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Abstract 12 

The large scale and non-aseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents 13 
a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several 14 
factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ~400 15 
industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in two 16 
different biorefineries through two production seasons (April to November of 2018 and 2019), using a novel 17 
statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from 18 
season to season in one biorefinery is small compared to the differences between the two units. In one 19 
biorefinery, all lineages present during the entire production period derive from one of the starter strains, while in 20 
the other, invading lineages took over the population and displaced the starter strain. However,  despite the 21 
presence of invading lineages and the non-aseptic nature of the process, all yeast clones we isolated are 22 
phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from 23 
this industrial niche. Despite the substantial changes observed in yeast populations through time in each 24 
biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the 25 
process is robust to the details of these population dynamics.  26 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514616doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514616
http://creativecommons.org/licenses/by-nc/4.0/


 

 2 

INTRODUCTION 27 

Fuel ethanol is used throughout the world to power light vehicles, either on its own or, more commonly, mixed 28 
with gasoline for increased octane rating1. Brazil is the second largest ethanol producer in the world, surpassed 29 
only by the United States, and accounts for roughly 30% (or 31.66 billion liters predicted for 2022) of the world’s 30 
fuel ethanol production2. While American ethanol is mostly corn-based and requires enzymatic hydrolysis of 31 
starch prior to fermentation by the yeast S. cerevisiae, most of Brazil’s ethanol is produced from sucrose, glucose, 32 
and fructose-rich sugarcane products which can be directly fermented. 33 

The Brazilian process is also unique in that it maintains a very large population of yeast in non-aseptic conditions 34 
throughout the 8-month-long sugarcane harvesting season3–5 (Fig. 1A). The yeast cells are recycled at every ~12 h 35 
fed-batch fermentation-holding-centrifugation-treatment cycle, allowing for large inocula and short turnaround 36 
times. Acid wash and antimicrobials serve to control the ever-present bacterial contamination, which competes 37 
against yeast for carbon, but also affects fermentation in ways that are not completely understood6,7. These 38 
practices are key to the high efficiency of the sugarcane-ethanol industrial process and drastically lower 39 
greenhouse gas emissions in comparison to corn-based ethanol8,9. However, inconsistencies in fermentation 40 
performance associated with cell recycling remain a costly challenge and point to microbiological routes for 41 
process improvement3,7,10. 42 

Yeast strains differ in their suitability for industrial-scale fermentation. Traditionally, the readily available baker’s 43 
yeast was used to kickstart the fermentation season, but due to its susceptibility to invasion by foreign S. 44 
cerevisiae lineages, production has largely shifted towards specialized starter strains. A major strain selection 45 
program conducted between 1993 and 2005 solidified the potential for these invading strains themselves to serve 46 
as a source of new industrially relevant variants11. Strains isolated from this program, namely PE-2, CAT-1, SA-1, 47 
BG-1, VR-1, and their derivatives, as well as JP-1 (isolated from a similar effort12) are the basis for the bulk of 48 
today’s ethanol production and have successfully helped maintain the overall high yield of the industry. Still, 49 
invasion by foreign strains remains common, as fermentation conditions across the ~400 bioethanol plants 50 
operating around the country span a range of industrial practices, environmental conditions, sugarcane varieties, 51 
and other factors, in addition to the yet-little-explored possibility of evolutionary change over the course of a 52 
fermentation season. 53 

To identify and track these yeast population dynamics in industry, chromosomal karyotyping became popular in 54 
the 1990s and is still commonly used for process monitoring11–13. More recently, PCR-based methods have helped 55 
in decreasing the cost of strain surveillance14–17. However, these methods cannot readily differentiate closely 56 
related strains, which may differ by few mutations anywhere along the whole genome. Moreover, these methods 57 
estimate lineage frequencies based on fraction of picked isolates from agar plate streaks, which leaves room for 58 
biased assessments of strain dominance if strains differ in culturability. 59 

Whole-genome metagenomic shotgun sequencing is a potential culture-independent alternative method for 60 
strain differentiation18. Temporal metagenomic datasets have been used to assess microbial community dynamics 61 
with subspecies resolution, largely in the context of human gut microbiomes19–28. However, inference of the 62 
underlying strain movements from metagenomic frequency trajectories remains challenging and methods are 63 
mostly limited to low-diversity and prokaryotic populations. Non-haploidy complicates this inference even further, 64 
as the diploid or polyploid genotype of individual variants (which itself may vary among individuals in a 65 
population) must also be accounted for. 66 

Here, we present a novel framework for inferring the population dynamics of highly diverse, non-haploid, asexual 67 
microbial populations from a combination of clonal sequences and temporal metagenomic data. We employ this 68 
method to investigate the dynamics of yeast genetic diversity across two fermentation seasons, in two 69 
independently run bioethanol plants in Brazil. More specifically, we ask whether starter strains tend to persist and 70 
dominate through an entire production season, and if not, what strains they are replaced with. We also 71 
investigate the differences between seasons and production facilities, the origin of invading strains, and the 72 
effects they have on the process. Our focus here is on the yeast dynamics, but our sequencing data also contains 73 
information on other microbial species, which remains to be analyzed in future work.  74 
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RESULTS 75 

