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Preface

In June 2000, the Clay Mathematics Institute organized an Instructional Sym-
posium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM
Joint Summer Research Conference. These events were held at Mount Holyoke
College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium
consisted of several series of expository lectures which were intended to introduce
key topics in noncommutative geometry to mathematicians unfamiliar with the
subject. Those expository lectures have been edited and are reproduced in this
volume. Specifically, the lectures of Rosenberg and Weinberger discussed various
applications of noncommutative geometry to problems in “ordinary” topology, and
the lectures of Lagarias and Tretkoff discussed the Riemann hypothesis and the
possible application of the methods of noncommutative geometry in number the-
ory. This book also contains an account by Higson of the “residue index theorem”
of Connes and Moscovici.

At the conference, Higson and Roe gave an overview of noncommutative ge-
ometry which was intended to provide a point of entry to the later, more advanced
lectures. This preface represents a highly compressed version of that introduction.
We hope that it will provide sufficient orientation to allow mathematicians new to
the subject to read the later, more technical essays in this volume.

Noncommutative geometry—as we shall use the term—is to an unusual extent
the creation of a single mathematician, Alain Connes; his book [12] is the central
text of the subject. The present volume could perhaps be regarded as a sort of
extended introduction to that dense and fascinating book. With that in mind, let
us review some of the central notions in Connes’ work.

To see what is meant by the phrase “noncommutative geometry,” consider ordi-
nary geometry: for example, the geometry of a closed surface S in three-dimensional
Euclidean space R

3. Following Descartes, we study the geometry of S using coor-
dinates. These are just the three functions x, y, z on R

3, and their restrictions to
S generate, in an appropriate sense, the algebra C(S) of all continuous functions
on S. All the geometry of S is encoded in this algebra C(S); in fact, the points of
S can be recovered simply as the algebra homomorphisms from C(S) to C. In the
language of physics, one might say that the transition from S to C(S) is a transition
from a “particle picture” to a “field picture” of the same physical situation.

This idea that features of geometric spaces are reflected within the algebras of
their coordinate functions is familiar to everyone. Further examples abound:

• If X is a compact Hausdorff space, then (complex) vector bundles over X
correspond to finitely generated and projective modules over the ring of
continuous, complex-valued functions on X.

vii



viii PREFACE

• If M is a smooth manifold, then vector fields on M correspond to deriva-
tions of the algebra of smooth, real-valued functions on M .

• If Σ is a measure space, then ergodic transformations of Σ correspond to
automorphisms of the algebra of essentially bounded measurable functions
on Σ which fix no non-constant function.

• If G is a compact and Hausdorff topological group, then the algebra of
complex-valued representative functions on G (those whose left transla-
tions by elements of G span a finite-dimensional space) determines, when
supplemented by a comultiplication operation, not only the group G as a
space, but its group operation as well.

We could cite many others, and so of course can the reader.
The algebra C(S) of continuous functions on the space S is commutative. The

basic idea of noncommutative geometry is to view noncommutative algebras as
coordinate rings of “noncommutative spaces.” Such noncommutative spaces must
necessarily be “delocalized,” in the sense that there are not enough “points” (ho-
momorphisms to C) to determine the coordinates. This has a natural connection
with the Heisenberg uncertainty principle of quantum physics. Indeed, a major
strength of noncommutative geometry is that compelling examples of noncommu-
tative spaces arise in a variety of physical and geometric contexts.

Connes’ work is particularly concerned with aspects of the space–algebra cor-
respondence which, on the algebra side, involve Hilbert space methods, especially
the spectral theory of operators on Hilbert space. Motivation for this comes from a
number of sources. As we hinted above, one is physics: quantum mechanics asserts
that physical observables such as position and momentum should be modeled by
elements of a noncommutative algebra of Hilbert space operators. Another is a long
series of results, dating back to Hermann Weyl’s asymptotic formula, connecting
geometry to the spectral theory of the Laplace operator and other operators. A
third comes from the application of operator algebra K-theory to formulations of
the Atiyah-Singer index theorem and surgery theory. Here the notion of positivity
which is characteristic of operator algebras plays a key role. A fourth motivation,
actively discussed at the Mount Holyoke conference, involves the reformulation of
the Riemann hypothesis as a Hilbert-space-theoretic positivity statement.

Connes introduces several successively more refined kinds of geometric struc-
ture in noncommutative geometry: measure theory, topology (including algebraic
topology), differential topology (manifold theory), and differential (Riemannian)
geometry. To begin with the coarsest of these, noncommutative measure theory
means the theory of von Neumann algebras. Let H be a Hilbert space and let
B(H) be the set of bounded linear operators on it. A von Neumann algebra is an
involutive subalgebra M of B(H) which is closed in the weak operator topology on
B(H). The commutative example to keep in mind is H = L2(X, µ), where (X, µ) is
a measure space, and M = L∞(X, µ) acts by multiplication; the weak topology co-
incides with the topology of pointwise almost everywhere convergence on bounded
sets.

Of special importance in von Neumann algebra theory are the factors—von
Neumann algebras with trivial center (every von Neumann algebra decomposes
into factors, in the same way that group representations decompose into isotypical
components). For example the von Neumann algebra generated by L∞(X, µ) and
an ergodic transformation of (X, µ) is a factor. Already in the early work of Murray
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and von Neumann [25] one finds the classification of factors into three types: Type
I, which are matrix algebras, possibly infinite-dimensional; Type II, admitting a
“dimension function” assigning real-valued (rather than integer-valued) ranks to the
ranges of projections in the factor; and Type III, admitting no dimension function.
Of these, the factors of type III are the most mysterious. Much of Connes’ early
work was devoted to elucidating their structure, and an account of these deep results
may be found in Chapter V of [12].

The fundamental discovery, due to Tomita [27], Takesaki [26] and Connes
[7], is that a von Neumann algebra has an intrinsic dynamical character—a one-
parameter group of automorphisms determined up to inner conjugacy only by the
algebra itself —and that by twisting with these automorphisms one can reduce Type
III to Type II. This played a major role in Connes’ classification of hyperfinite fac-
tors (those generated by an increasing family of finite-dimensional subalgebras).
The final result may be explained as follows. After twisting a factor by its canon-
ical automorphisms a new von Neumann algebra is obtained, which has its own
one-parameter group of canonical automorphisms. The center of the twisted von
Neumann algebra is necessarily of the form L∞(X, µ). The corresponding one-
parameter action on X is ergodic and is Connes’ invariant of the original factor,
called the module of the factor. As Mackey observed much earlier [24], ergodic
actions of R can be thought of as virtual subgroups of R. There arises then a sort of
Galois correspondence between hyperfinite factors and virtual subgroups of R. In
a fascinating paper [13] Connes has pointed out hopeful parallels with the Brauer
theory of central simple algebras, and speculated on connections with class field
theory and the Riemann zeta function.

An example of noncommutative space which is significant in many parts of
noncommutative geometry comes from the theory of foliations. Let (V,F) be a
foliated manifold. We want to study the “space of leaves” V/F—initially only as
a measure space, but then successively in the more refined categories mentioned
above. If the foliation is ergodic—think of the irrational-slope flow on a torus or
geodesic flow on the sphere bundle of a higher genus surface—then the quotient
measure space in the usual sense is trivial. But we can form a noncommutative
von Neumann algebra whose elements are measurable families of operators on the
L2-spaces of the leaves of the foliations. See Chapter 1 of [12]. When the foliation
is a fibration, this von Neumann algebra is equivalent to the one arising from the
usual measure-theoretic quotient. However, the von Neumann algebra we have
constructed is interesting even in the general case; for instance, the von Neumann
algebras of the ergodic foliations listed above are hyperfinite of type II. Moreover,
in the case of the geodesic flow example, the action of the geodesic flow implements
the Galois-type correspondence in the classification of factors: if Γ is a (virtual)
subgroup of R then the associated (virtual) fixed point algebra has module Γ. See
[13] for some further details.

Just as noncommutative measure theory can be identified with the theory of
von Neumann algebras, noncommutative topology depends on the theory of C∗-
algebras—involutive subalgebras of B(H) which are closed for the norm topology.
According to the Gelfand-Naimark theorem the only commutative examples are the
algebras of continuous functions vanishing at infinity on locally compact Hausdorff
spaces. Hence the study of commutative C∗-algebras is exactly the same as the
theory of locally compact Hausdorff spaces. Important noncommutative examples
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can be obtained from foliations by means of a refinement of the von Neumann al-
gebra construction sketched above. See [8]. Another example of particular interest
arises by completing the complex algebra of a discrete group G so as to obtain the
(reduced) group C∗-algebra C∗

λ(G), for which the corresponding noncommutative
space is the (reduced) unitary dual of G. Important connections with geomet-
ric topology arise when G is the fundamental group of a manifold. For example,
noncommutative geometry presents the opportunity to carry over geometric con-
structions involving the Pontrjagin dual of an abelian group to the non-abelian
case.

The development of a significant body of work in noncommutative topology
was made possible by the discovery in the 1970s that topological K-theory and its
dual theory, K-homology, have natural extensions to the category of C∗-algebras.
Moreover, there is a natural relationship with index theory. Atiyah and Singer
showed that the index of a family of elliptic operators over a base B should be
thought of as an element of the K-theory group K∗(B). Analogously, a family of
elliptic operators along the leaves of a foliation, or on the fibers of various other
quotients, has an index in the K-theory of the C∗-algebra representing the quotient
space. A very general conjecture is then that the whole C∗-algebra K-theory group
is generated in a precise way by indices of this kind. This is known as the Baum-
Connes conjecture [2, 3, 19], and it has been verified in a large number of different
situations. It also has noteworthy implications: for example, the Baum-Connes
conjecture for a discrete group G implies the Novikov conjecture for G, which (via
surgery theory) is crucial to the topology of high-dimensional manifolds having G
as fundamental group.

Let us briefly review the key definitions of C∗-algebra K-theory (see for example
[6] or Chapter II of [12]). If X is a compact Hausdorff space and V a complex
vector bundle over X, then the space of sections of V is a module over the algebra
C(X) of functions on X (via pointwise multiplication). According to a theorem
of Serre and Swan, this module is finitely generated and projective, and every
finitely generated projective module arises in this way from a vector bundle. One
therefore defines K0(A), for a unital C∗-algebra A, to be the abelian group with
one generator for each isomorphism class of finitely generated projective A-modules
and with relations requiring that the direct sum of modules should correspond to
addition in the group. By construction, if X is a compact Hausdorff space, then
K0(C(X)) = K0(X), the K-group of Atiyah and Hirzebruch.

One can similarly define a group K1(A), generated by unitaries or invertibles
in matrix algebras over A. The key result of elementary K-theory is that if

0 �� J �� A �� A/J �� 0

is a short exact sequence of C∗-algebras, then there is a corresponding six-term
exact sequence of K-groups

K0(J) �� K0(A) �� K0(A/J)

��
K1(A/J)

��

K1(A)�� K1(J).��

This incorporates as a special case the Bott periodicity theorem, which states that
K0(A) ≡ K1(A ⊗ C0(R)). The vertical maps are closely connected with index
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theory: when A is the algebra of bounded operators on a Hilbert space, and J
is the ideal of compact operators, the map K1(A/J) → K0(J) is exactly the one
which assigns to every Fredholm operator—an element of A invertible modulo J—
its Fredholm index.

Kasparov and others have developed extensive bivariant generalizations of op-
erator algebra K-theory (see [23, 22, 21], or [18] for an introduction to Kasparov’s
theory). An element of Kasparov’s group KK(A, B) determines a morphism from
K(A) to K(B). His theory encompasses the construction of the boundary maps
in the K-theory long exact sequences, the construction of index maps appearing in
the proof of the Atiyah-Singer index theorem, and many other things.

The next stage is the development of noncommutative differential topology,
which is organized around Connes’ cyclic cohomology theory. If M is a smooth
manifold, then the cohomology of M may be obtained from the de Rham complex
of differential forms. This is organized around functions on M rather than points
of M , although the functions are of course smooth, not merely continuous. Various
features of smooth manifold theory (de Rham’s theorem, of course, but also Sard’s
theorem and transversality) make it possible to overcome this issue and effectively
apply the techniques of smooth manifold theory to topological questions. The situ-
ation in noncommutative geometry is not quite so satisfactory. Cyclic cohomology
is a fascinating substitute for de Rham theory in the noncommutative context, but
in the absence of generally valid counterparts to de Rham’s theorem and other
results, the application of cyclic theory to problems in noncommutative topology
requires considerable care.

The lectures of Higson provide more details on cyclic theory (and the reader
should certainly also refer to the original papers of Connes [9]), but one way to
motivate the definition is to consider the algebra A = C∞(M) of smooth functions
on a closed manifold, and the multilinear functionals on A given by

φ : (f0, . . . , fk) �→
∫
N

f0df1 · · · dfk,

where N is a closed (oriented) k-submanifold of M . Calculation shows that this
functional φ has the properties

(a) φ(f0f1, . . . , fk+1) − φ(f0, f1f2, . . . , fk+1) + · · ·
+ (−1)kφ(f0, . . . , fkfk+1) + (−1)k+1φ(fk+1f0, . . . , fk) = 0

and

(b) φ(f0, . . . , fk) + (−1)k+1φ(fk, f0, · · · , fk−1) = 0.

These are the properties which define a cyclic cocycle as a multilinear functional
over A, and the expression (a) above gives the boundary map for cyclic cohomology.
Interestingly it is property (b) which follows, via Stokes’ theorem, from the fact that
N is closed, while (a) is more generally valid, despite the fact that formula (a) does
in fact define a coboundary operation on multilinear functionals. Moreover it is
quite remarkable that the coboundary of a functional with the symmetry property
(b)—invariance under the cyclic group Ck+1—again has the symmetry property—
which is now invariance under the different cyclic group Ck. It therefore requires
deep insight to see that (a) and (b) are the crucial properties needed to carry over
de Rham theory to the noncommutative context. Given a cyclic k-cocycle φ (and
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taking k even, for simplicity), and an idempotent e ∈ A, Connes shows that the
expression

φ(e, e, · · · , e)

depends only on the homotopy class of e and the cohomology class of φ, and thus
gives rise to a pairing of cyclic cohomology and K-theory which generalizes the
classical Chern character (a homomorphism from topological K-theory to ordinary
cohomology).

One of Connes’ deepest early applications of cyclic theory was to the construc-
tion of the transverse fundamental class for a foliation [10]: this is a map from
the K-theory of the leaf space of a foliation (i.e. the K-theory of the C∗-algebra
of the foliation) to the real numbers. The construction is elementary when there is
an invariant transverse Riemannian metric, but in general no such metric can be
found. Connes noticed that this problem was analogous to one that he had already
surmounted in his work on factors — namely, the reduction of type III to type II.
Following this insight, and combining ideas from cyclic theory (here the choice of
an appropriate noncommutative algebra of “smooth functions” on the leaf space
is a very delicate matter) and sophisticated versions of the Thom isomorphism in
K-theory, Connes was able to construct the desired map. Geometric results about
foliations follow, including remarkable links between the von Neumann algebra of a
foliation and the more classical invariants. For example Connes showed that if the
Godbillon-Vey class of a codimension-one foliation is non-zero, then the module of
the associated von Neumann algebra admits a finite invariant measure (recall that
the module is an ergodic action of R). This is a beautiful refinement of the result
due to Hurder and Katok [20] that if the Godbillon-Vey class of a codimension-
one foliation is non-zero, then the associated von Neumann algebra has a type III
component.

A second motivation for cyclic cohomology, equally significant, is the idea of
“quantized calculus”. If A is an algebra of operators on some Z/2-graded Hilbert
space H, and F an odd operator on H with F 2 = 1, then the supercommutator1

da = [F, a]s obeys the basic rule d2 = 0 of de Rham theory. If in addition F
and A are “almost commuting” in the sense that any product of sufficiently many
commutators [F, a] is of trace class, then the trace can be used to define an integral
of these quantized forms: if ε is the grading operator on H then∫

a0da1 . . . dak = Tr(εa0[F, a1] · · · [F, ak]).

This is a cyclic cocycle (see [9] and Chapter IV of [12]). An important example is
A = C∞(M), M a closed manifold of dimension n , and F an order zero pseudo-
differential involution. The commutators are then pseudodifferential of order −1,
and any product of more than n of them is therefore trace-class. In this example
we see that the notion of dimension in quantized calculus is related to the “degree
of traceability” of certain commutators.

Not all cyclic classes arise in this way. In fact, such a cyclic class belongs to the
image of a Chern character map from K-homology. It follows, therefore, that if such
a cyclic class is paired with an element of K-theory the result must be an integer,
because the evaluation of pairing between K-theory and K-homology ultimately

1The supercommutator of homogeneous elements a and b is defined as [a, b]s = ab −
(−1)∂(a)∂(b)ba.



PREFACE xiii

reduces to the computation of a Fredholm index. In this way one obtains integrality
results somewhat analogous to those provided by the Atiyah-Singer index theorem.
An interesting application is the work of J. Bellissard [5, 4] on the existence of
integer plateaux of conductivity in the quantum Hall effect. This concerns the flow
of electricity in a crystal subjected to electric and magnetic fields. The observables
in this problem generate an algebra isomorphic to that associated to the irrational
slope foliation on a torus, and the integrality arises from an associated cyclic 2-
cocycle.

The most refined level of structure which can be explored in the noncommuta-
tive world is the noncommutative counterpart of geometry proper—for instance, of
Riemannian geometry. It was an early observation of Connes that knowledge of the
Dirac operator suffices to reconstruct the Riemannian geometry. This is because
one can identify the smooth functions f with gradient ≤ 1 as those for which the
commutator [D, f ] has operator norm ≤ 1; and from knowledge of this class of
smooth functions one can reconstruct the Riemannian distance function

d(x, y) = sup{|f(x) − f(y)| : |∇f | ≤ 1}

and therefore the Riemannian metric. This led Connes to his notion of a spectral
triple—the noncommutative counterpart of a Dirac (or other first order elliptic)
operator, and therefore the noncommutative counterpart of a geometric space. A
spectral triple (called a K-cycle in Chapter VI of [12]) is made up of

• a Hilbert space H,
• a representation of A as bounded operators on H, and
• an unbounded, selfadjoint operator D on H with compact resolvent,

such that [a, D] extends to a bounded operator on H for every a ∈ A. To connect
with cyclic cohomology, one also imposes a summability condition, for example that
(1 + D2)−

p
2 is trace-class, for large enough p. Assuming for simplicity that D is

invertible and suitably graded, the phase F = D|D|−1 defines a quantized calculus
and therefore a cyclic cocycle on A.

A variety of examples of spectral triples are described in [12] and elsewhere.
Particularly fascinating are Connes’ efforts to model space-time itself as a noncom-
mutative space [11] and the manner in which he fits the standard model of particle
physics into this framework.

The archetypal result in Riemannian geometry is perhaps the Gauss-Bonnet
theorem, which expresses the Euler characteristic, a global quantity, as the integral
of the Gaussian curvature, a local invariant. Similar results in noncommutative
geometry will require adequate notions of “integral” and “local invariant.” It might
seem as though the search for these would be destined to fail since noncommutative
spaces are inevitably somewhat delocalized, almost by definition. Connes addresses
this through a consideration of eigenvalue asymptotics which recalls Weyl’s theorem
for the eigenvalues of the Laplace operator. Weyl’s theorem asserts that the rate of
growth of eigenvalues of the Laplace operator on a manifold M is governed by the
dimension of M and the volume of M . With this in mind Connes defines a new
trace of a positive compact operator T not by summing the eigenvalues λj but by
forming the limit

Trω(T ) = lim
N→∞

1
log N

N∑
j=1

λj ,
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when it exists. This trace was originally studied by Dixmier; it has the important
property that it vanishes on operators in the ordinary trace class, thanks to which
it is often unexpectedly computable. Moreover, Weyl’s formula

Trω(f · ∆−n
2 ) = cn

∫
M

f(x) dx,

where ∆ is the Laplacian on M and f is a function on M , hints that the Dixmier
trace might serve as a powerful substitute for integration in noncommutative sit-
uations. Indeed, Connes has developed an extensive calculus around the Dixmier
trace, with the trace serving as the integral, compact operators as infinitesimals
(with order governed by rate of decrease of their singular values), and so on.

Once we accept that it is appropriate to think of the Dixmier trace as a general-
ized integral, and of expressions involving the Dixmier trace as local expressions in
noncommutative geometry, we can ask for a local version of the integral of quantized
forms we described earlier. Since these integrals determine the Chern character in
cyclic theory, a local version might be thought of a local index formula, somewhat
in the spirit of the work of Atiyah, Bott, Patodi [1] and Gilkey [17]. Such a local
index theorem was proved by Connes and Moscovici [15], and it is discussed in
Higson’s lectures in this volume. The implications of this formula for the index
theory of leaf spaces of foliation have been worked out in detail by Connes and
Moscovici [16]. The implications in other contexts are only just beginning to be
studied. Connes’ paper [14] on the quantum group SUq(2) is one very interesting
recent example.

Nigel Higson, John Roe

June 2006
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1. Group Von Neumann Algebras in Topology: L2-cohomology,
Novikov-Shubin invariants

1.1. Motivation. The idea of this part of the book is to explain how non-
commutative geometry can be applied to problems in geometry and topology (in
the more usual sense of those words). In this chapter, we begin by applying the first
major new idea to emerge out of non-commutative geometry, namely, the concept
of continuous dimension as developed by Murray and von Neumann.

This concept starts to come into play when we compare the spectral decomposi-
tion of the Laplacian (or more exactly, the Laplace-Beltrami operator of Riemann-
ian geometry) in the two cases of a compact (Riemannian) manifold and a complete
non-compact manifold. The comparison can be seen in the following table:
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Compact Non-compact
manifolds manifolds

Discrete spectrum Continuous spectrum
Finite-dimensional Infinite-dimensional

kernel kernel

Table 1. Spectrum of the Laplacian

So, on a non-compact manifold, the dimension of the kernel of the Laplacian
is not usually very interesting (it’s often ∞) and knowing the eigenvalues of the
Laplacian usually does not yield much information about the operator. (For exam-
ple, there may be no point spectrum at all, yet the spectral decomposition of the
operator may be very rich.) In the special case where the non-compact manifold
is a normal covering of a compact manifold with covering group π, we will get
around these difficulties by using the group von Neumann algebra of π to measure
the “size” of the infinite-dimensional kernel and the “thickness” of the continuous
spectrum near 0.

1.2. An Algebraic Set-Up. Here we follow the ideas of Michael Farber [23],
as further elaborated by him (in [25], [24], and [26]) and by Wolfgang Lück ([56],
[56], and [57]). Let π be a discrete group. It acts on both the right and left on
L2(π). The von Neumann algebras λ(π)′′ and ρ(π)′′ generated by the left and by
the right regular representations λ and ρ are isomorphic, and ρ(π)′′ = λ(π)′. These
von Neumann algebras are finite, with a canonical (faithful finite normal) trace τ
defined by

τ(λ(g)) =

{
1, g = 1
0, g �= 1,

and similarly for ρ. Call a finite direct sum of copies of L2(π), with its left action of
π, a finitely generated free Hilbert π-module, and the cut-down of such a module by
a projection in the commutant λ(π)′ = ρ(π)′′ a finitely generated projective Hilbert
π-module. (We keep track of the topology but forget the inner product.)

The finitely generated projective Hilbert π-modules form an additive category
H(π). The morphisms are continuous linear maps commuting with the π-action.
Each object A in this category has a dimension dimτ (A) ∈ [0,∞), via

dimτ n · L2(π) = n, dimτ eL2(π) = τ(e),

for each projection e in ρ(π)′′ (or more generally in Mn(ρ(π)′′), to which we extend
the trace the usual way, with τ(1n) = n, 1n the identity matrix in Mn(ρ(π)′′)).
When π is an ICC (infinite conjugacy class) group, ρ(π)′′ is a factor, hence a
projection e ∈ Mn(ρ(π)′′) is determined up to unitary equivalence by its trace, and
objects of H(π) are determined by their dimensions.

The category H(π) is not abelian, since a morphism need not have closed range,
and thus there is no good notion of cokernel. It turns out, however, that there is a
natural way to complete it to get an abelian category E(π). The finitely generated
projective Hilbert π-modules are the projectives in E(π). Each element of the
larger category is a direct sum of a projective and a torsion element (representing
infinitesimal spectrum near 0). A torsion element is an equivalence class of pairs



APPLICATIONS OF NON-COMMUTATIVE GEOMETRY TO TOPOLOGY 3

(A, α), where A is a projective Hilbert π-module and α = α∗ : A → A is a positive
π-module endomorphism of A (in other words, a positive element of the commutant
of the π-action) with ker α = 0. (Note that this implies α has dense range, but not
that it has a bounded inverse.) Two such pairs (A, α), (A′, α′), are identified if we
can write

(A, α) ∼= (A1, α1) ⊕ (A2, α2), (A′, α′) ∼= (A′
1, α

′
1) ⊕ (A′

2, α
′
2),

with α2 and α′
2 invertible and with (A1, α1) ∼= (A′

1, α
′
1), in the sense that there is

commutative diagram

A1
β

∼=
��

α

��

A′
1

α′

��
A1

β

∼=
�� A′

1.

Thus we can always “chop off” the part of α corresponding to the spectral projection
for [ε,∞) (ε > 0) without changing the equivalence class of the object, and only the
“infinitesimal spectrum near 0” really counts. The dimension function dimτ extends
to a map, additive on short exact sequences, from objects of E(π) to [0,∞), under
which torsion objects go to 0.

To phrase things another way, the idea behind the construction of E(π) is that
we want to be able to study indices of elliptic operators D : A → B, where A and B
are Hilbert π-modules and D commutes with the π-action. By the usual tricks, we
can assume D is a bounded operator. In the case of a compact manifold (with no
π around), A and B would then be Hilbert spaces, D would be Fredholm, and the
index would be defined as IndD = dim ker D − dim coker D. But in the case of a
non-compact manifold, we run into the problem that D usually does not have closed
range. However, if we fix ε > 0 and let e, f be the spectral projections for [ε,∞) for
D∗D and DD∗, respectively, then the restriction of D to eA maps this projective
π-module isomorphically onto fB, and D : (1−e)A → (1−f)B represents a formal
difference of torsion elements ((1 − e)A, D∗D) and ((1 − f)B, DD∗) of E(π) when
we pass to the limit as ε → 0.

The most interesting invariant of a torsion element X represented by α =
α∗ : A → A is the rate at which

Fα(t) = dimτ (EtA), Et = spectral projection for α for [0, t),

approaches 0 as t → 0. Of course we need to find a way to study this that is
invariant under the equivalence relation above, but it turns out (see Exercise 1.7)
that Fα is well-defined modulo the equivalence relation

F ∼ G ⇔ ∃C, ε > 0, G
(
t
C

)
≤ F (t) ≤ G(tC), t < ε.

The Novikov-Shubin capacity of X is defined to be

c(X ) = lim sup
t→0+

log t

log Fα(t)
.
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Note that this is well-defined modulo the equivalence relation above, since if
G

(
t
C

)
≤ F (t) ≤ G(tC) for t sufficiently small, then

lim sup
t→0+

log t

log G(t)
= lim sup

t→0+

log t − log C

log G(t)
= lim sup

t→0+

log(t/C)
log G(t)

= lim sup
t→0+

log(tC/C)
log G(tC)

= lim sup
t→0+

log t

log G(tC)
≤ lim sup

t→0+

log t

log F (t)

≤ lim sup
t→0+

log t

log G
(
t
C

)

= lim sup
t→0+

log(tC/C)
log G

(
t
C

)

= lim sup
t→0+

log t + log C

log G(t)
= lim sup

t→0+

log t

log G(t)
.

The Novikov-Shubin capacity satisfies

c(X1 ⊕ X2) = max(c(X1), c(X2))

and for exact sequences

0 → X1 → X → X2 → 0,

max(c(X1), c(X2)) ≤ c(X ) ≤ c(X1) + c(X2).

Many people work instead with the inverse invariant

lim inf
t→0+

log Fα(t)
log t

,

called the Novikov-Shubin invariant or Novikov-Shubin number, but the advan-
tage of the capacity is that “larger” torsion modules have larger capacities. If the
Novikov-Shubin invariant is γ > 0, that roughly means that dimτ (EtA) ≈ tγ .

Now consider a connected CW complex X with fundamental group π and only
finitely many cells in each dimension. The cellular chain complex C•(X̃) of the
universal cover X̃ (with complex coefficients) is a chain complex of finitely generated
free (left) C[π]-modules. We can complete to L2(π) ⊗π C•(X̃), a chain complex in
H(π) ⊆ E(π), and get homology and cohomology groups

Hi(X, L2(π)) ∈ E(π), Hi(X, L2(π)) ∈ E(π),

called (extended) L2-homology and cohomology , which are homotopy invariants of
X. The numbers βi(X, L2(π)) =

dimτ (Hi(X), L2(π)) = dimτ (Hi(X), L2(π))

are called the (reduced) L2-Betti numbers of X. Similarly one has Novikov-Shubin
invariants (first introduced in [65], but analytically, using the Laplacian) defined
from the spectral density of the torsion parts (though by the Universal Coeffi-
cient Theorem, the torsion part of Hi(X, L2(π)) corresponds to the torsion part of
Hi−1(X, L2(π)), so that there is some confusion in the literature about indexing).
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1.3. Calculations.

Theorem 1.1. Suppose M is a compact connected smooth manifold with fun-
damental group π. Fix a Riemannian metric on M and lift it to the universal cover
M̃ . Then the L2-Betti numbers of M as defined above agree with the τ -dimensions
of

(
L2 closed i-forms on M̃

)
/d

(
L2 (i − 1)-forms on M̃

)
∩

(
L2 i-forms

)
.

Similarly the Novikov-Shubin invariants can be computed from the spectral density
of ∆ on M̃ (as measured using τ).

Sketch of proof. This is a kind of a de Rham theorem. There are two
published proofs, one by Farber ([25], §7) and one by Shubin [90]. Let Ω•(M) be
the de Rham complex of differential forms on M . Then a fancy form of the usual
de Rham theorem says that the complexes Ω•(M) and C•(M) (the latter being the
cellular cochains with coefficients in C for some cellular decomposition) are chain
homotopy equivalent. The same is therefore true for the complexes L2(π)⊗πΩ•(M)
and L2(π)⊗πC•(M). Unfortunately the first of these is a complex of Fréchet spaces,
not of Hilbert π-modules, so Farber’s theory doesn’t directly apply to it. However,
there is a trick: we can also consider the complex Ω•

Sobolev(M̃) of Sobolev spaces of
forms on M̃ . More precisely, fix m ≥ n = dimM and consider the complex

Ω•
Sobolev(M̃) : Ω0

(m)(M̃) d→ Ω1
(m−1)(M̃) d→ · · · d→ Ωj(m−j)(M̃) d→ · · · ,

where Ωj(m−j)(M̃) consists of j-forms with distributional derivatives up to order
m − j in L2 (with respect to the Riemannian metric on M). Then the spaces
in this complex are all Hilbert spaces on which π acts by a(n infinite) multiple
of the left regular representation, and the differentials are all bounded operators
commuting with the action of π (since we lose one derivative with each applica-
tion of d). An extension of Farber’s original construction shows that the spaces
in such a complex can also be viewed as sitting in an “extended” abelian category
(in effect one just needs to drop the finite generation condition in the definition of
E(π)). Then one shows that the dense inclusion L2(π) ⊗π Ω•(M) ↪→ Ω•

Sobolev(M̃)
is a chain homotopy equivalence. (The proof depends on elliptic regularity; the
spectral decomposition of the Laplacian can be used to construct the inverse chain
map Ω•

Sobolev(M̃) → L2(π) ⊗π Ω•(M) that “smooths out” Sobolev-space-valued
forms to smooth ones.) Putting everything together, we then have a chain homo-
topy equivalence L2(π) ⊗π C•(M) → Ω•

Sobolev(M̃) in a suitable extended abelian
category, and thus the cohomology (with values in this extended category) of the
two complexes is the same. Since the L2-Betti numbers and Novikov-Shubin in-
variants are obtained by looking at the projective and torsion parts of the extended
cohomology, the theorem follows. �

Example 1.2. Let M = S1 and π = Z, so C[π] = C[T, T−1]. Then L2(π)
is identified via Fourier series with L2(S1), and the group von Neumann algebra
with L∞(S1), which acts on L2(S1) by pointwise multiplication. The trace τ is

then identified with the linear functional f �→ 1
2π

∫ 2π

0

f(eiθ) dθ. Take the usual cell
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decomposition of S1 with one 0-cell and one 1-cell. Then the chain complexes of
the universal cover become:

C•(M̃) : C[T, T−1] T−1−−−→ C[T, T−1]

C•(M̃, L2(π)) : L2(S1) eiθ−1−−−−→ L2(S1).

So the L2-Betti numbers are both zero, but the Novikov-Shubin invariants are
non-trivial (in fact equal to 1), corresponding to the fact that if

α = |eiθ − 1| : L2(S1) → L2(S1),

then Fα(t) ≈ const · t for t small.
Generalizing one aspect of this is:

Theorem 1.3 (Cheeger-Gromov [13]). If X is an aspherical CW complex
(i.e., πi(X) = 0 for i �= 1) with only finitely many cells of each dimension, and if
π = π1(X) is amenable and infinite, then all L2-Betti numbers of X vanish.

There is a nice treatment of this theorem in [21], §4.3. The reader not familiar
with amenable groups can consult [34] or [67] for the various forms of the definition,
but one should know at least that finite groups and solvable groups are amenable
and free groups on two or more generators (or any groups containing such a free
group) are not. It is not known then (at least to the author) if, for an aspherical
CW complex with infinite amenable fundamental group, one of the Novikov-Shubin
capacities is always positive. However, this is true in many cases for which one
can do direct calculations, such as nilmanifolds modeled on stratified nilpotent Lie
groups [85].

As we will see, amenability is definitely relevant here; for non-amenable groups,
the L2-Betti numbers can be non-zero.

Example 1.4. Let M be a compact Riemann surface of genus g ≥ 2, M̃ the
hyperbolic plane, π a discrete torsion-free cocompact subgroup of G = PSL(2, R).
In this case, it’s easiest to use the analytic picture, since L2(M̃) ∼= L2(G/K),
K = SO(2)/{±1}. As a representation space of G, this is a direct integral of the
principal series representations, and ∆ corresponds to the Casimir operator, which
has spectrum bounded away from 0. So β0 = 0, and also β2 = 0 by Poincaré
duality.

Let g and k be the Lie algebras of G and K, respectively. Then the tangent
bundle of G/K is the homogeneous vector bundle induced from the representation
space g/k of K, and the cotangent bundle is similarly induced from (g/k)∗. Thus the
L2 sections of Ω1(M̃) may be identified with the unitarily induced representation
IndGK (g/k)∗, which contains, in addition to the continuous spectrum, two discrete
series representations with Casimir eigenvalue 0. Thus β1 �= 0. The Atiyah L2-index
theorem (to be discussed in the next chapter) implies β1 = 2(g − 1). There are no
additional Novikov-Shubin invariants, since these measure the non-zero spectrum
of ∆ close to 0, but the continuous spectrum of ∆ is bounded away from 0.

One can also do the calculation of β1 combinatorially. As is well known, one
can construct M by making suitable identifications along the boundary of a 2g-gon.
(See Figure 1.) This construction gives a cell decomposition of M with one 0-cell,
one 2-cell, and 2g 1-cells. Hence we can take L2(π)⊗πC•(M) to be a complex of free
Hilbert π-modules of dimensions 1, 2g, and 1. Since the extended L2-cohomology
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vanishes in degrees 0 and 2, it then follows (by the Euler-Poincaré principle in the
category E(π)) that H1(X, L2(π)) must be free, of dimension 2g − 2.

a
b

a

b
c

d

c

d

Figure 1. Identifications to form a closed surface (the case g = 2)

The vanishing of β0 in Example 1.4 is not an accident. In fact, Brooks ([6] and
[7]) proved the following:

Theorem 1.5 (Brooks [6]). Let M be a compact Riemannian manifold with
fundamental group π. Then 0 lies in the spectrum of the Laplacian on the universal
cover M̃ of M if and only if π is amenable.

Note that this implies (if π is non-amenable) that β0(M) and the Novikov-
Shubin capacity in dimension 0 must be 0, and in fact, via Theorem 1.1 (the de
Rham theorem for extended cohomology), that the extended cohomology group
H0(M, L2(π)) must vanish in E(π).

Generalizing one aspect of Example 1.4 is the following result, confirming a
conjecture of Singer:

Theorem 1.6 (Jost-Zuo [42] and Cao-Xavier [12]). If M is a compact con-
nected Kähler manifold of non-positive sectional curvature and complex dimension
n, then all L2-Betti numbers of M vanish, except perhaps for βn.

As we will see in Exercise 1.10 or via the Atiyah L2-index theorem of the next
chapter, this implies that

βn = (−1)nχ(M),
where χ is the usual Euler characteristic.

Note. One should not be misled by these examples into thinking that the L2-
Betti numbers are always integers, or that most of them usually vanish. However,
the Atiyah Conjecture asserts that they are always rational numbers. If true, this
would have important implications, such as the Zero Divisor Conjecture that Q[G]
has no zero divisors when G is a torsion-free group [21]. For more details on this
and related matters, the reader is referred to the excellent surveys by Lück: [58]
and [59].

1.4. Exercises.

Exercise 1.7. Fill in one of the details above by showing that if α = α∗ : A →
A and β = β∗ : B → B represent the same torsion element X of the category E(π),
and if Fα(t) and Gβ(t) are the associated spectral growth functions, defined by
applying τ to the spectral projections of α (resp., β) for [0, t), then there exist
C, ε > 0 such that

Gβ

(
t
C

)
≤ Fα(t) ≤ Gβ(tC), t < ε.
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Exercise 1.8. Use Example 1.2 to show that the 0-th Novikov-Shubin invariant
of the n-torus Tn =

(
S1

)n is equal to n. (In fact this is true for all the other
Novikov-Shubin invariants also, since the Laplacian on p-forms simply looks like a
direct sum of

(
n
p

)
copies of the Laplacian on functions.)

Exercise 1.9. Let X be a wedge of n ≥ 2 circles, which has fundamental group
π = Fn, a free group on n generators. This space has a cell decomposition with one
0-cell and n 1-cells. Compute the L2-Betti numbers of X directly from the chain
complex L2(π) ⊗π C•(X̃).

Exercise 1.10. Let X be a finite CW complex with fundamental group π. Use
the additivity of dimτ and the Euler-Poincaré principle to show that

dimX∑
i=0

(−1)iβi(X, L2(π)) = χ(X),

the ordinary Euler characteristic of X.

Exercise 1.11. Prove the combinatorial analogue of Brooks’ Theorem (1.5)
as follows. Let X be a finite connected CW complex with fundamental group
π. Show that H0(X, L2(π)) = 0 if and only if π is non-amenable, following this
outline. Without loss of generality, one may assume X has exactly one 0-cell, and
has 1-cells indexed by a finite generating set g1, . . . , gn for π. First show that
d∗d : L2(π)⊗π C0(π) → L2(π)⊗π C0(π) can be identified with right multiplication
by ∆ = (g1 − 1)∗(g1 − 1) + · · · + (gn − 1)∗(gn − 1) on L2(π). So the problem is
to determine when 0 is in the spectrum of ∆. This happens if and only if for each
ε > 0, there is a unit vector ξ in L2(π) such that ‖ρ(gi)ξ − ξ‖ < ε for i = 1, . . . , n,
where ρ denotes the right regular representation. But this means that the trivial
representation is weakly contained in ρ, which is equivalent to amenability of π by
Hulanicki’s Theorem (see [34], Theorem 3.5.2, or [67], Theorem 4.21).

As pointed out to me by my colleague Jim Schafer, this combinatorial version of
Brooks’ Theorem is essentially equivalent to a classic theorem of Kesten on random
walks on discrete groups [52].

Exercise 1.12. Deduce from the Cheeger-Gromov Theorem and Exercise 1.10
that if X is a finite aspherical CW complex with nontrivial amenable fundamental
group, then χ(X) = 0. See [81] and [86] for the history of results like this one.

2. Von Neumann Algebra Index Theorems: Atiyah’s L2-Index
Theorem and Connes’ Index Theorem for Foliations

2.1. Atiyah’s L2-Index Theorem. As we saw in the last chapter, it is not
always so easy to compute all of the L2-Betti numbers of a space directly from the
definition, though sometimes we can compute some of them. It would be nice to
have constraints from which we could then determine the others. Such a constraint,
and more, is provided by the following index theorem. The context, as with many
index theorems, is that of linear elliptic pseudodifferential operators. The reader
who doesn’t know what these are exactly can think of the differential operator d+d∗

on a Riemannian manifold, or of the operator ∂ + ∂
∗

on a Kähler manifold. These
special cases are fairly typical of the sorts of operators to which the theorem can
be applied.
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Theorem 2.1 (Atiyah [1]). Suppose

D : C∞(M, E0) → C∞(M, E1)

is an elliptic pseudodifferential operator (we’ll abbreviate this phrase hereafter as
ψDO), acting between sections of two vector bundles E0 and E1 over a closed man-
ifold M , and M̃ is a normal covering of M with covering group π. Let

D̃ : C∞(M̃, Ẽ0) → C∞(M̃, Ẽ1)

be the lift of D to M̃ . Then ker D̃ and ker D̃∗ have finite τ -dimension, and

Ind D(= dimker D − dimker D∗)

= L2- Ind D̃(= dimτ ker D̃ − dimτ ker D̃∗).

Sketch of proof. For simplicity take D to be a first-order differential oper-
ator, and consider the formally self-adjoint operator

P =
(

0 D∗

D 0

)

acting on sections of E = E0 ⊕ E1. Since D is elliptic, PDE theory shows that the
solution of the “heat equation” for P , Ht = exp(−tP 2), is a smoothing operator—an
integral operator with smooth kernel—for t > 0. And as t → ∞, Ht → projection
on ker D ⊕ ker D∗, so that if

γ =
(

1 0
0 −1

)
=

{
1 on E0

−1 on E1,

then γ commutes with Ht and IndD = limt→∞ Tr (γHt).
Define similarly

P̃ =

(
0 D̃∗

D̃ 0

)
, γ̃ =

(
1 0
0 −1

)
, H̃ = e−t

eP 2
,

acting on sections of Ẽ = Ẽ0 ⊕ Ẽ1. Then L2- Ind D̃ = limt→∞ τ
(
γ̃H̃t

)
.

Here we extend τ to matrices over the group von Neumann algebra in the
obvious way. So we just need to show that

(1) Tr (γHt) = τ
(
γ̃H̃t

)
.

Now, in fact both sides of (1) are constant in t, since, for instance,

d

dt
Tr (γHt) =

d

dt
Tr

(
γe−tP

2
)

= Tr
d

dt

(
γe−tP

2
)

= Tr
(

d

dt
e−tD

∗D − d

dt
e−tDD

∗
)

= Tr
(
DD∗e−tDD

∗
− D∗De−tD

∗D
)

.
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But

Tr
(
DD∗e−tDD

∗
)

= Tr

(︷ ︸︸ ︷
e−tDD

∗/2D
︷ ︸︸ ︷
D∗e−tDD

∗/2

)

= Tr
(
D∗e−tDD

∗/2e−tDD
∗/2D

)

= Tr
(
D∗e−tDD

∗
D

)

= Tr (D∗ (1 − tDD∗ + · · · )D)

= Tr (D∗D (1 − tD∗D + · · · ))

= Tr
(
D∗De−tD

∗D
)

.

So it’s enough to show that

lim
t→0+

(
Tr (γHt) − τ

(
γ̃H̃t

))
= 0.

But for small t, the solution of the heat equation is almost local. (See [74] for
further explanation.) In other words, Ht and H̃t are given by integration against
smooth kernels almost concentrated on the diagonal, and the kernel k̃ for H̃t is
practically the lift of the kernel k for Ht, since, locally, M and M̃ look the same.
But for a π-invariant operator S̃ on Ẽ, obtained by lifting the kernel function k for
a smoothing operator on M to a kernel function to k̃, one can check that

τ(S̃) =
∫
F

k̃(x̃, x̃) d vol(x̃)

=
∫
M

k(x, x) d vol(x)

= Tr(S),

F a fundamental domain for the action of π on M̃ . So that does it. �

For applications to L2-Betti numbers, we can fix a Riemannian metric on M and
take E0 =

⊕
Ω2i, E1 =

⊕
Ω2i+1, D the “Euler characteristic operator” D = d+d∗,

so that IndD = χ(M) by the Hodge Theorem, while L2- Ind D̃ is the alternating
sum of the L2-Betti numbers,

∑
(−1)iβi. Thus we obtain an analytic proof of the

equality
∑

(−1)iβi = χ(M), for which a combinatorial proof was given in Exercise
1.10.

Another application comes from taking M closed, connected, and oriented, of
dimension 4k. Then harmonic forms in the middle degree 2k can be split into ±1
eigenspaces for the Hodge ∗-operator, and so the middle Betti number b2k splits as
b+
2k + b−2k. The signature of M can be defined to be the difference b+

2k − b−2k. This
can be identified with the signature of the intersection pairing

〈x, y〉 = 〈x ∪ y, [M ]〉
on H2k(M, R), since if we represent cohomology classes x and y by closed forms ϕ
and ψ, then 〈x, y〉 =

∫
M

ϕ ∧ ψ, while
∫
M

ϕ ∧ ∗ψ is the L2 inner product of ϕ and
ψ, so that the intersection pairing is positive definite on the +1 eigenspace of ∗ and
negative definite on the −1 eigenspace of ∗.

Now, as observed by Atiyah and Singer, the signature can also be computed as
the index of the elliptic differential operator D = d + d∗ sending E0 to E1, where
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E0 ⊕ E1 is a splitting of the complex differential forms defined using the Hodge
∗-operator as well as the grading by degree. More precisely, E0 and E1 are the ±1
eigenspaces of the involution τ sending a complex-valued p-form ω to ip(p−1)+2k ∗ω.
This formula is concocted so that the contributions of p-forms and (4k − p)-forms
will cancel out as long as p �= 2k, and so that τ = ∗ on forms of middle degree. If we
apply Theorem 2.1 to this D, we see that β+

2k − β−
2k = b+

2k − b−2k, with the splitting
of β2k into ±1 eigenspaces of ∗ defined similarly. (Once again, the contributions
from forms of other degrees cancel out.)

Example 2.2. Let M be a compact quotient of the unit ball M̃ in C
2. Then

M̃ can be identified with the homogeneous space G/K, where G = SU(2, 1) and
K is its maximal compact subgroup U(2). The signature of M must be nonzero
by the “Hirzebruch proportionality principle,”1 since G/K is the noncompact dual
of the compact symmetric space CP

2, which has signature 1. Hence the L2-Betti
number β2 of M must be non-zero by the identity β+

2 − β−
2 = signM . In this

case, we have β0 = β4 = 0 by Brooks’ Theorem (Theorem 1.5 and Exercise 1.11)
and Poincaré duality, since the fundamental group of M is a lattice in G and is
thus non-amenable. And in addition, β1 = β3 = 0 by Theorem 1.6, so as pointed
out before, one has β2 = χ(M). Together with the identities β+

2 − β−
2 = signM

and β+
2 + β−

2 = β2, this makes it possible to compute β±
2 exactly. (Note: for this

example, vanishing of the L2-cohomology in dimensions �= 2 can also be proved
using the representation theory of G, as in Example 1.4.)

2.2. Connes’ Index Theorem for Foliations. Another important appli-
cation to topology of finite von Neumann algebras is Connes’ index theorem for
tangentially elliptic operators on foliations with an invariant transverse measure.

2.3. Prerequisites. We begin by reviewing a few facts about foliations. A
foliation F of a compact smooth manifold Mn is a partition of M into (not neces-
sarily closed) connected submanifolds Lp called leaves, all of some fixed dimension
p and codimension q = n− p.2 The leaves are required to be the integral submani-
folds of some integrable subbundle of TM , which we identify with F itself. Locally,
M looks like Lp ×R

q, but it can easily happen that every leaf is dense. See Figure
2. When x and y lie on the same leaf, “sliding along the leaf” along a path in
the leaf from x to y gives a germ of a homeomorphism from a transversal to the
foliation at x to a transversal to the foliation at y, which is called the holonomy.
This holonomy only depends on the homotopy class of the path chosen from x to
y, and so defines a certain connected cover of the leaf, called the holonomy cover,
which is trivial if the leaf is simply connected.

For purposes of Connes’ index theorem we will need to do a sort of integration
over the “space of leaves M/F ,” even though this space may not even be T0, let
alone Hausdorff. So we will assume (M,F) has an invariant transverse measure µ.

1This principle asserts that the characteristic numbers of M must be proportional to those

of the compact dual symmetric space CP2, and thus the signature of M is nonzero since the
signature of CP2 is nonzero. The logic behind this is that characteristic numbers are computed

from integrals of universal polynomials in the curvature forms, and these forms are determined by
the structure of the Lie algebra of G, hence agree for the compact and non-compact symmetric

spaces except for a sign.
2Admittedly, there is a problem with the notation here; it seems to imply that the leaves are

all diffeomorphic to one another, but this is not necessarily the case.
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Figure 2. Schematic picture of a piece of a typical foliation

This is a map µ : (T � M) �→ µ(T ) from (immersed) q-dimensional submanifolds of
M with compact closure, transverse to the leaves of F , to the reals. It is required
to satisfy countable additivity as well as the invariance property, that µ assigns
the same value to every pair of transversals T1, T2 ↪→ M which are obtained from
one another by a holonomy transformation. When the foliation F is a fibration
Lp → Mn → Bq, where the base B can be identified with the space of leaves,
then an invariant transverse measure µ is simply a measure on B. If the leaves are
consistently oriented, then given a p-form on M , we can integrate it over the leaves,
getting a function on the base B, and then integrate against µ. More generally,
without any conditions on F except that it be orientable, an invariant transverse
measure µ defines a closed Ruelle-Sullivan current [84] Cµ on M of dimension p.
To review, a p-current is to a differential form of degree p what a distribution is to
a function; it is a linear functional on (compactly supported) p-forms. The current
Cµ is defined as follows: on a small open subset of M diffeomorphic to Dp × Dq

(with F tangent to the subsets Dp ×{pt}), given a p-form ω supported in this set,
one has

〈Cµ, ω〉 =
∫ (∫

Dp×{x}
ω
)

dµ(x).

There is a differential ∂ on currents dual to the exterior differential d on forms, and
since Cµ is basically just a smeared out version of integration along the leaves, one
immediately sees that ∂Cµ = 0, so that Cµ defines a de Rham homology class [Cµ]
in Hp(M, R).

From the data M , F , and µ, one can construct (see [17], [16], and [18]) a finite
von Neumann algebra A = W ∗(M,F) with a trace τ coming from µ. Let’s quickly
review how this is constructed. When the holonomy covers of the leaves of F are
trivial—for instance, when all leaves are simply connected—consider the graph G
of the equivalence relation ∼ on M of “being on the same leaf.” In other words,
G = {(x, y) ∈ M × M | x and y on the same leaf}. Note that G can be identified
with a (possibly noncompact) manifold of dimension n + p = q + 2p. The algebra
A is then the completion of the convolution algebra of functions (or to be more
canonical, half-densities) on G of compact support, for the action of this algebra on
a suitable Hilbert space defined by µ. The construction in the general case is similar,
except that we replace the graph of ∼ by the holonomy groupoid G, consisting of
triples (x, y, [γ]) with x and y on the same leaf and [γ] a class of paths from x to
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y all with the same holonomy.3 (In fact usually this nicety doesn’t matter much
in the von Neumann algebra context since leaves for which the holonomy cover is
trivial are “generic”—see [11], Theorem 2.3.12.)

Now suppose there is a differential operator D on M which only involves dif-
ferentiation in directions tangent to the leaves and is elliptic when restricted to any
leaf. (Examples: the Euler characteristic operator or the Dirac operator “along
the leaves.”) Such an operator is called tangentially elliptic. Since the leaves are
usually not compact, we can’t compute an index for the restriction of D to one leaf.
But since M , the union of the leaves, is compact, it turns out one can make sense
of a numerical index Indτ D for D. In the special case where F has closed leaves,
the foliation is a fibration Lp → M

proj−−→ Xq, and µ is a probability measure on X,
this reduces to Indτ D =

∫
X

Ind (D|Lx
) d µ(x), where Lx = proj−1(x). In general,

Indτ D is roughly the “average with respect to µ” of the L2-index of D|Lx
, as x

runs over the “space of leaves.” Here we give each leaf the Riemannian structure
defined by a choice of metric on the bundle F .

Example 2.3. Let M1 and M2 be compact connected manifolds, and let π

be the fundamental group of M2. If π acts on M1 × M̃2 with trivial action on
the first factor and the usual action on the second factor, then the quotient is
M1 × (M̃2/π) = M1 × M2. But suppose we take any action of π on M1 and then
take the diagonal action of π on M1 × M̃2. Then M = (M1 × M̃2)/π is compact,
and projection to the second factor gives a fibration onto M2 with fiber M1. But
M is also foliated by the images of {x} × M̃2, usually non-compact. A measure µ
on M1 invariant under the action of π is an invariant transverse measure for this
foliation F . If D is the Euler characteristic operator along the leaves and all the
leaves are ∼= M̃2, then Indτ D just becomes the average L2-Euler characteristic of
M̃ , the alternating sum of the L2-Betti numbers, and Connes’ Theorem will reduce
to Atiyah’s.

2.4. Connes’ Theorem.

Theorem 2.4 (Connes [14], [17]). Let (M,F) be a compact foliated manifold
with an invariant transverse measure µ, and let W ∗(M,F) be the associated von
Neumann algebra with trace τ coming from µ. Let

D : C∞(M, E0) → C∞(M, E1)

be elliptic along the leaves. Then the L2 kernels of

P =
(

0 D∗

D 0

)

on the various leaves assemble to a (graded) Hilbert W ∗(M,F)-module K0 ⊕ K1,
and

Indτ D = dimτ K0 − dimτ K1 =
∫

Indtop σ(D) d µ,

where σ(D) denotes the symbol of D and the “topological index” Indtop is computed
from the characteristic classes of σ(D) just as in the usual Atiyah-Singer index
theorem.

3One has to be a little careful what one means by this when G is non-Hausdorff, but the

general idea is still the same even in this case.
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We omit the proof, which is rather complicated if one puts in all the details
(but see [14], [17], and [64]). However, the basic outline of the proof is similar
to that for Theorem 2.1, except that one must replace the group von Neumann
algebra by the von Neumann algebra of the measured foliation.

2.5. An Application to Uniformization. If we specialize the Connes index
theorem to the Euler characteristic operator along the leaves for foliations with 2-
dimensional leaves, it reduces to:

Theorem 2.5 (Connes). Let (M,F) be a compact foliated manifold with 2-
dimensional leaves and F oriented. Then for every invariant transverse measure
µ, the µ-average of the L2-Euler characteristic of the leaves is equal to 〈e(F), [Cµ]〉,
where e(F) ∈ H2(M, Z) is the Euler class of the oriented 2-plane bundle associated
to F , and [Cµ] ∈ H2(M, R) is the Ruelle-Sullivan class attached to µ.

The result also generalizes to compact laminations with 2-dimensional leaves.
(That means we replace M by any compact Hausdorff space X locally of the form
R2×T , where T is allowed to vary.) The only difference in this case is that we have
to use tangential de Rham theory. This variant of Connes’ Theorem is explained
in [64].

Corollary 2.6. Suppose (X,F) is a compact laminated space with 2-dimen-
sional oriented leaves and a smooth Riemannian metric g. Let ω be the curvature
2-form of g. If there is an invariant transverse measure µ with 〈[ω], [Cµ]〉 > 0,
then F has a set of closed leaves of positive µ-measure. If there is an invariant
transverse measure µ with 〈[ω], [Cµ]〉 < 0, then F has a set of (conformally) hy-
perbolic leaves of positive µ-measure. If all the leaves are (conformally) parabolic,
then 〈[ω], [Cµ]〉 = 0 for every invariant transverse measure.

Proof. By Chern-Weil theory, the de Rham class of ω
2π represents the Eu-

ler class of F . So by Theorem 2.5, 〈[ω], [Cµ]〉 is the µ-average of the L2-Euler
characteristic of the leaves. The only oriented 2-manifold with positive L2-Euler
characteristic is S2. Every hyperbolic Riemann surface has negative L2-Euler char-
acteristic. And every parabolic Riemann surface (one covered by C with the flat
metric) has vanishing L2-Euler characteristic. �

This has been used in:

Theorem 2.7 (Ghys [33]). Under the hypotheses of Corollary 2.6, if every leaf
is parabolic, then (X,F , g) is approximately uniformizable, i.e., there are real-val-
ued functions un (smooth on the leaves) with the curvature form of eung tending
uniformly to 0.

Note incidentally that the reason for using the curvature form here, as opposed
to the Gaussian curvature, is that the form, unlike the Gaussian curvature, is
invariant under rescaling of the metric by a constant factor.

Sketch of proof. The proof depends on two facts about 2-dimensional Rie-
mannian geometry. First of all, if g is a metric on a surface, and if K is its curvature,
then changing g to the conformal metric eug changes the curvature form K dvolg
to K ′dvoleug = (K − ∆u) dvolg, where ∆ is the Laplacian (normalized to be a
negative operator). So if K is the curvature function for the lamination and ∆F

is the leafwise Laplacian, it’s enough to show that K is in the uniform closure of
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functions of the form ∆F (u). (For then if ∆F (un) → K, the curvature forms of
eung tend to 0.)

