CMSC 330: Organization of Programming Languages

Context-Free Grammars

Review

A sentential form is a string of terminals and nonterminals produced from the start symbol

Inductively:

- The start symbol
- If $\alpha A \delta$ is a sentential form for a grammar, where (α and $\left.\delta \in(N \mid \Sigma)^{*}\right)$, and $A \rightarrow \gamma$ is a production, then $a \gamma \delta$ is a sentential form for the grammar
- In this case, we say that aAס derives $\alpha y \delta$ in one step, which is written as $\alpha A \bar{\delta} \Rightarrow a y \bar{\delta}$

Another Example (cont'd)

$$
\mathrm{S} \rightarrow \mathrm{a} \mid \mathrm{SbS}
$$

- Is ababa in this language?

A leftmost derivation

$$
\mathrm{S} \Rightarrow \mathrm{SbS} \Rightarrow \mathrm{abS} \Rightarrow
$$

$$
a b S b S \Rightarrow a b a b S \Rightarrow a b a b a
$$

CMSC 330

Another leftmost derivation
$\mathrm{S} \Rightarrow \mathrm{SbS} \Rightarrow \mathrm{SbSbS} \Rightarrow$ abSbS \Rightarrow ababS \Rightarrow ababa

Leftmost and Rightmost Derivation

Review

- Why should we study CFGs?
- What are the four parts of a CFG?
- How do we tell if a string is accepted by a CFG?
- What's a parse tree?

CMSC 330
2

Ambiguity

- A string is ambiguous for a grammar if it has more than one parse tree
- Equivalent to more than one leftmost (or more than one rightmost) derivation
- A grammar is ambiguous if it generates an ambiguous string
- It's can be hard to see this with manual inspection
- Exercise: can you create an unambiguous grammar for $\mathrm{S} \rightarrow \mathrm{a} \mid \mathrm{SbS}$?

Are these Grammars Ambiguous?

(1) $\quad \mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{bT} \mid \mathrm{U}$
$\mathrm{U} \rightarrow \mathrm{cU} \mid \varepsilon$
(2) $\quad \mathrm{S} \rightarrow \mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{Tx}|\mathrm{Tx}| \mathrm{x} \mid \mathrm{x}$
(3) $\quad \mathrm{S} \rightarrow \mathrm{SS}|()|(\mathrm{S})$

CMSC 330 7

More on Leftmost/Rightmost Derivations

- Is the following derivation leftmost or rightmost?

$$
\mathrm{S} \Rightarrow \mathrm{aS} \Rightarrow \mathrm{aT} \Rightarrow \mathrm{aU} \Rightarrow \mathrm{acU} \Rightarrow \mathrm{ac}
$$

- There's at most one non-terminal in each sentential form, so there's no choice between left or right nonterminals to expand
- How about the following derivation?
$-\mathrm{S} \Rightarrow \mathrm{SbS} \Rightarrow \mathrm{SbSbS} \Rightarrow \mathrm{SbabS} \Rightarrow \mathrm{ababS} \Rightarrow$ ababa

CMSC 330

Tips for Designing Grammars (cont'd)
3. To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle
$\left\{a^{n} b^{n} \mid n \geq 0\right\}$ (not a regular language!)
$\mathrm{S} \rightarrow \mathrm{aSb} \mid \varepsilon$
Example: $\mathrm{S} \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \mathrm{aabb}$
$\left\{a^{n} b^{2 n} \mid n \geq 0\right\}$
$\mathrm{S} \rightarrow \mathrm{aSbb} \mid \varepsilon$

Ambiguity of Grammar (Example 3)

- 2 different parse trees for the same string: ()()()
- 2 distinct leftmost derivations :

$$
\begin{aligned}
& \mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow \mathrm{SSS} \Rightarrow() \mathrm{SS} \Rightarrow()() \mathrm{S} \Rightarrow()()() \\
& \mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow() \mathrm{S} \Rightarrow() \mathrm{SS} \Rightarrow()() \mathrm{S} \Rightarrow()()()
\end{aligned}
$$

- We need unambiguous grammars to manage programming language semantics
CMSC 330

Tips for Designing Grammars

1. Use recursive productions to generate an arbitrary number of symbols

$$
\begin{array}{ll}
A \rightarrow x A \mid \varepsilon & \text { Zero or more x's } \\
A \rightarrow y A \mid y & \text { One or more y's }
\end{array}
$$

2. Use separate non-terminals to generate disjoint parts of a language, and then combine in a production

$$
\begin{aligned}
G= & S \rightarrow A B \\
& A \rightarrow A \mid \varepsilon \\
B & \rightarrow b B \mid \varepsilon
\end{aligned}
$$

$$
L(G)=a^{*} b^{*}
$$

CMSC 330

Tips for Designing Grammars (cont'd)

$$
\left\{a^{n} b^{m} \mid m \geq 2 n, n \geq 0\right\}
$$

$$
\mathrm{S} \rightarrow \mathrm{aSbb}|\mathrm{~B}| \varepsilon
$$

$$
\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}
$$

The following grammar also works:
$S \rightarrow a S b b \mid B$
$B \rightarrow b B \mid \varepsilon$

How about the following?
$S \rightarrow$ aSbb \mid bS $\mid \varepsilon$

CMSC 330
${ }^{12}$

Tips for Designing Grammars (cont'd)
$\left\{a^{n} b^{m} a^{n+m} \mid n \geq 0, m \geq 0\right\}$
Rewrite as $a^{n} b^{m} a^{m} a^{n}$, which now has matching superscripts (two pairs)

Would this grammar work?
$S \rightarrow$ aSa | $\mathrm{B} \quad$ Doesn't allow $m=0$
$B \rightarrow b B a \mid b a$
Corrected:
$S \rightarrow$ aSa | $B \quad$ The outer $a^{n} a^{n}$ are generated first, $B \rightarrow b B a \mid \varepsilon \quad$ then the inner $b^{m} a^{m}$

CMSC 330
${ }^{13}$

Tips for Designing Grammars (cont'd)
$\left\{a^{n} b^{m} \mid m>n \geq 0\right\} \cup\left\{a^{n} c^{m} \mid m>n \geq 0\right\}$
$S \rightarrow T \mid U$
$\mathrm{T} \rightarrow \mathrm{aTb}|\mathrm{Tb}| \mathrm{b} \quad$ T generates the first set
$U \rightarrow a U c|U c| c \quad U$ generates the second set

- What's the parse tree for string abbb?
- Ambiguous!

