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Disclaimer 

Nowadays, AI-based systems are becoming increasingly popular in the automotive industry (e. g. driving 

assistance systems, autonomous driving functions etc.). However, appropriate standards, methodologies and 

requirements to cover the AI-specific risks are still missing. The aim of this project is to develop generic 

requirements, corresponding test methods and tools to assess such risks of AI-based systems. Due to the 

complexity and the wide range of applications, the scope of this work is limited to certain aspects in the 

automotive context. In selected use-cases the previously defined requirements are evaluated and tested as a 

proof-of-concept. Hence, the results shall be considered as preliminary and as a guidance for best practices. 

Furthermore, future development and additional use-cases are needed to perform adjustments and continue 

the specification of these requirements. 

 

Preliminary Remark 

The document is based on the technically oriented and work package (in 

-7 

throughout the document. These serve internal purposes and can be ignored by the reader. 
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1 Introduction 

AI-based systems are increasingly used as part of AD/ADAS systems. Especially, DNNs achieve an impressive 

performance on most task and are the most promising solution to achieve higher level of autonomous 

driving. At the same time, different manufacturers already use DNN-based solutions as part of L2 ADASs that 

are operating on public roads. However, current DNNs introduce new and specific vulnerabilities into the 

systems which can impact the performance of AD/ADAS systems negatively. This requires a detailed analysis 

of existing vulnerabilities and potential mitigation strategies. To still enable the usage of such DNN-based 

solutions for high-risk applications (like L4/L5 autonomous driving) clear guidelines and regulations are 

required. This assures that systems with a high degree of autonomy are of a high quality and include 

mitigation strategies to known vulnerabilities. However, currently no regulations or standards exist that are 

tailored towards the use of AI-based systems for AD/ADAS and include AI specific vulnerabilities. 

To increase the required knowledge in the areas of risk mitigation and auditing the goal of this project 

-Systeme anhand 

praktischer Use-Cases im Bereich Mobilität (AIMobilityAuditPrep)  is to explore how auditing guidelines can 

ensure the IT-Security of AI-based AD/ADAS systems for high-risk application areas. This project (in 

combination with the follow- Erprobung und Weiterentwicklung von Anforderungen an KI-

Systeme anhand praktischer Use-Cases im Bereich Mobilität (AIMobilityAudit) lays the foundation of a 

technical guideline which should be contributed to national and international standardization committees. 

This document is the final report of work package six Dokumentation, Publikation & Präsentation 

Ergebnisse, Handlungsempfehlung für Folgeprojekt " of the current project. Hence, it contains the results of 

the previous work packages two to five which are already available in the individual reports (1), (2), (3) and (4). 

Therefore, we cover the SOTA literature review, the creation of general auditing guidelines, the suitability 

analysis of use cases and the creation of a toolchain and toolbox for training and auditing DNNs. Here, we 

combine the individual reports using a common terminology and provide a joint summary and outlook. 
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2 State-of-the-Art Report (AP2) 

This chapter is the final report of work package two Erstellung State-of-the-Art-Dokument  the project 

derungen an KI-Systeme anhand 

praktischer Use-Cases im Bereich Mobilität (AIMobilityAuditPrep) . Hence, it contains the results of the 

research on the State-of-the-Art of the topics that are described in the service description. These consist of 

the following: 

• The entire AI-Lifecycle, from the planning phase, through the data collection and data quality 

assurance phase, the training phase, the evaluation phase and the operating phase 

• At least the following relevant aspects: IT security, safety, robustness, explainability and 

documentation 

• Relevant use cases from the mobility sector 

• The role of simulation and synthetic data 

• The integration of AI systems in an overall system, which typically consists of different software and 

hardware components and is embedded in an environmental context 

• Strategies and tools for the mitigation 

• National and international activities for standardization/auditing 

• Current scientific developments from conferences and journals 

2.1 AI Lifecycle 

The entire artificial intelligence (AI) lifecycle is considered only by a limited amount of research work. Instead, 

in most cases only individual steps in the entire lifecycle are considered. Still, in the following we present a 

selection of the most interesting and relevant publications to cover the AI lifecycle from the perspectives of 

different stakeholders. 

In (5) the authors present a detailed survey of all technologies surrounding an AI system and highlight many 

technologies that are involved in an AI system. They cover the complete lifecycle from data collection to 

human-machine interfaces and present relevant tasks of each step in the lifecycle. For these steps, they 

introduce the basic algorithmic ideas and present current advances from the research. Additionally, hardware 

technologies are discussed that are used for data collection, performant computing and deployment. 

Different application domains are considered, and practical examples are presented. 

The authors in (6) describe the AI lifecycle from the viewpoint of a maturity framework for enterprises. The 

considered AI lifecycle is shown in Figure 1 and starts at the very beginning with the setting of goals and the 

definition of business use cases. Then, the general steps of data collection, feature preparation, model training, 

model evaluation and deployment are considered. For each step, the authors describe the concrete tasks that 

need to be performed and provide best practices for companies from their experience. The developed 

framework to measure the overall maturity of the AI lifecycle management is derived from the software 

capability maturity model introduced in (7). 
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Figure 1 Overview of the AI lifecycle from (6) 

Furthermore, work exists that looks at the AI lifecycle from the viewpoint of trustworthy AI. In (8) the authors 

perform an extensive survey on different aspects of trustworthiness at each step in the entire AI lifecycle. 

They cover important aspects, like robustness, generalization, explainability and transparency that are also 

considered in this project. Additionally, they also cover the aspects of fairness and alignment of AI systems 

with human values so that the entire topic of trustworthiness is considered. In Figure 2 an overview of a subset 

of the considered aspects and the categorization in the AI lifecycle is shown. All mentioned properties are 

described in detail and the existing challenges at each step in the AI lifecycle are discussed. The authors also 

provide concrete actions for practitioners at each step that are taken from current advances in the research. 

In general, this publication seems to have a similar focus than our project and hence covers the same aspects. 

A very similar viewpoint is also covered by the authors in (9). The complete AI lifecycle is considered, as well 

as the integration of AI systems in larger IT systems. Vulnerabilities at each point in the lifecycle are discussed 

and promising recently published mitigations strategies are described. 

 

Figure 2 Partial overview of some aspects of AI trustworthiness depending on the steps of the AI lifecycle from (8) 

Finally, the last viewpoint is based on the cloud lifecycle management of AI systems. In (10) the authors focus 

on different tools that can support the management of AI systems and track the complete lifecycle. They base 
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their work on the principles of software lifecycle management and show how these can be adapted to the AI 

lifecycle. This enables the reliability, traceability and reproducibility of the AI development process. Concrete 

software tools that enable the described AI lifecycle tracking are presented later in Chapter 2.3.4.2 as part of 

the chapter on the documentation of AI systems. 

Additionally, the publications (11) and (12) look at the AI lifecycle from the viewpoint of documentation. For 

internal documentation, different report structures at each point in the AI lifecycle are proposed that can also 

be handed to third parties for external auditing. We discuss these publications in greater detail in Chapter 

2.3.4.1. 

2.2 Challenges of AI Systems 

The use of AI-based systems leads to unique challenges that do not exist to the same extent for traditional 

algorithmic IT systems. In comparison some properties of AI-based systems complicate the auditing process 

to ensure the safe usage in high-risk applications like autonomous driving (AD). Especially, the more complex 

lifecycle discussed in Chapter 2.1, the often very large input and system parameter space, the high data 

dependency and the black-box property of AI systems pose new challenges. In this chapter an overview of all 

arising challenges is given before we present potential mitigation strategies for each challenge in Chapter 2.3. 

Additionally, it is important to note that the strict assignment of challenges to the following subchapters is 

not uniquely defined. There exist overlaps between the individual challenges discussed in the remainder of 

this chapter and depending on the viewpoint some aspects could also be assigned to other subchapters. 

2.2.1 IT Security 

In this chapter, an overview of IT security threats on AI-based 

compromise the confidentiality, integrity, availability and privacy of the system (13). Most IT security attacks 

pose a threat on the integrity and availability of a model. Here, evasion attacks and data poisoning attacks are 

attack methods that emerged for data-driven systems, which do not exist to the same extent for traditional 

IT systems. Both attack methods are also strongly related to the robustness of an AI-based system which is 

discussed in Chapter 2.2.2. In contrast, threats on data privacy and confidentiality are excluded from the scope 

of this project and therefore will not be addressed in detail. Namely, model extraction, membership inference 

and model inversion attacks, pose a threat on the confidentiality and the privacy of the system. However, 

model stealing attacks can also be used to enhance evasion attacks and due to the transferability property of 

adversarial examples these methods can also pose a threat on the integrity and availability of a system (13). 

2.2.1.1 Model Extraction Attacks 

Model extraction attacks attempt to copy the functionality of a black-box victim model. The general concept 

of such attacks can be described in two steps. First, a victim model is queried with data chosen by the adversary 

and then a surrogate model is trained on the data and the queried predictions with the objective to be as 

similar as possible to the victim model. These attacks can extract a white-box model similar to the victim 

model, which enables the adversary to craft white-box adversarial attacks without any environmental or 

domain constraints. Due to the before mentioned transferability property of adversarial attacks, the crafted 

adversarial examples can be used to impose a threat on the integrity and availability of the victim model. The 

attack success of the transferred adversarial examples depends on the similarity between the extracted model 

and the victim model as discussed in (14). 

Basic model extraction attacks utilize publicly available datasets and models that similar to typical 

and the model architecture this can result in a high difference between the victim model and the extracted 

model. Recently, works have emerged to enhance these model extraction methods through information 

extraction attacks, to increase the similarity between the two models. 

Since the attack success of adversarial attacks on the victim model depends on the similarity between the 

surrogate and victim model, the aim of an attacker is to gain more knowledge of the model architecture and 
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training of the victim model. Therefore, recent research demonstrates that combining information extraction 

attacks of the model architecture or the training data enhances model extraction attacks.  

The authors of (15) successfully infer the architecture of a black-box model by snooping information at the 

PCIe bus and memory bus. They use a three-step method described in Figure 3 

-time- -step, they train a long short-term 

memory (LSTM) connectionist temporal classification network to predict each layer type of the victim model 

based on the kernel features during run-time. In the next step, they reconstruct the connection between the 

extracted layers through the read-after-write access patterns for each layer. Finally, they use the read and 

write volumes to estimate the parametrization of each layer. The authors are able to construct a surrogate 

model with a high similarity to the victim model and additionally achieve an 50,4% increase of the attack 

success rate compared to model extraction methods based on publicly available model architectures.  

In the publication (16) the authors demonstrate that data extraction attacks can enhance model extraction as 

well. Concretely, they utilize a model inversion attack to improve the training phase of their surrogate model. 

They initiate a substitute model by querying a victim model based on data from a public dataset. To improve 

the substitute model, they select data samples from the public dataset where the victim model has a high 

confidence score and inverse them using an autoencoder like the one designed in (17). Finally, they retrain 

the surrogate model on the inversed data samples and the predictions from the victim model. The inversed 

samples have resemblance with the training data of the victim model, which enables the surrogate model to 

learn features similar to the victim model. With this approach, they are able to achieve a higher agreement 

with the victim model than other SOTA model extraction attacks. Additionally, they can evade the SOTA 

defense method from (18), which detects suspicious model queries linked to model extraction attacks. 

 

Figure 3 Illustration of the steps necessary to extract model architectures from (15) 

2.2.1.2 Evasion Attacks 

In this chapter an overview over current state-of-the-art (SOTA) evasion attacks within the autonomous 

driving domain is given. Evasion attacks, also known as adversarial attacks, are carefully perturbed input 

samples (adversarial examples) that change the prediction of AI-based systems according to the adversar  

will. This imposes a threat on the integrity and availability of the system. Therefore, evasion attacks pose a 

significant threat for safety-critical systems such as autonomous driving systems, as a wrong prediction could 

result in fatal accidents. Adversarial attacks are a highly researched attack type, especially with a focus on 

DNNs within the image domain, which results in a vast variety of attacks with high attack success rates. 

Another crucial threat imposed by adversarial attacks is their transferability. As explained in Chapter 2.2.1.1, 

adversarial examples calculated for one model could be transferred to another with a high attack success. 
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2.2.1.2.1 Categorization 

Figure 4 gives an overview over the different types of evasion attacks. Within the autonomous driving 

domain, there are two attack types that should be considered: digital adversarial attacks and physical 

adversarial attacks. Digital adversarial attacks are attacks that aim to fool the AI-based model within the 

autonomous driving system by digitally perturbing an image that is given directly as input to the model. These 

attacks can be further categorized into three types: gradient-based attacks, optimization-based attacks and 

generative-based attacks. 

 

Figure 4 Categorization of evasion attacks 

Since digital attacks are not realistic within the autonomous driving domain, a lot of research emerged 

applying adversarial attacks to a physical and real-world setting, for example in (19). Physical adversarial 

attacks aim to project adversarial perturbations into a physical scene that is captured by the cameras or other 

sensors of the AD system, rather than perturbing single inputs that are fed to the AI-based model directly (20). 

Additionally, an evasion attack is either designed to have black-box or white-box access to the model, 

meaning the adversary has either limited knowledge or full knowledge about the model. Even though white-

box attacks pose a significant threat to an AD system, for these systems black-box attacks are more feasible as 

discussed in (20). Furthermore, there are evasion attacks that can target a specific class for the 

misclassification. In this case, the attack optimizes the worst-case perturbation towards being misclassified as 

a target class. On the other hand, if the attack aims to achieve a general misclassification of the input towards 

any class different from the true class of the input, the attack is described as untargeted. 

2.2.1.2.2 Gradient-based Adversarial Attacks 

Gradient-based adversarial attacks generate perturbations based on the gradients of the model. Hence, these 

attacks require white-box access to the model. Two prominent examples of such attacks are the fast gradient 

sign method (FGSM) introduced in (21) and the projected gradient descent (PGD) attack proposed in (22). 

FGSM calculates the optimal perturbation for a misclassification based on the direction (i.e., the sign) of the 

adversarial loss gradient. Figure 5 shows an example of a FGSM attack results on a 3D object detection system 

within the AD domain from (23). Since FGSM is a well-studied and well-performing attack, many attacks have 

been derived based on its concept. These include the IT-FGSM (24), the basic iterative method (BIM) (23) and 

the PGD attack. 
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Figure 5 FGSM attack results on a 3D object detection system from (23). The images on the left contain the clean 

stereo image with the result of the 3D object detection underneath. The images on the right show the FGSM 

perturbed stereo image and the corresponding 3D object detection result underneath. 

The PGD attack randomly initializes the perturbation, updates it based on the direction of the adversarial loss 

and projects it back into the perturbation budget of the adversary. Figure 6 gives an example of a PGD attack 

on a 3D object detection system within the AD domain from (23). 

 

Figure 6 PGD attack results on a 3D object detection system from (23). The images on the left contain the clean 

stereo image with the result of the 3D object detection underneath. The images on the right show the PGD 

perturbed stereo image and the corresponding 3D object detection result underneath. 

2.2.1.2.3 Optimization-based Adversarial Attacks 

Optimization-based adversarial attacks calculate adversarial examples formulated as an optimization 

problem. They aim to minimize the distance between the adversarial example and the original image, while 

achieving a misclassification of the adversarial example. 

In (25) the authors introduce the DeepFool attack. It aims to solve the optimization problem by starting with 

the assumption that a DNN is linear and finding an optimal solution for this simplified assumption. Because 
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DNNs are not linear in practical applications, the authors adapt their solution to fit this non-linearity. Further, 

DeepFool is a non-targeted attack, i.e., it aims to find an adversarial example that produces a misclassification 

as any other class. Figure 7 shows examples for adversarial attacks created with the DeepFool attack. 

 

Figure 7 DeepFool attack results on MNIST images with different attack configurations from (25) 

A prominent white-box optimization-based attack is the Carlini-Wagner (C&W) attack. This attack is 

introduced in (26) and finds the smallest perturbation via minimization and box constraints. The attack is 

designed to break SOTA defensive distillation techniques, which will be further discussed in Chapter 2.3.1.2.3. 

Additionally, the authors are able to show that this attack performs well in a transferability setting and 

therefore suggest that it can be utilized in black-box settings. Figure 8 shows L2 adversarial examples 

generated for MNIST with different target labels for misclassifications. 

 

Figure 8 Adversarial examples crafted with the C&W attack on MNIST from (26) 

2.2.1.2.4 Generative-based Adversarial Attacks 

Generative-based attacks generate adversarial examples using generative adversarial networks (GANs) 

proposed in (27). The authors of (28) propose a framework called AdvGAN that utilizes a GAN with a 

discriminator to create visually imperceptible adversarial examples from an original image within a white-

box and black-box setting. Figure 9 shows adversarial examples created by AdvGAN for both settings on the 

CIFAR-10 dataset introduced in (29). This method is further extended in (30) by generating adversarial 

examples based on latent features rather than an input image. 
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Figure 9 Adversarial examples created by AdvGAN on MNIST from (28) 

In (31) GANs are used to produce image-dependent and universal perturbations. The image-dependent 

perturbations, displayed in Figure 10, are generated to resemble the natural image as much as possible and 

fool a specific target model. Whereas the universal perturbations, displayed in Figure 11 are generated to fool 

multiple target models at once. Both methods were compared to other adversarial attack methods in (24). In 

a white-box setting they are able to achieve high attack success rates on three different models trained on the 

(32) dataset containing real-world road images. However, with black-box access to the models and the dataset 

the attack did not perform well with attack success rates of only 0,1% − 8,4% on the same model. 

 

Figure 10 Image-dependent adversarial examples from (31) 

 

Figure 11 Universal adversarial examples from (31) 

2.2.1.2.5 Physical Adversarial Attacks 

As explained in Chapter 2.2.1.2.1, physical attacks aim to create physical-world-resilient adversarial examples 

to mislead AD systems. The following chapter gives examples for SOTA physical attacks that are tested in real-

world settings. 

In (33) and (34) the transferability of generative-based attacks to a real-world setting on black-box models for 

traffic sign recognition (TSR) is investigated. Both works use different generative-based attacks to digitally 
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generate stickers and patches that cause a misclassification and apply these stickers on physical traffic signs 

to test their transferability. During an experiment using self-taken images of real-world traffic signs with 

patches on them the authors of (33) are s accuracy from 86,7% to 17,2%. The 

authors of (34) carry out their experiment with a camera attached to the dashboard of a moving vehicle and 

achieve an attack success rate of 60% − 80% at speeds of 6 km/h and 30 km/h on traffic-signs with the 

generated patches on them. 

Finally, in (35) the authors propose the generative-based framework PhysGAN that is able to generate realistic 

attacks against an end-to-end driving model. Their method creates adversarial examples from existing 

billboards that are almost imperceptible to the human eye. With these adversarial examples, they are able to 

produce a steering angle deviation by 19,17°. 

Additionally, the authors in (36) investigate approaches to perform physical attacks on TSR systems that are 

not based on generative adversarial attacks when only black-box access is available. They evaluate the success 

rate of transferring a physical perturbation generated for an extracted white-box model and executing an 

optimization-based attack but using a gradient approximation method to estimate the required gradients of 

the unknown black-box system. Both targeted attack methods are successful by achieving a success rate of ≥

90% under the best configuration but it shows that the attack is significantly more expensive when only 

black-box access is available. 

2.2.1.2.6 Attacks on Mobility Use Cases 

After presenting a general overview of evasion attacks, we now present a short summary of evasion attacks 

on use cases that are specifically relevant for an AD system. For each perception use case presented later in 

Chapter 2.4.1.1 we discuss the most interesting publications and provide an example of a digital and a physical 

adversarial attack. 

