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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives half of its core funds from the U.S. Environmental Protection Agency and 
half from the worldwide motor vehicle industry. Frequently, other public and private 
organizations in the United States and around the world also support major projects or research 
programs. HEI has funded more than 330 research projects in North America, Europe, Asia, and 
Latin America, the results of which have informed decisions regarding carbon monoxide, air 
toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These 
results have appeared in more than 260 comprehensive reports published by HEI as well as in 
over 1000 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 175, New Statistical Approaches to Semiparametric Regression with Application 
to Air Pollution Research, presents a research project funded by the Health Effects Institute and 
conducted by Dr. James M. Robins of the Harvard School of Public Health, Boston, 
Massachusetts, and his colleagues. This report contains four main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Health Review Committee’s 
comments on the study.

The Investigators’ Report, prepared by Dr. Robins and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Critique, prepared by members of the Health Review Committee with the 
assistance of HEI staff, places the study in a broader scientific context, points out its 
strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

An Invited Editorial, prepared by Dr. Sander Greenland, presents a perspective on 
the research from an expert scientist who is immersed in this particular area of 
statistical methods development and is familiar with research into air pollution and 
public health outcomes. 

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Health Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. James Robins at
the Harvard School of Public Health, Boston, MA, and colleagues. Research Report 175 contains the detailed Investigators’ Report, a Critique
of the study prepared by the Institute’s Health Review Committee, and an Invited Editorial by Dr. Sander Greenland.
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A Semiparametric Regression Approach for Air 
Pollution Research

BACKGROUND

The findings of a number of epidemiologic stud-
ies of air pollution and health have played a central
role in setting air quality limits aimed at protecting
public health. Since the mid-1990s, HEI has spon-
sored original research in this area, as well as re-
search and review activities focused on the analytic
methods used in such studies. These efforts include
— among many others — the National Morbidity,
Mortality, and Air Pollution Study (NMMAPS), the
Reanalysis of the Harvard Six Cities Study and
American Cancer Society Study of Particulate Air
Pollution and Mortality, and the HEI Special Report
on Revised Analyses of Time-Series Studies.

Time-series studies are commonly used to evalu-
ate relationships between variations in short-term
pollutant concentrations and acute human disease
outcomes or mortality. Because time-series meth-
ods compare counts of disease events or deaths
with pollutant concentrations on a specific day or
other short time frame, the analyses do not need to
account for subjects’ smoking behavior or other risk
factors that do not change from day to day. Howev-
er, when evaluating the relationship between health
outcomes and pollutant exposures, investigators do
need to systematically adjust the data sets to control
for time-dependent phenomena such as weather
and seasonal trends that may influence observed
disease patterns. 

In 2003, HEI produced a Special Report on the
Revised Analyses of Time-Series Studies of Air Pol-
lution and Health after scientists discovered a prob-
lem with the commonly used S-Plus statistical
software. The Special Report contained a number of
wide-ranging recommendations for future time-se-
ries analyses, and specifically emphasized that the
effect estimates derived from time-series data were
shown to be sensitive to the statistical methods and
parameters used to control for long-term time trends
in the data.

Following publication of the Special Report, Dr.
James Robins of the Harvard School of Public
Health and his colleagues submitted a preliminary
application to develop and apply statistical meth-
ods to address some of the issues raised by the re-
port. They proposed to (1) develop methods that
would improve the point estimates and confidence
intervals for the parameters of a semiparametric re-
gression model, (2) compare the new methods with
standard methods in simulated studies, (3) develop
efficient user-friendly software to implement the
new methods, and (4) reanalyze critical data sets
and compare the results with those from studies
based on other methods.

What This Study Adds
• Robins and colleagues successfully 

developed semiparametric methods for 
epidemiologic investigations that are likely 
to produce risk estimates that are less 
biased than traditional Poisson time-series 
methods.

• When applied to the NMMAPS data set, 
the semiparametric methods produced 
estimates of the risk of health events 
relative to pollutant levels that were of 
similar magnitude to those obtained in 
HEI’s Revised Analyses of Time-Series 
Studies, but with wider confidence 
intervals.

• Although the semiparametric methods are 
promising for future short-term studies of 
health events and air pollution levels, their 
utility and applicability could be enhanced 
by incorporating existing scientific 
understanding to control for confounding 
when relationships between covariates and 
mortality are well understood.
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EVALUATION

Reviews of the Investigators’ Report, from commit-
tee members and selected peers, were divergent on
the overall importance and utility of this work for ep-
idemiologic analyses. The Committee commented
that the research team had performed high-quality
work to develop statistical methods that are complex
and represent a very significant effort on their part,
and that the results are technically sound. They not-
ed that the concurrence between the current investi-
gators’ results and HEI’s results from the Revised
Analyses of Time-Series Studies was reassuring. 

The current study, although acknowledged to be
highly innovative by the broader scientific communi-
ty, can be most easily understood by experts who are
immersed in this particular area of statistics. There-
fore the Committee invited Dr. Sander Greenland of
the University of California–Los Angeles to write a
short editorial to be published with the report. Dr.
Greenland’s editorial reflects his understanding of
and views about the methods developed. His com-
ments are provided to assist the reader in understand-
ing and interpreting this report and its contributions
to epidemiologic methods for air pollution study.

In his invited editorial, Dr. Greenland agreed with
the Review Committee that the research team largely
achieved their major goal of developing highly flexi-
ble semiparametric regression analysis methods and
successfully applying them to the analysis of a large
data set. He noted that the similarity of the results
from the current analysis and those from earlier anal-
yses of the NMMAPS data was to be expected; the
earlier analyses had already employed relatively
flexible methods for control of time-based confound-
ing variables, and the data did not contain many
problematic departures from linear behavior that
would have been better detected and controlled by
these innovative methods.

Dr. Greenland also identified some important limi-
tations of the new methods as they apply to air pollu-
tion and health research. One of his primary scientific
concerns was that the development of methods did
not include the type of dose–response modeling of
the exposure’s effect that is desirable for exploring
different ambient concentrations that might be con-
sidered for regulatory standards. He also noted that
the investigators chose to test their methods without
incorporating established scientific understanding of
how trends in certain variables may bias a time-series
study. For example, the research team directly incor-
porated temperature and humidity data in the models
as covariates, instead of using them to adjust the mor-
tality data according to consensus assumptions about
the effects of weather on daily mortality. Because the

relationships between weather variables and mortality
outcomes have been well explored and are well un-
derstood, relaxing such assumptions may unnecessar-
ily reduce the precision of the results. 

Dr. Greenland was also concerned about potential
residual confounding from poorly defined or poorly
measured exposure or from confounding variables in
the models, since the team did not investigate how
the commonly encountered types of measurement er-
ror might affect the results of this semiparametric
analysis. Dr. Greenland noted, however, that explora-
tion of the impact of these limitations was either be-
yond the scope of the defined research project or was
not undertaken due to time and funding limitations.

CONCLUSIONS 

The Review Committee agreed with most of the
points that Dr. Greenland made. First, even in the
largest and best-conducted observational studies, er-
rors in the measurement of pollutant concentrations
and major potential confounding factors create un-
certainty in the magnitude, if not the direction, of es-
timated effects. Second, prior expert knowledge, to
the extent that it exists, can be a valuable tool to in-
form the design and the interpretation of research.
These are points that apply in general to observation-
al epidemiology and have been recurring themes in
Dr. Greenland’s work. The Committee noted, howev-
er, that environmental epidemiologists conduct re-
search in a world of imperfect data, and that no ana-
lytic method will ever be able to perfectly adjust for
the shortcomings of such observational information
as that found in the NMMAPS data set and others that
have been established for large-scale air pollution and
health outcomes research.

Overall, the Review Committee found that the
semiparametric methods developed in this study are
a promising addition to current practices for short-
term studies of health events and air pollution levels.
Although these methods do not address all of the
potentially important sources of bias or confounding,
the Committee agreed with the investigators that this
research could be particularly useful in investigations
where the relationships between time-varying con-
founders and health outcomes are not clearly under-
stood or are difficult to characterize. The Committee
also agreed with Dr. Greenland’s suggestion that the
applicability of these new methods and the precision
of the estimates of risk that they produce could be
improved in practice through the use of current
methods to adjust for time-varying confounders when
relationships between covariates and mortality are
well understood.
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New Statistical Approaches to Semiparametric Regression with Application
to Air Pollution Research

James M. Robins, Peng Zhang, Rajeev Ayyagari, Roger Logan, Eric Tchetgen Tchetgen,
Lingling Li, Thomas Lumley, and Aad van der Vaart

Department of Biostatistics (J.M.R, R.A, E.T.), and Department of Epidemiology (J.M.R., R.L., E.T.), Harvard

University; Quantitative Methodology Program, University of Michigan (P.Z.); Department of Ambulatory Care

and Prevention, Harvard Medical School (L.L.); Department of Biostatistics, University of Washington (T.L.); and

Department of Mathematics, Vrije Universiteit, Amsterdam (A.vdV.)

1. OVERVIEW

The National Morbidity, Mortality, and Air Pollution Study (NMMAPS)1 was an HEI-funded
study of the effects of air pollution on mortality. Based on time-series data on particulate matter
with an aerodynamic diameter ≤ 10µm (PM10) collected between 1987 and 1994, the NMMAPS
investigators created a database including mortality, weather, and air pollution data for several
US cities at least every 6 days (Peng et al., 2004). The NMMAPS investigators singled out the
20 largest cities for analysis and fit city-specific semiparametric loglinear time-series regression
models to the data (Dominici et al., 2004; Samet, Dominici, et al., 2000; Samet, Zeger, et al., 2000).

The city-specific estimates were then combined via a random effects regression to obtain sum-
mary estimates (on a rate ratio scale) of the short-term effect of PM10 onmortality. These summary
estimates have greatly influenced both scientific and policy debates. However, the magnitude of
the rate ratio estimates are sufficiently small that they are at the limit of what can be reliably esti-
mated from observational data. Thus it is critical to minimize confounding of the PM10 effect by
predictors of daily mortality and PM10, such as (calendar) time, recent temperature, and humid-
ity. To that end, in their main city-specific analyses, the NMMAPS investigators fit a loglinear
semiparametric time-series model. The model assumes that the natural logarithm of the mean
number of deaths in a particular city on a particular day can be modelled as a linear function

This Investigators’ Report is one part of Health Effects Institute Research Report 175, which also includes a Critique by the
Health Review Committee, an Invited Editorial, and an HEI Statement about the research project. Correspondence concerning
the Investigators’ Report may be addressed to Professor James M. Robins, Harvard School of Public Health, 677 Huntington
Avenue, HSPH1, Room 411, Boston, MA 02115; robins@hsph.harvard.edu

Although this document was produced with partial funding by the United States Environmental Protection Agency under
Assistance Award CR–83234701 to the Health Effects Institute, it has not been subjected to the Agency’s peer and administrative
review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred.
The contents of this document also have not been reviewed by private party institutions, including those that support the
Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should
be inferred.

1A list of abbreviations and other terms appears at the end of the Investigators’ Report.
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Semiparametric Regression As Applied to Air Pollution Research

of the PM10 level on the previous day and smooth functions of time, recent temperature, and
humidity. The smooth functions were modelled with various types of splines including natural
splines and penalized splines. As all choices gave similar results, we shall restrict consideration
to natural splines, which are piece-wise continuous polynomials. These smooth spline functions
of time, temperature, and humidity are each associated with a free parameter, the number of de-
grees of freedom (df) that determines, for each function, how wiggly that function is allowed to
be. Very wiggly functions are needed to control confounding due to very nonlinear covariate
effects on mortality. Thus it is important to chose the appropriate degrees of freedom. However
it is difficult to do so.

If (1) the true dose–response of temperature on mortality is a smooth function with many wig-
gles, and (2) PM10 is highly and nonlinearly correlated with temperature, then, were we to restrict
the number of degrees of freedom in our temperature smooth, the nonlinear effects of tempera-
ture would be falsely ascribed to PM10. Thus to decrease the potential for confounding bias, it
is desirable to use many degrees of freedom for each potential confounding variable. However,
when many degrees of freedom are used but not actually needed (because the true, but unknown,
dose–response is not very wiggly), an inefficient estimate of and wide confidence interval for
the PM10 effect will result. This loss of efficiency is of serious concern, because it may com-
promise the ability to detect a true but small PM10 effect. Furthermore, the empirical data often
cannot determine the optimal trade-off between these conflicting needs. Current biological and
meterological knowledge is also insufficient to determine the optimal trade-off.

To overcome these difficulties, at least in part, we implemented a new and theoretically better
approach to semiparametric regression. This approach is based on a new theory that uses higher-
order U-statistics2 in place of the first-order statistics that are the basis for the current theory of
and approach to fitting semiparametric regression models.

Our estimators offer better control of bias due to confounding by temperature and humidity
in exchange for somewhat wider confidence intervals for the PM10 effect provided certain as-
sumptions, discussed later, hold. Our goal was to estimate the effect of PM10 on mortality and to
compare our estimates to those obtained by the NMMAPS investigators.

The report is organized as follows. Section 2.1 summarizes our main findings and describes the
NMMAPS data and our methods. Section 2.2 describes our results and compares them with the
results obtained by the NMMAPS investigators, and critically discusses the assumptions under
which our results are valid. Section 2.3 explores the sensitivity of our results to our initial choice
of estimators, our “base case”. Section 2.4 contains a final discussion. Section 3 and the Appen-
dices contain theoretical and mathematical results that formally justify our theoretical claims, as
well as other technical material.

2. EMPIRICAL FINDINGS

2.1 SUMMARY OF SUBSTANTIVE CONCLUSIONS, DATA, AND METHODS

2.1.1 Substantive Conclusions Regarding PM10 and All-Cause Mortality

Reanalyses of the NMMAPS city-specific time-series data for the 22 largest NMMAPS cities
(using a new approach based on higher-order influence functions) provide no evidence that the

2A definition section appears at the end of the Investigators’ Report.
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original NMMAPS estimates of the effect of PM10 on all-cause mortality were biased, except
possibly in Minneapolis, and even there the estimated bias was small and did not change any
substantive conclusions.

We obtained wider confidence intervals than did the NMMAPS investigators. This increase
in confidence interval width was to be expected because our approach uses weaker assumptions
than does the original NMMAPS approach concerning the smoothness of the dose–response func-
tion for the effect of temperature and humidity on daily mortality and on PM10.

2.1.2 The Data

We used the same data file as the NMMAPS investigators used (Peng et al., 2004), which con-
tains the following data.3 For a given city,

• N is the number of days with both death and PM10 data available,
• Yi is the number of deaths on the i-th such day,
• Ai is the PM10 level on the previous day (i.e., 1-day lag),
• Di is the categorical day-of-week variable, and
• Xi is a vector with 4 continuous components Xcont,i and a trinary discrete variable X5,i of age

categories.

The components of Xcont,i are

1. average temperature on day i,
2. dew-point temperature on day i,
3. adjusted 3-day lagged daily temperature, and
4. adjusted 3-day lagged dew-point temperature.

For certain cities in the NMMAPS data set, PM10 measurements were available only on every
6-th day. For those cities, the actual time ti in days from the start, corresponding to observation
i, is 6i. For cities with daily PM10 measurements ti is equal to i.

Throughout this report, capital letters denote random variables (i.e., variables that vary in a
nondeterministic way from observation to observation) and the corresponding lowercase letters
denote their possible values. The time variables i and ti are deterministic and thus not random.

2.1.3 First-Order Estimators

The NMMAPS investigators fit city-specific loglinear semiparametric regression models

Ei[Yi|Ai,Xi] = eτ
∗Ai+ζ∗i (Xi), i= 1, . . . ,N. (2.1)

The parameter τ∗ is an unknown parameter encoding the loglinear effect of PM10 on mortality;
ζ∗i (·) is an unknown function of Xi that itself can depend on the time ti in days since the start
of the study. The subscript i on ζ∗i (·) and Ei indicates the time dependence of the conditional
distribution of Yi given Ai,Xi.

Previous NMMAPS reports and journal articles authored by the NMMAPS investigators have
provided comprehensive reviews of semiparametric regression models and have discussed their
critical importance to adequate control of confounding by temperature, humidity, and time in
time-series analyses of the effect of PM10 on mortality (Dominici et al., 2004; Peng et al., 2004;

3A notation section appears at the end of the Investigators’ Report.
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Semiparametric Regression As Applied to Air Pollution Research

Samet, Dominici, et al., 2000; Samet, Zeger, et al., 2000). As discused in these publications, a
useful approach to modeling the unrestricted function of Xi is, in practice, with natural splines.

To fit the models, we follow NMMAPS investigators and model ζ∗i (Xi) using a 155-dimensional
function wi(x) of ti and x (Peng et al., 2004). The 155-dimensional variable Wi =wi(Xi) includes
the categorical variables for age category and day-of-week and natural spline transformations of
the time ti and the continuous variables in Xi with

• 96 df for time, 6 df for each temperature variable, 6 df for each dew-point variable, and
• an additional 30 df for interactions between time and the age category variable.

We then refit the models without the 6-dimensional dummy variable day-of-week; in this anal-
ysisWi =wi(Xi) was 149-dimensional. This is necessitated by the computational requirements of
our higher-order influence-function estimators. As described later, the results obtained with and
without adjusting for day-of-week are similar. We therefore included only 149 variables in Wi,
eliminating the 6 dummy day-of-week variables.

Our notation differs slightly from earlier notation used by the NMMAPS investigators in that
we represent dependence on time with the subscript i for occasion number (either every day or
every 6 days) rather than as a component of the vector of other covariates X. This choice reflects
the fact that time is not a random variable and, as discussed later, the ability of our second-order
influence estimator to decrease bias differs depending onwhether a covariate is or is not a random
variable. We shall see that because time is not random, it is important to use a relatively large
number of degrees of freedom to control confounding due to time.

We begin by estimating τ∗ by solving an estimating equation ÎF1,eff(τ) = 0 based on the first-order
efficient influence function ÎF1,eff(τ) described below. This estimator τ̂1,eff is identical to the usual
Poisson regression estimator used in previous NMMAPS analyses (see Section 3, Lemma 9).

Our reason for describing the usual Poisson regression estimator used in previous NMMAPS
publications as the solution to an estimating equation is discussed further below. Technical
mathematical details are presented in Section 3 and cross-referenced throughout

We also consider another first-order estimating equation, ÎF1,new(τ), which is similar to but
differs from ÎF1,eff(τ) in that it is weighted by an estimate of the joint density of the 5-dimensional
vector X; more precisely, by a linear transformation of X as mentioned before. For this reason, we
refer to this as the density-weighted influence function, and refer to the corresponding estimator
as the density-weighted first-order estimator. This estimator is discussed further in Section 3 and
is precisely defined in Appendix A. This estimating equation is necessary in order to define a
second-order estimating equation with the desired properties, as explained in detail in Sections
3.2.3 and 3.2.4. The corresponding estimator of τ∗, denoted by τ̂1,new, is obtained by solving
ÎF1,new(τ) = 0.

Full and Split Estimators The contribution of the i-th observation to the estimating function ÎF1,eff(τ)

or ÎF1,new(τ) depends on two nuisance functions that we estimate. For the base-case (i.e., loglinear)
model, these are:

b∗i (Xi) ≡ eζ
∗
i (Xi), and

p∗
i (Xi) ≡

Ei[Aieτ
∗Ai |Xi]

Ei[eτ
∗Ai |Xi]

.

6



J.M. Robins et al.

The latter is a weighted mean of Ai given Xi, where the subscript i on the expectation operator
indicates that the distribution of A given X may change with time and thus with i. The former
equals Ei[Yi|Ai = 0,Xi] under the loglinear semiparametricmodel. Thus b∗i is the expected number
of deaths on occasion i if PM10 were absent. We define

IF1,eff(τ) =∑
i

[
Yi−eτAb∗i (Xi)

][
A−p∗

i (Xi)
]

.

As mentioned above we also consider another estimating function, IF1,new(τ).

IF1,new(τ) differs from IF1,eff(τ) in that the contribution of each occasion i to IF1,eff(τ) is addition-
ally multiplied by a weight ŵi equal to an estimate of the joint density of Xi. Section 2.3 provides
additional detail.

We consider two types of estimates of the nuisance functions:

1. an estimator that depends on all the data, and
2. an estimator that randomly splits the data into two equal parts, separately estimates both nui-

sance functions using half of the data, and then, when computing the contribution of an ob-
servation i in the first random half-sample to our influence functions IF1,eff and IF1,new (defined
below), uses the estimates of the nuisance functions from the second half-sample, and vice
versa, averaging the two estimates thus obtained. We indicate the two split-sample estimat-
ing functions that are averaged to give the split-sample estimator as split,(0) and split,(1). (See
Appendix A for the precise formulae.)

Split-sample methods are required with higher-order influence functions because we do not
assume that the nuisance functions are sufficiently smooth (i.e., differentiable) for “Donsker”
conditions to hold (see Definitions section at end and van der Vaart and Wellner, 1996). When
the nuisance functions are very smooth, the size (entropy) of the set of candidate nuisance
functions is sufficiently small that one can estimate the nuisance functions without splitting
the sample and still preserve properties (such as asymptotic normality) that would hold if
the nuisance functions were known rather than estimated; in that case we say that the set of
candidate nuisance functions is Donsker. When Donsker conditions hold, the correlations
induced by estimating the nuisance functions from the full data can be ignored. Otherwise,
these correlations must be eliminated by sample splitting.

(Because of the time-series nature of our data the two random samples of occasions are not
statistically independent of one another; however, the dependence is local and thus the statistical
properties of our split-sample estimator will be identical to those obtained from independent
samples.)

Henceforth we use superscripts “full” and “split” to distinguish whether we used the full-data
or split-sample method to estimate the nuisance functions and the parameter τ∗. The estimates
τ̂full1,eff and τ̂

split
1,eff were generally within a standard error of each other (compare columns τ̂full1,eff and

τ̂
split
1,eff later in Table 1); the estimates τ̂full1,new and τ̂

split
1,new are provided in Figure 1 (see later Sec-

tion 2.2).

In Lemma 9 of Chapter 3, we show that τ̂full1,eff is identical to the usual Poisson regression estima-

tor used in previous NMMAPS analyses. This estimator τ̂full1,eff, based on solving ÎF
full
1,eff(τ) = 0, only

depends on the estimate of b∗i (Xi) ≡ eg
∗
i (Xi) and not on p∗

i (Xi). This is so because the contribution

7
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from the estimated p∗
i (Xi) cancels out in the estimating equation. However, the estimated p∗

i (Xi)

does not cancel when we use ÎF
split
1,eff (τ), and thus τ̂

split
1,eff does depend on p∗

i (Xi).

Second-Order Estimators If the nuisance functions are very wiggly (i.e., highly nonlinear and
rough), they cannot be well estimated. As a result the estimators τ̂full1,eff, τ̂

split
1,eff , τ̂full1,new, and τ̂

split
1,new

may all yield biased estimates of the PM10 effect, because the estimated nuisance functions are
sufficiently poor estimates of the true nuisance functions such that confounding by temperature,
humidity, and time is not well-controlled.

For now, suppose the nuisance functions b∗i (Xi) and p∗
i (Xi) are not too wiggly (i.e., smooth

enough) so that our estimates of the nuisance functions b∗i (Xi) and p∗
i (Xi) are sufficiently accurate

that the bias of the first-order estimators are less than their standard error.

Then the estimators τ̂full1,eff and τ̂
split
1,eff based on the estimating equations ÎF

full
1,eff(τ) and ÎF

split
1,eff (τ)

can be semiparametric efficient and thus optimal under our semiparametric regression model.
Further, 95% Wald confidence intervals (CIs) are valid and thus cover τ∗ 95% of the time.

Now suppose the nuisance functions b∗i (Xi) and p∗
i (Xi) are very wiggly so that our estimates of

them are inaccurate. Then

1. if the errors in the estimation of b∗i (Xi) and p∗
i (Xi) are correlated, we have uncontrolled con-

founding due to our weather variables;
2. the bias of any first-order estimator will be larger than its standard error; and
3. these estimators will not optimally trade off bias and variance; and further 95% Wald CIs will

cover the true effect τ∗ less than 95% of the time.

In this case, we can hope to improve on the first-order estimators by using higher-order influence
functions.

Although higher-order IF estimators are defined for all integer orders ≥ 2, we report only
second-order IF function estimators because of computational constraints. Specifically, as dis-
cussed below, our second-order estimator, referred to as τ̂

split,(k)
2 , effectively subtracts from τ̂

split
1,new

a U-statistic estimate ÎF
split,(k)
22 (τ) of the bias of the first-order estimator τ̂

split
1,new. As a consequence,

under the assumptions described below, the second-order estimator will be less biased than any
first-order estimator [although it will have greater variance because of the additonal variance con-
tributed by ÎF

split,(k)
22 (τ)]. As discussed below, a fundamental assumption required for the bias of

the second-order estimator τ̂split,(k)
2 to be less than the bias of τ̂split1,new is that we obtain an accurate

estimate of the joint density of the 4-dimensional variable Xi (encoding two temperature and two
humidity summary variables). In fact unless the difference between the estimated joint density
and the true joint density is small, τ̂split,(k)

2 can have greater bias than τ̂
split
1,new. It follows that since

time (encoded by the subscript i) is not random and thus does not have a density, τ̂split,(k)
2 cannot

decrease the component of the bias in τ̂
split
1,new attributable to residual confounding by the main

effect of time.

Second-order IF estimators of τ∗ are obtained as the solution to an estimating equation

ÎF
split,(k)
2 (τ) = 0,

where the estimating equation

ÎF
split,(k)
2 (τ) = ÎF

split
1,new(τ)+ ÎF

split,(k)
22 (τ)

8
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is the sum of two components:

1. the density-weighted first-order influence function ÎF
split
1,new(τ) described above, and

2. a second-order U-statistic ÎF
split,(k)
22 (τ) that depends on a positive integer parameter k, specified

by the analyst. A second-order U-statistic is a sum of functions u(Oi,Oj) of data from two
different observations Oi and Oj.

Associated with each k is a different second-order IF estimator τ̂
split,(k)
2 obtained by solving

ÎF
split,(k)
2 (τ) = 0. The second-order estimators only have the desired statistical properties if the

nuisance parameters are estimated using the split-sample method.

Dependence on k As k increases, the variance of τ̂split,(k)
2 increases, but the bias of τ̂split,(k)

2 general-
ly decreases. Under certain assumptions (described informally below and formally in Sections
3.3.2 and 3.3.3) for sufficiently large k, τ̂

split,(k)
2 will have a smaller bias than the usual Poisson

regression estimator τ̂full1,eff.

For many different values of k beginning with k= 1 and ending at some kmax, we report τ̂split,(k)
2

for 22 cities. kmax was generally chosen sufficiently large that either the variance of τ̂split,(kmax)
2

was at least 4 times the variance of τ̂split,(1)
2 (i.e., the standard error at least doubled) or we ran out

of computer memory. Often we took kmax ≈ 839,000.

2.2 RESULTS

Our results are organized as follows. First-order estimates for 22 cities, including the 20 cities
considered by the NMMAPS investigators, are shown in Table 1. This table presents results
using our final models for the nuisance functions b∗i and p∗

i ; we also include τ̂full1,eff(155), the stan-
dard Poisson regression estimate obtained using the 155 covariates used in previous NMMAPS
analyses. The remainder of the results, including the second-order estimators, tests of the bias,
and variance plots for the second-order estimators, are presented in the graphs in Figure 1. The
analysis was done separately for each city.

Left Graphs

• On the left graphs, to the right of the vertical line at zero are the estimates τ̂
split,(k)
2 and associ-

ated 95% Wald CIs for many values of k. In the figure we have suppressed the hat (ˆ) for all
estimators and the split label for τ2.

• Note the k scale on the x-axis is nonlinear to enhance viewing.
• To the left of zero, we provide estimates and associated nominal 95% CIs corresponding to

the first-order estimators τ̂full1,eff (■), τ̂full1,new (▲), τ̂split1,eff (□), and τ̂
split
1,new (△) based on the estimating

functions ÎF
full
1,eff(τ), ÎFfull1,new(τ), ÎFsplit1,eff (τ), and ÎF

split
1,new(τ). These equations do not depend on k and

thus provide a graphical representation of some of the results from Table 1.
• For example, τ̂split1,new is the estimator solving ÎF

split
1,new(τ) = 0.

• All these estimators estimate the same quantity τ∗ if the semiparametric regression model is
true.

• The first-order estimates are generally close and within a standard error of one another for each
of the 22 cities.

• The estimates based on ÎF
full
1,new(τ) are less efficient than (have wider CIs than) those based on

ÎF
full
1,eff(τ), as expected, although the difference in efficiency is not large in general.
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Table 1. First-order estimators for 22 cities. SE estimates are in parentheses. τ̂full1,eff(155) is the
standard Poisson regression estimate obtained using the 155 covariates used by the NMMAPS
investigators; the other estimators are based on 149 covariates as described in Appendix B.

City Linear Loglinear

τ̂full1,eff(149) τ̂
split
1,eff (149) τ̂full1,eff(149) τ̂full1,eff(155) τ̂

split
1,eff (149)

Atlanta 0.00169 (0.00514) 0.00185 (0.00505) 0.00023 (0.00067) 0.00082 (0.0007) 0.00029 (0.00066)
Chicago 0.00457 (0.00356) 0.00338 (0.00351) 0.00012 (0.00009) 0.00014 (0.00009) 0.0001 (0.00009)
Cleveland 0.00353 (0.00199) 0.0031 (0.002) 0.00028 (0.00015) 0.00026 (0.00016) 0.00024 (0.00016)
Dallas −0.00718 (0.00633) −0.0106 (0.00644) −0.00041 (0.00037) −0.00041 (0.00038) −0.00059 (0.00037)
Denver 0.00161 (0.00192) 0.00163 (0.00191) 0.00024 (0.00028) 0.00027 (0.00029) 0.00025 (0.00027)
Detroit 0.00531 (0.00203) 0.00441 (0.00203) 0.00033 (0.00013) 0.00034 (0.00013) 0.00027 (0.00013)
Houston 0.00097 (0.00353) 0.00126 (0.00361) 0.00008 (0.00026) 0.0002 (0.00027) 0.00011 (0.00027)
Los Angeles 0.01719 (0.01067) 0.02258 (0.01103) 0.00031 (0.00018) 0.00037 (0.00019) 0.00036 (0.0002)
Miami −0.00348 (0.00834) −0.00191 (0.0083) −0.00023 (0.00061) −0.00012 (0.00064) −0.00011 (0.00056)
Minneapolis 0.00148 (0.00221) 0.00122 (0.00221) 0.00015 (0.00023) 0.00026 (0.00024) 0.00013 (0.00023)
New York 0.03335 (0.02026) 0.03985 (0.02018) 0.00051 (0.00027) 0.00065 (0.00028) 0.00064 (0.0003)
Oakland 0.0112 (0.00582) 0.01653 (0.0057) 0.0014 (0.00073) 0.00125 (0.00074) 0.00197 (0.00072)
Philadelphia −0.00214 (0.00581) −0.00113 (0.00588) −0.00015 (0.00042) −0.00009 (0.00043) −0.00013 (0.00041)
Phoenix −0.00076 (0.00523) −0.0003 (0.00535) −0.00007 (0.00036) −0.00023 (0.00036) −0.00006 (0.00033)
Pittsburgh 0.00321 (0.00198) 0.00304 (0.00196) 0.00024 (0.00014) 0.00024 (0.00014) 0.00023 (0.00014)
Riverside 0.00075 (0.00278) 0.001 (0.00285) 0.00007 (0.00038) 0.00003 (0.00039) 0.0004 (0.00038)
San Antonio 0.00015 (0.00561) 0.0013 (0.00557) 0.00003 (0.00079) 0.0001 (0.00008) 0.00023 (0.00081)
San Bernardino 0.002 (0.00308) 0.00306 (0.00302) 0.00029 (0.00042) 0.00029 (0.00043) 0.00042 (0.00041)
San Diego 0.00895 (0.00696) 0.00553 (0.00691) 0.00058 (0.00044) 0.00057 (0.00044) 0.00046 (0.00044)
San Jose 0.00113 (0.00274) 0.00004 (0.00271) 0.00015 (0.00038) 0.00016 (0.00038) −0.00002 (0.00036)
Santa Ana 0.00263 (0.00563) 0.00207 (0.00562) 0.00024 (0.00046) 0.00017 (0.00047) 0.00021 (0.00045)
Seattle 0.00148 (0.0021) 0.00178 (0.0021) 0.00016 (0.00023) 0.0001 (0.00024) 0.00017 (0.00023)

Middle Graphs The middle graphs plot, for many values of k, the Z-score associated with a two-
sided test of the hypothesis that the mean of the estimator τ̂split1,new and the mean of τ̂split,(k)

2 are equal
and equal to the true parameter τ∗. Specifically, our test rejects the hypothesis if the absolute
value of the Z-score

{
τ̂
split
1,new− τ̂

split,(k)
2

}
/ŝek is sufficiently large (where ŝek is an estimator of the

standard error of the numerator). A significant difference is indicative of biasedness of the first-
order estimator as explained in Section 3.3.4.

Right Graphs The right graphs plot the ratio V2/V1 of the variance of the second-order estimator
τ̂
split,(k)
2 of τ∗ to that of the first-order estimator τ̂split1,new as a function of k. Theory suggests this ratio

should increase approximately linearly with k (see Lemma 41 and Section 3.4.1), which is borne
out for most cities.

2.2.1 Interpretation

If, for some k, the p-value associated with the Z-score on the middle graph implies the means
τ̂
split,(k)
2 and τ̂

split
1,new differ significantly from zero (after adjusting the p-value for multiple compar-

isons), then, under the assumptions referred to above, we can conclude that all the first-order
estimators, including the usual Poisson regression estimator, are likely biased and the associated
nominal 95% Wald CIs centered on these estimators will cover the true effect τ∗ less than 95%
of the time.

On the other hand if, for all k, the p-value associated with the Z-score on the middle graph fails
to reject the hypothesis that the means of τ̂split,(k)

2 and τ̂
split
1,new are equal, then

1. it is likely that either

a) the nuisance functions b∗i (Xi) and p∗
i (Xi) were not very wiggly, or
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b) the nuisance functions were wiggly but the nuisance functions b∗i (Xi) and p∗
i (Xi) were not

highly correlated, which implies that the magnitude of confounding by our weather vari-
ables is negligible;

2. we should use the original NMMAPS estimate as our estimate if our goal is to minimize mean
squared error (MSE);

3. in contrast, the choice of the CI is not an empirical one: the larger k is, under more true states
of nature (defined by both the wiggliness of the nuisance functions and their correlation), the
more the k-specific nominal 95% Wald CI around τ̂

split,(k)
2 will cover the true effect τ∗;

4. to choose which k should be used for setting CIs would require a priori knowledge of an upper
bound on the wiggliness and correlation of b∗i (Xi) and p∗

i (Xi). A priori knowledge is required
because estimating the wiggliness of a function (e.g., the number of derivatives it has) is an
ill-posed problem and it cannot be empirically estimated from the data. As a consequence
we have simply displayed (in Figure 1) the CI for many different k. An interval is only valid
(i.e., has actual coverage of at least 95%) under the untestable assumption that the bias of the
estimator is less than its standard error.

Why Do (3) and (4) Not Contradict (1) and (2)? Our test of bias of the first-order estimators as shown
on the middle graph does not have large power to detect small amounts of bias. But even a
small amount of bias in a first-order estimator will lead to undercoverage by a CI centered on that
estimator if the bias is the same order as the standard error. Even so, the MSE of the first-order
estimator will be good, even when the bias slightly exceeds the standard error, because it has the
smallest variance among our candidates.

Estimates of the variance of ÎFsplit,(k)
2 (τ) for k< 10,000 are not reliable due to numerical instability

and for other theoretical reasons described in Section 3.3.2. Thus a significant Z-value on the
middle graph for k< 10,000 is not meaningful if the Z-values become non-significant for larger k.

2.2.2 Our Assumptions and Their Consequences

Bias of the Second-Order Estimates The second-order estimates τ̂
split,(k)
2 for large k are less biased

than the NMMAPS estimates based on the usual Poisson regression estimator τ̂full1,eff under certain
assumptions. We now describe some of these assumptions and conditions under which they
might be violated.

Need for Accurate Density Estimation ÎF
split
1,new(τ) and thus τ̂

split,(k)
2 depends on estimates f̂i(x) of the

multivariate density of X on day ti. The bias of τ̂split,(k)
2 depends on the quality of these estimates.

To construct these estimates we used a nonparanormal density estimator smoothed over time.
This is a density estimator that estimates each of the marginal densities of the 4 continuous
components of Xi nonparametrically using kernel density estimation. The dependence structure
of Xi is then estimated based on a parameteric model with 6 parameters. (See Section 2.3.4 for a
formal definition.)

We also considered more nonparametric density estimators, based on the program Locfit by
Loader (2010); however, these more nonparametric estimators performed no better than the non-
paranormal density estimators. (See Section 2.3.4.)

For large k, the bias of τ̂split,(k)
2 will be less than the bias of Poisson regression τ̂full1,eff if the error

f̂i(x)− fi(x) in estimating the density is small and if the time effects are accurately modelled.
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Specifically, the bias of Poisson regression depends on the average over the observations of the
product of the error

[
b̂i(Xi)−b∗i (Xi)

]
in estimating b∗i (Xi) and the error

[
p̂i(Xi)−p∗

i (Xi)
]
in estimat-

ing p∗
i (Xi). Because the bias is the product of two error terms, we say that the bias is second order.

Further we say the Poisson regression estimator and our other first-order estimators are doubly
robust because if we knew either b∗i (·) or p∗

i (·) they would be the solutions to unbiased estimating
equations.

In contrast, the bias of τ̂split,(k)
2 for large k depends on the average of the product of f̂i(Xi)− fi(Xi)

with
[
b̂i(Xi)−b∗i (Xi)

]
× [

p̂i(Xi)−p∗
i (Xi)

]
when the time effect is accurately modelled. This bias

(which holds even when k is large) is referred to as estimation bias. Thus τ̂
split,(k)
2 would be triply

robust (ignoring the time-related bias discussed next).

This bias, which we call third-order bias, will be less than the second-order bias if f̂i(x)− fi(x)

is small. However, we cannot be certain that f̂i(x) − fi(x) is small because of the difficulty in
estimating the joint density of a vector of random variables.

Need for Accurate Estimation of Time Effects The bias of τ̂
split,(k)
2 for large k includes a time-series

bias term due to the fact that the nuisance functions b∗i (x) and p∗
i (x) can depend on the i and

thus on time. This bias cannot be eliminated using higher-order influence functions because the
time interval between successive observations is fixed (and thus deterministic) and not random.
We refer to this term as the time-series bias because it exists only for time-series data. Thus the
performance of higher-order influence functions in time-series settings will not be as good as in
other settings. The key to keeping this term small (and hopefully smaller than the third-order
term mentioned above) is to accurately estimate the dependence of b∗i (x) and p∗

i (x) on time by
using many degrees of freedom for time.

Possible Need for a Large Value of k ÎF
split,(k)
22 is a sum of k second-order U-statistics. Specifically,

the joint contribution of occasions i and j is

ÎF
(k)
22,ij =−

{
Yi−exp (τAi) b̂i (Xi)

}
Kk(Xi,Xj)

exp
(
τAj

)
Êj

[
exp

(
τAj

) |X] {
Aj− p̂j

(
Xj

)}
where the Xi have been rescaled to the unit cube in R4 using one of the transforms mentioned in
Section 2.3.3,

Kk(Xi,Xj) =
k∑
l=1

φl(Xi)φl(Xj),

and φl(·), l= 1, . . . , is an orthogonal basis for L2 with respect to the Lebesgue measure on the unit
cube in R4. The bias of τ̂split1,new, like the bias of Poisson regression, depends on the average over the

observations of the product of the error b̂i(Xi)−b∗i (Xi) and the error p̂i(Xi)−p∗
i (Xi). The mean of

the sum over i and j of the IF(k)
22,ij cancels the second-order term in the bias of ÎFsplit1,eff more and more

precisely as k increases, so that the final bias of ÎFsplit,(k)
2 becomes third order for large k (provided

the time effect is accurately modelled so that bias does not dominate).