The second fact we need is that there exist harmonic measures ν on X, that
is, measures with the property that ν annihilates all functions of the form ∆F (u),
and that a function lies in the closure of functions of the form ∆F (u) if and only
if it is annihilated by the harmonic measures. Indeed, by the Hahn-Banach Theo-
rem, the uniform closure of the functions of the form ∆F (u) is exactly the set of
functions annihilated by measures ν with

∫
X

∆F (u) dν = 0 for all leafwise smooth
functions u. But on a subset of X of the form U × T , where U is an open subset
of a leaf, such measures consist exactly of integrals (with respect to some measure
on T ) of measures of the form h(x) dvol(x) on each leaf, with h a harmonic func-
tion. Thus, in the case where all the leaves are parabolic, it turns out (since there
are no nonconstant positive harmonic functions on C) that harmonic measures are
just obtained by integrating the leafwise area measure with respect to an invari-
ant transverse measure. Since 〈K dvolg, [Cµ]〉 = 0 for every invariant transverse
measure by Corollary 2.6, the result follows. �

Another known fact is:

Theorem 2.8 (Candel [10]). Under the hypotheses of Corollary 2.6, if every
leaf is hyperbolic, then (X,F , g) is uniformizable, i.e., there is a real-valued function
u (smooth along the leaves) with eug hyperbolic on each leaf.

2.6. Exercises.

Exercise 2.9. Let M be a compact Kähler manifold of complex dimension
n. Then each Betti number br(M) splits as br(M) =

∑
p+q=r hp,q(M), where the

Hodge number hp,q(M) is the dimension of the part of the de Rham cohomology in
dimension r coming from forms of type (p, q) (i.e., locally of the form f dz1 ∧ · · · ∧
dzp ∧ dzp+1 ∧ · · · ∧ dzp+q). And

∑
q(−1)qh0,q(M), the index of the operator ∂ + ∂

∗

on forms of type (0, ∗), graded by parity of the degree, turns out to be given by the
Todd genus Td(M) [41]. For example, if M is a compact Riemann surface (Kähler
manifold of complex dimension 1) of genus g, then h1,0(M) = h0,1(M) = g and
Td(M) = 1 − g. Apply the Atiyah L2-index theorem and see what it says about
the L2 Hodge numbers (associated to the universal cover). For example, compute
the L2 Hodge numbers when M is a compact Riemann surface of genus g ≥ 1 (see
Example 1.4).

Exercise 2.10. Part of the idea for this problem comes from [2] and [3], though
we have been able to simplify things considerably by restricting to the easiest special
case. Suppose G = SL(2, R) and K = SO(2). Then attached to each character of
K, which we can think of as being given by an integer parameter n by eiθ �→ einθ,
eiθ ∈ SO(2) ∼= S1, is a homogeneous holomorphic line bundle L̃n over M̃ = G/K.
Let π be a discrete cocompact subgroup of G, so that G/K � π\G/K is the
universal cover of a compact Riemann surface M of genus g > 1. Note that L̃n
descends in a natural way to a holomorphic line bundle Ln over M . Apply the
L2-index theorem, together with the classical Riemann-Roch Theorem for Ln, to
compute the L2-index of the ∂ operator on the line bundle L̃n.

Then, combine this result with a vanishing theorem to show that L̃n has L2

holomorphic sections (with respect to the G-invariant measure on G/K) if and
only if n ≥ 2. Here is a sketch of the proof of the vanishing theorem. Let g and
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k be the complexified Lie algebras of G and of K, respectively, and suppose the
Hilbert space Hn of L2 holomorphic sections of Ln is non-zero. We have a splitting
g = k⊕p⊕p, with p corresponding to the holomorphic tangent space of G/K, and p

corresponding to the antiholomorphic tangent space. Also, k is a Cartan subalgebra
of g ∼= sl(2, C) and p, p are its root spaces. By definition, we have

Hn = {f ∈ L2(G) : f(gk) = k−nf(g), g ∈ G, k ∈ K ∼= S1, dρ(p)f = 0}.
Here ρ is the right regular representation, and G acts on Hn by the left regular
representation λ. Then Hn carries a unitary representation of G and (because of
the Cauchy integral formula) must be a “reproducing kernel” Hilbert space, that is,
there must be a distinguished vector ξ ∈ Hn such that 〈s, ξ〉 = s(e) for all s ∈ Hn.
(Here e denotes the identity element of G, which corresponds to 0 ∈ C in the unit
disk model of G/K.) Since Hn �= 0, ξ can’t vanish. It turns out that ξ ∈ Hn

is a “lowest weight vector,” an eigenvector for k (corresponding to the character
eiθ �→ einθ of K) that is killed by p. This determines the action of g, hence of G,
on ξ, and the vanishing theorem is deduced from the requirement that ξ lie in L2.
(See for example [53] for more details.)

Exercise 2.11. Let M be a compact manifold with H2(M, R) = 0, and suppose
M admits a foliation with 2-dimensional leaves and an invariant transverse measure.
Deduce from Corollary 2.6 that the “average L2 Euler characteristic” of the leaves
must vanish, and in particular, that the leaves cannot all be hyperbolic (uniformized
by the unit disk). (Compare the combination of Theorems 12.3.1 and 12.5.1 in [11].)

Exercise 2.12. (Connes [17], §4) Let Λ1 and Λ2 be lattices in C (that is,
discrete subgroups, each of rank 2) and assume that Λ1 ∩ Λ2 = ∅. Consider the
4-torus M = (C/Λ1) × (C/Λ2) and let pj , j = 1, 2, be the projections of M
onto C/Λj . Fix points z1, z2 ∈ C and let E1 and E2 be the holomorphic line
bundles on C/Λj attached to the divisors −[z1] and [z2], respectively. Then let
E = p∗1(E1) ⊗ p∗2(E2). Consider the foliation F of M obtained by pushing down
the foliation of the universal cover C2 by the complex planes {(z, w + z) : z ∈ C},
w ∈ C. The leaves of F may be identified with copies of C. Since this foliation is
linear, it has a transverse measure given by Haar measure on a 2-torus transverse
to the leaves of F . Let D be the ∂ operator along the leaves, acting on E. Then
on a leaf L = im{(z, w + z) : z ∈ C}, a holomorphic section of E can be identified
with a meromorphic function on C with all its poles simple and contained in z+Λ1,
for some z, and with zeros at points of Λ2. Apply the foliation index theorem to
deduce an existence result about such meromorphic functions in L2.

3. Group C∗-Algebras, the Mishchenko-Fomenko Index Theorem, and
Applications to Topology

3.1. The Mishchenko-Fomenko Index. The last two chapters have been
about applications of von Neumann algebras to topology. In this chapter, we start
to talk about applications of C∗-algebras. First we recall that a (complex) commu-
tative C∗-algebra is always of the form C0(Y ), where Y is a locally compact (Haus-
dorff) space, so that the study of (complex) commutative C∗-algebras is equivalent
to the study of locally compact spaces. Real commutative C∗-algebras are only a
bit more complicated; they correspond to locally compact spaces (associated to the
complexification) together with an involutive homeomorphism (associated to the
action of Gal(C/R)). These were called real spaces by Atiyah. We also recall that
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by Swan’s Theorem (see for example [47], Theorem I.6.18), the sections of a vec-
tor bundle over a compact Hausdorff space X form a finitely generated projective
module over C(X), and conversely.

Definition 3.1. Let A be a C∗-algebra (over R or C) with unit, and let X be
a compact space. An A-vector bundle over X will mean a locally trivial bundle over
X whose fibers are finitely generated projective (right) A-modules, with A-linear
transition functions.

Example 3.2. If A = R or C, an A-vector bundle is just a usual vector bundle.
If A = C(Y ), an A-vector bundle over X is equivalent to an ordinary vector bundle
over X × Y . This is proved by the same method as Swan’s Theorem, to which the
statement reduces if X is just a point.

Definition 3.3. Let A be a C∗-algebra and let E0, E1 be A-vector bundles
over a compact manifold M . An A-elliptic operator

D : C∞(M, E0) → C∞(M, E1)

will mean an elliptic A-linear ψDO from sections of E0 to sections of E1. Such an
operator extends to a bounded A-linear map on suitable Sobolev spaces (Hilbert A-
modules) H0 and H1. One can show [62] that this map is an A-Fredholm operator,
i.e., one can find a decomposition

H0 = H′
0 ⊕H′′

0 , H1 = H′
1 ⊕H′′

1 ,

with H′′
0 and H′′

1 finitely generated projective, and

D : H′
0

∼=−→ H′
1, D : H′′

0 → H′′
1 .

This means that “up to A-compact perturbation” the kernel and cokernel of D are
finitely generated projective A-modules. The Mishchenko-Fomenko index of D (see
[62]) is

Ind D = [H′′
0 ] − [H′′

1 ],
computed in the group of formal differences of isomorphism classes of such modules,
K0(A). (See Exercise 3.13 below.)

3.2. Flat C∗-Algebra Bundles and the Assembly Map. If X is a com-
pact space and A is a C∗-algebra with unit, the group of formal differences of
isomorphism classes of A-vector bundles over X is denoted K0(X; A). The follow-
ing is analogous to Swan’s Theorem.

Proposition 3.4. If X is a compact space and A is a C∗-algebra with unit,
then K0(X; A) is naturally isomorphic to K0(C(X) ⊗ A).

Sketch of proof. Suppose E is an A-vector bundle over X. Then the space
Γ(X, E) of continuous sections of E comes with commuting actions of C(X) and
of A. As such, it is a module for the algebraic tensor product; we will show from
the local triviality that it is in fact a module for the C∗-tensor product. Now just
as in the case of ordinary vector bundles, one shows that E is complemented, i.e.,
that there is another A-vector bundle F such that E ⊕ F is a trivial bundle with
fibers that are finitely generated free A-modules. Thus

Γ(X, E) ⊕ Γ(X, F ) ∼= Γ(X, E ⊕ F )
∼= Γ(X, X × An) ∼= C(X, A)n ∼=

(
C(X) ⊗ A

)n
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for some n. Hence Γ(X, E) is a finitely generated projective (C(X) ⊗ A)-module.
Now it’s clear that the Grothendieck groups of A-vector bundles and of finitely
generated projective (C(X) ⊗ A)-modules coincide. �

Definition 3.5. Let X be a compact space, X̃ → X a normal covering with
covering group π. Let C∗

r (π) be the reduced group C∗-algebra of π (the completion
of the group ring in the operator norm for its action on L2(π)). The universal
C∗
r (π)-bundle over X is

VX = X̃ ×π C∗
r (π) → X.

This is clearly a C∗
r (π)-vector bundle over X. As such, by Proposition 3.4, it

has a class [VX ] ∈ K0(X; C∗
r (π)), which is pulled back (via the classifying map

X → Bπ) from the class of

V = Eπ ×π C∗
r (π) → Bπ

in K0(Bπ; C∗
r (π)). Here Bπ is the classifying space of π, a space (with the homotopy

type of a CW complex) having π as its fundamental group, and with contractible
universal cover Eπ. Such a space always exists and is unique up to homotopy equiv-
alence. Furthermore, by obstruction theory, every normal covering with covering
group π is pulled back from the “universal” π-covering Eπ → Bπ. “Slant product”
with [V] (a special case of the Kasparov product) defines the assembly map

A : K∗(Bπ) → K∗(C∗
r (π)).

(There is a slight abuse of notation here. Bπ may not be compact, but it can always
be approximated by finite CW complexes. So if there is no finite model for Bπ,
K∗(Bπ) is to be interpreted as the direct limit of K∗(X) as X runs over the finite
subcomplexes of Bπ. This direct limit is independent of the choice of a model for
Bπ.)

Note that since the universal C∗
r (π)-bundle over X or Bπ is canonically trivi-

alized over the universal cover, it comes with a flat connection, that is, a notion of
what it means for a section to be locally flat. (A locally flat section near x is one
that, in a small evenly covered neighborhood—a neighborhood whose inverse image
in the universal cover is of the form U × π, lifts to a constant section U → C∗

r (π).)

3.3. Kasparov Theory and the Index Theorem. The formalism of Kas-
parov theory (see [5] or [40]) attaches, to an elliptic operator D on a manifold M ,
a K-homology class [D] ∈ K∗(M). If M is compact, the collapse map c : M → pt
is proper and IndD = c∗([D]) ∈ K∗(pt).

Now if E is an A-vector bundle over M and D is an elliptic operator over M ,
we can form “D with coefficients in E,” an A-elliptic operator. The Mishchenko-
Fomenko index of this operator is computed by pairing

[D] ∈ K∗(M) with [E] ∈ K0(M ; A).

In particular, if M̃ → M is a normal covering of M with covering group π, then we
can form D with coefficients in VX , and its index is A◦u∗([D]), where u : M → Bπ
is the classifying map for the covering.

Conjecture 3.6 (Novikov Conjecture). The assembly map

A : K∗(Bπ) → K∗(C∗
r (π))

is rationally injective for all groups π, and is injective for all torsion-free groups π.
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This is quite different from the original form of Novikov’s conjecture, though
it implies it. Therefore Conjecture 3.6 is often called the Strong Novikov Conjec-
ture. We will see the exact connection with the original form of the conjecture
shortly. Stronger than Conjecture 3.6 is the Baum-Connes Conjecture, which gives
a conjectural calculation of K∗(C∗

r (π)).4 When π is torsion-free, the Baum-Connes
Conjecture amounts to the statement that A is an isomorphism. There are no
known counterexamples to Conjecture 3.6, or for that matter to the Baum-Connes
Conjecture for discrete groups (though it is known to fail for some groupoids).
Conjecture 3.6 is known for discrete subgroups of Lie groups ([49], [48]), amenable
groups [39], hyperbolic groups [50], and many other classes of groups.

3.4. Applications.
(a) The L2-Index Theorem and Integrality of the Trace. The connec-

tion with Atiyah’s Theorem from Chapter 2 is as follows. Suppose D is an elliptic
operator on a compact manifold M , and M̃ → M is a normal covering of M with
covering group π. The group C∗-algebra C∗

r (π) embeds in the group von Neumann
algebra, and the trace τ then induces a homomorphism τ∗ : K0(C∗

r (π)) → R. The
image under τ∗ of the index of D with coefficients in C∗

r (π) can be identified with
the L2-index of D̃, the lift of D to M̃ . Atiyah’s Theorem thus becomes the assertion
that the following diagram commutes:

K0(M)

c∗

��

u∗ �� K0(Bπ)

A
��

K0(pt) = Z� �

��������������
K0(C∗

r (π))

τ∗

��
R.

This has the consequence, not obvious on its face, that τ∗ takes only integral
values on the image of the assembly map.5 Thus if the assembly map is sur-
jective, as when π is torsion-free and the Baum-Connes Conjecture holds for π,
then τ∗ : K0(C∗

r (π)) → R takes only integral values. This in particular implies the
Kaplansky-Kadison Conjecture, that C∗

r (π) has no idempotents other than 0 or 1
[94]. The reason is that if e = e2 ∈ C∗

r (π), and if 0 � e � 1, then e defines a class
in K0(C∗

r (π)) and 0 < τ(e) < 1 = τ(1), contradicting our integrality statement.

(b) Original Version of the Novikov Conjecture. Consider the sign-
ature operator D on a closed oriented manifold M4k. This is constructed (see
page 10) so that IndD is the signature of M , i.e., the signature of the form

〈x, y〉 = 〈x ∪ y, [M ]〉

4The precise statement is that an assembly map ABC : Kπ
∗ (Eπ) → K∗(C∗

r (π)) is an iso-
morphism. Here Eπ is a contractible CW complex on which G acts properly (though not

necessarily freely), and Kπ
∗ is equivariant K-homology. When G is torsion-free, Eπ = Eπ,

Kπ
∗ (Eπ) = Kπ

∗ (Eπ) = K∗(Bπ), and ABC = A. In general, one has a π-equivariant map Eπ → Eπ,

and A factors through ABC.
5Here we are using the fact that every element of K0(Bπ) lies in the image of K0 of some

manifold M with a map M → Bπ. This can be deduced from “Conner-Floyd type” theorems
about the relationship between K-homology and bordism. Of course in the case where Bπ can be

chosen to be a compact manifold, this fact is obvious.
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on the middle cohomology H2k(M, R). The signature is obviously an oriented ho-
motopy invariant, since it only depends on the structure of the cohomology ring
(determined by the homotopy type) and on the choice of fundamental class [M ]
(determined by the orientation). Hirzebruch’s formula says signM = 〈L(M), [M ]〉,
where L(M) is a power series in the rational Pontryagin classes, the Poincaré dual
of Ch[D]. Here Ch: K0(M) → H∗(M, Q) is the Chern character, a natural trans-
formation of homology theories (and in fact a rational isomorphism). The unusual
feature of Hirzebruch’s formula is that the rational Pontryagin classes, and thus
the L-class, are not homotopy invariants of M ; only the term in L(M) of degree
equal to the dimension of M is a homotopy invariant. For example, it is known
from surgery theory how to construct “fake” complex projective spaces homotopy
equivalent to CPm, m ≥ 3, with wildly varying Pontryagin classes.

If u : M → Bπ for some discrete group π (such as the fundamental group
of M), u∗(Ch[D]) ∈ H∗(Bπ, Q) is called a higher signature of M , and Novikov
conjectured that, like the ordinary signature (the case π = 1), it is an oriented
homotopy invariant. The conjecture follows from injectivity of the assembly map,
since Kasparov ([49], §9, Theorem 2) and Mishchenko ([63], [61]) showed that
A ◦ u∗([D]) is an oriented homotopy invariant. Another proof of the homotopy
invariance of A◦ u∗([D]) may be found in [46]. For much more on the background
and history of the Novikov Conjecture, see [30].

(c) Positive Scalar Curvature. An oriented Riemannian manifold Mn has
a natural principal SO(n)-bundle attached to it, the (oriented) orthonormal frame
bundle, P → M . The fiber of P over any point x ∈ M is, by definition, the set
of oriented orthonormal bases for the tangent space TxM , and SO(n) acts simply
transitively on this set. Now SO(n) has a double cover Spin(n) (which if n ≥ 3
is also the universal cover), and a lifting of P → M to a principal Spin(n)-bundle
P̂ → M is called a spin structure on M . When M is connected, it is fairly easy
to show that such a structure exists if and only if the second Stiefel-Whitney class
w2(M) vanishes in H2(M, Z/2), and that H1(M, Z/2) acts simply transitively on
the set of spin structures (compatible with a fixed choice of orientation); see [54],
Chapter II, §2. If Mn is a closed spin manifold, then M carries a special first-order
elliptic operator, the [Cliffn(R)-linear] Dirac operator D ([54], Chapter II, §7), with
a class [D] ∈ KOn(M). The operator D depends on a choice of Riemannian metric,
though its K-homology class is independent of the choice. Lichnerowicz [55] proved
that

(2) D2 = ∇∗∇ +
κ

4
,

where κ is the scalar curvature of the metric. Thus if κ > 0, the spectrum of D is
bounded away from 0 and IndD = 0 in

KOn(pt) =




Z, n ≡ 0 mod 4,

Z/2, n ≡ 1 or 2 mod 8,

0, otherwise.

Gromov and Lawson [35] established the fundamental tools for proving a partial
converse to this statement. Their work was completed by Stolz, who proved:



APPLICATIONS OF NON-COMMUTATIVE GEOMETRY TO TOPOLOGY 21

Theorem 3.7 (Stolz [91]). If Mn is a closed simply connected spin manifold
with Dirac operator class [D] ∈ KOn(M), and if n ≥ 5, then M admits a metric
of positive scalar curvature if and only if Ind D = 0 in KOn(pt).

What if M is not simply connected? Then Gromov-Lawson ([36], [37]) and
Schoen-Yau ([88], [87], [89]) showed there are other obstructions coming from the
fundamental group, and Gromov-Lawson suggested that the “higher index” of D
is responsible. Rosenberg ([75], [76], [80]) then pointed out that the Mishchenko-
Fomenko Index Theorem is an ideal tool for verifying this.

Theorem 3.8 (Rosenberg). Suppose M is a closed spin manifold and
u : M → Bπ classifies the universal cover of M . If M admits a metric of pos-
itive scalar curvature and if the (strong) Novikov Conjecture holds for π, then
u∗([D]) = 0 in KOn(Bπ).

Sketch of proof. Suppose M admits a metric of positive scalar curvature.
Consider the Dirac operator DV with coefficients in the universal C∗

r (π)-bundle VM .
As we remarked earlier, the bundle VM has a natural flat connection. If we use this
connection to define DV , then Lichnerowicz’s identity (2) will still hold with DV in
place of D, since there is no contribution from the curvature of the bundle. Thus
κ > 0 implies Ind DV = A(u∗([D])) = 0. Thus if A is injective, we can conclude
that u∗([D]) = 0 in KOn(Bπ). �

For some torsion-free groups, the converse is known to hold for n ≥ 5, general-
izing Theorem 3.7. See [80] for details.

Conjecture 3.9 (Gromov-Lawson). A closed aspherical manifold cannot ad-
mit a metric of positive scalar curvature.

Theorem 3.8 shows that the Strong Novikov Conjecture implies Conjecture 3.9,
at least for spin manifolds.

For groups with torsion, the assembly map is usually not a monomorphism (see
Exercise 3.14), so the converse of Theorem 3.8 is quite unlikely. However, for spin
manifolds with finite fundamental group, it is possible (as conjectured in [77]) that
vanishing of A(u∗([D])) = 0 is necessary and sufficient for positive scalar curvature,
at least once the dimension gets to be sufficiently large. Since not much is known
about this, it is convenient to simplify the problem by “stabilizing.”

Definition 3.10. Fix a simply connected spin manifold J8 of dimension 8
with Â-genus 1. (Such a manifold is known to exist, and Joyce [43] constructed an
explicit example with Spin(7) holonomy.) Taking a product with J does not change
the KO-index of the Dirac operator. Say that a manifold M stably admits a metric
of positive scalar curvature if there is a metric on M × J × · · · × J with positive
scalar curvature, for sufficiently many J factors. In support of this definition, we
have:

Proposition 3.11. A simply connected closed manifold Mn of dimension
n �= 3, 4 stably admits a metric of positive scalar curvature if and only if it ac-
tually admits a metric of positive scalar curvature.

Sketch of proof. We may as well assume n ≥ 5, since if n ≤ 2, then M is
diffeomorphic to S2 and certainly has a metric of positive scalar curvature. There
are two cases to consider. If M admits a spin structure, then by Theorem 3.7, M
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admits a metric of positive scalar curvature if and only if the index of D vanishes
in KOn. But if the index is non-zero in KOn, then M does not even stably admit
a metric of positive scalar curvature, since the KOn-index of Dirac is the same
for M × J × · · · × J as it is for M . If M does not admit a spin structure, then
Gromov and Lawson [35] showed that M always admits a metric of positive scalar
curvature, and a fortiori it stably admits a metric of positive scalar curvature. �

For finite fundamental group, the best general result is:

Theorem 3.12 (Rosenberg-Stolz [79]). Let Mn be a spin manifold with fi-
nite fundamental group π, with Dirac operator class [D], and with classifying map
u : M → Bπ for the universal cover. Then M stably admits a metric of positive
scalar curvature if and only A ◦ u∗([D]) = 0 in KOn(C∗

r (π)). (Of course, for π
finite, C∗

r (π) = R[π].)

This has been generalized by Stolz to those groups π for which the Baum-
Connes assembly map ABC in KO is injective. This is a fairly large class including
all discrete subgroups of Lie groups.

3.5. Exercises.

Exercise 3.13. (Mishchenko-Fomenko) Let A be a C∗-algebra. Suppose
that a bounded A-linear map D : H0 → H1 between two Hilbert A-modules is A-
Fredholm, i.e., has a decomposition as in Definition 3.3. Show that IndD ∈ K0(A)
is well-defined, i.e., does not depend on the choice of decomposition. On the other
hand, show by example that it is not necessarily true that D has closed range, and
hence it is not necessarily true that we can define IndD as [ker D] − [coker D].

Exercise 3.14. Let G be a finite group of order n. Show that

C∗
r (G) = CG ∼=

⊕
σ∈ bG

Mdim(σ)(C), and K0(C∗
r (G)) ∼= Z

c, K1(C∗
r (G)) = 0,

where Ĝ is the set of irreducible representations of G and c = #(Ĝ) is the number of
conjugacy classes in G. (This is all for the complex group algebra.) Since K0(BG)
is a torsion group, deduce that the assembly map A : K∗(BG) → K∗(C∗

r (G)) is
identically zero in all degrees. (This is not necessarily the case for the assembly map
on KO in degrees 1, 2, 5, 6 mod 8 for the real group ring if G is of even order—see
Exercise 3.18 below and [79].) On the other hand, the Baum-Connes Conjecture is
true for this case (for more or less trivial reasons—here EG = pt and the definition
of KG

0 (pt) makes it coincide with K0(C∗
r (G))).

Compute the trace map τ∗ : K0(C∗
r (G)) → R for this example, and show that

it sends the generator of K0(C∗
r (G)) attached to an irreducible representation σ

to dim(σ)
|G| . (Hint: The generator corresponds to a certain minimal idempotent in

CG. Write it down explicitly (as a linear combination of group elements), using the
Schur orthogonality relations.) Deduce that τ∗

(
K0(C∗

r (G))
)

= 1
|G|Z, the rational

numbers with denominator a divisor of |G|.

Exercise 3.15. Let Γ be the infinite dihedral group, the semidirect product
Z � {±1}, where {±1} acts on Z by multiplication. Show by explicit calculation
that C∗

r (Γ) can be identified with the algebra{
f ∈ C

(
[0, 1], M2(C)

)
: f(0) and f(1) are diagonal matrices

}
.
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(To show this, identify C∗
r (Γ) with the crossed product C(S1) � {±1}, where {±1}

acts on C∗
r (Z) ∼= C(S1) by complex conjugation. The orbit space S1/{±1} can be

identified with an interval. Interior points of this interval correspond to irreducible
representations of Γ of dimension 2, and over each endpoint there are two irreducible
representations of Γ, each of dimension 1.)

Then show that the range of the trace map τ∗ : K0(C∗
r (Γ)) → R is the half-

integers 1
2Z = {0,±1

2 ,±1,±3
2 , · · · }.

This example and others like it, along with Exercise 3.14, led to the conjecture
([4], p. 21) that for an arbitrary group G, τ∗

(
K0(C∗

r (G))
)

is the subgroup of Q

generated by the numbers 1
|H| , where H is a finite subgroup of G. However, this

conjecture has turned out to be false ([83], [82]), even with K0(C∗
r (G)) (which in

general is inaccessible) replaced by the more tractable image of the Baum-Connes
map ABC. However, it is shown in [60] that the range of the trace on the image
of the Baum-Connes map ABC is contained in the subring of Q generated by the
reciprocals of the orders of the finite subgroups. In particular, if the Baum-Connes
conjecture holds for G, then the range of the trace lies in this subring.

Exercise 3.16. Suppose Γ is a discrete group and π is a subgroup of Γ of finite
index. Then one has a commuting diagram

K0(Bπ)

��

Aπ ��

ι∗

������������
K0(C∗

r (π))

ι∗

��

τ∗ �� R

K0(BΓ) ��

AΓ

��KΓ
0 (EΓ)

ABC �� K0(C∗
r (Γ))

τ∗ �� R.

Here ι∗ is the map induced by the inclusion π ↪→ Γ. But there is also a transfer
map ι∗ backwards from K0(C∗

r (Γ)) to K0(C∗
r (π)) which multiplies traces by the

index [Γ : π], since C∗
r (Γ) is a free C∗

r (π)-module of rank [Γ : π]. Similarly, there is
a compatible transfer map ι∗ : K0(BΓ) → K0(Bπ), and ι∗ ◦ ι∗ is an isomorphism on
K0(BΓ) after inverting [Γ : π]. Suppose that the Baum-Connes Conjecture holds
for both π and Γ, so that, in this diagram, Aπ and ABC are isomorphisms. Then
what does this imply about integrality of the trace on K0(C∗

r (Γ))? Compare with
the conjectures discussed in Exercise 3.15.

Exercise 3.17. Suppose Γ is a discrete group and e = e2 ∈ C[Γ]. Show that
τ(e) must lie in Q, the algebraic closure of Q. Hint ([9]): Consider the action of
Gal(C/Q) on C[Γ], as well as the positivity of τ . In fact, it is even proved in [9]
that τ(e) ∈ Q, but this is much harder.

Exercise 3.18. Let π = Z/2, a cyclic group of order 2, so that the real group
C∗-algebra R[π] of π is isomorphic to R ⊕ R and the classifying space Bπ = RP∞.
Show that the assembly map A : KO1(Bπ) → KO1(R[π]) ∼= Z/2⊕Z/2 is surjective.
Hints: For the summand corresponding to the trivial representation, you don’t have
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to do any work, because of the commutative diagram

KO∗(pt)
��

��

A{1}

∼=
�� KO∗(R)

��

��
KO∗(Bπ)

Aπ �� KO∗(R ⊕ R).

For the other summand, make use of the commutative diagram

KO∗(S1)

��

AZ

∼=
�� KO∗(C∗

r (Z))

��
KO∗(Bπ)

Aπ �� KO∗(R[π]),

where the vertical arrows are induced by the “reduction mod 2” map Z � Z/2.

Exercise 3.19. Let Mn be a smooth compact manifold and let Y be some
compact space. Suppose D : x �→ Dx is a continuously varying family of elliptic
operators on M , parameterized by Y . Show that D defines a C(Y )-elliptic operator
over M , and thus has a C(Y )-index in the sense of Mishchenko and Fomenko.
(This is the same as the “families index” of Atiyah and Singer.) Also show that if
dimker Dx and dimker D∗

x remain constant, so that x �→ ker Dx and x �→ ker D∗
x

define vector bundles ker D and ker D∗ over X, then IndD = [kerD] − [ker D∗] in
K0(C(Y )) ∼= K0(Y ). (The isomorphism here is given by Swan’s Theorem.)

4. Other C∗-Algebras and Applications in Topology: Group Actions,
Foliations, Z/k-Indices, and Coarse Geometry

4.1. Crossed Products and Invariants of Group Actions. If a (locally
compact) group G acts on a locally compact space X, one can form the transforma-
tion group C∗-algebra or crossed product C∗(G, X) or C0(X) � G. The definition
is easiest to explain when G is discrete; then C∗(G, X) is the universal C∗-algebra
generated by a copy of C0(X) and unitaries ug, g ∈ G, subject to the relations that

(3) uguh = ugh, ugfu∗
g = g · f for g, h ∈ G, f ∈ C0(X).

Here g ·f(x) = f(g−1 ·x). In general, C∗(G, X) is the C∗-completion of the twisted
convolution algebra of C0(X)-valued continuous functions of compact support on
G, and its multiplier algebra still contains copies of C0(X) and of G satisfying
relations (3). (In fact, products of an element of C∗(G) and of an element of C0(X),
in either order, lie in the crossed product and are dense in it.) When G acts freely
and properly on X, C∗(G, X) is strongly Morita equivalent to C0(G\X).6 It thus
plays the role of the algebra of functions on G\X, even when the latter is a “bad”
space, and captures much of the equivariant topology, as we see from:

Theorem 4.1 (Green-Julg [44]). If G is compact, there is a natural isomor-
phism

K∗(C∗(G, X)) ∼= K−∗
G (X).

6(Strong) Morita equivalence (see [71]) is one of the most useful equivalence relations on the
class of C∗-algebras. When A and B are separable C∗-algebras, it has a simple characterization
[8]: A and B are strongly Morita equivalent if and only if A ⊗ K ∼= B ⊗ K, where K is the

C∗-algebra of compact operators on a separable, infinite-dimensional Hilbert space.
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There are many other results relating the structure of C∗(G, X) to the topology
of the transformation group (G, X); the reader interested in this topic can see the
surveys [68], [69], and [66] for an introduction and references. In this chapter we
will only need the rather special cases where either G is compact or else G acts
locally freely (i.e., with finite isotropy groups).

Definition 4.2. An n-dimensional orbifold X is a space covered by charts
each homeomorphic to Rn/G, where G is a finite group (which may vary from
chart to chart) acting linearly on Rn, and with compatible transition functions.
A smooth orbifold is defined similarly, but with the transition functions required
to lift to be C∞ on the open subsets of Euclidean space. The most obvious kind
of example is a quotient of a manifold by a locally linear action of a finite group.
But not every orbifold, not even every compact smooth orbifold, is a quotient of a
manifold by a finite group action. (The simplest counterexample or “bad orbifold”
is the “teardrop” X, shown in Figure 3. Here the bottom half of the space is a
hemisphere, and the top half is the quotient of a hemisphere by a cyclic group acting
by rotations around the pole. If X were of the form M/G with M a manifold and G
finite, then M would have to be S2, and we run afoul of the fact that any nontrivial
orientation-preserving diffeomorphism of S2 of finite order has to have at least two
fixed points, by the Lefschetz fixed-point theorem.)

Figure 3. The teardrop

On a smooth orbifold X, we have a notion of Riemannian metric, which on a
patch looking like Rn/G, G finite, is simply a Riemannian metric on Rn invariant
under the action of G. Similarly, once a Riemannian metric has been fixed, we have
a notion of orthonormal frame at a point. As on a smooth manifold, these patch
together to give the orthonormal frame bundle X̃, and O(n) acts locally freely on
X̃, with X̃/O(n) identifiable with X. C∗

orb(X) = C∗(O(n), X̃) is called the orbifold
C∗-algebra of X. This notion is due to Farsi [28]. (It depends on the orbifold
structure, not just the homeomorphism class of X as a space.) Note that C∗

orb(X)
is strongly Morita equivalent to C0(X) when X is a manifold, or to C∗(G, M) when
X is the quotient of a manifold M by an action of a finite group G.

An elliptic operator D on a smooth orbifold X (which in each local chart
R
n/G, G a finite group, is a G-invariant elliptic operator on R

n) defines a class
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[D] ∈ K−∗(C∗
orb(X)) (which we think of as Korb

∗ (X)). Note that if X is actually
a manifold, this is just K∗(X), by Morita invariance of Kasparov theory. If X is
compact, then as in the manifold case, IndD = c∗([D]) ∈ K∗(pt).

Applying the Kasparov formalism and working out all the terms, one can de-
duce ([27], [28], [29]) various index theorems for orbifolds, originally obtained by
Kawasaki [51] by a different method.

4.2. Foliation C∗-Algebras and Applications.

Definition 4.3. Let Mn be a compact smooth manifold, F a foliation of M by
leaves Lp of dimension p, codimension q = n−p. Then one can define a C∗-algebra
C∗(M,F) encoding the structure of the foliation. (This is the C∗-completion of the
convolution algebra of functions, or more canonically, half-densities, on the holo-
nomy groupoid.) When the foliation is a fibration L → M → X, where X is a com-
pact q-manifold, then C∗(M,F) is strongly Morita equivalent to C(X). Since K-
theory is Morita invariant, this justifies thinking of K∗(C∗(M,F)) as K−∗(M/F),
the K-theory of the space of leaves. When the foliation comes from a locally free
action of a Lie group G on M , then C∗(M,F) is just the crossed product C∗(G, M).

Introducing C∗(M,F) makes it possible to extend the Connes index theorem
for foliations. If D is an operator elliptic along the leaves, then in general IndD is
an element of the group K0(C∗(M,F)). If there is an invariant transverse measure
µ, then one obtains Connes’ real-valued index by composing with the map∫

dµ : K0(C∗(M,F)) → R.

Theorem 4.4 (Connes-Skandalis [19]). Let (M,F) be a compact (smooth) fo-
liated manifold and let

D : C∞(M, E0) → C∞(M, E1)

be elliptic along the leaves. Then Ind D ∈ K0(C∗(M,F)) agrees with a “topological
index” Indtop(D) computed from the characteristic classes of σ(D), just as in the
usual Atiyah-Singer index theorem.

Example 4.5. The simplest example of this is when M splits as a product
Y × L, the foliation F is by slices {x} × L, and D is given by a continuous family
of elliptic operators Dx on L, parameterized by the points in Y , just as in Exercise
3.19. Then C∗(M,F) is Morita equivalent to C(Y ), and IndD as in the Theorem
4.4 is exactly the Atiyah-Singer “families index” in K0(C(Y )) = K0(Y ), which,
as shown in Exercise 3.19, can also be viewed as a case of a Mishchenko-Fomenko
index.

Corollary 4.6 (Connes-Skandalis [19], Corollary 4.15). Let (M,F) be a
compact foliated manifold and let D be the Euler characteristic operator along the
leaves. Then Ind D is the class of the zeros Z of a generic vector field along the
fibers, counting signs appropriately.7 (Compare the Poincaré-Hopf Theorem, which
identifies the Euler characteristic of a compact manifold with the sum of the zeros
of a generic vector field, counted with appropriate signs.)

7Think of Z as a manifold transverse to the leaves of F , and take the “push-forward” of the

class of the trivial vector bundle over Z.
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The advantage of Theorem 4.4 and of Corollary 4.6 over Theorem 2.4 and its
corollaries is that we don’t need to assume the existence of an invariant transverse
measure, which is quite a strong hypothesis. However, if such a measure µ exists,
the numerical index in the situation of Corollary 4.6 is simply µ(Z).

Example 4.7. Let M be a compact Riemann surface of genus g ≥ 2, so that its
universal covering space M̃ is the hyperbolic plane, and its fundamental group π is
a discrete torsion-free cocompact subgroup of G = PSL(2, R). Let V = M̃ ×π S2,
where π acts on S2 = CP

1 by projective transformations (i.e., the embedding
PSL(2, R) ↪→ PSL(2, C)); V is an S2-bundle over M . Foliate V by the images of
M̃×{x}. In this case there is no invariant transverse measure, since π does not leave
any measure on S2 invariant. Nevertheless, IndD is non-zero in K0(C∗(V,F)). (It
is −2(g − 1) · [S2], where [S2] is the push-forward of the class of S2 ↪→ V ([19], pp.
1173–1174).)

One case of Theorem 4.4 that is easier to understand is the case where the fo-
liation F results from a locally free action of a simply connected solvable Lie group
G on the compact manifold M . As explained before, we then have C∗(M,F) ∼=
C(M) � G. However, because of the structure theory of simply connected solvable
Lie groups, the crossed product by G is obtained by dimG successive crossed prod-
ucts by R. However, when it comes to crossed products by R, there is a remarkable
result of Connes that can be used for computing the K-theory. For simplicity we
state it only for complex K-theory, though there is a version for KO as well.

Theorem 4.8 (Connes’ “Thom Isomorphism” [15], [70], [22]). Let A be a C∗-
algebra equipped with a continuous action α of R by automorphisms. Then there
are natural isomorphisms K0(A)

∼=→ K1(A �α R) and K1(A)
∼=→ K0(A �α R).

Note. Homotop the action α of R on A to the trivial action by considering
αt, αt(s) = α(ts), 0 ≤ t ≤ 1, so α1 = α and α0 is the trivial action. One way of
understanding the theorem is that it says that, from the point of view of K-theory,
K∗(A �αt

R) is independent of t, and thus

K∗(A �α R) ∼= K∗(A �trivial R) ∼= K∗(A ⊗ C∗(R)) ∼= K∗(A ⊗ C0(R)),

which can be computed easily by Bott periodicity.

Sketch of proof. Connes’ method of proof is to show that there is a unique
family of maps φiα : Ki(A) → Ki+1(A �α R), i ∈ Z/2, defined for all C∗-algebras A
equipped with an R-action α, and satisfying compatibility with suspension, natu-
rality, and reducing to the usual isomorphism K0(C) → K1(R) when A = C. Then
these maps have to be isomorphisms, since Takesaki-Takai duality [93] gives an
isomorphism (A �α R) �

bα R ∼= A ⊗K (here α̂ is the dual action of the Pontryagin
dual R̂ ∼= R of R), and then by the axioms, φi+1

bα ◦ φiα : Ki(A) → Ki+2(A) ∼= Ki(A)
must coincide with the Bott periodicity isomorphism. The only real problem is
thus the existence and uniqueness. First, Connes shows that if e is a projection in
A, there is an action α′ exterior equivalent to α (in other words, related to it by a
1-cocycle with values in the unitary elements of the multiplier algebra) that leaves
e fixed. Since exterior equivalent actions are opposite “corners” of an action β of R

on M2(A), by Connes’ “cocycle trick,” the K-theory for their crossed products is
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the same.8 So if there is a map φ0
α with the correct properties, φ0

α([e]) is determined
via the commuting diagram

K0(A)
φ0

α �� K1(A �α R)

∼=
��

K0(A)
φ0

α′ �� K1(A �α′ R)

Z = K0(C)

[1] �→[e]

��

φ0
trivial

∼=
�� K1(C∗(R)) = Z.

��

Here, the upward arrows at the bottom are induced by the inclusion C · e ↪→ A.
The axioms quickly reduce all other cases of uniqueness down to this one, so it
remains only to prove existence. There are many arguments for this: see [70], [22],
and §10.2.2 and §19.3.6 in [5]. The most elegant argument uses KK-theory, but
even without this one can define φ∗

α to be the connecting map in the long exact
K-theory sequence for the “Toeplitz extension”

0 → (C0(R) ⊗ A) �τ⊗α R → (C0(R ∪ {+∞}) ⊗ A) �τ⊗α R → A �α R → 0.

Here τ is the translation action of R on R∪ {+∞} fixing the point at infinity. But

(C0(R) ⊗ A) �τ⊗α R ∼= (C0(R) ⊗ A)�τ⊗trivial
∼= A ⊗K

by Takai duality again, so the connecting map in K-theory becomes a natural map
φ∗
α satisfying the correct axioms. �

Now we’re ready to apply this to the foliation index theorem. Suppose the
foliation F results from a locally free action of a simply connected even-dimensional
solvable Lie group G on the compact manifold M . Then

C∗(M,F) ∼= C(M) � G,

and iterated applications of Theorem 4.8 set up an isomorphism

K0(C∗(M,F)) ∼= K0(M × R
dimG) ∼= K0(M),

the last isomorphism given by Bott periodicity. Under these isomorphisms, one
can check that the index class of the leafwise Dirac operator goes first to the ex-
terior product of the class of the trivial line bundle on M with the Bott class in
K0(RdimG), and thus under Bott periodicity to the class of the trivial vector bundle
on M .

Example 4.9. Let G, π, and M be as in Example 4.7, and consider the 2-
dimensional subgroup H of G, the image in G of{(

a b
0 a−1

)
: a, b ∈ R, a > 0

}
⊂ SL(2, R).

8For α and α′ to be exterior equivalent means that αt
′(a) = utαt(a)u∗

t , for some map t �→ ut

from R to the unitaries of the multiplier algebra of A such that for each a ∈ A, t �→ uta and

t �→ aut are norm-continuous. Then one can manufacture an action of R on M2(A), the 2×2
matrices with entries in A, by the formula

β(t)

„

a11 a12

a21 a22

«

=

„

αt(a11) αt(a12)u∗
t

utαt(a21) α′
t(a22)

«

.
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Then H acts freely on G (say on the left) and hence locally freely on V = G/π,
the unit sphere bundle of M . So we have a foliation of V by orbits of H. This
foliation does not have an invariant transverse measure, since such a measure would
correspond to a π-invariant measure of H\G ∼= S1, which does not exist. However,
the discussion above computes the index of the leafwise Dirac operator on (V,F)
and shows it is non-zero.

4.3. C∗-Algebras and Z/k-Index Theory.

Definition 4.10. A Z/k-manifold is a smooth compact manifold with bound-
ary, Mn, along with an identification of ∂M with a disjoint union of k copies of a
fixed manifold βMn−1. It is oriented if M is oriented, the boundary components
have the induced orientation, and the identifications are orientation-preserving. See
Figure 4 for an illustration.

identical boundary components

Figure 4. A Z/3-manifold

One should really think of a Z/k-manifold M as the singular space MΣ = M/∼
obtained by identifying all k of the boundary components with one another. This
space is not a manifold (if k > 2), and does not satisfy Poincaré duality. The
neighborhood of a point on βM is a cone on k copies of Bn−1 joined along Sn−2, as
illustrated in Figure 5. If M is an oriented Z/2-manifold, then MΣ is a manifold,
but is not orientable, because of the way the two copies of βM have been glued
together. (For instance, if M is a cylinder, so βM = S1, then MΣ is a Klein bottle.)
So an oriented Z/k-manifold of dimension 4n does not have a signature in the usual
sense. But it does have a signature mod k, just as a non-orientable manifold has a
signature for Z/2-cohomology. (Since +1 = −1 in Z/2, the mod 2 “signature” of
a non-orientable manifold is simply the middle Betti number.) The signature of a
Z/k-manifold was defined by Sullivan [92], who showed that MΣ has a fundamental
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Figure 5. Link of a boundary point in MΣ (n = 2, k = 3)

class in homology mod k, and there is a Z/k-version of Hirzebruch’s formula,

signM = 〈L(M), [M ]〉 ∈ Z/k.

This formula is a special case of an index theorem for elliptic operators on Z/k-
manifolds, due originally to Freed and Melrose [31], [32]. Other proofs were later
given by Higson [38], Kaminker-Wojciechowski [45], and Zhang [97]. Higson’s
proof in particular made use of noncommutative C∗-algebras. The approach we
will present here is due to the author [78]. For simplicity we’ll deal with the
“ordinary” (K0) index of a complex elliptic operator D.

Definition 4.11. A Z/k-elliptic operator on a Z/k-manifold Mn, ∂M ∼= βM×
Z/k, will mean an elliptic operator on M (in the usual sense) whose restriction to
a collar neighborhood of the boundary (diffeomorphic to βM × [0, ε)× Z/k) is the
restriction of an R × Z/k-invariant operator on βM × R × Z/k. Thus, near the
boundary, the operator is entirely determined by what happens on βM .

We want to define a Z/k-valued index for such an operator by using the phi-
losophy of noncommutative geometry, that says we should use a noncommutative
C∗-algebra to encode the equivalence relation on M (that identifies the k copies of
βM with one another), instead of working on the singular quotient space MΣ. We
begin by following a trick introduced in [38] to get rid of the complications involved
with analysis near the boundary. First we attach cylinders to the boundary, replac-
ing M by the noncompact manifold N = M ∪∂M ∂M × [0,∞), as shown in Figure
6. It’s important to note that an operator as in Definition 4.11 has a canonical
extension to N , because of the translation invariance in the direction normal to the
boundary.

Now we introduce the C∗-algebra C∗(M ; Z/k) of the equivalence relation on N
that is trivial on M itself and that identifies the k cylinders with one another. A
simple calculation shows that

C∗(M ; Z/k) ∼= {(f, g) : f ∈ C(M), g ∈ C0(βM × [0,∞), Mk(C)),

with g|βM×{0} diagonal, and f |∂M matching g|βM×{0}}.
Furthermore, just as an elliptic operator on an ordinary manifold defines a class in
K-homology, a Z/k-elliptic operator D on M , as extended canonically to N , defines
a class in K0(C∗(M ; Z/k)). (This group should be viewed as the Z/k-manifold K-
homology of M .)

Similarly, we define a C∗-algebra C∗(pt; Z/k) which is almost the same, except
that M and βM are both replaced by a point. In other words,

C∗(pt; Z/k) = {f ∈ C0([0,∞), Mk(C)) : f(0) a multiple of Ik}.
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identical tubes

Figure 6. A Z/3-manifold with infinite cylinders attached

This is simply the mapping cone of the inclusion of the scalars into Mk(C) as
multiples of the k × k identity matrix, for which the induced map on K-theory is
multiplication by k on Z, so K0(C∗(pt; Z/k)) ∼= Z/k.

Now the collapse map c : (M, βM) → (pt, pt) induces a map on C∗-algebras in
the other direction, C∗(pt; Z/k) ↪→ C∗(M ; Z/k), and hence a map of K-homology
groups

c∗ : K0(C∗(M ; Z/k)) → K0(C∗(pt; Z/k)) ∼= Z/k.

The image of [D] under this map is called the analytic Z/k-index of D.

Definition 4.12. (the topological Z/k-index) Let [σ(D)] ∈ K∗(T ∗M) be
the class of the principal symbol of the operator, where K∗(T ∗M) is the K-theory
with compact supports of the cotangent bundle of M . Note that [σ(D)] is in-
variant under the identifications on the boundary, i.e., it comes by pullback from
the quotient space T ∗MΣ (the image of T ∗M with the k copies of T ∗M |βM col-
lapsed to one) under the collapse map M � MΣ. Following [31] we define the
topological Z/k-index IndtD of D as follows. Start by choosing an embedding
ι : (M, ∂M) ↪→ (D2r, S2r−1) of M into a ball of sufficiently large even dimension
2r, for which ∂M embeds Z/k-equivariantly into the boundary (if we identify S2r−1

with the unit sphere in C
r, Z/k acting as usual by multiplication by roots of unity).
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We take the push-forward map on complex K-theory

ι! : K0(T ∗M) → K̃0(T ∗D2r) ∼= K̃0(D2r)

and observe that ι!([σ(D)]) descends to K̃0(M2r
k ) ∼= K0(pt; Z/k) ∼= Z/k, M2r

k being
the Moore space obtained by dividing out by the Z/k-action on the boundary of
D2r, and call the image the topological index of D, Indt(D).

Theorem 4.13 (Z/k-index theorem). Let (M, φ : ∂M
∼=→ βM×Z/k) be a closed

Z/k-manifold, and let D be an elliptic operator on M in the sense of Definition
4.11. Then the analytic index of D in Ki(pt; Z/k) coincides with the topological
index Indt(D).

Sketch of proof. The idea, based on the Kasparov-theoretic proof of the
Atiyah-Singer Theorem ([5], Chapter IX, §24.5), is to write the class of D in
K0(C∗(M ; Z/k)) as a Kasparov product:

[D] = [σ(D)]⊗̂C0(T∗MΣ)α̂ ∈ K0(C∗(M ; Z/k)),

where
α̂ ∈ KK

(
C0(T ∗MΣ) ⊗ C∗(M ; Z/k), C

)
is a canonical class constructed using the almost complex structure on T ∗M and
the Thom isomorphism, and we view [σ(D)] as living in K0(T ∗MΣ).

But now, by associativity of the Kasparov product, we compute that

Ind(D) = [c∗]⊗̂C∗(M ;Z/k)[D] = [σ(D)]⊗̂C0(T∗MΣ)

(
[c∗]⊗̂C∗(M ;Z/k)α̂

)
.

So we just need to identify the right-hand side of this equation with Indt(D).
However, by Definition 4.12, Indt(D) = ι̂!([σ(D)]), where

ι̂! : K0(T ∗MΣ) → K0(T ∗D2r
Σ ) ∼= K0(M2r

k )

is the push-forward map on K-theory. And examination of the definition of ι̂! shows
it is precisely the Kasparov product with

[c∗]⊗̂C∗(M ;Z/k)α̂,

followed by a “Poincaré duality” isomorphism K0(C∗(pt; Z/k))
∼=→ K0(pt; Z/k). �

4.4. Roe C∗-Algebras and Coarse Geometry. Finally, we mention an ap-
plication of C∗-algebras to the topology “at infinity” of noncompact spaces. Recall
that we began Chapter 1 by talking about the differences between the spectral the-
ory of the Laplacian on compact and on noncompact manifolds. The same points
would have been equally valid for arbitrary elliptic operators.

Roe had the idea of introducing certain C∗-algebras attached to a noncompact
manifold, but depending on a choice of metric, that can be used for doing index
theory “at infinity.”

Definition 4.14. ([72], [73]) Let M be a complete Riemannian manifold (usu-
ally noncompact). Fix a suitable Hilbert space H (for example, L2(M, d vol)) on
which C0(M) acts non-degenerately, with no nonzero element of C0(M) acting
by a compact operator. A bounded operator T on H is called locally compact if
ϕT, Tϕ ∈ K(H) for all ϕ ∈ Cc(M), and of finite propagation if for some R > 0 (de-
pending on T ), ϕTψ = 0 for all ϕ, ψ ∈ Cc(M), with dist(suppϕ, suppψ) > R. Let
C∗

Roe(M) be the C∗-algebra generated by the locally compact, finite propagation
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operators. One can show that this algebra is (up to isomorphism) independent of
the choice of H.

Example 4.15. If M is compact, the finite propagation condition is always
trivially satisfied, and C∗

Roe(M) = K, the compact operators. If M = Rn with
the usual Euclidean metric, then Ki(C∗

Roe(M)) ∼= Z for i ≡ n mod 2, and
Ki(C∗

Roe(M)) = 0 for i ≡ n − 1 mod 2. (See [73], p. 33 and p. 74.)

Definition 4.16. Let X and Y be proper metric spaces, that is, metric spaces
in which closed bounded sets are compact. Then a map f : X → Y is called a
coarse map if it is proper (the inverse image of a pre-compact set is pre-compact)
and if it is uniformly expansive, i.e., for each R > 0, there exists S > 0 such that
if dX(x, x′) ≤ R, then dY (f(x), f(x′)) ≤ S. Note that this definition only involves
the large-scale behavior of f ; f need not be continuous, and we can always modify f
any way we like on a compact set (as long as the image of that compact set remains
bounded) without affecting this property. A coarse equivalence is a coarse map
f : X → Y such that there exists a coarse map g : Y → X and there is a constant
K > 0 with dX(x, g ◦ f(x)) ≤ K and dY (y, f ◦ g(y)) ≤ K for all x ∈ X and y ∈ Y .

Example 4.17. The inclusion map Z ↪→ R (when Z and R are equipped with
their standard metrics) is a coarse equivalence, with coarse inverse the “rounding
down” map x �→ �x�. More generally, if M is a connected compact manifold with
fundamental group π, and if M̃ is the universal cover of M , then M̃ is coarsely
equivalent to |π|, the group π viewed as a metric space with respect to a word-length
metric (defined by a choice of a finite generating set). The coarse equivalence is
again obtained by fixing a basepoint x0 ∈ M̃ and a fundamental domain F for the
action of π on M̃ , and defining f : |π| → M̃ by g �→ g · x0, g : M̃ → |π| by x �→ g
whenever x ∈ g · F . (The previous example is the special case where M = S1,
M̃ = R, π = Z, x0 = 0, and F = [0, 1).)

Proposition 4.18 (Roe [73], Lemma 3.5). A coarse equivalence X → Y in-
duces an isomorphism C∗

Roe(X) → C∗
Roe(Y ).

Theorem 4.19 (Roe). If M is a complete Riemannian manifold, there is a
functorial “assembly map” A : K∗(M) → K∗(C∗

Roe(M)). If D is a geometric el-
liptic operator on M (say the Dirac operator or the signature operator), it has a
class in K0(M), and A([D]) is its “coarse index.” For noncompact spin manifolds,
vanishing of A([D]) (for the Dirac operator) is a necessary condition for there being
a metric of uniformly positive scalar curvature in the quasi-isometry class of the
original metric on M .

There is a Coarse Baum-Connes Conjecture analogous to the usual Baum-
Connes Conjecture, that the assembly map A : K∗(M) → K∗(C∗

Roe(M)) is an
isomorphism for M uniformly contractible. (The uniform contractibility assures
that M has no “local topology”; without this, we certainly wouldn’t expect an
isomorphism, since K∗(C∗

Roe(M)) only depends on the coarse equivalence class of
M .)

Unfortunately, the Coarse Baum-Connes Conjecture is now known to fail in
some cases. For one thing, it is known to fail for some uniformly contractible mani-
folds without bounded geometry [20]. This suggests that perhaps one should change
the domain of the assembly map from K∗(M) to its “coarsification”
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KX∗(M) ([73], pp. 14-15), which is the inductive limit of the K∗(|U|), the nerves
of coverings U of X by pre-compact open sets, as the coverings become coarser and
coarser. As one would hope, it turns out that A : K∗(M) → K∗(C∗

Roe(M)) factors
through KX∗(M), and that K∗(M) → KX∗(M) is an isomorphism when M is
uniformly contractible and of bounded geometry. However, there is also an exam-
ple of a manifold M of bounded geometry for which KX∗(M) → K∗(C∗

Roe(M))
is not an isomorphism [95]. But it is still conceivable (though it seems increas-
ingly unlikely) that the Coarse Baum-Connes Conjecture holds for all uniformly
contractible manifolds with bounded geometry, or at least for all universal covers
of compact manifolds.

The main interest of the Coarse Baum-Connes Conjecture, aside from its aes-
thetic appeal as a parallel to the usual Baum-Connes Conjecture, is its connection
with the usual Novikov Conjecture (Conjecture 3.6). One has:

Theorem 4.20. (Principle of descent) The Coarse Baum-Connes Conjec-
ture for C∗

Roe(|π|), where π is a group, but viewed as a discrete metric space, implies
the Novikov Conjecture for π.

A sketch of proof can be found in [73], Chapter 8. Theorem 4.20 has been
applied in [96] to prove the Novikov Conjecture for any group π for which |π|
admits a uniform embedding into a Hilbert space. This covers both amenable
groups and hyperbolic groups.

4.5. Exercises.

Exercise 4.21. Consider the teardrop X shown in Figure 3, obtained by gluing
together D2/µn and D2. (Here D2 is the closed unit disk in C, and µn is the cyclic
group of n-th roots of unity, which acts on D2 by rotations.) Compute the topology
of the (oriented) orthonormal frame bundle P of X, which should be a closed 3-
manifold, and describe the locally free action of S1 ∼= SO(2) on P with P/S1 ∼= X.
Show that C∗

orb(X) is Morita equivalent to

A = {f ∈ C(S2, Mn(C)) : f(x0) is diagonal},
where x0 is a distinguished point on S2. This fits into a short exact sequence

0 → C0(R2, Mn(C)) → A → C
n → 0.

Deduce that K0(C∗
orb(X)) is free abelian of rank n + 1, and that K1(C∗

orb(X)) = 0.
From this it follows by duality that K0(C∗

orb(X)) is free abelian of rank n + 1.
Compute the class in K0(C∗

orb(X)) = Korb
0 (X) of the Euler characteristic operator

D, and also its index IndD in K0(pt) = Z.

Exercise 4.22. Suppose a foliation F results from a locally free action of a
simply connected even-dimensional solvable Lie group G on a compact manifold M .
Show that the index of the leafwise Euler characteristic operator is 0 in C∗(M,F),
both by an application of Corollary 4.6 and by a calculation using the Thom Iso-
morphism Theorem (Theorem 4.8), as was done above with the Dirac operator.