Sampling and sequencing strategy 76 

We collected whole-population microbiological samples from two independent industrial units, which we refer to 77 
as Site A and Site B, through two fermentation seasons, 2018 and 2019 (Fig. 1). Sampling started on the first day 78 
of the fermentation season for Site A 2018, and ~14 days into the season for the other site-years (see sampling 79 
dates in Supp. Table 1). The two sites are owned by different companies and are located 18 km apart in the region 80 
of Piracicaba, São Paulo, Brazil. Site A used a mix of four strains to start both the 2018 and 2019 fermentation 81 
periods—namely strains PE-2, SA-1, FT-858, and IRA-D. While the first three are common commercially available 82 
industrial strains, IRA-D is an in-house strain isolated from Site A in a previous fermentation season. In contrast, 83 
Site B informed us that they have used PE-2 as their sole starter strain in both fermentation seasons, although we 84 
would later find evidence suggestive of a second starter strain being used, possibly unknowingly, in 2019 (see 85 
results below). 86 

Samples were taken directly from fermentation or holding tanks and were composed of a mix of fermentation 87 
liquid and cells. Glycerol was immediately added for cryopreservation. For metagenome sequencing, we simply 88 
pelleted cells, extracted their DNA and performed sequencing library preparation using a tagmentation-based 89 
approach for short-read whole-genome sequencing, for a total of ~15 timepoints from each site-year. From each 90 
of these sequenced timepoints, we also streaked the original sample on rich medium agar plates, picked up to 91 
three colonies from each, and used the same tagmentation-based approach for clonal whole genome sequencing 92 
(see Supp. Table 2 and 3 for isolate information). We did the same with samples of the four starter strains (see 93 

 
Figure 1. Schematics of the fermentation process and sequencing strategy. (A) A large population (~1017 individuals) of the 
yeast S. cerevisiae is maintained over the course of an eight-month-long fermentation season. Yeast ferments must, a mix of 
molasses, sugarcane juice and water, to produce ethanol in a fed-batch process that takes ~8h and runs in a staggered parallel 
fashion across several fermentors (8–16 in any one plant, each with a ~500,000 ℓ capacity). The fermented broth (wine) from 
different fermentors is loaded into a single holding tank, which continuously feeds a centrifuge for separation of the yeast from 
the liquid fraction. Holding tanks are larger than fermentors themselves and allow for mixing between batches. The yeast cells 
are then treated with chemicals to control for bacterial growth and are later reused in the process. The yeast population grows 
by ~10% every 12h, leading to approximately 66 generations over the course of an ~8 months fermentation season. The season 
is started with selected industrial strains which are commercialized by yeast suppliers. (B) We collected whole-population 
samples of the yeast used for fermentation through two seasons (2018 and 2019) in two plants (Site A and Site B) located ~18 km 
apart in the state of São Paulo, Brazil. The two plants are owned by different companies and use different sets of starter strains 
in their process. We employed a combination of whole-population metagenome sequencing and clonal whole-genome 
sequencing to observe the temporal dynamics of genetic diversity in each site-year. See Supp. Table 1–3 for a complete list of 
collected samples and isolates. 
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Methods). All reads from metagenome and clonal isolates were then aligned to the reference genome of S. 94 
cerevisiae S288c and used to call SNPs (single-nucleotide polymorphisms) for further analyses. Our final dataset is 95 
thus composed of alternate allele counts and depth of sequencing (hereon referred to as simply count and depth) 96 
at each called variant site both for individual clonal isolates and whole population timepoints. In both cases, allele 97 
frequency will refer to the quotient count/depth. See Methods for details. 98 

High genetic diversity among industrial isolates 99 

We began by investigating genetic diversity in the studied populations. Using our variant calling pipelines (see 100 
Methods), we find a total of 145,066 SNPs among all 134 fermentation and 11 starter strain isolates. 14,200 101 
(9.8%) of these mutations are singletons, while 15,749 (10.5%) are seen in all sequenced clones (see Ext. Data Fig. 102 
1 for the full distribution). We also find a similar number of SNPs (150,265) in the whole-population metagenome 103 
data across all four site-years, with an overlap of 126,845 between the clonal and the metagenomic datasets. This 104 
suggests that the clonal genotyping data covers a substantial fraction of the genetic diversity of these populations, 105 
especially given that the metagenomic data (i) samples from the whole population, and (ii) represents a 106 
sequencing effort of 6154x over all timepoints, which is larger than that of clonal genotyping (4,341x over all 107 
isolates). The 168,486 SNPs uncovered in the whole dataset are widely distributed along the genome, hitting 108 
6,370 out of all 6,579 genes in the annotated S288c genome. 129,697 of these SNPs have been previously 109 
observed in the 1011 yeast genomes project29, which itself uncovered 1,544,489 SNPs. 110 

