5 FUTUREDESTEN

User Manual

Data Acquisition Modules/ Distributed IO Modules

Future Design Controls, Inc.
7524 West $98^{\text {th }}$ Place / P.O. Box 1196
Bridgeview, IL 60455
888.751.5444-Office:
888.307.8014 - Fax
866.342.5332 - Technical Support
http://www.futuredesigncontrols.com

COPYRIGHT NOTICE

This manual is a publication of Future Design Controls Inc and is provided for use by its customers only. The contents of the manual are copyrighted by Future Design Controls; reproduction in whole or in part, for use other than in support of Future Design Controls equipment, is prohibited without the specific written permission from Future Design Controls

ASSISTANCE

This manual is designed to provide the necessary information for trouble-free installation and operation of your new IO Series. However, if you need assistance, please call Future Design Controls at:

Future Design Controls, Inc.
7524 West 98 ${ }^{\text {th }}$ Place / P.O. Box 1196
Bridgeview, IL 60455
888.751.5444-Office:
888.307.8014 - Fax
866.342.5332 - Technical Support
http://www.futuredesigncontrols.com

MANUAL REVISION

If you contact us in reference to this manual, please include the following:
Document number: FDC_IO_Manual_v1.0_August-2007
Name: User Manual for IO modules

Warranty:

Future Design Controls products described in this manual are warranted to be free from functional defects in materials and workmanship at the time the products leave Future Design Controls facilities and to conform at that time to the specifications set forth in the relevant Future Design Controls manual, sheet or sheets for a period of 12 months after delivery to the first purchaser for use.

There are no expressed or implied Warranties extending beyond the Warranties herein and above set forth.

Limitations

Future Design Controls provides no warranty or representations of any sort regarding the fitness of use or application of its products by the purchaser. Users are responsible for the selection, suitability of the products for their application or use of Future Design Controls products.

Future Design Controls shall not be liable for any damages or losses, whether direct, indirect, incidental, special, consequential or any other damages, costs or expenses excepting only the cost or expense of repair or replacement of Future Design Control products as described below.

Future Design Controls sole responsibility under the warranty, at Future Design Controls option, is limited to replacement or repair, free of charge, or refund of purchase price within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse or abuse.

Future Design Controls reserves the right to make changes without notification to purchaser to materials or processing that do not affect compliance with any applicable specifications.

Return Material Authorization:

Contact Future Design Controls for Return Material Authorization Number prior to returning any product to our facility.

Future Design Controls, Inc.

7524 West $98^{\text {th }}$ Place / P.O. Box 1196
Bridgeview, IL 60455 USA
888.751.5444 - Office:
888.307.8014 - Fax
866.342.5332-Technical Support

E-mail: csr@futuredesigncontrols.com
Website: http://www.futuredesigncontrols.com

TABLE OF CONTENTS

1. AN OVERVIEW OF THE IO SYSTEM
 7

1.1 Introduction. 7
1.2 Application Configurations 7
1.2.1 I/O Expansion. 7
1.2.2 Data Acquisition 8
1.2.3 Ethernet Connectivity 8
1.3 Module Selection Table 8
2. IO GENERAL INFORMATION 10
2.1 Physical Dimensions 10
2.2 Grounding/Shielding 10
2.3 Network Termination 10
2.4 Setting the Modbus Node ID 11
2.4.1 Node ID Table 11
2.4.2 DIP Switch Status Register. 13
2.5 Communications Settings. 14
2.5.1 Communications Settings with DIP Switch 10 OFF (Default). 14
2.5.2 Communications Settings with DIP Switch 10 ON (Programmed Baud Rate) 14
2.5.3 Communications Settings Registers 14
2.5.4 Modbus Register Types 15
3. IO MODULES 16
3.1 IO-16DI - DIGITAL INPUTS WITH COUNTERS 16
3.1.1 Description 16
3.1.2 Technical Specification of IO-16DI 16
3.1.3 Status Indicators 17
3.1.4 Wiring 17
3.1.5 Switch Settings 18
3.1.6 IO-16DI Data Registers (MODULE TYPE = 100) 19
3.2 IO-16DO - DIGITAL OUTPUTS 23
3.2.1 Description 23
3.2.2 Technical Specification of IO-16DO 23
3.2.3 Status Indicators 23
3.2.4 Wiring 25
3.2.5 Switch Setting 25
3.2.6 IO-16DO Data Registers (MODULE TYPE = 101) 26
3.3 IO-4RO - RELAY OUTPUTS 28
3.3.1 Description 28
3.3.2 Technical Specification of IO-4RO 28
3.3.3 Status Indicators 28
3.3.4 Wiring 30
3.3.5 Switch Setting 30
3.3.6 IO-4RO Data Registers (MODULE TYPE = 113) 31
3.4 IO-8DIO - DIGITAL INPUTS / OUTPUTS 33
3.4.1 Description 33
3.4.2 Technical Specification of IO-DIO 33
3.4.3 Status Indicators 34
3.4.4 Wiring 34
3.4.5 Switch Settings. 35
3.4.6 IO-8DIO Data Registers (MODULE TYPE = 102) 35
3.5 IO-8AII AND IO-8AIV - ANALOG INPUTS 38
3.5.1 Description 38
3.5.2 Technical Specification of IO-8AI 38
3.5.3 Status Indicators. 39
3.5.4 Wiring 39
3.5.5 Switch Settings. 40
3.5.6 IO-8AI Data Registers (IO8All TYPE $=103 /$ IO-8AIV TYPE $=104$) $\ldots \ldots ~ 41$
3.6 IO-8AIIS AND IO-8AIVS - ISOLATED ANALOG INPUTS 42
3.6.1 Description 42
3.6.2 Technical Specification of IO-8AIIS and IO-8AIVS 43
3.6.3 Status Indicators 43
3.6.4 Wiring 44
3.6.5 Switch Settings 45
3.6.6 IO-8AIIS Data Registers (8AII TYPE $=107 / 8 A I V$ TYPE $=108$) 45
3.7 IO-8TC - THERMOCOUPLE INPUTS 47
3.7.1 Description 47
3.7.2 Technical Specification of IO-8TC. 48
3.7.3 Status Indicators 48
3.7.4 Wiring 49
3.7.5 Switch Settings 49
3.7.6 IO-8TC Data Registers (MODULE TYPE = 105) 50
3.8 IO-8TCS - ISOLATED THERMOCOUPLE INPUTS 50
3.8.1 Description 50
3.8.2 Technical Specification of IO-8TCS 51
3.8.3 Status Indicators 52
3.8.4 Wiring 52
3.8.5 Switch Settings 53
3.8.6 IO-8TCS Data Registers (MODULE TYPE $=106$) 53
3.9 IO-6RTD - RTD INPUTS 54
3.9.1 Description 54
3.9.2 Technical Specification of IO-6RTD 54
3.9.3 Status Indicators 49
3.9.4 Wiring 49
3.9.5 Switch Settings 56
3.9.6 IO-6RTD Data Registers (MODULE TYPE = 109) 56
3.10 IO-DAIO - DIGITAL + ANALOG INPUTS AND OUTPUTS 58
3.10.1 Description 58
3.10.2 Technical Specification of IO-DAIO 59
3.10.3 Status Indicators 61
3.10.4 Wiring 62
3.10.5 Switch Settings 62
3.10.6 IO-DAIO Data Registers (MODULE TYPE = 112) 63
3.11 IO-8AOI - ANALOG OUTPUTS 64
3.11.1 Description 64
3.11.2 Technical Specification of IO-8AOI 64
3.11.3 Status Indicators 65
3.11.4 Wiring 59
3.11.5 Switch Settings 66
3.11.6 IO-8AOI Data Registers (MODULE TYPE = 110) 66
3.12 IO-8AOV - ANALOG OUTPUTS 67
3.12.1 Description 67
3.12.2 Technical Specification of IO-8AOV 67
3.12.3 Status Indicators 68
3.12.4 Wiring 68
3.12.5 Switch Settings 69
3.12.6 IO-8AOV Data Registers (MODULE TYPE $=111$) 69
4. IO STUDIO 70
5. SPECIFICATIONS 80
5.1 ENVIRONMENTAL / SUMMARY POWER INPUT \& CONSUMPTION 80
5.2 EMC INSTALLATION INSTRUCTIONS 82
5.3 CONFORMITY CERTIFICATE. 82

1. AN OVERVIEW OF THE IO SYSTEM

1.1 Introduction

Modular IO system from Future Design Controls is an innovative product providing a simple low cost solution for distributed I/O requirements.

The IO system consists of stand-alone Digital and Analog - Input/Output modules communicating on an RS485 two-wire multi-drop network.

The modules communicate using the MODBUS RTU protocol. A 32bit ARM CPU is used in the modules to provide high-speed data processing and fast communications turn around times. Multiple baud rates are selectable from 2400 to 115200 baud. Each module may have an address assigned from 1 to 127 with the Modbus message length limited to 100 consecutive read / write registers. If more registers are required then a new poll group must be added for the next xxx registers.

All IO modules plug directly onto an industry standard DIN rail. All modules have a minimum isolation of 1000 VAC rms between the field and logic. Logic is the 12-24VDC power for the module itself and Field is the power, when required, for the actual input or output.

The modules have been equipped with status led's which are used to indicate the status of the Inputs or outputs. This visual indication assists with fault finding and diagnostics.

1.2 Application Configurations

There are a number of different configurations in which the IO modules may be used in a system. Some are listed as follows:

1.2.1 I/O Expansion.

There are a number of devices such as PLC's (Programmable Logic Controllers) and HMI (Human machine interface), which have a MODBUS Communications facility available. Many PLC and HMI manufacturers provide Modbus Master and Modbus slave drivers to communicate directly with third party devices using Modbus protocol using different kind of hardware connection. PLC/HMI can be configured as a MODBUS Master. IO modules are attached to the RS485 network and configured as RTU slaves. The address setting is via dipswitches on the IO module itself, configurable from address 1 to 127. The PLC/HMI system use IO modules as remote I/O reducing cabling costs and increasing the I/O capability of the control system.

1.2.2 Data Acquisition

Another use of the IO Modules is for Data Acquisition where a PC (Personal Computer) is connected to the Network. Many SCADA software packages support the MODBUS Master Protocol and can hence retrieve data from Input Modules or send data to Output Modules. The serial port of the PC is connected to an RS232/RS485 Converter, which in turn is connected to the Network.

1.2.3 Ethernet Connectivity

The IO Modules are designed to communicate via RS485 Modbus serial connection. If application requires Ethernet, Future Design Controls PC-E Protocol Converter provides Serial Modbus to Modbus TCP Ethernet protocol conversion providing an easy \& cost effective manner to connect Serial Modbus devices to Ethernet TCP networks; for additional information refer to PC-E sales brochure.

