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1.  INTRODUCTION  

A Blue Mountains ecoregion extends from Ochoco Mountains in central Oregon to Hells 

Canyon of Snake River in extreme northeastern Oregon, and then north to deeply carved can-

yons and basalt rimrock of southeastern Washington (fig. 1).  

An objective of this white paper is to discuss silvicultural considerations associated with ac-

tive management of Blue Mountains dry forests. 

A companion white paper (F14-SO-WP-Silv-7) discusses silvicultural considerations for active 

management of Blue Mountains moist upland forests (Powell 2019a). 

 
Figure 1 – Blue Mountains ecoregion of northeastern Oregon, southeastern Washington, and 
west-central Idaho. This ecoregion consists of a series of mountain ranges in a southwest to 
northeast orientation, extending from Ochoco Mountains in central Oregon, southwestern por-
tion of the ecoregion, to western edge of Seven Devils Mountains in west-central Idaho, north-
eastern portion of the ecoregion. Blue shading shows spatial extent of Malheur, Umatilla, and 
Wallowa-Whitman national forests in Blue Mountains ecoregion. 

Beginning in mid-1960s, Blue Mountains experienced a series of insect outbreaks, disease 

epidemics, and wildfires. These disturbance events were viewed as unusually severe because 

they caused great amounts of damage or affected more area than was typical. Blue Mountains 

eventually gained a dubious distinction of having perhaps the worst forest health in western 

United States (Durbin 1992; East Oregonian 1992; Gray and Clark 1992; Kenworthy 1992; Lucas 

1992, 1993; McLean 1992; Peterson 1992; Phillips 1995; Richards 1992). 

Articles in magazines and newspapers contributed to a public perception that Blue Moun-

tains were experiencing a forest health crisis of unprecedented magnitude. This perception led 
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to a series of broad-scale scientific assessments examining forest health effects and their under-

lying causes (Caraher et al. 1992, Gast et al. 1991, Henjum et al. 1994, Hessburg et al. 1999a, 

Johnson 1994, Lehmkuhl et al. 1994, Mutch et al. 1993, Quigley 1992, Quigley et al. 1996, 

Schmidt et al. 1993, Tanaka et al. 1995, Wickman 1992). 

Among other things, 1990s scientific assessments concluded that: 

• In 1980s, an unusually severe outbreak of western spruce budworm, a defoliating insect 

whose habitat is mixed-conifer forest, functioned as a symptom of impaired forest health 

for Blue Mountains, particularly for dry forest environments (Caraher et al. 1992, Gast et al. 

1991, Johnson 1994, Mutch 1994, Powell 1994, Quigley 1992, Schmidt et al. 1993, Tanaka et 

al. 1995, Wickman 1992). 

• It soon became apparent that budworm defoliation and other conditions contributing to a 

Blue Mountains forest health crisis were also occurring throughout interior Pacific North-

west and elsewhere in western United States, particularly for dry forest environments (Ever-

ett et al. 1994; Hessburg et al. 1994, 1999a; Lehmkuhl et al. 1994; O’Laughlin et al. 1993, Oli-

ver et al. 1994c; Quigley et al. 1996; Sampson and Adams 1994). 

• Fine-scale project planning corroborated findings from broad-scale assessments by suggest-

ing that certain symptoms of impaired forest health (such as uncharacteristic wildfire and 

insect effects) were largely related to species composition, forest structure, and tree density 

being outside their historical range of variation. Once again, this finding pertained mostly to 

dry-forest portions of Blue Mountains ecoregion. 

We know that many of our fire-dependent, dry-forest ecosystems are deteriorated, with 

wildfire and other disturbance processes behaving much differently now than they did histori-

cally. This white paper examines causes, effects, and possible responses to dry-forest deteriora-

tion, and it does so by using the following analytical framework (Egan and Howell 2001): 

1. Define an ecological setting and historical context for dry-forest ecosystem components 

(species composition, forest structure, and tree density). 

2. Identify some factors (fire suppression, ungulate herbivory, selective cutting) that may have 

contributed to dry-forest ecosystem changes through time. 

3. Describe what needs to be done to restore dry-forest ecosystem components. 

4. Develop criteria for measuring success of restoration activities. 

Initial sections of this white paper characterize an ecological setting and provide an histori-

cal narrative for dry forests. Middle sections examine how fire exclusion, plant succession in an 

absence of recurrent fire, domestic and native ungulate herbivory, and selective timber harvest 

allowed historically high resilience of dry-forest ecosystems to erode to low levels. Final sections 

describe restoration options for dry-forest ecosystems, including how active management treat-

ments could be applied in such a way as to help recover some of their lost resilience. 

The scope of this white paper is dry upland forests, a biophysical environment found pre-

dominantly on southern half of Umatilla National Forest and elsewhere in the central and south-

ern Blue Mountains, and to a lesser extent on northern half of Umatilla National Forest and else-

where in the northern Blue Mountains (fig. 2, table 1). 
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Figure 2 – Distribution of upland forest (UF) potential vegetation groups on Umatilla Na-
tional Forest (north-end districts above; south-end districts below). 



 

 

 8 

Table 1: Acreage summary for upland forest potential vegetation groups of Umatilla Na-
tional Forest. 

Potential Vegetation Group North Half South Half Total 

Cold Upland Forest 34,832 ac (21%) 132,314 ac (79%) 167,145 

Pct. Of Forested 7% 23% 15% 

Pct. Of Total 5% 20% 12% 

Moist Upland Forest 368,847 ac (70%) 162,283 ac (30%) 531,130 

Pct. Of Forested 70% 28% 48% 

Pct. Of Total 51% 24% 38% 

Dry Upland Forest 123,129 ac (30%) 286,316 ac (70%) 409,445 

Pct. Of Forested 23% 49% 37% 

Pct. Of Total 17% 42% 29% 

Nonforest 201,481 ac (68%) 94,667 ac (32%) 296,147 

Pct. Of Total 27% 14% 21% 

Sources/Notes: Derived from spatial data available in Umatilla National Forest geographical infor-
mation system. 

Appendix 1 provides a list of potential vegetation types (plant associations, plant community 

types, plant communities) occurring in a dry upland forest potential vegetation group. 

Appendix 1 demonstrates that to establish a context for this white paper, dry forest is de-

fined by using units of potential vegetation (e.g., plant associations, plant community types, 

plant communities), rather than by adopting an alternative approach relying on categories of ex-

isting vegetation (such as ponderosa pine stands or cover types, etc.). 

This strategy for defining dry forest is necessary because potential vegetation reflects site 

potential – vegetation types a site can support under contemporary climate and its associated 

temperature and moisture regimes. Existing vegetation, however, describes what is present 

now, regardless of whether it represents climatic (permanent) vegetation or temporary types 

resulting from wildfire, timber harvest, ungulate grazing, and other disturbance processes. 

Formatting note: glossary terms are dispersed throughout this white paper by separating 

them from text in gray-shaded sections (see first example, below). This approach was adopted 

to provide definitions in the chapter in which a term is first used, rather than combining all glos-

sary terms in one section at the end of this document. 

Active management. Human intervention into nature, extent, and timing of disturbance to forest eco-

systems for the purpose of obtaining desired goods and services (Haeussler and Kneeshaw 2003). 

Resilience. Intrinsic properties allowing fundamental functions of an ecosystem to persist in the face of 

extremes of disturbance. Resilience recognizes that systems have a capacity to absorb disturbances, but 

this capacity has limits and bounds, and when they are exceeded, a system may rapidly transform to a dif-

ferent state or developmental trajectory (Gunderson et al. 2010). 
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2.  ECOLOGICAL  SETTING 

A distant summer view of the Blue Mountains shows a dark band of coniferous forest occur-

ring above a lighter-colored grassland zone. Each of the two contrasting areas seems to be ho-

mogeneous, and the border between them appears sharp. A closer view reveals great diversity 

within each zone (fig. 3) and borders that are poorly defined: herbaceous communities and 

stands of deciduous trees are scattered throughout the coniferous forest, and the species of 

dominant conifer changes from one site to another (Powell 2000). 

At the foot of the Blue Mountains, fingers of forest and ribbon-like shrub stands invade the 

grassland zone for varying distances before becoming progressively less common and eventually 

disappearing altogether. This vegetation pattern indicates that the Blue Mountains are actually 

broken up into a myriad of small units, many of which repeat in an intricate, changing pattern. 

Making sense of this landscape mosaic is possible by using a concept called potential vegetation 

(Powell 2000). 

Potential vegetation is defined as the community of plants that would become established if 

all successional sequences were completed, without interference by humans, under existing en-

vironmental conditions (Hall et al. 1995). It also implies that over the course of time and in the 

absence of disturbance, similar types of plant communities will develop on similar sites (Pfister 

and Arno 1980). 

For the Blue, Ochoco, and Wallowa mountains of northeastern Oregon and southeastern 

Washington, potential vegetation has been organized into two closely related hierarchies – a 

fine-scale hierarchy useful for project planning (Hall 1989), and a mid-scale hierarchy ideally 

suited for strategic assessments (Johnson et al. 1999, REO 1995). 

A mid-scale potential vegetation hierarchy has three levels: physiognomic classes, potential 

vegetation groups, and plant association groups (Powell et al. 2007). Since plant associations 

(potential vegetation types) are aggregated to form plant association groups, plant association 

provides a link between the fine- and mid-scale hierarchies (fig. 4). 

Potential vegetation (PV) is used to classify biophysical environments because it has an im-

portant influence on ecosystem processes. It is an ecological engine that powers vegetation 

change − it controls the speed at which shade-tolerant species get established beneath shade-

intolerant trees, the rate at which forests produce biomass, and the effect of fire, insects, patho-

gens, and other disturbance agents on ecosystem composition and structure. The implications 

of these processes are predictable (within limits) because they can be related to PV, and sites 

with similar PV behave in a similar way (Cook 1996, Daubenmire 1961). 

Because of its predictive power, PV is useful for estimating the impact of disturbance pro-

cesses and management activities on differing ecological environments. For example, a pre-

scribed fire with a flame length of 2 feet and a fireline intensity of 25 BTU/ft/sec has relatively 

benign, nonlethal results when used on dry sites where overstory trees have thick bark (ponder-

osa pine, Douglas-fir, western larch). The same activity has dramatically different results (near-

complete tree mortality) on cold sites dominated by thin-barked firs and lodgepole pines. 
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Figure 3 – Vegetation zones of the Blue Mountains. In the northern hemisphere, a 
south-facing slope receives more solar radiation than a flat surface, and a north-facing 
slope receives less (south slope is to the left, and north is to the right). These solar radi-
ation patterns result in vegetation zones or bands shown here – they are arranged ver-
tically in response to elevation (moisture), and sloping downward from south to north 
(left to right) in response to slope direction or aspect (temperature).  

A plains zone contains grasslands and shrublands because moisture is too low to 
support forests except along waterways. A foothills zone is usually dominated by west-
ern juniper, often with a mixture of mountain-mahogany shrublands. Located just above 
western juniper woodlands is a lower montane zone containing dry mixed-conifer for-
ests in the ponderosa pine, Douglas-fir, and grand fir potential vegetation series (dry 
mixed-conifer forests are the subject of this white paper). This dry mixed-conifer zone 
consists of 3 dry grand fir types, 21 ponderosa pine types, and 11 dry Douglas-fir types 
(plus a few other miscellaneous types; see appendix 1). An upper montane zone in-
cludes moist forests in the Douglas-fir, grand fir, and subalpine fir series. High elevations 
support a subalpine zone with Engelmann spruce and subalpine fir, or an alpine zone 
near mountain summits where trees are absent. Neither subalpine nor alpine environ-
ments are common in the relatively low-elevation Blue Mountains. 

Potential vegetation group (PVG). An aggregation of plant association groups (PAGs) with similar en-

vironmental regimes and dominant plant species. Each group (PVG) typically includes PAGs representing a 

predominant temperature or moisture influence (Powell et al. 2007). The scope of this white paper is the 

Dry Upland Forest PVG. 

Plant association group (PAG).  Groupings of plant associations (and related potential vegetation types 

such as plant communities and plant community types) representing similar ecological environments as 

characterized by using temperature and moisture regimes. The most common PAG in the Dry Upland For-

est PVG is the Warm Dry Upland Forest PAG. [Both definitions derived from Powell et al. (2007).] 
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Figure 4 – Hierarchy of potential vegetation (PV) for the Blue Mountains (from Powell et 
al. 2007). PV taxonomic units have been organized as two integrated portions of a hier-
archy. The fine-scale hierarchical units are described in PV classification reports and 
their associated keys (Crowe and Clausnitzer 1997, Johnson 2004, Johnson and Clausnit-
zer 1992, Johnson and Simon 1987, Johnson and Swanson 2005, and Wells 2006). Poten-
tial vegetation types (PVTs) provide a link between the fine- and mid-scale portions of 
the hierarchy because PVTs are aggregated to form plant association groups. 

The biophysical environment covered by this white paper is referred to as the Dry 
Upland Forest potential vegetation group (PVG). Dry Upland Forest is one of three po-
tential vegetation groups occurring in the Upland Forest physiognomic class (the other 
two PVGs in this physiognomic class are Moist Upland Forest and Cold Upland Forest). 
PVT codes and names, and the plant association group that each of the Dry Upland For-
est PVTs has been assigned to, are provided in appendix 1 of this white paper. [As illus-
trated in this figure, plant association groups (PAGs) occur at a lower level in the hierar-
chy than PVGs – the Dry Upland Forest PVG contains three PAGs, each of which is 
named for a combination of temperature and moisture conditions – warm dry (by far 
the most common PAG in the Dry Upland Forest PVG), hot moist, and hot dry.] 
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2.1 Dry Upland Forest Potential Vegetation Group 
Dry upland forests occur at low to moderate elevations of the montane vegetation zone. 

Late-seral stands are dominated by ponderosa pine, grand fir, or Douglas-fir as climax species; 

ponderosa pine or Douglas-fir function as early- or mid-seral species depending on plant associ-

ation. Western juniper is expanding into this PVG as a result of fire exclusion and climate change 

(Gedney et al. 1999, Quigley et al. 1996), moving upward from a woodland zone below the mon-

tane zone. Dry forests are adjoined by moist upland forests at their upper edge, and by wood-

lands and shrublands of a foothills vegetation zone at their lower edge (fig. 3). 

For the Blue Mountains, a Dry Upland Forest PVG consists of three plant association groups 

(PAG) – one from a warm temperature regime (Warm Dry PAG), and two from a hot tempera-

ture regime (Hot Moist and Hot Dry PAGs). Of the three PAGs, Warm Dry is most common for 

the Dry UF potential vegetation group. A warm dry PAG supports dry mixed-conifer forests, with 

3 dry grand fir potential vegetation types, 21 ponderosa pine types, and 11 dry Douglas-fir types 

(plus other miscellaneous types; see appendix). 

Warm, dry forests tend to be the most common forest zone of the Blue Mountains, and be-

cause they occur at the lowest forested elevations, they have a long history of human use – both 

for commodity purposes (such as domestic livestock grazing), and as an area where effective fire 

exclusion occurred early on and eventually led to obvious changes in species composition, forest 

structure, and stand density. Dry-forest sites were historically dominated by ponderosa pine be-

cause it is well adapted to survive in a fire regime featuring low-severity fires occurring every 5 

to 20 years (Agee 1996b; Hall 1976, 1980). 

Common dry-forest undergrowth species feature graminoids and mid-height shrubs. Elk 

sedge and pinegrass are ubiquitous graminoids, while birchleaf spiraea, snowberry, ninebark, 

and bitterbrush are common shrubs. On the very driest sites, the Dry UF PVG has mountain-ma-

hogany, big sagebrush, bluebunch wheatgrass, and western juniper (Hot Dry PAG). 

Insect and disease agents of notable importance for dry-forest sites include defoliating in-

sects such as western spruce budworm and Douglas-fir tussock moth (but only in those situa-

tions where Douglas-fir and grand fir invaded stands historically dominated by ponderosa pine), 

Douglas-fir dwarf mistletoe, and western dwarf mistletoe and bark beetles in ponderosa pine. 

Why Discuss Dry Forest As A Separate Entity?  

Why prepare a white paper focused just on dry forests? After all, dry forests exist in a mo-

saic – sometimes they are a dominant landscape element (matrix) and, at other times, they exist 

as patches within a moist-forest matrix. From many perspectives, it makes sense to examine the 

entire mosaic rather than its constituent parts (dry forest, moist forest, etc.). Dry-forest ecosys-

tems, however, are molded by disturbance processes differing in important ways from those 

shaping moist- or cold-forest environments. Thus, the science informing dry forests also differs 

from the science relating to moist-forest management. This truth is demonstrated by examining 

the dry- and moist-forest white papers – there is little science overlap between them (except for 

science pertaining to concepts and principles), and substantial overlap would not be expected 

when considering their ecological and historical (management) settings. 
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3.  HISTORICAL  CONTEXT 

When Euro-Americans pushed up the Oregon Trail into the Blue Mountains of northeastern 

Oregon in the mid-1800s, they encountered a strikingly beautiful forest unlike any they had seen 

on their way west (fig. 5). Widely spaced ponderosa pines formed a towering canopy over an un-

derstory so free of brush and small trees that settlers could often drive their wagons through 

the forest as if it was a carefully manicured park (Evans 1991, Kenworthy 1992, Murphy 1994). 

Oregon Trail diarist Rebecca Ketcham described this open condition well in her journal entry 

for Tuesday, September 6, 1853, written just after her party left the Grande Ronde River valley 

near La Grande, Oregon as they continued their journey to the northwest (Evans 1991): 

“Our road has been nearly the whole day through the woods – that is, if beautiful groves of 

pine trees can be called woods. I can almost say I never saw anything more beautiful, the river 

winding about through the ravines, the forests so different from anything I have seen before. 

The country all through is burnt over, so often there is not the least underbrush, but the grass 

grows thick and beautiful. It is now ripe and yellow and looks like fields of grain ripened, ready 

for the harvest.” 

Rebecca Ketcham was not the only emigrant who noticed fire’s influence on vegetation con-

ditions along the Oregon Trail. When 66 accounts from a book synthesizing journals by 19th cen-

tury travelers on the Blue Mountains portion of the Oregon Trail (Evans 1991) were analyzed, 

89% of them referred to open ponderosa pine stands, and 54% noted burned underbrush or 

grassy glades, much smoke in late summer and fall, or a lack of underbrush or dense tree thick-

ets (Wickman et al. 1994). 

Selected passages from Evans’ book describing fire and vegetation conditions are provided 

below; misspellings from the original journals are retained in the excerpts (Evans 1991): 

“…the grass has been lately consumed, and many of the trees blasted by the ravaging fire of 

the Indians. These fires are yet smouldering, and the smoke from them effectually prevents 

our viewing the surrounding country, and completely obscures the beams of the sun.” 

Journal of John Kirk Townsend, August 31, 1834 

“Came to trees, at first quite thin & without underbrush having fine grass. But as we arose we 

came to a densly timbered country, mostly pine & fir. The most beautiful tall straight trees. 

Our traviling through the timber was quite difficult as the path wound back and forth and 

many logs lay across it.” 

Journal of Medorem Crawford, September 12, 1842 

“They [mountains] are mostly covered with high bunch grass, which at this season is quite dry. 

This often gets on fire, burning for miles and days together. One of these burnings is in sight of 

us today. It is on the opposite side of the river from us, or I should feel alarmed. 

The fire in the mountains last night was truly grand. It went to the tops of them spreading far 

down their sides. We were obliged to go over after our cattle at dark and bring them across 

the stream. The fire extended for several miles, burning all night, throwing out great streamers 

of red against the night sky. This morning there is none visible.” 

Journal of Esther Hanna, August 15-16, 1852 
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Figure 5 – Open ponderosa pine forest with herbaceous undergrowth (stand of old-
growth P. ponderosa near Whitney, Oregon, ca. 1900 [J.W. Cowden]; courtesy Gary Diel-
man, Baker City library). Pioneer journals (Evans 1991), early forestry surveys (Gannett 
1902, Munger 1917), and fire history studies (Heyerdahl 1997, Maruoka 1994) suggest 
that many dry-forest sites in the Blue Mountains had presettlement conditions similar to 
those depicted in this image, particularly for the Douglas-fir/pinegrass and grand fir/ 
pinegrass plant associations (Weaver 1967a, b). These biophysical settings featuring a 
warm and dry temperature-moisture regime, in combination with a disturbance regime 
dominated by frequent surface fires, created and maintained the distinctive composi-
tion and structure shown here. 

According to these journal accounts, forest conditions at low and middle elevations con-

sisted mainly of ponderosa pine, pine forests were open and park-like with grass and herbs as 

predominant undergrowth vegetation, and fire was a common occurrence in late summer and 

autumn (Evans 1991, Wickman et al. 1994). We can surmise that a typical landscape pattern was 

a fine-scale mosaic of stands of varying ages and stages of development, with young stands a re-

sult of infrequent, stand-replacing fires or bark-beetle outbreaks. 

H.D. Foster (1908) described the open, park-like condition well when he observed, “the for-

est floor is open, free from underbrush in any quantity, so much so that it is possible to ride in 

almost any direction through the forest without following trails.” 

It is widely reported that the Blue Mountains were named to commemorate a bluish haze 

enveloping them during late summer and fall when fires were burning (Mutch et al. 1993). Two 

journal entries below (Beckham 1991, Evans 1991), however, speculate that their name com-

memorates a blue-green color imparted by extensive pine stands. In either case, fire was an im-

portant reason for a ‘Blue Mountains’ name because it was not only responsible for smoke, but 
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also for maintaining ponderosa pine forests that would have been rare without underburning. 

“It is probable that they have received their name of the Blue mountains from the dark-blue 

appearance given to them by the pines.” 

Journal of Captain John Charles Fremont, October 17, 1843. 

“I presume these mountains take their name from their dark blue appearance being densely 

timbered with pine timber, which being ever green gives the forest a sombre appearance, be-

sides the limbs of the trees are all draped with long festoons of dark colored moss or mistle-

toe.” 

Journal of John or David Dinwiddie, August 30, 1853. 

Almost fifty years after Rebecca Ketcham’s observations, scientist and geographer Henry 

Gannett examined Oregon’s forests during a survey of federal forest reserves. Fire’s effect on 

vegetation was clearly recognized during his survey, as described below (Gannett 1902): 

“The burns are greatest and most frequent in the most moist and most heavily timbered parts 

of the state, and are smaller and fewer where the rainfall is less and where the timber is 

lighter. This is owing to the density and abundance of the undergrowth in the heavily forested 

regions, which feeds the fire and vastly increases its heat. 

In the comparatively sparsely timbered southern portions of the Coast Range and the Cascades 

and in the Blue Mountains, where the forests are largely or mainly of yellow pine in open 

growth, with very little litter or underbrush, destructive fires have been few and small, alt-

hough throughout these regions there are few trees which are not marked by fire, without, 

however, doing them any serious damage.” 

3.1 Ponderosa Pine In Eastern Oregon 
Thornton T. Munger, first director of USDA Forest Service’s Pacific Northwest Research Sta-

tion, examined eastern Oregon’s ponderosa pine forests more than a decade after Gannett’s 

survey. Munger made insightful observations about forest structure and composition, including 

frequent comments about fire’s obvious influence (Munger 1917): 

“In most of the pure yellow-pine forests of the State the trees are spaced rather widely, the 

ground is fairly free from underbrush and debris, and travel through them on foot or horse-

back is interrupted only by occasional patches of saplings and fallen trees. The forests are usu-

ally not solid and continuous for great distances, except along the eastern base of the Cas-

cades, but are broken by treeless ‘scab-rock ridges,’ or natural meadows. 

In the Blue Mountains the herbage is rather more luxuriant and varied than on the eastern 

slopes of the Cascades and their outstanding ranges. In the early summer the open yellow-pine 

forests are as green with fresh herbage as a lawn, except here and there where the green is 

tinged with patches of yellow or purple flowers. Some of this luxuriant herbage is pine grass 

(Calamagrostis sp.), a plant which is not eaten by stock except very early in the season; but 

much of the ground cover makes excellent range for cattle and sheep. 

In the Blue Mountains western larch (Larix occidentalis) is its [western yellow pine] usual com-

panion and grows with it in an intimate and harmonious mixture. In the moister situations 

white fir (Abies concolor) is a common associate, as is also Douglas fir (Pseudotsuga taxifolia) in 

most parts of the State. In the Blue Mountains it is common for the south slopes to be covered 
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with a fine stand of yellow pine, while the north slopes are covered almost entirely with larch, 

white fir, and Douglas fir. 

In the Blue Mountains the reproduction of yellow pine is very abundant, both in the virgin for-

est and after cuttings. Perhaps it is more prolific here than anywhere else. In this region where 

an area has not been burned over by a surface fire for a number of years, there is quite com-

monly a veritable thicket of little trees from a few inches to several feet high. Actual counts 

have shown that there are sometimes 14,000 seedlings on a single acre, the ages ranging from 

13 to 21 years. 

Yellow pine grows commonly in many-aged stands; i.e., trees of all ages from seedlings to 500-

year-old veterans, with every age gradation between, are found in intimate mixture. Usually 

two or three or more trees of a certain age are found in a small group by themselves, the rea-

son being that a group of many young trees usually starts in the gap which a large one makes 

when it dies. 

Light, slowly spreading fires that form a blaze not more than 2 or 3 feet high and that burn 

chiefly the dry grass, needles, and underbrush start freely in yellow-pine forests, because for 

several months each summer the surface litter is dry enough to burn readily. Practically every 

acre of virgin yellow-pine timberland in central and eastern Oregon has been run over by fire 

during the lifetime of the present forest, and much of it has been repeatedly scourged. 

It is sometimes supposed that these light surface fires, which have in the past run through the 

yellow-pine forests periodically, do no damage to the timber, but that they ‘protect’ it from 

possible severe conflagrations by burning up the surface debris before it accumulates. This is a 

mistake. These repeated fires, no matter how light, do in the aggregate an enormous amount 

of damage to yellow-pine forests, not alone to the young trees, but to the present mature 

merchantable timber. 

A careful cruise of every tree on 154½ sample acres in typical yellow-pine stands in several lo-

calities in the Blue Mountains showed that 42 out of every 100 trees were fire-scarred. 

Ordinarily, a fire in yellow-pine woods is comparatively easy to check. Its advance under usual 

conditions may be stopped by patrolmen on a fire line a foot or so wide, either with or without 

backfiring. The open character of the woods makes the construction of fire lines relatively 

easy, and in many places horses may be used to plow them.” 

When Thornton Munger examined eastern Oregon’s ponderosa pine forests in 1910-1911, 

an open park-like structure was clearly evident (Munger 1917): 

“In pure, fully stocked stands in the Blue Mountains region there are commonly from 20 to 30 

yellow pines per acre over 12 inches in diameter, of which but few are over 30 inches. Over 

large areas the average number per acre is ordinarily less than 20.” 

[Note: 20 trees per acre results in an equilateral (triangular) spacing of 50 feet between trees, 

most assuredly an open stand condition. This equilateral spacing calculation is provided for 

tree density context – presettlement ponderosa pine stands did NOT feature individual trees 

growing at a regular spacing of 50 feet apart. A common structural condition was large ponder-

osa pine trees occurring in clumps or groups, as illustrated in photographs used for figures 44-

46 later in this white paper. Since trees were aggregated into clumps, spacing between individ-

ual clumps was often much greater than 50 feet.] 
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George Bright offered similar observations about the open character of ponderosa pine for-

ests, along with five specific causes for its open structure (Bright 1914): 

“The most striking feature of a stand of Western Yellow pine is its open character. The peculi-

arity is the first thing which strikes anyone looking upon such a forest for the first time. Even 

growing on the best soils and under favorable climatic conditions, it would be difficult, if not 

quite impossible, to find a full or normal stand of Yellow pine over an area of forty or even ten 

acres. There appear openings even where the very best conditions for growth of this tree oc-

cur, as well as in localities where conditions are less favorable. The peculiarity of Yellow pine 

stands is due to five primary causes, as follows: (1) fire, (2) insect infestation, (3) windfall, (4) 

root competition and (5) light competition.” 

George Bright and Thornton Munger worked together to install plots in Blue Mountains 

ponderosa pine type in 1910 and 1911 (Bright 1912, Munger 1912). Bright summarized plot re-

sults in a published journal paper (Bright 1914). Unfortunately, plot results were only provided 

for merchantable trees, which included stems 12 inches in diameter and greater. 

Even though it lacks information for trees smaller than 12 inches, Bright’s summary provides 

a useful stand density reference condition for mature, large-diameter ponderosa pines. A lack of 

reference condition information for the regeneration component (e.g., seedlings, saplings, and 

poles) is unfortunate because it would have provided a more comprehensive characterization of 

presettlement dry-forest structure. 

Presettlement stand densities of mature ponderosa pines on eight dry-forest plots from 

three localities in the Blue Mountains are provided in table 2. 

Table 2: Historical tree density information for 8 plots and 3 localities in the Blue Mountains. 

Plot Locality 
Plot Size 
(Acres) 

Total Number of 
Trees on Plot1 

Trees 
per Acre1 

Average Tree 
Diameter (Inches)1 

Basal Area 
per Acre1 SDI 

Palmer Junction 5 170 34 21 82 126 

Palmer Junction 5 190 38 23 110 166 

Palmer Junction 4 119 30 19 59 93 

Palmer Junction 4 176 44 19 87 137 

Palmer Junction 6 159 27 21 63 99 

Whitney 20 669 33 21 80 124 

Whitney 10 301 30 22 79 122 

Austin 4 124 31 22 82 125 

Mean 7 239 33 21 80 124 

1 Due to the parent sources, all numerical values pertain only to trees 12 inches dbh and greater. Basal 
area per acre was calculated by multiplying trees-per-acre values (4th column) by basal area (in square 
feet) of a tree with the diameter shown in Average Tree Diameter (5th column). SDI (Stand Density Index) 
(Reineke 1933) is calculated by using Trees per Acre and Average Tree Diameter columns. 
Sources/Notes: Adapted from Table V in Bright (1914). Austin and Whitney plots were likely established in 
same general area as an Austin-Whitney tract described in figure 22 later in this white paper; Palmer Junc-
tion plots were likely established in same general area as a Lookingglass Creek tract described in figure 22. 
Note that figure 22 provides similar tree density information as is presented here, although it includes 
tree density for trees greater than 1 inch in diameter (rather than the 12-inch limit used here), and it pro-
vides summary calculations for trees greater than 21 inches in diameter. 
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4.  INFLUENCE  OF  FIRE  EXCLUSION 

On dry-forest sites, fire’s influence was perhaps as important as sunlight and rain. The his-

torical fire regime of frequent, low-severity surface fires maintained a pattern of large, widely 

spaced, fire-tolerant trees (fig. 5). These savanna forests supported trees with low flammability 

traits, and this contributed to ecosystem persistence (Bond and Midgley 1995). 

For dry sites, dramatic reductions in fire frequency allowed tree seedlings and saplings, par-

ticularly of fire-sensitive species, to persist in biophysical settings where most of them would 

have been eliminated by the historical fire regime (Agee 1996b, 1998; Cooper 1960; Munger 

1917; Mutch et al. 1993; Sloan 1998b; White 1985; Wright and Agee 2004). 

Fires in California’s presettlement ponderosa pine type, for example, occurred on a fre-

quency of about every 8 years between 1685 and 1889 (Show and Kotok 1924). In eastern Ore-

gon, Keen (1937) sampled a 670-year-old ponderosa pine tree with 25 fire scars dating from 

1481 to mid-1930s, and it might very well have experienced more fires than that because not 

every fire creates a scar (Agee 1993). 

Fire-dependent ponderosa pine forest (‘park-like pine’) was not unique to Blue Mountains 

or eastern Oregon; it was present in almost every forested region of the western United States, 

including northeastern California (Laudenslayer et al. 1989), western Montana (Gruell et al. 

1982, Habeck 1990), central Idaho (Brock and Brock 1993), Colorado’s Front Range (Marr 1967, 

Veblen and Lorenz 1991, Vestal 1917), and Arizona and New Mexico (Woolsey 1911). 

Perhaps the most important reason for alteration and loss of park-like ponderosa pine forest 

has been exclusion of frequent wildfire, whose historical influence was so pervasive that Rebec-

ca Ketcham, Henry Gannett, Thornton Munger, and George Bright could hardly fail to notice its 

impact on forest composition and structure (this paragraph refers to quoted material from 

Ketcham, Gannett, Munger, and Bright in section 3 – Historical Context). 

If Ketcham, Gannett, Munger, or Bright could return to the interior Pacific Northwest today, 

they would not recognize existing forest conditions, particularly for dry-forest sites. Gone are 

many of the big yellow pines, some of which were harvested to make moldings, window sashes, 

and doors, as well as crates for apples and other fruit crops (Bolsinger and Berger 1975, Gedney 

1963). Other old-growth ponderosa pines succumbed to a widespread outbreak of western pine 

beetle in the early- to mid-1930s (Cowlin et al. 1942, Weidman and Silcox 1936). 

As ecologically benign fires crept through dry-site forests every 5 to 20 years, they elimi-

nated brush and small trees in their wake (Everett et al. 2000, Franklin and Dyrness 1973, Hall 

1976, Wright and Agee 2004). Historical fire ignitions probably came from a combination of 

lightning and human sources (Boyd 1999, Morris 1934). Fire intervals of less than 5 years are un-

common for the Blue Mountains (Heyerdahl 1997, Maruoka 1994, Hall 1976), suggesting that 

once a fire occurred, several years of fuel accumulation were required before the same area 

could burn again (Wright and Agee 2004). 

Archaeological evidence suggests that humans inhabited interior Columbia River basin eco-

systems for at least 15,000 years (Knudson 1980). It is generally assumed that when Europeans 
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arrived in the New World, American Indians sparsely occupied the land, impacts of native peo-

ples were relatively minor, and the landscape was pristine (Cronon 1996, Kay and Simmons 

2002). Subsequent work shows this assumption to be incorrect, as described here by ecologist 

Daniel Botkin: 

“It often seems that the common impression about the American West is that, before the arrival 

of people of European descent, Native Americans had essentially no effect on the land, the wild-

life, or the ecosystems, except that they harvested trivial amounts that did not affect the ‘natu-

ral’ abundances of plants and animals. But Native Americans had three powerful technologies: 

fire, the ability to work wood into useful objects, and the bow and arrow. 

To claim that people with these technologies did not or could not create major changes in natu-

ral ecosystems can be taken as Western civilization’s ignorance, chauvinism, and old prejudice 

against primitivism – the noble but dumb savage. There is ample evidence that Native Americans 

greatly changed the character of the landscape with fire, and that they had major effects on the 

abundances of some wildlife species through their hunting” (Botkin 1995). 

It is entirely possible that Blue Mountain forests were more primeval at time of Euro-Ameri-

can settlement than before that era. When Columbus landed in 1492, it is estimated that North 

America (exclusive of Mexico and central America) supported at least 3.8 million Native Ameri-

cans. By 1800, their numbers had been reduced to a million or less by measles, smallpox, chol-

era, influenza, and other European diseases (Denevan 1992, Mann 2006, Scott 1928). 

