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The turbulent boundary layer developing under a turbulence-laden free stream is
numerically investigated using the temporal boundary layer framework. This study
focuses on the interaction between the fully turbulent boundary layer and decaying
free-stream turbulence. Previous experiments and simulations of this physical problem
have considered a spatially evolving boundary layer beset by free-stream turbulence.
The state of the boundary layer at any given downstream position in fact reflects
the accumulated history of the co-evolution of boundary layer and free-stream
turbulence. The central aim of the present work is to isolate the effect of local
free-stream disturbances existing at the same time as the ‘downstream’ boundary
layer. The temporal framework used here helps expose when and how disturbances
directly above the boundary layer actively impart change upon it. The bulk of our
simulations were completed by seeding the free stream above boundary layers that
were ‘pre-grown’ to a desired thickness with homogeneous isotropic turbulence
from a precursor simulation. Moreover, this strategy allowed us to test various
combinations of the turbulence intensity and large-eddy length scale of the free-stream
turbulence with respect to the corresponding scales of the boundary layer. The relative
large-eddy turnover time scale between the free-stream turbulence and the boundary
layer emerges as an important parameter in predicting if the free-stream turbulence
and boundary layer interaction will be ‘strong’ or ‘weak’ before the free-stream
turbulence eventually fades to a negligible level. If the large-eddy turnover time scale
of the free-stream turbulence is much smaller than that of the boundary layer, the
interaction will be ‘weak’, as the free-stream disturbances will markedly decay before
the boundary layer is able be altered significantly as a result of the free-stream
disturbances. For a ‘strong’ interaction, the injected free-stream turbulence causes
increased spreading of the boundary layer away from the wall, permitting large
incursions of free-stream fluid deep within it.
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1. Introduction
Almost every boundary layer created in an engineering or environmental context is

in fact exposed to free-stream disturbances. The present numerical study considers the
interaction of decaying free-stream turbulence (FST) with the fully turbulent temporal
boundary layer to determine the conditions under which these free-stream disturbances
are able to actively impart change upon the boundary layer.

A boundary layer developing under a free stream laden with disturbances will tend
to exhibit increased skin friction and mass or heat transfer (Blair 1983a). Considerable
effort (Hancock & Bradshaw 1983; Blair 1983b; Castro 1984) has thus been made to
correlate observed increases in skin friction coefficient Cf and mass (or heat) transfer
coefficient St to parameters of the FST and the boundary layer. Detailed statistics
have been reported by previous workers, yet are generally given at a limited number
of downstream locations in an experimental facility (Nagata, Sakai & Komori 2011;
Sharp, Neuscamman & Warhaft 2009; Dogan, Hanson & Ganapathisubramani 2016).
The current methodology is able to observe the entire interaction as it unfolds and
seeks to advance our understanding of the boundary layer–FST interaction via detailed
direct numerical simulation (DNS).

To date, the problem of the boundary layer developing under FST has been
principally investigated experimentally. The DNS of a fully turbulent boundary
layer developing under FST is an expensive undertaking that precludes systematic
studies. When simulating a turbulent boundary layer with a quiescent free stream, a
stretched grid is typically used far away from the wall-bounded turbulent flow. The
present physical problem demands adequate resolution of the free stream with its
disturbances. Previous numerical investigations have generally made use of either
large-eddy simulation (e.g. Li, Schlatter & Henningson 2010; Péneau, Boisson &
Djilali 2000) or DNS with modest Reynolds numbers (the study of Xia et al. (2014)
achieved a final momentum thickness Reynolds number Reθ ≈ 250). Yet there have
been many studies considering the transition of an incoming laminar boundary layer
under FST (Brandt, Schlatter & Henningson 2004; Hack & Zaki 2014; Kreilos et al.
2016). Nominally a transitional study, Wu et al. (2017) nevertheless achieved a final
Reτ ≈ 1000 for a relatively weak inlet turbulence of 3 % of the mean free-stream
velocity. Recently, You & Zaki (2019) presented a DNS of a spatially developing
boundary layer over the range Reθ = 1200–3200 for an incoming turbulence intensity
of 10 %.

Hancock & Bradshaw (1989) suggested that the relative fluctuating strain rate
between FST and boundary layer was an important quantity to characterise their
interaction. Formed from the large-eddy length scales and velocity scales of the
respective flows, it may be recast as the relative large-eddy turnover time scale
between the FST and boundary layer, evolving as the boundary layer grows and
the unforced free-stream disturbances decay. A natural opportunity to study the
evolving relative large-eddy time scale of the current physical problem is provided
by the temporal framework. Kozul, Chung & Monty (2016) demonstrated that the
temporal boundary layer is a good model for the incompressible spatially developing
turbulent boundary layer both analytically and via comparison of various statistics
between the spatial and temporal boundary layers. Additionally, under a quiescent
free stream, the mean entrainment of non-turbulent fluid by the turbulent temporal
boundary layer E = dδ/dt = U∞ dδ/dX (where δ is the boundary layer thickness,
U∞ is the free-stream velocity and X = U∞t for time t) is not unlike the process
in a turbulent spatial boundary layer E = U∞ dδ/dx − Wδ (where Wδ is the mean
wall-normal velocity at the edge of the boundary layer). The difference in mean
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entrained fluid is due only to the small Wδ in the spatial boundary layer that vanishes
at large Reynolds number. Thus the temporal boundary layer will capture the finite,
non-vanishing part of the entrainment in the asymptotic limit of the spatial boundary
layer, i.e. E→ 0.22 Uτ , where Uτ is the friction velocity (cf. coefficients a2 and b2 in
figure 18 of Kozul et al. (2016)). The Reynolds numbers of the present simulations,
although in the fully turbulent regime, clearly fall short of this asymptotic limit.
The current temporal model is therefore a potential source of inaccuracy if direct
comparison of the entrainment to that of the spatial boundary layer is sought.

The efficiency of the temporal framework, which employs a streamwise-shortened
domain, allows us to mitigate some of the cost associated with this demanding
physical problem. Whilst a wide-ranging scan of length scales and intensities would
be ideal to determine the roles of each in the interaction with the boundary layer, in
practice we are limited to cases where the free-stream length scale is a small multiple
of the boundary layer thickness. The integral length scale of the FST, growing as
its intensity decays in time, must remain much smaller than the domain size such
that the associated large-scale energy-carrying eddies evolve freely (Thornber 2016).
A simulation where the large-eddy length scale of the FST is much larger than that
of the boundary layer thickness is untenable given present computational capabilities:
it would require the vast majority of the domain, that is, available computational
resources, to be dedicated to simulating the FST, when our primary concern here is
its interaction with the boundary layer. In fact, the response of the boundary layer
to small-scale turbulence in the free stream remains rather under-explored compared
to that of large-scale FST (Nagata et al. 2011). Nevertheless, the present efficient
temporal framework permits a limited parametric investigation of this costly physical
problem. In addition to exposing a boundary layer to FST from its inception, the
present work gains access to other regimes by adding or injecting homogeneous
isotropic turbulence (HIT) to the free stream of boundary layers already grown
to a desired thickness in a quiescent free stream. Such an approach making use
of synthesised fields was previously used for wakes developing under free-stream
disturbances (Rind & Castro 2012).

Since many engineering problems feature turbulent boundary layers exposed
to ambient free-stream conditions that cannot realistically be considered laminar,
our work helps to clarify when and how such free-stream disturbances could, via
active manipulation, alter the form and development of boundary layers forming
over walls. The present parametric study of (wall-bounded) shear flow with FST
complements previous systematic numerical campaigns concerning shear flows subject
to free-stream disturbances, including wakes (Rind & Castro 2012), stratified wakes
(Pal & Sarkar 2015) and shear layers (Kaminski & Smyth 2019). We show how the
relative large-eddy turnover time scale indicates whether there will be a ‘strong’ or
‘weak’ interaction between the two flows. If the large-eddy turnover time scale of
the boundary layer is less than approximately twice that of the FST, the free-stream
disturbances will have time to impart change on the boundary layer before the FST
fades away. From the boundary layer’s point of view, it needs time to adjust to the
FST via ingestion of the inactive motions from the free stream. Significant changes
to the boundary layer eventuate only if the FST is still relatively strong by the time
this occurs. Previous equilibrium approaches have attempted parametrisation using
physical quantities at a single point in space or time. In contrast, the present temporal
simulations expose the inherent developing nature of this physical problem.
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U∞

∂(t)

U(t)

L(t)

U†(t)

u(t)

FIGURE 1. Sketch of the physical problem: a turbulent temporal boundary layer
developing under decaying FST. The set-up employs a periodic boundary condition in the
streamwise direction.

2. Velocity and length scales of the boundary layer–FST problem
The FST to which boundary layers are often exposed will herein be modelled as

HIT. The large scales of this HIT will be characterised by a velocity scale (U ) and an
integral length scale (L ). Figure 1 sketches the physical problem within the temporal
framework. Such an approach is particularly suited to the problem since the evolution
of HIT is classically described by temporal decay, and the boundary layer being recast
thus (Kozul et al. 2016) allows us to directly compare the evolution of the relative
large-eddy turnover time scales of the two flows.

To parametrise our physical problem, we estimate how these scales of the HIT
evolve with respect to the relevant velocity scale (friction velocity Uτ ) and large-
eddy length scale (δ; for 99 % boundary layer thickness δ ≡ δ99, computed from the
mean streamwise velocity profile) of the boundary layer. Whether the large scales in
decaying HIT are described by the Batchelor or Saffman theories of turbulence is a
long-standing debate not entered into by the present work. The following relations are
only of interest here as we endeavour to establish how the scales of the boundary layer
and FST would evolve with respect to each other assuming no interaction between
them. It is generally agreed (e.g. Krogstad & Davidson 2010) that both U and L
evolve temporally according to power laws; the two classical theories suggest differing
exponents. In the Batchelor (1953) theory, integral scales U and L satisfy U 2L 5

=

constant, and when combined with the empirical relation

dU 2

dt
=−A

U 3

L
, (2.1)

for some constant A, the decay law U 2
∼ t−10/7 (and associated L ∼ t2/7) results. The

theory due to Saffman (1967) predicts the group U 2L 3
= constant which gives U 2

∼

t−6/5 (and L ∼ t2/5). The two classical types of turbulence are associated with specific
forms of the energy spectrum E: for the Batchelor type E(κ→0)∼κ4 for wavenumber
κ , whereas Saffman turbulence has the spectrum E(κ → 0) ∼ κ2. Which form of
turbulence is exhibited, and importantly what value of decay rate arises, depends upon
initial conditions (Lavoie, Djenidi & Antonia 2007; Antonia et al. 2013; Hearst &
Lavoie 2016), but it would appear that the turbulence retains the spectrum (either
∼ κ2 or ∼ κ4) with which it was created (Ishida, Davidson & Kaneda 2006). The
decay exponent of classic grid turbulence appears to be closer to that suggested by the
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Saffman spectrum (Krogstad & Davidson 2010), a conclusion consistent with DNS of
temporal grid turbulence (Watanabe & Nagata 2018). Both E∼ κ2 (Huang & Leonard
1994; Mansour & Wray 1994) and E∼ κ4 (Ishida et al. 2006; Thornber 2016) energy
spectra have been used to initialise the flow fields of numerical simulations.

