

79 Elm Street • Hartford, CT 06106-5127

Summit Corporation of America

Thomaston, Connecticut 06787

1430 Waterbury Road

Facility ID: 140-011

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

NPDES PERMIT issued to

Location Address:

1430 Waterbury Road Thomaston, Connecticut 06787

Permit ID: CT0001180

Effective Date:

<u>**Permit Expires**</u>: [5 years from effective date]

SECTION 1: GENERAL PROVISIONS

Receiving Water Body: Naugatuck River

Receiving Water Body ID: CT6900-00_05

- (A) This permit is reissued in accordance with Section 22a-430 of Chapter 446k, Connecticut General Statutes ("CGS"), and Regulations of Connecticut State Agencies ("RCSA") adopted thereunder, as amended, and Section 402(b) of the Clean Water Act ("CWA"), as amended, 33 USC 1251, *et. seq.*, and pursuant to an approval dated September 26, 1973, by the Administrator of the United States Environmental Protection Agency for the State of Connecticut to administer a NPDES permit program.
- (B) SUMMIT CORPORATION OF AMERICA ("Permittee") shall comply with all conditions of this permit including the following sections of the RCSA which have been adopted pursuant to section 22a-430 of the CGS and are hereby incorporated into this permit. Your attention is especially drawn to the notification requirements of subsections (i)(2), (i)(3), (j)(1), (j)(6), (j)(8), (j)(9)(C), (j)(10)(C), (j)(11)(C), (D), (E), and (F), (k)(3) and (4) and (l)(2) of Section 22a-430-3.

Section 22a-430-3: General Conditions

- (a) Definitions
- (b) General
- (c) Inspection and Entry
- (d) Effect of a Permit
- (e) Duty to Comply
- (f) Proper Operation and Maintenance
- (g) Sludge Disposal
- (h) Duty to Mitigate
- (i) Facility Modifications; Notification
- (j) Monitoring, Records and Reporting Requirements
- (k) Bypass
- (*l*) Conditions Applicable to POTWs
- (m) Effluent Limitation Violations (Upsets)
- (n) Enforcement
- (o) Resource Conservation
- (p) Spill Prevention and Control
- (q) Instrumentation, Alarms, Flow Recorders
- (r) Equalization

Section 22a-430-4: Procedures and Criteria

- (a) Duty to Apply
- (b) Duty to Reapply
- (c) Application Requirements
- (d) Preliminary Review
- (e) Tentative Determination
- (f) Draft Permits, Fact Sheets
- (g) Public Notice, Notice of Hearing
- (h) Public Comments
- (i) Final Determination
- (j) Public Hearings
- (k) Submission of Plans and Specifications, Approval
- (1) Establishing Effluent Limitations and Conditions
- (m) Case by Case Determinations
- (n) Permit Issuance or Renewal
- (o) Permit Transfer
- (p) Permit Revocation, Denial or Modification
- (q) Variances
- (r) Secondary Treatment Requirements
- (s) Treatment Requirements
- (t) Discharges to POTWs Prohibitions
- (C) Violations of any of the terms, conditions, or limitations contained in this permit may subject the permittee to enforcement action including, but not limited to, seeking penalties, injunctions and/or forfeitures pursuant to applicable sections of the CGS and RCSA.
- (D) Any false statement in any information submitted pursuant to this permit may be punishable as a criminal offense under section 22a-438 or 22a-131a of the CGS or in accordance with section 22a-6, under section 53a-157b of the CGS.
- (E) The authorization to discharge under this permit may not be transferred without prior written approval of the Commissioner of Energy and Environmental Protection ("Commissioner"). To request such approval, the permittee and proposed transferee shall register such proposed transfer with the Commissioner, at least thirty days prior to the transferee becoming legally responsible for creating or maintaining any discharge which is the subject of the permit transfer. Failure, by the transferee, to obtain the Commissioner's approval prior to commencing such discharge(s) may subject the transferee to enforcement action for discharging without a permit pursuant to applicable sections of the CGS and RCSA.
- (F) No provision of this permit and no action or inaction by the Commissioner shall be construed to constitute an assurance by the Commissioner that the actions taken by the permittee pursuant to this permit will result in compliance or prevent or abate pollution.
- (G) Nothing in this permit shall relieve the permittee of other obligations under applicable federal, state and local law.
- (H) An annual fee shall be paid for each year this permit is in effect as set forth in section 22a-430-7 of the RCSA.
- (I) The permittee shall operate and maintain its collection and treatment system in accordance with its Operation and Maintenance Plan, March 2017, and with any approvals issued in accordance with RCSA section 22a-430-3(i)(3).

SECTION 2: DEFINITIONS

(A) The definitions of the terms used in this permit shall be the same as the definitions contained in section

22a-423 of the CGS and Section 22a-430-3(a) and 22a-430-6 of the RCSA.

(B) In addition to the above, the following definitions shall apply to this permit:

"40 CFR" means Title 40 of the Code of Federal Regulations.

"Annually" when used as a sampling frequency in Tables A and B of this permit, means that sampling is required in the month of March.

"Average Monthly Limit" means the maximum allowable "Average Monthly Concentration" as defined in section 22a-430-3(a) of the RCSA when expressed as a concentration (e.g., mg/l). Otherwise, it means "Average Monthly Discharge Limitation" as defined in Section 22a-430-3(a) of the RCSA.

"Batch" is the quantity produced as a result of one operation.

Connecticut Water Quality Standards means the regulations adopted under RCSA sections 22a-426-1 through 22a-426-9, as amended.

"Daily Concentration" means the concentration of a substance as measured in a daily composite sample, or the arithmetic average of all grab sample results defining a grab sample average.

"Daily Quantity" means the quantity of waste discharged during an operating day.

"Dilution Factor" means the inverse of the "Instream Waste Concentration".

"DMR" means Discharge Monitoring Report.

"IC" means "Inhibition Concentration".

" IC_{25} " means a point estimate of the toxicant concentration that would cause a twenty-five (25) percent reduction in a non-lethal biological measurement of the test organism, such as reproduction or growth.

"Instantaneous Limit" means the highest allowable concentration of a substance as measured by a grab sample, or the highest allowable measurement of a parameter as obtained through instantaneous monitoring.

"In-stream Waste Concentration" ("IWC%") means the concentration (as a percent) of the effluent in the receiving water.

"LC" means Lethal Concentration

" LC_{50} " means the concentration lethal to fifty (50) percent of the test organisms during a specific period.

"Lowest Observed Effect Concentration" ("LOEC") means the lowest concentration of an effluent or toxicant to which organisms are exposed in a life cycle or partial life-cycle test, which causes adverse effects on the test organisms.

"Maximum Daily Limit" means the maximum allowable "Daily Concentration" (defined above) when expressed as a concentration (e.g., mg/l). Otherwise, it means the maximum allowable "Daily Quantity" as defined above, unless it is expressed as a flow quantity. If expressed as a flow quantity, it means "Maximum Daily Flow" as defined in Section 22a-430-3(a) of the RCSA.

"No Observed Effect Concentration" ("NOEC") means the highest concentration of an effluent or toxicant to which organisms are exposed in a life cycle or partial life-cycle test, that causes no observable adverse effects on the test organisms.

"Quarter" means the calendar quarter beginning at 12:00 AM on the first day of March, June, September, and December and ending at 12:00 AM on the first day of June, September, December, and March, respectively.

"Quarterly", when used as a sampling frequency in Tables A and B of this permit, means that sampling is required in the months of March, June, September, and December.

"Range During Sampling" ("RDS"), as a sample type, means the maximum and minimum of all values recorded as a result of analyzing each grab sample of: 1) a Composite Sample or, 2) a Grab Sample Average. For those permittees with continuous monitoring and recording pH meters, Range During Sampling means the maximum and minimum readings recorded with the continuous monitoring device during the Composite or Grab Sample Average sample collection.

"Reporting Frequency" means the frequency at which monitoring results must be provided.

"Semiannual" when used as a sampling frequency in Tables A and B of this permit, means that sampling is required in the months of March and September.

SECTION 3: COMMISSIONER'S DECISION

- (A) The Commissioner has issued a final determination and found that with respect to the discharge, DSN 001-1, modification of the existing system would protect the waters of the state from pollution. The Commissioner's decision is based on Application 201205290 for permit reissuance received on June 19, 2012 and the administrative record established in the processing of that application.
- (B) The Commissioner hereby authorizes the permittee to discharge in accordance with the provisions of this permit, the above referenced application, and all approvals issued by the Commissioner or the Commissioner's authorized agent for the discharges and/or activities authorized by, or associated with, this permit in accordance with the following:
 - (1) From the issuance of this permit through and including the last day of the first calendar month of such issuance, the Commissioner hereby authorizes the permittee to discharge in accordance with the terms and conditions of Permit No. CT0001180, issued by the Commissioner to the permittee on December 21, 2007, the previous application submitted by the permittee on April 2, 2004, and all modifications and approvals issued by the Commissioner or the Commissioner's authorized agent for the discharge and/or activities authorized by, or associated with, Permit No. CT0001180, issued by the Commissioner to the permittee on December 21, 2007.
 - (2) Beginning on the first day of the month following the issuance of this permit and continuing until this permit expires or is modified or revoked, the Commissioner hereby authorizes the permittee to discharge in accordance with the terms and conditions of this permit, Application No. 201205290 received by the Department on June 19, 2012, and all modifications and approvals issued by the Commissioner or the Commissioner's authorized agent for the discharge and/or activities authorized by, or associated with this permit.
- (C) The Commissioner hereby authorizes the permittee to discharge in accordance with the provisions of this permit, the above referenced application, and all approvals issued by the Commissioner or the Commissioner's authorized agent for the discharges and/or activities authorized by, or associated with, this permit.
- (D) The Commissioner reserves the right to make appropriate revisions to the permit in order to establish any appropriate effluent limitations, schedules of compliance, or other provisions which may be authorized under the Federal Clean Water Act or the CGS or regulations adopted thereunder, as amended. The permit as modified or renewed under this paragraph may also contain any other requirements of the Federal Clean Water Act or the CGS or regulations adopted thereunder applicable.

SECTION 4: GENERAL EFFLUENT LIMITATIONS

- (A) The permittee shall assure that the surface water affected by the subject discharge shall conform to the *Connecticut Water Quality Standards*.
- (B) No discharge shall contain, or cause in the receiving stream, a visible oil sheen or floating solids, or cause visible discoloration or foaming in the receiving stream.
- (C) No discharge shall cause acute or chronic toxicity in the receiving water body beyond any zone of influence specifically allocated to that discharge in this permit.
- (D) The temperature of any discharge shall not increase the temperature of the receiving stream above 85 °F, or in any case, raise the temperature of the receiving stream by more than 4 °F.

SECTION 5: SPECIFIC EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

- (A) The discharge is restricted by, and shall be monitored in accordance with the following tables in this section. The wastewater discharge shall not exceed the effluent limitations in these tables and shall otherwise conform to the specific terms and conditions listed in the tables. The permittee shall comply with the "Remarks" and "Footnotes" noted in the tables that follows and such remarks and footnotes are enforceable like any other term or condition of this permit.
- (B) The wastewaters authorized/approved by this permit shall be collected, treated, and discharged in accordance with this permit and with any approvals issued by the Commissioner or his/her authorized agent for the discharges and activities authorized by or associated with this permit. Any wastewater discharges not expressly identified in these tables or otherwise approved to be discharged by this permit shall not be authorized to be discharged by this permit.
- (C) All samples shall be comprised of only the wastewater described in these tables. Samples shall be collected prior to combination with receiving waters or wastewater of any other type, and after all approved treatment units, if applicable. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity. Collection of permit required effluent samples in any location other than the authorized location noted in this permit shall be a violation of this permit.
- (D) In cases where limits and sample type are specified but sampling is not required by this permit, the limits specified shall apply to all samples which may be collected and analyzed by the Department of Energy and Environmental Protection ("Department") personnel, the permittee, or other parties.
- (E) The permittee shall maintain compliance with its *Solvent Management Plan* which was approved by the Department on October 18, 2012 or any subsequent revisions to the plan which have been approved by the Department.

				Ta	able A						
	[T]	HE REQUIREME	NTS OF THIS TABLE	APPLY ONLY IF THE	E AVERAGE MONTHLY EF	FFLUENT FLOW IS 160,000 GPD OR LI	-				
Discharge Serial Number: DSN 001-1		. T.L	XX 7	XX 7-4 T 4					ERNAL OUTF		
Wastewater Description: Metal Finishing W Tumbling Wastewater, On-Site Groundw	Vastewaters	s, Laborato	ry Wastewater	, Water Treatr	nent Wastewater,	Air Scrubber Wastewater	Floor Washy	vater/Building	g Maintenance	Wastew	ater,
Blowdown/Condensate, Fire Suppression			stewater ² , Dru	in Kinsing was	stewater, Reverse	Osmosis (RO) Reject and	Dackwasii w	ater, boller i	Slowdown, Air	Compre	essor
Monitoring Location Description: After the											
Discharge is to: Naugatuck River			r (for Silver).27	8.1. Dilution F	factor (for Ammonia	a, Cyanide, Lead, Nickel): 1	4 4.1				
Discharge is to: Madgatuck Kiver		iution i acto				i, Cyanide, Lead, Mekel). I					[
	NET			FLOW/TIM	IE BASED MONI	FORING	INSTANT.	ANEOUS MC	ONITORING	m "	equired Testing
PARAMETER	DMR CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/ Reporting Frequency ²	Sample Type or Measurement to be reported	Instantan- eous limit or required range	Sample/ Reporting Frequency	Sample Type or measure- ment to be reported	Minimum Level ³	Monitoring Required with Toxicity Testing
Acute Aquatic Toxicity ⁴ Daphnia pulex	TAA3D	%	LC50>43	LC50 > 21	Quarterly	Daily Composite	LC ₅₀ > 7	NR	Grab		
Acute Aquatic Toxicity ⁴ Pimephales promelas	TAA6C	%	$LC_{50} > 43$	LC50 > 21	Quarterly	Daily Composite	$LC_{50} > 7$	NR	Grab		
Chronic Aquatic Toxicity (Survival) ⁵ Ceriodaphnia dubia	TOP3B	%	C-NOEC > 4.3	C-NOEC > 2.1	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Reproduction) ⁵ Ceriodaphnia dubia	TPP3B	%	C-NOEC > 4.3	C-NOEC > 2.1	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Survival) ⁵ Pimephales promelas	TOP6C	%	C-NOEC > 4.3	C-NOEC > 2.1	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Growth) ⁵ Pimephales promelas	TPP6C	%	C-NOEC > 4.3	C-NOEC > 2.1	Semiannual ⁶	Daily Composite	NA	NR	NA		
Alkalinity, as CaCO ₃	00410	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Aluminum, Total	01105	µg/L	269	540	Weekly	Daily Composite	810	NR	Grab	10	1
Aluminum, Total	01105	g/day	163	327	Weekly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from April 1st to October 31st)	00610	mg/L	15.0	32.5	Monthly	Daily Composite	48.7	NR	Grab	5	1
Ammonia (as N) (from April 1 st to October 31 st)	00610	kg/day	9.13	19.68	Monthly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from November 1 st to March 31 st)	00610	mg/L			Monthly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from November 1 st to March 31 st) Biochemical Oxygen Demand, 5-day	00610	kg/day			Monthly	Daily Composite	NA	NR	NA		
(BOD ₅)	00310	mg/L	30	50	Monthly	Daily Composite	75	NR	Grab		1
Biochemical Oxygen Demand, 5-day (BOD ₅)	00310	lbs/day	40.0		Monthly	Daily Composite	NA	NR	NA		
Cadmium, Total	01027	μg/L	0.147	0.21	Annually	Daily Composite	0.31	NR	Grab	0.2	1
Cadmium, Total	01027	g/day	0.10	0.14	Annually	Daily Composite	NA	NR	NA		
Chloride	00940	mg/L			Monthly	Daily Composite	NA	NR	NA		1
Chlorine, Total Residual	50060	μg/L			Weekly	Grab Sample Average	NA	NR	Grab	10	1
Chlorine, Total Residual	50060	g/day			Weekly	Grab Sample Average	NA	NR	NA		
Chloroform	32106	μg/L	470	686	Monthly	Grab Sample Average	1029	NR	Grab		1

Page 6

Table A

[THE REQUIREMENTS OF THIS TABLE APPLY ONLY IF THE AVERAGE MONTHLY EFFLUENT FLOW IS 160,000 GPD OR LESS]

Monitoring Location: 1 (EXTERNAL OUTFALL)

Wastewater Description: Metal Finishing Wastewaters, Laboratory Wastewater, Water Treatment Wastewater, Air Scrubber Wastewater Floor Washwater/Building Maintenance Wastewater, Tumbling Wastewater, On-Site Groundwater Remediation Wastewater¹, Drum Rinsing Wastewater, Reverse Osmosis (RO) Reject and Backwash Water, Boiler Blowdown, Air Compressor Blowdown/Condensate, Fire Suppression Test Water

Monitoring Location Description: After the final pH control tank

Discharge Serial Number: DSN 001-1

Discharge is to: Naugatuck River	Di	ilution Factor	r (for Silver):27	7.8:1; Dilution F	actor (for Ammoni	a, Cyanide, Lead, Nickel): 1	4.4:1				
	NET			FLOW/TIM	IE BASED MONI	TORING	INSTANT	ANEOUS MC	DNITORING	E,	quired
PARAMETER	DMR CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/ Reporting Frequency ²	Sample Type or Measurement to be reported	Instantan- eous limit or required range	Sample/ Reporting Frequency	Sample Type or measure- ment to be reported	Minimum Level ³	Monitoring Required with Toxicity Testing
Chloroform	32106	g/day	285	416	Monthly	Grab Sample Average	NA	NR	NA		1
Chromium, Total	01034	µg/L	47	69	Semiannual	Daily Composite	103.5	NR	Grab	5	1
Chromium, Total	01034	g/day	32	47	Semiannual	Daily Composite	NA	NR	NA		
cis-1,2-Dichloroethylene ⁸	77093	µg/L			Monthly	Grab Sample Average	NA	NR	NA		1
ਙੁ° _≌ Copper, Total	01042	µg/L	148	253	Weekly	Daily Composite	379	NR	Grab	5	~
Copper, Total Copper, Total	01042	g/day	101	172	Weekly	Daily Composite	NA	NR	NA		
⁻ ⊂ Copper, Total	01042	µg/L	13	26	Weekly	Daily Composite	39	NR	Grab	5	
Copper, Total	01042	g/day	9	18	Weekly	Daily Composite	NA	NR	NA		
Cyanide, Total	00720	µg/L	61	123	Weekly	Grab Sample Average	184.5	NR	Grab	10	1
Cyanide, Total	00720	g/day	42	84	Weekly	Grab Sample Average	NA	NR	NA		
Duration of Discharge	82517	hrs/day			Daily	Total Daily Flow	NA	NR	NA		
Flow Rate (Average Daily) ¹⁰	00056	gpd	160,000	NA	Daily	Total Daily Flow	NA	NR	NA		
Flow, Maximum during 24-hr period ¹⁰	50047	gpd	NA	235,000	Daily	Total Daily Flow	NA	NR	NA		
Flow (Day of Sampling)	74076	gpd	NA	235,000	Weekly	Total Daily Flow	NA	NR	NA		1
Fluoride	00951	mg/L	20	30	Monthly	Daily Composite	45	NR	Grab		1
Fluoride	00951	kg/day	12.1	18.1	Monthly	Daily Composite	NA	NR	Grab		
Formaldehyde	71880	μg/L			Monthly	Daily Composite	NA	NR	NA		1
Gold, Total	71910	mg/L	0.1	0.5	Monthly	Daily Composite	0.75	NR	Grab		1
Gold, Total	71910	g/day	61	303	Monthly	Daily Composite	NA	NR	Grab		
Iron, Total	01045	mg/L	3.0	5.0	Monthly	Daily Composite	7.5	NR	Grab		1
Iron, Total	01045	g/day	1816	3027	Monthly	Daily Composite	NA	NR	Grab		
Kjeldahl Nitrogen, Total (as N)	00625	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Lead, Total	01051	µg/L	10	20	Weekly	Daily Composite	30	NR	Grab	1	1
Lead, Total	01051	g/day	6.7	13.4	Weekly	Daily Composite	NA	NR	NA		
Mercury, Total ⁸	71901	µg/L			Monthly	Daily Composite	NA	NR	NA	0.0005	1
Mercury, Total ⁸	71901	g/day			Monthly	Daily Composite	NA	NR	NA		
Nickel, Total	01067	μg/L	246	564	Weekly	Daily Composite	846	NR	Grab	5	1
Nickel, Total	01067	g/day	168	385	Weekly	Daily Composite	NA	NR	NA		
Nitrate (as N)	00620	mg/L			Weekly	Daily Composite	NA	NR	NA		1

Table A [THE REQUIREMENTS OF THIS TABLE APPLY ONLY IF THE AVERAGE MONTHLY EFFLUENT FLOW IS 160,000 GPD OR LESS] Discharge Serial Number: DSN 001-1 Monitoring Location: 1 (EXTERNAL OUTFALL) Wastewater Description: Metal Finishing Wastewaters, Laboratory Wastewater, Water Treatment Wastewater, Air Scrubber Wastewater Floor Washwater/Building Maintenance Wastewater, Tumbling Wastewater, On-Site Groundwater Remediation Wastewater¹, Drum Rinsing Wastewater, Reverse Osmosis (RO) Reject and Backwash Water, Boiler Blowdown, Air Compressor Blowdown/Condensate, Fire Suppression Test Water Monitoring Location Description: After the final pH control tank Discharge is to: Naugatuck River Dilution Factor (for Silver):27.8:1; Dilution Factor (for Ammonia, Cyanide, Lead, Nickel): 14.4:1 FLOW/TIME BASED MONITORING **INSTANTANEOUS MONITORING** Minimum Level³ Requi NET PARAMETER DMR UNITS Sample Type Instantan-Average Maximum Sample/ Sample Type or Sample/ CODE eous limit or measure-Monthly Daily Reporting Measurement to be Reporting or required ment to be Limit Limit Frequency² reported Frequency reported range Nitrite (as N) 00615 mg/L Weekly **Daily Composite** NA NR NA 1 ------Calculated Nitrogen, Total [See Remark 4] 00600 lbs/dav 26.7----Weekly NA NR NA Oil & Grease, Total 00556 mg/L 10 ----Weekly Grab Sample Average 20 NR Grab 1 Grab Sample Average Oil & Grease, Total NA NR NA 00556 kg/day 6.05 ----Weekly pH, Minimum 61942 SU NA NA NR NA 6.0 Continuous Continuous SU NA NR 9.0 pH, Maximum 61941 NA NA Continuous Continuous pH, Day of Sampling 00400 SU NR NA 6.0 - 9.0 NA NA Weekly Grab 1 Phosphorus, Total 00665 Daily Composite NA NR NA lbs/dav --------Monthly 1 Phosphorus, Total 00665 ----Monthly Daily Composite NA NR NA mg/L ---Silver. Total 01077 32 65 Weekly Daily Composite 97 NR Grab 1 µg/L LIMI IN Silver, Total 01077 22 44 Weekly Daily Composite NA NR NA g/day Silver, Total 01077 12 28 42 NR Grab 1 FINAL LIMITS⁹ ug/L Weekly Daily Composite Silver, Total 19.4 01077 g/day 8.0 Weekly Daily Composite NA NR NA NA NR NA 38260 mg/L ----Monthly Daily Composite Surfactants, Anionic ---1 Tin, Total 2.0 01102 mg/L 4.0 Monthly Daily Composite 6.0 NR NA 1 Tin. Total 01102 1211 2422 Monthly Daily Composite NA NR NA g/day Total Suspended Solids 00530 20 30 Weekly Daily Composite 45 NR Grab mg/L 1 Total Suspended Solids 00530 12.1 18.1 Weekly Daily Composite NA NR NA kg/dav Total Toxic Organics [See Remark 6] 78141 NR 0.01 mg/L NA NA NA 1.0 Monthly Grab 1.1.1-Trichloroethane8 Monthly NA NA 34506 ---Grab Sample Average NR --µg/L 1 Trichloroethylene8 39180 Monthly Grab Sample Average NA NR NA µg/L ------Zinc, Total 97 NR 01092 μg/L 39 65 Weekly Daily Composite Grab 10 1 Zinc. Total 01092 g/dav 26 44 Weekly Daily Composite NA NR NA

Footnotes:

The permittee shall not be authorized to treat on-site remediation groundwater in its treatment system unless and until it complies with Section 10(A) of this permit.

(CONTINUED ON THE NEXT PAGE)

TABLE A FOOTNOTES AND REMARKS

TABLE A FOOTNOTES AND REMARKS (CONTINUED)

² The first entry in this column is the "Sample Frequency". If a "Reporting Frequency" does not follow this entry then the "Reporting Frequency" is monthly.

³ Minimum Level refers to Section 6(D) of this permit. The MLs identified in this table represent the highest acceptable MLs. Actual MLs reported by the laboratory must be reported on the DMR. Detected concentrations less than the noted ML shall be reported on the DMR as the concentration reported by the laboratory.

⁴ Acute toxicity testing shall be conducted in accordance with Section 7(A) of this permit. The LC₅₀ results (in %) for the acute toxicity testing shall be reported on the DMR.

⁵ Chronic toxicity testing shall be conducted in accordance with Section 7(B) of this permit. The C-NOEC (Chronic-No Observed Effect Concentration) results (in %) for the conditions noted in this table shall be reported on the DMR. Attachment A of this permit shall be completed for each chronic toxicity testing event and the completed Attachment A shall be submitted with the DMR.

⁶ The permittee shall use best efforts to ensure that the chronic testing conducted in September shall be conducted over a period when the streamflow in the Naugatuck River is at or below 125 cubic foot per second (cfs) as measured at USGS Station 01206900. If the streamflow of the river is below 125 cfs at the start of the test, but increases to above 125 cfs during the test, the permittee shall continue the test.

⁷ The noted permit limit is below the Minimum Level (ML). Therefore, compliance with this limit will be determined based on the ML. The permittee shall conduct analysis for this parameter in accordance with a sufficiently-sensitive test method. If the measured value is less than the ML, the results shall be reported in accordance with Section 6(F) and the results will be considered to be in compliance with the permit limit. If the measured value is greater or equal to the ML, the actual results obtained shall be reported on the DMR and these results will be considered a violation of the permit limit.

⁸ These parameters have been detected in the groundwater at the site. Monitoring for these parameters shall occur only following approval of Section 10(A) of this permit. Monitoring for these parameters shall occur when treated groundwater is present in the discharge. The permittee shall maintain operating records documenting when the groundwater is treated.

⁹ Interim limits shall take effect upon issuance of this permit. The final limits shall take effect on the final compliance date approved in accordance with Section 10(C) of the permit.

¹⁰ For this parameter, the permittee shall maintain at the facility a record of the Total Daily Flow for each day. The permittee shall report on its DMR the "Average Daily Flow" and the "Maximum Daily Flow" for each month and shall provide the record of the Total Daily Flow as an attachment to the DMR (Attachment D).

<u>Remarks:</u>

1. Abbreviations used for units are as follows: gpd means gallons per day; g/day means grams per day; kg/day means kilograms per day; mg/L means milligrams per liter; lbs/day means per day; SU means Standard Units; µg/l means micrograms per liter; ng/L means nanograms per liter. Other abbreviations are as follows: NA means Not Applicable; NR means Not Reportable (unless sampling is conducted relative to Section 5(D) of this permit); RDS means Range During Sampling.

2. If "---" is noted in the limits column in the table, this means that a limit is not specified but a value must be reported on the DMR.

3. pH shall be reported to 0.1 SU. Total Nitrogen shall be reported to 0.1 lb/day. Total Phosphorus shall be reported to 0.01 lb/day. All other values shall be reported to the level of precision/accuracy reported by the laboratory.

4. In calculating average concentrations, use zeros for values reported as less than the ML.

5. "Continuous", used in this table as a "Sample" or "Sample Type", means monitoring that produces one or more data points in fifteen minutes or less.

6. Total Nitrogen means the sum of the concentrations of: Ammonia Nitrogen + Organic Nitrogen + Nitrate Nitrogen + Nitrate Nitrogen. The concentration-based value shall be converted to lbs/day and reported on the DMR.

(CONTINUED ON THE NEXT PAGE)

TABLE A FOOTNOTES AND REMARKS (CONTINUED)

7. Monitoring for Total Toxic Organics (TTOs) shall be performed in accordance with Section 8(D) of this permit. The limit is a maximum daily limit. Laboratory results for TTOs shall be included with the DMR.

8. pH shall be reported to 0.1 SU. Total Nitrogen shall be reported to 0.1 lb/day. All other values shall be reported to the level of precision/accuracy reported by the laboratory.

DRAFT PERMIT No. CT0001180 Page 11

				Tal	ole B						<u> </u>
	[THE]	REQUIREMENT	S OF THIS TABLE AP			ENT FLOW IS GREATER THAN 160					
Discharge Serial Number: DSN 001-1	***						Location: 1 (E				
Wastewater Description: Metal Finishing Wastewater, Tumbling Wastewater, On-S											
Compressor Blowdown/Condensate, Fire				ewater, Druin I	Kinsing wastewa	iter, Keverse Osmosis (K	O) Reject and	Dackwasii w	ater, boner bi	owuown	, All
Monitoring Location Description: After the	11										
Discharge is to: Naugatuck River				8:1; Dilution Fac	tor (for Ammonia	a, Cyanide, Lead, and Nick	el): 8.4:1				
				FLOW/TIME	BASED MONII	ORING	INSTANTA	ANEOUS MO	NITORING	/el ³	d with g
PARAMETER	NET DMR CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/ Reporting Frequency ²	Sample Type or Measurement to be reported	Instantan- eous limit or required range	Sample/ Reporting Frequency	Sample Type or measure- ment to be reported	Minimum Level ³	Monitoring Requirec Toxicity Testing
Acute Aquatic Toxicity ⁴ Daphnia pulex	TAA3D	%	$LC_{50} > 96$	$LC_{50} > 48$	Quarterly	Daily Composite	LC ₅₀ > 16	NR	Grab		
Acute Aquatic Toxicity ⁴ <i>Pimephales promelas</i>	TAA6C	%	$LC_{50} > 96$	LC ₅₀ > 48	Quarterly	Daily Composite	LC ₅₀ > 16	NR	Grab		
Chronic Aquatic Toxicity (Survival) ⁵ Ceriodaphnia dubia	TOP3B	%	C-NOEC > 9.6	C-NOEC > 4.7	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Reproduction) ⁵ Ceriodaphnia dubia	TPP3B	%	C-NOEC > 9.6	C-NOEC > 4.7	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Survival) ⁵ Pimephales promelas	TOP6C	%	C-NOEC > 9.6	C-NOEC > 4.7	Semiannual ⁶	Daily Composite	NA	NR	NA		
Chronic Aquatic Toxicity (Growth) ⁵ Pimephales promelas	TPP6C	%	C-NOEC > 9.6	C-NOEC > 4.7	Semiannual ⁶	Daily Composite	NA	NR	NA		
Alkalinity, as CaCO ₃	00410	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Aluminum, Total	01105	µg/L	167	335	Weekly	Daily Composite	502.5	NR	Grab		1
Aluminum, Total	01105	g/day	209	419	Weekly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from April 1 st to October 31 st)	00610	mg/L	7.87	16.9	Monthly	Daily Composite	25.35	NR	NA	5	1
Ammonia (as N) (from April 1 st to October 31 st)	00610	kg/day	9.83	21.2	Monthly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from November 1 st to March 31 st)	00610	mg/L			Monthly	Daily Composite	NA	NR	NA		
Ammonia (as N) (from November 1 st to March 31 st)	00610	kg/day			Monthly	Daily Composite	NA	NR	NA		
Biochemical Oxygen Demand, 5-day (BOD ₅)	00310	mg/L	30	50	Monthly	Daily Composite	75	NR	Grab		1
Biochemical Oxygen Demand, 5-day (BOD ₅)	00310	lbs/day	82.5		Monthly	Daily Composite	NA	NR	NA		
Cadmium, Total	01027	μg/L	0.147	0.21	Annually	Daily Composite	0.315	NR	Grab	0.2	1
Cadmium, Total	01027	g/day	0.18	0.26	Annually	Daily Composite	NA	NR	NA		
Chloride	00940	mg/L			Monthly	Daily Composite	NA	NR	NA		1
Chlorine, Total Residual	50060	μg/L			Weekly	Grab Sample Average	NA	NR	Grab	10	✓

		THE	PEOLIIPEMENT	S OF THIS TABLE AF		ble B Age monthi y effet u	ENT FLOW IS GREATER THAN 160	000 GPD1				
Discha	arge Serial Number: DSN 001-1	[Ine i	CEQUIKEMEN I	5 OF THIS TABLE AP	PLI WHEN THE AVER	AGE MONTHLT EFFLU			XTERNAL O	UTFALL)		
Waste Waste	water Description: Metal Finishin water, Tumbling Wastewater, On- ressor Blowdown/Condensate, Fire	Site Groun	dwater Rer	nediation Wast	water, Water T tewater ¹ , Drum I	Freatment Wast Rinsing Wastewa	ewater, Air Scrubber	Wastewater H	Floor Washwa	ter/Building	Mainten owdown	ance , Air
	oring Location Description: After the											
Discha	arge is to: Naugatuck River	Dil	ution Factor	(for Silver):15	.8:1; Dilution Fac	tor (for Ammonia	a, Cyanide, Lead, and Nick	tel): 8.4:1				
					FLOW/TIME	BASED MONIT	TORING	INSTANT	ANEOUS MO	NITORING	vel ³	d with g
	PARAMETER	NET DMR CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/ Reporting Frequency ²	Sample Type or Measurement to be reported	Instantan- eous limit or required range	Sample/ Reporting Frequency	Sample Type or measure- ment to be reported	Minimum Level ³	Monitoring Required with Toxicity Testing
Chlori	ne, Total Residual	50060	g/day			Weekly	Grab Sample Average	NA	NR	NA		
Chlore	oform	32106	µg/L	470	686	Monthly	Grab Sample Average	1029	NR	Grab		1
Chloro	oform	32106	g/day	588	857	Monthly	Grab Sample Average	NA	NR	NA		1
Chron	nium, Total	01034	µg/L	47	69	Semiannual	Daily Composite	103.5	NR	Grab	5	✓
Chron	nium, Total	01034	g/day	59	86	Semiannual	Daily Composite	NA	NR	NA		
cis-1,2	2-Dichloroethylene ⁸	77093	µg/L			Monthly	Grab Sample Average	NA	NR	NA		~
INTERIM LIMITS ⁹	Copper, Total	01042	µg/L	148	253	Weekly	Daily Composite	379	NR	Grab	5	
INTE	Copper, Total	01042	g/day	184	316	Weekly	Daily Composite	NA	NR	NA		
FINAL LIMITS ⁹	Copper, Total	01042	µg/L	13	26	Weekly	Daily Composite	39	NR	Grab	5	1
HIN	Copper, Total	01042	g/day	16	32	Weekly	Daily Composite	NA	NR	NA		
Cyanic	de, Total	00720	µg/L	35	71	Weekly	Grab Sample Average	106.5	NR	Grab	10	~
	de, Total	00720	g/day	44	89	Weekly	Grab Sample Average	NA	NR	NA		
	on of Discharge	82517	hrs/day			Daily	Total Daily Flow	NA	NR	NA		
	Rate (Average Daily) ¹⁰	00056	gpd	330,000	NA	Daily	Total Daily Flow	NA	NR	NA		
	Maximum during 24-hr period ¹⁰	50047	gpd	NA	400,000	Daily	Total Daily Flow	NA	NR	NA		
	Day of Sampling)	74076	gpd	NA	400,000	Weekly	Total Daily Flow	NA	NR	NA		1
Fluori		00951	mg/L	20	30	Monthly	Daily Composite	45	NR	Grab		✓
Fluori		00951	kg/day	24.9	37.5	Monthly	Daily Composite	NA	NR	NA		
	ldehyde	71880	μg/L			Monthly	Daily Composite	NA	NR	NA		1
Gold,		71910	mg/L	0.1	0.5	Monthly	Daily Composite	0.75	NR	Grab		1
Gold,		71910	g/day	125	624	Monthly	Daily Composite	NA	NR	NA		
Iron, T		01045	mg/L	3.0	5.0	Monthly	Daily Composite	7.5	NR	Grab		1
Iron, T		01045	g/day	3746	6244	Monthly	Daily Composite	NA	NR	NA		
<u>J</u>	hl Nitrogen, Total (as N)	00625	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Lead,		01051	μg/L	5.8	12	Weekly	Daily Composite	18	NR	Grab	1	1
Lead,		01051	g/day	7.2	14.5	Weekly	Daily Composite	NA	NR	NA		
	ry, Total ⁸	71901	μg/L			Monthly	Daily Composite	NA	NR	NA	0.0005	✓
Mercu	ry, Total ⁸	71901	g/day			Monthly	Daily Composite	NA	NR	NA		

Page 13

	гтие і	PEOINDEMENT) le B	ENT FLOW IS GREATER THAN 160	000 CPD1				
Discharge Serial Number: DSN 001-1	[THE I	AEQUIKEWIEWI.	5 OF THIS TABLE AF	TET WHEN THE AVER	AGE MONTHET EFFEC			XTERNAL OU	UTFALL)		
Wastewater Description: Metal Finishin	g Wastewa	ters. Labo	ratory Waste	water. Water T	reatment Wast					Mainter	nance
Wastewater, Tumbling Wastewater, On-											
Compressor Blowdown/Condensate, Fire				,	8	,	/ 0		,		,
Monitoring Location Description: After the	final pH c	ontrol tank									
Discharge is to: Naugatuck River	Dil	ution Factor	(for Silver):15	.8:1; Dilution Fac	tor (for Ammonia	a, Cyanide, Lead, and Nick	el): 8.4:1				
				FLOW/TIME	BASED MONIT	ORING	INSTANT	ANEOUS MO	NITORING	/el ³	d with o
PARAMETER	NET DMR CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/ Reporting Frequency ²	Sample Type or Measurement to be reported	Instantan- eous limit or required range	Sample/ Reporting Frequency	Sample Type or measure- ment to be reported	Minimum Level ³	Monitoring Required
Nickel, Total	01067	μg/L	144	331	Weekly	Daily Composite	496.5	NR	Grab	5	1
Nickel, Total	01067	g/day	180	413	Weekly	Daily Composite	NA	NR	NA		
Nitrate (as N)	00620	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Nitrite (as N)	00615	mg/L			Weekly	Daily Composite	NA	NR	NA		1
Nitrogen, Total [See Remark 4]	00600	lbs/day	26.7		Weekly	Calculated	NA	NR	NA		
Oil & Grease, Total	00556	mg/L	10		Weekly	Grab Sample Average	20	NR	Grab		1
Oil & Grease, Total	00556	kg/day	12.5		Weekly	Grab Sample Average	NA	NR	NA		
pH, Minimum	61942	SU	NA	NA	NR	NA	6.0	Continuous	Minimum		
pH, Maximum	61941	SU	NA	NA	NR	NA	9.0	Continuous	Maximum		
pH, Day of Sampling	00400	SU	NA	NA	NR	NA	6.0 - 9.0	Weekly	Grab		1
Phosphorus, Total	00665	lbs/day			Monthly	Daily Composite	NA	NR	NA		1
Phosphorus, Total	00665	mg/L			Monthly	Daily Composite	NA	NR	NA		
Silver, Total	01077	µg/L	32	65	Weekly	Daily Composite	97	NR	Grab	1	1
Silver, Total	01077	g/day	40	81	Weekly	Daily Composite	NA	NR	NA		
Silver, Total	01077	µg/L	6.6	16	Weekly	Daily Composite	24	NR	Grab	1	1
Silver, Total	01077	g/day	8.3	19.9	Weekly	Daily Composite	NA	NR	NA		
Surfactants, Anionic	38260	mg/L			Monthly	Daily Composite	NA	NR	NA		1
Tin, Total	01102	mg/L	2.0	4.0	Monthly	Daily Composite	6.0	NR	NA		1
Tin, Total	01102	g/day	2498	4995	Monthly	Daily Composite	NA	NR	NA		
Total Suspended Solids	00530	mg/L	20	30	Weekly	Daily Composite	45	NR	Grab		1
Total Suspended Solids	00530	kg/day	25.0	37.5	Weekly	Daily Composite	NA	NR	NA		
Total Toxic Organics [See Remark 6]	78141	mg/L	NA	NA	NR	NA	1.0	Monthly	Grab	0.01	
1,1,1-Trichloroethane ⁸	34506	μg/L			Monthly	Grab Sample Average	NA	NR	NA		1
Trichloroethylene ⁸	39180	µg/L			Monthly	Grab Sample Average	NA	NR	NA		1
Zinc, Total	01092	µg/L	39	65	Weekly	Daily Composite	97.5	NR	Grab	10	1
Zinc, Total	01092	g/day	49	81	Weekly	Daily Composite	NA	NR	NA		

DRAFT PERMIT No. CT0001180 Page 15

S:\WORKING\CGLEASON\PERMITS FOR TENTATIVE NOTICE\Summit, May 2019\NPDES PERMIT MAY 2019.doc

TABLE B FOOTNOTES AND REMARKS

<u>Footnotes:</u>

¹ The permittee shall not be authorized to treat on-site remediation groundwater in its treatment system unless and until it complies with Section 10(A) of this permit.

² The first entry in this column is the "Sample Frequency". If a "Reporting Frequency" does not follow this entry then the "Reporting Frequency" is monthly.

³ Minimum Level refers to Section 6(D) of this permit. The MLs identified in this table represent the highest acceptable MLs. Actual MLs reported by the laboratory must be reported on the DMR. Detected concentrations less than the noted ML shall be reported on the DMR as the concentration reported by the laboratory.

⁴ Acute toxicity testing shall be conducted in accordance with Section 7(A) of this permit. The LC₅₀ results (in %) for the acute toxicity testing shall be reported on the DMR.

⁵ Chronic toxicity testing shall be conducted in accordance with Section 7(B) of this permit. The C-NOEC (Chronic-No Observed Effect Concentration) results (in %) for the conditions noted in this table shall be reported on the DMR. Attachment A of this permit shall be completed for each chronic toxicity testing event and the completed Attachment A shall be submitted with the DMR.

⁶ The permittee shall use best efforts to ensure that the chronic testing conducted in September shall be conducted over a period when the streamflow in the Naugatuck River is at or below 125 cubic foot per second (cfs) as measured at USGS Station 01206900. If the streamflow of the river is below 125 cfs at the start of the test, but increases to above 125 cfs during the test, the permittee shall continue the test.

⁷ The noted permit limit is below the Minimum Level (ML). Therefore, compliance with this limit will be determined based on the ML. The permittee shall conduct analysis for this parameter in accordance with a sufficiently-sensitive test method. If the measured value is less than the ML, the results shall be reported in accordance with Section 6(F) and the results will be considered to be in compliance with the permit limit. If the measured value is greater or equal to the ML, the actual results obtained shall be reported on the DMR and these results will be considered a violation of the permit limit.

⁸ These parameters have been detected in the groundwater at the site. Monitoring for these parameters shall occur only following approval of Section 10(A) of this permit. Monitoring for these parameters shall occur when treated groundwater is present in the discharge. The permittee shall maintain operating records documenting when the groundwater is treated.

⁹ Interim limits shall take effect upon issuance of this permit. The final limits shall take effect on the final compliance date approved in accordance with Section 10(C) of the permit.

¹⁰ For this parameter, the permittee shall maintain at the facility a record of the Total Daily Flow for each day. The permittee shall report on its DMR the "Average Daily Flow" and the "Maximum Daily Flow" for each month and shall provide the record of the Total Daily Flow as an attachment to the DMR (Attachment D).

<u>Remarks:</u>

1. Abbreviations used for units are as follows: gpd means gallons per day; g/day means grams per day; kg/day means kilograms per day; mg/L means milligrams per liter; lbs/day means pounds per day; SU means Standard Units; µg/l means micrograms per liter; ng/L means nanograms per liter. Other abbreviations are as follows: NA means Not Applicable; NR means Not Reportable (unless sampling is conducted relative to Section 5(D) of this permit); RDS means Range During Sampling.

2. If "---" is noted in the limits column in the table, this means that a limit is not specified but a value must be reported on the DMR.

3. pH shall be reported to 0.1 SU. Total Nitrogen shall be reported to 0.1 lb/day. Total Phosphorus shall be reported to 0.01 lb/day. All other values shall be reported to the level of precision/accuracy reported by the laboratory.

4. In calculating average concentrations, use zeros for values reported as less than the ML.

5. "Continuous", used in this table as a "Sample" or "Sample Type", means monitoring that produces one or more data points in fifteen minutes or less.

(CONTINUED ON THE NEXT PAGE)

DRAFT PERMIT No. CT0001180

 $S: \verb|WORKING|CGLEASON|PERMITS FOR TENTATIVE NOTICE|Summit, May 2019|NPDES PERMIT MAY 2019.doc||NPDES PERMIT NOT||NPDES PERMIT NOT||NPDES PERMIT NOT||NPDES PERMIT NOT||NPDES PERMIT N$

TABLE B FOOTNOTES AND REMARKS (CONTINUED)

6. Total Nitrogen means the sum of the concentrations of: Ammonia Nitrogen + Organic Nitrogen + Nitrate Nitrogen + Nitrate Nitrogen. The concentration-based value shall be converted to lbs/day and reported on the DMR.

7. Monitoring for Total Toxic Organics (TTOs) shall be performed in accordance with Section 8(D) of this permit. The limit is a maximum daily limit. Laboratory results for TTOs shall be included with the DMR.

8. pH shall be reported to 0.1 SU. Total Nitrogen shall be reported to 0.1 lb/day. All other values shall be reported to the level of precision/accuracy reported by the laboratory.

					Table C								
Discharge Serial Number: D	SN 001A					Monito	ring Location: INTE	RNAL MONITORI	ING POINT				
Wastewater Description: Tr	eated cyanide-	bearing was	stewaters										
Anitoring Location Description: Immediately after the second-stage amenable cyanide treatment tank													
Discharge is to: DSN 001-1													
	NET			FLOW/TIME	BASED MONITOR	RING	INSTAN	NTANEOUS MONI	TORING				
PARAMETER	DMR	UNITS	Average	Maximum	Sample/Reporting	Sample Type or	Instantaneous	Sample/	Sample Type or				
	CODE		Monthly	Daily	Frequency ¹	Measurement to be	limit or required	Reporting	measurement to be				
			Limit	Limit	requeitey	reported	range	Frequency	reported				
Cyanide, Amenable	00722	mg/L	0.1	0.2	Weekly	Grab Sample Average	0.3	NR	Grab				

TABLE C FOOTNOTES AND REMARKS

Footnote:

¹ The first entry in this column is the "Sample Frequency". If a "Reporting Frequency" does not follow this entry and the "Sample Frequency" is more frequent than monthly then the "Reporting Frequency" is monthly. If the "Sample frequency" is specified as monthly, or less frequent, then the "Reporting Frequency" is the same as the "Sample Frequency".

<u>Remark:</u>

1. Abbreviations used for units are as follows: mg/L means milligrams per liter. Other abbreviations are as follows: NA means Not Applicable; NR means Not Reportable (unless sampling is conducted relative to Section 5(D) of this permit)

			[TA	BLE D TAKES EFFECT U	- Table D PON APPROVAL OF SECTION	N 10(B) OF THIS PERMIT.]			
Discharge Serial Number:	DSN 001B						ring Location: INTE	RNAL MONITOR	RING POINT
Wastewater Description:	Freated hexavale	ent chromiu	m-bearing waste	waters					
Monitoring Location Desc	ription: Immedia	ately after th	e hexavalent ch	romium treatmen	t tank				
Discharge is to: DSN 001-	-1								
	NET DMR			FLOW/TIME	E BASED MONITOR	RING	INSTAN	TANEOUS MON	ITORING
PARAMETER	CODE	UNITS	Average Monthly Limit	Maximum Daily Limit	Sample/Reporting Frequency ¹	Sample Type or Measurement to be reported	Instantaneous limit or required range	Sample/ Reporting Frequency	Sample Type or measurement to be reported
Hexavalent Chromium	01032	mg/L	0.1	0.2	Weekly	Grab Sample Average	0.3	NR	Grab
<i>Footnote:</i> ¹ The first entry in this c Frequency" is monthly. If <i>Remark:</i>				orting Frequency"		entry and the "Sample Fr			y then the "Reporting

1. Abbreviations used for units are as follows: mg/L means milligrams per liter. Other abbreviations are as follows: NA means Not Applicable; NR means Not Reportable (unless sampling is conducted relative to Section 5(D) of this permit)

SECTION 6: SAMPLE COLLECTION, HANDLING AND ANALYTICAL TECHNIQUES

- (A) All samples shall be collected, handled, and analyzed in accordance with the methods approved under 40 CFR 136, unless another method is required under 40 CFR subchapter N or unless an alternative method has been approved in writing pursuant to 40 CFR 136.5. To determine compliance with limits and conditions established in this permit, monitoring must be performed using sufficiently-sensitive methods approved pursuant to 40 CFR 136 for the analysis of pollutants having approved methods under that part, unless a method is required under 40 CFR subchapter N or unless an alternative method has been approved in writing pursuant to 40 CFR 136.5. Monitoring parameters which do not have approved methods of analysis defined in 40 CFR 136 shall be collected, handled, and analyzed in accordance with the methods in Section 6(B), below.
- (B) The latest, most up-to-date, of the following test method(s) as well as the following container, preservation, and hold time requirements, shall be used to analyze the parameters identified below:

PARAMETER	METHOD OF ANALYSIS	CONTAINER/PRESERVATION/MAXIMUM HOLDING TIME
Formaldehyde	EPA 1667	Per Method 1667

- (C) All metals analyses identified in this permit shall refer to analyses for Total Recoverable Metal as defined in 40 CFR 136, unless otherwise specified.
- (D) The term Minimum Level (ML) refers to either the sample concentration equivalent to the lowest calibration point in a method or a multiple of the method detection limit (MDL). MLs may be obtained in several ways: They may be published in a method; they may be sample concentrations equivalent to the lowest acceptable calibration point used by the laboratory; or they may be calculated by multiplying the MDL in a method, or the MDL determined by a lab, by a factor. The Minimum Levels specified in the Section 5 table represent the maximum concentrations at which quantification must be achieved and verified during the chemical analyses for those noted parameters. Analyses for these parameters must include check standards within ten percent of the specified Minimum Level or calibration points equal to or less than the specified Minimum Level.
- (E) The value of each parameter for which monitoring is required under this permit shall be reported to the maximum level of accuracy and precision possible, consistent with the requirements of this section of the permit.
- (F) Analyses for which quantification was verified to be at or below an ML, and which indicate that a parameter was not detected, shall be reported as "less than x" where 'x' is the numerical value equivalent to the ML for that analysis. If the permittee is required to submit its DMRs through the NetDMR system, the permittee shall report the non-detect value consistent with the reporting requirements for NetDMR.
- (G) Results of analyses which indicate that a parameter was not present at a concentration greater than or equal to the ML specified for that analysis shall be considered equivalent to zero for purposes of determining compliance with effluent limitations or conditions specified in this permit.
- (H) It is a violation of this permit for a permittee or his/her designated agent, to manipulate test samples in any manner, to delay sample shipment, or to terminate or to cause to terminate a toxicity test. Once initiated, all toxicity tests must be completed.
- (I) Analyses required under this permit shall be performed in accordance with CGS section 19a-29a. An "environmental laboratory", as that term is defined in the referenced section, that is performing analyses required by this permit, shall be registered and have certification acceptable to the Commissioner, as such registration and certification is necessary.

SECTION 7: AQUATIC TOXICITY TESTING

(A) **ACUTE TESTING REQUIREMENTS.** The permittee shall conduct acute aquatic toxicity testing for DSN 001-1 as follows:

(1) **TEST METHOD**: Acute aquatic toxicity shall be performed as prescribed in the reference document *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (EPA-821-R-02-012), or the most current version, with any exceptions or clarifications noted below.

(2) SAMPLE COLLECTION AND HANDLING:

- (a) Composite samples shall be chilled as they are collected. Grab samples shall be chilled immediately following collection. Samples shall be held at 4 °C until aquatic toxicity testing is initiated.
- (b) Effluent samples shall not be dechlorinated, filtered, or modified in any way prior to testing for acute aquatic toxicity unless specifically approved in writing by the Commissioner for monitoring at this facility.
- (c) Tests for acute aquatic toxicity shall be initiated within 36 hours of sample collection.
- (3) **TEST SPECIES AND TEST DURATION:** Monitoring for aquatic toxicity to determine compliance with the acute toxicity limits in this permit shall be conducted as follows:
 - (a) For 48-hours utilizing neonatal *Daphnia pulex* (less than 24-hours old).
 - (b) For 48-hours utilizing larval *Pimephales promelas* (1-14 days old with no more than 24-hours range in age).
- (4) **ACUTE ENDPOINT:** Survival at 48 hours measured by LC₅₀.

(5) **TEST CONDITIONS:**

- (a) Tests for acute aquatic toxicity shall be conducted as prescribed for static non-renewal tests.
- (b) Multi-concentration (definitive) testing shall be conducted. The following effluent dilution series concentrations shall be used: 100%, 75%, 50%, 25%, 12.5% and 6.25%.
- (c) Synthetic freshwater prepared with deionized water adjusted to a hardness of 50 mg/L $(\pm 5 \text{ mg/L})$ as CaCO₃ shall be used as dilution water.
- (d) All effluent concentrations and the control(s) used in the test shall have the same salinity. If the effluent requires salinity adjustment to a standard salinity, this shall be accomplished by adding a minimum amount of commercial sea salts as described in EPA-821-R-02-012.
- (e) Organisms shall not be fed during the tests.
- (g) Copper nitrate shall be used as the reference toxicant.
- (h) Dissolved oxygen, pH, and temperature shall be measured in the control and in all test concentrations at the beginning of the test, daily thereafter, and at test termination.
- (i) Specific conductance, pH, alkalinity, hardness, and total residual chlorine shall be measured in the undiluted effluent sample and in the dilution (control) water at the beginning of the test and at test termination. If total residual chlorine is not detected at test initiation, it does not need to be measured at test termination.
- (6) **CHEMICAL ANALYSIS:** Chemical analyses of the parameters identified in Table A under "Monitoring Required with Toxicity Testing" shall be conducted on an undiluted aliquot of the same sample tested for acute aquatic toxicity.

- (7) **TEST ACCEPTABILITY CRITERIA & COMPLIANCE:** For the test results to be acceptable, control survival must equal or exceed 90%. If the laboratory control fails to meet test acceptability criteria for either of the test organisms at the end of the respective test period, then the test is considered invalid and the test must be repeated with a newly collected sample. Compliance with the limits on Acute Toxicity shall be demonstrated when the results of a valid definitive acute aquatic toxicity test indicates that the LC₅₀ value for the test is greater than the aquatic toxicity limit in Table A.
- (B) **CHRONIC TESTING REQUIREMENTS.** The permittee shall conduct chronic toxicity testing for DSN 001-1 as follows:
 - (1) **TEST METHOD**: Chronic aquatic toxicity testing shall be performed as prescribed in the reference document *Short-term Methods For Estimating The Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms*, EPA-821-R-02-013, or the most current version, with the following exceptions or clarifications noted below.

(2) **SAMPLE COLLECTION AND HANDLING:**

- (a) Composite samples shall be chilled as they are being collected. Samples shall be held at 4 °C until chronic aquatic toxicity testing is initiated.
- (b) Effluent samples shall not be dechlorinated, filtered, or modified in any way prior to testing for chronic aquatic toxicity unless specifically approved in writing by the Commissioner for monitoring at this facility.
- (c) Tests for chronic aquatic toxicity shall be initiated within 36 hours of sample collection.
- (3) **TEST SPECIES AND TEST DURATION:** Monitoring for chronic aquatic toxicity to determine compliance with the chronic toxicity limits/conditions in the permit shall be conducted as follows:
 - (a) For seven days utilizing neonatal *Ceriodaphnia dubia* (less 24 hours old)
 - (b) For seven days utilizing newly-hatched *Pimephales promelas* (less 24 hours old).

(4) CHRONIC ENDPOINTS:

- (a) *Ceriodaphnia dubia:* Survival and Reproduction
- (b) *Pimephales promelas:* Survival and Growth
- (5) **DILUTION WATER:** Naugatuck River water collected upstream of the area influenced by the discharge shall be used as site control water (0% effluent) and dilution water in the toxicity tests. The Permittee shall document the dilution water sampling location by providing coordinates and/or a map of the location.

If the Naugatuck River dilution water is found or is suspected to be toxic or unreliable, an alternative dilution water standard shall be used in the toxicity test. The use of an alternative dilution water standard is species-specific and shall be conditionally allowed in either of the following two instances:

(a) Instance 1: *When an invalid toxicity test is repeated.* In this instance, the permittee shall implement the use of an alternative dilution water sample without the approval of the Department if the following conditions are met: 1) the test is repeated during the required time frame; 2) the alternative dilution water is of known quality with hardness, pH, conductivity, alkalinity, organic carbon, and total suspended solids, similar to that of the Naugatuck River and the alternative dilution water does not produce a toxic response; 3) receiving water controls are run during the alternative dilution water tests; 4) a complete

toxicity test report is submitted by the permittee and it shall clearly document: that site water toxicity rendered the first test invalid; that a re-test was conducted using an alternative dilution water that matched the characteristics of the site water; that site water controls were included in the re-test; and that the site water controls of the re-test met the minimum acceptability criteria. However, if the re-test documented that the site water controls met the minimum test acceptability criteria, site water must be used as the diluent in future toxicity tests. If the site water controls of the re-test failed to meet test acceptability criteria, an alternative dilution water may be used in future toxicity tests using the affected test organism after submitting written documentation to the Department.

(b) Instance 2: In future toxicity tests, where there are at least two documented incidents where use of the Naugatuck River as the dilution water was found to be unreliable. In this instance, the permittee must receive written approval from the Commissioner prior to using an alternative dilution water. The documentation submitted to the Department in support of the use of alternative dilution water in this instance must include the following: Documentation of site water toxicity including all supporting documentation as well an identification of the affected test organism and an identification of the affected test period; a description of the alternative dilution water toxicity tests. Upon approval, the permittee shall implement the use of the alternative dilution water testing for the term of the permit.

(6) **TEST CONDITIONS:**

- (a) Testing for chronic aquatic toxicity shall be conducted as prescribed in the reference document for static daily renewal tests. Daily composite samples of the discharge and grab samples of the Naugatuck River for use as site water and dilution water shall be collected on: Day 1 of the test (for test initiation and renewal on Day 2 of the test); Day 3 of the test (for test solution renewal on Day 3 and Day 4 of the test); and on Day 5 of the test, (for test solution renewal on Day 5, Day 6, and Day 7 of the test). Samples shall not be dechlorinated, pH or hardness adjusted, or chemically altered in any way.
- (b) Test concentrations shall be comprised of a minimum of five dilutions (100%, 64%, 32%, 16%, 8%, and 4% effluent), laboratory control water, and site dilution water. Naugatuck River water shall be used as the dilution water.
- (c) Dissolved oxygen, pH, and temperature shall be measured in each sample of effluent and the Naugatuck River water sample prior to and immediately following renewal of the test solutions.
- (d) Synthetic freshwater prepared with deionized water adjusted to a hardness of 50 mg/l (±5 mg/l) as CaCO₃ prepared as described in *Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms* (EPA-821-R-02-013) shall be used as laboratory control water.
- (7) **CHEMICAL ANALYSIS:** Chemical analysis for the parameters identified in Table A of the permit under "Monitoring Required with Toxicity Testing" shall be conducted on an undiluted aliquot of each effluent sample and each sample of Naugatuck River water used in the test. In addition, each sample of undiluted effluent and each sample of Naugatuck River water shall also be analyzed for the following parameters: pH, specific conductance, total hardness, dissolved aluminum, dissolved copper, dissolved iron, dissolved lead, dissolved nickel, and dissolved zinc.
- (8) **TEST ACCEPTABILITY CRITERIA:** If the laboratory control fails to meet test acceptability criteria specified in the reference document for either of the test organisms at the end of the respective test period, then the test is considered invalid and the test must be repeated.
- (9) **REPORTING:** A report detailing the results of the chronic toxicity monitoring shall be submitted no later than 60 days following the day sampling was concluded for that test. A hard copy of the

report shall be submitted to the address in Section 8(B) and an electronic copy shall be submitted consistent with Section 8. The report shall include the items identified in Section 8(B) of this permit. The report shall also include the gage readings of USGS 01206900 during the seven-day duration of the chronic toxicity test period. Endpoints to be reported are: 48-hour LC₅₀ (survival), 7-day C-NOEC (survival), 7-day C-NOEC (survival), 7-day C-LOEC (growth), 7-day C-LOEC (growth), 7-day C-NOEC (reproduction), 7-day C-LOEC (reproduction), 7-day C-LOEC (reproduction), 7-day IC₂₅ (growth and reproduction). In addition, Attachment A of this permit shall be completed and submitted consistent with Section 8.

SECTION 8: REPORTING REQUIREMENTS

(A) The results of chemical analyses and any aquatic toxicity test required by this permit shall be entered on the Discharge Monitoring Report (DMR), provided by this office, and reported to the Bureau of Materials Management and Compliance Assurance (Attn: DMR Processing) at the following address or submitted electronically using NetDMR. Monitoring results shall be reported at the monitoring frequency specified in this permit. Any monitoring required more frequently than monthly shall be reported on an attachment to the DMR, and any additional monitoring conducted in accordance with 40 CFR 136, or another method required for an industry-specific waste stream under 40 CFR subchapter N, or other methods approved by the Commissioner, shall also be included on the DMR, or as an attachment, if necessary, and the results of such monitoring shall be included in the calculation and reporting of the data submitted in the DMR. Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified by the Director in the permit. All aquatic toxicity reports shall also be included as an attachment to the DMR. A report shall also be included with the DMR which includes a detailed explanation of any violations of the limitations specified. DMRs, attachments, and reports, shall continue to be submitted electronically in accordance with Section 8(E) below. However, if the DMRs, attachments, and reports are required to be submitted in hard copy form, they shall be received at this address by the last day of the month following the month in which samples are collected:

> Bureau of Materials Management and Compliance Assurance Water Permitting and Enforcement Division (Attn: DMR Processing) Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

(B) The Aquatic Toxicity Monitoring Report (ATMR) shall include all applicable items identified in Section 12 of EPA-821-R-02-012 and in Section 10 of EPA-821-R-02-013, including complete and accurate aquatic toxicity test data, including percent survival of test organisms in each replicate test chamber, LC₅₀ values and 95% confidence intervals for definitive test protocols, and all supporting chemical/physical measurements performed in association with any aquatic toxicity test, including measured daily flow and hours of operation for the 30 consecutive operating days prior to sample collection. The ATMR shall be submitted electronically and a hard copy shall be sent to the Bureau of Water Protection and Land Reuse at the address below. The ATMR required by Section 7(A) and 7(B) shall be received at this address by the last day of the month following the month in which the samples are collected. The ATMR required by Section 7(B) shall be provided in accordance with the timeframe identified in Section 7(B)(9) above to:

Bureau of Water Protection and Land Reuse (Attn: Aquatic Toxicity) Connecticut Department of Energy and Environmental Protection 79 Elm St. Hartford, CT 06106-5127

(C) If this permit requires monitoring of a discharge on a calendar basis (e.g., monthly, quarterly, etc.), but a discharge has not occurred within the frequency of sampling specified in the permit, the permittee must submit the DMR and ATMR, as scheduled, indicating "NO DISCHARGE". For those permittees whose required monitoring is discharge dependent (e.g., per batch), the minimum reporting frequency is monthly. Therefore, if there is no discharge during a calendar month for a batch discharge, a DMR must be submitted indicating such by the end of the following month.

- (D) For Total Toxic Organics (TTO) monitoring, the permittee may, in lieu of analyzing for TTO, include a statement on each DMR certifying compliance with its approved solvent management plan. This certification statement is set forth in 40 CFR 433.12. If such approval had been granted and the reports include the compliance statement, the minimum frequency of sampling shall be reduced to annually in the month of January.
- (E) *NetDMR Reporting Requirements*: The permittee shall continue reporting electronically using NetDMR, a web-based tool that allows permittees to electronically submit Discharge Monitoring Reports and other required reports through a secure internet connection. Specific requirements regarding NetDMR, submittal of reports using NetDMR, and submittal of reports in hard copy form, are described below:
 - (1) Submittal of *NetDMR Subscriber Agreement:* The permittee has submitted a signed and notarized copy of the *Connecticut DEEP NetDMR Subscriber Agreement* to the Department.
 - (2) Submittal of Reports Using NetDMR: The permittee and/or the signatory authority shall continue to electronically submit DMRs and reports required under this permit to the Department using NetDMR in satisfaction of the DMR submission requirement of Section 8(A) of this permit.

DMRs shall be submitted electronically to the Department no later than the last day of the month following the completed reporting period. All reports required under the permit, including any monitoring conducted more frequently than monthly or any additional monitoring shall be submitted to the Department as an electronic attachment to the DMR in NetDMR. Once a permittee begins submitting reports using NetDMR, it will no longer be required to submit hard copies of DMRs or other reports to the Department. The permittee shall also electronically file any written report of noncompliance described in Section 9 of this permit as an attachment in NetDMR. NetDMR is accessed from: <u>http://www.epa.gov/netdmr</u>.

- (3) Submittal of NetDMR Opt-Out Requests: If the permittee is able to demonstrate a reasonable basis, such as technical or administrative infeasibility, that precludes the use of NetDMR for electronically submitting DMRs and reports, the Commissioner may approve the submission of DMRs and other required reports in hard copy form ("opt-out request"). Opt-out requests must be submitted in writing to the Department for written approval on or before fifteen (15) days prior to the date a permittee would be required under this permit to begin filing DMRs and other reports using NetDMR. This demonstration shall be valid for twelve (12) months from the date of the Department's approval and shall thereupon expire. At such time, DMRs and reports shall be submitted electronically to the Department using NetDMR unless the permittee submits a renewed opt-out request and such request is approved by the Department.
- (4) All opt-out requests and requests for the NetDMR subscriber form should be sent to the following address or by email at: <u>deep.netdmr@ct.gov</u>

Attn: NetDMR Coordinator Connecticut Department of Energy and Environmental Protection 79 Elm Street Hartford, CT 06106-5127

SECTION 9: RECORDING AND REPORTING OF VIOLATIONS, ADDITIONAL TESTING REQUIREMENTS

- (A) In addition to any other written reporting requirements, the permittee shall report any instances of noncompliance with this permit with its DMR. Such reporting shall be due no later than the last day of the month following the reporting period in which the noncompliant event occurred. The information provided in the DMR shall include, at a minimum: the type of violation, the duration of the violation, the cause of the violation, and any corrective action(s) or preventative measure(s) taken to address the violation.
- (B) The permittee shall notify the Bureau of Materials Management and Compliance Assurance, Water Permitting and Enforcement Division, within 72 hours and in writing within thirty days of the discharge of

any substance listed in the application, but not listed in the permit, if the concentration or quantity of that substance exceeds two times the level listed in the application.

- (C) If any sample analysis indicates that an aquatic toxicity effluent limitation in Section 5 of this permit has been exceeded, or that the test was invalid, another sample of the effluent shall be collected and tested for aquatic toxicity and associated chemical parameters, as described above in Section 7, and the results reported to the Bureau of Materials Management and Compliance Assurance (Attn: DMR Processing), at the address listed above, within 30 days of the exceedance or invalid test. Results of all tests, whether valid or invalid, shall be reported.
- (D) If any two consecutive test results or any three test results in a twelve-month period indicate that an aquatic toxicity limit has been exceeded, the permittee shall immediately take all reasonable steps to eliminate toxicity wherever possible and shall also submit a report, for the review and written approval of the Commissioner, which describes in detail the steps taken or that shall be taken to eliminate the toxic impacts of the discharge on the receiving water and it shall also include a proposed schedule for implementation. Such report shall be submitted in accordance with the timeframe set forth in section 22a-430-3(j)(10)(C) of the RCSA. The permittee shall implement all actions in accordance with the approved report and schedule.

SECTION 10: SPECIAL CONDITIONS/COMPLIANCE SCHEDULE

- (A) The permittee shall not treat any on-site remediation groundwater in its wastewater treatment system unless and until it receives the prior written approval of the Commissioner. The permittee shall only receive that approval if it can demonstrate to the satisfaction of the Commissioner that by treating the on-site remediation groundwater through its treatment system, it is capable of meeting all permit limits in Tables A & B. The permittee shall provide the results of such a demonstration study for the review and written approval of the Commissioner at least ninety (90) days prior to the intended treatment of the on-site remediation groundwater. The demonstration study report shall also include, if necessary, any proposed upgrades to the treatment system necessary for meeting all permit limits, a timetable for implementing the treatment system upgrades, and an anti-degradation evaluation.
- (B) The permittee shall not operate the proposed hexavalent chromium treatment system unless and until it receives prior written approval from the Commissioner. Sixty (60) days prior to the start-up of the system, the permittee shall notify the Department of its proposal to install a hexavalent chromium system. The notification shall include, at a minimum, a detailed description of the system, including an evaluation that the treatment system will achieve the effluent limitations in Table D of this permit, plans and specifications of the system, and a floor plan for the facility identifying the location of the proposed system.
- (C) The permittee shall achieve compliance with the final effluent limitations in Section 5, Tables A and B of this permit in accordance with the following:
 - (1) On or before thirty (30) days after the date of issuance of this permit, the permittee shall retain one or more qualified consultants acceptable to the Commissioner to prepare the documents and implement or oversee the actions required by this section of the permit and shall, by that date, notify the Commissioner in writing of the identity of such consultants. The permittee shall retain one or more qualified consultants acceptable to the Commissioner until the actions required by this section of the permit the permit have been completed, and within ten (10) days after retaining any consultant other than one originally identified under this paragraph, permittee shall notify the Commissioner in writing of the identity of such other consultant. The consultant retained to perform the studies and oversee any remedial measures required to achieve compliance with Section 5 limitations shall be a qualified professional engineer licensed to practice in Connecticut acceptable to the Commissioner. The permittee shall submit to the Commissioner a description of a consultant's education, experience and training that is relevant to the work required by this permit within ten (10) days after a request for such a description. Nothing in this paragraph shall preclude the Commissioner from finding a previously acceptable consultant unacceptable.
 - (2) On or before ninety (90) days after the date of issuance of this permit, the permittee shall submit for the Commissioner's review and written approval a comprehensive and thorough report which

describes and evaluates alternative actions which may be taken by the permittee to achieve compliance with the limitations in Section 5 of this permit. Such report shall:

- (a) evaluate alternative actions to achieve compliance with Section 5 limits including, but not limited to, pollutant source reduction, process changes/innovations, chemical substitutions, recycle and zero discharge systems, water conservation measures, other internal and/or end-of-pipe treatment technologies, and re-direction of the discharge into the sanitary sewer;
- (b) state in detail the most expeditious schedule for performing each alternative;
- (c) list all permits and approvals required for each alternative, including but not limited to any permits required under sections 22a-32, 22a-42a, 22a-342, 22a-361, 22a-368 or 22a-430 of the Connecticut General Statutes;
- (d) propose a preferred alternative or combination of alternatives with supporting justification; and
- (e) propose a detailed program and schedule to perform all actions required by the preferred alternative including but not limited to a schedule for submission of engineering plans and specifications on any internal and/or end of pipe treatment facilities, start and completion of any construction activities related to any treatment facilities, and applying for and obtaining all permits and approvals required for such actions.
- (D) The permittee shall submit to the Commissioner semi-annual status reports beginning sixty (60) days after the date of approval of the report referenced in Section 10(C) above. Status reports shall be due to the Department on January 1st and July 1st of each year that this permit is in effect until the requirements of this section have been completed in full and approved. Status reports shall include, but not be limited to, a summary of all effluent monitoring data collected by the permittee during the previous six-month period and a detailed description of progress made by the permittee in performing actions required by this section of the permit in accordance with the approved schedule including, but not limited to, development of engineering plans and specifications, construction activity, contract bidding, operational changes, preparation and submittal of permit applications, and any other actions specified in the program approved pursuant to Section 10(C).
- (E) The permittee shall perform the approved actions in accordance with the approved schedule, but in no event shall the approved actions be completed later than six (6) months prior to the expiration date of this permit. Within fifteen (15) days after completing such actions, the permittee shall certify to the Commissioner in writing that the actions have been completed as approved.
- (F) The permittee shall use best efforts to submit to the Commissioner all documents required by this section of the permit in a complete and approvable form. If the Commissioner notifies the permittee that any document or other action is deficient, and does not approve it with conditions or modifications, it is deemed disapproved, and the permittee shall correct the deficiencies and resubmit it within the time specified by the Commissioner or, if no time is specified by the Commissioner, within thirty (30) days of the Commissioner's notice of deficiencies. In approving any document or other action under this Compliance Schedule, the Commissioner may approve the document or other action as submitted or performed or with such conditions or modifications as the Commissioner deems necessary to carry out the purposes of this section of the permit. Nothing in this paragraph shall excuse noncompliance or delay.
- (G) <u>Dates</u>. The date of submission to the Commissioner of any document required by this section of the permit shall be the date such document is received by the Commissioner. The date of any notice by the Commissioner under this section of the permit, including but not limited to notice of approval or disapproval of any document or other action, shall be the date such notice is personally delivered or the date three (3) days after it is mailed by the Commissioner, whichever is earlier. Except as otherwise specified in this permit, the word "day" as used in this section of the

permit means calendar day. Any document or action which is required by <u>this section only</u> of the permit, to be submitted, or performed, by a date which falls on, Saturday, Sunday, or, a legal Connecticut or federal holiday, shall be submitted or performed on or before the next day which is not a Saturday, Sunday, or legal Connecticut or federal holiday.