Even though their populations were already declining dramatically due to diseases intro-

duced after European contact (Cook 1955), Native Americans of interior Pacific Northwest may 

have expanded their use of fire in early 1700s, perhaps to promote forage for horses they just 

acquired for the first time (Habeck 1987; Haines 1938; Humphrey 1943; Mosgrove 1980; Stewart 

1951, 2009). 

Recent investigations indicate that American Indians were far from passive hunters and 

gatherers often depicted in western movies and novels. Their actions had a profound influence 

on structure and composition of western ecosystems, a not unexpected result when considering 

they used hundreds of plants and animals for food, fiber, shelter, forage, and medicine. Fire was 

often their main tool for creating and maintaining habitats required by ‘first foods’ plants and 

animals (Boyd 1999, Denevan 1992, Kay 1994, Robbins 1997, Shinn 1980, Swetnam 1984, Wil-

liams 2000). 

Because ecosystems with native peoples differ markedly from those lacking an aboriginal 

influence, a hands-off approach by today’s managers will not duplicate conditions under which 

presettlement ecosystems developed (Botkin 1995, Boyd 1999, Christensen et al. 1996, Mac-

Cleery 1992, Stevens 1990, Vale 2002). 

Conversely, it is important to recognize that the technologies used by Native Americans to 

manage landscapes for thousands of years were far different than those employed by Euro-

Americans (Aplet and Keeton 1999, Cronon 1996). 
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4.1 Plant Succession On Dry Sites  
Suppressing underburns had an unintended consequence of allowing open stands of park-

like ponderosa pine to be transformed into dense, thick forests of grand fir and Douglas-fir (Har-

rod et al. 1999, Mast et al. 1999, Sloan 1998b, Turner and Krannitz 2001) (fig. 6). Fire suppres-

sion also transformed the structure of dry forests by shifting much of the canopy leaf area from 

an overstory layer to one or more understory layers. 

Ironically, many of these thick, multi-layered, dry forests may present a more attractive ap-

pearance than the park-like pine stands they replaced – there seems to be an intuitive human 

sense that when it comes to forests, lush is better (Gruell 2001, Hjerpe et al. 2016, Scott 1998a). 

Tree species that invaded park-like pine forest – grand fir and Douglas-fir – have thin bark, 

low-hanging branches, highly flammable foliage, and other characteristics rendering them vul-

nerable to fire damage, particularly when they are small (table 3). With thick bark and few 

branches close to the ground, ponderosa pine and western larch easily resist surface fires that 

eliminated firs and other invading tree species (Agee 1994, Cooper 1960, Dickman 1978, Weaver 

1967b, White 1985). 

When considering climate only (precipitation and temperature), Douglas-fir or grand fir are 

most assuredly climax species for dry, mixed-conifer sites of the Blue Mountains (dry mixed-co-

nifer forests include ponderosa pine, grand fir, and Douglas-fir potential vegetation types; see 

appendix 1). 

But when surface fire is superimposed on the climatic regime, it results in a marked change 

in vegetation composition because ponderosa pine, western larch, and other fire-adapted spe-

cies are then put at a distinct advantage (Habeck 1976, Hall 1976). 

Light-water tradeoff theory (Smith and Huston 1989) maintains that plants cannot be opti-

mally adapted to both light and water. Dry forests are water limited, with dominant conifers 

evolved to compete for water first and light second. 

A surface fire regime creates an open stand of fire-resistant species. As long as fires con-

tinue, stands are thinned and competition for water is reduced. 

In a plant succession context, dry-forest sites where surface fire favored dominance by pon-

derosa pine are generally early seral; areas where fire exclusion promoted establishment of 

grand fir and Douglas-fir are late seral (table 4). A pine-dominated early-seral condition is now 

rare, whereas fir-dominated late-seral stands are currently abundant (Arno and Allison-Bunnell 

2002, Caraher et al. 1992, Habeck 1976, Hessburg et al. 1999b, Lehmkuhl et al. 1994). 

Although late-seral grand firs and Douglas-firs can establish under ponderosa pine when un-

derburning is absent, they may not have enough resilience to make it over the long run, let 

alone survive the next drought. This means that many late-seral stands of grand fir and Douglas-

fir, which replaced an original stand of early-seral ponderosa pine, are destined to become weak 

– and weak forests are susceptible to insect, disease, and fire outbreaks (fig. 7; Agee 1996b, Cov-

ington et al. 1994, Filip et al. 1996, Filip and Schmitt 1990, Hessburg et al. 1994, Mutch et al. 

1993, Oliver et al. 1994a, Powell 1994, Wickman 1992). 
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Figure 6 – Forest succession for Douglas-fir/mallow ninebark (PSME/PHMA) plant asso-
ciation in the absence of recurring wildfire (adapted from Keane et al. 1990). In this sim-
ulation study, “compositional shifts from ponderosa pine and larch to Douglas-fir oc-
curred in simulations of 50-yr fire intervals and with fire suppression. The simulated sce-
nario of fire suppression (shown above) resulted in development of dense stands of rel-
atively small trees. Such stands are susceptible to insect and disease infestations. They 
are also vulnerable to severe damage by wildfires because of heavy accumulations of 
dead fuels, and continuity of ladder and overstory fuels” (Keane et al. 1990). 

This study also demonstrates that fire intervals of 20 years or less result in Douglas-
fir being essentially absent from dry-forest landscapes due to its high fire vulnerability as 
a seedling or sapling (Agee 1996b). Since dry-forest surface fire occurred in Blue Moun-
tains on a cycle of 5-20 years (Hall 1976, 1980), this study helps explain why species 
composition has changed dramatically for this biophysical environment. This and other 
studies show that fire exclusion in dry-forest types results in greater canopy cover and 
density of shade-tolerant trees, higher fuel loads, and increased fuel continuity, which 
combine to increase potential for high-severity, stand-replacing fires (Agee and Skinner 
2005, Parsons and DeBenedetti 1979, North et al. 2005, Zald et al. 2008). 

Table 3: Fire resistance characteristics for common conifers of dry-forest sites. 

Tree  
Spec ies  

Bark 
Thickness 

Rooting 
Habit 

Bark Resin 
(Old Bark) 

Branching 
Habit 

Stand 
Density 

Foliage 
Flammability 

Overall 
Resistance 

Ponderosa 
 pine 

Very thick Deep Abundant 
Moderately 
high & open 

Open Medium High 

Douglas-fir Very thick Deep Moderate 
Moderately 
low & dense 

Moderate 
to dense 

High High 

Western   
 larch 

Very thick Deep Very little 
High and 
very open 

Open Low Very high 

Grand fir Thick Shallow Very little 
Low and 

dense 
Dense High Medium 

Sources/Notes: Adapted from Flint (1925) and Starker (1934). Species rankings reflect a predominant situa-
tion for each trait. Tree species generally achieve fire tolerance by developing thick bark to protect their 
cambium, and by self-pruning to raise their lower crown above average flame height in the event of a fire. 
Species traits vary during a lifespan of an individual tree, and from one individual to another in a popula-
tion. For example, grand fir’s bark is thin when young, but relatively thick when mature. 
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Table 4: Comparison of fire return interval and tree longevity, in years. 

PVG 
Fire Return         

Interval 
Seral 
Stage 

Predominant 
Tree Species 

Tree Longevity (Years) 
Typical Maximum 

Dry 
Forest 

15 Years 

Early Ponderosa pine 300 725 

Mid Douglas-fir 200 500 

Late Grand fir 200 400 

Moist 
Forest 

30-50 Years 

Early Western larch 300 915 

Mid Western white pine 400 615 

Late Grand fir 200 400 

Cold 
Forest 

80-110 Years 
Early Lodgepole pine 100 300 

Mid Engelmann spruce 250 550 

Late Subalpine fir 150 250 

Sources/Notes:  PVG (potential vegetation group) is described in Powell et al. (2007). Fire Re-
turn Interval is from Agee (1993; table 1.2, page 13). Seral Stage refers to a particular phase 
in the sequence of plant communities occurring after a disturbance event; seral communities 
are classified as early-, mid-, or late-seral depending on the successional role of their species 
composition (Hall et al. 1995). Predominant Tree Species shows a predominant species asso-
ciated with each seral stage by PVG. Tree Longevity age values are from Powell (2000). 

Successional roles of ponderosa pine and white (grand) fir were recognized by early silvicul-

tural researchers, as demonstrated by these comments about forest succession and develop-

ment for Sierra Nevada Mountains of central California (Dunning 1923): 

“Where natural conditions of site favor white fir, this species is destined to succeed yellow 

pine unless the normal succession is disturbed by fire or other accidents. Fir seeds germinate 

more abundantly than pine under stands of yellow pine, whose litter and shade exclude their 

own seedlings, and the young [fir] trees endure suppression longer. Moreover, height growth 

of fir is more rapid, and the total height attained is greater than for yellow pine. In the past oc-

casional fires have been primarily responsible for sustaining yellow pine on fir sites. 

Fir seedlings and young trees are far more susceptible to fire damage than the pine be-

cause of their thinner bark with balsam cysts, more inflammable foliage, and small resinous 

terminal buds which are far less resistant than those of yellow pine. The fir is more often elimi-

nated by fungi entering through fire scars than is pine. Exposure of mineral soil and openings 

created by fire favor yellow pine.” 

Early-seral communities developing under an influence of recurring disturbance can be eco-

logically resilient. A disturbance regime for these dry-forest sites was generally dominated by 

frequent, low-severity fire, resulting in open, multi-aged stands with a vigorous herbaceous un-

dergrowth. 

Disturbance frequency determines the length of successional cycles for a particular ecologi-

cal system. Ecosystems with frequent disturbance have continually interrupted successions and 

exhibit a relatively narrow range of plant communities and vegetation structure (Steele and 

Geier-Hayes 1995). A good example of a forest ecosystem maintained by frequent disturbance is 

presettlement, park-like ponderosa pine forest (see fig. 5, and fig. 34 later in this paper). 
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Figure 7 – Grand fir trees killed by fir engraver 
bark beetles (from Powell 1994). Defoliation, 
drought, root disease, dwarf mistletoe, over-
stocking, and other stressors increase a tree’s 
susceptibility to bark beetle attack (Filip 1994, 
Filip and Schmitt 1990). Fir engraver and Doug-
las-fir beetles caused widespread damage in 
the Blue Mountains during late 1980s and early 
1990s. On dry-forest sites, bark beetles and 
other insects focus their attention on water-
stressed and low-vigor trees (Schowalter and 
Withgott 2001). High-vigor trees are better 
able to ward off insect and disease attacks by 
producing phenols, terpenes, resins, and other 
defensive chemicals (Christiansen et al. 1987, 
Waring 1987). Thinning, a silvicultural practice, 
is used to release overcrowded trees from ef-
fects of competition and improve their physio-
logical condition and vigor (Oliver and Larson 
1996). In the Blue Mountains, high stand den-
sity is known to favor at least eight forest in-
sects and seven forest diseases or parasites, 
primarily because overstocking contributes to 
low tree vigor, and low vigor translates into re-
duced insect and disease resistance (Kolb et al. 
1998, Langenheim 1990, Mitchell et al. 1983, 
Nebeker et al. 1995, Phillips and Croteau 1999, 
Pitman et al. 1982, Safranyik et al. 1998). 

Presettlement forests typically consisted of large trees with an open to moderately dense 

canopy, an understory featuring vigorous shrubs and herbs, and small patches of young trees 

(figs. 5 and 34). “Light and water could penetrate the forest canopy to nurture and maintain a 

healthy understory. The observation that more wildlife species are adapted to large-tree, open 

canopy forest than to any other combination of tree size and canopy closure suggests that open 

conditions were common” historically (Gruell 2001). 

Plant succession. A process by which a series of different plant communities, and their associated ani-

mals and microbes, successively occupy and replace each other over time in a particular ecosystem or 

landscape location following a disturbance event (Kimmins 1997). A process of development (or redevel-

opment) of an ecosystem over time (Botkin 1990). 

Surface fire. A fire burning primarily along the ground, consuming leaf litter (needles), grass, forbs, 

shrubs, short trees, fallen branches, and other fuels located on, or directly adjacent to, the forest floor 

(Scott and Reinhardt 2001). Surface fire tends to cause minimal damage to larger trees; historically, this 

was a prevailing fire type for ponderosa pine ecosystems throughout the western United States. 

4.2 Fire’s Influence On Site Nutrition 
After frequent fires were suppressed following Euro-American settlement, microbial decom-

position has been unable to process rapidly accumulating organic debris (needles, twigs, and 
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branches) on dry sites. Impaired decomposition and nutrient cycling rates can be initial signs of 

stress in dry-forest ecosystems (Bormann and Likens 1979). High organic matter levels on dry 

sites, with nutrients held in forms unavailable for plant growth, indicate that decomposition and 

nutrient cycling processes are not functioning properly (Yazvenko and Rapport 1997). 

Numerous studies have documented slow decomposition rates for woody biomass of the 

western United States. This means that interior Pacific Northwest forests may have depended 

more on nitrogen-fixing plants and surface fire to cycle nutrients than on microbial decomposi-

tion of woody debris (Harvey 1994, Harvey et al. 1994) (fig. 8). 

 

Figure 8 – Microbes and fire as agents of decomposition (adapted from Harvey et al. 
1994). Fire (black portion of bars) and microbes (gray portion) are important decomposi-
tion and nutrient cycling agents. For the dry-forest climatic zone of the interior Pacific 
Northwest (the interior Douglas-fir and ponderosa pine forest types above), short-inter-
val fire regime (surface fires) was a primary cycling process because microbial decompo-
sition is too slow to keep pace with biomass accumulation on these sites. Microbial de-
composition is limited for cold or dry environments, allowing biomass to accumulate. 

And, these two nutrient-cycling processes – microbes and fire – are obviously related be-

cause frequent fire not only converted litter to its mineral elements (calcium, etc.), but it also 

functioned to periodically rejuvenate snowbrush ceanothus, lupines, peavines, American vetch, 

russet buffaloberry, and other nitrogen-fixing plants (Hendrickson and Burgess 1989, Newland 

and DeLuca 2000). 

Having nutrients tied up in pine litter, which decomposes more slowly than grass litter in a 

summer-dry Mediterranean climate of the interior Pacific Northwest (Hart et al. 1992), means 

that nutrient cycling has undoubtedly deteriorated for contemporary forests when compared 

with historical conditions (Cooper 1960; Covington and Moore 1994a, 1994b; Weaver 1943). 
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This trend also means that dry mixed-conifer forests are accumulating biomass faster than it 

is being removed by surface fire, timber harvest, or microbial decomposition, leaving millions of 

acres vulnerable to drought stress, insects and diseases, and uncharacteristic wildfire (Sampson 

and Adams 1994). [But this trend may change as wildfire increases by orders of magnitude, po-

tentially removing substantially more biomass – see figure 40 later in this white paper.] 

Interactions Between Fire And Nutrients  

Providing adequate levels of site nutrition is important for maintaining tree resistance to in-

sects and diseases (Mandzak and Moore 1994). In central Oregon, for example, Reaves and oth-

ers (1984, 1990) found that ash leachates (e.g., chemical compounds produced when water per-

colates through the ash produced by a fire) from prescribed burns in ponderosa pine forests has 

a negative effect on the growth of Armillaria ostoyae, cause of Armillaria root disease. These 

studies found that much of the Armillaria suppression is related to a fungus called Trichoderma 

– a strongly antagonistic competitor of Armillaria root disease – and Trichoderma apparently 

benefits from ash leachates (Filip and Yang-Erve 1997; Reaves et al. 1984, 1990). 

On low-productivity sites (generally dry areas with coarse or shallow soils, and thin forest 

floors), broadcast burning can be detrimental from a nutritional standpoint. Short-term benefits 

of prescribed fire may be offset by high soil pH, nitrogen and sulfur deficiencies, and other nutri-

tional problems later in a forest’s life (Brockley et al. 1992, DeBell and Ralston 1970, Mandzak 

and Moore 1994, Tiedemann 1987). 

In central Oregon, prescribed fire was observed to cause a net decline in nitrogen minerali-

zation rates and long-term productivity (Cochran and Hopkins 1991, Monleon et al. 1997). But a 

reduction in site productivity following prescribed fire might not be solely due to nutrient cycling 

issues – up to 40 percent of a tree’s annual net production on low-productivity sites is used to 

produce fine roots (Keyes and Grier 1981), and because these roots are located near the soil sur-

face, they can be damaged or killed by prescribed fire, particularly when fire is applied in spring. 

In a study involving ponderosa pine on the Wenatchee National Forest in eastern Washington, 

wood increment was suppressed on spring-burned areas for at least 8 years after treatment, 

and much of this growth reduction was attributed to fine-root damage (Grier 1989). 

Forest floor also plays an important role in an ecological process called allelopathy (Rose et 

al. 1983, Tinnin and Kirkpatrick 1985, Wardle et al. 1998). Allelopathy refers to a competitive 

strategy in which some plant species produce chemical compounds interfering with the germi-

nation, growth, or development of competing plants. Chemicals produced during allelopathy are 

often referred to as phytotoxins (Kelsey and Harrington 1979, Rietveld 1975). 

If phytotoxins are produced by a climax tree species, such as ponderosa pine on dry-forest 

sites where moisture is too limiting and growing-season temperatures are too extreme to allow 

establishment of Douglas-fir or grand fir, then any phytotoxins would obviously affect its own 

offspring. In situations where a dominant plant species produces chemicals limiting its own 

abundance, a phytotoxin is referred to as an autotoxin (e.g., a ‘self-toxin’). 

If ponderosa pine produces an autotoxic chemical on sites where it is the climax tree spe-

cies, and this hypothesis has not been definitively proven to my knowledge, then it could confer 
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survival value to the species. When moisture is limiting, as it so often is for dry-forest sites, and 

when growth-inhibiting conditions occur in an ecosystem where short-interval surface fire was a 

prevailing disturbance process, then adequate tree survival and growth can only be maintained 

at relatively low tree densities. Therefore, chemicals from mature trees could function as ‘den-

sity regulators’ by reducing germination and growth of its own progeny (Kelsey and Harrington 

1979). 

Does Allelopathy Help Regulate Seedling Density?  

Trees with capability to use allelopathy (e.g., autotoxic chemicals) to regulate seedling den-

sity could possess an important evolutionary adaptation because this trait could effectively limit 

or prevent overcrowding, stagnation, and competition between individuals of the same species. 

This life-history trait would ensure that some small proportion of a seedling cohort would grow 

fast enough to reach a size conferring reasonable resistance to a frequent surface fire regime 

operating on dry-forest sites (Biswell 1973, Cooper 1960, White 1985). 

Fred Hall, a Forest Service ecologist, speculated that a selective inhibitory substance is pre-

sent in ponderosa pine litter, and that it is destroyed by periodic underburning (Hall 1991). 

Without fire, this substance could accumulate in the upper mineral soil (or in the organic hori-

zons?) and reduce ponderosa pine establishment and growth. And we already know that leach-

ate from pine litter and pinegrass leaves has been shown to retard root growth of germinating 

ponderosa pine seeds (Eckert 1975, Jameson 1968, Kelsey and Harrington 1979, McConnell and 

Smith 1971, Rietveld 1975), perhaps corroborating Hall’s suspicion. But when considering the 

impact of pathogenic fungi located in the forest floor’s organic horizons (Daniel and Schmidt 

1972), I wonder if Fred’s ‘selective inhibitory substance’ might have involved pathogenic fungi, 

allelopathic phytotoxins, or perhaps some combination of both? 

It is clear that when plant succession occurs on dry-forest sites in the absence of recurring 

wildfire, it eventually results in reduced availability of mineral nitrogen and causes increased ac-

cumulation of polyphenolic compounds in the mineral soil (MacKenzie et al. 2006, Souto et al. 

2000, Wardle et al. 2000). And these changes caused by fire suppression are superimposed on 

high levels of natural soil variation related to vegetation influences – in a study from the south-

west, 69% of soils in openings between patches were Mollisols (a grassland soil) whereas 75% of 

soils in presettlement tree patches were Alfisols (a forest soil) (Abella et al. 2013). 

4.3 Awareness Of Changes Caused By Fire Suppression 
If fire exclusion caused major changes in ecosystem components (e.g., species composition, 

forest structure, and tree density) on dry-forest sites, then why weren’t they recognized sooner? 

Actually, many of these changes were recognized early on, but they did not generate a response 

because of prevailing attitudes of the time. 

Two studies described earlier illustrate differing attitudes about fire’s role in ponderosa pine 

forests. Gannett (1902) surveyed federal forests before they were viewed as a source of com-

modities; he found many trees with fire scars (fig. 9) but fire had not done “them any serious 

damage.” Munger (1917) found few stands without some sign of fire’s influence, and yet fire 

was a scourge causing an “enormous amount of damage to yellow-pine forests.” 
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Figure 9 – Many ponderosa pine trees 
have basal scars caused by recurrent 
surface fire, a pervasive disturbance 
process before wildfire exclusion efforts 
began around 1900 (image acquired by 
D.C. Powell on the North Fork John Day 
Ranger District, Umatilla National For-
est, in October 2009). Species like pon-
derosa pine achieve fire tolerance by 
developing thick bark to protect their 
cambium, and by self-pruning their 
lower crown to raise crown base height 
above average flame length in event of 
a fire. “Both of these characteristics are 
size dependent; thick bark is a relative 
characteristic with individuals of larger 
diameter having thicker bark, and 
crown height is dependent on the 
height of individuals” (Roberts and Betz 
1999). This quote helps us remember 
that fire tolerance is primarily a species-
specific life history trait (see table 3), 
but it also varies with size of individuals 
in a population. 

Munger’s (1917) comments about fire-caused damage reflect a commodity paradigm of his 

era; ponderosa pine forests were to be managed as a sustainable source of wood products, and 

fire was perceived as an obstacle to reaching that goal. William Greeley, an early Chief of USDA 

Forest Service, expressed a commodity philosophy in this way (Greeley 1912): 

“To the extent to which the over-ripe timber on the National Forests cannot be cut and used 

while still merchantable, public property is wasted. This is the very antithesis of conservation.” 

Munger’s commodity orientation was shared by other Forest Service researchers working in 

western United States, as demonstrated by a passage from The Role of Fire in the California Pine 

Forests (Show and Kotok 1924). 

“Physical conditions in the pine forests of California have led to the frequent recurrence of 

fires for centuries, but the fact that magnificent forests still cover large areas and give the ap-

pearance of well-stocked, vigorous stands has blinded the public to the harm that fires have 

done and are steadily working throughout the whole region. 

Were it possible for the observer to visualize the entire area on which pine has grown, and to 

behold it truly fully stocked, he would then see by comparison that the present California pine 

forests represent broken, patchy, understocked stands, worn down by the attrition of re-

peated light fires.” 
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Land managers working for the early USDA Forest Service also recognized that fire-caused 

changes were occurring on the landscape, as described in these three accounts: 

“There are patches of ‘scabland,’ characterized by very shallow soil, many rock fragments and 

a total absence of vegetation except in the spring months. It is interesting to note that some of 

these areas are being occupied by sagebrush where a few years ago, there was none. A possi-

ble explanation is that the annual fires of the Indians kept it killed out and now it has a chance 

to develop. 

Yellow pine is slowly encroaching upon the sagebrush; the chief factor in its rate of advance 

being moisture, provided fire is kept out. The same statement will hold true in regard to the 

other open areas as well. As fast as the reproduction has pushed out from under the protec-

tion of the parent trees, the periodical fires have killed it back, thus keeping the timberline 

practically stationary” (Evans 1912). 

“Throughout the conifer type there is ample reproduction to more than replace the present 

stand of timber. The major part of the reproduction has come in since the forest has been pro-

tected against fires. Several areas were noticed where the yellow pine seedlings were so thick 

that it was almost impossible to ride through them. Practically all of the stockmen were com-

plaining that the reproduction is coming in so thick on their allotments that it is greatly de-

creasing the carrying capacity of the range” (Aldous 1914). 

“In times gone by the frequent fires killed out the patches of reproduction about as soon as 

they occurred, but since the fires have been in large measure stopped, reproduction has come 

in very thickly in most Yellow pine forests, and its abundance points to a heavier future stand 

than the existing stand. This abundance is decidedly out of proportion to the comparatively 

small number of old trees in most Yellow pine forests which make up the present stand” 

(Bright 1914). 

When evaluated in a context of resulting changes to ecosystem composition and structure, 

fire exclusion was probably not an appropriate policy. The problem was not necessarily fire ex-

clusion per se – it was the fact that surrogates were not substituted for fire, fire surrogates 

providing similar ecosystem functions such as nutrient cycling, fuel reduction, and tree thinning. 

“In the absence of fire, vegetation development generally increases ladder and canopy fuels 

as tree stands become denser (Hessburg et al. 2000), and more surface fuels accumulate as the 

vegetation shifts from herbaceous plants and shrubs to woody material (Pinol et al. 2005)” (Ste-

phens et al. 2014). 

Harold Weaver ’s Observations About Fire Protection  

More than 60 years ago, an early fire ecologist (Harold Weaver) made insightful observa-

tions about fire exclusion and its impact (Weaver 1943). Many of his comments have obvious 

relevance to our contemporary situation featuring uncharacteristic fire behavior in dry mixed-

conifer forests, caused primarily by unusually high fuel accumulations (Arno and Allison-Bunnell 

2002, Carle 2002, GAO 1999, Hessburg et al. 2005, Kenworthy 1992, Pyne 1997). 
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Here are Harold Weaver’s observations: 

“It is obvious that the present policy of attempting complete protection of ponderosa pine 

stands from fire raises several very important problems. How, for instance, will the composi-

tion of the reproduction be controlled? If ponderosa pine is desired on vast areas how, unless 

fire is employed, can other species such as white fir be prevented from monopolizing the 

ground? On the other hand, if it is decided to permit such species as white fir to come in under 

mature ponderosa pine, how much of the public’s money are foresters justified in spending in 

trying to keep fire out? Even with unlimited funds, personnel, and equipment, can they give 

reasonable assurance that they can continue to keep such extremely hazardous stands from 

burning up? If they feel reasonably sure of this, can they then give assurance that the timber 

products of such stands will be more valuable than those that might otherwise be derived 

from ponderosa pine and will in addition justify the high protection costs?” 

4.4 Summary: Changes Caused By Fire Exclusion 
Contemporary dry-forest landscapes reflect many long-term influences of fire exclusion: 

1. Without frequent fire to retard plant succession, fire-sensitive grand fir and Douglas-fir in-

vaded sites where ponderosa pine had been maintained as a fire disclimax (Lunan and 

Habeck 1973; Parsons and DeBenedetti 1979; Sloan 1998b; Stephens et al. 2016, 2018). 

2. Deep layers of organic matter accumulated under thickening conifer forests, tying up nitro-

gen and other nutrients that are cycled slowly without fire (Harvey 1994). 

3. Fire exclusion removed an important tree thinning agent, causing tree density to accumu-

late and eventually contributing to a wide variety of density-related changes: 

a. Bark beetle outbreaks occurred frequently in overstocked, second-growth ponderosa 

pine forests (Keen 1950, Miller 1926, Sartwell 1971). 

b. Small trees killed by suppression (density-dependent mortality) were usually the shade-

intolerant species succumbing quickly to intertree competition (fig. 10). 

c. High stand density created elk thermal cover that is neither appropriate nor sustainable 

in an ecological context (Powell 2012). 

d. Dense forests produce less water for streams and springs than open forests (Bosch and 

Hewlett 1982, Covington and Moore 1994b, Grant et al. 2013, Troendle 1983). 

4. Light surface fires facilitated ponderosa pine regeneration by exposing some mineral soil, 

and by temporarily reducing competition from grasses and sedges (Hall 1976). 

5. Surface fires raised ‘height to live crown base’ by pruning lower branches of overstory trees, 

reducing potential for crown-fire initiation (Agee 1996c, Keyes 1996). 

6. By maintaining open stands and allowing perennial herbs to persist, surface fire provided 

forage for both livestock and wildlife (Hedrick et al. 1968, Irwin et al. 1994). 

7. Fire supported nutrient cycling by rejuvenating snowbrush ceanothus, lupines, peavines, 

vetch, buffaloberry, and other nitrogen-fixing plants (Newland and DeLuca 2000). 

8. Frequent fires maintained low fuel accumulations and low crown-fire susceptibility in areas 

with dry summers, high winds, and abundant lightning (Dodge 1972, Hall 1976). 

9. Fire smoke limits germination of dwarf-mistletoe seeds (Zimmerman and Laven 1987), so 

fire exclusion probably contributed to worsening dwarf-mistletoe problems. 
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Figure 10 – Tree resistance to stress varies with shade tolerance (adapted from Keane et 
al. 1996). Intolerant tree species (lodgepole pine, ponderosa pine, western larch) die 
relatively quickly when exposed to chronic stress such as high stand density. Trees with 
intermediate tolerance (Douglas-fir and western white pine) can withstand a longer pe-
riod of stress without dying. Shade tolerant species (Engelmann spruce, grand fir, subal-
pine fir) can endure relatively long periods of stress before experiencing mortality. 

10. Fire exclusion allowed certain fire-sensitive shrubs (bitterbrush, sagebrush) to invade dry-

forest undergrowth plant communities (Burkhardt and Tisdale 1976, Gedney et al. 1999). 

11. Western juniper increased with fire exclusion (fig. 11) (Gedney et al. 1999), reducing water 

yields because juniper uses more water than grasses and shrubs (Miller et al. 1987). 

12. Loss of an open park-like structure had negative impacts on blue grouse (Pelren and Craw-

ford 1999) and white-headed woodpecker (Buchanan et al. 2003, Casey et al. Undated). 

13. Tree mortality caused by density-responsive insects and diseases increased, particularly 

from bark beetles and defoliators (Anderson et al. 1987, Hadley and Veblen 1993). 

14. Fire-sensitive conifers displaced fruit-bearing shrubs, deciduous trees, and herbaceous 

plants – important food sources for wildlife (Bartos and Campbell 1998, Gruell 2001). 

15. Native Americans burned the landscape to promote forage for horses, and to maintain im-

portant habitat for ‘first foods’ plant species (Habeck 1987; Haines 1938; Humphrey 1943; 

Mosgrove 1980; Stewart 1951, 2009). 

[Note: Since responsibility for provision of plant-based ‘first foods’ tended to reside with 

women, they often possessed much of a tribe’s prescribed-fire expertise, as noted in this ac-

count: “On the way, they met an old squaw, with a large firebrand in her hand, with which 

she had just set the grass and bushes on fire; when surprised, she stood motionless, and ap-

peared to be heedless of anything that was passing around her” (Wilkes 1844).] 

16. Fire exclusion created landscapes that are more homogeneous, with fewer vegetation types 

and lower patch densities (Lehmkuhl et al. 1994, Miller and Urban 2000). 

17. Landscape diversity declined after fire was prevented from periodically creating early-seral 

plant communities (Hessburg et al. 1999b, Taylor and Skinner 1998). 
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Figure 11 – Western juniper expansion on a dry-forest site, likely as a result of fire exclu-
sion (Kahler planning area, Heppner Ranger District). This image portrays a dry forest 
example of the ponderosa pine/bitterbrush/Ross’ sedge (PIPO/PUTR/CARO) plant asso-
ciation (Johnson and Clausnitzer 1992). Juniper is occasionally associated with late-seral 
communities in this plant association, but it typically occurs at low canopy coverage (2% 
mean cover for seven PIPO/PUTR/CARO stands sampled by Johnson and Clausnitzer 
1992), and it is not found in every stand (juniper occurred in 42% of the samples). The 
amount of juniper shown here is greater than what was encountered by Johnson and 
Clausnitzer (1992, appendix C) in their late-seral sample stands. Juniper has increased in 
areal extent from historical levels – the interior Columbia Basin ecosystem management 
project reported increases of 243% for the juniper/sagebrush cover type in the Blue 
Mountains ecological reporting unit (Quigley and Arbelbide 1997, p. 676). Although 
much of this reported increase involves juniper expansion into rangelands, juniper also 
increased on dry-forest sites. Manifold increases in western juniper abundance have 
been reported in many studies examining eastern Oregon vegetation conditions (Azuma 
et al. 2005, Gedney et al. 1999, Knapp and Soulé 1998, Miller et al. 2005). 
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4.5 Active Management Implications Of Fire Exclusion  
Results from many scientific assessments completed over the past four decades concluded 

that impacts associated with wildfire, insects, and diseases are primarily related to changes in 

species composition, forest structure, and tree density, all of which were affected to a large de-

gree by fire exclusion. 

For dry forests, low-severity surface fire is the keystone ecosystem process, and its exclusion 

by human society has many consequences – some of which were intended, but many of which 

were not. In this context, adopting an active management (restoration) approach (see section 7, 

“Restoration of Dry-Forest Ecosystems”) is a reasonable response to an historical paradigm of 

fire exclusion. 

Fire exclusion allowed fire-resistant species (ponderosa pine primarily) to be replaced with 

fire-sensitive species (Douglas-fir when small, grand fir, and western juniper when small). This 

change affected both ecosystem resistance and resilience because dry forests cannot resist fire 

when their composition is dominated by fire-sensitive species, and they cannot sustain their re-

silience if a high proportion of trees are killed by fire (see fig. 19 later in this white paper). 

A list in section 4.4 enumerates 17 ecosystem changes relating to fire exclusion on dry-for-

est sites. Although extensive, it still may not furnish a comprehensive accounting of all fire-ex-

clusion influences – but it does provide an inkling of the vast scope of fire as an ecosystem pro-

cess, including its effect on dwarf mistletoe seed germination and other life-history functions. 

Active management treatments, particularly thinning and prescribed fire, can be imple-

mented as restoration practices, in proper places and at appropriate times, to help recover and 

then sustain the resilience of crucially important dry-forest ecosystems (section 7 – Restoration 

of Dry-Forest Ecosystems – provides a detailed restoration discussion). 
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5.  INFLUENCE  OF  UNGULATE  HERBIVORY 

Fire exclusion obviously influenced forest structure and composition, particularly for dry 

sites, but it is not the only factor to have done so. Many studies from western North America in-

dicate that herbivory by wild and domestic ungulates has been as influential as fire exclusion in 

shaping wildland ecosystems, especially for dry forests (Belsky and Blumenthal 1997, Fleischner 

1994, Hatton 1920, Madany and West 1983, Oliver et al. 1994c, Parks et al. 1998, Riggs et al. 

2000, Rummell 1951, Steele et al. 1986, Zimmerman and Neuenschwander 1984). 

Livestock, primarily cattle and sheep, were initially brought into eastern Oregon and eastern 

Washington during the 1840s via the Oregon Trail (Irwin et al. 1994, Oliver et al. 1994c). But Na-

tive American horse herds were already large and well established by then, having arrived in the 

Blue Mountains around 1730 after progressively migrating northward from the Santa Fe, New 

Mexico area (Haines 1938, USDA Soil Conservation Service 1941). 

