

Test Report

Standard(s):	FCC Part 15,	EN55022: 1998,	VCCI,	AS/NZS 3548
--------------	--------------	----------------	-------	--------------------

Class A

Model(s): AP9207

Prepared for: American Power Conversion

17998 Chesterfield Airport road

Chesterfield, MO 63005

Date(s) of test: August 12, 2000 and January 11, 2001

Prepared by:

Date 2-23-01

Keith Henderson, Compliance Engineer

Reviewed by:

Date 2/28/01

Michael Koffink, EMI Section Manager

Certificate of Compliance

The following product was found to comply with the requirement stated below when tested in accordance with the test procedures described in the accompanying test/measurement report. Reference report number 66347.e1

Manufacturer:

American Power Conversion

17998 Chesterfield Airport Road

Chesterfield, MO 63005

Model:

AP9207

Requirement:

FCC Part 15, EN55022: 1998, VCCI, AS/NZS 3548

Class A

Approved By:

Michael Koffink NVLAP Signatory	Till Hill
Date	3/29/01

Remarks:

Testing is performed using calibrated equipment traceable to the National Institute of Standards and Technology (NIST).

This certificate is valid for products tested as described in the accompanying test report. Specific modifications necessary to meet the above requirement, recommended by Integrity Design & Test Services, Inc. are described therein.

Integrity Design & Test Services, Inc. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for Electromagnetic Emissions Testing

ISO/IEC GUIDE 25:1990 ISO 9002:1967

Certificate of Accreditation

INTEGRITY DESIGN & TEST SERVICES, AN ENTELA COMPANY LITTLETON, MA

is recognized under the National Voluntary Laboratory Accreditation Program for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. These criteria encompass the requirements of ISO/IEC Guide 25 and the relevant requirements of ISO 9002 (ANSI/ASQC Q92-1987) as suppliers of calibration or test results. Accreditation is awarded for specific services, listed on the Scope of Accreditation for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS FCC

September 30, 2000

Effective through

For the National Institute of Standards and Technology NYLAP Lab Code: 200004-0

NVLAP-01C (11-95)

This report may not be reproduced in parts without the written consent of Integrity Design & Test Services, Inc. This report must not be used to claim product endorsement by NVLAP or any agency of the United States government.

Page 4 of 30

Email: integrity@idts.com

Table of Contents

1. EX	XECUTIVE SUMMARY	6
1.1 1.2	SCOPECONTENT	6
1.3 2. T	CONCLUSIONS EST ENVIRONMENT	
2.1	EUT DESCRIPTION	
2.2	TEST FACILITY DESCRIPTION	
2.3	TEST EQUIPMENT	9
2.4	PRODUCT DISPOSITION	
3. TI	EST DESCRIPTION/RESULTS	12
3.1	RADIATED EMISSIONS	
3.2	CONDUCTED EMISSIONS	
3.3	LABELING REQUIREMENTS	19
APPEN	NDIX A – TEST DATA	22
CONFI	IGURATION PHOTOGRAPHS	26

Page 5 of 30

Email: integrity@idts.com

List of Tables

TABLE 2.3-1:	TEST EQUIPMENT	10
TABLE 3.1.1-1:	FCC & EN55022 CLASS A RADIATED EMISSIONS LIMIT	18
TABLE 3.2.1-1:	FCC CLASS A CONDUCTED EMISSIONS LIMIT	18
TABLE 3.2.1-2:	EN55022 CLASS A CONDUCTED EMISSIONS LIMIT	18
TABLE A1:	FCC, EN55022, AS/NZS VCCI CLASS A RADIATED EMISSIONS	23
TABLE A2:	FCC CLASS A CONDUCTED EMISSIONS	24
TABLE A3:	EN55022, AS/NZS, VCCI CLASS A CONDUCTED EMISSIONS	25

1. Executive Summary

1.1 Scope

This document describes electromagnetic emissions testing performed on the Share UPS (referred to as the AP9207 throughout this report) on August 12, 2000 and January 11,2001, pursuant to FCC CFR 47 Part 15, EN55022, AS/NZS 3548 and VCCI requirements. It may be used to demonstrate compliance with the FCC and Industry Canada emissions requirements, European Union emissions requirements pursuant to the EMC Directive, VCCI requirements in Japan, as well as Australian and New Zealand requirements.