Exercise 4.23. Let M be a compact oriented surface of genus g and with
k > 1 boundary components (all necessarily circles), as in Figure 4, which shows
the case g = 1 and k = 3. Regard M as a Z/k-manifold. Compute the Z/k-index
of the Euler characteristic operator on M .
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Exercise 4.24. Construct complete Riemannian metrics g on R2 for which
K∗(C∗

orb(X)), X = (R2, g) is not isomorphic to K∗(pt), and give an example of an
application to index theory on X. (Hint: The Coarse Baum-Connes Conjecture is
valid for the open cone on a compact metrizable space Y . If Y is embedded in the
unit sphere Sn−1 in Rn, the open cone on Y is by definition the union of the rays
in R

n starting at the origin and passing through Y , equipped with the restriction
of the Euclidean metric on R

n.)
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Paris, 1976, pp. 43–72. Astérisque, No. 32–33. MR 54 #8741

2. Michael Atiyah and Wilfried Schmid, A geometric construction of the discrete series for
semisimple Lie groups, Invent. Math. 42 (1977), 1–62. MR 57 #3310

3. , Erratum: “A geometric construction of the discrete series for semisimple Lie groups”
[Invent. Math. 42 (1977), 1–62; MR 57 #3310 ], Invent. Math. 54 (1979), no. 2, 189–192.

MR 81d:22015
4. Paul Baum and Alain Connes, Geometric K-theory for Lie groups and foliations, Enseign.

Math. (2) 46 (2000), no. 1-2, 3–42. MR 2001i:19006
5. Bruce Blackadar, K-theory for operator algebras, second ed., Cambridge University Press,

Cambridge, 1998. MR 99g:46104
6. Robert Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math.

Helv. 56 (1981), no. 4, 581–598. MR 84j:58131

7. , Amenability and the spectrum of the Laplacian, Bull. Amer. Math. Soc. (N.S.) 6
(1982), no. 1, 87–89. MR 83f:58076

8. Lawrence G. Brown, Philip Green, and Marc A. Rieffel, Stable isomorphism and strong Morita
equivalence of C∗-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363. MR 57 #3866

9. Marc Burger and Alain Valette, Idempotents in complex group rings: theorems of Zalesskii
and Bass revisited, J. Lie Theory 8 (1998), no. 2, 219–228. MR 99j:16016

10. Alberto Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4) 26
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wasn’t time for.” Although the focus of the conference was on noncommutative
geometry, the topic discussed was conventional commutative motivations for the
circle of ideas related to the Novikov and Baum-Connes conjectures. While the
article is mainly expository, we present here a few new results (due to the two of
us).

It is interesting to note that while the period from the 80’s through the mid-90’s
has shown a remarkable convergence between index theory and surgery theory (or
more generally, the classification of manifolds) largely motivated by the Novikov
conjecture, most recently, a number of divergences has arisen. Possibly, these sub-
jects are now diverging, but it also seems plausible that we are only now close to
discovering truly deep phenomena and that the difference between these subjects
is just one of these. Our belief is that, even after decades of mining this vein, the
gold is not yet all gone.

As the reader might guess from the title, the focus of these notes is not quite
on the Novikov conjecture itself, but rather on a collection of problems that are
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Of course in such a subject of active research, there are necessarily many in-
teresting developments in this field since the 2000 conference and the subsequent
drafting of this article. We regret that we cannot incorporate all of these newer
findings in this document.

1. Topology and K-theory

1.1. For the topologist, the Novikov conjecture is deeply embedded in one of
the central projects of his field, that of classifying manifolds within a homotopy
type up to homeomorphism or diffeomorphism. To put matters in perspective, let
us begin by reviewing some early observations regarding this problem.

The first quite nontrivial point is that there are closed manifolds that are ho-
motopy equivalent but not diffeomorphic (homeomorphism is much more difficult).
It is quite easy to give examples which are manifolds with boundary: the punc-
tured torus and the thrice punctured 2-sphere are homotopy equivalent but not
diffeomorphic; their boundaries have different numbers of components.

The first class of examples without boundary are the lens spaces: quotients of
the sphere by finite cyclic groups of isometries of the round metric. To be concrete,
let S2n−1 be the unit sphere in C

n with coordinates (u1, . . . , un). For any n-tuple
of primitive k-th roots of unity e2πiar/k, one has a Zk action by multiplying the r-th
coordinate by the r-th root of unity. The quotient manifolds under these actions
are homotopy equivalent (preserving the identification of fundamental group with
Zk) iff the products of the rotation numbers a1a2 · · · an are the same mod k. On
the other hand, these manifolds are diffeomorphic iff they are isometric iff the
sets of rotation numbers are the same (i.e. they agree after reordering). There
are essentially two different proofs of this fact, both of which depend on the same
sophisticated number-theoretic fact, the Franz independence lemma.

The first proof, due to de Rham, uses Reidemeister torsion. Since the cellular
chain complex of a lens space is acyclic when tensored with Q[x] for x a primitive
k-th root of unity, one gets a based (by cells) acyclic complex 0 → C2n−1 →
· · · → C0 → 0, which gives us a well-defined nonzero determinant element in Q[x]
(now called the associated element of K1). This quantity is well-defined up to
multiplication by a root of unity (and a sign). One now has to check that these
actually determine the rotation numbers, a fact verified by Franz’s lemma. See
[Mil66] and [Coh73]. The second proof came much later and is due to Atiyah and
Bott [AB68]. It uses index-theoretic ideas critically, and implies more about the
topology of lens spaces. We will return to it a bit later.

After de Rham’s theorem, it was very natural to ask, following Hurewicz,
whether all homotopy equivalent simply-connected manifolds are diffeomorphic. (It
was not until Milnor’s examples of exotic spheres that mathematicians really con-
sidered seriously the existence of different categories of manifolds.) However, very
classical results can be used to disprove this claim as well. Consider a sphere bundle
over the sphere S4 where the fiber is quite high-dimensional. Since π3(O(n)) = Z

for large n, we can construct an infinite number of these bundles by explicit clutch-
ing operations; their total spaces are distinguished by p1. On the other hand,
if we could nullhomotop the clutching maps in π3(Isometries(Sn+1)) pushed into
π3(Selfmaps(Sn+1)), we would show that the total space is homotopy equivalent
to a product. A little thought shows that π3(Selfmaps(Sn+1)) is the same as the
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third stable homotopy group of spheres, which is finite by Serre’s thesis. Combin-
ing this information, one quickly concludes that there are infinitely many manifolds
homotopy equivalent to S4 × Sn+1 for large n, distinguished by p1.

Much of our picture of high-dimensional manifolds comes from filtering the
various strands arising in the above examples, analyzing them separately, and re-
combining them.

1.2. Before considering the parts that are most directly connected to operator
K-theory, it is worthwhile to discuss the connection between the classification of
manifolds and algebraic K-theory.

The aforementioned Reidemeister torsion invariant is an invariant of complexes
defined under an acyclicity hypothesis. It is a computationally feasible shadow of
a more basic invariant of homotopy equivalences, namely Whitehead torsion.

Let X and Y be finite complexes and f : X → Y a homotopy equivalence. Then
using the chain complex of the mapping cylinder of f rel X or its universal cover,
one obtains as before a finite-dimensional acyclic chain complex of based Zπ chain
complexes. The torsion τ(f) of f is the element of K1(Zπ) determined by means
of the determinant, up to the indeterminacy of basis, which is a sign and element
of π (viewed as a 1 × 1 matrix over the group ring). The quotient K1(Zπ)/ ± π is
denoted by Wh(π).

A geometric interpretation of the vanishing of τ(f) is the following: say that X
and Y are stably diffeomorphic (or, more naturally for this discussion, PL homeo-
morphic) if their regular neighborhoods in Euclidean space are diffeomorphic. The
quantity τ(f) vanishes iff f is homotopic to a diffeomorphism between thickenings
of X and Y . A homotopy equivalence with vanishing torsion is called a simple
homotopy equivalence. As before, we recommend [Coh73, Mil66] for Whitehead’s
theory of simple homotopy and [RS72] for the theory of regular neighborhoods.

Remark. If we require X and Y to be manifolds, then one can ask that the
stabilization only allow taking products with disks. Doing such does change the
notion; the entire difference however is that we have discarded the topological K-
theory. Two manifolds will be stably diffeomorphic in this restricted sense iff they
have the same stable tangent bundle (in KO, or KPL for the PL analogue) and are
simple homotopy equivalent. The proof of this fact is no harder than the polyhedral
result.

1.3. Much deeper are unstable results. The prime example is Smale’s h-
cobordism theorem (or the Barden-Mazur-Stallings extension thereof).

Theorem 1. Let Mn be a closed manifold of dimension at least 5; then {Wn+1:
M is one of two components of the boundary of W , and W deform retracts to
both}/diffeomorphism (or PL homeomorphism or homeomorphism) is in 1− 1 cor-
respondence with Wh(π).

The various W in the theorem are called h-cobordisms. The significance of
this theorem should be obvious: it provides a way to produce diffeomorphisms
from homotopy data. As such, it stands behind almost all of the high-dimensional
classification theorems.



46 STANLEY S. CHANG AND SHMUEL WEINBERGER

1.4. The proof that Wh(0) = 0 is an easy argument using linear algebra and
the Euclidean algorithm. Thus, in the simply-connected case the h-cobordisms are
products. In particular, every homotopy sphere is the union of two balls and an
h-cobordism that runs between their boundaries. The h-cobordism theorem asserts
that the h-cobordism is just an annulus; since the union of a ball and an annulus is
a ball, one can show that every homotopy sphere can be obtained by glueing two
balls together along their boundary. This result implies the Poincaré conjecture
in high dimensions: every homotopy sphere is a PL sphere. Using versions for
manifolds with boundary, one can quickly prove the following theorems.

Theorem 2 (Zeeman unknotting theorem). Every proper embedding1of Dn in
Dn+k for k > 2 is PL or differentiably trivial.

Theorem 3 (Rothenberg-Sondow Theorem). If p is a prime number, smooth
Zp actions on the disk whose fixed set is a disk of codimension exceeding 2 are
determined by an element of Wh(Zp) and the normal representation at a fixed point.

In the topological setting, the actions in the Rothenberg-Sondow theorem are
conjugate iff the normal representations are the same. However, all known proofs
of this claim are surprisingly difficult. Although Whitehead torsion is a topological
invariant for closed manifolds, the situation is much more complicated for problems
involving group actions and stratified spaces. Unfortunately, this topic cannot be
discussed here, but see [Ste88, Qui88a, Wei94].

The group Wh(Zp) is free abelian of rank (p − 3)/2; it is detected by taking
the determinant of a representative matrix and mapping the group ring Z[Zp] to
the ring of integers in the cyclotomic field associated to the p-th roots of unity.
According to Dirichlet’s unit theorem, the group of units of this number ring has
rank (p − 3)/2.

1.5. In general, there have been great strides in calculating Wh(π) for π finite
(see [Oli88]). We will see later that Wh(π) is conjecturally 0 for all torsion-free
groups, and that there is even a conjectural picture of what Wh(π) “should” look
like in general.

This picture looks even stronger when combined with higher algebraic K-
theory. Remarkably, the best general lower bounds we have for higher algebraic
K-theory are based on the ideas developed for application in operator K-theory,
namely, cyclic homology. See [BHM93]. These results have implications for lower
bounds on the size of the higher homotopy of diffeomorphism groups.

1.6. The h-cobordism theorem removes the possibility of any bundle theory,
since bundles over an h-cobordism are determined by their restrictions to an end.2

1This means that the boundary is embedded in the boundary.
2This claim is correct only when we discuss stable bundle theory; there is room for unstable

information from the way in which the two boundary components destabilize the “same” stabler

tangent bundle of the interior. This information does actually arise in the topological setting, and
reflects a relationship between the destabilization of bundle theory and algebraic K-theory. Note

that the “local structure” around points in the interior of the h-cobordism is the product of R and
the local structure at a boundary point; equivalently, in the case of manifolds, the dimension of
a manifold is one more than the dimension of its boundary. Hence the “tangential data” on the

interior is “stabler” than the data on the boundary.
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A key to understanding the role of bundles, unstably, is provided by Wall’s π-π
theorem (as reformulated using work of Sullivan):

Theorem 4. Let M be a manifold with boundary such that ∂M → M induces
an isomorphism of fundamental groups, and let S(M) = {(M ′, f) |
f : (M ′, ∂M ′) → (M, ∂M) is a simple homotopy equivalence of pairs}/Cat iso-
morphism. There is then a classifying space depending on the category, denoted
F/Cat, such that S(M) = [M : F/Cat ]. This S(M) is called the (Cat-) structure
set of M .

If M is noncompact, one can analogously define Sp(M), the proper structure
set, using proper homotopy equivalences. This is all explained in [Wal99, Bro72].

1.7. Much is known about the various F/Cat. For the duration we shall assume
that Cat = Top. In that case, first of all, one has a complete analysis of F/Cat
(due mainly to Sullivan, with an assist by Kirby and Siebenmann):

[M : F/Top] ⊗ Z(2)
∼= H4(M ; Z(2)) ⊕ H8(M ; Z(2)) ⊕ H12(M ; Z(2)) ⊕ · · ·

⊕H2(M ; Z2) ⊕ H6(M ; Z2) ⊕ H10(M ; Z2) ⊕ · · ·

at 2, and away from 2,

[M : F/Top] ⊗ Z[1/2] ∼= KO0(M) ⊗ Z[1/2].

In the second formula, a structure is associated to (the “Poincaré dual” of) the
difference of the signature operators on domain and range. In fact, all the formulas
turn out to work much better in Poincaré dual form; the π-π classification should
then be given by S(Mn) ∼= Hn(M ; L), where L is the spectrum whose homotopy
type is determined by the above calculations in cohomology. The reason for this
terminology will become clearer as we progress. The connection to the signature
operator is hopefully suggestive as well. (For these topics, see [MM79] and [RW].)

1.8. The material in the previous subsections gives rise to a complete analysis
of S(M) for M closed and simply-connected. Let M̂ denote M with a little open
ball removed. Then S(M) = S(M̂) by the Poincaré conjecture. The latter satisfies
the hypotheses of the π-π theorem, and thus S(M) ∼= Hn(M̂ ; L). Concretely, up
to finite indeterminacy, the structure set is determined by the differences between
the Pontrjagin classes pi(M) for 4i < n.

What about pi when 4i = n? The answer is that it is determined by the lower
Pontrjagin classes. The reason is that the Hirzebruch signature theorem asserts that
sign(M4i) = 〈Li(M), [M ]〉. Here, the quantity sign(M) is the signature of the inner
product pairing on H2i of the oriented manifold M , and L is a graded polynomial in
the Pontrjagin classes of M . This formula has many remarkable consequences. For
instance, Milnor used it to detect exotic spheres. However, for us, it first implies
that a particular combination of Pontrjagin classes is homotopy invariant. As a
second point, Hirzebruch’s formula can be viewed as a simple application of the
Atiyah-Singer index theorem [APS76].
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1.9. For general non-simply connected manifolds, there may exist further re-
strictions on the variation of the Pontrjagin classes, and there may exist more
manifolds with the same tangential data. We shall deal with each of these pos-
sibilities one at a time. Although the complete story must necessarily involve
interesting finite-order invariants, we shall concentrate on the ⊗Q story which, at
our current level of ignorance, seems to be closely tied to analysis. Said slightly
differently, the whole known and even conjectured story with ⊗Q can be explained
analytically. However, no one has any direct approach to obtaining isomorphisms
between L-theory and operator K-theory, and as we shall explain in the epilogue,
this connection seems unlikely.

1.10. The Novikov conjecture is the assertion that, if f : M → Bπ is a map,
then the image of the Poincaré dual of the graded L-class of M in ⊕Hn−4k(Bπ; Q) is
an oriented homotopy invariant. Note that, for the homotopy equivalent manifold,
one must use the obvious reference map to Bπ obtained by composing the homotopy
equivalence with f .

For π trivial, this statement is a consequence of the Hirzebruch signature theo-
rem. In fact, the Novikov conjecture is known for an extremely large class of groups
at present. We will describe some of this work in the next section.

1.11. It is worth noting that the cases for which the Novikov conjecture is
known are the only combinations of Pontrjagin classes that can be homotopy in-
variant. This claim can be proven axiomatically from the simply-connected case
together with cobordism of manifolds and the π-π theorem. However, we shall
“take the high road,” and use the surgery exact sequence, and work for simplicity
in the topological category. In this venue, we assert that, for M a compact closed
manifold of dimension at least 5, there is an exact sequence,

· · · → Ln+1(π1) → S(M) → Hn(M, L) → Ln(π1) → · · ·
where the L are 4-periodic, purely algebraically defined groups, and covariantly
functorial in π1 = π1M .

If M has boundary and if one is working rel boundary then the same sequence
holds. For manifolds with boundary, and for working not rel boundary, the se-
quence changes by the presence of relative homology groups and relative L-groups
L(π1, π

∞
1 ); the π-π theorem then reduces to the statement that L(π, π) = 0, which

is perfectly obvious from the exact sequence of a pair (which indeed does hold in
this setting).

We can do better by taking advantage of the periodicity.3 Let M be an n-
manifold, and define Sk(M) = S(M ×Dj) for any j such that n + j − k is divisible
by 4. With that notation, the sequence becomes

· · · → Ln+1(π1) → Sn(M) → Hn(M, L) → Ln(π1) → · · ·
(with obvious relative versions). With this notation, one can then say that the
sequence is a covariantly functorial sequence of abelian groups and homomorphisms.
The push-forward map on structures (elements of S-groups are called “structures”)

3Periodicity is not quite true in the topological category: it can fail by a copy of Z, if M
is closed, and cannot fail if M has boundary. See [Nic82], and see also [BFMW96] for the

geometric explanation and repair of this failure.



ON NOVIKOV-TYPE CONJECTURES 49

is closely related to the push-forward of elliptic operators of Atiyah and Singer
[AS68a] although defined very differently.

The functoriality implies that one can define Sn(X) for any CW complex X
just by taking the direct limit of Sn(Xk) as Xk runs though any ascending union
of sub-CW-complexes whose union is X. (Note that homology and L-theory both
commute with direct limits.) Consequently, the map Hn(M, L) → Ln(π1) factors
through the map Hn(Bπ1, L) → Ln(π1). The latter is called the assembly map. For
π trivial, the classification of simply-connected manifolds explained in Subsection
1.8 implies that the assembly map for a trivial group is an isomorphism. (Hence
the homology theory introduced in Subsection 1.7 has L-groups as its homotopy
groups, explaining the source of the notation.) The groups Li({e}) = Z, 0, Z2, 0 for
i = 0, 1, 2, 3 mod 4, respectively—exactly the homotopy groups of F/Top mentioned
above.

The commutativity of the diagram

Hn(M, L)

��

�� Ln(π1)

��
Hn(Bπ1, L) �� Ln(π1)

quickly implies that the only possible restriction on the characteristic classes comes
from the difference of the L-classes in Hn(Bπ1, L). Moreover, the homotopy invari-
ance of the higher signatures is exactly equivalent to the rational injectivity of the
assembly map.

1.12. A similar discussion applies to manifolds with boundary. We leave it
to the reader, with references to [Wei99, Wei90] for the impatient reader. For
instance, the π-π theorem implies that there are no homotopy invariant character-
istic classes of π-π manifolds. The extended higher signature conjecture would have
posited the proper homotopy invariance of the L-class in Hn(Bπ1, Bπ∞

1 ) = 0.

1.13. Although rational injectivity of the assembly map is conjectured to be
universal, surjectivity is not. The simplest example of this notion comes from the
Hirzebruch signature formula. Note that the right-hand side of the formula

sign(M) = 〈L(p∗(M)), [M ]〉
is clearly multiplicative in coverings: if N → M is finite covering, the L-classes pull
back, but the fundamental class is multiplied by the degree of the covering. This
argument implies that, for closed manifolds, signature is multiplicative in coverings.

Note that, as a consequence, if M and M ′ are homotopy equivalent and cobor-
dant by a cobordism V , then an obstruction to the homotopy equivalence being
homotopic to a diffeomorphism can be obtained by gluing the boundary compo-
nents of V together to obtain a Poincaré duality space, which might well not satisfy
the multiplicativity of signature. In fact, this method can be extended further, as
noted by [Wal99] and [APS75a, APS76], and underlies the proof of de Rham’s
theorem on lens spaces given in [AB68]. Suppose for simplicity that M has fun-
damental group π, and so does the cobordism V mentioned above. Then the coho-
mology of the universal cover of V has a π action on it. The equivariant signature
of this quadratic form can be shown to be a multiple of the regular representation;
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i.e. each character except for the one corresponding to the trivial element must
vanish. Atiyah and Bott had computed these characters for the lens space situa-
tion in the course of their argument. The multiplicativity issue is equivalent to the
vanishing of the average of these characters.

Remark. The multiplicativity invariant can be used even if the fundamental
group is infinite: one must use the von Neumann signature of the universal cover in
place of ordinary signature. (The relevant multiplicativity is Atiyah’s L2 signature
theorem.) This is the key point in the proof of the following flexibility theorem,
perhaps one of the simplest general applications of analytic methods that does not
yet have a purely topological proof:

Theorem 5 ([CW03]). If M4k+3 has non-torsion-free fundamental group,
k > 0, then S(M) is infinite. (This theorem fails in all other dimensions, except 0
and 1 when the hypothesis is vacuous – at least if the Poincaré conjecture is true.)

1.14. The “trick” of the previous subsection can sometimes be turned into a
method or an invariant, a so-called secondary invariant, even in situations where
the manifolds are not (a priori known to be) cobordant. A first example arises in
the situation of the previous subsection. If M is an odd-dimensional manifold with
finite fundamental group, then some multiple sM of it bounds a manifold with
the same fundamental group. One can then consider the signature of the universal
cover of that manifold, multiplied by 1/s to correct for the initial multiplication.
(Signature can be defined for manifolds with boundary just by throwing away the
singular part of the inner product.)

A much deeper way of accomplishing the same task, which applies in some
circumstances where the cobordism group is not torsion, is due to [APS75a], who
defined a real-valued invariant of odd-dimensional manifolds with finite-dimensional
unitary representations of their fundamental groups. If the image of the represen-
tation is a finite group, it reduces to what we just considered above, but in general
it is much more subtle. Years ago, the first author conjectured that:

Conjecture 1. If π1M is torsion-free, then for any unitary representation
ρ, the Atiyah-Patodi-Singer invariant is homotopy invariant; in general it is an
invariant, up to a rational number.

The second statement was proven in [Wei88] as an application of known cases
of the Novikov conjecture. In the original paper, it was shown to follow from the
Borel conjecture. Keswani [Kes98] proved it for a class of groups, such as amenable
groups, assuming a version of the Baum-Connes conjecture.

Cheeger and Gromov [CG85] considered the von Neumann analogue of this
discussion. Mathai [Mat92] made the analogous conjecture to the one above: that
the Cheeger-Gromov invariant is homotopy invariant for manifolds with torsion-free
fundamental group. Special cases are verified in [Mat92, Kes00, CW03, Cha04],
in all cases using Novikov-like ideas. The flexibility result of the previous subsection
is the converse to Mathai’s conjecture.

Finally, we should mention the ideas of [Lot92] and [Wei99] which define
“higher” versions of these secondary signature-type invariants in situations in which
the Novikov conjectures provide for the existence of higher signatures to be defin-
able (in a homotopy-invariant fashion). Unlike the classical secondary invariants,
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these ideas require some cohomological vanishing condition, rather like Reidemeis-
ter torsion. We will postpone further discussion of these subjects until Subsection
1.17.

1.15. We have seen that the entire classification of simply-connected manifolds
follows essentially from the Poincaré conjecture (Smale’s theorem) and the formal
structure of surgery theory. The same result is true for any fundamental group:
understanding any manifold with that fundamental group well enough will deter-
mine the classification theory for all. The Borel conjecture, or topological rigidity
conjecture, is the following:

Conjecture 2. If M is an aspherical manifold and f : M ′ → M is a homotopy
equivalence, then f is homotopic to a homeomorphism.

In fact, it is reasonable to extend the conjecture to manifolds with boundary
and homotopy equivalences f that are already homeomorphisms on the boundary.
(Similarly, one can deal with proper homotopy equivalences between noncompact
aspherical manifolds that are assumed to be homeomorphisms in the complement
of some unspecified compact set.)

Notice that the Borel conjecture implies that Wh(π) = 0 for the fundamental
group of an aspherical manifold (exercise!). Note also that, by enlarging our per-
spective to include the noncompact case, the aggregate of π to which the conjecture
applies is the set of countable groups of finite cohomological dimension. (In fact, it is
pretty obvious, by direct matrix considerations, that one can remove the countabil-
ity, if one so desires!) Furthermore, by feeding the problem into the surgery exact
sequence, one obtains in addition the statement that A : Hn(Bπ1, L) → Ln(π1) is
an isomorphism for all n. Indeed, the Borel conjecture (for all n) is equivalent to
the truth of these two assertions.

Much is known about the Borel conjecture; so far, no one knows of any coun-
terexample to the claim that these algebraic assertions hold for all finite groups.
(Note that for all groups with torsion, the map A fails to be a surjection by the
flexibility theorem for n divisible by 4.)

1.16. It is probably worthwhile to discuss the motivation for the Borel con-
jecture and its variants. Reportedly, Borel asked this question in response to the
theorems of Bieberbach and Mostow about the classification of flat and hyperbolic
manifolds, respectively. In the first case, an isomorphism of fundamental groups
gives an affine diffeomorphism between the manifolds and in the second (assum-
ing the dimension is at least three) it gives an isometry (which is unique). Since
symmetric manifolds of noncompact type are all aspherical, Borel suggested that
perhaps this condition should be the topological abstraction of a symmetric space,
and that, without assuming a metric condition, one should instead try for a home-
omorphism.

In light of this suggestion, it is worthwhile to consider the noncompact version.
For noncompact hyperbolic manifolds of finite volume (the nonuniform hyperbolic
lattices), Mostow’s rigidity theorem remains true (although its failure in dimension
2 is even more dramatic: the homotopy type does not even determine the proper
homotopy type of the manifold) as was proven by Prasad.
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It might therefore seem reasonable (as was done in at least one ICM talk!) to
suggest that Borel’s conjecture could be extended to properly homotop a homotopy
equivalence to a nonuniform lattice quotient to a homeomorphism. The following
result that we proved with a theorem of Alex Lubotzky shows that this situation
never occurs. (We shall give a different nonuniform rigidity theorem in Part 2.)

Theorem 6 ([CWb]). Suppose that Γ is a nonuniform irreducible arithmetic
lattice in a semisimple Lie group G. Let K be the maximal compact subgroup of G.
If rankQ(Γ) > 2, then there is a non-properly-rigid finite-sheeted cover of Γ\G/K.

In Section Two we will explain why it is extremely likely that proper rigidity
holds if rankQ(Γ) = 1 or 2. (If rankQ(Γ) = 0, then the lattice is cocompact by the
well-known theorem of Borel and Harish-Chandra.)

Remark. In fact, if the R-rank is large enough and rankQ(Γ) > 2, then one
can construct infinite structure sets with nontrivial elements detected by Pontrjagin
classes (e.g. for SLn(Z) for n sufficiently large, using Borel’s calculations). Unlike
the elements constructed in Theorem 6, these elements do not die on passage to
further finite-sheeted covers. Note that, for a product of three punctured surfaces,
the proper rigidity conjecture is always false (for any cover), but is virtually true,
in that any counterexample dies on passing to another finite cover!

1.17. We now shall consider a much more fruitful (but still false) conjecture
suggested by the heuristic that led to the Borel conjecture: the “equivariant Borel
conjecture” or “equivariant topological rigidity conjecture.” Notice that Mostow
rigidity actually immediately implies the following seeming strengthening of itself.

Theorem 7. Suppose that M and N are hyperbolic manifolds, and f : π1N →
π1M is an isomorphism which commutes with the representation of a group G on
Out(π) induced by actions of G by isometries on M and N . Then there is a unique
isometry between M and N (realizing f) which conjugates the G-actions to each
other.

Mostow rigidity is the case of this theorem when G is trivial; on the other
hand, since the isometry between M and N realizing any given group isomorphism
is unique, it must automatically intertwine any actions by isometries that agree on
fundamental groups. So let us now make another conjecture:

Conjecture 3. Suppose that G acts aspherically and tamely on a compact
closed aspherical manifold M , and that f : N → M is an equivariant homotopy
equivalence. Then f is homotopic to a homeomorphism.

The condition that the action be tame means that one assumes that all com-
ponents of all fixed point sets are, say, locally flatly embedded topological subman-
ifolds, and the asphericality means that these components are all aspherical. This
condition means that these spaces are the terminal objects in the category of spaces
which are connected to a given one by equivariant 1-equivalences; i.e. one considers
maps X → Y which induce isomorphisms [K, X]G → [K, Y ]G for any G-1-complex,
i.e. a 1-complex with a G-action. See [May].

In fact, this conjecture is false for several different reasons. However, it points
us in the right direction. For one, its analytic analogue is the celebrated Baum-
Connes conjecture. For a second, its “Novikov shadow” does seem to be true:
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Conjecture 4 (Equivariant Novikov conjecture, see [RW90]). Suppose
that G acts tamely and aspherically on a finite-dimensional space X, and that
f : M → X is an equivariant map. Then for any equivariant map g : N → M
which is a homotopy equivalence, one has f∗g∗(∆(N)) = f∗(∆(M)) in KG

∗ (X),
where ∆ denotes the equivariant signature operator.

The hypothesis that G acts tamely is point-set theoretic; smoothness is cer-
tainly more than enough. For example, this conjecture holds whenever X is a
symmetric space of noncompact type and G is a compact group of isometries of X.
It is also worth noting that one can often build equivariant maps from any M with
the appropriate fundamental group to this X using harmonic map techniques; see
[RW90].

An analysis of this conjecture (for the case of discrete G) is that, if G is the
“orbifold fundamental group of X,” i.e. 1 → π1X → Γ → G → 1 is exact, then
KOG

∗ (X) ⊗ Z[1/2] must inject into L(Γ) ⊗ Z[1/2]. In the next subsections we will
discuss more refined estimates of L(Γ). Working rationally, we see where we went
wrong in our understanding of L(Γ). Before our estimate was KOn(BΓ) ⊗ Q =
KOn(X/G)⊗Q, which differs a great deal from KOG

n (X)⊗Q because of the fixed-
point sets. If X is a point, we see that the representation theory of G enters, exactly
as we saw before in our discussion of secondary invariants. In fact, most of the higher
secondary invariants, when they are defined, take values in KOG

n+1(EG, X) ⊗ Q.

Remark. The conjecture that these refined lower bounds for L-theory hold
universally would imply the infiniteness of structure sets proven above using L2

signatures.

1.18. Unfortunately, the equivariant Borel conjecture is false. The first source
of counterexamples discovered was related to the Nil’s of algebraic K-theory [BHS64,
Wal78a]. Soon thereafter analogous counterexamples were discovered based on
Cappell’s Unils [Cap74b]. See [CK91] for a discussion of these examples. The
full explanation requires an understanding of equivariant h-cobordism and classifi-
cation theorems; we cannot describe these topics here, but recommend the surveys
[CWa, HW01, Wei94].

Let us begin with the equivariant h-cobordism theorem. According to Stein-
berger and West’s analysis (Quinn provided a more general version for all stratified
spaces), one has an exact sequence:4

· · · → H∗(M/G; Wh(Gm)) → Wh(G) → Whtop(M/G relsing)

→ H∗(M/G; K0(Gm)) → K0(G) → Ktop
0 (M/G relsing)

→ H∗(M/G; K−1(Gm)) → · · ·
where Gm is the isotropy of the point m. Here the “rel sing” means that we are
considering h-cobordisms which are already products on the singular set; note that,
unlike the smooth case, this condition does not give us a neighborhood of the set
on which it is a product. It is precisely that which is measured by the homology
term.

4For the development of of such homology groups, see [Qui82] and the appendix of [Wei94]
for homology with coefficients in a cosheaf of spectra. Note that it is an analogue of generalized

cohomology theories and of sheaf cohomology.
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Perhaps the connection between a Whitehead group and K0 seems odd. This
interaction is analogous to (and actually stems from) a phenomenon studied by
Siebenmann, arising from his thesis. Siebenmann discovered that the h-cobordism
theorem can be extended from the situation of compact manifolds to a wide range
of noncompact manifolds. A condition that renders the statements much simpler is
“fundamental group tameness,” which asserts that there is an ascending exhausting
sequence of compact sets K1, K2, . . . in W , such that the maps M\K1 ← M\K2 ←
M\K3 ← · · · are all 1-equivalences. Let us assume that W has one end (so these
complements are all connected). Then we denote the common fundamental group
of the complements by π∞

1 W . According to Siebenmann, there is a map

Whp(W ) → Wh(π1W, π∞
1 W )

which thus fits into an exact sequence

· · · → Wh(π∞
1 W ) → Wh(π1W ) → Whp(W )

→ KO(π∞
1 W ) → KO(π∞

1 W ) → · · ·
Note that when the fixed set consists of isolated points, this exact sequence for Whp

of the orbit space of the free part is the same as the Steinberger-West sequence.
If W is the interior of a compact manifold with boundary, then the target of

the boundary map Whp(W ) → K0(π∞
1 W ) measures the obstruction to completing

the h-cobordism as a manifold with corners. The homology term is analogous to a
controlled K0 or Wh; we will return to controlled algebra in Section Two. In the
Whitehead story, it turns out that Whtop decomposes into a sum of terms, one for
each stratum of M/G, each of the form Whtop(Z/H relsing) for some Z and some
H. For surgery theory, this decomposition does not hold, and the strata interact
in a much more interesting way.

In any case, we now consider some particularly simple equivariantly aspherical
manifolds, and understand what is implied by the vanishing of Whtop. Let M = Dn

with a linear action. Then the homology would be concentrated at the origin. The
map H∗(M/G; Wh(Gm)) → Wh(G) is an isomorphism (and similarly for K0), and
indeed Whtop(M) = 0. Now let us consider M = S1 × Dn. Again the homology is
concentrated entirely on the singular part, and we have

H∗(S1; Wh(G)) ∼= Wh(G) × K0(G) → Wh(Z × G).

This map is indeed a split injection, but it is not an isomorphism. The cokernel
is Nil(G) × Nil(G) according to the “fundamental theorem of algebraic K-theory”
[Bas68]. These Nil groups are rather mysterious. A general theorem of Farrell
shows that Nil is infinitely generated if it is nontrivial. Some calculations can be
found in [BM67] and [CdS95].

Similarly, in L-theory, the equivariant Borel conjecture would imply calcula-
tional results about the L-theory of, say, linear groups. The map
H∗(M/G; L(Gm)) → L(G) should be an isomorphism when M is aspherical. (In-
cidentally, away from 2, the left-hand side can be identified with KOG[1/2].) It
is also not so hard to change the context of all of this discussion from finite quo-
tients of aspherical manifolds to proper actions on contractible manifolds. However,
these conjectures were already disproved by Cappell’s results on the infinite dihe-
dral group Z2 ∗ Z2. Cappell showed that L2(Z2 ∗ Z2) is not just a sum of copies
of L2(Z2) concentrated at fixed points, but rather that there is another infinitely
generated summand that is not in the image of the relevant homology group.
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These conjectures can be somewhat rehabilitated by considering the properties
of Nil and Unil. For instance, one can ask about other rings besides integral group
rings. The conjectures then lose some of their geometric immediacy, but with Q,
for instance, they stand a chance of being true. (For instance, whenever 1/2 is
in the coefficient ring, Cappell’s Unils vanish identically, and there is no need for
any further corrections to the isomorphism conjecture.) Just as the “fundamental
theorem of algebraic K-theory” is true for all rings, it is very worthwhile to un-
derstand to what extent the purported calculations apply to general rings, even to
the point of mere split injectivity. One might mention at this point the wonderful
result of Bökstedt, Hsiang and Madsen affirming the algebraic K-theoretic version
of injectivity of the usual assembly map for Z, after tensoring with the rationals, for
groups with finitely generated integral homology [BHM93]. Unfortunately, their
method does not apply to other rings, and does not directly imply anything about
the algebraic K-theoretic injectivity statement raised here.

1.19. There is another more geometric reason why the equivariant Borel con-
jecture fails; the reasons are orthogonal to the algebraic problems discussed in the
previous subsection, but are, undoubtedly5, related to pseudoisotopy theory. This
second failure occurs when the gap hypothesis does not hold.6 Again, the construc-
tion of the counterexamples and their classification would take us rather far afield,
but it seems worth mentioning one simple example: a crystallographic group.

Suppose that one looks at an action of Zp on T p−3 × T p, where the action
on the first coordinates is trivial, and on the second set is by permutation. The
fixed point set is a T p−2 in T 2p−3 exactly at the edge of dimensions for which it is
possible for homotopic embeddings not to be isotopic. In fact, it is quite easy to
build nonisotopic embeddings: take a curve in π1(T 2p−3) and push a small sheet of
the T p−2 around that curve and then link this little sheet to the original T p−2 some
number of times. This construction does not completely determine the curve. Using
the opposite linking, one can replace a curve by its opposite; in addition, curves
that can be homotoped into T p−2 do not change the isotopy class of the embedding.
But in essence one produces isotopy classes of embeddings of T p−2 isotopic to the
original embedding (see [Shi99]), one for each element in Z[Z(p−1)∗]Z2 .

Cappell and the second author showed [CWa] in this special case that an
embedding is the fixed set of some Zp-action equivariantly homotopy equivalent
to the affine action iff the new embedding is isotopic to its translate under the
Zp action. Furthermore, the action is unique up to conjugacy. Note that the
counterexamples exist even rationally; they do display a nilpotency. Any particular
action is conjugate to the affine action after passing to a cover. Passing to any
large enough cover, we find that the curves used for modifying the embedding no

5This word brazenly advertises that we are aware of no direct connections.
6In fact, there are general theorems of Shirokova [Shi99] which assert that the equivariant

Borel conjecture is always false (under very weak assumptions) whenever the gap hypothesis fails.
This gap hypothesis is the bane of the classification theory of group actions; it assumes that,

whenever MH lies in MK , either these fixed sets coincide or one is somewhat less than half the
dimension of the other. Necessary in the establishment of the foundations of equivariant surgery

theory (see Memoirs of the AMS by Dovermann and Petrie [DP82] and by Dovermann and
Rothenberg [DR88]), the condition is needed to allow for surgeries performed inductively over
the strata. It is important to realize that the gap hypothesis is usually assumed to make progress,

not at all because it is natural or generally true.
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longer go around, and thus do not change the embedding. More generally, there
are connections to embedding theory, but they are not quite as precise as in this
special case [Wei99].

1.20. Farrell and Jones have suggested another very general way to handle the
failure of these algebraic assembly maps to be an isomorphism. Essentially the idea
is the following: we could have been led to our previous isomorphism conjecture by
a somewhat different line of reasoning.

Observing that the assembly map A : H∗(Bπ; L) → L∗(π) is not an isomor-
phism for groups with torsion, we could have looked for “the universal version of an
assembly map that does not oversimplify L(π) for π finite.” For each Γ we might
consider EΓ, which has an equivariant map from EΓ → EΓ, and build an assembly
map H∗(EΓ/Γ; L(Γx)) → L(Γ). (The various Γx will run over finite subgroups of
Γ.) Now that we see that even this modified conjecture fails for groups like Z × π,
for π finite, and Z2 ∗Z2, they suggest reiterating the process, but now with respect
to the “virtually cyclic groups,” i.e. the groups with cyclic subgroups of finite in-
dex. Thus one builds a more complicated classifying space EΓ, on which Γ acts,
and uses it for an assembly map. One should be somewhat careful, because the
action cannot be proper to give us the requisite infinite groups as isotropy, but it is
quite simple to build the correct thing simplicially. We refer the interested reader
to [FJ93, DL98] for more information.

1.21. It is worth making one more remark before closing this general section
(i.e. one devoid of information about the conjectures themselves) about the con-
nection to index theory and the geometric implications thereof.

This article is devoted to analogues in index theory of the Novikov conjecture
and the Borel conjecture, indeed in all of the versions discussed above and in the
ones to be discussed in Section Two. There is no need for the Farrell-Jones iso-
morphism ideas, because for virtually cyclic groups the Baum-Connes conjecture
is true, unlike its Borel cousin. The topological side of these issues, for the mo-
ment, has additional complications arising from deep arithmetic connections. (The
L-theory of finite groups, for instance, has a beautiful and important arithmetic
side not visible in the theory of C∗-algebras). On the other hand, the analysis has
beautiful connections to representation theory (some discussion on this subject will
spill off into the Epilogue) and other geometric applications through other operators
besides the signature operator.

These other applications can also suggest a variety of problems and methods.
Two of these merit at least a mention here, although we do not have the space to
develop them fully. The first is the work that a number of people have done on the
(generalized) Hopf conjecture: that for any aspherical 2n-manifold, the Euler char-
acteristic is 0 or of sign (−1)n. Methods of L2 index theory applied to the de Rham
(and Dolbeault) complex have given positive results in some spaces with negative
curvature and Kähler structure (see [Gro91]). The second problem, now known to
be very closely tied to the Baum-Connes conjecture, is the characterization of the
closed7 manifolds which have metrics of positive scalar curvature.

7This connection extends rather further into the setting of noncompact manifolds, as we will

discuss in Section 2. Other noncompact instances will be mentioned later.
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The connection between index theory and the positive scalar curvature prob-
lem already appears in the Annals papers of Atiyah and Singer [AS68b]; they
prove in the same paper the Hirzebruch signature formula using the index theorem
and a vanishing theorem for the Â-genus of a spin manifold with positive scalar
curvature (based on a key calculation of Lichnerowicz). Combining ideas that are
intimately related to (partial results on) the Novikov conjecture, one can obtain
information on the non-simply connected case. We recommend the papers [GL80],
[GL83], [Ros83], [Ros86a], [Ros86b], [Sto92] and the forthcoming monograph
by Rosenberg and Stolz that shows that a “stable” version of the positive scalar
curvature problem can be completely solved if the Baum-Connes conjecture were
true, or even just the (easier) injectivity half.

2. K-theory and Topology

This section is an introduction to some of the topological methods that have
been applied to the conjectures made in the previous section. Unlike that section,
which explained how K-theory contributes to topology, this one studies contribu-
tions that topology makes to K-theory and L-theory.

2.1. The same general technique used to prove the h-cobordism theorem (han-
dlebody theory) was subsequently applied by a number of researchers to a host of
other problems, which in light of surgery theory imply solutions to Novikov and
Borel conjectures in special cases. Here are some of those problems:

(a) Putting a boundary on a noncompact manifold: Suppose that W is a
noncompact manifold. When is W the interior of a compact manifold with
boundary? Aside from homotopical or homological conditions at infinity,
the answer is regulated by K0(π∞

1 W ). This idea was Siebenmann’s thesis
[Sie]. A nice special case due earlier to [BLL65] is that, if W is simply-
connected at infinity, then W can be compactified iff its integral homology
is finitely generated. You might want to go back now and review the
proper h-cobordism discussion from the previous section.

(b) Fibering over a circle: Without loss of generality, suppose that one has
a surjection from π1M → Z. When is this map induced from a fiber
bundle structure on M over the circle? The obvious necessary condition
is that the induced infinite cyclic cover of M should have some finiteness
properties. Ultimately, the result is determined by Wh(π1M). The history
here is somewhat complicated; see Farrell’s thesis for an analysis of the
problem as a sequence of obstructions in terms of pieces of Wh(π1M);
Siebenmann [Sie70] gave a complete “one step” analysis of the problem.
[Far72] sketches a very simple proof based on Siebenmann’s thesis.

Remark. If one lightens the demand on the fibration to be an ap-
proximate fibration (see, e.g. [HTW91]), then the obstruction to an ap-
proximate fibration over S1 lies entirely in the Nil piece of Wh(π1M). In
this form, a slightly strong form of the Borel conjecture can be stated as
follows:
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Conjecture 5. Suppose that M is a manifold and V is the cover of
M induced by a homomorphism π1M → Γ, where Γ is a group with BΓ
a finite complex. Then there is an aspherical homology manifold Z and
an approximate fibration M → Z iff V is homotopically finite, and an
obstruction involving the various Nil(π1V ) vanishes.

Note that this conjecture implies that BΓ is automatically a Poincaré
complex; this implication can be verified directly. Otherwise, the space V
is never finitely dominated.8 When V is simply-connected, this conjecture
boils down to the Borel conjecture for the group Γ (see the discussion in
Chapter 13 of [Wei94] and also the introduction to [HTWW00]). Also,
as a result of [WW88], if one wants to avoid discussion of approximate
fibrations, in the special case that Z is a manifold, one can decide to allow
T × M to fiber over Z (for some torus factor), and then one can remove
the Nil obstruction as well.

(c) Splitting theorems: Here one has a homotopy equivalence f : M ′ → M
and a codimension one submanifold N of M ; the problem is to homotop
f to a map, still called f , such that f is transverse to N , and f−1(N) is
homotopy equivalent to N (mapped to one another by f). The ultimate
theorem in this direction is Cappell’s splitting theorem, which applies
whenever π1N injects into π1M and the normal bundle of N is trivial.

Earlier partial results are due to Wall, Farrell, Farrell-Hsiang, Lee and
others.

Cappell [Cap74b] gave very useful conditions under which τ(f), the Whitehead
torsion of the map, determines the obstruction. However, in general this claim does
not hold: in [Cap74a] he gave infinitely many PL manifolds homotopy equivalent
to RP

4k+1#RP
4k+1 that are not connected sums. This example is responsible for

some of the instances of non-rigid affine crystallographic group actions on Euclidean
space discussed in the last section.

Note that the fibering theorem gives some situations in which one can analyze
the splitting problem, and one can show in fact (using some surgery theory) that the
splitting theorem and the fibering problem are equivalent for the class of groups
that arise in the latter problem: The fibering problem reduces to an analysis of
groups that act simplicially on the line, and the splitting theorem to those that act
on some tree.

2.2. The translation of fibering and splitting theorems was done first by Shane-
son in his thesis [Sha69]; see also Wall’s book [Wal99]. This translation led to the
first proofs of the Borel conjecture for tori by Hsiang-Shaneson and Wall (the same
proof works verbatim for poly-Z groups); Farrell and Hsiang had earlier given a
proof of the Novikov conjecture for the free abelian case. Cappell’s paper [Cap74b]
gives the Mayer-Vietoris sequence in L-theory for groups acting on trees associated
to his splitting theorem. The corresponding theorems in algebraic K-theory are due
to Waldhausen [Wal78a] and in operator K-theory to Pimsner [Pim86]. However,
as is now extremely well known, most interesting groups do not act at all on trees.
(See Serre [Ser80] for an early example.)

8According to Wall, this condition is equivalent to a chain complex condition.



ON NOVIKOV-TYPE CONJECTURES 59

2.3. The vanishing of algebraic K-groups and the Borel conjectures were next
proved for the class of flat and almost flat manifolds in a very beautiful and in-
fluential paper of [FH83]. This paper combined a variant of Brauer’s induction
theory from classical representation theory, due to Dress [Dre75], with controlled
topology methods. These methods could have been adapted (more easily, in fact)
to index theory, but there never seemed to be a need for it. They were however
applied successfully to crystallographic groups with torsion in algebraic K-theory
by [Qui88b] and to L-theory by Yamasaki [Yam87]. These papers were very influ-
ential in formulating the cruder isomorphism conjectures mentioned in Subsection
1.17 of Section One. (A more perspicacious mathematical community could have
done so on the basis of thinking carefully about proper actions on trees, which can
be analyzed on the basis of the theorems of Waldhausen and Cappell.)

2.4. To develop controlled topology one must redo all of the classical topology
problems such as those mentioned in Subsection 2.1 (for example, putting bound-
aries on open manifolds), but in addition keep track of the size of these constructions
in some auxiliary space. Here is the classical example.

Theorem 8 ([CF79]). Suppose that M is a compact manifold. Then for every
ε > 0 there is a δ > 0 such that, if f : N → M is a δ-controlled homotopy
equivalence, then it is ε-homotopic to a homeomorphism.

Now for the definitions. A δ-controlled homotopy equivalence is a map f : N →
M , equipped with a map g : M → N , so that the composites fg and gf are
homotopic to the identity by homotopies H and H ′, such that the tracks (i.e. the
images of (H ′)−1(p, t) as t varies, for any specific p) of all of these homotopies
(perhaps pushed using f) in M have diameter less than δ. A similar definition
holds for ε-homotopy.

The result stated (called the α-approximation theorem) is an example of a
rigidity theorem. While it clarifies the idea of control, the following theorem of
Quinn [Qui79, Qui82] separates the geometric problem from the control and also
has obstructions, and thus gives a better feel for the subject.

Theorem 9 (Controlled h-cobordism theorem). Let X be a finite-dimensional
ANR (e.g. a polyhedron). Then for all ε > 0 there is a δ > 0 such that, if f :
Mn → X is a map with all “local fundamental groups = π” (e.g. if there is a map
M → Bπ which when restricted to any fiber of f is an isomorphism on fundamental
groups), n > 4, then any δ-h-cobordism with boundary M defines an element in
H0(X;Wh(π)); this element vanishes iff the h-cobordism is ε-homeomorphic over X
to M × [0, 1]. Moreover, every element of this group arises from some h-cobordism.

Notice two extremes: If X is a point, this result is the classical h-cobordism
discussed in Section One, Subsection 1.3. If M = X then this result gives a met-
ric criterion (due to Chapman and Ferry) that can be used to produce product
structures, since Wh(e) = K0(e) = K−i(e) = 0. This result includes the celebrated
result of Chapman that the Whitehead torsion of a homeomorphism vanishes. Note
that we need all the negative K-groups because Wh is a spectrum, so all of its ho-
motopy contributes to the homology groups. The main theorems of controlled
topology assert that various types of controlled groups are actually groups that are
parts of homology theories. See [CF79, Qui79, Qui82, Qui88a, FP95, Wei94]
for more information.
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2.5. We give a cheating application of the α-approximation theorem to rigidity
phenomena. Suppose that f : M → T is a homotopy equivalence to a torus.
Now pass to a large finite cover; the target is still a torus, which we identify with
the original one by the obvious affine diffeomorphism. Now we have a new map
which is an α-approximation. Thus, all sufficiently large covers of M are tori.
Unfortunately, this proof is somewhat circular (at least for the original proof of
α-approximation which used the classification of homotopy tori.) However, a slight
modification of this argument shows that any embedding of the torus in another
torus of codimension exceeding two, homotopic to an affine embedding, is isotopic
to the affine embedding in all sufficiently large covers. It also can be used to show
that any sufficiently large cover of a homotopy affine G-torus is affine (see [Ste88]).
To reiterate, as we saw before, the counterexamples to equivariant Borel mentioned
in Section One, Subsections 1.18 and 1.19, die on passage to covers. Controlled
topology implies that they all do.

2.6. There are, by now, a number of other versions of control in the literature,
which, while fun for the experts, can be somewhat bewildering to the beginner.
Some of these are: bounded control [Ped95, AM88, FP95, HTW91], continuous
control at infinity [ACFP94, Ped00], and foliated control [FJ86, FJ87]. These
theorems have all enjoyed applications to rigidity and to the Novikov conjecture.
They are also important in other topological problems. To give the flavor of one of
these variants, let us discuss the bounded theory.

Definition 1. Let X be a metric space. A space over X is a space M equipped
with a map f : M → X. The map f need not be continuous, but it is usually
important that it be proper. A map between spaces (M, f) and (N, g) over X is a
continuous map h : M → N such that dX(f(m), gh(m)) < C for some C. Since C
can vary, this construction forms a category.

If X has bounded diameter, this category is essentially equivalent to the usual
category of spaces and maps. But things heat up a lot when X is as simple as
the real line or Euclidean space. Note that it is easy to define the homotopy
category over X, and thus notions of h-cobordism over X, homotopy equivalence
and homeomorphism can all be defined “over X.” Note also that the all-important
fundamental group must be generalized in this setting. Without any additional
hypothesis, this generalization can be complicated, but the following condition is
often sufficient, especially for problems involving torsion-free groups:

Definition 2. The fundamental group of (M, f) over X is π if there are con-
stants C and D, and a map u : M → Bπ such that, for all x ∈ X, the image of π1

of the inverse image of the ball of radius C about x inside the inverse image of the
ball of radius D is isomorphic to π via the map u.

For simplicity we will assume that this condition holds, unless otherwise stated.

Example. If M is a space with fundamental group Γ, then its universal cover
is a space over Γ, where Γ is given its word metric. It is in fact simply-connected
over Γ. (A typical “bad example” would be an irregular cover, e.g. the cover of M
corresponding to finite subgroups (which plays an important role in understanding
groups with torsion.)
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Remark. The analogue in this setting of being contractible is being uniformly
contractible; i.e. there is a function f such that, for all x in X and all C, the ball
Bx(C) is nullhomotopic in Bx(f(C)). Similarly, the notion of uniform asphericality
requires that the map from the cover of Bx(C) into the universal cover of Bx(f(C))
be nullhomotopic.9

These spaces are the terminal objects in the subcategory of spaces with the
same “bounded 1-type” of a given one. By analogy, we shall be interested in their
rigidity properties.

2.7. It is worth pondering the theory in some detail when X = R
n. First, let

us consider the Novikov conjecture in this setting:

Theorem 10. Let M be a manifold with a proper map π to R
n and

f : N → M be a homotopy equivalence over R
n. Give N the structure of a space

over R
n by using πf . Then sig(π−1(0)) = sig(f−1π−1(0)).

Here, we are assuming that 0 is a regular value of π and πf . This theorem
readily implies Novikov’s theorem about the topological invariance of rational Pon-
trjagin classes [Nov66]. See [FW95].

2.8. The following geometric result of Chapman is sufficient for proving a num-
ber of bounded Borel conjecture results. After one develops bounded Whitehead
theory and surgery, it implies calculations of K-groups and L-groups, calculations
which can be done independently algebraically (see [PW89, FP95]). Even after
they are proven, the following theorem still feels “greater than the sum of its parts.”

Theorem 11 ([Cha81]). Suppose that N → M = V ×R
n is a bounded homo-

topy equivalence, where V is some compact manifold. Then there is some manifold
Z homotopy equivalent to V × Tn whose infinite abelian cover is N ; moreover, the
manifold Z is unique up to homeomorphism if we insist that it be “transfer invari-
ant,” i.e. homeomorphic to its own finite-sheeted covers that are induced from the
torus.

The K-theoretic version would be that Whbdd(V × Rn) = K1−n(π1(V )) and
that Lbdd

k (V ×R
n) = L−n

k−n(V ). In the second case, the dimension of the L-group is
shifted (remember they are 4-periodic, so negative L-theory is nothing to fear), and
the superscript “decoration” is also shifted. See [Sha69, PR80, Ran92, Wei94,
WW88] for some discussion of this topic.

2.9. Now that we have a bounded version of the Borel conjecture, we can repair
the aesthetic defect uncovered in I.18: we can give a topological rigidity analog of
Mostow rigidity for nonuniform lattices. For noncompact arithmetic manifolds
M = Γ\G/K, where G is a real connected linear Lie group and K its maximal
compact subgroup, the slight strengthening of Siegel’s conjecture proven in [Ji98]
provides the following picture from reduction theory. For each such M there is a
compact polyhedron P and a Lipschitz map π : M → cP from M to the open cone
on P such that (1) every point inverse deform retracts to an arithmetic manifold,

9We assume that the maps induced by inclusions of balls in one another are injections on

fundamental groups.
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(2) the map π respects the radial direction, and (3) all point inverses have uniformly
bounded size. See Chang [Cha01] for further discussion.

In [FJ98] Farrell and Jones show topological rigidity of these arithmetic homo-
geneous spaces relative to the ends. On the contrary, if rankQ(Γ) > 2, then M may
not be properly rigid, as discussed in the remark of I.17. The following theorem
asserts that M is topologically rigid in the category of continuous coarsely Lipschitz
maps.

Theorem 12. Let M = Γ\G/K be a manifold for which Γ is an arithmetic
lattice in a real connected linear Lie group G. Endow M with the associated metric.
If f : M ′ → M is a bounded homotopy equivalence, then f is boundedly homotopic
to a homeomorphism.

To see that the reduction theory implies the vanishing of Sbdd(M), one appeals
to the bounded surgery exact sequence:

Hn+1(M ;L(e)) → Lbdd
n+1(M) → Sbdd(M) → Hn(M ;L(e)) → Lbdd

n (M).

We note that the radial direction of cP can be scaled to increase control arbi-
trarily, and that all the fundamental groups arising in the point inverses π−1(∗)
are K-flat by [FJ98]. These two ingredients give us an isomorphism Lbdd

∗ (M) ∼=
H∗(cP ;L(π−1(∗))). Given the Leray spectral sequence for π and the stalkwise
equivalence of L-cosheaves, one also has the identification

H∗(M ;L(e)) ∼= H∗(cP ;L(π−1(∗))).
These isomorphisms give the required vanishing of Sbdd(M).

Remark. A C∗-algebraic analogue of this calculation is relevant to the ques-
tion of whether M has a metric of positive scalar curvature in its natural coarse
quasi-isometry class (see following subsection). The unresolved state of the Baum-
Connes conjecture for lattices prevents us from repeating the above argument in
that setting.

2.10. It is now well recognized that the original approach by [GL83] and
[SY79] proving that no compact manifold of nonpositive sectional curvature can be
endowed with a metric of positive scalar curvature is actually based on a restriction
on the coarse quasi-isometry type of complete noncompact manifolds. Block and
Weinberger [BW99] investigate the problem of complete metrics for noncompact
symmetric spaces when no quasi-isometry conditions are imposed. In particular
they show the following:

Theorem 13. Let G be a semisimple Lie group and consider the double quotient
M ≡ Γ\G/K for Γ irreducible in G. Then M can be endowed with a complete
metric of positive scalar curvature if and only if Γ is an arithmetic group with
rankQ Γ ≥ 3.

In fact, in the case of rankQ Γ ≤ 2, one cannot impose upon M a metric
of uniformly positive scalar curvature even in the complement of a compact set.
However, in the cases for which such complete metrics are constructed, they always
exhibit the coarse quasi-isometry type of a ray.