At the time of Euro-American settlement, much of the interior Pacific Northwest was cover-

ed with lush grass and other herbaceous vegetation (Galbraith and Anderson 1970, Humphrey 

1943, Munger 1917). Forest inspector Harold Langille described rangeland conditions prior to 

extensive changes caused by heavy livestock grazing (Langille 1906): 

“A few years ago Eastern Oregon was one of the best range sections of the West. The rich 

bunch grass waved knee deep on hill and plain in such close growth that it was mowed with 

machines for hay.” 

During summer and fall of 1861, large numbers of sheep and cattle were driven into eastern 

Oregon and Washington from the Willamette valley of western Oregon. The winter of 1861-

1862, however, was one of the most severe ever recorded for the Pacific Northwest and it al-

most wiped out this fledgling livestock industry (Galbraith and Anderson 1970, Humphrey 1943). 

During the late 19th and early 20th centuries, immense bands of sheep grazed in the Blue 

Mountains (figs. 12 and 13), causing persistent changes in vegetation composition (Bright 1914, 

Bright and Powell 2008, Coville 1898, Galbraith and Anderson 1970, Griffiths 1903, Humphrey 

1943, Tucker 1940). Sheepherders made an annual migration with their flocks, following the 

snow from low elevations in the spring to high elevations in the summer, and then back to low 

elevations during autumn (Darlington 1915, Oliver et al. 1994c). 

Sheep grazing caused conflict between cattle ranchers, homesteaders, and sheepherders 

because sheepherders were often nomadic (in contrast to cattle ranchers and homesteaders 

who tended to be year-long residents), and because conventional wisdom held that sheep 

caused rangeland deterioration to a greater extent than cattle (Lomax 1928, Minto 1902, Oliver 

et al. 1994c). 

Forest inspector Harold Langille described the sheep grazing situation well in this account: 

“Sheep from Wasco, Crook, Sherman, Gilliam, Umatilla and Morrow Counties are driven to the 

mountains early each season and ranged up to the very doors of the actual settlers and cattle 

owners. There has been some trouble in the past resulting in bloodshed, but nothing as serious 

as that which threatens to come about in the near future” (Langille 1906). 
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Figure 12 – Number of domestic grazing animals, summarized for three livestock catego-
ries, for nine counties in northeastern Oregon and southeastern Washington (Asotin, 
Columbia and Garfield in Washington; Grant, Morrow, Umatilla, Union, Wallowa and 
Wheeler in Oregon). Data derived from Bureau of Census agricultural summaries (Bu-
reau of Census 1895, 1902, 1913, 1922, 1927, 1932, 1942, 1946, 1952, 1956, 1961). 

 

Figure 13 – Grazing summary for Umatilla National Forest, 1906-1939. Data derived 
from USDA Soil Conservation Service (1941) (note: little information is provided by this 
source about the basis for calculation of ‘Total Animal Units’). 
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An early survey of sheep ranges found moist mountain meadows entirely devoid of vegeta-

tion and experiencing severe soil erosion (fig. 14). A complete collection of the herbaceous 

plants growing in a heavily grazed meadow found not a single perennial species, and no annuals 

exceeding two inches in height. Sheep browsing had damaged all shrubs other than snowbrush 

ceanothus (Ceanothus velutinus); even the small ponderosa pines were fed upon (Griffiths 1903, 

Langille 1903). 

When the Blue Mountains were surveyed early in the twentieth century, overgrazing was 

deemed to have been severe enough to influence whether forest cover was present or not, as 

described here by Forest Inspector Harold Langille during an examination of Heppner Forest Re-

serve (Langille 1903): 

“It was everywhere observed that upon tracts upon which there is no forest cover there is no 

soil. At one time these areas were covered with soil to a depth of from one to two feet, and 

sufficient soil binding vegetation grew upon it to resist the destructive elements – wind and 

water – but persistent overgrazing destroyed this cover, and, there being no tree growth to 

protect the soil, it rapidly disappeared, leaving nothing but a bed of exposed rocks.” 

Figure 12 summarizes historical grazing trends for three classes of livestock and nine coun-

ties in northeastern Oregon and southeastern Washington. Figure 13 provides early grazing 

trend information for Umatilla National Forest from 1906 to 1939 (USDA Soil Conservation Ser-

vice 1941). 

Domestic livestock grazing in early 1900s was not the only factor that may have affected for-

est regeneration; in some areas, impact from native ungulates (deer, elk) was more pervasive 

and, unlike domestic animals, continues at moderate or high levels today (Case and Kauffman 

1997, Endress et al. 2012, Humphrey 1943, Parks et al. 1998, Riggs et al. 2000). 

Elk are indigenous to the Columbia River basin but were not common before 1850. Market 

and subsistence hunting by Euro-Americans nearly exterminated elk by 1900 (Oliver et al. 

1994c). Elk were reestablished by importing animals from Yellowstone National Park and Jack-

son Hole, Wyoming in 1911-1913, 1918, and 1930 (Bright and Powell 2008, Cliff 1939, Tucker 

1940). Elk populations expanded quickly after they were reintroduced to the Blue Mountains, 

increasing from 360 animals in 1921 to 13,000 animals by 1941 (fig. 15). 

A dense sod of perennial graminoids provided nutritious forage for ungulates, but it also in-

fluenced tree regeneration patterns. Competition for soil moisture and nutrients, as well as alle-

lopathic inhibition by grass and other herbs (Fisher 1980, Larson and Schubert 1969, McDonald 

1986, Randall and Rejmanek 1993, Rietveld 1975), were critical factors limiting establishment of 

tree seedlings (Cooper 1960, Kolb and Robberecht 1996, Pearson 1942, Rummell 1951). 

Livestock herbivory removes plant foliage (forage); plants respond to this defoliation by re-

ducing growth, particularly underground (root) growth (Schuster 1964). This means that live-

stock grazing may have made it easier for tree seedlings to germinate and survive. This was es-

pecially true for open stands of ponderosa pine because competition from graminoids and other 

herbaceous vegetation was an important factor regulating seedling establishment (fig. 16; Cov-

ington and Moore 1994a, Sloan and Ryker 1986, Yazvenko and Rapport 1997). 
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Figure 14a – Historical photograph showing a band of sheep feeding in dry forest. Sheepherders 
made an annual migration, following snow as it retreated from lowlands in spring to high country 
in summer, and then back down to valleys in autumn. It was often noted that peak sheep num-
bers, and associated damage, occurred from 1890 to 1910 (Tisdale 1961). 

 

Figure 14b – Historical photograph showing a herd of cattle grazing in transitional forest between 
dry and moist ecological settings (Plenty Bear Ridge). Although cattle grazing occurred later, 
overall, than sheep grazing, it still caused impacts on dry-forest conditions. As described in this 
“Influence of Ungulate Herbivory” section, grazing by domestic ungulates (cattle and calves; 
sheep and lambs; and horses and ponies) changed herbaceous undergrowth plant composition 
(cattle) and modified woody browse species and production (sheep), and these changes influ-
enced the potential for dry forests to support low-severity surface fire. 
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Figure 15a – Elk being dropped off in Dayton, Washington, northern Blue Mountains, on Febru-
ary 1, 1930. These 30 head of elk were shipped from Montana to Dayton, Washington by railcar 
on a Northern Pacific train. Cost of shipment was approximately $700. Note: Importing elk into 
the northern Blues began in 1909, when a Game Commission was formed and 4 railcars of elk 
were shipped west from Yellowstone National Park – 1 carload was delivered to Dayton, 2 car-
loads to Pomeroy, and 1 carload to Clarkston for the Lewiston Flats area. Each carload contained 
36 cows and 4 bulls, and 1909 shipping costs for elk ran $4.95 per head.   

 

Figure 15b – Ungulate trends for Whitman National Forest in Blue Mountains of northeast-
ern Oregon (data from Pickford and Reid 1943). This chart shows cattle and sheep numbers 
declining dramatically between 1921 and 1941, and elk numbers increasing from only 360 
animals in 1921 to more than 13,000 by 1941. 
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Figure 16 – Elk sedge has a fibrous root system occupying an impressive volume of soil 
(adapted from Sloan and Ryker 1986). The plant in this diagram is 12 inches tall and 10 
inches wide, but its roots spread 56 inches wide and 75 inches deep; dashed line shows 
ground level. Competition from extensive root systems of bluebunch wheatgrass, Idaho 
fescue, elk sedge, and other perennial graminoids limits establishment of tree seedlings 
on dry sites (Cooper 1960, Munger 1917, Weaver 1967b). In some contexts, inhibitory 
effects of rhizomatous herbs is viewed as a management problem because herbs func-
tion as ‘competing vegetation’ by limiting survival of planted tree seedlings. But in an 
ecological context, competition from graminoids and other herbaceous vegetation could 
easily be perceived as beneficial because it regulates seedling establishment on a bio-
physical environment (dry upland forest) where large numbers of seedlings (and eventu-
ally mature trees) would easily exceed an area’s capacity to support sustainable levels of 
tree stocking (Cochran et al. 1994, Powell 1999). 
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As often happens, grazing effects were likely influenced by interactions with other factors. 

Heavy grazing early-on by domestic livestock (particularly sheep; see figs. 12-15) apparently cre-

ated ideal conditions for establishment of western juniper, other upland conifers, and shrubs. 

Fire exclusion then allowed them to persist on sites where they might otherwise have perished 

had the native disturbance regime (surface fire) been allowed to function properly (Young and 

Evans 1981). 

5.1 Active Management Implications Of Ungulate Herbivory  
There are obvious interactions between fire and ungulate herbivory as ecosystem processes. 

Fire relied on herbaceous plant cover as an important spread component, while herbaceous 

plant communities relied on fire to suppress shrubs, juniper, and other woody vegetation whose 

shade and plant-suppressing chemicals (produced by allelopathy) would weaken and eventually 

kill the herbs. The effect of herbaceous cover on fire spread was recognized early on – high lev-

els of domestic livestock were promoted as a fire protection measure because grazing would re-

move the fine fuels and thereby limit fire spread (Hatton 1920). 

A restoration section (section 7) describes how it may not be possible to allow prescribed 

fire to substitute for free-ranging surface (wild) fire without careful and deliberate livestock 

grazing management to ensure fine-fuel continuity across dry-forest sites (fig. 17). And since 

prescribed fire occupies a primary position in a hierarchy of active management treatments con-

sidered for dry-forest restoration, grazing management should play a critical role in any effort to 

craft suitable habitat for restoring fire exhibiting characteristic behavior and effects. 

Herbs functioned as more than just a fine fuel component to help carry surface fire across 

dry sites – they also served to suppress tree regeneration (fig. 16). High tree density is a com-

mon problem throughout eastern Oregon and eastern Washington (Powell et al. 2001), so the 

importance of this inhibitory effect on tree establishment should not be underestimated. 

Speculation about an interaction between livestock grazing and tree regeneration is fre-

quently mentioned in the scientific literature (Cooper 1960, Madany and West 1983, Steele et 

al. 1986, Zimmerman and Neuenschwander 1984, and others). However, it is often difficult to 

establish a cause-and-effect relationship between grazing and tree regeneration, perhaps be-

cause of difficulty in establishing a carefully controlled research framework accounting for po-

tential influences of confounding factors. 

Rummell (1951) studied tree regeneration patterns for grazed and ungrazed areas in central 

Washington. He implied there was a direct relationship between the degree of forage utilization 

by livestock and the density of ponderosa pine reproduction. But there were important differ-

ences in the representation of pinegrass and elk sedge between grazed and ungrazed areas, and 

the differences were not necessarily explained by palatability or other grazing factors. 

Rummell’s (1951) study suggests that grazing may not have been a primary factor affecting 

tree regeneration because elk sedge and pinegrass – two plant species known to limit tree seed-

ling establishment on dry-forest sites (Sloan and Ryker 1986) (fig. 16) – were apparently reacting 

to some influence other than grazing (perhaps reflecting variations or differences in site poten-

tial (e.g., plant association) from one portion of his study area to another?). 
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Figure 17 – Fenceline contrast related to livestock grazing. Domestic and wild ungulates 
(see figs. 12-15) sometimes caused dramatic impact on the abundance and vigor of her-
baceous plants. Grazing animals caused many secondary influences for dry-forest sites: 
(1) they disrupted the prevailing surface fire regime by removing much of the fine-fuel 
component (herbs) functioning as a fire carrier; (2) they reduced herbaceous competi-
tion for tree seedlings, thereby allowing many more trees to become established than 
would have occurred otherwise; and (3) they reduced the abundance of aspen, cotton-
wood, serviceberry, and other broadleaf trees and shrubs (Endress et al. 2012). 

When Miller and Halpern (1998) studied effects of grazing and environment (climate) on 

tree establishment for Cascade Range in Oregon, they noted that “the strongest support for the 

absence of grazing-induced changes comes from establishment trends on south-facing slopes. 

Here, despite widely varying dates of closure to sheep, tree invasion remained relatively syn-

chronous among transects and was closely timed to the onset of wetter weather” (Miller and 

Halpern 1998, p. 280). In other words, climate apparently had more influence on tree regenera-

tion patterns for this Cascade Mountains study area than livestock grazing or the magnitude of 

its impact. 

Jon Skovlin and others (1976) studied cattle grazing methods on ponderosa pine ranges and, 

although it was not the primary objective of their investigation, they noted an impressive, 12-

fold increase in tree seedling density during the 13-year period of their study. Once again, how-

ever, this increase was apparently unrelated to cattle use since the same response occurred in 

units grazed by wildlife only, and because there was no statistically significant seedling density 

difference between different cattle-grazing intensities (Skovlin et al. 1976). 

Livestock grazing on national forest lands was sanctioned after creation of USDA Forest Ser-

vice by Transfer Act of 1905. In my opinion, high grazing levels of the early 1900s, particularly by 

sheep (figs. 12-15), were sufficient to affect tree regeneration by reducing herbaceous vegeta-

tion (by reducing herbaceous competition with seedlings), and by exposing mineral soil for tree-

seed germination; I would not expect substantially reduced livestock grazing levels of today to 

have a significant influence on tree regeneration patterns for these lands. 
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6.  INFLUENCE  OF  SELECTIVE  CUTTING 

Fire exclusion allowed a multi-layered structure to develop on a majority of dry-forest sites 

(influence of fire exclusion is discussed in section 4 of this white paper). After 40 or 50 years of 

fire exclusion, these areas often had an overstory of old-growth ponderosa pine and western 

larch, and an understory of Douglas-fir, grand fir, and occasionally, limited amounts of lodgepole 

pine. When wood products were harvested from these stands beginning in 1940s and 1950s 

(see appendix 2), many overstory trees were removed for these reasons (Powell 1994): 

• Pine was usually old (often 200 years or more) and was adding little or no timber volume be-

cause of its slow growth. Since old pines may have low vigor and little resistance to insect 

attack, they were often harvested before being attacked and killed by western pine beetle 

or mountain pine beetle (Cowlin et al. 1942, Keen 1936, Weidman and Silcox 1936). 

• One reason for low vigor in old-growth pine trees was competition from a dense tree under-

story, and this understory would not have been present if a frequent surface fire regime had 

been allowed to continue its historical role (see fig. 46 later in this white paper). 

• Old-growth ponderosa pine has a much higher selling value than associated species. Be-

cause of this economic advantage, harvesting ponderosa pine provided abundant Knutson-

Vandenberg (K-V) receipts, which could then be used for noncommercial thinning, wildlife 

and range improvements, and other land management activities in timber sale areas. 

• As forestry intensified in the 1950s to meet increasing lumber demands after World War II 

(Fedkiw 1999, MacCleery 1992), dry mixed-conifer stands began to be managed. Mature 

pines and larches were removed from the overstory, followed by a thinning in an immature 

understory of Douglas-fir and grand fir (Dezellem 1983). 

• An overstory removal strategy seemed to make good sense – it avoided the cost of tree 

planting, an expensive practice; it avoided an undesirable appearance associated with clear-

cutting; it maintained the pleasing aesthetics of a green, forested setting; and it capitalized 

on previous growth of understory trees existing for 60 years or more. 

• Understory trees (primarily Douglas-fir and grand fir) were viewed as a fast-growing gift of 

nature (i.e., not a result of intentional management), so why shouldn’t they provide the next 

crop of timber products (Dezellem 1983)? 

Some level of selective cutting has been occurring ever since Euro-American emigrants set-

tled in the Blue Mountains (selective cutting is defined on page 68). Heavy commercial timber 

harvests in a northwestern pine region (eastern Oregon and eastern Washington) began in the 

1880s (fig. 18) (Weidman and Silcox 1936), although some previous harvesting occurred in con-

junction with gold extraction and mineral development (Lindgren 1901). 

Mining activity in lower Columbia River basin can trace its origins to discovery of gold on Ca-

nal Gulch of Orofino Creek, a tributary of Clearwater River, by Captain E.D. Pierce in 1860. In 

early spring of 1861, a miner from Pierce’s party sold $800 worth of gold dust at Walla Walla, 

and a stampede to the gold fields soon followed! By May of 1861, there were over a thousand 

miners in the Pierce City/Orofino area. Lewiston was founded in June 1861, and it quickly be-

came an important center for resupplying the mines (Tucker 1940). 
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Figure 18 – Early timber harvest in Blue Mountains (also see appendix 2). Relatively 
heavy commercial harvest began in limited portions of lower Columbia River basin in 
1880s (Weidman and Silcox 1936), with early harvest concentrated near settlements, 
mining camps, and railroads. Large ponderosa pines and Douglas-firs were removed 
early on because of their desirable wood qualities and their abundance in easily-accessi-
ble, park-like stands at lower elevations (Oliver et al. 1994c). Settlers and homesteaders, 
however, often had a different species preference because their favorite tree tended to 
be ‘tam-brack’ (western larch) because it was durable (decay resistant), young trees fur-
nished long, straight poles, and large trees split easily into the finest rails ever enclosing 
a pig pen or garden patch. 

Note: early range was legally open, as much of it still is today, so settlers and farm-
ers had to fence free-range livestock out, rather than livestock producers being respon-
sible for fencing their animals in and thereby preventing damage to settlers’ gardens or 
planted crops (Robbins 1997, Robbins and Wolf 1994). 

For the Blue Mountains, gold was discovered in Griffiths Gulch, located a few miles south-

west of Baker City, Oregon, in autumn of 1861 (Lindgren 1901, Mosgrove 1980). Other discover-

ies soon followed, leading to a large influx of prospectors and miners in 1862. They established 

Auburn, Canyon City, Granite, Sumpter, Susanville, and other mining towns; by 1890, Baker, Un-

ion, and Grant counties already had a combined population of 23,900 (Lindgren 1901). 

Within a year after gold was discovered in John Day River valley (in June 1862 near Canyon 

City), a sawmill was operating to provide lumber for miners building flumes and sluiceways 

(Robbins 1997). Early cutting to supply mines and their adjacent settlements was substantial in 

localized areas; a turn-of-the-century map of Oregon’s forests showed significant timber harvest 

near Sumpter by 1900 (Gannett 1902, Thompson and Johnson 1900). 

Since an extensive road network was not present in the Blue Mountains during a mining era, 

widespread timber harvests did not occur. A far ranging road system eventually evolved in the 

Blue Mountains as wagon roads were developed for hauling wood and rails out to farms and 

ranches (Tucker 1940, Mosgrove 1980). 
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Early Euro-American settlements were often located in river bottoms containing forests of 

black cottonwood. Since cottonwood was unsuitable for house logs or fence rails, settlers 

needed access to mountain timber. The favorite mountain timber of early pioneers was tama-

rack or western larch (they called it ‘tam-brack’) because it was durable (decay resistant), young 

trees furnished long, straight poles, and large trees split easily into the finest rails ever enclosing 

a pig pen or garden patch (Tucker 1940). 

As emigrants settled in the fertile river valleys, they were accompanied by large herds of cat-

tle and horses roaming free on adjoining foothills of bunchgrass. Once settlers began growing 

grain (Humphrey 1943) and needed more timber to fence their fields and exclude free-range 

livestock, the road system was extended to access additional larch forest. Several roads in the 

northern Blue Mountains (Scoggins Ridge and Iron Spring-Clearwater, for example) were devel-

oped by 1870-1875 during this early Euro-American settlement era (Tucker 1940). 

Later, some of these same roads were used to harvest timber for production of railroad ties. 

Although other species were also used, resinous, durable woods of ponderosa pine and western 

larch were found to be ideal for producing railroad ties (Robbins and Wolf 1994, Tucker 1940). 

Beginning in early 1940s, national forest tree harvests increased to meet a heightened de-

mand during World War II, and for new housing after the war (Fedkiw 1999). After World War II, 

ponderosa pine and other species were intensively harvested to feed a rapidly growing market 

for clear lumber for home construction, railroad ties, and to fabricate shipping crates for apples 

and other fruit crops (Bolsinger and Berger 1975, Gedney 1963). 

Due to market conditions, early selective cuttings were typically a ‘diameter-limit’ harvest 

with the largest trees being removed (O’Hara et al. 2010). Diameter-limit cutting gradually alters 

forest composition (Abella et al. 2006) by removing economically valuable trees (large-diameter 

ponderosa pines, western larches, and Douglas-firs), leaving behind a high proportion of small 

grand firs and Douglas-firs. 

The following passage describes how partial cutting was applied in early ponderosa pine for-

ests of Oregon (Munger 1917). 

“The system of cutting which seems to be ideal for this type of forest is a form of selection cut-

ting. Periodic cuttings are made, in each of which all the overmature and thoroughly ripe trees 

in the stand and all the defective ones are removed; and the saplings, poles, and young, thrifty 

trees are left standing to form the basis for the next crop. 

No tree is removed until it has reached its majority, so to speak, and no old, slow-growing tree 

is allowed to stand and occupy space which should be devoted to young and rapid-growing 

trees. It is customary to set an appropriate diameter limit of from 16 to 22 inches, the majority 

of the trees above which limit are cut, and those below left.” 

Why was diameter-limit cutting used if it favored low-value species (true firs) instead of val-

uable ponderosa pine and western larch? Under market (economic) conditions of that era, se-

lective cutting was viewed as a wise use of natural resources because it captured economic 

value of mature trees before they died, thereby initiating a rudimentary level of forest manage-

ment (O’Hara et al. 2010). 
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With diameter-limit cutting, low-value trees were harvested to whatever extent allowed by 

prevailing market conditions. Many low-value species were left with the hope that some would 

become merchantable by the next silvicultural entry in 40-60 years. The following passage de-

scribes this situation for western white pine (Haig et al. 1941), but the same concept was also 

true for ponderosa pine forests (Starker 1915). 

“The low values are due to high susceptibility to heart rot of western hemlock, grand fir, and 

some other species, and to the fact that the selling price of lumber manufactured from these 

species is often insufficient to meet production costs even if nothing were paid for the stand-

ing timber. Where trees of such species are not defective, the Forest Service policy has been to 

leave them uncut in the hope that at some future time they can be sold at a profit. But leaving 

these low-value species on areas that are cut over encourages their reproduction and tends to 

decrease the proportion of western white pine in the reproduction – an undesirable result 

both silviculturally and economically” (Haig et al. 1941). 

In many respects, selective cutting had the opposite effect of native disturbance processes 

operating on dry mixed-conifer sites. Surface fire was historically a dominant disturbance pro-

cess (Agee 1993, Cooper 1960, Munger 1917, Sloan 1998a, White 1985, Wright and Agee 2004), 

and it discriminated against fire-intolerant invaders (grand fir and Douglas-fir) while favoring 

fire-tolerant trees with high, open crowns (ponderosa pine and western larch). 

In contrast to surface fire, selective cutting on dry-forest sites removed fire-resistant pon-

derosa pines and western larches, while allowing grand firs and other fire-susceptible species to 

remain and flourish (Filip 1994, Filip and Schmitt 1990). [Appendix 2 provides pictures and de-

scriptions for early 1940s selective cutting in the central and southern Blue Mountains.] 

Dry forests of the interior Pacific Northwest have a history of high-grading (early selective 

cutting was often implemented as high-grading). High-grading did not seek to regulate stand 

structure; instead, harvesting simply removed timber. High-grading can be dysgenic by leaving 

an inappropriate stand structure comprised of low-vigor trees susceptible to insect and disease 

attack (Carlson and Lotan 1988, Cochran 1998, Laudenslayer et al. 1989). 

Late-seral species favored by selective cutting had less value for timber products than pon-

derosa pine. Early Blue Mountains foresters recognized that partial cutting could have an unde-

sirable impact on species composition and timber values, as described below. 

“White fir, though of slower height growth, is far more tolerant than bull pine, reproduces 

fairly freely, and under normal conditions would naturally supplant the pine in time. This con-

dition has been greatly aggravated in the portions that have been lumbered by cutting the pine 

and leaving the white fir. The fir, often already on the ground under the pine, springs up, and 

pine reproduction is thus impossible” (Kent 1904). 

“In all sales on this Forest, care should be exercised in marking the timber not to leave the cut-

ting area in such condition that a valuable stand be supplanted by inferior species. White fir, 

though occasionally used for fuel when no better species are available, makes poor fuel wood, 

while for saw timber it is all but valueless owing to the fact that nearly all mature trees are 

badly rotted by a prevalent polyporus, and the wood season-checks badly. Unless care is taken 

this species is prone to supplant such species as yellow pine and tamarack since it is much 

more tolerant of shade in early life” (Foster 1907). 
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Evaluating Disturbance Evidence T o Interpret Successional Trends  

Presence or absence of selective cutting evidence can be used when evaluating the succes-

sional history of dry-forest ecosystems. When first entering a dry-forest stand, look up into the 

highest canopy to see if widely-spaced, old-growth tree crowns are found there. If they are, 

their presence suggests a relatively stable stand structure long free of severe disturbance. Then, 

look around you at eye level – this generally reveals abundant young trees beneath the old over-

story. This finding suggests an unstable structure because a new tree cohort often follows dis-

turbance. But, does a careful search at ground level fail to reveal typical disturbance indicators, 

such as fire scars at the base of live trees or tree stumps from selective cutting? 

At this point in your investigation, you might come to the following conclusions: a relatively 

open pine stand may have occupied the area more than a century ago (the upper cohort of old 

trees). Tree seedlings competed unsuccessfully with wildfire (section 4) and herbs (section 5), so 

tree density was kept relatively low. And, this rationale could help explain why the old trees 

have large diameter – low understory tree density contributes to rapid overstory growth; we 

should remember that large tree diameter is not solely a result of advanced age. 

You then surmise that cattle grazing associated with Euro-American settlement may have 

weakened the ground cover. Tree seedlings, no longer held in check by severe herbaceous com-

petition, established abundantly whenever a good seed crop and favorable germination condi-

tions happened to coincide. As grazing continued, however, cattle destroyed or damaged many 

seedlings, and few of them reached sapling size. But once unfettered grazing was regulated, her-

bivore pressure declined (figs. 12-15), and more seedlings could then develop normally, eventu-

ally resulting in abundant small trees beneath an overstory canopy (see fig 46).  

6.1 Active Management Implications Of Selective Cutting  
Ponderosa pine, a keystone species for dry-forest ecosystems, was preferentially removed 

during historical timber harvest programs, particularly for central and southern portions of the 

Blue Mountains where selective harvests were especially common (O’Hara et al. 2010). Not only 

did harvest of ponderosa pine result in removal of a tree species with high resistance to disturb-

ance processes, but harvests were often conducted in such a way as to inadvertently favor other 

species with lower resilience to disturbance (e.g., Douglas-fir and grand fir). 

Selective harvests also removed larger-diameter trees, so they functioned as an overstory 

removal by releasing small seedlings and saplings in an understory. This means that selective 

harvests generally caused a pronounced change in vertical forest structure. [But, light selective 

harvest could be viewed as emulating tree mortality caused by western pine beetle (see fig. 36 

later in this white paper).] 

Active management treatments can be implemented as one component of a restoration 

program to help recover and then sustain ponderosa pine as a keystone tree species of dry-for-

est ecosystems (section 7 describes restoration options in more detail). In some situations, it 

may first be necessary to remove some ecologically inappropriate composition (grand fir and 

Douglas-fir) in order to free up growing space for occupancy by ponderosa pine (including plant-

ing ponderosa pine, if need be, to help restore its historical abundance). 
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7.  RESTORATION  OF  DRY-FOREST  ECOSYSTEMS 

As a result of substantial reductions in park-like ponderosa pine forests throughout interior 

Pacific Northwest, they are now considered to be a threatened ecosystem of the United States. 

Reed Noss and others described loss of park-like ponderosa pine forest in their endangered eco-

systems report: “conifer forests that depend on frequent fire, notably longleaf pine in the south-

east and ponderosa pine in the west, have declined not only from logging but also from in-

creases in tree density and from invasion by fire-sensitive species after fire suppression. These 

kinds of changes can cause the loss of a distinct ecosystem as surely as if the forest were clear-

cut” (Noss et al. 1995). 

Recurrent underburns are now extinct following a long-standing policy of fire exclusion (Ste-

phens and Ruth 2005). Land managers responded to wildfire with Smokey Bear fire prevention 

campaigns, an arsenal of slurry bomber airplanes, mountaintop fire lookouts, aerial reconnais-

sance flights, radar-assisted lightning detectors, and crews of elite smokejumpers and specially 

trained, hotshot firefighters. In many respects, fire exclusion has been effective enough to be 

considered the most successful program in USDA Forest Service history (Fedkiw 1999). 

Replacement of park-like ponderosa pine with mixed-conifer forest was caused by human 

alteration of a disturbance regime. Following at least 75 years of fire exclusion in the West, we 

now have millions of acres where normally fire-resistant ponderosa pines are surrounded by 

shorter trees that grew to 40, 50, or even 75 feet tall, but only because they escaped fire when 

just three or four feet high (Arno and Allison-Bunnell 2003, Mutch et al. 1993, Powell 1994). 

If man had not altered the disturbance regime of dry-forest sites by suppressing frequent 

surface fire, many younger trees would have perished while still small (Barrett 1988, Powell 

1994, Sloan 1998b, Steele et al. 1986). And since smaller trees function as ‘ladder fuel,’ easily 

lifting surface fire up into a forest canopy, crown fires are more common now than historically, 

leading to our contemporary perspective that crown fire, not timber harvest, is currently the 

greatest threat to old forest on dry sites (fig. 19). Climate change is a ‘double-whammy’ for these 

forests because crown fire and drought act synergistically (Savage et al. 2013). 

7.1 Characterization Of Reference Conditions  
Restoration efforts benefit from characterization of reference conditions, which disclose 

how vegetation has changed over time as a result of human influences and disturbance; they 

help us understand what an ecosystem is capable of, how disturbance functions, and how eco-

systems recover after disturbance (Falk 1990, REO 1995). They also provide clues about how we 

got where we are now, and they help decide where we want to be in the future (Gruell 2001). 

Compiling collaborative historic evidence from photographs, aerial photography, maps, re-

ports, and other historical sources is used to derive reference conditions (Egan and Howell 2001, 

Evans 1991, Powell 1999a). As Don Falk (1990) described it: “restoration uses the past not as a 

goal but as a reference point for the future. If we seek to recreate the temperate forests, tall-

grass savannas or desert communities of centuries past, it is not to turn back the evolutionary 

clock but to set it ticking again.” 
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Figure 19 – Crown fire in Blue Mountains of northeastern Oregon (top photo from Pow-
ell 2010; bottom photo shows aftermath of crown fire at 1996 Wheeler Point fire site on 
Heppner Ranger District). In dense forests with large amounts of canopy fuel loading, 
fires are very intense and travel rapidly from one tree crown to another. Crown fires are 
an important process for perpetuating lodgepole pine, grand fir, and subalpine fir for-
ests, although any particular area seldom experiences a stand-initiating crown fire more 
often than once every 80 to 110 years (see table 3). Historically, crown fire was rare on 
dry-forest sites; that is no longer true following major changes in species composition, 
structure, and density over the past century (Arno and Allison-Bunnell 2002). 
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Seven decades ago, 74% of commercial forest in eastern Oregon and eastern Washington 

was classified as ponderosa pine, much of it old-growth (Cowlin et al. 1942). By the late 1970s, 

at least 25% of Pacific Northwest ponderosa pine type had been replaced by mixed-conifer for-

est (Barrett 1979); reductions were apparently greater for northeastern Oregon where ponder-

osa pine declined by more than 50% between 1936 and 1980 (fig. 20; Powell 1994). 

These forest inventory trends demonstrate that dry mixed-conifer forest, frequently over-

stocked with Douglas-firs and true firs capable of persisting in overcrowded stand conditions for 

relatively long periods (see fig. 10), have replaced ponderosa pine and now cover many eastside 

landscapes (Mason and Wickman 1994) (note: in a potential vegetation context used for this 

white paper, ‘dry mixed-conifer’ and ‘dry forest’ are synonymous terms). 

The following comments suggest that a trend of ponderosa pine being replaced by other 

species was recognized more than 50 years ago (Gedney 1963). 

“If present trends continue, the proportion of ponderosa pine will be less in the future than at 

present. In 29 percent of all the pine sawtimber types, there is no understory of pine, only 

other species – Douglas-fir, white fir, and lodgepole pine. In another 27 percent of the pine 

sawtimber stands, the understory is a mixture of young ponderosa pine and other species. On 

more than half of this area, species other than pine predominate. Unless something happens 

to change this relationship, or unless more intensive forest management is undertaken, about 

40 percent of the pine sawtimber type is likely to shift to some other type.” 

7.2 Forest Health Considerations 
Altered disturbance regimes often result in forest health problems such as insect outbreaks 

or stand-initiating fires (figs. 7 and 19), but conditions causing these problems take decades or 

centuries to develop. An example of altered disturbance regimes is provided by a recent U.S. 

Fish and Wildlife Service analysis of 146 threatened, endangered, or rare plant species for which 

credible fire effects information is available. It found that 135 of these plants (92%) either bene-

fit from fire or are found in fire-adapted ecosystems, suggesting that declines in their abundance 

or persistence are likely influenced by fire exclusion (Hessl and Spackman 1995) (and, such de-

clines are often viewed as indicators of an ‘unhealthy’ ecosystem). 

Plant succession, in combination with human influence including climate change, is a recipe 

for forest health issues; insect outbreaks and disease epidemics may be little more than symp-

toms of an underlying problem (Shlisky 1994, Sloan 1998b, Steele 1994). Forest ecosystems ad-

just to altered disturbance regimes with the only tools available – insects, diseases, wildfire, and 

to a limited extent, microbial decomposition (Harvey 1994; fig. 8). In this respect, forest health 

functions as a unifying concept because it integrates effects of forest succession, tree physiol-

ogy, and insect and disease susceptibility (Clark et al. 1998). 

Forest health. Perceived condition of a forest based on concerns about such factors as its age, structure, 

composition, function, vigor, presence of unusual levels of insects or disease, and resilience to disturb-

ance. Perception and interpretation of forest health is influenced by individual and cultural viewpoints, 

land management objectives, spatial and temporal scales, the relative health of stands comprising the for-

est, and the appearance of a forest at any particular point in time (Helms 1998). 
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Figure 20 – Change in forest cover types for Malheur National Forest, 1937-1980 (from 
Powell 1994). Ponderosa pine forest declined by more than half between 1937 and 
1980, mixed-conifer type increased by an equivalent amount during this period, and 
lodgepole pine type remained relatively constant. This figure shows that mixed-conifer 
forest – prime habitat for defoliating insects – increased by 195% between 1937 and 
1980. An increase in mixed-conifer forest was an important reason for unprecedented 
magnitude of a Blue Mountains budworm outbreak between 1980 and 1992. 