1.3 Module Selection Table

MODEL

I/O MODULES

IO-16DI	16 DIGITAL INPUT MODULE INCLUDING COUNTERS
IO-16DO	16 DIGITAL OUTPUT MODULE

IO-4RO	4 RELAY OUTPUT MODULE
IO-8DIO	8 DIGITAL INPUT / 8 DIGITAL OUTPUT MODULE
IO-8AII	8 ANALOG INPUT 0-20mA / 4-20mA
IO-8AIV	8 ANALOG INPUT 0-5V / 1-5V / 0-10V/2-10V
IO-8AIIS	8 ANALOG INPUT $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA} / \pm 20 \mathrm{~mA}$ FULLY ISOLATED
IO-8AIVS	8 ANALOG INPUT 0-1V $/ 0-10 \mathrm{~V} / \pm 1 \mathrm{~V} / \pm 10 \mathrm{~V}$ FULLY ISOLATED
IO-8TC	8 THERMOCOUPLE INPUT MODULE INCL. $0-50 \mathrm{mV}$ \& $\pm 100 \mathrm{mV}$ I/P
IO-8TCS	8 TC INPUT MODULE INCL. $0-50 \mathrm{mV}$ \& $\pm 100 \mathrm{mV}$ I/P FULLY ISOLATED
IO-6RTD	6 RTD INPUT MODULE - PT100, Ni120, PT1000, Ni1000, Ni1000LG \& Ohms
IO-DAIO	2 RTD I/P, 2 ANALOG INPUT 0(4) - 20mA / 0(2) - 10V, 1 ANALOG OUTPUT 0(4) - 20mA / 0(2) - 10V, 4 DIGITAL INPUTS, 2 DIGITAL OUTPUTS
IO-8AOI	8 ANALOG OUTPUT MODULE 0(4)-20mA
IO-8AOV	8 ANALOG OUTPUT MODULE 0(2) - 10V

2. IO GENERAL INFORMATION

2.1 Physical Dimensions

The IO enclosure is shown below. The module clips directly onto an industry standard DIN rail. Field wiring is on the front of the module via a separate plug in connector. The module power and RS485 communications wiring is on a separate plug in connector on the bottom side of the housing.

Allow at least 25 mm on front and below the module to accommodate the wiring. Ensure that enough space is available above and below the module for good ventilation.

$109.0 \mathrm{~mm}=4.29^{\prime \prime}$
$97.0 \mathrm{~mm}=3.82^{\prime \prime}$
$22.6 \mathrm{~mm}=0.89^{\prime \prime}$

$97.5 \mathrm{~mm}=3.84$ "
$86.5 \mathrm{~mm}=3.41^{\prime \prime}$

2.2 Grounding/Shielding

In most cases, IO modules will be installed in an enclosure along with other devices which generate electromagnetic radiation. Examples of these devices are relays and contactors, transformers, motor controllers etc. This electromagnetic radiation can induce electrical noise into both power and signal lines, as well as direct radiation into the module causing negative effects on the system. Appropriate grounding, shielding and other protective steps should be taken at the installation stage to prevent these effects. These protective steps include control cabinet grounding, module grounding, cable shield grounding, protective elements for electromagnetic switching devices, correct wiring as well as consideration of cable types and their cross sections.

2.3 Network Termination

Transmission line effects often present a problem on data communication networks. These problems include reflections and signal attenuation.

To eliminate the presence of reflections from the end of the cable, the cable must be terminated at both ends with a resistor across the line equal to its characteristic impedance. Both ends must be
terminated since the direction of propagation is bi-directional. In the case of an RS485 twisted pair cable this termination is typically 120 ohms.

2.4 Setting the Modbus Node ID (Modbus Address)

2.4.1 Node ID Table (Modbus Address)

The following table assists with the setting up of DIP switches for the required NODE ID.

NODE ID	DIP SWITCH SETTINGS						
	SW1	SW2	SW3	SW4	SW5	SW6	SW7
0	OFF						
1	ON	OFF	OFF	OFF	OFF	OFF	OFF
2	OFF	ON	OFF	OFF	OFF	OFF	OFF
3	ON	ON	OFF	OFF	OFF	OFF	OFF
4	OFF	OFF	ON	OFF	OFF	OFF	OFF
5	ON	OFF	ON	OFF	OFF	OFF	OFF
6	OFF	ON	ON	OFF	OFF	OFF	OFF
7	ON	ON	ON	OFF	OFF	OFF	OFF
8	OFF	OFF	OFF	ON	OFF	OFF	OFF
9	ON	OFF	OFF	ON	OFF	OFF	OFF
10	OFF	ON	OFF	ON	OFF	OFF	OFF
11	ON	ON	OFF	ON	OFF	OFF	OFF
12	OFF	OFF	ON	ON	OFF	OFF	OFF
13	ON	OFF	ON	ON	OFF	OFF	OFF
14	OFF	ON	ON	ON	OFF	OFF	OFF
15	ON	ON	ON	ON	OFF	OFF	OFF
16	OFF	OFF	OFF	OFF	ON	OFF	OFF
17	ON	OFF	OFF	OFF	ON	OFF	OFF
18	OFF	ON	OFF	OFF	ON	OFF	OFF
19	ON	ON	OFF	OFF	ON	OFF	OFF
20	OFF	OFF	ON	OFF	ON	OFF	OFF
21	ON	OFF	ON	OFF	ON	OFF	OFF
22	OFF	ON	ON	OFF	ON	OFF	OFF
23	ON	ON	ON	OFF	ON	OFF	OFF
24	OFF	OFF	OFF	ON	ON	OFF	OFF
25	ON	OFF	OFF	ON	ON	OFF	OFF
26	OFF	ON	OFF	ON	ON	OFF	OFF
27	ON	ON	OFF	ON	ON	OFF	OFF
28	OFF	OFF	ON	ON	ON	OFF	OFF
29	ON	OFF	ON	ON	ON	OFF	OFF
30	OFF	ON	ON	ON	ON	OFF	OFF
31	ON	ON	ON	ON	ON	OFF	OFF
32	OFF	OFF	OFF	OFF	OFF	ON	OFF
33	ON	OFF	OFF	OFF	OFF	ON	OFF
34	OFF	ON	OFF	OFF	OFF	ON	OFF
35	ON	ON	OFF	OFF	OFF	ON	OFF
36	OFF	OFF	ON	OFF	OFF	ON	OFF
37	ON	OFF	ON	OFF	OFF	ON	OFF
38	OFF	ON	ON	OFF	OFF	ON	OFF
39	ON	ON	ON	OFF	OFF	ON	OFF
40	OFF	OFF	OFF	ON	OFF	ON	OFF

41	ON	OFF	OFF	ON	OFF	ON	OFF
42	OFF	ON	OFF	ON	OFF	ON	OFF
43	ON	ON	OFF	ON	OFF	ON	OFF
44	OFF	OFF	ON	ON	OFF	ON	OFF

NODE ID DIP SWITCH SETTINGS

	SW1	SW2	SW3	SW4	SW5	SW6	SW7
45	ON	OFF	ON	ON	OFF	ON	OFF
46	OFF	ON	ON	ON	OFF	ON	OFF
47	ON	ON	ON	ON	OFF	ON	OFF
48	OFF	OFF	OFF	OFF	ON	ON	OFF
49	ON	OFF	OFF	OFF	ON	ON	OFF
50	OFF	ON	OFF	OFF	ON	ON	OFF
51	ON	ON	OFF	OFF	ON	ON	OFF
52	OFF	OFF	ON	OFF	ON	ON	OFF
53	ON	OFF	ON	OFF	ON	ON	OFF
54	OFF	ON	ON	OFF	ON	ON	OFF
55	ON	ON	ON	OFF	ON	ON	OFF
56	OFF	OFF	OFF	ON	ON	ON	OFF
57	ON	OFF	OFF	ON	ON	ON	OFF
58	OFF	ON	OFF	ON	ON	ON	OFF
59	ON	ON	OFF	ON	ON	ON	OFF
60	OFF	OFF	ON	ON	ON	ON	OFF
61	ON	OFF	ON	ON	ON	ON	OFF
62	OFF	ON	ON	ON	ON	ON	OFF
63	ON	ON	ON	ON	ON	ON	OFF
64	OFF	OFF	OFF	OFF	OFF	OFF	ON
65	ON	OFF	OFF	OFF	OFF	OFF	ON
66	OFF	ON	OFF	OFF	OFF	OFF	ON
67	ON	ON	OFF	OFF	OFF	OFF	ON
68	OFF	OFF	ON	OFF	OFF	OFF	ON
69	ON	OFF	ON	OFF	OFF	OFF	ON
70	OFF	ON	ON	OFF	OFF	OFF	ON
71	ON	ON	ON	OFF	OFF	OFF	ON
72	OFF	OFF	OFF	ON	OFF	OFF	ON
73	ON	OFF	OFF	ON	OFF	OFF	ON
74	OFF	ON	OFF	ON	OFF	OFF	ON
75	ON	ON	OFF	ON	OFF	OFF	ON
76	OFF	OFF	ON	ON	OFF	OFF	ON
77	ON	OFF	ON	ON	OFF	OFF	ON
78	OFF	ON	ON	ON	OFF	OFF	ON
79	ON	ON	ON	ON	OFF	OFF	ON
80	OFF	OFF	OFF	OFF	ON	OFF	ON
81	ON	OFF	OFF	OFF	ON	OFF	ON
82	OFF	ON	OFF	OFF	ON	OFF	ON
83	ON	ON	OFF	OFF	ON	OFF	ON
84	OFF	OFF	ON	OFF	ON	OFF	ON
85	ON	OFF	ON	OFF	ON	OFF	ON
86	OFF	ON	ON	OFF	ON	OFF	ON
87	ON	ON	ON	OFF	ON	OFF	ON
88	OFF	OFF	OFF	ON	ON	OFF	ON
89	ON	OFF	OFF	ON	ON	OFF	ON
90	OFF	ON	OFF	ON	ON	OFF	ON
91	ON	ON	OFF	ON	ON	OFF	ON
92	OFF	OFF	ON	ON	ON	OFF	ON

93	ON	OFF	ON	ON	ON	OFF	ON
94	OFF	ON	ON	ON	ON	OFF	ON
95	ON	ON	ON	ON	ON	OFF	ON
96	OFF	OFF	OFF	OFF	OFF	ON	ON
97	ON	OFF	OFF	OFF	OFF	ON	ON
NODE ID	DIP SWITCH SETTINGS						
	SW1	SW2	SW3	SW4	SW5	SW6	SW7
98	OFF	ON	OFF	OFF	OFF	ON	ON
99	ON	ON	OFF	OFF	OFF	ON	ON
100	OFF	OFF	ON	OFF	OFF	ON	ON
101	ON	OFF	ON	OFF	OFF	ON	ON
102	OFF	ON	ON	OFF	OFF	ON	ON
103	ON	ON	ON	OFF	OFF	ON	ON
104	OFF	OFF	OFF	ON	OFF	ON	ON
105	ON	OFF	OFF	ON	OFF	ON	ON
106	OFF	ON	OFF	ON	OFF	ON	ON
107	ON	ON	OFF	ON	OFF	ON	ON
108	OFF	OFF	ON	ON	OFF	ON	ON
109	ON	OFF	ON	ON	OFF	ON	ON
110	OFF	ON	ON	ON	OFF	ON	ON
111	ON	ON	ON	ON	OFF	ON	ON
112	OFF	OFF	OFF	OFF	ON	ON	ON
113	ON	OFF	OFF	OFF	ON	ON	ON
114	OFF	ON	OFF	OFF	ON	ON	ON
115	ON	ON	OFF	OFF	ON	ON	ON
116	OFF	OFF	ON	OFF	ON	ON	ON
117	ON	OFF	ON	OFF	ON	ON	ON
118	OFF	ON	ON	OFF	ON	ON	ON
119	ON	ON	ON	OFF	ON	ON	ON
120	OFF	OFF	OFF	ON	ON	ON	ON
121	ON	OFF	OFF	ON	ON	ON	ON
122	OFF	ON	OFF	ON	ON	ON	ON
123	ON	ON	OFF	ON	ON	ON	ON
124	OFF	OFF	ON	ON	ON	ON	ON
125	ON	OFF	ON	ON	ON	ON	ON
126	OFF	ON	ON	ON	ON	ON	ON
127	ON						

All modules will respond to a default Node ID of 254.