1.2 Content

Contained herein are the technical descriptions of the equipment under test (EUT) as well as the test methods and results used to verify compliance with the emissions requirements for Information Technology Equipment (ITE), to the above named standards.

1.3 Conclusions

The AP9207 met the FCC and EN55022 Class A requirements when tested as described herein. (Refer to Test Descriptions & Results in section 3 for a detailed description).

Note: The EN55022 Class A emissions requirements are identical to those defined by the VCCI and in AS/NZS 3548. Accordingly, references made in this document to EN55022 with respect to limits and margins of compliance will apply equally to VCCI and AS/NZS requirements.

37-7 Ayer Road Littleton, MA 01460 Page 6 of 30 Tel: (978) 486-0432 Fax: (978) 486-0592 Email: integrity@idts.com

2. Test Environment

2.1 EUT Description

Model: AP9207 S/N: WA98310134494

Description: The Share-UPS is designed to connect up to eight independent computer servers to one APC UPS. The Share-UPS connects to the UPS through the UPS's interface port and expands the available number of interface ports from one to eight.

Share-UPS monitors the UPS and reports on-battery and low-battery status to all connected devices.

The Share-UPS is powered directly from the UPS's Computer Interface or by the optional AC power adapter. Adaptor # AP9505i International Power Supply.

The 940-0103 Cable connects the management port to a computer for initialization. The 940-0024C Cable connects port 1 to a computer for full monitoring. The 940-0020B Cable connects ports 2-8 to a computer for limited monitoring.

2.1.1 System Operation

The system was configured in a typical operation. During testing, the EUT was connected to a APC Smart UPS 1000 and to a PC. The UPS was loaded down with a resistive load bank to simulate real load conditions. The EUT was initialized through it's management port by the PC and after initialization the PC was connected to the port 1 for full monitoring. The Client stated that pre-screening testing had showed the worst-case condition to be when the AP9207 had unterminated cables hanging from all but port 1. Our testing found the worst case in this configuration to be when the optional external power supply was connected and powering the AP9207.

 37-7 Ayer Road
 Littleton, MA 01460
 Page 7 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

2.1.2 Support Equipment:

Description	Manufacturer	Model Number	Serial	FCC ID
			Number	
Smart UPS 1000	APC	Smart UPS 1000	WS9931011026	N/A
Load Bank				N/A
PC	Compac	Presario	A527HPW2D21	N/A
			0	
Monitor	Glodstar	Studioworks 55	704KG07826	BEJCS546
Keyboard	NMB	N/A	119565-002A-	N/A
			228A-118	
Mouse	Compac	M-S28	141649-001	N/A

Cables

Qty	Description	Cable	Unshielded/Shielded	Shield	Length
		(Loopback/Open	Type	Termination	(Meters)
		Ended/Connected?)	(Braided/Foil)	(360°/Drain)	
1	Management Cable	Open-ended	Foil Shielded	Drain Wire	2
1	Control Cable	Connected	Foil Shielded	Drain Wire	2
1	Monitoring Cable	Open-ended	Foil Shielded	Drain Wire	2
6	9-Pin	Open –ended	Foil shielded	Drain wire	2
4	Power cords	Connected	Unshielded	N/A	2

 37-7 Ayer Road
 Littleton, MA 01460
 Page 8 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

2.2 Test Facility Description

The test facility is located on the premises of Integrity Design & Test Services, Inc. at 37-7 Ayer Road, Littleton, MA 01460. All testing is performed in an Open Area Test Site conforming to the site attenuation characteristics defined by ANSI C63.4 1992 and CISPR 16. Test methods and facilities have been audited and accredited by the National Voluntary Lab Accreditation Program (NVLAP).

