
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Management and Vulnerability Scanning
of Docker Containers in an Embedded

Environment

Bachelor’s Thesis

Author Advisor
Zsolt László Czikó dr. Levente Buttyán

Dorottya Futóné Papp

December 12, 2019

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Related-work 3

2.1 IoT security . 3

2.2 Generally about containerization . 4

2.2.1 Containerization vs virtualization . 4

2.3 Docker ecosystem . 5

3 Working with more containers 6

3.1 Orchestrators . 6

3.1.1 Comparing orchestrators . 7

3.1.2 Docker Swarm . 8

4 Use cases for Docker in IoT 11

4.1 Small sized environment . 11

4.2 Middle sized environment . 12

4.3 Huge sized environment . 13

5 Tools for managing Docker containers 15

5.1 About managing containers . 15

6 Tools for vulnerability scanning of Docker containers 19

6.1 About vulnerability scanning of containers 19

6.1.1 Docker Healthcheck . 21

6.1.2 Analysis of the security tools . 21

7 Conclusion 26

Acknowledgements 28

Bibliography 29

HALLGATÓI NYILATKOZAT

Alulírott Czikó Zsolt László, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg
nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2019. december 12.

Czikó Zsolt László
hallgató

Kivonat

Napjainkban majdnem minden elektronikus eszköz csatlakozik az internethez, így a
beágyazott eszközök is. Ezt nevezzük IoT (Internet of Things)-nek. Ezek viszonylag
olcsó eszközök, nagyon szigorú erőforrás megkötésekkel. Az IoT eszközöket olcsó áruk
és széles alkalmazási lehetőségeik miatt az iparban nagy mennyiségben használják. De
többségük nincs teljesen kihasználva. Továbbá jelenleg sem biztonságosak, és a jövőben a
számuk növekedésével egyre nagyobb biztonsági kockázatot fognak jelenteni. Valamint az
irányítása ennyire sok eszköznek még egy meg nem oldott probléma.

Ebben a dolgozatban ajánlok egy megoldást az imént említett problémákra. A
megoldásom alapja egy létező technológia használata, amelyet gyakran alkalmaznak
hagyományos eszközökön. Ez a konténerizáció orkesztrációval, de beágyazott eszközökön.
Bemutatok felhasználásokat, amik bizonyítják, hogy a konténerizáció használata
beágyazott eszközön szükséges. Ezek után összehasonlítok már létező eszközöket, amik
minden egyes felhasználáshoz segítenek irányítani a beágyazott környezetet. Végezetül
részletezem a biztonsággal kapcsolatos problémákat, és megoldást kínálok azokra már
létező biztonsági eszközök használatával. A célom az eszközökkel, hogy megvizsgáljam
vajon képesek -e futni egy beágyazott eszközön, valamint hogy mennyire terhelik meg a
rendszert.

i

Abstract

These days almost every electronic device is connected to the internet, thus are the em-
bedded devices too. This is called IoT (Internet of Things). They are relatively cheap
devices, with very strict resource limitations. They are being used in the industry in large
quantities, because of their low price and their widespread applicability. But most of them
are not completely utilized. Furthermore, they are not secure at the present time, and in
the future with the growth of the number of these devices, they will imply more and more
security risks. As well as, the management of so many devices is not a solved problem
right now.

In this paper, I propose a solution for all of the short while ago mentioned problems. The
base of my solution is the usage of an already existing technology, which is often used on
traditional devices. This is containerization with orchestration, but I work on embedded
devices. I provide use-cases, which prove that the usage of containerization on embedded
devices is necessary. After that I compare already existing tools, that help to manage an
environment in each use-case. Finally I detail the problems around security, and I offer a
solution for those with the usage of already existing security tools. My goal with the tools
is to analyse whether they are able to run on an embedded device, and how much do they
charge the system.

ii

Chapter 1

Introduction

The Internet of Things (as known as IoT) means a lot of devices connected to the internet
about to ensnare the world. This ambition is a good thing on the one hand, because it
aims to make life easier and more comfortable, but on the other hand, this includes a lot
of danger, defencelessness. The principle of these devices is to collect and send data about
the users, about people to analyse those for important informations.

The appearance of the IoT devices influenced the industry positively. These devices can
be manufactured in large quantities for very low prices. That is because, they use embed-
ded processors, sensors, which has small performance, but for the aim of the usage it is
completely enough.

People love using IoT devices, because they make their life easier. Nowadays, every single
electronic device is smart. It began with smartphones, smart watches, and now even the
fridges are smart. This technology carried a lot of advantages in almost every area.

Furthermore, not only are production costs low, the upkeep of these devices costs nearly
nothing. Because of the architecture, they consume very little electricity, and replacement
parts are available for low prices as well.

The exact number of the IoT devices is unknown, but nowadays it is spreading everywhere.
And this spreading will not decrease in the future, more and more cities will become smart,
by 2020 the number of these devices can reach 5.8 billion.1 And with this really huge
number comes a lot of problems.

The management of this many devices is insoluble with the currently used technology,
because the maintenance of them one by one will take forever. Not to mention the fact
that the basic idea was to use them to save resources, and a lot of them will not be probably

1https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-
and-automotive-io

1

fully utilised. The aim is to run as many applications as possible on one embedded device,
because with this attitude one can save energy, money, and avoid the existence of the
idling devices. In summary: automated management of the devices and applications is
necessary in the future, and the currently existing security problems will get worse, so it
is the other key-question. [14]

These are not unknown problems, and in the world of non-embedded devices the solution
is the usage of virtualization technology. But an embedded device cannot run a virtual
machine, because of the physical resource limits. Here comes container based virtualization
(as known as containerization) in picture. Containerization technology provides nearly as
much as traditional virtualization technology, but with much less overhead.

Nowadays, containerization is a traditional solution to run multiple applications in sep-
arate way. However, this technology is not tested on embedded devices, even though it
can provide the solution for all of IoT devices problems. The biggest name in this area is
Docker. Docker ecosystem has a lot of complementary tools to handle the above mentioned
problems.