2.4.2 DIP Switch Status Register.

Each module uses register 30100 to store the status of the DIPswitches.

2.5 Communications Settings

The data in the modules is stored in 16 bit registers. These registers are accessed over the network using the MODBUS RTU communication protocol.

2.5.1 Communications Settings with DIP Switch 10 OFF (Default)

BAUD RATE	9600
DATA BITS	8
PARITY	NONE
STOP BITS	1

2.5.2 Communications Settings with DIP Switch 10 ON (Programmed Baud Rate)

BAUD RATE	$2400,4800,9600,19200,38400,57600,115200$
DATA BITS	8
PARITY	None, Even, Odd
STOP BITS	1,2

Note: These settings are done from IO Studio PC software or Modbus Master device. For ex: If you are planning to use HMI (Future Design Controls) as Master device, then it is possible to set above parameters writing a small application program in HMI. During this mode, DIP switch10 should be OFF such that, Master device can communicate with IO module on default communication settings.

2.5.3 Communications Settings Registers

| 40121 | Baud Rate | 2400 | 11520 | R/W | 2400, 4800, 9600, 19200, 38400,57600,11520 |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| 40122 | Parity | 0 | 2 | R/W | 0 = none, 1 = even, 2 = odd |
| 40123 | Stop Bits | 1 | 2 | R/W | 1 = 1 stop bit, 2 = 2 stop bits |
| 40124 | Reply Delay | 0 | 65535 | R/W | (x10ms) |

2.5.3.1 Baud Rate Register (40121)

The baud rate value is programmed directly into the baud rate register. The only exception is the 115,200 baud where the value 11520 is used.

2.5.3.2 Parity Register (40122)

The parity can be set to none by writing a 0 to the parity register, set to even by writing a 1 to the parity Register or set to odd by writing a 2 to the parity register.

2.5.3.3 Stop Bits Register (40123)

The number of stop bits can be set to 1 by writing a 1 to the stop bits register or set to 2 by writing a 2 to the stop bits Register.

2.5.3.4 Reply Delay Register (40124)

The reply delay is a time delay between the Modbus message received to the reply being sent. In some applications where a modem or radio is used in the RS485 network, it may be necessary to add a reply delay due to turn around delays in the equipment.

2.5.4 Modbus Register Types

There are 4 types of variables which can be accessed from the module. Each module has one or more of these data variables.

Type	Start Address	$\underline{\text { Variable }}$	Access
1	00001		Digital Outputs
2	10001		Digital Inputs
3	30001	Input registers (Analog)	Read \& Write
4	40001	Output registers (Analog)	Read Only
		Read Only	
		(Holding type)	

Note: The Modbus message length must be limited to 100 consecutive read or write registers. If more registers are required then a new poll group must be added for the next xxx registers.

3. IO MODULES

3.1 IO-16DI - DIGITAL INPUTS WITH COUNTERS

3.1.1 Description

The IO-16DI module is a 16 channel digital input module. The inputs are isolated from the logic by bidirectional opto-couplers. The inputs are divided into 2 isolated groups of 8 inputs each. This allows for many configurations in which the input module may be used. One such configuration could be where one group is connected as common positive and the second group connected as common negative.

The counters operate in three modes. In mode $\mathbf{0}$: All the counters are disabled.

In mode 1: The counters are 32 bit counters allowing a count value from 0 to 4,294,967,295. The count value can be cleared by writing a zero to the associated registers or preset to any other value using the same method.

In mode 2: The inputs are connected as up/down counters. Input 1 will increment counter 1 while input 2 decrements counter1. In the same way, inputs $3 \& 4$ operate counter 2, inputs $5 \& 6$ operate counter 3 and inputs $7 \& 8$ operate counter 4 etc.

Note: The count values are not battery backed-up and will be lost if power is turned off.
The format of the registers allows the status of the inputs to be read as either single bits or all at once as a single register on the Modbus network.

3.1.2 Technical Specification of IO-16DI

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	30mA @ 12V / 17mA @ 24V
Digital Inputs	Input Points	16
	Input Voltage Range	12-24 Vdc
	Input Current per input	5mA @ 12Vdc / 11mA @ 24Vdc
	Isolation	1500Vrms between field and logic
Counters	Inputs	1 to 16
	Resolution	32 Bits
	Frequency	$1 \mathrm{KHz} \mathrm{(max)}$
	Pulse Width	500us (min)
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on bottom side of unit
	Inputs	18 Way screw connector on front

Note: Inputs 1 to 16 are used as both digital inputs and counter inputs.

3.1.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "OFF" when the input is off.
"ON" when the input is on.

3.1.4 Wiring

The following diagram shows how the digital inputs are connected to potential free switches. The common can be connected to positive or negative as indicated.

The following diagram shows how the digital inputs are connected a NPN transistor or a PNP transistor.

The following diagram shows the wiring for the power and RS485 communications.

3.1.5 Switch Settings

SWITCH	FUNCTION		DESCRIPTION
1	NODE ID	+1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID	+2	" "
3	NODE ID	+4	"
4	NODE ID	+8	"
5	NODE ID	+16	"
6	NODE ID	+32	"
7	NODE ID	+64	"
8	INVERT		When switched ON the status of the inputs is inverted in the Modbus status register (30002).
9	-		Not Used.
10	BAUD RA		Selects 9600 (off) or Programmed Baud Rate (on)

3.1.6 IO-16DI Data Registers (MODULE TYPE = 100)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
10001	Digital Input 1	0	1	R	Status of Digital Inputs.
10002	Digital Input 2	0	1	R	"
10003	Digital Input 3	0	1	R	"
10004	Digital Input 4	0	1	R	"
10005	Digital Input 5	0	1	R	"
10006	Digital Input 6	0	1	R	"
10007	Digital Input 7	0	1	R	"
10008	Digital Input 8	0	1	R	"
10009	Digital Input 9	0	1	R	"
10010	Digital Input 10	0	1	R	"
10011	Digital Input 11	0	1	R	"
10012	Digital Input 12	0	1	R	"
10013	Digital Input 13	0	1	R	"
10014	Digital Input 14	0	1	R	"
10015	Digital Input 15	0	1	R	"
10016	Digital Input 16	0	1	R	"
Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte $=100$
30002	Digital Inputs	N/A	N/A	R	Digital Inputs in 16 bits. 16-1.
40003	Counter 1 MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40004	Counter 1 LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40005	Counter 2 MSB	0	65535	R/W	"
40006	Counter 2 LSB	0	65535	R/W	"
40007	Counter 3 MSB	0	65535	R/W	"
40008	Counter 3 LSB	0	65535	R/W	"
40009	Counter 4 LSB	0	65535	R/W	"
40010	Counter 4 LSB	0	65535	R/W	"
40011	Counter 5 MSB	0	65535	R/W	"
40012	Counter 5 LSB	0	65535	R/W	"
40013	Counter 6 MSB	0	65535	R/W	"
40014	Counter 6 LSB	0	65535	R/W	"
40015	Counter 7 MSB	0	65535	R/W	"
40016	Counter 7 LSB	0	65535	R/W	"
40017	Counter 8 MSB	0	65535	R/W	"
40018	Counter 8 LSB	0	65535	R/W	"
40019	Counter 9 MSB	0	65535	R/W	"
40020	Counter 9 LSB	0	65535	R/W	"
40021	Counter 10MSB	0	65535	R/W	"
40022	Counter 10LSB	0	65535	R/W	"
40023	Counter 11MSB	0	65535	R/W	"

40024	Counter 11LSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40025	Counter 12MSB	0	65535	R/W	Counter with range 0 to 4294967295.
40026	Counter 12LSB	0	65535	R/W	"
40027	Counter 13MSB	0	65535	R/W	"
40028	Counter 13LSB	0	65535	R/W	"
40029	Counter 14MSB	0	65535	R/W	"
40030	Counter 14LSB	0	65535	R/W	"
40031	Counter 15MSB	0	65535	R/W	"
40032	Counter 15LSB	0	65535	R/W	"
40033	Counter 16MSB	0	65535	R/W	"
40034	Counter 16LSB	0	65535	R/W	"
40035	Counter Capture	0	65535	R/W	Bit1 $=1$ to Capture Counter1, Bit2 $=1$ to Capture Counter2, etc.
40036	CCounter 1 MSB	0	65535	R/W	Capture Counter Registers. MSB and LSB
40037	CCounter 1 LSB	0	65535	R/W	combine to give a 32 bit Value.
40038	CCounter 2 MSB	0	65535	R/W	Counter with range 0 to 4294967295.
40039	CCounter 2 LSB	0	65535	R/W	
40040	CCounter 3 MSB	0	65535	R/W	"
40041	CCounter 3 LSB	0	65535	R/W	"
40042	CCounter 4 LSB	0	65535	R/W	"
40043	CCounter 4 LSB	0	65535	R/W	"
Modbus Address	Register Name	Low Limit	High Limit	Access	Description
40044	CCounter 5 MSB	0	65535	R/W	"
40045	CCounter 5 LSB	0	65535	R/W	"
40046	CCounter 6 MSB	0	65535	R/W	"
40047	CCounter 6 LSB	0	65535	R/W	"
40048	CCounter 7 MSB	0	65535	R/W	"
40049	CCounter 7 LSB	0	65535	R/W	"
40050	CCounter 8 MSB	0	65535	R/W	"
40051	CCounter 8 LSB	0	65535	R/W	"
40052	CCounter 9 MSB	0	65535	R/W	"
40053	CCounter 9 LSB	0	65535	R/W	"
40054	CCounter 10MSB	0	65535	R/W	"
40055	CCounter 10LSB	0	65535	R/W	"
40056	CCounter 11MSB	0	65535	R/W	"
40057	CCounter 11LSB	0	65535	R/W	"
40058	CCounter 12MSB	0	65535	R/W	"
40059	CCounter 12LSB	0	65535	R/W	"
40060	CCounter 13MSB	0	65535	R/W	"
40061	CCounter 13LSB	0	65535	R/W	"
40062	CCounter 14MSB	0	65535	R/W	"
40063	CCounter 14LSB	0	65535	R/W	"
40064	CCounter 15MSB	0	65535	R/W	"
40065	CCounter 15LSB	0	65535	R/W	"
40066	CCounter 16MSB	0	65535	R/W	"

40067	CCounter 16LSB	0	65535	R/W	"
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Counter Mode	0	2	R/W	0=Disable, 1=Up Counting, 2=Up/Down Count
40102	Input Filter	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)
40103	Capture Zero	0	65535	R/W	0 = Disabled, bit1 = auto zero counter 1.
40121	Baud Rate	2400	11520	R/W	$\begin{aligned} & 2400,4800,9600,19200 \\ & 38400,57600,115200 \end{aligned}$
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.1.6.1 Digital Input Register

The digital inputs can be read in a single register as follows:

| MSB | IO-6DI DIGITAL INPUTS | | | | | | | | | | | | | | | |
| :---: |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ADDRESS |
| 32768 | 1638 | 819 | 409 | 204 | 102 | 51 | 25 | 12 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | 30002 |
| | 4 | 2 | 6 | 8 | 4 | 2 | 6 | 8 | | | | | | | | |
| 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |

Digital Input Number

3.1.6.2 Counter Registers

The counters are stored a two 16 bit registers. The first register is the High Register and the second register is the Low Register. To get the actual 32 bit count value the registers must be combined as follows:

Counter High Value = Register 40003.
Counter Low Value = Register 40004.
Counter Value $=($ Counter High Value X 65535) + Counter Low Value.