Optimal Choice of k The variance of IF(k)
22,ij(τ) increases approximately linearly with k. When k is

small, there is an additional contribution to the bias, referred to as the truncation bias (which
stems from the highest frequency components of the nuisance functions) over and above the
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estimation bias referred to previously. As k increases, the truncation bias decreases although
the estimation bias remains nearly the same. The optimal choice of k balances the decrease in
truncation bias with the increase in variance as k increases.

The magnitude of the second-order bias term of τ̂split1,new depends on both the wiggliness of and
correlation between b∗i (Xi) and p∗

i (Xi). If the magnitude is small, a small value of k can be used
to control the contribution of the truncation bias to the second-order bias and thus the variance
will also be small. However, since the amount of wiggliness and correlation are unknown and
not directly estimable, the optimal choice of k is unknown. We can, to a limited extent, try to
estimate the optimal k from the data.

The test described earlier of the equality of the means of τ̂split,(k)
2 and τ̂

split
1,new can also be used to

determine whether a particular value of k is too small, although not with high power. Specifical-
ly, if τ̂split,(k)

2 at some k is significantly different from τ̂
split,(k)
2 at a different value of k, the lower

value of k has a truncation bias that is larger than its variance. However, as a consequence of
low power, we cannot exactly determine the optimal k (except possibly asymptotically as the
number of observations tends to ∞). As discussed below, in all cases except Minneapolis, we
had no statistical evidence that any value of k was too small. Thus, k= 0 is our best estimate of
the optimal k. That is, our optimal choice is to simply use a first-order estimator because the in-
significant Z-values imply we have no empirical evidence of significant truncation or estimation
bias; among the first-order estimators, the usual Poisson regression estimator τ̂full1,eff is the best as
it should have the smallest variance.

Effect of Sample Splitting As noted above, our higher-order influence-function estimators require
that we split the sample. Thus, before examining the performance of our higher-order influence-
function estimator, we wished to determine what the effect of splitting the sample would be on
standard first-order inference. (In Table 1 we provide, for each of the 22 cities, τ̂full1,eff and τ̂

split
1,eff for

both the linear and loglinear case.)

If sample splitting resulted in a serious loss of efficiency, one would worry about the finite sam-
ple properties of any approach that uses sample splitting to estimate the nuisance functions, even
including approaches, such as our higher-order influence-function approach, that have desirable
asymptotic properties. However, for each of the 22 cities, the estimators τ̂full1,eff and τ̂

split
1,eff have sim-

ilar estimated standard errors. Further the difference between the two estimators is always less
than 1.5 estimated standard errors and usually much less than 1 standard error, suggesting that
splitting the sample is rather innocuous with regard to inference based on first-order influence
functions.

However, one needs to be concerned that the split-sample estimator of the standard error could
be too small, since it is computed under the assumption that the two half-samples are statistically
independent, which, although true under an asymptotic theory, is not true in finite samples.
To rule out this possibility, we conducted a simulation study with a data generating process
closely mimicking the distribution of the New York data. Details of the study are provided in
Appendix C. In the simulation study, the Monte Carlo standard errors of the split-sample and
full-sample estimators were very close to each other and to our analytic estimate of the standard
error. Thus we conclude that the variance inflation associated with sample splitting was small.
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Validity of Variance Estimators In Section 3.3.2we give the assumptions underwhich our estimators
of the variance of τ̂split,(k)

2 are valid. We essentially assume that the correlation between the data
at different observations i and j is negligible unless the time between observations i and j is quite
small. If this assumption is violated then our variance estimator will underestimate the true
variance and thus the Z-values in the middle graph are inflated. As discussed below, in all cities
but Minneapolis, the observed Z-values were sufficiently small that we failed to reject the null
hypothesis of equality of the means of τ̂split,(k)

2 and τ̂
split
1,new for any k. This conclusion would not

change even if the assumption of “negligible covariance” between observations was false, since
then the true Z-values should be even smaller. However, our conclusion that the null should be
rejected for Minneapolis might no longer be appropriate.

2.2.3 Overall Results

For 21 of the 22 largest NMMAPS cities, our tests for a bias of the first-order estimators did
not reject the hypothesis of unbiasedness. As a consequence, for these 21 cities, we obtain no
evidence that the original NMMAPS estimates of the effect of PM10 on all-cause mortality were
biased.

2.2.4 Results for Minneapolis

The only significant result based on the test reported in the middle graph is for Minneapolis.
Specifically, the maximum Z-score of 4.2 for Minneapolis is significant even after Bonferroni
correcting for the number of k we tested against.

Thus under our assumptions we have some evidence that the NMMAPS estimate forMinneapo-
lis is biased. According to asymptotic theory we should not use the NMMAPS estimate as our
estimate if our goal is to minimize MSE.

The question then of which τ̂
split,(k)
2 we should use as our estimate has answers in certain asymp-

totic settings but does not have a clear answer in our finite sample setting (see Section 3.3.4 or
pages 216–220 of Wasserman, 2006, for further discussion).

Even the claim of bias in the NMMAPS estimate for Minneapolis has two caveats:

1. The Z-score of 4.2 is not quite significant when we apply Bonferroni adjustment for the fact
that this was the only one of 22 cities for which we found a significant effect.

2. Our test is only valid if the assumptions discussed in Section 2.2.2 above hold.

2.3 DEPENDENCE OF τ̂
split
1,new AND τ̂

split,(k)
2 ON USER-SPECIFIED SETTINGS

Recall that our second-order influence-function estimator τ̂
split,(k)
2 is obtained as the solution

to a second-order influence-function estimating equation ÎF
split,(k)
2 (τ) = 0, where ÎF

split,(k)
2 (τ) =

ÎF
split
1,new(τ)+ ÎF

split,(k)
22 (τ). ÎFsplit1,new(τ) and ÎF

split,(k)
22 (τ) depend on various additional user-supplied quan-

tities. Specifically,

IF1,new,i =
1

|s(i)|
∑
j∈s(i)

f̂j(Xi)
[
Yi−eτAi b̂i(Xi)

][
Ai− p̂i(Xi)

]
,

IF1,new(τ) =∑
i
IF1,new,i(τ),

Kk(xi,xj) =
k∑
l=1

φl(xi)φl(xj),
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IF(k)
22,ij =−

[
Yi−eτAi b̂i(Xi)

]
Kk(Xi,Xj)

[
Aj− p̂j(Xj)

] eτAj

Êj[eτAj |Xj]
,

ÎF
(k)
22 (τ) =∑

i

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij.

[Recall thatφl(x) is an element of an orthonormal basis for the set of all square-integrable functions
on the unit cube in R4.] Here, the scale (linear or loglinear) of the semiparametric model, s(i), |s(i)|,
choice of transform of covariates Xcont,i, f̂j(Xi), and φl(x) are settings chosen by the user.

The results in Figures 1 and 2 use base-case choices for each of the user-supplied quantities. In
this section we describe these additional quantities and our base-case choices. In the following
subsections we study the sensitivity of the results in Figures 1 and 2 to the choices.

• Choice of semiparametric regression model. We chose to use the loglinear semiparametric
regression model of Equation (2.1) as our base case. An alternative choice would have been to
use the linear semiparametric regression model

Ei[Yi|Ai,Xi] = τ∗Ai+ζ∗i (Xi), i= 1, . . . ,N.

We chose the loglinear rather than the linear form as our base case because (1) that choice is
standard in the literature and (2) the number of deaths on a given day is non-negative.

• Choice of transform of covariates. When estimating τ∗, we consider three possible transforms
of the continuous covariatesXcont,i: “id”, “gs”, and “gs2” (identity transform and two variations
of Gram-Schmidt orthogonalization). These are defined in Section 2.3.3. Our base-case choice
was gs. The transforms id, gs, and gs2 have the effect of making f̂j(x) increasingly close to a joint
distributionwith independent uniformly distributed components. We chose gs as our base case
largely because, as discussed in Section 2.3.3, if we had used the identity transformation, the
peaks of f̂j(x) would have been too large and sharp.

• Choice of density estimator. f̂j(·) = f̂j(x) = f̂j(xcont)p̂r[X5 = x5] is the joint density for X on day tj,
with p̂r[X5 = x5] being the empirical proportion of all subjects in age category x5. (Since X5 is
age, it can be assumed to be independent of the continuous variablesXcont.) f̂j(xcont) is obtained
by applying the nonparanormal density estimator algorithm for time-series data described in
Section 2.3.4. We note that for ÎF

split
1,new(τ) we still use the whole sample to estimate f̂j(x), even

though we use split-sample estimates of the nuisance functions b∗i (x), p∗
i (x), and q∗i (x).

As discussed earlier, we chose as our base case a nonparanormal density estimator smoothed
over time. This is a density estimator that estimates each of the marginal densities of the 4 con-
tinuous components ofXi nonparametrically using kernel density estimation. The dependence
structure of Xi is then estimated based on a parameteric model with 6 parameters. (See Sec-
tion 2.3.4 for a formal definition.) As an alternative, we also considered more nonparametric
density estimators, based on the program Locfit by Loader (2010), in Section 2.3.4; howev-
er these more nonparametric estimators performed no better than the nonparanormal density
estimators.

• Choice of the other occasions associated with occasion i. The second-order U-statistic esti-
mating function ÎF

split,(k)
2 (τ) associates occasion i with a set s(i) of other occasions j for which

a function of both their data Oi and Oj will be included in ÎF
split,(k)
2 (τ). We denote this set of

occasions j by s(i). This same set also enters our definition of IF1,new. To describe our base case,
we let f̂j(x) be the estimated density of X at time j. Then f̂j(Xi) is the density at time j evaluated

26



J.M. Robins et al.

−0.050.000.050.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−8−6−4−20

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

0102030405060

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.040.000.020.040.060.08

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

0.00.51.01.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

01020304050

k

V2V1

Atlanta Chicago

F
ig
u
re

2.
L
in
ea

r
m
od

el
re
su

lt
s
fo
r
22

ci
ti
es
.
S
u
m

m
ar

y
of

th
e
an

al
ys

is
u
si
n
g
a
li
n
ea

r
m

od
el

w
it
h

L
eg

en
d
re

p
ol

yn
om

ia
ls
,
a
d
en

si
ty

cu
to

ff
at

th
e
80

th
p
er

ce
n
ti
le
,
ob

se
rv

at
io

n
s
be

tw
ee

n
25

an
d

75
d
ay

s
of

a
gi
ve

n
d
ay

,
an

d
w
it
h
k
be

tw
ee

n
3
an

d
83

95
23

.
N
ot

e
th

at
y

ax
is

sc
al
es

va
ry

am
on

g
ci
ti
es

.

27



Semiparametric Regression As Applied to Air Pollution Research

−0.020.000.010.020.03

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1.5−1.0−0.50.00.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

0102030

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.050.000.050.100.15

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−1.0−0.50.00.51.01.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

05101520253035

k
V2V1

Cleveland Dallas/Fort Worth

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

28



J.M. Robins et al.

−0.0100.0000.0100.020

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−5−4−3−2−10

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

51015

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.03−0.010.010.02

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−1.0−0.50.00.51.0

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

051015202530

k
V2V1

Denver Detroit

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

29



Semiparametric Regression As Applied to Air Pollution Research

−0.06−0.020.000.020.04

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1012345

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

5101520

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.020.020.040.060.080.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−10−50

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

1234

k
V2V1

Houston Los Angeles

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

30



J.M. Robins et al.

−0.15−0.050.050.15

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1.5−1.0−0.50.00.51.0

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

05101520253035

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0.000.010.020.030.040.050.06

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

0123

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

051015202530

k
V2V1

Miami Minneapolis/St. Paul

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

31



Semiparametric Regression As Applied to Air Pollution Research

−0.20.00.20.4

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−30−25−20−15−10−50

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

05101520253035

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0.000.050.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−1.0−0.50.00.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

2468101214

k
V2V1

New York Oakland

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

32



J.M. Robins et al.

−0.10−0.050.000.050.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1.5−1.0−0.50.00.51.01.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

051015202530

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.15−0.050.050.100.15

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−2−101

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

05101520253035

k
V2V1

Philadelphia Phoenix

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

33



Semiparametric Regression As Applied to Air Pollution Research

0.000.010.020.030.040.05

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

1.41.61.82.02.22.42.6

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

1e
+0

5
3e

+0
5

5e
+0

5
7e

+0
5

51015202530

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.020.000.020.04

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

051015

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

51015

k
V2V1

Pittsburgh Riverside

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

34



J.M. Robins et al.

−0.020.000.02

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1.5−1.0−0.50.00.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

2468101214

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0.000.020.040.060.080.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−101234

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

123456

k
V2V1

San Bernardino San Diego

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

35



Semiparametric Regression As Applied to Air Pollution Research

−0.020.000.010.02

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

0.00.51.01.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

24681012

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.020.020.060.10

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

0.00.51.01.5

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

24681012

k
V2V1

San Jose Santa Ana/Anaheim

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

36



J.M. Robins et al.

−0.08−0.040.000.02

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

Es
tim

at
es

 o
f ττ

 a
nd

 9
5%

 C
I

−1012

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00

Z−
sc

or
e 

fo
r e

qu
al

ity
 o

f m
ea

ns
 o

f ττ
2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

246810

k

V2V1

R
at

io
 o

f e
st

im
at

ed
 v

ar
ia

nc
e 

of
 ττ 2((k

))  a
nd

 ττ 1
,n

ew
sp

lit

−0.0050.0050.015

k0.
25

ττ

0
62

5
10

00
0

16
00

00
81

00
00

ττ 1
,e

ff
fu

ll
ττ 1

,n
ew

fu
ll

ττ 1
,e

ff
sp

lit
ττ 1

,n
ew

sp
lit

ττ 2((k
))

−1012

Lo
g(

k)

Z

12
96

10
00

0
50

62
5

16
00

00
39

06
25

81
00

00
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
8e

+0
5

123456

k
V2V1

San Antonio Seattle

F
ig
u
re

2.
(c
on

ti
n
u
ed

)

37



Semiparametric Regression As Applied to Air Pollution Research

at the value of X at occasion i. Next we let
{
f̂j(Xi); i, j= 1, . . . ,N

}
be the N2 such numbers. Our

base-case choice was to include in s(i) those occasions j which satisfied all the following:
1. 25 to 75 occasions either prior to or after occasion i,
2. in the same half-sample as i of the two split-samples; and

3. had estimated density f̂j(Xi) less than the 80-th percentile of the N2 values in
{
f̂j(Xi); i, j =

1, . . . ,N
}
.

Thus, for each time i, s(i) is a set of time indices (i.e., a set of observations) that depends on i
and on the half-sample containing i. Then |s(i)| is the cardinality of the set s(i).

Our base-case choice was based on the following considerations. The second-order U-
statistic ÎF

split,(k)
2 requires the data Oi and Oj corresponding to occasion i and occasion j to

be independently distributed when they occur together in one of its terms. We chose j to be
more than 25 occasions from i to ensure this independence held at least approximately. We
chose j to be within 75 occasions of i in an attempt to control the time-series bias (discussed
above) by bounding at 75 occasions the time period we had to model accurately. The results
of alternative choices are discussed in Section 2.3.2.

• Choice of orthonormal basis. The second-order U-statistic depends on a choice φl(·), l= 1, . . ., of
an orthonormal basis for the set of square integrable functions on the unit cube in R4. For our
base-case analysis, we chose the φl(·) to be tensor products of the univariate Legendre orthog-
onal polynomials. (We discuss the Haar basis and Daubechies wavelet bases as alternatives in
Section 2.3.5.)

We now discuss the sensitivity to these choices in detail.

2.3.1 Choice of Linear vs. Loglinear Semiparametric Regression Model

Wenowdemonstrate that our conclusionswould be unchanged hadwe chosen the linearmodel
as our base case.

Figure 2 and the linear columns in Table 1 display results for the linearmodel that are analogous
to the results for the loglinear model shown in Figure 1 and the loglinear columns in Table 1.
Remarkably, the city-specific results in Figures 1 and 2 are nearly identical, including the shape
of the plot of τ̂split,(k)

2 versus k; the only discernible difference is the magnitude of the estimate τ̂

(see left panels of figures). Roughly, for a given city, τ̂linear = τ̂loglinear × (the average number of
deaths per day under the loglinear model when the 1-day lagged PM10 level is 0), where τ̂loglinear
denotes any of our loglinear estimators and τ̂linear denotes the analogous linear estimator. This
is explained theoretically in Section 3.4.2.

2.3.2 Sensitivity to Choice of s(i)

Our base-case choice for the set s(i) associatedwith an occasion iwas defined as the intersection
of two sets: the set

{
j : 25≤ |j− i| ≤ 75

}
and the set {j : f̂j(Xi) is less than the 80-th percentile of the

N2 numbers fj′(Xi′), i′, j′ = 1, . . . ,N}. We first consider sensitivity to the choice of the range of |j− i|.
We refer to 25–75 as the range of |j− i| and to 80 as the percentile cut-off.

Range of |j−i| We compared the choice 25≤ |j− i| ≤ 75 to the choice 25≤ |j− i| ≤ 3000 in the New
York data for several choices of the percentile cut-off (80 and 70) and for several transforms from
Xcont to X∗

cont (the base-case gs transform and an alternative transform gs2 described in Section
2.3.3 below). All other choices remained base case.
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In all cases τ̂
split
1,new and τ̂

split,(k)
2 do not differ significantly from their base-case values for any k

(data not shown). However, other statistics do depend on the choice of base case.

Consider the slope of V2/V1 versus k. Reading from Table 2 we see that as the range of |i− j|
increases, the slope decreases sharply. This is as expected since the variance of ÎF22 is inversely
proportional to s, where 1/s is the average of the 1/|s(i)| values. Further the estimated variance
of ÎFsplit1,new, obtained as the square of the estimated standard deviation (sd), varies much less than

did the slope. The estimated variance of τ̂split1,new changes by less than 10% as the range varies.

Table 2. Sensitivity to s(i) range for New York data. Here ÎF denotes ÎF
split
1,new. The V2/V1 column

denotes the slope of V2/V1 with respect to k and has been multiplied by a factor of 250,000.

Percent Cut-Off and Transform Legendre Orthogonal Polynomial and Linear Models

25 – 75 25 – 3000

V2/V1 ÎF ŝd(ÎF) ŝd(τ̂
split
1,new) V2/V1 ÎF ŝd(ÎF) ŝd(τ̂

split
1,new)

80%, gs 16.0 13.56 7.3 0.027 2.2 22.82 10.2 0.025
70%, gs 41.0 8.77 4.4 0.025 5.0 12.50 5.6 0.023
80%, gs2 7.5 48.18 42.6 0.028 1.5 56.90 40.6 0.025
70%, gs2 100.0 55.71 25.9 0.027 1.8 31.31 31.9 0.024

Percentile Cut-Off for Density We compared the percentile cut-offs 100 and 70 with our base case of
80 in the New York data and Chicago data for several choices of the range of |j− i| and for several
transforms (the base-case gs transform and an alternative transform gs2 described in Section 2.3.3
below). All other choices remained base case.

In all cases τ̂
split
1,new and τ̂

split,(k)
2 do not differ significantly from their base-case values for any k

(data not shown). However, other statistics do depend on the choice of base case.

Reading fromTable 3we see that as the percentile cut-off decreases, the slope ofV2/V1 =V(k)
2 /V1

with respect to k increases, but the standard deviation of ÎF
split
1,new decreases. The ratio of the

squared standard deviation at a cut-off of 80% to that at 70% is greater than the ratio of the slope
of V2/V1 at 70% to that at 80%. The estimated variance of τ̂split1,new changes by less than 15% as
the percentile cut-off varies.

Table 3. Sensitivity to percentile cutoff for New York and Chicago data. Here ÎF denotes ÎF
split
1,new;

ŝdIF denotes ŝd(ÎF); and ŝdτ denotes ŝd(τ̂
split
1,new). The V2/V1 column denotes the slope of V2/V1

with respect to k and has been multiplied by a factor of 250,000.

Days in the Sample and Transform Legendre Orthogonal Polynomial and Linear Models

100% 80% 70%

V2/V1 ÎF ŝdIF ŝdτ V2/V1 ÎF ŝdIF ŝdτ V2/V1 ÎF ŝdIF ŝdτ

NY, 25–75, gs 16.0 13.56 7.3 0.027 41.0 8.77 4.4 0.025
NY, 25–75, gs2 7.5 48.18 42.6 0.028 100.0 55.71 25.9 0.027
NY, 25–3000, gs 1.2 36.98 44.45 0.027 2.2 22.82 10.2 0.025 5.0 12.50 5.6 0.023
NY, 25–3000, gs2 1.5 56.90 40.6 0.025 1.8 31.31 31.9 0.024
Chicago, 25–1000, gs 1.4 7.39 8.2 0.004 1.75 3.00 5.3 0.004
Chicago, 25–1000, gs2 1.25 43.42 30.0 0.004 1.3 13.88 23.2 0.005
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The decrease of the standard deviation of ÎFsplit1,new is largely due to the fact that the observations
with the larger f̂j(Xi) are increasingly removed as the percentile cut-off decreases. However, the

variance of τ̂
split
1,new equals the variance of ÎF

split
1,new divided by an estimate of its derivative. The

decrease in the variance of ÎFsplit1,new does not affect the variance of τ̂split1,new since this denominator
decreases similarly. Note that valid results based on data truncated by a cut-off require that the
density estimator be reapplied to the truncated data and the analysis redone on the truncated data
without further truncation. We would also expect that the effect of the cut-off on the variance
of ÎFsplit,(k)

22 is uncertain because of two countervailing mechanisms. First, decreasing the cut-off
should tend to decrease the variance due to the fact that the observations with the larger fj(Xi) are
increasingly removed because of the correlation between fj(Xi) and f̂j(Xi). Second, decreasing the
cut-off should increase the variance by reducing s since s(i), and thus its cardinality, decreases
as the percentile cut-off decreases.

In fact, one or two sets with |s(i)| equal to 1 will make 1
|s| large and thus Var(ÎF

(k)
22 ) large. This

observation suggests that the effect of the percentile cut-off on the variance of ÎF
(k)
22 due to this

second mechanism could be quite nonlinear, particularly when the range of |j− i| is small, since
sets with |s(i)| equal to 1 are much more likely.

To better understand these countervailing effects, we recall that the ratio of the squared stan-
dard deviation at a cut-off of 80% to that at 70% is greater than the ratio of the slope of V2/V1 at
70% to that at 80%, with the exception of NY 25-75, gs2. This implies that the variance of ÎFsplit,(k)

22
is decreasing with a decreasing cut-off (i.e., mechanism 1 dominates), except for NY 25-75, gs2
where mechanism 2 dominates. This is consistent with expectations for two reasons.

First, for reasons discussed in Section 2.3.3, the effect of removing observations with the larger
f̂j(Xi) and fj(Xi) should have less effect on Var(ÎF

split,(k)
22 ) and Var(ÎF

split
1,new) for the gs2 transformation

than for the gs transformation. This is due to the fact that, as can be seen from Table 4, truncating
the right tail of the f̂j(Xi) for gs will leave the distribution of the f̂j(Xi) dominated by smaller values
of f̂j(Xi) and thus with a much smaller variance than that of the same distribution with less trun-
cation. In contrast, for gs2, this decrease in the variance of the f̂j(Xi) with increasing truncation
will be less, as, for gs2, the distribution of f̂j(Xi) below the third quartile is more variable than

for gs. Indeed this fact can be empirically observed for Var(ÎF
split
1,new), as the ratio of the standard

deviation of ÎFsplit1,new comparing the 80% cut-off to the 70% cut-off in Table 3 is always less for gs2
than for gs.

Table 4. Summary for New York data of empirical distribution of the density estimates f̂ ijXi.

Estimates were pooled over all N2 possible combinations of i and j, and were based on the id, gs,
and gs2 transformations.

Transform Minimum 1st Quartile Median Mean 3rd Quartile Maximum

id 0.00 0.069 2.998 22.430 22.610 820.500
gs 0.00 0.211 2.809 13.240 14.680 466.900
gs2 0.00 3.290 12.670 23.190 30.630 284.400

As discussed above, the second mechanism is expected to operate more strongly when the
range of |j− i| is small, as it is for NY 25–75.
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Table 5. Sensitivity to choice of transform for New York and Chicago data. Here ÎF denotes
ÎF

split
1,new; ŝdIF denotes ŝd(ÎF); and ŝdτ denotes ŝd(τ̂

split
1,new). The V2/V1 column denotes the slope of

V2/V1 with respect to k and has been multiplied by a factor of 250,000.

Days in the Sample and Percent Cut-Off Legendre Orthogonal Polynomial and Linear Models

id gs gs2

V2/V1 ÎF ŝdIF ŝdτ V2/V1 ÎF ŝdIF ŝdτ V2/V1 ÎF ŝdIF ŝdτ

NY, 25–75, 80% 16.0 13.56 7.3 0.027 7.5 48.18 42.6 0.028
NY, 25–75, 70% 41.0 8.77 4.4 0.025 100.0 55.71 25.9 0.027
NY, 25–3000, 80% 2.0 28.26 13.7 0.024 2.2 22.82 10.2 0.025 1.5 56.90 40.6 0.025
NY, 25–3000, 70% 5.0 12.50 5.6 0.023 1.8 31.31 31.9 0.024
Chicago, 25–1000, 80% 1.4 7.39 8.2 0.004 1.25 43.42 30.0 0.004
Chicago, 25–1000, 70% 1.75 3.00 5.3 0.004 1.3 13.88 23.2 0.005

2.3.3 Sensitivity to Choice of Transform

In our base case, we first empirically orthogonalize the components of the vector Xcont to ob-
tain a new vector by gs and then apply a separate scale and location shift to each component to
guarantee that the empirical support for each component is the interval [0,1]. We considered two
alternative transforms.

The first alternative, the id transform, was to apply a separate scale and location shift to each
component of the original Xcont to guarantee that the empirical support for each component is
the interval [0,1]. Note that in all cases the final scale and location shifts were required to insure
that Xcont had support on the unit cube in R4, so that the Legendre and Haar bases would serve
as orthonormal bases.

The final alternative, gs2, was to further remove seasonality and time by first fitting separately
for each city and each of the 4 components of Xcont a natural cubic spline with 40 df for time,
replacing each component of Xcont by its residual from this fit, and applying the above gs orthog-
onalization to the residuals followed by a separate scale and location shift.

From Table 5 we observe that in all cases, τ̂split1,new and τ̂
split,(k)
2 do not differ significantly from

their base-case values for any k (data not shown). However, other statistics do depend on the
choice of base case.

In all cases, Var(ÎF
split
1,new) =

{
sd(ÎF

split
1,new)

}2
was much greater for gs2 than for gs. Further in all

cases, the ratio of Var(ÎF
split
1,new)× the slope V2/V1 for gs2 divided by the same quantity for gs was

much greater than 1, implying that Var
[
ÎF

split,(k)
22 (0)

]
for gs2 was greater than for gs. The slope

of V2/V1 for gs was greater than that for gs2, with the exception of the case of NY with 25–75
and 70% cut-off, implying in all cases but the exception that the relative increase in Var(ÎF

split
1,new)

comparing gs and gs2 was greater than that for Var(ÎF
split,(k)
22 ). The standard deviation of τ̂

split
1,new

was slightly greater for gs2 than for gs.

Similiarly Var(ÎF
split
1,new) was much greater for gs2 than for id. Further, comparing id and gs2, the

relative increase in Var(ÎF
split
1,new) was greater than that for Var(ÎF

split,(k)
22 ).

On the other hand, Var(ÎF
split
1,new) and Var(ÎF

split,(k)
22 ) were greater for id than for gs. Again, com-

paring id and gs, the relative decrease in Var(ÎF
split
1,new) was similar to that for Var(ÎF

split,(k)
22 ).

Explanation From Table 4, we observe that, for id and gs, the distribution of the f̂j(Xi), especially
after a cut-off, was dominated by small values compared to the distribution of gs2, which was
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more nearly uniform. This represents the fact that gs2 removed the periodicity and time trends
that dominated the distribution of the f̂j(Xi) for gs and id; for example, without removing time
trends and periodicity, f̂j(Xi) with ti in summer and tj in winter will have a value near zero. Thus

the products f̂j(Xi)f̂tj′ (Xi)fi(Xi) occurring in ÎF
split
1,new have high probability of being small for gs and

id compared to gs2. Further, from Table 4, the upper quantiles of the distribution of f̂j(Xi) appear

to be similar for all distributions, a somewhat surprising result. Thus, the variance of ÎF
split
1,new

should be smaller for gs and id compared to gs2.

Now the variance of ÎF
split,(k)
22 (i.e., ÎFsplit,(k)

22 (τ) evaluated at τ = 0) depends on products of the

fj(Xi), which for similar reasons to those just above suggests the variance of ÎFsplit,(k)
22 should be

greatest for gs2. However the number of fj(Xi) and/or f̂j(Xi) multiplied together in computing the

variance is greater for ÎFsplit1,new than for ÎFsplit,(k)
22 so the relative increase in variance comparing gs2

to gs or id should be greater for ÎFsplit1,new than for ÎFsplit,(k)
22 .

However there is a second reason for a relatively larger increase in the variance of ÎFsplit,(k)
22 for

gs2 compared to gs or id, which is as follows.

We refer the reader to Section 3 for results and details of the arguments used in the remainder
of this subsection. For the Haar basis and for k= 24J×3 for some integer J, the dependence of the
variance of ÎF(k)

22 on k (see the proof of Lemma 41 in Appendix E) equals k times a term that increas-
es in norm as fj(x) approaches the uniform. As a consequence the relative increase in variance of

ÎF
split,(k)
22 will be greatest for gs2. Although the previous exact equality does not hold for the Legen-

dre basis, approximate equality will hold with similar consequence for the variance of ÎFsplit,(k)
22 .

Although the above explanations are consistent with the empirical results, we have no expla-
nation for (a) the decrease in the variance of ÎFsplit1,new and ÎF

split,(k)
22 in comparing gs to id; or (b) that

the relative increase in Var(ÎF
split
1,new) comparing gs and gs2 was less than that for Var(ÎF

split,(k)
22 ) for

the case of NY with 25–75 and 70% cut-off.

2.3.4 Sensitivity to Type of Density Estimator

We first formally describe our base-case estimator: the nonparanormal density estimator (Liu
et al., 2009) modified for time-series data. We then describe the Locfit density estimator based
on Loader (1999). In both cases, we incorporate time and seasonality in our estimator of f∗t (x)

by having the estimator f̂t(x) depend only on observations at times close to t or times a whole
number of years away from t.

The Nonparanormal Density Estimator Without the complication of time and seasonality, the non-
paranormal density estimator is a multivariate density that uses standard univariate density esti-
mators f̂l for the marginal density of the component Xli of the 4-dimensional vector

(
Xi ≡Xcont,i

)
and a Gaussian copula. For the l-th component, define Zl as

Zl = zl(X) =Φ−1 [
Fl(Xl)

]
,

where Fl is the distribution of Xl. Then the estimated joint distribution of Z is given by

Z∼Np(0,Ξ̂)

42



J.M. Robins et al.

where Ξ̂ is the empirical covariance matrix of the Ẑl = ẑl(X) = Φ−1 [
F̂l(Xl)

]
, where F̂l(Xl) is the

empirical distribution of Xl. The estimated joint density of X is

f̂(x) =
(
p∏
l=1

f̂l(xl)
ϕ[ẑi(x)]

)
1

(2π)p/2|Ξ̂|e
−ẑi(x)′Ξ̂−1ẑi(x)/2

with p= 4.

The Nonparanormal Density Estimator for Time-Series Data For the time series, the goal is to have f̂, F̂,
and Ξ̂ estimated for an observation at time t using only data close to time t. Because of seasonality,
“locally in time” includes both times s with |s−t| small and times s with |s−t| close to a multiple
of one year. Assume that time is measured in days, let K( ) be a smoothing kernel, and define the
time-smoothing weights as

ws,t =K
(
s− t mod 365

h1

)
K

(
s− t

365h2

)
with h1 approximately a month and 365h2 a few years. The default in our implementation was
h1 = 30 and h2 = 4, with a Gaussian kernel for K( ).

Now define the time-specific empirical cumulative distribution for the l-th covariate at time t
as

F̂l,t(c) =
∑N
i=1,ti ̸=twti,tI{Xl,i ≤ c}∑N

i=1wti,t
.

The sum is over ti ̸= t because otherwise F̂t has its largest jump exactly at xt, so F̂t(xt) is too big.

The time-specific marginal density f̂l,t is estimated by smoothing a weighted time-specific his-
togram of Xl,t. We used a local polynomial smoother (Wand and Jones, 1995) implemented in the
locpoly() function in R package KernSmooth (Wand and Ripley, 2009). The histogram is esti-
mated with the same time-smoothing weights ws,t as the cumulative distribution function. The
local polynomial smoother for the histogram uses a Gaussian kernel and a bandwidth chosen
with a plug-in estimator of the optimal bandwidth. Define

Ẑl,t = ẑl,t(Xt) =Φ−1 [
F̂l,t(Xl,t)

]
and estimate the time-specific empirical covariance matrix as

Ξ̂t =
∑N
i=1wti,t(Ẑti −Z t)⊗2∑N

i=1wti,t
,

whereZ t is the time-specific mean

Z t =
∑N
i=1wti,tẐti∑N
i=1wti,t

.

The time-specific nonparanormal density estimator is then

f̂t(x) =
(
p∏
l=1

f̂l,t(xi)
ϕ[ẑl,t(x)]

)
1

(2π)p/2|Ξ̂t|
e−ẑt(x)′Ξ̂−1

t ẑt(x)/2.
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Implementation The code takes as input a training set of times and data used to fit the time-specific
nonparanormal density estimator, and a test set of times and data where the density is to be
evaluated. The training and test sets can be the same. Other useful choices of the test set are a
grid of data values or a uniform random sample of data values to confirm that the density estimate
does in fact integrate to 1.

Density Estimator in Chicago Applying the nonparanormal density estimator to a random half of
the data from Chicago (scaled and translated to have the unit cube in R4 as support) shows strong
seasonal patterns in means, variances and covariances in Ξ̂t after transformation with the time-
specific quantile functions Φ−1 [

F̂l,t
(
Xl,t

)]
. Figure 3 shows the variances (diagonal elements of Ξ̂t),

and some of the correlations (first column of Ξ̂t, scaled from covariance to correlation). Each of
the curves in Figure 3 (top and bottom) represents one coordinate of the 4-dimensional vector Xj.
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Figure 3. Latent variances and correlations for nonparanormal estimator in Chicago for
4-dimensional time series.

Checking that the density estimate gives a density, by evaluating it on uniform random
samples of points, shows that although the density estimator is valid, it is not very precise.
Integrating each time-specific density over the same uniformly sampled set of 2400 points (the
same size as the test set used in estimation) gave results ranging from 0.6 to 4.0 when the true
answer is 1.0. If f̂t(x) is a density and the 4-dimensional vectors Xj are drawn from a uniform

distribution, then 1
2400

∑2400
j=1 f̂t(Xj) has mean 1 and variance 1

2400

[∫ {
f̂t(x)

}2
dx−1

]
conditional on

the training sample. Note the variance decreases as the density f̂t(x) becomes closer to uniform.
At the uniform the variance is 0.
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To remove some of the seasonality from the variables and make the density closer to uniform
we preprocessed the data matrix by the gs transformation described above (Section 2.3.3). The
covariance estimator for the nonparanormal density still shows definite seasonality in Figure 4.
The density is substantially less variable than without preprocessing: evaluating the densities on
a uniformly sampled set of 2400 points gives integrals ranging from 0.55 to 1.16.
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Figure 4. Latent variances and correlations for nonparanormal estimator in Chicago for 4-
dimensional time series preprocessed with Gram–Schmidt orthogonalization

To further remove seasonality we applied the transformation gs2 described above. The covari-
ance estimator for the nonparanormal density in Figure 5 shows substantially less seasonality
and less correlation between the latent variables. The density is again less variable than without
preprocessing: evaluating the densities on a uniformly sampled set of 2400 points gives integrals
ranging from 0.96 to 1.25, with most being very close to 1.

The Locfit Density Estimator As an alternative to the nonparanormal approach, for time-series den-
sity we modified the local regression density estimator (Loader, 1999), implemented using the R
package Locfit (Loader, 2010). The methods implemented there include local polynomial kernel
regression for i.i.d. data. We made the following modifications to address time-series data.

As before, the variables observed include (X1,t1), (X2,t2), . . ., (XN,tN) and the goal is to estimate
the density function at time t denoted by ft(x). Notice that data are observed at time ti, but not
at the time of interest t; thus, direct use of Locfit is not possible. To account for this, we weight
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Figure 5. Latent variances and correlations for nonparanormal estimator in Chicago for 4-
dimensional time series preprocessed by filtering with a 40-df cubic spline followed by Gram–
Schmidt orthogonalization.

times in the same manner as in our nonparanormal approach, using the same weighting kernel
as for the nonparanormal estimator:

ws,t =K
(
s− t mod 365

h1

)
K

(
s− t

365h2

)
with h1 = 30, h2 = 4, and K(·) being the Gaussian kernel. This addresses the seasonal effect as
well as the distance to the time of interest s. The idea is to utilize the local likelihood with
data weighted according to the time difference. Since our goal is to obtain fi(Xi), we need to
fit the Locfit model at all observed distinct times. This results in a very slow density estimation
approach compared to the nonparanormal approach discussed earlier. We leave all other settings
in the Locfit program at their default values. Notable ones are the following:

1. The default kernel for Locfit is

W(x) = (1−|x|3)3 for |x| < 1

and weights are calculated as

W
(∥xi−x∥

h(x)

)
.
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2. A local quadratic polynomial approximation is used when constructing the local likelihood
function.

3. The local weight h(x) is computed as follows:

(a) k= ⌊nα0⌋ (by default α0 = 0.7);
(b) compute di = ∥x−xi∥ and find the k-th smallest d(k);
(c) h(x) =d(k).

Comparison of Density Estimators From Figure 6 (bottom panel) we observe that, for the gs2 transfor-
mation, results for time-series versions of Locfit and the nonparanormal were essentially iden-
tical. From Figure 6 (top panel) we observe that, for the gs transformation, the results based
on Locfit differed somewhat from those based on the nonparanormal, although the substantive
results were similar.

The Locfit estimator is more nonparametric than the nonparanormal estimator, as the latter
allows 6 df (the 6 correlation parameters associated with the 4-dimensional vector Xcont). On the
other hand the nonparanormal estimator is much more stable than the Locfit estimator because
it less nonparametric. Thus, it is reassuring that both density estimators gave similar results.

As detailed in Section 3.4.3, a goodness-of-fit test for the density estimator can be constructed
by defining

ÎF
±
1,new = 1

2n

{ ∑
i∈split(0)

1
s(i)

∑
j∈s(i)

f̂j(Xi)+
∑

i∈split(1)

1
s(i)

∑
j∈s(i)

f̂j(Xi)

}

ÎF
±(k)
22 =− 1

2n

{ ∑
i∈split(0)

1
s(i)

∑
j∈s(i)

Kk(Xi,Xj)+
∑

i∈split(1)

1
s(i)

∑
j∈s(i)

Kk(Xi,Xj)

}

and letting ÎF
±(k)
2 = ÎF

±
1,new+ ÎF

±(k)
22 . The goodness-of-fit statistic is then ÎF

±(k)
2 /

{
ÎF

±
1,new− ÎF

±(k)
2

}
with

smaller values being better. The results are shown in Table 6.

Since we used the percentile cut-off 80 as our base case, we also provide results for that case
in Table 6. Reading from Table 6, we see that for Legendre with an 80% cut-off (the base-case
choices), the results for Locfit and the nonparanormal were essentially equivalent. Small absolute

Table 6. Goodness-of-fit for nonparanormal versus Locfit density estimation.