In the context of the relative assembly map A : H∗(Bπ, Bπ∞, L) → L(π, π∞)
and the classifying map f : (M, M∞) → (Bπ, Bπ∞), one might expect that the
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obstruction for complete positive scalar curvature on a spin manifold M is given
by the image f∗[DM ] of the Dirac operator in KOn(Bπ, Bπ∞) instead of the sig-
nature class in H∗(Bπ, Bπ∞, L). One could reasonably conjecture that a complete
spin manifold with uniformly positive scalar curvature satisfies f∗[DM ] = 0 in
KOn(Bπ, Bπ∞) if π1(M) and π∞

1 (M) are both torsion-free.
However, the standard methods in L-theory fail in the K-theoretic framework

because there is no assembly map from KOn(Bπ, Bπ∞) to the relative K-theory of
some appropriate pair of C∗-algebras which might reasonably be an isomorphism for
torsion-free groups. For the case of rankQ Γ = 2 considered in [BW99], an alternate
route was found (the cases of rankQ Γ ≤ 1 are covered by [GL83]): the verification
that f∗[DM ] vanishes in KOn−1(Bπ∞) under the assumption that suitable Novikov-
type conjectures hold for the group π∞.

The results of [BW99] do not settle whether these uniformly positive curva-
ture metrics on Γ\G/K can be chosen to be (a) quasi-isometric (i.e. uniformly
bi-Lipschitz) to the original metric inherited from G or (b) of bounded geometry
in the sense of having bounded curvature and volume. The first author proved the
former negatively in [Cha01] by identifying a coarse obstruction of Dirac type in
the group K∗(C∗(M, π)), where C∗(M, π) is a generalized Roe algebra of locally
compact operators on M̃ whose propagation is controlled by the projection map
π : M̃ → M . This algebra encodes not only the coarse behavior of M but also its
local geometry.

2.11. The principle of descent was first formulated explicitly in [FW95], al-
though it appears, somewhat implicitly, in [GL83, Kas88, FW91, Cha01, CP95]
as well. The paper of Gromov and Lawson is especially nice from this point of view,
in that they explicitly suggest the use of a families form of a non-compact index the-
orem to deduce Gromov-Lawson conjecture type results (for manifolds of positive
scalar curvature). The principle of descent is, in general, a vehicle for translating
bounded Borel or Baum-Connes conjecture type results from the universal cover
of a manifold to deduce Novikov conjecture type results for the manifold itself.
This principle remains a powerful tool and is exploited in the most recent exciting
advances in the subject (see, e.g. [Yu00, Tu99, HR00]).

The bounded Novikov conjecture states that, if X is uniformly contractible and
M is a manifold over X, then f∗(L(M)∩ [M ]) ∈ H�f

∗ (X; Q) is a bounded homotopy
invariant. Equivalently, if Γ is the fundamental group of M , then the bounded
assembly map

Abdd : H�f
∗ (EΓ; L(e)) → L

bdd(EΓ)

is a split injection. Here Lbdd(EΓ) is the spectrum whose 0-th space is given
by a simplicial model for which the n-simplices are n-ad surgery problems on k-
manifolds together with a proper coarse map to Γ with the word metric. The map
is on the level of the space of sections of assembly maps associated to the fibration
E ×Γ E → BΓ to a twisted generalized cohomology.

Assuming the split injectivity of Abdd, we consider the following commutative
diagram:
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H∗(BΓ; L(e)) A ��

∼=
��

L∗(ZΓ)

FBT

��
H0(BΓ; H�f

∗ (Rn; L(e)))
Abdd

�� H0(BΓ; Lbdd(Rn))

The right-hand “family bounded transfer map” is a composite

L∗(ZΓ) → H0(BΓ; Lbdd(EΓ)) → H0(BΓ; Lbdd(Rn)).

The left-hand vertical isomorphism arises when BΓ is a finite complex from Spanier-
Whitehead duality and the proper homotopy equivalence of the map EΓ → R

n. It
too is a family bounded transfer map, for which, at each point x of BΓ, one lifts a
cycle to the universal cover EΓ based at x. The splitting of Abdd clearly induces a
splitting of A, and the descent argument is complete.

The principle of descent is also instrumental in deducing the (analytic) Novikov
Conjecture from the coarse Baum-Connes Conjecture. The latter states that, for
any bounded geometry space X, the coarse assembly map
A∞ : KX∗(X) → K∗(C∗X) is an isomorphism. Here KX∗ denotes the coarse
homology theory corresponding to K-homology. See [Roe96] for more details.

Epilogue

In this epilogue, we would like to mention some issues that there was no time to
discuss during those lectures. For the most part, the ideas discussed above provide
quite close parallels (at least at the level of conjecture) between topology and index
theory. There are several areas where the subjects have diverged that create new
opportunity for further developments in one subject or the other.

E.1. In index theory there is a powerful computational calculus which builds
two-way maps between relevant groups. So far, no analogous flexible theory has
been developed in topology. Besides the sad conclusion that beautiful results like
those of [HK01, Tu00, Yu00] are not yet known on the topological side (let
alone in algebraic K-theory, other coefficient rings, twistings, etc.), even the simple
curvature calculations of [Yu00] which give a rational counterexample to a coarse
version of the Novikov conjecture for a metric space without bounded geometry
cannot be copied in topology. Thus, we have very little information about how the
epsilons in controlled topology depend on dimension.

E.2. In topology, however, there are a number of subtle arithmetic issues that
don’t arise in index theory. Some of these are associated to “decorations”10 (see
[Sha69]), Nil and Unil (see [Bas68, Cap74b]). The latter shows that very routine
version of Baum-Connes type conjectures in topology are false even for the infinite
dihedral group (which is crystallographic and hence amenable).

10Decorations are superscripts adorning L-groups, and modify their definitions by restricting
or refining their precise definition using modules and maps which lie in subgroups of appropriate

algebraic K-groups.
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However, injectivity statements still have a reasonable chance of being correct.
For instance, it seems that the object lim(Lbdd(V )), where V runs through the
finite-dimensional subspaces of a Hilbert space (V included in W gives rise to a
map between the bounded L-theories by taking the product, used in defining the
directed system) should arise in geometrizing [HK01]. A dreamer could hope that
one can do this geometrization topologically using a more complicated category
(more arrows connecting subspaces to one another) for other Banach spaces. But,
at the moment, one cannot even recover the analytically proven results for groups
which embed uniformly in Hilbert space.

E.3. Nonetheless, there is the spectacular work of Farrell and Jones (see [FJ98])
which naturally led to and verified variant versions of this conjecture for discrete
subgroups of linear Lie groups. The main difficulty in mimicking these methods
seems to be the very strong transfer formulae in topology. The “gamma element”
is precisely a transfer-projection element.

Philosophically speaking, the strong rigidity of the signature operator in fami-
lies (a consequence of Hodge theory) makes its study more particular. Besides the
difficulty in transferring the ideas of Farrell and Jones to index theory, this issue
also arises in trying to develop a stratified index theory for operators on stratified
spaces, parallel to [Wei94]. It would be interesting to see geometric examples of
this phenomenon, for example, for some version of positive scalar curvature metrics
on spaces with certain singularities. Of course, for particular classes of stratified
spaces, and operators, one should be able to obtain such theories. See, for example,
[Hig90] for a theory of operators on Z/k-manifolds.

E.4. In the past year, a number of counterexamples to versions of Baum-
Connes, in particular the coarse version, were obtained using metric spaces that
contain expanding graphs (see, for example, [HLS02]). On the other hand, Kevin
Whyte and the second author showed that some of these examples do not give coun-
terexamples to the bounded version of the Borel conjecture. If, as seems likely, the
isomorphism conjecture (or “stratified Borel conjecture” with rational coefficients)
will be verified for hyperbolic groups, then the limit constructions of Gromov will
also not lead to counterexamples to the topological versions of these problems.

E.5. Finally, it seems important to mention the circle of mathematical connec-
tions between index theory, cyclic homology, pseudoisotopy theory (i.e. algebraic
K-theory of spaces), and Goodwillie’s calculus of functors. The Goodwillie idea
(see, for example, [Goo90, GW99]) gives a powerful method for analyzing situa-
tions where assembly maps are not isomorphisms.

The Borel conjecture is about the “linear part” of classification of manifolds.
There are higher order “nonlinear terms” which are responsible for the counterex-
amples to the equivariant form. One should connect these ideas to families of
operators and the work of Bismut and Lott [BL95]. In addition, it would be good
to have a better understanding of an index-theoretic (or perhaps we should say
operator-algebraic) viewpoint on spectral invariants like Ray-Singer torsion and
of eta invariants (and their higher versions, see [Lot92, Lot99, Wei88, Wei90,
LP00b, LLK02]).
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1. Introduction

Several years ago Alain Connes and Henri Moscovici discovered a quite general
“local” index formula in noncommutative geometry [12] which, when applied to
Dirac-type operators on compact manifolds, amounts to an interesting combination
of two quite different approaches to index theory.

Atiyah and Bott noted that the index of an elliptic operator D may be expressed
as a complex residue

Index(D) = Ress=0

(
Γ(s)Trace(ε(I + ∆)−s)

)
,

where ∆ = D2 (see [1]). Rather surprisingly, the residue may be computed, at least
in principle, as the integral of an explicit expression involving the coefficients of D,
the metric g, and the derivatives of these functions. However the formulas can be
very complicated.

In a different direction, Atiyah and Singer developed the crucial link between
index theory and K-theory. They showed, for example, that an elliptic operator D
on M determines a class

[D] ∈ K0(M)
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in the K-homology of M (see [2] for one account of this). As it turned out, this was a
major advance: when combined with the Bott periodicity theorem, the construction
of [D] leads quite directly to a proof of the index theorem.

When specialized to the case of elliptic operators on manifolds, the index for-
mula of Connes and Moscovici associates to an elliptic operator D on M a cocycle
for the group HCP ∗(C∞(M)), the periodic cyclic cohomology of the algebra of
smooth functions on M . In this respect the Connes-Moscovici formula calls to
mind the construction of Atiyah and Singer, since cyclic cohomology is related to
K-homology by a Chern character isomorphism. But the actual formula for the
Connes-Moscovici cocycle involves only residues of zeta-type functions associated
to D. In this respect it calls to mind the Atiyah-Bott formula.

The proper context for the Connes-Moscovici index formula is the noncom-
mutative geometry of Connes [7], and in particular the theory of spectral triples.
Connes and Moscovici have developed at length a particular case of the index for-
mula which is relevant to the transverse geometry of foliations [12, 13]. This work,
which involves elaborate use of Hopf algebras, has attracted considerable attention
(see the survey articles [8] and [26] for overviews). At the same time, other in-
stances of the index formula are beginning to be developed (see for example [9],
which among other things gives a good account of the meaning of the term “local”
in noncommutative geometry).

The original proof of the Connes-Moscovici formula, which is somewhat in-
volved, reduces the local index formula to prior work on the transgression of the
Chern character, and is therefore is actually spread over several papers [12, 11, 10].
Roughly speaking, the residues of zeta functions which appear in the formula are
related by the Mellin transform to invariants attached to the heat semigroup e−t∆.
The heat semigroup figures prominently in the theory of the JLO cocycle in cyclic
theory, and so previous work on this subject can now be brought to bear on the
local index formula.

The main purpose of these notes is to present, in a self-contained way, a new
and perhaps more accessible proof of the local index formula. But for the benefit of
those who are just becoming acquainted with Connes’ noncommutative geometry,
we have also tried to provide some context for the formula by reviewing at the
beginning of the notes some antecedent ideas in cyclic and Hochschild cohomology.

As for the proof of the theorem itself, in contrast to the original proof of Connes
and Moscovici, we shall work directly with the complex powers ∆−z . Our strategy
is to find an elementary quantity 〈a0, [D, a1], . . . , [D, ap]〉z (see Definition 4.12), a
sort of multiple zeta function, which is meromorphic in the argument z, and whose
residue at z = − p

2 is the complicated combination of residues which appears in the
Connes-Moscovici cocycle. The proof of the index formula can then be organized in
a fairly conceptual way using the new quantities. The main steps are summarized
in Theorems 5.5, 5.6, 7.1 and 7.12.

The “elementary quantity” 〈a0, [D, a1], . . . , [D, ap]〉z was obtained by emulating
some computations of Quillen [23] on the structure of Chern character cocycles in
cyclic theory. Quillen constructed a natural “connection form” Θ in a differential
graded cochain algebra, along with a “curvature form” K = dΘ+Θ2, for which the
quantities

Γ(z)Trace
(
K−z) =

Γ(z)
2πi

Trace
(∫

λ−z(λ − K)−1 dλ

)
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have components 〈1, [D, a1], . . . , [D, ap]〉z . Taking residues at z = − p
2 we get (at

least formally)

Trace
(
K

p
2
)

= Resz=− p
2
〈1, [D, a1], . . . , [D, ap]〉z

Now, in the context of vector bundles with curvature form K, the pth component
of the Chern character is a constant times Trace(K

p
2 ). As a result, it is natural to

guess that our elementary quantities 〈· · · 〉z are related to the Chern character and
index theory, after taking residues. All this will be explained in a little more detail
at the end of the notes, in Appendix B. Appendix A explains the relation between
the Connes-Moscovici cocycle and the JLO cocycle, which was one of the original
objects of Quillen’s study and which, as we noted above, played an important role
in the original approach to the index formula.

A final appendix presents a proof of Connes’ Hochschild class formula. This
is a straightforward development of the proof of the local index formula presented
here. (Connes’ Hochschild formula is introduced in Section 3 as motivation for the
development of the local index formula.)

Obviously the whole of the present work is strongly influenced by the work of
Connes and Moscovici. Moreover, in several places the computations which follow
are very similar to ones they have carried out in their own work. I am very grateful
to both of them for their encouragement and support. I also thank members of
Penn State’s Geometric Functional Analysis Seminar, especially Raphaël Ponge,
for their advice, and for patiently listening to early versions of this work.

2. The Cyclic Chern Character

In this section we shall establish some notation and terminology related to
Fredholm index theory and cyclic cohomology. For obvious reasons we shall fol-
low Connes’ approach to cyclic cohomology, which is described for example in his
book [7, Chapter 3]. Along the way we shall make explicit choices of normalization
constants.

2.1. Fredholm Index Problems. A linear operator T : V → W from one
vector space to another is Fredholm if its kernel and cokernel are finite-dimensional,
in which case the index of T is defined to be

Index(T ) = dim ker(T ) − dim coker(T ).

The index of a Fredholm operator has some important stability properties, which
make it feasible in many circumstances to attempt a computation of the index even
if computations of the kernel and cokernel, or even their dimensions, are beyond
reach.

First, if F : V → W is any finite-rank operator then T + F is also Fredholm,
and moreover Index(T ) = Index(T + F ). Second, if V and W are Hilbert spaces
then the set of all bounded Fredholm operators from V to W is an open subset
of the set of all bounded operators in the operator norm-topology, and moreover
the index function is locally constant. In addition, if K : V → W is any compact
operator between Hilbert spaces (which is to say that K is a norm-limit of finite-
rank operators), then T +K is Fredholm, and moreover Index(T ) = Index(T +K).
In fact, an important theorem of Atkinson asserts that a bounded linear operator
between Hilbert spaces is Fredholm if and only if it is invertible modulo compact
operators. See for example [15].
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The following situation occurs frequently in geometric problems which make
contact with Fredholm index theory. One is presented with an associative algebra A
of bounded operators on a Hilbert space H , and one is given a bounded self-adjoint
operator F : H → H with the property that F 2 = 1, and for which, for every a ∈ A,
the operator [F, a] = Fa−aF is compact. This setup (or a small modification of it)
was first studied by Atiyah [2], who made the following observation related to index
theory and K-theory. Since F 2 = 1 the operator P = 1

2 (F +1) is a projection on H
(it is the orthogonal projection onto the +1 eigenspace of F ). If u is any invertible
element of A then the operator PuP : PH → PH is Fredholm. This is because
the operator Pu−1P : PH → PH is an inverse, modulo compact operators, and so
Atkinson’s theorem, cited above, applies.

A bit more generally, if U = [uij ] is an n × n invertible matrix over A then
the matrix PUP = [PuijP ], regarded as an operator on the direct sum of n copies
of PH , is a Fredholm operator (for basically the same reason). Now the invertible
matrices over A constitute generators for the (algebraic) K-theory group Kalg

1 (A)
(see [22] for details1). It is not hard to see that Atiyah’s index construction gives
rise to a homomorphism of groups

IndexF : Kalg
1 (A) → Z.

If A is a reasonable2 topological algebra, for instance a Banach algebra, so that
topological K-groups are defined, then the index construction even descends to a
homomorphism

IndexF : Ktop
1 (A) → Z.

In short, the data consisting of A and F together provides a supply of Fredholm
operators, and one can investigate in various examples the possibility of determining
the indices of these Fredholm operators.

2.1. Example. Let A be the algebra of smooth, complex-valued functions on
the unit circle S1, let H be the Hilbert space L2(S1), and let F be the Hilbert
transform on the circle, which maps the trigonometric function exp(2πinx) to
exp(2πinx) when n ≥ 0 and to − exp(2πinx) when n < 0. To see that the op-
erators [F, a] are compact, one can first make an explicit computation in the case
where a is a trigonometric monomial a(x) = exp(2πinx), with the result that [F, a]
is in fact a finite-rank operator. The general case follows by approximating a gen-
eral a ∈ A by a trigonometric polynomial. In this example one has the famous
index formula

Index(PuP ) = − 1
2πi

∫
S1

u−1du.

The right hand side is (minus) the winding number of the function u : S1 → C\{0}.
(There is also a simple generalization to matrices U = [uij ].) The topological K1-
group here is Z, and the index homomorphism is an isomorphism.

These notes are concerned with formulas for the Fredholm indices which arise
from certain instances of Atiyah’s construction. We are going to write down a bit
more carefully the basic data for the construction, and then add a first additional
hypothesis to narrow the scope of the problem just a little.

1Except to provide some background context, we shall not use K-theory in these notes.
2See the appendix of [3] for a discussion of some types of reasonable topological algebra.
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2.2. Definition. Let A be an associative algebra over C. An odd Fredholm
module over A is a triple consisting of:

(a) a Hilbert space H ,
(b) a representation of A as bounded operators on H , and
(c) a self-adjoint operator F : H → H such that F 2 = 1 and such that [F, π(a)] is

a compact operator, for every a ∈ A.

An even Fredholm module over A consists of the same data as above, together with
a self-adjoint operator ε : H → H such that ε2 = 1, such that ε commutes with
each operator π(a), and such that ε anticommutes with F .

Since ε is self-adjoint and since ε2 = 1, the Hilbert space H decomposes as an
orthogonal direct sum H = H0⊕H1 in such a way that ε =

(
1 0
0 −1

)
. The additional

hypothesis imply that

F =
(

0 T ∗

T 0

)
and π(a) =

(
π0(a) 0

0 π1(a)

)
.

Even Fredholm modules often arise from geometric problems on even-dimensional
manifolds — hence the terminology. They are actually closer to Atiyah’s original
constructions in [2] than are the odd Fredholm modules.

Associated to an even Fredholm module there is the following index construc-
tion. If p is an idempotent element of A then the operator

π1(p)Fπ0(p) : π0(p)H0 → π1(p)H1

is Fredholm, since π0(p)Fπ1(p) : π1(p)H1 → π0(p)H0 is an inverse, modulo compact
operators. This construction passes easily to matrices, and we obtain a homomor-
phism

IndexF : Kalg
0 (A) → Z.

which is the counterpart of the index homomorphism we previously constructed in
the odd case.

2.3. Definition. A Fredholm module over A is finitely summable if there is
some d ≥ 0 such that for every integer n ≥ d every product of commutators

[F, π(a0)][F, π(a1)] · · · [F, π(an)]

is a trace-class operator. (See [25] for a discussion of trace class operators.)

2.4. Example. The Fredholm module presented in Example 2.1 is finitely sum-
mable: one can take d = 1.

We are going to determine formulas in multilinear algebra for the indices of
Fredholm operators associated to finitely summable Fredholm modules.

2.2. Cyclic Cocycles.

2.5. Definition. A (p + 1)-linear functional φ : Ap+1 → C is said to be cyclic
if

φ(a0, a1, . . . , ap) = (−1)pφ(ap, a0, . . . , ap−1),

for all a0, . . . , ap in A.
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2.6. Definition. The coboundary of a (p + 1)-linear functional φ : Ap+1 → C

is the (p + 2)-linear functional

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

A (p + 1)-multilinear functional φ is a p-cocycle if bφ = 0.

It is easy to check that the coboundary of any coboundary is zero, or in other
words b2 = 0. Thus every coboundary is a cocycle and as a result we can form
what are called the Hochschild cohomology groups of A: the pth Hochschild group
is the quotient of the p-cocycles by the p-cocycles which are coboundaries. We will
return to these groups in Section 3, but for the purposes of index theory we are
much more interested in the special properties of cyclic cocycles.

2.7. Theorem (Connes). Let φ be a (p + 1)-linear functional on which is both
cyclic and a cocycle.
(a) If p is odd, and if u is an invertible element of A then the quantity

〈φ, u〉 = constant · φ(u−1, u, . . . , u−1, u)

depends only on the class of u in the abelianization of GL1(A), and defines a
homomorphism from the abelianization into C.

(b) If p is even and if e is an idempotent element of A then the quantity

〈φ, e〉 = constant · φ(e, e, . . . , e)

depends only on the equivalence class3 of e. If e1 and e2 are orthogonal, in the
sense that e1e2 = e2e1 = 0, then

〈φ, e1 + e2〉 = 〈φ, e1〉 + 〈φ, e2〉. �

2.8. Remark. We have inserted as yet unspecified constants into the formu-
las for the pairings 〈 , 〉. As we shall see, they are needed to make the pairings
for various p consistent with one another, The constants will be made explicit in
Theorem 2.27.

2.9. Example. The simplest non-trivial instances of the theorem occur when
p = 1 or p = 2. For p = 1 the explicit conditions on φ are{

φ(a0, a1) = −φ(a1, a0)

φ(a0a1, a2) − φ(a0, a1a2) + φ(a2a0, a1) = 0,

while for p = 2 the conditions are{
φ(a0, a1, a2) = φ(a2, a0, a1)

φ(a0a1, a2, a3) − φ(a0, a1a2, a3) + φ(a0, a1, a2a3) − φ(a3a0, a1, a2) = 0.

The reader who has not done so before ought to try to tackle the theorem for himself
or herself in these cases before consulting Connes’ paper [4].

3Two idempotents e and f are equivalent if there are elements x and y of A such that e = xy
and f = yx. If A is for example a matrix algebra then two idempotent matrices are equivalent if
and only if their ranges have the same dimension.
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The pairings 〈 , 〉 defined by the theorem extend easily to invertible and idem-
potent matrices, and thereby define homomorphisms

〈φ, 〉 : Kalg
1 (A) → C p odd

〈φ, 〉 : Kalg
0 (A) → C p even

The question now arises, can the index homomorphisms constructed in the previous
section be recovered as instances of the above homomorphisms, for suitable cyclic
cocycles φ? This was answered by Connes, as follows:

2.10. Theorem. Let (A, H, F ) be a finitely summable, odd Fredholm module
and let n = 2k + 1 be an odd integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

φ
(
a0, . . . , an

)
=

1
2

Trace
(
F [F, a0][F, a1] . . . [F, an]

)

defines a cyclic n-cocycle on A. If u is an invertible element of A then

φ(u, u−1, . . . , u, u−1) = (−1)k+122k+1 Index(PuP : PH → PH),

where P = 1
2 (F + 1). �

2.11. Theorem. Let (A, H, F ) be a finitely summable, even Fredholm module,
and let n = 2k be an even integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

φ
(
a0, . . . , an

)
=

1
2

Trace
(
εF [F, a0][F, a1] . . . [F, an]

)

defines a cyclic n-cocycle on A. If e is an idempotent element of A then

φ(e, e, . . . , e) = (−1)k Index(eFe : eH0 → H1).

�

The proofs of these results may be found in [4] or [7, IV.1] (but in the next
section we shall at least verify that the formulas do indeed define cyclic cocycles).

2.3. Cyclic Cohomology. Throughout this section we shall assume that A
is an associative algebra over C with a multiplicative identity 1. The definitions for
algebras without an identity are a little different and will be considered later.

It is a remarkable fact that if φ is a cyclic multilinear functional then so is its
coboundary bφ.4 As a result of this we can form the cyclic cohomology groups of
A:

4Note that cyclicity for a (p+1)-linear functional φ has to do with invariance under the action
of the cyclic group Cp+1, whereas cyclicity for bφ has to do with invariance under Cp+2, so to a

certain extent b intertwines the actions of two different groups — this is what is so remarkable.
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2.12. Definition. The pth cyclic cohomology group of a complex algebra A
is the quotient HCp(A) of the cyclic p-cocycles by the cyclic p-cocycles which are
cyclic coboundaries.

But we are interested in a small modification of the cyclic cohomology groups,
called the periodic cyclic cohomology groups of A. There are only two such groups
— an even one and an odd one. The even periodic group HCP even(A) in some sense
combines all the HC2k(A) into one group, while the odd periodic group HCP odd(A)
does the same for the HC2k+1(A). One reason for considering the periodic groups
is that Connes’ construction of the cyclic cocycle associated to a Fredholm module
produces not one cyclic cocycle, but one for each sufficiently large integer n of the
correct parity. As we shall see, the periodic cyclic cohomology groups provide a
framework within which these different cocycles can be compared with one another.

The definition of HCP even / odd(A) is, at first sight, a little strange, but after
we look at some examples it will come to seem more natural.

2.13. Definition. Let A be an associative algebra over C with a multiplicative
identity element 1. If p is a non-negative integer, then denote by Cp(A) the space
of (p+1)-multilinear maps φ from A into C which have the property that if aj = 1,
for some j ≥ 1, then φ(a0, . . . , ap) = 0. Define operators

b : Cp(A) → Cp+1(A) and B : Cp+1(A) → Cp(A),

by the formulas

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

and

Bφ(a0, . . . , ap) =
p∑
j=0

(−1)pjφ(1, aj , aj+1, . . . , aj−1).

2.14. Remark. The operator b is the same as the coboundary operator that we
encountered in the previous section, except that we are now considering a slightly
restricted class of multilinear maps on which b is defined (we should note that a
simple computation shows b to be well defined as a map from Cp(A) into Cp+1(A)).
In what follows, we could in fact work with all multilinear functionals, rather than
just those for which φ(a0, . . . , ap) = 0 when aj = 1 for some j ≥ 1 (although this
would entail a small modification to the formula for the operator B; see [21]). The
setup we are considering is a bit more standard, and allows for some slightly simpler
formulas.

2.15. Lemma. b2 = 0, B2 = 0 and bB + Bb = 0. �
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As a result of the lemma, we can assemble from the spaces Cp(A) the following
double complex, which is continued indefinitely to the left and to the top.

...
...

...
...

. . . B �� C3(A)

b

��

B �� C2(A)

b

��

B �� C1(A)

b

��

B �� C0(A)

b

��

. . . B �� C2(A)

b

��

B �� C1(A)

b

��

B �� C0(A)

b

��

. . . B �� C1(A)

b

��

B �� C0(A)

b

��

. . . B �� C0(A)

b

��

2.16. Definition. The periodic cyclic cohomology of A is the cohomology of
the totalization of this complex.

Thanks to the symmetry inherent in the complex, all even cohomology groups
are the same, as are all the odd groups. As a result, one speaks of the even and odd
periodic cyclic cohomology groups of A. A cocycle for the even group is a sequence

(φ0, φ2, φ4, . . . ),

where φ2k ∈ C2k, φ2k = 0 for all but finitely many k, and

bφ2k + Bφ2k+2 = 0

for all k ≥ 0. Similarly a cocycle for the odd group is a sequence

(φ1, φ3, φ5, . . . ),

where φ2k+1 ∈ C2k+1, φ2k+1 = 0 for all but finitely many k, and

bφ2k+1 + Bφ2k+3 = 0

for all k ≥ 0 (and in addition Bφ1 = 0).

2.17. Definition. We shall refer to cocycles of the above sort as (b, B)-cocycles.
This will help us distinguish between these cocycles and the cyclic cocycles which
we introduced in the last section.

Suppose now that φn is a cyclic n-cocycle, as in the last section, and suppose
that φn has the property that φ(a0, . . . , an) = 0 when some aj is equal to 1. Note
that Connes’ cocycles described in Theorems 2.10 and 2.11 have this property. By
definition, bφn = 0, and clearly Bφn = 0 too, since the definition of D involves the
insertion of 1 as the first argument of φn. As a result, the sequence

(0, . . . , 0, φn, 0, . . . ),

obtained by placing φn in position n and 0 everywhere else, is a (b, B)-cocycle. In
this way we shall from now on regard every cyclic cocycle as a (b, B)-cocycle.
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2.18. Remark. It is known that every (b, B)-cocycle is cohomologous to a cyclic
cocycle of some degree p (see [21]).

Let us now return to the cocycles which Connes constructed from a Fredholm
module.

2.19. Theorem. Let (A, H, F ) be a finitely summable, odd Fredholm module
and let n be an odd integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

chFn
(
a0, . . . , an

)
=

Γ(n2 + 1)
2 · n!

Trace
(
F [F, a0][F, a1] . . . [F, an]

)

defines a cyclic n-cocycle on A whose periodic cyclic cohomology class is independent
of n.

Proof. Define

ψn+1(a0, . . . , an+1) =
Γ(n2 + 2)
(n + 2)!

Trace
(
a0F [F, a1][F, a2] . . . [F, an+1]

)
.

It is then straightforward to compute that bψn+1 = − chFn+2 while Bψn+1 = chFn .
Hence chFn − chFn+2 is a (b, B)-coboundary. �

2.20. Remarks. Obviously, the multiplicative factor Γ( n
2 +1)

2n! is chosen to guar-
antee that the class of chFn in periodic cyclic cohomology is independent of n.
Since b2 = 0, the formula bψn+1 = − chFn+2 proves that chFn+2 is a cocycle (i.e.
b chFn+2 = 0). In addition, since it is clear from the definition of the operator B
that the range of B consists entirely of cyclic multilinear functionals, the formula
Bψn+1 = chFn proves that chFn is cyclic.

2.21. Theorem. Let (A, H, F ) be a finitely summable, even Fredholm module
and let n be an odd integer such that for all a0, . . . , an in A the product
[F, a0] · · · [F, an] is a trace-class operator. The formula

chFn
(
a0, . . . , an

)
=

Γ(n2 + 1)
2 · n!

Trace
(
εF [F, a0][F, a1] . . . [F, an]

)

defines a cyclic n-cocycle on A whose periodic cyclic cohomology class is independent
of n.

Proof. Define

ψn+1(a0, . . . , an+1) =
Γ(n2 + 2)
(n + 2)!

Trace
(
a0F [F, a1][F, a2] . . . [F, an+1]

)

and proceed as before. �

2.22. Definition. The cocycle chFn defined in Theorem 2.19 or 2.21 is the
cyclic Chern character of the odd or even Fredholm module (A, H, F ).

2.4. Comparison with de Rham Theory. Let M be a smooth, closed
manifold and denote by C∞(M) the algebra of smooth, complex-valued functions
on M . For p ≥ 0 denote by Ωp the space of p-dimensional de Rham currents (dual
to the space Ωp of smooth p-forms).
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Each current c ∈ Ωp determines a cochain φc ∈ Cp(A) for the algebra C∞(M)
by the formula

φc(f0, . . . , fp) =
∫
c

f0df1 · · ·dfp.

The following is a simple computation:

2.23. Lemma. If c ∈ Ωp is any p-current on M then

bφc = 0 and Bφc = p · φd∗c,

where d∗ : Ωp → Ωp−1 is the operator which is adjoint to the de Rham differential.
�

The lemma implies that if we assemble the spaces Ωp into a bicomplex, as
follows,

...
...

...
...

. . . 4d∗ �� Ω3

0

��

3d∗ �� Ω2

0

��

2d∗ �� Ω1

0

��

d∗ �� Ω0

0

��

. . . 3d∗ �� Ω2

0

��

2d∗ �� Ω1

0

��

d∗ �� Ω0

0

��

. . . 2d∗ �� Ω1

0

��

d∗ �� Ω0

0

��

. . . d∗ �� Ω0

0

��

then the construction c �→ φc defines a map from this bicomplex to the bicomplex
which computes periodic cyclic cohomology of A = C∞(M).

A fundamental result of Connes [4, Theorem 46] asserts that this map of com-
plexes is an isomorphism on cohomology:

2.24. Theorem. The inclusion c �→ φc of the above double complex into the
(b, B)-bicomplex induces isomorphisms

HCP even
cont (C∞(M)) ∼= H0(M) ⊕ H2(M) ⊕ · · ·

and

HCP odd
cont(C

∞(M)) ∼= H1(M) ⊕ H3(M) ⊕ · · ·

Here HCP ∗
cont(C

∞(M)) denotes the periodic cyclic cohomology of M , computed
from the bicomplex of continuous multilinear functionals on C∞(M). �

It follows that an even/odd (b, B)-cocycle for C∞(M) is something very like a
family of closed currents on M of even/odd degrees.

Connes’ theorem is proved by first identifying the (continuous) Hochschild co-
homology of the algebra A = C∞(M). Lemma 2.23 shows that there is a map of
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complexes

Ω0 0 ��

��

Ω1

��

0 �� · · · 0 �� Ωn

��

0 �� 0

��

0 �� . . .

C0(A)
b

�� C1(A)
b

�� · · ·
b

�� Cn(A)
b

�� Cn+1(A)
b

�� . . .

in which the vertical maps come from the construction c �→ φc. The following result
is known as the Hochschild-Kostant-Rosenberg theorem (see [21]), although this
precise formulation is due to Connes [4].

2.25. Theorem. The above map induces an isomorphism from Ωp to the pth
continuous Hochschild cohomology group HHp

cont(C
∞(M)).

Let us conclude this section with a few brief remarks about non-periodic cyclic
cohomology groups. We already noted that every cyclic p-cocycle determines a
(B, b)-cocycle (even or odd, according to the parity of p). In view of the Hochschild-
Kostant-Rosenberg theorem, and in view of the fact that every cyclic p-cocycle is in
particular a Hochschild p-cocycle, so that if A is any algebra then there is a natural
map from pth cyclic cohomology group HCp(A), as given in Definition 2.12, into
the Hochschild group HHp(A), it might be thought that when A = C∞(M) the
cyclic p-cocycles correspond to the summand Hp(M) in Theorem 2.24. But this is
not exactly right. It cannot be right because if a (b, B)-cocycle is cohomologous
to a cyclic p-cocycle, it may be shown that it is also cohomologous to a cyclic
(p + 2)-cocycle, and to a cyclic (p + 4)-cocycle, and so on. So when A = C∞(M) a
single cyclic p-cocycle can encode information not just about closed p-currents, but
also about closed (p − 2)-currents, closed (p − 4)-currents, and so on. The precise
relation, again discovered by Connes, is as follows:

2.26. Theorem. Denote by Zp(M) the set of closed de Rham k-currents on
M . There are isomorphisms

HC2k
cont(C

∞(M)) ∼= H0(M) ⊕ H2(M) ⊕ · · · ⊕ H2k−2(M) ⊕ Z2k(M)

and

HC2k+1
cont (C∞(M)) ∼= H1(M) ⊕ H3(M) ⊕ · · · ⊕ H2k−1(M) ⊕ Z2k+1(M).

Here HC∗
cont(C∞(M)) denotes the cyclic cohomology of M , computed from the

complex of continuous cyclic multilinear functionals on C∞(M). �
2.5. Pairings with K-Theory. The pairings described in Theorem 2.7 be-

tween cyclic cocycles and K-theory have the following counterparts in periodic
cyclic theory.

2.27. Theorem (Connes). Let A be an algebra with a multiplicative identity.
(a) If φ = (φ1, φ3, . . . ) is an odd (b, B)-cocycle for A, and u is an invertible element

of A, then the quantity

〈φ, u〉 =
1

Γ(1
2 )

∞∑
k=0

(−1)k+1k! φ2k+1(u−1, u, . . . , u−1, u)

depends only on the class of u in the abelianization of GL1(A) and the periodic
cyclic cohomology class of φ, and defines a homomorphism from the abelianiza-
tion into C.
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(b) If φ = (φ0, φ2, . . . ) is an even (b, B)-cocycle for A, and e is an idempotent
element of A, then the quantity

〈φ, e〉 = φ0(e) +
∞∑
k=1

(−1)k
(2k)!
k!

φ2k(e −
1
2
, e, e, . . . , e).

depends only on the equivalence class of e and the periodic cyclic cohomology
class of φ. Moreover if e1 and e2 are orthogonal idempotents in A, then

〈φ, e1 + e2〉 = 〈φ, e1〉 + 〈φ, e2〉.

Proof. See [16] for the odd case and [17] for the even case. �

2.28. Example. Putting together Theorem 2.10 with the formula (a) in The-
orem 2.27, we see that if (A, H, F ) is a finitely summable, odd Fredholm module,
and if u is an invertible element of A, then

〈chFn , u〉 = Index(PuP : PH → PH),

where P is the idempotent P = 1
2 (F + 1), and the odd integer n is large enough

that the Chern character is defined. Similarly, if (A, H, F ) is an even Fredholm
module and if e is an idempotent element of A then

〈chFn , e〉 = Index(eFe : eH0 → eH1),

for all even n which again are large enough that the Chern character is defined.

2.29. Remarks. The pairings described in Theorem 2.27 extend easily to the
algebraic K-theory groups Kalg

1 (A) and Kalg
0 (A).

2.6. Improper Cocycles and Coefficients. We are going to describe two
extensions of the notion of (b, B)-cocycle which will be useful in these notes.

If V is a complex vector space and p is a non-negative integer, then let us
denote by Cp(A, V ) space of (p + 1)-multilinear maps φ from A into V for which
φ(a0, . . . , ap) = 0 whenever aj = 1 for some j ≥ 1.

Define operators

b : Cp(A, V ) → Cp+1(A, V ) and B : Cp+1(A, V ) → Cp(A, V ),

by the same formulas we used previously:

bφ(a0, . . . , ap+1) =
p∑
j=0

(−1)jφ(a0, . . . , ajaj+1, . . . , ap+1)

+ (−1)p+1φ(ap+1a0, . . . , ap)

and

Bφ(a0, . . . , ap) =
p∑
j=0

(−1)pjφ(1, aj , aj+1, . . . , aj−1).
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Then assemble the double complex

...
...

...
...

. . . B �� C3(A, V )

b

��

B �� C2(A, V )

b

��

B �� C1(A, V )

b

��

B �� C0(A, V )

b

��

. . . B �� C2(A, V )

b

��

B �� C1(A, V )

b

��

B �� C0(A, V )

b

��

. . . B �� C1(A, V )

b

��

B �� C0(A, V )

b

��

. . . B �� C0(A, V )

b

��

just as before.

2.30. Definition. The periodic cyclic cohomology of A, with coefficients in V
is the cohomology of the totalization of this complex.

It is easy to check that the periodic cyclic cohomology of A with coefficients in
V is just the space of homomorphisms into V from the periodic cyclic cohomology
of A with coefficients in C (the latter is the “usual” periodic cyclic cohomology of
A). Nevertheless the concept of coefficients will be a convenient one for us.

If we totalize the (b, B)-bicomplex (either the above one involving V or the
previous one without V ) by taking a direct product of cochain groups along the
diagonals instead of a direct sum, then we obtain a complex with zero cohomology.

2.31. Definition. We shall refer to cocycles for this complex, consisting in
the even case of sequences (φ0, φ2, φ4, . . . ), all of whose terms may be nonzero, as
improper (b, B)-cocycles.

On its own, an improper periodic (b, B)-cocycle has no cohomological signifi-
cance, but once again the concept will be a convenient one for us. For example in
Section 5 we shall construct a fairly simple improper (b, B)-cocycle with coefficients
in the space V of meromorphic functions on C. By taking residues at 0 ∈ C we
shall obtain a linear map from V to C, and applying this linear map to our cocycle
we shall obtain in Section 5 a proper (b, B)-cocycle with coefficients in C.

2.7. Nonunital Algebras. If the algebra A has no multiplicative unit then
we define periodic cyclic cohomology as follows. Denote by Ã the algebra obtained



THE RESIDUE INDEX THEOREM OF CONNES AND MOSCOVICI 85

by adjoining a unit to A and form the double complex

...
...

...
...

. . . B �� C3(Ã)

b

��

B �� C2(Ã)

b

��

B �� C1(Ã)

b

��

B �� C0(A)

b

��

. . . B �� C2(Ã)

b

��

B �� C1(Ã)

b

��

B �� C0(A)

b

��

. . . B �� C1(Ã)

b

��

B �� C0(A)

b

��

. . . B �� C0(A)

b

��

in which the spaces Cp(Ã) are, as before, the (p+1)-multilinear functionals φ from
Ã into C with the property that φ(a0, . . . , ap) = 0 whenever aj = 1 for some j ≥ 1,
and in which C0(A) is the space of linear functionals on A (not on Ã). If we
interpret b : C0(A) → C1(Ã) using the formula

bφ(a0, a1) = φ(a0a1) − φ(a1a0) = φ(a0a1 − a1a0)

then the differential is well defined, since the commutator a0a1−a1a0 always belongs
to A, even when a0, a1 ∈ Ã.

2.32. Definition. The periodic cyclic cohomology of A is the cohomology of
the totalization of the above complex. A (b, B)-cocycle for A is a cocycle for the
above complex.

2.33. Remark. The periodic cyclic cohomology of a non-unital algebra A is
isomorphic to the kernel of the restriction map from HCP ∗(Ã) to HCP ∗(C).

2.34. Definition. By a cyclic p-cocycle on A we shall mean a cyclic cocycle φ

on Ã for which φ(a0, . . . , ap) = 0 whenever aj = 1 for some j.

3. The Hochschild Character

The purpose of this section is to provide some motivation for the development
of the local index formula in cyclic cohomology by describing an antecedent formula
in Hochschild cohomology.

3.1. Spectral Triples. Examples of Fredholm modules arising from geometry
often involve the following structure.

3.1. Definition. A spectral triple is a triple (A, H, D) consisting of:
(a) An associative algebra A of bounded operators on a Hilbert space H , and
(b) An unbounded self-adjoint operator D on H such that

(i) for every a ∈ A the operators a(D ± i)−1 are compact, and
(ii) for every a ∈ A, the operator [D, a] is defined on domD and extends to a

bounded operator on H .
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3.2. Remark. In item (b) we require that D be self-adjoint in the sense of
unbounded operator theory. This means that D is defined on some dense domain
domD ⊆ H , that 〈Du, v〉 = 〈u, D〉, for all u, v ∈ domD, and that the operators
(D ± i) map domH bijectively onto H . In item (ii) we require that each a ∈ A
map domD into itself.

3.3. Example. Let A = C∞(S1), let H = L2(S1) and let D = 1
2πi

d
dx . The

operator D, defined initially on the smooth functions in H = L2(S1) (we are
thinking now of S1 as R/Z), has a unique extension to a self-adjoint operator
on H , and the triple (A, H, D) incorporating this extension is a spectral triple in
the sense of Definition 3.1.

3.4. Remark. If the algebra A has a unit, which acts as the identity operator
on the Hilbert space H , then item (i) is equivalent to the assertion that (D ± i)−1

be compact operators, which is equivalent to the assertion that there exist an
orthonormal basis for H consisting of eigenvectors vj for D, with eigenvalues λj
converging to ∞ in absolute value.

In a way which is similar to our treatment of Fredholm modules, we shall call
a spectral triple even if the Hilbert space H is equipped with a self-adjoint grading
operator ε, decomposing H as a direct sum H = H0 ⊕ H1, such that ε maps the
domain of D into itself, anticommutes with D, and commutes with every a ∈ A.
Spectral triples without a grading operator will be referred to as odd.

Let (A, H, D) be a spectral triple, and assume that D is invertible. In the polar
decomposition D = |D|F of D the operator F is self-adjoint and satisfies F 2 = 1.

3.5. Lemma. If (A, H, D) is a spectral triple (A, H, F ) is a Fredholm module in
the sense of Definition 2.2. �

3.6. Example. The Fredholm module described in Example 2.1 is obtained in
this way from the spectral triple of Example 3.3, after we make a small modification
to D to make it invertible — for example by replacing 1

2πi
d
dx with 1

2πi
d
dx + 1

2 .

3.2. The Residue Trace. We are going to develop for spectral triples a re-
finement of the notion of finite summability that we introduced for Fredholm mod-
ules. For this purpose we need to quickly review the following facts about compact
operators and their singular values (see [25] for more details).

3.7. Definition. If K is a compact operator on a Hilbert space then the
singular value sequence {µj} of K is defined by the formulas

µj = inf
dim(V )=j−1

sup
v⊥V

‖Kv‖
‖v‖ j = 1, 2, . . . .

The infimum is over all linear subspaces of H of dimension j − 1. Thus µ1 is
just the norm of K, µ2 is the smallest possible norm obtained by restricting K to
a codimension 1 subspace, and so on.

The trace ideal is easily described in terms of the sequence of singular values:

3.8. Lemma. A compact operator K belongs to the trace ideal if and only if∑
j µj < ∞. Moreover if K is a positive, trace-class operator then Trace(K) =∑
j µj. �
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Now, any self-adjoint trace-class operator can be written as a difference of posi-
tive, trace-class operators, K = K(1)−K(2), and we therefore have a corresponding
formula for the trace

Trace(K) = Trace(K(1)) − Trace(K(2)) =
∑
j

µ
(1)
j −

∑
j

µ
(2)
j .

And since every trace-class operator is a linear combination of two self-adjoint,
trace-class operators, we can go on to obtain a formula for the trace of a general
trace-class operator.

We are going to define a new sort of trace by means of formulas like the one
above.

3.9. Definition. Denote by L1,∞(H) the set of all compact operators K on
H for which

N∑
j=1

µj = O(log N).

Thus every trace-class operator belongs to L1,∞(H) but operators in L1,∞(H) need
not be trace class, since the sum

∑
j µj is permitted to diverge logarithmically.

3.10. Remark. The set L1,∞(H) is a two-sided ideal in B(H).

Suppose now that we are given a linear subspace of L1,∞(H) consisting of
operators for which the sequence of numbers

1
log N

N∑
j=1

µj

is not merely bounded but in fact convergent. It may be shown using fairly standard
singular value inequalities that the functional Trω which assigns to each positive
operator in the subspace the limit of the sequence is additive:

Trω(K(1)) + Trω(K(2)) = Trω(K(1) + K(2)).

As a result, if we assume that the linear subspace we are given is spanned by its
positive elements, the prescription Trω extends by linearity from positive operators
to all operators and yields a linear functional.

A theorem of Dixmier [14] (see also [7, Section IV.2]) improves this construction
by replacing limits with generalized limits, thereby obviating the need to assume
that the sequence of partial sums 1

logN

∑N
j=1 µj is convergent:

3.11. Theorem. There is a linear functional Trω : L1,∞(H) → C with the
following properties:
(a) If K ≥ 0 then Trω(K) depends only on the singular value sequence {µj}, and
(b) If K ≥ 0 then lim infN 1

logN

∑N
j=1 µj ≤ Trω(K) ≤ lim supN

1
logN

∑N
j=1 µj. �

It follows from (a) that Trω(K) = Trω(U∗KU) for every positive K ∈ L1,∞(H)
and every unitary operator U on H . Since the positive operators in L1,∞(H) span
L1,∞(H), it follows that Trω(T ) = Trω(U∗TU), for every T ∈ L1,∞(H) and every
unitary operator U . Replacing T by U∗T we get Trω(UT ) = Trω(TU), for every
T ∈ L1,∞(H) and every unitary U . Since the unitary operators span all of B(H),
we finally conclude that

Trω(ST ) = Trω(TS),
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for every T ∈ L1,∞(H) and every bounded operator S.

3.12. Remark. The Dixmier trace Trω is not unique — it depends on a choice
of suitable generalized limit for the sequence of partial sums 1

logN

∑N
j=1 µj . But

of course it is unique on (positive) operators for which this sequence is convergent,
which turns out to be the case in many geometric examples.

3.3. The Hochschild Character Theorem. If (A, H, F ) is a finitely sum-
mable Fredholm module then Connes’ cyclic Chern character chFn is defined for
all large enough n of the correct parity (even or odd, according as the Fredholm
module is even or odd). It is a cyclic n-cocycle, and in particular, disregarding its
cyclicity, it is a Hochschild n-cocycle. We are going to present a formula for the
Hochschild cohomology class of this cocycle, in certain cases.

3.13. Lemma. Let (A, H, D) be a spectral triple, and let n be a positive integer.
Assume that D is invertible and that

a · |D|−n ∈ L1,∞(H),

for every a ∈ A. Then the associated Fredholm module (A, H, F ) has the property
that the operators

[F, a0][F, a1] · · · [F, an]
are trace class, for every a0, . . . , an ∈ A. In particular, the Fredholm module
(A, H, F ) is finitely summable and if n has the correct parity, then the Chern char-
acter chFn is defined. �

3.14. Definition. A spectral triple (A, H, D) is regular if there exists an alge-
bra B of bounded operators on H such that
(a) A ⊆ B and [D, A] ⊆ B, and
(b) if b ∈ B then b maps the domain of |D| (which is equal to the domain of D)

into itself, and moreover |D|B − B|D| ∈ B.

3.15. Example. The spectral triple (C∞(S1), L2(S1), D) of Example 3.3 is
regular.

3.16. Remark. We shall look at the notion of regularity in more detail in
Section 4, when we discuss elliptic estimates.

We can now state Connes’ Hochschild class formula:

3.17. Theorem. Let (A, H, D) be a regular spectral triple. Assume that D is
invertible and that for some positive integer n of the same parity as the triple, and
every a ∈ A,

a · |D|−n ∈ L1,∞(H).

The Chern character chFn of Definition 2.22 is cohomologous, as a Hochschild co-
cycle, to the cocycle

Φ(a0, . . . , an) =
Γ(n2 + 1)

n · n!
Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n).

Here ε is 1 in the odd case, and the grading operator on H in the even case.

3.18. Remark. Actually this is a slight strengthening of what is actually prov-
able. For the correct statement, see Appendix C.
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3.4. A Simple Example. We shall prove Theorem 3.17 in Appendix C, as a
by-product of our proof of the local index theorem (at the moment, it is probably
not even obvious that the functional Φ given in the theorem is a Hochschild cocycle).
Right now what we want to do is to compute a simple example of the Hochschild
cocycle Φ.

We shall consider the spectral triple (C∞(S1), L2(S1), D), where D is the
unique self-adjoint extension of the operator 1

2πi
d
dx + 1

2 (recall that the term 1
2

was added to guarantee that D is invertible).
The operator D is diagonalizable, with eigenfunctions en(x) = exp(2πinx) and

eigenvalues n + 1
2 , where n ∈ Z. We see then that |D| is given by the formula

|D|en = |n + 1
2 |en (n ∈ Z).

As a result, |D|−1 ∈ L1,∞(H), and a brief computation shows that

Trω(|D|−1) = 2.

3.19. Lemma. If f ∈ C(S1) then Trω(f · |D|−1) = 2
∫
S1 f(x) dx.

Proof. The linear functional f �→ Trω f · |D|−1 is positive, and so by the
Riesz representation theorem it is given by integration against a Borel measure
on S1. But the functional, and hence the measure, is rotation invariant. This
proves that the measure is a multiple of Lebesgue measure, and the computation
Trω(|D|−1) = 2 fixes the multiple. �

With this computation in hand, we can now determine the cocycle Φ which
appears in Theorem 3.17:

Φ(f0, f1) = Traceω(f0[D, f1]|D|−1) =
1
πi

∫
S1

f0(x)f ′
1(x) dx.

Now if a0, a1 ∈ C∞(S1), and if Ψ is any 1-cocycle which is in fact a Hochschild
coboundary, then it is easily computed that Ψ(a0, a1) = 0. As a result, of Theo-
rem 3.17 it therefore follows that

Γ(3
2 ) · 1

2 Trace(F [F, a0][F, a1]) def= chF1 (a0, a1) = Γ(3
2 )Φ(a0, a1)

If we combine this with the Fredholm index formula in Theorem 2.10 we arrive at
a proof of the well-known index formula

Index(PuP ) = − 1
4 Trace(F [F, u−1][F, u]) = − 1

2Φ(u−1, u) = − 1
2πi

∫
S1

u−1du

associated to an invertible element u ∈ C∞(S1), which we already mentioned in
Example 2.1.

3.20. Remark. In this very simple example we have determined not only the
Hochschild cocycle Φ but also the cyclic cocycle chF1 . This is an artifact of the low-
dimensionality of the example: the natural map from the first cyclic cohomology
group into the first Hochschild group happens always to be injective. In higher
dimensional examples a determination of Φ will in general stop quite a bit short of
a determination of chFn .
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3.5. Weyl’s Theorem. The simple computation which we carried out above
has a general counterpart which originates with a famous theorem of Weyl. We
shall state the theorem in the context of Dirac-type operators, for which we refer
the reader to Roe’s introductory text [24] (this book also contains a proof of Weyl’s
theorem).

3.21. Theorem. Let M be a closed Riemannian manifold of dimension n,
and let D be a Dirac-type operator on M , acting on the sections of some complex
Hermitian vector bundle S over M . The operator D has a unique self-adjoint
extension, and |D|−n ∈ L1,∞(H). Moreover

Trω(|D|−n) =
dim(S)
(2
√

π)n
Vol(M)
Γ(n2 + 1)

.

3.22. Remark. If D is not invertible then we define |D|−n by, for example,
|D|−1 = |D + P |−n, where P is the orthogonal projection onto the kernel of D.
(Incidentally, we might note that altering an operator in L1,∞(H) by any finite
rank operator — or indeed any trace-class operator — has no effect on the Dixmier
trace.)

The theorem may be extended, as follows:

3.23. Theorem. Let M be a closed Riemannian manifold of dimension n,
and let D be a Dirac-type operator on M , acting on the sections of some complex
Hermitian vector bundle S over M . The operator D has a unique self-adjoint
extension, and |D|−n ∈ L1,∞(H). If F is any endomorphism of S then

Trω(|D|−n) =
1

(2
√

π)nΓ(n2 + 1)

∫
M

trace(F (x)) dx.

Thanks to the theorem, the Hochschild character Φ of Theorem 3.17 may be
computed in the case where A = C∞(M), H = L2(S), and D is a Dirac-type
operator acting on sections of S (it may be shown that this constitutes an exam-
ple of a regular spectral triple; compare Section 4). The commutators [D, a] are
endomorphisms of S, and so

Φ(a0, . . . , an) =
1

(2
√

π)nΓ(n2 + 1)

∫
M

trace(εa0[D, a1] · · · [D, an]) dx.

3.24. Remark. In many cases the pointwise trace which appears here can be
further computed. For example, if D is the Dirac operator associated to a Spinc-
structure on M then we obtain the simple formula

Φ(a0, . . . , an) =
1

(2
√

π)nΓ(n2 + 1)

∫
M

a0da1 · · · dan.

In summary, we see that Φ(a0, . . . , an) is an integral over M of an explicit ex-
pression involving the aj and their derivatives. Unfortunately, in higher dimensions,
this very precise information about Φ is not enough to deduce an index theorem,
since it is impossible to recover the pairing between cyclic cocycles and idempotents
or invertibles from the Hochschild cohomology class of the cyclic cocycle. For the
purposes of index theory we need to obtain a similar formula for the cyclic cocycle
chFn itself, or for a cocycle which is cohomologous to it in cyclic or periodic theory.
This is what the Connes-Moscovici formula achieves.
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The formula involves in a crucial way a residue trace which in certain circum-
stances extends to a certain class of operators, including some unbounded operators,
2 times the Dixmier trace on L1,∞(H). We shall discuss this in detail in the next
section, but we shall conclude here with a somewhat vague formulation of the local
index formula, to give the reader some idea of the direction in which we are heading.
The statement will be refined in the coming sections.

3.25. Theorem. Let (A, H, D) be a suitable even spectral triple5 and let
(A, H, F ) be the associated Fredholm module. The Chern character chFn is coho-
mologous, as a (b, B)-cocycle, to the cocycle φ = (φ0, φ2, . . . ) given by the formulas

φp(a0, . . . , ap) =
∑
k≥0

cpk ResTr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|
)

.

The sum is over all multi-indices (k1, . . . , kp) with non-negative integer entries, and
the constants cpk are given by the formula

cpk =
(−1)k

k!
Γ(k1 + · · · + kp + p

2 )
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)

.

The operators X(k) are defined inductively by X(0) = X and X(k) = [D2, X(k−1)].

3.26. Remark. Note that when p = n and k = 0 we obtain the term

Γ(n2 )
n!

ResTr
(
εa0[D, a1] · · · [D, ap]|D|−n

)

=
2Γ(n2 )

n!
Trω

(
εa0[D, a1] · · · [D, ap]|D|−n

)

=
Γ(n2 + 1)

n · n!
Trω

(
εa0[D, a1] · · · [D, ap]|D|−n

)
.

Thus we recover precisely the Hochschild cocycle of Theorem 3.17. The relation
between Theorem 3.17 and the local index formula will be further discussed in
Appendix C.

4. Differential Operators and Zeta Functions

Apart from cyclic theory, the local index theorem requires a certain amount of
Hilbert space operator theory. We shall develop the necessary topics in this section,
beginning with a very rapid review of the basic theory of linear elliptic operators
on manifolds.

4.1. Elliptic Operators on Manifolds. Let M be a smooth, closed mani-
fold, and let S be a smooth vector bundle over M . Let us equip M with a smooth
measure and S with an inner product, so that we can form the Hilbert space
L2(M, S).