2.2.1.2.6.1 Image Data 

As described previously most research work focuses on evasion attacks on DNNs that use image data as input. 

Here, the first perception use case is represented by object detection. The authors in (37) consider this use case 

in combination with semantic segmentation and generate digital perturbations that fool different DNNs for 

both use cases at the same time. Physical attacks are explored in (38) where the authors generate patches that 

can be stuck on traffic signs and evade the detection by current SOTA object detectors. They also observe a 

transferability between different detectors which enable black-box attack with ≈ 40% success rate when 

tested in reality. 

The second perception use case from Chapter 2.4.1.1 is segmentation. In (39) the authors explore digital attacks 

to fool DNNs for semantic segmentation by removing certain objects from the prediction or changing the 

entire predicted segmentation. Moving to physical attacks, the authors in (40) focus on local attacks on DNNs 

for semantic segmentation. They introduce a local attack that fools current segmentation models but only 

evaluate the success rate on synthetic images and not on images captured in reality. The resulting 

perturbation and segmentation prediction is shown in Figure 12 for different DNN models. As can be seen, 

using the local patch to perform tests in reality is difficult because the patch is additive to the unperturbed 

images. 

 

Figure 12 Exemplary visualization of a patch-based evasion attack on semantic segmentation from (40) 

Optical flow represents the third perception use case. Here, the authors in (41) present different digital attack 

methods to fool DNNs for optical flow prediction either globally or locally. In (42) the authors then consider 

patch-based perturbations which can be applied in the physical-world. These are shown in Figure 13 for an 
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example. However, they only perform synthetic experiments and do not report success rates when the patch 

is printed and applied in reality. 

 

Figure 13 Exemplary visualization of a patch-based evasion attack on optical flow prediction from (42) 

Lastly, different evasion attacks are also proposed for the depth prediction use case. The authors in (43) 

generate digital perturbations that impact the prediction globally or locally. They are able to remove objects 

from the prediction or change the overall distance that is predicted. Considering patch-based attacks the 

authors in (44) test different patch-based perturbations against SOTA DNNs for depth estimation. We show 

some examples in Figure 14. Again, the authors evaluate the attack success rate only on synthetic images and 

do not experiment with printed patches in the real-world. 

 

Figure 14 Exemplary visualization of a patch-based evasion attack on depth prediction from (44) 

Concluding, it is important to note that most evasion attacks are designed for the white-box use case. In most 

experiments the threat of black-box attacks is only evaluated by testing the transferability of the generated 

perturbations. Only a limited number of works integrate different methods for attacking black-box systems 

in their evaluations. Also, in most cases physical attacks based on patches are only evaluated when the patch 

is added synthetically to an image. Performing the evaluation in the reality is most challenging and typically 

also leads to reduced success rate of various attack methods. 
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2.2.1.2.6.2 Point Cloud Data 

For evasion attacks on perception use cases of an AD system that are based on point cloud data only a very 

limited number of publications exist. One reason is that the required LiDAR sensors are more expensive and 

experiments cannot be done as easily as for camera sensors. Also, only the use case of object detection is 

covered because here point cloud data is most useful. In (45) the authors consider this task and propose an 

attack method that generates point clouds that are marginally perturbed starting from original, unperturbed 

points clouds. A human does not notice a significant difference meaning the presented perturbations are 

similar to imperceptible digital perturbations on images. Alternatively, the authors in (46) consider the task 

of physical adversarial attacks. They generate 3D objects which are not detected by a SOTA object detection 

model. An exemplary visualization of the generated perturbation is shown in Figure 15. The authors also test 

the success rate in reality by 3D-printing the adversarial example and performing a drive-by test using a real 

LiDAR sensor. They find that their attack is still successful and fools the model under different environmental 

conditions. 

 

Figure 15 Exemplary visualization of an evasion attack on LiDAR-based object detection from (46) 

In addition to research work that considers evasion attacks on camera-based and LiDAR-based perception 

systems separately, recent methods consider the task of fooling both perception systems by the same 

perturbation. Here, the authors in (47) propose an attack method to generate an adversarial object that is 

placed on the roof of vehicles. For camera-based perception the object looks like a patch and for LiDAR-based 

perception the object is a 3D mesh like the one described previously. In Figure 16 some examples of the 

resulting object are shown for different scenes in both image and LiDAR space. The authors test the attack 

success rate on simulated data and find that the attack is successful at fooling both perception systems at the 

same time. However, the resulting perturbation looks highly suspicious and is quite large in comparison to 

the vehicle it is applied on. 

 

Figure 16 Exemplary visualization of an evasion attack on LiDAR and camera-based object detection from (47) 
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Finally, there are also methods that attack LiDAR-based perception by sensor spoofing. In (48) the authors 

transmit laser signals to a LiDAR sensor which creates a fake vehicle in the current scene. However, this attack 

does not exploit any weaknesses of an AI-based system but instead tricks the physical capabilities of a sensor. 

2.2.1.3 Data Poisoning 

Data poisoning describes the injection of poisoned data samples in the training dataset. An adversary actively 

tries to manipulate a part of the dataset by adding new data samples, changing existing data samples or 

changing the associated labels. This impacts the behavior of all data-driven systems that are learned using the 

poisoned dataset. The behavior is degraded depending on the specific goals of the adversary. In the following 

we first present a categorization of different attacks and then discuss concrete attack methods for different 

goals of an adversary. 

A survey of the threat posed by data poisoning is given in (49). The authors cover different attack goals and 

present methods from current research works. Additionally, they also cover defense strategies and point out 

open problems in this research field. Open problems are also investigated in (50). The authors perform a 

thorough evaluation of recently proposed attack methods and find that many methods perform worse when 

evaluated under different settings. They observe a high sensitivity to variations in the evaluation setup and 

conclude that many methods do not generalize to realistic attack scenarios. Hence, it is unclear how big the 

threat posed by data poisoning is and whether stronger attacks can generalize better to realistic settings. To 

improve the thoroughness of future evaluations of attack methods they develop a standardized benchmark 

and show pitfalls in the evaluation process. 

2.2.1.3.1 Categorization 

In Figure 17 we present a taxonomy of data poisoning attacks that can be used to categorize different attack 

methods. Most important is the first category that determines the type of the poisoning attack and thus the 

goals of an adversary. This category is used to structure the remainder of this chapter, where we present 

different methods for each attack type. Another important category is the required model access. Here, the 

main distinction is whether a method needs access to a concrete model or can generate poisons for a variety 

of models. The next important category is the required data access of a method. Some methods need access 

to the concrete training dataset while others only need access to the rough test distribution the trained model 

should operate in. Lastly, the last two categories focus on the perceptibility of the generated poisons. Here, it 

is important to first distinguish the perceptibility. This can be analyzed either in visual image space or in some 

latent feature space that only a system sees. Both determine how well a poisoning can be detected on revision 

of the poisoned dataset. Similarly, the last category distinguishes whether an attack needs to corrupt the 

associated label of data samples. Some methods keep the original label and as a result the poisoning is more 

difficult to detect when the dataset is analyzed. 
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Figure 17 Categorization of attacks for data poisoning 

2.2.1.3.2 Backdoor Attacks 

The first attack type are backdoor poisoning attacks. Here, an adversary tries to install a backdoor trigger in 

the training dataset. When this backdoor trigger exists on an image the model should classify this image as a 

specific class and not as the correct class. However, when the backdoor trigger is not part of an image the 

model should show a normal, inconspicuous behavior. An overview of different backdoor poisoning attacks 

and the used backdoor triggers is shown in Figure 18. For example, the patched-based backdoor introduced 

in (51) inserts a small rectangular patch in an image. When this patch exists, the model should not classify the 

this, the authors add images that contain the patch into the training dataset and assign the adversarial target 

label to these images. Hence, they introduce images into the training dataset that are wrongly classified for 

human observers and would be noticeable when inspecting the dataset. Also, in recent years different 

methods are proposed that change the style of the backdoor trigger which is also shown in Figure 18. Now, it 

is also possible to insert a backdoor trigger that is imperceptible for humans but can still be used to introduce 

malicious behavior into the model. 

 

Figure 18 Overview of different attack methods for backdoor poisoning from (52) 

However, the described backdoor poisoning attacks can easily be detected when the labels of a dataset are 

analyzed. Hence, the authors in (53) and (54) extend existing attacks to the clean label settings. Here, the 

poisoned data samples are no longer assigned a wrong label but are inserted into the training dataset with the 

correct label. This prevents the easy detection of poisoned data samples by humans and increases the threat 

posed of such attacks. In Figure 19 an overview of an exemplary attack method for clean label backdoor 

poisoning is shown. The authors expand the patch-based attack introduced earlier and propose a new method 

to generate the poisoned data samples. Instead of inserting images that contain the patch and are labeled as 

the target class, the authors insert poisoned examples of the target class into the dataset. These examples are 

generated by adding specific noise with a small magnitude to original data samples such that a human does 
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not notice a difference between the images. Nevertheless, the poisoned images lead to a change in the learned 

decision boundaries of the model, which leads to a successful attack once the original backdoor is used during 

inference. 

 

Figure 19 Exemplary visualization of label consistent backdoor poisoning from (54) 

Along with the development of improved attack methods defense methods are proposed, which are covered 

in detail in Chapter 2.3.1.3. Some of these defenses use the fact that most backdoor attacks can be well 

separated in a latent feature space of a trained model. To close this defense option the authors in (55) introduce 

further improvements of backdoor attacks. They optimize the perceptibility with respect to some latent 

feature space that the model learned. This hides the backdoor from detection based on the difference of the 

representations in the latent feature space. 

Recently, backdoor attacks are also proposed for models trained in a semi-supervised way using different 

forms of self-training, e.g. using FixMatch from (56). The main advantage of such methods is that training on 

largely unlabeled datasets is cheaper and faster to perform. However, the authors in (57) show that it is possible 

to poison the unsupervised part of the dataset and hide backdoor triggers there. Hence, it is questionable 

whether training on largely unlabeled datasets is desirable if the data quality cannot be guaranteed. 

Finally, it is important to note that the evaluation of backdoor attacks is done only on synthetic data. To the 

best of our knowledge no research work exists that test whether the backdoor is still successful when the 

backdoor triggers are applied in the physical world and recaptured by a camera. For example, it would be 

interesting to print the patch-based backdoor triggers and stick them to a real traffic sign. Then, one should 

evaluate the attack success rate when images of the attacked traffic sign are captured from different angles 

and under different lighting conditions. 

2.2.1.3.3 Targeted Attacks 

The second attack type for data poisoning attacks are targeted poisoning attacks. Here, the adversary no 

longer aims to introduce a general backdoor into the behavior of a model, but instead tries to change the 

classification of a predefined, unmodified target image. This different goal of the adversary is shown in Figure 

20. The goal is that the specific image of an otter is misclassified as the target class Labrador. For this attack 

type only clean label poisons are relevant since otherwise the target image would just be assigned the wrong 

label. For this no advanced methods would be needed since the target images with the wrong label can just be 

added to the training dataset. 
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Figure 20 Exemplary visualization of targeted poisoning from (58) 

In recent years multiple methods are proposed to perform targeted poisoning. One of the first is (59) where 

the authors introduce an optimization-based method that needs knowledge of the model architecture that is 

trained on the poisoned dataset. They poison data samples in the training dataset such that the latent feature 

representation collides with those from the target image. An alternative approach is introduced in (60). Here, 

the authors introduce a new optimization that uses an ensemble of models to generate the poisoned data 

samples. They show that the resulting poisons transfer well to other models with unknown architectures and 

training setups also when these are trained from scratch. Very recently, the authors in (58) introduce a new 

targeted poisoning attack that is more efficient than previous attacks. For the first time they can attack models 

that are trained from scratch on the entire ImageNet dataset introduced in (61). Their main idea is to explicitly 

match the gradient direction of malicious examples such that they produce a malicious gradient signal during 

training. 

Similar to work on backdoor poisoning recently an attack is proposed that introduces targeted poisoning for 

semi-supervised learning. In (62) the authors present a strategy to poison the unsupervised part of a dataset 

by inserting multiple images that form a path from a correctly labeled image to the target image. Then, during 

the semi-supervised training these images are iteratively assigned the label of the starting image until the 

target image is reached. 

Concluding, it shows that targeted poisoning attacks are not that relevant for this project. Like physical 

adversarial attacks for evasion, data poisoning attacks are only relevant if they can be performed on an AD 

system during deployment. To do so in the case of targeted poisoning attacks the adversary needs to insert 

the target image into the AD system during deployment. It is not enough to place a backdoor in the 

surrounding scene, but instead the original image captured by the camera needs to be exchanged with the 

target image. To be able to do this the adversary would need access to the interface between the camera sensor 

and the perception systems and perform the exchange during run-time. If an adversary can do so, it can 

perform far easier and more efficient attacks. Therefore, only backdoor poisoning attacks form a principled 

threat on AD systems if the backdoor trigger remains effective after application in reality. 

2.2.1.3.4 Availability Attacks 

The last attack type are availability poisoning attacks. The goal of these attacks is slightly different to both 

attack types discussed previously. Instead of introducing a backdoor or targeted poison that the adversary can 

exploit during inference, the goal is to change all data samples such that these cannot be used for training a 

data-driven model. Hence, these attacks are important to prevent the unauthorized use of personal data that 

is scraped from some publicly available database on the internet. They can be used to release secure datasets 

where the data samples cannot be used for training a data-driven system. Therefore, these attacks are not 

relevant for this project since they do not pose a threat on the security or safety of a model and are only 

mentioned for completeness. 
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The most promising methods for this attack type add some kind of noise to the original data samples. In (63) 

the authors add error-minimizing noise on some data samples which tricks the training process into thinking 

there is no information to learn from these data samples and thus ignoring them during training. A further 

improvement is presented in (64) where the authors generate the noise by adversarial attacks discussed in 

Chapter 2.2.1.2. They find that training a model only on adversarial perturbed images generated for a different 

model basically prevents any training progress. 

2.2.2 Robustness 

This chapter presents different threats on the robustness of a data-driven system. Specifically, we cover the 

general threat of encountering natural perturbations during inference where a system sees data samples from 

a different distribution than the training dataset. Mitigation strategies to all presented robustness threats are 

later covered in Chapter 2.3. 

2.2.2.1 Natural Perturbations 

In general, OOD data describes the presence of data samples that deviate from the exact training distribution 

used during training of a data-driven system. This effect occurs naturally when systems are deployed in the 

real-world outside of a completely supervised environment. For example, in the case of AD/ADAS it is 

impossible to capture all possible environmental scenes or driving scenarios in the training dataset. During 

deployment unseen situations will occur and the data quality of the sensors is impacted by different factors 

like lighting, rain, heat, etc. These might lead to a shift in the data distribution and present a challenge on the 

generalization of a system. Thereby, data distribution shifts exist at different levels which range from minor 

shifts to full OOD data where new concepts exist during inference. At this strongest level it can be impossible 

that the system keeps a correct prediction. For example, it might occur that a new traffic sign or parking space 

marking is observed during deployment of an AD system. If the system is not trained on this specific sign or 

marking the resulting distribution shift is so large that a correct prediction is impossible for the AD system. 

Additionally, the problem is exacerbated by the fact that DNNs often show high confidence on OOD data 

samples. This often prevents the detection that a data sample is OOD, which could be used to trigger safety 

measures. A more detailed discussion on the confidence estimation is done in Chapter 2.3.2.2. 

Since distribution shifts occur naturally in the real-world, research recently started into looking at the 

performance of deep neural networks (DNNs) on OOD data. Here, different datasets are introduced that 

mimic important and often used datasets but contain corruptions or perturbations. One of the first is 

introduced in (65). Here, the authors present ImageNet-C which extends the original ImageNet dataset from 

(61) by applying 15 different corruptions with five different strength levels on the original images. In (66) the 

authors further propose an extension to the ImageNet-C dataset by using different corruptions that are 

significantly different to the original corruptions. They argue to use this new dataset as a test dataset to 

measure the generalization of systems that are trained on the original ImageNet-C dataset. Lastly, the authors 

in (67) introduce ImageNet-R which contains various renditions like paintings or embroidery of the image 

classes from the original ImageNet. This represents the strongest domain shift since only the semantic 

concepts of a class are similar. In addition to the presented datasets to measure the generalization of standard 

classifiers for image data, recently similar datasets for OOD data are proposed for perception tasks that are 

relevant for the mobility use cases described in Chapter 2.4.1.1. We discuss these specific datasets in Chapter 

2.6.1. 

The problem of generalization of data-driven systems is typically attributed to the underlying problem of 

shortcut learning. In (68) 

on standard benchmarks but fail to transfer to more challenging testing conditions, such as real-world 

 on OOD data or under evasion attacks 

described in the Chapter 2.2.1.2. The systems do not learn robust feature representations but instead use every 

piece of information available in the training dataset even if it is extremely brittle. This effect also shows when 

comparing the robustness of human visual perception and current convolutional neural networks (CNNs) in 

(69). First, humans are more robust than current CNNs when considering different corruption types. 
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However, when CNNs are trained on a specific corruption type they consistently surpass human performance 

on this specific corruption type. Nevertheless, on most other corruption types the CNNs perform worse and 

do not have an increased robustness. Hence, training on a single corruption type does not necessarily imply 

an increased robustness on other corruption types. The CNNs do not learn generally robust feature 

representations and decision rules but still exploit the shortcuts for a specific corruption type. 

2.2.2.2 Adversarial Perturbations 

In addition to natural perturbations another threat on the robustness of a data-driven system is posed by 

adversarial perturbations. These specific perturbations are the result of an evasion attack where an adversary 

actively tries to harm the quality of a system. Such attacks are previously covered in Chapter 2.2.1.2. We again 

mention these attacks here to highlight the tight interaction when considering the robustness and IT-Security 

of AI systems. Adversarial attacks impact both categories and depending on the viewpoint can be assigned to 

one or the other. 

2.2.3 Explainability 

The existing black-box character of AI-based systems combined with the complexity and number of 

parameters of DNNs complicates the possibility to explain the behavior of a system. In contrast to traditional 

IT systems that are based solely on algorithms, the behavior of the system is not directly determined by 

human developers but is instead derived indirectly from the training dataset. Hence, it is largely unclear how 

a system comes to its predictions and which features of a data sample are most important for a concrete 

prediction. Therefore, the need arises for methods that can explain the decision or general behavior of a 

system that is learned from data. 

The topic of explainability also gained lots of interest from researchers in recent years. Hence, quite a number 

of surveys emerged that summarize recent methods and discuss various types of explainability. For example, 

in (70), (71) or (72) the authors conduct a survey on different aspects of explainability. All try to systematically 

assess different methods and provide a comparison of the advantages and disadvantages for each method. In 

(71) the authors only consider the task of explaining CNNs, while the other two surveys also discuss the 

explainability of more traditional AI systems like decision trees or support-vector machines.  

Additionally, it is important to point out that there is currently no agreement over the form of explanations 

needed for AD systems to be deployed in the public. Important questions must be discussed and answered, 

which include the following: 

• For whom should an explanation be provided?  

• Developers, auditors, customers, etc. 

• Which part of an AD system should be explained? 

• Perception, behavior prediction, path planning, end-to-end behavior, etc. 

• When does an explanation have to be provided? 

• During audits, in case of accidents, on demand, etc. 

• Which details should an explanation provide? 

• Highlight important features, exact traceability, etc. 

However, such questions are not unique to AD systems, but arise in general as soon as AI-based systems are 

used in safety-critical contexts. The authors in (73) make the same observation that the need for explainability 

of black-box AI systems increases but only little work is done around discussing what is exactly needed. 