Once a forest’s vigor falls to low levels, insects and diseases quickly become catalysts of 

change (Gast et al. 1991, Wickman 1992, and many other citations in References section). With-

out application of restoration treatments soon (during next 15-30 years), it is very likely that the 

Blue Mountains’ legacy into the second half of 21st century will be large, homogenous land-

scapes recovering from uncharacteristic wildfires and other ecosystem setbacks on a scale un-

precedented in recent evolutionary history (Mutch et al. 1993, Sampson et al. 1994). 

Landscape-scale changes have occurred to such an extent that simply reintroducing native 

disturbance processes (wide-ranging surface fire, for example) may produce effects outside of 

any historical precedent. These effects are undesirable because they would move an ecosystem 

farther away from, rather than closer to, a desired future condition (Landres et al. 1999). In situ-

ations where current conditions deviate significantly from reference conditions, some type of 

restoration treatment (such as reducing tree biomass or herbivore populations) may be needed 

before a disturbance process can be successfully reintroduced (Aplet and Keeton 1999, Case and 

Kauffman 1997, Oliver et al. 1994b, Pickett and Parker 1994). 

One example of this concept is that standing and surface fuels often accumulate to an ex-

tent where prescribed fire cannot be applied safely unless preceded by a mechanical treatment 

such as thinning (Arno et al. 1995, Feeney et al. 1998, Fiedler et al. 1996, Fiedler et al. 1999, Gra-

ham et al. 1999). Caution about reintroducing fire is appropriate because fire exclusion, by itself, 

did not create our current problem, and fire’s reinstatement will not cure it. Fire is an ecological 
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catalyst taking its character from whatever surrounds it. Ecosystems with uncharacteristic condi-

tions will yield uncharacteristic fires (see fig. 19). 

To successfully reinstate fire, we first need to restore suitable habitat for desirable fire re-

gimes. The woods need to be thinned before reintroducing wildland fire, but it’s not just the 

trees that matter, it’s also the grass. Without careful and deliberate grazing management to en-

sure fine-fuel continuity (see fig. 17), it may be difficult to reestablish a short-interval fire regime 

on dry sites (Madany and West 1983, Pyne 1997, Rummell 1951). 

Exclusion of low-severity fires and selective harvesting of large, old trees have homogenized 

eastside landscapes, especially for a montane, mixed-conifer zone at mid elevations (Hessburg 

et al. 1994, 1999; Lehmkuhl et al. 1994). In drier forests of eastern Oregon and eastern Washing-

ton, alteration of a disturbance regime by suppressing fire has de-fragmented inherent patterns 

of fuel distribution and accumulation, thereby increasing potential for large wildfires (Hessburg 

et al. 2005, Rochelle et al. 1999) (see fig. 19). 

Unnaturally large, contiguous areas of densely stocked and highly stressed trees provide an 

increased food base for defoliating insects (Gast et al. 1991, Hessburg et al. 1994, Mason and 

Wickman 1988, Williams et al. 1980), and these forest conditions are also more favorable for oc-

currence of parasitic plants (Gast et al. 1991, Zimmerman and Laven 1984) and fungal pathogens 

(Filip and Schmitt 1990). Historically, defoliating insects and bark beetles tended to affect only 

small patches of forest, but such insects now occupy large, landscape-scale areas during episodic 

outbreak events (Hessburg et al. 1994, Powell 1994, Wickman 1994). 

Reducing stand density to minimize moisture and nutrient stress for individual trees, and 

then reintroducing fire – a natural thinning agent – are primary objectives of restoration man-

agement, but these activities are controversial to some publics (Agee 1994, Arno and Ottmar 

1994). Scientists emphasize that restoration efforts must be focused on a landscape scale to 

reestablish a mosaic of forest types and structural stages that will, in turn, reduce continuity of 

food sources for defoliating insects (Mason and Wickman 1994, Torgersen 2001), while also 

crafting habitat for free-ranging wildfire (Arno and Ottmar 1994). 

Ecosystems Out Of Balance  

How did fire exclusion, in combination with selective tree harvest and ungulate herbivory, 

contribute to dry-forest ecosystems that are now out of balance? These ecosystem alterations 

had a detrimental impact on ecological integrity by modifying vegetation diversity and complex-

ity, particularly at a landscape scale, resulting in forests at risk of uncharacteristic fire effects. 

The forests most at risk are those under the most stress because they contain too many 

trees, or too many of the wrong tree species, to continue to thrive. As these forests get older 

and denser, competition between trees intensifies, stress increases, and probability of uncharac-

teristic (catastrophic) change goes up dramatically (Sampson et al. 1994, Sloan 1998a). 

Over-protection from fire can render a forest susceptible to serious soil damage when a fire 

eventually occurs (Grier 1975). When historical wildfire regimes have been altered because soci-

ety is not prepared to accept fire-related risks to life and property, then land managers should 
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attempt to design thinnings and other silvicultural treatments emulating desirable characteris-

tics of presettlement fire regimes (Kimmins 1997). 

Historically, spatial variation in fire intensity was important for providing diversity in land-

scape patterns (fig. 21). [Munger (1917) provides excellent observations about spatial pattern 

associated with pine forests; see pages 15-16.] Under a recent fire management paradigm (fire 

exclusion), the influence of fire as an ecological process has been dramatically reduced, resulting 

in more homogeneous landscape patterns than would have existed historically (Churchill et al. 

2017, del Moral 1972, Hessburg et al. 1999b, 2005; Lehmkuhl et al. 1994). 

A fire exclusion strategy “may lead to tree population explosions and dead fuel accumula-

tion to such an extent that catastrophic adjustments become inevitable. Eventually, catastrophic 

disturbances such as insect and disease attack and crown fire may cause extensive mortality at a 

scale never before experienced by the community of organisms” (Covington et al. 1994a). 

7.3 Emulating Disturbance Processes  
A primary focus of dry-forest restoration is to use silvicultural treatments to emulate inten-

sity, scale, and pattern of historical disturbance regimes. An objective of active restoration is to 

address fire hazard and insect and disease problems – production of timber, water, and other 

commodities (if any) is only a by-product of meeting overall restoration objectives (DeGraaf and 

Healy 1993). Salvaging some dead trees produced by an uncharacteristic crown fire, for exam-

ple, would be appropriate by “leaving an amount of CWD [coarse woody debris] sustainable un-

der inherent disturbance regimes, not an excess that could set the stage for severe fires and 

subsequent loss of biological capacity” (Everett et al. 1996, p. 276). 

Choice of silvicultural treatment can be important in both ecological and economic contexts. 

For example, a general trend over past decades has seen a transition from forest harvests pro-

ducing relatively large, high-quality timber to entries generating small, low-value material at a 

high production cost (Fiedler et al. 1999, Larson and Mirth 1998, LeVan-Green and Livingston 

2003). This trend has obvious implications on economic viability of using commodity revenues to 

offset costs of dry-forest restoration treatments (Rainville et al. 2008). 

Current ecological conditions in dry forests of interior Pacific Northwest suggest that imme-

diate management action is warranted (Bonnicksen 2000b). This management intervention 

needs to be intensive and to cover wide areas of the landscape, but to be effective it must be 

substantially different in both impact and appearance from what was done historically (Samp-

son et al. 1994). This means that management intervention should use an adaptive approach 

that considers the forest as a fully functioning ecosystem (Hunter 1999, Rowe 1992). 

An eminent group of fire ecologists cautioned that a status quo solution for the Blue Moun-

tains “will leave us with seriously degraded ecosystems offering little value in an ecological, aes-

thetic or economic sense. This option goes counter to the values and concerns of society today, 

such as biological diversity, beautiful and ‘natural’ landscapes, healthy plant and animal commu-

nities, and long-term productivity” (Mutch et al. 1993). “Restoration efforts will require that we 

discard the misconception that nature is unchanging and accept the reality that people need to 

be actively involved in managing forests and woodlands for sustained values” (Gruell 2001). 
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Figure 21 – Spatial variability in fire extent for dry-forest sites in Tucannon watershed, 
northern Blue Mountains, southeastern Washington (based on data from Heyerdahl 
1997). Forty-two individual fire events were interpreted for the watershed, and 38 of 
them occurred on dry-forest sites. Smallest fire extent on dry-forest sites was 47 acres 
and largest was 3,417 acres. Average fire extent for 38 dry-site fires was 1,036 acres (red 
line shows an average). Note that the last recorded fire for this watershed occurred in 
1898 (Heyerdahl 1997), although School Fire affected the study watershed in 2005. And, 
the other three study areas in Heyerdahl’s (1997) study (Baker City watershed, Dugout 
Creek, and Imnaha Creek) also included dry-forest sites, with Dugout Creek area (Mal-
heur NF) consisting entirely of dry-forest biophysical environments. 

If the scale of tree harvest does not emulate the scale of native disturbance processes, then 

we can expect ecosystem changes such as reduced biological diversity and impaired nutrient cy-

cling (Baydack et al. 1999, Eng 1998). Using a variety of cutting patterns, for example, is im-

portant to avoid uniform landscapes; grouping cut blocks reduces total amount of edge, mini-

mizes fragmentation, and maintains larger patches of interior forest habitat. 

Society’s response to deteriorated dry-forest conditions in the interior Pacific Northwest has 

lacked consensus. Some stakeholders advocate a passive approach, believing that active man-

agement would make an unfortunate situation even worse (Beschta et al. 2004). Many propo-

nents of passive restoration contend that knowledge of reference conditions will never be com-

plete, so we should rely on wildfire, insect outbreaks, and other disturbance processes to fix the 

problem (transform composition and structure) (Frank 2003, Stephenson 1999). 

“The present vulnerability of these forest ecosystems requires that we temper our need for 

more complete information with an urgency created by the current risk of crown fires” (Allen et 

al. 2002). For example, all of the causal mechanisms are not understood, but it is clear that 

when plant succession occurs on dry-forest sites in the absence of frequent wildfires, it will re-

sult in reduced availability of mineral nitrogen and cause increased accumulation of allelopathic 
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compounds in mineral soil (MacKenzie et al. 2006, Souto et al. 2000, Wardle et al. 1998). And, 

waiting for more information fails to acknowledge that it has been estimated that up to 32% of 

all forests in the U.S. suffer high risk of wildfire (GAO 2003) (and the percentage for interior 

Northwest is much greater than 32% – see figure 43 later in this white paper). 

7.4 Desired Conditions For Dry-Forest Sites 
Desired conditions contributing to a sustainable composition, structure, and density for dry-

forest sites include the following attributes (Fiedler 2000b). 

• An open stand density (40 to 70 square feet per acre of basal area). Stands with a predomi-

nance of big trees (> 21" dbh) could be at the upper end of this stocking range and still be 

viewed as having a sustainable density level. 

• A multi-cohort or uneven-aged structure at a stand level, although discrete groups in a stand 

generally consist of a single cohort (even-aged groups in an uneven-aged stand). Up to 70 

percent of even-aged groups in an uneven-aged stand structure would have a single-layer 

structure (figs. 44-47 later in this paper illustrate groupy or clumpy structures). Typical group 

size should range from 0.1 to 0.6 acres (Harrod et al. 1999, Youngblood et al. 2004). 

• A predominance of large trees – up to 60 percent of basal area per acre would occur in trees 

whose diameter at breast height was 21 inches or greater (see fig. 22). 

• A composition dominated by ponderosa pine – up to 70% would consist of ponderosa pine 

(see fig. 22). At least ⅔ of species composition should consist of early-seral, shade-intolerant 

species to minimize spruce budworm susceptibility (Carlson and Wulf 1989). 

• Coarse woody debris (CWD) levels ranging between 5 and 20 tons per acre (Brown et al. 

2003). Note that coarse woody debris is typically defined as dead standing and downed 

pieces larger than 3 inches in diameter (Harmon et al. 1986). Between 4 and 7 tons per acre 

of a 5-20 ton per acre CWD range would exist as standing snags at a total rate of 6 to 14 

stems per acre (2 to 4 snags per acre would be at least 15" dbh) (Harrod et al. 1998). 

These desired conditions acknowledge that to bring tree density (basal area) back within an 

historical range of variation (RV), management activities should emphasize producing fewer but 

larger trees (Allen et al. 2002, Wright and Agee 2004). [Section 7.9 provides detailed RV infor-

mation for composition, structure, and density.] 

Numerical goals relating to a desired future condition depend on how a metric is quantified. 

Inventory data collected in 1910-1911 for three forest tracts in the Blue Mountains (fig. 22), for 

example, show that when tree density is expressed as basal area, 66% of it occurred in trees 

whose diameter is 21 inches or more. When forest density is expressed as trees-per-acre rather 

than basal area, stems with a diameter of 21 inches or more comprise only 23% of total stocking 

(Bright 1912; Munger 1912, 1917). 

A characterization of desired conditions should account for a range of disturbance processes 

and biological legacies, rather than attempting to directly replicate any particular disturbance 

agent (Foster et al. 1998, Hansen et al. 1991, Urban et al. 1987). Moreover, land managers 

should focus attention “on the rates at which changes occur, understanding that certain rates of 

change are characteristic, desirable and acceptable, whereas others are not” (Botkin 1990). 
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AUSTIN -WHITNEY TRACT  

Live trees per acre (1+ DBH):  .......................... 56.5 
 Ponderosa Pine Proportion.......................... 67% 

Live basal area; square feet/acre (1+) ............. 94.7 
 Ponderosa Pine Proportion.......................... 84% 
Quadratic mean diameter (Inches) ................... 17.5 
 Ponderosa Pine QMD (Inches) ..................... 19.5 
Stand density index ......................................... 139.5 
 Ponderosa Pine Proportion.......................... 85% 

Live trees per acre > 21 in diameter ................ 15.9 
 Ponderosa Pine Proportion.......................... 87% 

Live basal area per acre > 21 DBH ................... 68.0 
 Ponderosa Pine Proportion.......................... 87% 

 

LOOKINGGLASS CREEK TRACT  

Live trees per acre (1+ DBH):  .......................... 73.6 
 Ponderosa Pine Proportion.......................... 75% 

Live basal area; square feet/acre (1+) ........... 112.6 
 Ponderosa Pine Proportion.......................... 88% 
Quadratic mean diameter (Inches) ................... 16.8 
 Ponderosa Pine QMD (Inches) ..................... 18.2 
Stand density index ......................................... 169.1 
 Ponderosa Pine Proportion.......................... 88% 

Live trees per acre > 21 in diameter ................ 17.1 
 Ponderosa Pine Proportion.......................... 90% 

Live basal area per acre > 21 DBH ................... 74.8 
 Ponderosa Pine Proportion.......................... 91% 

 

WINLOCK ’S MILL TRACT  

Live trees per acre (1+ DBH):  .......................... 46.6 
 Ponderosa Pine Proportion........................ 100% 

Live basal area; square feet/acre (1+) ............. 43.8 
 Ponderosa Pine Proportion........................ 100% 
Quadratic mean diameter (Inches) ................... 13.1 
 Ponderosa Pine QMD (Inches) ..................... 13.1 
Stand density index ........................................... 69.9 
 Ponderosa Pine Proportion........................ 100% 

Live trees per acre > 21 in diameter .................. 6.6 
 Ponderosa Pine Proportion........................ 100% 

Live basal area per acre > 21 DBH ................... 24.5 
 Ponderosa Pine Proportion........................ 100% 

Figure 22 – Selected stand attributes for three forest tracts in Blue Mountains (adapted from Powell 
1999b). This data came from relatively large sample areas measured in 1910 or 1911 (sample areas were 
258½ acres for Austin-Whitney, 44 acres for Lookingglass Creek, and 20 acres for Winlock’s Mill). Data 
sources are Bright (1912) and Munger (1912, 1917). [Also see table 2 for similar data.] 

Alan White (1985) suggests that ponderosa pine regeneration requires a ‘safe site’ such as 

the ash bed of a fire-consumed log, where at least a few seedlings could get established before 

herbaceous and woody fuels recovered enough to support another fire. Although frequent sur-

face fire caused overall seedling survival to be low, long-term survival of saplings successfully 

making it through this initial fire filter was high. This regime produced low density of small-diam-

eter ponderosa pine trees, so a resulting diameter distribution was relatively flat. This differs 
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from a classical, inverse-J distribution expected for uneven-aged hardwood forests on moist 

sites lacking a frequent-fire regime (Mast et al. 1999, Powell 2018, White 1985). 

Munger (1917) also noted that “yellow pine grows commonly in many-aged stands” (page 

16). Historical Blue Mountains inventory data (fig. 22) exhibits a flat diameter distribution ex-

pected for uneven-aged stands sustained by frequent surface fires on dry sites. 

Adopting a very conservative approach to restoration of dry forests is not a choice of ‘no ac-

tion’ because such a strategy accepts risk of high-severity wildfire and other uncharacteristic dis-

turbance events. Upon recognizing that risks of no action are probably unacceptable for most 

scenarios, managers should design flexible, adaptive treatments to restore more ‘natural’ condi-

tions (e.g., more historically appropriate conditions), including high levels of spatial heterogene-

ity for dry-forest sites (Allen et al. 2002; Churchill et al. 2013a, 2013b, 2017; Franklin et al. 2013; 

Wright and Agee 2004; and many others in References section). 

A solution to forest health problems could begin with thinnings to reduce tree density in 

overcrowded forests, particularly for dry-forest sites where over-crowding was a rare phenome-

non before onset of fire exclusion (sec. 4), selective cutting (sec. 6), and ungulate herbivory (sec. 

5). These three management activities contributed to creating condition class 2 and 3 conditions 

described and illustrated in table 5 (Barrett et al. 2010, Belsky and Blumenthal 1997; Covington 

and Moore 1994a, 1994b; Madany and West 1983; Oliver et al. 1994c; Rummell 1951). 

A simulation study examined changes in fire risk associated with active restoration treat-

ments. It found that fire risk at a landscape scale decreased steadily as management intensity 

increased. After five decades, a no-treatment scenario had nearly 30 percent of a landscape in a 

high-risk category, whereas active management (thinning and prescribed fire) had 100 percent 

of a landscape in a low-risk category (Wilson and Baker 1998). 

No single restoration solution, however, can hope to precisely reproduce inherent variability 

of a dry-forest landscape because ecosystems are shaped by a wide variety of disturbance types, 

frequencies, and intensities (Voller and Harrison 1998). Deciding to take immediate remedial ac-

tion can result in a philosophical shift toward proactive management to curtail excessive fire and 

insect impacts, and a shift away from reactive management in response to landscape-scale dis-

turbance events (see fig. 19) (Covington 2003). 

A challenge is to integrate a suite of active management treatments to effectively and ap-

propriately emulate natural disturbance regimes of dry-forest landscapes (fig. 23). Successfully 

meeting this challenge will produce a semblance of historical forest structure and species com-

position – a desirable outcome not because resulting conditions are historical, but because they 

are sustainable (e.g., vigorous, self-perpetuating, pine-dominated, and at low risk to stand-re-

placing fire and defoliating insects) (Fiedler 2000a). 

Note: thinning dense clumps of ponderosa pine regeneration (see middle panel of fig. 23) 

will produce a positive growth response in residual trees (Barrett 1963, 1968, 1970) and place 

them back on a developmental trajectory toward characteristic stand dynamics. Also note that 

when released by thinning after a long period in a very dense condition, other tree species sel-

dom respond to additional growing space as well as ponderosa pine does. 
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Using burlap to beat out a surface fire 
in ponderosa pine, Wallowa National 
Forest, about 1910. As Thornton Mun-
ger noted, “Light, slowly spreading fires 
that form a blaze not more than 2 or 3 
feet high and that burn chiefly the dry 
grass, needles, and underbrush start 
freely in yellow pine forests. Practically 
every acre of virgin yellow pine timber-
land in central and eastern Oregon has 
been run over by fire during the lifetime 
of the present forest” (Munger 1917). 

 

Dense ponderosa pine forests develop-
ed after fire’s influence was suppressed 
during the past 100 years. On many dry 
sites, fire exclusion had an unintended 
consequence of allowing late-seral tree 
species (grand fir, white fir, and interior 
Douglas-fir), none of which are adapted 
to a recurrent fire regime as small or 
mid-sized trees, to replace the ponder-
osa pines. 

 

Thinning and prescribed fire can be 
used in tandem to restore sustainable 
and resilient forests on dry sites. Chang-
ing a dense forest condition (middle 
frame) to one that more closely approx-
imates historical composition and struc-
ture will go a long way toward allowing 
us to restore an ecologically important 
and valuable disturbance process – fre-
quent surface fire. 

Figure 23 – Restoration of ponderosa pine ecosystems (from Powell et al. 2001; top photograph from 
Boerker 1920, bottom two photographs from USDA Forest Service 2001). Soon after its inception in 
1905, USDA Forest Service began suppressing wildfire on national forest system lands (Fedkiw 1999) 
(top). By removing surface fire as a thinning agent, fire exclusion caused tree density to increase sub-
stantially on dry sites (middle). Restoration of dry forests features thinning or another mechanical 
treatment to reduce tree density, followed by prescribed fire for nutrient cycling and to reestablish 
fire as a properly functioning ecosystem process (bottom) (Arno and Allison-Bunnell 2002, Arno et al. 
1995, Fiedler et al. 1996, Fiedler et al. 1999). Dry-forest landscapes are said to have strong ‘ecological 
memory’ due to the strength of an interaction between an ecological process (surface fire) and land-
scape pattern. “When ecological memory is strong, landscape pattern is persistent; pattern tends to 
be maintained rather than destroyed by fire” (Peterson 2002). 
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Table 5: Fire regime condition classes for dry forests (Brown et al. 2003, GAO 2004, Schmidt et al. 2002, and Zimmerman 2003). 

   

CONDITION CLASS 1  
(ecosystem maintenance stage) 

Composition and structure: open, park-like, 
mature ponderosa pine stands; even-aged 
clumps occurring as an uneven-aged struc-
ture; single-layer canopy structure. 
Tree density: stocking levels are within an his-
torical range; density remains consistently be-
low lower limit of a self-thinning zone. 
Vigor: high seasonal energy activity; high ca-
pacity to repel or resist disturbance agents 
such as insects and pathogens. 
Fire regime: maintained within or near an his-
torical range; no departure from historical fre-
quency or severity (nonlethal fire regime). 
Fuel dynamics: surface and total fuel loads 
maintained at historical levels (between 5 and 
10 tons per acre). 
Resilience and risk: high capacity to remain 
fully functional following fire; low risk of los-
ing key ecosystem components after fire. 

CONDITION CLASS 2  
(ecosystem alteration stage) 

Composition and structure: beginning to depart 
from reference conditions; lack of fire allows es-
tablishment of fire-sensitive species and a multi-
layer canopy structure. 
Tree density: stocking levels in upper half of his-
torical range; density may exceed lower limit of 
a self-thinning zone. 
Vigor: moderate to high seasonal energy activ-
ity; somewhat diminished capacity to repel or 
resist insect or pathogen attack. 
Fire regime: frequency reduced and departing 
from historical range; severity increased, with 
some mortality of overstory trees. 
Fuel dynamics: surface and total fuel loads in 
upper half of historical range (10 to 20 tons per 
acre). 
Resilience and risk: fairly high potential to re-
turn to condition class 1 by using prescribed 
fire; moderate risk of losing key ecosystem com-
ponents following wildfire. 

CONDITION CLASS 3  
(ecosystem degradation stage) 

Composition and structure: highly altered from 
reference conditions; fire-sensitive species com-
mon; open, park-like appearance completely 
lacking; multi-layer canopy structure. 
Tree density: stocking levels exceed historical 
range; total tree density may be 3-4 times 
greater than for condition class 1. 
Vigor: little fluctuation in seasonal energy activ-
ity; greatly increased susceptibility to insect or 
pathogen attack. 
Fire regime: dramatic departure from historical 
frequency and severity; many fire return inter-
vals missed; larger average fire (patch) size. 
Fuel dynamics: surface and total fuel loads out-
side historical range (> 20 tons per acre); in-
creased fuel continuity at landscape scale. 
Resilience and risk: low potential to return to 
condition class 1 by using prescribed fire; me-
chanical treatments needed before reintroduc-
ing fire; high risk of losing key ecosystem com-
ponents to stand-replacing wildfire. 

Note: A strategic assessment for 15 western states (Rummer et al. 2005) found that 30 million acres exist in class 1, 38.4 million in class 2, and 28.5 million in class 3. 
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7.5 Thinning And Prescribed Fire As Restoration Treatments  

Restoration. Restoration refers to holistic actions taken to modify an ecosystem to achieve desired con-

ditions and functions, including the process of returning ecosystems to a properly functioning structure, 

species composition, and stand density (Dunster and Dunster 1996). Two restoration approaches have 

been recognized: (1) Active restoration: an approach involving implementation of management activities 

(prescribed fire, thinning, etc.) to restore appropriate conditions; and (2) Passive restoration: an approach 

involving removal of stresses that caused ecosystem degradation in the first place, such as cessation of 

fire exclusion in fire-dependent ecosystems (Rapp 2002). 

Although it is not expected that park-like ponderosa pine forest can be fully restored to its 

historical abundance, some amount of thinning and prescribed fire, applied in proper places and 

at appropriate times, is needed to help recover integrity and resilience of this important ecosys-

tem (Agee 1997, Arno and Allison-Bunnell 2002, Covington 2000, Fiedler et al. 2001). Thinning 

and prescribed fire, used alone or in combination, can compensate somewhat for suppression of 

an historical surface fire regime by reducing high stand density levels, addressing successional 

advancement (from early- to late-seral tree species), and jump-starting stagnant nutrient-cycling 

processes (Gundale et al. 2005, Stephens et al. 2009) (fig. 24). 

We should consider, however, that some plant and animal species find optimum habitat in 

early-seral conditions, others in late-seral plant communities, and some in either situation. So 

when compared with the historical situation, significant changes in disturbance levels (either an 

increase or decrease) can ultimately degrade biodiversity by affecting proportion and distribu-

tion of seral stages at a landscape scale (White et al. 1999). 

Fire can be highly stressful to old-growth ponderosa pines, particularly on sites where exist-

ing tree density is many times greater than presettlement stocking levels. In these uncharacter-

istically crowded forests containing low-vigor trees, it is wise to thin first and allow old-growth 

pines to recover their vigor before subjecting them to additional stress from a prescribed fire 

(Covington 2003, Fiedler et al. 1996, Scott 1998b, Swezy and Agee 1991). Increased vigor trans-

lates into increased resin production and bark-beetle defenses (Perrakis et al. 2011). 

Much byproduct from fuel-reduction thinnings will be too small or poor in quality to be 

commercially valuable for conventional wood products (Fiedler et al. 1999). These thinnings are 

typically accomplished by using a service contract where a contractor is paid a specified amount 

per acre, or per tree, to cut or otherwise treat unwanted trees and leave them on-site (Powell et 

al. 2001). 

But leaving unwanted vegetation on-site contributes to an immediate, and often unaccepta-

ble, short-term increase in surface fuel loadings and associated fire risk (Arno and Allison-Bunn-

ell 2002, Brown et al. 2003, Mutch et al. 1993). An ideal solution, albeit a costly one in an eco-

nomic context, is to use stewardship contracting for vegetation treatments, and then remove 

resulting fuel to an off-site biomass facility for ultimate disposal (fuel could also be treated by 

using pyrolysis to create bio-oil for energy, and biochar for carbon sequestration) (Lehmann and 

Joseph 2009). 
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Figure 24 – Correcting a history of fire exclusion (adapted from Phillips 1995). Thinning 
and prescribed fire are examples of stand-maintaining disturbances that kill from the 
bottom up (Smith et al. 1997). These treatments need to become more common as one 
way to address forest health issues resulting from changes in species composition and 
forest structure caused by fire exclusion, livestock grazing, and selective tree harvest 
(Johnson et al. 2011, McIver et al. 2013, Stephens et al. 2009, Youngblood 2010). 

Several efforts are underway around the western United States to develop processing meth-

ods and markets for ever-smaller material. If these efforts succeed, then future thinnings may 

eventually become commercial by producing biomass material for distillation of ethanol (a gaso-

line additive) from cellulose, or to generate electricity or biochar (Barbour and Skog 1997). 

On forest sites in eastern Washington, residual trees increased growth following surface 

fires that killed trees in intermediate and suppressed crown classes, but growth increases were 

greater when thinning was used to reduce overall stand density. Unlike fire, manual thinning did 

not damage fine roots, so residual trees occupied increased growing space quickly. After over-

story trees claimed additional growing space provided by thinning, grasses did not readily invade 

the site (Oliver and Larson 1996). 

Avoiding root damage is important, particularly on dry, rocky, low-productivity sites. For 

poor-quality sites, up to 40% of a tree’s annual net production is invested in fine roots (Keyes 

and Grier 1981). Since fine roots concentrate near the soil surface, especially on sites with shal-

low soils, heat generated by prescribed fire has potential to damage or kill them. 

For spring prescribed fires, heat effects could “be amplified by the high thermal diffusivity of 

moist soils, and the low soil temperatures to which roots are adapted after winter. Late summer 
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or early fall fires, on the other hand, occur when roots are inactive, soils are dry and thus good 

insulators, and roots are adapted to higher soil temperatures” (Grier 1989). 

Thinning and prescribed fire also have site disturbance differences. Thinning tends to have 

minimal soil disturbance, so it favors native understory species more than exotics (non-natives). 

A combination thinning and burning treatment has intermediate amounts of soil disturbance, 

and this option favors native and exotic species equally. Burning tends to increase exotic species 

with little effect (either favorable or unfavorable) on native understory species (Fiedler et al. 

2006, Griffis et al. 2001, Kerns et al. 2006). 

Stewardship Tree Harvest  

Stewardship tree harvest, depending on techniques used and woody debris left behind, may 

reduce fuels and wildfire hazard in the near term, or it may not. Harvest alone, without also 

thinning small unmerchantable trees, treating woody debris produced by harvest and thinning, 

and then using prescribed fire, seldom reduces wildfire hazard over the long term (Gruell 2001). 

Fuel hazard studies often came to similar conclusions regarding the importance of treating 

post-treatment woody debris (slash). ‘Lopping and scattering’ is a common treatment for thin-

ning slash. In this method, branches are cut from felled trees and scattered to reduce fuel con-

centrations; if needed, slash is pulled away from residual green trees. Research found that “lop-

ping and scattering still managed to reduce fire behavior levels (mainly because of fuel depth 

reduction), but application of this treatment should be limited to areas with light fuel accumula-

tions – less than 9 tons per acre” (Kalabokidis and Omi 1998). 

Treating or removing post-harvest woody debris provides definite physiological advantages 

if a wildfire occurs soon after a treatment. When fire occurred in a thinned stand in Arizona, 

with woody debris having been removed prior to the fire, fire improved residual-tree resin pro-

duction as compared to an unthinned control (Feeney et al. 1998). Improved resin production 

promotes defensive chemical compounds enhancing bark beetle resistance (Kolb et al. 1998); 

without thinning first, fire could benefit bark beetles more than old trees (Perrakis et al. 2011). 

More Use Of Prescribed Fire?  

In early 1990s, Bob Mutch and other fire scientists recommended that prescribed fire use 

(fig. 25) be increased tenfold as one way to address forest health concerns for national forests in 

northeastern Oregon and southeastern Washington (Mutch et al. 1993). A recent survey by Ore-

gon State University, however, showed a stronger public preference for thinning (79% of re-

spondents) than for prescribed fire (20%) as alternative treatments for addressing Blue Moun-

tains forest health concerns (Shindler and Reed 1996, Shindler and Toman 2003). 

A proposal to greatly expand use of prescribed fire (Mutch et al. 1993, Mutch 1994) raised 

concerns about potential impacts on forest productivity, wildlife habitat, and biodiversity. One 

response to this proposal was that mechanical fuel treatment might be preferable to a dramatic 

increase in prescribed fire because it offers more control than fire, and more control translates 

into better protection for dead wood (down logs and snags) (Tiedemann et al. 2000). 
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Figure 25 – A prescribed fire burning at 
night. Using prescribed fire on dry sites 
is intended to emulate an historical fire 
regime that sustained open, resilient 
forests of ponderosa pine. For the Blue 
Mountains, surface fires with short 
flame lengths (less than 3 feet) tended 
to occur at an interval of 5 to 20 years, 
a fire frequency favoring thick-barked 
ponderosa pines and western larches 
while discriminating against thin-barked 
grand firs and Douglas-firs (Agee 1996b, 
Hall 1976, Heyerdahl 1997, Maruoka 
1994). 

When considering fuel reduction options, mechanical methods might be more expensive 

than prescribed fire in the short term but are probably more economical over the long run, es-

pecially if wildlife habitat (snags and down logs) must be mitigated or replaced after burning 

(Tiedemann et al. 2000). But down-wood objectives for dry-forest sites need to be compatible 

with inherent ecosystem processes. Widely used models of dead-tree (snag) and down-log dy-

namics developed more than 35 years ago for the Blue Mountains (Maser et al. 1979, Thomas et 

al. 1979) are not fully compatible with ecology of dry-forest disturbance regimes. 

Thomas et al. (1979) snag model portrays snags as going through nine stages of decay corre-

sponding to the length of time a dead tree has been standing, eventually culminating in ‘snag 

mortality’ when a snag falls. Fallen snags then become downed logs, which go through another 

series of five classes of decomposition and decay (Maser et al. 1979) (fig. 26). 

Frequent fires on dry-forest sites tended to burn snags before they could progress through 

all stages of the Thomas et al. (1979) snag model (Agee 2002a). The few fallen snags that did be-

come downed logs also did not progress through all the stages of a Maser et al. (1979) model 

because they typically burned when in decomposition class 1 or 2, seldom avoiding fire long 

enough to reach class 5 (fig. 26). 

For a dry-forest climatic zone of the interior Pacific Northwest, a short-interval fire regime 

functioned as a primary wood and nutrient cycling process because microbial decomposition 

was too slow on these arid environments to keep pace with woody biomass accumulation (fig. 8 

explains nutrient cycling differences between dry and moist forest sites). 

When evaluated through a prism of ecosystem adaptation, dry mixed-conifer forests had 

low down-wood potential because frequent fire consumed much of the system biomass (Agee 

2002a), leaving biomass that did accumulate in the most persistent ecosystem component – 

large, old trees (see figs. 44-46). Due to evolutionary adaptations of dominant trees (thick bark 

and an elevated canopy), resilience of these ecosystems was high, even when considering the 

high frequency of low-severity surface fire as a disturbance process. 
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Figure 26 – Diagrams illustrating succession and evolution of snags (top) and down logs (bottom) through 
time (from Maser et al. 1979 and Thomas et al. 1979). These models of snag and down wood succession 
are most appropriate for ecological environments where decomposition is primarily accomplished by mi-
crobes (e.g., moist and cold upland forests; see fig. 8). They are probably less appropriate for dry-forest 
environments where woody detritus was cycled mainly by frequent surface fire (Passovoy and Fulé 2006, 
Stephens and Moghaddas 2005). Note that for dry sites, surface fire functioned ecologically as a coarse 
filter for both snags and logs (Agee 2002a). 