 
Figure 2. Yeast populations in bioethanol fermentors are genetically diverse and dynamic. (A) Phylogenetic tree of isolated 
clonal strains from all site-years, as well as known starter strains used. Most isolates are closely related the known starter strains, 
but several are not. The tree was inferred with a maximum likelihood model using the data of 27,229 SNPs. Ploidy of each isolate, 
assessed as described in the Methods, is indicated by diamonds. Nodes and tips are colored as in Figs. 4 and 5. The tree is rooted 
in the same place as the independently inferred tree in Fig. 6. Isolates are grouped as in Figs. 4–6. Isolates are named as 
<site><year>:<timepoint>(<letter identifier>), while starter strain isolates are marked with an asterisk. The associated Newick 
tree can be found in Supp. Data 1. The allele frequency data used for ploidy assessment can be visualized in Supp. Fig. 3. Selected 
examples of a diploid and triploid strain can be seen in Ext. Data Fig. 2. (B) Frequency of alternate allele (in relation to the 
reference genome of strain s288c) through time for an arbitrary subset of 2000 mutations (out of ~100k) per site-year. Overall, 
mutation trajectories indicate alternation between periods of stasis, when one major strain dominates, and periods of transition, 
when many mutations change in frequency in a correlated way indicative of strain dynamics. Noise in mutation trajectories 
comes from random sampling (approximately binomial), as well as sequencing and mapping errors, which is not homogeneous 
across mutations. 
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S. cerevisiae may exist at different ploidies, and so we examined allele frequencies in the clonal isolate data to 111 
infer isolate ploidy (see Methods for details). We found that 64 of our isolates are triploid, while the remaining 70 112 
are diploid (Fig. 2A). All isolates of starter strains FT-858 and IRA-D are triploid, while those of PE-2 and SA-1 are 113 
diploid (as described in ref.11,30,31). An examination of allele frequencies and sequencing depth along the genome 114 
revealed that a small number of isolates carry structural variations, such as gain or loss of whole chromosomes or 115 
sections of chromosomes (Supp. Fig. 3). Given the small number of affected isolates, and in each case a minor 116 
fraction of the genome being affected, we keep these isolates in all further analyses. 117 

We then used the called SNP data to infer a maximum-likelihood phylogenetic tree between all sequenced 118 
isolates (Fig 2A). As expected, we find that several of the isolated clones are closely related to the starter strains 119 
used to initiate the industrial process. We note that PE-2 isolates form two major clades, which are both 120 
represented in starter and fermentation isolates from both sites and years. We also find several other groups of 121 
closely related isolates, mostly triploid, that diverge from the starter strains by thousands of SNPs. These groups 122 
are all composed of isolates from Site B, whereas all Site A isolates fall close to the known starter strains. 123 

Lineage inference 124 

We turned to the whole-population metagenomic data to investigate the yeast population dynamics through the 125 
fermentation season (Fig. 2B). We are interested in understanding how starter strains change in frequency 126 
through the fermentation, as well as identifying events of selection of novel mutations or invasion by foreign 127 
strains. Examining the raw metagenomic allele frequencies through time, we observe periods when large cohorts 128 

 
Figure 3. Schematics of lineage inference procedure. We use temporal metagenomics and clonal isolate whole-genome 
sequencing to infer the unobserved frequencies of asexual lineages in the original population over the course of a fermentation 
season. (Upper left) Starter, invading, and newly mutated lineages change in frequency through time due to selective and random 
factors. (Lower left) A phylogeny of clonal isolates is used to select the sets of clade-defining variants (colored bars on tree 
branches) that we will later search in the metagenomic data and use for lineage inference. (Upper right) At each timepoint t, we 
jointly infer the frequencies 𝑓 of all asexual lineages by optimizing a likelihood model of 𝑓 given the metagenomic allele counts 
𝑥!" of variant 𝑚, which is a clade-defining variant for lineage 𝑙, the read depth 𝑑!", and the variant’s genotype 𝑔" (which takes 
values 0, 0.5 or 1 for diploid, and 0, 1/3, 2/3 or 1 for triploid lineages). The frequencies of all lineages are jointly inferred and 
constrained such that the summed frequencies of sister lineages do not exceed that of the respective parent lineage. 
(Lower right) Undersampling of genetic diversity by isolates will cause whole lineages to be left out, but that should not bias the 
frequency estimation of included lineages. 
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of mutations move together, indicative of competition between divergent strains, as well as periods of stability 129 
when allele frequencies remain mostly constant. Correlation between allele frequency trajectories is indicative of 130 
co-segregation and has been used as the signal for inference of population dynamics in previous studies21,25. 131 
However, this type of inference is complicated by several factors. First, our populations are highly genetically 132 
diverse and mutations are shared between different strains in complex patterns. These patterns are presumably 133 
created by earlier, potentially sexual population dynamics that led to the creation of these strains in the unknown 134 
other environments in which they evolved. This means that individual metagenomic mutation trajectories can 135 
depend on the frequency changes of potentially multiple different strains that carry that mutation. This is 136 
complicated by the fact that these different strains may carry a given mutation at different genotypes (i.e. as 137 
homozygous or heterozygous diploids, or in one to three copies in triploids). Finally, it is not immediately clear 138 
how to polarize mutations for lineage frequency inference (i.e. which one should be considered the references 139 
versus alternative allele), which leads to an overall pattern of mirrored mutation trajectories in the raw 140 
metagenomic data (Fig. 2B). 141 

Here, we developed and employed a novel framework for jointly inferring the frequencies of nested asexual 142 
lineages of descent through time from whole-population metagenomic data (Fig 3; see Methods and 143 
Supplementary Information for details). This approach takes advantage of our clonal sequencing data to phase an 144 
informative subset of all mutations into cohorts that segregate together in the population, completely ignoring 145 
the metagenomic data for this purpose. While we are limited to the genetic diversity that is sampled by picked 146 
isolates, by following this approach we overcome the challenges described above, as well as have higher power to 147 
identify small lineages, whose metagenomic trajectories may be indistinguishable from sequencing noise in 148 

