not as originally specified, consul backup procedures.
2. In the event of an uplink failure, the astronaut can create a reasonable LM state vector for LM insertion into orbit from the lunar surface by keying in the expected LM thrusting maneuver from the lunar surface while the surface flag is set. This wil cause the computer to take the position vector of the landing site and add the inputted Delta V and store the results in the LM state vector. The landing site wil
not be altered.
3. This program may be selected manually or internally by the MINKEY controller.

Sequence of Events:

If entered automatically by the MINKEY controller, go to Flashing V06N33. V37E76E

Flashing	Time of ignition of LM thrusting	$00 \times \times \times \mathrm{h}$
VO6N33	maneuver TIG	$000 \times \times \mathrm{min}$

TIG is loaded with CSM calculated TIG from targeting program V25E to modify TIG.
PRO

Flashing	Delta V of LM at TIG in	X	$X \times X X . X \mathrm{ft} / \mathrm{s}$
V06N84	Local Vertical Coordinates	Y	$\times \times \times X \times \mathrm{ft} / \mathrm{s}$
		Z	$X \times X X . X \mathrm{ft} / \mathrm{s}$

N84 is loaded with the negative of the CSM targeting solution, modified for out-of-plane velocity (YDOT). IF CSM actually did burn, N84 is loaded with zero.
V25E to modify Delta V.
PRO
If manual sequence, go to Flashing V37
If MINKEY sequence, the next targeting program in the rendezvous
If MINKE sequence, the next targeting program

1. Multiple Coelliptic Sequence Initiation (CSI)
2. Height Adjustment (HAM) maneuver (P31).
3. Final Coelliptic Sequence Initiation (CSI) maneuver (P32)
4. Plane change (PC) maneuver (P 36)",
5. Constant Delta Altitude (CDH) maneuver (P33),
6. Transfer Phase Initiation (TP1) maneuver (P34),
7. Transfer Phase Midcourse (TPM) number one maneuver (P35),
8. Transfer Phase Midcourse-1TPM) number two maneuver (P35),
9. Final Rendezvous Attitude maneuver and display (P79).
"If P76 is entered after the PC maneuver and an IMU PC reorientation was performed, MINKE Y returns to P52 for a realignment of the IMU to its original orientation prior to selection of the CDH targeting program.

Flashin
V37
V37
Select new program (manual sequence) Perform PC targeting computation
Inhibit rendezvous navigation．
Plane change realignment option：

P36（PC Targeting）

P32（CSI Targeting）
Inhibit rendezvous navigation
Select a burn program＊
Update LM orbital parameters（P76）for LM thrusting maneuver．

If NN $=4$ ，select Height Adjust Maneuver targeting（P31）
If $\mathrm{NN}<4$ ，select Plane Change targeting（P36）．
Purpose．To perform automatic sequencing of rendezvous oroarams．
1．To perform automatic sequencing of rendezvous proarams． 3．To perform Target Delta V（P76）after each rendezvous maneuver with Assumptions：

ヨNILกOY צヨาาOY 1 NOO 人ヨシ्रNIW－LOY

R07－MINKEY CONTROLLER ROUTINE					
Purpose：					
1．To perform automatic sequencing of rendezvous programs． 2．To establish Universal Tracking program（P20）Option 4，with present values for P20 displays． 3．To perform Target Delta V（P76）after each rendezvous maneuver with appropriately computed P76 displays．					
Assumptions：					
1．The initialization values for the W matrix must be loaded prior to selection of a rendezvous targeting program． 2．This routine is initiated by astronaut selection of a rendezvous targeting program or the Rendezvous Final Phase（P79）program．					
Sequence of Events：					
The following sequence is presented as a summary of program flow and significant event occurrence for a nominal rendezvous．The MINKEY controller may be activated at any of six reset points：pre－HAM（P31），pre－CS1（P32），pre－PC（P36），pre－CDH（P33）， pre－TPI（P34），or pre－TPM（P35）．This sequence is initiated at the HAM maneuver prior to the final CSI maneuver；however，multiple CSI maneuvering may be sequenced by the MINKEY controller．					
P31（HAM Targeting）					
1．Start rendezvous navigation（P20）Option 4，with optics tracking assumed；maneuver to track attitude and enable VHF ranging and state vector updating．					
2．Perform HAM targeting computations．					
3．Inhibit rendezvous navigation．					
4．Select a burn program＊．					
5．Update LM orbital param					

