MEMORANDUM

Date: February 11, 2020

To: Mike Miller
City of Florence Public Works
250 Highway 101
Florence, OR 97439
From: \quad Amy Griffiths \& Diego Arguea, PE
Project: Florence Residential Subdivision
Subject: Traffic Impact Analysis Report

Project \#: 24714

This traffic impact analysis (TIA) report has been prepared as part of the site plan application for the proposed residential development to be located on a vacant site in Florence, Oregon. A site vicinity map is shown in Figure 1. Based on the analysis provided and documented herein, the proposed residential development can be constructed while maintaining acceptable traffic operations at the study intersections. No capacity-based mitigation needs were identified at the study intersections. Additional details documenting the methodology, proposed development plan, operations results, and recommendations are provided herein.

INTRODUCTION

The applicant proposes development of up to 31 detached single-family homes and up to 101 low-rise multi-family homes to be located on a vacant site in north Florence. The site is bounded by Rhododendron Road to the west, $35^{\text {th }}$ Street and Siano Loop Road to the south, and Royal Saint Georges Drive to the east and north. Access to the site is proposed via two full-movement new street connections, spaced approximately 340 feet and 610 feet north of $35^{\text {th }}$ Street. The proposed development is expected to be constructed and occupied in 2021. A site plan is shown in Figure 2.

SCOPE OF WORK

This TIA has been prepared as part of the Florence Residential Subdivision development application. Pursuant to the methodology memorandum provided and the ODOT response (included in Attachment " A "), this report includes the following:

- Operational assessment of study intersections under existing traffic conditions;
- Review of latest five years of reported crash data at study intersections;

- Background traffic operations assessment for opening year 2021, not including the proposed development traffic volumes;
- Trip generation and trip distribution estimate for the proposed residential development;
- Total traffic operations assessment for opening year 2021, including the proposed development traffic volumes; and,
- Driveway operations and sight distance assessment.

Findings and recommendations are provided at the conclusion of the report.

The study intersections were identified based on the project's trip generation impact on adjacent intersections within the site vicinity and include the following (also shown in Figure 1):

- Site Driveway " A "/Rhododendron Drive
- Site Driveway "B"/Rhododendron Drive
- $35^{\text {th }}$ Street/Rhododendron Drive
- $35^{\text {th }}$ Street/Royal St. Georges Drive
- $35^{\text {th }}$ Street/Kingwood Street
- $35^{\text {th }}$ Street/Oak Street

ANALYSIS METHODOLOGY AND APPLICABLE STANDARDS

All operations analyses described in this report were performed in accordance with the procedures stated in the Highway Capacity Manual, $6^{\text {th }}$ Edition (HCM - Reference 1).

All intersection level-of-service evaluations used the peak 15 -minute flow rate during the weekday morning and evening commuter peak hours. Using the peak 15-minute flow rate ensures that this analysis is based on a reasonable worst-case scenario. For this reason, the analysis reflects conditions that are only likely to occur for 15 minutes out of each average peak hour. A description of level-of-service criteria is contained in Attachment " B ".

Operating Standards

The City of Florence has adopted level-of-service (LOS) and volume-to-capacity (V/C) ratio operating standards for signalized and unsignalized intersections as documented in the 2012 Transportation System Plan (TSP). The following operating standards apply to City intersections:

- LOS " D " is considered acceptable at signalized and all-way stop controlled intersections if the V / C ratio is not higher than 1.0 for the sum of critical movements.
- LOS " E " is considered acceptable for the poorest operating approach at two-way stop intersections. LOS " F " is allowed in situations where a traffic signal is not warranted.

EXISTING CONDITIONS

The existing conditions analysis identifies the site conditions and current physical and operational characteristics of the roadways within the study area. These conditions will be compared with future conditions later in this report.

Kittelson \& Associates, Inc. (Kittelson) staff visited and inventoried the proposed development site and surrounding study area in February 2020. At that time, Kittelson collected information regarding site conditions, adjacent land uses, existing traffic operations, and transportation facilities in the study area.

SITE CONDITIONS AND ADJACENT LAND USES

The site is currently vacant. The land uses in the site vicinity include residential, community commercial, and recreational.

TRANSPORTATION FACILITIES

Table 1 summarizes the characteristics of the existing transportation facilities in the study area.
Table 1: Existing Transportation Facilities

Roadway	Functional Classification	Number of Lanes	Posted Speed (mph)	Sidewalks	Bicycle Lanes	On-Street Parking
Rhododendron Drive	Minor Arterial	2	40	No	No	No?
$35^{\text {th Street }}$	Collector	2	25	No	Yes	No
Wecoma Loop - Royal Saint Georges Drive	Local	2	40	No	No	Yes
Kingwood Street	Local	2	25	Yes	Yes	Nes
Oak Street	Collector	2		Yes	No	

${ }^{1}$ Functional Classification from Florence Transportation System Plan (December, 2012, Reference 2).
NP: not posted

Roadway Facilities

Figure 3 illustrates the existing lane configurations and traffic control devices at the study intersections. All of the study intersections are two-way stop-controlled (TWSC).

Pedestrian and Bicycle Facilities

There are sidewalks along Kingwood Street and Oak Street, but not along the rest of the study area. $35^{\text {th }}$ Street, Kingwood Street, and Oak Street have on-street bike lanes.

Transit Facilities

The nearest transit stop is located at Lane Community College at Oak Street/32 ${ }^{\text {nd }}$ Street, approximately 1 mile away from the site. This stop serves the Rhody Express North Loop, which has 60-minute headways and provides connections to various schools and grocery stores in Florence.

TRAFFIC VOLUMES AND PEAK HOUR OPERATIONS

Turning-movement counts were conducted at the study intersection in December 2019. The counts were conducted on a typical mid-week day during the morning (6:30 to 9:30 AM) and evening (3:30 to 6:30 PM) peak time periods.

City of Florence engineering staff requested that a seasonal adjustment factor be applied to local street intersections to account for seasonal fluctuations in travel demand. As such, the traffic volumes on Rhododendron Drive and $35^{\text {th }}$ Street were seasonally adjusted to $30^{\text {th }}$ Highest Hour Volumes (30 HV) in accordance with the Seasonal Trend Table methodology identified in the ODOT Analysis Procedures Manual (APM - Reference 3). As summarized in the methodology memorandum and ODOT response (Attachment "A"), the local street traffic volumes were increased by a factor of 1.76.

Figure 4 and Figure 5 summarize the year 2019 turning-movement counts after applying the seasonal adjustment factor.

Attachment "C" contains the traffic count worksheets used in this study and details of the 30HV methodology and ODOT response are included in Attachment " A ".

As shown in Figure 4 and Figure 5, traffic operations satisfy the City of Florence operating standards for unsignalized intersections.

Attachment "D" contains the year 2019 existing traffic conditions worksheets.

Traffic Safety

The crash history of the study intersections was reviewed to identify crash patterns. ODOT provided five years of crash data available for the study intersections, which includes all reported crashes from January 1, 2013 through December 31, 2017. Table 2 summarizes the crash data provided by ODOT.

Table 2: Study Intersection Crash Summary (January 1, 2013 through December 31, 2017)