The rest of the thesis is structured as follows. Chapter 2 presents the background for this
thesis, including challenges of IoT devices, containerization and the Docker ecosystem.
Then in Chapter 3, there are ways to solve the problem of managing a lot of containers.
Chapter 4 discusses the use-cases of Docker in IoT environments. Then in Chapter 5,
there are tools that help manage the system, and I give recommendations of the tools for
each use-cases. Chapter 6 presents tools that scan containers for vulnerabilities, to defend
the systems against attacks, and I give recommendations of the tools for each use-cases
too. Finally Chapter 7 concludes the thesis.

2

Chapter 2

Related-work

2.1 IoT security

In the world of IoT every resource matters. Embedded devices have limited size of mem-
ory(RAM and Storage too), and processing performance, because they have to be cheap.
These little, low-priced devices are all around us, in every smart solution. The problem
comes with the lack of security: they surround us, know (almost) everything about us,
and they do not have a proper implemented security system, or they do not have at all,
so during an attack the attacker can get all information about us. Security solutions cost
not so much, but the usage of them will rise the expenses at least a little, and can make
the deployment slower.

The lack of defence causes a lot of problems nowadays, and this will get worse in the
future with the increase of the number of embedded devices. Let’s take a look for a few
attacks that recently happened: "The malware family behind 39% of attacks - Mirai -
is capable of using exploits, meaning that these botnets can slip through old, unpatched
vulnerabilities to the device and control it. Another technique is password brute-forcing,
which is the chosen method of the second most widespread malware family in the list –
Nyadrop. Nyadrop was seen in 38.57% of attacks and often serves as a Mirai downloader.
This family has been trending as one of the most active threats for a couple of years now.
The third most common botnet threatening smart devices - Gafgyt with 2.12% - also uses
brute-forcing."1

To minimise the risk of a security failure the devices should use security solutions. There
are 3 different approaches for security: preventive, reactive and detective. I will detail
them more in Chapter 6, but for now the important thing is to protect the system with

1https://www.kaspersky.com/about/press-releases/2019_iot-under-fire-kaspersky-detects-more-than-
100-million-attacks-on-smart-devices-in-h1-2019

3

the least overhead. Detective tools are often used in traditional environments, but the
continuous system scanning costs a lot of resources, which embedded devices do not have.
The usage of preventive and reactive tools can provide a secure base for the system without
big overhead. But the development of a new tool costs very much time, and money too.

There are a lot of already existing tools for containerization security, so if embedded
devices start to use containerization, then the question of the missing tools disappears.
However, containerization is not tested on embedded environment, but the tests do not
cost so much as developing a new security tool. To begin the work let’s give a look at the
basics of containerization.

2.2 Generally about containerization

Containerization provides a virtualized environment of an operating system(only the ap-
plication layer is virtualized). It can be considered as a lightweight virtual machine. It
packages up the software and all of its dependencies, so it can run equally on every plat-
form. A container is made up of a base image (which can be ubuntu, debian, busybox,
etc.), and the application, and all of its joint configs, libraries, and other dependencies
have to be added to the container. Containerization ensures portability, that the appli-
cation can work in diverse computing environments, and it ensures isolation from other
containers, and from the host system too(but keep in mind, that containers use the same
kernel as the host, that is why it is lightweight).

2.2.1 Containerization vs virtualization

In the past, if one wanted to run different applications separate, then the only way was to
use a hypervisor, which could create and run virtual machines. This was a good solution,
because the system administrators could adjust the available physical resources of the
machines, and handle them one-by-one. This was better, than using another physical
machine for each separate task. The hypervisor creates separate kernels for each virtual
machine, which cost a lot of wasted physical resources. But with the growing demand on
virtual machines, this size of waste is unacceptable.

Containerization, also known as container-based virtualization provides isolation, and
portability at least the same way, as traditional virtualization does, but in most cases
better. Linux Containers(LXC) use the kernel of the host system, so does not waste re-
sources to build, and run a new one for the container, and it is still be able to run multiple
copies in a separate way.[26] With the usage of a containerization technology (eg. Docker
or CoreOS) the construction of the images can be shortened, which can reduce deployment
time. [20][24]

4

All in all, containerization is a better way to run multiple separate applications. However,
one must not forget that it uses the same kernel for each container, so it is not as secure as
traditional virtualization. But in an embedded environment, where one has little amount
of physical resources(often less than 1 GB of RAM, etc.) containerization is able to provide
isolation for processes with minimal resource overhead.

2.3 Docker ecosystem

There are a few containerization technologies (e. g. CRI-O, rktlet, Microsoft Containers),
but Docker [7] is the pioneer of containerization, it was the first, that offered open-source
solution. One might say Docker is a de facto standard in container based virtualization.
Furthermore, it is the most used container based technology all over the world, and it has
a really good documentation, so the realization of it is simple, and fast. Besides there are
a lot of existing tools that can supplement Docker’s work. [12]

Docker has some default services, for example docker-compose, which is a tool to create
more containers at once. Another useful service is docker-hub: it is an online database,
where one can store their images, which can then be deployed from there. The usage of
hub is free until a certain size (1 private repository, with 1 build), but for a moderate price
this can be increased. Moreover, there are a lot of already existing images on hub, from
which, one can start to develop their own image. Accordingly Docker does not occupy a
lot of space, because it downloads only the needed base images, and it checks at every
launch, if there are any changes in the image: it has a built in automatic update service.

But there are cases where the default services are not enough: here comes supplementary
tools in picture. These can help with orchestration, continuous integration/deployment,
monitoring, logging, security, storage/volume management, networking, service discovery,
building an image, management of a containerized system. These tools are necessary to
make Docker(and the system) better, safer and more easily controlable.

The architectural base of a containerized system is the image. First one has to make a
Dockerfile, which defines the base image, and where one can add its application to its image
(and all of the dependencies of its application). After that one has to build this image
from the Dockerfile. Now one can run containers based on its image. This order is really
important, because it protects the containers from departure failures (if the Dockerfile
is faulty, then the image will not be created), and it insures an opportunity to analyze
the container (the image will be analyzed) for vulnerabilities before deploying it. One
best practice is to analyze the system before it goes live, and this method is absolutely
accessible with containerization. The difference between containers and images is that
containers are running images. One can have more than one containers from the same
image.