Hence, they conduct a close-door workshop with different stakeholders from academics, industry, 

policymakers and legal scholars. They discuss important unanswered questions about the design and 

deployment of explainability methods and provide the main takeaways. It is key to involve stakeholders in 

the development process and pay attention to the context in which an explanation is used. 
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2.2.4 Documentation 

The uniform documentation of AI systems only emerged recently as a relevant research topic. Up to now, 

companies that deal with AI systems have their own workflow and solutions for the documentation of AI 

requirements, the development process, deployment statistics, etc. Only limited work and efforts exist that 

focus on the development of standardized documentation. This hinders the overall transparency of the 

development process and of the resulting AI system. 

Existing documentation practices for traditional IT systems can only be partially applied to AI-based systems 

since the lifecycle of AI-based systems presented in Chapter 2.1 is more complex. Unique aspects like the data 

collection or data-driven training process lack traditional documentation practices. In addition, there are no 

common techniques that can be used by developers of AI-based systems to show that they addressed the 

different challenges presented so far in this chapter. This is required to demonstrate the accordance which 

serves to increase the transparency and trust in AI-based systems when deployed in reality. Additionally, this 

is required such that an auditing process is able to properly assess the quality of a system for the different 

aspects in the lifecycle. 

2.2.5 Safety 

Safety considerations within safety critical applications (e.g. automotive, industrial) are crucial since any 

failure or malfunction can cause major impact to the physical integrity of the users and any person within 

the application environment. Despite other important aspects like security, usability etc., safety is the highest 

priority in any stage of the lifecycle of an application. In case data-driven algorithms and especially machine 

learning (ML) algorithms determine the behavior, safety considerations also play an important role in the ML-

specific lifecycle. Thus, to minimize potential threats or hazards which can lead to risk or harm, ML-based 

systems must comply with safety requirements mitigating the issues of the data-driven algorithms. 

Despite the big advantages of ML which enable the current progress on autonomous driving or advanced 

driver assistance systems (ADAS), ML-based algorithms imply several limitations and risks affecting the 

following topics that are summarized in Figure 21: 

• Design specification 

• Lack of formal specification of the design & functionality 

• Gap between design objectives and actual behavior 

• Implementation transparency 

• No traditional rule-based design 

• Variables are unknown 

• Lack of interpretability 

• Formal verification 

• Test coverage and residual risk almost unknown 

• Common formal verification methods not fully applicable 

• Performance and robustness 

• Test set performance often unlike real-world performance 

• Uncertain robustness against perturbations and unknown input data 

• Monitoring 

• Limited failure prediction 

• Current prediction probabilities often unlike reliable uncertainty estimation 
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• Optimal ground truth behavior often unknown 

 

Figure 21 Main limitations of ML algorithms with regard to safety 

Independently of a specific safety standard or framework, the above-mentioned limitations impede safety 

considerations. In contrast to classical software applications, examination of the safety properties of ML must 

take the data-driven decision-making into account. Each safety consideration and its limitations have a 

strong overlap to other chapters in this document e.g. IT Security, Robustness, Mitigation Strategies, 

Standardization Activities AI & AD, etc. 

2.2.6 Certification and Verification 

Robustness certification (respectively verification of neural networks) is the procedure of examining the 

functionality of a model, in particular when facing specially manipulated input data such as adversarial 

examples discussed in Chapter 2.2.1.2. A DNN is robust against these manipulations if its predictions are still 

considered as correct. The goal of verification/certification is to state that for a given input (space), the model's 

output will lie within a specified output space. The procedure may give a guarantee under certain constraints 

that the output is in the specified output space or a probability that this is the case. In other words, a lower 

bound for the robustness of the DNN is determined. 

The need for robustness certification results from an increasing number in attack approaches trying to 

deceive DNNs and modify their predictions. Especially in security and safety critical applications, e.g. 

autonomous driving, this could cause severe harm. Therefore, it is crucial to be able to measure the 

vulnerability/robustness of DNNs against adversarial attacks to ensure a certain security level or reveal a 

backlog in the matter of defense mechanisms. 

Ideally, certification is embedded in the development phase of the AI-based system and is part of the testing 

and benchmarking as shown in Figure 2. In this way, a potential lack of robustness is identified early on and 

relevant countermeasures can be applied. Furthermore, the certification/verification can be part of the 

assessment or auditing processes after development. For instance, this might be required in the case of 

systems that are continuously retrained during deployment. 

2.2.7 Standardization 

The last challenge for using AI-based systems in safety-critical applications is based on the fact that currently 

no standardization specific for AI exists. There are no uniformly acknowledged principles and practices that 

the development, testing or deployment of AI-based system must fulfill. We discuss this further in Chapter 

2.3.5 with the focus on the safety of AI-based systems.  

Nevertheless, there are approaches to develop a standardization of AI-based systems. Best known here is the 

EU AI Act introduced in (74) that tries to lay down uniform regulations on AI-based systems. They present a 

horizontal regulatory approach with necessary requirements to address different risks and challenges when 

AI is used without focusing on the needs for specific application areas. Additionally, there are also vertical 

regulatory approaches which aim to develop standards for concrete application areas. Here, standardization 

approaches for AI in mobility applications are most relevant for this project. Therefore, in Chapter 2.7 we 

discuss existing and developing standardization approaches when AI-based systems are used in the area of 

AD or ADAS. 
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2.3 Mitigation Strategies 

In this chapter specific mitigation strategies for the challenges discussed in Chapter 2.2 are presented. The 

remainder of this chapter is structured in the same way as Chapter 2.2 so it is possible to directly map a 

mitigation strategy to the associated challenge that is posed on AI-based systems. 

2.3.1 IT-Security 

In the following, mitigation strategies for the challenges on IT-Security from Chapter 2.2.1 are discussed. As 

mentioned previously these are also strongly connected to robustness challenges from Chapter 2.2.2 where 

the specific mitigation strategies are presented in Chapter 2.3.2. 

2.3.1.1 Model Extraction Attacks 

Within this chapter, dedicated privacy preserving methods are presented and discussed. To keep the focus on 

safety and security related threats, only those methods are introduced that prevent adversaries to craft 

successful adversarial examples with a lower attack effort. 

2.3.1.1.1 Differential Privacy 

Training data often includes sensitive information or represents intellectual property of the manufacturer. 

Any leakage or exposure of the training data might result in a data privacy violation or commercial issues. 

However, after the training of a data-driven model this model contains the information in an abstract manner 

which allows an extraction in certain circumstances. To avoid any successful information extraction, 

differential privacy provides a defense method based on adding random noise during the training phase (75). 

Similar approaches add noise to weights, data and gradients and use specific noise distributions. 

As shown in Figure 22, this defense method increases the robustness against information leakage but at the 

same time decreases the performance of a model. Therefore, achieving differential privacy is always a tradeoff 

between noise strength and model performance (75). 

 

Figure 22 MNIST data set with different thresholds of added noise from (75) 

2.3.1.1.2 Homomorphic Encryption 

Another method to mask and hide the actual data is homomorphic encryption (76). Due to the homomorphic 

properties, the computations can be executed on encrypted data without touching the sensitive, non-

encrypted content. After finalizing the computations, the output can be decrypted and provided to the user. 

Limitations of this method are the restriction to suitable models due to polynomial constraints and the 

applicability only during inference. The polynomial constraint entails that this method is only applicable to 

polynomial functions, which harshly restricts the supported AI architecture. Additionally, homomorphic 
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encryption creates a computational overhead and increases the run-time of the system. However, the field of 

homomorphic encryption in ML requires more research efforts and is under further development (76).  

2.3.1.1.3 Trusted Execution Environment 

Trusted execution environments (TEEs) (77) provide a trustworthy and controlled environment where 

sensitive data can be computed. The data within a TEE can be processed unencrypted whereas data outside of 

the TEE can be encrypted. An example of a TEE is given in Figure 23. Nevertheless, TEEs require a relatively 

high effort in secure coding and do not provide full guarantees regarding information leakage. Side-channel 

analysis or similar attacks are still applicable. However, it has to be noted that Side-channel attacks require an 

extensive effort and can require physical access to the system (78). 

 

Figure 23 Basic architecture of a TEE from (79) 

2.3.1.2 Evasion Attacks 

In this chapter SOTA mitigation strategies against evasion attacks are presented. An overview of evasion 

attacks is given in Chapter 2.2.1.2. The general problem of evaluating mitigation strategies is described in (80) 

where the authors note that adaptive attacks can often break previously proposed mitigations. Hence, they 

list recommendations for an evaluation checklist to improve the general quality of the evaluation of 

mitigation strategies. Similarly, the authors in (81) propose a new ensemble of evasion attacks and use this to 

evaluate current defense strategies. They discover several broken defenses which again shows the difficulty 

of correctly evaluating a mitigation strategy. All of the following methods create a tradeoff between the 

efficiency of the defense and the computational and development effort. 

2.3.1.2.1 Categorization 

Figure 24 displays a categorization of mitigation strategies against evasion attacks. Mitigation strategies can 

either be proactive by improving the robustness of a model before deployment, or reactive by mitigating 

adversarial attacks on a deployed model. Adversarial training encompasses methods that aim to improve the 

robustness of a model by retraining the model on adversarial examples. Defensive distillation describes 

methods that aim to distill the information of the original model by distilling the original model predictions 

through another model. By aggregating different models with each other, model ensemble methods exploit 

the complexity of transferring adversarial examples over different models to improve the robustness. 

Additionally, there exist a lot of methods to defend a model by either detecting adversarial input samples or 

transforming the input data of a model in such a way, that the clean input data is reconstructed as best as 

possible from the adversarial examples. 
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Figure 24 Categorization of mitigation strategies against evasion attacks 

2.3.1.2.2 Adversarial Training 

Adversarial training is probably the most studied defense method against adversarial attacks. The basic 

concept is to train a model on adversarial examples to make it more robust against such examples. This 

enables the model to connect adversarial perturbations to their correct label and therefore prevents 

misclassifications.  

In (22) the authors first introduce the PGD attack, which is further explained in Chapter 2.2.1.2.2, and then 

perform worst-case adversarial training using this attack. They train the model solely on adversarial examples 

generated with PGD and are able to achieve high robustness against several attacks with white and black-box 

access. However, it has been shown that this defense method leaves the model still vulnerable to certain types 

of attacks (82). 

The authors of (83) propose to improve the robustness of a model by training it with adversarial examples 

transferred from other models. During the training process, they alternate between adversarial examples 

created for the model to defend and the transferred adversarial examples from other models. This improves 

overfitting issues of adversarial training, since the adversarial examples are more diverse. Additionally, the 

training on transferred adversarial examples improves the black-box robustness of the models compared to 

regular adversarial training. 

Adversarial training also is a known defense against data poisoning attacks, which is described further in 

Chapter 2.3.1.3. However, adversarial training requires very large datasets and must be done carefully to 

prevent the model from overfitting, since overfitting in turn makes the model more vulnerable against 

attacks. Additionally, it requires changes to the training process of the model. 

2.3.1.2.3 Defensive Distillation 

Defensive Distillation, as introduced in (84), is a method that distills the information of a model. The authors 

train a second model with the probabilities of the logit layer from the original model as soft labels. A schematic 

overview of the training with distillation is shown in Figure 25. This creates smoother classifiers and decreases 

the classifiers sensitivity to input perturbations. However, it has been proven that defensive distillation can 

be successfully evaded by attacks such as the C&W attack, for example in (20). 
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Figure 25 Training procedure under defensive distillation from (84) 

2.3.1.2.4 Model Ensemble 

In (85) the authors introduce random self-ensembles, where they inject noise layers before each convolutional 

layer during the training and inference phase of a model as shown in Figure 26. They show that this approach 

is equivalent to combining an infinite number of random models in an ensemble. Under the C&W attack this 

mitigation strategy is able to maintain an accuracy of 86,1%. 

 

Figure 26 Illustration of a Random Self-Ensemble model with noise layers before each convolutional layer from 

(85) 

The authors of (86) propose the use of an adaptive diversity promoter (ADP) training procedure to introduce 

more diversity into their model ensemble. They use an ADP regularizer that encourages the low confidence-

predictions of each model to be orthogonal to each other. An illustration of the ADP regularizer during 

training is shown in Figure 27. By introducing more diversity between the models within the ensemble, the 

transferability of adversarial attacks on each of the models is more challenging. This in turn results in a higher 

robustness against adversarial attacks. Finally, while model ensemble mitigate SOTA adversarial attacks, they 

require higher computational effort and require the training process of the model to be adjusted extensively. 
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Figure 27 Side-by-side comparison between baseline model ensemble predictions and model ensemble 

predictions under an ADP regularizer from (86) 

2.3.1.2.5 Detection of Adversarial Attacks 

Instead of improving the robustness of a model, there are mitigation strategies that rather focus on the 

detection of adversarial examples. Hence, these methods aim to prevent the system from incorrect 

predictions by filtering out adversarial examples. Similar to proactive mitigation strategies it also shows for 

detection-based reactive strategies that stronger adversaries are able to break defense methods that are 

considered as secure at the time of release. For example, in (87) the authors build on the PGD attack and break 

four recently proposed methods for the detection of adversarial examples. 

A method that is able to detect adversarial examples is called feature squeezing. As introduced in (88) the input 

data of a model can be squeezed to make adversarial noise more perceptible by the model. They suggest two 

methods for squeezing the original input samples in size and using a smoothing filter to change pixel values 

of the input image. The adversarial examples are detected by comparing the resulting predictions on both 

data samples. 

In (89) the authors propose a detection method for both out-of-distribution samples and adversarial attacks. 

They assume that the pre-trained features of a model follow a class-conditional Gaussian distribution. Based 

on this assumption they use Gaussian discriminant analysis to measure the probability density of a test 

sample. They are able to achieve high detection rates against out-of-distribution samples by an 45,3% 

increase compared to other detection methods. Additionally, on adversarial samples created by the C&W 

attack they are able to detect 95,8 % correctly.  

2.3.1.2.6 Input Transformation 

Input transformation methods aim to reproduce the clean data by removing any adversarial perturbations 

before a data sample is presented to the model. In (90) a framework for regenerating the original image of an 

adversarial example is proposed. The authors utilize a GAN-based framework to project input samples onto a 

range of samples generated by the generator. Benign samples are expected to be closer to the generated 

samples than adversarial examples. By projecting the input sample onto the generated range, the adversarial 

perturbation is reduced. The projected sample is then presented to the model. An illustration of this is 

presented in Figure 28. This method has been found effective against adversarial attacks such as C&W and 

FGSM. 

 

Figure 28 Illustration of defense-GAN from (90) 

The authors of (91) propose high-level representation guided denoiser which is a method to remove 

adversarial examples through a denoiser model. This denoiser is trained to generate negative noise maps that 
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are based on the distance of the high-level representation of the example. These noise maps are added to the 

adversarial example to remove adversarial noise (i.e. reduce the distance of the high-level representation of 

the example). Furthermore, the authors show that the denoiser is trained more efficiently to provide 

robustness than adversarial training on the ImageNet dataset. Additionally, the denoiser can be transferred 

to other classifiers. 

As stated above input transformation methods can be enhance the robustness of a model against adversarial 

perturbation, however as they adjust the input data before it is given to the model, they increase the 

computational effort needed for each classification. 

2.3.1.3 Data Poisoning 

We present current mitigation strategies for data poisoning attacks from Chapter 2.2.1.3. It is important to 

understand that the best mitigation is to ensure that all datasets are processed only inside the company and 

measures are taken such that it is not possible to exchange any data samples by an adversary. This also 

includes that the capturing of the dataset is controlled and it is not possible that images which contain 

malicious intent are inserted. However, this can often not be guaranteed or it would be too expensive or time 

consuming. Hence, in the following we present methods that can be applied if the correctness of a dataset 

cannot be guaranteed.  

In general, this research field shows effects similar to the research on the mitigation of evasion attacks 

presented in Chapter 2.3.1.2. Multiple mitigation strategies are proposed that defend against the data 

poisoning attacks that existed at that time. However, many strategies are broken a short time later by stronger 

attack methods that exploit certain mitigation ideas. This results in an arms race between attackers and 

defenders. Hence, in (92) the authors combine a list of common pitfalls that should be avoided when 

evaluating new defenses. Most importantly, this includes evaluating against adaptive poisoning attacks which 

is the current SOTA when evaluating defenses against evasion attacks. 

2.3.1.3.1 Categorization 

Before presenting concrete mitigation strategies we first introduce a common taxonomy to categorize 

different methods. This is like our approach for data poisoning attacks in Figure 29. Most important are again 

the different defense types that exist. These will be used to structure the remainder of this chapter. Then, the 

time when a defense method is applied is relevant. Some methods are applied before training while others 

take a trained model and thus are applied after training is done. Similarly, the number of iterations that a 

mitigation strategy uses is important. Some are efficient to apply while others require extensive changes of 

the training process. Another important category is the type of data poisoning attacks that are prevented by 

a defense method. In the best case a defense method prevents data poisoning in general, but some methods 

only prevent specific attacks. Lastly, it is important to distinguish the data that a defense method requires. 

Here, some methods need access to at least some clean and correctly labeled data samples, while others also 

work if only the poisoned dataset is available. 
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Figure 29 Categorization of mitigation strategies for data poisoning 

2.3.1.3.2 Filter/Detection 

The first category of mitigation strategies consists of methods that try to detect poisoned data samples and 

remove these from the dataset. This is first proposed in (93) and (94). In both methods a model is first trained 

on the complete dataset that might contain poisoned data samples. After the training is done all data samples 

from the training dataset are classified with the trained model and different parameters of the model are 

analyzed. Here, the authors analyze the learned representations or activations of the penultimate layer of the 

trained model. They find that those representations differ significantly on clean and poisoned data samples. 

Hence, they filter out all data samples that can clearly be distinguished from the majority of data samples 

based on their feature representations.  

However, in (95) the authors are able to break both described methods. An adaptive attacker can optimize the 

indistinguishability of the feature representations of poisoned and clean data samples. The resulting poisoned 

data samples cannot be distinguished and the defense fails. In general, it shows that defense methods that are 

based on outlier detection are typically ineffective against an adaptive adversary. If the criterion to detect 

anomalous behavior can be integrated into the attack process an attacker can exploit this and break a defense. 

A similar observation is made in (96) where the authors consider defenses that perform the anomaly detection 

on the dataset and not on learned feature representation. They introduce a general approach to craft attacks 

that can evade anomaly detectors and are able to break various defenses that try to sanitize a dataset from 

poisoned data samples. 

2.3.1.3.3 Robust Training 

Methods for robust training represent the second category of defense strategies. In Figure 30 the effect of 

different defense methods is visualized in case of the targeted poisoning attack from (58). Here, the tested 

filter defenses are discussed previously in Chapter 2.3.1.3.2 and adversarial training represents the standard 

method from (22) discussed previously in Chapter 2.3.1.2.2. It is important to note that this method is also 

very successful at preventing targeted data poisoning and not only against evasion attacks. However, it has 

the disadvantage that the standard performance is significantly reduced. All remaining methods in Figure 30 

are based on robust training and are presented in the following. 
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Figure 30 Overview of different defense methods against the targeted poisoning attack from (97) 

The first method group uses standard data augmentations that are used to increase the performance of 

models on standard data samples. For the first time, in (98) the authors propose to use strong data 

augmentations as a simple but effective method to reduce the effect of backdoor and target poisoning attacks. 

They find that especially using the MaxUp augmentation technique from (99) reduces the success of data 

poisoning attacks. Thereby, MaxUp generates a set of augmented data samples for each original data sample 

in a dataset and only minimizes the worst-case loss over the augmented data samples. 