What would happen if prescribed fire, rather than thinning, was applied to contemporary 

dry-site forests? In general, the outcome would be undesirable whenever a cohort of post-fire-

exclusion trees is present (Bonnicksen 2000b). This post-exclusion cohort serves as ladder fuel 

(fig. 27), allowing a low-intensity surface fire to climb into upper canopy layers and kill dominant 

trees, including fire-resistant species (Arno et al. 1997, Steele et al. 1986). 

When large quantities of standing dead trees are present following lethal fire on dry sites, 

salvage harvest is appropriate to remove some portion of this uncharacteristic fuel loading (Har-

vey et al. 1999, Mutch et al. 1993). [Despite controversy surrounding post-fire salvage harvest 

(Beschta et al. 2004), I assert that if a dry forest’s live-tree density is uncharacteristically high, 

and if it burns with uncharacteristic fire severity, then resulting dead-tree density is also unchar-

acteristic, and salvage harvest could be used to reduce the number of dead trees to characteris-

tic levels by retaining large-diameter, pre-fire-exclusion trees (see Brown et al. 2003 for post-fire 

fuel levels). What was uncharacteristic when alive does not automatically become characteristic 

when dead. “An over-abundance of green trees before a fire becomes an over-abundance of 

burned logs and snags ready to fuel the next fire” (Everett et al. 1996, p. 272).] 

7.6 Restoration Alternatives 
To be healthy, trees need a place in the sun and some soil to call their own (Society of Amer-

ican Foresters 1981). When crowded by too many neighbors, trees may not have enough soil 

and sun to maintain high vigor. Trees die after their vigor drops so low they can no longer heal 

injuries, resist attack by insects and diseases (by producing phenols, monoterpenes and other 

terpenoid resins, and similar defensive chemicals), or otherwise sustain life (fig. 28; Christiansen 

et al. 1987, Franklin et al. 1987, Kelsey 2001, Kolb et al. 1998, Langenheim 1990, McDowell et al. 

2007, Nebeker et al. 1995, Peet and Christensen 1987, Wallin et al. 2008, Waring 1987). 
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Figure 27 – Shade-tolerant trees can get 
established on dry sites in an absence of 
surface fire (from Powell 1994). Grand 
firs and Douglas-firs are clustered around 
the base of a ponderosa pine in this im-
age. Eighty or more years of fire exclusion 
promoted this successional progression 
on millions of acres in western North 
America (Schmidt et al. 2002). If selective 
harvest removes overstory trees, a multi-
layered stand of late-seral species re-
mains, and most of them are highly sus-
ceptible to drought and damage from de-
foliating insects (Wickman 1992). On dry 
sites where grand fir or Douglas-fir is cli-
max, prescribed fire is effective for man-
aging ingrowth of late-seral species 
(Kalabokidis and Omi 1998). A mound of 
bark flakes at the base of this old pine is 
an indicator of long-term fire exclusion; 
fire can smolder there and kill fine roots 
(Ryan and Frandsen 1991, Swezy and 
Agee 1991). Note: Experience in Ameri-
can southwest suggests it requires at 
least 100 years for ponderosa pine to de-
velop a characteristic orange, platy bark 
shown here (White 1985). 

Once a forest stand occupies its growing space, intertree competition causes some trees to 

die, and survivors immediately claim growing space relinquished by their dead neighbors. In na-

ture, this self-thinning process eventually results in relatively few large trees occupying growing 

space that originally supported many small trees (Long and Smith 1984). 

Land managers can emulate a natural competition process by intentionally reducing number 

of trees on a site, a practice called thinning. Thinning has been used to describe activities rang-

ing from light removal of small understory trees to moderate removal of large overstory trees. 

On dry-forest sites where thinning is designed to emulate surface fire (Perera et al. 2004), a ref-

erence to thinning is assumed to be “understory thinning, thinning from below, or low thin-

ning,” which refer to cutting or removal of subordinate trees (fig. 29; Smith et al. 1997). To cap-

ture maximum restoration benefit from thinning, post-thinning stand density should be reduced 

to a lower limit of the management zone stocking level (figs. 30-31). 

Critics of active management often characterize thinning as a silvicultural practice designed 

for commodity wood (timber) production, rather than acknowledging what it truly is – applica-

tion of a restoration tool in proper places and at appropriate times to achieve specific land man-

agement objectives through active management. One contemporary objective is to create fire-

safe forest conditions, particularly for developed areas containing wildland-urban interface or 

other values-at-risk, and thinning addresses three of four fire-safe principles (table 6). 
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Figure 28 – Death spiral for a Douglas-fir tree in Blue Mountains (adapted from Frank-
lin et al. 1987). In this death spiral, a slightly taller tree suppresses a shorter but other-
wise healthy tree. If not released from competition, a suppressed tree is predisposed 
to attack by defoliators. Once partially defoliated, a weakened tree is attractive to 
bark beetles, including Douglas-fir beetles (Wickman 1978) carrying blue-stain fungus. 
Blue-stain fungus blocks water and sap movement and causes foliage desiccation. In 
this model of tree decline, suppression is a predisposing stressor; bark beetles and de-
foliation function as culminating or inciting stressors (Pedersen 1998). 

Section 6 describes how selective cutting was one of three important factors contributing to 

dry-forest deterioration (the other two are fire exclusion and ungulate herbivory). Selective cut-

ting, however, must not be confused with thinning. Not only are these activities implemented in 

different ways, but selective cutting was directed at short-term (economic) objectives (Ames 

1931), while thinning is designed to meet silvicultural objectives. These differences demonstrate 

that all mechanical treatments are not the same – low thinning is an ideal restoration activity for 

dry forests, whereas selective cutting contributed to deterioration in the first place. 

By removing some trees and increasing space around those that remain, thinning provides 

more sunlight, water, and nutrients for residual trees. Reducing tree density quickly improves 

physiological vigor of residual trees. High-vigor trees produce more resin and defensive chemi-

cals than low-vigor trees, allowing them to better repel insect and disease attacks (Christiansen 

et al. 1987; Feeney et al. 1998; Kolb et al. 1998; McDowell et al. 2003, 2007; Mitchell et al. 1983; 

Perrakis et al. 2011; Stoszek 1988; Vité 1961; Waring and Pitman 1985). 
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Figure 29 – Example of low thinning in a mixed-conifer forest (from Powell 1999b). Low 
thinning is defined as removal of trees from lower crown classes or canopy layers in or-
der to favor trees in upper crown classes or layers. Low thinning is also referred to as 
‘thinning from below.’ Note how smaller trees were removed in every instance but one: 
a western larch at center of top panel was infected with dwarf mistletoe to an extent 
threatening its continued survival. Because of its canopy position, the larch would not 
have been removed except for insect or disease reasons. 

To capitalize on its forest health benefits, thinning was emphasized in Oregon Governor 

John Kitzhaber’s strategy for restoring eastern Oregon forests, watersheds, and communities: 

“Understory thinning of green trees to restore forests to a healthy condition more representa-

tive of historic conditions is an important component of active management for forest health” 

(Kitzhaber et al. 2001). 

“The silvicultural practices designed to maintain forest health will be different than those 

used to produce timber as a primary objective. Smaller material will be removed. There will be 

more use of thinnings, salvage, and other silvicultural treatments that involve removal of only a 

portion of the trees on a site. Wood product values will be lower and logging costs higher” (Mac-

Cleery 1995). A similar conclusion was reached during an assessment of timber availability from 

forest restoration in the Blue Mountains of Oregon, when it was noted that thinning might be 

difficult to accomplish economically due to small tree size (Rainville et al. 2008, p. 63). 
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Table 6: Principles of fire-safe forests. 

PRINCIPLE  EFFECT  ADVANTAGE CONCERNS 

Reduce surface fuels Reduces potential 
flame length 

Fire control is easier; 
less torching of 
individual trees 

Soil disturbance: less with 
prescribed burning, more 
with certain mechanical 
treatments 

Increase height to 
live crown 

Requires longer flame 
length to 
begin torching 

Less torching of 
individual trees 

Opens understory, possibly 
allowing surface winds to 
increase 

Decrease canopy 
bulk density (foliage 
biomass) 

Makes tree-to-tree 
crown fire spread less 
likely 

Reduces crown fire  
potential 

Surface winds may  
increase; surface fuels  
may become drier 

Favor fire-tolerant 
tree species 

Reduces potential 
tree mortality 

Improves vegetation 
tolerance to low- and 
mixed-severity fire 

If used too broadly, it 
could simplify composition 
at a landscape scale 

Sources: Adapted from Agee et al. (2000) and Agee (2002b). 

When comparing mechanical thinning and prescribed fire as active restoration alternatives 

for dry-forest sites, mechanical thinning offers several advantages: 

(1) It provides the most control over species composition, vertical structure, tree density, and 

spatial pattern for residual trees; 

(2) It provides more control over amounts and distribution of standing and down wood as wild-

life habitat (Tiedemann et al. 2000); 

(3) It is not constrained to short, unpredictable weather windows like prescribed fire; and 

(4) It may produce economically valuable wood products that could help defray restoration 

treatment costs (Barbour et al. 2007). 

Guidelines have been developed to identify and describe site-specific levels of intertree 

competition (stocking), and to relate them to various categories of insect or disease susceptibil-

ity (Cochran et al. 1994; Hessburg et al. 1994, 1999a; Lehmkuhl et al. 1994; Powell 1999b; 

Schmitt and Powell 2005, 2012). These guidelines are commonly used to prepare silvicultural 

prescriptions for commercial thinnings and other density management treatments in dry for-

ests. A basic density-management concept is this: maintain stands within an ecologically appro-

priate ‘management zone’ (fig. 30) to ensure reasonable stand development, high tree vigor, 

and improved resilience to a wide variety of insect and disease organisms. 

Management Note: Unless management objectives dictate a different density management 

regime, I suggest that a thinning treatment be initiated when stand density approaches an upper 

limit of a management zone (which is about 60% of maximum density or 75% of full stocking), 

and that thinning reduce stand density to a lower limit of a management zone (which is about 

35% of maximum density or 50% of full stocking). Figure 32 provides stocking charts portraying 

four density-management thresholds (fig. 32a) and two crown-fire susceptibility thresholds (fig. 

32b), along with an example of how a stocking chart can be used to compare pre-treatment and 

post-treatment conditions (fig. 32c). 
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Figure 30 - Hypothetical thinning regime utilizing upper and lower limits of a manage-
ment zone as stocking curves (curving black lines). This figure shows how a stocking-
level chart could be used to prepare a thinning regime. In this example, initial stocking 
begins within a management zone and stand growth causes QMD to increase toward an 
upper limit (this is segment A; green segments show growth; red segments show thin-
nings). When this example trajectory approaches an upper limit, thinning is completed 
and stocking is reduced until it approaches a lower limit (segment B). Post-thinning 
growth causes the stand to approach an upper limit again (segment C), at which point a 
second thinning is scheduled to reduce stand density toward a lower limit again (seg-
ment D). For this example regime, stand density would ostensibly be low enough to stay 
within a management zone after completing the second thinning (segment E). 
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Figure 31 – Stand development indexed to maximum density. Initially, trees are too small to use 
all of a site’s resources, and they experience a period of free growth (no intertree competition is 
occurring). Eventually, roots and crowns begin to interact and an ‘onset of intertree competition’ 
threshold is reached. As a stand continues growing through a zone of high individual tree growth, 
trees capture growing space and a ‘lower limit of full site occupancy’ threshold is breached. This 
next zone features high stand growth. As competition intensifies, stands eventually enter a self-
thinning zone by crossing a ‘lower limit of self-thinning zone’ threshold. In a self-thinning zone 
(gray area), a tree can only increase in size if neighboring trees relinquish their growing space by 
dying. The pace of tree mortality quickens as a stand passes a ‘normal density’ threshold and ap-
proaches maximum density. Maximum density, shown as a solid line because it is an absolute 
threshold, is a reference level (100%) for the stocking system described here.  
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Selective cutting. A system in which groups of trees, or individual trees, are periodically removed from 

a forest as based on economic criteria aimed at maximizing commodity revenues rather than trying to 

meet silvicultural objectives such as regeneration (Dunster and Dunster 1996) or stocking control. 

Selection cutting. A regeneration cutting method designed to maintain and perpetuate a multi-aged 

structure by removing some trees in all size (age) classes, either singly (single-tree selection) or in groups 

(group selection) (Helms 1998). [Note: selective and selection cutting are not the same practice!] 

Thinning. A treatment designed to reduce tree density and thereby improve growth of residual trees, 

enhance forest health, or recover potential mortality resulting from intertree competition. Two types of 

thinning are recognized – commercial thinning (trees being removed have economic value), and noncom-

mercial thinning (trees are too small to have economic value, so they are left on-site) (Powell et al. 2001). 

Prescribed fire. Deliberate burning of wildland fuels in either a natural or modified state, and under 

specified environmental conditions, in order to confine fire to a predetermined area, and to produce a 

fireline intensity and rate of spread meeting land management objectives (Powell et al. 2001). 

Explanatory Notes for Figures 31-32, and Table 7. Figure 32 provides stocking-level tools for 

active management of dry upland forest. Figure 32 has three parts – conventional stocking levels 

expressed by using four stand density thresholds (fig. 32a), ‘special-purpose’ stocking levels ex-

pressed by using two levels of crown-fire susceptibility (fig. 32b), and an example of how stock-

ing-level charts can be used to assess treatment effectiveness (fig. 32c). Figures 32a-32c assume 

an even-aged stand structure (e.g., SDI was not reduced to account for irregular or other struc-

tures). Notes about threshold levels shown on the stocking charts (figs. 32a and 32b): 

Maximum density: Although rarely observed in nature, maximum density represents a use-

ful upper limit, so it is often used when establishing stocking levels. 

Full stocking (80% of max): Full stocking is also referred to as normal density. Full stocking 

pertains to single-cohort (even-aged) stands where intertree competition results in crown-class 

differentiation – dominant, codominant, intermediate, and subcanopy trees are evident in dif-

ferentiated stands. As shown in figure 31, normal density/full-stocking occurs in a self-thinning 

zone where stand density is high enough to cause tree mortality. 

Upper limit of a management zone (60% of max; Upper Limit in fig. 32a): This stocking 

level corresponds with a ‘lower limit of self-thinning zone’ threshold shown in figure 31. It is of-

ten used whenever land managers wish to avoid density levels high enough to cause self-thin-

ning and competition-induced tree mortality. 

Lower limit of a management zone (35% of max; Lower Limit in fig. 32a): This stocking 

level corresponds with a ‘lower limit of full site occupancy’ threshold shown in figure 31. This 

threshold functions well as a lower limit because a site is fully occupied at stocking levels above 

it – growing space is not being underutilized (‘wasted’) at these stocking levels. 

High susceptibility to crown fire (High Susceptibility in fig. 32b): This stocking level pertains 

to stand densities where crown fire is easily sustained – namely, canopy bulk density (CBD) val-

ues of 0.10 kg/m3 or more (Agee 1996c). 

Low susceptibility to crown fire (Low Susceptibility in fig. 32b): This stocking level pertains 

to stand densities where crown fire is either impossible or highly unlikely – namely, canopy bulk 

density (CBD) values of 0.05 kg/m3 or less (Alexander 1988, Van Wagner 1977). 

CBD values (0.10 and 0.05 kg/m3) for crown-fire susceptibility were translated into their cor-

responding forestry metrics (Powell 2010) in order to prepare a stocking chart (fig. 32b). 
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Figure 32a – Stocking chart for dry forests, expressing four stand density thresholds (color lines) by using basal area and QMD values.  
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Figure 32b – Stocking chart for dry forests, showing two crown-fire susceptibility thresholds (color lines) by using basal area and QMD values. 
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Figure 32c – Did a density-management treatment successfully move stand density within a management zone? In this example, treatment re-

duced stand density below a Lower Limit (pre-treatment = 238 ft2/acre and 12.6ʺ QMD; post-treatment = 50 ft2/acre and 20.7ʺ QMD). 

0

20

40

60

80

100

120

140

160

180

200

220

240

260

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

B
A

S
A

L
 A

R
E

A
 (

S
q

u
a

r
e

 F
e

e
t 

P
e

r
 A

c
r
e

)

TREE DIAMETER (Quadratic Mean Diameter; Inches)

Mixed-Species, Even-aged, Dry Upland Forest (70% PP, 20% DF, 10% GF)

MAXIMUM DENSITY

FULL STOCKING

UPPER LIMIT

LOWER LIMIT

P r e -
Tr e a t m e n t

P o s t -
Tr e a t m e n t



 

 

73 

Table 7: Recommended stocking levels for the dry-forest PVG, as expressed by using the stand development zones depicted in figure 30. 

 CLIMATE CHANGE  
(WARMER,  DRYER)  

HIGH TREE 
GROWTH 

HIGH STAND 
GROWTH 

LOW-MODERATE  
MORTALITY  

HIGH 
MORTALITY  

 0-25% OF MAX SDI 25-35% OF MAX SDI 35-60% OF MAX SDI 60-80% OF MAX SDI 80-100% OF MAX SDI 

 TPA BAA TPA BAA TPA BAA TPA BAA TPA BAA 

Ponderosa pine1  0-76 0-41  76  41  76-114  41-62 114-241  62-131 241-301 131-164 

Douglas-fir  0-84 0-46  84-135  46-74  135-202  74-110 202-270  110-147 270-337 147-184 

Western larch  0-80 0-44  80-128  44-70  128-192  70-105 192-256  105-140 256-320 140-175 

Grand fir  0-142 0-77  142-226  77-123  226-340  123-185 340-453  185-247 453-566 247-309 

Mixed composition1  0-84 0-46  84-103  46-56  103-154  56-84 154-268  84-146 268-335 146-183 

Notes: Stocking levels are means for 24 plant associations assigned to a dry-forest potential vegetation group (PVG). They are expressed as percent-
ages of maximum stand density index (SDI). TPA is trees per acre, and BAA is basal area (square feet) per acre; both metrics pertain to even-aged 
stands. Stocking levels presented in this table should be reduced by 7% for an irregular structure, and by 13% for an uneven-aged structure (and 
note that either of these structures is more common on dry-forest sites than an even-aged structure). TPA and BAA stocking levels pertain to a 10-
inch quadratic mean diameter (QMD) – they will differ for a QMD other than 10 inches. 
1 For ponderosa pine, upper limits of ‘high tree growth’ and ‘high stand growth’ zones are calculated by using a process accounting for mountain 
pine beetle susceptibility (see Cochran et al. 1994), so they are not 35% and 60% of the mean maximum density SDI value for ponderosa pine (301). 
For mixed composition, stocking levels represent weighted averages (70% ponderosa pine, 20% Douglas-fir, and 10% grand fir). 

Stocking-level categories, as depicted by using differing colors for column headings, have the following interpretations. 

• ‘Climate change’ category is equivalent to ‘free growth’ zone in figure 31. Much climate change research suggests the western United States 
could become significantly warmer and dryer as climate changes continue, so climate-change stocking levels are lower than conventional levels 
shown to the right of them. (White paper #45, “Climate change and carbon sequestration,” discusses climate change in more detail.) 

• ‘High tree growth’ zone spans 25 to 35 percent of maximum density. A 25% value corresponds to ‘onset of intertree competition’ stocking 
threshold; a 35% value is ‘lower limit of full site occupancy’ threshold (fig. 31). For the Blue Mountains, ‘lower limit of full site occupancy’ 
threshold is used as a ‘lower limit of a management zone’ (see fig. 30) (Cochran et al. 1994, Powell 1999b). 

• ‘High stand growth’ zone spans 35 to 60 percent of maximum density. A 60% value corresponds to ‘lower limit of self-thinning zone’ stocking 
threshold shown in figure 31. It is used as an ‘upper limit of a management zone’ (see fig. 30) (Cochran et al. 1994, Powell 1999b). 

• ‘Low-moderate mortality’ zone spans 60 to 80 percent of maximum density. An 80% value corresponds to ‘normal density’ stocking threshold 
shown in figure 31. 

• ‘High mortality’ zone spans 80 to 100 percent of maximum density. A 100% value corresponds to maximum density shown in figure 31. 
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Regardless of whether mechanical thinning or prescribed fire is used as a forest restoration 

activity, fuel treatments need to account for wildlife needs. For example, research found that 

treated stands provide better elk forage during spring, whereas untreated stands provide better 

summer forage, suggesting that a mosaic of treated and untreated areas may provide better elk 

foraging habitat than treating a large proportion of a landscape (Long et al. 2008). 

White-headed woodpecker, however, prefers lower- and mid-elevation ponderosa pine for-

ests on flat or gently sloping terrain. Two features of dry forest are important for this species: 

availability of snags or cavity trees for nesting, and abundant ponderosa pine cones to provide 

seeds as a food source during winter (see Box 1) (Buchanan et al. 2003). 

Restoration Considerations  

Although contentious debate about salvage tree harvest following stand-replacing fire on 

dry-forest sites (Beschta et al. 2004, McIver and Starr 2000) continues to distract decision mak-

ers from pressing issues of forest health and ecosystem restoration, there is some agreement 

among foresters, fire ecologists, and conservationists about eight cost-effective ways to expe-

dite dry-forest restoration actions (Phillips 1995): 

1. Rethink local air-quality regulations, including ‘nuisance smoke’ ordinances. This would al-

low more use of prescribed fire and reduce pressure to extinguish natural fire ignitions that 

could be allowed to burn under prescribed conditions. 

2. Resolve liability issues – fear of lawsuits over property damage from escaped prescribed 

fires prevents many forest managers from using this tool. 

3. Increase funding for hazardous fuels reduction. National Fire Plan has an objective of re-

ducing hazardous fuels but funding for this type of work has not increased to the same ex-

tent as it has for fire suppression activities. 

4. Determine extent to which environmental regulations are inhibiting forest restoration. 

Legislation such as Endangered Species Act and National Environmental Policy Act have 

broad public support, but their implementing regulations could be modified to expedite fuel 

management treatments. 

5. Plan better for residential development in wildland-urban interface (WUI). This is more a 

political issue than a forest health issue, but presence of WUI (and other values at risk) in-

creasingly affects how surrounding forests are managed (or not managed). 

6. Restrict herbivory in forestlands. Domestic livestock grazing has been reduced from its 

early-1900s levels, but combined effect of domestic and wild ungulates contributed to re-

placement of some meadows and grasslands with woody, flammable vegetation. 

7. Create new markets for wood chips from mechanical thinning of small-diameter trees. 

One option would be to use federal revenues from tree harvest to help local communities 

develop technology for producing veneers, fiberboard, or biomass material to generate eth-

anol, electricity, and thermal energy (LeVan-Green and Livingston 2001). 

8. Plan for landscape restoration. Computer models, decision support systems, and visualiza-

tion systems can be used to help balance public expectations for forest uses with a need to 

reestablish landscapes having characteristic levels of fire, insect, or disease hazard. We must 

identify landscapes with highest priority for restoration treatments, and then seek to create 

a vegetation mosaic that functions within its range of variation. 
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Box 1: Stand Density and White-Headed Woodpecker 

This white paper describes how fire exclusion, ungulate herbivory, 

and selective timber harvest contributed to significant changes in dry-

forest ecosystems. These changes resulted in a current emphasis on 

restoration of dry forests, not just for the Blue Mountains but through-

out western North America. One restoration strategy involves reducing 

tree density to levels approximating a presettlement stand-density situ-

ation. Density reductions contribute to lower fire and insect susceptibil-

ity, rejuvenation of undergrowth plant abundance and species diversity, 

and improved wildlife habitat for species dependent on presettlement 

ponderosa pine forest conditions. One species of interest is the cur-

rently uncommon white-headed woodpecker (Picoides albolarvatus). In Oregon’s portion of this 

woodpecker’s west-wide range, ponderosa pine cones are believed to provide a primary food source 

during winter, non-breeding periods (Buchanan et al. 2003, Garrett et al. 1996). 

Dry-forest restoration activities in Washington focusing on reintroduction of fire were apparently 

successful at increasing woodpecker abundance (Krannitz and Duralia 2004). Another restoration op-

tion is thinning, an active management practice believed to be especially applicable to white-headed 

woodpecker because it addresses the bird’s winter food base by increasing cone and seed production 

(see chart below, showing cone yield by stocking level). Ponderosa pine cone production was ob-

served to vary consistently with stand density in southwestern United States (Pearson 1912). “Since 

trees of larger diameter produce the majority of cones, increased cone production may be a longer-

term benefit of thinning” (Krannitz and Duralia 2004).  

It is also believed that an interaction between thinning and fire can increase cone production 

benefits of active management on dry sites: when wildfire occurred in a thinned stand in Arizona, and 

woody debris had been removed before it occurred, the fire improved resin production as compared 

with an unthinned control (Feeney et al. 1998). Similar results were reported in other studies (Kolb et 

al. 1998). Large-diameter ponderosa pine trees with increased capacity for producing resin and other 

defensive chemicals (Christiansen et al. 1987, Franklin et al. 1987, Kelsey 2001, Kolb et al. 1998, 

Langenheim 1990, McDowell et al. 2007, Nebeker et al. 1995, Peet and Christensen 1987, Waring 

1987) are more likely to resist attack by western pine beetle, a primary bark beetle species known to 

prey on low-vigor, old-growth ponderosa pines. 

Trees respond to thinning by producing more foliage and developing a higher level of photosyn-

thate reserves, both of which improve their capability to resist and recover from insect or disease at-

tack (Franceschi et al. 2005). A tree allocates 

photosynthate to its growth processes in an or-

der of precedence: (1) maintenance respira-

tion; (2) fine root and foliage production; (3) 

flower and seed production; (4) height, branch, 

and large-root growth; (5) diameter growth; 

and (6) insect and disease resistance. Since 

seed production and insect resistance rank 

fairly low in the hierarchy (#3 and #6, respec-

tively), management practices can be used to 

sustain tree vigor at levels high enough to en-

sure that sufficient photosynthate is available 

to satisfy these physiological needs. 
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7.7 Restoring Old Forest On Dry Sites  
In the interior Pacific Northwest, old forest structure occurs predominantly on two site 

types: dry sites and moist sites. Old forests were developed and maintained by differing disturb-

ance regimes on these biophysical environments (Camp et al. 1997, Everett et al. 1994, Habeck 

1990, O’Hara et al. 1996, Oliver and Larson 1996). 

Old growth. Forest stands distinguished by old trees and related structural attributes such as tree size, 

accumulations of large dead woody material, number of canopy layers, species composition, and ecosys-

tem function (Newton 2007). 

Old forest. A structural stage characterized by a predominance of large trees (> 21" dbh) in a forest hav-

ing either one or multiple canopy layers. On warm dry sites historically influenced by frequent surface fire, 

a single tree stratum may be present. On cool moist sites without frequent surface fire, multi-layer stands 

with large trees in an uppermost stratum are typically found. 

Restoration. Holistic action taken to modify an ecosystem to achieve desired, healthy, and functioning 

conditions and processes. Generally refers to a process of enabling a system to resume acting, or continue 

to act, following disturbance as if disturbance had not occurred (Powell et al. 2001). 

On dry mixed-conifer sites, frequent surface fires historically interrupted plant succession 

toward a climatic climax, thereby preventing eventual domination by Douglas-fir or grand fir. 

This short-interval fire regime maintained an early-seral species composition consisting of pon-

derosa pine (fig. 33); these stands were stable and resilient because ecosystems shaped by fre-

quent disturbance exhibit a relatively narrow range of plant communities (Steele and Geier-

Hayes 1995). An old forest structure produced by frequent fire is termed old forest single stra-

tum (table 8). 

Because cyclic fire remained relatively constant on dry mixed-conifer sites, ponderosa pine 

forests came to depend on a particular fire frequency and intensity (Sloan 1998b). Fire fre-

quency must be maintained at an appropriate periodicity if ponderosa pine is to persist, and this 

is a reason why fire frequency, and not occurrence, has so much ecological influence. Species 

composition remembers fire, but abundance (tree density) forgets (Allen and Wyleto 1983). 

A historic condition on dry sites was old ponderosa pine trees occurring in a park-like, sa-

vanna setting (fig. 34). This park-like structure did not occupy an entire landscape; dry mixed-

conifer forest communities also supported snags, fallen logs, mid-size blackjack pines, and small 

seedlings and saplings. All of these stand attributes were influenced and sculpted by fire (Agee 

2002a; Cooper 1960, 1961; Harrod et al. 1999; Munger 1917; Woolsey 1911; White 1985). 

Thinning to develop an old-forest structure on dry sites differs from thinning to maximize 

tree growth and timber production. The complex structure of old forests is a product of their 

variability. Variable-density thinning promotes complexity by (1) thinning to different densities 

across a range of patch sizes; (2) leaving some patches, or portions of patches, unthinned 

(skips); and (3) creating small gaps (up to ½ acre in size) in some areas (Armleder 1999). “Studies 

show that when variable-density thinning is used, thinned stands usually have better developed 

understories, higher shrub densities, a greater richness of understory plant species, and more 

plant cover than unthinned stands” (McDowell et al. 2003, Rapp 2002). 
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Figure 33 – Low severity surface fire in ponderosa pine forest (from Powell et al. 2001). 
In eastern Oregon, a presettlement fire regime created stable old forest referred to as 
‘park-like pine forest.’ These ecosystems featured big, widely spaced ponderosa pines 
above a dense herb layer (also see fig. 5). This condition owed its stability to recurring 
visits by relatively benign wildfire every 5-20 years (Cooper 1960; Hall 1976, 1980; Mun-
ger 1917; Parfit 1996) (illustration by John D. Dawson, National Geographic Society). 

 
Figure 34 – An open ponderosa pine stand with a grassy undergrowth (from Powell 
1994). By suppressing low-severity, high-frequency surface fire, land managers were in-
advertently swapping ponderosa pines for grand firs and Douglas-firs. This successional 
progression has important implications on susceptibility to defoliating insects such as 
Douglas-fir tussock moth and western spruce budworm because replacement tree spe-
cies provide habitat for these insects (Mason and Wickman 1994, Wickman 1992). 
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Table 8: Description of forest structural stages. 

 

Stand Initiation. Following stand-replacing disturb-
ance, growing space is occupied rapidly by vegeta-
tion that either survives a disturbance or colonizes 
an area. Survivors survive a disturbance above 
ground, or initiate new growth from underground 
organs or seeds present onsite. Colonizers disperse 
seed into disturbed areas, it germinates, and new 
seedlings establish. One stratum of tree seedlings 
and saplings is present in this stage. 

 

Stem Exclusion. Trees initially grow fast and oc-
cupy their growing space, competing strongly for 
sunlight and moisture. Because trees are tall and 
reduce light, understory plants are shaded and 
grow slowly. Species needing sunlight usually die; 
shrubs and herbs may go dormant. In this stage, 
establishment of new trees is precluded by a lack 
of sunlight (stem exclusion closed canopy) or by a 
lack of moisture (stem exclusion open canopy). 

 

Understory Reinitiation. A new tree cohort even-
tually gets established after overstory trees begin 
to die or because they no longer fully occupy their 
growing space. This period of overstory crown shy-
ness occurs when tall trees abrade each other in 
the wind (Putz et al. 1984). Regrowth of under-
story vegetation occurs, trees begin stratifying into 
vertical layers, and a moderately dense overstory 
with small trees beneath is eventually produced. 

 

Old Forest. Many age classes and tree layers mark 
this stage featuring large, old trees. Snags and fall-
en trees may also be present, creating a discontin-
uous overstory canopy. The drawing shows single-
layer ponderosa pine created by frequent surface 
fire on dry sites (old forest single stratum). Cold or 
moist sites, however, generally have multi-layer 
stands with large trees in an uppermost stratum 
(old forest multi strata). 

Sources: Based on O’Hara et al. (1996), Oliver and Larson (1996), and Spies (1997). 

Many land managers agree that fire exclusion was a policy with good intentions, but it failed 

to consider ecological implications of a major shift in species composition. Grand firs and 

Douglas-firs can get established under ponderosa pines when fire is absent, but they may not 

have enough resilience to make it over the long run, let alone survive the next drought. This 

means that many mixed-conifer stands that replaced ponderosa pine are destined to become 

weak, and weak forests are susceptible to insect outbreaks and disease epidemics. 

Effects of the 1980s western spruce budworm outbreak (Powell 1994) 
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Principles Of Old Forest Restoration  

I believe an old-forest restoration program for dry upland forests of the Blue Mountains 

should incorporate these concepts relating to landscape ecology of eastern Oregon (Camp et al. 

1997, Everett et al. 1994): 

• Current anomalous landscapes and disturbance regimes need to be restored to a more sus-

tainable state if old-forest remnants are to be conserved, and old-forest networks created 

and maintained (Hessburg et al. 2005). 

• Today, a mosaic of young forest types with heightened fire and insect hazard surrounds 

many old-forest remnants. 

• An individual old-forest patch has limited landscape contribution, so additional old-forest 

stands must be continually created to maintain a dynamic old-forest equilibrium with time. 

• Efforts to conserve old forest should not sacrifice contributions from other limited struc-

tures or components in a landscape. 

• Conserving disturbance processes influencing ecosystems is every bit as important as con-

serving individual plant and animal species or old forest structure – a lack of disturbance can 

be as threatening to biological diversity as excessive disturbance (Noss 1983). 

• Management regimes for old-forest patches should be congruent with disturbance regimes 

characteristic of their associated landscape. 

• Any plan to sustain old forests must also sustain the landscape of which they are a part 

(Hessburg et al. 2005). 

• When managing old forests, a landscape perspective is needed that coordinates wildlife spe-

cies requirements with ecological processes and other functional ecosystem attributes (see 

Box 1) (Hessburg et al. 2005). 

• Forest ecosystems of interior Pacific Northwest exist in a constant cycle of change; it should 

be acknowledged that successional pathways for a certain proportion of forest stands will 

be interrupted by fire, windthrow, insect attack, or disease before they reach an old-forest 

condition. 

Strategies And Tactics For Restoring Old Forest  

An effective restoration strategy for old forests in dynamic landscapes of interior Pacific 

Northwest should incorporate these considerations (Camp et al. 1997, Everett et al. 1994): 

• Conservation of remaining old-forest patches is a cornerstone of any management scheme, 

if for no other reason than it best maintains future options. 

• Sites that do not have a full complement of old forest attributes, such as tree ‘defect’ as 

shown in figure 35, can partially function as old forest for any attributes that are present. 

• Dry old-forest differs dramatically from west-side Douglas-fir/hemlock old-growth (see 

Franklin et al. 1981), and it should not be evaluated by using west-side criteria. Managers 

should not use moist or cold wildlife species (such as marten) as dry, old-forest indicators.  

• In some parts of a landscape it may be necessary to designate areas of younger forest as 

old-forest management areas (stands having priority for old-forest development) in order to 

meet desired future objectives with respect to a structural-stage distribution. 

• Silvicultural practices can be used to accelerate development of old-forest characteristics in 
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young stands, particularly regarding practices influencing regeneration density, stocking lev-

els, or competing vegetation (Gottfried 1992, Spies et al. 1991). 