The choice of a velocity scale U for the FST is usually set to be the streamwise
root-mean-squared velocity fluctuations u′e, for comparison to experiments; however,
since our HIT is perfectly isotropic any velocity component could have been chosen.
The choice of a suitable length scale is rather less obvious. A length scale Lu

e was
defined by Hancock & Bradshaw (1983) as

U∞
d(u′e)

2

dX
≡
−(u′e)

3

Lu
e

, (2.2)

for mean streamwise free-stream velocity U∞ and distance from the turbulence-
producing grid X. Several alternative definitions for the energy-carrying integral
length scale of HIT have been offered in the literature. A common definition is the
value of the integrated normalised autocorrelation to the first zero crossing, r0:

Luu =

∫ r0

0

u′(x)u′(x+ r)

u′2
dr, (2.3)

as used in Hearst, Dogan & Ganapathisubramani (2018) for example. However, this
quantity can be problematic since this zero crossing is somewhat elusive (Dogan et al.
2016). The non-dimensional dissipation rate (Cε = εLuu/u′e) for the current forced HIT
is Cε≈ 0.5, in agreement with the spread of values found for forced HIT in the survey
of Kaneda et al. (2003). When forcing is turned off within the triply periodic domain,
Cε gradually increases over t ≈ 2 Te,0 to Cε ≈ 1.8 (where Reλ = u′λ/ν is decreasing
and is ≈ 30 at this point). However, this value for the dissipation rate is neither
well-converged nor particularly reliable, since at this later time the growing integral
length scale Luu exceeds 10 % of the smallest box dimension. For perfectly isotropic
turbulence, the length scale Lu

e from (2.2) can be written as

Lu
e =

3
2
(u′e)

3

ε
, (2.4)

for kinetic energy dissipation rate ε≡ ν(∂u′i/∂xj)2 with kinematic viscosity ν. However,
as pointed out in Hearst et al. (2018), associating this dissipation-derived quantity with
a length scale actually existing in the flow is not always a valid undertaking. Our
present use of (2.4) to derive a relevant length scale does not suggest we have an
equilibrium state during the decaying phase, as (2.2) assumes. Rather we use it to
avoid the ambiguity associated with Luu due to a limited domain size. We use the term
‘large-eddy length scale’ throughout when referring to that of the FST since we are
most commonly comparing it to the ‘large-eddy length scale’ of the boundary layer, δ
(indeed we will most frequently refer to the ‘large-eddy length scale ratio’, Lu

e/δ). We
formally refer to Luu as the ‘integral length scale’. The dissipation-based Lu

e is taken
as being representative of large eddies in the FST since it is well defined for restricted
numerical domains and dissipation-based length scales are commonly used (e.g. You
& Zaki 2019). Later in this work it is shown that using either the dissipation-based
Lu

e from (2.4) or a length scale based on a velocity autocorrelation as per (2.3) does
not alter our main conclusions.
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We seek to estimate the evolution of the relative large-eddy turnover time scales
for the boundary layer–FST problem. The behaviour of our HIT lies somewhere
between the two classical models (the evolution of the defined velocity and length
scales for the HIT is shown later in figure 3). We note the large-eddy turnover time
scale of the HIT evolves as Te = L /U ∼ t for both the Saffman (t2/5/t−3/5

∼ t)
and Batchelor (t2/7/t−5/7

∼ t) theories, meaning the following analysis is the same
irrespective of the type of HIT exhibited. White (2006) (equation 6-70) offers simple
empirical power-law relations for turbulent boundary layers forming over flat plates,
such that we can write δ ∼ t6/7 by using X = U∞t, that is, the boundary layer is
scaled by an observer travelling with the free stream. Temporal development as
Uτ ∼ t−1/7 is consistent with a constant boundary layer spreading rate (1/Uτ )(dδ/dt)
(figure 8d). However, we note the relations of White (2006) suggest Uτ ∼ t−1/14.
The present problem makes use of boundary layers that have been ‘pre-grown’ to a
certain thickness prior to HIT injection into the free stream. Thus their development
in time is advanced with respect to that of the HIT by t0, the time at HIT injection
into the free stream. Armed with indicative power-law relations for the velocity and
large-eddy length scales pertaining to the HIT (forming our FST) and that of the
boundary layer, we estimate the evolution of the relative large-eddy turnover time
scales for our present problem at large t as a simple power law:

e≡
Tδ
Te
=
δ/Uτ

Lu
e/u′e
∼

t6/7/t−1/7

t
∼

t
t
∼ constant. (2.5)

Thus, for the estimated power-law evolution of our individual parameters, at large t,
this ratio will tend to remain constant if the boundary layer and FST do not interact.
The time evolution of the numerator is perhaps ‘not very accurate’ (White 2006);
however, in this context it nonetheless permits an estimate of the relative evolution of
the boundary layer with respect to the HIT. The exponent for the quiescent temporal
boundary layer of Kozul et al. (2016) ranges ≈ [0.71, 0.73] (compared to 6/7≈ 0.86),
and that for Uτ is found to be ≈ [−0.089,−0.083] (versus −1/7≈ 0.14 or −1/14≈
−0.071). The significance of the above estimate is that e approaches a constant at
large t for non-interacting boundary layer and HIT flows. As we will show later, a
‘strong’ interaction occurs if this parameter is less than around 2 at the moment when
the boundary layer is first exposed to the FST. This same quantity was interpreted
as a relative fluctuating strain rate by Hancock & Bradshaw (1989) as mentioned in
§ 1. The aim of the present work is to argue the importance of e from the view of
relative lifetimes in explaining potential boundary layer modification by FST. This is
in addition to the better understood necessary minimum external turbulence level.

3. Simulation set-up
Hereafter, we refer to fluctuating velocities u, v and w in the x (streamwise), y

(spanwise) and z (wall-normal) directions. The appropriate Reynolds decomposition
for the temporally developing turbulent boundary layer is given by ui = u(z, t)δi1 +

u′i(x, y, z, t), where (·) indicates averaging in the homogeneous xy planes. Statistics
throughout the present work are computed at instantaneous times (i.e. from single
velocity and scalar fields) and corresponding instantaneous FST statistics (i.e. u′rms and
Lu

e) are quoted. This is in contrast to the time window averaging used for the quiescent
boundary layer in Kozul et al. (2016). The simulations presented herein are all single
realisations meaning only moderate statistical convergence is achieved.
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FIGURE 2. One-dimensional spectrum of the current FST cases both (a) uncompensated
and (b) compensated: ——, current HIT field used to form the FST at t= 0 for all cases
except A1 (table 1) with Reλ,0=82; , Reλ=99 case of Mydlarski & Warhaft (1996); – – –,
line at 0.5, the expected plateau value for the compensated spectrum within the scaling or
inertial subrange region for high-Reynolds-number turbulence. Vertical grey band indicates
the forced region in radial wavenumber range, keeping in mind that all κx <κf are forced
since the one-dimensional spectrum is aliased.

3.1. Generation of free-stream disturbances: HIT
The previously quiescent free stream of the turbulent temporal boundary layer is now
seeded with HIT generated in a triply periodic domain in a precursor simulation
using the spectral code of Chung & Matheou (2012) (shear turned off). A Fourier
pseudospectral method (cf. Rogallo 1981) is used to integrate the Navier–Stokes
equations, whose solution is advanced in time using the low-storage third-order
Runge–Kutta scheme of Spalart, Moser & Rogers (1991). Quantities external to
the boundary layer are identified with subscript e, and values at the beginning of
the combined boundary layer–FST simulations with subscript 0. The cases will be
characterised by a FST intensity u′e/Uτ , where u′e is the isotropic root-mean-squared
velocity fluctuations of the HIT. The large-eddy length scale ratio is Lu

e/δ.
Figure 2 shows both the uncompensated and the compensated streamwise-velocity

one-dimensional spectra for the HIT field used to form the FST for all present
simulations (except case A1). The observed peak is due to our forcing at a fixed
shell of wavenumbers. Our HIT possesses only a limited region where the turbulence
might be approximately inertial. Despite being modest, the present Taylor Reynolds
numbers of the HIT still admit power-law decay of the kinetic energy. A time interval
≈ Te,0 is required before u′e of the HIT begins this power-law decay.

Table 1 provides the main parameters for the precursor HIT simulations. A desired
Lu

e,0 in the FST is achieved via forcing to a selected shell of wavenumbers at
constant power (similar to that in Carati, Ghosal & Moin (1995)), centred on forcing
wavenumber κf . For the present HIT, κf Lu

e,0≈5 with forcing shell thickness 1κ Lu
e,0≈1.

The ranges of relative length (Lu
e/δ) and velocity (u′e/Uτ ) scale ratios are extended by

injecting the HIT into the free stream of boundary layers that had been ‘pre-grown’
to different thicknesses δ, or equivalently, Reynolds numbers. The HIT kinetic energy
decays according to established power laws as detailed above in § 2 and care was
taken to ensure the domain size did not constrict this behaviour. In simulations of
decaying HIT, estimates of the integral length scale may become unreliable if it
approaches a significant fraction the smallest domain dimension, primarily due to a
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FIGURE 3. (a) Decaying turbulence velocity scale U → u′e with fits (u′e)
2/(u′e,0)

2
=

(1 + au′e t/Te,0)
b following Krogstad & Davidson (2010): ——, Saffman-type turbulence

with b = −6/5; – – –, Batchelor-type turbulence with b = −10/7; constant au′e = 2.3 for
both. (b) Growing length scale L → Lu

e (2.4) formed from fits for u′e as in (a) and
εe/εe,0 = (1 + aεe t/Te,0)

b−1 for dissipation in the free-stream εe (not shown), constant
aεe = 1.3 for both, curves as for (a): —— (teal), in the free stream of case D (table 2);

, decay in the box turbulence code. Dimension Lz = Ly = Lx/2 is the smallest box
dimension for the simulations. Subscript e denotes quantities external to the boundary layer
and subscript 0 values at the beginning of the combined boundary layer–FST simulations.
Here Te,0= Lu

e,0/u
′

e,0 is the large-eddy turnover time scale of the forced statistically steady
HIT.

lack of statistical averaging (Thornber 2016). The present simulations use an Lu
e that

is maximally 17 % of the smallest domain dimension at the time of insertion into the
free stream, when it then decays for t ≈ Te,0, where Te,0 = Lu

e,0/u
′

e,0 is the large-eddy
turnover time scale of the forced steady-state HIT, before beginning power-law growth.
Although figure 3(b) suggests this power-law growth is not seriously impeded up to
Lu

e ≈ 0.2 Lz, the simulations are conservatively halted when Lu
e ≈ 0.1 Lz, following the

observations of Thornber (2016). At the moment of injection into the free stream, the
Taylor Reynolds number of the FST is Reλ,0 = u′e,0λe,0/ν ≈ 82, for Taylor microscale
λ, for all present cases except A1 (table 1), for which it is Reλ,0 ≈ 52. Forcing to
the HIT is removed at the moment of injection into the boundary layer’s free stream
such that the HIT fields begin decaying as the simulations with synthesised initial
conditions are launched.