Percent Cut-Off Basis Transform Density Estimator ÎF
±
1,new− ÎF

(k),±
2 ÎF

±
1,new ÎF

(k),±
2

ÎF
(k),±
2

ÎF
±
1,new−ÎF(k),±

2

100% Legendre gs NPN 4.16 6.53 2.37 0.570
Locfit 4.16 3.37 −0.79 −0.190

gs2 NPN 17.73 20.53 2.80 0.158
Locfit 17.73 18.19 0.47 0.026

80% Legendre gs NPN 2.08 2.77 0.69 0.332
Locfit 2.17 1.57 −0.60 −0.277

gs2 NPN 12.75 12.73 −0.018 −0.001
Locfit 12.14 11.95 −0.188 −0.015

Haar gs NPN 1.58 2.77 1.19 0.753
Locfit 3.16 1.57 −1.59 −0.503

gs2 NPN 11.92 12.73 0.813 0.068
Locfit 9.10 11.95 2.85 0.313
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values for the goodness-of-fit statistic imply a good fit. For both nonparanormal and Locfit, the
fit under gs2 was excellent. For a cut-off of 100%, Locfit outperformed the nonparanormal. For
the Haar basis the performances were nearly equal.

2.3.5 Sensitivity to Haar vs. Legendre vs. Daubechies Compact Wavelets

Figure 7 compares results using Haar bases to those using Legendre bases (Vidakovic, 1999).
We observe for Haar, but not for Legendre, that as k increases, both the estimates in the left graphs
and the variance ratios in the right graphs are constant for large stretches. Furthermore, for most
values of k (especially moderate k) the variance ratio and thus the variance of ÎFsplit,(k)

2 based on
Haar exceeds that based on Legendre. In additional simulations (data not shown) we found that,
for any k, the truncation bias for our second-order estimator based on Haar wavelets was much
greater than that based on Legendre when one of the functions b∗i (x) and p∗

i (x) had more than one
derivative. Thus Legendre wavelets performed better than Haar both in terms of variance and
truncation bias. Furthermore, in simulations, the Legendre truncation bias was much smaller
than the truncation bias of order 20 Daubechies compact wavelets, whereas the variances were
nearly identical.

The Haar estimates were constant for long stretches as k increased, because when, in the tensor
product, we added a mother Haar wavelet for a particular variable, it may be that none of the
pairs of observations that were in the same “bin” before the addition were both still in the new
smaller bin formed by adding the new wavelet. If so, as further wavelets (corresponding to the
other variables in the tensor product at that level) are added, neither the statistic nor the variance
estimator will change.

Compared to Legendre, the large truncation bias of Haar when b∗i (x) or p∗
i (x) is due to the

well-known fact that Haar does not give optimal rates of approximation as a function of k when
the function being approximated has more than one derivative. Legendre wavelets have small-
er truncation bias than higher-order Daubechies because the Daubechies wavelets do not form
an orthonormal basis for functions with support on the unit interval. There do exist modified
Daubechies wavelets that are orthonormal, but they are difficult to compute and the required
software does not seem to be easily available.

2.3.6 Sensitivity to the Choice of Xcont and of the Linear Spline Models

In our base case, Xcont was represented by a 4-dimensional vector composed of temperature
and dew-point variables as follows: (1) average temperature on day ti, (2) dew-point temperature
on day ti, (3) adjusted 3-day lagged daily temperature, and (4) adjusted 3-day lagged dew-point
temperature (variables used in previous analyses of the NMMAPS data). We also considered a
6-dimensional vector of temperature and dew-point variables for Xcont (described below) that we
believed might better control confounding due to weather.

Furthermore, in our base-case analyses, we followed previous NMMAPS analyses and used re-
gression splines with 6 df for each of the 4 weather variables in Xcont (without between-variable
interaction terms) to estimate the nuisance regression functions b∗i (xcont) and p∗

i (xcont). As an
alternative, we also considered a variety of machine learning methods to estimate b∗i (xcont) and
p∗
i (xcont) both when Xcont was a 4-dimensional and a 6-dimensional vector. These methods allow

for interactions between the variables in Xcont. Remarkably, none of the machine learning esti-
mates of b∗i (xcont) and p∗

i (xcont) did substantially better than our base-case NMMAPS estimates on
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a test set. Furthermore, we also show that the 6-dimensional variable vector version of Xcont did
not do substantially better than the base-case 4-dimensional vector used in previous NMMAPS
analyses. Thus we chose as our base case both Xcont and the spline models used in previous
NMMAPS analyses because (1) this choice made the comparison of our estimates with those ob-
tained in earlier NMMAPS analyses more straightforward, and (2) other choices did not perform
substantially better. Details of the model selection procedure for the spline models are provided
in Appendix B.

2.4 DISCUSSION AND CONCLUSIONS

Reanalyses of NMMAPS city-specific time-series data for the 22 largest NMMAPS cities using
the higher-order influence-function estmiators provide no evidence that the original NMMAPS
estimates of the effect of PM10 on all-causemortality were biased, except possibly inMinneapolis,
and even there the estimated bias was small and did not change any substantive conclusions.

We obtained wider CIs than did the NMMAPS investigators. This increase in CI width was
to be expected as our approach makes weaker assumptions than does the original NMMAPS
approach concerning the smoothness of the dose–response function for the effect of temperature
and humidity on daily mortality and on PM10.

Our estimators depend on a number of user-supplied choices. In a sensitivity analysis, we
showed that our results were remarkably robust to these choices.

An important limitation of our approach, however, is that its validity depends critically on
the assumptions discussed in Section 2.2.2. Another apparent limitation is that, in our main
analyses, we chose the same independent variables Xi and the same number of spline degrees of
freedom as did the NMMAPS investigators. We had not originally planned to do so. Rather we
originally (1) included additional temperature and humidity variables in Xi to check whether the
fiveNMMAPS variables were sufficient, and (2) used flexiblemachine learning approaches to find
improved estimators of the regression of mortality and PM10 on the covariates Xi when compared
to the NMMAPS spline model. However, as discussed in section 2.3.6, we suprisingly found that
neither (1) nor (2) above predicted the association between mortality and PM10 better than the
NMMAPS approach (as evaluated by cross validation). Thus we opted for a direct comparison
between the first-order NMMAPS Poisson regression estimators and our second-order estimators
to evaluate whether our second-order estimator alone would result in conclusions that differed
from those of the NMMAPS investigators.

Our approach only provides evidence that the NMMAPS analyses were robust to confounding
by temperature and humidity attributable to possible wiggliness of the regression functions of
mortality and PM10 on the covariates Xi. As with any observational study, it is always possible
that there remains important residual confounding by unmeasured covariates. We did not exam-
ine the possible confounding effect on daily mortality of temperature more than 10 days before
the recorded date of death. In light of recent data on long term effects of temperature on daily
mortality, it would be prudent in future analyses to include in the covariate vector Xi summary
measures for temperature more than 10 days before the recorded date of death.

Although we limited our investigation to time-series analyses of the short-term effect of PM10

on mortality, our second-order methods could be used to decrease residual confounding bias at-
tributable to continuous covariates such as a smoking, temperature, and income in cohort studies
of the chronic effects of pollution. Indeed our methods should work better in such a setting be-
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cause, in contrast to time-series studies, the uncorrectable bias due to the nonrandom nature of
time would not be present. In addition, our variance estimates are not dependent on assumptions
about the degree of correlation at nearby times.

In summary, we found no evidence that policy decisions based on previous NMMAPS analyses
need to be reconsidered. The theoretical underpinnings of our results are further described in
Section 3 and the accompanying appendices.

3. THEORY

3.1 INTRODUCTION

In recent years, time-series epidemiological studies have used linear or loglinear semiparamet-
ric models for the effect of particulate matter suspended in the air on mortality (Dominici et al.,
2004). A linear or loglinear semiparametric model for this effect may be written as

Φ (Ei[Yi|Ai,Xi]) = τ∗Ai+ζ∗i (X),

Since we assume the data have one observation for each time point, the subscript i refers to the
i-th subject and also the corresponding time; Yi is the measured number of deaths; Ai is the
observed level of particulate matter in the air, for example, PM10; Xi refers to covariates used
to control confounding for the effect of Ai on Yi; ζ∗i : Rd → R is an unknown function that may
depend on the the time corresponding to observation i; and τ∗ encodes the magnitude of the
effect of pollution on mortality on the scale Φ. Here Yi is a scalar, Ai is a nonnegative scalar, and
Xi is a vector in Rd for some d≥ 1. The function Φ is a link function, equal to the identity for the
linear and to the logarithm for the loglinear model. It follows that the expectation Ei[Yi|Ai,Xi]

also depends on time; thus the expectation operator is also subscripted by i. A similar remark
applies to variances.

Standard estimators of τ∗ (1) model ζ∗i (Xi) as a linear function of a vector of covariates Mi =
mi(Xi) depending on the vector of covariates Xi and time; and (2) fit the resulting parametric
model by ordinary least-squares regression in the linear case and by Poisson regression in the log-
linear case. As will be shown, these approaches are equivalent to solving the efficient influence-
function equation if Vari[Yi|Ai,Xi] is constant in the linear case and is proportional to Ei[Yi|Ai,Xi]

in the loglinear case. To simplify notation, we suppress the subscript i until Section 3.3.

In Section 3.2 we show that the efficient influence function depends on two unknown functions
b∗(X) and p∗(X) of the distribution of the data. Let βb and βp denote the maximum number of
times b∗(X) and p∗(X) are differentiable. The statistical properties of any estimator of τ∗ depend
on βb and βp. Specifically, we show that

p
n-consistent estimators of τ∗ exist only if βb+βp >

d/2 (Donald and Newey, 1994; Robins, Tchetgen, et al., 2009). Failing this, the rate of decrease of
bias with sample size will be slower than the optimal rate, and Wald CIs based on the standard
estimators (Poisson and linear regression) and a consistent estimate of their standard error are
invalid.

It is known that βb and βp cannot be estimated from the data. This raises the following ques-
tions: (1) how can we empirically determine whether nominal 1−α Wald CIs centered on the
standard estimators have a coverage probability of at least 1−α? and (2) can we find estimators
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of τ∗ with MSE less than that of the standard estimators when these estimators fail to converge
at a

p
n rate?

We will show that, under regularity conditions, estimators based on higher-order influence
functions (Robins, Li, et al., 2008) both (1) can be used to test with reasonable power the hy-
pothesis that the bias of the standard estimators is less than their standard error, and (2) have
asymptotic MSE less than that of standard estimators when the standard estimators fail to con-
verge at

p
n rate.

Higher-order influence functions are higher-order U-statistics. We will consider different
higher-order influence-function estimators. All three estimators require estimates of the joint
density of X; the first estimator requires the estimates f̂(X) to be both smooth and bounded away
from zero, a condition not easily achievable for multivariate density estimates. The second esti-
mator does not require this but is often computationally intractable. The third estimator suffers
from neither of these drawbacks, but may be less efficient than the second estimator.

The time-series nature of the data, which implies that observations are not independent, intro-
duces new challenges for all three estimators. To overcome these challenges we impose condi-
tions on the dependence between the observations, and then attempt to minimize these condi-
tions. However, with time-series data there is a component of the bias of the standard estimators
that cannot be reduced using higher-order estimators; hence wewill need to assume that the func-
tions b∗ and p∗ and their estimators are smooth functions of time (though they need not smooth
in X).

To understand which of the modeling assumptions are critical and how far we can go without
making them, we adopt the following approach. We consider the nonparametric model and re-
define τ∗ to be the nonparametric functional to which the standard estimators converge under
possible misspecification of the semiparametric regression model. Then, as far as possible, we
derive results without further modeling assumptions. With time-series data we find there are lim-
itations to this approach that do not occur with i.i.d. data. We must therefore impose additional
restrictions, including the restriction that the semiparametric model holds.

The remainder of this section is an overview of the rest of the report. In Section 3.2, we study
first- and second-order inference based on the standard (first-order) estimators and on our second-
order influence-function (U-statistic) estimators in the i.i.d. setting. In Section 3.3 we generalize
to time-series analyses.

In Section 3.2 we define the parameter τ∗ in the nonparametric model. In Section 3.2.1 we
introduce a common notation that helps define efficient first-order influence functions and es-
timators of τ∗ based on these influence functions in both the linear and loglinear cases. An
important consideration is relative size of the bias and the variance of these estimators. We de-
rive bias formulae for the first-order estimators; the variance for the first-order estimators follows
from standard results for M-estimators (van der Vaart, 1998). Based on these formulae, in Sec-
tion 3.2.2 we describe rates of convergence for the bias and variance of these efficient first-order
estimators as a function of βb and βp and the smoothness of various nuisance functions. It turns
out that unless βb and βp are sufficiently large, the squared bias is larger than the variance of the
efficient first-order estimators. This leads to invalid inference, specifically with regard to CIs.
The first-order estimators can be improved with the use of second-order influence functions.

We consider three second-order influence-function estimators. To do so we define an addition-
al density-weighted first-order influence-function estimator in Section 3.2.3, since this is need-
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ed to define the third second-order influence-function estimators. The second-order influence-
function estimators are defined in Section 3.2.4. We derive formulae for the biases of the second-
order estimators and show that these do indeed reduce the bias to third order. Of the three higher-
order influence-function estimators, the second has especially attractive asymptotic properties,
but was infeasible for computational reasons. The first estimator depended on the reciprocal of
an estimated density and was thus numerically unstable. The third estimator, which reduces the
bias of the density-weighted first-order estimator, does not suffer from these problems. In the
remainder of the report we are primarily concerned with this third method. We defer discussion
of the rates of convergence of these second-order estimators until after the time-series version of
these second-order estimators is defined to avoid repetition.

Section 3.3 covers the time-series case, in which the observations are no longer independent
or uncorrelated. Because of this complication, the definition of the parameter τ∗ needs modifi-
cation. The joint distribution, density, and nuisance functions are all different for each observa-
tion and must be indexed by time through the observation number i. We define both first- and
second-order estimators in Sections 3.3 and 3.3.1. A precise formula for the bias and variance
of the time-series second-order estimators requires additional assumptions, which we provide in
Section 3.3.2. The best achievable rates for the bias of our second-order estimators are products
of the optimal rates for the nuisance functions b∗ and p∗ in the time-series case, whereas in the
i.i.d. case this is multiplied by the optimal rate for the density f. We describe these properties
and their consequences for the choice of k — a truncation parameter used in the second-order
influence-function estimators — in Section 3.3.3.

The choice of k depends on knowledge of the smoothnesses of various functions, or on as-
sumptions made about these smoothnesses. Choosing k in the absence of knowledge about the
smoothness of b and p is an open problem. However, we can test whether the first-order estimator
has a squared bias exceeding the variance. We describe this test in Section 3.3.4.

The first- and second-order estimators depend on various user-chosen quantities, such as the
choice of density estimator and choice of a set s(i), to be defined later. Results of the consequences
of these choices and ways of determining them are presented in Section 3.4. Section 2.4 presents
conclusions and discussion.

Additional results, simulations, and proofs are presented in the appendices. Appendix C gives
the results of simulations based on the NMMAPS data set comparing the relative biases and vari-
ances of the three types of estimator — full-sample, split-sample, and half-sample — considered
in this report. Appendix D details an estimator for which we have a proof demonstrating that it
achieves a

p
n rate for the loglinear model when βb+βp > d/2; this estimator is not a time-series

Poisson regression estimator. Finally, Appendix E collects the proofs of the theorems presented
in the report.

3.2 ESTIMATION IN THE I.I.D. CASE

As noted above, we strive for greater generality by working in the nonparametric model, for
which a definition of τ is needed. We define τ as the solution to an estimating equation chosen
such that, when the semiparametric model holds, the definition of the parameter is consistent
with the definition in the semiparametric model. The definitions in the i.i.d. case motivate those
in the time-series case. In the i.i.d. case the model can be expressed as

Φ (E[Y|A,X]) = τ∗A+ζ∗(X),
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where, similar to the time-series case, Y is the measured number of deaths,A is the observed level
of particulate matter in the air (say PM10), X refers to covariates used to control confounding for
the effect of A on Y, ζ∗ : Rd → R is an unknown function, and τ∗ encodes the magnitude of the
effect of pollution on mortality on the scale Φ. Recall that Y is a scalar, A is a nonnegative scalar,
and X is a vector in Rd for some d≥ 1. The function Φ is a link function, equal to the identity for
the linear model and to the logarithm for the loglinear model.

In the sequel, the linear and loglinear cases refer not to the model itself (since we are assuming
the nonparametric model here) but to the definition of τ desired: one that is compatible with the
linear model, or one that is compatible with the loglinear model, respectively. Either of the two
definitions below is compatible with the corresponding model when the model holds.

Definition 1. We define the parameter τ∗ in two possible ways. The first is as the solution to the
equation

E
[(
Y−τA−E[Y−τA|X]

)(
A−E[A|X]

)]= 0 in the linear case, and

E

[(
Y− E[Y|X]

E[eτA|X]

)(
A− E[AeτA|X]

E[eτA|X]

)]
= 0 in the loglinear case.

The second is

E
[
f(X)

(
Y−τA−E[Y−τA|X]

)(
A−E[A|X]

)]= 0 in the linear case, and

E

[
f(X)

(
Y− E[Y|X]

E[eτA|X]

)(
A− E[AeτA|X]

E[eτA|X]

)]
= 0 in the loglinear case

where f(x) is a fixed, known density defined on the support of X (not the true, unknown density
f∗ of X).

The reasons and choices for theweighting density f(X) in the second definition of τwill bemade
clear in subsection 3.2.3. The other terms are motivated by the form of the efficient influence
functions in the semiparametric models, as shown in Section 3.2.1.

3.2.1 First-Order Influence Functions and the Associated Estimators

Suppose we observe the i.i.d. random sample (Yi,Ai,Xi), i = 1, . . . ,N. Following Bickel et al.
(1993), consider a model M = {P}. Let P∗ ∈ M be the true distribution of Y,A,X. The pathwise
differentiable parameter τ is a functional τ : M →R. In a model, an influence function for a regular
parameter τ∗ = τ(P∗) in a model is an element IF1(Y,A,X,P∗) ∈L2(P∗) satisfying

dτ(θ)

dθ

∣∣∣∣
θ=θ∗

=Eθ∗
[
IF1(Y,A,X;P∗)Sθ(Y,A,X;θ∗)

]
for every regular parametric submodel {Pθ}, indexed by θ, of the model. Here Sθ is the score for
θ in the submodel. We assume that Pθ∗ = P∗ for some θ∗, the “true” θ for the submodel. The
efficient influence function is the influence function with the smallest variance.

Theorem 2. Consider the semiparametric model

E
[
ξ(Y,A,X;τ)|A,X

]=E[
ξ(Y,A,X;τ)|X]

where ξ is a known function. Let

∆ξ(Y,A,X;τ) = ξ(Y,A,X;τ)−E[
ξ(Y,A,X;τ)|X]

,
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J(A,X;P∗) = d
dτ

E
[
∆ξ(Y,A,X;τ)|A,X

]∣∣
τ=τ∗ ,

J̃(X;P∗) =E
[
J(A,X;P∗)Var−1

[
∆ξ(Y,A,X;τ∗)|A,X

] |X]
×E

[
Var−1

[
∆ξ(Y,A,X;τ∗)|A,X

] |X]−1
.

The influence functions for τ in the model are{
−E[

J(A,X;P∗) ∆h(A,X;P∗)
]−1

∆ξ(Y,A,X;τ∗) ∆h(A,X,P∗) :h(A,X) ∈L2(P∗)

E
[
J(A,X;P∗) ∆h(A,X;P∗)

]∣∣
θ=θ∗ ̸= 0

}
.

The efficient influence function is given by

IF1,eff(Y,A,X;P∗) = (
J(A,X;P∗)− J̃(X;P∗)

)
Var−1θ∗

[
∆ξ(Y,A,X;τ∗)|A,X

]
∆ξ(Y,A,X;τ∗).

Proofs of theorems, corollaries and lemmas are in Appendix E. The loglinear and linear semi-
parametric regression models are special cases of the above model with ξ(Y,A,X;τ) =Ye−τA (log-
linear) and Y−τA (linear). Hence the theorem leads to the following corollaries.

Corollary 3. Under the assumption of homoscedasticity,

Var[Y|A,X] =σ2 for all A,X,

the efficient influence function in the linear semiparametric model

E[Y|A,X] = τA+ζ∗(X)

is

IF1,eff,linear(Y,A,X;P∗) =σ−2 {
Y−τ∗A−E[

Y−τ∗A|X]}{
A−p∗

τ (X)
}

,

where p∗
τ (X) =E[A|X], which does not depend on τ in the linear case.

Corollary 4. Under the (possibly overdispersed) conditional Poisson variance assumption,

Var[Y|A,X] =σ2eτ
∗A+ζ∗(X) for all A,X,

the efficient influence function in the loglinear semiparametric model

logE[Y|A,X] = τ∗A+ζ∗(X)

is

IF1,eff,loglinear(Y,A,X;P∗) =σ−2 [
A−p∗

τ∗(X)
]{
Y−eτ∗A+ζ∗(X)

}
,

where p∗
τ (X) = E[AeτA|X]

E[eτA|X]
.

One approach to inference is to obtain estimators of τ∗ by solving estimating equations based
on the above first-order influence functions. Note, however, that the above influence functions
themselves depend on functions of the distribution of the data, such as p∗

τ and E[Y−τ∗A]. In
order to use these influence functions, such functionals must be estimated.
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We will need a considerable amount of notation in order to define the first-order estimators;
the same notation will later help in defining the higher-order estimators. To avoid repetition we
often use the same notation for the linear and loglinear cases. For brevity, we will suppress the
subscripts “linear” and “loglinear” if they are clear from the context or if both are applicable.
Many of our definitions and results are applicable in both cases; where necessary, we clarify
which case is intended.

We start by letting w : Rd → Rd̄ be a fixed transform of the covariates X (typically d̄ > d). Let
W=w(X). Wwill be used tomodel various nuisance functions. We need the following definitions.

Definition 5. In the loglinear case define

b∗τ (X) = E [Y|X]

E
[
eτA|X] ,

p∗
τ (X) = E[AeτA|X]

E[eτA|X]
,

q∗τ (X) =E[eτA|X],

εi(τ,b) =Yi−eτAib(Xi),

q(x;ω) = exp
(
ωTw(x)

)
,

b(x;η) = exp
(
ηTw(x)

)
,

∆i(τ,p,q) =
(
Ai−p(Xi)

) eτAi

q(Xi)
, and

Si(τ,α) = (Ai−αTWi)Wie
τAi .

Definition 6. In the linear case, define

b∗τ (X) =E [Y−τA|X] ,

p∗
τ (X) =E[A|X],

q∗τ (X) = 1,

εi(τ,b) =Yi−τAi−b(Xi),

b(x;η) = ηTw(x),

q(x;ω) = 1,

Si(τ,α) = (Ai−αTWi)Wi, and

∆i(τ,p,q) =Ai−p(Xi).

Note that ε is defined in terms of an arbitrary function b : Rd→R, not necessarily b∗τ . Similarly,
∆i(τ,p,q) is defined in terms of arbitrary functions p,q : Rd→R. ∆i(τ,p,q), p∗

τ , and S(τ,α) depend on
τ in the loglinear case but not in the linear case. These definitions do not depend on the validity
of either the linear or loglinear model. However, in the loglinear case b∗τ∗(X) = eζ

∗(X) when the
loglinear model holds, and in the linear case b∗τ∗(X) = ζ∗(X) when the linear model holds.

Definition 7. Common to both the linear and loglinear models, define

∆i(p) =Ai−p(Xi),

59



Semiparametric Regression As Applied to Air Pollution Research

Ui,profile(τ,b) = εi(τ,b)Ai,

Ui,nuis(τ,b) = εi(τ,b)Wi,

Ui(τ,b) = (Ai,Wi)
Tεi(τ,b), and

IF1,eff,i(τ;b,p) = εi(τ,b)(Ai−p[Xi]).

Before we define the estimators using this notation, we note that our estimators can be di-
vided into full-sample, split-sample, and half-sample estimators. In full-sample estimators, the
nuisance functions as well as the estimating equation for τ are based on the full sample of N
observations. The half-sample and split-sample estimators divide the sample into two halves of
size n each (so N= 2n) and will be described shortly.

The estimators τ̂full1,eff (for the linear and loglinear cases) are now defined as the solutions to the
equations

1
N

N∑
i=1

IF1,eff,i(τ; b̂fullτ , p̂full
τ ) = 0,

where b̂fullτ and p̂full
τ are estimators of the functions b∗τ and p∗

τ based on the parametric models
b(Xi;η) and αTw(Xi), respectively.

Formally, we have the following definition for our full-sample estimators.

Definition 8. Let η̂full(τ) and α̂full(τ) solve

N−1 N∑
i=1

Ui,nuis
[
τ,b(η)

]= 0, and

N−1 N∑
i=1

Si(τ,α) = 0,

respectively, where b(η) is the function b(·;η). The full-data estimators of b∗τ and p∗
τ are defined

as

b̂fullτ (x) =
exp

(
η̂full(τ)Tw(x)

)
in the loglinear case,

η̂full(τ)Tw(x) in the linear case; and

p̂full
τ (x) = α̂full(τ)Tw(x).

Then the first order estimators τ̂full1,eff,linear and τ̂full1,eff,loglinear are the solutions to

ÎF
full
1,eff(τ)

def= IF1,eff(τ; b̂fullτ , p̂full
τ ) = 0

(for the linear and loglinear cases), where

IFfull1,eff(τ;b,p) = 1
N

N∑
i=1

IF1,eff,i(τ;b,p).

(The following lemma is proved in Appendix E.)

Lemma 9. The estimators τ̂full1,eff are the same as the usual linear or Poisson regression estimators
of the coefficient of A when regressing the outcome Y on A and W.
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Half-sample estimators are obtained by splitting the sample into disjoint “testing” and “train-
ing” parts of equal size, estimating the nuisance functions b∗τ and p∗

τ on one half (the training half),
and constructing the estimating equation for τ∗ from the other half (the testing or estimation half).
The half-sample estimators are not efficient in finite samples and are considered mainly because
they help analyze the asymptotic properties of the split-sample estimators. In the split-sample
estimators, the two half-sample estimating equations, with the roles of the training and testing
halves reversed, are averaged to obtain the final estimating equation. The reason for splitting the
sample in the first place is to ease analysis and is required because the functions b∗τ and p∗

τ may
not be smooth enough for Donsker conditions to hold (van der Vaart and Wellner, 1996). We
use the superscripts “split” and “full” to denote the corresponding estimators. The half-sample
estimators are denoted by omission of a superscript. For example, τ̂1,eff, τ̂

split
1,eff , and τ̂full1,eff refer to

the half-sample, split-sample, and full-sample first-order efficient influence function–based esti-
mators, respectively.

The split estimators are defined as follows.

Definition 10. Let

n= N
2

.

Let {split(0),split(1)} be a random partition of {1, . . . ,N } into two sets of equal cardinality. Define
η̂(ℓ)(τ) and α̂(ℓ)(τ) as the solutions to

n−1 ∑
i∈split(ℓ)

Ui,nuis
[
τ,b(η)

]= 0, and

n−1 ∑
i∈split(ℓ)

Si(τ,α) = 0,

respectively, where b(η) is the function b(·;η). The split-sample estimators of b∗τ and p∗
τ are defined

as

b̂(ℓ)
τ (x) =

{
exp

(
η̂(ℓ)(τ)Tw(x)

)
in the loglinear case,

η̂(ℓ)(τ)Tw(x) in the linear case; and

p̂(ℓ)
τ (x) = α̂(ℓ)(τ)Tw(x).

Then the first-order estimators τ̂split1,eff,linear and τ̂
split
1,eff,loglinear are the solutions to

ÎF
split
1,eff (τ) = 1

n

∑
i∈split(0)

IF1,eff,i(τ; b̂(1)
τ , p̂(1)

τ )+ 1
n

∑
i∈split(1)

IF1,eff,i(τ; b̂(0)
τ , p̂(0)

τ )

(for the linear and loglinear cases).

We next give formulae for the robust variance estimates for the full and split estimators. These
are standard robust variance estimates for M-estimators.

Definition 11. The robust variance estimates for τ̂full1,eff and τ̂
split
1,eff are

V̂full
1,eff =

V̂
(
ÎF

full
1,eff(τ̂

full
1,eff)

)
{�DER(

ÎF
full
1,eff(τ̂

full
1,eff)

)}2 , and
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V̂
split
1,eff =

V̂
(
ÎF

split
1,eff (τ̂

split
1,eff )

)
{�DER(

ÎF
split
1,eff (τ̂

split
1,eff )

)}2 ,

where

DER1,eff,i
(
τ,b,p

)={{
∆i(p)

}2 in the linear case, and{
∆i(p)

}2eτAib(Xi) in the loglinear case

are the derivatives of IF1,eff,i(τ;b,p). Therefore,

V̂
(
ÎF

full
1,eff(τ)

)
=N−2 N∑

i=1

{
IF1,eff,i(τ, b̂fullτ , p̂full

τ )
}2

,

V̂
(
ÎF

split
1,eff (τ)

)
= 1

4n2

∑
i∈split(1)

{
IF1,eff,i(τ, b̂(0)

τ , p̂(0)
τ )

}2+ ∑
i∈split(0)

{
IF1,eff,i(τ, b̂(1)

τ , p̂(1)
τ )

}2
,

�DER(
ÎF

full
1,eff(τ)

)
=N−1 N∑

i=1

{
DER1,eff,i(τ, b̂fullτ , p̂full

τ )
}

, and

�DER(
ÎF

split
1,eff (τ)

)
= 1

2

{
n−1 ∑

i∈split(1)

DER1,eff,i(τ, b̂(0)
τ , p̂(0)

τ )

+n−1 ∑
i∈split(0)

DER1,eff,i(τ, b̂(1)
τ , p̂(1)

τ )

}
.

Note that �DER(
ÎF

split
1,eff (τ)

)
converges in probability to the expected derivative of IF

split
1,eff (τ), and

similarly for the full-sample estimator.

3.2.2 Conditional Bias and Variance of the First-Order Efficient Estimators

We now investigate the bias of the first-order half-sample estimators conditional on the training
half-sample. To do so, we note that, since the estimator τ̂1,eff is the solution to the influence-
function equation, its bias is asymptotically equivalent (up to a constant) to the bias of ÎF1,eff(τ)

as an estimator of E[IF1,eff(τ;b∗τ ,p∗
τ )]. Hence we focus on this bias in what follows.

Definition 12. Define

IF1,eff(τ;b,p) =n−1 ∑
i∈split(0)

IF1,eff(τ;b,p).

The half-sample influence function is defined as

ÎF1,eff(τ)
def= IF1,eff(τ; b̂τ, p̂τ) =n−1 ∑

i∈split(0)

IF1,eff(τ; b̂τ, p̂τ),

where b̂τ and p̂τ are estimators of b∗τ and p∗
τ based on the other half-sample, split(1). Define the

conditional bias

Bias1,eff(τ;b,p) =E[IF1,eff(τ;b,p)]−E[IF1,eff(τ;b∗τ ,p∗
τ )],

where the expectations are conditional on the observations indexed by split(1).
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We are interested in calculating the conditional bias conditional on observations indexed by
split(1); hence b̂τ and p̂τ are deterministic functions for the purposes of this calculation. We start
by giving the bias of IF1,eff(τ;b,p) for its expectation.

Lemma 13. The bias of IF1,eff(τ;b,p) as an estimator of E[IF1,eff(τ;b∗τ ,p∗
τ )] is given by

Bias1,eff(τ;b,p) =E[q∗τ (X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}].

The rate at which this bias goes to zero can be expressed in terms of measures of the smoothness
of b∗τ and p∗

τ , specifically their Hölder exponents as defined next.

Definition 14. We say that a function h :Rd → R belongs to a Hölder class H(βh,Ch) with Hölder
exponent βh and radius Ch if h(·) is continuously differentiable up to order

⌊
βh

⌋
and all par-

tial derivatives ∂h of order
⌊
βh

⌋
satisfy the Lipschitz condition (van der Vaart, 1998) of order(

βh−
⌊
βh

⌋)
with constant Ch:

|∂h(x)−∂h(x′)| ≤Ch∥x−x′∥βh−⌊βh⌋.

Suppose b∗τ ∈H(Cb,βb), and p∗
τ ∈H(Cp,βp). We note the following.

• If βb+βp ≤ d/2, where d is the dimensionality of X, then under both the nonparametric and
semiparametric models:
– No estimator for τ∗ exists such that the bias and standard deviation converge at the rate n−1/2.
– The conditional half-sample influence function IF1,eff(τ; b̂τ, p̂τ), with b̂τ and p̂τ based on the

conditioning half-sample, can be analyzed.
The best convergence rate achievable by b̂τ and p̂τ is

E
[{
b∗τ (X)− b̂τ(X)

}2]1/2
≍n− βb

2βb+d , and

E
[{
p∗
τ (X)− p̂τ(X)

}2]1/2 ≍n− βp
2βp+d ,

where X is in one half-sample, b̂τ and p̂τ are based on the other half-sample, and the expecta-
tion is unconditional or conditional. The notation an ≍ bn indicates that there are constants
c1 and c2 such that c1an ≤ bn ≤ c2an for all n.

– Hence the best conditional half-sample bias is

Bias1,eff(τ; b̂τ, p̂τ) ≍n−
{

βb
2βb+d

+ βp
2βp+d

}
.

• The asymptotic variance of IF1,eff(τ;b,p) is O(1/n) for any nonstochastic b and p, and hence the

variance, conditional on the training half-sample, is Var
[

(IF1,eff(τ; b̂τ, p̂τ)
]
, is OP(1/n).

• If βb+βp ≤d/2, an MSE of O(1/n) is not achievable and the squared bias decreases more slowly
than the variance. This implies that

p
n(τ̂1,eff − τ∗) is not asymptotically unbiased, and CIs

based on τ̂1,eff and its estimated standard error will have an asymptotic coverage probability of
0. Recalling from Lemma 9 that τ̂1,eff is a conditional version of the Poisson or linear regression
estimator, we see that these estimators suffer from these drawbacks when βb+βp <d/2.

3.2.3 Density-Weighted First-Order Estimators

As shown above, the bias of the optimal first-order estimators is large when b∗τ and p∗
τ are not

smooth enough. In Section 3.2.4 we will describe in detail the second-order approach that sub-
tracts an estimator of the bias of the first-order estimator in order to reduce the bias, possibly at
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the cost of increasing the variance. We considered three approaches to this second-order estima-
tor; the two approaches that use the first-order estimator τ̂split1,eff (introduced above) are problematic
to implement. The third approach, which eliminates these issues, involves a modification to the
first-order estimator.

We now describe the modified first-order estimators τ̂full1,new, τ̂
split
1,new, and τ̂1,new required for the

third approach.

Definition 15. Define the density-weighted quantities

IF1,new,i(τ;b,p,f) = f(Xi)εi(τ,b)
[
Ai−p(Xi)

]
,

IFfull1,new(τ;b,p,f) = 1
N

N∑
i=1

IF1,new,i(τ;b,p,f),

IF1,new(τ;b,p,f) =n−1 ∑
i∈split(0)

IF1,new,i(τ;b,p,f),

ÎF
full
1,new(τ) = IF1,new(τ; b̂fullτ , p̂full

τ , f̂ ), and

ÎF
split
1,new(τ) = 1

2n

{ ∑
i∈split(0)

IF1,new,i(τ; b̂(1)
τ , p̂(1)

τ , f̂ )+ ∑
i∈split(1)

IF1,new,i(τ; b̂(0)
τ , p̂(0)

τ , f̂ )

}
,

where εi(τ,b), b̂fullτ , p̂full
τ , b̂(ℓ)

τ , and p̂(ℓ)
τ are as before, and f̂ is a nonparametric or semiparametric

estimate of the density f∗ of X based on the same half-sample as b̂(ℓ)
τ . We suppress the ℓ superscript

on f̂ because we will consider estimating f̂ from the full-sample later (Section 3.3.3). Then the
first-order estimators τ̂full1,new,linear and τ̂full1,new,loglinear are the solutions to

ÎF
full
1,new(τ) = 0;

τ̂
split
1,new,linear and τ̂

split
1,new,loglinear are the solutions to

ÎF
split
1,new(τ) = 0;

and τ̂1,new,linear and τ̂1,new,loglinear are the solutions to

ÎF1,new(τ) = 0.

The corresponding estimators of the variance follow.

Definition 16. The robust variance estimates for τ̂full1,new and τ̂
split
1,new are

V̂full
1,new =

V̂
(
ÎF

full
1,new(τ̂full1,new)

)
{�DER(

ÎF
full
1,new(τ̂full1,new)

)}2 , and

V̂
split
1,new =

V̂
(
ÎF

split
1,new(τ̂

split
1,new)

)
{�DER(

ÎF
split
1,new(τ̂

split
1,new)

)}2 ,

where

DER1,new,i
(
τ,b,p,f

)={
f(Xi)

{
∆i(p)

}2 in the linear case,

f(Xi)
{
∆i(p)

}2eτAib(Xi) in the loglinear case,
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V̂
(
ÎF

full
1,new(τ)

)
=N−2 N∑

i=1

{
IF1,new,i(τ, b̂fullτ , p̂full

τ , f̂ )
}2

,

V̂
(
ÎF

split
1,new(τ)

)
= 1

4n2

{ ∑
i∈split(1)

{
IF1,new,i(τ, b̂(0)

τ , p̂(0)
τ , f̂ )

}2
+ ∑
i∈split(0)

{
IF1,new,i(τ, b̂(1)

τ , p̂(1)
τ , f̂ )

}2}
,

�DER(
ÎF

full
1,new(τ)

)
=N−1 N∑

i=1
DER1,new,i(τ, b̂fullτ , p̂full

τ , f̂ ), and

�DER(
ÎF

split
1,new(τ)

)
= 1

2n

{ ∑
i∈split(1)

DER1,new,i(τ, b̂(0)
τ , p̂(0)

τ , f̂ )

+ ∑
i∈split(0)

DER1,new,i(τ, b̂(1)
τ , p̂(1)

τ , f̂ )

}
.

As with the estimators based on the efficient influence function, we study the bias of these
estimators by deriving the bias of the corresponding half-sample influence function conditional
on the other half. The conditional bias is defined in the following.

Definition 17. For any b, p, or f, the bias of IF1,new(τ;b,p,f) is defined by

Bias1,new(τ,b,p,f) =E[IF1,new(τ;b,p,f)]−E[IF1,new(τ;b∗τ ,p∗
τ ,f)].

Wenote that E[IF1,new(τ;b∗τ ,p∗
τ ,f)] is in terms of f, not f∗. In contrast to the bias for the unweighted

first-order estimators, this bias consists of a second-order and a third-order term, as seen in the
following lemma.

Lemma 18.

Bias1,new(τ;b,p,f) =E[q∗τ (X)f∗(X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}]

+E[q∗τ (X){f(X)− f∗(X)}{b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}].

The first term in this expression for the bias is second order. If one uses optimal esti-
mators b̂τ, p̂τ, and f̂ for b∗τ ,p∗

τ , and f∗, then Bias1,new(τ; b̂τ, p̂τ, f̂ ) (the rate for this quantity) is

OP

(
n
−

{
βb

2βb+d
+ βp

2βp+d

})
. The second term is a third-order term whose bias (by the results in Sec-

tion 3.2.2 on approximation using the other half-sample) is of the order

OP

n−
{

βb
2βb+d

+ βp
2βp+d+

βf
2βf+d

}
when f̂ is the density estimator used. As with the unweighted estimators, we can then subtract
an estimate of the second-order bias to reduce overall bias, at the cost of increasing the variance,
and still obtain an optimal estimator. We describe the second-order estimators for the unweighted
and density-weighted estimators next.

3.2.4 Second-Order Influence-Function Estimators and Their Properties

The bias of the first-order estimators can be reduced by subtracting an estimator of the bias
(or, in the case of the density-weighted estimators, the second-order component of bias) derived
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above:

Bias1,eff(τ;b,p) =E[q∗τ (X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}], and

Bias1,new(τ;b,p,f) =E[q∗τ (X)f∗(X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}].

