Hyundai Motor Group's Development of the Fuel Cell Electric Vehicle

John Juriga Director of Powertrain Hyundai / Kia America Technical Center May 10th, 2012

- 1. Hyundai's ECO friendly strategy
- 2. FCEV development at Hyundai
- 3. The Global Approach to FCEVs
- 4. An OEMs Next steps: Validation and Production

1. Global Issues

Paradigm shift in automotive industry is demanded due to global warming & oil depletion

- Transportation part captures 21% of total energy consumption, 23% of GHG emission

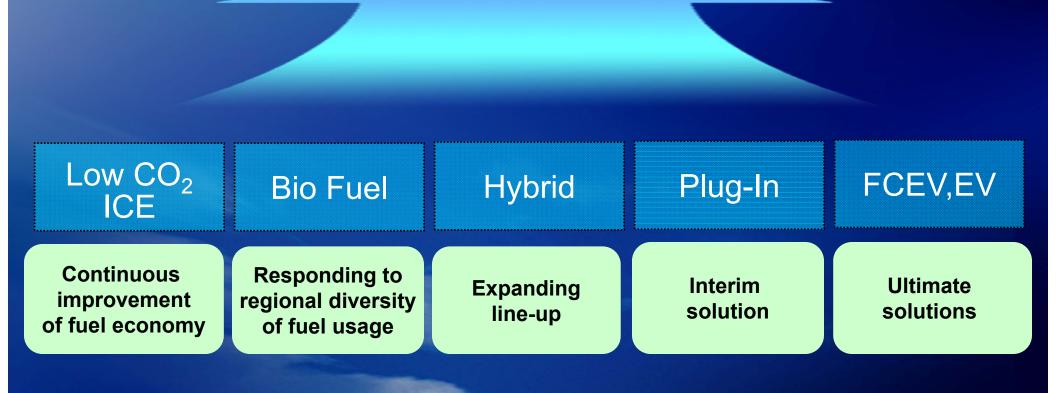
► Carbon Dioxide Increase

- CO₂ concentration in air
- : 280 ppm (before industrialization) \rightarrow 379 ppm (present)
- : Doubled CO_2 conc. \rightarrow Temp. increase 2~4.5°C (3.6~8.1F)

Climate Change & Natural Disaster

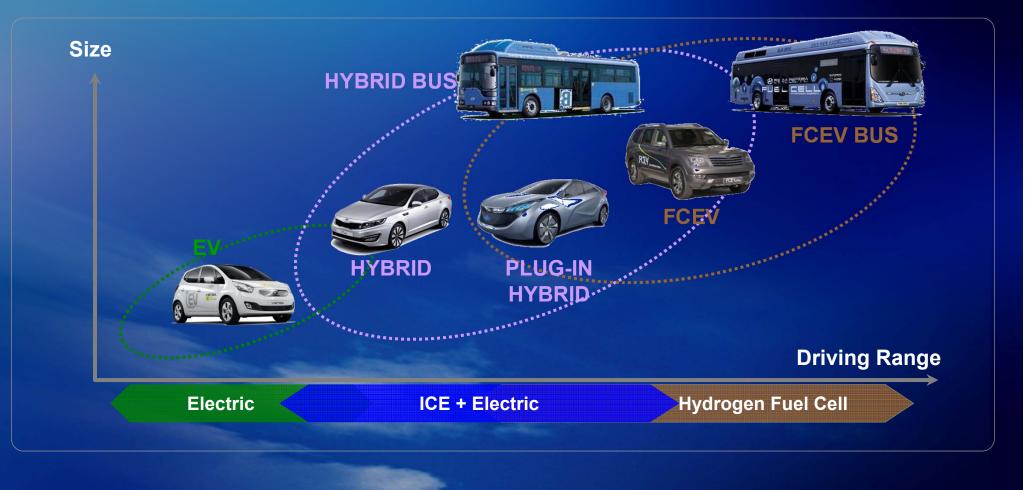
- Water shortage, flood & extinction of species