- (H) <u>Notification of noncompliance</u>. In the event that the permittee becomes aware that it did not or may not comply, or did not or may not comply on time, with any requirement of this Section of the permit, or of any document required hereunder, the permittee shall immediately notify the Commissioner and shall take all reasonable steps to ensure that any noncompliance or delay is avoided or, if unavoidable, is minimized to the greatest extent possible. In so notifying the Commissioner, the permittee shall state in writing the reasons for the noncompliance or delay and propose, for the review and written approval of the Commissioner, dates by which compliance will be achieved, and the permittee shall comply with any dates that may be approved in writing by the Commissioner. Notification by the permittee shall not excuse noncompliance or delay, and the Commissioner's approval of any compliance dates proposed shall not excuse noncompliance or delay unless specifically so stated by the Commissioner in writing.
- (I) <u>Notice to Commissioner of changes</u>. Within fifteen (15) days of the date the permittee becomes aware of a change in any information submitted to the Commissioner under this section of the permit, or that any such information was inaccurate or misleading or that any relevant information was omitted, the permittee shall submit the correct or omitted information to the Commissioner.
- (J) <u>Submission of documents</u>. Any document, other than a discharge monitoring report, required to be submitted to the Commissioner under this section of the permit shall, unless otherwise specified in writing by the Commissioner, be directed to:

Christine Gleason, Sanitary Engineer Department of Energy and Environmental Protection Bureau of Materials Management and Compliance Assurance Water Permitting and Enforcement Division 79 Elm Street Hartford, CT 06106-5127

This permit is hereby issued on

DRAFT

BETSEY C. WINGFIELD Deputy Commissioner

BCW/CMG

ATTACHMENT A

		EFFLU	ENT SAMPLE R	ESULTS	NAUGATU	CK RIVER SAMPI	E RESULTS	
PARAMETER	UNITS	DATE ANALYZED	DATE ANALYZED	DATE ANALYZED	DATE ANALYZED	DATE ANALYZED	DATE ANALYZED	MINIMUM
Alkalinity, Total	mg/L							
Aluminum, Total	μg/L							
Aluminum, Dissolved	μg/L							
Ammonia (as N)	mg/L							
BOD ₅	mg/L							
Cadmium, Total	μg/L							
Chloride, Total	mg/L							
Chlorine, Total Residual	μ g/L							
Chromium, Total	μ g/L							
Copper, Total	μg/L							
Copper, Dissolved	μg/L							
Cyanide, Amenable	μg/L							
Cyanide, Total	μ g/L							
Fluoride	mg/L							
Formaldehyde	μg/L							
Gold, Total	mg/L				Ť			
Hardness, Total	mg/L							
Iron, Total	mg/L							
Iron, Dissolved	mg/L							
Kjeldahl Nitrogen	mg/L							
Lead, Total	μg/L							
Lead, Dissolved	μg/L							
Nickel, Total	μg/L							
Nickel, Dissolved	μg/L							
Nitrate (as N)	mg/L							
Nitrite (as N)	mg/L							
Oil & Grease, Total	mg/L							
рН	SU							
Phosphorus, Total	mg/L							
Silver, Total	μg/L							
Specific Conductance	μmhos	1						
Surfactants, Anionic	mg/L	1						
Temperature	°F	1						
Tin, Total	mg/L	1						
Total Suspended Solids	mg/L	1						
Zinc, Total	μg/L	1						
Zinc, Dissolved	μg/L	1						

Indicate the location where the Naugatuck River sample was collected: (USGS coordinates):_____

Flow (in cfs) measured at USGS Station 01206900 during the chronic toxicity testing:

Temperature, pH, and total residual chlorine must be analyzed within 15 minutes.

ATTACHMENT B

ATTACHMENT SHEET FOR SUPPLEMENTAL MONITORING FOR DSN 001-1

MONTH/YEAR:_____

		DATE SAMPLED WEEK 1	-	DATE SAMPLED WEEK 2	_	DATE SAMPLED WEEK 3	-	DATE SAMPLED WEEK 4	_
PARAMETER	IS	WEEKT	۲, T	WEEKZ	칠	WEEKS	۲, T	WEEK 4	- 칠린
PARAMETER	UNITS	FLOW DAY OF SAMPLING	MINIMUM	FLOW DAY OF SAMPLING	LEVEL	FLOW DAY OF SAMPLING	MINIMUM	FLOW DAY OF SAMPLING	
Acute Toxicity, Daphnia pulex	%								
Acute Toxicity, Pimephales promelas	%		-						
Alkalinity, Total	mg/L								
Aluminum, Total	μg/L			<u>^</u>					
Ammonia (as N)	mg/L								-
Arsenic, Total	μg/L								
BOD ₅	mg/L								
Cadmium, Total	μg/L								
Chloride, Total	mg/L								
Chlorine, Total Residual	μg/L								
Chloroform	μg/L								
Chromium, Total	μg/L								
Copper, Total	μg/L								
Cyanide, Total	μg/L								
Fluoride	mg/L								
Formaldehyde	μg/L								
Gold, Total	mg/L								
Iron, Total	mg/L								
Kjeldahl Nitrogen	mg/L								
Lead, Total	μg/L			r					
Nickel, Total	μg/L								
Nitrate (as N)	mg/L								
Nitrite (as N)	mg/L								
Nitrogen, Total	mg/L								
Organic Nitrogen	mg/L								
pН	SU								
Phosphorus, Total	mg/L								
Silver, Total	μg/L								
Surfactants, Anionic	mg/L								
Tin, Total	mg/L								
Total Suspended Solids	mg/L								
Zinc, Total	μg/L								
SAMPLING	DURATION	SAMPLE 1	SAMP	LE 2 SAME	PLE 3	SAMPLE 4	SAM	PLE 5 SAN	IPLE 6

	SAMPLING	DURATION	SAMP	LE 1	SAMP	LE 2	SAMP	LE 3	SAMP	LE 4	SAMP	LE 5	SAMP	LE 6
CYANIDE	DATE	OF	TIME:											
	DATE	DISCHARGE	RESULT	ML										
WEEK 1:			µg/L	µg/L										
WEEK 2:			µg/L	µg/L										
WEEK 3:			µg/L	µg/L										
WEEK 4:			µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L

TOTAL	SAMPLING	DURATION	SAMP	LE 1	SAMP	LE 2	SAMP	LE 3	SAMP	LE 4	SAMP	LE 5	SAMP	LE 6
RESIDUAL	DATE	OF	TIME:											
CHLORINE	DATE	DISCHARGE	RESULT	ML										
WEEK 1:			µg/L	µg/L										
WEEK 2:			µg/L	µg/L										
WEEK 3:			µg/L	µg/L										
WEEK 4:			µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L

OIL &	SAMPLING	DURATION	SAMPLE 1	SAMPLE 2	SAMPLE 3	SAMPLE 4	SAMPLE 5	SAMPLE 6
GREASE	DATE	OF	TIME:	TIME:	TIME:	TIME:	TIME:	TIME:

DRAFT PERMIT No. CT0001180

S:\WORKING\CGLEASON\PERMITS FOR TENTATIVE NOTICE\Summit, May 2019\NPDES PERMIT MAY 2019.doc

| | DISCHARGE | RESULT | ML |
|---------|-----------|--------|------|--------|------|--------|------|--------|------|--------|------|--------|------|
| WEEK 1: | | mg/L | mg/L |
| WEEK 2: | | mg/L | mg/L |
| WEEK 3: | | mg/L | mg/L |
| WEEK 4: | | mg/L | mg/L |

ATTACHMENT C

ATTACHMENT SHEET FOR SUPPLEMENTAL MONITORING FOR DSN 001A AND DSN 001B

MONTH/YEAR:___

DSN 001A:

AMENABLE	SAMPLING	SAMP	LE 1	SAMP	LE 2	SAMP	LE 3	SAMP	LE 4	SAMP	LE 5	SAMP	LE 6	
CYANIDE		DATE TIME:		TIME:		TIME:	TIME:		TIME:		TIME:		TIME:	
	DATE	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML	
WEEK 1:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	
WEEK 2:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	
WEEK 3:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	
WEEK 4:		µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	

DSN 001B:

HEXAVALENT CHROMIUM	SAMPLING	SAMP	LE 1	SAMP	LE 2	SAMP	LE 3	SAMP	LE 4	SAMP	LE 5	SAMP	LE 6
	IUM DATE TIME:			TIME:	TIME:			TIME:		TIME:		TIME:	
CHINOMION	DATE	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML	RESULT	ML
WEEK 1:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
WEEK 2:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
WEEK 3:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
WEEK 4:		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L

ATTACHMENT D

DSN 001-1 FLOW AND pH RECORD

MONTH/YEAR:_____

DAY	FLOW (gallons discharged)	pH (range over operating day)	DURATION OF DISCHARGE (hours of discharge)
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			

FACT SHEET

NPDES PERMIT RE-ISSUANCE PUBLIC NOTICED: MAY 2019

APPLICANT	SUMMIT CORPORATION OF AMERICA
NPDES PERMIT NO.	CT0001180 (existing term: December 21, 2007 to December 20, 2012)
NPDES APPLICATION NO.	201205290
DATE APPLICATION RECEIVED	June 19, 2012
FACILITY IDENTIFICATION	140-011
LOCATION ADDRESS	1430 Waterbury Road Thomaston, Connecticut 06787
FACILITY CONTACT	Mark Conti, Plant Manager Office: (860) 283-4391 ext. 273 FAX: (860) 283-4010 <u>mconti@Summitct.com</u>
MAILING ADDRESS	1430 Waterbury Road Thomaston, Connecticut 06787
DMR CONTACT	Mark Conti
SECRETARY OF STATE BUSINESS ID	0096727
PERMIT TERM	5 years
PERMIT CATEGORY	NPDES: 🖾 Major 🔲 Discretionary Major 🗌 Minor [Score: 80, August 2018]
STANDARD INDUSTIAL CLASSIFICATION (SIC)	3471 (Electroplating, Plating, Polishing, Anodizing, and Coloring)
APPLICABLE EFFLUENT GUIDELINE(S)	40 CFR 433 (Metal Finishing Point Source Category)
PERMIT TYPE	Reissuance
OWNERSHIP	☐ Federal ☐ State ⊠ Private ☐ Public ☐ Other:
RECEIVING WATER	Naugatuck River
WATERBODY SEGMENT ID	CT6900-00_05
SURFACE WATERBODY CLASSIFICATION	В
SURFACE WATER DISCHARGE LOCATION	DSN 001-1: Latitude (41° 37' 38.38") Longitude (73° 04' 10.53")
DEEP STAFF ENGINEER	Christine Gleason (860/424-3278) <u>christine.gleason@ct.gov</u>

I. FEES

Application Fees (RCSA 22a-430-6):

Application Filing Fee: \$1,300. *Paid on October 2, 2012 Application Processing Fee*: \$13,650 (Invoice 212894). *Paid on January 18, 2013.*

DISCHARGE CODE	WASTEWATER CATEGORY (per 22a-430-7)	MAXIMUM GPD	DSNs	ANNUAL FEE (per 22a-430-7)
101035Z	Metal Finishing (except to POTWs) (Metal finishing wastewaters; Laboratory Wastewater; Drum rinsing wastewater; Tumbling wastewater; Floor wash water/Building maintenance wastewater; Air scrubber wastewater)	>50,000 gpd	001-1	\$8,425
1170000	Blowdown from Heating and Cooling (Boiler Blowdown)		001-1	4,337.50
1090000	Groundwater Contamination Recovery (On-site remediation groundwater)		001-1	4,337.50
	Air Compressor Blowdown Condensate/ Fire Suppression Test Water		001-1	0
TOTAL				\$17,100.00

Annual Permit Fee (RCSA 22a-430-7):

II. APPLICATION

On June 19, 2012, the Department of Energy and Environmental Protection ("Department") received an application (Application 201205290) from Summit Corporation of America ("Summit", "Permittee", "Applicant") in Thomaston for the renewal of its NPDES permit, CT0001180 expiring on December 20, 2012. Consistent with the requirements of section 22a-6g of the Connecticut General Statutes (CGS), the applicant caused a Notice of Permit Application to be published in the *Republican-American* on June 19, 2012. On August 7, 2012, the application was determined to be timely and administratively sufficient.

The permittee seeks authorization for the following in Application 201205290:

	DSN	PROPOSED AVERAGE MONTHLY FLOW (gpd)	PROPOSED MAXIMUM DAILY FLOW (gpd)	PROPOSED WASTESTREAMS	TREATMENT TYPE	DISCHARGE POINT
FINAL DISCHARGE POINT	001-1	330,000	400,000	Metal Finishing Wastewaters; Laboratory Wastewater; Water Treatment Wastewater; Air Scrubber Wastewater; Floor Wash Water/Building Maintenance Wastewater; Tumbling Wastewater; On-Site Groundwater Remediation Wastewater; Drum Rinsing Wastewater; Reverse Osmosis Reject and Backwash Water; Boiler Blowdown; Air Compressor Blowdown/Condensate; Fire Suppression Test Water	Metals Recovery; Equalization; Precipitation; Flocculation; Clarification; Neutralization	Naugatuck River
,	001A-1			Treated cyanide-bearing wastewaters	Cyanide Destruction	DSN 001-1
INTERNAL POINTS	001B-1			Treated hexavalent chromium-bearing wastewaters	Proposed treatment: Hexavalent chromium reduction	DSN 001-1

Summit is a metal finishing job shop. The primary wastewater generating activity continues to be the treatment of metal finishing wastewaters at the site. The permittee is requesting authorization to discharge a new wastestream, treated groundwater generated from on-site remediation activities. During this permit term, the permittee has made a number of modifications to its facility in order to address compliance schedules in its existing permit.

III. STATUS OF SPECIAL CONDITIONS/COMPLIANCE SCHEDULES IN THE EXISTING PERMIT

Summit's existing NPDES permit includes three special conditions/compliance schedules that require it to: 1) improve stormwater quality by June 24, 2007; 2) comply with total nitrogen limits for DSN 001-1 by August 1, 2009; 3) comply with limits for: total residual chlorine, total copper, total lead, total nickel, total zinc, and acute aquatic toxicity for DSN 001-1 by July 1, 2011. A summary of the status of these special conditions/compliance schedules is as follows:

Compliance Schedule/Special Condition #1: Summit has three stormwater discharges (DSN 002, DSN 003 and DSN 004) that are directed into the Naugatuck River. [See Attachment 1]. These discharges are covered under the *General Permit for the Discharge of Stormwater Associated with Industrial Activity*, ("general permit") registered as GSI000406. Historically, DSN 003 and DSN 004, have not consistently complied with the benchmarks in the general permit (i.e., there have been elevated levels of copper in the stormwater and there have been toxicity failures associated with the stormwater). Because of these issues, a compliance schedule (i.e., Section 10(B)) was incorporated into the permit requiring Summit to address stormwater quality. Section 10(B) requires Summit to submit a report, for the review and written approval of the Commissioner, that evaluates the effectiveness of certain remedial actions that have been taken to improve the quality of the stormwater so that the benchmarks identified in the general permit can be consistently met. This paragraph also requires an evaluation of the need for supplemental remedial measures to further improve site stormwater quality.

On June 30, 2008, Summit submitted a report (Stormwater Remedial Action Assessment Report) prepared by Facility Support Services in response to the requirements of Section 10(B). This report summarized the remedial actions that had been performed at the site between 2000 and 2002, including: conducting annual inspections of the Building 6 roof to identify sources of copper exposure; painting exposed copper sources at the facility; cleaning and removing copper deposits on the Building 6 roof; and relocating the scrap metal storage area to an inside location. The report also proposed additional projects designed to improve stormwater quality (e.g., routinely cleaning residues off of the north side of the rectifier building; removing some old processing tanks; replacing and painting the corrugated metal roof of the Warehouse Building; installing exhaust scrubbers for the process fumes from Building 6). On August 20, 2010, a supplemental report (Supplemental Stormwater Report) was provided to the Department describing the ongoing efforts to improve stormwater quality. This report indicated that existing practices were continuing to be implemented concerning the improvements to stormwater quality (i.e., conducting annual inspections of the roof area to ensure that all copper-containing materials are painted over; conducting monthly inspections of the roof area to ensure that any copper deposits/residues from the process vents are cleaned up). This report also proposed to conduct sediment removal from the paved areas and the catch basins.

The following is a summary of the stormwater monitoring results for DSN 003, DSN 004, Catch Basin 6 and Catch Basin 8:

		1)				DSN	-003			
PARAMETER	STINU	LIMITS (1994-Sept 2011)	Nov 2004	Sept 2005	Sept 2006	Sept 2007	Sept 2008	Oct 2009	Oct 2010	Aug 2011
Oil & Grease	mg/L	5	7.2	<1.0	0.57	2.0	<1.0	<1.0	4.0	<1.0
pH	SU		6.36	6	4.21	4.49	6.17	6.39	6.70	6.17
COD	mg/L	75	85	117	54	18.7	63.8	66.3	44.4	11.3
TSS	mg/L	100	10	51	21	60	13.0	7.0	ND	12.0
Phosphorus, T	mg/L	0.5	< 0.2	0.016	< 0.20	0.24	0.43	0.32	0.11	0.09
TKN	mg/L	2.5	3.2	11	9.8	2.4	0.86	1.81	1.77	1.16
NO ₃ -N	mg/L	1.5	1.4	2.1	0.67	0.30	0.75	0.87	1.17	0.5
Total Copper	mg/L	0.100	0.16	0.366	0.28	0.052	0.209	0.126	0.225	0.141
Total Zinc	mg/L	0.500	0.13	0.574	0.32	0.069	0.217	0.241	0.389	0.167
Total Lead	mg/L	0.050	< 0.002	< 0.030	0.056	0.022	0.010	0.015	0.025	0.012
48-Hour LC ₅₀	%	50	28.7	<6.25	<6.25	82	<6.25	77.1	85.2	<6.25
Cadmium	mg/L		< 0.005		0.001					
Chromium, Hex	mg/L		< 0.03		< 0.03					
Silver	mg/L		0.04		0.013					
Surfactants	mg/L		0.11		0.55					

		(1)				DSN	-004			
PARAMETER	SLIND	LJMITS (1994-Sept 2011)	Nov 2004	Sept 2005	Sept 2006	Sept 2007	Sept 2008	Oct 2009	Oct 2010	Aug2011
Oil & Grease	mg/L	5	0.86	4.2	2.4	1.6	<1.4	х	х	х
pН	SU		6.53	6.1	5.48	5.61	6.58	х	х	х
COD	mg/L	75	38	116	82	32.1	18	х	х	х
TSS	mg/L	100	290	73	38	100	<5.0	х	х	х
Phosphorus, T	mg/L	0.5	< 0.2	0.15	< 0.20	0.58	< 0.20	х	х	х
TKN	mg/L	2.5	2.4	2.72	8.1	2.6	0.11	х	х	х
NO ₃ -N	mg/L	1.5	1.2	0.1	0.53	0.30	0.86	х	х	х
Total Copper	mg/L	0.100	0.37	0.274	0.20	0.077	0.019	х	х	х
Total Zinc	mg/L	0.500	0.47	0.385	0.21	0.077	0.100	х	х	х
Total Lead	mg/L	0.050	0.069	< 0.030	0.018	0.040	< 0.001	х	х	х
48-Hour LC ₅₀	%	50	12.7	6.25	7.0	18.3	35.4	х	х	х
Cadmium	mg/L		< 0.005		< 0.001			х	х	х
Chromium, Hex	mg/L		< 0.03		< 0.03			х	х	х
Silver	mg/L		0.052		0.016			х	х	х
Surfactants	mg/L		0.21		0.56			х	х	х

NOTE: DSN-004 includes contributions from Catch Basin 6 (CB-6), Catch Basin 7 (CB-7), and Catch Basin 8 (CB-8). Because CB-7 includes stormwater contributions from an off-site facility, SUMMIT was allowed to conduct monitoring at CB-6 and CB-8 in lieu of continuing monitoring at DSN-004.

		(1)	CB-6	CB-8	CB-6	CB-8	CB-6	CB-8	CB-6	CB-8	CB-6	CB-8	
PARAMETER	SLIND	LIMITS (1994-Sept 2011)	T1 2007	/007 Amr	Caret 2000	0007 11 ac	0.00	001 2003	Oct 2010		A 110 2011	Aug 2011	
Oil & Grease	mg/L	5			1.6	2.4	2.0	1.6	15.2	13.6	<1.0	<1.0	
pH	SU				4.29	6.38	6.51	7.16	6.86	6.64	6.51	5.57	
COD	mg/L	75			59.0	32.1	73.8	44.4	102.4	66.3	22.2	25.6	
TSS	mg/L	100			18.0	51.0	151	122	39.0	98.0	70.0	95.0	
Phosphorus, T	mg/L	0.5			0.10	0.17	0.16	0.16	0.55	0.15	0.12	0.11	
TKN	mg/L	2.5			0.50	4.2	1.04	1.49	7.45	0.61	0.74	0.45	
NO ₃ -N	mg/L	1.5			0.42	0.56	0.89	0.42	0.91	0.76	0.38	0.70	
Total Copper	mg/L	0.100	0.17	0.13	0.323	0.058	0.395	0.281	0.008	0.170	0.153	0.208	
Total Zinc	mg/L	0.500	0.21	0.17	0.279	0.122	0.379	0.492	0.497	0.105	0.142	0.165	
Total Lead	mg/L	0.050	0.11	0.10	0.010	0.008	0.046	0.111	0.054	0.027	0.015	0.018	
48-Hour LC ₅₀	%	50			<6.25	66.0	17.7	77.1	<6.25	11.3	>100	79.4	
Cadmium	mg/L		< 0.01	< 0.01									
Chromium, Hex	mg/L		< 0.01	< 0.01									
Silver	mg/L		0.15	0.09									
Surfactants	mg/L		0.11	< 0.01									

- **Compliance Schedule/Special Condition #2**: Section 10(C) of the existing permit requires that the permittee achieve compliance with an average monthly effluent limitation for total nitrogen of 17.7 kg/day (38.9 lbs/day) by August 1, 2009, at the latest. In January 2009, Summit submitted a report (*Scope of Study For Investigation and Implementation Plan, NPDES Permit CT0001180*) that described an investigation to be conducted which was designed to reduce the total nitrogen level in its effluent. This investigation consisted primarily of the identification and subsequent substitution/elimination of nitrogen-bearing raw materials used at the facility. On August 20, 2010, Summit submitted a supplemental report that summarized the actions that it had taken to reduce the total nitrogen level in the effluent. These actions included: reformulating the lime slurry (which was determined to contain a significant source of total kjeldahl nitrogen) and substituting nitric acid for sulfuric acid in several of the process lines. These reports were approved on November 10, 2010. The permittee has been in compliance with the 2009 stepdown since taking these actions.
 - **Compliance Schedule/Special Condition #3**: Section 10(D) of the existing permit requires that the permittee achieve compliance with the effluent limitations for total residual chlorine, total copper, total lead, total nickel, total zinc, and acute aquatic toxicity contained in Section 5, Tables C & D of the permit by July 1, 2011, at the latest. Compliance with the toxicity limits also included a requirement that the permittee undertake a Toxicity Identification Evaluation/Toxicity Reduction Evaluation (TIE/TRE), if necessary, and also required that the permittee demonstrate compliance with the instantaneous toxicity limits in the NPDES permit.

The permittee submitted a report in January 2009 (*Scope of Study For Investigation and Implementation Plan, NPDES Permit CT0001180*) summarizing the manner in which it intended to comply with the requirements of Section 10(D). In that report, the permittee proposed to implement certain operating procedures designed to achieve the required limits, including: controlling dragout, recycling rinsewaters, reducing/substituting surfactant use, optimizing the performance of the spray systems and rinsing methods, and reducing the use of chelating agents. These procedures were implemented over time and the chemical-specific limits were met by the required compliance date of July 2011. In addition, the permittee submitted verification on November 27, 2012 that it is achieving compliance with the maximum instantaneous permit limits for acute toxicity in Table D of its permit. However, in January 2014, the permittee began having compliance issues with acute aquatic toxicity. In 2015, it undertook a pilot study designed to reduce metals concentrations in its effluent and to improve aquatic toxicity results. Based on the findings of the pilot study, the permittee modified its treatment system in 2016 and 2017. Since September 2016, there have been no acute aquatic toxicity violations.

IV. GENERAL ISSUES RELATED TO THE APPLICATION

A. FEDERALLY-RECOGNIZED INDIAN LAND

As provided in the permit application, the site is not located on federally-recognized Indian land.

B. COASTAL AREA/COASTAL BOUNDARY

The activity is not located within a coastal boundary as defined in CGS 22a-94(b).

C. ENDANGERED SPECIES

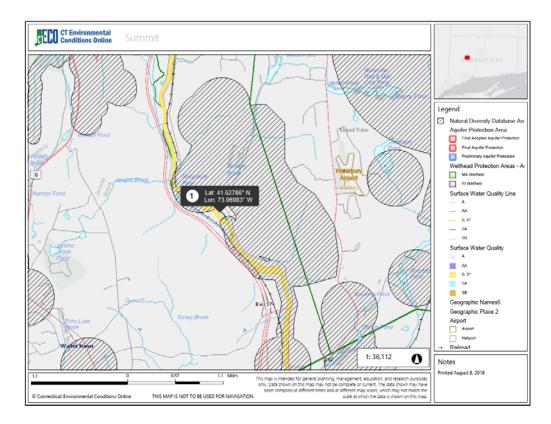
The June 2016 Natural Diversity Database map indicates that there is a potential conflict within a half-mile of the site. However, based on the letter dated June 18, 2012 from the Department's Bureau of Natural Resources, a determination was made that the proposed activity will not impact any extant populations of federal or state Endangered, Threatened or Special-Concern Species that occur in the vicinity of the property.

D. AQUIFER PROTECTION AREAS

The project site is located within a town required to establish Aquifer Protection Areas but the site is not located within a protected area identified on a Level A or B map.

E. CONSERVATION OR PRESERVATION RESTRICTION

As provided in the permit application, the property is not subject to a conservation or preservation restriction.


F. PUBLIC WATER SUPPLY WATERSHED

According to the applicant, the site is not located within a public water supply watershed.

V. RECEIVING WATER INFORMATION

Summit discharges into the section of the Naugatuck River identified as Waterbody Segment ID CT6900-00_05. This section of the river is classified as B. Class B waters are designated for: habitat for fish and other aquatic life and wildlife; recreation; and industrial and agricultural water supply. This waterbody segment is identified on the 2016 *Integrated Water Quality Report* as an impaired waterbody. There are two impaired designated uses associated with this waterbody: 1) An impairment to the habitat for fish, other aquatic life, and wildlife due to whole effluent toxicity, and 2) an impairment to recreation due to *Escherichia coli (E. coli)*. Total Maximum Daily Loads (TMDLs) have been adopted and approved for each impairment. The *Total Maximum Daily Load Analysis for the Upper Naugatuck River, Thomaston, Connecticut*, addresses

whole effluent toxicity, and was approved by EPA on August 17, 2005. A Total Maximum Daily Load Analysis for Recreational Uses of the Naugatuck River Regional Basin addresses E. coli and was approved by EPA on June 4, 2008. The TMDL concerning whole effluent toxicity includes a wasteload allocation assigned to Summit; the TMDL concerning E. coli does not include any wasteload allocation for Summit. In addition, this segment of the Naugatuck River is subject to A Total Maximum Daily Load Analysis to Achieve Water Quality Standards for Dissolved Oxygen in Long Island Sound, December 2000. [See Section XIV for information about nitrogen, E coli, and toxicity.]

VI. NATURE OF BUSINESS GENERATING THE DISCHARGE

Summit is primarily engaged in metal finishing operations at the site. The SIC code for this activity, as provided by the applicant, is: 3471 (Electroplating, Plating, Polishing, Anodizing, and Coloring). The applicant also notified for SIC codes 3313 (Electrometallurgical Products), and 3399 (Primary Metal Products). The applicant indicates that its wire drawing operations may be subject to one of these SIC codes; it is unsure what the other SIC code applies to.

VII. FACILITY DESCRIPTION

Summit is located on approximately 8.2 acres in a mixed commercial/industrial area on the Naugatuck River in Thomaston. [See Attachments 2 & 3 for site detail]. Summit's site includes land on both sides of the Naugatuck River; the facility is located on the east side of the river (in Thomaston) and the facility's production wells are located on the west side of the river (in Watertown). The three production wells provide the source water for the facility. [Summit has a Diversion Permit (DIV-200701641GP) authorizing the water withdrawal.] The water from the production wells is piped under the Naugatuck River and stored at Summit in a 5,000 gallon concrete vault ("Return Well"). Prior to use, the water is treated through a reverse osmosis (RO) system; the backwash from the RO system is re-used in certain operations at the facility. Any water used for non-contact cooling purposes at the facility is recycled back into the Return Well for later re-use.

Summit is primarily engaged as a metal finishing job shop. Miscellaneous, related operations include minor machining and drawing of copper wire prior to plating. Summit conducts metal finishing of various parts (i.e., machined parts, wire, and thin metal strip) for the telecommunications, aerospace, medical, battery, and

automotive industries. The base metals processed include copper, beryllium-copper, brass, steel, stainless steel, and aluminum. Summit's metal finishing operations include electroplating (i.e., chromium, copper, bronze, nickel, tin, tin-lead, lead, gold, silver, palladium), electroless plating (nickel), reflow tin plating, brite dipping, cleaning, stripping, and tumbling. [See Attachment 4 for the detail on the process operations.] The rinsewaters and cleaners associated with the metal finishing operations are directed into the on-site wastewater treatment system; concentrated baths are containerized and shipped off-site. Summit also generates certain ancillary wastestreams (e.g., laboratory wastewater, air scrubber wastewater, etc.) that are also directed into the on-site wastewater treatment system.

From 1955 until 1975, a metal hydroxide sludge impoundment was used at the site. This unit was closed in place in 1975. After closure of this unit, two lagoons were used at the site until 1986 to treat wastewater from the facility's operations. These units went through RCRA closure in 1988/1989. A Certificate of Closure was issued on October 16, 1989. There is presently a network of about 50 monitoring wells on-site. Four of these wells (i.e., MW-5, MW-6, MW-8, and MW-10) are RCRA wells and have been monitored semi-annually since closure. [See Attachment 5 for a well map.] Monitoring results from these wells indicate that the groundwater on-site contains: barium, cadmium, cyanide, cobalt, copper, gold, mercury, nickel, silver, zinc, cis-1,2-dichloroethylene, 1,1,1-trichloroethylene, and trichloroethylene. [See Attachment 6 for a data summary of the RCRA wells from 2008 to 2012]. Summit is seeking authorization to treat the groundwater on-site through its on-site wastewater treatment system. It proposes to direct the groundwater into the system at a rate of up to 20 gpm for 24 hours per day (i.e., 28,880 gpd maximum).

Sanitary wastewater that is generated at the facility is directed to an on-site septic system.

A summary of the wastestreams generated at the facility and treated (or proposed to be treated) through the on-site wastewater treatment system is as follows:

WASTESTREAM	DESCRIPTION
Metal Finishing Wastewaters	The rinsewaters and cleaners (acidic and alkaline solutions) associated with the metal finishing operations
Laboratory Wastewater	Wastewater that is generated from cleaning the glassware in the laboratory
Water Treatment Wastewater	Boiler water softener
Air scrubber wastewater	Wastewater that is generated from the on-site air scrubber associated with the metal finishing operations
Floorwash Wastewater/Building Maintenance Wastewater	This includes the wastewater associated with cleaning the process tanks as well as the floor spill material generated from the metal finishing operations
Tumbling Wastewater	Wastewater generated from miscellaneous tumbling/cleaning/decontamination operations
On-Site Groundwater Remediation Wastewater (PROPOSED)	The groundwater at the facility which contains: barium, cadmium, cyanide, cobalt, copper, gold, mercury, nickel, silver, zinc, cis-1,2-dichloroethylene, 1,1,1-trichloroethylene, and trichloroethylene
Drum Rinsing Wastewater	Wastewater that is generated from rinsing out "empty" drums of various chemicals at the site
Reverse Osmosis (RO) Reject and Backwash Water	Wastewater generated from backwashing the supply water's reverse osmosis (RO) system with water. The RO water is recirculated back into the process rinsewaters for reuse.
Boiler Blowdown	The boilers on-site are blown down twice a day in order to maintain the proper chemistry in the boiler; approximately 50 gallons of cooling water is combined with the blowdown to control temperature.
Air Compressor Condensate/Blowdown	The air compressor is periodically blown down as necessary to remove any condensate in the compressor
Fire Suppression Test Water	Wastewater that is generated from the annual testing the fire suppression system

VIII. THE ON-SITE WASTEWATER TREATMENT SYSTEM

The on-site wastewater treatment system consists of the following operations: Metals Recovery, Equalization/Precipitation, Cyanide Treatment, Flocculation/Clarification, Final Neutralization:

Metals Recovery: Wastewaters from the tin, silver, and gold plating operations are directed to individual recovery systems in order to remove the subject metals. Metals are precipitated out of the tin-bearing and silver-bearing wastewaters using sodium hydroxide and sodium hypochlorite, respectively; gold-bearing wastewaters are treated in ion exchange columns in order to remove the

gold. The wastewater generated from the tin precipitation operation is directed to Equalization/Neutralization for further treatment; the wastewater remaining after the silver and gold recovery operations is directed into Cyanide Treatment.

Equalization/Precipitation: All dilute acidic and alkaline solutions, as well as non-cyanide bearing rinsewaters are directed into the Equalization/Precipitation system. The system consists of a 5,000 gallon tank (HpH I) where the wastewater is treated with lime and sodium hypochlorite. These wastewaters are then pH adjusted using sulfuric acid in a 1,500 gallon tank (HpH II). From there, the wastewater is dechlorinated using sodium thiosulfate as it is conveyed to Flocculation/Clarification for additional treatment.

Cyanide Treatment: All cyanide-bearing wastewaters are directed into a two-stage cyanide destruction system for treatment. Stage 1 occurs in a 5,000 gallon tank (CN I) and consists of pH adjustment with lime slurry followed by the addition of sodium hypochlorite to treat the amenable cyanide. The wastewater then flows to another 5,000 gallon tank (CN II) where the pH of the wastewater is adjusted with sulfuric acid. The wastewater is then dechlorinated with sodium thiosulfate before being directed to Flocculation/Clarification for additional treatment. The sample taken to determine compliance with the amenable cyanide permit limit (DSN 001A-1) is taken after the CN II tank.

Hexavalent Chromium Treatment (PROPOSED): Summit is proposing to expand its existing operations to include hexavalent chromium plating. This will require that Summit install additional treatment equipment in order to pre-treat the hexavalent chromium-bearing wastewaters. Summit is proposing to install a conventional two-stage hexavalent chromium treatment system using sodium metabisulfate to reduce the hexavalent chromium to the trivalent form of chromium. Summit will take a sample of the wastewater following the second-stage treatment in order to verify the level of hexavalent chromium. This sampling point will be known as DSN 001B-1. The wastewater treated through this system will receive further treatment, as necessary.

Flocculation/Clarification/Final Neutralization: Dechlorinated wastewaters from Equalization/Precipitation and Cyanide Treatment are dosed with polymers and allowed to settle in the Flocculant Chamber. Following flocculation, the wastewater is conveyed to the Clarifier. Sludge generated in the Clarifier is dewatered and shipped off-site. The clarified water is pH adjusted and then discharged into the Naugatuck River via a side-bank discharge pipe. [Approximately twice per year, the Clarifier requires clean-out. When this is necessary, the 250,000 gallon "Safety Tank" is temporarily used as a Clarifier.] The design flow of the treatment system is 400,000 gpd. DSN 001-1 is a continuous discharge that flows approximately 5-6 days per week, 24 hours per day.

See Attachments 7 & 8 for a schematic of the treatment system and the proposed hexavalent chromium treatment system.

IX. EFFLUENT QUALITY DATA

See Attachment 9 for a summary of DMR data from 2008 to 2018.

X. MONITORING/EFFLUENT VIOLATIONS

Based on a review of Summit's DMRs from 2008 to June 2018, the following effluent violations were noted:

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
January 2008	001-1	Silver	Average Monthly	0.027 kg/day	0.04 kg/day		
REASON: Equipment Related Operator Error Other Unknown							
Unknown.							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
November 2009	001-1	BOD ₅	Average Monthly	42.7 kg/day	59.8 kg/day		
REASON: Equipment Related Operator Error Other Unknown							
Unknown, but suspe	Unknown, but suspected sample contamination.						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
March 2010	001-1	Ammonia	Maximum Daily	20 mg/L	22 mg/L		
REASON: Equipment Related Operator Error Other Unknown							
Unknown, but the permittee suspects that the source may be due to the large amount of electroless nickel work which was performed in that month. [The electroless nickel line uses ammonium hydroxide].							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
July 2011	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	75%		
REASON: Equipment Related Operator Error Other Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
July 2011	001-1	Acute Toxicity Pimephales promelas	Maximum Daily	NOAEL of ≥90% @ CTC of 52	75%		
REASON: Equipment Related Operator Error Other Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE	
March 2013	001-1	Cyanide, Total	Average Monthly	0.22 mg/L	0.253 mg/L	
REASON: 🛛 Equipment Related 🔲 Operator Error 🔲 Other 🗌 Unknown						
A bad O-ring on the union to the return line on the feed tank associated with the wire stripping operation is assumed to						
have been the cause	of the vie	plation. The O-ring was	replaced and follow-u	p sampling for cyani	de was conducted.	

have been the cause of the violation. The O-ring was replaced and follow-up sampling for cyanide was conducted. These results were below the permit limits.

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
March 2013	001-1	Cyanide, Total	Maximum Daily	0.4 mg/L	0.41 mg/L		
REASON: Sequipment Related Sequipment Contractions Operator Error Other Unknown							

A bad O-ring on the union to the return line on the feed tank associated with the wire stripping operation is assumed to have been the cause of the violation. The O-ring was replaced and follow-up sampling for cyanide was conducted. These results were below the permit limits.

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
January 2014	001-1	Cyanide, Amenable	Average Monthly	0.1 mg/L	0.11 mg/L			
REASON: Equipment Related Operator Error Other Unknown								
No explanation prov	No explanation provided.							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
January 2014	001-1	Cyanide, Total	Average Monthly	0.22 mg/L	0.23 mg/L			
REASON: Equipment Related Operator Error Other Unknown								
No explanation prov	No explanation provided.							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
January 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	75%		
REASON: 🗌 Equipment Related 🗌 Operator Error 🗌 Other 🖾 Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
April 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	75%		
REASON: Equipment Related Operator Error Other Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
April 2014	001-1	Acute Toxicity Pimephales promelas	Maximum Daily	NOAEL of ≥90% @ CTC of 52	50%			
REASON: Equip	April 2014 001-1 Pimephales promelas Maximum Daily CTC of 52 50% REASON: Equipment Related Operator Error Other Unknown CTC of 52 S0%							
Unknown								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
July 2014	001-1	Nickel, Total	Average Monthly	0.653 mg/L	0.730 mg/L			
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown							
Violation reportedly	related to	reducing the effluent pH	[.					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
October 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	0%		
October 2014 001-1 Acute Toxicity Daphnia pulex Maximum Daily NOAEL of ≥90% @ CTC of 52 0% REASON: □ Equipment Related □ Operator Error □ Other ⊠ Unknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
October 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	22%
October 2014O01-1Acute Toxicity Daphnia pulexMaximum DailySurvival in 100% Effluent of \geq 50%22%REASON:Equipment RelatedOperator ErrorOther \boxtimes Unknown					
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
November 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	12%
REASON: 🗌 Equip	ment Relat	ed 🔲 Operator Error 🛛	🗌 Other 🛛 Unknown		
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
November 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	8%		
November 2014 001-1 Maximum Daily							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
December 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	74%		
December 2014 $101-1$ 2000 100							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
December 2014	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	30%		
December 2014 001-1 Maximum Daily 30%							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
January 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	0%		
REASON: 🗌 Equip	$anuary 7015 = 001-1 \qquad 7 \qquad Maximum Daily \qquad 0\%$						
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
January 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	0%		
January 2015001-1Acute Toxicity Daphnia pulexMaximum DailySurvival in 100% Effluent of \geq 50%0%REASON:Equipment RelatedOperator ErrorOtherUnknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
January 2015	001-1	Silver, Total	Average Monthly Maximum Daily	27 g/day 54 g/day	40 g/day 87 g/day		
No reason provided.	No reason provided.						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE	
February 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	0%	
February 2015 \downarrow 001-1 \downarrow Maximum Daily \downarrow 0%						
Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
February 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	0%			
February 2015 001-1 0%								
Unknown								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
February 2015	001-1	Silver, Total	Maximum Daily	54 g/day	56 g/day		
REASON: Equipment Related Operator Error Other Unknown							
No reason provided.							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
March 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	16%		
March 2015 001-1 Acute Toxicity Daphnia pulex Maximum Daily NOAEL of ≥90% @ CTC of 52 16% REASON: □ Equipment Related □ Operator Error □ Other ⊠ Unknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
March 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	24%		
March 2015001-1Daphnia pulexMaximum DailyEffluent of $\geq 50\%$ 24%REASON: \Box Equipment Related \Box Operator Error \Box Other \boxtimes Unknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
April 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	8%		
REASON: Equip	ment Relat	ed 🔲 Operator Error 🛛	🗌 Other 🖾 Unknown				
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
April 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	8%		
April 2015001-1Acute Toxicity Daphnia pulexMaximum DailySurvival in 100% Effluent of \geq 50%8%REASON:Equipment RelatedOperator ErrorOther \boxtimes Unknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
April 2015	001-1	Silver, Total	Average Monthly	27 g/day	34 g/day		
REASON: Equipment Related Operator Error Other Unknown							
No reason provided.							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE	
May 2015	001-1	Silver, Total	Average Monthly Maximum Daily	27 g/day 54 g/day	50 g/day 70 g/day	
May 2015 001-1 Silver, Total Maximum Daily 54 g/day 70 g/day REASON: Equipment Related Operator Error Other Unknown						
No reason provided.						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
June 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	12%
REASON: Equip	ment Relat	ed 🔲 Operator Error 🛛	🛾 Other 🖾 Unknown		
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
June 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\ge 50\%$	4%
REASON: Equip	ment Relat	ed 🔲 Operator Error 🛛	🗌 Other 🖾 Unknown		
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
June 2015	001-1	Silver, Total	Average Monthly Maximum Daily	27 g/day 54 g/day	44 g/day 69 g/day		
Build 2013 OOI-1 Sliver, Iotal Maximum Daily 54 g/day 69 g/day REASON: Equipment Related Operator Error Other 🛛 Unknown Other 🖓 Unknown							
No reason provided.	No reason provided.						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
July 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	40%		
July 2015 001-1 Daphnia pulex Maximum Daily CTC of 52 40% REASON: Equipment Related Operator Error Other 🛛 Unknown							
Unknown	Unknown						

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
July 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	34%				
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
July 2015	001-1	Silver, Total	Average Monthly Maximum Daily	27 g/day 54 g/day	37 g/day 65 g/day			
REASON: Equipment Related Operator Error Other Unknown								
No reason provided.								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
July 2015	001-1	Fluoride	Maximum Daily	30 mg/L	35.5 mg/L				
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown								
No reason provided.									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
August 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	0%				
REASON: 🗌 Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown	Unknown								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
August 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	0%
REASON: Equip	ment Relat	ed 🔲 Operator Error 🛛	🗌 Other 🖾 Unknown		
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
September 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	18%				
REASON: 🗌 Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
September 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\ge 50\%$	28%				
REASON: 🗌 Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
September 2015	001-1	Lead, Total	Maximum Daily	13 g/day	17.8 g/day				
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown								
No reason provided.									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
October 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	16% 10%				
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
October 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	24% 8%				
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
October 2015	001-1	Lead, Total	Maximum Daily	13 g/day	18 g/day			
REASON: Equipment Related Operator Error Other Unknown								
No reason provided.								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE				
November 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	24%				
REASON: C Equip	REASON: Equipment Related Operator Error Other Unknown								
Unknown									

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE
November 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily		28%
REASON: Equip	ment Relat	ed 🔲 Operator Error 🛛	🗌 Other 🖾 Unknown		
Unknown					

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
November 2015	001-1	Lead, Total	Maximum Daily	13 g/day	24.3 g/day			
REASON: Equip	REASON: 🗌 Equipment Related 🔲 Operator Error 🗌 Other 🖾 Unknown							
No reason provided.								

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE		
December 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	54%		
REASON: 🗌 Equipment Related 🔲 Operator Error 🗌 Other 🖾 Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED -TYPE OF LIMIT		PERMITTED LIMIT	REPORTED VALUE		
December 2015	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of $\geq 50\%$	42%		
REASON: Equipment Related Operator Error Other Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED	TYPE OF LIMIT	PERMITTED LIMIT	REPORTED VALUE			
January 2016	001-1	Silver, Total	Average Monthly Maximum Daily	27 g/day 54 g/day	30 g/day 58 g/day			
REASON: Equip	REASON: Equipment Related Operator Error Other Unknown							
No reason provided.								

MONTH/YEAR	DSN	PARAMETER VIOLATED			REPORTED VALUE		
July 2016	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	26%		
REASON: Equipment Related Operator Error Other Unknown							
Unknown							

MONTH/YEAR	DSN	PARAMETER VIOLATED -TYPE OF LIMIT		PERMITTED LIMIT	REPORTED VALUE			
July 2016	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	Survival in 100% Effluent of \geq 50%	24%			
REASON: 🗌 Equip	REASON: Equipment Related Operator Error Other Unknown							
Unknown								

MONTH/YEAR	DSN	PARAMETER VIOLATED -TYPE OF LIMIT		PERMITTED LIMIT	REPORTED VALUE		
August 2016	001-1	Acute Toxicity Daphnia pulex	Maximum Daily	NOAEL of ≥90% @ CTC of 52	70%		
REASON: 🗌 Equipment Related 🔲 Operator Error 🗌 Other 🖾 Unknown							
Unknown							

In June 2016, the permittee discovered that its flow meter was not programmed correctly, resulting in effluent flows being underreported since approximately 2012. The DMRs from 2015 forward were corrected using a factor to estimate what the flows and mass-based discharge rates would have been if the flow meter had been programmed correctly.

XI. OUTSTANDING ENFORCEMENT (RELATED TO WASTEWATER DISCHARGES):

- On April 3, 2012, Notice of Violation NOV WR IN 12 009 was issued to Summit because it violated its permit limit for pH (Maximum); this was determined by a grab sample collected on January 10, 2012. The NOV was closed on October 17, 2012.
- On August 27, 2012, Notice of Violation NOV WR IN 12 020 was issued to Summit because it violated its Maximum Instantaneous permit limit for Nickel; this was determined by a grab sample collected on June 11, 2012. The NOV was closed on October 17, 2012.

- On April 7, 2014, Notice of Violation NOV WR IN 14 403 was issued to Summit because it violated its pH limit. In addition, the pH alarm did not activate at the high level.
- On June 19, 2014, Notice of Violation NOV WR IN 14 015 was issued to Summit because it violated its Maximum Instantaneous permit limit for Lead; this was determined by a grab sample collected on April 28, 2014. In addition, the NOV also identified other violations of Maximum Instantaneous limits and indicated that the permittee had continuously underreported its pH, Maximum value since permit issuance.
- On August 28, 2014, Notice of Violation NOV WR IN 14 017 was issued to Summit because it violated its Maximum Instantaneous permit limit for Nickel; this was determined by a grab sample collected on June 23, 2014.

XII. SPILL HISTORY (LAST FIVE YEARS):

None

XIII. EFFLUENT GUIDELINES

The following Effluent Guidelines and Standards were reviewed in order to determine their applicability to Summit's discharge, DSN 001-1:

- **40 CFR 433: Metal Finishing Point Source Category**. Summit is a metal finishing job shop that began operations in 1955. It has been, and is currently engaged in, electroplating, passivation, and certain ancillary metal finishing operations. Since Summit performs the "core" and "ancillary" operations identified in 40 CFR 433.10, its discharge is regulated as a metal finishing discharge under 40 CFR 433. Summit is presently regulated as an existing source. However, numerous changes have occurred at the facility over the years, which have included adding new lines, reconfiguring lines for different operations, and re-designing lines to minimize the generation of pollutants. If changes are made to an existing facility's operations that meet the definition of a new source (i.e., it installed new lines, rebuilt or moved lines, converted existing lines to do new operations, etc.), the facility is subject to new source standards. Because changes have been made to the configuration and capabilities of the operations at Summit after the deadline date of July 15, 1983, the New Source Performance Standards (NSPS) at 40 CFR 433 apply to the discharge.
- **40 CFR 465: Coil Coating Point Source Category.** Summit cleans and plates copper coil at its facility. The regulations at 40 CFR 465 address coil coating of certain basis materials. Under this regulation, coil coating covers at least two of the three following operations: cleaning, conversion coating, and painting. Summit cleans, but does not conversion coat or paint its brass and copper coils. Therefore, 40 CFR 465 does not apply to the discharge.
- 40 CFR 468: Copper Forming Point Source Category. Summit is engaged in the drawing of copper wire at its site. Following drawing, the copper wire is cleaned, and plated as necessary. The drawing solutions associated with this operation are containerized and shipped off-site. Section 40 CFR 468 regulates the discharges associated with copper forming operations; drawing is identified as a forming operation. However, the scope of this categorical is limited to those facilities classified within SIC codes 3351 and 3357. Summit's operations are not described by either of these SIC codes. Therefore, the wire drawing activity can be classified as an ancillary operation under 40 CFR 433.
- 40 CFR 445: Landfills Point Source Category. Summit has closed its former surface impoundment as a "landfill". However, surface impoundments are specifically excluded from the applicability of this categorical (40 CFR 445.1(b)). In addition, the only wastewater associated with the closed unit is the impacted groundwater and this wastestream is specifically excluded from the requirements of 40 CFR 445.1(d).

XIV. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

A. WASTESTREAMS AUTHORIZED FOR DISCHARGE UNDER DSN 001-1: Metal Finishing Wastewaters; Laboratory Wastewater; Water Treatment Wastewater; Air Scrubber Wastewater; Floor Wash Water/Building Maintenance Wastewater; Tumbling Wastewater; On-Site Groundwater Remediation Wastewater; Drum Rinsing Wastewater; RO Backwash Water; Boiler Blowdown; Air Compressor Blowdown/Condensate; Fire Suppression Test Water

B. POLLUTANTS OF CONCERN FOR DSN 001-1:

The following pollutants are included as monitoring pollutants in the permit for the reasons noted below:

		REASON FO	R INCLUSION	
POLLUTANT	POLLUTANT WITH AN APPLICABLE TECHNOLOGY- BASED LIMIT	POLLUTANT WITH A WASTE LOAD ALLOCATION FROM A TMDL	POLLUTANT IDENTIFIED AS PRESENT IN THE EFFLUENT THROUGH SAMPLING	POLLUTANT OTHERWISE EXPECTED TO BE PRESENT IN THE EFFLUENT
Acute Toxicity		1		
Chronic Toxicity		1		
Aluminum			1	
Ammonia			1	
BOD ₅			1	
Cadmium	1			
Chlorine, Total Residual			1	
Chloroform			1	
Chromium	1			
cis-1,2-Dichloroethylene				1
Copper	1			
Cyanide	1			
Fluoride			1	
Formaldehyde				1
Gold				1
Iron			1	
Kjeldahl Nitrogen			1	
Lead	1			
Mercury				1
Nickel	1			
Nitrate				1
Nitrite				1
Nitrogen, Total			1	
Oil & Grease	1			
pH	1			
Phosphorus			1	
Silver	√			
Tin				1
Total Suspended Solids	√			
Total Toxic Organics	1			
1,1,1-Trichloroethane				1
Trichloroethylene				1
Zinc	1			

NOTE: E coli is not a pollutant of concern

C. BASIS FOR DSN 001-1 LIMITS:

Technology and water-quality based requirements are considered when developing permit limits. Technology-based limits represent the minimum level of control imposed under the Clean Water Act ("CWA"). Industry-specific technology-based limits are set forth in 40 CFR 405 – 471 (EPA's Effluent Limitation Guidelines) and in RCSA section 22a-430-4(s)(2). Water quality-based limits

are designed to protect water quality and are determined using the procedures set for in EPA's *Technical Support Document for Water Quality-Based Toxics Control*, 1991 ("TSD"). When both technology and water quality-based limits apply to a particular pollutant, the more stringent limit would apply. In addition, water quality-based limits are required when any pollutant or pollutant parameter (conventional, non-conventional, toxic, and whole effluent toxicity) is or may be discharged at a level that causes, has reasonable potential to cause, or contributes to an excursion above any water quality criteria. Numeric water quality criteria is found in RCSA section 22a-429-9 of the *Connecticut Water Quality Standards*.

D. TECHNOLOGY-BASED LIMITS FOR DSN-001-1:

DSN 001-1 is subject to the limits at 40 CFR 433.16 and RCSA section 22a-430-4(s)(2). Technology-based limits at 40 CFR 433.16 and RCSA section 22-430-4(s)(2) apply to process wastewaters only. Therefore, an adjustment factor (i.e., the ratio of the process wastewaters that comprise the discharge to the total discharge flow) was applied to the limits in 40 CFR 433.16 and the limits in RCSA section 22a-430-4(s)(2) in order to determine the applicable end-of-pipe technology-based permit limits, summarized below. See Attachment 10 for these calculations.

E. MIXING ZONE FOR DSN 001-1:

Summit has been allocated a mixing zone based on its 7Q10 flow (14.9 cfs). The allocations are as follows: cyanide, lead and nickel: 25% and silver: 50%. See Attachment 11 for information how the mixing zone was determined.

F. WATER QUALITY-BASED LIMITS FOR DSN 001-1:

Consistent with CWA Section 301(b)(1)(C), NPDES permits must include effluent limits necessary to protect water quality. Water quality-based limits were determined for each toxic pollutant regulated by the metal finishing categorical. A summary of those limits and the rationale used to derive the limits is found at Attachment 12.

In addition, a reasonable potential analysis was conducted on each non-categorical pollutant that could be expected to be in the discharge. As defined in the TSD, reasonable potential is where an effluent is projected or calculated to cause an excursion above a water quality standard based on a number of factors, including at a minimum, the four factors listed in 40 CFR 122.44(d)(1)(ii). A reasonable potential analysis was conducted for each parameter that could be expected to be in the discharge. [See Attachment 13 for the reasonable potential analysis.] This analysis indicates that reasonable potential exists for aluminum, ammonia, and chloroform to exceed the applicable water quality criteria. Therefore, consistent with 40 CFR 122.44(d)(1)(iii), the permit will include water quality-based limits for these parameters.

G. LIMIT DETERMINATION FOR DSN 001-1:

Below is a summary of the applicable limits for each of the subject parameters. If more than one limit applies to a parameter, the most stringent limit is included in the permit.

				LIN	1ITS		
PARAMETER	UNITS	TECHNOLOGY (40 CFR 433.16)		TECHNOLOGY (RCSA 22a-430(4)(s)		WATER QUALITY Water Quality Standards, October 2013	
FARAVIETER	UNIIS	AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum	AVERAGE MONTHLY LIMIT	MAXIMUM DAILY LIMIT	AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum
Aluminum	μg/L			2000	4000	269	540
Aluminum	g/day			1211	2422	163	327
Ammonia	mg/L					15.0	32.4
Ammonia	kg/day					9.13	19.68
Cadmium, Total	μg/L	70	110	70	110	0.14	0.21
Cadmium, Total	g/day	42	67	42	67	0.10	0.14
Chlorine, Total Residual	μg/L						
Chlorine, Total Residual	g/day						

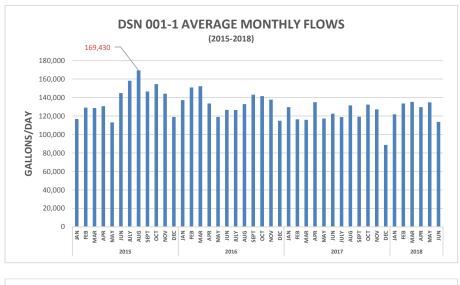
At an average flow of 160,000 gpd:

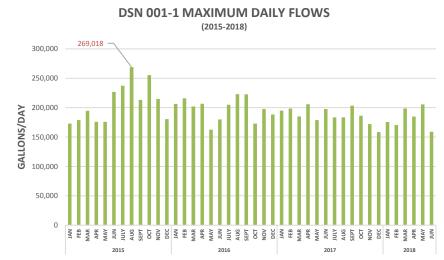
		-		LIN	1ITS		
PARAMETER			OLOGY R 433.16)	TECHNOLOGY (RCSA 22a-430(4)(s)		Water Qual	QUALITY lity Standards, per 2013
	UNITS	AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum	AVERAGE MONTHLY LIMIT	MAXIMUM DAILY LIMIT	AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum
Chloroform	μg/L					470	686
Chloroform	g/day					285	416
Chromium, Total	μg/L	1710	2770	1000	2000	47	69
Chromium, Total	g/day	1035	1677	605	1211	32	47
Copper, Total	μg/L	2070	3380	1000	2000	13	26
Copper, Total	g/day	1253	2047	605	1211	9	18
Cyanide, Total	μg/L	Cyanide limits n	net at an internal	Cyanide limits m	net at an internal	61	123
Cyanide, Total	g/day	ро	int	poi	nt	42	84
Formaldehyde	mg/L						
Fluoride	mg/L			20	30		
Fluoride	kg/day			12.1	18.1		
Gold	mg/L			0.1	0.5		
Gold	g/day			61	303		
Iron, Total	mg/L			3.0	5.0		
Iron, Total	g/day			1816	3027		
Kjeldahl Nitrogen Total	mg/L						
Lead, Total	μg/L	430	690	100	500	10	20
Lead, Total	g/day	260	418	61	303	6.7	13.4
Nickel, Total	µg/L	2380	3980	1000	2000	246	564
Nickel, Total	g/day	1441	2410	605	1211	168	385
Nitrate, Total	mg/L						
Nitrite, Total	mg/L						
Nitrogen, Total	lbs/day						
Oil & Grease	mg/L	26	52	10			
Oil & Grease	kg/day	15.7	31.4	6.05			
pН	SU	6.0	9.0			6.5	8.0
Silver, Total	μg/L	240	430	100	500	12	28
Silver, Total	g/day	145	260	61	303	8.0	19.4
Tin	mg/L			2.0	4.0		
Tin	g/day			1211	2422		
Total Suspended Solids	mg/L	31	60	20	30		
Total Suspended Solids	kg/day	18.7	36.3	12.1	18.1		
Total Toxic Organics	mg/L		2.12				
Zinc, Total	μg/L	1480	2610	1000	2000	39	65
Zinc, Total	g/day	896	1580	605	1211	26	44
Instantaneous limits are 1.5 times the max	<u> </u>		1300	005	1411	20	

Instantaneous limits are 1.5 times the maximum daily limit

At an average flow of 330,000 gpd:

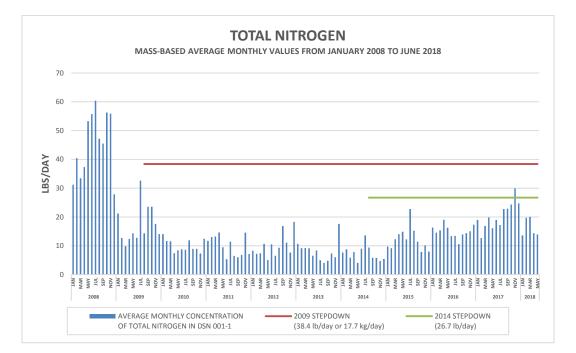
		ſ	LIMITS						
PARAMETER	UNITS	TECHNOLOGY (40 CFR 433.16)			OLOGY a-430(4)(s)	WATER QUALITY Water Quality Standards, October 2013 & National Recommended Water Quality Criteria			
		AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum	AVERAGE MONTHLY LIMIT	MAXIMUM DAILY LIMIT	AVERAGE MONTHLY LIMIT OR pH Minimum	MAXIMUM DAILY LIMIT OR pH Maximum		
Aluminum	μg/L			2000	4000	167	335		
Aluminum	g/day			2498	4995	209	419		
Ammonia	mg/L					7.87	16.9		
Ammonia	kg/day					9.83	21.2		
Cadmium, Total	μg/L	70	110	70	110	0.14	0.21		
Cadmium, Total	g/day	87	137	87	137	0.18	0.26		
Chlorine, Total Residual	μg/L								
Chlorine, Total Residual	g/day								
Chloroform	μg/L					470	686		
Chloroform	g/day					588	857		
Chromium, Total	μg/L	1710	2770	1000	2000	47	69		
Chromium, Total	g/day	2135	3459	1249	2498	59	86		
Copper, Total	μg/L	2070	3380	1000	2000	13	26		
Copper, Total	g/day	2584	4221	1249	2498	16	32		


$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					LIN	1ITS		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	UNITS					Water Quality Standards, October 2013 & National Recommended Water Quality	
Cyanide, Total g/day point point 44 89 Formaldehyde mg/L 20 30 1 </th <th></th> <th></th> <th>MONTHLY LIMIT OR</th> <th>DAILY LIMIT OR</th> <th>MONTHLY</th> <th>DAILY</th> <th>MONTHLY LIMIT OR</th> <th>LIMIT</th>			MONTHLY LIMIT OR	DAILY LIMIT OR	MONTHLY	DAILY	MONTHLY LIMIT OR	LIMIT
Cynnic, Total gray T <tht< th=""> <tht< th=""> <tht< th=""></tht<></tht<></tht<>	Cyanide, Total	μg/L	Cyanide limits r	net at an internal	Cyanide limits m	net at an internal	35	71
Fluoride mg/L 20 30 Fluoride kg/day 24.9 37.4 Gold mg/L 0.1 0.5 Gold g/day 125 624 Iron, Total mg/L 3.0 5.0 Iron, Total g/day 3746 6244 Kjeldahi Nitrogen Total mg/L	Cyanide, Total	g/day	ро	int	poi	nt	44	89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Formaldehyde	mg/L						
Gold mg/L 0.1 0.5 Gold g/day 125 624 Iron, Total mg/L 3.0 5.0 Iron, Total g/day 3746 6244 Kjeldahl Nitrogen Total mg/L	Fluoride	mg/L			20	30		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fluoride	kg/day			24.9	37.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gold	mg/L			0.1	0.5		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gold	g/day			125	624		
Kjeldahl Nitrogen Total mg/L Img/L Img/	Iron, Total	mg/L			3.0	5.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Iron, Total	g/day			3746	6244		
Lead, Total g/day 5378621256247.214.5Nickel, Total $\mu g/L$ 2380398010002000144331Nickel, Total g/day 2972497012492498180413Nitrate, Total mg/L </td <td>Kjeldahl Nitrogen Total</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Kjeldahl Nitrogen Total	mg/L						
Nickel, Total $\mu g'L$ 2380 3980 1000 2000 144 331 Nickel, Total g/day 2972 4970 1249 2498 180 413 Nitrate, Total mg/L Nitrate, Total mg/L Nitrite, Total mg/L	Lead, Total	μg/L	430	690	100	500	5.8	12
Nickel, Total g/day 2972 4970 1249 2498 180 413 Nitrate, Total mg/L	Lead, Total	g/day	537	862	125	624	7.2	14.5
Nitrate, Total mg/L	Nickel, Total	μg/L	2380	3980	1000	2000	144	331
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nickel, Total	g/day	2972	4970	1249	2498	180	413
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nitrate, Total	mg/L						
Nitrogen, Total Ibs/day Image: mg/L 26 52 10 Image: mg/L 20 10 Image: mg/L 20 10 Image: mg/L 20 10 100 500 6.5 8.0 100 500 6.6 16 16 16 100 500 6.6 16 16 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4 19.9 11.4	Nitrite, Total							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nitrogen, Total							
pH SU 6.0 9.0 6.5 8.0 Silver, Total μg/L 240 430 100 500 6.6 16 Silver, Total g/day 300 537 125 624 8.3 19.9 Tin mg/L 2.0 4.0 Tin g/day 2498 4995	Oil & Grease	mg/L	26	52	10			
Silver, Total µg/L 240 430 100 500 6.6 16 Silver, Total g/day 300 537 125 624 8.3 19.9 Tin mg/L 2.0 4.0 100 500 500 6.6 16 Tin g/day 20.0 4.0 100 100 500 100	Oil & Grease	kg/day	32.4	64.9	12.4			
Silver, Total g/day 300 537 125 624 8.3 19.9 Tin mg/L 2.0 4.0 10.0	pH	SU	6.0	9.0			6.5	8.0
Tin mg/L 2.0 4.0 Tin g/day 2498 4995 Total Suspended Solids mg/L 31 60 20 30 Total Suspended Solids kg/day 38.7 74.9 24.9 37.4 Total Toxic Organics mg/L 2.13 0 0 0	Silver, Total	μg/L	240	430	100	500	6.6	16
Tin g/day 2498 4995 Total Suspended Solids mg/L 31 60 20 30 Total Suspended Solids kg/day 38.7 74.9 24.9 37.4 Total Toxic Organics mg/L 2.13 0 0 0	Silver, Total	g/day	300	537	125	624	8.3	19.9
Total Suspended Solidsmg/L31602030Total Suspended Solidskg/day38.774.924.937.4Total Toxic Organicsmg/L2.132.132.13	Tin	mg/L			2.0	4.0		
Total Suspended Solidskg/day38.774.924.937.4Total Toxic Organicsmg/L2.13	Tin	g/day			2498	4995		
Total Toxic Organics mg/L 2.13	Total Suspended Solids	mg/L	31	60	20	30		
	Total Suspended Solids	kg/day	38.7	74.9	24.9	37.4		
	Total Toxic Organics	mg/L		2.13				
Zinc, Total µg/L 1480 2610 1000 2000 39 65	Zinc, Total		1480	2610	1000	2000	39	65
Zinc, Total g/day 1848 3259 1249 2498 49 81	Zinc, Total		1848	3259	1249	2498	49	81


Instantaneous limits are 1.5 times the maximum daily limit

H. COMMENTS ON OTHER LIMITED PARAMETERS FOR DSN 001-1:

Limits for BOD_5 and total nitrogen are also included in the permit. In addition, the permit includes two sets of limits (i.e., Table A limits and Table B limits) based on two different average flows. See below for comments on these issues:


FLOW: The average monthly flow and maximum daily flow in the existing permit is 330,000 gpd and 400,000 gpd, respectively. Actual flows, since permit issuance, have been significantly lower than these values. The average flow will now be 160,000 gpd (including the proposed new wastestream) and the maximum daily flow will be 235,000 gpd.

BOD5: BOD₅ limits have been required for those industrial facilities discharging into the upper Naugatuck River due to historic dissolved oxygen issues in this area of the river. The limit assigned to the industries has been the equivalent to secondary treatment limits (i.e., 30 mg/L as an average monthly limit). At an average of 160,000 gpd, the mass-based limit for BOD₅ is 40.0 lbs/day. At an average flow of 330,000 gpd, the mass-based limit for BOD₅ is 82.5 lbs/day.

TOTAL NITROGEN: The TMDL, A Total Maximum Daily Load Analysis to Achieve Water Quality Standards for Dissolved Oxygen in Long Island Sound, December 2000, assigns total nitrogen allocations, by zone, to certain facilities or facility groups that discharge into Long Island Sound watershed basins. This TMDL is structured so that reductions to baseline allocations occur in steps. The reduction schedule published in the TMDL is specified as follows: a 25% reduction of the baseline through 2008; a 47.6% reduction of the baseline from 2009 through 2013; and a final 63.5% reduction of the baseline by 2014. Summit is located in Zone 4 of the subject TMDL. It does not have an industry-specific allocation; its total nitrogen allocation is associated with the miscellaneous "Industrial" loading assigned to that zone. The allocations made to miscellaneous industrial facilities under this TMDL are established from the facility's baseline total nitrogen data. Based on this data, Summit has been assigned a baseload allocation of 73.3 lbs/day. Its 2014 stepdown is 26.7 lbs/day.

TOTAL PHOSPHORUS: The Department currently has a watershed-specific nutrient management strategy for total phosphorus. The enrichment analysis conducted for the Naugatuck River watershed provides allocations for seven POTWs and one industry that discharge into the subject basin. Summit has not been allocated a total phosphorus load through this interim management strategy. The permittee is not presently monitoring its discharge for total phosphorus. There is one effluent data point for total phosphorus; the total phosphorus result was 4.88 mg/L. Numeric criteria for total phosphorus is expected to be established in the next several years. In the interim, the permittee should collect total phosphorus data.

I. WHOLE EFFLUENT TOXICITY:

Summit's existing permit requires quarterly acute toxicity testing using *Daphnia pulex* and *Pimephales promelas* and annual chronic toxicity testing using *Ceriodaphnia dubia* and *Pimephales promelas*. The existing permit includes two sets of acute toxicity limits: From permit issuance until June 21, 2011, the limits are $LC_{50} > 56\%$; from June 22, 2011 to permit expiration, the acute toxicity limits are $\geq 90\%$ survival at 52.7% effluent and $\geq 50\%$ survival in undiluted effluent. There are no permit limits in the existing permit for chronic toxicity. Acute and chronic toxicity results of Summit's effluent from 2008 to present are as follows:

		ACUTE (48 HOURS)						
	Daphnia pulex	Pimephales promelas	Daphnia pulex	Pimephales promelas	Daphnia pulex	Pimephales promelas		
	LC ₅₀ >56%	LC ₅₀ >56%	≥90% Survival @ CTC of 52	≥90% Survival @ CTC of 52	≥50 % Survival in 100% effluent	≥50 % Survival in 100% effluent		
JAN 2008	90.85%	100%						
APR 2008	100%	100%						
JUL 2008	100%	100%						
OCT 2008	73.56%	100%						
JAN 2009	72.75%	88.15%						
APR 2009	71.6%	100%						
JUL 2009	100%	100%						
OCT 2009	85.11%	94.9%						
JAN 2010	100%	100%						
APR 2010	100%	100%						
JUL 2010	100%	100%						
OCT 2010	100%	100%						
JAN 2011	NOT REPORTED	NOT REPORTED						

				CUTE HOURS)		
	Daphnia pulex	Pimephales promelas	Daphnia pulex	Pimephales promelas	Daphnia pulex	Pimephales promelas
	LC ₅₀ >56%	LC ₅₀ >56%	≥90% Survival @ CTC of 52	≥90% Survival @ CTC of 52	≥50 % Survival in 100% effluent	≥50 % Survival in 100% effluen
APR 2011	NOT REPORTED	NOT REPORTED				
JUL 2011			75%	75%	90%	95%
OCT 2011			75%	100%	85%	100%
JAN 2012			100%	100%	75%	100%
APR 2012			100%	100%	74%	100%
JUL 2012			100%	100%	95%	100%
OCT 2012			100%	100%	84%	100%
JAN 2013			100%	100%	62%	74%
APR 2013			100%	100%	62%	100%
JUL 2013			100%	100%	58%	72%
OCT 2013			100%	100%	54%	100%
JAN 2014			75%	100%	68%	82%
APR 2014			75%	50%	84%	52%
UL 14, 2014			100%	100%	66%	94%
UL 21, 2014			94%	100%	60%	92%
OCT 2014			0%	100%	22%	96%
NOV 2014			12%	100%	8%	94%
DEC 2014			74%	100%	30%	100%
N 12, 2015			92%	100%	62%	100%
·			0%	98%	0%	100%
AN 19, 2015						
EB 2, 2015			0%	96%	0%	98%
EB 16, 2015			96%	100%	84%	98%
IAR 9, 2015			16%	96%	24%	100%
PR 3, 2015			8%	78%	8%	28%
IAY 4, 2015			92%	96%	80%	74%
UN 22, 2015			12%	100%	4%	100%
UL 20, 2015			40%	100%	34%	100%
UG 3, 2015			0%	100%	0%	100%
UG 17, 2015			94%	100%	80%	100%
EP 14, 2015			18%	100%	28%	100%
CT 5, 2015			16%	100%	24%	100%
CT 19, 2015			10%	100%	8%	100%
DV 16, 2015			24%	100%	28%	100%
EC 7, 2015			54%	100%	42%	100%
N 18, 2016			100%	100%	96%	100%
EB 1, 2016			100%	100%	94%	100%
AR 1, 2016			96%	100%	80%	100%
PR 4, 2016			100%	100%	94%	100%
UL 29, 2016			26%	100%	24%	100%
UG 29, 2016			70%	100%	82%	100%
EP 12, 2016			96%	100%	96%	100%
CT 19, 2016			96%	100%	56%	98%
OV 21, 2016			96%	100%	84%	100%
AN 10, 2017			98%	100%	82%	100%
PR 4, 2017			94%	100%	80%	100%
JUL 2017			94%	100%	94%	100%
CT 3, 2017			100%	100%	100%	100%
AN 4, 2018			100%	100%	100%	100%
PR 3, 2018			100/0	100/0	10070	10070

NOTE: A grab sample of DSN 001-1 was analyzed in September 2012 to determine compliance with the requirements in Section 10(D) of the existing permit. The sample met the Instantaneous Maximum limits for Aquatic Toxicity (i.e., the $LC_{50} = 64.24\%$ for *Daphnia pulex*; the $LC_{50} = 68.43\%$ for *Pimephales promelas*).