Case A1 is a companion simulation to case A: the HIT injected into the free stream
of case A1 at Reθ = 508 is identical to the HIT in the free stream of case A (where
the boundary layer is ‘born’ under FST) at that same Reθ . Any difference between
cases A and A1 is therefore due to their differing development histories. That is, HIT
for case A1 is that for case A (and all others) yet allowed to decay (by removing
the forcing) within the precursor HIT simulation for 0.50 Te,0 before injection, being
the same interval of time required by the boundary layer of case A, exposed to the
HIT from inception, to reach Reθ ≈ 500. Hence all combined boundary layer–FST
simulations (table 2) presented herein made use of only one forced HIT case. Case A1
is then formed by inserting the partially decayed HIT over a boundary layer formed
under a quiescent free stream with Reθ ≈ 500. This permitted investigation of the
‘recovery’ time required following the artificial combination of the fields (§ 3.2), that
is, to gauge the difference between our cases formed from artificially synthesised fields
and a boundary layer that has begun life under FST.
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Case Nx Ny Nz Lu
e,0/Lz λe,0/Lz ReL ,0 Reλ,0 κc,maxηe,0 Lx/Lz Ly/Lz

A to F 1024 512 512 0.17 0.020 670 82 1.84 2 1
A1 1024 512 512 0.091 0.018 268 52 1.99 2 1

TABLE 1. Parameters for the precursor HIT simulations that formed the FST fields once
inserted into the free stream of the cases listed in table 2. Physical quantities correspond
to values at t = 0 (denoted with subscript 0) and external (subscript e) to the boundary
layer in the simulations of table 2. Parameter ReL = Lu

eu′e/ν is the turbulent Reynolds
number of the HIT formed using the dissipation length scale Lu

e as the large-eddy length
scale L . Length scales are noted as a fraction of Lz = Ly being the smallest and thus
limiting domain dimension. Wavenumber κc,max is the cutoff wavenumber for the present
HIT simulations. Cases A to F are at steady state and forced until the moment of insertion
into the free stream of the boundary layers. The HIT case for case A1 is simply that of
the first row but allowed to decay for 0.50 Te,0 within the triply periodic box turbulence
code by removing the forcing.

Case Line Reθ,0 Reτ ,0 Lu
e,0/δ0 u′e,0/U∞ (%) u′e,0/Uτ ,0 Tδ,0/Te,0 Te,0U2

∞
/ν

A —— (royal blue) 47 — 20 5.0 — — 275 284
A1 —— (light blue) 508 221 1.7 3.6 0.71 0.41 202 477
B —— (crimson) 508 221 3.2 5.0 1.0 0.30 275 284
C —— (dark orange) 1413 508 0.54 10 2.3 4.2 68 821
D —— (teal) 506 220 1.6 10 1.9 1.2 68 821
E —— (magenta) 720 300 1.1 10 2.1 1.9 68 821
F —— (red) 1015 391 1.6 5.0 1.1 0.66 275 284

TABLE 2. Parameters of the present simulations of boundary layers developing under
decaying FST. The turbulence intensity relative to the constant free-stream velocity is given
by Tu0 ≡ u′e,0/U∞. Different values of Lu

e,0/δ0 are achieved by introducing the HIT into
the free stream of a temporal boundary layer developing in a quiescent field at various
Reθ =U∞θ/ν, with momentum thickness θ . A significant difference in intensities u′e,0/U∞
was achieved by changing U∞ by a factor of 2 (i.e. cases A, A1, B, F versus cases C,
D, E). Here Tδ = δ/Uτ is the boundary layer large-eddy turnover time scale. Case A1
is a companion simulation to case A where we allow the HIT for case A1 to decay
for 0.50 Te,0 before injection, being the same interval of time required by the boundary
layer of case A, exposed to the HIT from inception, to reach Reθ = 508. Note the large
difference in Tδ,0/Te,0 = e0 between cases C and D: the boundary layer was ‘pre-grown’
to a higher Reynolds number in case C before the FST was added. It therefore has a
much larger large-eddy turnover time scale than case D, and also compared to that of the
FST. The friction velocity Uτ ,0 for case A at FST injection (which is when the boundary
layer also starts growing) is non-physical due to the numerical trip used. Moreover the
relative large-eddy turnover time e≡Tδ/Te is formed from scales that characterise the fully
turbulent (i.e. inertial) boundary layer and the HIT, and thus is not here used to gauge
interaction between a transitioning boundary layer (Reθ < 500 for the present temporal
boundary layers) and HIT.

3.2. Combined simulations: the boundary layer is seeded with FST
The finite-difference code used for both the ‘pre-grown’ boundary layers and the
synthesised fields for which statistics are presented herein has been validated in
Kozul et al. (2016). The code employs the fully conservative fourth-order staggered
finite-difference scheme of Verstappen & Veldman (2003) to spatially discretise the
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Navier–Stokes equations, with the boundary conditions of Sanderse, Verstappen &
Koren (2014). As for the precursor HIT simulations, the solution is marched forward
in time using the low-storage third-order Runge–Kutta scheme of Spalart et al. (1991).
The fractional-step method (e.g. Perot 1993) is used after each substep to project the
velocity onto a divergence-free space, ensuring satisfaction of the continuity equation.
Grid points are clustered near the wall using an error function stretching set by
z(ξ)= erf[a(ξ − 1)]/erf(a) for a≈ 2 and ξ = [0, 1] (Pirozzoli, Bernardini & Orlandi
2016). The HIT and boundary layer velocity fields are combined via thresholding
on the passive scalar c with Schmidt number Sc = 1, taking a value of Cw at the
wall. It is here used as a proxy for the extent of boundary layer growth into the
domain since c is initially at the free-stream (top boundary) value C∞ everywhere. In
contrast, the simulations of Rind & Castro (2012) and Pal & Sarkar (2015) embedded
wakes in HIT based on criteria relating to the velocity field. The present approach is
more akin to the experiments of Hancock & Bradshaw (1989), where the boundary
layer developed over a slightly heated plate, allowing the wall-generated turbulence to
be distinguished from the FST via an appropriate temperature threshold. The present
simulations employ a passive scalar released at the wall for the same purpose, serving
to ‘mark’ fluid originating in the boundary layer. Therefore we are able to assess
the mixing of one flow (the turbulent boundary layer) with another (the HIT) by
adopting a similar thresholding approach, rather than inferring the extent of mixing
from the velocity or vorticity fields. We are thus able to attribute the turbulent fluid’s
origin with some confidence, as opposed to relying on the velocity field, which is
non-local due to the incompressible pressure condition. The present approach also
eliminates the possibility of a bias towards any one component of velocity. Several
recent studies have shown reliable demarcation of wall-generated turbulence from the
free stream based on a passive scalar threshold (compared to one based on vorticity
magnitude) both without (Watanabe, Zhang & Nagata 2018) and with (Wu, Wallace
& Hickey 2019) FST. Using a threshold based on the kinetic energy was shown to
incur the largest error in identifying the turbulent–non-turbulent interface in the study
of Watanabe et al. (2018). The HIT is first interpolated using cubic splines onto
the stretched grid required by the temporal boundary layer simulation. A function
effectively masking the HIT by the turbulent boundary layer then gives the combined
field u0 = αuHIT + (1− α)uTBL with

α(x)=


0, 0 6

Cw − c
Cw −C∞

6 0.95

1, 0.95<
Cw − c

Cw −C∞
6 1,

(3.1)

for x = (x, y, z) and u = (u, v, w), for scalar contrast Cw − C∞. Figure 4 shows
a schematic of this field combination. All cases except case A are formed thus;
for case A the HIT fields form the entire initial velocity fields (with a numerical
trip imposed at the wall). Case A is thus analogous to most previous experimental
studies of the present physical problem, where the boundary layer is exposed to FST
from the beginning of its development. The scalar field is unchanged during the
synthesis of the velocity fields (i.e. no fluctuations are added to the scalar field). The
artificially synthesised (patched) initial fields are not divergence-free as required by
the continuity equation; however, this is corrected after a single time step, when the
numerical scheme employed projects the flow onto a divergence-free space. Physical
quantities for the present cases are given in table 2. Importantly the final column notes
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Precursor: uHIT

Precursor: uTBL

Freestream

Combined:Lu
e

u�
e

TBL

∂

åuHIT + (1 - å)uTBL

U†

FIGURE 4. Schematic of the combined fields formed from precursor simulations via
masking (3.1) using the scalar concentration of the boundary layer, represented by the
grey shaded area (TBL, turbulent boundary layer).

e0 = Tδ,0/Te,0 = (δ/Uτ )0/(Lu
e/u
′

e)0, the initial relative large-eddy turnover time scale
between the turbulent boundary layer and the FST. When the fields are combined,
a decrease (≈9 % for cases A1, B and F; ≈11 % for cases D and E; and ≈6 %
for case C) in δ results at the first time step post-HIT injection; values of δ0 (and
therefore e0 at t = 0) correspond to that before the HIT injection. No such change
occurs in Uτ .

Periodic boundary conditions are imposed in the streamwise direction x as well
as the spanwise direction y. A ‘conveyor-belt’ moving-wall set-up is used in the
boundary layer simulations. At this bottom wall where z= 0, u= Uw and v = w= 0
are imposed. The top boundary (z=Lz) is a fixed wall with an impermeable boundary
condition on the normal velocity (w = 0) and slip boundary conditions on velocities
tangential to the upper wall (∂u/∂z= ∂v/∂z= 0). The familiar configuration, with a
stationary no-slip wall and non-zero free-stream velocity |U∞| = |Uw|, is recovered
via Galilean transformation. The resolution of non-spectral discretisation schemes is
improved by use of a reference frame with zero mean bulk velocity (Bernardini et al.
2013). Therefore the present set-up with zero mean velocity in the free stream is the
most advantageous choice for resolution of disturbances away from the wall where
grid spacing is larger. An initial trip ReD≡DUw/ν≈ 500, for trip height D, is used to
trigger transition of the precursor boundary layer simulations to a turbulent regime as
in Kozul et al. (2016). The pressure gradient is set to zero. We use a domain where
Lx = 2Ly = 2Lz. The simulations can be run until one of the box constraints is met:
either Lu

e ≈ Lz/10 (equivalently Lu
e ≈ Ly/10) (Thornber 2016) or δ≈ Lz/3 (Schlatter &

Örlü 2010). Grid details for the boundary layer–FST simulations are given in table 3.