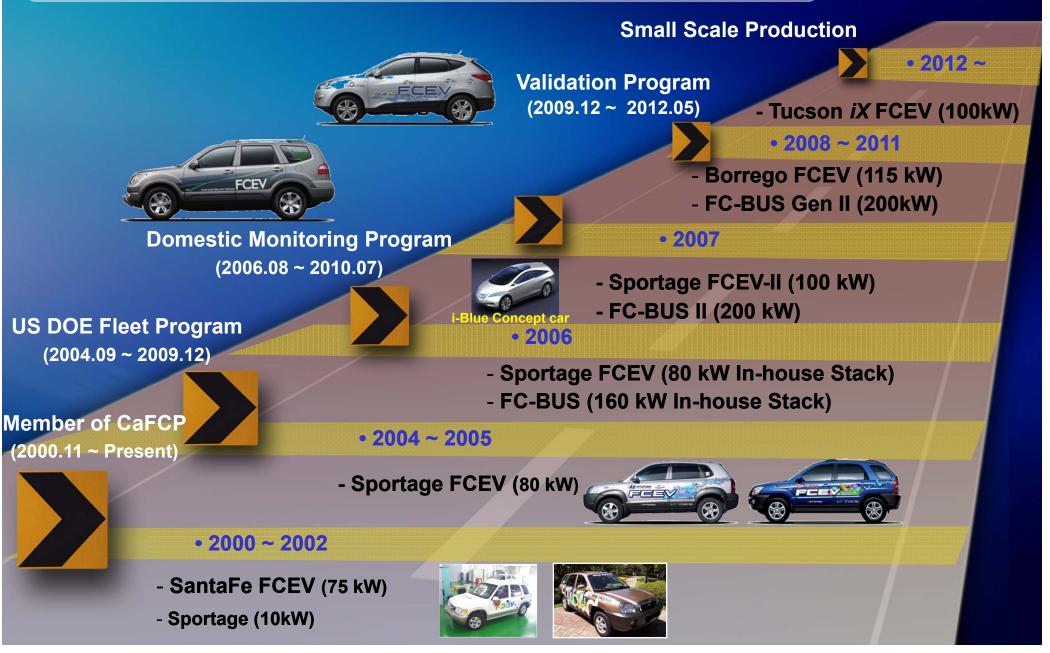
Expected Peak Oil


- Future limitations on oil discovery and production
- Oil consumption increase in BRICS
- Oil consumption annual growth rate ('00~'20)
- : China 4.1%, India 3.8%
- Dubai oil's annual price increase rate: 6%
- : Forecast over \$200/bbl in 2029

Hyundai's Eco-friendly Vehicle Strategy

Preserving automobile mobility while creating


a harmonious balance with our environment



Hyundai's Eco-friendly Vehicle Strategy

Small vehicles for short driving range \rightarrow EV

• Large vehicles for long driving range \rightarrow Hydrogen FCEV

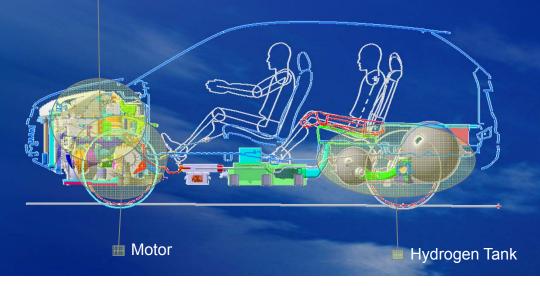
80 kW Fuel Cell Vehicle (2006)

Fuel Cell Power	80 kW
Aux. Power	20kW – LiPB
Motor System	80 kW
H ₂ Tank	3.7 kg H ₂ @ 350 bar (8.2 lb @ 5.1 kpsi)
Fuel Economy	20.7 km/l (48.7 mpg)
Driving Range	291 km (181 miles)
Acceleration (0 $ ightarrow$ 100kph)	16.2 sec
Max. Speed	141 kph (88 mph)

100 kW Fuel Cell Vehicle (2007)

FC Bus – 1st Generation (2006)

FC Bus – 2nd Generation (2009)


Fuel Cell Power	160 kW
Ultra-capacitor	Max. 240 kW
Motor System	240 kW
H ₂ Tank	40kg H ₂ @ 350 bar (88 lb @ 5.1 ksi)
Acceleration (0 →50kph)	14.2 sec
Max. Speed	72 kph (45 mph)

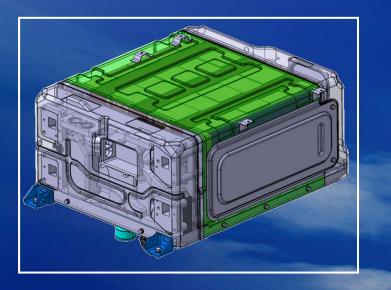
Fuel Cell Power	200 kW
Ultra-capacitor	Max. 400 kW
Motor System	300 kW
H ₂ Tank	30kg H ₂ @ 350 bar (66 lb @ 10.2 ksi)
Acceleration (0 →50kph)	8.4 sec
Max. Speed	104 kph (65 mph)

