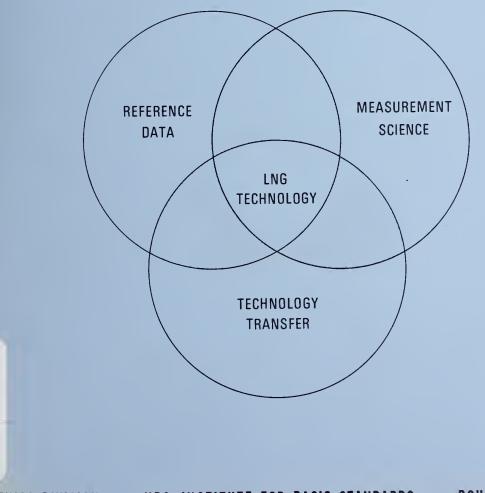


NBSIR 74-373

LIQUEFIED NATURAL GAS RESEARCH


NIST PUBLICATIONS REFERENCE

at the

NATIONAL BUREAU OF STANDARDS

PROGRESS REPORT FOR THE PERIOD 1 JAN - 30 JUNE, 1974

D. B. Mann, Editor

QC 100 -U.56 NO.74-373 1974

NBSIR 74-373

LIQUEFIED NATURAL GAS RESEARCH *at the* NATIONAL BUREAU OF STANDARDS

D. B. Mann, Editor

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

Progress Report for the Period 1 Jan - 30 June, 1974

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary

NATIONAL BUREAU OF STANDARDS. Richard W Roberts. Director

Prepared for:

American Gas Association, Incorporated 1515 Wilson Boulevard Arlington, Virginia 22209

LNG Density Project Steering Committee (in cooperation with the American Gas Association)

Pipeline Research Committee (American Gas Association)

Federal Power Commission Bureau of Natural Gas Washington, DC 20426

General Services Administration Motor Equipment Research & Technology Division Washington, DC 20406

U. S. Department of Commerce Maritime Administration Washington, DC 20235

U. S. Department of Commerce National Bureau of Standards Institute for Basic Standards Boulder, Colorado 80302

U. S. Department of Commerce National Bureau of Standards Office of Standard Reference Data Washington, DC 20234

Aerospace Safety Research and Data Institute National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

Seventeen cost centers supported by seven other agency sponsors in addition to NBS provide the basis for liquefied natural gas (LNG) research at NBS. During this six month reporting period the level of effort was at a 20 man-year level with funding expenditures of over \$500,000. This integrated progress report to be issued in January and July is designed to:

- 1) Provide all sponsoring agencies with a semi-annual and annual report on the activities of their individual programs.
- 2) Inform all sponsoring agencies on related research being conducted at the Cryogenics Division of NBS-IBS.
- 3) Provide a uniform reporting procedure which should maintain and improve communication while minimizing the time, effort and paper work at the cost center level.

The contents of this report will augment the quarterly progress meetings of some sponsors, but will not necessarily replace such meetings. Distribution of this document is limited and intended primarily for the supporting agencies. Data or other information must be considered preliminary, subject to change and unpublished; and therefore not for citation in the open literature.

Key words: Cryogenic; liquefied natural gas; measurement; methane; properties; research.

CONTENTS

			Cost Center	Page
Ε.	Re	eference Data		
	a)	Refractive Index - Fluid Methane (NBS-NRC Postdoctoral Research)	2750122	1
	b)	Fluid Transport Properties (NBS-Office of Standard Reference Data)	2750124	55
	c)	LNG Fuels Safety (NASA-Aerospace Safety and Data Institute)	2750427	7
	d)	Properties of Cryogenic Fluids: Hypersonic Velocity and Thermal Diffusivity (NBS)	2750141	9
	e)	Properties of Cryogenic Fluid Mixtures: Equilibrium Properties Data, Compi-	2750142	12
		lation and Evaluation, Prediction Methods (NBS; NBS-Office of Standard Reference Data)	and 2750145	12
	f)	Survey of Current Literature on LNG and Methane (American Gas Association, Inc.)	2750362	16
	g)	Thermophysical Properties Data for Pure Components of LNG Mixtures (American Gas Association, Inc.)	2750364	19
	h)	Densities of Liquefied Natural Gas (LNG Density Consortium of 18 energy com- panies - AGA)	2751364 and 2752364	28 28
	i)		2750430	32
	j)	Elastic Properties of Materials Intended for use in LNG Applications (NBS)	2750131	35
II.	М	easurement Science		
	a)	Heating Value of Flowing LNG (Pipeline Research Committee - AGA)	2750361	36
	b)	LNG Density Reference System (American Gas Association, Inc.)	2751361	40

Con	tents (Continued)	Cost Center	Page	
III.	Technology Transfer			
	a) LNG Technology Transfer (Maritime Administration)	2750401	43	
	b) Federal Power Commission Consultation (FPC)	2750404	49	
	c) LNG - Dual Fuel Auto (NBS; General Services Administration)	2750590	52	
IV.	Bibliography		54	

- 1. <u>Title</u>. Refractive Index of Fluid Methane <u>Principle Investigator</u>. James D. Olson
- 2. Cost Center Number. 2750122
- 3. <u>Sponsor Project Identification</u>. NBS-NRC Postdoctoral Research Associate Program.
- 4. <u>Introduction</u>. This experimental program will provide accurate measurements of the refractive index of liquid and gaseous methane. The data can be related to the fluid density by the Lorenz-Lorentz electromagnetic equation of state and, as such, offers the possibility of fluid density gauging by optical techniques. This pure fluid data is essential to the possible study of mixture refractive index properties.
- 5. Objectives or Goals. The refractive index of liquid and vapor methane will be measured along the two-phase saturation boundary. In addition, gaseous isotherms will be obtained at 220 K. 250 K, 280 K, and 300 K at pressures to 200 atm. Low pressure isotherms will be measured below the saturation boundary.
- 6. <u>Background.</u> The high precision interferometric technique used to measure the refractive index was developed in this laboratory by D. E. Diller (J. Chem. Phys. <u>49</u>, 3096 (1968)). An improved optical data gathering method was the principal modification of this technique. Prior to this reporting period, a literature survey of Lorenz-Lorentz and Clausius-Mossotti virial equation data was conducted. A cryostat was constructed using the design of Diller. The temperature measurement problems described in the previous report were eliminated after modification of the apparatus in December and January.
- 7. <u>Program and Results</u>. All of the essential measurements of the refractive index of fluid methane were completed during this reporting period. These data include the saturated liquid and vapor and the gas isotherms above the critical point. Table 1 lists the saturation data. The measurements were made at the Hg¹⁹⁸ green line, $\lambda =$ 546.22705 nm.

The refractive index data were combined with the experimental densities of Goodwin and Prydz¹ to calculate the Lorenz-Lorentz function,

LL =
$$\frac{n^2 - 1}{n^2 + 2} \frac{1}{p}$$
.

Figure 1 is a preliminary sketch of the trends exhibited by the LL function. A_r is the zero density limit of the LL function at 300 K. The saturated vapor LL data may be about 0.3%-0.5% too small because uncertainties in the vapor densities. The saturated liquid LL function decreases sharply at higher densities in contrast to the Clausius-Mossotti function previously obtained by Straty and Goodwin². The LL data for all the gas isotherms are represented within 0.05% by the fitted equation, LL = $6.6081 + (0.00679)\rho - (0.0003439)\rho^2$.

The critical refractive index, n_c , was obtained by use of the rectilinear diameter law on the saturated liquid and vapor refractive index data ($T_c = 190.555$ K). The critical refractive index was combined with an estimate of the critical LL function, indicated by the diamond on Figure 1, to calculate an estimate of critical density; $\rho_c = 10.15_5 \pm 0.01$ mole/ ℓ . The critical density uncertainty was calculated from the error bounds on LL_c in Figure 1. This is a preliminary value and differs from that currently used. Further analysis will be necessary to determine the best value for the critical density.

- 8. Problem Areas. There are no problems at this time.
- 9. Funding. January 1 June 30, 1974

Labor	0.5 MY	17.0 K\$
Other Costs		4.0 K\$
	Total	21.0 K\$
	Remaining	8.5 K\$

10. <u>Future Plans</u>. The data will be reduced and a manuscript prepared during the next two months. Some additional experimental data will be taken as well. This is an NRC-Postdoctoral Appointment which terminates near the end of September 1974 and thus, this effort will be completed prior to that time.

Schedule	July	Aug.	Sept.
Further Experiments			
Data Analysis		>	
Manuscript Preparation			

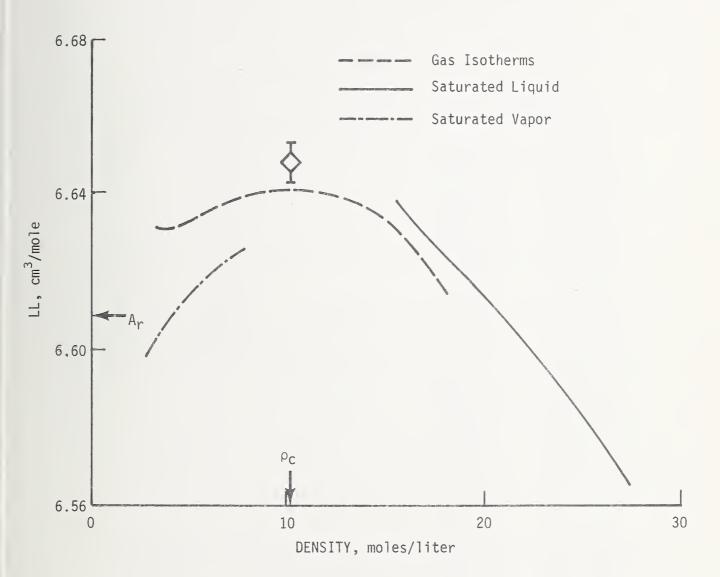


FIGURE 1. LL Function vs. Density

References.

- 1. R. D. Goodwin and R. Prydz, J. Res. NBS 76A, 81 (1972).
- 2. G. C. Straty and R. D. Goodwin, Cryogenics 13, 712 (1973).

Table 1. Refractive Index of Methane at Saturation

Saturated Liquid

Saturated Vapor

Т(К)	n	Т(К)	n
95.000	1.291925	99.290	1.00041
100.000	1.287281	114.403	1.00139
105.000	1.282518	129.865	1.00374
110.000	1.277639	139.649	1.00622
115.000	1.272646	150.000	1.01016
120.000	1.267505	160.000	1.015746
125.000	1.262206	172.386	1.026976
130.000	1.256717	176.928	1.033134
135.000	1.251031	180.000	1.038404
140.000	1.245083	182.000	1.042540
145.000	1.238853	186.000	1.053738
150.000	1.232279	190.000	1.078959
155.000	1.225270		
160.000	1.217739		
165.000	1.209538		
170.000	1.200455		
175.000	1.190055		
178.000	1.182914		
180.000	1.177615		
181.000	1.174749		
182.000	1.171708		
183.000	1.168460		
184.000	1.164957		
185.000	1.161138		
186.000	1.156889		
187.000	1.152056		
188.000	1.146359		
189.000	1.139107		
189.404	1.135383		
190.555	1.10326 ₇ *	190.555	1.103267*
	* extran	polated n	

extrapolated n

- <u>Title</u>. Fluid Transport Properties Principal Investigator. Howard J. M. Hanley
- 2. Cost Center Number. 2750124
- 3. <u>Sponsor Project Identification</u>. NBS-Office of Standard Reference Data
- 4. <u>Introduction</u>. Studies of mixtures have not received the attention or support that have been given to equivalent studies of pure fluids. This is especially true for transport properties where the mixture effort has been negligible. Yet from the standpoint of the liquefied natural gas industry mixtures are more important than pure fluids. At this time there is no adequate method in existence for predicting the transport properties of fluid mixtures even in the dilute regions. Properties cannot be measured for all possible mixtures, thus adequate predictions methods are needed in order to supply the necessary design data needed to increase efficiency and reduce costs.
- 5. Objectives or Goals. The long range or continuing goal of the program is to perform a systematic study of the theories and experimental measurements relating to transport properties, specifically the viscosity and thermal conductivity coefficients, of simple mixtures over a wide range of experimental conditions. The specific objectives of the program include: 1) the systematic correlation of the transport properties of simple binary mixtures and the development of prediction techniques, 2) development of a mixture theory for the dilute gas region and the dense gas and liquid regions, 3) extension of the theory and prediction techniques to multicomponent systems, and 4) suggested guidelines for future areas of experimental work.
- 6. <u>Background</u>. A program was started in 1965 with the goal of producing tables of fluid transport properties through many approaches; e.g., data correlation and evaluation, statistical mechanics, kinetic theory, thermodynamics and statistics. A theory was developed based on a modification of the Enskog theory. In addition, a systematic study of new potential function, the M-6-8. The theoretical studies along with data analysis results in prediction techniques for the dilute gas region for monatomic and polyatomic fluids. These techniques were then successfully extended to the dense gas and liquid regions. To date tables of transport properties have been prepared for argon, krypton, xenon, oxygen, nitrogen, fluorine and hydrogen. In addition an analytical representation of the anomalous behavior of the thermal conductivity coefficient in the "critical region"

has been developed. As a precursor to the study of fluid mixtures we have started a task to apply numerical techniques such as molecular dynamics to transport properties. To this end the Principal Investigator is in Australia gaining experience in advanced theoretical techniques. During the current reporting period a molecular dynamics model has been modified and applied to methane. The program has been run for a system of 108 methane molecules. The resulting output are, in effect, experimental data and will be compared with methane data and equations of state from the Cryogenics Division.

8. Problem Areas. There are no problem areas at this time.

9.	Funding.	January l – June S	30, 1974	
		Allocation	53.5 K\$	OSRD
		Labor	0.5 MY	20.3 K\$
		Other Costs		0.4 K\$
			Total	20.7 K\$
		Funding	g FY 75	53.5 K\$

 Future Plans. The mixture part of the program will begin after August 1974. If the methane calculations prove successful, it may be possible to make preliminary calculations on binary systems of methane with ethane and nitrogen during the next year. 1. Title. LNG Fuels Safety

Principal Investigators. Neil A. Olien and A. F. Schmidt

- 2. Cost Center Number. 2750427
- 3. <u>Sponsor Project Identification</u>. National Aeronautics and Space Administration, Cleveland, Ohio, Aerospace Safety Research and Data Institute. Order No. C-39327-C.
- 4. <u>Introduction</u>. The NASA-Aerospace Safety Research and Data Institute (ASRDI) was established to provide a focal point for information and research in aerospace safety. One of the areas of concern for ASRDI is Cryogenic Fluid Safety. In fact, this was the first area of effort for ASRDI. The thrust of the program is two-fold: first, to provide an automated information bank for retrieving references, and second, to publish series of state-of-the-art reviews. The information system is now operational and contains over 5000 references in cryogenic fluid safety. In addition, ASRDI has published approximately ten reviews.

Until this time, ASRDI has focused its attention and efforts on the two primary cryogenic propellants, hydrogen and oxygen. The oxygen work was started at NBS-Boulder in 1970 and the hydrogen work in 1972. With the coming possibility of methane or LNG fueled aircraft and the close affinity of LNG safety and cryogenic safety, ASRDI felt that it was timely to begin work in that area.

- 5. Objectives or Goals. The following objectives are to be achieved:
 - a) Review and modify an existing Cryogenic Fluids Safety Grid and thesaurus to include and adequately cover LNG safety.
 - b) Make a thorough search of over eleven information sources for LNG information. This will include published and unpublished material.
 - c) Catalog, index, abstract and put into machine readable form all available documents located in b) above. The indexing will be done by technical personnel with demonstrated competence in cryogenic safety and related fields.
- 6. <u>Background.</u> This program was started at NBS-Boulder by ASRDI in 1970. Since then considerable skill and experience has been gained in locating, processing and, most important, detailed subject indexing of safety-related information. In addition, NBS-Boulder has been

providing detailed coverage of the LNG field for the American Gas Association since early 1970. The present program, then, provides an opportunity for industry, government and the public to capitalize on the accumulated past efforts of two seemingly unrelated programs.

- 7. <u>Program and Results</u>. This NASA-funded program is not due to start until September 30, 1974, however, some preliminary work is being done on the thesaurus as well as some literature searching. We expect to locate some 400 safety-related papers which will be processed during the succeeding year. We also plan to publish, under a companion ASRDI Contract, a comprehensive thesaurus for Cryogenic Fluid Safety. This will include terminology pertinent to LNG safety.
- 8. Problem Areas. None
- 9. <u>Funding</u>. September 30, 1974 October 1, 1975 Allocation - FY 75 50 K\$ - NASA/ASRDI
- 10. <u>Future Plans</u>. We will begin processing safety-related documents in October and complete over 400 of them by October 1975. In addition, we will process carefully selected LNG/Methane/Methane Mixtures documents. Selection of these documents will be done in cooperation with other LNG projects within NBS.

1. <u>Title.</u> Properties of Cryogenic Fluids: Hypersonic (GHz) Velocity and Thermal Diffusivity Measurements

Principal Investigator. G. C. Straty

- 2. Cost Center Number. 2750141
- 3. Sponsor. NBS
- 4. <u>Introduction</u>. Laser light scattering spectroscopy techniques will be used to obtain accurate thermophysical properties data for compressed and liquefied pure methane. This work will complement related work on the thermodynamic properties of the pure components of LNG mixtures (2750364). This work will provide data for the development of LNG technology at NBS and throughout the fuel gas industry.
- 5. Objectives or Goals. The objectives of this project are to obtain accurate sound velocity and thermal diffusivity data for pure methane (90-300 K, 350 bars) by using laser light scattering spectroscopy techniques. Sound velocity data are useful for testing the consistency of volumetric, calorimetric and thermodynamic properties data, and are potentially useful for density gauging applications. Thermal diffusivity data are useful for calculating transport properties data for LNG mixtures, required for performing heat transfer calculations.
- When light is incident on a perfectly homogeneous fluid, 6. Background. the reradiated (scattered) light field sums to zero in all but the exact forward direction. For a "real" fluid however, fluctuations, arising through various mechanisms, destroy the perfect homogeneity and results in the scattering of light in other directions as well. For example, thermally activated density fluctuations (phonons), propagating with the characteristic velocity of sound, give rise to scattered light which is doppler shifted in frequency from the incident light frequency and whose spectrum contains information on the sound velocity and attenuation. Local non-propagating temperature fluctuations, which decay diffusively, give rise to scattered light in a narrow frequency band about the incident light frequency and whose spectrum contains information on the lifetime of the fluctuations (thermal diffusivity). Since the frequency shifts are generally very small, it was not until the advent of the lasers with their extremely well defined frequency, that practical experiments using these phenomena were possible.

The application of laser light scattering techniques to obtaining thermophysical properties data was initiated to complement and check other measurement methods and to solve measurement problems in inherent in more conventional methods. For example, laser light scattering techniques permit measurements of sound velocities for fluids and under conditions for which sound absorption is too large to perform ultrasonic measurements; laser light scattering techniques permit measurements of thermal diffusivities under conditions for which convection interferes with measurements of thermal conduction. The feasibility of light scattering experiments to obtain data on binary diffusion coefficients has also recently been demonstrated.

We have assembled and performance tested apparatus for laser light scattering spectroscopy measurements on compressed and liquefied gases (76-300 K, 350 bars). The apparatus consists of a copper optical cell with fused quartz windows, cryostat for refrigeration with liquid nitrogen, an argon ion laser, pressure scanned Fabry-Perot interferometer, and photon counting equipment.

- 7. Program and Results. Preliminary data on the hypersound velocities in pure methane have been obtained at low densities (< 14 mol/l) where the large sound absorption in methane prohibits ultrasonic measurements. Data have been obtained along several isotherms from 210 K to 300 K at densities down to 1 mol/l. Agreement with previously measured ultrasonic velocities in the regions of overlapping data is good. Agreement with values calculated directly from PVT data is satisfactory.
- 8. <u>Problem Areas</u>. No significant problems have been encountered. Progress on the light scattering experiment has been determined primarily by our assignment of priorities to other LNG related efforts. The program to measure the hypersound velocities in pure methane is, however, progressing satisfactorily and on schedule.

9. Funding.

Man-years expended (JanJune 1974)	0.3
Equipment and/or Services Purchased	1.4 K\$
Total Reporting Period Cost	15.0 K\$
Balance Remaining (June 30, 1974)	0.0 K\$

10. Future Plans.

	year	1974	
Schedule:	quarter	3	4
Methane:			
Measure hypersoni velocities in m			
Assemble and test a for Rayleigh lin (thermal diffus surements on r	ne-width ivity) mea-		

1. <u>Title.</u> Properties of Cryogenic Fluid Mixtures: Equilibrium Properties Data, Compilation and Evaluation, Prediction Methods

Principal Investigators. M. J. Hiza, A. J. Kidnay (part time), and R. C. Miller (part time).

- 2. Cost Center Numbers. 2750142; 2750145
- 3. Sponsors. NBS; NBS-OSRD
- 4. <u>Introduction</u>. This project provides new experimental measurements on equilibrium properties and compilations of evaluated equilibrium properties data which are suitable for direct technological use or for the evaluation of prediction and calculation methods. This project supports the development of LNG technology in the areas of separation, purification, liquefaction and custody transfer by defining relationships between the composition, temperature, pressure, and equilibrium state properties for mixtures related to LNG.
- 5. <u>Objectives or Goals</u>. The overall objective of this project is to provide critically evaluated data, original and from other sources, on the phase equilibria and thermodynamic properties of cryogenic fluid mixtures. The program has been divided into the following elements:
 - a) Preparation of a comprehensive bibliography on experimental measurements of equilibrium properties for mixtures of selected molecular species of principal interest in cryogenic technology.
 - b) Selection and/or development of methods for correlation, evaluation and prediction of equilibrium properties data.
 - c) Retrieval and evaluation of experimental data for specific mixture systems selected on the basis of theoretical and/or technological importance.
 - d) Preparation of guidelines for future research based on the deficiencies noted in (a), (b), and (c).
 - e) Performing experimental research to alleviate deficiencies and provide a basis for improvement of prediction methods.
- 6. <u>Background</u>. A physical equilibria of mixtures research project was established in the Cryogenics Division in 1959. The initial effort, based on a bibliographic search and other considerations, was directed toward the acquisition of new experimental data on the solid-vapor and liquid-vapor equilibria and physical adsorption properties for a limited number of binary and ternary mixtures of components with widely

separated critical temperatures. Most of the systems studied included one of the light hydrocarbon species -- methane, ethane, or ethylene (ethene) -- with one of the quantum gases -- helium, hydrogen, or neon. The data for these systems led to significant improvements in the predictions of physical adsorption equilibrium and a correlation for the prediction of deviations from the geometric mean rule for combining characteristic energy parameters. In addition, significant new information was obtained for interaction third virial coefficients which was used in a correlation by one of our consultants, J. M. Prausnitz. The approach taken in this work has been as fundamental as possible with the intention of having an impact on a broad range of mixture problems.

Recent efforts have been directed toward problems associated with systems containing components with overlapping liquid temperature ranges, such as the nitrogen + methane system.

Preceding this reporting period, an expanded bibliography was prepared to update NBS Technical Note 56, published in May 1960 (objective a). Experimental liquid-vapor equilibria measurements were also completed at selected temperatures on the argon + methane systems.

- 7. <u>Program and Results</u>. The recent progress of this program is summarized as follows:
 - a) A comprehensive bibliography of experimental data for ten equilibrium properties has been completed, reviewed, and revised. The final manuscript has been sent to a publisher selected by the OSRD. The bibliography includes sections on solid-liquid, solid-vapor, solid-liquid vapor, liquid-liquid, liquid-vapor, and gas-gas equilibria, as well as sections on liquid mixture densities, Joule-Thomson coefficients, and calorimetric measurements. The materials considered are hydrogen, helium-3, helium-4, deuterium, neon, carbon monoxide, nitrogen, oxygen, hydrogen sulfide, fluorine, argon, carbon dioxide, krypton, xenon, and the staurated and unsaturated hydrocarbons through the C₄'s.

Because of its importance, the section on liquid-vapor equilibria was published as a survey paper in Cryogenics 13, 575 (Oct. 1973). It is anticipated that the complete bibliography will be published and available by late summer of this year.

b) Work is currently in progress on the retrieval and evaluation of equilibria data for the methane + ethane system. Data for both argon + methane systems have been retrieved and evaluated. To

maintain this phase of the program within reasonable bounds, the only properties under study are liquid-vapor equilibria, liquid mixture densities, and gas or vapor mixture densities. This effort also requires selection of the pure vapor pressure and saturation densities. The new vapor pressure measurements of Wagner (Cryogenics <u>13</u>, 1973) for nitrogen and argon have been programmed and compared with other data sets. As expected, there are significant discrepancies between data sets for the pure fluids which must be resolved.

- c) Our most recent liquid-vapor equilibria measurements for the nitrogen + methane system between 95 and 120 K are now being extended above the critical point of nitrogen to approximately 180 K. Preparations for these experiments were started during the last week of this reporting period.
- 8. Problem Areas. The major problem that may affect progress on the evaluation of mixtures data is the lack of generally accepted, rigorous methods for critically evaluating phase equilibria data. Each binary system poses special problems of its own, and it may be necessary to tailor the techniques employed.

9. Funding.

Man-years expended (JanJune 1974)	0.6
Equipment and/or Services Purchased	3.0 K\$
Total Reporting Period Cost	38.0 K\$
Balance Remaining (June 30, 1974)	0.0 K\$

10. Future Plans.

year	197	74
Schedule: quarter	3	4
Retrieve phase equilibrium data for methane-ethane mixtures		
Select pure component ethane data	>	
Calculate excess Gibbs energies for methane-ethane mixtures		>
Compare calculated excess Gibbs energies for different sets of data		>
Compare calculated excess volume V^E for different sets of data		>
Complete phase equilibria measure- ments for the nitrogen-methane system between 120-180 K	, ,	
Analysis of nitrogen-methane data, comparisons, preparation of paper		
Prepare for new L-V equilibrium measurements on methane- ethane mixtures		>
Examine the prospects for new experiments on heats of mixing and virial coefficients of selected binary mixtures		

- <u>Title.</u> Survey of Current Literature on LNG and Methane. Principal Investigator. Neil A. Olien
- 2. Cost Center Number. 2750362
- 3. <u>Sponsor Project Identification</u>. American Gas Association Project BR 50-10.
- 4. <u>Introduction</u>. It is important that all NBS personnel working in LNG, as well as the AGA and others, keep up with what is going on throughout the world in the LNG field. This project is designed to provide the Current Awareness and other information services to allow workers to keep abreast of new research and other developments.
- 5. Objectives or Goals. We will publish and distribute each April, July, October and January a listing of all significant papers, reports and patents relating to methane and LNG properties and technology. The references will be listed under convenient subject headings. The Quarterly will be distributed to all interested AGA member companies and be made available to the general public on a subscription basis. In addition, LNG related information will be entered into the Cryogenic Data Center's Information System for quick retrieval. A continuing awareness of the current publication scene will be maintained for any new periodicals to be reviewed cover-to-cover. Finally we will update and make available comprehensive bibliographies on the properties and technology of LNG. There are three bibliographies involved: methane properties, methane mixtures properties, and processes and equipment involving methane and LNG. These three will be updated each October.
- 6. <u>Background</u>. In 1969 we made a thorough review of the world's publications to determine which periodicals and abstracting services should be scanned cover-to-cover to adequately encompass the LNG field. The result is that we now scan over 300 primary publications and nearly 30 secondary publications. Of these approximately one-third are directly related to LNG. In addition, within the past year we have increased our coverage of the energy field to include hydrogen as a future fuel. Much of this information is also pertinent to LNG and as such is listed in our LNG-related publications. Our Current Awareness Service has been published weekly since 1964 and the Liquefied Natural Gas Survey has been published quarterly since 1970.

7. <u>Program and Results</u>. Two issues of the LNG Quarterly were prepared and distributed. There are now 118 subscriptions going to AGA Member Companies and 191 to other subscribers. In September and October we updated the three bibliographies covering methane properties, methane mixtures properties and processes and equipment involving methane and LNG.

For some time we have realized that the above mentioned comprehensive bibliographies had grown to such a large size as to limit their usefulness (e.g., B-965 covering processes and equipment listed over 1500 references). With this in mind we have reviewed the individual references in each bibliography and selected those which were most useful either from the standpoint of accuracy of the data or the appropriateness of the subject matter. These are now complete and copies have been printed and are available for sale as listed below.

- B-1055 THERMOPHYSICAL PROPERTIES OF METHANE A SELECTED BIBLIOGRAPHY, 61 pp., indexed by property, phase and author (Sept. 1973) \$8.00.
- B-1056 PROPERTIES OF METHANE MIXTURES A SELECTED BIBLIOGRAPHY, 95 pp., indexed by property, system and author (Sept. 1973) \$10.00.
- B-1075 PROCESSES AND EQUIPMENT INVOLVING LIQUEFIED
 NATURAL GAS AND METHANE A SELECTED BIBLIOGRAPHY,
 52 pp., indexed by subject and author (Oct. 1973) \$5.00.

During the period January through July 1974 we have distributed 32 copies of these and the comprehensive bibliographies.

- 8. Problem Areas. We have no problem areas at this time.
- 9. Funding. January 1 June 30, 1974

Labor	7.5 K\$
Other Costs	2.1 K\$
Total	9.6 K\$
Remaining	8.0 K\$

10. Future Plans. Issue 74-2 of the LNG Quarterly was mailed to the National Technical Information Service for printing and distribution on June 19, 1974. Issue 74-3 will be published in late September or early October. The three bibliographies discussed in Item 7 above will be updated in October.

	July	Aug.	Sept.	Oct.	Nov.	Dec.	
Search of Current Literature							
Preparation of Issue 74-3							
Preparation of Issue 74-4							>

1. <u>Title</u>. THERMOPHYSICAL PROPERTIES DATA FOR PURE COMPONENTS OF LNG MIXTURES

Principal Investigators. R. D. Goodwin, G. C. Straty Cost Center Number. 2750364

3. Sponsor. American Gas Association, Project BR50-10

2.

- Introduction. This cost center will provide comprehensive accurate thermophysical properties data to support the development of LNG technology at NBS and throughout the fuel gas industry.
- 5. Objectives or Goals. The objective of our work is the determination of comprehensive accurate thermophysical properties data for the major pure components (methane, ethane, propane, butanes, and nitrogen) of liquefied natural gas mixtures at temperatures between 90 K and 300 K and at pressures up to 350 atm (5000 psi). Our goal is to provide a range and quality of data that will be recognized as definitive or standard for all foreseeable low temperature engineering calculations.

Accurate phase equilibrium, compressibility, and thermodynamic properties data are needed to design and optimize gas separation and liquefaction processes and equipment. Accurate data for the pure components of LNG mixtures will permit developing calculation methods which take into account the dependence of the thermophy sical properties on the composition.

6. <u>Background</u>. Liquefied natural gas is expected to supply an increasing percentage of the United States' energy requirements. It is likely that massive quantities of liquefied natural gas will be imported during the years 1976-1990. Ships and importation terminals are being built for transporting, storing, and vaporizing liquefied natural gas for distribution. Accurate physical and thermodynamic properties data for compressed and liquefied

natural gas mixtures are needed to support these projects. For example, accurate compressibility and thermodynamic properties data are needed to design and optimize liquefaction and transport processes; accurate data for the heating value, which for liquefied natural gas mixtures depends on the total volume, the density, and the composition, are needed to provide a basis for equitable custody transfer.

Accurate thermodynamic properties data for liquefied gas mixtures must be based on precise compressibility and calorimetric measurements; compressibility data give the dependence of thermodynamic properties on pressure and density (at fixed temperatures); calorimetric data give the dependence of thermodynamic properties on temperature (at fixed pressures and densities). It is impossible however, to perform enough compressibility and calorimetric measurements directly on multicomponent mixtures to permit accurate interpolation of the data to arbitrary compositions, temperatures and pressures. Instead, thermodynamic properties data for multicomponent mixtures usually must be predicted (extrapolated) from a limited number of measurements on the pure components and their binary mixtures.

This project was initiated to provide the natural gas industry with comprehensive accurate data for pure compressed and liquefied methane, the most abundant component in LNG mixtures. We have published National Bureau of Standards Technical Note 653, Thermophysical Properties of Methane, From 90 to 500 K at Pressures to 700 Bar, by Robert D. Goodwin, during this reporting period. This report contains the most comprehensive and

accurate tables available for the thermophysical properties of pure gaseous and liquid methane, and provides an accurate basis for calculating thermophysical properties data for LNG mixtures.

We have also published comprehensive accurate dielectric constant and Clausius-Mossotti function data for pure compressed and liquefied methane (Cryogenics <u>13</u>, 712 (1973)). This data will provide a data base for mass and density gauging.

7. Program and Results.

7.1 Ethane, Thermodynamic Properties Data -- R. D. Goodwin

We have completed a voluminous manuscript, "Provisional Values for the Thermodynamic Functions of Ethane," comparable with our report on methane in NBS Technical Note 653, "The Thermophysical Properties of Methane, From 90 to 500 K at Pressures to 700 Bar." The above ethane report covers the entire range of fluid states at temperatures from 90 to 600 K, and pressures to 700 bar. The purpose of this work has been twofold: to indicate those physical properties for which experimental data are inadequate; and to provide the AGA with useful results at an early date.

In this work on ethane we have achieved a long-sought goal, namely an equation of state for thermal computations of such simplicity that it virtually ensures a correct qualitative behavior of the $P(\rho, T)$ surface and of the important derivatives, especially about the critical point. It also gives qualitatively acceptable extrapolation to pressures at least twice those of $P-\rho-T$ data used for adjusting constants in the equation of state. A manuscript on the above unique equation of state has been

prepared for open publication. It is our hope that complex computations on LNG mixtures may be simplified by use of this equation in identical form for each pure component.

In appendices to the present report we give copies of our unpublished work on the physical properties of ethane, namely--

Appendix J	R. D. Goodwin, The Vapor Pressure of Ethane,
	Laboratory Note 73-3, July 9, 1973.
Appendix K	R. D. Goodwin, Ethane Virial Coefficients and
	Saturated Vapor Densities, Laboratory Note
	73-4, Aug. 14, 1973.
Ammondiar T	P. D. Coodwin, The Orthoparia Densities of

- Appendix L R. D. Goodwin, The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine, Laboratory Note 73-5, Sept. 18, 1973.
- Appendix M R. D. Goodwin, Liquid-Vapor Saturation Temperatures of Ethane and Methane, Laboratory Note 73-6, Nov. 28, 1973.

7.2 Ethane, Compressibility (PVT)Data -- G. C. Straty

In the gas expansion technique used in this laboratory for accurate, absolute, compressibility (PVT) determinations, the molar volume V of a cryogenic fluid contained in a cell at temperature T and pressure P is determined by expanding the fluid from the calibrated cell into large calibrated volumes maintained near room temperature (~ 295 K). Using the near-ideal-gas-like behavior of the room temperature gas, the number of moles of gas residing in the total system can be computed accurately. One of the factors limiting the accuracy of this method is the ability to assign correctly the appropriate proportions of the fluid to the cell and to the various noxious volumes elsewhere in the system.

PVT measurements on ethane present an additional problem not encountered with most cryogenic fluids such as methane, oxygen, etc., because the critical temperature of ethane (305.33 K) is well above room temperature. The consequence is that during many of the density measurements on ethane, relatively high density fluid would reside in external parts of the system which could not be accurately accounted for in the present apparatus without some modifications.

During this reporting period, appropriate portions of the apparatus have been enclosed in ovens and/or provided with heaters to maintain their temperatures well above the critical temperature of ethane. Thermometric sensors have been calibrated and installed to these various portions of the apparatus to enable the temperatures to be measured and accurate PVT data obtained. Volume calibrations of several new system components have been made. Preliminary testing of the apparatus has been performed with satisfactory results.

7.3 Methane, Sound Velocity Data -- G. C. Straty

The ultrasonic velocities of sound in pure saturated and compressed fluid methane have been measured at MHz frequencies. Data have been obtained along the saturation boundary from near the triple point to 186 K and along several isotherms from 100 K to 300 K at pressures up to about 345 bar. The sound velocity data have been combined with the previously measured PVT data to calculate the isentropic and isothermal compressibilities and the specific heat ratio C_p/C_v . Measurements along the compressed fluid isotherms at temperatures of 210 K and above were limited to a minimum density ranging from about 14 mol/ ℓ at 210 K to about 10 mol/ ℓ at 300 K due to the large sound attenuation in methane. A manuscript reporting the results of the ultrasonic sound velocity measurements on methane has been published in Cryogenics, <u>14</u>, 367 (1974), and is attached as an appendix to this report.

A newly constructed light scattering spectroscopy apparatus has been employed to obtain hypersonic (GHz) velocity data at the lower densities where measurement by ultrasonic techniques were impossible. Preliminary data have been obtained to densities as low as $1 \text{ mol}/\ell$ along several isotherms. Measurements in the regions of overlap with the ultrasonic data indicate excellent agreement, and overall agreement with calculated sound velocity data is satisfactory.

7.4 Methane, Thermophysical Properties Data

AGA Project BR50-10 was initiated to provide the natural gas industry with comprehensive accurate thermophysical properties data for pure compressed and liquefied methane, the most abundant component in LNG mixtures. The final report of this work, "The Thermophysical Properties of Methane, From 90 to 50 K at Pressures to 700 Bar", was published as NBS Interagency Report (NBSIR) 73-342 in

October 1973. It has been reprinted as NBS Technical Note 653, by R. D. Goodwin, in April 1974. This report contains the most comprehensive and accurate tables available for the thermophysical properties of pure gaseous and liquid methane, and provides an accurate basis for calculating accurate thermophysical properties data for LNG mixtures. (For example, see references [1] in the section on Densities of LNG Mixtures in this report.)

The NBS Cryogenics Division has suggested that the report should become internationally accepted as "agreed on" standard reference data by the American Gas Association, Inc., and the natural gas industry. This suggestion has received approval from the AGA Pipeline Research LNG Supervisory Committee and the AGA Measurement Committee and is currently under consideration by the AGA-LNG Committee, E. L. Smith, Chairman. The report was recently brought to the attention of the international LNG industry at the Fourth Internationl Conference on LNG in Algiers, June 24-27, 1974 (see Paper VII-1 by L. A. Sarkes, AGA, Inc., and D. B. Mann).

8. <u>Problem Areas</u>. For ethane, the computation of an accurate thermodynamic network in liquid states is more difficult that for methane. Vapor pressure measurements of high accuracy are needed at low temperatures, where these pressures are so small that no accurate experimental technique so far has been developed. Heats

of vaporization are so large at low temperatures (17,000 J/mol) that the experimental error of greater than 1% in these data gives about 200 J/mol error in computations across the vapor liquid "dome." Densities of saturated liquid ethane in the midrange of temperatures (160 to 250 K) apparently never have been measured. The melting line is known only with very low accuracy. Comparison of our calculated speeds of sound for saturated liquid ethane with experimental data suggests that derivatives of the P(ρ , T) surface (via the equation of state) are not as accurate at low temperatures as desired. All of these deficiencies suggest the need for new highly accurate compressibility (P- ρ -T) measurements, sound velocity measurements in the homogeneous, single-phase domain, and possibly additional specific heat measurements, e. g. C_u(ρ , T), over a wide range of (ρ , T).

Some delays in the modifications of the PVT apparatus have been encountered and are due almost entirely to delivery delays of purchased components. This lost time however has largely been made up and the PVT program is essentially on schedule.

9. Funding.

Man-years Expended, January-June 1974		0.9
Equipment and/or Services Purchased	\$	9.1 K
Total Reporting Period Cost		58.9 K
Balance Remaining (June 30, 1974)	\$	9.6 K

10. Plans for Future Work.

		1974		
Schedule	3	4		
Ethane:				
Complete editorial work on two major publications		>		
Measure compressibilities (PVT) of liquid ethane				

1. <u>Title</u>. DENSITIES OF LIQUEFIED NATURAL GAS MIXTURES

Principal Investigators. M. J. Hiza, W. M. Haynes, R. D. McCarty

- 2. Cost Center Numbers. 2751364, 2752364
- 3. <u>Sponsor</u>. LNG Density Project Steering Committee, American Gas Association, Inc., Project BR 50-11.
- 4. <u>Introduction</u>. Accurate density data for liquefied natural gas mixtures are needed to provide a basis for custody transfer methods and equitable custody transfer agreements. This project will provide a data base for developing accurate methods for mass and density gauging at NBS and throughout the fuel gas industry.
- 5. Objectives or Goals. The objectives of this work are to perform accurate (0.1%) measurements of the densities of saturated liquid methane, ethane, propane, butanes, nitrogen and their mixtures, mainly in the temperature range 90-150 K, at pressures to 10 bar; and to test and optimize accurate methods for calculating the densities of LNG mixtures at arbitrary compositions and temperatures. The basis for the custody transfer of natural gas is its heating value. It is difficult to determine and agree on the heating value of extremely large volumes of natural gas in the liquid state. Methods for calculating the heating value of liquefied natural gas require knowing its density, which in turn depends on its composition and temperature. As the compositions of LNG mixtures vary considerably depending on the source of the gas and the processing conditions, methods are needed for calculating accurate densities at arbitrary compositions and temperatures. The accuracy (0.1%)is important because of the extremely large volumes of liquid involved. Each 1% error in density is equivalent to an inequity of \$15-20 thousand dollars per shipload of LNG (72,000 m³ class).

6. <u>Background</u>. This project is being carried out at NBS because of the realization that equitable custody transfer agreements could be reached more readily if the density measurements and the evaluation and development of calculation methods were performed by independent professionals of established reputation.

A high precision (0.05%) magnetic densimeter (based on Archimedes Principle) was designed and constructed prior to this reporting period.

7. <u>Program and Results.</u> Density measurements have been completed for nitrogen from 95 to 120 K, for methane from 105 to 160 K, and for ethane from 105 to 220 K. Some measurements on propane and on normal and isobutane have also been made.

The scope of work for this project has been amended (January 15, 1974) to include testing and optimizing of computer programs for calculating accurate (0.1%) density data for LNG at arbitrary compositions, temperatures and pressures in the following ranges:

> Composition: more than 70% methane, less than 10% of each of the minor components. temperature: 90-140 K. pressures: below 10 bar

Funds for this work have been placed in cost center 2752364.

Calculation methods will be compared with accurate density measurements as they become available. Several available methods for predicting the densities of LNG mixtures have been programmed for the NBS digital computer. These methods include a cell model [1], a hard sphere model [2] a corresponding states technique [3] and a computerized graphical interpolation scheme [4].

29

- 8. <u>Problem Areas</u>. A potential problem area is the delay in delivery of accessory equipment for the mixture studies.
- 9. Funding.

2751364 (Measurements)

Man years expended, JanuaryJune 1974	0.8
Equipment and/or Services Purchased	\$ 5.7 K
Total Reporting Period Cost	\$ 31.0 K
Balance Remaining (June 30, 1974)	\$ 4.0 K

2752364	(calculation	methods)
---------	--------------	----------

Man years expended, January-June 1974	0.1
Equipment and/or Services Purchased	\$ 0.9 K
Total Reporting Period Cost	\$ 5.6 K
Balance Remaining (June 30, 1974)	\$ 14.5 K

10. Plans for Future Work.

	year	1974	
Schedule:	quarter	3	4
Measure de binary mix ing methane propane ane	tures contain- e, ethane,		
Test availa tion method	ble calcula-		

References:

- Albright, M. A., Technical Publication No. 3, A Report to the Gas Processors Assoc., 1812 First Place, Tulsa, Okla. 74103 (1973).
- [2] Rodosevich, J. B. and Miller, R. C., Paper No. K-5, Advances, in Cryogenic Engineering, Vol 18, (in press, 1974).
- [3] Mollerup, J. and Rowlinson, J. S., Chemical Engineering Science, 29, 1373 (1974).
- [4] Klosek, J. and McKinley, C., Proc. First Int. Conf. on LNG, Paper 22, Chicago (1968).

1. Title. Low Temperature Material Behavior

Principal Investigators. R. P. Reed, R. L. Tobler, R. P. Mikesell, and R. L. Durcholz.

- 2. Cost Center Number. 2750430
- 3. <u>Sponsor Project Identification</u>. Maritime Administration Project 55-300-15-011.
- 4. <u>Introduction</u>. Data on thermal and mechanical properties of structural and insulation materials are essential to facilitate material selection on the basis of cost and safety. Proper material choice and reliable definition of material behavior using fracture mechanics is of major economic importance for cryogenic containers in the sea transport of LNG.
- <u>Objectives</u>. The objective of this program is to obtain fracture toughness and fatigue crack growth rate data in the temperature range 76-300 K. These measurements are being conducted on a series of Fe-Ni alloys and Al alloys.
- 6. <u>Background</u>. To construct tanks for sea transport of LNG requires between 500,000 and 7,000,000 pounds of expensive alloys, depending on the type of tanker chosen. This large-scale consumption of costly alloys demands very careful material selection to insure economical but safe, storage tanks. Therefore, since MarAd's goal is to reduce ship costs, it is in their interest to insure the availability of relevant thermal and mechanical property data to enable the best possible material selection and dependable, efficient design.
- 7. Program and Results. The materials effort in this program has concentrated on two areas, a general materials properties assessment and the initiation of an experimental low temperature tensile. fatigue, and fracture study of candidate materials. The materials properties assessment has included a compilation of all fatigue and fracture data on Fe-Ni steels and their weldments, a collection of ship design data and an analysis of materials in use, an assessment of the current production and/or research efforts of the materials suppliers, an assessment of the current materials requirements for LNG containers by the American Bureau of Shipping, U.S. Coast Guard, and the ASME pressure vessel code, and the bibliography of literature containing data on aluminum alloys, non-metallics, and insulation materials. For the experimental program the materials were procured;

specimens were made for tensile, fatigue and fracture tests for selected materials; a variable temperature cryostat was built; and the experimental procedures proofed, and fracture data obtained on selected Fe-Ni alloys.

Materials Properties Assessment

The literature data from some 60 references on the fatigue and fracture properties of the ferritic Fe-Ni steels (Ni < 18%) has been extracted, critically valuated, and compiled. The fracture data in the compilation are the impact energy; nil ductility transition, crack opening displacement, fracture toughness, and dynamic tear tests and their dependencies on temperatures, composition, and heat treating or cold working. Fatigue data include fatigue lifetime and fatigue crack growth rates at LNG temperatures. Also included are tensile properties, hardness, impact energies, explosion bulge tests, and other fracture data. The entire compilation will be sent as an interagency report and included in a review article on LNG materials in the open literature.

The production and research capabilities of the major suppliers of LNG structural alloys were also assessed. Direct contact was made with the research personnel of all the major suppliers to assess what work on these materials has been done or was in progress. These inhouse efforts indicated are generally low level. We have attended the LNG Materials Conference at the British Welding Institute and visited Technigaz, Det Norske Veritas, and the Welding Institute to provide information about the foreign efforts in LNG materials research. We also have a member of our staff on the Cryogenic Materials for LNG Tank Applications Committee of the Metals Properties Council.

Experimental Program

Test materials of 1-1/2 inch thick plate have been obtained for the 3-1/2, 5, 6 and 9% Ni steels and Al 5083. Fe-9Ni steel has been obtained from two sources.

A cryostat for variable temperature control near LNG temperatures was designed and built. The experimental procedures, especially J integral test techniques, were evaluated and proven satisfactory. New methods were devised to monitor the crack growth and crack opening.

Fracture toughness and fatigue crack growth rate tests at 300, 195, 111, 76, and 4 K have been completed. These alloys include Fe-6Ni and Fe-5Ni in the QLT or austenitized, temperized, and reversion annealed condition, and Fe-9Ni in the quenched and tempered condition. Linear elastic fracture mechanics parameters (K_Q , K_{IC}) and Jintegral (J_{IC}) test data have been measured for identical 1.25 inch thick compact tensile specimens. For the first time valid K_{IC} critical stress intensity data have been obtained for these Fe-Ni alloys. Also, for the first time a decided temperature dependence of the fatigue crack growth rate has been measured; the rate of crack propagation is higher at 76 K compared to room temperature for all alloys.

Program Publications and Talks

One talk was presented at the ASTM Special Symposium on Properties of Materials for LNG Tankage. This conference was held in Boston, Mass. on May 21-22, 1974.

One paper will be included in the Special Technical Publication of that ASTM conference, "Low Temperature Fracture Behavior of Ferritic Fe-Ni Alloy Steels," by R. L. Tobler, et al. (see Appendix P).

- 8. <u>Problem Areas</u>. Testing has proceeded on schedule. There are no delays.
- 9. <u>Funding</u>. During this reporting period, about \$75,000 has been spent. This leaves \$40,000 for research during the next reporting period.
- Future Plans. During the next three months the fatigue and fracture toughness properties of Fe-3-1/2Ni (heat treated), steel and 5083 Al will be measured at 300, 195, 111, and 76 K.

1. <u>Title.</u> Elastic Properties of Materials Intended for Use in Liquefied Natural Gas Applications

Principle Investigators. H. M. Ledbetter, E. R. Naimon (NRC-NBS Postdoctoral Research Associate, 1973-74) and W. F. Weston (NRC-NBS Postdoctoral Research Associate, 1973-74).

- 2. Cost Center Number. 2750131
- 3. Sponsor Project Identification. NBS
- 4. <u>Introduction</u>. The elastic properties of structural and insulation materials must be known before such materials can be selected economically and safely. Proper material choice for cryogenic containers for the sea transport of LNG is a major economic problem.
- <u>Objectives.</u> The objectives of this program were to determine the elastic properties of structural materials in the temperature range 4-300 K. These properties include: Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. Measurements were made on a series of iron-nickel alloys and on some aluminum alloys.
- 6. <u>Background.</u> Depending on the type of tanker for sea transport of LNG. 500,000 to 7,000,000 pounds of expensive alloys are required. This large-scale consumption of costly metals demands careful material selection to insure economical, but safe, storage tanks. Since the goal is to reduce ship costs, it is essential to have relevant elastic property data for the best possible selection and design of tankers.
- 7. Program and Results. The program's general aspects, the experimental approach, the data analysis, and both tabulated and graphed results are given in a manuscript "Low-temperature elastic properties of aluminum 5083-0 and four ferritic nickel steels" by W. F. Weston, E. R. Naimon, and H. M. Ledbetter. This manuscript is included as Appendix N.
- 8. Problem Areas. Currently, there are no problems with the program.
- 9. Funding. The program cost is estimated at \$15,000.
- 10. <u>Future Plans</u>. Currently, no additional measurements are planned in this program.

- <u>Title.</u> Heating Value of Flowing LNG <u>Principal Investigators.</u> J. A. Brennan and R. W. Stokes
- 2. Cost Center Number. 2750361
- 3. <u>Sponsor Project Identification</u>. Pipeline Research Committee (American Gas Association) PR-50-48.
- 4. <u>Introduction</u>. This project will draw on information and facilities generated by other sectors of the NBS LNG effort. Thus the calibration of a densimeter used will be traceable to the NBS density reference system being constructed by Younglove under cost center 2751361. Mixture density data produced under 2751364 by Haynes and Hiza will also provide a necessary input to the proper interpretation of results.
- 5. <u>Objectives.</u> The original objective of this program was to set up a LNG flow facility and to evaluate selected flowmeters in LNG service. In November 1973 the objective was expanded to demonstrate the accuracy of measurement of the heating value of LNG flowing in a pipeline through integration of state-of-the-art instrumentation for flow, density and heating value. The expanded project has been conceived of in a three year time frame. In the first year individual components will be calibrated and installed in the NBS LNG flow facility.
- 6. <u>Background</u>. The need for accurate flowmetering of LNG provided the original impetus for the work in this program (unpublished NBS Report [1972], NBSIR 73-300). Since liquid natural gas may be sold on the basis of heating value the program was broadened to include the nec-essary instrumentation for determining heating value of LNG, this expanded program to commence early in 1974. The objectives are based on scaling small flowmeters capable of laboratory testing up to full line size components. Appropriate intermediate sizes are included with field tests scheduled as part of the overall project.
- 7. <u>Results.</u> A four-inch vortex shedding flowmeter was purchased and calibrated in water at NBS-Gaithersburg over the flow range 50 to 600 gallons per minute. The results of the calibration agreed very closely with the manufacturers predicted performance. A liquid nitrogen calibration was run at NBS-Boulder over a reduced flow range of 50-230 gallons per minute. Since it is not possible to test the meter in the actual piping configuration that will be used later in the LNG tests, a second liquid nitrogen test will be run with a different inlet piping configuration to determine what affect the piping may

have on meter performance. The results of both tests will be compared with the results reported earlier [NBSIR 74-358] on the 1-1/2 and 2-inch meters to see if the performance is similar.

A new sensor was supplied with the four-inch meter which did not require changing when changing test fluids from water to liquid nitrogen. It was still necessary to adjust the current through the sensor but this adjustment is easily made.

A second four-inch vortex shedding flowmeter was obtained from a different manufacturer and calibrated in water at NBS-Gaithersburg. This meter is now being tested in the liquid nitrogen flow facility at NBS-Boulder. Results of the liquid nitrogen test are now being analyzed.

Test results from both four-inch meters will be used in testing techniques for predicting meter performance in liquid nitrogen. Testing of the second four-inch meter was not originally planned as part of the test program but the availability of a meter using the same principle but with different sensing elements was thought to be a worthwhile addition to the program. The additional testing required will add some expense to the program but the information available is already proving very beneficial.

All the components are on hand to fabricate the test section necessary for the LNG field tests on the four-inch meter. This section will be fabricated and ready for installation in July 1974. No installation date at the LNG facility has been determined at this time.

Static tests on the densitometer have been completed. Tests were run in liquids methane, propane and nitrogen using the same densitometer that had previously been tested in flowing liquid nitrogen on another program. Some adjustments to the electronics were necessary before testing in liquid methane but after the adjustment was made the densitometer worked properly in all three fluids.

It was decided to delay the purchase of new densitometers for this phase of the program until some additional information from the LNG Density Reference System is available. With that information selection of the most desirable densitometer should be easier. Since the older densitometer was available no program delay or other adverse affects will result from this decision.

The densitometer was intended to be used over small temperature limits but was used in these tests over the range 78 K to 277 K. Results obtained on each fluid independently were consistent but when all results were combined there was a definite degradation in overall performance. This degradation appears to be caused by covering such a broad temperature range with an instrument not designed for that use. Discussions have been held with the manufacturer about the performance and much of the above analysis came from that discussion. Since actual LNG measurements will not involve such wide temperature limits this problem should not occur in actual usage.

A surplus calorimeter was obtained from one of the sponsoring companies and some preliminary tests run. As a result of these tests and discussions with the manufacturer it was decided to have the manufacturer's service representative inspect the machine. The service representative suggested what would be needed to put the machine in good operating condition and the necessary parts have been ordered. Approximately \$700 will be expended to refurbish the calorimeter.

A surplus trailer has been obtained and will be installed at the LNG flow facility for housing the calorimeter. After installation the trailer will require some renovation for proper calorimeter operation.

A gravitometer has been ordered and is scheduled for delivery the end of July. This gravitometer will be installed in the trailer with the calorimeter.

The two-inch flowmeter and the densitometer have been installed in the LNG flow facility in preparation for system integration tests. Installation of the calorimeter must await the trailer installation and refurbishing work.

In preparation for the system tests the electrical circuitry for the load cell system has been modified in an effort to improve performance. The flow control valve has also been modified for better control at low flow rates.

- 8. <u>Problem Areas</u>. No problems have been encountered that would have an adverse affect on the project.
- 9. Funding.

Man Years Expended	0.75
Major Equipment Purchased	\$ 5,776
Total Reporting Period Costs	\$45,000
Balance on Hand	\$31,000

10. Future Plans. Flowmeter tests at an LNG peak shaving plant are planned late this calendar year. Actual test date depends on facility availability. The calorimeter will be refurbished and installed at the LNG flow facility after the necessary building arrangements have been completed. After the calorimeter is running, system integration tests will be started. It is planned to complete this phase of the program this calendar year.

- 1. <u>Title and Principal Investigators.</u> LNG Density Reference System -Ben Younglove.
- 2. Cost Center Number. 2751361
- 3. <u>Sponsor Project Identification</u>. American Gas Association, Inc. Project BR 50-10.
- 4. <u>Introduction</u>. The emphasis of the LNG effort of NBS is in providing technical support to industry in meeting the energy needs of our economy with natural gas.

The density reference system will evaluate the ability of commercially available instruments to measure densities of LNG. Density is an essential measurement in performing total energy content determinations of natural gas reservoirs. While this effort is oriented towards metrology, the output from cost center 2751364 will provide basic reference data on pure liquids and mixtures which will serve as density standards.

5. <u>Objectives.</u> This research will provide a system for evaluating density measurement capability of commercially available meters. We will evolve a density reference system capable of generating accurate densities for this evaluation. From the commercial meters we will attempt to select one capable of performance as a transfer standard in order to provide traceability of accuracy to field density measurement systems.

The first year will be devoted to construction and testing of the density reference system. In the second year we will concentrate on evaluation of commercial meters, while the final year will involve selection testing and application of the transfer standard.

6. <u>Background.</u> In early 1973 a proposal was made to the American Gas Association for research in several areas of LNG technology to be done at this installation. Part of this program was the density reference system. Initial scheduling indicated for the first year of work, starting in April to be design, fabrication, and testing of a density system. Work actually commenced in August as a result of staffing difficulties. Since this initiation, we have conducted extensive study on the feasibility of various techniques for such a system, deciding finally on an application of Archimede's principle (see 7. below). Construction has begun on the various components of the system, and the automatic weighing head plus a precision gas balance for mixture determination are on order. 7. Program and Results. Two sample containers were built. A large one of approximately 8. 9" O. D. x 17" deep is intended to house, at best, all of the densimeters that are anticipated. Another of the same diameter, but 7" deep will be used for preliminary testing and can also be used to house all but the largest of the densimeters. These vessels have been pressure tested to 200 psi at room temperature with water and the smaller has been pressure tested in liquid nitrogen to 90 psi with He gas.

A vacuum jacket large enough to house the pressure vessels was obtained.

A room temperature pressure vessel large enough to house the weighing head has been built and pressure tested to 200 psi with water. Various other items have been built such as vapor pressure bulbs and electrical feed throughs. The boule of single crystal silicon, donated by Texas Instruments, was cut to provide a buoy of approximately 127 grams and the ends polished. This will be suspended from the weighing heat via fine tungsten wire.

Manufacturers of densimeters have indicated willingness to loan working devices for test. One device is on hand and another is expected in about two weeks. Others will arrive later, the latest date mentioned for delivery was September this year.

8. <u>Problem Areas.</u> The weighing head being supplied by the manufacturer did not arrive during this reporting period. It is expected that this will be integrated in the system within the next two months.

9. Funding.

Man Year Expended	
Principal investigator	0.85
Technician	0.31
Equipment Purchased	\$ 8,000
Total Cost	\$70,300
Balance on Hand	\$ 9,700

10. <u>Future Plans.</u> First three months. Continue assembly of density reference system. Install weighing head. Check ability of density monitor to measure water density at room temperature. Check system ability to provide reduced temperatures. Check system temperature regulation. Check density monitor performance with liquid nitrogen. We will develop a test plan which will determine the statistical relevance of the experimental procedure.

Second three months. Install one or more test densimeters, depending on availability etc., and observe overall performance of density reference system with densimeters. Observe preliminary behavior of test densimeters.

- <u>Title.</u> Liquefied Natural Gas Technology Transfer Principle Investigator. D. B. Mann
- 2. NBS Cost Center. 2750401
- 3. <u>Sponsor Project Identification</u>. Maritime Administration, Project 55-330-15-011.
- 4. Introduction. The NBS support of the Maritime Administration (MarAd) LNG ship program is divided into two area contract. These are an experimental program (NBS Cost Center 2750430) and the subject cryogenic technology transfer. In addition to those objectives listed below this program provides a cohesive structure for the coordination of the NBS LNG program.
- 5. <u>Objectives</u>. Cryogenic Technology Transfer is designed to provide cryogenic technical information, data, and advice to the Maritime Administration (MarAd), its contractors and other agencies performing work of interest to, or for. MarAd in the design, development testing, construction and operation of LNG ships and ship components.
- 6. Background. The Merchant Marine Act of 1970 restructured federal maritime policies to make bulk carrier vessels, such as tankers and LNG ships, eligible for construction and operating subsidies. In December 1973 the keel was laid for a 926 foot long LNG vessel carrier at Quincy, Mass. The keel laying initiated the construction of the first LNG tanker to be built in the United States. American ship builders have orders for a total of 13 of these complicated ships. Various future projections indicate a total of from 25 to well over a 100 ships will be required to handle LNG importation within the next 10-15 years. LNG marine technology is presently foreign dominated. As a matter of fact, many of the ships being constructed in U.S. shipyards are using designs under license from foreign industrial groups or governments. LNG is a cryogenic fluid and the massive technology developed over the past 15-20 years in cryogenics as applied to industrial gases and the aerospace effort provides a resource which could be applied profitably to improving the U.S. competitive position in the construction and operation of LNG shipping. Because of its historical association with broad based cryogenic technology over a period of 20 years, the NBS Cryogenics Division was requested to provide support to the MarAd LNG ships program in order to aid in the transfer of cryogenic technology where it could enhance the effectiveness of maritime LNG shipping. Therefore, on April 17, 1973 we submitted a work statement which was confirmed by the establishment of a program in May.

7. <u>Program and Results</u>. (1 January to 30 June, 1974) In the initial phases of the LNG Cryogenic Technology Transfer program emphasis was placed on establishing the level and degree to which we could interface with MarAd, MarAd research centers (NMRC), and MarAd contractors. Progress therefore is measured as specific responses to MarAd and MarAd contract requests and NBS generated output felt necessary for the overall program.

7.1. Data and Information - LNG. On March 5, 1975, N. A. Olien, Acting Chief of the NBS Cryogenic Data Center visited the National Maritime Research Center at Galveston, Texas for the purpose of surveying the information and library needs of the center. It was his purpose to provide NMRC aid and assistance in establishing a reference library for subjects dealing with liquefied natural gas. Mr. Olien spent some time with Tom Burttschell, Superintendent of Documentation Services at NMRC discussing how best to accomplish the task. Discussions were productive and upon returning to Boulder, Mr. Olien sent the following items to Mr. Burttschell of NMRC:

- 1) Six bibliographies on the properties of construction materials.
- 2) A bibliography on LNG refrigeration utilization.
- A bibliography on the properties of methane and one on methane mixtures.
- 4) Two copies of the LNG technology bibliography.
- 5) A list of books on cryogenic subjects.
- 6) A list of LNG related periodicals with ordering information for each.
- 7) A copy of Goodwin's NBSIR 73-242 "Thermophysical Properties of Methane".
- 8) Two copies of the quarterly Hydrogen Future Fuel.

It is believed that the necessary contacts have been made between NBS Boulder and NMRC Galveston which should result in a continuing exchange of information on the general subject of LNG.

7.2. LNG Custody Transfer Systems. NBS has been requested to review a custody transfer system to be installed on one of the ships constructed in U. S. shipyards and dedicated to LNG service. The request for review came from the ship owner through the ship contractor. NBS notified the Maritime Administration of the request with the recommendation that the review be performed under this Maritime funded program. After several iterations, a work statement was submitted to the ship contractor outlining a two-phase work statement to accomplish the custody transfer review. The purpose of phase 1 - System Design Review - is twofold:

- 1) To estimate the total uncertainty of the shipboard measurement of LNG mass.
- 2) To suggest a possible testing program which would verify the design review.

The scope of work of phase 1 will entail the definition of technical areas which have direct bearing on the estimate of total uncertainty in the shipboard measurement of LNG mass. These areas will include, but not be limited to:

- a) Physical dimension of system components
- b) Changes in physical dimensions due to thermal contractions.
- c) Tank strapping procedures.
- d) Relationship between capacitance measurements, dielectric constant, liquid level and density.
- e) Range of LNG mixture fractions.
- f) Heat transfer and system thermodynamics.

It is expected that technical evaluations by the instrumentation subcontractor have already been performed in many of these areas, in these cases NBS will review the technical content of these valuations.

From the technical areas indicated above, it is expected that NBS will define a set of parameters which can be used to give a measure of the uncertainty in total mass. A mathematical relationship will then be derived for the total mass uncertainty in terms of these parameters. Limits on these parameters can then be set by NBS (or other users) giving the best information available. In this format, variations in system dimension from tank to tank can easily be incorporated in a total shipboard analysis.

Phase 2 - Physical Hardware Evaluation (Testing Program) - will not be initiated until the completion of phase 1.

Approval of the NBS work statement by General Dynamics was received on June 11 and authorization by MarAd to commit funds to the program was received on June 24. It is estimated that Phase 1 of the program will require 4 months for completion with the results being submitted to the sponsor in the form of an NBSIR. 7.3. Fourth International Conference on Liquefied Natural Gas. Dr. R. H. Kropschot and D. B. Mann of the Cryogenics Division of NBS attended the above conference held in Algiers, Algeria (23 June to 27 June 1974). LNG4 is the fourth in a series of conferences sponsored by the International Gas Union (IGU), London; the International Insitute of Refrigeration (IIR), Paris; and the Institute for Gas Technology (IGT), Chicago. LNG4 was held in Algeria by invitation of the Algerian Gas Union and the Algerian Government. All conference meetings were convened at the Palace of Nations, situated in the Club des Pins just outside the capitol of Algiers. Technical tours to industrial areas containing LNG liquefaction sites were also provided. Dr. Kropschot and Mr. Mann, in addition to attending all sessions of the conference, toured the Skikdka industrial zone which includes the 450 million cubic feet per day liquefaction plant and port facilities.

During the opening session an address "The Role of Liquefied Natural Gas in U. S. Energy Policy" by Mr. John N. Nassikas, Chairman of the Federal Power Commission, seemed at first to indicate an official aloofness on the part of the U. S. in respect to large LNG programs such as those involving Algeria and other Arab countries. A study of Mr. Nassikas' press release of his address does not confirm this impression. Although he does indicate energy self-sufficiency as the U. S. policy and outlines the methods to be used in accomplishing this goal, he nevertheless indicates imports of LNG are estimated to be 3 trillion cubic feet by 1985 with an estimated investment of \$5 to 10 million in LNG. This is consistent with the AGA prediction of supplemental LNG import requirements of 2.7 trillion cubic feet by 1985 and 3.2 trillion cubic feet by 1990.

Mr. Louis A. Sarkes, Associate Director of the American Gas Assoc ation, Incorporated and Douglas Mann of the NBS Cryogenics Division co-authored a paper "A Survey of LNG Technological Needs in the U.S. - 1974 to 2000". Mr. Sarkes made the presentation which described the gas industry long range research plan and the current level of LNG research at NBS. The paper was well received and comments following the presentation indicated satisfaction on the part of delegates that the U. S. does have a structured plan for providing necessary research for continued U. S. participation in national and international LNG programs. (See Appendix O.)

Delegates (1900) from over 24 different countries, in addition to Algeria, were present at the conference with the U. S., France, Germany, Japan, and the United Kingdom representing the largest number of delegates in that order. This group of delegates assembled to attend a conference on a high technology industry that has matured over the past few years to a point where large expansion can and is taking place. They, the delegates, want assurance that fixed expansion will take place, they wish to be part of this expansion, they wish to identify who is responsible for the present program in Algeria, and to assess the political climate of this first of the Arab states to embark on a massive program of export of natural gas in liquid form.

The delegates found a demonstrated desire on the part of the government, both in policy and structure, to encourage input of foreign technology for expansion of their program in LNG and a demonstrated desire to show a stable political structure to accomplish this. The Algerian operating personnel had a pride in their workmanship and their progress and are working definitely towards technological selfsufficiency, independent of all foreign influences. It seems that their position is rather strong in that they feel that they can dedicate over 100 trillion cubic feet of natural gas reserves for possible LNG export projects. This should be compared with the north slope of Alaska estimated reserves of 26 trillion cubic feet which could possibly enter the LNG export trade.

Fifty-two papers were presented covering such subjects as world trade in LNG, large-scale transportation projects, liquefaction and processing, peak load plants and liquid handling, marine transportation, storage systems, new developments, and economic and legal aspects. Papers were printed and distributed in a bound proceedings. In spite of the tone of the subjects listed there did not seem to be a great deal of new technology, only improvements.

- 8. <u>Problem Areas.</u> Major problem areas under this program are the definition of scope and content. MarAd has a number of separate current advisory studies, the results of which are necessary for defining their position in LNG marine technology. Until these decisions by MarAd are made, NBS will continue to provide information and assistance of the type outlined above.
- 9. Funding.
 January 1 June 30, 1974.

 Labor
 \$67,000

 Other Costs
 3,000

 Total
 \$70.000

 Remaining
 \$42,000

The major portion of the remaining funding will be expended during the next 4 months on the custody transfer review. NBS will continue to provide consultation and advisory services in the transfer of LNG technology within the scope and present funding limitations.

- <u>Title.</u> Federal Power Commission Consultation <u>Principle Investigators.</u> D. B. Chelton and A. F. Schmidt
- 2. Cost Center Number. 2750404
- 3. <u>Sponsor</u>. Federal Power Commission Bureau of Natural Gas -letter agreement dated 4 June 1973.
- 4. <u>Goals</u>. The Cryogenics Division will provide consultation and advisory services to the Federal Power Commission on the cryogenic safety and the design aspects of several current applications before the FPC for authorization of LNG terminal and storage facilities. These services cover properties of cryogenic environments, insulation systems, cryogenic safety, thermodynamics, heat transfer, instrumentation and cryogenic processes such as refrigeration and liquefaction.
- 5. Background. Cost Center initiated July 7, 1973.
- 6. <u>Program and Results</u>. The results and status of those facilities presently under the jurisdiction of the Federal Power Commission and subject to our review are outlined in the following table.

Elements of the facilities that are subject to review are the landbased cryogenic storage tank components, bounded by the tanker or barge, the vaporizer and the liquefaction units (if any). These include, but are not limited to the transfer lines, the storage tanks, the vaporizers and the process piping as it interacts with the storage tanks. It is essential that the reviews cover the operation, maintenance and emergency procedural philosophies for each terminal. Based upon these studies, reports are submitted to the staff of the FPC setting forth the technical evaluations and conclusions on each proposal. In addition, NBS may provide expert witnesses on behalf of the staff of the FPC in any hearings on the aforementioned applications.

Emphasis is placed on the safety aspects of the facilities including their possible interactions with the surrounding areas. The impact of engineering design such as appropriate use of existing technology and material selection for structural integrity must be assessed. The basis of review includes various codes and standards. prior experience, precedent and engineering knowledge.

7. Funding.

Total Funding FY 74	\$57,000
Expenses July 1 - June 30, 1974	\$57,000
Man Years of Effort	1.0

8. <u>Future Plans</u>. At the present time there are several pending applications, but detailed information is not yet available. It is anticipated that additional facilities will be reviewed as applications are made to the Federal Power Commission.

Applicant	Location	Type Facility	Storage Facility		Status	
				Site Tour	Technical Meeting	Review
Distrigas - New York Terminal	Statcn Island, NY	Import Terminal	2-900,000 barrel	8/21/73	8/21/73	Complete
Distrigas - Everett Marine Terminal	Everett, MA	Import Terminal	l-600,000 barrel 1-374,000 barrel	8/23/73	8/23/73	Complete
Algonquin LNG, Inc.	Providence, RI	Import Terminal	1-600,000 barrel	8/24/73	8/24/73	Complete
Northern Natural Gas Co.	Carlton, MN	Peak Shaving	l-630,000 barrel 10.8 MMCFD liquefier	10/30/73	10/30/73	Complete
Northwest Pipeline Corp.	Plymouth, WA	Peak Shaving	l-348,000 barrel 6.0 MMCFD liquefier	10/31/73	10/31/73	Complete
East Tennessee Natural Gas Co.	Kingsport, TN	Peak Shaving	l-348,000 barrel 5.0 MMCFD liquefier	**	11/29/73	Complete
Transco Terminal Co.	Bridgeport, NJ	Import Terminal	3-600,000 barrel	1/23/74	1/23/74	Complete
Southern Energy Co.	Savannah, GA	Import Terminal	4-400,000 barrel	1/24/74	2/6/74	Complete
Alabama-Tennessee Natural Gas Co.	Greenbrier, AL	Peak Shaving	1-117,000 barrel 2.0 MMCFD liquefier	**	2/5/74	Complete
Trunkline LNG, Inc.	Lake Charles, LA	Import Terminal	3-600,000 barrel	2/7/74	5/14/74	In process
Chattanooga Gas Co.	Chattanooga, TN	Peak Shaving	l-348,000 barrel 10.0 MMCFD liquefier	2/28/74	2/28/74	Complete
Tennessee Natural Gas Co.	Nashville, TN	Peak Shaving	1-290,000 barrel 5.0 MMCFD liquefier	2/27/74	2/27/74	Complete
Pacific Indonesia	Port Hueneme, CA	Import Terminal	2-550,000 barrel	5/15/74	×	In process
Northern Natural Gas Co.	Hancock Co., IA	Peak Shaving	l-630,000 barrel 10.8 MMCFD liquefier	×	*	In process
Texas Eastern Transmission Staten Island, NY Company	n Staten Island, NY	Peak Shaving/ Import	* 9.0 MMCFD liquefier	24	×	In process

FPC CONSULTATION - LNG FACILITY REVIEW

% to be determined ** NBS visit not scheduled

- <u>Title.</u> LNG Dual Fuel Auto <u>Principle Investigator.</u> J. M. Arvidson
- 2. Cost Center Number. 2750590 (Reimbursable)
- 3. <u>Sponsor Identification</u>. Joint NBS and General Services Administration Requisition Number F4KE023, Case Number 66551.
- 4. <u>Introduction</u>. The work described relates to the general area of transfer of technology based on Division experience in the handling of liquefied combustible gases, instrumentation and systems analysis.
- 5. <u>Objectives</u>. To establish the degree of hazard to passengers and auto on the release of liquefied natural gas in the trunk area of the standard GSA dual fuel (natural gas and gasoline) sedan.
- 6. <u>Background</u>. The General Services Administration (GSA) dual fuel automobiles are equipped to run on gasoline or natural gas. In the initial GSA program the natural gas was compressed and carried in high pressure cylinders, which in sedans were located in the trunk space. To take care of accidental leakage, a large vent was installed in the roof of the passenger compartments, with two small air vents installed in the top of the trunk space. More recently, most of the dual fuel installations have been installed with liquefied natural gas (LNG) carried in an insulated tank at low pressure in the trunk compartment.

Natural gas has a density less than air and therefore is buoyant and will rise at temperatures above about 151 K. It was anticipated that vents provided would be adequate for dilution of explosive concentrations of methane gas in the trunk and passenger compartments under conditions of operation. This was believed to be the case even if very cold gas was vented (at a temperature of less than 157 K) as the amount of the methane gas vented at this lower temperature would be minimal, would be heated rapidly above 157 K and then vented normally.

A recent explosion of a sedan, believed to be caused by migration of methane gas from a trunk area to the passenger area, raised the question of the functional adequacy of the high level vents. In other words, can a combustible mixture of cold methane gas (at a temperature of less than 157 K) migrate from a leakage area in the trunk to the passenger compartment, and if so, can additional venting, relocation of vents, or other methods be incorporated in the sedan to eliminate this hazardous situation? GSA has requested the Cryogenics Division of NBS to perform tests, analyze data, and make recommendations for the modification (if any) to be made in the vent system or any other aspect, method or design that would minimize the concentration of methane gas (or LNG vapor) in the trunk or passenger area to well below the lower explosion limit (at least to 50% LEL).

A test program and results were described in the previous reporting period (NBSIR 74-358). The potentially hazardous condition caused by release of methane or vaporized LNG in the trunk area was reported to the co-sponsor in the form of a progress report.

7. <u>Program and Results</u>. Review of the test reports is in progress by sponsor.

A decision by GSA is expected by September on the future course of the program. Permission was requested of GSA and granted for NBS to start hydrogen gas venting studies.

- 8. Problem Areas. None
- 9. Funding. No expenditures this reporting period.
- 10. Future Plans. NBS submitted a preliminary work statement to GSA for further work designed to define the limits of venting capability of the sedan (by minor structural changes) and aquire venting data of this type of car body with hydrogen gas. In addition, a safety review of LNG distribution stations (gas stations) was proposed.

Bibliography

Recent NBS reports and publications giving thermophysical properties data for fluids related to LNG mixtures (January 1, 1973--June 30, 1974).

- J. F. Ely, H. J. M. Hanley and G. C. Straty, Analysis of the Pressure Virials and Clausius-Mossotti Function for Polyatomic Gases, J. Chem. Phys 59, 842 (1973).
- J. F. Ely and D. A. McQuarrie, Calculations of Dense Fluid Transport Properties via Equilibrium Statistical Mechanical Perturbation Theory, J. Chem. Phys. 60, 4105 (1974).
- W. M. Haynes, Viscosity of Gaseous and Liquid Argon, Physica <u>67</u>, 440 (1973).
- 4. * W. M. Haynes, Viscosity of Saturated Liquid Methane, Physica 70, 410 (1973).
- 5. * D. E. Diller, The Clausius-Mossotti Functions (Molar Polarizabilities) of Pure Compressed Gaseous and Liquid Methane, Ethane, Propane, Butanes and Nitrogen, Cryogenics 14, 215 (1974).
- 6. * R. D. McCarty, A Modified Benedict-Webb-Rubin Equation of State for Methane, Cryogenics 14, 276 (1974).
- J. F. Ely and G. C. Straty, Dielectric Constants and Molar Polarizabilities of Saturated and Compressed Fluid Nitrogen, J. Chem. Phys. (in press, 1974).
- R. D. Goodwin, The Thermophysical Properties of Methane from 90 to 500 K at Pressures to 700 Bar, NBSIR 73-342 (1973) and Tech Note 653 (1974).
- 9. Thermophysical Properties of Nitrogen from the Fusion Line to 3500 R (1944 K) for Pressures to 150,000 psia, NBS Tech Note 648 (1973).

^{*} See attached appendices.

- * D. E. Diller, Properties Data for LNG, Amer. Gas Assn. Monthly, 55, 27 (1973).
- 11. * G. C. Straty and R. D. Goodwin, Dielectric Constant and Polarizability of Saturated and Compressed Fluid Methane, Cryogenics <u>13</u>, 712 (1973).
- 12. * G. C. Straty, Velocity of Sound in Dense Fluid Methane, Cryogenics
 <u>14</u>, 367 (1974).
- 13. * B. A. Younglove, The Specific Heats, C_σ and C_v, of Compressed and Liquefied Methane, J. Res. NBS (in press, 1974).
- 14. * A. J. Kidnay, M. J. Hiza and R. C. Miller, Liquid-Vapor Equilibria Research on Systems of Interest in Cryogenics -- A Survey, Cryogenics <u>13</u>, 575 (1973).
- M. J. Hiza, A. J. Kidnay and R. C. Miller, A Bibliography of Important Equilibria Properties for Fluid Mixtures of Cryogenic Interest., NBS Special Publication (in press, 1974).
- 16. * W. R. Parrish and M. J. Hiza, Liquid-Vapor Equilibria with Nitrogen-Methane System Between 95 and 120 K, Advances in Cryogenic Engineering (in press 1974).
- 17. * R. D. Goodwin, The Vapor Pressures of Ethane, NBS Cryogenics Division Laboratory Note 73-3, July 9, 1973.
- * R. D. Goodwin, Ethane Virial Coefficients and Saturated Vapor Densities, NBS Cryogenics Division Laboratory Note 73-4, August 14, 1973.
- 19. * R. D. Goodwin, The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine, NBS Cryogenics Division Laboratory Note 73-5, September 18, 1973.
- 20. * R. D. Goodwin, Liquid-Vapor Saturation (Orthobaric) Temperatures of Ethane and Methane, NBS Cryogenics Division Laboratory Note 73-6, November 28, 1973.

- 21. * Weston, W. F., E. R. Naimon, and H. M. Ledbetter, Low Temperature Elastic Properties of Aluminum 5083-0 and Four Ferritic Nickel Steels (in press, 1974).
- 22. * Sarkes, L. A. and D. B. Mann, A Survey of LNG Technological Needs in the USA -- 1974 to Beyond 2000, Fourth International Conference on Liquefied Natural Gas (Algiers, Algeria, June 1974).
- 23. * Tobler, R. L., R. P. Mikesell, R. L. Durcholz and R. P. Reed Low Temperature Fracture Behavior of Ferritic Fe-Ni Alloy Steels, Sponsor report (1974).

APPENDIX A

VISCOSITY OF SATURATED LIQUID METHANE^{*}

W.M. HAYNES#

Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302, USA

Received 27 June 1973

Synopsis

The results of absolute measurements of the viscosity of saturated liquid methane using a torsionally vibrating quartz crystal are reported for temperatures from 95 to 190 K. Comparisons are made with other data, all of which have been obtained with techniques different from that of the present work.

The viscosity of saturated liquid methane has been determined at temperatures from 95 to 190 K, and at densities from 0.2 to 0.45 g/cm^3 with a torsionally oscillating quartz cylinder. The precision and accuracy of these measurements are estimated to be better than 0.5 and 2%, respectively. Details of the apparatus and experimental techniques have been given in a previous publication¹).

The sample gas was obtained from commercial, research-grade methane. Massspectral analysis of a representative sample by the supplier resulted in a specified minimum purity of 99.97 mol percent. Its most probable impurities were nitrogen, carbon dioxide, and ethane. The sample gas was further purified by passing it through a silica-gel trap immersed in an ice bath.

Absolute measurements of the viscosity-density product were accomplished using a quartz crystal of approximately 5 cm length and 0.5 cm diameter. (Its exact dimensions and mass have been reported in an earlier paper¹).) Densities were obtained from measured temperatures and an equation developed by Goodwin and Prydz²) to represent their liquid densities along the saturation curve. In general, the equation represented experimental density data within the 0.1% uncertainty of their measurements, except within a few degrees of the critical temperature. At 190 K the density may be in error by as much as 0.5%.

The present results are presented in table I as a function of temperature and density; in fig. 1 the experimental points are plotted as a function of temperature along with independent measurements³⁻⁹) of other laboratories. The older and, generally, less consistent data⁶⁻⁹) are included for the sake of completeness.

* Contribution of the National Bureau of Standards (USA), not subject to copyright.

* NRC-NBS Postdoctoral Research Associate, 1970-72.

Temperature	Density	Viscosity
(K)	(g/cm ³)	(µg/cm s) [‡]
95.000	0.44581	1784
100.000	0.43902	1569
105.000	0.43208	1383
110.000	0.42497	1225
115.000	0.41766	1090
120.000	0.41013	975
125.000	0.40235	883
130,000	0.39429	810
135.000	0.38591	733
140.000	0.37715	673
145,000	0.36793	612
150.000	0.35819	557
155.000	0.34779	514
160.000	0.33659	465
165,000	0.32437	419
170.000	0.31077	376
175.000	0,29523	343
180.000	0.27658	309
185.000	0.25174	261
190.000	0.20020	198

TABLE I

⁺ $1 \mu g/cm s = 10^{-7} Pa s.$

It is particularly satisfying that the discrepancies between the values obtained with four different techniques (this work; oscillating disk, ref. 3; capillary flow, ref. 4; falling cylinder, ref. 5) are generally within the estimated uncertainties of the independent measurements. It should be noted that the results of refs. 4 and 5 were acquired on viscometers calibrated with fluids of presumably known viscosity.

The agreement of the present saturated-liquid results for methane with those of refs. 3 and 4 is consistent with comparisons of saturated-liquid data for $argon^{1,3,4}$) and $oxygen^{4,10,11}$) obtained with the same apparatuses by the respective authors. However, it should be mentioned that, for compressed liquid argon and oxygen, the results obtained with the present apparatus^{1,10}) showed a consistently larger pressure dependence than those obtained with the oscillating-disk viscometer of Hellemans *et al.*^{3,11}). (The discrepancies are most significant at the higher liquid temperatures, *e.g.*, approximately 20% at 10 MN/m² at 140 K for argon¹).) The above inconsistency is pointed out to illustrate that, although viscosity measurements by different experimenters on the same fluid may agree for the saturated liquid, it does not necessarily follow that this agreement would carry over to the compressed liquid or other fluid regions.

W. M. HAYNES

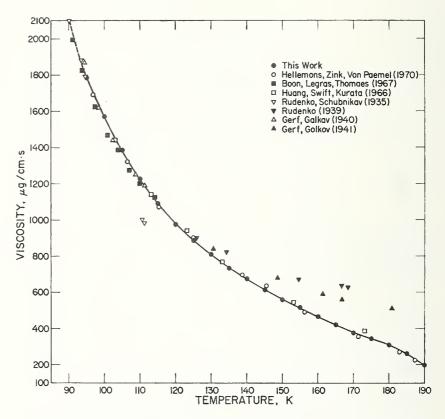


Fig. 1. Viscosity of saturated liquid methane; data from this work and refs. 3-9.

Acknowledgment. The author would like to acknowledge the National Research Council, National Academy of Sciences – National Academy of Engineering and the National Bureau of Standards for the Postdoctoral Research Associateship during the tenure of which this research was performed.

REFERENCES

- 1) Haynes, W. M., Physica 67 (1973) 440.
- 2) Goodwin, R.D. and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.) 76A (1972) 81.
- 3) Hellemans, J., Zink, H. and Van Paemel, O., Physica 46 (1970) 395.
- 4) Boon, J.P., Legros, J.C. and Thomaes, G., Physica 33 (1967) 547.
- 5) Huang, E.T.S., Swift, G.W. and Kurata, F., AIChE J. 12 (1966) 932.
- 6) Rudenko, N.S. and Schubnikov, L.W., Phys. Z. Sowjetunion 8 (1935) 179.
- 7) Rudenko, N.S., Soviet Physics-JETP 9 (1939) 1078.
- 8) Gerf, S.F. and Galkov, G.I., Zh. tekh. Fiz. 10 (1940) 725.
- 9) Gerf, S.F. and Galkov, G.I., Zh. tekh. Fiz. 11 (1941) 801.
- 10) Haynes, W. M., unpublished data.
- 11) Hellemans, J., Zink, H. and Van Paemel, O., Physica 47 (1970) 45.

B - 1

APPENDIX B

This report gives accurate interpolation functions for the Clausius—Mossotti functions (molar polarizabilities) of pure compressed gaseous and liquid methane, ethane, propane, butanes and nitrogen; and suggests a method for calculating the dielectric constants or the densities of their mixtures. The accuracy of calculated Clausius—Mossotti functions for mixtures containing a high concentration of methane is expected to be better than 1% using only data for the pure components. Additional data for the dependence of the excess Clausius—Mossotti function on composition could reduce the uncertainty in Clausius—Mossotti functions for multicomponent mixtures to less than 0.2%.

The Clausius—Mossotti functions (molar polarizabilities) of pure compressed gaseous and liquid methane, ethane, propane, butanes, and nitrogen

D. E. Diller

Accurate thermophysical properties data for compressed and liquefied gases and their mixtures are needed to design liquefaction, storage, and transportation processes and to provide a basis for custody transfer agreements. For example, accurate Clausius-Mossotti function data for compressed and liquefied natural gas mixtures are useful for practical densimetry applications; the density of a multicomponent fluid mixture can be determined directly from a dielectric constant measurement (or vice versa). The compositions of technically important gas mixtures are so variable however that it is nearly impossible to obtain sufficiently comprehensive experimental data for many applications. Instead, accurate thermophysical properties data for multicomponent mixtures must usually be calculated from data for the pure components and selected binary mixtures.^{1, 2} The purpose of this report is to give accurate interpolation functions for the dielectric constants and Clausius-Mossotti functions of pure compressed and liquefied methane, ethane, propane, butanes, and nitrogen in a form useful for calculating the dielectric constants or densities of their mixtures.

Interpolation functions for the Clausius–Mossotti functions of pure compressed gaseous and liquid methane, ethane, propane, butanes, and nitrogen

The Clausius-Mossotti function (molar polarizability),

$$C - M \equiv \frac{\epsilon - 1}{\epsilon + 2} V \tag{1}$$

gives a relationship between the dielectric constant ϵ and the molar volume V of a non-polar fluid. For low density gases, the Clausius-Mossotti function is related to the molecular polarizability α by

$$C-M = \frac{4\pi}{3}N_0\alpha \tag{2}$$

The author is with the Cryogenics Division, Institute of Basic Standards, National Bureau of Standards, Boulder Laboratories, Boulder, Colorado 80302, USA. Received 29 November 1973. where N_0 is Avogadro's number; therefore C-M depends mainly on a fixed molecular property of the fluid. The Clausius-Mossotti function for many non-polar gases and liquids has been found to be nearly independent of temperature, pressure, density, and state; varying less than 2% over large density and temperature ranges. The Clausius-Mossotti functions for compressed non-polar gases typically increase slightly with increasing density, reaching a maximum in the vicinity of the critical density, and then decreasing continually with further increasing density. The Clausius-Mossotti functions for most non-polar fluids decreases slightly with increasing temperature at fixed densities. Accurate empirical representation of the complete dependence of the Clausius-Mossotti functions of compressed gases and liquids on density and temperature is a difficult problem. An accurate 'equation of state' for the Clausius-Mossotti function is not available, even for the simplest pure gases. The dependence of C-M on density (neglecting the dependence on temperature) is given to good approximation however by

$$C-M \simeq A_{\epsilon} + B_{\epsilon}\rho + C_{\epsilon}\rho^2 + D_{\epsilon}\rho^3 + \dots$$
(3)

The coefficient B_{ϵ} is analogous to the second virial coefficient in the pressure virial expansion; the coefficients C_{ϵ} and D_{ϵ} are purely empirical. The coefficients for (3) have been obtained for pure compressed and liquefied methane, ethane, propane, butanes, and nitrogen from available dielectric constant and density data. Further discussion of the data basis and the coefficients obtained for (3) is given for each fluid.

Methane. Accurate data for the dielectric constants and densities of pure compressed and liquefied methane are given in references 3 and 4. Data are available for temperatures between 91 and 373.4 K at pressures to 345 bars. The data for the low density limit A_{ϵ} and the liquid-vapour equilibrium curve have been fitted to (3). The coefficients obtained for (3) are given in Table 1. The uncertainty in the Clausius-Mossotti function for pure methane calculated with these coefficients is probably smaller than 0.2%.

Ethane. Accurate data for the dielectric constants and densities of pure gaseous and liquid ethane at temperatures

Table 1 The Clausius-Mossotti functions for pure compressed and liquefied methane, ethane, propane, butanes, and nitrogen

	Coefficients for (3) A_{ϵ} , cm ³ mole ⁻¹	B_{ϵ} , (cm ³ mole ⁻¹) ²	C_{ϵ} , (cm ³ mole ⁻¹) ³	D_{ϵ} , {cm ³ mole ⁻¹ } ⁴
Methane	6.54141	8.52 ³	-4.26 x 10 ² ³	+ 4.43 × 10 ^{3 3}
Ethane	11.225	20.005	-14.60 x 10 ² ⁵	
Propane	15.93 ⁵	76.005	-58.40 x 10 ² 5	
n-butane	20.65 ⁶	141.00*7	-139.20 x 10 ^{2°} 7	
i-butane	20.886	143.00*7	-99.00 x 10 ^{2*} ⁷	
Nitrogen	4.389 ⁸	2.20 ^{8, 9}	-1.00 x 10 ² 9, 10	

* Obtained from refractive index measurements

† Reference numbers

between 283 and 305 K at densities up to twice the critical density are given in reference 5. The Clausius-Mossotti function for compressed fluid ethane changes less than 1% with density and temperature in this range. Coefficients for (3) are given in reference 5 and are reproduced in Table 1. It is expected that the Clausius-Mossotti function obtained by extrapolating (3) to densities up to $3\rho_c$ at temperatures down to 90 K will be accurate to about 0.5%.

Propane. Accurate data for the dielectric constants and densities of pure gaseous and liquid propane at temperatures between 293 and 369.5 K at densities to $2\rho_c$ are also given in reference 5. Coefficients obtained for (3) are given in reference 5 and reproduced in Table 1. If (3) is extrapolated to densities up to $3\rho_c$ and temperatures down to 90 K, the estimated uncertainty in *C-M* will be smaller than 1%.

Normal and isobutane. Accurate data for the dielectric constants and densities of pure gaseous normal and isobutane at temperatures above 400 K are given in reference 6. There are no dielectric constant data available for liquefied butanes at low temperatures, but accurate data for the refractive indices of gaseous and liquid normal and isobutane along the liquid-vapour equilibrium curve are given in reference 7. The coefficients B_n and C_n obtained for the dependence of Lorentz-Lorenz function, $(n^2 - 1/n^2 + 2) \times V$, on density are given in Table 1. The uncertainty in C-M obtained by using A_{ϵ} , B_n , and C_n in (3) is probably smaller than 1%.

Nitrogen. Accurate data for the dielectric constants and densities of compressed gaseous and liquid nitrogen at temperatures between 65 and 313 K are given in references 8, 9, 10. The Clausius-Mossotti function for gaseous and liquid nitrogen changes less than 1% with density and temperature in this range. Coefficients are given for (3) for nitrogen in Table 1. The uncertainty in C-M calculated for nitrogen using (3) with these coefficients is probably smaller than 0.5%.

Suggested method for calculating the Clausius-Mossotti functions (and dielectric constants or densities) for mixtures of compressed and liquefied gases

If the Clausius-Mossitti function,

$$C-M_{\text{mixture}} = \frac{\epsilon_{\text{mixture}} - 1}{\epsilon_{\text{mixture}} + 2} \times V_{\text{mixture}}$$
(4)

is known for a liquefied non-polar gas mixture, then the dielectric constant can be determined from a density measurement, or the density $\rho \equiv 1/V$ can be determined from a dielectric constant measurement. The Clausius-Mossotti function can be calculated for a multicomponent fluid mixture by using

$$C-M_{\text{mixture}} = \sum_{i} x_i C - M_i + C - M^E(x_i, T, P)$$
(5)

where the x_i and $C-M_i$ are the mole fractions and Clausius-Mossotti functions for the pure components and $C-M^E$ is the excess Clausius-Mossotti function. The excess Clausius-Mossotti function is defined here as the change in C-M on mixing at fixed temperature and pressure. The excess Clausius-Mossotti function is zero for non-polar gas mixtures at low densities. There are no data available for the Clausius-Mossotti functions of liquefied gas mixtures. The excess Clausius-Mossotti function $C-M^{E}$ is expected to be less than 1% of $C-M_{mixture}$ for liquefied natural gas mixtures containing a high concentration of methane. Therefore calculations of $C-M_{mixture}$ for liquefied natural gas mixtures are expected to be accurate to better than 1% using pure component data only. Accurate data for the dependence of $C-M^E$ on composition could probably reduce the uncertainty in $C-M_{\text{mixture}}$ to less than 0.2%.

I would like to thank G. C. Straty, R. D. Goodwin, and J. F. Ely for the use of their data before publication, and J. D. Olson for assistance with the calculations.

References

- Rowlinson, J. S. Liquids and Liquid Mixtures (Plenum Press, 1969)
- 2 Van Ness, H. C. Classical Thermodynamics of Non-Electrolyte Solutions (Macmillan, 1964)
- 3 Straty, G. C., Goodwin, R. D. Cryogenics 13 (1973) 712; Goodwin, R. D., Prydz, R. J Res NBS 76A (1972) 81
- 4 Bose, T. K., Sochanski, J. S., Cole, J. H. J Chem Phys 57 (1972) 3592
- 5 Sliwinski, P. Zeitschrift für Physikalische Chemie 68 (1969) 91
- 6 Watson, H. E., Kane, G. P., Ramaswamy, K. L. Proc Roy Soc (London) A156 (1936) 130, 144
- Sliwinski, P. Zeitschrift für Physikalische Chemie 63 (1969) 263
 Oudemans, G. J. PhD Thesis (University of Amsterdam.
 - Oudemans, G. J. PhD Thesis (University of Amsterdam, 1967)
- 9 Straty, G. C., Ely, J. F. (Unpublished data)
- 10 Jacobsen, R. T., Stewart, R. B., McCarty, R. D., Hanley, II. J. M. NBS Technical Note 648 (1973)

USCOMM - ERL

C - 1

APPENDIX C

A 33 term modified Benedict—Webb—Rubin equation of state is presented for methane. The adjustable parameters in the equation of state have been estimated using recent experimental data and least squares techniques which include the thermodynamic equilibrium conditions for the co-existing liquid and vapour phases. Comparisons of the new equation of state and an older modified Benedict—Webb—Rubin equation of state to experimental data are given.

A modified Benedict—Webb—Rubin equation of state for methane using recent experimental data

R. D. McCarty

There is currently an extensive worldwide interest in the properties of liquefied natural gas (LNG). This laboratory has recently completed an experimental programme on the thermodynamic properties of methane,4,7 the principal constituent of LNG. These new data are believed to be more accurate than those previously available and it therefore seemed worthwhile to use these new data to estimate the coefficients to a modified Benedict-Webb-Rubin (MBWR) type equation of state. The MBWR equation of state is especially appropriate for the study of the properties of mixtures for two reasons; first, the mathematical form of the equation allows the inclusion of the thermodynamic conditions for phase equilibria ^{1, 2} in the parameter estimation process, and second, the MBWR is widely used throughout the world for the calculation of the thermodynamic properties of other fluids. The particular form of the BWR modification used here was developed by Jacobsen 6 for nitrogen. The development of this equation by Jacobsen included a long and exhaustive study to determine an optimum functional form. The applicability of this form of the BWR to other fluids has since been demonstrated for oxygen by Stewart et al ⁹ and for hydrogen by this author.⁸ The only other modification of the BWR considered was the form used by Bender¹ for a number of gases including nitrogen and methane. Both the equations of state for nitrogen (Jacobsen and Bender) were constructed using the thermo-dynamic conditions for phase equilibria. The comparisons given later in this paper show that the form used by Jacobsen reproduces the new experimental data better than the form used by Bender. This result is not surprising as the form used by Jacobsen has 33 adjustable constants while the form used by Bender has 20 adjustable constants.