2.3 Test Equipment

All equipment used in the testing process have up to date calibrations traceable to the National Institute of Standards and Technology (NIST). Refer to Table 2.3-1 for a complete list of equipment used during the testing.

2.4 Product Disposition

All items received for testing undergo an inspection to ensure proper working condition upon reception and before return shipment. The unit under test passed the incoming inspection when received for testing on August 12, 2000 and January 11,2001. The unit was returned to the client's facility at the completion of testing after passing the final inspection.

37-7 Ayer Road Littleton, MA 01460 Page 9 of 30 Tel: (978) 486-0432 Fax: (978) 486-0592 Email: integrity@idts.com

Table 2.3-1: Test Equipment

Description	Model Number	Serial Number	Last Calibration	Due Calibration	EMI#
Spectrum Analyzer	HP8593E	3543A01976	7/31/00	7/31/01	145-1
(9 KHz to 22 GHz)					
LISN: 50Ω/50μH	91221-1	0386	2/16/00	2/16/01	145-2
Preamplifier	HP 8447D	2443A04077	4/20/00	4/20/01	145-3
(150 KHz to 1.3 GHz)					
LISN: 50Ω/50μH	Solar	941725	5/16/00	5/16/01	145-5
	9252-50-R-24-				
	BNC				
BiLog Antenna	Chase	2284	7/12/00	7/12/01	145-6
(30 MHz to 2 GHz)	CBL6112A	2152	0.44.0.40.0	0.410.404	
BiLog Antenna	Chase	2173	8/10/00	8/10/01	145-7
(30 MHz to 2 GHz)	CBL6112A	071.001	C 10 100	C/0/01	145.0
LISN: 50Ω/50μH	Solar 9252-50-R-24-	971601	6/8/00	6/8/01	145-8
	9252-50-R-24- BNC				
LICN, 500/50uU	Solar	941724	8/31/00	8/31/01	145-9
LISN: 50Ω/50μH	9252-50-R-24-	941724	0/31/00	0/31/01	143-3
	BNC				
Guided Ridged Horn	A.H. Systems	163	9/24/99	9/24/00	145-10
(1 GHz to 18 GHz)	SAS-200/571	100	3,2 ,,,,,	3/21/00	110 10
Preamplifier	HP 8447D	2944A07027	4/18/00	4/18/01	145-13
(150 KHz to 1.3 GHz)					
Preamplifier	HP 8449B	3008A00232	8/8/00	8/8/01	145-14
(1 GHz to 26.5 GHz)					
LISN: 50Ω/50μH	Solar	971617	6/21/00	6/21/01	145-15
•	9252-50-R-24-				
	BNC				
LISN: 50Ω/50μH	91221-1	0335-04304	2/16/00	2/16/01	145-16
LISN: 50Ω/50μH	91221-1	0385	2/16/00	2/16/01	145-18
Preamplifier	HP 8449B	3008A00948	8/24/00	8/24/01	145-20
(1 GHz to 26.5 GHz)					
Spectrum Analyzer	HP 8593EM	3412A00102	2/10/00	2/10/01	145-21
(9 KHz to 26 GHz)					
Guided Ridged Horn	EMCO 3115	9807-5520	12/10/99	12/10/00	145-29
(1 GHz to 18 GHz)					
LISN: 50Ω/50μH	Solar	981960	10/12/99	10/12/00	145-31
	9233-50-TS-50-N	44555		4/45 :- :	
Monopole Antenna	AM-541	11008	1/18/00	1/18/01	145-32
Preamplifier	HP 8447D	2944A08408	1/24/00	1/24/01	145-33
(150 KHz to 1.3 GHz)					