		CHRONIC (7 DAYS)									
	Pimephales promelas Dilution Series: 100%, 64%, 32%, 16%, 8%, and 4% Dilution Water: Naugatuck River				Ceriodaphnia dubia Dilution Series: 100%, 64%, 32%, 16%, 8% and 4% Dilution Water: Naugatuck River						
	48 HOUR SURVIVAL	7-DAY SURVIVAL	7-DAY SURVIVAL	7-DAY GROWTH	48 HOUR SURVIVAL	7-DAY SURVIVAL	7-DAY SURVIVAL	7-DAY REPRODUCTION			
	LC ₅₀	LC ₅₀	C-NOEC	C-NOEC	LC ₅₀	LC ₅₀	C-NOEC	C-NOEC			
SEP 2011	NOT REPORTED	NOT REPORTED	32%	32%	81.6%	NOT REPORTED	16%	16%			
SEP 2012	>100%	NOT REPORTED	32%	32%	8.20%	NOT REPORTED	<4%	<4%			
AUG 2013	82.8%	NOT REPORTED	32%	32%	2.07%	NOT REPORTED	<4%	<4%			
AUG 2014	NOT REPORTED	NOT REPORTED	NOT REPORTED	NOT REPORTED	15.5%	NOT REPORTED	NOT REPORTED	NOT REPORTED			
AUG 2015	NOT REPORTED	NOT REPORTED	100%	100%	6.77%	NOT REPORTED	<4%				
SEP 2016	NOT REPORTED	NOT REPORTED	100%	100%	NOT REPORTED	NOT REPORTED	4%	<4%			
JUL 2017	NOT REPORTED	NOT REPORTED	100%	100%	NOT REPORTED	NOT REPORTED	32%	4%			

The segment of the Naugatuck River that Summit discharges into (6900-00_05) is identified on the Department's 2016 *Integrated Water Quality Report* as being impaired for whole effluent toxicity. A TMDL exists to address the impairment and is summarized in the document titled, *Total Maximum Daily Load Analysis for the Upper Naugatuck River, Thomaston, Connecticut*, which was approved by EPA on August 17, 2005. This TMDL sets forth Waste Load Allocations (WLAs) for acute toxicity and chronic toxicity for three industrial facilities, including Summit, and a POTW in the subject area. The WLAs for Summit are as follows:

At an average flow of 160,000 gpd:

ACUTE WLA FOR SUMMIT (from Table 4 of the TMDL)	CHRONIC WLA FOR SUMMIT (from Table 4 of the TMDL)
16.22 "gallons" of TU _a /second	49.17 "gallons" of TUc/second
$\frac{16.22 \ "gallons" of TUa}{second} * \frac{86,400 \ seconds}{day} = \frac{1,401,408 \ "gallons" of TUa}{day}$	$=\frac{49.17 \ "gallons" of TUc}{second} * \frac{86,400 \ seconds}{day} = \frac{4,248,288 \ "gallons" of TUc}{day}$
Divide the WLA by the permitted monthly	Divide the WLA by the permitted monthly
average flow (160,000 gallons/day)	average flow (160,000 gallons/day)
$\frac{1,401,408 "gallons" of TUa}{day} * \frac{1 \ day}{160,000 \ gallons} = 8.75 \ \text{TUa}$	$\frac{4,248,288 \ "gallons" of TUc}{day} * \frac{1 \ day}{160,000 \ gallons} = 26.5 \ \text{TUc}$
$WLA_a = 8.75 TU_a$	WLAc=26.5 TUc
$TUa = \frac{100}{LC_{50}}$	$TUc = \frac{100}{NOEC}$

The WLAs were translated into water quality based permit limits (WQBELs) in accordance with the procedures set forth in the TSD and EPA's *National Whole Effluent Toxicity (WET) Implementation Guidance Under the NPDES Program* (DRAFT), November 2004. The NPDES regulations at 40 CFR 122.44(d)(1)(vii)(B) require that WQBELs be consistent with the assumptions and requirements of any available wasteload allocation in the TMDL. In this case, some of the circumstances under which the TMDL was developed have changed and this has resulted in some conservative assumptions being made, as noted below. One significant change is that the 7Q10 flow used for the development of the TMDL was 12.6 cfs; it is now 10.965 cfs, a reduction of 1.635 cfs or 1,056,728 gpd.

Section 5.4 of the TSD provides guidance for translating a two-value wasteload allocation into limits. This is as follows:

1. Convert the WLA_a to WLA_{a,c}:

 $\label{eq:WLA_a,c} \mbox{(in TU_c)} = WLA_a \mbox{(in TU_a)} * ACR \\ WLA_{a,c} = 8.75 \mbox{ TU}_a * 10 \\ \end{tabular}$

$WLA_{a,c} = 87.5 TU_c$

[Note: The ACR (Acute to Chronic Ratio) is the ratio of the acute toxicity of an effluent to its chronic toxicity. The RCSA indicates that an assumption should be made that the ACR is 20, unless information is provided to rebut this assumption. The limited data that exists supports a value lower than 20. EPA's *Technical Support Document (TSD)* for Water Quality-based Toxics Control, March 1991 recommends that a measured ACR be used and that the data necessary for a measured ACR must include at least 10 pairs of acute and chronic test results for the same species. Ten paired sets are not available. In the absence of the data, the TSD suggests a default value of 10.]

2. Determine the Long Term Averages (LTAs) for each WLA:

LTA_{a,c} = WLA_{a,c} * $e^{[0.5\sigma^2 - z\sigma]}$ LTA_{a,c} = 87.5 * 0.321 LTA_{a,c} = **28.0**

[Note: The value for the WLA_{a,c} multiplier ($e^{[0.5\sigma^2-z\sigma]}$) was determined from Table 5-1 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the LTA. This results in a WLA_{a,c} multiplier of 0.321].

LTA_c = WLA_c * $e^{[0.5\sigma_4^2 - z\sigma_4]}$ LTA_c = 28.0 * 0.527 LTA_c = 14.8

[Note: The value for the WLA_c multiplier ($e^{[0.5\sigma_4^2 - z\sigma_4]}$) was determined from Table 5-1 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the LTA. This results in a WLA_c multiplier of 0.527].

3. Permit limits are derived from whichever performance level is more protective. In this case, the LTA_c is more protective. Therefore, the average monthly limit (AML) and maximum daily limit (MDL) is derived from the LTA_c :

$AML = LTA * e^{[z\sigma_n - 0.5\sigma_n^2]}$	$MDL = LTA * e^{[z\sigma - 0.5\sigma^2]}$
AML = 14.8 * 1.55	MDL = 14.8 * 3.11
$AML = 22.9 TU_c$	$\mathbf{MDL} = 46.0 \ \mathbf{TU_c}$

[Note: AML: The value for the LTA multiplier ($e^{[z\sigma_n - 0.5\sigma_n^2]}$) was determined from Table 5-2 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed and n = 4 is assumed; the 95th percentile occurrence probability was used for the AML. This results in a LTA multiplier of 1.55. MDL: The value for the LTA multiplier ($e^{[z\sigma - 0.5\sigma^2]}$) was determined from Table 5-2 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the MDL. This results in a LTA multiplier of 3.11].

4. Acute Toxicity (MDL): Converting the TU_c into a TU_a (using an ACR of 10) results in a TU_a of 4.60. Since $TU_a = \frac{100}{LC_{50}}$, 4.60 TU_a results in an LC₅₀ of 21%. Therefore, the MDL for acute toxicity is 21%, expressed as an LC₅₀.

5. Acute Toxicity (AML): Converting the TU_c into a TU_a (using an ACR of 10) results in a TU_a of 2.29. Since $TU_a = \frac{100}{LC_{50}}$, 2.29 TU_a results in an LC₅₀ of <u>43%</u>. Therefore, the AML for acute toxicity is **43%**, expressed as an LC₅₀.

6. Chronic Toxicity (MDL): Since $TU_c = \frac{100}{NOEC}$, 46.0 TU_c results in a NOEC 2.17%. Therefore, the MDL for chronic toxicity is <u>2.1%</u>, expressed as C-NOEC.

7. Chronic Toxicity (AML): Since $TU_c = \frac{100}{NOEC}$, 22.9 TU_c results in a NOEC 4.37%. Therefore, the AML for chronic toxicity is **4.3%**, expressed as C-NOEC.

At an average flow of 330,000 gpd:	At an	average fl	low of 3	330,000	gpd:
------------------------------------	-------	------------	----------	---------	------

ACUTE WLA FOR SUMMIT	CHRONIC WLA FOR SUMMIT
(from Table 4 of the TMDL)	(from Table 4 of the TMDL)
16.22 "gallons" of TU _a /second	49.17 "gallons" of TUc/second

$\frac{16.22 \ "gallons" of TUa}{second} * \frac{86,400 \ seconds}{day} = \frac{1,401,408 \ "gallons" of TUa}{day}$	$\frac{49.17 \ "gallons" of TUc}{second} * \frac{86,400 \ seconds}{day} = \frac{4,248,288 \ "gallons" of TUc}{day}$
Divide the WLA by the permitted monthly average flow (330,000 gallons/day)	Divide the WLA by the permitted monthly average flow (330,000 gallons/day)
$\frac{1.401,408 "gallons" of TUa}{day} * \frac{1 day}{330,000 gallons} = 4.25 \text{ TUa}$	$\frac{4,248,288}{day} \frac{*gallons" of TUc}{* 330,000 gallons} = 12.87 \text{ TUc}$
$WLA_a = 4.25 TU_a$	WLAc=12.87 TUc
$TUa = \frac{100}{LC_{50}}$	$TUc = \frac{100}{NOEC}$

1. Convert the WLA_a to WLA_{a,c}:

WLA_{a,c} (in TU_c) = WLA_a (in TU_a) * ACR WLA_{a,c} = 4.25 TU_a * 10 WLA_{a,c} = 42.5 TU_c

[Note: The ACR (Acute to Chronic Ratio) is the ratio of the acute toxicity of an effluent to its chronic toxicity. The RCSA indicates that an assumption should be made that the ACR is 20, unless information is provided to rebut this assumption. The limited data that exists supports a value lower than 20. EPA's *Technical Support Document (TSD)* for Water Quality-based Toxics Control, March 1991 recommends that a measured ACR be used and that the data necessary for a measured ACR must include at least 10 pairs of acute and chronic test results for the same species. Ten paired sets are not available. In the absence of the data, the TSD suggests a default value of 10.]

2. Determine the Long Term Averages (LTAs) for each WLA:

LTA_{a,c} = WLA_{a,c} * $e^{[0.5\sigma^2 - z\sigma]}$ LTA_{a,c} = 42.5 * 0.321 LTA_{a,c} = 13.64

[Note: The value for the WLA_{a,c} multiplier ($e^{[0.5\sigma^2-z\sigma]}$) was determined from Table 5-1 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the LTA. This results in a WLA_{a,c} multiplier of 0.321].

 $LTA_{c} = WLA_{c} * e^{[0.5\sigma_{4}^{2} - z\sigma_{4}]}$ $LTA_{c} = 12.87 * 0.527$ $LTA_{c} = 6.78$

[Note: The value for the WLA_c multiplier ($e^{[0.5\sigma_4^2-z\sigma_4]}$) was determined from Table 5-1 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the LTA. This results in a WLA_c multiplier of 0.527].

3. Permit limits are derived from whichever performance level is more protective. In this case, the LTA_c is more protective. Therefore, the average monthly limit (AML) and maximum daily limit (MDL) is derived from the LTA_c :

$AML = LTA * e^{[z\sigma_n - 0.5\sigma_n^2]}$	$MDL = LTA * e^{[z\sigma - 0.5\sigma^2]}$
AML = 6.78 * 1.55	MDL = 6.78 * 3.11
$AML = 10.5 TU_c$	$\mathbf{MDL} = 21.1 \ \mathbf{TU_c}$

[Note: AML: The value for the LTA multiplier ($e^{[z\sigma_n - 0.5\sigma_n^2]}$) was determined from Table 5-2 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed and n = 4 is assumed; the 95th percentile occurrence probability was used for the AML. This results in a LTA multiplier of 1.55. MDL: The value for the LTA multiplier ($e^{[z\sigma - 0.5\sigma^2]}$) was determined from Table 5-2 in the TSD. A default coefficient of variance (CV) of 0.6 is assumed; the 99th percentile occurrence probability is recommended for the MDL. This results in a LTA multiplier of 3.11].

4. Acute Toxicity (MDL): Converting the TU_c into a TU_a (using an ACR of 10) results in a TU_a of 2.11. Since $TU_a = \frac{100}{LC_{50}}$, 2.11 TU_a results in an LC₅₀ of <u>47.4%</u>. Therefore, the MDL for acute toxicity is <u>48%</u>, expressed as an LC₅₀.

5. Acute Toxicity (AML): Converting the TU_c into a TU_a (using an ACR of 10) results in a TU_a of 1.05. Since $TU_a = \frac{100}{LC_{50}}$, 1.05 TU_a results in an LC₅₀ of <u>95.2%</u>. Therefore, the AML for acute toxicity is <u>96%</u>, expressed as an LC₅₀.

6. Chronic Toxicity (MDL): Since $TU_c = \frac{100}{NOEC}$, 21.1 TU_c results in a NOEC 4.74%. Therefore, the MDL for chronic toxicity is <u>4.7%</u>, expressed as C-NOEC.

7. Chronic Toxicity (AML): Since $TU_c = \frac{100}{NOEC}$, 10.5 TU_c results in a NOEC 9.52%. Therefore, the AML for chronic toxicity is <u>9.6%</u>, expressed as C-NOEC.

J. WASTESTREAMS AUTHORIZED FOR DISCHARGE UNDER DSN 001A-1:

Cyanide-bearing wastewaters

K. BASIS FOR DSN 001A PARAMETERS, LIMITS, AND MONITORING FREQUENCIES:

This is an internal point for monitoring amenable cyanide. Federal limits at 40 CFR 433.16(b) apply to this monitoring point. The state limits under RCSA 22a-430-4(s)(2) for amenable cyanide can be applied at either the final discharge point or internally.

DSN 001A									
	40 CFR 433.16		BPJ	RCSA 22a-430-4(s)(2))(2)			
PARAMETER	Average	Maximum	Instantan-	Average	Maximum	Instantan-			
	Monthly	Daily	eous	Monthly	Daily	eous			
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)			
Cyanide, Amenable	0.32	0.86	1.29	0.1	0.2	0.3			

DSN 001A

L. WASTESTREAMS AUTHORIZED FOR DISCHARGE UNDER DSN 001B:

Hexavalent-chromium bearing wastewaters

M. BASIS FOR DSN 001B-1 PARAMETERS, LIMITS, AND MONITORING FREQUENCIES:

This is a newly-permitted internal point for monitoring Hexavalent Chromium. State limits apply to this monitoring point:

		DSN 00	1B			-
	4	0 CFR 433.16		RCSA	A 22a-430-4(s))(2)
PARAMETER	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instantan- eous (mg/L)	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instantan- eous (mg/L)
Hexavalent Chromium				0.1	0.2	0.3

XV. MONITORING FREQUENCY

The *Monitoring Schedule* set forth in RCSA section 22a-430-3 prescribes a frequency of weekly for DSN 001-1 based on: a) the category of discharge ("Metal Finishing") and b) the average permitted monthly flow (>10,000 gpd). Therefore, monitoring for categorical parameters and those parameters that are expected to routinely be in the discharge will be weekly in accordance with the *Monitoring Schedule*; monitoring for the other parameters is set on a case-by-case basis.

XVI. EXPRESSION OF EFFLUENT LIMITATIONS

The DSN 001-1 discharge operates continuously. Therefore, the technology and water quality-based permit limits are expressed as average monthly and maximum daily per 40 CFR 122.45(d). Limits are mass-based consistent with 40 CFR 122.45(f)(1) and concentration-based consistent with 40 CFR 122.45(f)(2).

XVII. SOLVENT MANAGEMENT PLAN

Summit's *Solvent Management Plan*, August 2012, ("plan") was approved on October 18, 2012. The plan was submitted as part of the permit application and is considered current and up-to-date. The plan indicates that the only TTO expected to be present in the discharge in Chloroform. Chloroform is reportedly not used

on-site in its pure form, but is generated as the result of a reaction between the raw materials used in the plating baths at the facility (i.e., a reaction between sodium hypochlorite and acetone). Consistent with 40 CFR 433.12(b), the plan has been incorporated as a provision of the permit (i.e., Section 5(E)).

XVIII. ANTI-BACKSLIDING

An anti-backsliding analysis was conducted on the final effluent limitations. Anti-backsliding provisions are met. See Attachment 14 for a summary of the limits in the existing permit and the limits in the proposed permit.

XIX. ANTIDEGRADATION

The renewed permit does not reflect any new or expanded discharges as authorized upon issuance. However, the permittee is proposing, during this permit cycle, to treat its on-site groundwater. In order to obtain authorization to treat and discharge this wastestream, the permittee must satisfy to the Commissioner that the treatment of the groundwater will be accomplished in a manner such that all permit limits will be complied with and that all antidegradation requirements be met.

XX. SPECIAL CONDITIONS/COMPLIANCE SCHEDULE

1. The permittee must demonstrate that its wastewater treatment system can provide the necessary treatment of the on-site groundwater. RCSA section 22a-430-4(l)(4)(F) allows the commissioner to include any condition in a permit which he or she deems reasonably necessary to ensure compliance with chapter 446k of the Connecticut General Statutes and regulations adopted thereunder as amended, to ensure that his or her actions are consistent with the CWA and to ensure proper operation of a treatment facility or any other part thereof. This condition is added in accordance with that provision. This requirement is included in Section 10(A) of the permit.

2. The permittee must notify the Department and get written approval prior to using the hexavalent chromium treatment system. RCSA section 22a-430-4(l)(4)(F) allows the commissioner to include any condition in a permit which he or she deems reasonably necessary to ensure compliance with chapter 446k of the Connecticut General Statutes and regulations adopted thereunder as amended, to ensure that his or her actions are consistent with the CWA and to ensure proper operation of a treatment facility or any other part thereof. This condition is added in accordance with that provision. This requirement is included in Section 10(B) of the permit.

3. The Permittee cannot presently meet water-quality based limits for: Copper and Silver. Therefore, Tables A and B of this permit include interim limits for this parameters. These interim limits are based on the statistical procedures set forth in Appendix E of the TSD. [See Attachment 15]. Section 10 of the permit include a compliance schedule which requires the permittee to undertake remedial actions leading to compliance with final limits for these parameters, which are included in Table A and Table B of the permit. These remedial actions must be accomplished as soon as possible. Until the remedial actions have been fully implemented to the satisfaction of the Commissioner, the permittee shall provide the Department with quarterly status reports describing the efforts that it has taken to implement the remedial actions and meet its final permit limits.

XXI. REFERENCES

Coil Coating Point Source Category, 40 C.F.R. §465 (2017)

Copper Forming Point Source Category, 40 C.F.R. §468 (2017)

Connecticut Department of Environmental Protection (CTDEP) and New York State Department of Environmental Conservation (NYDES). 2000. A Total Maximum Daily Load Analysis to Achieve Water Quality Standards for Dissolved Oxygen in Long Island Sound. CTDEP and NYDES

Connecticut Department of Environmental Protection. 2008. A Total Maximum Daily Load Analysis for Recreational Uses of the Naugatuck River Regional Basin. CTDEP

Connecticut Department of Environmental Protection. 2010. NPDES Permit CT0025305 issued to Quality Rolling and Deburring Company, Inc., April 1, 2008 to March 31, 2013. CTDEP

Connecticut Department of Energy and Environmental Protection (CTDEEP). 2014. Interim Phosphorus Reduction Strategy for Connecticut Freshwater Non-Tidal Waste-Receiving Rivers and Streams Technical Support Document. CTDEEP Bureau of Water Protection and Land Reuse

Connecticut Department of Energy and Environmental Protection. 2017. 2016 Integrated Water Quality Report. CT DEEP Bureau of Water Protection and Land Reuse

Environmental Monitoring Lab, Inc. 2011 to 2017. Chronic ATMR

EPA Administered Permit Programs: The National Pollutant Discharge Elimination System, 40 C.F.R. §122 (2017)

Landfills Point Source Category, 40 C.F.R. §445 (2017)

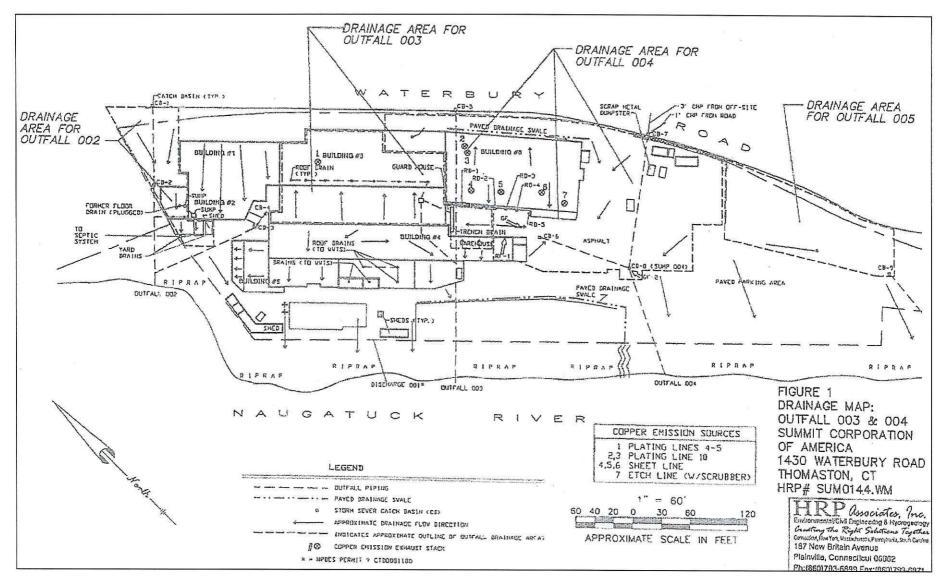
Metal Finishing Point Source Category, 40 C.F.R. §433 (2017)

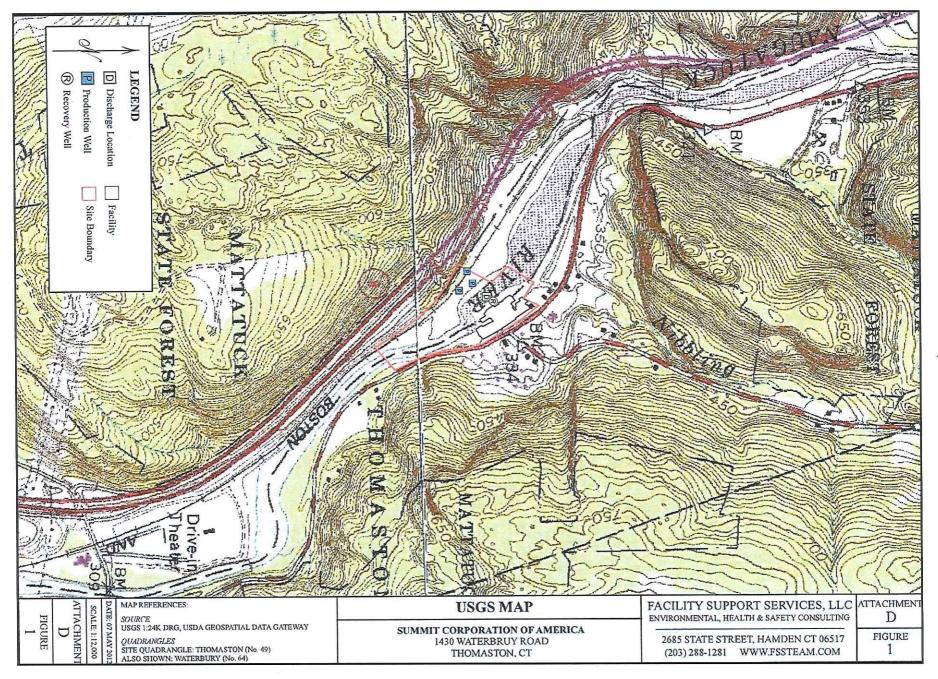
Summit Corporation of America, 2008 through 2018, Discharge Monitoring Reports

Regulations of Connecticut State Agencies, Title 22a, Environmental Protection. *Water Pollution Control*, Sections 22a-430-1 to 22a-430-8

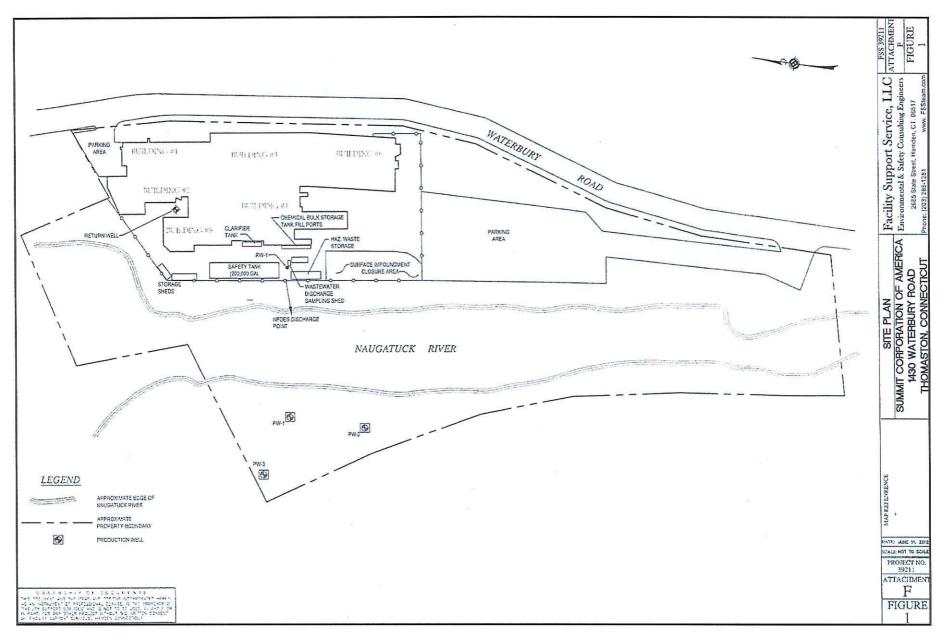
Regulations of Connecticut State Agencies, Title 22a, Environmental Protection. *Connecticut Water Quality Standards*, Sections 22a-426-1 to 22a-426-9 (2013).

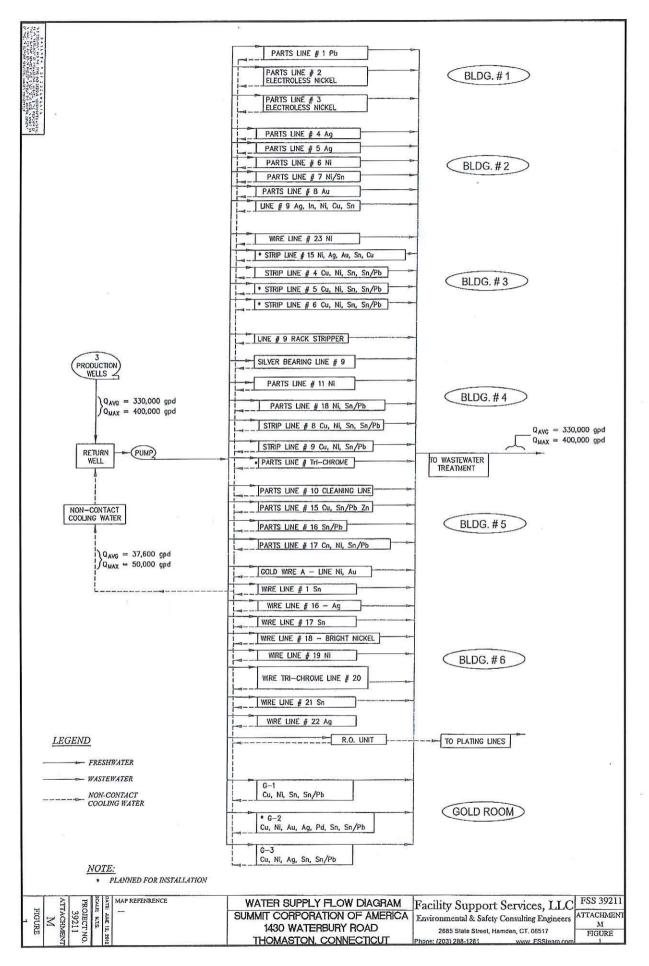
U.S. EPA. (n.d). *National Recommended Water Quality Criteria - Aquatic Life Criteria Table*. Retrieved from <u>https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table</u>

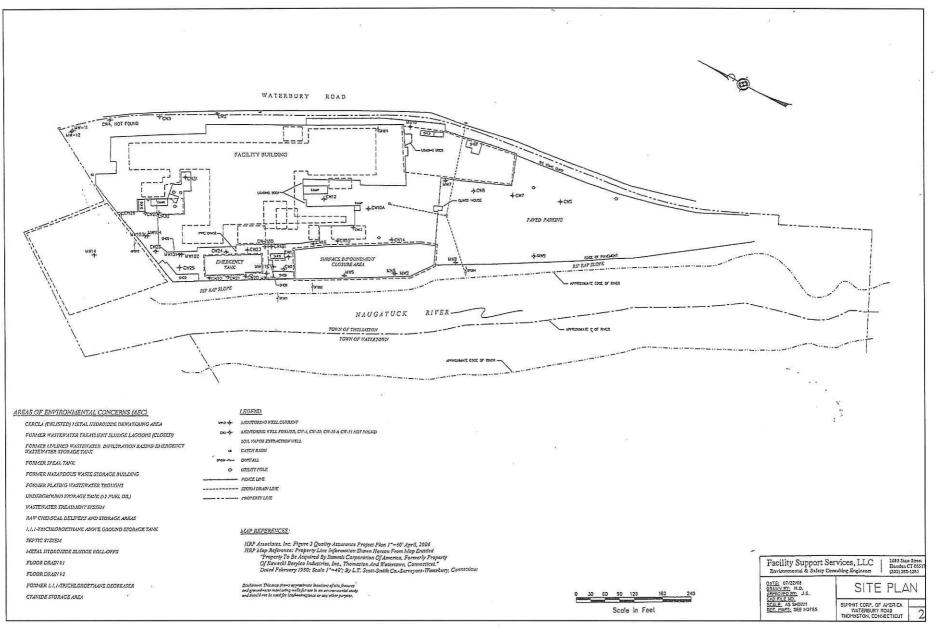

U.S. EPA. 1991. Technical Support Document For Water Quality-based Toxics Control. (EPA/505/2-90-001)


U.S. EPA. 2002. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (EPA-821-R-02-012)

U.S. EPA. 2002. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. (EPA-821-R-02-013)


U.S. EPA. 2002. National Whole Effluent Toxicity (WET) Implementation Guidance Under the NPDES Program, (EPA 832-B-04-003).

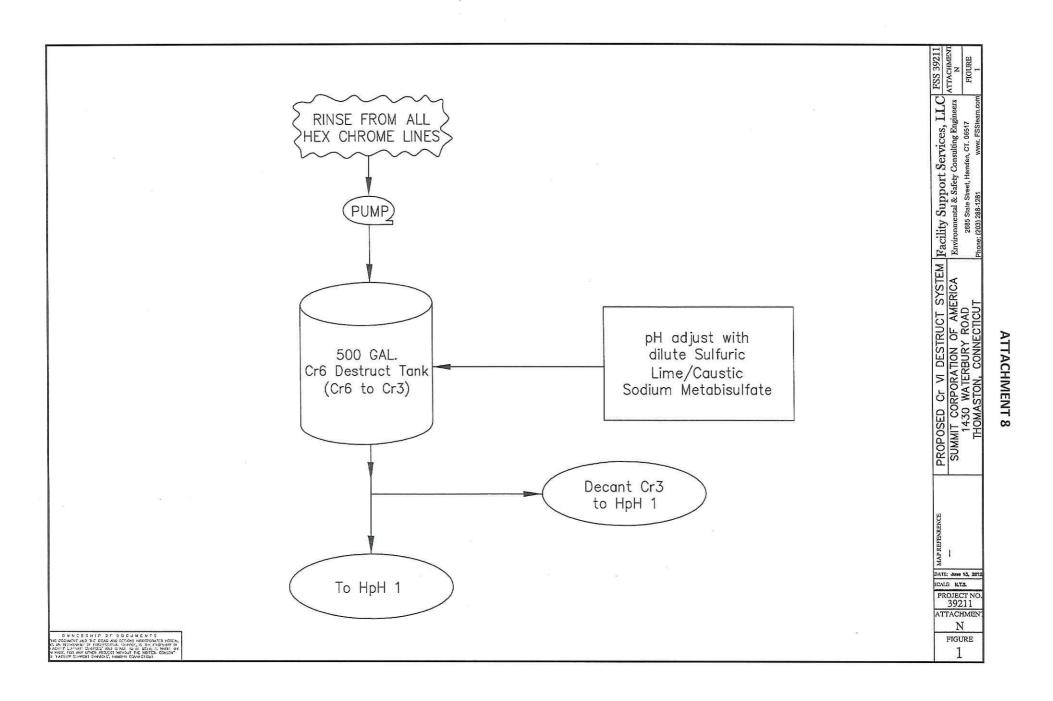

U.S. EPA. 2010. NPDES Permit Writer's Manual. (EPA-833-K-10-001)



ы

ATTACHMENT 6 RCRA GROUNDWATER MONITORING WELL RESULTS

			N	W-5	15.		1.11		
	3/11/2008	9/18/2008	3/24/2009	9/16/2009	4/7/2010	11/4/2010	3/14/2011	9/23/2011	3/26/2012
Barium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	9.1	ND	ND	ND	ND	5.9	5.7	6.6	ND
Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	ND	ND	ND	ND	ND	ND
Gold	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	290	220	190	180	230	300	280	300	150
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	440	280	200	190	230	200	260	240	120
cis-1,2-Dichloroethylene	ND	ND	ND	8.8	ND	ND	1.3	ND	ND
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane (TCA)	2.9	ND	ND	ND	ND	ND	ND	2.6	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	35	20	18	ND	9.8	14	52	24	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND
All in ug/L									


			N	IW-6					
	3/11/2008	9/18/2008	3/24/2009	9/16/2009	4/7/2010	11/4/2010	3/14/2011	9/23/2011	3/26/2012
Barium	ND	62	ND	76	130	ND	130	51	ND
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	ND	ND	6.9	6.7	6.3	13	ND	7.8	ND
Cyanide	ND	ND	6300	ND	33	ND	ND	ND	ND
Cobalt	ND	ND	40	33	ND	39	ND	21	ND
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	89	ND	570	360	150	970	ND	880	450
Gold	ND	ND	870	ND	ND	ND	ND	ND	ND
Mercury	ND	ND	4.3	ND	ND	ND	ND	- ND	ND
Nickel	920	160	3600	9800	2600	5300	510	3600	680
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	960	23	ND	ND	ND	ND	12
Tin	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	ND	90	650	390	400	1300	93	600	200
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1.2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane (TCA)	ND	ND	1.1	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	3.1	8.5	2.5	ND	1.7	ND	5.6	1.2	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND

	3/11/2008	9/18/2008	3/24/2009	9/16/2009	4/7/2010	11/4/2010	3/14/2011	9/23/2011	3/26/2012
Barium	ND	ND	170	ND	ND	ND	ND	60	ND
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	ND	ND	11	ND	ND	ND	ND	ND	ND
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	ND	ND	ND	ND	ND	ND
Gold	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	ND	ND	200	ND	ND	54	ND	59	ND
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	50	39	130	ND	ND	70	ND	ND	ND
cis-1,2-Dichloroethylene	ND	ND	1.0	1.5	ND	ND	ND	36	ND
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane (TCA)	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ND	ND	10	1.4	ND	4.3	ND	17	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND

	1	0/10/0000	3/24/2009	9/16/2009	4/7/2010	11/4/2010	3/14/2011	9/23/2011	3/26/2012
	3/11/2008	9/18/2008					3/14/2011 ND	9/23/2011 ND	ND
Barium	ND	ND	ND	ND	ND	ND			ND
Beryllium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	
Cobalt	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Copper	ND	ND	ND	ND	ND	ND	ND	ND	ND
Gold	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	43	37	34	31	50	ND	52	37	ND
cis-1,2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethviene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1.2-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.1-Trichloroethane (TCA)	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene (TCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene (PCE)	ND	ND	ND	ND	ND	ND	ND	ND	ND

ATTACHMENT M FSS 39211 SILVER RECOVERY FIGURE TIN RECOVERY ----FROM SILVER PLATING LINES PUMP SILVER NOTHER TANK 1,500 GAL TIN AIR Facility Support Service, LLC Environmenal & Safety Consulting Engineers 2885 State Street, Hamden, CT 05517 Phone: (203) 288-1281 FILTER WASTEWATER 400 GAL ARCE SLVER TREATMENT SYSTEM DECANTING TO HOH I TIN SETTLING TANK JI 2,000 GALS TIN SETTLING TANK # 2 3,000 GALS DECANTING TO HOH I SPENT ACID FROM FOOD TIN-OH RECYCLED IN AR PUMP AIR PULP FILTER SULFURIC ACID 3,500 GAI 1,500 GALS MEXED ACID HOLDING TANK FOCA WASTE FOR OFF-SITE METALS RECOVERY m TROM ALL TIN PLATING LINES OFCANTING TO Hold I TH CLARFIER TIN PPT P5 ADJUST TO 9.7 WITH CAUSTIC 1,500 GALS m PUMP FOOU OFF-STIE METAL RECLAM SODIUM HYPOCHLORIE 5,000 GAL SODIUM HYPOCHLORE 1,500 GAL FROM AU PLATING ACD DAY TANK 10,005 CAL LIME/CAUSTIC H20 ION EXCHANCE -AU HOLDING PUMP SPENT CLEANER FOR PH ADJ. TO HOH 2/CN2/FN 1,500 GALS WASTEWATER TREATMENT LINE DRAWING SUMMIT CORPORATION OF AMERICA 1430 WATERBURY ROAD THOMASTON, CONNECTICUT HOLDING TANK 30 GAL 700 CAL PUMP GOLD RECOVERY AUXILIARY FLOWS HIPH 1 5,000 CAL PN RANCE FROM 10.9 TO 11.5 ADJUST WITH MOTOR VALVE LIME/CAUSTIC SLUKRY ORP RANCE 250 TO 3DO UW ADJUST WITH SCONUM HYPOCHLORITE 1 1 1 DX 1 5,000 CAL 5,000 CAL Ph RANGE FRCM 10.5 TO 11.5 0.015T MITH MOTOR VALVE 10.4 KeV DME / CAUSTIC SURY 0.50 TO 520 Nw ADJUST MITH SODIUM MYPOCIL/CRUITE HYPOCIL/CRUITE 10.5 KeV HPH 2 1,500 CAL TH RANCE FROM 10.1 TO 10.5 AOJUST WITH 1025 SULTURIC AOD GRP RANCE 250 TO 300 MW ADJUST WITH 500 MW HYPOCILORITE Ch 2 3,000 GAL Ph RANCE FROM 10.0 TO 10.5 ADJUST WITH 10% SUIFURG CAOD ORP RANCE 550 TO 600 M ADJUST WITH SOODUM HYPOCILORITE F.N. 3,000 GAL RANCE FROM 8.2 TO 8.8 ADJUST WITH 10% SURFURIC ACID Ph R (ADD DILUTE SODUM HIOSULFATE AS HELDED) FLOCR SPILL FLOOR WASH AIR SCRUDBER WASTEWATER ELT. SUMP PIT TO HOH 1, OR CHI. (TO HOH) OR TO METALS RECOVERY-NOT INCLUDED IN ESTIMATE B/C CLOSED LOOP 00 do co 00 ALARM 2 2 C TO HOH I OR CHI C ~ RECIRCULATED TUNDUNG ALKALINE AND CYANIDE RINSE FROM PLATING UNES (NO ACID) ADD POLYMER SW330 TO DROP OUT WETALS ACIDIC AND AUXAUNE RINSE FROM PLATING UNES (NO CYANIDE) 55 GAL NON-CONTACT DRUM RINSEWATER (10 HpH) FILTER PRESS AR FOOG WASTE OFF-SITE DISPOSAL DECANTING TO HPH 1 RECIRC TO HPIL I & F.N. RECIRCULATED BOILER TO HOH I OR CHI TO Holl 1 CLAREFIER AR PUMP DILUTE THO DAY TANK 75 GAL OUT 10 Cn2 & Ilpt1 2 MIXED METAL, SETTLING TANK MIXED METAL SETTLING TANK 12 LABORATORY WASTEWATER THE SUPRESSION COOLING MAP REFENRENCE FROM F.H. TO CLARFIER FLOC CHAMBER POLYMER IS ADDED TO FLOC CHAMBER 4,000 GAL EODIUN THIOSULFAT TO HOH I CH CHI TO Hol 1 (10 HpH 1 TO CLARIFIER DISCHARGE BOX 1 AIR COMPRESSOR R.OC CHAMBER RECOVERY WELL TO HpH 1 MIXED METAL SLUDGE DATE: AUG 29, 2012 ~~~~ SCALP: N.T.S. Degli - Mittaliga Degli - Distributori TO HoH 1 PROJECT NO. NAME AND DO NOT THE REPORT OF A DECKS 39211 PUMP CLARIFIER DISCHARCE TO V-NOTCH WEIR DSN - # 001 TO NAUGATUCK RIVER ATTACHMENT _____ SAMPLING FLOW METER DEFOAUER Ph METER CL2 METER RECIRC TO ACID DAY TANK, HIOSULFATE DAY TANK, POLMER 330, CONTAINER RINSE NOTE: M V-NOTCH WEIR DISCHARCE PH 6.0 TD 0.0 D W N C P SHIP OF D O C U W C N T S mes document and the steady and documents have a shi so statuted of motocoland, general, S is a motochina or an easily so that a shift of the shift of the shift of the shart, so any ones model model to make the shift of a shift any proved surveys, manual one shift of the shift of shift of the shift of the shift of the shift of a shift of the shift of a shift of the 4 HICH PH ALARM SET AT 5.8 FIGURE 2 -----

ATTACHMENT 7

DSN 001-1: METAL FINISHING WASTEWATERS; BUILDING MAINTENANCE WASTEWATERS; SCRUBBER WASTEWATERS

2008

														-	-													_		_
			January 200 June 201			AN	F	EB	м	AR	Δ	PR	M	AY	J	UN	JI	п	AI	JG	SE	PT	0	ст	N	οv	DI	EC	IS OF 3E LIMIT	IS OF
PARAMETER	Units		/Time- dLimits	Instantane											2													Calefornia -	VERAG	LATION IMUM (
		Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	NON	MAX								
Aluminum, Total	µg/L	2000	4000	154 111	103	210	52	120	36	70	50	90	70	130	1140	2800	60	60	50	90	70	160	40	70	90	120 .	20	20	0	0
BOD ₅	kg/day	42.7		120.5	0.00	0.00	5.00	5.00	7.82	7.82	7.00		11.1		0.0		0.0		11.2	11.2	6.25	10.1	8.8	17.6	2.81	2.81	16.9	16.9	0	0.00
Cadmium, Total	g/day	23	46	94	0.0	0.0									1		0.0	0.0											0	0
Cadmium, Total	ug/L	100	500	12	0	0											0	0					2						0	0
Chlorine, Total Residual	µg/L	327	665	12 1001	33	50	64	78	40	50	35	42	32	37	48	57	26	33	30	38	30	40	40	60	30	30	30	30	0	0
Chloroform	µg/L	0.0000	-			113		143		99		171		74		511		638		178		435		376		245		377	1000	4
Chromium, Total	ug/L	1000	2000	1000	0.000	0.000						1			1			0.000											0	0
Copper, Total	g/day	590	1100	1.2000	79	102	44	67	84	130	193	328	79	111	63	114	45	51	52	58	83	162	38	49	41	60	33	40	0	0
Copper, Total	µg/L	474	876		140	200	68	110	136	180	295	490	110	160	100	180	77	90	80	90	140	260	70	80	80	110	80	120	0	0
Cvanide, Free	mg/L	0.1	0.2	1250110	0.01	0.01	0.01	0.01	0.01	0.01	0.013	0.052	0.00	0.00	0.00	0.00	0.00	0.00	0.004	0.013	0.008	0.03	0.003	0.01	0.014	0.025	0.013	0.02	0	0
Cyanide, Total	g/day	193	386	1074.200	9	16	24	48	16	40	15	56	14	28	15	24	12	27	33	54	40	59	40	70	40	50	5	30	0	0
Cyanide, Total	µg/L	220	400		173	32	24	78	28	55	32	90	14	40	22	40	24	48	65	82	80	100	60	110	80	100	40	60	0	0
Duration of Daily Discharge	hr/day		-	Contract 1		24		24		24		24		24		24		24		24		24		24		24		24		
Flow Rate, Average Daily	gpd	330,000	12000	1122	166,683		166,683		161,653		161,653		156,920		143,404		143,404		145.829		120,729		109,552		93,035		89,524		0	
Flow, Day of Sampling	gpd	- E .	400,000	12.30		166,100		188,500		190,287		176,998		189,600		179,000		158,300		174,100		166,800		164,400		148,800		133,300	1.00	0
Flow, Maximum During 24 Hours	gpd	MALL.	400,000	12.10		344,800		344,800		230,289		197,760		196,400		216,900		344,800		191.300		178,100		169,600		148,800		149,700		0
Fluoride, Total	mg/L	20	30		4.63	9.0	4.625	9.0	6.6	9.3	3.29	5.9	3.09	5.9	1.65	2.5	3.54	4.60	1.88	2.9	1.8	4.5	2.1	2.7	1.9	2.5	2.1	3.5	0	0
Gold, Total	mg/L	0.1	0.5	1.50 March 1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0	0
Indium, Total	mg/L		100			0.01		0.01		0.01		0.01		0.01	1	0.01	1	0.01		0.01	9	0.01		0.01		0.01		0.01		0.2121
Iron, Total	mg/L	3.0	5.0	Instandi	0.00	0.00	0.000	0.00	0.032	0.04	0.033	0.04	0.033	0.04	0.036	0.04	0.033	0.04	0.033	0.04	0.03	0.04	0.04	0.04	0.03	0.04	0.03	0.04	0	0
Lead, Total	g/day	45	89	1.2. 10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0	0
Lead, Total	ug/L	16	48	1	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel, Total	µg/L	653	1210	12112	630	740	605	710	504	620	653	750	650	900	396	580	330	370	340	480	410	650	590	790	570	680	440	540	0	0
Nickel, Total	g/day	19.200																												11.4
Nitrogen, Ammonia	mg/L	10	20		0.71	0.54	2.45	3.7	2.28	3.7	2,45	3.7	1.96	3.3	1.66	2.8	2.1	4.4	2.01	2.6	2.3	3.7	2,29	. 3.7	5.71	20.0	3.16	4.6	D	0
Nitrogen, Kjeldahl	mg/L	-		1	10.30	11.6	-	10.4		12.4		14		18		13.6		14.4		16.2		14		10		20.4		9.9	-	
Nitrogen, Nitrate	mg/L			111.54		28.97		20.24		19,79		20.41		48.58		53.66		53.7		26.6		29.3		50.18		52.4		24.4	1 20	
Nitrogen, Nitrite	mg/L	10.00	-	105.000																										
Nitrogen, Total	mg/L	2.2.2			25.10	35.11		44.11		22.54		22.17		38.19		56.96		72.5		40.73		49.7		57.80		56.4		32.9		a dent
Nitrogen, Total	kg/day	17.7		1.1.1.1.1						-	1																			a
Nitrogen, Total	lbs/day	38.9	1.1		31.19	47.85	40.45	61.53	33.41	47.87	37.32	44.35	53.27	73.32	55.72	77.88	60.36	92.50	47.15	53.73	45.51	69.08	56.28	79.19	55.87	69.19	27.86	36.66	0	0
Oil & Grease, Total	mg/L	10	15		0.92	1.1	1.142	2.4	1.32	2.08	2.32	3.60	1.12	2.07	1.44	3.13	2.62	3.50	1.38	1.6	1.8	2.7	1.7	2.0	1.1	1.3	1.6	2.1	0	0
Organics, Total Toxic (TTO)	mg/L	20-12		1.0		0.119												0.176												0
Palladium, Total	mg/L	10-1-1-	1450			0.01		0.01		0.01		0.01		0.01	_	0.01		0.01		0.01	-	0.01		0.01		0.01		0.01		0
pH, Day of Sampling	SU	100		6.0-9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.5	9.0	8.8	9.0	8.6	8.9	8.6	8.9	8.6	9.0	8.7	9.0	8.7	9.0	8.8	9.0	0	0
pH, Continuous	SU	ALC: THE	1 = 1 1	6.0-9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.5	9.0	8.8	9.0	8.6	8.9	8.6	8.9	8.6	9.0	8.7	9.0	8.7	9.0	8.8	9.0	0	0
Silver, Total	g/day	27	54		40	50	27	31	20	36	16	46	26	35	15	27	10	17	10	19	13	19	10	18	10	16	9	10	1 1	0
Silver, Total	µg/L	100	430		70	100	43	50	32	50	25	70	38	50	24	40	17	30	17	30	20	30	20	30	20	30	20	20	0	0
Solids, Total Suspended	mg/L	20	30	3.20	4.3	7.0	4.0	7.0	3.6	7.0			2.5	5.0	4.2	9.0	3.3	4.0	4.33	6.0	4.4	7.0	1.8	4.0	3.3	5.0	2.3	4.0	0	0
Surfactants (MBAS)	mg/L	-	-			0.00	5	0.35		0.16		0.16	1	80.0		0.00		0.36		0.52		0.22		0.53		0.22		0.18	1	
Tin, Total	mg/L	2.0	4.0	1.13	0.1125	0.15	0.13	0.15	0,144	0.23	0.123	0.22	0.09	0.12	0.30	0.69	0.19	0.26	0.13	0.31	0.28	0.43	0.07	0.09	0.005	0.17	0.14	0.25	0	0
Zinc, Total	g/day	559	1120		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
Zinc, Total	uq/L	1000	2000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0

DSN 001-1: METAL FINISHING WASTEWATERS; BUILDING MAINTENANCE WASTEWATERS; SCRUBBER WASTEWATERS

- E 20	m	m	m	
1	n			
-		GU.	100	

	20	3	January 200 June 2011)8- I	J	AN	F	EB	M	AR	A	PR	M	AY	IL	UN	JI	UL	A	UG	SE	PT	0	ст	NC	οv	DI	с	NS OF GE LIMIT NS OF DAILY
PARAMETER	Units		/Time- dLimits	Instantane							-	121.3	146.5			and the second													ATIO VERA ATIO MUM MUM
A State of the second		Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	MON MON MAX
Aluminum, Total	ug/L	2000	4000	200 CC 4	80	100	40	40	40	70	50	50	100	150	80	90	60	100	92	120	75	120	65	90	44	90	43	60	0 0
BODs	kg/day	42.7	1.000	China and	8.67	12.23	1.41	1.41	2.06	2.06	7.17	10	0.711	0.711	4.8	4.8	37.8	37.8	37.2	37.2	8.87	8.87	11.5	13.5	59.84	59.84	21.51	21.51	1
Cadmium, Total	g/day	23	46		0.0	0.0											0.00	0.00											0 0
Cadmium, Total	цg/L	100	500		0	0											0	0											0 0
Chlorine, Total Residual	μg/L	327	665		30	30	30	40	26	28	20	23	30	30	20	20	20	20	21	22	18	20	20	23	19	22	23	30	0 0
Chloroform	µg/L		-			189		836		231		331		213		143		181		350		91		206		730		186	
Chromium, Total	µg/L	1000	2000		0.000	0.000							v		-		0.000	0.000									1		0 0
Copper, Total	g/day	590	1100		56	122	25	31	37	73	21	40	37	59	40	83	31	51	40	90	27	30	61	99	40	64	27	47	0 0
Copper, Total	ug/L	474	876	NEW TAX	140	300	120	140	180	320	90	160	150	210	140	310	60	100	110	250	70	90	127	200	98	140	97	170	0 0
Cyanide, Free	mg/L	0.1	0.2		0.01	0.01	0.018	0.030	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.013	0.02	0.03	0.01	0.01	0.037	0.06	0.022	0.037	0.005	0.013	0.000	0.000	0 0
Cvanide, Total	g/day	193	386	. h	12	17	10	20	9	14	11	11	7	17	10	14	26	34	14	21	33	50	27	33	16	21	7	9	0 0
Cvanide, Total	µg/L	220	400		31	45	60	80	42	70	40	50	30	60	50	50	50	70	39	58	46	120	59	72	40	52	28	30	0 0
Duration of Daily Discharge	hr/day	-		20090		24		24		24		24		24		24		24		24		24	1 ⁻ - 1	24		24		24	- 17 C
Flow Rate, Average Daily	dbdb	330,000	1		78,455	1	45,010		47,809		50,643		50,525		55,270		115,613		95,252		97,090		106,309		106,309		67,950		0
Flow, Day of Sampling	dbd		400,000			119,200		60,900		62,900		64,800		75,200		71,100		156,100		101,800		112,100		130,900		120,200		83,900	0
Flow, Maximum During 24 Hours	dbd	1.1.1.1.1.1.1	400,000			121,800		60,900		63,200		73,900		75,200		75,900		156,100		108,100		119,900		130,900		124,200	2 E	95,700	0
Fluoride, Total	ma/L	20	30	1.0	2.85	4.80	2.9	6.8	2.97	6,80	2.63	5.50	1.38	2.2	1.40	2.2	1.27	1.50	1.308	2.7	1.80	3.00	1.32	2.16	1.83	2.70	1.10	1.7	0 0
Gold, Total	mg/L	0.1	0.5	CUL INC	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0 0
Indium, Total	mg/L	-	-			0.01		0.01	0.01	0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01	
Iron, Total	ma/L	3.0	5.0		0.04	0.04	0.03	0.04	0.032	0.040	0.04	0.04	0.02	0.03	0.03	0.04	0.03	0.04	0.028	0.03	0.035	0.04	0.035	0.04	0.03	0.04	0.025	0.03	0 0
Lead, Total	g/day	45	89		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	D.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0
Lead, Total	ug/L	16	48	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
Nickel, Total	µg/L	653	1210		470	710	500	580	550	720	460	500	450	480	360	450	310	340	380	680	450	510	517	720	388	550	470	970	0 0
Nickel, Total	g/dav	1		Contraction of the second																									
Nitrogen, Ammonia	mg/L	10	20	1.200	3.1	4.3	2.5	6.1	3.16	4.00	5.20	13	2.87	3.7	1.43	1.9	3.09	6.6	1.45	2.1	2.175	3.8	2.15	3.2	2.82	4.2	2.22	2.8	0 0
Nitrogen, Kieldahl	mg/L		-			15		19		13		17.49		13.32		6.49		30		4.2		11.92		17.36		11.9		10.36	
Nitrogen, Nitrate	mg/L	-	-	1220 58		19.36		28.5		13.56		19.64		21.92		30.07		16.5		29.21		23.95		11.08		17.25		33,96	A. 5
Nitrogen, Nitrite	mg/L		1	Sec. No.										,						0.0		0.00		0.21		0.17		0.00	
Nitrogen, Total	mg/L	Selection 1	1.560 8	COSTEM!		34.36		34.1		24.56		31.92		31.24		35.53		40		12.195	10.701	12.597	1						
Nitrogen, Total	kg/day	17.7	id-the-	00%508			1																10.701	12.597	8.002	9,190	6.366	9.283	
Nitrogen, Total	lbs/day	38.9	11-0-1	0.000000	21.23	32.50	12.71	16.70	9.82	11.88	12.36	17.24	14.33	17.16	12.75	20.76	32.58	45.75	14.32	26.85	23.56	27.73	23,56	27.73	17.62	20.23	14.02	20,44	0 0
Oil & Grease, Total	mg/L	10	15		0.87	1.3	1.8	2.1	2.28	3.7	1.27	2.12	0.67	1.33	1.48	1.93	0.82	1.13	0.9332	1.553	0.55	1.733	1.05	2.733	0.72	2.467	0.800	1.267	0 0
Organics, Total Toxic (TTO)	mg/L	1000	1	1.0		0,191												0.182											0
Palladium, Total	mg/L	0.000	instita (No. CONT	1	0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01		0.01	0
pH, Day of Sampling	SU			6.0-9.0	8.8	9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.6	9.0	8.6	9.0	8.6	9.0	0 0
pH, Continuous	SU	101200	1 2 3	6.0-9.0	8.8	9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.7	9.0	8.7	9.0	8.6	9.0	8.7	9.0	8.6	9.0	8.6	9.0	8.6	9.0	0 0
Silver, Total	g/day	27	54	- Contraction of the	8.0	10.0	7.0	9.0	4.0	7.0	6.0	7.0	6.0	9.0	5.0	8.0	9.0	15.0	7.0	11.0	10.0	13.0	14.0	15.0	11.7	22.7	4.4	7.1	0 0
Silver, Total	μg/L	100	430		20	40	30	40	22	30	25	30	20	30	20	30	20	30	20	30	25	30	30	30	28	50	18	30	0 0
Solids, Total Suspended	mg/L	20	30		1.8	3.0	3.5	7.0	3.4	9.0	3.8	9.0	2.5	4.0	6.8	13.0	2.7	4.0	4.8	6.0	1.5	3.0	2.5	4.0	3.0	6.0	2.5	4.0	0 0
Surfactants (MBAS)	mg/L	-	-	198595		0.26	1	0.22		0.18	1	0.18		0.22		0.06		0.01		0.13		0.11		0.18		0.35	1	0.33	
Tin, Total	mg/L	2.0	4.0	-	0.08	0.19	0.11	0.17	0.14	0.23	0.12	0.17	0.09	0.20	0.18	0.22	0.020	0.030	0.14	0.30	0.05	0.11	0.18	0.22	0.07	0.12	0.2525	0.82	0 0
Zinc, Total	g/day	559	1120	in an -	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0
Zinc, Total	ug/L	1000	2000	Line soon	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0

DSN 001-1: METAL FINISHING WASTEWATERS; BUILDING MAINTENANCE WASTEWATERS; SCRUBBER WASTEWATERS

0040	
2010	

					-					04.0.8Y-17.00		2010/02/02 20:0		Contraction of the	1			CALC: N	12001-0201	10 No. 10	1000	101.5751.020	1 CALCO	ntri L Cina	State fit. C		10002100	1. The later of the	
a de la deservation		E-anit	June 2011		JA	AN	FI	ЕВ	M	AR	A	PR	M.A	AY	JI	UN	JI	UL	AL	JG	SE	PT	0	ст	N	ov	DI	EC	RAGE LY LIMIT IONS OF
PARAMETER	Units		Limits	Instantane	35.11				See.	in the	dia hora	1000	5	2	1.1.1			direction of	10234	12003		Contraction of the			21.21.5		1.1.1	0.01632	NTH NTH
	113	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	AVOLA AVO MONT VIOLA								
Aluminum, Total	ug/L	2000	4000	A	20	40	0	0	6	30	20	30	15	40	6	30	16	30	22	80	8	30	5	20	26	70	5	20	0 0
BOD	kg/day	42.7			9.217	9.217	15.86	15.86	12.81	12.81	14.26	14.26	8.146	8,146	5.831	5,831	8,428	8.428	11.379	11.379	9.048	9.048	6.914	6,914	8.61	8,61	6.47	6.47	0
Cadmium, Total	g/day	23	46		0.00	0.00									-		0.00	0.00					· · · · · ·						0 0
Cadmium, Total	μg/L	100	500		0	0											0	0								-			0 0
Chlorine, Total Residual	μg/L	327	665		21	25	19	22	19	22	20	23	19	22	21	28	18	20	21	22	18	20	19	22	19	25	18	18	0 0
Chloroform	µg/L	-	-			168		382		431		232		235		241		106		194		146		157		143		185	-
Chromium, Total	µg/L	1000	2000	1.	0.000	0.000				-							0.000	0.000					0.00	0.00	0.00	0.00	0.000	0.000	0 (
Copper, Total	g/day	590	1100		8.0	13.0	13.0	22.0	47.0	119.0	13.0	18.5	12.0	17.0	10.0	13.0	11.7	17.0	18.8	28.0	25.8	42.2	19.6	26.3	24.1	47.3	20.8	32.0	0 (
Copper, Total	ug/L	474	876	Lips feet	35	60	62	100	232	600	55	80	50	70	40	50	40	60	60	100	85	150	83	100	108	200	100	140	0 0
Cyanide, Free	mg/L	0.1	0.2	1.11	0.00	0.00	0.008	0.018	0.0026	0.013	0.0025	0.01	0.0045	0.018	0.00	0.000	0.004	0.013	0.019	0.04	0.009	0.022	0.000	0.000	0.021	0.038	0.0087	0.035	0 0
Cyanide, Total	g/day	193	386	10000	6.5	10.0	6.5	10.0	4,6	9.0	5.0	14.0	5.3	11.2	3.6	7.0	9.4	17.5	20.5	32.0	15.8	28.0	2.3	6.7	16.5	30.9	9.2	155.4	0 (
Cyanide, Total	µg/L	220	400	ST DOLG	33	50	33	40	20	42	43	63	22	45	17	27	7	30	67	98	48	85	11	30	78	140	34	68	0 (
Duration of Daily Discharge	hr/day			A SALE		24		24		24		24		24		24		24		24		24		24		24		24	100
Flow Rate, Average Daily	gpd	330,000	deres -	22000	49,205		55,110		52,409		58,168		61,475		59,709		76,800		82,880		81,350		59,524		57,020		49,338		0
Flow, Day of Sampling	gpd		400,000	100 T A.		59,400		63,300		57,400		66,900		70,800		72,100		77,300		93,300		89,200		69,700		62,500		60,400	
Flow, Maximum During 24 Hours	gpd	2111-223	400,000			61,900		63,900		63,000		71,800		70,800	-	73,100	-	77,300	-	93,300		95,700	-	72,900		65,500		60,900	
Fluoride, Total	mg/L	20	30	1.	1.60	2.70	1.16	2.2	0.844	1.34	1.67	2.40	1.245	2.3	1.084	2.2	2.283	4.5	3.706	9.25	2.88	5.60	2.37	3.80	3.67	9.00	3.302	4.85	0
Gold, Total	mg/L	0.1	0.5		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Indium, Total	mg/L	-	-	1 Corre		0.01		0.01	10000	0.01		0.01	1000000	0.01	1000000	0.01	1000000	0.01		0.00	-	0.00	10000	0.00		0.00		0.00	
Iron, Total	mg/L	3.0	5.0	100(444)	0.032	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.03	0.04	0.028	0.04	0.03	0.04	0.030	0.04	0.0325	0.04	0.03	0.04	0.03	0.04	0.035	0.04	0
Lead, Total	g/day	45	89	14182112	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
Lead, Total	ug/L	16	48	10.05	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel, Total	ug/L	653	1210		350	370	390	560	340	750	460	790	340	440	400	500	500	600	440	480	505	650	267	320	304	440	402	530	0
Nickel, Total	kg/day	1.1.1		1.1					-				0.705	1.00	0.00		1.88		1.86	2.0	2.325	3.3	1.375	1.9	2.63	4.5	3.1		0
Nitrogen, Ammonia	mg/L	10	20		1.63	1.9	2.03	2.9	7.26	22.00	1.16	2	0.795	1.06	2.62	3.4	1,88	3.3	1.85	2.8	2.325	6.45	1.3/5		2.03	7.67	3,1	3.9	0
Nitrogen, Kjeldahl	mg/L		-			14.98	-	14.42		29.52		8.31	-	19.59	-	12.00	-	11.38		15.6		12.24	-	10.88	-	18.93	-	15.21 35.00	
Nitrogen, Nitrate	mg/L	-	-			29.54		19.66		19.03	-	12.53		9,45		11.28		0.00		0.0		0.36	-	18.38		0.00		0.00	-
Nitrogen, Nitrite	mg/L		-	1010010	-	0.00	-	0.00		0.000	-	0.00		0.00	3,986	0.00	3.897	0,00	5.389	0.0	4.046	0.30	4,045	0.00	3.323	0.00	5.664	0.00	
Nitrogen, Total	kg/day	17.7	221	1.1.1		6.366		5.292		5.231	7.15		0.40	3,826	8.78	12.53	8.58	10.33	11.87	15.63	8.91	11.25	4.045	10.16	7.32	12.17	12.43	20.53	0
Nitrogen, Total	lbs/day	38.9	-	A STREET	14.02	20.44	11.65	15.53	11.52	19.10	7.45	11.62	8.42			12.53		0.733	0.64	0.933		0.600	0.116	0.267	0.3734		0.4167	1.067	0
Oil & Grease, Total	mg/L	10	15	-	0.766	1.4	1.184	3.667	1.36	1.933	0.650	1,067	0.366	0.667	0.853	1.207	0.511	0.733	0.64	0.933	0.25	0.600	0.116	0.267	0.3/34	0.867	0,4167	1.06/	
Organics, Total Toxic (TTO)	mg/L	-	2.2	1.0	-	0.1726	-	-		0.04		0.04		0.01	-	0.01		0.01	-	0.00		0.00	-	0.00	-	0.00	-	0.00	
Palladium, Total	mg/L	1	1.1.1.1.1.1.1.1			0.01		0.01		0.01		0.01			0.0	9.0	8.7		8.6	9.0	8.6	9.0	8.7	9.0	8.6	9.0	8.6	9.0	0
pH, Day of Sampling	SU	26 100		6.0-9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.6			9.0		9.0		9.0	8.7		8.6	9.0	8.6	9.0	0
pH, Continuous	SU			6.0-9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.6	9.0	8,6	9.0	8.6	9.0	8.7	9,0	8.6	9.0	8.6	9.0	4.1	9.0	3.0	9.0	5.6	6,9	0
Silver, Total	g/day	27	54	s to start	3.8	6.7	4.4	6.7	3.8	6.5	2.9	7.0	3.8	7.6	4.5		_	-		20		30		20	3.0	20		6.9 30	0
Silver, Total	µg/L	100	430		17	30	17	30	32	80	12.7	30	15	30	2.8	30	20	30	18	4.0	22.5	3.0	18	5.0	4.6	8.0	28	9.0	0
Solids, Total Suspended	mg/L	20	30		2.3	4.0	4.3	7.0	4.3	7.0	4,0	7.0	2.5	0.11	2.8	0.18	2.0	0.04	2.2	0.18	2.3	0.09	2.5	0.05	4,6	0.22	4.0	0,10	-
Surfactants (MBAS)	mg/L	-		-	0.4077	0.56	0.45	0.33	0.45	0.33	0.395	0.18	0.267	0.11	0.246	0.18	0.033	0.060	0.14	0.18	0.23	0.09	0.21	0.05	0.268	0.22	0.277	0.10	0
Tin, Total	mg/L	2.0	4.0	-	0.1375	0.25	0.12	0.23	0.12	0.23	0.395	0.64	0.267	0.70	0.246	0.0	0.033	0.0	0.14	0.36	0.23	0.0	0.21	0.39	0.268	0.58	0.277	0.34	0
Zinc, Total	g/day	559	1120		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Zinc, Total	µg/L	1000	2000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0

201	.	
	11	

		,	June 2011																					07	S. (8)				LOF MIT	AILY
PARAMETER	Units		/Time-	Instantane	J	AN	FE	ΞB	M.	AR	A	PR	M	Α Υ	J	UN	J	UL	A	UG	SE	EPT	0	СТ	N	ov	D	EC	VIOLATIONS C AVERAGE MONTHLY LIM	ATIONS MUM DJ
		Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	NON	MAXI								
Aluminum, Total	µg/L	2000	4000		12	60	5	20	13	30	0	0	10	30	0	0													0	0
BODs	kg/day	42.7	1.000	2011	4.7251	4.7251	7,5513	7.5513	5.309	5.309	3.2135	3.2135	8.676	8.676	2.05	2.05									-				0	0
Cadmium, Total	g/day	23	46		0.00	0.00										l i				9									0	0
Cadmium, Total	ug/L	100	500	C. 2	0	0													1										0	0
Chlorine, Total Residual	µg/L	327	665		21	25	23	27	20	25	21	22	18	20	18	20											l		0	0
Chloroform	µg/L	1	-		115.5	115.5	117.9	117.9	118.7	118.7	56.7	56.7	155.0	155.0	73.2	73.2														
Chromium, Total	μg/L	1000	2000	100	0.000	0.000									0.00	0.00			-								1	1	0	0
Copper, Total	g/day	590	1100	fig salefi	33	78	27	64	21	45	27	85	15	34	7	11													0	0
Copper, Total	µg/L	474	876		138	300	118	290	88	180	85	250	60	130	30	50													0	0
Cyanide, Free	mg/L	0.1	0.2	0.15	0.005	0.025	0.037	0.098	0.038	0.087	0.02125	0.063	0.0146	0.032	0.0062	0.018													0	0
Cyanide, Total	g/day	193	386		12	28	32	86	27	54	19	34	16	26	5	9	-												0	0
Cyanide, Total	µg/L	220	400	S. OF	50	103	145	277	115	205	89	157	59	100	25	40							1						0	0
Duration of Daily Discharge	hr/day		-		24	24	24	24	24	24	24	24	24	24	24	24		_					i.							
Flow Rate, Average Daily	gpd	330,000	1000		60,585		59,914		66.789		72,503		66,068	· · · · · · · · · · · · · · · · · · ·	59,593								-						0	0
Flow, Day of Sampling	gpd	120.0	400,000	12-2-2-2-2		70,330		82,060		69,680		89,370		68,450	_	61,800														
Flow, Maximum During 24 Hours	gpd		400,000	12.7.2.14		78,510		82,060		80,880		89,370		72,870		63,780							1						111105	1.0017
Fluoride, Total	mg/L	20	30	14-213	3.318	4.53	2.44	4.0	1.395	2.10	6.265	11.00	1.82	5.3	0.792	0.93													0	0
Gold, Total	mg/L	0.1	0.5	14-15-15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00													0	0
Indium, Total	mg/L	-	-	HE'S CARD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00														
Iron, Total	mg/L	3.0	5.0	8	0.036	0.04	0.0325	0.04	0.0325	0.04	0.03	0.04	0.034	0.04	0.032	0.04													0	0
Lead, Total	g/day	45	89		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00													0	0
Lead, Total	ug/L	16	48		0	0	0	0	0	0	0	0	0	0	0	0													0	0
Nickel, Total	µg/L	653	1210		143	200	443	490	458	600	425	550	242	430	370	530	1					-					-		0	0
Nickel, Total	kg/day		100		0.60	0.72	0.10762	0.14598	0.109	0.14	0.11533	0.15221	0.0606	0.1114	0.085	0.121													0	0
Nitrogen, Ammonia	mg/L	10	20		3.76	5.6	3.8	4.6	2.6875	3.8	5.05	6.8	3.74	8.2	1.38	2.05													0	0
Nitrogen, Kjeldahl	mg/L			1011.42	10.86	13.98	10.44	16.27	9.03	11.79	9.08	14.61	9.49	14.48	5.34	6.58	-													1.0
Nitrogen, Nitrate	mg/L	-	-	12-22	9.06	12.75	14.42	18.28	14.66	29.13	13.74	32.87	7.57	10.9	5.55	11.54							-	-						1.1
Nitrogen, Nitrite	mg/L		·	(Poster)	0.00	0.00	0.00	0.00	1.97	7.86	0.00	0.00	0.00	0.00	0.00	0.00														1
Nitrogen, Total	kg/day	17.7	Barrie I		5.318	8.895	5.922	7.314	5.985	8.822	6.640	13.500	4.302	5.834	2.430	3.864			1											120
Nitrogen, Total	lbs/day	38.9	1. 1993	12 Contraction	11.71	19.58	13.04	16.10	13.18	19.42	14.62	29.72	9.47	12.84	5.34	8.51													0	0
Oil & Grease, Total	mg/L	10	15	A the se	1.12	1.933	0.3	1.0	0.75	1.467	0.4165	0.533	0.2934	1.0	0.883	2.267		·										-	0	0
Organics, Total Toxic (TTO)	mg/L	STORES.	P-20033	1.0	0.0139																									
Palladium, Total	mg/L		1002.05		0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00													1 1.40	
pH, Day of Sampling	SU	1.100.20	10.000	6.0-9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.7	9.0	8.6	9.0	8.7	9.0													0	0
pH, Continuous	SU		1000	6.0-9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.7	9.0	8.6	9.0	8.7	9.0													0	0
Silver, Total	g/day	27	54	12000	4.7	5.6	4.9	6.2	5.4	6.7	5.4	6.8	4.1	7.8	3.4	4.5	-	-											0	0
Silver, Total	μg/L	100	430		20	20	20	20	23	30	20	30	16	30	15	20													0	0
Solids, Total Suspended	mg/L	20	30		1.4	2.0	6.3	12.0	1.8	4.0	1.8	4.0	3.0	8.0	0.0	0.0						2			1				0	0
Surfactants (MBAS)	mg/L			AL-	0.07	0.07	0.06	0.06	0.19	0.19	0.27	0.27	0.08	0.08	0.09	0.09														
Tin, Total	mg/L	2.0	4.0	-34 Tulker	0.178	0.22	0.0775	0.12	0.3225	0.56	0.1425	0.24	0.23	0.32	0.10	0.16												_	0	0
Zinc, Total	g/day	559	1120	"Set fine!	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00													0	0
Zinc, Total	110/	1000	2000	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00													0	0