	Crash Type				Crash Severity			
Intersection	RearEnd	Turn	Angle	Ped	PDO	Injury	Fatal	Total
35 ${ }^{\text {th }}$ Street/ Rhododendron Drive	0	0	0	0	0	0	0	0
```35 th Street / Royal St. Georges Drive-Wecoma Loop```	0	0	0	0	0	0	0	0
$\begin{aligned} & 35^{\text {th }} \text { Street / } \\ & \text { Sand Pines Golf Course-Kingwood Street } \end{aligned}$	0	0	0	0	0	0	0	0
$35^{\text {th }}$ Street $/$   Oak Street	0	1	4	0	4	1	0	5

PDO=Property Damage Only
As shown in Table 2, the only intersection with crashes reported over the five-year period is the $35^{\text {th }}$ Street/Oak Street intersection. At this intersection, angle crashes were the most common crash type. No other intersections in the study area had reported crashes in the most recent five years. No crash patterns were identified that would warrant mitigation as a result of the proposed development.

Attachment " $E$ " contains the crash data provided by ODOT.

## TRAFFIC IMPACT ANALYSIS

The TIA identifies how the study area's transportation system will operate in the year the proposed development is expected to be fully built, year 2021. The impact of traffic generated by the proposed residential subdivision during the typical weekday AM and PM peak hours was examined as follows:

- Developments and transportation improvements planned in the site vicinity were identified.
- Year 2021 and background traffic conditions were analyzed at the study intersection during the weekday AM and PM peak hours.
- Site-generated trips were estimated for build-out of the site.
- Site trip-distribution patterns were derived based on surrounding land uses.
- Year 2021 total traffic conditions were analyzed at the study intersections and site-access points during the weekday AM and PM peak hours.
- Driveway operations and sight distance were assessed.


## YEAR 2021 BACKGROUND TRAFFIC CONDITIONS

The year 2021 background traffic conditions analysis identifies how the study area's transportation system will operate without the proposed residential subdivision. This analysis includes traffic attributed to planned developments within the study area and to general growth in the region but does not include traffic from the proposed development.

## Planned Developments and Transportation Improvements

Based on conversations and direction provided by City of Florence staff, no planned in-process developments in the area are included in the analysis. There are plans for a mixed-use path along $35^{\text {th }}$ Street, however there are no expected changes to the study intersections.

## Traffic Volumes

Regional traffic volume growth was evaluated based upon the ODOT Future Volume Tables which identify the average annual daily traffic (AADT). Two locations near the study area were identified on Oregon Coast Highway (US 101, ODOT Highway No. 009): 0.02 miles south of $36^{\text {th }}$ Street and 0.02 miles south of $29^{\text {th }}$ Street. Table 3 provides the base year (2018) and forecast year (2038) model AADTs for computation of the growth rate.

Table 3. ODOT Future Volume Table

Highway	Milepost	Description	Year 2018   AADT	Year 2038   AADT	$R^{2}$	Growth Rate
009	188.64	0.02 miles south of $36^{\text {th }}$ Street	12,500	12,600	0.4298	0.00040
009	21.34	0.02 miles south of $29^{\text {th }}$ Street	14,100	14,200	0.8050	0.00035

[^0]Based on the volumes in Table 3, traffic volumes along the state highway in the vicinity of the study area are anticipated to increase by approximately 100 daily vehicles over a period of 20 years. This growth is negligible, and no annual background growth rate is proposed to be applied to the existing volumes for the 2021 buildout year analysis. Similarly, no regional growth factor will be applied to local streets.

With no in-process developments and no regional growth factor, the 2021 background conditions are expected to reflect the same conditions presented in Figure 4 and Figure 5.

## Intersection Operations

As stated previously, the 2021 background traffic intersection analysis is expected to be the same as the adjusted 2019 traffic operations. Therefore, the results of the analysis match that of the 2019 existing traffic analysis and the study intersections are forecast to satisfy the TSP operating standards during the weekday AM and PM peak hours. Refer to Attachment "D" for the existing (and background) traffic operations worksheets.

## PROPOSED DEVELOPMENT PLAN

The applicant proposes to develop up to 31 detached single-family homes, 55 attached townhome-style cottages, and 46 apartments.

## Trip Generation

A trip generation estimate was prepared for the proposed residential subdivision based on information provided in the standard reference manual, Trip Generation, $10^{\text {th }}$ Edition, published by the Institute of Transportation Engineers (ITE - Reference 4). Based on the land use data provided by ITE, the proposed townhome-style cottages and the apartments are both classified as low-rise multi-family homes. As such, ITE Land Use Code 220 (Multifamily Housing - Low Rise) is applied for the combined 101 units. Land Use Code 210 (Single-Family Detached Housing) is applied for the 31 single-family homes. Table 4 summarizes the trip generation estimate for the weekday daily, morning, and evening peak hours.

Table 4. Land Use Trip Generation

Land Use	ITE Code	Units	Daily   Trips	AM			PM		
				Total	In	Out	Total	In	Out
Single Family Detached Housing	210	31	354	27	7	20	33	21	12
Apartment	220	101	723	48	11	37	60	38	22
Total Net New			1,077	75	18	57	93	59	34

As shown in Table 4, the proposed development is estimated to generate approximately 1,077 net new weekday daily trips, with 75 net new trips (18 in, 57 out) occurring during the weekday AM peak hour and 93 net new trips ( $59 \mathrm{in}, 34$ out) occurring during the weekday PM peak hour.

## Site Trip Distribution/Trip Assignment

A trip distribution pattern was developed for the proposed development based existing traffic patterns and the location of major trip origins and destinations in the Florence area. Figure 6 and Figure 7 illustrate the estimated trip distribution pattern and assignment for the site-generated trips shown in Table 4 during weekday AM and PM peak hours.

## YEAR 2021 TOTAL TRAFFIC CONDITIONS

The year 2021 total traffic conditions analysis forecasts how the study area's transportation system will operate with the traffic generated by the proposed residential subdivision. The year 2021 background traffic volumes shown in Figure 4 and Figure 5 were added to the site-generated traffic shown in Figure 6 and Figure 7 to arrive at the total traffic volumes that are shown in Figure 8 and Figure 9.

## Intersection Operations

The weekday AM and PM peak hour turning-movement volumes shown in Figure 8 and Figure 9 were used to conduct an operational analysis at the study intersections and site accesses to determine the year 2021 total traffic conditions. The results of the analysis indicate that the study intersections and site accesses are projected to continue to meet the City's TSP operating standards during the weekday AM and PM peak hours.

Attachment " $F$ " contains the year 2021 total traffic conditions worksheets.





## SIGHT DISTANCE ASSESSMENT

A preliminary sight distance analysis was conducted at the existing site accesses based on review of the proposed site plan. We recommend final sight distance certification be confirmed upon buildout. Preliminary site plan review of available sight distance indicates that both intersection and stopping sight distance (ISD and SSD) are expected to meet the design guidance presented in A Policy on Geometric Design of Highways and Streets (AASHTO, Reference 5) upon buildout.

## AASHTO Design Guidelines

One of the primary inputs in determining safe sight distance metrics according to AASHTO guidelines is the design speed of the respective roadway. The posted speed along Rhododendron Drive is 40 miles per hour and the advisory speed along the frontage of the property is posted at 35 miles per hour.

For an assumed design speed of the 40 mile-per-hour facility, Table 5 below summarizes the recommended minimum design guidance.

Table 5. Sight Distance Summary (Case B1 - Left Turn from the Minor Road)

Access Locations	Direction of Travel	AASHTO Design Guideline (feet) (ISD / SSD)
Access A (north)	Northbound (facing south from access)	445 / 305
	Southbound (facing north from access)	445 / 305
Access B (south)	Northbound (facing south from access)	445 / 305
	Southbound   (facing north from access)	445 / 305

ISD: Intersection Sight Distance
SSD: Stopping Sight Distance
The following Exhibit 1 and Exhibit 2 illustrate a preliminary sight distance triangle for up to 445 feet of intersection sight distance. The red lines indicate the sightline from a vehicle at each corresponding site access while the yellow line indicates the on-road distance ( 445 feet) recommended for a design speed of 40 miles per hour.

Exhibit 1 Sight Triangle for Driveway A (approximate)


Exhibit 2 Sight Triangle for Driveway B (approximate)


Based on the preliminary assessment in Exhibits 1 and 2, no vertical curvature or horizontal curvature of Rhododendron Drive is expected to limit sight distances. However, there may be some foliage and low hanging branches that may be partially obstructing sight lines within the right-of-way - we recommend these be cleared upon construction of the site. Site landscaping, signage or above-ground utilities along the site frontages should be installed and maintained to provide adequate sight distance per City requirements.

## FINDINGS AND RECOMMENDATIONS

The results of this analysis indicate that the proposed residential subdivision can be constructed while maintaining acceptable traffic operations at the study intersections and site-accesses. The primary findings and recommendations of this study are summarized below.

- The proposed residential development is estimated to generate approximately 1,077 net new weekday daily trips, with 75 net new trips ( $18 \mathrm{in}, 57$ out) occurring during the weekday AM peak hour and 93 net new trips ( $59 \mathrm{in}, 34$ out) occurring during the weekday PM peak hour.
- All study intersections were found to operate acceptably under existing and forecast future conditions.
- No transportation capacity or safety-related mitigations are recommended as a result of the proposed development impacts.
- Landscaping, signage or above-ground utilities along the site frontages should be installed and maintained to provide adequate sight distance.

We trust this report adequately addresses the traffic impacts associated with the proposed residential subdivision. Please contact us if you have any questions.

## REFERENCES

1. Transportation Research Board. Highway Capacity Manual, $6^{\text {th }}$ Edition. 2019.
2. City of Florence, Oregon. Florence Transportation System Plan. 2012.
3. Oregon Department of Transportation. Analysis Procedures Manual. Updated in 2019.
4. Institute of Transportation Engineers. Trip Generation, 10 ${ }^{\text {th }}$ Edition, 2017.
5. American Association of State Highway and Transportation Officials. A Policy on Geometric Design of Highways and Streets. 2011 Edition.

## ATTACHMENTS

A. Scoping Memorandum
B. Level-of-Service Criteria
C. Traffic Count Data
D. Existing Traffic Operations Worksheets
E. Crash Data
F. Year 2021 Total Traffic Operations Worksheets


EXPIRES: Dec 312021

## Attachment A

Scoping Memorandum

## MEMORANDUM - DRAFT

To: Mike Miller, Public Works Director
City of Florence Public Works
250 Highway 101
Florence, OR 97439
Cc: $\quad$ Matt Caswell, PE, ODOT
From: Diego Arguea, PE \& Amy Griffiths
Project: Florence Residential Subdivision
Subject: Traffic Impact Study Scoping

This memorandum documents the methodology and key assumptions to be used in preparation of the traffic impact analysis (TIA) for a residential development in Florence, Oregon.

## PROPOSED DEVELOPMENT PLAN

The applicant proposes development of 91 single-family homes and up to 48 low-rise ${ }^{1}$ apartments to be located on a vacant site in north Florence, Oregon. The site is bounded by Rhododendron Road to the west, $35^{\text {th }}$ Street and Siano Loop Road to the south, and Royal Saint Georges Drive to the east and north. Access to the site is proposed via two driveways, spaced at approximately 340 feet and 610 feet north of $35^{\text {th }}$ Street. A site vicinity map is shown in Figure 1.

The proposed development is expected to be constructed in 2021. A site plan is shown in Figure 2.

## TRIP GENERATION AND DISTRIBUTION

Table 1 summarizes the estimated site-generated trips for the proposed development. Trip generation rates for the single-family and apartment land uses are based on the standard reference Trip Generation, $10^{\text {th }}$ Edition. For each land use, the regression equation is used to estimate trip generation if there are more than 20 data points and the coefficient of correlation ( $\mathrm{R}^{2}$ value) is 0.75 or higher. If these criteria are not met, the average rate is used.

[^1]
Florence Residential Subdivision

$\mathbb{R} \mathbb{K}$

Table 1. Proposed Land Use Trip Generation

Land Use	ITE Code	Units	Daily   Trips	AM			PM		
				Total	In	Out	Total	In	Out
Single Family Detached Housing	210	91	953	69	17	52	93	59	34
Multifamily Housing (Low-Rise)	220	48	322	24	6	18	31	19	12
Total Net New			1,275	93	23	70	124	78	46

Figure 3 and Figure 4 display a preliminary trip distribution and assignment based on review of surrounding land uses and the roadway network. The trip distribution pattern used in the formal traffic impact analysis may be revised based on traffic volume data to be collected at the study intersections as well as agency review comments.

## STUDY INTERSECTIONS

Proposed study intersections were identified based on the project's anticipated trip generation impact on adjacent intersections within the site vicinity. One intersection under ODOT ${ }^{2}$ jurisdiction was identified to be impacted - however, under both weekday AM and PM peak hours, this intersection is forecast to be impacted by fewer than 50 trips (see Figures 3 and 4). As such, the intersection of $35^{\text {th }}$ Avenue/Oregon Coast Highway (Hwy 101) has been included in the study area to address City requirements. All proposed study intersections are summarized below.

- Site Driveway " A "/Rhododendron Drive
- Site Driveway "B"/Rhododendron Drive
- $35^{\text {th }}$ Street/Rhododendron Drive
- $35^{\text {th }}$ Street/Royal St. Georges Drive
- $35^{\text {th }}$ Street/Kingwood Street
- $35^{\text {th }}$ Street/Oak Street
- $35^{\text {th }}$ Street/Oregon Coast Highway (Hwy 101)

[^2]


## OPERATIONS ANALYSIS

The traffic operations analysis will include evaluation of the following performance measures for the study intersections:

- Turning movement counts;
- Volume-to-capacity (V/C) ratio;
- Level-of-service (LOS) and delay; and,
- $95^{\text {th }}$ percentile queuing.

Individual study intersection performance will be documented in tables, figures, and/or technical appendices using the measures of effectiveness listed above. Study intersection performance will then be compared to applicable City and ODOT performance thresholds.

## Analysis Years

We will report performance measures for the following analysis years:

- Existing year 2019 traffic analysis;
- Opening year 2021 background traffic analysis (without added trips from the proposed development); and,
- Forecast year 2021 total traffic analysis (including added trips from the proposed development).


## Mobility Standards

ODOT assesses intersection operations based on v/c ratio. Table 6 of the Oregon Highway Plan (OHP) provides $\mathrm{v} / \mathrm{c}$ ratio targets statewide. These OHP ratios are used to evaluate existing and future no-build conditions, and the mobility standard is based on characteristics of the state highway.

Within the study area, the Oregon Coast Highway (Hwy 101) is classified as a statewide highway (not a freight route), located within the urban growth boundary (non-MPO), and has a posted speed limit of 35 miles per hour. As such, the ODOT required mobility standard for the $35^{\text {th }}$ Street/Oregon Coast Highway (Hwy 101) intersection is a v/c ratio of 0.90.

Table 6 of the Oregon Highway Plan (OHP) is shown on the following page.

VOLUME TO CAPACITY RATIO TARGETS OUTSIDE METRO ${ }^{17 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}}$							
Highway Category	Inside Urban Growth Boundary					Outside Urban Growth Boundary	
	STA ${ }^{\text {E }}$	MPO	Non-MPO Outside of STAs where non- freeway posted speed $<=35$ mph, or a Designated UBA	$\begin{gathered} \text { Non-MPO } \\ \text { outside of } \\ \text { STAs where } \\ \text { non-freeway } \\ \text { speed }>35 \\ \text { mph but }<45 \\ \text { mph } \end{gathered}$	Non-MPO where nonfreeway speed limit $>=45 \mathrm{mph}$	Unincorporated Communities ${ }^{F}$	Rural   Lands
Interstate Highways	N/A	0.85	N/A	N/A	0.80	0.70	0.70
Statewide Expressways	N/A	0.85	0.85	0.80	0.80	0.70	0.70
Freight Route on a Statewide Highway	0.90	0.85	0.85	0.80	0.80	0.70	0.70
Statewide (not a Freight Route)	0.95	0.90	0.90	0.85	0.80	0.75	0.70
Freight Route on a regional or District Highway	0.95	0.90	0.90	0.85	0.85	0.75	0.70
Expressway on a Regional or District Highway	N/A	0.90	N/A	0.85	0.85	0.75	0.70
Regional Highways	1.0	0.95	0.90	0.85	0.85	0.75	0.70
District/Local Interest Roads	1.0	0.95	0.95	0.90	0.90	0.80	0.75

Table 6: Volume to Capacity Ratio Targets for Peak Hour Operating Conditions

We request that the City of Florence provide us with the applicable mobility standards for the other study intersections.

## SEASONAL ADJUSTMENT FACTOR

Peak hour traffic counts will be collected in December 2019 and will subsequently be adjusted to reflect $30^{\text {th }}$ highest hour design volumes, based on applicable adjustment factors. Version 2 of the APM identifies three methods for identifying seasonal adjustment factors for highway traffic volumes:

- On-Site ATR Method
- ATR Characteristic Table Method
- Seasonal Trend Method

All three methods utilize information provided by Automatic Traffic Recorders (ATRs) situated in select locations throughout the State Highway System that collect traffic data 24 -hours a day/365 days a year.

The On-Site ATR Method meets the criteria that the ATR be located within or near the project area. ATR Florence (20-026) was identified on Highway 101 and located 0.77 miles north of Heceta Beach Road, and 2.21 miles north of the $35^{\text {th }}$ Street/Highway 101 study intersection. No major intersections that would impact seasonal trends are located between the study intersection and the ATR location. As such, we propose using ATR 20-026 data to seasonally adjust traffic volume data collected in December 2019.

Table 2 displays the ATR data used to develop the seasonal adjustment factor for the study area.
Table 2. Seasonal Adjustment Factor Calculation (weekday daily data)

Year	2014	2015	2016	2017	2018	Average
Peak Month (July) \% of ADT	$136 \%$	$136 \%$	$134 \%$	$142 \%$	$140 \%$	$137 \%$
Month of Data Collection (December) \% of ADT	$76 \%$	$75 \%$	$78 \%$	$78 \%$	$77 \%$	$77 \%$

Note: Shaded values removed from average calculation per ODOT methodology.

Cells highlighted in grey reflect the highest and lowest values and were excluded from the average per ODOT guidelines. From this data, the seasonal factor can be computed as $137 \% \div 77 \%=1.78$.

Based on direction provided in the ODOT Analysis Procedures Manual, a seasonal adjustment greater than $30 \%$ should not be used. To supplement the ATR methodology, the most up-to-date seasonal trend tables ${ }^{3}$ were reviewed - for the count month December, the seasonal adjustments shown for the following routes are as follows:

- Coastal Destination: 1.1636
- Coastal Destination Route: 1.2836

Averaging the seasonal trend table values for December results in a 1.2236 seasonal adjustment.
We welcome you providing historic traffic count data that may be available for the study intersections that could help further inform the seasonal adjustment. If no additional data is available, and subject to ODOT and City feedback, we propose to adjust the through movements on Highway 101 by a factor of 1.22 to reflect the $30^{\text {th }}$ highest hour volumes.

## CRASH DATA REVIEW

The most-recent three-year period of reported crash data (January 1, 2016 through December 31, 2018) will be reviewed at the study intersections. Any study intersections that are identified as a Safety Priority Index System sites (top 5- or 10-percent) will be included in the crash data and highlighted in the analysis.

[^3]The data will be analyzed for a variety of factors to include type, severity, general conditions, and location to identify potential crash patterns or anomalies.

## FORECAST YEAR VOLUME DEVELOPMENT

Growth rates for opening year background traffic volumes will be based upon the ODOT Future Volume Tables. Two locations near the study area were identified on Oregon Coast Highway (US 101, ODOT Highway No. 009): 0.02 miles south of $36^{\text {th }}$ Street and 0.02 miles south of $29^{\text {th }}$ Street. Table 3 provides the base year (2018) and forecast year (2038) model AADTs for computation of the growth rate.

Table 3. ODOT Future Volume Table

Highway	Milepost	Description	2018	2038	$R^{2}$	Growth Rate
009	188.64	0.02 miles south of $36^{\text {th }}$ Street	12,500	12,600	0.4298	0.00040
009	21.34	0.02 miles south of $29^{\text {th }}$ Street	14,100	14,200	0.8050	0.00035

Growth rate calculation example: $(12,600 / 12,500-1) /(2038-2018)=0.00040$
Based on the volumes in Table 3, traffic volumes along the state highway in the vicinity of the study area are anticipated to increase by approximately 100 daily vehicles over a period of 20 years. This growth is negligible and suggests it may not be necessary to apply an annual background growth rate to the existing volumes for the 2021 buildout year analysis. We would appreciate receipt of in-process development and/or annual growth rate data that may be available. In the absence of additional data, we propose to not apply a regional growth factor to the local streets.

## NEXT STEPS

Please review the information presented in this memorandum and provide us your feedback regarding the study assumptions and methodology. Please also provide confirmation of the City of Florence mobility standards. We would be pleased to schedule a conference call to discuss if desired.

From:	BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent:	Friday, January 3, 2020 7:19 AM
To:	BAUMGARTNER Douglas G; Diego Arguea
Cc:	Mike.Miller@ci.florence.or.us; Amy Griffiths; UPTON Dorothy J; NELSON Brian S * Scott
Subject:	RE: Development Review Contact for ODOT Region 2 District 5

