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ABSTRACT 
Improvements in product development can increase the competitiveness of firms. However, new product 
development in CAD systems involves difficulties and uncertainties that increase along with the 
pressure to develop the products. A distinct characteristic of CAD modeling for new product 
development is its uncertainty. This is because the information is usually approximate and incomplete 
during CAD modeling. Thus, the main objective of this paper is to propose a robust and flexible CAD 
approach to reduce uncertainty and accelerate new product modeling in the context of design for 
manufacturing. This methodology permits the convergence towards different product forms depending 
on the selected manufacturing process. Application of this approach has shown that when uncertainty is 
high, approving a complete CAD modeling results in a delay in product development. In contrast, CAD 
modeling using fuzzy models results in a gain of valuable development time because the model is 
completed when knowledge about manufacturing technologies, company fit and capabilities, and 
markets is available. 
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1 INTRODUCTION 

Companies have continuously maintained strong innovation objectives in the face of a globalized and 

extremely segmented market. This allows them to offer products with increasingly shorter lead times 

while maintaining the same quality, cost, and delivery criteria (Garro et al., 1998). This run to 

innovation is also due to heightened competition among companies in most industrial sectors. The 

time factor is an essential element in achieving vital advances over competitors. 

Under these working conditions, efforts can be made to shorten lead times either in production 

systems or in product design. Therefore, the focus is on freeing up time for innovation through the 

rationalization of certain design engineering tasks, primarily by means of automation using computer-

aided design (CAD) tools with controlled parameters. Since the 1980s, knowledge-based engineering 

(KBE) (Sriram et al., 1989) (Rezayat, 2000) has been one of the scientific fields that supported this 

approach (Danjou et al., 2008) (Verhagen et al., 2012). The purpose of KBE is to be able to recycle 

existing knowledge for incremental innovation and to develop new material for radical innovation 

(Cooper et al., 1999) (Van der Laan, 2008) (Un, 2010). Through this, it is possible to automatically 

generate technical solutions from existing databases that are kept constantly updated. The new product 

development (NPD) process, which integrates knowledge management (Hoegl and Schulze, 2005), is 

useful for solutions that are integrated into environments where parameters can be completely 

delineated.  

NPD in CAD systems involves difficulties and uncertainties that increase along with the pressure to 

develop new products. Improving the speed of CAD modeling using well-developed roadmaps can 

give a powerful competitive advantage. 

A distinct characteristic of CAD modeling for NPD is uncertainty. Information is usually approximate 

and incomplete during CAD modeling. Fuzziness comes from the uncertainty about customer 

requirements, production technologies to process the product, evolving markets and demands, 

company fit, and capabilities (Kim and Wilemon, 2002). To improve the likelihood of successful CAD 

modeling for NPD, it is necessary to determine the main specific requirements of the product and 

reduce uncertainty step by step during CAD modeling.  

Although the need for fuzzy logic in the development of CAD systems was identified more than 20 

years ago (Pham, 1998), fuzzy CAD modeling has, until recently, been a neglected topic. Although 

some research has been conducted to develop and integrate AI techniques to enhance the intelligent 

modeling capabilities of CAD systems (R.W. Mann and Coons, 1965; Brown and Chandrasekaran, 

1983; Rao et al., 1993; Fougères and Ostrosi, 2018). (Regassa Hunde and Debebe Woldeyohannes, 

2022) proposes a process of merging CAD, called model-based reasoning (MBR), which is based on a 

litterature review of the both domains. In this synthetis, they identify 5 features defining a MBR: (1) 

the product parts should be stored in a hierarchical manner in order to know their relationship; (2) it is 

the designing experts who provide the knowledge-based reasoning and decision-making procedure, (3) 

the reasoning and the methodology define the rules for links of product parts (4); the cumulative 

analysis of the qualitative and quantitative simulation defines the efficiency of the product analyzed; 

(5) easy installation procedure in the database. Therefore, the development of robust and flexible CAD 

methods for reducing fuzziness has not received the needed attention. 

A robust method can reduce uncertainty by taking the necessary steps to minimize the undesired 

effects of uncertainty. On the other hand, a flexible method is characterized by the ability to adapt or 

react when necessary.  