DSN 001-1: METAL FINISHING WASTEWATERS; BUILDING MAINTENANCE WASTEWATERS; SCRUBBER WASTEWATERS

													201	7																
CARLENCE AND	10.1	entalia-	July 2011	acaines!	EX. LET				ALC: NOTING				No.		Sale and						an ann ann		13162		man nues a	1.15		(1203USE)	UT UT	ц Ц Ц
			present	T	J	AN	FI	EB	M.	AR	A	PR	M	AY	JI	JN	JI	UL	AI	JG	SE	PT	0	СТ	NO	vc	DI	EC	FIONS ERAGE	TDA
PARAMETER	Units		dLimits	Instantane											in a													12121	FILL	ATIC
		Average	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Meximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	NON	MAXI
Aluminum, Total	ug/L	2000	4000									L					6.6	20.0	4.0	20.0	5.0	20.0	12.5	50.0	5.0	20.0	93.0	230.0	0	0
BOD	kg/day	42.7															5.865	5.865	7.967	7.967	6.261	6.261	4.512	4.512	2.3740	2.3740	5.012	5.012	1	0
Cadmium, Total	g/day	23	46										-				0.0000	0.0000			(1	1				1			0	0
Cadmium, Total	µg/L	100	500	00.01													0	0											0	0
Chlorine, Total Residual	µg/L	115	232	-													16.3	17.0	18.2	20.0	18.2	20.0	18.2	22.0	16.0	17.0	20.0	22.0	0	0
Chioroform	µg/L			120		1	-										49	49	52	52	94	94	165	165	74	74	101	101		11.1
Chromium, Total	ug/L	1000	2000	3. 1. 2.1													0.000	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.000	0	0
Copper, Total	g/day	228	457														9.3	14.8	7.2	9.3	10.9	18.5	8.9	14.1	20.9	47.5	43.6	65.9	0	0
Copper, Total	µg/L	474	876	23.1.00													43	70	32	40	48	80	38	60	93	210	210	310	0	0
Cyanide, Free	mg/L	0.1	0.2	2000													0.0263	0.057	0.0042	0.013	0.0095	0.033	0.0215	0.073	0.0107	0.033	0.0026	0.008	0	0
Cyanide, Total	g/day	193	386	14.15													20.4	34.3	10.1	16.1	6.7	16.1	18.6	53,1	12,2	20.3	5.8	10.6	0	0
Cyanide, Total	µg/L	220	400														123	158	48	72	16	75	89	225	54	90	29	50	0	0
Duration of Daily Discharge	hr/day		-									1					24	24	24	24	24	24	24	24	24	24	24	24	1.10.22	100
Flow Rate, Average Daily	bdb	330,000	-	200										-			59,593		59,395		56,710		58,013		58,011		53,552		0	0
Flow, Day of Sampling	gpd	1	400,000	100000													1	59,730		61.800		64,800		63,750		60,200		61,030		
Flow, Maximum During 24 Hours	apd		400,000															61,700		65,150		64,800		63,750		62,450		61,030		1.11
Fluoride, Total	ma/L	20	30	1.													0.90	1.25	1.146	2.2	0.7475	0.9	0.695	1.17	0.95	1.4	0.70	0.9	0	0
Gold, Total	mg/L	0,1	0.5	100													0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Indium, Total	ma/L	_															0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Iron, Total	ma/L	3.0	5.0	1000							1	1					0.03	0.04	0.03	0.04	0.0275	0.04	0.0375	0.05	0.0375	0.04	0.023	0.03	0	0
Lead, Total	g/day	7	13	2.5						1							0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Lead, Total	µg/L	16	48	St													0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Nickel, Total	ua/L	653	1210	Contrast in the													280	380	208	370	148	170	243	550	245	320	396	460	0	0
Nickel, Total	g/day	442	887														60.0	80.0	46.0	85.0	34.1	39.3	57.2	130.0	55.5	72.4	83.4	97.8	0	0
Nitrogen, Ammonia	mg/L	10	20	0.000						1							3.16	3.3	3.012	10.0	1.445	1.82	1.74	2.1	1.89	2.6	2.28	2.40	0	0
Nitrogen, Kjeldahl	mg/L	_		5 M S S 10 M			// ·										8.91	16.79	5.72	13.62	4.88	6.22	6.69	9.00	3.93	5.0	6.77	9.4		
Nitrogen, Nitrate	mg/L	-		142124			11							2			14.96	27.95	7.31	18.43	7.20	19.39	6.43	8.95	25.2	49.1	8.60	10.27		1.
Nitrogen, Nitrite	mg/L	18-12-2	21124	2200-5													0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.10	^	-
Nitrogen, Total	kg/day	17.7	1.00	des al													5.185	7.152	2.935	5.096	2.724	5.491	3.097	4.208	6.611	11.981	3.248	4.205	1.1	
Nitrogen, Total	lbs/day	38.9	1242	5 324													11.42	15.75	6,46	11.22	6.00	12.09	6.82	9.26	14.55	17.84	7.15	9,26	0	0
Oil & Grease, Total	mg/L	10	15	10000				9	-								0.00	0.00	0.2668	1.067	0.38325	1.20	0.61675	2.0	0.1	0.4	0.689	1.667	0	0
Organics, Total Toxic (TTO)	mg/L	No.	1000	1.0														0.000												
Palladium, Total	mg/L	HARRIN	14.000	1.50 M					1								0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
pH, Day of Sampling	SU	5.8.859		6.0-9.0													8.6	9.0	8.6	9.0	8.6	9.0	8.6	9.0	8.5	9.0	8.5	9.0	0	0
pH, Continuous	SU	1000	1000	6.0-9.0			-				1						8.6	9.0	8.6	9.0	8.5	9.0	8,1	9.0	8.1	9.0	8.5	9.0	0	0
Silver, Total	g/day	27	54		1									1			2.2	2.3	2.7	4.5	4.6	6.9	3.5	4.7	2.8	4.5	4.2	4.6	0	0
Silver, Total	µg/L	100	430														10	10	12	20	20	30	15	20	13	20	20	20	0	0
Solids, Total Suspended	mg/L	20	30	a second													3.0	7.0	2.8	9.0	1.5	3.0	2.0	3.0	1.3	4.0	4.0	8.0	0	0
Surfactants (MBAS)	mg/L	-	-						1								0.18	0.18	0.08	0.08	0.16	0.16	0.13	0.13	0.06	0.06	0.14	0.14		
Tin, Total	mg/L	2.0	4.0	1.2													0.06	0.18	0.104	0.14	0.1075	0.23	0.08	0.17	0.125	0.22	0.176	0.20	0	0
Zinc, Total	g/day	28	55						1								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
Zinc, Total	ug/L	1000	2000										1				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0

2011

DSN 001-1: METAL FINISHING WASTEWATERS; BUILDING MAINTENANCE WASTEWATERS; SCRUBBER WASTEWATERS

D. CORDERATION STATISTICS	- Deltos		July 2011-		tor log		14-36	a a b	1.516	100	din a	a state		24250	No.			10			意志市場			1945 A.			19636		* = * 2
PARAMETER	Units		present /Time-		JA	N	FE	в	M	AR	A	PR	M	AY	JL	JN	JL	JL	Al	JG	SE	PT	00	ст	N	vo	DI	EC	ATIONS VERAGE THLY LIA ATIONS
		Average Monthly	Limits Maximum Daily	Instantane ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Meximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOLA AV MONT VIOLA
Aluminum, Total	1:0/1	2000	4000	1.000	8	20	5	20	17	30	6	30	20	30	0	0	36	90	5	20	5	20	0	0	70	260	0	0	0 0
BOD,	kg/day	42.7		Contraction of the	4.2394	5.6349	16.57	16.57	1.94	1.94	3.76	3.76	2.04	2.04	2.721	2.721	5.8	5.8	7.7	7.7	12.17	12.17	2.957	2.957	10.27	10.27	4.98	4.98	0 0
Cadmium, Total	g/day	23	46	22. 25	0.0	0.0			1			1			2		0,00	0.00								÷			0 0
Cadmium, Total	ug/L	100	500		0	0											0	0											0 0
Chlorine, Total Residual	µg/L	115	232	1901-01	20.8	25.0	14.5	15.0	21.5	25.0	17.4	20.0	17.0	18.0	18.0	20.0	16.3	17.0	21.5	25.0	17.7	22.0	20.6	23.0	20.0	25.0	19.0	23.0	0 0
Chloroform	µg/L			1.1.2	74.2	98.7	60.8	60.8	186.0	186.0	100.3	100.3	81.0	81.0	67.0	67.0	15.1	15.1	66	66	120	120	35.3	35.3	154	154	42	42	
Chromium, Total	µg/L	1000	2000	CONTROL	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0
Copper, Total	g/day	228	457	1001010	19	30	12	30	14	25	10	15	56	85	70	123	14	18	24	56	40	80	13	30	20	55	30	51	0 0
Copper, Total	ug/L	474	876	Sel Sh	88	140	55	140	62	110	44	70	190	280	200	500	56	80	80	210	110	220	42	90	80	240	120	190	0 0
Cyanide, Free	mg/L	0.1	0.2	1. Carlos 200	0.0036	0.015	0.000	0.000	0.0025	0.01	0.001	0.005	0.0025	0.01	0.00125	0.005	0.016	0.032	0.00825	0.018	0.012	0.038	0.027	0.035	0.023	0.043	0.003	0.010	0 0
Cvanide, Total	g/dav	193	386		6.5	15.0	2.3	5.5	4.7	6.4	3.6	6.5	8.0	15.0	6.0	8.3	11.0	18.0	13.0	26.0	12.0	36.0	29.0	41.0	15.0	28.0	6.0	14.0	0 0
Cyanide, Total	ug/L	220	400	in the second	35	67	11	25	17	33	15	28	33	55	19	23	62	70	59	90	12	107	84	113	69	100	12	53	0 0
Duration of Daily Discharge	hr/day		-	Z. Lyon	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	
Flow Rate, Average Daily	bqp	330,000	Sec. No.	1	57,448		56,948		58,968		59,638	1	74,795		72,679		67,263		70,217		82,595	Z	82,864		66,113		59,904		0 0
Flow, Day of Sampling	gpd		400,000	1000		60,500		62,000		64,500		69,000		80,900		95,845		69,100		84,200		96,700		107.300		75,091		71,173	1.1.1
Flow, Maximum During 24 Hours	gpd	12280	400,000	201 103		62,100		62,000		64,500		69,000		83,600		95,845		72,800		84,200		96,700		108,200		78,429		79,017	
Fluoride, Total	mg/L	20	30	Control 19	1.58	3.60	0.80	1.2	1.68	2.9	0.73	0.90	2.1	4.4	1.005	1.4	0.57	0.72	0.47	0.58	2.33	7.80	1.31	1.87	0.62	0.70	0.70	0.8	0 0
Gold, Total	ma/L	0.1	0.5	45 - 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0
Indium, Total	mg/L			-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Iron, Total	mg/L	3.0	5.0	1.2. 2.2	0.024	0.030	0.027	0.040	0.027	0.040	0.030	0.040	0.030	0.030	0.030	0.040	0.030	0.040	0.030	0.040	0.030	0.040	0.024	0.040	0.020	0.030	0.040	0.040	0 0
Lead, Total	kg/day	7	13	-10.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
Lead, Total	µg/L	16	48	and a lot	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (
Nickel, Total	µg/L	653	1210	10 3	360	450	380	430	420	570	390	550	470	540	460	490	430	610	600	650	550	590	548	660	580	670	570	610	0 0
Nickel, Total	g/day	442	887	E	82	101	85	94	98	130	94	140	140	200	130	160	109	159	169	207	191	198	173	203	153	180	136	140	0 (
Nitrogen, Ammonia	mg/L	10	20	- 0 s - 1	2.73	5.8	1.82	2.6	2.33	3.10	2.76	4.8	2.51	3.05	1.65	2.2	4.01	6.5	2.55	4.4	3.09	7.8	3.73	10.8	2.71	5.0	2.86	3,4	0 (
Nitrogen, Kjeldahl	mg/L	-	-	1. 1. 1.	5.86	10	4.67	5	5.12	6.2	8.28	16.8	5.60	7.20	5.44	6.42	6.66	10.5	7.08	10.9	8.34	12.85	8.52	20.56	6.62	10.0	8.09	9.60	
Nitrogen, Nitrate	mg/L	-	-		10.67	20.29	10.10	23.51	9.4	16.8	12.4	22.4	11.6	22.0	10.76	16.17	5.09	6.42	8.01	11.39	13.47	25.46	6.68	13.27	7.09	10.96	27.45	49.97	
Nitrogen, Nitrite	mg/L			10.50	0.00	0.00	0.00	0.00	0.063	0.25	0.00	0.00	0.10	0.40	0.04	0.15	0.00	0.00	0.00	0.00	0.025	0.10	0.00	0.00	0.03	0.13	0.07	0.22	
Nitrogen, Total	kg/day	17.7	20.20	S.	3,747		3.280		3.340		4.836		5.05		4.76		2.98		4.23		7.65		5.047		3.480		8.326		
Nitrogen, Total	lbs/day	38.9	10-0-0	545-542 (T	8.24		7.22		7.35		10.64		11.11		10.47		6.56		9.31		16.83		11.10		7.66		18.32		0 (
Oil & Grease, Total	mg/L	10	15		0.42	1.7	0.43	0.867	0.11	0.467	0.08	0.2	1.52	3.73	0.25	1.00	0.00	0.00	0.183	0.467	1.22	2.6	1.37	2.4	0.38	0.867	0.06	0.2	0 0
Organics, Total Toxic (TTO)	mg/L		1	1.0		0.0626												D.015											
Palladium, Total	mg/L		11.0000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
pH, Day of Sampling	SU		10000	6.0-9.0	8.6	9.0	8.5	9.0	8.7	9.0	8.6	9.0	8.1	9.0	8.2	9.0	8.3	8.9	8.6	9.0	8.0	8.9	7.2	9.0	8.2	9.0	8.4	9.0	0 (
pH, Continuous	SU	1.1.1		6.0-9.0	8.6	9.0	8.5	9.0	8.4	9.0	8.6	9.0	7.9	9.0	8.1	9.0	8.1	8.9	8.1	9.0	8.0	9.0	7.2	9.0	8.2	9.0	8.4	9.0	0 (
Silver, Total	g/day	27	54	S. 11.5	3.6	4.6	2.2	2.3	2.3	2.4	2.8	4.6	3.6	5.5	2.9	3.6	2.0	3.0	2.9	3.2	7.0	7.3	4.7	8.1	3.9	5.2	4.1	5.4	0 0
Silver, Total	µg/L	100	430	120102	16	20	10	10	5	10	12	20	13	20	0	0	10	10	2.5	10	20	20	14	20	15	20	16	20	0 0
Solids, Total Suspended	mg/L	20	30		2.4	5.0	1.3	3.0	1.8	5.0	0.8	2.0	1.8	3.0	0.0	0.0	1.0	3.0	0.05	1.0	1.3	2.0	2.8	5.0	1.3	2,0	3.7	7.0	0 1
Surfactants (MBAS)	mg/L		1000		0.13	0.13	0.12	0.12	0.09	0.09	0.06	0.06	0.06	0.06	0.04	0.04		0.08		0.12		0.12		0.13		0.08		0.06	
Tin, Total	mg/L	2.0	4.0		0.13	0.24	0.242	0.42	0.267	0.41	0.124	0.17	0.107	0,18	0.102	0.13	0.07	0.12	0.19	0.26	0.19	0.27	0.172	0.22	0.22	0.33	0.156	0.18	0
Zinc, Total	g/day	28	55		0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.24	5.23	0.72	2.69	0
Zinc, Total	µg/L	1000	2000	0.000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12.5	20	3.3	10	0

2012

ഹ	m -	
	01	
- 16-	W I	

	-	-	July 2011-	TABLE AND ADD	and the second		0	1.110.40		10	Contraction of the	ACCRET AND	TUDA CAL	Lon Postu	10.000			11.	124342.0233		(8-11) (11) (11)	11-11-1-1	Sec. 19		1.1.1.1	1000	211.245		1	
			present		100	AN		в		AR		PR	MA	v		UN	п	JL	Δ1	JG	SE	PT	0	~ T	N	N	D	EC	S OF	S OF
PARAMETER	Units		/Time- Limits	Instantane	J	410			IVI.	AL	A	-ĸ	IVIA				J		~	50	36					50		10	VERAC	ATION MUM C
	1	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Meximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	NON	VIOL								
Aluminum, Total	µg/L	2000	4000	1.00	0	0	10	20	0	0	4	20	0	0	15	20	0	0	8	30	0	0	5	20	5	20	0	0	0	0
BODs	kg/day	42.7			4.97	4.97	4.07	4.07	1.83	1.83	3.23	3.23	6.86	6.86	7.2	7.2	1.5	1.5	2.8	2.8	1.94	1.94	0.000	0.000	6.27	6.27	0.00	0.00	0	0
Cadmium, Total	g/day	23	46	(10 er#	0.0	0.0											0.00	0.00											0	0
Cadmium, Total	ug/L	100	500		0	0											0	0											0	0
Chlorine, Total Residual	ug/L	115	232	100	15.5	17.0	17.0	20.0	18.0	22.0	19.6	22.0	14.0	17.0	18.0	20.0	15.6	18.0	18.0	20.0	17.0	20.0	20.7	23.0	16.0	18.0	15.0	18.0	0	0
Chloroform	µg/L			000000	44	44	55	55	84	84	18	18	169	169	93.0	93.0	39.0	39.0	27	27	157	157	45.0	45.0	78.7	78.7	108	108		-
Chromium, Total	µg/L	1000	2000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0	0
Copper. Total	g/day	228	457		20	38	16	26	44	68	29	86	16	30	19	30	26	59	38	73	29	74	55	91	20	45	53	114	0	0
Copper, Total	µg/L	474	876		87	170	70	130	190	320	138	400	70	130	80	140	113	250	165	320	120	310	220	380	85	190	110	250	0	0
Cyanide, Free	mg/L	0.1	0.2	SIGN	0.022	0.062	0.024	0.052	0.091	0.182	0.021	0.048	0.001	0.003	0.002	0.008	0.011	0.022	0.001	0.005	0.015	0.043	0.021	0.052	0.007	0.023	0.05	0.18	0	0
Cvanide. Total	g/day	193	386		15.7	35.8	18.0	29.3	46.0	92.0	19.0	48.0	6.9	13.3	7.6	15.3	8.0	12.0	3.6	8.1	12.8	23.8	20.0	44.0	10.3	14.9	69	215	0	0
Cvanide, Total	ug/L	220	400	1000	73	157	101	128	253	410	74	152	26	55	40	62	52	52	17	35	42	92	93	168	47	63	40	400	1	1
Duration of Daily Discharge	hr/day	-	-	Sume	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	001-5	
Flow Rate, Average Daily	gpd	330,000	2" 515	1.0.57	60,417		56,511		58,149		57,661		58,532		58,532		59,656		62,363		63,767		63,704		61,884	-	63,767	-	0	0
Flow, Day of Sampling	gpd	21.20	400,000	1.5. 3.4		65,300		62,880		61,620		59,900		63,950		65,300		62,950		63,650		68,400		69,800		69,000		139,900		
Flow, Maximum During 24 Hours	gpd		400,000	St. mark		66,400		64,700		61.800		62,250		63,950		66,400		62,950		66,500		70,500		71,800		69,150		149,100		
Fluoride, Total	mg/L	20	30	12000	1.02	1.70	6.04	12.5	1.53	2.5	1.94	4.20	1.382	2.4	0.93	1.9	1.50	2.10	0.73	1.10	1.25	3.10	1.60	2.70	1.33	2.50	2.08	5,6	0	0
Gold, Total	mg/L	0.1	0.5	1.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Indium, Total	mg/L	1.1			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Iron, Total	mg/L	3	5		0.027	0.040	0.030	0.040	0.030	0.040	0.028	0.040	0.020	0.040	0.030	0.040	0.023	0.030	0.030	0.040	0.026	0.040	0.027	0.030	0.030	0.040	0.025	0.030	0	0
Lead, Total	g/day	7	13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lead, Total	ug/L	16	48	1200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel, Total	µg/L	653	1210	10 - 24	380	480	520	570	440	570	490	570	480	540	500	570	510	570	480	550	500	570	560	570	470	530	520	540	0	0
Nickel, Total	g/day	442	887		87	110	110	120	100	130	108	120	110	126	110	126	118	134	110	130	120	140	140	140	110	120	260	280	0	0
Nitrogen, Ammonia	mg/L	10	20		1.58	2.95	3.02	3.3	2.94	4.10	3.35	5.0	2.38	3.02	2.61	4.7	2.35	4.5	1.79	2.2	2.20	2.6	4,70	7.8	3.00	4.6	2.40	3.5	0	0
Nitrogen, Kjeldahl	mg/L		-	31-1		7	6.89	10.01	9.10	11.9	8.18	9.0	6.65	7.78	8.31	12.33	5.03	8.5	3.68	4.2	5.24	11.60	7.00	10.00		7.8	6.25	12.0	-	
Nitrogen, Nitrate	mg/L		-	201		31.74	11.90	20.84	9.59	17.4	10.7	24.5	6.1	8.7	8.69	11.34	4.67	6,10	4.15	8.17	3.57	7.41	5.86	11.38		10.75	6.79	13.98	1	- 3
Nitrogen, Nitrite	mg/L		-			0.00	0.00	0.00	0.025	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.15	0.00	0.00	0.00	0.00	0.00	0.18		0.00	D.00	0.00	1	
Nitrogen, Total	kg/day	17.7			4.834		4,159		4.196		4.135		2.969		3.806		2.269		1.831		2.155		3.319		2.752		8.005			
Nitrogen, Total	lbs/day	38.9	1200		10.63	¢	9.15		9.23		9.10		6.53		8.37		4.99		4.03		4.74		7,30		6.05		17.61		0	0
Oil & Grease, Total	mg/L	10	15	De la competition	0.35	1,4	0.0	0.0	0.0	0.0	0.08	0.4	0.116	0.267	0.30	1.20	0.06	0.20	0.00	0.00	0.520	0.933	0.76	1.133	0.53	1.4	0.47	0.8	0	0
Organics, Total Toxic (TTO)	mg/L	f. celted	1311.20	1.0		0.044												0.0392												0
Palladium, Total	mg/L	1.572 (15)	L. Decas	1924	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
pH, Day of Sampling	SU	Sector Sector	1000	6.0-9.0	7.0	8.9	8.6	9.0	8.0	9.0	7.5	9.0	8,6	8.9	8.5	9.0	7.0	8.8	8.3	8.9	8.1	9.0	7.5	8.9	8.4	9.0	8.5	9.0	0	0
pH, Continuous	SU		1100	6.0-9.0			8,6	9.0	8.0	9.0	7.5	8.9	8.1	8.9	8.5	9.0	7.0	8.8	8.3	9.0	8.0	9.0	7.5	8.9	_		8.5	9.0	0	0
Silver, Total	g/day	27	54	1000	3.4	4.6	4.4	4.7	3.9	4.6	3.6	4.0	2.9	4.8	2.7	4.3	0.0	0.0	3.5	4.8	2.9	4.8	3.88	5.24	2.4	2.6	7.3	9.6	0	0
Silver, Total	ug/L	100	430	100	15	20	20	20	18	20	18	20	12	20	12	20	0	0	15	20	12	20	15	20	10	10	15	20	0	0
Solids, Total Suspended	mg/L	20	30		0.5	2.0	2.3	3.0	1.0	4.0	1.4	6.0	2.0	6.0	1.3	3.0	1.0	3.0	2.50	4.0	1.6	3.0	2.5	5.0	5.8	14.0	0.8	2.0	0	0
Surfactants (MBAS)	mg/L		S -	a spine in		0.08		0.03		0.15		0.16		80.0		0.13		0.13		0.04		0.06		0.06		0.06	0.04	0.04		-
Tin, Total	mg/L	2.0	4.0	1012	0.17	0.27	0.125	0.16	0.11	0.13	0.128	0.26	0.02	0.41	0.05	0.08	0.14	0.29	0.16	0.25	0.14	0.32	0.16	0.22	0.23	0.30	0.15	0.2	0	0
Zinc, Total	g/day	28	55	J - 122	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Zinc, Total	ug/L	1000	2000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0	0

m	616	с.	18		
2	11		2.8	8	
6 m	es		- 8		

and the second states of a			July 2011-	a line of the			berche	SIN TH		le contra de la contra de la contra de la contra de la co		and teach	nara di ma	- Telicherter	No.	ALE DE LA CAL		and Marga	- Traile	11.5	18182	1.811	10-68	10 M - 1		19 10 18 B			OF OF
PARAMETER	Units	Flow/		22 AISSIN	JA	AN	FE	в	MA	AR	A	PR	MA	Y	JI	ЛИ	JI	UL	A	JG	SE	PT	00	СТ	N	vc	D	EC	THONS RAGE THONS THONS
PARAMETER	onics	Average	Maximum	Instantane ous Limits	Average	Maximum	Average	Maximum	Average	Maximum	Average Monthly	Maximum	Average Monthly	Maximum Dally	Average Monthly	Maximum	Average Monthly	Maximum Daily	Average	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum	Average Monthly	Maximum	Average Monthly	Maximum	VIOLA AVE MONTH VIOLAT
print dell'Objective vi des colle dat	COLTRACTOR STR	Monthly	Daily		Monthly	Daily	Monthly	Dally	Monthly 20	Daily 40	30	90	O	O		O	O	0	10	40	4	20	20	30	7.5	30	6	30	0 0
Aluminum, Total	µg/L	2000	4000	100	5	20	20	50 2.74	1.96	1,96	4.50	4,50	1.79	1.79	0.0	0.0	5.3	5.6	2.076	2.076	4.175	4,175	2.347	2.347	2.368	2.368	1.44	1.44	0 0
BODs	kg/day	42.7			2.84	3.27	2.14	2.14	1,90	1.90	4.50	4.50	1.73	1.10	0.0	0.0	0.00	0.00	2.070	2.070	4.115	4.175	2.041	4.041	2.000	2.000	1.99	1.44	0 0
Cadmium, Total	g/day	23	46	-	0.0	0.0										<u> </u>	0.00	0.00						÷					0 0
Cadmium, Total	ug/L	100	500		0	0			15	17	19.2	25	24	27	22	28	21.2	28.0	19.0	23.0	20	27	20	25	20	25	20	27	0 0
Chlorine, Total Residual	ug/L	115	232		19.2	25	20	28			47	47	43	43	61.6	61.6	74	74	108	108	126	126	64	64	33.6	33.6	54	54	
Chloroform	µg/L				39	48	171	171	155	155				43		01.0			2	8	56	268	04	04	0	0	0	0	0 0
Chromium, Total	μg/L	1000	2000	1000	0	0	0	0	0	0	0	0	0		0		0	0			-		<u> </u>			-		-	0 0
Copper, Total	g/day	228	457	1.	16	33	16	31	25	83	14	22	11	22	10	20	55	86	44	72	35	61	51	71	54	98	67	123	
Copper, Total	µg/L	474	876	10115	70	140	60	120	90	310	60	90	45	90	30	60	160	240	135	214	145	283	214	307	215	384	278	519	0 0
Cyanide, Free	mg/L	0.1	0.2	June 1	0.11	0.13	0.01	0.03	0.01	0.03	0.06	0.18	0.00	0.00	0.010	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.030	0.020	0.070	0.050	0.100	0 0
Cyanide, Total	g/day	193	386	631.5	55	60	15	20	16	26	36	99	11	17	16	23	1	3	2	3	2	5	12	23	21	46	27	49	0 0
Cyanide, Total	µg/L	220	400	1 . C .	230	250	60	80	70	110	150	400	50	70	50	70	2.5	10	10	10	10	20	50	100	20	70	120	240	1 1
Duration of Daily Discharge	hr/day			1.0	24		24		24		24		24		24		24	-	24		24		24	· · · · ·	24		24		-
Flow Rate, Average Daily	gpd	330,000		11: 12	61,833		66,290		62,667		64.570		62,667		83,065		89,004	-	58,851		59,911		61,678		56,555		57,865		0 0
Flow, Day of Sampling	gpd		400,000			68,000		70,500		70,850		65,400		69,750		89,620		100,575		71.313		69,286		69,478		72,472		72,755	
Flow, Maximum During 24 Hours	apd		400,000	1000		68,000		75,500		70,850		69,600		74,600		89,990		130,724		88,051		77,750		87,744		86,858		85,639	
Fluoride, Total	mg/L	20	30	10.00	0.88	1.1	1.31	1.7	8.38	28.0	4.93	8.00	2.37	2.9	1.89	2.5	3.09	4.80	4.34	5.90	2.10	4.00	2.12	3.70	2.29	4.70	3.82	14.0	0 0
Gold, Total	mg/L	0,1	0.5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0
Indium, Total	mg/L			John Ha	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Iron, Total	ma/L	3	5	1.1.1.2.1	0.027	0.040	0.025	0.030	0.028	0.040	0.025	0.030	0.030	0.040	0.020	0.030	0.012	0.020	0.01	0.03	0.038	0.060	0.035	0.050	0.03	0.05	0.032	0.050	0 0
Lead, Total	g/day	7	13	Contraction of	0	0	0.2	0.2	0.2	0.2	0	0	1.4	4.9	2	4.4	2.4	3.6	0.4	1.5	1.2	2.3	0.9	3.4	0.5	2	3.2	9	0 0
Lead, Total	ud/L	16	48	20.23	0	0	1	1	1	1	0	0	5	20	6	13	7	11	1	5	5	9	3.7	15	2.2	9	13.2	44	0 0
Nickel, Total	ug/L	653	1210	1.5	440	520	460	520	500	580	510	560	510	590	645	680	730	880	424	620	539	780	470	550	513	579	568	607	1 0
Nickel, Total	g/day	442	887	and the second	109	123	110	130	120	150	119	130	120	140	210	220	255	316	138	189	131	168	112	128	128	148	135	165	0 0
Nitrogen, Ammonia	mg/L	10	20	1.1	2,87	6.50	3.05	6.5	3.34	8.00	2.92	4.3	2.35	5.00	3.05	4.5	3.82	4.5	4.2	5.6	3,9	5.8	2.35	3,5	5.03	13.0	2.66	5.0	0 0
Nitrogen, Kjeldahl	mg/L			13.000	6.05	8.6	6.7	11.0	4.80	8.2	8.25	16.2	3.95	5.40	5.60	8.60	11.60	26.0	6.80	8.8	5.84	7.80	7.80	10.20	7.85	16.6	5.72	8,00	
Nitrogen, Nitrate	ma/L		1	121. 162	3.20	4.98	9.00	12.02	6.10	11.6	7.0	8.3	3.4	4.5	6.74	11.72	6.20	10.27	5.54	7.67	4.80	8.00	3.24	5.38	1.00	1.28	4.20	13.32	1
Nitrogen, Nitrite	mg/L				0.04	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.04	0.18	0.00	0.00	0.00	0.00	0.00	0.00	
Nitrogen, Total	kg/day	17.7		Comp. Do	3.487		3.984		2.669		3.556		1.833		4.089		6.169		4.269		2.641		2.630	1	2.131		2.468		
Nitrogen, Total	lbs/day	38.9			7.67		8.76		5.87	-	7.82		4.03		9.00		13.57		9,39		5.81		5.79		4.69		5.43		0 0
Oil & Grease, Total	mg/L	10	15	0.000000	0.59	1.26	0.75	1.6	1.09	2.86	0.81	2.0	0,116	0.467	0.28	0.67	0.15	0.40	0.27	0.67	0.213	0.667	0.25	0.800	0.15	0.4	0.186	0.733	0 0
Organics, Total Toxic (TTO)	mg/L	10	15	1.0	0.00	0.062	0.10				1								2							1		1	0
	mg/L	-	and a second	1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Palladium, Total	SU	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1000	6.0-9.0	7.9	8.7	8.2	8.9	87	9.0	8.1	9.1	7.9	8,7	8.0	9.0	7.5	9.1	8.4	8,9	8.4	8,9	8.2	8.8	8.0	8.9	8.4	8,9	0 0
pH, Day of Sampling	SU	-		6.0-9.0	7.7	8.7	8.2	8.9	8.4	9,1	8.1	9.1	7.8	8.8	2.8	9.0	7.3	9.1	7.7	8,9	8.2	8,9	8.2	8.9	8.0	8.9	7.9	8.9	0 0
pH, Continuous	g/dav	27	54	0.0-9.0	3.0	4.7	0.0	0.0	3.0	5.3	2.9	4.9	3.1	5.1	4.0	6.1	9.2	19.5	17.8	37.5	5.0	14.7	8.5	16	5.7	9.6	7.0	13.2	0 0
Silver, Total	a contract			-	12	20	0.0	0.0	4	20	12	20	12	20	12	20	27	60	56	123	20	59	35	67	22	35	27	48	0 0
Silver, Total	µg/L	100	430		2.0	4.0	2.5	4.0	1.2	2.0	4.0	7.0	0.3	1.0	0.3	1.0	1.8	3.0	3.3	6.0	3.0	6.0	2.8	3.0	2.0	3.0	4.2	6.0	0 0
Solids, Total Suspended	mg/L	20			A	0.08	0.08	0.08	0.05	0.05	0.06	0.06	0.16	0.16	0.05	0.05	0.07	0.09	0.07	0.07	0.06	0.06	0.03	0.03	0.03	0.03	0.09	0.09	
Surfactants (MBAS)	mg/L	-			0.07		-		0.05	0.05	0.06	0.08	0.087	0.16	0.05	0.34	0.07	0.38	0.047	0.07	0.086	0.20	0.265	0.33	0.03	0.05	0.22	0.26	0 0
Tin, Total	mg/L	2.0	4.0	all in amount of	0.13	0.18	0.202	0.28					0.087	0.14	0.15	0.0	3.20	3.80	8.2	16.9	6.4	7.8	5.3	6.8	6.3	10.2	4.1	8.9	0 0
Zinc, Total	g/day	28	55		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	3.20		25		26.2		22	30	25	40	4.	40	0 0
Zinc, Total	ug/L	1000	2000		0	0	0	0	0	0	0	0	0	0	0	0	9	10	25	50	26.2	30	22	30	25	40	18	40	

		5	
		-18	
- 60 m Will	9 H		

PARAMETER	UNITS		/Time- dLimits	Instantane ous Limits	J	AN	F	EB	M	AR	AI	PR	M	۹Y	IL	UN	JI	JL	AI	IJG	SI	EP	0	ст	NC	ov	DI	EC	LTIONS OF ERAGE TLY LIMIT	TRONS OF NUM DAALY DAALY
		Average Monthly	Maximum Daily	ous cirints	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOLU	VIOLA								
Aluminum, Total	ug/L	2000	4000	A CONTRACT	7.5	30	0	0	4	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.0	20	0	0	0	0
BOD<	kg/day	42.7		20.000	3.93	5.32	5,12	6.96	3.28	3.31	7.73	7.73	9.03	9.03	2.7	2.7	14.8	14.8	8.34	14.2	11.2	11.2	6.34	7.48	7.09	7.09	3.90	3.90	0	0
Cadmium, Total	g/day	23	46	V	0.0	0.0	0.0	0.0	0.00	0.00			0.00	0.00			0.00	0.00			0.00	0.00	0.00	0.00					0	0
Cadmium, Total	µg/L	100	500	Call Arrows	0	0	0	0	0.00	0.00			0.00	0.00			0	0			0.00	0.00	0.00	0.00					0	0
Chlorine, Total Residual	ug/L	115	232	She wat	20.2	23	19.7	27	19.4	25	18.0	25	26.5	30	20.2	27	21	25	15	18	27	37	19,5	25	20	25	20	25	0	0
Chloroform	µg/L	-		S. Internation	47.9	75.5	35.1	35.2	27.9	33	69.4	69.4	40	40	112	112	59	59	64.7	87	88.4	88,4	41,3	41.2	56.9	56.9	80	80	0.0	1.1.1
Chromium, Total	ug/L	1000	2000		0	0	1.25	5	3.4	6	0	0	0	0	3	6	1	5	3	8	5	5	1.25	5	30	60	20	43	0	0
Copper, Total	g/day	228	457	Durphon 21	89	106	165	276	147	218	188	317	77	122	125	271	144	245	69	110	51	92	119	185	118	287	53	67	0	0
Copper, Total	ug/L	474	876	1.2	209	274	317	518	297	468	348	538	144	245	202	403	235	395	101	163	189	256	186	278	186	401	102	118	0	0
Cyanide, Free	mg/L	0.1	0.2	212.00	0.02	0.03	0.04	0.05	0.004	0.01	0.03	0.10	0.02	0.04	0.03	0.05	0.00	0.00	0.01	0.01	0.003	0.010	0.010	0.030	0.000	0.010	0.010	0.010	0	0
Cvanide, Total	g/day	193	386	A+***	28	37	46	63	9	15	66	223	28	49	26	37	1.6	6.2	8	14	6	7	15	47	11	20	3.8	10.4	0	0
Cvanide, Total	ug/L	220	400	1200	60	90	80	110	20	30	120	400	50	90	50	80	2.5	10	10	20	10	10	20	70	20	40	10	20	0	0
Duration of Daily Discharge	hr/day					24		24		24		24		24		24		24		24		24	1	24		24		24		
Flow Rate, Average Dally	pqp	330,000		and the state	116,681		129,031		128,671		130.675		113,093		144,787		158,134		169,430		146,506		154.411		144,108		119,021		0	0
Flow, Day of Sampling	bap		400,000			130,776		152,047		142,968		155,820		161,921		177,967		172,003		199,418		173,196		178,015		189,002		169,291		
Flow, Maximum During 24 Hours	pdp	-	400,000	12.00		172,824		178,860		194,618		175,975		175,874		226,858		237,355		269,018		213,026	Q 1	255,257		214,831		180,410	1.1.1	-
Fluoride, Total	ma/L	20	30	0.110	2.83	5.6	1.90	3.1	1.38	1.8	2.82	5.30	2.22	2.88	1.62	2.74	10.78	35.50	3.25	5.10	3.73	10.00	1.73	2.90	1.32	2.00	1.70	3.4	0	0
Gold, Total	mg/L	0.1	0.5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Indium, Total	ma/L		-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
Iron, Total	mg/L	3	5	1	0.031	0,050	0.021	0.032	0.045	0.053	0.021	0.033	0.023	0.030	0.035	0.050	0.026	0.060	0.03	0.05	0.047	0.060	0.040	0.040	0.04	0.05	0.040	0.060	0	0
Lead, Total	g/day	7	13	12.11	1,7	4.4	1.2	4.8	4.2	6.6	0.8	3.3	1.2	4.9	4.8	8.1	3.7	10.6	0.0	0.0	6.3	17.8	6.6	18.0	6.0	24.3	0.9	3.5	0	0
Lead, Total	ug/L	16	48		4	9	2	9	8	13	1	7	2	9	9	15	6	17	0	0	11	27	10.2	27	8.8	34	2.0	8	0	0
Nickel, Total	ug/L	653	1210	and the second of	420	630	320	360	550	730	379	475	386	520	400	550	480	580	370	503	459	496	601	714	470	640	455	520	0	0
Nickel, Total	g/day	442	887	120-2-1	177	223	172	202	277	340	206	280	213	284	241	370	300	377	252	341	272	325	379	427	294	457	239	333	0	0
Nitrogen, Ammonia	mg/L	10	20	107 -07	2.32	3.50	2.9	3.5	3,18	6.50	2.82	5.0	4.30	7.40	3.1	5.9	3.62	6.6	2.6	5.2	2.4	3.9	1.21	1.8	1.62	2.1	1.85	3.2	0	0
Nitrogen, Kjeldahl	mg/L		1	GEORE LT	5.85	7.8	5.8	7.2	7.60	9.0	6.35	9.0	6.25	10.00	5.40	7.80	7.95	11.8	6.24	8.6	4.75	7.40	3.34	4.80	4.08	5.2	4.50	6.40		
Nitrogen, Nitrate	mg/L			Rest He	4.28	7.21	2.07	3.64	3.56	4.48	5.4	8.9	5.9	9.4	3.93	7.04	8.99	21.69	3.84	5.8	4.05	11.00	2.37	4.25	3.77	8.70	2.16	3.96		-
Nitrogen, Nitrite	mg/L		-	-	0.21	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.11	0.00	0.00	0.00	0.00	0.04	0.18	0.00	0.00	0.00	0.00	0.02	0.11	0.00	0.00		
Nitrogen, Total	kg/dav		1.1.1.1.1.1.1		4.41		4.17		5.57		6.37		6.75		5.56		10.35		6.91		5.19		3.59		4.61		3.62		1	
Nitrogen, Total	lbs/day	Sec.	TO CHARTE	40 - 23	9.70		9.17		12.25		14.01		14.85		12.23		22.77		15.20	0	11.42		7.90		10.14		7.96		0	0
Nitrogen, Total	mg/L	Cond Ma	120.1221	and the second second	10.34		7.82		11.16		11.75		12.18		9.33		16.94		10.12		8.80		5.71		7,87		6.66			
Oil & Grease, Total	mg/L	10	15	ALC COL	0.00	0.00	0.00	0.0	0.41	0.73	0.90	1.4	0.65	1,20	0.35	0.73	1.30	1.87	1.02	1.80	0.98	1.8	0.77	2.267	1.62	2.1	0.430	1.00	0	0
Organics, Total Toxic (TTO)	mg/L	8.000		1.0		0.0996		0.0428		0.0228								0.0509												0
Palladium, Total	mg/L				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	- 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.1	
pH, Day of Sampling	SU	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A. C. M.S.	6.0-9.0	8.6	8.8	8.3	8.9	7.6	8.8	7.4	9.0	8.0	8.7	7.5	8.9	7.9	8.9	7.7	8.9	8.2	9.0	8.3	8.8	8.2	9.0	8.3	8.8	0	0
pH, Continuous	SU	1.	Decision	6.0-9.0	7.0	8.9	7.5	8.9	7.6	8.8	7.4	9.0	8.0	8.8	7.5	8.9	7.9	8.9	7.7	8.9	8.0	9.0	8.2	8.9	8.2	9.0	8.0	8.9	0	0
Silver, Total	g/day	27	54		40	87	27	56	20	35	34	54	50	70	44	69	37	65	22	32	21	26	23	47	24	49	14	21	0	0
Silver, Total	µg/L	100	430	100000	90.5	189	51.7	106	39.6	68	61	91	91	128	82	149	59	104	32	47	35	40	36	70	38	69	26	32	0	0
Solids, Total Suspended	ma/L	20	30	in the second	3.5	9.0	1.8	2.0	4.4	7.0	4.3	8.0	1.3	2.0	2.5	3.0	3.8	4.0	4.0	6.0	4.5	9.0	2.5	4.0	3.8	6.0	2.5	5.0	0	0
Surfactants (MBAS)	mg/L		11	12.760	0.05	0.08	0.06	0.06	0.05	0.05	0.08	0.08	0.12	0.12	0.00	0.00	0.03	0.03	0.06	0.06	0.06	0.06	0.05	0.06	0.03	0.03	0.03	0.03	1.00	
Tin, Total	mg/L	2.0	4.0		0.11	0.17	0.091	0.12	0.081	0.124	0.045	0.055	0.045	0.11	0.15	0.26	0.09	0.18	0.052	0.10	0.065	0.90	0.070	0.12	0.08	0.11	0.09	0.11	0	0
Zinc. Total	g/day	28	55		9	13	12	24	25	34	12	18	15	28	13	21	21	40	18	24	26	30	26	36	22	55	16	26	0	0
Zinc, Total	ug/L	1000	2000	the second second	21.5	26	21.2	45	49.8	73	23	39	28	56	21	31	34	64	27	36	44	61	41	55	34	77	31	53	0	0

	12.5		Time- Limits	Instantane	J	AN	FI	ЕB	M	AR	A	PR	M	AY	JI	UN	JI	JL	A	UG	s	EP	0	ст	N	ov	DI	EC	NS OF KIS OF LINUT	NS OF DARY
PARAMETER	UNITS	Average	Maximum Dally	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOLATIO AVERA MOHTLY	VIOLATIO MAXIMUM LENT								
Aluminum, Total	ug/L	2000	4000	Sec. 6-3	5.0	20	0	0	6	30	15	60	6	30	0	0	30	40	18	30	10	20	0	0	10	50	0	0	0	0
BOD.	kg/day	42.7		1.1.5	5.08	5.08	7.93	7.93	6.47	6.47	10.5	10.5	1.53	1.53	3.6	3.6	8.2	9.0	4.43	4.43	16.8	16.8	14.62	14.62	0.00	0.00	5.31	5.31	0	0
Cadmium. Total	c/day	23	46		0.0	0.0							E			/	0.0	0.0											0	0
Cadmium, Total	ug/L	100	500		0	0											0	0									S		0	0
Chlorine, Total Residual	µg/L	115	232		20.7	25	12	13	19	23	18	23	17	20	18	20	21	27	18	23	18	22	16	27	23	27	18	28	0	0
Chloroform	ug/L	_		and Theorem	94.6	94.6	95.9	95.9	92.2	92.2	95.0	95.0	149	149	46	46	77	83	34.7	34.7	86.2	86.2	46.1	46.1	36.1	36.1	102	102		
Chromium, Total	цqЛ	1000	2000	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	6	12	1.50	6	0	0	3.5	14	7.6	20	4	9	3	5	1	5	1	7	0	0	0	0	1.5	6	0	0
Copper, Total	g/day	228	457	192-210	73	111	62	88	48	60	68	83	50.8	75	64	70	126	156	88	106	80	89	58	76	109	131	72	116	0	0
Copper, Total	ud/L	474	876	145.000	139	189	99	120	81	105	106	142	95	138	119	138	240	287	157	183	126	162	107	132	55	71	119	163	0	0
Cvanide, Free	mg/L	0.1	0.2		0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0	0
Cyanide, Total	g/day	193	386	the second	1.2	4.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	14	2	6	0	0	7	28	0	0
Cvanide, Total	µg/L	220	400	10.11	2	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	20	4	10	0	0	10	50	0	0
Duration of Daily Discharge	hr/day		NU	12.11.23		24		24		24		24		24		24	1	24		24		24		24		24		24		
Flow Rate, Average Dally	gpd	330,000	in the second	15.33.12	137,129		150,842		152,321		133,596		119,001		126,652		126,392		132,917		143,002		141.507		137,759		114,822		0	0
Flow, Day of Sampling	gpd	12 1-10-	400,000	12.5.12		156,542		193,519		185,904		189,701		161,544		179,812		149,716		165,846		187,731		164,392		148,195		188,285	and the second	
Flow, Maximum During 24 Hours	gpd	Sandilla	400,000	and the second second		206,242		215,942		201,866		206,614		162,585		179,812	· · · · · · · · · · · · · · · · · · ·	204,938		223,090		222,679		172,998		197,621		188,285		
Fluoride, Total	mg/L	20	30		5.25	12.5	2.09	3.0	3.20	5.0	2.70	3.70	2.77	3.32	3.54	5.30	2.43	3.20	1.67	2.50	1.74	2.70	3.29	6.00	2.67	2.90	3.18	4.42	0	0
Gold, Total	mg/L	0.1	0.5	0.02 2000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Indium, Total	mg/L		-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.1	
Iron, Total	mg/L	3	5	1000	0.035	0.060	0.017	0.030	0.020	0.030	0.038	0.050	0.054	0.13	0.047	0.060	0.053	0.060	0.048	0.06	0.052	0.080	0.026	0.050	0.04	0.09	0.05	0.13	0	0
Lead, Total	g/day	7	13		4.0	10.6	4.1	7.3	0.6	3.1	3.1	4.7	1.1	2.7	5.2	8.7	2.1	3.6	3.6	5.0	0.8	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0	0
Lead, Total	µg/L	16	48		7	18	7	14	1.2	6	5	8	2	5	10	18	4	8	6.4	8	1.5	6.0	0.0	0.0	0.0	0.0	0.0	0	0	0
Nickel, Total	µg/L	653	1210		271	410	168	290	78	120	118	140	120	175	136	164	87	98	95	110	70	120	84	122	97	131	94	114	0	0
Nickel, Total	g/day	442	887	1.000	138	220	107	198	47	70	76	83	65	95	74	94	45	56	53	60	43	63	46	70	49	73	56	81	0	0
Nitrogen, Ammonia	mg/L	10	20	200 20	3.73	5.40	1.92	2.5	2.84	6.00	2.77	3.8	3.70	4.30	2.4	3.8	2.77	3.4	2.6	4.2	2.6	2.8	3.04	5.0	2.90	3.2	2.70	5.0	0	0
Nitrogen, Kjeldahl	mg/L		1.22	Contract (8.50	10.0	6.3	9.4	6.52	6.8	8.05	10.6	10.48	15.80	5.75	8.40	6.73	9.2	5.56	7.4	5.80	6.60	7.76	10.00	7.20	8.6	7.70	9,60		128
Nitrogen, Nitrate	mg/L		-		6.40	15.45	4.40	7.17	5.36	6.64	5.2	7.3	3.2	3.9	5.26	6.16	5.11	9.65	3,00	6.95	3.84	7.23	4.48	11.01	6.45	11.73	5.47	6.81		
Nitrogen, Nitrite	mg/L			Ser Mark	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.25	0.00	0.00	0.03	0.10	0.00	0.00		
Nitrogen, Total	kg/day	Stand State	Second?	1022	7.43		6.61		6.97		8.66		7.40		6.043		6.110	-	4.799	-	6.331		6.523		6.84		7.87			
Nitrogen, Total	lbs/day	5.2	1.41	Den Stat	16.35		14.54		15.33		19.05		16.28		13.29		13.44		10.56		13.93		14.35		15.05		17.31		0	0
Nitrogen, Total	mg/L	1.444.88	Sec. 1	1.1.1.1	14.90		10.65		11.88		13.25		13.72		11.01		11.84		8.56		9.70		12,24		13.68		13.17			
Oil & Grease, Total	mg/L	10	15	1.00	0.78	1.20	0.93	1.2	0.51	1.40	0.42	0.93	0.77	1.92	0.42	0.67	0.13	0.20	0.41	1.20	1.08	2.2	1.27	1.667	1.1	2.3	1.8	2.7	0	0
Organics, Total Toxic (TTO)	mg/L		1000	1.0		0.0946						-		1	-						-			0.0527	-				1	0
Palladium, Total	mg/L	1.	1.2.2.2	and the second second second	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
pH, Day of Sampling	SU		South Co	6.0-9.0	7.4	8.9	7.0	8.6	7.4	8.9	7.5	9.0	7.2	8.9	7.2	8.9	7.3	8.9	6.5	9.0	7.5	9.0	6.5	9.0	7.3	9.0	7.8	9.0	0	0
pH, Continuous	SU	2.	-	6.0-9.0	7.0	8.9	7.0	8.9	7.0	8.9	7.4	9.0	7.0	9.0	7.2	9.0	7.0	9.0	6.5	9.0	7.4	9.0	6.5	9.0	6.5	9.0			0	0
Silver, Total	g/day	27	54		30	58	23	33	8	10	21	36	11	17	13	17	9.9	11	11.3	15.8	12.5	18.6	11.7	26.4	8	11	11	17	0	0
Silver, Total	µg/L	100	430		63	143	37	49	13.4	20	31	55	21	35	22	27	19	24	21	34	20	34	21	46	17	20	19	29	0	0
Solids, Total Suspended	mg/L	20	30	1325	2.8	6.0	2.0	2.0	1.8	4.0	2.3	3.0	2.0	5.0	3.3	6.0	3.7	5.0	3.2	9.0	7.0	11.0	3.2	5.0	6.5	7.0	3.3	4.0	0	0
Surfactants (MBAS)	mg/L		-		0.06	0.06	0.06	0.06	0.03	0.03	0.04	0.04	0.03	0.03	0.05	0.05	0.04	0.06	0.13	0.13	0.04	0.04	0.00	0.00	0.02	0.02	0.06	0.06	1	
Tin, Total	mg/L	2.0	4.0	1 12	0.082	0.11	0.015	0.03	0.026	0.110	0.03	0.04	0.030	0.08	0.04	0,10	0.01	0.03	0.038	0.11	0.000	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0	0
Zinc, Total	g/day	28	55	10000	21	32	18	22	16	20	22	23	16	21	24	27	19	22	23	27	20	24	15	17	19	27	18	26	0	0
Zinc, Total	µg/L	1000	2000	15.0 10.0	44.5	54	29	33	28.2	34	33	40	29	39	44	58	37	38	42	47	32	40	27	33	38	48	30	37	0	0

a 19	п	-11	灁	
1	U		1	

PARAMETER	UNITS		/Time- iLimits	Instantane ous Limits	٦Ļ	AN	FI	ΞB	M	AR	A	PR	M	AY	JI	UN	JI	JL	A	JG	s	EP	0	ст	N	vo	D	EC	TTONS OF ERAGE ILY LEMT	TIONS OF UM DARLY
		Average Monthly	Maximum Daily	ous cirints	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	VIOLAN	VIOLA
Aluminum, Total	µg/L	2000	4000	10 A 10	0.0	0.0	0	0	0	0	30	90	0	0	10	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BODs	kg/day	42.7		a service	5.12	5.12	0.00	0.00	8.31	8.31	10.7	10.7	2.11	2,11	8.1	8.1	10.5	10.5	10.54	10.54	5,0	5.0	15.82	15.82	18.99	18.99	5.97	5.97	0	0
Cadmium, Total	g/day	23	46	(C.S. (1))	0.0	0.0										k	0.0	0.0		· · · · · · · · · · · · · · · · · · ·									0	0
Cadmium, Total	ug/L	100	500	LE EA	0	0							1 1			1	0	0	2			1				10			0	0
Chlorine, Total Residual	ug/L	115	232		20	25	19	22	16	17	20	25	18	23	21	25	14	17	20	23	21	27	17	22	20	23	23	28	0	0
Chioroform	ug/L			-28 C	166	166	102	102	89	89	54.0	54.0	133	133	69	69	16	16	18.2	18.2	61.8	61.8	30.4	30.4	54.0	54.0	96	96		
Chromium, Total	ug/L	1000	2000	Contraction of the second	0	0	1.25	5	6	7	0.0	0	4.0	8	9	16	6	13	0	0	6.5	16	1	6	2	6	2.0	5	0	0
Copper. Total	g/day	228	457		54	75	58	95	69	94	98	160	54	62	81	124	41	62	53	88	36	42	46	63	48	50	31	43	0	0
Copper, Total	ug/L	474	876		98	132	112	157	127	170	166	249	102	112	144	226	78	109	89	132	66	80	82	103	91	114	70	91	0	0
Cyanide, Free	ma/L	0.1	0.2	Sec. Sec.	0.01	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.03	0.00	0.00	0.00	0.01	0.01	0.04	0.00	0.00	0	0
Cyanide, Total	g/day	193	386		11	35	1	4	0	0	0	0	6	12	0	10	4	6	12	40	0	0	5	6	15	43	0	0	0	0
Cvanide, Total	ug/L	220	400	Din 26	10	70	2.5	10	0	0	0	0	10	30	10	20	10	10	20	60	0	0	4	10	30	100	0	0	0	0
Duration of Dally Discharge	hr/day					24		24		24		24		24		24		24		24		24		24		24		24	1.50	
Flow Rate, Average Daily	gpd	330,000	1.1.1.1.1	201200	129,633		116,423		115,907		135,008		117,200		122,446		118.856		131,446		119,148		132,254		127,132	1	88,756		0	0
Flow, Day of Sampling	gpd		400,000			179,304		160,573		169,619		134,513		168,218		196,839		160,757		177.174		158,713		162,938		160.048		126,261		
Flow, Maximum During 24 Hours	bqp	12.000	400,000	15.2718		195,015		198,537		185,251		205,747		178,985		197,621		183,483		183,369		203,300		186,302		172,151		158,333		
Fluoride, Total	mg/L	20	30	al coldo	3.67	5.2	6.91	12.6	1.85	2.7	1.74	3.00	1.42	2.30	1.54	2.20	2.85	4.70	3.87	7.00	4.78	8.00	3.02	3.50	9.77	15.60	2.46	3.90	0	0
Gold, Total	mg/L	0.1	0.5	1125. 1984	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0
Indium. Total	ma/L			Contraction of the	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.1.20	
Iron, Total	mg/L	3	5	ALC: NO	0.000	0.000	0.028	0.030	0.025	0.040	0.035	0.040	0.030	0.05	0.043	0.050	0.037	0.050	0.034	0.05	0.038	0.060	0.042	0.060	0.04	0.05	0.03	0.06	0	0
Lead. Total	g/day	7	13	0.000	0.0	0.0	0.0	0.0	3.0	3.0	4.0	5.0	3.0	3.0	3.0	3.9	0.0	0.0	0.0	0.0	3.0	3.3	2.7	3.0	0.0	0.0	0.0	0.0	0	0
Lead. Total	ug/L	16	48	122-24-2	D	0	0	0	5.0	6.0	7	8	5	5	5	6	0	0	0	0	1.7	7.0	0	0	0	0	0	0	0	0
Nickel, Total	ug/L	653	1210	Sugar	67	100	102	158	138	163	136	175	108	140	113	136	76	103	96	140	69	80	95	124	133	190	95	140	0	0
Nickel, Total	g/day	442	887	I FILL MARK	36	47	50	65	75	91	80	106	57	79	63	74	40	58	57	91	38	49	52	73	70	80	42	54	0	0
Nitrogen, Ammonia	mg/L	10	20	12221011	3.10	4.40	4.00	4.9	4.20	5.50	5.90	7.0	2.40	3.60	3.5	5.0	2.67	3.35	4.4	6.0	5.1	8.5	2.5	3.4	6.30	10.0	5.30	8.0	0	0
Nitrogen, Kjeldahl	mg/L		-		10.88	14.0	8.4	9,8	8.30	9.4	12.25	16.0	8.52	11.00	9.85	14.40	11.87	14.0	14.16	22.0	13.85	17.00	11.72	17.60	17,70	19.8	15.56	18,20		C. 3
Nitrogen, Nitrate	mg/L		-	Seres All	4.57	7.71	2.99	3.74	6.00	9.40	3.3	6.1	5,1	7.6	5.72	12.48	2.67	3.35	3.65	6.17	5,06	8.52	8.44	16.60	7.83	10.67	9.11	18.18		
Nitrogen, Nitrite	mg/L	-		Han See	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.05	0.18		-
Nitrogen, Total	kg/day	1000	14-12 m		8.62		5.75		7.66		9.00	1	7.32		8.60		7.81		10.35		10.39		11.06		13.60		11.23			100
Nitrogen, Total	lbs/day	1.1.28.9	19 11 19		18.96		12.65		16.85		19.80		16.10		18.92		17.18		22.77		22.86		24.33		29.92		24.71		0	0
Nitrogen, Total	mg/L		annon a s	1	15.45		11.39		14,30		15.52		13.69		15.57		14.54		17.81		18.91		20,16		25.53		24.72		1.00	
Oil & Grease, Total	mg/L	10	15		0.90	1.70	1.20	3.2	0.50	0.60	0.88	1.30	0.60	0.87	0.70	1.10	0.84	1.40	0.53	0.80	0.70	0.9	0.57	1.067	1.0	1.8	0.9	2.3	0	0
Organics, Total Toxic (TTO)	mg/L	200000	1000	1.0		0.1660									-			0.0163		-										0
Palladium, Total	mg/L	A 2. M	10. 11	15:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.1.1	
pH, Day of Sampling	SU	Landit .	1.000	6.0-9.0	7.4	9.0	7.8	8.9	6.9	9.0	7.3	9.0	7,4	8.9	7.6	9.0	7.3	8.9	7.9	8.9	8.0	8.9	8.0	8.8	8.0	8.8	7.9	8.7	0	0
pH, Continuous	SU	1000	1000	6.0-9.0	7.4	9.0	7.8	8.9	6.9	9.0	7.3	9.0	7.0	9.0	6.7	9.0	7.3	8.9	7.7	8.9	8.0	9.0	7.1	9.0	7.8	8.9	7.1	9.0	0	0
Silver, Total	g/day	27	54	Det room	21	37	10	12	11	15	16	22	12	16	13	20	7	8	7	10	11	14	12.4	16.6	12	15	11.3	17.6	0	0
Silver, Total	ug/L	100	430	150 3-6	39	75	20	21	21	32	27	34	22	26	22	31	13	16	12	17	20	27	22	32	23	35	25	37	0	0
Solids, Total Suspended	mg/L	20	30	1.2.22	3.4	8.0	2.3	4.0	3.5	5.0	2.0	4.0	2.3	4.0	4.5	7.0	1.7	3.0	1.2	2.0	1.0	2.0	1.4	3.0	5.8	9.0	2.5	5.0	0	0
Surfactants (MBAS)	ma/L			10	0.00	0.00	0.03	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.04	0.04	0.00	0.00	0.08	0.08	1	10000
Tin, Total	ma/L	2.0	4.0	CONTRACTOR OF	0.012	0.06	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.005	0.02	0.012	0.06	0.02	0.06	0.00	0.00	0	0
Zinc. Total	g/day	28	55	1 Contra	13	16	15	24	17	21	17	20	15	17	16	17	11	12	12	14	16	17	20	27	13	17	8	10	0	0
Zinc, Total	ug/L	1000	2000		23	34	30	39	32	35	30	37	27	30	28	30	20	20	20	25	29	36	37	51	26	29	17	21	0	0

004	
7/101	*
<i>X_</i> U7 E	1919

PARAMETER	UNITS		Time- Limits	Instantane ous Limits	Ji	AN	FI	EB	M	AR	A	PR	М	AY	JI	иN	J	UL	A	UG	s	EP	0	ст	N	vc	Di	EC	FIONS OF ERAGE TLY LOAN TIONS OF
		Average Monthly	Maximum Daily		Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOL AV MOH VIOLU
Aluminum, Total	µg/L	2000	4000		0.0	0.0	10	20	0	0	0	0	4	20	10	20													0 0
BOD ₆	kg/day	42.7		China Sha	17.08	17.08	8.92	8.92	2.46	2.46	4.5	4.5	0.00	0.00	1.9	1.9													0 0
Cadmium, Total	g/day	23	46	1	0.0	0.0	· · · · · · · · · · · · · · · · · · ·																	1					0 0
Cadmium, Total	µqЛ	100	500	1240.0	0	0											-												0 0
Chlorine, Total Residual	ug/L	115	232	0.000	23	27	21	25	22	23	21	27	21	28	4	10													0 0
Chloroform	µg/L		_	2200 A	75.5	75.5	43	43	34	34	24.4	24.4	26	26	62	62													100 11
Chromium, Total	ug/L	1000	2000	Sec. 20	2	8	3	10	3	7	0.0	0	2.0	5	0	0													0 0
Copper, Total	g/day	228	457	1411020	29	32	60	92	55	77	50	80	59	78	38	51			1 12 12								-		0 0
Copper, Total	ug/L	474	876	- 1 C	60	75	99	144	100	157	90	119	100	138	72	91	-												0 0
Cvanide, Free	mg/L	0.1	0.2	A Street	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0,02			1										0 0
Cvanide, Total	g/day	193	386		5	10	5	6	0	0	0	0	0	0	14	42										-			0 0
Cyanide, Total	μg/L	220	400	1000	10	20	2.5	10	0	0	0	0	0	0	26	90													0 0
Duration of Daily Discharge	hr/day		-			24		24		24		24		24	1	24	1												
Flow Rate, Average Daily	gpd	330,000			121.721	j (133,493		135,289		129,638		134,727		113,689)			1					0 0
Flow, Day of Sampling	gpd	12-00	400,000	860 O X 1		153,931		170,484		165,786		178,390		198,816		149,362													
Flow, Maximum During 24 Hours	gpd	5-5-0	400.000			175,691		170,484		198,820		184,815		205,470	-	158,893								2					
Fluoride, Total	mg/L	20	30	1211828	2.99	7.6	1.86	3.3	2.35	2.9	2.44	5.35	2.58	3.40	1.97	2,74	-										2		0 0
Gold, Total	mg/L	0.1	0.5	CHARLES SER	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00													0 0
Indium, Total	mg/L	-			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			_										
Iron, Total	mg/L	3	5	1421 193	0.040	0.050	0.047	0.090	0.035	0.060	0.040	0.050	0.032	0.05	0.020	0.050									1			[]	0 0
Lead, Total	g/day	7	13		4.0	8.1	5.0	11.0	0.0	0.0	3.0	5.4	0.0	0.0	3.0	4.5									1				0 0
Lead, Total	µg/L	16	48	Arres 1	8	19	9	22	0.0	0.0	2	8	0	0	6	9								-					0 0
Nickel, Total	μg/L	653	1210	122.	103	150	106	126	118	127	141	185	125	146	74	97													0 0
Nickel, Total	g/day	442	887	-	50	76	62	74	67	74	80	124	75	90	39	52													0 0
Nitrogen, Ammonia	mg/L	10	20	in the second	3.70	6.00	4.00	7.4	3.80	6.00	2.70	3.4	3.50	5.00	5.2	8.6	-							1					0 0
Nitrogen, Kjeldahl	mg/L				8.56	12.0	7.6	15.8	10.05	17.8	6,40	8.0	7.32	10.80	10.25	15.80		1				-							
Nitrogen, Nitrate	mg/L				3.80	5.89	7.51	14.19	5.34	8.86	5.2	9.4	3.4	6.5	8.38	19.94		1											
Nitrogen, Nitrite	mg/L			100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	-		-			_		-				
Nitrogen, Total	kg/day	1		of successions	6.17		8.95		9.10		6.53		6.34	-	9.49		-						-						
Nitrogen, Total	lbs/day		10.50	and the second second	13.57		19.69		20.02		14.37		13.95		20.88	1							1						0 0
Nitrogen, Total	mg/L	a Corr		12	12.36		15.06		15.39		11.55		10.67		18.63		-								-				
Oil & Grease, Total	mg/L	10	15	a solution of	0.48	0.60	0.35	0.4	0.42	0.67	0,40	0.80	0.89	1.47	0.55	1.00													0 0
Organics, Total Toxic (TTO)	mg/L	1.4	1000	1.0		-							0.00	-		0.000									-		<u> </u>		0
Palladium, Total	mg/L	1000	Frank Hel		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-												
pH, Day of Sampling	SU		12000	6.0-9.0	8.0	9.0	7.8	8.7	8.0	8.7	8.0	8.8	8.0	8.9	7.8	9.0	-	-											0 0
pH. Continuous	SU	21.24		6.0-9.0	7.9	9.0	7.0	8.9	7.8	8.9	7.3	8.8	7.9	9.0	7.8	9.0			-	-				-	-				0 0
Silver, Total	g/day	27	54	10 10 m	7	13	7	9	10	13	5	10	11	21	11	21				-							-		0 0
Silver, Total	µg/L	100	430	Sector and	14	22	12	17	18	21	9	17	19	34	23	45								-	-				0 0
Solids, Total Suspended	mg/L	20	30	11.015	3.0	6.0	1.3	2.0	1.8	3.0	1.8	3.0	1.4	3.0	1.8	3.0													0 0
Surfactants (MBAS)	mg/L				0.05	0.05	0.00	0.00	0.08	0.08	0.06	0.06	0.00	0.00	0.00	0,00								-	-				
Tin, Total	mg/L	2.0	4.0	243-22	0.040	0.02	0.045	0.12	0.00	0.00	0.03	0.06	0.02	0.06	0.06	0.22				-			4						0 0
Zinc, Total	g/day	28	55	100	8	11	12	23	18	22	11	19	17	28	9	19						-	-						0 0
Zinc, Total	µg/L	1000	2000	10 20	16	23	21	36	32	44	20	31	27	37	18	34													0 0

DSN 001A : PRETREATED CYANIDE-BEARING WASTEWATERS

													2	8008															
			/Time- Limits	Instantane	J	AN	F	EB	MA	RCH	AP	RIL	M	AY	JL	JNE	JU	JLY	AUG	GUST	SE	EPT	0	ст	N	ov	DI	EC	ONS OF AGE FLIMT ONS OF MUM
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	VIOLATI AVER MONTL																						
Cyanide, Amenable	mg/L	0.32	0.86		0.039	0.082	0.039	0.082	0.054	0.103	0.060	0.103	0.025	0.06	0.036	0.048	0.044	0.05	0.060	0.108	0.08	0.10	0.06	0.10	0.05	0.05	0.06	0.10	0 0

													2	2009																
the Los M			/Time- dLimits	Instantane		IAN	F	EB	MA	RCH	AF	PRIL	M	AY	JL	INE	JL	JLY	AUG	BUST	SE	EPT	0	ст	N	ov	D	EC	ONS OF AGE	ONS OF LUNT
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly		Average Monthly	Maximum Dally	Average Monthly	Maximum Dally	Average Monthly	Maximum Dally	Average Monthly		Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	VIOLATI	NIOLATH
Cyanide, Amenable	ma/L	0.32	0.86	1.4.4	0.04	0.04	0.05	0.08	0.041	0.063	0.05	0.06	0.04	0.05	0.07	0.08	0.06	0.08	0.052	0.073	0.07	0.08	0.05	0.062	0.061	0.088	0.03	0.040	0	0

													1	2010															
	20.2		/Time- dLimits	Instantane	J	AN	F	EB	MA	RCH	AF	RIL	м	AY	JL	JNE	JL	JLY	AUC	SUST	SE	PT	0	ст	N	ov	D	EC	AGE AGE LUMT DNS OF AUM
Parameter -	Units	Average Monthly		ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly		Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOLATIC AVER AVER AVELATIC VIOLATIC MAXE DAILY
Cyanide, Amenable	mg/L	0.32	0.86	1.20	0.045	0.058	0.0375	0.047	0.0375	0.047	0.0557	0.088	0.0666	0.088	0.0388	0.055	0.0323	0.042	0.0582	0.077	0.061	0.075	0.026	0.032	0.0708	0.11	0.0637	0.087	0 0

													1	2011																
			//Time- dLimits	Instantane	١L	AN	F	EB	MAR	RCH	AP	RIL	M	AY	JU	NE	JL	JLY	AUG	UST	SE	PT	0	ст	N	ov	D	EC	ONS OF AGE	ONS OF AUM LIMT
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly		Average Monthly		Average Monthly	Maximum Daily	Average Monthly		Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	AVER	NIOLATH								
Cyanide, Amenable	mg/L	0.32	0.86		0.0050	0.025	0.07275	0.097	0.07625	0.090	0.0655	0.077	0.0512	0.083	0.048	0.062	0.047	0.062	0.0374	0.050	0.04975	0.067	0.07225	0.137	0.0455	0.057	0.0483	0.010	0	0

														2012																
			v/Time- dLimits	Instantane		AN	F	EB	MA	RCH	AP	RIL	M	AY	JL	INE	JU	ILY	AUG	SUST	SE	PT	0	ст	N	ov	D	EC	AGE AGE	DNS OF AUM LINET
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly		Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	AVER	NIOLATH																
Cyanide, Amenable	mg/L	0.32	0.86	i sinari	0.0314	0.040	0.0282	0.043	0.051	0.068	0.0632	0.083	0.029	0.043	0.033	0.067	0.027	0.033	0.0385	0.050	0.03	0.052	0.0606	0.073	0.06	0.093	0.0980	0.102	0	0

													2	2013				SiC.											
1	122		/Time- dLimits	Instantane	Ji	AN	F	EB	MAI	RCH	AP	RIL	м	AY	JU	INE .	JL	ILY	AUG	SUST	SE	PT	0	ст	N	vc	D	EC	AGE AGE LUMT AUM AUM
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly		Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly		Average Monthly		Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	MOLATIC AVER MONTLY MOLATIC MAXII MAXII								
Cyanide, Amenable	mg/L	0.32	0.86	64/22	0.0612	0.080	0.0760	0.100	0.072	0.110	0.0496	0.068	0.055	0.115	0.050	0.107	0.031	0.035	0.0700	0.118	0.08	0.137	0.0617	0.090	0.03	0.055	0.0350	0.085	0 0

														2014																
Descenter	Units	Base	v/Time- dLimits	Instantane		AN	F	EB	MA	RCH	AF	RIL	M	AY	JL	JNE	JL	JLY	AUC	SUST	SE	EPT	0	ст	N	ov	D	EC	TIONS	TIMUN
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly		Average Monthly	Maximum Daily	VIOLA OF AV	VIOLA OF MM														
Cyanide, Amenable	mg/L	0.32	0.86		0.0350	0.060	0.0870	0.120	0.042	0.090	0.1050	0.210	0.045	0.140	0.037	0.060	0.012	0.040	0.0270	0.040	0.02	0.060	0.0125	0.020	0.03	0.060	0.0040	0.010	0	0

							3							010					100										
Parameter	Unite		/Time- dLimits	Instantane	J	AN	FE	B	MAI	RCH	AP	RIL	м	AY	JL	JNE	JL	ιLY	AUG	SUST	SE	EPT	0	ст	N	ov	DE	EC	TONS ERAGE Y LINET TONS TONS
Parameter	Onits	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	VIOLA OF AVI VIOLA OF MA																						
Cyanide, Amenable	mg/L	0.32	0.86	Contract.	0.04	0.06	0.0325	0.050	0.004	0.010	0.0075	0.020	0.013	0.020	0.005	0.010	0.000	0.000	0.002	0.010	0.005	0.020	0.0025	0.010	0.00	0.000	0.0000	0.000	0 0

														2016															
Parameter	Units		/Time- dLimits	Instantane	J	AN	F	EB	МА	RCH	AF	RIL	N	AY	JL	INE	JI	JLY	AUG	UST	SE	PT	0	ст	N	ov	D	EC	TIONS ERAGE Y LBAT TIONS MUAUM
Parameter	onits	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Dally	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	VIOLA OF AVI MONTL VIOLA										
Cyanide, Amenable	mg/L	0.32	0.86	10.2130	0.0000	0.000	0.0000	0.000	0.004	0.020	0.0000	0.000	0.000	0.000	0.000	0.000	0.007	0.010	0.0040	0.020	0.00	0.000	0.0000	0.000	0.01	0.020	0.0230	0.070	0 0

2015

ര	n	-1	7	
2	U		,	

Desameter	Unite		/Time- dLimits	Instantane	Ji	AN	FI	EB	MAI	RCH	A COLORADO	RIL	- taken and	AY	1.1.1.1	INE	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	JLY	1	GUST	SE		1	ст		ov	1920	EC	ATIONS ERAGE Y LIMIT (TONS XIMUM XIMUM
Parameter	Units	Average Monthly	Maximum Daily	ous Limits	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	Average Monthly	Maximum Dally	Average Monthly	Maximum Daily	VIOLA DF AV NOLA OF MA								
Cyanide, Amenable	mg/L	0.32	0,86	1.22.02	0.0000	0.000	0.0100	0.020	0.000	0.010	0.0000	0.000	0.000	0.020	0.000	0.010	0.000	0.000	0.0120	0.060	0.00	0.000	0.0020	0.010	0.02	0.070	0.0125	0.040	0 0

													2	018																
December	Units	Based		Instantane		AN	FI	EB	MA	RCH	AP	RIL	M.	AY	JU	INE	JU	JLY	AUC	BUST	SE	EPT	0	ст	N	ov	D	EC	edence	edence
Parameter	Units	Average Monthly	Maximum Dally	ous Limits	Average Monthly	Maximum Daily	Exce	Exce																						
Cyanide, Amenable	mg/L	0.32	0.86	0.000	0.0226	0.050	0.0100	0.030	0.008	0.010	0.0000	0.000	0.000	0.000	0.013	0.050		-						12					0	0

ATTACHMENT 10 TECHNOLOGY-BASED LIMITS

DSN 001-1 WASTESTREAMS	Average Process Wastewater Flow (gpd)	Average Non-Process Wastewater Flow (gpd)	Average Cyanide- Bearing Wastewater Flow (gpd)
Treated metal finishing and cleaning rinsewaters; Laboratory wastewater; Water Treatment Wastewater; Drum rinsing wastewaters; Tumbling wastewaters; Groundwater remediation wastewater; Floorwash water/Building maintenance wastewater; Air scrubber wastewater	159,847		
Boiler blowdown; Air compressor condensate/blowdown; Fire suppression test water		153	
Cyanide-bearing wastewaters			49,242
	159,847	153	49,242

PROCESS FLOW: TOTAL FLOW:			159,847 160,000	1.1.1	99.90%					100,011		10,212		÷
	FL	ows	40 CFF	R 433.16	The second s	ISTED 8 433.16		ISTED 8 433.16	RCSA 22	a-430-4(s)		ISTED a-430-4(s)	Contractor 2000	ISTED a-430-4(s)
PARAMETER	PROCESS WASTE- WATERS	TOTAL FLOW (FROCESS + NON- PROCESS FLOWS)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (g/day)	MAXIMUM DAILY LIMIT (g/day)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (g/day)	MAXIMUM DAILY LIMII (g/day)
Aluminum, Total	159,847	160,000		CONTRACTOR OF AN AD				Com In College Company	2.0	4.0	2.0	4.0	1211	2422
Cadmium, Total	159,847	160,000	0.07	0.11	0.07	0.11	42	67	0.07	0.11	0.07	0.11	42	67
Chromium, Total	159,847	160,000	1.71	2.77	1.71	2.77	1035	1677	1.0	2.0	1.0	2.0	605	1211
Copper, Total	159,847	160,000	2.07	3.38	2.07	3,38	1253	2047	1.0	2.0	1.0	2.0	605	1211
Cyanide, Amenable	159,847	160,000							0.1	0.2	0.1	0.2	61	121
Cyanide, Total*	49,242	160,000	0.65	1.20	0.20	0.37	121	224	0,65	1.2	0.20	0.37	121	224
Fluoride	159,847	160,000				-			20	30	20	30	12110	18164
Gold, Total	159,847	160,000							0.1	0.5	0.1	0.5	61	303
Iron, Total	159,847	160,000							3.0	5.0	3.0	5.0	1816	3027
Lead, Total	159,847	160,000	0.43	0.69	0.43	0.69	260	418	0.1	0.5	0.1	0.5	61	303
Nickel, Total	159,847	160,000	2.38	3.98	2.38	3.98	1441	2410	1.0	2.0	1.0	2.0	605	1211
Oil & Grease	159,847	160,000	26	52	26	52	15743	31485	10		10		6055	
pН	159,847	160,000	6.0	9.0										
Silver, Total	159,847	160,000	0.24	0.43	0.24	0.43	145	260	0.1	0.5	0.1	0.5	61	303
Tin, Total	159,847	160,000							2.0	4.0	2.0	4.0	1211	2422
Total Suspended Solids	159,847	160,000	31	60	31	60	18770	36329	20	30	20	30	12110	18164
πо	159,847	160,000		2.13		2.13								
Zinc, Total	159,847	160,000	1.48	2.61	1.48	2.61	896	1580	1.0	2.0	1.0	2.0	605	1211

If technology-based limit is met end of pipe, and not internally. (Guidance Manual for Electroplating and Matal Finishing Pretreab

	DSN 001-1 WASTESTREAMS	Average Process Wastewater Flow (gpd)	Average Non-Process Wastewater Flow (gpd)	Average Cyanlde- Bearing Wastewater Flow (gpd)
Treated metal finishing and cleaning rinsev Floorwash water/Building maintenance wa	vaters; Laboratory wastewater; Drum rinsing wastewaters; Tumbling wastewaters; Groundwater remediation wastewater; stewater: Air scrubber wastewater	329,685		
-	ate/blowdown; Fire suppression test water		315	
Cyanide-bearing wastewaters				130,000
of allow your and the contractor		329,685	315	130,000
PROCESS FLOW:	329,685 gpd 99.90%			

PROCESS FLOW: TOTAL FLOW: 329,685 gpd 330,000 gpd

	FL	ows	40 CFF	R 433.16		ISTED R 433.16	The second second second second second	USTED R 433.16	RCSA 22	a-430-4(s)		JSTED a-430-4(s)	and a second	JSTED a-430-4(s)
PARAMETER	PROCESS WASTE- WATERS	TOTAL FLOW (PROCESS + NOH- PROCESS FLOWS)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (9/day)	MAXIMUM DAILY LIMIT (g/dəy)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (mg/L)	MAXIMUM DAILY LIMIT (mg/L)	AVERAGE MONTHLY LIMIT (g/day)	MAXIMUM DAILY LIMIT (g/day)
Aluminum, Total	329,685	330,000							2.0	4.0	2.0	4.0	2498	4995
Cadmium, Total	329,685	330,000	0.07	0.11	0.07	0.11	87	137	0.07	0.11	0.07	0.11	87	137
Chromium, Total	329,685	330,000	1.71	2.77	1.71	2.77	2135	3459	1.0	2.0	1.0	2.0	1249	2498
Copper, Total	329,685	330,000	2.07	3.38	2.07	3.38	2585	4221	1.0	2.0	1.0	2.0	1249	2498
Cyanide, Amenable	329,685	330,000							0.1	0.2	0.1	0.2	125	250
Cyanide, Total*	130,000	330,000	0.65	1.20	0.26	0.47	320	591	0.65	1.2	0.26	0.47	320	591
Fluoride	329,685	330,000							20	30	20	30	24976	37464
Gold, Total	329,685	330,000							0.1	0.5	0.1	0.5	125	624
Iron, Total	329,685	330,000							3.0	5.0	3.0	5.0	3746	6244
Lead, Total	329,685	330,000	0.43	0.69	0.43	0.69	537	862	0.1	0.5	0.1	0.5	125	624
Nickel, Total	329,685	330,000	2.38	3.98	2.38	3.98	2972	4970	1.0	2.0	1.0	2.0	1249	2498
Oil & Grease	329,685	330,000	26	52	26	52	32469	64938	10		10		12488	
pH	329,685	330,000	6.0	9.0										
Silver, Total	329,685	330,000	0.24	0.43	0.24	0.43	300	537	0.1	0.5	0.1	0.5	125	624
Tin, Total	329,685	330,000							2.0	4.0	2.0	4.0	2498	4995
Total Suspended Solids	329,685	330,000	31	60	31	60	38713	74928	20	30	20	30	24976	37464
TTO	329,685	330,000	51	2.13		2.13								6
Zinc, Total	329,685	330,000	1.48	2.61	1.48	2.61	1848	3259	1.0	2.0	1.0	2.0	1249	2498

* If technology-based limit is met end of pipe, and not internally. (Guidance Manual for Electroplating and Metal Finishing Pretreatment Standards, Section 5.4.2)

DISCHARGE AND RECEIVING WATER INFORMATION

Summit's discharge, DSN 001-1, consists primarily of treated metal finishing wastewaters. The treated effluent is conveyed to the sidebank of the river located on the western eastern of the Naugatuck River. The width of the river in the vicinity of the discharge is approximately 48 feet. The Waterbody Segment ID for this portion of the river is CT5200-00_01 with a designation as Class B. Class B waters are designated for: habitat for fish and other aquatic life and wildlife; recreation; and industrial and agricultural water supply. This waterbody segment is identified on the 2016 *Integrated Water Quality Report* as an impaired waterbody. There are two impaired designated uses associated with this waterbody: 1) An impairment to the habitat for fish, other aquatic life, and wildlife due to whole effluent toxicity, and 2) an impairment to recreation due to Escherichia coli (E. coli). Total Maximum Daily Loads (TMDLs) have been adopted and approved for each impairment.