 37-7 Ayer Road
 Littleton, MA 01460
 Page 10 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

Description	Model Number	Serial Number	Last Calibration	Due Calibration	EMI#
BiLog Antenna	Chase	2564	5/30/00	5/30/01	145-34
(30 MHz to 1GHz)	CBL6111C				
Digital Multi Meter	75 Series II	55400267	6/2/00	6/2/01	145-42
LISN: 50Ω/50μH	9857-50-BP-24-	001139	6/19/00	6/19/01	145-58
	BNC				

All equipment used for testing has been calibrated according to methods and procedures defined by the National Institute of Standards and Technology (NIST).

 37-7 Ayer Road
 Littleton, MA 01460
 Page 11 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

3. Test Description/Results

3.1 Radiated Emissions

3.1.1 Object

The purpose of this test is to measure the radiated electromagnetic emissions generated by the equipment under test (EUT), pursuant to FCC part 15 and EN55022 Class A requirements. (See Table 3.1.1-1 for the Class A radiated limits).

3.1.2 Procedure

Testing is performed in an Open Area Test Site. The EUT is placed on a wooden turntable 80 cm in height. The EUT is centered laterally on the turntable and flush with the rear of the table. Peripheral equipment is placed on either side of the EUT with a minimum of 10 cm spacing. (When testing a personal computer system, monitors shall be placed on top of the PC, and the keyboard and mouse shall be placed in front of the PC towards the front edge of the turntable.) Excess interface cables are draped over the back edge of the table no closer than 40 cm to the ground plane.

The EUT shall be set into operation such that all parts of the system are exercised. This may require the use of test software designed to exercise the various parts of the system. With the EUT set into operation, the turntable is rotated over 360 degrees and interface cables are manipulated to maximize the emissions. The peripherals are not moved during the test. The receiving antenna is placed at a test distance of 3 or 10 meters from the closest point on the EUT. The antenna height is varied from 1 to 4 meters, and the polarity of the antenna is switched between vertical and horizontal such that the received signal is maximized.

3.1.3 Deviations from Test Method

None

3.1.4 Measurement Uncertainty

A minimum of a 2 dB margin of compliance is recommended for radiated emissions data to verify passing results. This is recommended to compensate for the measurement uncertainties involved.

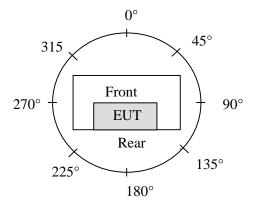
37-7 Ayer Road Littleton, MA 01460 Page 12 of 30 Tel: (978) 486-0432 Fax: (978) 486-0592 Email: integrity@idts.com

Page 13 of 30

Email: integrity@idts.com

3.1.5 Results

The AP9207 met the FCC and EN55022 Class A radiated emissions requirements when tested as described below. (See Appendix A for a complete listing of data points).


Worst case emissions measured:

		EN55022, VCCI
Modifications	FCC Class A	AS/NZS 3548 Class A
	Radiated Emissions	Radiated Emissions
See Note (1)	Passed: - 8.5 dB at 213.9 MHz	Passed: - 4 dB at 221.2 MHz
	Line Voltage: 120 VAC 60 Hz	Line Voltage: 120 VAC 60 Hz
	See Table: A1	See Table: A1
	Azimuth Angle (see diagram below):	Azimuth Angle (see diagram below):
	190°	190°
	Antenna Height: 1 meter	Antenna Height: 1 meter
	Polarity: Vertical	Polarity: Vertical

Notes

(1) Final scan. No modifications installed.

Azimuth Angle Diagram

The above results pertain only to the specific item submitted for testing, identified by the product's model and serial numbers.

3.1.6 Radiated Emissions Terms and Calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading: This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.: This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer (dBmV) + A.F. (dB) = Net field strength (dBmV/m)

Net: This is the net field strength measurement (as shown above).