Tips for Designing Grammars (cont'd)
$\left\{a^{n} b^{m} \mid m>n \geq 0\right\} \cup\left\{a^{n} c^{m} \mid m>n \geq 0\right\}$
Unambiguous version
$S \rightarrow T \mid V$
$\mathrm{T} \rightarrow \mathrm{aTb} \mid \mathrm{U}$
$\mathrm{U} \rightarrow \mathrm{Ub} \mid \mathrm{b}$
$\mathrm{V} \rightarrow \mathrm{aVc} \mid \mathrm{W}$
$\mathrm{W} \rightarrow \mathrm{Wc} \mid \mathrm{c}$

Tips for Designing Grammars (cont'd)

4. For a language that's the union of other languages, use separate nonterminals for each part of the union and then combine

$$
\left\{\mathrm{a}^{\mathrm{n}}\left(\mathrm{~b}^{\mathrm{m}} \mid \mathrm{c}^{\mathrm{m}}\right) \mid \mathrm{m}>\mathrm{n} \geq 0\right\}
$$

Can be rewritten as
$\left\{a^{n} b^{m} \mid m>n \geq 0\right\} \cup$ $\left\{a^{n} c^{m} \mid m>n \geq 0\right\}$

CMSC 330

Tips for Designing Grammars (cont'd)

$\left\{a^{n} b^{m} \mid m>n \geq 0\right\} \cup\left\{a^{n} c^{m} \mid m>n \geq 0\right\}$
Will this fix the ambiguity?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~T} \mid \mathrm{U} \\
& \mathrm{~T} \rightarrow \mathrm{aTb}|\mathrm{bT}| \mathrm{b} \\
& \mathrm{U} \rightarrow \mathrm{aUc}|\mathrm{cU}| \mathrm{c}
\end{aligned}
$$

- It's not amgiguous, but it can generate invalid strings such as babb

CMSC 330
16

CFGs for Languages

- Recall that our goal is to describe programming languages with CFGs
- We had the following example which describes limited arithmetic expressions
$E \rightarrow a|b| c|E+E| E-E|E * E|(E)$
- What's wrong with using this grammar?
- It's ambiguous!

CMSC 330
18

Another Example: If-Then-Else

<stmt> ::= <assignment> | <if-stmt> | ...
<if-stmt> ::= if (<expr>) <stmt> |
if (<expr>) <stmt> else <stmt>

- (Here <>'s are used to denote nonterminals and ::= for productions)
- Consider the following program fragment: if $(x>y)$ if $(x<z)$ $a=1$;
else $\mathrm{a}=2$;
- Note: Ignore newlines

Parse Tree \#2

- Else belongs to outer if

The Issue: Associativity

- Ambiguity is bad here because if the compiler needs to generate code for this expression, it doesn't know what the programmer intended
- So what do we mean when we write a-b-c?
- In mathematics, this only has one possible meaning
- It's (a-b)-c, since subtraction is left-associative
- a-(b-c) would be the meaning if subtraction was rightassociative

CMSC 330

Parse Tree \#1

- Else belongs to inner if

CMSC 330
22

Fixing the Expression Grammar

- Idea: Require that the right operand of all of the operators is not a bare expression

```
E E+T | E-T | E*T|T
T->a|b|c|(E)
```

- Now there's only one parse tree for a-b-c
- Exercise: Give a derivation for the string a-(b-c)

CMSC 330
24

What if We Wanted Right-Associativity?

- Left-recursive productions are used for leftassociative operators
- Right-recursive productions are used for rightassociative operators
- Left:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{E}^{*} \mathrm{~T} \mid \mathrm{T}$
$T \rightarrow a|b| c \mid(E)$
- Right:
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E}|\mathrm{T}-\mathrm{E}| \mathrm{T}^{*} \mathrm{E} \mid \mathrm{T}$ $T \rightarrow a|b| c \mid(E)$

A Different Problem

- How about the string $a+b^{*} c$?
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{E}^{\star} \mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{c} \mid(\mathrm{E})$
- Doesn't have correct precedence for *

- When a nonterminal has productions for several operators, they effectively have the same precedence
- How can we fix this?

Parse Tree Shape

- The kind of recursion/associativity determines the shape of the parse tree

- Exercise: draw a parse tree for a-b-c in the prior grammar in which subtraction is right-associative CMSC 330

Final Expression Grammar

$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}\|\mathrm{E}-\mathrm{T}\| \mathrm{T}$	lowest precedence operators
$\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{P} \mid \mathrm{P}$	higher precedence
$\mathrm{P} \rightarrow \mathrm{a}\|\mathrm{b}\| \mathrm{c} \mid(\mathrm{E})$	
highest precedence (parentheses)	

- Exercises:
- Construct tree and left and and right derivations for - a+b*c a* ${ }^{*}(b+c) \quad a * b+c \quad a-b-c$
- See what happens if you change the last set of productions to $P \rightarrow a|b| c|E|(E)$
- See what happens if you change the first set of productions to $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \mid \mathrm{P}$