3.1.6.3 Counter Capture

To capture a counter a 1 must be written to the corresponding bit position in the Counter Capture Register 40035. For example:

1. Writing 1 to Register 40035 results in Counter 1 value being captured to Counter Capture 1.
2. Writing 2 to Register 40035 results in Counter 2 value being captured to Counter Capture 2.
3. Writing 3 to Register 40035 results in Counter 1 value being captured to Counter Capture 1 and Counter 2 value being captured to Counter Capture 2.

Once the module has captured the counters the Counter Capture Register 40035 is cleared to zero. It is possible to read this register to get confirmation that the capture is complete before reading the captured counter values.

3.1.6.4 Counter Auto Zero

The counter being captured can be auto zeroed. The purpose of this function is to let the module zero the counter so that no counts get lost due to delays from communication latency, etc.

To ensure that a counter is auto zeroed, a 1 must be written to the corresponding bit position in the Capture Zero Register 40103. For example:

Writing 1 to Register 40103 results in Counter 1 value being zeroed when the Counter Capture bit is 1, the value in the Capture Zero Register 40103 is permanently stored in memory and only has to be configured once.

3.2 IO-16DO - DIGITAL OUTPUTS

3.2.1 Description

This module has 16 open collector (NPN) digital outputs. The outputs may be used to drive lamps or external relays when more drive capability is required. The outputs are isolated from the logic and they share a common negative terminal. When switch 9 is off, the module is configured as a slave module for the Modbus master device such as a PC / PLC / HMI.

When used as a slave module, the outputs are written to by the Modbus master device such as a PC/PLC/HMI. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

An output watchdog timer can be configured to switch off all the outputs if there has been no communications with the module for up to 255 seconds. A value of 0 seconds will disable this timer and the outputs will remain in the last programmed state.

3.2.2 Technical Specification of IO-16DO

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	23mA @ 12V / 14mA @ 24V
	Field Supply Voltage	12-24 Vdc
	Field Supply Current	6mA @ 12V / 6mA @ 24V
Digital Outputs	Output Points	16
	Maximum Voltage	36 Vdc
	Maximum Current	100 mA per output
	Vceon	1.1V Max
	Isolation	1500Vrms between field and logic
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Outputs	18 Way screw connector on front

3.2.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Output Status: "OFF" when the output is off
"ON" when the output is on.

P	R	T
1	23	4
5	67	8
9	1011	12
13	1415	16
	\|	
	16DO	
1		
2		

3.2.4 Wiring

The following diagram shows how the digital outputs are connected to the coil of a relay. The coil is connected to positive and switched to negative.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	- 12 Vdc @ 23mA
2	+ 24Vdc@ 14mA
3	${ }^{+}$Comms
4	-] RS485

3.2.5 Switch Setting

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	" "
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	-	Not Used.
9	MODE	Slave (Off)
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.2.6 IO-16DO Data Registers (MODULE TYPE = 101)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
00001	Digital Output 1	0	1	R/W	Status of Digital Outputs.
00002	Digital Output 2	0	1	R/W	"
00003	Digital Output 3	0	1	R/W	"
00004	Digital Output 4	0	1	R/W	"
00005	Digital Output 5	0	1	R/W	"
00006	Digital Output 6	0	1	R/W	"
00007	Digital Output 7	0	1	R/W	"
00008	Digital Output 8	0	1	R/W	"
00009	Digital Output 9	0	1	R/W	"
00010	Digital Output 10	0	1	R/W	"
00011	Digital Output 11	0	1	R/W	"
00012	Digital Output 12	0	1	R/W	"
00013	Digital Output 13	0	1	R/W	"
00014	Digital Output 14	0	1	R/W	"
00015	Digital Output 15	0	1	R/W	"
00016	Digital Output 16	0	1	R/W	"
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 101```
40002	Digital Outputs	N/A	N/A	R/W	Digital Outputs in bits. 16(msb) - 1(lsb).
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. $0=$ disabled. 1-255 = enabled.
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600,19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.2.6.1 Digital Output Register.

The digital outputs can be read/written in a single register as follows

MSB	IO-16DO DIGITAL OUTPUTS LSB															ADDRESS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
32768	$\begin{gathered} 1638 \\ 4 \end{gathered}$	$\begin{gathered} 819 \\ 2 \end{gathered}$	$\begin{gathered} 409 \\ 6 \end{gathered}$	$\begin{gathered} 204 \\ 8 \end{gathered}$	$\begin{gathered} 102 \\ 4 \end{gathered}$	$\begin{gathered} 51 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 6 \end{gathered}$	$\begin{gathered} 12 \\ 8 \end{gathered}$	64	32	16	8	4	2	1	40002
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Digital Output

3.2.6.2 Output Watchdog Timer

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

3.3 IO-4RO - RELAY OUTPUTS

3.3.1 Description

The IO-4RO module has 4 normally open/ normally closed relay outputs. These modules may be used when a higher drive capability is required, or when isolation between outputs are required.

When switch 9 is off, the module is configured as a slave module for the Modbus master device such as a PC / PLC / HMI. When used as a slave module, the outputs are written to by the Modbus master device such as a PC/PLC/HMI. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

An output watchdog timer can be configured to switch off all the outputs if there has been no communications with the module for up to 255 seconds. A value of 0 seconds will disable this timer and the outputs will remain in the last programmed state.

3.3.2 Technical Specification of IO-4RO

Power Supply	Logic Supply Voltage	24 Vdc
	Logic Supply Current	42 mA
Relay Outputs	Output Points	4
	Maximum Current	0.5A @ 220VAC / 1A @ 28VDC
	Isolation	1000Vrms between field and logic 1000 Vrms between outputs
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Outputs	18 Way screw connector on front

3.3.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Output Status: "OFF" when the output is off
"ON" when the output is on.

3.3.4 Wiring

The following diagram shows how the digital outputs are connected to the coil of a relay. The coil is connected to positive and switched to negative.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	24 Vdc
2	+ @ 42mA
3	${ }^{+}$Comms
4	- J RS485

3.3.5 Switch Setting

SWITCH	FUNCTION	
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	$"$
3	NODE ID +4	$"$
4	NODE ID +8	$"$
5	NODE ID +16	$"$
6	NODE ID +32	$"$
7	NODE ID +64	$"$
8	-	Not Used.
9	MODE	Slave (Off)
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.3.6 IO-4RO Data Registers (MODULE TYPE = 113)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
00001	Relay Output 1	0	1	R/W	Status of Digital Outputs.
00002	Relay Output 2	0	1	R/W	"
00003	Relay Output 3	0	1	R/W	"
00004	Relay Output 4	0	1	R/W	"
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 113
40002	Digital Outputs	N/A	N/A	R/W	Digital Outputs in bits. 4(msb) - 1(Isb).
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. $0=$ disabled. $1-255=$ enabled.
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600,19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)

3.3.6.1 Relay Output Register

The relay outputs can be read/written in a single register as follows

| MSB | IO-4RO DIGITAL OUTPUTS | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ADDRESS |
| 32768 | 1638 | 819 | 409 | 204 | 102 | 51 | 25 | 12 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | 40002 |
| | 4 | 2 | 6 | 8 | 4 | 2 | 6 | 8 | | | | | | | | |
| | - | - | - | - | - | - | - | - | - | - | - | 4 | 3 | 2 | 1 | |

Relay Output

3.3.6.2 Output Watchdog Timer

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

3.4 IO-8DIO - DIGITAL INPUTS / OUTPUTS

3.4.1 Description

The IO-8DIO module is an 8-channel digital input and 8 channel digital output module.
The inputs are isolated from the logic by bi-directional opto-couplers. The common is connected internally to either the -volts or +volts field power supply terminals using a jumper link which is situated inside the housing.

The inputs have internal counters associated with them. These counters are 32 bit counters allowing a count value from 0 to 4294967295 . The count value can be cleared by writing a zero to the associated registers or preset to any other value using the same method. The counters can also be reset automatically when read. This is done by setting on DIP switch 9 on the front panel.

Note: The count values are not battery backed-up and will be lost if power is turned off.
The format of the registers allows the status of the inputs to be read as either single bits or all at once as a single register on the Modbus network.

The 8 digital outputs are open collector (NPN). The outputs may be used to drive lamps or external relays when more drive capability is required. The outputs are isolated from the logic and they share a common negative terminal.

The module may be configured as slave, where $\mathrm{PC} / \mathrm{PLC} / \mathrm{HMI}$ acting as master on the Modbus network. Dip switch 9 should be switched off to make this module as slave. Each output on the module can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

3.4.2 Technical Specification of IO-DIO

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	33mA @ 12V / 19mA @ 24V
	Field Supply Voltage	12-24 Vdc
	Field Supply Current	6mA @ 12V / 6mA @ 24V
Digital Inputs	Input Points	8
	Input Voltage Range	$12-24 \mathrm{Vdc}$
	Input Current per input	5mA@12Vdc / 11mA @24Vdc
	Isolation	1500Vrms between field and logic
Digital Outputs	Output Points	8
	Maximum Voltage	36 Vdc
	Maximum Current	100 mA per output
	Vceon	1.1V Max.
	Isolation	1500Vrms between field and logic
Counters	Inputs	1 to 16
	Resolution	32 Bits
	Frequency	$1 \mathrm{KHz} \mathrm{(max)}$
	Pulse Width	500us (min)
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Outputs	18 Way screw connector on front

Note: Inputs 1 to 8 are used as both digital inputs and counter inputs.

3.4.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "OFF" when the input is off
"ON" when the input is on.
Output Status: "OFF" when the output is off
"ON" when the output is on.

3.4.4 Wiring

The following diagram shows how the digital inputs and outputs are connected.

The following diagram shows the wiring for the power and RS485 communications.

