STATUS OF EBL2: AN EUV IRRADIATION FACILITY AT TNO AND UPCOMING UPGRADES

Norbe<mark>rt Koster, He</mark>rman Bekman, Michel van Putten, Rory de Zanger, Rob Ebeling, Arnold Storm, Chien-Ching Wu, Jetske Stortelder, Peter van der Walle, Jochem Janssen

1

innovation

for life

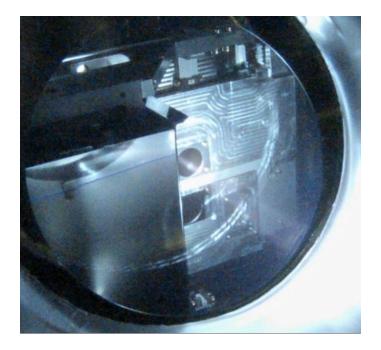
OUTLINE

Introduction EUV beamline 2

- Status of EBL2
- > A few results
- > Upcoming upgrades
- Conclusion

EBL2: SECOND EUV BEAMLINE AT TNO

2006: First EUV beam line: EBL 2016: Second EUV beam line: EBL2



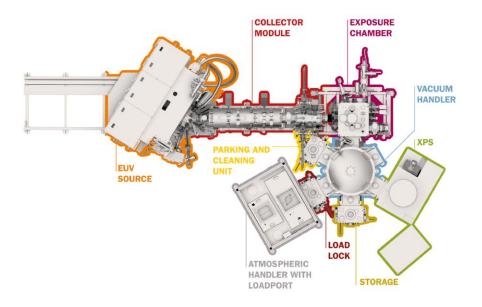
INO innovation for life

INTRODUCTION: WHAT IS EBL2

- EBL2 ⇔ EUV Beam Line #2
- What it can:
 - Irradiation of materials with high intensity EUV light (10-20 nm) in a controlled vacuum environment
 - Samples can be in the form of wafer pieces or other small sizes up to EUV masks
- > What it cannot:
 - Perform lithography/pattern printing with EUV (yet) → metrology port on source suitable for building second beam line for lithography

OUTLINE

Introduction EUV beamline 2


Status of EBL2

- > A few results
- > Upcoming upgrades
- Conclusion

TNO innovation for life

CURRENT EBL2 PERFORMANCE

	EBL2
EUV source	Ushio -Sn-LDP
Rep.rate	1-10 kHz
Peak intensity (13.5 nm 2%BW)	0.5 W/mm ² @ 3kHz
Integrated power (on 1"sample) @10 -20 nm	4-5 Watt @ 3kHz
Spotsize	1x2 mm ²
Defocussing option	Yes
H2 pressure range	0-50 Pa
Gasses	$\rm H_2,$ He, Ar, H_2O, XCDA, O_2, N_2, C_xH_y
Sample size	152x152x20 mm ³

For a 250W EUV source intensity at pellicle ~0.05W/mm² (Zoldesi et al) EBL2 can accelerate by factor 10, when degradation is driven mainly by EUV photons

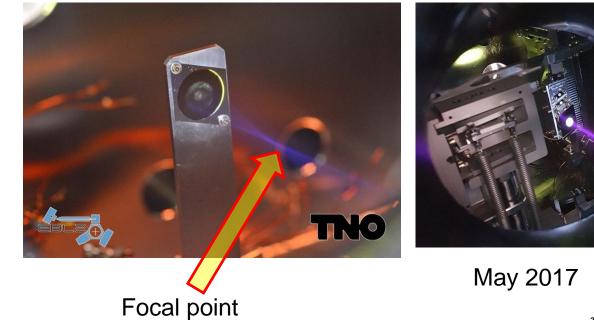
Zoldesi, C., Bal, K., Blum, B., Bock, G., Brouns, D., Dhalluin, F., Dziomkina, N., Arias Espinoza, J.D., de Hoogh, J., Houweling, S., Jansen, M., Kamali, M., Kempa, A., Kox, R., de Kruif, R., Lima, J., Liu, Y., Meijer, H., Meiling, H., van Mil, I., Reijnen, M., Scaccabarozzi, L., Smith, D., Verbrugge, B., de Winters, L., Xiong, X., Zimmerman, J., "Progress on EUV pellicle development" Proc. of SPIE 90481N (2014)

http://www.innovation for life

SAMPLE ANALYSIS

- > Online sample analysis: imaging ellipsometry
 - > Used for alignment on sample
 - Designed by TNO
- In vacuo sample analysis: XPS analysis and surface mapping, after in vacuum transport to the XPS
- Other online or in vacuo analysis techniques in preparation
- > Ex vacuo analysis in house:
 - > SEM, XRF, ellipsometry
- > Ex vacuo analysis external:
 - > EUV reflectometry at PTB