Another group of methods is based on models that are trained with differentially private stochastic gradient 

descent (DP-SGD) introduced in (100). This method is originally introduced to ensure that learning is done 

privately and no individual examples overly influence the training. To do so the training gradients are clipped 

and Gaussian noise is added. In (101) these methods are extensively explored to mitigate data poisoning 

attacks. The authors find that using DP-SGD increases the robustness of models even when no meaningful 

privacy guarantees can be given. 

The last method is recently proposed in (97). Here, the authors adapt standard adversarial training by 

generating the adversarial samples using a targeted data poisoning attack instead of an evasion attack. Their 

method achieves a similar robustness against data poisoning as standard adversarial training while suffering 

a smaller drop in performance on standard data. 

Concluding, the authors in (102) apply the concept of randomized smoothing from (103) to defend against 

backdoor data poisoning attacks and provide a certifiable robustness bound. They provide the first 

benchmark for certified robustness against backdoor attacks but only consider binary classification problems. 

The concept of randomized smoothing is later discussed in Chapter 2.3.6.2. 

2.3.1.3.4 Model Repair 

Lastly, some mitigation strategies are based on repairing a model after this is trained on a dataset that might 

contain poisoned data samples. In (104) the authors try to remove neurons that are inactive on clean data 

samples. Hence, they test a model on data samples from a clean dataset and prune all neurons that show a low 

activation on these samples. In addition, they further fine-tune the pruned model. First, this recovers lost 

performance and secondly can change neurons that contain backdoor behavior which are not pruned earlier.  

A similar, idea is also used by the authors in (105). Here, they first try to identify existing backdoors in a model 

and then try to reconstruct the trigger. Based on these results they propose multiple defense strategies. On 

the one hand, they try to prune neurons that are only active when the identified trigger exists in an image. 
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On the other hand, they try to unlearn the backdoor trigger by retraining the model on images that contain 

the reversed trigger. 

However, for both described defense methods it is possible that adaptive attacks bypass the defense, because 

they exploit the distinguishability of clean and poisoned data samples based on the activity of neurons. An 

adaptive attacker can mimic the activity of neurons on clean samples on the poisoned data. For example, in 

(55) the authors show that their backdoor is not detected by NeuralCleanse. 

2.3.2 Robustness 

This chapter presents mitigation strategies that are specific to the challenges on robustness discussed in 

Chapter 2.2.2. Additionally, we present methods for the confidence or uncertainty estimation of DNNs which 

can be seen as a general mitigation strategy not focused on a specific threat. 

2.3.2.1 Natural Perturbations 

In this chapter we present mitigation strategies that can be used to increase the performance of DNNs on 

OOD data samples. Here, the most important category uses augmentation methods to improve the 

generalization of DNNs during training. As discussed in Chapter 2.2.2.1 augmenting the training dataset using 

only a single corruption type is not helpful for an increased performance against different corruptions. Hence, 

most recent methods utilize strong data augmentation and the combination of different augmentation 

operations. In (106) the authors combine the concept of MixUp from (107) with the use of standard 

augmentations for computer vision. An example of their resulting method is shown in Figure 31. It consists 

of applying different augmentation operations in parallel to an image. At the end, all different paths are 

combined via a weighted summation and the resulting image is a mixture of the effect of all augmentations. 

This method achieves a significantly increased robustness also on corruptions that are not used as part of the 

augmentation operations. In (67) the authors further improve this method by intruding a new powerful 

augmentation operation. Concretely, they pass a clean image through an image-to-image network and apply 

various random perturbations at different stages in the reconstruction process. Hence, the reconstructed 

image is not a perfect copy but will be visually diverse. They show that their method preserves the main 

semantics of an image and at the same time generates unique distortions. Alternatively, the authors in (108) 

introduce adversarial noise training. They first train a generative DNN that learns to find worst-case noise for 

a standard image classifier depending on the current input. Then, the generative DNN is used as noise 

generator and is incorporated in the training process. Here, they follow the method of standard adversarial 

training from (22) but use the noise generator to find a perturbation instead of the PGD attack. The 

fundamental method of adversarial training is previously discussed in Chapter 2.3.1.2.2. 

 

Figure 31 Overview of the augmentation strategy from (106) 

A second category of methods for an improved performance on OOD data uses improvements to the 

architecture of DNNs. Here, one recent approach is (109) where the authors note that current CNN 

architectures are not shift invariant since commonly used methods for down sampling like MaxPooling 

ignore the Nyquist-Shannon sampling theorem. To fix this behavior they propose to include an anti-aliasing 

filter in MaxPooling layers. This leads to an improved performance on standard data and to a better 
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generalization on corrupted data samples. Another method is proposed in (110). Here, the authors integrate a 

technique for unsupervised online domain adaptation into the DNN architecture. They do this by estimating 

the statistics for batch normalization (introduced in (111)) online using recently observed data samples. Then, 

these values are used instead of the statistics that are estimated over the training dataset. This significantly 

improves the robustness of a DNN and can be combined with methods for data augmentation described 

previously for the best performance. 

The final category for mitigation strategies for OOD generalization is based on online detection of data 

samples that are OOD. Hence, these methods do not increase the robustness of the predictions of a DNN but 

instead filter samples that deviate from the training distribution. If such samples are found these can then be 

passed to a specialized DNN or traditional algorithms that can handle a shift in the data distribution better. 

An overview of different methods for OOD detection is presented in (112). The authors define a standardized 

evaluation procedure to reliably assess performance improvements and perform an extensive evaluation of 

recently proposed methods based on this evaluation procedure. In general, one of the first methods is 

proposed in (113). The authors observe that the maximum softmax probability that is output by a DNN for 

classification tends to be higher on standard data samples than on OOD data samples. Hence, they define a 

threshold on the softmax probability and assume that all data samples with a lower value come from a OOD 

distribution. In (114) a more advanced method is introduced. The authors propose a decomposition of the 

standard softmax layer and introduce a preprocessing step that is applied on all data samples during inference. 

Both improvements help to significantly improve the detection performance. In addition to specific methods 

for OOD detection it is possible to detect OOD samples based on the general confidence of a DNN. In Chapter 

2.3.2.2 we present different methods to reliably estimate the confidence of a DNN which can be used to detect 

OOD data samples when the confidence is below a predefined threshold. 

2.3.2.2 Confidence Estimation 

As a last category of mitigation strategies against robustness or IT-Security challenges, it is possible to use 

methods for confidence estimation of DNNs. For each prediction these methods also provide a confidence or 

uncertainty value that should be correlated with the actual reliability of a prediction. Then, this information 

can be used to detect whether the current prediction of a DNN can be trusted. In the best case the confidence 

of a DNN is high on in-domain data samples and is lower on OOD data samples or adversarial perturbed data 

samples. In these cases, it is then possible to contact an alternative backup system if the confidence of a DNN 

is below a certain threshold. This concept is especially important to incorporate safety systems into an entire 

AD system. For example, it is possible to use DNN-based systems most of the time for performance reasons 

and contact an alternative verifiable safety system if the prediction of the DNN is not reliable in a certain 

situation. 

One important category for confidence estimation are methods that are based on using an ensemble of 

models instead of only a single model. This is first proposed in (115) where the authors use dropout layers 

from (116) not only during training. Instead, dropout stays active during inference and an ensemble of models 

is generated indirectly by predicting each data sample multiple times. Then the final prediction of the model 

is the average of all individual predictions, which allows to estimate the uncertainty. The authors in (117) take 

this approach even further and use a real ensemble. Hence, they train multiple models for the same task and 

average the prediction of the individual models during inference. This has the disadvantage that multiple 

models must fit in the available memory of the compute device at the same time and thus the authors in (118) 

propose a more efficient method. Instead of using multiple models they expand a single model. For each layer 

the normal weight matrix is shared among all members of the ensemble, but additional rank-one weight 

matrices are introduced for each member. This allows to compute the prediction of the entire ensemble using 

a single forward pass through the network by repeating the input data sample over a batch. 

Another category of methods for confidence estimation consists of methods that introduce different 

probabilistic layers in a DNN that output a more meaningful probability distribution than using the standard 

softmax activation. Here, the authors in (119) exchange the softmax activation in the last layer with a rectified 

linear unit (ReLU) activation and learn an evidence score for each class. This score is then used to place a 
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Dirichlet distribution over the class probabilities, which allows to better estimate the uncertainty of each 

classification. Alternatively, it is also possible to use Bayesian neural networks (BNNs), where the weights are 

no longer deterministic but instead model a probability distribution, for example in (120). However, BNNs 

typically underfit the dataset and lead to at least a doubling of the model parameters which prevents their use 

on high dimensional data or in resource-constrained environments. Hence, the authors in (121) propose an 

efficient approximation of a BNN. They recycle the approach from (118) and model the member specific rank-

one weight matrices using a Gaussian distribution instead of deterministic weights. Therefore, they combine 

the idea of BNNs with techniques for efficient ensembles. 

A third class of methods for confidence estimation also changes the architecture of a DNN, but without 

introducing probabilistic concepts. For example, the authors in (122) introduce a hybrid model combining a 

DNN and the k-nearest neighbors algorithm. For each data sample during inference, they estimate the 

distance to the closest data samples seen during training and generate a confidence score based on this 

distance. A simpler method is proposed in (123). Here, the authors introduce temperature scaling which adds 

a scaling coefficient to the final logit layer of a DNN before passing the results through the final softmax 

activation. This scaling coefficient is optimized on a hold-out dataset and improves the general calibration of 

the probabilities.  

Lastly, there are also methods that introduce a single metric which represent the confidence score of a DNN. 

In (124) the authors add an additional output to a DNN which learns the confidence value for each prediction. 

Hence, they train this single value to represent whether the classification of the DNN is correct or likely 

incorrect. In contrast, the authors in (125) introduce a score that can be calculated for a trained DNN. They 

first use gradient information to generate the pixel-wise feature importance. Then, this is used to generate 

perturbed data samples and the confidence is generated by averaging over all perturbed samples. Since 

gradient information is required to efficiently compute the attribution this method can only be used for 

white-box systems. This is further improved upon by the authors in (126) that extend the approach to estimate 

the confidence of black-box systems and enable a more efficient use in mobility applications. 

2.3.3 Explainability 

In this chapter we discuss the explainability of AI systems and present an overview of the most relevant 

methods from current research. We focus mainly on methods that are applicable to explain and interpret 

DNNs, since these are primarily used in AD systems, as we describe in Chapter 2.4.1.1. First, we introduce a 

taxonomy to categorize different methods for explainability that is derived from recent surveys on 

explainability. Then, methods for local explainability are discussed which try to explain the output of an AI 

system on a single input sample. Afterwards, we discuss methods for global explainability which try to explain 

the general behavior of an AI system instead of justifying the prediction of a single data sample.  

2.3.3.1 Categorization 

Most surveys on explainability discussed in Chapter 2.2.3 derive their own taxonomy for different 

explainability methods. We try to combine these taxonomies and present an overview in Figure 32 that allows 

to categorize each explainability method which is relevant in the context of AI for mobility systems. This 

allows to compare different methods and easily determine which methods are feasible and handle the 

complexity of the different mobility use cases which are described in Chapter 2.4. 
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Figure 32 Categorization of methods for explainability 

The first category is most important and groups explainability methods by the type of explanation they 

provide. Here, local and global methods can be distinguished and we organize Chapter 2.3.3.2 and Chapter 

2.3.3.3 using this categorization. Next, the required model access of explainability methods needs to be 

considered. Some methods are model-agnostic and can be used to explain black-box systems, while others 

require information of the system or gradients and can only be used to explain white-box systems. Another 

important category to distinguish explainability methods is the feasible model complexity. On the one hand 

it is only possible to apply some methods on tree-like systems. On the other hand, there are also methods that 

can be used to explain complex systems based on large DNNs. Similarly, also the feasible input data differs a 

lot between different methods. A lot of methods can only be applied reasonably on tabular-like data that has 

a low dimensionality. Explaining image-based systems is harder due to the high-dimensionality and 

nonexistence of simple feature categories. Lastly, the required effort to execute an explainability method 

varies a lot. For some methods, a single forward pass of a data sample is enough, while others require extensive 

approximation using many samples. 

In addition to the already presented general surveys on explainability there are also some publications that 

focus on a specific type of explainability. Here, the authors in (127) focus on methods that provide causal 

explanations. They present a summary of the literature from this viewpoint and consider both traditional and 

DNN-based systems. Focusing on the application of explainability methods to AD, the authors in (128) and 

(129) first provide a general survey on different methods for explainability. Next, they focus on the application 

on the different tasks that are relevant for AD and present a summary of publications that applied some form 

of explanations in the context of AD. 

2.3.3.2 Local Methods 

Methods for local explainability try to explain the decision of a system on a single data sample. Hence, they 

do not cover the entire application domain and need to be applied repetitively. This kind of explanation is 

useful to understand a concrete prediction and provide justification of a system for a concrete data sample. 

Also, methods for local explainability are easier to scale to complex DNNs than trying to explain the behavior 

of a DNN globally. This is the main advantage and the reason most research work focuses on local 

explainability of DNNs. 

2.3.3.2.1 Saliency 

The most prominent methods for local explanations of DNNs are saliency-based methods. Typically, these 

generate a heatmap on the input data which is the visualization of features that are relevant for the prediction. 

Some examples of different methods for saliency-based explanation are shown in Figure 33. In general, the 

main advantage of saliency-based methods is that these can be applied to any DNN and on high dimensional 
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data. Therefore, the focus of research lies on such methods and improvements are continuously introduced 

in recent years. 

 

Figure 33 Exemplary visualization of different saliency methods from (130) 

Current methods for saliency-based explanations typically require white-box access to the system. One kind 

of methods is based on using gradient information to aggregate the contribution of internal components of a 

DNN to a prediction. Here, some current methods are (131) and (132)1. These can be easily applied to any 

white-box DNN and only require a few iterations of passing data samples through a DNN. Alternatively, 

another kind of promising methods is based on visualizing the internal activation patterns of a DNN and 

projecting this to the input. Here, some recent methods are (130) and (133). Additionally, a third kind is based 

on backpropagating the prediction output of a DNN through each layer back to the individual features. For 

this kind, (134) and (135) are recently proposed methods. The three method kinds presented are mostly used 

and most research work is focused in these areas. 

Nevertheless, there exist also other approaches that use different concepts to generate saliency maps. An 

interesting one is proposed in (136) where the authors use adversarial attacks that generate coherent visual 

perturbations which is very similar to the concept of physical adversarial attacks discussed in Chapter 2.2.1.2.5. 

Also, interestingly the authors in (137) train a separate DNN that upscales the feature maps learned in the 

original DNN. They train their model to learn a saliency map that can be used in parallel to the original DNN. 

However, the title of both publications is slightly misleading because they still require gradients to perform 

the adversarial attack or train the upscaling model. Hence, these methods require white-box access and 

cannot be used to explain true black-boxes. 

Due to the success of saliency-based methods there are also publications that investigate whether the 

provided explanations can be trusted. In (138) the authors analyze different saliency methods and discuss that 

only relying on the visual inspection of saliency maps can be misleading. They show that some methods, 

based on the guided backpropagation of the DNN output to the input data introduced in (134), are largely 

invariant to the parameters of a DNN and basically just act as an edge detector in images. To increase the 

practical trust in saliency-based methods they then propose two simple tests that assess the quality of 

saliency-based explanations. 

2.3.3.2.2 Approximation 

Methods for approximation typically try to locally approximate a larger system by inherently explainable 

models. Hence, most methods describe the local behavior of a system by a linearly weighted combination of 

the input features. This allows to explain the impact of each feature in a very understandable fashion. 

However, the linear combination also represents the main disadvantage because these do not scale well to 

input data with high dimensionality like images or videos. Hence, the applicability to DNNs and specially to 

explain image data is very limited and typically only allows very rough explanations based on super-pixels 

from (139). 

                                                                 
1 The open-source project is available at: https://github.com/PAIR-code/saliency 

../:%20https:/github.com/PAIR-code/saliency
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The first method that used a local linear approximation is LIME proposed in (140). The authors train a linear 

model by generating new samples locally around the data sample that should be explained and observing the 

output of the original system. The approximated model is locally correct and is used to explain the decision 

of the original system for this specific data samples. An alternative is proposed in (141) where the authors 

system locally. Any changes to the rest of the features does not have an influence on the prediction of the 

system. Again, this method does not scale well to high dimensional input data and requires an intensive search 

ther alternative is DeepSHAP proposed in (142). The authors use a 

linear approximation of a system and calculate the importance of input features based on Shapley values. 

Therefore, this method suffers from the same disadvantages discussed previously. 

2.3.3.2.3 Counterfactual Example 

Another type of methods where research interest picked up in recent years are explanations based on 

chang

that the change of the data sample is easy to explain for humans. For example, this allows to explain a classifier 

he pupils of the animal in the image were made larger the probability of a cat 

would decrease by 20%

exactly the impact of a group of features. An example is shown in Figure 34 where the explanation of the 

saliency-based method Grad-CAM is compared with a counterfactual example from the method GANalyze 

for a Lion vs. Cheetah classifier. Typically, methods to generate counterfactual examples have similar 

requirements to saliency-based methods discussed in Chapter 2.3.3.2.1. They require white-box access but can 

be applied to large DNNs with high-dimensional input data. 

 

Figure 34 Visualization of the explanations provided by counterfactual examples in comparison to saliency-based 

explanations from (143) 

One of the first publications to use counterfactual examples to explain vision-based systems is (144). Here, the 

authors explain why an image was classified as a class 𝑐 rather than class 𝑐′. To do so, they replace the most 

relevant region of the input image for the classification 𝑐 with a part from an image of class 𝑐′. The resulting 

image would then be classified as class 𝑐′ and the generated explanation provides information about the 

mainly responsible feature region. Alternative methods to generate counterfactual explanations are based on 

generative DNNs instead of exchanging specific image parts. Here, (145) and (143) both use GANs to 

synthetically generate the parts of the image that must be changed instead of extracting these from an existing 

image of class 𝑐′. The basic principle behind GANs is discussed in more detail in Chapter 2.6.3. 

Also, there is an approach that takes the opposite direction of counterfactual examples. In (146) the authors 

explain the prediction of a system by showing the training data samples that are most responsible for this 

prediction. Instead of generating a counterfactual example they provide multiple reinforcing examples from 

the train dataset. 
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2.3.3.3 Global Methods 

In contrast to methods for local explanations, methods for global explanations try to explain the complete 

behavior of a system. Hence, these do not only explain the prediction on a single data sample but provide a 

model that is able to explain each prediction. Therefore, methods for global explainability achieve perfect 

coverage. However, it is significantly more difficult to explain a complex system like a DNN globally instead 

of providing a local explanation. Most of the methods that are presented in the following are limited in their 

applicability or only achieve poor performance in comparison to the original system. 

2.3.3.3.1 Model Translation 

The idea behind methods for model translation is to transfer the behavior of a complex system to a simpler 

model that is more explainable. Hence, the explainable model should mimic the behavior of a complex DNN 

as best as possible. Here, one approach is to train a surrogate model that is inherently more interpretable. In 

(147) the authors train a gradient boosted decision tree for any given black-box model. In principle, they 

perform a model extraction attack and then provide explanations for the extracted model. These explanations 

are again based on SHAP values that we already discussed in Chapter 2.3.3.2.2. Hence, this method has the 

same disadvantages and cannot be scaled well to high dimensional data samples like images. 

Alternatively, there are also approaches that integrate explainable models in a DNN and use a hybrid system. 

In (148) the authors insert multiple autoencoder structures in a CNN to extract a limited number of high-level 

latent features. The extracted features are then used to construct a Bayesian network that shows the exact 

effect of each extracted feature. Hence, the feature extraction is still performed by a CNN, but the final 

prediction is made in an understandable way by a graphical model. This represents a tradeoff between 

increasing the explainability of a system but consequently reducing the prediction performance. A similar 

method is also used in (149), where the authors learn a graphical model that represents the learned features 

of a CNN. They use this to visualize the knowledge hierarchy learned in a CNN, which can be used to explain 

the learned representation of a CNN. 