3.4.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	-"
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	INVERT	When switched ON the status of the inputs is inverted in the Modbus status register (30002).
9	MODE	Off (Slave)
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.4.6 IO-8DIO Data Registers (MODULE TYPE = 102)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
10001	Digital Input 1	0	1	R	Status of Digital Inputs.
10002	Digital Input 2	0	1	R	"
10003	Digital Input 3	0	1	R	"
10004	Digital Input 4	0	1	R	"
10005	Digital Input 5	0	1	R	"
10006	Digital Input 6	0	1	R	"
10007	Digital Input 7	0	1	R	"
10008	Digital Input 8	0	1	R	"
00017	Digital Output 1	0	1	R/W	Status of Digital Outputs.
00018	Digital Output 2	0	1	R/W	"
00019	Digital Output 3	0	1	R/W	"
00020	Digital Output 4	0	1	R/W	"
00021	Digital Output 5	0	1	R/W	"
00022	Digital Output 6	0	1	R/W	"
00023	Digital Output 7	0	1	R/W	"
00024	Digital Output 8	0	1	R/W	"
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 102```
30002	Digital Inputs	N/A	N/A	R	Digital Inputs in lower 8 bits. 8-1.
40003	Digital Outputs	N/A	N/A	R/W	Digital Outputs in lower 8 bits. 8-1.
40004	Counter 1 MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40005	Counter 1 LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40006	Counter 2 MSB	0	65535	R/W	"

40007	Counter 2 LSB	0	65535	R/W	"
40008	Counter 3 MSB	0	65535	R/W	"
40009	Counter 3 LSB	0	65535	R/W	"
40010	Counter 4 LSB	0	65535	R/W	"
40011	Counter 4 LSB	0	65535	R/W	"
40012	Counter 5 MSB	0	65535	R/W	"
40013	Counter 5 LSB	0	65535	R/W	"
40014	Counter 6 MSB	0	65535	R/W	"
40015	Counter 6 LSB	0	65535	R/W	"
40016	Counter 7 MSB	0	65535	R/W	"
40017	Counter 7 LSB	0	65535	R/W	"
40018	Counter 8 MSB	0	65535	R/W	"
40019	Counter 8 LSB	0	65535	R/W	"
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1-255 = enabled.
40105	Counter Mode	0	2	R/W	0=Disable, 1=Up Counting, 2=Up/Down Count
40106	Input Filter	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)
40121	Baud Rate	2400	11520	R/W	$\begin{aligned} & 2400,4800,9600,19200 \\ & 38400,57600,115200 \end{aligned}$
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)

3.4.6.1 Digital Input Register

The digital inputs can be read in a single register as follows:

| MSB | IO-8DIO DIGITAL INPUTS | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ADDRESS | |
| 32768 | 1638 | 819 | 409 | 204 | 102 | 51 | 25 | 12 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | 30002 | |
| | 4 | 2 | 6 | 8 | 4 | 2 | 6 | 8 | | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |

Digital Input Number

3.4.6.2 Digital Output Register

The digital outputs can be read /written in a single register as follows:

Digital Output Number

3.4.6.3 Counter Registers

The counters are stored a two 16 bit registers. The first register is the High Register and the second register is the Low Register. To get the actual 32 bit count value the registers must be combined as follows:

Counter High Value = Register 40003.
Counter Low Value = Register 40004.
Counter Value $=($ Counter High Value $X 65535)+$ Counter Low Value.

3.4.6.4 Output Watchdog Timer

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

3.5 IO-8AII and IO-8AIV - ANALOG INPUTS

3.5.1 Description

The Analog Input modules are supplied as either a current input module (IO8AII) or a voltage input module (IO-AIV). The inputs are isolated from the logic and share a common negative terminal.

The standard setting for the $10-8 A l l$ module is $0-20 \mathrm{~mA}$ input current which represents an output value of 0-4095 (12 bits) in the corresponding Modbus register. To obtain an output value of 0 to 4095 for an input signal of 4 to 20 mA the offset switch is switched on.
The same applies to the IO-8AIV module. An input voltage of $0-10 \mathrm{Volts}$ represents an output of $0-$ 4095 and 2 volts would give a reading of 819 ± 1 LSB. To obtain an output value of 0 to 4095 for an input signal of 2 to 10 V the offset switch is switched on. An input range of $0(1)$ to 5 Vdc is available by removing the jumper link located on the analogue board inside the enclosure.

3.5.2 Technical Specification of IO-8AI

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	27mA @ 12V / 16mA @ 24V
	Field Supply Voltage	12-24 Vdc
	Field Supply Current	8mA @ 12V / 15mA @ 24V
Voltage Inputs - IO-8AIV	Input Points	8
	Input Voltage	0 (2) - 10 Vdc or 0 (1) - 5 Vdc
	Input Resistance	20kohms
	Resolution	12 bits
	Drift	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C
	Accuracy	0.2\% of span
	Isolation	1500Vrms between field and logic
Current Inputs - IO-8AII	Input Points	8
	Input Current	0 (4)-20 mA
	Input Resistance	250ohms
	Resolution	12 bits
	Drift	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C
	Accuracy	0.2\% of span
	Isolation	1500 Vrms between field and logic
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Inputs	18 Way screw connector on front

3.5.3 Status Indicators

Power: Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "ON" when the input is zero.
"OFF" when the input is greater than zero and less than 4095.
"Flashing" when the input is over range, greater or equal to 4095

3.5.4 Wiring

The following diagram shows how the analog inputs are connected to a $0(4)-20 \mathrm{~mA}$ source. All of the common terminals are connected together, and are connected to 0 V internally.

The following diagram shows how the analog inputs are connected to a $0(2)-10 \mathrm{Vdc}$ source. All of the common terminals are connected together, and are connected to 0 V internally.

The following diagram shows the wiring for the power and RS485 communications.

Pin		Connection
-	-	- 12Vdc @ 27mA
2	-	+ 24Vdc @ 16mA
3	-	${ }^{+}$Comms
4		. RS 485

3.5.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	"
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	OFFSET	When switched ON the inputs scaled to accept a 2 V or 4 mA offset
9	OUT OF RANGE	An out of range is given when the input is too negative or too positive. When switched off the analog value will be loaded with - 32767 when out of range. When switched on the analog value will be loaded with 32768 when out of range.
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.5.6 IO-8AI Data Registers (IO8AII TYPE = $103 /$ IO-8AIV TYPE = 104)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	$\begin{aligned} & \text { High Byte = Software Version } \\ & \text { Low Byte }=103 \text { (IO-8AII) or } 104 \text { (IO-8AIV) } \end{aligned}$
30002	Analog Input 1	0	4095	R	Analog Input lower 12 Bits
30003	Analog Input 2	0	4095	R	"
30004	Analog Input 3	0	4095	R	"
30005	Analog Input 4	0	4095	R	"
30006	Analog Input 5	0	4095	R	"
30007	Analog Input 6	0	4095	R	"
30008	Analog Input 7	0	4095	R	"
30009	Analog Input 8	0	4095	R	"
30010	Input Status	0	65535	R	$\begin{aligned} & \text { bit2 = } 0 \text { (open circuit or }<2 \text {), bit2 = } 1 \text { (over } \\ & \text { range) } \\ & \text { bit1 = } 0(\mathrm{OK}), \text { bit1 = } 1 \text { (error) } \end{aligned}$
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600, 19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)

3.5.6.1 Analog Input Registers.

The analog inputs are read as a 12-bit value in the registers as follows:

MSB	IO-8AI ANALOG INPUTS LSB															ADDRESS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
32768	$\begin{gathered} 1638 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} \hline 819 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 409 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} \hline 204 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 102 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ 2 \\ \hline \end{gathered}$	25 6	12 8	64	32	16	8	4	2	1	300XX
0	0	0	0	X	X	X	X	X	X	X	X	X	X	x	X	

Analog Input: 12 Bit Value (0-4095)

3.5.6.2 Analog Input Status

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range $0-4095$, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, i.e.,

Bit 1- Error

 01
1

Bit 2-Range
don't care
0
1

Condition

 Input working OK Input Open circuit or zero Input Over rangeStatus LED
(LED OFF)
(LED ON)
(LED FLASH)

The analog input status can be read in a single register as follows:

MSB			IO-8AI ANALOG INPUT STATUS LSB													ADDRESS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
32768	$\begin{gathered} 1638 \\ 4 \end{gathered}$	$\begin{gathered} 819 \\ 2 \end{gathered}$	$\begin{gathered} 409 \\ 6 \end{gathered}$	$\begin{gathered} 204 \\ 8 \end{gathered}$	$\begin{gathered} 102 \\ 4 \end{gathered}$	$\begin{gathered} 51 \\ 2 \end{gathered}$	$\begin{gathered} 25 \\ 6 \end{gathered}$	$\begin{gathered} \hline 12 \\ 8 \end{gathered}$	64	32	16	8	4	2	1	30010
																IP1 Error P1 Range IP2 Error P2 Ranae P3 Error P3 Ranae P4 Error P4 Range IP5 Error IP5 Range P6 Error IP6 Range IP7 Error IP7 Range

3.6 IO-8AIIS and IO-8AIVS - ISOLATED ANALOG INPUTS

3.6.1 Description

The Analog Input modules are supplied as either a current input module (IO-8AIIS) or a voltage input module (IO-8AIVS). The inputs are fully isolated from input to logic and between inputs. This module is ideal for monitoring existing $4-20 \mathrm{~mA}$ current loops which are isolated from each other and cannot be connected to a common point of reference.

The standard setting for the IO-8AIIS module is $0-20 \mathrm{~mA}$ input current which represents an output value of $0-4095$ (12 bits) in the corresponding Modbus register. To obtain an output value of 0 to 4095 for an input signal of 4 to 20 mA the offset switch is switched on. This module can also be configured for a $0-20.000 \mathrm{~mA}$ input range or $+/-20.000 \mathrm{~mA}$ input.

The same applies to the IO-8AIV module. An input voltage of $0-10 \mathrm{Volts}$ represents an output of $0-$ 4095 and 2 volts would give a reading of 819 ± 1 LSB. To obtain an output value of 0 to 4095 for an input signal of 2 to 10 V the offset switch is switched on. This module can also be configured for a $0-$ 10.000 V input range or $+/-10.000 \mathrm{~V}$ input.

3.6.2 Technical Specification of IO-8AIIS and IO-8AIVS

Power Supply	Logic Supply Voltage		12-24 Vdc
	Logic Supply Current		58mA @ 12V / 31mA @ 24V
Voltage Inputs - IO-8AIVS	Input Points		8
	Input Voltage		O(2) - 10 Vdc
	InputType	Range	Resolution
	1	0-4095	12 bits (4095)
	2	0-10.000 V	1Mv
	3	+/-10.000 V	1mV
	4	0-1.0000 V	0.1 mV
	5	+/-1.0000 V	0.1 mV
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C
	Isolation		1500Vrms between field and logic 350Vpeak between each input
Current Inputs - IO-8AIIS	Input Points		8
	Input Current		O(4) - 20 mA
	InputType	Range	Resolution
	1	0-4095	12 bits (4095)
	2	0-20.000mA	1uA
	3	+/-20.000mA	1uA
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C
	Isolation		1000 V rms between field and logic 350 V peak between each input
Temperature	Operating T	mperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Tem	perature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Powe	and Comms.	4 Pin Connector on underside of unit
	Inputs		18 Way screw connector on front

3.6.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "ON" when the input is zero.
"OFF" when the input is greater than zero and less than 4095.
"Flashing" when the input is over range, greater or equal to 4095

3.6.4 Wiring

The following diagram shows how the analog inputs are connected to a $0(4)-20 \mathrm{~mA}$ source. All of the common terminals are isolated from each other.

The following diagram shows how the analog inputs are connected to a $0(2)-10 \mathrm{Vdc}$ source. All of the common terminals are isolated from each other.

The following diagram shows the wiring for the power and RS485 communications.