4. Results
4.1. Visualisations of the FST–boundary layer interaction

As a first view of our simulations, figure 5 shows streamwise velocity fields overlaid
with vorticity magnitude contours for case D of table 2, both at the beginning and
end of the combined simulation. Figure 5(a) is at the moment when the free stream is
seeded with HIT (where Reθ =Reθ,0= 508). Vorticity contours are drawn only for the
boundary layer (before FST injection) for clarity. This corresponds to the ‘combined’
sketch of figure 4. The strong velocity fluctuations in the free stream have faded
significantly in figure 5(b) at a later time (where Reθ = 983). Vorticity contours are
drawn for the whole field at this later time. Figure 5(c) is the same as figure 5(b) but
for a reference boundary layer developing under a quiescent free stream permitting a
visual comparison.
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Case Nx Ny Nz LxU∞/ν LyU∞/ν LzU∞/ν 1x+ 1y+ 1z+1 1z+t κc,minη0

A 1024 1024 1408 162 500 81 200 81 200 10.3 5.13 0.20 9.99 1.89
A1 1024 1024 1024 162 500 81 200 81 200 9.16 4.58 0.13 10.9 1.67
B 1024 1024 1024 162 500 81 200 81 200 9.16 4.58 0.13 10.9 1.55
C 1024 512 832 81 200 40 600 40 600 4.60 4.60 0.14 6.27 1.35
D 1024 512 832 81 200 40 600 40 600 4.60 4.60 0.14 6.27 1.35
E 1024 512 832 81 200 40 600 40 600 4.60 4.60 0.14 6.27 1.35
F 1024 1024 1024 162 500 81 200 81 200 9.16 4.58 0.13 10.9 1.55

TABLE 3. Grid details for the simulations of boundary layers developing under decaying
FST. The precursor HIT simulations use a constant grid spacing in all three dimensions.
For the combined boundary layer simulations, grid points are clustered near the bottom
wall using an error function stretching z(ξ)= erf[a(ξ − 1)]/erf(a) for a≈ 2 and ξ = [0, 1]
(Pirozzoli et al. 2016). Wavenumber κc,min=π/1zt is the cutoff wavenumber for the largest
vertical spacing in the simulation, at the top free-slip boundary, set such that κc,minη0 is
comparable to, or smaller than, κc,maxη0 in table 1 for the precursor HIT simulations. Note
that κc,maxη0 in the boundary layer simulations is at the wall. Spacing 1z+1 denotes the
maximum first grid spacing at the bottom wall, whereas 1z+t is the maximum spacing
at the top wall. Cited here are the coarsest grid spacings in wall units observed over the
duration of the simulation. Note that cases A1, B and F, and then cases C, D and E use the
same initial boundary layer configuration to which either different FST (for the A1 and B
pair, case A1 using a partially decayed field) is inserted at the same time (equivalently,
Reθ , see table 2), or the same FST is inserted at different Reθ (cases B and F have
different Reθ,0 but the same FST; the same is true for cases C, D, E). Since the coarsest
grid spacings are observed early in the simulation before FST is inserted (i.e. when the
boundary layer is developing in a quiescent free stream), these values are identical for
these two subsets of simulations.

Figure 6 shows a visualisation of boundary layers developing under both quiescent
and turbulent free streams comparing experimental images from Hancock & Bradshaw
(1989) to those from our simulations. The numerical images bear some striking
similarities to those of the experiment. For all panels, Reθ ≈ 700. At left are the
experimental images, where figure 6(a) is of a boundary layer developing in a
quiescent free stream and figure 6(c) is of a boundary layer under mild FST. At
right are comparable images of the scalar for the numerical cases. Figure 6(b)
is for a quiescent free-stream case (Kozul et al. 2016) and figure 6(d) is for
the present FST case D. The large-eddy length scale ratio is matched between
the experimental and numerical FST cases at Lu

e/δ = 0.4, and the intensity differs
marginally, being u′e/U∞ = 0.03 for the experimental case with free-stream velocity
U∞ and u′e/U∞ = 0.04 for the present case D. It is immediately obvious that the
boundary layer with FST is much thicker at the same Reθ in both the experimental
and numerical images. In the quiescent case, we see rounded lobes at the edge of
the more compact boundary layer, yet in the bottom images with FST, the edge
of the boundary layer is far more jagged, emphasised with the thick white contour
at 1 % of the scalar contrast. It is clear from these images that one of the main
actions of the FST is to, given the same momentum deficit, increase the spread of
the boundary layer by transporting fluid mass away from the wall. This conclusion
cannot be reached if vorticity or turbulent kinetic energy is used instead of the
scalar (§ 3.2) to demarcate wall-generated turbulence from FST. Note the more subtle
increase in the boundary layer thickness δ between figures 6(b) and 6(d). The scalar
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FIGURE 5. Indicative streamwise velocity fields overlaid with contours of vorticity for
case D at two different times: (a) t = 0, at the moment when the FST is injected
into the free stream (Reθ = Reθ,0 = 508); (b) t ≈ 3.8 Te,0 after FST injection (Reθ =
983). (c) Reference case with no FST (Kozul et al. 2016) at a comparable Reθ to (b).
Vorticity contours in (a) are those of the boundary layer before FST injection, showing
its ‘pre-grown’ extent. Black contour lines are drawn at |ω| = 1.4 U∞/δ for all panels.
For (a,b), actual vertical extent of the domain is twice that shown; full streamwise extent
(Lx) shown. For (c) the numerical domain was larger such that the domain shown only
represents ≈ (1/2)Lx and ≈ (1/4)Lz of the actual numerical domain. The streamwise and
spanwise extents shown in all panels are equivalent in terms of ν/U∞; tickmarks on the
vertical axes show intervals of 2000 ν/U∞.

here demonstrates the significant redistribution of boundary layer fluid, including
large excursions of the order of 2 δ. Such enhanced excursions due to FST may be
particularly relevant in the context of a reacting flow or pollutant originating in the
boundary layer.

4.2. Progress of simulations
Figure 7(a) places our simulations amongst several previous experimental studies by
plotting the evolution of the relative large-eddy length scale Lu

e/δ against the relative
velocity scale u′e/Uτ . The current cases begin at the top right of each curve and track
downward and to the left in time as do those of Hancock & Bradshaw (1983) as their
measurement location moves downstream in the wind tunnel. The curve for case A
(initial simulation fields are HIT with no ‘pre-grown’ boundary layer) is only plotted
from Reθ ≈ 500 onwards such that the growing boundary layer is behaving canonically
following a numerical trip at ReD=500 (Kozul et al. 2016). Here we are able compare
companion cases A and A1. There is some discrepancy in their respective curves in
figure 7(a) indicating the history effect. Even when we matched the ‘downstream’
condition at Reθ = 508, the difference in their curves indicates an integrated effect
upon the boundary layer of case A since it was exposed to FST from the boundary
layer’s inception. As a comparison to the dissipation-based scale Lu

e , the evolution of
the longitudinal integral length scale Luu,e (2.3) is shown as a function of the relative
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(a) (b)

∂

∂ ∂

∂

1 %

U∞

U∞ U∞

U∞

(c) (d)

0 0.2 0.4 0.6
(c - C∞)/(Cw - C∞)

0.8 1.0

FIGURE 6. Flow visualisations. (a,c) Reproduction of figure 9 from Hancock & Bradshaw
(1989) at Reθ ≈ 700 (δ extracted from reproductions of these same images in figure 4.14
of Hancock (1980), these versions preferred for their higher quality): (a) u′e/U∞ ≈ 0.0;
(c) u′e/U∞≈ 0.03, Lu

e/δ995≈ 0.4. (b,d) Scalar from temporal boundary layer simulations at
Reθ ≈ 700, t ≈ 1.5 Te,0 post-FST injection: (b) with a quiescent free stream from Kozul
et al. (2016); (d) present case D with FST, u′e/U∞ ≈ 0.04, Lu

e/δ≈ 0.4. White contours in
(b,d) show location of 1 % scalar concentration; thick grey contour in (d) estimates the
distance `D over which the scalar diffuses from the time of FST injection to the time
shown here (cf. § 4.6). Assuming the same aspect ratio in (a,c), the streamwise extent
shown for (b,d) is approximately equivalent in units of ν/U∞; white tickmarks on the
vertical axes of these panels show intervals of 2000 ν/U∞.

velocity scale u′e/Uτ in figure 7(b). The value of this length scale is clearly smaller
than that of Lu

e , especially at times just after the FST injection. However, a similar
relative behaviour of the length scales is demonstrated for the different cases when
this integral length scale is used. The unevenness of Luu,e/δ towards the end of the
simulation (low u′e/Uτ ) for cases D and E is a result of the limited domain size where
it is likely less reliable.

Figure 8(a) shows that the boundary layer thickness δ increases in time over that
for a boundary layer under a quiescent free stream for cases A1, B, D, E and F. The
increase shown is compared to the boundary layer thickness at the time step prior
to FST injection δ0. Dashed lines show the continued development of the boundary
layer thickness, coloured by each case, when the FST is not injected. For cases A1
and B, this is the same precursor boundary layer simulation that was prolonged, these
cases only differing in the HIT that was injected, and therefore the Te,0 by which the
horizontal axis is scaled. Case A, where the FST formed the initial velocity fields, is
excluded here (and from figures 8b and 8c) since for that case δ0 is the non-physical
numerical trip making such a comparison physically meaningless. Also in case A the
boundary layer is transitioning at early times, where the focus here is on the impact
of FST on the fully turbulent boundary layer. Only a limited development extent could
be viewed for case C, where the simulation was halted at the point shown, since δ
reached our imposed simulation limit of 1/3 of the box height Lz, at which point
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FIGURE 7. Regime diagram showing cases (coloured curves as per table 2) for
two different definitions of the large-eddy length scale on the vertical axis. (a)
Dissipation-based scale Lu

e from (2.4); (b) longitudinal integral length scale Luu,e (2.3)
within the free stream:u, Hancock & Bradshaw (1983); ×, Dogan et al. (2016). Curves
track downward towards the left-bottom corner.

δ ≡ δ99 becomes unreliable. Figure 8(b) shows that the development of momentum
thickness θ is more or less unaffected by the FST for all cases.