Let D be the algebra of linear differential operators on M acting on smooth
sections of S. This is an associative algebra of operators and it is filtered by the
usual notion of order of a differential operator: an operator X has order q or less if
any local coordinate system it can be written in the form

X =
∑
|α|≤q

aα(x)
∂α

∂xα
,

5There is an analogous theorem in the odd case.
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where α is a multi-index (α1, . . . , αn) and |α| = α1 + · · · + αn.
If s is a non-negative integer then the space of order s or less operators is a

finitely generated module over the ring C∞(M). If X1, . . . , XN is a generating set
then the Sobolev space W s(M, S) is defined to be the completion of C∞(M, S)
induced from the norm

‖φ‖2
W s(M,S) =

∑
j

‖Xjφ‖2
L2(M,S).

Different choices of generating set result in equivalent norms and the same space
W s(M, S). Every differential operator of order q extends to a bounded linear
operator from W s(M, S) to W s−q(M, S), for all s ≥ q. The Sobolev Embedding
Theorem implies that that ∩s≥0W

s(M, S) = C∞(M, S).
Now let ∆ be a linear elliptic operator of order r. The reader unfamiliar with

the definition of ellipticity can take the following basic estimate as the definition:
if ∆ is elliptic of order r, then there is some ε > 0 such that

‖∆φ‖W s(M,S) + ‖φ‖L2(M,S) ≥ ε‖φ‖W s+r(M,S),

for every φ ∈ C∞(M, S).
Suppose now that ∆ is also positive, which is to say that 〈∆φ, φ〉L2(M,S) ≥ 0,

for all φ ∈ C∞(M, S). It may be shown then that ∆ is essentially self-adjoint on
the domain C∞(M, S), and for s ≥ 0 we can define the linear spaces

Hs = dom(∆
s
r ) ⊆ H,

which are Hilbert spaces in the norm

‖φ‖2
Hs = ‖φ‖2

L2 + ‖∆ r
s φ‖2

L2 .

It follows from the basic estimate that Hs = W s(M, S).
Let us say that an operator ∆ of order r is of scalar type if in every local

coordinate system ∆ can be written in the form

∆ =
∑
|α|≤r

aα(x)
∂α

∂xα
,

where the aα(x), for |α| = r, are scalar multiples of the identity operator (acting on
the fiber Sx of S). Good examples are the Laplace operators ∆ = ∇∗∇ associated
to affine connections on S, which are positive, elliptic of order 2, and of scalar type.
Other examples are the squares of Dirac-type operators on Riemannian manifolds.
If ∆ is of scalar type then

order([∆, X ]) ≤ order(X) + order(∆) − 1

(whereas the individual products X∆ and ∆X have order one greater, in general).
The following theorem, which is quite well known, will be fundamental to what

follows in these notes. For a proof which is somewhat in the spirit of these notes
see [19].

4.1. Theorem. Let ∆ be elliptic of order r, positive and of scalar type, and
assume for simplicity that ∆ is invertible as a Hilbert space operator. Let X be any
differential operator. If Re(z) is sufficiently large then the operator X∆−z is of
trace class. Moreover the function ζ(z) = Trace(X∆−z) extends to a meromorphic
function on C with only simple poles.
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4.2. Remarks. The assumption that ∆ is of scalar type is not necessary, but it
simplifies the proof. and covers the cases of interest. The meaning of the complex
power ∆−z will be clarified in the coming paragraphs.

4.2. Abstract Differential Operators. In this section we shall give abstract
counterparts of the ideas presented in the previous section.

Let H be a complex Hilbert space. We shall assume as given an unbounded,
positive, self-adjoint operator ∆ on H . The operator ∆ and its powers ∆k are
provided with definite domains dom(∆k) ⊆ H , which are dense subspaces of H .
We shall denote by H∞ the intersection of the domains of all the ∆k:

H∞ = ∩∞
k=1 dom(∆k).

We shall assume as given an algebra D(∆) of linear operators on the vector space
H∞. We shall assume the following things about D(∆):6

(i) If X ∈ D(∆) then [∆, X ] ∈ D(∆) (we shall not insist that ∆ belongs to D(∆)).
(ii) The algebra D(∆) is filtered,

D(∆) = ∪∞
q=0Dq(∆) (an increasing union).

We shall write order(X) ≤ q to denote the relation X ∈ Dq(∆). Sometimes
we shall use the term “differential order” to refer to this filtration. This is
supposed to call to mind the standard example, in which order(X) is the order
of X as a differential operator.

(iii) There is an integer r > 0 (the “order of ∆”) such that

order([∆, X ]) ≤ order(X) + r − 1

for every X ∈ D(∆).
To state the final assumption, we need to introduce the linear spaces

Hs = dom(∆
s
r ) ⊆ H

for s ≥ 0. These are Hilbert spaces in their own right, in the norms

‖v‖2
s = ‖v‖2 + ‖∆ s

r v‖2.

The following key condition connects the algebraic hypotheses we have placed on
D(∆) to operator theory:

(iv) If X ∈ D(∆) and if order(X) ≤ q then there is a constant ε > 0 such that

‖v‖q + ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞.

4.3. Example. The standard example is of course that in which ∆ is a Laplace-
type operator ∆ = ∇∗∇, or ∆ is the square of a Dirac-type operator, on a closed
manifold M and D(∆) is the algebra of differential operators on M . We can obtain a
slightly more complicated example by dropping the assumption that M is compact,
and defining D(∆) to be the algebra of compactly supported differential operators
on M (∆ is still a Laplacian or the square of a Dirac operator). Item (i) above was
formulated with the non-compact case in mind.

4.4. Remark. In the standard example the “order” r of ∆ is r = 2. But other
orders are possible. For example Connes and Moscovici consider an important
example in which r = 4.

6Various minor modifications of these axioms are certainly possible.
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4.5. Remark. For the purposes of these notes we could get by with something
a little weaker than condition (iv), namely this:

(iv′) If X ∈ D(∆) and if order(X) ≤ kr then there is a constant ε > 0 such
that

‖∆kv‖ + ‖v‖ ≥ ε‖Xv‖, ∀v ∈ H∞.

The advantage of this condition is that it involves only integral powers of the
operator ∆ (in contrast the ‖ ‖s involve fractional powers of ∆). Condition (iv′) is
therefore in principle easier to verify. However in the main examples, for instance
the one developed by Connes and Moscovici in [12], the stronger condition holds.

4.6. Definition. We shall refer to an algebra D(∆) (together with the distin-
guished operator ∆) satisfying the axioms (i)-(iv) above as an algebra of generalized
differential operators.

4.7. Lemma. If X ∈ D(∆), and if X has order q or less, then for every s ≥ 0
the operator X extends to a bounded linear operator from Hs+q to Hs.

Proof. If s is an integer multiple of the order r of ∆ then the lemma follows
immediately from the elliptic estimate above. The general case (which we shall not
actually need) follows by interpolation. �

4.3. Zeta Functions. Let D(∆) be an algebra of generalized differential oper-
ators, as in the previous sections. We are going to define certain zeta-type functions
associated with D(∆).

To simplify matters we shall now assume that the operator ∆ is invertible. This
assumption will remain in force until Section 6, where we shall first consider more
general operators ∆.

The complex powers ∆−z may be defined using the functional calculus. They
are, among other things, well-defined operators on the vector space H∞.

4.8. Definition. The algebra D(∆) has finite analytic dimension if there is
some d ≥ 0 with the property that if X ∈ D(∆) has order q or less, then, for every
z ∈ C with real part greater than q+d

r , the operator X∆−z extends by continuity to
a trace class operator on H (here r is the order of ∆, as described in Section 4.2).

4.9. Remark. The condition on Re(z) is meant to imply that the order of
X∆−z is less than −d. (We have not yet assigned a notion of order to operators
such as X∆−z, but we shall do so in Definition 4.15.)

4.10. Definition. The smallest value d ≥ 0 with the property described in
Definition 4.8 will be called the analytic dimension of the algebra D(∆).

Assume that D(∆) has finite analytic dimension d. If X ∈ D(∆) and if
order(X) ≤ q then the complex function Trace(X∆−z) is holomorphic in the right
half-plane Re(z) > q+d

r .

4.11. Definition. An algebra D(∆) of generalized differential operators which
has finite analytic dimension has the analytic continuation property if for every
X ∈ D(∆) the analytic function Trace(X∆−z), defined initially on a half-plane in
C, extends to a meromorphic function on the full complex plane.

Actually, for what follows it would be sufficient to assume that Trace(X∆−s)
has an analytic continuation to C with only isolated singularities, which could
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perhaps be essential singularities.7 The analytic continuation property is obviously
an abstraction of Theorem 4.1 concerning elliptic operators on manifolds.

We are ready to present what is, in effect, the main definition of these notes,
in which we describe the “elementary quantities” which were mentioned in the
introduction. The reasoning which leads to this definition will be explained in
Appendix B.

In order to accommodate the cyclic cohomology constructions to be carried
out in Section 5 we shall now assume that the Hilbert space H is Z/2-graded, that
∆ has even grading-degree, and that the grading operator ε =

(
1 0
0 −1

)
multiplies

D(∆) into itself. (The case ε = I, where the grading is trivial, is one important
possibility.)

4.12. Definition. Let D(∆) be an algebra of generalized differential operators
which has finite analytic dimension. Define, for Re(z) � 0 and X0, . . . , Xp ∈ D(∆),
the quantity

(4.1) 〈X0, X1, . . . , Xp〉z =

(−1)p
Γ(z)
2πi

Trace
(∫

λ−zεX0(λ − ∆)−1X1(λ − ∆)−1 · · ·Xp(λ − ∆)−1 dλ

)

(the factors in the integral alternate between the Xj and copies of (λ − ∆)−1).
The contour integral is evaluated down a vertical line in C which separates 0 and
Spectrum(∆).

4.13. Remark. The operator (λ−∆)−1 is bounded on all of the Hilbert spaces
Hs, and moreover its norm on each of these spaces is bounded by | Im(λ)|−1. As a
result, if

order(X0) + · · · + order(Xp) ≤ q

and if the integrand in equation (4.1) is viewed as a bounded operator from Hs+q to
Hs, then the integral converges absolutely in the operator norm whenever Re(z) +
p > 0. In particular, if Re(z) > 0 then the integral (4.1) converges to a well defined
operator on H∞.

The following result establishes the traceability of the integral (4.1), when
Re(z) � 0.

4.14. Proposition. Let D(∆) be an algebra of generalized differential operators
and let X0, . . . , Xp ∈ D(∆). Assume that

order(X0) + · · · + order(Xp) ≤ q.

If D(∆) has finite analytic dimension d, and if Re(z) + p > 1
r (q + d), then the

integral in Equation (4.1) extends by continuity to a trace-class operator on H, and
the quantity 〈X0, . . . , Xp〉z defined by Equation (4.1) is a holomorphic function of
z in this half-plane. If in addition the algebra D(∆) has the analytic continuation
property then the quantity 〈X0, . . . , Xp〉z extends to a meromorphic function on C.

For the purpose of proving the proposition it is useful to develop a little more
terminology, as follows.

7The exception to this is Appendix A, which is independent of the rest of the notes, where
we shall assume at one point that the singularities are all simple poles.
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4.15. Definition. Let m ∈ R. We shall say that an operator T : H∞ → H∞

has analytic order m or less if, for every s,8 T extends to a bounded operator from
Hm+s to Hs.

4.16. Example. The resolvents (λ − ∆)−1 have analytic order −r or less.

Let us note the following simple consequence of our definitions:

4.17. Lemma. Let D(∆) have finite analytic dimension d. If T has analytic
order less than −d − q, and if X ∈ D(∆) has order q, then XT is a trace-class
operator. �

4.18. Definition. Let T and Tα (α ∈ A) be operators on H∞. We shall write

T ≈
∑
α∈A

Tα

if, for every m ∈ R, there is a finite set F ⊆ A with the property that if F ′ ⊆ A is
a finite subset containing F then T and

∑
α∈F ′ Tα differ by an operator of analytic

order m or less.

One should think of m as being large and negative. Thus T ≈
∑

α∈A Tα if
every sufficiently large finite partial sum agrees with T up to operators of large
negative order.

4.19. Definition. If Y ∈ D(∆) then denote by Y (k) the k-fold commutator of
Y with ∆. Thus Y (0) = Y and Y (k) = [∆, Y (k−1)] for k ≥ 1.

4.20. Lemma. Let Y ∈ D(∆) and let h be a positive integer. For every positive
integer k there is an asymptotic expansion

[(λ − ∆)−h, Y ] ≈ hY (1)(λ − ∆)−(h+1) +
h(h + 1)

2
Y (2)(λ − ∆)−(h+2) + · · ·

+
h(h + 1) · · · (h + k)

k!
Y (k)(λ − ∆)−(h+k) + · · · ,

4.21. Remark. If order(Y ) ≤ q then, according to the axioms in Section 4.2,
order(Y (p)) ≤ q +p(r−1). Therefore, thanks to the elliptic estimate of Section 4.2,
the operator Y (p)(λ − ∆)−(h+p) has analytic order q − hr − p or less. Hence the
terms in the asymptotic expansion of the lemma are of decreasing analytic order.

Proof of Lemma 4.20. Let us write L = λ − ∆ and observe that the k-
fold iterated commutator of Y with L is (−1)k times Y (k), the k-fold iterated
commutator of Y with ∆. Let us also write z = −h.

To prove the lemma we shall use Cauchy’s formula,(
z

p

)
Lz−p =

1
2πi

∫
wz(w − L)−p−1 dw.

The integral (which is carried out along the same contour as the one in Defini-
tion 4.12) is norm-convergent in the operator norm on any B(Hs). Applying this

8Strictly speaking we should say “for every s ≥ 0 such that m + s ≥ 0,” since we have not
defined Hs for negative s.
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formula in the case p = 0 we get

[Lz, Y ] =
1

2πi

∫
wz

[
(w − L)−1, Y

]
dw

= − 1
2πi

∫
wz(w − L)−1Y (1)(w − L)−1 dw

= −Y (1) 1
2πi

∫
wz(w − L)−2 dw

− 1
2πi

∫
wz

[
(w − L)−1, Y (1)

]
(w − L)−1 dw

= −
(

z

1

)
Y (1)Lz−1 +

1
2πi

∫
wz(w − L)−1Y (2)(w − L)−2 dw.

The integrals all converge in the operator norm of B(Hs+q, Hs) for any q large
enough (and in fact any q ≥ order(Y ) would do). By carrying out a sequence of
similar manipulations on the remainder integral we arrive at

[Lz, Y ] = −
(

z

1

)
Y (1)L−z−1 +

(
z

2

)
Y (2)L−z−2 − . . .

+ (−1)p
(

z

p

)
Y (p)L−z−p +

(−1)p

2πi

∫
wz(w − L)−1Y (p)(w − L)−p dw.

Simple estimates on the remainder integral now prove the lemma. �

We are now almost ready to prove Proposition 4.14. In the proof we shall use
asymptotic expansions, as in Definition 4.18. But we shall be considering operators
which, like (λ − ∆), depend on a parameter λ. In this situation we shall amend
Definition 4.18 by writing T ≈

∑
α Tα if, for every m � 0, every sufficiently large

finite partial sum agrees with T up to an operator of analytic order m or less, whose
norm as an operator from Hs+m to Hs is O(| Im(λ)|m). The reason for doing so is
that we shall then be able to integrate with respect to λ, and obtain an asymptotic
expansion for the integrated operator.

Proof of Proposition 4.14. The idea of the proof is to use Lemma 4.20 to
move all the terms (λ − ∆)−1 in X0(λ − ∆)−1 · · ·Xp(λ − ∆)−1 to the right. If the
operators Xj actually commuted with ∆ then we would of course get

X0(λ − ∆)−1 · · ·Xp(λ − ∆)−1 = X0 · · ·Xp(λ − ∆)−(p+1),

and after integrating and applying Cauchy’s integral formula we could conclude
without difficulty that

〈X0, . . . , Xp〉z =
Γ(z + p)

p!
Trace(εX0 · · ·Xp∆−z−p)

(compare with the manipulations below). The proposition would then follow imme-
diately from this formula. The general case is only a little more difficult: we shall
see that the above formula gives the leading term in a sort of asymptotic expansion
for 〈X0, . . . , Xp〉z.

It will be helpful to define quantities

c(k1, . . . , kj) =
(k1 + · · · + kj + j)!

k1! · · · kj !(k1 + 1) · · · (k1 + · · · + kj + j)
,
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which depend on non-negative integers k1, . . . , kj . These have the property that
c(k1) = 1, for all k1, and

c(k1, . . . , kj) = c(k1, . . . , kj−1)
(k1 + · · · + kj−1 + j) · · · (k1 + · · · + kj + j − 1)

kj !

(the numerator in the fraction is the product of the kj successive integers from
(k1 + · · ·+kj−1 + j) to (k1 + · · ·+kj + j−1)). Using this notation and Lemma 4.20
we obtain an asymptotic expansion

(λ − ∆)−1X1 ≈
∑
k1≥0

c(k1)X1
(k1)

(λ − ∆)−(k1+1),

and then

(λ − ∆)−1X1(λ − ∆)−1X2 ≈
∑
k1≥0

c(k1)X1
(k1)

(λ − ∆)−(k1+2)X2

≈
∑

k1,k2≥0

c(k1, k2)X1
(k1)

X2
(k2)

(λ − ∆)−(k1+k2+2),

and finally

(λ − ∆)−1X1 · · · (λ − ∆)−1Xp ≈
∑
k≥0

c(k)X1
(k1) · · ·Xp

(kp)
(λ − ∆)−(|k|+p),

where we have written k = (k1, . . . , kp) and |k| = k1 + · · · + kp. It follows that

(−1)pΓ(z)
2πi

∫
λ−z(λ − ∆)−1 · · ·Xp(λ − ∆)−1 dλ

≈
∑
k≥0

c(k)X1
(k1) · · ·Xp

(kp) (−1)pΓ(z)
2πi

∫
λ−z(λ − ∆)−(|k|+p+1) dλ

=
∑
k≥0

c(k)X1
(k1)

· · ·Xp
(kp)

(−1)pΓ(z)
(

−z

|k| + p

)
∆−z−|k|−p.

The terms of this asymptotic expansion have analytic order q− k− r(Re(z)+ p) or
less, and therefore if Re(z) + p > 1

r (q + d) then the terms all have analytic order
less than −d. This proves the first part of the proposition: after multiplying by
εX0, if Re(z) + p > 1

r (q + d) then all the terms in the asymptotic expansion are
trace class, and the integral extends to a trace class operator on H . To continue,
it follows from the functional equation for Γ(z) that

(−1)pΓ(z)
(

−z

|k| + p

)
= (−1)|k|Γ(z + p + |k|) 1

(|k| + p)!
.

So multiplying by εX0 and taking traces we get

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p + |k|) 1
(|k| + p)!

c(k)

× Trace
(

εX0X1
(k1)

· · ·Xp
(kp)

∆−z−|k|−p
)

,

where the symbol ≈ means that, given any right half-plane in C, any sufficiently
large finite partial sum of the right hand side agrees with the left hand side modulo
a function of z which is holomorphic in that half-plane. The second part of the
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proposition follows immediately from this asymptotic expansion and Definition 4.11.
�

4.22. Remark. In the coming sections we shall make use of a modest general-
ization of the first part of Proposition 4.14, in which the operators X0, . . . , Xp are
chosen from the algebra generated by D(∆) and D (a square root of the operator
∆ that we shall discuss next), with at least one Xj actually in D(∆) itself. The
conclusion of the proposition and the proof are the same.

At the end of Section 7 we shall also need a version of Lemma 4.20 involving
powers ∆−h for non-integral h. Once again the formulation of the lemma, and the
proof, are otherwise unchanged.

4.4. Square Root of the Laplacian. We shall now assume that a self-
adjoint operator D is specified, for which D2 = ∆. If the Hilbert space H is
nontrivially Z/2-graded we shall also assume that the operator D has grading de-
gree 1. We shall also assume that an algebra A ⊆ D(∆) is specified, consisting
of operators of differential order zero (the operators in A are therefore bounded
operators on H).

4.23. Example. In the standard example, D will be a Dirac-type operator and
A will be the algebra of C∞-functions on M .

Continuing the axioms listed in Section 4.2, we shall assume that
(v) If a ∈ A ⊆ D(∆) then [D, a] ∈ D(∆).

We shall also assume that
(vi) If a ∈ A then order

(
[D, a]

)
≤ order(D) − 1, where we set order(D) = r

2 .

4.5. Spectral Triples. In Section 5 we shall use the square root D to con-
struct cyclic cocycles for the algebra A from the quantities 〈X0, . . . , Xp〉z. But first
we shall conclude our discussion of analytic preliminaries by briefly discussing the
relation between our algebras D(∆) and the notion of spectral triple.

4.24. Definition. A spectral triple is a triple (A, H, D), composed of a complex
Hilbert space H , an algebra A of bounded operators on H , and a self-adjoint
operator D on H with the following two properties:

(i) If a ∈ A then the operator a · (1 + D2)−1 is compact.
(ii) If a ∈ A then a · dom(D) ⊆ dom(D) and the commutator [D, a] extends to a

bounded operator on H .

Various examples are listed in [12]; in the standard example A is the algebra
of smooth functions on a complete Riemannian manifold M , D is a Dirac-type
operator on M , and H is the Hilbert space of L2-sections of the vector bundle on
which D acts.

Let (A, H, D) be a spectral triple. Let ∆ = D2, and as in Section 4.2 let us
define

H∞ = ∩∞
k=1 dom(∆k) = ∩∞

k=1 dom(Dk).
Let us assume that A maps the space H∞ into itself (this does not follow auto-
matically). Having done so, let us define D(A, D) to be the smallest algebra of
linear operators on H∞ which contains A and [D, A] and which is closed under the
operation X �→ [∆, X ]. Note that D(A, D) does not necessarily contain D.

Equip the algebra D(A, D) with the smallest filtration so that
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(i) If a ∈ A then order(a) = 0 and order
(
[D, a]

)
= 0.

(ii) If X ∈ D(A, D) then order
(
[∆, X ]

)
≤ order(X) + 1.

The term “smallest” means here that we write order(X) ≤ q if and only if the order
of X is q or less in every filtration satisfying the above conditions (there is at least
one such filtration). Having filtered D(A, D) in this way we obtain an example
of the sort of algebra of generalized differential operators which was considered in
Section 4.2.

Denote by δ the unbounded derivation of B(H) given by commutator with |D|.
Thus the domain of δ is the set of all bounded operators T which map the domain
of |D| into itself, and for which the commutator extends to a bounded operator on
H .

4.25. Definition. A spectral triple is regular if A and [D, A] belong to ∩∞
n=1δ

n.

We want to prove the following result.

4.26. Theorem. Let (A, H, D) be a spectral triple with the property that every
a ∈ A maps H∞ into itself. It is regular if and only if the algebra D(A, D) satisfies
the basic estimate (iv) of Section 4.2.

The proof is based on the following computation. Denote by B the algebra of
operators on H∞ generated by all the spaces δn[A] and δn

[
[D, A]

]
, for all n ≥ 0.

According to the definition of regularity every operator in B extends to a bounded
operator on H .

4.27. Lemma. Assume that (A, H, D) is a regular spectral triple. Every operator
in D of order k may be written as a finite sum of operators b|D|�, where b belongs
to the algebra B and where 
 ≤ k.

Proof. The spaces Dk of operators of order k or less in D(A, D) may be
defined inductively as follows:
(a) D0 = the algebra generated by A + [D, A].
(b) D1 = [∆,D0] + D0[∆,D0].
(c) Dk =

∑k−1
j=1 Dj · Dk−j + [∆,Dk−1] + D0[∆,Dk−1].

Define E , a space of operators on H∞, to be the linear span of the operators of the
form b|D|k, where k ≥ 0. The space E is an algebra since

b1|D|k1 · b2|D|k2 =
k1∑
j=0

(
k1

j

)
b1δ

j(b2)|D|k1+k2−j .

Filter the algebra E by defining Ek to be the span of all operators b|D|� with 
 ≤ k.
The formula above shows that this does define a filtration of the algebra E . Now the
algebra D of differential operators is contained within E , and the lemma amounts
to the assertion that Dk ⊆ Ek. Clearly D0 ⊆ E0. Using the formula

[∆, b|D|k−1] = [|D|2, b|D|k−1] = 2δ(b)|D|k + δ2(b)|D|k−1

and our formula for Dk the inclusion Dk ⊆ Ek is easily proved by induction. �
Proof of Theorem 4.26, Part One. Suppose that (A, H, D) is regular.

According to the lemma, to prove the basic estimate for D(A, D) it suffices to
prove that if k ≥ 
 and if X = b|D|�, where b ∈ B, then there exists ε > 0 such that

‖Dkv‖ + ‖v‖ ≥ ε‖Xv‖,
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for every v ∈ H∞. But we have

‖Xv‖ = ‖b|D|�v‖ ≤ ‖b‖ · ‖|D|�v‖ = ‖b‖ · ‖D�v‖,
And since by spectral theory for every 
 ≤ k we have that

‖D�v‖2 ≤ ‖Dkv‖2 + ‖v‖2 ≤
(
‖Dkv‖ + ‖v‖

)2

it follows that
‖Dkv‖ + ‖v‖ ≥ 1

‖b‖ + 1
‖Xv‖,

as required. �
To prove the converse, we shall develop a pseudodifferential calculus, as follows.

4.28. Definition. Let (A, H, D) be a spectral triple for which A ·H∞ ⊆ H∞,
and for which the basic elliptic estimate holds. Fix an operator K : H∞ → H∞

of order −∞ and such that ∆1 = ∆ + K is invertible. A basic pseudodifferential
operator of order k ∈ Z is a linear operator T : H∞ → H∞ with the property that
for every 
 ∈ Z the operator T may be decomposed as

T = X∆
m
2
1 + R,

where X ∈ D(A, D), m ∈ Z, and R : H∞ → H∞, and where

order(X) + m ≤ k and order(R) ≤ 
.

A pseudodifferential operator of order k ∈ Z is a finite linear combination of basic
pseudodifferential operators of order k.

4.29. Remarks. Every pseudodifferential operator is a sum of two basic oper-
ators (one with the integer m in Definition 4.28 even, and one with m odd). The
class of pseudodifferential operators does not depend on the choice of operator K.

4.30. Lemma. If T is a pseudodifferential operator and z ∈ C then

[∆z
1, T ] ≈

∞∑
j=1

(
z

j

)
T (j)∆z−j

1 .

Proof. See the proof of Lemma 4.20. �
4.31. Proposition. The set of all pseudodifferential operators is a filtered alge-

bra. If T is a pseudodifferential operator then so is δ(T ), and moreover order(δ(T )) ≤
order(T ).

Proof. The set of pseudodifferential operators is a vector space. The formula

X∆
m
2
1 · Y ∆

n
2
1 ≈

∞∑
j=0

(m
2

j

)
XY (j)∆

m+n
2 −j

1

shows that it is closed under multiplication. Finally,

δ(T ) = |D|T − T |D| ≈ ∆
1
2
1 T − T∆

1
2
1

≈
∞∑
j=1

(1
2

j

)
T (j)∆

1
2−j
1 .

This computation reduces the second part of the lemma to the assertion that if
T is a pseudodifferential operator of order k then T (1) = [∆, T ] is a pseudodiffer-
ential operator of order k + 1 or less. This in turn follows from the definition of
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pseudodifferential operator and the fact that if X is a differential operator then the
differential operator [∆, X ] has order at most one more than the order of X . �

Proof of Theorem 4.26, Part Two. Suppose that (A, H, D) is a spectral
triple for which A ·H∞ ⊆ H∞ and for which the basic estimate holds. By the basic
estimate, every pseudodifferential operator of order zero extends to a bounded
operator on H . Since every operator in A or [D, A] is pseudodifferential of order
zero, and since δ(T ) is pseudodifferential of order zero whenever T is, we see that
if b ∈ A or b ∈ [D, A] then for every n the operator δn(b) extends to a bounded
operator on H . Hence the spectral triple (A, H, D) is regular, as required. �

4.32. Definition. A spectral triple (A, H, D) is finitely summable if there is a
Schatten ideal Lp(H) (where 1 ≤ p < ∞)) such that

a · (1 + D2)−
1
2 ∈ Lp(H)

for every a ∈ A.

If the spectral triple (A, H, D) is regular and finitely summable then for every
X ∈ D(A, D) the zeta function Trace(X∆− z

2 ) is defined in a right half-plane in C,
and is holomorphic there. The following concept has been introduced by Connes
and Moscovici [12, Definition II.1].

4.33. Definition. Let (A, H, D) be a regular and finitely summable spectral
triple. It has discrete dimension spectrum if9 there is a discrete subset F of C with
the following property: for every operator X in D(A, D) if order(X) ≤ q then the
zeta function Trace(X∆− z

2 ) extends to a meromorphic function on C with all poles
contained in F + q. The dimension spectrum of (A, H, D) is then the smallest such
set F .

4.34. Remark. The definition above extends without change to arbitrary al-
gebras of generalized differential operators, and at one point (in Section 6) we shall
use it in this context.

A final item of terminology: in Appendix A we shall make use of the following
notion:

4.35. Definition. A regular and finitely summable spectral triple has simple
dimension spectrum if it has discrete dimension spectrum and if all the zeta-type
functions above have only simple poles.

5. The Residue Cocycle

In this section we shall assume as given an algebra D(∆), a square root D of ∆,
and an algebra A ⊆ D(∆), as in the previous sections. We shall assume the finite
analytic dimension and analytic continuation properties set forth in Definitions 4.8
and 4.11. We shall also assume that the Hilbert space H is nontrivially Z/2-graded
and therefore that the operator D has odd grading-degree. This is the “even-
dimensional” case. The “odd-dimensional” case, where H has no grading, will be
considered separately in Section 7.4.

9Connes and Moscovici add a technical condition concerning decay of zeta functions along
vertical lines in C; compare Appendix A.
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5.1. Improper Cocycle. We are going to define a periodic cyclic cocycle
Ψ = (Ψ0, Ψ2, . . . ) for the algebra A. The cocycle will be improper, in the sense that
all the Ψp will be (typically) nonzero. Moreover the cocycle will assume values in
the field of meromorphic functions on C. But in the next section we shall convert
it into a proper cocycle with values in C itself.

We are going to assemble Ψ from the quantities 〈X0, . . . , Xp〉z defined in Sec-
tion 4. In doing so we shall follow quite closely the construction of the JLO cocycle
in entire cyclic cohomology (see [20] and [17]), which is assembled from the quan-
tities

(5.1) 〈X0, . . . , Xp〉JLO = Trace
(∫

Σp

εX0e−t0∆ . . . Xpe−tp∆ dt

)

(the integral is over the standard p-simplex). In Appendix A we shall compare
our cocycle to the JLO cocycle. For now, let us note that the quantities in Equa-
tion (5.1) are scalars, while the quantities 〈X0, . . . , Xp〉z are functions of the pa-
rameter z. But this difference is superficial, and the computations which follow in
this section are more or less direct copies of computations already carried out for
the JLO cocycle in [20] and [17].

We begin by establishing some “functional equations” for the quantities 〈· · · 〉z.
In order to keep the formulas reasonably compact, if X ∈ D(∆) then we shall write
(−1)X to denote either +1 or −1, according as the Z/2-grading degree of X is even
or odd.

5.1. Lemma. The meromorphic functions 〈X0, . . . , Xp〉z satisfy the following
functional equations:

〈X0, . . . , Xp−1, Xp〉z+1 =
p∑
j=0

〈X0, . . . , Xj−1, 1, Xj, . . . , Xp〉z(5.2)

〈X0, . . . , Xp−1, Xp〉z = (−1)X
p〈Xp, X0, . . . , Xp−1〉z(5.3)

Proof. The first identity follows from the fact that

d

dλ

(
λ−zX0(λ − ∆)−1 · · ·Xp(λ − ∆)−1

)
= (−z)λ−z−1X0(λ − ∆)−1 · · ·Xp(λ − ∆)−1

−
p∑
j=0

λ−zX0(λ − ∆)−1 · · ·Xj(λ − ∆)−2Xj+1 · · ·Xp(λ − ∆)−1

and the fact that the integral of the derivative is zero. As for the second identity,
if p � 0 then the integrand in Equation (4.1) is a trace-class operator, and Equa-
tion (5.3) is an immediate consequence of the trace-property. In general we can
repeatedly apply Equation (5.2) to reduce to the case where p � 0. �

5.2. Lemma.

(5.4) 〈X0, . . . , [D2, Xj], . . . , Xp〉z =

〈X0, . . . , Xj−1Xj, . . . Xp〉z − 〈X0, . . . , XjXj+1, . . .Xp〉z
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Proof. This follows from the identity

Xj−1(λ − ∆)−1[D2, Xj](λ − ∆)−1Xj+1

= Xj−1(λ − ∆)−1XjXj+1 − Xj−1Xj(λ − ∆)−1Xj+1.

Note that when j = p, equation (5.4) should read as

〈X0, . . . , Xp−1, [D2, Xp]〉z = 〈X0, . . . , Xp−1Xp〉z − (−1)X
p

〈XpX0, . . . , Xp−1〉z.
�

5.3. Lemma.

(5.5)
p∑
j=0

(−1)X
0···Xj−1

〈X0, . . . , [D, Xj ], . . . , Xp〉z = 0

Proof. The identity is equivalent to the formula

Trace
(

ε
[
D,

∫
λ−zX0(λ − ∆)−1 · · ·Xp(λ − ∆)−1 dλ

])
= 0,

which holds since the supertrace of any (graded) commutator is zero. �

With these preliminaries out of the way we can obtain very quickly the (im-
proper) (b, B)-cocycle which is the main object of study in these notes.

5.4. Definition. If p is a non-negative and even integer then define a (p + 1)-
multilinear functional on A with values in the meromorphic functions on C by the
formula

Ψp(a0, . . . , ap) = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

5.5. Theorem. The even (b, B)-cochain Ψ = (Ψ0, Ψ2, Ψ4 · · · ) is an (improper)
(b, B)-cocycle.

Proof. First of all, it follows from the definition of B and Lemma 5.1 that

BΨp+2(a0, . . . , ap+1) =
p+1∑
j=0

(−1)j〈1, [D, aj ], . . . , [D, aj−1]〉s− p+2
2

=
p+1∑
j=0

〈[D, a0], . . . , [D, aj−1], 1, [D, aj ], . . . , [D, ap+1]〉s− p+2
2

= 〈[D, a0], [D, a1], . . . , [D, ap+1]〉s− p
2
.

Next, it follows from the definition of b and the Leibniz rule [D, ajaj+1] =
aj[D, aj+1] + [D, aj ]aj+1 that

bΨp(a0, . . . , ap+1) =
(
〈a0a1, [D, a2], . . . , [D, ap+1]〉s− p

2

− 〈a0, a1[D, a2], . . . , [D, ap+1]〉s− p
2

)
−

(
〈a0, [D, a1]a2, [D, a3], . . . , [D, ap+1]〉s− p

2

− 〈a0, [D, a1], a2[D, a3], . . . , [D, ap+1]〉s− p
2

)
+ · · ·
+

(
〈a0, [D, a1], . . . , [D, ap]ap+1〉s− p

2

− 〈ap+1a0, [D, a1], . . . , [D, ap+1]〉s− p
2

)
.
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Applying Lemma 5.2 we get

bΨp(a0, . . . , ap+1) =
p+1∑
j=1

(−1)j−1〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, ap+1]〉s− p
2

Setting X0 = a0 and Xj = [D, aj ] for j ≥ 1, and applying Lemma 5.3 we get

BΨp+2(a0, . . . , ap+1) + bΨp(a0, . . . , ap+1)

=
p+1∑
j=0

(−1)X
0···Xj−1

〈X0, . . . , [D, Xj ], . . . , Xp+1〉s− p
2

= 0.

�

5.2. Residue Cocycle. By taking residues at s = 0 we map the space of
meromorphic functions on C to the scalar field C, and we obtain from any (b, B)-
cocycle with coefficients in the space of meromorphic functions a (b, B)-cocycle
with coefficients in C. This operation transforms the improper cocycle Ψ that we
constructed in the last section into a proper cocycle Ress=0 Ψ. Indeed, it follows
from Proposition 4.14 that if p is greater than the analytic dimension d of D(∆)
then the function

Ψp(a0, . . . , ap)s = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

is holomorphic at s = 0.
The following proposition identifies the proper (b, B)-cocycle Ress=0 Ψ with the

residue cocycle studied by Connes and Moscovici.

5.6. Theorem. For all p ≥ 0 and all a0, . . . , ap ∈ A,

Ress=0 Ψp(a0, . . . , ap)

=
∑
k≥0

cp,k Ress=0 Tr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|−s
)

.

The sum is over all multi-indices (k1, . . . , kp) with non-negative integer entries, and
the constants cpk are given by the formula

cpk =
(−1)k

k!
Γ(|k| + p

2 )
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · · + kp + p)

5.7. Remarks. Before proving the theorem we need to make one or two com-
ments about the above formula.

First, the constant c00 = Γ(0) is not well defined since 0 is a pole of the Γ-
function. To cope with this problem we replace the term c00 Ress=0

(
Tr(εa0∆−s)

)
with Ress=0

(
Γ(s)Tr(εa0∆−s)

)
.

Second, it follows from Proposition 4.14 that if |k| + p > d then the (p, k)-
contribution to the above sum of residues is actually zero. Hence for every p the
sum is in fact finite (and as we already noted above, the sum is 0 when p > d).
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Proof of Theorem 5.6. We showed in the proof of Proposition 4.14 that

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p + |k|) c(k)
(|k| + p)!

× Trace
(

εX0X1
(k1)

· · ·Xp
(kp)

∆−z−|k|−p
)

.

After we note that

cpk = (−1)|k|Γ
(
|k| + p

2
) c(k)
(p + |k|)!

the proof of the theorem follows immediately from the asymptotic expansion upon
setting z = s − p

2 and taking residues at s = 0. �

6. The Local Index Formula

The objective of this section is to compute the pairing between the periodic
cyclic cocycle Ress=0 Ψ and idempotents in the algebra A (compare Section 2.5).
We shall prove the following result.

6.1. Theorem. Let Ress=0 Ψ be the index cocycle associated to an algebra D(∆)
of generalized differential operators with finite analytic dimension and the analytic
continuation property, together with a square root D of ∆ and a subalgebra A ⊆
D(∆). If e is an idempotent element of A then

〈Ress=0 Ψ, e〉 = Index
(
eDe : eH0 → eH1

)
.

Theorem 6.1 will later be superseded by a more precise result at the level of
cyclic cohomology, and we shall we shall only sketch one or two parts of the proof
which will be dealt with in more detail later. Furthermore, to slightly simplify the
analysis we shall assume that D(∆) has discrete dimension spectrum, in the sense
of Definition 4.33.

6.1. Invertibility Hypothesis Removed. Up to now we have been assum-
ing that the self-adjoint operator ∆ is invertible (in the sense of Hilbert space
operator theory, meaning that ∆ is a bijection from its domain to the Hilbert space
H). We shall now remove this hypothesis.

To do so we shall begin with an operator D which is not necessarily invertible
(with D2 = ∆). We shall assume that the axioms (i)-(vi) in Sections 4.2 and 4.4
hold. Fix a bounded self-adjoint operator K with the following properties:

(i) K commutes with D.
(ii) K has analytic order −∞ (in other words, K · H ⊆ H∞).
(iii) The operator ∆ + K2 is invertible.
Having done so, let us construct the operator

DK =
(

D K
K −D

)

acting on the Hilbert space H ⊕Hopp, where Hopp is the Z/2-graded Hilbert space
H but with the grading reversed. It is invertible.

6.2. Example. If D is a Fredholm operator then we can choose for K the
projection onto the kernel of D.
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Let ∆K = (DK)2 and denote by D(∆K) the smallest algebra of operators on
H ⊕ Hopp which contains the 2 × 2 matrices over D(∆) and which is closed under
multiplication by operators of analytic order −∞.

The axioms (i)-(iv) of Section 4.2 are satisfied for the new algebra. Moreover,
if we embed A into D(∆K) as matrices ( a 0

0 0 ), then the axioms (v) and (vi) in
Section 4.4 are satisfied too.

6.3. Lemma. Assume that the operators K1 and K2 both have the properties
(i)-(iii) listed above. Then D(∆K1) = D(∆K1 ). Moreover the algebra has finite
analytic dimension d and has the analytic continuation property with respect to
∆K1 if and only if it has the same with respect to ∆K2 . If these properties do hold
then the quantities 〈X0, . . . , Xp〉z associated to ∆K1 and ∆K2 differ by a function
which is analytic in the half-plane Re(z) > −p.

Proof. It is clear that D(∆K1) = D(∆K2). To investigate the analytic con-
tinuation property it suffices to consider the case where K1 is a fixed function of
∆, in which case K1 and K2 commute. Let us write

X∆−z =
1

2πi

∫
λ−zX(λ − ∆)−1 dλ

for Re(z) > 0. Observe now that

(λ − ∆K1)
−1 − (λ − ∆K2)

−1 ≈ M(λ − ∆K1)
−2 − M(λ − ∆K1)

−3 + · · · ,

where M = ∆K1 − ∆K2 (this is an asymptotic expansion in the sense described
prior to the proof of Proposition 4.14). Integrating and taking traces we see that

(6.1) Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
≈

∑
k≥1

(−1)k−1

(
−z

k

)
Trace

(
XM∆−z−k

K1

)
,

which shows that the difference Trace
(
X∆−z

K1

)
− Trace

(
X∆−z

K2

)
has an analytic

continuation to an entire function. Therefore ∆K1 has the analytic continuation
property if and only if ∆K2 does (and moreover the analytic dimensions are equal).

The remaining part of the lemma follows from the asymptotic formula

〈X0, . . . , Xp〉z ≈
∑
k≥0

(−1)|k|Γ(z + p + |k|) 1
(|k| + p)!

c(k)

× Trace
(

εX0X1
(k1) · · ·Xp

(kp)
∆−z−|k|−p

)

that we proved earlier. �

6.4. Definition. The residue cocycle associated to the possibly non-invertible
operator D is the residue cocycle Ress=0 Ψ associated to the invertible operator
DK , as above.

Lemma 6.3 shows that if p > 0 then the residue cocycle given by Definition 6.4
is independent of the choice of the operator K. In fact this is true when p = 0
too. Indeed, Equation (6.1) shows that not only is the difference Trace(εa0∆−s

K1
)−

Trace(εa0∆−s
K2

) analytic at s = 0, but it vanishes there too. Therefore

Ress=0 ΨK1
0 (a0) − Ress=0 ΨK2

0 (a0)

= Ress=0 Γ(s)
(
Trace(εa0∆−s

K1
) − Trace(εa0∆−s

K2
)
)

= 0.
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6.5. Example. If D happens to be invertible already then we obtain the same
residue cocycle as before.

6.6. Example. In the case where D is Fredholm, the residue cocycle is given
by the same formula that we saw in Theorem 5.6:

Ress=0 Ψp(a0, . . . , ap)

=
∑
k≥0

cp,k Ress=0 Tr
(
εa0[D, a1](k1) · · · [D, ap](kp)∆− p

2−|k|−s
)

.

The complex powers ∆−z are defined to be zero on the kernel of D (which is also
the kernel of ∆). When p = 0 the residue cocycle is

Ress=0

(
Γ(s)Trace(εao∆−s)

)
+ Trace(εa0P ),

where the complex power ∆−s is defined as above and P is the orthogonal projection
onto the kernel of D.

6.2. Proof of the Index Theorem. Let us fix an idempotent e ∈ A and
define a family of operators by the formula

Dt = D + t[e, [D, e]], t ∈ [0, 1].

Note that D0 = D while D1 = eDe + e⊥De⊥, so that in particular D1 commutes
with e. Denote by Ψt the improper cocycle associated to Dt (via the mechanism
just described in the last section which involves the incorporation of some order
−∞ operator Kt, which we shall assume depends smoothly on t).

6.7. Lemma. Define an improper (b, B)-cochain Θt by the formula

Θt
p(a

0, . . . , ap) =
p∑
j=0

(−1)j−1〈a0, . . . , [DKt , a
j ], ḊKt , [DKt , a

j+1], . . . , [DKt , a
p]〉s− p+1

2
,

where Ḋ = d
dtDKt ∈ D(∆K). Then

BΘt
p+1 + bΘt

p−1 +
d

dt
Ψt
p = 0.

�

The lemma, which is nothing more than an elaborate computation, can be
proved by following the steps taken in Section 7.1 below (compare Remark 7.9).

Proof of Theorem 6.1. It follows from the asymptotic expansion method
used to prove Lemma 6.3 that each Ψt and each Θt is meromorphic. Since we
are assuming that D(∆) has discrete dimension spectrum the poles of all these
functions are located within the same discrete set in C. As a result, the integral∫ 1

0
Θt dt is clearly meromorphic too. Since

B

∫ 1

0

Θt
p+1 dt + b

∫ 1

0

Θt
p−1 dt = Ψ0 − Ψ1,

it follows by taking residues that Ress=0 Ψ0 and Ress=1 Ψ1 are cohomologous. As
a result, we can compute the pairing 〈Ress=0 Ψ, e〉 using Ψ1 in place of Ψ0. If
we choose the operator K1 to commute with not only D1 but also e, then DK1
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commutes with e and the explicit formula for the pairing 〈Ress=0 Ψ, e〉 given in
Theorem 2.27 simplifies, as follows:

〈Ress=0 Ψ1, e〉 = Ress=0 Ψ1
0(e) +

∑
k≥1

(−1)k
(2k)!
k!

Ress=0 Ψ1
2k(e −

1
2
, e, . . . , e)

= Ress=0 Ψ1
0(e)

(all the higher terms vanish since they involve commutators [DK1 , e]). We conclude
that

〈Ress=0 Ψ1, e〉 = Ress=0 Ψ1
0(e)

= Ress=0

(
Γ(s)Trace(εe (∆K1)

−s)
)

= Index
(
eDe : eH0 → eH1

)
,

as required (the last step is the index computation made by Atiyah and Bott that
we mentioned in the introduction).

�

6.8. Remark. The proof of the corresponding odd index formula (involving
the odd pairing in Theorem 2.27) is not quite so simple, but could presumably
be accomplished following the argument developed by Getzler in [16] for the JLO
cocycle.

7. The Local Index Theorem in Cyclic Cohomology

Our goal in this section is to identify the cohomology class of the residue cocycle
Ress=0 Ψ with the cohomology class of the Chern character cocycle chFn associated
to the operator F = D|D|−1 (see Section 2.1). Here n is any even integer greater
than or equal to the analytic dimension d. It follows from the definition of analytic
dimension and some simple manipulations that

[F, a0] · · · [F, an] ∈ L1(H),

for such n, so that the Chern character cocycle is well-defined.
We shall reach the goal in two steps. First we shall identify the cohomology

class of Ress=0 Ψ with the class of a certain specific cyclic cocycle, which involves
no residues. Secondly we shall show that this cyclic cocycle is cohomologous to the
Chern character chFn .

To begin, we shall return to our assumption that D is invertible, and then deal
with the general case at the end of the section.

7.1. Reduction to a Cyclic Cocycle. The following result summarizes step
one.

7.1. Theorem. Fix an even integer n strictly greater than d−1. The multilinear
functional

(a0, . . . , an) �→ 1
2

n∑
j=0

(−1)j+1〈[D, a0], . . . , [D, aj], D, [D, aj+1], . . . , [D, an]〉−n
2
.

is a cyclic n-cocycle which, when considered as a (b, B)-cocycle, is cohomologous to
the residue cocycle Ress=0 Ψ.
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7.2. Remark. It follows from Proposition 4.14 that the quantities

〈[D, a0], . . . , [D, aj], D, [D, aj+1], . . . , [D, an]〉z
which appear in the theorem are holomorphic in the half-plane Re(z) > −n

2 +
1
r (d − (n + 1)). Therefore it makes sense to evaluate them at z = −n

2 , as we have
done. Appearances might suggest otherwise, because the term Γ(z) which appears
in the definition of 〈. . . 〉z has poles at the non-positive integers (and in particular
at z = −n

2 if n is even). However these poles are canceled by zeroes of the contour
integral in the given half-plane.

Theorem 7.1 and its proof have a simple conceptual explanation, which we shall
give in a little while (after Lemma 7.8). However, a certain amount of elementary,
if laborious, computation is also involved in the proof, and we shall get to work on
this first. For this purpose it is useful to introduce the following notation.

7.3. Definition. If X0, . . . , Xp are operators in the algebra generated by D(∆),
1 and D, and if at least one belongs to D(∆) then define

〈〈X0, . . . , Xp〉〉z =
p∑
k=0

(−1)X
0···Xk〈X0, . . . , Xk, D, Xk+1, . . . , Xp〉z,

which is a meromorphic function of z ∈ C.

The new notation allows us to write a compact formula for the cyclic cocycle
appearing in Theorem 7.1:

(a0, . . . , an) �→ 1
2 〈〈[D, a0], . . . , [D, an]〉〉− n

2
.

We shall now list some properties of the quantities 〈〈· · · 〉〉z which are analogous
to the properties of the quantities 〈· · · 〉z that we verified in Section 5. The following
lemma may be proved using the formulas in Lemmas 5.1 and 5.2.

7.4. Lemma. The quantity 〈〈X0, . . . , Xp〉〉z satisfies the following identities:

〈〈X0, . . . , Xp〉〉z = 〈〈Xp, X0, . . . , Xp−1〉〉z(7.1)
p∑
j=0

〈〈X0, . . . , Xj, 1, Xj+1, . . . , Xp〉〉z+1 = 〈〈X0, . . . , Xp〉〉z(7.2)

In addition,

(7.3) 〈〈X0, . . . , Xj−1Xj , . . . , Xp〉〉z − 〈〈X0, . . . , XjXj+1, . . . , Xp〉〉z
= 〈〈X0, . . . , [D2, Xj], . . . , Xp〉〉z − (−1)X

0···Xj−1〈X0, . . . , [D, Xj ], . . . , Xp〉z.

(In both instances within this last formula the commutators are graded commuta-
tors.) �

7.5. Remark. When j = p, equation (7.3) should be read as

〈〈X0, . . . , Xp−1Xp〉〉z − 〈〈XpX0, . . . , Xp−1〉〉z
= 〈〈X0, . . . , Xp−1, [D2, Xp]〉〉z − (−1)X

0···Xp−1
〈X0, . . . , Xp−1, [D, Xp]〉z.

We shall also need a version of Lemma 5.3, as follows.
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7.6. Lemma.

(7.4)
p∑
j=0

(−1)X
0···Xj−1

〈〈X0, . . . , [D, Xj ], . . . , Xp〉〉z

= 2
p∑
k=0

〈X0, . . . , Xk−1, D2, Xk, . . . , Xp〉z.

�

Proof. This follows from Lemma 5.3. Note that [D, D] = 2D2, which helps
explain the factor of 2 in the formula. �

The formula in Lemma 7.6 can be simplified by means of the following compu-
tation:

7.7. Lemma.
p∑
j=0

〈X0, . . . , Xj, D2, Xj+1, . . . , Xp〉z = (z + p)〈X0, . . . , Xp〉z

Proof. If we substitute into the integral which defines 〈X0, . . . , D2, . . . , Xp〉z
the formula

D2 = λ − (λ − ∆)

we obtain the (supertrace of the) terms

(−1)p+1 Γ(z)
2πi

∫
λ−z+1X0(λ − ∆)−1 · · · 1(λ − ∆)−1 · · ·Xp(λ − ∆)−1 dλ

− (−1)p+1 Γ(z)
2πi

∫
λ−zX0(λ − ∆)−1 · · ·Xp(λ − ∆)−1 dλ

Using the functional equation Γ(z) = (z−1)Γ(z−1) we therefore obtain the quantity

(z − 1)〈X0, . . . , Xj , 1, Xj+1, . . . , Xp〉z−1 + 〈X0, . . . , Xp〉z

(the change in the sign preceding the second bracket comes from the fact that the
bracket contains one fewer term, and the fact that (−1)p+1 = −(−1)p). Adding up
the terms for each j, and using Lemma 5.1 we therefore obtain
p∑
j=0

〈X0, . . . , Xj, D2, Xj+1, . . . , Xp〉z = (z − 1)〈X0, . . . , Xp〉z + (p + 1)〈X0, . . . , Xp〉z

= (z + p)〈X0, . . . , Xp〉z

as required. �

Putting together the last two lemmas we obtain the formula

(7.5)
p∑
j=0

(−1)X
0···Xj−1〈〈X0, . . . , [D, Xj ], . . . , Xp〉〉z = 2(z + p)〈X0, . . . , Xp〉z .

With this in hand we can proceed to the following computation:
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7.8. Lemma. Define multilinear functionals Θp on A, with values in the space
of meromorphic functions on C, by the formulas

Θp(a0, . . . , ap) = 〈〈a0, [D, a1], . . . , [D, ap]〉〉s− p+1
2

.

Then

BΘp+1(a0, . . . , ap) = 〈〈[D, a0], . . . , [D, ap]〉〉s− p
2
.

and in addition

bΘp−1(a0, . . . , ap) + BΘp+1(a0, . . . , ap) = 2sΨp(a0, . . . , ap)

for all s ∈ C and all a0, . . . , ap ∈ A.

Proof. The formula for BΘp+1(a0, . . . , ap) is a consequence of Lemma 7.4.
The computation of bΘp−1(a0, . . . , ap) is a little more cumbersome, although still
elementary. It proceeds as follows. First we use the Leibniz rule to write

bΘp−1(a0, . . . , ap) =
p−1∑
j=0

(−1)j〈〈a0, . . . , [D, ajaj+1], . . . , [D, ap]〉〉s− p
2

+ (−1)p〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

= 〈〈a0a1, [D, a2], . . . , [D, ap]〉〉s− p
2

+
p−1∑
j=1

(−1)j〈〈a0, . . . , aj [D, aj+1], . . . , [D, ap]〉〉s− p
2

+
p−1∑
j=1

(−1)j〈〈a0, . . . , [D, aj ]aj+1, . . . , [D, ap]〉〉s− p
2

+ (−1)p〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

Next we rearrange the terms to obtain the formula

bΘp−1(a0, . . . , ap) =
(
〈〈a0a1, [D, a2], . . . , [D, ap]〉〉s− p

2

− 〈〈a0, a1[D, a2], . . . , [D, ap]〉〉s− p
2

)

+
p−2∑
j=1

(−1)j
(
〈〈a0, . . . , [D, aj ]aj+1, . . . , [D, ap]〉〉s− p

2

− 〈〈a0, . . . , aj+1[D, aj+2], . . . , [D, ap]〉〉s− p
2

)

+ (−1)p−1
(
〈〈a0, [D, a1], . . . , [D, ap−1]ap〉〉s− p

2

− 〈〈apa0, [D, a1], . . . , [D, ap−1]〉〉s− p
2

)
.
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We can now apply Lemma 7.6:

bΘp−1(a0, . . . , ap) =
(
〈〈a0, [D2, a1], [D, a2], . . . , [D, ap]〉〉s− p

2

+ 〈a0, [D, a1], [D, a2], . . . , [D, ap]〉s− p
2

)

+
p−2∑
j=1

(−1)j
(
〈〈a0, [D, a1], . . . , [D2, aj+1], . . . , [D, ap]〉〉s− p

2

+ (−1)j 〈a0, [D, a1], . . . , [D, aj+1], . . . , [D, ap]〉s− p
2

)

+ (−1)p−1
(
〈〈a0, [D, a1], . . . , [D, ap−1], [D2, ap]〉〉s− p

2

+ (−1)p−1〈a0, [D, a1], . . . , [D, ap−1], [D, ap]〉s− p
2

)
.

Collecting terms we get

bΘp−1(a0, . . . , ap) =
p∑
k=1

(−1)k−1〈〈a0, [D, a1], . . . , [D2, ak], . . . , [D, ap]〉〉s− p
2

+ p〈a0, [D, a1], . . . , [D, ap]〉s− p
2
.

All that remains now is to add together bΘ and BΘ, and apply Equation (7.5) to
the result. Writing a0 = X0 and [D, aj ] = Xj for j = 1, . . . , p we get

bΘp−1(a0, . . . , ap) + BΘp+1(a0, . . . , ap)

=
p∑
j=0

(−1)X
0···Xj−1

〈〈X0, . . . , [D, Xj], . . . , Xp〉〉s− p
2
− p〈X0, . . . , Xp〉s− p

2

= 2(s − p

2
+ p)〈X0, . . . , Xp〉s− p

2
− p〈X0, . . . , Xp〉s− p

2

= 2s〈X0, . . . , Xp〉s− p
2
,

as the lemma requires. �

7.9. Remark. The statement of Lemma 7.8 can be explained as follows. If we
replace D by tD and ∆ by t2∆ in the definitions of 〈· · · 〉z and Ψp, so as to obtain
a new improper (b, B)-cocycle Ψt = (Ψt

0, Ψ
t
2, . . . ), then it is easy to check from the

definitions that
Ψt
p(a

0, . . . , ap) = t−2sΨp(a0, . . . , ap).

Now, we expect that as t varies, the cohomology class of the cocycle Ψt should not
change. And indeed, by borrowing known formulas from the theory of the JLO
cocycle (see for example [17], or [18, Section 10.2], or Section 6 below) we can
construct a (b, B)-cochain Θ such that

BΘ + bΘ +
d

dt
Ψt = 0.

This is the same Θ as that which appears in the lemma.

The proof of Theorem 7.1 is now very straightforward:

Proof of Theorem 7.1. According to Lemma 7.8 the (b, B)-cochain
(
Ress=0

( 1
2s

Θ1

)
, Ress=0

( 1
2s

Θ3

)
, . . . , Ress=0

( 1
2s

Θn−1

)
, 0, 0, . . .

)
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cobounds the difference of Ress=0 Ψ and the cyclic n-cocycle Ress=0

(
1
2sBΘn+1

)
.

Since

Ress=0

( 1
2s

BΘn+1

)
(a0, . . . , an) =

1
2
〈〈[D, a0], . . . , [D, an]〉〉−n

2

the theorem is proved. �

7.2. Computation with the Cyclic Cocycle. We turn now to the second
step. We are going to alter D by means of the following homotopy:

Dt = D|D|−t (0 ≤ t ≤ 1)

(the same strategy is employed by Connes and Moscovici in [10]). We shall similarly
replace ∆ with ∆t = D2

t , and we shall use ∆t in place of ∆ in the definitions of
〈· · · 〉z and of 〈〈· · · 〉〉z .