5

Chapter 3

Working with more containers

As detailed in Chapter 2, applications should run in containers, because containerization
provides better security, and isolates the application from the host system and from each
other. Furthermore, to offer a service, more than one applications are needed, and it is not
practical to run every application on different devices. To utilize the physical resources of
IoT devices, they should run as many applications (containers) as possible. But working
with more containers is not very easy: deploying them, and the load balancing of the
application can be a very complex problem. The solution of these problems on Desktop
was the usage of an orchestrator.

3.1 Orchestrators

"Orchestration is a pretty loosely defined term. It is broadly the process of automated
configuration, coordination, and management of services. In the Docker world we use it
to describe the set of practices around managing applications running in multiple Docker
containers and potentially across multiple Docker hosts." 1

An orchestrator does the load balancing (equipartition between the containers) , scaling(if
all of the applications are occupied, then it starts new application(s)) instead of us. To
do this it has to manage the containers: start, stop, and restart them, scale them.

The difference between the regular solutions and solutions for embedded devices comes
from the attributes of the embedded devices. The lack of resources makes the work of the
orchestrators very hard.

1Extract from James Turnbull, The Docker Book: Containerization is the new virtualization book

6

A system with an orchestrator should have at least one master node. The master node
monitors the rate of the charging of the system, and it makes a decision about the scaling.
The default case is where the master node does not work (it does not run any copy of the
application), it works only with the load balancing, and scaling. The applications run on
worker nodes, which are controlled by the master node. [22]

The architectural design of the system depends on the number of applications (containers).
With the increase of the number of applications grow the complexity of the system, in
parallel with that grow the necessity of an overall management tool. But this will be
discussed in Chapter 4.

Without orchestrators the environment cannot react alone to the load, and cannot scale
itself: the environment needs somebody to pay attention to it, and it is really expensive.
So orchestrators are necessary for keeping the costs low, and for the continuity of the
service.

3.1.1 Comparing orchestrators

Nowadays, 3 big orchestrators can be discussed: Docker Compose, Kubernetes, Docker
Swarm. Before Kubernetes got incomparable among the orchestrators there were a lot
more, but they slowly collapsed (because of the lack of interest, and money), and Kuber-
netes became leader.

• Docker Compose:

"Compose is a tool for defining and running multi-container Docker applications.
With Compose, you use a YAML file to configure your application’s services. Then,
with a single command, you create and start all the services from your configu-
ration."2 So Docker Compose is a "container" for containers. It is not a classical
orchestrator like Kubernetes, or Swarm, because it cannot do the load balancing,
and cannot auto scale the application. This is just a tool, to start more than one
container at the same time, and it is used for testing.

• Kubernetes:

"Kubernetes (K8s) is an open-source system for automating deployment, scaling,
and management of containerized applications. It groups containers that make up
an application into logical units for easy management and discovery."3

Kubernetes is the biggest, and most popular container orchestrator of the world. I
thought about working with Kubernetes, but the free to use version is not enough
for big sized environments, and the resource demand of Kubernetes is very high,

2https://docs.docker.com/compose/
3https://kubernetes.io/

7

cannot operate well with embedded devices. So Kubernetes is out of scope for this
project.

3.1.2 Docker Swarm

"Docker Swarm or simply Swarm is an open-source container orchestration platform and
is the native clustering engine for and by Docker."4

Swarm is the biggest challenger of Kubernetes, because it can do all the things, that
Kubernetes can, and swarm can deploy containers faster then Kubernetes, and it is totally
free to use. The manager node(s) deploy the applications as services on the worker nodes.
When deploying a new service one can set the number of replicas, the permissions of the
container to the host system, etc. The smallest unit of the swarm is task. A task is made
up of a container, and the commands to run inside the container. Specifically a master
node assigns a task to a worker node, not a service. The number of replicas of the service
is based on the scaling, a worker node can run more than one replica(tasks) of the same
application. Global services are running with one replica, but they have to run on every
node(worker and manager too) in the cluster. Global services will be very important to
understand how Manager tools work (discussed in Chapter 5).[16]

Figure 3.1: The architectural design of a swarm
4https://thenewstack.io/kubernetes-vs-docker-swarm-whats-the-difference/

8

Figure 3.2: Connection between containers, services and tasks

It is easy to deploy, because it uses Docker Engine, so one does not need to install another
application/service. It is possible, to connect a new host anytime, whether a manager
node, or a worker node. The automated scaling, load balancing, and continuous monitoring
provides a reliable service: if the charging is too huge, swarm can make new replicas of the
application, and if a replica fails, then it creates another one instead of the wrong one. It
is a secure solution, because it uses by default TLS mutual authentication and encryption
between the nodes, and of course it is possible to use any self-signed certificate to make
it more secure. It supports rolling updates: if the new version of the application does not
work like one expected, one can easily roll back to the last working version.

The working of swarm is simple: the future manager node creates the swarm, and it
creates a join token, which has to be used on the other hosts to join the swarm. All the
host machines have to run in swarm mode: this means that Docker Engine version has to
be 1.12 or later.

The last reason beside swarm is that, it works well with manager tools: the short while
ago mentioned global functions make the manager tools deployment simple, because if
one wants to manage the containers, one has to run a copy of the manager application on
every host, and that is the global function by definition.

On figure 3.1 you can see the typical architecture of a Swarm (with one master node,
which manage a lot of worker nodes, which have lots of containers). Figure 3.2 shows

9

the connections between containers, services and tasks. Although it is not depicted in
the figure, every node can have more than one containers. For the reasons given above I
decided to use Docker Swarm as the project’s Orchestrator.