Limit: This is the FCC Class A radiated emission limit (in units of $dB\mu V/m$).

Margin: This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example for an emission measuring 20.5 dB μ V on the spectrum analyzer at 592 MHz: (Note: This shows a passing result (i.e. a negative margin))

Example only:

Reading A.F. Net Reading Net Reading FCC limit Margin 20.5dBμV + 25 dB = 45.5 dBμV/m : 45.5 dBμV/m - 57 dBμV/m = -11.5 dB

3.2 Conducted Emissions

3.2.1 Object

The purpose of this test is to measure the conducted electromagnetic emissions on the AC power lines, pursuant to FCC part 15 and EN55022 Class A requirements. (See Table 3.2.1-1 for the Class A conducted limits).

3.2.2 Procedure

Testing is performed in an Open Area Test Site. Equipment is arranged on the table as described in section 3.1.2. Each individual current-carrying power lead shall be individually connected through a $50\Omega/50\mu H$ Line Impedance Stabilization Network (LISN). A 2-meter x 2-meter vertical coupling plane is placed 40 cm to the rear of the EUT. The EUT is set into operation such that all parts of the system are exercised, while the RF voltages across the $50~\Omega$ measuring port of the LISN are recorded. The test is repeated for each current-carrying power line of the EUT.

3.2.3 Deviations from Test Method

None

3.2.4 Measurement Uncertainty

A minimum of a 1 dB margin of compliance is recommended for conducted emissions data to verify passing results. This is recommended to compensate for the measurement uncertainties involved.

37-7 Ayer Road Littleton, MA 01460 Page 15 of 30 Tel: (978) 486-0432 Fax: (978) 486-0592 Email: integrity@idts.com

3.2.5 Results

The AP9207 met the FCC and EN55022 Class A conducted emissions requirements when tested as described below. (See Appendix A for a complete listing of data points).

Worst case emissions measured:

Modifications	FCC Class A Conducted Emissions	EN55022, VCCI AS/NZS 3548 Class A Conducted Emissions
See Note (1)	Passed: - 27 dB at 0.607 MHz	Passed: - 31 dB at 1.48 & 10.1 MHz
	Line Voltage: 120 VAC 60 Hz	Line Voltage: 230 VAC 50 Hz
	See Table: A2	See Table: A3

<u>Notes</u>

(1) Final scan. No modifications installed.

The above results pertain only to the specific item submitted for testing, identified by the product's model and serial numbers.

 37-7 Ayer Road
 Littleton, MA 01460
 Page 16 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

3.2.6 Conducted Emissions Terms and Calculation

The following is a description of terms and a sample calculation, as appears in the conducted emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

Reading: This is the reading obtained on the spectrum analyzer in dBµV. Any external

attenuators used are taken into account through internal analyzer settings.

Limit: This is the FCC Class A conducted emission limit (in units of dBµV).

Margin: This is the margin of compliance below the FCC limit. The units are given in dB.

A negative margin indicates the emission was below the limit. A positive margin

indicates that the emission exceeds the limit.

Example for an emission measuring 55 dB μ V on the spectrum analyzer at 5.4 MHz. (Note: This shows a passing result (i.e. a negative margin))

Example only:

Table 3.1.1-1: FCC & EN55022 Class A Radiated Emissions Limit

Frequency	FCC Class A Quasi-Peak (dB nV /m)		AS/NZS 33 Quas	22, VCCI 548 Class A i-Peak nV/m)
(MHz)	3m	10m	3m	10m
30 to 88	50	39	50	40
88 to 216	54	44	50	40
216 to 230	57	46	50	40
230 to 960	57	46	57	47
960 to 1000	60	50	57	47
Above 1000	*60	*50	N/A	N/A

^{*} Average detector used.