In this section we define the second-order estimators and derive their bias and variance formulae.
Since many of the properties of the second-order estimators in the i.i.d. case are shared by those
in the time-series case, we defer a detailed discussion of the rates of convergence of the bias
and variance of these estimators, and the consequences of these rates for optimal choices of k, to
Section 3.3.3, which discusses rates both for the time-series and i.i.d. situations.

In order to define such an estimator, we consider an orthonormal basis {φl, l = 1, . . . , } of the
space L2(λ), λ being Lebesgue measure on Rd, assuming X is absolutely continuous. Let φ̄k(x) =[
φ1(x), . . . ,φk(x)

]T. The three methods considered correspond to three projection kernels defined
in the following.

Definition 19. For any density f on the support of X, define Kf,k : Rd×Rd→R by

Kf,k(x,y) =
k∑
l=1

φl(x)φl(y)

f1/2(x)f1/2(y)

and Kf,q,k,alt : Rd×Rd→R by

Kf,q,k,alt(x1,x2) = q(x1)1/2φ̄k(x1)TEf[q(X)φ̄k(X)φ̄k(X)T]−1 φ̄k(x2)q(x2)1/2.

Define Kk : Rd×Rd→R by

Kk(x,y) =
k∑
l=1

φl(x)φl(y).

For any function g(x) ∈L2(µ) expressed as
∑∞
l=1γlφl(x), define the orthogonal projection operators

with respect to Lebesgue measure

∏
[g(x)|φ̄k(x)] =

k∑
l=1

γlφl(x),
∏

[g(x)|φ̄⊥
k (x)] =

∞∑
l=k+1

γlφl(x).

Also define ∏
f

[g(x)|φ̄k(x)], and
∏
f

[g(x)|φ̄⊥
k (x)]

as the projections in L2(f) of g(x) onto φ̄k(x) and φ̄⊥
k (x), respectively; i.e.,

∏
f[g(x)|φ̄k(x)] min-

imizes Ef
[{
g(X)−h(X)

}2]
over h in the linear span of φ̄k(x), and

∏
f[g(x)|φ̄⊥

k (x)] minimizes

Ef
[{
g(X)−h(X)

}2]
over h in the orthogonal complement of the linear span of φ̄k(x).

Next we define second-order influence functions based on these kernels.

Definition 20. Recall the definition of εi(τ,b) and ∆j(τ,p,q) from Definitions 5 and 6. Define ω̂(ℓ)(τ)

as the solution to

1
n

∑
i∈split(ℓ)

{
eτAi −eω(τ)Wi

}
Wi = 0,
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and

q̂(ℓ)
τ (x) =

{
exp

(
ω̂(ℓ)(τ)Tw(x)

)
in the loglinear case,

1 in the linear case.

Next define

IF(k)
22,i,j(τ;b,p,q;K) =

−εi(τ,b)K(Xi,Xj)∆j(τ,p,q) if K=Kf̂,k or Kk,

−q−1/2(Xi)εi(τ,b)K(Xi,Xj)∆j(τ,p,q)q1/2(Xj) if K=Kq̂,f̂,k,alt,

ÎF
split,(k)
22 (τ;K) = 1

2

{
1

n(n−1)

∑
i̸=j∈split(0)

IF(k)
22,ij(τ, b̂(1)

τ , p̂(1)
τ , q̂(1)

τ ;K)

+ 1
n(n−1)

∑
i ̸=j∈split(1)

IF(k)
22,ij(τ, b̂(0)

τ , p̂(0)
τ , q̂(0)

τ ;K)

}
,

ÎF
(k)
22 (τ;K) = 1

n(n−1)

∑
i̸=j∈split(1)

IF(k)
22,ij(τ, b̂(0)

τ , p̂(0)
τ , q̂(0)

τ ;K),

ÎF
(k)
2,eff(τ) = ÎF1,eff(τ)+ ÎF

(k)
22 (τ;Kf̂,k),

ÎF
(k)
2,alt(τ) = ÎF1,eff(τ)+ ÎF

(k)
22 (τ;Kf̂,k,alt),

ÎF
(k)
2,new(τ) = ÎF1,new(τ)+ ÎF

(k)
22 (τ;Kk),

ÎF
split,(k)
2,eff (τ) = ÎF

split
1,eff (τ)+ ÎF

split,(k)
22 (τ;Kf̂,k),

ÎF
split,(k)
2,alt (τ) = ÎF1,eff(τ)+ ÎF

split,(k)
22 (τ;Kf̂,k,alt), and

ÎF
split,(k)
2,new (τ) = ÎF

split
1,new(τ)+ ÎF

split,(k)
22 (τ;Kk).

The first three definitions are in terms of the generic kernel K, and specific kernels are used to
define the estimated second-order influence functions that follow. Since we focus on the “new”
second-order estimators in this report, we define the following shorthand:

IF(k)
22,i,j(τ;b,p,q) = IF(k)

22,i,j(τ;b,p,q;Kk),

ÎF
split,(k)
22 (τ) = ÎF

split,(k)
22 (τ;Kk),

ÎF
(k)
22 (τ) = ÎF

(k)
22 (τ;Kk),

ÎF
(k)
2 (τ) = ÎF

(k)
2,new(τ),

ÎF
split,(k)
2 (τ) = ÎF

split,(k)
2,new (τ), and

ÎF
full,(k)
2 (τ) = ÎF

full,(k)
2,new (τ).

Note that the “alt” kernel uses a slightly different definition than the other kernels.
This puts a factor of 1/q(X)1/2 on either side of the kernel in the conditional expectation
E[IF(k)

22,i,j(τ;b,p,q;K)|Xi,Xj], rather than 1/q(X) on one side and no factor on the other. We shall
see that this leads to a better rate of convergence for the bias than the other kernels.

As before, we use ÎF
split,(k)
2 (τ) to do estimation but analyze bias and variance properties using

the half-sample estimator ÎF(k)
2 (τ). In what follows, we use the notation

δbτ(x) = b∗τ (x)− b̂τ(x), and
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δpτ(x) =p∗
τ (x)− p̂τ(x)

for brevity.

Theorem 21. Let ÎF(k)
22 (τ;K) be as in Definition 20, let f be any density on the support of X, and

let Kk,Kf,k, and Kq,f,k,alt be as in Definition 19. Then the three influence functions IF
(k)
22 (τ;K) in

Definition 20 estimate the corresponding second-order biases up to third-order and truncation
terms. Specifically (EB means estimation bias),

E[ÎF
(k)
22 (τ;Kf̂,k)]+Bias1,eff(τ; b̂τ, p̂τ) =E

[
q∗τ (X)δbτ(X)δpτ(X)

{
f∗(X)

f̂(X)
−1

}]

−
∫ ∏[

q∗τ (x)δbτ(x)
f∗(x)

f̂1/2(x)

∣∣∣φ̄⊥
k (x)

]∏[
δpτ(x)

f∗(x)

f̂1/2(x)

∣∣∣φ̄⊥
k (x)

]
dx

+E
[
q∗τ (X1)δbτ(X1)Kf,k(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
,

E[ÎF
(k)
22 (τ;Kq̂,f̂,k,alt)]+Bias1,eff(τ; b̂τ, p̂τ) =EB(3)

q,b,p+EB(3)
f,b,p

−Ef̂

∏
f̂

[
q̂1/2
τ (X)δbτ(X)

∣∣{φ̄k(X)q̂1/2
τ (X)

}⊥]∏
f̂

[
δpτ(X)q̂1/2

τ (X)
∣∣{φ̄k(X)q̂1/2

τ (X)
}⊥] , and

E[ÎF
(k)
22 (τ;Kk)]+Bias1,new(τ; b̂τ, p̂τ, f̂ ) =E[{f∗(X)− f̂(X)}q∗τ (X)δbτ(X)δpτ(X)]

+E
[
q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
−

∫ ∏[
f∗(x)q∗τ (x)δbτ(x)

∣∣φ̄⊥
k (x)

]∏[
f∗(x)δpτ(x)

∣∣φ̄⊥
k (x)

]
dx.

In the above, EB(3)
q,b,p is a sum of third- or higher-order terms whose rate of convergence to 0

depends on the differences q̂τ(X)−q∗τ (X) or q∗τ (X)/q̂τ(X)−1 and δbτ and δpτ. EB(3)
f,b,p is a sum of

third- or higher-order terms whose rate of convergence to 0 depends on the differences f̂(X)/f∗(X)−
1 or f∗(X)/f̂(X)−1 and δbτ and δpτ.

Consequently, the estimated influence functions ÎF(k)
2,eff(τ), ÎF

(k)
2,alt(τ), and ÎF

(k)
2,new(τ) have bias equal

to third-order terms (whose rate does not depend on k) plus a tail or truncation term (whose rate
does depend on k).

We refer to the the integral terms with projection as truncation bias terms since they arise from
the fact that we sum only k basis functions in the kernels, which has the effect of truncating the
function to its k-th term in its expansion in terms of the orthonormal basis. The truncation bias
can be made arbitrarily small by choosing k large enough (at the cost of increasing the variance of
the estimator). The remaining terms are called estimation bias terms. These are the components
of bias resulting from our failure to obtain perfect estimators of the quantities b∗iτ,p∗

iτ,q∗iτ, or f
∗.

Were the estimators for these quantities exactly equal to the true quantities (which would be the
case if we knew the true quantities), these terms would be identically equal to zero.

The above theorem justifies the use of the second-order influence functions as estimating func-
tions. All three second-order estimators reduce the bias to the third-order estimation bias plus
truncation bias terms.
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However, the first influence function IF
(k)
22 (τ;Kf̂,k) uses f̂1/2 in its denominator and hence requires

that f̂ be bounded away from zero. Even if f is bounded away from zero, a few small values of
f̂ do occur in practice. These give the corresponding observations a disproportionate amount of
influence over the corresponding estimator, resulting in a significant inflation of variance in finite
samples. This was found to be a significant factor during analysis of the NMMAPS data.

The second kernel, Kq̂,f̂,k,alt, is attractive because, as explained in Section 3.3.3, the

truncation term in its bias is OP(k−(βb+βp)/d), which is no worse than the truncation bias
OP(k−(min{βq,βf,βb}+min{βp,βf})/d) of the other two estimators. However, evaluation of this influence
function requires inversion of the k×kmatrix Ef̂[q̂τ(X)φ̄k(X)φ̄Tk (x)], a computational problem that
we failed to solve for large values of k.

Hence, except for a discussion of the rates of convergence of these estimators in Section 3.3.3,
in the rest of this report, we restrict our attention to the density-weighted influence functions
ÎF

(k)
2,new(τ), ÎF

split,(k)
2,new (τ). The corresponding estimators of τ∗ and their variance estimators are defined

in the following.

Definition 22. Define the second-order estimators of τ∗ as follows. Let τ̂(k)
2 solve

ÎF
(k)
2 (τ) = 0,

and let τ̂split,(k)
2 solve

ÎF
split,(k)
2 (τ) = 0.

The variance of the above estimators is estimated by

V̂
(k)
2 =

V̂
[
ÎF1,new

(
τ̂(k)
2

)]
+ V̂

[
ÎF

(k)
22

(
τ̂(k)
2

)]
{�DER[

ÎF1,new

(
τ̂(k)
2

)]}2 , and

V̂
split,(k)
2 =

V̂
[
ÎF

split
1,new

(
τ̂
split,(k)
2

)]
+ V̂

[
ÎF

split,(k)
22

(
τ̂
split,(k)
2

)]
{�DER[

ÎF
split
1,new

(
τ̂
split,(k)
2

)]}2 .

Here we let Oi = (Yi,Ai,Xi), and we define the symmetrized functions

m̂(ℓ)
τ (Oi,Oj) =

{
IF22,ij(τ, b̂(ℓ)

τ , p̂(ℓ)
τ , q̂(ℓ)

τ ;Kk)+ IF22,ji(τ, b̂(ℓ)
τ , p̂(ℓ)

τ , q̂(ℓ)
τ ;Kk)

}
/2, and

mτ(Oi,Oj) =
{
IF22,ij(τ,b∗τ ,p∗

τ ,q∗τ ;Kk)+ IF22,ji(τ,b∗τ ,p∗
τ ,q∗τ ;Kk)

}
/2;

and we define

V̂
[
ÎF

split,(k)
22 (τ)

]
= 1

4n2(n−1)2

{ ∑
i<j∈split(0)

{
m̂(1)

τ (Oi,Oj)
}2+ ∑

i<j∈split(1)

{
m̂(0)

τ (Oi,Oj)
}2}

, and

V̂
[
ÎF

(k)
22 (τ)

]
= 1
n2(n−1)2

∑
i<j∈split(1)

{
m̂(0)

τ (Oi,Oj)
}2

,

where the other quantities are as in Definition 16.

The expression for the variance of the influence function ÎF
(k)
2 (τ) is similar to the corresponding

expression in the time-series case. The validity of this expression and the consistency of its
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estimator are much more easily proved than in the time-series case. Hence we give the proof
only for the time-series case and the reader is referred to Section 3.3.2.

As before, we have derived the results in this section using the half-sample estimators. That
the full-sample and split-sample estimators have similar properties was established through sim-
ulations as shown in Appendix C.

The variance of IF22 is O(k/n2). The proof of this statement is similar to and simpler than the
arguments in the proof for the corresponding time-series estimator in Lemma 41 of Section 3.3.2.
Hence we do not prove it here and refer the reader to Lemma 41 and the comments immediately
following it for an explanation.

3.3 THE TIME-SERIES ESTIMATORS

Thus far we have focused on estimation without the complication of time. As mentioned in the
introduction, time introduces dependencies between observations so we are no longer in the i.i.d.
case. Here we describe modifications to the influence functions that allow for time dependence.
Due to the disadvantages of the other methods described before, we touch upon the other second-
order estimators only briefly and focus on the density-weighted estimators in this section.

For each city in the NMMAPS data, each observation corresponds to a particular day on which
measurements of deaths Y, PM10 in the air A, and weather variables X were recorded. Observa-
tions are equally spaced in time. We use ti to denote the time corresponding to the i-th observed
time point.

In previous analyses, time is incorporated into models such as the linear and loglinear semi-
parametric models by inclusion in the covariates X (Dominici et al., 2004). However, we choose
to keep time distinct from the covariates X and from subscript functions depending on X by us-
ing i to indicate their dependence on time ti. Individual observations no longer have the same
distribution (since the distribution can vary with time), and are no longer independent (since
observations closer in time or corresponding to the same season may be correlated). Recall that
in the time-series case, the linear and loglinear semiparametric models are now written

Φ(Ei[Yi|Ai,Xi]) = τ∗Ai+ζ∗i (Xi),

where the subscript i for the expectation specifies that the expectation is with respect to the dis-
tribution of the i-th observation, and the subscript i for the unknown function ζi is now necessary
because it may vary from observation to observation.

The definition of τ needs to be updated for the time-series case, since the i.i.d. definition does
not involve distributions that change from observation to observation.

Definition 23. We define the parameter τ in two ways. The first is as the solution to the equation

Ei [(Yi−τAi−E[Yi−τAi|Xi]) (Ai−Ei[Ai|Xi])] = 0 in the linear case, and

Ei

[(
Yi−

Ei[Yi|Xi]
Ei[eτAi |Xi]

)(
Ai−

Ei[AieτAi |Xi]
Ei[eτAi |Xi]

)]
= 0 in the loglinear case.

The second definition of τ∗ is as the solution to the equation

1
N

N∑
i=1

1
|s(i)|

∑
j∈s(i)

Ei
[
fj(Xi)

(
Yi−τAi−Ei[Yi−τAi|Xi]

)(
Ai−E[Ai|Xi]

)]
= 0 in the linear case, and
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1
N

N∑
i=1

1
|s(i)|

∑
j∈s(i)

E

[
fj(Xi)

(
Yi−

Ei[Yi|Xi]
Ei[eτAi |Xi]

)(
Ai−

E[Aie
τAi |Xi]

Ei[e
τAi |Xi]

)]
= 0 in the loglinear case,

where f = {fi, i = 1, . . . ,N }, and each fi is a fixed, known density defined on the support of Xi (not
the true density f∗i ).

3.3.1 First- and Second-Order Estimators in the Time-Series Case

We modify the definitions of Section 3.2 for the time-series case in the following series of
definitions. The unknown functions b∗iτ,p∗

iτ, and q∗iτ now depend on time and gain a subscript i.
The transform wi(x) used to define parametric models for qi and pi is also time-dependent.

Definition 24. In the loglinear case define

b∗iτ(Xi) =
Ei [Yi|Xi]
Ei

[
eτAi |Xi

] ,

p∗
iτ(Xi) =

Ei[AeτAi |Xi]

E[eτAi |Xi]
,

q∗iτ(Xi) =Ei[eτAi |Xi],
εi(τ,b) =Yi−eτAib(Xi),

bi(x;η) = exp
[
ηTwi(x)

]
,

qi(x;ω) = exp
[
ωTwi(x)

]
,

∆i(τ,p,q) = [
Ai−p(Xi)

] eτAi

q(Xi)
, and

Si(τ,α) = (Ai−αTWi)Wie
τAi .

Definition 25. In the linear case define

b∗iτ(Xi) =Ei [Yi−τAi|Xi] ,

p∗
iτ(Xi) =Ei[Ai|Xi],

q∗iτ(Xi) = 1,

εi(τ,b) =Yi−τAi−b(Xi),

bi(x;η) = ηTwi(x),

qi(x;ω) = 1,

Si(τ,α) = (Ai−αTWi)Wi, and

∆i(τ,p,q) =Ai−p(Xi).

Common to both, define

Definition 26.

∆i(p) =Ai−p(Xi),

Ui,profile(τ,b) = εi(τ,b)Ai,

Ui,nuis(τ,b) = εi(τ,b)Wi,

Ui(τ,b) = (Ai,Wi)
Tεi(τ,b), and

IF1,eff,i(τ;b,p) = εi(τ,b)
[
Ai−p(Xi)

]
.
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Next we define the time-series full-data and split-sample first-order estimators.

Definition 27. Let η̂full(τ) and α̂full(τ) solve

N−1 N∑
i=1

Ui,nuis
[
τ,bi(η)

]= 0, and

N−1 N∑
i=1

Si(τ,α) = 0,

respectively, where bi(η) is the function bi(·;η). The time-dependent full-sample estimators of b∗iτ
and p∗

iτ are defined as

b̂fulliτ (x) =
exp

[
η̂full(τ)Twi(x)

]
in the loglinear case,

η̂full(τ)Twi(x) in the linear case; and

p̂full
iτ (x) = α̂full(τ)Twi(x).

Then the first-order estimators τ̂full1,eff,linear and τ̂full1,eff,loglinear are the solutions to

ÎF
full
1,eff(τ) = 0

(for the linear and loglinear cases), where

ÎF
full
1,eff(τ) = 1

N

N∑
i=1

IF1,eff,i(τ; b̂fulliτ , p̂full
iτ ).

Definition 28. As in the i.i.d. case, let n = N
2 and let {split(0),split(1)} be a partition of {1, . . . ,N }

into two sets of size n. For ℓ= 0,1 define η̂(ℓ)(τ) and α̂(ℓ)(τ) as the solutions to

n−1 ∑
i∈split(ℓ)

Ui,nuis
[
τ,bi(η)

]= 0, and

n−1 ∑
i∈split(ℓ)

Si(τ,α) = 0,

respectively, where bi(η) is the function bi(·;η). The time-series split-sample estimators of b∗iτ and
p∗
iτ are defined as

b̂(ℓ)
iτ (x) =

{
exp

(
η̂(ℓ)(τ)Twi(x)

)
in the loglinear case,

η̂(ℓ)(τ)Twi(x) in the linear case; and

p̂(ℓ)
iτ (x) = α̂(ℓ)(τ)Twi(x).

Define

ÎF
split
1,eff (τ) = 1

n

{ ∑
i∈split(0)

IF1,eff,i(τ; b̂(1)
iτ , p̂(1)

iτ )+ ∑
i∈split(1)

IF1,eff,i(τ; b̂(0)
iτ , p̂(0)

iτ )

}
.

The first-order estimators τ̂split1,eff,linear and τ̂
split
1,eff,loglinear are the solutions to

ÎF
split
1,eff (τ) = 0

for both the linear and loglinear cases.
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Definition 29. The robust variance estimates for τ̂full1,eff and τ̂
split
1,eff are

V̂full
1,eff =

V̂
(
ÎF

full
1,eff(τ̂

full
1,eff)

)
{�DER(

ÎF
full
1,eff(τ̂

full
1,eff)

)}2 , and

V̂
split
1,eff =

V̂
(
ÎF

split
1,eff (τ̂

split
1,eff )

)
{�DER(

ÎF
split
1,eff (τ̂

split
1,eff )

)}2 ,

where

DER1,eff,i
(
τ,b,p

)={{
∆i(p)

}2 in the linear case,{
∆i(p)

}2eτAib(Xi) in the loglinear case,

V̂
(
ÎF

full
1,eff(τ)

)
=N−2 N∑

i=1

{
IF1,eff,i(τ, b̂fulliτ , p̂full

iτ )
}2

,

V̂
(
ÎF

split
1,eff (τ)

)
= 1

4n2

{ ∑
i∈split(1)

{
IF1,eff,i(τ, b̂(0)

iτ , p̂(0)
iτ )

}2+ ∑
i∈split(0)

{
IF1,eff,i(τ, b̂(1)

iτ , p̂(1)
iτ )

}2}
,

�DER(
ÎF

full
1,eff(τ)

)
=N−1 N∑

i=1

{
DER1,eff,i(τ, b̂fulliτ , p̂full

iτ )
}
, and

�DER(
ÎF

split
1,eff (τ)

)
= 1

2n

{ ∑
i∈split(1)

DER1,eff,i(τ, b̂(0)
iτ , p̂(0)

iτ )+ ∑
i∈split(0)

DER1,eff,i(τ, b̂(1)
iτ , p̂(1)

iτ )

}
.

We note that the variance estimators in the above definition may not be consistent except un-
der various assumptions, including the assumption that the semiparametric model holds. This
comment applies to all the variance estimates in this section. These assumptions are discussed
in greater detail in Section 3.3.2. The definitions for the density-weighted estimators need addi-
tional notation in the time-series case:

• For each time i, we denote by s(i) a set of time indices (i.e., a set of observations) that depends
on i, defined by the intersection of

{j :n1 ≤ |j− i| ≤n2}

with another set. The precise definition is provided in Equation 3.1, Section 3.4.1. The bounds
n1 and n2 are needed to ensure that conditions necessary for bias and variance derivations hold,
as will be explained in Section 3.3.2. Let |s(i)| be the cardinality of the set s(i ). We will assume
that s(i ) is symmetric in the sense that j ∈ s(i ) ⇔ i ∈ s(j ).

• Next, noting that the density of the covariates changes from time to time, we use f∗i to denote
the density of Xi.

• For notational reasons, we let f denote the sets of functions
{
fi : i ∈ {1, . . . ,N }

}
, where fi is some

density on the support of the covariates at time i. Also, f∗ = {
f∗i : i ∈ {1, . . . ,N }

}
.

• f̂i is an estimate of the density f∗i , and f̂=
{
f̂i : i ∈ {1, . . . ,N }

}
.

This notation is used in corresponding density-weighted estimators and their estimated variances
below.
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Definition 30. Define the density-weighted quantities

IF1,new,i(τ;b,p,f ) = 1
|s(i)|

∑
j∈s(i)

fj(Xi)εi(τ,b)
[
Ai−p(Xi)

]
,

IF1,new(τ) = 1
n

∑
i∈split(0)

IF1,new,i(τ,b∗iτ,p∗
iτ, f̂ ),

ÎF
full
1,new(τ) = 1

N

N∑
i=1

IF1,new,i(τ; b̂fulliτ , p̂full
iτ , f̂ ),

ÎF
split
1,new(τ) = 1

2n

{ ∑
i∈split(0)

IF1,new,i(τ; b̂(1)
iτ , p̂(1)

iτ , f̂ )+
∑

i∈split(1)

IF1,new,i(τ; b̂(0)
iτ , p̂(0)

iτ , f̂ )

}
, and

ÎF1,new(τ) = 1
n

∑
i∈split(0)

IF1,new,i(τ; b̂(1)
iτ , p̂(1)

iτ , f̂ ).

Then the first-order estimators τ̂full1,new,linear and τ̂full1,new,loglinear are the solutions to

ÎF
full
1,new(τ) = 0,

and τ̂
split
1,new,linear and τ̂

split
1,new,loglinear are the solutions to

ÎF
split
1,new(τ) = 0.

Definition 31. The robust variance estimates for τ̂full1,new and τ̂
split
1,new are

V̂full
1,new =

V̂
(
ÎF

full
1,new(τ̂full1,new)

)
{�DER(

ÎF
full
1,new(τ̂full1,new)

)}2 ,

V̂
split
1,new =

V̂
(
ÎF

split
1,new(τ̂

split
1,new)

)
{�DER(

ÎF
split
1,new(τ̂

split
1,new)

)}2 ,

where

DER1,new,i
(
τ,b,p,f

)={
fi(Xi)

{
∆i(p)

}2 in the linear case,

fi(Xi)
{
∆i(p)

}2eτAib(Xi) in the loglinear case,

V̂
(
ÎF

full
1,new(τ)

)
=N−2 N∑

i=1

{
IF1,new,i(τ, b̂fulliτ , p̂full

iτ , f̂ )
}2

,

V̂
(
ÎF

split
1,new(τ)

)
= 1

4n2

{ ∑
i∈split(1)

{
IF1,new,i(τ, b̂(0)

iτ , p̂(0)
iτ , f̂ )

}2
+ ∑
i∈split(0)

{
IF1,new,i(τ, b̂(1)

iτ , p̂(1)
iτ , f̂ )

}2}
,

�DER(
ÎF

full
1,new(τ)

)
=N−1 N∑

i=1

{
DER1,new,i(τ, b̂fulliτ , p̂full

iτ , f̂ )
}
, and

�DER(
ÎF

split
1,new(τ)

)
= 1

2n

{ ∑
i∈split(1)

DER1,new,i(τ, b̂(0)
iτ , p̂(0)

iτ , f̂ )

74



J.M. Robins et al.

+
∑

i∈split(0)

DER1,new,i(τ, b̂(1)
iτ , p̂(1)

iτ , f̂ )

}
.

Again, the above variance estimators are consistent under the semiparametric model as de-
scribed in Section 3.3.2. The second-order influence functions are defined as follows.

Definition 32. Define ω̂(ℓ)(τ) as the solution to

1
n

∑
i∈split(ℓ)

{
eτAi −eω(τ)Wi

}
Wi = 0

and

q̂(ℓ)
iτ (x) =

{
exp

(
ω̂(ℓ)(τ)Tw(x)

)
in the loglinear case,

1 in the linear case.

Next define

IF(k)
22,ij(τ;b,p,q) =−εi(τ,b)Kk(Xi,Xj)∆j(τ,p,q),

IF
(k)
22 (τ) = 1

n

∑
i∈split(0)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ,b∗iτ,p∗

jτ,q∗jτ),

ÎF
split,(k)
22 (τ) = 1

2n

{ ∑
i∈split(0)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ, b̂(1)

iτ , p̂(1)
jτ , q̂(1)

jτ )

+ ∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ, b̂(0)

iτ , p̂(0)
jτ , q̂(0)

jτ )

}
,

ÎF
(k)
22 (τ) = 1

n

∑
i∈split(0)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ, b̂(1)

iτ , p̂(1)
jτ , q̂(1)

jτ ),

IF
(k)
2 (τ) = IF1,new(τ)+ IF22(τ),

ÎF
split,(k)
2 (τ) = ÎF

split
1,new(τ)+ ÎF

split,(k)
22 (τ), and

ÎF
(k)
2 (τ) = ÎF1,new(τ)+ ÎF

(k)
22 (τ).

These definitions are made with the kernel Kk of Definition 19.

Definition 33. Define the second-order estimators of τ∗ as follows. Let τ̂(k)
2 solve

ÎF
(k)
2 (τ) = 0,

and let τ̂split,(k)
2 solve

ÎF
split,(k)
2 (τ) = 0.

The variance of the above estimators is estimated by

V̂
(k)
2 =

V̂
(
ÎF1,new

(
τ̂(k)
2

))+ V̂
(
ÎF

(k)
22

(
τ̂(k)
2

))
{�DER(

ÎF1,new
(
τ̂(k)
2

))}2 , and
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V̂
split,(k)
2 =

V̂
(
ÎF

split
1,new

(
τ̂
split,(k)
2

))+ V̂
(
ÎF

split,(k)
22

(
τ̂
split,(k)
2

))
{�DER(

ÎF
split
1,new

(
τ̂
split,(k)
2

))}2 ,

where

V̂
(
ÎF

split,(k)
22 (τ)

)
= 1

4n2

{ ∑
i∈split(0)

1
|s(i)|2

∑
j∈s(i)

{
IF(k)

22,ij(τ, b̂(1)
τ , p̂(1)

τ , q̂(1)
τ )

}2
+ ∑
i∈split(1)

1
|s(i)|2

∑
j∈s(i)

{
IF(k)

22,ij(τ, b̂(0)
τ , p̂(0)

τ , q̂(0)
τ )

}2}
,

V̂
(
ÎF

(k)
22 (τ)

)
= 1
n2

∑
i∈split(1)

1
|s(i)|2

∑
j∈s(i)

{
IF(k)

22,ij(τ, b̂(0)
τ , p̂(0)

τ , q̂(0)
τ )

}2
,

and the other quantities are as in Definition 16.

Here as for Definition 31, the variance estimates are consistent under the semiparametricmodel.
We prove this in the next section.

3.3.2 Conditional Bias and Variance Properties of the Time-Series Estimators

The bias and variance properties of estimators in the i.i.d. case need to be modified for the
time-series case. We derive these properties under various assumptions collected below.

Bias

Assumption 34. The bias calculations will make use of the following Assumption.

IX For any i and any j ∈ s(i), Xi and Xj are independent if j ∈ s(i), i.e., the joint density fij(Xi,Xj)
factorizes as fi(Xi)fj(Xj).

The Assumption IX will be approximately true if the lower bound n1 for s(i) (see Equation 3.1,
Section 3.4.1) is not too small.

We define the bias of the half-sample time-series first-order estimator as follows.

Definition 35. For any b,p, and any set f, the bias of IF1,new(τ;b,p,f) is defined by

Bias1,new(τ,b,p,f) =E[IF1,new(τ;b,p,f)]−E[IF1,new(τ;b∗τ ,p∗
τ ,f)].

We have the following lemma.

Lemma 36.

Bias1,new(τ;b,p,f)

= 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[f
∗
j (Xi)q

∗
iτ(Xi){b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}]

+ 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[q
∗
iτ(Xi){fj(Xi)− f∗j (Xi)}{b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}].

As before, let

δbiτ(x) = b∗iτ(x)− b̂(0)
iτ (x), δpiτ(x) =p∗

iτ(x)− p̂(0)
iτ (x),
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where b̂(0)
iτ (x) and p̂(0)

iτ (x) are defined in as Definition 28. The above lemma implies that

E[ÎF1,new(τ)] = 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[f
∗
j (Xi)q

∗
iτ(Xi)δbiτ(Xi)δpiτ(Xi)]

+ 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[q
∗
iτ(Xi){fj(Xi)− f∗j (Xi)}δbiτ(Xi)δpiτ(Xi)],

which has a second-order and a third-order term as in the i.i.d. case. As before, we use a second-
order U-statistic to approximate the second-order bias above. The next theorem gives the bias of
the second-order estimator.

Theorem 37. Let ÎF(k)
22 (τ) be as in Definition 32 and f be any fixed set of densities on the support of

X. Suppose that Assumption IX of Assumption 34 holds. Then IF
(k)
22 (τ) estimates the bias of the

first-order estimator up to a time-series bias, third-order, and truncation terms. Specifically,

E[ÎF
(k)
22 (τ)]+E[ÎF1,new(τ)]

= 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

{
Ei[q

∗
iτ(Xi){fj(Xi)− f∗j (Xi)}δbiτ(Xi)δpiτ(Xi)]

−Eij
[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

{q∗jτ(Xj)

q̂jτ(Xj)
−1

}]
−Ei[f∗j (Xi)q

∗
iτ(Xi)δbiτ(Xi){δpjτ(Xi)−δpiτ(Xi)}]

+
∫

Π[f∗i (x)q∗iτ(x)δbiτ(x)|φ̄⊥
k ] Π[f∗j (x)δbiτ(x)|φ̄⊥

k ]dx
}

.

Hence the estimated influence function ÎF
(k)
2,new(τ) has bias equal to a second-order time-series

term (the third term in the expression), third-order terms (whose rate of convergence to 0 does
not depend on k), plus a tail or truncation term (whose rate does depend on k).

Unfortunately, no higher-order influence function can cancel any part of the third bias term in
the above expression because this term represents the bias resulting from the fact that the times ti
of observation are fixed and not random. For this reason we name this term the time-series bias.
Note, however, that this term equals 0 if for all (i, j) either δpiτ(x) = δpjτ(x) or δbiτ(x) = δbjτ(x).
Thus, in the setting of i.i.d. data, the term is exactly zero, owing to the fact that the conditional
distribution of (Yi,Ai)|Xi is the same as the distribution of (Yj,Aj)|Xj.

With i.i.d. data, higher-order influence functions can be used to essentially eliminate estimation
bias up to any order. However, the same is not true of time-series data as the time-series bias of
second order will always remain. The magnitude of {δpiτ∗(x)−δpjτ∗(x)} =p∗

iτ∗(x)−p∗
jτ∗(x)−{p̂iτ(x)−

p̂jτ(x)} and of {δbiτ∗(Xi)−δbjτ∗(Xi)} will generally be less when |ti−tj| is small because p∗
iτ∗(x), p̂jτ(x),

b∗iτ∗(x), and b̂iτ(x) are smooth functions of time.

Variance

We now turn our attention to the variance of the first- and second-order estimators and estimates
of this variance. As noted above, the validity of our bias calculations did not require that either
of the semiparametric regression models held. Indeed the only assumption required was the
independence Assumption IX in Assumption 34. In contrast, we shall find that the validity of our

77



Semiparametric Regression As Applied to Air Pollution Research

expressions for the variance and thus the consistency of our variance estimatorswill requiremuch
stronger assumptions. Below we discuss the underlying reason for the discrepancy between the
assumptions required for the validity of our expressions for (and estimates of) the variance as
compared to the bias. For brevity we use the notation Oi = (Yi,Ai,Xi).

Assumption 38. The variance calculations will assume that the semiparametric model, i.e., one
of the following, holds.

LM The linear semiparametric regression model holds.
LLM The loglinear semiparametric regression model holds.

The variance calculations will also impose the following assumptions.

I For any i and j ∈ s(i),Oi and Oj are independent.
M For any i ̸= i′, Eii′ [εi(τ∗,b∗iτ∗)|Ai,Xi,Oi′ ] =Ei[εi(τ∗,b∗iτ∗)|Ai,Xi] = 0.
C1 For any i ̸= i′, j ∈ s(i), j′ ∈ s(i′), Ei,i′,j,j′ [εi(τ∗,b∗iτ∗)|Aj,Xj,Aj′ ,Xj′ ,Oi′ ,Xi] =Ei[εi(τ∗,b∗iτ∗)|Xi] = 0.
C2 For any i, i′, i ̸= i′, j ∈ s(i)∩s(i′), Ei,i′,j[∆jτ∗(p∗

jτ∗ ,q∗jτ∗)|Xj,Oi,Oi′ ] =Ej[∆jτ∗(p∗
jτ∗ ,q∗jτ∗)|Xj].

We briefly discuss these assumptions next. Assumptions I and C2 are plausible if the lower
bound used in the definition of s(i) (Equation 3.1 in Section 3.4.1) is not too small. The Assump-
tion M states that the mean of the residual from Yi, given Ai and Xi, does not furthermore depend
on Yi, Ai and Xi on any other day ti′ . This would likely be violated when |i−i′| is small. The same
remarks apply to Assumption C1. Our variance estimators assume that covariance terms arising
from this factor are absent or very small.

We first consider the variance of the first-order estimator. Since the estimators of b∗iτ, p
∗
iτ, and

q∗iτ are consistent (although not at rate
p
n), we have under weak conditions

Var[ÎF1,new(τ∗)] =Var[IF1,new(τ∗)] [1+oP(1)] ,

and

Var[IF1,new(τ∗)] =Var

[
1
n

∑
i∈split(0)

IF1,new(τ∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

]

=n−2 n∑
i=1

Vari
[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

]
+2n−2 ∑

i<i′
Covi,i′

[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ ),IF1,new,i′(τ

∗,b∗i′τ∗ ,p∗
i′τ∗ , f̂ )

]
,

where

Vari
[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

]
=Ei

[(
IF1,new,i(τ

∗,b∗τ∗ ,p∗
τ∗ , f̂ )

)2]
−

{
Ei

[
IF1,new,i(τ

∗,b∗τ∗ ,p∗
τ∗ , f̂ )

]}2
.

Since E[IF1,new(τ∗,b∗τ∗ ,p∗
τ∗ , f̂ )] = 0 does not imply Ei

[
IF1,new,i(τ

∗,b∗τ∗ ,p∗
τ∗ , f̂ )

]
= 0 in the nonparamet-

ric model, we cannot ignore the second term above. We can estimate Ei
[
IF1,new,i(τ

∗,b∗τ∗ ,p∗
τ∗ , f̂ )

]
consistently without assuming it is zero (and thus without assuming the semiparametric model
holds) as follows; to keep it simple, we consider the linear case.

Ei
[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

]
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= 1
|s(i)|

∑
j∈s(i)

Ei
[
f̂j(Xi)

{
Ei

[
(Yi−τ∗Ai)Ai|Xi

]−b∗iτ∗(Xi)p
∗
iτ∗(Xi)

}]
.

We can obtain a consistent estimator of Ei
[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

]
if we construct an estimate,

smoothed over time and X, of Ei [(Yi−τ∗Ai)Ai|Xi = x] [in addition to estimates of b∗iτ∗(Xi) and
p∗
iτ∗(Xi)] and then integrate the resulting function of X with respect to f̂i(X). However doing so

would create many more computational and analytic difficulties so we take the simpler, but less
robust, option of assuming the semiparametric model holds.

Assuming the loglinear or linear model of Assumption 38, we get

Var(IF1,new(τ∗,b∗τ∗ ,p∗
τ∗ , f̂ ))

=n−2 n∑
i=1

Ei

[(
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

)2]
+2n−2 ∑

i<i′
Eii′

[
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂)IF1,new,i′(τ

∗,b∗i′τ∗ ,p∗
i′τ∗ , f̂ )

]
If Assumption M of Assumption 38 also holds, then the covariance term above equals 0 for all
i ̸= i′. Dominici et al. (2004) impose Assumption M in their analysis of the NMMAPS data. The
assumption states that the mean of the residual number of deaths at time ti, given the 1-day
lagged PM10 and weather on day ti, does not furthermore depend on the number of deaths, the
pollution level, or the temperature variables on any other day ti′ . This would likely be violated
when |i− i′| is small. Nonetheless, to keep from having to model the covariance structure, our
variance estimator assumes that M holds. Thus, we obtain the following.

Theorem 39. Under the semiparametric loglinear or linear model of Assumption 38 and Assump-
tion M of Assumption 38, if τ̂ converges to τ∗ in probability,

Var
(
ÎF1,new(τ̂)

)=n−2 n∑
i=1

Ei

[(
IF1,new,i(τ

∗,b∗iτ∗ ,p∗
iτ∗ , f̂ )

)2]
[1+oP(1)] ,

and

V̂
(
ÎF1,new(τ̂)

)=n−2 n∑
i=1

[(
IF1,new,i(τ̂, b̂iτ̂, p̂iτ̂, f̂ )

)2]
is a consistent estimator of the variance.

We next consider the variance at τ= τ∗ of

ÎF22(τ) = 1
n

∑
i

1
|s(i)|

∑
j∈s(i)

IF22,ij(τ, b̂iτ, p̂jτ, q̂jτ).

We have the following theorem.