3.6.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	" "
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	OFFSET	When switched ON the inputs scaled to accept a 2 V or 4 mA offset
9	OUT OF RANGE	An out of range is given when the input is too negative or too positive. When switched off the analog value will be loaded with - 32767 when out of range. When switched on the analog value will be loaded with 32768 when out of range.
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.6.6 IO-8AIIS Data Registers (8AII TYPE $=107 / 8$ AIV TYPE $=108$)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 107 (IO8AII) or 108 (IO8AIV)
30002	Analog Input 1	0	4095	R	Analog Input lower 12 Bits
30003	Analog Input 2	0	4095	R	"
30004	Analog Input 3	0	4095	R	"
30005	Analog Input 4	0	4095	R	"
30006	Analog Input 5	0	4095	R	"
30007	Analog Input 6	0	4095	R	"
30008	Analog Input 7	0	4095	R	"
30009	Analog Input 8	0	4095	R	"
30010	Input Status	0	65535	R	```bit2 = 0 (open circuit or < 2), bit2 = 1(over range) bit1 = 0(OK),bit1 = 1(error)```
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600, 19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.6.6.1 Analog Input Registers

The analog inputs are read as a 12 bit value in the registers as follows:

MSB	IO-8AI ANALOG INPUTS LSB															ADDRESS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
32768	$\begin{gathered} 1638 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 819 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 409 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 204 \\ 8 \\ \hline \end{gathered}$	102 4	51 2	25 6	12 8	64	32	16	8	4	2	1	300XX
									x	x	x	x	x	x		

Analog Input: 12 Bit Value (0-4095)

3.6.6.2 Analog Input Status

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range $0-4095$, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, i.e.:

Bit 1- Error
0
1
1

Bit 2-Range don't care 0

1

Condition
Input working OK Input Open circuit or zero Input Over range

Status LED

(LED OFF)
(LED ON)
(LED FLASH)

The analog input status can be read in a single register as follows:

MSB			IO-8AI ANALOG INPUT STATUS LSB													ADDRESS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
32768	$\begin{gathered} 1638 \\ 4 \end{gathered}$	$\begin{gathered} 819 \\ 2 \end{gathered}$	$\begin{gathered} 409 \\ 6 \\ \hline \end{gathered}$	204 8	$\begin{gathered} 102 \\ 4 \\ \hline \end{gathered}$	51 2	$\begin{gathered} 25 \\ 6 \\ \hline \end{gathered}$	12 8	64	32	16	8	4	2	1	30010

(IP1 Error

3.7 IO-8TC - THERMOCOUPLE INPUTS

3.7.1 Description

The IO-8TC module is a 8 thermocouple input module. The module uses differential inputs to reduce effects of electrical noise and mains pickup. The thermocouple inputs are isolated from the logic. If inter channel isolation is required then the IO-8TCS should be used.

The thermocouple voltage is read by the module circuitry, linearized and converted to degrees Centigrade. No ranging is required as the module covers the full range as indicated in the table of TC types. The value that is read from the Modbus register is the actual temperature in degrees centigrade to $0.1^{\circ} \mathrm{C}$ resolution. i.e.: a value of 3451 corresponds to a temperature of $345.1^{\circ} \mathrm{C}$.

The thermocouple type is setup by writing a value to the TC Type register. The value is obtained from the table below. For example to select type K thermocouples, the value "2" must be written to the TC Type register. All 8 thermocouple inputs adopt the same TC type.

The DIP switch 9 is used to select upscale or downscale burnout. A value of 32,768 is used to indicate upscale burnout and a value of $-32,767$ are used to indicate downscale burnout.

The module has built in Cold Junction Compensation. Use must be made of the correct thermocouple extension wire to avoid reading errors.

The thermocouple module can also be configured for a $0-50 \mathrm{mV}$ input range. The TC Type register must be set to 9 for this option. The value in the register which is read back over the network is 0 50,000.

Note: As there is no inter-channel isolation, isolated thermocouples must be used in order to prevent ground loops and reading errors.

3.7.2 Technical Specification of IO-8TC

Power Supply	Logic Supply Voltage		12-24 Vdc	
	Logic Supply Current		62mA @ 12V / 33mA @ 24V	
TC Inputs	Input Points		8	
	Resolution		$0.1^{\circ} \mathrm{C}$	
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C	
	Isolation		1500Vrms between field and logic	
TC Type	Number	Type	Range	Accuracy
	1	J	-150 to $760{ }^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$
	2	K	-200 to $1370{ }^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	3	E	0 to $600{ }^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$
	4	T	-200 to $400{ }^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	5	N	0 to $1300^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	6	B	400 to $1820^{\circ} \mathrm{C}$	$0.5^{\circ} \mathrm{C}$
	7	S	-50 to $1767^{\circ} \mathrm{C}$	$0.6{ }^{\circ} \mathrm{C}$
	8	R	-50 to $1767^{\circ} \mathrm{C}$	$0.7{ }^{\circ} \mathrm{C}$
	9	mV	0 to 50 mV	0.1\%
	10	C	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.7^{\circ} \mathrm{C}$
	11	D	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.7^{\circ} \mathrm{C}$
	12	G	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.9^{\circ} \mathrm{C}$
	13	m V	+/-100mV	0.1\%
Cold Junction	CJC Error		$\pm 0.5^{\circ} \mathrm{C}$ Typ. After 30 Minutes warm up time.	
Temperature	Operating Temperature.		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
	Storage Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Connectors	Logic Power and Comms.		4 Pin Connector on underside of unit	
	Inputs		18 Way screw connector on front	

3.7.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "ON" when the thermocouple is open circuit.
"OFF" when the thermocouple is connected.

3.7.4 Wiring

The following diagram shows how the inputs are connected to a thermocouple.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	-] 12Vdc @ 62mA
2	+ 24 Vdc @ 33mA
3	${ }^{+}$Comms
4	- J RS485

3.7.5 Switch Settings

SWITCH	FUNCTION		DESCRIPTION
1	NODE ID	+1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID	+2	N "
3	NODE ID	+4	"
4	NODE ID	+8	"
5	NODE ID	+16	"
6	NODE ID	+32	"
7	NODE ID	+64	"
8	-		Not used.
9	BREAK		TC break. When switched off the TC value will be loaded with -32767 when the TC is faulty. When switched on the TC value will be loaded with 32768 .
10	BAUD RA		Selects 9600 (off) or Programmed Baud Rate (on)

3.7.6 IO-8TC Data Registers (MODULE TYPE = 105)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 105```
30002	TC Input 1	-xxx.x	yyyy.y	R	Thermocouple Inputs. See table for range.
30003	TC Input 2	-xxx.x	yyyy.y	R	Resolution in $0.1^{\circ} \mathrm{C}$.
30004	TC Input 3	-xxx.x	yyyy.y	R	"
30005	TC Input 4	-xxx.x	yyyy.y	R	"
30006	TC Input 5	-XXX.X	yyyy.y	R	"
30007	TC Input 6	-xxx.x	yyyy.y	R	"
30008	TC Input 7	-xxx.x	yyyy.y	R	"
30009	TC Input 8	-xxx.x	yyyy.y	R	"
30010	CJC Temp.	-xxx.x	yyyy.y	R	CJC Temperature in $0.1^{\circ} \mathrm{C}$ resolution.
30011	Input Status	0	65535	R	bit1 $=0(\mathrm{OK})$, bit1 $=1$ (error or open circuit)
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	TC Type	1	13	R/W	See TC Tables.
40102	Line Frequency	50	60	R/W	Line Frequency
40103	CJC Offset	1	199	R/W	$100=$ zero offset (0.0)
40104	Units Type	1	2	R/W	$1=^{\circ} \mathrm{C}, 2={ }^{\circ} \mathrm{F}$
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600, 19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.8 IO-8TCS - ISOLATED THERMOCOUPLE INPUTS

3.8.1 Description

The IO-8TCS module is a 8 isolated thermocouple input module. The module uses differential inputs to reduce effects of electrical noise and mains pickup. The thermocouple inputs are isolated from the logic and from each other. This module is operated in an identical way to the IO-8TC module and is fully interchangeable.

The thermocouple voltage is read by the module circuitry, linearized and converted to degrees Centigrade. No ranging is required as the module covers the full range as indicated in the TC table. The value that is read from the Modbus register is the actual temperature in degrees centigrade to $0.1^{\circ} \mathrm{C}$ resolution. i.e.: a value of 3451 corresponds to a temperature of $345.1^{\circ} \mathrm{C}$.

The thermocouple type is setup by writing a value to the TC Type register. The value is obtained from the table below. For example to select type K thermocouples, the value " 2 " must be written to the TC Type register. All 8 thermocouple inputs adopt the same TC type.

The DIP switch 9 is used to select upscale or downscale burnout. A value of 32,768 is used to indicate upscale burnout and a value of $-32,767$ is used to indicate downscale burnout.

The module has built in Cold Junction Compensation. Use must be made of the correct thermocouple extension wire to avoid reading errors.

The thermocouple module can also be configured for a 0-50mV input range. The TC Type register must be set to 9 for this option. The value in the register which is read back over the network is 0 50,000.

3.8.2 Technical Specification of IO-8TCS

Power Supply	Logic Supply Voltage		12-24 Vdc	
	Logic Supply Current		58mA @ 12V / 31mA @ 24V	
TC Inputs	Input Points		8	
	Resolution		$0.1^{\circ} \mathrm{C}$	
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25C	
	Isolation		1500 Vrms between field and logic 350Vpeak between each TC input	
TC Type	Number	Type	Range	Accuracy
	1	J	-150 to $760{ }^{\circ} \mathrm{C}$	$0.2^{\circ} \mathrm{C}$
	2	K	-200 to $1370{ }^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	3	E	0 to $600{ }^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$
	4	T	-200 to $400{ }^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	5	N	0 to $1300^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	6	B	400 to $1820^{\circ} \mathrm{C}$	$0.5^{\circ} \mathrm{C}$
	7	S	-50 to $1767{ }^{\circ} \mathrm{C}$	$0.6^{\circ} \mathrm{C}$
	8	R	-50 to $1767{ }^{\circ} \mathrm{C}$	$0.7^{\circ} \mathrm{C}$
	9	mV	0 to 50 mV	0.1\%
	10	C	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.7^{\circ} \mathrm{C}$
	11	D	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.7^{\circ} \mathrm{C}$
	12	G	0 to $2315.5{ }^{\circ} \mathrm{C}$	$0.9^{\circ} \mathrm{C}$
	13	m V	+/-100mV	0.1\%
Cold Junction	CJC Error		$\pm 0.5^{\circ} \mathrm{C}$ Typ. After 30 Minutes warm up time.	
Temperature	Operating Temperature.		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
	Storage Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Connectors	Logic Power and Comms.		4 Pin Connector on underside of unit	
	Inputs		18 Way screw connector on front	

3.8.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "ON" when the thermocouple is open circuit.
"OFF" when the thermocouple is connected.

3.8.4 Wiring

The following diagram shows how the inputs are connected to a thermocouple.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	- 12 Vdc @ 58mA
2	+ 24Vdc @ 31mA
3	${ }^{+}$] Comms
4	- RS485

3.8.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	-	Not used.
9	BREAK	TC break. When switched off the TC value will be loaded with -32767 when the TC is faulty. When switched on the TC value will be loaded with 32768.
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.8.6 IO-8TCS Data Registers (MODULE TYPE = 106)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 106```
30002	TC Input 1	-xxx.x	yyyy.y	R	Thermocouple Inputs. See table for range.
30003	TC Input 2	-xxx.x	yyyy.y	R	Resolution in $0.1^{\circ} \mathrm{C}$.
30004	TC Input 3	-xxx.x	yyyy.y	R	"
30005	TC Input 4	-xxx.x	yyyy.y	R	"
30006	TC Input 5	-xxx.x	yyyy.y	R	"
30007	TC Input 6	-xxx.x	yyyy.y	R	"
30008	TC Input 7	-xxx.x	уууу.y	R	"
30009	TC Input 8	-xxx.x	yyyy.y	R	"
30010	CJC Temp.	-xxx.x	yyyy.y	R	CJC Temperature in $0.1^{\circ} \mathrm{C}$ resolution.
30011	Input Status	0	65535	R	bit1 $=0(\mathrm{OK})$, bit1 $=1$ (error or open circuit)
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	TC Type	1	13	R/W	See TC Tables.
40102	Line Frequency	50	60	R/W	Line Frequency
40103	CJC Offset	1	199	R/W	$100=$ zero offset (0.0)
40104	Units Type	1	2	R/W	$1={ }^{\circ} \mathrm{C}, 2={ }^{\circ} \mathrm{F}$
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600, 19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.9 IO-6RTD - RTD INPUTS

3.9.1 Description

The IO-6RTD module is a 6 RTD input module. The module can accommodate either 2 or 3 wire RTD sensors. The RTD inputs are isolated from the logic.