ALLOCATION OF MIXING ZONES

The Connecticut *Water Quality Standards* (WQS) allow for the allocation of mixing zones ("zones of influence"). Mixing zones are portions of the receiving water where water quality criteria are allowed to be exceeded. In cases where mixing zones are allocated, applicable water quality criteria are required to be met at the edge of the mixing zone. Allocations of mixing zones are made on a case-by-case basis in consideration of the criteria set forth in RCSA section 22a-426-4(*l*). In establishing mixing zones, the Commissioner shall consider:

RCSA 22a-426-4(l)(1)(A): the characteristics of the discharge, such as its volume, strength, temperature and the persistence of any substances in the discharge, potential bioaccumulation or bioconcentration of these substances in aquatic organisms, and the potential for any substances, either singly or in combination with other substances present in the discharge or receiving surface water body to result in an unacceptable risk to human health or the environment;

RCSA 22a-426-4(1)(1)(B): an allowance for a continuous zone of passage for free swimming and drifting organisms;

RCSA 22a-426-4(l)(1)(C): the effect of the discharge on spawning grounds or nursery areas of sensitive aquatic organisms or areas utilized by aquatic organisms for shelter and living space;

RCSA 22a-426-4(l)(l)(D): the effect of the discharge on the aesthetic quality of the receiving water including but not limited to the potential to cause objectionable deposits, floating debris, oil, scum, and other materials that form nuisances or produce objectionable color, odor, taste, or turbidity, or that may attract undesirable aquatic life or wildlife, or result in the dominance of nuisance species;

RCSA 22a-426-4(l)(1)(E): the location of other discharges in the receiving surface water body to ensure that the cumulative effect of adjacent zones of influence will not significantly reduce the environmental value or preclude any existing or designated uses of the receiving surface water. Assessment of environmental value will be based on the characteristics of the receiving surface water including but not limited to: (A) type of water body; (B) velocity; (C) depth; (D) number and type of

aquatic habitats; (E) migration patterns; (F) nature of the food chain; (G) level of productivity; (H) water temperature; (I) condition of associated biological communities; (J) ability of tributaries to provide biological recruitment; (K) presence of endangered species; and (L) value to human uses (such as aesthetic, commercial, sport fishing and recreational uses).

In addition, the following shall apply:

RCSA 22a-426-4(1)(3): Unless otherwise indicated in sections 22a-426-2 to 22a-426-9, inclusive, of the Regulation of Connecticut State Agencies, the applicable water quality criteria apply outside the zone of influence for a discharge.

RCSA 22a-426-4(1)(4): The zone of influence shall be limited to the maximum extent possible.

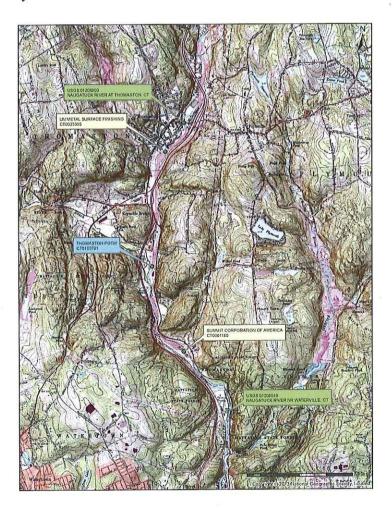
RCSA 22a-426-4(1)(5): Establishment of a zone of influence shall not preclude attainment of any existing or designated uses of the receiving surface waters.

RCSA 22a-426-4(l)(6): The area and volume of receiving water allocated to zones of influence shall be determined based on the unique physical, chemical and biological characteristics of the receiving surface water body.

RCSA 22a-426-4(1)(7): The Commissioner may require applicants to provide information on receiving surface water and wastewater characteristics including the volume of flow and area required for mixing and assimilation of waste.

RCSA 22a-426-4(m)(1) The 7Q10 is the minimum flow to which the Connecticut Water Quality Standards for surface waters apply, except when a surface water is regulated by dams or water withdrawals sanctioned by law to result in flows below that level. In such cases the Connecticut Water Quality Standards apply to that low flow determined by section 26-141a-1, et seq. of the Regulations of Connecticut State Agencies; sections 22a-365 to 22a-378a, inclusive, of the general statutes; or 16 USC 791a et seq.

RCSA 22a-426-4(m)(3) The Commissioner may approve discharge limitations based on minimum average daily flow in excess of 7Q10 conditions, provided the Commissioner is satisfied that special measures will be implemented during low flow conditions which provide protection to the environment at least as effective as that protection which would pertain if limitations were based solely on 7Q10 conditions.

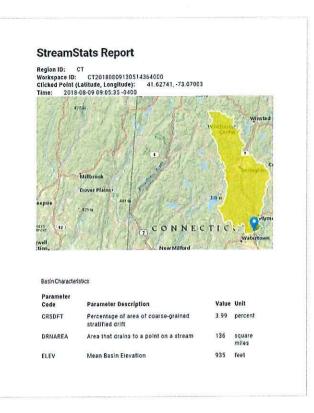

CONDITIONS FOR MIXING ZONE ALLOCATION

Several criteria need to be evaluated in order to determine whether a mixing zone can be allocated. These factors are as follows:

- Characteristics of the Discharge: The WQS require that the volume, strength and persistence of the discharge be considered when allocating a mixing zone. The subject discharge consists primarily of treated metal finishing wastewaters from the site. The pollutants in the discharge include varying concentrations of heavy metals. In general, mixing zones are allocated to those pollutants which require some level of instream dilution (i.e., the numeric criteria cannot consistently be meet end-of-pipe), provided that treatment, or at a minimum BMPs, are implemented to reduce the pollutant levels in the discharge. In this case, the subject effluent is treated on-site prior to discharge. To the extent that any of the pollutants in the discharge have a human health designation of either "A" (Known Human Carcinogen), "C" (Probable or Possible Carcinogen), or "HB" ("High Potential to Bioaccumulate or Bioconcentrate), no mixing zone applies.
- **Conditions of the Receiving Water**: The WQS require that the area and volume of the receiving water allocated for a mixing zone be determined based on the unique physical, chemical, and biological characteristics of the receiving water. Among other things, the assimilative capacity of the receiving stream is considered. That is, does the receiving stream have the capacity to provide dilution to the discharge. The permittee has collected some information concerning the pollutant levels in the receiving stream upstream of the discharge as part of its annual chronic toxicity requirements. Based on this data, the average concentration for copper is higher than the ambient water quality criteria in the WQS so, the receiving stream does not have the capacity to provide dilution for this pollutant. Therefore, no mixing zone is allocated to copper.
- **Prevention of Acutely Toxic Conditions.** Among other thing, the WQS require that discharges to surface waters do not cause acute or chronic toxicity to freshwater and marine aquatic life. Acutely toxic conditions are defined as those lethal to aquatic organisms that may pass through the mixing zone. In allowing a mixing zone, an assumption is made that a small area near the outfall can exist where pollutant values are in excess of, but below, acutely toxic conditions, and that such conditions can exist without causing adverse effects to the overall waterbody. If an analysis of concentrations and hydraulic residence times within the mixing zone indicates that organisms drifting through the plume along the path of maximum exposure would not be

exposed to concentrations exceeding the acute criteria when averaged over the 1-hour averaging period for acute criteria, then lethality to swimming or drifting organisms should not be expected. In many situations, travel time through the acute mixing zone must be less than roughly 15 minutes if a 1-hour average exposure is not to exceed the acute criterion.

- Aesthetics: The WQS require that the effect of the discharge on the aesthetic quality of the receiving water be considered. This includes, but is not limited to, the potential to cause objectionable deposits, floating debris, oil, scum, and other materials that form nuisances or produce objectionable color, odor, taste, or turbidity, or that may attract undesirable aquatic life or wildlife, or result in the dominance of nuisance species. Allocation of a mixing zone in this case is not expected to cause aesthetic issues with the receiving water.
- Overall Effect of the Discharge on Aquatic Life, including Endangered Species, and the Spawning Grounds: The WQS require consideration of the effect of the discharge on spawning grounds or nursery areas of sensitive aquatic organisms or areas utilized by aquatic organisms for shelter and living space, and an allowance for a continuous zone of passage for free swimming and drifting organisms. Allocation of a mixing zone in this case is not expected to effect the aquatic life in the area, its movement, or any spawning or nursery grounds.
- Location of the discharge in relation to other dischargers. The WQS require a consideration of the location of the discharge as it relates to the location of other discharges in the receiving water body to ensure that the cumulative effect of adjacent mixing zones will not significantly reduce the environmental value or preclude any existing or designated uses of the receiving surface water. There are several other dischargers in the vicinity of Summit. [See map below]. No overlapping of mixing zones would occur between this discharge and any other in the area.


CALCULATION OF THE MIXING ZONE

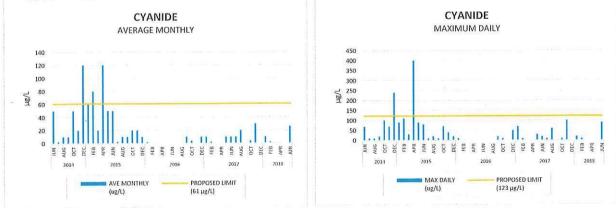
The WQS specify that the 7Q10 flow is the minimum flow that applies to the water quality criteria. The 7Q10 flow was determined from a USGS gauging station on the Naugatuck River located approximately 0.5 mile upstream of UniMetal (USGS 01206900) which collects daily river flow data.

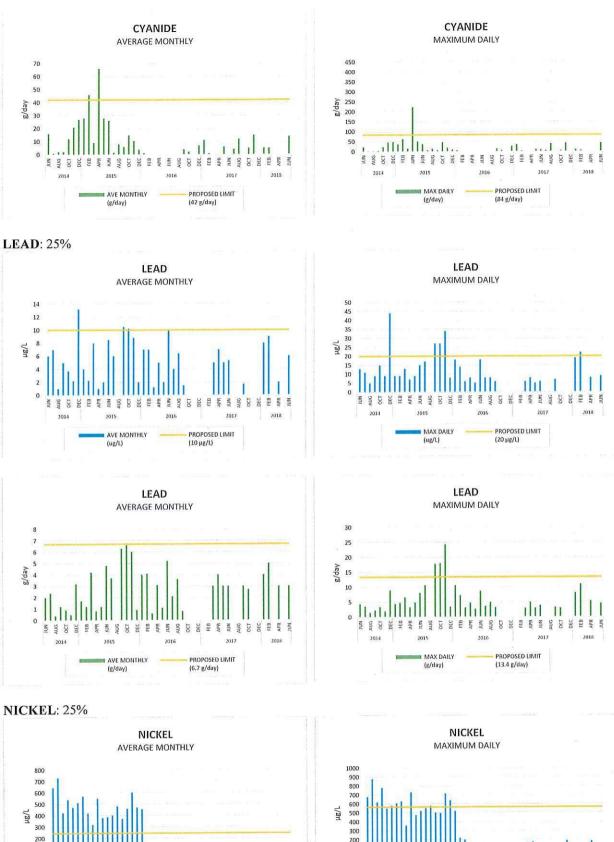
L	01206900 NAUGATUCK RIVER AT THOMASTON, CT OCATION - Lat 41°40'25", long 73°04'12" referenced to North American Datum of 1927, lichfield County, CT, Hydrologic Unit 01100005, on left bank at downstream side of bridge on U.S.
	Rts. 6 and 202 at Thomaston, 1.5 ml downstream from Thomaston Reservoir, 2.5 ml upstream from Branch Brook, and at mile 29.5.
	JRAINAGE AREA - 99.8 mi ² .
R	REVISIONS HISTORY - WDR CT-76-1: 1975. WDR CT-83-1: Drainage area.
	SURFACE-WATER RECORDS
P	PERIOD OF RECORD - October 1959 to current year.
G	SAGE - Water-stage recorder. Datum of gage is 354.39 ft above National Geodetic Vertical Datum of 1929. Telephone telemetry at station. Satellite telemetry at station.
R	REMARKS - Water Years 2014-2016: Records good except for periods of estimated daily discharges, which are fair. Peak flows are affected by flood-control regulation at Thomaston Dam, H feadow Brook Dam, and East Branch Dam. The natural flow regime can be altered by regulation at Thomaston Dam, Hall Meadow Brook Dam, and East Branch Dam.
E	EXTREMES OUTSIDE PERIOD OF RECORD - Flood of Aug. 19, 1955, reached a stage of 27.0 ft, from floodmarks by Corps of Engineers, discharge, 53,400 ft ³ /s, from indirect measurements beak flow on Naugatuck River, 71.9 mi ² , and Leadmine Brook, 24.0 mi ² , adjusted for intervening drainage area.
	2
	e 7Q10 flow at USGS 01206900 is 10.965 cfs, based on 55 years of available daily flow records from 1961 to 20
	GS's SW Toolbox was used to determine the 7Q10 flow. Data generated from the program is as follows:

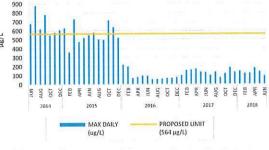
Frequency_S	itatistics_repo	rt - Notepad		×			N-	Day_Low	w_Annual_Time_Se	eries_and_Ra	nking - Notepac
ile Edit Form	nat View He	lp .					File	Edit Fo	rmat View Help		
rogram SWStat	U.:	. GEOLOGICAL	SURVEY	Sec	00001		N-Day I	Los Annual	L Tive Series and Ra	nking	
er. 5.0		& Pearson Ty		stics Run	Date / Tim	1e	STAID	81286986			
		on USGS Pro			/2018 7:55		STANAM		CK RIVER AT THOMASTO	N, CT	
3/13/2018	Dase	1 ON 0505 Fre	BLag HT22	11-	72010 7.33		Year		Date Rank	25	
					÷		1962		1961/08/19 24:00	25 12	
Notice Log						sed	1963		1962/09/14 24:00 1963/09/11 24:00	23	
for	 these comp 	utations. Use	ers are respo	insible for	assessment		1965		1964/09/27 24:00	4	
and	d interpreta	tion.					1966		1965/08/01 24:00	18	
							1967		1966/09/03 24:00	14	
							1968		1957/09/20 24:00	42	
Descrip	tion: 0120	900 NAUGATU	K RIVER AT T	HOMASTON, C	T		1969		1968/09/02 24:00	33	
Year Bounda		1 - March					1970		1969/09/27 24:00	45	
Period in re		1, 1961 -		18			1971 1972		1978/08/13 24:00 1971/07/17 24:00	26	
			naren 51, 20				1972		1972/09/12 24:00	44	
	eter: 7-da	104					1974		1973/08/27 24:00	39	
Non-zero va							1975		1974/08/16 24:00	35	
Zero va		S. 853					1976		1975/07/09 24:00	53	
Negative va	alues: 2	(ignored)					1977		1976/07/23 24:00	32	
							1978		1977/09/05 24:00	27 30	
nput time ser	ies (zero a	nd negative w	alues not in	cluded in]	listing.)		1979		1978/09/16 24:00 1979/07/15 24:00	36	
555							1981		1988/09/17 24:00	10	
17.857	12.571 1	7.571 9.3	71 15.286	13.286	26.143	19.429	1982		1981/09/06 24:00	29	
30.571		3.143 27.3			37.714	19.286	1983	20	1982/09/20 24:00	34	
		1.714 12.4			13,571	22.743	1984	13.571	1983/09/20 24:00	15	
18.286					15.143	31.429	1985		1984/10/01 24:00	38	
24.586		5.571 17.				32.857	1986		1985/88/24 24:00	41 31	
11.429		9.143 26.4			10.243		1987		1986/09/20 24:00 1987/08/26 24:00	20	
12.429		3.743 31.0			9.117	34.743	1989		1988/07/11 24:00	21	
34.729	11.386 3	3.943 17.3	29 39.600	13.886	10.970		1990		1989/09/13 24:00	40	
							1991		1990/08/05 24:00	28	
							1992		1991/07/21 24:00	17	
LOG PEARSON	TYPE III Fr	equency Curve	Parameters				1993		1992/18/08 24:00	48	
		on-zero valu					1994		1993/08/08 24:00 1994/07/22 24:00	47	
			5X				1995		1995/09/12 24:00	5	
Mean (logs)			1.2	72			1997		1996/09/06 24:00	43	
Variance (10			0.0				1998	17.143	1997/10/24 24:00	22	
		->	0.1				1999		1998/89/21 24:00	13	
	viation (log	>/					2000		1999/08/08 24:00	6 49	
Skewness (10			0.0				2001		2000/10/17 24:00 2001/09/09 24:00	11	
	ror of Skewn		0.3				2002		2002/08/19 24:00	3	
		ficient (log					2004		2003/09/01 24:00	54	
Coefficient	of Variatio	n (logs)	0.1	42			2805	31.057	2004/09/07 24:00	46	
							2005		2005/09/14 24:00	1	
							2007		2006/08/14 24:00	37	
requency Curr	ve - Paramet	er values at	selected pro	babilities			2008		2007/10/08 24:00	2 52	
			8				2009		2008/09/02 24:00 2009/09/26 24:00	51	
Non-			Variance	95-Pct C	onfidence		2010		2010/09/26 24:00	8	
	Pagungang	e Parameter	of	Inter			2012		2011/08/06 24:00	50	
exceedance							2013		2012/07/15 24:00	24	
Probability	Interval	Value	Estimate	Lower	Upper		2014	39.6	2013/10/05 24:00	55	
							2015		2014/09/30 24:00	16	
	10.00	10.965	1.002	9.158	12.504		2016	10.97	2015/09/29 24:00	7	
0.1000	10.00						2017		2016/09/10 24:00		

The drainage area at the USGS station is 99.8 mi². The drainage area at Summit's discharge point, DSN 001-1, is 136 mi².

Therefore, the 7Q10 flow at Summit, adjusted using the ratio of the drainage areas, is 14.94 cfs:


 $7Q10 \ Flow_{summit} = 7Q10 \ Flow_{USGS \ 01206900} * \frac{Drainage \ Area_{summit}}{Drainage \ Area_{USGS \ 01206900}}$


$$7Q10 \ Flow_{summit} = 10.965 * \frac{136}{99.8} = 14.94 \ cfs$$


MIXING ZONE ALLOCATIONS

Mixing zones are required to be limited to the maximum extent possible and are allocated on a case-by-case basis contingent on several factors, including the physical, chemical, and biological characteristics of the discharge and the receiving system; the organisms in the receiving system; and a determination that the assimilative capacity of the receiving system. In this case, the following mixing zones were allocated:

Пı

2018

2017

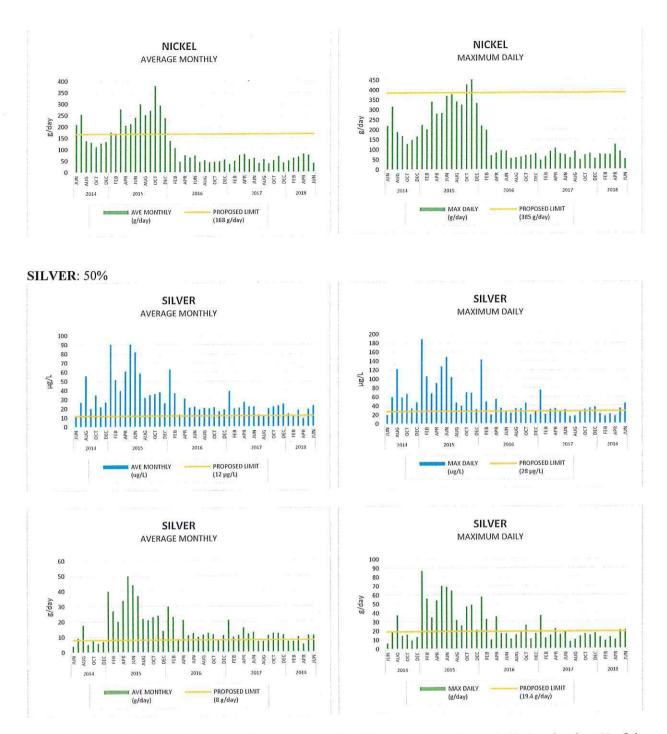
PROPOSED LIMIT

(246 µg/L)

JUN AUG DEC PEE PEE APR APR AUG DEC PEE PEE PEE APR AUG OCT PEE APR AUG AUG AUG

2016

2015


(ug/L)

AVE MONTHLY

100

0

2014

In addition, the pH range of the receiving stream (6.33-7.77) should provide assimilation for the pH of the effluent (6.08 to 8.94) to achieve the Class B pH standards (6.5 to 8.0).

SPECIAL CONDITIONS

None.

BACKSLIDING

Backsliding is not an issue for any pollutant. See Attachment 12.

REFERENCES

Connecticut Department of Energy and Environmental Protection. 2017. 2016 Integrated Water Quality Report, Bureau of Water Protection and Land Reuse, Hartford, Connecticut

Kiang, J.E., Flynn, K.M., Zhai, Tong, Hummel, Paul, and Granato, Gregory, 2018, SWToolbox: A surface-water toolbox for statistical analysis of streamflow time series: U.S. Geological Survey Techniques and Methods, book 4, chap. A–11, 33 p., https://doi.org/10.3133/tm4A11.

U.S. EPA. 1991. Technical Support Document For Water Quality-based Toxics Control, EPA-505-2-90-001

U.S. EPA. 2010. *NPDES Permit Writers' Manual*, Office of Wastewater Management, Water Permits Division. EPA-833-K-10-001.

U.S. Geological Survey, 2016, National Water Information System data available on the World Wide Web (USGS Water Data for the Nation), at URL <u>http://waterdata.usgs.gov/nwis/</u>

ATTACHMENT 12 WATER QUALITY-BASED LIMITS

Facility: SUMMIT CORPORATION OF AMERICA, THOMASTON

7.5 cfs

DSN:	001-1
Average Monthly Flow:	160,000 gpd
Duration of Discharge:	24 hrs/day
7Q10 Flow of River at Site:	14.94 cfs
%Allocation:	50 %
Dilution Factor	31.2 :1

01-1 ,000 gpd 0.248 cfs 24 hrs/day 4.94 cfs

%Allocation: 25 % Dilution Factor 16.1 :1

	φ		ater Quality Crite October 10, 2013		1812		Naugatack River	WLA	WLA	WLA				63.000		Anticipated Number of	Average Monthly	Maximum Daily	Instantaneous	Average Monthly	Maximum Daily
POLLUTANT	ŏ	Aqua	tic Life	Human Heeth (Eah	CV	Diluton Factor	Consectration	(acuto)	(chronic)	(human health)	LTA (acute)	LTA (chronic)	LTA (human health)	Limiting LTA	Limiting criteria	Samples	Limit	Limit	Limit µg1	Limit	Limit
	0	Acuta	Chronic	Consumption)		,	uşt	har t	491	pg1	(arous)			1.261 1.2		per Month	49/L	Pg/L	pyr	g/day	gʻday
		pg1	491	49L	0.5		1.1	- der land		a set of the		. <u>4</u>	Markeller	1. S. S. S. S. S.	0.100.010.000	Address of the second				0.00	0.12
Cadmium		1.0	0.125	10,769	0.6	1.0		1.0	0.125	10,769	0.32	0.07	10,769	0.07	CHRONIC	1	0.14	0.21	0.31	0.09	
Chromium		323	42	1,009,615	0.6	1.0		323	42	1,009,615	104	22	1,009,615	22	CHRONIC	1	47	69	103	29	42
Copper		25.7	18.1		0.6	1.0	1.1.1.1.1.1.1.1	26	18		8	10		8	ACUTE	4	13	26	39	8	16
Cyanide		22	5.20	140	0.6	16.1	0	354	84	2.253	114	44	2,253	44	CHRONIC	4	69	137	206	42	83
ead		30	1.2	140	0.6	16.1	0.40	477	13.3		153	7.0	and and and and a	7.0	CHRONIC	4	11	22	33	6.6	13.2
Vickel		260.5	28.9	4,600	0.8	16.1	7.2	4,083	356	73,904	1,018	157	73,904	157	CHRONIC	4	274	628	942	166	381
Silver		1.02	and the second	107,692	0.9	31.2		31.80		3,357,770	7.13		3,357,770	7,13	ACUTE	4	13	32	48	8.0	19.3
Zinc		65	65	26.000	04	10	25	65	65	26,000	29	42	26,000	29	ACUTE	4	39	65	98	24	39

3.74 cfs

 Zinc
 65
 65
 20,000
 0.4
 1.0
 25
 65
 26,000

 The background concentration of Copper is in excess of the applicable ambient ward ward yorking. Therefore, the Daution Factor is 1.0
 No dilution is necessary for: Cadmium, Chromium, or Zinc. The water quality criteria can be mat end-of-pipe.

Facility: SUMMIT CORPORATION OF AMERICA, THOMASTON

DSN: Average Month Duration of Dis 7Q10 Flow of R	charge	2:	001-1 330,000 24 14.94	gpd hrs/day		0.511	cfs				940 01										
%Allocation: Dilution Factor			50 15.6	% :1		7.5	cfs		%Allocation Dilution Fac		25 8.3	i % I :1	3.74	cfs							
	BH		Vater Quality Crite October 10, 2013	3	200		Naugaback River	WLA	WLA	WLA	LTA	LTA	LTA			Anticipated Number of	Average Monthly	Maximum Daily	Instantaneous Limit	Average Monthly	Maximum Daily
POLLUTANT	A, C, or	Aqu: Acuto	chronic	Human Health (Fish Consumption)	cv	Diluton Factor	Concentration pp1	(acuto) µg/L	(chronic) µg1L	(human health) µg/L	(acuto)	(chronic)	(human health)	Limiting LTA	Limiting criteria	Samples per Month	Limit µg1L	Limit µg1_	pg/L	Limit gʻday	Limit gʻday
		µg1	pgl	µ9/L		1.		JE BUL		and the second				CONTRACTOR OF		KON LAN	0.14	0.21	0.31	0.18	0,26
Cadmium		1.0	0.125	10,769	0.6	1.0		1.0	0.125	10,769	0.32	0.07	10,769	0.07	CHRONIC	-			103	59	86
Chromium		323	42	1,009,615	0.6	1.0		323	42	1,009,615	104	22	1,009,615	22	CHRONIC	1	47	69			-
Copper		25.7	18.1		0.6	1.0	and the second	26	18		8	10		8	ACUTE	4	13	26	39	16	32
Cyanide		22	5.20	140	0.6	8.3	0	183	43	1,164	59	23	1,164	23	CHRONIC	4	35	71	107	44	89
Lead		30	1.2		0.6	8.3	0.40	247	7.1		79	3.7		3.7	CHRONIC	4	5.8	12	17	7.2	14.5
Nickel		260.5	28.9	4.600	0.8	8.3	7.2	2.114	188	38,202	527	82	38,202	82	CHRONIC	4	144	331	496	180	413
Silver	1	1.02	20.0	107,692	0.9	15.6		15.95		1,683,487	3.58		1,683,487	3.58	ACUTE	4	6.6	16	24	8.3	19.9
Zinc		65	65	26,000	0.4	1.0	25	65	65	26,000	29	42	26,000	29	ACUTE	4	39	65	98	49	81

No dilution is necessary for: Cadmium, Chromium, or Zinc. The water quality criteria can be met end-of-pipe.

		NOTES
	State of Connecticut's Water Of	Quality Standards, Effective February 25, 2011
CRITERIA:		= Carcinogenic; "HB" = High potential to bioaccumulate or bioconcentrate
		to de a film de material de la State
SITE-SPECIFIC CRITERIA FOR COPPER:	Site-specific criteria exists for co	copper for the following waterbodies in the State:
	Waterbody	Reach
	Bantam River	Litchfield POTW to confluence with Stepaug River
	Blackberry River	Norfelk POTW to confluence with Rearing Brook
		North Canaan POTW to confluence with Housatonic River
	Factory Brook	Salisbury POTW to mouth
	Five Mile River	New Canaan POTW to mouth
	Hockanum River	Vernon POTW to confluence with Connecticut River
	Mill Brook	Plainfield Village POTW to mouth Torrington POTW to confluence with Housatonic River
	✓ Naugatuck River	Ridgefeld Brock to Branchville
	Norwalk River Pequabuck River	Ridgened drok & dantenee Plymouth POTW to confluence with Farmington River
	Pootatuck River	Newington POTW to confluence with Housatoric River
	Quinniplac River	Southington POTW to Broadway, North Haven
	Still River	Winsted POTW to confluence with Farmington River
		Lymeki'n Brook to confluence with Housetonic River
	Williams Brook	Ledyard POTW to mouth
	Willimantic River	Stafford Springs POTW to Trout Management Area (Willington)
		Eagleville Dam to confluence with Shetucket River
	DSN 001-1 discharges into a w	vaterbody that subject to site-specific criteria.
COEFFICIENT OF VARIANCE (CV):	CV = Mean/Standard Deviation	n. CVs were calculated from the DMR data
DILUTION FACTOR:		ow of River at Sita)+Average Monthly Effluent Flow] Werage Monthly Effluent Flow [Dilution is not allowed for "A", "C" or "HB" pollutants]
BACKGROUND DATA:	Naugatuck River water from Su	Summit's chronic toxicity testing, 2008 - 2018
WASTELOAD ALLOCATION (WLA):	WLA (acute, chronic, human h	health)=[(Criteria)*(Dilution Factor)]-[Maximum Background Receiving Water Concentration*(Dilution Factor-1)]
LONG-TERM AVERAGE (LTA):	LTA (acute)=WLA _{saute} *exp[0.5c	Sectoral
LONG-TERM AVERAGE (LTA).	LTA (chronic)=WLA _{chronic} *exp[0	
	LTA (human health)=WLAnman	
LIMITING LTA:	Limiting LTA is the lowest LTA	to of the applicablo criteria
SAMPLES/MONTH:	A value of "4" is used for a wee	eekly monitoring frequency; "I" is used for a frequency of monthly or any period less frequent than monthly.
AVERAGE MONTHLY LIMIT (mg/L):	AML (acute,chronic)=LTA _{ente} c AML (human health)=WLA _{numa}	
MAXIMUM DAILY LIMIT (mg/L):	MDL (acuta,chronic)=LTA _{ente} MDL (human health)=WLA _{rune}	
AVERAGE MONTHLY LIMIT (kg/day):	AML (kg/day)=((AML (mg/L) *	* 0.000001 * Average Monthly Flov)/0.264//1000
MAXIMUM DAILY LIMIT (kg/dəy):	MDL (ko/day)=((MDL (mo/L) *	* 0.000001 * Average Monthly Flow/J0.264/J1000

Summit Corporation of America Water Quality Based Limit Determination: Data Summary

DSN 001-1 DMR Data: January 2008-June 2018

Г

				DSN	001	-1 DMR [Data:	January 2	2008	3-June 20	18				
Cadmiu	m	Chromiu		Coppe		Cyanide,		Lead	100.000	<u>Nickel</u>		Silver	11000 <u>2</u>	Zinc DATE	
DATE Jan 08, 2008	ug/L O	DATE Jan 08, 2008	09/L	DATE Jan 08, 2008	ug/L 140	DATE Jan 08, 2008	ug/L 10	DATE Jan 08, 2008	09/L	DATE Jan 08, 2008	ug/L 670	DATE Jan 08, 2008	90	Jan 08, 2008	0 0
Jul 14, 2008 Jan 06, 2009	0	Jul 01, 2008 Jan 06, 2009	0	Jan 15, 2008 Jan 21, 2008	120 100	Jan 15, 2008 Jan 21, 2008	10 10	Jan 15, 2008 Jan 21, 2008	0	Jan 15, 2008 Jan 21, 2008	740 500	Jan 15, 2008 Jan 21, 2008	40 30	Jan 15, 2008 Jan 21, 2008	0
Jul 13, 2009 Jan 11, 2010	0	Jul 13, 2009 Jan 11, 2010	0	Jan 28, 2008 Feb 05, 2008	200 110	Jan 28, 2008 Feb 05, 2008	32 78	Jan 28, 2008 Feb 05, 2008	0	Jan 28, 2008 Feb 05, 2008	590 710	Jan 28, 2008 Feb 05, 2008	100 50	Jan 28, 2008 Feb 05, 2008	0
Jul 13, 2010	0	Jul 13, 2010	0	Feb 01, 2008	60	Feb 01, 2008 Feb 18, 2008	52 10	Feb 01, 2008 Feb 18, 2008	0	Feb 01, 2008 Feb 18, 2008	540 490	Feb 01, 2008 Feb 18, 2008	40 50	Feb 01, 2008 Feb 18, 2008	0
Jan 03, 2011 Jul 11, 2011	0	Oct 11, 2010 Oct 18, 2010	0	Feb 18, 2008 Feb 25, 2008	36 67	Feb 25, 2008	10	Feb 25, 2008	0	Feb 25, 2008	680	Feb 25, 2008	30	Feb 25, 2008	0
Jan 02, 2012 Jan 30, 2012	0	Oct 25, 2010 Nov 01, 2010	0	Mar 04, 2008 Mar 10, 2008	150 90	Mar 04, 2008 Mar 10, 2008	6 21	Mar 04, 2008 Mar 10, 2008	0	Mar 04, 2008 Mar 10, 2008	400 620	Mar 04, 2008 Mar 10, 2008	20 10	Mar 04, 2008 Mar 10, 2008	0
Jul 16, 2012 Jul 15, 2013	0	Nov 08, 2010 Nov 15, 2010	0	Mar 17, 2008 Mar 24, 2008	120 180	Mar 17, 2008 Mar 24, 2008	6 40	Mar 17, 2008 Mar 24, 2008	0	Mar 17, 2008 Mar 24, 2008	580 460	Mar 17, 2008 Mar 24, 2008	30 50	Mar 17, 2008 Mar 24, 2008	0
Jan 06, 2014	0	Nov 22, 2010	0	Mar 31, 2008	140 470	Mar 31, 2008 Apr 07, 2008	5	Mar 31, 2008 Apr 07, 2008	0	Mar 31, 2008 Apr 07, 2008	460 630	Mar 31, 2008 Apr 07, 2008	50 70	Mar 31, 2008 Apr 07, 2008	0
Jan 13, 2014 Jul 14, 2014	0	Nov 29, 2010 Dec 06, 2010	0	Apr 07, 2008 Apr 14, 2008	490	Apr 14, 2008	0	Apr 14, 2008	0	Apr 14, 2008 Apr 21, 2008	750 740	Apr 14, 2008 Apr 21, 2008	9 20	Apr 14, 2008 Apr 21, 2008	0
Jan 05, 2015 Jan 12, 2015	0	Dec 13, 2010 Dec 20, 2010	0	Apr 21, 2008 Apr 28, 2008	120 100	Apr 21, 2008 Apr 28, 2008	5 90	Apr 21, 2008 Apr 28, 2008	0	Apr 28, 2008	490	Apr 28, 2008	0	Apr 28, 2008	0
Jan 19, 2015 Feb 02, 2015	0	Dec 27, 2010 Jan 03, 2011	0	May 05, 2008 May 12, 2008	130 50	May 05, 2008 May 12, 2008	40 0	May 05, 2008 May 12, 2008	0	May 05, 2008 May 12, 2008	900 560	May 05, 2008 May 12, 2008	40 30	May 05, 2008 May 12, 2008	0
Feb 16, 2015 Mar 09, 2015	0	Jan 10, 2011 Jan 17, 2011	0	May 19, 2008 May 27, 2008	110 160	May 19, 2008 May 27, 2008	30 13	May 19, 2008 May 27, 2008	0	May 19, 2008 May 27, 2008	550 580	May 19, 2008 May 27, 2008	30 50	May 19, 2008 May 27, 2008	0
May 04, 2015	0	Jan 24, 2011 Jan 31, 2011	0	Jun 02, 2008 Jun 09, 2008	180 100	Jun 02, 2008 Jun 09, 2008	35 23	Jun 02, 2008 Jun 09, 2008	0	Jun 02, 2008 Jun 09, 2008	450 580	Jun 02, 2008 Jun 09, 2008	40 40	Jun 02, 2008 Jun 09, 2008	0
Jul 13, 2015 Aug 03, 2015	0	Jun 06, 2011	0	Jun 16, 2008	110	Jun 16, 2008	0	Jun 16, 2008	0	Jun 16, 2008 Jun 24, 2008	320 230	Jun 16, 2008 Jun 24, 2008	0 20	Jun 16, 2008 Jun 24, 2008	0
Aug 17, 2015 Sep 14, 2015	0	Jun 13, 2011 Jun 21, 2011	0	Jun 24, 2008 Jun 30, 2008	100 10	Jun 24, 2008 Jun 30, 2008	25 40	Jun 24, 2008 Jun 30, 2008	0	Jun 30, 2008	400	Jun 30, 2008	20	Jun 30, 2008	0
Oct 05, 2015 Jan 18, 2016	0	Jun 27, 2011 Jul 11, 2011	0	Jul 07, 2008 Jul 14, 2008	60 90	Jul 07, 2008 Jul 14, 2008	8 27	Jul 07, 2008 Jul 14, 2008	0 0	Jul 07, 2008 Jul 14, 2008	350 370	Jul 07, 2008 Jul 14, 2008	10 30	Jul 07, 2008 Jul 14, 2008	0
Jul 19, 2016 Jul 29, 2016	0	Jul 18, 2011 Jul 25, 2011	0	Jul 21, 2008 Aug 11, 2008	80 90	Jul 21, 2008 Aug 11, 2008	0 28	Jul 21, 2008 Aug 11, 2008	0	Jul 21, 2008 Aug 11, 2008	270 200	Jul 21, 2008 Aug 11, 2008	10 10	Jul 21, 2008 Aug 11, 2008	0
Jan 10, 2017	0	Aug 01, 2011	0	Aug 18, 2008 Aug 26, 2008	90 70	Aug 18, 2008 Aug 26, 2008	47 82	Aug 18, 2008 Aug 26, 2008	0	Aug 18, 2008 Aug 26, 2008	480 340	Aug 18, 2008 Aug 26, 2008	30 10	Aug 18, 2008 Aug 26, 2008	0
Jul 11, 2017 Jan 04, 2018	0	Aug 08, 2011 Aug 15, 2011	0	Sep 03, 2008	90	Sep 03, 2008	0	Sep 03, 2008	0	Sep 03, 2008	650 350	Sep 03, 2008 Sep 08, 2008	12 13	Sep 03, 2008 Sep 08, 2008	0
		Aug 22, 2011 Aug 29, 2011	0	Sep 08, 2008 Sep 15, 2008	190 80	Sep 08, 2008 Sep 15, 2008	80 60	Sep 08, 2008 Sep 15, 2008	0	Sep 08, 2008 Sep 15, 2008	340	Sep 15, 2008	11	Sep 15, 2008	0
		Sep 06, 2011 Sep 12, 2011	0	Sep 22, 2008 Sep 30, 2008	260 70	Sep 22, 2008 Sep 30, 2008	90 100	Sep 22, 2008 Sep 30, 2008	0	Sep 22, 2008 Sep 30, 2008	370 360	Sep 22, 2008 Sep 30, 2008	19 112	Sep 22, 2008 Sep 30, 2008	0
		Sep 19, 2011 Sep 26, 2011	0	Oct 06, 2008 Oct 14, 2008	80 70	Oct 06, 2008 Oct 14, 2008	110 60	Oct 06, 2008 Oct 14, 2008	0	Oct 06, 2008 Oct 14, 2008	790 310	Oct 06, 2008 Oct 14, 2008	30 10	Oct 06, 2008 Oct 14, 2008	0
		Oct 03, 2011	0	Oct 20, 2008	70	Oct 20, 2008 Oct 27, 2008	80 40	Oct 20, 2008 Oct 27, 2008	0	Oct 20, 2008 Oct 27, 2008	690 580	Oct 20, 2008 Oct 27, 2008	10 20	Oct 20, 2008 Oct 27, 2008	0
		Oct 10, 2011 Oct 17, 2011	0	Oct 27, 2008 Nov 03, 2008	40 60	Nov 03, 2008	30	Nov 03, 2008	0	Nov 03, 2008	520	Nov 03, 2008	30	Nov 03, 2008	0
		Oct 24, 2011 Nov 07, 2011	0	Nov 10, 2008 Nov 17, 2008	60 30	Nov 10, 2008 Nov 17, 2008	80 100	Nov 10, 2008 Nov 17, 2008	0	Nov 10, 2008 Nov 17, 2008	490 580	Nov 10, 2008 Nov 17, 2008	20 10	Nov 10, 2008 Nov 17, 2008	0
		Nov 14, 2011 Nov 21, 2011	0	Nov 24, 2008 Dec 01, 2008	30 50	Nov 24, 2008 Dec 01, 2008	60 10	Nov 24, 2008 Dec 01, 2008	0 0	Nov 24, 2008 Dec 01, 2008	680 490	Nov 24, 2008 Dec 01, 2008	20 20	Nov 24, 2008 Dec 01, 2008	0
		Nov 28, 2011 Dec 05, 2011	0	Dec 08, 2008 Dec 15, 2008	70 120	Dec 08, 2008 Dec 15, 2008	60 10	Dec 08, 2008 Dec 15, 2008	0	Dec 08, 2008 Dec 15, 2008	540 300	Dec 08, 2008 Dec 15, 2008	20 20	Dec 08, 2008 Dec 15, 2008	0
		Dec 12, 2011	0	Jan 06, 2009 Jan 12, 2009	70 300	Jan 06, 2009 Jan 12, 2009	37 38	Jan 06, 2009 Jan 12, 2009	0	Jan 06, 2009 Jan 12, 2009	380 710	Jan 06, 2009 Jan 12, 2009	10 20	Jan 06, 2009 Jan 12, 2009	0
		Dec 19, 2011 Jan 02, 2012	0	Jan 19, 2009	120	Jan 19, 2009	10	Jan 19, 2009	0	Jan 19, 2009	350 420	Jan 19, 2009 Jan 26, 2009	20 40	Jan 19, 2009 Jan 26, 2009	0
		Jan 09, 2012 Jan 16, 2012	0	Jan 26, 2009 Feb 02, 2009	80 23	Jan 26, 2009 Feb 02, 2009	45 60	Jan 26, 2009 Feb 02, 2009	0	Jan 26, 2009 Feb 02, 2009	580	Feb 02, 2009	40	Feb 02, 2009	0
		Jan 23, 2012 Jan 30, 2012	0	Feb 09, 2009 Feb 16, 2009	25 31	Feb 09, 2009 Feb 16, 2009	80 50	Feb 09, 2009 Feb 16, 2009	0	Feb 09, 2009 Feb 16, 2009	450 490	Feb 09, 2009 Feb 16, 2009	30 30	Feb 09, 2009 Feb 16, 2009	0
		Feb 06, 2012 Feb 13, 2012	0	Feb 23, 2009 Mar 02, 2009	21 70	Feb 23, 2009 Mar 02, 2009	50 70	Feb 23, 2009 Mar 02, 2009	0	Feb 23, 2009 Mar 02, 2009	480 460	Feb 23, 2009 Mar 02, 2009	30 30	Feb 23, 2009 Mar 02, 2009	0
		Feb 20, 2012 Feb 27, 2012	0	Mar 09, 2009 Mar 16, 2009	50 350	Mar 09, 2009 Mar 16, 2009	30 50	Mar 09, 2009 Mar 16, 2009	0	Mar 09, 2009 Mar 16, 2009	510 580	Mar 09, 2009 Mar 16, 2009	10 30	Mar 09, 2009 Mar 16, 2009	0
		Mar 05, 2012	0	Mar 23, 2009	130	Mar 23, 2009	60	Mar 23, 2009	0	Mar 23, 2009 Mar 30, 2009	490 720	Mar 23, 2009 Mar 30, 2009	30 10	Mar 23, 2009 Mar 30, 2009	0
		Mar 12, 2012 Mar 19, 2012	0	Mar 30, 2009 Apr 07, 2009	320 80	Mar 30, 2009 Apr 07, 2009	30 50	Mar 30, 2009 Apr 07, 2009	0	Apr 07, 2009	500	Apr 07, 2009	20	Apr 07, 2009	0
		Mar 26, 2012 Apr 02, 2012	0	Apr 13, 2009 Apr 20, 2009	60 50	Apr 13, 2009 Apr 20, 2009	50 40	Apr 13, 2009 Apr 20, 2009	0	Apr 13, 2009 Apr 20, 2009	390 490	Apr 13, 2009 Apr 20, 2009	30 20	Apr 13, 2009 Apr 20, 2009	0
		Apr 09, 2012 Apr 16, 2012	0	Apr 27, 2009 May 04, 2009	160 210	Apr 27, 2009 May 04, 2009	40 20	Apr 27, 2009 May 04, 2009	0	Apr 27, 2009 May 04, 2009	450 480	Apr 27, 2009 May 04, 2009	30 30	Apr 27, 2009 May 04, 2009	0
10		Apr 23, 2012 Apr 30, 2012	0	May 12, 2009 May 18, 2009	90 170	May 12, 2009 May 18, 2009	60 10	May 12, 2009 May 18, 2009	0	May 12, 2009 May 18, 2009	480 480	May 12, 2009 May 18, 2009	10 20	May 12, 2009 May 18, 2009	0
		May 07, 2012	0	May 26, 2009 Jun 01, 2009	110	May 26, 2009 Jun 01, 2009	10 30	May 26, 2009 Jun 01, 2009	0	May 26, 2009 Jun 01, 2009	370 240	May 26, 2009 Jun 01, 2009	20 10	May 26, 2009 Jun 01, 2009	0
		May 14, 2012 May 21, 2012	0	Jun 08, 2009	310	Jun 08, 2009	50	Jun 08, 2009	0	Jun 08, 2009	420	Jun 08, 2009 Jun 15, 2009	20 30	Jun 08, 2009 Jun 15, 2009	0
		May 29, 2012 Jun 04, 2012	0	Jun 15, 2009 Jun 22, 2009	90 60	Jun 15, 2009 Jun 22, 2009	50 40	Jun 15, 2009 Jun 22, 2009	0	Jun 15, 2009 Jun 22, 2009	310 450	Jun 22, 2009	20	Jun 22, 2009	0
		Jun 11, 2012 Jun 18, 2012	0	Jul 13, 2009 Jul 20, 2009	100 50	Jul 13, 2009 Jul 20, 2009	40 70	Jul 13, 2009 Jul 20, 2009	0	Jul 13, 2009 Jul 20, 2009	290 340	Jul 13, 2009 Jul 20, 2009	30 10	Jul 13, 2009 Jul 20, 2009	0
		Jun 25, 2012 Jul 16, 2012	0	Jul 27, 2009 Aug 03, 2009	30 250	Jul 27, 2009 Aug 03, 2009	40 40	Jul 27, 2009 Aug 03, 2009	0	Jul 27, 2009 Aug 03, 2009	300 680	Jul 27, 2009 Aug 03, 2009	10 30	Jul 27, 2009 Aug 03, 2009	0
		Jul 23, 2012 Jul 30, 2012	0	Aug 10, 2009 Aug 17, 2009	90 110	Aug 10, 2009 Aug 17, 2009	10 37	Aug 10, 2009 Aug 17, 2009	0	Aug 10, 2009 Aug 17, 2009	340 300	Aug 10, 2009 Aug 17, 2009	30 20	Aug 10, 2009 Aug 17, 2009	0
		Aug 06, 2012	0	Aug 24, 2009	50 60	Aug 24, 2009	52 58	Aug 24, 2009 Aug 31, 2009	0	Aug 24, 2009 Aug 31, 2009	230 350	Aug 24, 2009 Aug 31, 2009	10 20	Aug 24, 2009 Aug 31, 2009	0
		Aug 13, 2012 Aug 20, 2012	0	Aug 31, 2009 Sep 08, 2009	80	Aug 31, 2009 Sep 08, 2009	100	Sep 08, 2009	0	Sep 08, 2009	510	Sep 08, 2009	20 30	Sep 08, 2009 Sep 14, 2009	0
		Aug 27, 2012 Sep 04, 2012	0	Sep 14, 2009 Sep 21, 2009	60 90	Sep 14, 2009 Sep 21, 2009	10 10	Sep 14, 2009 Sep 21, 2009	0	Sep 14, 2009 Sep 21, 2009	400 500	Sep 14, 2009 Sep 21, 2009	30	Sep 21, 2009	0
		Sep 10, 2012 Sep 17, 2012	0	Sep 28, 2009 Oct 05, 2009	50 200	Sep 28, 2009 Oct 05, 2009	120 48	Sep 28, 2009 Oct 05, 2009	0	Sep 28, 2009 Oct 05, 2009	400 430	Sep 28, 2009 Oct 05, 2009	20 30	Sep 28, 2009 Oct 05, 2009	0 0
		Sep 24, 2012 Oct 01, 2012	0	Oct 12, 2009 Oct 19, 2009	100 110	Oct 12, 2009 Oct 19, 2009	45 62	Oct 12, 2009 Oct 19, 2009	0	Oct 12, 2009 Oct 19, 2009	300 720	Oct 12, 2009 Oct 19, 2009	30 30	Oct 12, 2009 Oct 19, 2009	0
		Oct 08, 2012	0	Oct 26, 2009 Nov 02, 2009	100 70	Oct 26, 2009 Nov 02, 2009	72 38	Oct 26, 2009 Nov 02, 2009	0	Oct 26, 2009 Nov 02, 2009	620 390	Oct 26, 2009 Nov 02, 2009	30 20	Oct 26, 2009 Nov 02, 2009	0
		Oct 15, 2012 Oct 22, 2012	0	Nov 09, 2009	60	Nov 09, 2009	50	Nov 09, 2009	0	Nov 09, 2009 Nov 16, 2009	240	Nov 09, 2009 Nov 16, 2009	30 50	Nov 09, 2009 Nov 16, 2009	0
		Oct 30, 2012 Nov 05, 2012	0	Nov 16, 2009 Nov 23, 2009	140 80	Nov 16, 2009 Nov 23, 2009	38 52	Nov 16, 2009 Nov 23, 2009	0	Nov 23, 2009	420 340	Nov 23, 2009	30	Nov 23, 2009	0
		Nov 12, 2012 Nov 19, 2012	0	Nov 30, 2009 Dec 08, 2009	140 10	Nov 30, 2009 Dec 08, 2009	23 30	Nov 30, 2009 Dec 08, 2009	0	Nov 30, 2009 Dec 08, 2009	550 360	Nov 30, 2009 Dec 08, 2009	10 10	Nov 30, 2009 Dec 08, 2009	0 0
		Nov 26, 2012 Dec 03, 2012	0	Dec 14, 2009 Dec 21, 2009	60 170	Dec 14, 2009 Dec 21, 2009	25 30	Dec 14, 2009 Dec 21, 2009	0	Dec 14, 2009 Dec 21, 2009	300 970	Dec 14, 2009 Dec 21, 2009	20 30	Dec 14, 2009 Dec 21, 2009	0
		Dec 10, 2012	0	Dec 28, 2009	60	Dec 28, 2009 Jan 04, 2010	30 23	Dec 28, 2009 Jan 04, 2010	0	Dec 28, 2009 Jan 04, 2010	250 370	Dec 28, 2009 Jan 04, 2010	10 20	Dec 28, 2009 Jan 04, 2010	0
		Dec 17, 2012 Feb 04, 2013	0	Jan 04, 2010 Jan 11, 2010	20 40	Jan 11, 2010	40	Jan 11, 2010	0	Jan 11, 2010	310	Jan 11, 2010	30 10	Jan 11, 2010 Jan 18, 2010	0
		Feb 11, 2013 Feb 18, 2013	0	Jan 18, 2010 Jan 26, 2010	20 60	Jan 18, 2010 Jan 26, 2010	12 50	Jan 18, 2010 Jan 26, 2010	0 0	Jan 18, 2010 Jan 26, 2010	360 350	Jan 18, 2010 Jan 26, 2010	10	Jan 26, 2010	0
		Feb 25, 2013 Mar 04, 2013	0	Feb 01, 2010 Feb 08, 2010	50 100	Feb 01, 2010 Feb 08, 2010	42 0	Feb 01, 2010 Feb 08, 2010	0	Feb 01, 2010 Feb 08, 2010	560 250	Feb 01, 2010 Feb 08, 2010	20 30	Feb 01, 2010 Feb 08, 2010	0
		Mar 11, 2013	0	Feb 15, 2010 Feb 22, 2010	60 40	Feb 15, 2010 Feb 22, 2010	43 33	Feb 15, 2010 Feb 22, 2010	0	Feb 15, 2010 Feb 22, 2010	490 260	Feb 15, 2010 Feb 22, 2010	20 10	Feb 15, 2010 Feb 22, 2010	0
		Mar 18, 2013 Mar 25, 2013	0	Mar 01, 2010	600	Mar 01, 2010	28 0	Mar 01, 2010	0	Mar 01, 2010 Mar 08, 2010	230 180	Mar 01, 2010 Mar 08, 2010	10 80	Mar 01, 2010 Mar 08, 2010	0
		Apr 01, 2013 Apr 08, 2013	0 0	Mar 08, 2010 Mar 15, 2010	350 30	Mar 08, 2010 Mar 15, 2010	8	Mar 08, 2010 Mar 15, 2010	0	Mar 15, 2010	440	Mar 15, 2010	20	Mar 15, 2010	0
		Apr 15, 2013 Apr 22, 2013	0	Mar 22, 2010 Mar 29, 2010	150 30	Mar 22, 2010 Mar 29, 2010	33 42	Mar 22, 2010 Mar 29, 2010	0	Mar 22, 2010 Mar 29, 2010	100 750	Mar 22, 2010 Mar 29, 2010	30 20	Mar 22, 2010 Apr 05, 2010	0
		Apr 29, 2013 May 06, 2013	0	Apr 05, 2010 Apr 12, 2010	70 40	Apr 05, 2010 Apr 12, 2010	8 18	Apr 05, 2010 Apr 12, 2010	0	Apr 05, 2010 Apr 12, 2010	10 790	Apr 05, 2010 Apr 12, 2010	1 10	Apr 12, 2010 Apr 19, 2010	0
1		May 13, 2013	0	Apr 19, 2010	80	Apr 19, 2010	50	Apr 19, 2010	0	Apr 19, 2010	590	Apr 19, 2010	30	Apr 26, 2010	0

Summit Corporation of America Water Quality Based Limit Determination: Data Summary