Table 3.2.1-1: FCC Class A Conducted Emissions Limit

Frequency (MHz)	FCC Class A Quasi-Peak Limit (dB nV)
.450 to 1.7	60
1.7 to 30	69.5

Table 3.2.1-2: EN55022 Class A Conducted Emissions Limit

Frequency (MHz)	EN55022, VCCI AS/NZS 3548 Class A Quasi-Peak (dB nV)	EN55022, VCCI AS/NZS 3548 Class A Average (dB nV)	
.150 to .500	79	66	
.500 to 5	73	60	
5 to 30	73	60	

(Note: For each table shown above, the stricter limit applies at the frequency transition points.)

 37-7 Ayer Road
 Littleton, MA 01460
 Page 18 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

3.3 Labeling Requirements

3.3.1 FCC Labeling (taken from FCC CFR 47 section 15.19)

A compliance label similar to the following must be affixed to the product pursuant to FCC part 15 Class A requirements:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Information to user (taken from FCC CFR 47 section 15.105)

For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the test of the manual.

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful Interference in which case the user will be required to correct the interference at his own expense.

In addition to the above statement, the users manual shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. (Taken from FCC CFR 47 section 15.21).

 37-7 Ayer Road
 Littleton, MA 01460
 Page 19 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

3.3.2 EN55022 Labeling Requirements (pursuant to EN55022: 1998)

A specific product label indicating compliance with EN55022 is not required. Conformance with EN55022 does however support the "CE Mark" labeling when used in conjunction with the appropriate immunity standard under the EMC Directive, as well as any additional Directive(s) that applies.

Information to User

The following warning must be include in the instructions for use for Class A Information Technology Equipment (ITE):

Warning

This is a Class A product. In a domestic environment this product may cause radio interference In which case the user may be required to take adequate measures.

3.3.3 Industry Canada Labeling (pursuant to ICES-003 Issue 2, Revision 1)

The following is the suggested text for the Canadian product label for ITE equipment. Although the wording may be combined with the FCC label, it must clearly state the equipment meets the <u>Canadian</u> Interference-Causing Equipment Regulations. (Ref. EMCAB-3 Issue 2)

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

OR

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matérial brouilleur du Canada.

Please note that Industry Canada requirements state that the label must be in French or English, (the two official languages of Canada).

37-7 Ayer Road Littleton, MA 01460 Page 20 of 30 Tel: (978) 486-0432 Fax: (978) 486-0592 Email: integrity@idts.com

3.3.4 AS/NZS 3548 Labeling Requirements

A product, which is being offered for sale after January 1, 1997, must comply with AS/NZS 3548 and be labeled with the C-Tick mark. Before labeling a product with the C-Tick mark, an application must be submitted to the SMA.

Information to User

The following warning must be include in the instructions for use for Class A Information Technology Equipment (ITE):

Warning

This is a Class A product. In a domestic environment this product may cause radio interference. In which case the user may be required to take adequate measures.

 37-7 Ayer Road
 Littleton, MA 01460
 Page 21 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

Page 22 of 30

Email: integrity@idts.com

Appendix A – Test Data

Table A1: FCC, EN55022, AS/NZS VCCI Class A Radiated Emissions

Company: APC

Model: AP9207

Test Engineer: Keith Henderson/Kevin Squires

Test Date: 1-11-01

OATS: 2

Test Configuration: Final Scan (120 VAC, 60 Hz)