• Research showed that tree growth increases rapidly after stand density levels are reduced 

(Barrett 1979; Seidel and Cochran 1981), suggesting that thinning will accelerate production 

of a large-tree component of old forest (Sullivan et al. 2001, Tappeiner et al. 1997). 

• When identifying candidates for future ‘old forest multi strata’ stands (tables 8, 10) in land-

scapes containing dry forests, stands should be selected with the highest survival potential 

to an old forest condition – specifically areas on north-facing aspects and at high elevations, 

particularly if they also occur within valley bottoms and drainage headwalls because these 

physiographic positions function as semi-stable environmental settings (Camp et al. 1997). 

• Although mid- to late-seral stands are ‘in a pipeline’ to replace old forests lost to disturb-

ance, we still do not know an appropriate ratio of late-seral to old forest patches to ensure 

that desired levels of old forest are maintained in perpetuity (but see section 7.9, RV). 

• Evaluating historical amounts of old forest (as is done when analyzing a range of variation 

for forest structural stages: table 10) provides a first approximation for how much old forest 

was sustainable and in which old-forest-dependent plant and animal species evolved. 

• Ideally, historical evaluations should incorporate several reference points in time, and at suf-

ficient spatial scales, to ensure that spatial and temporal disturbance regime characteristics 

have been accounted for. 

• A successful strategy would allow flexibility in specific on-the-ground locations over time. A 

‘shifting mosaic’ landscape concept (Clark 1991) suggests a dynamic framework in which old 

forest patches are lost and created at appropriate spatial and temporal scales. 

• Restoration of old forests carries long-term management costs with little expectation of 

substantial commodity production. Creation of an old-forest network explicitly assumes that 

biological diversity and other old-forest objectives are supported socially and economically. 

• A dynamic ecosystems philosophy should be a foundation of an old-forest strategy – an eco-

logically sustainable representation of old forest structure in a landscape is more important 

than perpetuation of old forest patches in a specific location. Old-growth should be per-

ceived as a dynamic entity influenced primarily by fine-scale mortality and recruitment. 

• Research suggests that light fuel treatment across a portion of a landscape provides consid-

erable reduction in overall landscape fire risk, although it may not lower risk for individual 

reserves containing large trees and multi-layered canopies (Wilson and Baker 1998). 

• Efforts to protect individual old-forest stands through moderate or intense management of 

adjoining stands apparently provides minimal reductions in fire risk, although reducing sur-

face fuels by using a combination of thinning and prescribed fire might provide at least a 

modicum of fire protection (Wilson and Baker 1998). 

• Low thinning and prescribed fire in an old-forest stand will lower its fire risk substantially 

(Johnson et al. 2011, McIver et al. 2013); however, some of a stand’s old-forest characteris-

tics (such as multi-layered canopies) are altered by such practices (Wilson and Baker 1998). 

• Thinning and prescribed fire can be especially valuable for sustaining high vigor levels for old 

ponderosa pines, and high vigor translates into increased resin production and chemical de-

fenses against western pine beetles (fig. 36) and other bark beetles (Perrakis et al. 2011). 



 

 

81 

 
Figure 35 – Ponderosa pine ‘character’ tree on Pomeroy Ranger District of Umatilla Na-
tional Forest. One focus of dry-forest restoration is to retain these character trees in 
recognition of their value to wildlife. Old character trees have distinctive ecological char-
acteristics, including unusual shapes formed in response to both physical and biotic 
damage (wind, mechanical abrasion, disease, parasites, and insects). Note how an old 
fire scar at this tree’s base is now decayed, providing habitat for cavity-dependent wild-
life species. Contorted, upper-crown branches, horizontal crown branching, and multi-
ple (‘bayonet’) tops are indicative of this tree’s wildlife value (Van Pelt 2008). 
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Figure 36 – Old ponderosa pine killed by western pine beetle. Journal articles emphasize 
the importance of restoring historically appropriate intrastand structure (Larson and 
Churchill 2012, Larson et al. 2012). A feature of historical, dry-forest structure is clumps 
of mature trees. Large trees in closely-spaced clumps are under enough stress to func-
tion as focus trees (Eckberg et al. 1994) for western pine beetle. Historically, large-tree 
clumps occurred in a vegetation mosaic where openings were common; a clump embed-
ded in an herbaceous opening (savanna condition, as described in Munger 1917) experi-
enced a much different competitive environment than a clump surrounded by trees. 
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Scale Considerations For Dry Forest  

Scale is fundamentally important, and scale considerations permeate all aspects of active 

management (Cumming et al. 2013). For example, many recent journal papers from landscape 

ecology and forest management literature emphasize the importance of spatial heterogeneity 

(Franklin et al. 2008, 2013; Hessburg et al. 1999b, 1999c, 2000, 2004, 2007; Turner et al. 1989, 

1994, 2001; and others in References section). 

When evaluating spatial heterogeneity for dry forests, it is important to consider a sub-

stand level because scale is fine-grained and intricate for dry forests – ponderosa pine stands 

historically featured a groupy or clumpy structure at a sub-stand scale (Harrod et al. 1999; also 

see Powell 2019b). A stand functions as an ‘aggregating’ level because a consistent but repeat-

ing pattern of groups or clumps could be collected (aggregated) within a common stand bound-

ary. In this context, sub-stand clumps function as a fine-scale, base-level unit, reflecting ecosys-

tem pattern and process, but a stand functions as an aggregating unit (e.g., stands are a mid-

scale unit representing aggregations of sub-stand clumps). [I define ‘base-level’ as a scale at 

which ecosystem processes result in tree regeneration sufficient to perpetuate a forest type.] 

Note about clumps: Tree clusters are a feature of many forest ecosystem types. For dry for-

ests, tree clusters can be created by a disturbance regime – variable thinning provided by sur-

face fire, or pockets of tree regeneration after western pine beetle attack (see figures 44-46 

later in this paper), in which case clusters function well as an indicator of ecosystem function 

and process. But we need to remember that dry-forest clusters can also be caused by seed cach-

ing activity of deer mice, chipmunks, and other small mammals (Keyes et al. 2007). 

Practitioners should be able to interpret spatial pattern in order to understand if it should 

be emulated by proposed treatments. Does pattern reflect inherent ecosystem process, in 

which case it would be repeatable across a landscape? Or, is it simply a product of random his-

torical circumstances that may not be repeated again? Answers to these questions are im-

portant because contemporary science emphasizes provision of spatial heterogeneity, but:  

It is most important to provide heterogeneity for biophysical environments where heterogene-

ity was a normal ‘byproduct’ of a properly functioning disturbance regime. 

Scale’s fundamental importance also provides a useful context for evaluating existing condi-

tions of species composition, forest structure, and stand density. Compositional or structural 

changes need to be evaluated at a sub-stand scale for dry forest (e.g., at the scale of a tree 

clump or cluster) – Is a characteristic clumpy structure still evident for a dry forest stand? If so, 

does composition of any particular dry-forest stand feature a majority of ponderosa pine rather 

than fire-sensitive (late-seral) species such as grand fir? 

Dry-forest composition could be evaluated this way: up to 70% of tree clumps in a dry-forest 

stand should have a predominance of ponderosa pines, rather than a majority of Douglas-fir or 

grand fir (because properly functioning surface fire produced high percentages of ponderosa). 

Dry-forest conditions have changed dramatically as a result of fire exclusion, livestock graz-

ing, and selective timber harvest – and these changes are overtly expressed in existing condi-

tions, including at a clump scale, so when entering most dry-forest stands, it quickly becomes 
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apparent when they are substantially departed from reference conditions (see page 44). Unfor-

tunately, we’ve taken an ecosystem sustained by fire, and converted it to one destroyed by fire. 

7.8 Active Restoration Of Dry Forests: Wildlife Considerations  
A primary purpose of this white paper is to examine silvicultural considerations related to 

active management of dry-forest ecosystems. Dry-forest management is also influenced by wild-

life concerns, and some of them are discussed in this section (Box 1 in section 7.6 also provides a 

wildlife discussion). An informative synthesis of fuel-reduction and fire-surrogate treatments 

was recently published, and because it provides an excellent summary of wildlife-silviculture in-

teractions, I decided to include it here (Stephens et al. 2012b, p. 553-557). Note that any litera-

ture citations in quoted material below are included in this white paper’s References section. [A 

recent wildlife synthesis journal paper was published for moist, mixed-conifer forests (Irwin et 

al. 2018), and it also includes useful insights.] 

“In addition to its use in managing wildfire hazards, the application of prescribed-fire and 

fire-surrogate treatments is frequently motivated by wildlife-habitat objectives (Yager et al. 

2007, Kennedy and Fontaine 2009, Roberts et al. 2010). Research on fire and its effects on ter-

restrial vertebrates (wildlife) has been conducted since the early 1900s, beginning with research 

showing the negative effects of fire exclusion in longleaf pine (Pinus palustris) forests on north-

ern bobwhite (Colinus virginianus; Stoddard 1931). Since then, a large body of work has been 

developed, particularly in the last 10-15 years (Kennedy and Fontaine 2009), which has shown 

that many wildlife species depend on fire-maintained habitats or pyrogenic structures, such as 

the snags, shrubs, and bare ground created by fires of varying severity (Hutto 2008). 

Increased applications of fuel-reduction treatments, public scrutiny of land management 

agencies, and a growing scientific literature on the topic motivated a recent comprehensive re-

view and meta-analysis of the fire-wildlife literature from forests dominated by low- to moder-

ate-intensity fire regimes (Kennedy and Fontaine 2009, Fontaine and Kennedy 2012). On the ba-

sis of the characteristics of the available literature, fuel-reduction treatments and high-severity 

fire were considered at 0-4 years post-treatment. A lack of published longer-term (more than 5 

years) studies precluded any analyses of longer-term effects. Importantly, the only thinning 

treatments included in this analysis were those conducted for fuel reduction, which is generally 

a lower-intensity treatment (e.g., the median reduction in basal area for the FFS Study was 30%; 

Schwilk et al. 2009) than those implemented for other silvicultural objectives (see Vanderwel et 

al. 2007 for a detailed meta-analysis of avian responses to a broad range of thinning intensities). 

Data from low- and moderate-severity fires were pooled, because neither of these treat-

ments resulted in a large canopy loss (less than 50% canopy mortality, less than 25% in almost 

all cases), and there are insufficient studies of mixed-severity fire to warrant separation. These 

categories allowed for a comparison of vertebrate responses (mean abundance, density, and vi-

tal rate in treated and reference conditions) to fire surrogates combined with fire, as well as dif-

fering levels of fire severity (measured by overstory tree mortality). Data were more abundant 

for birds than for any other taxon (fig. 37), which underscores a need for further work on other 

wildlife taxa – particularly herpetofauna, which reside primarily on the forest floor. 
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Figure 37 – The responses (positive, neutral, and negative; number of species with suffi-
cient data) of birds, small mammals, and herpetofauna to fire and fire-surrogate treat-
ments 0-4 years after fire treatment in seasonally dry forests of the United States (this is 
fig. 3 from Stephens et al. 2012b). The response classification was based on a meta-anal-
ysis of existing literature and generation of cumulative effect-size estimates and their 
95% confidence intervals with overlap (neutral) or not (positive, negative) with zero. 

This similarity in the responses of birds and small mammals to thinning and low-severity pre-

scribed fire suggests that, at the stand scale and in the short term (0-4 years), thinning may ade-

quately mimic low-severity fire in terms of its effects on these taxa. The levels of regeneration of 

vegetation, fuel dynamics, and nutrient cycling following prescribed fire and following thinning 

differed substantially (Boerner et al. 2009, Schwilk et al. 2009), but thinning or low-severity pre-

scribed fire have the potential, in the short term, to create forests with similar structure and 

with habitat conditions favored by many wildlife species. Therefore, the results suggest that the 

use of thinning in lieu of prescribed fire may be warranted for birds and small mammals, particu-

larly in areas in which the implementation of prescribed fire is problematic. However, the long-

term effects of these two treatments on wildlife require further investigation before these re-

sults can be fully integrated into management. 

Research illustrates that these fuel treatments do not create conditions suitable for all spe-

cies (see negative responses in fig. 37). Additional analyses demonstrate that low- to moderate-

severity surface fire (and presumably its thinning surrogate) does not mimic the early succes-

sional habitat conditions created by high-intensity, patchy, stand-replacing fires. When it is fea-

sible, managers may aim for patchy high-intensity prescribed fire to mimic the effects of wildfire 
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(Fulé et al. 2004a). In short, there is no one-size-fits-all prescription when it comes to incorpor-

ating disturbances into land management (i.e., there is a need for the presence of all succession-

al stages within a forested landscape to maximize wildlife diversity; Fontaine et al. 2009). 

The wildlife literature, which is dominated by studies on birds and small mammals, demon-

strates that in the short term and at the stand scale, fire-surrogate forest-thinning treatments 

effectively mimic low-severity fire, whereas low-severity fire is not a substitute for high-severity 

fire (Kennedy and Fontaine 2009).” 

7.9 Range Of Variation As A Restoration Framework  

Range of variation. A characterization of fluctuations in ecosystem conditions or processes over time; 

an analytical technique used to define bounds of ecosystem behavior that remain relatively consistent 

through time (Morgan et al. 1994). Values of an attribute, such as composition or structure, that occur 

within upper and lower bounds determined for an attribute (Jennings et al. 2003). 

Range of variation (RV) is an analytical technique to characterize inherent variation in eco-

system composition, structure, and function, reflecting recent evolutionary history and dynamic 

interplay of biotic and abiotic factors (fig. 38). “Study of past ecosystem behavior can provide 

the framework for understanding the structure and behavior of contemporary ecosystems, and 

is the basis for predicting future conditions” (Morgan et al. 1994). 

RV is meant to reflect ecosystem properties free from major influence by Euro-American hu-

mans, thereby providing an insight into ecosystem resilience (Kaufmann et al. 1994). It helps us 

understand what an ecosystem is capable of, how historical disturbance regimes functioned, 

and underlying variation in ecosystem processes and functions – patterns, connectivity, seral 

stages, and cover types produced by ecological processes operating at a landscape scale (USDA 

Forest Service 1997). 

Perhaps an effective yardstick for evaluating health of dry forests is historical variation – are 

changes caused by insects, diseases, and wildfire consistent with what would be expected (the 

RV) for similar ecosystems and vegetative conditions? Since ecosystems are constantly changing, 

we need to assess their health by using a metric, like RV, that explicitly accounts for change. Re-

silient forests not only tolerate periodic disturbance, they depend on it for rejuvenation and re-

newal (Johnson et al. 1994). Significant changes in magnitude (extent), intensity, or pattern of 

disturbance, however, may be warning signals of impaired ecosystem integrity (Sampson and 

Adams 1994). 

Range of variation concept has been proposed as a way to identify restoration needs and 

opportunities. Using reference conditions to guide restoration programs will continue into the 

future because this approach is explicitly required by certain laws governing dry-forest manage-

ment, such as Healthy Forests Restoration Act: “In carrying out a covered project, the Secretary 

shall fully maintain, or contribute toward the restoration of the structure and composition of old 

growth stands according to the pre-fire suppression old growth conditions” 

(http://www.gpo.gov/fdsys/pkg/PLAW-108publ148/pdf/PLAW-108publ148.pdf). 

http://www.gpo.gov/fdsys/pkg/PLAW-108publ148/pdf/PLAW-108publ148.pdf
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Figure 38 – A range of variation (RV) helps us decide whether existing amounts of vege-
tation composition, structure, and density, when summarized for a landscape-scale 
analysis area, are occurring within a characteristic range (Aplet and Keeton 1999, Mor-
gan et al. 1994, Swanson et al. 1994). This diagram shows an ecological trajectory for an 
ecosystem component (the solid line); it varies through time because the phrase ‘range 
of variation’ is meant to encompass more than just extreme values (e.g., upper and 
lower limits, shown as dashed lines) (diagram modified from Morgan et al. 1994). 

RV is a good example of a dynamic equilibrium concept because modal or central-
tendency conditions obviously vary over time (shown by a squiggly solid line in center), 
and yet they vary within an equilibrium zone whose limits (two dashed lines) are defined 
by a range of potential ecological expressions. Note that conditions occurring above an 
upper limit are characterized as over-represented; conditions below a lower limit are 
under-represented (representation zones are depicted with gray shading). 

Both now and in the future, a desirable landscape condition for Blue Mountains province is 

a diverse, heterogeneous vegetation mosaic more consistent with a range of variation, less sus-

ceptible to uncharacteristic disturbance events, and thus more sustainable (Mutch et al. 1993, 

Sampson et al. 1994). Using an RV approach to help restore vegetation diversity means provid-

ing a full spectrum of structural elements, in variable configurations and quantities, with an ulti-

mate objective being maintenance of dynamic patterns and processes integral to resilient eco-

systems (Aplet and Keeton 1999). 

Dry-forest RV information for species composition, structural stage, tree density, and insect 

and disease susceptibility is provided in tables 9-12. Information in table 9 expresses percent-

ages of a dry-forest landscape (preferably at least 15,000-35,000 acres in size) occupied by vari-

ous vegetation cover types (ponderosa pine, grand fir, etc.). A cover-type patch (stand) may 

have a majority of one species – if grand fir comprises more than 50% of stocking, then cover 

type is coded as ABGR. If less than 50% of a species is predominant, however, then a cover type 

is named for a species comprising a plurality of stocking – if grand fir is less than 50% of stocking 

but it is predominant, then cover type is coded as mix-ABGR. 

I must emphasize that cover type information in table 9 does NOT reflect species composi-

tion of an individual stand or polygon. In other words, species composition of a typical dry-forest 

stand would not be expected to consist of 50-80% ponderosa pine, 5-20% Douglas-fir, 1-10% 

grand fir, and so forth – these ranges, taken from table 9, refer to percentages of a dry-forest 

landscape supporting ponderosa pine stands, Douglas-fir stands, grand fir stands, etc. 
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Table 9: RV information for species composition (vege-
tation cover type) for dry upland forest PVG. 

Vegetat ion Cover  Type  
Range of  Var iat ion 

(Percent)  

Grass-forb  0-5 

Shrub  0-5 

Western juniper  0-5 

Ponderosa pine  50-80 

Douglas-fir  5-20 

Western larch  1-10 

Broadleaved trees  0-5 

Lodgepole pine  NA 

Western white pine  0-5 

Grand fir  1-10 

Whitebark pine  NA 

Subalpine fir and spruce  NA 

Sources/Notes: Derived from disturbance process model-
ing based on Vegetation Dynamics Development Tool 
(VDDT) (Powell 2019c). NA is Not Applicable. 

Cover types reflect vegetation composition of a polygon 
(Eyre 1980, Shiflet 1994); they are described in Powell 
(2013a). Cover types consist of these coding combinations: 

Grass-forb: all grass and forb codes; 
Shrub: all shrub codes; 
Western juniper: JUOC and mix-JUOC; 
Ponderosa pine: PIPO and mix-PIPO; 
Douglas-fir: PSME and mix-PSME; 

Western larch: LAOC and mix-LAOC; 
Broadleaved trees: POTR, POTR2, mix-POTR, and mix-POTR2; 

Lodgepole pine: PICO and mix-PICO; 

Western white pine: PIMO and mix-PIMO; 

Grand fir: ABGR and mix-ABGR; 

Whitebark pine: PIAL and mix-PIAL; 

Subalpine fir and spruce: ABLA, PIEN, mix- ABLA, and mix-PIEN. 
 

Table 10: RV information for forest structural stage 
for dry upland forest PVG. 

Forest  Structur a l  Stage  
Range of  Var iat ion 

(Percent)  

Stand initiation  15-30 

Stem exclusion  10-20 

Understory reinitiation  0-5 

Old forest single stratum  40-65 

Old forest multi strata  1-15 

Sources/Notes: Derived from disturbance process model-
ing based on Vegetation Dynamics Development Tool 
(VDDT) (Powell 2019c). Forest structural stages are illus-
trated and described in table 8. 
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Table 11: RV information for tree density for dry upland forest PVG. 

Tree Density Class 
(mixed species composition at a quadratic mean diameter of 10") 

Range of Variation 
(Percent) 

Low (<47% canopy cover; <55 ft2/ac basal area; <103 tpa or sdi)  40-85 

Moderate (47-55% canopy cover; 55-85 ft2/ac basal area; 103-154 tpa or sdi)  15-30 

High (>55% canopy cover; >85 ft2/ac basal area; >154 tpa or sdi)  5-15 

Sources/Notes: Tree density class values derived from table 7 and Powell (2013b); range of variation 
values derived from Schmitt and Powell (2012). Note that tpa refers to trees per acre; sdi refers to 
stand density index. All ‘tree density class’ values pertain to mixed-species, even-aged stands (a spe-
cies mix of 70% ponderosa pine, 20% Douglas-fir, and 10% grand fir). Tpa and sdi values are the same 
because sdi uses a 10" quadratic mean diameter (QMD) as a reference tree size; if QMD had been any 
value other than 10", tpa and sdi values would not have been identical. 

Table 12: RV information for insect and disease susceptibility 
for dry upland forest PVG. 

Insect  and Disease Agents 1  
Range of  Var iat ion 

(Percent)  

Defoliating insects  

 Low susceptibility  40-85 

 Moderate susceptibility  15-30 

 High susceptibility  5-15 

Douglas-fir beetle  

 Low susceptibility  35-75 

 Moderate susceptibility  15-30 

 High susceptibility  10-25 

Fir engraver  

 Low susceptibility  45-95 

 Moderate susceptibility  10-25 

 High susceptibility  5-10 

Bark beetles in ponderosa pine  

 Low susceptibility  35-75 

 Moderate susceptibility  15-35 

 High susceptibility  10-20 

Mountain pine beetle in lodgepole pine  

 Low susceptibility  55-90 

 Moderate susceptibility  5-35 

 High susceptibility  0-5 

Douglas-fir dwarf mistletoe  

 Low susceptibility  30-60 

 Moderate susceptibility  10-35 

 High susceptibility  20-35 

Western larch dwarf mistletoe  

 Low susceptibility  55-95 

 Moderate susceptibility  5-30 

 High susceptibility  0-5 
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Insect  and Disease Agents 1  
Range of  Var iat ion 

(Percent)  

Root diseases  

 Low susceptibility  35-75 

 Moderate susceptibility  20-35 

 High susceptibility  5-20 

Sources/Notes: Derived from Schmitt and Powell (2012). Queries for 
calculating susceptibility ratings for forest polygons are available 
from Schmitt and Powell (2005). 

1  Defoliating insects includes western spruce budworm and Douglas-
fir tussock moth; bark beetles in ponderosa pine includes western 
and mountain pine beetles; root diseases include laminated root 
rot and Armillaria root disease. 

7.10 Climate Change Considerations 
A pressing environmental matter of critical concern is a long-term and ongoing increase in 

surface temperature of the earth. This threat goes under several names – climate change and 

global warming are probably most common. Global warming exacerbates a natural process 

called the ‘greenhouse effect,’ referring to a principle of a greenhouse in that an enclosing shell 

allows passage of incoming sunlight but traps a portion of reflected infrared radiation, warming 

a greenhouse’s interior above outside temperatures. 

Greenhouse gases in earth’s atmosphere play a similar role to a greenhouse’s shell – they 

function to raise temperature of the earth and make it habitable. Without greenhouse gases, 

surface of the earth would be about 30 °C (54 °F) cooler than it is today, rendering human life 

impossible. 

Since beginning of what is termed an ‘industrial era’ (mid 1700s), combustion of fossil fuels, 

together with permanent deforestation and a few other anthropogenic activities, has led to an 

increase in carbon dioxide content of the atmosphere by about 40 percent. In the last three dec-

ades alone, it has increased by almost 20 percent. An approximate doubling of carbon dioxide 

levels could occur by middle of 21st century, depending on rates of fossil fuel burning over next 

few decades. 

[After excluding water vapor, the most abundant greenhouse gas, carbon dioxide is currently 

about 77% of all remaining greenhouse gases, with others being methane (14%), nitrous oxide 

(8%), and several trace gases (carbon monoxide, ozone-depleting chemicals, halocarbons, etc.).] 

Instrumented temperature records, along with gas composition of ice associated with long-

lived glaciers and ice fields, show that the earth has warmed about 0.7 °C (1.3 °F) over the past 

100 years. Some climate models predict that during this century, temperatures could rise by 1.5 

to 4.5 °C, or about 0.3 °C per decade. This might not sound like particularly rapid change, but 

historical studies have shown that past episodes of warming and cooling occurred at a rate of 

only about 0.05 °C per decade, and this amount of historical change was sufficient to cause ma-

jor dislocations for human agrarian societies (Mann 2006). 

Climate change effects are not uniform – in the northern hemisphere, polar regions are 
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warming faster than equatorial zones, and centers of continental landmasses are becoming drier 

than their peripheries. In ice ages of the past, weather changed gradually enough to allow plants 

and animals to migrate and survive; rapid pace of change occurring now is likely too quick to al-

low many organisms to adjust to modified habitats. For this reason, some of the most concern-

ing human impacts of climate change could involve agriculture and forestry and, of the two, for-

estry has fewer mitigation or adaptation options than agriculture (narrative to this point in sec-

tion 7.10 is based primarily on Karl et al. 2009). 

Much concern about climate change relates to how it will affect baseline climate conditions. 

But will climate change effects be additive, subtractive, or neutral on baseline temperature and 

moisture relationships, and will their magnitude be great enough to exceed environmental tol-

erances of existing plant species (table 13)? If an answer to the second question is yes, then one 

likely effect of climate change will be extirpation of certain plant species, and their related fauna 

and ecosystem services, from portions of the Blue Mountains (Kerns et al. 2017, 2018). 

When considering precipitation patterns, it’s not just potential for more and longer future 

droughts that is problematic (Adams et al. 2009, Hanson and Weltzin 2000, Voelker et al. 2019, 

Vose et al. 2016) – it’s the projected change in precipitation form, with less being received as 

snow and more as rain (fig. 39). This trend might actually improve forest growth by lengthening 

the growing season into early spring, when soil moisture is at a maximum. 

Because the Blue Mountains have a summer-dry, Mediterranean climate where soil-based 

snowmelt storage is crucial for sustaining tree growth across a relatively long growing season, a 

change in precipitation from snow to rain is much more likely to induce earlier summer plant 

dormancy, lengthen the fire season, shorten the wetland saturation period, and affect many 

other ecosystem goods and services (van Mantgem et al. 2009). In addition to lengthening the 

fire season (Hamilton et al. 2016), higher temperatures contribute to extensive fuel drying, mak-

ing dry forests more flammable (Abatzoglou and Williams 2016). 

Certain life history traits in table 13, such as ‘tolerance to frost,’ might seem unrelated to cli-

mate change. But climate change has apparently influenced the cold hardiness of trees, with bo-

real forests experiencing earlier loss of cold hardiness in response to early-spring warming (late 

April to early May), followed by severe frost damage during subsequent cold snaps in mid spring 

(mid to late May) (Man et al. 2009). Before onset of climate change, frost damage in mid-May 

was unusual because boreal trees had not lost cold hardiness at that point in a year. 

Ecological changes described earlier in this white paper, as related to fire exclusion, ungu-

late herbivory, and selective cutting (Harrod et al. 1999, Mast et al. 1999, Sloan 1998b, Turner 

and Krannitz 2001), have put dry-forest ecosystems on precisely a wrong trajectory when con-

sidering the warm, fire-favoring climate expected for the 21st century (fig. 40) (Brown et al. 

2004, Flannigan et al. 2005, Gillett et al. 2004, Macias Fauria and Johnson 2006, Miller et al. 

2009, Running 2006, Spracklen et al. 2007, van Mantgem et al. 2009, Westerling et al. 2006). 

An important bottom-line is: “Designing more fire-resistant stands and landscapes will likely 

create forests that are more resistant and resilient to the changes imposed on them by climate 

change” (Stephens et al. 2012b). 
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Table 13: Selected life history traits for five primary conifers of dry forests. 
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Tolerance to shading L L L M H 

Tolerance to full sunlight H H H M L 

Seral status Early Early Early Mid Late 

Tolerance to frost L L L L M 

Tolerance to drought H H M M M 

Rooting habit (depth) S/M D D D S 

Fire resistance L/M H H M/H L/M 

Evolutionary mode NR Inter Inter Spec NR 

Seed germination on charred or ashy soil NR IN NE IN IN 

Maximum seed dispersal distance (feet) NR 120 150 330 200 

Potential for regeneration in the open H H H H L 

Overall reproductive capacity M H H H M 

Potential initial growth rate (first 5 years) L H H M M 

Sources/Notes: Ratings derived from a variety of literature sources. Rating codes are: L, 
low; M, moderate; H, High; D, deep; S, shallow; IN, increased; and NE, no effect. Overall 
reproductive capacity considers minimum cone-bearing age, seed crop frequency and 
size, seed soundness, and related factors. Evolutionary mode refers to an amount of ge-
netic differentiation; it indicates how well a species could adapt to future climates (Inter 
is intermediate; Spec is specialist; NR is not rated; source = Rehfeldt 1994). 

“A century of fire suppression and timber extraction has led to denser forests, with higher 

numbers of smaller diameter trees and larger fuel loads supporting larger, more intense fires 

(Hurteau and North 2010). However there is disagreement about whether these forests store 

more carbon now in comparison to the past – some researchers argue that because these for-

ests have fewer mature, large trees they have lower carbon storage compared with historical 

levels (North and others 2009). Others suggest that current levels of carbon storage are higher 

than historical levels because of fire suppression (Harmon and Marks 2002; Reinhardt and 

Holsinger 2010)” (Ellenwood et al. 2012, p. 962). 

These carbon accounting concerns are important because Collins and others (2011) found 

that a better approximation of historical structure and composition was produced when old for-

ests were burned, as a restoration treatment, at moderate rather than low severity (with mod-

erate severity ostensibly reducing carbon storage to a greater extent than low severity). This re-

sult occurred because higher fire intensity was needed to kill a sufficient number of intermedi-

ate-sized trees resulting from decades of fire exclusion. [“we now have millions of acres where 

fire-resistant ponderosa pines are surrounded by shorter trees that grew to 40, 50, or even 75 

feet tall, but only because they escaped fire when just three or four feet high” (page 45).] 
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Figure 39 – Recent changes in spring snowmelt timing for western United States (from 
Karl et al. 2009, p. 33). This chart shows trends in streamflow runoff timing for 1948-
2000, as a number of days runoff occurs earlier. According to this analysis, northern 
Blue Mountains river basins occur in a zone where runoff occurred 10-20+ days earlier 
for a 1948-2000 period than it did previously. Future climate change is expected to con-
tinue and exacerbate this trend (Furniss et al. 2010, Stewart et al. 2004). 

 
Figure 40 – Predicted increase in area burned by wildfire as associated with a mean an-
nual temperature increase of 1 °C (1.8 °F), shown as percentage change relative to me-
dian annual area burned during 1950-2003 (source: Climate Central 2012). Results are 
aggregated to ecoprovinces (Bailey 1995) of western US. Climate-fire models were de-
rived from National Climatic Data Center records and observed burned-area data follow-
ing methods described in Littell et al. (2009). Prediction shown here is similar to several 
reports from National Research Council showing at least a quadrupling of area burned in 
western US with each 1 °C (1.8 °F) of temperature increase (this figure adapted from fig-
ure 5.8 in National Research Council 2011). 
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Predicted increases displayed in figure 40 are alarming because when examining a century-

long period from 1970-99 to 2070-99, increases in average annual temperature of 3.3 to 9.7 °F 

are projected, depending largely on whether global emissions eventually decline (B1 greenhouse 

gas emissions scenario) or continue to rise (A1B, A2 emission scenarios), and temperature in-

creases are projected to be largest in summer when they would coincide with fire season. 

If dry mixed-conifer forests are to have a reasonable opportunity for persistence under fu-

ture climate regimes, restoring conditions more similar to historical characteristics of frequently 

burned, open forests of the past is likely to function as a useful start point (Fiedler 2000b, Har-

rod et al. 1999, Munger 1917). Although debate continues about how, where, and to what ex-

tent reference conditions derived from historical ecology should be used for land management 

(Millar and Woolfenden 1999), consensus is growing that it is useful to know and understand 

the past to properly manage future ecosystems (Swetnam et al. 1999). 

Sustainable, dry-forest conditions can be achieved by reintroducing surface fire, and by im-

plementing thinning treatments, to change fire-free intervals from centuries to decades, to re-

duce surface fuels, and to reduce canopy and ladder fuels to counteract a compositional trend 

toward increased representation of fire-sensitive trees (fig. 41). These treatments could help 

reestablish spatial heterogeneity (fig. 42). “A lack of treatment or passive management (Ste-

phens and Ruth 2005) perpetuates the potential for extensive high fire severity in forests that 

once burned frequently with low- to moderate-intensity fire regimes” (Stephens et al. 2012b). 

“Thinning is thought to reduce the risk of stand-replacing fires and the corresponding sud-

den release of large amounts of carbon to the atmosphere (Hurteau and others 2008; Dore and 

others 2010; Reinhardt and Holsinger 2010). However, the effects of thinning and fuels treat-

ment on overall carbon balance are complex. The ultimate effect of thinning and fuels treatment 

on carbon stocks is affected by the initial state of the forest, the types of treatments conducted 

(e.g., mechanical thinning versus prescribed burning), and the time period over which one com-

pares the carbon balance (North and others 2009; Hurteau and North 2010). Some researchers 

suggest that while thinning and other mechanisms to reduce fire risk reduce the overall carbon 

stocks in the forest by a moderate amount in the short run, if the treated forest subsequently 

supports the growth of larger mature trees it may end up storing as much carbon as it did be-

fore treatment, in a landscape that is less susceptible to large stand-replacing fires (North and 

others 2009; Reinhardt and Holsinger 2010).” 

“Because the carbon balance continues to change as the forest recovers long after the fire 

event, there is much uncertainty about how long it might take for the carbon balance to be back 

in equilibrium (Dore and others 2010; North and others 2009; Kashian and others 2006). In addi-

tion, the fate of thinned material influences the overall carbon impact, e.g., by sequestering car-

bon if the material goes into long-lived products such as timber or displacing fossil fuel emis-

sions if used to produce biomass energy (Harmon and Marks 2002)” (quoted material in two 

paragraphs above from Ellenwood et al. 2012, p. 962). 
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Figure 41 – Historical (upper; 1939 conditions) and existing (lower) vegetation cover 
types for Potamus watershed, Umatilla NF. When comparing these two maps, ponder-
osa pine type declined, and Douglas-fir and true-firs types increased. 
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Figure 42 – Reintroduction of spatial heterogeneity into Wild Horse prescribed fire area. 
Blue Mountains experience over past 20 years suggests that adopting a conservative ap-
proach to restoration of dry forests is not a choice of ‘no action’ because a passive strat-
egy accepts risk of high-severity wildfire and other uncharacteristic disturbance (see fig. 
19). Upon recognizing that risks of no action are probably unacceptable for many scenar-
ios, land managers must design flexible, adaptive treatments to restore high levels of spa-
tial heterogeneity for dry forests (Agee and Skinner 2005; Allen et al. 2002; Hessburg et 
al. 2000, 2007; Wright and Agee 2004) (and, see figs. 44-45 later in this paper). 