The RTD resistance is read by the module circuitry, linearized and converted to degrees Centigrade No ranging is required as the module covers the full range of the RTD as indicated in the RTD table. The value that is read from the Modbus register is the actual temperature in degrees centigrade to $0.1^{\circ} \mathrm{C}$ resolution. i.e.: a value of 3451 corresponds to a temperature of $345.1^{\circ} \mathrm{C}$.

The RTD type is setup by writing a value to the RTD Type register. The value is obtained from the table below. For example to select a PT100 RTD, the value "1" must be written to the RTD Type register. All 6 RTD inputs adopt the same RTD type.

The DIP-switch 9 is used to select upscale or downscale burnout for break detection. A value of 32,768 is used to indicate upscale burnout and a value of $-32,767$ is used to indicate downscale burnout.

Note: As there is no inter-channel isolation, isolated RTD's must be used in order to prevent ground loops and reading errors.

3.9.2 Technical Specification of IO-6RTD

Power Supply	Logic Supply Voltage		12-24 Vdc	
	Logic Supp	Current	87mA @ 12V / 45mA @ 24V	
RTD Inputs	Input Points		6	
	RTD Configuration		2 or 3 Wire	
	Resolution		$0.1{ }^{\circ} \mathrm{C}$	
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25C or 0.01\% of span reference 25C	
	Line resistance effect		$<0.1^{\circ} \mathrm{C}$ balanced	
	Max. line resistance		100ohms	
	Isolation		1500Vrms between field and logic	
RTD Type	Number	Type	Range	Accuracy
	1	PT100	-200 to $850^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 0.3^{\circ} \mathrm{C}, \text { IEC } \\ & 751: 1983 \\ & \hline \end{aligned}$
	2	Ni120	-80 to $320^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	3	PT1000	-200 to $850^{\circ} \mathrm{C}$	$0.3{ }^{\circ} \mathrm{C}$
	4	Ni1000-DIN	-200 to $850^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	5	Ni1000Landys\&Gyr	-200 to $850^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	6	Ohms	10-400 ohms	
	7	Ohms	100-4000 ohms	
Temperature	Operating Temperature.		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
	Storage Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Connectors	Logic Power and Comms.		4 Pin Connector on underside of unit	
	Inputs		18 Way screw connector on front	

3.9.3 Status Indicators

Power: \quad Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Input Status: "ON" when the RTD is open circuit.
"OFF" when the RTD is connected.

3.9.4 Wiring

The following diagram shows how the inputs are connected to a 2 and 3 wire RTD.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	- 12 Vdc @ 87mA
2	+ 24 Vdc @ 45mA
3	+ ${ }^{\text {Comms }}$
4	- J RS485

3.9.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	" "
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	-	Not used.
9	BREAK	RTD break. When switched off the RTD value will loaded with -32767 when the RTD is faulty. When switched on the RTD value will be loaded with 32768.
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.9.6 IO-6RTD Data Registers (MODULE TYPE $=109$)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	$\begin{aligned} & \text { High Byte = Software Version } \\ & \text { Low Byte }=109 \end{aligned}$
30002	RTD Input 1	-xxx.x	yyyy.y	R	RTD Inputs. See table for range.
30003	RTD Input 2	-xxx.x	yyyy.y	R	Resolution in $0.1^{\circ} \mathrm{C}$.
30004	RTD Input 3	-xxx.x	yyyy.y	R	"
30005	RTD Input 4	-xxx.x	yyyy.y	R	"
30006	RTD Input 5	-xxx.x	yyyy.y	R	"
30007	RTD Input 6	-xXX.X	yyyy.y	R	"
30008	Input Status	0	65535	R	bit1 $=0(O K)$, bit1 $=1$ (error or open circuit)
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	RTD Type	1	7	R/W	See RTD Tables.
40102	Line Frequency	50	60	R/W	Line Frequency
40103	Units Type	1	2	R/W	$1={ }^{\circ} \mathrm{C}, 2={ }^{\circ} \mathrm{F}$
40121	Baud Rate	2400	11520	R/W	2400, 4800, 9600, 19200, 38400,57600,115200
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

3.9.6.1 RTD Input Status.

There is one status bits associated with each RTD input. These bits are used to indicate if the input is open circuit or over range. If the input is open circuit or over range, then the error bit will be set.

Bit 1- Error 0
1

Bit 2-Not Used

0
0

Condition
Input working OK
Open circuit / Over range

Status LED
(LED OFF) (LED ON)

The analog input status can be read in a single register as follows

IO-DAIO - DIGITAL + ANALOG INPUTS AND OUTPUTS

3.9.7 Description

The IO-DAIO module is a multipurpose combination of inputs and outputs. The module can accommodate either 2 or 3 wire RTD sensors, current ($0-20 \mathrm{~mA}$) and voltage ($0-10 \mathrm{~V}$) inputs, current ($0-20 \mathrm{~mA}$) or voltage ($0-10 \mathrm{~V}$) output, and digital inputs and outputs.

RTD INPUTS:

There are 2 RTD inputs on the module. The RTD resistance is read by the module circuitry, linearized and converted to degrees Centigrade. No ranging is required as the module covers the full range of the RTD as indicated in the RTD table. The value that is read from the Modbus register is the actual temperature in degrees centigrade to $0.1^{\circ} \mathrm{C}$ resolution. i.e.: a value of 3451 corresponds to a temperature of $345.1^{\circ} \mathrm{C}$.

The RTD type is setup by writing a value to the RTD Type register. The value is obtained from the table below. For example to select a PT100 RTD, the value "1" must be written to the RTD Type register.

A value of -32767 is used to indicate downscale burnout.
Note: As there is no inter-channel isolation, isolated RTD's must be used in order to prevent ground loops and reading errors.

ANALOG INPUTS:

The Analog Inputs (2) can be configured by internal jumpers as either a current input ($0-20 \mathrm{~mA}$) or a voltage input (0-10V).

An input of 0-20mA input current or 0-10V input voltage represents an output value of 0-4095 (12 bits) in the corresponding Modbus register.

ANALOG OUTPUT:

There is a single analog output which can be configured with internal jumpers for a current output (020 mA) or voltage output (0-10V).

The resolution is 12 bits, so writing a value to the Modbus register for each output of 0-4095 would give an output current of $0-20 \mathrm{~mA}$. A value of $819 \pm 1 \mathrm{LSB}$ will give a current output of 4 mA .

DIGITAL INPUTS:

There are 4 digital inputs on the module. The inputs share a common terminal and can be configured for common positive or common negative.

The inputs have got counters associated with them. The counters operate in three modes.
In mode $\mathbf{0}$ all the counters are disabled.
In mode 1 all counters are 32 bit counters allowing a count value from 0 to 4294967295 . The count value can be cleared by writing a zero to the associated registers or preset to any other value using the same method.

In mode 2 the inputs are connected as up/down counters. Input 1 will increment counter 1 while input 2 decrements counter1.

Note: The count values are not battery backed-up and will be lost if power is turned off.
The format of the registers allows the status of the inputs to be read as either single bits or all at once as a single register on the Modbus network.

DIGITAL OUTPUTS:

The module has 2 open collector (NPN) digital outputs. The outputs may be used to drive lamps or external relays when more drive capability is required.

The outputs are written to by the Modbus master device such as a PC/ PLC/ HMI. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

An output watchdog timer can be configured to switch off all the outputs if there has been no communications with the module for up to 255 seconds. A value of 0 seconds will disable this timer and the outputs will remain in the last programmed state.

3.9.8 Technical Specification of IO-DAIO

Power Supply	Logic Supply Voltage		12-24 Vdc	
	Logic Supply Current		115mA @ 12V / 58mA @ 24V	
	Field Supply Voltage		24 Vdc	
	Field Supply Current		25 mA	
RTD Inputs	Input Points		2	
	RTD Configuration		2 or 3 Wire	
	Resolution		$0.1^{\circ} \mathrm{C}$	
	Drift		$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25 C or 0.01% of span reference 25 C	
	Line resistance effect		$<0.1^{\circ} \mathrm{C}$ balanced	
	Max. line resistance		100ohms	
	Isolation		1500Vrms between field and logic	
RTD Type	Number	Type	Range	Accuracy
	1	PT100	-200 to $850^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \hline 0.3^{\circ} \mathrm{CIEC} \\ & 751: 1983 \end{aligned}$
	2	Ni120	-80 to $320^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	3	PT1000	-200 to $850^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	4	Ni1000-DIN	-200 to $850^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	5	Ni1000- Landys\&Gy r	-200 to $850^{\circ} \mathrm{C}$	$0.3^{\circ} \mathrm{C}$
	6	Ohms	10-400 ohms	
	7	Ohms	100-4000ohms	
Current Inputs	Input Points		2	
	Input Current		0(4)-20 mA	
	Input Resistance		250ohms	
	Input Type	Range	Resolution	
	1	0-4095	12 bits (4095)	
	2	0-20.000mA	1uA	
	3	+/-20.000mA	1uA	
	Drift		100ppm/ ${ }^{\circ} \mathrm{C}$	
	Accuracy		0.2\% of span	

3.9.9 Status Indicators

$\begin{array}{ll}\text { Power: } & \text { "ON" when module has power. } \\ \text { RS485 Rx: } & \text { Flashes to indicate the unit has received a valid Modbus message. } \\ \text { RS485 Tx: } & \text { Flashes to indicate the unit has sent a Modbus message. }\end{array}$

3.9.10 Wiring

The following diagram shows how the inputs and outputs are connected to the DAIO module.

The following diagram shows the wiring for the power and RS485 communications.

3.9.11 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	$"$
3	NODE ID +4	$"$
4	NODE ID +8	$"$
5	NODE ID +16	$"$
6	NODE ID +32	$"$
7	NODE ID +64	$"$
8	-	Not used.
9	-	Not used.
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.9.12 IO-DAIO Data Registers (MODULE TYPE = 112)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
10001	Digital Input 1	0	1	R	Status of Digital Inputs.
10002	Digital Input 2	0	1	R	"
10003	Digital Input 3	0	1	R	"
10004	Digital Input 4	0	1	R	"
00017	Digital Output 1	0	1	R/W	Status of Digital Outputs.
00018	Digital Output 2	0	1	R/W	"
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 112```
30002	Digital Inputs	N/A	N/A	R	Digital Inputs in lower 8 bits. 8-1.
40003	Digital Outputs	N/A	N/A	R/W	Digital Outputs in lower 8 bits. 8-1.
40004	RTD Input 1	-xxx.x	yyyy.y	R	RTD Inputs. See table for range.
40005	RTD Input 2	-xxx.x	yyyy.y	R	Resolution in $0.1^{\circ} \mathrm{C}$.
40006	Analog Input 1	0	4095	R	Analog Input lower 12 Bits
40007	Analog Input 2	0	4095	R	Analog Input lower 12 Bits
40008	Analog Output 1	0	4095	R/W	Analog Output lower 12 Bits
40009	Counter 1 MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40010	Counter 1 LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40011	Counter 2 MSB	0	65535	R/W	"
40012	Counter 2 LSB	0	65535	R/W	"
40013	Counter 3 MSB	0	65535	R/W	"
40014	Counter 3 LSB	0	65535	R/W	"
40015	Counter 4 MSB	0	65535	R/W	"
40016	Counter 4 LSB	0	65535	R/W	"
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. $0=$ disabled. 1-255 = enabled.
40102	Counter Mode	0	2	R/W	0=Disable, 1=Up Counting, 2=Up/Down Count
40103	Input Filter	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)
40104	RTD 1 Type	1	7	R/W	See RTD Tables.
40105	RTD 2 Type	1	7	R/W	See RTD Tables.
40106	Al 1 Type	1	2	R/W	$1=0-20 \mathrm{~mA}, 2=0-10 \mathrm{~V}$
40107	Al 2 Type	1	2	R/W	"
40108	AO Type	1	2	R/W	"
40109	Line Frequency	50	60	R/W	Line Frequency
40110	Units Type	1	2	R/W	$1=^{\circ} \mathrm{C}, 2={ }^{\circ} \mathrm{F}$
40121	Baud Rate	2400	11520	R/W	$\begin{aligned} & 2400,4800,9600,19200 \\ & 38400,57600,115200 \end{aligned}$
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)

3.10 IO-8AOI - ANALOG OUTPUTS

3.10.1 Description

The IO-8AOI is an 8-channel current output module. Each channel can be set to output a current in the range $0-20 \mathrm{~mA}$. The outputs are isolated from the logic and share a common negative terminal.