Figure 8(c) shows that FST increases Uτ over that for the quiescent boundary
layer for cases A1, B, D and F. Here the largest change is found for case D
compared to the boundary layer allowed to continue growing under a quiescent
free stream (dashed line), with smaller divergences from the quiescent curves for
cases A1, B and F. Interestingly, case E, which displayed a significant increase in δ
over the quiescent development value in figure 8(a), does not show a sustained
gain in Uτ . Therefore for this case at least, the FST is mostly an outer-scale
interaction working only to increase the boundary layer thickness. Generally, any
increases in Uτ appear to be more short-lived: for case D the FST curve appears
on its way to merge with the quiescent curve by ≈ 3 t/Te,0 measured post-FST
injection. The same cannot be said for the seemingly more permanently increased
δ in figure 8(a). The gain in friction Reynolds number due to the FST can be
directly calculated at any t/Te,0 following FST injection from figure 8(a,c) using
[(Reτ )FST case − (Reτ )Q]/Reτ ,0 = [(Uτ/Uτ ,0)(δ/δ0)]FST case − [(Uτ/Uτ ,0)(δ/δ0)]Q, where Q
is for quiescent. Any such increase due to FST injection will be proportionally more
attributable to an increase in δ rather than an increase in Uτ (the vertical scale of
figure 8a showing δ/δ0 − 1 is ten times that of figure 8c showing Uτ/Uτ ,0 − 1).

Figure 8(d) plots the boundary layer spreading rate U+
∞
(dδ/dX) similarly as a

function of time post-FST injection. For cases D and E we see large, short-lived
spikes in the spreading rate above that for the boundary layer allowed to continue
growing under a quiescent free stream. Case D with the smaller e0 = Tδ,0/Te,0 = 1.2
seems to react faster and exhibit a larger spreading rate than case E with e0 = 1.9.
From figure 8(a,c), we know the increased spreading rate for case E is due mostly
to the increase in the rate of growth of δ in a more purely outer-flow interaction.
Case F displays a more modest but still significant increase in the spreading rate
at early times, especially at ≈ 0.5 t/Te,0. The effect is much weaker for the other
low-intensity cases A, A1 and B although a small increase is seen for case B over
its corresponding quiescent case. The early elevated spreading rates of cases B, D
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FIGURE 8. (a) Development of δ/δ0 with time post-FST injection for all present cases
except case A, curves coloured as per table 2: – – –, similar for precursor ‘pre-grown’
boundary layers allowed to continue development without FST; δ0 is the boundary layer
thickness at the time step prior to FST injection. (b) Development of θ/θ0 with time
post-FST injection; θ0 is the momentum thickness at the time step prior to FST injection.
(c) Development of Uτ/Uτ ,0 with time post-FST injection; Uτ ,0 is the friction velocity
at the time step prior to FST injection. Note that the ‘pre-grown’ boundary layers are
the same for cases A1 and B, yet the FST was allowed to decay sometime before
injection to form case A1, meaning Te,0 differs. (d) Boundary layer spreading rate as a
function of time post-FST injection for all present cases except case C: – – –, spreading
rate for precursor ‘pre-grown’ boundary layers allowed to continue development without
FST; u, point at which each interaction has become ‘weak’, i.e. where spreading rate
tempers to the quiescent value. Data for (d) are window-averaged over time intervals of
≈ 0.03 Te,0.
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and E relax back towards quiescent values as the FST decays in time and these
approximate points are indicated with filled circles. For temporal wakes embedded
into HIT, Rind & Castro (2012) similarly found an increase in the growth rate of the
wake half-width, with a stronger effect for a higher external turbulence intensity. The
spreading rate for case C is not shown in figure 8(d) since it appeared unreliable.

The gain in the skin friction coefficient due to FST injection compared to the
canonical values of the quiescent boundary layer ((Cf )FST case − (Cf )Q = 1Cf > 0 for
Cf = 2 (Uτ/U∞)2) is shown in figure 9, and is considerably larger when computed
at matched Reτ than that at matched Reθ . Increases in the skin friction coefficient
due to FST have been reported previously (Hancock & Bradshaw 1983), as have
increases in the mass transfer coefficient or Stanton number St (Blair 1983a). This
gain is directly proportional to the gain Uτ/Uτ ,0 shown in time post-FST injection in
figure 8(c). Figure 8(a) shows the often significant change in δ for the different cases,
meaning values along both axes are potentially altered in figure 9(a) in the case of
boundary layers developing under FST. Since (Cf )Q decreases with increasing friction
Reynolds number Reτ =Uτδ/ν, increasing Reτ via an increase in δ, but not Uτ , will
nonetheless give 1Cf > 0 with no change in (Cf )FST case = 2 (Uτ/U∞)2FST case. Thus the
development of Cf with respect to Reτ may be altered via an ‘artificial’ increase in
Reτ , rather than a genuine change in the wall-defined value of Cf due to, say, the
penetration of free-stream fluid. That is, a gain in Cf over that for the canonical
quiescent boundary layer will be due at least in part to the enhanced growth rate
of the boundary layer thickness δ at fixed 1ReX=U∞t = Re1X=U∞1t (i.e. at a fixed
time) post-HIT injection when compared to the quiescent case. The development of
momentum thickness θ post-FST injection is much less affected than that of δ (figure
8a,b) and therefore (1Cf )=Reθ (figure 9b, at matched Reθ ) will be almost solely due
to a change in Uτ , if indeed there is one. Gain (1Cf )=Reτ (figure 9a, at matched
Reτ ) is larger due to the permanent shift in δ, irrespective of changes in Uτ . Case
E, for example, shows a considerable and persistent increase in δ post-FST injection
compared to the quiescent case, although no durable increase in Uτ . As a result, the
peak 1Cf for this case appears more than twice as large when plotting at matched
Reτ to the quiescent boundary layer (figure 9a) than at matched Reθ (figure 9b). Case
E is therefore particularly illustrative: it is important to correctly attribute the origin
of an apparent gain 1Cf for boundary layers developing under FST. The present
temporal technique permits appraisal of these separate modifications to the boundary
layer by the FST.

Furthermore, we point out the almost horizontal (albeit noisy) gain in the skin
friction coefficient in figure 9 for case A, which had the HIT as the initial fields
when the boundary layer simulation began, in contrast to all other cases where
the FST was injected over a ‘pre-grown’ boundary layer. Where 1Cf for the other
cases tends to rise as the effect of the FST is felt by the boundary layer (i.e. via
an increased growth in δ and decrease in Uτ ), before decreasing at a later time
(higher Reynolds number), the skin friction coefficient gain for case A appears
approximately constant. Corresponding with this more ‘passive’ behaviour, case A
shows no increased spreading rate in figure 8(d) for the same simulation period as
shown in figure 9. The change in FST intensity and length scales for case A is
very similar to its companion case A1 for the development extent shown in figure 9,
yet 1Cf shows a sharper increase for case A1 (although a lower peak 1Cf ) as the
boundary layer responds to the FST. Case A’s behaviour here points to an upstream
perturbation to the burgeoning boundary layer, from which full recovery back to
quiescent boundary layer values (i.e. 1Cf = 0) remains elusive.
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FIGURE 9. Gain in the skin friction coefficient due to FST injection with respect to the
quiescent boundary layer of Kozul et al. (2016): (a) at matched Reτ ; (b) at matched Reθ .
The curve for case A (initial simulation fields are HIT with no ‘pre-grown’ boundary
layer) is plotted from Reθ ≈ 500.

4.3. Comparisons of velocity statistics to experimental data
Notwithstanding a non-physical adjustment period after the artificial combination
of fields, we are able to find some agreement with an experimental study of the
same problem (Nagata et al. 2011) for case D in figure 10, showing subdued mean
streamwise velocity and w+rms profiles. The small-scale turbulence of Nagata et al.
(2011) allows for quantitative comparison to the present cases, although the upstream
history is different compared to our synthesised fields. Here Reτ and u′e/Uτ are
roughly matched for the two cases, although the length scale ratio Lu

e/δ is larger
for the case of Nagata et al. (2011) being 0.403, compared to 0.235 for the present
case D at this point in the simulation. An important FST effect is the reduction of
the boundary layer wake (referring to the region external to the logarithmic region)
in the mean streamwise profile in figure 10(a): Blair (1983b) reported a totally
subdued wake for a value of around u′e/U∞ ≈ 0.05. For this level of turbulence
at u′e/Uτ = 0.50, u′e/U∞ ≈ 0.02, we find the wake weakened yet still present. The
diminishing wake is a manifestation of diminishing intermittency in the outer region
of the boundary layer due to the free-stream disturbances. The profile of u+rms (not
shown) is identical to the quiescent case at matched Reτ from the wall up to z+≈ 400.
Note the flat w+rms profile in figure 10(b) away from the wall: being well outside the
boundary layer, this is where the flow resembles HIT. Figure 10(c,d) shows a subdued
Reynolds shear stress profile plotted against both inner and outer coordinates. The
present DNS demonstrates the negligible effect on the Reynolds shear stress due to
FST very close to the wall for z+ . 10 in figure 10(c). The substantial depression of
the Reynolds shear stress profile for z+& 10 with respect to the quiescent case seems
wholly attributable to the diminished w+rms profile since a decrease with respect to the
quiescent case is evident across the same region in figure 10(b). Figure 10(d) with
a linear horizontal axis gives a more tangible view of the effect of the FST with
respect to the large-eddy scale of the boundary layer δ.

Although we would not necessarily expect to find agreement with this experimental
boundary layer, which has been exposed to FST from inception in contrast to ours,
for our case D the FST has indeed effected change deep into the boundary layer.
Our injected FST apparently affects our boundary layer in a similar way to that in
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FIGURE 10. FST-altered profiles for case D at Reτ ≈ 450 (Reθ ≈ 940): (a) mean
streamwise velocity; (b) root-mean-squared wall-normal velocity fluctuations. Reynolds
shear stress profiles plotted against (c) inner-scaled wall-normal distance and (d)
outer-scaled distance: —— (teal), present case D, at t/Te,0 ≈ 3.4 post-FST injection, with
FST parameters Lu

e/δ=0.403, u′e/Uτ =0.43; ——, quiescent temporal boundary layer from
Kozul et al. (2016) at matched Reτ ≈ 450 (Reθ ≈ 1200); , quiescent spatial boundary
layer of Simens et al. (2009) at Reτ = 445 (Reθ = 1100); a, experimental case LG-2
of Nagata et al. (2011) at Reτ = 475 (Reθ = 1100) with FST parameters Lu

e/δ = 0.235,
u′e/Uτ = 0.45.

this particular experimental case. We consider this an example of a ‘strong’ boundary
layer–FST interaction. In contrast to these modified profiles for case D, similar
profiles for case C showed no discernible change from the quiescent profiles due to
the presence of the FST. We highlight the large difference in Tδ,0/Te,0 between cases
C and D, which may explain why the boundary layer in case C appears to ignore
the FST in an apparent ‘weak’ interaction with it.