 P79－FINAL RENDEZVOUS PROGRAM
Purpose：
1．To establish X－axis tracking by P20．
2．To select the rendezous paraneter difolay（R31）internally to provide range and
range rate information prior to the beraking phase of rendervous．
Assumptions：
1．This program may be selected manually or internally by the MINKEY controller．
Sequence of Events： V37E79E If entered automatically by MINKEY controller，go to MANEUVER．
Note：If P20 rendervous options is not running，P20 Option 4 is activated now．
MANEUVER Note：$\quad \begin{aligned} & \text { P20（R61）will maintain tracking attitude computations．If the attitude } \\ & \text { error becomeg greater than } 10 \text { degrees，the astronsut will be alerted by：}\end{aligned}$
UPLINK ACTY light on UPLINK ACTH Mity
If the tracking attitude error between the vehicle X－axis and the LOS to the LM
is less than 10 degress（computed by P20／R61）， 80 to DISPLAY．
The attitude P20 Options $0 \& 1-\quad$ Angular error between the vehicle pointing axis snd
the LoS to the target with no angular constraint about P20 Options $4 \& 5-\begin{aligned} & \text { the pointing vector．} \\ & \text { Angular errors between the actual and desired gimbal } \\ & \text { angles required to align the vehicle pointing axis along }\end{aligned}$ P20 Options 4 \＆5－－ $\begin{aligned} & \text { Angular errors between the ectual and desired gimbal } \\ & \text { angles required to align the vehicie pointing xais along } \\ & \text { the LOS to the target and constrain the rotation about } \\ & \text { the pointing vector．}\end{aligned}$

V58E

R07 (continued)

5. Select a burn program* (P41 selected if Y axis RCS used).
6. Reorient IMU to original orientation prior to PC realign and maneuver to LM tracking attitude (only if IMU realignment was performed).
7. Update LM orbital parameters (P76) for LM thrusting maneuver
8. Select Constant Delta Altitude targeting (P33).

33 (CDH Targeting)

1. Start rendezvous navigation (P20), maneuver to tracking attitude,
and enable VHF ranging and state vector updating.
Perform CDH targeting computations.
Inhibit rendezvous navigation
Select a burn program*.
2. Update orbital parameters (P76) for LM thrusting maneuver
3. Select Transfer Phase Initiation targeting (P34)

34 (TP) Targeting)

1. Start rendezvous navigation (P20), maneuver to tracking attitude, and enable VHF tracking and state vector updating.
Perform TPI targeting computations.
Inhibit rendezvous navigation.
Select a burn program*.
Update LM orbital parameter (P76) for LM thrusting maneuver.
2. Select Transfer Phase Midcourse targeting (P35).

35 (TPM Targeting)

1. Start rendezvous navigation (P 20), maneuver to tracking attitude, and enable VHF tracking and state vector updating.
Perform TPM targeting computations and reinitialize W matrix
Inhibit rendezvous navigation.
Select a burn program*.
Update LM orbital parameters (P76) for LM thrusting maneuver.
Test for completion of midcourse correction (MCC) maneuver.
a. If MCC-1 just completed, return to TPM targeting (P35) for MCC-2 maneuver computations.
b. If MCC-2 just completed, go to final rendezvous (P79).

P79 (Final Rendezvous)

1. Start rendezvous navigation (P 20), maneuver to X -axis tracking attitude, and enable VHF tracking and state vector updating.
2. Activate rendezvous parameters display (R31) of range, range rate, and theta
3. Exit MINKEY autosequencing and manually select new program.
*Automatic selection of a burn program ($\mathrm{P} 40 / \mathrm{P} 41$) is based upon the Delta V solution computed in the targeting program:
4. If Delta $V<7 \mathrm{ft} / \mathrm{s}$, the RCS Burn (P 41) program is selected.
5. If Delta $V \geq 7 \mathrm{ft} / \mathrm{s}$, the SPS Burn (P 40) program is selected.

MC ERASABLE PROCEDURES

The following erasable programs and procedures have been developed or are in work by MIT and NASA fight software division to extend the capability of the Colossus software and to provide workarounds in the event hardware malfunctions limit normal use of the G\&N system. Erasable memory programs, which involve a software program to be loaded into E-memory, are distinguished from keyboard procedures by an EMP reference number.