10

Chapter 4

Use cases for Docker in IoT

I sketched a use-case before, where one has a lot of containers, and a lot of host machines.
But the reality could be very different. The size of the company determine the number
of hosts, and it could move on a wide range. In my opinion there are 3 different scenar-
ios: small, medium, and big sized environments. The architecture of the containerized
system will be different in every case, based on economical and practical decisions. The
environment need to be controlled by the orchestrator, and this makes the use-cases very
different: the number of the manager nodes, and the host who runs it.

4.1 Small sized environment

As Figure 4.1 shows, in this case there are only 1-2 host machines (embedded devices)
controlled. For this size I do not recommend using any dedicated controller, because the
upkeep of the controller can be bigger than the advantage it brings. Instead of a dedicated
controller the developer can use his own computer to handle the containers(the embedded
devices), and to analyze them. If one offers a service, and the customer just uses it, then
one can oversee the hosts(the containers, the swarm) on one’s system, there is no need for
a dedicated device. This works only for small environments, where the load is not huge,
so the manager roles are reduced to security scan the images, and to check the availability
of the containers (load balancing and scaling do not play role).

This can be good for small, self made smart home systems, where the user only has a few
sensors (for example: temperature sensor, huditimity sensor) and they want to manage
automatically the equipment of the house (for example: the heating, the shutters, the
lamps).

11

Figure 4.1: Example for small sized environment architecture

4.2 Middle sized environment

The difference between medium and small environment comes from the number of the
devices(the number of the applications): in this case one has to use more than 2 devices,
because one wants to run a few applications (even the same application). Controlling,
configuring, and updating (in short: managing) this number of devices one by one cannot
be done without any kind of orchestration tool, because it will take too long, and it will
not be practical. I recommend using a dedicated controller, which can be an embedded
device too. If there are not so many devices, than one contoller should be enough, but
for a bit more worker hosts, I would use at least two controllers: it is great, because
the correction of the malfunctions can be done simultaneously, and because this can help
to manage the load (for example at a Denial of Service attack). Furthermore it is good
because of redundancy: if one of the controllers fails, than the system keeps working.

This use-case is perfect for small shops or small sized factories. In the preceding case one
does not have to count on big turnover, so one does not have to be afraid of running out
of capacity. For the latter, a few devices can manage the manufacturing processes without
any interventions.

The limitation of the system comes from the embedded device controller. Although it is a
cheap solution, it has serious limits: it can easily run out of processing performance, and
memory. With the increase of the number of controllers the process can be delayed, but
it cannot be terminated. So for bigger environments other solutions are required.

12

Figure 4.2: Example for medium sized environment architecture

4.3 Huge sized environment

In this case the number of host machines(embedded devices) can reach a very big number
(from 50 to almost unlimited), so the problem can be very complex. The problems of
middle sized environments also applies here: configuring and updating of hundreds of
devices cannot be done one by one, an overall management tool is necessary (this can be
any kind of orchestration technology). Until a certain size, one dedicated, non embedded
controller can handle the orchestration tasks. But for a huge sized system one controller is
not enough: this does not seem like a big problem, but the architecture of the controllers
is not obvious. But they are not embedded devices, so the traditional solutions are good
for them. Otherwise, I recommend to use at least 2 controllers (even if it is not needed),
because redundancy gives the system more reliability: if suddenly the load increases (for
example at a Denial of service attack), then it would not be a problem, because the second
controller can help with the load balancing, and scaling tasks, and if one of the controllers
fails, then the other one can take over the lead of the swarm.

This can work for big factories: the production can be monitored and managed by embed-
ded devices. If additional services are provided, than the limitations of the system depend
only on the number of embedded devices. The enlargement of the number of host machines
is simple, and relatively cheap. This makes the system flexible, and easily scalable.

13

Figure 4.3: Example for huge sized environment architecture

The number of IoT devices nowadays is near 4.8 billion, and in the future this number
will rise rapidly. Without proper planning they will become untreatable. The security of
the devices are already questionable (for example Botnet attacks [13][2]), and with this
fast increase this will not change. For all these reasons, I think the usage of some con-
tainerization tool is necessary: Docker is the most popular container based virtualization
technology, with the most complementary tools, but any other could be a good choice
too.

14

Chapter 5

Tools for managing Docker
containers

With more containers comes a new problem: management without tools becomes impen-
etrable, inconvenient. As seen before Docker Swarm can do the automated management
of the containers, but it cannot show an overall picture about the system, and it cannot
do the expansion of the host machines.

5.1 About managing containers

A Docker container can be in 3 different states: created (that is called Image), running,
stopped. The lifecycle management of a container is very important to keep the application
running and the service stable. For each use-case -discussed in Chapter 4.- the management
structure can be diverse: the priorities of a personal smart home are different from the
priorities of a big factory. There are a lot of solutions for this problem for regular PC’s,
but the embedded ecosystem has serious limitations, so the compatibility is not obvious.

The operational principle of a management tool is to run a container on every host machine,
so the manager can reach the worker nodes. This brings up questions about resource
management in an embedded ecosystem. Certainly running an extra container is not
good from the view of the load, but the transparency of the system with a management
tool is much better than without it. The developer of the system has to consider what is
more important: the performance of the nodes, or manageability of the environment. The
strengths and weaknesses of the previously discussed use-cases can aid in the decision.

Managing containers on a few hosts are very different from managing a swarm. Swarm is
not so wide-spread, so relatively few tools can handle it. Without built-in swarm support

15

the deployment of the manager tool is difficult: the nodes has to be added to the manager
node one-by-one. This is a bit inconvenient, but it eliminates the extra load of running
an extra container on every host. Most of the tools do not need to be installed, they can
run as a docker container, so they can manage themselves, and they can work well with
the already available technologies. This makes the requirements of the tools low, which is
nice from the view of development.

I tested 4 tools on embedded devices (on Raspberry PI 3 Model B), these were:
Portainer[15][19], DockStation[8], Docker Compose UI[25], Swarmpit[23]. They are all
frequently used on traditional platform to manage containers. Table 5.1 shows the com-
parison of the tools. My main viewpoints were:

• GUI:

One of the most important things in a management tool is the GUI(graphical user
interface): the containers can be managed without a tool for that, but this makes
the system chaotic. A good, logical interface can simplify the work.