 
Figure 4. In Site A the in-house starter strain IRA-D consistently dominates over other starter strains. On the left, inferred strain 
dynamics in Site A over the two fermentation seasons. White space corresponds to non-inferred genetic diversity in the 
population. On the right, subtrees of the tree in Fig. 2A including only the isolates from each respective site-year. Circles on nodes 
and tips indicate inferred lineages and their respective colors. 
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correlation-based grouping methods21,25. In doing so, our pipeline automates an approach similar to that of Zhao 149 
and colleagues27, while handling high genetic diversity and ploidy variation in the population. 150 

Among the four site-years, we infer the frequencies of a total of 197 lineages, spanning a wide range of lineage 151 
sizes, with a median maximum lineage frequency of 6.7% (see Ext. Data Fig. 3 for the full distribution). The 152 
inferred results pass basic soundness checks: the timepoints at which different isolates were picked largely 153 
correspond to times when their associated inferred lineage frequencies are high, and lineage frequency 154 
trajectories are smooth, even though timepoints are inferred independently from each other. 155 

Stable dynamics dominated by in-house strain in Site A 156 

In Site A, we only observe lineages closely related to the known starter strains (Fig. 4). In particular, we find that 157 
IRA-D, a triploid strain, dominates the process in both years. Curiously, IRA-D is an in-house strain which was 158 
found to invade the process in a previous fermentation season, and since then it has been included in the starter 159 
strain mix. While these observations suggest that IRA-D is the best adapted to these fermentation conditions 160 
among all four starter strains, we observe that it does not completely displace PE-2 in 2019, which continues at a 161 
low frequency in the process even in later timepoints. Coexistence for such a long timescale is suggestive of some 162 
ecological process, such as niche partitioning, or negative frequency dependence. However, it is unclear why the 163 
same dynamics are not seen in 2018, when PE-2 seems to be completely outcompeted. Either the population 164 
itself is genetically different between the years (although isolates from both seasons are closely related) or 165 

 
Figure 5. In Site B, a group of diverse invading strains systematically takes over the process. Despite the genetic diversity among 
invader strains, they seem to coexist, except for the second substitution event in 2018, which involves a different set of invading 
strains. In the 2019 fermentation season the process starts with a large amount of an unexpected unknown strain. See Fig. 4 for 
a description of the diagrams. 
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differences in agricultural and industrial practices, or weather patterns, may have affected fermentation 166 
conditions. 167 

Foreign lineages systematically invade Site B 168 

In Site B, we observe a very different picture, where several large lineages are distantly related to the starter 169 
strain PE-2 (Fig. 5). While PE-2 dominates at the start of 2018, it is a minor fraction at the start of 2019, when the 170 
process is instead dominated by a different lineage (labeled “starter unknown” in Fig. 2A and 5), suggesting a 171 
different starter strain mix for that year. 172 

In both years, the population gets substituted by a cohort of much fitter strains halfway into the season (labeled 173 
invader strains in Fig. 2A and 5). Most of these strains are triploid, except for a small group present in both years 174 
(Fig. 2A and 5). While their genetic distance to other starter strains and minute presence in early timepoints 175 
suggest that they invade the fermentation process, we cannot rule out that they were already present in the 176 
starter inoculum or have their origin in the industrial equipment itself, where they might find a reservoir from one 177 
production season to the next. The fact that closely related isolates are seen in both 2018 and 2019 is indicative of 178 
some systematic source of contamination. Surprisingly, despite the large degree of genetic diversity and the 179 
ploidy variation within this cohort, these different invading strains stably coexist in the timescale of the 180 
fermentation season. Here again, an ecological explanation is suggested. 181 

Finally, we observe a second substitution event in the final timepoints of Site B’s 2018 season. The inference 182 
suggests that this set of strains were already present since early in the season, remaining at low frequency until 183 

 
Figure 6. Starter and invader isolates all cluster together within a larger group of Brazilian Bioethanol strains. (A) A SNP-based  
maximum likelihood phylogeny combining isolates from the current study and from the 1011 Yeast Genomes Project29. Other 
groups of domesticated strains are highlighted for reference. This tree was inferred based on 42,012 SNPs. (B) Subtree of 
bioethanol-related isolates. Isolates from the current study are closely associated with isolates from the bioethanol industry and 
cachaça distilleries (a sugarcane-based spirit). Individual isolate origins are indicated with colored rectangles. Branches are 
collapsed to aid visualization. A full phylogeny can be seen in Ext. Data Fig. 4, and its associated Newick tree can be found in 
Supp. Data 2. 
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they suddenly displace all other strains. This event does not seem to be driven by selection for a novel mutation, 184 
since the expanding lineage retains significant diversity within itself, and instead may be caused by a sudden 185 
change in fermentation conditions. 186 

Origin of invading yeast strains 187 

We further investigate the origin of Site B’s invader strains. While we cannot assess industrial procedures directly, 188 
we can examine the phylogenetic relationship of these strains to other known isolates. For that purpose, the 1011 189 
Yeast Genomes Project (YGP) represents the largest and broadest whole-genome sampling of S. cerevisiae genetic 190 
diversity29. Most importantly, it includes 37 isolates related to the Brazilian bioethanol industry. Here, we 191 
compare all our picked isolates to the YGP collection by inferring a combined phylogeny of both studies (Fig 6; see 192 
Methods for details). The inferred unrooted tree largely replicates the structure of previous inferred trees of 193 
broad yeast diversity29,32–34. 194 