Doug and Diego:
Thank you for passing along this scoping letter. My comments are:

1. Traffic study should be consistent with ODOT's Analysis Procedures Manual (APM) https://www.oregon.gov/ODOT/Planning/Pages/APM.aspx
2. Does the City concur with the proposed Trip Distribution? It appears the assumed $30 \%(10 \%$ to/from north, $20 \%$ to/from south) of the total trips accessing the US- $101 / 35^{\text {th }}$ Street intersection is low, but I concur that it appears this intersection will not trigger ODOT's 50 peak hour net trip increase threshold to recommend study of the intersection. That said, I am still available and willing to review the draft traffic study as a resource for the City.
3. The OHP mobility target for the US-101/35 $5^{\text {th }}$ Street intersection is actually 0.85 rather than 0.90 as cited within the scoping letter (statewide highway, non-OHP freight route, 40 MPH ).
4. The citation within ODOT's APM about avoiding the use of seasonal adjustments above $30 \%$ is not intended to limit the adjustment itself, but rather identify the least appropriate months during the year to conduct traffic counts. Due to the seasonal trending nature of the local transportation network, traffic counts at the US-101/35 ${ }^{\text {th }}$ Street intersection should be collected between March 1 and November 15. However, if the City will accept December counts for the purpose of this traffic study, Region Traffic recommends a seasonal adjustment of 1.76 for the US-101/35 ${ }^{\text {th }}$ Street intersection based on an average of the following trends:
a. 1.84 using Florence ATR 20-026 and the Average Daily Traffic method (as opposed to the Average Weekday Traffic method)
b. 1.49 using the Coastal Destination trend (the proposed calculation must have included an error)
c. 1.96 using the Coastal Destination Route trend (the proposed calculation must have included an error)
5. Per Table 3.3 of ODOT's Development Review Guidelines, for a development of this size ( $1,000-$ 2,999 ADT), Region Traffic recommends the following analysis scenario years:
a. Existing (2019)
b. Opening Year (2021)
i. Background
ii. Total
c. Opening Year +5 Years (2026)
i. Background
ii. Total

I hope the above information will help, but please let me know if there are any more questions or if I may be of any further assistance. Thanks!

Keith P. Blair, P.E.
Interim Traffic Analysis Engineer | ODOT Region 2

ODOT's mission is to provide a safe and reliable multimodal transportation system that connects people and helps Oregon's communities and economy thrive.

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Friday, December 27, 2019 3:24 PM
To: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

## Hi Scott -

Thanks for email. I was also told that Keith Blair is someone who has been involved in development review? We are currently scoping, but we are on a fast track to deliver this project by end of January. I have included the scoping memorandum attached for your reference. Note that the only intersection under ODOT jurisdiction is $35^{\text {th }}$ Ave/Hwy 101, but we do not estimate more than 50 peak hour trips to this intersection, so, ultimately, it may even not be required for study - I will defer to you. If it is required, please confirm the seasonal adjustment methodology.

Thanks!
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc. d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Sent: Thursday, December 26, 2019 2:57 PM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: Development Review Contact for ODOT Region 2 District 5
Hello Diego, I here you are working on a TIS in Florence. Doug Baumgartner is our development review coordinator for that area, however Doug is out until January $6^{\text {th }}$. In the meantime I can help you get started. Are you looking for a scope or are you beyond that?
thanks

B Scott Nelson, P.E.<br>Region 2 Access Management Engineer

455 Airport Rd SE, Bldg. B
Salem, OR 97301
Office 503.986.2882

## Amy Griffiths

From:	Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Sent:	Thursday, January 9, 2020 9:49 AM
To:	BLAIR Keith P; Diego Arguea
Cc:	Amy Griffiths; BAUMGARTNER Douglas G; Wendy Farley-Campbell
Subject:	RE: Florence - revision in site plan

Thanks Keith! I agree, since we know what the mix is using ITE codes 210 and 220 will be more accurate.

Mike

From: BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent: Thursday, January 9, 2020 9:07 AM
To: 'Diego Arguea' [darguea@kittelson.com](mailto:darguea@kittelson.com); Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: RE: Florence - revision in site plan
Diego and Mike:
My recommendation would be to utilize trip generation for land uses 210 and 220 as opposed to 270 for the combination of the following reasons:

- it appears the proposed land use mix is known, as opposed to a general PUD application
- ITE data sample sizes for land uses 210 and 220 are significantly larger than that for 270 and, as a result, likely more accurate
- trip generation results for land uses 210 and 220 are slightly larger (more conservative) for the daily and PM peak hour

Please let me know if I may be of further assistance. Thanks!

## Keith Blair

(503) 986-2857

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Wednesday, January 8, 2020 6:01 PM
To: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: Florence - revision in site plan

Mike, Keith,

Thank you both for your time in coordination and working through the project assumptions. We have recently had a change (reduction) in the site plan units, and I wanted to share an updated trip generation prior to moving forward with our analysis. Please review and let us know if you are comfortable using the PUD trip generation rate.

In our scoping memorandum, the site plan identified 91 single family home lots and 48 apartments. The revised unit mix is as follows:

31 single family lots

46 apartments
55 attached townhome/cottage 2-story homes (owner occupied not rentals)

## 132 total units

The $9^{\text {th }}$ edition of Trip Generation included a category for 'townhomes' which does not exist in the $10^{\text {th }}$ edition. Rather, the townhome data has been lumped together with the rate in the Low Rise Residential data. As such, one potential trip generation estimate shown below includes 31 single family lots and 101 low rise residential ( 46 apartments +55 attached homes).

Land Use	$\begin{gathered} \text { ITE } \\ \text { Code } \end{gathered}$	Units	Daily Trips	Weekday AM			Weekday PM		
				Total	In	Out	Total	In	Out
Residential									
Single-Family Detached Housing (AVG)	210	31	354	27	7	20	33	21	12
Internal Trips (0\% Daily, 0\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Multifamily Housing (Low-Rise)	220	101	723	48	11	37	60	38	22
Internal Trips (0\% Daily, O\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Net Trip Generation			1,077	75	18	57	93	58	34

Alternatively, the $10^{\text {th }}$ edition also has a new land use category called PUD Residential (Land Use 270). This rate is intended for developments that are PUDs and the final land use mix may or may not be known. The second table represents the revised trip generation assuming all 132 units are run as PUD.

Land Use	ITE Code	Units	Daily Trips	Weekday AM			Weekday PM		
				Total	In	Out	Total	In	Out
Residential									
Planned Unit Development (PUD) Average Rate	270	132	974	75	17	59	91	59	32
Internal Trips (0\% Daily, 0\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Net Trip Generation			974	75	17	59	91	59	32

As you'll note, the differences in net trip generation are very marginal - please review and let us know if you are both more comfortable with one over the other. Because this development application is going in as a PUD, I am comfortable with the trip generation and it seems appropriate to use this land use. But, given that we know the land use mix, I am open to either approach. Thanks in advance - please let us know your thoughts.

Thanks in advance,
Diego and Amy

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Sent: Tuesday, January 07, 2020 10:21 AM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: RE: Development Review Contact for ODOT Region 2 District 5
Hi Diego,
Just left you a message. Sorry that yesterday did not work. I was just stepping into a meeting when you called and then I had an executive session with City Council plus our regular Council meeting last night.

I will be on the road traveling to Eugene to meet with Lane County at 11am and will be back in Florence after 3:30pm. I have a meeting scheduled with the City Manager, but should be available later after 4:30pm today.

If that doesn't work, I do have time available after 10am Wednesday.

Thank you,

Mike

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Monday, January 6, 2020 2:44 PM
To: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: FW: Development Review Contact for ODOT Region 2 District 5

Hi Mike,

Just left a message with Sandy (receptionist?) regarding our transportation work in Florence. I am available the rest of the afternoon and have some flexibility tomorrow afternoon. Please let me know when is a good time to chat about the scope of the transportation work - thanks in advance!

Thanks,
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent: Friday, January 03, 2020 7:19 AM
To: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); UPTON Dorothy J
[Dorothy.J.UPTON@odot.state.or.us](mailto:Dorothy.J.UPTON@odot.state.or.us); NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

Doug and Diego:
Thank you for passing along this scoping letter. My comments are:

1. Traffic study should be consistent with ODOT's Analysis Procedures Manual (APM) https://www.oregon.gov/ODOT/Planning/Pages/APM.aspx
2. Does the City concur with the proposed Trip Distribution? It appears the assumed $30 \%(10 \%$ to/from north, $20 \%$ to/from south) of the total trips accessing the US-101/35 ${ }^{\text {th }}$ Street intersection is low, but I concur that it appears this intersection will not trigger ODOT's 50 peak hour net trip increase threshold to recommend study of the intersection. That said, I am still available and willing to review the draft traffic study as a resource for the City.
3. The OHP mobility target for the US-101/35 $5^{\text {th }}$ Street intersection is actually 0.85 rather than 0.90 as cited within the scoping letter (statewide highway, non-OHP freight route, 40 MPH ).
4. The citation within ODOT's APM about avoiding the use of seasonal adjustments above $30 \%$ is not intended to limit the adjustment itself, but rather identify the least appropriate months during the year to conduct traffic counts. Due to the seasonal trending nature of the local transportation network, traffic counts at the US-101/35 ${ }^{\text {th }}$ Street intersection should be collected between March 1 and November 15. However, if the City will accept December counts for the purpose of this traffic
study, Region Traffic recommends a seasonal adjustment of 1.76 for the US-101/35 ${ }^{\text {th }}$ Street intersection based on an average of the following trends:
a. 1.84 using Florence ATR 20-026 and the Average Daily Traffic method (as opposed to the Average Weekday Traffic method)
b. 1.49 using the Coastal Destination trend (the proposed calculation must have included an error)
c. 1.96 using the Coastal Destination Route trend (the proposed calculation must have included an error)
5. Per Table 3.3 of ODOT's Development Review Guidelines, for a development of this size ( $1,000-$ 2,999 ADT), Region Traffic recommends the following analysis scenario years:
a. Existing (2019)
b. Opening Year (2021)
i. Background
ii. Total
c. Opening Year +5 Years (2026)
i. Background
ii. Total

I hope the above information will help, but please let me know if there are any more questions or if I may be of any further assistance. Thanks!

Keith P. Blair, P.E.
Interim Traffic Analysis Engineer | ODOT Region 2
455 Airport Rd SE, Bldg. A | Salem, Oregon 97301
(503) 986-2857 | Keith.P.Blair@odot.state.or.us

ODOT's mission is to provide a safe and reliable multimodal transportation system that connects people and helps Oregon's communities and economy thrive.

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Friday, December 27, 2019 3:24 PM
To: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

## Hi Scott -

Thanks for email. I was also told that Keith Blair is someone who has been involved in development review? We are currently scoping, but we are on a fast track to deliver this project by end of January. I have included the scoping memorandum attached for your reference. Note that the only intersection under ODOT jurisdiction is $35^{\text {th }}$ Ave/Hwy 101, but we do not estimate more than 50 peak hour trips to this intersection, so, ultimately, it may even not be required for study - I will defer to you. If it is required, please confirm the seasonal adjustment methodology.

Thanks!
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Sent: Thursday, December 26, 2019 2:57 PM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: Development Review Contact for ODOT Region 2 District 5

Hello Diego, I here you are working on a TIS in Florence. Doug Baumgartner is our development review coordinator for that area, however Doug is out until January 6 th. In the meantime I can help you get started. Are you looking for a scope or are you beyond that?
thanks

## B Scott Nelson, P.E.

Region 2 Access Management Engineer

455 Airport Rd SE, Bldg. B
Salem, OR 97301
Office 503.986.2882
Cell 503.602.0703

## Attachment B <br> Level-of-Service Criteria

## DESCRIPTION OF LEVEL OF SERVICE

Level of service (LOS) is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or roadway segment. Six grades are used to denote the various level of service from " $A$ " to " $F$ ". ${ }^{1}$

## SIGNALIZED INTERSECTIONS

The six level-of-service grades are described qualitatively for signalized intersections in Table B1. Additionally, Table B2 identifies the relationship between level of service and average control delay per vehicle. Control delay is defined to include initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Using this definition, Level of Service " $D$ " is generally considered to represent the minimum acceptable design standard.

Table B1: Level-of-Service Definitions (Signalized Intersections)

Level of Service	Average Delay per Vehicle
A	Very low average control delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Average control delay is greater than 10 seconds per vehicle and less than or equal to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for a level of service A, causing higher levels of average delay.
C	Average control delay is greater than 20 seconds per vehicle and less than or equal to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Average control delay is greater than 35 seconds per vehicle and less than or equal to 55 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Average control delay is greater than 55 seconds per vehicle and less than or equal to 80 seconds per vehicle. This is usually considered to be the limit of acceptable delay. These high delay values generally (but not always) indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.
F	Average control delay is more than 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such high delay values.

[^4]Table B2: Level-of-Service Criteria for Signalized Intersections

Level of   Service	Average Control Delay per Vehicle (Seconds)
A	$<10.0$
B	$>10$ and $\leq 20$
C	$>20$ and $\leq 35$
D	$>35$ and $\leq 55$
E	$>55$ and $\leq 80$
F	$>80$

## UNSIGNALIZED INTERSECTIONS

Unsignalized intersections include two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections. The Highway Capacity Manual, $6^{\text {th }}$ edition (HCM) provides models for estimating control delay at both TWSC and AWSC intersections. A qualitative description of the various service levels associated with an unsignalized intersection is presented in Table B3. A quantitative definition of level of service for unsignalized intersections is presented in Table B4. Using this definition, Level of Service "E" is generally considered to represent the minimum acceptable design standard.

Table B3: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Delay per Vehicle to Minor Street
A	- Nearly all drivers find freedom of operation.   - Very seldom is there more than one vehicle in queue.
B	- Some drivers begin to consider the delay an inconvenience.   - Occasionally there is more than one vehicle in queue.
C	- Many times there is more than one vehicle in queue.   - Most drivers feel restricted, but not objectionably so.
D	- Often there is more than one vehicle in queue.   - Drivers feel quite restricted.
E	- Represents a condition in which the demand is near or equal to the probable maximum number of vehicles that can be accommodated by the movement.   - There is almost always more than one vehicle in queue.   - Drivers find the delays approaching intolerable levels.
F	- Forced flow.   - Represents an intersection failure condition that is caused by geometric and/or operational constraints external to the intersection.

Table B4: Level-of-Service Criteria for Unsignalized Intersections

Level of   Service	Average Control Delay per Vehicle (Seconds)
A	$<10.0$
B	$>10.0$ and $\leq 15.0$
C	$>15.0$ and $\leq 25.0$
D	$>25.0$ and $\leq 35.0$
E	$>35.0$ and $\leq 50.0$
F	$>50.0$

It should be noted that the level-of-service criteria for unsignalized intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, there are a number of driver behavior considerations that combine to make delays at signalized intersections less galling than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, while drivers on the minor street approaches to TWSC intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized intersections than signalized intersections. For these reasons, it is considered that the control delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection. While overall intersection level of service is calculated for AWSC intersections, level of service is only calculated for the minor approaches and the major street left turn movements at TWSC intersections. No delay is assumed to the major street through movements. For TWSC intersections, the overall intersection level of service remains undefined: level of service is only calculated for each minor street lane.

In the performance evaluation of TWSC intersections, it is important to consider other measures of effectiveness (MOEs) in addition to delay, such as $\mathrm{v} / \mathrm{c}$ ratios for individual movements, average queue lengths, and $95^{\text {th }}$-percentile queue lengths. By focusing on a single MOE for the worst movement only, such as delay for the minor-street left turn, users may make inappropriate traffic control decisions. The potential for making such inappropriate decisions is likely to be particularly pronounced when the HCM level-of-service thresholds are adopted as legal standards, as is the case in many public agencies.

## Attachment C

Traffic Count Data


Comments:



Comments:



Comments:


Comments:

$\begin{array}{r} 121 \div 21 \\ 131 \\ 207 \Rightarrow 55 \\ \hline \end{array}$							k-Hou   15-M   Qua   DATA TH   $d$	7:	AM   AM   Co   COM	8:35 $-8: 10$	M AM							
5-Min Count Period Beginning At	Oak St(Northbound)				Oak St(Southbound)				35th St(Eastbound)				35th St(Westbound)				$\text { Total }\left\|\begin{array}{l} \text { Hourly } \\ \text { Totals } \end{array}\right\|$	
	Left	Thru	Right	U														
7:00 AM	0	0	1	0	0	0	0	0	1	6	1	0	0	4	0	0	13	
7:05 AM	1	0	0	0	0	0	0	0	1	5	0	0	0	1	0	0	8	
7:10 AM	0	0	0	0	0	1	2	0	4	3	0	0	0	4	0	0	14	
7:15 AM	1	0	0	0	0	0	0	0	0	6	1	0	0	2	0	0	10	
7:20 AM	0	0	0	0	0	1	1	0	4	6	1	0	0	8	0	0	21	
7:25 AM	1	0	2	0	0	2	3	0	0	2	1	0	0	7	0	0	18	
7:30 AM	0	1	0	0	0	2	2	0	1	7	0	0	2	5	0	0	20	
7:35 AM	1	4	0	0	0	1	2	0	1	7	3	0	1	7	0	0	27	
7:40 AM	0	1	1	0	0	2	1	0	1	8	3	0	1	7	0	0	25	
7:45 AM	4	1	0	0	0	1	1	0	3	11	7	0	3	14	0	0	45	
7:50 AM	0	2	1	0	0	2	1	0	4	9	3	0	2	6	0	0	30	
7:55 AM	1	2	1	0	1	2	7	0	0	17	8	0	1	4	0	0	44	275
8:00 AM	3	3	2	0	0	3	2	0	1	10	9	0	1	8	0	0	42	304
8:05 AM	1	4	3	0	0	4	2	0	2	9	8	0	0	5	0	0	38	334
8:10 AM	2	0	2	0	0	7	0	0	4	13	7	0	1	6	0	0	42	362
8:15 AM	0	2	2	0	0	3	1	0	0	8	3	0	1	7	0	0	27	379
8:20 AM	4	1	5	0	0	0	1	0	4	14	2	0	1	6	0	0	38	396
8:25 AM	2	1	2	0	0	1	4	0	1	9	1	0	0	1	0	0	22	400
8:30 AM	0	3	1	0	0	2	4	0	0	16	1	0	0	6	0	0	33	413
8:35 AM	0	1	1	0	0	0	2	0	3	8	0	0	0	6	0	0	21	407
8:40 AM	0	1	0	0	1	1	4	0	2	4	1	0	1	4	1	0	20	402
8:45 AM	1	1	0	0	1	1	0	0	1	14	1	0	0	5	0	0	25	382
8:50 AM	2	2	1	0	0	1	2	0	4	16	1	0	0	11	0	0	40	392
8:55 AM	1	1	1	0	0	2	0	0	2	11	1	0	2	3	0	0	24	372
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U														
All Vehicles	20	36	24	0	4	36	44	0	12	144	100	0	8	68	0	0		96
Heavy Trucks Buses Pedestrians Bicycles Scooters	0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0		0 0	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	0 0		0 0	$\begin{aligned} & 16 \\ & 8 \\ & 0 \end{aligned}$	8 1		0 0	8 0 0	0 0			6 8 1

Comments:


Comments:

## Attachment D

## Existing Traffic Operations

Worksheets

Intersection						
Int Delay, s/veh	6.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	33	102	49	49	192	92
Future Vol, veh/h	33	102	49	49	192	92
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	21	5	7	4	2	2
Mvmt Flow	43	134	64	64	253	121


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	723	96	0	0	128	0
Stage 1	96	-	-	-	-	-
Stage 2	627	-	-	-	-	-
Critical Hdwy	6.61	6.25	-	-	4.12	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.345	-	-	2.218	-
Pot Cap-1 Maneuver	366	952	-	-	1458	-
Stage 1	882	-	-	-	-	-
Stage 2	498	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	298	952	-	-	1458	-
Mov Cap-2 Maneuver	298	-	-	-	-	-
Stage 1	882	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.1		0		5.4	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	620	1458	-
HCM Lane V/C Ratio		-	-	0.287	0.173	-
HCM Control Delay (s)		-	-	13.1	8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.2	0.6	-








Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	0	0	151	0	0	284
Future Vol, veh/h	0	0	151	0	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	199	0	0	374



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	0	0	151	0	0	284
Future Vol, veh/h	0	0	151	0	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	199	0	0	374


Major/Minor	Minor1		Major1		ajor2	
Conflicting Flow All	573	199	0	0	199	0
Stage 1	199	-	-	-	-	-
Stage 2	374	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	484	847	-	-	1385	-
Stage 1	839	-	-	-	-	-
Stage 2	700	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	484	847	-	-	1385	-
Mov Cap-2 Maneuver	484	-	-	-	-	-
Stage 1	839	-	-	-	-	-
