
1

CMSC 330: Organization of
Programming Languages

Context-Free Grammars

CMSC 330 2

Review

• Why should we study CFGs?

• What are the four parts of a CFG?

• How do we tell if a string is accepted by a CFG?

• What’s a parse tree?

CMSC 330 3

Review

A sentential form is a string of terminals and non-
terminals produced from the start symbol

Inductively:
– The start symbol
– If �A� is a sentential form for a grammar, where (�

and � � (N|�)*), and A � � is a production, then ���
is a sentential form for the grammar

• In this case, we say that �A� derives ��� in one step, which
is written as �A� � ���

CMSC 330 4

Leftmost and Rightmost Derivation
• Example: S � a | SbS String: aba

Leftmost Derivation Rightmost Derivation
S � SbS � abS � aba S � SbS � Sba � aba
At every step, apply production At every step, apply production
to leftmost non-terminal to rightmost non-terminal

• Both derivations happen to have the same parse tree
• A parse tree has a unique leftmost and a unique

rightmost derivation
• Not every string has a unique parse tree
• Parse trees don’t show the order productions are

applied

CMSC 330 5

Another Example (cont’d)
S � a | SbS

• Is ababa in this language?
A leftmost derivation

S � SbS � abS �

abSbS � ababS � ababa

Another leftmost derivation
S � SbS � SbSbS �

abSbS � ababS � ababa

CMSC 330 6

Ambiguity

• A string is ambiguous for a grammar if it has
more than one parse tree
– Equivalent to more than one leftmost (or more than

one rightmost) derivation
• A grammar is ambiguous if it generates an

ambiguous string
– It’s can be hard to see this with manual inspection

• Exercise: can you create an unambiguous
grammar for S � a | SbS ?

2

CMSC 330 7

Are these Grammars Ambiguous?
(1) S � aS | T

T � bT | U
U � cU | �

(2) S � T | T
T � Tx | Tx | x | x

(3) S � SS | () | (S)

CMSC 330 8

Ambiguity of Grammar (Example 3)
• 2 different parse trees for the same string: ()()()
• 2 distinct leftmost derivations :

S ⇒ SS ⇒ SSS ⇒()SS ⇒()()S ⇒()()()
S ⇒ SS ⇒ ()S ⇒()SS ⇒()()S ⇒()()()

• We need unambiguous grammars to manage
programming language semantics

CMSC 330 9

More on Leftmost/Rightmost Derivations

• Is the following derivation leftmost or rightmost?
S � aS � aT � aU � acU � ac

– There’s at most one non-terminal in each sentential
form, so there's no choice between left or right non-
terminals to expand

• How about the following derivation?
– S � SbS � SbSbS � SbabS � ababS � ababa

CMSC 330 10

Tips for Designing Grammars

1. Use recursive productions to generate an
arbitrary number of symbols

A � xA | � Zero or more x’s
A � yA | y One or more y’s

2. Use separate non-terminals to generate
disjoint parts of a language, and then combine
in a production

G = S � AB
A � aA | �
B � bB | �

L(G) = a*b*

CMSC 330 11

Tips for Designing Grammars (cont’d)

3. To generate languages with matching, balanced,
or related numbers of symbols, write productions
which generate strings from the middle

{anbn | n 	 0} (not a regular language!)
S � aSb | �
Example: S � aSb � aaSbb � aabb

{anb2n | n 	 0}
S � aSbb | �

CMSC 330 12

Tips for Designing Grammars (cont’d)
{anbm | m 	 2n, n 	 0}
S � aSbb | B | �
B � bB | b

The following grammar also works:
S � aSbb | B
B � bB | �

How about the following?
S � aSbb | bS | �

3

CMSC 330 13

Tips for Designing Grammars (cont’d)
{anbman+m | n 	 0, m 	 0}

Rewrite as anbmaman, which now has matching
superscripts (two pairs)

Would this grammar work?
S � aSa | B
B � bBa | ba

Corrected:
S � aSa | B
B � bBa | �

The outer anan are generated first,
then the inner bmam

Doesn’t allow m = 0

CMSC 330 14

Tips for Designing Grammars (cont’d)

4. For a language that’s the union of other
languages, use separate nonterminals for each
part of the union and then combine

{ an(bm|cm) | m > n 	 0}

Can be rewritten as
{ anbm | m > n 	 0}

{ ancm | m > n 	 0}

CMSC 330 15

Tips for Designing Grammars (cont’d)
{ anbm | m > n � 0} � { ancm | m > n � 0}

S � T | U
T � aTb | Tb | b T generates the first set
U � aUc | Uc | c U generates the second set

• What’s the parse tree for
string abbb?
• Ambiguous!