Equation of state

The parameters $N_1 N_{32}$ for the equation of state, (1), were estimated by least squares techniques using the data listed in Table 1. The parameter γ was chosen such that $\gamma \rho^2 \approx +1$ as suggested by Bender.¹

Reference	No of points	Temperature range, K	Saturation data	Density range, mole l ⁻¹	Kind of data
4	555	92-300	No	3-28.5	PVT
10	274	92-300	No	8-28	Cv
4	200	91-190	Yes	0.016– 28.12	Ortho baric den- sities
3	171	273-398	No	0.75— 12.5	Ρντ
4	96	140-270	No	0.5— 2.0	Ρντ
4	100	91-190	Yes	0.016- 28.12	Gibbs func- tion

Table 1 Summary of data

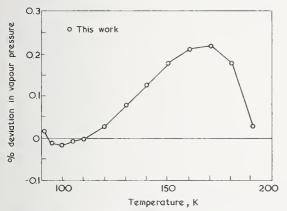
The saturation data listed in Table 1 were calculated from equations given by Goodwin,⁴ see appendix. The condition of equal Gibbs function for the saturated liquid and saturated vapour in isothermal co-existence was included as data points at the 100 saturation temperatures referred to in Table 1. The equation of state was also constrained at the critical point to $T = T_c = 190.555$ K, $\rho_c = 10.23$ mole l⁻¹, $P = P_c = 45.387$ atm, and $(\partial P/\partial \rho) \equiv (\partial^2 P/\partial \rho^2) \equiv 0$. For a more detailed description of the techniques of simultaneous data fitting, constraints, and weighting see Hust and McCarty ⁵ or McCarty.⁷ The functional form of the equation of state is

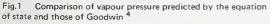
$$P = \rho RT + \rho^{2} (N_{1}T + N_{2}T^{1/2} + N_{3} + N_{4}/T + N_{5}/T^{2}) + \rho^{3} (N_{6}T + N_{7} + N_{8}/T + N_{9}/T^{2}) + \rho^{4} (N_{10}T + N_{11} + N_{12}/T) + \rho^{5} (N_{13}) + \rho^{6} (N_{14}/T + N_{15}/T^{2}) + \rho^{7} (N_{16}/T) + \rho^{8} (N_{17}/T + N_{18}/T^{2}) + \rho^{9} (N_{19}/T^{2}) + \rho^{3} (N_{20}/T^{2} + N_{21}/T^{3}) \exp(-\gamma\rho^{2})$$
(1)
+ \rho^{5} (N_{22}/T^{2} + N_{23}/T^{4}) \exp(-\gamma\rho^{2})

The author is with the Cryogenics Division, National Bureau of Standards, Boulder, Colorado 80302, USA. Received 10 December 1973.

$$\begin{split} &+\rho^{7} \left(N_{24}/T^{2} + N_{25}/T^{3}\right) \exp\left(-\gamma\rho^{2}\right) \\ &+\rho^{9} \left(N_{26}/T^{2} + N_{27}/T^{4}\right) \exp\left(-\gamma\rho^{2}\right) \\ &+\rho^{11} \left(N_{28}/T^{2} + N_{29}/T^{3}\right) \exp\left(-\gamma\rho^{2}\right) \\ &+\rho^{13} \left(N_{30}/T^{2} + N_{31}/T^{3} + N_{32}/T^{4}\right) \exp\left(-\gamma\rho^{2}\right) \end{split}$$

where P is in atmospheres, ρ is in mole l⁻¹, and T is in kelvins. The coefficients (N_i) are given in Table 2.


Comparisons


The equation,

Gibbs (ρ_1, T) – Gibbs (ρ_V, T) = 0 (2)

was formulated using the equation of state (1). Equation 2 was then solved for the co-existing saturated liquid and vapour densities (ρ_v and ρ_l) at various temperatures (T). The resulting P-T locus is the vapour pressure curve given by the equation of state. Fig.1 compares the vapour pressures predicted by the equation of state to the vapour pressures given by Goodwin.⁴

Figs 2 and 3 show a comparison of the saturation densities using Goodwin's densities and values calculated by this equation of state and by Bender's equation of state, using the coefficients reported by Bender.

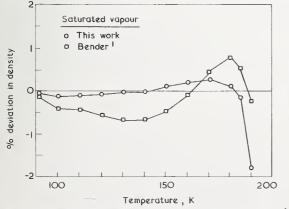


Fig.2 Comparison between saturated vapour densities of Goodwin 4 and those predicted by this equation of state and the equation of state by Bender 1

Ta	able 2	2	Coefficients to equation 1
N	1 =	-	-1.8439486666 x 10 ⁻²
N	2 =	=	1.0510162064
N	3 =	=	-1.6057820303 x 10
N,	4 =	-	8.4844027562 x 10 ²
N	5 =	=	-4.2738409106 x 10 ⁴
N	6 =	=	7.6565285254 x 10 ⁻⁴
N	7 =	=	-4.8360724197 x 10 ⁻¹
N	8 =	-	8.5195473835 x 10
N	9 =	=	-1.6607434721 x 10 ⁴
N	10 =	2	
N	11 ~		2.8616309259 x 10 ⁻²
N	12 =	=	-2.8685285973
N	13 =	=	1.1906973942 x 10 ⁻⁴
N	14 =	-	-8.5315715699 x 10 ⁻³
N	15 =	=	3.8365063841
N	16 =	=	2.4986828379 x 10 ⁻⁵
N	17 =	=	5.7974531455 x 10 ⁻⁶
N	18 =	=	-7.1648329297 x 10 ⁻³
N	19 =	-	1.2577853784 x 10 ⁻⁴
N	20 =	=	2.2240102466 x 10 ⁴
N	21 =	=	-1.4800512328 x 10 ⁶
N	22 =	=	5.0498054887 × 10
N	23 =	=	1.6428375992 × 10 ⁶
N	24 =	=	2.1325387196 x 10 ⁻¹
N	25 =	5	3.7791273422 x 10
N	26 =	=	-1.1857016815 x 10 ⁻⁵
N	27 =	-	-3.1630780767 × 10
N	28 =	=	-4.1006782941 x 10 ⁻⁶
N	29 =	=	1.4870043284 x 10 ⁻³
N	30 =	=	3.1512261532 x 10 ⁻⁹
N	31 =	=	-2.1670774745 × 10 ⁻⁶
N	32 =	=	2.4000551079 × 10 ⁻⁵
γ	=	2	+ 0.0096
R	=	=	0.08205616 l atm mole ⁻¹ K ⁻¹

The equation of state, (1), like other MBWR equations does not have the proper theoretical behaviour at the critical point, that is, the derivative $(\partial^2 P/\partial T^2)\rho$ at the critical point does not become very large.

A comparison of experimental C_V with those calculated using (1) and those calculated by Bender's equation of state (coefficients from reference 1) is given in Fig.4. The large deviations between experimental C_V s and those calculated from Bender's equation were also noted in the case of O_2 .

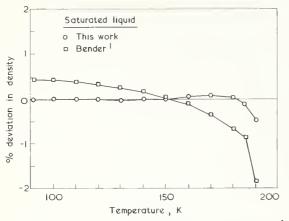


Fig.3 Comparison between saturated liquid densities of Goodwin $^{\rm 4}$ and the predictions of this equation of state and the equation of state by Bender $^{\rm 1}$

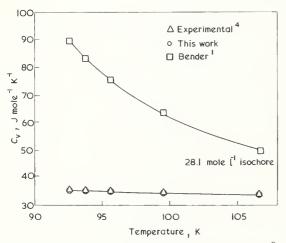


Fig.4 Comparison between experimental C_V data of Younglove 9 and predictions by this equation of state and the equation of state by Bender 1

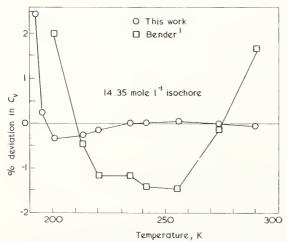


Fig.5 Comparison between experimental C_V data of Younglove 9 and predictions by this equation of state and the equation of state by Bender 1

These large deviations between experimental C_V s and those calculated by Bender's equation of state occur only at low temperatures and high densities. Fig.5 gives a comparison of C_V s at moderate densities from the same three sources.

As is the case with all equations of state which cover a large range of pressure and temperature, the deviations between experimental and calculated densities become large in the region of the critical point. Fig.6 gives typical deviations between experimental and calculated densities from the same three sources.

The data points illustrated in the first six figures were chosen to show maximum deviations. A summary of the rms deviations is given in Table 3.

An attempt was made to use Bender's form of the modified BWR to represent the experimental data given in Table 1. Figs 7 and 8 compare the re-fitted Bender equation with (1) and experimental data. A comparison of Figs 4 and 6 with Figs 7 and 8 show a definite improvement in Bender's equation but also that it still does not represent the data as well as (1) does.

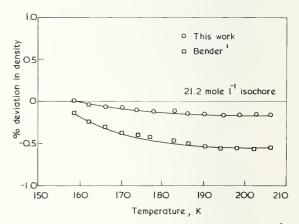


Fig.6 Comparison between experimental PVT data of Goodwin ⁴ and predictions by this equation of state and the equation of state by Bender ¹

Table 3 rms deviations between equation 1 and input data (Table 1)

Reference	No of points	rms in density, mole l ⁻¹	rms in pressure, atm
4	555	0.024	0.91
9	274		0.211
4	200	0.004	
3	171	0.012	0.40
4	96	0.0023	0.023
4	100		0.011*

 rms is in the Gibbs function difference of the saturated liquid and vapour in the units of J mole⁻¹

rms is in C_V J mole⁻¹ K⁻¹

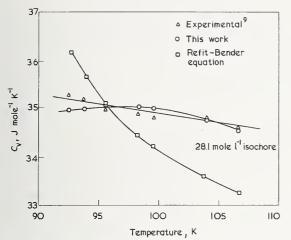


Fig.7 Comparison between experimental C_V data of Younglove ⁹ and predictions of this equation of state and a refit of Bender's equation of state

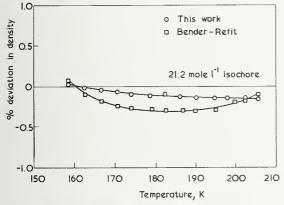


Fig.8 Comparison between experimental *PVT* data of Goodwin and predictions of this equation of state and a refit of Bender's equation of state

Conclusion

From experience of estimating the constants for (1) for methane, the region of greatest uncertainty for (1) was found to be the densities of the saturated vapour boundary. More experimental data are needed before the uncertainty can be reduced.

The 33 term equation of state given here will reproduce the experimental data with greater accuracy than the form suggested by Bender, however, the 33 term equation requires double precision arithmetic on most digital computers and a much greater exponent range than the twenty term equation.

References

- 1 Bender, E. Proc 5th Symp on Thermophysical Properties (ASME, NY, 1970) 227
- 2 Benedict, M., Webb, G. B., Rubin, L. C. J Chem Phys 8 (1940) 334
- 3 Douslin, R. D., Harrison, R. H., Moore, R. T., McCullough, J. P. J Chem and Eng Data 9 (1964) 358
- 4 Goodwin, R. D. Internal Report No 73-342 (October 1973)
- 5 Hust, J. G., McCarty, R. D. Cryogenics 7 (1967) 200
- 6 Jacobsen, R. T. 'The thermodynamic properties of nitrogen from 65 K to 2 000 K with pressures to 10 000 atm', PhD thesis, Washington State University (June 1972)

- McCarty, R. D. Experimental Thermodynamics of Non-Reacting Fluids (Butterworths 1973) Chapter 10
- 8 McCarty, R. D. 'A modified Benedict-Webb-Rubin equation of state for hydron' Internal Report No 74-357 (Feb 1974)
- 9 Stewart, R. B., Jacobsen, R. T., Meyers, A. F. 'The thermodynamic properties of oxygen and nitrogen, Part II – Thermodynamic properties of oxygen from 100 R to 600 R with pressures to 5 000 psia', Final Report, NASA-Manned Spacecraft Center, Houston, Texas (1972)
- 10 Younglove, B. A. NBS J Res (1973)

APPENDIX A

7

Supplemental equations

To provide a useful minimum set of equations which will be helpful to the reader who wishes to programme the equation of state for the calculation of thermodynamic properties, the following equations from Goodwin ⁴ are reprinted here.

Vapour pressure equation

$$\log_{e} \frac{P}{P_{t}} = a x + b x^{2} + c x^{3} + d x (1 - x)^{3/2}$$
(A1)

Equation for the saturated liquid densities

$$\frac{(\rho - \rho_c)}{(\rho_t - \rho_c)} = w^E \exp \left[A(1 - w^{2/3}) + B(1 - w^{4/3}) + C(1 - w^2)\right]$$
(A2)

Equation for the saturated vapour densities

$$\log_{e} \frac{\rho}{\rho_{c}} = a_{1} w^{a_{6}} + a_{2} w + a_{3} w^{4/3} + a_{4} w^{5/3} + a_{5} Uw$$
(A3)

Equation for the ideal gas C_v^0

$$\frac{C_{v}^{0}}{R} = b_{1} + \frac{4}{3} b_{2} Q^{1/3} + \frac{5}{3} b_{3} Q^{2/3} + 2 b_{4} Q$$
$$+ b_{5} \exp\left(\frac{b_{6}}{Q}\right) \left\{\frac{b_{6}}{Q[\exp(b_{6}/Q) - 1]}\right\}^{2} \qquad (A4)$$

See Appendix B for the coefficients to equations A1, A2, A3, and A4.

APPENDIX B

Coefficients to equations

 Table 4
 Critical and triple point parameters for equations

 (A1, A2, A3, and A4)*

 $T_c = 190.55 \text{ K}$ $\rho_c = 10.0 \text{ mole } l^{-1}$ $T_t = 90.68 \text{ K}$ $\rho_t = 28.147 \text{ mole } l^{-1}$ $P_t = 0.117435675 \text{ bar}$

*The critical density for equations A1, A2, A3, and A4 is slightly lower than the one used for the equation of state. The lower ρ_c is preferred by Goodwin,⁴ but did not work well as a constraint for (1)

Table 5Coefficients to equation A1a = 4.77748580c = -0.56788894b = 1.76065363d = 1.32786231 $x = (1 - T_t/T)/(1 - T_t/T_c)$

Table 6 Coefficients to equation A2

A = -0.178860165	C = -0.01848987
B = 0.04838475	E = 0.36
$w = (T_{\rm c} - T)/(T_{\rm c} - T_{\rm t})$	

Table 7 Coefficients to equation A3

$a_1 = -2.7036003$	$a_4 = 5.2640362$
$a_2 = 3.1661552$	$a_5 = -3.5269034$
$a_3 = -8.6573409$	$a_6 = 0.46$
$w = (T_{\rm c} - T)/(T_{\rm c} - T_{\rm t})$	$U = (T_{\rm c}/T - 1)/(T_{\rm c}/T_{\rm t} - 1)$

Table 8 Coefficients to equation A4

Q = T/400	<i>b</i> ₅ = 4.7207907		
$b_1 = 2.5998981$	<i>b</i> ₆ = 5.02288		
<i>b</i> ₂ = 1.4449418	$R = 8.3143 \text{ J mole}^{-1} \text{ K}^{-1}$		
<i>b</i> ₃ = -1.8472716	T = in K		
$b_4 = -0.8211218$			

APPENDIX C

Sample calculations and table of symbols

Table 9 Sample calculations from equations 1, A1, A2, A3, and A4 $\,$

For a temperature of 150 K and saturation pressure the equations 1 to A4 should give the following results.

	(1) Density, mole l ⁻¹	(A1) Pressure, atm	(A2) Density, mole l ⁻¹	(A3) Density, mole l ⁻¹	(A4) C_v^0/R , dimensionless
Liquid phase	22.3223	10.278	22.325		3.0053
Vapour phase	1.0187	10.278		1.020	

Table 10 List of symbols

<i>a, b, c</i> , and <i>d</i>	parameters to vapour pressure equation					
A, B, C, and D	parameters to equation for saturated liquid densities					
<i>a</i> ₁ , <i>a</i> ₂ <i>a</i> ₆	parameters to equation for saturated vapour densities					
$b_1, b_2 \dots b_6$	parameters to equation for ideal gas C_v^0					
P pressure						
$P_{\rm C}$ critical pre	ssure					
P_{t} triple point	t pressure					
R gas constar	1t					
T temperatur	e					
$T_{\rm c}$ critical terr	perature					
$T_{\rm t}$ triple point	t temperature					
U reduced ter	reduced temperature in (A3)					
w reduced ter	mperature in (A1)					
x reduced ter	mperature in (A2)					

- γ parameter in (1)
- ρ density
- $\rho_{\rm C}$ critical density
- ρ_t triple point density

APPENDIX D

R-787

Properties Data for LNG

A.G.A.-supported research seeks data essential to transport and exchange of this new energy source

By D. E. DILLER Cryogenics Division Institute for Basic Standards National Bureau of Standards and L. A. SARKES Associate Director Research and Engineering American Gas Association

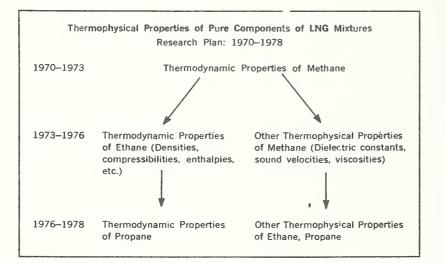


Table 1

	Thermophysical Properties of LNG (Pure Components)
	Research Plan (April 1973–March 1976)
Task	1
	Determine Densities, Compressibilities and Thermodynamic Properties of Ethane
	Analyze available data
	 Measure vapor pressures and compressibilities (PVT)
	• Measure specific heats, C _{sat}
	 Calculate thermodynamic properties
Task	2
	Determine Other Thermophysical Properties of Methane
	 Measure dielectric constants
	 Measure sound velocities
	 Measure viscosities

Table 2

mported natural gas is supplying an increasing percentage of the nation's energy requirements and new technology is being developed to support large importation projects. To take advantage of the large volume decrease, about 600 to 1, which occurs when natural gas is liquefied, ships and importation terminals with cryogenic tanks are being built for transporting, storing, and vaporizing large quantities of liquefied gas.

To support these projects, extremely accurate data on physical and thermodynamic properties for liquefied natural gas mixtures is needed. For example, accurate compressibility and enthalpy data is essential to the design and optimization of liquefaction processes. To provide an equitable basis for transfer of custody, accurate data is needed for heating value, which for liquefied natural gas mixtures depends on the total volume, the density, and the composition.

There is little accurate data available on thermodynamic properties of liquefied natural gas mixtures at low temperatures. (Typical natural gas mixtures liquefy at temperatures below -120 degrees F, boil at temperatures near -256 degrees F, and freeze at temperatures below -296 degrees F.)

Nor is there much accurate data available on thermodynamic properties of the liquefied pure components (methane, ethane, propane, etc.) in this temperature range. Moreover, the compositions of natural gas mixtures vary considerably from one source to another, and change continuously during transport and storage due to selective vaporization.

The introduction of composition as an additional independent variable adds to the complexity of the task of providing an adequate data base.

Accurate data on thermodynamic properties of liquefied gases must be based on precise volumetric and calorimetric measurements. The dependence of the thermodynamic properties on pressure or density at fixed temperature is obtained from volumetric data. The dependence of these properties on temperature is determined by calorimetric measurements.

It is impossible to perform enough volumetric and calorimetric measurements directly on multicomponent mixtures to permit accurate interpolation in composition, temperature, and pressure. Instead, simple, accurate calculation methods are needed to predict thermophysical properties data for mixtures at arbitrary compositions, temperatures, and pressures from a minimum of measured input data (Note 1).

Several projects are underway currently at the Cryogenics Division of the National Bureau of Standards in Boulder, Colorado, to provide new input data for calculating the thermophysical properties of LNG mixtures.

One of these projects, supported directly by the American Gas Association, is obtaining accurate physical and thermodynamic properties data for the major pure components of LNG at temperatures down to -300 degrees F (90 K) and at pressures to 5000 psi. This range encompasses the combinations of temperatures and pressures most likely to be encountered in low temperature processes.

R. D. Goodwin and B. A. Younglove have developed accurate interpolation functions, computer programs, and data tables for all of the thermodynamic properties of gaseous and liquid methane at temperatures down to

296 degrees F. Methane is the most abundant major component of LNG with concentrations ranging from 80 to 99% in typical mixtures.

The NBS programs and data tables are based on precise measurements of the vapor pressures, densities, compressibilities, and specific heats performed at NBS and in other laboratories. Dr. Goodwin has developed an empirical equation of state for pure methane which is consistent with all of the available volumetric and calorimetric measurements at temperatures between -296 degrees F and 400 degrees F at pressures to 10,000 psi.

Extensive comparisons have been made between the NBS data and the volumetric and calorimetric data from other laboratories. The NBS data will soon be available in both the Interna-

Note 1.

Several methods are available for calculating thermodynamic properties data for multicomponent liquid mixtures.¹ For liquid mixtures at temperatures well below the critical temperature, the "ideal mixture" is a useful concept. The molar volume and the molar enthalpy of an ideal liquid mixture are linear functions of the composition.

The only data required to calculate the properties of an ideal mixture are properties data for the pure components.

To calculate the properties of real liquid mixtures, one must add the small changes in the properties which occur in mixing. The following expressions give the recipe for calculating the volume and the enthalpy of a real liquid mixture:

In these expressions the x_i, the V_i, and the H_i are the mole fractions, molar volumes, and molar enthalpies of each of the components. The V^E and H^E are the excess properties representing the property changes on mixing.

This calculation method separates the required input data into measurements of the physical properties of the pure components and measurements of the changes in the physical properties on mixing. Most of the information for the latter can be obtained from data on binary mixtures, i.e., pure components mixed two at a time.

¹ J. S. Rowlinson, Liquids and Liquid Mixtures, New York Plenum Press, second edition (1969) tional System of Units and British engineering units for the convenience of a variety of users.

The other project, supported by a consortium of natural gas companies in cooperation with A.G.A., will obtain accurate input data for calculating the densities of LNG mixtures. Accurate density data is urgently needed to provide a basis for equitable custody transfer. W. M. Haynes and M. J. Hiza are developing a magnetic densitometer, applying Archimedes principle, for precise density measurement on liquid mixtures in equilibrium with their saturated vapor. Measurements will be performed at temperatures between - 200 degrees F and - 295 degrees F at pressures to 250 psi to include the conditions likely to be encountered in transporting and storing LNG.

The priorities for continuing systematic work on these projects through 1975 have been tentatively established. Objectives of the work on pure components of LNG mixtures will be to provide accurate data on dielectric constants, speed of sound and viscosity for compressed gaseous and liquid methane, and to provide accurate thermodynamic properties data for compressed liquid ethane and propane at low temperatures. The LNG density project will provide accurate density data for saturated liquid methane, ethane, propane, butanes and nitrogen, and for selected binary and multicomponent liquid mixtures. New phase equilibrium data and low precision estimates of the heats of mixing will also be obtained. The density data will be used to develop and test methods for calculating the change in volume on mixing. 10

APPENDIX E

Accurate measurements of the dielectric constant of methane have been made on the saturated liquid from near the triple point to 188 K and on the compressed fluid along selected isotherms from 100 K to 300 K and at pressures to 345 bar. The data are combined with accurate densities to obtain the molar polarizability and its dependence on density and temperature. The density range examined extends to nearly three times the critical density. The molar polarizability is found to increase initially with density and then decrease in qualitative agreement with theoretical predictions and the behaviour of other fluids.

Dielectric constant and polarizability of saturated and compressed fluid methane

G. C. Straty and R. D. Goodwin

In this paper, we present accurate, wide range measurements of the dielectric constant of saturated liquid methane from 91 K to 188 K and of compressed fluid methane along selected isotherms from 100 K to 300 K at pressures to 345 bar (1 bar = 10^5 N m⁻²). The data have been combined with accurate densities ¹ to determine the molar polarizability and its dependence on density and temperature. The density range examined extends to nearly three times the critical density.

In the low density limit, the molar polarizability θ is related to the dielectric constant ϵ and density ρ via the Clausius–Mossotti relation

$$\theta = \left(\frac{\epsilon - 1}{\epsilon - 2}\right)\rho^{-1} = \frac{4\pi N_0 \alpha}{3} \tag{1}$$

where N_0 is Avogadro's number and α is the average molecular polarizability. The molar polarizability has been found to be very nearly independent of density for most non-polar fluids, often varying only a fraction of a percent over wide density ranges.^{2–5} A knowledge of the polarizability can therefore be of practical value since it can provide a simple and convenient method for density determination through a measurement of capacitance. With increasing transport and handling of natural gas in the liquid state (LNG) a knowledge of the molar polarizability of liquid methane, the principal constituent of LNG, can be of particular importance since it offers a potentially useful method of LNG density metering.

As with other fluids, 2^{-5} the molar polarizability of methane shows small but significant deviations from (1). These deviations are usually analysed by expressing the polarizability in a truncated virial type expansion, that is,

$$\theta \equiv \left(\frac{\epsilon - 1}{\epsilon + 2}\right) \rho^{-1} = A_{\epsilon} + B_{\epsilon}\rho + C_{\epsilon}\rho^2$$
(2)

where $A_{\epsilon} = 4\pi N_0 \alpha/3$ and B_{ϵ} and C_{ϵ} are the second and third dielectric virial coefficients. Existing theories ⁶ have yielded analytical expressions for these coefficients and wide range measurements of the dependence of the polarizability on density and temperature can be used to obtain information on molecular interactions.

Experimental

The dielectric constant was determined by measuring the capacitance C of a highly stable cylindrical capacitor ⁷ with fluid contained between the plates. A subsequent measurement of the capacitance C_0 of the evacuated capacitor then gives the dielectric constant directly as the ratio

$$\epsilon = \frac{C}{C_0}$$

The capacitances were measured using a commercial three terminal capacitance bridge capable of six figure resolution. Uncertainty in the measured dielectric constants is estimated at less than 0.005%. The methane used was 99.99% pure research grade and was passed through a molecular sieve to ensure no H₂O was present. Temperatures were measured on the IPTS 1968 using a platinum resistance thermometer calibrated by the National Bureau of Standards. Pressures were measured by reference to oil pressures derived from an oil dead weight gauge accurate to within 0.01% through differential pressure transducers.⁸ The experimental apparatus and procedures were identical to those used previously for measurements on oxygen and fluorine and have already been described in detail.^{4,5}

Results and discussion

The dielectric constants obtained for the saturated liquid are shown plotted against temperature in Fig.1 and are tabulated along with the calculated polarizabilities in Table 1. Also shown for comparison are dielectric constants at the melting and boiling points obtained by Amey and Cole.⁹ The dielectric constant for the critical point was calculated from an extrapolated value of the

The authors are with the Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302, USA. This work was sponsored by the American Gas Association. Received 16 July 1973.

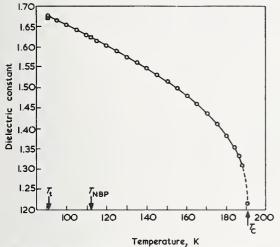


Fig.1 Dielectric constant as a function of temperature for saturated liquid methane • this work; □ reference 9

Arrows indicate triple point, normal boiling point and critical point temperatures

polarizability of the saturated liquid from Fig.2. The polarizability at the critical density of 10.10 ± 0.1 mole l^{-1} was taken as 6.585 ± 0.005 cm³ mole⁻¹ resulting in a calculated dielectric constant of 1.2137 ± 0.0025 at the critical point.

The polarizabilities for the saturated and compressed liquid are shown plotted against density in Fig.2. The polarizability increases initially with density and then decreases in qualitative agreement with the behaviour of other fluids 3,5 and with theoretical prediction.⁶ Data for the compressed fluid are tabulated in Table 2. The densities were calculated from the measured temperatures and pressures and the $P\rho T$ data of Goodwin and Prydz ¹

 Table 1. Dielectric constant and polarizability of saturated liquid methane

<i>Т,</i> К	ρ, mote l ⁻¹	e	θ, cm ³ mole ⁻¹
91.000	28.121	1.67619	6.5410
95.000	27.789	1.66668	6.5428
100.000	27.367	1.65456	6.5448
105.000	26.934	1.64225	6.5468
110.000	26.491	1.62970	6.5488
115.000	26.035	1.61688	6.5509
120.000	25.566	1.60372	6.5527
125.000	25.081	1.59024	6.5549
130,000	24.578	1.57640	6.5574
135.000	24.055	1.56204	6.5595
130.000	24.578	1.57638	6.5572
135.000	24.055	1.56204	6.5594
140.000	23.508	1.54719	6.5621
145.000	22.933	1.53167	6.5645
150.000	22.326	1.51539	6.5669
155.000	21.678	1.49819	6.5695
160.000	20.980	1.47979	6.5718
165.000	20.219	1.45992	6.5744
170.000	19.372	1.43800	6.5766
175.000	18.401	1.41319	6.5789
180.000	17.232	1.38377	6.5816
184.000	16.036	1.35418	6.5846
186.000	15.269	1.33543	6.5864
188.000	14.260	1.31117	6.5903
150.000	22.326	1.51546	6.5677
175.000	18.401	1.41329	6.5804
180.000	17.232	1.38391	6.5838
184.000	16.036	1.35430	6.5867
190.53*	10.10	1.2137	6.585†

*Critical point; the dielectric constant is calculated from an extrapolated value of $\boldsymbol{\theta}$

†Extrapolated value of θ , see Fig.2

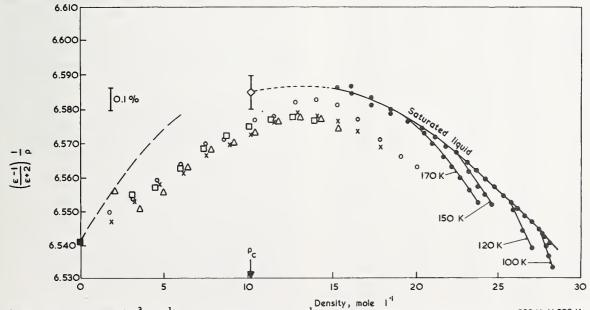


Fig.2 Molar polarizability (cm³ mole⁻¹) as a function of density (mole 1⁻¹) for saturated and compressed fluid methane \circ 220 K; X 250 K; Δ 280 K; \Box 300 K; \bullet saturated and compressed liquid as indicated. The broken line and its intercept \blacksquare are from reference 9 (see text). • Extrapolated value of θ at critical density

Table 2.	Dielectric constant	and	polarizability of	f compressed	fluid methane
----------	----------------------------	-----	-------------------	--------------	---------------

	Pressure,			
τ	bar (1 bar =	0	-	θ,
<i>т,</i> К	(1 bar – 10 ⁵ N m ⁻²)	ρ_r	ϵ	cm ³ mole ⁻¹
100.000	228.079	28.314	1.68094	6.5336
100.000	153.203	28.031	1.67300	6.5366
100.000	97.110	27.801	1.66663	6.5396
100.000	51.839	27.598	1.66117	6.5436
120.000	266.417	27.022	1.64387	6.5390
120.000	147.997	26.448	1.62795	6.5443
120.000	50.442	25.884	1.61252	6.5506
150.000	348.259	25.286	1.59475	6.5431
150.000	234.488 167.521	24.553 24.046	1.57517 1.56140	6.5522 6.5555
150.000 150.000	117.544	23.608	1.54951	6.5576
150.000	64.940	23.053	1.53473	6.5622
150.000	23.946	22.492	1.52074	6.5759
170.000	322.417	23.642	1.54996	6.5527
170.000	261.170	23.138	1.53653	6.5567
170.000	200.661	22.555	1.52099	6.5603
170.000	154.135	22.019	1.50678	6.5632
170.000	116.695	21.501	1.49316	6.5662
170.000	81.608	20.903	1.47759	6.5701
170.000	54.927	20.328	1.46270	6.5735
220.000	343.100	20.000	1.45331	6.5634
220.000	274.601	18.982	1.42716	6.5664
220.000	213.396	17.725	1.39549	6.5713
220.000	171.259	16.473	1.36454	6.5772
220.000 220.000	142.848 122.996	15.249 14.014	1.33469 1.30494	6.5819 6.5838
220.000	108.846	12.760	1.27507	6.5820
220.000	98.454	11.494	1.24537	6.5782
220,000	90.162	10.192	1.21544	6.5737
220.000	82.842	8.853	1.18534	6.5720
220.000	75.722	7.512	1.15576	6.5703
220.000	67.738	6.133	1.12584	6.5644
220,000	58.009	4.728	1.09602	6.5595
220.000	45.581	3.301	1.06634	6.5541
220.000	28.747	1.842	1.03663	6.5500
250,000	345.558	17.729	1.39544	6.5692
250.000	284.251	16.512 15.295	1.36527	6.5735
250.000 250.000	238.340 203.208	14.059	1.33551 1.30573	6.5764 6.5783
250.000	176.512	12.831	1.27660	6.5790
250.000	154.248	11.523	1.24600	6.5770
250.000	136.108	10.211	1.21585	6.5736
250.000	120.569	8.906	1.18643	6.5698
250.000	105.714	7.550	1.15650	6.5668
250.000	90.896	6.181	1.12682	6.5618
250.000	74.891	4.780	1.09709	6.5580
250.000	56.522	3.343	1.06719	6.5534
250.000	34.727	1.884	1.03746	6.5472
280.000	333.164	15.299	1.33549	6.5743
280.000	290.178	14.249	1.31025	6.5775
280.000	250.396 215.396	13.053	1.28177	6.5777 6.5767
280.000 280.000	215.396	11.749 10.430	1.25122 1.22083	6.5767 6.5735
280.000	161.737	9.130	1.19144	6.5704
280.000	139.635	7.827	1.16259	6.5688
280.000	117.974	6.474	1.13312	6.5634
280.000	95.475	5.057	1.10287	6.5561
280.000	71.641	3.616	1.07278	6.5511
1000 - 100 -				

	Pressure, bar			
Τ,	(1 bar =	ρ,	ϵ	θ,
K	10 ⁵ N m ⁻²) mole 1 ⁻¹		cm ³ mole ⁻¹
280.000	45.150	2.143	1.04275	6.5567
300.000	330.057	13.911	1.30214	6.5773
300.000	280.913	12.604	1.27122	6.5781
300.000	242.818	11.370	1.24249	6.5774
300.000	209.259	10.082	1.21299	6.5752
300,000	179.506	8.766	1.18342	6.5724
300,000	151.916	7.414	1.15359	6.5688
300.000	124.943	6.011	1.12321	6.5631
300.000	98.027	4.590	1.09310	6.5576
300.000	71.072	3.205	1.06438	6.5551

(see Appendix). The uncertainty in the calculated polarizabilities is estimated to be better than $\pm 0.15\%$ at low densities where $\epsilon - 1$ is small, decreasing to about $\pm 0.1\%$ at higher densities and is limited by the accuracy of the densities, estimated by Goodwin and Prydz ¹ as $\pm 0.1\%$. The overall precision is better as reflected by the scatter of the data.

Our experimental apparatus and procedures were designed for making measurements over a wide pressure and density range and are not particularly suitable for making high precision measurements at low density where $\epsilon - 1$ becomes very small. As a result, attempts to extract dielectric virial coefficients from these data must be approached with some caution. Bose et al ¹⁰ have recently published the results of high precision measurements of the dielectric constant of methane at pressures below about 100 bar. They use an expansion technique to obtain relative densities. The polarizability for their 279.8 K isotherm calculated using their virial coefficients is shown in Fig.2 for comparison with our 280 K data. The value of A_{ϵ} , the zero density intercept, is the most directly and accurately determined quantity in their experiments. They obtained a slightly temperature dependent value for A_{ϵ} but select $A_{\epsilon} = 6.541$ cm³ mole⁻¹ as a best value which is consistent with our data. Their value for B_{ϵ} however appears to be somewhat large when compared to our higher density data.

Attempts to simply fit the polarizability data to (2) were unsatisfactory. For those isotherms which exhibit a maximum in the polarizability however, an additional constraint can be imposed, that is, $C_{\epsilon} = -B_{\epsilon}/2\rho_{\text{max}}$ where $\rho_{\rm max}$ is the density at the maximum in the polarizability. Using the temperature dependent values of A_{ϵ} from reference 9, a large number of one parameter (B_{ϵ}) fits with ρ_{max} constrained to the limits 12.0 mole l⁻¹ \leq $\rho_{\text{max}} \leq 16.0$ mole l⁻¹ resulted in a best fit with the parameters in Table 3. These curves are shown together with the experimental data in Fig.3. Note that the curves do not fit the data well at low densities. The vertical bars, however, indicate the variation in the polarizability which could result from ±0.1% variation in density. The slight oscillatory behaviour of the isothermal data is believed to be the result of the polynomials used to represent the $P\rho T$ data¹ (see Appendix).

The scatter in our low density data for the various isotherms does not permit us to resolve the temperature

E-4

dependence of B_{ϵ} although the data do suggest that it is small. This is to be expected since the 1/T dependence of B_{ϵ} arises from dipole moments induced in one molecule by multipole moments in the other. The first nonvanishing multipole is the octopole in methane because of its tetrahedral symmetry and octupole effects should be small.

APPENDIX

We discuss briefly the method of obtaining densities from the $P\rho T$ data of Goodwin and Prydz.¹ They have measured the density of methane from the triple point to 300 K at pressures up to about 340 bar. They chose to represent their data by a unique, non-analytic equation of state capable of reproducing the experimental data to reasonable accuracy over the complete region of the state surface investigated. Because of the importance of density in the calculation of the polarizability from dielectric constant measurements, severe demands are made on the representation of the $P\rho T$ data and it was found that the equation of state was not adequate for our analysis. The some what sparse experimental $P\rho T$ data along isotherms were therefore fitted to polynomials of the form

$$P = \rho R \varGamma + \sum_{n} A_n \rho^n$$

and an iterative procedure was then used to calculate the density from the measured temperature and pressure.

Experimental saturated liquid densities were represented by an equation, derived by Goodwin,¹ of the form

$$\frac{(\rho - \rho_c)}{(\rho_t - \rho_c)} = \omega^a \exp[b(1 - \omega^{2/3}) + c(1 - \omega^{4/3}) + d(1 - \omega^2)]$$

where $\omega = (T_c - T)/(T_c - T_t)$, a = 0.36 consistent with scaling theory, and the subscripts c and t refer to the values at the critical and triple points respectively. This equation reproduced the experimental saturated liquid densities to within the accuracy of the data.

The authors wish to express their appreciation to Dr J. F. Ely and Dr J. D. Olson for helpful discussions and assistance with the calculations.

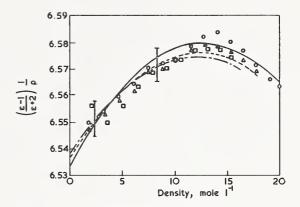


Fig.3 Fit of the molar polarizability data (cm³ mole⁻¹) as a function of density (mole l^{-1}) for \circ 220 K; \diamond 250 K; \Box 280 K; ---- 220 K; ---- 250 K; ---- 280 K (see text) The vertical bars indicate the possible effect of the ±0.1% uncer-

tainty in the densities of reference 1

Table 3. Dielectric virial coefficients of methane

<i>Т,</i> К	A_{ϵ} ,* cm ³ mole	B_{ϵ} , ⁻¹ (cm ³ mol	C_{ϵ} , $(cm^3 mole^{-1})^2$	^p max , 1) ³ mole 1 ⁻¹
220	6.534	7.10	278.4	12.75
250	6.536	6.53	-266.5	12.25
280	6.538	6.07	252.7	12.00

*Values of A e calculated from reference 9

References

- 1 Goodwin, R. D., Prydz, R. J Res NBS 76A (1972) 81
- 2 Younglove, B. A. J Chem Phys 48 (1968) 4181
- 3 Stewart, J. W. J Chem Phys 40 (1964) 3297
- 4 Younglove, B. A. J Res NBS 76A (1972) 37
- Straty, G. C., Younglove, B. A. J Chem Phys 57 (1972) 2255
 See, for example, Kielich, S. Acta Phys Polonica 27 (1965)
- 305; Acta Phys Polonica 28 (1965) 95 and McQuarrie, D. A., Levine, H. B. Physica 31 (1965) 749 and references cited
- 7 Younglove, B. A., Straty, G. C. *Rev Sci Instr* 41 (1970) 1087
- 8 The pressure system has been described in detail. See, for example, Straty, G. C., Prydz, R. Rev Sci Instr 41 (1970) 1087
- 9 Amey, L. A., Cole, R. H. J Chem Phys 40 (1964) 146
- 10 Bose, T. K., Sochanski, J. S., Cole, R. H. J Chem Phys 57 (1972) 3592

APPENDIX F

Measurements of the velocity of sound in saturated and compressed fluid methane are reported. Measurements were made on the saturated liquid from 91 K to 186 K and on the compressed fluid along selected isotherms from 100 K to 300 K at pressures to about 35 MN m⁻². Data were combined with newly available PpT data to obtain the isentropic compressibility and the ratio of the specific heats. Measurements along the higher temperature isotherm were limited to densities greater than about 10 mole l⁻¹ at 300 K increasing to about 14 mole l⁻¹ at 210 K due to the large low pressure sound attenuation in methane.

Velocity of sound in dense fluid methane

G. C. Straty

The increased handling, storage, and transportation of fuel gases in the liquid state has created a need for wide range thermodynamic and transport properties data on these fluids in engineering and development applications. The properties of methane are particularly important since it is the principal constituent of liquefied natural gas (LNG). Sound velocity measurements, when combined with newly available pressure, density, temperature ($P\rho T$) data ^{1,2} offer a convenient and more accurate method of obtaining certain thermodynamic quantities which cannot easily be determined by other means, as well as providing a sensitive check on the $P\rho T$ surface and its derivatives.

The well-known equations

$$W^{2} = (\rho \kappa_{\rm S})^{-1} = \gamma \left(\frac{\partial P}{\partial \rho}\right)_{\rm S}$$

relate the sound velocity W to the density ρ , the isentropic compressibility κ_s , and the ratio of specific heats, γ . This relation has been used together with $P\rho T$ data ^{1,2} to determine κ_s and γ from the measured sound velocities for saturated and compressed fluid methane.

Measurements of the sound velocity for saturated liquid methane have been made from near the triple point to 186 K and on compressed fluid methane along several isotherms from 100 K to 300 K at pressures to about 35 MN m⁻². Measurements, in our apparatus, on the compressed fluid were limited however to minimum pressures corresponding to densities ranging from about 10 mole l⁻¹ at 300 K to about 14 mole l⁻¹ at 210 K because of the large sound attenuation in low pressure gaseous methane.

Experimental

The pulse echo technique was used for the sound velocity measurements. The apparatus was identical to that used previously in this laboratory for measurements on hydrogen,³ oxygen,⁴ and fluorine ⁵ and has been described in detail. Uncertainty in the measured velocities is estimated at about 0.05% at the higher densities increasing.

somewhat in the regions of high attenuation. Measurements were made at frequencies of 1 MHz and 10 MHz with no observable dispersion. Temperatures were measured using a platinum resistance thermometer calibrated by the National Bureau of Standards on the IPTS 1968. Uncertainty in temperature is estimated at 0.005 K at the lower temperatures increasing to 0.030 K at 300 K.⁶ Pressures were measured by referencing to oil pressures derived from an oil dead weight gauge, accurate to within 0.01%, through differential pressure transducers.⁷ The methane used was a commercially available, ultra high purity (99.97%) grade.

Results

The measured sound velocities for the saturated liquid are tabulated along with the density and the calculated compressibility and specific heat ratio in Table 1. Also shown in Table 1, for comparison, are the sound velocities interpolated from the data of Blagoi et al ⁸ and Van Dael et al ⁹ and the sound velocities calculated by Goodwin ² directly from $P_{\rho}T$ and specific heat data.

Sound velocities for the compressed fluid along several isotherms and for the saturated liquid are shown as a function of density in Fig.1 and are tabulated along with the measured pressures and temperatures and the derived values of compressibility and specific heat ratio in Table 2. Van Itterbeek et al ¹⁰ have also made measurements on the compressed liquid at 190 K and below but their data are not directly comparable with the present data without multiple interpolations. Their compressed liquid data however were obtained on the same apparatus as the saturated liquid data of Van Dael et al ⁸ and our agreement with these saturated liquid values is indicative of the overall agreement. No ultrasonic data are available for comparison at temperatures above 190 K.

Densities for the saturated liquid were obtained from the measured temperatures and a correlation for the saturated liquid densities due to Goodwin.² Densities for the compressed fluid and the derivatives necessary for the calculations were obtained from the measured temperatures and pressures and an equation of state for methane also due to Goodwin.²

The uncertainty in the derived isentropic compressibilities is estimated at about $\pm 0.2\%$ due to the combined uncertainty

The author is with the Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302, USA. Received 1 April 1974.

	<i>W</i> , m s ⁻¹						γ
Т, К	Expt	Reference 9	Reference 8	Calc Reference 2	ρ, mole l ⁻¹	κ _s , (G N m ⁻²) ⁻¹	
91.0	1538.1		1530.2		28.121	0.9369	1.525
92.0	1528.7		1522.0	1564	28.038	0.9514	1.530
96.0	1490.6	1491.5	1487.3	1523	27.703	1.013	1.551
100.0	1452.2	1451.4	1442.8	1480	27.364	1.080	1.575
104.0	1413.4	1413.2	1401.5	1437	27.020	1.155	1.601
108.0	1373.8	1374.6	1364.6	1393	26.669	1.238	1.629
112.0	1334.1	1334.7	1352.2	1351	26.310	1.331	1.660
116.0	1294.0	1294.1	1208.7	1308	25.943	1.435	1.693
120.0	1252.9	1253.6	1245.3	1266	25.567	1.553	1.726
124.0	1211.3	1212.6	1207.6	1224	25.181	1.687	1.763
128.0	1169.1	1170.0	1165.2	1181	24.783	1.840	1.801
132.0	1126.0	1227.0	1120.4	1138	24.372	2.017	1.842
136.0	1082.2	1083.0	1079.2	1093	23.947	2,222	1.886
140.0	1037.4	1038.0	1034.7	1047	23.507	2.464	1.933
144.0	991.7	992.4	987.2	999	23.050	2.750	1.986
148.0	944.8	945.3	946.5	951	22.572	3.094	2.045
150.0	921.0	921.4	921.4	927	22,324	3.292	2.079
152.0	896.6	897.2	896.3	902	22.071	3.513	2.114
156.0	846.9	847.6	850.2	852	21.524	4.034	2.195
160.0	795.5	796.0	796.4	802	20.981	4.695	2.295
164.0	742.2	742.5	746.0	749	20.379	5.552	2.423
168.0	686.3	686.7	684.6	695	19.724	6.709	2.590
170.0	657.5	657.5	657.5	667	19.373	7.444	2.698
172.0	627.5	628.2	632.2	637	19.001	8.331	2.824
176.0	564.1	564.8	568.0	570	18.183	10.77	3.168
178.0	530.5	530.8		536	17.725	12.50	3.413
180.0	495.0	495.5		500	17.222	14.77	3.736
182.0	457.7	458.0		462	16.662	17.86	4.195
184.0	417.2	415.8		421	16.022	22.35	4.882
186.0	370.9	371.7		377	15.263	29.68	6.012

Table 1 Velocity of sound W and derived values of the isentropic compressibility κ_s and ratio γ of the heat capacities in saturated liquid methane at temperature T and density ρ

Columns 3, 4 and 5 give values of W from references 9 and 8 and those calculated from PpT data in reference 2

in the experimental densities of $\pm 0.1\%$ ^{1,2} and the equation of state correlation.² The uncertainty in γ is difficult to assess, depending almost entirely on the accuracy of the derivative $(\partial P/\partial \rho)_T$ used to obtain γ from the sound velocity. Goodwin,² however, has shown that his equation of state can be used successfully for the calculation of wide range self-consistent thermodynamic functions involving extensive use of both first and second derivatives of the $P\rho T$ surface, which adds confidence to the accuracy of values of $(\partial P/\partial \rho)_T$ used here. Comparison of the measured sound velocities with those calculated from the equation of state suggests ¹¹ that the uncertainty in γ is probably less than 1.0% at the higher temperatures increasing somewhat for the low temperature, high density liquid where $(\partial P/\partial \rho)_T$ is very large and most difficult to determine accurately from PoT data.

This work was sponsored by the American Gas Association Inc.

References

1 Goodwin, R. D., Prydz, R. J Res NBS 76A (1972) 81

- Goodwin, R. D. 'The thermophysical properties of methane from 90 to 500 K at pressures to 700 bar', NBSIR 73-342 (1973); available from the Cryogenics Division, Institute for Basic Standards, National Bureau of Standards, Boulder, Co 80302
- Younglove, B. A. J Acoust Soc Am 38 (1965) 433
- Straty, G. C., Younglove, B. A. J Chem Thermo 5 (1973) 305
- Straty, G. C., Younglove, B. A. J Chem Phys 58 (1973) 2191
 For a more complete discussion of thermometry and possible source of error, see for example, Prydz, R., Straty, G. C. NBS Technical Note 392 (revised) 1973
- 7 The pressure system has been described in detail. See for example: Straty, G. C., Prydz, R. Rev Sci Instr 41 (1970) 1223
- 8 Blagoi, Yu. P., Butko, A. E., Mikhailenko, S. A., Yakuba, V. V. Zh Fiz Khim 41 (1967) 1699
- 9 Van Dael, A., Van Itterbeek, A., Thoen, J., Cops, A. Physica 31 (1965) 1643
- 10 Van Itterbeek, A., Thoen, J., Cops, A., Van Dael, W Physica 35 (1967) 162
- 11 A complete description of procedures for calculating various thermodynamic quantities from the methane $P\rho T$ data can be found in reference 2. An abbreviated discussion of calculating sound velocities from $P\rho T$ data can be found in reference 4

2

3

4

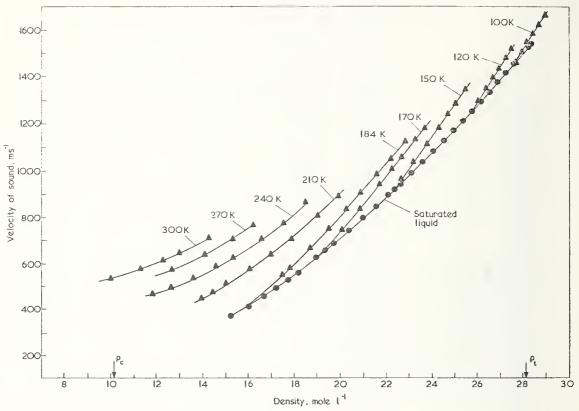


Fig.1 Velocity of sound plotted against density for saturated and compressed fluid methane

Table 2 Velocity of sound W and derived values of the isentropic compressibility κ_s and ratio γ of heat capacities in compressed fluid methane at temperature T and density ρ

	<i>W</i> , m s⁻¹	<i>W</i> , m s ⁻¹			
<i>P,</i> M N m ⁻²	Expt	Calc Reference 2	ρ, mole l ⁻¹	к _s , (G N m⁻²)⁻1	γ
		T = 100.0 K			
33.385 26.077 19.123 13.088 7.244 1.661	1672.6 1630.7 1588.1 1548.5 1507.4 1465.1	1610.3 1589.5 1566.0 1542.4 1516.5 1488.9	28.692 28.430 28.169 27.930 27.686 27.439	0.7766 0.8245 0.8774 0.9307 0.9908 1.058	1.576 1.566 1.561 1.561 1.565 1.572
		<i>T</i> = 120.0 K			
31.161 26.233 19.980 15.149 9.258 4.367	1517.2 1482.8 1436.0 1397.0 1345.2 1290.5	1475.3 1449.5 1413.4 1382.7 1341.3 1302.8	27.225 27.004 26.707 26.460 26.136 25.841	0.9947 1.050 1.132 1.207 1.318 1.448	1.611 1.620 1.635 1.651 1.675 1.681
		<i>T</i> = 150.0 K			
34.530 28.845 23.669 18.433	1339.6 1290.0 1240.3 1184.6	1303.6 1260.0 1216.1 1166.4	25.275 24.923 24.572 24.178	1.374 1.503 1.649 1.837	1.700 1.727 1.758 1.797

2	W, m s ⁻¹		1		γ	
P, M N m ⁻²	Expt	Calc Reference 2	ρ, mole l ⁻¹	κ _s , {G N m ⁻² } ⁻¹		
12.667	1114.5	1103.3	23.682	2.119	1.855	
7.263 3.020	1036.6 962.1	1032.5 964.4	23.132 22.609	2.508 2.979	1.931 2.021	
5.020	502.1		22.005	2.373	2.021	
21 457	1102.0	<i>T</i> = 170.0 K	22 594	1.000	1 770	
31.457 26.994	1183.8 1135.5	1169.0 1124.7	23.584 23.213	1.886 2.082	1.778 1.813	
20.773	1059.2	1053.8	22.619	2.456	1.877	
17.538	1013.9	1011.2	22.263	2.724	1.922	
13.012 7.774	940.7 833.5	941.9 838.6	21.684 20.819	3.249 4.309	2.009 2.183	
4.528	742.9	750.5	20.078	5.624	2.165	
		<i>T</i> = 184.0 K				
34.254	1129.0	1119.8	22.751	2.150	1.794	
27.883	1055.1	1050.5 981.6	22.145	2.528	1.850 1.919	
22.511 17.863	982.8 909.0	981.6	21.538 20.903	2.996 3.609	2.007	
13.839	831.9	834.9	20.221	4.454	2,126	
10.436	751.2	754.2	19.475	5.672	2.301	
7.722 5.770	666.6	669.4	18.661 17.809	7.517	2.561	
5.770 5.301	579.9 552.8	584.5 558.2	17.535	10.41 11.63	2.934 3.091	
		<i>T</i> = 210.0 K				
34.074	987.0	988.0	20.741	3.085	1.843	
27.598	898.0	901.2	19.885	3.887	1.929	
22.264 17.486	809.8 711.5	813.7 714.8	18.981 17.885	5.007 6.884	2.045 2.228	
14.832	643.9	646.2	17.053	8.817	2.405	
12.703	577.5	579.5	16.159	11.56	2.635	
10.944 10.173	511.5 477.0	512.1 477.4	15.124 14.512	15.76 18.88	2.988 3.239	
9.646	451.2	451.3	14.001	21.86	3.481	
		<i>T</i> = 240.0 K				
34.638	863.5	870.2	18.505	4.517	1.871	
29.111 24.656	782.7 707.0	789.0 712.4	17.531 16.520	5.803 7.549	1.964 2.076	
20.885	632.6	636.8	15.395	10.12	2.221	
18.890	588.8	591.9	14.637	12.28	2.330	
16.841	540.2	541.7	13.673	15.62	2.478	
15.186 14.071	498.4 469.8	498.8 4 7 0.0	12.697 11.907	19.77 23.72	2.617 2.698	
		<i>T</i> = 270.0 K				
34.769	771.5	775.8	16.311	6.420	1.867	
30.486	711.2	714.6	15.387	8.010	1.935	
25.972 21.837	641.6 572.8	643.6 573.3	14.167 12.708	10.69 14.95	2.029 2.131	
		<i>T</i> = 300.0 K				
34.838	713.9	713.7	14.331	8.534	1.818	
29.7 32	649.5	648.5	13.065	11.31	1.873	
27.295	618.0	616.7	12.352	13.21	1.896	
24.427 20.983	580.4 537.3	580.1 537.9	11.404 10.094	16.23 21.39	1.904 1.896	

Column 3 gives the value of ${\cal W}$ calculated from ${\it P}\rho{\it T}$ data

APPENDIX G

JOURNAL OF RESEARCH of the National Bureou of Standards – A. Physics and Chemistry Vol. 78A, No. 3, May–June 1974

The Specific Heats, C_{σ} , and C_{ν} , of Compressed and Liquefied Methane*

B. A. Younglove **

Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

(January 30, 1974)

The specific heats, C_{σ} , of saturated liquid methane have been measured at 66 temperatures in the temperature range 95–187 K. The specific heats at constant volume, C_{Γ} , have been measured at 20 densities ranging from 0.8 to 2.8 times the critical density, at temperatures between 91 and 300 K, and at pressures to 330 bar (at 280 *PUT* states in all). The uncertainty of most of the measurements is estimated to be less than 0.5 percent, except near the critical point. These measurements were performed primarily to provide input data for accurate thermodynamic properties data calculations for liquid methane. They are believed to be the most comprehensive specific heat measurements available for pure compressed gaseous and liquid methane.

Key words: Constant volume; heat capacity; liquid; saturated liquid; specific heat; methane.

^{*}This work was carried out at the National Bureau of Standards under the sponsorship of The American Gas Association. **Present address: Cryogenics Division, National Bureau of Standards, Boulder, CO

^{**} Uresent address: Cryogenics Division, National Bureau of Standards, Boulder, CO 80302.

1. Introduction

For the calculation of fluid thermodynamic properties such as internal energy, enthalpy, entropy, and velocity of sound, at temperatures less than the critical point, one needs either the latent heat of vaporization or specific heat along a path traversing the temperatures of interest. Heat capacity measurements are much easier than latent heat measurements and the specific heat measurements are not restricted to the liquid-vapor curve but can be made covering temperatures and densities in the single phase fluid region as well.

For methane, specific heat of the saturated liquid, C_{σ} , was measured from 95 to 187 K, and specific heat at constant volume, C_{Γ} , was measured on 20 isochores with densities ranging from 8 mol/l to 28 mol/l, temperatures from 90 to 300 K, and pressures to 330 bar [1].¹

2. Apparatus

The specific heats were obtained using a constant volume adiabatic calorimeter, as described previously by Goodwin [2]. Basically, it consists of a thin spherical stainless-steel sample holder bearing a heater and platinum resistance thermometer and enclosed in an adiabatic shield. The calorimeter and cryostat are shown in figure 1. The refrigerant was liquid nitrogen.

The versatility of this instrument is demonstrated in that it has been used with very minor modifications for the $C_{\rm F}$ and C_{σ} measurements of hydrogen [3, 4], oxygen [5, 6]. fluorine [7, 8], and in this work on methane. These measurements cover temperatures from 14 to 300 K and pressures to 330 bar.

The thermometer was calibrated by the NBS Temperature Section. Temperatures are on the IPTS-68 scale. The temperature of the adiabatic shield and guard ring are controlled to the sample temperature with difference thermocouples and automatic power regulation. Heat exchange to the sample holder is considered negligible.

The sample used was 99.99 percent methane. Impurities as analyzed by the supplier in ppm were $CO_2 < 10$; O_2 , 4; N_2 , 12. A molecular sieve in an ice bath served to ensure removal of water vapor present in the sample.

^{*}Figures in brackets indicate the literature references at the end of this paper.

3. Procedure

In essence, the specific heat C_{Γ} is calculated from the measured parameters as follows. The total heat capacity is determined as the ratio of the heat input ΔQ to the temperature increase ΔT brought about by applying a very stable power source to a resistor attached to the calorimeter sample holder, for an elapsed time Δt . The heat capacity of the empty sample holder Co is then subtracted off. It, of course, was previously measured in exactly the same way except with the sample space pumped to a vacuum. The difference of these two quantities is the heat capacity of the methane sample. The specific heat is obtained by dividing the heat capacity by the amount of methane, N.

Actually, several corrections are made to the above. Since the sample holder is a thin stainless steel sphere (~ 0.16 mm wall thickness and 5 cm diam), it stretches as the pressure increases. This allows work to be done by the methane due to the increase of the sample volume. This correction [4, 5, 6], developed by Walker [9], ranges from 0.5 to 5 percent of the resulting C_V value. However, it can be made accurately.

Of the three variables, pressure, temperature, and density, only temperature is measured during the measurement of an isochore. The pressure and temperature are measured at filling and the density calculated from the *PVT* surface [10]. The amount of methane, N, is calculated from the volume V(T, P)as previously determined [3, 5]. The density for each C_V measurement is calculated from the filling density after correcting for sample holder expansion and the amount compressed into the filling capillary [6].

In the case of the C_{σ} measurement, the two phase heat capacity (liquid and gas) is first determined as the difference of the total heat capacity (DQ/DT, column 6 of table 1) and the empty heat capacity (CO, column 7) and the result divided by the total amount of sample (C_2 , column 8). Then the effects of the latent heat of vaporization and heat absorbed by the vapor are subtracted [3, 5, 7] to give C_{σ} (column 10). This type of correction is derived by Hoge [11].

The temperature increment, resulting from a constant power input over a time Δt , is evaluated at the middle of the heating interval by extrapolating the temperature drift rates evaluated just before heating and after an equilibrating time has elapsed (about 20 min). Care was taken to reduce the effects of noise on drift rate by taking many (10 to 20) measurements of time and temperature.

TABLE 1. Specific heat of saturated liquid methane, C_{er} or C_{SAT} ; specific heat at constant volume of saturated liquid calculated, C_{N} ; specific heat of the two phase (liquid-vapor) system, C_2 ; heat capacity of the calorimeter (empty) C_0 , and heat capacity of the calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT

	ID	Temp K	Press bar		Delt K	DQ/DT J/K	С" Ј/К	C₂ J/mol · K	Cr J/mol⋅K	C _{sat} J/mol · K
	201	95.402	0.209	27.755	3.657		46.671	54.418	34.274	51.240
		95.846	.219	27.718	5.799			54.252	34.103	54.131
	202		.311	27.450	3.574				34.169	
			.409						34.016	
204 106.891 .673 20.767 5.110 140.924 51.750 55.794 33.941 55.673 403 108.800 .797 20.597 7.236 146.092 52.233 55.348 33.349 55.313 403 108.800 .797 20.597 7.236 144.013 54.022 55.448 33.349 55.313 304 115.165 1.333 20.019 7.386 144.043 54.022 56.414 33.341 36.434 305 121.14 128 25.240 7.444 13.547 54.443 57.048 32.349 35.646 307 125.766 2.830 25.050 5.568 57.89 32.344 32.040 58.174 32.148 58.636 57.89 32.148 58.074 32.148 58.074 32.148 58.074 32.148 58.074 32.148 58.074 32.148 58.074 58.074 58.074 58.074 58.074 58.074 58.074 58.074 58.074			.422							
			.448							
			.673					55.899		
			.758		6.495		52.293			
			.797	20.597	1.230		52.528		33.349	
			1.097		0.273		54.022	50.410	33.478	50.075
306 122.474 2.278 25.327 7.194 153.257 57.561 57.61 37.404 32.862 57.287 207 125.766 2.830 25.005 6.568 151.005 88.636 57.992 32.534 57.645 208 23.299 57.858 27.008 32.239 56.096 296 207 125.766 2.830 25.005 7.297 138.819 60.171 57.992 32.000 58.245 208 132.274 4.209 24.343 6.430 154.477 60.612 58.843 32.162 58.774 1001 132.771 4.326 24.203 5.117 122.552 60.750 62.994 32.148 58.379 202 135.455 5.038 21.007 4.538 137.072 61.512 60.751 62.994 32.148 58.379 202 135.455 5.038 21.007 4.538 137.072 61.512 60.750 12.018 31.499 58.939 202 135.455 5.038 21.007 4.538 137.072 61.512 60.750 12.018 31.499 58.939 202 134.955 5.223 25.752 4.971 125.195 62.513 62.613 31.646 57.788 20.9729 201 30.907 6.722 23.517 4.419 10.1229 63.6106 62.629 30.766 30.579 200 139.970 6.721 23.517 4.349 10.1229 63.6106 62.629 30.767 60.929 205 148.818 9.966 22.457 4.316 143.739 64.800 65.656 30.407 62.035 20.005 144.810 9.9725 22.514 4.321 143.789 64.800 65.526 30.407 62.035 1906 153.157 11.978 21.994 4.229 145.757 65.538 65.157 0.002 30.458 63.598 906 153.157 11.978 21.994 4.229 145.757 65.538 65.157 0.022 30.458 63.598 906 153.157 11.978 21.994 4.229 145.757 65.538 65.157 0.029 30.458 65.246 804 157.043 14.128 21.401 4.180 148.548 66.557 65.292 29.932 65.353 907 157.353 14.12 21.338 4.167 148.73.07 67.648 57.60.20 29.992 65.359 907 157.353 14.312 21.338 4.167 148.73.07 67.648 57.60.20 29.992 65.359 907 157.353 14.212 21.398 4.1167 148.73.07 67.648 30.771 20.92 30.458 65.246 30.907 157.355 14.312 21.338 4.167 148.73.07 67.648 30.771 20.992 65.359 907 157.043 14.026 20.753 44.093 513.123 67.446 6.577 65.73 52.97.93 66.345 70.092 30.518 65.246 30.997 157.355 14.212 21.398 4.107 148.538 66.315 70.092 30.458 65.369 907 157.355 14.212 21.398 4.107 148.73.07 67.648 30.771 42.99.97 65.359 907 157.043 14.128 21.401 4.180 148.548 66.577 65.538 65.72 99.973 65.359 907 157.043 14.128 20.763 4.498 151.231 67.748 97.99 20.13 67.349 97.17 7.738 99.974 77.738 99.779 20.13 4.305 11.13737 67.048 77.99 20.138 67.349 97.197 70.137 67.349 97.1177 70.299 97			1.343						22 011	
			2.002	25.049	7 194				33.041	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				25.240					32.389	
					6.568				32.534	
					7.297					
					6.430					
902135,4555.03824.0074.538137.07261.51260.81331.49958.930903139,0706.44225.5134.476139.22362.72061.57030.98659.698901144.3057.97122.0174.01914.25063.80862.32330.46060.560904144.4058.00922.0054.386141.72863.80162.68930.79760.929902148.8609.72522.5144.316143.80764.88865.50030.23062.005905148.8819.89622.4674.316143.80764.88865.12230.46863.958906153.1571.97821.9244.237146.56665.76365.02230.46865.246904155.54213.26721.6064.941135.23866.34575.02229.51865.335907157.35514.31221.3584.167148.74766.6765.92429.89265.533907157.35514.31221.3584.167148.74766.71670.9230.51867.733908161.18116.70720.8084.095151.12367.48667.29429.82367.733908161.18116.70720.8084.095151.12367.48667.29429.82367.733909163.18618.03620.7164.388163.13367.31567.35229.70367.893 <t< td=""><td></td><td></td><td>4.326</td><td>24.293</td><td>5.117</td><td></td><td>60.750</td><td></td><td>32.148</td><td>58.879</td></t<>			4.326	24.293	5.117		60.750		32.148	58.879
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5.038	24.007	4.538	137.072	61.512		31.499	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1002	137.805	5.723	23.752	4.973	125.195	62.151			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	903									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	801									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					4.386					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					4.316					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				22.224						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				21.969	4.247	1.16.500	05.103	65.022		
				21.92+	4.229				20.409	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				21.000	4.941					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				21.401						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				21.350						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
					4.095					
				20.705	4.000				29.193	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			18 499	20.312	5.111	153 351		68 -02		
			19.556		4.036			68 719	20.716	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				20.199	5 131			69-132		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					4.043			68.838		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					2.738					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	807			19.505	3.963					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	910			19.450	3.949			70.480	29.743	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				19.344	7.335			79.614		74.696
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			23.474	19.336	4.297		69.159	76.862		75.369
808173.18026.09418.7733.890159.05469.67571.69829.57778.540911173.48026.36918.7143.873159.57269.72772.27329.81379.194701173.50526.39218.7095.002141.92869.73181.28429.26278.6781216174.03226.88018.6037.180141.93269.82082.31029.44579.6231009174.42927.25218.5224.167148.47869.88779.93030.55681.3341409175.22828.01218.3554.900161.21370.02173.37.430.06982.1281404176.29529.05118.1255.113162.36770.19874.15830.31284.253809177.02929.78217.9613.811162.72070.31874.32330.60785.4661221177.42030.67017.7603.799145.93870.46184.96729.55286.7901010178.55731.34917.6034.090151.35570.56782.15629.86188.6411200180.61333.55317.0785.604148.81470.89583.92330.42095.0671217181.03434.01816.9636.225149.12570.96189.20230.25196.319703181.64534.70216.7903.668150.56471.05789.49630.45198.					5.020			71.213	30.181	75.575
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								71.376		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		178.557								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				17.078						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				16.963	6.825					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		181.645			3.688	150.564				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					3.940		71.201	86.983		
1201 186.127 40.050 15.236 5.329 158.456 71.742 93.948 32.509 132.153 1012 187.577 41.915 14.530 6.026 151.278 71.957 80.630 16.306 141.359						154.219				113.330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
1210 107.055 41.980 14.499 0.358 160.079 71.965 100.540 30.050 156.489										
	1218	101.033	-11.980	14.499	0.358	160.079	/1.965	100.540	30.050	156.489

The specific heat of the saturated liquid was measured for 66 temperatures. The lowest was 95 K (triple point, 90.68 K) and the highest 187 K (see fig. 2 and table 1). The estimated uncertainty in the measured value of C_{σ} is about 0.5 percent generally but increasing to about 5 percent within a few Kelvin of the critical point. The data of Weibe and Breevort [12] are shown for comparison as the closed circles. Their measurements agree remarkably well with the new data, considering the state of the art at that time.

Figure 3 and table 2 show C_{Γ} as a function of temperature for the various isochores. The dashed line is the locus of C_{Γ} for saturated liquid as extrapolated from the C_{Γ} measurements. The uncertainties in C_{Γ} are the same as for C_{σ} . Densities Q, R, S, and T have uncertainties as large as 5 percent near critical temperature, indicated as T_c on figure 3. Density T is 22 percent less than critical density.

Figure 4 shows C_{Γ} at saturation. The circles are values extrapolated from the C_{Γ} data and the triangles

are computed from C_{σ} data by adding the term $T\left(\frac{\partial P}{\partial T}\right)_{v}$

 $\frac{dV}{dT}$. These derivatives, evaluated analytically from a

representation of the PVT surface [2], introduce the scatter and the lowering of the values from the extrapolated values which have essentially the same accuracy as the measured C_{Γ} values.

Comparison was made with the C_p data of Jones et al. [17] on their 2000 lb/in² (136.7 bar) by interpolation of the C_{1} data and adding the *PVT* contribution. Figure 5 shows the close agreement of the two sets of data. The other curve is calculated from spectroscopic heat capacities together with the *PVT* term above critical temperature, (T_c) . Below the critical temperature, latent heats must also be used. The discontinuity is, of course, at T_c .

ID	Temp K	Press bar	Den mol/l	DT K	DQ/DT J/K	СО J/К	C1 J/mol·K	Cr J/mol • K
2209	200.342	56.917	7.991	7.542	94.477	73.734	0.166	35.351
2209	201.339	58.027	7.991	5.459	94.406	73.865	.167	35.004
2203	201.339	65.217	7.988	7.559	94.152	74.691	.170	33.004
2210		65.562	7.988	7.419	94.152 94.184	74.729	.170	33.153
2204	208.168		7.984	7.554	94.227	75.593	.170	33.141
2211	215.402 222.937	73.451 81.598	7.984	7.511	94.227 94.677	76.439	.175 .182	31.732
2212	222.937	01.090	7.960			76.459	.182	31.046
2205 2206	222.993	81.658 89.583	$7.980 \\ 7.977$	$7.361 \\ 7.387$	94.691	76.445	.182	31.059
	230.373	89.383	7.977		95.264	77.226	.189	30.698
2213 2207	230.453	89.668 97.229	7.977 7.973	7.484	95.130	77.234	.189	30.455
2207	237.534	97.229		7.324	95.819	77.940	.195	30.419
2214	238.128	97.862	7.973	7.382	95.748	77.998	.196	30.198
2208	244.733	104.881	7.970	7.292	96.283	78.619	.202	30.045
2215	245.476	105.669	7.969	7.369	96.374	78.687	.203	30.084
2216	252.815	113.433	7.966	7.332	97.017	79.335	.210	30.067
2218	266.349	127.671	7.959	7.246	97.960	80.436	.222	29.785
1505	195.780	53.853	10.176	6.728	102.498	73.123	.185	39.325
1523	198.095	57.310	10.175	5.257	101.084	73.436	.189	36,999
1521	198.426	57.804	10.174	5,284	101.071	73.480	.189	36.921
1506	202.601	64.048	10.171	6.923	100.060	74.028	.194	34.818
1502	203.142	64.857	10.171	6.470	106.980	74.098	.195	44.032
1524	203.375	65.206	10.171	5.301	100.142	74.128	.196	34.793
1522	203.731	65.739	10.171	5.320	99.881	74.173	.197	34.382
1525	208,704	73.193	10.167	5.334	99.538	74.795	.203	33.078
1523	209.057	73.722	10.167	5.326	99.856	74.838	.204	33.147
1507	209.526	74.426	10.166	6.942	99.491	74.895	.203	32.879
1503	209.853	74.915	10.166	6.955	99.636	74.935	.204	33.020
1526	214.044	81.206	10.164	5.346	99.736	75.434	.211	32.476
1508	216.467	84.845	10.161	6.956	99.479	75,715	.213	31.750
1504	216.813	85.365	10.161	6.945	99.842	75.755	.214	32.185
1509	223.396	95.256	10.157	6.923	99.937	76,489	.223	31.318
1510	230.790	106.373	10.151	6.920	100.066	77.268	.233	30.432
1511	237.756	116.844	10.147	6.901	100.143	77.962	.242	29,998
1512	244.636	127.181	10.142	6.864	100.993	78.610	.251	29.857
1513	251.488	137.466	10.137	6.819	101.457	79.221	.261	29.650
1514	259.403	149.331	10.131	6.782	102.116	79.886	.271	29.632
1515	266.154	159.433	10.126	6.725	102.604	80,421	.280	29,560
1517	282.516	183.843	10.114	6.617	104.067	81.599	.301	29.922
1518	289.146	193.696	10.110	6.625	104.538	82.032	.310	29.964
1519	295.822	203.596	10.105	6.556	105.109	82.444	.319	30.170
219	195.627	55.318	11.838	9.621	105.430	73.102	.204	37.165
219	195.627	57.055	11.839	7.285	104.709	73.232	.204	36.177
223	203.924	57.055 70.601	11.839	7.393		74.198	.209	33.223
224		0.001 91 550	11.832		103.134	74.198 75.118	.220	33.223 31.903
225	211.370	84.550	11.620	7.394	102.930	13.118	.212	31,148
205	215.626	92.584 98.572	11.822 11.819	8.023	102.779	75.618 75.979	.250	30,922
226	218.787	98.572 107.819	11.819	7.411	102.950	76 517	.265	30,922
206	223.653		11.815	8.022	103.224	76.517	.205	
227	226.191	112.653	11.813	7.374	103.274	76,789	.270	30.347

TABLE 2. Specific heat at constant volume, C_v , of methane; heat correction for calorimeter expansion Cl, heat capacity of empty calorimeter, CO, total heat capacity of calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT

TABLE 2. Specific heat at constant volume, C_v , of methane; heat correction for calorimeter expansion Cl. heat capacity of empty calorimeter, CO, total heat capacity of calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT-Continued

ID	Temp	Press	Den	DT	DQ/DT	C0	C1	Cr
	K	bar	mol/l	K	Ĵ/K	J/K	J/mol · K	$J/mol \cdot K$
207	231.675	123.117	11.808	7.947	103.685	77.359	0.279	30.155
228	233.566	126.729	11.806	7.338	103.858	77.549	283	30.130
208	239.625	138.319	11.801	7.906	104.383	78.141	.283 .293	30.043
229	204.923	140.803	11.800	7.311	104.171	78 264	.296	29.653
209	248.734	155.761	11.792	7.882	104.855	78.264 78.979	.309	29.604
210	257.453	172.459	11.784	9.556	105.552	79.726	.323	29.534
211	266.957	190.643	11.775	9.438	106.408	80.482	.339	29.632
212	276.534	208.934	11.766	9.341	107.186	81.187	.355	29.702
212	296.364	246.647	11.748	9.271	108.845	82.476	.388	30.098
214	290.304							
301	204.751	77.746	13.088	7.244	105.556	74.303	.264	32.393
302	212.016	93.924	13.080	7.229	105.596	75.195	.282 .299	31.485
303	219.265	110.242	13.073	7.214	105.859	76.033	.299	30.868
304	226.524	126.697	13.065	7.179	106.293	76.824	.315	30.478
305	234.072	143.881	13.057	7.166	106.784	77.600	.331	30.165
306	241.245	160.256	13.050	7.146	107.321	78.295	.347	29.985
307	248.387	176.580	13.042	7.078	107.969	78.948	.362	29.965
309	262.566	208.987	13.026	7.007	109.144	$80.140 \\ 81.204$.391	29.918
310	276.780	241.398	13.011	6.874	110.608	81.204	.419	30.309
313	276.944	241.772	13.010	6.908	110.434	81.216	.419	30.114
314	283.783	257.318	13.003	6.854	110.947	81.684	.433	30.147
311	290.591	272.756	12.995	6.847	111.617	82.124	.446	30.375
312	297.427	288.216	12.987	6.788	112.344	82.540	.460	30.687
501	191.539	59 998	14.388	7.056	108.595	72.531	.268	34.042
528	195.039	$52.228 \\ 61.226$	14.383	8.352	107.756	73.021	.281	32.765
502	198.638	70.602	14.379	7.127	107.453	73.509	.295	32.000
520	200.323	75.028	14.377	8.432	107.534	73.732	.299	31.860
503	205.816	89.577	14.371	7.131	107.532	74.437	.315	31.171
521	208.733	97.366	14.366	8.358	107.655	74.799	.321	30.940
504	212.954	108.696	14.362	7.102	107.804	75.306	.334	30.585
522	217.103	119.884	14.356	8.319	107.990	75.788	.347	30.292
505	220.066	127.901	14.353	7.075	108.187	76.123 76.704	.356	30.152
523	225.394	142.360	14.346	8,245	108.656	76.704	.369	30.032
506	227.167	147.180	14.344	7.039	108.887	76.892	.375	30.067
524	234.287	166.574	14.334	8.234	109.380	77.621	.392	29.826
507	234.417	166.928	14.335	6.969	109.372	77.634	.392 .393	29.805
508	241.372	185.902	14.326	6.927	109.898	78.307	.411	29.647
525	242.493	188.962	14.324	8.159	109.939	78.412	.412	29.585
509	248.293	204.791	14.317	6.910	110.378	78.940	.428	29.485
510	255.197	223.622	14.308	6.870	111.009	79.538	.445	29.500
511	262.143	242.543	14.299	6.820	111.759	80.107	.461	29.656
514	265.537	251.779	14.294	7.970	112.059	80.373	.468	29.631
512	269.538	262.650	14.289	7,971	112.383	80.678	.478	29.689
515	273.495	273.386	14.284	7.928	112.890	80.969	.487	29.885
513	277.494	284.223	$14.284 \\ 14.278$	7.914	113.176	81.255	.497	29.877
516	281.439	294.892	14.273	7.875	113.651	81.527	.506	30.061
517	289.349	316.229	14.262	7.793	114.710	82.045	.524	30.557

TABLE 2. Specific heat at constant volume, C_v , of methane; heat correction for calorimeter expansion Cl, heat capacity of empty calorimeter, CO, total heat capacity of calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT – Continued

ID	Temp	Press	Den	DT	DQIDT	CO	C1	Cr
	К	bar	mol/l	K	Ĵ/K	J/K	J/mol · K	J/mol·K
701	187.947	51.088	16.104	7.172	110.110	72.012	0.350	32.038
707	188.669	53.498	16.103	6.957	110.164	72.118	.353	31,990
721	191.577	63.245	16.098	6.895	110.072	72.537	.367	31.543
702	195.118	75.188	16.093	7.178	110.019	73.032	.378	31.066
708	195.637	76.943	16.092	6.947	110.062	73.103	.380	31.040
720	199.140	88.833	16.087	6.859	110.111	73.576	.390	30.670
703	202.277	99.525	16.082	7.135	110.530	73.987	.397	30.670
709	202.632	100.738	16.082	6.943	110.308	74.032	.399	30.441
704	209.408	123.943	16.071	7.112	110.909	74.881	.426	30.204
710	209.569	124.495	16.071	6.933	110.994	74.901	.427	30.258
711	216.494	148.306	16.060	6.873	111.429	75.718	.450	29.911
705	216.509	148.360	16.060	7.078	111.388	75.720	.450	29.875
712	223.352	171.937	16.049	ó.816	112.095	76.484	.430	29.805
706	223.900	173.825	16.048	7.007	112.128	76.544	.473	29.780
713	230.437	196.359	16.038	6 821	112.675	77.232	.494	29.639
714	237.251	219.833	16.027	6.824 6.791 6.758	113.485	77.913	.515	29.729
715	244.048	243.213	16.016	6 758	113.994	78.556	.536	29.594
716	250.777	266.302	16.005	6.660	114.660	79.159	.557	29.627
717	257.424	289.044	15.994	6.627	115.322	79.724	.577	29.689
718	264.035	311.587	15.983	6.571	116.177	80.256	.597	29.944
719	270.623	333.970	15.972	6.544	116.590	80.759	.616	29.849
119	270.025	333.910	15.912	0.011	110.370	00.157	.010	27.047
1601	185.501	42.477	16.038	2.172	110.226	71.648	.337	32.608
1602	187.587	49.323	16.035	2.006	110.069	71.959	.348	32.198-
1603	189.591	55.934	16.032	2.009	109.944	72.252	.358	31.832
1604	191.595	62.582	16.029	2.004	110.119	72.539	.361	31.732
1618	192.871	66.824	16.024	6.135	109.928	72.719	.367	31.410
1605	193.605	69.272	16.026	2.010	109.753	72.822	.377	31.163
1606	195.615	75.989	16.023	2.012	109.895	73.100	.383	31.041
1607	197.622	82.719	16.020	2.003	110.311	73.373	.389	31.157
1608	199.628	89.464	16.017	2.005	110.203	73.640	.396	30.831
1619	200.031	90.821	16.011	8.252	110.152	73.693	.391	30.746
1620	209.230	121.946	15.996	10.164	110.765	74.859	.419	30.246
1609	217.884	151.399	15.986	6.097	111.290	75.877	.452	29.793
1611	223.224	169.616	15.977	6.069	111.946	76.470	.469	29.830
1610	223.903	171.930	15.976	6.052	112.026	76.544	.471	29.834
1622	229.421	190.764	15.964	10.032	112.633	77.128	.469 .471 .484	29.812
1612	229.453	190.871	15.967	6.063	112,588	77.131	-438	29,795
1623	239.424	224.878	15.948	9.937	113.475	78.122	.515	29.681
1613	241.503	231.959	15.948	5.956	113.763	78.319	.525	29.748
1614	247.521	252.433	15.939	5.898	114.298	78.871	.544	29.715
1615	253.443	272.535	15,929	5.912	114.868	79.389	.562	29.742
1616	259.333	292.473	15.919	5.842	115.529	79.880	.579	29.869
1617	265.198	312.270	15.910	5.849	116.001	80.347	.597	29.856

TABLE 2. Specific heat at constant volume, Cy, of methane; heat correction for calorimeter expansion Cl, heat capacity of empty calorimeter.
CO, total heat capacity of calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT –
Continued

ID	Temp	Press	Den	DT	DQ/DT	CO	CI	Cr
1D	K	bar	mol/l	K	J/K	J/K	J/mol · K	J/mol·K
1309	184.764	45,449	16.723	5.354	110.741	71.537	0.381	31.721
1301	187.826	56.698	16.717	6.932	110.769	71.994	.394	31.357
1310	190.103	65.099	16.714	5.347	110.862	72.326	.406	31.150
1302	194.733	82.255	16.706	6.892	110,968	72.979	.423	30.685
1311	195.445	84.904	16.706	5.344	111.063	73.077	.427	30.679
1303	201,094	105.956	16.696	5.855	111.252	73.833	.446	30.196
1323	202.937	112.841	16.693	6.031	111.551	74.072	.453	30.239
1312	206.062	124.532	16.688	5.287	111.919	74.468	.465	30.204
1304	206.122	124.756	16.689	4.249	111.707	74.475	.466	30.023
1324	208.680	134.336	16.683	5.477	112.228	74.792	.473	30.184
1305	210.401	140.788	16.681	4.330	112.079	75.001	.481	29.882
1313	211.348	144.339	16.679	5.286	112.322	75.115	.483	29.987
1325	214.143	154.818	16.674	5,464	112.494	75.446	.492	29.847
1306	215.024	158.123	16.673	4.934	112.592	75.549	.496	29.840
1314	216.658	164.252	16.670	5.219	112.889	75.737	.501	29.924
1326	219.582	175.218	16.665	5.433	112.992	76.069	.511	29.727
1327	225.003	195.545	16.655	5.423	113.635	76.662	.530	29.749
1317	232.337	223.009	16.643	5.178	114.228	77.426	.555	29.585
1318	237.657	242.891	16.633	5.448	114.856	77.952	.572	29.651
1319	243.097	263.174	16.624	5.401	115.579	78.468	.590	29.802
1320	248.519	283.339	16.614	5.387	115.951	78.960	.608	29.686
1321	253.921	303.370	16.604	5.359	116.619	79.430	.626	29.831
1322	259.304	323.264	16.595	5.339	117.189	79.878	.644	29.913
411	187.325	58.469	17.007	8.019	111.229	71.920	.416	31.221
401	193.924	83,993	16.997	6.900	111.328	72.867	.413	30.513
406	196.587	94,337	16.992	7.437	111.563	73.233	.452	30.399
413	203.953	123,025	16.978	7.970	112.216	74.202	.478	30.119
414	211.983	154.390	16.964	7.898	113.134	75.192	.507	30.033
415	219.901	185.282	16.950	7.850	113.769	76.104	.535	29.782
416	227.768	215.952	16.936	7.807	114,550	76.955	.562	29.698
417	235.598	246.397	16.922	7.735	115.435	77.751	.590	29.743
418	245.293	283.931	16.904	7.650	116.261	78.670	.623	29.635
419	252.926	313.338	16.890	7.598	117.007	79.345	.649	29.667
1801	178,581	37.972	18.086	3.069	112.484	70.571	.469	31.280
1802	181.649	51.836	18.080	3.085	112.625	71.057	.495	30.991
1802	186.224	72.545	18.068	6.089	112.813	71.756	.503	30.598
1804	192.299	100.083	18.056	6.060	112.015	72.639	.505	30.398
1805	198.354	127,540	18.044	6.039	113.922	73.471	.554	30.090
1806	204.379	154.828	18.032	6.010	113.722	74.256	.578	29.958
1807	210.370	181.915	18.019	5.964	115.132	74.993	.602	29.803
1808	216.641	210.187	18.006	5.923	115.821	75.735	.627	29.741
1809	222.620	237.053	17.994	5.886	116.615	76.404	.651	29.812
1810	228.488	263.318	17.982	5,854	117.179	77.031	.674	29.742
1811	234,304	289.242	17.970	5.825	117.723	77.623	.697	29.683
1812	240,990	318.901	17.955	5.797	118.614	78.271	.723	29.841
		0.01.01		0.1.2.1		10.211		27.011

TABLE 2. Specific heat at constant volume, C_v , of methane; heat correction for calorimeter expansion Cl, heat capacity of empty calorimeter, CO, total heat capacity of calorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT - Continued

1D	Temp	Press	Den	DT	DQ/DT	CO	C1	Cr		
	K	bar	mol/l	K	J/K	J/K	J/mol · K	J/mol · K		
1709	172.603	40.302	19.500	6.087	114.035	69.577	0.596	30.637		
1710	178.550	73.409	19.436	6.101	114.965	70.566	.608	30.586		
1701	181.613	90.419	19.479	6.082	115.092	71.052	.636			
1701	101.015	107.182	19.479	0.002	115.515	71.517	.0.30	30.306		
1711	184.637	107.162	19.472	6.065	115.515	(1.517	.650	50.262		
1702	187.628	123.725	19.465	6.054	115.740	71.965	.663	30.094		
1712	190.680	140.564	19.457	6.039	116.187	72.408	.676	30.082		
1703	193.640	156.857	19.450	6.008	116.537	72.827	.690	30.021		
1713	196.693	173.622	19.443	5.997	116.917	73.247	.704	29.980		
1704	199.616	189.630	19.435	5.980	117.239	73.639	.717	29.918		
1714	202.661	206.260	19.428	5.946	117.740	74.036	.731	29.976		
1705	205.568	222.086	19.421	5.941	117.875	74.406	.745	29.798		
1715	208.615	238.633	19.413	5.927	118.353	74.406 74.784	.759	29.854		
1706	211.480	254.140	19.406	5.895	118.705	75.131	.772	29.811		
1716	214.522	270.555	19.398	5.886	118.998	75.490	.787	29.783		
1707	217.573	286.970	19.391	5.857	119.326	75.842	.801	29.752		
1717	220.387	302.058	19.384	5.842	119.782	76.158	.814	29.837		
1708	223.411	318.216	19.376	5.818	120.066	76.491	.829	29.789		
1706	220.411	510.210	19.570	5.010	120.000	10.491	.029	29.109		
807	161.140	39.441	21.313	5.723	116.134	67.478	.746	30.544		
801	165.189	68.515	21.010	6.791	116.981	68.251	.772	30.565		
808	166.828	80.226	21.299 21.296	5.647	117.232	68.554	.798	30.507		
802	171.921	116.429	21.279	6.676	118.171	69,459	.833	30.495		
802	172.488	120.439	21.279	5.633	118.018	69.557	.831			
	172,400	120.439	21.279	5.566	110.010	70.403	.859	30.336		
810	178.091	159.906	21.262	5.500	118.950	70.491	.639	30.307		
803	178.582	163.345	21.258	6.640	118.980	70.571	.859	30.275		
811	183.640	198-640	21.244	5.532	119.742	71.365	.890	30.224		
804	185.182	209.346	21.238 21.227	6.587	119,938	71.600	.896	30.193		
812	189.153	236.787	21.227	5,487	120.631	72.188	.921	30.236		
805	191.734	254.532	21.218	6.521	120.927	72.559	.933	30.175		
813	194.626	274.322	21.210	5.456	121.445	72.964	.953	30.229		
806	198.229	298.849	21.197	6.467	121.824	73.454	.971	30.139		
814	200.078	311.376	21.193	5.439	122.044	73.700	.985	30.109		
0100	150.004	00.047	22.12/							
2109	153.984	$30.846 \\ 62.103$	22.126	4.385	117.420	66.016	.818	$31.040 \\ 30.931$		
2101	157.876	62.103	22.113	4.327	118.099	66.827	.845	30,931		
2102	162.200	96.526	22.098	4.314	118.875	67.684	.927	30.800		
2103	166.497	130.432	22.083	4.273	119.755	68.493	.940	30.832		
2104	170.767	163.847	22.069	4.251	120.349	69.259	.951	30.716		
2105	175.011	196.789	22-054	4.233	120.874	69.985	.976	30.567		
2106	179.314	229.914	22.040	4.211	121.698	70.688	1.003	30.615		
2107	183.514	261.982	22.025	4.186	122.103	71.346	1.029	30.432		
2108	187.701	293.689	22.011	4.164	122.834	71.976	1.056	30.468		
1.107	140.000	44.470	22.000	(500						
1406	148.828	44.459	22.933	6.789	118.758	61.875	0.899	31.314		
1407	155.536	104.131	22.907	6.633	120.057	66.344	1.015	31.098		
1402	155.969	107.942	22.906	6.629	120.154	66.435	1.017	31.100		
1401	156.936	116.449	22.900	7.882	120.264	66.635	1.020 1.042	31.042		
1408	162.130	161.805	22.883	6.560	121.193	67.671	1.042	30.958		
1403	162.555	165.498	22.881	6.564	121.222	67.753	1.043	30.925		
1409	168.648	217.963	22.858	6.496	122.400	68.883	1.075	30.923		
1404	169.076	221.618	22.856	6.499	122.320	68.960	1.078	30.826		
1410	175.122	272.905	22.834	6.453	123.385	70.003	1.120	39.798		
1405	175.530	276.347	22.832	6.440	123.626	70.071	1.123	30.898		
								001010		

TABLE 2. Specific heat at constant volume, C_v , of methane; heat correction for calorimeter expansion CL heat capacity of empty calorimeter. CO, total heat capacity of culorimeter (full) $\Delta Q/\Delta T$ or DQ/DT, with temperature, pressure, density, and temperature increment, DT – Continued

Contin								
1D	Temp K	Press bar	Den mol/l	DT K	DQ/DT J/K	C0 J/K	C1 J/mol·K	Cr J/mol·K
2001	139.073	45.399	24.008	1 105	110.044			
2002	143.270	88.569		4.195	119.866	62.486	0.988	31.796
2003	147.448		23.990	4.184	120.961	63.554	1.146	31.655
		130.924	23.972	4.155	121.919	64.557	1.165	31.612
2004	151.599	172.491	23.954	4.133	122.597	65.498	1.191	
2005	155.908	215.104	23.935	4.091	123.742	66.422	1.205	31.437
2006	160.011	255.209	23.917	4.084	124.120		1.205	31.550
2007	164.072	294.445	23,900	4.052	124.977	67.256	1.236	31.258
			20,700	4.002	124.977	68.042	1.268	31.267
901	130.508	34.766	24.785	2.255	121.056	60.095	1 007	
909	131.693	48.379	24.772	5.484	121.045		1.097	32.662
904	132.694	59.842	24.767	5.557		60.443	1.106	32.454
902	134.136	76.278	24.761	4.991	121.433	60.734	1.136	32.479
910	137.159	110.410	24.746		121.346	61.144	1.174	32.166
903	139.337			5.421	122.150	61.977	1.245	32.080
911		134.756	24.735	5.473	122.514	62.555	1.258	31.949
	142.547	170.300	24.720	5.356	123.309	63.375	1.283	31.911
906	143.713	183.112	24.715	5.439	123.701	63.663	1.287	31.964
912	147.886	228.554	24.695	5.336	124.401	64.659	1.303	
907	149.124	241.915	24.689	5.389	124.607	64.943		31.785
913	153.185	285.371	24.670	5.287	125.563		1.313	31.732
908	154.473	299.029	24.664	5.310	126.059	65.844	1.348	31.728
			21.001	3.510	120.059	66.120	1.359	31.839
1201	121.160	64.484	25.872	3.070	122.005	57.118	1.074	00.147
1202	124.223	104.694	25.855	3.048	122.909		1.274	33.145
1203	127.262	144.001	25.838	3.035	123.532	58.138	1.400	32.958
1204	130.274	182,414	25.822	3.013	123.332	59.107	1.420	32.757
			20.022	0.010	124.370	60.025	1.455	32.691
1101	110.867	44.963	26.655	5.194	121.731	53.349	1.309	33.910
1106	111.917	60.514	26.649	5.165	121.991	53.758		
1103	111.855	59.603	26.649	5.215	121.835	53.734	1.354	33.789
1102	116.030	120.523	26.624	5.136	123.377	33.734	1.351	33.724
1107	117.051	135.181	26.618	5.109		55.306	1.503	33.557
1104	122.089	206.386	26.588	5.109	123.607	55.677	1.510	33.478
1108	122.094	206.453		5.057	125.308	57.432	1.546	33.415
1109	127.100	275.451	26.588	5.051	125.107	57.434	1.546	33.311
1105	127.123		26.559	4.981	126.527	59.056	1.574	33.180
1100	127.125	275.769	26.558	5.028	126.592	59.064	1.574	33.210
1004	102.424	48.414	27.388	5 060	101 472			
1001	105.029	90.948		5.069	121.472	49,858	1.475	34.428
1005	107.466	129.912	27.371	5.078	122.552	50.974	1.619	34.267
1002	110.058		27.355	5.035	123.275	51.986	1.613	34.129
1005		170.735	27.338	4.981	124.205	53.030	1.637	34.049
1003	112.446	207.806	27.322	4.941	125.126	53.962	1.646	34.035
	115.142	249.013	27.305	4.914	126.082	54.979	1.652	
1007	117.361	282.491	27.290	4.903	126.695	55.789	1.673	33.999 33.879
1912	92.592	40.074					1.015	22.013
1912		40.274	28.164	3.061	120.491	45.311	1.351	35.326
1907	92.609	40.540	28.164	2.871	120.603	45.319	1.313	35.415
	93.793	62.384	28.155	2.873	121.008	45.899	1.458	
1902	95.465	92.859	28.143	2.842	122.072	46.701		35.186
1913	95.634	95.885	28.141	3.022	122.178	46.780	1.769	35.003
1908	96.675	114.525	28.134	2.824	122.424	40.700	1.765	35.020
1903	98.301	143.313	28.122			47.269	1.769	34.898
1909	99.505	164.435	28.114	2.807	123.144	48.020	1.740	34.913
1904	101.123	192.506		2.821	123.531	48.566	1.745	34.830
1910	102.319		28.102	2.793	124.316	49.288	1.768	34.839
1905		213.085	28.093	2.791	124.573	49.812	1.767	34.710
1903	103.902	210.032	28.032	2.7.19	125.401	50.495	1.755	34.793
	105.104	260.314	28.074	2.766	125.538	51.005	1.766	34.600
1906	106.655	286.252	28.063	2.751	126.307	51.653	1.781	
						01.000	1.(01	34.644

IN

Comparison of $C_{1,A}$ methane, extrapolated to saturation to several other liquids: F_2 [8], O_2 [6], KR [13], Ar [14], and Ne [15] is shown(ii) figure 6. The density is reduced by the critical density. The spectroscopic heat capacity, C_e^o is subtracted in each case. Molar specific heats are independent of reducing parameters [16]. All of the data except that for Ne correlate quite well. Presumably this departure of Ne is a result of its being more of a quantum fluid. H₂ and He also depart markedly from this grouping as shown by Diller [16].

I would like to acknowledge the support of the American Gas Association. R. D. Goodwin's data of the PVT of methane were essential and his computer programs calculating the various functions and derivatives were of great help. I thank D. E. Diller for his numerous contributions. The data shown in figure 6 are from hiswork.

5. References

- The S. I. (international system) unit of pressure is the Pascal (1 Pa = 1 N/m²). The bar is 10⁵ Pa, also 1 atm = 1.01325 × 10⁵. Pa, 1 lb/in²=6894.757 Pa, 1 dyne/cm²=10⁻¹ Pa. Also one mole methane = 16.0430 g, based on the ¹²C scale and the natural isotopic abundance averages: see Remy, H., Chem. Berichte 101, I (1968).
- [2] Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.) 65C, (Eng. and Instr.), No. 4, 231–243 (Oct.-Dec. 1961).
- [3] Younglove, B. A. and Diller, D. E., Cryogenics 2, 1 (1962).
- [4] Younglove, B. A. and Diller. D. E., Cryogenics 6, 1 (1962).
- [5] Goodwin, R. D. and Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.), 73A, (Phys. and Chem.), No. 1, 1–13 (Jan.–Feb. 1969).
- [6] Goodwin, R. D. and Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.), 73A, (Phys. and Chem.), No. 1, 15-24 (Jan.-Feb. 1969).
- [7] Goodwin, R. D. and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.), 74A, (Phys. and Chem.), No. 4, 499-505 (July-Aug. 1970).
- [8] Prydz, R. and Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.). 74A, (Phys. and Chem.), No. 5, 661-665 (Sept.-Oct. 1970).
- [9] Walker, P. A., Dissertation (University of London, 1956).
- [10] Goodwin, R. D. and Prydz, R. J. Res. Nat. Bur. Stand. (U.S.), 76A₂ (Phys. and Chem.), No. 2, 81–101 (Mar.–Apr. 1972).
- [11] Hoge, H. J., J. Res. Nat. Bur. Stand. (U.S.). 36, 111 (1946).
- [12] Weibe, R. and Breevort, M. J., J. Am. Chem. Soc. 52, 622 (1930).
- [13] Gladun, C. and Menzel, F., Cryogenics 10, 210 (1970).
- [14] Gladun, C., Cryogenics 11, 205 (1971).
- [15] Gladun, C., Cryogenics 7, 78 (1967).
- [16] Diller, D. E., Cryogenics 11, 166 (1971).
- [17] Jones, M. L., Jr., Mage, D. T., Faulkner, R. C., Jr., and Katz, D. L., Chem. Eng. Progress Symposium Series 59, 52 (1960).

54A

FIGURE 1. Calorimeter and cryostat.

55A

56A

FIGURE 3. Specific heat at constant volume of methane on isochores versus temperature.

Open and closed circles on altergate isochores are for clarity.