Stage 2	700	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1385	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-


Intersection						
Int Delay, s/veh	9.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	83	315	93	51	153	93
Future Vol, veh/h	83	315	93	51	153	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	2	2	3	2	4
Mvmt Flow	89	339	100	55	165	100







Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			$\ddagger$			$\ddagger$			4	
Traffic Vol, veh/h	47	299	23	12	323	2	34	33	25	17	23	72
Future Vol, veh/h	47	299	23	12	323	2	34	33	25	17	23	72
Conflicting Peds, \#/hr	1	0	0	0	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	3	4	0	4	0	0	0	0	6	0	0
Mvmt Flow	53	336	26	13	363	2	38	37	28	19	26	81



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	0	0	408	0	0	246
Future Vol, veh/h	0	0	408	0	0	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	439	0	0	265



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	0	0	408	0	0	246
Future Vol, veh/h	0	0	408	0	0	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	439	0	0	265


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	704	439	0	0	439	0
Stage 1	439	-	-	-	-	-
Stage 2	265	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	406	622	-	-	1132	-
Stage 1	654	-	-	-	-	-
Stage 2	784	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	406	622	-	-	1132	-
Mov Cap-2 Maneuver	406	-	-	-	-	-
Stage 1	654	-	-	-	-	-
Stage 2	784	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1132	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

## Attachment E Crash Data

Intersectional Crashes at 35th St \& Rhododendron Dr January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	$\begin{gathered} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{gathered}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE   KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Royal St Georges Dr / Wecoma Lp
January 1, 2013 through December 31, 2017


YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Kingwood St January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE   INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Oak St
January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	NON-   FATAL   CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE   KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET   SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2016														
ANGLE	0	0	2	2	0	0	0	1	1	1	1	2	0	0
2016 TOTAL	0	0	2	2	0	0	0	1	1	1	1	2	0	0
YEAR: 2015														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	0	1	1	0	0
2015 TOTAL	0	1	1	2	0	1	0	2	0	1	1	2	0	0
YEAR: 2013														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL TOTAL	0	1	4	5	0	1	0	4	1	3	2	5	0	0

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.


00239	N N N	$01 / 17 / 2016$		17	OAK ST	
NONE	N	Sun	5 P	0	35 TH	ST
NO	43	59	48.92	-124	6	14.29

No $\quad$| 43 | 59 | 48.92 | -124 | 6 | 14.29 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1$

$$
\text { January 1, } 2013 \text { through December 31, } 2017
$$

Code	DESCRIPTİN	LONG DESCRIPTION
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SkIDDED
002	on/off V	GEtting On OR Off Stopped or parked vehicle
003	LOAD OVR	OVERHANGING LOAD STRUCK ANOTHER VEHICLE, ETC.
006	SLOW DN	SLOWED DOWN
007	AVoiding	AVOIDING MANEUVER
008	PAR PARK	PARALLEL PARKING
009	ANG PARK	ANGLE PARKING
010	Interfere	PASSENGER Interfering with driver
011	Stopped	Stopped in traffic not waiting to make a left turn
012	STP/L TRN	Stopped because of left turn Signal or waiting, etc.
013	STP TURN	Stopped While executing A turn
014	EMR V PKD	Emergency vehicle legally parked in the roadway
015	GO A/StOP	PROCEED AFTER Stopping for a stop Sign/flashing Red.
016	TRN A/RED	TURNED ON RED AFTER STOPPING
017	LOSTCTRL	LOST CONTROL OF VEHICLE
018	EXIT DWY	Entering Street or highway from alley or dilveway
019	ENTR DWY	ENTERING ALLEY OR DRIVEWAY FROM Street or highway
020	STR ENTR	BEFORE ENTERING ROADWAY, STRUCK PEDEStrian, Etc. On SIDEWALK OR SHOULDER
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	Struck, OR WAS Struck by, vehicle or pedestrian in prior collision before acc. Stabilized
023	StALLed	VEHICLE StALLED OR DISABLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FAtigue	FAtIGUED, SLEEPY, ASLEEP
026	SUN	DRIVER BLINDED BY SUN
027	HDLGHTS	DRIVER BLINDED BY HEADLIGHTS
028	ILLNESS	PHYSICALLY ILL
029	THRU MED	VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATtempting to Stop a vehicle
031	PASSING	PASSING SITUATION
032	PRKOFFRD	VEHICLE PARKED BEYOND CURB OR SHOULDER
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	$\mathrm{X} \mathrm{N} / \mathrm{SGNL}$	Crossing at intersection - no traffic signal present
035	X w/ SGNL	Crossing at intersection - traffic signal present
036	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S Attention distracted
039	W/TRAF-S	WALKING, RUNNING, RIding, ETC., ON SHOULDER WITH TRAFFIC
040	A/traf-s	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
041	W/TRAF-P	WALKING, RUNNING, RIdIng, etc., ON PAVEMENT WITH TRAFFIC
042	A/traf-p	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
043	PLAYINRD	PLAYing in street or road
044	push mV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
045	WORK ON	WORKING In ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIding, ETC. WIth traffic
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC
050	LAY ON RD	Standing or lying in roadway
051	ENT OfFRD	Entering / Starting in traffic lane from off road

## ACTION CODE TRANSLATION LIST

00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED.
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING
06	IMP-OVER	IMPROPER OVERTAKING
07	TOO-CLOS	FOLLOWED TOO CLOSELY
08	IMP-TURN	MADE IMPROPER TURN
09	DRINKING	ALCOHOL OR DRUG INVOLVED
10	OTHR-IMP	OTHER IMPROPER DRIVING
11	MECH-DEF	MECHANICAL DEFECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)
13	IMP LNC	IMPROPER CHANGE OF TRAFFIC LANES
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED ROi
16	FATIGUE	DRIVER DROWSY/FATIGUED/SLEEPY
17	ILLNESS	PHYSICAL ILLNESS
18	IN RDWY	NON-MOTORIST ILLEGALLY IN ROADWAY
19	NT VISBL	NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN
20	IMP PKNG	VEHICLE IMPROPERLY PARKED
21	DEF STER	DEFECTIVE STEERING MECHANISM
22	DEF BRKE	INADEQUATE OR NO BRAKES
24	LOADSHFT	VEHICLE LOST LOAD OR LOAD SHIFTED
25	TIREFAIL	TIRE FAILURE
26	PHANTOM	PHANTOM / NON-CONTACT VEHICLE
27	INATTENT	INATTENTION
28	NM INATT	NON-MOTORIST INATTENTION
29	FAVOID	FAILED TO AVOID VEHICLE AHEAD
30	SPEED	DRIVING IN EXCESS OF POSTED SPEED
31	RACING	SPEED RACING (PER PAR)
32	CARELESS	CARELESS DRIVING (PER PAR)
33	RECKLESS	RECKLESS DRIVING (PER PAR)
34	AGGRESV	AGGRESSIVE DRIVING (PER PAR)
35	RDRAGE	ROAD RAGE (PER PAR)
40	VIEW OBS	VIEW OBSCURED
50	USED MDN	IMPROPER USE OF MEDIAN OR SHOULDER
51	FAIL LN	FAILED TO MAINTAIN LANE
52	OFF RD	RAN OFF ROAD


\&	OTH	MISCELL
-	BACK	BACKING
0	PED	


1	ANGL	PEDESTRIA
2	HEAD	ANGLE


2	HEAD	HEAD-ON
3	REAR	REAR

3 REAR REAR-END

4	SS-M	SIDESWIPE - MEETING

5 SS-O SIDESWIPE - OVERTAKIng
6 TURN TURNING MOVEMENT
PARK PARKING MANEUVER
8 NCOL NON-COLLISION
9 FIX FIXED OBJECT OR OTHER OBJECT

## CRASH TYPE CODE TRANSLATION LIST

CRASH SHORT
TYPE DESCRIPTION LONG DESCRIPTION

$\&$	OVERTURN	OVERTURNED
0	NON-COLL	OTHER NON-COLLISIO


0	NON-COLL	OTHER NON-COLLISION
1	OTH RDWY	MOTOR VEHICLE ON OTHER ROADWAY


1	OTH RDWY	MOTOR VEHICLE ON OTH
2	PRKD MV	PARKED MOTOR VEHICLE


LIC	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NOT LICENSED (HAD NEVER BEEN LICENSED)
1	OR-Y	VALID OREGON LICENSE
2	OTH-Y	VALID LICENSE, OTHER STATE OR COUNTRY
3	SUSP	SUSPENDED/REVOKED
4	EXP	EXPIRED
8	N-VAL	OTHER NON-VALID LICENSE
9	UNK	UNKNOWN IF DRIVER WAS LICENSED AT TIME OF CRASH


RES   CODE	SHORT   DESC	LONG DESCRIPTION

## ERROR CODE TRANSLATION LIST

ERROR CODE	SHORT   DESCRIPTION	FULL DESCRIPTION
000	NONE	NO ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	LEFT TURN IN FRONT OF ONCOMING TRAFFIC
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRng	TURNED FROM WRONG LANE
007	TO WRONG	TURNED INTO WRONG LANE
008	ILLEG U	U-TURNED ILLEGALLY
009	IMP STOP	IMPROPERLY STOPPED IN TRAFFIC LANE
010	IMP SIG	IMPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	IMPROPERLY PARKED
013	UNPARK	Improper Start leaving Parked position
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)
016	InAttent	INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	Oth PARK	ENTERING/EXITING PARKED POSITION W/ InSufficient Clearance; other improper Parking maneuver
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	DISREGARDED TRAFFIC SIGNAL
021	RAN Stop	DISREGARDED Stop Sign or flashing red
022	DIS SIGN	DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER
023	DIS OFCR	DISREGARDED POLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILED TO AVOID Stopped or parked vehicle ahead other than School bus
027	BIKE ROW	DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST
028	No Row	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILED TO YIELD RIGHT-OF-WAY to pedestrian
030	PAS CURV	PASSING ON A CURVE
031	PAS WRng	PASSING ON THE WRONG SIDE
032	PAS tANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X -WK	PASSED VEHICLE Stopped at crosswalk for pedestrian
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST Of hill
036	N/PAS ZN	PASSING IN "NO PASSING" ZONE
037	PAS TRAF	PASSING In FRONT OF ONCOMING TRAFFIC
038	CUT-IN	CUtting in (TWO LANES - TWO WAY OnLy)
039	WRNGSIDE	DRIVING ON WRONG SIDE Of the road (2-WAY UNDIVIDED ROADWAYS)


ERROR	SHORT DESCRIPTION	FULL DESCRIPTION
040	THRU MED	DRIVING THROUGH SAFETY ZONE OR OVER ISLAND
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS
042	F/SLO MV	FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE
43	too Close	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	STRADDLING OR DRIVING ON WRONG LANES
045	IMP CHG	ImPROPER CHANGE OF TRAFFIC LANES
046	WRNG WAY	WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	Impeding	IMPEDING TRAFFIC
050	SPEED	DRIVING In EXCESS OF POSTED SPEED
051	RECKLESS	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACING	SPEED RACING (PER PAR)
054	X N/SGNL	CROSSING AT Intersection, NO TRAFFIC SIGNAL PRESENT
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
061	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
062	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
063	PLAYINRD	PLAYING IN STREET OR ROAD
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WORK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAY ON RD	Standing Or Lying in roadway
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	ELUDING	ELUding / Attempt to elude
079	F NEG CURV	FAILED TO NeGotiate a curve
080	FAIL LN	FAILED TO MAINTAIN LANE
081	OFF RD	RAN OFF ROAD
082	No CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGERS
97	UNA DIS TC	UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

EVENT SHORT
CODE DESCRIPTION

001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEhICLE
002	INTERFER	PASSENGER INTERFERED WITH DRIVER
003	bug inte	ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHIKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	ON/OFF V	GEtting On/OFF Stopped/parked vehicle (OCCUPANTS Only; must have physical contact w/ vehic
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT
011	MV PUSHD	VEHICLE BEING PUSHED
012	MV TOWED	VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE
013	FORCED	VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN
014	SET MOTN	VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)
015	RR ROW	AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)
016	LT RL Row	AT OR ON LIGHT-RAIL RIGHT-OF-WAY
017	RR HIT V	TRAIN STRUCK VEhicle
018	V HIT RR	VEhicle struck train
019	HIT RR CAR	vehicle struck railroad car on roadway
020	JACKNIFE	JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE
021	TRL OTRN	TRAILER OR TOWED VEHICLE OVERTURNED
022	CN BROKE	TRAILER CONNECTION BROKE
023	DETACH TRL	DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT
024	V DOOR OPN	VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE
025	WHEELOFF	WHEEL CAME OFF
026	HOOD UP	HOOD FLEW UP
028	LOAD SHIFT	LOST LOAD, LOAD MOVED OR Shifted
029	TIREFAIL	TIRE FAILURE
030	PET	PET: CAT, DOG AND SIMILAR
031	LVSTOCK	STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.
032	HORSE	HORSE, MULE, OR DONKEY
033	HRSE\&RID	HORSE AND RIDER
034	GAME	WILD AnIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)
035	DEER ELK	DEER OR ELK, WAPITI
036	AnML Veh	ANIMAL-DRAWN VEHICLE
037	CULVERT	CULVERT, OPEN LOW OR HIGH MANHOLE
038	Atenuatn	IMPACT ATTENUATOR
039	PK METER	PARKING METER
040	CURB	CURB (ALSO NARROW SIDEWALKS ON BRIDGES)
041	JIGGLE	JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION
042	GDRL END	LEADING EDGE OF GUARDRAIL
043	GARDRAIL	GUARD RAIL (NOT METAL MEDIAN BARRIER)
044	BARRIER	MEDIAN BARRIER (RAISED OR METAL)
045	WALL	REtAINING WALL OR TUNNEL WALL
046	BR RAIL	BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)
047	BR ABUTMNT	BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)
048	BR COLMN	BRIDGE PILLAR OR COLUMN
049	BR GIRDR	BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)
050	ISLAND	TRAFFIC RAISED ISLAND
051	GORE	GORE
052	POLE UNK	POLE - TYPE UNKNOWN
053	POLE UTL	POLE - POWER OR TELEPHONE
054	ST LIGHT	POLE - Street light only
055	TRF SGNL	POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY
056	SGN BRDG	POLE - SIGN BRIDGE
057	STOPSIGN	Stop OR YIELD SIGN

## EVENT CODE TRANSLATION LIST

CODE	DESCRIPTION	LONG DESCRIPTION
058	OTH SIGN	OTHER SIGN, INCLUDING STREET SIGNS
059	HYDRANT	HYDRANT
060	MARKER	DELINEATOR OR MARKER (REFLECTOR POSTS)
061	MAILBOX	MAILBOX
062	tree	tree, Stump or shrubs
063	VEG OHED	tree branch or other vegetation overhead, etc.
064	WIRE/CBL	WIRE OR CABLe ACROSS OR OVER THE ROAD
065	TEMP SGN	TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.
066	PERM SGN	PERMANENT SIGN OR BARRICADE IN/OFF ROAD
067	SLIDE	SLIDES, FALLEN OR FALLING ROCKS
068	FRGN OBJ	FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)
069	EQP WORK	EQUIPMENT WORKING IN/OFF ROAD
070	OTH EQP	OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)
071	MAIN EQP	WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT
072	OTHER WALL	ROCK, BRICK OR OTHER SOLID WALL
073	IRRGL PVMT	OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE
075	CAVE IN	BRIDGE OR ROAD CAVE IN
076	HI WAter	HIGH WATER
077	SNO BANK	SNOW BANK
078	LO-HI EDGE	Low OR HIGH Shoulder at Pavement edge
079	DITCH	CUT SLOPE OR DITCH EMBANKMENT
080	OBJ FRM MV	STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)
081	FLY-OBJ	STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)
082	VEH HID	VEhicle ObSCURED view
083	VEG HID	VEGETATION OBSCURED VIEW
084	BLDG HID	VIEW OBSCURED BY Fence, Sign, Phone booth, etc.
085	WIND GUST	WIND GUST
086	IMMERSED	VEHICLE IMMERSED IN BODY OF WATER
087	FIRE/EXP	FIRE OR EXPLOSION
088	FENC/BLD	FENCE OR BUILDING, ETC.
089	OTHR CRASH	CRASH RELATED TO ANOTHER SEPARATE CRASH
090	TO 1 SIDE	TWO-WAY traffic on divided roadway all routed to one side
091	BUILDING	BUILDING OR OTHER STRUCTURE
092	PHANTOM	OTHER (PHANTOM) NON-CONTACT VEHICLE
093	CELL PHONE	CELL PHONE (ON PAR OR DRIVER IN USE)
094	VIOL GDL	teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE
096	BERM	BERM (EARTHEN OR GRAVEL MOUND)
097	GRAVEL	GRAVEL IN ROADWAY
098	ABR EDGE	ABRUPT EDGE
099	CELL WTNSD	CELL PHONE USE WITNESSED BY OTHER PARTICIPANT
100	UNK FIXD	FIXED OBJECT, UNKNOWN TYPE.
101	OTHER OBJ	NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE
102	TEXTING	TEXTING
103	WZ WORKER	WORK ZONE WORKER
104	ON VEhicle	PASSENGER RIDING ON VEhICLE EXTERIOR
105	PEDAL PSGR	PASSENGER RIDING ON PEDALCYCLE
106	MAN WHLCHR	PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR
107	MTR WHLCHR	PEDESTRIAN IN MOTORIZED Wheelchair
108	OFFICER	LAW ENFORCEMENT / POLICE OFFICER
109	SUB-BIKE	"SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.
110	N-MTR	NON-MOTORIST STRUCK VEHICLE
111	S CAR VS V	Street Car/Troliey (on Rails or overhead wire system) Struck vehicle
112	v VS S CAR	VEhicle struck street Car/trolley (on Rails or overhead wire system)
113	S CAR ROW	AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY

# EVENT CODE TRANSLATION LIST 

SHORT
CODE DESCRIPTION LONG DESCRIPTION

114	RR EQUIP	VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS
115	DSTRCT GPS	DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE
116	DSTRCT OTH	DISTRACTED BY OTHER ELECTRONIC DEVICE
117	RR GATE	RAIL CROSSING DROP-ARM GATE
118	EXPNSN JNT	EXPANSION JOINT
119	JERSEY BAR	JERSEY BARRIER
120	WIRE BAR	WIRE OR CABLE MEDIAN BARRIER
121	FENCE	FENCE
123	OBJ IN VEH	LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT
124	SLIPPERY	SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)
125	SHLDR	SHOULDER GAVE WAY
126	BOULDER	ROCK (S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)
127	LAND SLIDE	ROCK SLIDE OR LAND SLIDE
128	CURVE INV	CURVE PRESENT AT CRASH LOCATION
129	HILL INV	VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION
130	CURVE HID	VIEW OBSCURED BY CURVE
131	HILL HID	VIEW OBSCURED BY VERICAL GRADE / HILL
132	WINDOW HID	VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS
133	SPRAY HID	VIEW OBSCURED BY WATER SPRAY
134	TORRENTIAL	TORRENTIAL RAIN (EXCEPTIONALLY HEAVY RAIN)



CLASS	DESCRIPTION
01	RURAL PRINCIPAL ARTERIAL - INTERSTATE
02	RURAL PRINCIPAL ARTERIAL - OTHER
06	RURAL MINOR ARTERIAL
07	RURAL MAJOR COLLECTOR
08	RURAL MINOR COLLECTOR
09	RURAL LOCAL
11	URBAN PRINCIPAL ARTERIAL - INTERSTATE
12	URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
14	URBAN PRINCIPAL ARTERIAL - OTHER
16	URBAN MINOR ARTERIAL
17	URAN MAJOR COLLETOR
18	URBAN MINOR COLLETTOR
19	URBAN LOCAL
78	UNKNOWN RURAL SYSTEM
79	UNKNOWN RURAL NON-SYSTEM
98	UNKNOWN URBAN SYSTEM
99	UNKNOWN URBAN NON-SYSTEM

## INJURY SEVERITY CODE TRANSLATION LIST

## SHORT

| CODE | DESC | LONG DESCRIPTION |
| :---: | :--- | :--- | :--- |
| 1 | KILL | FATAL INJURY (K) |
| 2 | INJA | SUSPECTED SERIOUS INJURY (A) |
| 3 | INJB | SUSPECTED MINOR INJURY (B) |
| 4 | INJC | POSSIBLE INJURY (C) |
| 5 | PRI | DIED PRIOR TO CRASH |
| 7 | NO<5 | NO INJURY- O TO 4 YEARS OF AGE |
| 9 | NONE | NO APPARENT INJURY (0) |

## MEDIAN TYPE CODE TRANSLATION LIST

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NO MEDIAN
1	RSDMD	SOLID MEDIAN BARRIER
2	DIVMD	EARTH, GRASS OR PAVED MEDIAN

## LIGHT CONDITION CODE TRANSLATION LIST

## SHORT

CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	DAY	DAYLIGHT
2	DLIT	DARKNESS - WITH STREET LIGHTS
3	DARK	DARKNESS - NO STREET LIGHTS
4	DAWN	DAWN (TWILIGHT)

5 DUSK DUSK (TWILIGHT)
mileage type code translation list

CODE	LONG DESCRIPTION
0	REGULAR MILEAGE
T	TEMPORARY
Y	SPUR
$Z$	OVERLAPPING

MOVEMENT TYPE CODE TRANSLATION LIST

CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TUANING LEFT
4	U-TURN	MARING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPRLY
9	PARKNG	PARKING MANEUVER

PARTICIPANT TYPE CODE TRANSLATION LISI

CODE	SHORT   DESC	LONG DESCRIPTION

## traffic control device code translation list

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRF SIGNAL	TRAFFIC SIGNALS
002	FLASHBCN-R	FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCR/FLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDG-GATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATINN
017	MEDAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGNG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	SPECIAL RR STOP SIGN
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMPS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING
095	BUS STPSGN	BUS STOP SIGN AND RED LIGHTS
099	UNKNOWN	UNKNOWN OR NOT DEFINITE

## VEhICLE TYPE CODE TRANSLATION LIS

WEATHER CONDITION CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
00	PDO	NOT COLLECTED FOR PDO CRASHES
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE


CODE	SHORT	DESC
0	LONG DESCRIPTION	
1	CLR	UNKNOWN
2	CLD	CLEAR
3	RAIN	CLOUDY
4	RLT	SLEET
5	FOG	FOG
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

## Attachment F <br> Year 2021 Total Traffic Operations Worksheets

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	33	110	59	49	218	121
Future Vol, veh/h	33	110	59	49	218	121
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	21	5	7	4	2	2
Mvmt Flow	43	145	78	64	287	159


Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	843	110	0	0	142	0
Stage 1	110	-	-	-	-	-
Stage 2	733	-	-	-	-	-
Critical Hdwy	6.61	6.25	-	-	4.12	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.345	-	-	2.218	-
Pot Cap-1 Maneuver	310	935	-	-	1441	-
Stage 1	869	-	-	-	-	-
Stage 2	443	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	242	935	-	-	1441	-
Mov Cap-2 Maneuver	242	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.6		0		5.2	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	563	1441	-
HCM Lane V/C Ratio		-	-	0.334	0.199	-
HCM Control Delay (s)		-	-	14.6	8.1	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.5	0.7	-


Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			*			\&			4	
Traffic Vol, veh/h	0	355	0	0	151	2	0	0	11	14	0	0
Future Vol, veh/h	0	355	0	0	151	2	0	0	11	14	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Fro	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	0	4	0	0	10	0	0	0	0	0	0	0
Mvmt Flow	0	449	0	0	191	3	0	0	14	18	0	0





Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\ddagger$			$\ddagger$			$\ddagger$			4	
Traffic Vol, veh/h	24	242	61	12	154	0	20	24	20	1	28	27
Future Vol, veh/h	24	242	61	12	154	0	20	24	20	1	28	27
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	8	4	0	6	0	6	4	5	0	7	0
Mvmt Flow	29	292	73	14	186	0	24	29	24	1	34	33



Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	28	0	152	10	0	284
Future Vol, veh/h	28	0	152	10	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	37	0	200	13	0	374




Major/Minor	Minor1	Major1			Major2		
Conflicting Flow All	629	218	0	0	223	0	
Stage 1	218	-	-	-	-	-	
Stage 2	411	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	449	827	-	-	1358	-	
Stage 1	823	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	449	827	-	-	1358	-	
Mov Cap-2 Maneuver	449	-	-	-	-	-	
Stage 1	823	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	13.6		0		0		
HCM LOS	B						
Minor Lane/Major Mvm		NBT	NBR	VBLn1	SBL	SBT	
Capacity (veh/h)		-	-	456	1358	-	
HCM Lane V/C Ratio		-	-	0.084	-	-	
HCM Control Delay (s)		-	-	13.6	0	-	
HCM Lane LOS		-	-	B	A	-	
HCM 95th \%tile Q(veh)		-	-	0.3	0	-	


Intersection						
Int Delay, s/veh	10.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			$\uparrow$
Traffic Vol, veh/h	83	342	123	51	167	110
Future Vol, veh/h	83	342	123	51	167	110
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	2	2	3	2	4
Mvmt Flow	89	368	132	55	180	118


Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	638	160	0	0	187	0
Stage 1	160	-	-	-	-	-
Stage 2	478	-	-	-	-	-
Critical Hdwy	6.4	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	444	885	-	-	1387	-
Stage 1	874	-	-	-	-	-
Stage 2	628	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	382	885	-	-	1387	-