2.3.3.3.2 Rule Extraction 

Methods based on rule extraction try to extract the exact decision rules from a complex system and build an 

exact replica of the system. If such methods are applied for DNNs typically decision trees are used that model 

the behavior of each neuron depending on the current input values. Then, all trees are combined and 

intermediate rules are extracted that simplify the resulting tree. As a result, these methods provide perfect 

explainability because a decision tree is used instead of a DNN and for these each prediction is perfectly 

traceable. However, these methods are extremely limited and can only be applied on shallow networks. Also, 

they do not scale well with the input dimensionality. Hence, explainability based on rule extraction is more 

an academic research field than something that can be used well in praxis. 

This conclusion is also supported by the authors in (150), which review different methods for rule extraction 

of DNNs. They conclude that only a limited number of publications consider this problem and satisfactory 

solutions do not exist. This also shows in the evaluation of the currently most promising method DeepRED 

in (151). The authors experiment with a binary classification task for two classes from the MNIST dataset 

introduced in (152). Even for this purely academic task they first must prune the DNN and the extracted 

decision tree only achieves a fidelity of ≈ 90%. 

2.3.3.3.3 Explainable Training 

Instead of trying to explain a system after training there are also approaches that incorporate explainability 

directly in the system during training. Most notably in (153) the authors consider the task of providing 

explanations for an end-to-end AD system. See Chapter 2.4.2 for a general introduction to these systems. Here, 

the authors consider the task of predicting the steering angle of a vehicle from monocular images. They use a 

DNN and incorporate visual explanations based on saliency maps into the architecture. In Figure 35 the 

resulting architecture is shown and an exemplary explanation is visualized. The architecture consists of a 
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standard CNN to perform the feature extraction from the raw input images and a following LSTM to predict 

the steering angle based on the current input and remembered information of the last seen input images. 

Additionally, the authors insert an attention mechanism that is trained to visualize the regions in the learned 

feature representation that are most relevant for the current prediction. As a result, this attention map can be 

upscaled to the size of the original image which results in a saliency map. This allows a human to observe the 

regions in the input image that had the most influence on the current prediction. 

 

Figure 35 Overview of an explainable AD system from (153) 

In another recent approach the authors in (154) learn a weighted linear combination of individual DNNs. 

Thereby, each DNN only has a single input feature which allows to explain the overall prediction of the 

combination of DNNs. Since each prediction results from a weighted combination and each DNN has a single 

input feature the impact of each input feature on the final prediction can easily be explained. However, this 

approach only works well for tabular-like data and currently does not scale to high dimensional data. 

2.3.4 Documentation 

This chapter summarizes potential strategies for the challenge of a uniform documentation of AI-based 

systems discussed in Chapter 2.2.4. Additionally, we present software tools that can help to document the 

development process, the evaluation of AI systems and track the complete AI lifecycle. 

2.3.4.1 Proposals for Unification 

Proposals that gained the most attention in recent years come from leading industry players and are based 

on their practical experience. On the one hand, several works discuss the need for standardized 

documentation of the datasets used for the training of data-driven systems. In (155) the authors propose to 

create a mandatory datasheet that accompanies every release of a dataset. They provide a question catalogue 

that covers all aspects that are relevant during the data acquisition and processing, ranging from the 

fundamental motivation over the collection process to the distribution and maintenance. Some examples of 

the question catalogue are shown in Figure 36 on the left side. The datasheets are also created for datasets that 

are only available internally and can be handed to external parties on request. This increases transparency, 

accountability and reproducibility. Alternatively, in (156) the authors also consider the problem of dataset 

quality, but from a specification and verification perspective. First, they provide an overview of existing 

standards for datasets in certain safety-critical domains. These standards can only partially be applied to AI 

systems due to the increased input dimensionality, inability to formally verify strict completeness and data-

dependent behavior. Following, the authors provide a list of recommendations for the management of 

datasets and propose the usage of three additional artifacts for the documentation of datasets, consisting of 

the definition standard, the requirement specification and the verification plan. 
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Figure 36 Exemplary visualization of datasheets from (155) on the left and model cards from (157) on the right 

In addition to research on the documentation of datasets there is also some work to standardize the 

documentation of a trained AI system. In (157) the authors propose to provide documentation for each release 

of an AI system, which should describe the performance characteristics. Their model cards contain the basic 

information of the model architecture, the training parameters and a detailed evaluation in a variety of 

conditions in the intended domain. For each of the categories they provide guidance in determining a useful 

question catalogue from which model cards can be derived. An example is shown in Figure 36 on the right 

side. This clarifies the intended use case and shortcomings of each model leading to improved transparency. 

Combining the different areas where documentation of AI systems is required, the authors in (158) and (159) 

pr

in many industries for traditional (hardware) products. These include not only the final performance of a 

system but also capture various aspects about the development, the testing, the robustness or the safety and 

security. Again, the authors provide a question catalogue that can be used to create FactSheets for any AI 

system and provide detailed examples from their experience. The proposed documentation forms the basis 

that can be used to get an overview of a system. For the specific threats on IT-Security from Chapter 2.2.1 and 

robustness from Chapter 2.2.2, it would be possible to extend the original FactSheets to also contain more 

detailed information on the implemented mitigation strategies of the described threats and the evaluation 

against exemplary attacks. 

Similar to the previous concepts, the authors in (12) introduce a framework for the auditing of AI systems that 

should be done internally at companies developing AI systems. At each stage of the lifecycle described in 

Chapter 2.1 a set of documents is required before moving further in the lifecycle. Combined, these documents 

form an overall audit report to assess decisions made during the development process, the evaluated test 

scenarios and the quality of the AI system. An overview of the introduced auditing and documentation 

process is shown in Figure 37. The authors propose to use the introduced framework to close the 

accountability gap during large-scale deployment. They provide detailed descriptions of each step in the 

internal development and parallel audit of an AI system and mention the required documentation at each 

step. The framework for the documentation of AI systems is derived by combining lessons learned from 

auditing practices in other industry areas. 
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Figure 37 Overview of the proposed internal auditing process and associated documentation from (12) 

In (11) the authors present the ABOUT ML2 project which is an initiative to increase the transparency of AI 

systems across different stakeholders. They focus on the need for uniform documentation of the AI lifecycle 

and standardized practices. The goal of the project is to consolidate past efforts for standardized 

documentation and develop guidelines and templates to support documentation of an AI system. This should 

lower the barrier to integrate thorough documentation in any AI development process for any industry. To 

achieve this, during the project different pilot use cases are explored to test the applicability of the proposed 

documentation guidelines in practice. Additionally, the project wants to develop means to tackle the inherent 

transparency limitations resulting from intellectual property protection or information security. 

2.3.4.2 Software Tools 

To support the documentation of AI systems different tools exist that allow to track an AI system over the 

complete lifecycle. In recent years multiple commercially available platforms were developed that provide 

features ranging from data visualization over experiment tracking (including data and model versioning) to 

code packaging for deployment. Heavily used and funded platforms include (160), (161) and (162). However, 

more platforms exist where the focus is slightly different or less functionality is available. The platforms 

mentioned also provide more advanced features like feature importance analysis, visual explainability or 

automated parameter search. Also, the upscaling of AI operations in a company is a focus-point where the 

platforms provide simple user interfaces, easy-to-use apps and the option to perform no-code experiments. 

One limiting factor in using more advanced features is that in most cases only tabular and low dimensional 

data is heavily supported. Explaining or evaluating vision or point cloud AI systems is more difficult due to 

high input dimensionality and large system architectures as discussed in the associated chapters in this report. 

In contrast to the previous commercial platforms for AI system tracking there are also open-source 

alternatives that are largely developed by an independent community. Here, prominent examples include 

(163) and (164). These provide the same basic features but do not yet include more advanced features. 

Nevertheless, the basic need of tracking an AI system is fulfilled by having a model registry and training 

parameter tracking. The usability is more focused on expert users and not on an as easy as possible integration 

and development of AI systems. Still, the mentioned open-source platforms are a viable alternative that is 

also used in the industry and consistently new features and improvements are introduced. 

The mentioned platforms currently mainly support the internal documentation of the lifecycle of an AI 

system and the tracking of experiments including training and evaluation. Companies might use this 

information to produce the reports mentioned in Chapter 2.3.4.1 and expand it with additional information. 

These platforms provide the basis to monitor the AI lifecycle internally and aggregate information to provide 

to third parties. 

2.3.5 Safety 

Any safety requirement must consider the limitations mentioned in Chapter 2.2.5 in order to manage and 

minimize the risks. In the automotive sector, there are several major norms, standards and frameworks with 

respect to safety driven design and development (functional safety) of automotive products. One of the most 

                                                                 
2 The project homepage is available at: https://partnershiponai.org/workstream/about-ml/ 

https://partnershiponai.org/workstream/about-ml/
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common standards for functional safety is the ISO 26262 (165) including functional safety requirements for 

electronic systems embedded in road vehicles. The major approach of the ISO 26262 is shown in Figure 38 

and is a risk driven approach that is comprised of requirement specification, architecture, implementation, 

integration, verification and validation. 

 

Figure 38 V-Model approach of the ISO 26262 requires mapping to the ML specific properties 

Furthermore, the standard provides different automotive safety integrity levels (ASILs) where each level 

represents a set of requirements regarding the acceptable residual risk. The higher the ASIL, the higher the 

safety requirements and the lower the residual risk of the application. In general, high ASILs require a high 

transparency, explainability, test coverage and (semi-) formal verification of the systems design and 

functionality. Unfortunately, all these requirements collide with the limitations of ML-based systems listed 

in Chapter 2.2.5 and lead to different strategies to achieve the demands. Figure 39 summarizes some strategies 

to map and cover ML- specific aspects with safety requirements. 

 

Figure 39 Suitable safety strategies for ML-based systems from (166) 

In the following, some aspects of the listed strategies will be discussed in extracts. The most promising 

approach is the use of inherently safe architectures realized by the possibility for formal verification of the 

ML-based model. Formal verification for ML models is strongly connected to the robustness considerations 

described in Chapter 2.3.2 and is covered more extensively in Chapter 2.3.6. The scope of formal methods for 

verification is to find flaws or to prove that the system is flawless. Assigned to ML, formal verification shall 

reveal robustness issues and/or enable robustness guarantees. Besides applying formal verification, the ISO 

26262 demands (semi-) formal specifications of the design and functionality. The aim of this requirement is 

to model t

literature provides some strategies to fulfill the demands of (semi-) formal specification. Here, Figure 40 shows 

some relevant approaches. 
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Figure 40 Challenges and possible mapping for (semi-) formal specification of ML based systems from (167) 

Due to the limited applicability of formal methods (in particular for complex ML-based models) high-risk 

applications represented by high ASILs are difficult to achieve or are even unfeasible. The majority of the 

contradictions is based on the lack of formal verification of the model

residual risk estimation remains uncertain and the risk driven approach of the ISO 26262 cannot be justified 

point to point. Nonetheless, a successful mapping and satisfying the safety requirements is constrained to the 

selected safety level and the risk impact of the applications. The lower the safety level, the higher the 

successful safety approval. Residual limitations in higher safety levels can be mitigated by redundant 

(traditional) systems or safe fail architectures. As an example, automated driving systems and autonomous 

vehicles (AVs) use additional sensor data (e.g. LiDAR, RADAR) to improve the decision process of the ML-based 

algorithms and lower the risk in case of a misclassification based on the image data from a camera. 

2.3.6 Certification and Verification 

Here, we present the mitigation strategies for the challenges on certification presented in Chapter 2.2.6. When 

applying certification, several things must be considered and an appropriate algorithm has to be chosen 

accordingly. This involves the power of an attacker (e.g. 𝑙1, 𝑙2 or 𝑙∞ influence), the size and the architecture of 

the DNN to certify. Broadly, there are two different categories of approaches for robustness certification: 

complete and incomplete verification. These have distinct strengths, but also restrictions. There are also 

attempts to combine the best of the two worlds to overcome their shortcomings. In the following, the 

individual categories are discussed. 

2.3.6.1 Complete Verification 

Complete verification is the most exact, but also the most demanding approach. A successful complete 

verification guarantees (under certain conditions) that for a given input sample, there is no adversarial 

example, which results in a prediction other than the ground truth. Hence, the resulting boundaries for 

robustness are exactly defined. However, the problem of complete verification of a DNN is NP-complete as 

discussed in (168). The worst-case time complexity of this type of algorithms is exponential, although they 

exhibit practical run times for smaller networks. Most approaches work with l  adversaries as well as simple 

feed-forward ReLU networks. A principled introduction to the use of ReLU as an activation function is given 

in (169). 

One approach for complete verification is using logical solvers for satisfiability modulo theories (SMT) 

proposed in (170) or mixed integer linear programming (MILP) discussed in (171). When considering feed-

forward neural networks with ReLU activation functions, the components of the model architecture can be 

transformed in mathematical functions, equations and inequalities. SMT and MILP solvers can determine if 

these are satisfiable for a given input sample respectively if the network is robust. Though solver-based 

approaches can successfully verify smaller neural networks under specific constraints (e.g. feed-forward 

structure, ReLU activations), they do not offer an adequate scalability. The size of a model as well as its 

architecture, which might not be convertible, are often the reason why this kind of approach is not feasible 

for DNNs used in complex practical applications. 

A more scalable approach to complete verification is branch-and-bound algorithms (172). Here, the linear 

characteristic of ReLUs and affine mappings is exploited. This property reflects in the output as well, i.e., for a 
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given input sample the output is locally linear. A bounding step determines approximate lower and upper 

boundaries for possible output deviations by incomplete verification. The corresponding lower bound can 

result in a successful verification, while an upper bound may result in a failed one. If both boundaries do not 

yet lead to a verification decision, a neuron branching is applied. The neuron is transformed into two linear 

constraints and for each the bounding step is applied again. If evaluation of both branches results in the same 

decision, the verification of this branch is finished else the branching continues recursively with the following 

neurons. If all neurons were branched and there are still branches not leading to a verification decision, then 

the output deviation can be determined by linear programming. Though branch-and-bounding approaches 

are more scalable than solver-based ones, the maximum size of neural networks is still limited. Furthermore, 

the architecture must be suitable for the branching step, e.g. using ReLU activations. 

Although leading to a robustness verification with exact boundaries, complete verification is only suitable for 

small DNNs and datasets and is often restricted to model architectures using ReLUs. Additionally, complete 

verification methods are limited to a model size of up 105 neurons and about 6 layers (173). 

2.3.6.2 Incomplete Verification 

In contrast to complete verification, incomplete verification only offers an approximate verification. The 

advantage of this kind of approach is that the relaxations enhance the scalability of the used methods, thus 

allowing the verification of larger networks. 

Algorithms based on linear relaxations (174), again make use of the linear property of ReLU functions. A stable 

ReLU can be relaxed to a linear equation. For an unstable ReLU, a lower and an upper output boundary is 

determined which allows for bounding of the neuron by linear constraints. The bounded space is called ReLU 

polytope. With the combination of linear equations and the ReLU polytopes, an approximate overall output 

space for the whole network can be determined, which in turn can be used for an (approximate) robustness 

verification. When dealing with different activation functions than ReLU, the authors in (175), propose a 

verification for arbitrary neural network architectures. Linear relaxation methods scale to model sizes of 105 

neurons and approximately 10 layers (173). 

Probabilistic approaches are based on the concept of randomized smoothing. A smoothed model is created 

by adding random noise to the input data. The noise shall eliminate the effects of adversarial perturbations 

(176). Then, the new model is verifiable, but the verification only holds for this smoothed version. The applied 

noise distribution must be chosen carefully, since the smoothing process can have a serious impact on the 

accuracy of the model and in addition influences the tightness of the verification boundaries. Besides the 

effect on prediction accuracy, the noise addition and even stronger the transition back into the correct 

prediction can bring a computational overhead as shown in (177). In return, this approach is independent 

from the model architecture. Most randomized smoothing based algorithms are conceived for 𝑙2 adversaries, 

but there are also more flexible approaches regarding 𝑙𝑝 norms, e.g. (178), (179), (180) and smoothing 

distribution from (181). 

Incomplete verification is more flexible and scalable than complete approaches, but large datasets and DNNs 

are still a challenge. Furthermore, the resulting robustness bounds are not exact, only hold for the smoothed 

model or do not have a reasonable tightness in comparison to the actual robustness. Additionally, for 

incomplete verification methods there exists a tradeoff between the scalability of the method and the 

tightness of the calculated robustness bounds (173).  

2.3.6.3 Hybrid Approaches 

Next to pure algorithms from the classes of complete and incomplete verification, there are additional hybrid 

methods. These try to combine the approximation techniques of incomplete verification, such as linear 

relaxation, with procedures from complete verification. The result shall inherit the advantages of both 

categories, scalability as well as precision or tightness of verification boundaries. Though enhanced in 

comparison to complete verification, scalability still remains a constraint. For example, (182) combines MILP 

solvers with the approach of linear relaxation for incomplete verification. In particular successful for 𝑙2 



2 State-of-the-Art Report (AP2) 

Federal Office for Information Security 49 

verification, is the method proposed in (183). Here, the input space is divided into convex polyhedral regions, 

in which the output has a linear behavior. The regions can then be analyzed by geometric projections leading 

to more precise verification results than many incomplete approaches. 

2.4 Mobility Use Cases 

The different use cases of AI in mobility applications are best discussed on the concrete example of a system 

for AD. In Figure 41 a general overview of the components of such a system is shown. The fundamental goal 

of AD is to capture the surrounding scene of a vehicle using different sensors and deriving concrete actuator 

signals to maneuver the vehicle in this scene. Fundamentally, two different approaches can be distinguished 

to perform the described task. On the one hand, end-to-end approaches exist which consist of a single 

complex AI that takes the raw sensor data as input and predicts the control signals for the actuators. Current 

approaches use DNNs for the complex AI and such systems are discussed in Chapter 2.4.2. On the other hand, 

a modular approach exists where the complete task is split in different components. These components can 

be represented by an AI system or also traditional algorithms. This approach is used for the current generation 

of AD systems that are tested in specific regions on public roads. In Chapter 2.4.1 we discuss the tasks and 

techniques for each of the modular components in greater detail. 

 

Figure 41 Overview of the components of a system for AD 

Generally, different surveys exist that cover relevant use cases of AI for AD. In (184) and (185) the authors start 

by discussing different sensor types and an overview of the general architecture of an AD system. Then, they 

cover all tasks of the modular approach and present a comparison of techniques based on AI with traditional 

algorithms in detail. In contrast, the authors in (186) only focus on deep learning (DL) techniques. They first 

present a general introduction to DL and then show DL-based solutions for each task in the modular 

approach. Additionally, hardware requirements to perform real-time capable inference are discussed and 

general hardware components are presented. 

In addition to using AI in an AD system there is also the option to use AI as part of an ADAS. However, most 

use cases are very similar because an ADAS is specialized on understanding only a part of the current scene. 

All use cases that are solved by an ADAS are also incorporated in an AD system. Therefore, we focus on 

presenting the modular components of an AD system and discuss how AI can be used to solve each individual 

task. Nevertheless, also for ADAS some works exist that summarize the use cases. In (187) the authors provide 

a short description of the main ADAS features that are deployed on public roads. Mainly, the authors discuss 

different camera locations and data processing steps. A more detailed summary of all existing ADAS features 

where AI could be used is given in (188). Again, a focus point is the discussion of different sensors and how 

the fusion of the data from different sensor types can be performed. 
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2.4.1 Modular Components 

In the following we provide an overview of the tasks of the modular components of an entire AD system. We 

discuss the goals and main techniques of each task and provide additional references for a detailed discussion 

of the tasks. 