The purpose of this article is to present a CAD methodology for NPD in the context of design process-

oriented manufacturing, called design for manufacturing (DfM). The main objective of this 

methodology is to propose a robust and flexible CAD approach for reducing uncertainty, in particular 

about the choice of the manufacturing process in the early steps of the design process. In this case, a 

company will be able to confront directly several manufacturing process without increasing the CAD 

modeling time. Moreover a company will be able to take the CAD models created in the first project 

by this method and reuse them in subsequent projects. Therefore, this approach will help companies 

not only to ensure robustness by reusing proven CAD models but also to save modeling time. Also, as 

stated earlier, the CAD model will be the backbone of the design process. That is, the CAD model will 

"grow up" over the course of the product's lifecycle, from the fuzzy front end to the detailed modeling 

steps. 
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This paper is structured as follows: Sections 2 and 3 present the methodology and the development of 

the approach. Section 4 presents a case study to validate the approach. Lastly, the discussion and 

conclusion analyze and summarize the findings. 

2 GENERAL METHODOLOGY 

As stated in the introduction, the main objective of this paper is to present a CAD methodology used 

in the context of DfM. Since the emergence of the design rationale concept (Cross, 1994); (Lee, 1997) 

and the application of knowledge engineering to CAD systems (Chapman and Pinfold, 1999), there 

have been a large number of attempts to accelerate the completion of routine tasks in order to free up 

time for innovation. Some examples include the work of (Jauregui-Becker et al., 2009), who 

concentrated on automating routine design tasks. Likewise, since the 1980s, most studies on the 

integration of routine process automation into knowledge-based CAD systems through KBE (Sriram et 

al., 1989) have involved mechanical systems based on primitive solids that can be fully controlled. 

This has enabled the automation of some design actions. Examples of this include (Hunter et al., 

2006), (Kulon et al., 2006), and (Gil et al., 2011). Successful experiments using this approach have 

used basic repetitive tasks and a relatively stable environment (Le Masson and McMahon, 2016). 

Figure 1 shows the potential design approaches in advanced parametric CAD systems. The design 

approach 7, named full Intelligent Computer Aided Design represents the generic model. It is 

characterised by a full control of computers entities called agents. A fuzzy agent-based system for Fuzzy 

Intelligent Computer Aided Design is given as (Ostrosi et al., 2021), (Fougères and Ostrosi, 2013): 

�̃�𝛼 = ⟨�̃�, 𝐼, �̃�, �̃�, 𝛷�̃�⟩, (1) 

where �̃�, 𝐼, �̃�, �̃�, 𝑎𝑛𝑑 𝛷�̃� are a set of fuzzy agents, a set of fuzzy interactions between fuzzy agents, a 

set of fuzzy roles that fuzzy agents can perform, a set of fuzzy organizations defined for communities 

of fuzzy agents, and a set of functions of fuzzy agents’ generation, respectively. 

The definition of a fuzzy agent �̃�𝑖, whose behavior is of feedback loop type <perceive, decide, act> in 

a fuzzy context, is given as 

�̃�𝑖 = ⟨𝛷𝛱(�̃�𝑖), 𝛷𝛥(�̃�𝑖), 𝛷𝛤(�̃�𝑖), 𝛫�̃�𝑖⟩, (2) 

where 𝛷𝛱(�̃�𝑖), 𝛷𝛥(�̃�𝑖) and 𝛷𝛤(�̃�𝑖) are function of observation, function of decision, function of action, 

and knowledge of a fuzzy agent �̃�𝑖, respectively. This knowledge includes decision rules, objects, 

characteristics of the domain (for instance, the geometric and topological attributes), acquaintances, 

and dynamic knowledge 𝛫𝑠�̃�𝑖 , 𝛫𝑐𝑎𝑑�̃�𝑖 , 𝛫𝑒�̃�𝑖 (Figure 1). 

𝛷𝛱(�̃�𝑖): (𝐸�̃�𝑖 ∪ 𝐼�̃�𝑖) × 𝛴�̃�𝑖 → 𝛱(�̃�𝑖), (3) 

where 𝐸�̃�𝑖,𝐼�̃�𝑖,𝛴�̃�𝑖,𝛱(�̃�𝑖) are the finite sets of observed events, interactions, states, and perceptions of a 

fuzzy agent �̃�𝑖, respectively. 

𝛷𝛥(�̃�𝑖): 𝛱�̃�𝑖 × 𝛴�̃�𝑖 → 𝛥�̃�𝑖, (4) 

where 𝛱�̃�𝑖,𝛴�̃�𝑖,𝛥�̃�𝑖 are the finite sets of perceptions, states, and decisions of a fuzzy agent �̃�𝑖, 

respectively. 

𝛷𝛤(�̃�𝑖): 𝛥�̃�𝑖 × 𝛴�̃�𝑖 → 𝛤�̃�𝑖 (5) 

where 𝛥�̃�𝑖,𝛴�̃�𝑖,𝛤�̃�𝑖 are the finite sets of decisions, states, and actions of a fuzzy agent, respectively. 