A-28.0 mol/l,	B-27.4 mol/1	C-26.7 mol/l
D-25.8	E = 24.7	F - 24.0
G - 23.0	H - 22.1	I - 21.3
J - 19.5	K-18.0	L = 17.0
M+16.7	N-16.0	P-14.4
Q - 13.1	R-13.1	S-11.8
Ť-79		

57A

FIGURE 4. C, of liquid methane evaluated at the liquid-gas boundary.

Extrapolation of $C_r(\bigcirc)$, calculation from C_{σ} using *PVT* surface (\bigtriangleup).

58A

FIGURE 5. Comparison of methane C_p from Jones, et al. (-O-): to C_p calculated from C_v data, this work (\triangle), and to C_p calculated from PVT data (-).

57A

FIGURE 6. Reduced specific heats versus reduced density for CH₄ (\mathfrak{G}), F₂ (\Diamond), O₂ (Δ), Kr (\Box), Ar (\bigcirc), and Ne (\bigtriangledown).

FIGURE 2. Specific heat of the saturated liquid for methane, this work, O, the measurements of Wiebe and Breevort **3** [12].

APPENDIX H

This survey provides a convenient summary of available data on liquid–vapour equilibria for systems of interest in cryogenics. An annotated bibliography of 392 references has been compiled, current to January 1973. These references have been scanned individually with few exceptions, and cross-indexed by system with notation of extent of data and other significant features. The systems included are those made up of the possible combinations of $H_2(D_2, HD)$, N_2 , O_2 , F_2 , CO, H_2S , $He(He^3)$, Ne, Ar, Kr, Xe, and the saturated and unsaturated hydrocarbons through the C_4s .

Liquid—vapour equilibria research on systems of interest in cryogenics — A survey

A. J. Kidnay, M. J. Hiza, and R. C. Miller

This paper is intended as a survey of the available experimental data for the equilibria between the liquid and vapour phases of fluid mixture systems of interest in cryogenics. These data are described in a number of different ways in the scientific literature, that is, dew- and bubble-points, total vapour pressures of solutions, *K*-values or equilibrium distribution coefficients, solubility of gases in liquids, Henry's constants, liquid–gas equilibria, liquid–vapour, etc. Such terms are simply related to the type of data and method of representation or are intended to clarify the relationship between critical temperatures of the included components. In this paper, the term 'liquid–vapour equilibria' is used collectively for all of the various descriptors.

This survey on liquid-vapour equilibria is only one part of an extensive compilation and evaluation effort on the important equilibrium and thermodynamic properties of low temperature mixtures. These include solid-liquid, solid-vapour, solid-liquid-vapour, liquid-liquid, liquidvapour, and gas-gas phase equilibria, liquid densities, gas or vapour densities, enthalpies, and Joule-Thomson coefficients. A complete annotated bibliography of these properties will be published as a special NBS-Office of Standard Reference Data publication. However, there is an immediate interest in liquid-vapour equilibria data for a number of low temperature systems, such as those related to liquefied natural gas technology. Thus, it seems warranted to make this section available prior to publication of the complete bibliography.

In an earlier paper,¹ a review of research associated with low temperature solid-vapour equilibria was given with emphasis on the fundamental value of such studies. The present survey of low temperature liquid-vapour equilibria is a logical sequel, and many of the fundamental aspects presented in the earlier paper apply here as well. The same molecular species were considered in this survey of liquid-vapour equilibria data; however, the number was expanded to include isotopes of helium and hydrogen, additional hydrocarbon species, and hydrogen sulphide. Thus, the information included here would be valuable to the low temperature physicist as well as to the cryogenic engineer, whose current interest may be in liquefied natural gas technology.

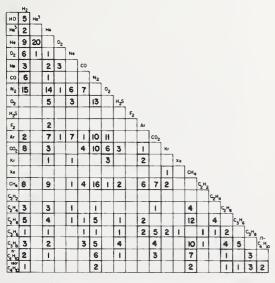
Literature search

In the early phases of the fluid mixtures research programme in the NBS Cryogenics Division, an indexed bibliography of 681 references was prepared current to October 1959.² Included were references to experimental and theoretical work on phenomena and properties of selected pure components and mixtures containing these species. The components of primary interest were: hydrogen, helium, nitrogen, carbon dioxide, carbon monoxide, methane, ethane, and propane. Oxygen, the remaining noble gas species, and other hydrocarbons were considered only when included in the primary systems. From experience in using this early bibliography, it was apparent that the scope was too broad and the number of primary components was too limited. The scope of the present effort was reduced to experimental properties of fluid mixtures only, but for an increased number of primary components. The components included here are: $H_2(D_2, HD)$, N_2, O_2 , F_2 , CO, CO₂, H_2S , He(He-3), Ne, Ar, Kr, Xe, and the saturated and unsaturated hydrocarbons through the $C_A s$. In addition, systems containing components other than those of primary interest (for example, the methanebenzene system) were not included. References in the 1959 bibliography which met these new criteria contributed significantly to the present effort.

A search of the NBS-Cryogenic Data Center computer listing for citations on properties of mixtures containing the subject molecular species resulted in approximately 1 400 citations. These were also screened in accordance with the criteria described above. Though the Cryogenic Data Center personnel expend considerable effort to attain comprehensive coverage of the literature,³ all of the fluid species of interest here were not consistently subjects in their search of the literature. Specifically, the hydrocarbon species other than methane were not adequately covered. On the other hand, since the Cryogenic Data Center operation was begun just before Tech Note 56² was completed, the two sources provide comprehensive coverage for some

AJK is with the Colorado School of Mines, Golden, Colorado, USA, MJH is with the National Bureau of Standards, Institute for Basic Standards, Boulder, Colorado 80302, USA, and RCM is with the University of Wyoming, Laramie, Wyoming, USA. Received 25 May 1973.

of the systems of interest. The deficient areas were the primary objects of the present search.


The following sources of references were used as crosschecks and to remedy the deficiency of coverage discussed above.

- a The monograph of Hala, et al 4
- b The handbook of Katz, et al 5
- c The bibliography of Ruhemann and Harmens⁶
- d The bibliography of Gunn and Mainkar 7
- e The bibliography of Mendelssohn et al ⁸
- f Extensive bibliographies found in several dissertations and papers scanned
- g The files of the NBS Cryogenics Division fluids mixtures project, which have been maintained for the past 14 years
- h Lists of publications of our colleagues who have been actively engaged in fluid mixtures research for a number of years

The resulting list of references was finally updated by searching Chemical Abstracts, section 68 – Phase equilibriums, chemical equilibriums, and solutions, and section 69 – Thermodynamics, and thermal properties, all of 1971 and 1972, and with an issue by issue search of the following periodicals for 1972.

- a AIChE J
- b Can J Chem Eng
- c Ind Eng Chem Fundam
- d J Chem Eng Data
- e J Chem Thermodyn

Finally, more current papers, of which we were aware, were included for the sake of completeness.

Liquid-vapour equilibria for binary systems

Fig.1 Summary of the number of references which report original liquid-vapour equilibria data for each binary system

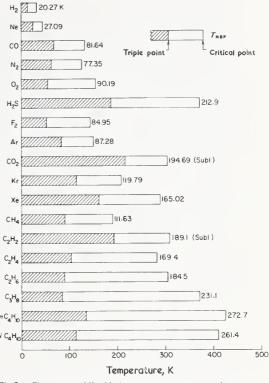


Fig.2 The saturated liquid phase temperature range of representative pure component species included in this survey

Availability of liquid-vapour equilibria data

The bibliography of references on liquid-vapour equilibria data and the tables in which the references are indexed by system are the results of this effort.

The references are indexed in the tables by system with separate tables for binary systems, ternary systems, and systems containing four or more components. For binary systems, the lowest molecular weight component is listed first. The systems are arranged in order of increasing molecular weight of the light component, with systems having non-hydrocarbon light components preceding those having hydrocarbon light components. For ternary and higher systems, components within the mixture are listed in order of increasing molecular weight. The arrangement of the systems follows the same pattern as for binary systems. The bibliography of 392 references is arranged in alphabetical order by author.

Fig.1 provides a superficial summary of the available data for the binary systems. The numbers in the spaces indicate the number of papers reporting data for each system. Dissertations were not included in these totals if the included data were subsequently published in the periodical literature. The one reference for the carbon dioxide– cyclopropane system is included in the total for C_3H_6 under CO_2 . Two references not included are those for the propene 1–butene and propane–isobutene systems.

Fig.2, which portrays the normal liquid range of representative pure component species, is included as an aid to indicate the temperature regions in which liquid—vapour equilibria can exist for given combinations.

Discussion

It is important to emphasize that this survey is intended to include all references containing experimental data without judgement as to the reliability of the results given. Selection of best values for a given system is a complicated process at best, but must begin with a common method of data reduction which is most sensitive to discrepancies in the available data sets. A cursory discussion of the fundamental relationships is given here only to indicate the basis of data reduction or presentation methods. Examples of two such methods of liquid phase data reduction are given which serve to indicate the potential ease or difficulty in best value selection.

The equilibria represented here fall into two distinct categories: (1) equilibria of close-boiling systems in which the included components would be subcritical at the temperature of solution, and (2) equilibria of systems in which both subcritical and supercritical components are included. In either case, the equation of equilibrium is

$$\overline{f_i}(v_{apour}) = \overline{f_i}(liquid)$$
 (1)

where $\overline{f_i}$ is the fugacity of component *i* in the mixture. The fugacity of *i* in the vapour is related to its mole fraction y_i and the pressure of solution π by

$$\overline{f_i}(\text{vapour}) = \overline{\varphi_i} y_i \pi \tag{2}$$

where $\overline{\varphi_i}$ is the fugacity coefficient of *i* in the vapour mixture. The fugacity of *i* in the liquid is related to its mole fraction x_i and a standard state fugacity term S_i° by

$$\overline{f_i}(\text{liquid}) = \gamma_i x_i S_i^{\circ} \tag{3}$$

where γ_i is the activity coefficient of *t* in the liquid mixture. The differences in the two categories of liquid-vapour equilibria are manifested in (3) in the method of normalization of γ and in the choice of the standard state term.

For close-boiling systems, γ for each component is conventionally normalized in the sense of Raoult's law (symmetric convention) such that

$$\gamma_i \to 1 \text{ as } x_i \to 1$$
 (4)

The standard state term is taken as the fugacity for the pure fluid at the temperature and pressure of solution. Thus (3) becomes

$$\overline{f_i}(\text{liquid}) = \gamma_i x_i f_i^{\circ} \tag{5}$$

where

$$f_{.i}^{\circ} = p_i \varphi_i \exp \int_{p_i}^{n} \frac{\nu_i d\pi}{RT}$$
(6)

The terms p_i and φ_i are the pure component vapour pressure and fugacity coefficient, respectively.

It is also common practice to correct activity coefficients at the conditions of the solution to a reference state pressure $\pi^{(\mathbb{R})}$ by the following relationship

$$\gamma_i = \gamma_i^{(\mathbf{R})} \exp \int_{\pi^{(\mathbf{R})}}^{\pi} \frac{\overline{\nu}_i d\pi}{RT}$$
(7)

The excess Gibbs energy, directly related to the activity coefficients by

$$g^{E} = \sum x_{i} R T \ln \gamma_{i}^{(\mathbf{R})}$$
(8)

is often reported in experimental papers, and in a number of cases appears to have been the primary purpose of the investigation.

For systems containing both subcritical and supercritical components, the activity coefficient of the subcritical component is still normalized in the sense of Raoult's law, but it is more convenient to normalize the activity coefficient of the supercritical component in the sense of Henry's law (unsymmetric convention) such that

$$\gamma_i^* \to 1 \text{ as } x_i \to 0 \tag{9}$$

The standard state term is taken as the infinite dilution Henry's law coefficient. Equation 3 then becomes

$$f_j(\text{liquid}) = \gamma_j^* x_j H_{j,i} \tag{10}$$

where

$$H_{j,i} = \lim_{x_j \to 0} \frac{f_j}{x_j} \tag{11}$$

Full details of these relations and their uses are given by Prausnitz.⁹ The brief discussion given here, however, is adequate for an understanding of the data reduction that is encountered in the literature on liquid–vapour equilibria of mixtures, and to some extent the significance of the general relationships which apply. Typical examples of reduced liquid phase data for the two categories of equilibria, taken from the bibliography of references are given in Figs 3 and 4.

Fig.3 is an example of the excess Gibbs energy for a closeboiling system, nH2-Ne, derived from the data of two different investigations. Since this system also exhibits liquid phase separation, the data were taken from the region of complete liquid phase miscibility. This is also an example of excellent agreement between two different sets of data, which unfortunately is not the general case. Fig.4 is an example of a Henry's law reduction of data from two different investigations for a system, nH2-Ar, containing a supercritical component. This is also an example of discordant results for which critical selection becomes extremely difficult without additional information on this particular mixture. In this case pressure has been used rather than fugacity, which is quite common. Though the data have not been reduced in the true sense of Henry's law, the infinite dilution intercepts are for practical purposes the same as the Henry's constant.

Critical evaluation of the data for a given system also will require knowledge of the best available pure fluid properties which are an inherent part of the fundamental relations discussed above. The importance of thermodynamically consistent vapour pressure data was specifically emphasized

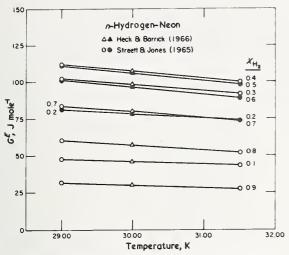


Fig.3 Excess Gibbs energy for the nH₂-Ne system as determined by Duncan and Hiza (1972) from the data of the two investigations indicated

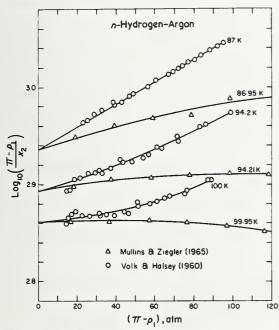


Fig.4 Gas solubility data from two investigations for the nH_2 -Ar system as reduced in the sense of Henry's law by Mullins and Ziegler (1965)

in the review of solid-vapour equilibria research,¹ and selected references were included.

A similar list of vapour pressure references for the entire liquid region of each fluid has not been included as part of this liquid-vapour equilibria survey. However, it is worth noting several non-periodical sources of vapour pressure values and citations which are quite useful. The references to the work of W. T. Ziegler et al given in reference 1 include calculated values of vapour pressure up to the normal boiling point for most of the fluids of interest here, as well as providing a review of the available properties of the substance considered. A brief survey of vapour pressure data for the hydrocarbons not included in those references are given in an earlier NBS Technical Note of Ziegler.¹⁰ Also, the bibliography of Olien and Hall ¹¹ is a valuable source of vapour pressure references for methane and the non-hydrocarbon fluids. These may still be the best available sources of vapour pressure values and citations for most of the fluids in the regions covered, but some have been definitely out-dated in part by new precise experimental measurements. Notably, the new vapour pressure measurements of Prydz and Goodwin ¹² on methane cover the entire liquid range, and are considered by the present authors to be the best values currently available for this fluid. Nevertheless, in addition to the above sources, an examination of the literature from 1964 to the present would provide a fairly complete list of vapour pressure data references.

It is hoped that this survey of experimental liquid-vapour equilibria data for fluid mixtures of cryogenic interest includes all of the significant experimental research done prior to January 1972 and most of that done between January 1972 and January 1973. Literature searches, however, seem to approach the intended objective asymptotically. Therefore, we would welcome correspondence from those who are aware of appropriate research papers which do not appear in this survey.

The authors wish to express thanks to H. J. White Jr for his useful suggestions and discussions and to the Office of Standard Reference Data of the National Bureau of Standards for financial support. The contribution of both past and present staff members of the Cryogenic Data Center, and especially that of N. A. Olien, is gratefully acknowledged. A special acknowledgement is due to Mrs M. F. Birchfield for her painstaking typing and assistance in editing of the bibliography and tables, without which this survey would not have been possible.

References

- Hiza, M. J. 'Solid-vapour equilibria research on systems of interest in cryogenics', Cryogenics 10 (1970) 106
- 2 Flynn, T. M. 'A bibliography of the physical equilibria and related properties of some cryogenic systems', NBS Tech Note No 56 (May 1960)
- 3 Olien, N. A. 'The Cryogenic Data Center, an information source in the field of cryogenics', *Cryogenics* 11 (1971) 11
- 4 Hala, E., Pick, J., Fried, V., Vilim, O. Vapour-Liquid Equilibrium (Pergamon Press, 1958)
- 5 Katz, D. L., Cornell, D., Kobayashi, R., Poettmann, F. H., Vary, J. A., Elenbaas, J. R., Weinaug, C. F. Handbook of Natural Gas Engineering (McGraw-Hill, 1959)
- 6 Ruhemann, M., Harmens, A. 'Review Series No 4. Bibliography of vapour-liquid equilibrium of low boiling mixtures and notes on K-value correlations', *The Chem* Eng (Nov 1967)
- 7 Gunn, R. D., Mainkar, S. V. 'Bibliography of data sources for low temperature vapor-liquid equilibria in non-absorber oil systems', Nat Gas Proc Assoc Res Rept RR-1, Project No 692-A, Univ Texas, Austin (1971)
- 8 Mendelssohn, K., Scott, R. B., Weil, L. A Bibliography of Low Temperature Engineering and Research (a supplement to Cryogenics) 1944-1960 (Heywood-Temple, 1961)
- 9 Prausnitz, J. M. Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice-Hall, NJ, 1969)
- 10 Ziegler, W. T. 'The vapor pressures of some hydrocarbons in the liquid and solid state at low temperatures', NBS Tech Note No 4 (1959)
- 11 Olien, N. A., Hall, L. A. 'A bibliography of experimental saturation properties of the cryogenic fluids', NBS Tech Note No 309 (1965)
- 12 Prydz, R., Goodwin, R. D. 'Experimental melting and vapor pressures of methane', J Chem Thermodyn 4 (1972) 127

Liquid-vapour equilibria for binary systems

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Hydrogen-helium 3	22-28	1-16	Hiza (1972)	
Hydrogen—helium 3	17-24	0—9	Matyash, Mank, Starkov (1966)	Pressures given as He ³ pressure
Hydrogen—hydrogen deuteride	17-18	<1	Hoge, Arnold (1951)	
Hydrogen—hydrogen deuteride	20	1	Karwat (1960)	
Hydrogen-hydrogen deuteride	19-27	0-4	Newman (1954)	Graphs only
Hydrogen—hydrogen deuteride	18—28	1-4	Newman, Jackson (1958)	
Hydrogen-hydrogen deuteride	18-32	0.1-11	Trevino (1956)	Graphs only
Hydrogen-helium 4	14-16	1-16	Greene (1966)	Normal and para hydrogen, bubble-point
Hydrogen—helium 4	14-16	1-16	Greene, Sonntag (1968)	Normal and para hydrogen bubble-point, graphs only
Hydrogen-helium 4	20-28	1-20	Hiza (1972)	
Hydrogen-helium 4	16-29	2—8	Roellig, Giese (1962)	Pressures given are partial
Hydrogen-helium 4	17, 20, 22	2-58	Smith (1952)	
Hydrogenhelium 4	15-30	26-102	Sneed (1966), Sneed, Sonntag, Van Wylen (1968)	Both normal and para hydrogen, barotropic and critical locus
Hydrogen—helium 4	15—33	2-34	Sonntag, Crain, Streett (1964)	Both normal and para hydrogen, barotropic and critical locus
Hydrogen-helium 4	20-32	2-34	Sonntag, Van Wylen, Crain (1964)	Equilibrium hydrogen
Hydrogen -helium 4	16-33	2-34	Streett (1963), Streett, Sonntag, Van Wylen (1964)	Normal hydrogen
Hydrogen—deuterium	4	-	Bulatova, Kogan, Lazarev (1960)	Qualitative data from x-ray measurements
Hydrogen-deuterium	19—20	<1	Hoge, Arnold (1951)	
Hydrogen—deuterium	19	<1	Lewis, Hanson (1934)	Limited qualitative data graphs only
Hydrogen-deuterium	20-28	0-5	Newman (1954)	Graphs only
Hydrogen-deuterium	18–28	1-4	Newman, Jackson (1958)	
Hydrogen-deuterium	18-30	0.1-8	Trevino (1956)	Graphs only
Hydrogen-neon	26-43	0-26	Heck, Barrick (1966)	Normal hydrogen
Hydrogen-neon	25	<1	Simon (1963b)	Para hydrogen, graphs only
Hydrogen-neon	25-34	0-14	Streett, Jones (1965)	Normal hydrogen
Hydrogen—carbon monoxide	83, 100, 122	21-238	Akers, Eubanks (1960)	Graphs only
Hydrogen—carbon monoxide	32-70	1-50	Dokoupil, Van Soest, * Swenker (1955)	lsobaric data, gas phase only
Hydrogen—carbon monoxide	83, 100, 122	21-238	Eubanks (1956)	Graphs only
Hydrogen—carbon monoxide	78, 83, 90	7—50	Ruhemann, Tsin (1937)	Graphs only
Hydrogen-carbon monoxide	68-88	17-225	Verschoyle (1931)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Hydrogen—carbon monoxide	77–123	10-150	Yorizane, Yoshimura, Masuoka, Toyama (1968)	
lydrogen—nitrogen	83-122	0-170	Akers, Eubanks (1960)	Graphs only
lydrogen—nitrogen	63-113	0-200	Charlseworth, Ruhemann (1965)	Graphs only
lydrogen—nitrogen	25-70	1-50	Dokoupil, Van Soest, Swenker (1955)	lsobaric data, gas phase only
lydrogen—nitrogen	83, 100, 122	21-157	Eubanks (1956)	
lydrogen—nitrogen	79-109	13—175	Gonikberg, Fastovskii, Gurvitsch (1939)	
lydrogen—nitrogen	90, 95	3-45	Maimoni (1956) (1961)	
lydrogen—nitrogen	77	0—8	Matyash, Mank, Starkov (1966)	Graphs only
lydrogen—nitrogen	63-75	5-45	Omar, Dokoupil (1962)	lsobaric data, gas phase only
lydrogen—nitrogen	78, 83, 90	11-50	Ruhemann, Tsin (1937)	Graphs only
lydrogen—nitrogen	79-91	<1	Sister, Sokolov (1940)	
lydrogen—nitrogen	88, 90, 108, 113	0-110	Stekkel, Tsin (1939a)	Graphs only
lydrogen—nitrogen	88, 90, 108, 113	0-110	Stekkel, Tsin (1939b)	Graphs only
lydrogen—nitrogen	58-88	0-225	Verschoyle (1931)	
ydrogen—nitrogen	77, 88	<188	Yorizane (1971)	
lydrogen—nitrogen	77	5-150	Yorizane, Yoshimura, Masuoka, Toyama (1968)	
lydrogen—argon	68-105	20-120	Mullins (1965), Mullins, Ziegler (1965)	
lydrogen—argon	87-140	10-100	Volk, Halsey (1960)	
lydrogen—carbon dioxide	273–298	_	Abdulayev (1939a)	
lydrogen—carbon dioxide	298	78-195	Abdulayev (1939b)	Graphs only
lydrogen—carbon dioxide	222, 273	39—242	Greco, Casale, Negri (1954)	
lydrogen—carbon dioxide	233–298	50-197	Kaminishi, Toriumi (1966)	
ydrogen—carbon dioxide	281, 288	56-106	Mills, Miller (1945)	
lydrogen—carbon dioxide	220-290	11-200	Spano, Heck, Barrick (1968)	
lydrogen—carbon dioxide	273	<370	Yorizane (1971)	
lydrogen—carbon dioxide	273	60-370	Yorizane, Yoshimura, Masuoka (1970)	
lydrogen-methane	117, 144, 172	34-272	Benham (1956), Benham, Katz (1957)	
lydrogen-methane	90-127	31–227	Fastovsky, Gonikberg (1940a, 1940b)	
lydrogen-methane	91	17-205	Freeth, Verschoyle (1931)	
lydrogen—methane	67-117	10-125	Kirk (1964), Kirk, Ziegler (1965)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Hydrogen-methane	158-178	31–78	Levitskaya (1941)	
Hydrogen-methane	158-188	28-83	Likhter, Tikhovovich (1940)	
Hydrogen-methane	107	4-90	Steckel, Tsin (1939a, 1939b)	Graphs only
Hydrogen-methane	103-163	10-150	Yorizane, Yoshimura, Masuoka, Toyama (1968)	
Hydrogen-ethene	80-170	2-150	Hiza, Heck, Kidnay (1968a)	
Hydrogen—ethene	158-188	1-80	Likhter, Tikhonovich (1939)
Hydrogen-ethene	117-255	17-544	Williams, Katz (1954)	
Hydrogen—ethane	144-200	7-136	Cohen, Hipkin, Koppany (1967)	
Hydrogen—ethane	80-190	3–154	Hiza, Heck, Kidnay (1968b)	
Hydrogen-ethane	158–188	31-78	Levitskaya (1941)	
Hydrogen—ethane	139-149	1	Uehara (1932)	
Hydrogen-ethane	103-283	17-544	Williams, Katz (1954)	
Hydrogen-propene	117-297	17-544	Williams, Katz (1954)	
Hydrogen-propane	278-361	27-497	Burriss, Hsu, Reamer, Sage (1953)	
Hydrogen-propane	88 – 348	10-204	Trust (1968), Trust, Kurata (1971)	
Hydrogen-propane	89-297	17-544	Williams, Katz (1954)	
lydrogen- <i>n</i> -butane	144-297	20-544	Aroyan, Katz (1951)	
Hydrogen- <i>n</i> -butane	297-389	22-106	Nelson, Bonnell (1943)	
Hydrogen—isobutane	311-394	34-204	Dean, Tooke (1946)	
Helium 3—helium 4	1-2	-	Abraham, Weinstock, Osbourne (1949)	He ³ –He ⁴ liquid λ temperature only
Helium 3helium 4	1-3	_	Daunt, Heer (1952)	
lelium 3-helium 4	1.5-2.5	<1	Daunt, Tseng (1955)	Graphs only
lelium 3-helium 4	1-3	-	Eselson (1954)	Graphs only
lelium 3-helium 4	1-3	<1	Eselson, Berezryak (1954)	Dew-point measurement
lelium 3-helium 4	1-3	<1	Eselson, Berezryak (19 <mark>56</mark>)	Extensive tabular data
lelium 3—helium 4	1-3	<1	Eselson, Berezryak (1955)	Graphs only
lelium 3—helium 4	1–2	-	Eselson, Kaganov, Lifshits (1957)	2nd order phase transition in He I—He II
Helium 3helium 4	1	-	Eselson, Lazarev, Alekseevskii (1950)	
telium 3-helium 4	2–5	-	Fairbank, Lane, Aldrich, Nier (1947)	
Helium 3—helium 4	2-5	-	Fairbank, Lane, Aldrich, Nier (1948)	
lelium 3-helium 4	1-4	-	Fairbank et al (1948)	Graphs only

System	Temperature range, K	Pressure range, at m	Reference	Remarks
Helium 3-helium 4	1–2	<1	Gigorev, Eselson, Masimov et al (1968)	Data obtained by NMR
Helium 3-helium 4	1–2	<1	Nelson, Band (1952)	Graphs only
Helium 3-helium 4	1-2	<1	Peshkov, Kachinskii (1957)	Dew-point measurement
Helium 3-helium 4	1—3	<1	Sreedhar, Daunt (1960)	
Helium 3—helium 4	0-2	<1	Sydoriak, Roberts (1960)	
Helium 3-helium 4	1–2	<1	Taconis, Bennakker, Nier, Aldrich (1949)	
Helium 3-helium 4	1–2	<1	Wansink, Taconis, Staas (1956)	
Helium 3-helium 4	1–3	<1	Weinstock, Osborne, Abraham (1950)	Graphs only
Helium 3—deuterium	20-30	1-16	Hiza (1972)	
Helium 4-deuterium	20-30	1-20	Hiza (1972)	
Helium—neon	27 -42	3–200	Heck (1968), Heck, Barrick (1967)	
Helium—neon	25–27	651	Knorn (1967)	
Helium—carbon monoxide	77–128	17-136	Sinor, Kurata (1966)	
Helium—nitrogen	83, 113	5–50	Burch (1964)	
Helium—nitrogen	78–122	12—68	Buzyna, Macriss, Ellington (1963)	
Helium—nitrogen	77	14–68	Davis, Rodewald, Kurata (1963)	
Helium—nitrogen	77–126	15–98	Davydov, Budnevich (1971)	
Helium—nitrogen	77—120	14-136	Devaney, Dalton, Meeks (1963)	
Helium—nitrogen	65-125	10-100	Forg, Wirtz (1970)	Graphs only
Helium—nitrogen	78, 90, 109	1-295	Gonikberg, Fastovsky (1940	a)
Helium—nitrogen	68-112	1-215	Kharakhorin (1940)	
Helium—nitrogen	65, 69, 77	14—68	Rodewald (1963), Rodewald Davis, Kurata (1964)	I,
Helium—nitrogen	64—108	5-150	Ruhemann, Fedoritenko (1937)	Graphs only
Helium—nitrogen	67-90	6–26	Skripka, Dykhno (1964)	
Helium—nitrogen	78–122	66-816	Streett (1967)	
Helium—nitrogen	112–162	1 000— 10 000	Streett, Erickson (1972)	
Helium_nitrogen	122-126	34-211	Tully, Devaney, Rhodes (1971)	
Helium—oxygen	78–122	20, 48	Cannon, Robson, English (1968)	Liquid phase only
Helium—oxygen	70—150	10—200	Herring (1964), Herring, Barrick (1965)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Helium—oxygen	77–143	17-136	Sinor, Kurata (1966)	
Helium—oxygen	67-90	6-26	Skripka, Dykhno (1964)	
Helium—oxygen	65-116	<216	Skripka, Lobanova (1971)	
Helium—fluorine	77, 120	0-35	Cannon, Crane (1968)	
Helium—fluorine	78-111	20, 48	Cannon, Robson, English (1968)	Liquid phase only
Helium—argon	84–87	<1	Karasz (1958), Karasz, Halsey (1958)	Graphs only
Helium—argon	68-108	20-120	Mullins (1965), Mullins, Ziegler (1965)	
Helium—argon	93-148	17-136	Sinor, Kurata (1966)	
Helium—argon	91	6-26	Skripka, Dykhno (1964)	
Helium—argon	90-115	196–235	Skripka, Lobanova (1971)	
Helium—argon	91-148	14-680	Streett (1969)	
Helium—argon	98-160	218-4 080	Streett, Hill (1971a)	
Helium—carbon dioxide	253, 273, 293	20–139	Burfield, Richardson, Guereca (1970)	
Helium—carbon dioxide	200, 220	80-144	Liu (1969)	Gas phase only
-lelium—carbon dioxide	220-290	10-200	MacKendrick, Heck, Barrick (1968)	
Helium-krypton	100-150	3-121	Kidney, Miller, Hiza (1971)	
Helium—methane	124-191	3–68	Devaney, Rhodes, Tully (1971)	
Helium-methane	90, 106	30-160	Gonikberg, Fastovsky (1940)ь)
lelium—methane	95-185	5-203	He ck, Hiza (1967)	
lelium—methane	91	13-102	Hiza, Kidnay (1966)	Gas phase only
Helium—methane	91-150	5-170	Kharakhorin (1959a)	
Helium—methane	94-192	68–259	Rhodes, Devaney, Tully (1971)	
Helium—methane	93-188	0—136	Sinor (1965), Sinor, Schindler, Kurata (1966)	
Helium—methane	95–290	136-10 000	Streett, Erickson, Hill (1972)	
Helium—methane	91-124	0—67	Tully, Devaney, Rhodes (1971)	
Helium—ethene	144–228	2048	Cannon, Robson, English (1968)	Liquid phase only
Helium-ethene	<260	<120	Garber (1971)	
Helium—ethene	91 —150	4-130	Hiza, Duncan (1969)	Gas phase only
Helium—ethane	144-228	2048	Cannon, Robson, English (1968)	Liquid phase only
Heli um —ethane	170-290	9-200	Heck (1968)	
Helium-ethane	95-150	4-130	Hiza, Duncan (1969)	Gas phase only

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Helium—ethane	113–273	5–120	Nikitina, Skripka, Gubkina (1970)	
Helium-propene	<260	<120	Garber (1971)	
Helium—propane	172–255	20-48	Cannon, Robson, English (1968)	Liquid phase only
Helium—propane	123-348	0–204	Schindler, Swift, Kurata (1966)	
Helium— <i>n</i> —butane	330-426	10-71	Jones, Kay (1967)	Graphs only
Deuterium-neon	25	<1	Simon (1962)	Graphs only
Deuterium—neon	25	<1	Simon (1963a)	
Deuterium—neon	25-40	1-21	Streett (1968b)	
Deuterium—nitrogen	90, 95	8-67	Maimoni (1961)	
Deuterium—argon	87-120	10-100	Volk, Halsey (1960)	
Neon-nitrogen	83, 113	5-50	Burch (1964)	
Neon—nitrogen	90	8–30	Skripka (1965)	Liquid phase only
Neon-nitrogen	67–90	6-26	Skripka, Dykhno (1964)	
Neon—nitrogen	65-101	85-123	Skripka, Lobanova (1971)	
Neon-nitrogen	66-121	4–70	Streett (1965)	
Neon—nitrogen	66-114	73-217	Streett (1968a)	
Neon—oxygen	67–90	6-26	Skripka, Dykhno (1964)	
Neon-oxygen	64-118	176-206	Skripka, Lobanova (1971)	
Neon—oxygen	63-152	2-340	Streett, Jones (1966)	
Neon—argon	80-104	0-10	Browning (1964)	Phase boundary measure ments, graphs only
Neon—argon	84-88	<1	Karasz (1958), Karasz, Halsey (1958)	Graphs only
Neon—argon	91	6-26	Skripka, Dykhno (1964)	
Neon—argon	90-120	176-206	Skripka, Lobanova (1971)	
Neon—argon	84-130	4-71	Streett (1965)	
Neon—argon	96-130	74–613	Streett (1967)	
Neon—argon	87–94	63-1 020	Streett, Hill (1971b)	
Neon-krypton	100-150	3-106	Miller, Kidnay, Hiza (1972)	
Neon-methane	95-181	20-4 300	Streett, Hill (1971c)	
Neon-ethene	102, 122	7–45	Hiza, Duncan (1969)	Gas phase only
Neon-ethane	112, 130	15-33	Hiza, Duncan (1969)	Gas phase only
Carbon monoxide—nitrogen	68	0.1-0.3	Duncan (1966), Duncan, Staveley (1966)	Liquid phase only
Carbon monoxide—nitrogen	84	1-2	Pool, Saville, Herrington, Shields, Staveley (1962)	Liquid phase only
Carbon monoxide—nitrogen	84	1-2	Sprow, Prausnitz (1966a)	
Carbon monoxide—nitrogen	83-114	2-17	Steckel (1935)	
Carbon monoxide—nitrogen	70-122	0–28	Torocheshnikov (1937)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Carbon monoxide—nitrogen	70–79	0-1	Verschoyle (1931)	
Carbon monoxide	70–122	028	Yushkevich, Torocheshnikov (1936)	
Carbon monoxide—argon	84	0.7-1.3	Duncan (1966), Duncan, Staveley (1966)	Liquid phase only
Carbon monoxide—carbon dioxide	273-298	-	Abdulayev (1939a)	
Carbon monoxide—carbon dioxide	273	200	Abdulayev (1939b)	Graphs only
Carbon monoxidecarbon dioxide	223–283	24-129	Kaminishi, Arai, Saito, Maeda (1968)	
Carbon monoxide—carbon dioxide	223–283	10-130	Kaminishi, Toriumi (1968)	Graphs only
Carbon monoxide—methane	91-124	0-5	Cheung, Wang (1964)	
Carbon monoxidemethane	91	0-2	Mathot, Staveley, Young, Parsonage (1956)	Liquid phase only
Carbon monoxide—methane	91	1-2	Sprow, Prausnitz (1966a)	
Carbon monoxide—methane	114-186	7—48	Toyama, Chappelear, Leland, Kobayashi (1962)	
Carbon monoxide—ethane	173–273	8-116	Trust (1967), Trust, Kurata (1971)	
Carbon monoxide—propene	311	17-41	Widdoes, Katz (1948)	
Carbon monoxide—propane	86-128	0-6	Cheung, Wang (1964)	
Carbon monoxide—propane	148–323	7-136	Trust (1967), Trust, Kurata (1971)	
Carbon monoxide—propane	252-361	10-177	Widdoes, Katz (1 <mark>948</mark>)	
Nitrogen—oxygen	65, 70, 78	0-1	Armstrong, Goldstein, Roberts (1955)	
Nitrogen—oxygen	77–91	1	Baly (1900)	
Nitrogen—oxygen	81-91	1	Cockett (1957)	
Nitrogen—oxygen	79–115	1-10	Din (1960)	
Nitrogen—oxygen	77–125	0-30	Dodge, Dunbar (1927)	
Nitrogen—oxygen	63	0.01-0.12	Duncan (1966), Duncan, Staveley (1966)	Liquid phase compositions only
Nitrogen—oxygen	75, 79	0-1	Inglis (1906)	
Nitrogen—oxygen	132-153	28–56	Kuenen, Verschoyle, Van Urk (1923)	Condensation measure- ments on two mixtures
Nitrogen—oxygen	84	1–2	Pool, Saville, Herrington, Shields, Staveley (1962)	Liquid phase only
Nitrogen—oxygen	77–90	1-2	Sagenkahn, Fink (1944)	
Nitrogen—oxygen	88-90	1	Thorogood, Haselden (1963)	
Nitrogen—oxygen	78	-	Wilhelm, Schneider (1961)	Graph of excess Gibbs free energy, graphs only
Nitrogen—oxygen	78–134	1–26	Wilson, Silverberg, Zellner (1965)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Nitrogen—argon	66 –75	<1	Browning (1964)	Phase boundary determinations, graphs only
Nitrogen—argon	78–103	1-4	Fastovsky, Petrovsky (1956b)	
Nitrogen-argon	74-95	0-2	Holst, Hamburger (1916a)	
Nitrogen—argon	74-95	0-2	Holst, Hamburger (1916b)	
Nitrogen—argon	112	8-15	Miller, Kidnay, Hiza (1973)	
Nitrogen—argon	90-120	124	Narinskii (1966)	
Nitrogen—argon	84	1–2	Pool, Saville, Herrington, Shields, Staveley (1962)	Liquid phase only
Nitrogen—argon	84	1-2	Sprow, Prausnitz (1966a)	
Nitrogen—argon	80-115	1-11	Thorpe (1968)	Graphs only
Nitrogen—argon	72–134	1–26	Wilson, Silverberg, Zellner (1965)	
Nitrogen—carbon dioxide	273–298	-	Abdulayev (1939a)	
Nitrogen—carbon dioxide	273	0-181	Abdulayev (1939b)	Graphs only
Nitrogen—carbon dioxide	233–298	50-125	Kaminishi, Toriumi (1966)	
Nitrogen—carbon dioxide	223, 243, 273	7-100	Kulikov (1969)	Graphs only
Nitrogen—carbon dioxide	273	48-116	Muirbrook (1964), Muirbrook, Prausnitz (1965)	Graphs only
Nitrogen—carbon dioxide	222, 273	41-155	Pollitzer, Strebel (1924)	
Nitrogen—carbon dioxide	140-190	5-200	Smith (1963)	
Nitrogen—carbon dioxide	273	34-117	Yorizane, Yoshimura, Masuoka (1970)	
Nitrogen—carbon dioxide	273	<117	Yorizane (1971)	
Nitrogen—carbon dioxide	218-273	12-137	Zenner, Dana (1963)	
Nitrogen—methane	100-187	7–48	Bloomer, Eakin, Ellington, Gami (1955)	Graphs only
Nitrogen-methane	91-191	1—48	Bloomer, Parent (1952), (1953)	
Nitrogen-methane	129-179	34	Brandt, Stroud (1958)	
Nitrogenmethane	122, 171	3–49	Chang, Lu (1967)	
Nitrogen-methane	92-124	0-4	Cheung, Wang (1964)	
Nitrogen—methane	100-172	1-44	Cines, Roach, Hogan, Roland (1953)	
Nitrogen-methane	79–187	1-48	Ellington, Eakin, Parent et al (1959)	
Nitrogen-methane	90-150	1-16	Fastovsky, Petrovsky (1957)	
Nitrogen-methane	80-180	1-103	Forg, Wirtz (1970)	Graphs only
Nitrogen-methane	84-89	0.9-2.4	Fuks, Bellemans (1967)	Liquid phase only
Nitrogen—methane	77-109	1	McTaggart, Edwards (1919)	
Nitrogen-methane	112	2-13	Miller, Kidnay, Hiza (1973)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Nitrogen-methane	113	_	Skripka et al (1970)	
Nitrogen-methane	91	0-4	Sprow, Prausnitz (1966a)	
Nitrogen-methane	89-133	0-24	Torochesnikov, Levius (1939)	Graphs only
Nitrogen-methane	90	0-1	Vellinger, Pons (1943)	Graphs only
Nitrogen-ethene	144-228	20–48	Cannon, Robson, English (1968)	Liquid phase only
Nitrogen—ethane	144-228	20-48	Cannon, Robson, English (1968)	Liquid phase only
Nitrogen-ethane	122, 171	3-34	Chang, Lu (1967)	
Nitrogen-ethane	93	<1	Cheung, Wang (1964)	
Nitrogen—ethane	101-302	7126	Ellington, Eaking, Parent et al (1959)	
Nitrogen-ethane	114–133	18-40	Yu, Elshayal, Lu (1969)	
Nitrogen-propene	78-91	0-3	Blagoi, Orobinskii (1965)	
Nitrogen-propane	172–255	20-48	Cannon, Robson, English (1968)	Liquid phase only
Nitrogen-propane	92-128	1-6	Cheung, Wang (1964)	
Nitrogen-propane	312-365	41-149	Roof, Baron (1967)	Critical locus measurements
Nitrogen-propane	103–353	0-136	Schindler, Swift, Kurata (1966)	
Nitrogen-propane	90	0-1	Vellinger, Pons (1943)	Graphs only
Nitrogen— <i>n</i> —butane	311-422	35-287	Akers, Atwell, Robinson (1954)	
Nitrogen-n-butane	311	137-284	Lehigh, McKetta (1966)	
Nitrogen-n-butane	311-411	16-231	Roberts, McKetta (1961)	
Nitrogen- <i>n</i> -butane	294—394	17–131	Sage, Budenholzer, Lacey (1940)	
Nitrogen-n-butane	153–273	5-200	Skripka et al (1969)	
Nitrogen-n-butane	273, 283, 293	4, 6, 9, 11	Steinbach, Steinbrecher (1966)	
Nitrogen-isobutane	248-323	0-100	Ryabtsev, Khuchua (1970)	
Nitrogen-isobutane	273, 283, 293	4, 6, 9, 11	Steinbach, Steinbrecher (1966)	
Oxygen-argon	87, 90, 95	1-2	Burbo, Ischkin (1936)	
Oxygen-argon	85-118	110	Burn, Din (1962)	
Oxygen—argon	90-110	13	Clark, Din, Robb (1953)	
Oxygen—argon	87-110	1—7	Din (1953)	
Oxygen-argon	89-96	1-2	Fastovsky, Petrovsky (1955)	
Oxygen—argon	82	<1	Inglis (1906)	
Oxygen—argon	90-120	1-12	Narinskii (1957)	
Oxygen—argon	84, 90	0-1	Pool, Saville, Herrington, Shields, Staveley (1962)	Liquid phase only

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Oxygen—argon	87-97	1–2	Sagenkahn, Fink (1944)	
Oxygen—argon	91, 95	1-2	Wang (1960)	
Oxygen—argon	87-139	1-26	Wilson, Silverberg, Zellner (1965)	
Oxygen—carbon dioxide	224	7–142	Fredenslund, Mollerup, Persson (1972)	
Oxygen—carbon dioxide	223-283	10-130	Fredenslund, Sather (1970)	
Oxygen—carbon dioxide	233-298	50-125	Kaminishi, Toriumi (1966)	
Oxygen—carbon dioxide	282-298	1-2	Keesom (1903)	
Oxygen—carbon dioxide	273	41-116	Muirbrook (1964), Muirbrook, Prausnitz (1965)	
Dxygen—carbon dioxide	218-273	22-147	Zenner, Dana (1963)	
Oxygen—krypton	94—107	1-4	Burch (1966)	
Dxygen-krypton	90-100	1–3	Fastovsky, Gurvich (1939a, b)	
Dxygen-krypton	94—151	0-6	Fastovsky, Petrovsky (1956a)	
Dxygen—methane	93-107	1-4	Hodges, Burch (1967)	
Hydrogen sulphide—carbon lioxide	254-366	20-80	Bierlein, Kay (1953)	
Hydrogen sulphide—carbon lioxide	225-364	7–82	Sobocinski, Kurata (1959)	
Hydrogen sulphide—carbon lioxide	221, 246, 273	-	Steckel (1945)	
Hydrogen sulphide-methane	167-344	0-136	Kohn, Kurata (1958)	
lydrogen sulphide—methane	278–344	11–133	Reamer, Sage, Lacey (1951)	
lydrogen sulphide-ethane	267-355	17-82	Kay, Brice (1953)	
lydrogen sulphide-propene	243, 273, 288	-	Steckel (1945)	
lydrogen sulphide-propane	217-344	1–27	Brewer, Rodewald, Kurata (1961)	
lydrogen sulphide-propane	324-367	27, 34, 41	Gilliland, Scheeline (1940)	
lydrogen sulphide-propane	272-370	1—79	Kay, Rambosek (1953)	
lydrogen sulphide-propane	243, 237, 288	-	Steckel (1945)	
lydrogen sulphide— <i>n</i> —butane	311-408	3—79	Robinson, Hughes, Sondercock (1964)	
Argon—carbon dioxide	233–273	25-131	Kaminishi, Arai, Saito, Maeda (1968)	
Argon-krypton	104, 116	1—9	Davies, Duncan, Saville, Staveley (1967), Duncan (1966)	Liquid phase only
argon-krypton	88	1	Schmidt (1960)	
Argon-methane	116	1-9	Calado, Staveley (1972)	Liquid phase only
vrgon-methane	92-124	0-4	Cheung, Wang (1964)	
Argon-methane	105-126	2-16	Duncan, Hiza (1972)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Methane-n-butane	252-316	10-30	Nederbragt (1938)	
Methane—n—butane	311	65-130	Rigas, Mason, Thodos (1958)	
Methane—n—butane	211-411	2-119	Roberts, Wang, Azarnoosh, McKetta (1962)	
Niethane—n—butane	294-394	2-131	Sage, Hicks, Lacey (1940)	
Methane—n—butane	177	531	Wang, McKetta (1964)	
Methane-isobutane	198–293	5 to critical values	Barsuk, Skripka, Benyaminovich (1970)	
Methane-isobutane	311-378	5-114	Olds, Sage, Lacey (1942)	
Ethyne-propene	295-357	15-62	McCurdy, Katz (1954)	
Ethyne-propane	283-365	15-63	McCurdy, Katz (1945)	
Ethene—ethane	200, 233, 255	1-26	Hanson, Hogan, Ruchlen, Cines (1953)	
Ethene-ethane	169-273	0-40	Kharakhorin (1941)	
Ethene-ethane	169-273	0-41	Kharakhorin (1959b)	
Ethene—ethane	149-196	0-2	Moran (1959)	
Ethene-propene	303, 323	<40	Rozhnov, Dorochinskaya (1969)	
Ethane-propene	243-343	2-50	Lu, Newitt, Ruhemann (1941)	
Ethane-propene	261-344	4-49	McKay, Reamer, Sage, Lacey (1951)	1
Ethane-propane	128–256	0–15	Djordjevich (1968), Djordjevich, Budenholzer (1970)	
Ethane-propane	311-367	13–51	Matschke, Thodos (1962)	
Ethane-propane	255–283	7—27	Price (1957), Price, Kobayashi (1959)	
Ethane-propane	203-273	-	Skripka et al (1970)	
Ethane-n-butane	338, 367, 394	32-55	Mehra, Thodos (1965)	
Ethane—isobutane	203-273	_	Skripka et al (1970)	
Propene-propane	270, 298, 330	4–23	Hanson, Nelson, Hogan, Cines (1952)	
Propene-propane	-	_	Hirata, Hakuta, Onoda (1967)	
Propene-propane	-	-	Hirata, Hakuta (1968)	
Propene-propane	_	22	Mann, Pardee, Smyth (1963)	lsobaric measurement, temperature not measured
Propene-propane	261-361	3-41	Reamer, Sage (1951)	
Propene~I-butene	278-411	1–46	Goff, Farrington, Sage (1950)	
Propene-isobutane	315-397	13-41	Gilliland, Scheeline (1940)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Propane-isobutene	338–402	13–41	Scheeline, Gilliland (1939)	
Propane-n-butane	333-419	15-42	Kay (1940)	
Propane-n-butane	311-411	5-42	Nysewander et al (1940)	
Propane—n—butane	253, 263, 273	-	Skripka et al (1970)	
Propane-isobutane	267-394	1–39	Hipkin (1966)	
Propane-isobutane	340	10—24	Hirata, Suda, Miyashita, Hoshino (1970)	
Propane-isobutane	253, 263, 273	-	Skripka et al (1970)	
n-Butane-isobutane	_	-	Hirata, Suda (1968)	
n–Butane–isobutane	353, 373	11	Yokoyama, Ohe (1971)	
Hydrogen—hydrogen deuteride— deuterium	18–20	<1	Arnold, Hoge (1950)	Measurement of dew-point pressures
Hydrogencarbon monoxide nitrogen	83, 100, 122	21-136	Akers, Eubanks (1960)	
Hydrogen—carbon monoxide— nitrogen	35–66	5-15	Dokoupil, Van Soest, Swenker (1955)	
Hydrogen—carbon monoxide— nitrogen	83, 100, 122	21-136	Eubanks (1956)	
Hydrogen—carbon monoxide— nitrogen	68–88	30-150	Fischer (1938)	Graphs only
Hydrogen—carbon monoxide— nitrogen	78, 83, 90	12—50	Ruhemann, Tsin (1937)	Graphs only
Hydrogen—carbon monoxide— nitrogen	68–88	30-150	Verschoyle (1931)	Graphs only
Hydrogen—carbon monoxide— carbon dioxide	233–283	50-200	Kaminishi, Arai, Saito, Maeda (1968)	
Hydrogen—carbon monoxide— carbon dioxide	233–283	50-200	Kaminishi, Toriumi (1968)	Graphs only
Hydrogen—nitrogen—carbon dioxide	273–293	51-203	Abdulayev (1941)	
Hydrogen—carbon monoxide— propane	`87	32	Stein, Claitor, Geist (1962)	Graphs only
Hydrogen—carbon monoxide— propane	88-348	to 204	Trust (1967)	
Hydrogen—carbon monoxide— propane	88–348	to 204	Trust, Kurata (1971)	
Hydrogen—nitrogen—methane	144	34, 68	Cosway (1958)	
Hydrogen—nitrogen—methane	144, 200	34, 68	Cosway, Katz (1959)	
Hydrogen—nitrogen—methane	90, 108	10-100	Steckel, Tsin (1939a)	
Hydrogen—nitrogen—methane	90, 108	10-100	Steckel, Tsin (1939b)	
Hydrogen—methane—ethene	158-188	30-80	Likhter, Tikhonovich (1940)	Graphs only
Hydrogen-methane-ethane	115-255	2-136	Cohen, Hipkin, Koppany (1967)	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Hydrogen-methane-ethane	144, 200	34, 68	Cosway (1958)	
Hydrogen-methane-ethane	144, 200	34, 68	Cosway, Katz (1959)	
Hydrogen-methane-ethane	158-188	30, 40, 80	Levitskaya (1941)	
Hydrogen-methane-propene	200	34	Benham, Katz (1957)	
Hydrogen-methane-propane	144-255	34, 68	Benham, Katz (1957)	
Helium—neon—nitrogen	83, 113	5-50	Burch (1964)	
Helium—neon—nitrogen	68-78	7—48	Tompkins, Geist (1963)	Graphs only
Helium—nitrogen—methane	76—130	14-136	Boone, Devaney, Stroud (1963)	
Helium—nitrogen—methane	77—164	7–82	Rhodes, Stroud, Tully (1972)	
Helium—nitrogen—propane	273	34-204	Schindler, Swift, Kurata (1966)	
Nitrogen—oxygen—argon	81-88	1	Fastovskii, Petrovskii (1957)	
Nitrogen—oxygen—argon	90-120	1-23	Narinskii (1969)	
Nitrogen—oxygen—argon	81-96	1-2	Sagenkahn, Fink (1944)	
Nitrogen—oxygen—argon	_	-	Weishaupt (1948)	Graphs only
Nitrogen—oxygen—argon	78–137	1–26	Wilson, Silverberg, Zellner (1965)	Graphs only
Nitrogen—oxygen—carbon Jioxide	273	51-104	Muirbrook (1964), Muirbrook, Pr <mark>ausn</mark> itz (1965)	
Nitrogen—oxygen—carbon dioxide	218–273	52-129	Zenner, Dana (1963)	
litrogen—argon—methane	112	3–13	Miller, Kidnay, Hiza (1973)	
litrogen—argon—methane	91	1-4	Sprow, Prausnitz (1966b)	
litrogen—methane—ethane	122, 171	2–28	Chang, Lu (1967)	
litrogen-methane-ethane	144, 200	34, 68	Cosway (1958)	
litrogen-methane-ethane	144, 200	34, 68	Cosway, Katz (1959)	
litrogen-methane-ethane	112	14	Lu, Yu, Poon (1969)	Liquid—liquid—vapour
litrogen-methane-ethane	114-129	15—35	Yu, Elshayal, Lu (1969)	
litrogen-methane-n-butane	311-411	34-204	Roberts (1963)	
litrogen-methane - n-butane	311-411	34-204	Roberts, McKetta (1963)	
litrogen—ethane—propane	87	0-1	Cheung, Wang (1964)	
litrogen—ethane— <i>n</i> —butane	311-411	34–272	Lehigh (1965), Lehigh, McKetta (1966)	
litrogen-propene-propane	77	0-1	Cheung, Wang (1964)	
lydrogen sulphide—carbon lioxide—methane	222, 239	20–48	Hensel, Massoth (1964)	
lydrogen sulphide—carbon lioxide—methane	311	41, 82, 103	Robinson, Bailey (1957)	
ydrogen sulphide-carbon	278, 344	27-109	Robinson, Lorenzo,	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Hydrogen sulphide—methane— 7—butane	244, 269, 311	27-82	Robinson, Saxena (1966)	Graphs only
Hydrogen sulphide—methane— y—butane	2 44, 2 78, 311	27, 54, 82	Saxena, Robinson (1969)	
Argon-methane-ethane	116	4-7	Elshayal, Lu (1971)	
Carbon dioxide—methane— <i>n</i> — outane	244, 269, 311	27-82	Robinson, Saxena (1966)	Graphs only
Carbon dioxide—methane— <i>n</i> — outane	244, 278, 311	27, 54, 82	Saxena, Robinson (1969)	
Carbon dioxide—methane— <i>n</i> — outane	177-311	27-116	Wang, McKetta (1964)	
Carbon dioxide-ethene-propane	-	-	Shearn (1955)	
Carbon dioxide—propene—propan	e 273, 293, 313	10—65	Toyoshima, Yoshimura, Masuoka (1971)	
Nethane—ethene—ethane	169–273	5-50	Guter, Newitt, Ruhemann (1940)	
Nethane-ethene-ethane	159	≤22	Hsi, Lu (1971)	
/ ethan e —ethene—isobutane	311, 344	34, 68	Benedict, Solomon, Ruben (1945)	
Nethane-ethane-propane	144-283	7—88	Price (1957)	
Nethane-ethane-propane	144-283	788	Price, Kobayashi (1959)	
Nethane—ethane—propane	158–213	2-60	Wichterle, Kobayashi (1972c)	
Nethane—ethane—propane	115-143	1	Watanabe, Kuroki, Oguro Saito (1969)	Graphs only
lethaneethane <i>n</i> butane	-	-	Cota, Thodos (1962)	Measurement of critical temperature and pressure
1e th ane—propane— <i>n</i> —butane	311	48-117	Rigas, Mason, Thodos (1959)	
lethane-propane- <i>n</i> -butane	278-378	0-100	Wiese, Jacobs, Sage (1970)	
thyne-ethene-ethane	236, 255, 278	10–32	Hogan, Nelson, Hanson, Cines (1955)	
thyne—ethene—ethane	278, 289	32-52	McCurdy, Katz (1944)	
lydrogen—carbon monoxide— itrogen—oxygen—methane	78, 90	6–78	Torochesnikov, Gurevich (1941)	
lydrogen—carbon monoxide— itrogen—methane	-	-	Torochesnikov, Serenova (1954)	
lydrogen—carbon monoxide— arbon dioxide—propane	273	8–45	Yorizane, Yoshimura, Masuoka (1972)	
lydrogen—carbon monoxide— arbon dioxide— <i>n</i> —butane	273	8–45	Yorizane, Yoshimura, Masuoka (1972)	
lydrogen—nitrogen—methane— thane	144, 200	34, 68	Cosway (1958), Cosway, Katz (1949)	
ydrogen-methane-ethene-	200, 255	34, 68	Benham (1956), Benham,	

System	Temperature range, K	Pressure range, atm	Reference	Remarks
Helium—nitrogen—methane— ethane—propane—butane	123–183	7	Stutzman, Brown (1949)	
Nitrogenmethaneethane propane-n-butane	153-253	28-38	Banks, Haselden (1969)	
Methane—ethane—propane— n—butane	222	14-20	De Priester (1953)	
Methaneethane-propane isobutane	244	14	De Priester (1953)	
Natural gas system	102-255	7-34	Brandt, Stroud, Miller (1961)	
Natural gas system	229-300	34, 68, 101	Buckley, Lightfoot (1941)	
Natural gas system	311-411	34-204	Roberts (1963)	
Natural gas system	311378	34-204	Roberts, McKetta (1963)	
Natural gas system	102-200	7—34	Stroud, Miller, Brandt (1959)	
Natural gas system	339-394	7-136	Stuckey (1966)	Graphs only

BIBLIOGRAPHY

Liquid-vapour equilibria data

- Abdulayev, Ya. A. Zh Khim Prom 16 (1939a) 37
- Abdulayev, Ya. A. Zh Fiz Khim 13 (1939b) 986
- Abdulayev, Ya. A. Zh Priki Khim 14 (1941) 302
- Abraham, B. M., Weinstock, B., Osborne, D. W. *Phys Rev* 76 (1949) 864
- Aerov, M. E., Kulikova, V. A., Zelenstova, N. I., Zalayaletoinova, R. G. Khim Tekhnol Topl Masel No 1 (1968) 43
- Akers, W. W., Atwell, L. L., Robinson, J. A. Ind Eng Chem 46 (1954) 2539
- Akers, W. W., Burns, J. F., Fairchild, W. R. Ind Eng Chem 46 (1954) 2531
- Akers, W. W., Eubanks, L. S. Advances in Cryogenic Engineering 3 (Plenum Press, 1957) 275
- Akers, W. W., Kelley, R. E., Lipscomb, T. G. Ind Eng Chem 46 (1954) 2535
- Armstrong, G. T., Goldstein, J. M., Roberts, D. E. *J Res NBS* 55 (1955) 265
- Arnold, R. D., Hoge, H. J. J Chem Phys 18 (1950) 1295
- Aroyan, H. J., Katz, D. L. Ind Eng Chem 43 (1951) 185
- Baly, E. C. C. Phil Mag 49 (1900) 517
- Banks, R., Haselden, G. G. IIR Conf on Liquefied Natural Gas, Its Production, Handling and Use, London, March, 1969, Session 3, p 28
- Barsuk, S. D., Skripka, V. G., Benyaminovich, O. A. Gazov Prom 15, No 9 (1970) 38
- Benedict, M., Solomon, E., Ruben, L. C. Ind Eng Chem 37 (1945) 55
- Benham, A. L. 'Vapor-liquid equilibria of light hydrocarbon systems containing hydrogen at low temperatures', Michigan Univ, Ann Arbor, PhD Thesis (1956)
- Benham, A. L., Katz, D. L. AIChEJ 3 (1957) 33
- Benham, A. L., Katz, D. L., Williams, R. B. AICHe J 3 (1957) 236
- Bergeon, R. Genie Chim 79 (1958) 139
- Bierlein, J. A., Kay, W. B. Ind Eng Chem 45 (1953) 618
- Bigeleisen, J., Kerr, E. C. J Chem Phys 39 (1963) 763
- Blagoi, Yu. P., Orobinskii, M. P. Ukr Fiz Zh 8 (1963) 1378
 Blagoi, Yu. P., Orobinskii, N. A. Russ J Phys Chem 39 (1965) 1073, translation of Zh Fiz Khim 39 (1965) 2022
- Blagoi, Yu. P., Orobinskii, M. P. Ukr Fiz Zh 12 (1967) 838

- Bloomer, G. T., Eakin, B. E., Ellington, R. T., Gami, D. C. Inst Gas Technol Res Bull No 21 (1955)
- Bloomer, O. T., Gami, D. C. Parent, J. D. Inst of Gas Technology Res Bull No 22 (1953)
- Bloomer, O. T., Parent, J. D. Inst of Gas Technol Res Bull No 17 (1952)
- Bloomer, O. T., Parent, J. D. Chem Eng Progr Symp Ser 49 No 6 (1953) 11
- Boato, G., Casanova, G., Levi, A. J Chem Phys 37 (1962) 201
- Boone, W. J., Jr, Devaney, W. E., Stroud, L. 'Vapor-liquid equilibria for a helium-nitrogen-methane system', US Bur Mines Rept of Investigations RI 6178 (1963)
- Bourbo, P., Ischkin, I. Physica 3 (1936) 1067
- Bourbo, P., Ischkin, I. Phys Z Sowjetunion 10 (1936) 271
- Brandt, L. W., Stroud, L. Ind Eng Chem 50 (1958) 849
- Brandt, L. W., Stroud, L., Miller, J. E. J Chem Eng Data 6 (1961) 6
- Brewer, J., Rodewald, N., Kurata, F. AIChE J 7(1961) 13
- Brown, G. M., Stutzman, L. Chem Eng Progr 45 (1949) 142
- Browning, C. W. Advances in Cryogenic Engineering 9 (Plenum Press, 1964) 177
- Buckley, S. E., Lightfoot, J. H. Petroleum Trans AIME 142 (1941) 232
- Bulatova, R. F., Kogan, V. S., Lazarev, V. G. Soviet Phys JETP 37 (1960) 1058
- Burch, R. J. J Chem Eng Data 9 (1964) 19
- Burch, R. J. Cryogenics 6 (1966) 77
- Burfield, D. W., Richardson, H. P., Guereca, R. A. *AIChE J* 16 (1970) 97
- Burn, I., Din, F. Trans Faraday Soc 58 Part 7 (1962) 1241
- Burriss, W. L., Hsu, N. T., Reamer, H. H., Sage, B. H. Ind Eng Chem 45 (1953) 210
- Buzyna, G., Macriss, R. A., Ellington, R. T. Chem Eng Progr Symp Ser 59 No 44 (1963) 101
- Calado, J. C. G. 'Thermodynamic studies of binary condensed gas systems', Univ of Oxford, Oxford, PhD Thesis (1969)
- Calado, J. C. G., Staveley, L. A. K. Trans Faraday Soc 67 (1971a)
- Calado, J. C. G., Staveley, L. A. K. Trans Faraday Soc 67 Part 5 (1971b) 1261
- Calado, J. C. G., Staveley, L. A. K. J Chem Phys 56 (1972) 4718
- Cannon, W. A., Crane, W. E. Cryogenic Technol 4 (1968) 178
- Cannon, W. A., Robson, J. H., English W. D. 'Liquid propellant gas absorption study', Douglas Missile and Space Systems Division, Astropower Laboratory, Report DAC-60510-F2 (1968)

- Carmichael, L. T., Berry, V., Sage, B. H. J Chem Eng Data 12 (1967) 44
- ('armichael, L. T., Jacobs, J., Sage, B. H. J Chem Eng Data 13 (1968) 489
- Chang, Shinn-der, Lu, B. C.-Y. Chem Eng Progr Symp Ser 63, No 81 (1967) 18
- Charlesworth, P. L., Ruhemann, M. Bull Inst Int Froid Annexe 1965 4, p 467
- Cheung, H., Wang, D. L.J. Ind Eng Chem Fundam 3 (1964) 355 Cines, M. R., Roach, J. T., Hogan, R. J., Roland, C. H. Chem Eng
- Progr Symp Scr 49, No 6 (1953) Clark, A. M., Din, F., Robh, J. Proc Roy Soc (London) A221 (1953) 517
- Cockett, A. H. Proc Roy Soc (London) A239 (1957) 76
- Cohen, A. F., Hipkin, H. G., Koppany, C. R. Chem Eng Progr Symp Ser 63 No 81 (1967) 10
- Cosway, H. F. 'I ow-temperature vapor liquid equilibria in ternary and quaternary systems containing hydrogen, nitrogen, methane, and ethane', Michigan Univ. Ann Arhor, PhD Thesis (1958) (Available Univ Microfilms, Ann Arhor, Mich, I C Card No MIC 58 7704)
- Cosway, H. F., Katz, D. L. AIChF J 5 (1959) 46
- Cota, H. M., Thodos, G. J Chem Eng Data 7 (1962) 62
- Daunt, J. G. Phil Mag 1 (1952) 209
- Daunt, J. G., Heer, C. V. Phys Rev 86 (1952) 205
- Daunt, J. G., Tseng, T. P. Bull Inst Int Frond Annexe 22 (1955) 17
- Davenport, A. J., Rowlinson, J. S. Trans Faraday Soc 59 (1963) 78
- Davies, R. H., Duncan, A. G., Saville, G., Staveley, L. A. K. Trans
- Faraday Soc 63 Part 4 (1967) 855 Davis, J. A., Rodewald, N., Kurata, F. Ind Eng Chem 55, No 11
- (1963) 36
- Davydov, I. A., Budnevich, S. S. Inzh-Fiz Zh 20, No 6 (1971) 82
- Dean, M. R., Tooke, J. W. Ind Eng Chem 38 (1946) 389
- DePriester, C. L. Chem Fing Prog Symp Scr 49, No 7 (1953) 1
- Devaney, W. F., Dalton, B. J., Meeks, J. C. Jr. J Chem Eng Data 8 (1963) 473
- Devaney, W. F., Rhodes, H. L., Tully, P. C. J Chem Eng Data 16, No 2 (1971) 158
- Din, F. Bull Inst Int Froid 33 (1953) 17
- Din, F. Frans Faraday Soc 56 (1960) 668
- Djordjevich, L. 'Phase equilibrium for ethane propane system at low temperatures', III Tech Res Inst, Chicago, PhD Thesis (1968)
- Djordjevich, L., Budenholzer, R. A. J Chem Eng Data 15 (1970) 10
- Dodge, B. F., Dunhar, A. K. J Am Chein Soc 49 (1927) 591
- Dokoupil, Z., Van Soest, G., Swenker, M. D. P. Bull Inst Intern
- 1 roid Annexe 1955 2,(1954) 61; Appl Sci Res A5 (1955) 182
- Donnelly, II. G., Katz, D. L. Ind Eng Chem 46 (1954) 511
- Duncan, A. G. 'The thermodynamics of mixing of hinary con-
- densed gas mixtures', Univ Oxford, Oxford, PhD Thesis (1966) Duncan, A. G., Staveley, L. A. K. *Trans Faraday Soc* 62 Part 3 (1966) 548
- Duncan, A. G., Hiza, M. J. Ind Eng Chem Fundam 11 (1972) 38
- Fckert, C. A., Prausnitz, J. M. AIChE J 11 (1965) 886
- Fllington, R. T., Eakin, B. E., Parent, J. D. et al. Thermodynamic and Transport Properties of Gases, Liquids and Solids (McGraw Hill, New York, 1959) 180
- Elshayal, I. M., Lu, B. C.-Y. Cryogenics 11 (1971) 285
- Eselson, B. N. Zh Eksp Teor Fiz 26 (1954) 744
- Eselson, B. N., Bereznyak, N. G. Zh Eksp Teor Fiz 27 (1954) 648
- Eselson, B. N., Bereznyak, N. G. Dokl Akad Nauk SSSR 105
- (1955) 454 (translation available OTS No 61-17497) Eselson, B. N., Bereznyak, N. G. Soviet Phys JETP 3 (1956) 568; translation of *Lh Eksp Tcor Fiz* 30 (1956) 628
- Eselson, B. N., Kaganov, M. I., Lifshits, I. M. Zh Eksp Teor Fiz
- 33 (1957) 936 Eselson, B. N., Lazarev, B. G., Alekseevskii, N. E. Zh Eksp Teor Fiz
- 20 (1950) 1055 Eubanks, L. S. 'Vapor-liquid equilibrium in the system hydrogen-
- nitrogen-carbon monoxide', Ricc Institute, Houston, PhD Thesis (1956)
- Fairbank, H. A., Lane, C. T., Aldrich, L. T., Nier, A. O. Phys Rev 71 (1947) 911
- Pairbank, H. A., Lane, C. T., Aldrich, L. T., Nier, A. O. Phys Rev 73 (1948) 729
- Fairbank, H. A., Reynolds, C. A., Lane, C. T., McInteer, H. A., Aldrich, L. T., Nier, A. O. *Phys Rev* 74 (1948) 345
- Fastovsky, V. G., Gonikberg, M. G. Zh Fiz Khim 14 (1940a) 427
- Fastovsky, W., Gonikberg, M. Acta Physicochim URSS 12 (1940b) 485

- Fastovsky, V. G., Gurvich, I. G. Zh Fiz Khim 13 (1939a) 1680 (translation available OTS No 61 17735)
- Fastovsky, V. G., Girvich, Y. G. Acta Physiocochim URSS 11 (1939h) 883 (translation available Associated Technical Services, Inc, No ATS 53M47G)
- Fastovsky, V. G., Petrovsky, U. V. Zh Fiz Khun 29 (1955) 1311
- Fastovsky, V. G., Petrovsky, Yu. V. Zh Fiz Khun 30 (1956a) 589
- Fastovsky, V. II., Petrovsky, U. V. Zh Fiz Khun 30 (1956b) 76
- Fastovsky, V. G., Petrovsky, Yu. V. Zh Fiz Khim 31 (1957) 836
- Fastovsky, V. G., Petrovsky, Yu. V. Zh Fiz Khun 31 (1957) 2317 Fischer, V. Ann Physik 31 (1938) 531
- Forg, W., Wirtz, P. Linde Rep Sci Technol 15 (1970) 46
- Fredenslund, A., Mollerup, J., Persson, O. J. Chem Eng Data 17 (1972) 440
- Fredenslund, A., Sather, G. A. J Chem Eng Data 15 (1970) 17
- Freeth, F. A., Verschoyle, T. T. H. *Proc Roy Soc* (London) A130 (1931) 453
- Frolich, K., Tanch, E. J., Hogan, J. J., Peer, A. A. Ind Eng Chem 23 (1931) 548
- Firks, S., Bellemaps, A. Bull Soc Chim Belges 76 (1967) 290
- Garber, J. D. 'Gas- liquid phase equilibrium in the fichum ethylene and fichium - propylene systems below 260 K and 120 atmospheres', Georgia first Fechnol, Atlanta, PhD Thesis
 - (1971) (available Univ Microfilms, Ann Arbor, Mich, Order No. 71–20, 361)
- Gilliland, E. R., Scheeline, H. W. Ind Eng Chem 32 (1940) 48
- Goff, G. H., Farrington, P. S., Sage, B. H. Ind Eng Chem 42 (1950) 735
- Gonikberg, M. G. Zh Fiz Khim 14 (1940) 582
- Gonikberg, M. G., Fastovsky, W. G. Acta Physicochum URSS 12 (1940a) 67
- Gonikberg, M., Fastovsky, W. Acta Physicochim URSS 13 (1940b) 399
- Gonikberg, M. G., Fastovsky, V. G., Gurvitsch, J. G. Acta Physicochum URSS 11 (1939) 865
- Gonzalez, M. II., Lee, A. L. J Chem Eng Data 13 (1968) 172
- Gravelle, D., Lu, B. C. Y. Can J Chem Eng 49 (1971) 144
- Greco, G., Casale, C., Negri, G. Compt Rend Congr Intern Chim Ind 27th Congress, Brussels (1954) 251
- Greene, N. E. 'Three-phase, solid liquid vapor, equilibrium in the system hydrogen helium', Univ Michigan, Ann Arbor, PhD Thesis (1966) (available Univ Microfilms, Ann Arbor, Mich, Order No 67–8259)
- Greene, M. E., Sonntag, R. E. Advances in Cryogenic Engineering 13 (Plenum Press, 1968) 357
- Grigorev, V. M., Eselson, B. N., Masimov, E. A. Soviet Phys JETP 28 (1969) 605; translation of Zh Eksp Teor Fiz 55 (1968) 1160
- Guter, M., Newitt, D. M., Ruhemann, M. Proc Roy Soc (London) 176A (1940) 140
- Hanson, G. H., Hogan, R. J., Ruchlen, F. N., Cines, M. R. Chem Eng Prog Symp Scr 49 No 6 (1953) 37
- Hanson, G. H., Nelson, W. T., Hogan, R. J., Cines, M. R. Ind Eng Chen 44 (1952) 604
- Haselden, G. G., Newitt, D. M., Shah, S. M. Proc Roy Soc (London) A209 (1951) 1
- Haselden, G. G., Snowden, P. *Trans Faraday Soc* 58, Part 8 (1962) 1515
- Hayduk, W., Cheng, S. C. Can J Chem Eng 48, No 1, (1970) 93
- Heck, C. K. 'Experimental and theoretical liquid-vapor equilibria in some binary systems', Univ Colorado, Boulder, PhD Thesis (1968) (available Univ Microfilms, Ann Arbor, Mich, Order No 68-12, 407)
- Heck, C. K., Barrick, P. L. Advances in Cryogenic Engineering 11 (Plenum Press, 1966) 359
- Heck, C. K., Barrick, P. L. Advances in Cryogenic Engineering 12 (Plenum Press, 1967) 714
- Heck, C. K., Hiza, M. J. AIChE J 13 (1967) 593
- Hensel, W. E., Jr, Massoth, F. E. J Chem Eng Data 9 (1964) 352
- Herring, R. N. 'Gas-liquid equilibrium solubilities for the heliumoxygen system', Univ Colorado, Boulder, PhD Thesis (1964)
- Herring, R. N., Barrick, P. L. International Advances in Cryogenic Engineering 10 (Plenum Press, 1964) 151
- Hipkin, H. AIChE J 12 (1966) 484
- Hirata, M., Hakuta, T. Mem Fac Technol, Tokyo Metrop Univ. No 18 (1968) 594
- Hirata, M., Hakuta, T., Onoda, T. Sekiyu Gakkai Shi 10 (1967) 440
- Hirata, M., Suda, A. Bull Jap Petrol Inst 10 (1968) 20
- Hirata, M., Suda, S., Miyashita, R., Hoshino, T. Mem Fac Technol Tokyo Metrop Univ, No 20 (1970) 1811

- Hiza, M. J. Nat Bur Stand Tech Note 621 (1972)
- Hiza, M. J., Duncan, A. G. Advances in Cryogenic Engineering 14 (Plenum Press, 1969) 30
- Hiza, M. J., Heck, C. K., Kidnay, A. J. Chem Eng Progr Symp Ser 64, No 88 (1968a) 57
- Hiza, M. J., Heck, C. K., Kidnay, A. J. Advances in Cryogenic Engineering 13 (Plenum Press, 1968b) 343
- Hiza, M. J., Kidnay, A. J. Advances in Cryogenic Engineering 11 (Plenum Press, 1966) 338
- Hodges, R. J., Burch, R. J. Cryogenics 7 (1967) 112
- Hogan, R. J., Nelson, W. T., Hanson, G. H., Cines, M. R. Ind Eng Chem 47 (1955) 2210
- Hoge, H. J., Arnold, R. O. J Res Nat Bur Stand 47 (1951) 63
- Holst, G., Hamburger, L. Proc Akad Wetenschappen 18 (1916a) 872
- Holst, G., Hamburger, L. Z Phys Chem 91 (1916b) 513
- Hsi, C., Lu, B. C.-Y. Can J Chem Eng 49 (1971) 140
- Hunter, M. A. J Phys Chem 10 (1906) 330
- Inglis, J. K. H. Phil Mag 11 (1906) 640
- Jones, A. E., Kay, W. B. AIChE J 13 (1967) 717
- Jost, W. Progr Intern Res Thermodyn Trans (1962) 78
- Kaminishi, G., Arai, Y., Saito, S., Maeda, S. J Chem Eng Jap 1 (1968) 109
- Kaminishi, G., Toriumi, T. Kogyo Kagaku Zasshi 69 (1966) 176
- Kaminishi, G., Toriumi, T. Rev Phys Chem Jap 38 (1968) 79 Karasz, F. E. 'The solubility of helium and neon in liquid argon', Univ Washington, Seattle, PhD Thesis (1948) (available Univ Microfilms, Ann Arbor, Mich, Order No 58-2139)
- Karasz, F. E., Halsey, G. D., Jr J Chem Phys 29 (1958) 173
- Karwat, H. V. Chem Ing Techn 32 (1960) 605
- Kay, W. B. J Chem Eng Data 15 (1940a) 46
- Kay, W. B. Ind Eng Chem 32 (1940b) 353
- Kay, W. B., Brice, D. B. Ind Eng Chem 45 (1953) 615
- Kay, W. B., Rambosek, G. M. Ind Eng Chem 45 (1953) 221
- Keesom, W. H. Commun from the Physical Lab, Univ Leiden 88 (1903) 57
- Kharakhorin, F. F. Zh Tekh Fiz 10 (1940) 1533 (translation available from OTS, No 61-18035)
- Kharakhorin, F. F. Zh Tekh Fiz 11 (1941) 1133 (translation available from OTS No 61-18034)
- Kharakhorin, F. F. Inzh-Fiz Zh 2, No 5 (1959a) 55 (translation available at SLA Translations Center)
- Kharakhorin, F. F. Inz-Fiz Zh Akad Nauk Belorus SSR 2 (1959b) 72
- Khazanova, N. E., Lesnevskaya, L. S. Zh Fiz Khim 42 (1968) 1835
- Khazanova, N. E., Lesnevskaya, L. S., Zakharova, A. V. Khim Prom 42 (1966) 364
- Kidnay, A. J., Miller, R. C., Hiza, M. J. Ind Eng Chem Fundam 10 (1971) 459
- Kirk, B. S. 'Predicted and experimental gas phase compositions in pressurized binary systems containing an essentially pure condensed phase. Phase equilibrium data for the methanehydrogen system from 66.88 to 116.53 K and up to 125 atmospheres', Georgia Inst Tech, Atlanta, PhD Thesis (1964)
- Kirk, B. S., Ziegler, W. T. International Advances in Cryogenic Engineering 10 (Plenum Press, 1965) 160
- Kitagawa, H., Inoue, A. Nenryo Kyokaishi 45 (1966) 110 Knorn, M. Cryogenics 7 (1967) 177
- Kobayashi, R., Chang, H. L., Van Horn, L. D. Proc Ann Conv Nat Gas Processors Assoc, Tech Papers 45 (1965) 3
- Kohn, J. P., Kurata, F. AIChE J 4 (1958) 211
- Keunen, J. P., Verschoyle, T., Van Urk, A. Th. Koninkl Ned Akad Wetenschap Proc 26 (1923) 49
- Kulikov, N. E. Tr Gork Politekh Inst 25, No 13 (1969) 8
- Lehigh, W. R. 'Vapor liquid equilibria of nitrogen-hydrocarbon systems – nitrogen – ethane – n – butane system', Texas Univ, Austin, PhD Thesis (1965) (available Univ Microfilms, Ann Arbor, Mich, No 66-1940)
- Lehigh, W. R., McKetta, J. J. J Chem Eng Data 11 (1966) 180
- Levitskaya, E. P. Zh Tekh Fiz 11 (1941) 197 (translation available from OTS, 61-17751)
- Lewis, G. N., Hanson, W. T., Jr JAm Chem Soc 56 (1934) 1000 Likhter, A. I., Tikhonovich, N. P. Zh Tech Fiz 9 (1939) 1916
- (translation available SLA, Order No TT-61-16826)
- Likhter, A. I., Tikhonovich, N. P. Zh Tech Fiz 10 (1940) 1201 Liu, Ker Fah. 'Phase equilibria in the helium-carbon dioxide,
- argon, -methane, -nitrogen, and -oxygen systems', Georgia Inst of Tech, Atlanta, PhD Thesis (1969)

- Lu, H., Newitt, D. M., Ruhemann, M. Proc Roy Soc (London) A178 (1941) 506
- Lu, B. C.-Y., Yu, P., Poon, D. P. L. Nature 222 (1969) 768
- MacKendrick, R. F., Heck, C. K., Barrick, P. L. J Chem Eng Data 13 (1968) 352
- Mage, D. T., Katz, D. L. AIChE J 12 (1966) 137
 - Maimoni, A. 'Vapor liquid equilibria in the system hydrogennitrogen', Calif Univ, Berkeley, PhD Thesis (1956)
- Maimoni, A. AIChE J 7 (1961) 371
- Mann, A. N., Pardee, W. A., Smyth, P. W. J Chem Eng Data 8 (1963) 499
- Mastinu, G. J Chem Phys 47 (1967) 338
- Mathot, V., Staveley, L. A. K., Young, J. A., Parsonage, N. G.
- Trans Faraday Soc 52 (1956) 1488
- Matschke, D. E., Thodos, G. J Chem Eng Data 7 (1962) 232
- Matyash, I. V., Mank, V. V., Starkov, M. G. Ukr Fiz Zh 11 (1966) 497 [translation by NASA, Washington, DC, transl No TT-F-10602 (1967)]
- McCurdy, J. L., Katz, D. L. Ind Eng Chem 36 (1944) 674
- McCurdy, J. L., Katz, D. L. Oil Gas J 43 (1945) 102
- McKay, R. A., Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 43 (1951) 2112
- McTaggart, H. A., Edwards, E. Trans Roy Soc Can 13, section 111 (1919) 47
- Mehra, V. S., Thodos, G. J Chem Eng Data 10 (1965) 307
- Miller, R. C., Kidnay, A. J., Hiza, M. J. J Chem Thermodyn 4 (1972) 807
- Miller, R. C., Kidnay, A. J., Hiza, M. J. AIChE J 19 (1973) 145
- Mills, J. R., Miller, F. J. L. Can Chem Process Ind 29 (1945) 651
- Moran, D. W. 'Low temperature equilibria in binary systems, including the solid phase', Univ of London, PhD Thesis (1959)
- Morlet, J. Rev Inst Franc Petrole Ann Combust Liquides 18 (1963) 27
- Muirbrook, N. K. 'Experimental and thermodynamic study of the high-pressure vapor-liquid equilibria for the nitrogen-oxygencarbon dioxide system', Univ Calif, Berkeley, PhD Thesis (1964)
- Muirbrook, N. K., Prausnitz, J. M. AIChE J 11 (1965) 1092 Mulholland, K. L. 'Empirical study of the Benedict, Webb, and Rubin mixture rules and experimental vapor-liquid data for the binary methane-n-butane', Univ Kansas, Manhattan, PhD Thesis (1970) (available Univ Microfilms, Ann Arbor, Mich, Order No 70-25, 394)
- Mullins, J. C. 'Phase equilibria in the argon-helium and argonhydrogen systems', Georgia Inst Tech, Atlanta, PhD Thesis (1965)
- Mullins, J. C., Ziegler, W. T. International Advances in Cryogenic Engineering 10 (Plenum Press, 1965) 171
- Narinskii, G. B. Kisolorod No 3 (1957) 9
- Narinskii, G. B. Russ J Phys Chem 40 (1966), 1093; translation of Zh Fiz Khim 40 (1966) 2022
- Narinskii, G. B. Zh Fiz Khim 41 (1967) 1608
- Narinskii, G. B. Zh Fiz Khim 43 (1969) 408
- Nederbrogt, G. W. Ind Eng Chem 30 (1938) 587
- Nelson, R. A., Band, W. Phys Rev 88 (1952) 1431
- Nelson, E. E., Bonnell, W. S. Ind Eng Chem 35 (1943) 204
- Neumann, A., Walch, W. Chem Ing-Tech 40 (1968) 241
- Newman, R. B. 'The vapour-liquid equilibrium of binary mixtures of H2, HD, and D2', Univ Bristol PhD Thesis (1954)
- Newman, R. B., Jackson, L. C. Trans Faraday Soc 54 (1958) 481 Nikitina, I. E., Skripka, V. G., Gubkina, G. F. et al Gazov Prom 15 (1970) 3507
- Nysewander, C. N., Sage, B. H., Lacey, W. N. Ind Eng Chem 32 (1940) 118
- Olds, R. H., Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 41 (1949) 475
- Olds, R. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 34 (1942) 1008
- Omar, M. H. 'Phase-equilibria of some binary systems at low temperatures', Leiden Univ, Netherlands, PhD Thesis (1962)
- Omar, M. H., Dokoupil, Z. Physica 28 (1962) 33
- Orobinsky, N. A., Blagoi, Yu. P., Semyannikova, E. L. Ukr Phys J 13 (Sep 1968) 263; translation of Ukr Fiz Zh 13 (1968) 373
- Peshkov, V. P., Kachinskii, V. N. Soviet Phys JETP 4 (1957) 607 Pikaar, M. J. 'A study of phase equilibria in hydrocarbon-CO₂
- systems', Univ London, PhD Thesis (1959)
- Poettman, F. H., Katz, D. L. Ind Eng Chem 37 (1945) 847 Pollitzer, F., Strebel, E. Z. Z Phys Chem 110 (1924) 768
- Pool, R. A. H., Saville, G., Herrington, T. M., Shields, B. D. C., Staveley, L. A. K. Trans Faraday Soc 58 (1962) 1692

Prausnitz, J. M., Benson, P. R. AIChE J 5 (1959) 161

- Price, A. R. 'Low temperature vapor-liquid equilibrium in light hydrocarbon mixtures, methane-ethane-propane system', Rice Inst, Houston, PhD Thesis (1957)
- Price, A. R., Kobayashi, R. J Chem Eng Data 4 (1959) 40
- Reamer, H. H., Sage, B. H. Ind Eng Chem 43 (1951) 1628
- Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 41 (1949) 482
- Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 43 (1951) 976
- Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 43 (1951) 2515
- Reamer, H. H., Sage, B. H., Lacey, W. N. Ind Eng Chem 42 (1950) 534
- Redlich, O., Kister, A. T. J Chem Phys 36 (1962) 2002
- Rhodes, H. L., Devaney, W. E., Tully, P. C. J Chem Eng Data 16 (1971) 19
- Rhodes, H. L., Stroud, L., Tully, P. C. Bur Mines Rep of Investigations 7498 (1972), US Nat Tech Inform Serv, PB Rep No 208004 (1972) available NTIS
- Rigas, T. J., Mason, D. F., Thodos, G. Ind Eng Chem 50 (1958) 1297
- Rigas, T. J., Mason, D. F., Thodos, G. J Chem Eng Data 4 (1959) 201
- Roberts, L. R. 'Phase equilibria of hydrocarbon-nitrogen systems', Univ of Texas, Austin, PhD Thesis (1963)
- Roberts, L. R., McKetta, J. J. AIChE J 7 (1961) 173
- Roberts, L. R., McKetta, J. J. J Chem Eng Data 8 (1963) 161
- Roberts, L. R., McKetta, J. J. J Chem Eng Data 8 (1963) 478
- Roberts, L. R., Wang, R. H., Azarnoosh, A., McKetta, J. J. J Chem Eng Data 7 (1962) 484
- Robin, S., Vodar, B. Discuss Faraday Soc No 13 (1953) 233
- Robinson, D. B., Bailey, J. A. Can J Chem Eng 35 (1957) 151
- Robinson, D. B., Hughes, R. E., Sandercock, J. A. W. Can J Chem Eng 42 (1964) 143
- Robinson, D. B., Lorenzo, A. P., Macrygeorgos, C. A. Can J Chem Eng 37 (1959) 212
- Robinson, D. B., Saxena, A. C. Proc Ann Conv Nat Gas Processors Assoc, Tech Papers 45th (April 1966) 58
- Rodewald, N. C. 'The heterogeneous phase behavior of the helium-nitrogen system', Kansas Univ, Lawrence, PhD Thesis (1963) (available Univ Microfilms, An Arbor, Mich, Order No 64-6854)
- Rodewald, N. C., Davis, J. A., Kurata, F. AIChE J 10 (1964) 937
- Roellig, L. O., Giese, C. J Chem Phys 37 (1962) 114
- Roof, J. G., Baron, J. D. J Chem Eng Data 12 (1967) 292
- Rozhnov, M. S., Dorochinskaya, G. S. Teplofiz Svoistva Veshchestv (1969) 140
- Ruhemann, M. Proc Roy Soc (London) A171 (1939) 121
- Ruhemann, R. M., Fedoritenko, A. Zh Tekh Fiz 7 (1937) 335 (translation by Redstone Sci Inform Center, Redstone Arsenal, Ala, translation No RSIC – 226, July 1964)
- Ruhemann, M., Tsin, N. Phys Z Sowjetunion 12 (1937) 389
- Ryabtsev, N. I., Khuchua, R. S. Gazov Delo (6) (1970) 25
- Sage, B. H., Budenholzer, R. A., Lacey, W. N. Ind Eng Chem 32 (1940) 1262
- Sage, B. H., Hicks, B. L., Lacey, W. N. Ind Eng Chem 32 (1940) 1085
- Sage, B. H., Lacey, W. N., Schoafsma, J. G. Ind Eng Chem 26 (1934) 214
- Sage, B. H., Webster, D. C., Lacey, W. N. Ind Eng Chem 29 (1937) 1188
- Sagenkahn, M. L., Fink, H. L. Penn State College, Contr OEMSR-685 and 934, Nat Def Res Committee Off of Sci Res and Dev Rept No 4493 (Dec 1944)
- Sandri, V. Corsi Semin Chim No 4 (1967) 63
- Sauer, R. N. 'Vapor-liquid equilibria in the nitrogen-methane-nbutane system', Texas Univ, Austin, Master Thesis (1959)
- Saxena, A. C., Robinson, D. B. Can J Chem Eng 47 (1969) 69
- Scheeline, H. W., Gilliland, E. R. Ind Eng Chem 31 (1969) 69
- Schindler, D. L., Swift, G. W., Kurata, F. Hydrocarbon Process 45 (1966) 205
- Schmidt, H. Z Phys Chem (Frankfurt) 20 (1959) 363
- Schmidt, H. Z Phys Chem (Frankfurt) 24 (1960) 265
- Schmidt, K. Kaltetechnik 19 (1967) 253
- Schwartz, A. S., Donnelly, H. G. Chem Eng Progr Symp Ser 64, No 88 (1968) 44
- Seaver, R. E. Nat Aeronaut Space Admin, Tech Note No D-2286 (1964)

- Shearn, R. B. 'The volumetric and phase behaviour of the propylene ethylene-carbon dioxide system', Birmingham, England, PhD Thesis (1955)
- Simon, M. Phys Lett 2 (1962) 234
- Simon, M. Physica 29 (1963a) 1079
- Simon, M. Phys Lett 5 (1963b) 319
- Sinor, J. E. 'The solubility, partial molal volume and diffusivity of helium in liquid methane', Kansas Univ, Lawrence, PhD Thesis (1965) (available Univ Microfilms, Inc, Ann Arbor, Mich, Order No 65-11957)
- Sinor, J. E., Kurata, F. J Chem Eng Data 11 (1966) 537
- Sinor, J. E., Schindler, D. L., Kurata, F. AIChE J 12 (1966) 353
- Sister, G. A., Sokolov, P. P. Zh Khim Prom 17 (1940) 44 (translation available Off Tech Services, Washington, DC, translation No 63-24285 1962)
- Skripka, V. G. Tr Vses Nauchn-Issled Inst Kislorodn Mashinostr No 9 (1965) 180
- Skripka, V. G., Barsuk, S. D., Nikitina, I. E., Gubkina, G. F., Benyaminovich, O. A. Gazov Prom 14 (1969) 41
- Skripka, V. G., Dykhno, N. M. Tr Vses Nauchn–Issled Inst Kislorodn Mashinostr No 8 (1964) 163
- Skripka, V. G., Lobanova, N. N. Tr Vses Nauch-Issled Inst Kriog Mashinostr No 13 (1971) 90
- Skripka, V. G., Nikitina, I. E., Zhdanovich, L. A., Sirotin, A. G., Benyaminovich, O. A. Gazov Prom 15 No 12 (1970) 35
- Smith, G. E. 'Solid-vapor equilibrium of the carbon dioxidenitrogen system at pressures to 200 atmospheres', Univ of Michigan, Ann Arbor, PhD Thesis (1963)
- Smith, S. R. '1. Gas-liquid phase equilibrium in the system $He-H_2$. II. Development of mass spectrograph techniques for analysis of $He-H_2$ and their isotopes', Ohio State Univ, Columbus, PhD Thesis (1952)
- Sneed, C. M., Jr 'Helium-hydrogen liquid-vapor equilibrium to one hundred atmospheres', Univ Michigan, Ann Arbor, PhD Thesis (1966) (available Univ Microfilms, Ann Arbor, Mich, Order No 67-8345)
- Sneed, C. M., Sonntag, R. E., Van Wylen, G. J. J Chem Phys 49 (1968) 2410
- Sobocinski, D. P., Kurata, F. AIChE J 5 (1959) 545
- Sonntag, R. E., Crain, R. W., Streett, W. B. 'Liquid vaporequilirbium in the system hydrogen-helium', Univ Michigan, Ann Arbor, Final Rept NASA CR-58687 (1964)
- Sonn tag, R. E., Van Wylen, G. J., Crain, R. W., Jr J Chem Phys 41 (1964) 2399
- Spano, J. O., Heck, C. K., Barrick, P. L. J Chem Eng Data 13 (1968) 168
- Sprow, F. B., Prausnitz, J. M. AIChE J 12 (1966a) 780
- Sprow, F. B., Prausnitz, J. M. Cryogenics 6 (1966b) 338
- Sreedhar, A. K., Daunt, J. G. Phys Rev 117 (1960) 891
- Steckel, F. Phys Z Sowjetunion 8 (1935) 337
- Steckel, F. A. Svensk Kem Tid 57 (1945) 209
- Steckel, F. A., Tsin, N. M. Zh Khim Prom 16 (1939a) 2408
- Steckel, F. A., Tsin, N. M. J Chem Ind (USSR) 16, No 8 (1939b) 24
- Stein, F. P., Claitor, L. C., Geist, J. M. Advances in Cryogenic Engineering 7 (Plenum Press, 1962) 106
- Steinbach, H. G., Steinbrecher, M. Chem Tech (Berlin) 18 (1966) 633
- Sterner, C. J. Advances in Cryogenic Engineering 6 (Plenum Press, 1961) 467
- Stoeckli, H. F., Staveley, L. A. K. *Helv Chim Acta* 53 (1970) 1961 Streett, W. B. 'Liquid-vapor equilibrium in the system normal
- hydrogen-helium', Univ Mich, Ann Arbor, PhD Thesis (1963) Street, W. B. J Chem Phys 42 (1965) 500
- Streett, W. B. Cryogenics 5 (1965) 27
- Streett, W. B. Chem Eng Progr Symp Ser 63, No 81 (1967) 37
- Streett, W. B. J Chem Phys 46 (1967) 3282
- Streett, W. B. Cryogenics 8 (1968a) 88
- Streett, W. B. Proc ICEC2 (IPC, 1968b) 260
- Streett, W. B. Trans Faraday Soc 65, Part 3 (1969) 696
- Streett, W. B., Erickson, A. L. Phys Earth Plant Interiors 5 (1972) 357
- Streett, W. B., Erickson, A. L., Hill, J. L. E. Phys Earth Plant Interiors 6 (1972) 69
- Streett, W. B., Hill, J. L. E. Trans Faraday Soc 67 (1971a) 622
- Streett, W. B., Hill, J. L. E. J Chem Phys 54 (1971b) 5088
- Streett, W. B., Hill, J. L. E. Proc 13th International Congress of Refrigeration, Washington, DC, Vol 1 (1971c) 309
- Streett, W. B., Jones, C. J. Advances in Cryogenic Engineering 11 (Plenum Prcss, 1966) 356

Streett, W. B., Jones, C. H. J Chem Phys 42 (1965) 3989

- Streett, W. B., Sonntag, R. E., Van Wylen, G. J. J Chem Phys 40 (1964) 1390
- Stroud, L., Miller, J. E., Brandt, L. W. 'An experimental study of the phase relationships of a typical helium conservation gas', US Bur Mines, Phase Equilibrium and Thermodynamics Branch, Rept No 20 (1959)
- Stuckey, A. N., Jr 'The phase behavior of methane in a natural gas condensate', Oklahoma State Univ, Stillwater, PhD Thesis (1966) (available Univ Microfilms, Ann Arbor, Mich, Order No 67-7298)
- Stutzman, L. F., Brown, G. M. Chem Eng Prog 45 (1949) 139
- Sydoriak, S. G., Roberts, T. R. Phys Rev 118 (1960) 901
- Taconis, K. W., Beenakker, J. J. M., Nier, A. O. C., Aldrich, L. T. Physica 15 (1949) 733
- Thorogood, R. M., Haselden, G. G. Brit Chem Eng 8 (1963) 623
- Thorpe, P. L. Trans Faraday Soc 64, Part 9 (1968) 2273
- Tompkins, J. F., Geist, J. M. Advances in Cryogenic Engineering 8 (Plenum Press, 1963) 484
- Torocheshnikov, N. S. Tech Phys USSR 4 (1937) 364
- Torocheshnikov, N. S., Gurevich, Ts. N. Zh Khim Prom 18, No 5 (1941) 7 (translation available from OTS, 61-16 922)
- Torocheshnikov, N. S., Levius, L. A. *Zh Khim Prom* 16 (1939) 19; this data appears in graphical form in Ruhemann, M. The Separation of Gases (Oxford University Press, 1949) 54
- Torocheshnikov, N. S., Serenova, V. A. Trudy Moskov Khim-Tekh Inst No 18 (1954) 114
- Toyama, A., Chappelear, P., Leland, T. W., Kobayashi, R. Advances in Cryogenic Engineering 7 (Plenum Press, 1962) 125
- Toyoshima, N., Yoshimura, S., Masuoka, H. Mem Fac Eng, Hiroshima Univ 4 (1971) 75
- Trevino, A. R. Rev Mex Fis 4 (1956) 23
- Trust, D. B. 'The heterogeneous phase behavior of the hydrogenpropane, carbon monoxide-propane and hydrogen-carbon monoxide-propane systems', Kansas Univ, Lawrence, PhD Thesis (1967) (available Univ Microfilms, Ann Arbor, Mich, Order No 68-17, 457)
- Trust, D. B., Kurata, F. AIChE J 17 (1971) 415
- Trust, D. B., Kurata, F. AIChE J 17 (1971) 86
- Tsiklis, D. S. Zh Fiz Khim 20 (1946) 181
- Tully, P. C. 'The simultaneous investigation of the isobaric integral heat of vaporization and vapor-liquid equilibria data of methane-ethylene mixtures at high pressures', Oklahoma State Univ, Stillwater, PhD Thesis (1965)
- Tully, P. C., Devaney, W. E., Rhodes, H. L. Advances in Cryogenic Engineering 16 (Plenum Press, 1971) 88
- Tully, P. C., Devaney, W. E., Rhodes, H. L. J Chem Eng Data 16 (1971) 148
- Uehara, K. Nippon Kagaku Zasshi 53 (1932) 931
- Van Horn, L. D., Kobayashi, R. J Chem Eng Data 12 (1967) 294
- Vellinger, E., Pons, E. Compt Rend 217 (1943) 689

- Verschoyle, T. T. H. Phil Trans Roy Soc (London) A230 (1931) 189
- Volk, H., Halsey, G. D., Jr J Chem Phys 33 (1960) 1132
- Volova, L. M. Zh Fiz Khim 14 (1940) 268
- Wakins, W. W., Burns, J. F., Fairchild, W. R. Ind Eng Chem 46 (1954) 2531
- Wang, D. 1.-J. Advances in Cryogenic Engineering 3 (Plenum Press, 1960) 294
- Wang, R. H., McKetta, J. J. J Chem Eng Data 9 (1964) 30
- Wansink, D. H. N., Taconis, K. W., Staas, F. A. Physica 22 (1956) 449
- Watanabe, K., Kuroki, M., Ogura, M., Saito, I. Cryogenic Eng (Tokyo) 4 (1969) 293
- Wederbragt, G. W. Ind Eng Chem 30 (1938) 587
- Weinstock, B., Osborne, D. W., Abraham, B. M. Phys Rev 77 (1950) 400
- Weishaupt, J. Angew Chem 820 (1948) 321
- Wichterle, l., Kobayashi, R. J Chem Eng Data 17 (1972a) 9
- Wichterle, 1., Kobayashi, R. J Chem Eng Data 17 (1972b) 4
- Wichterle, I., Kobayashi, R. J Chem Eng Data 17 (1972c) 13
- Widdoes, L. C., Katz, D. L. Ind Eng Chem 40 (1948) 1742 Wiese, H. C., Jacobs, J., Sage, B. H. J Chem Eng Data 15 (1970)
- 82
- Wilhelm, G., Schneider, G. Z Phys Chem (Frankfurt) 29 (1961) 43
- Williams, R. B., Katz, D. L. Ind Eng Chem 46 (1954) 2512
- Wilson, G. M., Silverberg, P. M., Zellner, M. G. International Advances in Cryogenic Engineering 10 (Plenum Press, 1965) 192
- Winkler, C. A., Maass, O. Can J Res 6 (1932) 458
- Yokoyama, K., Ohe, S. Ishikawajima-Harima Giho 11 (1971) Yorizane, M. Asahi Garasu Kogyo Gijutsu Shoreikai Kenkyu Hokoku 18 (1971) 61
- Yorizane, M., Sadamoto, S., Yoshimura, S. et al Kagaku Kogaku 32 (1968) 257
- Yorizane, M., Yoshimura, S., Masuoka, H. Kagaku Kogaku 30 (1966) 1093
- Yorizane, M., Yoshimura, S., Masuoka, H. Kagaku Kogaku 34 (1970) 953
- Yorizane, M., Yoshimura, S., Masuoka, H. Bull Jap Petrol Inst 14 (1972) 105
- Yorizane, M., Yoshimura, S., Masuoka, H., Toyama, A. Proc ICEC1 (Heywood Temple Industrial Publications Ltd, London, 1968) 57
- Yu, P., Elshayal, I. M., Lu, B. C.-Y. Can J Chem Eng 47 (1969) 495
- Yunker, W. H. 'The solubility, activity coefficient, and heat of solution of solid xenon in liquid argon', Washington Univ, Seattle, PhD Thesis (1961) (available Univ Microfilms Inc, Ann Arbor, Mich, Order No 61-6661)
- Yushkevich, N. F., Torocheshnikov, N. S. Zh Khim Prom 13 (1936) 1273
- Zenner, G. H., Dana, L. I. Chem Eng Progr Symp Ser 59 (1963) 36

ERRATA

LIQUID-VAPOUR EQUILIBRIA RESEARCH ON SYSTEMS OF INTEREST IN CRYOGENICS -- A SURVEY

by

A. J. Kidnay, M. J. Hiza, and R. C. Miller in Cryogenics Vol. 13, No. 10, 575-99 (Oct. 1973)

- page 575: Last sentence of Abstract --- add CO₂ after CO.
- page 577: Change equations (7) and (10) as follows

$$\gamma_{i} = \gamma_{i}^{(R)} - \frac{f_{i}^{o(R)}}{f_{i}^{o}} \exp \left(\int_{\pi}^{\pi} \frac{\bar{v}_{i} d\pi}{RT} \right)$$
(7)

$$\bar{f}_{j}(\text{liquid}) = \gamma_{j}^{*} \mathbf{x}_{j} \mathbf{H}_{j,i}$$
(10)

- page 578: Ref. 4. Hala et al; change date to 1967.