2.4.1.1 Perception / Localization 

The goal of perception modules is to understand the surrounding scene of a vehicle. The inputs are sensory 

readings and different perception modules try to extract information about higher-level concepts from the 

data. These higher-level concepts are then fed to modules further down the AD system. Some of the relevant 

higher-level concepts are shown in Figure 42 for the case of visual perception from camera sensors. In general, 

these concepts capture all information that is relevant for the understanding of the current scene, like how 

humans use their sensory system to get a representation of a scene. 

In (189) a very detailed survey is done for all perception tasks based on image data. The authors compare 

traditional algorithms to extract the higher-level concepts with current approaches based on DL. For all tasks 

the SOTA regarding accurate perception is achieved by DNNs. Traditional approaches do not match the 

perception qualities of vision-based models that are trained on large datasets. Also, for AD/ADAS systems that 

are tested in reality the perception is done exclusively by using different DNNS, as shown in (190), (191) or 

(192). Therefore, in the following we discuss the individual perception tasks with DNNs in mind. 

 

Figure 42 Overview of different visual perception tasks required for AD from (193) 

2.4.1.1.1 Object Detection 

The idea of object detection is to locate object instances from predefined categories in the current scene. 

Typically, all detected objects are assigned a bounding box that is provided to following components in the 

AD system. Traditionally, bounding boxes are predicted in the 2D image space (see Figure 42a), but some 

approaches also perform 3D bounding box prediction. If only image sensors are used the prediction of the 

depth of a bounding box is only an extrapolation, since no real depth information exists. In contrast, when 

RADAR or LiDAR sensors are used the input data is not an image but a point cloud (see Figure 43). Here, it is 

possible to have more accurate predictions of the depth component of the 3D bounding box. 

The principal problem to detect objects is fundamental to computer vision and not a unique problem for 

mobility systems. Hence, in (194) the authors present a detailed survey on techniques for object detection in 

image data for different applications. In (195) the authors consider only the case of AD and discuss the 

evolution of DNN architectures used for object detection. They present recent approaches and perform a 

uniform evaluation on datasets specific for AD, but mainly focus on image data. Considering object detection 

on point cloud data the authors in (196) present a summary of all relevant approaches. They show that this is 

a more complex task due to high sparsity and irregularities of the point cloud data. Therefore, interest on this 

task only started recently, but the number of publications increased largely in the last years. 
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Figure 43 Visualization of object detection using 3D LiDAR data from (196) 

2.4.1.1.2 Segmentation 

Segmentation involves partitioning an image into multiple higher-level concepts. Thereby, segmentation is 

in principle the individual classification of each pixel, where a concrete class is assigned to each pixel. The 

individual pixels then form larger groups that can be interpreted as higher-level concepts. For example, in 

Figure 42b the semantic segmentation of a driving scene is shown. Here, specific classes are used for all higher-

level concepts, like pedestrians, vehicles, signs, road surface, etc. Special cases of segmentation are shown in 

Figure 42c and Figure 42d, where only specific aspects of the overall scene are relevant for the segmentation. 

Similar to object detection the segmentation of images is not a task that is specific to AD. In (197) the authors 

compare different DNN architectures to perform segmentation and introduce the basic idea behind each. 

They also cover different applications and extensively discuss remaining challenges. In contrast, the authors 

in (198) focus on the application of AD and summarize segmentation architectures that are applied on datasets 

specific for AD. They also shortly cover object detection, but then discuss segmentation in great details. The 

comparison of different DNN architectures is done for different segmentations tasks and for each task the 

relevant datasets are described. 

2.4.1.1.3 Optical Flow 

Theoretically, optical flow is the motion of brightness patterns between two successive images. The motion 

of patterns results from the movement of an object in a physical scene which is captured in successive images. 

Hence, the resulting optical flow can be interpreted as the projection of the true motion of objects in a scene. 

Ideally, it shows the displacement which maps all pixels of the former image to the new location in the second 

image. An example of the resulting optical flow in an image is shown in Figure 42h. The usage of optical flow 

estimation can give further insights into the layout of the current scene that the AV navigates and the 

decomposition into the movement of individual objects. Such movement information can then be used by 

following components as an alternative to track objects based on mapping bounding boxes from associated 

frames. 

In (199) the authors introduce the problem of object flow for AD. They discuss the underlying task and 

summarize relevant datasets. However, they only use traditional algorithms to estimate the optical flow and 

do not use any AI-based approaches. Such AI-based approaches were only introduced more recently and are 

covered in (200). There the authors provide a systematic review of recently proposed techniques for optical 

flow estimation and focus on techniques that use DNNs. Comparable to other perception tasks DNNs start to 

outperform traditional algorithms also for optical flow estimation. 

2.4.1.1.4 Depth Estimation 

The goal of depth estimation is to estimate the distance of the camera to each point of a scene captured in an 

image (see Figure 42g). In principle, estimating the depth only from a monocular image is an ill-posed 
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problem. Nevertheless, this is an interesting approach since it reduces the need for RADAR or LiDAR sensors. 

It would be beneficial for the costs and simplicity of AD systems if an accurate depth estimation were possible 

from image data only and a major industry player is using only image data as discussed in (191). Alternatively, 

depth estimation from images is also relevant because the estimated depth might be used as a backup when 

RADAR or LiDAR sensors only provide point clouds with poor quality due to environmental conditions. 

Monocular depth estimation is considered in (201). The authors introduce the problem and summarize 

relevant datasets and quality metrics. Also, they present traditional approaches before considering recent 

approaches using DNNs. These provide depth estimations that clearly outperform traditional approaches and 

do not suffer from sparsity issues, since the depth can be estimated effortless for every point in an image. 

Further, the authors in (202) consider depth estimation when stereo image data is available. They structure 

their survey in a similar way and start by presenting relevant datasets. Alike, they conclude that DNN-based 

approaches significantly outperform traditional approaches based on matching hand-crafted features across 

multiple images. 

2.4.1.1.5 Localization 

Localization aims to determine the current position of the AV as it navigates through the scene. Thereby, the 

position consists of the location and orientation of the vehicle on the current road or lane. The most 

straightforward option is to use the global positioning system, but since the average accuracy of the position 

can deviate up to multiple meters the usage is limited for AD. Here, the localization must be exact in terms of 

decimeter level to stay in the correct lane. Available alternative solutions are discussed in (203) or (204) and 

we show an overview in Figure 44. Most approaches are using traditional algorithms to perform the concrete 

localization, e.g. for map matching, hence the localization is not a typical AI use case. However, AI approaches 

can be used to derive landmarks or key points from the current sensory inputs, which is again an underlying 

perception task. Here, the most relevant case is the detection of lane markings (see Figure 42c) which can be 

used by further algorithms to exactly locate the AV in the lane. 

 

Figure 44 Overview of different approaches to perform the localization of an autonomous vehicle from (203) 

2.4.1.2 Behavior Prediction 

The principled goal of behavior prediction is to predict the possible future behavior of all participants in the 

current scene. Hence, it is based on the results of the perception modules since future behavior can only be 

predicted for known objects. In Figure 45 an exemplary behavior prediction is shown for the case of 

pedestrian path prediction from a birds-eye view perspective. Here, the perception provides a surface 

annotation and relevant information of the detected person. Based on this information the most likely future 

path of the pedestrian is predicted. Instead of only predicting the most likely future behavior it is also possible 

to predict multiple future behaviors. These can be ranked by probability of occurrence and provide a deeper 

understanding of possible future scenarios that can be exploited by the following components in the AD 

system. 
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Figure 45 Overview of behavior prediction and required data representations from (205) 

A first survey on path prediction of pedestrians and vehicles is done in (205). The authors shortly cover 

different methods to perform the feature extraction from images and then cover different algorithms for the 

behavior prediction. This includes traditional approaches, as well as more recent approaches based on DNNs. 

Concluding they provide an extensive overview of available datasets. In (206) the authors focus on the 

behavior prediction of pedestrians. They present a variety of approaches and categorize them according to 

the introduced taxonomy. Traditional algorithms are first extensively summarized before the authors present 

more sophisticated approaches that use DNNs. Concluding, the authors in (207) focus on behavior prediction 

using only DNNs. They present an overview of different prediction tasks and highlight the details of the used 

architecture, training methods and datasets. Also, all relevant datasets and evaluation metrics are listed. 

Looking at available literature, data-driven AI systems have recently surpassed traditional algorithms for 

behavior prediction if enough high-quality data exists. Such systems are mostly based on DNNs and are 

deployed in systems operating on public roads as we show for some examples in Chapter 2.5.2. 

2.4.1.3 Path Planning 

In the path planning component, the goal is to plan a concrete path for the vehicle to navigate in the current 

scene. To achieve this goal multiple intermediate tasks must be performed. These different tasks are shown 

in Figure 46. First, the global planning of the route is performed based on the user destination and the 

available road network. Next, the local planning is used to navigate between the global waypoints that are 

planned. Here, information of the previous perception and prediction components on the scene and moving 

objects are used to decide the motion to perform. The possible motions are higher-level concepts like stay in 

the lane, start parking maneuver, take evasive actions, etc. Based on the selected motion the detailed local 

planning is done which outputs the path that the vehicle should use to navigate through the current scene. 

Additionally, in Figure 46 the last step of an AD system is also shown, which is the translation of the planned 

local path in actual commands for the actuators. We cover this component explicitly in Chapter 2.4.1.4. 

 

Figure 46 Overview of the steps required for path planning from (208) 

The authors in (208) cover traditional techniques for path planning and present the interaction with control 

techniques. They strictly focus on the traditional planning steps shown in Figure 46 and do not discuss recent 

approaches based on more sophisticated AI methods like DNNs. In (209) the authors focus on the path 
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planning task and discuss traditional approaches as well as recent data-driven approaches. These do not 

necessarily follow the traditional planning steps, but sometimes incorporate the behavior layer and the 

motion planning from Figure 46 into a single learned component. They conclude that data-driven approaches 

are on the rise and mostly outperform traditional approaches. However, for the more sophisticated 

approaches the questions of safety, verification and explainability are largely unanswered which limits their 

use in practice. Finally, the authors in (210) and (211) survey recent approaches on data-driven planning using 

DNNs. They focus on reinforcement learning and imitation learning-based approaches, which are heavily 

researched in recent years. They discuss different options to integrate such approaches into the AD system 

and review different setups for the reinforcement learning environment. Additionally, the role of simulators 

and synthetic data is discussed for training and validation. Summarizing, they point out the great potential 

but also conclude that some challenges still must be solved before mature solutions are available. 

2.4.1.4 Control 

The control component is the last component of an AD system and selects actuator commands to execute the 

planned local path. It incorporates direct feedback from the vehicle and uses a kinematic model that describes 

the general capabilities of the vehicle. The goal is to minimize the tracking error between the planned path 

and the executed motion. In Figure 46 the main idea of the control component is shown on the right side as 

the last step. 

In (208) the authors cover traditional control algorithms and discuss formal derivations for different control 

tasks. They provide a comparison which evaluates the used vehicle model, the time complexity and the path 

stability guarantees. Instead of traditional algorithms, the authors in (212) focus on using DNNs in the control 

component. Again, this trend emerged in recent years due to the ability of DNNs to model complex driving 

environments and their principled ability to generalize learned rules to new scenes. The authors present 

different approaches to use DNNs for controlling a vehicle and extensively discuss remaining challenges. 

Again, the black-box character of DNNs complicates the verification because it is impossible to test these 

systems on all scenarios that can occur in the real-world. Further research is required before learned control 

systems are ready for deployment on public roads. 

2.4.2 End-to-End System 

In contrast to the modular approach, in end-to-end AD system all individual components that are described 

earlier are exchanged with a single large DNN. This takes raw sensor data as input and directly outputs the 

actuator commands to navigate the vehicle. An overview of different approaches to learn an end-to-end 

system is given in (189). The authors also discuss available datasets and metrics to evaluate the quality of the 

navigation. 

 In this younger research field, the first relevant publication is (213). Here, the authors use a full end-to-end 

system based on a DNN that outputs steering commands using raw pixel data from a single camera. No 

explicit training incentive is used to force the network to learn the representation of higher-level concepts, 

like vehicle detection or lane marking detection. Instead, all representations are learned automatically during 

training. The main advantage of this approach is that it enables the simultaneous optimization of all 

components. Instead of optimizing human-like modular tasks the DNN has the freedom to find the most 

useful representations. Eventually, this will lead to better performing systems because the direct optimization 

of the goal is possible. However, this approach has the direct disadvantage that explainability is lost and the 

black-box character of the whole AD system is even amplified. Also, no explicit control of the safety of the 

system exists. The DNN must be trusted to learn robust representations that also perform well on unknown 

input data, because no safety modules exist. These are critical disadvantages and the reason why currently full 

end-to-end systems are not used for commercial AD systems, as we describe in Chapter 2.5. 

In (214) the authors also use an end-to-end approach to train a DNN to navigate a vehicle. However, the DNN 

in this system outputs the next waypoint where the vehicle should navigate instead of actuator commands. 

Comparing with Figure 41, this means that the control module is excluded from the DNN and only the 
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modules up to the path planning are learned from the raw sensor input data. The final actuator commands 

are still generated by traditional control algorithms. Hence, this is some intermediate approach between a 

modular and a full end-to-end system. It seems promising since it combines the potential of an increased 

performance by optimizing most modules together with the possibility to include safety mechanisms in the 

control algorithm. Here, it is also possible to include an additional safety backup system that the control 

module can use as fall back if required. 

An additional problem of most end-to-end approaches is that they need to collect data samples online during 

training. Learning from expert human drivers is not sufficient to train a system that performs well under all 

conditions. Hence, simulating worst-case conditions, like accidents or bad weather, is needed to train a system 

that is as robust as possible. However, this suffers from the currently poor correlation of online driving 

performance and offline testing, as shown in (215). Also, the domain gap between simulation and reality must 

be reduced to safely transfer end-to-end learned systems to commercial AD systems. We present potential 

solutions to closing this domain gap in Chapter 2.6.3. 

2.5 Entire Mobility Systems 

In this chapter we describe how the use cases from Chapter 2.4 can be integrated into an entire AD system 

that can operate on public roads. We discuss the interaction with hardware components and the integration 

of individual AI systems into the overall AD software. It is important to note that the concrete system 

architecture of major industry players for AD is not known, since this is the intellectual property of the 

respective company. Nevertheless, current research publications are available and these serve well to 

introduce the main ideas for the integration of individual components into an entire system for AD. 

2.5.1 System Overview 

Early research work focuses on autonomous driving on special routes and not the ability to drive unknown 

routes. Also, initially no DNNs are used and all modular components are represented by traditional 

algorithms. Nevertheless, it is still interesting to investigate these systems, since the main architecture is very 

similar for current systems. For example, this can be seen by comparing Figure 47 and Figure 49 which we 

discuss in the following. 

One of the first publications that present an entire system for AD is (216). Here, the authors provide an 

overview of the vehicle that Stanford University used for competing at the 2007 defense advanced research 

projects agency urban challenge. They discuss the used hardware and present the traditional algorithms used 

for all components of the modular approach presented in Figure 41. 

In (217) the authors present their approach to design a vehicle that travelled the Bertha Benz memorial route 

autonomously. They provide a detailed overview of the autonomous vehicle and the algorithms for 

perception, localization, planning, etc. In Figure 47 an overview of the used sensor setup and the general 

system architecture is shown. As can be seen on the right side of the figure, the used architecture is very similar 

to the overview of the modular approach in Figure 41. In addition to the previously presented components 

the system contains a reactive layer. This layer includes safety logic in case a sudden emergency maneuver 

becomes necessary. In this case the signal flow does not have to go through the entire modular pipeline but 

is generated in this special layer. Again, the authors use no AI components, meaning the system relies only on 

traditional algorithms. However, it is easy to integrate AI systems into the architecture shown on the right 

side in Figure 47. For example, each component of the perception category could be replaced by an AI system, 

e.g. using DNNs as described in Chapter 2.4.1.1. This is a plug-in replacement since the AI system takes the 

same input and generates the same output. All interfaces stay the same, but the AI-based system takes over 

the role of traditional perception algorithms. 



2 State-of-the-Art Report (AP2) 

56 Federal Office for Information Security 

                      

Figure 47 Sensor setup on the left and architecture on the right of the AD system from (217) 

Like the last publication the authors in (218) present an overview of a system they developed for driving 

autonomously in a specific scenario. Here, they focus on driving on German highways and present the sensor 

setup, architecture overview and perception algorithms. Summarizing they discuss remaining challenges in 

their approach that serve as the basis for future research. 

In (185) the authors first present a general survey on the progress of autonomous driving in recent years. Then 

they introduce their intelligent autonomous robotics automobile (IARA) research vehicle. They present a 

detailed overview of the software architecture with the data flow and interaction of different components. 

This architecture overview is shown in Figure 48. Again, they do not explicitly mention the use of AI 

components, but it can well be seen how different components could be exchanged by AI components 

without any change in the overall architecture. Additionally, the authors cover autonomous driving in the 

industry and present all companies that focus on developing systems for highly automated driving. They 

compare the sensors used and the maturity of the respective systems. As previously mentioned no concrete 

system architectures are provided, since these are the secret of each company. 

 

Figure 48 Detailed overview of the data flow in the IARA from (185) 



2 State-of-the-Art Report (AP2) 

Federal Office for Information Security 57 

Finally, the authors in (219) present a survey on hardware components used for AD. They compare different 

sensors and list main advantages and disadvantages. Also, they describe the perception use cases where each 

sensor is relevant and compare the performance in contrast to the human visual system. Then, they focus on 

presenting available hardware components that are used for real-time capable AD and provide a comparison 

between them. They cover the integration of software and conclude by a detailed discussion of remaining 

challenges. 

2.5.2 AI Integration 

After presenting the architecture of systems for AD, the interaction with hardware components and the basic 

idea how to integrate AI components into the entire architecture, we now discuss available information on 

the concrete integration of AI components. As already discussed in Chapter 2.4.2 in (214) and (213) the authors 

focus on using end-to-end approaches. They also present the software architecture and output of the DNN. 

Especially, in (214) the interaction of different DNN components learned for different tasks is discussed. Here, 

it shows again that AI components can be used as an alternative for most modular components. These can be 

exchanged without a significant change in the overall system architecture. 

Regarding the integration of AI components into commercially available systems only limited publications 

exist. In (191)3the authors provide some information on autonomous driving research done at Tesla. They 

cover the creation of a large-scale dataset and then present a very rough overview of the architecture of the 

DNN used for autonomous driving. Here, it is again interesting to observe how different modular components 

are merged in a single DNN that can have multiple heads for each required component output. These results 

are then consumed by traditional algorithms to generate the control commands for the actuators. 

More concretely, another overview of an architecture of a commercial system for AD is given in (220). Here, 

Baidu provides the open source4 architecture Apollo that is also used as the basis for their commercially 

available AD software Apollo Go which is tested in different Chinese metropolitan areas. The Apollo project 

provides software utilities to develop, test and deploy systems for autonomous driving. It ships with pre-

trained DNN components for perception and prediction and has different algorithmic options for the 

modular components. In Figure 49 we show an overview of the AD system, the hardware components and 

the required connections between them. As can be seen on the left side the general AD system is very similar 

to the system shown in Figure 47. It contains the same modular components, but now DNN-based systems 

exist to perform some respective tasks. Overall, we can conclude that this architecture is representative of 

most AD systems developed by different companies or research teams. 