The definition of a fuzzy interaction  �̃�𝑙 ∈ 𝐼 between two fuzzy agents is given as 

�̃�𝑙 = ⟨�̃�𝑠, �̃�𝑟 , �̃�𝑐⟩, (6) 

where �̃�𝑠 is the fuzzy agent source of the fuzzy interaction;�̃�𝑟 is the fuzzy agent destination, and �̃�𝑐 is 

a fuzzy act of communication (�̃�𝑐 ∈ �̃�and �̃�={inform, diffuse, ask, reply, confirm}). 

In this paper, our approach is based on the model of the Design Approach 2, which allows the CAD 

designer to integrate the knowledge of multi-view experts through the CAD system. 
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Figure 1. CAD model definition: Design approaches 

In our approach, we are looking at existing methods and rules developed to support product designers to 

fulfil their requirements regarding a large number of different aspects, often addressed in the literature as 

design for X (DfX) (Gupta et al., 1997) (Lindemann, 2007). The manufacturing seems to be already 

taken into account as Design for Manufacturing - DfM. For example, other fields are using this 

approach, such as design for comfort (da Silva et al., 2012), ergonomics (Sang et al., 2013), acoustics 

and vibration reduction (Mohanty and Fatima, 2013), aesthetics (Bluntzer et al., 2014; Ranscombe et al., 

2012), emotions (Herbeth and Blumenthal, 2013), and materials (Bluntzer et al., 2016). 

When we focus on DfM, the main objectives of such approaches is to reduce the development time 

from the concept of the product to the manufacturable part, through a continuous improvement of the 

product and process. Therefore, a lot of method are developed in order to answer a specific kind of 

manufacturing process. For example, we can cite the additive manufacturing (Asadollahi-Yazdi et al., 

2017), the machining processes (Aman et al., 2022), composite materials (Stojkovic and Butt, 2022) 

including defect prediction (Noevere et al., n.d.), plastic materials (Jha and Kumar, 2022) or assembly 

process (Bakhshi et al., 2022). We can also cite some works which exposes methodologies designing 

hybrid modular products. For exemple, (Kerbrat et al., 2011) see the product as 3D puzzles with 

modules., combining machining process and additive manufacturing. 

However, the integration of specific CAD methodologies to support the DfM approach by confronting 

directly several manufacturing processin the early stages of the product design process has not 

beenproposed. 

3 PROPOSED APPROACH 

The inputs into the manufacturing view design process are the functional requirements and the fuzzy 

geometrical interfaces. Figure 2 illustrates our methodology. 

• Functional requirements. Based on the specifications of the future product, the functional 

requirements are the characteristics needed to obtain the function in terms of its technical aspects, 

ergonomics aspects, styling aspects, etc.  

• Fuzzy geometrical interfaces. Based on the specifications and the physical environment of the 

future product, this set is composed of simplified 2D and 3D features that represent the physical 

features of the interface with our future product. 
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Figure 2. Manufacturing view design process 

Phase 1. Modeling fuzzy CAD parts 

This phase can be done at the early steps of the design process. The main objective is to generate a 

first CAD part containing the functional aspects of the future product. We need to extract the 

functional geometries in order to be in correlation with the technical specifications of the future 

product. This first model will be the "kernel" of our functional geometries. 

Phase 2. Generate multi-view CAD parts 

Based on the fuzzy CAD parts, the main objective is to generate a CAD model containing the expert 

aspects of the future product. We need to use the formalization of the expert rules in order to integrate 

it directly in the CAD model. For example, expert rules can be extracted from an expert area such as 

machining expertise, molding expertise, or welding expertise. 

Figure 3 shows a simplified composition of multi-view CAD parts and how each expertise is 

abounded in the whole model. 

Phase 3. Generate manufacturing CAD part 

Through the multi-view CAD parts and the chosen manufacturing process, we are able to generate the 

good part automatically by switching from one process to another but without the need to redesign the 

process. 

 

Figure 3. Multi-view CAD parts process 
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4 APPLICATION 

We will describe a case study for part of an oil pump. The selected part is a cover as shown in Figure 4. 

 

Figure 4. Oil pump with its cover 

4.1 Functional requirements and fuzzy geometrical interfaces 

The functional characteristics of the future product can be represented through a simplified section. In 

our example, first, we can define the functional surfaces that are the interfaces with the environment. 

Second, we can define the functional dimensions that will be set as parameters.  

 

Figure 5. Functional parameters and surfaces 

Figure 5 illustrates this section along with the functional geometries and parameters. Table 1 describes 

the retained surfaces. 