First, we find that all Brazilian bioethanol isolates from both studies form a monophyletic group and are closely 195 
related to a large group of European wine strains, in agreement with previous studies29,34 (Fig. 6A). As shown in 196 
Fig. 6B, we note that among the 37 isolates classified in the Brazilian bioethanol group in the 1011 YGP, 3 were 197 
isolated from cachaça distilleries (a traditional sugarcane-based spirit), while 2 were from the sugarcane plant or 198 
from sugarcane juice (although further detail is missing), while the remainder were isolated from different 199 
bioethanol plants. Among these isolates from the bioethanol industry, several are closely related to PE-2, SA-1, 200 
and most notably, to the “unknown starter” strain in Site B’s 2019 season. Finally, Site B’s “invader strains” do not 201 
seem to be represented in the 1011 YGP, but their close association with other bioethanol isolates points to an 202 
industrial origin (e.g. shared equipment, supplies, or sugarcane), as opposed to invasion by wild strains brought to 203 
the industrial environment by vectors such as insects or birds from foreign niches. 204 

Stability of macroscopic fermentation parameters despite strain dynamics  205 

Yeast strains vary in their suitability for the industrial process due to, among other factors, their ability to produce 206 
and withstand high ethanol concentrations, their propensity to generate foam or cell aggregates in large industrial 207 
settings, or their tendency to be outcompeted by poorer performing strains11 (in terms of the final ethanol yield 208 
on sugars). Thus, invasion by unknown strains may harm the fermentation process and the profitability of the 209 
industry, due to decreased ethanol production and/or to higher costs involved with the use of chemicals, such as 210 
sulfuric acid, antimicrobials, antifoaming agents and dispersants. In the case of Site B’s 2018 and 2019 seasons, we 211 
have not found a connection between general industrial metrics and inferred events of population substitution 212 
(Ext. Data Fig. 5). Nonetheless, it may still be possible that this stability was accomplished by the employment of 213 
commonly used but costly corrective measures, such as those outlined above.  214 
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DISCUSSION 215 

In this study, we described the population dynamics of the yeast used for bioethanol production via fermentation 216 
in sugarcane-based biorefineries through the course of two fermentation seasons (2018 and 2019) in two 217 
independently run industrial plants. The method we developed for this purpose allowed for an unprecedented 218 
description of how the starter strains used in the process change in frequency through time and how the 219 
fermentation environment may be invaded by foreign strains. We observe that these large populations (estimated 220 
to be ~1017 individuals) harbor a vast amount of genetic diversity, recovering ~8% of alleles previously found in a 221 
S. cerevisiae-wide survey29, plus novel ones. This diversity is not only observed in invading strains, but also within 222 
the starter strains themselves, whose same subtypes are sampled across years and sites (most notably the two 223 
major groups within PE-2; Fig. 2A). This may be due to how propagation companies, which sell large initial inocula 224 
to bioethanol producers, keep and propagate their own stocks: companies may not start from single colonies 225 
every year, and new mutations may accumulate during propagation. Similar observations of strain genotypic (and 226 
phenotypic) heterogeneity have also been made in the baking, wine and beer industries35. 227 

Such large populations must harbor many novel mutations. At an approximate rate of 5 × 10!"# mutations/bp/ 228 
generation36, and at least 66 generations during one fermentation season, a total of 8 × 10"$ or more mutations 229 
should occur in a diploid population of this size. In fact, at this rate, any given SNP in the yeast genome should 230 
independently occur ~3 × 10% times per generation. We cannot know how many of these mutations would be 231 
adaptive in the industrial environment, but decades of microbial experimental evolution, including in yeast 232 
populations, show that adaptation in large asexual populations is not mutation-limited37–42. Yet, we do not find 233 
clear signs of selection for novel mutations in our results, which would be observed as either an inferred lineage 234 
that increases in frequency much faster than its closely related counterparts, or inferred lineages being deflected 235 
by some unobserved rising lineage. A likely explanation is that the timescale of a fermentation season (in number 236 
of generations) is too short for selected lineages, carrying novel adaptive mutations of a typical fitness effect, to 237 
increase in frequency enough to be sampled by our sparse isolate picking strategy. All in all, what this suggests is 238 
that as long as starter inocula are not produced from the previous year’s final population, or that the equipment 239 
itself is not contaminated with large amounts of previous populations, evolution on a single-strain background is 240 
likely not a consequential factor in the timescale of a fermentation season due strictly to the large population 241 
sizes and dynamics of selection. 242 

Ecological dynamics may explain the observed long periods of coexistence between distantly related lineages in 243 
both sites, such as in PE-2’s permanence in Site A 2019, or the stable relative frequencies of invader strains in Site 244 
B 2019. While it is possible that these observations simply reflect small differences in fitness in the fermentation 245 
environment, the large phylogenetic distance between strains argues against this hypothesis. Large genetic 246 
differences may lead to diversity in resource usage (niche partitioning), and/or in how strains benefit or not from 247 
each other’s presence (frequency dependence). Such ecological dynamics are by no means rare in microbiological 248 
communities in the wild43,44, and have been unintentionally evolved in laboratory E. coli and S. cerevisiae 249 
populations39,45. Strain interactions could open up avenues for designed strain mixes that take advantage of 250 
synergistic interactions in terms of fermentation output and management. We also should not discount the 251 
potential bacterial contribution to these dynamics, as bacteria have been shown to interact both positively and 252 
negatively with yeast during fermentation7,10. The analyses carried out for the current study do not include 253 
bacterial data, but such microbial consortia compose an interesting avenue for future work. 254 