Pol.	Freq.	Q.P. 10 m Reading	AF.	Net	FCC Class A Limit at 10m	FCC Margin	EN55022, VCCI AS/NZS 3548 Class A Limit	EN55022, VCCI AS/NZS 3548 Margin
(V or H)	(MHz)	(dBuV)	(dB)	(dB <i>uV/</i> m)	(dB <i>uVl</i> m)	(dB)	at 10m (dB <i>u</i> V/m)	(dB)
V	62	13	8	21	39	-18	40	-19
V	73.7	15	8	23	39	-16	40	-17
V	114.3	13.5	14	27.5	44	-16.5	40	-12.5
V	132.7	7	13	20	44	-24	40	-20
V	151.1	16	12.5	28.5	44	-15.5	40	-11.5
V	164.1	8.5	12	20.5	44	-23.5	40	-19.5
V	165.9	20	12	32	44	-12	40	-8
V	202.7	20	12	32	44	-12	40	-8
V	210.2	19	12	31	44	-13	40	-9
V	213.9	23.5	12	35.5	44	-8.5	40	-4.5
V	221.2	24	12	36	46	-10	40	-4
V	228.5	19	13	32	46	-14	40	-8
V	250.7	13	14	27	46	-19	47	-20
V	261.7	7.3	16	23.3	46	-22.7	47	-23.7
V	298.6	10.1	16.5	26.6	46	-19.4	47	-20.4
V	339.1	5.7	16.5	22.2	46	-23.8	47	-24.8
V	364.9	10	18	28	46	-18	47	-19
Н	400	6	19.5	25.5	46	-20.5	47	-21.5
Н	593.9	7.7	23	30.7	46	-15.3	47	-16.3

Ended scan at 1 GHz

 37-7 Ayer Road
 Littleton, MA 01460
 Page 23 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

Table A2: FCC Class A Conducted Emissions

Company: American Power Conversion

Model: AP9207 Share UPS

Test Engineer: Doug Bulman

Test Date: 9-12-00

OATS: 2

Test Configuration: Final Scan (120 VAC, 60 Hz)

Frequency (MHz)	Phase Reading (dBuV)	FCC Class A Quasi-Peak Limit (dBuV)	Margin (dB)
0.607	33	60.0	-27.0
0.908	26.5	60.0	-33.5
1.48	31	60.0	-29.0
5.46	28.5	69.5	-41.0
9.98	29	69.5	-40.5
27.4	22.5	69.5	-47.0
Frequency (MHz)	Neutral Reading (dB <i>u</i> V)	FCC Class A Quasi-Peak Limit (dB <i>u</i> V)	Margin (dB)
	Reading	Quasi-Peak	
(MHz)	Reading (dBuV)	Quasi-Peak Limit (dB <i>u</i> V)	(dB)
(MHz) 0.602	Reading (dBuV)	Quasi-Peak Limit (dBuV) 60.0	(dB) -30.0
(MHz) 0.602 0.904	Reading (dBuV) 30 26.5	Quasi-Peak Limit (dBuV) 60.0 60.0	(dB) -30.0 -33.5
(MHz) 0.602 0.904 1.48	Reading (dBuV) 30 26.5 31	Quasi-Peak Limit (dBuV) 60.0 60.0 60.0	(dB) -30.0 -33.5 -29.0

Table A3: EN55022, AS/NZS, VCCI Class A Conducted Emissions

Company: American Power Conversion

Model: AP9207 Share UPS

Test Engineer: Doug Bulman

Test Date: 9-12-00

OATS: 2

Test Configuration: Final Scan (230 VAC, 50 Hz)