Theorem 40. Suppose that the semiparametric loglinear or linear model of Assumption 38 holds;
Assumptions I, C1, and C2 of Assumption 38 hold; b̂iτ, p̂iτ, q̂iτ converge to b∗iτ,p∗

iτ,q∗iτ in probability;
and τ̂ is a consistent estimator of τ∗. Then

Var
(
ÎF

(k)
22 (τ)

)
=Var

( ∑
i∈split(0)

1
|s(i)|

∑
j∈s(i)

IF
(k)
22,ij(τ,b∗iτ,p∗

jτ,q∗jτ)

)
[1+oP(1)]
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and

V̂
(
ÎF22(τ̂)

)= 1
n2

n∑
i=1

1
|s(i)|2

∑
j∈s(i)

{
IF22,ij(τ, b̂iτ, p̂jτ, q̂jτ)

}2
is a consistent estimator of the variance of ÎF22(τ∗).

This theorem allows us to consistently estimate the variance of ÎF(k)
2 (τ∗) = ÎF1,new(τ∗)+ ÎF

(k)
22 (τ∗)

by V̂
(
ÎF1,new(τ̂)

)+V̂
(
ÎF

(k)
22 (τ̂)

)
since IF

(k)
22 (τ∗) and IF1,new(τ∗) are uncorrelated under our assumptions.

We next give a result on the asymptotic rate of increase of the variance of the second-order
estimator with k.

Lemma 41. Under the assumptions of Theorem 40, and the assumption that the ∞-norms of fi
are bounded uniformly over i,

Var
[
ÎF

(k)
22 (τ̂)

]
=O

(
k
ns

)
,

where
1
s
= 1
n

n∑
i=1

1
|s(i)| .

We note that the i.i.d. second-order U-statistic is a special case of the above theorem, with
s(i) = split(0) or split(1) [depending on whether i ∈ split(0) or i ∈ split(1)]. Hence s=n in the i.i.d.
case. This proves the claim made in the section on the variance properties of the i.i.d. estimators
that the variance is O(k/n2). Robins, Li, et al. (2008) show that the variance rate is O(k/n2) even
when the semiparametric model does not hold.

Note that there is a term in the variance of ÎF(k)
22 (τ∗∗) that becomes negligible as k→∞, but for

small k can contribute to the variance through a first-order term in the Hoeffding decomposition
of the U-statistic. For this reason, for small k our estimate of the variance of ÎF(k)

22 (τ̂) may be too
small.

Note that all of the above results are derived using the half-sample estimator conditional on
the other half-sample. We address their generalization to the other estimators next.

3.3.3 Unconditional Bias, Variance, and Rates of Convergence for the Estimators

In our bias and variance results thus far, we evaluated the conditional bias and variance of
estimators based on the estimated influence function calculated from one half-sample, given the
other half-sample — that is, the bias of the half-sample estimators conditional on the training
sample.

We now use the above results to examine the unconditional distributions of ÎFsplit1,new(τ∗), τ̂split1,new,

ÎF
split,(k)
2 (τ∗), and τ̂

split,(k)
2 . We will impose the assumptions used in deriving the variances of the

last subsection. In particular we will assume the semiparametric model holds. In that case
Ei[IF1,new,i(τ

∗,b∗τ∗ ,p∗
τ∗ , f̂)] has mean zero even when, as we again assume, f̂ is obtained based on all

the data justifying our decision to use all the data to estimate the true densities f∗. We now show

that whenever the variances of ÎFsplit1,new(τ∗), τ̂
split
1,new, ÎFsplit,(k)

2 (τ∗), and τ̂
split,(k)
2 exceed their respective

squared bias, ÎFsplit1,new, τ̂
split
1,new−τ∗, ÎFsplit,(k)

2 , and τ̂
split,(k)
2 −τ∗, when divided by their respective stan-

dard error estimates, will be unconditionally N(0,1) in large samples, resulting in valid standard
Wald CIs for τ∗ and valid tests of the null hypothesis τ= τ∗.
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This result follows from the fact (as discussed in Robins, Li, et al., 2008) that when the variances
exceed the squared biases, the four estimation sample statistics ÎF1,new(τ∗), τ̂1,new−τ∗, ÎF(k)

2 (τ∗),
and τ̂(k)

2 −τ∗ are conditional on the other half-sample used to estimate b∗τ ,p∗
τ , and q∗τ (the training

sample), asymptotically N(0,1) when standardized by the inverse of their respective standard
errors. They are also asymptotically independent of the corresponding statistics with the roles
of the estimation and training samples reversed.

On the other hand, when the squared bias exceeds the variance, the unconditional distribu-
tions of ÎFsplit1,new(τ∗), τ̂

split
1,new−τ∗, ÎFsplit,(k)

2 (τ∗), and τ̂
split,(k)
2 −τ∗ may have variances that exceed the

conditional variances and exceed the large-sample limit of the conditional variance estimators
derived in the previous section. Further the unconditional biases may differ from the conditional
biases above. We now examine the rates of convergence of these estimators.

Suppose that the functions b∗iτ and b̂iτ lie in theHölder classH(Cb,βb); p∗
iτ and p̂iτ lie inH(Cp,βp);

fi and f∗i ∈H(Cf,βf); and q∗iτ and q̂iτ ∈H(Cq,βq). We assume that for each of b,p,f,q, the functions
at all times belong to the same Hölder class, as would be true if there were a lower bound on
the Hölder exponents of the functions indexed by time. We will need the following well-known
facts.

a) The Hölder exponent for the product g(x)h(x) is the minimum of the Hölder exponents βh and
βg.

b) For a function h(x) with Hölder exponent βh and support on the unit cube in Rd, the tail norms{∫ {∏[
h(x)|φ⊥

k (x)
]}2

dx
}1/2

and
{
E

{∏
2
[
h(X)|φ⊥

k (X)
]}}1/2

are O(k−βh/d) as k→ ∞ for optimal

orthonormal bases (including Legendre polynomials and natural splines) and when βh ≥ 1
decreases at rate k−1/d for the Haar basis. Thus for functions withmore than one derivative, the
Legendre basis approximates better than the Haar basis. This is relevant because the functions
f∗(x), q∗τ (x), δbτ(x), and δpτ(x) all almost certainly have more than one derivative.

The Cauchy-Schwartz inequality applied with the above shows that∫ ∏[
h(x)|φ⊥

k (x)
]∏[

g(x)|φ⊥
k (x)

]
dx=O(k−(βg+βh)/d)

for optimal bases. We also have

Ef̂

∏
f̂

[
g(X)h(X)|{φk(X)g(X)

}⊥]2=O(k−βh/d).

This depends on βh rather than min{βg,βh} because the term g(X) occurs in both the function
being projected and the subspace being projected onto, and can thus be factored out of the inte-
gral. This explains why second-order estimators based on the kernel Kq,f,k,alt have a potentially
smaller truncation bias, as discussed below.

c) The optimal rate of estimation in L2(f∗) norm of either the density f(x) of X or of a (possibly

weighted) conditional expectation given X, say h(X), is of order n− β

2β+d if the density or con-
ditional expectation has Hölder exponent β. Adaptive optimal estimators can be constructed
that obtain these optimal rates and are as smooth as their target function.
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We note the following.

• If βb > d/2 and βp > d/2, then the classes H(Cb, βb) and H(Cp,βp) are P∗-Donsker. Hence τ∗

can be consistently estimated at
p
n rates using standard results. If βb ≤ d/2 or βp ≤ d/2, these

classes fail to be Donsker (as shown in van der Vaart and Wellner, 1996). This complicates
analysis of the performance of estimators based on IFfull1,eff(τ; b̂τ, p̂τ).

• Suppose we are in the linear semiparametric model. Then, irrespective of the magnitude of βb
and βp, estimators b̂τ and p̂τ that are linear combinations of the first k elements of an optimal
tensor-product basis (such as products of splines or polynomials in each coordinate; see, e.g.,
Theorem 8, Chapter 6 of Lorentz, 1986, for polynomial bases and Theorem 12.8 of Schumaker,
1981, for splines) can be constructed based on the full-sample, such that

E
[
IFfull1,eff

(
τ; b̂τ, p̂τ

)]
−E

[
IFfull1,eff

(
τ;b∗τ ,p∗

τ

)]
=OP(k−(βb+βp)/d),

as proved in Donald and Newey (1994). The proof does not use Donsker-type results. Using
ideas similar to those in Donald and Newey (1994), we show in Appendix D that non-series
Poisson regression estimators with this bias rate exist under the loglinear model. We do not
have a proof that the series estimator based on Poisson regression can achieve this rate, but we
conjecture that this is the case based on simulations.

• We continue with the assumption of the semiparametric model. If βb+βp >d/2, full-sample es-
timators b̂τ and p̂τ can be found such that

p
n-rate convergence is achieved using IFfull1,eff(τ; b̂τ, p̂τ).

This holds even if βb ≤d/2 or βp ≤d/2, causing Donsker conditions to fail. This follows in the
linear case from the aforementioned result in Donald and Newey (1994). Based on the above
comments, we conjecture that this is true in the loglinear case as well.

Since, in estimating k coefficients of the basis representation of b∗τ and p∗
τ from a half-sample of

size n, wemust have k≤n, it follows that βb+βp ≥d/2 is a necessary condition for
p
n convergence

of the root MSE of series estimators, such as the usual Poisson and linear regression estimators
considered by the NMMAPS investigators Dominici et al. (2004), which are the same as those
considered in Donald and Newey (1994).

• Now suppose we are in the nonparametric model, and suppose that βb+βp > d/2. Estimators
based on IFfull1,eff(τ; b̂τ, p̂τ) will not have a bias of OP(k−(βb+βp)/d) in this case. Such estimators
cannot achieve the parametric rate of

p
n. However, the

p
n rate can still be achieved using

higher-order influence-function estimators, although the order of influence functionsmay need
to be arbitrarily large. (Such estimators are constructed in Robins, Li, et al., 2008.)

• If βb+βp ≤d/2, then
– Under the nonparametric model, no estimator for τ∗ exists such that the bias and standard

deviation converge at the rate n−1/2. This is conjectured to be true in the semiparametric
model as well.

– One of βb ≤d/2 or βp ≤d/2 must be true. Hence Donsker conditions do not hold and cannot
be used to analyze the performance of IFfull1,eff(τ; b̂τ, p̂τ). However, IFfull1,eff(τ; b̂τ, p̂τ) does not give

optimal rates for any estimators b̂τ and p̂τ because the variance is of order 1/n and the squared
bias is larger, leading to a non-optimal tradeoff between the two. This remark holds under
both the nonparametric and semiparametric models.

Suppose that we use an optimal basis in our second-order influence functions. The above facts
lead to the following consequences.
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i) The third-order estimation bias terms in the bias of all three second-order i.i.d. estimators
(Theorem 21), as well as the third-order estimation bias term in the bias of the second-order
time-series estimator (Theorem 37), all converge to zero at rates determined by either the prod-

uct of δbiτ∗(Xi), δqjτ∗(Xj), and δpjτ∗(Xj), leading to the rate OP

(
n
−

(
βb/d

2βb/d+1+
βp/d

2βp/d+1+
βq/d

2βq/d+1

))
, or the

product of δbiτ∗(Xi), δpjτ∗(Xj), and δfjτ∗(Xj), leading to the rate OP

n−
(

βb/d
2βb/d+1+

βp/d
2βp/d+1+

βf/d

2βf/d+1

).
ii) The time-series bias term in Theorem 37 converges to zero at a rate that is at least as

fast as the product of the rates for δbiτ∗(Xi) and δpjτ∗(Xj), leading to an upper bound of

OP

(
n
−

(
βb/d

2βb/d+1+
βp/d

2βp/d+1

))
. Under the additional assumption that the residuals from the estima-

tion of b∗iτ and p∗
iτ do not change rapidly with time, and if we assume the upper bound on s(i)

is not too large, this term goes to zero at a rate as fast as the third-order terms.
iii) The truncation term for the i.i.d. second-order estimators based on ÎF

(k)
2,eff(τ), ÎF(k)

2,new(τ), and the

time-series second-order τ̂(k)
2 is OP(k−(min{βq,βf,βb}+min{βp,βf})/d).

iv) The truncation term for the i.i.d. second-order estimators based on ÎF
(k)
2,alt(τ) yields the rate

OP(k−(βb+βp)/d), which may be better than the rate for the truncation term in the other second-
order estimators.

Thus, in the i.i.d. case with kernels Kk and Kf̂,k the rate of convergence of the bias to zero is

max

n−
(

βb/d
2βb/d+1+

βp/d
2βp/d+1+

βq/d
2βq/d+1

)
,n

−
(

βb/d
2βb/d+1+

βp/d
2βp/d+1+

βf/d

2βf/d+1

)
,k−(min{βq,βf,βb}+min{βp,βf})/d


and in the i.i.d. case with kernel Kq̂,f̂,k,alt,

max

n−
(

βb/d
2βb/d+1+

βp/d
2βp/d+1+

βq/d
2βq/d+1

)
,n

−
(

βb/d
2βb/d+1+

βp/d
2βp/d+1+

βf/d

2βf/d+1

)
,k−(βb+βp)/d

 .

For the time-series case, the above rates apply if the time-series bias term goes to zero at least as
fast as the third-order terms.

In both the time-series and i.i.d. cases, the variance goes to zero at rate k/ns. To make sure
that the variance is at least as large as the squared bias, we choose k such that k/ns exceeds the
squares of the bias terms above. This is possible because, as k increases, the bias decreases and
the variance increases.

The dependence of s on n is known. In the i.i.d. case, s=n. In the time-series case, we consider
an asymptotic sequence with s = s(n) ≍ nν with ν < 1. Hence we can use the formulae above to
choose k to achieve the lowest possible rate for a given ν if the smoothnesses βf, βq, βb, and βp

are known. If only some of these smoothnesses are known, additional conditions are required.
For example, if we assume that

(i’) the densities f∗i (x) are at least as smooth as the smoothest of b∗iτ∗(x) and p∗
iτ∗(x), and

(ii’) q∗iτ∗(x) is at least as smooth as b∗iτ∗(x) so that min{βb,βq,βf} =βb and min{βp,βf} =βp,

then the above rates no longer depend on βq and βf so knowledge of βb and βp is all that is
required.
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The truncation bias rate is better if we use a time-series version of the estimator based on
ÎF

(k)
2,alt(τ). However, as mentioned previously, computation of ÎF(k)

2,alt(τ) involves an inversion of a
large matrix that we were unable to compute for large k.

The large-sample variance of ÎF(k)
2 is the sum of the variances of ÎF1,new and ÎF

(k)
22 since these are

asymptotically orthogonal to each other. Hence Var(ÎF
(k)
2 ) ≍ 1/n+k/ns in the time-series case and

Var(ÎF
(k)
2 ) ≍ 1/n+k/n2 in the i.i.d. case. It increases linearly in k = k(n) if n= o[

k(n)
]
. In order to

get valid CIs, we need this variance to be larger than the square of the bias above.

3.3.4 A Biasedness Test for First-Order Estimators

In practice, we do not know the smoothnesses βb and βp of b∗iτ and p∗
iτ. Hence an adaptive

method is required to select an optimal k to minimize the MSE. Although various adaptive meth-
ods have been considered in the literature, for example the methods in Wasserman (2006), they
are not directly applicable to our case and furthermore are only asymptotic. Thus the problem
of finding the optimal k remains open in general.

We can, however, test whether the first-order estimator does indeed have squared bias dominat-
ing its variance by comparing this estimator to the second-order estimators for various values of k
under the following assumption: For themaximum k used, the squared bias of ÎFsplit,(k)

2 is less than

the total variance. Now, the variance is dominated by that of ÎFsplit,(k)
22 (τ∗) = ÎF

split,(k)
2 (τ∗)−ÎFsplit1,new(τ∗).

Further, as argued above, ÎF1,new(τ∗) and ÎF
(k)
22 (τ∗) are asymptotically uncorrelated. Thus, when

ÎF
split
1,new(τ∗) has bias squared less than its variance (which is of the order

p
n), ÎF

split,(k)
22 (τ∗) =

ÎF
split,(k)
2 (τ∗)− ÎF

split
1,new(τ∗) is asymptotically normal for all k values in the middle graph (in Figure 1)

with variance equal to the variance of ÎFsplit,(k)
2 (τ∗) minus the variance of ÎFsplit1,new(τ∗). Thus, we can

test the null hypothesis [that ÎFsplit1,new(τ∗) has bias squared less than its variance] by (1) comparing

ÎF
split,(k)
22 (τ̂) = ÎF

split,(k)
2 (τ̂)− ÎF

split
1,new(τ̂) divided by the square root of the difference of the estimators

of the variance of ÎFsplit,(k)
2 (τ∗) and ÎF

split
1,new(τ∗), and then (2) comparing the resulting Z-score to the

two 2.5% tails of aN(0,1) distribution. Wemust correct the resulting p-value for the multiple tests
(one for each value of k on the middle graph in Figure 1), which we do by Bonferroni correction
as we do not have an estimator of the correlation matrix of the vector of the ÎF

split,(k)
22 (τ̂).

The exact same results hold when we replace ÎF
split,(k)
2 (τ∗) with τ̂

split,(k)
2 −τ∗ and ÎF

split
1,new(τ∗) with

τ̂
split
1,new−τ∗ because (1) ÎFsplit,(k)

2 (τ∗) and τ̂
split,(k)
2 −τ∗ have the same asymptotic distribution, except

the variance of τ̂
split,(k)
2 − τ∗ is the variance of ÎF

split,(k)
2 (τ∗) divided by the limit of the square of�DER

[
ÎF

split
1,new(τ̂)

]
, and (2) the variance of ÎFsplit1,new(τ∗) and τ̂

split
1,new−τ∗ differ by the same factor.

If the test of the null hypothesis that ÎF
split
1,new(τ∗) has bias squared less than its variance fails

to reject (as in all cities except possibly Minneapolis; see Figure 1), then we take the first-order
estimator τ̂split1,new as our estimator of τ∗ when our goal is tominimizeMSE. This choice is consistent
with the optimal procedures for adaptive estimation with the goal of minimizing MSE (discussed
on pages 216–220 of Wasserman, 2006).

Equivalently, we could use τ̂full1,eff, the Poisson regression estimator of τ∗ used in previous

NMMAPS analyses, since this estimator has variance somewhat less than that of τ̂split1,new.
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3.4 METHOD DETAILS

In this section we derive some theoretical consequences of the choice of various aspects of the
estimation process that we have so far left unspecified.

3.4.1 Definition of s(i)

For the NMMAPS data, we let the set s(i) depend on parameters n1, n2, and γ,0 < γ ≤ 1, as
follows.

s(i) = {
j :n1 ≤ |j− i| ≤n2

}∩{
j : f̂j(Xj) ≤ γmax

{
f̂j′(Xi′) : i′, j′ = 1, . . . ,N

}}
. (3.1)

(For the split estimator, the abovewas also intersectedwith split(ℓ) if i ∈ split(ℓ).) For our analysis,
the most common choices (our base case) were n1 = 25, n2 = 75, and γ= 0.8.

Recall from Section 3.3.2 that, under our Assumptions 34 and 38,

Var(ÎF1,new) = 1
n
C1 [1+o(1)] ,

where

C1 = 1
n

n∑
i=1

Ei[IF1,new,i(τ
∗,b∗iτ∗ ,p∗

iτ∗ , f̂ )2],

Ei[IF1,new,i(τ
∗,b∗iτ∗ ,p∗

iτ∗ , f̂ )2]

= 1
|s(i)|2

∑
j∈s(i)

∑
j′∈s(i)

Ei[f̂j(Xi)f̂j′(Xi)εi(τ
∗,b∗iτ∗)2∆iτ(p∗

iτ∗ ,q∗iτ∗)2],

which is O(1). Hence C1 =O(1). On the other hand

Var(ÎF
(k)
22 ) = 1

n2

n∑
i=1

1
|s(i)|2

∑
j∈s(i)

Eij[εi(τ
∗,b∗iτ∗)2Kk(Xi,Xj)

2∆jτ(p∗
jτ∗ ,q∗jτ∗)2] [1+o(1)]

and

Var(ÎF
(k)
22 ) = k

ns
C22

[
1+op(1)

]
,

where 1
s =n−1∑n

i=1
1

|s(i)| , with |s(i)| being the cardinality of the set s(i) as before, C22 =O(1),s=O(1)

(see proof of Lemma 41 in Appendix E).

Since, under our assumptions, Var(ÎF
(k)
2 ) =Var(ÎF

(k)
22 )+Var(ÎF1,new), we conclude that

Var(ÎF
(k)
2 )/Var(ÎF1,new) = 1+Var(ÎF

(k)
22 )/Var(ÎF1,new) = 1+ k

s
C22

C1
.

Thus we expect that Var(ÎF1,new) does not depend strongly on |s| but that the slope of
Var(ÎF

(k)
2 )/Var(ÎF1,new) versus k is inversely proportional to |s|. Finally, one would expect that

the relative variability of τ̂split1,new would be less than even that of ÎFsplit1,new(0) because (1) the denomi-

nator
{�DER[

ÎF
split
1,new(τ̂

split
1,new)

]}2
of the estimated variance of τ̂split1,new has the same dependence on s(i)

as does the numerator, the estimated variance of ÎFsplit1,new(τ̂
split
1,new); and (2) the estimated variance of

ÎF
split
1,new(τ̂

split
1,new) and that of ÎFsplit1,new(0) are very close since τ̂

split
1,new is small. These theoretical results

agree qualitatively, if not quantitatively, with the empirical results in Section 2.3.2.
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3.4.2 Comparison of the Linear and Loglinear Estimators

Under the loglinear model Ei [Yi|Xi,Ai] = e
τ∗loglinearAib∗i (Xi), b∗i (Xi) has an interpretation as the

expected number of deaths on occasion i when the 1-day lagged PM10 level is zero.

We now provide some theoretical insight into these empirical results. In the following argu-
ment we use the subscripts “linear” and “loglinear” to distinguish between the intended versions
of τ∗ and b∗iτ. For generality we focus on the nonparametric model. For concreteness, we treat
the parameter corresponding to the first-order efficient estimator.

In the nonparametric model, τ∗loglinear solves

n∑
i=1

Ei

{
Yi−eτAib∗loglinear,iτ∗(Xi)

}Ai−
Ei

[
eτAiAi|Xi

]
Ei

[
eτAi
i |Xi

]
= 0,

which coincides with the usual definition of τ∗ if the loglinear model actually holds. τ∗linear solves

n∑
i=1

Ei
[{
Yi−τAi−b∗linear,iτ∗(Xi)

}
(Ai−Ei [Ai|Xi])

]
= 0,

which coincides with the usual definition of τ∗ if the linear model holds. If we assume τ∗loglinearAi

is small for all Ai, and if, as in larger cities, the variability of b∗i (Xi) with i around its mean b is
small compared to b, then

b∗loglinear,iτ∗(Xi) =Ei [Yi|Xi]/Ei
[
eτAi
i |Xi

]
≈Ei [Yi|Xi]

{
1−τEi [Ai|Xi]

}
≈ b

for all i (the first approximation above being valid because τ∗loglinearAi is small); and τ∗loglinear
approximately solves

0=
n∑
i=1

Ei
[{
Yi− (1+τAi)b

}
(Ai−Ei [Ai|Xi])

]
=

n∑
i=1

Ei
[{
Yi−τAib−b

}(
Ai−Ei

[
Ai|Xi

])]
=

n∑
i=1

Ei
[{
Yi−τAib

}(
Ai−Ei [Ai|Xi]

)]
.

Now τ∗linear solves

0=
n∑
i=1

Ei
[{
Yi−τAi−b∗linear,iτ (Xi)

}
(Ai−Ei [Ai|Xi])

]
=

n∑
i=1

Ei
[{
Yi−τAi

}(
Ai−Ei [Ai|Xi]

)]
.

Thus τ∗linear ≈ τ∗loglinearb. In Section 2.3.1 we show that empirical results are consistent with this
prediction.

3.4.3 Goodness-of-Fit for Choice of Density Estimator

We considered two density estimators: the nonparanormal density estimator (Liu et al., 2009)
and the local regression density estimator (Loader, 1999). Both are modified by weights that take
into account the effect of time (including yearly seasonality), as described in Section 2.3.4.

An empirical comparison was needed to determine which of these two estimators is more
suitable. It turns out that a simple modification of ÎF22 and ÎF1,new could be used to produce
a goodness-of-fit diagnostic for our density estimators that would allow a direct comparison of
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the Locfit and nonparanormal estimators by comparing their goodness-of-fit diagnostic. Specifi-
cally we modified ÎF

(k)
22 and ÎF1,new by setting εi(τ,b), ∆iτ(p), and ∆∗

iτ(p,q) to 1, and set the cut-off γ
in the definition of s(i) (Equation 3.1, Section 3.4.1) to 1 (so no observation was truncated based
on the value of the density estimate). That is, we defined

IF±
1,new = 1

n

n∑
i=1

1
s(i)

∑
j∈{s(i)}

f̂j(Xi), and

IF±(k)
22 =− 1

n

n∑
i=1

1
s(i)

∑
j∈{s(i)}

Kk(Xi,Xj).

Then

E
[
IF±

1,new

]
= 1

n

n∑
i=1

1
s(i)

∑
j∈{s(i)}

∫
f̂j(x)fi(x)dx,

E
[
IF±(k)

22

]
= − 1

n

n∑
i=1

1
s(i)

∑
j∈{s(i)}

∫ ∏[
fi(xi)|ϕk(x)

]∏[
fj(xi)|ϕk(x)

]
dx

= −1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

{∫
fj(x)fi(x)dx

−
∫ ∏[

fi(xi)|ϕ⊥
k (x)

]∏[
fj(xi)|ϕ⊥

k (x)
]
dx

}
, and

E
[
IF±(k)

2

]
= E

[
IF±

1,new

]
+E

[
IF±(k)

22

]
= 1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

∫ {
f̂j(x)− fj(x)

}
fi(x)dx

− 1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

∫ ∏[
fi(xi)|ϕ⊥

k (x)
]∏[

fj(xi)|ϕ⊥
k (x)

]
dx.

Thus as k becomes large, E
[
IF±(k)

2

]
=E

[
IF±

1,new

]
+E

[
IF±(k)

22

]
converges to the weighted average

1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

∫ {
f̂j(x)− fj(x)

}
fi(x)dx

= 1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

∫ {
f̂j(x)fi(x)− fj(x)fi(x)

}
dx

of
{
f̂j(x)− fj(x)

}
fi(x), and −E

[
IF±(k)

22

]
=E

[
IF±

1,new− IF±(k)
2

]
converges to the average

1
n

∑
i

1
s(i)

∑
j;j∈{s(i)}

∫ {
fj(x)fi(x)

}
dx

of fj(x)fi(x). We therefore use as our goodness-of-fit diagnostic IF±(k)
2 /

{
IF±

1,new− IF±(k)
2

}
, where we

chose the value of k that minimized IF±(k)
2 because E

[
IF±(k)

2

]
will generally decrease with k if

fj(x) and fi(x) are not too different. Thus after IF±(k)
2 reaches a minimum, further increases with k

presumably represent sampling variability.
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APPENDIX A. FORMAL DEFINITIONS

In what follows we add τ in the subscripts of the functions b∗i and p∗
i because these functions

depend on τ. This subscript was suppressed in the main text for simplicity. In the loglinear case,
define

b∗iτ(Xi) =
Ei [Yi|Xi]
Ei

[
eτAi |Xi

] ,

p∗
iτ(Xi) =

Ei[AeτAi |Xi]
E[eτAi |Xi]

,

q∗iτ(Xi) =Ei[eτAi |Xi],
εi(τ,b) =Yi−eτAib(Xi),

bi(x;η) = exp
[
ηTwi(x)

]
,

qi(x;ω) = exp
[
ωTwi(x)

]
,

∆i(τ,p,q) = [
Ai−p(Xi)

] eτAi

q(Xi)
, and

Si(τ,α) = (Ai−αTWi)Wie
τAi .

In the linear case, define

b∗iτ(Xi) =Ei [Yi−τAi|Xi] ,

p∗
iτ(Xi) =Ei[Ai|Xi],
q∗iτ(Xi) = 1,

εi(τ,b) =Yi−τAi−b(Xi),

bi(x;η) = ηTwi(x),

qi(x;ω) = 1,

Si(τ,α) = (Ai−αTWi)Wi, and

∆i(τ,p,q) =Ai−p(Xi).

Common to both, define

∆i(p) =Ai−p(Xi),

Ui,profile(τ,b) = εi(τ,b)Ai,

Ui,nuis(τ,b) = εi(τ,b)Wi,

Ui(τ,b) = (Ai,Wi)
Tεi(τ,b), and

IF1,eff,i(τ;b,p) = εi(τ,b)
[
Ai−p(Xi)

]
.

Before we define the estimators using this notation, we recall that our estimators can be divided
into full-sample and split-sample estimators. Full-sample estimators are estimators in which the
nuisance functions as well as the estimating equation for τ are based on the full sample of N
observations. The split-sample estimators divide the sample into two halves of size n each (so
N= 2n).
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A.1 THE FIRST-ORDER ESTIMATORS

We now define the full-sample estimators. Let η̂full(τ) and α̂full(τ) solve

N−1 N∑
i=1

Ui,nuis
[
τ,bi(η)

]= 0, and

N−1 N∑
i=1

Si(τ,α) = 0,

respectively, where bi(η) is the function bi(·;η). The time-dependent full-data estimators of b∗iτ
and p∗

iτ are defined as

b̂fulliτ (x) =
exp

[
η̂full(τ)Twi(x)

]
in the loglinear case,

η̂full(τ)Twi(x) in the linear case; and

p̂full
iτ (x) = α̂full(τ)Twi(x).

Then the first-order estimators τ̂full1,eff,linear and τ̂full1,eff,loglinear are the solutions to

ÎF
full
1,eff(τ) = 0

(for the linear and loglinear cases), where

ÎF
full
1,eff(τ) = 1

N

N∑
i=1

IF1,eff,i(τ; b̂fulliτ , p̂full
iτ ).

Next, we define the split-sample estimators. Let n = N
2 and let {split(0),split(1)} be a partition

of {1, . . . ,N } into two sets of size n. For ℓ= 0,1 define η̂(ℓ)(τ) and α̂(ℓ)(τ) as the solutions to

n−1 ∑
i∈split(ℓ)

Ui,nuis
[
τ,bi(η)

]= 0, and

n−1 ∑
i∈split(ℓ)

Si(τ,α) = 0,

respectively, where bi(η) is the function bi(·;η). The time-series split-data estimators of b∗iτ and
p∗
iτ are defined as

b̂(ℓ)
iτ (x) =

{
exp

[
η̂(ℓ)(τ)Twi(x)

]
in the loglinear case,

η̂(ℓ)(τ)Twi(x) in the linear case; and

p̂(ℓ)
iτ (x) = α̂(ℓ)(τ)Twi(x).

Define

ÎF
split
1,eff (τ) = 1

n

{ ∑
i∈split(0)

IF1,eff,i

[
τ; b̂(1)

iτ , p̂(1)
iτ

]
+

∑
i∈split(1)

IF1,eff,i

[
τ; b̂(0)

iτ , p̂(0)
iτ

]}
.

The first-order estimators τ̂
split
1,eff,linear and τ̂

split
1,eff,loglinear are the solutions to

ÎF
split
1,eff (τ) = 0
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(for the linear and loglinear cases). Further, define the density-weighted quantities

IF1,new,i(τ;b,p,f) = 1
|s(i)|

∑
j∈s(i)

fj(Xi)εi(τ,b)
[
Ai−p(Xi)

]
,

ÎF
full
1,new(τ) = 1

N

N∑
i=1

IF1,new,i(τ; b̂fulliτ , p̂full
iτ , f̂ ), and

ÎF
split
1,new(τ) = 1

2n

{ ∑
i∈split(0)

IF1,new,i(τ; b̂(1)
iτ , p̂(1)

iτ , f̂ )

+ ∑
i∈split(1)

IF1,new,i

[
τ; b̂(0)

iτ , p̂(0)
iτ , f̂

]}
.

Then the first-order estimators τ̂full1,new,linear and τ̂full1,new,loglinear are the solutions to

ÎF
full
1,new(τ) = 0,

and τ̂
split
1,new,linear and τ̂

split
1,new,loglinear are the solutions to

ÎF
split
1,new(τ) = 0.

Next, we define the robust variance estimators as

V̂full
1,eff =

V̂
(
ÎF

full
1,eff(τ̂

full
1,eff)

)
{�DER(

ÎF
full
1,eff(τ̂

full
1,eff)

)}2 ,

V̂
split
1,eff =

V̂
(
ÎF

split
1,eff (τ̂

split
1,eff )

)
{�DER(

ÎF
split
1,eff (τ̂

split
1,eff )

)}2 ,

V̂full
1,new =

V̂
(
ÎF

full
1,new(τ̂full1,new)

)
{�DER(

ÎF
full
1,new(τ̂full1,new)

)}2 , and

V̂
split
1,new =

V̂
(
ÎF

split
1,new(τ̂

split
1,new)

)
{�DER(

ÎF
split
1,new(τ̂

split
1,new)

)}2 ,

where

DER1,eff,i
(
τ,b,p

)={{
∆i(p)

}2 in the linear case,{
∆i(p)

}2eτAib(Xi) in the loglinear case, and

V̂
(
ÎF

full
1,eff(τ)

)
=N−2 N∑

i=1

{
IF1,eff,i(τ, b̂fulliτ , p̂full

iτ )
}2

,

V̂
(
ÎF

split
1,eff (τ)

)
= 1

4n2

{ ∑
i∈split(1)

{
IF1,eff,i(τ, b̂(0)

iτ , p̂(0)
iτ )

}2
+ ∑
i∈split(0)

{
IF1,eff,i(τ, b̂(1)

iτ , p̂(1)
iτ )

}2}
,
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�DER(
ÎF

full
1,eff(τ)

)
=N−1 N∑

i=1

{
DER1,eff,i(τ, b̂fulliτ , p̂full

iτ )
}

,

�DER(
ÎF

split
1,eff (τ)

)
= 1

2n

{ ∑
i∈split(1)

DER1,eff,i(τ, b̂(0)
iτ , p̂(0)

iτ )

+ ∑
i∈split(0)

DER1,eff,i(τ, b̂(1)
iτ , p̂(1)

iτ )

}
,

DER1,new,i
(
τ,b,p,f

)={
fi(Xi)

{
∆i(p)

}2 in the linear case,

fi(Xi)
{
∆i(p)

}2eτAib(Xi) in the loglinear case, and

V̂
(
ÎF

full
1,new(τ)

)
=N−2 N∑

i=1

{
IF1,new,i(τ, b̂fulliτ , p̂full

iτ , f̂ )
}2

,

V̂
(
ÎF

split
1,new(τ)

)
= 1

4n2

{ ∑
i∈split(1)

{
IF1,new,i(τ, b̂(0)

iτ , p̂(0)
iτ , f̂ )

}2
+

∑
i∈split(0)

{
IF1,new,i(τ, b̂(1)

iτ , p̂(1)
iτ , f̂ )

}2}
,

�DER(
ÎF

full
1,new(τ)

)
=N−1 N∑

i=1

{
DER1,new,i(τ, b̂fulliτ , p̂full

iτ , f̂ )
}

, and

�DER(
ÎF

split
1,new(τ)

)
= 1

2n

{ ∑
i∈split(1)

DER1,new,i(τ, b̂(0)
iτ , p̂(0)

iτ , f̂ )

+ ∑
i∈split(0)

DER1,new,i(τ, b̂(1)
iτ , p̂(1)

iτ , f̂ )

}
.

A.2 THE SECOND-ORDER ESTIMATORS

Define ω̂(ℓ)(τ) as the solution to

1
n

∑
i∈split(ℓ)

{
eτAi −eω(τ)Wi

}
Wi = 0,

and

q̂(ℓ)
iτ (x) =

{
exp

(
ω̂(ℓ)(τ)Tw(x)

)
in the loglinear case, and

1 in the linear case.

Define the projection kernel Kk by

Kk(x,y) =
k∑
l=1

φl(x)φl(y),

where φk(x) is an orthonormal basis for the set of square-integrable functions on the support of
the random vector X. Next define

IF(k)
22,ij(τ;b,p,q) =−εi(τ,b)Kk(Xi,Xj)∆j(τ,p,q),

ÎF
split,(k)
22 (τ) = 1

2n

{ ∑
i∈split(0)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ, b̂(1)

iτ , p̂(1)
jτ , q̂(1)

jτ )
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+
∑

i∈split(1)

1
|s(i)|

∑
j∈s(i)

IF(k)
22,ij(τ, b̂(0)

iτ , p̂(0)
jτ , q̂(0)

jτ )

}
, and

ÎF
split,(k)
2 (τ) = ÎF

split
1,new(τ)+ ÎF

split,(k)
22 (τ).

Define the second-order estimators of τ∗ as follows. Let τ̂split,(k)
2 solve

ÎF
split,(k)
2 (τ) = 0.

The variance of the above estimator is estimated by

V̂
split,(k)
2 =

V̂
(
ÎF

split
1,new(τ̂

split,(k)
2 )

)
+ V̂

(
ÎF

split,(k)
22

(
τ̂
split,(k)
2

))
{�DER(

ÎF
split
1,new(τ̂

split,(k)
2 )

)}2 ,

where

V̂
(
ÎF

split,(k)
22 (τ)

)
= 1

4n2

{ ∑
i∈split(0)

1
|s(i)|2

∑
j∈s(i)

{
IF(k)

22,ij(τ, b̂(1)
τ , p̂(1)

τ , q̂(1)
τ )

}2
+

∑
i∈split(1)

1
|s(i)|2

∑
j∈{s(i)}

{
IF(k)

22,ij(τ, b̂(0)
τ , p̂(0)

τ , q̂(0)
τ )

}2}
.

APPENDIX B. SENSITIVITY TO THE CHOICE OF XCONT AND OF THE LINEAR SPLINE MODELS

This appendix provides details of the model selection procedure for various nuisance param-
eters. Recall that the estimating equations used in both the linear and loglinear model rely on
estimates of nuisance functions b∗iτ, p

∗
iτ, and, in the case of loglinear regression, q∗iτ as well. In

the case of the linear model, b∗iτ(x) =Ei[Yi−τAi|Xi = x], p∗
iτ(x) =Ei[Ai|Xi = x], and q∗iτ(x) ≡ 1. In the

loglinear case, b∗iτ(x) = E [Yi|Xi = x]/Ei
[
eτAi |Xi = x

]
, p∗

iτ(x) = Ei[AieτAi|Xi = x]/Ei[eτAi|Xi = x], and
q∗iτ(x) =Ei[eτAi |Xi = x].

Our approach involves estimating these functions based on one half of the data and testing
their fit on the other half. Here we describe the model selection procedure for estimation of these
functions. We considered 6 of the 7 covariates used in NMMAPS, ignoring day-of-week. We
dropped the adjusted 3-day lagged variables and replaced them with four new variables, which
were, for each day of interest, lagged moving averages of 1–3 and 4–6 days prior, calculated from
the daily temperatures and dew-point temperatures. Of these variables, day-of-week and age
category are categorical; the rest are continuous variables. These variables were organized into
two main sets.

The original NMMAPS variable set included:

1. average daily temperature,
2. average daily dew-point temperature,
3. adjusted 3-day lagged daily temperature,
4. adjusted 3-day lagged dew-point temperature,
5. time,
6. day-of-week, and
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7. age category.

The “New” variable set:

1. average daily temperature,
2. average daily dew-point temperature,
3. 1–3 day lagged average daily temperature,
4. 4–6 day lagged average daily temperature,
5. 1–3 day lagged average dew-point temperature,
6. 4–6 day lagged average dew-point temperature,
7. time, and
8. age category.

The two sets above are denoted by Xi in our notation. Recall that the nuisance parameters are
described as functions of τ, the realization x of the random vector Xi, as well as the time point i
because time is not random. This dependence on time is captured by modeling these nuisance
parameters on a time-dependent transform wi(·) of Xi. It was not initially assumed that b∗iτ and
p∗
iτ depended on x through the same function wi(·); however, after the model selection procedure

was conducted we concluded that the same function could be used. In what follows we simply
use the notationwi(·) with the understanding that this represents a (potentially) different function
for b∗iτ and p∗

iτ.