Table 1. Definitions of the retained surfaces 

Surface reference Surface use Surface categories 

A Cover cantering on the volute  Assembly help 

B Bearing surface on the volute Bearing definition 

C Bounding surface of the volute Assembly help 

D Joining surfaces between C and E Assembly help 

E Bearing surface on the ventilation grill Bearing definition 

F Bearing surface for assembly Bearing definition 

G Bounding surface of the assembly screws Bearing definition 

4.2 Modeling fuzzy CAD parts 

The main objective of this step is to propose to the designers a base for the detailed CAD model. Also, 

the fuzzy CAD part is considered as a CAD skeleton, which is built with specific constraints 

(Svensson et al., 2002). Many studies have already been carried out in skeleton-based modeling (Bley 

and Bossmann, 2006; Cluzel et al., 2012; Cornea et al., 2005; Lee et al., 2013; Ma and Choi, 2014; 

Ostrosi et al., 2020). Like the human body, where the skeleton holds muscles, a CAD skeleton holds 

the morphology, which is the topology-geometry (TG) of the future product. The main objective of the 

skeleton is to validate the major specification in the early phases of the CAD process, without wasting 

time to define a detailed CAD model, which will be a rework. The skeleton can be considered as a 

basic concept in CAD modeling of machines and mechanisms.  
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Different types of skeletons and their roles in modeling have been introduced in CAD modeling: part 

skeleton, assembly skeleton, and motion skeleton. Depending on the level of conceptualization, these 

alternative solutions could be represented first as a simplified shape that is driven by material 

requirements and embeds the working principles. 

Thus, in our approach, a simplified model, or a fuzzy CAD part, represents the functional parameters 

and surfaces of a part without the integration of the expert point of view. Figure 6 shows the simplified 

topology and morphology of the future part. 

 

Figure 6. Fuzzy CAD part integrating functional parameters and surfaces 

4.3 Manufacturing space: integrating expertise and knowledge 

After the generation of a fuzzy CAD part, the final shapes of the future part can be directly generated 

on the bounding shapes by integrating the expert rules. Today, this step is done by an expert in direct 

collaboration with the CAD designer. 

4.4 Modeling of CAD parts 

Figure 7 shows an example of a fuzzy CAD part model completed by considering the knowledge of 

the machining view. The machining part model is an evolution of the fuzzy CAD part model by 

reducing the fuzziness. Similarly, Figure 8 shows the fuzzy CAD part model transformed into a 

stamping part, and Figure 9 shows the fuzzy CAD part model transformed into a moulding part.  

5 DISCUSSION 

Although the beginning fuzziness level is determined by the functional parameters (Table 1), the 

subsequent geometry is determined by internal and external developments, such as manufacturing 

technologies, company fit, capabilities, and markets. 

When the fuzziness or the uncertainty is high—that is, when there are many unanswered questions in 

the design project—approving a complete CAD model will result in delays in product development. 

Application of the proposed approach has shown that CAD modeling using fuzzy models results in a 

gain of valuable development time because the model is completed when knowledge about 

manufacturing technologies, company fit and capabilities, and markets is available. 

6 CONCLUSION 

This paper presents a generic model for Fuzzy Intelligent Computer-Aided Design. A new CAD 

methodology for reducing fuzziness and accelerating new product modeling is then implemented. The 

main objective of this methodology is to propose a robust and flexible CAD approach by reducing 

uncertainty. The methodology is applied in the case of the DfM approach. The application has shown 

that a new part is driven by fuzzy functional parameters and fuzzy surfaces and is completed step by 

step using expert knowledge. 

The beginning fuzziness level is determined by the functional parameters; the subsequent geometry is 

determined by manufacturing technologies. The fuzzy CAD part is completed according to expert 

knowledge when it is decided to process this knowledge based on a chosen technology. Thus, the 

concept of a multi-view CAD part as the output of a detailed design step is proposed and realized. 
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Using this approach, we can conclude that the morphology of the part (geometry and topology) is 

driven by fuzzy functional parameters and fuzzy surfaces. As a result, depending on the selected 

manufacturing process, this methodology permits the convergence towards different product forms. 

Thus, the proposed method is robust because it can reduce uncertainty and is flexible because it is 

characterized by its ability to produce different morphologies. 

As the generic model suggests, further developments include the development and the implementation 

of design approaches using fuzzy intelligent agent. 

 

 Figure 7. Machining-oriented part 

  

Figure 8. Stamping-oriented part 

 

Figure 9. Moulding-oriented part 
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