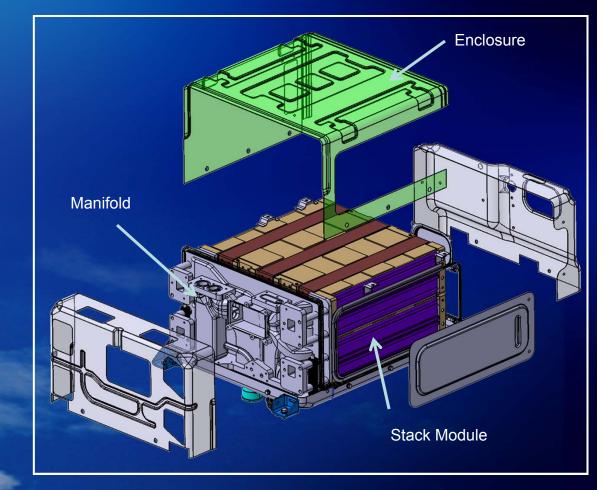
Tucson iX Fuel Cell Vehicle (2012)

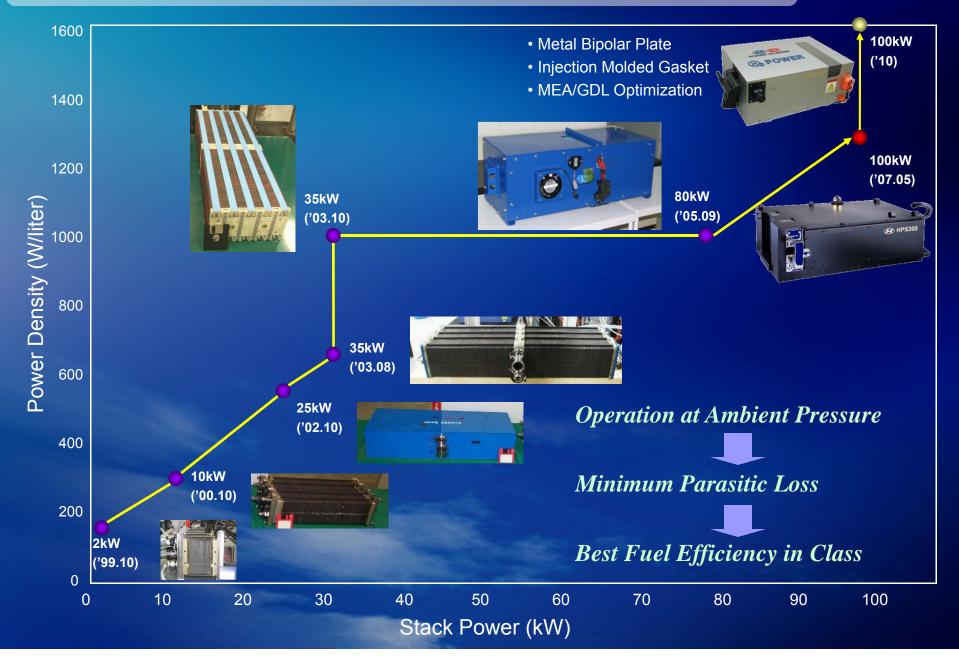
- Simpler module design of fuel cell system for volume production
- Drastic cost reduction by metallic bipolar plate, AC induction motor, and Li-ion battery
 Improved vehicle performance for fleet &
 - general public customers

Fuel Cell Stack

Fuel Cell Power	100) kW	
Battery	34 kW		
Motor System	AC Induction/100 kW		
H ₂ Tank	700 bar		
Fuel Economy	30 km/L	(73 mpg _{ge})	
Driving Range	650 km	(406 miles)	
Acceleration (0 → 100kph)	12.9 sec		
Max. Speed	160 km/h	(100 mph)	

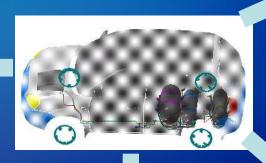

Tucson iX Fuel Cell System (2012)


- Size reduction achieved through modularization
- System Power Density: > 640 W/L (DOE Target: 650 W/L)
- Gas/Gas Humidifier
- Cold Start Capability: -25 °C
- System max. Pressure: 1.45 bara


Tucson iX Fuel Cell Stack (2012)