To simplify the notation we shall drop the subscript t in the following com-
putation and denote by Ḋ = −Dt · log |D| the derivative of the operator Dt with
respect to t.

7.10. Lemma. Define a multilinear functional on A, with values in the analytic
functions on the half-plane Re(z) + n > d−1

2 , by the formula

Φtn(a
0, . . . , an) = 〈〈a0Ḋ, [D, a1], . . . , [D, an]〉〉z .

Then BΦtn is a cyclic (n − 1)-cochain and

bBΦtn(a
0, . . . , an)

=
d

dt
〈〈[D, a0], . . . , [D, an]〉〉z + (2z + n)

n∑
j=0

〈Ḋ, [D, aj], . . . , [D, aj−1]〉z.

7.11. Remark. Observe that the operator log |D| has analytic order δ or less,
for every δ > 0. As a result, the proof of Proposition 4.14 shows that the quantity
is a holomorphic function of z in the half-plane Re(z) + n > d−1

2 . But we shall not
be concerned with any possible meromorphic continuation to C.

Proof. Let us take advantage of the fact that bB+Bb = 0 and compute BbΦt

instead (fewer minus signs and wrap-around terms are involved).
A straightforward application of the definitions in Section 2 shows that the

quantity BbΦtn(a0, . . . , an) is the sum, from j = 0 to j = n, of the following terms:

− 〈〈Ḋ, [D, ajaj+1], [D, aj+2], . . . , [D, aj−1]〉〉z
+ 〈〈Ḋ, [D, aj ], [D, aj+1aj+2], . . . , [D, aj−1]〉〉z
− · · ·

+ (−1)n〈〈Ḋ, [D, aj ], [D, aj+1], . . . , [D, aj−2aj−1]〉〉z .

If we add the term 〈〈Ḋaj , [D, aj+1], . . . , [D, aj−1〉〉z to the beginning of this expres-
sion, and also the terms

− 〈〈aj−1Ḋ, [D, ajaj+1], [D, aj+2], . . . , [D, aj−2]〉〉z
− 〈〈[Ḋ, aj], [D, aj+1], . . . , [D, aj−1]〉〉z

at the end, then, after summing over all j, we have added zero in total. But we can
now invoke Leibniz’s rule to expand [D, akak+1] and apply part (iii) of Lemma 7.4
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to obtain the quantity
(
〈〈Ḋ, [D2, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

− 〈〈Ḋ, [D, aj], [D2, aj+1], . . . , [D, aj−1]〉〉z
+ . . .

+(−1)n〈〈Ḋ, [D, aj], [D, aj+1], . . . , [D2, aj−1]〉〉z
)

+ (n + 1)〈Ḋ, [D, aj], [D, aj+1], . . . , [D, aj−1]〉z
− 〈〈[Ḋ, aj ], [D, aj+1], . . . , [D, aj−1]〉〉z

(summed over j, as before). Applying Equation 7.5 we arrive at the following
formula:

BbΦtn(a
0, . . . , an) =

∑n
j=0〈〈[D, Ḋ], [D, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

− (2z + (n + 1))
∑n

j=0〈Ḋ, [D, aj ], . . . , [D, aj−1]〉z
−

∑n
j=0〈〈[Ḋ, aj ], [D, aj+1], . . . , [D, aj−1]〉〉z .

To complete the proof we write

〈〈[D, a0], . . . , [D, ap]〉〉z =
∑n
j=0〈D, [D, aj ], . . . , [D, aj−1]〉z

and differentiate with respect to t, bearing in mind the definition of the quantities
〈. . . 〉z and the fact that d

dt(λ − ∆)−1 = (λ − ∆)−1[D, Ḋ](λ − ∆)−1. We obtain

d
dt〈〈[D, a0], . . . , [D, ap]〉〉z = −

∑n
j=0〈〈[D, Ḋ], [D, aj ], [D, aj+2], . . . , [D, aj−1]〉〉z

+
∑n
j=0〈Ḋ, [D, aj], . . . , [D, aj−1]〉z

+
∑n
j=0〈〈[Ḋ, aj ], [D, aj+1], . . . , [D, aj−1]〉〉z .

This proves the lemma. �

We can now complete the second step, and with it the proof of the Connes-
Moscovici Residue Index Theorem:

7.12. Theorem (Connes and Moscovici). The residue cocycle Ress=0 Ψ is co-
homologous, as a (b, B)-cocycle, to the Chern character cocycle of Connes.

Proof. Thanks to Theorem 7.1 it suffices to show that the cyclic cocycle

(7.6)
1
2
〈〈[D, a0], . . . , [D, an]〉〉−n

2

is cohomologous to the Chern character. To do this we use the homotopy Dt above.
Thanks to Lemma 7.10 the coboundary of the cyclic cochain

∫ 1

0

BΨt
n(a

0, . . . , an−1) dt
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is the difference of the cocycles (7.6) associated to D0 = D and D1 = F . For D1

we have D2
1 = ∆1 = I and so

1
2
〈〈[D1, a

0], . . . , [D1, a
n]〉〉z

=
1
2

n∑
j=1

(−1)j+1 (−1)n+1Γ(z)
2πi

×

Trace
(∫

λ−zε[F, a0] · · · [F, aj ]F · · · [F, an](λ − I)−(n+2) dλ

)
.

Since F anticommutes with each operator [F, aj ] this simplifies to

1
2

n∑
j=1

(−1)n+1Γ(z)
2πi

Trace
(∫

λ−zεF [F, a0] · · · [F, an](λ − I)−(n+2) dλ

)
.

The terms in the sum are now all the same, and after applying Cauchy’s formula
we get

n + 1
2

(−1)n+1Γ(z) · Trace
(
εF [F, a0] · · · [F, an]

)
·
(

−z

n + 1

)
.

Using the functional equation for the Γ-function, this reduces to

Γ(z + n + 1)
2 · n!

Trace
(
εF [F, a0] · · · [F, an]

)

and evaluating at z = −n
2 we obtain the Chern character of Connes. �

7.3. Invertibility Hypothesis Removed. In the case where D is non-invert-
ible we employ the device introduced in Section 6.1, and associate to D the residue
cocycle for the operator DK .

Now Connes’ Chern character cocycle is defined for a not necessarily invertible
operator D by forming first DK , then FK = DK |DK |−1, then chFK

n . See [4, Part
I]. The following result therefore follows immediately from our calculations in the
invertible case.

7.13. Theorem. For any operator D, invertible or not, the class in periodic
cyclic cohomology of the residue cocycle Ress=0 Ψ is equal to the class of the Chern
character cocycle of Connes. �

7.4. The Odd-Dimensional Case. We shall briefly indicate the changes
which must be made to deal with the “odd” degree case, consisting of a self-adjoint
operator D on a trivially graded Hilbert space H .

The basic definition of the quantity 〈· · · 〉z is unchanged, except of course that
now we set ε = I, and so we could omit ε from Equation (4.1). The formula

Ψp(a0, . . . , ap) = 〈a0, [D, a1], . . . , [D, ap]〉s− p
2

now defines an odd, improper cocycle, with values in the meromorphic functions on
C. The proof of this is almost the same as the proof of Theorem 5.5. We obtain



THE RESIDUE INDEX THEOREM OF CONNES AND MOSCOVICI 117

the formula

(7.7) BΨp+2(a0, . . . , ap+1) + bΨp(a0, . . . , ap+1)

= 〈[D, a0], [D, a1], . . . , [D, ap+1]〉s− p
2

+
p+1∑
j=1

(−1)j−1〈a0, [D, a1], . . . , [D2, aj ], . . . , [D, ap+1]〉s− p
2
,

as in that proof, but instead of appealing to Lemma 5.3 we now note that

[D2, aj ] = D[D, aj ] + [D, aj ]D

and
〈· · · , [D, aj−1], D[D, aj ], . . . 〉z = 〈· · · , [D, aj−1]D, [D, aj ], . . . 〉z.

Using these relations the right hand side of Equation (7.7) telescopes to 0. The
computation of Ress=0 Ψ is unchanged from the proof of Theorem 5.6, except for
the omission of ε.

With similar modifications to the proofs of Lemmas 7.8 and 7.10 we obtain
without difficulty the odd version of Theorem 7.12.

Appendix A. Comparison with the JLO Cocycle

In this appendix we shall use the residue theorem and the Mellin transform of
complex analysis to compare the residue cocycle with the JLO cocycle.

The JLO cocycle, discovered by Jaffe, Lesniewski and Osterwalder [20], was
developed in the context of spectral triples, as in Section 4.5, and accordingly we
shall begin with such a spectral triple (A, H, D). Since we are going to compare
the JLO cocycle with the residue cocycle we shall assume that (A, H, D) has the
additional properties considered in Section 4.5 (although the theory of the JLO
cocycle itself can be developed in greater generality). Thus we shall assume that our
spectral triple is regular, is finitely summable, and has discrete dimension spectrum.
We shall also make an additional assumption later on in this section.

We shall consider only the even, Z/2-graded case here, but the odd case can
be developed in exactly the same way.

A.1. Definition. If X0, . . . , Xp are bounded operators on H , and if t > 0, let
us define

〈X0, . . . , Xp〉JLO
t = t

p
2 Trace

(∫
Σp

εX0e−u0t∆ . . . Xpe−upt∆ du

)
.

The integral is over the standard p-simplex

Σp =
{

(u0, . . . , up)
∣∣∣uj ≥ 0 & u0 + · · · + up = 1

}
.

The JLO cocycle is the improper (b, B)-cocycle

(a0, . . . , ap) �→ 〈a0, [D, a1], . . . , [D, ap]〉JLO
t ,

which should be thought of here as a cocycle with coefficients in the space of
functions of t > 0.

Strictly speaking the “traditional” JLO cocycle is given by the above formula for
the particular value t = 1. Our formula for 〈a0, [D, a1], . . . , [D, ap]〉JLO

t corresponds
to the traditional cocycle associated to the operator t

1
2 D. It will be quite convenient

to think of the JLO cocycle as a function of t > 0.
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Of course, it is a basic result that the JLO cocycle really is a cocycle. See [20]
or [17].

The proper context for the JLO cocycle is Connes’ entire cyclic cohomology [5,
7] for Banach algebras. We shall not describe this theory here, except to say that
there is a natural map

HCP ∗(A) → HCP ∗
entire(A),

and that the arguments which follow show that the image of the residue cocycle in
entire cyclic cohomology is the JLO cocycle.10

The following formula (which is essentially due to Connes [6, Equation (17)])
exhibits the connection between the JLO cocycle and the cocycle that we con-
structed in Section 5.

A.2. Lemma. If p > 0 and if X0, . . . , Xp are generalized differential operators
in D(A, D), then

〈X0, . . . , Xp〉JLO
t

= t−
p
2
(−1)p

2πi
Trace

(∫
e−tλεX0(λ − ∆)−1X1 · · ·Xp(λ − ∆)−1 dλ

)
.

As in Section 4.3 the contour integral should be evaluated along a (downward
pointing) vertical line in the complex plane which separates 0 from the spectrum
of ∆. The hypotheses guarantee the absolute convergence of the integral, in the
norm-topology. The formula in the lemma is also correct for p = 0, but in this case
the integral has to be suitably interpreted since it does not converge in the ordinary
sense.

Proof of the Lemma. For simplicity let us assume that the operators Xj

are bounded (this is the only case of the lemma that we shall use below).
By Cauchy’s Theorem, we may replace the contour of integration along which

the contour integral is computed by the imaginary axis in C (traversed upward).
Having done so we obtain the formula

(A.1)
(−1)p

2πi

∫
e−tλX0(λ − ∆)−1X1 · · ·Xp(λ − ∆)−1 dλ

=
1
2π

∫ ∞

−∞
eitvX0(iv + ∆)−1 · · ·Xp(iv + ∆)−1 dv.

Note that this has the appearance of an inverse Fourier transform. As for the JLO
cocycle, if we define functions gj from R into the bounded operators on H by

u �→
{

Xje−u∆ if u ≥ 0
0 if u < 0,

then we obtain the formula

(A.2) t
p
2

∫
Σp

X0e−u0t∆ . . . Xpe−upt∆ du

= t−
p
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
g0(t − u1)g1(u1 − u2) · · · gn−1(un−1 − un)gn(un) du1 . . . dun,

10This result can be improved somewhat. Entire cyclic cohomology is defined for locally
convex algebras, and one can identify the JLO cocycle and the residue cocycle in the entire cyclic
cohomology of various completions of A.
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which has the form of a convolution product, evaluated at t.
Suppose now that f0, . . . , fn are Schwartz-class functions from R into a Banach

algebra B. Define their Fourier transforms in the obvious way, by the formulas

f̂ j(v) =
∫ ∞

−∞
e−iuvf(u) du.

Then, just as in ordinary Fourier theory, one has the formula

(A.3) (f0 � · · · � fn)(t) =
1
2π

∫ ∞

−∞
eitv f̂0(v) · · · f̂n(v) du.

Returning to the case at hand, let B = B(H) and let f jδ (u) be the convolution
product of a C∞, compactly supported bump function δ−1φ(δ−1x) with the func-
tion gj . Applying the formula (A.3) to the functions f jδ and then taking the limit
as δ → 0 we obtain the equality of (A.1) and (A.2), which proves the lemma. �

A.3. Lemma. If p ≥ 0 and a0, . . . , ap ∈ A, then there is some α > 0 such that∣∣ 〈a0, [D, a1], . . . , [D, ap]〉JLO
t

∣∣ = O(e−αt)

as t → ∞. In addition if k > d−p
2 then∣∣ 〈a0, [D, a1], . . . , [D, ap]〉JLO

t

∣∣ = O
(
t−k

)
as t → 0, �

Proof. See [18, Equation (10.47)] for the first relation, and [18, Equation
(10.43)] for the second. �

The following proposition now shows that the improper cocycle which we con-
sidered in Section 5 is the Mellin transform of the JLO cocycle.

For the rest of this section let us fix a real number k > d−p
2 .

A.4. Proposition. If p ≥ 0 and a0, . . . , ap ∈ A, and if Re(s) > k then

〈a0, [D, a1], . . . , [D, ap]〉s− p
2

=
∫ ∞

0

〈a0, [D, a1], . . . , [D, ap]〉JLO
t ts

dt

t
.

Proof. By Lemma A.3 the integral is absolutely convergent as long as Re(s) >
k. The identity follows from Lemma A.2 and the formula

Γ(z)λ−z =
∫ ∞

0

e−tλtz
dt

t

which is valid for all λ > 0 and for all z ∈ C with Re(z) > 0. (In the case p = 0
Lemma A.2 does not apply, but then the proposition is a direct consequence of the
displayed formula). �

Having established this basic relation, we are now going to apply the inversion
formula for the Mellin transform to obtain an asymptotic formula for the JLO
cocycle. In order to do so we shall need to make an additional analytic assumption,
as follows: the function 〈a0, [D, a1], . . . , [D, ap]〉z has only finitely many poles in
each vertical strip α < Re(z) < β, and in each such strip and for every N one has∣∣∣〈a0, [D, a1], . . . , [D, ap]〉z

∣∣∣ = O(|z|−N )

as |z| → ∞. Note that a similar assumption is made by Connes and Moscovici in
[12].
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as t → 0.

A.5. Theorem. Assume that the spectral triple (A, H, D) is regular and has
simple dimension spectrum. Then for all p ≥ 0 and all a0, . . . , ap ∈ A the quan-
tity 〈a0, [D, a1], . . . , [D, ap]〉JLO

t has an asymptotic expansion in powers of t as t
decreases to zero. The residue cocycle Ress=0 Ψ(a0, . . . , ap) is the coefficient of the
constant term in this asymptotic expansion. �

Appendix B. Complex Powers in a Differential Algebra

In this appendix we shall try to sketch out a more conceptual view of the
improper cocycle which was constructed in Section 5. This involves Quillen’s
cochain picture of cyclic cohomology [23], and in fact it was Quillen’s account
of the JLO cocycle from this perspective which first led to the formula for the
quantity 〈X0, . . . , Xp〉z given in Definition 4.12.

We shall not attempt to carefully reconstruct the results of Sections 5 and 7
from the cochain perspective, and in fact for the sake of brevity we shall disregard
analytic niceties altogether. Our purpose is only to set the main definitions of these
notes against a background which may (or may not) make them seem more natural.

With this limited aim in mind we shall assume, as we did in the body of the
notes, that the operator ∆ is invertible. We shall also consider only the even case,
in which the Hilbert space H on which ∆ acts is Z/2-graded.

As we did when we looked at cyclic cohomology in Section 2, let us fix an
algebra A. But let us now also fix a second algebra L. For n ≥ 0, denote by
Homn(A, L) the vector space of n-linear maps from A to L. By a 0-linear map
from A to L we shall mean a linear map from C to L, or in other words just an
element of L. Let Hom∗∗(A, L) be the direct product

Hom∗∗(A, L) =
∞∏
n=0

Homn(A, L).

Thus an element φ of Hom∗∗(A, L) is a sequence of multilinear maps from A to
L. We shall denote by φ(a1, . . . , an) the value of the n-th component of φ on the
n-tuple (a1, . . . , an).

The vector space Hom∗∗(A, L) is Z/2-graded in the following way: an element
φ is even (resp. odd) if φ(a1, . . . , an) = 0 for all odd n (resp. for all even n). We
shall denote by degM (φ) ∈ {0, 1} the grading-degree of φ. (The letter “M” stands
for “multilinear;” a second grading-degree will be introduced below.)

B.1. Lemma. If φ, ψ ∈ Hom∗∗(A, L), then define

φ ∨ ψ(a1, . . . , an) =
∑

p+q=n

φ(a1, . . . , ap)ψ(ap+1, . . . , an)

and

dMφ(a1, . . . , an+1) =
n∑
i=1

(−1)i+1φ(a1, . . . , aiai+1, . . . , an+1).

The vector space Hom∗∗(A, L), so equipped with a multiplication and differential,
is a Z/2-graded differential algebra. �

Let us now suppose that the algebra L is Z/2-graded. If φ ∈ Hom∗∗(A, L) then
let us write degL(φ) = 0 if φ(a1, . . . , an) belongs to the degree-zero part of L for
every n and every n-tuple (a1, . . . , an). Similarly, if φ ∈ Hom∗∗(A, L) then let us
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write degL(φ) = 1 if φ(a1, . . . , an) belongs to the degree-one part of L for every
n and every n-tuple (a1, . . . , an). This is a new Z/2-grading on the vector space
Hom∗∗(A, L). The formula

deg(φ) = degM (φ) + degL(φ)

defines a third Z/2-grading—the one we are really interested in. Using this last
Z/2-grading, we have the following result:

B.2. Lemma. If φ, ψ ∈ Hom∗∗(A, L), then define

φ � ψ = (−1)degM (φ) degL(ψ)φ ∨ ψ

and
dφ = (−1)degL(φ)d′φ

These new operations once again provide Hom∗∗(A, L) with the structure of a Z/2-
graded differential algebra (for the total Z/2-grading deg(φ) = degM (φ)+degL(φ)).

�

We shall now specialize to the following situation: A will be, as in Section 5, an
algebra of differential order zero and grading degree zero operators contained within
an algebra D(∆) of generalized differential operators, and L will be the algebra of
all operators on the Z/2-graded vector space H∞ ⊆ H .

Denote by ρ the inclusion of A into L. This is of course a 1-linear map from A
to L, and we can therefore think of ρ as an element of Hom∗∗(A, L) (all of whose
n-linear components are zero, except for n = 1).

Denote by D a square root of ∆, as in Section 4.4. Think of D as a 0-linear
map from A to L, and therefore as an element of Hom∗∗(A, L) too. Combining D
and ρ let us define the “superconnection form”

θ = D − ρ ∈ Hom∗∗(A, L)

This has odd Z/2-grading degree (that is, deg(θ) = 1). Let K be its “curvature:”

K = dθ + θ2,

which has even Z/2-grading degree. Using the formulas in Lemma B.2 the element
K may be calculated, as follows:

B.3. Lemma. One has

K = ∆ − E ∈ Hom∗∗(A, L),

where E : A → L is the 1-linear map defined by the formula

E(a) = [D, ρ(a)]. �

In all of the above we are following Quillen, who then proceeds to make the
following definition, which is motivated by the well-known Banach algebra formula

eb−a =
∞∑
n=0

∫
Σn

e−t0abe−t1a · · · be−tna dt.

B.4. Definition. Denote by e−K ∈ Hom∗∗(A, L) the element

e−K =
∞∑
n=0

∫
Σn

e−t0∆Ee−t1∆ . . . Ee−tn∆ dt.
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The n-th term in the sum is an n-linear map from A to L, and the series should
be regarded as defining an element of Hom∗∗(A, L) whose n-linear component is
this term. As Quillen observes in [23, Section 8], the exponential e−K defined in
this way has the following two crucial properties:

B.5. Lemma (Bianchi Identity). d(e−K) + [e−K , θ] = 0. �

B.6. Lemma (Differential Equation). Suppose that δ is a derivation of
Hom∗∗(A, L) into a bimodule. Then

δ(e−K) = −δ(K)e−K ,

modulo (limits of) commutators. �

Both lemmas follow from the “Duhamel formula”

δ(e−K) =
∫ 1

0

e−tKδ(K)e−(1−t)K dt,

which is familiar from semigroup theory and which may be verified for the notion
of exponential now being considered. (Once more, we remind the reader that we
are disregarding analytic details.)

Suppose we now introduce the “supertrace” Traceε(X) = Trace(εX) (which
is of course defined only on a subalgebra of L). Quillen reinterprets the Bianchi
Identity and the Differential Equation above as coboundary computations in a
complex which computes periodic cyclic cohomology (using improper cocycles, in
our terminology here). As a result he is able to recover the following basic fact
about the JLO cocycle — namely that it really is a cocycle:

B.7. Theorem (Quillen). The formula

Φ2n(a0, . . . , a2n) =
∫

Σn

Trace
(
εa0e−t0∆[D, a1]e−t1∆[D, a2] · · · [D, an]e−tn∆

)
dt

defines a (b, B)-cocycle. �

The details of the argument are not important here. What is important is that
using the Bianchi Identity and a Differential Equation one can construct cocycles
for cyclic cohomology from elements of the algebra Hom∗∗(A, L). With this in
mind, let us consider other functions of the curvature operator K, beginning with
resolvents.

B.8. Lemma. If λ /∈ Spectrum(∆) then the element (λ − K) ∈ Hom∗∗(A, L) is
invertible.

Proof. Since (λ − K) = (λ − ∆) + E we can write

(λ − K)−1 = (λ − ∆)−1 − (λ − ∆)−1E(λ − ∆)−1

+ (λ − ∆)−1E(λ − ∆)−1E(λ − ∆)−1 − · · ·

This is a series whose nth term is an n-linear map from A to L, and so the sum
has an obvious meaning in Hom∗∗(A, L). One can then check that the sum defines
(λ − K)−1, as required. �

With resolvents in hand, we can construct other functions of K using formulas
modeled on the holomorphic functional calculus.
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B.9. Definition. For any complex z with positive real part define K−z ∈
Hom∗∗(A, L) by the formula

K−z =
1

2πi

∫
λ−z(λ − K)−1 dλ,

in which the integral is a contour integral along a downward vertical line in C

separating 0 from Spectrum(∆).

The assumption that Re(z) > 0 guarantees convergence of the integral (in
each component within Hom∗∗(A, L) the integral converges in the pointwise norm
topology of n-linear maps from A to the algebra of bounded operators on H ; the
limit is also an operator from H∞ to H∞, as required). The complex powers K−z

so defined satisfy the following key identities:

B.10. Lemma (Bianchi Identity). d(K−z) + [K−z, θ] = 0. �
B.11. Lemma (Differential Equation). If δ is a derivation of Hom∗∗(A, L) into

a bimodule, then
δ(K−z) = −zδ(K)K−z−1,

modulo (limits of) commutators. �
These follow from the derivation formula

δ(K−z) =
1

2πi

∫
λ−z(λ − K)−1δ(K)(λ − K)−1 dλ.

In order to simplify the Differential Equation it is convenient to introduce the
Gamma function, using which we can write

δ
(
Γ(z)K−z

)
= −δ(K)Γ(z + 1)K−(z+1)

(modulo limits of commutators, as before). Except for the appearance of z + 1
in place of z in the right hand side of the equation, this is exactly the same as
the differential equation for e−K . Meanwhile, even after introducing the Gamma
function we still have available the Bianchi identity:

d
(
Γ(z)K−z

)
+

[
Γ(z)K−z, θ

]
= 0.

The degree n component of Γ(z)K−z is the multilinear function

(a1, . . . , an) �→ (−1)n

2πi
Γ(z)

∫
λ−z(λ − ∆)−1[D, a1] · · · [D, an](λ − ∆)−1 dλ.

Quillen’s approach to JLO therefore suggests (and in fact upon closer inspection
proves) the following result:

B.12. Theorem. If we define

Ψs
p(a

0, . . . , ap) =

(−1)pΓ(s − p
2 )

2πi
Trace

(∫
λ

p
2−sεa0(λ − ∆)−1[D, a1] · · ·

[D, ap](λ − ∆)−1 dλ

)
,

then bΨs
p + BΨs

p+2 = 0. �
This is, of course, precisely the conclusion that we reached in Section 5.
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Appendix C. Proof of the Hochschild Character Theorem

In this final appendix we shall prove Connes’ Hochschild character theorem by
appealing to some of the computations that we made in Section 7.

C.1. Definition. A Hochschild n-cycle over an algebra A is an element of the
(n + 1)-fold tensor product A⊗ · · · ⊗A which is mapped to zero by the differential

b(a0 ⊗ · · · an) =
n−1∑
j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · ·an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

C.2. Remark. Obviously, two Hochschild n-cochains which differ by a
Hochschild coboundary will agree when evaluated on any Hochschild cycle. The
converse is not quite true.

C.3. Theorem. Let (A, H, D) be a regular spectral triple. Assume that D is
invertible and that for some positive integer n of the same parity as the triple, and
every a ∈ A,

a · |D|−n ∈ L1,∞(H).
The Chern character chFn of Definition 2.22 and the cochain

Φ(a0, . . . , an) =
Γ(n2 + 1)

n · n!
Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n)

are equal when evaluated on any Hochschild cycle
∑

i a
0
i ⊗ · · · ⊗ ani . Here ε is 1 in

the odd case, and the grading operator on H in the even case.

Proof. We showed in Lemma 7.8 that

bΘn−1(a0, . . . , an) + BΘn+1(a0, . . . , an) = 2sΨn(a0, . . . , an),

at least for all s whose real part is large enough that all the terms are defined (since
we are no longer assuming any sort of analytic continuation property this is now
an issue). It follows that BΘn+1 and 2sΨn agree on any Hochschild cycle. Now, it
is not hard to compute that 2sΨn is defined when Re(s) > 0, and

lim
s→0

2sΨn(a0, . . . , an) =
Γ(n2 + 1)

n · n!
Traceω(εa0[D, a1][D, a2] · · · [D, an]|D|−n).

On the other hand BΘn+1(a0, . . . , an) is defined when Re(s) ≥ 0 (compare Re-
mark 7.2). Since the computations in Section 7.2 show that BΘn+1 is coho-
mologous, even as a cyclic cocycle, to the Chern character chFn , the theorem is
proved. �
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1. Introduction

This paper describes basic properties of the Riemann zeta function and its
generalizations, presents various formulations of the Riemann hypothesis, and in-
dicates various geometric analogies. It briefly discusses the approach of A. Connes
to a “spectral” interpretation of the Riemann zeros via noncommuative geometry,
which is treated in detail by Paula Tretkoff [33] in this volume.

The origin of the Riemann hypothesis was as an arithmetic question concern-
ing the asymptotic distribution of prime numbers. In the last century profound
geometric analogues were discovered, and some of them proved. In particular there
are striking analogies in the subject of spectral geometry, which is the study of
global geometric properties of a manifold encoded in the eigenvalues of various ge-
ometrically natural operators acting on functions on the manifold. This has led to
the search for a “geometric” and/or “spectral” interpretation of the zeros of the
Riemann zeta function.

One should note that a geometric or spectral interpretation of the zeta zeros
by itself is not enough to prove the Riemann hypothesis; the essence of the problem
seems to lie in a suitable “positivity property” which must be established. A hope
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is that there exists such an interpretation in which the positivity will be a natural
(and provable) consequence of the internal structure of the “geometric” object.

2. Basics

The Riemann zeta function is an analytic device that encodes information about
the ring of integers Z. In particular, it relates to the multiplicative action of Z on
the additive group Z. In its most elementary form, the Riemann zeta function can
be defined by the well-known series

ζ(s) =
∞∑
n=1

n−s,

where the domain of convergence is the half-plane {s : �(s) > 1}. This series
was studied well before Riemann, and in particular Euler observed that it can be
rewritten in the product form

ζ(s) =
∏

p prime

(1 + p−s + p−2s + . . .)

=
∏

p prime

(1 − p−s)−1.

The zeta function can be extended to a meromorphic function on the entire
complex plane. More specifically, if we define the completed zeta function ζ̂(s) by

ζ̂(s) := π− s
2 Γ(

s

2
)ζ(s),

then we have the following.

Theorem 2.1. The completed zeta function ζ̂ has an analytic continuation to
the entire complex plane except for simple poles at s = 0, 1. Furthermore, this
function ζ̂ satisfies the functional equation

ζ̂(s) = ζ̂(1 − s).

Proof. With a suitable change of variables, the integral definition of Γ gives

(1) Γ(
s

2
) = nsπ

s
2

∫ ∞

0

e−πn
2xx

s
2−1dx,

for every n ∈ Z
+. Rearranging (1) and summing over n ∈ Z

+, one can show that
for all s ∈ C with �(s) > 1,

ζ̂(s) = π− s
2 Γ(

s

2
)ζ(s) =

∫ ∞

0

∞∑
n=1

e−πn
2xx

s
2−1dx

=
1
2

∫ ∞

0

(θ(x) − 1)x
s
2
dx

x
,(2)

where θ(x) =
∑
n∈Z

e−πn
2x. This θ-function satisfies the functional equation

θ(x−1) =
√

xθ(x).

Now, the integral in (2) can be split as∫ ∞

0

(θ(x) − 1)x
s
2
dx

x
=

∫ 1

0

(θ(x) − 1)x
s
2
dx

x
+

∫ ∞

1

(θ(x) − 1)x
s
2
dx

x
.
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Applying the change of variables x �→ x−1 in the first of these, we obtain

(3) ζ̂(s) =
1

s(s − 1)
+

1
2

∫ ∞

1

(θ(x) − 1)(x
1−s
2 + x

s
2 )

dx

x
.

This integral is uniformly convergent on {s : �(s) > σ} for any σ ∈ R, and thus is
an entire function of s. Therefore, (3) exhibits the meromorphic continuation of ζ̂,
and it clearly satisfies the functional equation.

�
It is now natural to define the entire function

ξ(s) =
1
2
s(s − 1)ζ̂(s).

The factor of 1
2 here was introduced by Riemann and has stuck. Hadamard showed

that ξ has the product expansion

ξ(s) =
∏
ρ

(1 − s

ρ
)e

s
ρ ,

where the product is over the zeros of ξ.
The location of the zeros of ξ is of great importance in number theoretic appli-

cations of the zeta function. Euler’s product formula easily shows that every zero ρ
has �(ρ) ≤ 1, and the functional equation then gives that all zeros lie in the closed
strip {s : 0 ≤ �(ρ) ≤ 1}. In fact, it can be shown that all zeros lie within the open
strip {s : 0 < �(ρ) < 1}, although this is a non-trivial result.

Since ξ(s) is real-valued for real values of s, it is clear that we have

ξ(s̄) = ξ(s).

Thus if ρ is a zero of ξ, so are ρ̄, 1 − ρ and 1 − ρ̄. Consequently, zeros on the line
�(s) = 1

2 occur in conjugate pairs, and zeros off this line occur in quadruples.
The Riemann hypothesis is now stated simply as follows.

Conjecture. All zeros of ξ(s) lie on the line �(s) = 1
2 .

Riemann confirmed the position of many of the zeros of ξ(s) to be on this
critical line by hand, by making use of the symmetry from the functional equation.
For if the approximate location of a zero close to the critical line is known, one can
consider a small contour C around the zero which is symmetric about the critical
line. By estimating the integral

1
2πi

∫
C

ξ′(s)
ξ(s)

ds,

one can determine the number of zeros (including multiplicity) enclosed within the
curve C. If only one such zero exists, symmetry dictates that it must lie on the
critical line. To date, no double zeros have been found on the critical line.

The Riemann hypothesis can be reformulated in a number theoretic context as
follows. If we define

π(x) =
∑
p≤x

p prime

1

as usual, then the Riemann hypothesis is known to be equivalent to the veracity of
the following error term in the Prime Number Theorem:

π(x) =
∫ x

2

dt

log t
+ O(x

1
2 (log x)2).
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Note that it is a theorem that

π(x) =
∫ x

2

dt

log t
+ O(x exp(−2

√
log x)).

Although Riemann’s zeta function was the original object of interest, it is only
one of a much larger set of L-functions with similar properties. These functions
arise in many applications, and natural generalizations of the Riemann hypothesis
appear to hold for all of them as well. For example:

• Dirichlet L-functions:

L(s, χ) =
∞∑
n=1

χ(n)n−s,

where χ : (Z/qZ)× → C× is a character on (Z/qZ)×. The character χ is
extended to a q-periodic function on Z, where we set χ(n) = 0 for all n
with gcd(n, q) �= 1.

• L-functions of cuspidal automorphic representations of GL(N), cf [24],
[16]. In the case of GL(2) this includes such exotic objects as L-functions
attached to Maass cusp forms.

The latter generalize to the “GL(N) case” the “GL(1) case” of the multiplica-
tive group of a field acting on the additive group, which are just the Dirichlet
L-functions. The resulting L-functions all have a Dirichlet series representation,
which converges for �(s) > 1. When multiplied by appropriate Gamma-function
factors and exponentials one obtains a “completed L-function”, which analytically
continues to C, except for possible poles at s = 0, 1 and which satisfies a functional
equation relating values at s to values at 1 − s of another such L-function. The
generalized Riemann hypothesis asserts that all zeros of such L-functions lie on the
line �(s) = 1/2.

This generalization appears to be the most natural context in which to study the
Riemann hypothesis. In fact, from a number theoretic point of view, the Riemann
zeta function cannot really be segregated from the above generalizations. It seems
plausible that a proof of the original Riemann hypothesis will not be found without
proving it in these more general circumstances.

At this point, it is also worth noting that much can be achieved in practical sit-
uations without the specificity of a proof of the Riemann hypothesis for particular
cases. Many results, originally proven under the assumption of some generalized
Riemann hypothesis, have more recently been fully proven by using results describ-
ing the behaviour of the Riemann hypothesis “on average” across certain families
of L-functions. Two such examples are:

• Vinogradov:
Every sufficiently large odd number can be written as a sum of three

primes (a relative of Goldbach’s conjecture).
• Cogdell, Piatetski-Shapiro, Sarnak:

Hilbert’s eleventh problem. Given a quadratic form F over a number
field K, which elements of K are represented as values of F?

3. The Explicit Formula

Riemann’s original memoir included a formula relating zeros of the zeta function
to prime numbers. Early classical forms of the “ explicit formula” of prime number
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theory were found by Guinand [19] and [20]. However it was A. Weil [35], [36],
[37], who put the “explicit formula” in an elegant form that connects the arithmetic
context of the Riemann hypothesis with objects that appear geometric in nature.
This type of connection is central to most of the modern approaches to the Riemann
hypothesis.

To state the explicit formula, we require the Mellin transform. For a function
f : (0,∞) → C, the Mellin transform M[f ] of f is defined by

M[f ](s) =
∫ ∞

0

f(x)xs
dx

x
(s ∈ C).

This is the Fourier transform on the multiplicative group R>0; if we put g(u) =
f(eu), we see that

M[f ](s) =
∫ ∞

−∞
f(eu)eus

d(eu)
eu

=
∫ ∞

−∞
g(u)e−iu(is)du = ĝ(is),

where ĝ is the Fourier transform of g on the additive group R.
The convolution operation associated with the Mellin transform is

f ∗ g(x) =
∫ ∞

0

f(
x

y
)g(y)

dy

y
,

so that
M[f ∗ g](s) = M[f ](s)M[g](s).

We also have an involution
f̃(x) =

1
x

f(
1
x

),

giving
M[f̃ ](s) = M[f ](1 − s).

The “explicit formula” is a family of assertions, for a set of “test functions”.
We consider the family of nice test functions to consist of f : (0,∞) → C such
that f is piecewise C2, compactly supported and has the averaging property at
discontinuities:

f(x) =
1
2
[ lim
t→x+

f(t) + lim
t→x−

f(t)].

The “spectral side” Wspec(f) of the explicit formula consists of three terms

Wspec(f) := W (2)(f) − W (1)(f) + W (0)(f),

in which

W (2)(f) = M[f ](1),

W (1)(f) =
∑

ρ zeros of ξ

M[f ](ρ).

W (0)(f) = M[f ](0).

The “arithmetic” side of the explicit formula consists of terms corresponding to the
finite primes p plus the “infinite prime” (the real place),

Warith(f) := W∞(f) +
∑

p prime

Wp(f)
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in which

Wp(f) := log p

( ∞∑
n=1

f(pn) + f̃(pn)

)
,

and for p = ∞,

W∞(f) := (γ + log p)f(1) +
∫ ∞

1

[f(x) + f̃(x) − 2
x2

f(1)]
xdx

x2 − 1
.

Theorem 3.1 (Explicit Formula). For any nice test function f : (0,∞) → C

there holds
Wspec(f) = Warith(f).

The “explicit formula” has a formal resemblance to a fixed point formula of
Atiyah-Bott-Lefschetz type; Here the “spectral side” has the form of a generalized
Euler characteristic, in which the term W (j)(f) should measure the contribution
of the trace of an operator on the j-th cohomology group of an unknown object,
while the “arithmetic side” would be viewed as contributions coming from the fixed
points of a map on an unknown object. This resemblance has been noted by many
authors, starting with Andre Weil, whose first proof of the Riemann hypothesis in
the one-variable function field case was based on exactly this interpretation.

The statement of the explicit formula takes on the form

“spectral term” = “arithmetic term”.

Note that the “spectral” side of the “explicit formula” is expressed in terms of
the Mellin transform of f , while the terms on the “arithmetic” side are expressed
directly in terms of values of f ; the proof below shows that the “arithmetic” terms
do have an expression in terms of the Mellin transform of f .

Using the explicit formula, Weil was able to reformulate the Riemann hypoth-
esis as a positivity statement.

Theorem 3.2 (Weil’s Positivity Statement). The Riemann hypothesis is equiv-
alent to

W (1)(f ∗ ˜̄f) ≥ 0,

for all nice test functions f .

Remark 3.3. For two “nice” functions f and g, we can define the intersection
product

〈f1, f2〉 := W (1)(f1 ∗ ˜̄f2).
The conjectural Castelnuovo inequality states that

M[f ](0)M[f ](1) ≥ 1
2
Wspec(f ∗ ˜̄f).

Weil’s positivity statement above follows from it.

The “explicit formula” was originally given by Weil [35] in terms of the Fourier
transform; the Mellin transform version given here can be found in Patterson [30],
who proves it for a wide class of test functions; one needs the test functions to have
Mellin transforms M[f ](s) that are holomorphic in a region −ε < �(s) < 1 + ε. A
proof for a certain explicit set of test functions is given in [5], [4]; however these
test functions fall outside the class above. There are a number of proofs of the
“explicit formula”, all based on similar ideas, which we indicate below.
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Sketch of proof of explicit formula. Consider the logarithmic deriva-
tive of the completed zeta function ζ̂(s),

ζ̂ ′(s)

ζ̂(s)
=

d

ds
[log ζ̂(s)].

We assume the function M[f ](s) extends to an analytic function in the closed strip
−ε < �(s) < 1 + ε and has rapid enough decay vertically. We evaluate in two ways
the contour integral

(4) − 1
2πi

∫
�T

M[f ](s)
ζ̂ ′(s)
ζ̂(s)

ds,

around a closed box �T on the vertical lines �(s) = 1 + 1
2ε, and �(s) = −1

2ε,
going from height −iT to height +iT , oriented counterclockwise, and then letting
the height of the box T → ∞. Firstly, taking the logarithm of the Hadamard
factorization for ξ(s) gives

log ζ̂(s) = log 2 − log s − log(s − 1) +
∑

ρ zeros of ξ

′
(

log(1 − s

ρ
)
)

,

where the prime indicates the zeros must be summed in pairs ρ, 1−ρ. Differentiating,

d

ds
[log ζ̂(s)] = −1

s
− 1

s − 1
+

∑
ρ zeros of ξ

′ 1
s − ρ

.

Adding up the residues of the poles these contribute in the box (as T → ∞) gives
the geometric term; the terms W (0)(f) and W (2)(f) come from the poles of ζ̂(s) at
s = 0 and s = 1, respectively.

Secondly, the Euler product form gives

ζ̂ ′(s)

ζ̂(s)
=

d

ds


log π− s

2 Γ(
s

2
) −

∑
p a prime

log(1 − p−s)


 .

The derivative of the sum is

−1
2

log π +
1
2

Γ′( s2 )
Γ( s2 )

−
∑

p a prime

(log p)p−s

1 − p−s
.

This is substituted in the right vertical side of the box integral and evaluated for
each term separately. The integral, with �(s) > 1, evaluates to

1
2πi

∫ c+i∞

c−i∞
M[f ](s)

( ∞∑
n=1

(log p)p−ns
)

ds = (log p)
∞∑
n=1

f(pn),

since each term separately is an inverse Mellin transform. For the left vertical side
integral with �(s) < 0, we use the functional equation and obtain similarly the
contribution (log p)

∑∞
n=1 f̃(pn). The horizontal sides contribute zero in the limit

T → ∞.
The contour integral for the Gamma function term requires delicate care to

convert the answer to the form for W∞(f) given above; see [5], [4], [30]. �
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For spectral and trace formula interpretations of the “explicit formula”, see
Goldfeld [17], [18] Haran [21], [22], Hejhal [23], as well as the recent work of
Connes [10], [11], [9]. A number of other interesting viewpoints on the “explicit
formula” appear in Burnol [6] and Deninger [12].

4. The Function Field Case

We now consider the Riemann hypothesis for function fields over finite fields,
or equivalently, for zeta functions attached to complete nonsingular projective va-
rieties. For function fields of one variable the Riemann hypothesis was formulated
in E. Artin’s 1923 thesis, in analogy with the number field case. It was proved for
genus one function fields by H. Hasse in 1931, and it was then proved for all one-
variable function fields by A. Weil in the 1940’s. Weil’s key idea was to introduce
an underlying geometric object—a projective variety—which allows the translation
of the problem to a problem in algebraic geometry. Finally, in 1973 Deligne proved
the Riemann hypothesis for the zeta functions of complete nonsingular projective
varieties of any dimension.

Let Fq be the finite field with q = pk elements for some prime p and some
k ∈ Z

+, and let K be a function field in one variable T over Fq. Let OK denote the
ring of integers of K. We exclude one prime from OK which we define to be the
“prime at infinity”. For instance, if K = Fq(T ), then we can let OK = Fq[T ], the
ring of polynomials in T , where the prime 1

T is excluded as the prime at infinity.
We now define a zeta function for K by

ζK(s) =
∑
I∈IK

(N(I))−s,

where IK denotes the set of ideals contained in the ring of integers OK , and N(I) =
#(OK/I) is the norm of I. In our example above, all ideals I = (f) are principal,
generated by a monic polynomial f(T ), with norm

N((f)) = q− deg f .

Therefore we have

ζK(s) =
∑

f monic
polynomials over Fq

q−(deg f)s

=
∞∑
n=1

qnq−ns,

since there are qn monic polynomials of degree n over Fq. Thus,

ζK(s) =
1

1 − q1−s .

We complete this to a function ζ̂K(s) by including a term corresponding to the
prime at infinity. In the present example, we obtain

ζ̂K(s) =
(

1
1 − q1−s

)(
1

1 − q−s

)
.

Now ζ̂(s) satisfies the functional equation

q−sζ̂K(s) = q−(1−s)ζ̂K(1 − s),



THE RIEMANN HYPOTHESIS: ARITHMETIC AND GEOMETRY 135

Here the additional non-vanishing factor q−s plays the role of a “conductor,” anal-
ogous to the conductor term appearing in the functional equation of a Dirichlet
L-function.

Weil made several celebrated conjectures about these zeta functions, all of
which are now proven. A major implication of the Weil conjectures is that ζ̂(s) can
be expressed in terms of L-functions arising from the structure of an underlying
geometric object, namely a non-singular projective variety V having K as a function
field. Essentially, ζ̂K can be written as a quotient of L-functions arising from the
cohomology of V :

ζ̂K(s) =
L(s, H1)

L(s, H0)L(s, H2)
.

For instance, consider the line

X1 + X2 = 1

over Fq. We projectivize to obtain

V (Fq) = P
1(Fq) : X1 + X2 = X3,

with (X1, X2, X3) �= (0, 0, 0), subject to the usual equivalence relation

(λX1, λX2, λX3) ∼ (X1, X2, X3), for all λ ∈ F
×
q .

Thus V consists of q points of the form (x, 1 − x, 1) for x ∈ Fq, plus the point at
infinity (1,−1, 0). We now extend this space to the projective space V (Fq) over the
algebraic closure Fq of Fq.

Such a projective variety has a natural dynamical system induced by the Frobe-
nius automorphism,

Frob : V −→ V

(x1, x2, x3) �−→ (xq1, x
q
2, x

q
3).

Associated to this dynamical system is a dynamical zeta-function, defined by

ζ̂dyn(T ) = exp

( ∞∑
n=1

Tn

n
#Fix(Frobn)

)
,

where #Fix(Frobn) is the number of fixed points of Frobn. For instance, the ex-
ample above yields

ζ̂dyn(T ) = exp

( ∞∑
n=1

Tn

n
(qn + 1)

)

= exp (− log(1 − Tq) − log(1 − q))

=
1

(1 − q)(1 − Tq)
.

Therefore, putting T = q−s, we get

ζ̂arith(s) = ζ̂dyn(q−s).

This connection is remarkable. As a heuristic analogy, a similar situation arises
in statistical mechanics. Associated to a one-dimensional system, Ruelle defined a
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(two-variable) statistical mechanics zeta function by

ζ(T, s) = exp

( ∞∑
n=1

Tn

n
pn(s)

)
.

Here, pn(s) is the partition function of a finite system Σn of “size” n , given by

pn(s) =
∑

σ∈Σn states

e−sH(σ),

where H is the Hamiltonian function. Here Σn could represent a system on the line
with periodic boundary conditions of period n.

An analogous result in statistical mechanics to the number theoretic statement
above is the following (Lagarias [26, Theorem 3.1]).

Theorem 4.1. For “homogeneously expanding maps” on [0, 1],

ζ(1, s) = ζ(β−s, 0),

where β = exp(entropy).

Here a homogeneously expanding map f : [0, 1] → [0, 1] is a (possibly discon-
tinuous) piecewise C1-map all of whose pieces are linear with slopes ±β with β > 1;
an example is f(x) = βx (mod 1). For the function field zeta function above, the
Frobenius automorphism acts like a uniformly expanding map with entropy log q.

Can Weil’s ideas be extended to the number field case of the Riemann hypothe-
sis? This suggests, in particular, three questions. Firstly, what is the “geometrical”
or “dynamical” zeta function which should be considered in the number field case?
Secondly, how is this geometrical object related to the arithmetic zeta function?
Thirdly, what property in the number field case is the analogue of the Castelnuovo
positivity property that provides a “geometric” explanation of the truth of the Rie-
mann hypothesis in the function field case? For possible ideas in these directions,
see Connes [10], [11], [9], and Deninger [13], [14].

5. The Number Field Case and Non-commutative Geometry

Polya and Hilbert postulated the following idea as a possible approach to the
Riemann hypothesis. Suppose some geometric considerations can lead to the con-
struction of a Hilbert space H and an unbounded operator D, such that

Spectrum(D) = {ρ : ξ(ρ) = 0}.
One might then hope to be able to understand the location of the zeros using
operator theory—ideally, by showing that

(D − 1
2
)∗ = −(D − 1

2
).

This hope is plausible, at least in philosophy, for several reasons. First, there
is some analogy with the work of Selberg. Selberg’s work considered the Laplace
operator, which has the form

∆ = (D − 1
2
)2.

The behaviour of “primes” (prime geodesics) is related to the spectrum of this
operator via Selberg’s trace formula. Second, work of Montgomery indicates that
the distribution of the zeros of ξ(s) compares well with results on the distribution of
eigenvalues of random matrices; see [2], [25]. This has been strikingly supported by
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numerical computations of Odlyzko [29]. This suggests that spectral considerations
lie beneath the theory of the zeta function.

Connes’ recent idea is that the philosophy of Polya and Hilbert might be real-
ized using non-commutative geometry. In the function field case above, a space is
produced from the action of the Frobenius automorphism on the underlying variety
V . Spectral methods in this context yield Weil’s proof of the Riemann Hypothesis
for function fields. In the number field case, Connes’ proposal is that the appropri-
ate space is generated by the action of the multiplicative group k× of the number
field on the adèle space1 A. The space A/k× is extremely badly behaved from
the classical point of view, but the hope is that it may be handled effectively as a
non-commutative space. A development of the ideas behind Connes’ work is the
topic of Paula Tretkoff’s paper [33] in this volume. This approach can be said to
give a “spectral” interpretation of the zeta zeros, but so far the positivity aspect
remains elusive.

6. Equivalent Forms of the Riemann Hypothesis

To conclude, we present four equivalents of the Riemann hypothesis. These
demonstrate connections of the Riemann hypothesis with other areas of mathemat-
ics, and some of them have a geometric flavor.

6.1. Ergodicity of Horocycle Flows. Consider the group Γ = PSL(2, Z)
acting on the hyperbolic plane H in the familiar way, so that the group is generated
by the isometries

z �→ z + 1

and z �→ −1
z

of the upper half-plane model of H. Let us denote by ht the horocycle in the upper
half-plane having constant imaginary part y = t. We look at the projection of this
horocycle onto the quotient space H/Γ. Since ht is invariant under the mapping
z �→ z + 1, this is a periodic horocycle, and we can restrict our attention to the
segment of ht lying within the vertical strip {z : 0 ≤ z ≤ 1}. Let γt denote the image
of this segment in H/Γ. The length of γt is 1

t , and in particular, length(γt) → ∞
as t → 0. Furthermore, γt satisfies the following ergodic property as t → 0.

Theorem 6.1. For any “nice” open set S in H/Γ

length(γt ∩ S)
length(γt)

−→ vol(S)
vol(H/Γ)

as t → 0.

Here vol(H/Γ) = π
3 , and “nice” can be taken to be that the boundary ∂(S) =

S̄\S has finite 1-dimensional Hausdorff measure, cf. Verjovsky [34]. A connection
on the rate of convergence to ergodicity was noted by Zagier [38, pp. 279–280]. The
Riemann hypothesis is equivalent to the following bound on the rate of convergence
of the above (Sarnak [32, p. 738]); here a “smooth test function” is needed.

1More generally, we should be looking at the action of GLn(k) on Mn(A).
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Theorem 6.2. The Riemann hypothesis holds if and only if, for any “nice”
test function f ∈ C∞

c (SH/Γ), where SH/Γ is the unit tangent bundle over H/Γ,
for t → 0 there holds

1
t

∫
γt

f(z)dνtz =

∫
H/Γ

f(z)dµz

vol(H/Γ)
+ O(t

3
4+ε),

for any ε > 0. Here νt is the arc-length measure on the horocycle at height t and µ
is Poincaré measure on (SH/Γ), which gives it volume 2πvol(H/Γ).

A subtlety in this criterion is that if a test function were used that is not
sufficiently smooth, then slower rates of convergence can hold even if the Riemann
hypothesis is valid. See Verjovsky [34] for an example involving the characteristic
function of an open set S lifted to the unit tangent bundle.

6.2. Brownian motion. Gnedenko and Kolmogorov observed that the Rie-
mann zeta function arises naturally in relation to Brownian motion, see [3]. Con-
sider, for example, the case of “pinned Brownian motion” on R. This is a standard
Brownian motion on the line Bt ∈ R, t ≥ 0, started at B0 = 0 and conditioned on
the property B1 = 0. Now let

Z = max
0≤t≤1

Bt − min
0≤t≤1

Bt

be the length of the range of Bt. Then the expectation of Zs is known to be

E[Zs] = ξ(s) =
1
2
s(s − 1)π− s

2 Γ(
s

2
)ζ(s).

In another Brownian system, we obtain the following equivalent of the Riemann
hypothesis [1].

Theorem 6.3 (Balazard, Saias, Yor). Consider two-dimensional Brownian
motion in the (x, y)-plane, starting at (0, 0). Let ( 1

2 , W ) be the first point of contact
with the vertical line x = 1

2 . Then the Riemann hypothesis is equivalent to

E [log |ζ(W )|] = 0.

This statement is actually a restatement of the following integral.

Theorem 6.4. The Riemann hypothesis is equivalent to
∫ ∞

0

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0.

Note that it is known unconditionally ([1], [7, Theorem 1.5]) that

1
2π

∫
�(s)=1/2

log |ζ(s)|
|s|2 |ds| =

1
π

∫ ∞

0

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑

ρ zeros of ξ

�(ρ)> 1
2

log
ρ

1 − ρ
.

6.3. Li’s Positivity Criterion. Define for n ≥ 0 the Li coefficient

λn :=
1

(n − 1)!
dn

dsn
(sn log ξ(s)) |s=1.
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Note that these quantities are given at s = 1, which can be computed in the
absolute convergence region �(s) > 1 of the Euler product, as a limit s → 1+.
These coefficients have a power series interpretation as:

1
(z − 1)2

ξ′( 1
1−z )

ξ( 1
1−z )

=
∞∑
n=0

λn+1z
n.

The Riemann hypothesis can be rephrased as the positivity of these coefficients
([28]).

Theorem 6.5 (Li). The Riemann hypothesis is equivalent to

λn ≥ 0 for all n ≥ 1.

In fact, this criterion is related to Weil’s explicit formula, since it can be shown
([5]) that

λn = W (1)(φn ∗ ˜̄φn)
for a certain sequence of test functions (φn); this sequence of test functions falls
outside the class of test functions considered in §3 but the “explicit formula” can
be justified for them, in a slightly modified form.

6.4. An Elementary Formulation. Because the Riemann hypothesis is such
a fundamental question, it seems appropriate to give a completely elementary state-
ment of it. Lagarias [27] establishes the following result.

Theorem 6.6. The Riemann hypothesis is equivalent to the following assertion:
Let Hn =

∑n
j=1

1
j be the nth harmonic number, and let σ(n) =

∑
d|n d be the sum

of the divisors of n. Then for each n ≥ 1,

σ(n) ≤ Hn + exp(Hn) log(Hn),

and equality holds only for n = 1.

This assertion represents an encoded form of a necessary and sufficient condition
for the Riemann hypothesis due to Guy Robin [31].
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Introduction

In almost every branch of mathematics we use the ring of rational integers,
yet in looking beyond the formal structure of this ring we often encounter great
gaps in our understanding. The need to find new insights into the ring of integers
is, in particular, brought home to us by our inability to decide the validity of
the classical Riemann hypothesis, which can be thought of as a question on the
distribution of prime numbers. Inspired by ideas from noncommutative geometry,
Alain Connes [8], [10], [9] has in recent years proposed a set-up within which to
approach the Riemann Hypothesis. The following chapters provide an introduction
to these ideas of Alain Connes and are intended to aid in a serious study of his papers
and in the analysis of the details of his proofs, which for the most part we do not
reproduce here. We also avoid reproducing too much of the classical material, and
choose instead to survey, without proofs, basic facts about the Riemann Hypothesis
needed directly for understanding Connes’s papers. These chapters should be read
therefore with a standard textbook on the Riemann zeta function at hand—for
example, the book of Harold M. Edwards [15], which also includes a translation
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of Riemann’s original paper. For the function field case, the reader can consult
André Weil’s book [39]. A good introduction to the Riemann zeta function and the
function field case can also be found in Samuel J. Patterson’s study [30]. A concise
and informative survey of the Riemann Hypothesis, from which we quote several
times, is given by Enrico Bombieri on the Clay Mathematics Institute website [3]
(see also the updated report of Peter Sarnak on that same website). Some advanced
notions from number theory are referred to as motivation for Connes’s approach,
but little knowledge of number theory is assumed for the discussion of the results
of his papers. Although Connes’s papers apply to arbitrary global fields, we most
often restrict our attention to the field of rational numbers, as this still brings out
the main points and limits the technicalities.

There are some similarities between Alain Connes’s work in [8], [10], [9] and
work of Shai Haran in [21], [23], [22]. We do not pursue here the relation to Shai
Haran’s papers, although we refer to them several times.

1. The objects of study

1.1. The Riemann zeta function. Riemann formulated his famous hypoth-
esis in 1859 in a foundational paper [31], just 8 pages in length, on the number of
primes less than a given magnitude. The paper centers on the study of a function
ζ(s), now called the Riemann zeta function, which has the formal expression,

(1) ζ(s) =
∞∑
n=1

1
ns

,

the right hand side of which converges for �(s) > 1. This function, in fact, predates
Riemann. In a paper [17], published in 1748, Euler observed a connection with
primes via the formal product expansion,

(2)
∞∑
n=1

1
ns

=
∏

p prime

(1 − p−s)−1,

valid for �(s) > 1. Equation (2) is a direct result of the unique factorization, up
to permutation of factors, of a positive rational integer into a product of prime
numbers. The contents of Euler’s paper are described in [15]. It seems that Euler
was aware of the asymptotic formula,

∑
p<x

1
p
∼ log(log x), (x → ∞)

where the sum on the left hand side is over the primes p less than the real number
x.