• Installation and maintenance:

The difficulty of deploying can easily determine the destiny of a tool. Basically I
distinguish 2 categories: first, where installation is needed, and second, where the
tool can run as a docker container. From the view of the maintenance both ways
can be good, but the containerized tool can be updated easily with the restart of
the container, because at the starting of the container it has to update to the latest
version (found on Docker Hub).

• Support:

The new features, bug fixes, the documentation: they are playing a serious role in the
life of a service. The management tools are services, which show a simpler picture
about the system, and make the management easier. If something goes wrong, or
something does not work like it used to, then maybe you can find the answer in a
good (or existing at all) documentation.

• Identifying swarm:

If the tool cannot identify swarm, and despite this all of the nodes has been con-
nected, one cannot get an overall review of the system as a unity: one can just see
the load of a/more node(s), but not all of them (except there are only a few nodes).
This viewpoint with the resource demand can be crucial.

• Resource demand:

There is a close coherence between the resource demand and the usage of swarm. If
the tool can handle Docker Swarm, then it creates a replica on every host, and the
supervision of the node is done. This implies surplus load, which can be decisive in

16

an embedded environment. In contrast to this -without swarm- the manager tool has
to connect to the nodes somehow(it can be done via SSH, or by an opened port on
the host). The connection can be done one-by-one, so this is not a very convenient
way, and for a lot of hosts it is nearly impossible.

• Communication with Docker:

The base question is, how does the tool get informations about the containers, about
the swarm.

In the previous chapter I presented 3 different use-cases. In my opinion, the usage of
Swarm(or any kind of orchestrator) is necessary for medium and big sized environment.
In these scenarios, I recommend using a tool, what can identify Swarm to maximize the
usefulness. Portainer or Swarmpit can be a good choice. For small sized environments
-where are only a few hosts- DockStation can be a good option, because connect a few
nodes to the manager node one-by-one is not so painful, as well as in this case there are
not any surplus load on the workers, which is important for a small sized environment.

Let’s take a look for a use-case, which was not mentioned up to now: testing a new
application/service. The key to the testing is the simplicity, the easy deployment. Docker
Compose UI is not good to analyze a complex system, but it makes the deployment of a
group of containers easier, and simpler. With this tool the reading of logs become easy,
and this can speed up the development/testing.

17

Portainer DockStation Docker Com-
pose UI

Swarmpit

GUI Can show
charts about
the whole
system; un-
derstandable
surfaces; can
be accessed
via browser on
the port one
has granted;
remote hosts
console can be
accessed in the
browser

Modern,
good look-
ing, simple;
nice charts;
separate appli-
cation

Just a web
interface
for Docker
Compose (to
deploy new
containers);
does not have
charts; can be
accessed via
browser

Modern,
has a lot of
diagrams,
charts, mobile-
friendly GUI;
can be ac-
cessed via
browser on
port 888

Installation
and mainte-
nance

Can deployed
as a container

Installation
needed: not
every platform
has support;
strict require-
ments for the
supported
platforms

Can deployed
as a container

Can deployed
as a container

Support Detailed docu-
mentation; fre-
quent updates,
bug fixes; big
community

Does not
have docu-
mentation;
rare updates;
moderate size
community

Does not have
documen-
tation; the
project looks
abandoned:
no updates
since May
2018; small
community

Semi-detailed
documenta-
tion; frequent
updates, bug
fixes; big
community

Identifying
swarm

Yes No No Yes

Resource
demand

Runs a con-
tainer on every
node of the
swarm, this
means surplus
load

Because it
does not run
in a container,
and cannot
use swarm,
it does not
make surplus
load on the
hosts (only on
the manager
node), so it
has nearly
zero resource
demand.

To access
remote hosts,
the host has to
run a Docker
Compose UI
container, so
it makes a
surplus load
on the hosts.

Runs a con-
tainer on every
node of the
swarm, this
means surplus
load

Communication
with Docker

It uses Docker
API

It uses Docker
API

It uses Docker
API

It uses Docker
API

Table 5.1: Comparison of management tools18

Chapter 6

Tools for vulnerability scanning of
Docker containers

As I mentioned before, the security of the embedded devices today are really neglected.
This causes a lot of problems (for example: the mirai botnet, hackable cardiac devices, ob-
servation through cameras/webcameras1) and in the future if people will not pay attention
to that, then this will get worse.

6.1 About vulnerability scanning of containers

Containerization gives an extra security layer to the system with the separate running
from the host, and from other containers. The permissions (access to the host system, the
internet, etc.) of the container can be specified. But the basics of the containerization is
to use the same kernel as the host system. This raises a lot of questions: how strong is
the separation between the container and the host? To run a container the user has to
be part of the Docker group, which is almost equal to root privileges. An exploit in the
container (outbreak to the host) can give the attacker nearly root privileges. [3][4]

These are known issues in non embedded environments: security tools, and other measures
should take care for the security of the system. The realization of the best practices are
not obvious on embedded devices: in this environment - where every resource matters - it
is not allowed to waste any. This will supply the basis of my analysis.

There are 3 different approaches for security:

• Preventative:
1https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/

19

In this case one would like to minimize the security risks, and the potential impact of
a successful threat event. The best practices include policies, standards, procedures,
encryptions, firewalls, secure boot.

• Detective:

The principle of detective controls is to detect a just happening attack, or to notice
the attack as soon as possible. This includes static analysis of the logs, network
intrusion detection and identification of malicious code.

• Reactive:

When trouble happened one would like to get rid of it as soon as possible, here come
reactive controls in picture. The most important thing is to recover to a stable state,
this can be done by a rollback(to follow a recovery plan), or by removal of malicious
code.

Preventative methods can work well with embedded devices, because they do not consume
(usually) extra resources. Static analysis of images is a great way to protect the system:
one can test the image with the application inside against well known security issues, and
for common best-practices around Docker containers. This type of security approach fits
well in the use-cases, because the deploying of the images should be done by the manager
node(s), and before the deploy one can make a static analysis of the image on the manager
node easily.