DSN 001-1 DMR Data: January 2008-June 2018

Г

			DSN	001	-1 DMR E	Data:	January 2	2008	3-June 20	18				
Cadmium	<u>Chromiu</u>		Coppe		Cyanide,		Lead	1.28	Nickel DATE	ual	Silver DATE	ug/L	Zinc DATE	ug/L
DATE ug/L	DATE May 20, 2013	0g/L	DATE Apr 26, 2010	- 30	DATE Apr 26, 2010	0g/L 63	Apr 26, 2010	ug/L 0 0	Apr 26, 2010 May 03, 2010	450 330	Apr 26, 2010 May 03, 2010	10 10	May 03, 2010 May 10, 2010	0
	May 28, 2013 Jun 03, 2013	0	May 03, 2010 May 10, 2010	40 40	May 03, 2010 May 10, 2010	17 45	May 03, 2010 May 10, 2010	0	May 10, 2010	250	May 10, 2010	10	May 17, 2010	0
	Jun 10, 2013 Jun 17, 2013	0	May 17, 2010 May 24, 2010	70 50	May 17, 2010 May 24, 2010	0 22	May 17, 2010 May 24, 2010	0	May 17, 2010 May 24, 2010	350 440	May 17, 2010 May 24, 2010	30 10	May 24, 2010 Jun 01, 2010	0
	Jun 24, 2013 Jul 15, 2013	0	Jun 01, 2010 Jun 07, 2010	50 30	Jun 01, 2010 Jun 07, 2010	5 27	Jun 01, 2010 Jun 07, 2010	0	Jun 01, 2010 Jun 07, 2010	500 410	Jun 01, 2010 Jun 07, 2010	10 20	Jun 07, 2010 Jun 14, 2010	0 0
	Jul 22, 2013 Jul 29, 2013	0 0	Jun 14, 2010 Jun 21, 2010	50 40	Jun 14, 2010 Jun 21, 2010	3 23	Jun 14, 2010 Jun 21, 2010	0	Jun 14, 2010 Jun 21, 2010	270 440	Jun 14, 2010 Jun 21, 2010	20 10	Jun 21, 2010 Jun 28, 2010	0
	Aug 05, 2013	0	Jun 28, 2010	40 30	Jun 28, 2010	18 30	Jun 28, 2010 Jul 13, 2010	0	Jun 28, 2010 Jul 13, 2010	400 500	Jun 28, 2010 Jul 13, 2010	30 10	Jul 13, 2010 Jul 19, 2010	0
	Aug 12, 2013 Aug 19, 2013	0	Jul 13, 2010 Jul 19, 2010	30	Jul 13, 2010 Jul 19, 2010	7	Jul 19, 2010	0	Jul 19, 2010 Jul 26, 2010	600	Jul 19, 2010 Jul 26, 2010	30 20	Jul 26, 2010 Aug 02, 2010	0
	Aug 26, 2013 Sep 03, 2013	0	Jul 26, 2010 Aug 02, 2010	60 100	Jul 26, 2010 Aug 02, 2010	8 52	Jul 26, 2010 Aug 02, 2010	0	Aug 02, 2010	420	Aug 02, 2010	20	Aug 09, 2010	0
	Sep 09, 2013 Sep 16, 2013	0	Aug 09, 2010 Aug 16, 2010	80 60	Aug 09, 2010 Aug 16, 2010	77 98	Aug 09, 2010 Aug 16, 2010	0	Aug 09, 2010 Aug 16, 2010	450 480	Aug 09, 2010 Aug 16, 2010	20 20	Aug 16, 2010 Aug 23, 2010	0
	Sep 23, 2013 Sep 30, 2013	0	Aug 23, 2010 Aug 30, 2010	40 20	Aug 23, 2010 Aug 30, 2010	18 77	Aug 23, 2010 Aug 30, 2010	0	Aug 23, 2010 Aug 30, 2010	440 440	Aug 23, 2010 Aug 30, 2010	20 10	Aug 30, 2010 Sep 07, 2010	0
	Oct 07, 2013 Oct 14, 2013	0	Sep 07, 2010 Sep 13, 2010	50 90	Sep 07, 2010 Sep 13, 2010	55 85	Sep 07, 2010 Sep 13, 2010	0	Sep 07, 2010 Sep 13, 2010	400 460	Sep 07, 2010 Sep 13, 2010	20 30	Sep 13, 2010 Sep 20, 2010	0 0
	Oct 21, 2013 Oct 28, 2013	0	Sep 20, 2010 Sep 27, 2010	150 50	Sep 20, 2010 Sep 27, 2010	15 43	Sep 20, 2010 Sep 27, 2010	0	Sep 20, 2010 Sep 27, 2010	650 510	Sep 20, 2010 Sep 27, 2010	30 10	Sep 27, 2010 Oct 04, 2010	0 0
	Nov 04, 2013 Nov 11, 2013	0	Oct 04, 2010 Oct 11, 2010	100 80	Oct 04, 2010 Oct 11, 2010	7 3	Oct 04, 2010 Oct 11, 2010	0	Oct 04, 2010 Oct 11, 2010	320 280	Oct 04, 2010 Oct 11, 2010	20 10	Oct 11, 2010 Oct 18, 2010	0
	Nov 18, 2013	0 0	Oct 18, 2010 Oct 25, 2010	70 80	Oct 18, 2010 Oct 25, 2010	0	Oct 18, 2010 Oct 25, 2010	0	Oct 18, 2010 Oct 25, 2010	270 200	Oct 18, 2010 Oct 25, 2010	20 20	Oct 25, 2010 Nov 01, 2010	0
	Nov 25, 2013 Dec 02, 2013	0	Nov 01, 2010	80	Nov 01, 2010	63	Nov 01, 2010 Nov 08, 2010	0	Nov 01, 2010 Nov 08, 2010	440 170	Nov 01, 2010 Nov 08, 2010	20 10	Nov 08, 2010 Nov 15, 2010	0
	Dec 09, 2013 Dec 16, 2013	0	Nov 08, 2010 Nov 15, 2010	200 70	Nov 08, 2010 Nov 15, 2010	80 38	Nov 15, 2010	0	Nov 15, 2010	370 250	Nov 15, 2010 Nov 22, 2010	10 10	Nov 22, 2010 Nov 29, 2010	0
	Dec 30, 2013 Jan 06, 2014	0	Nov 22, 2010 Nov 29, 2010	60 130	Nov 22, 2010 Nov 29, 2010	53 140	Nov 22, 2010 Nov 29, 2010	0	Nov 22, 2010 Nov 29, 2010	290	Nov 29, 2010	20	Dec 06, 2010	0
	Jan 13, 2014 Jan 20, 2014	0	Dec 06, 2010 Dec 13, 2010	140 80	Dec 06, 2010 Dec 13, 2010	68 57	Dec 06, 2010 Dec 13, 2010	0	Dec 06, 2010 Dec 13, 2010	450 530	Dec 06, 2010 Dec 13, 2010	30 20	Dec 13, 2010 Dec 20, 2010	0
	Jan 27, 2014 Feb 03, 2014	0	Dec 20, 2010 Dec 27, 2010	70 110	Dec 20, 2010 Dec 27, 2010	23 23	Dec 20, 2010 Dec 27, 2010	0	Dec 20, 2010 Dec 27, 2010	210 420	Dec 20, 2010 Dec 27, 2010	30 30	Dec 27, 2010 Jan 03, 2011	0
	Feb 10, 2014 Feb 17, 2014	0	Jan 03, 2011 Jan 10, 2011	110 20	Jan 03, 2011 Jan 10, 2011	55 30	Jan 03, 2011 Jan 10, 2011	0	Jan 03, 2011 Jan 10, 2011	590 420	Jan 03, 2011 Jan 10, 2011	20 20	Jan 10, 2011 Jan 17, 2011	0 0
	Feb 24, 2014 Mar 03, 2014	0	Jan 17, 2011 Jan 24, 2011	160 100	Jan 17, 2011 Jan 24, 2011	57 103	Jan 17, 2011 Jan 24, 2011	0	Jan 17, 2011 Jan 24, 2011	550 720	Jan 17, 2011 Jan 24, 2011	20 20	Jan 24, 2011 Jan 31, 2011	0
	Mar 10, 2014 Mar 10, 2014 Mar 17, 2014	0	Jan 31, 2011 Feb 07, 2011	300 70	Jan 31, 2011 Feb 07, 2011	13 18	Jan 31, 2011 Feb 07, 2011	0	Jan 31, 2011 Feb 07, 2011	720 490	Jan 31, 2011 Feb 07, 2011	20 20	Feb 07, 2011 Feb 14, 2011	0 0
	Mar 24, 2014	0	Feb 14, 2011 Feb 21, 2011	70 40	Feb 14, 2011 Feb 21, 2011	277 88	Feb 14, 2011 Feb 21, 2011	0	Feb 14, 2011 Feb 21, 2011	470 320	Feb 14, 2011 Feb 21, 2011	20 20	Feb 21, 2011 Feb 28, 2011	0
	Mar 31, 2014 Apr 07, 2014	0	Feb 28, 2011	290	Feb 28, 2011 Mar 07, 2011	70 100	Feb 28, 2011 Mar 07, 2011	0	Feb 28, 2011 Mar 07, 2011	490 530	Feb 28, 2011 Mar 07, 2011	20 20	Mar 07, 2011 Mar 14, 2011	0
	Apr 14, 2014 Apr 21, 2014	0	Mar 07, 2011 Mar 14, 2011	180 30	Mar 14, 2011	205	Mar 14, 2011	0	Mar 14, 2011 Mar 21, 2011	250 450	Mar 14, 2011 Mar 21, 2011	20 30	Mar 21, 2011 Mar 28, 2011	0
	Apr 28, 2014 May 05, 2014	0	Mar 21, 2011 Mar 28, 2011	60 80	Mar 21, 2011 Mar 28, 2011	73 67	Mar 21, 2011 Mar 28, 2011	0	Mar 28, 2011	600	Mar 28, 2011	20 20	Apr 04, 2011 Apr 11, 2011	0
	May 12, 2014 May 19, 2014	0	Apr 04, 2011 Apr 11, 2011	250 30	Apr 04, 2011 Apr 11, 2011	42 38	Apr 04, 2011 Apr 11, 2011	0	Apr 04, 2011 Apr 11, 2011	450 300	Apr 04, 2011 Apr 11, 2011	20	Apr 18, 2011	0
	May 27, 2014 Jun 02, 2014	0	Apr 18, 2011 Apr 25, 2011	30 30	Apr 18, 2011 Apr 25, 2011	157 73	Apr 18, 2011 Apr 25, 2011	0	Apr 18, 2011 Apr 25, 2011	400 550	Apr 18, 2011 Apr 25, 2011	30 10	Apr 25, 2011 May 02, 2011	0
1	Jun 09, 2014 Jun 16, 2014	0	May 02, 2011 May 09, 2011	80 30	May 02, 2011 May 09, 2011	65 100	May 02, 2011 May 09, 2011	0 0	May 02, 2011 May 09, 2011	170 160	May 02, 2011 May 09, 2011	10 20	May 09, 2011 May 16, 2011	0
	Jun 23, 2014 Jul 08, 2014	0	May 16, 2011 May 23, 2011	30 30	May 16, 2011 May 23, 2011	28 73	May 16, 2011 May 23, 2011	0	May 16, 2011 May 23, 2011	260 190	May 16, 2011 May 23, 2011	10 10	May 23, 2011 May 31, 2011	0
	Jul 14, 2014 Jul 21, 2014	0	May 31, 2011 Jun 06, 2011	130 30	May 31, 2011 Jun 06, 2011	35 17	May 31, 2011 Jun 06, 2011	0	May 31, 2011 Jun 06, 2011	430 440	May 31, 2011 Jun 06, 2011	30 20	Jun 06, 2011 Jun 13, 2011	0
	Jul 28, 2014 Aug 04, 2014	0	Jun 13, 2011 Jun 21, 2011	20 50	Jun 13, 2011 Jun 21, 2011	30 40	Jun 13, 2011 Jun 21, 2011	0	Jun 13, 2011 Jun 21, 2011	200 340	Jun 13, 2011 Jun 21, 2011	0 20	Jun 21, 2011 Jun 27, 2011	0
	Aug 11, 2014 Aug 18, 2014	0	Jun 27, 2011 Jul 11, 2011	20 70	Jun 27, 2011 Jul 11, 2011	5 33	Jun 27, 2011 Jul 11, 2011	0	Jun 27, 2011 Jul 11, 2011	530 380	Jun 27, 2011 Jul 11, 2011	10 10	Jul 11, 2011 Jul 18, 2011	0
	Aug 25, 2014 Sep 02, 2014	8 13	Jul 18, 2011 Jul 25, 2011	40 20	Jul 18, 2011 Jul 25, 2011	158 88	Jul 18, 2011 Jul 25, 2011	0	Jul 18, 2011 Jul 25, 2011	200 260	Jul 18, 2011 Jul 25, 2011	10 10	Jul 25, 2011 Aug 01, 2011	0
	Sep 08, 2014	0	Aug 01, 2011 Aug 08, 2011	40 20	Aug 01, 2011 Aug 08, 2011	33 50	Aug 01, 2011 Aug 08, 2011	0	Aug 01, 2011 Aug 08, 2011	150 370	Aug 01, 2011 Aug 08, 2011	20 10	Aug 08, 2011 Aug 15, 2011	0
	Sep 15, 2014 Sep 22, 2014	0	Aug 15, 2011	40 30	Aug 15, 2011 Aug 22, 2011	43 72	Aug 15, 2011 Aug 22, 2011	0	Aug 15, 2011 Aug 22, 2011	120 160	Aug 15, 2011 Aug 22, 2011	10 10	Aug 22, 2011 Aug 29, 2011	0
	Sep 29, 2014 Oct 06, 2014	268 0	Aug 22, 2011 Aug 29, 2011	30	Aug 29, 2011	27 75	Aug 29, 2011 Sep 06, 2011	0	Aug 29, 2011 Sep 06, 2011	230 110	Aug 29, 2011 Sep 06, 2011	10 10	Sep 06, 2011 Sep 12, 2011	0
	Oct 13, 2014 Oct 20, 2014	0	Sep 06, 2011 Sep 12, 2011	40 40	Sep 06, 2011 Sep 12, 2011	27	Sep 12, 2011 Sep 19, 2011	0	Sep 12, 2011 Sep 19, 2011	170	Sep 12, 2011 Sep 19, 2011	30 20	Sep 19, 2011 Sep 26, 2011	0
	Oct 27, 2014 Nov 03, 2014	0	Sep 19, 2011 Sep 26, 2011	80 30	Sep 19, 2011 Sep 26, 2011	17 3	Sep 26, 2011	0	Sep 26, 2011 Oct 03, 2011	140 160	Sep 26, 2011 Oct 03, 2011	20 10	Oct 03, 2011 Oct 10, 2011	0
	Nov 10, 2014 Nov 17, 2014	0	Oct 03, 2011 Oct 10, 2011	30 30	Oct 03, 2011 Oct 10, 2011	48 225	Oct 03, 2011 Oct 10, 2011	0	Oct 10, 2011	180	Oct 10, 2011	20 20	Oct 17, 2011 Oct 24, 2011	0 0
	Nov 24, 2014 Dec 01, 2014	0	Oct 17, 2011 Oct 24, 2011	30 60	Oct 17, 2011 Oct 24, 2011	23 18	Oct 17, 2011 Oct 24, 2011	0	Oct 17, 2011 Oct 24, 2011	80 550	Oct 17, 2011 Oct 24, 2011	10	Nov 07, 2011 Nov 14, 2011	0
	Dec 08, 2014 Dec 15, 2014	0	Nov 07, 2011 Nov 14, 2011	210 70	Nov 07, 2011 Nov 14, 2011	53 47	Nov 07, 2011 Nov 14, 2011	0 0	Nov 07, 2011 Nov 14, 2011	320 260	Nov 07, 2011 Nov 14, 2011	20 10	Nov 21, 2011	0
	Dec 22, 2014 Dec 29, 2014	0	Nov 21, 2011 Nov 28, 2011	30 60	Nov 21, 2011 Nov 28, 2011	25 90	Nov 21, 2011 Nov 28, 2011	0	Nov 21, 2011 Nov 28, 2011	190 210	Nov 21, 2011 Nov 28, 2011	10 10	Nov 28, 2011 Dec 05, 2011	0
	Jan 05, 2015 Jan 12, 2015	0	Dec 05, 2011 Dec 12, 2011	120 310	Dec 05, 2011 Dec 12, 2011	23 50	Dec 05, 2011 Dec 12, 2011	0	Dec 05, 2011 Dec 12, 2011	370 460	Dec 05, 2011 Dec 12, 2011	20 20	Dec 12, 2011 Dec 19, 2011	0
	Jan 19, 2015 Jan 28, 2015	0	Dec 19, 2011 Jan 02, 2012	200 140	Dec 19, 2011 Jan 02, 2012	8 2	Dec 19, 2011 Jan 02, 2012	0	Dec 19, 2011 Jan 02, 2012	360 290	Dec 19, 2011 Jan 02, 2012	20 20	Jan 02, 2012 Jan 09, 2012	0 0
	Feb 02, 2015 Feb 09, 2015	0 5	Jan 09, 2012 Jan 16, 2012	60 70	Jan 09, 2012 Jan 16, 2012	67 23	Jan 09, 2012 Jan 16, 2012	0	Jan 09, 2012 Jan 16, 2012	340 380	Jan 09, 2012 Jan 16, 2012	20 10	Jan 16, 2012 Jan 23, 2012	0
	Feb 16, 2015 Feb 23, 2015	0	Jan 23, 2012 Jan 30, 2012	40 130	Jan 23, 2012 Jan 30, 2012	38 13	Jan 23, 2012 Jan 30, 2012	0	Jan 23, 2012 Jan 30, 2012	360 450	Jan 23, 2012 Jan 30, 2012	10 20	Jan 30, 2012 Feb 06, 2012	0
	Mar 02, 2015	6	Feb 06, 2012 Feb 13, 2012	140	Feb 06, 2012 Feb 13, 2012	7 25	Feb 06, 2012 Feb 13, 2012	0	Feb 06, 2012 Feb 13, 2012	430 420	Feb 06, 2012 Feb 13, 2012	10 10	Feb 13, 2012 Feb 20, 2012	0
	Mar 09, 2015 Mar 17, 2015	0	Feb 20, 2012	30 30	Feb 20, 2012 Feb 27, 2012	5	Feb 20, 2012 Feb 27, 2012	0	Feb 20, 2012 Feb 27, 2012	320 370	Feb 20, 2012 Feb 27, 2012	10 10	Feb 27, 2012 Mar 05, 2012	0
	Mar 23, 2015 Mar 30, 2015	5	Feb 27, 2012 Mar 05, 2012	40	Mar 05, 2012	27	Mar 05, 2012 Mar 12, 2012	0 0	Mar 05, 2012 Mar 12, 2012	420 470	Mar 05, 2012 Mar 12, 2012	0	Mar 12, 2012 Mar 19, 2012	0
	Apr 06, 2015 Apr 13, 2015	0	Mar 12, 2012 Mar 19, 2012	80 20	Mar 12, 2012 Mar 19, 2012	33 12	Mar 19, 2012	0	Mar 19, 2012	230	Mar 19, 2012	0	Mar 26, 2012 Apr 02, 2012	0
	Apr 20, 2015 Apr 27, 2015	0	Mar 26, 2012 Apr 02, 2012	110 70	Mar 26, 2012 Apr 02, 2012	7 15	Mar 26, 2012 Apr 02, 2012	0	Mar 26, 2012 Apr 02, 2012	570 250	Mar 26, 2012 Apr 02, 2012	10 0	Apr 09, 2012	0
1	May 04, 2015 May 11, 2015	0 0	Apr 09, 2012 Apr 16, 2012	20 40	Apr 09, 2012 Apr 16, 2012	7 12	Apr 09, 2012 Apr 16, 2012	0	Apr 09, 2012 Apr 16, 2012	290 380	Apr 09, 2012 Apr 16, 2012	0	Apr 16, 2012 Apr 23, 2012	0
	May 18, 2015 May 26, 2015	0	Apr 23, 2012 Apr 30, 2012	50 40	Apr 23, 2012 Apr 30, 2012	28 15	Apr 23, 2012 Apr 30, 2012	0	Apr 23, 2012 Apr 30, 2012	550 500	Apr 23, 2012 Apr 30, 2012	20 10	Apr 30, 2012 May 07, 2012	0
1	Jun 01, 2015 Jun 08, 2015	5 6	May 07, 2012 May 14, 2012	100 250	May 07, 2012 May 14, 2012	20 33	May 07, 2012 May 14, 2012	0	May 07, 2012 May 14, 2012	460 520	May 07, 2012 May 14, 2012	20 10	May 14, 2012 May 21, 2012	0
	Jun 15, 2015 Jun 22, 2015	0	May 21, 2012 May 29, 2012	130 280	May 21, 2012 May 29, 2012	55 10	May 21, 2012 May 29, 2012	0	May 21, 2012 May 29, 2012	350 540	May 21, 2012 May 29, 2012	10 10	May 29, 2012 Jun 04, 2012	0
1	Jul 08, 2015 Jul 13, 2015	0	Jun 04, 2012 Jun 11, 2012	100	Jun 04, 2012 Jun 11, 2012	23 17	Jun 04, 2012 Jun 11, 2012	0	Jun 04, 2012 Jun 11, 2012	450 480	Jun 04, 2012 Jun 11, 2012	0	Jun 11, 2012 Jun 18, 2012	0 0
	Jul 20, 2015	5	Jun 18, 2012 Jun 25, 2012	500 170	Jun 18, 2012 Jun 25, 2012	18 23	Jun 18, 2012 Jun 25, 2012	0	Jun 18, 2012 Jun 25, 2012	490 420	Jun 18, 2012 Jun 25, 2012	0	Jun 25, 2012 Jul 16, 2012	0
	Jul 27, 2015 Aug 03, 2015	8	Jul 16, 2012	80 20	Jul 16, 2012 Jul 23, 2012	0 56	Jul 16, 2012 Jul 23, 2012	0	Jul 16, 2012 Jul 23, 2012	330 360	Jul 16, 2012 Jul 23, 2012	10 10	Jul 23, 2012 Jul 30, 2012	0
	Aug 10, 2015 Aug 17, 2015	6	Jul 23, 2012 Jul 30, 2012	70	Jul 30, 2012	70 13	Jul 30, 2012 Aug 06, 2012	0	Jul 30, 2012 Aug 06, 2012	610 650	Jul 30, 2012 Aug 06, 2012	10 0	Aug 06, 2012 Aug 13, 2012	0
1	Aug 24, 2015	0	Aug 06, 2012	90	Aug 06, 2012	13	109 00, 2012	v	1111 00, 2012	000		2		

Summit Corporation of America Water Quality Based Limit Determination: Data Summary

DSN 001-1 DMR Data: January 2008-June 2018

			DSN	001	-1 DMR E	Data:	January	2008	3-June 20	18				
Cadmium DATE ug/L	Chromit DATE	um ug/L	Coppe DATE	Ľ ug/L	Cyanide, 1 DATE	Total ug/L	Lead DATE	ug/L	Nickel DATE	ug/L	Silver DATE	ug/L	Zinc DATE	ug/L
DATE UGL	Aug 31, 2015 Sep 08, 2015	0	Aug 13, 2012 Aug 20, 2012	20 30	Aug 13, 2012 Aug 20, 2012	90 50	Aug 13, 2012 Aug 20, 2012	0	Aug 13, 2012 Aug 20, 2012	490 600	Aug 13, 2012 Aug 20, 2012	10 0	Aug 20, 2012 Aug 27, 2012	0
	Sep 14, 2015 Sep 21, 2015	5 5	Aug 27, 2012 Sep 04, 2012	210 30	Aug 27, 2012 Sep 04, 2012	37 107	Aug 27, 2012 Sep 04, 2012	0	Aug 27, 2012 Sep 04, 2012	660 590	Aug 27, 2012 Sep 04, 2012	0 20	Sep 04, 2012 Sep 10, 2012	0
	Sep 28, 2015 Oct 05, 2015	5	Sep 10, 2012 Sep 17, 2012	220 120	Sep 10, 2012 Sep 17, 2012	10 23	Sep 10, 2012 Sep 17, 2012	0	Sep 10, 2012 Sep 17, 2012	500 570	Sep 10, 2012 Sep 17, 2012	20 20	Sep 17, 2012 Sep 24, 2012	0
	Oct 12, 2015	5	Sep 24, 2012	90 90	Sep 24, 2012 Oct 01, 2012	5 113	Sep 24, 2012 Oct 01, 2012	0	Sep 24, 2012 Oct 01, 2012	540 500	Sep 24, 2012 Oct 01, 2012	20 20	Oct 01, 2012 Oct 08, 2012	0
	Oct 19, 2015 Oct 26, 2015	0	Oct 01, 2012 Oct 08, 2012	20	Oct 08, 2012	103	Oct 08, 2012	0	Oct 08, 2012 Oct 15, 2012	500 550	Oct 08, 2012 Oct 15, 2012	20 0	Oct 15, 2012 Oct 22, 2012	0
	Nov 03, 2015 Nov 09, 2015	60	Oct 15, 2012 Oct 22, 2012	30 40	Oct 15, 2012 Oct 22, 2012	78 48	Oct 15, 2012 Oct 22, 2012	0	Oct 22, 2012	530	Oct 22, 2012	0 0	Oct 30, 2012 Nov 05, 2012	0
	Nov 16, 2015 Nov 23, 2015	48 28	Oct 30, 2012 Nov 05, 2012	30 60	Oct 30, 2012 Nov 05, 2012	108 25	Oct 30, 2012 Nov 05, 2012	0	Oct 30, 2012 Nov 05, 2012	660 650	Oct 30, 2012 Nov 05, 2012	20 0	Nov 12, 2012	0
	Nov 30, 2015 Dec 07, 2015	15 43	Nov 12, 2012 Nov 19, 2012	20 240	Nov 12, 2012 Nov 19, 2012	100 10	Nov 12, 2012 Nov 19, 2012	0	Nov 12, 2012 Nov 19, 2012	590 440	Nov 12, 2012 Nov 19, 2012	10	Nov 19, 2012 Nov 26, 2012	20
	Dec 14, 2015 Dec 21, 2015	22 12	Nov 26, 2012 Dec 03, 2012	20 190	Nov 26, 2012 Dec 03, 2012	97 53	Nov 26, 2012 Dec 03, 2012	0	Nov 26, 2012 Dec 03, 2012	670 510	Nov 26, 2012 Dec 03, 2012	20 20	Dec 03, 2012 Dec 10, 2012	0 10
	Dec 28, 2015 Jan 04, 2016	9 12	Dec 10, 2012 Dec 17, 2012	110 70	Dec 10, 2012 Dec 17, 2012	20 5	Dec 10, 2012 Dec 17, 2012	0	Dec 10, 2012 Dec 17, 2012	610 610	Dec 10, 2012 Dec 17, 2012	0 20	Dec 17, 2012 Feb 04, 2013	0
	Jan 11, 2016 Jan 18, 2016	10 0	Feb 04, 2013 Feb 11, 2013	40 130	Feb 04, 2013 Feb 11, 2013	25 92	Feb 04, 2013 Feb 11, 2013	0	Feb 04, 2013 Feb 11, 2013	560 570	Feb 04, 2013 Feb 11, 2013	20 20	Feb 11, 2013 Feb 18, 2013	0
	Jan 25, 2016 Feb 01, 2016	0	Feb 18, 2013 Feb 25, 2013	70 70	Feb 18, 2013 Feb 25, 2013	128 82	Feb 18, 2013 Feb 25, 2013	0	Feb 18, 2013 Feb 25, 2013	450 520	Feb 18, 2013 Feb 25, 2013	20 20	Feb 25, 2013 Mar 04, 2013	0
	Feb 08, 2016 Feb 16, 2016	0	Mar 04, 2013 Mar 11, 2013	210 80	Mar 04, 2013 Mar 11, 2013	78 125	Mar 04, 2013 Mar 11, 2013	0	Mar 04, 2013 Mar 11, 2013	570 520	Mar 04, 2013 Mar 11, 2013	20 20	Mar 11, 2013 Mar 18, 2013	0
	Feb 22, 2016	0	Mar 18, 2013 Mar 25, 2013	320 180	Mar 18, 2013 Mar 25, 2013	225 410	Mar 18, 2013 Mar 25, 2013	0	Mar 18, 2013 Mar 25, 2013	470 220	Mar 18, 2013 Mar 25, 2013	20 20	Mar 25, 2013 Apr 01, 2013	0
	Mar 01, 2016 Mar 07, 2016	0	Apr 01, 2013	400	Apr 01, 2013 Apr 08, 2013	152 35	Apr 01, 2013 Apr 08, 2013	0	Apr 01, 2013 Apr 08, 2013	480 570	Apr 01, 2013 Apr 08, 2013	20 20	Apr 08, 2013 Apr 15, 2013	0
	Mar 14, 2016 Mar 21, 2016	0	Apr 08, 2013 Apr 15, 2013	50	Apr 15, 2013	123 93	Apr 15, 2013 Apr 22, 2013	0	Apr 15, 2013 Apr 22, 2013	480 450	Apr 15, 2013 Apr 22, 2013	20 20	Apr 22, 2013 Apr 29, 2013	0
	Mar 28, 2016 Apr 05, 2016	0	Apr 22, 2013 Apr 29, 2013	170 20	Apr 22, 2013 Apr 29, 2013	47	Apr 29, 2013	0	Apr 29, 2013 May 06, 2013	490 530	Apr 29, 2013 May 06, 2013	10 10	May 06, 2013 May 13, 2013	0
	Apr 11, 2016 Apr 18, 2016	0	May 06, 2013 May 13, 2013	40 60	May 06, 2013 May 13, 2013	40 55	May 06, 2013 May 13, 2013	0	May 13, 2013	430	May 13, 2013	20	May 20, 2013	0
	Apr 25, 2016 May 03, 2016	14 0	May 20, 2013 May 28, 2013	130 50	May 20, 2013 May 28, 2013	23 0	May 20, 2013 May 28, 2013	0	May 20, 2013 May 28, 2013	540 440	May 20, 2013 May 28, 2013	10 10	May 28, 2013 Jun 03, 2013 Jun 10, 2013	0
	May 09, 2016 May 16, 2016	0 20	Jun 03, 2013 Jun 10, 2013	30 140	Jun 03, 2013 Jun 10, 2013	12 58	Jun 03, 2013 Jun 10, 2013	0	Jun 03, 2013 Jun 10, 2013	570 520	Jun 03, 2013 Jun 10, 2013	10 20	Jun 10, 2013 Jun 17, 2013	0
	May 23, 2016 May 31, 2016	0 18	Jun 17, 2013 Jun 24, 2013	70 110	Jun 17, 2013 Jun 24, 2013	62 0	Jun 17, 2013 Jun 24, 2013	0	Jun 17, 2013 Jun 24, 2013	510 430	Jun 17, 2013 Jun 24, 2013	10 10	Jun 24, 2013 Jul 15, 2013	0
	Jun 06, 2016 Jun 13, 2016	0 6	Jul 15, 2013 Jul 22, 2013	60 250	Jul 15, 2013 Jul 22, 2013	7 52	Jul 15, 2013 Jul 22, 2013	0	Jul 15, 2013 Jul 22, 2013	440 530	Jul 15, 2013 Jul 22, 2013	0	Jul 22, 2013 Jul 29, 2013	0
	Jun 20, 2016 Jun 27, 2016	9 0	Jul 29, 2013 Aug 05, 2013	30 110	Jul 29, 2013 Aug 05, 2013	52 10	Jul 29, 2013 Aug 05, 2013	0	Jul 29, 2013 Aug 05, 2013	570 550	Jul 29, 2013 Aug 05, 2013	0	Aug 05, 2013 Aug 12, 2013	0
	Jul 12, 2016 Jul 19, 2016	5	Aug 12, 2013 Aug 19, 2013	200 320	Aug 12, 2013 Aug 19, 2013	0 18	Aug 12, 2013 Aug 19, 2013	0	Aug 12, 2013 Aug 19, 2013	510 440	Aug 12, 2013 Aug 19, 2013	20 20	Aug 19, 2013 Aug 26, 2013	0
	Jul 29, 2016 Aug 01, 2016	5	Aug 26, 2013 Sep 03, 2013	30 70	Aug 26, 2013 Sep 03, 2013	35 92	Aug 26, 2013 Sep 03, 2013	0	Aug 26, 2013 Sep 03, 2013	420 500	Aug 26, 2013 Sep 03, 2013	10 0	Sep 03, 2013 Sep 09, 2013	0
4	Aug 08, 2016 Aug 16, 2016	5 0	Sep 09, 2013 Sep 16, 2013	50 40	Sep 09, 2013 Sep 16, 2013	72 43	Sep 09, 2013 Sep 16, 2013	0	Sep 09, 2013 Sep 16, 2013	520 410	Sep 09, 2013 Sep 16, 2013	0	Sep 16, 2013 Sep 23, 2013	0
	Aug 25, 2016	0	Sep 23, 2013	310 130	Sep 23, 2013 Sep 30, 2013	45 8	Sep 23, 2013 Sep 30, 2013	0	Sep 23, 2013 Sep 30, 2013	570 510	Sep 23, 2013 Sep 30, 2013	10 20	Sep 30, 2013 Oct 07, 2013	0
	Aug 29, 2016 Sep 07, 2016	7	Sep 30, 2013 Oct 07, 2013	90 380	Oct 07, 2013 Oct 14, 2013	28 18	Oct 07, 2013 Oct 14, 2013	0	Oct 07, 2013 Oct 14, 2013	550 570	Oct 07, 2013 Oct 14, 2013	10 10	Oct 14, 2013 Oct 21, 2013	0
	Sep 12, 2016 Sep 19, 2016	0	Oct 14, 2013 Oct 21, 2013	290	Oct 21, 2013 Oct 28, 2013	93 168	Oct 21, 2013 Oct 28, 2013	0	Oct 21, 2013 Oct 28, 2013	570 550	Oct 21, 2013 Oct 28, 2013	20 20	Oct 28, 2013 Nov 04, 2013	0
	Sep 26, 2016 Oct 03, 2016	0	Oct 28, 2013 Nov 04, 2013	120 60	Nov 04, 2013	32	Nov 04, 2013	0	Nov 04, 2013 Nov 11, 2013	400 530	Nov 04, 2013 Nov 11, 2013	10 10	Nov 11, 2013 Nov 18, 2013	0
	Oct 11, 2016 Oct 19, 2016	0	Nov 11, 2013 Nov 18, 2013	190 40	Nov 11, 2013 Nov 18, 2013	63 27	Nov 11, 2013 Nov 18, 2013	0	Nov 18, 2013 Nov 25, 2013	440 520	Nov 18, 2013 Nov 25, 2013	0	Nov 25, 2013 Dec 02, 2013	0
	Oct 25, 2016 Oct 31, 2016	0	Nov 25, 2013 Dec 02, 2013	50 120	Nov 25, 2013 Dec 02, 2013	53 400 7	Nov 25, 2013 Dec 02, 2013	0	Dec 02, 2013 Dec 09, 2013	540 490	Dec 02, 2013 Dec 09, 2013	20 0	Dec 09, 2013 Dec 16, 2013	0
	Nov 08, 2016 Nov 16, 2016	0	Dec 09, 2013 Dec 16, 2013	40 40	Dec 09, 2013 Dec 16, 2013	60	Dec 09, 2013 Dec 16, 2013	0	Dec 16, 2013	530	Dec 16, 2013 Dec 30, 2013	0 20	Dec 30, 2013 Jan 06, 2014	0 0
	Nov 21, 2016 Nov 28, 2016	0 5	Dec 30, 2013 Jan 06, 2014	250 140	Dec 30, 2013 Jan 06, 2014	50 200	Dec 30, 2013 Jan 06, 2014	0	Dec 30, 2013 Jan 06, 2014	530 520	Jan 06, 2014	20 10	Jan 13, 2014 Jan 20, 2014	0
	Dec 06, 2016 Dec 12, 2016	0	Jan 13, 2014 Jan 20, 2014	60 30	Jan 13, 2014 Jan 20, 2014	250 220	Jan 13, 2014 Jan 20, 2014	0	Jan 13, 2014 Jan 20, 2014	450 420	Jan 13, 2014 Jan 20, 2014	10	Jan 27, 2014	0
	Dec 20, 2016 Dec 28, 2016	6 0	Jan 27, 2014 Feb 03, 2014	50 120	Jan 27, 2014 Feb 03, 2014	250 60	Jan 27, 2014 Feb 03, 2014	0 1	Jan 27, 2014 Feb 03, 2014	400 500	Jan 27, 2014 Feb 03, 2014	10 0	Feb 03, 2014 Feb 10, 2014	0
	Jan 04, 2017 Jan 10, 2017	0	Feb 10, 2014 Feb 17, 2014	50 40	Feb 10, 2014 Feb 17, 2014	80 40	Feb 10, 2014 Feb 17, 2014	1	Feb 10, 2014 Feb 17, 2014	510 520	Feb 10, 2014 Feb 17, 2014	0	Feb 17, 2014 Feb 24, 2014	0
	Jan 17, 2017 Jan 24, 2017	0	Feb 24, 2014 Mar 03, 2014	50 30	Feb 24, 2014 Mar 03, 2014	60 110	Feb 24, 2014 Mar 03, 2014	1	Feb 24, 2014 Mar 03, 2014	310 410	Feb 24, 2014 Mar 03, 2014	0	Mar 03, 2014 Mar 10, 2014	Ō
	Jan 31, 2017 Feb 06, 2017	0	Mar 10, 2014 Mar 17, 2014	30 70	Mar 10, 2014 Mar 17, 2014	50 20	Mar 10, 2014 Mar 17, 2014	1	Mar 10, 2014 Mar 17, 2014	540 470	Mar 10, 2014 Mar 17, 2014	0	Mar 17, 2014 Mar 24, 2014	0
	Feb 14, 2017 Feb 21, 2017	0	Mar 24, 2014 Mar 31, 2014	50 310	Mar 24, 2014 Mar 31, 2014	80 70	Mar 24, 2014 Mar 31, 2014	1	Mar 24, 2014 Mar 31, 2014	580 530	Mar 24, 2014 Mar 31, 2014	0 20	Mar 31, 2014 Apr 07, 2014	0
2.45	Feb 28, 2017 Mar 07, 2017	0	Apr 07, 2014 Apr 14, 2014	60 50	Apr 07, 2014 Apr 14, 2014	10 30	Apr 07, 2014 Apr 14, 2014	0	Apr 07, 2014 Apr 14, 2014	560 530	Apr 07, 2014 Apr 14, 2014	0	Apr 14, 2014 Apr 21, 2014	0
	Mar 16, 2017 Mar 21, 2017	7	Apr 21, 2014 Apr 28, 2014	90 40	Apr 21, 2014 Apr 28, 2014	400 160	Apr 21, 2014 Apr 28, 2014	0	Apr 21, 2014 Apr 28, 2014	480 470	Apr 21, 2014 Apr 28, 2014	20 0	Apr 28, 2014 May 05, 2014	0 0
	Mar 28, 2017 Apr 04, 2017	5	May 05, 2014 May 12, 2014	40 90	May 05, 2014 May 12, 2014	30 60	May 05, 2014 May 12, 2014	1 20	May 05, 2014 May 12, 2014	440 510	May 05, 2014 May 12, 2014	10 0	May 12, 2014 May 19, 2014	0
	Apr 11, 2017 Apr 18, 2017	0	May 19, 2014 May 27, 2014	20 30	May 19, 2014 May 27, 2014	70 20	May 19, 2014 May 27, 2014	1	May 19, 2014 May 27, 2014	510 590	May 19, 2014 May 27, 2014	20 0	May 27, 2014 Jun 02, 2014	0 0
	Apr 25, 2017 May 02, 2017	0	Jun 02, 2014 Jun 09, 2014	20 30	Jun 02, 2014 Jun 09, 2014	30 70	Jun 02, 2014 Jun 09, 2014	2 6	Jun 02, 2014 Jun 09, 2014	620 680	Jun 02, 2014 Jun 09, 2014	20 10	Jun 09, 2014 Jun 16, 2014	0
	May 09, 2017 May 16, 2017	0	Jun 16, 2014 Jun 23, 2014	60 20	Jun 16, 2014 Jun 23, 2014	30 70	Jun 16, 2014 Jun 23, 2014	3 13	Jun 16, 2014 Jun 23, 2014	620 660	Jun 16, 2014 Jun 23, 2014	10 10	Jun 23, 2014 Jul 08, 2014	0 10
	May 23, 2017	8	Jul 08, 2014	190 240	Jul 08, 2014 Jul 14, 2014	10	Jul 08, 2014 Jul 14, 2014	7	Jul 08, 2014 Jul 14, 2014	640 880	Jul 08, 2014 Jul 14, 2014	20 20	Jul 14, 2014 Jul 21, 2014	10 10
	May 31, 2017 Jun 06, 2017	7	Jul 14, 2014 Jul 21, 2014	120	Jul 21, 2014 Jul 28, 2014	0	Jul 21, 2014 Jul 28, 2014	9 11	Jul 21, 2014 Jul 28, 2014	720 710	Jul 21, 2014 Jul 28, 2014	0	Jul 28, 2014 Aug 04, 2014	7 20
	Jun 13, 2017 Jun 20, 2017	16 8	Jul 28, 2014 Aug 04, 2014	90 134	Aug 04, 2014	10	Aug 04, 2014	5	Aug 04, 2014 Aug 11, 2014	620 328	Aug 04, 2014 Aug 11, 2014	123 33	Aug 11, 2014 Aug 18, 2014	10 20
	Jun 27, 2017 Jul 11, 2017	5 5	Aug 11, 2014 Aug 18, 2014	86 106	Aug 11, 2014 Aug 18, 2014	10 0	Aug 11, 2014 Aug 18, 2014	0	Aug 18, 2014	527	Aug 18, 2014	15 53	Aug 25, 2014 Sep 02, 2014	50 29
1	Jul 18, 2017 Jul 24, 2017	0 13	Aug 25, 2014 Sep 02, 2014	214 215	Aug 25, 2014 Sep 02, 2014	10 10	Aug 25, 2014 Sep 02, 2014	0 7	Aug 25, 2014 Sep 02, 2014	230 480 578	Aug 25, 2014 Sep 02, 2014 Sep 08, 2014	59 10	Sep 08, 2014 Sep 15, 2014	30 30
	Aug 01, 2017 Aug 08, 2017	0 0	Sep 08, 2014 Sep 15, 2014	160 283	Sep 08, 2014 Sep 15, 2014	0 10	Sep 08, 2014 Sep 15, 2014	9	Sep 08, 2014 Sep 15, 2014	578 780	Sep 08, 2014 Sep 15, 2014	12	Sep 22, 2014	20
	Aug 15, 2017 Aug 22, 2017	0	Sep 22, 2014 Sep 29, 2014	70 5	Sep 22, 2014 Sep 29, 2014	20 0	Sep 22, 2014 Sep 29, 2014	0	Sep 22, 2014 Sep 29, 2014	370 488	Sep 22, 2014 Sep 29, 2014	7	Sep 29, 2014 Oct 06, 2014	22 20
	Aug 29, 2017 Sep 05, 2017	0	Oct 06, 2014 Oct 13, 2014	99 180	Oct 06, 2014 Oct 13, 2014	100 10	Oct 06, 2014 Oct 13, 2014	0	Oct 06, 2014 Oct 13, 2014	550 512	Oct 06, 2014 Oct 13, 2014	11 3	Oct 13, 2014 Oct 20, 2014	30 20
	Sep 12, 2017 Sep 19, 2017	5 0	Oct 20, 2014 Oct 27, 2014	307 272	Oct 20, 2014 Oct 27, 2014	60 40	Oct 20, 2014 Oct 27, 2014	15 0	Oct 20, 2014 Oct 27, 2014	406 420	Oct 20, 2014 Oct 27, 2014	67 61	Oct 27, 2014 Nov 03, 2014	20 20
	Sep 26, 2017	16 0	Nov 03, 2014 Nov 10, 2014	152	Nov 03, 2014 Nov 10, 2014	60 20	Nov 03, 2014 Nov 10, 2014	9 0	Nov 03, 2014 Nov 10, 2014	530 441	Nov 03, 2014 Nov 10, 2014	19 35	Nov 10, 2014 Nov 17, 2014	20 40
	Oct 03, 2017 Oct 10, 2017	6	Nov 17, 2014	384 157	Nov 17, 2014 Nov 24, 2014	180 80	Nov 17, 2014 Nov 24, 2014	0	Nov 17, 2014 Nov 24, 2014	579 510	Nov 17, 2014 Nov 24, 2014	26 9	Nov 24, 2014 Dec 01, 2014	20 40
	Oct 17, 2017 Oct 24, 2017	0	Nov 24, 2014 Dec 01, 2014	132	Dec 01, 2014	180 180	Dec 01, 2014 Dec 08, 2014	44 10	Dec 01, 2014 Dec 08, 2014	580 602	Dec 01, 2014 Dec 08, 2014	7 48	Dec 08, 2014 Dec 15, 2014	10 20
	Oct 31, 2017 Nov 09, 2017	0	Dec 08, 2014 Dec 15, 2014	251 283	Dec 08, 2014 Dec 15, 2014	0	Dec 15, 2014 Dec 22, 2014	12 0	Dec 15, 2014 Dec 22, 2014	542 510	Dec 15, 2014 Dec 22, 2014	45 34	Dec 22, 2014 Dec 29, 2014	0 20
1	Nov 14, 2017	0	Dec 22, 2014	519	Dec 22, 2014	0	Dec 22, 2014	U	Dec 22, 2014	310	000 24, 2014	34	200 20, 2017	

Summit Corporation of America Water Quality Based Limit Determination: Data Summary

DSN 001-1	DMR Data	January 2008-June 2018	

			DSN	001	-1 DMR [Data:	January	2008	8-June 20	18					
Cadmium	Chromit		Coppe		Cyanide,		Lead	101000	Nickel		Silver		Zinc		
DATE ug/L	DATE Nov 21, 2017	Ug/L O	DATE Dec 29, 2014	0g/L 207	DATE Dec 29, 2014	ug/L 240	DATE Dec 29, 2014	ug/L O	DATE Dec 29, 2014	607	DATE Dec 29, 2014	ug/L 4	DATE Jan 05, 2015	ug/L 20	
	Nov 28, 2017 Dec 05, 2017	6 0	Jan 05, 2015 Jan 12, 2015	274 130	Jan 05, 2015 Jan 12, 2015	60 90	Jan 05, 2015 Jan 12, 2015	7 0	Jan 05, 2015 Jan 12, 2015	630 347	Jan 05, 2015 Jan 12, 2015	33 122	Jan 12, 2015 Jan 19, 2015	20 20	
	Dec 12, 2017 Dec 19, 2017	0	Jan 19, 2015 Jan 28, 2015	230 202	Jan 19, 2015 Jan 28, 2015	40 70	Jan 19, 2015 Jan 28, 2015	0 9	Jan 19, 2015 Jan 28, 2015	315 400	Jan 19, 2015 Jan 28, 2015	189 18	Jan 28, 2015 Feb 02, 2015	26 0	
	Dec 27, 2017	5	Feb 02, 2015 Feb 09, 2015	368 268	Feb 02, 2015 Feb 09, 2015	40 90	Feb 02, 2015 Feb 09, 2015	0	Feb 02, 2015 Feb 09, 2015	280 303	Feb 02, 2015 Feb 09, 2015	62 106	Feb 09, 2015 Feb 16, 2015	19 21	
	Jan 04, 2018 Jan 09, 2018	0	Feb 16, 2015	117	Feb 16, 2015	110	Feb 16, 2015	0	Feb 16, 2015	352 360	Feb 16, 2015 Feb 23, 2015	18 21	Feb 23, 2015 Mar 02, 2015	45 73	
	Jan 16, 2018 Jan 23, 2018	8 0	Feb 23, 2015 Mar 02, 2015	, 518 468	Feb 23, 2015 Mar 02, 2015	100 30	Feb 23, 2015 Mar 02, 2015	9 8	Feb 23, 2015 Mar 02, 2015	730	Mar 02, 2015	43	Mar 09, 2015	18	
	Jan 30, 2018 Feb 06, 2018	0	Mar 09, 2015 Mar 17, 2015	190 369	Mar 09, 2015 Mar 17, 2015	10 10	Mar 09, 2015 Mar 17, 2015	0 13	Mar 09, 2015 Mar 17, 2015	391 657	Mar 09, 2015 Mar 17, 2015	26 68	Mar 17, 2015 Mar 23, 2015	60 41	
	Feb 13, 2018 Feb 20, 2018	0 10	Mar 23, 2015 Mar 30, 2015	243 217	Mar 23, 2015 Mar 30, 2015	10 30	Mar 23, 2015 Mar 30, 2015	13 9	Mar 23, 2015 Mar 30, 2015	390 610	Mar 23, 2015 Mar 30, 2015	49 12	Mar 30, 2015 Apr 06, 2015	57 39	
	Feb 27, 2018 Mar 06, 2018	0 5	Apr 06, 2015 Apr 13, 2015	379 157	Apr 06, 2015 Apr 13, 2015	30 20	Apr 06, 2015 Apr 13, 2015	7 0	Apr 06, 2015 Apr 13, 2015	260 327	Apr 06, 2015 Apr 13, 2015	22 52	Apr 13, 2015 Apr 20, 2015	12 23	
	Mar 13, 2018 Mar 20, 2018	7	Apr 20, 2015 Apr 27, 2015	538 318	Apr 20, 2015 Apr 27, 2015	30 400	Apr 20, 2015 Apr 27, 2015	0	Apr 20, 2015 Apr 27, 2015	475 450	Apr 20, 2015 Apr 27, 2015	91 79	Apr 27, 2015 May 04, 2015	18 15	
	Mar 27, 2018	0	May 04, 2015 May 11, 2015	92 45	May 04, 2015 May 11, 2015	90 40	May 04, 2015 May 11, 2015	0	May 04, 2015 May 11, 2015	520 265	May 04, 2015 May 11, 2015	128 85	May 11, 2015 May 18, 2015	21 56	
	Apr 03, 2018 Apr 10, 2018	0	May 18, 2015	245	May 18, 2015	0 70	May 18, 2015 May 26, 2015	09	May 18, 2015 May 26, 2015	286 480	May 18, 2015 May 26, 2015	115 34	May 26, 2015 Jun 01, 2015	20 21	
	Apr 17, 2018 Apr 24, 2018	0	May 26, 2015 Jun 01, 2015	194 117	May 26, 2015 Jun 01, 2015	80	Jun 01, 2015	15	Jun 01, 2015	320 440	Jun 01, 2015	149 69	Jun 08, 2015 Jun 15, 2015	17 16	
	May 01, 2018 May 08, 2018	0 5	Jun 08, 2015 Jun 15, 2015	150 138	Jun 08, 2015 Jun 15, 2015	50 30	Jun 08, 2015 Jun 15, 2015	7 0	Jun 08, 2015 Jun 15, 2015	298	Jun 08, 2015 Jun 15, 2015	110	Jun 22, 2015	31	
	May 15, 2018 May 22, 2018	0	Jun 22, 2015 Jul 08, 2015	403 395	Jun 22, 2015 Jul 08, 2015	30 10	Jun 22, 2015 Jul 08, 2015	12 17	Jun 22, 2015 Jul 08, 2015	550 460	Jun 22, 2015 Jul 08, 2015	0 104	Jul 08, 2015 Jul 13, 2015	64 31	
	May 30, 2018 Jun 05, 2018	5 0	Jul 13, 2015 Jul 20, 2015	212 142	Jul 13, 2015 Jul 20, 2015	0	Jul 13, 2015 Jul 20, 2015	0 7	Jul 13, 2015 Jul 20, 2015	403 502	Jul 13, 2015 Jul 20, 2015	25 31	Jul 20, 2015 Jul 27, 2015	18 23	
	Jun 12, 2018 Jun 19, 2018	0	Jul 27, 2015 Aug 03, 2015	193 99	Jul 27, 2015 Aug 03, 2015	0 20	Jul 27, 2015 Aug 03, 2015	0	Jul 27, 2015 Aug 03, 2015	580 350	Jul 27, 2015 Aug 03, 2015	74 37	Aug 03, 2015 Aug 10, 2015	20 30	
	Jun 26, 2018	0	Aug 10, 2015 Aug 17, 2015	72 51	Aug 10, 2015 Aug 17, 2015	10 20	Aug 10, 2015 Aug 17, 2015	0	Aug 10, 2015 Aug 17, 2015	369 224	Aug 10, 2015 Aug 17, 2015	28 14	Aug 17, 2015 Aug 24, 2015	28 20	
			Aug 24, 2015 Aug 31, 2015	124 163	Aug 24, 2015 Aug 31, 2015	10 2	Aug 24, 2015 Aug 31, 2015	0	Aug 24, 2015 Aug 31, 2015	410 503	Aug 24, 2015 Aug 31, 2015	34 47	Aug 31, 2015 Sep 08, 2015	36 40	
			Sep 08, 2015 Sep 14, 2015	131 150	Sep 08, 2015 Sep 14, 2015	10 10	Sep 08, 2015 Sep 14, 2015	0	Sep 08, 2015 Sep 14, 2015	400 446	Sep 08, 2015 Sep 14, 2015	40 26	Sep 14, 2015 Sep 21, 2015	27 48	
			Sep 21, 2015	220	Sep 21, 2015 Sep 28, 2015	10	Sep 21, 2015 Sep 28, 2015	27 15	Sep 21, 2015 Sep 28, 2015	496 490	Sep 21, 2015 Sep 28, 2015	40 36	Sep 28, 2015 Oct 05, 2015	61 39	
			Sep 28, 2015 Oct 05, 2015	256 147	Oct 05, 2015	10 70	Oct 05, 2015	0	Oct 05, 2015	460 581	Oct 05, 2015	22 70	Oct 12, 2015 Oct 19, 2015	38 32	
			Oct 12, 2015 Oct 19, 2015	278 156	Oct 12, 2015 Oct 19, 2015	10 10	Oct 12, 2015 Oct 19, 2015	27 6	Oct 12, 2015 Oct 19, 2015	714	Oct 12, 2015 Oct 19, 2015	24	Oct 26, 2015	55	
			Oct 26, 2015 Nov 03, 2015	163 401	Oct 26, 2015 Nov 03, 2015	0 10	Oct 26, 2015 Nov 03, 2015	8 34	Oct 26, 2015 Nov 03, 2015	650 640	Oct 26, 2015 Nov 03, 2015	29 69	Nov 03, 2015 Nov 09, 2015	77 22	L
			Nov 09, 2015 Nov 16, 2015	118 164	Nov 09, 2015 Nov 16, 2015	30 0	Nov 09, 2015 Nov 16, 2015	5 5	Nov 09, 2015 Nov 16, 2015	482 447	Nov 09, 2015 Nov 16, 2015	36 27	Nov 16, 2015 Nov 23, 2015	29 23	
			Nov 23, 2015 Nov 30, 2015	130 117	Nov 23, 2015 Nov 30, 2015	10 40	Nov 23, 2015 Nov 30, 2015	0 0	Nov 23, 2015 Nov 30, 2015	410 410	Nov 23, 2015 Nov 30, 2015	29 30	Nov 30, 2015 Dec 07, 2015	20 21	
			Dec 07, 2015 Dec 14, 2015	94 118	Dec 07, 2015 Dec 14, 2015	20 0	Dec 07, 2015 Dec 14, 2015	0 8	Dec 07, 2015 Dec 14, 2015	450 435	Dec 07, 2015 Dec 14, 2015	26 27	Dec 14, 2015 Dec 21, 2015	20 53	
			Dec 21, 2015 Dec 28, 2015	91 105	Dec 21, 2015 Dec 28, 2015	10 0	Dec 21, 2015 Dec 28, 2015	0	Dec 21, 2015 Dec 28, 2015	414 520	Dec 21, 2015 Dec 28, 2015	19 32	Dec 28, 2015 Jan 04, 2016	29 43	
			Jan 04, 2016 Jan 11, 2016	129 189	Jan 04, 2016 Jan 11, 2016	0	Jan 04, 2016 Jan 11, 2016	0 18	Jan 04, 2016 Jan 11, 2016	410 374	Jan 04, 2016 Jan 11, 2016	143 33	Jan 11, 2016 Jan 18, 2016	54 35	
			Jan 18, 2016 Jan 25, 2016	126 115	Jan 18, 2016 Jan 25, 2016	10 0	Jan 18, 2016 Jan 25, 2016	11 0	Jan 18, 2016 Jan 25, 2016	168 140	Jan 18, 2016 Jan 25, 2016	34 42	Jan 25, 2016 Feb 01, 2016	28 28	
			Feb 01, 2016 Feb 08, 2016	107 84	Feb 01, 2016 Feb 08, 2016	0	Feb 01, 2016 Feb 08, 2016	0 5	Feb 01, 2016 Feb 08, 2016	290 150	Feb 01, 2016 Feb 08, 2016	49 45	Feb 08, 2016 Feb 16, 2016	33 30	1
			Feb 16, 2016	120 88	Feb 16, 2016 Feb 22, 2016	0	Feb 16, 2016 Feb 22, 2016	9 14	Feb 16, 2016 Feb 22, 2016	168 60	Feb 16, 2016 Feb 22, 2016	31 23	Feb 22, 2016 Mar 01, 2016	25 26	
			Feb 22, 2016 Mar 01, 2016	55	Mar 01, 2016	0	Mar 01, 2016 Mar 07, 2016	0	Mar 01, 2016 Mar 07, 2016	40 90	Mar 01, 2016 Mar 07, 2016	15 7	Mar 07, 2016 Mar 14, 2016	24 26	
			Mar 07, 2016 Mar 14, 2016	84 61	Mar 07, 2016 Mar 14, 2016	0	Mar 14, 2016 Mar 21, 2016	6 0	Mar 14, 2016 Mar 21, 2016	61 120	Mar 14, 2016 Mar 21, 2016	20 12	Mar 21, 2016 Mar 28, 2016	34 31	
			Mar 21, 2016 Mar 28, 2016	103 105	Mar 21, 2016 Mar 28, 2016	0	Mar 28, 2016	0	Mar 28, 2016	84 140	Mar 28, 2016 Apr 05, 2016	13 24	Apr 05, 2016 Apr 11, 2016	40 30	
			Apr 05, 2016 Apr 11, 2016	142 92	Apr 05, 2016 Apr 11, 2016	0	Apr 05, 2016 Apr 11, 2016	8	Apr 05, 2016 Apr 11, 2016	99	Apr 11, 2016	27 55	Apr 18, 2016	32 33	
			Apr 18, 2016 Apr 25, 2016	87 104	Apr 18, 2016 Apr 25, 2016	0 0	Apr 18, 2016 Apr 25, 2016	6 6	Apr 18, 2016 Apr 25, 2016	103 130	Apr 18, 2016 Apr 25, 2016	21	Apr 25, 2016 May 03, 2016	28 27	
			May 03, 2016 May 09, 2016	75 90	May 03, 2016 May 09, 2016	0 0	May 03, 2016 May 09, 2016	0 0	May 03, 2016 May 09, 2016	115 97	May 03, 2016 May 09, 2016	16 35	May 09, 2016 May 16, 2016	25	
			May 16, 2016 May 23, 2016	108 65	May 16, 2016 May 23, 2016	0	May 16, 2016 May 23, 2016	5 0	May 16, 2016 May 23, 2016	118 100	May 16, 2016 May 23, 2016	12 18	May 23, 2016 May 31, 2016	26 39	
			May 31, 2016 Jun 06, 2016	138 111	May 31, 2016 Jun 06, 2016	0	May 31, 2016 Jun 06, 2016	5 5	May 31, 2016 Jun 06, 2016	175 148	May 31, 2016 Jun 06, 2016	27 27	Jun 06, 2016 Jun 13, 2016	42 42	
			Jun 13, 2016 Jun 20, 2016	132 138	Jun 13, 2016 Jun 20, 2016	0	Jun 13, 2016 Jun 20, 2016	18 12	Jun 13, 2016 Jun 20, 2016	164 146	Jun 13, 2016 Jun 20, 2016	18 21	Jun 20, 2016 Jun 27, 2016	58 37	
			Jun 27, 2016 Jul 12, 2016	95 287	Jun 27, 2016 Jul 12, 2016	0	Jun 27, 2016 Jul 12, 2016	6 0	Jun 27, 2016 Jul 12, 2016	90 70	Jun 27, 2016 Jul 12, 2016	23 20	Jul 12, 2016 Jul 19, 2016	37 38	
			Jul 19, 2016 Jul 29, 2016	225 208	Jul 19, 2016 Jul 29, 2016	0	Jul 19, 2016 Jul 29, 2016	5 8	Jul 19, 2016 Jul 29, 2016	98 90	Jul 19, 2016 Jul 29, 2016	14 24	Jul 29, 2016 Aug 01, 2016	35 38	
			Aug 01, 2016 Aug 08, 2016	169 183	Aug 01, 2016 Aug 08, 2016	0	Aug 01, 2016 Aug 08, 2016	8 8	Aug 01, 2016 Aug 08, 2016	80 97	Aug 01, 2016 Aug 08, 2016	22 14	Aug 08, 2016 Aug 16, 2016	38 46	
			Aug 16, 2016 Aug 25, 2016	159 157	Aug 16, 2016 Aug 25, 2016	0	Aug 16, 2016 Aug 25, 2016	5 6	Aug 16, 2016 Aug 25, 2016	91 110	Aug 16, 2016 Aug 25, 2016	22 34	Aug 25, 2016 Aug 29, 2016	47 39	
·			Aug 29, 2016 Sep 07, 2016	118	Aug 29, 2016 Sep 07, 2016	0	Aug 29, 2016 Sep 07, 2016	5	Aug 29, 2016 Sep 07, 2016	99 120	Aug 29, 2016 Sep 07, 2016	11 34	Sep 07, 2016 Sep 12, 2016	40 34	
			Sep 12, 2016	126	Sep 12, 2016 Sep 19, 2016	14 0	Sep 12, 2016 Sep 19, 2016	0	Sep 12, 2016 Sep 19, 2016	77 30	Sep 12, 2016 Sep 19, 2016	20 15	Sep 19, 2016 Sep 26, 2016	30 22	
			Sep 19, 2016 Sep 26, 2016	124	Sep 26, 2016	0	Sep 26, 2016 Oct 03, 2016	0	Sep 26, 2016 Oct 03, 2016	60 70	Sep 26, 2016 Oct 03, 2016	11 21	Oct 03, 2016 Oct 11, 2016	27 21	
			Oct 03, 2016 Oct 11, 2016	104	Oct 03, 2016 Oct 11, 2016	10	Oct 11, 2016 Oct 19, 2016	0	Oct 11, 2016 Oct 19, 2016	55 71	Oct 11, 2016 Oct 19, 2016	12 10	Oct 19, 2016 Oct 25, 2016	25 33	
			Oct 19, 2016 Oct 25, 2016	90 100	Oct 19, 2016 Oct 25, 2016	10 0	Oct 25, 2016	0	Oct 25, 2016	104	Oct 25, 2016	18	Oct 31, 2016	27 33	
1			Oct 31, 2016 Nov 08, 2016	132 86	Oct 31, 2016 Nov 08, 2016	0	Oct 31, 2016 Nov 08, 2016	0	Oct 31, 2016 Nov 08, 2016	122 80	Oct 31, 2016 Nov 08, 2016	46 20 9	Nov 08, 2016 Nov 16, 2016 Nov 21, 2016	28 41	1
39			Nov 16, 2016 Nov 21, 2016	131 110	Nov 16, 2016 Nov 21, 2016	0	Nov 16, 2016 Nov 21, 2016	0 0	Nov 16, 2016 Nov 21, 2016	75 100	Nov 16, 2016 Nov 21, 2016	19	Nov 21, 2016 Nov 28, 2016	48	
			Nov 28, 2016 Dec 06, 2016	109 133	Nov 28, 2016 Dec 06, 2016	0 0	Nov 28, 2016 Dec 06, 2016	0	Nov 28, 2016 Dec 06, 2016	131 80	Nov 28, 2016 Dec 06, 2016	20 29	Dec 06, 2016 Dec 12, 2016	23 37	
1			Dec 12, 2016 Dec 20, 2016	163 103	Dec 12, 2016 Dec 20, 2016	0 50	Dec 12, 2016 Dec 20, 2016	0 0	Dec 12, 2016 Dec 20, 2016	114 96	Dec 12, 2016 Dec 20, 2016	10 10	Dec 20, 2016 Dec 28, 2016	31 28	1
			Dec 28, 2016 Jan 04, 2017	75 68	Dec 28, 2016 Jan 04, 2017	0 70	Dec 28, 2016 Jan 04, 2017	0	Dec 28, 2016 Jan 04, 2017	80 60	Dec 28, 2016 Jan 04, 2017	25 75	Jan 04, 2017 Jan 10, 2017	23 34	
			Jan 10, 2017 Jan 17, 2017	82 79	Jan 10, 2017 Jan 17, 2017	0	Jan 10, 2017 Jan 17, 2017	0	Jan 10, 2017 Jan 17, 2017	100 54	Jan 10, 2017 Jan 17, 2017	44 30	Jan 17, 2017 Jan 24, 2017	23 12	
			Jan 24, 2017 Jan 31, 2017	131 132	Jan 24, 2017 Jan 31, 2017	0	Jan 24, 2017 Jan 31, 2017	0	Jan 24, 2017 Jan 31, 2017	60 66	Jan 24, 2017 Jan 31, 2017	27 19	Jan 31, 2017 Feb 06, 2017	25 39	1
			Feb 06, 2017	132 157 114	Feb 06, 2017 Feb 14, 2017	0	Feb 06, 2017 Feb 14, 2017	0	Feb 06, 2017 Feb 14, 2017	100 158	Feb 06, 2017 Feb 14, 2017	21 19	Feb 14, 2017 Feb 21, 2017	30 21	
			Feb 14, 2017 Feb 21, 2017	83 92	Feb 21, 2017 Feb 21, 2017 Feb 28, 2017	0	Feb 21, 2017 Feb 28, 2017	0	Feb 21, 2017 Feb 28, 2017	69 80	Feb 21, 2017 Feb 28, 2017	20 20	Feb 28, 2017 Mar 07, 2017	29 35	L
			Feb 28, 2017 Mar 07, 2017	170	Mar 07, 2017	0	Mar 07, 2017	6	Mar 07, 2017	140 163	Mar 07, 2017 Mar 16, 2017	20 32	Mar 16, 2017 Mar 21, 2017	30 30	
			Mar 16, 2017	132	Mar 16, 2017	0	Mar 16, 2017	0	Mar 16, 2017	103	mai 19, 2017	52	HIM ET EVIT		

Summit Corporation of America Water Quality Based Limit Determination: Data Summary

Line 22, 2017 Dia March 23, 2017 Dia March 23, 2017 Dia Apr 44, 2017 Dia Apr 45, 2017 <th< th=""><th>vi st) o1d</th><th>lecimal place)</th><th>0 0 #DIV/0! #DIV/0! 0</th><th>2 15 6.04 6.0 268</th><th></th><th>91 0.64 0.6 600</th><th></th><th>44 2.45 2.4 410</th><th></th><th>6 1.77 1.8 44</th><th></th><th>201 0.81 0.8 970 10</th><th></th><th>28 0.92 0.9 123 0</th><th></th><th>12 0.4 0.4 50</th></th<>	vi st) o1d	lecimal place)	0 0 #DIV/0! #DIV/0! 0	2 15 6.04 6.0 268		91 0.64 0.6 600		44 2.45 2.4 410		6 1.77 1.8 44		201 0.81 0.8 970 10		28 0.92 0.9 123 0		12 0.4 0.4 50
Lur 22, 2017 150 Mar 22, 2017 0 Mar 22, 2017 0 Mar 22, 2017 160 Mar 22, 2017 161 April 1, 2017 131 April 1, 2017 133 April 1, 2017 133 April 2, 2017 134 April 2, 2017 135 April 2, 2017 136 April 2, 2017 136 April 2, 2017 136 April 2, 2017 136 April 2, 2017 137 April 2, 2017 136 April 2, 2017 137 April 2, 2017 137 April 2, 2017 137 April 2, 2017 137 April 2, 2017 138 April 2, 2017 137 April 2, 2017 137 April 2, 2017 138 April 2, 2017 137 April 2, 2017 138 Apri		Cadn	nium		Coppe	[143	<u>Cyanide, 1</u>	<u>otal</u> 18	Lead	4	Nickel	248	Silver	30	Zinc	28
Line 28, 2017 Dia Marz 28, 2017 O Marz 18, 2017 O April 1, 2017 Dia April 1, 2017 Dia April 1, 2017 Dia April 1, 2017 Dia April 28, 2017 Dia <th></th> <th></th> <th>1</th> <th>10</th> <th></th> <th></th> <th></th> <th>10</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>10</th> <th></th> <th>10</th>			1	10				10		1				10		10
Mar. 28, 2017 1/28 Mar. 28, 2017 1/28 Mar. 28, 2017 1/40 Mar. 11, 2017 1/40 Mar. 11, 2017 1/40 Mar. 11, 2017 1/40 Mar. 11, 2017 1/40 Mar. 28,					Jun 05, 2018 Jun 12, 2018 Jun 19, 2018	76 91 58	Jun 05, 2018 Jun 12, 2018 Jun 19, 2018	0 4 90	Jun 05, 2018 Jun 12, 2018 Jun 19, 2018	9 6 0	Jun 05, 2018 Jun 12, 2018 Jun 19, 2018	97 92 28	Jun 05, 2018 Jun 12, 2018 Jun 19, 2018	3 25 45	Jun 12, 2018 Jun 19, 2018	0 34 16 11
Image 28, 2017 128 Mar 28, 2017 120 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 120 App 04, 2017 130 Apr 11, 2017 101 Apr 11, 2017 100 May 02, 2017 20 May 11, 2017 100 May 11, 2017 100 May 12, 2017 20 May 12, 2017 100 May 12, 2017 100 May 12, 2017 20 Mar 22, 2017 20 Mar 22, 2017 20 Mar 22, 2017 100 Mar 22, 2017 100 Mar 22, 2017 100 Mar 22, 2017 100					May 08, 2018 May 15, 2018 May 22, 2018	88 125	May 15, 2018 May 22, 2018	0	May 15, 2018 May 22, 2018	0 0	May 15, 2018 May 22, 2018	120 146	May 15, 2018 May 22, 2018	7 20	May 22, 2018 May 30, 2018	14. 15.
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 14 Mar 28, 2017 14 Mar 28, 2017 Apr 11, 2017 10 Apr 11, 2017 0 Apr 02, 2017 0 May 02, 2					Apr 17, 2018 Apr 24, 2018	119 56	Apr 17, 2018 Apr 24, 2018	0	Apr 17, 2018 Apr 24, 2018	8 0	Apr 17, 2018 Apr 24, 2018 May 01, 2018	185 116	Apr 17, 2018 Apr 24, 2018 May 01, 2018	8 6 34	Apr 24, 2018 May 01, 2018 May 08, 2018	1 1 1
Image Control Control Marc Control Marc Control Marc Control Marc Control Control <thcontro< th=""> Contro Contro</thcontro<>					Mar 27, 2018 Apr 03, 2018	58 66	Mar 27, 2018 Apr 03, 2018	0	Mar 27, 2018 Apr 03, 2018	0 0	Mar 27, 2018 Apr 03, 2018	106 119	Mar 27, 2018 Apr 03, 2018	20 17	Apr 03, 2018 Apr 10, 2018	3 1
Mare 28, 2017 T28 Mare 28, 2017 T28 Mare 28, 2017 T40 Mare 28, 2017 T4 Apr 04, 2017 Z Apr 11, 2017 Z Apr 12, 2017 Z Apr 11, 2017 Z Apr 11, 2017 Z Apr 12, 2017 Z Apr 11, 2017 Z Apr 12, 2017 Z Apr 23, 2017 <thz< th=""> <thz< td="" th<=""><td></td><td></td><td></td><td></td><td>Mar 06, 2018 Mar 13, 2018</td><td>157 104</td><td>Mar 06, 2018 Mar 13, 2018</td><td>0</td><td>Mar 06, 2018 Mar 13, 2018</td><td>0 0</td><td>Mar 06, 2018 Mar 13, 2018</td><td>119 127</td><td>Mar 06, 2018 Mar 13, 2018</td><td>10 20</td><td>Mar 13, 2018 Mar 20, 2018</td><td>23</td></thz<></thz<>					Mar 06, 2018 Mar 13, 2018	157 104	Mar 06, 2018 Mar 13, 2018	0	Mar 06, 2018 Mar 13, 2018	0 0	Mar 06, 2018 Mar 13, 2018	119 127	Mar 06, 2018 Mar 13, 2018	10 20	Mar 13, 2018 Mar 20, 2018	23
Mar 28, 2017 128 Mar 28, 2017 128 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 14, 2017 180 Apr 04, 2017 28 Apr 14, 2017 180 Apr 14, 2017 34 Apr 11, 2017 34 Apr 25, 2017 16 Apr 25, 2017 17 M					Feb 13, 2018 Feb 20, 2018	77 134	Feb 13, 2018 Feb 20, 2018	0	Feb 13, 2018 Feb 20, 2018	0	Feb 13, 2018 Feb 20, 2018	80 126	Feb 13, 2018 Feb 20, 2018	5 13	Feb 20, 2018 Feb 27, 2018	1 3
Mar 28, 2017 Iss Mar 11, 2017 Iss Mar 12, 2017 Iss Mar 12, 2017 Iss Mar 12, 2017 Mar 28, 2017 Iss,					Jan 23, 2018 Jan 30, 2018	61 75	Jan 23, 2018 Jan 30, 2018	0	Jan 23, 2018 Jan 30, 2018	7 19	Jan 23, 2018 Jan 30, 2018	150 79	Jan 23, 2018 Jan 30, 2018	9 20	Jan 30, 2018 Feb 06, 2018	2
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 141 Apr 04, 2017 23 Apr 11, 2017 34 Apr 25, 2017 24 Apr 18, 2017 76 Apr 18, 2017 76 Apr 18, 2017 70 Apr 25, 2017 24 Apr 25, 2017 24 Apr 25, 2017 24 Apr 25, 2017 24 Apr 25, 2017 20 Apr 20, 2017 70 Apr 23, 2017					Jan 04, 2018 Jan 09, 2018	39 59	Jan 04, 2018 Jan 09, 2018	0 20	Jan 04, 2018 Jan 09, 2018	. 0 0	Jan 04, 2018 Jan 09, 2018	100 93	Jan 04, 2018 Jan 09, 2018	3 14	Jan 09, 2018 Jan 16, 2018	1
Mar 28, 2017 T28 Mar 28, 2017 O Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 Apr 04, 2017 129 Apr 04, 2017 12 Apr 04, 2017 12 Apr 04, 2017 12 Apr 11, 2017 13 Apr 11, 2017 13 Apr 11, 2017 13 Apr 18, 2017 15 Apr 11, 2017 14 Apr 18, 2017 15 Apr 18, 2017 15 Apr 18, 2017 15 Apr 18, 2017 15 Apr 18, 2017 16 Apr 25, 2017 14 May 02, 2017 10 May 18, 2017 13 May 18, 2017 14 May 18, 2017 13 May 18, 2017 14 May 18, 2017					Dec 12, 2017 Dec 19, 2017	51 68	Dec 12, 2017 Dec 19, 2017	0	Dec 12, 2017 Dec 19, 2017	0 0	Dec 12, 2017 Dec 19, 2017	79 104	Dec 12, 2017 Dec 19, 2017	13 27	Dec 19, 2017 Dec 27, 2017	1
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 23 Apr 04, 2017 151 Apr 04, 2017 10 Apr 11, 2017 0 Apr 11, 2017 120 Apr 11, 2017 23 Apr 11, 2017 34 Apr 13, 2017 34 Apr 13, 2017 34 Apr 13, 2017 34 Apr 25, 2017 34 Apr 32, 2017 34 Apr 34, 2017 <td></td> <td></td> <td></td> <td></td> <td>Nov 21, 2017 Nov 28, 2017</td> <td>87</td> <td>Nov 21, 2017 Nov 28, 2017</td> <td>0</td> <td>Nov 21, 2017 Nov 28, 2017</td> <td>0 0</td> <td>Nov 21, 2017 Nov 28, 2017</td> <td>123 110</td> <td>Nov 21, 2017 Nov 28, 2017</td> <td>13 24</td> <td>Nov 28, 2017 Dec 05, 2017</td> <td>2 2</td>					Nov 21, 2017 Nov 28, 2017	87	Nov 21, 2017 Nov 28, 2017	0	Nov 21, 2017 Nov 28, 2017	0 0	Nov 21, 2017 Nov 28, 2017	123 110	Nov 21, 2017 Nov 28, 2017	13 24	Nov 28, 2017 Dec 05, 2017	2 2
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 10 Mar 28, 2017 14 Apr 04, 2017 23 Apr 11, 2017 23 Apr 13, 2017 24 Apr 25, 2017 0 Apr 25, 2017 10 Apr 25, 2017 10 Apr 25, 2017 10 May 02, 2017 20 May 02, 2017 20 May 02, 2017 20 May 02, 2017 20 May 03, 2017 20 May 04, 2017 20 May 13, 2017					Oct 24, 2017 Oct 31, 2017	83	Oct 31, 2017 Nov 09, 2017	0	Oct 31, 2017 Nov 09, 2017	0 0	Oct 31, 2017 Nov 09, 2017	100 186	Oct 31, 2017 Nov 09, 2017	12 35	Nov 09, 2017 Nov 14, 2017	14.14
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 23 Apr 11, 2017 34 Apr 12, 2017 34 Apr 12, 2017 34 Apr 12, 2017 34 Apr 25, 2017 34 Apr 30, 2017 34 Apr 31, 2017 34 Apr 31, 2017					Oct 03, 2017 Oct 10, 2017	63 60	Oct 03, 2017 Oct 10, 2017 Oct 17, 2017	10	Oct 10, 2017 Oct 17, 2017	0	Oct 10, 2017 Oct 17, 2017	70 64	Oct 10, 2017 Oct 17, 2017	22 27	Oct 17, 2017 Oct 24, 2017	
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 10 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 23 Apr 11, 2017 23 Apr 11, 2017 23 Apr 11, 2017 23 Apr 11, 2017 24 Apr 04, 2017 7 Apr 04, 2017 15 Apr 11, 2017 34 Apr 12, 2017 34 Apr 12, 2017 34 Apr 12, 2017 34 Apr 25, 2017 34 Apr 34, 2017 34					Sep 12, 2017 Sep 19, 2017	52 70	Sep 12, 2017 Sep 19, 2017	0	Sep 12, 2017 Sep 19, 2017	7 0	Sep 19, 2017 Sep 26, 2017	60	Sep 19, 2017 Sep 26, 2017	23 19	Sep 26, 2017 Oct 03, 2017	
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 23 Apr 11, 2017 3 Apr 11, 2017 3 Apr 11, 2017 34 Apr 18, 2017 34 Apr 25, 2017 34 Apr 30, 2017 34 Apr 30, 2017 34 Apr 30, 2017					Aug 22, 2017 Aug 29, 2017	132 80	Aug 22, 2017 Aug 29, 2017	10	Aug 22, 2017 Aug 29, 2017	0	Aug 29, 2017 Sep 05, 2017	63 80	Aug 29, 2017 Sep 05, 2017	7 27	Sep 05, 2017 Sep 12, 2017	(1) (2)
Mar 28, 2017 128 Mar 28, 2017 10 Mar 28, 2017 10 Mar 28, 2017 140 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 23 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 23 Apr 11, 2017 24 Apr 11, 2017 0 Apr 12, 2017 7 Apr 04, 2017 15 Apr 11, 2017 14 Apr 11, 2017 34 Apr 18, 2017 34 Apr 18, 2017 34 Apr 18, 2017 34 Apr 25, 2017 24 Apr 25, 2017 0 Apr 25, 2017 0 Apr 25, 2017 0 Apr 25, 2017 0 May 02, 2017 17 May 02, 2017 15 Apr 25, 2017 26 May 02, 2017 20 May 02, 2017 26 May 16, 2017 20 May 02,					Aug 01, 2017 Aug 08, 2017	115	Aug 08, 2017 Aug 15, 2017	10	Aug 08, 2017	0	Aug 08, 2017 Aug 15, 2017	117 72	Aug 08, 2017 Aug 15, 2017	17 8	Aug 15, 2017 Aug 22, 2017	1
Mar 28, 2017 128 Mar 28, 2017 10 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 128 Mar 28, 2017 0 Apr 04, 2017 7 Apr 04, 2017 8 Apr 04, 2017 12 Apr 04, 2017 23 Apr 11, 2017 23 Apr 11, 2017 34 Apr 13, 2017 34 Apr 13, 2017 34 Apr 13, 2017 34 Apr 25, 2017 34 Apr 34, 2017 34 Apr 30, 2017 34 Apr 30, 2017 34 May 09,					Jul 11, 2017 Jul 18, 2017	109	Jul 18, 2017	10	Jul 18, 2017	0	Jul 18, 2017	103 74	Jul 18, 2017 Jul 24, 2017	14 16	Jul 24, 2017 Aug 01, 2017	2
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 14 Apr 04, 2017 2 Apr 10, 2017 101 Apr 11, 2017 101 Apr 11, 2017 0 Apr 11, 2017 7 Apr 04, 2017 120 Apr 11, 2017 34 Apr 18, 2017 34 Apr 18, 2017 155 Apr 18, 2017 0 Apr 18, 2017 6 Apr 18, 2017 15 Apr 18, 2017 34 Apr 18, 2017 24 Apr 25, 2017 12 Apr 25, 2017 0 Apr 25, 2017 6 Apr 25, 2017 17 May 02, 2017 149 02, 2017 10 May 02, 2017					Jun 20, 2017	226	Jun 20, 2017 Jun 27, 2017	0	Jun 20, 2017	5 0	Jun 20, 2017 Jun 27, 2017	136 90	Jun 20, 2017 Jun 27, 2017	18 13	Jun 27, 2017 Jul 11, 2017	2
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 23 Apr 11, 2017 24 Apr 11, 2017 0 Apr 12, 2017 10 Apr 11, 2017 0 Apr 11, 2017 7 Apr 04, 2017 12 Apr 11, 2017 34 Apr 11, 2017 34 Apr 18, 2					May 31, 2017 Jun 06, 2017	108	May 31, 2017 Jun 06, 2017	30 20	May 31, 2017 Jun 06, 2017	5 0	May 31, 2017 Jun 06, 2017	99 110	May 31, 2017 Jun 06, 2017	24 26	Jun 06, 2017 Jun 13, 2017	20 10
Mar 28, 2017 12.8 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 3 Apr 04, 2017 2 Apr 11, 2017 3 Apr 11, 2017 2 Apr 11, 2017 3 Apr 18, 2017 3 Apr 25, 2017 3					May 09, 2017 May 16, 2017	89 96	May 09, 2017 May 16, 2017	0	May 09, 2017 May 16, 2017	0	May 09, 2017 May 16, 2017	74 134	May 09, 2017 May 16, 2017	26 22	May 16, 2017 May 23, 2017	NO
Mar 28, 2017 128 Mar 28, 2017 0 Mar 28, 2017 0 Mar 28, 2017 140 Mar 28, 2017 14 Apr 04, 2017 2 Apr 04, 2017 159 Apr 04, 2017 0 Apr 04, 2017 7 Apr 04, 2017 80 Apr 04, 2017 23 Apr 11, 2017 2					Apr 18, 2017 Apr 25, 2017	155 249	Apr 18, 2017 Apr 25, 2017	0	Apr 18, 2017 Apr 25, 2017	6 6	Apr 18, 2017 Apr 25, 2017	175 170	Apr 18, 2017 Apr 25, 2017	33 17	Apr 25, 2017 May 02, 2017	2
Mar 21 2017 79 Mar 21 2017 0 Mar 21 2017 0 Mar 21 2017 108 Mar 21 2017 18 Mar 28 2017 3					Apr 04, 2017	159	Apr 04, 2017	0	Apr 04, 2017	7	Apr 04, 2017	80	Apr 04, 2017	23	Apr 11, 2017	2 22

Summit Corporation of America Background Data: Naugatuck River (upstream of discharge)

PARAMETER	UNITS	Aug 19, 2008	Aug 21, 2008	Aug 23, 2008	Jun 16, 2009	Jun 17, 2009	Jun 19, 2009	Sep 23, 2009	Sap 25, 2009	Sep 28, 2009	Sep 14, 2010	Sep 15, 2010	Sep 17, 2010	Sep 20, 2011	Sep 21, 2011	Sep 23, 2011	Sep 16, 2012	Sep 19, 2012	Sep 21, 2012	Aug 05, 2013	Aug 07, 2013	Aug 09, 2013	Sep 15, 2014	Sep 16, 2014	Sep 18, 2014	Sep 21, 2015	Sep 22, 2015	Sep 24, 2016	Sep 12, 2010	Sep 13, 2016	Sep 15, 2016	Jul 24, 2017	Jul 25, 2017	Jul 27, 2017	Average concen- tration	h
Alkalinity	mgL	30.2	30.3	31	0	7.51	15.85	34.41	32.91	30.64	35.97	37.64	35.86	19.5	18.82	28.26	35.35	36.56	25.7	29.99	32.01	29.61	35.24	36.73	31.83	46.15	46.53	46.05	28	27.96				27.72	29.68	H
Aluminum (Dissolved)	Jugit				40	40	50	30	30	40	0	0	0	30	20	70	0	0	0	30	30	20	22	26	24	27	0	0	0	0	0	68	25	26 87	71	-
Aluminum (Total)	μgL				250	190	420	60	80	60	0	30	0	60	70	100	30	30	100	50	50	60	30	30	30	27	37	24	21	20	26	75	87	0	210	
Ammonia (as N)	µg2	140	220	140	170	0	0	0	250	0	0	170	140	0	110	240	300	510	1260	0	0	140	350	280	310	0	0	0	1600	320	120	0	140	1.4	1	
BODs	mg/L				0	0	1.2	0	0	12	0	0	0	0	1	0	0	1	18	0	0	0	1.2	0	1	0	0	1.3	4	28	4.8	1.5	3.2	0	5.2	H
Chlorine, Total Residual	µg1	100	0	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	327	248	316	288	
Conductivity	pritesten	215	214	224	117	122	91	244	251	224	359	366	397	143	160	124	286	265	161	281	207	289	340	371	390	384	414	426	525	519	507	0	10	8	7	
Copper (Dissolved)	igt	4	5	2	6	0	0	7	6	6	0	0	0	0	8	6	7	0	14	25	27	20	8	15	0	8	6	8	16	14	1	0	14	14		
Copper (Total)	μgL	4	5	3	6	0	0	7	6	6	6	0	0	6	10	8	13	5	14	112	209	154	11	25	0	11	9	9	35	32	15	6	14	0	23	-
Cyanide (Total)	LOU				0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		_	75.54	76.16		57.04	45.34	55.76	54.99	
Hardness	mg/L	40.5	39.6	40.6	32.9	34.78	33.62	56.23	54.54	49.68	83.51	75.63	62.95	28 23	35.69	28.74	48.53	34.81	36.41	46.39	46.89	51.3	59.19		56.43	156.2	67.18	70.98	75.54 88		355	175	235	118	159	
Iron (Dissolved)	µg/L			-	230	240	160	130	100	170	90	90	0	220	170	160	180	100	130	230	270	130	92	112	85	125	278	119	358	162 330	513	476	569	576	398	
Iron (Total)	µg L				750	640	700	350	380	360	240	350	130	320	350	360	470	100	460	340	330	350	286	260	240	501	509	320	355	0	0	0	0	0	0.20	
Lead (Dissolved)	POL				6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.40	
Lead (Total)	µg1_				12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	7	31	0		0	0	0	5	
Nickel (Dissolved)	µg/L				0	0	8	8	0	6	0	0	0	0	0	0	9	17	0	0	0	0	15	18	0	0	8		36	0	13	0	0	5	7.2	
Nickel (Total)	192				0	0	10	8	7	6	0	10	0	0	0	0	15	17	0	5	5	6	23	24	1	0.75	0.64	8	0.64	0.77	0.59	0.65	0.54	0.73	0.7	
Nitrato (as N)	mg/L	0.48	0.31	0.83	0.44	0.14	02	1.24	0.78	0.59	0.64	0.61	0.49	0.71	0.31	0.28	0.86	0.55	0.2	0.53	1.07	1.69	0.76	0.93	1.1		0.64		0.64	0.77	0.59	0.05	0.04	0	0	
Narite (as N)	mgL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6.74	0 6.70	6.82	0 6,79	6.93	7.46	6.84	6.73	6,73	6.75		1
pH	SU	7.52	7.54	7.56	7.40		7.71	7.44	7.14	7.05	7.20	6.99	7.18	6.92	7.20	7.08	6.91	7.40	7.71	6.73	7.06	7.03	6.72	6.76		6.70	0.82	0.79	0.90	0	0.04	0.73	0	0	0	
Surfactants	mg'L				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4		10	3	5	2	6	3	
Total Suspended Solids	mg1	0	5	0	0	6	11	0	2	1	0	0	3	2	7	2	0	1	2	0	0	1	2	1	3	8	3		19	14	21	20	12	16	16	
Zinc (Dissolved)	ugl	5	5	6	12	15	18	20	18	15	10	15	0	10	14	10	10	78	19	27	18	26	0	18	0	14	23	21	29	22	26	24	19	24	25	
Zinc (Total)	19/L	7	10	7	19	20	21	25	22	21	14	21	0	18	29	20	72	79	20	37	27	37	14	- 24	13	21	33	33	29	22	20	44	13	44	25	. -

NOTE: The concentration of Copper is higher than the most stringent ambient water quality criteria.