- Max. Power: 100 kW
- Power Density: 1.65 kW/L
- Operating Voltage: 250~450V
- Cold Start Ability: -30 °C
- Max. Air Pressure: 1.35 bara
- Separator: Metal

Fuel Cell Stack Development


Fuel Cell Vehicle Tests

Collision Tests

Front crash test (Frontal rigid barrier)

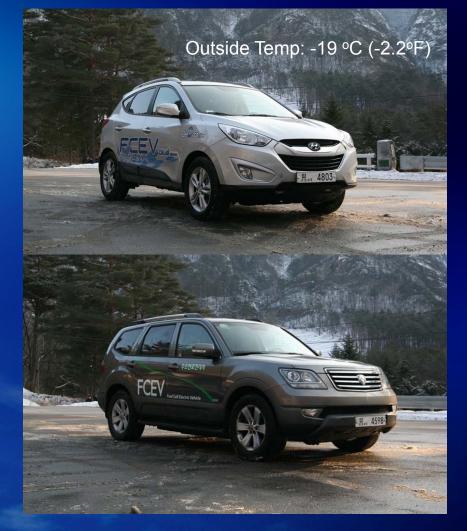
The hydrogen tank is protected from collisions!

Side impact crash test (Side deformable barrier)

Rear crash test (Rear rigid barrier)

Rear-offset crash test (Rear deformable barrier)

Fuel Cell Vehicle Tests


Freeze Capability Tests

@ -20°C (-4°F) in Environmental Chamber

on Taebak Mountains (Jan., 2011)

Hydrogen Safety Tests

Fire Tests

	Gasoline Vehicle	FCEV with Type 3 Tanks			
Test Condition	 Fire initiated from the ashtray 				
Result	 Fuel tank exploded after 40 minute. 	PRD activated after 22 minutes.			
	CNG Tank (150 bar/2.2 kpsi)	Hydrogen Tank (350 bar/5.1 kpsi)			
Test Condition	• Fire Source: LPG gas				
Result	 PRD activated: CNG vent Max. flame height: 11 m (36 ft) 	 PRD activated: H₂ vent Max. flame height: 8 m (26 ft) 			

Facilities for Fuel Cell System Development

FC System Test Bench (Bread Board)

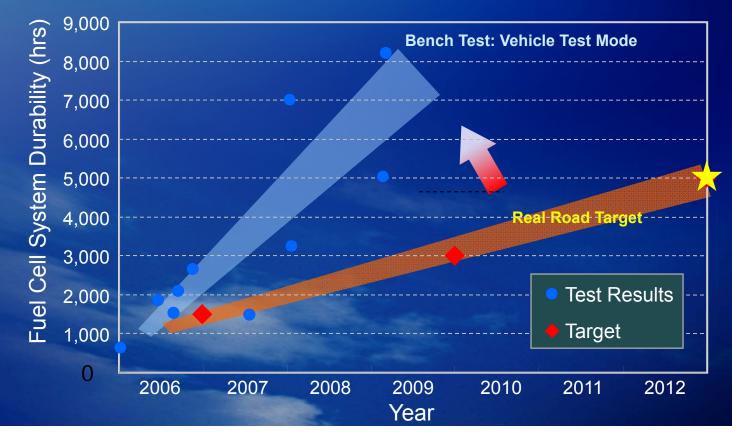
FC Stack Test Station (100 kW Class)

Facilities for Fuel Cell System Development

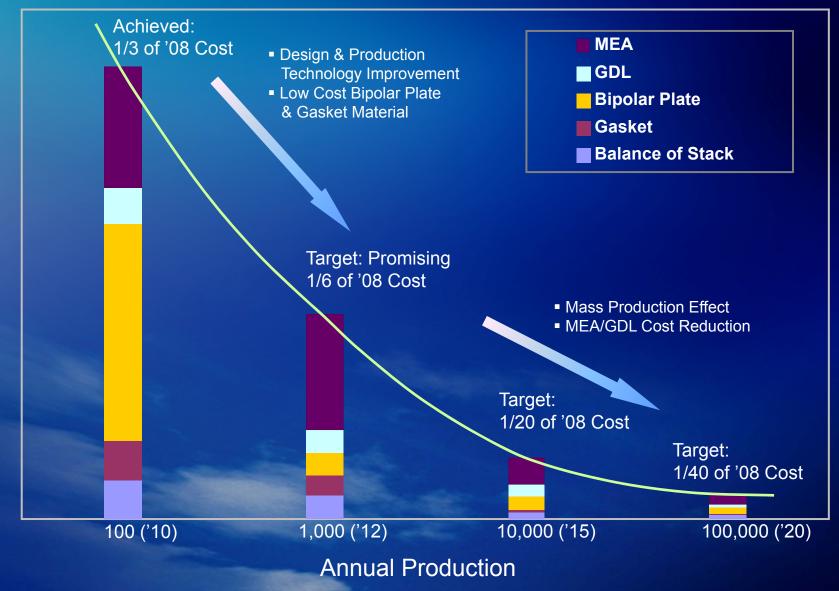
Motor Test Equipment (100 kW Class)