The additive structure of the integers leads to considering negative as well as
positive integers and to the definition of the usual absolute value | · | on the ring
Z of rational integers, defined by

|n| = sg(n) n, n ∈ Z.

The p-adic valuations are already implicit in the unique factorization of positive
integers into primes. Namely, for every prime p and every integer n one can write

n = pordp(n)n′
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where n′ is an integer not divisible by p. The p-adic absolute value of n is then
defined to be

|n|p = p−ordp(n).

We denote by Q the field of fractions of Z, namely the field of rational numbers,
and by MQ the set of valuations just introduced, extended to Q in the obvious way,
and indexed by ∞ and by the primes p. We write, for x ∈ Q,

|x|v = |x|, v = ∞ ∈ MQ

and
|x|v = |x|p, v = p ∈ MQ.

The following important observation is obvious from the definitions.

Product Formula: For every x ∈ Q, x �= 0, we have∏
v∈MQ

|x|v = 1.

Riemann derived a formula for
∑

n−s valid for all s ∈ C. For �(s) > 0, the
Γ-function is defined by

Γ(s) =
∫ ∞

0

e−xxs−1dx.

The function Γ(s) has an analytic continuation to all s ∈ C with simple poles at
s = 0,−1,−2, . . ., with residue (−1)mm! at −m, m ≥ 0. This can be seen using
the formula

Γ(s) = lim
N→∞

1 · 2 · · · ·N
s(s + 1) · · · (s + N − 1)

(N + 1)s−1.

Moreover, we have sΓ(s) = Γ(s + 1), and at the positive integers m > 0, we have
Γ(m) = (m − 1)!. Riemann observed that, for �(s) > 1,

(3) Γ(
s

2
)π−s/2

∞∑
n=1

n−s =
∫ ∞

0

∞∑
n=1

exp(−n2πx)xs/2
dx

x
.

Moreover, he noticed that the function on the right hand side is unchanged by the
substitution s �→ 1 − s and that one may rewrite the integral in (3) as

(4)
∫ ∞

1

∞∑
n=1

exp(−n2πx)
(
xs/2 + x(1−s)/2

) dx

x
− 1

s(1 − s)
,

which converges for all s ∈ C and has simple poles at s = 1 and s = 0. This shows
that ζ(s) =

∑
n−s, �(s) > 1, can be analytically continued to a function ζ(s) on

all of s ∈ C with a simple pole at s = 1 (the pole at s = 0 in (4) being accounted
for by Γ( s2 )).

Riemann defined, for t ∈ C given by s = 1
2 + it, the function

(5) ξ(t) =
1
2
s(s − 1)Γ(

s

2
)π−s/2ζ(s),

for which we have the following important result.

Theorem 1. (i) Let Z be the set of zeros of ξ(t). We have a product expansion
of the form

(6) ξ(t) =
1
2
π−s/2ebs

∏
ρ∈Z

(1 − s

ρ
)es/ρ, s =

1
2

+ it,
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where b = log 2π − 1− 1
2γ and γ = −Γ′(1) = 0.577... is Euler’s constant. Moreover

ξ(t) is an entire function, and the set Z is contained in

{s ∈ C | 0 ≤ �(s) ≤ 1} = {t ∈ C | − i

2
≤ 
(t) ≤ i

2
}

(ii) The function ξ(t) satisfies the Functional Equation

(7) ξ(t) = ξ(−t).

Moreover the set Z is closed under complex conjugation.
(iii) By equation (5), the poles of Γ(s) at the non-positive integers give rise to

zeros of ζ(s) at the negative even integers. These are called the Trivial Zeros. The
remaining zeros of ζ(s) are at the elements of Z. They are called the Non-trivial
Zeros.

The proof of the product formula of part (i) of Theorem 1 was sketched by
Riemann and proved rigorously by Hadamard [19] in 1893. The rest of Theorem 1
is due to Riemann.

We can now state the central unsolved problem about the zeta function, namely
to decide whether the following hypothesis is valid.

Riemann Hypothesis: The zeros of ξ(t) are real. Equivalently, the non-trivial
zeros of ζ(s) lie on the line �(s) = 1

2 .

Riemann verified this hypothesis by hand for the first zeros and commented
that

“Without doubt it would be desirable to have a rigorous proof of
this proposition, however I have left this research aside for the time
being after some quick unsuccessful attempts, because it appears
unnecessary for the immediate goal of my study.”

(translated from German)
Riemann’s “immediate goal” was to find a formula for the number of primes less
than a given positive real number x. However, Riemann’s great contribution was
not so much his concrete results on this question, but rather the methods of his
paper, particularly his realization of the existence of a relation between the location
of the zeros of ζ(s) and the distribution of the primes. One illustration of this
phenomenon is the two types of product formulae, one for ζ(s) as a product over
the primes as in (2) and the other as a product over the zeros Z of the related
function ξ(t) as in Theorem 1 (i).

Prior to Riemann, and following some ideas of Euler from 1737, Tchebychev
had initiated the study of the distribution of primes by analytic methods around
1850, by studying the function

π(x) = Card{p prime, p ≤ x}.
He introduced the function

J(x) =
1
2


 ∑
pn<x

1
n

+
∑
pn≤x

1
n


 = π(x) +

1
2
π(2

√
x) +

1
3
π(3

√
x) + . . .

and showed using the Euler product (2) that

(8)
1
s

log ζ(s) =
∫ ∞

1

J(x)x−s dx

x
, �(s) > 1.
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Riemann later used this formula and the calculus of residues to compute J(x), and
hence π(x), in terms of the singularities of log ζ(s), which occur at the zeros and
poles of ζ(s). Building on work of Tchebychev and Gauss, Riemann made a rigorous
study of (8), its inversion, and its relation to π(x).

This work was developed after Riemann and culminated in the independent
proof in 1896 by Hadamard [20] and de la Vallée-Poussin [34] of an asymptotic
formula for π(x).

Prime Number Theorem: As x → ∞, we have

π(x) ∼ Li(x) =
∫ x

0

dt

log t
∼ x

log x
.

where the integral on the right hand side is understood in the sense of a Cauchy
principal value, that is∫ x

0

dt

log t
= lim
ε→0

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
.

Moreover, it became clear that the better one understood the location of the
zeros of ζ(s), the better one would understand this approximation to π(x). For
example, the Prime Number Theorem is equivalent to the statement that there are
no zeros of ζ(s) on the line �(s) = 1 and the Riemann Hypothesis is equivalent
to the statement that, for every ε > 0, the relative error in the Prime Number
Theorem is less than x−1/2+ε for all sufficiently large x.

Riemann also studied N(T ), T > 0—the number of zero of ξ(t) between 0 and
T—and sketched a proof of the fact that

N(T ) ∼ T

2π
log

(
T

2π

)
− T

2π
.

1.2. Local fields. The prime numbers are intimately related to finite fields. If
F is a finite field, then it is necessarily of prime characteristic p > 1, that is, p is the
minimal non-zero integer for which the identity p1F = 0 is true in F , where 1F is
the multiplicative unit element in F . By a result of Wedderburn, a finite field must
also be commutative and has the structure of a vector space of dimension f ≥ 1
over its prime ring Fp = Z/pZ, the field of p elements. The number of elements
of F is then q = pf and it is isomorphic to the field Fq of roots of the equation
Xq = X.

An arbitrary field with the discrete topology is locally compact. (In general,
a metric space is called locally compact if every point has a neighborhood which
is compact.) From the topological viewpoint, the interesting locally compact fields
should not be discrete. This leads to considering, for discrete fields like Q, their
embeddings into closely associated locally compact non-discrete fields or rings.

The set MQ of valuations of the field of fractions Q of the ring Z defines a
family of metric spaces (Q, dv), where dv(x, y) = |x − y|v, v ∈ MQ. To each such
pair (Q, dv), we can associate the corresponding completions with respect to the
topologies induced by the metrics. Each of these completions also has the structure
of a field. We denote by Qp the field given by the completion of Q with respect
to the metric dp, for p a prime number. The completion of Q with respect to
d∞(x, y) = |x− y| is the field R of real numbers. The fields Qp and R are examples
of commutative locally compact non-discrete fields. We can consider Q as a subfield
of its completions Qp and R, thereby enriching the ambient topological structure



148 PAULA TRETKOFF

and allowing the application of techniques from classical analysis. Let K∗ denote the
group of non-zero elements of a field K. As we shall see in Chapter 3, consideration
of the actions of Q

∗
p on Qp and of R

∗ on R already lead to some interesting trace
formulae and can be seen as a first step in analyzing “locally” the ringstructure of
Z from an operator-theoretic viewpoint.

In general, a local field K is a commutative field which carries a topology
with respect to which the field operations are continuous and as a metric space
it is complete, non-discrete and locally compact. (Often, one does not assume
commutativity in the definition of a local field). Any locally compact Hausdorff
topological group has a unique (up to scalars) non-zero left invariant measure which
is finite on compact sets. If the group is abelian, this measure is also right invariant.
It is called the Haar measure. The action of K∗ = K \ {0} on K by multiplication,

(λ, x) �→ λx, λ ∈ K∗, x ∈ K,

induces a scaling of the Haar measure on the additive group K and hence a homo-
morphism of multiplicative groups

K∗ → R∗
>0

λ �→ |λ|,

where R
∗
>0 is the positive real numbers. Let

Mod(K) = {|λ| ∈ R
∗
>0, λ ∈ K∗}.

Then Mod(K) is a closed subgroup of R∗
>0. There are two classes of local fields, as

follows (see [38], §I-4, Theorem 5 and Theorem 8).

(i) Archimedean local fields: Mod(K) = R
∗
>0, in which case K = R or C.

(ii) Non-archimedean local fields: Mod(K) �= R
∗
>0, in which case one has

Mod(K) = qZ,

where q = pd for some prime p and some positive integer d. Moreover,

R = {x ∈ K | |x| ≤ 1}

is the unique maximal compact subring of K. It is a local ring with unique
maximal ideal

P = {x ∈ K | |x| < 1},
with R/P � Fq, the finite field with q elements. (Notice that if K ′ is an
extension of K of degree d then for a ∈ K its modulus with respect to K ′ is the
dth power of its modulus with respect to K.) If the non-archimedean local field
has characteristic p > 1, then it is isomorphic to a field of formal power series
in one indeterminate with coefficients in a finite field. If the non-archimedean
field is of characteristic zero, then it is a finite algebraic extension of Qp.

For p prime and x ∈ Qp, there exists an integer r such that x can be written
in the form

x =
∞∑
i=0

ar+ip
r+i,
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with 0 ≤ ar+i ≤ p− 1, i ≥ 0, and ar �= 0. We then have |x|p = p−r and x ∈ Zp

if and only if aj = 0 for j < 0. The maximal compact subring of Qp is the ring
of p-adic integers Zp given by

Zp = {x ∈ Qp | |x|p ≤ 1},
which contains the rational integers Z as a subring. The unique maximal ideal
of Qp is

P = {x ∈ Zp | |x|p < 1},
so that Zp/P � Z/pZ � Fp.

1.3. Global fields and their adele rings. A global field K can be defined
as a discrete cocompact subfield of a (non-discrete) locally compact semi-simple
commutative ring A = AK , called its adele ring [38]. There are two classes of
global fields, as follows.

(i) Global fields of characteristic 0: These are the number fields, that is, the
commutative fields which are finite dimensional vector spaces over Q, this di-
mension being usually referred to as the degree of the field over Q.

(ii) Global fields of characteristic p, where p is prime: These are the fin-
itely generated extensions of Fp of transcendence degree 1 over Fp. If K is such
a field, then there is a T ∈ K, transcendental over Fp, such that K is a finite
algebraic extension of Fp(T ). The field Fq, where q = pf for some f , is included
in K as its maximal finite subfield, called the field of constants. The field K
may also be realized as a function field of a non-singular algebraic curveover Fq.
An analogue of the Riemann Hypothesis exists for such fields and is discussed
in Chapter 2.

The field Q of rational numbers is a global field of characteristic 0 with a set
of inequivalent valuations v ∈ MQ, v = ∞ or v = p, prime, as in §1.1. As in §1.2,
associated local fields are given by the completions

Q ↪→ R, for v = ∞
and

Q ↪→ Qp, for v = p.

The adele ring A = AQ combines all these local fields in a way that gives them
equal status and combines their topologies into an overall locally compact topology.
It is given by the restricted product

A = R ×
∏
p

′
Qp

with respect to Zp. This means that the elements of A are infinite vectors indexed
by MQ,

x = (x∞, x2, x3, . . .)
with x∞ ∈ R, xp ∈ Qp and xp ∈ Zp for all but finitely many primes p. Addition
and multiplication are componentwise. The embeddings of Q into its completions
with respect to the elements of MQ induce a diagonal embedding of Q into A whose
image is called the principal adeles. Therefore, a ∈ Q corresponds to the principal
adele

a = (a, a, a, . . .).
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A basis for the topology on A is given by the restricted products U∞×
∏′
p Up where

U∞ is open in R and Up is open in Qp with Up = Zp for all but finitely many primes
p. The quotient A/Q of the adeles by the principal adeles is compact. The reason
for the restricted product is precisely to enable the definition of a non-trivial locally
compact topology on A extending the locally compact topologies of the factors.

The group J = JQ of ideles of Q is the restricted product

J = R
∗ ×

∏
p

′
Q

∗
p

with respect to Z
∗
p := {x ∈ Qp | |x|p = 1}. These are the invertible elements of A.

The elements of J are infinite vectors indexed by MQ,

u = (u∞, u2, u3, . . .)

with u∞ ∈ R, u∞ �= 0, up ∈ Qp, up �= 0 and |up|p = 1 for all but finitely many
primes p. Multiplication is componentwise. The topology on J is induced by the
inclusion

J ↪→ A × A

u �→ (u, u−1)

The group Q∗ of non-zero rational numbers injects diagonally into J and their
image is called the principal ideles. Therefore q ∈ Q∗ corresponds to the principal
idele

q = (q, q, q, . . .).

The group J carries the norm given by

| | : J → R
∗
>0

u = (uv)v∈MQ
�→

∏
v∈MQ

|uv|v = |u∞|
∏

p prime

|up|p.

The Product Formula of §1.1 implies that Q
∗ is contained in Ker| |, the ele-

ments of J of norm 1, that is, for u ∈ Q, u �= 0 we have

|u| = |u|∞
∏
p

|u|p = 1.

The action of J on A, therefore, embodies simultaneously the actions of Q
∗
p on

Qp and R
∗ on R. However, the roles of the individual valuations v ∈ MQ remain

independent, so one cannot hope to gain much additional insight into the structure
of the ring Z in this way.

The Idele Class Group is the quotient C = J/Q
∗ of the ideles by the principal

ideles. By the Product Formula, the norm defined on the ideles induces a well-
defined norm on this quotient, which we also denote by

| | : C → R
∗
>0.

Let J1 be the subgroup of J given by the kernel of the norm map. The principal
ideles Q

∗ form a discrete subgroup of J1 and the quotient group C1 = J1/Q
∗ is

compact. The idele class group C is the direct product of C1 and R
∗
>0 and as such

is called a quasi-compact group. For proofs of these facts, see [38], Chapter 4. A
(continuous) homomorphism

χ : C → C
∗
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is called a quasi-character. The quasi-characters form a group under pointwise
multiplication. A quasi-character is called principal if it is trivial on C1, and the
principal quasi-characters form a subgroup. The norm map on C gives a non-trivial
homomorphism of C onto R∗

>0 and the principal quasi-characters are of the form
u �→ |u|t, t ∈ C, u ∈ C. Every quasi-character admits a factorization

χ(u) = χ0(u)|u|t, t ∈ C, u ∈ C,

with χ0 : C → U(1) a unitary character on C, that is, a homomorphism onto the
group of complex numbers with absolute value 1. Every quasi-character χ on C
can be considered as a homomorphism χ : J → C which is trivial on Q∗. For every
v ∈ MQ, there is a natural embedding of Q

∗
v (where Q∞ = R) into J by sending

x ∈ Q
∗
v to the idele (uw)w∈MQ

with uw = 1 for all w �= v and uv = x. Thereby,
the quasi-character χ induces a homomorphism χv on Qv with χp(Z∗

p) = {1} for
almost all primes p. The finite set S of p for which χp(Z∗

p) �= {1} is called the set
of ramified primes. We may then write χ = χ∞

∏
p χp. At an unramified prime

p �∈ S, the local factor χp is determined by its value at p. The L-function with
non-principal quasi-character (or Grössencharacter) χ(u) = χ0(u)|u|t is defined in
the region �(s) > 1 − τ , where τ = �(t), by

L(χ, s) =
∏
p �∈S

(
1 − χp(p)p−s

)−1
.

For χ �= 1 this function has an analytic continuation to all of C, also denoted
L(χ, s). For more details, see [38], Chapter 7. Notice that the Riemann zeta
function corresponds to the case where χ is trivial and S is empty. We have the
following generalization of the Riemann Hypothesis for unitary characters χ0 on C
(which has a corresponding version for all global fields, not just Q).

Generalized Riemann Hypothesis: We have L(χ0, s) = 0 for �(s) ∈]0, 1[
if and only if �(s) = 1

2 .

1.4. Connes’s dynamical system. There are natural symmetry groups
which arise for global fields. In the characteristic zero case, given a finite exten-
sion K of Q, the associated symmetry group is the group of field automorphisms
of K which leave Q fixed. This symmetry group is called the Galois group of K
over Q. In the characteristic p case, the symmetry groups come from Frobenius
automorphisms of the corresponding variety over Fq given by raising coordinates
on the variety to the q-th power. For a global field K of finite characteristic p, the
corresponding idele class group CK turns out to be canonically isomorphic to the
Weil group WK generated by all automorphisms leaving K fixed, and induced on
a certain field extension of K by powers of the Frobenius. Therefore the natural
symmetry group is in fact the idele class group which in turn has an interpretation
as a Galois group.

The following proposal of Weil, made in 1951, is a central motivation for
Connes’s approach [36]

“The search for an interpretation of CK when K is a number field,
which is in any way analogous to the interpretation as a Galois
group when K is a function field, seems to me to constitute one
of the fundamental problems of number theory nowadays; it is
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possible that such an interpretation holds the key to the Riemann
hypothesis.”

(translated from French)

For a local field, the corresponding Weil group WK is again generated by powers
of the Frobenius automorphism of an extension of K. By the main result of local
class field theory the group WK is isomorphic to K∗, which therefore locally plays
the role of the idele class group.

Class field theory relates the arithmetic of a number field, or of a local field, to
the Galois extensions of the field. For a local field, by the remarks above, class field
theory tells us that the group K∗ plays a central role in this relation. This group
acts naturally on the space consisting of the elements of K, and understanding the
action of multiplication on the additive structure of K, that is, the map,

K∗ × K → K

(λ, x) �→ λx

is certainly a basic part of understanding the arithmetic of a local field.
In the light of the situation for global fields of characteristic p > 0, one can

view the analogue of the action of WK for the field Q as being the passage to the
quotient by Q

∗ of the map,

J × A → A

(u, x) �→ ux,

that is

C × X → X

([u], [x]) �→ [u][x].

Here C is the idele class group as above and X is the space of cosets X = A/Q∗.
The notation [ ] means the class modulo the multiplicative action of Q

∗ and will be
mainly dropped in future. Therefore [a] = [b] in X for a, b ∈ A if and only if there
is a q ∈ Q

∗ such that a = qb. The space X is very singular (not even Hausdorff).
Connes proposes to study the dynamical system (X, C) using the following

guidelines.
• Relate the spectral geometry of the action (X, C) to the zeros of ζ(s).
• Relate the non-commutative geometry of the orbits of (X, C) to the

valuations MQ of Q.
• Show that the consequent relation of the zeros of ζ(s) to the primes of Z

is fine enough to prove the Riemann Hypothesis.

1.5. Weil’s Explicit Formula. A very crude relation between the zeros of
ζ(s) and the primes appeared already in §1.1 when we compared the product for-
mula over Z for ξ(t) in Theorem 1(i) with the Euler product formula (2) for ζ(s).
Namely, we have, for �(s) > 1,

s(s − 1)Γ(
s

2
)

∏
p prime

(1 − p−s)−1 = exp(bs)
∏
ρ∈Z

(1 − s

ρ
) exp(

s

ρ
).

An important refinement of ideas going back to Riemann’s paper led Weil to develop
his “Explicit Formula”. Roughly speaking, the idea is to take logarithms and then
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Mellin transforms in the last displayed formula. For a function f : R+ → C we
define the (formal) Mellin transform to be

M(f, z) =
∫ ∞

0

f(t)tz
dt

t
.

Then Weil’s formula is (formally) as follows:

M(f, 0) −
∑
ρ∈Z

M(f, ρ) + M(f, 1) =(9)

(log 4π + γ)f(1) +
∞∑
m=1

∑
p prime

(log p){f(pm) + p−mf(p−m)}

+
∫ ∞

1

{f(x) + x−1f(x−1) − 2
x

f(1)} dx

x − x−1
.

Here, ∑
ρ∈Z

M(f, ρ) := lim
T→∞

∑
|�(ρ)|<T

M(f, ρ).

Weil also observed that the Riemann Hypothesis is equivalent to the positivity of

R(f) :=
∑
ρ∈Z

M(f, ρ)

for functions of the form

(10) f(x) =
∫ ∞

0

g(xy)g(y)dy.

This translates into the negativity of the left hand side of (9) for such f which also
satisfy

M(f, 0) =
∫ ∞

0

f(x)
dx

x
= 0, M(f, 1) =

∫ ∞

0

f(x)dx = 0.

Indeed, for f as in (10), we have

M(f, ρ) = M(g, ρ − 1/2)M(g,−(ρ − 1/2)),

so that RH implies the positivity of R(f). Conversely, we have enough functions
M(f, z) to localize the zeros of ζ(s). To make this rigorous and not just formal,
we must impose some conditions on the class of functions f : R+ → C. We require
that f be continuous and continuously differentiable except at finitely many points
where f and f ′ have discontinuities of the first kind. At these discontinuities f
and f ′ are defined as the average of their left and right values. Also, there is a
δ > 0 such that f(x) = O(xδ) as x → 0+ and f(x) = O(x−1−δ) as x → +∞. Then
M(f, z) is analytic for −δ < �(z) < 1 + δ (see [3]).

As suggested in §1.4, for the action (X, C) the zeros of ζ(s) should have a
spectral interpretation. Inspection of (9) suggests that these eigenvalues should
appear with a negative sign to match the term −

∑
ρ∈Z M(f, ρ). This is, in fact,

a feature of Connes’s approach. We discuss this in Section 3.2. For some related
comments on the comparison of (X, C) with Hamiltonian flows in quantum chaos,
see [9].
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2. The Riemann Hypothesis for curves over finite fields

There is an analogue of the Riemann Hypothesis (RH) for certain zeta func-
tions attached to curves defined over finite fields. This analogue, introduced by
E. Artin (1924) and checked by him for a few curves of genus 1, is known as the
function field case after the function field of the curve. F. Schmidt (1931) showed
that the zeta function for curves is rational and has a functional equation. Hasse
(1934), using ideas from algebraic geometry together with some analytic methods,
proved the analogue of RH for all genus 1 curves. In the early 1940’s, Weil formu-
lated an approach to RH for arbitrary curves defined over finite fields (see [35]).
Subsequently, Weil developed the methods from algebraic geometry needed to ex-
ecute his approach, and he published complete proofs in his 1948 book [39]. A
more elementary proof was developed by Stepanov (1969), and this was further
simplified by Bombieri (1972) [2]. Weil pioneered the study of zeta functions for
arbitrary varieties over finite fields and developed some conjectures about these
functions, in particular connecting topological data for these varieties to counting
rational points on them over finite extensions of the base field. Included in these
Weil Conjectures is a generalization of RH and its interpretation as a statement
about the eigenvalues of the Frobenius automorphism acting on the cohomology of
a variety. Dwork (1960) used p-adic analysis to establish the rationality of the zeta
function for arbitrary varieties. Various cohomology theories relevant to the Weil
Conjectures were developed, in particular by M. Artin, Grothendieck, Serre and
Verdier. The complete proof of the Weil Conjectures was finally obtained in 1973
by Deligne [11], [12].

The successful solution of the analogue of RH for function fields provides strong
encouragement for believing the validity of RH in the as yet unsolved number field
case. It is still, however, an open problem to prove RH in the same generality for
function fields using the program proposed by Alain Connes: it is anticipated that
doing so would give much new information about the program in the number field
case.

2.1. The zeta function of a curve over a finite field. Let p be a prime
number and Fq the field of q = pd, d ≥ 1, elements. The map α �→ αq is the
identity on Fq. There are d automorphisms of Fq leaving Fp fixed, namely α �→ αp

i

,
α ∈ Fq, i = 0, . . . , d − 1. The field Fq is the finite extension of Fp of degree d.
Let K be a field extension of Fq with transcendence degree equal to 1. Then K is
a finite algebraic extension of Fp(T ) where T is transcendental over Fp, and is a
global field of characteristic p, as described in Section 1.3. We can also write K =
Fq(x, y) where x is transcendental over Fq and there is an irreducible polynomial
F = F (x, y) ∈ Fq[x, y] such that F (x, y) = 0. This equation defines a plane curve
defined over Fq which has a smooth model Σ whose meromorphic function field is
K.

Let Fq denote the algebraic closure of Fq, and Σ = Σ(Fq) denote the curve
over Fq given by the points of Σ rational over Fq. The field of functions of Σ is
K = Fq(x, y). The Frobenius automorphism of K is given by the map u �→ uq,
u ∈ K. This induces the map (x, y) �→ (xq, yq) on the solutions (x, y) ∈ Fq

2
of

F (x, y) = 0, which in turn defines a Frobenius map Fr on Σ. By linearity over the
integers, the map Fr extends to the additive group of finite formal sums of points
on Σ.
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For every integer j ≥ 1, the automorphism group of Fqj over Fq is generated
by the Frobenius map whose j-th power fixes the elements of Fqj . In the same way,
the fixed points in Σ of the j-th iterate Frj are the points Σ(Fqj ) of Σ rational over
Fqj .

We introduce some definitions.

Definition 1. The divisor group Div(Σ) of Σ over Fq is the formal additive
group of finite sums

Div(Σ) = {A =
∑
i

aiPi, ai ∈ Z, Pi ∈ Σ(Fqdi ) some di ∈ N, Fr(A) = A}

invariant under the Frobenius automorphism Fr on Σ. A divisor A =
∑
i aiPi is

said to be effective (written A > 0) if ai > 0 for all i.

For two divisors A and B we write A > B when A− B is effective.

Definition 2. If A =
∑
i aiPi ∈ Div(Σ), then the degree d(A) of A is

∑
i ai.

The norm N(A) of A is qd(A).

Notice that for A,B ∈ Div(Σ), we have

(11) N(A + B) = N(A)N(B).

Definition 3. An effective divisor A ∈ Div(Σ) is prime if it cannot be written
as the sum of two effective divisors in Div(Σ).

The effective divisors are the analogues of the positive integers and the prime
divisors are the analogues of the prime integers. Every effective divisor can be
uniquely decomposed (up to permutation of the summands) into a sum of prime
divisors.

Definition 4. The zeta function of the curve Σ with function field K is given
by

(12) ζK(s) = ζ(s, Σ) =
∑
A>0

1
N(A)s

=
∏
P

(1 − N(P)−s)−1, �(s) > 1,

where the product is over the prime divisors P in Div(Σ).

The Euler product decomposition on the right of (12) is a consequence of (11)
and the uniqueness of the prime decomposition of effective divisors.

It is useful to use the change of variables u = q−s, and write the zeta function
as

(13) Z(u) = ζK(s) =
∏
P

(1 − ud(P))−1.

We then have

(14) u
d

du
log Z(u) =

∞∑
j=1


 ∑
d(P)|j

d(P)


uj .

The quantity
∑
d(P)|j d(P) in (14) equals the number of points of Σ(Fqj ).
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Theorem 2. The zeta function has an analytic continuation to the whole com-
plex plane C and may be written

(15) ζK(s) =
P (q−s)

(1 − q−s)(1 − q1−s)
,

for a certain polynomial P of degree 2g, where g is the genus of Σ. Moreover, the
polynomial P satisfies

(16) qgsP (q−s) = qg(1−s)P (qs−1).

The genus of Σ is the dimension over Fq of the space of sections of the canonical
sheaf of Σ. From (16) we see that the zeta function satisfies the functional equation

q(g−1)sζK(s) = q(g−1)(1−s)ζK(1 − s).

The proof of Theorem 2 uses the Riemann-Roch Theorem for Σ (see, for example,
[16], Chapter V, §5).

One can write the polynomial P as a product over the ‘multiset’ Z (points with
multiplicities) of reciprocal zeroes of P :

(17) P (u) =
∏
ρ∈Z

(1 − ρu).

This gives an analogue of the Hadamard product formula of (6),

(18) ζK(s) =


∏
ρ∈Z

(1 − ρu)


 (1 − u)−1 (1 − qu)−1

.

From the Euler product we know that ζK(s) �= 0 for �(s) > 1 and therefore
1 ≤ |ρ| ≤ q. Moreover, (16) implies the symmetry of Z under ρ �→ q/ρ.

2.2. The Riemann Hypothesis, the explicit formula and positivity.
We begin with a statement of the Riemann hypothesis for function fields.

The Riemann Hypothesis for curves over finite fields: The zeros of
ζK(s) lie on �(s) = 1

2 , or equivalently each ρ ∈ Z has |ρ| = q
1
2 .

The proof of this statement is a theorem due in its full generality to André
Weil who proved it in 1942, see [39]. It is equivalent to the positivity of a certain
functional that we describe below. Following the treatment in [30], we note that
as in the number field case, we have a formal relation between prime divisors and
zeros of ζK . Namely, we see from (13) and (18) that

∏
P

(1 − ud(P))−1 =


∏
ρ∈Z

(1 − ρu)


 (1 − u)−1(1 − qu)−1.

Taking logarithmic derivatives as in (14) we obtain∑
P

d(P)ud(P)(1 − ud(P))−1 = −
∑
ρ∈Z

ρu(1 − ρu)−1 + u(1 − u)−1 + qu(1 − qu)−1.

Comparing coefficients of uj we have

(19)
∑
d(P)|j

d(P) = 1 −
∑
ρ∈Z

ρj + qj .



NONCOMMUTATIVE GEOMETRY AND NUMBER THEORY 157

The left hand side of this formula is the number of points of Σ(Fqj ), that is, the
number of fixed points of the jth power of the Frobenius map acting on Σ(Fq). For
instance, for the projective line Σ = P1, the left hand side is 1 + qj .

Multiplying (19) by q−j/2 and using the functional equation, we obtain, after
some manipulation, the following identity:

(20) q−|j|/2
∑
d(P)|j

d(P) = qj/2 + q−j/2 −
∑
ρ∈Z

(ρ/q
1
2 )j .

Let h be a function h : Z → C. Define the discrete Mellin transform of h by

Md(h, z) =
∑
j∈Z

h(j)zj .

Suppose that h is such that its discrete Mellin transform converges in the inter-
val q−1/2 ≤ |z| ≤ q1/2. Multiplying (20) by h(j) and summing over j gives the
following:

Explicit Formula for curves over finite fields:

(21) Md(h, q
1
2 ) −

∑
ρ∈Z

Md(h, ρ/q
1
2 ) + Md(h, q−

1
2 ) =

(2 − 2g)h(0) +
∑

�∈Z\{0}

∑
P

d(P)q−d(P)|�|/2h(d(P)
),

where g is the genus of Σ.

Just as for the Riemann zeta function (see Section 1.5), the Riemann Hypoth-
esis is equivalent to a positivity statement. Consider the natural involution and
convolution on the algebra of functions h : Z → C. The involution is given by,

(22) h∗(j) = h(−j), j ∈ Z,

and the convolution of two functions h1 and h2 by

h1 ∗ h2(j) =
∑

j1+j2=j

h1(j1)h2(j2), j ∈ Z.

The Mellin transform takes this convolution into a product, namely

Md(h1 ∗ h2, z) = Md(h1, z)Md(h2, z).

Define a Hermitian form R(h1, h2) by

(23) R(h1, h2) =
∑
ρ∈Z

Md(h1 ∗ h∗
2, ρ/q

1
2 ).

By (21) we have

(24) R(h1, h2) = Md(h1 ∗ h∗
2, q

1
2 ) + Md(h1 ∗ h∗

2, q
− 1

2 ) + (2g − 2) (h1 ∗ h∗
2) (0)

−
∑
P

∑
�∈Z\{0}

d(P)q−d(P)|�|/2 (h1 ∗ h∗
2) (d(P)
).

Theorem 3. The Riemann hypothesis holds for ζK(s) if and only if R is pos-
itive semidefinite.
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Proof. Suppose that the Riemann hypothesis holds for ζK(s). Then for any
ρ ∈ Z, we have |ρ/q

1
2 | = 1. Therefore,

Md(h ∗ h∗, ρ/q
1
2 ) = Md(h, ρ/q

1
2 )Md(h∗, ρ/q

1
2 )

= Md(h, ρ/q
1
2 )Md(h, (ρ̄/q

1
2 )−1)

= |Md(h, ρ/q
1
2 )|2.

It follows that the form R is a finite sum of positive semidefinite forms and hence
is itself positive semi-definite. The argument can be reversed by making an artful
choice of the function h in terms of a presumed zero of ζ away from the critical line.
Namely, suppose that R is positive semidefinite and that RH is false for ζK(s).
Then there exists a ρ0 ∈ Z with ρ1 := q/ρ̄0 �= ρ0. On the other hand, as the
polynomial P in Theorem 2 has real coefficients, we have ρ1 ∈ Z. Now choose, as
we may, a polynomial F with

F (ρ0) = i, F (ρ1) = −i, F (ρ) = 0, ρ ∈ Z \ {ρ0, ρ1}.
There exists a function h : Z → C with

R(h, h) =
∑
ρ∈Z

Md(h, ρ/q
1
2 )Md(h, (ρ̄/q

1
2 )−1)

=
∑
ρ∈Z

F (ρ)F (q/ρ̄)

= F (ρ0)F (ρ1) + F (ρ1)F (ρ0) = −2.

This is absurd, so that RH must hold. �

To prove the positivity of R, Weil used ideas from algebraic geometry. The
corresponding “geometric” ideas are lacking in the number field case, and Connes’s
papers propose a set-up within which such “non-commutative” geometric ideas may
emerge.

The theory of étale l-adic cohomology, a cohomology theory for Σ with coeffi-
cients in Q� where 
 is a prime not equal to p, allows the explicit formula of (24)
to be interpreted as a trace formula. Recall the formula given in (19),

(25) Card(Σ(Fqj )) = 1 −
∑
ρ∈Z

ρj + qj .

This can be viewed as a Lefschetz fixed point formula in the context of finite fields.
The classical Lefschetz fixed point formula applies to a complex variety V . Let F
be an action on V . Then the number of fixed points of F is, by this formula,

Card(fixed points of F ) =
∑
j

(−1)jTr(F ∗ | Hj(V )),

where F ∗ is the induced action of F on cohomology.
The dimensions of the cohomology groups H∗(Σ, Q�) are given by

dim(Hj(Σ, Ql)) =




0, j > 2,

1, j = 0, 2,

2g, j = 1.

Recall that the Frobenius gives a map on Σ, and that the points of Σ(Fqj ) are the
fixed points of Frj acting on the curve over the algebraic closure. By a version of
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the Lefschetz fixed point theorem, one identifies this with an alternating sum of
traces on cohomology groups,

Card(Σ(Fqj )) = Card(fixed points of Frj) = 1 −
∑
ρ∈Z

ρj + qj

= Tr((Fr∗)j | H0(Σ, Q�)) − Tr((Fr∗)j | H1(Σ, Q�)) + Tr((Fr∗)j | H2(Σ, Q�)).

The first and last terms of the right hand side together sum to 1 + qj , so that the
zeros of the zeta function appear as the eigenvalues of Fr∗ acting on H1 and we
have

Tr((Fr∗)j | H1(Σ, Q�)) =
∑
ρ∈Z

ρj .

To show the positivity of the form in (23), Weil essentially works with Σ/Sg,
the symmetric product of Σ with itself g times. This is closely related to the
Jacobian J of the curve Σ. The Frobenius map on Σ induces an endomorphism
Fr of J which is invertible over Q. There is a standard involution e → e′ on the
endomorphisms e of J , called the Rosati involution, for which Fr◦Fr′ = q. Working
over Q(q1/2) in this endomorphism algebra, one can reinterpret Theorem 3 as a
statement about the positivity of the Rosati involution, which in turn follows from
the Castelnuovo–Severi inequality for surfaces; see [30] §5.17 and [32].

2.3. Weil’s proof by the theory of correspondences. In this section we
briefly discuss Weil’s proof of the Riemann Hypothesis for curves over finite fields
using the theory of correspondences. Full details are given in his book [39]. Useful
additional references are [16], [32]. Once again the Riemann Hypothesis is reduced
to a positivity statement which follows from the Castelnuovo–Severi inequality for
surfaces.

A correspondence on a curve is the graph of a multi-valued map of a curve Σ
to itself, and it may also be viewed as a divisor on the surface Σ × Σ. Recall the
formula given in (19), which yields the explicit formula, and is given by

(26)
∑
ρ∈Z

ρj = 1 + qj − Card(Σ(Fqj )), j ≥ 1.

If Fr : Σ → Σ is the Frobenius map, then for every integer j ≥ 1, the map Frj is
single-valued and of degree qj . Let F j be the graph of Frj on Σ×Σ. Then, for any
point P on Σ, we have

(27) m(F j) := Card
(
F j ∩

(
{P} × Σ

))
= 1,

and

(28) d(F j) := Card
(
F j ∩

(
Σ × {P}

))
= qj .

Moreover, the graph F j intersects the diagonal ∆ of Σ × Σ in Nj = Card(Σ(Fqj ))
points.

There is an intersection form (D1, D2) → D1 · D2 defined on divisors on the
surface Σ × Σ, or correspondences on the curve Σ, which remains well-defined on
divisor classes, two divisors being in the same class if their difference is the divisor
of a function on Σ × Σ. The divisors form a ring with multiplication ◦ induced
by composition of maps, and has a transpose D → Dt given by composition with
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permutation of the two factors of Σ ×Σ. For a divisor D on Σ ×Σ, and a point P
on Σ, we generalize (27) and (28) to arbitrary divisors by setting

m(D) = D ·
(
{P} × Σ

)
and d(D) = D ·

(
Σ × {P}

)
.

Weil defines the trace on divisors, invariant on a given class, by

Trace(D) = m(D) + d(D) − D · ∆,

where as above ∆ is the diagonal of Σ × Σ. The Riemann hypothesis is then
equivalent to the positivity statement

(29) Trace(D ◦ Dt) > 0,

for D not equivalent to a divisor of the form {P} × Σ or Σ × {P}, with P a point
of Σ. Indeed, if D = m∆ + nF for integers m and n, we have

D ◦ Dt =
(
m2 + qn2

)
∆ + mn

(
F + F t

)
,

using ∆ = ∆t and F ◦F t = q∆. As the self-intersection number of ∆ is 2− 2g, the
trace of ∆ equals 2g and, as we saw,

Trace(F ) = Trace(F t) = 1 + q − N1.

The positivity statement in (29) implies that the form

Trace(D ◦ Dt)(m, n) = 2gm2 + 2 (1 + q − N1)mn + 2gqn2,

is positive definite for g �= 0 (it is identically zero for g = 0). Therefore, it has
negative discriminant, so that

(1 + q − N1)
2 − (2g) (2gq) < 0,

that is

|N1 − 1 − q| < 2gq1/2.

The same argument applied to Fqj yields, for all j ≥ 1,

|Nj − 1 − qj | < 2gqj/2.

Applying (25), we deduce that for all j ≥ 1,

(30) |
∑
ρ∈Z

ρj | ≤ 2gqj/2.

From (17) we have

(31) log P (u) = −
∑
ρ∈Z

∞∑
j=1

jρjuj = −
∞∑
j=1

j


∑
ρ∈Z

ρj


uj .

Because of (30), we see that the series in (31) converges absolutely for |u| < q−1/2,
and this means that we have |ρ| ≤ q1/2 for all ρ ∈ Z. Moreover, (16) shows if ρ ∈ Z
then qρ−1 ∈ Z, so that we deduce that |ρ| = q1/2 for all ρ ∈ Z. Therefore the
Riemann Hypothesis is proven.
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Weil showed that the positivity of (29) is a consequence of the negative semidefi-
niteness of the intersection form on divisors of degree zero of a projective embedding
of the surface Σ×Σ, which in turn follows from the Castelnuovo–Severi inequality.
For higher dimensional varieties rather than curves (where RH is replaced by the
Weil Conjectures), no proof along these lines has been found: Deligne’s proof uses
in an essential way a deformation of the variety in a family.

2.4. Finding a theory over the complex numbers. Connes aims to con-
struct a theory over C rather than over Q�. As before, let K be the function field
of a smooth curve Σ over a finite field Fq, and Kun the field generated over K by
the roots of unity of order prime to p. Let Kab be the maximal abelian extension
of K. Then the elements of Gal(Kab/K) inducing powers of the Frobenius on Kun

form a group called the Weil group WK . The Main Theorem of Class Field Theory
for function fields tells us that WK is isomorphic to the idele class group CK of
K. Therefore, in this set-up one can view the idele class group as capturing the
Frobenius action. In a formulation using operator algebras over C, the elements of
the zero set Z of the zeta function should ideally appear as eigenvalues of C = CK
acting via a representation

W : C → L(H)
where L(H) is the algebra of bounded operators in a complex Hilbert space H.
Moreover, guided by the Lefschetz formula (alternating sum), the Hilbert space H
should appear via its negative �H. The problem in the function field case is to
replace the 
-adic cohomology groups by an object defined over C which exists also
for number fields.

We summarise these goals in the following dictionary:

Zeta Function Classical Geometry Noncommutative Geometry

Spectral interpretation Spectrum of Fr∗ Spectrum of C
of zeros on H1(Σ, Q�) on H

Functional equation Riemann-Roch Theorem Appropriate symmetry

Explicit formula Lefschetz formula Geometric trace formula

Riemann hypothesis Castelnuovo positivity Positivity of Weil functional

3. The local trace formula and the Pólya-Hilbert space

We now turn to a more direct study of Connes’s approach. In the previous
chapters, we motivated the study of the dynamical system (X, C) of Connes, where
C = J/K∗ is the idele class group of a global field K and X = A/K∗ is the space
of adele cosets. Once again we, for simplicity, restrict ourselves mainly to the case
K = Q, although the discussion goes through for arbitrary global fields.

Classical spaces, their topology, their differentiable and conformal structure,
can be understood from the study of their associated (commutative!) algebras.
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A main goal of noncommutative geometry is to extend these structures to a wider
class of examples by developing their analogues on noncommutative algebras whose
corresponding spaces are non-existent or hard to study. Connes proposes that,
although global fields, their adele rings and idele class groups are commutative,
the Riemann Hypothesis (RH) itself should be viewed as part of “noncommutative
number theory”.

We saw in Chapter 1 that a natural first step in this program is to study, in
the case where K is a local field, the action on K of the group K∗ of its non-zero
elements. Connes develops a rigorous trace formula for the action (K∗, K). This
trace formula, which we discuss in §3.1, turns out to provide positive support for
his approach to the Riemann Hypothesis for global fields.

Indeed, Connes conjectures a trace formula for the action (C, X) for global fields
which is a sum of the contributions of the local trace formulae and this conjecture
turns out to be equivalent to RH. In §3.2, we discuss Connes’s interesting and rigor-
ous interpretation of the non-trivial zeros of the L-functions with Grossencharacter
for a global field (of which the Riemann zeta function is a special case) in terms of
the action of the idele class group on a certain Hilbert space. We call this the Polya-
Hilbert space after earlier suggestions by Polya and Hilbert that there should be a
spectral interpretation of the non-trivial zeros of the Riemann zeta function. This
is not sufficient to prove Connes’s conjectured global trace formula, but it provides
evidence for the rich information on RH contained in the action (C, X). Although
we do not give proofs of the results of §3.2, we end in §3.3 with an explanation of
why the non-trivial zeros of the L-functions turn up in the spectral formula of §3.2.
Full proofs are given in [9].

We conclude this section by noting, as pointed out to us by Peter Sarnak, that
Connes gives a spectral interpretation only of the zeros on the line s = 1/2 (and
hence in fact he has a spectral interpretation only assuming RH). This is because
he uses certain Sobolev spaces which only pick up zeros on this line.

3.1. The local trace formula. For the time being, we assume that K is a
local field, and we look at the action of K∗ by multiplication on K. For simplicity,
we work with the case K = R or K = Qp for p a prime number. These are the local
fields obtained by completing the field Q at the elements of MQ, as in Chapter 1.

Let H = L2(K) where the L2-norm is with respect to the additive Haar measure
dx on K. Let U be the regular representation of K∗, the non-zero elements of K,
on H. Therefore, for λ ∈ K∗ and x ∈ K, we have

(U(λ)ξ)(x) = ξ(λ−1x).

The operator U(λ) is not of trace class; and, in order to associate to it a trace class
operator, one averages it over a test function h ∈ S(K∗) with compact support. If
h(1) �= 0, it is necessary to further modify the operator, as we shall see.

Define the operator in H given by

U(h) =
∫
K∗

h(λ)U(λ)d∗λ,

where d∗λ denotes the multiplicative Haar measure on K∗, normalized by requiring
that ∫

|λ|∈[1,Λ]

d∗λ ∼ log Λ, Λ → ∞.
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To the operator U(h) we associate the Schwartz kernel k(x, y) on K2 for which

(U(h)ξ)(x) =
∫
K

k(x, y)ξ(y)dy.

Let δ = δ(x) denote the Dirac delta distribution on K. We have

k(x, y) =
∫
K∗

h(λ−1)δ(y − λx)d∗λ.

The associated distributional trace is given by

TrD(U(h)) =
∫
K

k(x, x)dx =
∫
K∗

h(λ−1)
(∫

K

∫
K

δ(x − y)δ(y − λx) dx dy

)
d∗λ.

When λ �= 1, the distribution δ(x−y) has support on the line x = y on K2, whereas
δ(x−λy) has support on the transverse line x = λy. As explained in [9], the integral∫

K

∫
K

δ(x − y)δ(x − λy) dx dy = |1 − λ|−1

is well-defined and equals, as expected, the displayed value. When h(1) = 0, so
that the non-transverse case λ = 1 is cancelled out, we deduce that

TrD(U(h)) =
∫
K∗

h(λ−1)
|1 − λ| d

∗λ.

In [9], the case h(1) �= 1 is dealt with by introducing a cut-off. For Λ > 0, let PΛ be
the projection onto those functions ξ = ξ(x) ∈ H supported on |x| ≤ Λ. We define
the corresponding projection in Fourier space by

P̂Λ = FPΛF−1,

where

(Fξ)(x) = ξ̂(x) =
∫
K

ξ(y)α(xy)dy,

for α a fixed nontrivial character of the additive group K. The cut-off at Λ is
defined by the trace class operator

RΛ = P̂ΛPΛ.

As RΛ is trace class, the operator RΛU(h) is also. By using standard formulae from
symbol calculus, Connes derives the identity

Tr(RΛU(h)) =
∫
K∗

h(λ−1)
∫
K

∫
|x|≤Λ;|ξ|≤Λ

δ(x + u − λx)α(uξ) dx dξ du d∗λ

=
∫
K∗

h(λ−1)
∫
|x|≤Λ;|ξ|≤Λ

α((λ − 1)xξ) dx dξ d∗λ.

Having fixed the character α, we normalize the additive Haar measure on K to be
self-dual. Then, there is a constant ρ > 0 such that∫

1≤|λ|≤Λ

dλ

|λ| ∼ ρ log Λ, Λ → ∞,

so that

d∗λ = ρ−1 dλ

|λ| .
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We have therefore∫
K∗

h(λ−1)α((λ − 1)xξ)d∗λ = ρ−1

∫
K

h((u + 1)−1)
|u + 1| α(uxξ)du.

We deduce that

Tr(RΛU(h)) = ρ−1

∫
|x|,|ξ|≤Λ

ĝ(xξ) dx dξ,

where g ∈ C∞
c (K) is given by

g(u) =
h((u + 1)−1)

|u + 1| .

Let v = xξ. Then dx dξ = dv dx|x| ; and, for |v| ≤ Λ2, we have

ρ−1

∫
|v|
Λ ≤|x|≤Λ

dx

|x| = ρ−1

∫
1≤|y|≤Λ2

|v|

dy

|y| = 2 log′ Λ − log |v|,

where we define

2 log′ Λ =
∫
|λ|∈[Λ−1,Λ]

d∗λ.

It follows that

Tr(RΛU(h)) =
∫
|v|≤Λ2

ĝ(v)(2 log′ Λ − log |v|)dv.

Using the fact that g ∈ C∞
c (K), we deduce from this the asymptotic formula, as

Λ → ∞,

Tr(RΛU(h)) =2g(0) log′ Λ −
∫
K

ĝ(v) log |v|dv + o(1)

=2h(1) log′ Λ −
∫
K

h((x + 1)−1)
|x + 1|

(∫
K

log |v|α(xv)dv

)
dx + o(1).

In [9] it is shown that the distribution given by pairing with

−
∫
K

log |v|α(xv)dv

differs by a multiple cvδ(x) of the delta function at x = 0 from the distribution on
K defined by

P (f) = lim
ε→0

ε∈Mod(K)

(
ρ−1

∫
|x|≥ε

f(x)
dx

|x| + f(0) log ε

)
.

As log |v| vanishes at v = 1, on replacing x by x− 1, the constant cv is determined
by the condition that

L(f) = cvf(0) + P (f)
is the unique distribution on K extending ρ−1 1

|u−1| , for u �= 1, whose Fourier

transform vanishes at 1, that is, L̂(1) = 0. If k(u) = |u|−1h(u−1), we have

L(k) = −
∫
K

h((x + 1)−1)
|x + 1|

(∫
K

log |v|α(xv)dv

)
dx

= −
∫
K

h(u−1)
|u|

(∫
K

log |v|α((u − 1)v)dv

)
du.
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Therefore, outside of x = 0, the distribution

−
∫
K

log |v|α(xv)dv

agrees with ρ−1 1
|x| . If h(1) = 0, we find, as expected from our computation above

of the distributional trace in this case, that

Tr(RΛU(h)) =ρ−1

∫
K

h((x + 1)−1)
|x + 1|

dx

|x| + o(1)

=
∫
K∗

h(λ−1)
|1 − λ| d

∗λ + o(1), (h(1) = 0);

and taking the limit as Λ → ∞, we have

Tr(U(h)) =
∫
K∗

h(λ−1)
|1 − λ| d

∗λ, (h(1) = 0).

Returning to the general case, h(1) �= 0, we see that

Tr(RΛU(h)) =h(1)(2 log′ Λ + cv) + lim
ε→0

(
ρ−1

∫
|u−1|≥ε

h(u−1)
|u − 1|

du

|u| + h(1) log ε

)

=h(1)(2 log′ Λ + cv) + lim
ε→0

(∫
|u−1|≥ε

h(u−1)
|u − 1| d

∗u + h(1) log ε

)

In [9], it is shown, for example, that for v = ∞ we have cv = log(2π) + γ, where γ
is Euler’s constant. We have, therefore, the following result.

Theorem 4. If h ∈ Sc(K∗), then RΛU(h) is a trace class operator in L2(K);
and as Λ → ∞, we have the asymptotic formula

Tr(RΛU(h)) = 2h(1) log′ Λ +
∫ ′ h(λ−1)

|1 − λ| d
∗λ + o(1),

where 2 log′ Λ =
∫
λ∈K∗,|λ|∈[Λ−1,Λ]

d∗λ and
∫ ′ is the pairing of h(u−1)/|u| with the

unique distribution extending ρ−1du/|1−u| whose Fourier transform vanishes at 1.
For K = R, we have

(32) Tr(RΛU(h)) = h(1)(2 log Λ + log(2π) + γ)

+ lim
ε→0

(∫
|u−1|≥ε

h(u−1)
|u − 1| d

∗u + h(1)(log ε)

)
+ o(1).

3.2. The global case and the Pólya-Hilbert space. Connes conjectures
that an analogue of the formula in Theorem 4 holds for the action of C on X. How-
ever, a major obstacle is to know whether it makes sense to talk about measurable
functions on X. By analogy with functions on a manifold, one may try to think of
A as a universal cover of X. One then views functions on X as averages of functions
on A over the “universal covering group” Q∗. (This is the map E below). Connes
shows nonetheless that a “Pólya-Hilbert space” related to the action (C, X) allows
a spectral interpretation of the non-trivial zeros of the Riemann zeta function.

We work with the case K = Q. Let S(A)0 denote the subspace of S(A) given
by

(33) S(A)0 = {f ∈ S(A) : f(0) =
∫

fdx = 0}.
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Let E be the “averaging over Q∗” operator which to f ∈ S(A)0 associates the
element of S(C) given by

(34) E(f)(u) = |u|1/2
∑
q∈Q∗

f(qu).

For δ ≥ 0, let L2(X)0,δ be the completion of S(A)0 with respect to the norm given
by

(35) ||f ||2δ =
∫
C

|E(f)(u)|2(1 + log2 |u|)δ/2d∗u,

for
∫
|u|∈[1,Λ]

d∗u � log Λ, Λ → ∞.

If g(x) = f(qx) for some fixed q ∈ Q
∗, then ||g||δ = ||f ||δ; and so one sees that this

norm respects, in this sense, the passage to the quotient A/Q
∗. We define L2(X)δ

by the short exact sequence

(36) 0 → L2(X)0,δ → L2(X)δ → C ⊕ C(1) → 0.

When δ = 0, we write L2(X)0 and L2(X) for the first two terms. Here C is the
trivial C-module and C(1) is the C-module for which u ∈ C acts by |u|, where
| · | is the norm on C. Indeed, by the definition of S(A)0 in (33), we see that its
two-dimensional supplement in S(A) is the C-module C ⊕ C(1).

Multiplication of C on A induces a representation of C on L2(X)δ given by

(37) (U(λ)ξ)(x) = ξ(λ−1x).

We introduce a Hilbert space Hδ via another short exact sequence,

(38) 0 → L2(X)0,δ → L2(C)δ → Hδ → 0,

where the inclusion of L2(X)0,δ into L2(C)δ is effected by the isometry E. Here
L2(C)δ is the completion with respect to the weighted Haar measure as in (35),
where we write L2(C) when δ = 0. The spectral interpretation on Hδ of the critical
zeros of the L-functions in [8] relies on taking δ > 0. Indeed, this is needed to
control the growth of the functions on the non-compact quotient X; ultimately this
parameter is eliminated from the conjectural trace formula by using cut-offs. It is
important here to use the measure |u|d∗u (implicit in (35)) instead of the additive
Haar measure dx, this difference being a veritable one for global fields, where one
has dx = limε→0 ε|x|1+εd∗x.

The regular representation V of C on L2
δ(C) descends to Hδ (it commutes with

E up to a phase as an easy calculation shows), and we denote it by W . Connes
describes (Hδ, W ) as the Pólya-Hilbert space with group action for his approach
to the Riemann hypothesis. He proves in [8] and [9] the remarkable result given in
Theorem 5 relating the trace of this action to the zeros on the critical line of the
L-functions with Grössencharacter discussed in Chapter 1.

The norm | | on the abelian locally compact group C has kernel

C1 = {u ∈ C : |u| = 1};

and, as K = Q, it has image R∗
>0. Now the compact group C1 acts on Hδ, which

splits with respect to this action into a canonical direct sum of pairwise orthogonal
subspaces Hδ,χ1 where χ1 runs through the discrete abelian group Ĉ1 of characters



NONCOMMUTATIVE GEOMETRY AND NUMBER THEORY 167

of C1. One can restrict the action (Hδ, W ) to an action (Hδ,χ1 , W ) for any χ1 ∈ Ĉ1,
and we have

Hδ,χ1 = {ξ ∈ Hδ : W (u)ξ = χ1(u)ξ for all u ∈ C1}.

Choose a (non-canonical) decomposition C = C1×N with N � R
∗
>0. For χ1 ∈ Ĉ1,

there is a unique extension to a quasi-character χ of C, vanishing on N . The choice
of χ is unimportant in what follows, since if χ′(u) = χ(u)|u|iτ , u ∈ C, we have
L(χ′, s) = L(χ, s + iτ).

Theorem 5. For any Schwartz function h ∈ S(C) the operator

W (h) =
∫
C

W (u)h(u)d∗u,

in Hδ is trace class, and its trace is given by

Trace(W (h)) =
∑

L(χ, 12+iσ)=0,
σ∈R

ĥ(χ, iσ)

where the sum is over the characters of C1 with χ being the unique extension to a
quasi-character on C vanishing on N . The multiplicity of the zero is counted as
the largest integer n < 1

2 (1 + δ) with n at most the multiplicity of 1
2 + iσ as a zero

of L(χ, s). Also, we define

ĥ(χ, s) :=
∫
C

h(u)χ(u)|u|sd∗u.

Now, the action of C is free on L2(C)δ, so that the short exact sequence (38)
tells us that the trace of the action of C on Hδ should be, up to a correction due to a
regularization, the negative of the trace of the action of C on L2(X)0,δ. From (36),
we see that the regularized trace of the action of C on L2(X)δ should involve the
sum of the corresponding trace on L2(X)0,δ and the trace on C ⊕ C(1). Therefore
the regularized trace of the action of C on L2(X)δ should involve the trace of the
action on C⊕C(1) minus the trace of this action on Hδ. This minus sign is crucial
for the comparison with the Weil distribution.

When χ = 1 in Theorem 5, the corresponding L-function is the Riemann zeta
function ζ(s); and the proof of the theorem shows that

Trace(W (h)|Hδ,1
) =

∑
ζ( 1

2+is)=0,
s∈R

ĥ(is),

where ĥ(is) = ĥ(1, is), with the same convention for the multiplicity. There is a
conjecture that the zeros of the Riemann zeta function are all simple, in which case
we could take n = 1 and any δ > 1.