The resolution is 12 bits, so writing a value to the Modbus register for each output of 0-4095 would give an output current of $0-20 \mathrm{~mA}$. A value of $819 \pm 1 \mathrm{LSB}$ will give a current output of 4 mA .

The module configured as slave, where PC/ PLC/ HMI act as Master in the Modbus network. DIP switch 9 should be switched off to make this module as slave. The outputs are written to by the Modbus master device such as a PC/ PLC/ HMI.

3.10.2 Technical Specification of IO-8AOI

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	32mA @ 12V / 18mA @ 24V
	Field Supply Voltage	24 Vdc
	Field Supply Current	175mA
Current Output	Output Points	8
	Output Current	0(4) - 20 mA
	Resolution	12 bits (4095)
	Drift	100ppm/ ${ }^{\circ} \mathrm{C}$ reference 25C or 0.01% of span reference 25 C
	Accuracy	0.05\% of span
	Compliance	1000 ohms max. @ 24Vdc 500 ohms max. @ 12Vdc
Isolation	Between field and logic	1500 Vrms between field and logic
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Inputs	18 Way screw connector on front

3.10.3 Status Indicators

Power: Flashes to indicate the CPU is running.
RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx: Flashes to indicate the unit has sent a Modbus message.
Output Status: "ON" when the output is zero
"OFF" when the output is between zero and full scale.
"Flashing" when the output is at full scale

3.10.4 Wiring

The following diagram shows how the analog outputs are connected to a load.

The following diagram shows the wiring for the power and RS485 communications.

3.10.5 Switch Settings

SWITCH		DUNCTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	
3	NODE ID +4	$"$
4	NODE ID +8	$"$
5	NODE ID +16	$"$
6	NODE ID +32	$"$
7	NODE ID +64	$"$
8	-	Not used.
9	MODE	Slave (Off)
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.10.6 IO-8AOI Data Registers (MODULE TYPE $=110$)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 110
40002	Current Output 1	0	4095	R/W	Current Outputs. $0-4095=0(4)-20 \mathrm{~mA}$.
40003	Current Output 2	0	4095	R/W	"
40004	Current Output 3	0	4095	R/W	"
40005	Current Output 4	0	4095	R/W	"
40006	Current Output 5	0	4095	R/W	"
40007	Current Output 6	0	4095	R/W	"
40008	Current Output 7	0	4095	R/W	"
40009	Current Output 8	0	4095	R/W	"
40010	Output Status	0	65535	R	$\begin{aligned} & \text { bit2 }=0(0), \text { bit2 }=1(4095) \\ & \text { bit1 }=0(O K) \text {,bit1 = } 1 \text { (error) } \end{aligned}$
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. $0=$ disabled. 1-255 = enabled.
40121	Baud Rate	2400	11520	R/W	$\begin{aligned} & 2400,4800,9600,19200,38400,57600,11520 \\ & 0 \end{aligned}$
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	$0=$ Disable, >0 = Enable. (x10ms)

3.11 IO-8AOV - ANALOG OUTPUTS

3.11.1 Description

The IO-8AOV is an 8 channel voltage output module. Each channel can be set to output a voltage in the range $0-10 \mathrm{~V}$. The outputs are isolated from the logic and share a common negative terminal.

The resolution is 12 bits, so writing a value to the Modbus register for each output of 0-4095 would give an output current of $0-10 \mathrm{~V}$. A value of $819 \pm 1 \mathrm{LSB}$ will give a current output of 2 V .

The module configured as slave, where PC/ PLC/ HMI act as Master in the Modbus network. DIP switch 9 should be switched off to make this module as slave. The outputs are written to by the Modbus master device such as a PC/ PLC/ HMI.

3.11.2 Technical Specification of IO-8AOV

Power Supply	Logic Supply Voltage	12-24 Vdc
	Logic Supply Current	32mA @ 12V / 18mA @ 24V
	Field Supply Voltage	24 Vdc
	Field Supply Current	85 mA max.
Voltage Output	Output Points	8
	Output Voltage	O(2) - 10 V
	Resolution	12 bits (4095)
	Drift	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ reference 25C or 0.01% of span reference 25 C
	Accuracy	0.05\% of span
	Compliance	2000 ohms min. load
Isolation	Between field and logic	1500 Vrms between field and logic
Temperature	Operating Temperature.	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
	Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Connectors	Logic Power and Comms.	4 Pin Connector on underside of unit
	Outputs	18 Way screw connector on front

3.11.3 Status Indicators

Power:	Flashes to indicate the CPU is running.
RS485 Rx:	Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx:	Flashes to indicate the unit has sent a Modbus message.
Output Status: "ON" when the output is zero	
	"OFF" when the output is between zero and full scale.

3.11.4 Wiring

The following diagram shows how the analog outputs are connected to a load.

The following diagram shows the wiring for the power and RS485 communications.

Pin	Connection
1	- $12 \mathrm{Vdc} @ 32 \mathrm{~mA}$
2	+ 24 Vdc @ 18mA
3	${ }^{+}$Comms
4	- J RS485

3.11.5 Switch Settings

SWITCH	FUNCTION	DESCRIPTION
1	NODE ID +1	Node ID's from 0 to 127 are set up using switches 1 to 7
2	NODE ID +2	"*
3	NODE ID +4	"
4	NODE ID +8	"
5	NODE ID +16	"
6	NODE ID +32	"
7	NODE ID +64	"
8	-	Not used.
9	MODE	Off (Slave)
10	BAUD RATE	Selects 9600 (off) or Programmed Baud Rate (on)

3.11.6 IO-8AOV Data Registers (MODULE TYPE = 111)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
30001	S/W Version / Module Type	N/A	N/A	R	```High Byte = Software Version Low Byte = 111```
40002	Voltage Output 1	0	4095	R/W	Voltage Outputs. 0-4095=0-10V.
40003	Voltage Output 2	0	4095	R/W	"
40004	Voltage Output 3	0	4095	R/W	"
40005	Voltage Output 4	0	4095	R/W	"
40006	Voltage Output 5	0	4095	R/W	"
40007	Voltage Output 6	0	4095	R/W	"
40008	Voltage Output 7	0	4095	R/W	"
40009	Voltage Output 8	0	4095	R/W	"
40010	Output Status	0	65535	R	$\begin{aligned} & \text { bit2 }=0(0), \text { bit2 }=1(4095) \\ & \text { bit1 }=0(O K), \text { bit1 }=1 \text { (error) } \end{aligned}$
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. $0=$ disabled. $1-255=$ enabled.
40121	Baud Rate	2400	11520	R/W	$\begin{aligned} & 2400,4800,9600,19200,38400,57600,11520 \\ & 0 \end{aligned}$
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, $2=2$ stop bits
40124	Reply Delay	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)

4. IO STUDIO

This is PC software used for setting communication parameters of the IO module, Read IO status directly in PC, Force Outputs to test the module and used as tool for module diagnostic purpose.

Install IO Studio software in PC.

IO Module: Set module modbus address, i.e. 1, for the IO Module using DIP switches on the Module itself. Connect 24 V DC Power supply and make sure that Dip switch10 is "Off" to allow communication of IO Module with other devices on Default communication settings. If you are using RS232/RS485 converter like SNA10A from Future Design Controls, make sure that you have selected all the communication settings properly as follows.

BAUD RATE	9600
DATA BITS	8
PARITY	NONE
STOP BITS	1

In the PC, select above settings at the COM port.
Right click on Mycomputer - Properties - Hardware - Device Manager - COM ports

Start the IO Studio software as shown above.

If everything is set properly, IO Studio will read the IO Module and show the status of the IO registers. If it shows RED indication as above, then please check the dip switch status on the IO Module, RS232/RS485 converter settings, COM settings in the PC and check the cable that is used between PC and RS232/RS485 converter. Many times, you might have more than one COM port on your PC, You should make sure that which COM port is using for this purpose and select the correct COM port in the above shown setup.

IOStudio - Future Design Controls

File About

IO Module Configuration:

Example: To set baud rate, enter the required value in the register 40121, then press enter on the PC keyboard. Set all the parameters once and then switch off the power supply to the IO Module. Now switch "on" DIP switch 10 on the module to make above settings effective. After power on, the IO Module will have new Communication settings. Please note that at this point of time, IO module may not communicate with PC because you may have different settings at RS232/RS485 converter and also COM port settings in the PC.

Testing the IO Module:

Example: Testing IO-16DO module containing a total 16 digital outputs. Connect IO module with PC as explained above via RS232/RS485 converter. You can force digital output from low to high, check its' status at the IO module and observe LED status on the IO Module itself.

5. SPECIFICATIONS

5.1 ENVIRONMENTAL / SUMMARY POWER INPUT \& CONSUMPTION

Operating Temperature
Storage Temperature
Humidity
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Up to 95% non condensing

Power Input for Module (Logic)

Below is a summary of power input ratings for each module at 12VDC and 24VDC.
Detail on these and other module specifications are found at the appropriate module section.

Module	Description		12VDC

2 RTD \& 2 Analog Inputs (mA/VDC), 1 Analog Output, 4 Digital Inputs \& 2 Digital Outputs

Field Power input for Modules

Below is a summary of Field power input ratings for appropriate modules.

Module	Description	12VDC	24VDC
IO-16DO	16 Digital Output Module	6 mA	6 mA
IO-8DIO	8 Digital Input / 8 Digital Output Module	6 mA	6 mA
IO-8AIV	8 Analog Input 0-5/1-5/0-10/2-10VDC	8 mA	15 mA
IO-8AIO	8 Analog Input 0-20mA / 4-20mA	8 mA	15 mA
IO-8AOI	8 Analog Output 0-20mA/4-20mA	N/A	175 mA
IO-8AOV	8 Analog Output 0-10/2-10VDC	N/A	85mA
IO-DAIO	Combination Input/Output Module	N/A	25 mA

Reference - Calculating Power Supply Requirement:
Calculations: [W = Watts, $I=a m p s, E=$ voltage $] \quad W=I * E \quad A=W / E \quad E=W / I$

EMC INSTALLATION INSTRUCTIONS

1. Screened twisted pair RS485 cable must be used with the screen grounded at one point only.
2. The RS485 cable must be terminated at both ends using a 120 ohm resistor.
3. Use should be made of screened I/O, T/C, and RTD cable with the screens grounded at one point as close to the IO module as possible.

5.2 CONFORMITY CERTIFICATE