Detecting a currently humming attack would be nice, but on embedded devices this almost
cannot come into consideration: the scanning of the containers has a very big resource
demand (even 20% of the system resources). The only way to get information without
high overhead is to analyze the logs of the containers: this cannot give enough information,
but still better than nothing. Fortunately Docker has a built in method to analyze if the
container is running correctly: that is called Healthcheck. [6]

Assume that an attack has been detected against the system. The solution for this with
containers is very easy: restart the containers, or stop them. This means temporary
spillage in the service, but with orchestrators this can be done quickly, so it minimizes the
damage. The only problem occurs, when the attacker can break out from the container,
and obtain the control over the embedded device, but the treatment of this scenario belongs
to another theme.

Knowing all these, I decided to work with preventative tools. But before the compare let’s
discuss about Docker Healthcheck.

20

6.1.1 Docker Healthcheck

The reason behind this analysis is that Docker comes with this tool built-in (Docker version
>1.12). This is not a security tool in the classical sense. The detection of the health-state
of a container depends in large from the developer. It is because healthcheck does not use
any kind of default database, the developer can write a command, which will be executed
in the container. If this command terminates successfully, then Docker stigmatizes the
container as healthy. At the deploy, man can give an interval, and the timeout time, and
the number of retries: the interval means how frequent the healthcheck will be done. If
a check takes longer than the timeout, Docker considers it as a failed check. If a check
fails, it does not mean that the container is unhealthy: thereupon is the number of retries
important. If all of them fails, then Docker stigmatizes the container as unhealthy (Figure
6.1 shows an example output), otherwise as healthy. This functioning does not certify
that the container is healthy, only if the executing command cannot be terminated during
an attack.

Figure 6.1: Example for unhealthy container

For example: the application is a web server, and the command is to reach the main page
of the site. If the system is under a DoS attack, then the check will fail in all likelihood.
This case healthcheck was useful, because it detected the problem in the service. But
if the system is facing against an attack, that is not block the run of the server (e.g. a
spyware attack), then healthcheck will not catch the problem.

Furthermore the continuous testing means a lot of surplus load. Then why do not use
a detective tool instead of healthcheck. Detective tools cannot insure complete defense
against attacks too, and they have to be installed on the hosts. In contrast to this,
healthcheck came with Docker automatically.

As it can be seen, there are advantages and disadvantages beside the usage of healthcheck,
and in some cases I would consider using this tool.

6.1.2 Analysis of the security tools

Nowadays more and more companies started to use containerization, so the security of
a containerized application is very important: because of this there are a lot of security
tools. Apart from the above mentioned categories, there is another viewpoint to look at
them: there are commercial and open-source applications to defend the containers.

21

• Commercial security tools:

Although the commercial tools did not constitute part of the project(because it
focuses on free to use tools, and solutions), I undeliberately noticed some tools
which showed up in every research/study. These were Aqua MicroScanner [21],
BlackDuck Docker Security [9] and HashiCorp Vault [11]. The two preceding are
good for static analysis of images, and the latter is a tool for managing secrets (e.g.
passwords, certificates, access tokens), which is important in an environment where
copies alternate frequently.

• Open-source security tools:

I tested 5 security tools on embedded devices(on Raspberry PI 3 Model B), these
were: Anchore Engine [1], CoreOS Clair [18], Dagda [5], Docker-bench Security [10],
Notary [17]. The reason behind my selection is the very high number of mentions
of these tools in other researches/projects (there were a lot more to select from).
Tables 6.1 and 6.2 present the comparison of the tools.

The viewpoints of my analysis were:

• Database:

The most important thing in the questions of the security is the efficiency of the tool.
The bigger the database is, the more efficient it is. Here belong the environments
which can be scanned with the tool, and the base (the place they get it) of the
databases too.

• Installation and maintenance:

These tools cannot be deployed as containers, and they have a lot of dependencies,
so the installation can be difficult, and in some cases nearly unsolvable. The main-
tenance of the tool (so the installation of the updates, and fixes) can cause a lot of
problems, if they are not done automatically.

• Support:

In the world of security being up to date is necessary. If the project has no signs to
update regularly, and they do not have proper support to help if a question comes
up, then the tool cannot be used. I looked for documentation too, because the
functioning can be understood based on it only.

• Scanning method:

The other most important thing besides the database is the scanning method of the
tool, they are in connection with each other: there are big differences between a
known vulnerability and antivirus scanner, and a common best-practices checker.
From the previous one expects protection, and from the latter one expects advices
to keep the system safe.

22

• Communication with Docker:

This viewpoint includes the communication with Docker for running containers, and
the method of the static analysis of a container (the tool run a copy of the image in
the background as a container, and analyse that).

• Resource demand:

In some cases the manager nodes can be embedded devices too, so the resource
demand of the tools can count. Especially if the tool can analyse running containers
too (and this function will be used).

As can be seen, one of the tools (Notary) is not participating in the tables. That is because
Notary is very different from the others: it is a tool for trusted image management. The
base concept is that the developer can sign its content offline using his own keys, and then
push it to a Notary Server, and with Notary Client with the proper key(e.g. sent through
a secure channel) the user can download it. This solution can ensure the cryptographic
integrity of an image.

In light of the use-cases I would recommend using Docker Bench for Security and Notary
in every environment, because they realize functions what are necessary, and other tools
cannot do, as well as they do not consume a lot of resources. But these two tools are
not enough to keep the system safe. At least one static analyser is needed: for small and
medium sized environments I think Dagda is the best solution, because it has the smallest
resource demand,it is easy to deploy it, and it is possible to analyse running containers
with it too (but I still do not suggest this). For huge sized systems I propose to use
Anchore: the difference between Anchore and CoreOS Clair is that Anchor has the option
to analyse running containers, and it is better documented than Clair. But of course, if
one is completely sure about not using runtime analysis, then Clair may be the better
option, because it has a bigger community, and more frequent updates than Anchore.