Motor Test Equipment (250 kW Class)

Fuel Cell Stack Development


Durability

Durability = func. (Operation parameters, driving mode, environmental effects)


Verification of degradation mechanism

(Start-up / Shut-down / Cold start Up / High temperature operation)

Development of new material (Catalyst / Membrane)

Cost Estimation

Cost

3. Hyundai's Global Approach

Hyundai has a global approach to FCEV development: Working in Asia, Europe & North America
Each region is being evaluated for viability of the technology and infrastructure

Korean Domestic Fleet Program (1st stage)

1. Period: 2006. 8 ~ 2010. 12 (4 years)

2. Vehicles: 30 SUVs, 4 Buses

Year	SUV	Bus	Station
1 st	4	1	2
2 nd	8	1	2
3rd	18	2	1

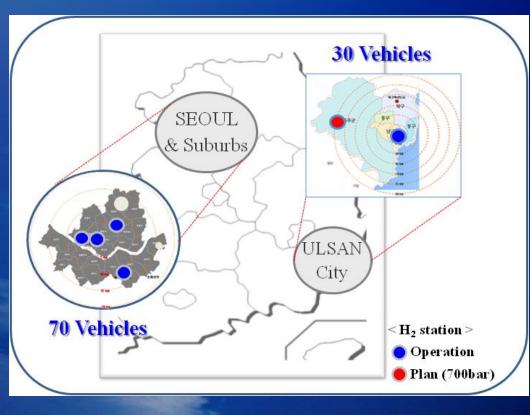
3. Budget: \$ 46.6 million (Government 50%)

4. Hydrogen Stations: 11 in operation as of Feb. '11

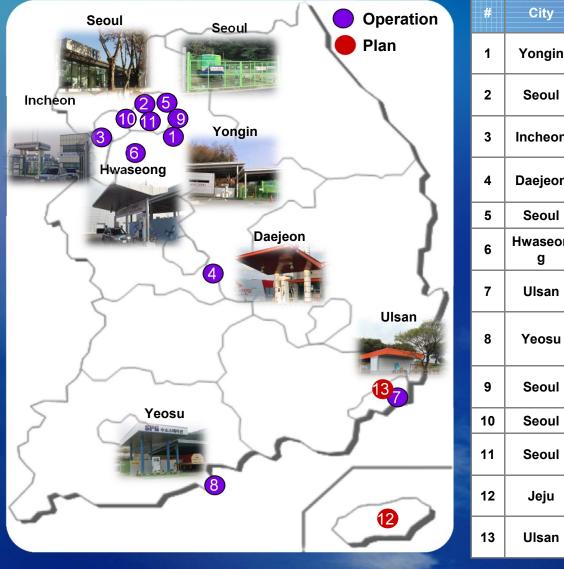
- Had 4 stations in '07 (SK, GS-Caltex, KOGAS, HMC Mabuk)
- Planned 5 more stations by '10 (Seoul, HMC Namyang,

Jeju Island, Ulsan, Yeosu)

4. Results


- Total: 1,297,799km (806,587miles)
- Avg. fuel economy: 19.2km/l (45.2 mpg)

Domestic Fleet Program (2nd Stage)


- Launched in Dec. 2010 as Phase 2
 - 100 vehicles to general customers in capital area and Ulsan (center of auto & oil industry)
 - 13 stations are ready by 2011
 - Total mileage: 1,137,789 km (706,989 miles)

H₂ Stations in Korea

• 13 stations in operation (Jan., 2012)