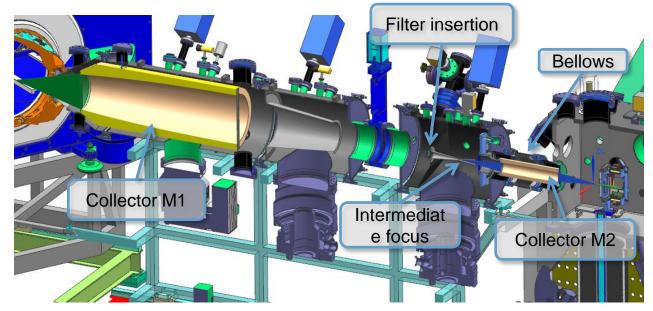



The innovation for life

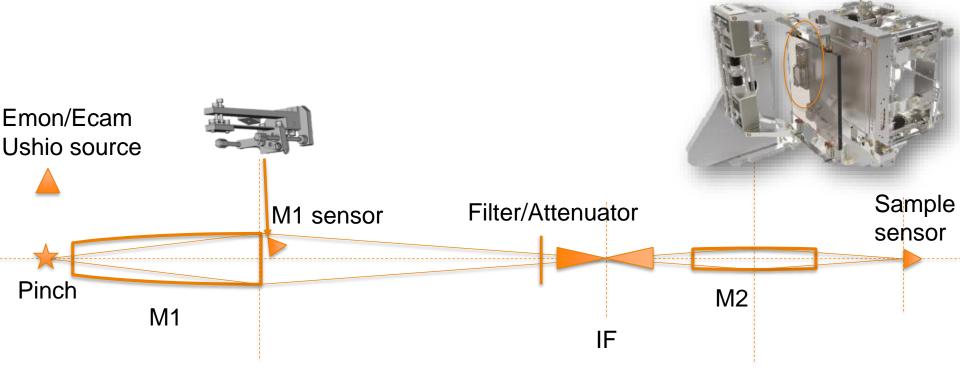
FIRST LIGHT (DEC 2016)

- With small M1 collector and preliminary M2
- > No alignment optimisation

Fluorescent image with side lobes of M2

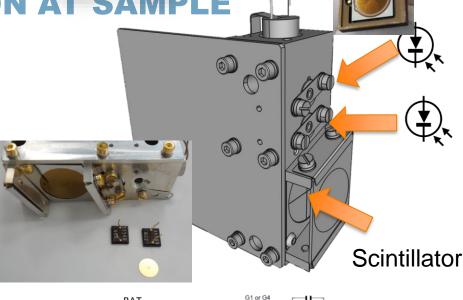


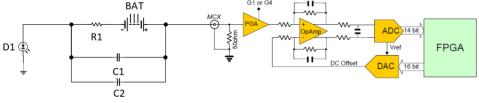
INO innovation for life


COLLECTOR OPTICS

- 2 mirror design with intermediate focus
- Integrated differential pumping assembly for gas separation
- Filter insertion point for spectral filtering
- (De)focussing by translating source and collectors on track

TNO innovation for life

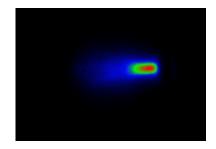

EUV DIAGNOSTICS

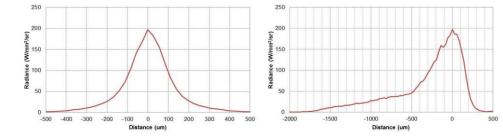


NO innovation for life

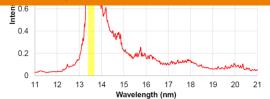
MEASURING IRRADIATION AT SAMPLE

- Two 1 200 nm sensitive photodiodes
- Custom coating for EUV bandpass filtering
- Calibrated at PTB
- Behind 25 and 100 µm pinhole
 - Intensity attenuation for diode
 - > Spatial resolution for intensity distribution
- > Diode biasing for fast response
- Photocurrent sampled with 500 MHz digitizer and numerically integrated
- Scintillator with crosshair
 - > YAG with custom coating for EUV filtering
 - Converts EUV to 550 nm (green)
 - Measured using CCD camera
 - Used for: spot alignment and relative intensity distribution