Computer Subsystem (CEP 001-009)

CEP 001 Software Restart Initiated by V31. A bailout type software restart (Error Software Restart Initiated by V31. A bailout type software restart (Error
Code 31211) can be executed in preference to the hardware restart of V69 by Code 31211) can be exe
means of this procedure.

Refer to EMP 502.
CEP 002 Saturn Rate Change. Saturn maneuver rates commanded via the RHC during Saturn Rate Change. Saturn maneuver rates commanded via the RHC during
Saturn takeover may be changed as desired using the referenced procedure. Refer to CSM Launch Checklist L2-33.

CEP 003 CMC Control Mode and Optics Override. S/C attitude and optics mode CMC Control Mode and Optics Override. S/C attitude and optics mode control inbit or switch failures can be overriden using an erasa
register, C31FLWRD, with no loss in mode control capability.

Refer to CSM G\&C checklist G1-18.
CEP 004 CSM State Vector Readout and Transfer. Either the CSM or LM state vector may be read out or loaded using the referenced procedure.

Refer to CSM G\&C checklist G9-8.
CEP 005 V36 Recovery. Reinitialization of the DAP and reactivation of gyro drift compensation is accomplished following the performance of a Fresh Start.

Refer to CSM G\&C checklist G1-20.
General System Checkout. This procedure provides a check on validity of state vector, REFSMMAT, or E-memory dump should a recovery from Standby mode, Fresh Start, or GOJAM be necessary. A procedure is also included to recover from an "ALL8's" display on the DSKY.

Refer to CSM G\&C checklist G1-20, 21, and 9-1
CEP 007 Change ATIGINC. The time delay between rendezvous midcourse targeting and TIG, which allows for preparation of the thrust maneuver, may be changed as desired.

Refer to CSM G\&C checklist G4-13.
CEP 008 Intercept Time Display After Final Computation in P34. The time at which the CSM will intercept the LM for the computed TPI maneuver is available in the CMC for display. The intercept time is read out of its E address in octal and then loaded into N34 to facilitate a decimal display.

CEP 009 P37 Range Change Procedure. The value of range (P37RANGE) used in calculating the earth landing coordinates can be changed by first loading R1 of N63 with the desired decimal value, then reading out N63(R1) in octal, and finally loading P37RANGE with the octal value of range.
CEP 010 RMAX/VMAX Loading. Position and velocity vector magnitude changes (N49) for state vector updates can be displayed each measurement by loading sufficiently small values of RMAX or VMAX. These parameters are the largest vector magnitude changes which are incorporated automatically.
Refer to CSM G\&C checklist G3-4.

CEP 011 MINIMINKEY. Reduction in the number of key strokes during P23 can be accomplished by inverting REFSMFLG after star-horizon acquisition and first mark. A successive pass through P23 will bypass the acquisition and maneuver displays and will go directly to the marking display after the optics calibration is bypassed.
Refer to EMP 514.
CEP 012 Digital Event Timer. An erasable procedure is proposed to make use of the DSKY as a backup event timer.

Inertial Subsystem (CEP 101-199)
CEP 101 CMC Operation with the IMU Cage Discrete Failed-On. In the event of a cage discrete failure with an uncaged IMU, normal autopilot operation can be resumed by reinitializing IMODES30 and resetting IMODES33 Bit 6 .

Refer to PCR 1171.1.
CEP 102 CMC Operation with ISS Turn-On Discrete Failure. To be determined.
Refer to PCR 1172.1
CEP 103 CMC Operation with IMU Operate Discrete Failed-Off. To be determined Refer to PCR 1173.1.

CEP 104 Inhibit T4RUPT Coarse Alignment of IMU Because of Runaway ZCDU During Coasting Flight In the event a ZCDU failure causes an apparent gimbal lock coastition the automatic coarse align moding can be inhibited by setting AVEGFLAG and loading the Saturn vehicle configuration in R1 of N46. This procedure preserves the use of the IMU as an inertial reference but precludes use of the digital autopilots.

Refer to EMP 509.
P40 Termination During AVERAGEG When EMP 509 is Operating. When EMP 509 is running, this procedure is available to facilitate use of P40, 41 thrusting programs without interference with the coarse align inhibiting. The status of AVEGFLAG is maintained while P40 and AVERAGEG are terminated correctly.