Mov Cap-2 Maneuver	382	-	-	-	-	-
Stage 1	874	-	-	-	-	-
Stage 2	541	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.1		0		4.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	704	1387	-
HCM Lane V/C Ratio		-	-	0.649	0.129	-
HCM Control Delay (s)		-	-	19.1	8	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	4.8	0.4	-




Intersection												
Int Delay, s/veh 4.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	F		${ }^{*}$	$\uparrow$		${ }^{*}$	$\uparrow$			$\uparrow$	
Traffic Vol, veh/h	1	242	31	47	420	1	77	1	83	15	4	4
Future Vol, veh/h	1	242	31	47	420	1	77	1	83	15	4	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	150	-	-	150	-	-	50	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	0	2	0	9	1	0	3	0	4	0	0	0
Mvmt Flow	1	272	35	53	472	1	87	1	93	17	4	4



Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$			4			\&			¢	
Traffic Vol, veh/h	49	305	26	12	335	2	40	33	25	17	23	75
Future Vol, veh/h	49	305	26	12	335	2	40	33	25	17	23	75
Conflicting Peds, \#/hr	1	0	0	0	0	1	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	3	4	0	4	0	0	0	0	6	0	0
Mvmt Flow	55	343	29	13	376	2	45	37	28	19	26	84



Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	15	2	409	28	2	246
Future Vol, veh/h	15	2	409	28	2	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	16	2	440	30	2	265


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	724	455	0	0	470	0
Stage 1	455	-	-	-	-	-
Stage 2	269	-	-	-	-	-
Critical Hdwy	6.4	6.2		-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	396	609	-	-	1102	-
Stage 1	643	-	-	-	-	-
Stage 2	781	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	395	609	-	-	1102	-
Mov Cap-2 Maneuver	395	-	-	-	-	-
Stage 1	643	-	-	-	-	-
Stage 2	779	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.1		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	412	1102	-
HCM Lane V/C Ratio		-	-	0.044	0.002	-
HCM Control Delay (s)		-	-	14.1	8.3	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-


Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	16	1	436	29	0	261
Future Vol, veh/h	16	1	436	29	0	261
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	17	1	469	31	0	281



## MEMORANDUM

February 11, 2020 (revised August 2020)
Project \#: 24714

To: Mike Miller
City of Florence Public Works
250 Highway 101
Florence, OR 97439
From: Amy Griffiths \& Diego Arguea, PE
Project: Florence Residential Subdivision
Subject: Traffic Impact Analysis Report

This traffic impact analysis (TIA) report has been prepared as part of the site plan application for the proposed residential development to be located on a vacant site in Florence, Oregon. A site vicinity map is shown in Figure 1. Based on the analysis provided and documented herein, the proposed residential development can be constructed while maintaining acceptable traffic operations at the study intersections. No capacity-based mitigation needs were identified at the study intersections. Additional details documenting the methodology, proposed development plan, operations results, and recommendations are provided herein.

## INTRODUCTION

The applicant proposes development of up to 31 detached single-family homes and up to 101 low-rise multi-family homes to be located on a vacant site in north Florence. The site is bounded by Rhododendron Road to the west, $35^{\text {th }}$ Street and Siano Loop Road to the south, and Royal Saint Georges Drive to the east and north. Access to the site is proposed via two full-movement new street connections, spaced approximately 340 feet and 610 feet north of $35^{\text {th }}$ Street. The proposed development is expected to be constructed and occupied in 2021. A site plan is shown in Figure 2.

## SCOPE OF WORK

This TIA has been prepared as part of the Florence Residential Subdivision development application. Pursuant to the methodology memorandum provided and the ODOT (Oregon Department of Transportation) response (included in Attachment " $A$ "), this report includes the following:

- Operational assessment of study intersections under existing traffic conditions;
- Review of latest five years of reported crash data at study intersections;


- Background traffic operations assessment for opening year 2021, not including the proposed development traffic volumes;
- Trip generation and trip distribution estimate for the proposed residential development;
- Total traffic operations assessment for opening year 2021, including the proposed development traffic volumes; and,
- Driveway operations and sight distance assessment.

The scope of work in Attachment "A" was confirmed by City of Florence and ODOT staff, which included validation of the traffic data collection methodology, timing of traffic count data, and relevant adjustments to the traffic count data. Additional detail to the methodology is provided in the following sections.

The study intersections were identified based on the project's trip generation impact on adjacent intersections within the site vicinity and include the following (also shown in Figure 1):

- Site Driveway "A"/Rhododendron Drive
- $35^{\text {th }}$ Street/Royal St. Georges Drive
- Site Driveway "B"/Rhododendron Drive
- $35^{\text {th }}$ Street/Kingwood Street
- $35^{\text {th }}$ Street/Rhododendron Drive
- $35^{\text {th }}$ Street/Oak Street

Findings and recommendations are provided at the conclusion of the report.

## ANALYSIS METHODOLOGY AND APPLICABLE STANDARDS

All operations analyses described in this report were performed in accordance with the procedures stated in the Highway Capacity Manual, $6^{\text {th }}$ Edition (HCM - Reference 1).

All intersection level-of-service evaluations used the peak 15-minute flow rate during the weekday morning and evening commuter peak hours. Using the peak 15-minute flow rate ensures that this analysis is based on a reasonable worst-case scenario. For this reason, the analysis reflects conditions that are only likely to occur for 15 minutes out of each average peak hour. A description of level-of-service criteria is contained in Attachment " $B$ ".

The City of Florence has adopted level-of-service (LOS) and volume-to-capacity (V/C) ratio operating standards for signalized and unsignalized intersections as documented in the 2012 Transportation System Plan (TSP). The following operating standards apply to City intersections:

- LOS "D" is considered acceptable at signalized and all-way stop controlled intersections if the $\mathrm{V} / \mathrm{C}$ ratio is not higher than 1.0 for the sum of critical movements.
- LOS " E " is considered acceptable for the poorest operating approach at two-way stop intersections. LOS " F " is allowed in situations where a traffic signal is not warranted.


## EXISTING CONDITIONS

The existing conditions analysis identifies the site conditions and current physical and operational characteristics of the roadways within the study area. These conditions will be compared with future conditions later in this report.

Kittelson \& Associates, Inc. (Kittelson) staff inventoried the proposed development site and surrounding study area in February 2020. At that time, Kittelson collected information regarding site conditions, adjacent land uses, existing traffic operations, and transportation facilities in the study area.

## SITE CONDITIONS AND ADJACENT LAND USES

The site is currently vacant. The land uses in the site vicinity include residential, community commercial, and recreational.

## TRANSPORTATION FACILITIES

Table 1 summarizes the characteristics of the existing transportation facilities in the study area.
Table 1: Existing Transportation Facilities

Roadway	Functional   Classification	Number of   Lanes	Posted   Speed (mph)	Sidewalks	Bicycle   Lanes	On-Street   Parking
Rhododendron Drive	Minor Arterial	2	40	No	No	No?
$35^{\text {th Street }}$	Collector	2	25	No	Yes	No
Wecoma Loop - Royal   Saint Georges Drive	Local	2	40	No	No	Yes
Kingwood Street	Local	2	25	Yes	Yes	Nos
Oak Street	Collector	2		Yes	No	

${ }^{1}$ Functional Classification from Florence Transportation System Plan (December, 2012, Reference 2).
NP: not posted

## Roadway Facilities

Figure 3 illustrates the existing lane configurations and traffic control devices at the study intersections. All of the study intersections are two-way stop-controlled (TWSC).




As shown in Figure 4 and Figure 5, traffic operations satisfy the City of Florence operating standards for unsignalized intersections.

Attachment "D" contains the year 2019 existing traffic conditions worksheets.

## TRAFFIC SAFETY

The crash history of the study intersections was reviewed to identify crash patterns. ODOT provided five years of crash data available for the study intersections, which includes all reported crashes from January 1, 2013 through December 31, 2017. Table 2 summarizes the crash data provided by ODOT.

Table 2: Study Intersection Crash Summary (January 1, 2013 through December 31, 2017)

	Crash Type				Crash Severity			
Intersection	RearEnd	Turn	Angle	Ped	PDO	Injury	Fatal	Total
$35^{\text {th }}$ Street/   Rhododendron Drive	0	0	0	0	0	0	0	0
$35^{\text {th }}$ Street $/$   Royal St. Georges Drive-Wecoma Loop	0	0	0	0	0	0	0	0
$35^{\text {th }}$ Street $/$   Sand Pines Golf Course-Kingwood Street	0	0	0	0	0	0	0	0
$35^{\text {th }}$ Street $/$   Oak Street	0	1	4	0	4	1	0	5

PDO=Property Damage Only
As shown in Table 2, the only intersection with crashes in the study area reported over the five-year period is the $35^{\text {th }}$ Street/Oak Street intersection. At this intersection, angle crashes were the most common crash type. No other intersections in the study area had reported crashes in the most recent five years. No crash patterns were identified that would warrant mitigation as a result of the proposed development.

Attachment " $E$ " contains the crash data provided by ODOT.

## TRAFFIC IMPACT ANALYSIS

The TIA identifies how the study area's transportation system will operate in the year the proposed development is expected to be fully built, year 2021. The impact of traffic generated by the proposed residential subdivision during the typical weekday AM and PM peak hours was examined as follows:

- Developments and transportation improvements planned in the site vicinity were identified.
- Year 2021 and background traffic conditions were analyzed at the study intersection during the weekday AM and PM peak hours.
- Site-generated trips were estimated for build-out of the site.
- Site trip-distribution patterns were derived based on surrounding land uses.
- Year 2021 total traffic conditions were analyzed at the study intersections and site-access points during the weekday AM and PM peak hours.
- Driveway operations and sight distance were assessed.


## YEAR 2021 BACKGROUND TRAFFIC CONDITIONS

The year 2021 background traffic conditions analysis identifies how the study area's transportation system will operate without the proposed residential subdivision. This analysis includes traffic attributed to planned developments within the study area and to general growth in the region but does not include traffic from the proposed development.

## Planned Developments and Transportation Improvements

Planned, in-process traffic volumes include any developments not yet built that have completed the land use application process, have been issued conditions of approval, and are expected to be constructed and occupied prior to the completion of the proposed Florence Residential Subdivision project. Based on conversations and direction provided by City of Florence staff, no planned in-process developments in the area are included in the analysis. There are plans for a mixed-use path along $35^{\text {th }}$ Street, however there are no expected changes to the study intersections.

## Traffic Volumes

Regional traffic volume growth was evaluated based upon the ODOT Future Volume Tables which identify the average annual daily traffic (AADT). Two locations near the study area were identified on Oregon Coast Highway (US 101, ODOT Highway No. 009): 0.02 miles south of $36^{\text {th }}$ Street and 0.02 miles south of $29^{\text {th }}$ Street. Table 3 provides the base year (2018) and forecast year (2038) model AADTs for computation of the growth rate.

Table 3. ODOT Future Volume Table

Highway	Milepost	Description	Year 2018   AADT	Year 2038   AADT	$R^{2}$	Growth Rate
009	188.64	0.02 miles south of $36^{\text {th }}$ Street	12,500	12,600	0.4298	0.00040
009	21.34	0.02 miles south of $29^{\text {th }}$ Street	14,100	14,200	0.8050	0.00035

Growth rate calculation example: $(12,600 / 12,500-1) /(2038-2018)=0.00040$
Based on the volumes in Table 3, traffic volumes along the state highway in the vicinity of the study area are anticipated to increase by approximately 100 daily vehicles over a period of 20 years. This growth is negligible, and no annual background growth rate is proposed to be applied to the existing volumes for the 2021 buildout year analysis. Similarly, no regional growth factor will be applied to local streets.

With no in-process developments and no regional growth factor, the 2021 background conditions are expected to reflect the same conditions presented in Figure 4 and Figure 5.

## Intersection Operations

As stated previously, the 2021 background traffic intersection analysis is expected to be the same as the adjusted 2019 traffic operations. Therefore, the results of the analysis match that of the 2019 existing traffic analysis and the study intersections are forecast to satisfy the TSP operating standards during the weekday AM and PM peak hours. Refer to Attachment "D" for the existing (and background) traffic operations worksheets.

## PROPOSED DEVELOPMENT PLAN

The applicant proposes to develop up to 31 detached single-family homes, 55 attached townhome-style cottages, and 46 apartments.

## Trip Generation

A trip generation estimate was prepared for the proposed residential subdivision based on information provided in the standard reference manual, Trip Generation, $10^{\text {th }}$ Edition, published by the Institute of Transportation Engineers (ITE - Reference 4). Based on the land use data provided by ITE, the proposed townhome-style cottages and the apartments are both classified as low-rise multi-family homes. As such, ITE Land Use Code 220 (Multifamily Housing - Low Rise) is applied for the combined 101 units. Land Use Code 210 (Single-Family Detached Housing) is applied for the 31 single-family homes. Table 4 summarizes the trip generation estimate for the weekday daily, morning, and evening peak hours.





## RHODODENDRON DRIVE/35 ${ }^{\text {TH }}$ STREET INTERSECTION TRAFFIC SIGNAL WARRANT ANALYSIS

As shown in the traffic operations analysis findings, the average weekday PM peak hour westbound delay at the $35^{\text {th }}$ Street/Rhododendron Drive is forecast to increase by approximately three seconds ( 16.1 to 19.1 seconds) as a result of the added site traffic. The delay and intersection operations are expected to continue to meet City of Florence operational standards. However, to further address the intersection operations, based on a request from City of Florence staff, a signal warrant analysis was prepared for the Rhododendron Drive/ $35^{\text {th }}$ Street intersection.

The traffic signal warrant analysis was conducted consistent with ODOT requirements outlined in the Manual on Uniform Traffic Control Devices (MUTCD, Reference 6), and the ODOT Analysis Procedures Manual (Reference 3). The MUTCD identifies nine traffic signal warrants and notes "The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal." ${ }^{1}$ The first two volume-based warrants (\#1-Eight Hour and \#2-Four Hour) were evaluated based on the existing and future traffic volumes at the intersection ${ }^{2}$.

The weekday PM peak hour volumes were used to prepare a peak hour warrant analysis, and an assumed daily profile was assumed for the peak 4 -hour and peak 8 -hour signal warrant analyses. Based on the analysis results, signal warrants are not forecast to be met for the peak, 4 -, or 8 -hour warrants. As such,

[^5]signalization is not recommended at this time based on the impacts of the proposed development. The traffic signal warrant worksheets are included in Attachment "F."

## SIGHT DISTANCE ASSESSMENT

A preliminary sight distance analysis was conducted at the existing site accesses based on review of the proposed site plan. We recommend final sight distance certification be confirmed upon buildout. Preliminary site plan review of available sight distance indicates that both intersection and stopping sight distance (ISD and SSD) are expected to meet the design guidance presented in A Policy on Geometric Design of Highways and Streets (AASHTO, Reference 5) upon buildout.

## AASHTO Design Guidelines

One of the primary inputs in determining safe sight distance metrics according to AASHTO guidelines is the design speed of the respective roadway. The posted speed along Rhododendron Drive is 40 miles per hour and the advisory speed along the frontage of the property is posted at 35 miles per hour.

For an assumed design speed of the 40 mile-per-hour facility, Table 5 below summarizes the recommended minimum design guidance.

Table 5. Sight Distance Summary (Case B1 - Left Turn from the Minor Road)

Access Locations	Direction of Travel	AASHTO Design Guideline (feet) (ISD / SSD)
Access A (north)	Northbound (facing south from access)	445 / 305
	Southbound   (facing north from access)	445 / 305
Access B (south)	Northbound (facing south from access)	445 / 305
	Southbound   (facing north from access)	445 / 305

ISD: Intersection Sight Distance
SSD: Stopping Sight Distance

The following Exhibit 1 and Exhibit 2 illustrate a preliminary sight distance triangle for up to 445 feet of intersection sight distance. The red lines indicate the sightline from a vehicle at each corresponding site access while the yellow line indicates the on-road distance ( 445 feet) recommended for a design speed of 40 miles per hour.

Exhibit 1 Sight Triangle for Driveway A (approximate)


Exhibit 2 Sight Triangle for Driveway B (approximate)


Based on the preliminary assessment in Exhibits 1 and 2, no vertical curvature or horizontal curvature of Rhododendron Drive is expected to limit sight distances. However, there may be some foliage and low hanging branches that may be partially obstructing sight lines within the right-of-way - we recommend these be cleared upon construction of the site. Site landscaping, signage or above-ground utilities along the site frontages should be installed and maintained to provide adequate sight distance per City requirements.

## FINDINGS AND RECOMMENDATIONS

The results of this analysis indicate that the proposed residential subdivision can be constructed while maintaining acceptable traffic operations at the study intersections and site-accesses. The primary findings and recommendations of this study are summarized below.

- The proposed residential development is estimated to generate approximately 1,077 net new weekday daily trips, with 75 net new trips ( $18 \mathrm{in}, 57$ out) occurring during the weekday AM peak hour and 93 net new trips ( $59 \mathrm{in}, 34$ out) occurring during the weekday PM peak hour.
- All study intersections were found to operate acceptably under existing and forecast future conditions.
- No transportation capacity or safety-related mitigations are recommended as a result of the proposed development impacts.
- Landscaping, signage or above-ground utilities along the site frontages should be installed and maintained to provide adequate sight distance.

We trust this report adequately addresses the traffic impacts associated with the proposed residential subdivision. Please contact us if you have any questions.

## REFERENCES

1. Transportation Research Board. Highway Capacity Manual, $6^{\text {th }}$ Edition. 2019.
2. City of Florence, Oregon. Florence Transportation System Plan. 2012.
3. Oregon Department of Transportation. Analysis Procedures Manual. Updated in 2019.
4. Institute of Transportation Engineers. Trip Generation, 10 ${ }^{\text {th }}$ Edition, 2017.
5. American Association of State Highway and Transportation Officials. A Policy on Geometric Design of Highways and Streets. 2011 Edition.
6. US Department of Transportation Federal Highway Administration. Manual on Uniform Traffic Control Devices. Updated December 2019.

## ATTACHMENTS

A. Scoping Memorandum
B. Level-of-Service Criteria
C. Traffic Count Data
D. Existing Traffic Operations Worksheets
E. Crash Data
F. Year 2021 Total Traffic Operations Worksheets


## Attachment A

Scoping Memorandum

## MEMORANDUM - DRAFT

To: Mike Miller, Public Works Director
City of Florence Public Works
250 Highway 101
Florence, OR 97439
Cc: $\quad$ Matt Caswell, PE, ODOT
From: Diego Arguea, PE \& Amy Griffiths
Project: Florence Residential Subdivision
Subject: Traffic Impact Study Scoping

This memorandum documents the methodology and key assumptions to be used in preparation of the traffic impact analysis (TIA) for a residential development in Florence, Oregon.

## PROPOSED DEVELOPMENT PLAN

The applicant proposes development of 91 single-family homes and up to 48 low-rise ${ }^{1}$ apartments to be located on a vacant site in north Florence, Oregon. The site is bounded by Rhododendron Road to the west, $35^{\text {th }}$ Street and Siano Loop Road to the south, and Royal Saint Georges Drive to the east and north. Access to the site is proposed via two driveways, spaced at approximately 340 feet and 610 feet north of $35^{\text {th }}$ Street. A site vicinity map is shown in Figure 1.

The proposed development is expected to be constructed in 2021. A site plan is shown in Figure 2.

## TRIP GENERATION AND DISTRIBUTION

Table 1 summarizes the estimated site-generated trips for the proposed development. Trip generation rates for the single-family and apartment land uses are based on the standard reference Trip Generation, $10^{\text {th }}$ Edition. For each land use, the regression equation is used to estimate trip generation if there are more than 20 data points and the coefficient of correlation ( $\mathrm{R}^{2}$ value) is 0.75 or higher. If these criteria are not met, the average rate is used.

[^6]
Florence Residential Subdivision

$\mathbb{R} \mathbb{K}$

Table 1. Proposed Land Use Trip Generation

Land Use	ITE Code	Units	Daily   Trips	AM			PM		
				Total	In	Out	Total	In	Out
Single Family Detached Housing	210	91	953	69	17	52	93	59	34
Multifamily Housing (Low-Rise)	220	48	322	24	6	18	31	19	12
Total Net New			1,275	93	23	70	124	78	46

Figure 3 and Figure 4 display a preliminary trip distribution and assignment based on review of surrounding land uses and the roadway network. The trip distribution pattern used in the formal traffic impact analysis may be revised based on traffic volume data to be collected at the study intersections as well as agency review comments.