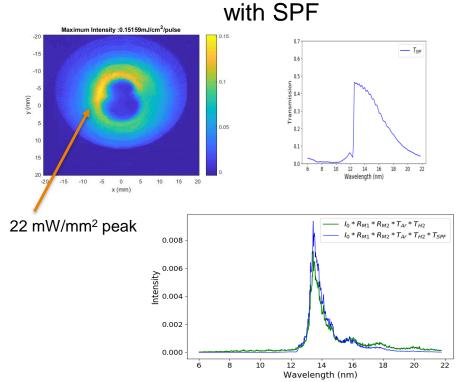


USHID Lighting-Edge Technologies MEASURING PERFORMANCE AT SOURCE

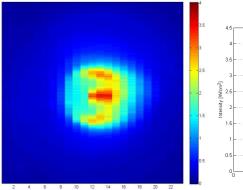

- Supplied by Technology Partner Ushio
 - > Sn fuelled \rightarrow Sn spectrum
 - Rep rate: 3 kHz
 - > Tuneable from single pulse up to 10 kHz
 - > Plasma size: ~0.2*0.6 mm FWHM
 - > Ecam picture (with EUV diode for quantification)

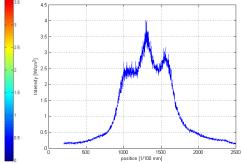
Images courtesy of Ushio; see also Proc. of SPIE Vol. 9422, pp. 94220F-1-9

See also: S64 Ushio source update by Yusuke Teramoto



red behind debris shield not snatially


PERFORMANCE AT SAMPLE



no SPF

Diode scan

At 3kHz, unfiltered in-band: total power at 3kHz is 2.6 W (= 0.546 W filtered) peak power at 3kHz is 3.5 W/cm² (=0.735 W/cm² filtered)

100 μm (nominal) pinhole, diode 35059-007 (#10), 0.00855 C/J sensitivity (no SPF), 0.00937 C/J sensitivity (SPF) 06 November 2019

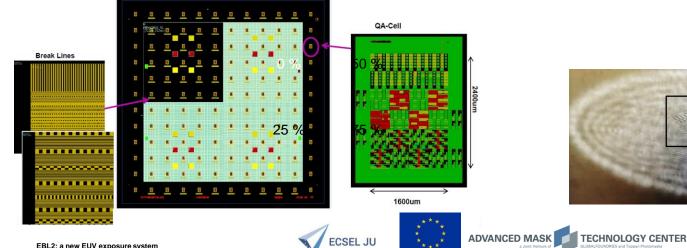
STATUS UPDATE

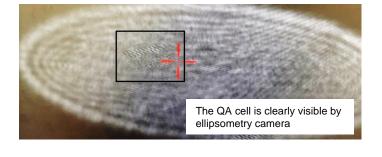
- > EBL2 is operational since 2018, serving multiple customers
- Multiple experiments performed:
 - Mask lifetime
 - Material degradation
 - EUV induced plasma
 - > New absorber test protocol for high k and PSM masks developed in cooperation with ASML
- M2 collector not up to specification. Replacement is underway as we speak

Parameter	Unit	Current	Future
Irradiance IB	W/mm ²	0.45	2
Radiant influx	W	3.3	4
Drift	mm	<0.2	?

OUTLINE

- Introduction EUV beamline 2
- Status of EBL2
- > <u>A few results</u>
- > Upcoming upgrades
- > Conclusion

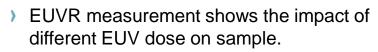



innovation for life

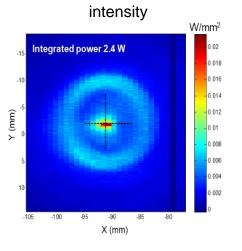
TEST EUV MASK

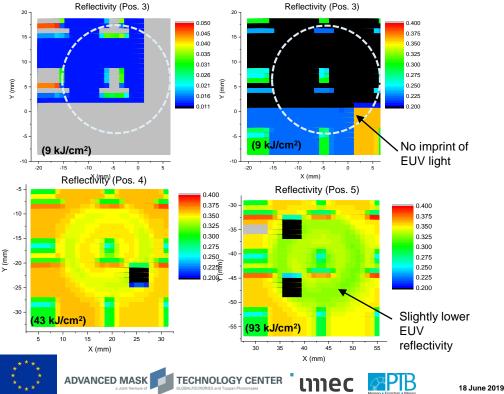
- Mask with regular grid of Test-clips (QA cells) in 4 different background > loadings (0%, 25%, 50% and 75%).
- QA cell provides different patterns in terms of size, feature types and tones. >

unec



NO innovation for life

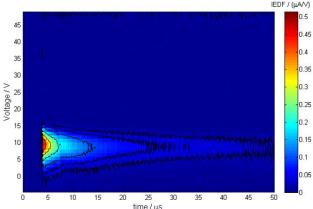

EUVR ANALYSIS (ZOOM-IN)