The fact that results have varied more between industrial plants than between years suggests that systematic 255 
differences in industrial practices and/or starter strain mix largely explain differences in population dynamics. 256 
Additionally, observed fluctuations in strain frequencies through time (e.g. the strain responsible for the second 257 
substitution event in Site B 2018) indicate that fluctuations in fermentation conditions may make certain strains 258 
more or less fit to the industrial environment. This is not unexpected, as (i) fermentors are only partially protected 259 
from external temperature fluctuations, (ii) incoming sugarcane varieties change through the year and result in 260 
different must compositions, (iii) the ratio of sugarcane juice and molasses in the must is adjusted daily depending 261 
on current sugar and ethanol prices, (iv) clean-in-place (CIP) practices are carried out on a regular or as-needed 262 
basis, and (v) recycling practice may be adjusted depending on levels of bacterial contamination, among other 263 
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factors. Further collaborations with companies, including access to a detailed record of industrial practices and 264 
strain-tracking as done in this study, may shed further light into the causes behind fermentation fluctuations. 265 
These records should especially contain information on the usage of chemicals (e.g. sulfuric acid, antimicrobials, 266 
antifoaming agent and dispersant, among others), which remediate fermentation output, but add to production 267 
cost and greenhouse gas emissions. 268 

Our observation that the in-house strain IRA-D dominates the process throughout the two observed seasons in 269 
site A underscores the potential of in loco isolation of industrial strains. Invading strains have been documented to 270 
cause harm, but they also served as the source for most if not all of the currently used strains in the 271 
industry11,46,47. Previous studies had shown that these known bioethanol strains are phylogenetically related and 272 
harbor genomic signals of domestication, some which are shared with wine strains and others that are specific to 273 
bioethanol strains34. These strains also cluster very far apart known natural S. cerevisiae isolates from other 274 
Brazilian biomes, further suggesting a non-natural origin48,49. Our results show that currently invading strains in 275 
Site B are closely related to these known domesticated bioethanol strains. On top of that, we note that the 276 
dominant strains across all sites and years are largely triploid, suggesting a systematic advantage of higher ploidy 277 
in this industrial environment (Ext. Data Fig. 6). Taken all together, we hypothesize that the same patterns hold in 278 
most strain invasion events in bioethanol plants that follow a process similar to Site A and B (Fig. 1A). The 279 
observed large genetic diversity among invading strains should be further explored as a potential resource for 280 
future strain isolation. Strain monitoring as carried out in the current study is thus not only a sanity check, but also 281 
a productive assistive strategy for the selection of novel and locally adapted industrial strains. For this purpose, 282 
industrial plants should have protocols in place for the isolation of invading strains, record-keeping of associated 283 
fermentation metrics, and subsequent testing in blocked off portions of the industrial pipeline and scaled-down 284 
systems that mimic the industrial process50. 285 

Our study used metagenomics and a newly developed framework to extract individual lineages to illuminate the 286 
yeast population dynamics in industrial sugarcane-based bioethanol production, with the goal of finding routes 287 
towards more consistent fermentation performance. The resolution obtained with this approach surpasses by far 288 
previously described and utilized methods, such as chromosomal karyotyping and PCR-based methods. We 289 
observed that over two sampled production periods in two independent industrial units, the yeast population 290 
dynamics varied more dramatically between units than between years. In one site we observed dominance and 291 
persistence of an in-house strain in both years, whereas in the other site, foreign strains invaded the process and 292 
displaced the starter strain used to initiate the production period. The several individual clones sequenced, 293 
including invading strains, are phylogenetically grouped with other known bioethanol strains, producing strong 294 
evidence that the invading strains originate from the sugarcane environment itself, and not from natural niches. 295 
The data presented, as well as the statistical framework developed, represent useful material for future 296 
investigations on sugarcane biorefineries (as well as other microbial communities of mixed ploidy). This, in turn, 297 
might lead us to a deeper understanding of the yeast and other microbial ecology in this peculiar environment, 298 
opening the way for process improvements, decreased consumption of costly chemicals, and increased ethanol 299 
yields. A potential new paradigm of industrial practice includes the design of synergistic yeast strain mixes, and 300 
the inoculation of beneficial (or probiotic) bacteria in the process.  301 
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METHODS 302 

Sample collection 303 

Whole-population microbiological samples were collected from two bioethanol plants, here named Site A and Site 304 
B, through the 2018 and 2019 sugarcane-crushing seasons, which ran from April/May through 305 
November/December. See Supp. Table 1 for sampling dates and estimated correspondence with days in season. 306 
The two sampling sites are owned by different companies and are located 18 km apart (on a straight line) in the 307 
region of Piracicaba, SP, Brazil. Samples (~10 ml) were collected daily (2018) or weekly (2019), after fermentation 308 
was completed, directly from fermentors or holding tanks, into pre-sterilized 15 ml tubes containing 3 ml glycerol. 309 
After mixing by vortexing, samples were stored at –20°C for a period of between one and three months before 310 
being transferred to a –80°C ultrafreezer. Finally, samples were shipped from Brazil to the US in dry ice, where 311 
they were stored at –80°C. Starter strains PE-2, FT-858 and SA-1 were shipped as active dry yeast (ADY), whereas 312 
strain IRA-D was shipped as colonies on agar slants, without dry ice. The collection and shipping of samples has 313 
been registered at the Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional 314 
Associado (SisGen, Brazilian federal government) under numbers R40E57A, RB42674, R193AED and RAD5521 (for 315 
the shippings), and AF14971 (for the sampling). A full list of samples with associated collection dates can be found 316 
in Supp. Table 1. 317 