ATTACHMENT 13 REASONABLE POTENTIAL DETERMINATION

Discharger: Summit Corporation of America	Receiving Water:	Naugatuck River		
Address: 1430 Waterbury Road, Thomaston	Type:	Freshwater		
Permit Number: CT0001180	Average Effluent Flow:	160,000 gpd	0.248 cfs	
Application Number: 201205290				
DSN: 001-1	7Q10 Flow of Receiving Water @ Site:	14.94 cfs		
	Allocation:	50 %	25 %	
	Dilution Factor:	31.2	16,1	
	Dilution Factor _{A,C,HB} :	1.0		

	1000	1.02	Water Quality Cri	teria	Maximum	Total		100000-000	r seta		Receiving	Receiving	Receiving	김 태리고 바람은 사람이 같은
POLLUTANT	뗮	Aqua	tic Life	Human Health	Measured	Observations for Maximum	cv	Multiplier	Dilution	Naugatuck River	Water Concentration	Water Concentration	Water Concentration	Is there reasonable potential?
POLLOTANT	A.C.	Acute	Chronic		Concentration	Effluent		indiopoet	Factor	Concentration µg/L	(acute)	(chronic)	(human health)	
		µg/L	µg/L	µg/L	µg/L	Concentration			1.2.2	13-	hð\r	hð\r	µg/L	
Aluminum		750	87		2800	522	0.6	1.0	16.1	71	241	241	24.2	YES
Ammonia (Total as N) SUMMER		8,547	1,378		22000	522	0.7	1.0	16.1	210	1564	1564		YES
Ammonia (Total as N) WINTER		8,547	3,242		22000	522	0.7	1.0	16.1	210	1564	1564		NO
Chlorine, Total Residual		19	11		78	522	0.4	1.0	31.2	5.2	7.5	7.5		NO
Chloroform	С	and the second second		470	836	138	0.6	1.0	1.0				836	YES
Fluoride		1 D. 1		1.1	35500	522	0.6	1.0	1.0		35500	35500	35500	N/A, NO CRITERIA
Iron		and the second second	1,000		130	522	0.5	1.0	1.0	398		130		NO
Tin					820	521	0.6	1.0	1.0		820	820	820	N/A, NO CRITERIA

NOTES: 1. The criteria for Iron is from EPA's National Recommended Water Quality Criteria

	Summit Corporation of America 1430 Waterbury Road, Thomaston	Receiving Water: Type:	Naugatuck River Freshwater	
Permit Number: Application Number:		Average Effluent Flow:	330,000 gpd	0.511 cfs
DSN:		7Q10 Flow of Receiving Water @ Site:	14.94 cfs	
		Allocation:	50 %	25 %
		Dilution Factor:	15.6	8.3
		Dilution Factor _{A,C,HB} :	1.0	

	5 JUN 20	Light different	Water Quality Cri	teria	Maximum	Total		-1001.50	101123	Naugatuck	Receiving	Receiving	Receiving	1000
POLLUTANT	또	Aqua	tic Life	Human Health	Measured Effluent	Observations for Maximum	cv	MultipSer	Dilution	River	Water Concentration	Water Concentration	Water Concentration	Is there reasonable potential?
POLLUTANT	A O	Acute	Chronic	numanneaut	Concentration	Effluent		morepoor	Factor	Concentration µg/L	(acute)	(chronic)	(human health)	
	C.e.	µg/L	µg/L	µg/L	ha\r	Concentration		A. 2. 0.	1992	P9-	µg/L	hð\r	hð\r	
Aluminum		750	87		2800	522	0.6	1.0	8.3	71	399	399		YES
Ammonia (Total as N) SUMMER		8,547	1,378		22000	522	0.7	1.0	8.3	210	2830	2830		YES
Ammonia (Total as N) WINTER		8,547	3,242		22000	522	0.7	1.0	8.3	210	2830	2830		NO
Chlorine, Total Residual		19	11		78	522	0.4	1.0	15.6	5.2	9.9	9.9		NO
Chloroform	С			470	836	138	0.6	1.0	1.0				836	YES
Fluoride					35500	522	0.6	1.0	1.0		35500	35500	35500	N/A, NO CRITERIA
Iron			1,000		130	522	0.5	1.0	1.0	398		130		NO
Tin				10	820	521	0.6	1.0	1.0		820	820	820	N/A, NO CRITERIA

NOTES: 1. The criteria for Iron is from EPA's National Recommended Water Quality Criteria

WATER QUALITY-BASED LIMITS FOR POLLUTANTS WITH REASONABLE POTENTIAL

	: 1430	Water	bury Ro	n of Amer ad, Thon				g Water: ent Flow:		Naugatu 160,000		0.248	cfs	847.0	- Internet		
Permit Number Application Number DSN		205290						Dilution Dilution									
POLLUTANT	A,C,HB	Dilution Factor	WLA (acuta) µg/L	WLA (chronic) µg/L	WLA (human health) µg/L	LTA CV	LTA (acute)	LTA (chronic)	LTA (human health)	Limiting LTA	Limiting criteria	Anticipated Number of Samples per Month	Averaga Monthly Limit µg/L	Maximum Daily Limit µg/L	Instantaneous Limit µg/L	Average Monthly Limit g/day	Maximum Daily Limit g/day
Aluminum		16.1		328	New 2017	0.6		173.2	10.0.0.0	173.2	CHRONIC	4	269	540	809	163	327
Ammonia (Total as N) SUMMER		16.1		18,998		0.7		9128.4		9128.4	CHRONIC	4	15,072	32,487	48,731	9134	19689
Ammonia (Total as N) WINTER	-																
Chlorine, Total Residual																	
Chloroform		1			470	0.6	10-1-5		470	470	HUMAN HEALTH	1	470	686	1,028	285	416
Fluoride							M_12_										
Iron							and a second second										
Tin			L'ILL'ILL'				100										

Discharger Address Permit Number Application Number DSN				g Water: ent Flow: Dilution Dilution	Factors		gpd 8.3	0.511	cfs								
POLLUTANT	A.C.HB	Daution Factor	WLA (acute) µg/L	WLA (chronic) µg/L	WLA (human health) µg/L	LTA CV	LTA (acuta)	LTA (chronic)	LTA (human health)	Limiting LTA	Limiting criteria	Anticipated Number of Samples per Month	Average Monthly Limit µg/L	Maximum Daily Limit µg/L	Instantaneous Limit µg/L	Averaga Monthly Limit g/day	Maximum Daily Limit g/day
Aluminum	1.4.5	8.3		204		0.6		107.6		107.6	CHRONIC	4	167	335	503	209	419
Ammonia (Total as N) SUMMER		8.3		9,921	1	0.7	10 194	4766.9		4766.9	CHRONIC	4	7,870	16,965	25,447	9838	21206
Ammonia (Total as N) WINTER																	
Chlorine, Total Residual																	
Chloroform		1			470	0.6			470	470	HUMAN HEALTH	1	470	686	1,028	588	857
Fluoride																	
Iron			1				1										
Tin																	

Summit Corporation of America Reasonable Potential Evaluation: Data Summary

			DS	N 001-1 [OMR	Data: Ja	nuar	y 2008-Ju	une	2018			
Aluminu	m	Chlorine,		Chlorofo		<u>Fluoric</u>		Iron	0.000	<u>Nitrogen, Ar</u>		DATE Tin	
DATE Jan 08, 2008	ug/L 40	DATE Jan 08, 2008	0g/L 37	DATE Jan 15, 2008	ug/L 113	DATE Jan 08, 2008	ug/L 3100	DATE Jan 08, 2008	ug/L 40	DATE Jan 08, 2008	ug/L 180	Jan 08, 2008	ug/L 80 150
Jan 15, 2008 Jan 21, 2008	50 210	Jan 15, 2008 Jan 21, 2008	28 50	Feb 05, 2008 Mar 04, 2008	143 99	Jan 15, 2008 Jan 21, 2008	3700 9000	Jan 15, 2008 Jan 21, 2008	40 30	Jan 15, 2008 Jan 21, 2008	1000 540	Jan 15, 2008 Jan 21, 2008	120
Jan 28, 2008 Feb 05, 2008	11 20	Jan 28, 2008 Feb 05, 2008	18 47	Apr 07, 2008 May 05, 2008	171 74	Jan 28, 2008 Feb 05, 2008	2700 3100	Jan 28, 2008 Feb 05, 2008	30 30	Jan 28, 2008 Feb 05, 2008	1100 3700	Jan 28, 2008 Feb 05, 2008	100 150
Feb 01, 2008 Feb 18, 2008	120 40	Feb 01, 2008 Feb 18, 2008	63 67	Jun 02, 2008 Jul 07, 2008	511 639	Feb 01, 2008 Feb 18, 2008	3700 9000	Feb 01, 2008 Feb 18, 2008	40 40	Feb 01, 2008 Feb 18, 2008	1800 3200	Feb 01, 2008 Feb 18, 2008	90 140
Feb 25, 2008 Mar 04, 2008	30 60	Feb 25, 2008 Mar 04, 2008	78 50	Aug 11, 2008 Sep 03, 2008	178 435	Feb 25, 2008 Mar 04, 2008	2700 6750	Feb 25, 2008 Mar 04, 2008	30 40	Feb 25, 2008 Mar 04, 2008	1100 3700	Feb 25, 2008 Mar 04, 2008	140 30
Mar 10, 2008	70	Mar 10, 2008	43	Sep 08, 2008 Oct 06, 2008	268 564	Mar 10, 2008 Mar 17, 2008	9300 7500	Mar 10, 2008 Mar 17, 2008	40 30	Mar 10, 2008 Mar 17, 2008	1800 3200	Mar 10, 2008 Mar 17, 2008	110 130
Mar 17, 2008 Mar 24, 2008	10 30	Mar 17, 2008 Mar 24, 2008	33 43	Oct 14, 2008	189	Mar 24, 2008	9100	Mar 24, 2008	30 20	Mar 24, 2008 Mar 31, 2008	1100	Mar 24, 2008 Mar 31, 2008	220 230
Mar 31, 2008 Apr 07, 2008	10 50	Mar 31, 2008 Apr 07, 2008	27 33	Nov 03, 2008 Dec 01, 2008	245 377	Mar 31, 2008 Apr 07, 2008	380 860	Mar 31, 2008 Apr 07, 2008	30	Apr 07, 2008	3700	Apr 07, 2008	30 110
Apr 14, 2008 Apr 21, 2008	60 90	Apr 14, 2008 Apr 21, 2008	42 30	Jan 06, 2009 Jan 12, 2009	189 186	Apr 14, 2008 Apr 21, 2008	5900 4300	Apr 14, 2008 Apr 21, 2008	30 40	Apr 14, 2008 Apr 21, 2008	1800 3200	Apr 14, 2008 Apr 21, 2008	130
Apr 28, 2008 May 05, 2008	0	Apr 28, 2008 May 05, 2008	35 35	Feb 02, 2009 Mar 02, 2009	836 231	Apr 28, 2008 May 05, 2008	2200 860	Apr 28, 2008 May 05, 2008	30 30	Apr 28, 2008 May 05, 2008	1100 3300	Apr 28, 2008 May 05, 2008	220 60
May 12, 2008 May 19, 2008	60 130	May 12, 2008 May 19, 2008	27 37	Apr 07, 2009 Apr 13, 2009	113 331	May 12, 2008 May 19, 2008	5900 4300	May 12, 2008 May 19, 2008	40 40	May 12, 2008 May 19, 2008	3100 320	May 12, 2008 May 19, 2008	120 120
May 27, 2008 Jun 02, 2008	100 40	May 27, 2008 Jun 02, 2008	28 33	May 04, 2009 Jun 01, 2009	213 143	May 27, 2008 Jun 02, 2008	1300 1760	May 27, 2008 Jun 02, 2008	20 40	May 27, 2008 Jun 02, 2008	1100 1100	May 27, 2008 Jun 02, 2008	60 690
Jun 09, 2008	80 2700	Jun 09, 2008 Jun 16, 2008	40 53	Jul 13, 2009 Aug 03, 2009	181 350	Jun 09, 2008 Jun 16, 2008	900 2200	Jun 09, 2008 Jun 16, 2008	30 40	Jun 09, 2008 Jun 16, 2008	520 2700	Jun 09, 2008 Jun 16, 2008	150 130
Jun 16, 2008 Jun 24, 2008	2800	Jun 24, 2008	57 55	Sep 08, 2009 Oct 05, 2009	91 72	Jun 24, 2008 Jun 30, 2008	2500 940	Jun 24, 2008 Jun 30, 2008	30 40	Jun 24, 2008 Jun 30, 2008	2800 1200	Jun 24, 2008 Jun 30, 2008	420 110
Jun 30, 2008 Jul 07, 2008	70 60	Jun 30, 2008 Jul 07, 2008	33	Oct 12, 2009	206	Jul 07, 2008	1460	Jul 07, 2008	30 40	Jul 07, 2008 Jul 14, 2008	4400	Jul 07, 2008 Jul 14, 2008	120 190
Jul 14, 2008 Jul 21, 2008	50 60	Jul 14, 2008 Jul 21, 2008	25 20	Nov 02, 2009 Dec 08, 2009	730 186	Jul 14, 2008 Jul 21, 2008	4600 4600	Jul 14, 2008 Jul 21, 2008	30	Jul 21, 2008	800	Jul 21, 2008	260 40
Aug 11, 2008 Aug 18, 2008	50 90	Aug 11, 2008 Aug 18, 2008	25 38	Jan 11, 2010 Feb 01, 2010	168 382	Aug 11, 2008 Aug 18, 2008	2900 1100	Aug 11, 2008 Aug 18, 2008	40 20	Aug 11, 2008 Aug 18, 2008	2600 2600	Aug 11, 2008 Aug 18, 2008	40
Aug 26, 2008 Sep 03, 2008	0 160	Aug 26, 2008 Sep 03, 2008	23 20	Mar 01, 2010 Apr 05, 2010	431 232	Aug 26, 2008 Sep 03, 2008	1700 1620	Aug 26, 2008 Sep 03, 2008	40 20	Aug 26, 2008 Sep 03, 2008	820 2500	Aug 26, 2008 Sep 03, 2008	310 80
Sep 08, 2008 Sep 15, 2008	40 40	Sep 08, 2008 Sep 15, 2008	30 30	May 03, 2010 Jun 01, 2010	235 241	Sep 08, 2008 Sep 15, 2008	600 1800	Sep 08, 2008 Sep 15, 2008	30 40	Sep 08, 2008 Sep 15, 2008	1000 3700	Sep 08, 2008 Sep 15, 2008	290 300
Sep 22, 2008	80	Sep 22, 2008 Sep 30, 2008	40 30	Jul 13, 2010 Aug 02, 2010	106 194	Sep 22, 2008 Sep 30, 2008	600 4500	Sep 22, 2008 Sep 30, 2008	20 40	Sep 22, 2008 Sep 30, 2008	1900 2400	Sep 22, 2008 Sep 30, 2008	280 430
Sep 30, 2008 Oct 06, 2008	40 50	Oct 06, 2008	30 30 20	Sep 07, 2010 Oct 11, 2010	146 157	Oct 06, 2008 Oct 14, 2008	2700 1500	Oct 06, 2008 Oct 14, 2008	30 40	Oct 06, 2008 Oct 14, 2008	3700 2300	Oct 06, 2008 Oct 14, 2008	60 90
Oct 14, 2008 Oct 20, 2008	70 30	Oct 14, 2008 Oct 20, 2008	30	Nov 01, 2010	143	Oct 20, 2008 Oct 27, 2008	2100	Oct 20, 2008	40 40	Oct 20, 2008 Oct 27, 2008	2600 560	Oct 20, 2008 Oct 27, 2008	50 60
Oct 27, 2008 Nov 03, 2008	0 40	Oct 27, 2008 Nov 03, 2008	60 30	Dec 06, 2010 Jan 03, 2011	185 116	Nov 03, 2008	2000 1900	Oct 27, 2008 Nov 03, 2008	30	Nov 03, 2008	250	Nov 03, 2008 Nov 10, 2008	170 0
Nov 10, 2008 Nov 17, 2008	90 120	Nov 10, 2008 Nov 17, 2008	20 30	Feb 07, 2011 Mar 07, 2011	118 119	Nov 10, 2008 Nov 17, 2008	2500 1100	Nov 10, 2008 Nov 17, 2008	20 40	Nov 10, 2008 Nov 17, 2008	1300 20000	Nov 17, 2008	0
Nov 24, 2008 Dec 01, 2008	110 20	Nov 24, 2008 Dec 01, 2008	30 20	Apr 04, 2011 May 02, 2011	57 155	Nov 24, 2008 Dec 01, 2008	2200 3500	Nov 24, 2008 Dec 01, 2008	30 40	Nov 24, 2008 Dec 01, 2008	1300 2300	Nov 24, 2008 Dec 01, 2008	0 20
Dec 08, 2008 Dec 15, 2008	20 20	Dec 08, 2008 Dec 15, 2008	30 30	Jun 06, 2011 Jul 18, 2011	73 49	Dec 08, 2008 Dec 15, 2008	1900 900	Dec 08, 2008 Dec 15, 2008	30 30	Dec 08, 2008 Dec 15, 2008	2600 4600	Dec 08, 2008 Dec 15, 2008	150 250
Jan 06, 2009	100 50	Jan 06, 2009 Jan 12, 2009	30 30	Aug 01, 2011 Sep 06, 2011	52 94	Jan 06, 2009 Jan 12, 2009	1060 1200	Jan 06, 2009 Jan 12, 2009	40 40	Jan 06, 2009 Jan 12, 2009	4300 2200	Jan 06, 2009 Jan 12, 2009	0 190
Jan 12, 2009 Jan 19, 2009	80	Jan 19, 2009	30	Oct 03, 2011 Nov 07, 2011	165 74	Jan 19, 2009 Jan 26, 2009	4400 4800	Jan 19, 2009 Jan 26, 2009	30 30	Jan 19, 2009 Jan 26, 2009	3400 2400	Jan 19, 2009 Jan 26, 2009	50 90
Jan 26, 2009 Feb 02, 2009	80 30	Jan 26, 2009 Feb 02, 2009	20 30	Dec 05, 2011	101	Feb 02, 2009	6800	Feb 02, 2009 Feb 09, 2009	20 30	Feb 02, 2009 Feb 09, 2009	700 2200	Feb 02, 2009 Feb 09, 2009	40 110
Feb 09, 2009 Feb 16, 2009	30 70	Feb 09, 2009 Feb 16, 2009	30 20	Jan 02, 2012 Jan 30, 2012	50 99	Feb 09, 2009 Feb 16, 2009	1000	Feb 16, 2009	40	Feb 16, 2009	6100 980	Feb 16, 2009 Feb 23, 2009	100 170
Feb 23, 2009 Mar 02, 2009	20 20	Feb 23, 2009 Mar 02, 2009	40 27	Feb 06, 2012 Mar 05, 2012	61 186	Feb 23, 2009 Mar 02, 2009	1300 2100	Feb 23, 2009 Mar 02, 2009	20 30	Feb 23, 2009 Mar 02, 2009	4000	Mar 02, 2009	160 160
Mar 09, 2009 Mar 16, 2009	40 70	Mar 09, 2009 Mar 16, 2009	25 27	Apr 02, 2012 May 07, 2012	100 81	Mar 09, 2009 Mar 16, 2009	2500 6800	Mar 09, 2009 Mar 16, 2009	30 40	Mar 09, 2009 Mar 16, 2009	2500 3900	Mar 09, 2009 Mar 16, 2009	40
Mar 23, 2009 Mar 30, 2009	40 20	Mar 23, 2009 Mar 30, 2009	28 22	Jun 04, 2012 Jul 16, 2012	67 15	Mar 23, 2009 Mar 30, 2009	2500 920	Mar 23, 2009 Mar 30, 2009	40 20	Mar 23, 2009 Mar 30, 2009	1800 3600	Mar 23, 2009 Mar 30, 2009	110 230
Apr 07, 2009 Apr 13, 2009	50 40	Apr 07, 2009 Apr 13, 2009	22 17	Aug 06, 2012 Sep 04, 2012	66 120	Apr 07, 2009 Apr 13, 2009	5500 1400	Apr 07, 2009 Apr 13, 2009	30 40	Apr 07, 2009 Apr 13, 2009	5000 2100	Apr 07, 2009 Apr 13, 2009	100 160
Apr 20, 2009	50	Apr 20, 2009	20 23	Oct 01, 2012 Nov 05, 2012	35 154	Apr 20, 2009 Apr 27, 2009	1400 2200	Apr 20, 2009 Apr 27, 2009	30 40	Apr 20, 2009 Apr 27, 2009	720 13000	Apr 20, 2009 Apr 27, 2009	170 50
Apr 27, 2009 May 04, 2009	50 70	Apr 27, 2009 May 04, 2009	30	Dec 03, 2012	42	May 04, 2009 May 12, 2009	1500 900	May 04, 2009 May 12, 2009	20 30	May 04, 2009 May 12, 2009	1700 4000	May 04, 2009 May 12, 2009	200 40
May 12, 2009 May 18, 2009	100 70	May 12, 2009 May 18, 2009	20 30	Feb 04, 2013 Mar 04, 2013	84	May 18, 2009	2200	May 18, 2009	30	May 18, 2009 May 26, 2009	2100 3700	May 18, 2009 May 26, 2009	100 30
May 26, 2009 Jun 01, 2009	150 80	May 26, 2009 Jun 01, 2009	30 20	Apr 01, 2013 May 06, 2013	18 169	May 26, 2009 Jun 01, 2009	900 1500	May 26, 2009 Jun 01, 2009	10 40	Jun 01, 2009	1900	Jun 01, 2009	220
Jun 08, 2009 Jun 15, 2009	70 90	Jun 08, 2009 Jun 15, 2009	20 20	Jun 03, 2013 Jul 15, 2013	93 39	Jun 08, 2009 Jun 15, 2009	1300 800	Jun 08, 2009 Jun 15, 2009	20 20	Jun 08, 2009 Jun 15, 2009	1100 1200	Jun 08, 2009 Jun 15, 2009	120 160
Jun 22, 2009 Jul 13, 2009	90 50	Jun 22, 2009 Jul 13, 2009	10 20	Aug 05, 2013 Sep 03, 2013	27 157	Jun 22, 2009 Jul 13, 2009	2000 1500	Jun 22, 2009 Jul 13, 2009	30 20	Jun 22, 2009 Jul 13, 2009	1500 1700	Jun 22, 2009 Jul 13, 2009	220 20
Jul 20, 2009 Jul 27, 2009	40 100	Jul 20, 2009 Jul 27, 2009	20 20	Oct 14, 2013 Nov 04, 2013	45 79	Jul 20, 2009 Jul 27, 2009	1300 1100	Jul 20, 2009 Jul 27, 2009	30 40	Jul 20, 2009 Jul 27, 2009	6600 960	Jul 20, 2009 Jul 27, 2009	30 20
Aug 03, 2009	120	Aug 03, 2009	22 22	Dec 02, 2013 Jan 06, 2014	108 29	Aug 03, 2009 Aug 10, 2009	620 1200	Aug 03, 2009 Aug 10, 2009	30 30	Aug 03, 2009 Aug 10, 2009	920 1350	Aug 03, 2009 Aug 10, 2009	110 80
Aug 10, 2009 Aug 17, 2009	120 70	Aug 10, 2009 Aug 17, 2009	17	Jan 13, 2014	48	Aug 17, 2009	1400 2700	Aug 17, 2009 Aug 24, 2009	30 20	Aug 17, 2009 Aug 24, 2009	1130 2100	Aug 17, 2009 Aug 24, 2009	300 90
Aug 24, 2009 Aug 31, 2009	70 80	Aug 24, 2009 Aug 31, 2009	20 22	Feb 03, 2014 Mar 03, 2014	171 155	Aug 24, 2009 Aug 31, 2009	540	Aug 31, 2009	30	Aug 31, 2009	1750 2000	Aug 31, 2009 Sep 08, 2009	120 0
Sep 08, 2009 Sep 14, 2009	60 90	Sep 08, 2009 Sep 14, 2009	17 17	Apr 07, 2014 May 05, 2014	47 43	Sep 08, 2009 Sep 14, 2009	3000 500	Sep 08, 2009 Sep 14, 2009	30 40	Sep 08, 2009 Sep 14, 2009	3800	Sep 14, 2009	20
Sep 21, 2009 Sep 28, 2009	30 120	Sep 21, 2009 Sep 28, 2009	20 20	Jun 02, 2014 Jul 14, 2014	62 78	Sep 21, 2009 Sep 28, 2009	2600 1100	Sep 21, 2009 Sep 28, 2009	30 40	Sep 21, 2009 Sep 28, 2009	1300 1600	Sep 21, 2009 Sep 28, 2009	110 100
Oct 05, 2009 Oct 12, 2009	90 60	Oct 05, 2009 Oct 12, 2009	18 23	Jul 21, 2014 Aug 04, 2014	70 108	Oct 05, 2009 Oct 12, 2009	2160 1000	Oct 05, 2009 Oct 12, 2009	40 30	Oct 05, 2009 Oct 12, 2009	1600 3200	Oct 05, 2009 Oct 12, 2009	170 180
Oct 19, 2009 Oct 26, 2009	60 50	Oct 19, 2009 Oct 26, 2009	18 20	Sep 02, 2014 Oct 06, 2014	126 64	Oct 19, 2009 Oct 26, 2009	1100 1100	Oct 19, 2009 Oct 26, 2009	40 30	Oct 19, 2009 Oct 26, 2009	2200 1600	Oct 19, 2009 Oct 26, 2009	220 160
Nov 02, 2009	90	Nov 02, 2009	17 20	Nov 03, 2014 Dec 01, 2014	34 54	Nov 02, 2009 Nov 09, 2009	1960 2700	Nov 02, 2009 Nov 09, 2009	20 40	Nov 02, 2009 Nov 09, 2009	4200 2000	Nov 02, 2009 Nov 09, 2009	30 60
Nov 09, 2009 Nov 16, 2009	80 50	Nov 09, 2009 Nov 16, 2009	22	Jan 05, 2015	76	Nov 16, 2009	1500 1600	Nov 16, 2009 Nov 23, 2009	30 20	Nov 16, 2009 Nov 23, 2009	2800	Nov 16, 2009 Nov 23, 2009	120 60
Nov 23, 2009 Nov 30, 2009	0 O	Nov 23, 2009 Nov 30, 2009	18 17	Jan 12, 2015 Jan 19, 2015	28 41	Nov 23, 2009 Nov 30, 2009	1340	Nov 30, 2009	40	Nov 30, 2009	3200	Nov 30, 2009	80 820
Dec 08, 2009 Dec 14, 2009	60 60	Dec 08, 2009 Dec 14, 2009	30 23	Feb 02, 2015 Feb 16, 2015	35 35	Dec 08, 2009 Dec 14, 2009	760 900	Dec 08, 2009 Dec 14, 2009	20 30	Dec 08, 2009 Dec 14, 2009	2400 2100	Dec 08, 2009 Dec 14, 2009	50
Dec 21, 2009 Dec 28, 2009	50 0	Dec 21, 2009 Dec 28, 2009	22 20	Mar 02, 2015 Mar 09, 2015	33 23	Dec 21, 2009 Dec 28, 2009	1100 1700	Dec 21, 2009 Dec 28, 2009	20 30	Dec 21, 2009 Dec 28, 2009	1600 2800	Dec 21, 2009 Dec 28, 2009	110 30
Jan 04, 2010 Jan 11, 2010	0	Jan 04, 2010 Jan 11, 2010	22 17	Apr 13, 2015 May 04, 2015	69 40	Jan 04, 2010 Jan 11, 2010	2700 500	Jan 04, 2010 Jan 11, 2010	40 20	Jan 04, 2010 Jan 11, 2010	1900 1520	Jan 04, 2010 Jan 11, 2010	110 40
Jan 18, 2010	40	Jan 18, 2010	25	Aug 03, 2015	87 42	Jan 18, 2010 Jan 26, 2010	1200 2000	Jan 18, 2010 Jan 26, 2010	40 30	Jan 18, 2010 Jan 26, 2010	1600 1500	Jan 18, 2010 Jan 26, 2010	150 250
Jan 26, 2010 Feb 01, 2010	30 0	Jan 26, 2010 Feb 01, 2010	20 18	Aug 17, 2015 Sep 14, 2015	88	Feb 01, 2010	960 700	Feb 01, 2010 Feb 08, 2010	30 20	Feb 01, 2010 Feb 08, 2010	2900 1500	Feb 01, 2010 Feb 08, 2010	60 230
Feb 08, 2010 Feb 15, 2010	0	Feb 08, 2010 Feb 15, 2010	22 17	Oct 05, 2015 Oct 19, 2015	41	Feb 08, 2010 Feb 15, 2010	2200	Feb 15, 2010	40	Feb 15, 2010	2800	Feb 15, 2010 Feb 22, 2010	90 100
Feb 22, 2010 Mar 01, 2010	0 30	Feb 22, 2010 Mar 01, 2010	20 22	Nov 16, 2015 Dec 07, 2015	57 80	Feb 22, 2010 Mar 01, 2010	800 1340	Feb 22, 2010 Mar 01, 2010	30 20	Feb 22, 2010 Mar 01, 2010	920 1200	Mar 01, 2010	60
Mar 08, 2010 Mar 15, 2010	0	Mar 08, 2010 Mar 15, 2010	15 22	Jan 18, 2016 Feb 01, 2016	95 96	Mar 08, 2010 Mar 15, 2010	600 500	Mar 08, 2010 Mar 15, 2010	20 40	Mar 08, 2010 Mar 15, 2010	3700 2600	Mar 08, 2010 Mar 15, 2010	230 90
Mar 22, 2010 Mar 29, 2010	0	Mar 22, 2010 Mar 29, 2010	18 18	Mar 01, 2016 Apr 05, 2016	92 95	Mar 22, 2010 Mar 29, 2010	800 1000	Mar 22, 2010 Mar 29, 2010	30 40	Mar 22, 2010 Mar 29, 2010	22000 680	Mar 22, 2010 Apr 05, 2010	100 260
	100		2053	1000-000000000000000000000000000000000		17 55							

Summit Corporation of America Reasonable Potential Evaluation: Data Summary

			DSI	N 001-1 E	MR	Data: Ja	nuar	y 2008-Ju	ine	2018			
Aluminu		Chlorine,		Chlorofo		Fluorid		Iron	302477	Nitrogen, Ar		Tin	12.004
DATE Apr 05, 2010	ug/L 20	DATE Apr 05, 2010	ug/L 20	DATE May 03, 2016	ug/L 149	DATE Apr 05, 2010	ug/L 1200	DATE Apr 05, 2010	ug/L 30	DATE Apr 05, 2010	ug/L 620	DATE Apr 12, 2010	ug/L 260
Apr 12, 2010 Apr 19, 2010	0 30	Apr 12, 2010 Apr 19, 2010	18 17	Jun 06, 2016 Jul 19, 2016	46 83	Apr 12, 2010 Apr 19, 2010	2000 2400	Apr 12, 2010 Apr 19, 2010	30 40	Apr 12, 2010 Apr 19, 2010	1200 2000	Apr 19, 2010 Apr 26, 2010	640 420
Apr 26, 2010	20	Apr 26, 2010	23	Jul 29, 2016	70	Apr 26, 2010	1100	Apr 26, 2010	20	Apr 26, 2010	840 900	May 03, 2010 May 10, 2010	230 100
May 03, 2010 May 10, 2010	20 0	May 03, 2010 May 10, 2010	15 22	Aug 29, 2016 Sep 12, 2016	35 86	May 03, 2010 May 10, 2010	2300 1000	May 03, 2010 May 10, 2010	30 20	May 03, 2010 May 10, 2010	480	May 17, 2010	40
May 17, 2010	0 40	May 17, 2010 May 24, 2010	22 17	Oct 19, 2016 Nov 21, 2016	46 36	May 17, 2010 May 24, 2010	600 1100	May 17, 2010 May 24, 2010	40 30	May 17, 2010 May 24, 2010	740 1060	May 24, 2010 Jun 01, 2010	70 450
May 24, 2010 Jun 01, 2010	0	Jun 01, 2010	20	Dec 06, 2016	102	Jun 01, 2010	440	Jun 01, 2010	40	Jun 01, 2010	2200	Jun 07, 2010	120 200
Jun 07, 2010 Jun 14, 2010	0 30	Jun 07, 2010 Jun 14, 2010	28 17	Jan 10, 2017 Feb 06, 2017	166 102	Jun 07, 2010 Jun 14, 2010	600 2200	Jun 07, 2010 Jun 14, 2010	30 20	Jun 07, 2010 Jun 14, 2010	3400 2500	Jun 14, 2010 Jun 21, 2010	350
Jun 21, 2010 Jun 28, 2010	0	Jun 21, 2010 Jun 28, 2010	20 20	Mar 07, 2017 Apr 04, 2017	89 54	Jun 21, 2010 Jun 28, 2010	600 1500	Jun 21, 2010 Jun 28, 2010	20 30	Jun 21, 2010 Jun 28, 2010	2200 2800	Jun 28, 2010 Jul 13, 2010	110 0
Jul 13, 2010	0	Jul 13, 2010	18	May 02, 2017	133	Jul 13, 2010	1240	Jul 13, 2010	20	Jul 13, 2010 Jul 19, 2010	3300 950	Jul 19, 2010 Jul 26, 2010	60 40
Jul 19, 2010 Jul 26, 2010	20 30	Jul 19, 2010 Jul 26, 2010	17 20	Jun 06, 2017 Jul 11, 2017	69 16	Jul 19, 2010 Jul 26, 2010	1200 4500	Jul 19, 2010 Jul 26, 2010	40 30	Jul 26, 2010	1400	Aug 02, 2010	0
Aug 02, 2010 Aug 09, 2010	30 0	Aug 02, 2010 Aug 09, 2010	20 17	Aug 01, 2017 Sep 05, 2017	18 62	Aug 02, 2010 Aug 09, 2010	9250 2300	Aug 02, 2010 Aug 09, 2010	40 30	Aug 02, 2010 Aug 09, 2010	1200 2300	Aug 09, 2010 Aug 16, 2010	80 140
Aug 16, 2010	0	Aug 16, 2010	22	Oct 03, 2017	30	Aug 16, 2010	4000 1300	Aug 16, 2010 Aug 23, 2010	30 30	Aug 16, 2010 Aug 23, 2010	2100 2800	Aug 23, 2010 Aug 30, 2010	120 360
Aug 23, 2010 Aug 30, 2010	80 0	Aug 23, 2010 Aug 30, 2010	22 22	Nov 21, 2017 Dec 05, 2017	54 96	Aug 23, 2010 Aug 30, 2010	1680	Aug 30, 2010	30	Aug 30, 2010	940	Sep 07, 2010	270
Sep 07, 2010 Sep 13, 2010	0	Sep 07, 2010 Sep 13, 2010	18 17	Jan 04, 2018 Feb 06, 2018	76 43	Sep 07, 2010 Sep 13, 2010	5600 2800	Sep 07, 2010 Sep 13, 2010	40 30	Sep 07, 2010 Sep 13, 2010	1300 3300	Sep 13, 2010 Sep 20, 2010	230 120
Sep 20, 2010	0	Sep 20, 2010	17	Mar 06, 2018 Apr 03, 2018	34 24	Sep 20, 2010 Sep 27, 2010	1600 1500	Sep 20, 2010 Sep 27, 2010	20 40	Sep 20, 2010 Sep 27, 2010	2800 1900	Sep 27, 2010 Oct 04, 2010	310 130
Sep 27, 2010 Oct 04, 2010	30 20	Sep 27, 2010 Oct 04, 2010	20 20	May 01, 2018	26	Oct 04, 2010	2000	Oct 04, 2010	30	Oct 04, 2010	1900	Oct 11, 2010	390 180
Oct 11, 2010 Oct 18, 2010	0	Oct 11, 2010 Oct 18, 2010	17 22	Jun 05, 2018	62	Oct 11, 2010 Oct 18, 2010	3800 2300	Oct 11, 2010 Oct 18, 2010	40 20	Oct 11, 2010 Oct 18, 2010	1200 1100	Oct 18, 2010 Oct 25, 2010	150
Oct 25, 2010	0	Oct 25, 2010	20 18			Oct 25, 2010 Nov 01, 2010	1400 1680	Oct 25, 2010 Nov 01, 2010	30 20	Oct 25, 2010 Nov 01, 2010	1300 350	Nov 01, 2010 Nov 08, 2010	180 580
Nov 01, 2010 Nov 08, 2010	60 70	Nov 01, 2010 Nov 08, 2010	15			Nov 08, 2010	1540	Nov 08, 2010	40	Nov 08, 2010	4500	Nov 15, 2010 Nov 22, 2010	180 80
Nov 15, 2010 Nov 22, 2010	0	Nov 15, 2010 Nov 22, 2010	25 18			Nov 15, 2010 Nov 22, 2010	9000 3700	Nov 15, 2010 Nov 22, 2010	30 40	Nov 15, 2010 Nov 22, 2010	3600 2600	Nov 29, 2010	320
Nov 29, 2010	0	Nov 29, 2010 Dec 06, 2010	18 18			Nov 29, 2010 Dec 06, 2010	2440 4850	Nov 29, 2010 Dec 06, 2010	20 30	Nov 29, 2010 Dec 06, 2010	2100 3200	Dec 06, 2010 Dec 13, 2010	300 340
Dec 06, 2010 Dec 13, 2010	0	Dec 13, 2010	17			Dec 13, 2010	1600	Dec 13, 2010	40	Dec 13, 2010	1800 3900	Dec 20, 2010 Dec 27, 2010	160 310
Dec 20, 2010 Dec 27, 2010	0 20	Dec 20, 2010 Dec 27, 2010	18 17			Dec 20, 2010 Dec 27, 2010	2300 4400	Dec 20, 2010 Dec 27, 2010	30 40	Dec 20, 2010 Dec 27, 2010	3500	Jan 03, 2011	130
Jan 03, 2011 Jan 10, 2011	0 60	Jan 03, 2011 Jan 10, 2011	22 20			Jan 03, 2011 Jan 10, 2011	2320 4530	Jan 03, 2011 Jan 10, 2011	40 30	Jan 03, 2011 Jan 10, 2011	640 2800	Jan 10, 2011 Jan 17, 2011	190 220
Jan 17, 2011	0	Jan 17, 2011	20			Jan 17, 2011	4440	Jan 17, 2011	30 40	Jan 17, 2011 Jan 24, 2011	4700 5100	Jan 24, 2011 Jan 31, 2011	160 190
Jan 24, 2011 Jan 31, 2011	0	Jan 24, 2011 Jan 31, 2011	25 17			Jan 24, 2011 Jan 31, 2011	3300 2000	Jan 24, 2011 Jan 31, 2011	40	Jan 31, 2011	5600	Feb 07, 2011	110
Feb 07, 2011 Feb 14, 2011	0 20	Feb 07, 2011 Feb 14, 2011	20 22			Feb 07, 2011 Feb 14, 2011	4000 1600	Feb 07, 2011 Feb 14, 2011	30 40	Feb 07, 2011 Feb 14, 2011	4600 3500	Feb 14, 2011 Feb 21, 2011	0 80
Feb 21, 2011	0	Feb 21, 2011	23			Feb 21, 2011	1800 2400	Feb 21, 2011 Feb 28, 2011	20 40	Feb 21, 2011 Feb 28, 2011	2600 4500	Feb 28, 2011 Mar 07, 2011	120 170
Feb 28, 2011 Mar 07, 2011	0 30	Feb 28, 2011 Mar 07, 2011	27 25			Feb 28, 2011 Mar 07, 2011	1520	Mar 07, 2011	30	Mar 07, 2011	1850	Mar 14, 2011	560
Mar 14, 2011 Mar 21, 2011	20 0	Mar 14, 2011 Mar 21, 2011	18 20			Mar 14, 2011 Mar 21, 2011	1500 2100	Mar 14, 2011 Mar 21, 2011	20 40	Mar 14, 2011 Mar 21, 2011	2300 3800	Mar 21, 2011 Mar 28, 2011	330 230
Mar 28, 2011	0	Mar 28, 2011 Apr 04, 2011	15 20			Mar 28, 2011 Apr 04, 2011	500 10500	Mar 28, 2011 Apr 04, 2011	40 30	Mar 28, 2011 Apr 04, 2011	2800 6800	Apr 04, 2011 Apr 11, 2011	240 190
Apr 04, 2011 Apr 11, 2011	0	Apr 11, 2011	20			Apr 11, 2011	1200	Apr 11, 2011	40	Apr 11, 2011	4400	Apr 18, 2011	50 90
Apr 18, 2011 Apr 25, 2011	0	Apr 18, 2011 Apr 25, 2011	22 20			Apr 18, 2011 Apr 25, 2011	11000 2300	Apr 18, 2011 Apr 25, 2011	20 30	Apr 18, 2011 Apr 25, 2011	5800 3200	Apr 25, 2011 May 02, 2011	320
May 02, 2011 May 09, 2011	20 0	May 02, 2011 May 09, 2011	20 18			May 02, 2011 May 09, 2011	1460 5300	May 02, 2011 May 09, 2011	40 20	May 02, 2011 May 09, 2011	4700 2700	May 09, 2011 May 16, 2011	100 200
May 16, 2011	30	May 16, 2011	20			May 16, 2011	820	May 16, 2011	30 40	May 16, 2011 May 23, 2011	1600 1500	May 23, 2011 May 31, 2011	250 280
May 23, 2011 May 31, 2011	0	May 23, 2011 May 31, 2011	15 18			May 23, 2011 May 31, 2011	1000 570	May 23, 2011 May 31, 2011	40	May 31, 2011	8200	Jun 06, 2011	80
Jun 06, 2011 Jun 13, 2011	0	Jun 06, 2011 Jun 13, 2011	20 20			Jun 06, 2011 Jun 13, 2011	770 930	Jun 06, 2011 Jun 13, 2011	20 30	Jun 06, 2011 Jun 13, 2011	2050 680	Jun 13, 2011 Jun 21, 2011	160 70
Jun 21, 2011	0	Jun 21, 2011	15			Jun 21, 2011	740 730	Jun 21, 2011 Jun 27, 2011	40 40	Jun 21, 2011 Jun 27, 2011	1900 900	Jun 27, 2011 Jul 11, 2011	90 0
Jun 27, 2011 Jul 11, 2011	0	Jun 27, 2011 Jul 11, 2011	18 15			Jun 27, 2011 Jul 11, 2011	1250	Jul 11, 2011	40	Jul 11, 2011	320	Jul 18, 2011	180
Jul 18, 2011 Jul 25, 2011	20 0	Jul 18, 2011 Jul 25, 2011	15 17 17			Jul 18, 2011 Jul 25, 2011	800 600	Jul 18, 2011 Jul 25, 2011	30 20	Jul 18, 2011 Jul 25, 2011	300 330	Jul 25, 2011 Aug 01, 2011	0 100
Aug 01, 2011	0	Aug 01, 2011	20			Aug 01, 2011 Aug 08, 2011	2200 1000	Aug 01, 2011 Aug 08, 2011	30 30	Aug 01, 2011 Aug 08, 2011	10000 580	Aug 08, 2011 Aug 15, 2011	80 140
Aug 08, 2011 Aug 15, 2011	0	Aug 08, 2011 Aug 15, 2011	18 20			Aug 15, 2011	400	Aug 15, 2011	20	Aug 15, 2011	580	Aug 22, 2011	110 90
Aug 22, 2011 Aug 29, 2011	20 0	Aug 22, 2011 Aug 29, 2011	15 18			Aug 22, 2011 Aug 29, 2011	1000 1080	Aug 22, 2011 Aug 29, 2011	30 40	Aug 22, 2011 Aug 29, 2011	2200 1700	Aug 29, 2011 Sep 06, 2011	230
Sep 06, 2011	20 0	Sep 06, 2011 Sep 12, 2011	17 20			Sep 06, 2011 Sep 12, 2011	740 900	Sep 06, 2011 Sep 12, 2011	20 30	Sep 06, 2011 Sep 12, 2011	1820 980	Sep 12, 2011 Sep 19, 2011	80 70
Sep 12, 2011 Sep 19, 2011	0	Sep 19, 2011	18			Sep 19, 2011	500	Sep 19, 2011	40 20	Sep 19, 2011	1450 1530	Sep 26, 2011 Oct 03, 2011	50 0
Sep 26, 2011 Oct 03, 2011	0	Sep 26, 2011 Oct 03, 2011	18 18			Sep 26, 2011 Oct 03, 2011	800 1170	Sep 26, 2011 Oct 03, 2011	40	Sep 26, 2011 Oct 03, 2011	2100	Oct 10, 2011	70
Oct 10, 2011 Oct 17, 2011	0 50	Oct 10, 2011 Oct 17, 2011	15 18			Oct 10, 2011 Oct 17, 2011	700 500	Oct 10, 2011 Oct 17, 2011	20 40	Oct 10, 2011 Oct 17, 2011	960 2100	Oct 17, 2011 Oct 24, 2011	80 170
Oct 24, 2011	0	Oct 24, 2011	22			Oct 24, 2011	500 520	Oct 24, 2011 Nov 07, 2011	50 40	Oct 24, 2011 Nov 07, 2011	1800 1540	Nov 07, 2011 Nov 14, 2011	190 220
Nov 07, 2011 Nov 14, 2011	0 20	Nov 07, 2011 Nov 14, 2011	17 17			Nov 07, 2011 Nov 14, 2011	1400	Nov 14, 2011	40	Nov 14, 2011	2100	Nov 21, 2011	90
Nov 21, 2011 Nov 28, 2011	0	Nov 21, 2011 Nov 28, 2011	13 17			Nov 21, 2011 Nov 28, 2011	1200 700	Nov 21, 2011 Nov 28, 2011	30 40	Nov 21, 2011 Nov 28, 2011	2600 1330	Nov 28, 2011 Dec 05, 2011	0 140
Dec 05, 2011	30	Dec 05, 2011	22			Dec 05, 2011	780 900	Dec 05, 2011 Dec 12, 2011	30 20	Dec 05, 2011 Dec 12, 2011	2150 2400	Dec 12, 2011 Dec 19, 2011	200 190
Dec 12, 2011 Dec 19, 2011	20 230	Dec 12, 2011 Dec 19, 2011	20 20			Dec 12, 2011 Dec 19, 2011	400	Dec 19, 2011	20	Dec 19, 2011	2300	Jan 02, 2012	70
Jan 02, 2012 Jan 09, 2012	20 20	Jan 02, 2012 Jan 09, 2012	22 20			Jan 02, 2012 Jan 09, 2012	860 3600	Jan 02, 2012 Jan 09, 2012	30 30	Jan 02, 2012 Jan 09, 2012	1800 5800	Jan 09, 2012 Jan 16, 2012	160 110
Jan 16, 2012	0	Jan 16, 2012	20			Jan 16, 2012	1400 1100	Jan 16, 2012 Jan 23, 2012	20 20	Jan 16, 2012 Jan 23, 2012	2000 3100	Jan 23, 2012 Jan 30, 2012	80 240
Jan 23, 2012 Jan 30, 2012	0	Jan 23, 2012 Jan 30, 2012	25 17			Jan 23, 2012 Jan 30, 2012	850	Jan 30, 2012	20	Jan 30, 2012	980	Feb 06, 2012	240
Feb 06, 2012 Feb 13, 2012	0	Feb 06, 2012 Feb 13, 2012	15 13			Feb 06, 2012 Feb 13, 2012	790 1200	Feb 06, 2012 Feb 13, 2012	20 30	Feb 06, 2012 Feb 13, 2012	1270 1860	Feb 13, 2012 Feb 20, 2012	170 140
Feb 20, 2012	0	Feb 20, 2012	15			Feb 20, 2012 Feb 27, 2012	700 500	Feb 20, 2012 Feb 27, 2012	20 40	Feb 20, 2012 Feb 27, 2012	2600 1550	Feb 27, 2012 Mar 05, 2012	420 240
Feb 27, 2012 Mar 05, 2012	0 20	Feb 27, 2012 Mar 05, 2012	15 23			Mar 05, 2012	1050	Mar 05, 2012	20	Mar 05, 2012	2100	Mar 12, 2012	410
Mar 12, 2012 Mar 19, 2012	30 20	Mar 12, 2012 Mar 19, 2012	20 18			Mar 12, 2012 Mar 19, 2012	2900 2100	Mar 12, 2012 Mar 19, 2012	40 20	Mar 12, 2012 Mar 19, 2012	2700 3100	Mar 19, 2012 Mar 26, 2012	250 170
Mar 26, 2012	0	Mar 26, 2012	25			Mar 26, 2012	700 820	Mar 26, 2012 Apr 02, 2012	30 40	Mar 26, 2012 Apr 02, 2012	1450 1460	Apr 02, 2012 Apr 09, 2012	170 100
Apr 02, 2012 Apr 09, 2012	0	Apr 02, 2012 Apr 09, 2012	20 20			Apr 02, 2012 Apr 09, 2012	700	Apr 09, 2012	40	Apr 09, 2012	4800	Apr 16, 2012	170
Apr 16, 2012	30 0	Apr 16, 2012 Apr 23, 2012	17 17			Apr 16, 2012 Apr 23, 2012	600 900	Apr 16, 2012 Apr 23, 2012	20 30	Apr 16, 2012 Apr 23, 2012	3300 1660	Apr 23, 2012 Apr 30, 2012	80 100
Apr 23, 2012 Apr 30, 2012	0	Apr 30, 2012	13			Apr 30, 2012	650	Apr 30, 2012	20 30	Apr 30, 2012 May 07, 2012	2600 2500	May 07, 2012 May 14, 2012	110 70
May 07, 2012 May 14, 2012	30 20	May 07, 2012 May 14, 2012	15 17			May 07, 2012 May 14, 2012	2100 4400	May 07, 2012 May 14, 2012	30	May 14, 2012	3050	May 21, 2012	70
May 21, 2012 May 29, 2012	0 20	May 21, 2012 May 29, 2012	17 18			May 21, 2012 May 29, 2012	1100 800	May 21, 2012 May 29, 2012	30 30	May 21, 2012 May 29, 2012	2320 2200	May 29, 2012 Jun 04, 2012	180 70
Jun 04, 2012	0	Jun 04, 2012	18			Jun 04, 2012	1050 1000	Jun 04, 2012 Jun 11, 2012	40 30	Jun 04, 2012 Jun 11, 2012	2050 850	Jun 11, 2012 Jun 18, 2012	110 130
Jun 11, 2012	٥	Jun 11, 2012	17			Jun 11, 2012	1000	oun 11, 2012	90	00111,2012	000		

Summit Corporation of America Reasonable Potential Evaluation: Data Summary

Jun 18, 2012 0 Jun 18, 2012 20	<u>Tin</u> ATE Ug/L
DATE ugiL DATE ugiL <th< td=""><td></td></th<>	
	5,2012 100
Jun 25, 2012 0 Jun 25, 2012 18 Jun 25, 2012 1400 Jun 25, 2012 40 Jun 25, 2012 1520 Jul 16, 2012 90 Jul 16, 2012 15 Jul 16, 2012 720 Jul 16, 2012 20 Jul 16, 2012 2200 Jul 25, 2012 12, 200 Jul 25,	6,2012 120 3,2012 0
Jul 23, 2012 20 Jul 23, 2012 17 Jul 23, 2012 600 Jul 23, 2012 30 Jul 23, 2012 6500 Jul 3	0,2012 90 6,2012 190
Aug 06, 2012 0 Aug 06, 2012 22 Aug 06, 2012 580 Aug 06, 2012 20 Aug 06, 2012 2000 Aug	3,2012 170 20,2012 260
Aug 10, 2012 0 Aug 20, 2012 22 Aug 20, 2012 400 Aug 20, 2012 40 Aug 20, 2012 1420 Aug	27, 2012 170 14, 2012 140
Sep 04, 2012 0 Sep 04, 2012 15 Sep 04, 2012 370 Sep 04, 2012 40 Sep 04, 2012 1800 Sep	0,2012 270
Sep 17, 2012 0 Sep 17, 2012 17 Sep 17, 2012 400 Sep 17, 2012 40 Sep 17, 2012 1800 Sep	7, 2012 150 4, 2012 200
Sep 24, 2012 0 Sep 24, 2012 7800 Sep 24, 2012 40 Sep 24, 2012 40 Sep 24, 2012 7800 Oct 10, 2012 0 Oct 01, 2012 20 Oct 01, 2012 20 Oct 01, 2012 20 Oct 01, 2012 225 Oct 01	1,2012 200 8,2012 120
Oct 08, 2012 0 Oct 08, 2012 20 Oct 08, 2012 1700 Oct 08, 2012 20 Oct 08, 2012 1120 Oct	5,2012 220 2,2012 180
Oct 22, 2012 0 Oct 22, 2012 23 Oct 22, 2012 700 Oct 22, 2012 20 Oct 22, 2012 1400 Oct 20 Oct	0,2012 140 5,2012 140
Nov 05, 2012 260 Nov 05, 2012 22 Nov 05, 2012 560 Nov 05, 2012 20 Nov 05, 2012 1560 Nov	2,2012 170 9,2012 330
Nov 19, 2012 20 Nov 19, 2012 15 Nov 19, 2012 700 Nov 19, 2012 30 Nov 19, 2012 5000 Nov	26, 2012 250 03, 2012 180
Dec 03, 2012 0 Dec 03, 2012 15 Dec 03, 2012 720 Dec 03, 2012 40 Dec 03, 2012 3400 Dec	0, 2012 180
Dec 17, 2012 0 Dec 17, 2012 23 Dec 17, 2012 600 Dec 17, 2012 40 Dec 17, 2012 1800 Feb	4, 2013 160
Feb 11 2013 20 Feb 11 2013 17 Feb 11, 2013 12500 Feb 11, 2013 40 Feb 11, 2013 2800 Feb	1,2013 60 8,2013 160
Feb 18, 2013 20 Feb 18, 2013 17 Feb 18, 2013 2500 Feb 18, 2013 30 Feb 18, 2013 3300 Feb 18, 2013 Feb 25, 2013 30 Feb 18, 2013 300 Feb 18	5, 2013 120 14, 2013 100
Mar 04, 2013 0 Mar 04, 2013 12 Mar 04, 2013 20 Mar 04, 2013 3700 Mar 04, 2013 Mar 04, 2013 300 Mar 11, 2013 Mar 11, 2013 300 Mar 11, 2013 Mar 11, 2013<	1,2013 130 8,2013 130
Mar 18, 2013 0 Mar 18, 2013 22 Mar 18, 2013 1100 Mar 18, 2013 30 Mar 18, 2013 760 Mar	5,2013 80 1,2013 80
Apr 01, 2013 0 Apr 01, 2013 18 Apr 01, 2013 1030 Apr 01, 2013 20 Apr 01, 2013 2050 Apr 0	8, 2013 110 5, 2013 110
Apr 15, 2013 20 Apr 15, 2013 18 Apr 15, 2013 1900 Apr 15, 2013 30 Apr 15, 2013 5000 Apr	2,2013 80 9,2013 260
Apr 29, 2013 0 Apr 29, 2013 18 Apr 29, 2013 1250 Apr 29, 2013 40 Apr 29, 2013 3500 May	9,2013 200 06,2013 130 13,2013 80
May 13, 2013 0 May 13, 2013 13 May 13, 2013 1400 May 13, 2013 20 May 13, 2013 3020 May	20, 2013 410
May 28, 2013 0 May 28, 2013 12 May 28, 2013 800 May 28, 2013 20 May 28, 2013 2800 Jun	28, 2013 180 13, 2013 80
Jun 03, 2013 20 Jun 03, 2013 18 Jun 03, 2013 40 Jun 03, 2013 40 Jun 03, 2013 2450 Jun Jun 10, 2013 20 Jun 10, 2013 40 Jun 10, 2013 40 Jun 10, 2013 4700 Jun	0,2013 70 7,2013 50
Jun 17, 2013 0 Jun 17, 2013 18 Jun 17, 2013 1900 Jun 17, 2013 20 Jun 17, 2013 500 Jun	4, 2013 30 5, 2013 50
Jul 15, 2013 0 Jul 15, 2013 12 Jul 15, 2013 760 Jul 15, 2013 20 Jul 15, 2013 1100 Jul	2,2013 80 9,2013 290
Jul 29, 2013 0 Jul 29, 2013 18 Jul 29, 2013 1700 Jul 29, 2013 20 Jul 29, 2013 1460 Aug	05, 2013 230 2, 2013 250
Aug 12, 2013 0 Aug 12, 2013 17 Aug 12, 2013 600 Aug 12, 2013 40 Aug 12, 2013 1200 Aug 12, 2013 40 Aug 12, 2013	19, 2013 90 26, 2013 90
Aug 26, 2013 30 Aug 26, 2013 18 Aug 26, 2013 100 Aug 26, 2013 20 Aug 26, 2013 2200 Sep	03, 2013 90 09, 2013 110
Sep 09, 2013 0 Sep 09, 2013 17 Sep 09, 2013 500 Sep 09, 2013 40 Sep 09, 2013 2600 Sep	16, 2013 320
Sep 23, 2013 0 Sep 23, 2013 13 Sep 23, 2013 400 Sep 23, 2013 20 Sep 23, 2013 1500 Sep	80, 2013 110
Oct 07, 2013 0 Oct 07, 2013 22 Oct 07, 2013 1720 Oct 07, 2013 30 Oct 07, 2013 4000 Oct	7, 2013 170 4, 2013 130
Oct 14, 2013 20 Oct 14, 2013 20 Oct 14, 2013 20 Oct 14, 2013 7800 Oct 10, 2013 7800 Oct 11, 2013 20 Oct 14, 2013 20 Oct 14, 2013 7800 Oct 12, 2013 20 Oct 14, 2013 30 Oct 21, 2013 30 Oct 31, 2013 30 Oct 31, 2013 30 Oct 31, 2013 30 Oct 31, 30 Oct 31, 2013 30	1,2013 220 8,2013 150
Oct 28, 2013 0 Oct 28, 2013 18 Oct 28, 2013 2700 Oct 28, 2013 30 Oct 28, 2013 300 Nov Nov 04, 2013 20 Nov 04, 2013 18 Nov 04, 2013 2500 Nov 04, 2013 20 Nov 04, 2013 3100 Nov	04,2013 170 11,2013 300
Nov 11, 2013 0 Nov 11, 2013 13 Nov 11, 2013 1000 Nov 11, 2013 30 Nov 11, 2013 3500 Nov Nov 12, 2013 0 Nov 11, 2013 17 Nov 18, 2013 800 Nov 18, 2013 30 Nov 18, 2013 800 Nov	18, 2013 210 25, 2013 250
Nov 25, 2013 0 Nov 25, 2013 18 Nov 25, 2013 100 Nov 25, 2013 40 Nov 25, 2013 4600 Dec	02,2013 130 09,2013 20
Dec 09, 2013 0 Dec 09, 2013 15 Dec 09, 2013 5600 Dec 09, 2013 20 Dec 09, 2013 3300 Dec	16,2013 180 30,2013 100
Dec 30, 2013 0 Dec 30, 2013 15 Dec 30, 2013 900 Dec 30, 2013 30 Dec 30, 2014 790 Jan	06, 2014 140 3, 2014 40
Jan 13, 2014 0 Jan 13, 2014 18 Jan 13, 2014 1000 Jan 13, 2014 20 Jan 13, 2014 2600 Jan	20, 2014 160 27, 2014 180
Jan 27, 2014 0 Jan 27, 2014 25 Jan 27, 2014 600 Jan 27, 2014 40 Jan 27, 2014 1400 Feb	03, 2014 160
Feb 03, 2014 0 Feb 03, 2014 22 Feb 03, 2014 1250 Feb 03, 2014 30 Feb 03, 2014 1/00 Feb Feb 10, 2014 0 Feb 10, 2014 28 Feb 10, 2014 1250 Feb 10, 2014 30 Feb 10, 2014 1200 Feb 10, 2014 30 Feb 10, 2014 6500 Feb	10,2014 170 17,2014 200
Feb 17, 2014 30 Feb 17, 2014 18 Feb 17, 2014 1100 Feb 17, 2014 20 Feb 17, 2014 2000 Feb Feb 24, 2014 50 Feb 24, 2014 15 Feb 24, 2014 1700 Feb 24, 2014 20 Feb 24, 2014 2000 Mar	24,2014 280 03,2014 340
Mar 03, 2014 30 Mar 03, 2014 15 Mar 03, 2014 920 Mar 03, 2014 20 Mar 03, 2014 540 Mar 03, 2014 540 Mar 10, 2014 Mar 10,	10, 2014 420 17, 2014 620
Mar 17, 2014 40 Mar 17, 2014 17 Mar 17, 2014 28000 Mar 17, 2014 30 Mar 17, 2014 8000 Mar Mar 24, 2014 30 Mar 24, 2014 17 Mar 24, 2014 20 Mar 24, 2014 20 Mar 24, 2014 3200 Mar	24, 2014 370 31, 2014 70
Mar 31, 2014 0 Mar 31, 2014 17 Mar 31, 2014 3420 Mar 31, 2014 30 Mar 31, 2014 3500 Apr Mar 31, 2014 0 Mar 31, 2014 17 Mar 31, 2014 3420 Mar 31, 2014 30 Mar 31, 2014 3500 Apr	07,2014 130 14,2014 520
Apr 14, 2014 90 Apr 14, 2014 22 Apr 14, 2014 5300 Apr 14, 2014 20 Apr 14, 2014 3500 Apr	21,2014 110 28,2014 90
Apr 28, 2014 0 Apr 28, 2014 25 Apr 28, 2014 3800 Apr 28, 2014 30 Apr 28, 2014 4300 May	05,2014 40 12,2014 80
May 12, 2014 0 May 12, 2014 27 May 12, 2014 2900 May 12, 2014 40 May 12, 2014 5000 May 12, 2014 40 May 12, 2014 5000 May 12, 2014 40 May 12, 2014 5000 May 12, 2014 40 May 12,	19, 2014 90
May 19, 2014 O May 19, 2014 25 May 19, 2014 2900 May 19, 2014 30 May 19, 2014 2300 May 19, 2014 2000 May 19, 2014 30 May 19, 2014 2000 May 20, 2014 2000 May	02, 2014 50
Jun 02, 2014 0 Jun 02, 2014 23 Jun 02, 2014 1280 Jun 02, 2014 20 Jun 02, 2014 2200 Jun 03, 2014 Jun 09, 2014 0 Jun 09, 2014 27 Jun 09, 2014 2500 Jun 09, 2014 20 Jun	09, 2014 340 16, 2014 130
Jun 16, 2014 0 Jun 16, 2014 13 Jun 16, 2014 1900 Jun 16, 2014 30 Jun 16, 2014 4500 Jun 16, 2014 4500 Jun 16, 2014 1900 Jun 23, 2014 20 Jun 24,	23, 2014 90 18, 2014 380
Jul 08, 2014 0 Jul 08, 2014 25 Jul 08, 2014 4800 Jul 08, 2014 0 Jul 08, 2014 4500 Jul 14, 2014 17 Jul 14, 2014 1800 Jul 14, 2014 0 Jul 14, 2014 4500 Jul	4, 2014 340 1, 2014 140
Jul 21, 2014 0 Jul 21, 2014 28 Jul 21, 2014 2500 Jul 21, 2014 20 Jul 21, 2014 3500 Jul Jul 21, 2014 0 Jul 22, 2014 15 Jul 28, 2014 3400 Jul 28, 2014 10 Jul 28, 2014 2800 Aug	8,2014 120 04,2014 60
Aug 04, 2014 0 Aug 04, 2014 18 Aug 04, 2014 3400 Aug 04, 2014 0 Aug 04, 2014 3400 Aug 04, 2014 0 Aug 04, 2014 3400 Aug	11,2014 130 18,2014 0
Aug 18, 2014 0 Aug 18, 2014 15 Aug 18, 2014 4300 Aug 18, 2014 30 Aug 18, 2014 4100 Aug	25, 2014 0 02, 2014 130
Aug 22, 2014 0 Sep 02, 2014 18 Sep 02, 2014 4000 Sep 02, 2014 30 Sep 02, 2014 4300 Sep	08, 2014 0 15, 2014 0
Sep 15, 2014 20 Sep 15, 2014 22 Sep 15, 2014 10 Sep 15, 2014 30 Sep 15, 2014 4400 Sep	22, 2014 100
Sep 29, 2014 0 Sep 29, 2014 18 Sep 29, 2014 60 Sep 29, 2014 5800 Oct	06, 2014 180
Oct 06, 2014 0 Oct 06, 2014 22 Oct 06, 2014 730 Oct 06, 2014 30 Oct 06, 2014 300 Oct 06, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 1000 Oct 13, 2014 30 Oct 13, 2014 510 Oct 13, 2014 30 Oct	13, 2014 250 20, 2014 330 27, 2014 200
Oct 20, 2014 30 Oct 20, 2014 25 Oct 20, 2014 3700 Oct 20, 2014 30 Oct 20, 2014 2700 Oct	27,2014 300