#	City	Installer	Year	Туре	Pressure	Project
1	Yongin	НМС	2005	Truck-in	350/700bar	-
2	Seoul	GS-Caltex	2006	Naphtha reforming	350 bar	H ₂ station development
3	Incheon	KOGAS	2007	NG reforming	350 bar	↑
4	Daejeon	SK Energy	2007	LPG reforming	350 bar	H ₂ station development
5	Seoul	KIST	2008	Mobile	350 bar	FCEV Fleet
6	Hwaseon g	нмс	2008	Truck-in	350/700bar	-
7	Ulsan	Dongdeok Gas	2009	↑	350 bar	FCEV Fleet
8	Yeosu	SPG Chemical	2009	ſ	350 bar	FCEV Fleet
9	Seoul	НМС	2009	Mobile	350 bar	2 nd FCEV Fleet
10	Seoul	нмс	2010	Truck-in	350 bar	FCEV Fleet
11	Seoul	City of Seoul	2011	Landfill gas reforming	350 bar	-
12	Jeju	НМС	2011	Electrolysis	350 bar	FCEV Fleet
13	Ulsan	Dongdeok Gas	2011	Truck-in	700bar	2 nd FCEV Fleet

Hyundai's Hydrogen Station

1. Yongin

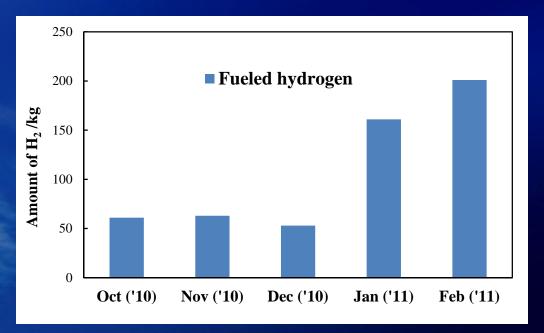
- Capacity: 26 vehicles/day
- Refueling pressure: 350/700 bar

2. Hwaseong

- Capacity: 43 vehicles/day
- Refueling pressure: 350/700 bar

3. Seoul

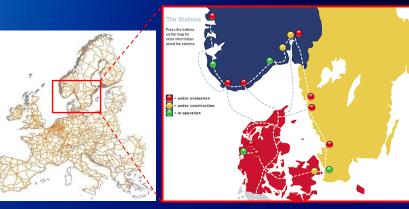
- Capacity: 13 vehicles/day
- Refueling pressure: 350 bar


Hyundai's Hydrogen Station in Seoul

Period Vehicle type		# of fueling (Vehicle/month)	Avg. pressure (^{bar)}	H_2 (H ₂ kg/Vehicle)	
	Sep		16	96	3.21
2010	Oct	<u>euv</u>	21	117	2.92
2010	Nov	SUV	25	134	2.52
	Dec		15	97	3.53
		SUV	34	127	2.92
Jan	Bus	4	97	15.5	
2011	2011	SUV	59	136	2.77
	Feb	Bus	3	96	12.4
SUV avg.		28	118	2.89	
Bus avg.		4	97	14.2	

H₂ Production and Infrastructure > Most H₂ from chemical process 80km > Annual capacity: 1.171 million ton Daesan Aoun 108,400m³/hr \succ By-product H₂: 100k ton Ulsan 20% of By-product H₂ I 100k FCEV/year 1,030,500m³/hr Yeosu Produc 363,800m³/hr No additional investment for H₂ production for early market introduction **Projected** Scenario Phase 1 (~'14) Phase 2 (~'20) Phase 3 (~'30) 100 stations 20 stations 500 stations Phase 1: Focusing on densely-populated area + H₂ production sites : 10 stations Phase 2: Spreading out to large cities : 50 stations

Phase 3: Networking the large cities


European Fuel Cell development

Distribution of FCEV in Europe

FCV test & deployment project with Scandinavian countries (Jan., 31, 2011)

- Norway, Sweden, Denmark and Iceland
- FCVs developed by Hyundai's proprietary technology will be supplied

Construction of refueling stations (Scandinavian Hydrogen Highway Partnership)

Partnership with CEP (Clean Energy Partnership) (Feb., 25, '11)

Present CEP members

Activities with EU Government

EU Government Supported Projects

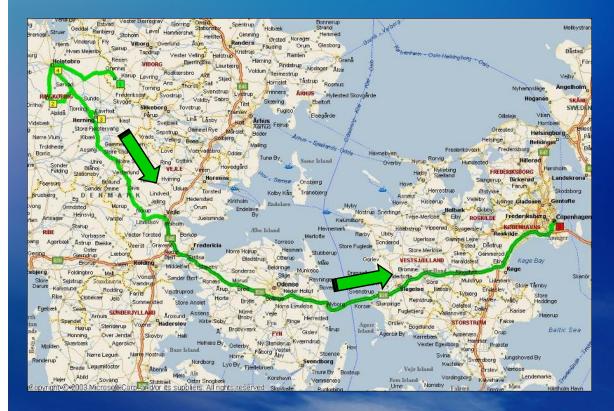
1. H2MOVES

- Budget: Total 2.43M € (0.97M € by EU).
- Period: '09. 11~ '12. 12 (3 years)
- Participated in the events (Germany (HME), UK (Ecovelocity), Italy (EcoDolomites) and Denmark (COTY Jury events, Copenhagen))