DNA extraction and sequencing 318 

We selected 15 to 20 samples from each site-year for whole-genome metagenomic and clonal sequencing. For 319 
metagenomic sequencing, samples were completely thawed and vortexed, after which 1 ml was aliquoted and 320 
centrifuged to remove the supernatant. Whole DNA extraction was carried out using an in-house protocol40. 321 
Sequencing library preparation was done using the transposase-based protocol51. 322 

For clonal isolate sequencing, the same 15 to 20 thawed and homogenized samples were used for plating onto 323 
Yeast Extract-Peptone-Dextrose(YPD)-agar (Supp. Table 2). Plates were incubated at 30°C for 24 - 48 h. From each 324 
plate, 2 or 3 CFUs were picked and grown in 5 ml liquid YPD overnight at 30°C, after which DNA extraction and 325 
library preparation proceeded as for metagenomic sequencing. Starter strains were inoculated in liquid YPD, left 326 
to grow overnight at 30°C, plated and prepared in the same manner (Supp. Table 3). 327 

Sequencing was carried out in two Illumina NextSeq and one Illumina Miseq runs, following a 300 bp paired-end 328 
workflow. Mean coverage after mapping to the reference strain S288c genome and haplotype inference (see 329 
Bioinformatics section) was 87x for metagenomic samples and 26x for clonal isolates. FASTQ files with all 330 
sequencing reads produced for this study were deposited in the NCBI SRA database (see Data and Code 331 
Availability). 332 

Variant calling bioinformatic pipeline 333 

We called variant sites (SNPs only) in relation to the S. cerevisiae S288c reference genome (yeastgenome.org, 334 
release R64) in all our metagenomic and clonal isolate data. The full pipelines with specific tools and settings used 335 
can be found in the GitHub repository (see Data and Code Availability). In summary, all sequencing reads were 336 
first trimmed of sequencing adapters using NGmerge52, and then aligned to the reference genome using BWA53. 337 
Variant calling was done with the haplotype inference tools in the Broad Institute’s GATK54. In essence, these tools 338 
assemble local haplotypes from aligned reads, calculate the posterior probability of each read coming from each 339 
of the assembled haplotypes, and finally infer variant sites jointly across a group of samples for added power to 340 
call true low-frequency variants: intuitively, an observed variant is less likely to be a sequencing error if it is 341 
observed in more than one sample. Given different probabilistic prior models of allele frequency for clonal and 342 
non-clonal data, variant calling of isolate clonal data is done with HaplotypeCaller jointly across all isolates, while 343 
that of the metagenomic data is done using Mutect2 jointly across all timepoints within each site-year, in line with 344 
GATK guidelines54. Alternate and reference allele counts (AD field in the VCFs) outputted by the variant calling 345 
tools are estimates based on inferred haplotype membership of aligned reads (instead of being simple 346 
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observations from aligned reads). These are the numbers that we use for all later analyses. For convenience, 347 
when referring to a variant site, we will often refer to alternate allele counts as simply counts, and the sum of 348 
alternate and reference allele counts as simply depth. In all further sections, allele frequency at a variant site is 349 
defined as the number that ranges from 0 to 1 given by counts divided by depth. For the sake of simplifying, we 350 
exclude from analyses the small number of variant sites for which we observe more than one alternate allele. 351 

Isolate ploidy 352 

Isolate ploidy was assessed based on visual examination of the distribution of allele frequencies in clonal isolate 353 
data over the whole genome (upper right corner of each panel in Supp. Fig. 3): diploid strains have a multimodal 354 
distribution peaked at values 0, 0.5 and 1, while triploid strains, at 0, 1/3, 2/3, and 1. Example allele frequency 355 
distributions from a diploid and a triploid strain are shown in Ext. Data Fig. 2. 356 

Phylogenetic analyses 357 

We infer two phylogenetic trees in this study, both using whole-genome SNP data. Tree 1 was run with the 358 
SNPhylo pipeline55 using default parameters. The tree is inferred based on a total of 27,229 SNPs across all clonal 359 
isolates from all site-years, including isolates from the four starter strains (Fig. 2A; Newick format tree in Supp. 360 
Data 1). Tree 2 includes the same clonal isolates, plus all isolates from the 1011 Yeast Genomes Project29 (Fig. 6; 361 
Ext. Data Fig. 4; Newick format tree in Supp. Data 2). For this tree, SNPs were first filtered and aligned using 362 
SNPhylo with a missing rate of 0.001, and a maximum likelihood tree was constructed from 42,012 SNP markers 363 
using RAxML56 with 1000 bootstrap replicates, employing the general time reversible nucleotide substitution 364 
model with the GAMMA model of rate heterogeneity. For the purposes of downstream analyses and 365 
presentation, Tree 1 was rerooted in a node analogue to that from which the Bioethanol subtree of Tree 2 366 
branches from the remainder of the tree. 367 