4.4. Intermittency factor
The intermittency factor γ is shown in figure 11. We find that the effect of the
FST is to spread the boundary layer edge significantly compared with the boundary
layer under a quiescent free stream for all cases. The intermittency profile is here
calculated as the fraction of points in a homogeneous xy plane above 1 % of the
scalar contrast Cw − C∞. Figure 11(a) corresponds to the time of FST injection,
figure 11(b) after t ≈ 0.9 Te,0 and figure 11(c) after t ≈ 1.7 Te,0. That is, curves are
plotted at roughly the same time intervals in terms of the initial FST large-eddy time
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FIGURE 11. Intermittency factor calculated as the fraction of points at each homogeneous
xy plane where the scalar exceeds 1 % of the scalar contrast Cw − C∞: (a) at the time
of FST injection (not relevant for case A); (b) at t ≈ 0.9 Te,0 post-FST injection; (c) at
t≈1.7 Te,0 post-FST injection. Quiescent temporal boundary layer from Kozul et al. (2016)
at matched Reθ to , case C in each panel; and – – –, case D in each panel, together
spanning the range of Reθ covered by the current simulations. Coloured curves as per
table 2.

scale for all cases. This definition of the intermittency is directly inspired by the
approach of Hancock & Bradshaw (1989), where γ was defined as the fraction of
total time at a measurement location for which the flow in their wind tunnel was
‘hot’ (based primarily on the detection of an increase in the measured temperature to
a specified level above the background ‘cold’ level) in their heated boundary layer.
This is a more quantitative representation of the smeared-out boundary layers shown
in figure 6. Drawing attention to two cases in particular, we note the initial FST
intensity u′e,0/Uτ ,0 is similar for cases C and D. Scaling with δ along the horizontal
axis eases the comparison between these and other cases: the value of δ at the time
of FST injection differs by a factor of almost 3 between cases C and D for example.
For all cases except case C, there is a flattening of the γ profile at the later times at
z/δ≈ 1.5, this effect being most marked for case D. The effect is weakest for case C,
which has a high initial relative large-eddy turnover time scale e0 = Tδ,0/Te,0; curves
for case C in figure 11(b,c) appear offset from that of the quiescent boundary layer
rather than smeared out. The curve for case D in figure 11(b) sits noticeably higher
than that for case C over the region 1 . z/δ . 2. Thus the smearing effect appears
to be strongest for case D, which has a lower e0 than case C, and persists for the
longest time (i.e. most flattened in figure 11c).

4.5. Wall-normal velocity variance profiles in time
In figure 10, the profiles for case D are plotted at a single Reynolds number to best
match that of the experimental case to which it is being compared. In our temporally
developing flow, this corresponds to one point in time following (‘downstream of’) the
FST injection. A major strength of the present technique is the possibility of viewing
the entire boundary layer–FST interaction as it unfolds.

Figure 12 plots the profiles at multiple points in time for all the present cases
showing different responses to the injected FST. Figure 12(a–c) shows the three cases
with lower FST intensity at injection (cases A, A1 and B) and figure 12(d–f ) shows
those at higher FST intensity (cases D, E and C). Curves in grey show profiles for
the quiescent boundary layer of Kozul et al. (2016) matched to the Reθ and Reτ of
the final curves in each panel. Insets in each panel show the evolution of the peak

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

32
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.320


Response of turbulent boundary layer to decaying FST 896 A11-21

1.2

1.0

0.8

1.2

1.0

0.8

Reœ
600 800 1000Pe

ak
 w

+ rm
s

1.2

1.0

0.8

Reœ
800 900 1000Pe

ak
 w

+ rm
s

w+ rm
s

w+ rm
s

1.5

1.0

0.5

Tu0 = 5%
Lu

e,0/∂0 = 20

0
101 103

Ref.

Ref. Ref.
Ref.

Ref. Ref.

Reœ

Reœ

102

t/Te,0  = 0.5, 1, 2

1.5

1.0

0.5

0
101 103102

z+

1.5

1.0

0.5

0
101 103102

1.5

1.0

0.5

0
101 103102

z+

1.5

1.0

0.5

0
101 103102

1.5

1.0

0.5

0
101 103102

z+

600 900 1200Pe
ak

 w
+ rm

s 1.2

1.0

0.8

Reœ
600 900 1200Pe

ak
 w

+ rm
s

1.2

1.0

0.8

Pe
ak

 w
+ rm

s

500 700 900

1.2

1.0

0.8

Reœ
1400 14501500Pe

ak
 w

+ rm
s

(a) (b) (c)

(d) (e) (f)

t/Te,0 = 0.5, 1, 1.7 t/Te,0  = 0.5, 1, 1.7

t/Te,0  =  0.5, 1, 2, 3 t/Te,0  =  0.6, 1, 2, 3 t/Te,0 = 0.7, 1, 1.7

A
ue,0/U†,0 = 0.71
Lu

e,0/∂0 = 1.7

A1
� ue,0/U†,0 = 1.0

Lu
e,0/∂0 = 3.2

B
�

ue,0/U†,0 = 1.9
Lu

e,0/∂0 = 1.6

D
� ue,0/U†,0 = 2.1

Lu
e,0/∂0 = 1.1

E
� ue,0/U†,0 = 2.3

Lu
e,0/∂0 = 0.54

C
�

FIGURE 12. Wall-normal velocity variance evolution in time for all present cases from
table 2; curves darken as time (measured post-FST injection) progresses as indicated by
the arrows. Top row shows cases with lower-intensity FST at injection with (a) case A,
u′e,0/U∞ = 5.0; (b) case A1, u′e,0/U∞ = 3.6; and (c) case B, u′e,0/U∞ = 5.0. Bottom row
for high-intensity cases, all with u′e,0/U∞ = 10: (d) case D; (e) case E; and ( f ) case C.
Curves in grey for temporal boundary layer developing under a quiescent free stream from
Kozul et al. (2016), with matched Reynolds number to the final curve shown in each
panel: – – – (grey), at matched Reθ ; —— (grey), at matched Reτ . Inset in each panel shows
the peak w+rms value (for z+ < 100) for each of the times t/Te,0 post-FST injection shown,
and compares it to that for the reference quiescent boundary layer (indicated by ‘Ref.’) at
matched Reθ . In (b): – - – -, case A at t/Te,0 = 2 for comparison.

w+rms (for z+ < 100) at the same t/Te,0 for which profiles are plotted and compares
them to that for the quiescent boundary layer at matched Reθ (since figure 8 showed
that the development of δ, which will alter the development of Reτ , was much more
affected than θ ). For example, the second coloured circle marker on all insets in this
figure shows the peak w+rms at t/Te,0= 1 post-FST injection compared with that of the
quiescent boundary layer at matched Reθ .

In figure 12(a–c) (lower FST intensity), small decreases from the quiescent profiles
at the final times are evident. Indeed, only very subtle differences in the peak w+rms
are evident during the length of the simulations (see insets). Ingested FST fluid
nonetheless lowers the final peak w+rms slightly for cases A and B. Differences with
respect to the quiescent case are smallest for case A1, where the injected FST is the
partially decayed field used for cases A and B. The curve at t/Te,0 for case A was
added to figure 12(b) for comparison to its companion case A1 at t/Te,0 = 1.7. The
curves are not exactly the same, indicating the history affect, yet this comparison
(along with the agreement of case D with experimental data in figure 10) demonstrates
the present technique’s ability to give ‘physical’ downstream fields. In figure 12(d–f ),
the three cases have the same Tu ≡ u′e/U∞ (and similar u′e/Uτ ) when the FST is
injected, yet their relative length scales differ significantly: at injection Lu

e/δ≈ 1.6 for
case D, ≈ 1.1 for case E and ≈ 0.54 for case C. We find that despite being exposed to
the same levels of FST intensity, the outcome is different for the high-intensity cases,
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with the FST in case D able to, after some time, effect change in the w+rms profile
with respect to a quiescent spatial DNS profile at a matched Reτ (subdued peak for
z+& 40 after t≈ 3 Te,0 in figure 12d). Only a mild difference from the quiescent case
is found in the curve at the final t/Te,0 = 3 shown for case E (figure 12e); however,
the evolution of the peak w+rms is similar to that of case D, showing an early increase
with respect to the reference quiescent case followed by a decline as the FST decays.
We suggest the observed lowering of the final peak w+rms as compared to the reference
quiescent cases is due to the intensity of the FST being lower than the quiescent
peaks at this point. At early times when the FST is stronger, the peaks for cases
B, D and E in particular appear higher than that for the quiescent boundary layer,
reflecting an early FST intensity level that exceeds the peak w+rms of the reference
quiescent boundary layer.

There is a key difference between cases D and E: at t/Te,0 = 3, we suggest that
there have been more substantial FST fluid incursions deep into the boundary layer
in case D than in case E, resulting in a lowering of the final peak value. The final
circle marker in the inset of figure 12(d) for case D lies below that for the quiescent
boundary layer, whereas the final circle marker for case E in figure 12(e) lies directly
on the black curve, meaning the peak w+rms is unaltered due to the FST at this later
time. This will be further explored in § 4.6. A similar conclusion (i.e. final peak w+rms
lower than that for the reference quiescent case) is demonstrated by the low-intensity
cases in figure 12(a–c); however, the effect is more subtle since the starting FST
is weaker. A conclusion on case C is precluded by the limited timespan available;
however, we note that changes in the profiles of other cases were effected after similar
time delays of t≈ 1.7 Te,0. In figure 12, time intervals of t/Te,0 are equivalent for the
evolution of HIT in all cases except A1, whose free stream was seeded with a partially
decayed HIT field possessing a different Te,0 (table 1). Yet, time passed in terms of the
initial boundary layer large-eddy time scale Tδ,0 is very different across the different
cases, by a factor equivalent to the difference in e0= Tδ,0/Te,0 shown in table 2. Thus
the boundary layer time scale for case C is roughly three times that for case D, and
we suggest that this parameter effectively dictates the ‘reaction’ time of the boundary
layer to the FST.

Figure 12 suggests that the boundary layer–FST interaction in our cases can be
largely understood as a simple mixing of the two flows. The peaks in the w+rms profiles
(insets) are increased when the FST is higher than the peak of the wall-generated
turbulence, and then decreased when the FST is lower than that of the wall-generated
turbulence. Section 4.6 offers conditional statistics building on this basic idea. For
wakes subject to external turbulence, Pal & Sarkar (2015) introduced an argument
based on u′e/u

′

cl, where u′cl is the wake turbulence at the centreline, and found this to
be the key parameter governing the influence of external fluctuations, and not u′e/U0,
where U0 is the centreline deficit velocity. In the present wall-bounded flow we can
take u′cl to be analogous to the peak in velocity variance profiles (i.e. w′rms,peak in the
insets of figure 12). We indeed see the influence of the relative ratio of w′e/w

′

rms,peak as
stated above. Pal & Sarkar (2015) reported that the external turbulence and centreline
turbulence tend to eventually decay at similar rates. This is in contrast to the boundary
layer where the inner peak is ever energised by Uτ , and thus the ratio w′e/w

′

rms,peak
always falls as the FST decays. Whether the boundary layer is impacted by the FST
while w′e/w

′

rms,peak is still above unity (Pal & Sarkar 2015) is governed by the relative
large-eddy turnover time scale. This effectively dictates the ‘adjustment time’ required
between the boundary layer and FST.
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FIGURE 13. Boundary layer and FST contributions to the wall-normal Reynolds stress
profiles deduced via conditional averaging on the passive scalar: ——, contribution from
the boundary layer; – – –, contribution of FST; , sum of two profiles, equivalent to
non-conditionally averaged profiles. (a,d,g) Case D; (b,e,h) case E; (c, f,i) case C. (a–c) At
the time of FST injection; (d–f ) at t≈ 0.9 Te,0 after FST injection; (g–i) at t≈ 1.7 Te,0 after
FST injection. Curves in grey are for the boundary layer developing under a quiescent free
stream from Kozul et al. (2016) at matched Reτ for each panel. Note that the vertical scale
in (a–c) differs from that of the subsequent panels.