The candidate models included different functions wi(·) of Xi, as well as a choice of a link
function connecting wi(·) to the nuisance function of interest (i.e., b∗iτ or p∗

iτ). The goodness-of-
fit was assessed based on cross-validated estimates of MSE and autocorrelation for the linear
model. We made the decision to use the same function wi(·) (obtained for the linear model) in
the loglinear model. Once it became clear the same variable set wi(Xi) could be used for b∗iτ and
p∗
iτ, we also decided to use this variable set and a log link in a loglinear model for q∗iτ.
Several transforms of Xi (including the spline transform used in NMMAPS as well as the gs and

gs2 transforms mentioned previously) formed the variable set candidates in the model selection
procedure. These initial transforms created variable sets with degrees of freedom ranging from 6
to 2004. The five methods of estimation for b∗iτ are these.

1. Linear outcome regression of Yi − τAi on wi(Xi). This method estimates η(τ) by solving the
equation

n−1 ∑
i∈split(0)

[
Yi−τAi−ηTwi(Xi)

]
wi(Xi) = 0.

2. Loglinear outcome regression of Yi−τAi on wi(Xi). η(τ) is estimated by solving the equation

n−1 ∑
i∈split(0)

(Yi−τAi−eη
Twi(Xi))wi(Xi) = 0.

3. Multivariate adaptive regression splines (MARS) (Friedman, 2001) regression of Yi−τAi on
wi(Xi). MARS uses “hinge” functions of its inputs and products of such hinge functions in a
model that it selects adaptively using generalized cross validation. Thus, the function of Xi
that MARS uses as an output model is different than the input wi(·).

4. Multivariate adaptive polynomial regression splines (Polymars) regression ofYi−τAi onwi(Xi).
This algorithm is similar to MARS with different restrictions on the types of models allowed
(e.g., requiring main effects to be present if interactions are present, which MARS does not
require). As with MARS, using this method expands the set of candidates for wi(·).
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5. Generalized penalized spline (GPS) or “bridge” regression with the generalized elastic net
family of penalties (Friedman, 2008) of Yi−τAi on wi(Xi). This is a sparse regression method
that minimizes a regularized loss function with a penalty that bridges all subsets (L0) and
ridge regression (L2) penalties. This includes an implicit model selection procedure due to
the regularization based on L0 and L2 penalties, and so also includes several models beyond
the supplied wi(Xi).

The methods for estimation of p∗
iτ are these.

1. Linear outcome regression of A on wi(Xi). This method estimates α(τ) by solving the equation

n−1 ∑
i∈split(0)

[
Ai−αTwi(Xi)

]
wi(Xi) = 0.

2. MARS (Friedman, 2001) regression of Ai on wi(Xi).
3. Polymars regression of Ai on wi(Xi).
4. GPS (Friedman, 2008) regression of Ai on wi(Xi).

The pollution outcome used in the model for p∗
iτ had negative values in its range, which meant

loglinear regression could not be used for p∗
iτ. Some combinations of variable set and model

selection and fitting method were excluded for computational reasons.

Thus, the models used included these.

1. Models that were linear in each of the aforementioned transformed sets wi(Xi) of variables;
2. Loglinear models in each of the transformed sets of variables, where feasible;
3. Models generated internally by MARS based on the transformed sets of variables, where fea-

sible;
4. Models generated internally by Polymars based on the transformed sets of variables; and
5. Models generated internally by GPS based on the transformed sets of variables.

The candidate variable sets for wi(·) included:

1. (NMMAPS 7) The 7 NMMAPS variables: average daily temperature, average dew-point tem-
perature, adjusted 3-day lagged versions of the preceding variables, time, day-of-week, and
age category

2. (NMMAPS 155) An expanded model with 155 variables. This included a natural spline trans-
formation based on the continuous variables in the 7 NMMAPS variables, with 12 df for tem-
perature, 6 df for dew-point temperature, 96 df for time, 30 df for interactions between the
spline functions and the age category, as well as main effects for the categorical variables day-
of-week and age category.

3. (NMMAPS 6) The NMMAPS 7 variables with day-of-week excluded.
4. (NMMAPS 149) The NMMAPS 155 variables with day-of-week excluded.
5. (NMMAPS 912) The NMMAPS 6 variables with continuous variables transformed by natural

splines, with 100 df for the main effects of temperature, dew-point temperature, and time
variables; and 6 df for each interaction between temperature spline and age category.

6. (NMMAPS 948) The NMMAPS 6 variables with continuous variables transformed by natural
splines, with 100 df for the main effects of temperature, dew-point temperature, and time
variables; and 6 df for each interaction between temperature spline and age category; plus
spline functions with 6 df for interactions between the adjusted lagged temperature and the
dew-point temperature.
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7. (gs2 NMMAPS 6) The NMMAPS 6 variables, but with the continuous variables first centered
by a linear projection onto 98-df natural spline functions of time, then orthogonalized by a
Gram-Schmidt process.

8. (gs2 NMMAPS 912) These are similar to NMMAPS 912, but with natural splines applied to
the centered, Gram-Schmidt orthogonalized, continuous variables.

9. (gs2 NMMAPS 948) These are similar to NMMAPS 948, but with natural splines applied to
the centered, Gram-Schmidt orthogonalized, continuous variables.

10. (New 8) The 8 variables obtained by eliminating day-of-week and adjusted lagged variables
from the NMMAPS variables and adding the 1–3 day and 4–6 day lagged versions of average
daily temperature and average dew-point temperature.

11. (New 158) Based on the New 8 variables just above, but with the continuous variables trans-
formed using natural splines with 18 df for temperature, 9 df for dew-point temperature, 98
df for time, and 30 df for interactions between the spline functions and the age category or the
main effect for age category.

12. (New 900) Natural spline functions of the New 8 variables, but with 100 df for the main ef-
fects of temperature, dew-point temperature, and time variables; and 6 df for each interaction
between the temperature spline and the age category.

13. (New 2004) Natural spline functions of the New 8 variables, but with 100 df for the main
effects of temperature, dew-point temperature, and time variables; and 6 df for each interaction
between the temperature spline and the age category. In addition, this included up to third-
order interactions between the natural spline functions of the 1–3 day and 4–6 day lagged
variables with 6 df per interaction.

14. (gs2 New 8) The New 8 variables, but with the continuous variables first centered by a linear
projection onto 98 df natural spline functions of time, then orthogonalized by a Gram-Schmidt
process.

15. (gs2 New 158) Similar to the New 158, but with spline transforms applied to the centered and
orthogonalized continuous variables instead of the original variables.

16. (gs2 New 900) Similar to the New 900, but with spline transforms applied to the centered and
orthogonalized continuous variables instead of the original variables.

17. (gs2 New 2004) Similar to the New 2004, but with spline transforms applied to the centered
and orthogonalized continuous variables instead of the original variables.

The criteria for model selection were MSE and autocorrelation function (ACF) of the residuals
of the fit over time. For each of two cities (Chicago and New York), an initial estimate of τ was
obtained by least-squares linear regression of Y on A and the NMMAPS 149 variables. The initial
estimates were τ̂ = 0.033 for New York and τ̂ = 0.005 for Chicago. The following procedure was
done once using the initial estimate of τ obtained as described above, and again with the value
τ= 0 for both cities. The sample was randomly split into two equal parts 20 times; models were
estimated on one half and the MSE and ACF were evaluated on the other half based on the fit
in the first half. The 20 estimates of MSE and ACF thus obtained were averaged to get a final
estimate for each variable set and estimation method, and an empirical standard error for the
estimate of the MSE was also obtained from the 20 values.

Based on these criteria, the New variable set models involving 1–3 and 4–6 day lagged variables
were not found to perform significantly better than the variable sets including the adjusted 3-day
lagged variables from NMMAPS, as exemplified in Appendix Tables B.1 and B.2. For example,
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the MSE for τ in the NMMAPS 7 variable set is 51.25 in the linear model, and it is 50.81 in
the New 8 variable set. The loglinear model yields an MSE of 50.14 in the NMMAPS 7 set and
49.59 in the New 8 set. This indicates only a minor improvement. The comparison between
the NMMAPS 155 and New 158 variable sets is similarly close. These New variable sets were
eliminated and consideration was focused on the variable sets with transformed versions of the
NMMAPS variables.

Results for the NMMAPS variable sets are shown in Appendix Tables B.3 through B.6. Note
that certain combinations of variable set and estimation method that were eliminated early, based
on cross-validated MSE, are not included in these tables. Each table includes the estimate of the
MSE (averaged from 20 random splits), the empirical standard deviation of the MSE estimate
(over 20 splits), and autocorrelation at lags 1, 10, 50, and 250 (each averaged over 20 splits).

In the models for b∗iτ for Chicago (Appendix Table B.3), the best result (MSE = 41.73) is attained
with the NMMAPS 155 variables using the generalized linear model (GLM; Poisson regression).
The next best result is for the NMMAPS 149 (MSE = 41.84). In New York (Appendix Table B.4),
the best result is for NMMAPS 149 using GLM (MSE = 84.80) and the next best is for NMMAPS
155 using GLM (MSE = 84.91). In both New York and Chicago, the difference is not significant
based on the empirical standard error of the MSE. Since we decided not to use day-of-week, the
GLM using NMMAPS 149 was chosen as the model for b∗iτ.

We now turn our attention to the models for p∗
iτ. For Chicago (Appendix Table B.5), MARS

(MSE = 252.0) performed best in the NMMAPS 155 variable set, but the difference in MSE be-
tween MARS and the linear model (MSE = 260.4) was not significant. MARS (MSE = 261.3) also
performed best for the NMMAPS 149 variable set for Chicago, and again the difference from the
linear model (MSE = 269.5) was not significant. None of the four results (from linear model or
MARS with NMMAPS 155 or NMMAPS 149) was significantly superior to the others.

However, in New York (Appendix Table B.6), the best result for p∗
iτ was from GPS (MSE =

105.1) for the gs2 NMMAPS 948 variable set. In Chicago, however, the GPS did poorly on gs2
NMMAPS 948 (MSE = 281.2). As in Chicago, the New York results for MARS and the linear
models exhibited no significant differences: NMMAPS 155 MARS MSE = 106.0 and linear model
MSE = 107.4; NMMAPS 149 MARS MSE = 108.6 and linear model MSE = 110.7. Because of the
lack of differentiation among models, we decided to retain the NMMAPS 149 linear model for p∗

iτ
because of its relative simplicity and to enhance the comparability of our methods with results
obtained by the NMMAPS investigators.

The final model selected for b∗iτ was the GLM and for p∗
iτ the linear model, both based on the

NMMAPS 149 variable set.

The above model selection procedure was carried out for the linear model, i.e., with response
Yi−τAi for b∗iτ and response Ai for p∗

iτ. We decided to use the same models for b∗iτ and p∗
iτ in the

loglinear case. We also used a loglinear model for q∗iτ. To summarize, in the loglinear case:

b∗iτ(Xi) =E [Yi|Xi]/Ei
[
eτAi |Xi

]
= eαTwi(Xi),

p∗
iτ(Xi) =Ei[Aie

τAi|Xi]/Ei[eτAi|Xi] = ηTwi(Xi), and

q∗iτ(Xi) =Ei[eτAi |Xi] = eω
Twi(Xi),
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with wi(·) for q∗iτ, as in the linear case. The corresponding estimators for the coefficients α, η, and
ω are the solutions to the equations

n−1 ∑
i∈split(0)

{
(Yi−eα

Twi(Xi)eτAi)wi(Xi)
}
= 0,

n−1 ∑
i∈split(0)

{[
Ai−ηTwi(Xi)

]
eτAiwi(Xi)

}
= 0, and

n−1 ∑
i∈split(0)

{
(eτAi −eωTwi(Xi))wi(Xi)

}
= 0.

Table B.1. Comparison of goodness-of-fit for b∗iτ in the linear model for the NMMAPS and New
variable sets for Chicago data. τ= 0. MSE and ACF are from a single split.

Models for E[Y−τA|X] MSE ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 51.25 0.12033 0.11217 0.11217 0.09437
GLM 50.14 0.10677 0.10251 0.10251 0.08435

MARS 50.50 0.09810 0.09606 0.09538 0.08425
Polymars 43.83 0.08322 0.08322 0.08322 0.07389

GPS 51.17 0.11900 0.11328 0.11328 0.09275

NMMAPS 155
LM 44.43 0.08772 0.08772 0.08772 0.06960

GLM 41.65 0.08702 0.08702 0.08702 0.07392
MARS 43.05 0.08384 0.08384 0.08384 0.06544

Polymars 42.53 0.08154 0.08154 0.08154 0.06620
GPS 44.41 0.08833 0.08833 0.08833 0.06914

NEW 8
LM 50.81 0.1300 0.1215 0.1215 0.09354

GLM 49.59 0.1159 0.1118 0.1118 0.08667
MARS 49.83 0.1163 0.1067 0.1001 0.08490

Polymars 43.66 0.0895 0.0895 0.0895 0.07437
GPS 50.76 0.1283 0.1205 0.1205 0.09375

NEW 158
LM 44.41 0.08584 0.08584 0.08584 0.06524

GLM 41.66 0.08654 0.08654 0.08654 0.06934
MARS 42.17 0.09080 0.09080 0.09080 0.08990

Polymars 43.07 0.08315 0.08315 0.08315 0.07715
GPS 44.43 0.09378 0.09378 0.08988 0.06412
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Table B.2. Comparison of goodness-of-fit for p∗
iτ in the linear model for the NMMAPS and New

variable sets for Chicago data. τ= 0. MSE and ACF are from a single split.

Models for E[A|X] MSE ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 310.1 0.2928 0.1030 0.10301 0.10301
MARS 295.7 0.2698 0.1027 0.09845 0.09845

Polymars 291.0 0.2643 0.1078 0.10246 0.10196
GPS 309.5 0.2922 0.1018 0.10176 0.10176

NMMAPS 155
LM 265.5 0.2111 0.10227 0.09599 0.09599

MARS 254.2 0.1302 0.10010 0.10010 0.10010
Polymars 263.1 0.1997 0.10504 0.10504 0.10504

GPS 272.1 0.2118 0.08924 0.08924 0.08924

NEW 8
LM 304.6 0.2860 0.09114 0.09114 0.09114

MARS 280.8 0.2329 0.09294 0.09294 0.09140
Polymars 281.1 0.2415 0.09057 0.08977 0.08977

GPS 303.2 0.2871 0.08980 0.08980 0.08861

NEW 158
LM 263.0 0.1858 0.10308 0.10308 0.10308

MARS 253.6 0.1246 0.10332 0.09830 0.09830
Polymars 272.7 0.2212 0.09525 0.09525 0.09501

GPS 268.1 0.1967 0.09411 0.09238 0.09238
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Table B.3. Goodness-of-fit for E[Y −τA|X] for b*
iτ for Chicago data. τ= 0.005. MSE and ACF are

averaged over 20 random splits; empirical SD is from the 20 splits.

MSE EMP SD ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 51.14 0.7167 0.11558 0.10828 0.10825 0.09283
GLM 49.87 0.6820 0.09970 0.09667 0.09667 0.08418

MARS 50.61 0.7453 0.10191 0.10097 0.09997 0.08719
Polymars 43.74 0.6180 0.08192 0.08192 0.08192 0.07537

NMMAPS 155
LM 44.56 0.6700 0.08757 0.08738 0.08719 0.07602

GLM 41.73 0.6108 0.08689 0.08689 0.08669 0.07583
MARS 42.37 0.6800 0.08247 0.08247 0.08077 0.06976

Polymars 43.12 1.3147 0.08451 0.08451 0.08324 0.07115

NMMAPS 6
LM 51.25 0.7323 0.11260 0.10558 0.10531 0.09035

GLM 49.96 0.7039 0.09786 0.09513 0.09513 0.08381
MARS 50.67 0.7446 0.10311 0.10230 0.10041 0.08796

Polymars 43.81 0.5899 0.08187 0.08187 0.08187 0.08020

NMMAPS 149
LM 44.68 0.6842 0.08683 0.08683 0.08649 0.07765

GLM 41.84 0.6254 0.08587 0.08587 0.08561 0.07715
MARS 42.40 0.6788 0.08059 0.08059 0.07947 0.07103

Polymars 43.18 1.2470 0.08581 0.08581 0.08407 0.07152

NMMAPS 912
LM 46.54 0.687 0.08622 0.08502 0.08215 0.06506

Polymars 49.70 0.758 0.08257 0.08203 0.07988 0.07485

NMMAPS 948
LM 46.17 0.6722 0.08315 0.08315 0.08130 0.06721

Polymars 49.73 0.7593 0.08330 0.08276 0.08061 0.07494

gs2 NMMAPS 6
LM 56.09 0.7140 0.08196 0.08196 0.08196 0.07792

GLM 56.54 0.6981 0.08037 0.08037 0.08037 0.07896
MARS 54.69 0.7860 0.08054 0.08054 0.08054 0.07482

Polymars 50.15 0.7613 0.08043 0.08043 0.08043 0.07513

gs2 NMMAPS 912
LM 45.94 0.7356 0.08736 0.08690 0.08586 0.07199

Polymars 50.04 0.8738 0.08231 0.08168 0.08168 0.07937

gs2 NMMAPS 948
LM 45.73 0.6992 0.08746 0.08670 0.08501 0.07731

Polymars 50.05 0.8751 0.08222 0.08158 0.08158 0.07919

99



Semiparametric Regression As Applied to Air Pollution Research

Table B.4. Goodness-of-fit for E[Y −τA|X] for b*
iτ for New York data. τ = 0.033. MSE and ACF

are averaged over 20 random splits; empirical SD is from the 20 splits.

MSE EMP SD ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 105.19 5.790 0.3373 0.3044 0.2719 0.11882
GLM 108.26 5.577 0.4047 0.3746 0.3338 0.10057

MARS 103.69 5.646 0.2922 0.2659 0.2383 0.08810
Polymars 88.01 5.290 0.1192 0.1163 0.1075 0.09538

NMMAPS 155
LM 92.00 5.227 0.1105 0.1082 0.10820 0.09195

GLM 84.91 4.186 0.1090 0.1083 0.10831 0.09262
MARS 93.97 5.404 0.1053 0.0964 0.09296 0.07416

Polymars 98.83 6.555 0.2107 0.1677 0.13768 0.06998

NMMAPS 6
LM 104.97 5.624 0.3339 0.3026 0.2748 0.11869

GLM 107.65 5.435 0.4020 0.3723 0.3370 0.10072
MARS 103.37 5.208 0.2925 0.2655 0.2408 0.08860

Polymars 87.68 5.014 0.1183 0.1152 0.1084 0.09277

NMMAPS 149
LM 92.08 5.171 0.11117 0.10959 0.10959 0.09161

GLM 84.80 4.131 0.11198 0.11141 0.11141 0.09106
MARS 93.65 5.173 0.09846 0.09363 0.09184 0.06907

Polymars 98.13 6.028 0.20544 0.16525 0.13698 0.06939

NMMAPS 912
LM 469.4 225.84 0.1531 0.1341 0.1331 0.1128

Polymars 305.4 31.13 0.5602 0.4831 0.4368 0.1084

NMMAPS 948
LM 503.3 195.66 0.1572 0.1366 0.1356 0.1078

Polymars 305.4 31.13 0.5602 0.4831 0.4368 0.1084

gs2 NMMAPS 6
LM 119.2 5.935 0.3658 0.3028 0.2935 0.12342

GLM 125.5 5.862 0.4286 0.3681 0.3479 0.11543
MARS 117.2 5.362 0.3106 0.2569 0.2495 0.09387

Polymars 108.0 5.595 0.1741 0.1323 0.1320 0.09788

gs2 NMMAPS 912
LM 525.5 897.26 0.1533 0.1132 0.1095 0.08393

Polymars 256.3 15.90 0.5511 0.4588 0.4155 0.10760

gs2 NMMAPS 948
LM 571.11 019.29 0.1555 0.1142 0.1108 0.08189

Polymars 256.3 15.90 0.5511 0.4588 0.4155 0.10760
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Table B.5. Goodness-of-fit for E[A|X] for p*
iτ for Chicago data. MSE and ACF are averaged over

20 random splits; empirical SD is from the 20 splits.

MSE EMP SD ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 300.9 9.719 0.2895 0.1024 0.10243 0.10243
MARS 287.0 9.459 0.2656 0.1007 0.09878 0.09410

Polymars 283.2 9.412 0.2645 0.1052 0.10251 0.09622

NMMAPS 155
LM 260.4 7.914 0.2113 0.1012 0.09378 0.09378

MARS 252.0 6.514 0.1446 0.1001 0.09892 0.09888
Polymars 262.6 10.596 0.2143 0.1001 0.09905 0.09525

NMMAPS 6
LM 309.9 9.445 0.2979 0.0907 0.09029 0.09029

MARS 295.4 9.320 0.2736 0.1012 0.09934 0.08070
Polymars 288.8 10.673 0.2694 0.1064 0.10114 0.08590

NMMAPS 149
LM 269.5 7.659 0.2197 0.10597 0.08380 0.07983

MARS 261.3 6.128 0.1567 0.09490 0.09377 0.09196
Polymars 265.9 10.203 0.2022 0.09646 0.09307 0.08803

NMMAPS 912
LM 303.5 7.393 0.2147 0.1026 0.08906 0.08449

Polymars 292.2 42.846 0.2960 0.0920 0.09074 0.08135

NMMAPS 948
LM 300.6 6.62 0.2236 0.10205 0.08587 0.07925

Polymars 285.4 26.16 0.2833 0.09502 0.09379 0.08390

gs2 NMMAPS 6
LM 322.6 9.663 0.3468 0.1435 0.1435 0.1187

MARS 314.6 8.252 0.3325 0.1603 0.1603 0.1256
Polymars 313.5 8.909 0.3284 0.1568 0.1568 0.1198

gs2 NMMAPS 912
LM 323.6 8.10 0.2291 0.10333 0.08873 0.08221

Polymars 293.4 16.32 0.2112 0.09726 0.09542 0.08550

gs2 NMMAPS 948
LM 322.2 7.486 0.2269 0.1018 0.08868 0.08180

Polymars 291.3 16.758 0.2150 0.0960 0.09320 0.08488
GPS 281.2 7.520 0.2279 0.1082 0.08701 0.08232
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Table B.6. Goodness-of-fit for E[A|X] for p*
iτ for New York data. MSE and ACF are averaged over

20 random splits; empirical SD is from the 20 splits.

MSE EMP SD ACF (>1) ACF (>10) ACF (>50) ACF (>250)
NMMAPS 7

LM 128.7 10.84 0.13642 0.13642 0.10938 0.06493
MARS 114.9 10.45 0.09868 0.09868 0.08961 0.06115

Polymars 112.1 10.59 0.09729 0.09723 0.07989 0.06153

NMMAPS 155
LM 107.4 9.938 0.10389 0.10192 0.09736 0.06528

MARS 106.0 8.216 0.09881 0.09754 0.09698 0.06594
Polymars 123.4 31.547 0.09554 0.09554 0.09416 0.06854

NMMAPS 6
LM 131.2 10.52 0.1514 0.1514 0.12905 0.06535

MARS 118.4 10.84 0.1199 0.1199 0.09414 0.06140
Polymars 114.5 10.69 0.1107 0.1107 0.09337 0.05764

NMMAPS 149
LM 110.7 9.426 0.1174 0.1145 0.09963 0.06519

MARS 108.6 8.346 0.1027 0.1027 0.09999 0.06756
Polymars 121.2 14.265 0.1067 0.1067 0.10060 0.06662

NMMAPS 912
LM 1054.2 671.0 0.1901 0.1507 0.1486 0.12952

Polymars 161.7 116.0 0.1071 0.1066 0.1056 0.07964

NMMAPS 948
LM 1016.7 605.53 0.1840 0.1502 0.14929 0.1266

Polymars 134.8 52.35 0.1070 0.1053 0.09971 0.0758

gs2 NMMAPS 6
LM 139.2 11.11 0.2318 0.2030 0.2030 0.07846

MARS 137.6 10.36 0.2137 0.1872 0.1872 0.07466
Polymars 137.7 10.65 0.2140 0.1913 0.1913 0.07584

gs2 NMMAPS 912
LM 964.4 1749.48 0.1356 0.1163 0.1112 0.08204

Polymars 125.8 23.45 0.1023 0.1018 0.1007 0.07070

gs2 NMMAPS 948
LM 815.4 1260.85 0.1351 0.1125 0.10837 0.08332

Polymars 126.1 23.73 0.1014 0.1006 0.09855 0.06844
GPS 105.1 8.67 0.1049 0.1049 0.10249 0.06637
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APPENDIX C. EFFICIENCY OF SAMPLE SPLITTING

To better understand how sample splitting affects the variance of the first-order estimators, we
conducted a simulation study with a data generating process designed to yield data with some
of the characteristics of actual NMMAPS data from New York (in which only about 2000 cases
have complete data). These simulations have about 15,000 data points.

In NMMAPS, the continuous covariates are the average daily temperature X1, average dew-
point temperature X2, adjusted lagged versions of these variables (X3 and X4), and time. Time
was not simulated. X1 and X2 exhibit some periodicity in time and are not uncorrelated. X3 and
X4 do not exhibit such periodicity. In order to capture some of this structure in the simulations,
the following modified simulation method was adopted for these variables. First, a low-pass
convolution filter (uniform, length 25) was applied to each of these variables to get a “signal” and
residuals:

X1si =
1
25

i+12∑
j=i−12

X1j,

X1ri =X1i−X1si, i= 1, . . . ,N,

X2si =
1
25

i+12∑
j=i−12

X2j, and

X2ri =X2i−X2si, i= 1, . . . ,N.

The residuals X1ri, and X2ri from this filter were used as inputs to the following copula-type
method in place of X1i, and X2i, respectively.

A single simulated data set was obtained as follows. A copula-type, or semiparametric boot-
strap, method was used to approximate the observed distribution of covariates. In particular,
suppose Xcont is the n×p matrix of observed input covariates (either the continuous covariates
or their residuals), and let Σ be the empirical covariance matrix from these covariates. Let Σ1/2

be a symmetric matrix (the Cholesky factorization matrix; Lawson and Hanson, 1974) satisfying
Σ1/2Σ1/2 =Σ. Write Σ−1/2 for a generalized inverse of Σ1/2. Let X̃=Σ−1/2Xcont, and suppose ˜̃X is an
n×p matrix in which the j-th column is a simple random sample from the j-th column of X̃. The
simulated continuous covariates equal X† =Σ1/2 ˜̃X. This method has the following properties: (1)
the marginal distribution of the j-th column of X† equals the empirical distribution of the j-th
column of Xcont, and (2) the covariance of X† approximately equals Σ, the empirical covariance
of Xcont. The simulated covariates, Xsim, are created by adding the discrete covariates to X†.

After simulation using the copula-type method, the filtered process was added back to the
corresponding variables. The discrete covariates added were day-of-week and age category (with
no resampling). Thus the simulated covariates were:

Xsim,1i =X†
1i+X1si,

Xsim,2i =X†
2i+X2si,

Xsim,3i =X†
3i,

Xsim,4i =X†
4i,

Xsim,5i =DOWi, and
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Xsim,6i =AgeCati.

Next, A|X was simulated from a Poisson distribution with mean exp(ζ̂TX̄sim,5), where X̄sim,5 =
(1,Xsim,1i, Xsim,2i, Xsim,3i, Xsim,4i, Xsim,5i), and ζ̂ was a preliminary estimate from the original
NMMAPS data based on Poisson regression for the loglinear model E[A|X] = exp(ζTX̄5). Call
the simulated pollution variable Asim.

Y|A,X was drawn from a Normal (µ̂, σ̂2) distribution, where µ̂ = exp
[
ξ̂Asim+ ν̂w(Xsim)

]
and

σ̂2 = exp
[
λ̂T(1,X1,X6)

]
. ξ̂ and ν̂ were estimated using a Normal family GLM with log link

with covariates A and w(X). λ̂ was estimated using the squared residuals from the Normal fit,(
Y−exp

[
ξ̂A+ ν̂w(X)

])2
, as the response in a Poisson regression with log link. Here, as noted

above, w(X) refers to the same natural spline functions of time, temperature, and dew-point tem-
perature with the same degrees of freedom as used in NMMAPS. [Although we drop the subscript
i from wi in the interest of brevity, it is important to note that w represents a different function at
each data point i because i indexes time and w() is a function of time.]

We note that the ξ̂ estimated as above is the “true” τ for the simulations. This corresponds
to the smooth case where there is no misspecification for the mean of Y|A,X. The estimate we
obtained for ξ̂ (and hence the true τ) was 0.0544873 for New York.

The simulated data were fit using the same covariates that were used in the NMMAPS analysis.
We recall here that these included natural spline functions with 12 df for temperature, 6 df for
dew-point temperature, 98 df for time, categorical variables day-of-week and age category, as well
as 30 df for interactions between the spline functions and the age category. In all, we used 155
df in the fit.

At the time of this analysis, the optimal (linear) model for p∗
iτ had not yet been determined.

Hence this analysis was conducted using a loglinear model for suitably scaled and shifted PM10

values to ensure positivity. We expect that the conclusions would not qualitatively change by
much were the analysis redone with the final linear model chosen for p∗

iτ.

The data were fit using five different methods all based on the loglinear model.

Poisson Regression and Outcome Regression This method was a standard Poisson regression where
both b and τ were estimated from the full dataset. Let wi be the function that transforms the 6
NMMAPS variables Xi as described earlier in the report. Note that, since the models we used
were not finalized at the time these simulations were run, the covariates included day of week
for these runs for a total of 155 covariates. Thus wi(·), though conceptually similar to the wi(·) in
the rest of the report (which produces 149 covariates), represents a slightly different function in
this appendix. Recall that

Wi =wi(Xi),

εi(τ,b) =Yi−eτAib(Xi),

bi(η)(·) = eγTwi(·),

Ûfull [τ,b(η)
]=N−1 N∑

i=1
εi

[
τ,bi(η)

]
(AiWi)

T, and

(τ̂, γ̂) solves Ûfull [τ,b(η)
]= 0.
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This procedure was implemented via an equivalent profile approach, in which

Ûfull
nuis

[
τ,b(η)

]=N−1 N∑
i=1

εi
[
τ,bi(η)

]
Wi = 0,

η̂(τ) solves Ûfull
nuis

[
τ,b(η)

]= 0,

b̂fulliτ (Xi) = eη̂(τ)TWi ,

Ûfull
profile(τ) =N−1 N∑

i=1
εi

(
τ, b̂fulliτ

)
Ai, and

τ̂ solves Ûfull(τ) = 0.

First-Order Efficient Influence Function on the Full Dataset This method used the empirical efficient
influence function as the estimating equation. Estimation of both nuisance parameters b, and p
as well as τ was based on the entire dataset. The nuisance parameters were estimated based on
the models

b∗iτ(Xi) =
Ei[Yi|Xi]
Ei[eτAi |Xi]

, and

p∗
iτ(Xi) =

Ei[eτAiAi|Xi]
Ei[eτAi |Xi]

.

Let

η̂(τ) solve N−1 N∑
i=1

εi
(
τ,bi(η̂)

)
Wi = 0, and

α̂(τ) solve N−1 N∑
i=1

(
eα̂

TWi −Ai

)
eτAiWi = 0.

Define

b̂iτ(Xi) = bi
[
Xi; η̂(τ)

]
, and

p̂iτ(Xi) = eα̂(τ)Twi(Xi).

Note that p̂iτ(·) as defined here differs from previous definitions of τ in that a loglinear representa-
tion is used rather than a linear representation, as explained above. τ is estimated as the solution
to

ÎF
full
1,eff(τ) =N−1 N∑

i=1
IF1,eff,i(τ, b̂iτ, p̂iτ) =N−1 N∑

i=1
εi(τ, b̂iτ)∆i(p̂iτ) = 0.

Note that, since the model for p is not linear in these simulations, the solution to ÎF
full
1,eff(τ) = 0 is

not algebraically the same as the solution to Ûfull
profile(τ) = 0.

First-Order Efficient Influence Function on 2 Splits Swapped This method uses the empirical efficient
influence function. However, the nuisance parameters are estimated from one half of the data
and the estimating equation for τ is based on the other half; then the halves are reversed; finally,
the estimating equations so obtained are combined.
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Following the notation in the rest of the report, we let n=N/2, and use superscripts (0) and (1)

to denote the two halves of the data. Let split(0) and split(1) denote the indices (disjoint subsets
of {1, . . . ,N }) for the two halves of the data in the split. For l= 0,1, let

η̂(l)(τ) solve n−1 ∑
i∈split(l)

εi

[
τ,bi

{
η̂(l)(τ)

}]
Wi = 0, and

α̂(l)(τ) solve n−1 ∑
i∈split(l)

(
eα̂

(l)(τ)TWi −Ai

)
eτAiWi = 0.

Define

b̂(l)
iτ (Xi) = eη̂

(l)(τ)wi(Xi),

p̂(l)
iτ (Xi) = eα̂

(l)(τ)wi(Xi), and

ÎF
split
1,eff (τ) =n−1

{ ∑
i∈split(1)

IF1,eff,i

(
τ, b̂(0)

iτ , p̂(0)
iτ

)
+ ∑
i∈split(0)

IF1,eff,i

(
τ, b̂(1)

iτ , p̂(1)
iτ

)}
.

Finally, τ is estimated as the solution to the estimating equation

ÎF
split
1,eff (τ) = 0.

First-Order Efficient Influence Function on 10 Random Splits of the Data This method is similar to the
above method based on 2 splits, swapped. Instead of just 2 splits, we generalized to Q splits (we
used Q= 10) and dropped the swapping procedure. Thus, we randomly split the data into halves
Q times.

For each split, the following procedure was adopted: One half was designated the training
sample and the other as the testing sample. The nuisance functions b and pwere estimated based
on the data for each split. Next, the estimating equation was constructed using the empirical
efficient influence function evaluated on the data in the testing sample (but with the functions b
and p as estimated from the training sample).

Finally, the Q estimating equations thus obtained (one from each of the Q splits) were added
together and solved to obtain the final estimate of τ.

First-Order Efficient Influence Function on 1 Split In order to understand the information loss when
we do not swap the training and testing samples, we also estimated τ using sample splitting
without swapping. Let b̂(l)

iτ , and p̂(l)
iτ be as for the splitting + swapping method above. Here τ is

estimated as the solution to

n−1 ∑
i∈split(1)

IF1,eff,i

(
τ, b̂(0)

iτ , p̂(0)
iτ

)
= 0.

The empirical squared biases and variances for the various methods based on 400 replicates
are reported in Appendix Table C.1.

In order to compare the effect of smoothness on the estimation procedures, a Hölder
0.6 function of X was added to the linear predictors for Y|A,X and A|X. The proce-
dure for simulating X was the same as above. The simulated A|X was Poisson with mean
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exp
[
ζ̂TX̄sim,5+h1(Xsim,1,Xsim,2)

]
, with ζ̂ as before. Note that h1 is a function of average daily

temperature and average dew-point temperature only. The function h1(Xsim,1,Xsim,2) was de-
fined as h1(Xsim,1,Xsim,2) = ϖ01 +ϖ11

[
h(Xsim,1)+h(Xsim,2)

]
, where h(x) : R → R was a Hölder 0.6

function, and ϖ01 and ϖ11 are preselected so that h1(Xsim,1,Xsim,2) is in the range (−1.5,−0.6).
These numbers were selected so that h1(Xsim,1,Xsim,2); and has roughly the same range as
ζ̂TX̄sim,5; and ϖ01 and ϖ11 do not depend on the simulated values Xsim. The simulated Y|A,X
was Normal(µ̂, σ̂2) distribution, where µ̂ = exp

[
ξ̂Asim+ ν̂w(Xsim)+h2(Xsim,1,Xsim,2)

]
. ξ̂, ν̂ and σ̂2

are as before. h2(Xsim,1,Xsim,2) was defined as h2(Xsim,1,Xsim,2) =ϖ02+ϖ12
[
h(Xsim,1)+h(

Xsim,2
)]
,

where h(X) was the same Hölder 0.6 function used for A|X and ϖ02 +ϖ12 are preselected so
h2(Xsim,1,Xsim,2) is in the range (3.2,5). These numbers were selected so that h2(Xsim,1,Xsim,2)

has a range comparable to that of ξ̂Asim+ ν̂w(Xsim).

The results from 1000 replicates are summarized in Appendix Table C.2.

Next, the smoothness for each of E[A|X] and E[Y|A,X] was decreased to to Hölder 0.1. The
method of simulation was the same as above with the exception that h(x) was now Hölder 0.1.
Empirical squared bias and variance estimates from 1000 replicates are given in Appendix Ta-
ble C.3.

We expect from theory that the bias as well as variance increase as the smoothness of the func-
tions E[A|X] and E[Y|A,X] decrease, and this is indeed observed. The method using only 1 split
essentially wastes half the data in estimating the nuisance functions. That method has high bias
and variance, nearly double that of the other methods. However, we do not lose much when we
use the “2 splits, swapped” method, compared with using the whole dataset with the empirical
efficient influence function, as indicated by the variances in the tables. By a very small margin,
the “10 random splits” method seems best among those that do split the data. Although the meth-
ods based on full data are marginally better, all of the methods (except the “1 split” method) are
roughly comparable in terms of both bias and variance.

Table C.1. Empirical squared bias and variance for various estimators from 400 simulation
replicates. b∗iτ and p∗

iτ were smooth functions in these simulations.

Estimator Empirical Squared Bias Variable

Full sample, outcome, loglinear 2.744e-06 2.749e-06
Full sample, IF1, loglinear 2.732e-06 2.739e-06
2 Splits swapped, IF1, loglinear 3.002e-06 3.009e-06
10 Random splits, IF1, loglinear 2.962e-06 2.969e-06
1 Split, IF1, loglinear 5.527e-06 5.536e-06

107



Semiparametric Regression As Applied to Air Pollution Research

Table C.2. Empirical squared bias and variance for various estimators from 400 simulation
replicates. b∗iτ and p∗

iτ were in a Hölder class with exponent βb =βp = 0.6.

Estimator Empirical Squared Bias Variable

Full sample, outcome, loglinear 5.282e-05 1.971e-05
Full sample, IF1, loglinear 5.242e-05 1.970e-05
2 Splits swapped, IF1, loglinear 5.308e-05 2.050e-05
10 Random splits, IF1, loglinear 5.314e-05 2.023e-05
1 Split, IF1, loglinear 6.045e-05 2.735e-05

Table C.3. Empirical squared bias and variance for various estimators from 400 simulation
replicates. b∗iτ and p∗

iτ were in a Hölder class with exponent βb =βp = 0.1.

Estimator Empirical Squared Bias Variable

Full sample, outcome, loglinear 0.0006147 7.892e-05
Full sample, IF1, loglinear 0.0006147 7.892e-05
2 Splits swapped, IF1, loglinear 0.0006169 8.227e-05
10 Random splits, IF1, loglinear 0.0006160 8.242e-05
1 Split, IF1, loglinear 0.0006480 1.076e-04

APPENDIX D. A
p
n-CONSISTENT ASYMPTOTICALLY UNBIASED ESTIMATOR OF τ∗ IN THE

LOGLINEAR MODEL WHEN βb+βp >D/2

We assume the loglinear regression model

logE[Y|A,X] = τA+ζ∗(X).

Let

g(x) = eζ∗(x),

ϵ=Ye−τA−g(X),

h(X) =E[A|X],

U=A−E[A|X], and

pK(x) = [p1K(x) · · ·pKK(x)]T.

pK(x) is a K×1 vector of K optimal basis functions evaluated at x. With a slight abuse of notation,
let pK also denote the matrix

pK =


pK(X1)T

pK(X2)T

...
pK(XN)T


N×K

,

and let

Q=pK[pTKpK]−1pK and M= IN×N−Q
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be the empirical projection matrices. Consider the estimation method:

η̂(τ) = argmin
η

Pn[{Yexp(−τA)−pK(X)Tη}2] or

η̂(τ) solves 0=Pn[{Yexp(−τA)−pK(X)Tη}pK(X)],

and

τ̂= argmin
τ

Pn[{Yexp(−τA)−pK(X)Tη̂(τ)}2] or

τ̂ solves 0=Pn[{Yexp(−τA)−pK(X)Tη̂(τ)}A]

We show that this estimator is
p
n-consistent using a proof similar to that in Donald and Newey

(1994).