- page 579:

- (a) 4th entry under Hydrogen-helium 4; Roellig, Giese (1962); change remark to "Pressures given are partial pressures of helium"
 - (b) 7th entry under Hydrogen-helium 4; Sonntag, Crain, Streett (1964); delete remark.
- page 581: 2nd entry under Hydrogen-methane; change Tikhovovich to Tikhonovich.
- page 583: Entry under Helium-krypton; change Kidney to Kidnay.
- page 586: 5th entry under Nitrogen-carbon dioxide; Muirbrook (1964), etc.; delete remark.

- page 588:	Steck	ntry under Hydrogen sulphide-propane; kel (1945); change temperature from to 273.		
- page 591:		Entry under Ethyne-propene; change reference date to (1945).		
- page 592:	table	After n-Butane-isobutane entries, insert new table title: "Liquid-vapour equilibria for ternary systems."		
- page 594:	new	r Ethyne-ethene-ethane entries, insert table title: "Liquid-vapour equilibria for ems of four or more components."		
- page 595:	BIBL	JOGRAPHY		
	(a)	Abdulayev (1941); change Priki to Prikl		
	(b)	Aerov et al. (1968); change Zalayaletoinova to Zalyaletoinova.		
	(c)	Benham, Katz, Williams (1957); change AICHe J to AIChE J.		
	(d)	Burn, Din (1962); change the page no. 1241 to 1341.		
- page 596:	(a)	Cines et al. (1953); add the page no. 1 - after (1953).		
	(b)	Greene, Sonntag (1968); change)Plenum (Plenum.		
	(c)	Hirata, Hakuta (1968); change the page no. 594 to 1594.		
- page 597:	(a)	Kulikov (1969); change the page no. 8 to 18.		
	(b)	Morlet (1963); change the page no. 27 to 127.		
	(c)	Newman, Jackson (1958); change the page no 481 to 1481.		

- page 598: (a) Rodewald (1963); change An Arbor to Ann Arbor.
 (b) Scheeline, Gilliland; change year and page no. from (1969) 69 to (1939) 1050.
 page 599: (a) Watanabe et al. (1969); change the page no
 - (a) Watanabe et al. (1969); change the page no.293 to 292.
 - (b) Yokoyama, Ohe (1971); add the page no. 4 after (1971).

USCOMM - ERL

APPENDIX I

LIQUID-VAPOR EQUILIBRIA IN THE NITROGEN-METHANE SYSTEM BETWEEN 95 and 120 K

W.R. Parrish and M.J. Hiza

Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

Paper K-9 Prepared for The 1973 Cryogenic Engineering Conference August 8, 9 and 10, 1973 Georgia Institute of Technology Atlanta, Georgia

LIQUID-VAPOR EQUILIBRIA IN THE NITROGEN-METHANE SYSTEM BETWEEN 95 and 120 K*

W.R. Parrish and M.J. Hiza Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

ABSTRACT

A study was undertaken to obtain liquid-vapor equilibria data for the nitrogen-methane system at uniform temperature increments between the triple point of methane and the critical point of nitrogen. The measured liquid and vapor phase equilibria compositions and the derived excess Gibbs energy values for six isotherms from 95 to 120 K are compared with the corresponding values taken from other investigations. The excess Gibbs energy for the equimolar mixture exhibits a zero to slightly positive temperature dependence, in qualitative agreement with calculations based on the Snider-Herrington hard sphere model. This temperature dependence of the excess Gibbs energy also suggests that the excess enthalpy (heat of mixing) must be equal to or slightly less than the excess Gibbs energy.

IN TRODUCTION

The development and evaluation of liquid mixture (solution) theory depends heavily on the availability of precise data for mixtures of simple molecules. The most useful data are for binary mixtures at closely spaced temperatures over as wide a temperature range as possible, both above and below the critical temperature of the most volatile component. The nitrogen-methane mixture, which is technologically important as one of the more important binary mixtures in liquefied natural gas, is an excellent compromise between theoretical and practical considerations.

* Contribution of the National Bureau of Standards, not subject to copyright.

Key Words: Binary mixture, excess Gibbs energy, experimental phase equilibria data, heat of mixing, liquid-vapor equilibria, nitrogen-methane system.

The interest in the phase equilibria properties of this particular system is apparent by the large number of studies reported in the literature. A number of experimental investigations have been conducted to determine the liquid-vapor equilibria properties of nitrogen-methane mixtures [1-15]. In addition, several investigations have been conducted to determine the solidliquid equilibria and the three phase (solid-liquid-vapor) locus [16-19]. In the liquid-vapor region the data of Bloomer and Parent [1] and of Cines et al. [3] cover most of the methane liquid range, and consequently, one or the other of these data sets frequently has been used in correlations and for testing computation methods for the nitrogen-methane system [20-23]. Since the data of Bloomer and Parent are isobaric and those of Cines et al. are isothermal, direct comparisons are not possible. However, from comparisons made by Bloomer and Parent of isothermal crossplots of their data and those of Cines et al., these data sets appear to be in fairly good agreement at the lower temperatures, but are in less satisfactory agreement at the higher temperatures.

Of the remainder of the data reported prior to 1972, most studies were too limited to add independently to the description of the liquid-vapor equilibria behavior of this system. In addition, the method of investigation, i.e. isobaric dew-point, bubble-point measurements versus isothermal vapor-recirculation measurements, and the method of reporting data, i.e. graphical versus tabular, further complicate evaluation and comparison of all of the data.

The recent investigations of Miller et al. [10] at 112.00 K and of Stryjek et al. [13] from 113.72 K up to the methane critical temperature add new isothermal data which readily can be compared with some of the previous data sets. In the mutual liquid range of the two components, with which we are concerned in the present study, these newer data tend to highlight the discordant aspects of some of the previous data more clearly.

I-4

In addition to phase equilibria data, density or more specifically excess molar volumes are vital to the development of liquid mixture theory. Liu and Miller [24] recently reported excess molar volumes for the nitrogenmethane system between 90 and 120 K. Subsequently, Massengill and Miller [25] provided an interesting theoretical discussion of the effects of adjustments to the combining rules and of predictions of excess molar volume and excess Gibbs energy as a function of temperature with a modified hard sphere equation of state. Because of the lack of consistency of phase equilibria data for the nitrogen-methane system in the same temperature region, it is difficult to draw definitive conclusions from their treatise. Thus, the need for a consistent set of phase equilibria data for the nitrogen-methane system between 90 and 120 K was clearly indicated.

The purpose of the present study was to obtain liquid-vapor equilibria data for the nitrogen-methane system at 5 K increments of temperature between the triple point of methane and the critical point of nitrogen, and from these data to obtain the magnitude and temperature dependence of the excess Gibbs energy. These values of excess Gibbs energy provide the basis of comparison with the corresponding values derived from other data and with the qualitative temperature dependence of the excess Gibbs energy predicted from the hard sphere model by Massengill and Miller [25].

EXPERIMENTAL

The liquid-vapor equilibria measurements were made in a closed-loop vapor-recirculating system described previously [26]. Thus, other than some minor differences, discussion of experimental details need not be included here.

The equilibrium pressures were measured with a standard laboratory, double-revolution, 0-20 bar Bourdon gage and a 0-100 psia spiral quartz Bourdon gage. The 20 bar gage has a claimed accuracy of $\pm 0.1\%$ of full

I-5

scale and was found to be consistently better than these limits when compared with the 100 psia gage. The latter instrument was calibrated against an air dead-weight gage in this laboratory giving a maximum uncertainty of less than \pm 0.1 psia over the full range. The pressure tap was a small tube connected directly to the top of the equilibrium cell and was independent of the recirculation system.

Temperatures were controlled as described previously [26]. However, the reported temperatures are those determined by vapor pressure measurements of pure methane and pure nitrogen as compared with the new methane data of Prydz and Goodwin [27] and the nitrogen values from the equation of Strobridge [28]. For our purposes, nitrogen vapor pressure values from the equation of Strobridge are in excellent agreement with the newer data of Weber [29]. Within experimental uncertainties of the present study, the temperatures reported here are consistent with the IPTS-68 temperature scale.

Compositions were determined chromatographically with helium elution gas and thermal conductivity detector. Calibration gas mixtures were prepared on a pressure basis, corrected for nonideality, at 4.94, 9.90, and 49.89 mole % methane in nitrogen. These calibration mixtures and pure methane and pure nitrogen were analyzed at a number of different sample pressures to determine analyzer response as a function of component partial pressure. It was determined that a linear calibration based on the pure species at near atmospheric pressure (60 cm Hg) satisfactorily reproduced compositions over the entire composition range of interest, based on peak areas, within 0.5% of the actual composition of the minor component. Since this difference is approximately equivalent to the precision of analysis, the results reported here are based entirely on pure component calibrations. The experimental liquid and vapor compositions are thought to be accurate within $\pm 1\%$ of the actual composition or within ± 0.1 mole %, whichever is greater.

I-6

Liquid samples were withdrawn directly from the bottom of the equilibrium cell through a stainless steel capillary tube, while the vapor samples were isolated in a room temperature sample loop which included the pump free volume. In all cases, compositions were determined by analysis of both components in the mixture. The total sample pressure was taken as the sum of the partial pressures determined in the analysis. Though total sample pressure was measured, the sum of the partial pressures was used to compensate for slight variations in analyzer sensitivity and for any lack of sample thermal equilibrium.

It is also worth noting that the apparatus and chromatograph used in this study were the same as those used in the study of Miller et al. [10]. However, there were significant differences. The more precise 100 psia quartz Bourdon gage was acquired for the present study to improve the measurement of the lower pressures. The standard mixtures, except the pure component species, were prepared separately for each study using different methods. The calibration mixtures used in the earlier study were only equimolar mixtures prepared by weight. However, it was determined in both studies that assuming linear response based on calibration of the chromatograph with the pure fluid species represented the compositions of the prepared standard mixtures within the precision of analysis. In addition, temperatures reported in the earlier study were taken from the platinum thermometer readings, while in the present study the control point and thus the experimental temperature were determined by the vapor pressures of the pure component species. Thus, the two investigations are significantly different to be considered as two independent investigations.

RESULTS AND DISCUSSION

Equilibrium liquid and vapor compositions were measured at 95.00, 100.00, 105.00, 110.00, 115.00, and 120.00 K. The results of these measurements, along with the vapor pressures of the pure components, are given in Table 1.

I-7

A negative departure from Raoult's law occurs on the nitrogen rich end at the higher temperatures, consistent with the data of Bloomer and Parent [1], Cines et al. [3], Stryjek et al. [13], and Miller et al. [10]. However, the isotherm of Chang and Lu [4] at 122.05 K does not show this negative departure. Extrapolation of the data of Chang and Lu to the pure nitrogen axis suggests a higher nitrogen vapor pressure than that for 122 K and thus a slightly higher temperature than that reported, which could easily account for the discrepancy.

In figure 1, the liquid and vapor phase compositions at 100.00 K from the present investigation are compared with the smoothed values of Cines, et al. [3] at 99.82 K. This is the only direct comparison that can be made with the experimental data of other investigators. The significant point worth noting is that, even though the data of Cines et al. are for a slightly lower temperature, their vapor phase compositions are lower in nitrogen content than the present data. From the temperature dependence of the vapor phase compositions of the present study, the nitrogen content should be higher at the lower temperature. This is significant since the activity coefficient of methane is strongly affected by this inconsistency.

A sensitive method for comparing close-boiling liquid-vapor equilibria data is through the derived excess Gibbs energy, G^E , as a function of temperature and composition. This topic was discussed in some detail in an earlier paper by Duncan and Hiza [30]. The composition dependence of G^E is obtained from

$$G^{E} = x_{1}^{RT} \ln \gamma_{1} + x_{2}^{RT} \ln \gamma_{2}$$
(1)

where x is the liquid phase mole fraction and γ is the activity coefficient. The equation selected here for calculating the activity coefficient for each component is the one given in reference 30 and will not be repeated here. This equation is based on the virial equation of state and includes third virial coefficient effects. The activity coefficients thus calculated are corrected to a reference pressure, which for our purposes has been taken as one bar. Second virial coefficients for pure nitrogen and the interaction second virial coefficients for nitrogen-methane were calculated from the corresponding states equation of McGlashan and Potter [31]. The mixture characteristic temperature was calculated from

$$T_{c_{12}} = (1 - k_{12}) (T_{c_1} T_{c_2})^{1/2}$$
(2)

in which the value of k_{12} of 0.03 was taken. The characteristic volume of the mixture was calculated from the arithmetic mean rule

$$V_{c_{12}} = 1/8 \left(V_{c_1}^{1/3} + V_{c_2}^{1/3} \right)^3$$
(3)

For pure methane, second virial coefficients were taken from Goodwin [32]. Molar volumes for pure liquid methane and for pure liquid nitrogen were taken from Goodwin and Prydz [33] and from Strobridge [28], respectively. Isothermal compressibility for the pure liquids were taken from Rowlinson [34]. For purposes of the present calculations, it was assumed that the molar volume and compressibility of each component in the mixture are the same as those of the pure fluid.

Values of the equimolar G^{E} for much of the previous data on the nitrogen-methane system are shown in figure 2. The values given include those obtained using both experimental liquid and vapor phase data (filled symbols) and those obtained from the liquid phase data only by the method attributed to Barker [35]. In both methods, the derived values of G^{E} were fitted by the method of least squares to the following equation

$$G^{E} = x_{1}x_{2}RT \left[A + B(x_{1}-x_{2}) + C(x_{1}-x_{2})^{2}\right]$$
(4)

where 1 refers to nitrogen. The values shown in figure 2 were calculated from the fit of equation (4) obtained by each method. The two values shown for Fastovskii and Petrovskii [6], however, were calculated from the smoothed equimolar liquid and vapor compositions tabulated in their paper, interpolated from the original isobaric data. The curve shown in figure 2 was calculated by Massengill [36] from the hard sphere model applied by Snider and Herrington [37]. This curve was adjusted by Massengill to fit approximately the equimolar G^E value of Miller et al. [10] at 112.00 K by including a k_{12} correction for the "a" parameter of 0.035, similar to the correction indicated in equation (2).

Though values of G^E obtained from the two methods are not expected to be exactly equal, the results from both methods should exhibit the same temperature dependence if the data were internally and mutually consistent. It is not possible to conclude from the data presented in figure 2 that the temperature dependence of the excess Gibbs energy predicted from the hard sphere model is either reasonable or incorrect.

The values of G^E calculated from the present liquid and vapor phase data are given in Table 1 also. The constants of equation (4) obtained from these values and from the Barker method are given in Table 2. The equimolar G^E values from both methods are compared in figure 3 with those from the previous data of Miller et al. [10] and the calculated curve taken from Massengill [36]. The values of the equimolar G^E from the present study are in excellent agreement with those from Miller et al. Furthermore, the results obtained from both methods give the same temperature dependence, though the absolute values differ by about 10%. It thus can be concluded that the calculated curve is a reasonable representation of the temperature dependence of G^E .

The fact that the heat of mixing, H^E , is related to the excess Gibbs energy and its temperature dependence by

$$H^{E} = G^{E} - T(\partial G^{E} / \partial T)_{P}$$
(5)

also allows a conclusion about the heat of mixing for this system. From approximately 90 to 110 K, the value of G^E remains essentially constant. Thus, the temperature dependence is zero and H^E and G^E are equal. Above 110 K the temperature dependence becomes slightly positive; thus, the value of H^E would become less than the value of G^E in this region. Unfortunately, there are no calorimetric heat of mixing data for this system to substantiate this deduction.

8

Additional comparisons are given in figures 4, 5, and 6 between the isothermal G^E values from the liquid and vapor phase data of the present study at 95.00, 115.00, and 120.00 K and the corresponding values from four other investigations at approximately the same temperatures. It is apparent that the G^E values from the present study are more symmetrical about the equimolar value than those from the other investigations. The values from Stryjek et al. and Cines et al. are in reasonably good agreement with the present results at these temperatures. Those from Sprow and Prausnitz, however, are significantly lower than the present results. With the exception of two points, the G^E values from the present study, which is surprising considering the qualitative difference apparent in their data in the nitrogen rich end.

SUMMAR Y

The results of this investigation provide a single set of closely spaced and consistent liquid-vapor equilibria data for the nitrogen-methane system between the triple point temperature of methane and the critical point of nitrogen. The derived excess Gibbs energy values substantiate the qualitative temperature dependence of the equimolar Gibbs energy predicted by the hard sphere model of Snider and Herrington as applied by Massengill. From the temperature dependence of the excess Gibbs energy, it can be concluded that the nitrogen-methane system closely approximates a regular solution over much of the temperature range examined, i.e. $H^E = G^E$ and $S^E = 0$. These conclusions strongly suggest the desireability of calorimetric heat of mixing measurements for the nitrogen-methane system, at least in the lower temperature region of this investigation.

ACKNOW LEDGEMENTS

The authors wish to express their thanks to R. C. Miller for providing the calculated values of the equimolar Gibbs energy, given only graphically in the thesis of one of his students, D. R. Massengill.

I-11

9

REFERENCES

- O. T. Bloomer and J. T. Parent, Chem. Eng. Progr. Symp. Series No. 6, Vol. 49, 11 (1953).
- 2. L. W. Brandt and L. Stroud, Ind. Eng. Chem. 50, 859 (1958).
- 3. M. R. Cines, J. T. Roach, R. J. Hogan, and C. H. Roland, Chem. Eng. Progr. Symp. Series No. 6, Vol. 49, 1 (1953).
- 4. S.-D. Chang and B. C.-Y. Lu, Chem. Eng. Progr. Symp. Series No. 81, Vol. 63, 18 (1967).
- 5. H. Cheung and D. I.-J. Wang, Ind. Eng. Chem. Fundam. <u>3</u>, No. 4, 355 (1964).
- 6. V. G. Fastovskii and Yu. V. Petrovskii, Zhur. Fiz. Khim. <u>31</u>, 2317 (1957).
- 7. W. Forg and P. Wirtz, Linde Rep. Sci. Technol. 15, 46 (1970).
- 8. S. Fuks and A. Bellemans, Bull. Soc. Chim. Belg. 76, 290 (1967).
- 9. H. A. McTaggart and E. Edwards, Trans. Roy. Soc. Can. <u>13</u>, Sect. III, 57 (1919).
- R. C. Miller, A. J. Kidnay, and M. J. Hiza, AIChE J. <u>19</u>, No. 1, 145 (1973).
- V. G. Skripka, I. E. Nikitina, L. A. Zhdanovich, A. G. Sirotin, and
 O. A. Benyaminovich, Gazov. Prom. <u>15</u>, No. 12, 35 (1970).
- 12. F. B. Sprow and J. M. Prausnitz, AIChE J. 12, No. 4, 780 (1966).
- R. Stryjek, P. S. Chappelear, and R. Kobayashi, Low temperature vapor-liquid equilibria of the nitrogen-methane, nitrogen-ethane, and nitrogen-methane-ethane systems, Monograph, Rice Univ. Houston, Texas (June 30, 1972).
- N. S. Torochesnikov and L. A. Levius, J. Chem. Ind. (USSR) <u>16</u>, No. 1, 19 (1939).
- 15. E. Vellinger and E. Pons, Compt. Rend. 217, 689 (1943).
- V. G. Fastovskii and Yu. A. Krestinskii, J. Phys. Chem. (USSR) 15, 525 (1941).

10

- 17. M. F. Fedorova, J. Exptl. Theoret. Phys. (USSR) 8, 425 (1938).
- 18. D. W. Moran, Low temperature equilibria in binary systems, including the solid phase, Ph.D. Thesis, Imperial College, Univ. of London (1959).
- M. H. Omar, Z. Dokoupil, and H. G. M. Schroten, Physica <u>28</u>, No. 4. 309 (1962).
- H. E. Barner and S. B. Adler, Hydrocarbon Processing <u>47</u>, No. 10, 150 (1968).
- 21. M.-S. Lin and L. M. Naphtali, AIChE J. 9, No. 5, 580 (1963).
- H. H. Stotler and M. Benedict, Chem. Eng. Progr. Symp. Series No. 6, Vol. 49, 25 (1953).
- G. M. Wilson, Advances in Cryogenic Engineering, Vol. 9, p 168 [ed. K. D. Timmerhaus, Plenum Press, N.Y. 1964].
- 24. Y.-P. Liu and R. C. Miller, J. Chem. Thermodyn. 4, 85 (1972).
- 25. D. R. Massengill and R. C. Miller, J. Chem. Thermodyn. 5, 207 (1973).
- A. G. Duncan and M. J. Hiza, Advances in Cryogenic Engineering, Vol. 15, p 42 [ed. K. D. Timmerhaus, Plenum Press, N.Y. 1970].
- 27. R. Prydz and R. D. Goodwin, J. Chem. Thermodyn. 4, 127 (1972).
- T. R. Strobridge, The thermodynamic properties of nitrogen from 64 to 300 K between 0.1 and 200 atmospheres, Nat. Bur. Stand. Tech. Note No. 129 (1962).
- 29. L. A. Weber, J. Chem. Thermodyn. 2, 839 (1970).
- A. G. Duncan and M. J. Hiza, Ind. Eng. Chem. Fundam. <u>11</u>, No. 1, 38 (1972).
- 31. M. L. McGlashan and D. J. B. Potter, Proc. Roy. Soc. (London) <u>A 267</u>, 478 (1962).
- 32. R. D. Goodwin, J. Res. Nat. Bur. Stand. <u>74A</u>, No. 5, 655 (1970).
- R. D. Goodwin and R. Prydz, J. Res. Nat. Bur. Stand. <u>76A</u>, No. 2, 81 (1972).
- 34. J. S. Rowlinson, Liquids and liquid mixtures, Butterworth and Co., London, 1969.

```
11
```

- 35. J. A. Barker, Austral. J. Chem. <u>6</u>, 270 (1953).
- 36. D. R. Massengill, Excess volumes of the argon-nitrogen and methane-argonnitrogen systems, M.S. Thesis, Univ. of Wyoming, Laramie (1972).
- 37. N. S. Snider and T. M. Herrington, J. Chem. Phys. <u>47</u>, 2248 (1967).

I - 14

TABLE 1. Experimental nitrogen-methane liquid-vapor equilibria properties.

Т, К	×N2	P, bars	^y N2	^Y N ₂	$^{\gamma}$ CH ₄	G^{E} , J/mol
95.00	0.0000 0.2679 0.3562 0.4249 0.5271 0.5889 0.7495 0.8271 1.0000	0.199 2.254 2.737 3.018 3.431 3.646 4.247 4.580 5.400	0.0000 0.9216 0.9374 0.9460 0.9573 0.9618 0.9756 0.9823 1.0000	1.5755 1.4433 1.3355 1.2238 1.1621 1.0600 1.0327	1.0950 1.1790 1.2384 1.3271 1.4361 1.7038 1.9007	148.67 186.99 194.24 189.77 187.42 139.92 108.73
100.00	0.0000 0.1329 0.2397 0.3301 0.3831 0.4463 0.5069 0.5638 0.6671 0.8133 1.0000	0 • 343 1 • 988 2 • 960 3 • 621 3 • 989 4 • 396 4 • 706 5 • 032 5 • 598 6 • 451 7 • 778	0.0000 0.8336 0.9907 0.9168 0.9277 0.9372 0.9448 0.9508 0.9618 0.9764 1.0000	1.8662 1.6059 1.4436 1.3734 1.2987 1.2241 1.1742 1.1002 1.0320	1.0275 1.0987 1.1286 1.1547 1.2099 1.2614 1.3398 1.4799 1.8111	88.48 153.91 168.15 174.87 184.71 180.44 181.37 161.46 113.52
105.00	0.0000 0.2101 0.2869 0.4108 0.4836 0.6012 0.7548 0.8990 1.0000	0.565 3.649 4.512 5.664 6.298 7.242 8.417 9.805 10.835	0.0000 0.8533 0.8855 0.9149 0.9275 0.9440 0.9626 0.9829 1.0000	1.6242 1.4960 1.3191 1.2444 1.1455 1.0511 1.0148	1.0605 1.0963 1.1835 1.2478 1.3831 1.6684 2.0457	129.47 158.15 186.00 192.13 184.21 142.43 74.64

I-15 13

TABLE 1. (continued)

Т,К	× _{N2}	P, bars	^y N2	^v N ₂	CH ₄	G^{E} , J/mol
110.00	0 • 0000 0 • 2093 0 • 2856 0 • 4061 0 • 4843 0 • 5008 0 • 6056 0 • 6948 0 • 7956 0 • 8978 1 • 0000	0.844 4.810 5.916 7.450 8.366 8.479 9.603 10.580 11.797 13.179 14.680	0.0000 0.8237 0.8615 0.8950 0.9113 0.9147 0.9319 0.9456 0.9612 0.9790 1.0000	1.6008 1.4743 1.3129 1.2342 1.2112 1.1278 1.0756 1.0364 1.0131	1.0546 1.0850 1.1799 1.2477 1.2516 1.3765 1.5125 1.7208 1.9841	128.53 154.66 190.96 197.60 190.24 181.88 161.82 127.47 74.76
115.00	0.0000 0.1891 0.2868 0.3989 0.5027 0.5789 0.7110 0.8043 0.9040 1.0000	1 • 3 27 5 • 882 7 • 7 25 9 • 580 11 • 1 30 12 • 2 18 14 • 1 70 15 • 6 50 17 • 4 74 19 • 389	0.0000 0.7782 0.8363 0.8739 0.8983 0.9129 0.9377 0.9538 0.9750 1.0000	1.6384 1.4712 1.3218 1.2148 1.1515 1.0736 1.0344 1.0116	1.0465 1.0873 1.1606 1.2501 1.3398 1.5208 1.7540 2.0407	124.51 162.93 192.05 199.65 195.85 164.16 131.17 75.40
120.00	0 • 0000 0 • 0977 0 • 1938 0 • 2990 0 • 3978 0 • 4959 0 • 5938 0 • 7055 0 • 7877 1 • 0000	1.919 4.984 7.549 9.982 12.100 13.942 15.919 18.029 19.880 25.128	0.0000 0.6122 0.7458 0.8125 0.8512 0.8773 0.9000 0.9225 0.9414 1.0000	1.8083 1.6058 1.4348 1.3177 1.2136 1.1444 1.0748 1.0459	1.0174 1.0490 1.0956 1.1523 1.2381 1.3476 1.5323 1.6785	73.31 130.07 171.53 194.66 203.17 200.81 176.16]44.97

14

Table 2. Constants for equation (4) from the Barker method and from both liquid and vapor data.

Std Dev. C	0.030452	0.011753	0.026115	0.024585	0.016687	0.016019
	0.011018	0.005988	0.000487	0.002345	0.000489	0.000145
U	-0.006273	0.019011	0.028248	0.017785	0.045115	0.058088
	-0.060026	0.127218	0.058049	0.018386	0.066556	0.086550
Std Dev. B	0.026564	0.006889	0.018664	0.017310	0.011782	0.010289
	0.001553	0.001080	0.000084	0.000416	0.000086	0.000023
В	0.048882	0.012843	0.036777	0.024975	0.030019	0.048651
	-0.039063	-0.064193	0.001976	0.001095	0.014834	0.037988
Std Dev. A	0.018181	0.004510	0.011029	0.010578	0.006625	0.006021
	0.000249	0.0001627	0.000017	0.000072	0.000019	0.000008
A	0.856566	0.834333	0.797382	0.769161	0.773121	0.753117
	0.989270	0.883896	0.877361	0.844515	0.832951	0.819650
Data	х-Р	x-P	х-Р	х-Р	х-Р	х-Р
Used	х-у-Р	x-y-P	х-у-Р	х-у-Р	х-у-Р	х-у-Р
ΗМ	95.00	100.00	105.00	110.00	112.00	120.00

LIST OF FIGURES

- 1. Liquid and vapor equilibrium compositions for the nitrogen-methane system at 100.00 K compared with those of Cines et al. (1953).
- 2. Values of equimolar G^E calculated from the literature data. The value shown for Fuks and Bellemans (1967) is their reported value.
- 3. Values of equimolar G^E from the data of this investigation compared with the values calculated from the data of Miller et al. (1973) at 112.00 K.
- 4. Values of G^E from the data at 95.00 K compared with the values calculated from the data of Sprow and Prausnitz (1967) at 90.67 K.
- 5. Values of G^E from the data at 115.00 K compared with the values calculated from the data of Stryjek et al. (1972) at 113.72 K.
- 6. Values of G^E from the data at 120.00 K compared with the values calculated from the data of Cines et al. (1953) and of Chang and Lu (1967) at 122.05 K.

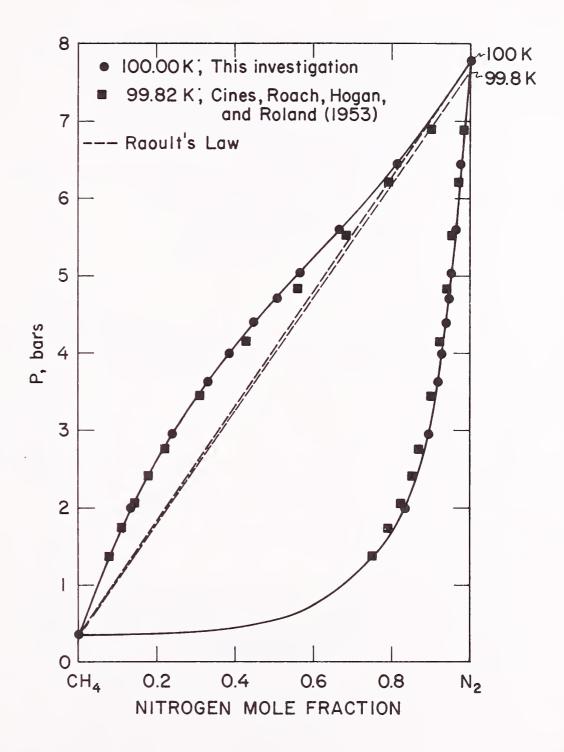


Figure 1.

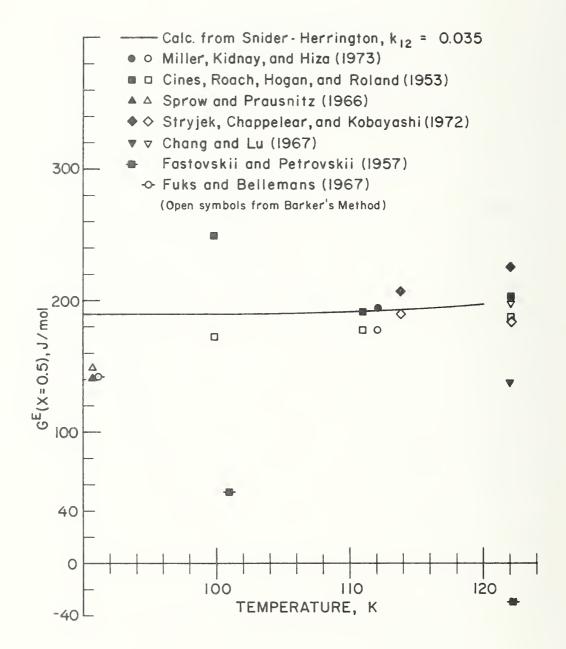


Figure 2.

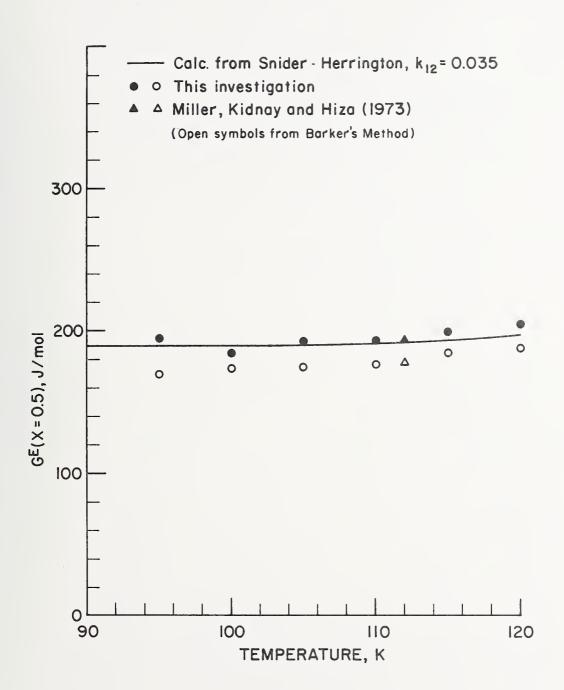


Figure 3.

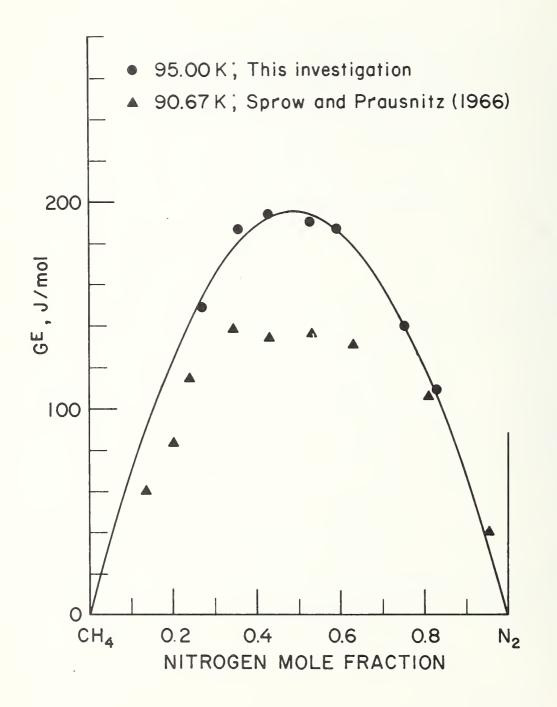


Figure 4.

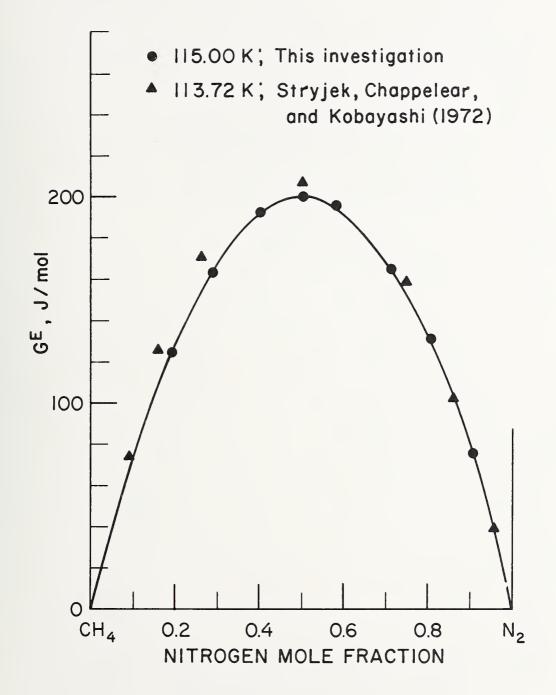


Figure 5.

B. 107589

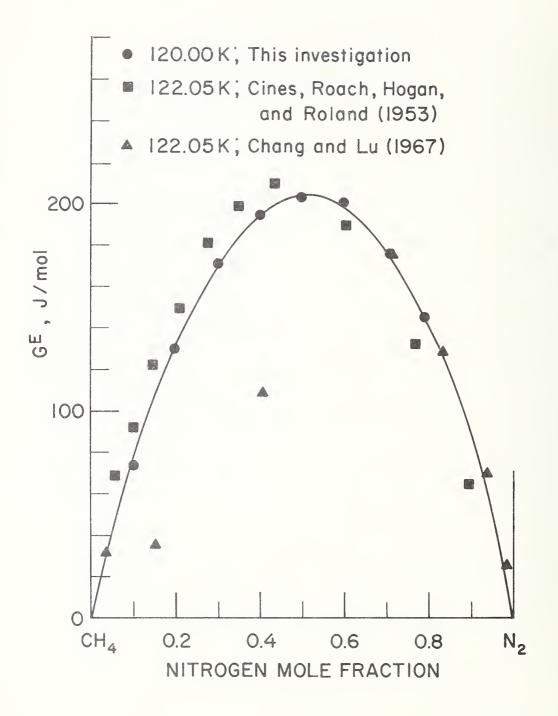


Figure 6.

APPENDIX J

	Cryogenics Division—NBS Institute for Basic Standards LABORATORY NOTE	project no. 2750364		PAGE 1
SUBJECT	The Vapor Pressures of Ethane	DATE Date	D. Goodw 9, 1973	in

This is the first of several reports planned on the physical properties of ethane. Our ultimate purpose is to compute tables of thermodynamic functions over the entire range of fluid states. We first will discover regions where data are inadequate or lacking by attempting to compute provisional tables based on existing data.

Accurate vapor pressures, and a proper analytical representation of these data, are essential for computing heats of vaporization via the Clapeyron equation.

In this note we give a limited bibliography. Not all of these references were available at this writing. We compare several sets of data by use of our new, nonanalytic vapor pressure equation. We make a choice of the best for least squares, and we give deviations from this selected equation.

At the triple point near 90 K the vapor pressure of ethane is about 0.00001 atm (10 μ -atm). Experimental methods therefore differ for the range below one atm (184.5K) and for the range of higher pressures to 48 atm at T_c = 305 K.

Data to about 1960 are reviewed by Tester [19], who selected the representation of Barkelew et al. [3] for the entire range from triple- to critical point.

Below one atm the data to 1964 are reviewed by Ziegler et al., who give their own, high quality set of data computed for thermodynamic consistency with all related or derived data, in a work for the National Standard Reference Data Program [23]. More recently we have the measurements of Carruth, obtained by the gas saturation flow technique, employing a flame ionization detector for analysis of the gas mixture [4]. See also J. J. Chen et al. (Rice University), paper G-1, 1972 Cryogenic Engineering Conference, on the same technique.

For high pressures the only new data of which we presently are aware are those of Pope (Table 25)[13], and those attributed to Dr. A. K. Pal by Pope [13] in Table 31. For these latter data there is no description of experimental method.

After this note was written we received the new precise measurements of Douslin and Harrison [24], and therefore have recomputed our results including these data. Douslin and Harrison note especially the new, precise measurements of Miniovich and Sorina [25], which were not available to us at this writing.

	Cryogenics Division—NBS Institute for Basic Standards LABORATORY NOTE	PROJECT N 275036		PAGE 2	
SUBJECT	The Vapor Pressures of Ethane	NAME R. D. Goodwin			
	The vapor ressures of Enhance	DATE JU	DATE July 9, 1973		

Our vapor pressure equation [6] uses the reduced argument,

$$x(T) \equiv (1 - T_t/T)/(1 - T_t/T_c)$$
,

where subscripts t and c refer to triple - and critical points,

$$\ln (P/P_t) = a \cdot x + b \cdot x^2 + c \cdot x^3 + d \cdot x^4 + e \cdot x \cdot (1-x)^{\varepsilon}$$
(1)

and the exponent is $\epsilon = 1.5$ for methane [15] and for oxygen [16]. Originally the term $d \cdot x^4$ was absent. It has been added here to improve representation of the ethane data.

The following discoveries are found with the original equation of four terms. Optimum exponents in the range $1.1 \le \varepsilon \le 1.9$ are obtained merely by changing the sets of data used for least squares. Hence we must rely on the more precise methane and oxygen data to select $\varepsilon = 1.5$. Varying the critical-point temperature within reasonable limits has no significant effect on the overall, rms relative pressure deviations.

By examining numerous results we have selected for least squares only the data of Ziegler at $P \le 1$ atm [23], and the data of Pope, Pal [13] and Douslin [24] at P > 1.9 atm. Whereas the temperature scale of Ziegler may be thermodynamic (the report is not clear), we nevertheless find that deviations (rms in relative P) are minimized by converting both sets of data to T-1968 as if they had been on T-1948 [1]. All T used in the following are T-68.

The triple-point temperature was reviewed by Ziegler et al. Their selection of 89.89 K becomes 89.899 on the 1968 scale. The critical-point temperature 305.42 K of Pope has been changed to 305.33 K for consistency with the data of Douslin [24]. A value $T_c = 305.33 \pm 0.005$ K is given by P. Sliwinski, Zeit. Phys. Chem. <u>68</u>, 91 (1969) based on analysis of dielectric constants. This was kindly pointed out by D. E. Diller. We obtain pressures at these end points from the vapor pressure equation:

	T,K (1968)	P, atm
Triple point	89.899	9.616.10 ⁻⁶
Critical point	305.33	48.07695

	Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT 27503		PAGE 3
SUBJECT	The Vapor Pressures of Ethane	NAME H	R. D. Good uly 9, 1973	

The constants for eq (1) were obtained via the data of Ziegler, Pope, Pal and Douslin. They include $\varepsilon = 1.6$ as shown at the head of table 1.

a =8.4549 8734d =-1.4138 6053b =12.4880 3978e =8.5265 2253c =-4.1042 8155

In the following tables we give the authors ID, his temperature and as converted to T-68, and the published and calculated pressures. Next is the deviation of his temperature from our calculated value,

 $DT = T_{xpt} - T_{calc} = - (P_{xpt} - P_{calc})/(dP/dT),$

and finally his relative pressure deviation,

P, PCT =
$$100 \cdot (P_{xpt} - P_{calc})/P_{calc}$$
.

At the bottom of each table we give the number of datum pairs, NP, and the rms of relative pressure deviations in percent.

The source of data in each table is identified by the numerical code, ID, in the first column--

Table No.	I.D.	Authors	Reference
1	4	A. K. Pal	[13]
	7	Ziegler et al.	[23]
	9	G. A. Pope	[13]
	10	Douslin, Harrison	[24]
2	1	Tickner, Lossing	[20]
	2	API Proj. 44	[2]
	3	Carruth	[4]
3	5	Loomis, Walters	[11]
4	6	F. Porter	[14]
	8	Barkelew et al	[3]
5	Calcu	lated vapor pressures (this re	eport)
6	Reduc	ed v.p. functions (this report	t)

	Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	project no. 2750364	file no. 73 - 3	page 4	
SUBJECT	The Vapor Pressures of Ethane		D. Good	win	
			DATE July 9, 1973		

As additional data may be found, we reserve comment on the deviations of individual authors, and omit the labor of preparing deviation plots.

Calculated pressures, slopes and curvatures are given at uniform temperatures by Table 5.

For comparison with functions in our original vapor pressure publication [6], we give these functions in Table 6, as computed via eq (1) namely

$$x(T) \equiv (T - T_t/T)/(1 - T_t/T_c),$$

$$Y(P) \equiv \ln(P/P_t) / \ln(P_c/P_t).$$
⁽²⁾

These variables range from zero to unity. The equation

$$Y = x$$
(3)

represents the basic vapor pressure equation

$$ln(\mathbf{P}) = \mathbf{a} - \mathbf{b}/\mathbf{T} \tag{4}$$

when this is constrained to the end-points (triple and critical). Hence (Y-x) is the deviation of data from (4).

Finally, we give the computer programs used in this work as a means to check for errors, and to facilitate resumption of this research.

Addendum. Following work shows that the second virial coefficient used by Ziegler et al. to obtain vapor pressures is not consistent with our selection. At 200°K his B(T) = -455 cc/mol, whereas our B(T) = -417.5. We therefore have recomputed our vapor pressure constants using Ziegler's vapor pressure data from his Table IX for "Curve B" of his Figure 1, for which B(T) = -410 cc/mol at 200 K. The difference in his vapor pressures at 90 K is (7.80-7.33)/7.33 = 6.4 percent, the new values being the greater. Our new results for eq (1) are given in Table 7, (pages 20, 21) and tables 8,9 on pages 22, 23 of this report. We prefer these constants for future use.

	Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO.	FILE NO.	PAGE 5	
SUBJECT		2750364	73-3		
	The Vapor Pressures of Ethane	DATE	<u>). Goodv</u> 9, 1973	/1n	
	Bibliography				
[1]	The International Practical Temperature Scale of 1968, M	etrologia	<u>5</u> (2), 35	(1969)	
[2]	Amer. Petrol. Inst. Res. Proj. 44, Selected Values of Properties of Hydro- carbons and Related Compounds (loose-leaf), Table 20 k, (Part 1), p. 1, Dec. 31 (1952).				
[3]	C. H. Barkelew, J. L. Valentine and C. O. Hurd, Therm of ethane, Trans. Amer. Inst. Chem. Eng. <u>43</u> , 25 (1947)		propert	ies	
[4]	F. G. Carruth, Determination of the vapor pressure of n- of a corresponding states correlation to low reduced temp Dept. Chemical Engineering, Rice University, Houston, T	eratures,	Thesis,		
[5]	N. M. Dykhno, M. V. Tsyrulnikova and M. V. Mochalov pressures at low temperatures, Zh. Fiz. Khim. 42 (9), 2			apor	
[6]	R. D. Goodwin, Nonanalytic vapor pressure equation with oxygen, J. Res. NBS <u>73A</u> (5), 487 (1969).	data for	nitrogen	and	
[7]	A. S. Holmes, W. G. Braun and M. R. Fenske, Bibliography of Vapor Pressure Data for Hydrocarbons, Amer. Petrol. Inst., New York, Bibliog. No. 2, (1964)				
[8]	E. E. Hughes and S. G. Lias, Vapor Pressures of Organi Range Below one Millimeter of Mercury, NBS Tech. Note (Oct., 1960).				
[9]	J. G. Hust, A compilation and historical review of temper Cryogenics $9(6)$, 443 (Dec., 1969).	rature sca	ale differ	ence	
[10]	G. Klipping and F. Schmidt, Dampfdrucktabellen Tiefsied Kaltetechnik <u>18</u> (11), (Nov. 1966).	ender Gas	se (V),		
[11]	A. G. Loomis and J. E. Walters, The vapor pressure of boiling point, J. Amer. Chem. Soc. 48 , 2051 (1926).	ethane ne	ar the no	rmal	
[12]	R. E. Perry and G. Thodos, Vapor pressures of the light hydrocarbons, Ind. Eng. Chem. 44(7), 1649(1952).	normal s	aturated		
[13]	G. A. Pope (quotes v.p. of Dr. A. K. Pal), Calculation of Ethane Virial Coefficients at Low Reduced Temperature B by Isochorically Coupled Burnett Experiments, Thesis, De ing, Rice University, Houston, Texas (July, 1971).	ased on I)ata Obta	ined	
[14]	F: Porter, The vapor pressures and specific volumes of t ethane, J. Amer. Chem. Soc. 48 , 2055 (1926).	he satura	ted vapo.	r of	
[15]	R. Prydz and R. D. Goodwin, Experimental melting and v methane, J. Chem. Thermodynamics $\underline{4}$. 127 (1972).	apor pres	ssures of	5	
[16]	Rolf Prydz, An improved oxygen vapor pressure represen 1 (1972).	tation, M	etrologia	a <u>8</u> (1	

	Cryogenics Division – NBS Institute for Basic Standards	PROJECT NO.	FILE NO.	PAGE	
DIFCT	LABORATORY NOTE	2750364	73-3	6	
JBJECT	The Vapor Pressures of Ethane	R. D. Goodwin DATE July 9, 1973			
17]	C. T. Sciance, C. P. Colver and C. M. Sliepcevich, Brindate, Hydrocarbon Process. <u>46(9)</u> , 173 (1967).			to	
18]	N. E. Sondak, and G. Thodos, Vapor pressures, the satur carbons, A.I.Ch.E. Journal <u>2</u> , 347 (1956).	rated alip	hatic hyd	iro-	
19]	H. E. Tester, ETHANE, in Thermodynamic Functions of Butterworths, London (1961).	Gases, F	. Din, E	dito	
-	A. W. Tickner and F. P. Lossing, The measurement of le means of a mass spectrometer, J. Phys. Colloid Chem.			es by	
21]	G. M. Wilson, R. G. Clark and F. L. Hyman, Thermodyn cryogenic fluids, Ind. Eng. Chem. <u>60</u> (6), 58 (1968).	namic pro	perties	of	
22]	W. T. Ziegler, The Vapor Pressures of Some Hydrocarbo solid state at low temperatures, NBS Tech. Note 4, (May,		liquid ar	ıd	
-	W. T. Ziegler, B. S. Kirk, J. C. Mullins and A. R. Berquist, Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VII Ethane, Tech. Rpt. No. 2 Proj. A-764, Eng. Expt. Sta., Georgia Inst. Tech; Atlanta, Georgia, Dec., 1964.				
24]	D.R. Douslin and R.H. Harrison, Pressure-Volume-Tem of Ethane (manuscript for the Journal of Chemical Thermo	-			
25]	V. M. Miniovich and G. A. Sorina, Russian J. Phys. Che	m. <u>45</u> , 3	06 (1971)	•	

	Сгуюде	nics Division - NBS Inst LABORATO	titute for Basic Standards RY NOTE		project no. 2750364	FILE NO. 1 73-3	PAGE 7
SUBJECT	The V	Vapor Press	ures of Ethan	9	NAME	. Goodwin	
Table 1		-		and Douslin (10)	and the second sec	9, 1973	
Addison and a star					July	7, 1713	
ET	HANE VAPOR	R PRESSUR	ES, E = 1.60				
	RP = 89.899,						
			PCRT, ATM =				
			39775 -4				
-1	.413860533	8.5265	522526 0.	.000066000			
ID	T,XPTL	1-68	P,ATM	CALCE	DEL T	P,PCT	
7	94.000	94.013	0.0000274	0.000274	-0.001	0.02	
7	98.000	98.012	0.0000693	0.0000694	0.002	-0.05	
7	102.000	152.008	0.0001618	0.0301619	0.002	-0.05	
- 7	106.000	100.002	0.0003526	0.0003522	-0.006	0.11	
7	110.300	109.998	0.0007207	0.0067205	-0.002	0.03	
7	114.300	113.995	0.0013947	0.0013947	- 6.000	0.00	
7	118.000	117.991	0.0825697	0.0025698	0.000	-0.00	
7	122.000	121.988	0.0945303	0.0045293	-0.002	0.02	
7	126.000 470.000	125.987	0.0076737	0.0076734	-0.000 0.001	0.00 -0.01	
7 7	130.300 134.360	129.987 133.988	0.ŭ12538 0.01983(0.612548 0.019834	0.001 0.002	-0.01	
7	138.300	137.999	6.030447	0.030460	0.004	-0.02	
7	142.000	141,993	0.045504	0.045527	0.005	-0.05	
7	146.300	145.996	0.066355	0.066389	0.006	-0.05	
7	159.000	150.000	0.094508	6.094657	0.006	-û.05	
7	154.300	154.004	0.13213	6.13226	0.007	-0.05	
7	158.000	158.068	0.18139	0.18117	0.005	-0.04	
7	152.100	162.012	0.24392	0.24397	0.003	-û.J2	
7	166.000	166.015	0.32333	0.32330	-3.301	0.01	
7	170.000	17J.019	J. 42230	6.42214	-0.006	6.04	
7	174.200	174.023	0.54409	6.54371	-0.011	0.07	
7	178.668	178.026	0.69224	6.69145	-0.020	0.11	
7	182.430	182.028	0.87047	0.86935	-0.329	0.15	
79	184.520	184.550 198.216	1.00J00 1.9737	0.998J3 1.9758	-0.036 0.023	0.20 -0.11	
4	198.181 214.302	214.334	3.9209	3.9176	-0.021	0.08	
4	224.102	224.130		5.6429	0.031	-0.11	
4		229.782	6.8569	6.8629	0.026	-0.09	
4	234.558	234.581	8.0335	8.0423	0.034	-0.11	
9	234.692	234.715	8.0741	8.0772	0.312	-0.04	
10	238.150	238.150	9.0097	9.0108	0.004	-6.01	
9	238.771	238.792	9.1843	9.1935	0.032	-0.10	
4	239.844	239.864	9.4959	9.5049	0.030	-0.09	
4	240.514	240.534	9.6960	9.7032	0.024	-0.07	
10	243.150	243.150	10.5053	10.5071	0.003	-0.01	
4	243.359	243.377	10.5761	10.5790	0.009	-0.03	
4	246.314 247.816	246.830	11.7137 12.0502	11.7183 12.J648	0.014 0.042	-0.04 -0.12	
4	247.816	247.831 248.15 u	12.0502	12.1766	0.042	-0.01	
4	249.741	249.755	12.7620	12.7512	-0.030	0.08	
4	250.146	250.160	12.8985	12.8991	0.002	-0.ũ1	
4	251.587	251.600	13.4425	13.4356	-0.018	0.05	
4	252.544	252.556	13.8065	13.8008	-0.015	0.04	
10	253.150	253 .15 0	14.0310	14.0310	-0.000	0.00	
4	254.290	254.301	14.4398	14.4854	-0.011	0.03	
4	257.543	257.552	15.8252	15.8264	0.003	-0.01	
1 G SP 11342 A	258.150	258.150	16.0835	16.0823	-0.003	0.01	

I (The V continued.	LABORATORY apor Pressur		and the second		73-3 8
I (continued.		es of Ethane		NAME R. D.	Goodwin
1						9, 1973
	D T,XPTL	T-68	PATM	CALCO	DEL T	P,PCT
	263.150	263.150	18.3464	18.3433	-0.007	0.02
	4 263.380	263.386	18.4543	18.4553	0.002	-0.01
4	+ 267.536	267.539	20.5197	20.5113	-0.016	6.04
11	268.150	268.15ü	20.8318	20.8274	-0.009	0.02
1	4 271.749	271.753	22.7661	22.7618	-0.008	0.02
(3 272.949	272.949	23.4515	23.4347	-0.030	0.07
1	0 273.150	273.150	23.5549	23.5488	-0.011	0.03
1	+ 275.922	275.921	25.1584	25.1648	0.011	-0.03
1	4 276.363	276.362	25.4558	25.4293	-0.044	0.10
l	4 276.385	276.384	25.4491	25.4425	-0.011	0.03
1	+ 276.514	276.513	25.5472	25.5203	-0.044	0.11
4	+ 277.813	277.811	26.3185	26.3133	-0.008	0.02
1.		278.150	26.5309	26.5233	-0.012	0.03
	+ 283.341	280.038	27.7339	27.7158	0.019	-0.04
	4 282.247	282.243	29.1537	29.1588	0.008	-0.02
1(283.153	29.7763	29.7681	-0.012	0.03
	+ 284.635	284.630	30.7664	30.7836	0.025	-0.06
	9 284.845	284.840	30.9555	30.9296	-0.037	0.08
	+ 287.553	287.648	32.9289	32.9340	0.007	-0.02
11		288.150	33.3111	33.3030	-0.011	0.02
	+ 288.263	288.257	33.3899	33.3822	-0.010	0.02
	4 290.040	290.034	34.6873	34.7148	0.036	-0.08
	9 290.214	290.208	34.8748	34.8474	-0.036	0.08
	+ 292.236	292.229	36.4440	36.4182	-0.033	0.07
	+ 293.198	293.091	37.0816			-0.06
		293.150	37.1583	37.1044 37.1518	0.028	
11	9 293.266	293.259			-0.008	0.02
			37.2672	37.2394	-0.035	0.07
		296.339	39.7598	39.7842	0.029	-0.06
10		298.158	41.3494	41.3450	-0.005	0.01
		299.657	42.6543	42.6822	0.031	-0.07
	299.353	299.855	42.8863	42.8606	-0.028	0.06
	+ 300.205	300.196	43.1650	43.1703	0.006	-0.31
	+ 301.251	301.242	44.1085	44.1297	0.023	-0.05
1		302.150	44.9809	44.9778	-0.003	0.01
1		303.150	45.9327	45.9295	-0.003	0.01
	+ 303.471	303.462	46.2032	46.2300	ũ. 328	-0.06
	+ 303.477	363.468	46.2798	46.2358		0.10
	9 304.012	304.002	46.7736	46.7558	-0.018	0.04
	4 304.049	304.039	46.7698	46.7920	0.023	-0.05
1 i		304.150	46.9040	46.9010	-0.003	0.01
	4 304.360	304.353	47.0931	47.0974	0.004	-0.01
	+ 384.446	304.435	47.2198	47.1822	-0.038	0.08
	4 304.519	304.508	47.2025	47.2544	0.052	-0.11
	4 314.734	304.723	47.4316	47.4677	0.037	-0.08
	+ 304.795	304.785	47.5185	47.5294	0.011	-0.02
	4 354.924	304.913	47.6846	47.6572	-0.027	0.06
	4 334.960	304.969	47.7131	47.7132	0.00 û	-0.00
	4 305.121	305.110	47.8498	47.8547	0.005	-0.01
	4 305.135	365.124	47.8251	47.8688	0.043	-û.G9
1		305.150	47.8992	47.8950	-0.004	0.01
	4 305.153	305.142	47.8807	47.8869	0.006	-6.61
1	305.250	305.250	47.9994	47.9959	-0.003	0.01

.

SP 11342 A

	Cryoger	ics Division - NBS Instit LABORATOR	ute for Basic Standards Y NOTE		PROJECT NO. 2750364	FILE NO. PAGE 73-3 9
SUBJECT	The	the second second second	sures of Ethane	2	NAME R. D.	Goodwin
Table		-	, API (2), and			9, 1973
14510		frontion (1)	, (_),		July	, 1/13
ID	T,XPTL	T-68	P,ATM	CALCO	DELT	P,PCT -6.86
1	91.350	91.361		0.0000141 0.0000306	0 • 26 5 0 • 58 2	-13.98
1	94.450	94。463 98。562	0.0000263 0.0000658	0.0000783	0.730	-15.98
1 1	98.550 101.850	101.858	0.0001316	0.00u1571	0.797	-16.23
1	105.350	105.353	0.0002632	0.6003118	0.825	-15.60
1	110.550	110.548	0.0006579	0.0007914	0.992	-16.87
1	114.650	114.644	0.0013158	0.0015453	3.947	-14.85
1	119.050	119.040	0.0026316	0.0029942	0.839	-12.11
1	125.550	125.537	0.0065789	0.0072450	0.717	-9.19
1	130.650	130.637	0.013158	0.013539	0.240	-2.81
NP	= 10. RMS	PCT = 13.2	26			
ID	T,XPTL	T=68	P,ATM	CALCD	DEL T	P,PCT
2	130.270	130.257	0.013158	0.012947	-0.138	1.63
2	136.460	136.449	0.026316	0.012947	-0.148	1.57
	143.410	140.402	0.039474	0.038925	-0.141	1.41
2 2 2 2 2 2 2	143.370	143.364	0.052632	0.051945	-0.139	1.32
2	145.760	145.756	0.065789	0.064946	-0.142	1.30
2	147.790	147.788	0.078947	0.078018	-0.134	1.19
2	151.120	151.121	0.1052E	0.10415	-0.127	1.07
2	153.820	153.824	0.13158	0.13028	-3.122	û • 99
2	159.330	159.039	0.19737	6.19591	-0.399	0.74
2	162.960	162.973	0.26316	0.26140	-0.094	0.67
22	156.175	166.185	0.32895	0.32708	-0.084	0.57
2	168.900	168.918	0.39474 0.52632	6.52/22	-0.074	0.48
22	173.410 177.100	173.432 177.125	0.65789	0.52422 0.65574	-0.054 -0.056	0.40 0.33
2	183.250	180.277	0.78947	0.78743	-0.350	0.00
2	183.010	183.039	0.92105	0.91908	-0.039	0.21
2	184.520	184.550	1.00000	0.99803	-0.036	0.20
2 2	185.485	185.510	1.0526	1.0509	-0.031	0.16
2	187.710	187.741	1.1842	1.1821	-0.034	0.18
2	189.770	189.802	1.3158	1.3143	-0.323	0.11
2	193.440	193.473	1.5789	1.5777	-0.017	0.08
2	198.150	198.185	1.9737	1.9729	-0.008	0.04
NP	= 22, RMS	PCT = 3.8!	57			
ID	T,XPTL	T-68	P,ATM	CALCD	DELT	P,PCT
3	91.340	91.351	0.0000152	0.0000141	-û.315	8.14
3	93.700	93.712	0.0000270	0.0000255	-0.237	5.80
3	96.240	96.253	0.0000491	0.0000466	-0.235	5.42
3 3	100.700 105.600	100.710	0.0001297	0.0001239	-0.222	4.64
3	114.240	105.603 114.235	0.0003263 0.0014461	0.0003268 0.0014487	0.009 0.012	-0.16 -0.19
3	120.380	120.369	0.0036366	0.0036185	0.J23	-0.33
3	129.810	129.797	0.012312	0.012260	-0.036	0.42
3	135.770	135.759	0.024197	0.024065	-0.051	0.55
3	140.550	140.542	0.040211	0.039472	-0.188	1.87
3	144.140	144.135	0.056289	0.055871	-0.080	0.75
NP	= 11, RMSF	PCT = 3.75	9			

	Сгуюр	enics Division – NBS Insti LABORATOR	tute for Basic Standards		project no. 2750364	FILE NO. PA 73-3 /(
UBJECT	The V		es of Ethane		NAME	Goodwin		
		-	Loomis, Walter	rs[11]	DATE July 9, 1973			
ID	T,XPTL	T-68	P•ATM	CALCD	DEL T	P, PCT		
5	135.736	135.725	0.024580	0.023977	-0.203	2.18		
5	143.267	143.261	0.052200	0.051437	-0.156	1.48		
5	147.324	147.321	0.075900	0.074840	-0.158	1.42		
5	154.546	154.550	0.14306	6.13816	-0.166	1.33		
5	158.385	158.393	0.18866	0.18657	-0.143	1.09		
5	162.629	162.641	0.25730	0.25528	-0.110	0.79		
5	165.529	165.544	J. 31606	0.31300	-0.139	0.96		
5	167.336	167.853	0.36930	0.36606	-3.133	0.89		
5	169.175	169.193	3.40330	6.40686	-J.126	0.82		
5	171.700	171.721	0.4743ü	0.47084	-0.116	0.74		
5	170.602	173.622	0.44300	6.43890	-0.145	0.93		
5	174.962	174.085	0.54980	0.54579	-0.119	0.73		
5	175.7.8	175.732	J.6073L	0.60338	-3.108	0.65		
5	177.623	177.649	0.68040	0.67631	-3.103	0.61		
Ē.	178.521	178.647	3.72100	0.71696	-0.097	0.56		
5	179.750	179.777	0.76960	0.76525	-0.099	8.57		
5	181.505	181.534	3.84990	C.84537	-0.396	8.54		
5	182.463	182.492	0.89630	0.89172	-0.093	0.51		
5	183.770	183.807	J. 9634L	6.95860	-3.092	0.50		
5	184.539	184.569	1.00480	0.99906	-0.091	0.49		
5	185.137	185.167	1.0366	1.0318	-3.387	0.47		
5	185.914	185.944	1.0830	1.0755	-0.078	0.42		
5	186.009	186.643	1.1268	1.1158	-0.684	0.44		
5	187.302	187.333	1.1619	1.1572	-0.377	0.40		
5	187.726	187.757	1.1881	1.1831	-3.081	0.42		
5	185.379	188.41.	1.2289	1.2239	-0.080	0 • 41 0 • 37		
5	189.114	189.146	1.2757	1.2715	-0.072	0.37 0.35		
5	189.658	189.890	1.3248	1.3202	-0.069			
5	198.791	190.823	1.3885	1.3839	-0.057 -0.064	0.33 0.32		
5	191.430	191.463	1.4334	1.4288 1.4998	-0.061	ຍ•3∠ 0•36		
5	192.286	192.319	1.4953 1.5318	1.4900	-0.060	0.29		
5	192.777	192.810	1.8088	1.8049	-0.046	0.22		
5	196.244 199.989	195.278 199.944	2.1417	2.1384	-0.040	J.15		
2	199.909	1000 044	C 0 T 4 T 1	C#1004	0000			

JBJECT		to D	the second s		and the second	
		√apor Press	ares of Ethane		NAME R D	. Goodwin
	Table 4. L	-	r (6), and Bar	kelew (8).		9, 1973
ID	T,XPTL	T-68	P,ATM	CALCD	DEL T	P,PCT
6	184.470	184.500	0.99940	0.99534	-0.075	0.41
6	233.490	203.524	2.4960	2.5076	3.106	-J.46
6	205.620	205.653	2.7330	2.7489	0.135	-0.58
6	210.960	210.992	3.4140	3.4308	0.121	-0.49
6	216.310	216.341	4.2250	4.2338	0.054	-0.21
6	221.880	221.910	5.2376	5.2104	0.018	-0.06
6	225.100	225.128	5.8380	5.8456	0.037	-0.13
6	226.180	226.207	6.0730	6.0709	-0.010	0.03
6	234.580	234.603	8.0446	8.0481	0.016	-0.05
6	238.900	238.921	9.2290	9.2305	6.005	-0.02
6	243.220	243.238	10.5360	10.5350	-0.003	9.01
6	248.650	248.665	12.3540	12.3588	0.013	-0.04
6	253.430	253.042	14.0430	13.9889	-0.139	0.39
6	258.800	258.809	16.421î	16.3679	-0.122	5.32
6	263.28ü	263.286	18.4486	18.4078	-ü.085	0.22
6	268.738	268.732	21.1850	21.1317	-0.101	ů.25
6	273.u90	273.095	23.5446	23.5147	-0.051	0.12
6	278.040	278.638	26.8376	26.8276	-0.015	0.04
6	283.580	283.576	30.1360	30.0575	-0.371	8.16
6	288.260	288.254	33.4686	33.3800	-3.119	0.26
NP :	= 20, RMS	PCT = 0.27	74			
ID	T,XPTL	T=68	P,ATM	CALCD	DEL T	P,PCT
8	113.060	109.998	0.0007500	0.0007205	-8.319	5.49
8	123.000	119.989	0.0034600	6.6034295	-0.063	0.89
8	130.300	129.987	0.012726	0.012540	-0.121	1.44
8	143.000	139.992	0.037850	0.037359	-8.131	1.31
8	150.000	150.000	0.095600	0.094657	-0.116	1.00
8	160.000	160.010	0.21200	ū.21J68	-0.084	0.63
8	170.000	173.619	0.42360	6.42214	-0.053	0.35
8	180.000	180.027	3.77785	6.77628	-0.034	6.25
8	190.300	190.032	1.3306	1.3297	-0.004	0.82
8	200.000	200.035	2.1462	2.1472	0.011	-0.05
8	210.000	210.033	3.2970	3.2998	0.020	80.0-
8		220.030	4.8580	4.8639	0.033	-0.12
8	233.300	230.025	6.9120	5.9196	0.032 -0.001	-0.11
8	24888	240.923	9.5510	9.5508	-0.001 -0.012	0.00 0.03
8		250.014 260.008	12.850C	12.8456 16.8973	-0.028	U.08
8 8.	260.300 270.000	270.001	16.9100 21.8300	21.8865	0.012	-9.03
3- 8	280.460	279.997		27.6895	3.062	-0.14
8	290.000	289.994		34.6843		-0.10
0	2,20,200		0100000			
NP	= 19, RMS	PCT = 1.38	33			

		NBS Institute for Basic St	andards			CT NO. FILE NO.	PAGE
SUBJECT		ATORY NOTE			2750 NAME	<u>)364 73-3</u>	12
	The Vapor Pres				DATE	R. D. Good	
	Table 5. Calculated	Ethane Vapo	r Pressures.			July 9, 197	3
	= I HA	NE VAPOR PR	ESSURES				
	T,K	P,ATH	0F/DT	D2P/	DT 2		
	89.399	0.0008096	6.0000026	0.00000			
	96.300	0.0038899	0.0000026	0.00000			
	95.300	0.0030348	0.000083	0.00000	177		
	103.300	0.0001067	0.000226	0.00000	430		
	135.302	0.0002915	3.03005555	0.00000			
	110.000	6.0007207	0.0001239	0.00001			
	115.300	0.0016337	0.0002545	6.00003			
	120.080	0.3334347	0.0004868	6.00005			
	125.000 130.000	0.0067608 0.012559	0.0008749 0.001489	0.00009 0.0001			
	135.100	0.012003	0.102414	0.0001			
	146.000	0.037390	0.003753	9.0003			
	145.300	0.050574	0.005618	0.0034			
	152.300	3.394659	0.008135	0.0005			
	155.300	0.14323	6.01143	0.000	747		
	160.350	0.21152	1.01565	0.000			
	165.300	3.33146	0.02091	0.001			
	170.600	6.42162	3.02736	0.031			
	175.300	0.57722	0.03511	0.001			
	180.000	0.77507	0.04428	0.031			
	185.363 195.303	1.5226 1.3276	0.0550 0.0673	0.00 0.00			
	195.000	1.5984	0.0813	0.00			
	236.300	2.1439	0.0972	G.J.G			
	205.000	2.5731	J.1148	0.00	372		
	216.360	3.2954	3.1344	0.00	411		
	215.000	4.0205	0.1560	0.00	451		
	220.200	4.8585	3.1795	G .00			
	225.100	5.8194	0.2052	0.00			
	231.300	6.9136	1.2329	0.00 0.00			
	235.J05 240.J30	8.1519 9.5450	0.2628 0.2948	C.00 0.00			
	245.300	9.2450	0.3292	0.00			
	250.000	12.3405	3.3658				
	255.300	14.7664	3.4349				
	263.300	16.8935	3.4465	0.00			
	265.300	19.2357		0.00			
	272.380	21.8058	0.5378	C.JJ			
	275.000	24.5190	0.5880	6.31			
	283.003	27.6914	J.6416	0.01 0.1			
	285.320 29.1.320	31.5410 34.5895	3.6990	9.J1 0.01			
	291.338 295.388	34.0895 33.6612	G.7610 0.8289				
	300.300	42.9922	0.0209				
	315.000	47.7442	1.0029				
	305.330	48.3779	1.0160				

SUBJECT	The Vapor Pre Table 6. Reduced V	apor Pro	of Ethane essure Func	tions.	NAME R. D.	. Goodwi	13 in
	Table 6. Reduced V ETHANN T,K	apor Pro	essure Func	tions.	DATE		111
	E T HA NI T , K	E REDUCE				1072	
	T,K		D VAPOR PI			9, 1973	_
				RESSURE FUN	CTIONS		
		X	Y	(Y-X)			
		0.02	2.00000	0.00000			
	91.186	5.02	0.02199	0.00199			
	92.510	3.04	0.04392	0.00392			
	93.873	0.06	0.06578	0.00578			
	95.277 96.723	0.08	1.08759	0.00759			
	98.215	0.10 0.12	0.10934 0.13102	0.00934 0.01102			
	99.753	0.14 0.14	0.15264	0.01264			
	101.339	0.16	0.17419	0.01419			
	102.977	0.18	C.19568	0.01568			
-	104.569	û.2J	ú.21710	0.01710			
	106.418	ũ.22	0.23845	0.01845			
	108.226	0.24	0.25972	0.01972			
	110.096	0.26	0.28093	0.02093			
	112.J32 114.037	0.28 0.30	0.30205 0.32310	0.J2205 0.02310			
	114.037	0.30 0.32	1.34466	u. 92406			
	118.272	0.34	Ú.36495	0.02495			
	120.509	0.36	3.38574	0.02574			
	122.332	0.38	0.40645	0.02645			
	125.247	0.40	L.42706	0.02706			
	127.759	0.42	8.44758	0.02758			
	130.373	0.44	6.46804	0.02800			
	133.397	0.45	0.48832	0.02832			
	135.937	0.48	0.50854	0.02854			
	138.301 141.997	0.50 0.52	0.52856 0.54866	0.02866 0.02856			
1	145.234	C.54	0.56855	0.12855			
	148.522	0.56	0.58833	0.02833			
	152.172	0.58	0.60800	0.02800			
	155.896	6.60	3.62755	0.62755			
	159.807	0.62	0.64698	0.02698			
	163.919	3.64	0.66629	0.02629			
1	168.248	0.66	0.68548	0.02/548			
	172.812 177.530	0.68 0.70	3.70455 3.72350	0.02455 0.02350			
	182.725	ũ•72	0.74233	0.02233			
	188.121	0.74	0.76105	0.02105			
	193.845	0.76	6.77965	0.01965			
	199.928	0.78	û.79815	0.01815			
	206.405	6.83	0.81655	0.01655			
1	213.317	0.82	0.83486	0.01486			
	220.707	6.84	0.85309	0.01309			
	228.527 237.138	0.85 0.88	0.87126 3.88938	0.01126 0.03938			
	246.306	0.55 0.90	3.90749	0.30749			
	256.212	ú.92	J. 92562	0.00562			
	266.948	0.94	0.94381	0.00381			
	278.523	0.95	0.96216	0.30216			
	291.366	80.5	0.98078	0.00078			
1	305.330	1.00	1.06080	0.00000			

```
PROJECT NO.
                                                                   FILE NO.
                                                                          PAGE
               Cryogenics Division - NBS Institute for Basic Standards
                    LABORATORY NOTE
                                                                           14
                                                          2750364
                                                                   73-3
SUBJECT
                                                          NAME
            The Vapor Pressures of Ethane
                                                              R. D. Goodwin
                                                          DATE
                                                              July 9, 1973
       PEOGRAM PSATEIT
      ETHANE VAPOR PRESSURES,
                                  X = (1 - TT/T)/(1 - TT/TC),
 С
       LN(P/PTRP) = A1*X + A2*X2 + A3*X3 + A4*X4 + A5*X*(1-X)**E.
 С
      AUTHORS ID = (1)TICKNER, (2)ROSSINI, (3)CARRUTH, (4)PAL/POPE,
 С
 С
       (5)LOOMIS, (6)PORTER, (7)ZIEGLER, (8)BARKELEW/TESTER
 С
       (9) POPE, (10) DOUSLIN, PREPRINT (1973).
 С
       COMMON TTRP, TCRT, PTRP, E, A(9), FZ, F1, F2, DLPDT, D2LPDT2
       COMMON/999/NEUN, Y, F (30)
       DIMENSION TEMP(130), DELT(130)
       DIMENSION ID(999), T(999), TX(999), P(999)
       DIMENSION G(30)
     1 FORMAT(15, 2F10.C)
      2 FORMAT(1H1 17X *ETHANE VAPOR PRESSURES, E =* F5.2//
      1 18X 6HTTRP = F7.3, 8H, TCRT = F8.3//
       2 18K 12HPTRP, MUATM = F9.5, 12H, PCRT, AIM = F9.5// 2(15X 3F16.9/) )
     3 FORMATC
                   18X 2HID 4X6HT,XPTL 6X4HT-68 7X5HP,ATM 7X5HCALCD
      1 SX5HDEL T 5X5HP,PCT)
     4 FORMAT(1H1 17X 24ID 4X6HT, XPTL 6X4HT-68 7X5HP, ATM 7X5HCALCD
                   5X5HF,PCT)
      1 5X5HDEL T
     5 FORMAT(15X I5, 2F10.3, 2F12.7, F10.3, F10.2)
      6 FORMAT(15X I5, 2F10.3, 2F12.6, F10.3, F10.2)
     7 FORMAT(15X I5, 2F10.3, 2F12.5, F10.3, F10.2)
      8 FORMAT(15x 15, 2F10.3, 2F12.4, F10.3, F10.2)
     9 FORMAT(1H0 17X 4HNP = I4, 10H, RMSPCT = F7.3)
     10 FORMAT(F8.0, F9.5, 63X)
     11 FORMAT(1H1 16X *ETHANE VAPOR PRESSURES* // 17X3HT,K 6X5HP,ATM
       1 EXTHOPIDT 5X7HD2P/DT2 )
     12 FORMAT(10X F10.3, 2F11.7, F12.8)
     13 FORMAT(10X F11.3, 2F11.6, F12.7)
     14 FORMAT(10X F10.3, 2F11.5, F12.6)
     15 FORMAT(1CX F1).3, 2F11.4, F12.5)
     16 FOR 1AT (1H1 15X * THANE REDUCED VAPOR PRESSURE FUNCTIONS* //
      1 17X 3HT,K 7X1HX 9X1HY 5X5H(Y-X) )
     17 FORMAT(10X F10.3, F8.2, 2F10.5)
     19 FORMAT(18X 2HEP EX2HSS)
     19 FORMAT(11X 2F10.4)
       READ-IN THE T45 - T68 TEMP. CONVERSION TABLE.
 С
     23 READ 10, ((TEMP(J), DELT(J)), J=1,130)
     21 TTRP=89.899 $ TCKT=305.33 $ PTRP=9.638E-6 $ E=1.5 $
                                                                   N = \Omega
 С
 С
       READ (7) ZIEGLER, KELVIN, MM HG.
     22 DO 24 J=1,99 & READ 1, IDD,TT,PP $ IF(IDD) 23,25
     23 N = N+1 $ ID(N)=IDD $
                                  P(N)=PP/760 $ TX(N)=TT
     24 T(N) = T68(TT, DELT, TEMP)
     25 NF1 = N
       READ MIXED (4) PAL, (9) POPE, (10) DOUSLIN DATA.
  С
       (4) KELVIN, PSIA, (9) KELVIN, ATMOS, (10) CENTIG., ATMOS.
  C
     26 DC 35 J=1,263 $ READ 1, IDD, TT, PP $ IF(IDC) 27,36
     27 N = N+1 $ ID(N) = IDD $ IF(IDD-4) 28,30
     28 IF(IDD=9) 34,52
     30 P(N) = PF/14.69595 $ T(N) = T68(TT, CELT, TEMF)
     31 TX(N) = TT - 5 - GO TO - 35
     32 P(N) = PP + T(N) = T58(TT, DELT, TEMP)
     33 TX(N) = TT & GO TO 35
```

```
PROJECT NO.
                                                                       FILE NO.
                                                                               PAGE
                Cryogenics Division - NBS Institute for Basic Standards
                                                                               15
                                                             2751364
                     LABORATORY NOTE
                                                                      73-3
SUBJECT
                                                             NAME
              The Vapor Pressures of Ethane
                                                                 R. D. Goodwin
                                                             DATE
                                                                  July 9, 1973
                                                                 07/23/73
          PSATFIT
     34 P(N) = PP  T(N) = TX(N) = TT + 273.15
     35 CONTINUE
     36 NP = N $ NF = 5
 С
       READ (1) DATA, CENTIGRADE, MM HG.
     38 DO 43 J=1,99 $ READ 1, IDD, TT, PP $ IF (IDD) 39,41
     39 N = N+1 $ ID(N) = IDD $ P(N) = PP/760 $ TX(N) = 273.15 + TT
     40 T(N) = T68(TX(N), DELT, TEMP)
     41 \text{ NP2} = \text{N}
      READ (2) DATA, CENTIGRADE, MM HG.
 С
     42 DO 44 J=1,99 $ READ 1, IDD, TT, PP $ IF (IDD) 43,45
     43 N = N+1 $ IO(N) = IDD $ P(N) = PP/760 $ TX(N) = 273.15 + TT
     44 T(N) = T68(TX(N), DELT, TEMP)
     45 \text{ NF3} = \text{N}
       READ (3) DATA, KELVIN, MM HG.
 С
     46 DO 48 J=1,99 $ READ 1, IDD,TT,PP $ IF(IDD) 47,49
     47 \text{ N} = \text{N} + 1 \text{ } \text{S} \text{ ID}(\text{N}) = \text{IDD} \text{ } \text{ } \text{P}(\text{N}) = \text{PP}/763 \text{ } \text{ } \text{TX}(\text{N}) = \text{TT}
     48 T(N) = TE8(TT, DELT, TEMP)
     49 \text{ NP4} = \text{N}
      READ (5) DATA, KELVIN, ATMOS.
 С
     50 DO 52 J=1,99 $ READ 1, IDD,TT,PP $ IF(IDD) 51,53
     51 N = N+1 $ ID(N) = IDD $ P(N) = PP $ TX(N) = TT
     52 T(N) = T68(TT_{2}DELT_{1}TEMP)
     53 \text{ NP5} = \text{N}
      READ (6) DATA, KELVIN, ATMOS.
 С
     54 DO 56 J=1,99 $ READ 1, IDD,TT,PP $ IF(IDD) 55,57
     55 N = N+1 $ IO(N) = IDD $ P(N) = PP $ TX(N) = TT
     56 T(N) = T68(TT, DELT, TEMP)
     57 NF6 = N
       READ (8) DATA, KELVIN, ATMOS.
  С
     63 DO 52 J=1,99 $ READ 1, IDD,TT,PP $ IF(IDD) 61,63
     61 N = N+1 $ ID(N)=IDD $ P(N)=PP $ TX(N)=TT
     62 T(N) = TE8(TT, DELT, TEMP)
     63 \text{ NPP} = \text{NP7} = \text{N}
  С
      EXPLORE VALUES FOR PIPP.
  C
     79 E = 1.6 $ PRINT 18 $ SSK = 1.0E+010
     80 \text{ XK} = 1 - \text{TTRP/TCRT}
     31 DO 32 IP=1,26 $ PTR = 9.600 + 0.001*IP $ PTRP = PTR*1.0E-6
     82 NEUN = NF $ DO 85 J=1.NP $ X = (1-TTRP/T(J))/XK
     83 F(1)=X $ F(2)=X**2 $ F(3)=X**3 $ F(4)=X**4 $ F(5)=X*(1-X)**E
     84 Y = LOGF (P(J)/PTPP)
     85 CALL FIT $ CALL COEFF $ SS = 0 $ DO 86 K=1,9
     86 A(K) = F(K)
     87 DO 38 J=1,NP $ PC=PSATF(T(J)) $ SS = SS+(P(J)/PC-1)**2
     88 CONTINUE $ SS=100*SQRTF(SS/NP) $ IF(SS.LT.SSK) 89,92
     89 SSK=SS $ EK=E $ TCK=TCRT $ TTK=TTRP $ PTK=PTRP
     90 DO 31 K=1,9
     91 G(K) = F(K)
     92 PRINT 19, PTR, SS
     93 E=EK & TCRT=TCK & TTRP=TTK & PTRP=PTK & DO 94 K=1,9
     94 A(K) = G(K) 3 FCRT = PTRP*EXPF(A(1)+A(2)+A(3)+A(4))
     95 PTR = 1.0E6*PTRP
```

PROJECT NO. FILE NO. PAGE Cryogenics Division - NBS Institute for Basic Standards 16 LABORATORY NOTE 2750364 73-3 SUBJECT NAME R. D. Goodwin The Vapor Pressures of Ethane DATE July 9, 1973 C PRINT DEVIATIONS, INCLUDING DT = + DP/ (DP/DT). 105 L = 9 8 SS = 0 106 PRINT 2, E, TTRP, TCRT, PTR, PCRT, (A(K), K=1,6) \$ PRINT 3 107 DO 125 J=1,NP & L = L+1 & IF(L-57) 112,108 5 PRINT 4 108 L = 0112 PC = PSATF(T(J))\$ DPDT = PC*DLPDT 113 DP = P(J) - PC \$ DT = -DP/DPOT114 PCT = 130*DP/PC 8 SS = SS + PCT**2 117 IF (PC-0.01) 123,118,118 118 IF (PC-0.1) 121,119,119 119 IF(PC-1.0) 122,123,123 120 PFINT 5, ID(J), TX(J), T(J), P(J), PC, DT, PCT \$ GOTO 125 121 PFINT 6, ID(J), TX(J), T(J), P(J), PC, DT, PCT 3 GOTO 125 122 PFINT 7, ID(J), TX(J), T(J), P(J), PC, DT, PCT \$ GOTO 125 123 PFINT 8, ID(J), TX(J), T(J), P(J), PC, DT, PCT 125 CONTINUE 126 SS = SQRTF(SS/NP) \$ PRINT 9, NP,SS C PRINT OTHER DATA DEVIATIONS. С 140 K = NP+1 3 SS = N = 0 3 PRINT 4 141 DO 157 J=K, NPP & IF(J=NPP) 143,142 142 SS = SQRTF(SS/N) \$ PRINT 9, N,SS \$ GO TO 158 143 N = N+1 \$ PC=PSATF(T(J)) \$ DPDT = PC*DLPDT 144 DP = P(J) - PC \$ DT = -DP/DPDT* SS = SS + PCT **2 145 PCT = 190*DP/PC 146 IF(PC-J.01) 150,147,147 147 IF(PC-0.1) 151,148,148 148 IF(PC-1.0) 152,153,153 15) PFINT 5, ID(J), TX(J), T(J), P(J), PC, DT, PCT \$ GO TO 155 151 PPINT 6, ID(J), TX(J), T(J), P(J), PC, DT, PCT \$ GO TO 155 \$ GO TO 155 152 PRINT 7, ID(J), TK(J), T(J), P(J), PC, DT, PCT 153 PRINT 3, ID(J), TK(J), T(J), P(J), PC, DT, PCT 155 IF(ID(J+1)-ID(J)) 156,157 156 SS = SQRTF(SS/N) \$ PRINT 9, N,SS \$ SS=N=0 \$ PRINT 4 157 CONTINUE 158 CONTINUE С PRINTOUT UNIFORM TABLE FOR PUBLICATION. С 200 PRINT 11 3 00 220 J=1,46 \$ IF(J-1) 202,201 261 TT = TTPP & GO TO 205 202 IF(J-46) 204,203 203 TT = TCRT 3 GO TO 205 204 TT = 80 + 5*J 205 PS=PSATF(TT) % DPOT=PS*DLPDT % D2PDT2=PS*(DLPDT**2 + D2LPDT2) 207 IF (PS-0.01) 210,238,208 208 IF (PS=J.1) 211,209,209 209 IF(PS=1.0) 212,215,213 210 PFINT 12, TT,PS,DPDT,D2PDT2 \$ GOTO 220 211 PRINT 13, TT, PS, GPDT, D2PDT2 \$ GOTO 220 212 PRINT 14, TT, PS, DPDT, D2PDT2 5 GOTO 220 213 IF(J-46) 215,214 214 D2P3T2 = 0215 PRINT 15, TT, PS, DPDT, D2PDT2 220 CONTINUE

PROJECT NO. FILE NO. Cryogenics Division - NBS Institute for Basic Standards PAGE 17 2750364 LABORATORY NOTE 73-3 SUBJECT NAME R. D. Goodwin The Vapor Pressures of Ethane DATE July 9, 1973 07/23/73 PSATFIT PRINT UNIFORM REDUCED TABLE. С Y = LN(P/PTRP)/YN, YN = LN(PCRT/PTRP). С $YC = (A(1)^{*}X + ... + A(5)^{*}X^{*}(1-X)^{**}E)/YN.$ C 250 XN = 1-TTRP/TCRT \$ YN = A(1) + A(2) + A(3) + A(4) 251 PRINT 16 \$ DO 270 J=1,51 \$ X = 0.12*(J-1) 252 IF(J-1) 254,253 253 TT = TTRP \$ GOTO 257 254 IF(J-51) 256,255 255 TT = TCRT \$ GOTO 257 256 TT = TTRP/($1 - X^{+}XN$) 257 IF(J=51) 259,258 258 Z = 0 \$ GO TO 260 259 Z = X + (1 - X) + E260 YC = A(5)*Z 8 DO 261 K=1,4 261 YC = YC + A(K) * X * * K262 YC = YC/YN \$ YX = YC - X 270 PRINT 17, TT, X, YC, YX 999 CONTINUE Б STOP \$ END SINGLE-BANK COMPILATION. FUNCTION PSATE(T) LN(P/PTRP) = A1*X + A2*X2 + A3*X3 + A4*X4 + A5*X*(1-X)**E. С С ARGUMENT, X = (1 - TT/T)/(1 - TT/TC). YILLOS ALSO DLPDT = (OP/DT)/P, AND D2LPT = (D2P/DT2)/P. С COMMON TTRP, TCRT, PTRP, E, A(9), FZ, F1, F2, DLPDT, D2LPDT2 1 FORMAT(1H3 9X *PSATE = 0, T EXCEEDS TORT. * /) 2 XN=1+TTRP/TORT \$ X=(1+TTRP/T)/XN \$ X2=X**2 \$ X3=X**3 \$ X4=X**4 3 DXDT = TTRP/XN/T**2 \$ D2XDT2 = -2*DXDT/T $4 \ Q = 1 - X \ S \ IF(Q) \ 5, 5, 7$ 5 PSATE = DLPDT = C2LPDT2 = 0 \$ PRINT 1 \$ RETURN 5 Z = Z1 = Z2 = 0 \$ GOTO 9 \$ W1 = -E⁺W/Q \$ W2 = (1-E)⁺W1/Q 7 W = Q**ご 8 Z = X*W \$ Z1 = X*W1 + W \$ Z2 = X*W2 + 2*W1 9 FZ = A(1)*X + A(2)*X2 + A(3)*X3 + A(4)*X4 + A(5)*Z10 PSATE = PTRP#EXPE(FZ) 11 F1 = A(1) + 2*A(2)*X + 3*A(3)*X2 + 4*A(4)*X3 + A(5)*Z112 OLPOT = $F1^+0XDT$ $13 F^2 = 2 + A(2) + 6 + A(3) + X + 12 + A(4) + X^2 + A(5) + Z^2$ 15 02LPDT2 = F1*02XDT2 + F2*0XDT**2 \$ RETURN \$ END

USCOMM - ER

	Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO.	FILE NO. 73-3	PAGE 18
SUBJECT	The Vapor Pressures of Ethane		D. Goodw	rin
		DATE July	<u>r 9, 1973</u>	
	FUNCTION T68(X,YMAT,XMAT) THIS PROGRAM HAS BEEN CHANGED SO THAT THE OSCILLA THE MATRIX TO BE INTERPOLATED EXISTS ONLY AT THE TABLE THIS ROUTINE WILL TAKE INPUT MATRICES OF UP TO 99 ARRANGED SO THAT THE X MATRIX(XMAT) IS IN EITHER DESCENDING ORDER,SELECT NMAX OF THESE POINTS,CHOS SUCESSIVE X VALUES OSCILATE ABOUT THE VALUE OF TH UNLESS THE ENDS OF THE XMATRIX INTERFERE (IN THIS OSCILATORY NATURE IS LOST BUT THE PROGRAM WILL ST	TING NA UPPER EI ASCENDII EN SO TI E ARGUMI CASE TI ILL PERI	TURE OF ND OF TH NG OR HAT ENT X HE FORM AN	ΙE
	INTERPOLATION), INTERPOLATE ON THESE NMAX PAIRS O AN OSCILATING VARIABLE POINT AITKEN INTERPOLATION EITHER UNTIL THE PERCENTAGE CHANGE IN THE INTERPO THAN THE ACRCY ARGUMENT(THE ARGUMENT NESSY INDICA NUMBER OF THE POINT JUST BEFORE THE LAST ONE CHEC THE NMAX POINTS ARE ALL USED. IT IS SUGGESTED TH BE LESS THAN 1D, AND OF COURSE LESS THAN NELMTS. INDICATES THE NUMBER OF ELEMENTS IN XMAT OR YMAT.	ALGORI LANT IS TES THE KED) OR AT NMAX NELMTS	THM LESS UNTIL	
200	IF NESSY IS ZERO IT INDICATES THAT THE INTERPOLAT HAS NOT BEEN SATISFIED. IF NESSY IS 1 IT MEANS T X LIES OUT SIDE THE RANGE OF XMAT. DIMENSION YMAT(999), XMAT(999),A(21,20) FORMAT(42HINTERPOLATION REQUIREMENT NOT SATISFIED 1LAST 2 APPROXIMATIONS OF Y ARE(Y=,E16.8,1H,,E16.8 FORMAT(55HTHIS REPRESENTS AN EXTRAPOLATION OF THE	HAT THE (X=,E16 ,1H))	VALUE C .8,1H)/3	9F 13 H
360 400	1216.3,1H)/33HNO CALCULATION HAS BEEN PERFORMED) FORMAT(24HNELMTS IS LESS THAN NMAX) FORMAT(22HNMAX IS LARGER THAN 20) NELMTS=130 \$ NMAX=9 \$ ACRCY=0.01 IF(NMAX-20)71,71,69 WRITE OUTPUT TAPE 6,400 T68 = X \$ RETURN			
	IF (NMAX-NELMTS)75,75,73 WRITE OUTPUT TAPE 6,335 T68 = X \$ RETURN			
75	CONTINUE FIRST TWO SUCCESSIVE VALUES OF THE XMATRIX THAT S VALUE X WILL BE SOUGHT JJ1=NELMTS-1 DO 23 I=1,JJ1 DIF1=X-XMAT(I) DIF2=XMAT(I+1)-X IF(DIF1)16,15,16	TRADDLE	THE	
15	$T_{58} = X + YMAT(I)$ $NESSY = NMAX$ RETURN			
-	IF(DIF2)18,17,18 T6B = X + YMAT(I+1) NESSY =NMAX			
18	RETURN RATIO=DIF1/ DIF2 IF(RATIO)20,20,19			
19 20	IMID=I GO TO 32 CONTINUE			

	Cryogenics Division - NBS Institute for Basic Standards LABORATORY NOTE	PROJEC	T NO.	FILE NO. 73-3	PAGE 19
SUBJECT	The Vapor Pressures of Ethane	NAME	R.	D. Good	win
		DATE	Jul	v 9, 1973	3
98 201 102 33 34	AT THIS POINT ONE COULD PRINT THE FOLLOWING STATEN WRITE OUTPUT TAPE 6,230,X NESSY=1 T68 = X \$ RETURN CONTINUE NOTE THAT RATIO IS POSITIVE IF THE TWO POINTS STRA REGAROLESS WHICH IS LARGER JJJ=IMID JUP=IMID JUP=IMID JDN=IMID IF(JJJ+NMAX-NELMTS+1)38,98,102 DO 231 J=1,NMAX JJJ=IMID+J=1 A(1,J)=XMAT(JJJ) A(2,J)=YMAT(JJJ) GO TO 233 DO 41 J=1,NMAX JJ=J/2 JOE=J=2*JJ JOE IS 9 IF J IS EVEN AND 1 IF J IS ODD IF(J=1)33,49,33 IF(JDN=1)34,36,34 IF(JUP=NELMTS)35,37,35 IF(JOE) 37,36,37			<u>v 9. 19 (</u>	2
36 37 4J 41	JUP=JUP+1 $JJJ=JUP$ $G0 T0 43$ $JDN=JDN-1$ $G0 T0 40$ $A(1, J)=XMAT (JJJ)$ $A(2, J)=YMAT (JJJ)$ $CONTINJE$ $NNN=NMAX+1$ $D0 6 J=3,NNN$ $L=J-1$ $D0 5 K=L,NMAX$	y dz	:.		
2 3 5 6	J IS THE COLUMN NUMBER K IS THE ROW NUMBER (A (J, K) = (A (J-1, K) - A (J-1, J-2)) * (X - A (1, J-2)) / (A (1, K) - 1)) + A (J-1, J-2) IF (K-L) 3,2,3 IF (ABSF ((A (J,L) - A (J-1, L-1)) / A (J,L)) - ACRCY/100.0)7, CONTINUE CONTONE CONTINUE CONTIN	7,3			

	Сгуос	-	stitute for Basic Standards		PROJECT NO.	FILE NO. PAGE
SUBJECT		LABORATO	NOIE		2750364	and the second sec
SUBJECT	The	Vapor Pres	sures of Ethan	e		D. Goodwin
-					DATE July	9, 1973
ETHA	ANE VAPOR $P = 89,899,$	PRESSURE	S, E = 1.50			
			CRT, ATM = 4	10 07722		
	.806922651			•119603823		
-U	.042999191	0.059	966098 0	• • • • • • • • • • • • • • • • • • • •		
ID	T,XPTL	T-68	P,ATM	CALCD	DEL T	P+PCT
7		90.010	0.0000103	0.000103	0.000	-0.01
7	100.000	100.010	0.0001098	0.0001098	-0 + 001	0.01
7	110.000	109.998	0.0007364	0.0007363	•0.001	0.02
7	120.000	119.989	0.0034934	0.0034939	0.001	-0.01
7	130.000	129.987	0.012728	0.012732	0.003	-0.04
7	140.000	139.992	0.037792	0.037803	0.003	-0.03
7	150.000	150.000	0.095474	0.095476	0.000	-0.00
7	160.000	160.010	0.21196	0.21192	-0.003	0.02
7	170.000	170.019	0.42387	0.42369	-0.007	0.04
7 7	180.000	180.027	0.77824	0.77783	-0.009	0.05
9	184.520	184.550	1.00000	0.99944	~0.010 0.027	0.06
	198.181	198.216	1.9737	1.9761	0.027	-0.12
4	214.302	214.334 224.130	3.9209 5.6367	3.9159	-0.032	0.13 -0.06
4	224.102 229.755	229.782		5.6402		
4			6.8569	6.8598 8.0392	0.012	-0.04
9	234.558 234.692	234•581 234•715	8.0335 8.0741	8.0741	0.022 -0.000	-0.07 0.00
10	238.150	238.150	9.0097	9.0077	-0.007	0.02
9	238.771	238.792	9.1843	9.1905	0.021	-0.07
4	239.844	239.864	9.4959	9.5019	0.020	-0.06
4	240.514	240.534	9.6960	9.7003	0.014	-0.04
10	243.150	243.150	10.5063	10.5045	-0.006	0.02
4	243.359	243.377	10.5760	10.5764	0.001	-0.00
4	246.814	246.830	11.7137	11.7162	0.007	-0.02
4	247.816	247.831	12.0502	12.0628	0.036	-0.10
10	248.150	248.150	12.1756	12.1747	-0.003	0.01
4	249.741	249.755	12.7620	12.7496	-0.034	0.10
4	250.146	250.160	12.8985	12.8976	-0.002	0.01
4	251.587	251.600	13.4425	13.4344	-0.022	0.06
4	252.544	252.556	13.8065	13.7997	-0.018	0.05
10	253.150	253.150	14.0310	14.0301	-0.002	0.01
4	254.290	254.301	14.4898	14.4848	-0.012	0.03
4	257.543	257.552	15.8252	15.8266	0.003	-0.01
10	258.150	258.150	16.0835	16.0827	-0.002	0.00
10	263.150	263.150	18.3464	18.3452	-0.003	0.01
4	263.380	263.386	18.4543	18.4573	0.006	-0.02
4	267.536	267.539	20.5197	20.5145	-0.010	0.03
10	258.150	268.150	20.8318	20.8308	-0.002	0.00
4	271.749	271.750	22.7661	22.7662	0.000	-0.00
9	272.949	272.949	23.4515	23.4394	-0.021	0.05
10	273.150	273.150	23,5549	23,5536	-0.002	0.01
4	275.922	275.921	25.1584	25.1702	0.020	-0.05
4	276.363	276.362	25,4558	25.4347	-0.035	0.08
4	276.385	276.384	25.4491	25.4479	-0.002	000
4	276.514	276.513	25.5472	25.5257	-0.036	0.08
4	277.813	277.811	26.3185	26.3189	0.001	-0.00
10	278.150	278.150	26.5309	26.5290	-0.003	0.01

T	The	LABORATOR			2750364 NAME R. D	73-3 Goodw
						9, 1973
IO	T,XPTL	T-68	P,ATM	CALCD	DEL T	P, PC
4	280.041	280.038	27.7039	27.7217	0.028	-0.0
4	282.247	282.243	29.1537	29.1647	0.016	-0.0
10	283.150	283.150	29.7763	29.7739	-0.003	0.0
4	284.635	284.630	30.7664	30.7893	0.033	-0.0
9	284.845	284.840	30.9555	30.9353	-0.029	0.0
4	287.653	287.648	32.9289 33.3110	32.9392 33.3080	0.014 -0.004	⇔0•0 0•0
104	288.150 288.263	288.150 288.257	33.3899	33.3872	-0.004	0.0
4	290.040	290.034	34.6873	34.7192	0.042	-0.0
9	290.214	290.208	34.8748	34.8518	-0.030	0.0
4	292.236	292.229	36.4440	36.4216	-0.028	0.0
4	293.098	293.091	37.0816	37.1074	0.032	=0.0
10	293.150	293.150	37.1583	37.1547	-0.005	0.0
9	293.266	293.259	37.2672	37.2422	-0.031	0.0
4	296.347	296.339	39.7598	39.7852	0.030	-0.0
10	298.150	298.150	41.3494	41.3446	-0.005	0.0
4	299.665	299.657	42.6543	42.6808	0.030	-0.0
9 4	299.863 300.205	299.855 300.196	42.8863 43.1650	42.8591 43.1686	-0.030 0.004	0.0 -0.0
4	301.251	301.242	44.1085	44.1274	0.020	-0.0
1.0	302.150	302.150	44.9809	44.9751	-0.006	0.0
10	303.150	303.150	45.9327	45.9268	-0.006	0.0
4	303.471	303.462	46.2032	46.2273	0.025	= () . (
4	303.477	303.468	46.2798	46.2331	-0.048	0.1
9	304.012	304.002	46.7736	46.7533	-0.021	0.0
4	304.049	304.039	46.7698	46.7896	0.020	=0.0
10	304.150	304.150	46.9040	46.8987	-0.005	0.0
4	304.360	304.350	47.0931	47.0953	0.002	-0.0
4	304.446	304.435	47.2198	47.1802 47.2525	-0.040	0 • 0 • 0 •
4	304.519 304.734	304.508 304.723	47.2025 47.4310	47.4661	0.050 0.035	-0.0
4	304.796	304.785	47.5185	47.5280	0.009	-0.0
4	304.924	304.913	47.6846	47.6560	-0.028	0.0
4	304.980	304.969	47.7131	47.7122	-0.001	0.0
4	305.121	305.110	47.8496	47.8541	0.004	-0.0
10	305.150	305.150	47.8992	47.8945	-0.005	0.0
-4	305.153	305.142	47.8807	47.8864	0.006	-0.0
10	305.250	305.250	47.9994	47.9958	-0.004	0.0
	= 85, RMSI	PCT = 0.05				

	LABOR	NBS Institute for Basic St ATORY NOTE		27	50364 73-3	PAG 22
SUBJECT			Ethana	NAM		
	The Vapor F	Pressures of	Etnane	DATE		
					July 9, 1973	>
	ETHA	NE VAPOR PR	ESSURES			
	T,K	P,ATM	DP/DT	D2P/DT2		
	89.899	0.0000100	0.0000027	0.0000064		
	90.000		0.0000027	0.00000066		
	95.000 100.000	0.0000358 0.0001095	0.0000085 0.0000232	0.00000439		
	105.000	0.0002985	0.0000232	0.00000960		
	110.000	0.0007365	0.0001264	0.00001915		
	115.000	0.0016670	0.0002592	0.00003529		
	120.000	0.0034991	0.0004948	0.00006077		
	125.000	0.0068762	0.0008875	0.00009864		
	130.000	0.012752	0.001507	0.0001521		
	135.000	0.022468	0.002439	0.0002242		
	140.000	0.037834	0.003785	0.0003177		
	145.000	0.061192	0.005656	0.0004350		
	150.000	0.095478	0.008177	0.0005776		
	155.000	0.14426	0.01148	0.000747		
	160.000	0.21176	0.01569	0.000942		
	165.000	0.30288	0.02095 0.02738	0.001165 0.001412		
	170.000 175.000	0.42317 0.57882	0.03511	0.001412		
	180.000	0.77662	0.04426	0.001979		
	185.000	1.0239	0.0549	0.00229		
	190.000	1.3287	0.0672	0.00263		
	195.000	1.6991	0.0812	0.00298		
	200.000	2.1440	0.0970	0.00334		
	205.000	2.6726	0.1147	0.00372		
	210.000	3.2943	0.1343	0.00411		
	215.000	4.0188	0.1558	0.00451		
	220.000	4.8561	0.1794	0.00492		
	225.000	5.8165	0.2051	0.00534		
	230.000	6.9105	0.2329 0.2628	0.00577 0.00620		
	235.000 240.000	8.1487 9.5420	0.2949	0.00665		
	245.000	11.1016	0.3293	0.00711		
	250.000	12.8390	0.3660	0.00758		
	255.000	14.7659	0.4052	0.00807		
	260.000	16.8947	0.4468	0.00858		
	265.000	19.2381	0.4910	0.00913		
	270.000	21.8098	0.5381	0.00971		
	275.000	24.6242	0.5882	0.01034		
	280.000	27.6972	0.6416	0.01105		
	285.000	31.0467	0.6989			
	290.000	34.6934	0.7607	0.01288		
	295.000	38.6630 42.9905	0.8283 0.9046	0.01425 0.01657		
	300.000 305.000	42.9909	1.0055	0.03283		
	305.330	48.0772	1.0228	0.00000		

	Cryogenics Division – NBS I LABORATO				PPOJECT NO. FILE NO. 2750364 73-3	PAGI 23
SUBJECT	The Vapor Pre				NAME R. D. Good	-
	ine vapor i re	bbareb o			DATE July 9, 197	
	P 7 113 14	C. 0 50404				e Statistica e de angelano
	LIMAN	E KEUUU	ED VAPOR PI	KESSURE FU	NCIIONS	
	Т,К	Х	Y	(Y-X)		
	89.899	0.00	0.00000	0.00000		
	91.186	0.02	0.02190			
	92.510	0.04	0.04376			
	93.873	0.06	0.06558 0.08734			
	96.723	0.10	0.10906			
	98.215	0.12	0.13073			
	99.753	0.14	0.15234			
	101.339	0.15	0.17389			
	102.977	0.18	0.19538			
	104.669	0.20	0.21680			
	106.418	0.22	0.23816			
	108.226	0.24	0.25945	0.01945		
	110.096	0.26	0.28066			
	112.032	0.28	0.30180			
	114.037	0.30	0.32285			
	116.116	0.32	0.34382			
	118.272	0.34	0.36471			
	120.509	0.35	0.38551	0.02551		
	122.832	0.38	0.40621	0.02621		
	125.247	0.40	0.42682	0.02682		
	127.759	0.42	0.44733	0.02733		
	130.373	0.44	0.46774	0.02774		
	133.097	0.46	0.48805	0.02805		
	135.937	0.48	0.50825	0.02825		
	138.901	0.50	0.52835	0.02835		
	141.997	0.52	0.54833	0.02833		
	145.234	0.54	0.56820	0.02820		
	148.522	0.56	0.58796	0.02796		
	152.172	0.58	0.60760	0.02760		
	155.896	0.60	0.62713			
	159.807	0.52	0.64654			
	163.919	0.64	0.66583	0.02583		
	168.248	0.56	u.68501	0.02501		
	172.812	0.58	0.70406	0.02406		
	177.630	0.70	0.72301	0.02301		
	182.725	0.72	0.74184	0.02184		
	188.121	0.74	0.76056	0.02056		
	193.845	0.76	0.77917	0.01917		
	199.928	0.78	0.79769	0.01769		
	206.405	0.80	0.81611	0.01611		
	213.317	0.82	0.83445	0.01445		
	220.707	0.84	0.85272	0.01272		
	228.627	0.86	0.87093	0.01093		
	237.138	0.88	0.88910	0.00910		
	246.306	0.90	0.90726	0.00726		
	256.212	0.92	0.92544	0.00544		
	266.948	0.94	0.94369	0.00369		
	278.623	0.95	0.96208	0.00208 0.00074		
	291.366 305.330	0.92 1.00	0.98074 1.00000	0.00074		

APPENDIX K

.