CMSC 330 16

Tips for Designing Grammars (cont’d)

{ anbm | m > n � 0} � { ancm | m > n � 0}

Will this fix the ambiguity?
S � T | U
T � aTb | bT | b
U � aUc | cU | c

• It's not amgiguous, but it can generate invalid
strings such as babb

CMSC 330 17

Tips for Designing Grammars (cont’d)

{ anbm | m > n � 0} � { ancm | m > n � 0}

Unambiguous version
S � T | V
T � aTb | U
U � Ub | b
V � aVc | W
W � Wc | c

CMSC 330 18

CFGs for Languages

• Recall that our goal is to describe programming
languages with CFGs

• We had the following example which describes
limited arithmetic expressions
E � a | b | c | E+E | E-E | E*E | (E)

• What’s wrong with using this grammar?
– It’s ambiguous!

4

CMSC 330 19

Example: a-b-c
E � E-E � a-E � a-E-E � a-
b-E � a-b-c

E � E-E � E-E-E �
a-E-E � a-b-E � a-b-c

Corresponds to a-(b-c) Corresponds to (a-b)-c
CMSC 330 20

The Issue: Associativity

• Ambiguity is bad here because if the compiler
needs to generate code for this expression, it
doesn’t know what the programmer intended

• So what do we mean when we write a-b-c?
– In mathematics, this only has one possible meaning
– It’s (a-b)-c, since subtraction is left-associative
– a-(b-c) would be the meaning if subtraction was right-

associative

CMSC 330 21

Another Example: If-Then-Else
<stmt> ::= <assignment> | <if-stmt> | ...
<if-stmt> ::= if (<expr>) <stmt> |

if (<expr>) <stmt> else <stmt>
– (Here <>’s are used to denote nonterminals and ::=

for productions)

• Consider the following program fragment:
if (x > y)
if (x < z)
a = 1;

else a = 2;
– Note: Ignore newlines

CMSC 330 22

Parse Tree #1

• Else belongs to inner if

CMSC 330 23

Parse Tree ��

• Else belongs to outer if

CMSC 330 24

Fixing the Expression Grammar

• Idea: Require that the right operand of all of the
operators is not a bare expression

E � E+T | E-T | E*T | T
T � a | b | c | (E)

• Now there's only one parse
tree for a-b-c

– Exercise: Give a derivation
for the string a-(b-c)

5

CMSC 330 25

What if We Wanted Right-Associativity?

• Left-recursive productions are used for left-
associative operators

• Right-recursive productions are used for right-
associative operators

• Left:
E � E+T | E-T | E*T | T
T � a | b | c | (E)

• Right:
E � T+E | T-E | T*E | T
T � a | b | c | (E)

CMSC 330 26

Parse Tree Shape

• The kind of recursion/associativity determines
the shape of the parse tree

– Exercise: draw a parse tree for a-b-c in the prior
grammar in which subtraction is right-associative

left recursion right recursion

CMSC 330 27

A Different Problem

• How about the string a+b*c ?
E � E+T | E-T | E*T | T
T � a | b | c | (E)

• Doesn’t have correct
precedence for *
– When a nonterminal has productions for several

operators, they effectively have the same precedence
• How can we fix this?

CMSC 330 28

Final Expression Grammar
E � E+T | E-T | T lowest precedence operators
T � T*P | P higher precedence
P � a | b | c | (E) highest precedence (parentheses)

• Exercises:
– Construct tree and left and and right derivations for

• a+b*c a*(b+c) a*b+c a-b-c

– See what happens if you change the last set of
productions to P � a | b | c | E | (E)

– See what happens if you change the first set of
productions to E � E +T | E-T | T | P