Refer to EMP 512.
Rapid IMU Realign. Assuming a good alignment exists on the SCS-GDC, the GDC alignment is transferred to the IMU with a subsequent P52 to fine-align the platform.

Refer to CSM G\&C checklist G7-1.
CEP 106 P20 Operation Using GDC REFSMMAT. In the event the IMU is disabled, a REFSMMAT can be computed for the GDC orientation (CEP 117). GDC angles can then be loaded in N20 for P20 computation of desired FDAI angles to align the vehicle pointing axis along the LOS to the LM. Maneuvering is done manually. Fixed attitude marking can then be accomplished by loading N20 with the final GDC angles.

Refer to CSM G\&C checklist G3-14.
Enter P51 with IMU Discrete Failed. P51 IMU orientation determinations can be made despite an IMU operate discrete failure.
Refer to PCR 1160.
Entry with a Failed CDU. With proper initialization in P62, a normal entry can be performed with a failed CDU.

Refer to PCR 1169.

CEP 112 PIPA Bias Measurement and Loading. Onboard measurement of PIPA bias and subsequent loading of bias compensation values is accomplished in this procedure.

Refer to CSM G\&C checklist G2-2
nable V40 in Apparent Gimbal Lock. For a stable ZCDU in apparent gimbal

CEP 114
CEP 115
Update at Liftoff. Cancelled.
Recovery from Restart During Plane Change Pulse Torquing. Should a restart occur during P.C. pulse torquing, the gyro torquing is suspended and the lesired REviles for completion of the reorientation and transfer of the REFSMMAT.

Refer to EMP 518.
Changing Landing Site REFSMMAT for Out-of-Plane Burns. This procedure involves altering the landing site latitude by ± 35 degrees and realigning the platform to the recomputed landing site REFSMMAT. This allows maneuvering the vehicle for out-of-plane burns without encountering gimbal lock.
Refer to CSM G\&C checklist G7-2
CEP 117 GDC REFSMMAT Determination. Loading of N20 with GDC angles and proper initiation of P51 logic enables onboard computation of REFSMMAT proper initiation of
for GDC orientation.

Refer to CSM G\&C checklist G7-13, EMP 503.
CMC Direct Ascent Rendezvous Timeline with IMU Failed. To be determined.
VHF Ranging (CEP 201-299)

CEP 201 Display of VHF Range on DSKY During P79. In the event the EMS range counter should fail during rendezvous inal phase, a means is avallable for backup range display on the DSKY. By enabling state vector updates during P79, the range marks can be monitored as they are taken. A possible waiting N49 display will terminate further marks until the waiting display is responded to.
Refer to EMP 506.
CEP 202
VHF Range Display on DSKY. The raw VHF range data may be displayed anytime the range marking system is active by monitoring the associated erasable location.

Refer to CSM G\&C checklist G1-20.

Refer to EMP 515.

Optics Subsystem（301－399）

을
پै

s used，can be compensated for by using the COAS variance（ALTVAR）
rather than the SXT variance SXTVAR．

Refer to EMP 504.

 activated by a waitlist call to routine MARKDIF in the event of an open
failure of the MARK switch．Closed failures of the MARK switch merely

Refer to EMP 505.

 performed．

Refer to CSM G\＆C checklist G3－2，EMP 508.

 alternate LOS coordina

Refer to CSM G\＆C checklist G3－18，EMP 500.

P40 with Failed Optics CDU．To be determined．

coordinates to P20 pointing vector coordinates，gamma，rho and loads them in
Refer to EMP 517.
Alignments with Failed OCDU．IMU alignment programs P51／P52 can be
performed with a failed OCDU by altering the mark data in the failed axis performed with a failed OCDU by altering the
with the TPAC angle read at the time of marking． Refer to Colossus memo 332.
$90 \varepsilon d \exists ว$
CEP 306
N
0．
岂

CEP 311

そเع dヨコ

[^0]:

[^1]: Purpose:
 WもyפOyd yolinow \perp SnyH $\perp-$ Lbd

 1. To monitor vehicle acceleration during a non-GNCS-controlled thrusting maneuver.
[^2]: STAR/STAR COAS 0.70°
 STAR/PLANET COAS 0.72