In what follows, we use an underbar to denote empirical vectors. For example, A= [A1, . . . ,AN]T

and Yexp(−τA) = [Y1exp(−τA1), . . . ,YNexp(−τAN)]T. We make the following assumptions.

Assumption 42. Assume that, in addition to the loglinear model,

1. E[UTD(τ∗)U/N] → Ā> 0,
2. K→∞ as N→∞,
3. K/N→ 0 as N→∞,
4. Var[Ai|Xi] <∆<∞,
5. E[h2(X)Y2exp(−2τ∗A)] <∞,
6. E[U2Y2exp(−τ∗A)2|X] <∆<∞, and
7. h can be approximated at rate eh(K) and g can be approximated at rate eg(K).

Then

τ̂ solves 0=ATM
{
Yexp(−τA)

}
, so

τ̂−τ=−
(
d
dτ

ATM
{
Yexp(−τ̄A)

})−1 (
ATMYexp(−τA)

)
=−

(
d
dτ

ATM
{
Yexp(−τ̄A)

})−1 (
ATM{g+ϵ}

)
,

where τ̄ is a value of τ intermediate between τ̂ and τ∗. Note that

d
dτ

(
AT

1×NMN×N
{
Yexp(−τ̄A)

})
q×1 =

(
ATM

{
Yexp(−τ̄A)A

}
N×1

)
.

Now, say that

Yexp(−τ̄A)A

=


Y1exp(−τ̄A1)A1

...
YNexp(−τ̄AN)AN

=


Y1exp(−τ̄A1) 0 · · · 0

0 Y2exp(−τ̄A2) · · · 0
...

...
. . .

...
0 0 · · · YNexp(−τ̄AN)



A1
...
AN


=D(τ̄)A.
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So we have

τ̂−τ=−
(
ATMD(τ̄)A/n

)−1 (
ATM{g+ϵ}/N

)
.

The proof proceeds in two parts. First, we show thatATMD(τ̄)A/N P−→ Ā. The second part, showing
that

(
ATM{g+ϵ}/n

)
= OP

[
eh(K)eg(K)

]
, is identical to the proof in Donald and Newey (1994); we

present only the order of each term and refer the reader to that paper for details.

• Write

ATMD(τ̄)A/N=UTD(τ̄)U/N−UTQD(τ̄)U/N+UTMD(τ̄)h/N

+hTMD(τ̄)U/N+hTMD(τ̄)h/N.

We assume that E[UTD(τ∗)U/N] → Ā > 0. We want to show that UTD(τ̄)U/N P−→ Ā and all the
other terms in the above decomposition are oP(1). In general,

vT1Mv2/N≤ (vT1Mv1/N)1/2(vT2Mv2/N)1/2.

For the first term, note that

UT[D(τ̄)−D(τ∗)]U/N

=N−1 N∑
i=1

U2
i Yi{exp(−τ̄Ai)−exp(−τAi)}

=−N−1(τ̄−τ∗)T
n∑
i=1

U2
i YiAiexp(− ¯̄τAi)

= oP(1)×N−1 N∑
i=1

U2
i YiAiexp(− ¯̄τAi).

Since ¯̄τ
P−→ τ, ¯̄τ ∈ τ∗±δ with high probability for some small δ (where τ∗± ζ∗ = [τ∗−δ,τ∗+δ]).

Hence, exp(− ¯̄τAi) ∈
[
minexp(−{τ±δ}Ai),maxexp(−{τ∗±δ}Ai)

]
. So

N−1 N∑
i=1

U2
i YiAiexp(− ¯̄τAi)

∈
(
min
2q

N−1 N∑
i=1

U2
i YiAiexp(−{τ∗±δ}Ai),max

2q
N−1 N∑

i=1
U2
i YiAiexp(−{τ∗±δ}Ai)

)
P−→ (

minE
[
U2
i YiAiexp(−{τ∗±δ}Ai)

]
,maxE

[
U2
i YiAiexp(−{τ∗±δ}Ai)

])
=OP(1),

so

UT[D(τ̄)−D(τ∗)]U/N= oP(1)×OP(1) = oP(1).

Hence UTD(τ̄)U/N P−→ Ā. We will use the above argument repeatedly.
For the second term, note thatUTQD(τ̄)U/N−UTQD(τ)U/N= oP(1). Nowwe use the following

bound:

UTQD(β̄)U/N≤ (UTQU/N)1/2 (UTD(β̄)QD(β̄)U/N)1/2.
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Next,

UTQU/N=OP(E[UTQU]/N) =OP(E[trUTQU]/N) =OP(E[trQUUTQ]/N)

=OP(trE[QUUTQ]/N) =OP(trE[QE[UUT|X]Q]/N).

Also,

trE[QE[UUT|X]Q]/N≤∆trE[QQ]/N=∆K/N=O(KN−1) = o(1)

(sinceQ is idempotent, its trace equals its rank, which isK here). Since
[
UTD(τ)MD(τ)U/N

]1/2 =
OP(1), the entire term is oP(1).

The third term is UTMD(τ̄)h/N. As before UTMD(τ̄)h/N−UTMD(τ∗)h/N= oP(1). We have

UTMD(τ∗)h/n≤
(
UTMU/N

)1/2 (
hTD(τ∗)MD(τ∗)h/N

)1/2
.

We know that UTMU/N= oP(1) from the argument above. Next,

hTD(τ∗)MD(τ∗)h/N≤hTD(τ∗)D(τ∗)h/N,

which is OP(1) by the weak law of large numbers as long as E[h2(X)Y2exp(−2τ∗A)] <∞. Hence
the product is oP(1).

The fourth term is hTMD(τ̄)U/N. Again, first note that hTMD(τ̄)U/N−hTMD(τ∗)U/N = oP(1)

so we only need to work with the true τ∗. First note that hTMD(τ)U/n is centered:

E[hTMD(τ)U/N] =E
{
E[hTMD(τ)U/N|A,X]

}
=E

{
hTME[D(τ)|A,X]U/N

}
=E

{
hTMdiag[g(X)]U/N

}
=E

{
E[hTMdiag[g(X)]U/N|X]

}
=E

{
hTMdiag[g(X)]E[UT|X]/N

}
=E

{
hTMdiag[g(X)] ·0/N

}
= 0.

So we can use Chebychev’s inequality as in Donald and Newey (1994):

hTMD(τ)U/N= (h−pKη)TMD(τ)U/N.

So the variance is

E
{
N−2(h−pKη)TMD(τ)UUTD(τ)M(h−pKη)

}
=E

{
N−2(h−pKη)TME

[
D(τ)UUTD(τ)|X

]
M(h−pKη)

}
=E

{
N−2(h−pKη)TME

[{
(Yiexp

[
−AT

i τ
]
UiYjexp

[
−AT

j τ
]
Uj)

}
|X

]
M(h−pKη)

}
=E

{
N−2(h−pKη)TME

[
diag

{
(Y2exp [−2τA]U2)

} |X]
M(h−pKη)

}
≤∆E

{
N−2(h−pKη)TMM(h−pKη)

}
≤∆N−1e2h(K).

So UTMD(τ̄)h/N=OP
[
N−1/2eh(K)

]= oP(1).
The final term is hTMD(τ̄)h/N. Again, hTMD(τ̄)h/N−hTMD(τ∗)h/N= oP(1) and we bound

hTMD(τ∗)h/N≤
(
hTMh/N

)1/2 [
hTD(τ)MD(τ∗)h/N

]1/2
.

As before, hTMh/N = OP

[
e2h(K)

]
= oP(1) if h is in the appropriate Hölder class. Next, if

E[h2(X)Y2exp(−2τA)] <∞, then hTD(τ)MD(τ)h/N=OP(1). So this term is oP(1).
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• Next,
(
ATM

{
g+ϵ

}
/n

)
=OP

[
eh(K)eg(K)

]
. Here the proof is identical to that in Donald and Newey

(1994). We write

ATM(g+ϵ)/N= (U+h)TM(g+ϵ)/N=UTMg/N+UTMϵ/N+hTMg/N+hTMϵ/N

=UTMg/N+UTϵ/N−UTQϵ/N+hTMg/N+hTMϵ/N.

The first term is UTMg/N = OP
[
N−1/2eg(K)

]
. The term UTϵ/N is OP(N−1/2). UTQϵ/N =

OP(K1/2N−1). The term hTMg/N=OP
[
eh(K)eg(K)

]
. Finally, hTMϵ/N=OP

[
N−1/2eh(K)

]
.

Note that all of the above terms are at least OP(N−1/2) except possibly for the term
OP

[
eh(K)eg(K)

]
. Now approximation rates when optimal bases are used are

eh(K) =K−βh/d, and eg(K) =K−βg/d,

where βh and βg are the Hölder exponents of h(X) =A−E[A|X] and g(X) = E[eζ
∗(X)], respectively

(see, Theorem 8 in Chapter 6 of Lorentz, 1986, for polynomial bases and Theorem 12.8 of Schu-
maker, 1981, for splines). Hence, when βh +βg > d/2, we get a rate faster than K−1/2, and can
make K sufficiently close to N to get K−1/2 =OP(N−1/2) and still have K= o(N). Note that the rate
βh corresponds to βp and βg corresponds to βb in the rest of this report.

It is an open question whether the usual Poisson regression estimator is
p
n-consistent and

asymptotically unbiased whenever βb +βp ≥ d/2. The simulation studies in the next section
suggest it is.

APPENDIX E. PROOFS

Proof of Theorem 2. The model condition is equivalent to

E
[
{ξ(Y,A,X;τ)−E[ξ(Y,A,X;τ)|X]}{h(A,X)−E[h(A,X)|X]}

]= 0

for every h(A,X) ∈L2(P∗). For brevity, write

∆ξ(θ) = ξ [Y,A,X;τ(Pθ)]−Eθ

[
ξ
{
Y,A,X;τ(Pθ)

} |X]
, and ∆h(θ) =h(A,X)−Eθ[h(A,X)|X].

Differentiating both sides of the equation and evaluating at θ∗ gives

0= d
dθ

Eθ[∆ξ(θ) ∆h(θ)]

∣∣∣∣
θ=θ∗

= d
dθ

Eθ∗ [∆ξ(θ) ∆h(θ)]

∣∣∣∣
θ=θ∗

+ d
dθ

Eθ[∆ξ(θ∗) ∆h(θ∗)]

∣∣∣∣
θ=θ∗

= d
dθ

Eθ∗
[
∆ξ(θ) ∆h(θ∗)

]∣∣
θ=θ∗ +

d
dθ

Eθ∗
[
∆ξ(θ∗) ∆h(θ)

]∣∣
θ=θ∗

+Eθ∗ [∆ξ(θ∗) ∆h(θ∗)Sθ(Y,A,X;θ∗)]

= d
dτ

Eθ∗
{
Eθ∗ [∆ξ(θ)|A,X] ∆h(θ)

}(
dτ
dθ

)∣∣∣∣
θ=θ∗

+ Eθ∗
{
Eθ[ξ(θ∗)Sθ(Y,A|X;θ)|X] ∆h(θ)

}∣∣
θ=θ∗

− Eθ∗
{
∆ξ(θ) Eθ[h(A,X)Sθ(A|X;θ)|X]

}∣∣
θ=θ∗ +Eθ∗ [∆ξ(θ∗) ∆h(θ∗)Sθ(Y,A,X;θ∗)].
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Here, Sθ(Y,A|X;θ) and Sθ(A|X;θ) are the conditional scores

Sθ(Y,A|X;θ) = d
dθ

logf(Y,A|X;θ), and

Sθ(A|X;θ) = d
dθ

logf(A|X;θ).

Conditioning on X, we see that the second and third terms are zero. Writing

J(A,X;P∗) = d
dτ

E [∆ξ(Y,A,X;τ)|A,X]|τ=τ∗ ,

we get

dτ
dθ

∣∣∣∣
θ=θ∗

=Eθ∗
{
− Eθ∗

[
J(A,X;P∗) ∆h(θ)

]∣∣−1
θ=θ∗ ∆ξ(θ∗) ∆h(θ∗)Sθ(Y,A,X;θ∗)

}
,

whence the collection of influence functions can be written as{
− Eθ∗

[
J(A,X;P∗) ∆h(θ)

]∣∣−1
θ=θ∗ ∆ξ(θ∗) ∆h(θ∗) :h(A,X) ∈L2(P∗),

Eθ∗
[
J(A,X;P∗) ∆h(θ)

]∣∣
θ=θ∗ nonzero

}
.

To find the efficient influence function, we define

J̃(X;P∗) =Eθ∗
{
J(A,X;P∗)Var−1θ∗

[
∆ξ(θ∗)|A,X

] |X}
Eθ∗

{
Var−1θ∗

[
∆ξ(θ∗)|A,X

] |X}−1
,

and write

Var−1θ∗
(
Eθ∗

[
J(A,X;P∗) ∆h(θ)

]∣∣−1
θ=θ∗ ∆ξ(θ∗) ∆h(θ∗)

)
=Varθ∗

(
Eθ∗

[
J(A,X;P∗) ∆h(θ)

]∣∣
θ=θ∗ Var−1θ∗

[
∆ξ(θ∗) ∆h(θ∗)

]
∆ξ(θ∗) ∆h(θ∗)

)
=Varθ∗

(
Eθ∗

[(
J(A,X;P∗)− J̃(X;P∗)

)
∆h(θ)

]∣∣
θ=θ∗ Var−1θ∗

[
∆ξ(θ∗) ∆h(θ∗)

]
∆ξ(θ∗) ∆h(θ∗)

)
=Varθ∗

(
Eθ∗

[(
J(A,X;P∗)− J̃(X;P∗)

)
Var−1θ∗

(
∆ξ(θ∗)|A,X

)
∆ξ(θ∗)∆ξ(θ∗)∆h(θ)

]∣∣∣
θ=θ∗

×Var−1θ∗
[
∆ξ(θ∗) ∆h(θ∗)

]
∆ξ(θ∗) ∆h(θ∗)

)
=Varθ∗

( ∏
θ=θ∗

[{
J(A,X;P∗)− J̃(X;P∗)

}
Var−1θ∗

{
∆ξ(θ∗)|A,X

}
∆ξ(θ∗)

∣∣ ∆ξ(θ∗)∆h(θ)
])

≤Varθ∗
{[
J(A,X;P∗)− J̃(X;P∗)

]
Var−1θ∗

[
∆ξ(θ∗)|A,X

]
∆ξ(θ∗)

}
.

In the above, Πθ∗ refers to the L2(P∗) projection of its first argument onto the closure of the linear
space spanned by its second argument. Hence, the efficient influence function is[

J(A,X;P∗)− J̃(X;P∗)
]
Var−1θ∗

[
∆ξ(θ∗)|A,X

]
∆ξ(θ∗).

Proof of Corollary 3. The linear semiparametric model is a special case of the model of Theo-
rem 2 with ξ(Y,A,X;τ) =Y−τA. Here

∆ξ(Y,A,X;τ) =Y−τA−E[Y−τA|X],
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J(A,X;P∗) =p∗
τ (X)−A,

Var
[
∆ξ(Y,A,X;τ∗)|A,X

]=E({
Y−τA−b(X)

}2 |A,X
)
=σ2 under homoscedasticity, and

J̃(X;P∗) =E{
J(A,X;P∗)Var−1

[
∆ξ(Y,A,X;τ∗)|A,X

] |X}
×E{

Var−1
[
∆ξ(Y,A,X;τ∗)|A,X

] |X}−1 = 0.

The result follows directly from the formula obtained in Theorem 2.

Proof of Corollary 4. The loglinear semiparametric model is a special case of the model of The-
orem 2 with ξ(Y,A,X;τ) =Yexp (−τA). We assume Var[Y|A,X] =σ2eτ

∗A+ζ∗(X). Here

∆ξ(Y,A,X;τ) =Ye−τA−eζ∗(X)E
[
e(τ∗−τ)A|X

]
,

J(A,X;P∗) = (E[A|X]−A)eζ
∗(X),

Var
[
∆ξ(Y,A,X;τ∗)|A,X

]=Var
[
ξ(Y,A,X;τ∗)|A,X

]=Var(Ye−τ
∗A|A,X)

= e−2τ∗AVar[Y|A,X] = e−τ∗A+ζ∗(X)σ2,

J̃(X;P∗) =E[
J(A,X;P∗)Var−1

(
∆ξ(Y,A,X;τ∗)|A,X

) |X]
×E{

Var−1
[
∆ξ(Y,A,X;τ∗)|A,X

] |X}−1
=−eζ∗(X)

E
[
eτ

∗A(A−E[A|X])|X
]

E
[
eτ∗A|X] , and

J− J̃=−eζ∗(X)

A−
E

[
Aeτ

∗A|X
]

E
[
eτ∗A|X]

 .

So Theorem 2 implies the efficient influence function is

eζ
∗(X)

A−
E

[
Aeτ

∗A|X
]

E
[
e2τ∗A|X]

×eτ∗A−ζ∗(X)σ−2×e−τ∗A
{
Y−eτ∗A+ζ∗(X)

}

=σ−2
{
Y−eτ∗A+ζ∗(X)

}A−
E

[
eτ

∗AA|X
]

E
[
eτ∗A|X]

 .

Proof of Lemma 9. It is well known that τ̂, the coefficient of A in the usual linear or Poisson
regression of Y on A,W, also solves

1
N

N∑
i=1

Ui,profile

{
τ,b

[
η̂full(τ)

]}
= 0.

But

1
N

N∑
i=1

Ui,profile

{
τ,b

[
η̂full(τ)

]}
− IFfull1,eff(τ) = 1

N

N∑
i=1

εi

{
τ,bi

[
η̂full(τ)

]}
α̂full(τ)TWi

= α̂full(τ)T
[
1
N

N∑
i=1

Ui,nuis

{
τ,bi

[
η̂full(τ)

]}]
= 0

by definition of η̂full(τ). Hence τ̂ and τ̂full1,eff solve the same equation.
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Proof of Lemma 13. We give the proof for the loglinear case since the linear case is similar and
simpler.

Bias1,eff(τ;b,p) =E[{Y−eτAb(X)}{A−p(X)}]−E[{Y−eτAb∗τ (X)}{A−p∗
τ (X)}]

=E[{Y−eτAb∗τ (X)+eτAb∗τ (X)−eτAb(X)}{A−p∗
τ (X)+p∗

τ (X)−p(X)}]

−E[{Y−eτAb∗τ (X)}{A−p∗
τ (X)}]

=E[{Y−eτAb∗τ (X)}{p∗
τ (X)−p(X)}]

+E[eτA{b∗τ (X)−b(X)}{A−p∗
τ (X)}]+E[eτA{b∗τ (X)−b(X)}{p∗

τ (X)−p(X)}]

=E[q∗τ (X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}].

The last equality holds because the first and second terms are zero: the first by conditioning
on X and observing that E[Y−eτAb∗τ (X)|X] = 0, and the second since E[eτA{A−p∗

τ (X)}|X] = 0, by
Definition 5.

Proof of Lemma 18. As before, we give the proof for the loglinear case.

Bias1,new(τ;b,p,f)

=E[f(X){Y−eτAb(X)}{A−p(X)}]−E[f(X){Y−eτAb∗τ (X)}{A−p∗
τ (X)}]

=E[f(X)q∗τ (X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}]

=E[q∗τ (X)f∗(X){b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}]

+E[q∗τ (X){f(X)− f∗(X)}{b∗τ (X)−b(X)}{p∗
τ (X)−p(X)}].

The details of the proof are similar to those for Lemma 13.

Proof of Theorem 21. We focus on the loglinear case since the linear case is similar as well as
simpler. Note that ∫

Kk(x,y)g(x)dx=
k∑
l=1

γlφl(x) =∏
[g(x)|φ̄k(x)];

that is, Kk projects g(x) onto the first k components of the basis. Hence if ξ(x),ρ(x) ∈L2(µ), then∫
ξ(x1)Kk(x1,x2)ρ(x2)dx1dx2 =

∫ ∏[
ξ(x)

∣∣φ̄k(x)
]∏[

ρ(x)
∣∣φ̄k(x)

]
dx

=
∫

ξ(x)ρ(x)dx−
∫ ∏[

ξ(x)
∣∣φ̄⊥

k (x)
]∏[

ρ(x)
∣∣φ̄⊥

k (x)
]
dx.

Next note that for the kernels K=Kk or K=Kf̂,k,

E[ÎF
(k)
22 (τ;K)] =−E[ε1(τ, b̂τ)K(X1,X2)∆2(τ, b̂τ, q̂τ)]

=−E
{
E[ε1(τ, b̂τ)|X1]K(X1,X2)E[∆2(τ, b̂τ, q̂τ)|X2]

}
=−E

[
E[eτA1 |X1]

{
b∗τ (X1)− b̂τ(X1)

}
K(X1,X2)

{
p∗
τ (X2)− p̂τ(X2)

} E[eτA2 |X2]

q̂τ(X2)

]

=−E
[
q∗τ (X1)δbτ(X1)K(X1,X2)δpτ(X2)

q∗τ (X2)

q̂τ(X2)

]
.
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Similarly, for the kernel K=Kq̂,f̂,k,alt,

E[ÎF
(k)
22 (τ;K)] =−E

[
q∗τ (X1)

q̂1/2
τ (X1)

δbτ(X1)K(X1,X2)δpτ(X2)
q∗τ (X2)

q̂1/2
τ (X2)

]
.

• Proof for E[ÎF
(k)
22 (τ;Kf̂,k)]:

Note that if X1 and X2 are i.i.d. ∼ f∗, and ξ(x),ρ(x) ∈L2(µ), then for any f

Ef∗ [ξ(X1)Kf,k(X1,X2)ρ(X2)] =
∫ ∏[

ξ(x)
f∗(x)

f1/2(x)

∣∣∣φ̄k(x)

]∏[
ρ(x)

f∗(x)

f1/2(x)

∣∣∣φ̄k(x)

]
dx

=Ef∗
[
ξ(X)ρ(X)

f∗(X)

f(X)

]
−

∫ ∏[
ξ(x)

f∗(x)

f1/2(x)

∣∣∣φ̄⊥
k (x)

]∏[
ρ(x)

f∗(x)

f1/2(x)

∣∣∣φ̄⊥
k (x)

]
dx

=Ef∗
[
ξ(X)ρ(X)

]+Ef∗ [
ξ(X)ρ(X)

{
f∗(X)

f(X)
−1

}]
−

∫ ∏[
ξ(x)

f∗(x)

f1/2(x)

∣∣∣φ̄⊥
k (x)

]∏[
ρ(x)

f∗(x)

f1/2(x)

∣∣∣φ̄⊥
k (x)

]
dx.

Using this formula with ξ(x) = q∗τ (x)δb(x) and ρ(x) =pτ(x), we get

−E[ÎF
(k)
22 (τ;Kf̂,k)] =E[q∗τ (X1)δbτ(X1)Kf̂,k(X1,X2)δpτ(X2)q∗τ (X2)q̂−1τ (X2)]

=E[q∗τ (X1)δbτ(X1)Kf̂,k(X1,X2)δpτ(X2)]

+E
[
q∗τ (X1)δbτ(X1)Kf̂,k(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
=E[q∗τ (X)δbτ(X)δpτ(X)]+E

[
q∗τ (X)δbτ(X)δpτ(X)

{
f∗(X)

f̂(X)
−1

}]

−
∫ ∏[

q∗τ (x)δbτ(x)
f∗(x)

f̂1/2(x)

∣∣∣φ̄⊥
k (x)

]∏[
δpτ(x)

f∗(x)

f̂1/2(x)

∣∣∣φ̄⊥
k (x)

]
dx

+E
[
q∗τ (X1)δbτ(X1)Kf̂,k(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
.

Note that the first term equals Bias1,eff(τ; b̂τ, p̂τ), which is second order. The second and fourth
terms are third order. The term with projections is the tail term.

• Proof for E[ÎF
(k)
22 (τ;Kq̂,f̂,k,alt)]:

Note that

−E[ÎF
(k)
22 (τ;Kq̂,f̂,k,alt)] =E

[
q∗τ (X1)

q̂1/2
τ (X1)

δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)
q∗τ (X2)

q̂1/2
τ (X2)

]

=E
[
q̂1/2
τ (X1)

{
q∗τ (X1)

q̂τ(X1)
−1+1

}
δbτ(X1)Kq̂,f̂,k,alt(X1,X2)

×δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1+1

}
q̂1/2
τ (X2)

]
=E[q̂1/2

τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2
τ (X2)]

+E
[
q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}
q̂1/2
τ (X2)

]
+E

[
q̂1/2
τ (X1)

{
q∗τ (X1)

q̂τ(X1)
−1

}
δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)

]
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+E
[
q̂1/2
τ (X1)

{
q∗τ (X1)

q̂τ(X1)
−1

}
δbτ(X1)Kq̂,f̂,k,alt(X1,X2)

×δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}
q̂1/2
τ (X2)

]
.

Note that the last three terms are third or higher order. The first term is

E[q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)]

=Ef̂
[
f∗(X1)

f̂(X1)
q̂1/2
τ (X1)δbτ(X1)Kf,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)
f∗(X2)

f̂(X2)

]
=Ef̂

[
q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)
]

+Ef̂
[
q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)

{
f∗(X2)

f̂(X2)
−1

}]

+Ef̂
[{

f∗(X1)

f̂(X1)
−1

}
q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)

]

+Ef̂
[{

f∗(X1)

f̂(X1)
−1

}
q̂1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)

×δpτ(X2)q̂1/2
τ (X2)

{
f∗(X2)

f̂(X2)
−1

}]
.

Again the last three terms are third or higher order and we ignore them. The first term is

Ef̂[q̂
1/2
τ (X1)δbτ(X1)Kq̂,f̂,k,alt(X1,X2)δpτ(X2)q̂1/2

τ (X2)]

=Ef̂

∏
f̂

[
q̂1/2
τ (X)δbτ(X)

∣∣φ̄k(X)q̂1/2
τ (X)

]∏
f̂

[
δpτ(X)q̂1/2

τ (X)
∣∣φ̄k(X)q̂1/2

τ (X)
]

=Ef̂
[
q̂τ(X)δbτ(X)δpτ(X)

]
−Ef̂

∏
f̂

[
q̂1/2
τ (X)δbτ(X)

∣∣[φ̄k(X)q̂1/2
τ (X)

]⊥]∏
f̂

[
δpτ(X)q̂1/2

τ (X)
∣∣[φ̄k(X)q̂1/2

τ (X)
]⊥] .

The first term in the above is

Ef̂
[
q̂τ(X)δbτ(X)δpτ(X)

]=E[
f̂(X)

f∗(X)
q̂τ(X)δbτ(X)δpτ(X)

]
=E[

q∗τ (X)δbτ(X)δpτ(X)
]

+E[
{q̂τ(X)−q∗τ (X)}δbτ(X)δpτ(X)

]
+E

[{
f̂(X)

f∗(X)
−1

}
q̂τ(X)δbτ(X)δpτ(X)

]
.

Of these three terms, the first term is the bias of the first-order estimator, and the remaining
terms are higher order.

Summarizing the terms that arise, we have terms whose rate of convergence to 0 depends
on the differences q̂τ(X)−q∗τ (X) or q∗τ (X)/q̂τ(X)−1 and δbτ and δpτ. We call the sum of these
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terms EB(3)
q,b,p. We also have terms whose rate of convergence to 0 depends on the differences

f̂(X)/f∗(X)−1 or f∗(X)/f̂(X)−1 and δbτ and δpτ. We call the sum of these terms EB(3)
f,b,p. The

truncation term

Ef̂

∏
f̂

[
q̂1/2
τ (X)δbτ(X)

∣∣[φ̄k(X)q̂1/2
τ (X)

]⊥]∏
f̂

[
δpτ(X)q̂1/2

τ (X)
∣∣[φ̄k(X)q̂1/2

τ (X)
]⊥]

is OP(k−(βb+βp)/d).
• Proof for E[ÎF

(k)
22 (τ;Kk)]:

For any density f on the support of X, we have

−E[ÎF
(k)
22 (τ;Kk)] =E[q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)q∗τ (X2)q̂−1τ (X2)]

=E[q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)]

+E
[
q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
=

∫
f∗2(x)q∗τ (x)δbτ(x)δpτ(x)dx

+E
[
q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
−

∫ ∏[
f∗(x)q∗τ (x)δbτ(x)

∣∣φ̄⊥
k (x)

]∏[
f∗(x)δpτ(x)

∣∣φ̄⊥
k (x)

]
dx

=E[f∗(X)q∗τ (X)δbτ(X)δpτ(X)]+E
[
f∗(X)q∗τ (X)δbτ(X)δpτ(X)

{
q∗τ (X)

q̂τ(X)
−1

}]
−

∫ ∏[
f∗(x)q∗τ (x)δbτ(x)

∣∣φ̄⊥
k (x)

]∏[
f∗(x)δpτ(x)

∣∣φ̄⊥
k (x)

]
dx

=E[f̂(X)q∗τ (X)δbτ(X)δpτ(X)]

+E[{f∗(X)− f̂(X)}q∗τ (X)δbτ(X)δpτ(X)]

+E
[
q∗τ (X1)δbτ(X1)Kk(X1,X2)δpτ(X2)

{
q∗τ (X2)

q̂τ(X2)
−1

}]
−

∫ ∏[
f∗(x)q∗τ (x)δbτ(x)

∣∣φ̄⊥
k (x)

]∏[
f∗(x)δpτ(x)

∣∣φ̄⊥
k (x)

]
dx.

The first term equals Bias1,new(τ;b,p,f). The second and third terms are third order. The re-
maining term is the tail term.

Proof of Lemma 36. The proof is similar to the proof in the i.i.d. case, i.e., Lemma 18. We focus
on the loglinear case. We note that

E[IF1,new(τ;b,p,f)] = 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[fj(Xi){Yi−eτAib(Xi)}{Ai−p(Xi)}]

and

Ei[fj(Xi){Yi−eτAib(Xi)}{Ai−p(Xi)}]
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=Ei[fj(Xi){Yi−eτAib∗iτ(Xi)+eτAib∗iτ(Xi)−eτAib(Xi)}{Ai−p∗
iτ(Xi)+p∗

iτ(Xi)−p(Xi)}]

=Ei[fj(Xi){Yi−eτAib∗iτ(Xi)}{Ai−p∗
iτ(Xi)}]+Ei[fj(Xi)eτAi {b∗iτ(Xi)−b(Xi)}{Ai−p∗

iτ(Xi)}]

+Ei[fj(Xi){Yi−eτAib∗iτ(Xi)}{p∗
iτ(Xi)−p(Xi)}]+Ei[fj(Xi)eτAi {b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}]

=Ei[fj(Xi){Yi−eτAib∗iτ(Xi)}{Ai−p∗
iτ(Xi)}]+Ei[fj(Xi)q∗iτ(Xi){b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}]

since the second and third terms are zero. Hence,

Bias1,new(τ;b,p,f)

= 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[fj(Xi)q
∗
iτ(Xi){b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}]

= 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[f
∗
j (Xi)q

∗
iτ(Xi){b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}]

+ 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Ei[q
∗
iτ(Xi){fj(Xi)− f∗j (Xi)}{b∗iτ(Xi)−b(Xi)}{p∗

iτ(Xi)−p(Xi)}].

Proof of Theorem 37. Sincewe assume that the i-th and j-th observation are independent if j ∈ s(i),

E[ÎF
(k)
22 (τ)] =−1

n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Eij[εi(τ, b̂iτ)Kk(Xi,Xj)∆j(τ, b̂iτ, q̂iτ)]

=−1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Eij
[
Ei

{
εi(τ, b̂iτ)|Xi

}
Kk(Xi,Xj)Ej

{
∆j(τ, b̂jτ, q̂jτ)|Xj

}]

=−1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Eij

[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

q∗jτ(Xj)

q̂jτ(Xj)

]

=−1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Eij

[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

{q∗jτ(Xj)

q̂jτ(Xj)
−1

}]

− 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

Eij
[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

]
.

Note that for any two functions ξ,ρ ∈L2(λ),

Eij[ξ(Xi)Kk(Xi,Xj)ρ(Xj)]

=
∫
f∗i (x)ξ(x)ρ(x)f∗j (x)dx−

∫ ∏
[f∗i (x)ξ(x)|φ̄⊥

k ]
∏

[ρ(x)f∗j (x)|φ̄⊥
k ]dx

=Ei[f∗j (Xi)ξ(Xi)ρ(Xi)]−
∫ ∏

[f∗i (x)ξ(x)|φ̄⊥
k ]

∏
[ρ(x)f∗j (x)|φ̄⊥

k ]dx.

So

Eij
[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

]
=Ei[f∗j (Xi)q

∗
iτ(Xi)δbiτ(Xi)δpjτ(Xi)]

−
∫ ∏

[f∗i (x)q∗iτ(x)δbiτ(x)|φ̄⊥
k ]

∏
[f∗j (x)δbiτ(x)|φ̄⊥

k ]dx
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=Ei[f∗j (Xi)q
∗
iτ(Xi)δbiτ(Xi)δpiτ(Xi)]+Ei[f∗j (Xi)q

∗
iτ(Xi)δbiτ(Xi){δpjτ(Xi)−δpiτ(Xi)}]

−
∫ ∏

[f∗i (x)q∗iτ(x)δbiτ(x)|φ̄⊥
k ]

∏
[f∗j (x)δbiτ(x)|φ̄⊥

k ]dx.

Hence

E[ÎF
(k)
22 (τ)]+E[ÎF1,new(τ)]

= 1
n

∑
i∈split(1)

1
|s(i)|

∑
j∈s(i)

{
Ei[q

∗
iτ(Xi){f̂j(Xi)− f∗j (Xi)}δbiτ(Xi)δp

∗
iτ(Xi)]

−Eij
[
q∗iτ(Xi)δbiτ(Xi)Kk(Xi,Xj)δpjτ(Xj)

{q∗jτ(Xj)

q̂jτ(Xj)
−1

}]

−Ei
[
f∗j (Xi)q

∗
iτ(Xi)δbiτ(Xi)

{
δpjτ(Xi)−δpiτ(Xi)

}]
+

∫
Π[f∗i (x)q∗iτ(x)δbiτ(x)|φ̄⊥

k ] Π[f∗j (x)δbiτ(x)|φ̄⊥
k ]dx

}
.

Proof of Theorem 40. Define the symmetrized functions

m̂τ(Oi,Oj) =
{
IF(k)

22,ij(τ, b̂iτ, p̂jτ, q̂jτ)+ IF(k)
22,ji(τ, b̂jτ, p̂iτ, q̂iτ)

}
/2

mτ(Oi,Oj) =
{
IF(k)

22,ij(τ,b∗iτ,p∗
jτ,q∗jτ)+ IF(k)

22,ji(τ,b∗jτ,p∗
iτ,q∗iτ)

}
/2

so

ÎF
(k)
22 (τ) = 1

n

∑
i

2
|s(i)|

∑
j∈s(i);i<j

m̂τ(Oi,Oj), and

IF
(k)
22 (τ) = 1

n

∑
i

2
|s(i)|

∑
j∈s(i);i<j

mτ(Oi,Oj).

Define

σ2
b(Xi) =Ei[ε2i (τ∗,b∗iτ∗)|Xi], and

σ2
p(Xj) =Ej

[
∆2
jτ(p∗

jτ∗ ,q∗jτ∗)|Xj

]
.

Note, under the assumption that the conditional mean model holds, since Ei
[
εi

(
τ,b∗iτ

) |Xi
] =

Ej
[
∆jτ(p∗

jτ,q∗jτ)|Xj
]
= 0 when j ∈ s (i) [and thus i ∈ s(

j
)
], we have

Var
[
IF

(k)
22 (τ∗)

]
=E

[{
1
n

∑
i

2
|s(i)|

∑
j∈s(i);i<j

mτ∗(Oi,Oj)

}2]

= 4
n2E

[∑
i

1
|s(i)|

∑
j;j∈{s(i)};i<j

∑
i′

1
|s(i′)|

∑
j′;j′∈s(i′);i′<j′

mτ∗(Oi,Oj)mτ∗(Oi′ ,Oj′)

]

= 4
n2E

[∑
i

1
|s(i)|2

∑
j=j′;j∈s(i);i<j

mτ∗(Oi,Oj)
2

]

+ 1
n2E

[∑
i

1
|s(i)|2

∑
j̸=j′;j,j′∈s(i);i<min{j,j′}

mτ∗(Oi,Oj)mτ∗(Oi,Oj′)

]
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+ 1
n2E

[∑
i̸=i′

∑
j∈s(i);i<j

∑
j′∈s(i′);i′<j′

mτ∗(Oi,Oj)mτ∗(Oi′ ,Oj′)

]
,

and

Var
[
ÎF

(k)
22 (τ∗)

]
=E

[{
1
n

∑
i

2
|s(i)|

∑
j∈s(i);i<j

mτ∗(Oi,Oj)

}2]

= 4
n2E

[∑
i

1
|s(i)|

∑
j;j∈s(i);i<j

∑
i′

1
|s(i′)|

∑
j′;j′∈s(i′);i′<j′

mτ∗
(
Oi,Oj

)
mτ∗

(
Oi′ ,Oj′

)]

= 4
n2E

[∑
i

1
|s(i)|2

∑
j=j′;j∈{s(i)};i<j

mτ∗
(
Oi,Oj

)2]

+ 1
n2E

[∑
i

1
|s(i)|2

∑
j̸=j′;j,j′∈{s(i)};i<min(j,j′)

mτ∗
(
Oi,Oj

)
mτ∗

(
Oi,Oj′

)]

+ 1
n2E

[∑
i̸=i′

∑
j∈{s(i)};i<j

∑
j′∈s(i′);i′<j′

mτ∗
(
Oi,Oj

)
mτ∗

(
Oi′ ,Oj′

)]
.

Under Assumptions C1 and C2, Eij[mτ(Oi,Oj)mτ(Oi′ ,Oj′)] = 0 unless i = i′ and j = j′. Further,
Eij[εi(τ∗,b∗iτ∗)∆iτ(p∗

iτ∗ ,q∗iτ∗)∆jτ(p∗
jτ∗ ,q∗jτ∗)εj(τ

∗,b∗jτ∗)] = 0. Hence,

Var
[
IF

(k)
22 (τ∗)

]
= 4
n2

∑
i

1
|s(i)|2

∑
j;j∈s(i);i<j

Eij
[
mτ∗

(
Oi,Oj

)2]
= 1
n2

n∑
i=1

1
|s(i)|2

∑
j∈s(i)

Eij[εi
(
τ∗,b∗iτ∗

)2Kk(X∗
i ,X∗

j )2∆jτ(p∗
jτ∗ ,q∗jτ∗)2].

Hence under our assumptions we can consistently estimate Var
[
ÎF

(k)
22 (τ∗)

]
by

V̂
[
ÎF22(τ̂)

]= 1
n2

n∑
i=1

1
|s(i)|2

∑
j∈s(i)

{
IF22,ij(τ, b̂iτ, p̂jτ, q̂jτ)

}2
.

Proof of Lemma 41. Recall that

Var
[
ÎF

(k)
22 (τ∗)

]
= 1
n2

n∑
i=1

1
|s(i)|2

∑
j∈s(i)

Eij[εi(τ
∗,b∗iτ∗)2Kk(Xi,Xj)

2∆jτ(p∗
jτ∗ ,q∗jτ∗)2] {1+o(1)} .

Now defining 1
s =n−1∑n

i=1
1

|s(i)| with |s(i)| the cardinality of the set s(i) as before, we can write

Var(ÎF
(k)
22 ) = k

ns
C22

[
1+op(1)

]
,

C22 =O(1),

where

ξi =
1

|s(i)|/
1
s

, C22 =n−1 n∑
i=1

ξiri,
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ri =
1

|s(i)|k
∑
j∈s(i)

Eij[εi(τ
∗,b∗iτ∗)2Kk(Xi,Xj)

2∆jτ∗(p∗
jτ∗ ,q∗jτ∗)2].