Cryagenics Division – NBS Institute for Basic Standards LABORATORY NOTE		file no. 73 - 4	PAGE 1
SUBJECT	NAME R. D	. Goodw	vin
Ethane Virial Coefficients and Saturated Vapor Densities	DATE Augus	st 14, 19	973

1. Introduction

The virial equation of state for low densities is needed for thermal computations to generate P-p-T data, and to obtain saturated vapor densities via the vapor pressure equation.

In this report we develop analytical representations for the virial coefficients of ethane and obtain the corresponding saturated vapor densities.

In the truncated virial equation,

$$Z(T,d) \equiv P/(R \cdot T \cdot d) = 1 + B(x) \cdot \sigma + C(x) \cdot \sigma^{2} + D(x) \cdot \sigma^{3},$$
(1)

P is pressure, R the gas constant, T the absolute temperature, d the density, and $\sigma \equiv d/d_c$ is reduced density. The second, third, and fourth coefficients B(x), C(x), D(x) are dimensionless functions of reduced temperature $x \equiv T/T_c$. We use $T_c \equiv 305.33$ K, and $V_c \equiv 1/d_c = 145.56$ cc/mol from Douslin [2]. In the tables we use symbols B*, C* and D* for the coefficients of (1).

2. The Second Virial Coefficient

Data for B(x) through about 1960 are reviewed by Tester [16]. Since then we have data from Gunn [8], Hoover [9], Pope [15], McGlashan [12], and Douslin [2]. Data of Gunn and of Douslin extend from 273 K upwards to 623 K. McGlashan gives outstanding experimental work on the hydrocarbon series (but not on ethane) down to $T/T_c = 0.5$. From his formulations he concludes that the low-temperature data of Eucken and Parts [4] are wrong. This suspicion also was expressed by Ziegler et al. [17].

For least squares we have selected for low temperatures only the data from McGlashan's formula because all other data diverge widely therefrom (Table 2). For high temperatures we have selected Douslin's recent data because the experimental work [2] was executed with great care. Table 2 shows that Michels (1D=3) and Gunn (1D=8) are in substantial agreement with Douslin. For consistency with Douslin, we have increased the absolute values of McGlashan's data by one percent, well within the uncertainty of his $V_{c} = 148$ cc/mol.

Cryagenics Division - NBS Institute for Basic Standards LABORATORY NOTE	project no. 2750364	FILE NO. 73-4	PAGE 2
SUBJECT	NAME R.	D. Goodv	vin
Ethane Virial Coefficients and Saturated Vapor Densities	DATE Augu	st 14, 19	73

Our formula for B(x), selected from many variations, finally is similar to that developed for methane [6],

$$B(x) = \left[B_1 + B_2/x^{1/4} + B_3/x + B_4/x^2 + B_5/x^3\right] \cdot \left[1 - (T_0/T)^{1/4}\right], \quad (2)$$

$T_{0} = 740.0 \text{ K},$	$B_3 = 9.217322,$
B ₁ = 7.99 3156,	$B_4 = -2.481668,$
$B_2 = -10.67 2497,$	$B_5 = 0.842328.$

Table 1 gives results for (2) with the data used for least squares: (6) McGlashan; (10) Douslin. Data not used for ℓ .s. are compared with (2) in Table 2: (1) Eucken; (2) Lambert; (3) Michels: (4) Hoover; (5) Pope; (8) Gunn.

3. The Third Virial Coefficient

For C(x) relatively few data are known to us. The data of Michels [13] and Hoover [9] were generalized in 1967 by Chueh [1], using a formula similar to that developed by Goodwin [5]. In 1971 Pope [15] gave five low-temperature values from 210 to 306 K. For temperatures above 273 K we are fortunate to have the recent, carefullyderived data of Douslin [2].

A comparison of Chueh's generalized function with Douslin's data at $T/T_c = 2$ shows $C^* = 0.20$ (Chueh), and $C^* = 0.15$ (Douslin). Whereas the Chueh formula gives nearly constant values at high temperatures, the Douslin data are trending asymptotically toward zero.

For least squares we have selected the data of Douslin at high temperatures, and data generated by Chueh's formula at low temperatures. For consistency we have diminished these latter values by two percent. (Chueh fails to give his critical densities.) At low temperatures the third virial coefficient is not important in the computation of eq (1) because the maximum possible density (saturated vapor) is diminishing exponentially with temperature, $e^{-\alpha/T}$, (see Table 4).

Cryagonics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. 2750364	FILE NO. 73-4	PAGE 3
SUBJECT Ethane Virial Coefficients and Saturated Vapor Densities	NAME R. D. Goodwir		
	Aug	ust 14, 1	973

Our formula for C(x) is much simpler than that of Chueh, and is similar to that developed for methane [6],

$$C(x) = \left[C_{1}/x + C_{2}/x^{3} + C_{3}/x^{5}\right] \cdot \left(1 - T_{0}/T\right), \qquad (3)$$

$$T_{o} = 217.80 \text{ K},$$
 $C_{2} = 0.865 299,$
 $C_{1} = 0.253 773,$ $C_{3} = 0.556 075.$

Least squares results are in the upper part of Table 3: (7) Chueh; (10) Douslin. Other data in the lower part are: (4) Hoover; (5) Pope.

4. The Fourth Virial Coefficient

Recent data of Douslin [2] are plotted in Figure 1. The general behavior expected for D^{\ddagger} is shown in the book by Mason and Spurling [11]. As present data exist only at $T > T_c$, we use the simple formula,

$$100 \cdot D^* = x^{-1/4} \cdot \exp[a \cdot b/(x - 1)],$$
 (4)

where $x \equiv T/T_{c}$, and a = 4.00, b = 1.84 from Figure 1.

5. Examination of the Virial Equation

It is valuable to know the relative importance of the terms of eq (1). In Table 4 we compute these for the saturated vapor, using densities from the formula of Plank and Kambeitz quoted by Tester [16]. We have increased the P.K. densities by 0.088% to agree with the virial equation at 90 K. Pressures are from our vapor pressure equation [7].

In the fourth column of Table 4 we give the ratio DI/DN of ideal gas density to the P.K calculated densities. Fifth and sixth columns give $B(x) \cdot \sigma$ and $C(x) \cdot \sigma^2$. If all data were accurate, we should expect Z(T, d) in the last column to be the same as DI/DN.

The vapor pressures of Ziegler [17] were based on second virial coefficients of Eucken and Parts [4], the accuracy of which Ziegler questioned. Our selection for B* also disagrees with Eucken and Parts. We therefore have recomputed our vapor

Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. 2750364	FILE NO.	PAGE 4
SUBJECT Ethane Virial Coefficients and Saturated Vapor Densities	NAME R. D		
pressure constants using alternate vapor pressure data of Ziegl	.er, as sh	own in th	ie
addendum to our Laboratory Note [7]. This revised vapor pres	sure equa	tion is us	sed
in the following to obtain the densities of saturated vapor.			

6. Derivation of the Saturated Vapor Densities

For a given temperature we iterate density in the virial equation to obtain a pressure therefrom which is the same as the vapor pressure. Results are in Table 5. In previous work we have found that this method gives acceptable results at densities up to about $\rho_c/3$, which for ethane occurs near T = 286 K. We see that data from the Plank-Kambeitz formula diverge increasingly from our results on approach to T_c . The highest temperature at which our results are accurate remains to be seen by comparison with data from other sources. Figure 2 shows, however, that in the region of overlap with Douslin's vapor densities [2], our results (the filled circles) appear reasonable.

Figure 3 shows the results at lower temperatures. We see that powers of (1/T) greater t! an the first will be needed to describe these data.

7. Discussion of Uncertainties

Experimental uncertainties for virial coefficients vary inversely as the significance of these coefficients in giving departure from ideal gas behavior, see Table 4. For the second coefficient only, for example,

$$\delta B/B = \frac{\delta Z}{Z} \cdot \frac{Z}{Z-1} ,$$

where δB and δZ are small variations in B and Z. Assume a tolerable error of 0.01 percent in Z. From Table 4 we compute the approximate tolerable uncertainty in B, neglecting the effect of C(T),

Cryogenics Division - NBS Institute for Basic Standards LABORATORY NOTE		PROJECT 1 27503		PAGE 5	
SUBJECT			NAME	R. D. Good	win
Ethane Virial Coefficients and Saturated Vapor Densities			DATE	ugust 14. 1	973
Т,К	mol/l	δB/B, %			
100	0.000013	357.0			
120	0.000349	21.6			
140	0.00327	3.37			
160	0.01626	0.915			
180	0.05434	0.352			
200	0.1401	0.170			
220	0.3035	0.096			
240	0.5864	0.060			
260	1.057	0.040			

Not all authors give estimates of uncertainty for experimental virial coefficients. Hoover et al, however, give these estimates for ethane,

Т,К	δB/B, %	δC/C, %
215	1.0	10.0
240	0.4	4.0
273	0.1	1.0

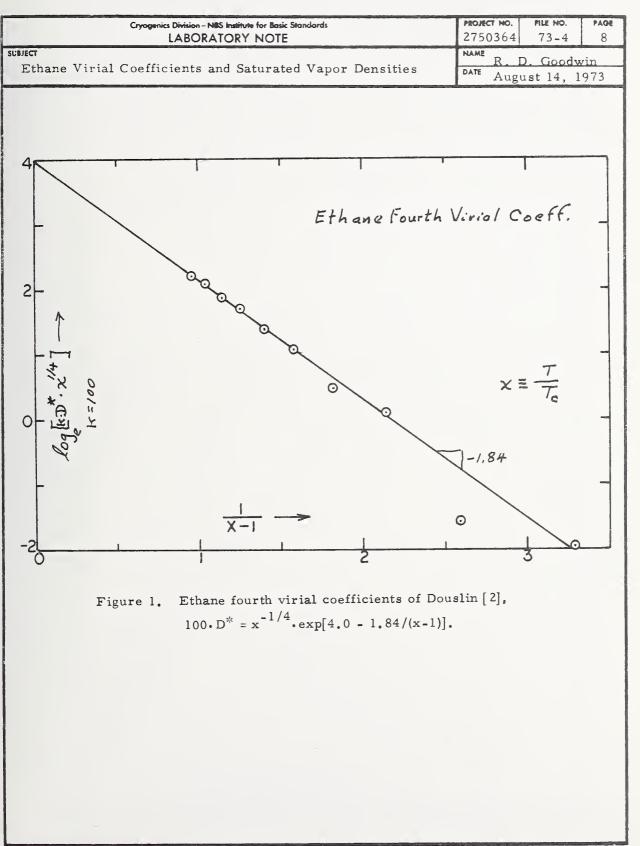
and we believe these to be reasonable estimates for very careful work. In Table 2, however, we see that Hoover's data, ID=4, differ from our selection by up to five percent at low temperatures (215 and 240 K).

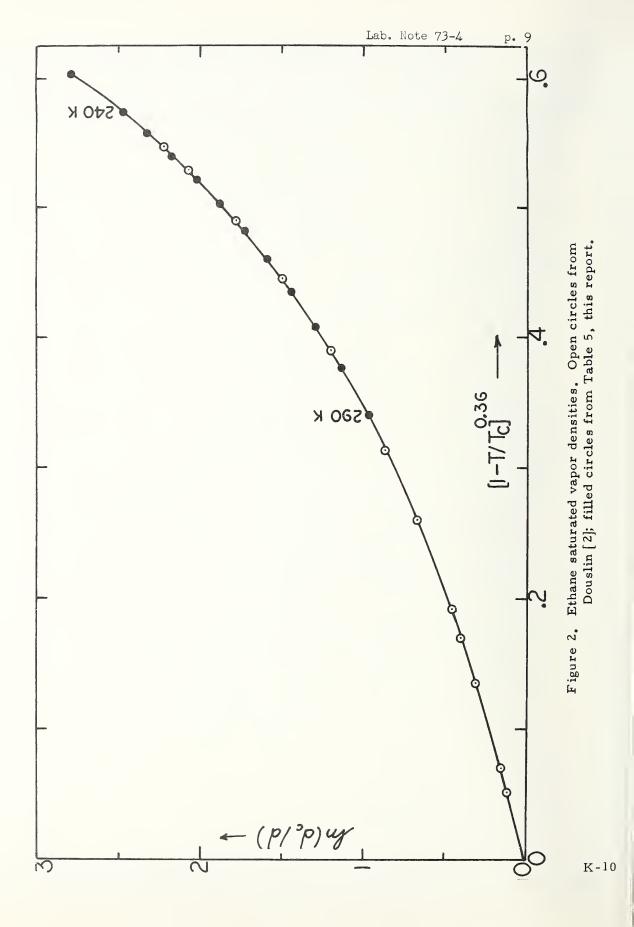
Our derived densities depend on the vapor pressure equation. This we estimate to be uncertain by several percent at the lowest temperatures approaching the triple point. The virial equation, on the other hand, approaches ideal gas behavior at these low temperatures. At the higher temperatures above 270 K, we believe the virial coefficients and vapor pressures of Douslin to be accurate as can be derived from the best of PVT measurements.

	Cryagenics Division – NBS Institute for Basic Standards	PROJECT NO.	FILE NO.	PAGE		
SUBJECT	LABORATORY NOTE	2750364		6		
	ane Virial Coefficients and Saturated Vapor Densities	R.	D. Goody			
		Aug	ust 14,	973		
8. Bi	bliography					
[1]	P. L. Chueh and J. M. Prausnitz, Third virial coeffici and their mixtures, AIChE Journal <u>13</u> (5) 896 (1967).	ents of no	n polar ;	gases		
[2]	D. R. Douslin and R. H. Harrison, Pressure-volume-t of ethane, (U.S. Bureau of Mines, Bartlesville, Okla. J. Chem. Thermodynamics, July, 1973.					
[3]	J. H. Dymond and E. B. Smith, The Virial Coefficients of Gases, Oxford Science Research Papers 2, Clarendon Press, Oxford, England, (1969).					
[4]	A. Eucken and A. Parts, Z. Phys. Chem. <u>B20</u> , 184 (19	33).				
[5]	R. D. Goodwin, D. E. Diller, H. M. Roder, L. A. We virial coefficients for hydrogen, J. Res. NBS <u>68A</u> (1),			hird		
[6]	R. D. Goodwin, Thermophysical Properties of Methane from 90 to 500 K at Pressures to 700 Bar, NBS Tech. Note, manuscript, April, 1973.					
[7]	The Vapor Pressures of Ethane, Laboratory Note 73-3,	July 9,	1973.			
[8]	R. D. Gunn, M. S. Thesis, University. Calif. (Berkeld J. A. Huff and T. M. Reed, J. Chem. Eng. Data <u>8</u> , 30		quoted	by		
[9]	A. E. Hoover, I. Nagata, T. W. Leland, R. Kobayashi of methane, ethane, and their mixtures at low temperat Phys. <u>48</u> (6), 2633 (1968).			its		
[10]	J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson, V Roy. Soc. (London) <u>A 196</u> , 113 (1949).	.J. Wilk	in s on, P	roc.		
[11]	E. A. Mason and T. H. Spurling, The Virial Equation of Oxford (England), 1969.	of State, I	Pergamo	n Pres		
[12]	M. L. McGlashan and D. J. B. Potter, An apparatus for the second virial coefficients of some n-alkanes and of n-alkanes, Proc. Roy. Soc. (London) <u>A267</u> , 478 (1962).	some mix		nt of		
[13]	A. Michels, W. van Straaten and J. Dawson, Physica 2	20, 17 (19	54).			
[14]	Plank and Kambeitz, Z. Ges. Kälte Ind. 10, 209 (1936)	, quoted b	y Tester	•		
[15]	G. A. Pope, Calculation of Argon, Methane and Ethane Thesis, Rice Univ., July 1971.	Virial Co	efficient	s, etc		
[16]	H. E. Tester, ETHANE, in Thermodynamic Functions Editor, vol. 3, Butterworths, London, 1961.	of G a ses,	F. Din,			

Cryogenics Division – N&S Institute for Basic Standards LABORATORY NOTE	PROJECT NO. 2750364	FILE NO. 73-4	PAGE 7
SUBJECT Ethane Virial Coefficients and Saturated Vapor Densities		D. Goodw	
Ethane Virial Coefficients and Saturated Vapor Densities	DATE Aug	ust 14, 1	973

- [17] Ziegler, Kirk, Mullins, Berquist, Calculation of the vapor pressures, etc.,
 VII Ethane, Eng. Expt. Sta., Georgia Inst. Tech., Atlanta, Ga., Dec. 1964.
- [18] F. Porter, J. Am. Chem. Soc. 48, 2055 (1926).
- [19] P. Sliwinski, Z. Phys. Chem. 63 263 (1969).
- [20] K. R. Hall and P. T. Eubank, Experimental technique for direct measurement of interaction second virial coefficients, J. Chem. Phys. <u>59</u>(2), 709 (1973).
- [21] R. D. Goodwin, Estimation of critical constants T_c , ρ_c from the $\rho(T)$ and $T(\rho)$ relations at coexistence, J. Res. NBS 74A(2), 221 1970).


Table Captions


Table 1. Second virial data of (6) McGlashan, (10) Douslin.

- Table 2. Second virial, (1) Eucken, (2) Lambert, (3) Michels, (4) Hoover, (5) Pope, (8) Gunn.
- Table 3. Third virial, (7) Chueh, (10) Douslin, (4) Hoover, (5) Pope.

Table 4. Terms of the virial equation for saturated vapor.

Table 5. Saturated vapor densities derived via V.P. and virial equations.

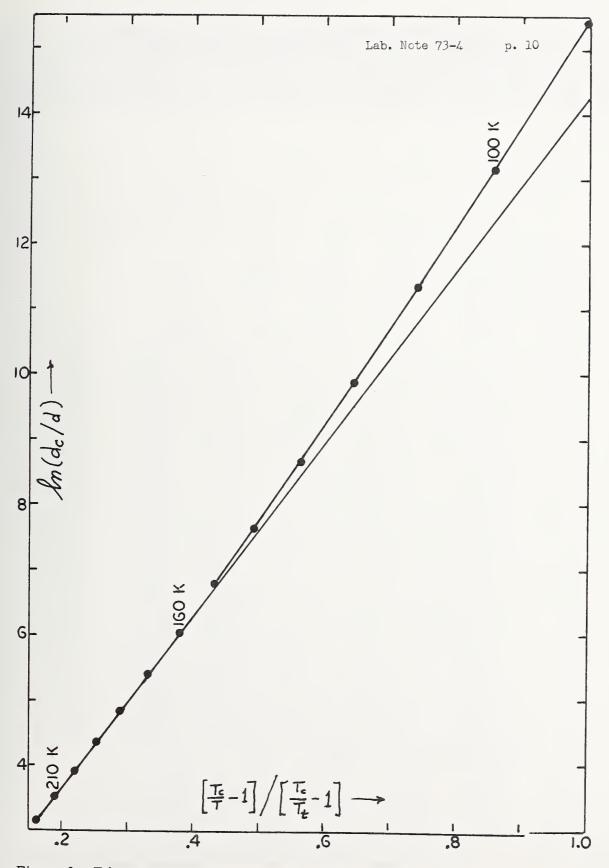


Figure 3. Ethane saturated vapor densities from Table 5, this report.

K-11

			- NBS Institute for BI			2750		
UBJECT		LADO	RATORT NO	16		NIA ME		-
	Virial	Coefficients	and Satura	ated Vapor	Densities	D.I.T.	R. D. Goody	
				-		DAIE	August 14,	1973
	т	able 1. Se	cond virial	data of (6)	McGlashar	n, (10) Do	uslin.	
	1	4010 1. 00	00110 111 1014					
	ETHA	NE SECOND	VIRIAL CO	DEFFICIENT				
	-							
	E8 =	0.250, T	$Z = 740 \cdot 0$					
							0 9/ 27 29	
	7.9	93156 -1	0.672497	9.21732	2 -2.48	31668	0.842328	
	- 0	* 12	TITC	8*	CALC	OIFF	PONT	
	ID	T,K 150.000	0.4913	-5.309	-5.310	0.001	0.01	
	6 6	150.000	0.5240	-4.598	-4.597	-0.001	-0.01	
	6	170.000	0.5568	-4.031	-4.030	-0.001	-0.02	
	6	180.000	0.5895	-3.569	-3.569	-0.000	-0.01	
	6	190.000	0.6223	-3.188	-3.188	0.000	0.01	
	6	200.000	0.6550	-2.868	-2.869	0.001	0.02	
	6	210.000	0.6878	-2.597	-2.597	0.001	0.03	
	6	220.000	0.7205	-2.353	-2.364	0.001	0.03	
	6	230.000	0.7533	-2.161	-2.162	0.000	0.02 -0.00	
	6	240.000	0.7860	-1.984	-1.984	-0.000	-0.04	
	6	250.000	0.8188	-1.828 -1.690	-1.828 -1.688	-0.002	-0.09	
	6	250.000	0.8915 0.8946	-1.527	-1.527	0.001	0.06	
	10 10	273.150 298.150	0.9765	-1.276	-1.275	-0.001	-0.08	
	10	303.150	0.9929	-1.232	-1.232	-0.001	-0.05	
	10	323.150	1.0584	-1.077	-1.076	-0.001	-0.06	
	10	348.150	1.1402	-0.914	-0.914	0.001	0.08	
	10	373.150	1.2221	-0.780	-0.781	0.001	0.10	
	10	398.150	1.3340	-0.668	-0.670	0.001	0.16	
	10	423.150	1.3859	-0.574	-0.575	0.000	0.06 0.10	
	10	448.150	1.4578	-0.493	-0.493 -0.422	0.000	-0.08	
	10	473.150	1.5496	-0.423 -0.360	-0.360	-0.000	-0.01	
	10	498.150 523.150	1.6315 1.7134	-0.306	-0.305	-0.001	-0.27	
	10	523.150 548.150	1.7953	-0.256	-0.256	-0.000	-0.19	
	10	573.150	1.8771	-0.212	-0.212	-0.001	-0.30	
	10	598.150	1.9590	-0.172	-0.172	-0.000	-0.02	
				-0.135	-0.135	0.001	0.53	
	10	623.150	2.0409	-0.T22	00102	00001		

SP 11342 A

		- NBS Institute for Ba			275036		PA 1
JECT		KATORT NOT			NAME		
Ethane Virial	Coefficients	and Satura	ated Vapor	Densities		D. Good	
			1		A	ugust 14,	197
Table 2.	Second Vir	ial, (1) Eu	cken, (2) L	ambert, (3) Michels,	(4) Hoover	-
	(5) Pope,	(8) Gunn.					
ID	T,K	T/TC	B *	CALC	DIFF	PCNT	
1	200.000	0.6550	-3.112	-2.869	-0.243	-8.48	
2	200.000	0.6550	-3.119	-2.869	-0.250	-8.72	
5	209.534	0.6863	-2.533	-2.609	0.076	2.93	
1	210.000	0.6878	-2.817	-2.597	-0.219	- 8 • 44 - 8 • 44	
2	210.000	0.6378	-2.817	-2.597	-0.219 0.137	5.52	
4	215.000	0.7042	-2.340	-2.477 -2.364	-0.178	-7.52	
1	220.000	0.7205	-2.542 -2.576	-2.364	-0.212	-8.97	
2	220.000	0.7205	-2.288	-2.162	-0.126	-5.84	
1	230.000	0.7533 0.7533	-2.343	-2.162	-0.181	-8.38	
2	230.000	0.7820	-1.972	-2.005	0.033	1.63	
5	238.769 240.000	0.7860	-2.095	-1.984	-0.111	-5.61	
1 2	240.000	0.7860	-2.116	-1.984	-0.132	-6.65	
۲ د	240.000	0.7860	-1.900	-1.984	0.085	4.26	
1	250.000	ũ.8188	-1.924	-1.828	-0.096	-5.26	
2	250.000	0.8188	-1.944	-1.828	-0.117	-6.39	
5	254.807	0.8345	-1.733	-1.759	0.026	1.45	
1	250.000	0.8515	-1.759	-1.688	-0.070	-4.17	
2	250.000	0.8515	-1.786	-1 .588	-0.098	-5.80	
1	273.360	0.8843	-1.614	-1.564	-0.051	-3.23	
2	270.000	0.8843	-1.649	-1.564	-0.085	-5.43	
3	273.150	0.8946	- 1.521	-1.527	0.006	0.39	
4	273.150	0.8946	-1.535	-1.527	-0.007	-0.48	
5	273.150	0.8946	-1.507	-1.527	0.020	1.33 0.02	
8	273.200	0.8948	-1.527	-1.527	0.000 -0.018	-1.25	
1	280.000	0.9170	-1.470	-1.452	-0.059	-4.09	
2	280.000	0.9170	-1.511	-1.351	-0.058	-4.26	
2	290.000	0.9498 0.9764	-1.408 -1.275	-1.275	0.000	0.03	
3	298.138	0.9766	-1.284	-1.275	-0.009	-0.71	
8	298.200	J. 9825	-1.305	-1.259	-0.046	-3.68	
25	300.000 306.062	1.0324	-1.204	-1.207	0.003	0.27	
3	322.748	1.0570	-1.378	-1.079	0.001	0.07	
8	323.200	1.0585	-1.032	-1.076	-0.006	-0.60	
3	347.652	1.1386	-0.916	-0.917	0.002	0.19	
3	372.522	1.2201	-0.784	-0.784	0.001	0.09	
8	377.600	1.2367	-0.752	-0.760	0.008	1.10	
3	397.844	1.3030	-0.671	-0.571	-0.001	-0.08	
8	410.900	1.3458	-0.616	-0.619	0.004	0.61	
3	422.730	1.3844	-0.576	-0.576	-0.000	-0.04	
8	444.300	1.4551	-0.508	-0.505	-0.003	-0.69	
8	477.600	1.5642	-0.423	-0.411	-0.013 -0.019	-3.09 -5.83	
		1.6733	-0.350	-0.331			

		, .	-NBS Institute for Bo			27503	54 73-4	PA
UBJECT		LABC	RATORY NO	16		NAME		1
	Virial	Coefficient	s and Satur:	ated Vanor	Densities	R	. D. Good	win
Luanc	v II IGI	coefficient	5 and Datur	aled vapor	Domaities	DATE A	ugust 14,	1973
	Г	able 1. Se	cond virial	data of (6)	McGlashar	n, (10) Dous	slin.	
	ETHA	NE SECOND	VIRIAL CO	DEFFICIENT				
	E8 =	0.250, T	$Z = 740 \cdot 0$					
	-			0 24 772	2 -2.48	81668 D	.842328	
	7.9	93156 -1	0.672497	9.21732	2 -240	1000 0		
	* 0	TV	T/TC	B*	CALC	DIFF	PCNT	
	ID	T,K 150.000	0.4913	-5.309	-5.310	0.001	0.01	
	6 6	150.000	0.5240	-4.598	-4.597	-0.001	-0.01	
	6	170.000	0.5568	-4.031	-4.030	+0.001	-0.02	
	6	180.000	0.5895	-3.569	-3.569	-0.000	-0.01	
	6	190.000	0.6223	-3.188	-3.188	0.000	0.01	
	6	200.000	0.6550	-2.868	-2.869	0.001	0.02	
	6	210.000	0.6878	-2.597	- 2 .597	8.001	0.03	
	6	220.000	0.7205	-2.353	-2.364	0.001	0.03	
	6	230.300	0.7533	-2.161	-2.162	0.000	0.02	
	6	240.000	0.7360	-1.984	-1.984	-0.000	-0.00	
	6	250.000	0.8188	-1.828	-1.828	-0.001	-0.04	
	6	250.000	0.8515	-1.690	-1.688	-0.002	0.06	
	10	273.150	0.8946	-1.527	-1.527 -1.275	-0.001	-0.08	
	10	298.150	0.9765 0.9929	-1.276 -1.232	-1.232	-0.001	-0.05	
	10 10	303.150 323.150	1.0584	-1.077	-1.076	-0.001	-0.06	
	10	348.150	1.1482	-0.914	-0.914	0.001	0.08	
	10	373.150	1.2221	-0.780	-0.781	0.001	0.10	
	10	398.150	1.3340	-0.658	-0.670	0.001	0.16	
	10	423.150	1.3859	-0.574	-0.575	0.000	0.06	
	10	448.150	1.4578	-0.493	-0.493	0.000	0.10	
	10	473.150	1.5496	-0.423	-0.422	-0.000	-0.08	
	10	498.150	1.6315	-0.360	-0.360	-0.000	-0.01	
	10	523.150	1.7134	-0.306	-0.305	-0.001	-0.27	
	10	548.150	1.7953	-0.256	-0.256	-0.000 -0.001	-0.19 -0.30	
	10	573.150	1.8771	-0.212	-0.212 -0.172	-0.001	-0.02	
	10	598.150	1.9590 2.04 0 9	-0.172 -0.135	-0.135	0.001	0.53	
	10	623.150 = 28, MEAN		·· - ·	0.17.02			

			NBS Institute for Ba			275036		PA 1
JECT		LADOF	ATOKT NOT	L.		NAME		
	irial	Coefficients	and Satura	ted Vapor	Densities	R	. D. Good	
Ethane v	II Iai	e de litte le litts	and Dature	ited vapor	Demsteres	DATE A	ugust 14,	197
Tab	ole 2.	Second Vir (5) Pope,		cken, (2) L	ambert, (3) Michels,	(4) Hoover	c
	ID	г,к	T/TC	8 *	CALC	DIFF	PONT	
	1	200.000	0.6550	-3.112	-2.869	-0.243	- 8 • 48	
	2	200.000	0.6550	-3.119	-2.869	-0.250	-8.72	
	5	209.534	0.6863	-2.533	-2.609	0.076	2.93	
	1	210.000	0.6878	-2.817	-2.597	-0.219	-8.44	
	2	210.000	0.6378	-2.817	-2.597	-0.219	-8.44	
	4	215.000	0.7042	-2.340	-2.477	0.137	5.52 -7.52	
	1	220.000	0.7205	-2.542	-2.364	-0.178 -0.212	-8.97	
	2	220.000	0.7205	-2.576	-2.364 -2.162	-0.126	-5.84	
	1	230.000	0.7533	-2.288	-2.162	-0.181	-8.38	
	2	230.000	0.7533	-2.343 -1.972	-2.005	0.033	1.63	
	5	238.769	0.7820	-2.095	-1.984	-0.111	- 5. 61	
	1	240.000	0.7860 0.7860	-2.116	-1.984	-0.132	-6.65	
	2	240.000	0.7860	-1.900	-1.984	0.085	4.26	
	4	240.000 250.000	û.0188	-1.924	-1.828	-0.096	-5.26	
	1 2	250.000	0.8188	-1.944	-1.828	-0.117	-6.39	
	5	254.807	0.8345	-1.733	-1.759	0.026	1.45	
	1	250.000	0.8515	-1.759	-1.688	-0.070	-4.17	
	2	250.000	0.8515	-1.786	-1.688	-0.098	-5.80	
	1	273.000	0.8843	-1.614	-1.564	-0.051	-3.23	
	2	270.000	0.8843	-1.649	-1.564	-0.085	-5.43	
	3	273.150	0.8946	-1.521	-1.527	0.006	0.39	
	4	273.150	0.8946	-1.535	-1.527	-0.007	-0.48	
	5	273.150	0.8946	-1.507	-1.527	0.020	1.33 0.02	
	8	273.200	0.8948	-1.527	-1.527	0.000 -0.018	-1.25	
	1	280.000	0.9170	-1.470	-1.452 -1.452	-0.059	-4.09	
	2	280.000	0.9170	-1.511 -1.408	-1.351	-0.058	- 4.26	
	2	290.000	0.9498 8.9764	-1.275	-1.275	0.000	0.03	
	3	298.138 298.200	3.9766	-1.284	-1.275	-0.009	-0.71	
	8 2	300.000	0.9825	-1.305	-1.259	-0.046	-3.68	
	5	306.062	1.0024	-1.204	-1.207	0.003	0.27	
	3	322.748	1.0570	-1. 378	-1.079	0.001	0.07	
	-8	323.200	1.0585	-1.082	-1.076	-0.006	-0.60	
	3	347.652	1.1386	-0.916	-0.917	0.002	0.19	
	3	372.522	1.2201	-0.784	-0.784	0.001	0.09	
	8	377.600	1.2367	-0.752	-0.760	0.008	1.10	
	3	397.844	1.3030	-0.671	-0.571	-0.001	-0.08	
	8	410.900	1.3458	-0.616	-0.619	0.004	0.61 -0.04	
	3	422.730	1.3844	-0.576	-0.576	-0.000	-0.69	
	8	444.300	1.4551	-0.508	-0.505	-0.003 -0.013	-3.09	
	8	477.600	1.5642	-0.423	-0.411 -0.331	-0.013	-5.83	
	- 8	510.900	1.6733	-0.350				

	Cr		ORY NOTE	indards		PROJECT NO. 2750364	FILE NO. 73-4	PAC
UBJECT		1. m				NAME D D	Carl	L
Ethane V	irial Co	pefficients an	nd Saturated	l Vapor De:	nsities		<u>Goodwi</u> st 14, 19	
					÷	Augu	St 14, 1	913
Т	able 3.	Third viria	1, (7) Chueł	n, (10) Dou	slin, (4) Ho	over, (5)	Pope.	
	THIR	D VIRIAL,						
	217	.800 0.2	53773 0.	865299	6.556075	0.0000	0 0	
	ID	T,K	T/TCRT	C#	CALCD			
	7	210.000	0.5878	-0.251	-0.247			
	7	220.000	0.7205	0.055	0.055			
	7	230.000	0.7533	0.249	0.247			
	7	240.000	0.7860	0.357	0.366 0.438			
	7	250.360	0.8188	0.436 0.472	0.438			
	7	260.000 273.150	0.8515 0.8946	0.489	0.499			
	10	273.150	0.5946	0.500	0.499			
	10	303.150	0.9929	0.491	0.483			
	10	323.150	1.0584	0.455	0.453			
	10	348.150	1.1402	0.409	0.410	-0.0		
	10	373.150	1.2221	0.364	0.369			
	10	398.150	1.3040	J. 328	0.332			
	10	423.150	1.3859	0.295	0.299			
	10	448.150	1.4678	0.268	0.271			
	10	473.150	1.5496	3.250	0.247			
	10	498.150	1.5315	0.228	0.227			
	10	523.150	1.7134	J.212	0.209		04	
	10	548.150	1.7953	0.195	0.193		02	
	10	573.150	1.8771	0.182	0.180		02	
	10	598.150	1.9590	0.167	0.168		01	
	10	623.150	2.0409	0.154	0.157		03	
	NP =	= 22, MEAND	IFF = 0.1	004				
	ID	Τ,Κ	T/TCRT	C*	CALCD	DI		
	5	209.534	0.5863	-2.770	-0.264	-2.5		
	4	215.000	0.7042	-3.356	-0.079	- 3.2		
	5	238.769	0.7820	0.175	0.354	-0.1		
	4	240.000	0.7860	-0.121	0.366	-0.4		
	5	254.807	0.8345	0.401	0.460	-0.0!		
	5	273.150	0.8946	0.489	0 • 499	-0.0		
	4	273.150	0.8946	0.501	0.499	0.0		
	4	273.150	0.8946	0.537	0.499	0.0		
	4	298.138	0.9764	0.507	0.489	0.0		
	5	386.862	1.0024	0.473	0.479	-0.0 0.0		
	4	322.748	1.0570	0.456	0.453 0.411	-0.0		
	4	347.652	1.1386	0.405 0.364	0.411	-0.0		
	Ly Ly	372.522 397.844	1.2201	0.330	0.370	-0.0		
	••	3710044	TODADA	0.000	00002	0.0		

		rision-NBS Institute for Bas BORATORY NOT			PROJECT NO.	FILE NO.	PA
UBJECT					2750364	73-4	14
		1.0.1		D	<u> </u>) Goody	
Ethane v	irial Coefficie	nts and Satura	ted vapor	Densities	DATE Augu	st 14, 1	973
	Table 4 Te	rms of the vir	ial equation	for saturat	ed vapor		
	14010 1, 10		Tar equation	i ioi saturat	ed vapor.		
TERM	S OF THE VIR:	TAL EQUATION	FOR SATUR	RATED VAPOR	2		
T,K	P,ATM	MOL/L	DI/DN	B#S	C#S2	Z (T	
90	0.0000099	0.0000013		-0.000004		0.999	
95	ũ.0000348	0.0000045		-0.000011		0.999	
100	8.3031057	0.0000130		-0.000028		0.999	
105	0.0002916	0.0000338		-0.000064		0.999	
110	0.0007207	0.0000799	• • • • • • • • •	-0.000133		0.999	
115	0.0016337	0.0001732		-0.000256		0.999	
120	0.0034347	0.0003490		-0.000462		0.999	
125	0.0067508	0.0006598		-0.000787		0.999	
130	0.0125592	0.0011793		-0.001276		0.998	
135	0.0221570	0.0020063		-0.001982		0.998	
140	0.0373903	0.0032674		-0.002961		0.997	-
145	0.0665738	0.0051196		-0.064276		0.995	
150	0.0946592	0.0077508		-0.005991		0.993	
155	0.1432275	0.0113809		-0.008171		0.991	
160	0.2105236	0.0162608		-0.010882		0.989	
165	0.3014633	0.0226721		-0.014185		0.985	
176	Ũ•4216243	0.0309256	0.977343	-0.018141	-0.000090	0.981	769
175	0.5772221	0.0413607	0.971866	-0.022806	-0.000124	0.977	070
180	0.7750743	0.0543439	0.965625	-0.028233	-0.000164	0.971	603
185	1.0225573	0.0702692	0.958606	-0.034470	-0.000206	0.965	324
190	1.3275563	0.0895573	0.950796	-0.041563	-0.000248	0.958	189
195	1.6984137	0.1126577	0.942186	-0.049554	-0.000281	0.950	164
200	2.1438785	0.1400503		-0.058485		0.941	
205	2.6730575	0.1722494	0.922541	-0.068395	-0.000287	0.931	318
210	3.2953721	0.2098093		-0.079325		0.920	
215	4.J205218	0.2533319		-0.091321	-0.000107	0.908	
220	4.8584553	0.3034770		-0.104432	0.000108	0.895	
225	5.8193516	0.3609763		-0.118715	0.000448	0.881	
230	6.9136168	0.4266509		-0.134238		0.866	
235	8.1518573	0.5014347		-0.151085	0.001671	0.850	
240	9.5449551	0.5864036		-0.169358	0.002667	0.833	
245	11.1040386	0.6828144		-0.189185	0.004017	0.814	
250	12.8405603	0.7921552		-0.210725	0.005818	0.795	
255	14.7663588	0.9162120		-0.234180	0.008194	0.774	
260	16.8937542	1.0571595		-0.259804	0.011305	J.751	
265	19.2356771	1.2176851		-0.287925	0.015361	0.727	
270	21.8058475	1.4011641		-0.318963	0.020642	0.701	
275	24.6190249	1.6119133		-0.353469	0.027531	0.674	
280	27.6913739	1.8555713		-0.392177	0.036563	0.644	
285	31.0410283	2.1396901		-0.436086	0.048505	0.612	
290	34.6890345	2.4747097		-0.486600	0.064498	0.577	
295	38.6511522	2.8756823	0.555393	-0.545771	0.086320	0.540	
300	42.9921502	3.3657409		-0.615818	0.115916	0.500	098
305	47.7441963	3.9859334	0.478608	-0.705645	0.151805	0.456	160

	, -	ision - NBS Institute for Bas			PROJECT NO. FILE NO.	P/
	LA	BORATORY NOT	E	l	2750364 73-4	1
UBJECT					NAME R. D. Good	win
Ethane Viri	al Coefficie	ents and Satura	ated Vapor Den	sities	DATE August 14,	
					August 14,	177.
Table 5	Saturate	d vapor densit	ies derived via	V.P. and	virial equations	
	•				····· · ·	•
ETHA	NE SATD.	VAPOR DENSIT	IES VIA V.P.	AND VIRI	AL EQNS.	
ID	T,K	P,ATM	PLANK/KAMB	MOL	/L PCT	
1	89.899	9.9670-006		1.3511-0	06 0.00	
1	90.000	1.0238-005	1.3863-006	1.3863-0	06 0.00	
1	95.000	3.5808-005	4.5936-006	4.5936-0	06 0.00	
1	100.000	1.0952-004	1.3347-005	1.3347-0	05 0.00	
<u>ī</u>	105.000	2.9851-004	3.4649-005	3.4648-0	05 0.00	
1	110.000	7.3654-004	8.1615-005	8.1612-0	05 0.00	
1	115.000	1.6670-003	1.7671-004	1.7670-0	04 0.01	
1	120.000	3.4991-003	3.5558-004	3.5552-0	04 0.01	
- 1	125.000	6.8762-003	6.7110-004	6.7093-0	04 0.02	
1	130.000	1.2752-002		1.1970-0		
1	135.000	2.2468-002		2.0323-0		
1	140.000	3.7834-002		3.3033-0		
1	145.000	6.1192-002		5.1653-0		
1	150.000	9.5478-002		7.8043-0		
1	155.000	1.4426-001		1.1436-0		
1	160.000	2.1176-001		1.6308-0		
1	165.000	3.0288-001		2.2694-0	02 0.38	
1	170.000	4.2317-001				
1	175.000	5.7882-001	4.1479-002	4.1252-0	02 0.55	
ī	180.000	7.7662-001	5.4457-002	5.4111-0	02 0.64	
1	185.000	1.0239+000	7.0369-002	6.9860-0		
1	190.000	1.3287+000		8.8911-0		
1	195.000	1.6991+000	1.1271-001	1.1171-0		
1	200.000	2.1440+000	1.4006-001	1.3872-0		
1	205.000	2.6726+000	1.7222-001	1.7047-0		
1	210.000	3.2943+000	2.0973-001			
1	215.000	4.0186+000	2.5321-001			
1	220.000	4.8561+000	3.0331-001			
1	225.000	5.6165+000	3.6077-001		-	
1	230.000	6.9105+000	4.2642-001	4.2173-0	01 1.11	
1	235.000	8.1487+000	5.0120-001	4.9585-0		
1	240.000	9.5420+000	5.8618-001	5.8025-0		
1	245.000	1.1102+001	6.8262-001	6.7626-0		
1	250.000	1.2839+001	7.9203-001	7.8551=0		
1	255.000	1.4766+001	9.1618-001	9.0997-0		
1	250.000	1.6895+001	1.0572+000	1.0522+0		
1	265.000	1.9238+001	1.2179+000	1.2154+0		
1	270.000	2.1810+001	1.4016+000	1.4041+0		
1	275.000	2.4624+001	1.6125+000	1.6245+0		
1	280.000	2.7697+001	1.8563+000	1.8861+0		
1	285.000	3.1047+001	2.1404+000	2.2047+0		
1		3410 TI . 001	2.4754+000	2.6108+0		

```
PROJECT NO.
                                                                    FILE NO.
                                                                           PAGE
               Cryogenics Division - NBS Institute for Basic Standards
                                                           2750364
                                                                    73-4
                                                                            16
                    LABORATORY NOTE
SUBJECT
                                                          NAME
                                                                D
                                                                   Goodwin
                                                          DATE
    Ethane Virial Coefficients and Saturated Vapor Densities
                                                              August 14, 1973
       PROGRAM VIRUS
      ETHANE VIRIAL COEFFICIENTS, X = T/TCRT, Q = X**1/2,
 0
      3V = (B1 + B2/X^{\#\#}EB + B3/X + B4/X2 + B5/X3)^{\#}(1-(TZ/T)^{\#\#}1/4)
 С
      CV = (C1/X**EC + C2/X3 + C3/X5)*(1-TZ/T).
 С
     I), (1)EUCKEN, (2)LAMBERT, (3)MICHELS, (4)HOOVER, (5)POPE,
 C
      (6) MCGLASHAN, (7) CHUEH, (8) GUNN, (10) DOUSLIN, PREPRINT.
 С
      VCRT, CC/MOL, ROSSINI (1953) / MCGLASHAM= 148, EUBANK/POPE= 146.2,
 С
                    TESTER (1961) = 141.7, DOUSL IN (1973) = 145.56.
 C
       COMMON/1/M, EB, EC, TZB, TZC, BVS, CVS, B(5), C(4)
       COMMON/3/ DPSDT
       COMMON/999/NP.NF.H(15),Y(200),G(200,15)
       DIMENSION ID(200), T(200), BV(200), CV(260), X(200), XQ(200)
     1 FORMAT(15, 2F10.0)
     2 FORMAT(1H1 13X 1HM 5X5HE(BC) 8X2HTZ 8X2HSS)
     3 FORMAT(10X I5, 2F10.3, F10.4)
     4 FORMAT(1H1 17X *ETHANE SECOND VIRIAL COEFFICIENT*//
      1 18X4HEB =F6.3, 5H, TZ =F6.1// 15X 5F12.6//
      2 18K2HID 7X3HT,K 5X4HT/TC 7X2HB + 5X4HCALC 5X4HDIFF 5X4HPCNT)
     5 FORMAT(15x 15, F10.3, F9.4, 3F9.3, F9.2)
     6 FORMAT(1H117X*THIRD VIRIAL, M =*12, 6H, EC =F6.3// 16X F10.3,
      1 4F11.6// 18X2HID 7X3HT,K 4X6HT/TCRT 8X2+C+ 5X5HCALCD 6X4HDIFF )
     7 FORMAT(15X I5, F1J.3, F10.4, 3F10.3)
     8 FORMAT(18X 4HNP = 13, 12H, MEANDIFF = F7.3)
     9 FORMAT(18X 4HNP = I3, 11H, MEANPCT = F6.3)
    10 FORMAT(1H1 15X*TERMS OF THE VIRIAL EQUATION FOR SATURATED VAPOR*//
      1 17K3HT, K 7X5HP, ATM 7X5HMOL/L 5X5HDI/DN
      2 7X3HB#S 5X4HC#S2 4X6HZ (T,D)
                                        1
    11 FORMAT(10X F10.0, 2F12.7, 4F10.6)
    12 FORMAT(1H1 17% 24ID 7X3HT,K 5X4HT/TC 7X2H8* 5X4HCALC
      1 5X4HDIFF 5X4HPCNT)
    13 FORMAT(1H117X2HID 7X3HT,K 4X6HT/TCRT 8X2HC# 5X5HCALCD 6X4HDIFF)
    15 TTR>=89.899 $ TCRT=305.33 $ DCRT=1.0/145.56
 С
       SENERATE MCGLASHAM DATA FOR BV(T), CC/MOL.
      INCREASE ABS(MCGLASHAM) BY ONE PERCENT (148/145.56 = 1.017).
 С
                DO 19 J=1,12 & N = N+1 & TT = T(N) = 140 + 10^{4}J
    16 N=0 $
    17 X (N) = TT / TCRT $ XQ (N) = SQRTF(X(N)) $
                                               ID(N) = 6
    18 BV(N) = 1.01*GLABF(TT) $ Y(N) = BV(N)*DCRT
     19 CONTINUE
      READ DOUSLIN (1973) DATA, CC/MOL.
 С
    20 DO 23 J=1,99 $ READ 1, IDD,TT,BB $ IF(IDD) 21,24
                $ ID(N)=IDD $ T(N)=TT $ BV(N)=BB
    21 N = N+1
    22 X (N) = TT/TCRT $ X2(N) = S2RTF(X(N)) $ Y(N) = BB* DCRT
     23 CONTINUE
    24 NP = N $ NF = 5 $ SSK = 1.0E+010
 С
       READ SECOND VIRIAL DATA.
     25 DO 28 J=1,99 $ READ 1, IDD,TT,BB $ IF(IDD) 26,29
                    ID(N)=IDD $ T(N)=TT $ BV(N)=BB
    26 N = N+1 3
     27 X (N) = TT / TCRT $ XQ (N) = SQRTF (X (N) ) $ Y (N) = BB* DCRT
     28 CONTINUE
                                                         7/26/73
                       M = 0
     29 \text{ NPP} = N
                  $
       EXPLORE VALUES FOR EB AND FOR TZB.
 С
       MCGLASHAM TZB NEAR 2.7*TCRT = 824 K.
 C
     30 EB = 0.25 $ TZ = TZB = 740 $ PRINT 2
                       $ EB = 0.25#IE
 С
     31 DO 44 IE=1,3
                      \$ TZ = 640 + 10 + IT
 C
     32 DO +4 IT=1,17
```

```
K-19
```

SP 11342 A

```
PROJECT NO.
                                                                  FILE NO.
                                                                         PAGE
               Cryogenics Division - NBS Institute for Basic Standards
                    LABORATORY NOTE
                                                         2750364
                                                                  73-4
                                                                        17
SUBJECT
                                                         NAME
                                                             R
                                                               D. Goodwin
 Ethane Virial Coefficients and Saturated Vapor Densities
                                                         DATE
                                                            August 14, 1973
    33 DO 36 J=1,NP $ U=X(J) $ Q=XQ(J) $ W = 1-(TZ/T(J))**0.25
    34 G(J,1)=H $ G(J,2)=W/U**EB $ G(J,3)=W/U $ G(J,4)=W/U**2
    35 G (J, 5)=W/U**3
    36 CONTINUE $ CALL EGENFT $ SS = 0
    37 DO 39 J=1,NP $ YC = 0 $ DO 38 K=1,NF
    38 YC = YC + H(K) + G(J,K)
    39 SS = SS + ABSF(Y(J)/YC-1) $ SS = 100*SS/NP
    40 IF(SS.LT.SSK) 41,44
    41 SSK=SS $ EK=EB $ TK=TZ $ DO 42 K=1,5
    42 B(K) = H(K)
    44 PRINT 3, M, EB, TZ, SS $ EB=EK $ TZ=TZB=TK $ SS = 0
      JSE SAVED CONSTANTS FOR DEVIATIONS.
 С
    45 PRINT 4, EB, TZ, (B(K),K=1,5)
                                 $ Q=XQ(J) $ W = 1-(TZ/T(J))**0.25
    45 DO 51 J=1,NPP $ U=X(J)
    47 \text{ YC} = W^{+}(B(1) + B(2)/U^{*+}EB + B(3)/U + B(4)/U^{++2} + B(5)/U^{++3})
    48 DIF=Y(J)-YC $ PCT=-100*DIF/YC $ SS=SS+ABSF(PCT)
    49 PRINT 5, ID(J), T(J), X(J), Y(J), YC, DIF, PCT $ IF(J-NP) 51, 50
    50 SS = SS/NP & PRINT 9, NP,SS & PRINT 12
    51 CONFINUE $ N = 0
      SENERATE THIRD VIRIAL DATA VIA CHUEH(1967), ID = 7.
 C
      DIMINISH CHUEH DATA BY 2 PERCENT.
 C
    52 DO 55 J=1,6 & N = N+1 & TT = T(N) = 200 + 10*J
    53 X (N) = TT / TCRT $ XQ (N) = SQRTF (X (N) ) $ ID (N) = 7
    54 CV(N) = 0.98*CHUCF(TT) $ Y(N) = CV(N)*DCRT**2
    55 CONTINUE 3 K = N + 1
      READ DOUSLIN(1973) DATA, (CC/MOL)**2.
 С
    56 DO 38 J=K,99 $ READ 1, ID(J),T(J),CV(J) $ IF(ID(J)) 57,59
    57 X (J) = T (J) / TCRT $ XQ(J) = SQRTF (X(J)) $ Y(J) = CV(J) + DCRT++2
    58 CONTINUE
    59 NP = J-1 $ NF = 3 $ SSK = 1.0E+010
      READ THIRD VIRIAL DATA.
                                TZC NEAR 220 K.
 С
    60 K = NP+1  $ D0 63 J=K,99
    61 READ 1, ID(J), T(J), CV(J) $ IF(ID(J)) 62,64
    62 X (J) = T (J) / TCRT $ XQ (J) = SQRTF (X (J)) $ Y (J) = CV (J) + OCRT++2
    63 CONTINUE
    64 NPP = J-1 & EC = 1.0 $ PRINT 2
      EXPLORE VALUES FOR EC AND FOR TZ.
 С
    65 DO 76 IE=1,4 $ EC = 3.5*IE
 С
    66 DO 76 IT=1,11 8 TZ = 217.60 + 0.05 + IT
    67 DO 59 J=1, NP U = X(J) W = 1-TZ/T(J)
                                             G(J,3)=W/U**5
    68 G(J,1)=W/U**EC $ G(J,2)=W/U**3 $
    69 CONTINUE $ CALL EGENFT $ SS = 0
    70 DO 72 J=1,NP $ YC = 0 $ DO 71 K=1,NF
                                                                 7/26/73
    71 YC = YC + H(K) + G(J,K)
    72 SS = SS + ABSF(Y(J)-YC) $ SS = SS/NP
    73 IF (SS.LT.SSK) 74,76
    74 SSK=SS $ TK=TZ $ EK=EC $ MK=M $ DO 75 K=1,4
    75 C(K) = H(K)
     76 PRINT 3, M, EC, TZ, SS & M = MK
    77 TZC = TZ = TK  EC = EK
                                         SS = 0
                                     8
 С
      USE SAVED CONSTANTS FOR DEVIATIONS.
    79 PRINT 6, M, EC, TZ, (C(K), K=1,4)
     80 DO 85 J=1,NPP $ U = X(J) $ W = 1-TZ/T(J)
     81 YC = W^{+}(C(1)/U^{++}EC + C(2)/U^{++}3 + C(3)/U^{++}5)
     82 PCT = Y(J) -YC & SS = SS + ABSF(PCT)
```

Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. FILE NO. 2750364 73-4	PAGE 18
SUBJECT	NAME R. D. Goodw	
Ethane Virial Coefficients and Saturated Vapor Densities	DATE August 14, 19	
VIRUS 83 PRINT 7, ID(J),T(J),X(J),Y(J),YC,PCT \$ IF(J-N 84 SS = SS/NP \$ PRINT 8, NP,SS \$ PRINT 13 85 CONTINUE		
C NOW EXAMINE TERMS OF THE VIRIAL EQUATION AT SATU C THE IDEAL GAS DENSITY IS DI = P/(R*T), 90 PRINT 10 \$ D0 95 J=1,44 \$ TT = 85 + 5*J 91 PS=>SATF(IT) \$ DN=DNGSF(TT) \$ Z = ZIPF(TT,D 92 DI = PS/TT/0.J32J56156 \$ DR = DI/DN 95 PRINT 11, TT,PS,DN, DR, BVS,CVS, Z 99 STOP \$ END		
SINGLE-BANK COMPILATION.		
<pre>FUNCTION CHUCF(T) C ETHANE THIRD VIRIAL VIA CHUEH FORMULA(1967), (CC C CV(T)/VCRT**2 = FA*FB + FC, FA = A/Q + B/X5, C = B = 1 - EXP(1-AL*X2), FC = EXP(-C + D*X - E*X2) DATA (TCRT=305.33),(VCRT=145.56),(AL=1.89) DATA (A=G.232),(B=C.468),(C=2.49),(D=2.30),(E=2 1 X=T/TCRT 3 Q=SQRTF(SQRTF(X)) \$ X2=X**2 \$ X5=X** 2 FA = A/Q + B/X5 \$ FB = 1 - EXPF(1-AL*X2) 3 FC = EXPF(-C + D*X - E*X2) 4 CHUCF = (FA*FB+FC)*VCRT**2 \$ RETURN \$ E</pre>), X = T/TCRT. .70) 5	
<pre>FUNCTION DNGSF(T) C >LAN(/KAMBEITZ VIA TESTER (P.171)/DIN. VALID 1 C V = R*T/P - C1/X**A - C2*P**2/X**B, X = T/100 C V IN CC/GRAM, T IN KELVINS, P IN KG/CM**2, C 1 AT4 = 1.03323 KG/CM**2, R=2.822, C1=89.0, C2= DATA (R=2.822), (C1=89.0), (C2=27.9), (A=2.4), (B= 1 P = PSATF(T) \$ P = 1.03323*P \$ P2 = P**2 2 X = T/100 \$ XA = X**A \$ XB = X**B 3 V = R*T/P - C1/XA - C2*P2/XB 4 DNGSF = 1000.88/V/WM \$ RETURN \$ END</pre>	, 27.9, A=2.4, B=	

```
PROJECT NO.
                                                                    PILE NO.
                                                                            PAGE
               Cryogenics Division - NBS Institute for Basic Standards
                    LABORATORY NOTE
                                                           2750364
                                                                    73-4
                                                                           19
SUBJECT
                                                           NAME R. D. Goodwin
   Ethane Virial Coefficients and Saturated Vapor Densities
                                                           DATE
                                                              August 14, 1973
        FUNCTION GLABF(T)
 С
       ITHANE SECOND VIRIAL COEFF. VIA MC GLASHAM FORMULA (1962).
       MC G. BELIEVES EUCKEN/PARTS ARE WRONG.
 С
 C
       3V(T)/VCRT = 31 - 82/X - 83/X2 - 84/X**4.5,
                                                        X = T/TCRT.
        DATA (TCRT=305.4), (VCRT=148.0)
        DATA (B1=0.430), (B2=0.886), (B3=0.694), (B4=0.0375)
      1 X=T/TCRT $ X2=X**2 $ XN = X**4.5
      2 F = B1 - B2/X - B3/X2 - B4/XN
      9 GLA3F = VCRTFF
                         $
                              RETURN $ END
                                                             07/26/73
       FUNCTION PSATE(T)
      LN(P/PTRP) = A*X + B*X2 + C*X3 + D*X4 + E*X*(1-X)**EP.
 C
       COMMON/3/ DPSDT
       DATA (TTRP=89.899), (TCRT=305.33), (PTRP=9.616E-6), (EP=1.6)
       DATA (A=8.454987344), (B=12.488039775), (C=-4.104281551),
      1 (D=-1,413860533),(E=8,526522526)
     1 FORMAT(1HD 9X *PSATE = 0, T EXCEEDS TORT. * / )
     2 XN=1-TTRP/TCRT $ X=(1-TTRP/T)/XN $ X2=X**2 $ X3=X**3 $ X4=X**4
                              $ Q = 1-X $ IF(Q) 4,5,6
     3 \text{ DXDT} = \text{TTRP}/\text{XN}/\text{T}^{+2}
     4 PSATF = DPSDT = J $ PRINT 1 $ RETURN
     5 Z = Z1 = 0 $ G0 T0 7
     6 W = Q**EP $ W1 = -EP*W/Q $ Z = X*W $ Z1 = W + X*W1
     7 F = A+X + B+X2 + C+X3 + D+X4 + E+Z
     8 F1 = A + 2*B*X + 3*C*X2 + 4*D*X3 + E*Z1
     9 PSATF=PTRP*EXPF(F) $ DPSDT=F1*PSATF*DXDT $ RETURN $
                                                                   E ND
                                                              07/26/73
        FUNCTION ZIPF(T,)
       Z(T,J) = 1 + BV(T) + S + JV(T) + S + 2, S = D/DCRT, X = T/TCRT.
  C
       BV = (B1 + B2/X**EB + B3/X + B4/X2 + B5/X3)*(1-(TZ/T)**1/4).
  С
  С
       CV = (C1/X^{++}EC + C2/X3 + C3/X5)^{+}(1-TZ/T)
        COMMON/1/M, EB, EC, TZB, TZC, BVS, CVS, B(5), C(4)
        DATA (TCRT=305.33), (VCRT=0.14556)
      1 S=D#VCRT & X=T/TCRT & Q=SQRTF(X) & R=X**EC
      2 X2=X++2 $ X3=X++3 $ X4=X++4 $ X5=X++5
      3 ZB = 1 - (TZB/T)**0.25 $ ZC = 1 - TZC/T
      4 BV = ZB^{+}(B(1) + B(2)/X^{++}EB + B(3)/X + B(4)/X2 + B(5)/X3)
      5 CV = ZC^{*}(C(1)/R + C(2)/X3 + C(3)/X5)
      6 BVS = BV*S - 5 CVS = CV*S**2
      7 ZIPF = 1 + BVS + CVS
                                  $
                                       RETURN
                                                $ END
```

Cryagonics Division – NBS Institute for Basic Standards	PROJECT NO.	PILE NO.	PAGE
LABORATORY NOTE	2750364	and the second se	20
SUBJECT		D. Goodw	vin
Ethane Virial Coefficients and Saturated Vapor Densities	DATE Aug	ust 14, 1	973
PROGRAM VAPORDEN C ETHANI SATVAPORDEN VIA V.P. AND VIRIAL EQNS.		26/73	
<pre>C ON ISDTHERMS, ITERATE DEN IN VIRIAL EQN. TO MIN CD4MDN/3/ DPSOT 1 FORMAT(13X *ETHANE SATD. VAPOR DENSITIES VIA V 1 *//15X2HID 7X3HT,K 7X5HP,ATM 2X10HPLANK/KAMB 2 FORMAT(15X I5, F10.3, 3E12.4, F10.2) 3 FORMAT(15, F10.3, 2E15.5) 19 ID = 1 & TTRP = \$9.393 \$ PRINT 1 20 DO 39 J=1,42 \$ IF(J-1) 23,22 22 I = fTRP & GD TO 24 23 T = 30 + 5*J 24 DI = DNGSF(T) & P = PSATF(T) \$ DEN = FINDF 25 PUNCH 3, ID,T,DEN,P 27 DIF = DI-DEN \$ PCT = 100*DIF/DEN 29 PRINT 2, ID, T,P, DI,JEN, PCT 30 CONTINUE \$ STOP \$ END</pre>	.P. AND 7×5HMOL⊅	VIRIAL /L 7X3HP	EQNS
SINGLE-BANK COMPILATION.			
FUNCTION FINDF(I,P,DI) C ON ISOTHERM T, ITERATE DEN TO MINIMIZE (P-PCAN COMMON DZDS DATA (GK=0.082056156), (VCRT=0.14556) 1 FORMAT(1H0 9X *FINDF = 0, FAILS TO CONVERGE. 2 D = DI \$ GT = GK*T \$ DO 9 J=1,50 3 Z = ZIPF(T,D) \$ PC = D*GT*Z \$ DP = P-PC 4 Q = AP/P-1.02-6 \$ IF(Q) 10,10,5 5 DPJD = GT*(Z + D*DZDS*VCRT) \$ ADP = ABSF(D 6 Q = AP/ADP/D-1.02-6 \$ IF(Q) 10,10,7 7 D = D + OP/DPDD \$ IF(D) 8,8,9 3 D = P/I/GK 3 GONTINUE \$ FINDF = 0 \$ PRINT 1 \$ RETUR 10 FINUF = D \$ RETURN \$ END	* /) \$ AP = PDD)	ABSF (D	Ρ)

	Cryagenics Division - N&S Institute for Basic Standards LABORATORY NOTE	PROJECT NO. FILE NO. 2750364 73-4	PAGE 21
SUBJECT	LABORATORT NOTE		-
	Vicial Coefficients and Saturated Vapor Densities	DATE August 14, 19	
С	FUNCTION DNGSF(T) PLANK/KAMBEITZ VIA TESTER. DATA (R=2.522),(U1=39.0),(C2=27.9),(A=2.4), 1 P = 1.03323*PSATF(T) \$ P2 = P**2 2 X = T/100 \$ XA = X**A \$ XB = X**IB 3 V = R*T/P - D1/XA - C2*P2/XB 4 DNGSF = 1000.88/V/WM \$ RETURN \$ FND	(I8=9),(WM=30.0	7)
		08/01/73	
C 1 2 3 4 5 6 7 8	FUNCTION PSATF(T) N(P/PTRP) = $A*x + B*x2 + C*x3 + D*x4 + E*x*(1-COMMON/3/DPSDT COMMON/3/DPSDT CONSTANTS VIA ZIEGLER TYPE B V.P. DATA. DATA (TTRP=89.899),(TCRT=305.33),(PTRP=9.967E-DATA (A=10.806922651),(B=8.344715938),(C=-3.12) DATA (D=-0.642995191),(E=6.059966098) FORMAT(1H0 9x *PSATF = 0, T EXCEEDS TCRT. * / XN=1-TTRP/TCRT & x=(1-TTRP/T)/XN & X2=x**2 &) DXDT = TTRP/XN/T**2 & Q = 1-X & IF(Q) 4,54 PSATF = DPSDT = 0 & PRINT 1 & RETURN Z = Z1 = 0 & G0 TO 7 W = Q**EP & W1 = -EP*W/Q & Z = X*W & Z1 F = A*X + B*X2 + C*X3 + D*X4 + E*Z F1 = A + 2*B*X + 3*C*X2 + 4*D*X3 + E*Z1 PSATF=PTRP*EXPF(F) & DPSDT=F1*PSATF*DXDT & G$	-6), (EP=1.5) 19603823)) x3=x**3 \$ x4=x** ,6 = W + X*W1	lq • lq
	FUNCTION ZIPF(T,D) Z(T,J) = 1 + $BV(X)$ *S + $CV(X)$ *S**2. BV = (B1 + B2/J + B3/X + B4/X2 + B5/X3)*(1-(T CV = (C1/X + C2/X3 + C3/X5)*(1-TZC/T). COMMON DZDS DATA (TCRT=305.33),(VCRT=0.14556),(TZB=740.0) 1 (31=7.993156),(B2=-10.672497),(B3=9.217322) 2 (35=0.342326),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.865299),(C1=0.253773),(C2=0.86529),(C1=0.853773),(C2=0.86529),(C1=0.853773),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.8537),(C2=0.853),(TZC=217.8), ,(B4=-2.481668), C3=0.556075) X3=X**3 \$ X5=X*4	

APPENDIX L

Cryagenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. FILE NO. 2750364 73-5	page 1
SUBJECT The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine	NAME R.D.Goodwin DATE Sept. 18, 1973	

1. Introduction.

These densities, and accurate analytical descriptions thereof, are essential for the computation of thermodynamic functions, in particular to obtain heats of vaporization via the Clapeyron equation, and to formulate the equation of state which originates on this locus [4].

We have had difficulties in representing the available ethane data, and therefore have returned to fundamentals. For comparison we shall include oxygen [18], fluorine [13], and methane [4]. Previous formulations occur in [4, 7]. We start with the saturated liquid densities because their representation is much simpler than that of the saturated vapor densities.

2. The Saturated Liquids.

It is well known that these densities are described near the critical point by the form

$$\rho = \rho_{c} + \mathbf{a} \cdot (\mathbf{T}_{c} - \mathbf{T}) + \mathbf{b} \cdot (\mathbf{T}_{c} - \mathbf{T})^{\varepsilon}$$
(1)

wherein the first two terms are the rectilinear diameter, and the exponent is near $\varepsilon = 0.35$.

Let us constrain (1) at the boundaries by use of the variables,

$$x(T) \equiv (T_{c} - T) / (T_{c} - T_{t}),$$
 (2)

$$W(\rho) \equiv (\rho - \rho_c) / (\rho_t - \rho_c), \tag{3}$$

where subscripts \underline{c} and \underline{t} refer to critical and triple points. Equation (1) now becomes,

$$W(\rho) = \mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{x}^{\varepsilon}, \qquad (4)$$

and the constraint requires that a + b = 1. If we solve this for the constant <u>b</u>, we may expect to obtain a function Y(p, x) which is nearly constant over the entire range $0 \le x \le 1$,

$$Y(\rho, \mathbf{x}) \equiv [W(\rho) - \mathbf{x}] / (\mathbf{x}^{\varepsilon} - \mathbf{x}).$$
(5)

This sensitive function is useful for examining data.

In past work we found that three arbitrary coefficients are required to describe saturated liquid densities. We now find the following results via many exploratory computations. For the smoothed data used here for oxygen and fluorine, the use of five arbitrary coefficients gives an improvement in the "fit". For the rough experimental data used here for methane and ethane, the use of five arbitrary coefficients gives virtually no improvement in the "fit" as compared with only three coefficients. With only three, the first equation used was,

Cryogenics Division – NBS Institute for Basic Standards	project no. 2750364	FILE NO.	page
LABORATORY NOTE		73-5	2
SUBJECT The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine	NAME R. D. Goodwin DATE Sept. 18, 1973		

$$Y(\rho, \mathbf{x}) = A_1 + A_2 \cdot \mathbf{x} + A_3 \cdot \mathbf{x}^{\alpha}, \tag{6}$$

and we found exponent $\alpha = 4/3$ for oxygen, fluorine and methane, but $\alpha = 8/3$ for ethane. After much exploration we have selected the following representation,

$$Y(\rho, x) = A_1 + A_2 \cdot x^{2/3} + A_3 \cdot x$$
 (7)

Table 1 gives the fixed-point constants. Table 2A gives the exponent ε found by trial, the least-squares coefficients, the rms of relative density deviations in percent, and the number of datum pairs, NP.

Tables 3, 4, 5, 6 compare calculated with experimental densities. No temperature-scale adjustments have been made in present work. Column YX gives the experimental value of $Y(\rho, x)$ via (5), whereas column YC gives the value calculated by the right side of (7). Table 7 compares ethane data not used for least squares.

Tables 8, 9, 10, 11 give saturated liquid densities computed by (7) at uniform temperatures, and also their slopes and curvatures.

The small deviations for oxygen and fluorine necessarily are systematic because the data were smoothed by the authors. The overall methane deviation is large because experimental data from various sources are included in the critical region.

The low-temperature ethane data of Miller were used to estimate the triplepoint liquid density. Other data are from Canfield et al., and from Klosek/McKinley. The high-temperature "data" of Eubank are a correlation of available experimental data down to the boiling point 184.5 K, (x = 0.561). We estimate uncertainty in our calculation of these densities to be about 0.1 percent over the entire range.

Concerning assignment of critical densities, we at first found both ρ_c and exponent c simultaneously by trial to minimize the overall deviation. The results are rough because these two parameters are mutually compensating for data in the critical region. Hence we have adjusted ρ_c one step at a time for both saturated liquid and saturated vapor, examining the values of c found by trial. We select that value of ρ_c which yields reasonable exponents c for both liquid and vapor. For methane it thus is necessary to select $\rho_c = 10.2 \text{ mol}/\ell$, at the upper limit of uncertainty in the experimental values [4].

3. The Saturated Vapors

Densities of the ethane vapors range thru a factor of about 10^6 . We have given reasons for using the logarithm of vapor densities, with arguments in powers of (1/T), [7]. Define the normalized variables

$$z(T) = (T_{c}/T_{-1})/(T_{c}/T_{t} - 1), \qquad (8)$$

$$W(\rho) \equiv \ln \left(\rho_{c} / \rho\right) / \ln \left(\rho_{c} / \rho_{t}\right).$$
(9)

Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. FILE NO. 2750364 73-5	PAGE 3
SUBJECT The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine	R.D.Goodwin DATE Sept. 18, 1973	

We write the vapor densities equation for the critical region as follows,

$$-W(\rho) = (b-1) \cdot z - b \cdot z^{\varepsilon}$$
(10)

wherein the minus sign on the left arises merely from our definition of $W(\rho)$. Solving (10) for b yields the dependent variable,

$$Y(\rho, z) \equiv [W(\beta) - z] / (z^{\varepsilon} - z) .$$
(11)

For the present work we have explored all kinds of representations, finally selecting the expression,

$$Y(\rho, z) = A_1 + \sum_{i=2}^{5} A_i \cdot z^{i/3}.$$
 (12)

Table 2B gives results for (12), analagous to table 2A for the liquid. Tables 12, 13, 14, 15 compare calculated with experimental vapor densities. Column YX is the experimental value of $Y(\rho, z)$ via (11), whereas YC is calculated by the right side of (12). Table 16 compares ethane data not used for least squares. Tables 17, 18, 19, 20 give uniformly computed densities and derivatives via (12).

Computer programs used in this work are attached as an appendix.

	Cryogenics Division—NBS Institute for Basic Standards LABORATORY NOTE	ргојест но. 2750364	FILE NO. 73-5	PAGE 4
SUBJECT	rthobaric Densities of Ethane, Methane, Oxygen and	NAME	Goodwin	
Fluor			. 18, 197	
<u>4.</u> Bi	bliography			
[1]	C.H. Chui and F. B. Canfield, Trans. Faraday Soc. 67	<u>7</u> , 2933 (19	971).	
[2]	D. R. Douslin and R. H. Harrison, Pressure-volume-t for ethane, (U.S. Bureau of Mines, Bartlesville, Okla. J. Chem. Thermodynamics, 1973).	-		
[3]	P. T. Eubank, Thermodynamic properties of ethane: va Advances in Cryogenic Engineering <u>17</u> , 270 (Plenum Pu N.Y. 10011, 1971).			
[4]	R. D. Goodwin, The Thermophysical Properties of Met at Pressures to 700 Bar, NBS IR 73-342, October, 73-300, February, 1973.	hane from , 1973. A		
[5]	R. D. Goodwin, The Vapor Pressures of Ethane, Labor July 9, 1973.	atory Not	e 73-3,	
[6]	R. D. Goodwin, Ethane Virial Coefficients and Saturate Lab. Note 73-4, Aug. 15, 1973.	d Vapor D	ensities,	
[7]	R. D. Goodwin, Estimation of critical constants T_c , ρ_c relations at coexistence, J. Res. NBS <u>74A</u> (2), 221 (197		∄T) and '	Τ(ρ)
[8]	A. Harmens, Orthobaric densities of liquefied light hyd Engrng. Science <u>20</u> , 813 (1965); <u>21</u> , 725 (1966).	rocarbons	, Chem.	
[9]	J. Klosek and C. McKinley, Densities of liquefied natur molecular weight hydrocarbons, paper 22, Session 5, F Conf. on LNG, Chicago, April (1968).	-		t.
[10]	O. Maass and C. H. Wright, J. Am. Chem. Soc. <u>43</u> , 1	098 (1921)).	
[11]	Reid C. Miller, Ann. Rpt. to AGA, "Experimental Liqu for Testing and Improving Correlations of LNG," Proj. Wyoming, July 1, 1972.			es
[12]	Frank Porter, The vapor pressures and specific volume vapor of ethane, J. Am. Chem. Soc. <u>48</u> , 2055 (1926).	es of the s	aturated	
[13]	Rolf Prydz and G. C. Straty, The Thermodynamic Prop Gaseous and Liquid Fluorine, NBS Tech. Note 392, Oct			sed
[14]	M. J. Shana'a and F. B. Canfield, Trans. Faraday Soc	. <u>64</u> , 228	1 (1968).	

Cryagenics Division – NBS Institute for Basic Standards	project no. 2750364	file no.	page
LABORATORY NOTE		73-5	5
SUBJECT The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine	NAME R.D.Goodwin DATE Sept. 18, 1973		3

- [15] P. Sliwinski, The Lorenz-Lorenz function of gaseous and liquid ethane, propane, and butane, Zeit. Phys. Chem. Neue Folge 63, 263 (1969).
- [16] H. E. Tester, ETHANE, in <u>Thermodynamic Functions of Gases</u>, vol. 3,
 F. Din, Editor (Butterworths, London, 1961).
- [17] J. R. Tomlinson (Gulf Res. and Devel. Co., Pittsburgh, Pa.), Liquid Densities of Ethane, Propane, and Ethane-Propane Mixtures, Tech. Pub. TP-1, Nat. Gas Processors Assoc. (808 Home Federal Bldg., Tulsa, Okla. 74103, Feb. 1971).
- [18] Lloyd A. Weber, P-V-T, thermodynamic and related properties of oxygen from the triple point to 300 K at pressures to 33 MN/m², NBS J. Res. <u>74A</u> (1), 93 (1970).
- [19] David Zudkevitch (Esso Res. & Engrng. Co., Florham Park, N.J.), The importance of accuracy in physical and thermodynamic data to chemical plant design, October, 1972. (Offered for publication in the Proceedings of the NBS.)

	Cryogenics Division NBS Institute for Basic Standards LABORATORY NOTE	PROJECT NO. FILE NO. PAG 2750364 73-5 6
SUBJECT		NAME R.D.Goodwin
Fluorine	paric Densities of Ethane, Methane, Oxygen and	DATE Sept. 18, 1973
List of Tab	bles	
Table 1.	The fixed-point constants.	
Table 2A.	Constants for liquid equation (7).	
Table 2B.	Constants for vapor equation (12).	
Table 3.	Comparison of oxygen liquid densities.	
Table 4.	Comparison of fluorine liquid densities.	
Table 5.	Comparison of methane liquid densities.	
Table 6.	Comparison of ethane liquid densities.	
Table 7.	Ethane liquid data not used for least squares.	
Table 8.	Calculated oxygen liquid densities.	
Table 9.	Calculated fluorine liquid densities.	
Table 10.	Calculated methane liquid densities.	
Table 11.	Calculated ethane liquid densities.	
Table 12.	Comparison of oxygen vapor densities.	
Table 13.	Comparison of fluorine vapor densities.	
Table 14.	Comparison of methane vapor densities.	
Table 15.	Comparison of ethane vapor densities.	
Table 16.	Ethane vapor data not used for least squares.	
Table 17.	Calculated oxygen vapor densities.	
Table 18.	Calculated fluorine vapor densities.	
Table 19.	Calculated methane vapor densities.	
	Calculated ethane vapor densities.	

	Cryogenics Division – NBS Institute for Basic Standards LABORATORY NOTE		PROJECT NO. 2750364	FILE NO. 73-5	page 7
SUBJECT The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine				<u>Goodwir</u> 18, 197	
List of	Authors for Computer Tables				
ID*	Author(s)	Refe	rence		
1	Goodwin (Virial + V.P.)	[6]		
6	Porter	[12]		
9	Tester	[16]		
10	Douslin	[2]		
11	Sliwinski	[15]		
12	Canfield et al.	[1,14]		
13	Klosek	[9]		
14	Miller	[11]		
15	Eubank	[3]		
16	Tomlinson	[17]		
98	Prydz	[13]		
99	Weber	[18]		

* For METHANE, see references in [4].