2. H2CONNECT

- Budget: Total 9.77M € (3.39M € by EU).
- Period: '12. 9~ '15. 8 (3 years)
- 25 Vehicles will be deployed in Germany (10 vehicles), Italy (10 vehicles) and Sweden (5 vehicles)

3. EU Parliament Officials Test Driving


- Available to test-drive by members of European Parliament, Commissioners, EU officials and other policy makers

- Period: '11. 10 ~ '12. 03 (6 months)

Field Test In Denmark May, 2011

Karub → Ringkobing → Herning → Holstebro → Copenhagen: 341 km for 3.7 hr

Michelin Challenge Bibendum (May 2011, Berlin)

<Exhibition Center>

<Mobile H2 Fueling Station (700 bar)>

<Ride & Drive>

<London Taxi INT>

<ZERT - Formula Zero (Max. 100 km/h)>

< CRF (Italy) >

ZERO Rally in Oslo, Norway (June , 2011)

Date	Zero Rally in Oslo		
	√ Driving Mileage: 144 km (89 miles)		
	$\sqrt{\text{Test Driving for Vehicle Performance Evaluation}}$		
June 7, 2011	1) Slalom Tests – Twice		
	2) Racing Test – Once		
	\sqrt{We} successfully completed the whole rally with a Tucson iX vehicle.		
	$\sqrt{\text{Driving Mileage: 180 km (112 miles)}}$		
June 8, 2011	$\sqrt{\text{Uphill Climbing (Grading) Test} - \text{Once (Gradability = 10 ~ 15%)}}$		

< Start>

< Racing Test>

< 1st Slalom Test>

< 2nd Slalom Test>

Other Activities in Europe (Sep.~Oct., 2011)

1st Eco-Velocity 2011 in London, UK

(Sep., 2011)

Klima Mobility 2011 in Italy (Sep., 2011)

EcoDolomites 2011 in Italy (Sep., 2011)

France FCEV Show in France (Oct., 2011)

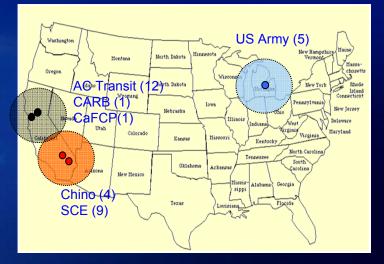
U.S. Fuel Cell development

US (DOE) Fleet Program History

- 1. Period: 2004. 12 ~ 2009. 12 (5years)
- 2. Budget: \$105 million (Consortium, Government 50%)
- 3. Partners: Chevron Texaco (Hydrogen Filling Station)

UTCFC (Fuel Cell Stack)

AC Transit, SCE, US Army, CARB (Fleet Operators)


- 4. Vehicles: 32 Tucson/Sportage FCEVs
- 5. Accomplishments
 - Total: 835,212 km (522,000 miles)
 - Cold weather drivability proved for 3 years in Michigan

1st Vehicle for Demo Fleet Program (2005. 12.16)

US Hydrogen Station Completion (2005. 2.18)

Borrego FCEV: San Francisco \rightarrow LA Driving Test (396 miles, 2008)

Departure Point

Traveling Route

Arrival Point

Item	Contents		Notes
Actual Mileage	634 km	396 miles	
H ₂ Consumed	6.65 kg (84%)		
Total Capacity of H ₂ Tank	7.92 kg (100%)		Actual H ₂ Fueling Quantity: 7.76 kg (98%)
H ₂ Remained	1.27 kg (16%)		
Avg. Fuel Economy	25.7 km/L	(60.7 mpgge)	
Additional Available Distance	121 km	(75 miles)	- Read on Avg. Evel Economy (@ 100% H. Consumption)
Driving Range	758 km	(471 miles)	 Based on Avg. Fuel Economy (@ 100% H₂ Consumption)