Note that ξi =O(1). Under our assumptions,

Eij[εi
(
τ∗,b∗iτ∗

)2Kk(Xi,Xj)
2∆jτ∗(p∗

jτ∗ ,q∗jτ∗)2]

=Eij
{
Ei

[
εi

(
τ∗,b∗iτ∗

)2 |Ai,Xi
]
Kk(Xi,Xj)

2Ej
[
∆jτ∗(p∗

jτ∗ ,q∗jτ∗)2|Aj,Xj
]}

≤
∥∥∥Ei [εi (τ∗,b∗iτ∗

)2 |Ai,Xi
]∥∥∥∞Eij

[
Kk(Xi,Xj)

2]∥∥∥Ej [∆jτ∗(p∗
jτ∗ ,q∗jτ∗)2|Aj,Xj

]∥∥∥∞
=

∥∥∥Ei [εi (τ∗,b∗iτ∗
)2 |Ai,Xi

]∥∥∥∞Eij
[
Kk(Xi,Xj)

2]∥∥∥Ej [∆jτ∗(p∗
jτ∗ ,q∗jτ∗)2|Aj,Xj

]∥∥∥∞
≤ k

∥∥∥Ei [εi (τ∗,b∗iτ∗
)2 |Ai,Xi

]∥∥∥∞∥∥∥Ej [∆jτ∗(p∗
jτ∗ ,q∗jτ∗)2|Aj,Xj

]∥∥∥∞∥∥fi∥∥∞∥∥fj∥∥∞
since

Eij
[
Kk(Xi,Xj)

2]= ∫ ∫
fi (Xi)Kk(Xi,Xj)

2fj(Xj)dXidXj

≤ ∥fi∥∞ ∥fj∥∞
∫ ∫

Kk(Xi,Xj)
2dXidXj

and, for any orthonormal basis,
∫ ∫

Kk(Xi,Xj)2dXidXj = k. Thus under the assumption that all the

above infinity norms are uniformly bounded, we have that Var
[
ÎF

(k)
2,2(τ̂)

]
is O(k). In fact, one can

show that C ′
lk≤Var

[
ÎF

(k)
22 (τ̂)

]
≤C ′

uk for nonzero positive constants C ′
l and C ′

u.

Hence ri =O(1), and C22 =O(1) and the theorem holds.
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NOTATION

N Sample size

Yi Outcome; number of deaths

Ai Exposure to airborne particulate matter (PM10)

Xi Covariates, including temperature, dew point, and age category

ti Time (in days or multiples of 6 days)

Ei Expectation with respect to the distribution for the i-th subject; the data are
not assumed to be i.i.d.

τ∗ The true effect of exposure, on either the linear or log scale

ζ∗i An unknown infinite-dimensional nuisance parameter, equal to the condition-
al expected number of deaths given Ai and Xi when Ai equals 0

wi A function of time and covariates used to model ζ∗i
b∗i An unknown infinite-dimensional nuisance parameter

p∗
i An unknown infinite-dimensional nuisance parameter

τ̂1,eff Estimate of the effect of exposure based on the efficient influence function

τ̂1,new Estimate of the effect of exposure based on the density-modified influence
function

τ̂full1,eff Equal to τ̂1,eff

τ̂
split
1,eff Estimate of the effect of exposure based on the efficient influence function, but

using sample splitting

τ̂
split,(k)
2 Second-order estimate of the effect of exposure based on the second-order in-

fluence function, using sample splitting, and based on k basis functions

ÎF1,eff The first-order efficient influence function, with estimates substituted for nui-
sance parameters

ÎF1,new The density-weighted first-order influence function, with estimated nuisance
parameters and density

ÎF
full
1,eff Same as ÎF1,eff

ÎF
split
1,eff The first-order efficient influence function based on sample splitting, with es-

timated nuisance parameters

ÎF
full
1,new Same as ÎF1,new

ÎF
split
1,new The density-weighted first-order efficient influence function based on sample

splitting, with estimated nuisance parameters and density
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ÎF
split,(k)
2 The second-order influence function with estimated nuisance parameters, us-

ing sample splitting, and based on k basis functions

ÎF
split,(k)
22 Equals ÎF

split,(k)
2 − ÎF

split
1,new.

k Number of basis functions used in the second-order influence function

kmax The largest k considered

ŝek Estimated standard error of the second-order estimate τ̂
split,(k)
2 based on k basis

functions.

fi Joint density of the covariates Xi
f̂i Estimate of joint density of the covariates Xi
φl Basis functions used in calculating the second-order influence functions

Kk Kernel used in calculating the second-order influence functions

s(i) A subset of other observations corresponding to observation i, used in calcu-
lating the second-order influence functions

|s(i)| Size of the set s(i)

Xcont,i The continuous components of the covariates Xi
X5,i Age category, the only discontinuous component of the covariates Xi
Oi All observed variables for the i-th observation, equal to (Yi,Ai,Xi).

V1 Variance of τ̂split1,eff

V(k)
2 Variance of τ̂split,(k)

2 ; also denoted by V2

q∗τ A function arising in the definition of the first-order influence functions

q(x;ω) A function arising in the definition of the first-order influence function

b(x;η) A function arising in the definition of the first-order influence function

∆i(τ,p,q) A function arising in the definition of the first-order influence function, de-
fined in terms of generic functions p,q

Si(τ,α) A function arising in the definition of the first-order influence function

Ui,profile(τ,b) A function arising in the definition of the first-order influence function, de-
fined in terms of a generic function b

Ui,nuis(τ,b) A function arising in the definition of the first-order influence function, de-
fined in terms of a generic function b

Ui(τ,b) A function arising in the definition of the first-order influence function, de-
fined in terms of a generic function b

εi(τ,b) A function arising in the definition of the first-order influence function, de-
fined in terms of a generic function b

η A vector arising in the definition of the first-order influence function

split(0) A subset of the data; one subset is used as a training sample, and its comple-
ment is used as a testing sample in the split-sample estimators

split(1) A subset of the data; one subset is used as a training sample, and its comple-
ment is used as a testing sample in the split-sample estimators

V̂full
1,eff Variance of τ̂full1,eff
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V̂
split
1,eff Variance of τ̂split1,eff

DER1,eff,i
(
τ,b,p

)
Derivative of ÎFfull1,eff

H(βh,Ch) Hölder class of functions, a set of functions with at least βh > 0 derivatives

Ch Radius of the Hölder class H(βh,Ch)

βh Hölder exponent of the Hölder class H(βh,Ch)

d Dimensionality of the argument of the nuisance parameters (equal to number
of components in Xi)

Bias1,new(τ,b,p,f) Bias of IF1,new(τ;b,p,f) as an estimator of E[IF1,new(τ;b∗τ ,p∗
τ ,f)]

Bias1,eff(τ;b,p) Bias of IF1,eff(τ;b,p) as an estimator of E[IF1,eff(τ;b∗τ ,p∗
τ )]

Kf,k Density-weighted kernel used to define the density-weighted second-order in-
fluence functions

Kf,q,k,alt Alternative kernel used to define alternative second-order influence functions

L2(µ) Hilbert space of square-integrable functions with respect to the measure µ

L2(f) Hilbert space of square-integrable functions, with inner product defined by
〈g,h〉 =Ef[g(X)h(X)]

Πf Projection operator in the Hilbert space L2(f)

EB(3)
q,b,p A third-order component of the bias of the second-order influence function

EB(3)
f,b,p A third-order component of the bias of the second-order influence function

m̂(ℓ)
τ (Oi,Oj) Symmetrized function of data points i and j used to define the variance of

the second-order influence function, based on split-sample estimators of the
functions b, p, and q

mτ(Oi,Oj) Symmetrized function of data points i and j used to define the variance of the
second-order influence function, based on the true functions b∗τ , p∗

τ , and q∗τ
Eii′ Expectation with respect to the densities at observation points i and i′

id A transformation on the continuous covariates, scaling each separately to the
interval [0,1]

gs A Gram-Schmidt transformation of the continuous covariates in addition to
scaling

gs2 A Gram-Schmidt transformation of the continuous covariates after scaling and
removal of seasonality and time effects

DEFINITIONS

Donsker Conditions and Classes Consider a class of functions of observed independent and iden-
tically distributed (i.i.d.) data, and consider the problem of estimating the means of all these
functions simultaneously. The class is said to be Donsker if the estimated mean of the functions
is consistent and asymptotically normal simultaneously for all functions in the class. Such a
class is called a Donsker class of functions.
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Whether or not a class of functions satisfies the Donsker condition depends on the complexity of
the class of functions. Here, complexity is a measure of the size or “richness” of the class. Classes
that are too rich are too demanding and cannot be estimated simultaneously (i.e., will not satisfy
the Donsker conditions). For example, estimating equations in which some components belong
to Hölder classes with low exponents may be too rich to be Donsker.

Further details can be found in van der Vaart and Wellner (1996).

Gram-Schmidt Orthogonalization A procedure common in linear algebra, the Gram-Schmidt orthog-
onalization is a method of constructing an orthogonal basis for a given vector space, starting with
any basis for that vector space. Given a basis set (i.e., a minimal set of vectors whose linear com-
binations span the vector space), the orthogonalization begins by placing the first vector in the
new basis set. From the second vector on, it proceeds by identifying the component of each vec-
tor that is perpendicular to all vectors in the new basis set and adding that component to the new
basis set. After all the vectors in the original basis have been processed this way, the new basis
set is now an orthogonal basis with the same linear span as the original, possibly nonorthogonal
basis. That is, all the vectors in the new basis are perpendicular to each other.

Higher-Order Influence Function A higher-order influence function (a higher-order U-statistic) is a
generalization of an influence function to estimate problems where no first-order U-statistic can
achieve asymptotic normality. A higher-order influence function can be viewed as an adjusted
first-order influence function with an estimator of the bias of the first-order influence function
subtracted. Further details can be found in Robins, Li, et al. (2008).

Hölder Class A Hölder class is a way to specify a collection of real values for functions (of many
variables) that satisfy a specific smoothness. The smoothness is specified by a Hölder exponent
β, which is a generalization of the notion of number of derivatives; the exponent can be any
positive number. A function in a Hölder class with exponent β has at least ⌊β⌋ derivatives and
must satisfy an additional “residual smoothness” condition for the remaining fractional part of
β. For a complete definition, see Section 3.2.2.

The Hölder exponent of a class is also a measure of its complexity. Lower Hölder exponents
correspond to higher complexity (more roughness) and make estimation harder.

Influence Function Many estimators of parameters in a large class of models have the property that
they can be expressed asymptotically as the average of a function of the individual data points.
Consider an asymptotically normal estimator τ̂ of a parameter τ in a model. If there exists an IFτ

depending on the data and the true distribution satisfying
p
n(τ̂−τ) = 1p

n
∑n
i=1 IFτ(Oi)+oP(1), then

IFτ is called a first-order influence function, or simply an influence function.

For some parameters in some models there are no estimators that satisfy the above asymptotic
display. In such models, second- or higher-order influence functions need to be considered.

U-Statistic A U-statistic is a generalization of the mean that arises naturally in a number of statis-
tical contexts. Given a set of variables x1, . . . ,xn and any function f1(x), the sample mean of f1(z) is
defined by

∑n
i=1 f(xi). Given a function f2(z1,z2) of two variables rather than one, the correspond-

ing second-order U-statistic is the average of f2(xi,xj) for all pairs (xi,xj) taken from the sample
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x1, . . . ,xn. For any k≤n, a k-th order U-statistic is similarly an average of a function of k variables
over all k-tuples from the sample.

ABBREVIATIONS AND OTHER TERMS

ACF autocorrelation function

CI confidence interval

df degrees of freedom

EB estimation bias

GLM generalized linear model

GPS generalized penalized spline [regression]

gs Gram-Schmidt (orthogonalization transformation)

gs2 a variation on gs

id identity transform

i.i.d. independent and identically distributed [sample]

LLM loglinear model

LM linear model

MARS multivariate adaptive regression splines

MSE mean squared error

NMMAPS National Morbidity, Mortality, and Air Pollution Study

NPN nonparanormal (density estimator)

PM10 particulate matter ≤ 10 µm in aerodynamic diameter
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CRITIQUE
Health Review Committee

Research Report 175, New Statistical Approaches to Semiparametric Regression with 
Application to Air Pollution Research, J.M. Robins et al.

BACKGROUND

The findings of a number of epidemiologic studies of air
pollution have played a central role in setting air quality
limits aimed at protecting public health. Since the mid-
1990s, HEI has sponsored original research in this area, as
well as research and review activities focused on the ana-
lytic methods used in such studies. These efforts include
— among many others — The National Morbidity, Mor-
tality, and Air Pollution Study (NMMAPS; Samet et al.
2000), the Reanalysis of the Harvard Six Cities Study and
American Cancer Society Study of Particulate Air Pollu-
tion and Mortality (Krewski et al. 2000), and the HEI Spe-
cial Report on Revised Analyses of Time-Series Studies
(HEI 2003). In addition, HEI sponsored further analyses of
the American Cancer Society study data (Krewski et al.
2009) and several multi-city time-series studies such as
Air Pollution and Health: A European and North American
Approach (APHENA) (Katsouyanni and Samet et al. 2009);
the Public Health and Air Pollution in Asia (PAPA) studies
(2010); and the Multicity Study of Air Pollution and Mor-
tality in Latin America (ESCALA) project (Romieu et al.
2012). These studies proceeded from methodologic
advances or employed careful investigation of the impact
of different statistical methods and parameters used to
control various types of biases and confounding. Such
methodologic work has helped improve scientific under-
standing of the relationships between air pollution expo-
sure and important public health outcomes.

Time-series studies are commonly used to evaluate rela-
tionships between variations in short-term pollutant con-
centrations and acute human disease outcomes or mortality.
Because time-series methods compare counts of disease
events or deaths with pollutant concentrations on a specific

day (or another short time frame), the analyses do not need
to account for subjects’ smoking behavior or other risk fac-
tors that do not change from day to day. However, investi-
gators do need to systematically adjust the data sets to
control for weather and time-dependent phenomena that
might also acutely influence mortality. Of particular con-
cern are factors that vary over time and may be related to
pollutant concentrations yet are independently connected
to disease or mortality (such as seasonal trends). There-
fore, time-series study designs need to control for these
and other sources of variation over time when evaluating
the relationships between health outcomes and pollutant
exposures.

Efforts to optimize control for time-related trends that
influence both disease and pollutant concentrations in
time-series studies have been incorporated in many HEI-
sponsored time-series studies. The NMMAPS, APHENA,
PAPA, and ESCALA studies all empirically investigated var-
ious methods and parameters that might control various
types of time trends in the data that could confound their
results. These efforts included comparisons of the effects of
using different types of functional methods (e.g., natural
splines) and different parameters for these methods (e.g.,
number of degrees of freedom) in order to optimize control
while minimizing the loss of information in the data.

In 2003, HEI issued a Special Report on the Revised
Analyses of Time-Series Studies of Air Pollution and
Health (HEI 2003). This reanalysis was conducted because,
in May, 2002, investigators at Johns Hopkins University
discovered that part of the programming in the S-Plus sta-
tistical software, which they and many others had used to
fit generalized additive models for time-series data, was
inappropriately configured to analyze such data and may
have produced spurious results (Dominici et al. 2002).
Although the special report was largely focused on reana-
lyzing data from selected studies and from NMMAPS, a
Special Panel of the HEI Health Review Committee made a
number of recommendations for future research. They
emphasized that the effect estimates for particulate matter
(PM) that were derived from time-series data were shown,
in the reanalysis project, to be sensitive to the statistical
methods and parameters used to control long-term time
trends in the data (HEI 2003). The Panel stated, “In gen-
eral, the original PM effect estimates were more sensitive

Dr. Robins’ 3-year study, “New Statistical Approaches to Semiparametric
Regression with Application to Air Pollution Research”, began in July 2005.
Total expenditures were $686,620. The draft Investigators’ Report from Rob-
ins and colleagues was received for review in August 2010. A revised
report, received in June 2011, was accepted for publication at that time.
During the review process, the HEI Health Review Committee and the inves-
tigators had the opportunity to exchange comments and to clarify issues in
both the Investigators’ Report and the Review Committee’s Critique.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.
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to the method used to account for temporal effects than to
changing the convergence criteria. Further, … many esti-
mates of effect were more sensitive to the degree of
smoothing of temporal effects than either the use of stricter
convergence criteria or the method used to account for
temporal effects.” They also noted that “Neither the appro-
priate degree of control for time in these time-series anal-
yses nor the appropriate specification of the effects of
weather has been determined. This awareness introduces
an element of uncertainty into the time-series studies that
has not been widely appreciated previously.”

Following publication of that special report, Dr. James
Robins, of the Harvard School of Public Health, and his
colleagues submitted a preliminary application to HEI
under RFPA 04-3 Health Effects of Air Pollution. They pro-
posed to further develop and apply statistical methods to
address some of the analytic issues with time-series data
posed by the 2003 HEI Special Report. They specifically
proposed to develop user-friendly software to reanalyze
the NMMAPS data set using specially derived semipara-
metric regression models. These semiparametric models,
the team suggested, would provide better control of time-
varying confounding in time-series data than would
splines, for example, because they operate with fewer
assumptions about the form of the time trends in the data.
By comparing results from these new methods to those
from the earlier NMMAPS analyses, they reasoned that
this work would provide some reassurance if the results
were similar.

This Critique is intended to aid the sponsors of HEI and
the public by highlighting both the strengths and limita-
tions of the study and by placing the Investigators’ Report
into scientific and regulatory perspective.

SPECIFIC AIMS

The study by Robins and his colleagues included four
major specific aims:

1. To further develop statistical methods that would pro-
vide improved point estimates and confidence inter-
vals for the parameters of a semiparametric regression
model that would encode the effect of particulates
(with or without other pollutants) on mortality and
morbidity based on either time-series or cohort data;

2. To compare the new methods with standard methods
in simulated studies;

3. To develop efficient, user-friendly software to imple-
ment the new methods; and

4. To reanalyze critical data sets, both time-series and
cohort data, using the new methods and compare the
results with those from other methods based on, for
example, case–crossover, generalized linear models,
natural splines, generalized additive models, and
penalized splines.

Because of difficulties encountered during the research,
such as limits of computational resources, unanticipated
obstacles with programming, and barriers to accessing the
cohort data sets, the project ultimately focused on only
time-series studies and the NMMAPS data set (the same
data set used in the earlier investigations described above).
These restrictions and the subsequent modifications to the
work plans were discussed and approved by the Research
Committee.

COMMENTS FROM THE HEALTH REVIEW 
COMMITTEE

Reviews of the Investigators’ Report, from committee
members and selected external peers, were divergent on the
overall importance and utility of this work for epidemio-
logic analyses. Some reviewers believed that the statistical
methods developed by the investigators were complete,
and that what they presented in this report was scientifi-
cally sound even though they were unable to fully com-
plete all of the initial objectives. Other reviewers did not
see any clear advantages in using these methods over those
currently in use for time-series analyses except in a limited
number of circumstances.

The Committee commented that the investigators had
performed high-quality work in developing statistical
methods that are complex and represent a very significant
effort on their part, and that the results are technically
broadly sound. The Committee understood how the semipa-
rametric approach, as developed by Robins and colleagues,
could provide an informative alternative to commonly used
methods for time-series analyses with regard to choosing
smoothness of functions for controlling time-dependent
confounding issues such as weather, seasons, and more city-
specific time-related biases. However, the Committee noted
that these methods did not address imperfect control for
time-dependent acute risk factors other than through the
smoothness of the response functions. These include the lag
structure and duration effects of cold-wave and heat-wave
impacts on mortality. They did note that the concurrence
between the results from the current investigators’ and the
earlier NMMAPS results was reassuring.
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INVITED EDITORIAL 

The work of the Robins team, although acknowledged to
be highly innovative by the broader scientific community,
can be most easily understood by experts who are immersed
in this particular area of statistical methods development.
Therefore, the Review Committee invited Dr. Sander Green-
land, Professor of Statistics and Epidemiology at the Univer-
sity of California–Los Angeles, to write a short editorial to be
published with the report. Dr. Greenland is known for his
writings and explanations of complex statistical issues.

Dr. Greenland’s editorial, which follows this Critique, is
provided to assist the reader with understanding and inter-
preting this report and its contributions to epidemiologic
methods in air pollution research. Dr. Greenland’s views do
not necessarily reflect the opinions of the Review Committee.

The Committee did, however, agree with most of the
points that Dr. Greenland made. First, even in the largest
and best-conducted observational studies, errors in the mea-
surement of pollutant concentrations and major potential
confounding factors create uncertainty in the magnitude, if
not the direction, of estimated effects. Second, prior expert
knowledge, to the extent that it exists, can be a valuable tool
to inform the design and the interpretation of research. These
are points that apply in general to observational epidemiolo-
gy and have been made by many authors in the literature
(see, for example, Goodman and Greenland, 2007, and Gold-
man et al. 2011).

The Committee noted that HEI has funded extensive
research that has provided some of the evidence that short-
term increases in air pollutant concentrations are associated
with increased daily mortality. These efforts, now aug-
mented by Robins and his colleagues, have also demon-
strated that the magnitude of such estimated effects is
sensitive to alternative analytic approaches and to the
effects of measurement error in pollutant concentrations
and potential confounders (HEI 2003; Dominici 2004; Kat-
souyanni and Samet et al. 2009; Sarnat et al. 2010; Flanders
et al. 2011).

The Committee also agreed with Dr. Greenland that the
research team could have taken better advantage of the
extensive prior knowledge to set narrower plausible limits
on the complexity of potential time-varying confounding,
although one could argue that removing such trends from
the data before analysis would have limited the team’s
ability to fully test the response of their methods to these
time-varying confounders. However, the Committee also
noted (as did Dr. Greenland) that investigating the extent and
impact of many of these limitations was beyond the scope of

this research project. Therefore, these comments are pro-
vided as a guide for further research into and application of
these methods. Furthermore, environmental epidemiolo-
gists conduct research in a world of imperfect data, and no
analytic method will ever be able to perfectly adjust for the
shortcomings of such observational information as that
found in the NMMAPS data set and others that have been
established for large-scale air pollution and health out-
comes research.

SUMMARY AND CONCLUSIONS

Through this research project, Robins and colleagues
have successfully developed semiparametric methods for
epidemiologic investigations that are likely to produce risk
estimates that are less biased than traditional Poisson time-
series methods because they do not rely on rigid assump-
tions regarding the relationships between potentially con-
founding covariates and the outcomes of interest. These
semiparametric methods, when applied to the NMMAPS
data set used in previous investigations, produced esti-
mates of the risk of health events relative to pollutant levels
that were of similar magnitude to those obtained in HEI’s
Revised Analyses of Time-Series Studies (2003). The 95%
confidence intervals were wider for estimates calculated
using this team’s semiparametric methods because the re-
laxed assumptions about the relationships between time-
varying confounders and the health outcomes resulted in a
greater range of uncertainty. 

Overall, the Review Committee found that the semipara-
metric methods developed in this study are a promising
addition to current practices for short-term studies of
health events and air pollution levels in that they provide
a means of analysis that does not rely on some important a
priori assumptions about the data that may not be valid.
Although these methods do not address all of the poten-
tially important sources of bias or confounding that could
complicate analyses of health and air pollution data, such
as exposure measurement error, the Committee agreed
with the investigators that this research could be particu-
larly useful in studies in which the relationships between
time-varying confounders and health outcomes are not
clearly understood or are difficult to characterize. How-
ever, the Committee also agreed with Dr. Greenland’s sug-
gestion that the applicability of this team’s methods and
the precision of the estimates of risk that they produce
could be improved in practice by combining them with
some of the methods currently used in time-series analyses
to adjust for time-varying confounders when relationships
between covariates and mortality are well understood.
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INTRODUCTION 

In this research project, Robins and colleagues have rean-
alyzed the effect of PM10 (particulate matter � 10 µg in aero-
dynamic diameter) on all-cause mortality using the National
Morbidity, Mortality, and Air Pollution Study (NMMAPS)
city-specific time-series data for the 22 largest NMMAPS cities
(Health Effects Institute 2003). The authors used a new
approach based on higher-order influence-function estimators
they had developed (Robins et al. 2008). These estimators
may, under certain conditions, offer better control of bias due
to confounding by temperature and humidity than the log-
linear Poisson estimators used in earlier NMMAPS analyses.
My goal here is to describe the strengths and weaknesses of
the Investigators’ Report and what it may or may not add to
our knowledge of air pollution effects.

The methods the investigators developed use very flex-
ible data-adaptive models to estimate the regressions of
mortality and PM10 levels on covariates (e.g., temperature
and humidity); these regressions are then incorporated into
a semiparametric loglinear estimator for the effects of PM10
on all-cause mortality. The methods then use higher-order
influence-function estimators to estimate and correct for
the bias of the semiparametric estimator. We turn first to
the role played by flexible regression models.

THE IMPORTANCE OF BROAD EXPERT 
KNOWLEDGE IN MODELING

Before going into details, a few basic concepts con-
cerning modeling should be clarified. First, it is helpful to
understand what models are doing. One perspective found
in engineering is that the model is a data filter. Given a spe-
cific class of target parameters (signals) of interest, the
model’s performance is judged by how well it filters out
noise (data components conveying no useable information
about the target) and bias (spurious background signals),
while capturing signals of interest (useable information)

without introducing bias (spurious signals introduced by
the modeling process). Creating a good filter requires some
knowledge of the target. For example, a heavy rope net of
the sort used to trap larger animals is bad for collecting
something as small as insects, since those would go
through the mesh and thus not be captured. If instead our
goal was to capture and tag only large mammalian preda-
tors, a trap with a net fine enough for insects would cap-
ture many irrelevant specimens.

Similarly, a linear model, although effective for cap-
turing single-direction (strictly monotone) trends, will
capture no information about trend reversals or flat spots.
The linear model is so tightly focused on detecting linear
trend components that it would leave the impression that
reversals and flat spots do not exist. That is alright if indeed
the latter nonlinear features are negligible in contextual
terms, but otherwise it is misleading. On the other hand, a
more universal (less specific) filter will have a lower
threshold for pattern detection and thus will capture more
noise patterns; consequently (at least if its output variances
are computed correctly), the less-specific filter will leave
any true signal more blurred than would a restrictive model
more tailored to the target.

The data set being analyzed can supply some guidance
about whether a model is removing too much information
or signal (through clear lack of fit), although this is far from
foolproof. But without assistance from background knowl-
edge, typical data supply little information about the oppo-
site direction, that is, about whether the model is admitting
more noise than necessary or desirable. It is here that con-
textual (background scientific) knowledge about what is
targeted or expected may be essential for extracting data
information. When that knowledge is built into a model,
the model will discard with (or as) noise those data patterns
that contradict the knowledge. To the extent that knowl-
edge is correct, those data patterns will indeed be noise,
and the filtration can greatly increase estimation (signal
reconstruction) accuracy. To the extent the resulting model
is incorrect, however, the discarded patterns may contain
important information and their removal (filtration) can
greatly reduce estimation accuracy by introducing bias.

The second and closely related idea is that of an “expert-
consensus prior” — a set of constraints broad or relaxed
enough so that experts representing various stakeholders

This Invited Editorial was written by Dr. Sander Greenland, Departments of
Epidemiology and Statistics, University of California–Los Angeles lesdomes@
ucla.edu
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(e.g., industry, environmental groups, U.S. Environmental
Protection Agency) would all agree that they are not only
reasonable but very likely to hold in the context. As an
example, consider the shape of the curve plotting mortality
against dew-point temperature in a given city if all con-
founding were controlled (so that the curve can be taken to
depict some kind of average causal effect of dew point on
mortality in the city). I would expect that all experts would
agree that this plot of effect would be smooth, but also that
the plot would be poorly represented by most smooth
curves, such as a sinusoidal curve (repeatedly up and
down).

Experts might even agree that, for the effects of both PM10
and covariates, there is at most only one flat spot where the
mortality-effect curve reverses direction from up to down or
vice-versa (the sign of the slope changes). Nonetheless, they
would not all be sure of — let alone agree on — where that
point is, and there would be no basis for assuming the plot
is symmetric around that point. By these considerations,
we would find that most polynomial, trigonometric, and
simple smooth functions would not capture consensus
priors about how the plot should look. Indeed, some func-
tions could introduce pure artifacts like symmetry around a
minimum or maximum (e.g., simple quadratic functions) or
multiple direction reversals (e.g., simple cubic functions).

Any model used to process the data needs to be flexible
enough to not force such gross and easily false model-
based patterns (modeling artifacts) on the output; if it did,
the artifacts would be sources of bias in our estimates.
Modeling artifacts would also be sources of downward bias
in our uncertainty (variance) assessment, producing spu-
rious certainty relative to the consensus by excluding plau-
sible patterns. Thus a consensus prior that allows trend
reversal should lead us to avoid models that force strictly
increasing trends. Yet we do not want a model so flexible
that it too easily allows noise patterns (chance artifacts)
into the output, for that model would produce variances
inflated to allow for highly implausible patterns (spurious
uncertainty, relative to the consensus). Thus a consensus
prior that ruled out multiple trend reversals should lead us
to avoid models that allow multiple reversals.

GENERAL COMMENTS 

The Investigators’ Report by Robins and colleagues
answers two comparative questions. 

Comparison 1. Do the semiparametric methods devel-
oped by Robins and associates (which use very flexible
data-adaptive models for the regressions of mortality and
PM10 levels on covariates) produce qualitatively different

estimates of the effect of PM10 on mortality than the more
standard methods used by the NMMAPS investigators?
The current investigators found that the use of more flex-
ible models did not meaningfully alter any statistical con-
clusion compared with those from previous NMMAPS
analyses. 

Comparison 2. Does the use of higher-order U-statistic
(higher-order flexible [HOF]) estimators produce qualita-
tively different estimates of the effect of PM10 on mortality
than the more standard methods used by the NMMAPS
investigators? These HOF estimators correct the bias of the
flexible data adaptive GLM semiparametric estimator of
the effect of PM10 on mortality. Robins and colleagues
found that the use of HOF estimators did not meaningfully
alter any statistical conclusion. The only statistical finding
they highlighted was a suggestion of possible modest bias
in the results from the analysis of NMMAPS data for Min-
neapolis.

In any further discussion of the results of the Robins
study, it is important to recognize the following general
points. First, time-series studies of mortality find rate
ratios of 1.03–1.06 on days when PM10 is qualitatively ele-
vated. Some researchers wonder whether epidemiology is
capable of reliably detecting such small increases in risk.
This skepticism motivates interest in reanalyzing the data
using novel methods that might be better able to control for
confounding by measured factors.

Second, the analysis performed by Robins and col-
leagues does not employ consensus-prior constraints
(apart from scientifically very mild smoothness or sparsity
constraints built into their data-adaptive regression esti-
mators). This means that the methods allow such features
as multiple trend reversals for underlying relations. If such
complex features were excluded by prior consensus, the
investigators’ regressions would exhibit more uncertainty
than would be exhibited by regression models using that
consensus information. Interpretation of this added uncer-
tainty depends on the analysis results. Consider the fol-
lowing scenarios.

Scenario 1. The investigators note that the data under
study have little ability to define fine details of the function-
al forms for the regression of mortality on the covariates. For
the semiparametric portions of the models they considered,
this means that available prior consensus about these forms
could play a major role in improving estimation accuracy.
Suppose the additional features (e.g., “wiggles”) allowed by
HOF estimators (relative to the original NMMAPS ap-
proach) would have been deemed implausible by consen-
sus. Further suppose under this scenario that there is no
strong evidence to contradict the consensus. Then the small
possibility of wiggles would have contributed negligibly to
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uncertainty remaining after consensus prior information was
incorporated into a PM10 health impact analysis. This means
that the additional variability shown in the HOF approaches
would be regarded as largely spurious uncertainty relative to
the background consensus based on the original NMMAPS
approach. 

Scenario 2. Suppose that the HOF estimates had differed
to such a degree from the previous NMMAPS estimates
that sampling variability was an implausible explanation.
Since the more flexible regression models used by Robins
and colleagues included the more standard NMMAPS
models as submodels, there would have then been a clear
conflict with prior consensus and thus something to explain.
Of course, one would have to further investigate the reason
the estimates differed. For example, the difference could
reflect simple coding or derivation errors made when
deriving and implementing the HOF method. But once
such errors are ruled out or judged unlikely, the difference
could be due to the consensus being incorrect and, further-
more, could have been sufficiently incorrect that the esti-
mated rate ratio of 1.06 might be wholly attributable to
confounding that was not controlled in the original
NMMAPS analyses but was controlled in the HOF analyses.

Scenario 2 did not come to pass but, presumably, the
possibility that it might have was behind the decision to
fund the Robins study. 

THE IMPORTANCE OF THE PM10 DOSE–RESPONSE 
SHAPE FOR REGULATORY CUT-POINT ESTIMATION

In the report by Robins and colleagues, the flexibility
issue is framed entirely in terms of modeling the added
covariate function to control confounding as thoroughly as
needed. In contrast to this treatment of covariates, the
report focuses on single-parameter models for the dose–
response relation of PM10 to mortality given covariates —
namely, a loglinear or linear term added to the estimated
covariate function. 

Suppose that prior consensus holds that any PM10 dose–
response effect on mortality (within the observed ranges) is
strictly increasing. Then the restricted PM10 modeling is
not of great concern if the only target of interest is the pop-
ulation-average slope for that dose–response curve (aver-
aged over the population joint covariate distribution). This
is because a misspecified model estimates the best fit of the
same misspecified model to the entire population distribu-
tion, and the slope produced by that population fit is a
population-averaged slope (White 1993). Furthermore, in
the present setting the PM10 association with mortality is
so small that the average slopes will appear similar on both
loglinear and linear scales.

Nonetheless, restrictive PM10 modeling should be of con-
cern for policy applications for at least two reasons. First, if
pooling across cities is done via simple random-city effects
analysis, the estimated parameter will be an average across
cities of distinct city-specific parameters. Unfortunately,
the implicit weighting will not correspond to any policy-
derived goal and will have no biologic or epidemiologic
meaning. A more meaningful pooling would incorporate
features of the city-specific covariate distributions into a
meta-regression to avoid such pooling distortions (Rubin
1990; Greenland and Robins 1994).

Second, if specific PM10 cut-points will be used for reg-
ulation, the estimated PM10 level at which the magnitude
of adverse effects passes a threshold (with a given confi-
dence or probability) will be sensitive to the assumed
PM10 dose–response shape. In particular, cut-point esti-
mates are potentially quite biased if the assumed shape of
the dose–response curve cannot reasonably approximate
the actual shape, for example, if the assumed shape is log-
linear (which is equivalent to exponential) but the actual
shape is logarithmic.

Comparing the loglinear and linear analyses performed
by Robins and associates indicates that the data may pro-
vide little information to pin down fine details of the dose–
response function. This lack of data information implies
that any attempt to set cut-points for PM10 will need to take
into account dose–response uncertainty, which is not
accounted for in the results of the current investigators. It is
a potential concern, however, that a linear model repre-
sents only a somewhat intermediate dose–response curve
rather than an opposite of the exponential curve implied by
using untransformed PM10 in a loglinear model. Thus a risk
assessment suitable for informing policy might advisably
examine logarithmic curves.

A related multivariate consideration is the assumption
of additivity of the PM10 effect to the covariate effects,
which is scale-dependent. Robins and colleagues cite no
scientific basis for this restriction, and thus it is valuable
that they demonstrate that the summary statistical conclu-
sions do not appear sensitive to whether the additivity is
assumed to take place on a loglinear or linear scale (insen-
sitivity to choice of log vs. identity link function). As with
PM10 dose–response, however, a potential concern for
sensitivity analysis is that the loglinear and linear scales
cover too small a range of possibilities. 

None of the comments in this section are intended to be
critical of the research conducted by Robins and colleagues
nor of their Investigators’ Report. Their stated goal was to
compare their HOF analyses with (1) the NMMAPS analyses
that had been based on single-parameter loglinear dose–
response models (although the NMMAPS investigators
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have reported much more complex dose–response rela-
tionships in later publications), and (2) the NMMAPS
analyses that had assumed log-additivity of effects.

THE IMPORTANCE OF MEASUREMENT ERROR

The analyses by Robins and colleagues do not account for
bias and uncertainty due to measurement error, which may
be considerable for certain quantities. In addressing this
problem carefully, it is necessary to specify precisely the
target effects and, in particular, whether those are individual-
or population-level effects. For individual-level targets the
impact of measurement error is complex due to its convo-
lution with aggregation artifacts (ecological biases) that can
affect group-level data, such as the data used here (Green-
land and Robins 1994). Thus for simplicity I will proceed
as if only population-level effects are of interest. 

We can illustrate the problems raised with special cases
in which all PM10 and covariate effects are monotone
(never change direction) and measurement errors are inde-
pendent of one another and of true values. In those cases,
random measurement errors in PM10 drive its slope esti-
mate toward the null, and random measurement errors in
the covariates reduce the impact of adjusting for the covari-
ates, so that measured-covariate adjustment (no matter
how fine it is) can only partially remove confounding by
the actual covariates. When the assumptions are relaxed,
problems multiply; for example, measurement errors can
seriously distort estimates of nonlinear effect components
(driving them toward the null in the independent random
error case, but possibly creating spurious nonlinearities
when correlated errors exist). 

From these considerations I would expect that refinements
in covariate adjustment beyond the early NMMAPS analyses
(as in the HOF analyses) could have little practical impact in a
realistic PM10 risk assessment, because such an assessment
would have to account for the possibility of much larger
residual confounding left by covariate-measurement error.
This residual confounding cannot be addressed by anal-
yses using only the data and methods developed by Robins
and associates except in a very small way: There might be
nonlinear artifacts induced by measurement errors that can
be better adjusted for by the Robins methods than by the
early NMMAPS methods. Nonetheless, I would expect the
improvement from such adjustment to be an order of mag-
nitude smaller than the remaining residual confounding
that afflicts both analyses.

Even with no such artifact, measurement error is also
important when interpreting estimates of the confounding
problem and the impacts of adjustments. For example,
with independent random errors for all variables overlaid

on monotone relations, the associations among PM10, the
covariates, and the outcomes will all move (degrade) toward
the null. With the weakened covariate–PM10 and covariate–
mortality relations that result, we would observe much
smaller impacts of adjustments or adjustment refinements.
These impacts may even appear negligible under reason-
able levels of error, but the adjustments or refinements
might actually be important if they were applied to the
underlying true variables. 

Degradation due to measurement error may have contrib-
uted to the fact that Robins and colleagues did not detect
any clear impact of adjustment refinement. It should thus be
noted that Robins and his team considered measurement-
error issues in their original grant request, but the scope of
their research changed and their work concluded before
they had time to develop and implement statistical proce-
dures that, when combined with prior information on the
measurement process, would adjust for measurement error
in the exposure and in the covariates. 

Finally, one other source of error that is not so easily cap-
tured by simple error models is the errors and ambiguities
in defining the causally relevant variables. These ambigui-
ties are illustrated by the uncertainty about which lag peri-
ods (or averaging methods) would be ideal to use.

SUMMARY

Robins and colleagues have demonstrated that HOF analy-
ses can be operationalized and applied to the NMMAPS data
set, and that doing so leads to no meaningful change in the
conclusions that one could justify based on the NMMAPS da-
ta. This result may be as expected, because the NMMAPS in-
vestigators had already employed highly flexible covariate
functions and no truly large qualitative nonlinearities were
cited from earlier analyses. Nonetheless, given the small in-
crease in relative risk being reported in previous studies, ex-
ploration of the robustness of the findings to more precise
control for the confounding effects of the measured covari-
ates was a scientifically reasonable strategy. The primary sci-
entific concerns about all the results — from both the current
investigators and the early NMMAPS analyses — are more in
the realm of basic epidemiology and risk assessment, which
were not a goal of the Robins project and thus are not ad-
dressed in the Investigators’ Report: dose-response modeling
of the exposure (PM10) effect if regulatory cut-points are
needed; exposure measurement error; and validity concerns
about residual confounding from unmeasured and poorly
defined or poorly measured covariates.
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