## STUDY INTERSECTIONS

Proposed study intersections were identified based on the project's anticipated trip generation impact on adjacent intersections within the site vicinity. One intersection under ODOT ${ }^{2}$ jurisdiction was identified to be impacted - however, under both weekday AM and PM peak hours, this intersection is forecast to be impacted by fewer than 50 trips (see Figures 3 and 4). As such, the intersection of $35^{\text {th }}$ Avenue/Oregon Coast Highway (Hwy 101) has been included in the study area to address City requirements. All proposed study intersections are summarized below.

- Site Driveway " A "/Rhododendron Drive
- Site Driveway "B"/Rhododendron Drive
- $35^{\text {th }}$ Street/Rhododendron Drive
- $35^{\text {th }}$ Street/Royal St. Georges Drive
- $35^{\text {th }}$ Street/Kingwood Street
- $35^{\text {th }}$ Street/Oak Street
- $35^{\text {th }}$ Street/Oregon Coast Highway (Hwy 101)

[^7]


## OPERATIONS ANALYSIS

The traffic operations analysis will include evaluation of the following performance measures for the study intersections:

- Turning movement counts;
- Volume-to-capacity (V/C) ratio;
- Level-of-service (LOS) and delay; and,
- $95^{\text {th }}$ percentile queuing.

Individual study intersection performance will be documented in tables, figures, and/or technical appendices using the measures of effectiveness listed above. Study intersection performance will then be compared to applicable City and ODOT performance thresholds.

## Analysis Years

We will report performance measures for the following analysis years:

- Existing year 2019 traffic analysis;
- Opening year 2021 background traffic analysis (without added trips from the proposed development); and,
- Forecast year 2021 total traffic analysis (including added trips from the proposed development).


## Mobility Standards

ODOT assesses intersection operations based on v/c ratio. Table 6 of the Oregon Highway Plan (OHP) provides $\mathrm{v} / \mathrm{c}$ ratio targets statewide. These OHP ratios are used to evaluate existing and future no-build conditions, and the mobility standard is based on characteristics of the state highway.

Within the study area, the Oregon Coast Highway (Hwy 101) is classified as a statewide highway (not a freight route), located within the urban growth boundary (non-MPO), and has a posted speed limit of 35 miles per hour. As such, the ODOT required mobility standard for the $35^{\text {th }}$ Street/Oregon Coast Highway (Hwy 101) intersection is a v/c ratio of 0.90.

Table 6 of the Oregon Highway Plan (OHP) is shown on the following page.

VOLUME TO CAPACITY RATIO TARGETS OUTSIDE METRO ${ }^{17 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}}$							
Highway Category	Inside Urban Growth Boundary					Outside Urban Growth Boundary	
	STA ${ }^{\text {E }}$	MPO	Non-MPO Outside of STAs where non- freeway posted speed $<=35$ mph, or a Designated UBA	$\begin{gathered} \text { Non-MPO } \\ \text { outside of } \\ \text { STAs where } \\ \text { non-freeway } \\ \text { speed }>35 \\ \text { mph but }<45 \\ \text { mph } \end{gathered}$	Non-MPO where nonfreeway speed limit $>=45 \mathrm{mph}$	Unincorporated Communities ${ }^{F}$	Rural   Lands
Interstate Highways	N/A	0.85	N/A	N/A	0.80	0.70	0.70
Statewide Expressways	N/A	0.85	0.85	0.80	0.80	0.70	0.70
Freight Route on a Statewide Highway	0.90	0.85	0.85	0.80	0.80	0.70	0.70
Statewide (not a Freight Route)	0.95	0.90	0.90	0.85	0.80	0.75	0.70
Freight Route on a regional or District Highway	0.95	0.90	0.90	0.85	0.85	0.75	0.70
Expressway on a Regional or District Highway	N/A	0.90	N/A	0.85	0.85	0.75	0.70
Regional Highways	1.0	0.95	0.90	0.85	0.85	0.75	0.70
District/Local Interest Roads	1.0	0.95	0.95	0.90	0.90	0.80	0.75

Table 6: Volume to Capacity Ratio Targets for Peak Hour Operating Conditions

We request that the City of Florence provide us with the applicable mobility standards for the other study intersections.

## SEASONAL ADJUSTMENT FACTOR

Peak hour traffic counts will be collected in December 2019 and will subsequently be adjusted to reflect $30^{\text {th }}$ highest hour design volumes, based on applicable adjustment factors. Version 2 of the APM identifies three methods for identifying seasonal adjustment factors for highway traffic volumes:

- On-Site ATR Method
- ATR Characteristic Table Method
- Seasonal Trend Method

All three methods utilize information provided by Automatic Traffic Recorders (ATRs) situated in select locations throughout the State Highway System that collect traffic data 24 -hours a day/365 days a year.

The On-Site ATR Method meets the criteria that the ATR be located within or near the project area. ATR Florence (20-026) was identified on Highway 101 and located 0.77 miles north of Heceta Beach Road, and 2.21 miles north of the $35^{\text {th }}$ Street/Highway 101 study intersection. No major intersections that would impact seasonal trends are located between the study intersection and the ATR location. As such, we propose using ATR 20-026 data to seasonally adjust traffic volume data collected in December 2019.

Table 2 displays the ATR data used to develop the seasonal adjustment factor for the study area.
Table 2. Seasonal Adjustment Factor Calculation (weekday daily data)

Year	2014	2015	2016	2017	2018	Average
Peak Month (July) \% of ADT	$136 \%$	$136 \%$	$134 \%$	$142 \%$	$140 \%$	$137 \%$
Month of Data Collection (December) \% of ADT	$76 \%$	$75 \%$	$78 \%$	$78 \%$	$77 \%$	$77 \%$

Note: Shaded values removed from average calculation per ODOT methodology.

Cells highlighted in grey reflect the highest and lowest values and were excluded from the average per ODOT guidelines. From this data, the seasonal factor can be computed as $137 \% \div 77 \%=1.78$.

Based on direction provided in the ODOT Analysis Procedures Manual, a seasonal adjustment greater than $30 \%$ should not be used. To supplement the ATR methodology, the most up-to-date seasonal trend tables ${ }^{3}$ were reviewed - for the count month December, the seasonal adjustments shown for the following routes are as follows:

- Coastal Destination: 1.1636
- Coastal Destination Route: 1.2836

Averaging the seasonal trend table values for December results in a 1.2236 seasonal adjustment.
We welcome you providing historic traffic count data that may be available for the study intersections that could help further inform the seasonal adjustment. If no additional data is available, and subject to ODOT and City feedback, we propose to adjust the through movements on Highway 101 by a factor of 1.22 to reflect the $30^{\text {th }}$ highest hour volumes.

## CRASH DATA REVIEW

The most-recent three-year period of reported crash data (January 1, 2016 through December 31, 2018) will be reviewed at the study intersections. Any study intersections that are identified as a Safety Priority Index System sites (top 5- or 10-percent) will be included in the crash data and highlighted in the analysis.

[^8]The data will be analyzed for a variety of factors to include type, severity, general conditions, and location to identify potential crash patterns or anomalies.

## FORECAST YEAR VOLUME DEVELOPMENT

Growth rates for opening year background traffic volumes will be based upon the ODOT Future Volume Tables. Two locations near the study area were identified on Oregon Coast Highway (US 101, ODOT Highway No. 009): 0.02 miles south of $36^{\text {th }}$ Street and 0.02 miles south of $29^{\text {th }}$ Street. Table 3 provides the base year (2018) and forecast year (2038) model AADTs for computation of the growth rate.

Table 3. ODOT Future Volume Table

Highway	Milepost	Description	2018	2038	$R^{2}$	Growth Rate
009	188.64	0.02 miles south of $36^{\text {th }}$ Street	12,500	12,600	0.4298	0.00040
009	21.34	0.02 miles south of $29^{\text {th }}$ Street	14,100	14,200	0.8050	0.00035

Growth rate calculation example: $(12,600 / 12,500-1) /(2038-2018)=0.00040$
Based on the volumes in Table 3, traffic volumes along the state highway in the vicinity of the study area are anticipated to increase by approximately 100 daily vehicles over a period of 20 years. This growth is negligible and suggests it may not be necessary to apply an annual background growth rate to the existing volumes for the 2021 buildout year analysis. We would appreciate receipt of in-process development and/or annual growth rate data that may be available. In the absence of additional data, we propose to not apply a regional growth factor to the local streets.

## NEXT STEPS

Please review the information presented in this memorandum and provide us your feedback regarding the study assumptions and methodology. Please also provide confirmation of the City of Florence mobility standards. We would be pleased to schedule a conference call to discuss if desired.

From:	BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent:	Friday, January 3, 2020 7:19 AM
To:	BAUMGARTNER Douglas G; Diego Arguea
Cc:	Mike.Miller@ci.florence.or.us; Amy Griffiths; UPTON Dorothy J; NELSON Brian S * Scott
Subject:	RE: Development Review Contact for ODOT Region 2 District 5

Doug and Diego:
Thank you for passing along this scoping letter. My comments are:

1. Traffic study should be consistent with ODOT's Analysis Procedures Manual (APM) https://www.oregon.gov/ODOT/Planning/Pages/APM.aspx
2. Does the City concur with the proposed Trip Distribution? It appears the assumed $30 \%(10 \%$ to/from north, $20 \%$ to/from south) of the total trips accessing the US- $101 / 35^{\text {th }}$ Street intersection is low, but I concur that it appears this intersection will not trigger ODOT's 50 peak hour net trip increase threshold to recommend study of the intersection. That said, I am still available and willing to review the draft traffic study as a resource for the City.
3. The OHP mobility target for the US-101/35 $5^{\text {th }}$ Street intersection is actually 0.85 rather than 0.90 as cited within the scoping letter (statewide highway, non-OHP freight route, 40 MPH ).
4. The citation within ODOT's APM about avoiding the use of seasonal adjustments above $30 \%$ is not intended to limit the adjustment itself, but rather identify the least appropriate months during the year to conduct traffic counts. Due to the seasonal trending nature of the local transportation network, traffic counts at the US-101/35 ${ }^{\text {th }}$ Street intersection should be collected between March 1 and November 15. However, if the City will accept December counts for the purpose of this traffic study, Region Traffic recommends a seasonal adjustment of 1.76 for the US-101/35 ${ }^{\text {th }}$ Street intersection based on an average of the following trends:
a. 1.84 using Florence ATR 20-026 and the Average Daily Traffic method (as opposed to the Average Weekday Traffic method)
b. 1.49 using the Coastal Destination trend (the proposed calculation must have included an error)
c. 1.96 using the Coastal Destination Route trend (the proposed calculation must have included an error)
5. Per Table 3.3 of ODOT's Development Review Guidelines, for a development of this size ( $1,000-$ 2,999 ADT), Region Traffic recommends the following analysis scenario years:
a. Existing (2019)
b. Opening Year (2021)
i. Background
ii. Total
c. Opening Year +5 Years (2026)
i. Background
ii. Total

I hope the above information will help, but please let me know if there are any more questions or if I may be of any further assistance. Thanks!

Keith P. Blair, P.E.
Interim Traffic Analysis Engineer | ODOT Region 2

ODOT's mission is to provide a safe and reliable multimodal transportation system that connects people and helps Oregon's communities and economy thrive.

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Friday, December 27, 2019 3:24 PM
To: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

## Hi Scott -

Thanks for email. I was also told that Keith Blair is someone who has been involved in development review? We are currently scoping, but we are on a fast track to deliver this project by end of January. I have included the scoping memorandum attached for your reference. Note that the only intersection under ODOT jurisdiction is $35^{\text {th }}$ Ave/Hwy 101, but we do not estimate more than 50 peak hour trips to this intersection, so, ultimately, it may even not be required for study - I will defer to you. If it is required, please confirm the seasonal adjustment methodology.

Thanks!
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc. d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Sent: Thursday, December 26, 2019 2:57 PM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: Development Review Contact for ODOT Region 2 District 5
Hello Diego, I here you are working on a TIS in Florence. Doug Baumgartner is our development review coordinator for that area, however Doug is out until January $6^{\text {th }}$. In the meantime I can help you get started. Are you looking for a scope or are you beyond that?
thanks

B Scott Nelson, P.E.<br>Region 2 Access Management Engineer

455 Airport Rd SE, Bldg. B
Salem, OR 97301
Office 503.986.2882

## Amy Griffiths

From:	Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Sent:	Thursday, January 9, 2020 9:49 AM
To:	BLAIR Keith P; Diego Arguea
Cc:	Amy Griffiths; BAUMGARTNER Douglas G; Wendy Farley-Campbell
Subject:	RE: Florence - revision in site plan

Thanks Keith! I agree, since we know what the mix is using ITE codes 210 and 220 will be more accurate.

Mike

From: BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent: Thursday, January 9, 2020 9:07 AM
To: 'Diego Arguea' [darguea@kittelson.com](mailto:darguea@kittelson.com); Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: RE: Florence - revision in site plan
Diego and Mike:
My recommendation would be to utilize trip generation for land uses 210 and 220 as opposed to 270 for the combination of the following reasons:

- it appears the proposed land use mix is known, as opposed to a general PUD application
- ITE data sample sizes for land uses 210 and 220 are significantly larger than that for 270 and, as a result, likely more accurate
- trip generation results for land uses 210 and 220 are slightly larger (more conservative) for the daily and PM peak hour

Please let me know if I may be of further assistance. Thanks!

## Keith Blair

(503) 986-2857

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Wednesday, January 8, 2020 6:01 PM
To: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: Florence - revision in site plan

Mike, Keith,

Thank you both for your time in coordination and working through the project assumptions. We have recently had a change (reduction) in the site plan units, and I wanted to share an updated trip generation prior to moving forward with our analysis. Please review and let us know if you are comfortable using the PUD trip generation rate.

In our scoping memorandum, the site plan identified 91 single family home lots and 48 apartments. The revised unit mix is as follows:

31 single family lots

46 apartments
55 attached townhome/cottage 2-story homes (owner occupied not rentals)

## 132 total units

The $9^{\text {th }}$ edition of Trip Generation included a category for 'townhomes' which does not exist in the $10^{\text {th }}$ edition. Rather, the townhome data has been lumped together with the rate in the Low Rise Residential data. As such, one potential trip generation estimate shown below includes 31 single family lots and 101 low rise residential ( 46 apartments +55 attached homes).

Land Use	$\begin{gathered} \text { ITE } \\ \text { Code } \end{gathered}$	Units	Daily Trips	Weekday AM			Weekday PM		
				Total	In	Out	Total	In	Out
Residential									
Single-Family Detached Housing (AVG)	210	31	354	27	7	20	33	21	12
Internal Trips (0\% Daily, 0\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Multifamily Housing (Low-Rise)	220	101	723	48	11	37	60	38	22
Internal Trips (0\% Daily, O\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Net Trip Generation			1,077	75	18	57	93	58	34

Alternatively, the $10^{\text {th }}$ edition also has a new land use category called PUD Residential (Land Use 270). This rate is intended for developments that are PUDs and the final land use mix may or may not be known. The second table represents the revised trip generation assuming all 132 units are run as PUD.

Land Use	ITE Code	Units	Daily Trips	Weekday AM			Weekday PM		
				Total	In	Out	Total	In	Out
Residential									
Planned Unit Development (PUD) Average Rate	270	132	974	75	17	59	91	59	32
Internal Trips (0\% Daily, 0\% AM, Saturday 0\%)			0	0	0	0	0	0	0
Net Trip Generation			974	75	17	59	91	59	32

As you'll note, the differences in net trip generation are very marginal - please review and let us know if you are both more comfortable with one over the other. Because this development application is going in as a PUD, I am comfortable with the trip generation and it seems appropriate to use this land use. But, given that we know the land use mix, I am open to either approach. Thanks in advance - please let us know your thoughts.

Thanks in advance,
Diego and Amy

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Sent: Tuesday, January 07, 2020 10:21 AM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: RE: Development Review Contact for ODOT Region 2 District 5
Hi Diego,
Just left you a message. Sorry that yesterday did not work. I was just stepping into a meeting when you called and then I had an executive session with City Council plus our regular Council meeting last night.

I will be on the road traveling to Eugene to meet with Lane County at 11am and will be back in Florence after 3:30pm. I have a meeting scheduled with the City Manager, but should be available later after 4:30pm today.

If that doesn't work, I do have time available after 10am Wednesday.

Thank you,

Mike

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Monday, January 6, 2020 2:44 PM
To: Mike Miller [mike.miller@ci.florence.or.us](mailto:mike.miller@ci.florence.or.us)
Cc: Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com)
Subject: FW: Development Review Contact for ODOT Region 2 District 5

Hi Mike,

Just left a message with Sandy (receptionist?) regarding our transportation work in Florence. I am available the rest of the afternoon and have some flexibility tomorrow afternoon. Please let me know when is a good time to chat about the scope of the transportation work - thanks in advance!

Thanks,
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Sent: Friday, January 03, 2020 7:19 AM
To: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); UPTON Dorothy J
[Dorothy.J.UPTON@odot.state.or.us](mailto:Dorothy.J.UPTON@odot.state.or.us); NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

Doug and Diego:
Thank you for passing along this scoping letter. My comments are:

1. Traffic study should be consistent with ODOT's Analysis Procedures Manual (APM) https://www.oregon.gov/ODOT/Planning/Pages/APM.aspx
2. Does the City concur with the proposed Trip Distribution? It appears the assumed $30 \%(10 \%$ to/from north, $20 \%$ to/from south) of the total trips accessing the US-101/35 ${ }^{\text {th }}$ Street intersection is low, but I concur that it appears this intersection will not trigger ODOT's 50 peak hour net trip increase threshold to recommend study of the intersection. That said, I am still available and willing to review the draft traffic study as a resource for the City.
3. The OHP mobility target for the US-101/35 $5^{\text {th }}$ Street intersection is actually 0.85 rather than 0.90 as cited within the scoping letter (statewide highway, non-OHP freight route, 40 MPH ).
4. The citation within ODOT's APM about avoiding the use of seasonal adjustments above $30 \%$ is not intended to limit the adjustment itself, but rather identify the least appropriate months during the year to conduct traffic counts. Due to the seasonal trending nature of the local transportation network, traffic counts at the US-101/35 ${ }^{\text {th }}$ Street intersection should be collected between March 1 and November 15. However, if the City will accept December counts for the purpose of this traffic
study, Region Traffic recommends a seasonal adjustment of 1.76 for the US-101/35 ${ }^{\text {th }}$ Street intersection based on an average of the following trends:
a. 1.84 using Florence ATR 20-026 and the Average Daily Traffic method (as opposed to the Average Weekday Traffic method)
b. 1.49 using the Coastal Destination trend (the proposed calculation must have included an error)
c. 1.96 using the Coastal Destination Route trend (the proposed calculation must have included an error)
5. Per Table 3.3 of ODOT's Development Review Guidelines, for a development of this size ( $1,000-$ 2,999 ADT), Region Traffic recommends the following analysis scenario years:
a. Existing (2019)
b. Opening Year (2021)
i. Background
ii. Total
c. Opening Year +5 Years (2026)
i. Background
ii. Total

I hope the above information will help, but please let me know if there are any more questions or if I may be of any further assistance. Thanks!

Keith P. Blair, P.E.
Interim Traffic Analysis Engineer | ODOT Region 2
455 Airport Rd SE, Bldg. A | Salem, Oregon 97301
(503) 986-2857 | Keith.P.Blair@odot.state.or.us

ODOT's mission is to provide a safe and reliable multimodal transportation system that connects people and helps Oregon's communities and economy thrive.

From: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Sent: Friday, December 27, 2019 3:24 PM
To: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us); Mike.Miller@ci.florence.or.us; Amy Griffiths [agriffiths@kittelson.com](mailto:agriffiths@kittelson.com); BLAIR Keith P [Keith.P.BLAIR@odot.state.or.us](mailto:Keith.P.BLAIR@odot.state.or.us)
Subject: RE: Development Review Contact for ODOT Region 2 District 5

## Hi Scott -

Thanks for email. I was also told that Keith Blair is someone who has been involved in development review? We are currently scoping, but we are on a fast track to deliver this project by end of January. I have included the scoping memorandum attached for your reference. Note that the only intersection under ODOT jurisdiction is $35^{\text {th }}$ Ave/Hwy 101, but we do not estimate more than 50 peak hour trips to this intersection, so, ultimately, it may even not be required for study - I will defer to you. If it is required, please confirm the seasonal adjustment methodology.

Thanks!
Diego

Diego Arguea, P.E. | Associate Engineer | Kittelson \& Associates, Inc.
d: 503.535.7462-1462 (ext) | o: 503.228.5230 | c: 503.334.3183

From: NELSON Brian S * Scott [Brian.S.NELSON@odot.state.or.us](mailto:Brian.S.NELSON@odot.state.or.us)
Sent: Thursday, December 26, 2019 2:57 PM
To: Diego Arguea [darguea@kittelson.com](mailto:darguea@kittelson.com)