23

Anchore En-
gine

CoreOS Clair Dagda Docker Bench
for Security

Database NVD(CVEs),
Software
package vul-
nerabilities,
Distribu-
tion specific
vulnerabili-
ties(Alpine,
CentOS, De-
bian, Oracle,
Red Hat
Enterprise,
Ubuntu)

NVD(CVEs),
Distribu-
tion specific
vulnerabili-
ties(Debian,
Ubuntu, Cen-
tOS, Oracle,
Amazon,
Alpine, SUSE
OVAL)

NVD(CVEs),
BugTraq,
The Exploit
Database
(Offensive
Security),
Red Hat Bug
Advisor, Red
Hat Secu-
rity Advisor,
Distribution
specific vulner-
abilities (Red
Hat, CentOS,
Fedora, De-
bian, Ubuntu,
OpenSUSE,
Alpine)

CIS Docker
Benchmark

Installation
and mainte-
nance

Has collected
requirements
to easy de-
ployment;
does not have
automatic
updates

Complicated;
working Go
environment
required; has
automatic
updates

Has collected
requirements
to easy de-
ployment;
does not have
automatic
updates

Can deployed
as a container
(so easy de-
ployment, and
auto updates)

Support Well docu-
mented; fre-
quent updates;
active commu-
nity; has 0-24
support

Big, active
community;
very frequent
updates; not
well docu-
mented

Formerly fre-
quent updates,
but nowadays
looks aban-
doned (no
update for
half a year);
small commu-
nity; not well
documented

Frequent up-
dates; no doc-
umentation
at all; small
community

Scanning
method

Known vulner-
ability scan for
images, and
runtime secu-
rity analysis

Known vulner-
ability scan for
images

Known vul-
nerability scan
for images,
and runtime
security analy-
sis(with Sysdig
Falco)

Checks com-
mon best-
practices
around con-
tainer deploy-
ment (agains
images and
containers
too); Not a
vulnerability
scan!

Table 6.1: Part 1 of comparison of security tools

24

Anchore En-
gine

CoreOS Clair Dagda Docker Bench
for Security

Communication
with Docker

Static analy-
sis: simulate
the running
of the image
and scan for
vulnerabili-
ties; Runtime
analysis: com-
municates
with Docker
API

Static analy-
sis: simulate
the running
of the image
and scan for
vulnerabilities

Static analy-
sis: simulate
the running
of the image
and scan for
vulnerabili-
ties; Runtime
analysis: com-
municates
with Docker
API

Communicates
with Docker
API

Resource
demand

Very high (at
least 4 GB
of RAM),
high CPU
usage during
scanning

High CPU and
RAM usage
during scan-
ning (more
than 4 GB
ram required)

Moderate
CPU and
RAM usage
during scan-
ning (at least
2 GB of RAM
needed)

Almost noth-
ing CPU and
RAM usage

Table 6.2: Part 2 of comparison of security tools

25

Chapter 7

Conclusion

My goal with this thesis was to present that embedded devices can use, and has to use
containerization. I kept in mind the price of the solution at every consideration, because
the most attractive in an embedded device is the low price, and with an expensive solution
this will terminate. My starting base was the problems of the nowadays used IoT devices.
These include the question of security, and the management of the devices as a connected
system.

The number of the IoT devices shows strong growth, thus these problems will become
worse. The usage of virtualization is a possible way to solve these. But as I mentioned
in Chapter 2, virtualization cannot work on embedded devices because of the lack of
resources, however container based virtualization works in a different way, the resource
demand of it is low, so it works well on embedded systems.

Docker is a de facto standard in the world of containerization, so I started to work with it.
The first solvable question was the maintenance of the separate containers as a coherent
system. The solution for this is the usage of an orchestrator. Not every orchestrator works
well with these devices (because of the system requirements), so finally I decided to use
Docker Swarm, because it is a free to use tool, and it is basically available on every device,
which Docker Engine version is bigger than 1.12.

In Chapter 4, I looked for use-cases for the usage of Docker on embedded devices. Based
on this chapter, I recommend using containerization on every embedded environment,
because it makes the deployment faster, and can work well in every use-case. I gave
advice for every scenario relative to the architecture of the system.

Therefrom the containers are handled as a coherent system, the management of the devices
do not become easier. Docker has a lot of tools that can help with in, so I tested a few open-

26

source management tools. There are essential differences between them, so I compared
them in a table. Finally, I gave recommendations for every use-case.

Finally, I discussed security questions. The main part of the problem disappears with the
usage of Docker. On the one hand, it is because Docker runs the containers in isolation, and
what is more the containers and the images can be scanned with security tools. Because
of the device’s resource limits, only static analysis of the images can be a good way to
defend the system. I tested tools with this functioning, and I compared them in a table
form, and based on the results I recommended tools foreach use-cases.

This solution is not complete, because of the security issues around Docker. Only root,
or a person who is part of the ’Docker group’ (which is nearly equal with root) can run
containers on a system. So if an attacker can break out from the container, then it will have
root/nearly root privileges on the host system. The usage of SELinux can ensure limited
access in such scenarios through policies. The system test with SELinux on embedded
devices with an outbreak from a container can be done as future work, to complete all of
the security questions around Docker/ around running containers on IoT devices.

Docker’s checkpoint function can be used to restore the system to a stable state. But this
is only an experimental feature, so this can be tested on embedded devices as future work
too. As well as there are a lot more types of tools (e.g. monitoring, logging, networking),
that are secondary importance, but still very useful, they all can be tested in the future.

27

Acknowledgements

First of all I would like to thank Dorottya Futóné Papp and dr. Levente Buttyán, leader
of the CrySyS laboratory at Budapest University of Technology and Economics for the lot
of help, and advice, with which they contributed to my work.

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-
00004)1.

1Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP
funding scheme.

28

Bibliography

[1] Anchore. Anchore open source engine, Accessed December 5, 2019. URL https:

//anchore.com/opensource/.

[2] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the mirai botnet. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1093–1110, Vancouver, BC, August 2017. USENIX Association. ISBN 978-
1-931971-40-9. URL https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/antonakakis.