Summit Corporation of America Reasonable Potential Evaluation: Data Summary

			DSN	1 001-1 DMR	Data: Ja	nuar	y 2008-Ju	ine 2	2018			
Aluminun	n	Chlorine,	TR	Chloroform	Fluorid	e	Iron		<u>Nitrogen, An</u>		<u>Tin</u>	
DATE Oct 27, 2014	ug/L 20	DATE Oct 27, 2014	ug/L 15	DATE ug/L	DATE Oct 27, 2014	ug/L 3100	DATE Oct 27, 2014	ug/L 50	DATE Oct 27, 2014	ug/L 2700	DATE Nov 03, 2014	ug/L 250
Nov 03, 2014	30	Nov 03, 2014	23		Nov 03, 2014	4700	Nov 03, 2014	40	Nov 03, 2014 Nov 10, 2014	13000 1000	Nov 10, 2014 Nov 17, 2014	170 240
Nov 10, 2014 Nov 17, 2014	1	Nov 10, 2014 Nov 17, 2014	25 15		Nov 10, 2014 Nov 17, 2014	1400 1600	Nov 10, 2014 Nov 17, 2014	0 30	Nov 17, 2014	5100	Nov 24, 2014	160
Nov 24, 2014 Dec 01, 2014	0	Nov 24, 2014 Dec 01, 2014	17 17		Nov 24, 2014 Dec 01, 2014	1500 1200	Nov 24, 2014 Dec 01, 2014	50 30	Nov 24, 2014 Dec 01, 2014	1000 1700	Dec 01, 2014 Dec 08, 2014	240 240
Dec 08, 2014	0	Dec 08, 2014	17		Dec 08, 2014	1600 14000	Dec 08, 2014 Dec 15, 2014	30 50	Dec 08, 2014 Dec 15, 2014	3600 5000	Dec 15, 2014 Dec 22, 2014	260 200
Dec 15, 2014 Dec 22, 2014	0 30	Dec 15, 2014 Dec 22, 2014	18 22		Dec 15, 2014 Dec 22, 2014	1400	. Dec 22, 2014	20	Dec 22, 2014	1700	Dec 29, 2014	160
Dec 29, 2014 Jan 05, 2015	0	Dec 29, 2014 Jan 05, 2015	27 20		Dec 29, 2014 Jan 05, 2015	930 1400	Dec 29, 2014 Jan 05, 2015	30 50	Dec 29, 2014 Jan 05, 2015	1300 990	Jan 05, 2015 Jan 12, 2015	120 170
Jan 12, 2015	30	Jan 12, 2015	20 23		Jan 12, 2015 Jan 19, 2015	2400 5600	Jan 12, 2015 Jan 19, 2015	20 30	Jan 12, 2015 Jan 19, 2015	3500 3200	Jan 19, 2015 Jan 28, 2015	80 69
Jan 19, 2015 Jan 28, 2015	0	Jan 19, 2015 Jan 28, 2015	18		Jan 28, 2015	1900	Jan 28, 2015	24	Jan 28, 2015	1600	Feb 02, 2015 Feb 09, 2015	101 118
Feb 02, 2015 Feb 09, 2015	0	Feb 02, 2015 Feb 09, 2015	20 27		Feb 02, 2015 Feb 09, 2015	1560 1900	Feb 02, 2015 Feb 09, 2015	0 26	Feb 02, 2015 Feb 09, 2015	3500 1900	Feb 16, 2015	62
Feb 16, 2015 Feb 23, 2015	0	Feb 16, 2015 Feb 23, 2015	17 15 ·		Feb 16, 2015 Feb 23, 2015	3100 1100	Feb 16, 2015 Feb 23, 2015	24 32	Feb 16, 2015 Feb 23, 2015	3000 3200	Feb 23, 2015 Mar 02, 2015	84 82
Mar 02, 2015	0	Mar 02, 2015	20		Mar 02, 2015	1600 1300	Mar 02, 2015 Mar 09, 2015	48 31	Mar 02, 2015 Mar 09, 2015	4000 6500	Mar 09, 2015 Mar 17, 2015	71 124
Mar 09, 2015 Mar 17, 2015	0 20	Mar 09, 2015 Mar 17, 2015	17 20		Mar 09, 2015 Mar 17, 2015	1800	Mar 17, 2015	53	Mar 17, 2015	1900	Mar 23, 2015	46
Mar 23, 2015 Mar 30, 2015	0	Mar 23, 2015 Mar 30, 2015	15 20		Mar 23, 2015 Mar 30, 2015	1300 840	Mar 23, 2015 Mar 30, 2015	39 52	Mar 23, 2015 Mar 30, 2015	2500 1000	Mar 30, 2015 Apr 06, 2015	84 27
Apr 06, 2015	0	Apr 06, 2015	25		Apr 06, 2015 Apr 13, 2015	1040 3600	Apr 06, 2015 Apr 13, 2015	28 0	Apr 06, 2015 Apr 13, 2015	1300 1980	Apr 13, 2015 Apr 20, 2015	47 54
Apr 13, 2015 Apr 20, 2015	0	Apr 13, 2015 Apr 20, 2015	15 18		Apr 20, 2015	5300	Apr 20, 2015	33	Apr 20, 2015	3000	Apr 27, 2015	55 41
Apr 27, 2015 May 04, 2015	0	Apr 27, 2015 May 04, 2015	17 30		Apr 27, 2015 May 04, 2015	1400 2880	Apr 27, 2015 May 04, 2015	24 22	Apr 27, 2015 May 04, 2015	5000 4800	May 04, 2015 May 11, 2015	30
May 11, 2015 May 18, 2015	0	May 11, 2015 May 18, 2015	28 20		May 11, 2015 May 18, 2015	2400 2500	May 11, 2015 May 18, 2015	20 20	May 11, 2015 May 18, 2015	3300 7400	May 18, 2015 May 26, 2015	0 110
May 26, 2015	0	May 26, 2015	28		May 26, 2015	1200 2740	May 26, 2015 Jun 01, 2015	30 40	May 26, 2015 Jun 01, 2015	1700 1800	Jun 01, 2015 Jun 08, 2015	90 190
Jun 01, 2015 Jun 08, 2015	0	Jun 01, 2015 Jun 08, 2015	0		Jun 01, 2015 Jun 08, 2015	1600	Jun 08, 2015	30	Jun 08, 2015	2100	Jun 15, 2015	60
Jun 15, 2015 Jun 22, 2015	0	Jun 15, 2015 Jun 22, 2015	0		Jun 15, 2015 Jun 22, 2015	1200 900	Jun 15, 2015 Jun 22, 2015	20 50	Jun 15, 2015 Jun 22, 2015	2600 5900	Jun 22, 2015 Jul 08, 2015	260 80
Jul 08, 2015	0	Jul 08, 2015	22 17		Jul 08, 2015 Jul 13, 2015	1560 35500	Jul 08, 2015 Jul 13, 2015	60 45	Jul 08, 2015 Jul 13, 2015	1900 6600	Jul 13, 2015 Jul 20, 2015	180 60
Jul 13, 2015 Jul 20, 2015	0	Jul 13, 2015 Jul 20, 2015	23		Jul 20, 2015	4100	Jul 20, 2015	0	Jul 20, 2015	3500 2500	Jul 27, 2015 Aug 03, 2015	30 30
Jul 27, 2015 Aug 03, 2015	0	Jul 27, 2015 Aug 03, 2015	25 13		Jul 27, 2015 Aug 03, 2015	2000 2900	Jul 27, 2015 Aug 03, 2015	0 30	Jul 27, 2015 Aug 03, 2015	2100	Aug 10, 2015	100
Aug 10, 2015 Aug 17, 2015	0 26	Aug 10, 2015 Aug 17, 2015	12 18		Aug 10, 2015 Aug 17, 2015	5100 2500	Aug 10, 2015 Aug 17, 2015	20 30	Aug 10, 2015 Aug 17, 2015	3100 1900	Aug 17, 2015 Aug 24, 2015	40 30
Aug 24, 2015	0	Aug 24, 2015	15		Aug 24, 2015 Aug 31, 2015	2600 3140	Aug 24, 2015 Aug 31, 2015	20 50	Aug 24, 2015 Aug 31, 2015	5200 830	Aug 31, 2015 Sep 08, 2015	60 80
Aug 31, 2015 Sep 08, 2015	0	Aug 31, 2015 Sep 08, 2015	18 27		Sep 08, 2015	1460	Sep 08, 2015	60	Sep 08, 2015	1880	Sep 14, 2015	50 90
Sep 14, 2015 Sep 21, 2015	0	Sep 14, 2015 Sep 21, 2015	30 37		Sep 14, 2015 Sep 21, 2015	10800 1500	Sep 14, 2015 Sep 21, 2015	30 51	Sep 14, 2015 Sep 21, 2015	2400 1300	Sep 21, 2015 Sep 28, 2015	40
Sep 28, 2015 Oct 05, 2015	20 0	Sep 28, 2015 Oct 05, 2015	15 15		Sep 28, 2015 Oct 05, 2015	1100 880	Sep 28, 2015 Oct 05, 2015	50 40	Sep 28, 2015 Oct 05, 2015	3900 1800	Oct 05, 2015 Oct 12, 2015	50 120
Oct 12, 2015	0	Oct 12, 2015	20		Oct 12, 2015 Oct 19, 2015	1600 1500	Oct 12, 2015 Oct 19, 2015	40 40	Oct 12, 2015 Oct 19, 2015	990 650	Oct 19, 2015 Oct 26, 2015	60 50
Oct 19, 2015 Oct 26, 2015	0 0	Oct 19, 2015 Oct 26, 2015	18 25		Oct 26, 2015	2900	Oct 26, 2015	40	Oct 26, 2015	1400	Nov 03, 2015 Nov 09, 2015	70 100
Nov 03, 2015 Nov 09, 2015	20 0	Nov 03, 2015 Nov 09, 2015	25 17		Nov 03, 2015 Nov 09, 2015	600 1200	Nov 03, 2015 Nov 09, 2015	50 40	Nov 03, 2015 Nov 09, 2015	1100 1500	Nov 16, 2015	90
Nov 16, 2015 Nov 23, 2015	0	Nov 16, 2015 Nov 23, 2015	17 23		Nov 16, 2015 Nov 23, 2015	2000	Nov 16, 2015 Nov 23, 2015	40 50	Nov 16, 2015 Nov 23, 2015	1400 2000	Nov 23, 2015 Nov 30, 2015	110 36
Nov 30, 2015	0	Nov 30, 2015	18		Nov 30, 2015 Dec 07, 2015	1360 1400	Nov 30, 2015 Dec 07, 2015	20 40	Nov 30, 2015 Dec 07, 2015	2100 1900	Dec 07, 2015 Dec 14, 2015	90 110
Dec 07, 2015 Dec 14, 2015	0	Dec 07, 2015 Dec 14, 2015	25 18		Dec 14, 2015	1100	Dec 14, 2015	30	Dec 14, 2015	1100	Dec 21, 2015 Dec 28, 2015	80 60
Dec 21, 2015 Dec 28, 2015	0	Dec 21, 2015 Dec 28, 2015	20 20		Dec 21, 2015 Dec 28, 2015	900 3400	Dec 21, 2015 Dec 28, 2015	60 40	Dec 21, 2015 Dec 28, 2015	1200 3200	Jan 04, 2016	110
Jan 04, 2016 Jan 11, 2016	0 20	Jan 04, 2016 Jan 11, 2016	22 25		Jan 04, 2016 Jan 11, 2016	12500 3400	Jan 04, 2016 Jan 11, 2016	40 60	Jan 04, 2016 Jan 11, 2016	5400 2200	Jan 11, 2016 Jan 18, 2016	110 50
Jan 18, 2016	0	Jan 18, 2016	18		Jan 18, 2016	2400 2700	Jan 18, 2016 Jan 26, 2016	40 0	Jan 18, 2016 Jan 26, 2016	2900 4400	Jan 26, 2016 Feb 01, 2016	60 0
Jan 26, 2016 Feb 01, 2016	0	Jan 26, 2016 Feb 01, 2016	18 13		Jan 26, 2016 Feb 01, 2016	1220	Feb 01, 2016	30	Feb 01, 2016	1100	Feb 08, 2016	0 30
Feb 08, 2016 Feb 16, 2016	0	Feb 08, 2016 Feb 16, 2016	13 12		Feb 08, 2016 Feb 16, 2016	1500 3000	Feb 08, 2016 Feb 16, 2016	20 20	Feb 08, 2016 Feb 16, 2016	2500 2000	Feb 16, 2016 Feb 22, 2016	30
Feb 22, 2016 Mar 01, 2016	0	Feb 22, 2016 Mar 01, 2016	12 20		Feb 22, 2016 Mar 01, 2016	2600 1660	Feb 22, 2016 Mar 01, 2016	0 20	Feb 22, 2016 Mar 01, 2016	2100 2200	Mar 01, 2016 Mar 07, 2016	0
Mar 07, 2016	0	Mar 07, 2016	20		Mar 07, 2016 Mar 14, 2016	1800	Mar 07, 2016 Mar 14, 2016	0 20	Mar 07, 2016 Mar 14, 2016	2000 2200	Mar 14, 2016 Mar 21, 2016	0 110
Mar 14, 2016 Mar 21, 2016	0	Mar 14, 2016 Mar 21, 2016	20 23		Mar 21, 2016	5000	Mar 21, 2016	30	Mar 21, 2016	1800	Mar 28, 2016 Apr 05, 2016	20 40
Mar 28, 2016 Apr 05, 2016	30 0	Mar 28, 2016 Apr 05, 2016	13 17		Mar 28, 2016 Apr 05, 2016	4600 2200	Mar 28, 2016 Apr 05, 2016	30 50	Mar 28, 2016 Apr 05, 2016	6000 2100	Apr 11, 2016	- 30
Apr 11, 2016 Apr 18, 2016	0	Apr 11, 2016 Apr 18, 2016	23 15		Apr 11, 2016 Apr 18, 2016	3700 2000	Apr 11, 2016 Apr 18, 2016	30 30	Apr 11, 2016 Apr 18, 2016	3800 3600	Apr 18, 2016 Apr 25, 2016	20 30
Apr 25, 2016	60	Apr 25, 2016	17		Apr 25, 2016 May 03, 2016	2900 3180	Apr 25, 2016 May 03, 2016	40 20	Apr 25, 2016 May 03, 2016	1600 3500	May 03, 2016 May 09, 2016	0 30
May 03, 2016 May 09, 2016	0	May 03, 2016 May 09, 2016	17 20		May 09, 2016	2400	May 09, 2016	20	May 09, 2016	3500 3800	May 16, 2016	40 0
May 16, 2016 May 23, 2016	0	May 16, 2016 May 23, 2016	17 20		May 16, 2016 May 23, 2016	3300 1600	May 16, 2016 May 23, 2016	130 20	May 16, 2016 May 23, 2016	3400	May 23, 2016 May 31, 2016	80
May 31, 2016	30 0	May 31, 2016 Jun 06, 2016	13 17		May 31, 2016 Jun 06, 2016	3320 2100	May 31, 2016 Jun 06, 2016	80 30	May 31, 2016 Jun 06, 2016	4300 1500	Jun 06, 2016 Jun 13, 2016	50 0
Jun 06, 2016 Jun 13, 2016	0	Jun 13, 2016	20		Jun 13, 2016 Jun 20, 2016	3000 5300	Jun 13, 2016 Jun 20, 2016	60 60	Jun 13, 2016 Jun 20, 2016	1700 3800	Jun 20, 2016 Jun 27, 2016	0 100
Jun 20, 2016 Jun 27, 2016	0	Jun 20, 2016 Jun 27, 2016	18 20		Jun 27, 2016	3800	Jun 27, 2016	40	Jun 27, 2016	2600	Jul 12, 2016	0
Jul 12, 2016 Jul 19, 2016	30 40	Jul 12, 2016 Jul 19, 2016	27 15		Jul 12, 2016 Jul 19, 2016	2760 1300	Jul 12, 2016 Jul 19, 2016	50 60	Jul 12, 2016 Jul 19, 2016	2700 3400	Jul 19, 2016 Jul 29, 2016	30
Jul 29, 2016 Aug 01, 2016	20 30	Jul 29, 2016 Aug 01, 2016	22 23		Jul 29, 2016 Aug 01, 2016	3200 2500	Jul 29, 2016 Aug 01, 2016	50 50	Jul 29, 2016 Aug 01, 2016	2200 1900	Aug 01, 2016 Aug 08, 2016	0 80
Aug 08, 2016	30	Aug 08, 2016	23		Aug 08, 2016	2400 1300	Aug 08, 2016 Aug 16, 2016	60 60	Aug 08, 2016 Aug 16, 2016	2600 1500	Aug 16, 2016 Aug 25, 2016	110 0
Aug 16, 2016 Aug 25, 2016	30 0	Aug 16, 2016 Aug 25, 2016	17 17		Aug 16, 2016 Aug 25, 2016	1300	Aug 25, 2016	40	Aug 25, 2016	4200	Aug 29, 2016	0
Aug 29, 2016 Sep 07, 2016	0	Aug 29, 2016 Sep 07, 2016	13 15		Aug 29, 2016 Sep 07, 2016	760 1840	Aug 29, 2016 Sep 07, 2016	30 80	Aug 29, 2016 Sep 07, 2016	2800 2500	Sep 07, 2016 Sep 12, 2016	0
Sep 12, 2016	20 20	Sep 12, 2016 Sep 19, 2016	17 22		Sep 12, 2016 Sep 19, 2016	2700 1500	Sep 12, 2016 Sep 19, 2016	70 40	Sep 12, 2016 Sep 19, 2016	2800 2500	Sep 19, 2016 Sep 26, 2016	0 0
Sep 19, 2016 Sep 26, 2016	0	Sep 26, 2016	20		Sep 26, 2016	900 1740	Sep 26, 2016 Oct 03, 2016	20 30	Sep 26, 2016 Oct 03, 2016	2500 2800	Oct 03, 2016 Oct 11, 2016	0
Oct 03, 2016 Oct 11, 2016	0 0	Oct 03, 2016 Oct 11, 2016	27 13		Oct 03, 2016 Oct 11, 2016	2200	Oct 11, 2016	30	Oct 11, 2016	2800	Oct 19, 2016	0
Oct 19, 2016 Oct 25, 2016	0	Oct 19, 2016 Oct 25, 2016	12 12		Oct 19, 2016 Oct 25, 2016	6000 3500	Oct 19, 2016 Oct 25, 2016	20 50	Oct 19, 2016 Oct 25, 2016	3300 1300	Oct 25, 2016 Oct 31, 2016	0
Oct 31, 2016 Nov 08, 2016	0	Oct 31, 2016 Nov 08, 2016	18 20		Oct 31, 2016 Nov 08, 2016	3100 2800	Oct 31, 2016 Nov 08, 2016	0 30	Oct 31, 2016 Nov 08, 2016	5000 3100	Nov 08, 2016 Nov 16, 2016	0
Nov 16, 2016	50	Nov 16, 2016 Nov 21, 2016	23 23		Nov 16, 2016 Nov 21, 2016	2260 2900	Nov 16, 2016 Nov 21, 2016	20 20	Nov 16, 2016 Nov 21, 2016	2300 3200	Nov 21, 2016 Nov 28, 2016	0
Nov 21, 2016 Nov 28, 2016	0	Nov 28, 2016	27		Nov 28, 2016 Dec 06, 2016	2700	Nov 28, 2016 Dec 06, 2016	90 0	Nov 28, 2016 Dec 06, 2016	3100 5000	Dec 06, 2016 Dec 12, 2016	. 0 . 0
Dec 06, 2016 Dec 12, 2016	0	Dec 06, 2016 Dec 12, 2016	15 17		Dec 12, 2016	2400	Dec 12, 2016	130 50	Dec 12, 2016 Dec 20, 2016	1800 1800	Dec 20, 2016 Dec 28, 2016	0
Dec 20, 2016	0	Dec 20, 2016	12		Dec 20, 2016	3000	Dec 20, 2016	50	000 20, 2010	1000	000 20, 2010	

Summit Corporation of America Reasonable Potential Evaluation: Data Summary

Г				DSN	1001-1 DMR	Data: Ja	nuar	y 2008-Jı	ine 2	2018			
	Aluminu	ım	Chlorine,	, TR	Chloroform	Fluoric	de	Iron		Nitrogen, An	nmonia	Tin	
	DATE	ug/L O	DATE	ug/L 28	DATE ug/L	DATE Dec 28, 2016	ug/L 2900	DATE Dec 28, 2016	ug/L O	DATE Dec 28, 2016	ug/L 2000	DATE Jan 04, 2017	ug/L O
e:	Dec 28, 2016 Jan 04, 2017	o	Dec 28, 2016 Jan 04, 2017	15		Jan 04, 2017	3520	Jan 04, 2017	0	Jan 04, 2017	3300	Jan 10, 2017	0
	Jan 10, 2017	0	Jan 10, 2017	23		Jan 10, 2017	2400 5200	Jan 10, 2017 Jan 17, 2017	0	Jan 10, 2017 Jan 17, 2017	2700 3200	Jan 17, 2017 Jan 24, 2017	60 0
	Jan 17, 2017 Jan 24, 2017	0	Jan 17, 2017 Jan 24, 2017	25 20		Jan 17, 2017 Jan 24, 2017	5000	Jan 24, 2017	o	Jan 24, 2017	4400	Jan 31, 2017	0
	Jan 31, 2017	0	Jan 31, 2017	15		Jan 31, 2017	2240	Jan 31, 2017	0	Jan 31, 2017	1900 4000	Feb 06, 2017 Feb 14, 2017	0
	Feb 06, 2017 Feb 14, 2017	0	Feb 06, 2017 Feb 14, 2017	20 13		Feb 06, 2017 Feb 14, 2017	5420 12600	Feb 06, 2017 Feb 14, 2017	20 30	Feb 06, 2017 Feb 14, 2017	4000	Feb 21, 2017	0
	Feb 21, 2017	0	Feb 21, 2017	20		Feb 21, 2017	7500	Feb 21, 2017	30	Feb 21, 2017	3900	Feb 28, 2017	0
	Feb 28, 2017 Mar 07, 2017	0	Feb 28, 2017 Mar 07, 2017	22 17		Feb 28, 2017 Mar 07, 2017	2100 1480	Feb 28, 2017 Mar 07, 2017	30 30	Feb 28, 2017 Mar 07, 2017	3300 4500	Mar 07, 2017 Mar 16, 2017	40
	Mar 16, 2017	0	Mar 16, 2017	15		Mar 16, 2017	1300	Mar 16, 2017	40	Mar 16, 2017	4500	Mar 21, 2017	0
	Mar 21, 2017 Mar 28, 2017	0	Mar 21, 2017 Mar 28, 2017	17 13		Mar 21, 2017 Mar 28, 2017	1900 2700	Mar 21, 2017 Mar 28, 2017	0 30	Mar 21, 2017 Mar 28, 2017	2100 5500	Mar 28, 2017 Apr 04, 2017	0
	Apr 04, 2017	40	Apr 04, 2017	25		Apr 04, 2017	1260	Apr 04, 2017	30	Apr 04, 2017	4800	Apr 11, 2017	0
	Apr 11, 2017	0	Apr 11, 2017	23		Apr 11, 2017 Apr 18, 2017	3000 1700	Apr 11, 2017 Apr 18, 2017	30 40	Apr 11, 2017 Apr 18, 2017	4700 6900	Apr 18, 2017 Apr 25, 2017	0
	Apr 18, 2017 Apr 25, 2017	90 0	Apr 18, 2017 Apr 25, 2017	17 15		Apr 25, 2017	1000	Apr 25, 2017	40	Apr 25, 2017	7000	May 02, 2017	0
	May 02, 2017	0	May 02, 2017	23		May 02, 2017	1240 1000	May 02, 2017 May 09, 2017	30 0	May 02, 2017 May 09, 2017	2200	May 09, 2017 May 16, 2017	0
	May 09, 2017 May 16, 2017	0	May 09, 2017 May 16, 2017	17 13		May 09, 2017 May 16, 2017	1000	May 16, 2017	30	May 16, 2017	2400	May 23, 2017	0
	May 23, 2017	0	May 23, 2017	20		May 23, 2017	1700	May 23, 2017	30	May 23, 2017	2200	May 31, 2017 Jun 06, 2017	0
	May 31, 2017 Jun 06, 2017	0	May 31, 2017 Jun 06, 2017	17 20		May 31, 2017 Jun 06, 2017	2300 1340	May 31, 2017 Jun 06, 2017	50 50	May 31, 2017 Jun 06, 2017	3600 1900	Jun 13, 2017	0
	Jun 13, 2017	20	Jun 13, 2017	17		Jun 13, 2017	900	Jun 13, 2017	40	Jun 13, 2017	5000	Jun 20, 2017	0
	Jun 20, 2017 Jun 27, 2017	20 0	Jun 20, 2017 Jun 27, 2017	25 22		Jun 20, 2017 Jun 27, 2017	1700 2200	Jun 20, 2017 Jun 27, 2017	40 40	Jun 20, 2017 Jun 27, 2017	3300 3700	Jun 27, 2017 Jul 11, 2017	0 0
	Jul 11, 2017	0	Jul 11, 2017	17		Jul 11, 2017	1540	Jul 11, 2017	30	Jul 11, 2017	2800	Jul 18, 2017	0
I	Jul 18, 2017 Jul 24, 2017	0	Jul 18, 2017 Jul 24, 2017	13 13		Jul 18, 2017 Jul 24, 2017	4700 2300	Jul 18, 2017 Jul 24, 2017	50 30	Jul 18, 2017 Jul 24, 2017	2000 4300	Jul 24, 2017 Aug 01, 2017	0
	Aug 01, 2017	o	Aug 01, 2017	23		Aug 01, 2017	1860	Aug 01, 2017	30	Aug 01, 2017	2000	Aug 08, 2017	0
	Aug 08, 2017	0	Aug 08, 2017	18 22		Aug 08, 2017 Aug 15, 2017	7000 3200	Aug 08, 2017 Aug 15, 2017	50 30	Aug 08, 2017 Aug 15, 2017	4500 5100	Aug 15, 2017 Aug 22, 2017	0
	Aug 15, 2017 Aug 22, 2017	0	Aug 15, 2017 Aug 22, 2017	22		Aug 22, 2017	1500	Aug 22, 2017	40	Aug 22, 2017	6000	Aug 29, 2017	0
	Aug 29, 2017	0	Aug 29, 2017	17		Aug 29, 2017	5800	Aug 29, 2017	20	Aug 29, 2017 Sep 05, 2017	4300 2600	Sep 05, 2017 Sep 12, 2017	20 0
	Sep 05, 2017 Sep 12, 2017	0	Sep 05, 2017 Sep 12, 2017	15 20		Sep 05, 2017 Sep 12, 2017	8000 7500	Sep 05, 2017 Sep 12, 2017	20 60	Sep 12, 2017	3300	Sep 19, 2017	ŏ
	Sep 19, 2017	0	Sep 19, 2017	20		Sep 19, 2017	1800	Sep 19, 2017	30	Sep 19, 2017	3100	Sep 26, 2017	0
	Sep 26, 2017 Oct 03, 2017	0	Sep 26, 2017 Oct 03, 2017	27 22		Sep 26, 2017 Oct 03, 2017	1800 2800	Sep 26, 2017 Oct 03, 2017	40 40	Sep 26, 2017 Oct 03, 2017	2200 3400	Oct 03, 2017 Oct 10, 2017	0
	Oct 10, 2017	0	Oct 10, 2017	17		Oct 10, 2017	3300	Oct 10, 2017	30	Oct 10, 2017	2000	Oct 17, 2017	0
	Oct 17, 2017	0	Oct 17, 2017 Oct 24, 2017	17 17		Oct 17, 2017 Oct 24, 2017	3500 3200	Oct 17, 2017 Oct 24, 2017	60 40	Oct 17, 2017 Oct 24, 2017	1900 2900	Oct 24, 2017 Oct 31, 2017	60 0
	Oct 24, 2017 Oct 31, 2017	0	Oct 31, 2017	15		Oct 31, 2017	2300	Oct 31, 2017	40	Oct 31, 2017	2300	Nov 09, 2017	0
	Nov 09, 2017	0	Nov 09, 2017	20		Nov 09, 2017 Nov 14, 2017	12000 15600	Nov 09, 2017 Nov 14, 2017	50 30	Nov 09, 2017 Nov 14, 2017	10000 5100	Nov 14, 2017 Nov 21, 2017	0
	Nov 14, 2017 Nov 21, 2017	0	Nov 14, 2017 Nov 21, 2017	20 17		Nov 21, 2017	8300	Nov 21, 2017	40	Nov 21, 2017	5000	Nov 28, 2017	60
	Nov 28, 2017	0	Nov 28, 2017	23		Nov 28, 2017	3200	Nov 28, 2017 Dec 05, 2017	50 0	Nov 28, 2017 Dec 05, 2017	5100 4100	Dec 05, 2017 Dec 12, 2017	0
	Dec 05, 2017 Dec 12, 2017	0	Dec 05, 2017 Dec 12, 2017	28 20		Dec 05, 2017 Dec 12, 2017	3900 1400	Dec 03, 2017 Dec 12, 2017	40	Dec 03, 2017 Dec 12, 2017	3000	Dec 19, 2017	0
	Dec 19, 2017	0	Dec 19, 2017	20		Dec 19, 2017	1700	Dec 19, 2017	60	Dec 19, 2017	8000 6200	Dec 27, 2017 Jan 04, 2018	0
	Dec 27, 2017 Jan 04, 2018	0	Dec 27, 2017 Jan 04, 2018	25 22		Dec 27, 2017 Jan 04, 2018	2800 820	Dec 27, 2017 Jan 04, 2018	30 40	Dec 27, 2017 Jan 04, 2018	2800	Jan 09, 2018	õ
	Jan 09, 2018	0	Jan 09, 2018	27		Jan 09, 2018	1900	Jan 09, 2018	30	Jan 09, 2018	2900	Jan 16, 2018	15
	Jan 16, 2018 Jan 23, 2018	0	Jan 16, 2018 Jan 23, 2018	22 27		Jan 16, 2018 Jan 23, 2018	7600 1700	Jan 16, 2018 Jan 23, 2018	50 40	Jan 16, 2018 Jan 23, 2018	6000 4300	Jan 23, 2018 Jan 30, 2018	70 0
	Jan 30, 2018	o	Jan 30, 2018	20		Jan 30, 2018	2950	Jan 30, 2018	40	Jan 30, 2018	2300	Feb 06, 2018	0
	Feb 06, 2018	0	Feb 06, 2018 Feb 13, 2018	25 22		Feb 06, 2018 Feb 13, 2018	1500 1400	Feb 06, 2018 Feb 13, 2018	30 30	Feb 06, 2018 Feb 13, 2018	2500 3700	Feb 13, 2018 Feb 20, 2018	60 0
	Feb 13, 2018 Feb 20, 2018	20 0	Feb 20, 2018	22		Feb 20, 2018	1200	Feb 20, 2018	40	Feb 20, 2018	7400	Feb 27, 2018	120
	Feb 27, 2018	20	Feb 27, 2018	15		Feb 27, 2018 Mar 06, 2018	3300 2560	Feb 27, 2018 Mar 06, 2018	90 60	Feb 27, 2018 Mar 06, 2018	2300 3300	Mar 06, 2018 Mar 13, 2018	0
	Mar 06, 2018 Mar 13, 2018	0	Mar 06, 2018 Mar 13, 2018	23 23		Mar 13, 2018	2700	Mar 13, 2018	30	Mar 13, 2018	3000	Mar 20, 2018	0
	Mar 20, 2018	0	Mar 20, 2018	23		Mar 20, 2018	2900	Mar 20, 2018	30	Mar 20, 2018 Mar 27, 2018	2800 6000	Mar 27, 2018 Apr 03, 2018	0 40
	Mar 27, 2018 Apr 03, 2018	0	Mar 27, 2018 Apr 03, 2018	18 17		Mar 27, 2018 Apr 03, 2018	1230 5350	Mar 27, 2018 Apr 03, 2018	20 40	Apr 03, 2018	3400	Apr 10, 2018	0
	Apr 10, 2018	0	Apr 10, 2018	23		Apr 10, 2018	1820	Apr 10, 2018	40	Apr 10, 2018	3000 2500	Apr 17, 2018	60 0
	Apr 17, 2018 Apr 24, 2018	0	Apr 17, 2018 Apr 24, 2018	18 27		Apr 17, 2018 Apr 24, 2018	1650 970	Apr 17, 2018 Apr 24, 2018	50 30	Apr 17, 2018 Apr 24, 2018	1800	Apr 24, 2018 May 01, 2018	60
	May 01, 2018	0	May 01, 2018	28		May 01, 2018	2160	May 01, 2018	20	May 01, 2018	5000	May 08, 2018	0
	May 08, 2018 May 15, 2018	0	May 08, 2018 May 15, 2018	27 15		May 08, 2018 May 15, 2018	2540 2000	May 08, 2018 May 15, 2018	40 50	May 08, 2018 May 15, 2018	3400 1500	May 15, 2018 May 22, 2018	0
	May 22, 2018	0 20	May 22, 2018	17		May 22, 2018	3400	May 22, 2018	0	May 22, 2018	4900	May 30, 2018	50
	May 30, 2018	0	May 30, 2018	18 10		May 30, 2018 Jun 05, 2018	2800 2740	May 30, 2018 Jun 05, 2018	50 0	May 30, 2018 Jun 05, 2018	2800 2200	Jun 05, 2018 Jun 12, 2018	0 220
I	Jun 05, 2018 Jun 12, 2018	0 20	Jun 05, 2018 Jun 12, 2018	2		Jun 12, 2018	1880	Jun 12, 2018	50	Jun 12, 2018	3200	Jun 19, 2018	0
	Jun 19, 2018	20	Jun 19, 2018	0		Jun 19, 2018	1380 1860	Jun 19, 2018 Jun 26, 2018	0 30	Jun 19, 2018 Jun 26, 2018	8600 6700	Jun 26, 2018	0
	Jun 26, 2018	0	Jun 26, 2018	5		Jun 26, 2018	1000	Juli 20, 2010	50	501120,2010	0,00		
									20				20
ML:	and the second second	20							20				20
	Aluminu		Chlorine,		Chloroform 130	Fluorio	<u>de</u> 2479	Iron	32	<u>Nitrogen, An</u>	nmonia 2888	<u>Tin</u>	116
MEAN SD		28 172		21 8	133		2829		14		2074		115
CV		6.12		0.37	1.03		1.14		0.45		0.72 0.7		0.99 1.0
CV (to 1 decimal place) MAX	2	6.1 2800	1 1	0.4 78	1.0 836	1 . 1	35500	A D	130	1 I	22000	1	820
MIN	1	0	20 8	0	15		370		0 522		180 522		0 521
N S		522 1.91		522 0.39	138 0.83		522 0.89		522 0.47		0.63		0.83
IV.		0.99		0.99	0.99		0.99		0.99		0.99		0.99
Percentile							0.00		0.00		0.00		0.00
Percentile Pn Multiplier		0.99		0.99 1.0	0.97 1.5		0.99 1.0 CV cutside of		0.99 1.0		0.99 1.0		0.99 1.0

CV outside of acceptable range: A default CV of 0.6 and a default multiplier

of 10 used

CV cutside of acceptable range. A default CV of 0.6 and a default multiplier of 1.0 used

Summit Corporation of America Reasonable Potential Evaluation: Temperature Data (USGS 01208049)

#	
# agency_cd	- Agency Code
# site_no	- Station number
# sample_dt	- Begin date
# sample tm	- Begin time
# P00010	- Temperature degrees Celsius
#	

Data for the following sites are included: # USGS 01208049 NAUGATUCK RIVER NR WATERVILLE

	208049 NA	UGATUCK RIV	VER NR WATE	RVILLE											
# agency cd		sample dt	sample tm	p00010		site no		sample tm		aga	ency cd	site no		sample Im	
USGS	1208049 1208049	10/5/1967 10/20/1980	14:30 11:30	19 11	USGS	1208049 1208049	1/9/1991 3/20/1991	13:20 13:45	4		JSGS JSGS	1208049	1/14/2004 3/10/2004	14:15	0 4.5
USGS	1208049	11/20/1980	13:10	6	USGS	1208049	4/9/1991	10:15	12	L	ISGS	1208049	5/5/2004	13:30	11.5
USGS	1208049	12/16/1980	14.00	1.5	USGS	1208049	6/11/1991	12:15	22		ISGS	1208049	6/2/2004	13:30	15
USGS	1208049	1/19/1981 2/9/1981	9:45 13:30	0.5	USGS	1208049 1208049	7/19/1991 8/16/1991	13.00	26 24		ISGS ISGS	1208049 1208049	7/19/2004 8/18/2004	13:30 13:45	23.5 21.5
USGS	1208049	3/9/1981	13:45	4	USGS	1208049	9/5/1991	11:50	19	L	ISGS	1208049	9/16/2004	12.00	21
USGS	1206049	4/13/1981	14.00	13.5 16.5	USGS	1208049 1208049	10/28/1991 11/15/1991	13:45 9:40	14		ISGS	1208049	11/16/2004 1/13/2005	13:45 14:45	5
USGS	1208049	5/11/1981 6/15/1981	12:30	21	USGS	1208049	12/18/1991	10.30	0	ū	ISGS	1208049	3/14/2005	13:30	1.5
USGS	1208049	7/7/1981	14:15	24	USGS	1208049	1/22/1992	14:15	0.5		ISGS	1208049 1208049	5/9/2005 6/7/2005	13:15 12:45	12 23.5
USGS	1208049	8/3/1981 9/1/1981	14:00 11:40	27.5 22.5	USGS	1208049 1208049	3/20/1992 4/23/1992	13:15 9:15	2 11		ISGS ISGS	1208049	7/7/2005	13.00	23.5
USGS	1208049	10/19/1981	13:45	10	USGS	1208049	5/19/1992	12:45	15.5	L	ISGS	1206049	8/8/2005	13:45	27
USGS	1208049	11/20/1981	11:10 10:40	4.5	USGS	1208049 1208049	6/18/1992 7/16/1992	13.00 14.05	19.5 18.5		ISGS ISGS	1208049	9/20/2005	13:30 14:15	21.5
USGS	1208049	12/18/1981 1/12/1982	13:30	0.5	USGS	1208049	8/5/1992	9.00	19	u	ISGS	1208049	1/18/2006	14:30	2.6
USGS	1208049	2/10/1982	13:15	2	USGS	1208049	9/16/1992	13.50 9:45	20		ISGS	1208049 1208049	3/20/2006 5/16/2006	15:00 9:00	4
USGS	1208049	3/19/1982 4/14/1982	12.00	55 7	USGS	1208049 1208049	11/18/1992 1/25/1993	15.00	2.5		ISGS	1208049	6/13/2006	13:30	19
USGS	1208049	5/10/1982	12:45	17	USGS	1208049	3/10/1993	12:45	3		ISGS	1208049	7/12/2006	13:00	22.5
USGS	1208049 1208049	6/14/1982 7/14/1982	13:45 12:15	14.5 25	USGS	1208049 1208049	5/17/1993 6/7/1993	13:30 14:30	18.5 17		ISGS	1205049 1208049	8/10/2006 9/25/2006	12:30 13.00	27 18.5
USGS	1208049	8/16/1982	10:45	23	USGS	1208049	7/13/1993	10.30	26.5		ISGS	1208049	11/8/2006	13:30	8
USGS	1208049	9/1/1982	8:40	20	USGS	1208049	8/4/1993 9/2/1993	14:15 13:45	28 26		ISGS ISGS	1208049 1208049	1/22/2007 3/6/2007	14:15 14:30	0.5
USGS	1208049	11/16/1982	12:10 10:25	13.5 8	USGS	1208049	11/19/1993	15:15	6		ISGS	1208049	5/3/2007	13:00	13
USGS	1208049	12/15/1982	13:15	1	USGS	1208049	1/19/1994	15:20	0		ISGS	1208049	6/4/2007	13:30 13:30	19.5 21
USGS	1208049 1208049	1/11/1983 3/8/1983	10.30 13.00	4 3	USGS	1208049 1208049	3/18/1994 5/18/1994	16:15 13:45	1		ISGS	1208049 1208049	7/5/2007 8/15/2007	13:30	24
USGS	1208049	4/13/1983	13:00	9	USGS	1208049	6/20/1994	9.15	24.5		ISGS	1208049	9/12/2007	12:30	23
USGS	1208049	5/16/1983 6/13/1983	14:15 10:20	13.5 21	USGS	1208049 1208049	7/14/1994 8/3/1994	12.40	26.5 25		ISGS	1208049 1208049	11/13/2007 1/9/2008	14:15 12:45	6.5 2.5
USGS	1208049 1208049	7/18/1983	10.00	27	USGS	1208049	8/23/1994	12:45	19.3	U	ISGS	1208049	3/25/2008	7:30	3.7
USGS	1208049	8/8/1983	11:45	27	USGS	1208049	9/13/1994	13.55	19.5 11		ISGS ISGS	1208049 1208049	5/20/2008 6/19/2008	12:00	12.8
USGS USGS	1208049 1208049	9/3/1983	15:30 14:30	27 9	USGS	1208049	1/9/1995	15:20	0.5		ISGS	1208049	7/29/2008	8:30	23
USGS	1208049	11/22/1983	11:10	8.5	USGS	1208049	3/7/1995	15.00	4		ISGS	1208049	8/18/2008	12.15	22.5
USGS	1208049 1208049	12/14/1983 12/28/1983	13.00 8:40	5 0.5	USGS	1208049	5/8/1995 6/6/1995	14.00	13.5		ISGS	1208049	9/18/2008	12:30 9:15	18 6.5
USGS	1208049	1/26/1984	15:30	0.5	USGS	1208049	7/7/1995	14:45	24	U	ISGS	1208049	1/13/2009	13:30	0.5
USGS	1208049 1208049	3/12/1984	13.05 14:30	1 6.5	USGS	1208049	8/1/1995 8/4/1995	13:15	28		ISGS	1208049 1208049	3/26/2009 5/12/2009	12:30 13:15	5.5 14.5
USGS	1208049	4/16/1984 5/14/1984	10:40	14	USGS	1208049	9/15/1995	13:15	22.5		ISGS	1208049	6/23/2009	13:15	17.5
USGS	1208049	6/18/1984	12.55	19	USGS	1206049	11/28/1995	14:40	5	U	ISGS	1208049 1208049	7/7/2009 8/5/2009	13:30 11:45	20 21.5
USGS USGS	1208049	7/10/1984 8/17/1984	13:05 15:31	21 26	USGS	1208049 1208049	1/25/1996	13:15 14:15	5.5		ISGS	1208049	9/21/2009	12.15	18
USGS	1208049	9/7/1984	14:30	19	USGS	1206049	6/7/1996	12:45	20.5		SGS	1208049	11/10/2009	7:45	8
USGS	1208049	10/26/1984	13:15 12:50	14.4	USGS	1208049	7/17/1996 8/22/1996	12:45	23 26.5		ISGS ISGS	1208049 1208049	1/11/2010 3/8/2010	8.00	0 3.5
USGS	1208049 1208049	11/16/1984 12/15/1984	10:40	4.6	USGS	1208049	9/19/1996	12:45	15	U	ISGS	1205049	5/20/2010	7:00	13.5
USGS	1208049	1/17/1985	14.00	2	USGS	1208049 1208049	11/15/1996 1/13/1997	14:45 13:45	4 0.5		ISGS ISGS	1208049 1208049	6/21/2010 7/6/2010	7.00 7:15	23 25.5
USGS	1208049	3/12/1985 4/17/1985	11:30 8:30	4.5 11	USGS	1208049	3/11/1997	14:15	3		ISGS	1208049	8/18/2010	7:45	23
USGS	1208049	5/13/1985	11.00	19	USGS	1208049	5/23/1997	9:15	13		ISGS	1208049	9/16/2010	8:15 8:00	17.5 7.5
USGS	1208049 1208049	6/18/1985 7/10/1985	8.00	10 24.5	USGS	1208049 1208049	6/24/1997 7/24/1997	13:15 13:55	23.5 21.5		ISGS ISGS	1208049 1208049	11/16/2010 1/13/2011	9.00	0
USGS	1208049	8/13/1985	8:40	21	USGS	1208049	8/20/1997	13:20	21.5	U	ISGS	1208049	3/14/2011	8:30	2.5
USGS	1208049	9/5/1985	12.05	23	USGS	1208049 1208049	9/17/1997 11/18/1997	12:30 14:50	21.5		ISGS ISGS	1208049 1208049	5/12/2011 6/9/2011	9:15 7:15	15.5
USGS	1208049 1208049	10/25/1985	10:00	9.5	USGS	1208049	1/15/1998	13:30	0.5	u	ISGS	1208049	7/7/2011	7:30	23.2
USGS	1208049	12/18/1985	13:30	1.5	USGS	1206049	3/18/1998 5/14/1998	15.00	3.5 13		ISGS ISGS	1208049	8/9/2011 9/22/2011	8.00	24.2
USGS	1208049 1208049	1/21/1986 3/12/1986	10:10 10:00	0.5	USGS	1208049	6/5/1998	9:45	16		ISGS	1208049	11/22/2011	9:30	8.5
USGS	1208049	4/17/1986	9:45	9.5	USGS	1208049	7/15/1998	13.00	25		ISGS	1208049	1/4/2012 3/15/2012	9:45 7:30	0.1
USGS	1208049	5/14/1986 6/19/1986	9:50 9:30	16 19	USGS	1206049 1206049	8/10/1998 9/14/1998	14.00	26.5 21.5		ISGS ISGS	1208049	5/14/2012	8:45	18
USGS	1208049	6/19/1986	14:33	20	USGS	1208049	11/6/1998	14:20	7.5	U	ISGS	1208049	6/12/2012	7:15	20.1
USGS	1208049	7/9/1986 8/13/1986	12:30 8:50	26 23	USGS	1208049 1206049	1/13/1999 3/8/1999	13:45	0.5		ISGS ISGS	1208049 1208049	7/12/2012 8/14/2012	7:45	24.7 25
USGS	1208049 1208049	9/3/1986	7:15	19	USGS	1208049	5/4/1999	15:00	14.5		ISGS	1208049	9/10/2012	7:45	21.2
USGS	1208049	10/23/1986	11:00	11.5	USGS	1208049	6/2/1999	14:15	22.5		ISGS	1208049	11/26/2012 1/8/2013	9.30 9.45	4
USGS	1208049	11/17/1986 12/18/1986	13.00	3	USGS	1206049 1208049	7/14/1999 8/4/1999	13:45	24 24		ISGS	1208049	3/21/2013	9.15	2.7
USGS	1208049	1/15/1987	13:15	2	USGS	1208049	9/14/1999	13:45	22		ISGS	1208049	5/2/2013	8:15	14.9
USGS	1208049	3/11/1987 4/22/1987	9:45 8:40	0.5	USGS	1208049	11/15/1999	14:15	7 3		ISGS ISGS	1208049	6/18/2013 7/17/2013	9.00	16.8 26.6
USGS	1208049	5/13/1987	8:30	15	USGS	1208049	3/8/2000	14:10	6	U	ISGS	1208049	8/1/2013	8:15	22.7
USGS	1208049	6/17/1987 7/9/1987	11:30 9.00	25 22.5	USGS	1208049 1208049	5/9/2000 6/5/2000	14:15 13:15	23.5 18		ISGS	1208049	9/13/2013 11/12/2013	9.00 9:30	21.8 6.5
USGS	1208049	8/14/1987	10.55	23	USGS	1208049	7/5/2000	14:40	25	U	ISGS	1208049	1/23/2014	14:15	0.2
USGS	1208049	9/3/1987	8:50 9.00	18	USGS	1208049 1208049	8/21/2000 9/18/2000	15:30 14:25	20.5 19.5		ISGS	1208049	3/6/2014 5/8/2014	15:15 8:45	0.9
USGS	1208049 1208049	10/19/1987	12:40	11	USGS	1208049	11/15/2000	15:20	8	u	ISGS	1208049	6/6/2014	8:15	182
USGS	1208049	12/15/1987	12.00	3	USGS	1208049	1/16/2001	16.05	1		ISGS	1208049 1208049	7/22/2014 8/19/2014	9.00	22.9
USGS	1208049	1/14/1988 3/11/1988	13:45 13:15	0.5	USGS	1208049 1208049	3/29/2001 5/15/2001	11:30 10.10	4 17.5	U	ISGS	1208049	9/18/2014	8:30	16.6
USGS	1208049	4/12/1988	8:40	9.5	USGS	1208049	6/12/2001	14:25	18.5		ISGS	1208049	11/17/2014	10.15	5.1
USGS	1208049 1208049	5/10/1988 6/14/1988	13:40 8:45	14.5	USGS	1208049 1208049	7/9/2001 8/21/2001	14:45 15:15	23.5 25.5		ISGS	1208049 1208049	1/15/2015 3/25/2015	9:45 8:45	0 2.6
USGS	1205049	7/13/1988	9.00	26	USGS	1208049	9/6/2001	14.00	24.5	ŭ	ISGS	1208049	5/14/2015	8:30	17.5
USGS	1208049	8/10/1988	9:25	27	USGS	1208049 1208049	11/5/2001 1/16/2002	15:15	11		ISGS ISGS	1208049 1208049	6/11/2015 7/9/2015	8:30	20.8 23.2
USGS	1206049	9/2/1988 10/19/1988	9:20 12:45	21 12	USGS	1208049	3/20/2002	14:30	5	u	ISGS	1208049	8/26/2015	9.00	23.9
USGS	1208049	11/9/1988	11:40	8	USGS	1208049	5/2/2002 6/11/2002	15:15 13:25	11 20		ISGS ISGS	1208049 1208049	9/24/2015 11/30/2015	9:15 13:30	18.8 6.6
USGS	1208049 1208049	12/13/1988 1/13/1989	10:45 12:45	0.5	USGS	1208049	7/1/2002	12.55	26.5		ISGS	1208049	1/6/2016	9.45	0.7
USGS	1208049	3/14/1989	13:15	4	USGS	1208049	8/12/2002	13:15	28		ISGS	1208049	3/17/2016	8:30	9.2
USGS	1208049 1208049	4/11/1989 5/10/1989	9.00	8 12	USGS	1208049 1208049	9/9/2002 11/6/2002	14:00	25 6.5		ISGS	1208049 1208049	5/16/2016 6/8/2016	9:00 14:15	13.4 21.9
USGS	1208049	6/16/1989	8:30	14	USGS	1208049	1/7/2003	14.50	1.5	ŭ	ISGS	1208049	7/14/2016	7:45	24.5
USGS	1208049	7/14/1989	10.05	22 23	USGS	1208049	3/5/2003 5/12/2003	14:15 14.00	0.5		ISGS ISGS	1208049	8/15/2016 9/12/2016	8:00	27.3
USGS	1208049 1208049	8/8/1989 9/2/1989	10:30 8:15	23	USGS	1208049	6/17/2003	14:05	17.5	u	ISGS	1208049	11/9/2016	9.30	8.3
USGS	1208049	10/19/1989	13.00	10	USGS	1206049 1206049	7/15/2003	12:00	22.5 24	U.	ISGS ISGS	1208049 1208049	1/9/2017 3/9/2017	9:30	0.2
USGS	1208049 1208049	11/16/1989 12/8/1989	15:15 9:44	13	USGS	1208049	8/12/2003 9/11/2003	13:30 11:15	24 19		ISGS	1208049	5/22/2017	9:00	16.8
USGS	1208049	1/9/1990	9:45	1.5	USGS	1208049	11/12/2003	14:15	6	L	JSGS	1208049	6/19/2017 7/20/2017	8:45	21.7
USGS	1208049 1208049	3/21/1990 4/9/1990	9:10 15:08	6 7							ISGS ISGS	1208049 1208049	8/1/2017	8:15 8:30	22.3
USGS	1208049	5/4/1990	12:45	15						u	JSGS	1208049	9/14/2017	9:15	19.1
USGS	1208049	6/15/1990	11:30	19						U I	ISGS ISGS	1208049 1208049	11/14/2017 1/11/2018	9:45 9.30	4 0.3
USGS	1208049 1208049	7/9/1990 8/9/1990	12:15	22 22						u	JSGS	1208049	3/27/2018	9:45	5.2
USGS	1208049	9/6/1990	8.50	20							JSGS JSGS	1208049 1208049	5/10/2018 6/7/2018	10.00 9.30	17.5
USGS	1208049 1208049	10/25/1990 11/20/1990	10:15	13 3								LUCUTU	**************************************	0.00	
USGS	1208049	12/14/1990	10.10	1											

MAX_{SUUVER}= 28.0 'C

MAX_{AVNTER}= 11.0 'C

MAXsuuver= 27.5 °C

MAX_{WMTER}= 13.0 °C

MAX_{WMTER}= 11.5 °C

MAX_{SUUVER}= 27.3 °C

REASONABLE POTENTIAL ANALYSIS AND WATER QUALITY-BASED LIMIT DETERMINATION SUMMARY SHEET

A "reasonable potential" analysis involves determining whether the facility's discharge has the potential to cause, the reasonable potential to cause, or contributes to an excursion of the State's water quality standards. The analysis involves an effluent characterization process designed to determine which pollutants have the potential to exceed the standards. If the pollutant has the potential or the reasonable potential to exceed the standards, water quality-based limits are required. The reasonable potential analysis and permit limit determinations are performed in accordance with the procedures outlined in the EPA Guidance Manual entitled *Technical Support Document for Water Quality Based Toxics Control*, March 1991.

DATA SOURCES:	Effluent Data: Background Data:	DMR Data: January 2008-June Naugatuck River water from St		y testing, 2008 - 2018; Terr	nperature: USGS Statio	on 0120804	9 (All to 2018)
DETERMINATION OF FRESHWATER OR SALTWATER CRITERIA:	This document provides I If the receiving waters If the receiving waters If the receiving waters	the following guidance: s at the discharge point have salin	ity values less than 1 ity values between 1	ppt, the discharge should b ppt and 10 ppt, the discharg	be evaluated for freshw ge should be evaluated	ater criteria I for the mo	re stringent of the freshwater or saltwater criteria
CRITERIA:		ater Quality Standards , October 1 ended Water Quality Criteria	0, 2013				
SITE-SPECIFIC CRITERIA FOR COPPER:	Site-specific criteria exist	s for copper for the following wate	erbodies in the State:				
	Waterbody	Reach					
	Bantam River Blackberry River Factory Brook Five Mile River Hockanum River	Litchfield POTW to co Norfolk POTW to con North Canaan POTW Salisbury POTW to m New Canaan POTW to Vernon POTW to con Plainfield Village POT	fluence with Roaring & to confluence with Ho outh o mouth fluence with Connecti	Brook Dusatonic River			
	Mill Brook ✓ Naugatuck River Norwalk River Pequabuck River Poolatuck River Quinniplac River Still River Williams Brook Willimantic River	Frainited Village Fool Torrington POTW to o Ridgefield Brook to Bi Plymouth POTW to Southington POTW to Winsted POTW to con Lymekiln Brook to cor Ledyard POTW to mo Stafford Springs POT Eagleville Dam to cor	confluence with Housa anchville confluence with Farmin confluence with Housa I Broadway, North Ha fluence with Farming fluence with Housato uth W to Trout Managem	gton River atonic River ven ton River nic River ent Area (Willington)			
AMMONIA CRITERIA: (FRESHWATER)	Freshwaler ammonia crit <u>SUMMER (April 1 to Oc</u> acute:		Standards are express	sed in terms of ambient surf			mmonia concentrations are determined as follows:
	pH _{stoo} .	= 7.77 [Enter th	e highest pH]		T _{amberi} = C pH _{amberi} =	28 7.77	[Enter the highest seasonal temperature] [Enter the highest pH]
	Ammonia-nitrogen criteria (if Ammonia-nitrogen criteria (if	səlmonids are present)= 8.5	mg/Las N mg/Las N	Ammonia-nitrogen criteria Ammonia-nitrogen criteria	(when early life stages are		1.38 mg/L as N 1.38 mg/L as N
	Ammonia-nitrogen criteria (if Ammonia-nitrogen criteria (if		<u>ug/L as N</u> ug/L as N	Ammonia-nitrogen criteria Ammonia-nitrogen criteria			<u>1,378 ug/L as N</u> 1,378 ug/L as N
	WINTER (November 1 t	o March 31):					
	ACUTE:			CHRONIC:	Tanbert ^a C	13	[Enter the highest seasonal temperature]
	pH _{a=t-e} .	Contraction of the contraction o	e highest pH]		pHanbient=	7.77	[Enter the highest pH]
	Ammonia-nitrogen criteria (if Ammonia-nitrogen criteria (if		mg/L as N mg/L as N	Ammonia-nitrogen criteria Ammonia-nitrogen criteria			3.24 mg/L as N 3.57 mg/L as N
	Ammonia-nitrogen criteria (if Ammonia-nitrogen criteria (if		<u>ug/L as N</u> ug/L as N	Ammonia-nitrogen criteria Ammonia-nitrogen criteria			<u>3,242 ug/L as N</u> 3,572 ug/L as N
DILUTION FACTOR:	Average flow of DSN 00 Average flow of DSN 00 Maximum hours of disch	1 (cfs): 0.278 cfs	Average flow	v of DSN 001 (gpd); v of DSN 001 (cfs); ours of discharge/day	330,000 0.511 24	gpd cfs hours	
	7Q10 Flow of River @ S Allocation for DSN 001:	ite: 14.94 cfs 50 %	7Q10 Flow of Allocation fo	of River @ Site: r DSN 001:	14.94 50	cfs %	
	Dilution Factor =	27.8 3.6	Dilution Fac IWC%=	tor =	15.6 6.4		
	Dilution is not allowed	for carcinogens/bioaccumulati	ve pollutants.				
BASIS FOR REASONABLE POTENTIAL:	MAXIMUM RECEIV	VING WATER CONCENTRATION=[[(S	tatistical Multiplier)*(Maxin	num Effluent Concentration)]+[(M	Maximum Background Rec	eiving Water (oncentration is determined as follows: Cencentration)*(O/wion Factor-1)]]/[D/wion Factor]
	If reasonable optential ex	xists water-quality based limits an	e included in the pern	nit for the subject pollutant.			for the discharge to cause an in-stream excursion. The Department may include limits also.

BASIS FOR WATER-QUALITY LIMIT DETERMINATION: If it is determined that reasonable potential exists, water-quality based permit limits are calculated as follows:

1. Determine the Waste Load Allocation (WLA) for each applicable criteria: WLA (acute, chronic, human health)=[(Criteria)*(Di/ution Factor)]-[Maximum Background Receiving Water Concentration*(Di/ution Factor-1)] Determine the Long Term Average (LTA) for each applicable criteria: LTA (acute)=WLA_{mode}*exp[0.5σ²-zσ] LTA (chronic)=WLA_{mode}*exp[0.5σ²-zσ₄] LTA (human health)=WLA_{mode}*exp[0.5σ²-zσ₄]

3. Determine the limiting LTA (i.e., the lowest LTA of the applicable criteria)

 Calculate the Average Monthly Limit (AML): AML (acute,chronic)=LTA_{pacta} or chrone⁺exp[zo_n0.5σ_n²] AML (human health)=WLA_{suman} health:

 Calculate the Maximum Daily Limit (MDL): MDL (acute, chronic)=LTA_{bold} ar drame^{*} exp[zr-0.5o²] MDL (human health)=WLA_{curran health} exp[zr-0.5o²]

ATTACHMENT 14 ANTI-BACKSLIDING ANALYSIS

					E)SN 00	1-1										
			uniternationalise	Exis	STING	PERMIT				32.33		Pro	POSED	PERM	літ		500
PARAMETER	UNITS	Average Monthly Limit	Maximum Daily Limit	Sampling/ Reporting Frequency	Sample Type	Instantaneous Limit	Sampling/ Reporting Frequency	Sample Type	Limit Basis	Average Monthly Limit	Maximum Daily Limit	Sampling/ Reporting Frequency	Sample Type	Instantaneo us Limit	Sampling/ Reporting Frequency	Sample Type	Limit Basis
Acute Toxicity, Daphnia pulex (NOAEL @ CTC of 52)	%	-	>90	Quarterly	DC	LC ₅₀ ≥52	NR	Grab	TMDL								
Acute Toxicity, Pimephales promelas (NOAEL @ CTC of 52)	%	1000	>90	Quarterly	DC	LC ₅₀ ≥52	NR	Grab	TMDL								
Acute Toxicity, Daphnia pulex (Survival in 100%)	%		>50	Quarterly	DC	NA	NR	NA	TMDL	- 10			2	1.1.1			
Acute Toxicity, Pimephales promelas (Survival in 100%)	%		>50	Quarterly	DC	NA	NR	NA	TMDL			195 1 38					_
Acute Toxicity, Daphnia pulex	%					1992		122.1	1	LC50>96	LC50>47	Quarterly	DC	LC ₅₀ ≥16	NR	Grab	TMDL
Acute Toxicity, Pimephales promelas	%					L. Park			1	LC50>96	LC ₅₀ >47	Quarterly	DC	LC ₅₀ ≥16	NR	Grab	TMDL
Chronic Toxicity, Ceriodaphnia dubia	%								-	C-NOEC>9.0	C-NOEC>4.	Annual	DC	NA	NR	NA	TMDL
Chronic Toxicity, Pimephales promelas	%								1.0.00	C-NOEC>9.6	C-NOEC>4.	Annual	DC	NA	NR	NA	TMDL
Alkalinity	mg/L							-	-	-	-	Weekly	DC	NA	NR	NA	BPJ
Aluminum	ug/L	2000	4000	Weekly	DC	6.0	NR	Grab	STATE	167	335	Weekly	DC	502.5	NR	Grab	WQ WQ
Aluminum	g/day				_				-	209	419	Weekly	DC	NA	NR	NA	
Ammonia (as N)	mg/L	10	20	Monthly	DC	30	NR	NA	BPJ*	7.87	16.9	Weekly	DC	25.35	NR	Grab	WQ
Ammonia (as N)	kg/day					1			-	9.83	21.2	Weekly	DC	NA	NR	NA	WQ
BOD ₅	kg/day	42.7		Monthly	DC	NA	NR	NA	BPJ					75	ND	Crah	BPJ
BOD ₅	mg/L					New York	-		-	30	50	Monthly	DC DC	75 NA	NR NR	Grab NA	BPJ
BOD ₅	Ibs/day	-				750		Quit	OTATE	82.5	-	Monthly	5.0000	0.31	NR	Grab	WQ
Cadmium, Total	ug/L	100	500	Semi-annual	DC	750	NR	Grab	STATE BPJ*	0.14	0.21	Weekly Weekly	DC DC	0.31 NA	NR	NA	WQ
Cadmium, Total	g/day	23	46	Semi-annual	DC	NA	NK	NA	BPJ-	0,18			DC	NA	NR	NA	BPJ
Chloride, Total	mg/L			110-11-	001	4000	NR	Grab	WQ			Monthly Weekly	GSA	NA	NR	Grab	WQ
Chlorine, Total Residual	ug/L	115	232	Weekly	GSA	1000	NR	Grab	w			Weekly	GSA	NA	NR	NA	WQ
Chlorine, Total Residual	g/day		0000	0	00	3000	NR	Grab	STATE	47	69	Weekly	DC	103.5	NR	Grab	
Chromium, Total	ug/L	1000	2000	Semi-annual	DC	3000	INK	Giap	STATE	59	86	Weekly	DC	NA	NR	NA	WQ
Chromium, Total	g/day	171	070	Markha	DC	1320	NR	Grab	BPJ*	13	26	Weekly	DC	39	NR	Grab	WQ
Copper, Total	ug/L	474 228	876 457	Weekly Weekly	DC	NA	NR	NA	BPJ'	16	32	Weekly	DC	NA	NR	NA	WQ
Copper, Total	g/day	100	200	Weekly	GSA	300	NR	NA	STATE	100	200	Weekly	DC	300	NR	Grab	STATE
Cyanide, Amenable	ug/L	220	400	Weekly	GSA	600	NR	Grab	BPJ*	35	71	Weekly	DC	106.5	NR	Grab	WQ
Cyanide, Total	ug/L	193	386	Weekly	GSA	NA	NR	NA	BPJ*	44	89	Weekly	DC	NA	NR	NA	WQ
Cyanide, Total	g/day gpd	330,000	NA	Continuous	Flow	NA	NR	NA		330,000	NA	Continuous	Flow	NA	NR	NA	
Flow Rate (Average Daily) Flow, Maximum during 24 hours	gpd	NA	400,000	Continuous	Flow	NA	NR	NA		NA	400,000	Continuous	Flow	NA	NR	NA	
	gpd	-	400,000	Weekly	Flow	NA	NR	NA	1	_	400,000	Weekly	Flow	NA	NR	NA	
Flow (Day of Sampling) Fluoride	mg/L	20	30	Weekly	DC	45	NR	Grab	STATE	20	30	Monthly	DC	45	NR	Grab	STATE
Formaldehyde	ug/L	20		(Tounin)						-		Monthly	DC	NA	NR	NA	BPJ
Gold, Total	mg/L	0.1	0.5	Weekly	DC	0.75	NR	Grab	STATE	0.1	0.5	Monthly	DC	0.713	NR	Grab	STATE
Iron, Total	mg/L	3.0	5.0	Weekly	DC	7.5	NR	Grab	STATE	3.0	5.0	Monthly	DC	7.1	NR	Grab	STATE
Kjeldahl Nitrogen, Total (as N)	mg/L		_	Weekly	DC	NA	NR	NA	BPJ	-		Weekly	DC	NA	NR	NA	BPJ
Lead, Total	ug/L	16	48	Weekly	DC	150	NR	Grab	BPJ*	5.8	12	Weekly	DC	18	NR	Grab	WQ
Lead, Total	g/day	7	13	Weekly	DC	639	NR	NA	BPJ.	7.2	14.5	Weekly	DC	NA	NR	NA	WQ
Mercury, Total	ug/L								1.51			Monthly	DC	NA	NR	NA	BPJ
Mercury, Total	g/day				10-	nele 3				-		Monthly	DC	NA	NR	NA	BPJ
Nickel, Total	ug/L	653	1210	Weekly	DC	3000	NR	Grab	BPJ*	144	331	Weekly	DC	496.5	NR	Grab	WQ
Nickel, Total	g/day	442	887	Weekly	DC	NA	NR	NA	BPJ*	180	413	Weekly	DC	NA	NR	NA	WQ
Nitrate (as N)	mg/L	<u></u>		Weekly	DC	NA	NR	NA	BPJ	1	1	Weekly	DC	NA	NR	NA	BPJ
Nitrite (as N)	mg/L			Weekly	DC	NA	NR	NA	BPJ	1	-	Weekly	DC	NA	NR	NA	BPJ
Nitrogen (Total)	kg/day	17.7	NA	Weekly	DC	NA	NR	NA	BPJ					21 11	Econ M		
Nitrogen (Total)	lbs/day						1.100			26.7		Weekly	DC	NA	NR	NA	BPJ
Oil & Grease, Total	mg/L	10.0	15.0	Weekly	GSA	20	NR	Grab	STATE	10.0	-	Weekly	GSA	20	NR	NA	STATE
Oil & Grease, Total	kg/day									12.5		Weekly	GSA	NA	NR	NA	STATE
pH, Minimum	SU	NA	NA	NR	NA	6.0	Continuous	RDM	BPT	NA	NA	NR	NA	6.0	Continuous	Minimum	NSPS
pH, Maximum	SU	NA	NA	NR	NA	9.0	Continuous	RDM	BPT	NA	NA	NR	NA	9.0	Continuous	Maximum	NSPS
pH, Day of Sampling	SU	NA	NA	NR	NA	6.0-9.0	Weekly	RDS	BPT	NA	NA	NR	NA	6.0-9.0	Weekly	RDS	NSPS
Phosphorus, Total	mg/L								2.1		-	Monthly	DC	NA	NR	NA	BPJ
Phosphorus, Total	lbs/day						1.000	100	a second			Monthly	DC	NA	NR	NA	BPJ
Silver, Total	ug/L	100	430	Weekly	DC	NA	NR	NA	STATE	6.6	16	Weekly	DC	24	NR	Grab	WQ
Silver, Total	g/day	27	54	Weekly	DC	NA	NR	NA	BPJ*	8.3	19,9	Weekly	DC	NA	NR	NA	WQ
Surfactants, Anionic	mg/L	NA	-	Monthly	DC	NA	NR	NA	BPJ	77	1.7	Monthly	DC	NA	NR	NA	BPJ
Tin, Total	mg/L	2.0	4.0	Weekly	DC	6.0	NR	Grab	STATE	2.0	4.0	Monthly	DC	NA	NR	NA	STATE
Total Suspended Solids	mg/L	20	30	Weekly	DC	45	NR	Grab	STATE	20	30	Weekly	DC	45	NR	Grab	STATE
Total Suspended Solids	kg/day									24.9	37.4	Weekly	DC	NA	NR	NA	
Total Toxic Organics	mg/L	NA	NA	NR	NA	1.0	Monthly	Grab	BPJ	NA	NA	NR	NA	2.12	NR	NA	BPJ
Zinc, Total	ug/L	1000	2000	Weekly	DC	3000	NR	Grab	STATE	39	65	Weekly	DC	97.5	NR	Grab	WQ
Zinc, Total	g/day	28	55	Weekly	DC	3.0	NR	Grab	BPJ*	49	81	Weekly	DC	NA	NR	NA	WQ

NOTES REGARDING EXISTING PERMIT

NOTES REGARDING PROPOSED PERMIT

BPJ*: The fact sheet for the existing permit indicates that this limit was a water quality-based limit.

TTO: The TTO limit in the existing permit is more stringent than the limit calculated for this permit renewal. Therefore, the TTO limit in the existing permit will be carried forward.

Zinc: The fact sheet for the previous permit indicates that the zinc limits were waterquality based limits. However, these limits were not calculated in accordance with the procedures for developing water quality-based limits. The limits in the proposed permit are calculated in accordance with the correct procedures.

79 Elm Street • Hartford, CT 06106-5127

www.ct.gov/deep

Affirmative Action/Equal Opportunity Employer

NOTICE OF TENTATIVE DECISION INTENT TO RENEW A NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT

FOR THE FOLLOWING DISCHARGES INTO THE WATERS OF THE STATE OF CONNECTICUT

TENTATIVE DECISION

The Commissioner of Energy and Environmental Protection ("Commissioner") hereby gives notice of a tentative decision to renew a permit to discharge into the waters of the state based on an application submitted by SUMMIT CORPORATION OF AMERICA ("the applicant") under section 22a-430 of the Connecticut General Statutes ("CGS"). The receiving water associated with this permit renewal is the Naugatuck River.

In accordance with applicable federal and state law, the Commissioner has made a tentative decision that modification of the existing system would protect the waters of the state from pollution.

The proposed permit, if issued by the Commissioner, will require that the subject wastewater be treated to meet the applicable effluent limitations/conditions and will require periodic monitoring to demonstrate that the discharge will not cause pollution.

ACTIVITIES THAT ARE THE SUBJECT OF THE DRAFT PERMIT

Summit Corporation of America ("Summit") has submitted an application for the renewal of its NPDES permit, CT0001180. The activities which are the subject of this application take place at Summit's facility at 1430 Waterbury Road in Thomaston, Connecticut. The activity involves the collection, treatment, and discharge of wastewater generated from Summit's metal finishing operations. The type of wastewater treatment that occurs on-site includes: cyanide destruction, equalization, metals precipitation, flocculation, and clarification. Hexavalent chromium treatment is proposed. The discharge consists of the following types of wastewaters: metal finishing wastewater; laboratory wastewater; water treatment wastewater; air scrubber wastewater (proposed); drum rinsing wastewater; reverse osmosis backwash water; boiler blowdown; air compressor blowdown/condensate; and fire suppression test water. The treated wastewater contains the following types of toxic pollutants: metals, cyanide, and total toxic organics. Following treatment, this wastewater is discharged into the Naugatuck River through one outfall, identified as Discharge Serial Number ("DSN") 001-1, location as follows:

DISCHARGE ID	LATITUDE	LONGITUDE	LOCATION
DSN 001-1	41° 37' 38.38"	73° 04' 10.53"	Approx. 2 miles south of Reynolds Bridge, east side of the Naugatuck River

The draft permit allows for up to 400,000 gallons per day of treated wastewater to be discharged from DSN 001-1. This is a continuous discharge. The wastewater discharge is subject to 40 CFR 433 (Metal Finishing Point Source Category).

REGULATORY CONDITIONS

Effluent Limitations and Conditions: Consistent with section 22a-430-4(l) of the Regulations of Connecticut State Agencies (RCSA), limitations and conditions in this permit are based on: 1) Section 301(b)(1)(C) of the Clean Water Act; 2) 40 CFR 433.16, New Source Performance Standards; 3) Section 22a-430-4(s) of the RCSA; 4) a Case-by-Case determination established in accordance with section 22a-430-4(m) of the RCSA. In addition, the permit contains limitations on internal waste streams. The permit limits and conditions will ensure that the state's Water Quality Standards, including the antidegradation standards and policies, are met.

<u>Compliance Schedule:</u> This permit contains an enforceable compliance schedule which requires the applicant to take steps to comply with water quality based permit limits.

COMMISSIONER'S AUTHORITY

The Commissioner is authorized to approve or deny such permits pursuant to section 22a-430 of the Connecticut General Statutes and the Water Discharge Permit Regulations (Sections 22a-430-3 and 22a-430-4 of the RCSA).

INFORMATION REQUESTS

The application has been assigned the following numbers by the Department of Energy and Environmental Protection. Please use these numbers when corresponding with this office regarding this application.

APPLICATION NO. 201205290 PERMIT ID NO. CT0001180 FACILITY ID NO. 140-011

The name and mailing address of the permit applicant are: Summit Corporation of America, 1430 Waterbury Road, Thomaston, Connecticut 06787

Interested persons may obtain copies of the application by contacting Mark Conti, Plant Manager, Summit Corporation of America, Thomaston, Connecticut at (860) 283-4391 ext. 273

The application is available for inspection by contacting Christine Gleason at (860) 424-3278 at the Department of Energy and Environmental Protection, Bureau of Materials Management and Compliance Assurance, 79 Elm Street, Hartford, CT 06106-5127 from 8:30-4:30, Monday through Friday.

The draft permit and fact sheet are available on the Department's website at <u>http://www.ct.gov/deep/</u> under "Public Notices".

Any interested person may request in writing that his or her name be put on a mailing list to receive notice of intent to issue any permit to discharge to the surface waters of the state. Such request may be for the entire state or any geographic area of the state and shall clearly state in writing the name and mailing address of the interested person and the area for which notices are requested.

PUBLIC COMMENT

Prior to making a final determination to approve or deny any application, the Commissioner shall consider written comments on the application from interested persons that are received within thirty days of this public notice. Written comments should be directed to Christine Gleason, Bureau of Materials Management and Compliance Assurance, Department of Energy and Environmental Protection, 79 Elm Street, Hartford, CT, 06106-5127. The Commissioner may hold a public hearing prior to approving or denying an application if in the Commissioner's discretion the public interest will be best served thereby, and shall hold a hearing upon receipt of a petition signed by at least twenty-five persons. Notice of any public hearing shall be published at least thirty days prior to the hearing.

Petitions for a hearing should include the application number noted above and also identify a contact person to receive notifications. Petitions may also identify a person who is authorized to engage in discussions regarding the application and, if resolution is reached, withdraw the petition. Original signed petitions may be scanned and sent electronically to <u>deep.adjudications@ct.gov</u> or may be mailed or delivered to: DEEP Office of Adjudications, 79 Elm Street, 3rd floor, Hartford, CT 06106-5127. If submitted electronically, original signed petitions must also be mailed or delivered to the address above within ten days of electronic submittal.

The Connecticut Department of Energy and Environmental Protection is an Affirmative Action and Equal Opportunity Employer that is committed to complying with the Americans with Disabilities Act. To request an accommodation contact us at (860) 418-5910 or deep.accommodations@ct.gov

OSWALD INCLESE, JR., Director Water Permitting and Enforcement Division Bureau of Materials Management and Compliance Assurance

Dated: May 24, 2019