	Cryogenics Division – NBS In LABORATC			PROJECT NO. FILE NO. PAGE 2750364 73-5 8
SUBJECT The Orthob:	aric Densities of E		Oxygen and	NAME R. D. Goodwin
Fluorine			, Oxygon and	DATE Sept. 18, 1973
	Table	e 1. The fixed-	point constants.	
	Oxygen	Fluorine	Methane	Ethane
т _t , к	54.3507	53.4811	90.680	89.899
т, к	154.576	144.310	190.555	305.330
C	13.63	15.15	10.20	6.87
ρ _t , liquid	40.830		28.147	21.680
ρ_t , vapor	3.36122.10-4	5.670.10-4	1,567865.10	-2 1.35114.10 ⁻⁶
	T a ble 2A	. Constants for	·liquid equation	(7)
	Oxygen	Fluorine	Methane	Ethane
E	0.349	0.354	0.361	0.350
A ₁	0.758 8805	0.791 3438	0.837 0910	0.761 7350
A ₂	0.228 3200	0.112 9132	0.084 1613	0.298 6535
A ₃	-0.230 4342	-0.100 6980	-0.074 7858	-0.327 6239
rms, %	0.014	0.010	0.084	0.142
NP	50	46	49	29
	Table 2B	. Constants for	vapor equation	(12)
	Oxygen	Fluorine	Methane	Ethane
ē	0.382	0.362	0.382	0.362
A ₁	0.277 3707	0.257 1572	0.374 1014	0.192 7743
A ₂	-0.338 6621	-0.227 0644	-0.261 5731	0.041 5501
A ₃	0.769 0708	0.605 3864	0.675 3322	-0.789 2263
A ₄	-1.576 1185	-1.391 6332	-1.012 2063	0.357 6675
A ₅	0.939 8713	0.792 5719	0.439 8834	0.124 5438
	0.052	0.134	0.148	0.104
NP	50	46	96	29

	NATIONAL BU	UREAU OF STAND	ORATORY		S LABORA (ORY			FILE NO. 73-5	PAC 9
UBJECT						N	LA AAP		9
000201	The Orthob Fluorine	oaric Densi	ties of Eth	ane, Metha	ne, Oxygen a	and	R.D.G	oodwin	
	Fluorine						Sept.	18. 1973	3
		Table 3.	Comparis	son of oxy	gen liquid de	nsities.			
	τc	RT = 154.5	76, TTRP =	54.3507					
	ЭС	RT = 13.6	3C, DTRP =	- 40.8300			E= 0.3	49	
	7。58880 0。00000		2832003-00 0080000+00	01 -2.30434 00 0.00000					
ID	T,K	MOL/L	CALC	PCNT	x	YX	YC	; Y	OIF
99	56.000	40.601	40.603	- C . O O	0.98354	0.75202	0.75805	-0.00	603
99	58.000	40.323	40.326	-0.01	0.96359	0.75397			
99 99	60.000 62.000	40.048 39.777	40.049 39.770	-0.00	8.94363 8.92368	0.76038			
99	64.000	39.494	39.491	0.01	0.90372	9.76630		-	
99	66.000	39.216	39.210	0.01	0.88377	0.76840			
99	68.000	38.926	38.928	-0.00	0.86381	0.76610			
99	70.000	38.655	38.644	0.03	0.84386	0.77243			
99 99	72.000 74.080	38.358 38.981	38.358 38.071	-0.00	0.82390 0.80395	0.76966			-
99	76.000	37.779	37.782	-0.01	0.78399	0.77145			
99	78.000	37.495	37.491	0.01	0.76404	0.77482			
99	80.000	37.202	37.197	0.01	0.74408	0.77614			
99	82.000	36.900	36.901	-0.00	0.72413	0.77599			
99 99	84.000 86.000	36.603 36.298	36.602 36.301	0.00 -0.01	0.70417 0.68422	0.77750			
99	88.000	35.997	35.996	0.00	0.66426	0.77979			
99	90.080	35.689	35.688	0.00	0.64431	0.78081			
99	92.000	35.373	35.377	-0.01	0.62435	0.78118			
99 99	96.000	35.063 34.734	35.062 34. 7 42	0.00	0.60440 0.58444	0.78305 0.78261			
99	48.000	34.412	34.418	-0.02	0.56449	0.78376			
99	140.JUO	34.083	34.090	-0.02	0.54453	0.78472			
99	102.300	33.750	33.756	-ũ.02	0.52458	0.78563			
99	104.000	33.411	33.417	-0.02	0.50462	0.78653			
99 99	106.000 108.000	33.069 32.712	33.072 32.720	-0.01 -0.02	0.48467 0.46471	0.78772			
99	110.000	32.362	32.361	0.00	0.44476	0.78960		0.00	
99	112.000	31.990	31.995	-0.02	0.42480	8.78946	0.79)01	-0.00	056
99	114.000	31.610	31.620	-0.01	0.40485	0.79005			
99 99	110.000 118.000	31.236 30.845	31.236 30.842	-0.02 0.01	0.38489 0.36494	0.79038		-9.00	
99	120.000	30.045	30.438	0.01	0.34498	0.79109		0.00	
99	122.000	30.021	30.021	-0.00	0.32503	0.79190	0.79192	-0.00	
99	124.000	29.595	29.591	0.01	0.30507	0.79239		0.00	
99 99	126.000 123.000	29.146	29.147	-0.00	0.28512 0.26516	0.79203		-8.08	
99	133.000	28.219	28.685 28.205	0.00 J.01	0.26516	0.79210	0.79201	0.00	
99	132.300	27.709	27.704	0.02	0.22525	0.79192	0.79150	0.00	
99	134.100	27+161	27.179	J.01	0.20530	0.79129		0.00	
99 99	136.300	26.031	26.625	0.02	0.18534	0.79133		0.00	
99	133.000 140.000	26.042 25.413	26.037 25.410	0.02 0.01	0.16539 0.14543	0.78999	0.78956 0.78851	0.00 0.00	
99	142.300	24.734	24.733	0.01	0.12548	0.78733	0.78719	0.00	
99	1++=000	23.992	23.993	-0.00	0.10552	0.78549	0.78555	-0.08	
99	140.000	23.164	23.170	-9.02	0.08557	0.78287	0.78350	-0.00	
99 99	148.000 150.000	22.227 21.106	22.230 21.108	-0.01 -0.01	C.06561 0.04566	0.78057 0.77724	0.78090 0.77753	-0.00	
99	152.000	19.646	19.647	-0.00	0.02570	0.77280	0.77284	-0.00	
		17.106	17.134			0.76528	0.76488	0.00	

			ORATORY I	IC ENGINEERING				3-5
JBJECT	The Orthob Fluorine	aric Densi	ties of Eth	ane, Metha	ne, Oxygen a	nd	ATE	odwin
	:	Fable 4.	Comparis	on of fluoi	rine liquid de	ensities	•	
					E = 0.354			
	TC	RT = 144.3	16, TTRP :	= 53.4811				
	DC	RT = 15.1	50, DTRP :	= 44.8623				
	7.91343 0.00000		1291315-00 0000000+00	01 -1.00698 00 0.00000				
ID 98	T,K 54.000	MOL/L 44.781	CALC 44.781	PCNT 0.00	X 0•99429	Y) 0.80556		YD 0.001
98	56.000	44.465	44.464	0.00	0.97227	0.80524		0.000
98	58.000	44.146	44.146	0.00	0.95025	0.8055		0.000
98	60.000	43.825	43.825	0.00	0.92823	0.80574		0.000
98	62.000	43.501	43.501	0.00	0.90621	0.3060		0.000
98	64.003	43.174	43.174	-0.00	0.88419	0.80632		-0.000
98 98	66.J00 68.J00	42.845 42.512	42.845 42.513	-0.00 -0.00	0.86217 0.84015	0.80662		-0.000
98	76.000	42.176	42.177	-0.00	0.81813	0.8072		-0.000
98	72.000	41.836	41.838	-0.01	0.79611	0.80760		-0.000
98	74.000	41.493	41.496	-0.01	0.77409	0.80796		-0.000
98	76.000	41.146	41.149	-0.01	0.75207	0.80831	0.80899	-0.000
98	78.000	40.795	40.799	-0.01	0.73005	0.8086:	0.80938	-0.000
98	83.000	40.440	40.444	-0.01	0.70803	0.8090		-0.000
98	82.000	46.081	40.085	-0.01	0.68602	0.8094:		-0.000
98	84.000	39.717	35.726	-0.01	0.66400	0.80977		~0.000
98 98	85.JÜO 38.JÜO	39.347 38.973	39.351 38.976	+0.01 -0.01	0.64198 0.61996	0.8101:		-0.000
98	91.000	38.592	38.596	-0.01	0.59794	0.81080		-0.000
98	92.000	38.206	38.209	-0.01	0.57592	0.81112		-0.000
98	94.000	37.813	37.815	-0.01	0.55390	0.5114		-0.000
98	96.000	37.413	37.415	-0.00	0.53188	0.31171		-0.000
98	99.300	37.015	37.006	- ů. C O	0.50986	0.81197		-0.000
98	100.000	36.590	36.590	0.00	0.48784	0.81220		0.000
98	102.000	36.165	36.164	Ú.00	0.46582	0.01240		0.000
98 98	134.000 108.330	35.731 35.286	35.729 35.283	0.01 0.01	0.44380 0.42178	0.81256		0.000
98	103.000	34.829	34.826	0.01	0.39976	0.81274		0.000
98	110.000	34.361	34.356	0.01	0.37774	0.31276		0.000
98	112.000	33.878	33.873	6.01	0.35572	0.81272	2 0.81221	0.000
98	114.303	33.379	33.374	0.02	0.33370	0.81261		0.000
98	116.000	32.864	32.858	0.02	0.31168	0.31243		0.000
98 98	118.300 123.300	32.33ú 31.774	32.324 31.768	0.02	C.28967 D.26765	0.81218		0.000
98	122.500	31.193	31.128	Ů.02	0.24563	0.31139		0.000
93	124.300	30.584	30.579	0.02	0.22361	0.81086		0.000
98	125.000	24.942	29.939	0.01	0.20159	0.81920		0.000
96	123.330	29.202	25.200	J.C1	C.17957	0.30942		0.000
98	133.300	28.535	28.534	0.00	C.15755	0.30850		0.000
78	132.300	27.750	27.751	- J . D Ü	0.13553	0.30742		-0.000
98	134.000	20.851	26.894	-0.01	0.11351	0.30617		-0.000
98	130.000	25.935	25.939	-0.01	0.09149	0.30470		-0.003
98	138.303	24.839	24.843	-0.02	C.06947 0.04745	0.30330		-0.000
96	142.000	21.709	21.770	-0.00	0.02543	0.79843		-0.000:
	144.300	18.327	18.328	-0.00	0.00341	0.79340		-0.000:

						ORY			-	ORATORY			750364	7	3-5	
rt n		bar	ic D	ensit	ies d	of Eth	ane,	Meth	ane,	Oxygen	and	DAT	R.D	.Go	odwin	
.110	e	_							Sec. 9				Sept	18	<u>R 197</u>	2
	r	Г'а ł						6		1 1						
	-	Lar	JIC .	. 0	omp	aris	011 0.	t meţ		liquid d	ensit	les.				
	T	CRT	= - 1	90.55	55. 1	TRP	= 90	6800	E	= 0.361						
				10.20							E=	0.36	1			
			-001 +000			267-0		.4785 .0000								
T 1	۶K		MOL			CALC		NT		x		ΥX		YC	,	rD)
	12		27.9			912		01		0.97164	6.0	4050	0.84		-0.00	
	73		27.6			605		60		0.93499		4830	0.84	764	0.00	00
	34 65		27.2			240		01		0.89233		5043	0.84		0.00	
	11		26.5			916 521		00		0.85497 0.81045		490J 5231	0.84		0.00	
	72		26.1			144		01		0.76879		5112	0.84		0.00	
	46		25.7			775		03		0.72900		5327	0.850		0.00	
	93		25.3	88	25.	380		63		0.68748		5373	0.85		0.00	
	25		24.9		24.	995	0.	62		0.64811		5272	0.85		0.00	
	57		24.6			610		01		0.60974	0.8	5236	0.85	201	0.00	0
0.0			24.5			575	-0.			0.60631		4803	0.852	204	-0.00	14
77			24.1			182		61		0.56853		5313	0.852		0.00	
87 JC			24.1 24.0			171		02		0.56748		5338	0.85		0.00	
35			23.5			052 579	-0.			0.55625		5002	0.853		-0.00	
00			23.5			507	-0.			0.51267 0.50618		5249 5132	0.852 0.852		-0.00	
00			22.9			934	-0.			0.45612		5255	0.852		-0.00	
44			22.8			881	- 0 .			0.45163		5272	0.852		-0.00	
0.0			22.3		22.	328	θ.	01		0.40606		5315	0.852		9.00	
30			22.3			328		02		C.40606		5357	0.852		0.00	07
55			22.1			1 32	-0.			0.39051		5255	0.852		-0.00	
)(19			21.6			682 383		02		0.35599		5341	0.852		0.00	
00			21.3 20.9			303 986	-0.	C2		C.33398		5201	0.852		-0.00	
65			20.4			438	-0.			0.30593 0.26930		5311 5048	0.852		0.00	
00			20.2			227		03		0.25587		5289	0.851		-0.00	
32			19.4		19.		-0.			0.21256		4962	0.851		-0.00	
JD	00		19.3		19.	302		03		0.20581		5180	0.851		0.00	
JÛ			18.4		18.	414	Ο.			0.15574		5022	0.849		0.00	
30			18.4		16.			03		6.15574		5080	0.849		0.00	1 0
05 م			18.3		18.		-0.			0.15521		4777	0.849		-0.00	
0 U 0 O			17.2		17.		= 0 +			0.10568		4786	0.848		-0 - 0 0	
មម រំបំ			17.2 16.0		17.		υ. -ŭ.			0.10568		4867	0.848		0.00	
50 50			16.0		16.		-0.			0.06563 0.06563		4466 45 7 5	0.845		-0.00	
13			15.7		15.		0.			0.05532		+922	0.845		-0.00 0.00	
JO			15.2		15.		- Û -			0.04561		4203	0.844		-0.00	
J 3			15.3		15.		θ.			€.04530	0.34		0.844		0.00	
33			14.0		14.		δ.			0.03528	0.04	+572	0.843		0.00	
48			14.5		14.		-0.			0.03070	0.84		0.843		-0.00	
3 J n 3			14.2		14.		-3.			0.02558	0.83		0.842		-0.00	
03 03			14.2 13.5		14.		0.			0.02527	0.94		0.842		0.00	
33			13.3		13.		.ن. -ن-			0.01525	0.34		0.841		0.00	
7 Ç			12.8		12.		-6.			0.01226	0.83		0.840 0.839		-0.00	
03			12.4		12.		-0.			0.00524	0.83		0.839		-0.00	
36			12.3		12.		-0.			0.00488	0.83		0.839		-0.00	
37	°)		12.4		12.	415	Ű.			0.00486	0.04		0.839		0.00	
	7]		12.2	7.0	1.2	235	G .	28		0.00385		369	0.838		0.014	

		NATIO	ONAL I	BUREAU			ARDS	-					NEE	RING	G LA	BOR	ATC	RY					2	75	тн 03(64	ĩ	1LE 73-	5		1
JBJECT				baric	Den	sit	ies	of	Et	ha	ne	, N	let	ha	ne	, C	Уху	ge	en	an	ł		NA		R.	D.	Go	od	wi	n	
	FD	uori	ne								_												DA.	ne,	Se	pt	. 1	8,	19	73	
					Tab	ole	6.	C	Cor	np	ar	is	on	of	e	:ha	ne	li	.qù	id	de	ns	iti	e s .	•						
					IO	0.0121	-0.00579	01400	0.077	.0008	+000*	.0029	•0015 •0015	0 1 N 4 0	7900.	.0086	.0071	0055	• 0 0 3 6 • • • • •	0.0016	0049	0.0071	0.0085	0.0081	0.0059		.0002	.0017	.0030	.0081	
					AC	.7334	0.73873	。7434 - 7434	• 7 4 4 9	.7472	• 7476	•7480	.7511	- 7570	.7810 .7810	.7832	• 7869	.7901	• 7930	• 7954	.7982	•7984	• 7982	• 7968	• 7936	. 7817	• 7748	.7723	.7692	• 7641	
						.7213	0.73294	-7447 -7483	.7372	• 7464	.7481	°7451	.7526	+967. 751.7	.7908.	.7918	•7940	•7957	.7966	0.797.	• 7932	.7912	°7897	.7887	•/876 ••••	- 1 0 1 0 0 1 8 7 0 1 0	.7751	.7741	.7722	•7722	
	E = 0.350			94-001 00+000		.9948	0.95302	.9154 .9152	.9023	.8832	.8799	.8766	.8508	0628.	. 1 4 4 6 . 5 6 1 0	.5353	•4889	•4425	• 3960	• 3496 2022	.2568	.2422	.1957	•1493	•1029	2020 • 0 3 3 3	•0000 •0147	.0101	.0054	• 0008	
	DENSITIES,	89.8990	: 21.6800	1 -3.27623 0 0.00000	PCNT	0.0	-0.01	• •	0.0	•	•	•	0.0	• •	• •	•	•1	• 1	-	0.0		0.2	0.3	0.3	0.2		•	0.	•	0.1	2
	D LIQUID	IC, TTRP =	0, DTRP =	865351-00 0000+00	CALC	1.64	21.315	1.02	• • •	0.77	0 • 7 4	0.72	0.51	0.31	U • 7	7.91	7.48	7°04	6.57	0 ° 0 8	10°	4.79	4.1	3°38	2°48	ν.	9.54	-	~ •	7.820	= 0.14
	4E SATURATE	RT = 305.33	RT = 6.87	03-001 2.9 00+000 0.0	MOLIL	1.63	21.313	1 • 0 2 1 • 0 2	1.0 - 1 0 - 9 1	0.77	6.74	0.71	0.52	0.32	0 - 1 - 0 8 - 1 7	7.94	7.51	7.06	6.59	6°09	4°09	4.75	4°08	3.34	2.45	1•74 •70	0°10	• 20	•73	7.830	Σ.
	ETHAN	TCF	DCF	7.617350 3.000300	¥	1.01	133.020	08°11	10°92	15.05	15.77	16.48	22.03	27 . 59	3 3 0 1 9 8 4 - 4 7	00°06	00.00	10.00	20.00	30.00	0.00	53.15	63 .1 5	73.15	83.15 62.15	ЧС. 19 19	02.15	03.15	04.15	05.15	= dN
							14																								

	NATIONAL	. BU	REA	UC						RYO DR'				INE	ERIN	IG L	ABC	ORA	TOR	Y							т но 03(1		FILE 73.	NO.		PA4
SUBJECT	The Orthe	ob	ari	ic i	De	ns	iti	es	of	fΕ	tha	ane	e, 1	Me	tha	an	e,	03	k y j	gei	n a:	nd			NAM		R.	D	.G	200	dw	in	
	Fluorine		• • • •			-	-	_	_				_		4	_	_		_	_		-		1	DAT		Se	pt		8.	1	973	
			Т	ab	le	7	•	Εt	tha	ane	e 1	iq	uid	l d	ata	a r	not	t u	se	d	for	le	as	t	squ	ua	re	s.					
	٤	9		9	80	4	2	5	2	2	o r	γc	n c	0	-	-	2	2	t	n a	. .	1 01	-	9	2	80	សា	2	، ق		ົ່	t. U	
	0		\mathbf{M}	Ø	6	4	5	9	2	\sim	5.	H C	nn	. 🚽	0	8	0	5	5	2		2	9	S	5	0	σ I	~	+ (N 4	H P	118	
			0.	•	•	•	•	••	•	0	-	• •		0		•	• 0	•	•	•	- -	0.	•	• 0	•	-	•	-	•	•	•	• •	
		0		ï		0	0	0	0			– 0											0						1			o 0	
	Š	25	50	54	44	26	90	10	19	5	יר מ		5	6	92	18	14	72	6	ທີ່ ເ	2 C	1 10	11	82	61	32	6	20	8	1 t		80	
	-	3.8	50	60	70	79	86	<u>۳</u> 6	97	96	94	80		0 M	90	87	84	81	27	107	209	67	64	41	3.8	35	93	60	87	3 v 20 d	2 7 7	14	
					۲						•	•			•					•									•	•	•	2.0	
		· 9	σ	\mathbf{M}	4	-	5	9	თ	σ.	-	et 4	tσ	ア	5	9	~	-	0	οι	nσ	2		▶.	0	9	0	n ·	0	J D	ە م	6.0	
		86	71	72	75	78	81	82	8	8 e	91	8 0	000	78	78	77	27	27	27	77	75	76	77	71	68	56	78	78	78	202	500	786	
	Ų	·	~	.+	~	.0	~	~	10	~	.	<u> </u>	* *			_	+	+	~				+	~		10	01		_	+ .	+ 0	0	
	<u>^</u>	31	02	74	46	17	89	60	32	04	5			27	95	64	48	32	16	50	2 C 2 C	31	08	81	39	97	27	95	64) C 1 t	ς γ γ	4 4	
		ര	0	▶.	9	5	4	3	m	N -	-	ဘဝ)	CO I	0	0	0	0	0	o c	0	0	σ	σ	δ	-	0	0))	⊃c	• 0 •	
		0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0 0	- -	0	0	0	0	0	0		0	-) (0	
	1 N	50	51	41	29	10	63	07	42	00	50	50) ()	101	43	34	32	21	18	07		10	60	08	11	12	39	21 21	17	2 0	20	36	
	0) 0	• •	•	•					•	•	•	•		.0	•	•	•	•	•	•			•	•	•	•	•			•	• •	
					*										•		0		•	•	•			U	•		•	•	•	•			
	0	10	63	59	02	20	85	77	57	11	20	5 C		94	40	60	34	94	52		2 0	99	20	22	23	23	84	10	6 . 0	+	ט ל ט ל		
												•							•		9.1							•	•	•	•		
																				0.0													
		. ~	- -t	~	5	3	6	5	0	m .	0	N 4	- C	2	ι o	\sim	σ	\sim	m I	m (190	5	2	0	6	ത	3	9	σ (V C	⊐ a		
	0	•	0	°	•6	8	٦.	• 9	ئ	• ± •	ŝ	, N c	• •			+	•	•			5	•	7.	1.	-	÷	å.	÷.					
		i V		+1	44		-	**	-1		- 1 - 1	4-4 Q	-4	**		-	-	7						ιu.	CU I				-		-		
	¥	: 0	0	0	0	0	0	0	0	0					0	0	0	0	0				0	N	~		0				> c		
	•	00	00	00	00	00	00	00	00	00	00	000	ט כ כ	202	19	18	67	17	66	16	• 1 0 • 1 0	65	15	37	81	26	20	5	10	0 1	1 1	16 16	
		00	20	4 0	60	8 0	00	2.0	40	60	000	06	່າແ	200	88	93	95	98	00	000	202	0 t	05	0.5	66	94	83	201	<u>т</u> 5	ς γ	0 C	0 S	
		1	-		1	-	εv1	rv1	N				n M	N C	N	ŝ	N	EVI	ا (۳)	י נייו	א ני	n v	(°1							U C	U M	n n	
	0		5	5	6	თ	6	თ	σ	σ	ъ (ກດ																					
		*																	4-4				- 4	***		- 4			** 1				

	NATIONAL BUREAU	OF STANDARDS, CR	YOGENIC ENGINEERIN	G LABORATORY		PROJECT NO 275036		PAGE 14
SUBJECT	The Orthobaric	Densities of	Ethane, Metha	ane, Oxygen	and	NAME R.	D.Goodwin	
	Fluorine					DATE Se	pt, 18, 197	3
		m 11 o	G 1 1 1 1					
		Table 8.	Calculated o	oxygen liqui	d densi	ties		
		T , K	R, MOL/L	DR/DT	D2R/			
		54.351 56.000	40.830 40.603	-0.1377 -0.1380	-0.00			
		58.000	40.326	-0.1385	-0.00			
		60.000	40.049	-0.1390	-0.00			
		62.000	39.770	-0.1395	-0.00			
		64.000 66.000	39.491 39.210	-0.1401 -0.1408	-0.00			
		68.000	38.928	-0.1415	-0.00	-		
		70.000	38.644	-0.1423	-0.00			
		72.000	38.358	-0.1432	-0.00			
		74.000	38.071	-0.1441	-0.00			
		76.000 78.000	37 .7 82 37.491	-0.1451 -0.1462	-0.00			
		80.000	37.197	-0.1474	-0.00			
		82.300	36.901	-0.1487	-0.00			
		84.000	36.602	-0.1500	-0.00			
		86.000	36.301	-0.1515	-0.00			
		88.000 90.000	35.996 35.688	-0.1531 -0.1548	-0.00			
		92.000	35.377	-0.1567	-0.00			
		94.000	35.062	-0.1586	-0.00			
		96.000	34.742	-0.1608	-0.00	111		
		98.000	34.418	-0.1631	-0.00			
		100.000 102.000	34.090 33.756	-0.1655 -0.1682	-0.00			
		104.000	33.417	-0.1711	-0.00			
		106.000	33.072	-0.1742	-0.00			
		108.000	32.720	-0.1776	-0.00	176		
		110.000	32.361	-0.1813	-0.00			
		112.000 114.000	31.995 31.620	-0.1852 -0.1896	-0.00			
		116.000	31.236	-0.1943	-0.00			
		118.000	30.842	-0.1995	-0.00			
		120.000	30.438	-0.2052	-0.00			
		122.000 124.000	30.021	-0.2115	-0.00			
		126.000	29.591 29.147	-0.2185 -0.2263	-0.00			
		128.000	28.685	-0.2351	-0.00			
		130.000	28.205	-0.2450	-0.00	530		
		132.000	27.704	-0.2564	-0.00			
		134.000	27.179	-0.2695	-0.00			
		136.000 138.000	26.625 26.037	-0.2848 -0.3031	-0.00			
		140.300	25.410	-0.3253	-0.01			
		142.000	24.733	-0.3529	-0.01			
		144.000	23.993	-0.3886	-0.02			
		146.000	23.170	-0.4370	-0.02			
		148.J00 15J.000	22.230 21.108	-0.5079 -0.6253	-0.04			
		152.000	19.647	-0.8749	-0.20			
		154.000	17.104	-2.1732	-2.34			
		154.576	13.630	0.0000	0.00	000		

	NATIONAL BUREAU OF STANDARDS, CRYOC LABORATORY		LABORATORY		PROJECT NO. 2750364	FILE NO. 73-5	PAC
SUBJECT	The Orthobaric Densities of Et		ne, Oxvgen a	and		Goodwin	
	Fluorine		, , , ,		DATE	. 18, 1973	3
		N			Dept	. 10, 171.	
	Table 9. (Calculated fl	uorine liqui	d densi	ities.		
	T,K	R, MOL/L	DR/DT	D2R/			
	53.481 54.000	44.862 44.781	-0.1573 -0.1576	-0.00			
	56.000	44.464	-0.1587	-0.00			
	58.000	44.146	-0.1599	-0.00			
	60.000	43.825	-0.1612	-0.00	065		
	62.000	43.501	-0.1625	-0.00			
	64.000	43.174	-0.1639	-0.00			
	66.000	42.845	-0.1654	-0.00			
	68.000 70.000	42.513 42.177	-0.1670 -0.1686	-0.00			
	72.000	41.838	-0.1704	-0.00			
	74.000	41.496	-0.1722	-0.00			
	76.000	41.149	-0.1742	-0.00	101		
	78.000	40.799	-0.1763	-0.00			
	80.000	40.44	-0.1785	-0.00			
	82.000	40.085	-0.1808	-0.00			
	84.000 86.000	39.720 39.351	-0.1833 -0.1860	-0.00			
	88.000	38.976	-0.1888	-0.00			
	90.000	38.596	-0.1918	-0.00			
	92.000	38.209	-0.1951	-0.00	167		
	94.000	37.815	-0.1985	-0.00			
	96.000	37.415	-0.2022	-0.00			
	98.000	37.006	-0.2062	-0.00			
	100.000 102.300	36.590 36.164	-0.2105 -0.2151	-0.00			
	104.000	35.729	-0.2202	-0.00			
	106.000	35.283	-0.2257	-0.00			
	108.000	34.826	-0.2316	-0.00	313		
	110.000	34.356	-0.2382	-0.00	344		
	112.000	33.873	-0.2454	-0.00			
	114.000	33.374	-0.2534	-0.00			
	116.000	32.858	-0.2624	-0.00			
	118.000 120.000	32.324 31.768	-0.2724 -0.2838	-0.00			
	122.000	31.188	-0.2967	-0.00			
	124.000	30.579	-0.3118	-0.00			
	126.000	29.939	-0.3294	-0.00			
	128.000	29.260	-0.3505	-0.01	156		
	130.000	28.534	-0.3762	-0.01			
	132.000	27.751	-0.4084	-0.01			
	134.000	26.894	-0.4504	-0.02			
		25.939	-0.5081 -0.5939	-0.03			
	138.000 140.000	24.843 23.524	-0.7400	-0.09			
	142.000	21.770	-1.0696	-0.27			
	144.000	18.328	-3.6894	-7.49			
	144.310	15.150	0.0000	0.00	0000		

	NATIONAL BUREAU OF STANDARDS, CRYC LABORATOR		G LABORATORY		project no. 2750364	FILE NO. 73-5	PAGE 16
SUBJECT	The Orthobaric Densities of H		ne. Oxvgen	and		.Goodwin	
	Fluorine		,, 8		DATE	. 18, 197	3
					Dept		
	Table 10. C	Calculated m	ethane liqui	d densi	ties		
			00/07	000 (
	T,K 90.680	R,MOL/L 28.147	DR/DT -0.0825	D2R/			
	92.000	28.038	-0.0829	-0.00			
	94.000	27.871	-0.0836	-0.00			
	96.000	27.704	-0.0842	-0.00	035		
	98.000	27.534	-0.0849	-0.00	036		
	100.000	27.364	-0.0857	= 0 . 0 0 i			
	102.000	27.192	-0.0865	-0.00			
	104-000	27.018	-0.0873	-0.00			
	106.000	26.843	-0.0881	-0.00			
	108.000 113.000	26.665 26.486	-0.0890 -C.0899	-0.00			
	112.000	26.306	-0.0909	-0.00			
	114.000	26.123	-0.0919	-0.00			
	116.000	25.938	-0.0930	-0.00			
	118.000	25.751	-0.0941	-0.00			
	120.000	25.561	-0.0953	-0.00			
	122.000	25.369	-0.0966	-0.00	064		
	124.000	25.175	-0.0979	-0.00	068		
	126.000	24.978	-0.0993	-0.00	072		
	128.000	24.778	-0.1068	-0.00	076		
	130.000	24.575	-0.1023	-0.00			
	132.000	24.368	-0.1040	-0.00			
	134.000	24.158	-0.1057	-0.00			
	136.000	23.945	-0.1076	-0.00			
	138.000 140.000	23.728 23.507	-0.1096 -0.1117	-0.00: -0.00;			
	142.000	23.281	-0.1140	-0.00			
	144.300	23.051	-0.1164	-0.00			
	146.000	22.815	-0.1190	-0.00			
	148.000	22.574	-0.1219	-0.00			
	150.000	22.328	-0.1249	-0.00			
	152.000	22.075	-0.1282	-0.00			
	154.000	21.815	-0.1318	-0.00			
	156.000	21.547	-0.1358	-0.00			
	158.000	21.271	-0.1401	-0.00			
		20.986		-0.00			
	162.000	20.691	-0.1503	-0.00			
	164.000 166.000	20.385 20.066	-0.1562 -0.1630	-0.00			
	163.000	19.732	-0.1707	-0.00			
	170.000	19.382	-0.1797	-0.00			
	172.000	19.012	-0.1901	-0.00			
	174.000	18.620	-0.2026	-0.00			
	176.000	18.200	-0.2177	-0.00			
	178.000	17.747	-0.2367	-0.01	068		
	180.000	17.250	-0.2612	-0.01			
	182.000	16.696	-0.2947	-0.01			
	184.000	16.061	-0.3440	-0.03			
	186.000	15.299	-0.4261	-0.05			
		14.298	-Ü.6021	-0.14			
	193.000	12.527	-1.5385	-1.72			
	190.555	10.200	0.0000	0.00	000		

UBJECT	LABORATOR				2750364	73-5	
	The Orthobaric Densities of Et	thane, Methan	ie, Oxygen a	and	R.D.	Goodwin	
	Fluorine				Sept.	. 18. 1973	3
			(1 1)				
	Table II.	Calculated	ethane liqu	1d dens	sities.		
	ETHA	NE SATURATI	ED LIQUID	DENSI	TIES		
	Τ _Σ Κ	R, MOL/L	DR/DT	D2R			
	89.899	21.680	-0.0360	0.00			
	90.000	21.676	-0.0360				
	95.000 100.000	21.496 21. 3 16	-0.0360 -0.0360	-0.00			
	105.000	21.136	-0.0361				
	110.000	20.955	-0.0362				
	115.000	20.774	-0.0363				
	120.000	20.593	-0.0364				
	125.000	20.411	-0.0365				
	130.000	20.228	-0.0367				
	135.000	20.044	-0.0369				
	140.000 145.000	19.859 19.673	-0.0371 -0.0374				
	150.000	19.485	-0.0377				
	155.000	19.296	-0.0380				
	160.000	19.105	-0.0384				
	165.000	18.912	-0.0388	-0.00	009		
	170.000	18.717	-0.0392				
	175.000	18.520		-0.00			
	180.000 185.000	18.320 18.116	-0.0403 -0.0410				
	190.000	17.910	-0.0417				
	195.000	17.700	-0.0424				
	200.000	17.485	-0.0433	-0.00	018		
	205.000	17.266	-0.0443	-0.00	020		
	210.000	17.042	-0.0453	-0.00			
	215.000	16.813					
	220.000 225.000	16.577 16.335	-0.0478 -0.0493				
	230.000	16.085	-0.0509				
	235.000	15.826	-0.0527				
	240.000	15.557		-0.00			
	245.000	15.277	-0.0572	-0.00	051		
	250.000	14.984		-0.00			
	255.000	14.676		-0.00			
	263.000 265.000	14.351		-0.00			
	270.000	14.005 13.635		-0.00			
	275.000	13.233		-0.00			
	280.000	12.792		-0.00			
	285.000	12.299	-0.1053	-0.00	295		
	290.000	11.729		-0.00			
	295.000	11.040		-0.00			
	300.000	10.112		-0.02			
	305.000 305.330	8.048 6.870	-1.2696	-2.44			
		0.010					

	NATION	AL BUREAU OF STAND	ards, cryogenic e DRATORY NOT		BORATORY		CT NO. FILE	
BJECT					0			
		nobaric Densit	ies of Ethane	, Methane,	Oxygen an	DATE	R.D.G000	
	Fluorine						Sept. 18,	1973
		Table 12,	Comparisor			nsities.		
				E, = 0	.382			
		CRT = 154.576, CRT = 13.630,						
		066-001 -3.386 130-001 0.000		5907075-00 000000+00	1 -1.5761185 0 0.000000			
D	T,K	MOL/L	CALCD	PCNT	Z	ΥX	YC	YDI
99	56.000	5.3300-004	5.3288-004	0.02	0.95458	0.07082	0.07159	-0.0007
19 19	58.000 60.000	8.9930-004 1.4640-003	8.9941-004 1.4644-003	-0.01 -0.03	0.90296 0.85479	0.07289 0.07505	0.07270 0.07474	0.0001
9	62.000	2.3057-003	2.3068-003	-0.05	0.80972	0.07792	0.07752	0.0000
9	64.000	3.5233-003	3.5251-003	-0.05	0.76747	0.08123	0.08089	0.0003
9	66.000	5.2367-003	5.2388-003	-0.04	0.72778	J.08497	0.08473	0.0002
9	68.000 70.000	7.5880-003 1.0742-002	7.5899-003 1.0742-002	-0.02 -0.03	0.69042 0.65520	0.08906 0.09 3 43	0.08893 0.09341	0.000.0
9	72.000	1.4885-002	1.4883-002	0.01	0.62194	0.09804	0.09811	-0.0000
9	74.000	2.0227-002	2.0220-002	0.04	0.59048	0.10281	0.10296	-0.0001
9	76.305	2.6996-002	2.6983-002	0.05	0.56067	0.10773	0.10792	-0.0001
9	73.JOO 8J.000	3.5441-002 4.5831-002	3.5421-002 4.5802-002	0.06 0.06	0.53239 0.50552	0.11275 0.11781	3.11296 0.11804	-0.0002
9	82.300	5.8449-002	5.8412-002	0.06	0.47996	0.12292	0.12314	-0.0002
ŝ	84.300	7.3595-002	7.3552-002	G.06	0.45562	0.12804	J.12823	-0.0001
9	8 ຕໍ 🛛 ມີ ມີ 🕽	9.1589-Ú02	9.1542-002	0.05	0.43242	0.13313	0.13330	-0.0001
9	55.000	1.1276-001	1.1271-001	0.04 0.03	0.41026 0.38910	0.13821 0.14323	0.13833 0.14331	-0.0001
9	93.00J 92.000	1.3745-001 1.6603-001	1.3741-001 1.6601-001	0.03	0.36885	0.14323	0.14331	-0.0000
9	94.000	1.9887-361	1.9887-001	-0.00	0.34946	0.15311	0.15310	0.0000
9	96.000	2.3637-001	2.3641-001	-0.01	0.33088	0.15794	0.15790	0.0000
9	98.300	2.7894-001	2.7902-001	-0.03	0.31306	0.16270	0.16262	0.000.0
19 19	182.000 192.000	3.2702-001 3.8108-001	3.2710-001 3.8127-001	-0.04 -0.05	0.29596 0.27952	0.16738 0.17196	0.16726 0.17182	0.0001
9	104.000	4.4162-001	4.4186-001	-0.05	0.26372	0.17645	0.17630	0.0001
19	105.000	5.0914-001	5.0943-001	-0.06	0.24851	3.18086	0.18070	0.0001
9	108.j00	5.8421-001	5.8455-001	-0.06	0.23387	0.18518	0.18502	0.0001
9	113.303	6.6747-001 7.5953-001	5.0783-001	-0.05	0.21975 0.20615	0.18940 0.19355	0.18925 0.19341	0.0001
19	114.305	8.6121-001	8.6155-001	-0.04	0.19302	0.19759	0.19748	3.0001
9	110.300	9.7325-001	9.7353-001	-0.03	6.18034	0.20156	0.20148	0.000
9	118.300	1.0965+000	1.0967+000	-0.02	0.16809	0.20545	0.20540	0.0000
9 9	120.000 122.300	1.2321+J00 1.3812+J00	1.2322+000 1.3810+000	-0.00 0.01	0.15625 0.14480	0.20926 J.21299	0.20925 0.21303	0.000.0
9	124.300	1.5450+360	1.5445+030	3.03	0.13372	0.21666	0.21674	-3.0000
9	125.300	1.7250+300	1.7243+600	0.04	0.12299	0.22027	0.22039	-0.0001
9	123.000	1.9230+000	1.9220+000	3.05	0.11259	0.22383	0.22398	-0.0001
9	13.+336 13.+380	2.1411+300 2.3019+330	2.1399+030 2.3805+C30	0.06 0.06	C.10252 C.C9275	0.22735 0.23083	0.22751 9.23100	-0.0001
iy i	134.303	2.0483+000	2.5470+030	0.05	0.08327	0.23429	0.23444	-0.0001
ei	13300	2.9444+300	2.9433+004	ύ.e04	0.07407	0.23773	0.23786	-0.0001
9	133.000	3+2750+000	3.2749+000	0.01	ü.06514	0.24119	0.24124	-0.0000
i i i V	140.000 142.000	3.6468+303 4.0692+000	3.±474+000 4.0712+000	-0.02 -0.05	0.05646 0.04803	0.24468 0.24819	J.24462 D.24801	0.0000
99	144.100	4.5552+000	4.5592+000	-0.09	0.03983	0.25176	0.25143	0.0003
99	140.303	5.1261+000	5.1316+000	-0.11	0.03185	0.25536	0.25493	0.0004
99	143.300	5.8177+000	5.0225+030	-0.08	0.02410	0.25892	0.25857	0.0003
iy aa	100.JUU •~2.100	5+7156+330 7 9230+636	E. 5967+000	0.13	0.01654	0.26182	0.26247	-0.0006
99	152.J00 194.J00	7.9239+030 1.0225+001	7.9138+000 1.0230+031	0.13 -0.05	0.00919 0.00203	0.26616 0.27367	0.26692 0.27313	-0.0007
99						U . C / UU /	U = L / J + J	22000

	NATION		ARDS, CRYOGENIC E		BORATORY		CT NO. FILE 50364 73	1
JBJECT	The Ort	hobaric Densi	ties of Ethane	, Methane	, Oxygen an	d NAME	R.D.Good	dwin
	Fluorine	2				DATE	Sept. 18.	1973
		Table 13.	Comparisor	n of fluori	ne vapor de	ensities.		
				E = 0	• 362			
		CRT = 144.310, CRT = 15.150,	TTRP = 53.4 DTRP = 5.67					
		721-061 -2.270 188-001 0.000		0538644 -00 000000 0+00	1 -1.391633 0 0.000000			
ID	T,K	MOL/L	CALCD	PCNT	Z	ΥX	YC	۲D
98 98	54.JOO 56.JOO	6.6000-004 1.1500-003	6.6001-004 1.1518-003	-0.00 -0.16	0.98473 0.92853	0.03779 0.04645	0.03768 0.04297	0.000
90 98	58.000	1.9300-003	1.9272-003	0.14	0.87621	0.04693	0.04877	-0.001
86	60.000	3.1100-003	3.1038-003	0.20	0.82738	0.05309	0.05493	-0.001
38 38	62.000	4.8400-003	4.8291-003 7.2821-003	0.23 0.11	0.78169 0.73887	0.05968 0.06725	J.06135 J.06792	-0.001
90 98	64.000 66.000	7.2900-003 1.0680-002	1.0675-002	0.05	0.69863	0.07434	0.07459	-0.000
98	68.000	1.5250-002	1.5253-002	-0.02	0.66077	0.08139	0.08130	0.000
98	70.300	2.1280-302	2.1293-002	-0.06	0.62507	0.08827	0.08799	0.000
98	72.000	2.9070-002	2.9105-002	-0.12	0.59135	0.09515	0.09464	0.000
98 98	74.000 76.000	3.8970-002 5.1350-002	3.9029-002 5.1434-002	-0.15 -0.16	0.55945 0.52923	0.10181 0.10829	0.10121 0.10769	0.000
38	78.000	6.6600-002	6.6713-002	-0.17	0.50957	0.11466	0.11406	0.000
98	80.000	8.5150-002	8.5291-002	-0.17	0.47333	0.12086	0.12030	0.000
98 98	82.000 84.000	1.0745-001 1.3397-001	1.0761-001 1.3416-001	-0.15 -0.14	0.44742 0.42275	0.12691 0.13281	0.12641 0.13238	0.000
90 98	86.300	1.6523-001	1.6541-001	-3.11	0.39923	0.13854	0.13820	0.000
98	88.000	2.0174-001	2.0191-001	-0.08	0.37677	0.14413	0.14388	0.000
98	90.000	2.4407-001	2.4420-001	-0.05	0.35532	0.14956	0.14940	0.000
98 98	92.000 94.000	2.9280-001 3.4857-001	2.9286-001 3.4852-001	-0.02 0.01	0.33479 0.31514	0.15484 0.15997	0.15478 0.16001	0.000
98	96.000	4.1203-001	4.1184-001	0.05	0.29631	0.16496	0.16509	-0.000
98	98.000	4.8389-001	4.8352-001	0.08	0.27824	0.16981	0.17003	-0.000
98	199.000	5.6491-001	5.6432-001	0.10	0.26090	0.17453	0.17482	-0.000
98 98	102.000	6.5591-001 7.5778-001	6.5507-001 7.5667-001	0.13 0.15	0.24424 0.22822	0.17912 0.18358	0.17947 0.18398	-0.000
	105.000	8.7151-001	8.7012-001	0.16	0.21281	0.18792	0.18836	-0.000
86	108.000	9.9817-001	9.9651-001	0.17	0.19796	0.19215	0.19261	-0.000
98 98	113.000 112.J00	1.1390+000 1.2953+000	1.1371+000 1.2932+000	0.17 0.16	0.18366 0.16986	0.19627 0.20028	0.19673 0.20072	-0.000
	112.000	1.4687+000	1.4666+000	0.15	0.15655	0.20028	0.20460	-0.000
	116.JCJ	1.6610+00J	1.6590+000	0.12	0.14370	0.20801	3.20836	-0.000
	118.JOJ	1.8743+000	1.8725+000	0.09	0.13129	0.21174	0.21200	-0.000
	120.J00 122.J00	2.1111+000 2.3744+000	2.1099+000 2.3741+000	0.06 0.01	0.11928 0.10768	0.21538 0.21894	0.21554 0.21898	-0.000
	124.000	2.6680+000	2.6690+000	-0.04	0.09644	0.22243	0.22232	0.000
86	120.000	2.9965+000	2.9992+000	-0.09	0.08556	0.22584	0.22556	0.000
	128.J00	3.3661+000	3.3709+000	-0.14	0.07503	0.22917	0.22873	0.000
	132.000	3.7848+000 4.2641+000	3.7921+000 4.2739+000	-0.19 -0.23	0.05481 0.05491	0.23243 0.23560	0.23181 0.23484	0.000
	134.000	4.8207+000	4.8319+000	-0.23	0.04530	0.23862	0.23782	0.000
98	135.000	5.4816+000	5.4905+000	-0.16	0.03598	0.24138	0.24077	0.000
	138.300	6.2910+000	6.2909+000	0.00	0.02692	0.24374	0.24375	-0.000
98 98	140.360 142.380	7.3226+00C 8.7854+000	7.3133+060 8.7644+000	0.13 0.24	0.01813 0.00958	0.24625 0.24889	0.24683 0.25023	-0.0009
					0.000000	004-700 3		000010

	NATION	AL BUREAU OF STAND	ORATORY NOT		DRATORY		50364 73	
UBJECT	The Ort	hobaric Densi	ties of Ethane	, Methane,	Oxygen an		R.D.Good	
	Fluorine	•			, 8	DATE		
							Sept. 18,	1973
		Table 14.	Comparison	of methan	e vapor de	ensities.		
				E = 0.	382			
		CRT = 190.555; CRT = 10.200;						
		143-001 -2.619 336-001 0.000		7533217-001 0000000+000	-1.012206			
ID	T,K	MOL/L	CALCD	PCNT	z	ΥX	YC	YD
2	92.000	1.8280-002	1.8280-002	0.00	0.97263	0.21853	0.21874	-0.000
2 2	94.JOO 96.JOD	2.2860-002 2.8290-002	2.2858-002 2.8294-002	0.01 -0.01	0.93261 0.89427	0.22329 0.22864	0.22354 0.22828	-0.000
2	93.000	3.4690-002	3.4691-002	-0.00	0.85749	0.23301	0.23295	0.000
2	100.000	4.2160-002	4.2159-002	0.00	0.82218	0.23752	0.23755	-0.000
2	102.300	5.0810-002	5.0813-002	-0.01	0.78826	0.24213	0.24207	0.000
2 2	104.000	6.0770-002 7.216 0- 002	6.0772-002 7.2161-002	-0.00 -0.00	0.75564 0.72425	0.24653 0.25086	0.24650 0.25084	0.000
2	108.000	8.5110-002	8.5110-002	-0.00	0.69402	0.25510	0.25510	0.000
2	110.000	9.9750-002	9.9753-002	-0.00	0.66490	0.25928	0.25926	0.000
2	112.000	1.1623-001	1.1623-001	0.00	0.63681	0.26332	0.26333	-0.000
2	114.000	1.3468-001	1-3468-001	-0.00	0.60971	0.26732	0.26730	0.000
2 2	116.J00 118.J00	1.5527-001 1.7814-001	1.5527-001 1.7813-001	0.00 0.00	0.58354 0.55826	0.27117 0.27495	0.27119 0.27498	-0.000
2	120.000	2.0346-001	2.0345-001	0.01	0.53383	0.27864	0.27868	-0.000
2	122.000	2.3139-001	2.3138-001	0.00	0.51019	0.28226	0.28228	-0.000
2	124.300	2.6212-901	2.6211-001	0.00	0.48732	0.28577	0.28580	-0.000
2	126.000	2.9583-001	2.9582-001	0.00	0.46517	0.28921	0.28923	-0.000
2 2	128.000	3.3272-001 3.7299-001	3.3271-001 3.7299-001	0°00 0°00	0.44372 0.42292	0.29255 0.29582	0.29257 0.29583	-0.000
2	132.000	4.1686-001	4.1687-001	-0.00	0.40276	0.29902	0.29900	0.000
2	134.000	4.6457-001	4.6461-001	-0.01	0.38320	0.30213	0.30209	0.000
2	136.900	5.1638-001	5.1644-001	-J.01	0.36421	0.30515	0.3051 0	0.000
2	138.000	5.7255-001	5.7264-001	-0.02	0.34577	0.30811	0.30803	0.000
2 2	140.000 142.000	6.3337-001 6.9916-001	6.3351-001 6.9937-001	-0.02 -0.03	0.32786 0.31046	0.31099 0.31380	0.31088 0.31366	0.000
2	1+4.000	7.7028-001	7.7055-001	-0.04	0.29353	0.31654	0.31637	0.000
2	145.000	8.4711-001	6.4745-001	-0.04	0.27708	0.31920	0.31901	0.000
2	145.000	9.3007-001	9.3049-001	-0.05	0.26106	0.32179	0.32158	0.000
2	153.000	1.0196+000	1.6201+000	-0.05	0.24548	0.32431	0.32409	0.000
2	152.000 154.000	1.1164+000 1.2209+000	1.1169+000 1.2214+630	-0.05 -0.05	0.23030 0.21552	0.32675 0.32912	0.32653 0.32891	0.000
2	156.000	1.3338+000	1.3343+000	-0.04	0.20111	0.33140	0.33123	0.000
2	153.000	1.4560+000	1.4563+000	-0.02	0.18707	0.33361	0.33350	0.000
2	160.000	1.5384+000	1.5854+000	-0.00	0.17339	0.33571	0.33571	0.000
2 2	162.JUU 164.UUJ	1.7322+330 1.8886+303	1.7316+0.0 1.8870+000	0.03 J.08	0.16004 0.14701	0.33772 0.33961	0.33788 0.34000	-0.000
2	165.000	2.0593+000	2.0561+000	0.16	0.13430	0.34135	0.34208	-0.000
2	164.303	2.2465+000	2.2406+000	3.26	0.12190	0.34291	0.34412	-0.001
10	103.367	2.3488+000	2.3463+000	9-11	0.11540	3.34469	0.34520	-0.000
14	103.27ù 163.417	2.3687+000 2.3658+000	2.3870+011 2.3821+000	0.16	0.11417 0.11328	0.34506 0.34480	0.34540 0.34555	-0.000
12	109.41/	2.35550+000 2.3551+000	2.3873+000	0.18	0.11297	0.34545	0.34550	-0.000
010	169.001	2.4054+300	2.4011+000	0.18	G.11217	0.34488	0.34573	-0.000
60	169.794	2.4136+000	2.4213+000	0.10	0.11101	0.34547	0.34593	-0.000
	173.388	2.7972+000	2.7964+000	0.03	0.09162	0.34905	0.34920	-0.000:
16	173.290	2.8203+000	2.8215+000	+0.04	0.09046	0.34961	0.34940	0.000

			ARDS, CRYOGENIC EN			PROJECT 2750	364 73-	ю. рас .5 21
UBJECT	The Orth	obaric Densiti	es of Ethane,	Methane.	Oxvgen and	NAME	R.D.Goody	vin
	Fluorine					DATE	Sept. 18, 1	
							, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	1/15
		Table 1	4 (Continued)) Mathana	vanor dens	itiae		
		TADIC 1	A (Concrited)	, ne uland	e vapor dens.	TOTED®		
ID	Ĩ,K	MOL/L	CALCD	PCNT	Z	YX	YC	YC
712 012	173.489 173.473	2.8457+000 2.8480+000	2.8465+000 2.8445+000	-0.03	0.08931 0.08940	0.34973 0.34896	0.34959 0.34958	0.000
010	173.675	2.8700+000	2.8701+000	-0.00	0.08824	0.34980	0.34978	0.000
008	173.857 177.094	2.8935+000 3.3501+000	2.8934+000 3.3513+000	0.00 -0.03	0.08720 0.06901	0.34995 0.35 3 33	0.34996 0.35315	-0.000
816 814	177.292	3.3801+000	3.3822+000	-0.05	0.06792	0.35369	0.35335	0.000
114	177.328	3.3863+000	3.3879+000	-0.05	0.06772	0.35364	0.35339	0.000
812	177.485	3.4108+000	3.4128+000	-0.06	0.06686	0.35386	0.35354	0.000
112 110	177.509 177.700	3•4209+000 3•4602+000	3.4166+000 3.4473+000	0.12 0.37	0.06673 0.06568	0.35290 0.35175	0.35357 0.35376	-0.000
916	181.105	4.0663+000	4.0686+000	-0.06	0.04738	0.35755	0.35722	0.000
914	181.304	4.1077+000	4.1101+000	-0.06	0.04633	0.35778	0.35743	0.000
213 912	181.389 181.506	4.1269+000 4.1496+000	4.1281+000 4.1530+000	-0.03 -0.08	0.04588 0.04527	0.35769 0.35813	0.35752 0.35765	0.000
211	181.589	4.1656+00ù	4.1708+000	-0.12	0.04483	0.35848	0.35774	0.000
209	181.769	4.2042+000	4.2097+000	-0.13	0.04389	0.35870	0.35793	0.000
516	183.117	4.5212+000 4.5704+000	4•5240+000 4•5754+000	-0.06 -0.11	0.03688 0.03582	0.35978 0.36032	0.35940 0.35963	0.000
514 512	183.322 183.514	4.6189+000	4.6246+000	-0.12	0.03484	0.36063	0.35985	0.000
316	184.125	4.7822+000	4.7880+000	-0.12	0.03171	0.36134	0.36055	0.000
108 1 0 7	184.)87 184.285	4.7825+000	4.7775+000 4.8327+000	0.10 -0.13	0.03190	0.35982 0.36161	0.36051	-0.000
314	184.370	4.8263+000 4.8462+000	4.8567+000	-0.22	0.03089 0.03046	0.36228	0.36084	0.001
106	184.471	4.8797+000	4.8857+000	-0.12	0.02994	0.36177	0.36096	0.000
312	184.510	4.8876+000	4.8969+000	-0.19	0.02975	0.36228	0.36101	0.001
6 6	185.030 185.030	5.3380+300 5.3840+000	5.0524+000 5.3838+000	-0.28	0.02711 0.02208	0.36359 0.36290	0.36164	0.001
208	186.103	5.4077+000	5.4098+000	-0.04	0.02172	0.36331	0.36302	0.000
416	186.129	5.4096+000 5.4795+000	5.4192+0C0 5.4891+090	-0.18	0.02159 0.02064	0.36436	0.36305	0.001
414 207	186.319 186.304	5.4827+000	5.4835+000	-0.17 -0.01	0.02072	0.36461 0.36339	0.36331 0.36329	0.001
206	186.501	5.5571+000	5.5581+000	-0.02	0.01974	0.36369	0.36356	0.000
412	186.518	5.5591+000	5.5646+000	-0.10	0.01965	0.36434	0.36359	0.000
6 6	187.J31 183.031	5.7860+000 6.2750+000	5.7723+000 6.2474+000	0.24 0.44	0.01711 0.01219	0.36244 0.36201	0.36433 0.36592	-0.001
308	188.140	6.2930+000	6.3064+000	-0.21	0.01165	0.36804	0.36612	0.001
307	188.343	6.4367+000	6.4218+ 0 00	-0.24	0.01066	0.36868	0.36648	0.002
306 6	188.545 189.032	6.5278+000 6.9180+000	6.5441+000 6.8777+000	-0.25 0.59	0.00968 0.00732	0.36926 0.36167	0.36686 0.36787	0.002
5	189.765	7.5510+000	7.5576+000	-0.09	0.00378	0.37093	0.36975	0.000
6	193.332	7.9600+000	7.9153+00C	0.56	0.00250	0.36186	0.37065	⇔0.008
5	193.346	7.9350+000	7.9371+000	-0.03	0.00243		0.37070	0.000
7 7	190.370 193.173	8.0000+000 8.1700+000	7.9756+000 8.1508+060	0.31 0.24	0.00232 0.00184	0.36588 0.36709	0.37079 0.37120	-0.004
7	190.270	8.3600+000	8.3595+006	0.01	0.00136	0.37154	0.37166	-0.000
5	190.279	8.3920+000	8.3805+000	0.14	0.00132	0.36899	0.37171	-0.002
7 7	190.370 193.470	8.6200+000 9.0000+006	8.6242+000 9.0116+000	-0.05 -0.13	0.00088	0.37333	0.37221	0.001
/	190.500	9.1616+000	9.0116+000 9.1867+000	-0.13 -0.28	0.C0041 0.C0026	0.37689 0.38333	0.37291 0.37319	0.003
5	1200200			0.00	0.000020		0.01010	0.0010

.

	NATI	UNAL BUR	EAU OF STA	BO						INEE	KINC	۶ LA	5OR	ATO	RY					-	50		1		ои -5			22
BJECT	The O Fluori		ric Den	siti	es d	of I	Etha	ane	e, 1	Met	ha	ne	, 0	xy	ge	n a	ind				R	. , D),(100	dw	in		
	Fluori	ine							_	-		-		_	_			_	Т.		S	en	t.	18	1	97	3	
			Table	: 15	•	Co	mp	ar	isc	on d	of	eth	an	e	vaj	201	c d	en	siti	les	•							
				IUY		°0004	0.0001	0.0003	0.0003	.0002			.0001	•0002	-0002	20000	•0001	.0001	0.0001	•0001	0.000.0	0.0007	0.000.0	.0003	50000	0000000	.0004	
					-0.05863	0.0426	0.0258	0.0072	.0230	.0382	2 7 C N •	•020°	.0918	.1036	.1149	•1255 •1358	•1408	.1456	•1486	• 1573 •1668	.1753	.1836	.1876	•1906	•1914 1001	.1927	.1927	
			0-001 0+000	γ	-0.05815	0.0421	0.0257	0.0069	.0227	• 0379	+2 C N •	• 0 7 95	.0920	.1039	.1151	•1350 •1350	.1409	.1457	.1484	• 1566	.1753	.1828	.1875	.1903	•19241•	• 1926	.1923	
	362		3.576675(0.0000		U • 9 9 6 4 1 D • 8 5 6 8 4	.7410	·6444	• 7 9 7 9 • 4 9 2 8	.4321	.3790	- 3361 2005	.2533	.2197	.1894	.1618	•1366 11355	.1027	.0923	.0860 	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0326	.0173	.0100	•0043	.0016 0016	.0002	.0001	
	ES, E = 0.	990 114-006	8922629-001 0000000+000	SO	-0.07	• 1	0.0		-				0 • 0	0.1	0.1	1.0	• •	0 • 0	•	- 0	0.	°3	•	0.0			•	•
	VAPOR DENSITI	TTRP = 89.89 DTRP = 1.355	0086-002 -7.1 0000+000 0.1	CALC	1.3356-005	.1696-00	• 5568-00	• 2990-00	.7918-00	• 6284-00	00-7007	• 8944-00	.3885-00	• 0777-00	•0036-00	.2235-00 8088-00	• 7685-00	• 8599-00	• 6237-00	• 1219+00	• 0666+00	.8727+00	• 5014+00	• 30 4 0 + 0 0	• D1280400	• 9127+00	.1484+00	
	SATURATED	xT = 305.330, $xT = 6.870$,	2-001 4.155 6-001 0.000	MOL/	1.3347-005	.1612-00	• 5552-00	• 3033-00	• 8043-00	• 6308-00	• 1844-10	• 4111-00 • 8911-00	.3872-00	.0750-00	• 9992-00	•21/2-JU	• 7626-00	.8551-00	•6310-00	•5370+00	.0670+00	.8800+00	• 5020+00	• 3070+00	• 0 4 0 4 0 0	• 9130+00	.1500+00	
	ETHANE	TCR	1.927743 1.245437	4 L 0	000	10.00	00.00		50.00	60.00	00000	00-06	00.00	10.00	20.00	50°00	45.00	50.00	53 .1 5	73.15	83.15	93.15	98.15	02.15	01.15	05.15	05.25	
				DI '		-			-1		-1 +			-1	-1-	-1 -		-4										

	NATIONAL BURI	EAI	UC								N			INE	ERIN	٩G	LAB	OR	ATO	RY		-					е ст 50				1E 1			P/ 2
SUBJECT	The Orthoba Fluorine	ri	c .	De	en	sit	tie	s (of	Et	ha	ne	, 1	Me	th	an	e,	0	xy	rg€	en	an	d			ATE	F	R.I				wi 19		
		т	at	ole	e 1	16		E	th	an	le	va	.pc	r	da	ata	n	ot	: 11	se	д	fo	r 1	ea	st	so				-	1	-		
	LL.	_ (D	\sim	N	Ø	m	യ	თ	ហ	9	ნ	9	თ	S	\$	თ	2	9	-1	4	3	N 7	ט מ	ים כ	5	0	4	Q	8				
	C		000	00	00	00	00	00	01	04	02	02	07	000	0 0	00	00	01	00	00	07	00	00	0017 0007		000	00	00	00	0.1	07	Ö O	50	10
				-	•		•	$\ddot{0}$	°	•	•	° 0	0.		ê	°	°	•	°,	•	°	°.	•				•		•					٠
	c	> <		5	5	ŝ	N		ŝ	9	S	2	0	00	00	2	S	5	5	N	Ś	S.	ا ۍ		1	• ທ	ŝ	ň	9	0	t.	4	~	പ
	>	- e	50	5 C	59	64	68	72	76	84	72	21	30	34	3.9	44	48	53	58	62	66	71	75	781		20.0	85	87	89	90	91	92	∾ 6	92
			•	•	۰		۲				. 0	•			•	•		•		•	۰	۲	•		• •	• •	•				•			
																								U a										
	>	- 6	50	5	53	63	67	74	75	77	70	19	29	33	38	5	47	52	53	62	62	70	76	1015	20	9 C 0 C	86	88	90	92	92	94	96	03
			•					•					•		•			٠		0			•	30	• •					٠			•	
	~																							2 +										
		0	201	72	63	35	46	37	29	22	73	42	25	15	06	99	86	75	66	20	6 3	5		5 C M	р Г О С	17	13	10	06	† 7	02	01	00	00
																								ໍ່										
	2	2 (0		0	44	N	3	\sim	4		Ю	9	4	-	\mathbf{N}	+	ŝ	\$	3	4	m I	m I)))	o M	> ++	- 444		\sim	\sim	\sim	3	ទ	2
	2 0.																					ô	0	; ;	b C			0	0	0	0	•••	0	0
																								> <										
	N I) ((0 +	0 +	0+	0+	0+	0 +	0+	0	0+	0	0	0	0+	0-	0 +	0+	0+	0+	0	0 (+)	00400	• •	0+	0+	0+	0+	0+	0+	0+	0+	0+
		0	202	2	14	02	2.0	78	88	73	14	21	02	17	16	54	96	16	56	5	33	0 3	600		5 C	10	50	04	49	06	19	38	t n	12
		0																						ů o										
	-	<u>،</u> ر		00	00	00	00	00	0 0	00	02	10	01	01	01	07	01	00	00	00	00	00	00			00	00	00	00	00	00	00	00	00
	ā	j (0+	0+	0	0 *	0+	0+	0+	0-	-	0-	0	01	0 -	0	0+	0+	0+	+ 0	0+	0	2 4 4 4 7 4		0+	0+	0+	0 +	0+	0+	0+	0+	+
		- (50	02	21	40	62	88	20	61	80	77	93	64	£ 2	53	63	02	16	35	54	8	0.8	411	5 4	87	15	50	94	29	60	02	32	86
		(• •										
		Ph (0	0	0	0	0	0	0	0	0	0	0	\sim	3	9	4	0	00	3	σ	m I	~ 1	50	sσ	00	~	~	9	9	9	ŝ	S	S
	-		ŝ	•	ິ	•	ئ	0.	ۍ ئ	0	4 e	°	• +	å	ŝ	°.	3°	ê	ŝ	8	ŝ	å	n de	0 0 0 0 0 0		• • •	• د	°	•0	$\overset{\bullet}{\sim}$	ŝ	•	÷	ŝ
																								20										
	C C		-		-1		-1	-1	-		9	9	9	9	9	9	9	ە	9	9	٥	0	0	۵ .										

		ARDS, CRYOGENIC ENGIN	IEERING LABORATORY		рколест но. 2750364	73-5	24
SUBJECT							24
JUDILEI	The Orthobaric Densit	es of Ethane, M	ethane, Oxygen	and	DATE R.D.	Goodwin	
	Fluorine				Sept.	18, 1973	}
	Table	17. Calculate	d oxygen vapor	densiti	es.		
	τv	P MOL /		~	20 /07 2		
	Т,К 54.351	R,MOL/L 3.3612-004	DR/DT 9.6727-005		2R/DT2 54-005		
	56.000	5.3288-004	1.4452-004		07-005		
	58.000	8.9941-004	2.2709-004		53-005		
	60.000	1.4644-003	3.4449-004	6.89	29-005		
	62.000	2.3068-003	5.0609-004	-	27-005		
	64.000	3.5251-003	7.2213-004		42-004		
	66.000	5.2388-003	1.0035-003		84-004		
	68.000 70.000	7.5899-003	1.3613-003 1.8068-003		90-004 55-004		
	72.000	1.4883-002	2.3511-003		68-004		
	74.000	2.0220-002	3.0050-003		05-004		
	76.000	2.6983-002	3.7786-003	4.18	40-004		
	78.000	3.5421-002	4.6817-003	4.85	43-004		
	80.000	4.5802-002	5.7233-003		84-004		
	82.000	5.8412-002	6.9118-003		39-004		
	84.000	7.3552-002	8.2554-003		85-004		
	86.000 88.000	9.1542-002 1.1271-001	9.7617-003 1.1438-002		10-004 08-004		
	90.000	1.3741-001	1.3293-002		86-004		
	92.000	1.6601-001	1.5332-002		76-003		
	94.000	1.9887-001	1.7566-002		66-003		
	96.000	2.3641-001	2.0002-002	1.27	03-003		
	98.000	2.7902-001	2.2651-002		93-003		
	100.000	3.2716-001	2.5523-002		44-003		
	102.000 104.000	3.8127-001 4.4186-001	2.8633-002 3.1994-002		64-003		
	106.000	5.0943-001	3.5626-002		66-003 65-003		
	108.000	5.8455-001	3.9548-002		77-003		
	110.000	6.6783-001	4.3785-002		23-003		
	112.000	7.5992-001	4.8368-002	2.38	30-003		
	114.000	8.6155-001	5.3330-002		29-003		
	116.000	9.7353-001	5.8715-002		59-003		
	118.000	1.0967+000	6.4572-002		69-003		
	120.000 122.000	1.3810+000	7.0965-002 7.7969-002		22-003 95-003		
	124.000	1.5445+000	8.5678-002		93-003		
	126.000	1.7243+000	9.4210-002		51-003		
	128.000	1.9220+000	1.0371-001		54-003		
	130.000	2.1399+000	1.1438-001		57-003		
	132.000	2.3805+000	1.2647-001		20-003		
	134.000	2.6470+000	1.4032-001		58-003		
	136.000	2.9433+000	1.5641-001		97-003		
	138.JOJ 140.JOJ	3.2745+000 3.6474+000	1.7539-001 1.9828-001		66-002 44-002		
	142.000	4.0712+000	2.2661-001		03-002		
	144.000	4.5592+000	2.6300-001		54-002		
	146.000	5.1316+000	3.1214-001		31-002		
	148.000	5.8225+000	3.8373-001		34-002		
	150.000	6.6967+000	5.0204-001		75-002		
	152.000	7.9138+000	7.5420-001		46-001		
	= 154.000 154.576	1.0230+001	2.3822+000 0.0000+000		09+000 00+000		
	1340310		25	0.000			

	NATIONAL BUREAU OF STANDA	RATORY NOTE	ING LABORATORI		PROJECT NO. 2750364	FILE NO. 73-5	PAGE 25
UBJECT	The Orthobaric Densiti		hane. Oxygen an	d	NAME	Goodwin	
	Fluorine	,			DATE	18, 1973	,
				• ••• •	Sept.	18. 197.	5
	Table	18. Calculated	fluorine vapor d	lensit	ies.		
			-				
	T,K	R, MOL/L	DR/DT		D2R/DT2		
	53.481	5.6700-004	1.6771-004	4.2	852-005		
	54.000	6.6001-004	1.9119-004		718-005		
	56.000	1.1518-003	3.0817-004		323-005		
	58.000 60.000	1.9272-003 3.1038-003	4.7699-004 7.1188-004		1683-005 1650-004		
	62.000	4.8291-003	1.0283-003		127-004		
	64.000	7.2821-003	1.4424-003		426-004		
	66.000	1.0675-002	1.9709-003		554-004		
	68.000	1.5253-002	2.6301-003		499-004		
	70.000	2.1293-002	3.4361-003		236-004		
	72.000 74.000	2.9105-002 3.9029-002	4.4046-003 5.5501-003		945-004		
	76.000	5.1434-002	6.8869-003		844-004		
	78.000	6.6713-002	8.4282-003	8.2	395-004		
	80.000	8.5291-002	1.0187-002		580-004		
	82.000	1.0761-001	1.2176-002		1539-003		
	84.000	1.3416-001	1.4407-002 1.6893-002		.783-003 1094-003		
	86.000 88.000	1.6541-001 2.0191-001	1.9649-002		475-003		
	90.000	2.4420-001	2.2689-002		935-003		
	92.000	2.9286-001	2.6029-002		482-003		
	94.000	3.4852-001	2.9688-002		129-003		
	96.000	4.1184-001	3.3688-002		893-003		
	98.000	4.8352-001	3.8054-002		2793-003		
	100.000 102.000	5.6432-001 6.5507-001	4.2816-002 4.8009-002		854-003 105-003		
	104.000	7.5667-001	5.3674-002		585-003		
	106.000	8.7012-001	5.9861-002		339-003		
	108.000	9.9651-001	6.6631-002		5426-003		
	110.000	1.1371+000	7.4058-002		918-003		
	112.000	1.2932+000 1.4666+000	8.2232-002 9.1264-002		910-003 523-003		
	114.000 116.000	1.6590+000	1.0129-001		919-003		
	118.000	1.8725+000	1.1250-001		315-003		
	120.000	2.1099+000	1.2511-001		013-003		
	122.000	2.3741+000	1.3942-001		6437-003		
	124.000	2.6690+000	1.5584-001		1210-003		
	126.000 128.000	2•9992+000 3•3709+000	1.7492-001 1.9746-001		2313-002		
	130.000	3.7921+000	2.2465-001		026-002		
	132.000	4.2739+000	2.5834-001	1.8	913-002		
	134.000	4.8319+000	3.0165-001		841-002		
	136.000	5.4905+000	3.6028-001		720-002		
	138.000	6.2909+000	4.4628-001		532-002 476-002		
	140.000 142.000	7.3133+000 8.7644+000	5.9079-001 9.1469-001		251-001		
	144.000	1.1893+001	3.5620+000		289+000		
	144.310	1.5150+001	0.0000+000		000+000		

	NATIONAL BUREAU OF STANDAR		ING LABORATORY		PROJECT NO.	FILE NO.	PAG
	LABOI	ATORY NOTE			2750364	-73-5	26
SUBJECT	The Orthobaric Densitie	es of Ethane, Met	hane, Oxygen and	đ	NAME R.D	Goodwin	
	Fluorine				DATE	18 197	
						. 10 . 191	
	Table	19. Calculate	d methane vapor	den	sities.		
	ТуК	R, MOL/L	DR/DT		D2R/DT2		
	90.680	1.5679-002	1.8523-003		7385-004		
	92.000	1.8280-002	2.0919-003		8937-004		
	94.000	2.2858-002	2.4952-003		1409-004		
	96.000 98.000	2.8294-002 3.4691-002	2。9492-003 3.4569-003		402 0-0 04 6763 -0 04		
	100.000	4.2159-002	4.0206-003		9634-004		
	102.000	5.0813-002	4.6430-003		2628-004		
	104.000	6.0772-002	5.3265-003		5744-004		
	106.000	7.2161-002	6.0736-003	3.	8980-004		
	108.000	8.5110-002	6.8866-003	4.1	2339-004		
	110.000	9.9753-002	7.7680-003	4.	5823-004		
	112.000	1.1623-001	8.7204-003		9439-004		
	114.000	1.3468-001	9.7465-003		3195-004		
	116.000	1.5527-001	1.0849-002		7100-004		
	118.000	1.7813-001	1.2032-002		1170-004		
	120.000	2.0345-001	1.3297-002		5420-004		
	122.000	2.3138-001	1.4650-002		9870-004		
	124.000	2.6211-001	1.6093-002		4545-004		
	126.000 128.000	2.9582-001 3.3271-001	1.7633-002 1.9274-002	-	9471-004 4681-004		
	130.000	3.7299-001	2.1023-002		0214-004		
	132.000	4.1687-001	2.2885-002		5113-004		
	134.000	4.6461-001	2.4870-002		0243-003		
	136.000	5.1644-001	2.6986-002		0922-003		
	138.000	5.7264-001	2.9242-002	1.	1657-003		
	140.000	6.3351-001	3.1652-002	1.1	2454-003		
	142.000	6.9937-001	3.4229-002		3325-003		
	144.000	7.7055-001	3.6988-002		4280-003		
	146.000	8.4745-001	3.9948-002		5335-003		
	148.000	9.3049-001	4.3130-002		6506-003		
	150.000	1.0201+000	4.6559-002		7815-003		
	152.000	1.1169+000	5.0267-002	-	9288-003 9957-003		
	154.000 156.000	1.2214+000 1.3343+000	5.4288-002 5.8665-002		2865-003		
	158.000	1.4563+000	6.3453-002		5065-003		
	160.000	1.5884+000	6.8715-002		7627-003		
	162.000	1.7316+000	7.4534-002		0643-003		
	164.000	1.8870+000	8.1011-002	3.1	4240-003		
	166.000	2.0561+000	8.8280-002	3.	8592-003		
	168.000	2.2408+000	9.6514-002	4.	3945-003		
	170.000	2.4430+000	1.0595-001		0661-003		
	172.000	2.6656+000	1.1691-001		9289-003		
	174.000	2.9119+000	1.2985-001		0695-003		
	176.000	3.1867+000	1.4546-001		6322-003		
	178.000	3.4963+000	1.6482-001		0873-002		
	180.000	3.8497+000	1.8973 = 001		4288-002		
		4.2610+000	2.2344-001 2.7274-001		9949-002 0592-002		
	184.000 186.000	4•7537+000 5•3730+000	2.7274-001 3.5464-001		5251-002		
	188.000	6.2307+000	5.3071-001		4281-001		
	190.000	7.8668+000	1.4868+000		7833+000		
	190.555	1.0200+001	0.0000+000		0000+000		

	NATIONAL BUREAU OF STANDAI	RDS, CRYOGENIC ENGINEE	RING LABORATORY	PROJECT NO. FILE N 2750364 73-	
SUBJECT	The Orthobaric Densiti		thane. Oxvgen ar		
	Fluorine	ou or interio, mo	indite, onygen af	DATE	
				Sept. 18,	1973
	Table	20. Calculated	ethane vapor de	ensities.	
	ETHAN	NE SATURATED	VAPOR DENSITI	ES	
	Т,К	R, MOL/L	DR/DT	D2R/DT2	
	89.899	1.3511-006	3.4418-007	7.9422-008	
	90.000 95.000	1.3863-006 4.5944-006	3.5229-007 1.0378-006	8.1081-008 2.1037-007	
	100.000	1.3356-005	2.6924-006	4.8256-007	
	105.000	3.4683-005	6.2648-006	9.9665-007	
	110.000	8.1696-005	1.3276-005	1.8818-006	
	115.000	1.7684-004	2.5955-005	3.2903-006	
	120.000	3.5568-004	4.7323-005		
	125.000	6.7091-004 1.1963-003	8.1216-005 1.3223-004	8.3256-006 1.2254-005	
	130.000 135.000	2.0304-003	2.0559-004	1.7283-005	
	140.000	3.2990-003	3.0703-004	2.3493-005	
	145.000	5.1575-003	4.4257-004	3.0926-005	
	150.000	7.7918-003	6.1835-004	3.9592-005	
	155.000	1.1418-002	8.4051-004	4.9474-005	
	160.000	1.6284-002	1.1151-003 1.4478-003	6.0539-005 7.2744-005	
	165.000 170.000	2.2666-002 3.0869-002	1.8443-003		
	175.000	4.1225-002	2.3101-003	1.0043-004	
	180.000	5.4094-002	2.8504-003	1.1588-004	
	185.000	6.9862-002	3.4707-003	1.3243-004	
	190.000	8.8944-002	4.1767-003		
	195.000	1.1178-001 1.3885-001	4.9742-003 5.8703-003	1.6912-004 1.8956-004	
	200.000 205.000	1.7066-001	6.8727-003	2.1170-004	
	210.000	2.0777-001	7.9907-003		
	215.000	2.5078-001	9.2355-003	2.6252-004	
	220.000	3.0036-001	1.0621-002		
	225.000	3.5725-001	1.2164-002	3.2581-004	
	230.000	4.2230-001	1.3887-002	3.6425-004 4.0894-004	
	235.000 240.000	4.9647-001 5.8088-001	1.5817-002 1.7990-002	4.6176-004	
	245.000	6.7685-001	2.0453-002	5.2532-004	
	250.000	7.8599-001	2.3267-002	6.0330-004	
	255.000	9.1025-001	2.6519-002	7.0116-004	
	260.000	1.0521+000	3.0325-002	8.2712-004	
	265.000	1.2147+000	3.4858-002 4.0373-002	9.9430-004 1.2246-003	
	270.000 275.000	1.4023+000 1.6207+000	4.7273-002	1.5572-003	
	280.000	1.8784+000	5.6239-002	2.0691-003	
	285.000	2.1886+000	6.8532-002	2.9298-003	
	290.000	2.5736+000	8.6820-002	4.5876-003	
	295.000	3.0777+000	1.1813-001	8.6241-003	
	300.000 305.000	3.8180+000 5.6889+000	1.9083-001 1.2377+000	2.5135-002 2.4827+000	
	305.330	6.8700+000	0.0000+000	0.0000+000	

```
PROJECT NO.
                                                                    FILE NO.
                                                                            PAGE
        NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
                    LABORATORY NOTE
                                                            2750364
                                                                    73-5
                                                                            28
SUBJECT
                                                           NAME
      The Orthobaric Densities of Ethane, Methane, Oxygen and
                                                               R.D.Goodwin
                                                           DATE
      Fluorine
                                                               Sept. 18, 1973
                                                              10/10/73
       PROGRAM LICKFIT
      REPRESENT ETHANE SATURATED LIQUID DENSITIES.
 C
      DEFINE X = (TC-T)/TC-TT), Q = X^{++1/3}, XE = X^{++E},
 C
                                                              AND -
      DEFINE YY = (D-DC)/(DT-DC),
 С
                                      WHEN THE EQN. IS -
 С
      (YY-X)/(XE-X) = A1 + A2^{+}Q2 + A3^{+}Q3 + ...
 С
      DCRT = 6.86, 6.87 POSSIBLY VIA MY VAPORDEN EQN.
 C
      DTRP = 21.68 ESTIM. VIA REID C. MILLER.
 С
      ID, (9) TESTER, (10) DOUSLIN, (11) SLIWINSKI, (12) CANFIELD ET AL.,
      ID, (13) KLOSEK, (14) MILLER, (15) EUBANK, (16) TOMLINSON
 C
       COMMON E, AZ, TTRP, TCRT, DTRP, DCRT, DRDT, D2RDT2, A(6)
       COMMON/999/NP,NF,H(15),Y(200),G(200,15)
       DIMENSION ID(99),T(99),DEN(99), U(99),W(99),XQ(99)
     1 FORMAT(I5, 2F10.0)
     2 FORMAT(1H1 13X 1HE 8X2HAZ 6X4HDCRT 8X2HSS)
     3 FORMAT(5X 4F10.3)
     4 FORMAT(1H1 17X *ETHANE SATURATED LIQUID DENSITIES, E =* F6.3//
      1 20X 6HTCRT =F8.3, 8H, TTRP =F8.4//
      2 20X 6HDCRT =F8.3, 8H, DTRP =F8.4// 2(13X 3E15.7/) /
      3 BX2HID 7X3HT,K 5X5HMOL/L 6X4HCALC 4X4HPCNT
      4 14X 1HX 8X2HYX 8X2HYC 6X4HYDIF )
     5 FORMAT(5X I5, 3F10.3, F8.2, F15.5, 3F10.5)
     6 FORMAT(1H1 16X *ETHANE SATURATED LIQUID DENSITIES* //
      1 17X 3HT,K 3X7HR,MOL/L 5X5HDR/DT 3X7HD2R/DT2 )
     7 FORMAT(10X 2F10.3, F10.4, F10.5)
     9 FORMAT(18X 4HNP = I3, 10H, RMSPCT = F7.3/)
 C
 С
      DO ALL FOUR, OXYGEN, FLUORINE, METHANE, AND ETHANE.
    10 DO 99 IG=1,4 $ GOTO(11,13,15,17),IG
 C
      CONSTANTS FOR OXYGEN.
    11 TTRP=54.3507 $ TCRT=154.576 $ TZ=52 $ DT=2 $ NZ=52
    12 DTRP=40.83 $ DCRT=13.63 $ DZ=13.58 $ EZ=0.340 $ GOTO 19
      CONSTANTS FOR FLUORINE.
 С
    13 TTRP=53.4811 $ TCRT=144.31 $ TZ=50 $ DT=2 $ NZ=48
    14 DTRP=44.6623 $ DCRT=15.15 $ DZ=15.10 $ EZ=0.342 $ GOTO 19
 С
      CONSTANTS FOR METHANE.
    15 TTRP=90.680 $ TCRT=190.555 $ TZ=88 $ DT=2 $ NZ=52
                         $ DCRT=10.20 $ DZ=10.05 $ EZ=0.350 $ GOTO 19
    16 DTRP=28.147
 С
      CONSTANTS FOR ETHANE.
       TTRP=89.899 $ TCRT=305.33 $ TZ=80 $ DT=5 $ NZ=46
    17
    18 DTRP=21.68 $ DCRT= 6.87 $ DZ= 6.82 $ EZ=0.349
    19 \text{ XN} = \text{TCRT-TTRP}
                        $ YN = DTRP-DCRT
 С
      READ NP DATA FOR LEAST SQUARES.
 C
      READ L.A.WEBER S OXYGEN VOLUMES, CC/MOL.
    20 D0 27 J=1,99 $ READ 1, ID(J),T(J),DEN(J) $ IF(ID(J)) 21,28
    21 IF(ID(J)-15) 23,22
    22 CONTINUE
    23 IF(ID(J)-99) 25,24
    24 \text{ DEN(J)} = 1000/\text{DEN(J)}
    25 U(J) = X = (TCRT - T(J))/XN $
                                       Q = CUBERTF(X) $ DO 26 K=2,6
    26 G(J,K) = Q^{+}K \ S G(J,1) = 1
    27 W(J) = (DEN(J) - DCRT)/YN
    28 \text{ NPP} = \text{NP} = \text{J-1} \text{ $ NF = 3 $ E = 0.36}
      EXPLORE E, AZ, AND DCRT.
 C
    29 AZ = NF $ SSK = 1.0E+010
    30 DO 49 IE=1,21
                       $
                           E = EZ + 0.001 + IE
```

	NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY LABORATORY NOTE	PROJECT NO. 2750364	FILE NO. 73-5	PAGE 29
SUBJECT	The Orthobaric Densities of Ethane, Methane, Oxygen and	NIA ME	Goodwin	41
	Fluorine	DATE	. 18. 1973	3
5	LICKFIT	10/10	/73	
	SET UP THE LEAST SQUARES ARRAYS. 36 DO 40 J=1,NP \$ X = U(J) \$ XQ(J) = XE = X**E 37 Y(J) = (W(J)-X)/(XE-X) 40 CONTINUE \$ CALL EGENFT \$ SS=0 \$ DO 43 J=1,NP \$ 41 YC = YC + H(K)*G(J,K) \$ X = U(J) \$ XE = XQ(42 DC = DCRT + (X + (XE-X)*YC)*YN 43 SS = SS + (DEN(J)/DC-1)**2 \$ SS = 100*SQRTF(S)	1)	0 41 K=	1,NF
	44 IF(SS.LT.SSK) 45,48 45 SSK=SS \$ EK=E \$ AZK=AZ \$ DK=DCRT 46 D0 47 K=1,6 47 A(K) = H(K) 48 CONTINUE 49 CONTINUE	57 NFJ		
С	<pre>50 E=EK \$ AZ=AZK \$ DCRT=DK \$ YN = DTRP - DCRT USE SAVED CONSTANTS FOR DEVIATIONS. 60 PRINT 4, E,TCRT,TTRP,DCRT,DTRP,(A(K),K=1,6) \$ 61 D0 70 J=1,NPP \$ X = U(J) \$ XE = X**E \$ XE 62 YC = 0 \$ D0 63 K=1,NF 63 YC = YC + A(K)*G(J,K) 64 YS = X + XEX*YC \$ DC = DCRT + YN*YS 65 YX = (W(J)-X)/XEX \$ YD = YX-YC</pre>			
	66 PCT = 100*(DEN(J)/DC-1) \$ SS = SS + PCT**2 67 PRINT 5, ID(J),T(J),DEN(J), DC,PCT, X,YX,YC,YD 68 IF(J-NP) 70,69 69 SS = SQRTF(SS/NP) \$ PRINT 9, NP, SS 70 CONTINUE PRINT UNIFORM TABLE FOR PUBLICATION.			
	71 PRINT 6 \$ D0 80 J=1,NZ \$ IF(J=1) 73,72 72 TT = TTRP \$ G0 T0 76 73 IF(J=NZ) 75,74 74 TT = TCRT \$ G0 T0 76 75 TT = TZ + DT*J 76 R = DENLIQF(TT)			
C 1 1 1	<pre>80 PRINT 7, TT,R,DRDT,D2RDT2 99 CONTINUE D0 OTHER ETHANE DATA WITH EXISTING COEFFICIENTS. 00 PRINT 4, E,TCRT,TTRP,DCRT,DTRP,(A(K),K=1,6) \$ 01 D0 110 J=1,99 \$ READ 1, IDD,TT,DN \$ IF(IDD) 02 X=(TCRT-TT)/XN \$ Q=CUBERTF(X) \$ XE=X**E \$ XEX=XI 03 YC = A(1) \$ D0 104 K=2,NF</pre>	102,999		
1 1 1	04 YC = YC + A(K)*Q**K 05 DC = DCRT + YN*(X+XEX*YC) \$ PCT = 100*(DN/DC- 06 YY = (DN-DCRT)/YN \$ YX = (YY-X)/XEX \$ YD = Y 10 PRINT 5, IDD,TT,DN, DC,PCT, X,YX,YC,YD 99 STOP \$ END			

```
NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY
                                                         PROJECT NO.
                                                                  FILE NO.
                                                                          PAGE
                    LABORATORY NOTE
                                                                  73-5
                                                          2750364
                                                                          30
SUBJECT
     The Orthobaric Densities of Ethane, Methane, Oxygen and
                                                         NAME
                                                             R.D.Goodwin
     Fluorine
                                                         DATE
                                                             Sept. 18. 1973
                                                             10/10/73
        PROGRAM VAPORFIT
  С
       REPRESENT ETHANE SATURATED VAPOR DENSITIES.
  С
       THIS FORM IS CONSTRAINED AT THE TRIPLE POINT, AND
  C
       DEFINE X(T) AS FOR THE VAPOR PRESSURE EQUATION -
  С
       Z = (1-X) = (TC/T-1)/(TC/TT-1), ZE = Z^{*+}E, Q = Z^{*+}1/3, AND -
  С
       DEFINE YY = LN(DC/D)/LN(DC/DT), AND THE DEPENDENT VARIABLE -
  С
       Y(Z, YY) = (YY-Z)/(ZE-Z), WHEN THE L.S. EQN. IS -
  С
       Y(Z, YY) = A1 + A2^{*}Q2 + A3^{*}Q3 + A4^{*}Q4 + . . .
  C
       ID., (1) VIRIAL/V.P., (6) PORTER, (10) DOUSLIN, (11) SLIWINSKI.
        COMMON E, AL, TTRP, TCRT, DTRP, DCRT, DRDT, D2RDT2, A(9)
        COMMON/999/NP,NF,H(15),Y(200),G(200,15)
        DIMENSION ID(99), T(99), DEN(99), U(99), W(99), ZQ(99)
      1 FORMAT(I5, F10.0, E15.5)
      2 FORMAT(1H1 18X 1HE 8X2HAL 6X4HDCRT 8X2HSS)
      3 FORMAT(10X 4F10.3)
      4 FORMAT(1H1 17X *ETHANE SATURATED VAPOR DENSITIES, E =* F6.3//
               6HTCRT = F8.3, 8H, TTRP = F8.4/
       1 20X
               6HDCRT =F8.3, 8H, DTRP =E12.5// 2(13X 4E15.7/) /
       2 20X
       2 8X2HID 7X3HT, K 8X5HMOL/L 8X5HCALCD 4X4HPCNT
       3 12X 1HZ 8X2HYX 8X2HYC 6X4HYDIF )
      5 FORMAT(5X I5, F10.3, 2E13.4, F8.2, F13.5, 3F10.5)
      6 FORMAT(15, 2F10.0)
      7 FORMAT(1H1 16X *ETHANE SATURATED VAPOR DENSITIES* //
       1 17X 3HT,K 6X7HR,MOL/L 8X5HDR/DT 6X7HD2R/DT2 )
      8 FORMAT(10X F10.3, 3E13.4)
      9 FORMAT(18X 4HNP =I3, 10H, RMSPCT =F7.3/)
     61 FORMAT(1H1 7X2HID 7X3HT,K 8X5HMOL/L 8X5HCALCD 4X4HPCNT
       1 12X 1HZ 8X2HYX 8X2HYC 6X4HYDIF )
  С
       DO ALL FOUR, OXYGEN, FLUORINE, METHANE, ETHANE.
  С
     10 DO 81 IG=1,4 $ GOTO(11,13,15,17),IG
  С
       CONSTANTS FOR OXYGEN.
     11 TTRP=54.3507 $ TCRT=154.576 $ TZ=52 $ DT=2 $ NZ=52
     12 DTRP=3.36122E+4 $ DCRT=13.63 $ DZ=13.58 $ EZ=0.360 $ GOTO 19
       CONSTANTS FOR FLUORINE.
  С
     13 TTRP=53.4811 $ TCRT=144.31 $ TZ=50 $ DT=2 $ NZ=48
     14 DTRP=5.670E-4 $ DCRT=15.15 $ DZ=15.10 $ EZ=0.340
                                                            $ GOTO 19
  C
       CONSTANTS FOR METHANE.
     15 TTRP=90.680 $ TCRT=190.555 $ TZ=88 $ DT=2 $ NZ=52
     16 DTRP=0.01567865 $ DCRT=10.20 $ DZ=10.05 $ EZ=0.360 $ GOT0 19
  С
       CONSTANTS FOR ETHANE.
       OMIT 24, AND FIX DTRP.
  C
     17 TTRP=89.899 $ TCRT=305.33 $ TZ=80 $ DT=5 $ NZ=46
                     1.35114E-6 $ DCRT=6.87 $ DZ=6.84 $ EZ=0.340
     18 DTRP=
     19 ZN = TCRT/TTRP-1 $ YN = LOGF(DCRT/DTRP)
       READ OUR ID(1) DATA MIXED WITH DOUSLIN.
  С
       INCREASE OUR DEN BY 0.15 PCT TO AGREE WITH DOUSLIN.
  С
     20 DO 27 J=1,200 $ IF(IG-4) 22,21
     21 READ 1, ID(J), T(J), DEN(J) $ IF(ID(J)) 23,28
     22 READ 6, ID(J),T(J),DEN(J) $ IF(ID(J)) 25,28
     23 IF(ID(J)-1) 25,24
     24 CONTINUE
     25 U(J) = Z = (TCRT/T(J)-1)/ZN  Q = CUBERTF(Z) $ D0 26 K=2,7
     26 G(J,K) = Q^{+*}K  S G(J,1) = 1
     27 W(J) = LOGF(DCRT/DEN(J))/YN
```

	NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY LABORATORY NOTE	PROJECT NO. 2750364	FILE NO.	PAGE
SUBJECT	The Orthobaric Densities of Ethane, Methane, Oxygen and Fluorine	NAME R.D.	.Goodwin	L
		Sept	18 197	3
	VAPORFIT	10/	10/73	
С	28 NP = J+1 \$ AL = NF = 5 \$ E = 0.360 EXPLORE DCRT, AND EXPONENT E. 33 SSK = 1.0E+010 34 DO 48 IE=1,21 \$ E = EZ + 0.002*IE			
C	SET UP THE ARRAYS FOR LEAST SQUARES. 36 DO 39 J=1, NP \$ Z = U(J) \$ ZQ(J) = ZE = Z* 37 Y(J) = $(W(J)-Z)/(ZE+Z)$	+*E		
С	39 CONTINUE \$ CALL EGENFT \$ SS = 0 NOW GET THE RMS DEVIATION. 40 DO 44 J=1,NP \$ YC = 0 \$ DO 41 K=1,NF 41 YC = YC + H(K)*G(J,K)			
	42 Z = U(J) \$ YS = Z + (ZQ(J)-Z)*YC 43 DC = DGRT*EXPF(-YN*YS) 44 SS = SS + (DC/DEN(J)-1)**2 \$ SS = 100*SQRTF 45 IF(SS.LT.SSK) 46,48 46 SSK=SS \$ EK=E \$ ALK=AL \$ DK=DCRT \$ DO 47 K= 47 A(K) = H(K) 48 CONTINUE			
С	<pre>49 E=EK \$ AL=ALK \$ DCRT=DK \$ YN = LOGF(DK/DTRF USE SAVED CONSTANTS FOR DEVIATIONS. 50 PRINT 4, E,TCRT,TTRP,DCRT,DTRP,(A(K),K=1,8) 51 D0 59 J=1,NP \$ Z = U(J) \$ ZE = Z**E \$ Z 52 YC = 0 \$ D0 53 K=1,NF 53 YC = YC + A(K)*G(J,K)</pre>	\$ SS =		
	54 YS = Z + ZEZ*YC \$ DC = DCRT*EXPF(-YN*YS) 55 YX = (W(J)-Z)/ZEZ \$ YD = YX - YC 56 PCT = 100*(DEN(J)/DC-1) \$ SS = SS + PCT**2 57 IF(IG.EQ.3.AND.J.EQ.48) 58,59 58 PRINT 61 59 OSINT 5 IS(1) DCN(1) DC DCL 7 YX YC YC	(D		
С	<pre>59 PRINT 5, ID(J),T(J),DEN(J), DC,PCT, Z,YX,YC,Y 60 SS = SQRTF(SS/NP) \$ PRINT 9, NP, SS PRINT UNIFORM TABLE FOR PUBLICATION. 71 PRINT 7 \$ DO 80 J=1,NZ \$ IF(J-1) 73,72 72 TT = TTRP \$ GO TO 76 73 IF(J-NZ) 75,74</pre>	U		
	74 TT = TCRT \$ GO TO 76 75 TT = TZ + DT*J 76 R = DENGASF(TT) 80 PRINT 8, TT,R, DRDT, D2RDT2 81 CONTINUE \$ PRINT 61			
С	DO OTHER ETHANE DATA WITH EXISTING COEFFICIENT 82 DO 88 J=1,99 \$ READ 6, IDD,TT,DN \$ IF(IDD 83 Z = (TCRT/TT-1)/ZN \$ ZE = Z**E \$ ZEZ = ZE 84 Q = CUBERTF(Z) \$ YC = A(1) \$ DO 85 K=2,NF 85 YC = YC + A(K)*Q**K)) 83,99 E - Z		
	86 YY = LOGF(DCRT/DN)/YN \$ YX = (YY-Z)/ZEZ \$ 87 DC = DCRT*EXPF(-YN*(Z+ZEZ*YC)) \$ PCT = 100* 88 PRINT 5, IDD,TT,DN, DC,PCT, Z,YX,YC,YD 99 STOP \$ FND			

	NATIONAL BUREAU OF STANDARDS, CRYOGENIC ENGINEERING LABORATORY	2750364 73-5 32
SUBJECT	The Orthobaric Densities of Ethane, Methane, Oxygen and	NAME R.D.Goodwin
	Fluorine	DATE Sept. 18. 1973
		10/10/73
000	<pre>FUNCTION DENLIQF(T) ETHANE SATURATED LIQUID DENSITIES, MOL/L. Y = A1 + A2*Q2 + A3*Q3 + , YN = DTRP-DCR DEN = DCRT + YN*(X + (XE-X)*Y). COMMON E,AZ,TTRP,TCRT,DTRP,DCRT, DRDT,D2RDT2, 1 FORMAT(1H0 9X *DENLIQF = 0, T EXCEEDS TCRT. * 2 IF(TCRT-T) 3,4,5 3 PRINT 1 \$ STOP 4 DENLIQF=DCRT \$ DRDT=D2RDT2=0 \$ RETURN 5 XN=TCRT-TTRP \$ YN=DTRP-DCRT \$ X=(TCRT-T)/XN \$ 6 XE = X**E \$ XE1 = E*XE/X \$ XE2 = (E-1)*XE1 7 W = CUBERTF(X) \$ W1 = W/3/X \$ W2 = -2*W1/3 8 Q = XE-X \$ Q1 = XE1 - 1 \$ Q2 = XE2 9 NF = AZ \$ Y = A(1) \$ Y1 = Y2 = 0 \$ D0 11 10 Y = Y + A(K)*W**K \$ Y1 = Y1 + K*A(K)*W**(K-1) 11 Y2 = Y2 + K*(K-1)*A(K)*W**(K-2) 12 Y2 = Y1*W2 + Y2*W1**2 \$ Y1 = Y1*W1 13 DENLIQF = DCRT + (X + Q*Y)*YN 14 DRDT = (1 + Q*Y1 + Q1*Y)*YN*DXDT 15 D2RDT2 = (Q*Y2 + 2*Q1*Y1 + Q2*Y)*YN*DXDT**2 \$</pre>	A(6) /) DXDT=-1/XN /X /X K=2,NF)
		10/10/73
0000	<pre>FUNCTION DENGASF(T) ETHANE SATURATED VAPOR DENSITIES, MOL/L. Y = A1 + A2*Q2 + A3*Q3 +, NF = AL, YN = U = Z + (ZE-Z)*Y, DEN = DCRT*EXP(-YN*U). NOTE THAT Z = 0 ONLY AT T = TCRT, WHICH IS EXCL COMMON E,AL, TTRP,TCRT, DTRP,DCRT, DRDT,D2RDT2 1 FORMAT(1HG 9X *DENGASF = 0, T EXCEEDS TCRT. * 2 IF(TCRT-T) 3,4,5 3 PRINT 1 \$ STOP 4 DENGASF = DCRT \$ DRDT = D2RDT2 = 0 \$ RETUR 5 ZN=TCRT/TTRP-1 \$ YN=LOGF(DCRT/DTRP) \$ Z=(TC 6 DZDT = -TCRT/ZN/T**2 \$ D2ZDT2 = -2*DZDT/T</pre>	UDED. 2, A(9) /)
	7 ZE = Z**E \$ ZE1 = E*ZE/Z \$ ZE2 = $(E-1)*ZE1$ 8 X = ZE-Z \$ X1 = ZE1 = 1 \$ X2 = ZE2 9 Q = CUBERTF(Z) \$ Q1 = Q/3/Z \$ Q2 = $-2*Q1/3$ 10 NF = AL \$ Y = A(1) \$ Y1 = Y2 = 0 \$ D0 13 11 Y = Y + A(K)*Q**K 12 Y1 = Y1 + K*A(K)*Q**(K-1) 13 Y2 = Y2 + K*(K-1)*A(K)*Q**(K-2) 14 Y2 = Y1*Q2 + Y2*Q1**2 \$ Y1 = Y1*Q1 15 U = Z + X*Y \$ UA = 1 + X*Y1 + X1*Y \$ U1 = 16 U2 = UA*D2ZDT2 + (X*Y2 + 2*X1*Y1 + X2*Y)*DZDT*	3/Z 3 K=2,NF UA*DZDT **2
	7 ZE = Z**E \$ ZE1 = E*ZE/Z \$ ZE2 = $(E-1)*ZE1$ 8 X = ZE-Z \$ X1 = ZE1 = 1 \$ X2 = ZE2 9 Q = CUBERTF(Z) \$ Q1 = Q/3/Z \$ Q2 = $-2*Q1/3$ 10 NF = AL \$ Y = A(1) \$ Y1 = Y2 = 0 \$ D0 13 11 Y = Y + A(K)*Q**K 12 Y1 = Y1 + K*A(K)*Q**(K-1) 13 Y2 = Y2 + K*(K-1)*A(K)*Q**(K-2) 14 Y2 = Y1*Q2 + Y2*Q1**2 \$ Y1 = Y1*Q1 15 U = Z + X*Y \$ UA = 1 + X*Y1 + X1*Y \$ U1 =	3/Z 3 K=2,NF UA*DZDT **2 YU = -YN*U1

APPENDIX M

Cryogenics Division-NBS Institute for Basic Standards LABORATORY NOTE	cost center 2750364	FILE NO 73-6	PAGE
SUBJECT Liquid-Vapor Saturation (Orthobaric) Temperatures of	NAME R.D. C	oodwin	
Ethane and Methane	DATE Nov. 28	, 1973	

1. Introduction.

The present, new investigation has been necessary to accommodate the extreme range of ethane saturated vapor densities (a factor of 10^7). Our previous work on ethane appears in Lab. Notes 73-2,3,4,5.

Analytical description of the two-phase, liquid-vapor equilibrium (temperature-density relationship) is needed for our new equation of state which originates on this locus (NBS IR 73-342). In particular, the forms used below give the important property that all derivatives are zero at the critical point.

In the following we split the range, using different functions according $\rho \notin \rho_c$. In each case the dependent variable is

$$Y(T) = (T_c / T - 1) / (T_c / T_t - 1)$$
(1)

The symbols used here appear in a LIST.

2. The Saturated Vapor Temperatures.

The analytical formulation is

$$Y(T) = U(\sigma) \cdot \left[1 + A_{\sigma} \cdot \ell n \left(\sigma / \sigma_{g}\right) + W(\sigma)\right]$$
(2)

where

$$\mathbf{U}(\sigma) \equiv \exp[\alpha \cdot (\mathbf{u}_{g} - \mathbf{u})], \qquad (2-a)$$

and

$$W(\sigma) = \sum_{i=1}^{\infty} A_i \cdot (q^i - q_g^i).$$
 (2-b)

The notation is $q = \sigma^{1/3}$, $q_g = \sigma_g^{1/3}$, and $u_g = 1/|\sigma_g - 1|$.

This equation is constrained at the vapor triple point.

Fixed-point constants are given by table 1, and coefficients by table 2. The comparisons of results for ethane and for methane are in tables 3,5. Deviations necessarily are systematic because the "data" are smoothed analytically (Lab. Note 73-5). We believe all deviations to be well within the real accuracy of the data.