Restoration prescriptions that lack prescribed fire are incomplete because thinning 
alone is not sufficient to renew nutrient cycling processes for dry sites. And, if scale of 
management activity does not emulate scale of native disturbance processes, then we 
can expect ecosystem responses such as reduced biological diversity and impaired nutri-
ent cycling (Baydack et al. 1999, Eng 1998). And, scale includes temporal considerations 
as well – seasonality of historical fires, for example, follows a latitudinal gradient for the 
Blue Mountains, with predominantly early-season fires in southern Blues and late-season 
fires in northern Blues (Heyerdahl et al. 2001). 

Forest trees in an upper canopy layer have better access to sunlight, nutrients, and moisture 

than trees in subordinate positions. Since dominant trees use a disproportionate share of site 

resources, it seems logical they are little influenced by subordinate trees (Daniel et al. 1979, 

Smith et al. 1997). Research in central Oregon (Barrett 1963, 1972) and elsewhere in the West 

(Dolph et al. 1995, Stone et al. 1999), however, showed that competition is a reciprocal process; 

removing subordinate trees, by using a low thinning to remove many intermediate and subcan-

opy/suppressed trees, results in dramatic vigor increases for dominant ponderosa pines (Wood-

all et al. 2003), particularly for old-growth stands and during drought periods. 

Note that dry-forest restoration activities are envisioned for implementation on Blue Moun-

tain areas currently classified as dry upland forest; no attempt has yet been made to predict 

how this biophysical environment might expand, contract, or migrate in response to future cli-

mate change. Although any attempt to model how Dry Upland Forest (UF) PVG might increase at 
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expense of Moist UF or Cold UF PVGs is speculative at this point, several climate change scenar-

ios examined for the interior Pacific Northwest suggest that this is a likely outcome (Dello and 

Mote 2010, Kerns et al. 2017, 2018). 

There is also no assurance that current amounts and spatial configuration of dry forest will 

remain the same under climate change. Research suggests that changes in fire regimes due to 

climate feedbacks led to expansion of savanna environments (open tree stands whose physiog-

nomy is more reminiscent of grassland than forest) in response to hotter and drier conditions 

(Bond et al. 2005, Bowman et al. 2009). Based on circumstances under which it has occurred 

elsewhere, a savanna outcome is certainly plausible for some proportion of dry-forest acreage 

located within a Blue Mountains ecoregion (Kerns et al. 2018). 

Many policy proposals being considered to address climate change are based on mitigation 

– reducing greenhouse gas emissions from fossil fuels and land-use changes to minimize pace 

and magnitude of climate change. While mitigation is important, adaptation to climate change is 

increasingly viewed as a necessary and complementary strategy to mitigation (Joyce et al. 2009). 

Table 14 provides adaptation strategies proposed for National Forest System lands, and pertain-

ing to upland forest vegetation. Table 14 also describes predicted compatibility of active man-

agement treatments with climate change adaptation strategies. 

Note: some sources frame a mitigation/adaptation couplet as resistance/resilience – near-term 

resistance measures, such as thinning, need to be fully coordinated with far-term resilience 

strategies (e.g., creating climate-adapted genotypes by establishing new tree regeneration). 

Information in table 14 suggests that active management practices reducing stand vulnera-

bility to uncharacteristically severe wildfire and other climate-influenced disturbance processes 

could satisfy multiple goals of near-term mitigation (by minimizing fire-related carbon emis-

sions) and mid-term adaptation if such practices also reflect goals for other ecosystem services 

such as late-old structure and water quality (Joyce et al. 2009). 

Potential for uncharacteristically severe wildfire is particularly high – of 47 million acres of 

federal land in the Pacific Northwest, approximately 47 percent (22.6 million acres) was histori-

cally affected by short interval fire (these are dry sites once dominated by ponderosa pine, 

shrubs, or bunchgrasses). A majority of these lands are located east of Cascade Mountains in 

Washington and Oregon. Of the acres with a short-interval fire regime, 71 percent (16 million 

acres) currently have a higher predicted fire severity (risk) than existed historically (fig. 43). 

Future activities could be designed to favor species whose life-history traits are most com-

patible with future climatic conditions. These traits are presented in table 13 for five primary 

tree species of dry upland forest sites. But even so, we also need to realize that as stock brokers 

like to say: “past performance is no guarantee of future success.” 

Proposed restoration activities would improve adaptive capacity (Olsson et al. 2004) of dry 

mixed-conifer forests in the Blue Mountains, particularly by alleviating chronic stress associated 

with high tree density levels, and by reestablishing an historically appropriate structural condi-

tion (fig. 44). A recently developed option for reestablishing a groupy or clumpy condition in dry 

forest is to apply an ICO approach (Churchill et al. 2013a, 2013b; Franklin et al. 2013) (fig. 45). 
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Table 14: Estimated compatibility of climate change adaptation strategies and active manage-
ment of dry upland forests. 

Climate Change Adaptation Strategies Compatibility With Dry-Forest Management 

Improve ecosystem capability to withstand  
uncharacteristically severe drought, wildfire, and 
insect infestation at landscape scales. 

Thinning and similar active management practices 
might be necessary to improve resistance and resil-
ience of dry-forest vegetation, upon which many 
ecosystem services depend. 

Facilitate natural (evolutionary) adaptation 
through silvicultural treatments that shorten re-
generation times and promote interspecific com-
petition. 

Adaptation strategies often recommend regenera-
tion cutting because existing stands are adapted to 
century-old climates, so new seedlings would then 
become adapted to future (changed) climates.  

Where ecosystems will very likely become more 
water limited, manage for drought- and heat-toler-
ant species. 

When circumstances permit, composition could be 
changed to favor species with high tolerance to 
drought, open conditions, and fire (table 13). 

Reduce homogeneity of stand structure and syn-
chrony of disturbance patterns across broad land-
scapes by promoting diverse age classes and spe-
cies mixes, stand diversities, and genetic diversity. 

This strategy could best be addressed by perpetu-
ating age-class diversity, introducing additional 
species diversity when appropriate, and trying new 
genotypes offering better environmental fitness. 

Reset ecological trajectories to take advantage of 
early successional stages compatible with present, 
rather than past, climates. 

Composition could be changed to favor early-seral 
species with high tolerance or resistance to 
drought, open conditions, and fire (table 13). 

Use historical ecological information to identify en-
vironments buffered against climate change, and 
that would be good candidates for conservation. 

Many literature sources provide historical infor-
mation with relevance for dry-forest ecosystems 
(Gannett 1902, Munger 1917, and others). 

Encourage local industries that can adapt to or 
cope with variable types of forest products be-
cause of uncertainty about which tree species will 
prosper in the future. 

Small-diameter trees will be removed frequently as 
restoration activities are implemented and,  
depending on the circumstances, they could be 
used for biomass purposes. 

Reforestation after disturbance may require differ-
ent species than were present before disturbance 
to better match site-level changes associated with 
climate change. 

We can use life-history data such as fire resistance 
and drought tolerance (table 13) to reforest with 
species having high resilience to future climates. 
But should we also consider new species? 

After a disturbance event, use intensive site prepa-
ration activities to remove competing vegetation 
and replant with high-quality, genetically appropri-
ate, and diverse plant materials. 

This recommendation is similar to one just before 
it, but with additional detail. It is feasible to use 
site preparation before planting, but any ‘inten-
sive’ measures need to protect soil integrity. 

To promote climate resilience for existing stands, 
use widely spaced thinnings or shelterwood cut-
tings and rapid response to forest mortality from 
fire or insects. 

Wide thinning spacings and shelterwood seed cut-
tings are compatible with dry upland forests. Rapid 
response to mortality helps address increased fire 
and insect risk related to climate change. 

Plan for higher-elevation insect outbreaks, species 
mortality events, and altered fire regimes. 

It is expected that some fire regime 3 (mixed-sev-
erity) areas could transition to fire regime 1 (low 
severity) as future climate warms and dries. 

Sources/Notes: Adaptation strategies pertain to forest environments only, and are derived from Joyce et 
al. (2008, 2009) and West et al. (2009). Only forest-centric compatibilities are addressed in this table. 



 

 

99 

 

Figure 43 – Trend toward increasing fire susceptibility for short-interval fire regimes of Pacific 
Northwest.1 Many sources show the scale of predicted change in fire severity for fire regime 1 
sites to be enormous (Hessburg et al. 2005, Hann et al. 1997, Quigley et al. 1996). When consid-
ering 47 million acres of federal lands in Pacific Northwest administered by Bureau of Indian Af-
fairs, Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and U.S. 
Forest Service, about 48% can be assigned to a short-interval fire regime (fire regimes 1 and 2). 
Of this dry-site acreage, 71% (16 million acres, or 34% of total acreage) currently has a higher 
predicted fire severity (stand-replacing) than would have existed historically (stand-maintaining). 
When General Accounting Office evaluated catastrophic fire risk for western U.S., its report con-
cluded that “the most extensive and serious problem related to the health of national forests in 
the interior West is the over-accumulation of vegetation.” GAO estimated that about 39 million 
acres of national forests in the West have high fire risk due to excessive fuel buildup; they esti-
mated that $12 billion would be needed between 1995 and 2015 to reduce excess fuel accumula-
tions, an average expenditure of $725 million annually (GAO 1999). 

Many dry-forest studies suggest that a large proportion of remaining 200+ year-old ponder-

osa pines shown in figures 44-45 are likely to die in next few decades, particularly as a result of 

western pine beetle attack (fig. 36), unless major restoration treatments are completed (Lynch 

et al. 2000). Many of these veteran trees could survive for another century or more if dry-forest 

composition, structure, and density is returned to historical conditions (fig. 46). 

 
1 This figure includes federal lands administered by Bureau of Indian Affairs, Bureau of Land Management, 
National Park Service, US Fish and Wildlife Service, and US Forest Service (data derived from a draft report 
released by Pacific Northwest Wildfire Coordinating Group in June 2000; 28 p.). 
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Figure 44 – Many dry forests still have remnant historical structure such as this clump of ma-
ture ponderosa pine. Historically, dry forests tended to be uneven-aged at a stand level, with 
stands consisting of small even-aged tree clumps, each differing in age from others (Cooper 
1960, 1961a; Munger 1917; White 1985). Historical clump size for dry forests ranged from 
0.01-0.05 acres for central Washington (Harrod et al. 1999) to 0.37-0.44 acres for central Or-
egon and northeastern California (Youngblood et al. 2004). So for dry forests, patch size 
(e.g., an opening large enough to sustain regeneration) is quite small – 0.6 acres or less 
(Agee 1998). Restoration treatments can be used to remove late-seral species (Douglas-fir 
and grand fir) from this clump, improving its resistance and resilience to climate change. 
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Figure 45 – Tree clumps in ponderosa pine forest. When evaluating spatial heterogeneity for dry 
forests, it is important to consider a sub-stand level because scale is fine-grained and intricate for 
dry forests – ponderosa pine stands historically featured a groupy or clumpy structure at a sub-
stand scale (Harrod et al. 1999). What are sources of these clumps? As described in section 4, 
variable thinning effects caused by frequent surface fire was certainly an important factor. An-
other factor relates to seed caching by deer mice, golden-mantled ground squirrels, chipmunks, 
shrews, and other small mammals (Keyes et al. 2007; Saigo 1969; Vander Wall 2002, 2003) be-
cause unutilized seed caches also result in tree clusters. Pine clumps can contain few (above) or 
many trees (below); an intertree distance of 6 meters (app. 20 feet) is sometimes used to identify 
clump ‘membership’ (trees < 6m apart are in a clump, whereas trees > 6m apart are out). A re-
cent approach for reestablishing spatial heterogeneity in dry forests is an ICO (Individuals, 
Clumps, Openings) methodology (Churchill et al. 2013a, 2013b; Franklin et al. 2013). 
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Figure 46 – Clumps of old ponderosa pines surrounded by ponderosa pine regeneration, 
southern Blue Mountains (Malheur National Forest). Other images in this white paper show 
old pines surrounded by regeneration of mid- or late-successional trees such as Douglas-fir 
or grand fir (see figs. 27 and 44). However, dense regeneration of ponderosa pine intermix-
ed with, or adjacent to, old ponderosa pines is problematic, even though the regenerating 
species is ecologically appropriate for dry sites. Completing an ‘understory removal’ treat-
ment to remove pine regeneration, within at least 2 driplines of mature trees, is beneficial 
for reestablishing an historically appropriate stand structure, and it responds to our long-
term suppression of nature’s thinning agent – frequent, recurring surface fire. 
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A common goal of dry-forest restoration is to develop more open structures consistent with 

historical disturbance regimes (Arno et al. 1995), an outcome also considered to be compatible 

with a warmer and dryer future (Brown 2008, Stephens et al. 2013). This goal agrees with stud-

ies reconstructing composition and structure for dry sites because they report much lower stem 

densities than today, larger trees, and a strong clumping pattern for overstory trees (see table 2; 

Churchill et al. 2017; Harrod et al. 1999; Johnston et al. 2016, 2017, 2018). 

Climatic drought is projected to be more common in the future (Hanson and Weltzin 2000) 

because mid-summer temperatures are expected to be higher, and summer precipitation lower, 

than at present. But, dense stands exist in a sort of perpetual ‘physiological’ drought because 

intertree competition results in a situation where not enough soil moisture is available to meet 

water needs of all trees (regardless of rainfall amounts); silvicultural treatments are used to alle-

viate this moisture stress and allow residual trees to survive and continue growing. 

Since climate change will amplify effects of density-caused stress, the need for future thin-

ning is expected to be much greater than at present, particularly because thinning improves 

physiological vigor, and trees with improved vigor produce more resins used to repel insect and 

disease attacks (Kolb et al. 1998, Langenheim 1990, Mitchell et al. 1983, Nebeker et al. 1995, 

Phillips and Croteau 1999, Pitman et al. 1982, Safranyik et al. 1998). 

Direct effects of climate change on temperature and precipitation, in conjunction with indi-

rect effects from wildfires, insect outbreaks, and other disturbances that will continue ramping 

up as climate changes, could detrimentally affect future provision of ecosystem goods and ser-

vices (Krieger 2001), including old forest, properly functioning soil and water services, wildlife 

habitat, animal and plant diversity, recreational opportunities, and carbon storage (fig. 47). 

Climate modeling suggests that western larch could be extirpated from Blue Mountains by 

early 22nd century (Rehfeldt et al. 2006). And although studies were not specific to the Blue 

Mountains, recent developments across western U.S. suggest that quaking aspen is also quite 

sensitive to climate change (Rehfeldt et al. 2009, Rogers et al. 2007, Worrall et al. 2010). 

Although aspen is generally perceived as being associated with moist or mesic conditions 

(fig. 47), aspen is also a dry-site species – a Dry Upland Forest potential vegetation group in-

cludes 8 potential vegetation types dominated by aspen (see appendix 1). 

Effective resistance treatments must consider the landscape context in which they occur – 

Finney and others (2007) compared effectiveness of different rates of fuels treatment over sev-

eral decades for western U.S., and they found that treatment rates beyond 2% of a landscape 

per year, based on optimized treatment placement (such as ‘strategic placement of landscape 

area treatments’ or SPLATs), yielded little additional benefit (Stephens et al. 2012b). 

Treatment timing is also important. Although cut-burn treatment combinations are consist-

ently effective at restoring dry forests, it has also been found that burning too soon after thin-

ning can result in delayed tree mortality (Fajardo et al. 2007). [A consistent management impli-

cation from many dry-forest restoration studies is that direct reduction of overstory density 

(thinning), in combination with renewal of nutrient cycling mechanisms (burning), yields the 

highest increases in undergrowth plant and overstory tree vigor.] 
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Figure 47 – Fenced clone of quaking aspen located along 5316 road on North Fork John 
Day Ranger District (aspen is short and has yellow foliage). Aspen reproduces almost ex-
clusively from root suckers, resulting in a clonal life history where its root system func-
tions as a genet, producing successive generations of suckers called ramets. Ramets de-
velop into mature trees. Although aspen ramets are relatively short-lived (60 to 100 
years is common), an underground genet may be thousands of years old. Some clones in 
the intermountain West approach 10,000 years of age (and perhaps more than a million 
years according to Barnes 1975), thus producing a hundred or more generations of 
ramets from a single root system. Genetic testing indicates that an ancient aspen clone 
has existed for thousands of years in Morsay Creek drainage, approximately 15 miles 
west of Ukiah, Oregon  (Shirley and Erickson 2001). 

Aspen is a very intolerant tree species (Daniel et al. 1979, p. 297), which means it 
only regenerates and develops acceptably in open environments. When competing with 
more tolerant species, particularly conifers, aspen quickly loses vigor as shading, soil 
acidity, and other conditions evolve to favor competitors. A common restoration tactic 
for maintaining and sustaining aspen in the Blue Mountains is to remove conifers, but 
this practice is controversial when competing conifers are old ponderosa pines (but, 
200-year-old pines are obviously younger than a 1000-year-old aspen root system). 

This photograph also shows buck-and-pole, A-frame style fencing installed around 
an aspen clone as a way to address ungulate herbivory caused primarily by cattle and elk 
(fencing includes both current extent of aspen stems and some expansion space). Fenc-
ing is used to exclude ungulates for a period long enough to allow aspen suckers to 
reach a sufficient size (in both height and stem caliper) where they can withstand some 
browsing pressure and still develop into a viable overstory cohort. 

Aspen has a surprising affinity for dry-forest environments (e.g., it occupies moist 
microsites within a broader warm dry biophysical setting), as illustrated by a recent clas-
sification of quaking aspen types – of 15 aspen plant community types identified for the 
Blue Mountains, 8 of them occur in a Dry Upland Forest potential vegetation group (see 
appendix 1; Swanson et al. 2010). 
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It has been suggested that increasing the time interval between thinning and burning treat-

ments could reduce amounts of delayed mortality by allowing more time for residual trees to 

increase their post-thinning vigor, and by allowing thinning-created surface fuel to decompose 

before completing a prescribed fire (fig. 48). 

Another potential benefit of increasing time interval between thinning and burning is that it 

lengthens the total period for which treated areas have reduced fire hazard (i.e., burning quickly 

after thinning will result in an area returning to pretreatment fuel hazard levels more quickly 

than by waiting a little longer between treatments) (Stephens et al. 2012b). And, as climate con-

tinues to warm and dry, treating dry-forest areas to reduce fire hazard allows them to be main-

tained in a low-hazard state by using a ‘managed wildfire’ approach (North et al. 2012), which is 

an increasingly attractive option as wildfire acreage (fig. 40) and fire suppression costs continue 

to increase (Haughian et al. 2012, Littell et al. 2009). 

Obviously, changes of the magnitude described in this section would cause ‘ripple effects’ 

across many biological webs and trophic levels (Perry et al. 2008). If climate change precludes us 

from sustaining desired levels of ecosystem composition, structure, and density, then how can 

we sustain the ecosystem goods and services contingent on these components? I believe the 

best answer to this question, as hopefully demonstrated by this white paper, is to apply correct 

dry-forest restoration practices, in correct places, at proper times, and for correct reasons. 

 

SUMMARY: ESSENTIAL TENETS OF DRY-FOREST MANAGEMENT 

This white paper discusses how three primary human influences affected dry forests – fire 

exclusion, livestock grazing, and selective cutting. Other factors also contributed to changes: 

• Dry forests often have low ecological integrity, particularly in response to suppression of 

surface fire, a keystone ecosystem process for this biophysical environment. 

• Low-severity surface fire has now been replaced, in many areas, by high-severity crown fire. 

• Forests comprised primarily of late-seral structural stages have declined, especially for an 

old forest single stratum stage dominated by large-diameter ponderosa pines. 

• Mid-seral structures have increased, and this change contributed to landscapes that are 

much more homogeneous than they were historically. 

• Contemporary dry forest has markedly higher tree density and understory fuel loading, 

while simultaneously exhibiting much lower undergrowth productivity and diversity. 
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• Existing stand density is often inconsistent with an historical disturbance regime – uncharac-

teristically high density levels are common across dry landscapes of the federal estate. 

• Forest canopies became more complex and layered due to loss of thinning agents; resulting 

multi-layered structure is now ladder fuel and provides a budworm feeding ladder. 

• Wildfires and defoliating insects (mainly western spruce budworm and Douglas-fir tussock 

moth) now occur with uncharacteristic, stand-replacing severity on many dry landscapes. 

• Largely in response to fire exclusion and livestock grazing, dry forest expanded onto sites 

historically supporting woodland, shrubland, or grassland vegetation. 

• High livestock grazing levels in early 1900s affected tree regeneration by reducing herbac-

eous competition with seedlings, and by exposing mineral soil for tree-seed germination. 

• Historical disturbance regimes provide a blueprint for active management to maintain eco-

logical function; treatments must emulate native disturbance and succession processes. 

• Stand density changes led to a decline in individual-tree vigor, increased probability of bark 

beetle outbreaks, and contributed to a higher probability of uncharacteristic wildfire. Stand 

density changes also influence rates and types of surface fuel accumulation. 

• Thinning and prescribed fire, applied in proper places and at appropriate times, is needed to 

help recover integrity and resilience of dry-forest ecosystems. 

• Thinning and prescribed fire are effective for sustaining high vigor levels for old ponderosa 

pines; high vigor translates into increased resin production and chemical defenses against 

western pine beetle and other insects and diseases. 

• Thinning to low stocking levels will be especially important in a climate-changed future be-

cause wildfire may convert dry forests to shrublands or herblands, whereas trees in thinned 

areas would survive and promote a fire-compatible savanna structure. 

• Going back to early 1990s, fire scientists recommended that prescribed fire use be increased 

tenfold for Blue Mountains national forests to address forest health concerns; unfortunate-

ly, and for many and varied reasons, an increase in prescribed-fire use did not occur. 

• To support increased utilization of prescribed fire, dry forest should be managed to sustain 

coarse woody debris (CWD) levels ranging between 5 and 20 tons per acre (defined as dead 

standing and downed pieces larger than 3 inches in diameter). Between 4 and 7 tons per 

acre of a 5-20 ton per acre CWD range would exist as standing snags at a total rate of 6 to 14 

stems per acre (2 to 4 snags per acre should be at least 15" in diameter). 

• A lack of low-severity disturbance means that composition (including nonforest) and struc-

ture is less diverse now than historically, but more tree species may now be found on dry 

sites because ponderosa pine has been joined by Douglas-fir, grand fir, and western juniper. 

• Historical timber harvest removed many large, fire-resistant ponderosa pines. Future har-

vest could use uneven-aged management to restore intra-stand heterogeneity (fig. 49). 

• Small trees got established abundantly (appendix 3), and many of them are fire-sensitive 

species (Douglas-fir, grand fir). Small trees act as ladder fuel during wildfires, causing individ-

ual tree clumps to torch, or contributing to stand-level crown-fire behavior. 

• A dynamic ecosystems philosophy should form a foundation for dry-forest management – 

an ecologically sustainable representation of composition, structure, and density is more im-

portant than perpetuation of a particular condition in a specific location. 
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Figure 48 – Shelterwood seed cut in dry upland forest on Manitou Experimental Forest, Pike National For-
est, southern Front Range (Rampart Range), south-central Colorado. 

An important objective of dry-forest restoration programs is to reestablish a stand structure similar to 
an old forest single stratum structural stage (see table 8), which predominated during historical (presettle-
ment) eras (see figs. 34, 44, 45). 

Table 5 summarizes these restoration concepts by noting that sustainable dry-forest ecosystems 
(characterized as an ‘ecosystem maintenance stage’) would classify as Condition Class 1 when evaluated 
by using a Fire Regime Condition Class framework. 

Table 5 describes composition and structure, tree density, vigor, fire regime, fuel dynamics, and resili-
ence and risk characteristics associated with condition class 1 dry forests. 

Although this image shows a regeneration cutting method (shelterwood seed cut), it is illustrative be-
cause it shows what a post-treatment, tree-structure outcome might look like for restoration treatments 
designed to recreate an historical stand structure by emphasizing retention of larger-diameter, older-age 
ponderosa pine trees. 

And, note that this treatment obviously addressed ladder-fuels, but a paucity of smaller trees results 
in an unbalanced size-class distribution, which may not bode well for the future (especially if bark beetles, 
pine butterfly, or another disturbance agent affects a high proportion of the overstory-tree cohort). 

Note, however, that this image is not necessarily a good example of a comprehensive restoration 
treatment. Why is this statement true? Because, there is an obvious lack of dead wood, both as down logs 
and as standing dead trees (snags). A lack of dead wood, and an extreme reduction in surface fuels, was 
completed for research purposes, not in response to restoration goals and objectives. 

Reductions in surface fuel can be important, however, for ensuring overstory-tree survival during sub-
sequent prescribed fire treatments (Fajardo et al. 2007, Hood 2010, Stephens et al. 2012b). 

Another example of dry-forest restoration, with an emphasis on restoration of historically appropri-
ate ‘old forest single stratum’ structure, is the cover image used for this white paper. It shows post-treat-
ment conditions for a restoration project completed in Swan Valley of western Montana. 

Note that the Swan Valley image still features an impressive reduction in surface and ladder fuels, but 
that a minimal component of dead wood was retained in the form of down logs and stem wood pieces 
containing attached branches. 
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Figure 49 – Application of individual-tree selection in a ponderosa pine forest. An un-
treated stand (top) has a range of tree sizes. In the first entry (middle), note how four 
mature trees were removed. A second entry (bottom) continues this cutting intensity. 
In many respects, uneven-aged management is ideally suited as a silvicultural system 
for perpetuating and sustaining dry-forest ecosystems, while also ensuring that heter-
ogeneous stand structures are provided through time (Franklin et al. 2013). 
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APPENDIX  1:  POTENTIAL  VEGETATION  COMPOSITION 

A dry upland forest PVG includes dry mixed-conifer forests occurring in a lower montane 

vegetation zone (see fig. 3). Portions of three potential vegetation series (see fig. 4) are repre-

sented in a dry upland forest PVG – grand fir, ponderosa pine, and Douglas-fir. Note that quak-

ing aspen plant community types, successional (non-climax) stages of a plant association, are 

also common in the dry upland forest PVG – eight aspen types are included in the list below. 

Only three grand fir plant associations are included in a dry upland forest PVG (two ‘sod-

grass’ types: elk sedge and pinegrass associations, and a birchleaf spiraea type), but they occupy 

substantial acreage in central and southern Blue Mountains. Douglas-fir plant associations are 

well represented in this potential vegetation group, with Douglas-fir/low shrub types being es-

pecially common (snowberry, birchleaf spiraea, and ninebark associations). 

Although ponderosa pine is ubiquitous in the Blue Mountains, it is the climax species on a 

surprisingly small percentage of this area (certainly less than 10% for northern Blue Mountains, 

but a higher percentage than that for southern Blue Mountains). Many ponderosa pine plant as-

sociations were described for the Blue Mountains, and all of them were assigned to this poten-

tial vegetation group (Powell et al. 2007), indicating that environmental tolerances of ponderosa 

pine do not allow it to predominate on cold or moist forest sites. 

Table 15: Potential vegetation type (PVT) codes and names, and plant association group (PAG) 
assignments, for a dry upland forest potential vegetation group (PVG).1 

PVT Code PVT Name PAG 

ABGR/CAGE grand fir/elk sedge warm dry 

ABGR/CARU grand fir/pinegrass warm dry 

ABGR/SPBE grand fir/birchleaf spiraea warm dry 
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PVT Code PVT Name PAG 

JUSC/CELE Rocky Mountain juniper/mountain mahogany warm dry 

PIPO/AGSP ponderosa pine/bluebunch wheatgrass hot dry 

PIPO/ARAR ponderosa pine/low sagebrush hot moist 

PIPO/ARTRV/CAGE ponderosa pine/mountain big sagebrush/elk sedge hot dry 

PIPO/ARTRV/FEID-AGSP pond. pine/mtn. big sage/Idaho fescue-bluebunch wheatgrass hot dry 

PIPO/CAGE ponderosa pine/elk sedge warm dry 

PIPO/CARU ponderosa pine/pinegrass warm dry 

PIPO/CELE/CAGE ponderosa pine/mountain mahogany/elk sedge warm dry 

PIPO/CELE/FEID-AGSP pond. pine/mtn. mahog./Idaho fescue-bluebunch wheat. hot dry 

PIPO/CELE/PONE ponderosa pine/mountain mahogany/Wheeler bluegrass hot dry 

PIPO/FEID ponderosa pine/Idaho fescue hot dry 

PIPO/PERA ponderosa pine/squaw apple hot dry 

PIPO/PUTR/AGSP ponderosa pine/bitterbrush/bluebunch wheatgrass hot dry 

PIPO/PUTR/AGSP-POSA pond. pine/bitterbrush/bluebunch wheat./Sandberg bluegrass hot dry 

PIPO/PUTR/CAGE ponderosa pine/bitterbrush/elk sedge warm dry 

PIPO/PUTR/CARO ponderosa pine/bitterbrush/Ross sedge warm dry 

PIPO/PUTR/FEID-AGSP pond. pine/bitterbrush/Idaho fescue-bluebunch wheat. hot dry 

PIPO/RHGL ponderosa pine/smooth sumac hot dry 

PIPO/SPBE ponderosa pine/birchleaf spiraea warm dry 

PIPO/SYAL ponderosa pine/common snowberry warm dry 

PIPO/SYOR ponderosa pine/mountain snowberry warm dry 

PIPO-JUOC/CELE-SYOR pond. pine/western juniper/mtn. mahog.-mtn. snowberry hot dry 

POTR5/CAGE2 aspen/elk sedge warm dry 

POTR5/CARU aspen/pinegrass warm dry 

POTR5/EXOTIC GRASS aspen/exotic grass warm dry 

POTR5/PRVI aspen/chokecherry warm dry 

POTR5 (RUBBLE, LOW) aspen (rubble, low) warm dry 

POTR5(ABGR)/SYMPH aspen(grand fir)/snowberry warm dry 

POTR5(PIPO-PSME)/SYMPH aspen(ponderosa pine-Douglas-fir)/snowberry warm dry 

POTR5(PSME)/PREM aspen(Douglas-fir)/bitter cherry warm dry 

PSME/ARNE/CAGE Douglas-fir/pinemat manzanita/elk sedge warm dry 

PSME/CAGE Douglas-fir/elk sedge warm dry 

PSME/CARU Douglas-fir/pinegrass warm dry 

PSME/CELE/CAGE Douglas-fir/mountain mahogany/elk sedge warm dry 

PSME/PHMA Douglas-fir/mallow ninebark warm dry 

PSME/SPBE Douglas-fir/birchleaf spiraea warm dry 

PSME/SYAL Douglas-fir/common snowberry warm dry 

PSME/SYOR Douglas-fir/mountain snowberry warm dry 

PSME/SYOR/CAGE Douglas-fir/mountain snowberry/elk sedge warm dry 

PSME/VAME Douglas-fir/big huckleberry warm dry 

PSME-PIPO-JUOC/FEID Douglas-fir/ponderosa pine/western juniper/Idaho fescue warm dry 

1 Potential vegetation type codes and names, and plant association group assignments, are taken from 
Powell et al. (2007) except for aspen community types, which are from Swanson et al. (2010). 
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APPENDIX 2: EARLY 1940S TIMBER HARVEST  

This white paper has a section describing selective cutting effects on dry-forest conditions. 

Light selective cutting occurred in the Blue Mountains as early as late 1800s, and most early har-

vests involved relatively low timber volumes distributed across fairly small areas. Early mills 

were small and could easily be moved to a new site (portable circular saws); their locations 

changed frequently as available timber was depleted. Many early mills were located along 

streams because they depended on water power to run a circular saw. 

By 1920s, high-volume sales covering large areas were awarded. Oregon Lumber Company 

built a sawmill at Bates (a town-site located near Oregon Highway 7 about 15 miles northeast of 

Prairie City) after it was awarded a 124 million board foot timber sale in Middle Fork of the John 

Day River drainage (USDA Forest Service 1916). Another example is a Camas Creek sale contain-

ing 221.3 million board feet of national forest timber on Umatilla National Forest. It covered an 

area of about 69,645 acres in the Camas and Meadow Creek watersheds (North Fork John Day 

Ranger District); western boundary of this unit was located app. 10 miles east of Ukiah, Oregon. 

Timber on the Camas unit consisted of a mixed stand of ponderosa pine, Douglas-fir, west-

ern larch, lodgepole pine, and other species (Matz 1932). All advertised volume was ponderosa 

pine; cutting of other species was optional at discretion of a purchaser (Stevenson 1937). Calcu-

lations in a timber appraisal showed that sustained yield for Camas Creek block was 13,780,000 

board feet per year, so the Camas Creek timber sale represented an ‘over-cut’ of 71,100,000 

board feet for a five-year period (USDA Forest Service 1938). 

Blue Mountain harvest levels escalated in 1928 when Edward Hines Lumber Company was 

awarded a long-term contract for 890 million board feet in Seneca area. This enormous timber 

sale, called the Bear Valley Unit, is a good example of the concept that timber was not only a 

commodity, but also a federal government tool for community development (Fedkiw 1999). As 

of late 1920s, Bear Valley timber sale was the largest ever offered in Pacific Northwest, and it 

was probably more widely advertised throughout the United States than any other sale of na-

tional forest timber up to that point in time. 

Bear Valley timber sale was designed to extend Oregon Short Line Railroad from Crane to 

Burns (30 miles of standard-gauge track), extend the railroad farther by running lines from Burns 

to Seneca (50 miles), and then develop short branch lines from Seneca into timber sale areas in 

headwaters of Silvies River. Railroad work associated with Bear Valley sale had an influence on 

the broader Blue Mountains area. Construction of Oregon Short Line connecting Oregon-Wash-

ington Railroad and Navigation Company with Union Pacific Railroad allowed eastern Oregon to 

enter national lumber markets for the first time. Prior to this railroad development, all pine lum-

ber produced in the Blue Mountains was used for local or regional consumption. 

Photographs in this appendix were taken on Bear Valley Unit as it was being operated by 

Hines Lumber Company. Photographer was Russell Lee, who worked for the federal government 

as an employee of Farm Security Administration. The photographs were taken from this web-

site: http://photogrammar.yale.edu/  

http://photogrammar.yale.edu/
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Figure 50 – Virgin (unmanaged) ponderosa pine forest in Grant County, Oregon (photo by Russell 
Lee, July 1942). [This image depicts better-than-average conditions in terms of stocking levels; it 
is known that photographers generally selected the best examples.] This image shows a mature 
stand of ponderosa pine, with closely-spaced groups or clumps of large-diameter trees. Note that 
spindly, suppressed ponderosa pine seedlings are also present as an understory. A paradigm of 
this era was to remove mature and overmature ponderosa pines before they were attacked by 
western pine beetle. Maturity selection methods were used to evaluate tree vigor and insect sus-
ceptibility, including methods developed by F.P. Keen (1936, 1950), and thereby identify old 
pines with high susceptibility to western pine beetle attack. 
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Figure 51 – Forest Service official designating (marking) a tree for removal in Grant County, Oregon (photo 
by Russell Lee, July 1942). [Note a soft, fedora-style ‘hardhat’ worn by this Forest Service official.] Even 
though a high-volume timber sale occurring across a wide area had been awarded to Edward Hines Lum-
ber Company, Forest Service still needed to designate trees for removal before they could be felled. In 
this era and for these large sales, it was common to have a Forest Service official assigned to a sale opera-
tion full-time, and he might mark trees in the morning that were felled later the same day by a pur-
chaser’s timber fallers. This strategy differs from contemporary practice because Forest Service now com-
pletes timber designation activities before awarding a timber sale to a successful purchaser. 