Cc: BAUMGARTNER Douglas G [Douglas.G.BAUMGARTNER@odot.state.or.us](mailto:Douglas.G.BAUMGARTNER@odot.state.or.us)
Subject: Development Review Contact for ODOT Region 2 District 5

Hello Diego, I here you are working on a TIS in Florence. Doug Baumgartner is our development review coordinator for that area, however Doug is out until January 6 th. In the meantime I can help you get started. Are you looking for a scope or are you beyond that?
thanks

## B Scott Nelson, P.E.

Region 2 Access Management Engineer

455 Airport Rd SE, Bldg. B
Salem, OR 97301
Office 503.986.2882
Cell 503.602.0703

## Attachment B <br> Level-of-Service Criteria

## DESCRIPTION OF LEVEL OF SERVICE

Level of service (LOS) is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or roadway segment. Six grades are used to denote the various level of service from " $A$ " to " $F$ ". ${ }^{1}$

## SIGNALIZED INTERSECTIONS

The six level-of-service grades are described qualitatively for signalized intersections in Table B1. Additionally, Table B2 identifies the relationship between level of service and average control delay per vehicle. Control delay is defined to include initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Using this definition, Level of Service " $D$ " is generally considered to represent the minimum acceptable design standard.

Table B1: Level-of-Service Definitions (Signalized Intersections)

Level of Service	Average Delay per Vehicle
A	Very low average control delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Average control delay is greater than 10 seconds per vehicle and less than or equal to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for a level of service A, causing higher levels of average delay.
C	Average control delay is greater than 20 seconds per vehicle and less than or equal to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Average control delay is greater than 35 seconds per vehicle and less than or equal to 55 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Average control delay is greater than 55 seconds per vehicle and less than or equal to 80 seconds per vehicle. This is usually considered to be the limit of acceptable delay. These high delay values generally (but not always) indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.
F	Average control delay is more than 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such high delay values.

[^9]Table B2: Level-of-Service Criteria for Signalized Intersections

Level of   Service	Average Control Delay per Vehicle (Seconds)
A	$<10.0$
B	$>10$ and $\leq 20$
C	$>20$ and $\leq 35$
D	$>35$ and $\leq 55$
E	$>55$ and $\leq 80$
F	$>80$

## UNSIGNALIZED INTERSECTIONS

Unsignalized intersections include two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections. The Highway Capacity Manual, $6^{\text {th }}$ edition (HCM) provides models for estimating control delay at both TWSC and AWSC intersections. A qualitative description of the various service levels associated with an unsignalized intersection is presented in Table B3. A quantitative definition of level of service for unsignalized intersections is presented in Table B4. Using this definition, Level of Service "E" is generally considered to represent the minimum acceptable design standard.

Table B3: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Delay per Vehicle to Minor Street
A	- Nearly all drivers find freedom of operation.   - Very seldom is there more than one vehicle in queue.
B	- Some drivers begin to consider the delay an inconvenience.   - Occasionally there is more than one vehicle in queue.
C	- Many times there is more than one vehicle in queue.   - Most drivers feel restricted, but not objectionably so.
D	- Often there is more than one vehicle in queue.   - Drivers feel quite restricted.
E	- Represents a condition in which the demand is near or equal to the probable maximum number of vehicles that can be accommodated by the movement.   - There is almost always more than one vehicle in queue.   - Drivers find the delays approaching intolerable levels.
F	- Forced flow.   - Represents an intersection failure condition that is caused by geometric and/or operational constraints external to the intersection.

Table B4: Level-of-Service Criteria for Unsignalized Intersections

Level of   Service	Average Control Delay per Vehicle (Seconds)
A	$<10.0$
B	$>10.0$ and $\leq 15.0$
C	$>15.0$ and $\leq 25.0$
D	$>25.0$ and $\leq 35.0$
E	$>35.0$ and $\leq 50.0$
F	$>50.0$

It should be noted that the level-of-service criteria for unsignalized intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, there are a number of driver behavior considerations that combine to make delays at signalized intersections less galling than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, while drivers on the minor street approaches to TWSC intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized intersections than signalized intersections. For these reasons, it is considered that the control delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection. While overall intersection level of service is calculated for AWSC intersections, level of service is only calculated for the minor approaches and the major street left turn movements at TWSC intersections. No delay is assumed to the major street through movements. For TWSC intersections, the overall intersection level of service remains undefined: level of service is only calculated for each minor street lane.

In the performance evaluation of TWSC intersections, it is important to consider other measures of effectiveness (MOEs) in addition to delay, such as $\mathrm{v} / \mathrm{c}$ ratios for individual movements, average queue lengths, and $95^{\text {th }}$-percentile queue lengths. By focusing on a single MOE for the worst movement only, such as delay for the minor-street left turn, users may make inappropriate traffic control decisions. The potential for making such inappropriate decisions is likely to be particularly pronounced when the HCM level-of-service thresholds are adopted as legal standards, as is the case in many public agencies.

## Attachment C

Traffic Count Data


Comments:



Comments:



Comments:


Comments:

$\begin{array}{r} 121 \div 21 \\ 131 \\ 207 \Rightarrow 55 \\ \hline \end{array}$							k-Hou   15-M   Qua   DATA TH   $d$	7:	AM   AM   Co   COM	8:35 $-8: 10$	M AM							
5-Min Count Period Beginning At	Oak St(Northbound)				Oak St(Southbound)				35th St(Eastbound)				35th St(Westbound)				$\text { Total }\left\|\begin{array}{l} \text { Hourly } \\ \text { Totals } \end{array}\right\|$	
	Left	Thru	Right	U														
7:00 AM	0	0	1	0	0	0	0	0	1	6	1	0	0	4	0	0	13	
7:05 AM	1	0	0	0	0	0	0	0	1	5	0	0	0	1	0	0	8	
7:10 AM	0	0	0	0	0	1	2	0	4	3	0	0	0	4	0	0	14	
7:15 AM	1	0	0	0	0	0	0	0	0	6	1	0	0	2	0	0	10	
7:20 AM	0	0	0	0	0	1	1	0	4	6	1	0	0	8	0	0	21	
7:25 AM	1	0	2	0	0	2	3	0	0	2	1	0	0	7	0	0	18	
7:30 AM	0	1	0	0	0	2	2	0	1	7	0	0	2	5	0	0	20	
7:35 AM	1	4	0	0	0	1	2	0	1	7	3	0	1	7	0	0	27	
7:40 AM	0	1	1	0	0	2	1	0	1	8	3	0	1	7	0	0	25	
7:45 AM	4	1	0	0	0	1	1	0	3	11	7	0	3	14	0	0	45	
7:50 AM	0	2	1	0	0	2	1	0	4	9	3	0	2	6	0	0	30	
7:55 AM	1	2	1	0	1	2	7	0	0	17	8	0	1	4	0	0	44	275
8:00 AM	3	3	2	0	0	3	2	0	1	10	9	0	1	8	0	0	42	304
8:05 AM	1	4	3	0	0	4	2	0	2	9	8	0	0	5	0	0	38	334
8:10 AM	2	0	2	0	0	7	0	0	4	13	7	0	1	6	0	0	42	362
8:15 AM	0	2	2	0	0	3	1	0	0	8	3	0	1	7	0	0	27	379
8:20 AM	4	1	5	0	0	0	1	0	4	14	2	0	1	6	0	0	38	396
8:25 AM	2	1	2	0	0	1	4	0	1	9	1	0	0	1	0	0	22	400
8:30 AM	0	3	1	0	0	2	4	0	0	16	1	0	0	6	0	0	33	413
8:35 AM	0	1	1	0	0	0	2	0	3	8	0	0	0	6	0	0	21	407
8:40 AM	0	1	0	0	1	1	4	0	2	4	1	0	1	4	1	0	20	402
8:45 AM	1	1	0	0	1	1	0	0	1	14	1	0	0	5	0	0	25	382
8:50 AM	2	2	1	0	0	1	2	0	4	16	1	0	0	11	0	0	40	392
8:55 AM	1	1	1	0	0	2	0	0	2	11	1	0	2	3	0	0	24	372
Peak 15-Min Flowrates	Northbound				Southbound				Eastbound				Westbound				Total	
	Left	Thru	Right	U														
All Vehicles	20	36	24	0	4	36	44	0	12	144	100	0	8	68	0	0		96
Heavy Trucks Buses Pedestrians Bicycles Scooters	0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0		0 0	$\begin{aligned} & 4 \\ & 0 \\ & 0 \end{aligned}$	0 0		0 0	$\begin{aligned} & 16 \\ & 8 \\ & 0 \end{aligned}$	8 1		0 0	8 0 0	0 0			6 8 1

Comments:


Comments:

## Attachment D

## Existing Traffic Operations

Worksheets

Intersection						
Int Delay, s/veh	6.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	33	102	49	49	192	92
Future Vol, veh/h	33	102	49	49	192	92
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	21	5	7	4	2	2
Mvmt Flow	43	134	64	64	253	121


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	723	96	0	0	128	0
Stage 1	96	-	-	-	-	-
Stage 2	627	-	-	-	-	-
Critical Hdwy	6.61	6.25	-	-	4.12	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.345	-	-	2.218	-
Pot Cap-1 Maneuver	366	952	-	-	1458	-
Stage 1	882	-	-	-	-	-
Stage 2	498	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	298	952	-	-	1458	-
Mov Cap-2 Maneuver	298	-	-	-	-	-
Stage 1	882	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.1		0		5.4	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	620	1458	-
HCM Lane V/C Ratio		-	-	0.287	0.173	-
HCM Control Delay (s)		-	-	13.1	8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.2	0.6	-








Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	0	0	151	0	0	284
Future Vol, veh/h	0	0	151	0	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	199	0	0	374



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	r		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	0	0	151	0	0	284
Future Vol, veh/h	0	0	151	0	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	199	0	0	374


Major/Minor	Minor1		Major1		ajor2	
Conflicting Flow All	573	199	0	0	199	0
Stage 1	199	-	-	-	-	-
Stage 2	374	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	484	847	-	-	1385	-
Stage 1	839	-	-	-	-	-
Stage 2	700	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	484	847	-	-	1385	-
Mov Cap-2 Maneuver	484	-	-	-	-	-
Stage 1	839	-	-	-	-	-
Stage 2	700	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1385	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-


Intersection						
Int Delay, s/veh	9.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	83	315	93	51	153	93
Future Vol, veh/h	83	315	93	51	153	93
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	2	2	3	2	4
Mvmt Flow	89	339	100	55	165	100







Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			$\ddagger$			$\ddagger$			4	
Traffic Vol, veh/h	47	299	23	12	323	2	34	33	25	17	23	72
Future Vol, veh/h	47	299	23	12	323	2	34	33	25	17	23	72
Conflicting Peds, \#/hr	1	0	0	0	0	1	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	3	4	0	4	0	0	0	0	6	0	0
Mvmt Flow	53	336	26	13	363	2	38	37	28	19	26	81



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	0	0	408	0	0	246
Future Vol, veh/h	0	0	408	0	0	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	439	0	0	265



Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	0	0	408	0	0	246
Future Vol, veh/h	0	0	408	0	0	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	0	0	439	0	0	265


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	704	439	0	0	439	0
Stage 1	439	-	-	-	-	-
Stage 2	265	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	406	622	-	-	1132	-
Stage 1	654	-	-	-	-	-
Stage 2	784	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	406	622	-	-	1132	-
Mov Cap-2 Maneuver	406	-	-	-	-	-
Stage 1	654	-	-	-	-	-
Stage 2	784	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	-	1132	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	-	0	-

## Attachment E Crash Data

Intersectional Crashes at 35th St \& Rhododendron Dr January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	$\begin{gathered} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{gathered}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE   KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Royal St Georges Dr / Wecoma Lp
January 1, 2013 through December 31, 2017


YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Kingwood St January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE   INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

YEAR.
TOTAL
FINAL TOTAL

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.

Intersectional Crashes at 35th St \& Oak St
January 1, 2013 through December 31, 2017

COLLISION TYPE	FATAL CRASHES	NON-   FATAL   CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE   KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET   SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2016														
ANGLE	0	0	2	2	0	0	0	1	1	1	1	2	0	0
2016 TOTAL	0	0	2	2	0	0	0	1	1	1	1	2	0	0
YEAR: 2015														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	0	1	1	0	0
2015 TOTAL	0	1	1	2	0	1	0	2	0	1	1	2	0	0
YEAR: 2013														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL TOTAL	0	1	4	5	0	1	0	4	1	3	2	5	0	0

Disclaimers: Effective 2016, collection of "Property Damage Only" (PDO) crash data elements was reduced for vehicles and participants. Age, Gender, License, Error and other elements are no longer available for PDO crash reporting. Please keep this in mind when comparing 2016 PDO crash data to prior years.

A higher number of crashes may be reported as of 2011 compared to prior years. This does not necessarily reflect an increase in annual crashes. The higher numbers may result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics. For all disclaimers,
see https://www.oregon.gov/ODOT/Data/documents/Crash_Data_Disclaimers.pdf.


00239	N N N	$01 / 17 / 2016$		17	OAK ST	
NONE	N	Sun	5 P	0	35 TH	ST
NO	43	59	48.92	-124	6	14.29

No $\quad$| 43 | 59 | 48.92 | -124 | 6 | 14.29 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1$

$$
\text { January 1, } 2013 \text { through December 31, } 2017
$$

Code	DESCRIPTİN	LONG DESCRIPTION
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SkIDDED
002	on/off V	GEtting On OR Off Stopped or parked vehicle
003	LOAD OVR	OVERHANGING LOAD STRUCK ANOTHER VEHICLE, ETC.
006	SLOW DN	SLOWED DOWN
007	AVoiding	AVOIDING MANEUVER
008	PAR PARK	PARALLEL PARKING
009	ANG PARK	ANGLE PARKING
010	Interfere	PASSENGER Interfering with driver
011	Stopped	Stopped in traffic not waiting to make a left turn
012	STP/L TRN	Stopped because of left turn Signal or waiting, etc.
013	STP TURN	Stopped While executing A turn
014	EMR V PKD	Emergency vehicle legally parked in the roadway
015	GO A/StOP	PROCEED AFTER Stopping for a stop Sign/flashing Red.
016	TRN A/RED	TURNED ON RED AFTER STOPPING
017	LOSTCTRL	LOST CONTROL OF VEHICLE
018	EXIT DWY	Entering Street or highway from alley or dilveway
019	ENTR DWY	ENTERING ALLEY OR DRIVEWAY FROM Street or highway
020	STR ENTR	BEFORE ENTERING ROADWAY, STRUCK PEDEStrian, Etc. On SIDEWALK OR SHOULDER
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	Struck, OR WAS Struck by, vehicle or pedestrian in prior collision before acc. Stabilized
023	StALLed	VEHICLE StALLED OR DISABLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FAtigue	FAtIGUED, SLEEPY, ASLEEP
026	SUN	DRIVER BLINDED BY SUN
027	HDLGHTS	DRIVER BLINDED BY HEADLIGHTS
028	ILLNESS	PHYSICALLY ILL
029	THRU MED	VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATtempting to Stop a vehicle
031	PASSING	PASSING SITUATION
032	PRKOFFRD	VEHICLE PARKED BEYOND CURB OR SHOULDER
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	$\mathrm{X} \mathrm{N} / \mathrm{SGNL}$	Crossing at intersection - no traffic signal present
035	X w/ SGNL	Crossing at intersection - traffic signal present
036	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S Attention distracted
039	W/TRAF-S	WALKING, RUNNING, RIding, ETC., ON SHOULDER WITH TRAFFIC
040	A/traf-s	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
041	W/TRAF-P	WALKING, RUNNING, RIdIng, etc., ON PAVEMENT WITH TRAFFIC
042	A/traf-p	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
043	PLAYINRD	PLAYing in street or road
044	push mV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
045	WORK ON	WORKING In ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIding, ETC. WIth traffic
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC
050	LAY ON RD	Standing or lying in roadway
051	ENT OfFRD	Entering / Starting in traffic lane from off road

## ACTION CODE TRANSLATION LIST

00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED.
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING
06	IMP-OVER	IMPROPER OVERTAKING
07	TOO-CLOS	FOLLOWED TOO CLOSELY
08	IMP-TURN	MADE IMPROPER TURN
09	DRINKING	ALCOHOL OR DRUG INVOLVED
10	OTHR-IMP	OTHER IMPROPER DRIVING
11	MECH-DEF	MECHANICAL DEFECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)
13	IMP LNC	IMPROPER CHANGE OF TRAFFIC LANES
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED ROi
16	FATIGUE	DRIVER DROWSY/FATIGUED/SLEEPY
17	ILLNESS	PHYSICAL ILLNESS
18	IN RDWY	NON-MOTORIST ILLEGALLY IN ROADWAY
19	NT VISBL	NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHIN
20	IMP PKNG	VEHICLE IMPROPERLY PARKED
21	DEF STER	DEFECTIVE STEERING MECHANISM
22	DEF BRKE	INADEQUATE OR NO BRAKES
24	LOADSHFT	VEHICLE LOST LOAD OR LOAD SHIFTED
25	TIREFAIL	TIRE FAILURE
26	PHANTOM	PHANTOM / NON-CONTACT VEHICLE
27	INATTENT	INATTENTION
28	NM INATT	NON-MOTORIST INATTENTION
29	FAVOID	FAILED TO AVOID VEHICLE AHEAD
30	SPEED	DRIVING IN EXCESS OF POSTED SPEED
31	RACING	SPEED RACING (PER PAR)
32	CARELESS	CARELESS DRIVING (PER PAR)
33	RECKLESS	RECKLESS DRIVING (PER PAR)
34	AGGRESV	AGGRESSIVE DRIVING (PER PAR)
35	RDRAGE	ROAD RAGE (PER PAR)
40	VIEW OBS	VIEW OBSCURED
50	USED MDN	IMPROPER USE OF MEDIAN OR SHOULDER
51	FAIL LN	FAILED TO MAINTAIN LANE
52	OFF RD	RAN OFF ROAD


\&	OTH	MISCELL
-	BACK	BACKING
0	PED	


1	ANGL	PEDESTRIA
2	HEAD	ANGLE


2	HEAD	HEAD-ON
3	REAR	REAR

3 REAR REAR-END

4	SS-M	SIDESWIPE - MEETING

5 SS-O SIDESWIPE - OVERTAKIng
6 TURN TURNING MOVEMENT
PARK PARKING MANEUVER
8 NCOL NON-COLLISION
9 FIX FIXED OBJECT OR OTHER OBJECT

## CRASH TYPE CODE TRANSLATION LIST

CRASH SHORT
TYPE DESCRIPTION LONG DESCRIPTION

$\&$	OVERTURN	OVERTURNED
0	NON-COLL	OTHER NON-COLLISIO


0	NON-COLL	OTHER NON-COLLISION
1	OTH RDWY	MOTOR VEHICLE ON OTHER ROADWAY


1	OTH RDWY	MOTOR VEHICLE ON OTH
2	PRKD MV	PARKED MOTOR VEHICLE


LIC	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NOT LICENSED (HAD NEVER BEEN LICENSED)
1	OR-Y	VALID OREGON LICENSE
2	OTH-Y	VALID LICENSE, OTHER STATE OR COUNTRY
3	SUSP	SUSPENDED/REVOKED
4	EXP	EXPIRED
8	N-VAL	OTHER NON-VALID LICENSE
9	UNK	UNKNOWN IF DRIVER WAS LICENSED AT TIME OF CRASH


RES   CODE	SHORT   DESC	LONG DESCRIPTION

## ERROR CODE TRANSLATION LIST

ERROR CODE	SHORT   DESCRIPTION	FULL DESCRIPTION
000	NONE	NO ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	LEFT TURN IN FRONT OF ONCOMING TRAFFIC
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRng	TURNED FROM WRONG LANE
007	TO WRONG	TURNED INTO WRONG LANE
008	ILLEG U	U-TURNED ILLEGALLY
009	IMP STOP	IMPROPERLY STOPPED IN TRAFFIC LANE
010	IMP SIG	IMPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	IMPROPERLY PARKED
013	UNPARK	Improper Start leaving Parked position
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)
016	InAttent	INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	Oth PARK	ENTERING/EXITING PARKED POSITION W/ InSufficient Clearance; other improper Parking maneuver
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	DISREGARDED TRAFFIC SIGNAL
021	RAN Stop	DISREGARDED Stop Sign or flashing red
022	DIS SIGN	DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER
023	DIS OFCR	DISREGARDED POLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILED TO AVOID Stopped or parked vehicle ahead other than School bus
027	BIKE ROW	DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST
028	No Row	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILED TO YIELD RIGHT-OF-WAY to pedestrian
030	PAS CURV	PASSING ON A CURVE
031	PAS WRng	PASSING ON THE WRONG SIDE
032	PAS tANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X -WK	PASSED VEHICLE Stopped at crosswalk for pedestrian
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST Of hill
036	N/PAS ZN	PASSING IN "NO PASSING" ZONE
037	PAS TRAF	PASSING In FRONT OF ONCOMING TRAFFIC
038	CUT-IN	CUtting in (TWO LANES - TWO WAY OnLy)
039	WRNGSIDE	DRIVING ON WRONG SIDE Of the road (2-WAY UNDIVIDED ROADWAYS)


ERROR	SHORT DESCRIPTION	FULL DESCRIPTION
040	THRU MED	DRIVING THROUGH SAFETY ZONE OR OVER ISLAND
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS
042	F/SLO MV	FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE
43	too Close	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	STRADDLING OR DRIVING ON WRONG LANES
045	IMP CHG	ImPROPER CHANGE OF TRAFFIC LANES
046	WRNG WAY	WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	Impeding	IMPEDING TRAFFIC
050	SPEED	DRIVING In EXCESS OF POSTED SPEED
051	RECKLESS	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACING	SPEED RACING (PER PAR)
054	X N/SGNL	CROSSING AT Intersection, NO TRAFFIC SIGNAL PRESENT
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
061	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
062	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
063	PLAYINRD	PLAYING IN STREET OR ROAD
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WORK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAY ON RD	Standing Or Lying in roadway
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	ELUDING	ELUding / Attempt to elude
079	F NEG CURV	FAILED TO NeGotiate a curve
080	FAIL LN	FAILED TO MAINTAIN LANE
081	OFF RD	RAN OFF ROAD
082	No CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGERS
97	UNA DIS TC	UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

EVENT SHORT
CODE DESCRIPTION

001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEhICLE
002	INTERFER	PASSENGER INTERFERED WITH DRIVER
003	bug inte	ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHIKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	ON/OFF V	GEtting On/OFF Stopped/parked vehicle (OCCUPANTS Only; must have physical contact w/ vehic
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT
011	MV PUSHD	VEHICLE BEING PUSHED
012	MV TOWED	VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE
013	FORCED	VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN
014	SET MOTN	VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)
015	RR ROW	AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)
016	LT RL Row	AT OR ON LIGHT-RAIL RIGHT-OF-WAY
017	RR HIT V	TRAIN STRUCK VEhicle
018	V HIT RR	VEhicle struck train
019	HIT RR CAR	vehicle struck railroad car on roadway
020	JACKNIFE	JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE
021	TRL OTRN	TRAILER OR TOWED VEHICLE OVERTURNED
022	CN BROKE	TRAILER CONNECTION BROKE
023	DETACH TRL	DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT
024	V DOOR OPN	VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE
025	WHEELOFF	WHEEL CAME OFF
026	HOOD UP	HOOD FLEW UP
028	LOAD SHIFT	LOST LOAD, LOAD MOVED OR Shifted
029	TIREFAIL	TIRE FAILURE
030	PET	PET: CAT, DOG AND SIMILAR
031	LVSTOCK	STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.