Inference of population dynamics 368 

We assume the reproduction during fermentation is exclusively asexual. Therefore, the population is composed of 369 
some large but discrete number of clonal strains of asexually dividing individuals which may have three origins: (1) 370 
preexisting diversity in starting inoculum; (2) invading strains during the course of the fermentation season; (3) 371 
new strains founded by mutational events during fermentation. 372 

Clonal strains share phylogenetic history, and therefore alleles. Assuming no recombination, and no mutation 373 
reversal, we assume that these lineages organize themselves into a hierarchical tree-like structure which defines 374 
clades, herein referred to as lineages, each with a particular set of synapomorphic alleles: i.e. alleles that are 375 
shared by all clonal strains within that lineage, but no strain outside of it. In effect, the inference pipeline should 376 
be able to handle some amount of departure from these assumptions due to past history of recombination, 377 
mutation reversals, and noise, but we expect this pattern to compose the bulk of the observed data. 378 

Our goal was to use the metagenomic data to infer the frequencies through time of as many lineages as possible 379 
in order to characterize the population dynamics over the course of the fermentation season in each site-year. 380 
Our inference consists of (i) identifying lineages and their synapomorphic alleles based on a maximum-likelihood 381 
phylogeny inferred from our sequenced clones; and (ii) looking for each lineage’s set of synapomorphic alleles 382 
among the metagenomic sequencing data to infer lineage frequencies using a maximum-likelihood framework. 383 
The rationale for this approach is that the metagenomic data samples genetic diversity among chromosomes in 384 
the population in an unbiased way, while the clonal genome sequencing informs us of how to group alleles that 385 
segregate together in the same lineages. We do not assume any particular dynamical model of evolution, and 386 
instead infer lineage frequencies at each timepoint independently. A crucial feature of this inference is that 387 
genetic diversity that is not sampled among sequenced clones does not bias the frequency estimates of other 388 
lineages. 389 
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A detailed description of the inference pipeline is described in the Supplementary Information. The code 390 
developed for this inference is available in the GitHub repository (see Data and Code Availability). 391 

DATA AND CODE AVAILABILITY 392 

Raw sequencing reads for clonal and metagenomic samples have been deposited in the NCBI BioProject database 393 
under accession number PRJNA865262. Code for the variant calling pipeline, lineage inference, and figure 394 
generation, as well as parsed called variant data for clonal and metagenomic samples can be found in the GitHub 395 
repository (https://github.com/arturrc/bioethanol_inference). 396 
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EXTENDED DATA FIGURES 

 
Extended Data Figure 1. Histogram of number of isolates observed to carry a given alternate allele in the clonal 
sequencing data. Starter strains were excluded.  
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Extended Data Figure 2. Representative examples of diploid and triploid whole-genome allele frequency 
distribution in the clonal sequencing data. The y-axes are cropped for better visualization.  
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Extended Data Figure 3. Distribution of maximum inferred frequency (over all timepoints) for all 197 inferred 
lineages across all site-years.  
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Extended Data Figure 4. Midrooted labeled version of the tree in Fig. 6A. Clones from this study are labeled as in 
Supp. Table 2 and 3. Clones from the 1011 YGP are labeled as in Supp. Table 1 of ref.29. 
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Extended Data Figure 5. Fermentation metrics in Site B show no clear relationship with invasion by foreign 
strains. We show weekly data over the 2018 and 2019 fermentation seasons for (left) ethanol content of 
fermented wine, (middle) total bioethanol output, and (right) fermentation yield, as a measure of amount of 
ethanol produced out of a theoretical maximum. A running average is shown as an aid (orange line). The raw data 
can be found in Supp. Table 4.  
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Extended Data Figure 6. Inferred fraction of diploid and triploid strains along time based on inferred lineages' 
frequencies and ploidies. Estimated frequencies in both the metagenome (i.e. fraction of genetic material of the 
population that can be assigned to diploid or triploid individuals) and in the population (fraction of individuals) are 
shown. See Section "Calculation of lineage frequency in the population" of the Supp. Information for details. 
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SUPPLEMENTARY MATERIAL 406 

Supplementary Information 407 

Details on lineage inference pipeline. Supplementary Figs. 1 and 2. 408 

Supplementary Figure 3 409 

Allele frequency and coverage along the genome of each sequenced isolate. Each file corresponds to a sequenced 410 
clone and contains four panels. (Top) Allele frequency (alternate allele counts/depth) along the genome, and 411 
histogram of allele frequency. (Bottom) Coverage along the genome, and histogram of coverage. Histograms are 412 
cropped for visualization. Red bars represent boundaries between each of the 16 chromosomes in the reference 413 
strain s288c. 414 

Supplementary Tables 1–4 415 

List of collected samples, and sequenced isolates. Site B's weekly fermentation metrics along 2018 and 2019 416 
production seasons. 417 

Supplementary Data 1 418 

Newick format tree of inferred maximum likelihood phylogeny of all sequenced isolates. See Methods for details. 419 

Supplementary Data 2 420 

Newick format tree of inferred maximum likelihood phylogeny of all 1011 YPG and this study's sequenced isolates. 421 
See Methods for details. 422 
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