4.6. Free-stream contributions to wall-normal Reynolds stress profiles
We seek to further dissect the profiles shown in figure 12 for the high-intensity
cases. This analysis follows that of Hancock & Bradshaw (1989) where the turbulent
free-stream fluid was distinguished from that of the wall-generated turbulent flow by
heating the boundary layer. In the present case, the passive scalar released at the
wall will ‘mark’ that fluid as originating in the boundary layer. Figure 13 shows the
‘free-stream’ versus ‘boundary-layer’ contributions to the wall-normal Reynolds stress
profile w′2/U2

τ for present cases C, D and E. We here use the same thresholding
for the conditional averages as used for the injection of the FST as per (3.1): if the
scalar concentration is below 5 % of the scalar wall contrast Cw − C∞, it will be
considered to be a free-stream contribution, else it is deemed to be wall-generated
turbulence for the purposes of the present analysis. We note a 1 % threshold was
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used in the flow visualisation shown in figure 6 and for calculating the intermittency
profiles of figure 11. This was both to emphasise differences between the quiescent
and FST cases, and since δ is based on the 99 % thickness throughout this work. In
contrast a 5 % threshold is more appropriate for figure 13 which directly considers
‘free-stream’ or ‘boundary-layer’ fluid, following the synthesis of these fields via 5 %
thresholding. The quiescent boundary layer of Kozul et al. (2016) is subjected to
the same analysis and curves are shown at matched Reτ in each of the panels
for reference. However, it should be noted that our passive scalar is diffusive,
with Sc = ν/D = 1, for D diffusivity of the scalar. At the latest time shown in
figure 13, t ≈ 1.7 Te,0 following FST injection, the scalar will diffuse over a length
`D ≈

√
2 D t =

√
2 (ν/Sc)1.7 Te,0 ≈ 1.8

√
Te,0 U2

∞
/ν (ν/U∞) . 500 ν/U∞ (Westerweel

et al. 2009), where Te,0 U2
∞
/ν is noted in table 2 for all the present cases. This

corresponds to a quarter of one of the tickmark intervals shown in figures 5 and
6. As a fraction of the temporal mean of the boundary layer thickness δ over
t = [0–1.7]Te,0 post-FST injection, `D . 7 % of the smallest δ (case D). The error
incurred in considering the scalar as a ‘marker’ of the wall-generated turbulence does
not impede the analysis, since changes potentially due to diffusion in the curves
conditioned on the scalar in figure 13 are small compared to the horizontal extent
shown (2 δ). Moreover, it is small compared to the 50–200 % growth in δ compared
to δ0 by this time post-FST injection (figure 8a), due in large part to the increasing
Reynolds number irrespective of FST.

Figure 13(a–c) shows the penetration depth of the FST to be similar for the three
cases at the time of FST injection. The picture changes at a later time. In figure 13(d)
for case D and figure 13(e) for case E, after about t≈ 0.9 Te,0 (again, for roughly the
same time interval in terms of the initial FST large-eddy time scale for all cases),
there is significant incursion of free-stream fluid through the boundary layer towards
the wall until z/δ ≈ 0.1 after which it is negligible. However, the contribution to
the total profile by free-stream fluid is almost zero below z/δ ≈ 0.4 for case C in
figure 13( f ). The same is true for case C at a later delay of t ≈ 1.7 Te,0 following
FST injection. Note that the time delays post-FST injection considered here are the
same as those for the intermittency profiles in figure 11. Not only does FST fluid
apparently penetrate closer to the wall in cases D and E, the FST contribution profiles
(i.e. dashed lines) straighten more quickly for these cases, especially in figure 13(d)
for case D. At the time of injection for case D in figure 13(a), the profile of the FST
contribution was concave and thus dropping off at a faster rate as one moves towards
the wall. In contrast, the free-stream contribution for case C in figure 13( f ) after the
same time delay remains rather more curved similar to how it appears at the time of
FST injection in figure 13(c), pointing to a smaller quantity of penetrating free-stream
fluid. However, the dashed line appears straighter at a later time still in figure 13(i).
Such an observation suggests differing adjustment times of the respective boundary
layers to the FST.

Our profiles show marked qualitative similarity to those of Hancock & Bradshaw
(1989) (their figure 13) given a delay after FST injection, which helps to bolster
confidence in the ability of our artificially synthesised fields to replicate not only mean
statistics of laboratory fields, but also the relative contributions of the free-stream and
wall-generated turbulence. As they stated, we too see a substantially altered structure
in the outer layer, while the main effect in the inner layer is increased ‘inactive’
motions (in the Townsend (1961) sense, that is, not significantly contributing to the
shear stress −u′w′) from the free stream. They showed two cases with roughly the
same intensity u′e/U∞≈ 0.04 yet different length scales, with one case at Lu

e/δ= 1.90
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and the other with Lu
e/δ = 0.71. They too observed deeper incursions of free-stream

fluid at the larger length scale ratio. Since the present analysis gives results very
similar to theirs, it would seem that, whilst e= (u′e/Uτ )/(Lu

e/δ) might influence how
quickly FST is able to penetrate, the final form of the profiles is ultimately more
influenced by the free-stream value of w′2/U2

τ .
At the later time t≈ 1.7 Te,0 following FST injection (figure 13g–i), the ‘boundary-

layer’ contributions from both the present FST cases and the quiescent boundary layer
align rather convincingly (see arrows in figure 13g–i). Thus the w′2/U2

τ profiles appear
to approximately correspond to a superposition of that for the quiescent boundary
layer and that for the FST with weights approximately set by the intermittency γ
following a sufficient time delay. We suggest this explains the resulting profiles for
the present work: incursions of free-stream fluid will tend to bring the outer Reynolds
stress profiles closer to the value of the FST in the free stream. However, there is
some disparity between the curves for the ‘boundary-layer’ contributions between the
current cases and the boundary layer developing under a quiescent free stream at the
earlier t ≈ 0.9 Te,0 following FST injection in figure 13(d–f ) (i.e. difference between
lines denoting boundary layer fluid when comparing the quiescent and FST cases in
each panel). This could be due to the large growth in δ at this early time, meaning
that matching Reτ = δUτ/ν of current cases with those of Kozul et al. (2016) may be
problematic. The persisting discrepancy in the ‘boundary-layer’ fluid curves for case
C (especially near z/δ≈ 0.5 in figure 13i) is partly attributable to a small domain size
yielding unconverged statistics. At this point in case C we reach the physical limit of
the simulation where the boundary layer has grown to 1/3 of the domain height Lz.

4.7. Total turbulent kinetic energy budgets

Components of the energy budget for the total turbulent kinetic energy k= u′iu′i/2 are
plotted in figure 14 for cases D, E and C at t≈ 1.7 Te,o post-FST injection, the same
final time as in figures 11 and 13. Following the example of Hoyas & Jiménez (2008),
the individual terms in the k budget are premultiplied by the distance from the wall
z such that, with the logarithmic abscissa, areas under the curves are proportional to
the integrated energy. For the temporal boundary layer, the budget equation for k reads
(Hoyas & Jiménez 2008; You & Zaki 2019)

Bk ≡−
Dk
Dt︸︷︷︸
A

−u′iu′j
∂ui

∂xj︸ ︷︷ ︸
P

− ν
∂u′i
∂xj

∂u′i
∂xj︸ ︷︷ ︸

ε

−
1
2
∂u′ju′iu′i
∂xj︸ ︷︷ ︸

T

+ p′
∂u′i
∂xi︸ ︷︷ ︸
Π s

−
∂u′ip′

∂xi︸ ︷︷ ︸
Πd

+ ν
∂2k
∂xj∂xj︸ ︷︷ ︸

V

,

where P is referred to as the production, ε the turbulent dissipation rate, T the
turbulent diffusion, Π s the pressure strain, which vanishes in the k budget for
an incompressible flow, Π d the pressure diffusion, V the viscous diffusion and
A=Dk/Dt= ∂k/∂t+ ui∂k/∂xi (Pope 2000) is the mean flow material derivative of k,
where only the unsteady part is retained for the temporal boundary layer.

Despite a lack of statistical convergence for curves of the budget terms in figure 14,
deduced from single fields at a specific time, we are nonetheless able to assess how
the FST has broadly changed, or not changed, the various components of the budget
for the different cases throughout the extent of the boundary layer. Similar curves
for the quiescent boundary layer (Kozul et al. 2016) at matched Reτ are plotted in
figure 14 for comparison. The present simulations are shown to be numerically very
well converged since the budget residual (red line) is almost zero in all of the cases.
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FIGURE 14. Total kinetic energy budget terms for (a) case D, (b) case E and (c) case C,
all at t ≈ 1.7 Te,0 after FST injection. Filled symbols, present FST cases; open symbols,
quiescent boundary layer of Kozul et al. (2016) at matched Reτ ; —— (red), budget
residual; —— (blue), line at zero for reference; P , production; ε, dissipation; T , turbulent
diffusion; Π s, pressure strain; Π d, pressure diffusion; V , viscous diffusion; A, unsteady
term (highlighted in green).

It is immediately clear that changes to the boundary layer due to FST injection
are restricted to the outer region. Beyond z ≈ δ, in the absence of production, the
turbulence is simply decaying and therefore balanced only by the unsteady term
(highlighted in green). This is similar to the balance for the wake embedded in HIT
of Pal & Sarkar (2015) at late times when the production term had decayed. The
transport term follows that of the quiescent boundary layer and is negative up until
z/δ ≈ 0.08, meaning the FST does not change the boundary layer’s transport of
kinetic energy outward from the wall over this region. This is also similar to that
found by Pal & Sarkar (2015), where their FST was similarly not strong enough to
overcome the transport of turbulence from the wake core outward. Case D shows a
consistent decrease of its production term over z/δ ≈ 0.03–1, whereas the effect is
less conclusive for cases E and C.
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An increase of the unsteady term −A within the boundary layer may indicate
the penetration of decaying FST into it. This term is close to zero throughout the
boundary layer in the quiescent case shown for reference, tends to be slightly negative
at the edge of it and then zero in the quiescent free stream. For the present FST cases,
this term shows a positive shift at the edge of the boundary layer for all the cases,
consistent with the large positive value of −A in the free stream (since the curves
are shown at the same time post-FST injection, the unsteady term A has the same
value relative to U3

∞
for all cases shown in figure 14; however, the scale Uτ differs

considerably between cases D, E and C due to their being at different Reτ ). Despite
some subtle changes in the outer part of the boundary layer, figure 14 suggests the
inner region is largely immune to the effects of the injected FST; the kinetic energy
budget close to the wall remains similar to that of the quiescent boundary layer at
matched Reτ . This aligns with previous results herein indicating the FST–boundary
layer interaction to be largely restricted to the outer region of the boundary layer.