3. The Saturated Liquid Temperatures.

n

The analytical formulation is

$$ln(Y) = \beta \cdot (u_t - u) + W(\sigma)$$
(3)

where

$$W(\sigma) \xrightarrow{\stackrel{\frown}{i=1}} B_i \cdot (x^i - x^i_t).$$

(3-a)

SUBJECT		and the second s		2		
Liquid-V	Vapor Saturation (Orthobaric) Temperatures of	NAME R.D. Goodwin				
Ethane a	and Methane	DATE NOV. 28	, 1973			
The nota	ation is $x_t \equiv \sigma_t - 1 $, $u_t \equiv 1/x_t$.					
This equ	nation is constrained at the liquid triple point.					
Compute	The comparisons of results for ethane and for mether programs are attached.	hane are in ta	ables 4,6	•		
	LIST OF SYMBOLS					
d,	density, mol/l, DEN					
d _c ,	critical-point density, DCRT					
d _g ,	vapor triple-point density, DGAT					
d _t ,	liquid triple-point density, DTRP					
q,	$\sigma^{1/3}, q_g \equiv \sigma_g^{1/3}$					
ρ,	d/d_t , density reduced at liquid triple point					
σ,	$d/d_{\circ},$ density reduced at the critical point					
σ _g ,	$d_{g} \; / d_{c} \; , \; reduced \; triple-point \; vapor \; density$					
σ _t ,	d_t / d_c , reduced triple-point liquid density					
т,	$T_s(\rho)$, the saturation temperature					
Тс,	critical-point temperature, TCRT					
Τ _t ,	triple-point temperature, TTRP					
u,	$1/x$, $u_g \equiv 1/x_g$, $u_t \equiv 1/x_t$					
x,	$ \sigma - 1 $, $\mathbf{x}_{g} \equiv \sigma_{g} - 1 $, $\mathbf{x}_{t} \equiv \sigma_{t} - 1 $					
	Table 1. The fixed-point constants					
	Ethane	Metha	ne			
T _t , K	89.899	90.68	30			
T., K d., mol,	305.330	190.55				
d _e , mol, d _t , liqui		10.20 28.14				
d _g , vapo		1.567 86				

	C	ryogenics Division-NBS Institute for Basic Standards	COST CENTER FILE NO PI 2750364 73-6
UBJECT			
Liquid-V		turation (Orthobaric) Temperatures of	R.D. Goodwin
Ethane a	nd Meth	lane	UATE Nov. 28, 1973
		Table 2. Coefficients for the equation	ons
		Ethane	Methane
Vapor	α	3/2	1/2
	Ao	-0.0610 6983	-0.1596 5159
	A ₁	-0.5510 7806	-0.6669 5380
	A_2	1.8906 0757	1.0242 2995
	A ₃	-4.8476 0684	-0.5885 7993
	A_4	8.5887 8625	0.2042 8358
	A_5	-8.3103 1296	-
	A ₆	3.3001 3887	-
rms,%	d	0.111	0.043
	Т	0.009	0.004
Liquid	в	1/3	1/3
	B	9.1071 7170	8.5837 7917
	B_{2}	-7.9603 9387	-7.0525 4699
	B_3	4.8472 6284	4.1610 2443
	B_4	-1.5919 0104	-1.3691 9291
	B_{S}	0.2253 7899	0.2067 1342
rms,%	d	0.004	0.006
	Т	0.016	0.006

	Cryogenics Division-NBS Institute for Basic Standards LABORATORY NOTE						2	COST CENTER 7 50364	FILE NO 73-6	PAGE 4
SUBJERS				<i>a</i>	. 1	_		AMER. D. G	oodwin	
	Fable	e 3.	Ethane	Satura	ited Vapor 7	Temperature	s 0	ATE	1973	
		-						INOV. 28	1975	
•	NF =	7	7, AL =	1.50), PE = 0	.000, DGAT	= 1.351	14-005		
	TTRP	=	89 . 399,	TCRT	= 305.330	, DTRP = 2	1.680, DC	RT = 6.87	0	
	-0.	061	105983	- 0 .	55107806	1.890	60757	-4.8476(1654	
	8.	588	378625	-8,	31031296	3.300	13887	0.00000	1000	
	Ĵ.	U C (00000	С,	000000000	0.000	00000	0.0000	000	
	OL/L			CALC	PCNT	Т,К				DTS/D
1.35114.			1.3511		0.00	89.899	89.89			915+00
1.38531.			1.3861		-0.01	90.000	90.00			848+00
4.59443.			4.5813		-0.28	95.000	95.01			651+00
1.33551.			1.3312		-0.32	106.009	100.01			714+00
3.46826.			3.4606		-0.22	105.000	135.61			594+00
8.16950.			8.1645		-0.ŭ6	110.000	110.00			518+00
1.76844.			1.7698		0.08	115.000	114.99			346+00
3.55631			3.5629		0.17	120.000	119.98			111+00
6.70908.			6.7225		0.20	125.000	124.98			231+00
1.19634.			1.1984		0.18	130.000	129.98			567+00
2.03041.			2.0327		0.12	135.000	134.96			370+00
3.29903.			3,3902		0.04	140.000	139.99			262+00
5.15754 7.79177			5.1556 7.7344		-0.64 -0.09	145.000	145.00			263+00 619+00
1.14133-			1.1494		-0.13	150.000 155.000	150.01 155.01			191+00
1.62342	-		1.6262		-0.13	160.000	160.01			969+00
2.26660			2.2640		-0.11	165.000	165.01			903+00
3.08536.			3.0844		-0.08	170.000	176.01			415+00
4.12247			4.1211		-0.93	175.000	175.00			322+00
5.40339			5.4101		0.01	180.000	179.99			502+00
5.98623			6.9900		0.05	185.000	184.98			377+00
8.89439			8.9017		0.08	190.000	189.98			392+00
1.11782			1.1188		0.10	195.000	194.97			00+900
1.38350			1.3897		0.09	200.000	199.97			704+00
1.70652.			1.7078		0.97	205.000	204.98			457+00
2.37770.			2.0786		0.04	210.000	239.98			253+00
2.56780.			2.5080		0.01	215.000	214.99	7 -0.0	0 1.	385+00
3.00359			3.0028		-0.03	220.000	220.00	7 0.0)) 9.	434+00
3.57253	-001		3.5705	0-001	-0.06	225.000	225.01	7 0.0	9.	234+00
4.22301.	-001		4.2197	7-201	-0.08	230.000	230.02	3 0.0)1 7.	208+00
4.96469	-031		4.9606	1-001	-0.08	235.000	235.02	6 0.0)1 6.	322+00
5.80977	-061		5.3046	0-001	-0.07	240.000	240.02	3 6.0)1 5.	553+00
6.76852			6.7654	1-001	-0.05	245.000	245.01			379+00
7.85990			7.8592		-0.01	250.000	250.00			286+00
9.10251			9.1355		0.03	255.000	254.98			760+00
1.35210			1.0528		0.07	260.000	259.97			291+00
1.21471			1.2157		0.09	265.000	264.96			867+00
1.40231			1.4034		0.08	270.000	269.97			482+00.
1.62373			1.6213		0.64	275.000	274.98			124+00
1.87345			1.8777		-0.04	280.000	280.01			788+00
2.18360			2.1861		-0.11	285.000	285.03			463+00
2.57357			2.5708		-0.11	230.000	290.03			146+00
3.07773			3.0301		0.08	295.000	294.98			351+00
3.81303	+000		3.8216	00+000	0.10	300.000	299.98	0 -0.0	17 2.	426+00

NP = 44, DNRMSPCT = 0.111, TSRMSPCT = 0.009

	10	DST CENTER 750364	FILE NO	PAGE 5			
SUBJECT Liquid-	SUBJECT Liquid-Vapor Saturation (Orthobaric) Temperatures of						
Ethane an	d Methane			DAT	^E R. D. G ^E Nov. 28		
	Table 4. Ethane	anatumas					
	Table 4. Ethane	e baturateu l	Liquid Temp	eratures			
NF =	5_{y} AL = 0.000	, BE = 0.	333, NGAT =	1.3511	4-006		
TTRP =	= 89.899, TCRT :	= 305.330,	DTRP = 21.	680, DCF	RT = 6.8	70	
		96039387	4.84726		-1.5919		
		000000000000000000000000000000000000000	0.00000		0.0000		
U • U (JUUUUUU U+	00010000	0.00000	1000	0.0000	0000	
MOL/L	CALC	PCNT	Т,К	CALC			OT S/00
2.15800+001	2.16800+001	0.00	89.899	89.899			753+001
2.16764+001 2.14963+001	2.16763+001 2.14951+001	-0.00 -0.01	90.000 95.000	89.999 94.967			753+001 764+001
2.13162+001	2.13145+001	-0.01	100.000	99.952			771+001
2.11359+001	2.11341+001	-0.01	105.000	104.951			773+001
2.09553+001	2.09538+001	-0.01	110.000	109.958			771+001
2.07743+001	2.07732+001	-0.01	115.000	114.969			766+001
2.05928+001	2.05921+001	-0.00	120.000	119.983	3 -0.	01 -2.	758+001
2.04106+001	2.04105+001	-0.00	125.000	124.997			746+001
2.02276+001	2.02260+001	0.00	130.000	130.010			733+001
2.00438+001	2.00445+001	0.00	135.000	135.020			717+001
1.98538+001 1.96727+031	1.98598+001	10.01	140.000	140.027			698+001
1.94852+001	1.96739+001 1.94864+001	0.01 0.01	145.000 150.000	145.031			678+001 655+001
1.92961+001	1.92972+001	0.01	155.000	155.031			631+001
1.91052+001	1.91062+001	0.01	160.000	160.027			604+001
1.89123+001	1.89132+001	0.00	165.000	165.021			575+001
1.87173+001	1.37178+001	0.00	170.000	170.014	· 0.	01 -2.	544+001
1.85198+001	1.85201+001	0.00	175.000	175.006			511+001
1.83196+001	1.33195+001	-0.00	180.000	179.999			476+001
1.81164+001	1.81160+001	-0.00	185.000	184.992			438+001
1.79098+001	1.79392+001 1.76937+001	-0.00	190.000	189.986			397+001
1.76996+001 1.74852+001	1.74843+001	-0.00 -0.01	195.000 200.000	194.981			354+001 308+001
1.72664+001	1.72653+001	-0.01	205.000	204.977			260+001
1.70425+001	1.70415+001	-0.01	210.000	209.978			208+001
1.68130+001	1.68121+001	-0.01	215.000	214.981			153+001
1.65774+001	1.65767+001	-0.00	220.000	219.985			094+001
1.63348+001	1.63344+001	-0.00	225.000	224.99(033+001
1.60845+001	1.60843+001	-0.00	230.000	229.996			967+00:
1.58255+091	1.58256+001	0.00	235.000	235.002			898+001
1.55567+001 1.52767+001	1.59571+J01 1.52773+001	0.00	240.000 245.000	240.007 245.011			825+001 749+001
1.49838+001	1.49846+001	0.01	250.000	250.013			668+001
1.46761+001	1.46770+001	0.01	255.000	255.014			582+001
1.43511+001	1.43518+001	0.01	260.000	260.012			493+001
1.40054+001	1.40059+001	0.00	265.000	265.008		00 -1.	398+001
1.36348+001	1.36350+001	0.00	270.000	270.002			298+001
1.32333+001	1.32331+001	-0.00	275.000	274.997			191+001
1.27923+001	1.27917+001	-0.00	280.000	279.994			076+001
1.22985+001 1.17293+001	1.22978+001	-0.01	285.000	284.993			500+000
1.10398+001	1.17290+001 1.10403+001	-0.00 C.00	290.000 295.000	289.997			090+000 441+000
1.01117+001	1.01117+001	0.00	300.000	300.000			358+000
		0000					

NP = 44, DNRMSPCT = 0.004, TSRMSPCT = 0.016

6

Table 5. Methane Saturated Vapor Temperatures

NF =	5, AL =	0.500.8	3E = 0.000,	DGAT =	1.56787-002
------	---------	---------	-------------	--------	-------------

TTPP = 90.680, TCRT = 190.555, DTRP = 28.147, DCRT = 10.200

• • •	2 2 0 2 3 0 0 y 1	0.1 1 90 0			2114 0.511	1001100	
-0.1	15965159	-0.666953	80	1.02422	995	0.58857933	
	2 94 28 35 5	0.000000		0.00000		0.00000000	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000000		0.00000		0.00000000	
		0.00000000	00	000000	00,	0.00000000	
MOL/L	C.	ALC PO	NT	T.K	CALC	PCNT	DTS/DD
1.56786-002	1.56786-		00	90.680	90.630	0.00	5.391+002
1.82791-002	1.82830-		02	92.000	91.938	-0.00	4.775+002
2.28579-002	2.28663-		04	94.000	93.976	-0.00	4.005+002
2.82943-002	2.83066-		04	96.000	95.935	-0.00	3.390+002
3.46926-002	3.47964-		94	98.000	97.936	-0.00	2.893+002
4.21625-002	4.21756-			100.000	99.937	-0.00	2.488+002
5.08186-002	5.08288-			102.000	101.9.98	-0.00	2.154+002
5.07803-002	6.07855-	002 0.	01	104.000	103.939	-0.00	1.878+002
7.21719-002	7.21702-			106.000	196.030	0.06	1.647+002
8.51224-002	9.51123-			108.000	108.001	0.00	1.453+002
9.97658-002	9.97466-			110.000	110.092	0.00	1.288+002
1.15241-001	1.16213-			112.000	112.003	0.00	1.147+002
1.34692-001	1.34655-			114.000	114.034	0.00	1.026+002
1.55269-001	1.55225-			116.000	115.074	0.00	9.221+001
1.78128-001	1.78080-	001 -0.		115.000	119.094	0.00	8,314+001
2.03431-001	2.93383-			120.000	120.014	0.00	7.522+001
2.31346-001	2.31304-	001 -0.	02	122.000	122.003	0.00	6.827+001
2.62058-001	2.62022-	001 -0.	01	124.000	124.032	0.00	6.215+001
2.95748-001	2.95725-	001 -0.	01	126.000	126.091	0.00	5.672+001
3.32616-001	3.32611-	001 -0.	0.0	128.000	128.090	0.00	5.189+001
3.72870-001	3.72889-	001 0.	01	130.000	129.939	-0.00	4.757+001
4.16733-001	4.16780-	001 0.	01	132.000	131.938	-0.00	4.370+001
4.64444-901	4.64528-	001 0.	02	134.000	133.997	-0 • 0 0	4.021+001
5.16255-001	5.16362-	001 0.	92	136.000	135.996	- 0.00	3.706+001
5.72441-001	5.72575-			138.000	1 37 .9 35	-0.00	3.420+001
6.33297-001	б.33452-			140.000	139.935	-0.00	3.159+001
5.99144-001	6.99331-			142.000	141.935	-0.00	2.921+001
7.70334-001	7.71534-			144.000	143.995	-0.00	2.704+001
8.47251-001	0.47451-			146.000	145.935	-00	2.503+001
3.30320-001	9.30504-			143.000	147.936	-0.00	2.319+001
1.02001+000	1.02016+			150.000	149.997	-0.00	2.148+001
1.11635+000	1.11694+			152.000	151.978	-0.00	1.989+001
1.22143+000	1.22144+			154.000	154.000	-0.00	1.842+001
1.33441+000	1.33433+			156.000	156.001	0.00	1.705+001
1.45556+000	1.45636+			158.000	158.093	0.00	1.576+001
1.58877+000	1.58843+			160.000	150.075	0.00	1.455+001
1.73204+000	1.73156+			162.000	152.037	0.00	1.341+001
1.83759+000	1.03697+			164.000	154.038	9.00	1.234+001
2.95685+000	2.05610+			156.000	166.098	0.01	1.132+001
2.24155+308	2.24073+			168.000	168.095	0.01	1.036+001
2.44381+000	2.44300+			170.000	170.038	0.00	9.433+000
2.56631+900	2.66564+ 2.91214+			172.000	172.035	0.00	8.548+000 7.696+000
3.19691+000	3.19711+			174.000 176.000	174.003	-0.00	6.671+000
3.49581+000	3.49685+			178.000	175.939	-0.00	6.066+000
3.84823+000	3.49001+				177.934	-	
				180.000	179.939		5.275+000
4.74367+000	4.26143+			182.000 184.000	181.935	-0.01	4.488+000
5.36526+000	5.36670+			184.000 186.000	185.035		3.690+000
5.35526+000	6.20573+			188.000	185.935	-0.00 0.01	2.858+000 1.935+000
	Cecuptor	-06	20	T000000	1000010	0 O T	T • 22 2 400 0

	Table 6. Methan	e Saturated	Liquid Temp	eratures	r He	NO. 75-0 7
	-					*
NF =	5, $AL = 0.000$,	8Ë = 0.	333, DGAT =	1.56787-	002	
TTPP	= 90.680, TCRT =	190.555.	NTPP = 28.	147. DORT	-10.200	
TIKE	- 50.0009 1011 -	T 20 0 2 2 2 9	DIKF - 206	14/9 DOKI	-10.200	
8.5	3377917 -7.0	5254599	4.16102	443 -1	.3691929	1
0.2	0671342 0.0	0000000	0.00000	000 0	.0000000	0
MOL/L	CALC	PONT	T,K	CALC	PCNT	DTS/DD
2.81470+001	2.81470+001	0.00	90.680	90.630	0.00	-1.208+001
2.80378+001	2.80375+001	-0.00	92.000	91.936	-0.00	-1.203+001
2.78714+001	2.78705+001	-0.00	94.000	93.931	-0.01	-1.194+001
2.77036+001	2.77025+001	-0.00	96.000	95.935	-0.01	-1.186+001
2.75344+001	2.75332+001	-0.00	95.000	97.936	-0.01	-1.176+001
2.73638+001	2.73625+001	-0.00	100.000	99.935	=0.01.	-1.167+001
2.71916+001 2.70179+001	2•71904+001 2•70167+001	-0.00 -0.00	102.000	101.936	-0.01	-1.157+001
2.68425+001	2.68415+001	-0.00	104.000 106.000	105.938	-0.01 -0.01	-1.147+001 -1.136+001
2.66654+001	2.66645+001	-0.00	108.000	107.990	-0.01	-1.125+001
2.64865+001	2.64857+001	-0.00	110.000	109.932	-0.01	-1.113+001
2.63056+001	2.63051+001	-0.00	112.000	111.934	-0.01	-1.101+001
2.61228+001	2.61224+001	-0.00	114.000	113.936	-0.00	-1.089+001
2.59379+001	2.59377+001	-0.00	116.000	115.938	-0.00	-1.076+001
2.57507+001	2.57507+001	0.00	118.000	118.090	0.00	-1.063+001
2.55612+001	2.55615+001	0.00	120.000	120.002	0.00	-1.050+001
2.53693+001 2.51749+001	2.53697+001 2.51754+001	0.00 0.00	122.000 124.000	122.0)4 124.006	0.00	-1.036+001 -1.022+001
2.49777+801	2.49784+001	0.00	126.000	125.007	0.01	-1.008+001
2.47776+001	2.47784+001	0.00	128.000	128.005	0.01	-9.928+000
2.45745+001	2.45754+001	0.00	130.000	130.009	0.01	-9.775+000
2.43582+001	2.43692+001	0.00	132.000	132.009	0.01	-9.618+000
2.41535+001	2.41595+001	0.00	134.000	134.009	0.01	-9.457+000
2.39452+001	2.39462+001	0.00	136.000	136.009	0.01	-9.292+000
2.37230+001	2.37290+001	0.00	138.000	138.009	0.01	-9.122+000
2.35067+001 2.32810+001	2.35076+001 2.32818+001	0.00	140.000 142.000	140.008 142.007	0.01 0.01	-8.948+000 -8.768+000
2.30506+001	2.30513+001	0.00	144.000	144.005	0.00	-8.584+000
2.28152+001	2.28158+001	0.00	146.000	146.035	0.00	-8.395+000
2.25744+001	2.25748+001	0.00	148.000	148.003	0.00	-8.200+000
2.23276+001	2.23278+001	0.00	150.000	150.002	0.00	-7.999+000
2.20746+001	2.20745+001	-0.00	152.090	152.000	-0.00	-7.793+000
2.18146+001	2.18143+001	-0.00	154.000	153.938	-0.00	-7.579+000
2•15471+001 2•12713+001	2.15466+001 2.12705+001	-0.00 -0.00	156.000 158.000	155.936 157.935	-0.00 -0.00	-7.359+000 -7.132+000
2.09863+001	2.09853+001	-0.00	160.000	159.933	-0.00	-6.896+000
2.06912+001	2.06901+001	-0.01	162.000	161.932	-0.00	-6.652+000
2.03849+001	2.03835+001	-0.01	164.000	163.931	-0.01	-6.399+000
2.00658+001	2.00643+001	-0.01	165.000	165.931	-0.01	-6.135+000
1.97322+001	1.97307+001	-0.01	168.000	167.932	-0.00	-5.859+000
1.93820+001	1.93807+001	-0.11	170.000	169.933	-0.00	-5.570+000
1.90125+001			172.000	171.934	-0.00 -0.00	-5.265+000 -4.943+000
1.86204+001 1.82004+001	1.86195+001 1.82004+001	-0.00 0.00	174.000 175.000	173.997 176.000	-0.00	-4.600+000
1.77467+001	1.77475+001	0.00	178.000	178.033	0.00	-4.232+000
1.72499+001	1.72516+001	0.01	180.000	180.095	0.00	-3.833+000
1.66958+001	1.66903+001	0.01	182.000	182.038	0.00	-3.394+000
1.60606+001	1.60632+001	0.02	184.000	184.038	0.00	-2.903+000
1.52986+001	1.52997+001	0.01	186.000	186.003	0.00	-2.338+000
1.42978+001 1.25270+001	1.42937+001	-0.03	188.000	187.933	-0.00 0.00	-1.652+000 -6.700-001
TOCACI 0.4001	1.25276+001	0.00	190.000	190.000	0.00	-0.100-001

	Cryogenics Division-NBS Institute for Basic Standards LABORATORY .NOTE	COST CENTER 2750364	FILE NO. 73-6	page 8
SUBJEC	Liquid-Vapor Saturation (Orthobaric) Temperatures	NAME R. D. G	oodwin	
0	f Ethane and Methane	DATE Nov. 28		
С	Appendix I. The Computer Programs PROGPAM TSATFIT DESCRIBE ETHANE SATN. TEMPS., TSAT(DEN).	11/2		
с с с	DEFINE R=D/DTRP, S=D/DCRT, ST=DTRP/DCRT, AND YY(TSAT) = (TCRT/T-1)/(TCFT/TTRP-1), AND -			
	COMMON NG,AL,BE,TTRP,TCRI, DGAT,DTRP,DCRT, D COMMON/939/NP,NF,H(15),Y(200),G(200,15) DIMENSION T(99),DEN(99),YY(99),F(15) DIMENSION UL(39) 2 FORMAT(1H1 30X *ETHANE SATURATION TEMPERATUR 1 16X4HNF =I3, 6H, AL =F7.3, 6H, BE =F7.3, 8H 1 16X 6HTTRP =F7.3, 8H, TCRT =F8.3, 8H, DTRP	ES* // , DGAT =E1		
	<pre>2 8H, DCRT =F6.3// 3(12X 4F16.8/) / 315X5HMCL/L 11X4HCALC 5X4FPCNT 8X3HT,K 6X4HCA 3 FORMAT(1H1 14X 5HMOL/L 11X4HCALC 5X4HPCNT 3 8X3HT,K 6X4HCALC 5X4HPCNT 6X6HDTS/DD) 4 FORMAT(5X 2E15.5, F9.2, F11.3, F10.3, F9.2, 5 FORMAT(13X 2HNF 13X2HAL 13X2HBE 8X2HSS)</pre>	LC 5X4HPCN	T6X6HDTS	5/00)
С	6 FORMAT(10X I5, 2E15.5, F10.3) 9 FORMAT(1HE 6X 4HNP =13, 12H, DNRMSPCT =F6.3, 11 TTRP=89.899 \$ TCRT=305.33 \$ YN = TCRT/TTRP-1 12 DTRP=21.68 \$ DCRT=6.87 \$ DGAT=1.35114E-6 13 ST=DGAT/DCRT \$ VT=1/(1-ST) \$ QT=CUBERTF(ST)		SPCT =F6	5.3)
с с с с с с	SATD. VAPOF TEMPS. CONSTRAINED AT T.P. BY SUB EQUATION, YY = U(S)*(1+W(S)), U = EXP(AL*(V = 1/ABS(S-1), $0 = S**(1/3)$, AND - H = A1*LN(S/ST) + A2*(Q-QT) + A3*(Q2-QT2) + . GENERATE THE SATD. VAPOR CATA. 25 DO 29 J=1,44 \$ IF(J-1) 27,26 26 T(J) = TTRP \$ GO TO 28 27 T(J) = $\delta U + 5*J$ 20 DEN(J) = $0500055(T(J))$	VT-V)),	-	
с	<pre>28 DEN(J) = DENGASE(T(J)) 29 YY(J) = (TCRT/T(J)-1)/YN</pre>			
	31 DO 69 NF=4,10 \$ NG = NF \$ SSK = 1.9E+100 32 DO 40 J=1,NP \$ S=DEN(J)/DORT \$ Q=CUBERTF(S 33 U = EXPF(AL*(VT-V)) \$ $G(J,1) = U*LOGF(S/ST)$ 35,70 36 K=2,NF \$ N = K-1 36 $G(J,K) = U*(Q**N - QT**N)$ 40 $Y(J) = YY(J) - U$		-5)	
	49 CALL EGENET & DO 50 K=1,NF 50 A(K) = H(K)			
	52 SS = SS + (TC/T(J)-1)**2 \$ SS = 130*SQRTF(53 IF(SS.LT.SSK) 54,56 54 SSK=SS \$ NGK=NG \$ ALK=AL \$ BEK=BE \$ D0 55 55 F(K) = /(K)			
	5F CONTINUE 57 CONTINUE & NG=NGK & AL=ALK & BE=BEK & DC 5 58 A(K) = F(K) & SS = SD = 0	8 K=1,NF		
SP 113	12 A M-9 *	J.S. GOVERNMENT PRINT	NG OFFICE 1973	# 780-339

Cryogenics Division-NBS Institute for Basic Standards LABORATORY NOTE	cost center 2750364	FILE ND 73-6	page 9
SUBJECT Liquid-Vapor Saturation (Orthobaric) Temperatures of	NAME R. D. G		
Ethane and Methane	DATE Nov. 28	8, 1973	
Appendix I. (continued)			
C PRINT CONSTANTS AND DEVIATIONS. 60 PRINT 2, NG,AL,BE,DGAT, TTRP,TCRT,DTRP,DCRT, 61 DO 67 J=1,NP \$ D=DEN(J) \$ X=T(J) \$ DC=	(4(K),K=1 FINDSATF(0	,12) ,X)	
TSATFIT	11/	28/73	
62 DPCT = 100*(DC/D-1) \$ SD = SD + DPCT*DPCT 64 TC = TSATF(D) \$ DTSDD = DTSDK/DTRP 65 TPCT = 100*(TC/X-1) \$ SS = SS + TPCT*TPCT 67 PRINT 4, D,DC,DPCT, X,TC,TPCT, DTSDD 68 SD=SQRTF(SD/NP) \$ SS=SQRTF(SS/NP) \$ PRINT 9 69 CONTINUE \$ AL = 0 C C SATD. LIQUID TEMPS. CONSTFAINED AT THE T.P.			
<pre>C EON., LN(YY) = W(S), WHERE X=ABS(S-1), X W(S) = BE*(1/XT-1/X) + B1*(X=XT) + B2*(X2=XT) C GENERATE LIQUID DATA. 70 D0 74 J=1,44 \$ IF(J=1) 72,71 71 T(J) = TTRP \$ G0 TO 73 72 T(J) = 30 + 5*J 73 DEN(J) = DENLIQF(T(J)) 74 YY(J) = LOGF((TCRT/T(J)-1)/YN)</pre>	T=ABS(ST-1)		
75 NP = 44 \$ NG = NF = 5 \$ XT = DTRP/DCRT C SET UP FIXED LEAST SQUARES FUNCTIONS. 86 DO 85 J=1,NP \$ S = DEN(J)/DCRT \$ X = AB: 81 UL(J) = 1/XT - 1/X \$ DO 82 K=1,NF \$ N = 32 G(J,K) = X**N - XT**N 85 CONTINUE	SF(S-1)		
C FIND NF, BE BY TRIAL. 90 3E = 1.0/3.0 \$ DO 91 J=1,NP 91 Y(J) = YY(J) - BE*UL(J) \$ CALL EGENFT \$ 92 3(K) = H(K) \$ SD = SS = 0	DO 92 K=1	NF	
<pre>C PRINT LIQUID DEVIATIONS. 100 PRINT 2, NG,AL,BE,DGAT, TTRP,TCRT,DTRP,DCRT. 101 00 105 J=1,NP \$ D=DEN(J) \$ X=T(J) \$ D(102 DPCT = 100*(DC/D-1) \$ SD = SD + DPCT**2 103 TC = TSATF(D) \$ DTSDD = DTSDR/DTRP 194 TPCT = 190*(TC/X-1) \$ SS = SS + TPCT**2 105 PRINT 4, D,DC,DPCT, X,TC,TPCT, DTSDD 196 GJ = SORTF(SD/NP) \$ SS = SQRTF(SS/NP) 107 PRINT 9, NP, SD,SS 111 CONTINUE 999 STOP \$ END</pre>			

Cryogenics Division-NBS Institute for Basic Standards LABORATORY NOTE	соят 2750	center 364	FILE NO. 73-6	page 1 0
SUBJECT Liquid-Vapor Saturation (Orthobaric) Tempera	NAME R	. D. Goo	dwin	
of Ethane and Methane	DATE	lov. 28,	1973	
Appendix I. (continued)		11/28/		
FUNCTION TSATF (DEN) COMMON NG, AL, BE, TTRP, TCRT, DGAT, DTRP, 1 1 R=DEN/DTRP \$ S=DEN/DCRT \$ QS = S-1 \$ 1 2 X = ABSF(QS) \$ X1 = DSCR*QS/X \$ 15 3 V = 1/X \$ V1 = $-DSCR/QS/X$ \$ IF(0 C CATD, VAPOR TEMPS, CONSTRAINED AT T.P. C EQUATION, YY = U(S)*(1+W(S)), U = EC C V = 1/ABS(S-1), Q = S**(1/3), AND - C W = A1*LN(S/ST) + A2*(0-QT) + A3*(Q2-QT) 4 ST=DGAT/DCRT \$ VT=1/(1-ST) \$ QT=CUBER 5 U = EXPF(AL*(VT-V)) \$ U1 = $-AL*V1*U$ 6 Q = CUBERTF(S) \$ Q1 = C*DSOR/3/S 7 W = 1 + A(1)*LOGF(S/ST) \$ W1 = A(1)* 8 DO 1D K=2,NG \$ N = K-1 9 W = W + A(K)*(Q**N - QT**N) 10 W1 = W1 + N*A(K)*O1*Q**(N-1) 12 F = U*W \$ F1 = U*W1 + U1*W \$ C = 1 14 TSATF = TCRT/O \$ DTSDR = $-YN*F1*TSA$ C $ATD, LIQUID TEMPS, CONSTRAINED AT THE C M(S) = BE*(1/XT-1/X) + B1*(X-XT) + B2*(1/XT-V) $ W1 17 DO 19 K=1,NG $ N = K 18 W = W + B(K)*(X**N - XT**N) 19 W1 = W1 + B(K)*(X**N - XT**N) 19 W1 = TCRT/Q $ DTSDR = -YN*F1*TSA30 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA31 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA32 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA34 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA35 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA36 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA37 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA30 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA31 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA34 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA35 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA36 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA37 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA36 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA37 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA34 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA35 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA35 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA36 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA37 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA37 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA39 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA30 TSATF = TCRT/Q $ DTSDR = -YN*F1*TSA$	DSDR=DTRP/DC N = TCRT/TTR QS) 4,30,15 BY SUBTRACT KP(AL*(VT-V) T2) + • • • TF(ST) *DSDR/S 1 + YN*F TF/Q \$ F T.P. BY SUE 1), XT=ABS((X2-XT2) + • 1 = -BE*V1	RT \$ IF RP - 1 ION -), TRACTIC ST-1),	(QS) 2	2,30
FUNCTION DENGASE(T) C ETHANE SATURATED VAPOR DENSITIES, MOL/ C Y = A1 + A2*Q2 + A3*Q3 + , NF = A C U = Z + (ZE-Z)*Y, DEN = DCRT*EXP(-YN DIMENSION A(5) DATA (TTRP=39.899), (TCRT=305.33), (E=C DATA (DCRT=6.37), (DTRP=1.35114E+6) DATA (DCRT=6.37), (DTRP=1.35114E+6) DATA (DCRT=6.37), (DTRP=1.35114E+6) DATA (A = G.19277431, 0.041550C9, -0.7 1 0.35746750, 0.12454376) 1 FORMAT(1HG 9X *DENGASE = C, T EXCEEDS 2 IF (TCRT-T) 3,4,5 3 PRINT 1 \$ STOP 4 DENGASE = DCRT \$ DEDT = D2RDT2 = 0 5 ZN=TCRT/TTRP-1 \$ YN=LO(F(DCRT/DTRP) 6 DZDT = -TCPT/ZN/1/T \$ ZE = Z**E \$ 8 X = ZE-Z \$ X1 = ZE1-1 \$ Q = CUBER 1(Y = A(1) \$ Y1 = 0 \$ CO 13 K=2,5 11 Y = Y + A(K)*Q**K 12 Y1 = Y1 + K*A(K)*Q**(K-1) 13 CONTINUE \$ Y1 = Y1*Q1 15 U = Z + Y*Y \$ UA = 1 + X*Y1 + X1*Y 16 XP = EXPF(-YN*U) \$ DENCASE = F = DC 17 2RDT = -YN*U1*F \$ FETURN \$	<pre>NL, YN = LN (*U). 28922629, 5 TCRT. * / 8 RETURN 8 Z=(TCRT ZE1 = E*ZE RTF(Z) \$ Q \$ U1 = U4</pre>) /T-1)/Z /Z 1 = Q/3	N	

```
Cryogenics Division-NBS Institute for Basic Standards
                                                         COST CENTER
                                                                   FILE NO.
                                                                          PAGE
                   LABORATORY NOTE
                                                       2750364
                                                                   73-6
                                                                           11
SUBJECT Liquid-Vapor Saturation (Orthobaric) Temperatures
                                                       NAME R.D. Goodwin
                                                       DATE Nov. 28, 1973
 of Ethane and Methane
                                                              11/23/73
                      Appendix I. (continued)
        FUNCTION FINDSATE (M,T)
  С
       THIS FINDSATE ADJUSTED FOF ETHANE.
       ITERATE DEN TO MINIMIZE (T-TS) VIA TSATF(DEN).
  С
  С
       1 = 0 FOR VAPOR, M = 1 FCR LIQUID.
        COMMON NG, AL, BE, TTRP, TCRT, DGAT, DTRP, DCRT, DTSDR, A(15), B(15)
        DATA (DGT=1.0E-6),(DLT=23.0)
      1 FORMAT(1H0 9X *FINCSATF = 0, FAILS TO CONVERGE.* / )
      2 FORMAT(1H0 9X *FINDSATE = 0, T EXCEEDS TORT.* / )
      3 IF (T-TCRT) 4,22,23
      4 IF (M.EQ.0) 5,6
      5 D = DENGASF(T) $ GO TO 7
      6 D = DENLIQF(T)
      7 DO 20 J=1,50 $ DT=T-TSATF(D) $ IF(ABSF(DT/T)-1.0E-6) 21,21,8
      8 \text{ DTDD} = \text{DTSDR/DTRP}  S IF(DTDD.EQ.0.0) 22.9
      9 DD = DT/DTD0 $ IF(ABSF(CD/D)-1.0E-6) 21,21,10
     1L D = 0 + DU  $ IF(M.EQ.0) 11,15
     11 IF (D.GT.DGT) 13,12
     12 0 = DGT $ GO TO 20
     13 IF(0.LT.DORT) 25,14
     14 D = DCRT - 0.02 $ GO TC 20
     15 IF (D.GT.OLT) 16,17
     16 D = DLT  $ GO TO 20
     17 IF (D.GT.DCRT) 20,18
     18 D = DCRT + 0.02
     20 CONTINUE $ FINDSATE = ( $ PRINT 1 $ RETURN
     21 FINDSATE = D $ RETURN
     22 FINDSATE = DCRT $ RETURN
     23 FINDSATE = 3 $ PRINT 2 $ RETURN $ END
                                                             11/28/73
       FUNCTION DENLIGF (T)
      ETHANE SATURATED LIQUID DENSITIES, MOL/L.
 С
 С
      Y = A1 + A2*Q2 + A3*Q3 + ..., YN = OTRP-OCRT,
 C
      DEN = DCRT + YN*(X + (XE-X)*Y).
       OATA (TCRT=305.33), (TTRP=89.899), (OCRT=6.87), (DTRP=21.68), (E=0.35)
       DATA (A=0.76173503), (B=0.29365351), (C=-0.32762394)
     1 FORMAT(1HC 9X *DENLIGF = 0, T EXCEEDS TORT. * / )
     2 IF (TCRT-T) 3,4,5
     3 PRINT 1
                $
                     STOP
     4 DENLIQF=DCRT $ DRDT=D2FDT2=0 $ RETURN
     5 XN=TCRI-TTRP $ YN=DTRP-DCPT $ X=(TCRT-T)/XN $ DXDT=-1/XN
     6 XE = X**E $ XE1 = E*XE/X $ W = CUBERTF(X) $ W1 = W/3/X
     8 \ Q = XE - X \ S \ Q1 = XE - 1
     9 WW = W^*W S Y = A + B^*WV + C^*X
    10 Y1 = 2 \times B \times W + 3 \times C \times WW
    11 Y1 = Y1 = Y1 = W1
    13 DENLIQF = DCRT + (X + Q*Y)*YN
    14 DRDT = (1 + Q*Y1 + Q1*Y)*YN*DXDT $ RETURN $
                                                            END
```

Cryogenics Division-NBS Institute for Basic Standards LABORATORY NOTE	CDST CENTER 2750364	FILE ND 73-6	page 12
SUBJECT Liquid-Vapor Saturation (Orthobaric) Temperatures	NAME R.D. G	oodwin	
of Ethane and Methane	DATE Nov. 28		
Appendix I. (continued)		28/73	
<pre>C METHANE SAT: VAPOR DEN, MOL/L, VIA VAPORFIT; C Y = A1 + A2*Q2 + A3*Q3 + , NF = AL, YN C U = Z + (ZE-Z)*Y, DEN = DCRT*EXP(-YN*U). DIMENSION A(5) DATA (TTRP=90.68),(TCRT=190.555),(E=0.388) DATA (DCRT=10.2),(DTRP=0.01567865) DATA (DCRT=10.2),(DTRP=0.01567865) DATA (A = 0.3925579, -0.4976888, 1.3200516, 1 -1.6617790, 0.6848603) 1 FORMAT(1H0 9X *DENGASF = 0, T EXCEEDS TCRT. 2 IF(TCRT-T) 3,4,5 3 PEINT 1 \$ STOP 4 DENGASF = DCRT \$ DRDT = D2RDT2 = 0 \$ RE 5 ZN=TCRT/TTRP-1 \$ YN=LOGF(DCRT/DTRP) \$ Z= 6 DZDT = -TCRT/ZN/T/T \$ ZE = Z**E \$ ZE1 = 8 X = ZE=Z \$ X1 = ZE1-1 \$ Q = CUBERIF(Z) 10 Y = A(1) \$ Y1 = 0 \$ D0 13 K=2,5 11 Y = Y + A(K)*Q**K 12 Y1 = Y1 + K*A(K)*Q**(K-1) 13 CONTINUE \$ Y1 = Y1*Q1 15 U = Z + X*Y \$ UA = 1 + X*Y1 + X1*Y \$ U1 16 KP = EXPF(-YN*U) \$ DENGASF = F = DCRT*XP 17 DRDT = -YN*U1*F \$ RETURN \$ END</pre>	= LN(DCRT, * /) TURN (TCRT/T=1), E*ZE/Z \$ Q1 = Q,	ZN	
FUNCTION DENLIGF(T) C METHANE SATD. LIQUID DEN, MOL/L, VIA LAB. NO C Y = A1 + A2*02 + A3*Q3 + , YN = DTRP- C DEN = DCRT + YN*(X + (XE-X)*Y). DATA (TTRP=90.68),(TCRT=190.555),(E=0.361) DATA (DCRT=10.2),(DTRP=28.147) DATA (A=0.83709103),(B=0.03*16127),(C=-0.07) 1 FORMAT(1H0 9X *DENLIQF = 0, T EXCEEDS TCRT. 2 IF(TCRT-T) 3,4,5 3 PRINT 1 \$ STOP 4 DENLIQF=DCRT \$ DROT=D2ROT2=0 \$ RETURN 5 XN=TCPT-TTRP 3 YN=DTRP-DCRT \$ X=(TCRT-T)/XN 6 XE = X**E \$ XE1 = E*XE/X \$ W = CUBERTF(8 Q = XE-X \$ 01 = XE1-1 9 WW = W*4 \$ Y = A + B*WW + C*X 10 Y1 = 2*3*W + 3*C*WW 11 Y1 = Y1*W1 13 DENLIQF = DCRT + (X + Q*Y)*YN 14 DFDT = (1 + Q*Y1 + Q1*Y)*YN*DXDT \$ RETU	DCRT, 478575) * /) \$ DXDT=-1/	/XN = W/ 3/ X	

APPENDIX N

LOW-TEMPERATURE ELASTIC PROPERTIES OF ALUMINUM 5083-0 AND FOUR FERRITIC NICKEL STEELS[†]

W. F. Weston,^{*} E. R. Naimon,^{*} and H. M. Ledbetter

Cryogenics Division, Institute for Basic Standards National Bureau of Standards, Boulder, Colorado 80302

ABSTRACT

The low-temperature elastic properties have been determined for five commercial alloys that have possible structural applications at cryogenic temperatures. The alloys are 5083-0 aluminum and four ferritic steels: 3.5, 5, 6, and 9 percent nickel. An ultrasonic (10 MHz) pulse-superposition method was used to measure longitudinal and transverse wave velocities. Using the velocities and the mass density as input, the following moduli were calculated: longitudinal modulus, Young's (tensile) modulus, shear (rigidity) modulus, bulk modulus (reciprocal compressibility), and Poisson's ratio. Measurements were made semi-continuously from 300K to 4K. The composition dependence of iron-nickel alloys is reviewed comprehensively up to 12 percent nickel. Debye temperatures were calculated from the elastic constants. A discussion is given of the temperature dependences of the elastic constants, differential relationships among the elastic constants, and the possible relationships between elastic and plastic properties.

Key Words: Aluminum alloy; bulk modulus; compressibility; Debye temperature; elastic constant; nickel steels; Poisson's ratio; shear modulus; sound velocity; Young's modulus.

^{*} NRC-NBS Postdoctoral Research Associate, 1973-4.

[†] Contribution of NBS, not subject to copyright.

LOW-TEMPERATURE ELASTIC PROPERTIES OF ALUMINUM 5083-0 AND FOUR FERRITIC NICKEL STEELS

W. F. Weston*, E. R. Naimon*, and H. M. Ledbetter

Cryogenics Division, Institute for Basic Standards National Bureau of Standards, Boulder, Colorado 80302

INTRODUCTION

The recent expansion of cryogenic technology to extensive use of liquefied gases has created new materials problems. In particular, detailed knowledge and understanding of the mechanical properties of common metals and alloys are required. The temperature range of interest is from room temperature to near absolute zero. For engineering, the most important mechanical properties in cryogenic applications are strength (sometimes strength-to-density ratio) and toughness (resistance to low-temperature embrittlement). In this paper, the elastic properties of several common alloys are reported between 300 and 4 K. These properties -- Young's modulus, shear modulus, etc. -- are essential engineering design parameters, are useful parameters in alloy development, are fundamental data for fracture analysis and theories of solid-solution strengthening, figure prominently in dislocation-model descriptions of mechanical properties, and can be related empirically to a variety of phenomena associated with plastic deformation. Gilman¹ has maintained that "the most important mechanical characteristic of a crystal is its elastic modulus." The elastic moduli of polycrystalline aggregates are also paramount.

It is well known² that the major contributions of the addition of small amounts of nickel to steel are: (1) hardening of the ferritic alpha phase; (2) retarding the bainite and pearlite transformations; (3) lowering the $\gamma - \alpha$ transition temperature, which enables nickel steels to be hardened by quenching at lower temperatures; and (4) resistance to embrittlement at low temperatures. Thus, nickel steels are well suited for cryogenic applications.

Three and one-half percent nickel steel is a weldable low-carbon steel

^{*} NRC-NBS Postdoctoral Research Associate, 1973-4.

useful at temperatures down to about -100°C. Its possible applications include the containment at atmospheric pressure of liquid ethylene and other liquefied gases of higher boiling points, such as ethane, acetylene, carbon dioxide, and propane. Five percent nickel steel is useful at temperatures down to about -120°C in its quenched-and-tempered state and down to lower temperatures in its austenitized, temperized, reversion-annealed state; and nine percent nickel steel is useful down to liquid nitrogen temperatures (-196°C). This alloy may contain as much as 15 percent austenite and could be used for the containment of liquefied oxygen, argon, and nitrogen.

Aluminum alloys also are particularly useful for low-temperature applications, since at cryogenic temperatures their strength increases without loss of ductility. In particular, the 5000 series alloys contain magnesium as the major alloying constituent; magnesium is very effective as a hardener. Alloys in this series possess good welding characteristics and good resistance to corrosion in marine atmosphere.

The low-temperature elastic properties are reported here for five commercial alloys that have possible structural applications at cryogenic temperatures. These alloys are 5083 aluminum and four ferritic steels: 3.5, 5, 6, and 9 percent nickel. An ultrasonic (10 MHz) pulse-superposition method was used to measure longitudinal and transverse wave velocities. Using the velocities and the mass density as input, the following moduli were calculated: longitudinal modulus, Young's (tensile) modulus, shear (rigidity) modulus, bulk modulus (reciprocal compressibility), and Poisson's ratio. Measurements were made semi-continuously from 300 K to 4 K.

These data have been compared to previously reported results and used to calculate the elastic Debye temperatures. Also, the elastic moduli have been used to deduce information on some of the plastic properties of the materials.

Most engineering alloys selected for cryogenic use have close-packed crystal structures; these include austenitic steels and alloys of aluminum, copper, nickel, and titanium. Commercial purity body-centered cubic alloys

tend to have high ductile-to-brittle transition temperatures, that is, a high notch sensitivity. The nickel steels reported on here are a notable exception to the general exclusion of body-centered alloys from cryogenic structures.

EXPERIMENTAL

The alloy specimens were obtained from commercial sources in the form of plates. The nickel steels were used as-received (quenched and tempered in the cases of the 3.5 and 9.0 percent nickel specimens, and austenitized, temperized, and reversion annealed in the cases of the 5 and 6 percent nickel specimens). The 5083 aluminum was annealed at 413°C for 30 min. at a pressure of 5×10^{-6} torr and cooled in the furnace. Cylindrical specimens 5/8-in. (1.6 - cm) in diameter and 3/8 - in. (1.0 - cm) long were prepared by grinding. Opposite faces were flat and parallel within 100×10^{-6} in. $(2.5 \mu \text{ m})$. Chemical compositions (obtained from mill analyses), hardness numbers, and mass densities are given in Table 1. Hardness was determined by standard metallurgical methods. Mass density was determined by Archimedes' method using distilled water as a standard.

Quartz transducers (10 MHz) were bonded to the specimens with phenyl salicylate for room-temperature measurements and with a stopcock grease for lower temperatures. The specimen holder is shown in Fig. 1. The holder was placed in the ullage of a helium dewar and lowered stepwise to achieve cooling. Temperatures were monitored with a chromel-constant thermocouple contacting the specimen.

Ultrasonic sound-wave velocities, both longitudinal and transverse, were determined by a pulse-superposition technique. ³⁻⁵ High-frequency pulses (nominally 10 MHz) were gated from a continuous carrier in such a way that they were all phase coherent. Each pulse, when applied to the quartz transducer, generated an echo train in the specimen. The repetition rate of the pulses was adjusted so that each pulse was superposed on the second echo of each preceding pulse. Thus, the transit time of a sound wave in the specimen is directly related to the repetition rate of the pulses. Denoting the carrier frequency by f, the repetition rate is then f/n, where n is an integer. Typical values of n, which are determined from the frequency-divider setting, were 70-200 for these experiments. It follows that the round-trip transit time t in the specimen is simply

$$t = n/(2f)$$
 . (1)

Ultrasonic velocities v are given by

$$v = 2\ell/t, \qquad (2)$$

where l is the specimen length. A block diagram of the experimental apparatus is shown in Fig. 2.

In practice the pulse-superposition method proceeded as follows. The carrier frequency f was adjusted as closely as possible to the resonant frequency of the quartz transducer (nominally 10 MHz). The frequency-divider setting n was then varied until each pulse was approximately superposed on the second echo from each preceding pulse. The carrier frequency was then readjusted until a maximum constructive interference condition was obtained. A change in the environmental conditions of the specimen caused a change in the transit time, and thus in the interference condition. As the environment changed, superposition was maintained by adjusting the carrier frequency. The divider setting was kept constant for a given experiment. Thus, the experimentally measured quantity was $\Delta f/f$. It is easily shown that

$$\Delta t/t = -\Delta f/f, \tag{3}$$

and that

$$\Delta v/v = \Delta f/f + \Delta \ell/\ell.$$
(4)

Since an elastic modulus C is related to the velocity v and mass density ρ by

$$C = ov^2 , \qquad (5)$$

it follows that

$$\Delta C/C = \Delta \rho/\rho + 2\Delta v/v.$$
 (6)

Since $\Delta \rho / \rho = -3 \Delta \ell / \ell$, one then obtains

$$\Delta C/C = 2\Delta f/f - \Delta \ell/\ell.$$
⁽⁷⁾

Changes of elastic moduli due to temperature effects were determined. The measured quantities were thus $\frac{1}{f} \frac{\Delta f}{\Delta T}$, where T is absolute temperature. Since the thermal expansion coefficient α is defined as

$$\alpha = \frac{1}{\ell} \frac{\Delta \ell}{\Delta T}, \qquad (8)$$

it follows that

$$\frac{1}{C} \frac{\Delta C}{\Delta T} = 2 \left(\frac{1}{f} \frac{\Delta f}{\Delta T} \right) - \alpha.$$
(9)

At room temperature, elastic moduli typically change linearly with temperature. The temperature coefficient (1/C) (dC/dT) is then significant, since it gives the relative modulus change with temperature. Room-temperature values of the temperature coefficients are reported in this paper.

It is usually found that the thermal-expansion contribution to (1/C) (dC/dT) is less than 10% of the velocity contribution, that is, $|\alpha| \le \cdot 2 |(1/f) (df/dT)|$. Thus, errors in the thermal expansion coefficient will not lead to significant errors in the temperature coefficients of the elastic moduli.

Except for determining room-temperature values of (1/C) (dC/dT), effects of thermal expansion are neglected in this paper. Typically an elastic modulus changes by only 5-10% over the temperature range 4-300K, and neglect of thermal expansion leads to an error of at most 0.5% in the low-temperature value of the elastic modulus. Such errors are well within experimental accuracy. Thus, when elastic-moduli — temperature curves were fit to a semi-theoretical function, as discussed telow, thermal expansion was neglected.

Relative velocity changes as small as 10^{-5} could be detected; however, absolute errors in the measured moduli are estimated to be about 1-2 percent. Thus, since the individual data points are normalized to the room-temperature value, the overall curve could be shifted by 1 or 2 percent because of systematic error.

5

RESULTS

From the longitudinal and transverse ultrasonic velocities, v_{l} and v_{t} , the respective elastic moduli are given by:

$$C_{\ell} = \rho v_{\ell}^{2} , \qquad (10)$$

and

$$C_{t} = \rho v_{t}^{2} , \qquad (11)$$

where ρ is the mass density.

While polycrystalline aggregates (quasi-isotropic solids) have only two independent elastic constants, several constants are commonly used for various applications. The four most common are the bulk modulus B, Young's modulus E, the shear modulus G, and Poisson's ratio \vee . These constants can be calculated from C_g and C_t by the relationships

$$E = 3C_{t} (C_{\ell} - \frac{4}{3}C_{t}) / (C_{\ell} - C_{t}), \qquad (12)$$

$$B = C_{\ell} - \frac{4}{3} C_{t},$$
(13)

$$v = \frac{1}{2} (C_{\ell} - 2C_{t}) / (C_{\ell} - C_{t}), \qquad (14)$$

and

$$G = C_{t}.$$
 (15)

Rather than calculate the temperature dependence of these four elastic constants point by point from the experimental moduli, C_{ℓ} and C_{t} can be fit to a semi-theoretical relationship suggested by Varshni⁶:

$$C = C^{\circ} - s/(e^{t/T} - 1),$$
 (16)

where C° , s, and t are adjustable parameters and T is the temperature. The value of C at T = O K is C° , and -s/t is the high-temperature limit of dC/dT. By invoking an Einstein oscillator model of solids, it can be shown (in the absence of electronic effects) that t is the Einstein characteristic temperature. The elastic constants can then be calculated from the moduli using Eqs. 12-15.

A. 5083 Aluminum

Longitudinal (C_{l}) and transverse ($C_{t} = G$) moduli are shown in Figs. 3 and 4. Room-temperature values of the elastic constants are given in Table 2 and room-temperature values of the temperature coefficients of the elastic constants are given in Table 3. Values of commercially pure aluminum (1100 aluminum) are included for comparison. Curves in Figs. 3 and 4 are plots of Eq. 16 determined by an unweighted least-squares fit of the data. Average percentage differences between measured and curve values are 0.03% and 0.10% for the longitudinal and transverse moduli, respectively. Parameters C°, s, and t are given in Table 4.

The elastic constants were calculated from the moduli shown in Figs. 3 and 4 by Eqs.12-14. The constants E, B, and v are shown in Figs. 5-7.

B. Ferritic Nickel Steels

Longitudinal and transverse moduli for the four nickel steels are shown in Figs. 8 and 9. Two of the nickel steels, 5 and 6 percent nickel, exhibit maxima at low temperatures. These maxima may be caused by magnetic transitions. The occurrence of these maxima, however, necessitated fitting the low-temperature data to a different function. The Varshni function (Eq. 16) was fit to the data from room temperature to the maximum. The dashed curve represents a continuation of the Varshni function. From O K to the maximum, a polynomial of the form

$$C = C_{o} + At^{2} + Bt^{3} + Dt^{4}$$
(17)

was used to fit the data, where C_0 , A, B, and D are adjustable parameters and $\tau = T/T_{max}$, where T is the temperature and T_{max} is the temperature at which the maximum occurs. Since this function has no physical significance, the parameters are not reported. However, the function does satify the requirement that the slope go to zero as T approaches zero. Also it was required that the slope go to zero as T approaches T_{max} .

Room-temperature values of the elastic constants are given in Table 2, and room-temperature values of the temperature coefficients of the elastic constants are given in Table 3. Average percentage differences between measured and curve values vary between 0.01% and 0.04% for the longitudinal moduli and 0.02% to 0.04% for the transverse moduli. The constants E, B, and ν are shown in Figs. 10-12.

C. Elastic Debye Temperatures

It is of interest to calculate the elastic Debye temperature θ for the alloys. This fundamental parameter is important in the lattice properties of solids and is related to the elastic wave velocities by ⁷

$$\Theta = K \langle v \rangle,$$
(18)

$$K = \frac{h}{k} \left(\frac{3N\rho}{4\pi A} \right)^{1/3}$$
(19)

where

Here h is Planck's constant, k is Boltzmann's constant, N is Avogadro's constant, ρ is the mass density, and A is the atomic weight. The average velocity is given by

$$v = \left(\frac{v_{\ell}^{-3} + 2v_{t}^{-3}}{3}\right)^{-1/3}$$
(20)

The Debye temperatures for the nickel steels and 5083 aluminum at T = O K are given in Table 5. The Debye temperatures of iron and commercially pure aluminum are included for comparison.

DISCUSSION

The elastic properties of 5083 aluminum behave regularly with respect to temperature. The elastic moduli (C_{ℓ} , $C_t = G, B, E$) decrease with increasing temperature, show a relative flatness at low temperatures, achieve zero slope at T = OK, and approach linear behavior at high temperatures. Poisson's ratio also behaves regularly, having a positive temperature coefficient.

As mentioned earlier, however, the moduli of two of the nickel steels (5 and 6 percent nickel) behave anomalously at low temperatures. The moduli first increase with increasing temperature, then decrease approaching linear behavior. Both C_{ℓ} and C_{t} exhibit a maximum at approximately the same temperature. The 6 percent alloy was checked on both heating and cooling, and no hysteresis seemed to be associated with the anomaly. This behavior is similar to that of some stainless steels, ⁸ which undergo paramagnetic to antiferromagnetic transitions at low temperatures. Possibly, the anomalies are caused by some magnetic transition. It is emphasized that the data reported here are dynamic (adiabatic) rather than static (isothermal) and apply to rapid, rather than slow loading. In most cases the differences between adiabatic and isothermal elastic constants are small, less than one percent. Conversion formulas are given by Landau and Lifshitz, ⁹ for example.

Of the many possible engineering elastic constants (five - C_{l} , E, G, B, and v - are discussed herein), only two are independent. Both isotropic and quasi-isotropic solids are characterized elastically by two constants. Thus, n-2 independent relationships must exist among n variables. By differentiation, several quite useful relationships can be obtained. These include:

$$\frac{dC_{\ell}}{C_{\ell}} = \frac{1}{B + \frac{4}{3}G} \quad (dB + \frac{4}{3} dG), \quad (21)$$

$$\frac{dE}{E} = \frac{G}{G+3B} \cdot \frac{dB}{B} + \frac{3B}{G+3B} \cdot \frac{dG}{G}$$
(22)

$$\frac{\mathrm{dB}}{\mathrm{B}} = \frac{\mathrm{dE}}{\mathrm{E}} + \frac{2}{1-2\nu} \,\mathrm{d}\nu, \qquad (23)$$

$$\frac{dG}{G} = \frac{dB}{B} - \frac{3}{(1+\nu)(1-2\nu)} d\nu,$$
 (24)

$$\frac{dv}{v} = \frac{E}{E-2G} \cdot \left(\frac{dE}{E} - \frac{dG}{G}\right)$$
(25)

If $v \approx \frac{1}{3}$, which is a typical value for most metals and alloys, then these equations simplify to

and

$$\frac{\mathrm{dC}}{\mathrm{C}_{\ell}} \approx \frac{2}{3} \frac{\mathrm{dB}}{\mathrm{B}} + \frac{1}{3} \frac{\mathrm{dG}}{\mathrm{G}} , \qquad (26)$$

$$\frac{dE}{E} \approx \frac{dB}{9B} + \frac{8}{9} \cdot \frac{dG}{G} , \qquad (27)$$

$$\frac{dB}{B} \approx \frac{dE}{E} + 2 \frac{d\nu}{\nu} , \qquad (28)$$

$$\frac{\mathrm{dG}}{\mathrm{G}} \approx \frac{\mathrm{dB}}{\mathrm{B}} - \frac{9}{4} \cdot \frac{\mathrm{dv}}{\mathrm{v}} , \qquad (29)$$

$$\frac{d\nu}{\nu} \approx 4 \left(\frac{dE}{E} - \frac{dG}{G} \right) \approx \frac{4}{9} \left(\frac{dB}{B} - \frac{dG}{G} \right)$$
(30)

These relationships contain some surprising and useful information. For example: Young's modulus is eight times more sensitive to shear than to dilatation; Poisson's ratio depends equally, but oppositely, on shear and dilatation, and only on the B/G ratio; the longitudinal modulus is twice as sensitive to dilatation as to shear, etc.

and

Furthermore, these relationships can be used to predict a wide variety of effects when only partial information is available. Equations (26)-(30) can be expressed generally as

$$\frac{dX}{X} \approx a \frac{dY}{Y} + b \frac{dZ}{Z}$$
, (31)

where X, Y, and Z are elastic constants and a and b are numerical coefficients. Much more powerful relationships result by introducing another variable V:

$$\frac{1}{X} \quad \frac{dX}{dV} \approx \frac{a}{Y} \quad \frac{dY}{dV} + \frac{b}{Z} \quad \frac{dZ}{dV} , \qquad (32)$$

where V represents any independent variable such as temperature, pressure, or composition. As a useful example, these relationships will now be used to discuss the effects of nickel on the elastic properties of iron.

The existing data¹⁰⁻²⁸ on the room-temperature elastic constants of nickel-steels are presented in Figs. 13-16. Data for pure iron, obtained by a

Voigt-Reuss-Hill-arithmetic average of single-crystal data²⁹ are also included. The data were least-squares fitted to a straight line, the slope of which is included in the figures. The data of Speich, Schwoeble, and Leslie was omitted from the least-squares fit for the bulk modulus and Poisson's ratio.

If, in Eq. (32), V represents composition, the change with composition in one elastic constant can be found from the measured changes with composition in two others. For example, considerably more data exists for Young's modulus and the shear modulus of nickel steels than for Poisson's ratio. Using Eq. (21), however, the compositional dependence of ν can be found from E and G data:

$$\frac{1}{\nu} \frac{d\nu}{dV} \approx 4 \left(\frac{1}{E} \frac{dE}{dV} - \frac{1}{G} \frac{dG}{dV} \right) , \qquad (33)$$

or

$$\frac{\mathrm{d}\nu}{\mathrm{d}V} \approx \frac{4}{3} \left(\frac{1}{2} \quad \frac{\mathrm{d}E}{\mathrm{d}V} \quad - \quad \frac{1}{.8} \quad \frac{\mathrm{d}G}{\mathrm{d}V} \right) , \qquad (34)$$

since $v \approx \frac{1}{3}$, $E \approx 2$ (x 10^{11} N/m^2) and $G \approx .8$ (x 10^{11} N/m^2) for iron. Using the slopes given in Figs. 13 and 14 as values for dE/dV and dG/dV, $dv/dV \approx 6.7 \text{x} 10^{-4}$. The slope given in Fig. 16 is ~7 x 10^{-4} . Similarly, if the G and B data are used in Eq. 27 (with $B \approx 1.6 \text{ x} 10^{11} \text{ N/m}^2$), then $dE/dV \approx -2.19 \text{ x} 10^9 \text{ N/m}^2$, in very good agreement with the measured value of $-2.22 \text{ x} 10^9 \text{ N/m}^2$. In fact, using the E and G data to calculate the compositional dependence of B and v justifies excluding the Speich et al. data from the linear least-squares fit for the compositional dependence of B and v.

The Debye temperatures of the nickel steels are lower than the Debye temperatures of either iron or nickel^{24, 29} This is expected since the elastic constants, and thus the sound velocities, decrease drastically with the addition of nickel to iron. In fact, the largest known alloying effects on elastic constants may occur for iron-nickel alloys.²⁸ This effect is not completely understood, but may in part be caused by magnetic interactions.

Finally, the relationship between elastic and plastic properties is discussed briefly, and the possible use of elastic data for predicting plastic properties is indicated. The importance of this is two-fold. First, for cryogenic engineering applications the most important properties of metals are strength and toughness. Second, the possible relationships between elastic and plastic properties seem to be generally unappreciated.

Usually, elastic and plastic behavior are considered separately. For example, in a typical stress-strain experiment the elastic and plastic regions can be separated by an elastic limit, a proportional limit, or sometimes a yield point. While these concepts differ from each other and are not always well-defined and reproducible experimentally, they serve to define a stress level that if exceeded results in permanent, plastic, irreversible mechanical deformation.

The most obvious link between elastic and plastic properties is provided by a dislocation model of microplastic mechanical behavior. All students of dislocation theory know that the mathematical equations describing phenomena such as slip, yielding, bending, cleavage, etc. from a dislocation viewpoint almost always contain elastic constants as material parameters. In an isotropic elasticity model these constants are Young's modulus, the shear modulus, and Poisson's ratio. Isotropy is, of course, an idealization since all real materials are anisotropic in some way.

Despite its potentially high impact, surprisingly little work on elasticplastic relationships has been published. The advantages that might accrue from such work include: (a) the ability to relate plasticity more intimately to interatomic forces; (b) the possibility of correlating plastic properties with other parameters via the elastic constants — for example atomic number, melting temperature, or Debye theta; and (c) a possibly higher degree of correlation among plastic properties themselves. Some correlations — for example, between Young's modulus and yield stress, or between microhardness and the shear modulus — are already well known.

The most thorough study of the elastic-plastic relationship was made by Pugh.³² Other studies have been made by Hasselman³³ and by Crutchley and Reid³⁴ Pugh made the following suggestions: (1) at temperatures less than one third of its melting point, a material's resistance to plastic deformation

is proportional to Gb, where G is the shear modulus, and b is the magnitude of the Burgers vector; (2) fracture strength is proportional to Ba, where B is the bulk modulus, and a is the lattice parameter; (3) ductility increases with B/G, the ratio of the bulk modulus to the shear modulus. Since Poisson's ratio v is an increasing monotonic function of B/G, ductility should also increase with Poisson's ratio; most data support his suggestion -- lead (v = 0.40), aluminum (v = 0.37), copper (v = 0.34), chromium (v = 0.25), beryllium (v = 0.04) as examples. Since Poisson's ratio changes only very slowly with alloying, mechanical deformation, etc., it does not provide as sensitive an index of ductility as would be desired. On the other hand, small changes in Poisson's ratio may correspond to large changes in ductility. A possible large influence of v on the plastic anisotropy of b.c.c. metals was discussed by Crutchley, Reid, and Webster.³⁵ In terms of the iron-nickel allovs reported on here, the following inferences would be drawn from the room-temperature elastic data: (1) the plastic resistance decreases with increasing nickel content; (2) the fracture strength decreases slightly with increasing nickel content; and (3) the ductility, as measured by B/G increases slightly with increasing nickel content. The experimental study by Jollev³⁶ contradicts the first two assertions while affirming the third. The poor correlation in this case between elastic and plastic properties suggests either that the particular dislocation models used by Pugh³² are too simple or that alloying nickel into iron changes somehow the behavior of dislocations in the alloy. For example, atomic ordering could cause localized effects on dislocations that would not be revealed by macroscopic elastic constants.

This leads naturally to another topic, which is especially important in the cryogenic application of iron-nickel alloys -- the ductile - brittle transition. The elastic data in Figs. 8-12 show no irregularities near temperatures where the ductile-brittle transitions occur. This is expected since acoustic waves sample a macroscopic volume of a specimen, and the modulus defect due to dislocations is quite small. Assuming the ductile-brittle transition results from immobilizing dislocations, then measurement of ultrasonic attenuation would be a better approach than measurement of ultrasonic velocities, if in these alloys dislocations contribute significantly to the attenuation.

N**-**15

13

Acknowledgment

Specimens of nickel steels were graciously supplied by Armco Steel Corporation and by Nippon Steel Corporation.

References

- 1. Gilman, J. J., Austr. J. Phys., Vol. 13, 1960, pp. 327-46.
- Rosenberg, S. J., Nickel and Its Alloys, Nat. Bur. Stand. (U.S.), Monogr. 106 (May 1968).
- 3. McSkimin, H. J., J. Acoust. Soc. Amer., Vol. 33, 1961, pp. 12-6.
- 4. McSkimin H. J., and Andreatch, P., <u>J. Acoust. Soc. Amer.</u>, Vol. 34, 1962, pp. 609-15.
- 5. McSkimin, H. J., J. Acoust. Soc. Amer., Vol. 37, 1965, pp. 864-71.
- 6. Varshni, Y. P., Phys. Rev., B, Vol. 2, 1970, pp. 3952-8.
- 7. Debye, P., Ann. Phys. (Leipz), Vol. 39, 1912, pp. 789-839.
- 8. Weston, W. F., Ledbetter, H. M., and Naimon, E. R., to be published.
- 9. Landau, L. D. and Lifshitz, E. M., <u>Theory of Elasticity</u>, Pergamon, London, 1959, p. 17.
- 10. Guillaume, Ch. -Ed., C. R. Acad. Sci., Vol. 124, 1897, pp. 752-5.
- 11. Carpenter, H. C. H., Hadfield, R. A., and Longmuir, P., Proc. Inst. Mech. Engrs., Parts 3-4, 1905, pp. 857-87.
- 12. Honda, K., Sci. Rep. Tohoku Univ., Vol. 8, 1919, pp. 59-71.
- Müller, W., in Forschungsarbeiten auf dem gebiete des Ingenieurwesens, Part 247, J. Springer, Berlin, 1922, pp. 5-38.
- 14. Carrington, H., Engineering, Vol. 117, 1924, pp. 69-71.
- 15. Honda, K. and Tanaka, T., <u>Sci. Rep. Tohoku Univ.</u>, Vol. 15, 1926, pp. 1-37.
- 16. Chevenard, P., <u>Trav. Mem. Bur. Int. Poids Meas.</u>, Vol. 27, 1927, pp. 115-9.
- 17. Nishiyama, Z., Sci. Rep. Tohoku Univ., Vol. 18, 1929, pp. 359-400.
- Nakamura, K., <u>Sci. Rep. Tohoku Univ.</u>, Vol. 25, 1935, p. 303; <u>Z.</u> Physik, Vol. 94, 1935, pp. 707-16.

- Ebert. H. and Kussmann, A., <u>Physik. Zeitschr.</u>, Vol. 38, 1937, pp. 437-45.
- 20. Chevenard, P. and Crussard, C., <u>C. R. Acad. Sci.</u>, Vol. 215, 1942, pp. 58-61.
- 21. Köster, W., Z. Metallk., Vol. 35, 1943, pp. 194-9.
- 22. Scheil, E. and Reinacher, G., Z. Metallk., Vol. 36, 1944, pp. 63-9.
- 23. Markham, M. F., Brit. J. Appl. Phys., Suppl. 6, 1957, S56-63.
- 24. Rayne, J. A. and Chandrasekhar, B. S., <u>Phys. Rev.</u>, Vol. 122, 1961, pp. 1714-6.
- 25. Smith, R. T., Stern, R., and Stephens, R. W. B., <u>J. Acoust. Soc.</u> Amer., Vol. 40, 1966, pp. 1002-8.
- Roberts, M. J., and Owen, W. S., <u>Trans. ASM</u>, Vol. 60, 1967, pp. 687-92.
- Takahashi, T., Bassett, W. A., and Mao, H.-K., J. Geophys. Res., Vol. 73, 1968, pp. 4717-25.
- Speich, G. R., Schwoeble, A. J., and Leslie, W. C., <u>Met. Trans.</u>, Vol. 3, 1972, pp. 2031-7.
- 29. Weston, W. F., Naimon, E. R., and Ledbetter, H. M., unpublished results.
- Dixon, M., Hoare, F. E., Holden, T. M., and Moody, D. E., Proc. Roy. Soc., Vol. 285, 1965, pp. 561-80.
- Ledbetter, H. M. and Reed, R. P., J. Phys. Chem. Ref. Data, Vol. 2, No. 3, 1973, pp. 531-617.
- 32. Pugh, S. F., Phil. Mag., Vol. 45, 1954, pp. 823-43.
- Hasselman, D. P. H., in <u>Anisotropy in Single-Crystal Compounds</u> (F. W. Vahldiek, S. A. Mersol, Eds.), Plenum, New York, 1968, pp. 247-65.
- 34. Crutchley, D.E. and Reid, C.N., <u>High Temperature Materials</u> (Plansee Seminar, F. Benesovsky, Ed.), Springer-Verlag, Vienna, 1969, pp. 57-66.
- 35. Crutchely, D.E., Reid, C.N., and Webster, T.H., personal communication.
- 36. Jolley, W., Trans. Met. Soc. AIME, Vol. 242, 1968, pp. 306-14.

List of Tables

- 1. Compositions and properties of alloys.
- 2. Room-temperature values of elastic constants, units of 10^{11} N/m² except ν (dimensionless).
- Logarithmic temperature derivatives of elastic constants at room temperature (10⁻⁴ K⁻¹).
- 4. Parameters in equation 16.
- 5. Elastic Debye temperatures at T = O K.

List of Figures

- 1. Schematic diagram of specimen holder.
- 2. Block diagram of pulse-superposition system.
- 3. Temperature variation of longitudinal modulus $C_{\ell} = \rho v_{\ell}^{2}$ of 5083 aluminum.
- 4. Temperature variation of transverse or shear modulus $C_t = \rho v_t^2 = G$ of 5083 aluminum.
- 5. Temperature variation of Young's modulus of 5083 aluminum.
- 6. Temperature variation of bulk modulus (reciprocal compressibility) of 5083 aluminum.
- 7. Temperature variation of Poisson's ratio of 5083 aluminum.
- 8. Temperature variation of longitudinal modulus $C_{l} = \rho v_{l}^{2}$ of four nickel steels.
- 9. Temperature variation of transverse or shear modulus $C_t = \rho v_t^2 = G$ of four nickel steels.
- 10. Temperature variation of Young's modulus of four nickel steels.
- 11. Temperature variation of bulk modulus (reciprocal compressibility) of four nickel steels.
- 12. Temperature variation of Poisson's ratio of four nickel steels.
- 13. Compositional variation of Young's modulus of iron-nickel alloys.
- 14. Compositional variation of shear modulus of iron-nickel alloys.
- 15. Compositional variation of bulk modulus of iron-nickel alloys.
- 16. Compositional variation of Poisson's ratio of iron-nickel alloys.

Table 1. Compositions and Properties of Alloys

		Hardness	Mass Density at 294 K /cm ³ /
Alloy	Chemical Composition, Mill Analyses (wt. pct.)	(DPH No., 1 kg Load)	/g/ citi /
	Fe C Mn P S Si Ni Cr Mo Al	Ν	
Fe-3.5 Ni		174	7.858
Hero Ni	. 13	.020 233	7.821
Fe-6 Ni	.06	246	7.821
Fe-9 Ni	.06 .56 .007	260	7.841
	Al Si Fe Cu Mn Mg Cr Zn Ti V Ni		
AL 5083	Bal.08.19 04.63 4.75.13.04.01.007.003	78	2.666

Alloy	E	G	В	V
Al 5083	0.716	0.269	0.716	0.333
Al 1100*	0.695	0.259	0.724	0.340
Fe-3.5 Ni	2.038	0.791	1.600	0.288
Fe-5 Ni	1.984	0.770	1.559	0.288
Fe-6 Ni	2.024	0.790	1.543	0.281
Fe-9 Ni	1.951	0.754	1.562	0.292
Fe **	2.05	0.81	1.664	0.282

Table 2. Room Temperature Values of Elastic Constants $(10^{11} \text{ N/m}^2 \text{ except } \lor (\text{dimensionless}))$

* Calculated from data taken by the authors.

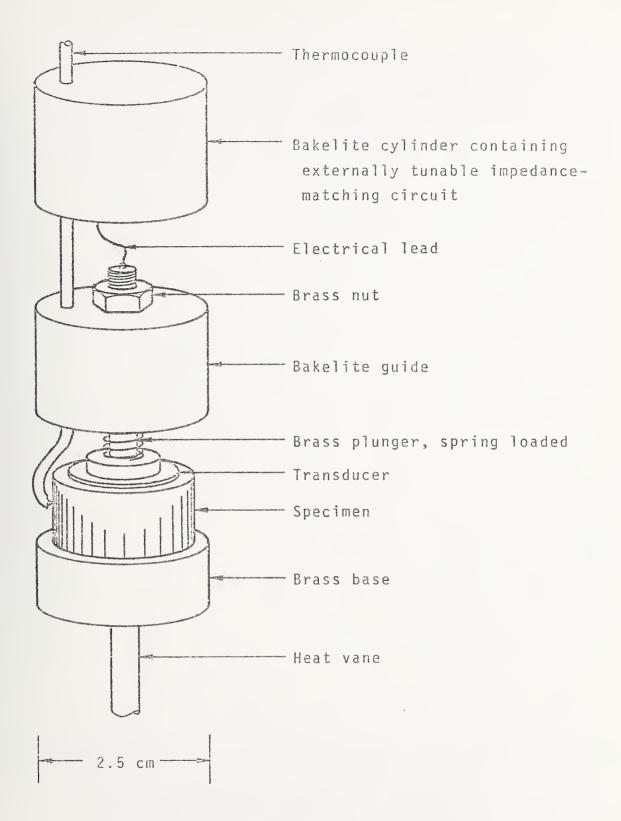
** Reference 31.

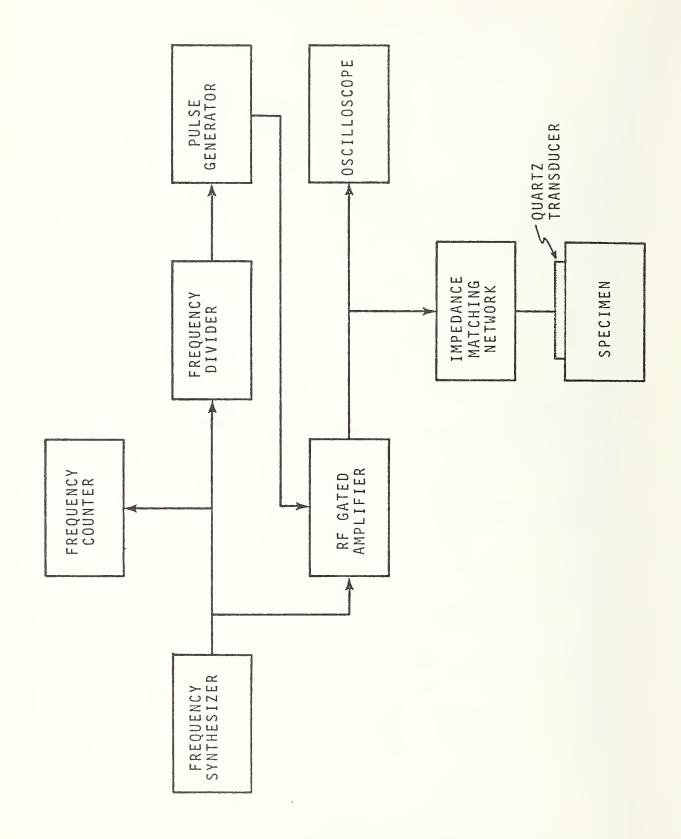
Alloy	$\frac{1}{B} \frac{dB}{dT}$	$\frac{1}{E} \frac{dE}{dT}$	$\frac{1}{G} \frac{dG}{dT}$	$\frac{1}{\nu}\frac{d\nu}{dT}$
Al 5083	-2.15	-6.29	-6.81	2.08
A& 1100*	-2.24	-5.25	-5.60	1.41
Fe - 3.5 Ni	-1.56	-2.82	-3.02	0.93
Fe - 5 Ni	-1.53	-3.32	-3.61	1.32
Fe - 6 Ni	-1.42	-3.21	-3.52	1.40
Fe - 9 Ni	-1.25	-2.77	-3.01	1.08
Fe **	-0.90	-2.11	-2.31	0.95

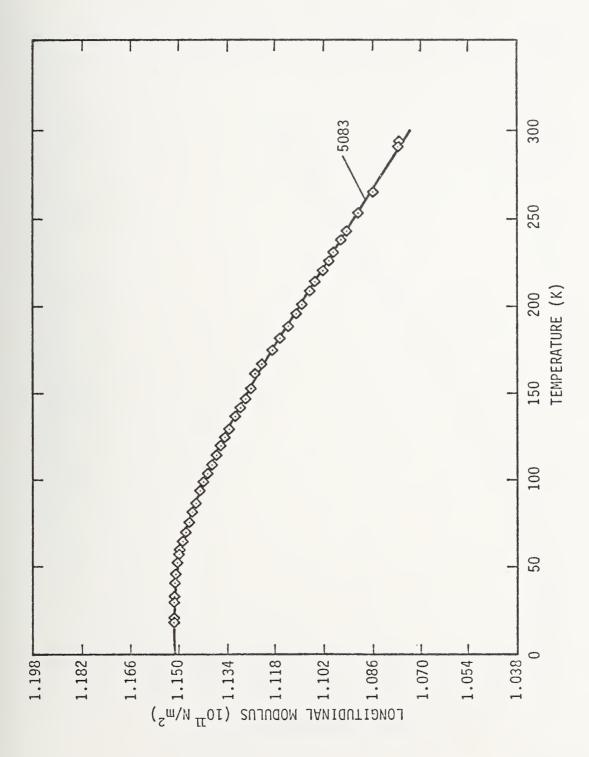
Table 3. Logarithmic Temperature Derivatives of Elastic Constants at Room Temperature (10^{-4} K⁻¹)

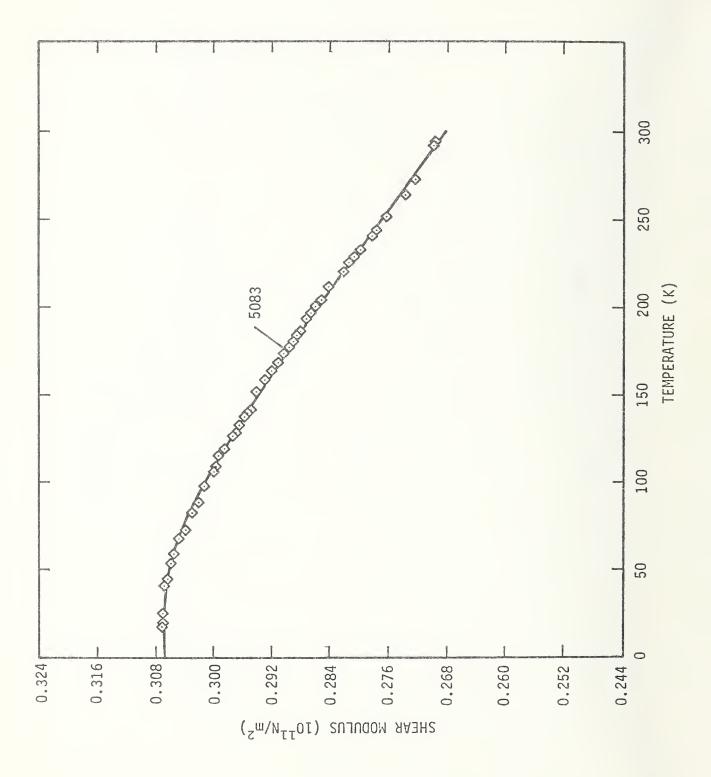
* Calculated from data taken by the authors.

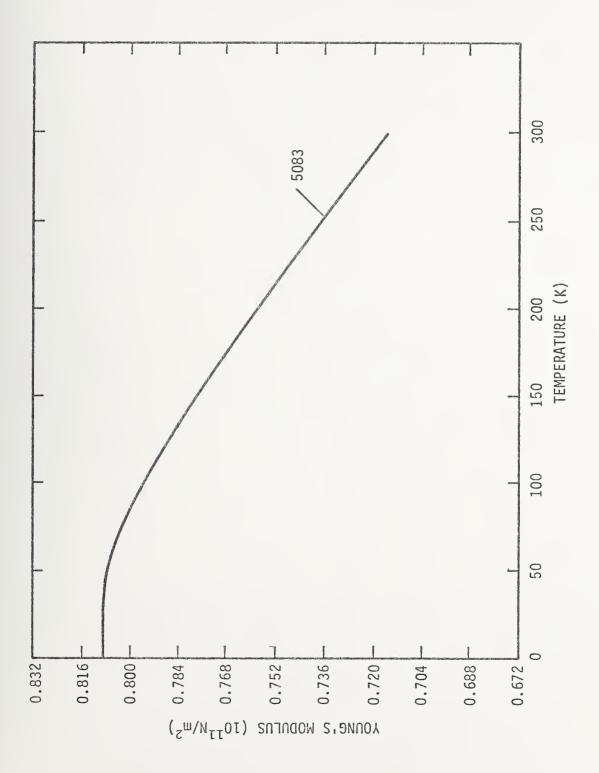
** Calculated from data in Reference 24 using a Voigt-Reuss-Hill average.

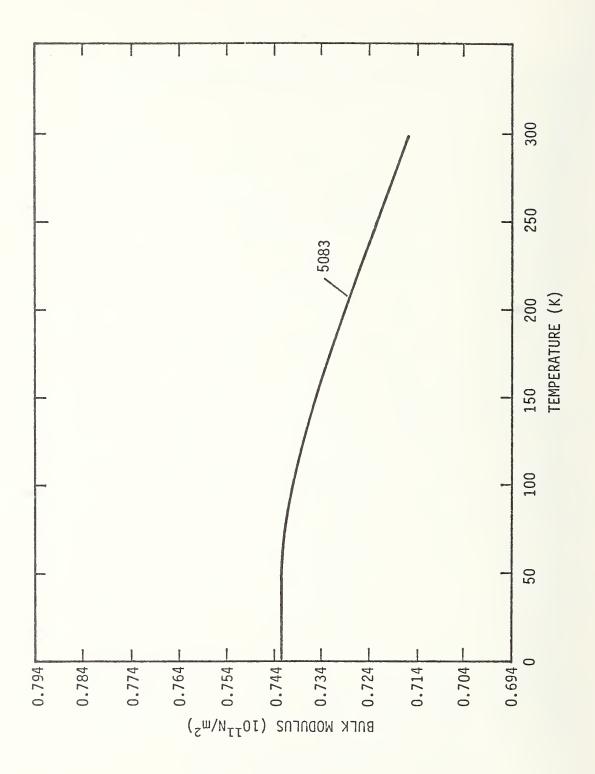

Alloy	Mode	C ⁰ (10 ¹¹ N/m ²)	(10 ¹¹ N/m ²)	t (K)
A£5083	pv _l ²	1.151	0.093	235.3
	ρv _t 2	0.307	0.038	206.7
Fe - 3.5 Ni	٥v	2.763	0.140	246.7
	٥vt ²	0.840	0.053	218.7
Fe - 5 Ni	ρv _l ²	2.687	0.230	353.8
	pv t 2	0.819	0.104	345.8
Fe - 6 Ni	ρv _l ²	2.692	0.244	380.5
	٥vt²	0.835	0.125	398.7
Fe - 9 Ni	ρv _l ²	2.663	0.126	252.7
	ρv ²	0.799	0.057	246.0

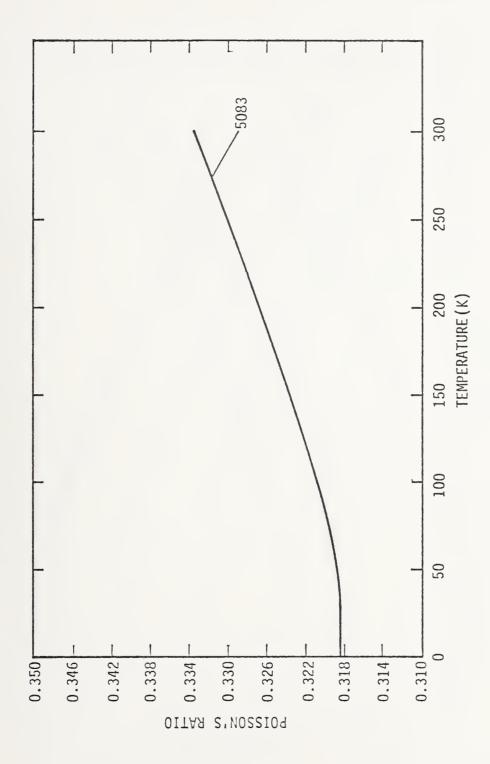

Table 4. Parameters in Equation 3

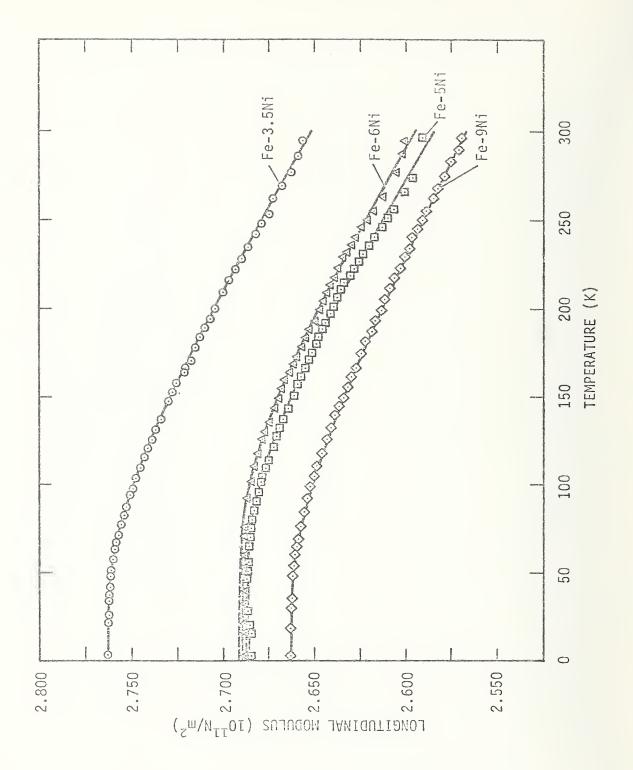

Alloy	θ(K)
Al 5083	414.8
A & 1100	405.4
Fe - 3.5 Nî	463.7
Fe - 5 Ni	459.0
Fe-6 Ni	463.4
Fe - 9 Ni	453.0
Fe *	477

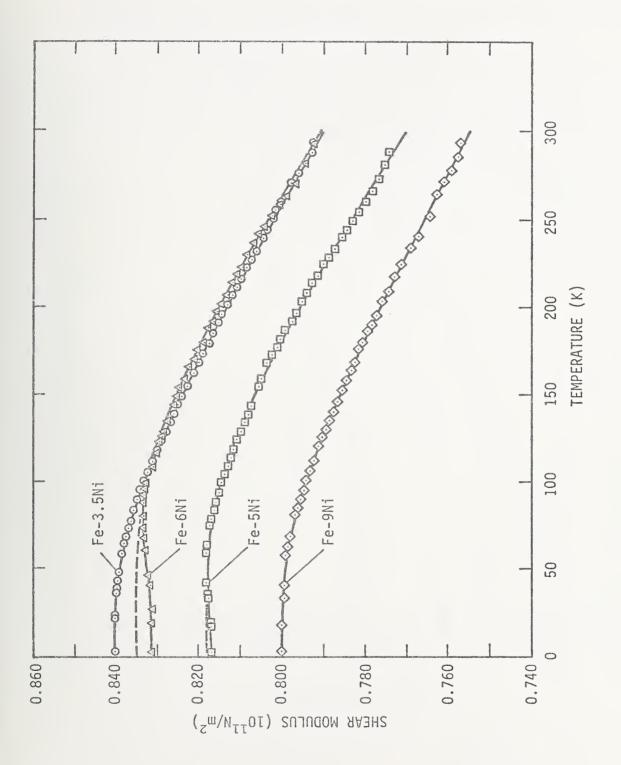

Table 5. Elastic Debye Temperatures at T = O K

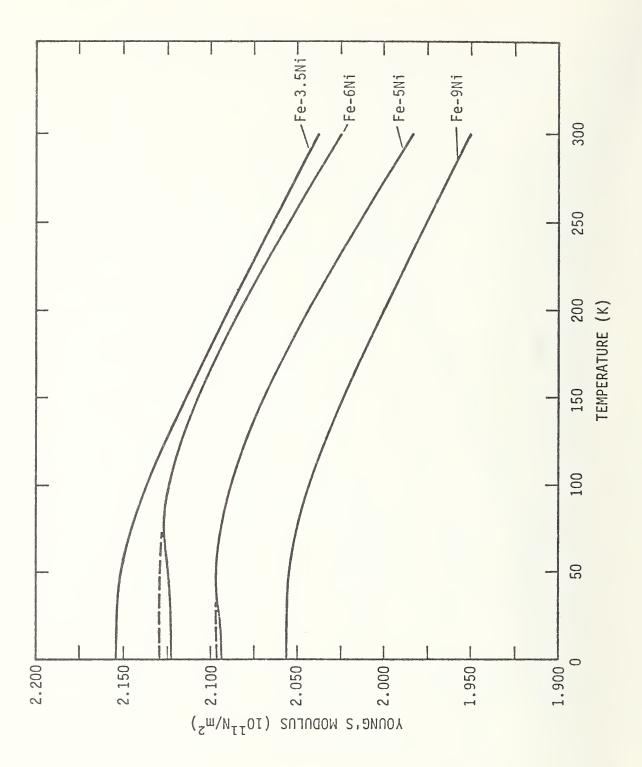

* Reference 24.

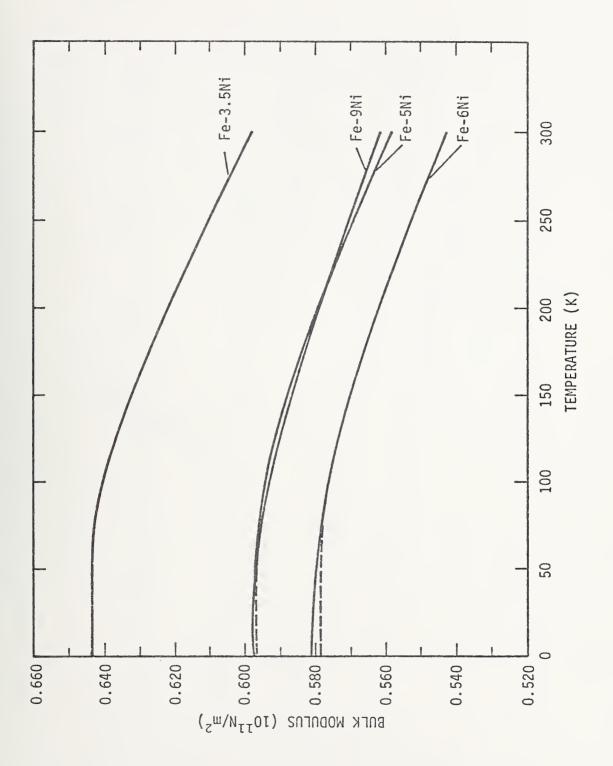


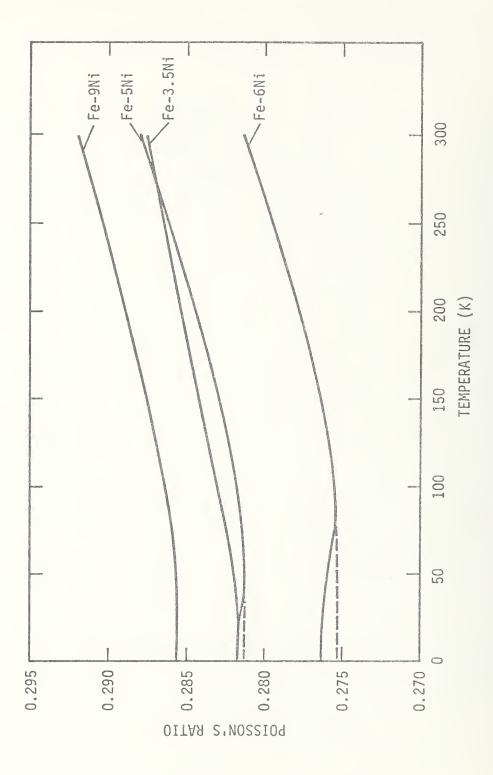


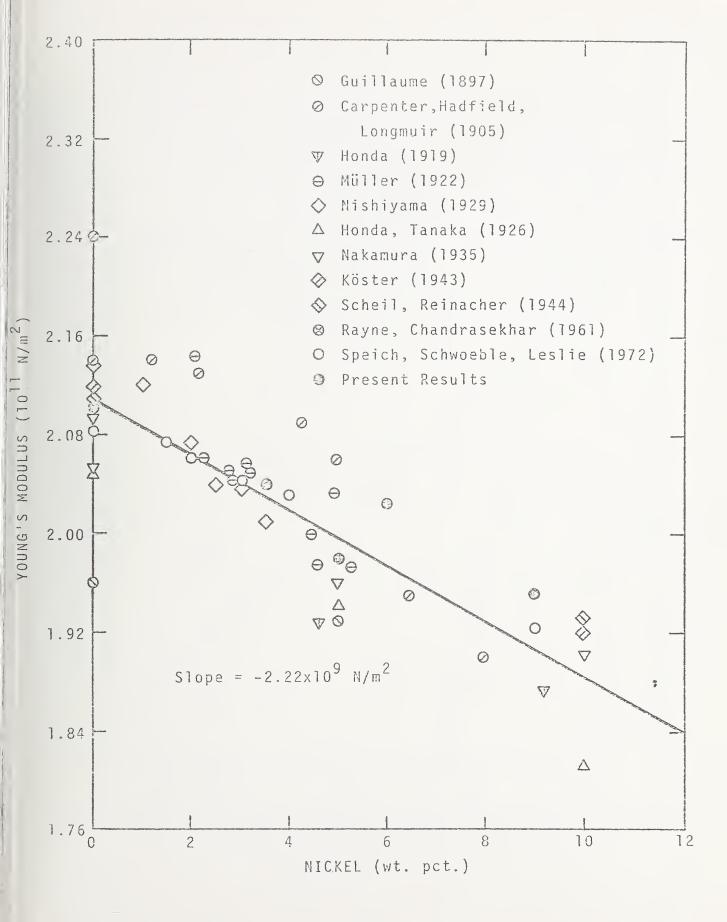


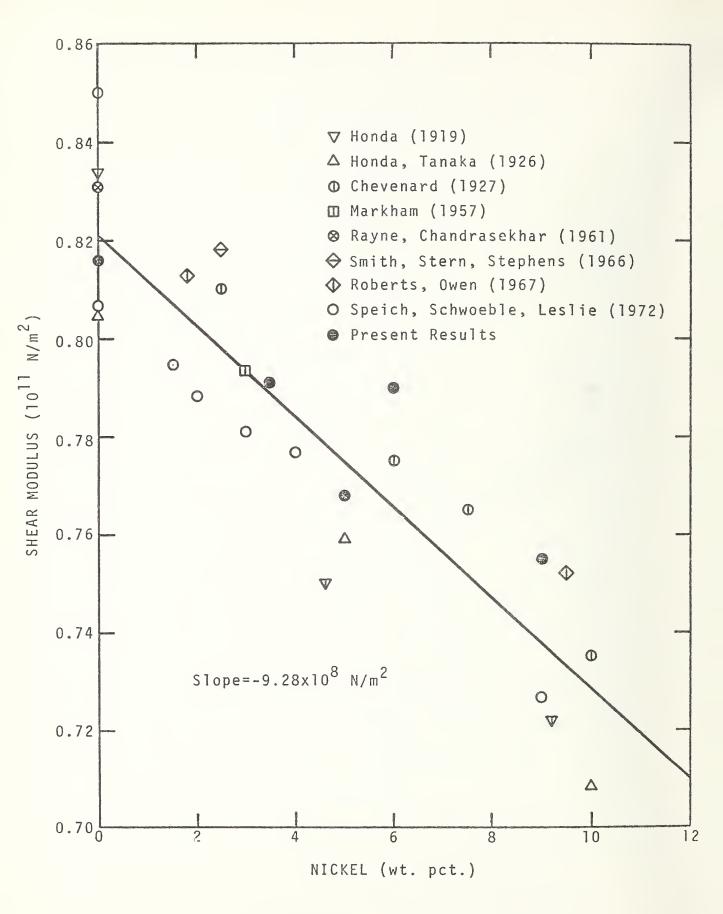


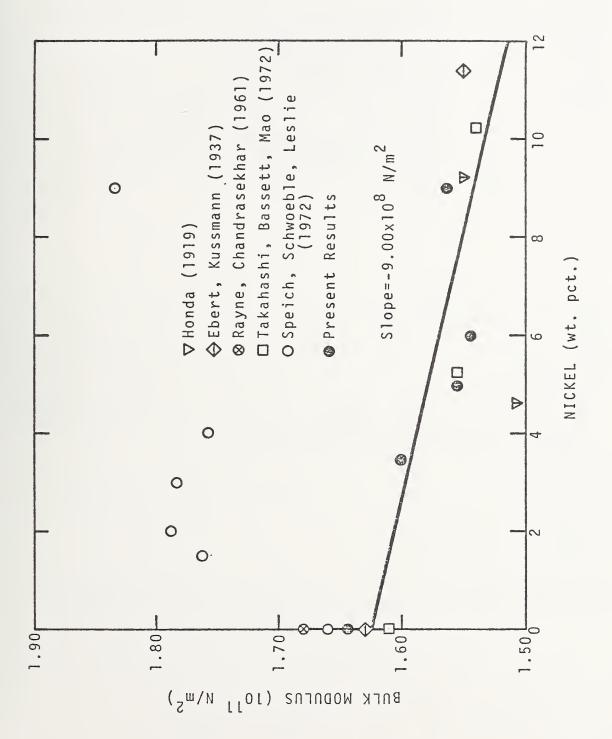


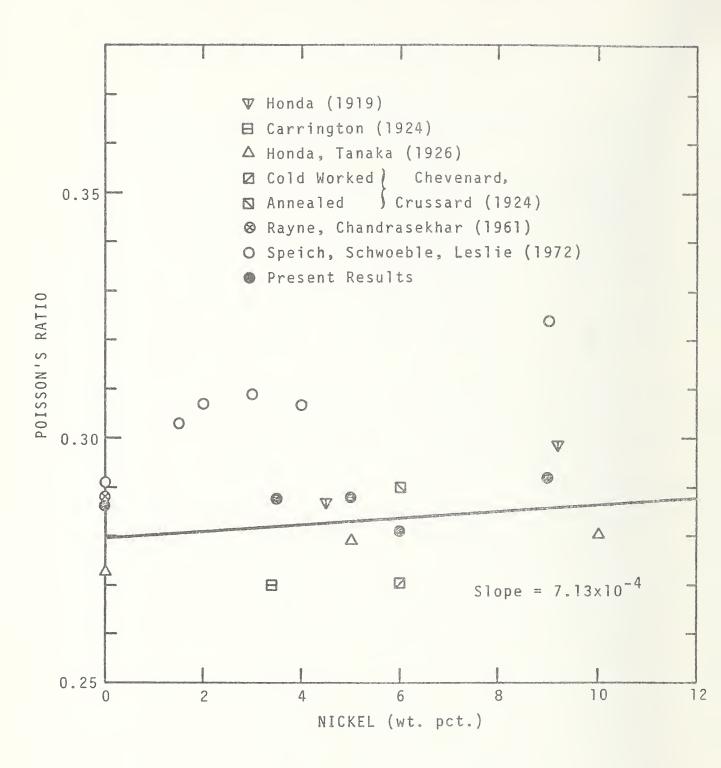












APPENDIX O

A SURVEY OF LNG TECHNOLOGICAL NEEDS IN THE

U.S.A. -- 1974 TO BEYOND 2000

L. A. Sarkes American Gas Association, Incorporated 1515 Wilson Boulevard Arlington, Virginia 22209

and

D. B. Mann Cryogenics Division National Bureau of Standards, Institute for Basic Standards Boulder, Colorado 80302

ABSTRACT

A comprehensive analysis of near and long term research needs has been conducted by the U. S. Gas Industry covering operational areas of Production and Exploration, Synthetic Supply, Transmission, Distribution, Utilization and LNG.

Identifiable research needs are reported for the area of LNG encompassing time frames of:

1974 - 1978	(In detail, year by year)
1979 - 1985	(In 5 year period)
1986 - 2000	(As specific as possible)
Beyond 2000	(As believed necessary).

A year by year examination of LNG research priorities for the first five years are considered vital to overcome the potential suppression of growth in the LNG industry that could result from lack of available technology. Assessments of technical LNG needs beyond 1978 cannot, of course, be too well defined and must be examined annually for purposes of updating.