  

Figure 49 Overview of the AD system on the left and hardware components on the right of the AD system Apollo 

from (220) 

2.6 Mobility Datasets & Simulation 

After presenting the different use cases of AI systems and the integration into a complete AD system, we now 

discuss available datasets for data-driven AI systems. Then, we present options for generating synthetic data 

                                                                 
3 The video presentation is available at: https://www.youtube.com/watch?v=g6bOwQdCJrc 
4 The open-source project is available at: https://github.com/ApolloAuto/apollo 

https://www.youtube.com/watch?v=g6bOwQdCJrc
https://github.com/ApolloAuto/apollo
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based on special purpose simulators. This is very important to cover corner cases and rare scenarios that 

cannot all be captured in reality in a timely matter. However, the image quality of current simulators is not 

representative of camera sensors used in the real-world. Therefore, we discuss recent approaches to improve 

the image quality from simulators and close the domain gap between simulation and reality. 

2.6.1 Datasets 

At first, a principled overview of available datasets is part of most surveys focused on AD. Hence, in (184), (186) 

and (189) the authors provide a summary of available datasets and a comparison between them. Additionally, 

there are also publications that explicitly focus on comparing the quality and diversity of datasets. Here, (193) 

is the most relevant publication. Additionally, the authors try to characterize the drivability of a scenario and 

discuss what driving scenarios are currently not covered by existing datasets. 

Also, consistently new datasets are proposed which include the main difference to previous works. Such a 

publication is (221) and their comparison of automotive datasets is shown in Figure 50. It compares the most 

used datasets using different relevant categories. Here, the most important aspects to distinguish datasets are 

the used sensor types, the quality of the annotations, the scope and the diversity of the data. It is also 

important to point out that some datasets contain real data, while others contain only synthetic data from 

simulation. In general, we can conclude that enough datasets exist for developing performant systems for 

perception and prediction on typical scenarios. However, rare edge cases are typically not covered in public 

datasets because it is impractical to cover all possible scenarios that can occur. Here, simulation of interesting 

and relevant scenarios is a promising direction that we discuss later in Chapter 2.6.2. 

 

Figure 50 Overview of often used datasets for AD/ADAS from (221) 

In addition to general datasets for AD that contain annotations for multiple perception tasks, there are also 

datasets that focus on a single use case. For example, in (222) the authors present a dataset only for German 

traffic signs. A similar dataset is presented in (223) for Chinese traffic signs or in (224) for American traffic 

signs. 

Special datasets do not only exist for traffic signs but also for all other basic perception tasks. An additional 

example are datasets that focus on pedestrians. Here, (225) contains cropped images of humans from personal 

photos and (226) contains pedestrians in different traffic scenes in an urban environment. 

Additionally to the discussed datasets for different perception tasks, recently some research works propose 

datasets with corrupted image quality that mimic corruptions which occur in reality like noise, rain, snow, 

reflections, etc. First, such ideas are introduced for standard image classification described in Chapter 2.2.2.1. 

Then, the authors in (227) expand the idea and add corruptions to a widely used dataset for object detection. 

An overview of the used corruptions and resulting images is shown in Figure 51. Similarly, the authors in (228) 

add corruptions to datasets that are widely used for semantic segmentation. 
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Figure 51 Overview of corrupted images used for object detection from (227) 

2.6.2 Simulators 

Using only data captured from reality is both time-consuming and expensive. Simulators provide an easy 

alternative that can generate labelled data quickly for selected interesting situations. Hence, simulation plays 

a vital role in the development and especially the verification of AD systems. 

On the one hand, open-source simulators exist that are free to use and where the contribution is possible for 

everyone. Here, by far the most used option is CARLA introduced in (229). It is built as special purpose 

simulator to generate synthetic data for various traffic scenarios and is also used in the industry due to its 

high flexibility. It ships with already included assets for scene layout, buildings or vehicles and can easily be 

extended to include custom objects or road layouts. Also, the usage of different sensor types is possible and 

different environmental conditions can be simulated out-of-the box. CARLA can generate labels for different 

modalities and includes all relevant semantic classes for scene participants. In Figure 52 an overview of three 

different sensing modalities is shown, where the left shows a normal image from a RGB camera, the middle 

shows the ground-truth depth and the right shows the ground-truth semantic segmentation. As can be seen 

the normal RGB image does not look photorealistic and there exists a clear gap to images captured in reality. 

This is a typical phenomenon which represents the main disadvantage of using simulators but does not only 

exist for CARLA. Currently, for all simulators it is possible to observe a difference to images from real data and 

we discuss different techniques to reduce this gap in Chapter 2.6.3.  

 

Figure 52 Example of three sensing modalities available in CARLA from (229) 

An alternative open-source option to CARLA is AirSim introduced in (230). However, this simulator is not 

tailored towards the requirements of automotive simulation but can be used to simulate a range of vehicles 

also including flying vehicles. Hence, in the automotive industry CARLA is typically used when an open-

source simulator is needed.  
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In addition to open-source simulators there also exist different proprietary simulators that are commercially 

available. These options include CarMaker from (231) and DriveSim from (232). Both have similar features as 

described for CARLA and additionally can be included in Hardware-in-the-Loop testing stations. Also, they 

produce more realistically looking images but the gap to reality can still be observed. Nevertheless, for the 

testing and validation of automated driving functions CarMaker represents the industry standard due to the 

maturity of the product and the available functionality that also allows simulation of powertrain and motion 

control use cases. 

2.6.3 Image Quality Enhancements 

As described earlier, current simulators do not produce images that look photorealistic. There exists a gap 

between simulated data and data that is captured during drives in reality. Hence, using only synthetic data is 

often considered as doomed to fail as soon as systems are tested offline in reality. Therefore, the authors in 

(233) use recent progress in image-to-image translation to successfully close the domain gap. They are able to 

train an end-to-end AD system using only simulated data and operate a vehicle in reality5. Their key idea is 

to transfer images captured while driving to look like the simulated images the system is trained on before 

feeding the images to the AD system. 

The exact opposite approach is motivated by the authors in (234). Here, they also use image-to-image 

translation but try enhancing the photorealism of a simulator6, instead of worsening the quality of real 

images. They postprocess simulated videos and transfer the image style and quality to look like the images in 

well-known datasets for AD. This improves the realism of the simulated data significantly and makes it hard 

for humans to distinguish between simulated data and data captured in reality. Some examples of their 

successful image-to-image translation are shown in Figure 53. 

 

Figure 53 Examples of successful image-to-image translation from (234) 

Both described methods use image-to-image translation to achieve the significant improvements and reduce 

the domain gap. Here, GANs form the basis of the best performing methods. These special CNNs are first 

introduced in (27) as a new approach for generative models. They can learn a latent representation of the 

                                                                 
5 The video presentation is available at: https://www.youtube.com/watch?v=D7ZglEPu4lM 
6 The video presentation is available at: https://www.youtube.com/watch?v=P1IcaBn3ej0 

https://www.youtube.com/watch?v=D7ZglEPu4lM
https://www.youtube.com/watch?v=P1IcaBn3ej0
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features of an image dataset and then generate entirely new images that look like they originate from the 

original distribution. Following, the authors in (235) adapt the basic idea of GANs but use synthetic images as 

input data of the generator instead of random sampling from the latent representation. In recent years this 

approach is further refined, for example by (236) or (237). Now, such approaches can be used to reduce the 

domain gap between simulated and real images. This might enable the deployment of AD systems trained 

with simulated data in reality without a significant decrease in quality. 

Very recently another approach emerged for image-to-image translation that seems to match the quality of 

GAN-based approaches or even further improve upon them. In (238) and (239) the authors use diffusion 

models instead of GANs for image-to-image translation. Diffusion models are initially introduced in (240) and 

use an iterative denoising process to convert samples from a Gaussian distribution to samples from the 

training distribution. Applying this concept to image-to-image translation the denoising is no longer 

conditioned on samples from a Gaussian distribution but instead on the images that should be transferred to 

the reference style. This enables the application to enhance images from a simulator. However, to the best of 

our knowledge up to now no approaches exist that explore this concrete translation, mainly because the 

presented approaches were only proposed very recently. Nevertheless, it is still interesting to observe the 

progress in this area and see if further improvements of the quality of the enhanced images can be achieved. 

2.7 Standardization Activities AI & AD 

Finally, the following chapter gives an overview on existing and developing standardization approaches. 

Since most of these standards were created for general software systems, some of their contents and 

requirements do not map well to AI and AD systems. Details on this gap are given in Chapter 2.2.5 and Chapter 

2.3.5. Since this gap within the existing standardization is well known, currently there are ongoing 

standardization efforts for AI and AD specific systems to fill this gap. 

2.7.1 Existing Standardization 

Table 1 gives an overview of existing standards related to either AD or AI systems. 

Table 1 Existing safety and security standards in the domain of road vehicles 

Standard Topic AI specific AD specific 

ISO 26262:2018 

Road vehicle - Functional Safety 

Requirements ensuring the functional safety 

of road vehicles. 

No Partially 

ISO/PAS 21448:2019 

Road vehicles - Safety of the 

intended functionality 

Guidance on design, verification and 

validation measures to ensure safety of the 

intended functionality in absence of failure. 

No Partially 

ISO/IEC TR 24028 

 AI Trustworthiness 

Survey on approaches regarding the 

trustworthiness of AI systems, such as 

explainability, risk/threats and their 

mitigation strategies. 

Yes No 

ISO/IEC TR 24029-1 

Assessment of the robustness of 

neural networks 

Background of existing methods for 

robustness assessment of neural network. 

Yes No 

IEC 61508:2010 

Functional safety of 

electrical/electronic/programmable 

electronic safety-related system 

General safety requirements towards 

electrical/electronical/programmable systems. 

Partially No 
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The ISO 26262:   (165) is an automotive standard that provides requirements 

to ensure the functional safety of vehicles. The standard defines processes and requirements to design and 

operate automotive products. Further, it defines the ASILs that classify different hazards. The ASILs are 

calculated based on the severity, exposure and control of the hazard. Severity refers to the number of injuries 

the hazard could cause, the exposure describes the expected times of occurrence of the hazard and the control 

refers to the possibility to prevent the hazard (241). There are four ASILs from ASIL A to ASIL D (low to high 

risk) and a quality management level for non-safety-related functionalities. Based on the ASIL of a hazard, 

safety requirements can be derived. 

The ISO/PAS 21448: Road vehicles - Safety of the intended functionality (SOTIF)  (242) aims to cover 

foreseeable misuse by the driver. It only covers the SAE L1 and L2, which are only driver-assisted systems. 

Hence, it does not integrate SAE L3 and higher, which are highly automated driving systems (243). 

Additionally, as discussed in (244) AI-based systems are not sufficiently covered by it. However, the ISO/PAS 

21448 is going to be replaced by the ISO/FDIS 21448 (245), which is currently under development. 

2.7.2 Standardization in Progress 

Concluding this report, we list AI and AD specific standardization activities that are in progress in Table 2. 

Table 2 Overview of ongoing AI and AD standardization activities 

 

Standard Topic Status 

ISO/CD TR 4804 Safety and cybersecurity for automated driving systems - 

Design, verification and validation 

In review 

IEEE P2846 Guidance on design, verification and validation measures to 

ensure safety of the intended functionality in absence of 

failure 

Draft status 

ISO/IEC AWI TR 24030 Representative use cases of AI applications in a variety of 

domains 

Under development 

VDE AR 2842-61 Application rule for the entire life cycle of trustworthy 

autonomous (AI) systems 

Partially published 

ISO/FDIS 21448 Guidance on design, verification and validation measures to 

ensure safety of the intended functionality in absence of 

failure. (Will replace ISO/PAS 21448:2019) 

Under development 

DIN Standardization 

Roadmap AI (2nd 

edition) 

Framework for early development of AI Standardization in 

Germany 

Under development 

ISO/AWI PAS 8800 Safety-related properties and risk factors of AI components 

within road vehicles. 

Under development 

 ISO/IEC AWI TR 5469  Functional Safety & AI Systems Under development 

ISO/IEC DTS 4213.2 Assessment of machine learning classification performance Under development 

 ISO/IEC TR 24029-2 

Assessment of the 

robustness of neural 

networks 

Methodology for the use of formal methods for robustness 

assessment of neural networks. 

Under development 

 ISO/IEC FDIS 22898  

AI Definitions 

Artificial intelligence concepts and terminology Under development 
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3 Generic Requirements (AP3) 

The aim of this chapter is to derive and formulate generic requirements towards systems for autonomous 

driving (AD) and advanced driver assistance systems (ADAS) to ensure their safety. Due to the robustness 

threats towards AD and artificial intelligence (AI) systems discussed in the AP2 report (2), there are risks and 

vulnerabilities for the safety and security of such systems that have to be addressed during the entire 

development process. 

As Figure 54 illustrates, the safety and security of an AD or AI system is influenced by its performance, 

robustness, interpretability, monitoring and documentation. Therefore, the generic requirements are 

formulated to address these aspects along the entire lifecycle of the system. Additionally, the system s 

compliance to existing standardization and norms has to be considered. 

The requirements are derived in a two-step process. First, existing safety and security standards are 

introduced. Their concepts and requirements, especially from ISO 26262 (165; 246; 247), are used to derive a 

first set of requirements. In a second step, supplementary requirements are formulated to reduce the residual 

risk and to address gaps arising from the involvement of AI components. Additionally, the requirements 

address the entire lifecycle of a system from the design and conceptualization phase of the system to the 

integration and testing of software units. 

 

Figure 54 Overview of composition of requirements for AI systems 

Overall, the requirements are formulated to fit all general AD/ADAS systems (i.e. perception system, traffic 

sign recognition, etc.). Since these different systems differ in data, complexity and risk exposure, thresholds 

and test cases are defined generically and have to be refined for each individual use case. As an example, some 
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systems might have sensor-induced boundary values, whereas other systems have an infinite input space and 

therefore have to be tested against corner cases. The specific definition of the corner cases and boundary 

values also may differ between different specific applications. Therefore, the requirements in this document 

are to be understood as generic technical requirements and have to be refined for each application. For the 

refinement of such requirements a concise rationale shall be given to enable and enhance auditability and 

communication between stakeholders. 

First, in Chapter 3.1, existing security and safety standards in automotive are introduced and the elicitation 

process for the generic requirements is defined. Afterwards, in Chapter 3.2 the requirements towards the 

entire system are introduced and in Chapter 3.3 requirements for the specific AI subsystems of the entire 

system are defined. Chapter 3.4 discusses the applicability of the generic requirements to different use cases. 

Finally, Chapter 3.5 categorizes the testability of each requirement. 

3.1 Requirements Elicitation 

In this chapter, the process used to derive the general requirements is introduced. As explained in the previous 

chapter the scope of this document is to define safety and security requirements specific to AI and AD/ADAS 

relevant systems. The general requirements are defined along the entire lifecycle of the system and for the 

aspects of performance, robustness, interpretability, monitoring and documentation. Moreover, they are 

defined to address characteristic features of AI systems, e.g., the difficulty of explainability or the vulnerability 

against adversarial inputs. Several sources, i.e., norms, standards, technical reports and research studies are 

consulted. Especially the ISO 26262 exhibits an extensive coverage of requirements and processes for 

functional safety in automotive regarding electronical systems. Therefore, it is used as groundwork for 

deriving a set of general requirements specific for AI systems. To further support the elicitation of safety 

requirements, the ANSI/UL 4600 (248) was used as guidance to address remaining gaps regarding the safety 

of the system. Since these norms focus on the safety of the system, the ISO/SAE 21434 (249) and the UNECE 

R 155 (250) were used to derive security-related requirements. Lastly, additional requirements are defined to 

fill remaining safety and security concerns. 

Overall, the aim of the resulting list of generic requirements is to form a guidance for the development of safe 

and secure AI components in AD and ADAS systems. For each use case there might not be the need to 

implement all of the defined general requirements, but a subset or combination of them. If this is the case, a 

rationale should be provided to ensure that the safety and security of the system is assured with the chosen 

combination of requirements. 

The first section of this chapter gives an introduction to security standard ISO/SAE 21434 (249) and the 

UNECE R 155 (250) regulation. The next chapter provides a short overview on the safety standards 

ANSI/UL 4600 (248) and ISO 26262. The third chapter shows how the requirements in this document are 

derived with ISO 26262 as foundation. In the last section, a justification is given for formulation of additional 

requirements and how these correspond with the first set of requirements regarding risk classification. 

3.1.1 Security Standards 

There are several standards regarding automotive cyber security. The most important one being 

ISO/SAE 21434 proposing measures and processes to protect the vehicle against cyber attacks during the 

entire life cycle. This standard provides the base for compliance with the UNECE R 155 regulation, a 

mandatory part of European vehicle type approval. 

3.1.1.1 ISO/SAE 21434 

The ISO/SAE 21434 (249) is a norm that focusses on the cybersecurity of systems within an automotive 

context. It gives guidance and normative information on measures, such as the definition of cybersecurity 

goals, requirements and activities, to improve and control cybersecurity throughout the entire product 

lifecycle of a system. 
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According to the ISO/SAE 21434 a cybersecurity goal is formulated during the concept phase as high-level 

requirements related to possible threats. Then more detailed cybersecurity requirements are derived from 

these goals and the cybersecurity requirements are then refined into technical cybersecurity activities and 

controls to be implemented.  

These cybersecurity activities can be classified in relation to the risk of possible threats through Cybersecurity 

Assurance Levels (CALs). These levels are formulated as non-technical requirements defining the level of rigor 

of the cybersecurity activities to be implemented in order to ensure an appropriate risk reduction for the 

defined threats. During the concept phase of the product lifecycle, the CALs are determined and assigned to 

the cybersecurity goals and inherited by their corresponding cybersecurity requirements. Additionally, the 

CALs can be used during the product development phase to further control the rigor of cybersecurity 

measures by, for example, CAL-dependent levels of independence or test parameters for specific activities.  

In the scope of this project, the ISO/SAE 21434 was used to derive and refine requirements relevant to the 

cybersecurity of the AD system.  

3.1.1.2 UNECE R 155 

The United Nations Economic Commission for Europe (UNECE) Regulation 155 for Cyber Security (250) 

addresses the topic of cyber security attacks on vehicles. It will become a mandatory part of the type approval 

in all UNECE member countries: applicable to new vehicle types from July 2022 and from July 2024 to all 

vehicles. The regulation demands the implementation of a Cyber Security Management System 

systematic risk based approach defining organisational processes, responsibilities and governance to treat risk 

 (250). 

For type approval, the technical service or approval authority has to verify by document review if the 

requirements of the standard are implemented by the CSMS. Supplier-related risks shall be identified and 

managed. Additionally, the standard requires the implementation of suitable measures for mitigating cyber 

security threats and processes to verify that the applied techniques are effective. The processes and measures 

should cover the entire life cycle, from development, production to post-production. 

UN R 155 provides lists for threats and mitigations which have to be taken into account. The lists are not 

complete and additional relevant threats and mitigations, e.g., specific for the vehicle type, should be 

considered as well. 

A risk assessment based on design and development documents has to be conducted including results of 

testing and design choices for risk mitigation or enhancing risk assessment. It has to be ensured that risk 

assessment is always up-to-

sources, e.g., vulnerability databases.  

Incident detection and response mechanisms shall be supported by monitoring and logging for forensic 

analysis. The occurrence of new cyber security threats and their coverage by existing measures has to be 

checked continuously. New cyber security attacks shall be reported to the approval authority. 

The implemented measures for protecting the vehicle against cyber security threats are verified by sample 

testing. The testing process shall focus on high risks, but still cover all kinds of risks identified during risk 

assessment. 

The regulation demands a structured approach to cyber security of vehicles with defined processes and 

measures without giving specific advice for their implementation. 