Hyundai Hope on Wheels – Tucson Drive 4 Hope

FCEV team will drive from San Francisco to

New York between September 1st – 28th

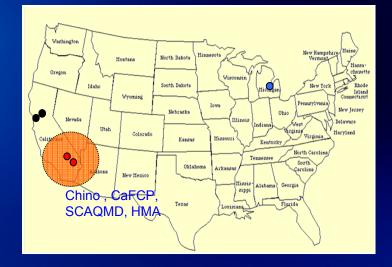
In addition to raising awareness for childhood cancer, the tour will demonstrate Hyundai's

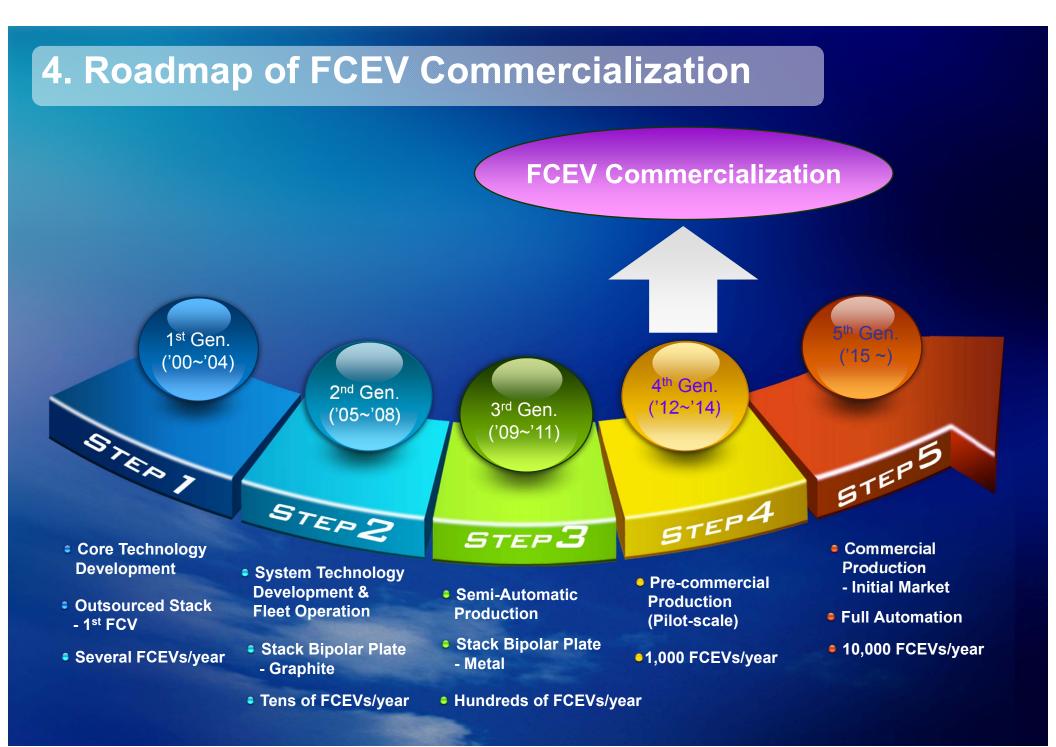
commitment to creating a cleaner future through environmental leadership

<text><section-header>

 The tour gives Hyundai the opportunity to highlight a potential future technology and the resulting environmental advantages

Future: Data collection and Fleet Validation


- **1. DOE Opportunity:** 2012. ~ 2017 (5 years)
- 2. Hyundai Motor Group
 - Hyundai internal Designed fuel Stack Systems
 - Tucson Vehicle Architecture
- 3. Vehicles: 10 FCEV SUVs (Tucson) in 2 phases
 - Phase 1: 7 vehicles
 - Phase 2: 5 vehicles (2 carry over from Phase 1)


4. Plan

- Operated in L.A. California Area
- Hyundai ; Ca FCP, SCAQMD driving applications

FCEV proposed location

FCEV Commercialization in the U.S.

Pre Commercial and Commercial US Implementation

- □ Fuel Cell Vehicles (Hyundai / OEMs)
 - Infrastructure deployment studies (Market identification)
 - Continued System validation In North America (Environmental conditions)
 - Customer acceptance (Validation of Production intent designs)
 - Validation of Production Intent Components and Suppliers (Pre-commercial Volumes)
- Infrastructure
 - Training and preparation of dealer supply network for FCEVs
 - Refueling Infrastructure: Currently the single biggest inhibiter for FCEV deployment
- Next Steps (Recommended)
 - Increased emphasis from Government entities to support Infrastructure (Tax Incentives, Mandates, Legislation)
 - Industry support for infrastructure, collaboration with CaFCP and other other similar organizations in the US.

Thank you!