ECSEL JU

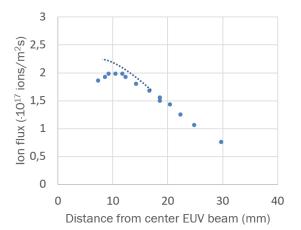
1 corresponds to 100% reflectivity

 Intensity measured using EBL2 EUV metrology (calibrated diode)

EBL2: a new EUV exposure system



EBL-2 : EUV INDUCED PLASMA MEASUREMENTS

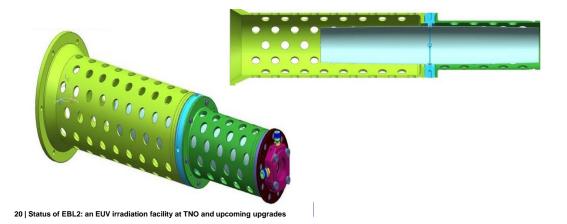


Exposure chamber	
RFEA THE INTERNATION Flux	
EUV beam –	Pulsed plasma

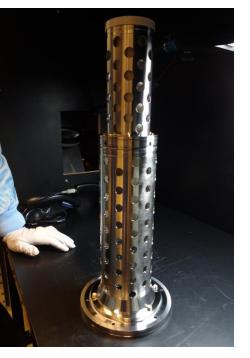
- The ion fluxes and energies were measured using the RFEA in timeintegrated and time-resolved modes.
- Typical peak energies: 5–10 eV.
- Typical ion flux $\Phi \approx 2 \cdot 10^{17}$ ions m⁻²s⁻¹.
- Radial profiles: the ion flux decays ~4 times 30 mm from the beam center.
- The plasma decay time in the afterglow estimated as ~100 µs and is supposed to be limited by the diffusion to the chamber walls.

 RFEA position with respect to EUV beam during the
experiments 10 mm left; and time-resolved diagrams of ion energy distributions

innovation for life


OUTLINE

- Introduction EUV beamline 2
- Status of EBL2
- > A few results
- > Upcoming upgrades
- Conclusion

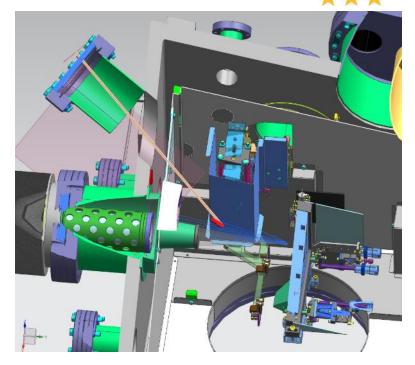

PRESENT UPGRADE: M2

- Improvement of intensity to 2 W/mm²
- > Shell design
- > Currently being installed
- > Validation program to start week 46

We make it visible.

06 November 2019

NO innovation for life


FUTURE UPGRADE: EUV REFLECTOMETRY TAPES3

Requirements finalized

- > Relative reflectometry measurements
- Pre and post measurements (0.5% accuracy)
- Wavelength range 12.5-14.5 nm (<0.05 resolution)
- Fixed angle of 6°CRA
- No moving parts

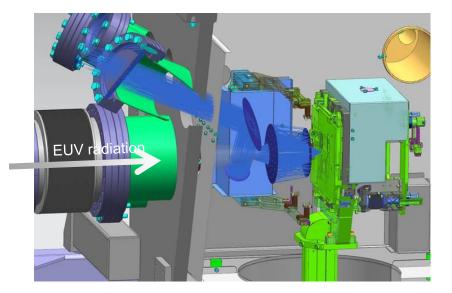
Concept design started

- Permanent in-situ system
- Spectrometer using grating to resolve spectrum
- > Project within TAPES3 framework



TNO innovation for life

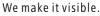
TAPES3


FUTURE UPGRADE: IR MICROSCOPY

- No optics inside vacuum
- > Camera and COTS lens in ambient
- Thermal image of sample with high resolution (0.1 mm) and fast response

Ongoing conceptual design

- Parts are ordered
- > Project within TAPES3 framework


for life

CONCLUSION

> EBL2 is an unique facility, accessible to third parties, that enables EUV lifetime research with;

- > ASML EUV scanner relevant conditions,
- > Up to EUV mask sample size
- > High flexibility in environmental conditions
- > In vacuum surface analysis



ASML

ECSEL JU