032	HORSE	HORSE, MULE, OR DONKEY
033	HRSE\&RID	HORSE AND RIDER
034	GAME	WILD AnIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)
035	DEER ELK	DEER OR ELK, WAPITI
036	AnML Veh	ANIMAL-DRAWN VEHICLE
037	CULVERT	CULVERT, OPEN LOW OR HIGH MANHOLE
038	Atenuatn	IMPACT ATTENUATOR
039	PK METER	PARKING METER
040	CURB	CURB (ALSO NARROW SIDEWALKS ON BRIDGES)
041	JIGGLE	JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION
042	GDRL END	LEADING EDGE OF GUARDRAIL
043	GARDRAIL	GUARD RAIL (NOT METAL MEDIAN BARRIER)
044	BARRIER	MEDIAN BARRIER (RAISED OR METAL)
045	WALL	REtAINING WALL OR TUNNEL WALL
046	BR RAIL	BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)
047	BR ABUTMNT	BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)
048	BR COLMN	BRIDGE PILLAR OR COLUMN
049	BR GIRDR	BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)
050	ISLAND	TRAFFIC RAISED ISLAND
051	GORE	GORE
052	POLE UNK	POLE - TYPE UNKNOWN
053	POLE UTL	POLE - POWER OR TELEPHONE
054	ST LIGHT	POLE - Street light only
055	TRF SGNL	POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY
056	SGN BRDG	POLE - SIGN BRIDGE
057	STOPSIGN	Stop OR YIELD SIGN

## EVENT CODE TRANSLATION LIST

CODE	DESCRIPTION	LONG DESCRIPTION
058	OTH SIGN	OTHER SIGN, INCLUDING STREET SIGNS
059	HYDRANT	HYDRANT
060	MARKER	DELINEATOR OR MARKER (REFLECTOR POSTS)
061	MAILBOX	MAILBOX
062	tree	tree, Stump or shrubs
063	VEG OHED	tree branch or other vegetation overhead, etc.
064	WIRE/CBL	WIRE OR CABLe ACROSS OR OVER THE ROAD
065	TEMP SGN	TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.
066	PERM SGN	PERMANENT SIGN OR BARRICADE IN/OFF ROAD
067	SLIDE	SLIDES, FALLEN OR FALLING ROCKS
068	FRGN OBJ	FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)
069	EQP WORK	EQUIPMENT WORKING IN/OFF ROAD
070	OTH EQP	OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)
071	MAIN EQP	WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT
072	OTHER WALL	ROCK, BRICK OR OTHER SOLID WALL
073	IRRGL PVMT	OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE
075	CAVE IN	BRIDGE OR ROAD CAVE IN
076	HI WAter	HIGH WATER
077	SNO BANK	SNOW BANK
078	LO-HI EDGE	Low OR HIGH Shoulder at Pavement edge
079	DITCH	CUT SLOPE OR DITCH EMBANKMENT
080	OBJ FRM MV	STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)
081	FLY-OBJ	STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)
082	VEH HID	VEhicle ObSCURED view
083	VEG HID	VEGETATION OBSCURED VIEW
084	BLDG HID	VIEW OBSCURED BY Fence, Sign, Phone booth, etc.
085	WIND GUST	WIND GUST
086	IMMERSED	VEHICLE IMMERSED IN BODY OF WATER
087	FIRE/EXP	FIRE OR EXPLOSION
088	FENC/BLD	FENCE OR BUILDING, ETC.
089	OTHR CRASH	CRASH RELATED TO ANOTHER SEPARATE CRASH
090	TO 1 SIDE	TWO-WAY traffic on divided roadway all routed to one side
091	BUILDING	BUILDING OR OTHER STRUCTURE
092	PHANTOM	OTHER (PHANTOM) NON-CONTACT VEHICLE
093	CELL PHONE	CELL PHONE (ON PAR OR DRIVER IN USE)
094	VIOL GDL	teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE
096	BERM	BERM (EARTHEN OR GRAVEL MOUND)
097	GRAVEL	GRAVEL IN ROADWAY
098	ABR EDGE	ABRUPT EDGE
099	CELL WTNSD	CELL PHONE USE WITNESSED BY OTHER PARTICIPANT
100	UNK FIXD	FIXED OBJECT, UNKNOWN TYPE.
101	OTHER OBJ	NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE
102	TEXTING	TEXTING
103	WZ WORKER	WORK ZONE WORKER
104	ON VEhicle	PASSENGER RIDING ON VEhICLE EXTERIOR
105	PEDAL PSGR	PASSENGER RIDING ON PEDALCYCLE
106	MAN WHLCHR	PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR
107	MTR WHLCHR	PEDESTRIAN IN MOTORIZED Wheelchair
108	OFFICER	LAW ENFORCEMENT / POLICE OFFICER
109	SUB-BIKE	"SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.
110	N-MTR	NON-MOTORIST STRUCK VEHICLE
111	S CAR VS V	Street Car/Troliey (on Rails or overhead wire system) Struck vehicle
112	v VS S CAR	VEhicle struck street Car/trolley (on Rails or overhead wire system)
113	S CAR ROW	AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY

# EVENT CODE TRANSLATION LIST 

SHORT
CODE DESCRIPTION LONG DESCRIPTION

114	RR EQUIP	VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS
115	DSTRCT GPS	DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE
116	DSTRCT OTH	DISTRACTED BY OTHER ELECTRONIC DEVICE
117	RR GATE	RAIL CROSSING DROP-ARM GATE
118	EXPNSN JNT	EXPANSION JOINT
119	JERSEY BAR	JERSEY BARRIER
120	WIRE BAR	WIRE OR CABLE MEDIAN BARRIER
121	FENCE	FENCE
123	OBJ IN VEH	LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT
124	SLIPPERY	SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)
125	SHLDR	SHOULDER GAVE WAY
126	BOULDER	ROCK (S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)
127	LAND SLIDE	ROCK SLIDE OR LAND SLIDE
128	CURVE INV	CURVE PRESENT AT CRASH LOCATION
129	HILL INV	VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION
130	CURVE HID	VIEW OBSCURED BY CURVE
131	HILL HID	VIEW OBSCURED BY VERICAL GRADE / HILL
132	WINDOW HID	VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS
133	SPRAY HID	VIEW OBSCURED BY WATER SPRAY
134	TORRENTIAL	TORRENTIAL RAIN (EXCEPTIONALLY HEAVY RAIN)



CLASS	DESCRIPTION
01	RURAL PRINCIPAL ARTERIAL - INTERSTATE
02	RURAL PRINCIPAL ARTERIAL - OTHER
06	RURAL MINOR ARTERIAL
07	RURAL MAJOR COLLECTOR
08	RURAL MINOR COLLECTOR
09	RURAL LOCAL
11	URBAN PRINCIPAL ARTERIAL - INTERSTATE
12	URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
14	URBAN PRINCIPAL ARTERIAL - OTHER
16	URBAN MINOR ARTERIAL
17	URAN MAJOR COLLETOR
18	URBAN MINOR COLLETTOR
19	URBAN LOCAL
78	UNKNOWN RURAL SYSTEM
79	UNKNOWN RURAL NON-SYSTEM
98	UNKNOWN URBAN SYSTEM
99	UNKNOWN URBAN NON-SYSTEM

## INJURY SEVERITY CODE TRANSLATION LIST

## SHORT

| CODE | DESC | LONG DESCRIPTION |
| :---: | :--- | :--- | :--- |
| 1 | KILL | FATAL INJURY (K) |
| 2 | INJA | SUSPECTED SERIOUS INJURY (A) |
| 3 | INJB | SUSPECTED MINOR INJURY (B) |
| 4 | INJC | POSSIBLE INJURY (C) |
| 5 | PRI | DIED PRIOR TO CRASH |
| 7 | NO<5 | NO INJURY- O TO 4 YEARS OF AGE |
| 9 | NONE | NO APPARENT INJURY (0) |

## MEDIAN TYPE CODE TRANSLATION LIST

	SHORT	
CODE	DESC	LONG DESCRIPTION
0	NONE	NO MEDIAN
1	RSDMD	SOLID MEDIAN BARRIER
2	DIVMD	EARTH, GRASS OR PAVED MEDIAN

## LIGHT CONDITION CODE TRANSLATION LIST

## SHORT

CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	DAY	DAYLIGHT
2	DLIT	DARKNESS - WITH STREET LIGHTS
3	DARK	DARKNESS - NO STREET LIGHTS
4	DAWN	DAWN (TWILIGHT)

5 DUSK DUSK (TWILIGHT)
mileage type code translation list

CODE	LONG DESCRIPTION
0	REGULAR MILEAGE
T	TEMPORARY
Y	SPUR
$Z$	OVERLAPPING

MOVEMENT TYPE CODE TRANSLATION LIST

CODE	DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TUANING LEFT
4	U-TURN	MARING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPRLY
9	PARKNG	PARKING MANEUVER

PARTICIPANT TYPE CODE TRANSLATION LISI

CODE	SHORT   DESC	LONG DESCRIPTION

## traffic control device code translation list

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRF SIGNAL	TRAFFIC SIGNALS
002	FLASHBCN-R	FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCR/FLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDG-GATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATINN
017	MEDAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGNG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	SPECIAL RR STOP SIGN
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMPS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING
095	BUS STPSGN	BUS STOP SIGN AND RED LIGHTS
099	UNKNOWN	UNKNOWN OR NOT DEFINITE

## VEhICLE TYPE CODE TRANSLATION LIS

WEATHER CONDITION CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
00	PDO	NOT COLLECTED FOR PDO CRASHES
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE


CODE	SHORT	DESC
0	LONG DESCRIPTION	
1	CLR	UNKNOWN
2	CLD	CLEAR
3	RAIN	CLOUDY
4	RLT	SLEET
5	FOG	FOG
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

## Attachment F <br> Year 2021 Total Traffic Operations Worksheets

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	33	110	59	49	218	121
Future Vol, veh/h	33	110	59	49	218	121
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	21	5	7	4	2	2
Mvmt Flow	43	145	78	64	287	159


Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	843	110	0	0	142	0
Stage 1	110	-	-	-	-	-
Stage 2	733	-	-	-	-	-
Critical Hdwy	6.61	6.25	-	-	4.12	-
Critical Hdwy Stg 1	5.61	-	-	-	-	-
Critical Hdwy Stg 2	5.61	-	-	-	-	-
Follow-up Hdwy	3.689	3.345	-	-	2.218	-
Pot Cap-1 Maneuver	310	935	-	-	1441	-
Stage 1	869	-	-	-	-	-
Stage 2	443	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	242	935	-	-	1441	-
Mov Cap-2 Maneuver	242	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.6		0		5.2	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	563	1441	-
HCM Lane V/C Ratio		-	-	0.334	0.199	-
HCM Control Delay (s)		-	-	14.6	8.1	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	1.5	0.7	-


Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			*			\&			4	
Traffic Vol, veh/h	0	355	0	0	151	2	0	0	11	14	0	0
Future Vol, veh/h	0	355	0	0	151	2	0	0	11	14	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Fro	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, \%	0	4	0	0	10	0	0	0	0	0	0	0
Mvmt Flow	0	449	0	0	191	3	0	0	14	18	0	0





Intersection												
Int Delay, s/veh	3.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\ddagger$			$\ddagger$			$\ddagger$			4	
Traffic Vol, veh/h	24	242	61	12	154	0	20	24	20	1	28	27
Future Vol, veh/h	24	242	61	12	154	0	20	24	20	1	28	27
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	3	3	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, \%	5	8	4	0	6	0	6	4	5	0	7	0
Mvmt Flow	29	292	73	14	186	0	24	29	24	1	34	33



Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	28	0	152	10	0	284
Future Vol, veh/h	28	0	152	10	0	284
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	76	76	76	76	76	76
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	37	0	200	13	0	374




Major/Minor	Minor1	Major1			Major2		
Conflicting Flow All	629	218	0	0	223	0	
Stage 1	218	-	-	-	-	-	
Stage 2	411	-	-	-	-	-	
Critical Hdwy	6.4	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	449	827	-	-	1358	-	
Stage 1	823	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	449	827	-	-	1358	-	
Mov Cap-2 Maneuver	449	-	-	-	-	-	
Stage 1	823	-	-	-	-	-	
Stage 2	674	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	13.6		0		0		
HCM LOS	B						
Minor Lane/Major Mvm		NBT	NBR	VBLn1	SBL	SBT	
Capacity (veh/h)		-	-	456	1358	-	
HCM Lane V/C Ratio		-	-	0.084	-	-	
HCM Control Delay (s)		-	-	13.6	0	-	
HCM Lane LOS		-	-	B	A	-	
HCM 95th \%tile Q(veh)		-	-	0.3	0	-	


Intersection						
Int Delay, s/veh	10.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F			$\uparrow$
Traffic Vol, veh/h	83	342	123	51	167	110
Future Vol, veh/h	83	342	123	51	167	110
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	2	2	3	2	4
Mvmt Flow	89	368	132	55	180	118


Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	638	160	0	0	187	0
Stage 1	160	-	-	-	-	-
Stage 2	478	-	-	-	-	-
Critical Hdwy	6.4	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	444	885	-	-	1387	-
Stage 1	874	-	-	-	-	-
Stage 2	628	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	382	885	-	-	1387	-
Mov Cap-2 Maneuver	382	-	-	-	-	-
Stage 1	874	-	-	-	-	-
Stage 2	541	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.1		0		4.8	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	704	1387	-
HCM Lane V/C Ratio		-	-	0.649	0.129	-
HCM Control Delay (s)		-	-	19.1	8	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	4.8	0.4	-




Intersection												
Int Delay, s/veh 4.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	F		${ }^{*}$	$\uparrow$		${ }^{*}$	$\uparrow$			$\uparrow$	
Traffic Vol, veh/h	1	242	31	47	420	1	77	1	83	15	4	4
Future Vol, veh/h	1	242	31	47	420	1	77	1	83	15	4	4
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	-	150	-	-	50	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	0	2	0	9	1	0	3	0	4	0	0	0
Mvmt Flow	1	272	35	53	472	1	87	1	93	17	4	4



Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\uparrow$			4			\&			¢	
Traffic Vol, veh/h	49	305	26	12	335	2	40	33	25	17	23	75
Future Vol, veh/h	49	305	26	12	335	2	40	33	25	17	23	75
Conflicting Peds, \#/hr	1	0	0	0	0	1	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, \%	2	3	4	0	4	0	0	0	0	6	0	0
Mvmt Flow	55	343	29	13	376	2	45	37	28	19	26	84



Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\uparrow$			$\uparrow$
Traffic Vol, veh/h	15	2	409	28	2	246
Future Vol, veh/h	15	2	409	28	2	246
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	16	2	440	30	2	265


Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	724	455	0	0	470	0
Stage 1	455	-	-	-	-	-
Stage 2	269	-	-	-	-	-
Critical Hdwy	6.4	6.2		-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	396	609	-	-	1102	-
Stage 1	643	-	-	-	-	-
Stage 2	781	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	395	609	-	-	1102	-
Mov Cap-2 Maneuver	395	-	-	-	-	-
Stage 1	643	-	-	-	-	-
Stage 2	779	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	14.1		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	
Capacity (veh/h)		-	-	412	1102	-
HCM Lane V/C Ratio		-	-	0.044	0.002	-
HCM Control Delay (s)		-	-	14.1	8.3	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.1	0	-


Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		$\mathbf{F}$			$\uparrow$
Traffic Vol, veh/h	16	1	436	29	0	261
Future Vol, veh/h	16	1	436	29	0	261
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	0	0	0	0	0
Mvmt Flow	17	1	469	31	0	281



## Signal Warrant Assessment

Based on 2009 Edition of the MUTCD

Project \#:	24714
Project Name:	Florence Residential Subdivision
Analyst:	AEG
Date:	$8 / 6 / 2020$
Intersection:	Rhododendron Drive/35th Street
Scenario:	2021 Future PM


Volume Adjustment Factor $=$	1.0
North-South Approach $=$	Major
East-West Approach $=$	Minor
Major Street Thru Lanes =	1
Minor Street Thru Lanes $=$	1
Speed $>40 \mathrm{mph}$ ?	No
Population $<10,000$ ?	No
Warrant Factor	$100 \%$
Peak Hour or Daily Count?	Peak Hour



Table 1: Existing Transportation Facilities

Roadway	Functional   Classification		
Rhododendron Drive	Minor Arterial	Number of   Lanes	Posted   Speed (mph)
$35^{\text {th }}$ Street	Collector	2	40
... . .		25	


Warrant Summary			
Warrant	Name	Analyzed?	Met?
$\# 1$	Eight-Highest	Yes	No
$\# 2$	Four-Hour	Yes	No
$\# 3$	Peak Hour	Yes	No

$\qquad$ Select Type Of Minor Street Approach From Dropdown Menu

Rural Minor Arterial Rural Major Collector

Note: traffic volume profile for weekday (if weekend is desired, tab "vol profile" needs to be adjusted)

Traffic Volumes						
Hour	Major Street		Minor Street		Major St. Adj. Factor	Minor St. Adj. Factor
Begin End	NB	SB	ев	WB		
4:00 PM 5:00 PM	144	246	0	398	1.00	1.00
2nd Highest Hour	142	243	0	355	0.99	0.89
3rd Highest Hour	129	221	0	308	0.90	0.77
4th Highest Hour	116	199	0	304	0.81	0.76
5th Highest Hour	97	166	0	270	0.67	0.68
6th Highest Hour	95	163	0	265	0.66	0.67
7 th Highest Hour	91	155	0	257	0.63	0.65
8th Highest Hour	81	138	0	235	0.56	0.59
9 9th Highest Hour	79	135	0	223	0.55	0.56
10th Highest Hour	78	133	0	214	0.54	0.54
11th Highest Hour	74	127	0	210	0.52	0.53
12th Highest Hour	73	124	0	210	0.51	0.53
13th Highest Hour	71	122	0	205	0.49	0.52
14th Highest Hour	71	122	0	171	0.49	0.43
15th Highest Hour	58	100	0	167	0.40	0.42
16th Highest Hour	50	86	0	120	0.35	0.30
17th Highest Hour	42	72	0	120	0.29	0.30
18th Highest Hour	32	55	0	81	0.22	0.20
19th Highest Hour	29	50	0	51	0.20	0.13
20th Highest Hour	19	33	0	43	0.13	0.11
21st Highest Hour	10	17	0	21	0.07	0.05
22nd Highest Hour	8	14	0	17	0.06	0.04
23rd Highest Hour	5	8	0	17	0.03	0.04
$\underline{\text { 24th Highest Hour }}$	5	8	0	13	0.03	0.03



Wendy FarleyCampbell
Planning Director, City of Florence
250 Highway 101
Florence, Oregon 97439

## Subject: Review of Rhododendron Drive - 35 ${ }^{\text {th }}$ Street PUD Traffic Impact Analysis Report

Dear Ms. FarleyCampbell:
At your request, I have completed a review of the Traffic Impact Analysis (TIA) for the for the Rhododendron Drive - 35 Street Planned Unit Development (PUD). I recommend that further analysis be completed, as described below, to assure that the TIA accurately describes the impacts of the development.

## Estimation of Future Background Traffic:

Background Traffic in the TIA is based on an ODOT projection that, between now and the year 2035, there will be virtually no traffic growth on Highway 101 near the $35^{\text {th }}$ Street intersection. In discussions with ODOT Staff, they stated that their projections are not indicative of traffic on nearby local streets.

The ODOT traffic projections used in the TIA are not intended to project for traffic growth on other facilities. They do not use land-use growth but rather rely on historic traffic trends. In newly developing areas, such as north Florence, historical data does not apply. In these newly developing areas, a no growth history is not an indicator of future growth. Even zero traffic growth on Highway 101 does not seem to be credible. There are projects under construction or approved that would increase traffic on Highway 101 beyond their projection for 2035.

Roads do not generate traffic. Development does. The model used for the ODOT projections do include growth or development input. The City has a number of approved
projects that affect the TIA analysis area. Florence has been growing at a rate of about 40 homes a year. The City's 2017 Buildable Lands Inventory projects that there will be about 1024 additional building units in the City by the year 2035. A significant portion of this growth will occur in the vacant land near the PUD. All of this development will affect traffic.

On the other hand, future traffic volumes projected in the Florence Transportation System Plan (TSP) take planned future development into account. The TSP is based directly on growth potential, what size developments will be, and when they will happen.

The TIA should be revised to reflect expected background growth. In the absence of anything else, the consultants preparing the TIA should review Traffic Impact Studies of projects near-by and use growth rates that are more plausible that zero. Traffic from approved, but not yet constructed should be added.

## Use of December Counts for Traffic Analysis:

Intersection counts in the TIA were taken in early December of 2019 and then seasonally adjusted to reflect peak traffic - known by traffic engineers as the $30^{\text {th }}$-hour volume. In Florence, this peak volume occurs in the summer. Traffic counts taken between Thanksgiving and the first full week in January are generally inappropriate for use in TIA's unless holiday traffic itself is the subject for analysis. Traffic fluctuates from day to day differently in the holiday season than in other times of the year, so turning movements and traffic flows vary unpredictably and cannot be accurately seasonally adjusted. It would be useful for the consultants preparing the Rhododendron Drive $-35^{\text {th }}$ Street TIA to compare their counts with other TIA's covering the same locations to see if adjustments to their seasonal adjustments are appropriate.

## Right and Left Turn Lanes:

All right and left turns onto and off of Rhododendron Drive and $35^{\text {th }}$ Street should be evaluated for the need for right and left turn lanes.

## Additional Analysis May Be Needed:

Depending of the extent of changes in background or peak traffic discussed above, Signal warrant analysis may be needed.

A related, but slightly different, issue involves meeting the City's Level-of-Service (LOS) standard. Additional traffic may result in a different LOS. In the TIA technical modeling analysis, there are a number of intersection approaches that are projected to operate at LOS "D". LOS on minor-street left-turns is very sensitive to traffic volumes.

LOS "E" is the adopted standard for those approaches; however, they can exceed LOS " F " (this actually means that there is no standard) if the intersection does not warrant a signal. This means that if an approach is projected to exceed LOS "F" a signal warrant study will be required to see if it is acceptable or mitigation is required.

## Closure:

Thank you for asking me to perform this review. I would be happy to answer any questions or provide additional information you may request.

Very truly yours,


James R, Hanks, PE


[^0]:    Growth rate calculation example: $(12,600 / 12,500-1) /(2038-2018)=0.00040$

[^1]:    ${ }^{1}$ Defined by ITE Trip Generation as containing one or two floors of residential units.

[^2]:    ${ }^{2}$ Oregon Department of Transportation

[^3]:    ${ }^{3}$ Updated June 26, 2019

[^4]:    ${ }^{1}$ Most of the material in this appendix is adapted from the Transportation Research Board, Highway Capacity Manual, (2010).

[^5]:    ${ }^{1}$ ODOT's Analysis Procedures Manual similarly states "Traffic signal warrants must be met and the State Traffic Engineer's approval obtained before a traffic signal can be installed on a state highway. However, approval of a signal depends on more than just a warrant analysis. Meeting a warrant is necessary to install a signal, but it does not mean a signal should be recommended or guarantee its installation. Considerations to be evaluated include safety concerns, alternatives to signalization, signal systems, delay, queuing, bike and pedestrian needs, railroads, access, consistency with local plans, local agency support and others."
    ${ }^{2}$ All eight warrants were considered but only Warrants 1 and 2 and 3 are described in full detail in this report. Warrant 4 involves pedestrian volumes and is not met based on local pedestrian volumes. Warrant 5 is intended for application where the fact that schoolchildren cross the major street is the principal reason to consider installing a traffic control signal and is not appliable at the intersection. Warrant 6 is intended to facilitate progressed traffic flow within a coordinated traffic signal and is not applicable. Warrant 7 is intended for application where the severity and frequency of crashes are the principal reasons to consider traffic signal installation. Amongst other considerations, the warrant requires five or more reported crashes of a type susceptible to correction by a traffic control signal within a 12-month period. As shown in Table 2, there were no recorded crashes at the intersection. Warrant 8 involves installing a traffic signal at an intersection to encourage concentration and organization of traffic flow on a roadway network and is not applicable. Warrant 9 is intended for use at a location where Warrants $1-8$ are not shown to be met but where the proximity of the intersection to a railroad grade crossing would be the principal reason to consider installing a traffic signal. Warrant 9 is not appliable.

[^6]:    ${ }^{1}$ Defined by ITE Trip Generation as containing one or two floors of residential units.

[^7]:    ${ }^{2}$ Oregon Department of Transportation

[^8]:    ${ }^{3}$ Updated June 26, 2019

[^9]:    ${ }^{1}$ Most of the material in this appendix is adapted from the Transportation Research Board, Highway Capacity Manual, (2010).