5. When can the FST change the boundary layer?

The present work attempts to elucidate if and how the fully turbulent boundary
layer is changed by free-stream disturbances by observing its development under
decaying HIT injected into its free stream. In conducting simulations of boundary
layers exposed to FST, we found examples of both ‘strong’ (e.g. case D) and
‘weak’ (e.g. case C) interactions. The ‘weak’ interaction of case C did not show the
characteristic suppression of the wake in the mean streamwise velocity profile (Blair
1983b; Thole & Bogard 1996), evident in all other cases, although firm conclusions
are precluded by the limited timespan available for that simulation. Case C also
displayed less flattening of its intermittency profile, defined on the passive scalar
released at the wall, than the other cases. This is despite high FST intensity u′e/Uτ at
injection. That is, the strength, or result, of the interaction cannot be solely predicted
from knowledge of the FST intensity (or relative large-eddy length scale ratio Lu

e/δ)
in isolation. Doing so may lead to inconsistencies in reported changes to Reynolds
stress profiles as suggested from the summary of experimental results of this problem
presented in Nagata et al. (2011).

Flattened intermittency profiles were observed for all other cases thus increasing
δ, the 99 % boundary layer thickness. The present technique of ‘marking’ boundary
layer fluid with a passive scalar reveals large excursions of boundary layer fluid of the
order of 2 δ for strongly interacting case D (figure 6d). This significant redistribution
of the boundary layer would be otherwise underestimated given the more subtle
increase in δ. A more spread-out boundary layer with a similar momentum deficit
will presumably allow more incursions of FST from the free stream, as was shown
in intermittency weighted averaged profiles in § 4.6, where we were able to discern
free-stream versus boundary layer contributions to the wall-normal Reynolds stress
profiles by conditioning Reynolds stress statistics on the scalar released at the wall.
We found that the boundary layer in case C (‘weak’ interaction) was indeed receiving
contributions from the FST, but that they did not penetrate deeply as quickly in time
as those for cases D and E (‘strong’ interactions). Such incursions then serve to
alter the velocity variance profiles, such that they are closer in value to that of the
FST. We suggest that in case C, the FST decays more rapidly than the rate at which
the boundary layer is able to absorb changes in its velocity profiles. Furthermore,
increases in the outer region of velocity variance profiles are only observed when
the isotropic u′e/Uτ of the FST differs significantly from the variance profiles of the
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FIGURE 15. Changing relative time scale e on the regime diagram. Coloured curves
as per table 2. (a) Regime diagram of figure 7(a) with grey lines of constant e =
(u′e/L

u
e)/(Uτ/δ) = Tδ/Te added, value noted at top right of each line: u, Hancock &

Bradshaw (1983); ×, Dogan et al. (2016). (b) Regime diagram showing evolution of e
directly as a function of FST intensity u′e/Uτ :u, points at which the interaction becomes
‘weak’, corresponding to the same marked points on figure 8(d); – – –, hypothetical
evolution of e formed from Tδ of precursor simulations continued without FST injection
(as in figure 8) and Te from the corresponding FST cases.

outer region of the wall-generated turbulence profiles. Looking at, say, z/δ ≈ 0.5 in
figure 13, the gain over the reference quiescent cases (grey curves) for the total or
conventionally averaged w′2/U2

τ profiles is larger for all cases at an earlier time (figure
13d–f ) when the FST intensity is stronger. Profiles deviate less from the quiescent
boundary layer profiles at a later time when the FST has decayed significantly (figure
13g–i). In the literature, increases in the peak of the velocity variance profiles have
only been shown when u′e/Uτ of the FST is greater than the peak variance that would
be otherwise observed in a boundary layer forming under a quiescent free stream
(Thole & Bogard 1996; Dogan et al. 2016).

Figure 15(a) adds lines of constant e = (u′e/L
u
e)/(Uτ/δ) = Tδ/Te, a measure of the

relative large-eddy time scales in the present temporal interpretation, to the regime
diagram of figure 7(a). As stated above, the main action of the FST on the turbulent
boundary layer is to increase the rate of its spread away from the wall, which will
then serve to increase the boundary layer thickness δ faster than the ∼ t[0.71,0.73]

observed for the quiescent temporal boundary layer of Kozul et al. (2016), which
we indeed see in figure 8(a) for most of the present cases. Short temporal ranges
mean the exponents are somewhat unreliable yet a range of increased exponents
∼ t[0.77,0.80] is found for the present FST cases. This is related to the increased
spreading rate for the boundary layer due to FST, an effect found to be stronger
for both smaller e0 and higher FST intensity (figure 8d). An analysis of relevant
scales in this problem led to the estimate e ∼ t0 (2.5), suggesting e would tend to
a constant at large t for non-interacting flows. An increased development rate of
δ for a ‘strong’ FST–boundary layer interaction will make the exponent on t more
positive. Figure 15(b) plots the evolution of e for the present cases against FST
intensity u′e/Uτ . All cases demonstrate an increase of e in time, before decreasing
again. Note that in the present simulations, the increase in e as shown in figure 15(b)
is partly attributable to the decrease in Lu

e for early times in excess of that suggested
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by power-law fits (figure 3b). In figure 8(d) we marked the points in time at which
we deemed the boundary layer–FST interaction had become ‘weak’ (decrease of
boundary layer spreading rate back to that for the boundary layer developing under
a quiescent free stream) for cases B, D, E and F. Those same points are marked
with filled circles in figure 15(b), indicating from which point ‘weak’ interactions
presumably begin.

We point to the difference in e0 = Tδ,0/Te,0 when the flows are combined: this
quantity differed by a factor of 3 for the two cases C and D that had similar FST
intensities at injection. All other things being equal, a different value in e0 can arise
due to a large difference in the relative length scale Lu

e/δ, although this does not
alone appear to be the critical factor in predicting a ‘strong’ or ‘weak’ interaction.
In figure 13(d), a strong interaction continues for case D despite Lu

e/δ = 0.53 (e≈ 2
at this point in time for case D). This length scale ratio is roughly equal to the
Lu

e,0/δ0 = 0.54 for the weakly interacting case C at FST injection. Since we find a
systematic weakening of the effect between cases D (e0 = 1.2) and E (e0 = 1.9), we
are led to believe that e0 . 2 is required for the FST to have sufficient time to strongly
interact with the boundary layer. We suggest that if a boundary layer–HIT system
satisfies this condition, a ‘strong’ interaction will ensue. We have tentatively shaded a
region of the regime diagram in figure 15(b) as giving rise to ‘strong’ interactions.
The curve of case B is excluded since, although there is apparently scope for the
boundary layer and FST to interact temporally, the FST is not sufficiently strong to
cause significant changes to velocity variance profiles (figure 12c). That is, in addition
to the condition on e0 ensuring that the boundary layer has sufficient time to adjust to
the presence of the FST, the FST intensity u′e/Uτ must also be significant compared
to the (peak of the) quiescent velocity variance profiles. The Reynolds numbers of
both the turbulent boundary layer and the HIT must presumably be sufficiently high
for this inertial criterion to be meaningful. Although we could foresee some Reynolds
number effects on the borders of the regime, we expect the essence of the argument
on relative time scales to hold.

6. Summary

Bradshaw (1996) noted the importance of parameter e for correlating results for this
physical problem over a limited range of FST intensities and length scales, yet at the
time it was unclear how general this dependence might be. The present simulations
reaffirm the importance of this parameter in predicting the strength of the boundary
layer–FST interaction by presenting a limited parametric study of the temporally
developing parameter e. Furthermore, for the range of parameters and Reynolds
numbers we have here studied, it would be possible to gauge in advance whether or
not given HIT will impart change onto a turbulent boundary layer developing beneath
it. If the large-eddy turnover time scale of the boundary layer is much larger than that
of the FST, then the injected FST will decay to negligible levels before the boundary
layer is able to ‘notice’ it. The ‘inactive’ FST fluid does not penetrate closer to
the wall than around z+ ≈ 100 in such a case. Thus a ‘weak’ interaction could be
predicted where a boundary layer’s large-eddy turnover time scale is much larger than
that of the FST. Since resulting velocity variance profiles appear approximately as the
sum of the FST intensity weighted by the intermittency γ and that for a boundary
layer developing under a quiescent free stream, FST intensities must in addition be
at least comparable to the peak values of the Reynolds stress profiles for significant
change to eventuate. Hancock & Bradshaw (1989) found conditionally sampled
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statistics showed a dependence on (u′e/L
u
e)/(Uτ/δ) = e, identifying it as a relative

fluctuating strain. However, they found that at e & 1, statistics became markedly less
dependent on this parameter. Whilst this implies that the FST has a large relative
fluctuating strain compared to the boundary layer, making this, according to such an
interpretation, ‘unexpected’, considering it here as a relative large-eddy turnover time
scale, we offer an alternative physical explanation: that a large e means that the FST
will decay rather more rapidly than the boundary layer is apparently able to adjust
to or absorb its effects. Furthermore, Hancock & Bradshaw (1989) did not have the
capability to observe co-evolution of the boundary layer and the FST, and were unable
to untangle history versus contemporaneous effects. Our temporal approach exposes
the dynamism of the boundary layer–FST interaction whose inherent nature will be
neglected by an equilibrium model. Despite the advantages of the present temporal
model in understanding this interaction, it must be borne in mind that the temporal
boundary layer is equivalent to the spatial boundary layer only in the asymptotic
limit of large Reynolds number. The (vanishing) difference in entrainment due to the
small wall-normal velocity at the edge of the spatial boundary layer, absent in the
temporal case, means a potential discrepancy exists between the present simulations
and their spatial equivalents with regards to entrained fluid from the free stream.

For the present simulations, the relative time scale interpretation, combined with a
condition on the FST intensity u′e/Uτ , yields a consistent explanation of our results
for the Reynolds number range we have been able to tackle. The ability of the FST
to change the boundary layer requires the boundary layer to have time – measured in
its own time – to be altered by it. Our present temporal investigation sheds light on
the conditions under which the boundary layer is able to ‘see’ the injected free-stream
disturbances, before they fade away.
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