Here is a description of how early marking occurred: “The mechanical part of marking consists simply 
of striking a clean-surfaced bark blaze at breast or shoulder height with a keen-bladed special hatchet and 
stamping on this with the head of the hatchet the letters ‘U.S.’ This operation is repeated on the base of 
the tree below stump height. Whether a man is fast at this job, which may be a big and time-consuming 
job on a large sale, depends upon several things. He will be slow unless his judgment is such as to enable 
him to weigh all the factors and make his decision as fast as he can get to the trees, if he is either lazy or 
physically unfit for hard work, or if he does not avoid lost motion in getting around to his timber” (Perry 
1999, p. 97). Walt Perry went on to describe how he was able to mark more than 1,000 trees in an 8-hour 
workday by using this method, and he bragged that on one day, he marked 1,685 trees in only 7 hours 
and 50 minutes (suggesting that on some days, at least, quantity was placed at a higher premium than 
quality when it came to tree marking).  
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Figure 52 – Falling a large ponderosa pine with a crosscut saw in Grant County, Oregon (photo by Russell 
Lee, July 1942). When these photographs were taken, all tree falling operations were accomplished by us-
ing crosscut saws, commonly referred to as ‘misery whips’ because of the human labor and effort involv-
ed in their use. Optimum productivity was obtained by having fallers work in pairs so they could operate a 
crosscut saw in tandem. 
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Figure 53 – Falling a large ponderosa pine by using a crosscut saw and a ‘rubber-man’ setup in Grant 
County, Oregon (photo by Russell Lee, July 1942). In this situation, a single faller could work a tree by driv-
ing a stout stake in the ground, and then attaching strips of rubber inner tube to the stake and one end of 
a saw. A faller would pull the saw, and a ‘rubber-man’ would pull it back. 

This setup was often used when there weren’t enough fallers to form only two-man teams, or when a 
faller wanted to work alone to collect extra wages or avoid back-talk from a partner. Often, fallers who 
used rubber-man setups frequently, because they preferred to work alone, would use an iron stake in-
stead of a wood stake, as it tended to be more rigid and durable. 
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Figure 54 – Setting a choker cable on a large ponderosa pine log in Grant County, Oregon (photo by Rus-
sell Lee, July 1942). This image shows very large size associated with centuries-old ponderosa pines being 
removed from Bear Valley Unit by Edward Hines Lumber Company. When considering the high wood 
quality shown here, it’s a little sad to realize that many of these trees were used to make shipping boxes 
for apples, cherries, and other fruit from Yakima, Walla Walla, and Hood River valleys. 
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Figure 55 – Yarding ponderosa pine logs after they were felled and bucked into merchantable lengths; 
Grant County, Oregon (photo by Russell Lee, July 1942). During this era, crawler tractors were commonly 
used to haul bucked logs to a collection point where a larger tractor would then skid them to a loader (fig. 
56). It was subsequently learned, however, that crawler tractors often caused unacceptable levels of soil 
compaction, depending on soil type, soil moisture, and other factors. 

Note that the surrounding stand contains some tree species other than ponderosa pine, although sale 
contracts of this era typically did not require removal of tree species other than ponderosa pine, or re-
moval of these ‘other species’ was at discretion of a purchaser. 

Subsequent forest stand dynamics research showed that leaving what was commonly referred to as 
‘inferior species’ on dry-forest sites (Neff 1928, Starker 1915) contributed to compositional shifts that 
eventually resulted in substantial defoliation impacts during western spruce budworm and Douglas-fir 
tussock moth outbreaks, two insect defoliators that historically played minor roles on dry-forest sites 
when they were dominated by ponderosa pine instead of Douglas-fir and grand fir (Powell 1994, Williams 
1978, Williams et al. 1980). 
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Figure 56 – Skidding logs to a loader in Grant County, Oregon (photo by Russell Lee, July 1942). As noted 
for figure 55, this photo depicts a surrounding stand containing tree species other than ponderosa pine. In 
fact, the tractor is approaching a western larch on its right side with dwarf mistletoe infection in its lower 
branches. Note high levels of soil disturbance associated with these major skid trail routes. 
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Figure 57 – Loading ponderosa pine logs on a truck for transport to a mill yard in Grant County, Oregon 
(photo by Russell Lee, July 1942). After a large crawler tractor delivers its load of logs to a loading area 
(fig. 56), a boom-type loader lifts them up and swings them over to a log trailer, where they are added to 
a load in preparation for transport to a mill yard in town. 

Once again, note a mixed-species composition for the background forest stand, and a high level of 
soil disturbance in the foreground scene. 
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Figure 58 – A full load of large ponderosa pine logs before being transported to a mill yard in Grant 
County, Oregon (photo by Russell Lee, July 1942). Mills of this era used large circular saws specifically de-
signed to process large-diameter logs, and logs shown in this image were typical for timber sales up 
through the late 1980s. 

These logs were an important raw material for lumber mills operating in small communities through-
out the Blue Mountains. In mid to late 1950s, almost every community in the Blue Mountains supported 
at least one sawmill, including communities as small as Troy, Oregon. 

It may be hard to believe when considering contemporary conditions, but in eastern Oregon, 49 com-
munities had timber-processing mills in mid to late 1950s – 33 communities had one mill, 10 communities 
had two mills, and 6 communities had three or more mills (Gedney 1963). 
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Figure 59 – Loading large ponderosa pine logs onto railroad cars in Baker County (photo by Russell Lee, 
1941). As noted at the beginning of this appendix, railroad logging was not uncommon in the Blue Moun-
tains, particularly in association with high-volume timber sales such as Bear Valley Unit. 

Most logging railroads (and they were plentiful) were narrow-gauge, although track and ties have 
now been removed and little evidence remains of their existence, other than an abandoned rail bed (alt-
hough some old rail beds have been incorporated into a ‘rails to trails’ recreation system). 
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APPENDIX  3:  REGENERATION  MONITORING  RESULTS 

This appendix provides regeneration monitoring results for dry upland forests of Umatilla 

National Forest (table 16). It summarizes tree density (stems per acre), by species as grouped by 

seral status, for 76 plots established in plantations located on a Dry Upland Forest potential veg-

etation group (71 plots are Managed Stand Survey installations; 5 plots were established during 

a Forest Plan review of regeneration results). Sources/Notes section at end of table 16 provides 

additional information about origin of this data. 

Plots are grouped hierarchically – first by plant association (mean values are provided for 

each association), and second by potential vegetation group (mean values are provided for a Dry 

Upland Forest PVG overall). 

This table provides monitoring information to inform dry-forest prescriptions for tree plant-

ing (reforestation). Planting is a high-cost activity in a vegetation management realm – when 

considering both internal costs (contract administration, seed procurement, etc.) and external 

costs (service contract for out-planting, seedling procurement, etc.), total planting cost often 

runs from $300 to $500 per acre. 

As budgetary resources continue to decline, land managers must consider reforestation op-

tions that could be implemented at lower cost. Regeneration monitoring data presented in this 

appendix demonstrates that dry-forest sites tend to support abundant amounts of natural re-

generation, and that much of this regeneration has relatively high levels of species diversity. 

When considering a Dry Upland Forest PVG in its entirety (see “Mean: Dry Upland Forest 

PVG” row at bottom of table 16), pines have high average density levels (ponderosa pine aver-

ages 243 stems per acre and lodgepole pine averages 138 stems per acre). Relatively high 

amounts of Douglas-fir and grand fir regeneration are also present (180 stems per acre for grand 

fir and 143 stems per acre for Douglas-fir), which is not surprising because seed rain and seed-

ling frequency for these species are known to be up to an order of magnitude higher than for 

pines, larch, and other early-seral tree species (Zald et al. 2008). Therefore, ‘fir be gone’ pre-

scriptions designed to specifically reduce (but not eliminate) representation of Douglas-fir and 

grand fir are justified somewhat as a counterbalance to their regeneration proficiency. 

National Forest Management Act of 1976 (P.L. 94-588) (NFMA) states that when trees are 

cut to achieve timber production objectives, cuttings shall be made in such a way that “there is 

assurance that such lands can be adequately restocked within 5 years after harvest” (sec. 6, (g), 

(3), (E), (ii)). This statement has been interpreted in various ways, but it does not mean that re-

forestation (tree planting) must occur within 5 years of timber harvest (Watrud et al. 2012). 

A NFMA passage quoted above uses the word ‘assurance’ when describing a 5-year regener-

ation requirement. The Washington Office has interpreted ‘assurance’ to mean that we must 

use our best efforts and best judgment to assure that restocking occurs within five years. Other 

interpretations of NFMA language suggest that regeneration cutting should not be prescribed 

for areas where previous experience suggests that restocking will likely not occur in 5 years, re-

gardless of whether stocking is derived from natural regeneration, tree planting, or both. 
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An interest in prompt reforestation following harvest is also expressed in other language 

from NFMA: “Sec. 3 (d) (1) It is the policy of the Congress that all forested lands in the National 

Forest System be maintained in appropriate forest cover with species of trees, degree of stock-

ing, rate of growth, and conditions of stand designed to secure the maximum benefits of multi-

ple use sustained yield management in accordance with land management plans.” 

USDA Forest Service has defined appropriate forest cover as “vegetation composed of plant 

communities, which would occur naturally on similar sites depending upon the stage of plant 

succession. Forbs, grasses, and shrubs in their proper ratios are also elements of forest cover” 

(FSM 2470, section 2472.05 – Definitions). This interpretation of appropriate forest cover is well 

aligned with recent science findings highlighting the ecological importance of early-successional 

stages (Swanson et al. 2011). 

I recommend that tree planting be considered as a post-harvest activity for dry upland for-

ests receiving a regeneration cutting treatment, and I also recommend that a planting decision 

be informed by regeneration monitoring results presented in table 16. Table 16 data suggests 

that natural regeneration is often abundant for dry upland forest sites, but much of it is com-

prised of mid- or late-seral tree species. Therefore, tree planting could be prescribed to establish 

an ecologically appropriate forest cover, including an appropriate mix of early-seral tree species 

in the context of an early stage of plant succession (Swanson et al. 2011). 

Forest Vegetation Simulator (FVS) Regeration Modeling Considerations  

None of the Pacific Northwest variants of FVS include a regeneration establishment model. 

If they did, FVS would periodically interject ‘background’ levels of natural regeneration (e.g., in-

growth), and composition and amounts of regeneration would vary with a stand’s plant associa-

tion code (e.g., assumptions about periodic ingrowth would vary by plant association). 

For most areas of Pacific Northwest, relatively high levels of background ingrowth are a fact 

of life, and they should be reflected in growth-and-yield simulations. Since the Blue Mountains 

variant of FVS is not interjecting ingrowth automatically, users need to add it manually by invok-

ing either ‘natural’ or ‘plant’ keywords. Regeneration monitoring results presented in this ap-

pendix provide a reasonable basis for formulating credible ingrowth scenarios for dry upland 

forests of northern Blue Mountains (Umatilla National Forest). 

[Note: A Managed Stand Survey (MSS) inventory process was initiated in late 1980s. Initial 

installations (1-acre plots) were installed in young, managed stands throughout the Pacific 

Northwest Region. One reason for initiating an MSS program was to obtain long-term informa-

tion about ingrowth and young-stand development, and then use it to calibrate FVS and develop 

variant-specific regeneration establishment models. Unfortunately, MSS plots were never re-

measured, so they could not provide long-term trend data suitable for making FVS revisions.] 
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Table 16: Regeneration monitoring results for dry upland forests of the Umatilla National Forest. 

Plot 
Plant 

Association PAG WJ PP LP WL 
Early 
Seral DF WP 

Mid 
Seral ES GF SF 

Late 
Seral 

Other 
Spp Total 

 
 

 <――――――――― All  values in  these co lumns are Tr ees per  Acr e ―― ―――――――>  

2012 DF/CAGE WD 
 

84 
  

84 80 
 

80 
     

164 

2259 DF/CAGE WD 
 

147 
  

147 217 
 

217 
 

100 
 

100 
 

464 

2508 DF/CAGE WD 
 

105 
  

105 8 
 

8 
     

113 

2513 DF/CAGE WD 
 

144 
  

144 64 
 

64 
 

44 
 

44 
 

252 

2515 DF/CAGE WD 
 

189 
  

189 72 
 

72 
     

261 

2527 DF/CAGE WD 
 

88 425 
 

513 61 
 

61 
 

4 
 

4 
 

578 

2531 DF/CAGE WD 
 

27 
  

27 44 
 

44 
 

20 
 

20 
 

91 

2780 DF/CAGE WD 
 

108 
  

108 68 
 

68 
 

4 
 

4 
 

180  
Mean: DF/CAGE 

  
112 425 

 
165 77 

 
77 

 
34 

 
34 

 
263 

2003 DF/CARU WD 
 

36 
 

4 40 131 
 

131 
 

584 
 

584 
 

755 

2807 DF/CARU WD 
 

99 
  

99 475 
 

475 
 

8 
 

8 
 

582 

2809 DF/CARU WD 
 

4 
 

40 44 111 
 

111 
 

61 
 

61 
 

216 

2815 DF/CARU WD 
 

291 
 

8 299 163 
 

163 
 

80 
 

80 
 

542  
Mean: DF/CARU 

  
108 

 
17 121 220 

 
220 

 
183 

 
183 

 
524 

2808 DF/PHMA WD 
 

8 
 

7 15 311 
 

311 
 

4 
 

4 
 

330 

UMA15 DF/PHMA WD 
 

170 
  

170 10 
 

10 
     

180  
Mean: DF/PHMA 

  
89 

 
7 93 161 

 
161 

 
4 

 
4 

 
255 

2020 DF/SYAL WD 93 51 
  

144 108 
 

108 
     

252 

2806 DF/SYAL WD 
 

15 
 

7 22 167 
 

167 
 

80 
 

80 
 

269 

2836 DF/SYAL WD 
 

4 
 

8 12 200 
 

200 
 

60 
 

60 20 292 

UMA3 DF/SYAL WD 
 

155 
 

10 165 10 
 

10 
     

175 

UMA8 DF/SYAL WD 
 

840 
 

30 870 60 
 

60 
     

930  
Mean: DF/SYAL 

 
93 213 

 
14 243 109 

 
109 

 
70 

 
70 20 384 

2514 DF/VAME WD  1623   1623         1623 

2005 GF/CAGE WD   100 60 160 367  367  20  20  547 
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Plot 
Plant 

Association PAG WJ PP LP WL 
Early 
Seral DF WP 

Mid 
Seral ES GF SF 

Late 
Seral 

Other 
Spp Total 

 
 

 <――――――――― All  values in  these co lumns are Tr ees per  Acr e ―― ―――――――>  

2009 GF/CARU WD 20 569  420 1009 20  20  504  504  1533 

2015 GF/CARU WD  147 20 4 171 52  52  251  251  474 

2016 GF/CARU WD  36 20  56 156  156  164  164  376 

2250 GF/CARU WD  465   465 179  179  104  104  748 

2251 GF/CARU WD  63  35 98 121  121  315  315  534 

2260 GF/CARU WD  335  4 339 12  12 20 100  120  471 

2503 GF/CARU WD  360 235 32 627 1180  1180  553 40 593  2400 

2528 GF/CARU WD  628 165 701 1494 373  373  1069 100 1169  3036 

2813 GF/CARU WD  117  4 121 111  111  317  317  549 

2823 GF/CARU WD  519  4 523 439  439  160  160  1122 

UMA4 GF/CARU WD  195   195 145  145  80  80  420 

 Mean: GF/CARU  20 312 110 151 463 253  253 20 329 70 343  1060 

2772 GF/SPBE WD  139   139 120  120  28  28  287 

2810 GF/SPBE WD  11  7 18 240  240  1037  1037  1295 

2814 GF/SPBE WD  31  4 35 229  229  87  87  351 

2831 GF/SPBE WD      69  69  92  92  161 

UMA5 GF/SPBE WD  80  190 270 390  390  170  170  830 

 Mean: GF/SPBE   65  67 116 210  210  283  283  585 

2023 PP/AGSP HD 100 139   239         239 

2779 PP/AGSP HD  159   159 12  12      171 

 Mean: PP/AGSP  100 149   199 12  12      205 

2000 PP/CAGE WD 20 99   119 24  24 143 167 167 477  620 

2002 PP/CAGE WD 228 203   431 11  11      442 

2013 PP/CAGE WD 104 191   295         295 

2022 PP/CAGE WD 80 600   680         680 

2502 PP/CAGE WD  225   225 92  92      317 

2505 PP/CAGE WD  140   140 100  100      240 

2509 PP/CAGE WD  163   163 4  4  20  20  187 
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Plot 
Plant 

Association PAG WJ PP LP WL 
Early 
Seral DF WP 

Mid 
Seral ES GF SF 

Late 
Seral 

Other 
Spp Total 

 
 

 <――――――――― All  values in  these co lumns are Tr ees per  Acr e ―― ―――――――>  

2511 PP/CAGE WD  1072   1072 67  67  24  24  1163 

2520 PP/CAGE WD  120   120 4  4      124 

2523 PP/CAGE WD  117   117         117 

2525 PP/CAGE WD  1025  4 1029 20  20  51  51  1100 

2536 PP/CAGE WD  765  100 865 44  44      909 

 Mean: PP/CAGE  108 393  52 438 41  41 143 66 167 143  516 

2519 PP/CARU WD  233   233         233 

2522 PP/CARU WD  205 4  209 8  8      217 

2534 PP/CARU WD  172   172         172 

 Mean: PP/CARU   203 4  205 8  8      207 

2521 PP/CELE/CAGE WD  173   173 20  20      193 

2510 PP/CELE/FEID-AGSP HD  1020   1020 68  68  20  20  1108 

2524 PP/CELE/FEID-AGSP HD  40   40         40 

Mean: PP/CELE/FEID-AGSP   530   530 68  68  20  20  574 

2001 PP/FEID HD 64 301   365         365 

2006 PP/FEID HD 160 71   231 40  40      271 

2007 PP/FEID HD 20 188   208         208 

2014 PP/FEID HD 40 307   347 120  120      467 

2021 PP/FEID HD 44 199   243         243 

2252 PP/FEID HD  147   147 7  7      154 

2253 PP/FEID HD  12   12 4  4      16 

2500 PP/FEID HD  139   139 101  101      240 

2501 PP/FEID HD 4 64   68 4  4      72 

2506 PP/FEID HD 44 75   119         119 

2526 PP/FEID HD  304   304 40  40      344 

2535 PP/FEID HD  92   92         92 

 Mean: PP/FEID  54 158   190 45  45      216 
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Plot 
Plant 

Association PAG WJ PP LP WL 
Early 
Seral DF WP 

Mid 
Seral ES GF SF 

Late 
Seral 

Other 
Spp Total 

 
 

 <――――――――― All  values in  these co lumns are Tr ees per  Acr e ―― ―――――――>  

2008 PP/SYAL WD 60 253   313 1041  1041  60  60  1414 

2018 PP/SYAL WD 100 168   268         268 

2255 PP/SYAL WD  359   359 440  440      799 

2804 PP/SYAL WD  109   109 16  16      125 

2805 PP/SYAL WD  185   185 7  7  20  20  212 
2811 PP/SYAL WD  132   132 8  8      140 

2812 PP/SYAL WD  116   116 8  8      124 

 Mean: PP/SYAL  80 189   212 253  253  40  40  440 

Mean: Dry Upland Forest PVG 74 243 138 77 291 143  143 82 180 102 193 20 495 

Sources/Notes: Plot includes two types of plots: numbers refer to plots from a Managed Stand Survey (MSS), a plot-based system (5-point plot cluster 
covering about 1 acre) installed in 1990 in young, managed stands with an average stand diameter of 3 inches or more. Plots beginning with UMA were 
part of a Forest-wide reforestation monitoring effort completed in 1994 (16 plots installed in randomly selected reforestation units across the Umatilla 
National Forest; see Powell 1995). Plant association is an acronym formed from a 2-digit tree species (DF = Douglas-fir; GF = grand fir; PP = ponderosa 
pine) and a 4- or 5-digit understory species code (AGSP = bluebunch wheatgrass; CAGE = elk sedge; CARU = pinegrass; CELE = mountain mahogany; FEID = 
Idaho fescue; PHMA = mallow ninebark; SPBE = birchleaf spiraea; SYAL = common snowberry; VAME = big huckleberry). PAG refers to plant association 
group (WD is warm dry; HD is hot dry; see Powell et al. 2007). Columns are provided for individual tree species (in addition to species codes already men-
tioned, WJ = western juniper; PP = ponderosa pine; LP = lodgepole pine; WL = western larch; DF = Douglas-fir; WP = western white pine; ES = Engelmann 
spruce). Early Seral is a sum of preceding four species columns; Mid Seral is a sum of preceding two columns; Late Seral is a sum of preceding three col-
umns; other species (Spp) includes Pacific yew, hawthorn, willow, and paper birch. Total is a summed tree density value, as trees per acre, for all individ-
ual species columns. 

Note: tree density values include total tree stocking, including three categories of trees: (1) trees established by out-planting (e.g., trees originating 
as nursery-produced seedlings), (2) trees established as natural regeneration (trees originating from natural seeding occurring after timber harvest or 
another disturbance), and (3) trees present before a disturbance process (including ‘advance’ regeneration and mature trees from a previous stand that 
survived the disturbance process). 

Mean values are presented for each plant association, and at the bottom of this table for Dry Upland Forest PVG as a whole. They were calculated in 
such a way that plots where a tree species or seral stage did not occur (there is a blank in the species or seral stage column) were not included in the 
calculation (in other words, blanks were not treated as zero values when calculating Means). 
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DRY-FOREST REFERENCES AND LITERATURE CITED 

This section includes literature cited in text, along with other references having relevance to 

ecology and management of dry forests in the Blue Mountains of northeastern Oregon, south-

eastern Washington, and west-central Idaho. 

Cautionary note about dry-forest references: users of literature in this section should con-

sider that concerns about dry forest exist for all of western North America, so research involving 

dry-forest ecosystems spans a broad geographical area ranging from southern Okanogan valley 

of British Columbia to Black Hills of South Dakota, Colorado’s Front Range, Mogollon Rim in Ari-

zona, and Sierra Nevada Mountains of California. 

I believe it is useful for practitioners to be aware of a wide breadth of dry-forest research, 

and I have attempted to provide a relatively diverse array of sources in this section. 

It is also important to recognize that dry-forest studies pertaining to Blue Mountains and ad-

jacent portions of interior Pacific Northwest qualify as primary, place-based research, findings 

from northern Rockies (particularly for areas located west of Continental Divide) qualify as valu-

able secondary sources, and works from the Southwest or Sierra Nevada are tertiary sources. 

Note: I believe Sierra Nevada research is more appropriate for summer-dry Mediterranean 

climates of the Blue Mountains than sources derived from monsoon climates of the Southwest-

ern U.S. or the southern Front Range of Colorado. 

This cautionary note is particularly germane to literature describing dry-forest reference 

conditions. Excellent insights about historical conditions for ponderosa pine ecosystems of the 

southwestern U.S. are provided by Gus Pearson (1923), Gil Schubert (1974), Charles Avery 

(Avery et al. 1976), Charles Cooper (1960, 1961a), and others, but in my opinion, their character-

izations of presettlement stand structure (stocking levels, etc.) should not be extrapolated to 

dry-forest ecosystems of eastern Oregon, or extrapolation should be attempted very carefully, 

due to climatic and environmental differences between these two regions. 

With few exceptions, sources contained in this References section are available from World 

Wide Web in digital form, and a Digital Object Identifier (doi) is included for these items when-

ever possible. 

[Digital object identifier is an international system used to uniquely identify, and link to, 

electronic versions of scientific information, primarily journal articles. A doi can be thought of as 

a ‘catalog number’ for journal articles and other non-book sources.] 

All doi links pertain to formally published sources only; local analysis protocols, white papers 

(like this one), monitoring reports, and similar items will not have a doi. 

For recent USDA Forest Service research reports (general technical reports, research papers, 

research notes, conference proceedings, etc.), a doi may also be available. But most reports do 

not yet have a doi, so a doi is not included for reports in this References section. 

For FS research items, however, this section provides a weblink for the online Treesearch 

system, because most FS research reports are available for download from Treesearch. 

When preparing a white paper, one of my objectives is to help users locate its references 
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and literature citations. For journal articles or books, I provide a doi or isbn number whenever 

one is available. For other reference materials, a weblink is provided, although I realize that 

weblinks have not been stable (except for USDA Forest Service Treesearch links, which have 

been quite stable thus far). 

Abatzoglou, J.T.; Williams, A.P. 2016. Impact of anthropogenic climate change on wildfire 
across western US forests. Proceedings of the National Academy of Sciences. 113(42): 
11770-11775. doi:10.1073/pnas.1607171113 

Abella, S.R. 2004. Tree thinning and prescribed burning effects on ground flora in Arizona pon-
derosa pine forests: A review. Journal of the Arizona-Nevada Academy of Science. 36(2): 68-
76. https://www.jstor.org/stable/27641698  

Abella, S.R.; Covington, W.W. 2006. Forest ecosystems of an Arizona Pinus ponderosa land-
scape: Multifactor classification and implications for ecological restoration. Journal of Bioge-
ography. 33(8): 1368-1383. doi:10.1111/j.1365-2699.2006.01513.x 

Abella, S.R.; Denton, C.W. 2009. Spatial variation in reference conditions: Historical tree density 
and pattern on a Pinus ponderosa landscape. Canadian Journal of Forest Research. 39(12): 
2391-2403. doi:10.1139/X09-146 

Abella, S.R.; Fulé, P.Z.; Covington, W.W. 2006. Diameter caps for thinning southwestern pon-
derosa pine forests: Viewpoints, effects, and tradeoffs. Journal of Forestry. 104(8): 407-414. 
doi:10.1093/jof/104.8.407 
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APPENDIX  4:  SILVICULTURE  WHITE  PAPERS 

White papers are internal reports, and they are produced with a consistent formatting and 

numbering scheme – all papers dealing with Silviculture, for example, are placed in a silviculture 

series (Silv) and numbered sequentially. Generally, white papers receive only limited review and, 

in some instances pertaining to highly technical or narrowly focused topics, the papers may re-

ceive no technical peer review at all. For papers that receive no review, the viewpoints and per-

spectives expressed in the paper are those of the author only, and do not necessarily represent 

agency positions of the Umatilla National Forest or the USDA Forest Service. 

Large or important papers, such as two papers discussing active management considera-

tions for dry and moist forests (white papers Silv-4 and Silv-7, respectively), receive extensive 

review comparable to what would occur for a research station general technical report (but they 

don’t receive blind peer review, a process often used for journal articles). 

White papers are designed to address a variety of objectives: 

(1) They guide how a methodology, model, or procedure is used by practitioners on the 

Umatilla National Forest (to ensure consistency from one unit, or project, to another). 

(2) Papers are often prepared to address ongoing and recurring needs; some papers have ex-

isted for more than 20 years and still receive high use, indicating that the need (or issue) has 

long standing – an example is white paper #1 describing the Forest’s big-tree program, 

which has operated continuously for 25 years. 

(3) Papers are sometimes prepared to address emerging or controversial issues, such as man-

agement of moist forests, elk thermal cover, or aspen forest in the Blue Mountains. These 

papers help establish a foundation of relevant literature, concepts, and principles that con-

tinuously evolve as an issue matures, and hence they may experience many iterations 

through time. [But also note that some papers have not changed since their initial develop-

ment, in which case they reflect historical concepts or procedures.] 

(4) Papers synthesize science viewed as particularly relevant to geographical and management 

contexts for the Umatilla National Forest. This is considered to be the Forest’s self-selected 

‘best available science’ (BAS), realizing that non-agency commenters would generally have a 

different conception of what constitutes BAS – like beauty, BAS is in the eye of the beholder. 

(5) The objective of some papers is to locate and summarize the science germane to a particular 

topic or issue, including obscure sources such as master’s theses or Ph.D. dissertations. In 

other instances, a paper may be designed to wade through an overwhelming amount of 

published science (dry-forest management), and then synthesize sources viewed as being 

most relevant to a local context. 

(6) White papers function as a citable literature source for methodologies, models, and proce-

dures used during environmental analysis – by citing a white paper, specialist reports can 

include less verbiage describing analytical databases, techniques, and so forth, some of 

which change little (if at all) from one planning effort to another. 

(7) White papers are often used to describe how a map, database, or other product was devel-

oped. In this situation, the white paper functions as a ‘user’s guide’ for the new product. Ex-
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amples include papers dealing with historical products: (a) historical fire extents for the Tu-

cannon watershed (WP Silv-21); (b) an 1880s map developed from General Land Office sur-

vey notes (WP Silv-41); and (c) a description of historical mapping sources (24 separate 

items) available from the Forest’s history website (WP Silv-23). 

The following white papers are available from the Forest’s website: Silviculture White Papers 

Paper # Title 

1 Big tree program 

2 Description of composite vegetation database 

3 Range of variation recommendations for dry, moist, and cold forests 

4 Active management of Blue Mountains dry forests: Silvicultural considerations 

5 Site productivity estimates for upland forest plant associations of Blue and Ochoco 

Mountains 

6 Blue Mountains fire regimes 

7 Active management of Blue Mountains moist forests: Silvicultural considerations 

8 Keys for identifying forest series and plant associations of Blue and Ochoco Moun-

tains 

9 Is elk thermal cover ecologically sustainable? 

10 A stage is a stage is a stage…or is it? Successional stages, structural stages, seral 

stages 

11 Blue Mountains vegetation chronology 

12 Calculated values of basal area and board-foot timber volume for existing (known) 

values of canopy cover 

13 Created opening, minimum stocking, and reforestation standards from Umatilla Na-

tional Forest Land and Resource Management Plan 

14 Description of EVG-PI database 

15 Determining green-tree replacements for snags: A process paper 

16 Douglas-fir tussock moth: A briefing paper 

17 Fact sheet: Forest Service trust funds 

18 Fire regime condition class queries 

19 Forest health notes for an Interior Columbia Basin Ecosystem Management Project 

field trip on July 30, 1998 (handout) 

20 Height-diameter equations for tree species of Blue and Wallowa Mountains 

21 Historical wildfires in headwaters portion of Tucannon River watershed 

22 Range of variation recommendations for insect and disease susceptibility 

23 Historical vegetation mapping 

24 How to measure a big tree 

25 Important Blue Mountains insects and diseases 

26 Is this stand overstocked? An environmental education activity 

27 Mechanized timber harvest: Some ecosystem management considerations 

28 Common plants of south-central Blue Mountains (Malheur National Forest) 

29 Potential natural vegetation of Umatilla National Forest 

http://www.fs.usda.gov/detail/umatilla/landmanagement/resourcemanagement/?cid=stelprdb5326230
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Paper # Title 

30 Potential vegetation mapping chronology 

31 Probability of tree mortality as related to fire-caused crown scorch 

32 Review of “Integrated scientific assessment for ecosystem management in the inte-

rior Columbia basin, and portions of the Klamath and Great basins” – Forest vegeta-

tion 

33 Silviculture facts 

34 Silvicultural activities: Description and terminology 

35 Site potential tree height estimates for Pomeroy and Walla Walla Ranger Districts 

36 Stand density protocol for mid-scale assessments 

37 Stand density thresholds as related to crown-fire susceptibility 

38 Umatilla National Forest Land and Resource Management Plan: Forestry direction 

39 Updates of maximum stand density index and site index for Blue Mountains variant 

of Forest Vegetation Simulator 

40 Competing vegetation analysis for southern portion of Tower Fire area 

41 Using General Land Office survey notes to characterize historical vegetation condi-

tions for Umatilla National Forest 

42 Life history traits for common Blue Mountains conifer trees 

43 Timber volume reductions associated with green-tree snag replacements 

44 Density management field exercise 

45 Climate change and carbon sequestration: Vegetation management considerations 

46 Knutson-Vandenberg (K-V) program 

47 Active management of quaking aspen plant communities in northern Blue Moun-

tains: Regeneration ecology and silvicultural considerations 

48 Tower Fire…then and now. Using camera points to monitor postfire recovery 

49 How to prepare a silvicultural prescription for uneven-aged management 

50 Stand density conditions for Umatilla National Forest: A range of variation analysis 

51 Restoration opportunities for upland forest environments of Umatilla National For-

est 

52 New perspectives in riparian management: Why might we want to consider active 

management for certain portions of riparian habitat conservation areas? 

53 Eastside Screens chronology 

54 Using mathematics in forestry: An environmental education activity 

55 Silviculture certification: Tips, tools, and trip-ups 

56 Vegetation polygon mapping and classification standards: Malheur, Umatilla, and 

Wallowa-Whitman National Forests 

57 State of vegetation databases for Malheur, Umatilla, and Wallowa-Whitman Na-

tional Forests 

58 Seral status for tree species of Blue and Ochoco Mountains 
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REVISION  HISTORY 

July 2011: initial version of this white paper was circulated for technical peer review by Rick 

Brown (Defenders of Wildlife), Craig Schmitt (USDA Forest Service, Blue Mountains Service 

Center, La Grande), and Carrie Spradlin (USDA Forest Service, Umatilla National Forest, Hep-

pner Ranger District). Their reviews contributed significantly to this white paper! 

July 2012: minor formatting and editing changes were made (renumbered section headings and 

figure captions); a new section (7.11) providing selected wildlife considerations was added, 

along with additional literature citations. 

November 2012: minor formatting and editing changes were made throughout the document; 

the References section was corrected; appendix 2 was added describing the silviculture 

white paper system, including a list of available white papers. 

April 2013: minor formatting and editing changes were made throughout the document; new 

text (a quote) was added to section 3.1; additional text and a new figure were added to the 

ungulate herbivory discussion (section 5); a new figure was added to the climate change dis-

cussion (section 7.13). 

January 2014: this was a significant update: formatting and editing changes were made through-

out the document, including a renumbering of all subsections within section 7; additional 

photographs were added (livestock grazing, selective cutting, and restoration sections); new 

material was added about dry-forest stocking levels and how they could be applied (figs. 30-

32 and table 6); a new figure was added describing western juniper expansion on dry sites; 

and a Summary section was added before the References section. 

December 2014: minor formatting and editing changes were made, including the addition of 

new photographs as figures; a new appendix 2 was added describing early 1940s timber har-

vest practices in the Blue Mountains by using a series of photographs from Grant County 

and the Malheur National Forest; a new appendix 3 was added providing regeneration mon-

itoring results for 76 plots established on dry upland forest sites on the Umatilla National 

Forest; and additional references were added to the References section, along with weblinks 

and digital object identifiers (doi) to improve access to more dry-forest references. 
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