The National Bureau of Standards Cryogenics Division has become the governmental focal point for LNG research. A survey of NBS LNG research and how these relate to the future technological growth of the LNG industry are discussed.

Paper presented at Fourth International Conference on Liquefied Natural Gas (Algiers, Algeria, June 24-27, 1974)

UN EXAMEN DES BESOINS TECHNOLOGIQUES DU GAZ NATUREL LIQUÉFIÉ AUX U.S.A. -- DE 1974 JUSQU' AU-DELÀ DE 2000

L. A. Sarkes American Gas Association, Incorporated 1515 Wilson Boulevard Arlington, Virginia 22209

and

D. B. Mann Cryogenics Division National Bureau of Standards, Institute for Basic Standards Boulder, Colorado 80302

RÉSUMÉ

Une analyse complète des besoins d'études, à court et à long terme, est menée par l'Industrie du Gaz des U.S.A. (U. S. Gas Industry) concernant les secteurs opérationnels de la Production et de l'Exploitation, de la Production Synthétique, de l'Acheminement, de la Distribution, de l'Utilisation et du Gaz Naturel Liquéfié (G.N.L.).

Les besoins de recherche daus le domaine du G. N. L. sout passés en revue pour les périodes suivantes:

1974 - 1978	(En détail, année par année)
1979 - 1985	(Pour la période de 5 ans)
1986 - 2000	(Aussi précisement que possible)
Au-delà de 2000	(Ainsi que cela semble nécessaire).

Un examen, année par année, des priorités de la recherche en ce qui concerne le G. N. L., est considéré comme vital pour les cing premierès années, afin de surmonter la stagnation potentielle de l'industrie du G. N. L. qui pourrait résulter d'un manque de disponibilité technologique. La répartition des besoins techniques du G. N. L. au-delà de 1978 re peut évidemment pas étre parfaitement bien définie et doit ètre examineé annuellement en vue d'une mise à jour.

La Division Cryogénic du Bureau National des Etalons (National Bureau of Standards Cryogenic Division) est devenue le centre official d'études du G.N.L. Un examen des études du Bureau National des Etalons ainsi que leur relation avec la future croissance technologique de l'industrie du G.N.L. sont discutés.

A SURVEY OF LNG TECHNOLOGICAL NEEDS IN THE U.S.A. -- 1974 TO BEYOND 2000

The total energy needs of the United States are enormous and are continuously increasing. The nation's growing demand coupled with increasing concern for the environment, difficulties in meeting increased demand from traditional sources and current import uncertainties have led to shortages of all types of energy resources within the U.S. Between 1965 to 1970, the total U.S. domestic energy supply grew at a rate of 5% per year. Many energy economists now are foreseeing energy growth rates in the range of 4.1% to 4.8% per year during the 1970's [1].

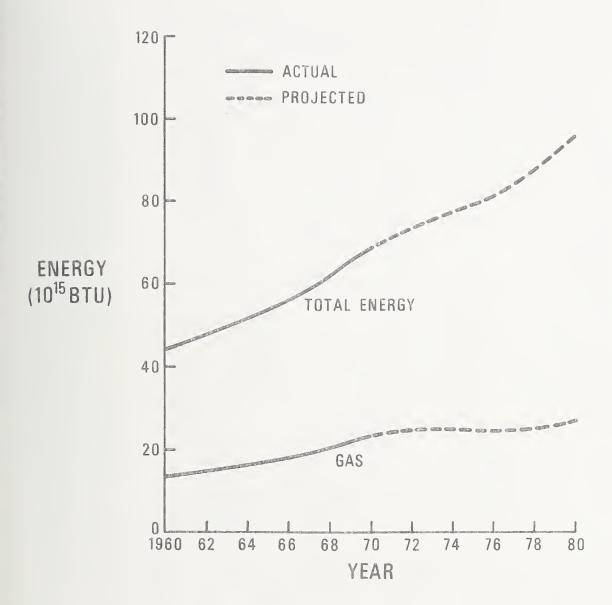
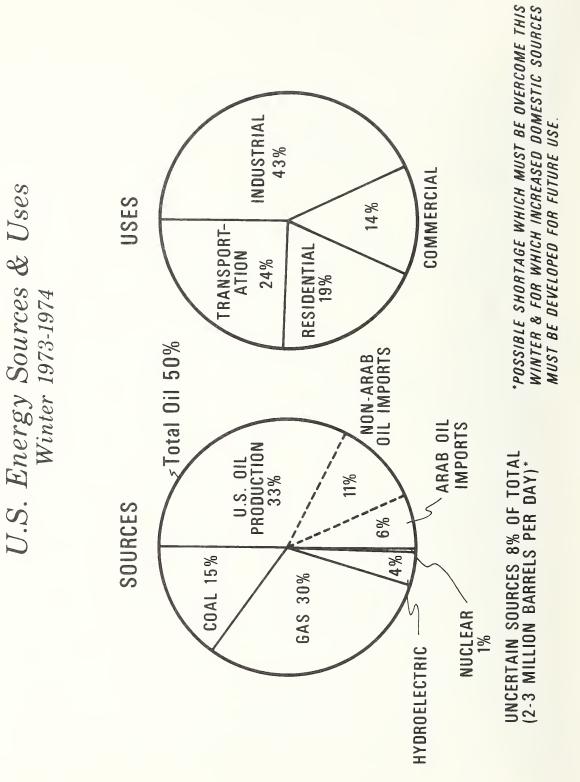
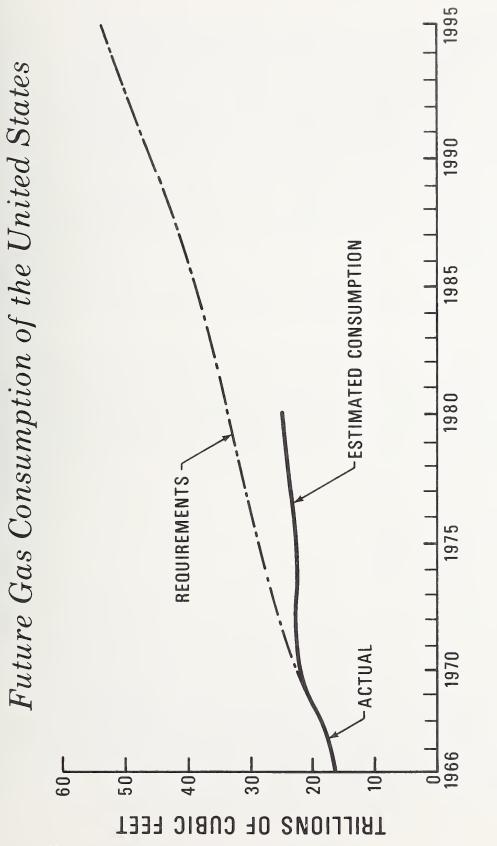
The total energy consumed was 44.8×10^{15} btu in 1960, 54.0×10^{15} in 1965 and 68.8×10^{15} in 1970 (Figure 1). Assuming a total energy demand increase of $4\frac{1}{2}\%$ per year, 96×10^{15} btu will be required during 1980 and 122 $\times 10^{15}$ btu by 1985. Natural gas, coal and oil were the primary resources of the energy consumed in residential, commercial, industrial and transportation sectors of the economy during 1973-74 (Figure 2).

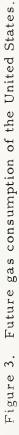
The goal of the gas industry in the United States is to continue to provide a major portion of these future energy needs through the use of untapped natural resources, Canadian imports, synthesized fuel gas production from coal, oil shale, solid wastes, biomass, other natural resources and through the importation of LNG. The options and alternatives in support of this goal have been well defined -- what remains to assure future gas supply is the technological capability to find, produce and deliver this gas to the consumer by new or improved techniques and procedures.

The U. S. gas industry has the incentive and resources to meet this goal. It currently provides about one-third of the nation's total energy requirements. At the end of 1973, it served 43,700,000 residential, commercial and industrial customers through a 981,000 mile underground network of transmission and and distribution lines. The gas industry has grown nearly twelvefold in terms of the book value of total assets since 1945, expanding from a 5 billion dollar industry to more than 59 billion dollars at the end of 1973. Preliminary figures for 1973 show a total consumption of $22\frac{1}{2}$ trillion cubic feet (637 billion cubic meters). The total annual gas requirements in the U. S. are expected to increase to 46.7 trillion cubic feet (1.32 trillion cubic meters) by 1990 as shown in Figure 3.

In the U. S., as in every industrialized nation of the world, the demand for natural gas is increasing. The growing intensity of the worldwide shortages over the past year has touched off a global scramble to obtain supply agreements with producing nations and arrange for construction of related facilities. In the U. S. alone some 10 LNG import terminals [2] are under construction or planned at a cost of almost 1 billion dollars per facility. Each liquefaction complex

3 0-4


Figure 1. Energy consumption in the United States.

0-5

4

0-7

6

accounts for approximately \$300 million with the remainder of the \$1 billion going for ships, pipelines, receiving terminals and storage facilities.

Supplemental gas supply projections for the period 1972-1990 prepared by A. G. A. forecast an LNG importation of 3.2 trillion cubic feet (91 billion cubic meters) by 1990. This projection (Table 1) represents 20% of the total estimated supplemental supply. This thousand-fold increase over the two billion cubic feet (57 million cubic meters) imported during 1972 demonstrates the massive dimension of the rapidly emerging LNG market in the U. S. alone. LNG technology has created a truly international gas industry.

It is axiomatic that this growing section of international gas operations be supported by a comprehensive, continuing research effort to assure energy conservation and safety of all elements, liquefaction, transportation, transfer, storage and plant operation.

Over the past year, the Natural Gas Industry has placed an accelerated emphasis on viewing its supply in relation to projected demand, the reasons for that demand and identification of future technological needs required to balance supply and demand.

Based on an awareness of the role played by Research and Development in furnishing the required advanced technology to assure continued supply and growth, the U. S. Natural Gas Industry undertook a comprehensive study to define the requirements for future research and development and formulated an R&D plan that would assist the gas industry to help satisfy the nation's future energy needs. This study [4] was structured to examine in detail the needs for research and development in each of six major areas, namely

- Exploration and Production
- Synthesized Natural Gas (SNG)
- Transmission
- Distribution
- LIQUEFIED NATURAL GAS
- Utilization

The basic technology required to import LNG exists today (no major technology "breakthrough" required). However, to respond to the rapidly changing demands for energy in all forms, a major research activity has been identified for the gas industry as necessary at this time to accelerate development of this market. The technology involved in ship transportation and largescale liquefaction is being pursued aggressively and adequately by groups of companies with large financial commitments. We recognize, however, that many items of the research plan program we have recommended will impact on the development programs being conducted by companies outside the gas industry. Coordination between these various R&D programs is essential, therefore, particularly in such areas as LNG ship design and the configuration and construction of marine terminals. TABLE 1.

Planning Division - A.G.A. Supplemental Gas Supply Projections (10¹²cubic feet) November 1973

SOURCE	1972	1973	1974	1975	1976	1977	1980	1985	1990
Alaskan Imports	l	l		l			0.6	1.5	2.4
Canadian Imports*	1.0	faras faras	1.2	1.3	1.4	.5	00.	2.4	3.0
LNG Imports	Nil		Nit	0.2	0.4	0.7	1.7	2.7	3.2
Oil Gasification	ŀ	II.	0.2	0.6	ومنتمع • —	1.4	1.7	2.2	2.2
Coal Gasification	l	l	ļ	N :	Nii	0.2	0.4	1.3	2.8
Advanced Fracturing	ļ	I	I	I	ļ	Nii	0.1	0.8	1.5
Total Supplemental Supply ^{**}	1.0	1.1	1.4	2.1	2.9	3.8	6.3	10.9	15.1

*Bureau of Mines 1972 new receipts from Canada

**Supplemental supplies are defined as those which add to lower 48 states natural gas production

8 0-9 Seven critical research needs were selected for immediate study. These items generally cover the metrology and the safety aspects of liquefied natural gas transport, transfer and storage.

This plan also recommends an additional allocation of research funding on an unassigned basis; the rapid changes occurring in the overall LNG picture will undoubtedly create new demands for research. Total cost of the R&D program to meet the essential needs is estimated to be almost \$13 million (Figures 4 and 5).

The LNG research plan includes the results of an industry-wide poll of LNG research needs, both foreign and domestic. Based on the responses to this poll, an original group of some forty-two research needs were defined and identified. It was obvious that many of these research needs were being, or should be undertaken by manufacturers, perhaps with the cooperation of the gas industry. Many of these topics are listed in Table 2.

The LNG plan identified four research projects that could properly be categorized as long-range research (beyond 1980) needs; long distance LNG transfer lines, novel LNG transport methods, improved concepts of LNG storage, and utilization of LNG refrigeration.

These tasks were suggested to provide a more definitive answer to constantly recurring questions such as: are long-range LNG pipelines really feasible and economic?; are there really any new concepts for LNG storage or transportation?; can the refrigeration available from LNG be utilized practically and economically?

It is recognized that specific LNG research is being sponsored by many segments of the International LNG Industry. These efforts are applauded and are expected to continue as the LNG market continues to grow. It is our purpose, however, to recognize and identify those research areas that can impact upon and re-enforce the many individual LNG research efforts underway or planned by the various elements of the LNG industry. Communication internationally between the various programs as exemplified by LNG-4 is deemed essential to assure an orderly and effective worldwide growth in LNG trade.

The National Bureau of Standards, having played a vital role in past LNG research in support of the gas industry plan, has a number of programs underway that are of importance to the future of the LNG industry.

LNG RESEARCH AT NBS

As the LNG industry has matured from concept through demonstration projects to full scale peak shaving, satellite and base load operations, the requirements for information necessary for implementation of current and future LNG application have been significant. This required information exists in many forms, including data for equipment design, decision making

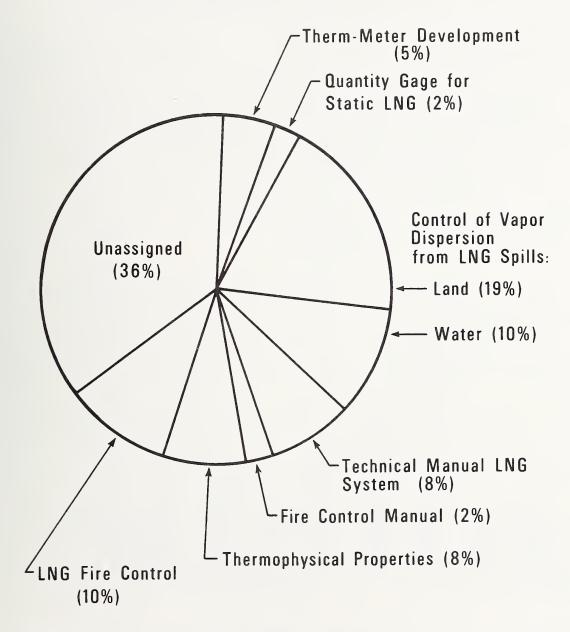


Figure 4. Allocation of LNG research and development costs - first five years [4].

å

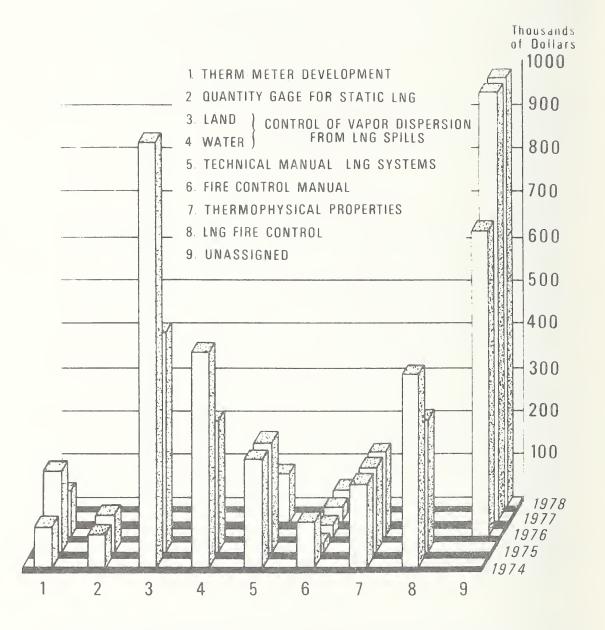


Figure 5. Annual LNG research and development funding [4].

۵

TABLE 2.

SECONDARY LNG RESEARCH TASKS -- AGA GAS RESEARCH PLAN [4]

LNG Facility Siting Criteria Definition of standards and codes Risk analysis Analysis of hazards to LNG from adjacent facilities Environmental impact of LNG (cold, vapor and fire) Flame detection systems

Properties of Materials Used in LNG Service Insulation research Structural materials Other materials

LNG Transportation Systems Research Development of new ship unloading concepts Reliquefiers for ships Risk analysis re: storage, tanks, equipment Purge of LNG transfer systems Develop effective, quick shutdown systems (e.g., water hammer) New concepts in moorings Supertanker port Supmarine pipeline Economics of long distance transport Ship construction and strength

during collision

Processing Improvements Improved liquefiers, vaporizers, etc. Limits of water, CO2 and other trace contaminents as a function of onstream time without deriming Thermal and chlorine pollution of cooling water Long Range Research Area Short Distance LNG Pipelines Review existing files and literature to search for new technology Other LNG conservation research Effect of SNG and imported LNG on peak shaving LNG operations Static electricity in plants and ships: sources, effects, methods of preventative design Earthquake design Effects of LNG spill on outer, noncryogenic hull plate of tanker Tanker disturbance of shore and bottom life in shallow canals

Contingency plans for LNG industry

(which process to choose), commodity transfer (providing equity in trade), data for safety applications as well as information for local, state, federal and international codes and standards, preparation of environmental impact statements and data for establishing insurance rates and financial considerations.

Certain well defined areas of required information fall within NBS traditional roles in this specialized field of cryoengineering and cryophysics. It was believed that NBS could combine both leadership and supportive roles to other government agencies and industry by (1) providing physical data of national importance not previously available in sufficient accuracy, (2) measurement methods, test methods and instrumentation, (3) standard assistance to voluntary and regulatory standardizing bodies, and (4) innovative technological leadership in methods and systems to reduce losses in transport and storage and to provide necessary expertise to facilitate and reduce the time required for program implementation.

Historically, NBS, through its Cryogenics Division in Boulder, Colorado, has supported government and industrial programs in cryoengineering and cryophysics since 1952. Concerted efforts in the general field of liquefied natural gas were begun in 1968. Currently, our program (having 14 elements or parts) provides the content of liquefied natural gas technology at NBS and is supported by a group of government agencies and industrial organizations (Table 3) which have a broad range of requirements. For purposes of explanation the 14 programs can be categorized into three more or less traditional NBS areas -- reference data, measurement science, and technology transfer.

Reference Data

By 1965 programs involving liquefied natural gas had demonstrated its viability as a peak shaving, satellite and supplemental fuel. Requirements for property data included PVT relationships, enthalpy, entropy, internal energy, dielectric properties, specific heats, heats of vaporization, speed of sound and the transport properties of viscosity, thermal conductivity and thermal diffusivity. Properties data were available from a number or sources and, where useful for certain purposes, were found to be insufficient for future planning, inadequate for many process designs and of either undefined or of inadequate precision and accuracy. What was needed therefore were accurate precise reference data over a broad range of pressures and temperatures generally extending from near the triple point of methane to well above ambient conditions. LNG presented an additional challenge since it is a nonideal mixture of five or more hydrocarbon fluids and nitrogen, and the LNG mixture fraction will vary with source, time and storage treatment. The reference data must be of such quality as to classify it as basic reference values where foreseeable advances in measurement technology would not materially affect the listed values.

TABLE 3.

LIST OF AGENCIES AND COMPANIES CURRENTLY SUPPORTING LNG RESEARCH AT NBS

U. S. Department of Commerce

National Bureau of Standards Maritime Administration

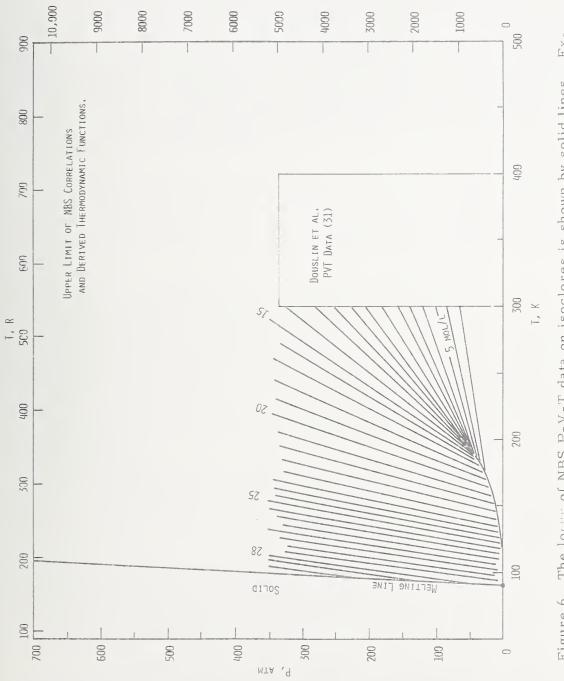
American Gas Association, Incorporated

Pipeline Research Committee (AGA)

U. S. General Services Administration

U. S. Federal Power Commission

LNG Density Committee consisting of:


El Paso Natural Gas Tennessee Gas Pipeline Distrigas Corporation Columbia Gas Service Corp. Gaz de France Natural Gas pipeline Company Easco Gas LNG, Incorporated Transcontinental Gas Pipe Line Corporation Chicago Bridge & Iron Company Shell International Gas, Ltd. Sonatrach Southern California Gas Company Phillips Petroleum Company Texas Eastern Pipeline Company Marathon Oil Company Mobil R&D Company Tokyo Gas Company, Ltd.

A comprehensive program including both interim and long term objectives is currently in progress. The interim program involves the definition of densities of LNG as a function of pressure, temperature and mixture fraction. A 17 company committee is participating in the development of these accurate data of liquefied natural gas mixtures to provide a basis for custody transfer methods and equitable custody transfer agreements. The program will provide a data base for mass and density gauging. The objective of this LNG density measurement program is to provide accurate (0. 1%) measurements of the densities of saturated liquid methane, ethane, propane, butanes, nitrogen and their mixtures, mainly in the temperature range 90-150 K. at pressures to 10 atmospheres. Measurements are in progress and will include six pure components, about 60 binary mixture compositions, and about 13 multicomponent mixture compositions. A high precision (0,05%) magnetic densitometer (based on Archimedes Principle) has been designed and constructed and is in the final stage of proving. The program is in its second year of operation with anticipated completion in 1975.

The long term fluids program involves a wide range of properties in addition to density. In general, the pure components of LNG are being studied and analyzed extensively over broad ranges of pressure and temperature, and then mixture laws applied or developed and confirmed with experimental verification. An example of this approach is the recently completed program on pure methane. Prior to 1970, interest in methane was general and was primarily directed to pure methane considered as a cryogenic fluid [5-17]. Several progress reports were published by Goodwin [18,19] and the final report is now available [20]. This latter report includes extensive physical properties data for methane such as fixed point constants, melting line, vapor pressure, orthobaric densities, virial equations, equation of state, specific heats, heats of vaporization and speed of sound. In addition, derived properties of entropy, enthalpy, and internal energy are included along with detailed explanations of computational methods including computer programs. Tabular data in both SI and British Units are also provided with estimates of uncertainties of all data. Figure 6 shows pressure and temperature boundaries of properties described by Goodwin.

It is acknowledged that this publication of the thermophysical properties data is not necessarily in the form most useful for engineering applications. Various charts and graphs will be required as well as other data forms of lessor or greater detail. This major three-year program has produced what we believe to be "best value" reference data on the major component of LNG.

The work on methane has also resulted in publication of accurate dielectric constants data for pure, compressed and liquefied methane [21]. This data should prove useful in providing a data base for mass and density gauging.

Current work in the long term LNG properties program is directed to the second most important constituent of LNG -- ethane. It is the intention of the program to methodically consider each of the pure constituents of LNG in a similar manner as previously described for methane. Current status of the ethane work involves establishing a firm foundation for computing tables of provisional values of thermodynamic functions. The activity has two purposes: to indicate those physical properties for which experimental data are lacking or inadequate and to provide useful results at an early date. These properties include vapor pressure, virial state equation, orthobaric densities, and formulations of the melting line of the ideal gas thermofunctions. Under the present level of effort the work on ethane should be completed in April 1975; propane, the butane and LNG mixtures will follow with a completion date for the entire program by 1980.

Measurements of the liquid vapor equilibria of cryogenic fluids [22], refractive index of liquid and vapor methane and direct measurement of sound velocity and thermal diffusivity are well underway. A program on transport properties -- viscosity, thermal conductivity -- is in the initial state of development.

Reference data on thermal and mechanical properties of structural and insulation materials are essential to facilitate material selection on the basis of cost and safety. Proper material choice is of major economic importance for cryogenic containers, particularly in sea transport of LNG. Studies to define fracture toughness and fatigue crack growth rate in the temperature range 76-300 K are currently being conducted on a series of iron-nickel alloys and aluminum alloys. This materials properties assessment has included the compilation of all the fatigue and fracture data on iron-nickel steels and their weldments; a collection of ship design data and analysis of materials and use; an assessment of the current materials requirements for LNG containers by the American Bureau of Shipping, the U. S. Coast Guard and ASME Pressure Vessel Code. In addition, a bibliography of literature containing data on aluminum alloys, non-metallics and insulation materials is in progress. Results and data for this program should be available after 1 July 1974.

Measurement Science and Methodology

Instrumentation and instrumentation methods are essential to process control, safety and custody transfer of liquefied natural gas. The NBS LNG program contains two examples of application of field type measurements. The objective is to define the ability of the instrument to determine and maintain a known accuracy and precision of the parameter of interest, such as density or flow rate.

A density reference system consists of a volume of LNG of adequate size and dimension to accept the measurement element of candidate densitometers. This volume will be filled with LNG of known density traceable to the reference data established under the mixtures program referred to in the previous section. Density, pressure, temperature and constituent fraction will be varied over a range of controlled conditions and the performance of the densitometer will be evaluated. Long term stability of calibration will be of interest as a logical extension of this work would be the development of a transfer standard for field type densitometer certification. The LNG density reference system is currently in the second year of a three year planned program. The reference system is under construction and proving, with the completion date of the program scheduled for 1975.

The demonstration of an instrumentation method which would measure the heating value of liquefied natural gas flowing in a pipeline is the subject of the second example of measurement science in our LNG program. The project approach combines existing and evolving measurement technology with industry standard practices. The experience gained on a previous cryogenic flowmetering program [23-26] will provide necessary scaling information for the flowmetering portion of this three element measurement system. The second element of the heating value measurement system is a densitometer evaluated and calibrated as described previously. The third element of the heating value measurement involves an industry compatible flow calorimeter which will provide heating value per unit mass. A combination of these three measurement elements should provide a time-based rate for heating value of liquefied natural gas flowing in a pipeline. The objective of this three-year program will be to demonstrate the precision and accuracy of such a measurement system and to provide necessary supportive data for scaling to large pipe sizes. The program is scheduled for completion in 1976.

Technology Transfer

It is the objective of this portion of the LNG program to provide a broad dissemination of information on general cryogenic subjects. An LNG Quarterly [27] is published and distributed each April, July, October and January listing all significant papers, reports, and patents relating to LNG, LNG properties and technology. LNG related information has been entered into the NBS Cryogenic Data Center's information system for quick retrieval and comprehensive bibliographies on the properties and technology of LNG are available. There are presently three bibliographies involved; methane properties, methane mixture properties and processes and equipment involving methane and LNG. These three are updated each October [28-30].

A second example of technology transfer is a program concerned with safety of large LNG storage tanks. This program is primarily a consultation and advisory type service to a regulatory agency charged with the responsibility of approval for the location and safe operation of such storage containers.

These examples are of a short term transitory type but indicate the approach in providing this type of information where it is needed and where NBS can provide a proven capability.

FUTURE PLANS

The ongoing program of providing reference data, measurement science methodology and technology transfer can be projected into the early 1980's. An outline of such research topics is suggested by Table 2. The definition of priorities for these secondary tasks will certainly provide the framework for LNG research in the period 1980-1990 and beyond.

In the long-range future, there may be a number of possibilities for pipeline distribution of energy or development of new sources of energy that will impinge upon gas utility operations, and require continuing definition of research objectives and goals. Several of these possibilities are listed below.

Methanol, distributed as vapor or liquid	Clathrates, hydrates, and hydrides
Low-btu gas	Hydrogen
Coal slurries	Ammonia-hydrazine
Solar energy supplementation	Geothermal energy

Many of these opportunities will require new facilities and new concepts of business strategy by the gas utilities, but offer important opportunities either on a general basis or in specific localities. A research planning system to monitor and review these alternatives will be the most effective way for the gas utilities to understand and posture themselves to capitalize upon these shifts in a timely fashion.

REFERENCES CITED

- [1] "Energy Policy Issues for the United States During the Seventies,"
 A. D. Little, Inc. Report 1-2650.
- [2] Oil and Gas Journal (1973) October 22,
- [3] Gas Review (revised) 1, 4 (1974) Jan. 15.
- [4] Gas Industry Research Plan 1974-2000, A.G.A. Publication M-20274 (1974) January.
- [5] Armstrong, G.T., Brickwedde, F.G. and Scott, R.B., "The Vapor Pressures of the Deuteromethanes," J. Chem. Phys. 21, No. 7, 1297-8 (1953) July.
- [6] Armstrong, G. T., Brickwedde, F. G. and Scott, R. B., "Vapor Pressures of the Methanes," J. Res. Nat. Bur. Stand. (U.S.) <u>55</u>, No. 1, 39-52 (1955) July.
- [7] Hall, L. A., "A Bibliography of Thermophysical Properties of Methane from 0 to 300°K," Nat. Bur. Stand. (U.S.) Tech. Note 367, 121 pages (1968) May.
- [8] Mann, D. B. and Roder, H. M., "Liquefied Natural Gas as a Cryogenic Fluid - Instrumentation and Properties." (a) <u>Proceedings Transmission</u> <u>Conference of A. G. A. Operating Section</u> (New Orleans, La., May 26-27, 1969) T-98--T-106, American Gas Association, Arlington, Va. (1970);
 (b) Cryogenic Ind. Gases 5, No. 7, 23-9 (1970) July-August (out of print).
- Johnson, V. J. (General Editor), "A Compendium of the Properties of Materials at Low Temperature - Phase I," Wright Air Development Div., Wright-Patterson AFB, Ohio, Tech. Rept. No. WADD 60-56 (Prepared at National Bureau of Standards, Boulder, Colo., Cryogenics Div., under Contr. No. AF 33(616)58-4). Part I. Properties of Fluids, 489 pages (1960) July. Part II. Properties of Solids, 333 pages (1960) October. Part III. Bibliography of References, 165 pages (1960) October.
- Ziegler, W. T., Mullins, J. C. and Kirk, B. S., "Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially below one Atmosphere Pressure. III. Methane," Georgia Inst. of Tech., Atlanta, Engineering Experiment Station, Tech. Rept. No. 3 (Prepared under NBS Contr. No. CST-7238), 60 pages (1962) August.
- [11] Ziegler, W. T. and Mullins, J. C., "Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially below one Atmosphere. IV. Nitrogen and Fluorine," Georgia Inst. of Tech., Atlanta, Engineering Experiment Station, Tech. Rept. No. 1 (Prepared under NBS Contr. No. CST-7404), 59 pages (1963) April.

- [12] Hilsenrath, J., Beckett, C. W., Benedict, W. S., Fano, L., et al.,
 "Tables of Thermal Properties of Gases," Nat. Bur. Stand. (U.S.)
 Circ. No. 564, 488 pages (1955) November.
- Ziegler, W. T., Kirk, B. S., Mullins, J. C. and Berquist, A. R.,
 "Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below one Atmosphere Pressure. VII. Ethane," Georgia Inst. of Tech., Atlanta, Engineering Experiment Station, Tech. Rept. No. 2 (Prepared under NBS Contr. No. CST-1154), 65 pages (1964) December.
- Stewart, R. B. and Johnson, V. J. (General Editors), Compressibility Factor Chart for Methane; Z vs P (122 to 273°K; 1 to 600 atm.). From: "A Compendium of the Properties of Materials at Low Temperature -Phase II." Wright Air Development Div., Wright-Patterson AFB, Ohio, Tech. Rept. No. WADD 60-56 (1961).
- [15] Pressure-Enthalpy Diagram of Methane (90 to 480°K; 1 to 300 atm.), Leiden Univ., Netherlands, Kamerlingh Onnes Lab. (1940).
- [16] Ziegler, W. T., "The Vapor Pressures of Some Hydrocarbons in the Liquid and Solid State at Low Temperatures," Nat. Bur. Stand. (U.S.) Tech. Note No. 4, 17 pages (1959) May.
- Flynn, T. M., "A Bibliography of the Physical Equilibria and Related Properties of Some Cryogenic Systems," Nat. Bur. Stand. (U.S.) Tech. Note 56, 123 pages (1960) May.
- Goodwin, R. D., "Thermophysical Properties of Methane: Virial Coefficients, Vapor, and Melting Pressures," J. Res. Nat. Bur. Stand. (U.S.), Sect. A, 74, No. 5, 655-60 (1970) Sept. -Oct.
- [19] Goodwin, R. D., "Thermophysical Properties of Methane: Orthobaric Densities and Some Thermal Properties," J. Res. Nat. Bur. Stand. (U.S.), Sect. A, 75, No. 1, 15-21 (1971) Jan. -Feb.
- Goodwin, R. D., "The Thermophysical Properties of Methane from 90 to 500 K at Pressures to 700 Bar," NBSIR 73-342, 274 pages (1973) October.
- [21] Straty, G. C., and Goodwin, R. D., "Dielectric Constant and Polarizability of Saturated and Compressed Fluid Methane," Cryogenics <u>13</u>(12), 712-15 (1973) December.
- [22] Kidnay, A. J., Hiza, M. J. and Miller, R. C., "Liquid-Vapor Equilibria Research on Systems of Interest in Cryogenics -- A Survey," Cryogenics <u>13</u>(10), 575-99 (1973) October.

- [23] Dean, J. W., Brennan, J. A., Mann, D. B., and Kneebone, C. H.,
 "Cryogenic Flow Research Facility Provisional Accuracy Statement," Nat. Bur. Stand. (U.S.) Tech. Note No. 606, 40 pages (1971) July.
- [24] Brennan, J. A., Dean, J. W., Mann, D. B., and Kneebone, C. H., "An Evaluation of Positive Displacement Cryogenic Volumetric Flowmeters," Nat. Bur. Stand. (U.S.) Tech. Note No. 605, 134 pages (1971) July.
- Brennan, J. A., Stokes, R. W., Mann, D. B. and Kneebone, C. H.,
 "An Evaluation of Several Cryogenic Turbine Flowmeters," Nat. Bur.
 Stand. (U.S.) Tech. Note No. 624, 90 pages (1972) October.
- [26] "Specifications, Tolerances, and Other Technical Requirements for Commercial Weighing and Measuring Devices," Nat. Bur. Stand. (U.S.) Handbook 44 - 4th Ed. (1971).
- [27] LNG Quarterly, A publication of the NBS Cryogenic Data Center, Boulder, Colo. 80302.
- [28] NBS Cryogenic Data Center, "The Thermophysical Properties of Methane -- A Selected Bibliography," B-1055, 55 pages (NBS, Boulder, Colo.) (1973) Sept.
- [29] NBS Cryogenic Data Center, "The Properties of Methane Mixtures -- A Selected Bibliography," B-1056, 75 pages (NBS, Boulder, Colo.) (1973) Sept.
- [30] NBS Cryogenic Data Center, "Liquefied Natural Gas Technology," B-1075, 44 pages (NBS, Boulder, Colo.) (1973) October.
- [31] Doslin, D. R., Harrison, R. H., Moore, R. T., and McCullough, J. P., "PVT Relations for Methane", J. Chem. Eng. Data <u>9</u>, No. 3, 358 (1964).

APPENDIX P

LOW TEMPERATURE FRACTURE BEHAVIOR OF FERRITIC Fe-Ni ALLOY STEELS *

R. L. Tobler, R. P. Mikesell, R. L. Durcholz and R. P. Reed

Cryogenics Division Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

Fracture toughness tests over the interval 298-4K and fatigue crack growth rate tests at 298, 111, and 76K are reported on selected Fe-Ni alloys which are commerically available for potential use in storage or transportation of LNG. These alloys include Fe-6Ni and Fe-5Ni in the QLT or austenitized, temperized, and reversion annealed condition, and Fe-9Ni in the quenched and tempered condition. Linear elastic fracture mechanics parameters (K_Q , K_{IC}) and J-integral (J_{IC}) test data are presented for 1.25 inch thick compact tensile specimens. Discussion includes comparisons of fatigue crack growth rate and f racture data between alloys.

Key words: Crack propagation, cryogenics, fracture toughness, iron alloys, mechanical properties, nickel alloys, steels.

^{*}This work was conducted at the National Bureau of Standards under the sponsorship of the Maritime Administration, U. S. Department of Commerce.

INTRODUCTION

The increasing role of natural gas as a source of energy has prompted recent research into the mechanical and physical properties of materials related to LNG technology. Considerable effort has been devoted to characterizing the mechanical behavior of materials for use in LNG storage and transportation. The basic design considerations for tankage materials are low temperature strength, fracture toughness, and fatigue properties. Recent research has concentrated on providing such design data for 5083 aluminum alloy and the ferritic 5, 6, and 9Ni steels.

The most important characteristic of the low temperature mechanical behavior of ferritic steels is the ductile-to-brittle transition. The transition occurs over a narrow temperature interval and is marked by an abrupt change in the fracture behavior of sharply notched or cracked specimens. At higher temperatures these materials are ductile and fail by fibrous or dimpled rupture. At temperatures below the transition regime, failure occurs predominantly by cleavage, a brittle fracture mode.

To reduce the probability of brittle fracture in service, the structural applications of ferritic materials are limited to environments where the service temperatures remain above the ductile to brittle transition temperature. A mild steel may be brittle at temperatures near the ice point but, for similarly heat treated steels, the transition can be lowered progressively by increasing nickel concentration^{1,2}

> 1 P-3

Nine percent nickel steel is a weldable ferritic material which was developed in the 1940's for cryogenic applications^{1, 3}. Because it has relatively high strength and retains toughness down to liquid nitrogen temperatures (77 K, -320 °F), it has been used extensively for LNG containment (III K, 260 °F). Nickel is an expensive alloying element, however, and for economic reasons it has become desirable to optimize the nickel content of ferritic steels intended for LNG tankage.

Five and 6 percent nickel steels were recently developed having reduced nickel concentration while retaining high toughness at 111 K. In these steels the effect of decreased nickel is compensated by the application of a special three step heat treatment. The heat treatment of 5 percent Ni steel has been termed the austenitized, temperized, and reversion annealed condition⁴. The heat treatment of 6 percent Ni steel has been referred to as the QLT condition². Such treatments are departures from the double normalized and tempered or quenched and tempered heat treatments which are applied to 9 percent nickel steel. The details and benefits of the three step be at treatment are described elsewhere^{4, 5}

The high toughness levels achieved with nickel steels have created difficulties in measuring valid fracture toughness design data. The transition temperatures are easy to determine by a number of mechanical tests⁶, including Charpy impact; but these tests do not provide data on allowable stress levels for materials in service. Linear eleastic fracture mechanics tests are capable of providing a useful design parameter, K_{IC} ; but K_{IC} testing of nickel steels has

2

not proven very successful because large and impractical specimen sizes are required for valid test results.

The recently developed J-integral technique is an important tool for evaluating tough materials such as the nickel steels. The theory of the J-integral was originated by Rice.⁷ Subsequent experiments by Begley and Landes⁸⁻¹⁰ verified that J can be used as a fracture criterion in cases where the specimen exhibits elastic, elastic-plastic, or fully plastic load-deflection behavior.

A practical consideration is that the specimen size required for J-integral testing is not as large as that for linear elastic K_{IC} testing. A tentative size criterion for the J-integral test is that¹⁰:

B, b,
$$a \ge 25 (J/\sigma_{flow})$$

where B is specimen thickness, b is ligament length, a is crack length, and σ_{flow} is the average value of the 0.2 percent offset yield stress and the ultimate flow stress. B is typically an order of magnitude smaller than the value required for linear elastic behavior as calculated from the size criterion of the ASTM Test for Plan Strain Fracture Toughness of Metallic Materials (E-399-72):

B,
$$a \ge 2.5 \left(\frac{K_{IC}}{\sigma_{ys}}\right)^2$$

This paper describes fatigue crack growth rate and fracture toughness tests on 5, 6, and 9 percent Ni steels. J-integral tests are applied to these materials and the fracture parameter J_{IC} is reported over a wide range of temperatures. J_{IC} measurements are converted to K_{IC} values, thus providing useful design data at LNG temperatures and other temperatures of interest.

EXPERIMENTAL PROCEDURES AND APPARATUS

Materials

Five, 6 and 9 percent nickel steels were obtained in the form of 1.25 inch thick plates. All materials were commerically heat treated. The 5 percent Ni steel was austenitized, temperized and reversion annealed according to the ASTM Specification for Pressure Vessels Plates, Five Percent Nickel Alloy Steel, Specially Heat Treated (A - 645 - 72a). The 9 percent nickel steel was quenched and tempered according to the ASTM Specification for Pressure Vessel Plates, Alloy Steel, Quenched and Tempered 8 and 9 Percent Nickel (A 553-72a). The 6%Ni steel was in the QLT condition²; at present, there is no specification on the heat treatment of this material.

Chemical compositions and mechanical property data are presented in Tables 1 and 2. All tensile properties referred to in this investigation were t he average values of two tests performed in accordance with the ASTM Methods of Tension Testing of Metallic Materials (E 8-69).

All fatigue and fracture experiments were performed on 1.25 inch (3.17 cm) thick compact tensile specimens having the geometry illustrated in Figure 1. The width of thickness ratio (W/B) was 2.4, and the planar dimensions were equal to those of a 1.50 inch (3.81 cm) thick specimen proportioned according to ASTM E-399-72. The notch was machined parallel to the rolling direction,

P-6 4

producing a TL orientation. Loadline displacement was measured by means of a modified notch configuration as shown in Figure 1. Roberts' K calibration was used¹¹.

Test Procedures

The majority of tests were conducted at 298 K (70°F), 195 K (-108°F), 111 K (-260°F) and 76 K (-320°F). Two fracture tests were performed in liquid helium at 4 K (-459°F). The temperature of 76 K was obtained by immersion in liquid nitrogen; 195 K was obtained by immersion in a mixture of alcohol and dry ice; and 111 K was obtained by testing in nitrogen vapor. Before testing s pecimens were allowed between thirty and sixty minutes to reach thermal equilibrium.

A temperature control system with a chromel-constantan thermocouple sensor was used to maintain a temperature of lll K ± 3K. The control thermocouple was located on the specimen at the level of the fatigue crack. Vapor from a pressurized liquid nitrogen dewar was introduced to the cryostat through a solenoid valve. The solenoid valve permitted the flow of cold vapor as required by opening and closing automatically in response to the electrical signal from a commercial temperature recorder.

Fatigue testing was conducted on a 20,000 lbs. (100 kN) capacity MTS servo-hydraulic mechanical test system*. This was a "cryogenic" model

*Tradenames of equipment and materials are used for clarity and to conform with standard usage in the literature. Their use does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the equipment or materials are necessarily the best available for the purpose.

P-7

with the accuator positioned above the level of the specimen to accommodate the cryostat and to allow access from below for assembling dewars. The testing machine and associated equipment are illustrated in Figure 2.

A 20,000 lb. (100 kN) cryostat was used for fatigue tests. The load carrying frame consists of two tubular stand-off compression members linked at the lower ends with a maraging steel bridge. Fiberglass reinforced plastic was used in construction of the stand-off columns to minimize heat conduction. The lower specimen grip was pinned in place in the center of the bridge, and the upper grip was threaded to the end of the pull rod. A cylindrical fiberglass reinforced plastic dewar was used to enclose the load frame, specimen, and clip gage for cryogenic tests. A similar cryostat was employed in fracture testing, except that the stand-off columns were stainless stell and load carrying capacity was 60,000 lbs. (267 MN).

ASTM type clip gages were used at all testing temperatures. Commercially available foil resistance strain gage films were bonded to the clip gage beams using an adhesive suitable for low temperature applications. The clip gages were calibrated at temperatures from 298 K to 76 K, but there was not a large change in sensitivity. Clip gage linearity met the requirements of ASTM E-399-72 over the maximum operating range of up to 0.090 inches (0.229 cm) displacement.

Crack Growth Rate Tests

Fatigue tests were performed using load control at a frequency of 24 Hz. The load cycle was sinusoidal at a constant stress ratio (minimum/maximum load) of 0.1. Dynamic fatigue loads were measured and controlled to within 1-2 percent by means of a digital peak recording device.

The change in crack length during crack growth rate tests was monitored by compliance measurements. Direct measurement of crack lengths at the specimen surface was not possible during cryogenic tests. The compliance technique is based on the fact that for a given load, the specimen compliance (reciprocal of stiffness) increases with increasing crack length. Compliance methods are discussed in detail elsewhere^{12,13.}

Experimental crack length-compliance correlations were obtained for each material and temperature. An X-Y recorder was used to measure the compliance for a number of specimens of varying crack lengths. Fatigue striations were generated by load changes during precracking and crack growth rate tests so that several crack length-compliance measurements were obtained from each specimen. The data were plotted as a function of crack length which was measured as an average of three readings at the center and quarter points of specimen thickness.

Theoretical crack length-compliance curves were calculated from the generalized solution given by Roberts¹¹ but these were not in complete agreement with the experimental correlations. Comparison showed that the calculated curves consistently under estimated the true crack lengths by 2-4%. The difference between the calculated and the experimental curves may result from crack front curvature effects, but it can not be attributed to uncertainty in calculations since Young's moduli were known to within 1% at all temperatures from tests on the same stock materials¹⁴.

The procedure for determining crack growth rates involved plotting the static compliance at intervals during the tests. Using the experimental crack length - exompliance correlation, crack length could then be obtained,

P-9

to within ± 1.5 percent. Crack length (a) was plotted versus the total number (N) of fatigue cycles and the crack growth rate (da/dN) was determined by graphical differentiation of the a vs. N curve.

It is well known that the rate of crack growth may be retarded by changing from a higher to a lower stress intensity range. Crack growth rates may also be influenced by abrupt temperature changes. Whenever these kinds of changes were made the crack growth rate was allowed to stabilize before data were accepted as valid. Crack growth data under the new conditions were ignored until the crack had advanced an increment equal to or greater than the plastic zone size as calculated from Irwin's formula¹⁵. Fracture Toughness Tests

Fracture tests were conducted using a 60,000 lb. (267 kN) capacity hydraulic testing machine. The loading rate was constant, corresponding to a crosshead displacement of 0.02 in min⁻¹ (8.5 x 10^{-4} cm \cdot sec⁻¹).

Most specimens were precracked at the temperature of subsequent fracture testing; the few exceptions are noted in the text. The final crack length was deep, corresponding to a ratio a/W of between 0.60 and 0.62. Precracking was performed at fatigue loads always less than half of the specimen limit load and at stress intensities never exceeding a value of $0.002 \text{ in}^{1/2} \ge \text{Young's modulus}$. K_Q was measured according to the method described in E-399, using the same J-integral test specimens.

For the deeply cracked compact tensile specimens described in this report, J was calculated from the equation^{16,10}:

$$J = \frac{2A}{Bb}$$

where A is the area under the load deflection curve to a particular value

of displacement. The critical value J_{IC} is the value of J just prior to crack extension. For specimens which exhibited unstable crack extension (pop-in), J_{IC} was calculated usi ng the load at the first pop-in. When crack extension took place by stable ductile tearing the J_{IC} value was obtained by extrapolation of the J versus crack extension curve.

The extrapolation technique was based on a method outlined by Landes and Begley¹⁰. According to the procedure, 3-5 nearly identical specimens with average crack lengths agreeing to approximately 3 percent were tested at each temperature. A series of load-deflection curves were obtained by loading each specimen to a level sufficient to cause decreasing amounts of crack extension. The specimens were then unloaded and heat tinted 20 minutes at 538 K (1000 °F) to oxidize the surfaces where crack extension had taken place. The samples were subsequently pulled apart at 298 K. The average value of Δa was measured and plotted versus the corresponding value of J.

It was observed in these tests that deformation at the crack tip preceded material separation. Apparent crack extension therefore included a contribution due to deformation in addition to actual material separation. The deformation was visible on the fractured samples as a zone between the fatigue cracked region and the torn ligament. The material in the stretch zone had been deformed out of the plane of the fatigue crack surface.

The length of the stretch zone was measured with a traveling microscope. An average value of several measurements from each specimen was plotted as a vertical line on the J vs. Δa graphs. The intersection of the J vs. Δa curve with the stretch zone line was taken to represent the initial point of material separation, and J_{IC} was obtained as the value of J at the point of intersection.

Landes and Begley¹⁰ recommend construction of the $J/2\sigma_{flow}$ line to establish the J resistance curve over the stretch zone interval.

For 9% Ni steel, construction of the $J/2\sigma_{flow}$ line resulted in a triple intersection with the vertical stretch zone line and the J vs. Δa curve. For the other materials, the $J/2\sigma_{flow}$ line intersection point was less compatible with the data. In some cases, material separation was observed at values of Δa less than those predicted by the $J/2\sigma_{flow}$ intersection point and it appeared that a $J/3\sigma_{flow}$ line would have resulted in better agreement. The intersection point defined by the vertical stretch zone line was chosen for consistency. The attempt to measure the extension of the stretch zone directly is a technique which may not be generally applicable; it depends on the ease of identifying the stretch zone visually.

When the J versus Δa graphs appeared to be linear, J_{IC} was determined by a "best" straight line extrapolation. In other cases a linear trend was not clearly defined. Scatter in the data was accounted for by examining a number of reasonable extrapolations and a range of possible J_{IC} values were determined.

 $\rm K_{IC}$ values were calculated from the J $_{IC}$ measurements according to the relation $^{8,\,9:}$

$$K_{JC} = (J_{IC} \cdot \frac{E}{1-v^2})^{1/2}$$

where E is Young's modulus and v is Poisson's ratio. Data on the elastic constants at all temperatures were available from the work of Weston et al.¹⁴

RESULTS

Fatigue Crack Growth Rate

Figures 3 - 5 summarize the fatigue crack growth rate results for all three materials. The data conform to the relation¹⁷

$$da/dN = C(\Delta K)^n$$

where da/dN is the change in crack length per cycle, ΔK is the range of stress intensity and C and n are empirical constants.

Figure 3 illustrates that the crack growth rate behavior of 5 percent Ni steel appears to be temperature independent for stress intensity ranges from 20-25 ksi \cdot in^{1/2} (22 - 27 MNm⁻²² · m^{1/2}). Above $\Delta K = ksi \cdot$ in^{1/2} (33 MNm⁻² · m^{1/2}) growth rates at 76 K are definitely higher than at room temperature or Ill K.

Superimposed on the data of Figure 3 are straight line approximations of the data reported by Bucci, et al.¹⁸. The straight line approximations are used for clarity in illustrating data trends, but do not indicate the degree of scatter in their results. The present results are in good agreement with the data from this source.

Fatigue crack growth rate data for 6 percent and 9 percent Ni steel followed the same trend observed for 5 percent Ni steel. As shown in Figures 4 and 5, the crack growth rates were somewhat higher at 76 K than at 298 K for stress intensity ranges above 25 ksi \cdot in^{1/2} (27.5 MNm⁻² \cdot m^{1/2}).

Figure 4 shows that the crack growth rate results for 6 percent Ni steel at 111 K agreed well with room temperature data over the entire range of ΔK . The increase in growth rates occurred between 111 and 76 K. This effect may be related to the fact that 6 percent Ni alloy begins its ductile-to-brittle transition near liquid nitrogen temperatures. There is no published data in the literature with which to compare the present results for 6 percent Ni steel.

The results of Bucci, et al.¹⁸ for 9 percent Ni steel are represented in Figure 5. The present results reveal a somewhat higher growth rate at 76 K, but the general agreement is good.

The fatigue crack growth rate behavior of 5, 6, and 9 percent Ni steels appears to be similar. If all data from this report are superimposed on a single graph, it appears that the fatigue crack growth rates of the three materials are nearly equivalent for ΔK values ranging from 20 - 60 ksi \cdot in^{1/2} (22 - 66 Nm⁻² \cdot m^{1/2}).

Fracture Toughness

Representative load-deflection curves for 5 percent Ni steel are illustrated in Figure 6. The arrows terminating the curves at 298 K and 195 K indicate that ductile tearing continued to larger deflections without the occurrence of pop-in. At 111 K an appreciable amount of plastic deformation occurred, followed by a single pop-in. Multiple pop-ins occurred at temperatures below 111 K where linear elastic behavior was approached. At 76 K, the load continued to increase significantly after the first pop-in. The deviation from linearity at the upper end of the 4 K loaddefection curve was due to a series of faint but audible pop-ins.

The load-deflection cuves for 6 percent and 9 percent Ni steels are illustrated in Figures 7 and 8. In comparison, it is significant to note that pop-in did not occur in tests of 6 percent Ni at 111 K.

The fracture surfaces of 6 percent and 9 percent Ni steel specimens exhibited 40 - 50 percent slant fracture at 298 K. Shear lips took the form of hugh cusps rising 0.4 inch (1 cm) above the plane of the fatigue crack. There was also a large lateral contraction in the thickness direction, amounting to 12 percent. As temperature decreased to 76 K, the proportion of slant fracture descreased to about 15 percent, and the percentage of lateral contraction decreased to approximately 5 percent.

For 5 percent Ni steel, a lateral contraction of 18 percent was measured at room temperature, but the fracture surface was relatively flat compared to the other materials. The proportion of slant fracture decreased from about 25 percent at room temperature to zero at 5 K. At 4 K the fracture surface exhibited reflective cleavage facets.

For 6 percent and 9 percent Ni steels the degree of cm ck front curvature bordered on, but did not exceed, the limits established for fatigue crack uniformity (ASTM E-399-72). In the case of 5 percent Ni steel crack front straightness requirements were occasionally violated when the crack length at the specimen edge was found to be less than 90 percent of the average crack length. The difference in edge cm ck and average cm ck lengths ranged from 87-88 percent for the four specimens which did not meet this requirement. The degree of crack front curvature appears to depend on loading history. Crack growth rate specimens tested at higher stress intensities had less curvature; the specimens with excessive curvature

P-15

were those used in low temperature fracture tests where the maximum stress intensities (K_f) were lowered to comply with the $K_f \le .6K_Q$ criterion of ASTM E-399-72.

Graphs of J versus Δa are shown in Figures 9-11. Tabulations of the data used in determining the parameters J_{IC} , K_{IC} and K_Q are presented in Tables 3-8, and Table 9 presents an evaluation of the size criteria for valid testing.

The results are summarized in Figure 12, which illustrates the temperature dependence of the parameters K_Q and K_{IC} . For all three materials, K_Q increased with decreasing temperature over the interval 298 K - 76 K. At these temperatures K_Q does not represent a valid fracture parameter for 1.25 inch thick specimens - the ASTM E-399-72 thickness requirement is not satisfied. The K_Q values measured under non-linear elastic conditions have no practical significance and are included merely for comparison. Over the interval 298-76 K, it was observed that:

1. The disagreement between $K_{\mbox{\scriptsize Q}}$ and $K_{\mbox{\scriptsize IC}}$ values was largest at ambient temperatures;

2. The effect of temperature on $\rm K_Q$ was opposi to the general trend displayed by $\rm K_{\rm IC}$ values; and

3. The K_Q values did not provide an indication of the relative toughness of the materials. For example, 9 percent Ni steel exhibited the highest K_Q values but not the highest K_{IC} values.

14

Only in tests of 5 percent Ni steel at 76 K and 4 K did the K_Q values agree with the K_{IC} values converted from J-integral measurements. Nevertheless, these K_Q values did not qualify as valid K_{IC} according to ASTM E-299-72. This point is amplified in the discussion.

For 5 percent Ni steel, K_{IC} values decreased from 200 ksi \cdot in^{1/2} (220 MNm⁻² \cdot m^{1/2}) at room temperature to 50 ksi \cdot in^{1/2} (55 MNm⁻² \cdot m^{1/2}) at 4 K. The datum point at 195 K was determined by extrapolation of only two fracture tests and should not be heavily weighted. The fracture toughness remained nearly equivalent to that of 9 percent Ni steel at temperatures as low as 111 K. Below 111 K the K_{IC} values decreased abruptly.

The 9 percent Ni steel was tested at 298 K and 76 K. K_{IC} decreased from 210 ksi \cdot in^{1/2} (230 MNm⁻² \cdot m^{1/2}) at 298 K to 167 ksi \cdot in^{1/2} (184 MNm⁻² \cdot m^{1/2}) at 76 K, a reduction of 15 percent. A more drastic reduction in toughness over this temperature interval was not expected. Charpy impact data from the mill analysis of this material indicate that the ductile-to-brittle transition is just beginning at 76 K. Additional testing at temperatures lower than 76 K would be necessary to define the ductile-to-brittle transition temperature regime in terms of K_{IC} values.

The fracture toughness of the 6 percent Ni alloy exceeded that of the other materials tested. K_{IC} values indicated that the upper shelf toughness tended to increase from about 240 ksi \cdot in^{1/2} (263 MNm⁻² \cdot m^{1/2}) to 268 ksi \cdot in^{1/2} (294 MNm⁻² \cdot m^{1/2}) over the interval 298 - 111 K. However, a rather sharp drop in the data occurs between 111 and 76 K, indicating the beginning of the ductile-to-brittle transition. The value of K_{IC} declined to 195 ksi \cdot in^{1/2} (214 MNm⁻² \cdot m^{1/2}), slightly higher than the value obtained for 9 percent Ni steel.

It was observed in a few tests on 6 percent Ni steel that a small amount of stable crack extension preceded pop-in at 76 K. For testing convenience, this effect was neglected and J_{IC} values were calculated at the point of pop-in. A rigorously determined J_{IC} measurement would be slightly lower than the value calculated at pop-in; but the error introduced in K_{IC} determinations was estimated to be less than 5 percent which is less than the degree of scatter observed in replicate tests. It is probable that some amount of stable crack extension preceded pop-in tests of 5 percent Ni steel at 111 K, but observations were inconclusive.

DISCUSSION

Previous authors¹⁹⁻²³ have not reported valid K_{IC} data for 5, 6, or 9 percent nickel base metal steels. The J-integral test procedures used in this investigation appeared to provide valid K_{IC} data. Several factors must be considered in assessing the validity of the present results.

The J-integral test results indicated ambient temperature K_{IC} values as high as 200-240 ksi \cdot in^{1/2} (220-263 MNm⁻² \cdot m^{1/2}). These values are quite reasonable. The size criterion was satisfied at all temperatures. Confidence in the data stems from the fact that this size criterion was established from tests on steels ⁸⁻¹⁰ equivalent in fracture toughness (J_{IC} = 1000-2000 in · lb · in⁻² or 0.175 - 0.350 MJ · m⁻²) to the nickel steels tested in this report.

Serious problems regarding test validity arose only in tests of 5 percent Ni steel at 76 K and 4 K. At 4 K the linear elastic size criterion was satisfied but precracking stress intensities could not be lowered successfully to comply with the criterion that $K_f \leq .6 K_O$. At 4 K the K_O was relatively low and crack f ront curvature increased significantly at the lower fatigue stress intensities. To keep the crack front curvature within reasonable limits, one specimen was precracked at 298 K ($K_f \le 0.6 K_{O}$) and a second specimen was precracked at 76 K ($K_f \leq .75 K_O$). The first specimen satisfied crack front curvature requirements but K was 10 ksi \cdot in^{1/2} higher than the specimen precracked at 76 K. It is probable that precracking at 298 K introduced disparities in plastic zone size and crack sharpness. The specimen precracked at 76 K fell 2 percent short of the requirement that the edge crack length be 90% or more of the average crack length. For this specimen, the measured value of 50 ksi \cdot in $^{1/2}$ is probably closer to the true value of fracture toughness; however, neither of the tests at 4 K can be considered valid.

For 5 percent Ni steel at 76 K, the ASTM Method E-399-72 requires a specimen thickness of 1.5 - 1.6 inches (\approx 4 cm). In two tests at 76 K, K_f was maintained < 0.6 K_Q but the edge crack lengths were 87-88 percent of the average crack lengths; 90 percent or more is required. Therefore the K_Q data are invalid according to a strict interpretation of ASTM E-399-82. On the other hand, the size criterion for J-integral testing is amply satisfied. The magnitude of the effect of a minor transgression in crack front curvature is not known, but it appears that there could be only a small error in the data for 5 percent Ni steel at 76 K.

Agreement of K_Q values with K_{IC} values converted from J_{IC} measurements implies that the linear elastic fracture mechanics test is valid from the standpoint of size considerations. J-integral results can then be used to evaluate the linear elastic thickness requirement. For 5 percent Ni steel at 76 K, the mean value of K_{IC} was 87 ksi \cdot in^{1/2} (95 MNm⁻² \cdot m^{1/2}) and the 0.2 percent offset yield strength was ~ 110 ksi (76 Nm⁻²). These data suggest that the ASTM size criterion factor of 2.5 is slightly conservative in the case of 5 percent Ni steel. The factor could be reduced to 2.0, since a calculation shows that:

B = 1.25 inch
$$\approx$$
 2.0 $\left(\frac{\text{IC}}{\sigma_y}\right)^2$

The 6 percent Ni steel contained low levels of sulfur and phosphorous, a relatively high percentage of manganese, and some chrome (Table 1). Sulfur and phosphorous are tramp elements, usually deleterious in their effects on mechanical properties, whereas manganese is beneficial with respect to microstructural refinement². Thus, compositional variations may account for the somewhat higher fracture toughness observed for 6 percent Ni steel.

The present results confirm that 5 percent and 6 percent Ni steels are promising materials for potential use in LNG tankage applications. At Ill K, the fracture properties of these newly developed steels are comparable to those of 9 percent Ni steel. Further evaluation is needed to determine the properties of weldments and their heat affected zones (HAZ). It is probable that the fracture toughness of these materials will be lowered somewhat by the deleterious effects of heat inputs from welding. Therefore, the ultimate

18

suitability of 5 percent and 6 percent Ni steels must be determined by fracture toughness comparisons of both the base metals, the weld, and the HAZ.

SUMMARY

1. The fatigue crack growth rates of 5, 6, and 9 percent Ni steels were nearly equivalent at ΔK from 20-60 ksi \cdot in^{1/2} (22-66 MNm⁻² \cdot m^{1/2}).

2. At $\Delta K > 25$ ksi \cdot in^{1/2} (27.6 MNm⁻²) the fatigue crack growth rates of 5 and 6 Ni steels were higher at 76 K than at 111 K or 298 K.

3. The J-integral test procedures used in this investigation appeared to yield valid K_{LC} data for the 5, 6, and 9 Ni steels.

4. For 9 Ni steel there was only a small decrease in fracture toughness over the interval 298 - 76 K; the fracture toughness of 5 and 6 Ni steels decreased abruptly over the interval 111 - 76 K.

5. At lll K, the fracture toughness of these materials ranged from 160 ksi \cdot in^{1/2} to 270 ksi \cdot in^{1/2} (180 - 300 MNm⁻² \cdot m^{1/2}).

ACKNOW LEDGMENTS

The authors would like to thank Steve Keefer who assisted in data reduction.

REFERENCES

- Anonymous, <u>Final Results from Operation Cryogenics</u>, International Nickel, CBI, and US Steel Corp. (1961), p. 10.
- Nagashima, S., Ooka, T., Sekino, S., Mimura, H., Fujishima, T.,
 Yano, S., and Sakurai, H., <u>Trans. Iron and Steel Institute of Japan</u>
 11, (1971) p. 402.
- Yeo, R. B. G., and Miller, O. O., "A History of Nickel Steels," Presented at the Sorby Centennial Symposium on History of Metallurgy, Cleveland, Ohio (1963).
- 4. Sarno, D. A., Havens, F. E., and Bowley, D. L., <u>ASM Technical</u> Report No. C70-39-2 ASM (1970).
- 5. Yano, S., Sakurai, H., Mimura, H., Wakita, N., Ozawa, T., and Aoki, K., <u>Trans. Iron and Steel Institute of Japan</u> <u>13</u> (1973) p. 133.
- Wessel, E. I., Clark, W. G., and Wilson, W. K., Westinghouse
 Res. Labs., <u>Final Tech. Report Contract No. DA-30-069-AMC 602 (T)</u>
 (June 1966).
- 7. Rice, J. R., <u>J. Appl. Mechs.</u> <u>35</u> (1968) p. 379.
- Begley, J. A., and Landes, J. D., <u>Fracture Toughness</u>, Proc. of the 1971 Nat. Symposium on Fracture Mechs., Part II ASTM STP 514 (1972) p. 1-20.
- 9. Landes, J. D., and Begley, J. A., <u>Fracture Toughness</u>, Proc. of the 1971 Nat. Symposium on Fracture Mechs., Part II ASTM STP 514 (1972) p. 24-39.

20

- 10. Landes, J. D., and Begley, J. A., "Test Results from J-Integral Studies — An Attempt to Establish a J_{IC} Testing Procedure," Private Communication from J. A. Begley to R. P. Reed, Cryogenics Division, NBS, Boulder, CO (1973).
- 11. Roberts, E., Jr., Mat. Res. Standards 9 (1969) p. 27.
- Bubsey, R. T., Fischer, D. M., Jones, M. H., and Srawley, J. E., "Compliance Measurements" <u>Experimental Techniques in Fracture</u> <u>Mechanics</u>, (A. S. Kobayashi, Editor) Society Experimental Stress Analysis and Iowa State Univ. Press (1973) p. 76-93.
- Brown, W. F., and Srawley, J. E., <u>Plane Strain Crack Toughness</u> Testing of High Strength Metallic Materials, ASTM STP 410 (1966).
- Weston, W. F., Naimon, E. R., and Ledbetter, H. M., Properties of Materials for LNG Tankage, ASTM STP (1974).
- 15. Irwin, G. R., "Fracture" <u>Handbuch der Physik 6</u> (1958) p. 551-590.
- Rice, J. R., Paris, P. C., and Merkle, J. G., <u>Progress in Flaw</u> Growth and Fracture Toughness Testing, ASTM STP 536 (1973) p. 231.
- Paris, P. C., and Erdogan, F., <u>Jnl. Basic Engrg.</u>, <u>Trans. ASME</u> Series D 85 (1963) p. 528.
- Bucci, R. J., Greene, B. N., and Paris, P. C., <u>Progress in Flaw</u> <u>Growth and Fracture Toughness Testing</u>, ASTM STP 536 (1973)
 p. 206-228.

P-23

- 19. Sarno, D. A., Bruner, J. P., and Kampschafer, G. E., <u>Fracture</u> <u>Toughness of Armco Cryonic 5 Steel Weldments</u>, presented at the Welding Institute International Conference "Welding Low Temperature Containment Plant" London, England, Nov. 20-22, 1973.
- Sarno, D. A., McCabe, D. E., Sr., and Heberling, T. G., <u>Jnl.</u> Engrg. Industry 95, No. 4 (1973) p. 1069-75.
- Tenge, P., and Solli, O., <u>Norwegian Maritime Res</u>. <u>1</u>, No. 2 (1973) p. 1-18.
- 22. Vishnevsky, C., and Steigerwald, E. A., <u>Fracture Toughness</u> Testing at Cryogenic Temperatures, ASTM STP 496 (1971) p. 3-26.
- 23. Lehigh University, Dept. of Metallurgy and Materials Science, <u>The</u> <u>Static and Dynamic Fracture Toughness of 5% and 9% Nickel Steels</u>, Quarterly Report Nos. 1-7, University Research Projects Task Group, Pressure Vessel Steels Subcommittee, Materials Division, Pressure Vessel Research Committee (1973).

Table 1. Chemical Composition

Alloy					Mill Ana	lyses (v	vt. pct.)				
	Fe	С	Mn	Р	S	Si	Ni	Cr	Mo	Al	N	
Fe-5Ni	Bal	0.13	0.45	0.025	0.025	0.275	5.00	-	0.275	0.085	0.020	
Fe-6Ni	Bal	0.06	1.12	0.005	0.004	0.24	5.66	0,63	0.18	-	-	
Fe-9Ni	Bal	0.06	0.56	0.007	0.003	0.27	9.25	-	-	_		

Table 2. Mechanical Properties

	0.2% Offset Yield Strength	Tensile Strength	Elongation	Reduction of Area	Hardness	$C_v^{(longitudinal)}$
	(ksi)	(ksi)	(%)	(%)	(Rc)	76 K (ft·lbs)
Fe-5% Ni	77.5	97.9	34	79	20	38
Fe-6% Ni	82.0	106.6	30	81	23	166
Fe-9% Ni	99.9	109.1	27	78	25	130

NOTE: $1 \text{ ksi} = 0.689 \text{ Nm}^{-2}$.

Тетр (К)	Spec*	a W	P _Q (1b)	K _Q (ksi √in)
298	16	0.597	10,200	62
298	3	0.60	9,150	56.4
298	11	0.60	9,900	60.8
298	А	0.597	14,100	86.8
			Avg =	66.5
195	21 [†]	0.607	13,100	83.7
195	22 [†]	0.611	11,450	74.4
195	23 [†]	0.617	13,400	<u>89.5</u>
			Avg =	82.5
111	24	0.621	13,400	90.7
111	29	0.654	11,700	92.7
111	32	0.623	17,200	117
			Avg =	100
76	25	0.599	12,950	82.0
76	27	0.612	13,200	86.1
			Avg =	84.0
4	28 [†]	0.624	8,550	60.1
4	26 ^{††}	0.606	7,950	50.2
			Avg =	55.2
Notes:	$1 \ 1b = 4$.448 N		
	l ksi √i	n = 1.098 X	$10^{6} \text{ Nm}^{-2} \sqrt{\text{m}}$	

* B = 1.228 in (3.119 cm) ± 0.5%, W = 3.034 in (7.706 cm) ± 0.9%

† precracked at 298 K

^{††} precracked at 76 K

Temp	Spec	b	J	∆a ave	Stretch	JIC	K _{IC}
(K)		(in)	$\left(10^3 \frac{\text{in-lb}}{\text{in}^2}\right)$	(in)	Zone	$\begin{pmatrix} 10^3 \frac{\text{in-lb}}{2} \end{pmatrix}$	(ksi √in)
					<u> </u>		
298	16	1.240	3.42	0.041	0.004		
298	3	1.214	2.47	0.022	0.006		
298	11	1.216	1.76	0.011	0.003		
298	А	1.204	1,34	0.010	0.004		
				Avg =	0.004	1.27 ± 0.19	200 ± 15
195	21 [†]	1.191	4.16	0.046	0.005		
195	22 [†]	1.179	2.58	0.020	0.004		
				Avg =	0.0045	1.41	210
111	24	1.146	N/A	N/A	N/A	1.05	185
111	29	1.053	11	11	11	1.09	189
111	32	1.145	11	11	11	0.774	159
					Avg =	0.972	178
76	25	1.217	11	13	11	0.178	76.5
76	27	1.180	* 1	11		0.287	97.1
					Avg =	0.232	86.8
4	28 [†]	1.138	11	41	11	0.102	58
4	26 ^{††}	1.193	11			0.074	49.4
					Avg =	0.088	53.7
Notes:	1 in =	2.54 cm					
	$1 \frac{\text{in-lb}}{\text{in}^2}$	= 1.75 }	10^{2} Jm^{-2}				

Table 4. J-Integral and Converted ${\rm K}_{\rm IC}$ of Fe-5% Ni

in² 1 ksi $\sqrt{in} = 1.098 \times 10^{6} \text{ Nm}^{-2} \sqrt{m}$ † precracked at 298 K †† precracked at 76 K

Temp (K)	Spec	$\frac{a}{W}$	P _Q (1b)	K _Q (ksi √in)
298	7	0.614	12,500	83
298	1	0.617	12,950	87
298	5	0.619	13,700	92
298	3	0.620	16,300	111
298	2	0.615	14,950	100
298	15	0.615	12,950	84
			Avg =	93
195	18	0.607	14,250	89
195	17	0.605	13,500	83
195	16	0.591	14,500	86
195	19	0.592	14,500	86
			Avg =	86
111	20	0.614	17,250	114
111	21	0.616	18,300	117
111	22	0.614	18,300	120
111	23	0.613	16,750	113
			Avg =	116
76	12	0.607	20,300	128
76	11	0.607	18,300	115
76	8	0.617	19,650	130
76	10	0.612	21,050	136
			Avg =	127
Notoci	1 1b -	1 110 N		

Notes: 1 1b = 4.448 N $1 \text{ ksi} \sqrt{\text{in}} = 1.098 \text{ X} 10^6 \text{ Nm}^{-2} \sqrt{\text{m}}$ * B = 1.250 in (3.178 cm) \pm 0.4%,

 $W = 3.046 \text{ in } (7.737 \text{ cm}) \pm 0.6\%.$

Temp (K)	Spec	b (in) (1	$\binom{J}{0^{\frac{3\text{in-lb}}{2}}}$	ave ,	tretch Zone (in)	$ \begin{pmatrix} J_{IC} \\ 10^3 \frac{\text{in-lb}}{2} \\ \text{in} \end{pmatrix} $	K _{IC} (ksi√in)
298	7	1.159	6.14	0.052	0.006		
298	1	1.167	4.57	0.033	0.008		
298	5	1.159	2.07	0.008	0.005		
298	15	1.174	2.58	0.013	0.005		
				Avg =	0.006	1.75 ± 0.14	236 ± 9
195	18	1.208	2.90	0.015	0.006		
195	17	1.205	6.99	0.061	0.007		
195	16	1.247	5.18	0.034	0.007		
195	19	1.243	4.12	0.028	0.006		
				Avg =	0.006	2.25 ± 0.15	272 ± 9
111	20	1.172	5.86	0.040	0.004		
111	21	1.168	4.54	0.030	0.005		
111	22	1.176	2.74	0.011	0.005		
111	23	1.177	3.65	0.018	0.006		
				Avg =	0.005	2.15 ± 0.13	268±9
76	12	1.194	N/A	N/A		1.30	208
76	11	1.195	11	11		1.30	208
76	8	1.165	11	11		0.944	177
76	10	1.180	11	11		1.14	195
					Avg =	1.17	197

Table 6. J-Integral and Converted $\rm K_{IC}$ of Fe-6% Ni

Notes: 1 in = 2.54 cm

 $1 \frac{\text{in-lb}}{\text{in}^2} = 1.75 \times 10^2 \text{ Jm}^{-2}$ 1 ksi $\sqrt{\text{in}} = 1.098 \times 10^6 \text{ Nm}^{-2} \sqrt{\text{m}}$

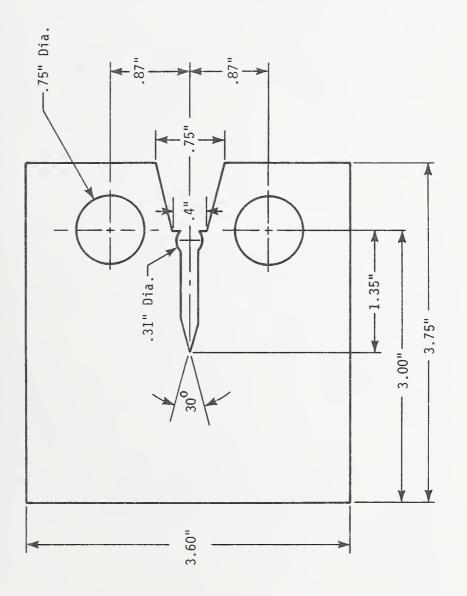
Table 7. K_Q of Fe-9% Ni

Temp K	Spec*	$\frac{a}{W}$	P _Q (lb)	K _Q (ksi√in)
298	6	0.594	19,200	116
	9	0.606	19,200	121
	12	0.601	18,900	117
	4	0.599	19,050	116
	18	0.617	17,400	114
			Avg	= 117
76	19	0.615	21,150	137
	20	0.609	22,700	142
	21	0.614	22,250	144
			Avg	= 141

Notes: 1 lb = 4.448 N 1 ksi \sqrt{in} = 1.098 X 10⁶ Nm⁻² \sqrt{m} * B = 1.253 in (3.182 cm) ± .2%,

$$W = 3.036 \text{ in } (7.711 \text{ cm}) \pm .5\%.$$

Temp	Spec	b	J	áa ave	Stretch	JIC	KIC
(K)		(in)	$\left(10^3 \frac{\text{in-lb}}{\text{in}^2}\right)$	(in)	Zone (in)	$\left(10\frac{3\text{in-lb}}{\text{in}^2}\right)$	(ksi√in)
298	6	1.236	2.70	0.021	0.007		
298	9	1.20	4.02	0.028	0.007		
298	12	1.213	4.92	0.044	0.006		
298	4	1.219	6.80	0.054	0.007		
298	18	1.168	1.22		0.007		
				Avg =	0.007	1.14 ± 23	210 ± 3
76	19	1.159	N/A	N/A	N/A	0.810	162
76	20	1.185	11	11	ET	0.935	174
76	21	1.172	11	11	11	0.846	165
					Avg =	0.864	167


Table 8. J - Integral and Converted K_{IC} of Fe-9% Ni

Notes: 1 in = 2.54 cm 1 $\frac{\text{in-lb}}{\text{in}^2}$ = 1.75 x 10² $\frac{\text{m}-\text{N}}{\text{m}^2}$ Jm⁻² 1 ksi $\sqrt{\text{in}}$ = 1.098 x 10⁶ $\frac{\text{N}}{\text{m}^2}$ $\sqrt{\text{m}}$ Nm⁻² $\sqrt{\text{m}}$

						10	10	
Alloy	Temp (K)	a (in)	B (in)	b (in)	$2.5 \left(\frac{K_Q}{\sigma_{ys}}\right)^2$ (in)	$2.5 \left(\frac{K * IC}{\sigma_{ys}}\right)^{2}$ (in)	$25\left(\frac{J_Q}{\sigma}\right)$ (in)	$50\left(\frac{J_Q}{\sigma_{flow}}\right)$ (in)
Fe-5% Ni	298	1.80	1.23	1.22	1.84	16.1	0.36	0.72
	195	1.85	1.23	1.18	3.3	20.9	0.36	0.72
	111	1.92	1.23	1.12	2.4	9.1	0.20	0.40
	76	1.81	1.23	1.20	1.47	1.60	0.04	0.08
	4	1.84	1.22	1.19	0.25	0.25	0.01	0.02
Fe-6% Ni	298	1.88	1.25	1.16	3.2	20.7	0.46	0.93
	195	1.82	1.25	1.23	2.5	24.9	0.53	1.07
	111	1.86	1.25	1.17	2.6	14.1	0.40	0.81
	76	1.86	1.25	1.18	2.6	6.2	0.20	0.40
Fe-9% Ni	298	1.83	1.22	1.21	3.3	10.8	0.27	0.54
	76	1.85	1.25	1.17	2.5	3.5	0.14	0.29

Table 9. Dimensional Criteria for Valid $\rm K_{IC}$ and $\rm J_{IC}$

* K_{IC} value obtained from J-integral results

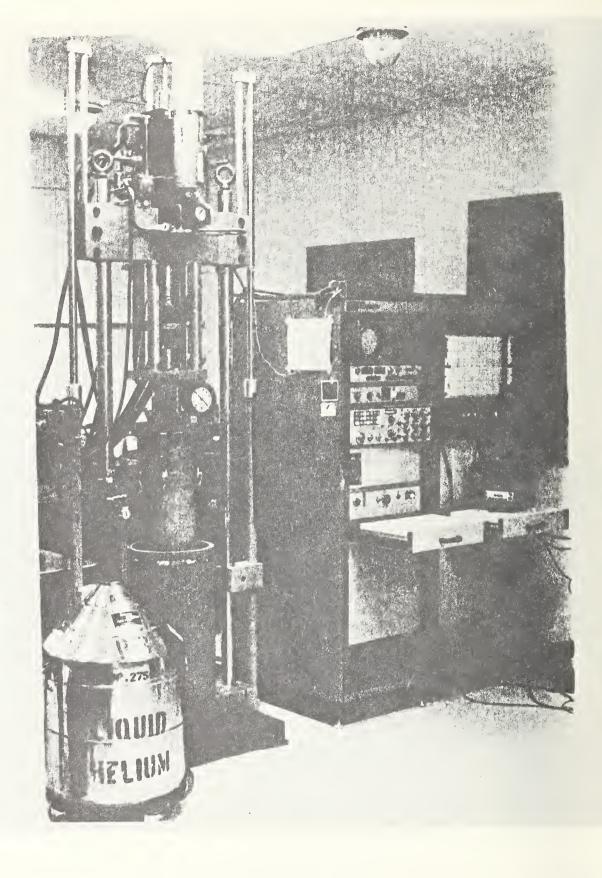


Figure 2 Cryogenic Fatigue Testing Apparatus

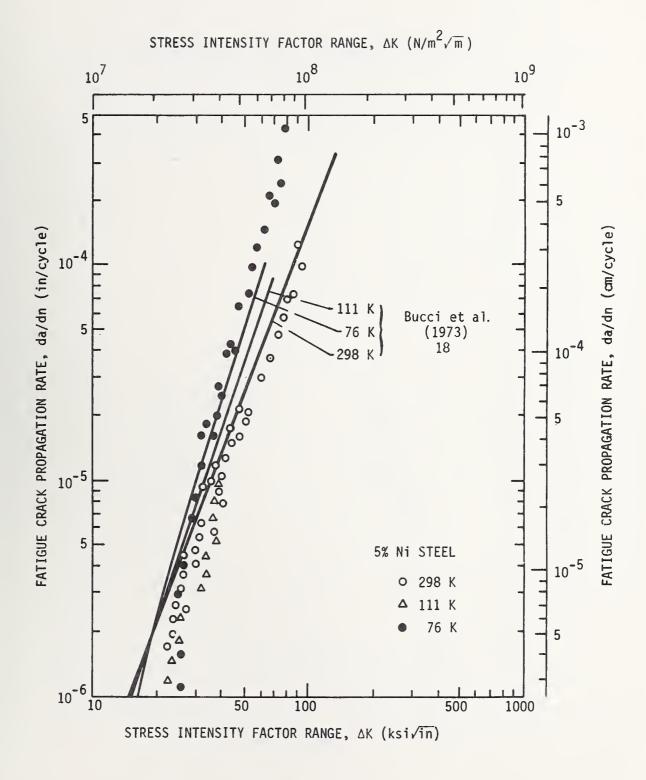


Figure 3. Fatigue Crack Growth Rate of Fe-5 Ni

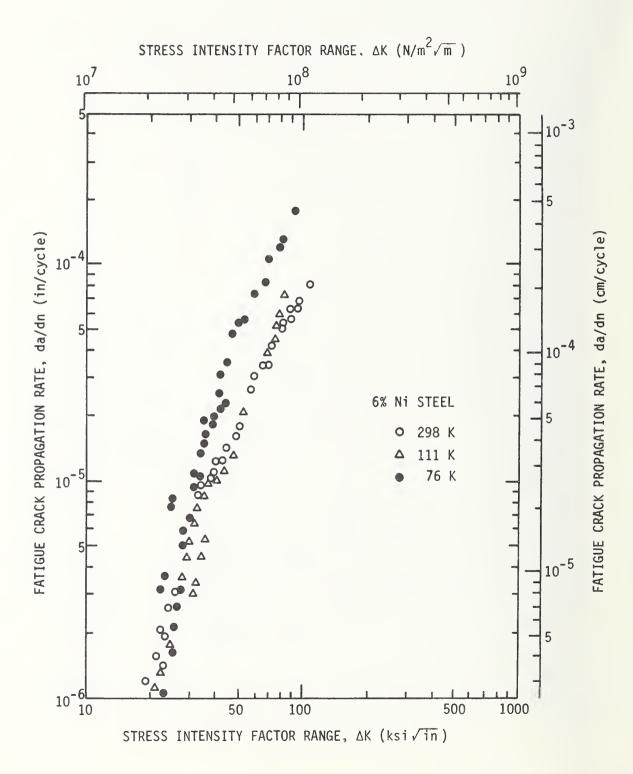


Figure 4. Fatigue Crack Growth Rate of Fe-6 Ni

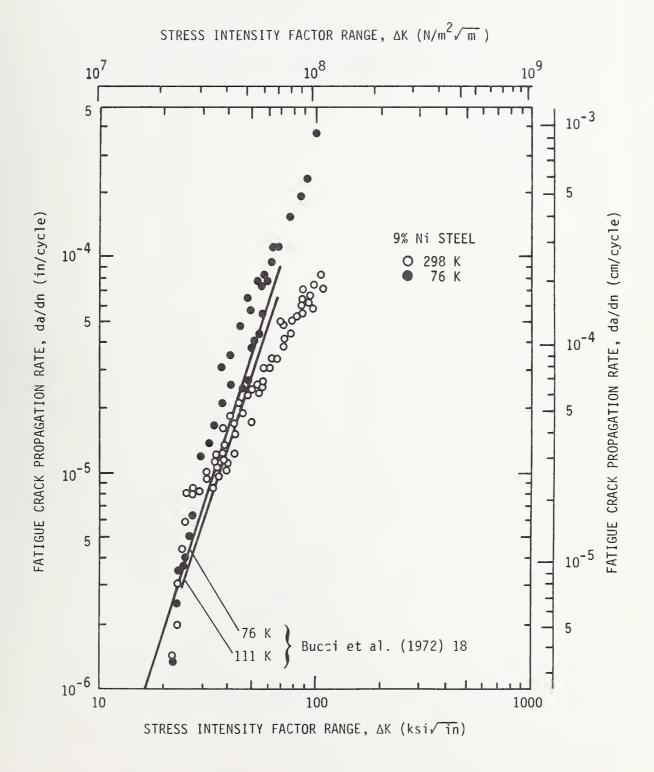
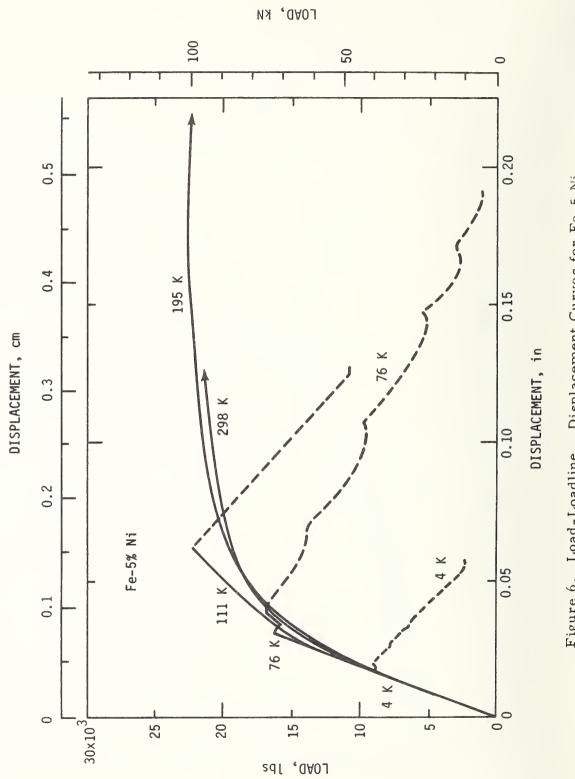



Figure 5. Fatigue Crack Growth Rate of Fe-9 Ni

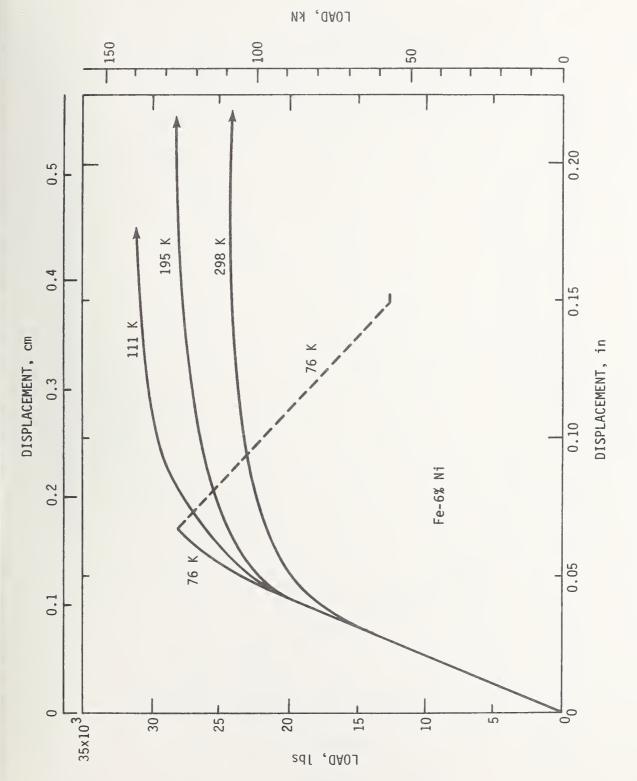
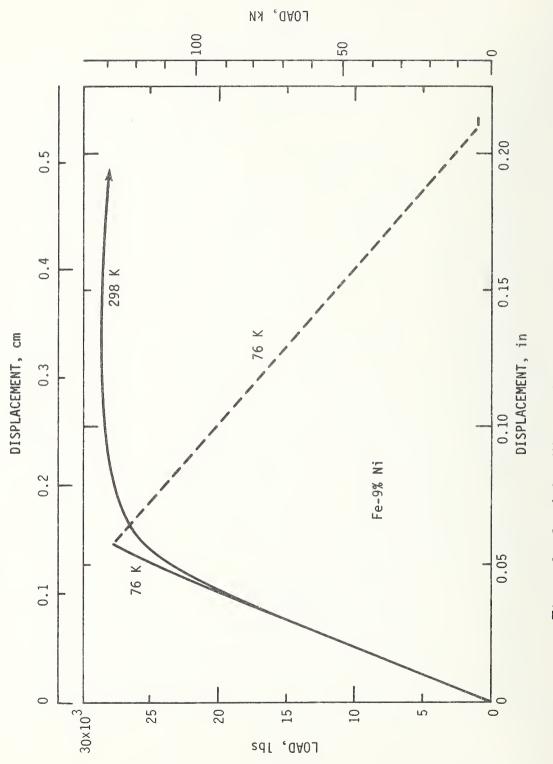
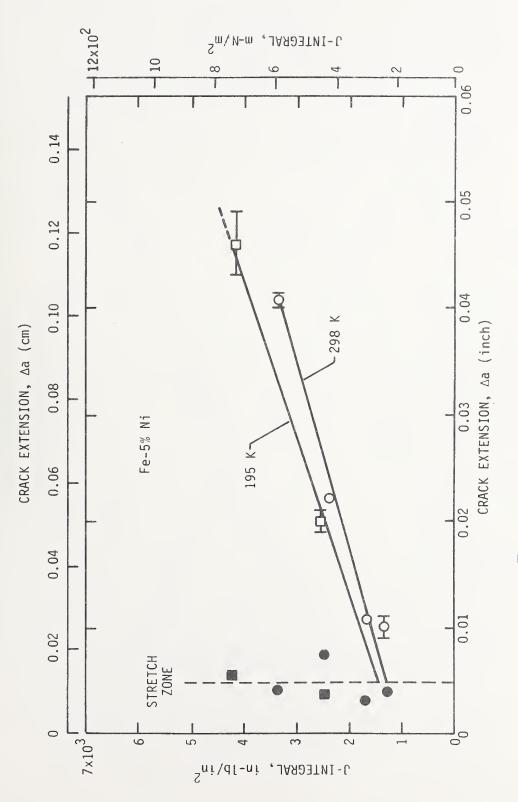
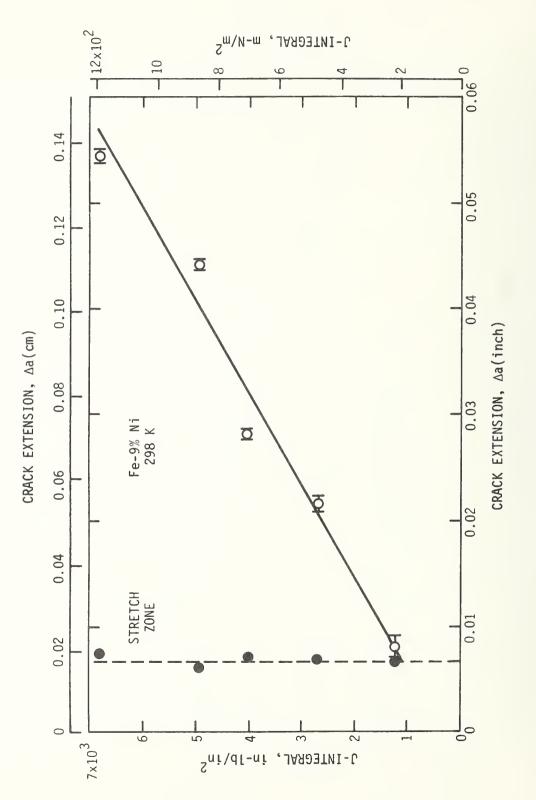
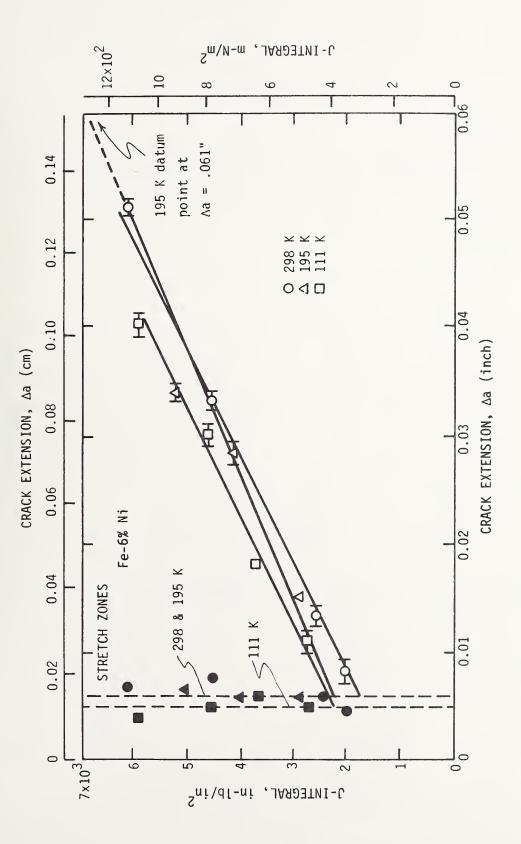
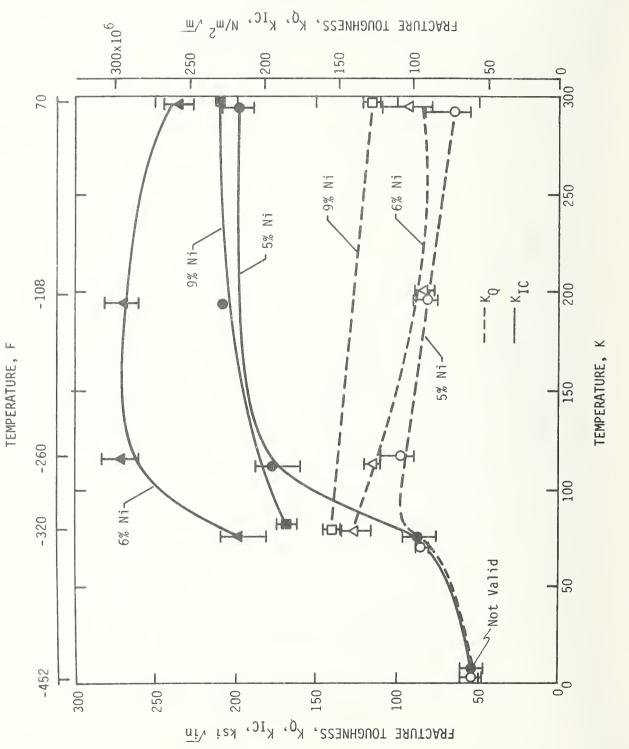
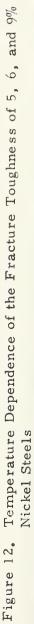




Figure 7. Load-Loadline Displacement Curves for Fe-6 Ni









U.S. DEPT. OF COM		1. PUBLICATION OR REPORT NO.	2. Gov't Accession	3. Recipier	nt's Accession No.
BIBLIOGRAPHIC D. SHEET	ATA	, NBSIR 74-373	No.		
. TITLE AND SUBTIT	ΓLE	,	1	5. Publicat	tion Date
Liquefied Na	tural	Gas Research at the Nation	nal Bureau of	Jan 1 -	June 30, 1974
Standards					ing Organization Code
7. AUTHOR(S) D. B. Mann	(Edito	or)		8. Performi	ing Organ. Report No.
9. PERFORMING ORG	ANIZAT	ION NAME AND ADDRESS		10. Project	/Task/Work Unit No.
NAT	IONAL	BUREAU OF STANDARDS		27504	
		NT OF COMMERCE N, D.C. 20234		11. Contrac	et/Grant No.
2. Sponsoring Organiza	ation Na	me and Complete Address (Street, City,	State, ZIP)	13. Type of Covered	Report & Period
Sar	me as	Item 9.			ress Report
Dui					ing Agency Code
5. SUPPLEMENTARY	NOTES				
		less factual summary of most significant arvey, mention it here.)	information. If docum	ent includes a	significant
		ost centers supported by se	ven other agend	W SDODSO	rs in addition
		e basis for liquefied natura			
-		orting period the level of e	-		-
	-	es of over \$500,000. This		-	
			integrated pro	gress rep	bort to be
	-	and July is designed to:	1	1	-1 - 4
		all sponsoring agencies wit		I and ann	ual report on
		ities of their individual pro	-		
		ll sponsoring agencies on r		n being co	onducted at
		genics Division of NBS-IBS			
		a uniform reporting proced			
-		mmunication while minimiz	ing the time, e	ffort and	paper work
		st center level.			
		s of this report will augmen	-		_
		ut will not necessarily repl		0	
		imited and intended primar			
		on must be considered pre			nge and un-
published; ar	nd the	erefore not for citation in th	ne open literatu	re.	
		entries; alphabetical order; capitalize or	ly the first letter of the	e first key wor	d unless a proper
name; separated by Cryogenic: 1		.ed natural gas; measurem	ant: methane.	ropertio	research
oryogenic, i	queri	ea naturar gas, measurem	ent, methane,	roperties	5, 1050a1011,
18. AVAILABILITY		Unlimited	19. SECURI (THIS R	TY CLASS EPORT)	21. NO. OF PAGE
x For Official Dis	stributio	n. Do Not Release to NTIS	UNCL AS	SSIFIED	
Order From Sup	. of Doc	., U.S. Government Printing Office	20. SECURI	TY CLASS	22. Price

Order From Sup. of Doc., U.S. Government Printing Office Washington, D.C. 20402, <u>SD Cat. No. C13</u>

Order From National Technical Information Service (NTIS) Springfield, Virginia 22151

USCOMM-DC 29042-P74

(THIS PAGE)

UNCLASSIFIED

✿ U. S. GOVERNMENT PRINTING OFFICE 1974 --- 677-232/1209 Reg. 8