-	Phase	Phase	EN55022, VCCI AS/NZS 3548	EN55022, VCCI AS/NZS 3548	M
Freq. (MHz)	Quasi-Peak Reading (dBuV)	Average Reading (dB <i>u</i> V)	Class A Limit Q.P. (dB <i>u</i> V)	Class A Limit Average (dBuV)	Margin (dB)
0.31	37.5	31	79.0	66.0	-35.0
0.622	35.5	25.5	73.0	60.0	-34.5
0.928	31	24.5	73.0	60.0	-35.5
1.48	33	29	73.0	60.0	-31.0
5.58	26	22.5	73.0	60.0	-37.5
10.1	28	25	73.0	60.0	-35.0
28.6	26	23	73.0	60.0	-37.0
			EN55022, VCCI	EN55022, VCCI	
	Neutral	Neutral	AS/NZS 3548	AS/NZS 3548	
Freq.	Neutral Quasi-Peak		AS/NZS 3548 Class A Limit	AS/NZS 3548 Class A Limit	Margin
Freq. (MHz)		Neutral Average Reading (dB <i>u</i> V)			Margin (dB)
_	Quasi-Peak	Average	Class A Limit	Class A Limit	_
(MHz)	Quasi-Peak Reading (dB <i>u</i> V)	Average Reading (dB <i>u</i> V)	Class A Limit Q.P. (dB <i>u</i> V)	Class A Limit Average (dB <i>u</i> V)	(dB)
(MHz) 0.307	Quasi-Peak Reading (dBuV)	Average Reading (dBuV)	Class A Limit Q.P. (dBuV) 79.0	Class A Limit Average (dBuV) 66.0	(dB) -34.0
(MHz) 0.307 0.613	Quasi-Peak Reading (dBuV) 38 34	Average Reading (dBuV) 32 23	Class A Limit Q.P. (dBuV) 79.0 73.0	Class A Limit Average (dBuV) 66.0 60.0	(dB) -34.0 -37.0
(MHz) 0.307 0.613 0.921	Quasi-Peak Reading (dBuV) 38 34 27.5	Average Reading (dBuV) 32 23 22	Class A Limit Q.P. (dBuV) 79.0 73.0 73.0	Class A Limit Average (dBuV) 66.0 60.0 60.0	(dB) -34.0 -37.0 -38.0
(MHz) 0.307 0.613 0.921 1.48	Quasi-Peak Reading (dBuV) 38 34 27.5 33.5	Average Reading (dBuV) 32 23 22 29	Class A Limit Q.P. (dBuV) 79.0 73.0 73.0 73.0	Class A Limit Average (dBuV) 66.0 60.0 60.0 60.0	(dB) -34.0 -37.0 -38.0 -31.0

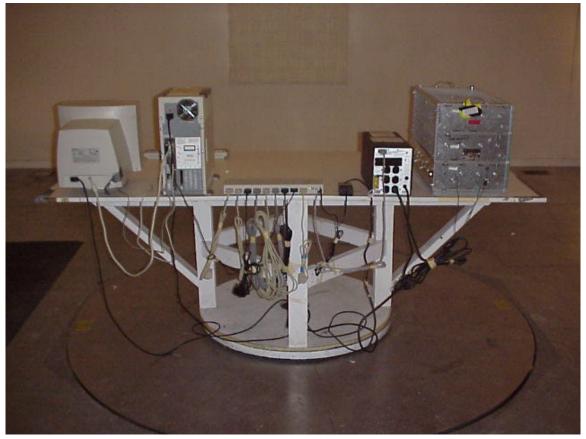
 37-7 Ayer Road
 Littleton, MA 01460
 Page 25 of 30

 Tel: (978) 486-0432
 Fax: (978) 486-0592
 Email: integrity@idts.com

Page 26 of 30

Configuration Photographs

Configuration Photograph


American Power Conversion AP9207

Worst Case Radiated Emissions Test Configuration

37-7 Ayer Road Tel: (978) 486-0432 Littleton, MA 01460 Fax: (978) 486-0592 Page 27 of 30 Email: integrity@idts.com

American Power Conversion AP9207

Worst Case Radiated Emissions Test Configuration

37-7 Ayer Road Tel: (978) 486-0432 Littleton, MA 01460 Fax: (978) 486-0592 Page 28 of 30 Email: integrity@idts.com

American Power Conversion AP9207

Worst Case Conducted Emissions Test Configuration

37-7 Ayer Road Tel: (978) 486-0432 Littleton, MA 01460 Fax: (978) 486-0592 Page 29 of 30 Email: integrity@idts.com

Page 30 of 30

Email: integrity@idts.com

American Power Conversion AP9207

Worst Case Conducted Emissions Test Configuration