3.3. A computation. The following result formulated by Weil in [37], and
appearing in Tate’s thesis, shows how the operation E in (34) brings in the zeros of
the L-functions in the critical strip and provides the key to the proof of Theorem
5 and the appearance of the non-trivial zeros of the L(χ, s). It indicates that the
non-trivial zeros of the L-functions should “span” Hδ, as they are “orthogonal” to
the image of E.



168 PAULA TRETKOFF

Proposition 1. Let χ be a unitary character on C. For any ρ ∈ C with
�(ρ) ∈ (−1

2 , 1
2 ) , we have

∫
C

E(ξ)(u)χ(u)|u|ρd∗u = 0, for all ξ ∈ S(A)0,

precisely when L(χ, 1
2 + ρ) = 0.

We discuss the classical zeta function, the other cases being similar. Let p be
a finite prime, and let f ∈ S(Qp). Let

∆p,s(f) =
∫

Q∗
p

f(x)|x|sd∗x, �(s) > 0,

and also

∆′
p,s(f) =

∫
Q∗

p

(f(x) − f(p−1x) |x|sd∗x,

where

〈1Zp
, ∆′

p,s〉 =
∫

Z∗
p

d∗x.

We have

(39) ∆′
p,s = (1 − p−s)∆p,s

For p = ∞, define

∆∞,s(f) = ∆′
∞,s(f) =

∫
R∗

f(x)|x|sds.

One can define these functions globally by multiplying over all places. For σ =
�(s) > 1 and f ∈ S(A), the following integral converges absolutely:∫

J

f(u)|u|sd∗u.

Moreover, from (39), for σ = �(s) > 1,∫
J

f(u)|u|sd∗u = ∆s(f) = ζ(s)∆′
s(f) �= 0,

where
∆s = ∆∞,s ×

∏
p

∆p,s

and
∆′
s = ∆′

∞,s ×
∏
p

∆′
p,s.

In fact, for a somewhat larger range of convergence we have the following.

Lemma 1. If σ = �(s) > 0, then there is a constant c �= 0 with, for all
f ∈ S(A)0, ∫

J

f(x)|x|sd∗x = c

∫
C

E(f)(u)|u|s− 1
2 d∗u = cζ(s)∆′

s(f).
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4. The Weil distribution and the global trace formula

In this chapter, we discuss the conjectural part of Connes’s approach and in
particular a new (G)RH equivalent. Roughly speaking, the (generalized) Riemann
Hypothesis for a global field K would follow if a global asymptotic trace formula
for the action (CK , XK), where XK = AK/K∗, can be shown to be a sum of local
contributions of trace formulae as in Theorem 4 for the actions (K∗

v , Kv), where v
ranges over a set MK of inequivalent valuations of K, and Kv is the completion of
the field K with respect to the metric induced by the valuation v . If one restricts
to a finite set S of places, this works; but the error term depends on S in a way
that has not yet been controlled.

4.1. Global trace formula. Unless stated otherwise, we let K = Q from
now on, and drop the K-indices, although our discussion goes through for arbitrary
global fields. In Chapter 3, we introduced for δ ≥ 0 the Hilbert spaces L2(X)0,δ,
L2(X)δ and L2(C)δ, and an inclusion of L2(X)0,δ in L2(C)δ, effected by the isom-
etry,

(Ef)(u) = |u| 12
∑
q∈Q∗

f(qu), u ∈ C.

We also saw that for σ = �(s) > 0, there is a constant c �= 0 with, for all f ∈ S(A)0,∫
C

(Ef)(u)|u|s− 1
2 d∗u = cζ(s)∆′

s(f).

As ∆′
s �= 0, if for �(s) ∈ (0, 1) the left hand side of this formula vanishes for all

f ∈ S(A)0, then ζ(s) = 0. We therefore see a link between orthogonality to the
image of E and the non-trivial zeros of ζ(s). As in Chapter 1, let χ be a unitary
quasi-character on C and L(χ, s) the associated L-function. Adapting the argument
of Chapter 3 for the case χ = 1 to arbitrary χ, we have∫

C

(Ef)(u)χ(u)|u|s− 1
2 d∗u = cL(χ, s)∆′

s(f).

To study certain spectral aspects of the general L-functions of Q, of which the
Riemann zeta function is a special case, Connes works mostly in the Hilbert space
L2(C) (so that δ = 0). As in the local case, one has again to regularize using a
cut-off at Λ > 0. Let SΛ be the orthogonal projection onto

SΛ = {ξ ∈ L2(C) : ξ(u) = 0, |u| �∈ [Λ−1, Λ]}.

Let
V : C → L(L2(C))

be the regular representation

(V (λ)ξ)(u) = ξ(λ−1u), λ, u ∈ C.

Let the measure d∗λ on C be normalized so that∫
|λ|∈[1,Λ]

d∗λ ∼ log Λ, Λ → ∞,

and let

2 log′ Λ =
∫
|λ|∈[Λ−1,Λ]

d∗λ.
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For h ∈ Sc(C) with compact support, let

V (h) =
∫
C

h(λ)V (λ)d∗λ.

Then the operator SΛV (h) is trace class and

Trace(SΛV (h)) = 2h(1) log′ Λ,

as the action of C on C has no fixed points. The cut-off in L2
0(X) is much less

straightforward.
In the function field case, Connes proposes working with a family of closed

subspaces BΛ,0 of L2
0(X) such that E(BΛ,0) ⊂ SΛ. These subspaces are given by

BΛ,0 = {f ∈ S(A)0 : f(x) = 0, f̂(x) = 0, |x| > Λ},
where | | is the obvious extension to A of the norm on J , and this set is non-empty.
Therefore, if QΛ,0 is the orthogonal projection onto BΛ,0 and

Q′
Λ,0 = EQΛ,0E

−1,

then we have the inequality of projections

Q′
Λ,0 ≤ SΛ.

For all Λ > 0, the following distribution, ∆Λ, is therefore positive:

∆Λ = Trace((SΛ − Q′
Λ,0)V (h)), h ∈ S(C).

The positivity of ∆Λ signifies that for h ∈ S(C),

∆Λ(h ∗ h∗) ≥ 0

where h∗(u) = h(u−1). Therefore, the limiting distribution

Λ∞ = lim
Λ→∞

∆Λ

is also positive.
However, in the number field case, the analogous set to BΛ,0 is empty. To

save this situation, one is guided by the physical fact that there exist signals with
finite support in the time variable and also in the dual frequency variable, such as
a musical signal. That is because the relative positions of PΛ and P̂Λ, as defined in
the local case, can be analyzed. To do this, Connes appeals to the work of Landau,
Pollak and Slepian [28], [29], [27]. We will also often quote in what follows the
related and useful discussion in [22, §3].

Consider the case K = Q. Recall that Q has one infinite place given by the
usual Euclidean absolute value and that the corresponding completion is the field
of real numbers. As in Chapter 3, at the infinite place we define PΛ to be the
orthogonal projection onto the subspace,

PΛ = {ξ ∈ L2(R) : ξ(x) = 0, for all x, |x| > Λ},

and P̂Λ = FPΛF−1, where F is the Fourier transform associated to the character
α(x) = exp(−2πix).

For ξ ∈ PΛ, the function Fξ(y) is an analytic function and is, therefore, never
supported on |y| ≤ Λ. Therefore the spaces PΛ and P̂Λ have zero intersection, which
explains our claim above that, for K = Q, the analogous space to BΛ,0 would be
trivial.
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The projections PΛ and P̂Λ commute with the second order differential operator
on R given by

HΛψ(x) = −∂((Λ2 − x2)∂)ψ(x) + (2πΛx)2ψ(x),

where ∂ = d
dx , as can be checked by a straightforward calculation. The operator

HΛ has a discrete simple spectrum, which we may index by integers n ≥ 0, on
functions with support in [−Λ, Λ]. The corresponding eigenfunctions ψn are called
the prolate spheroidal wave-functions, which can be taken as real-valued.

Since PΛP̂ΛPΛ (that is, the operator P̂Λ restricted to [−Λ, Λ]) commutes with
HΛ, the prolate spheroidal functions are also eigenfunctions of PΛP̂ΛPΛ. By [28],
[29], and [27] (see also [22]), one knows also that their eigenvalues are close to
zero for n ≥ 4Λ2 + O(log Λ). Moreover, the projections PΛ and P̂Λ in L2(R) have
relative angles close to zero outside the space spanned by the eigenfunctions ψn,
n ≤ 4Λ2 (see [9]). These results motivate Connes to substitute for the zero space
PΛ ∩ P̂Λ the subspace B∞,Λ of PΛ given by the linear span in L2(R) of the ψn,
n ≤ 4Λ2.

We may write the adeles A over Q as the direct product A = R × Af where
Af , the finite adeles, is the restricted product over the finite primes, p, of Qp with
respect to Zp. Let R =

∏
p Zp, and let 1R be the characteristic function on R.

Let Wf =
∏
p Z

∗
p be the units of R and W = {±1} × Wf . Consider the elements

f ∈ S(A) = S(R) ⊗ S(Af ) satisfying

f(wa) = f(a), a ∈ A, w ∈ W.

Then f may be written as a finite linear combination

f(a) =
m∑
j=1

fj(qja∞) ⊗ 1R(qjaf ), a = (a∞, af ), a∞ ∈ R, af ∈ Af ,

where the fj ∈ S(R) are even and qj ∈ Q∗, qj > 0. Let

B1
Λ,0 = {f ∈ S(A)0 : f = f∞ ⊗ 1R, f∞ ∈ B∞,Λ, f∞ even}.

As in Section 3.2, let C1 be the compact subgroup of the idele class group C of Q

given by the kernel of the norm map on C. We have a (non-canonical) isomorphism
between C and C1 × N , where N � R∗

>0. We can extend any character χ1 of C1

to a quasi-character χ of C, vanishing on N . As in [9], §8, Lemma 1 we may, in a
similar way to the case χ = 1 above, define subspaces Bχ

Λ,0, where χ is the extension
of a character χ1 of C1, by writing A = R ×

∏
p∈S Qp × Af,S , where S is the finite

set of ramified primes for χ (see Section 1.3) and Af,S is the finite adeles with the
restricted product over the finite primes not in S. Let BΛ,0 = ⊕χ1∈ bC1B

χ
Λ,0, and

QΛ,0 be the corresponding orthogonal projection, with Q′
Λ,0 = EQΛ,0E

−1.
Again, for all Λ > 0, we introduce the positive distribution

∆Λ = Trace((SΛ − Q′
Λ,0)V (h)), h ∈ S(C).

Connes observes that the above considerations show that the limiting distribution

Λ∞ = lim
Λ→∞

∆Λ

is positive, just as it was in the function field case.
If we let QΛ be the projection in L2(X) onto BΛ,0 ⊕ C ⊕ C(1), then Connes

conjectures the following global analogue of the local geometric trace formula. We
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state it only for the global field K = Q, but the statement for an arbitrary global
field is analogous.

Conjecture 1. For h ∈ Sc(C), we have as Λ → ∞,

(40) Trace(QΛU(h)) = 2h(1) log′ Λ+
∑

p prime

∫ ′

Q∗
p

h(u−1)
|1 − u| d

∗u+
∫ ′

R∗

h(u−1)
|1 − u| d

∗u+o(1),

where

2 log′ Λ =
∫
|λ|∈[Λ−1,Λ]

d∗u ∼ 2 log Λ.

This means that one conjectures that the global trace formula in L2(X) behaves
like a sum of local formulae. Observe that,

(41) Trace(QΛU(h)) =
∫
C

h(u)(1 + |u|)d∗u + Trace(QΛ,0U(h)).

Using (41), and noting the phase shift by 1/2 in E, we have as a consequence of
Conjecture 1 that, as Λ → ∞,

∆Λ(h) =
∫
C

h(u)(|u|1/2 + |u|−1/2)d∗u

−
∑

p prime

∫ ′

Q∗
p

h(u)
|1 − u| |u|

1/2d∗u −
∫ ′

R∗

h(u)
|1 − u| |u|

1/2d∗u + o(1).

Therefore,

∆∞(h) =
∫
C

h(u)(|u|1/2 + |u|−1/2)d∗u

−
∑

p prime

∫ ′

Q∗
p

h(u)
|1 − u| |u|

1/2d∗u −
∫ ′

R∗

h(u)
|1 − u| |u|

1/2d∗u.

In Chapter 1, we gave a version of Weil’s explicit formula relating the zeros of ζ(s)
to the rational primes p by comparing the Hadamard product formula with Euler’s
product formula. An adelic version of this explicit formula was developed by Weil
which invokes a relation between the zeros of all the L(χ, s), where χ ranges over the
Grössencharacters of Q, and the rational primes p. In Appendix II of [9], Connes
reworks (for an arbitrary global field) this version of Weil’s explicit formula and
shows thereby that the right hand side of the above formula gives

∆∞(h) =
∑

L(χ, 12+ρ)=0,


(ρ)∈ (− 1
2 ,

1
2 )

∫
C

h(u)χ(u)|u|ρd∗u.

Conjecture 1 would show ∆∞ to be positive by construction. To prove GRH one
would then apply the following result of Weil.

Theorem 6. The Generalized Riemann Hypothesis (GRH) is equivalent to the
positivity of ∆∞.

This is an adelic version of RH and of Weil’s result on the equivalence with the
positivity of R discussed in Section 1.5. Replacing h(u) by f(u) = |u|−1/2h(u−1),
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we may write Weil’s explicit formula as
∫ ′

R∗

h(u−1)
|1 − u| d

∗u +
∑

p prime

∫ ′

Q∗
p

h(u−1)
|1 − u| d

∗u =

∫
C

h(u)d∗u −
∑

L(χ,ρ)=0,
0<
(ρ)<1

∫
C

h(u)χ(u)|u|ρd∗u +
∫
C

h(u)|u|d∗u.

Therefore, Connes conjectures that

∆∞(f) =
∫
C

h(u)d∗u −
∑
v∈MQ

∫ ′

Q∗
v

h(u−1)
|1 − u| d

∗u +
∫
C

h(u)|u|d∗u,

and this would imply by the explicit formula that

∆∞(f) =
∑

L(χ,ρ)=0,
0<
(ρ)<1

∫
C

h(u)χ(u)|u|ρd∗u,

which would be positive.
In some sense the formulae, for Λ > 0,

∆Λ(h) = Trace((SΛ − Q′
Λ,0)V (h))

are “calculating the trace in H”. Connes is able to prove the following version of
the above explicit formula which shows that the action of C on H by W picks up
the zeros of the L-functions as an absorption spectrum in L2(X) with the non-
critical zeros as resonances. A full proof in the function field case is given in Part
VIII, Lemma 3 of [9] and the necessary modifications for the number field case are
indicated in the subsequent discussion in that paper of the analysis of the relative
position of the projections PΛ and P̂Λ.

Theorem 7. Let h ∈ Sc(C), then

∆∞(h) =
∑
χ,ρ

N(χ,
1
2

+ ρ)
∫
z∈iR

ĥ(χ, z)dµρ(z),

where the sum is over the pairs (χ1, ρ) of characters χ1 of C1, with χ being the
unique quasi-character on C vanishing on N , and over the zeros ρ of L(χ, 1

2 + ρ)
with �(ρ) ∈ (−1

2 , 1
2 ). The number N(χ, 1

2 + ρ) is the multiplicity of the zero, the
measure dµρ(z) is the harmonic measure with respect to iR ⊂ C and

ĥ(χ, z) =
∫
C

h(u)χ(u)|u|zd∗u.

The measure dµρ(z) is a probability measure on the line iR which coincides
with the Dirac mass at ρ ∈ iR. Transforming the area to the right of iR ⊂ C to the
interior |z| < 1 of the unit circle, so that ρ is mapped to u with |u| = 1, we may
write this measure as Pz(u)du where Pz is the Poisson kernel,

Pz(u) =
1 − |z|2
|u − z|2 .
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4.2. Analogy with the Guillemin trace formula. One can summarize
Connes’s approach to the Riemann Hypothesis (RH) as a program for the derivation
of a conjectured explicit formula à la Weil. Whereas in Weil’s set-up the explicit
formula is known and the open problem is to prove a positivity result, in Connes’s
set-up the positivity is part of the Pólya-Hilbert space (H, W ) construction and the
problem is to prove the corresponding explicit formula. In his original paper [8],
Connes found a striking analogy between his conjectured global trace formula for
the action U of C on L2(X) and the distributional trace formula à la Guillemin for
flows on manifolds.

Let M be a C∞ manifold and v a smooth vector field on M with isolated
zeros. We have the associated flow Ft = exp(tv), t ∈ R, with its action on smooth
functions,

(U(t)ξ)(x) = ξ(Ft(x)), ξ ∈ C∞(M), x ∈ M, t ∈ R.

For h ∈ C∞
c (R) with h(0) = 0, let

U(h) =
∫

R

h(t)U(t)dt.

If U(h) has kernel k(x, y), that is,

(U(h)ξ)(x) =
∫

R

k(x, y)ξ(y)dy,

then the distributional trace of U(h) is defined as

TraceD(U(h)) =
∫

R

k(x, x)dx = ρ(h).

That is, ρ is viewed as a distribution. The Guillemin trace formula tells us that

TraceD(U(h)) =
∑
γ

∫
Iγ

h(u)
|1 − (Fu)∗|

d∗u

=
∑

x,vx=0

∫
h(t)

|1 − (Ft)∗|
dt +

∑
γ periodic

∑
T=Tm

γ

T ∗
γ

1
|1 − (FT )∗|

h(T ).

Here (F )∗ is the Poincaré return map: it is the restriction of d(exp(Tv)), where T
is a period, to the normal of the orbit, and at a zero of the vector field it is the
map induced on the tangent space by the flow. Therefore (Fu)∗ is the restriction
of the tangent map to Fu to the transverse space of the orbits. In the formula
(42), one considers the zeros as periodic orbits, while Iγ ⊂ R is the isotropy group
of any x ∈ γ and d∗u is the unique Haar measure dµ of total mass 1. Notice the
resemblance to Connes’s global trace formula when h(0) = 0. Assume 1 − (Fu)∗ is
invertible. Then |1 − (Fu)∗| = det(1 − (Fu)∗). With the assumption h(1) = 0, we
can write the global trace formula for U : C → L2(X), h ∈ Sc(C) as

TraceD(U(h)) =
∑
v∈MQ

∫
Q∗

v

h(u−1)
|1 − u|v

d∗u,

where for the evaluation of h, we can embed u ∈ Qv in J in the obvious way with
1’s in every place but the v-th place. Notice that the action of J on A has fixed
points coming from the elements of A with zero components. In [8], Connes shows
the following.
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Lemma 2. For x ∈ X = A/Q∗, x �= 0, the isotropy group Ix of x in C = J/Q∗

is cocompact if and only if there exists exactly one v ∈ MQ with x̃v = 0, where
x̃ = (x̃v)v∈MQ

is a lift of x to J .

Proof. For v1 �= v2 in MQ, the map | | : Q
∗
v1 × Q

∗
v2 → R

∗
+ is not proper. �

Assume that only fixed points of the C-action as in the Lemma contribute to
the trace formula. Then Connes has the following heuristic. For v ∈ MQ, let

H̃v = {x̃ ∈ A : x̃ = (x̃v), x̃v = 0, x̃u �= 0, u �= v},
and

Hv = {[x̃] ∈ X : x̃ ∈ H̃v}.
Let Nx be the “normal space” to x ∈ Hv, that is,

Nx � X/Hv � A/H̃v � Qv,

so that Qv can be viewed as the “transverse space” to Hv. Let j ∈ Ix, the isotropy
group of x ∈ Hv, and let j̃ be a lift of j to J. Then j̃ acts on A linearly and fixes
x̃. The induced action on the transverse space Nx, the Poincaré return map in this
situation, is just the multiplication map,

Q
∗
v × Qv → Qv

(λ, a) �→ λa.

By analogy with the Guillemin trace formula, the corresponding contribution to
the trace formula should be

∫
Q∗

v

h(λ−1)
|1−λ|v d∗λ, for h ∈ S(C) with h(1) = 0. This is the

contribution form the local trace formula. The cut-offs were giving the regulariza-
tions. When v = p, prime, the period of the orbit is the covolume of the isotropy
group Q∗

p, and this equals log p, since the image of the p-adic norm on Q∗
p is pZ.

Connes proposes that Weil’s explicit formula incorporates a noncommutative
number theoretic analogue for (X, C) of Guillemin’s trace formula for flows on
manifolds.

5. Related aspects of noncommutative number theory
(With Appendix by Peter Sarnak)

In the previous chapters, we have tried to present in a direct and elementary way
the essentials of Connes’s proposed approach to the Riemann Hypothesis. Connes
has presented in his papers [8], [10], [9] more sophisticated motivations which are
of interest in a broader context as they invite a new interaction between operator
algebras and number theory. They all relate in some measure to older work of
Bost–Connes [5], an overview of which is the focus of the present chapter.

We have added, with his permission, an Appendix authored by Peter Sarnak,
which is a reproduction of a letter he wrote to Enrico Bombieri regarding the
appearance in Connes’s set-up of symplectic symmetry, in the sense of work of
Katz–Sarnak [26], for families of Dirichlet L-functions with quadratic characters.

5.1. Von Neumann Algebras and Galois Theory. An additional moti-
vation for Connes’s approach, that is described in detail in [10], arises from his
observation that certain features of Galois theory related to the idele class group
resemble those of the classification of factors of von Neumann algebras. For local
fields, the role of the idele class group is played by the group of non-zero elements
of the field, which by local class field theory has a Galois interpretation as the Weil
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group. For global fields K of characteristic p > 0 we have an isomorphism between
the idele class group and the Weil group WK for the global field K (see Section
2.4). The subfields K ′ of Kun with [K ′ : K] < ∞ are classified by the subgroups

{1} �= Γ ⊂ Mod(K) = qZ ⊂ R
∗
+.

Define
θλ(µ) = µλ, λ ∈ Γ,

for µ an 
-th root of unity, (
, p) = 1. Then,

K ′ = {x ∈ Kun : θ(x) = x, for all λ ∈ Γ}.
The Galois groups of infinite extensions are constructed as projective limits of the
finite groups attached to finite extensions. When K is a global field of characteristic
0, the main result of class field theory says that there is an isomorphism between
Gal(Kab/K), where Kab is the maximal abelian extension of K, and the quotient
C/D of the idele class group of K by the connected component D of the identity
in C.

When K = Q, this translates into an isomorphism between C and R∗
+×

∏
p Z∗

p,
and moreover D = R∗

+, so that Gal(Qab/Q) is isomorphic to
∏
p Z∗

p. Indeed, for
a global field of characteristic 0, the connected component D is always non-trivial
due to the archimedean places.

Can operator algebras enable us to do Galois theory “with the infinite place”,
as proposed by Weil (see Section 1.4)? Von Neumann algebras appear as the com-
mutants of unitary representations in Hilbert space; the central simple ones are
called factors, and the approximately finite dimensional ones are the weak closure
of the union of increasing sequences of finite dimensional algebras. As in Ga-
lois theory, one has a correspondence between virtual subgroups Γ of R

∗
+ (ergodic

actions of R
∗
+) and the factors M . The non-simple approximately finite dimen-

sional factors are M∞(C), the operators in Hilbert space, which is of Type I∞ and
R0,1 = R ⊗ M∞(C), which is of Type II∞ and has trace τ = τ0 ⊗ TrM∞(C), where
R is the unique approximately finite factor with finite trace τ0. By the theory of
von Neumann algebras, there exists up to conjugacy a unique 1-parameter group
θλ ∈ Aut(R0,1), λ ∈ R∗

+ with

τ(θλ(a)) = λτ(a), a ∈ Dom(τ), λ ∈ R
∗
+

If Γ is a virtual subgroup of R
∗
+ and α the corresponding ergodic action of R

∗
+ on

an abelian algebra A, then

RΓ = {x ∈ R0,1 ⊗ A : (θλ ⊗ αλ)x = x, for all λ ∈ R
∗
+}

is the corresponding factor. For the background on the material from the theory
of von Neumann algebras, see [7]. A direction for further research, proposed by
Connes, is to develop this analogy with Galois theory.

We note the following corollary of the work of Bost-Connes [5], see also §5.4.

Theorem 8. Let A be the adele ring of Q and L∞(A) the essentially bounded
functions on A with the supremum norm. Then L∞(A) � Q∗, the crossed product
with Q∗ for multiplication on A, is isomorphic to R0,1. Moreover, the restriction
of the action of C on A/Q

∗ corresponds to the action θλ on R0,1.

The space X = A/Q∗ is the orbit space associated to L∞(A) � Q∗. The main
result of [5] was to construct a dynamical system, with natural symmetry group
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W = Gal(Qab/Q), and partition function the Riemann zeta function at whose
pole at s = 1 there was a phase transition. This phase transition corresponded
to a passage from a family of Type I∞ factor equilibrium states indexed by W ,
in the region s > 1, to a unique Type III1 factor equilibrium state in the region
0 < s ≤ 1. Bost and Connes show that the corresponding Type III1 factor for
the critical strip 0 < s ≤ 1 has a Type II∞ factor in its continuous decomposition
given by L∞(A) � Q

∗. This provides a motivation for studying the action (X, C).
The II∞ nature of the von Neumann algebra associated to X points away from
a study of this space using classical measure theory. Extensions of these results
to arbitrary global fields are due to Harari-Leichtnam [24], Arledge-Laca-Raeburn
[1] and the author [6]. This work is also related to earlier work of Julia [25] and
others, which aims at enriching our knowledge of the Riemann zeta function by
creating a dictionary between its properties and phenomena in statistical mechan-
ics. The starting point of these approaches is the observation that, just as the zeta
functions encode arithmetic information, the partition functions of quantum sta-
tistical mechanical systems encode their large-scale thermodynamical properties.
The first step is therefore to construct a quantum dynamical system with partition
function the Riemann zeta function. In order for the quantum dynamical system
to reflect the arithmetic of the primes, it must also capture some sort of interaction
between them. This last feature translates in the statistical mechanical language
into the phenomenon of spontaneous symmetry breaking at a critical temperature
with respect to a natural symmetry group. In the region of high temperature there
is a unique equilibrium state, as the system is in disorder and is symmetric with
respect to the action of the symmetry group. In the region of low temperature, a
phase transition occurs and the symmetry is broken. This symmetry group acts
transitively on a family of possible extremal equilibrium states.

In the following sections of this chapter, we give an overview of the construction
of [5], emphasizing even more than in that paper the intervention of adeles and
ideles (see also [6]). The symmetry group of the system is a Galois group, in fact,
the Galois group over the rational number field of its maximal abelian extension.

5.2. The problem studied by Bost–Connes. We recall a few basic no-
tions from the C∗-algebraic formulation of quantum statistical mechanics. For the
background, see [7]. Recall that a C∗-algebra B is an algebra over the complex num-
bers C with an adjoint x �→ x∗, x ∈ B, that is, an anti-linear map with x∗∗ = x,
(xy)∗ = y∗x∗, x, y ∈ B, and a norm ‖ · ‖ with respect to which B is complete and
addition and multiplication are continuous operations. One requires in addition
that ‖xx∗‖ = ‖x‖2 for all x ∈ B. All our C∗-algebras will be assumed unital. The
most basic example of a noncommutative C∗-algebra is B = MN (C) for N ≥ 2 an
integer. The C∗-algebra plays the role of the “space” on which the system evolves,
the evolution itself being described by a 1-parameter group of C∗-automorphisms
σ : R �→ Aut(B). The quantum dynamical system is therefore the pair (B, σt). It is
customary to use the inverse temperature β = 1/kT rather than the temperature T ,
where k is Boltzmann’s constant. One has a notion due to Kubo-Martin-Schwinger
(KMS) of an equilibrium state at inverse temperature β. Recall that a state ϕ on
a C∗-algebra B is a positive linear functional on B satisfying ϕ(1) = 1. It is the
generalization of a probability distribution.

Definition 5. Let (B, σt) be a dynamical system, and ϕ a state on B. Then ϕ
is an equilibrium state at inverse temperature β, or KMSβ-state, if for each x, y ∈ B
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there is a function Fx,y(z), bounded and holomorphic in the band 0 < 
(z) < β
and continuous on its closure, such that for all t ∈ R,

(42) Fx,y(t) = ϕ(xσt(y)), Fx,y(t +
√
−1β) = ϕ(σt(y)x).

In the case where B = MN (C), every 1-parameter group σt of automorphisms
of B can be written in the form,

σt(x) = eitHxe−itH , x ∈ B, t ∈ R,

for a self-adjoint matrix H = H∗. For H ≥ 0 and for all β > 0, there is a unique
KMSβ equilibrium state for (B, σt) given by

(43) φβ(x) = Trace(xe−βH)/Trace(e−βH), x ∈ MN (C).

This has the form of a classical “Gibbs state” and is easily seen to satisfy the KMSβ
condition of Definition 5. The KMSβ states can therefore be seen as generalizations
of Gibbs states. The normalization constant Trace(e−βH) is known as the partition
function of the system. A symmetry group G of the dynamical system (B, σt) is a
subgroup of Aut(B) commuting with σ:

g ◦ σt = σt ◦ g, g ∈ G, t ∈ R.

Consider now a system (B, σt) with interaction. Guided by quantum statistical
mechanics, one hopes to see the following features. When the temperature is high,
so that β is small, the system is in disorder, there is no interaction between its con-
stituents, and the state of the system does not see the action of the symmetry group
G: the KMSβ-state is unique. As the temperature is lowered, the constituents of the
system begin to interact. At a critical temperature β0, a phase transition occurs;
and the symmetry is broken. The symmetry group G then permutes transitively
a family of extremal KMSβ- states generating the possible states of the system
after phase transition: the KMSβ-state is no longer unique. This phase transition
phenomenon is known as spontaneous symmetry breaking at the critical inverse
temperature β0. The partition function should have a pole at β0. For a fuller
explanation, see [5]. The problem solved by Bost and Connes was the following.

Problem 1. Construct a dynamical system (B, σt) with partition function the
zeta function ζ(β) of Riemann, where β > 0 is the inverse temperature, having
spontaneous symmetry breaking at the pole β = 1 of the zeta function with respect
to a natural symmetry group.

As mentioned in §5.1, the symmetry group is the unit group of the ideles, given
by W =

∏
p Z

∗
p, where the product is over the primes p and Z

∗
p = {up ∈ Qp :

|up|p = 1}. We use, as before, the normalization |p|p = p−1. This is the same
as the Galois group Gal(Qab/Q). Here Q

ab is the maximal abelian extension of
the rational number field Q, which in turn is isomorphic to its maximal cyclotomic
extension, that is, the extension obtained by adjoining to Q all the roots of unity.
The interaction detected in the phase transition comes about from the interaction
between the primes coming from considering at once all the embeddings of the non-
zero rational numbers Q

∗ into the completions Qp of Q with respect to the prime
valuations | · |p. The natural generalization of this problem to the number field case
was solved in [6] and is the following.

Problem 2. Given a number field K, construct a dynamical system (B, σt)
with partition function the Dedekind zeta function ζK(β), where β > 0 is the
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inverse temperature, having spontaneous symmetry breaking at the pole β = 1 of
the Dedekind function with respect to a natural symmetry group.

Recall that the Dedekind zeta function is given by

(44) ζK(s) =
∑
C⊂O

1
N(C)s

, �(s) > 1.

Here O is the ring of integers of K, and the summation is over the ideals C of K
contained in O. The symmetry group is the unit group of the finite ideles of K.

For a generalization to the function field case, see [24]. We restrict ourselves in
what follows to the case of the rational numbers, that is, to a discussion of Problem
1.

5.3. Construction of the C∗-algebra. We give a different construction of
the C∗-algebra of [5] from that found in their original paper. It is essentially
equivalent to the construction of [1], except that we work with adeles and ideles,
and turns out to be especially useful for the generalization to the number field
case in [6] . Let Af denote the finite adeles of Q, that is the restricted product of
Qp with respect to Zp. Recall that this restricted product consists of the infinite
vectors (ap)p, indexed by the primes p, such that ap ∈ Qp with ap ∈ Zp for almost
all primes p. The (finite) adeles form a ring under componentwise addition and
multiplication. The (finite) ideles J are the invertible elements of the adeles. They
form a group under componentwise multiplication. Let Z∗

p be those elements of
up ∈ Zp with |up|p = 1. Notice that an idele (up)p has up ∈ Q

∗
p with up ∈ Z

∗
p for

almost all primes p. Let

R =
∏
p

Zp, I = J ∩ R, W =
∏
p

Z
∗
p.

Further, let I denote the semigroup of integral ideals of Z. It is the semigroup
of Z-modules of the form mZ where m ∈ Z. Notice that I, as above, is also a
semigroup. We have a natural short exact sequence,

(45) 1 → W → I → I → 1.

The map I → I in this short exact sequence is given as follows. To (up)p ∈
I associate the ideal

∏
p pordp(up), where ordp(up) is determined by the formula

|up|p = p−ordp(up). It is clear that this map is surjective with kernel W , that
is, that the above sequence is indeed short exact. By the Strong Approximation
Theorem, we have

(46) Q/Z � Af/R � ⊕pQp/Zp;

and we have therefore a natural action of I on Q/Z by multiplication in Af/R and
transport of structure. We use here that I ·R ⊂ R. Mostly we shall work in Af/R
rather than Q/Z. We have the following straightforward Lemma (see [6]).

Lemma 3. For a = (ap)p ∈ I and y ∈ Af/R, the equation

ax = y

has n(a) :=
∏
p pordp(ap) solutions in x ∈ Af/R. Denote these solutions by

[x : ax = y].



180 PAULA TRETKOFF

In the above lemma, it is important to bear in mind that we are computing
modulo R. Now, let C[Af/R] := span{δx : x ∈ Af/R} be the group algebra of
Af/R over C, so that δxδx′ = δx+x′ for x, x′ ∈ Af/R. We have (see for comparison
[1]),

Lemma 4. The formula

αa(δy) =
1

n(a)

∑
[x:ax=y]

δx,

for a ∈ I, defines an action of I by endomorphisms of C∗(Af/R).

The endomorphism αa for a ∈ I is a one-sided inverse of the map δx �→ δax for
x ∈ Af/R, so it is like a semigroup “division”. The C∗-algebra can be thought of
as the operator norm closure of C[Af/R] in its natural left regular representation
in l2(Af/R). We now appeal to the notion of semigroup crossed product developed
by Laca and Raeburn and used in [1], applying it to our situation. A covariant
representation of (C∗(Af/R), I, α) is a pair (π, V ) where

π : C∗(Af/R) → B(H)

is a unital representation and
V : I → B(H)

is an isometric representation in the bounded operators in a Hilbert space H. The
pair (π, V ) is required to satisfy

π(αa(f)) = Vaπ(f)V ∗
a , a ∈ I, f ∈ C∗(Af/R).

Notice that the Va are not in general unitary. Such a representation is given by
(λ, L) on l2(Af/R) with orthonormal basis {ex : x ∈ Af/R}, where λ is the left
regular representation of C∗(Af/R) on l2(Af/R) and

Laey =
1√
n(a)

∑
[x:ax=y]

ex.

The universal covariant representation, through which all other covariant repre-
sentations factor, is called the (semigroup) crossed product C∗(Af/R) �α I. This
algebra is the universal C∗-algebra generated by the symbols {e(x) : x ∈ Af/R}
and {µa : a ∈ I} subject to the relations

(47) µ∗
aµa = 1, µaµb = µab, a, b ∈ I,

(48) e(0) = 1, e(x)∗ = e(−x), e(x)e(y) = e(x + y), x, y ∈ Af/R,

(49)
1

n(a)

∑
[x:ax=y]

e(x) = µae(y)µ∗
a, a ∈ I, y ∈ Af/R.

The relations in (47) reflect a multiplicative structure, those in (48) an additive
structure, and those in (49) how these multiplicative and additive structures are
related via the crossed product action. Julia [25] observed that by using only the
multiplicative structure of the integers, one cannot hope to capture an interaction
between the different primes. When u ∈ W then µu is a unitary, so that µ∗

uµu =
µuµ

∗
u = 1, and we have for all x ∈ Af/R,

(50) µue(x)µ∗
u = e(u−1x), µ∗

ue(x)µu = e(ux).
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Therefore we have a natural action of W as inner automorphisms of C∗(Af/R)�α I
using (50).

To recover the C∗-algebra of [5] we must split the short exact sequence (45).
The ideals in I are all of the form mZ for some m ∈ Z. This generator m is
determined up to sign. Consider the image of |m| in I under the diagonal embedding
q �→ (q)p of Q

∗ into I, where the p-th component of (q)p is the image of q in Q
∗
p

under the natural embedding of Q
∗ in Q

∗
p. The map

(51) + : mZ �→ (|m|)p
defines a splitting of (45). Let I+ denote the image and define B to be the semigroup
crossed product C∗(Af/R) �α I+ with the restricted action α from I to I+. By
transport of structure using (46), this algebra is easily seen to be isomorphic to
a semigroup crossed product of C∗(Q/Z) by N+, where N+ denotes the positive
natural numbers. This is the algebra constructed in [5] (see also [1]). From now
on, we use the symbols {e(x) : x ∈ Q/Z} and {µa : a ∈ N+}. It is essential to
split the short exact sequence in this way in order to obtain the symmetry breaking
phenomenon. In particular, this replacement of I by I+ now means that the group
W acts by outer automorphisms. For x ∈ B, one has that µ∗

uxµu is still in B
(computing in the larger algebra C∗(Af/R) �α I), but now this defines an outer
action of W . This coincides with the definition of W as the symmetry group as in
[5].

5.4. The Theorem of Bost–Connes. Using the abstract description of the
C∗-algebra B of §5.3, to define the time evolution σ of our dynamical system (B, σ)
it suffices to define it on the symbols {e(x) : x ∈ Q/Z} and {µa : a ∈ N+}. For
t ∈ R, let σt be the automorphism of B defined by

(52) σt(µm) = mitµm, m ∈ N+, σt(e(x)) = e(x), x ∈ Q/Z.

By (47) and (50), we clearly have that the action of W commutes with this 1-
parameter group σt. Hence W will permute the extremal KMSβ-states of (B, σt).
To describe the KMSβ-states for β > 1, we shall represent (B, σt) on a Hilbert
space. Namely, following [5], let H be the Hilbert space l2(N+) with canonical
orthonormal basis {εm, m ∈ N+}. For each u ∈ W , one has a representation πu of
B in B(H) given by

πu(µm)εn = εmn, m, n ∈ N+

(53) πu(e(x))εn = exp(2iπnu ◦ x)εn, n ∈ N+, x ∈ Q/Z.

Here u ◦ x for u ∈ W and x ∈ Q/Z is the multiplication induced by transport of
structure using (46). One verifies easily that (53) does indeed give a C∗-algebra
representation of B. Let H be the unbounded operator in H whose action on the
canonical basis is given by

(54) Hεn = (log n)εn, n ∈ N+.

Then clearly, for each u ∈ W , we have

πu(σt(x)) = eitHπu(x)e−itH , t ∈ R, x ∈ B.

Notice that, for β > 1,

Trace(e−βH) =
∞∑
n=1

〈e−βHεn, εn〉 =
∞∑
n=1

n−β〈εn, εn〉 =
∞∑
n=1

n−β ,
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so that the Riemann zeta function appears as a partition function of Gibbs state
type. We can now state the main result of [5].

Theorem 9 (Bost-Connes). The dynamical system (B, σt) has symmetry
group W . The action of u ∈ W is given by [u] ∈ Aut(B) where

[u] : e(y) �→ e(u ◦ y), y ∈ Q/Z, [u] : µa �→ µa, a ∈ N.

This action commutes with σ,

[u] ◦ σt = σt ◦ [u], u ∈ W, t ∈ R.

Moreover,
(1) for 0 < β ≤ 1, there is a unique KMSβ state. (It is a factor state of Type

III1 with associated factor the Araki-Woods factor R∞.)
(2) for β > 1 and u ∈ W , the state

φβ,u(x) = ζ(β)−1Trace(πu(x)e−βH), x ∈ B

is a KMSβ state for (B, σt). (It is a factor state of Type I∞). The action
of W on B induces an action on these KMSβ states which permutes them
transitively, and the map u �→ φβ,u is a homomorphism of the compact
group W onto the space Eβ of extremal points of the simplex of KMSβ
states for (B, σt).

(3) the ζ-function of Riemann is the partition function of (B, σt).

Part (1) of the above theorem is difficult, and the reader is referred to [5] for
complete details, as for a full proof of (2). That for β > 1 the KMSβ states given
in part (2) fulfil Definition 5 of §5.2 is a straightforward exercise. Notice that they
have the form of Gibbs equilibrium states.

Theorem 9 solves Problem 1 of §5.2. More information is contained in its proof
however. As mentioned already, given the existence of the Artin isomorphism in
class field theory for the rationals, one can recover the Galois action of W explicitly.
Despite the progress in [6], it is still an open problem to exhibit this Galois action in
terms of an analogue of (B, σt) in a completely satisfactory way for general number
fields. Another feature occurs in the analysis of the proof of part (1) of Theorem
9. One can treat the infinite places in a similar way to that already described for
the finite places, so working with the (full) adeles A and (full) ideles J . The ring of
adeles A of Q consists of the infinite vectors (a∞, ap)p indexed by the archimedean
place and the primes p of Q with ap ∈ Zp for all but finitely many p. The group
J of ideles consists of the infinite vectors (u∞, up)p with u∞ ∈ R, u∞ �= 0 and
up ∈ Qp, up �= 0 and |up|p = 1 for all but finitely many primes p. There is a
norm | · | defined on J given by |u| = |u∞|∞

∏
p |up|p. We have natural diagonal

embeddings of Q in A and Q∗ = Q \ {0} in J induced by the embeddings of Q into
its completions. Notice that by the product formula Q∗ ⊂ Ker| · |. We define an
equivalence relation on A by a ≡ b if and only if there exists a q ∈ Q

∗ with a = qb.
With respect to this equivalence, we form the coset space X = A/Q

∗. The ideles J
act on A by componentwise multiplication, which induces an action of C = J/Q∗

on X. Notice that this action has fixed points. For example, whenever an adele
a has ap = 0, it is a fixed point of the embedding of Q

∗
p into J (to qp ∈ Q

∗
p one

assigns the idele with 1 in every place except the pth place.) On the other hand,
every Type III1 factor has a continuous decomposition, that is it can be written
as a crossed product of R with a Type II∞ factor. Connes has observed that the
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von-Neumann algebra of Type III1 in the region 0 < β ≤ 1 of Theorem 9 has in
its continuous decomposition the Type II∞ factor given by the crossed product of
L∞(A) by the action of Q

∗ by multiplication. The associated von Neumann algebra
has orbit space X = A/Q∗. As we have seen, the pair (X, C) plays a fundamental
role in Connes’s proposed approach to the Riemann hypothesis in [8] and can be
thought of as playing the role for number fields of the curve and Frobenius for the
proof of the Riemann hypothesis in the case of curves over finite fields.

5.5. Appendix by Peter Sarnak. In this appendix we reproduce, with his
permission, the text of a letter written by Peter Sarnak in June, 2001 and addressed
to Enrico Bombieri.

Below is the symplectic pairing that I mentioned to you in Zurich. There is nothing
deep about it or the analysis that goes with it. Still, its existence is consistent with
various themes. To put things in context, recall that the phenomenological and analytic
results on the high order zeroes of a given L-function and the low zeroes for families
of L-functions suggest that there is a natural spectral interpretation for the zeroes as
well as a symmetry group associated with a family [KaSa] (N. Katz and P. Sarnak,
Bulletin of the AMS, 36 (1999), 1–26). In particular, for Dirichlet L-functions L(s, χ),
χ2 = 1, the symmetry predicted in [KaSa] is a symplectic one, i.e. Sp(∞). So we
expect that there is a suitable spectral interpretation: the linear transformation whose
spectrum corresponds to the zeroes of L(s, χ) should correspond to a symplectic form.
It should be emphasized that this by itself does not put the zeroes on the line. Such
a symplectic pairing is a symmetry which is central to understanding this family of
L-functions. On the other hand, the existence of an invariant unitary (or Hermitian)
pairing for the operator, as suggested by Hilbert and Pólya would of course put zeroes
on the line. However, I think the existence of the latter is not very likely. In the
analogous function field settings there are spectral interpretations of the zeroes and
invariant bilinear pairings due to Grothendieck. The known proofs of the Riemann
Hypothesis (that is, the Weil Conjectures in this setting) do not proceed with any
magical unitary structures but rather with families and their monodromy, high tensor
power representations of the latter and positivity [De] (P. Deligne, Publ, IHES, 48
(1974), 273–308).

One can look for symplectic pairing in the well-known spectral interpretation of the
zeroes of ζ(2s) in the eigenvalue problem for X = SL(2, Z)\H. Indeed the resonances
(or scattering frequencies) through the theory of Eisenstein series for X are at the
zeroes of ξ(2s), ξ being the completed zeta function of Riemann. Lax and Phillips
have constructed an operator B (see [LaPh] (P. Lax, R. Phillips, Bulletin of the AMS,
2 (1980), 261–295)) whose spectrum consists of the Maass cusp forms on X together
with the zeroes of ξ(2s). The problem with finding a symplectic pairing for the part
of the spectrum corresponding to ξ(2s) is that I don’t know of any geometric way of
isolating this part of the spectrum of B. The space L2(X) as it stands is too big.
Nevertheless, this spectral interpretation of the zeroes of ξ(2s) is important since it can
be used to give reasonable zero-free regions for ζ(s); see [GLSa](S. Gelbart, E. Lapid,
P. Sarnak, A new method for lower bounds for L-functions, C.R. Acad. Sci. Paris, 339
(2004), 91–94). Moreover, this spectral proof of the non-vanishing of ζ(s) on �(s) = 1
extends to much more general L-functions where the method of Hadamard and de la
Vallée Poussin does not work (at least with our present knowledge)[Sh](F. Shahidi,
Perspect. Math., 10 (1990), 415–437, Academic Press).
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Assuming the Riemann hypothesis for L(s, χ), Connes [Co] (A. Connes, Selecta
Math. (N.S.), 5 (1999), No. 1, 29–106) gives a spectral interpretation of the zeroes. I
recall this construction below. Like the spectral interpretation as resonances, Connes’
space is defined very indirectly – as the annihilator of a complicated space of functions
(it is very close to the space considered by Beurling [Be] (A. Beurling, Proc. Nat. Acad.
Sci., USA, 41 (1955), 312–314)). We can look for invariant pairings for his operator.
Note that for an even dimensional space, a necessary condition that a transformation
A, of determinant equal to 1, preserve a standard symplectic form or orthogonal pairing
is that its eigenvalues (as a set) be invariant under λ → λ−1. In fact, if the eigenvalues
are also distinct, then this is also a sufficient condition. On the other hand, if A is
not diagonalizable then there are other obstructions (besides the “functional equation”
λ → λ−1) for preserving such pairings.

The set-up in [Co] is as follows: Let χ be a non-trivial Dirichlet character of
conductor q and with χ(−1) = 1 (one can easily include all χ). For f ∈ S(R) and even
and x > 0 set

(1) Θf (x) :=
(

x
√

q

)1/2 ∞∑
n=1

f

(
nx

q

)
χ(n).

According to Poisson Summation and Gauss sums we have

(2) Θf

(
1
x

)
= Θ

bf (x).

Hence Θf (x) is rapidly decreasing as x → 0 or x → ∞. Consider the vector space W
of distributions D on (0,∞) (with respect to the multiplicative group) with suitable
growth conditions at 0 and ∞ for which

(3) D(Θf ) =
∫ ∞

0

D(x)Θf (x)
dx

x
= 0,

for all f as above.
For y > 0, let Uy be the translation on the space of distributions, UyD(x) = D(yx).

Clearly, Uy leaves the subspace W invariant and yields a representation of R
∗
>0. By

(2), if D ∈ W then so is RD := D(1/x). This R acts as an involution on W . To see
which characters (i.e. eigenvalues of Uy) xs, s ∈ C, of R∗ are in W , consider

(4)
∫ ∞

0

Θf (x)xs
dx

x
= qs/2L(s +

1
2
, χ)

∫ ∞

0

f(y)ys+1/2 dy

y
.

Now f ∈ S(R) and is even, hence

I =
∫ ∞

0

f(x)xs+
1
2
dx

x
=

∫ 1

0

f(x)xs+
1
2
dx

x
+ g(s),

where g(s) is entire. Moreover, for N ≥ 0,

I =
∫ 1

0

N∑
n=0

a2nx
2nxs+

1
2
dx

x
+ a holomorphic function in �(s) > −N + 1,

(5) =
∞∑
n=0

a2n

2n − 1
2 + s

+ a holomorphic function in �(s) > −N + 1.

Thus, for general such f , I has a simple pole at s = 1
2 − 2n.
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According to (4) and (5) we have that xs(Θf ) = 0 for all f iff

(6) s = iγ where ρ =
1
2

+ iγ is a nontrivial zero of L(s, χ).

If the multiplicity of the zero of L(s, χ) at ρ = 1
2 + iγ is mγ ≥ 1, then differentiating

(4) mγ − 1 times shows that

(7) xiγ , (log x)iγ , . . . , (log x)mγ−1
xiγ

are in W .
The involution R of W ensures that xiγ ∈ W iff x−iγ ∈ W (and similarly with

multiplicities). Of special interest is γ = 0. We have from (2) that for j odd,

(8)
∫ ∞

0

(log x)j Θf (x)
dx

x
= −

∫ ∞

0

(log x)j Θ
bf (x)

dx

x
.

Hence, if f = f̂ and j is odd,

(9)
∫ ∞

0

(log x)j Θf (x)
dx

x
= 0.

If f = −f̂ then

(10)
∫ ∞

0

f(x)x1/2 dx

x
= 0.

So from (4) we see that if f = −f̂ then

(11)
∫ ∞

0

Θf (x) (log x)j
dx

x
= 0, for j = 0, . . . , m0.

Combining (9) and (11) we see that

W0 = span{1, log x, (log x)2 , . . .} ∩ W

= span{1, log x, . . . , (log x)m0−1}(12)

is even dimensional.
Hence m0 is even (of course this also follows from the functional equation for

L(s, χ)).
In order to continue, we need to specify the precise space of distributions that we

are working with. To allow for zeroes ρ of L(s, χ) with �(ρ) �= 1
2 , one needs to allow

spaces of distributions which have exponential growth at infinity. This can be done and
one can proceed as we do here; however to avoid such definitions we will assume the
Riemann Hypothesis for L(s, χ) (anyway, this is not the issue as far as the symplectic
pairing goes). This way we can work with the familiar tempered distributions. We
change variable, setting x = et so that our distributions D(t) satisfy

(13)
∫ ∞

−∞
D(t)Θf (et)dt = 0.

The group Uy now acts by translations τ ∈ R,

(14) UτD(t) = D(t + τ).

If now V is the space of such tempered distributions satisfying the annihilation condition
(13) for all f (which is a topological vector space), then for D ∈ V , its Fourier transform

D̂(ξ) is supported in {γ | ξ( 1
2 + iγ, χ) = 0}. Since D̂ is also tempered, it is easy to
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describe D̂ and hence the space V . It consists of all tempered distributions D of the
form

(15) D(t) =
∑
γ

mγ−1∑
j=0

aj,γ(D)tjeiγt.

The representation (15) is unique and the series converges as a tempered distribution,
i.e.

(16)
∑
|γ|≤T

mγ−1∑
j=0

|aj,γ(D)| � TA

for some A depending on D.
The action (14) on V gives a group of transformations whose spectrum consists of

the numbers eiγτ with multiplicity mγ . The subspaces Vγ of V given by

(17) Vγ = span{eiγt, teiγt, . . . , tmγ−1eiγt}
are Uτ -invariant, the action taking the form

(18) eiγτ




1 τ τ2 . . . τmγ−1

1 2τ

.

.

1




,

in the apparent basis. Thus Uτ is not diagonalizable if mγ > 1 for some γ. The span of
the subspaces Vγ is dense in V . So the action Uτ on V gives a spectral interpretation
of the nontrivial zeroes of L(s, χ). While one expects for these L(s, χ)’s that all their
zeroes are simple, there are more general L-functions (e.g. those of elliptic curves of
rank bigger than 1) which have multiple zeroes. Thus the possibility of multiple zeroes
especially at s = 1

2 must be entertained and it is instructive to do so. In any case,
since multiple zeroes mean that this action Uτ is not diagonalizable, we infer that there
cannot be any direct unitarity that goes along with it.

There is however a symplectic pairing on V preserved by Uτ . It is borrowed from
symνρ, where ρ is the standard two dimensional representation of SL2 (via (18) above)
when ν is odd. We pair Vγ with V−γ for γ > 0 and separate the even dimensional
space V0.

For D, E ∈ V set

(19) [D, E] :=
m0−1∑
j=0

(−1)jaj,0(D)am0−1−j,0(E)(
m0−1
j

) +
∑
γ>0

γe−γ
2 ∑
j=0

mγ − 1
(−1)j(
mγ−1
j

)
·
(
aj,γ(D)amγ−1−j,−γ(E) − amγ−1−j,−γ(D)aj,γ(E)

)
.

There is nothing special about the factor γe−γ
2

—it is put there for convergence.
The bilinear pairing [ , ] on V × V is symplectic and Uτ -invariant. That is,

(1) [D, E] = −[E, D]
(2) It is non-degenerate: for D �= 0 there is an E such that [D, E] �= 0
(3) [UτD, UτE] = [D, E] for τ ∈ R.
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The verification of these is straightforward. Note that if m0 > 0 and even, one
checks that the transformations (18) cannot preserve a symmetric pairing. Thus the
symplectic feature is intrinsic to this spectral interpretation of the zeroes of L(s, χ).

It would be of some interest to carry out the above adelically as in Connes’ papers
and also for other (say GL2) L-functions, especially where, for example, an orthogonal
rather than symplectic invariance is expected [KaSa]. Another point is that it would
be nice to define the pairing [ , ] directly without the Fourier Transform (i.e. without
first diagonalizing to Jordan form). If we assume RH as we have done as well as that

the zeroes of L(s, χ) are simple, then such a definition is possible. Set H(t) = e−t
2/2;

then for D and E in V , we have that H ∗D(t) and d
dt (H ∗ E) (t) are almost periodic

functions on R. Up to a constant factor we have that

(20) [D, E] = M

(
(H ∗ D) (t)

d

dt
(H ∗ E) (t)

)
.

Here for an almost periodic function f(t) on R, M(f) is its mean-value given by

M(f) = lim
T→∞

1
2T

∫ T

−T
f(x)dx.

5.5.1. Section added by Peter Sarnak on February, 2002. The Hilbert-Pólya
idea that there is a naturally defined self-adjoint operator whose eigenvalues are
simply related to the zeroes of an L-function seems far-fetched. However, Luo and
Sarnak [LuSa] (W. Luo and P. Sarnak, Quantum Variance for Hecke eigenforms,
Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), 91–94) have recently constructed a
self-adjoint non-negative operator A on

L2
0(X) = {ψ ∈ L2(SL2(Z)\H) |

∫
X

ψ(z)dv(z) = 0}

whose eigenvalues are essentially the central critical values L( 1
2 , ϕ) as ϕ varies over

the (Hecke-eigen) Maass cusp forms for X. In particular, this gives a spectral proof
that L( 1

2 , ϕ) ≥ 0. The fact that L( 1
2 , ϕ) cannot be negative (which is an immediate

consequence of RH for L(s, ϕ)) is known and was proved by theta function methods
(see [KatSa], S. Katok and P. Sarnak, Israel Math. Jnl., 84 (1993) 193–227, and
also [Wal], L. Waldspurger, J. Math. Pures et Appl., 60 (1981), 365–384). The
operator A comes from polarizing the quadratic form B(ψ) on L2

0(X) which appears
as the main term in the Shnirelman sums for the measures ϕ2

j (z)dv(z), where ϕj is
an orthonormal basis of Maass cusp forms for L2(X). Denote by λj the (Laplace)
eigenvalue of ϕj . It is known, see page 688 in [Se](A. Selberg, Collected Papers,
Vol. I (1989), Springer-Verlag), that

∑
λj≤λ

1 ∼ λ

12
, λ → ∞.

The quadratic form B(ψ) comes from the following: For ψ ∈ L2
0(X) fixed,∑

λj≤λ
|〈ϕ2

j , ψ〉|2 ∼ B(ψ)
√

λ

as λ → ∞.
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Incidentally, the family of L-functions L(s, ϕ), as ϕ varies as above, has an
orthogonal O(∞) symmetry in the sense of [KaSa], see also [Ke-Sn] (J. Keating
and N. Snaith, Comm. Math. Phys., 214 (2000), 91–110).

Notes added in proof: (1) In his paper “On a representation of the idele class
group related to primes and zeros of L-functions” (Duke Math. J. vol. 127, no.3,
pp519–595 (2005)), Ralf Meyer gives another approach to a spectral interpretation
for the poles and zeros of the L-function of a global field K. His construction is
motivated by the work of Alain Connes. As we remarked before, Connes gives a
spectral interpretation only of the zeros on the line s = 1/2 (and hence in fact
he has a spectral interpretation only assuming RH). Meyer uses natural spaces of
functions on the adele ring and the idele class group of K to construct a virtual
representation of the idele class group of K whose character is equal to a variant of
the Weil distribution that occurs in Weil’s explicit formula. Thereby, Meyer takes
a bigger space of functions and thus captures all the zeros, giving an unconditional
spectral interpretation of all the zeros which by itself is not related to RH (we thank
Peter Sarnak for this comment).

(2) For further progress on the analogue of Problem 1, §5.2, for imaginary
quadratic fields see: A. Connes, M. Marcolli: “From Physics to Number Theory via
Noncommutative Geometry” available on arXiv:math.NT/0404128 v1 6 Apr 2004,
as well as: A. Connes, M. Marcolli, N. Ramachandran: “KMS states and complex
multiplication” available on arXiv: math.OA/0501424.
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38. A. Weil, Basic Number Theory, Springer-Verlag Berlin–Heidelberg, 1967.
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