[3] Thanh Bui. Analysis of docker security. CoRR, abs/1501.02967, 2015. URL http:

//arxiv.org/abs/1501.02967.

[4] T. Combe, A. Martin, and R. Di Pietro. To docker or not to docker: A security
perspective. IEEE Cloud Computing, 3(5):54–62, Sep. 2016. ISSN 2372-2568. DOI:
10.1109/MCC.2016.100.

[5] Dagda. Dagda github, Accessed December 5, 2019. URL https://github.com/

eliasgranderubio/dagda.

[6] Docker. Docker healthcheck, Accessed December 5, 2019.. URL https://docs.

docker.com/engine/reference/builder/#healthcheck.

[7] Docker. Docker website, Accessed December 5, 2019.. URL https://www.docker.

com/.

[8] DockStation. Dockstation github, Accessed December 5, 2019. URL https:

//github.com/DockStation/dockstation.

[9] Black Duck. Black duck security, Accessed December 5, 2019. URL https://www.

blackducksoftware.com/.

[10] Docker Bench for Security. Docker bench for security github, Accessed December 5,
2019. URL https://github.com/docker/docker-bench-security.

29

https://anchore.com/opensource/
https://anchore.com/opensource/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
http://arxiv.org/abs/1501.02967
http://arxiv.org/abs/1501.02967
http://dx.doi.org/10.1109/MCC.2016.100
https://github.com/eliasgranderubio/dagda
https://github.com/eliasgranderubio/dagda
https://docs.docker.com/engine/reference/builder/#healthcheck
https://docs.docker.com/engine/reference/builder/#healthcheck
https://www.docker.com/
https://www.docker.com/
https://github.com/DockStation/dockstation
https://github.com/DockStation/dockstation
https://www.blackducksoftware.com/
https://www.blackducksoftware.com/
https://github.com/docker/docker-bench-security

[11] HashiCorp. Hashicorp vault project, Accessed December 5, 2019. URL https://

www.hashicorp.com/products/vault/.

[12] B. I. Ismail, E. Mostajeran Goortani, M. B. Ab Karim, W. Ming Tat, S. Setapa,
J. Y. Luke, and O. Hong Hoe. Evaluation of docker as edge computing platform. In
2015 IEEE Conference on Open Systems (ICOS), pages 130–135, Aug 2015. DOI:
10.1109/ICOS.2015.7377291.

[13] G. Kambourakis, C. Kolias, and A. Stavrou. The mirai botnet and the iot zom-
bie armies. In MILCOM 2017 - 2017 IEEE Military Communications Conference
(MILCOM), pages 267–272, Oct 2017. DOI: 10.1109/MILCOM.2017.8170867.

[14] Common attacks on IoT devices, October 23 2018. The Linux Foundation, Christina
Quast. https://elinux.org/images/f/f8/Common-Attacks-on-IoT-Devices-Christina-
Quast.pdf.

[15] Russ McKendrick and Scott Gallagher. Mastering Docker, chapter Portainer, pages
199–226. Packt Publishing Ltd, 2017.

[16] Russ McKendrick and Scott Gallagher. Mastering Docker, chapter Docker Swarm,
pages 173–198. Packt Publishing Ltd, 2017.

[17] Notary. Notary github, Accessed December 5, 2019. URL https://github.com/

theupdateframework/notary.

[18] Core OS. Core os clair documentation, Accessed December 5, 2019. URL https:

//coreos.com/clair/docs/latest/.

[19] Portainer. Portainer community edition, Accessed December 5, 2019. URL https:

//www.portainer.io/products-services/portainer-community-edition/.

[20] Mathijs Jeroen Scheepers. Virtualization and containerization of application infras-
tructure: A comparison. In 21st Twente Student Conference on IT, volume 1, pages
1–7, 2014.

[21] Aqua Security. Aqua microscanner github, Accessed December 5, 2019. URL https:

//github.com/aquasecurity/microscanner.

[22] Randall Smith. Docker Orchestration. Packt Publishing Ltd, 2017.

[23] Swarmpit. Swarmpit github, Accessed December 5, 2019. URL https://github.

com/swarmpit/swarmpit.

[24] James Turnbull. The Docker Book: Containerization is the new virtualization, chapter
Introduction, pages 6–7. James Turnbull, 2014.

[25] Docker Compose UI. Docker compose ui github, Accessed December 5, 2019. URL
https://github.com/francescou/docker-compose-ui.

30

https://www.hashicorp.com/products/vault/
https://www.hashicorp.com/products/vault/
http://dx.doi.org/10.1109/ICOS.2015.7377291
http://dx.doi.org/10.1109/MILCOM.2017.8170867
https://github.com/theupdateframework/notary
https://github.com/theupdateframework/notary
https://coreos.com/clair/docs/latest/
https://coreos.com/clair/docs/latest/
https://www.portainer.io/products-services/portainer-community-edition/
https://www.portainer.io/products-services/portainer-community-edition/
https://github.com/aquasecurity/microscanner
https://github.com/aquasecurity/microscanner
https://github.com/swarmpit/swarmpit
https://github.com/swarmpit/swarmpit
https://github.com/francescou/docker-compose-ui

[26] Yuyu Zhou, Balaji Subramaniam, Kate Keahey, and John Lange. Comparison of
virtualization and containerization techniques for high performance computing. In
Proceedings of the 2015 ACM/IEEE conference on Supercomputing, 2015.

31

	Kivonat
	Abstract
	Introduction
	Related-work
	IoT security
	Generally about containerization
	Containerization vs virtualization

	Docker ecosystem

	Working with more containers
	Orchestrators
	Comparing orchestrators
	Docker Swarm

	Use cases for Docker in IoT
	Small sized environment
	Middle sized environment
	Huge sized environment

	Tools for managing Docker containers
	About managing containers

	Tools for vulnerability scanning of Docker containers
	About vulnerability scanning of containers
	Docker Healthcheck
	Analysis of the security tools

	Conclusion
	Acknowledgements
	Bibliography