3.1.2 Safety Standards 

The most extensive safety standard in automotive is ISO 26262. Its implementation provides functional safety 

to road vehicles by work products and defined requirements. ANSI/UL 4600 proposes an argumentation 

framework to ensure an automotive system is safe. Thereby, ANSI/UL 4600 can cooperate with other 

standards, e.g., ISO 26262, to help build the argumentation structure. 
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3.1.2.1 ANSI/UL 4600 

The American National Standards Institute (ANSI) / Underwriters Laboratories (UL) 4600 standard for safety 

for evaluation of autonomous products (248) targets the safe operation of fully autonomous vehicles without 

driver. Its goal is to establish an argumentation structure to prove that an autonomous vehicle is sufficiently 

safe. The safety standard is goal based. It helps in defining safety goals and gives practical advice on how to 

achieve them, but does not state mandatory instructions. UL 4600 complements and can cooperate with other 

standards, e.g., by using work products from ISO 26262 to fulfill a safety goal. 

The scope of the standard incorporates hazard identification, safety cases, risk mitigation and the overall 

context of the use case including, for example, the ODD. Since security is also affecting safety, the standard 

demands a security plan, but does not go into detail how it should be implemented. The approach is on system 

level and concerns the whole life cycle of AD systems, e.g., planning, development and deployment.  

The main concept of UL 4600 is the definition of a safety case, an argumentation structure ensuring that the 

autonomous vehicle performs sufficiently safe and is ready for deployment. A safety case contains safety-

ensuring goals or claims towards the autonomous vehicle (functions). Arguments supporting the claims have 

to be constructed. Evidence should prove that the arguments are valid and thus the respective claim is 

fulfilled. One is free in choosing the form of notation, as long as the safety case is described adequately and 

entirely. The standard does not dictate how a claim should be fulfilled, but gives practical advice in this regard. 

This freedom in implementation makes the standard quite flexible, which can be especially beneficial when 

dealing with an AI system whose behavior might be not entirely comprehensible. 

specify how these should be targeted. Each clause has prompt elements refining the corresponding topic. The 

prompt elements come with a use case-independent application note. Mandatory prompt elements form a 

group of safety topics that shall be implemented by all means, e.g., hazard identification is strictly necessary. 

Required prompt elements can only be omitted when they are inherently not viable. Highly recommended 

elements can be omitted when a coherent justification is given, while recommended prompt elements are 

optional. Additionally, a conformance paragraph describes how the addressed clause can be assessed to verify 

if the requirements of the standard are met, thus ensuring safe operation. 

For risk categorization, the UL 4600 risk evaluation demands that a criticality level, describing the risk, shall 

be assigned to each hazard. Furthermore, a prompt element of the standard requires the use of integrity levels, 

e.g., from ISO 26262, or similar techniques. 

The safety case and its claims have to be constantly monitored and evaluated during deployment. This 

especially holds for assumptions and unknowns. For this purpose, safety metrics shall help monitoring safe 

functionality. Correcting measures have to be implemented, if necessary. These feedback loops help to reduce 

the risks of unknowns and potential gaps of the safety cases, thus continuously increasing safety even during 

deployment. 

3.1.2.2 ISO 26262 

  is an ISO standard for the safety of electronical systems in 

vehicles. Its goal is the correct and safe functionality of a system in its intended environment. The standard 

has 12 parts covering topics such as management activities and organizational aspects, hazard analysis and 

risk assessment, as well as requirements for development, production and monitoring. 

The main part deals with system, hardware and software development and provides procedures, work 

products and requirements towards vehicle safety. For the latter, different methods for implementation can 

be utilized depending on the identified integrity level of the system. 

The Automotive Safety Integrity Level (ASIL) concept is one of the key elements of ISO 26262. It is a four-level 

classification from ASIL A to ASIL D to describe the risk of a system within a road vehicle. The levels are 

defined based on the effect a hazard for the considered system can have. Namely, it is calculated based on the 
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severity of injuries from possible accidents. Table 3 gives an overview on how these three factors impact the 

ASIL classification of the system. ASIL D is the highest classification level linked to the highest exposure, 

severity and uncontrollability of the system. Quality management (QM) methods can already mitigate certain 

basic risks. For a system whose risks are already covered by QM, it is not necessary to apply methods suggested 

by the ASIL recommendations. 

Table 3 Overview on the derivation of the ASIl classifications taken from (165) 

Severity Exposure Controllability 

Simple Normal Difficult, 

uncontrollable 

Light and moderate 

injuries 

Very low QM QM QM 

Low QM QM QM 

Medium QM QM A 

High QM A B 

Severe and life 

threating injuries, 

survival probable 

Very low QM QM QM 

Low QM QM A 

Medium QM A B 

High A B C 

Life threatening and 

fatal injuries 

Very low QM QM A 

Low QM A B 

Medium A B C 

High B C D 

The ASIL recommendations are formulated along the entire product development process. For each of the 

different aspects of the development process, several methods for ensuring the functional safety of the system 

are defined. For each aspect of the development process a table is defined mapping the suggested method to 

an ASIL recommendation for each ASIL. The recommendation is described as not recommended (o), 

recommended (+) and highly recommended (++). Despite calling them recommendations, ISO 26262 states 

that highly recommended methods shall be implemented. However, for each aspect it is sufficient to 

implement an appropriate combination of entries, if a rationale is given that this combination is suitable to 

address the safety concerns (165). 

3.1.3 ASIL-derived Requirements 

To formulate requirements for ADAS and AD systems, the requirements of ISO 26262-6 (247) for product 

development at the software level provide a groundwork. Specific ASIL recommendations are chosen that are 

either impacted by AI components or have to be further refined to fit AI components. It is important to note 

that the ASIL recommendations not explicitly mentioned in this document are not affected by the AI 

components and can therefore be implemented and addressed by techniques suited for regular software 

systems. The following sections give an overview of those chosen ASIL recommendations from which the 

final general requirements will be derived. 

3.1.3.1 System Level 

The ISO 26262 starts by defining ASIL recommendations at the system level. These recommendations address 

functional safety concerns along the product development at the stage of integrating all existing components, 

including potential AI subsystems, into the vehicle.  

First, Table 4 gives an overview of ASIL recommendations for integration testing at the system level. The 

recommended methods should be used to derive test cases for the entire system, after all components are 

integrated.  
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Table 4 Methods for deriving test cases for integration testing (DI) taken from (247) 

Secondly, test methods to ensure the correct and consistent implementation of interfaces are defined in Table 

5.  

Table 5 Methods for consistent and correct implementation of external and internal interfaces (CI) at the 

hardware-software level taken from (247) 

Since the robustness of AI systems has to be estimated differently to regular software systems, the ASIL 

recommendations in Table 6 will be affected by the AI component. 

Table 6 Level of robustness at the system (RS) level taken from (247) 

The last recommendations to be included in this section are towards the testing of performance and the safety 

at the vehicle level defined in Table 7. In general, the testing procedure of the system has to be adjusted to fit 

AD/ADAS and AI system. 

Table 7 Methods for correct functional performance, accuracy and timing of safety mechanisms at the vehicle 

level (FP) taken from (247) 

 

Method ASIL A ASIL B ASIL C ASIL D 

DI1 Analysis of requirements ++ ++ ++ ++ 

DI2 Analysis of external and internal interfaces + ++ ++ ++ 

DI3 Generation and analysis of equivalence classes for hardware-

software integration 

+ + ++ ++ 

DI4 Analysis of boundary values + + ++ ++ 

DI5 Error guessing based knowledge or experience  + + ++ ++ 

DI6 Analysis of functional dependencies + + ++ ++ 

DI7 Analysis of common limit conditions, sequences and sources of 

dependent failures 

+ + ++ ++ 

DI8 Analysis of environmental conditions and operational use 

cases 

+ ++ ++ ++ 

DI9 Analysis of field experience + ++ ++ ++ 

Method ASIL A ASIL B ASIL C ASIL D 

CI1 Test of external interfaces + ++ ++ ++ 

CI2 Test of internal interfaces + ++ ++ ++ 

CI3 Interface consistency check + ++ ++ ++ 

Method ASIL A ASIL B ASIL C ASIL D 

RS1 Resource usage test o + ++ ++ 

RS2 Stress test o + ++ ++ 

RS3 Test for interference resistance and robustness under certain 

environmental conditions 

++ ++ ++ ++ 

Method ASIL A ASIL B ASIL C ASIL D 

FP1 Performance test + + ++ ++ 

FP2 Long-term test + + ++ ++ 

FP3 User test under real-life conditions + + ++ ++ 

FP4 Fault injection test o + ++ ++ 

FP5 Error guessing test o + ++ ++ 

FP6 Test derived from field experience o + ++ ++ 
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3.1.3.2 Software Integration 

In addition to the recommendations catered towards the derivation of test cases for system level integration 

testing, the ISO 26262 defines recommendations for the integration testing at the software level. These 

recommendations describe the integration steps that should be taken until the software component is fully 

integrated into the system. 

The methods in Table 8 focus on the notations for the documentation of the software architectural design. 

These methods can be converted to serve the purpose of describing the AI model and lifecycle of the 

architectural design when deriving the general requirements. 

Table 8 Notations for the software architectural design (NA) taken from (247) 

Table 9 introduces methods regarding the verification of the software integration into the system. Later, these 

can ensure that the integration of the AI subsystems into the entire system is tested and verified thoroughly. 

Here, it is important to note that the language of the table is taken from the ISO 26262, which is formulated 

towards conventional software product. Therefore, the term model that is referenced in method IV5 relates 

to the modelling of the problem and software system and is not unanimous with the AI model within AI 

subsystems. 

Table 9 ASIL recommendations to verify the software integration (IV) taken from (247) 

Additionally, to ensure that the software integration into the system is verified properly, the ISO defines 

recommendations on the testing environment of the system (see Table 10). They give a high recommendation 

for Hardware-in-the-loop testing and testing in electronic control unit network environments for all ASILs. 

Vehicle tests are highly recommended starting from ASIL C to ASIL D. 

Table 10 ASIL recommendations for software testing (ST) taken from (247) 

The types of tests that are suggested in Table 11 for the software integration stage are requirements-based 

tests highly recommended for all ASILs and fault injection testing is highly recommended for ASIL D. 

 

Method ASIL A ASIL B ASIL C ASIL D 

NA1 Natural language ++ ++ ++ ++ 

NA2 Informal notations  ++ ++ + + 

NA3 Semi-formal notations + + ++ ++ 

NA4 Formal notations  + + + + 

Method ASIL A ASIL B ASIL C ASIL D 

IV1 Requirements-based test ++ ++ ++ ++ 

IV2 Interface test ++ ++ ++ ++ 

IV3 Fault injection test + + ++ ++ 

IV4 Resource usage evaluation ++ ++ ++ ++ 

IV5 Back-to-back comparison test between model and code, if 

applicable 

+ + ++ ++ 

IV6 Verification of the control flow and data flow + + ++ ++ 

IV7 Static code analysis ++ ++ ++ ++ 

IV8 Static analyses based on abstract interpretation + + + + 

Method ASIL A ASIL B ASIL C ASIL D 

ST1 Hardware-in-the-loop ++ ++ ++ ++ 

ST2 Electronic control unit network environments ++ ++ ++ ++ 

ST3 Vehicles + + ++ ++ 
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Table 11 ASIL recommendations for embedded software testing (ET) taken from (247) 

To derive the actual test cases to be used for the above-suggested testing methods, the ISO 26262 defines a 

number of different methods in Table 12.  

Table 12 ASIL recommendations for deriving test cases for embedded software testing (DE) taken from (247) 

 

3.1.3.3 Software Unit 

Since the ISO 26262 defines techniques along the entire product development process, it also addresses the 

design, development and testing of the software unit. In the case of an AI/AD system, the software unit is 

composed of the AI subsystems. Requirements formulated towards the following ASIL recommendations are 

defined in Chapter 3.3. 

Analogous to the architectural design documentation of the entire system, Table 13 holds the notations for 

the documentation of the software unit design. Additionally, guidelines for modelling and coding of the 

software unit (see Table 14) are recommended. These methods on the one hand address techniques for clean 

and robust coding of the software unit (e.g. MC4) and on the other hand further address the documentation 

and design of the software unit (e.g. MC6). 

Table 13 Notations for the software unit design (NU) taken from (247) 

 

Table 14 ASIL recommendations for modelling and coding guidelines (MC) taken from (247) 

Method ASIL A ASIL B ASIL C ASIL D 

MC1 Enforcement of low complexity ++ ++ ++ ++ 

MC2 Use of language subset ++ ++ ++ ++ 

MC3 Enforcement of strong typing  ++ ++ ++ ++ 

MC4 Use of defensive implementation techniques + + ++ ++ 

MC5 Use well-trusted design principles + + ++ ++ 

MC6 Use of unambiguous graphical representation + ++ ++ ++ 

MC7 Use of style guides + ++ ++ ++ 

MC8 Use of naming conventions ++ ++ ++ ++ 

MC9 Concurrency aspects + + + + 

 

Method ASIL A ASIL B ASIL C ASIL D 

ET1 Requirements-based test ++ ++ ++ ++ 

ET2 Fault injection test + + + ++ 

Method ASIL A ASIL B ASIL C ASIL D 

DE1 Analysis of requirements ++ ++ ++ ++ 

DE2 Generation and analysis of equivalence classes + ++ ++ ++ 

DE3 Analysis of boundary values + + ++ ++ 

DE4 Error guessing based on knowledge or experience + + ++ ++ 

DE5 Analysis of functional dependencies + + ++ ++ 

DE6 Analysis of operational use cases + ++ ++ ++ 

Method ASIL A ASIL B ASIL C ASIL D 

NU1 Natural language ++ ++ ++ ++ 

NU2 Informal notations  ++ ++ + + 

NU3 Semi-formal notations + + ++ ++ 

NU4 Formal notations  + + + + 
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Finally, Table 15 completes the software unit recommendations, by defining techniques towards the 

derivation of test cases for the software unit. These methods cater to derive actual test cases to support the 

testing and verification methods defined in Table 16.  

Table 15 ASIL recommendations for deriving test cases for software unit testing (DU) taken from (247) 

Again, it is important to note that just like in IV5 in Table 9, UV14 references the modelling of the system and 

not an AI model. 

Table 16 ASIL recommendations for software unit verification (UV) taken from (247) 

 

3.1.3.4 Monitoring 

Finally, the ISO 26262 touches upon techniques for error detection and error handling. However, the 

techniques come without specific ASIL recommendations. Since error detection and handling methods play 

a vital role for monitoring of AD and AI subsystems, the methods are included in this document.  

To provide consistency to the other method suggestions by the ISO 26262, risk levels were defined based on 

the risk classification defined in Section 3.1.4. Table 17 gives an overview on the methods for error detection 

and Table 18 gives an overview of suggested error handling methods.  

Method ASIL A ASIL B ASIL C ASIL D 

DU1 Analysis of requirements ++ ++ ++ ++ 

DU2 Generation and analysis of equivalence classes + ++ ++ ++ 

DU3 Analysis of boundary values + ++ ++ ++ 

DU4 Error guessing based on knowledge or experience + + + + 

Method ASIL A ASIL B ASIL C ASIL D 

UV1 Walk-through ++ + o o 

UV2 Pair-programming + + + + 

UV3 Inspection + ++ ++ ++ 

UV4 Semi-formal verification + + ++ ++ 

UV5 Formal verification o o + + 

UV6 Control flow analysis + + ++ ++ 

UV7 Data flow analysis + + ++ ++ 

UV8 Static code analysis ++ ++ ++ ++ 

UV9 Static analyses based on abstract interpretation + + + + 

UV10 Requirements-based test ++ ++ ++ ++ 

UV11 Interface test ++ ++ ++ ++ 

UV12 Fault injection test + + + ++ 

UV13 Resource usage evaluation + + + ++ 

UV14 Back-to-back comparison test between model and code, if 

applicable 

+ + ++ ++ 
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Table 17 Error detection methods (ED) from (247) with additional risk levels 

Table 18 Error handling methods (EH) from (247) with additional risk levels 

 

3.1.4 Additional Requirements 

As explained above, the ASIL recommendations are formulated for regular software systems. However, AD 

systems and AI subsystems face different risks and vulnerabilities than regular software systems. Therefore, 

there is a need to address these risks and vulnerabilities with supplementary requirements. Since the ASIL 

classification is well defined (see Table 3), the additional requirements are categorized along a four-level risk 

and damage classification (low, medium, high and very high risk) that can be directly mapped to ASIL A to 

ASIL D. 

The resulting list of ASIL-derived and additional requirements is formulated to address a large number of 

possible risks for AD/ADAS systems. Therefore, it has to be determined for each specific use case, whether a 

requirement is relevant or even feasible. However, if a requirement is not implemented a rationale should be 

given to reason that the requirement is not feasible to be implemented, is not relevant to the use case or that 

it is already addressed through other requirements. 

3.2 Entire System 

In this chapter, general requirements for entire AD systems consisting of multiple (hardware) components 

and AI subsystems embedded in an environmental context are discussed. The requirements address the 

performance, robustness, interpretability, monitoring and documentation of the system. Requirements 

specific for AI subsystems are described later in Chapter 3.3. 

3.2.1 General 

Here, some general requirements towards the entire AD system are defined. These requirements are not 

assigned to one of the categories performance, robustness, interpretability, monitoring and documentation 

and are composed in this general category. 

Method Risk 

Low Medium High Very high 

ED1 Range checks of input and output data + ++ ++ ++ 

ED2 Plausibility check + + + ++ 

ED3 Detection of data errors + ++ ++ ++ 

ED4 Monitoring of program execution by an external 

element 

o + ++ ++ 

ED5 Temporal monitoring of program execution o + ++ ++ 

ED6 Diverse redundancy in the design o + ++ ++ 

ED7 Access violation control mechanisms o + ++ ++ 

Method Risk 

Low Medium High Very high 

EH1 Deactivation in order to achieve or maintain a safe 

state 

+ + ++ ++ 

EH2 Static recovery mechanism + + + + 

EH3 Graceful degradation + + ++ ++ 

EH4 Homogenous redundancy in the design  o o + ++ 

EH5 Diverse redundancy in the design o o + ++ 

EH6 Correcting codes or data + + + ++ 

EH7 Access permission management o + ++ ++ 
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3.2.1.1 ASIL-derived Requirements 

3.2.1.1.1 Environment Compliance 

Requirement 1: The environmental context shall correspond to the operational design domain (ODD). 

Requirement 1 is derived from the ASIL recommendations DI8 and DI9 addressing the methods to derive test 

cases for the integration testing on the system level defined in Table 4. It is important that the system is only 

used in the context it is developed for. The environment the systems is deployed in must be a part of the ODD 

that is specified during the development of the system. In case the environmental context changes both 

suddenly and significantly and the system falls outside of the ODD, processes must exist that lead the system 

back into a safe state when the system risk is high or very high.  

3.2.1.1.2 Component Interaction 

Requirement 2: The communication, interfaces, signals, etc. between different components shall be 

coordinated. 

The next requirement describes that individual components are connected correctly and that the signal flow 

works as intended. It combines the interface testing methods CI1  CI3 defined in Table 5, as well as IV2 from 

Table 9. The interplay between different components is correctly initialized and the output from prior 

components is in the correct form to be used by the following ones. Also, it is required that error or warning 

messages generated by one component are not ignored by other connected components but are reacted upon.  

Table 19 General ASIL-derived requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) for 

the entire system 

 

3.2.1.2 Additional Requirements 

3.2.1.2.1 Sensor Setup Compliance 

Requirement 3: The sensor setup shall be similar to the development/training setup. 

Like Requirement 1, it is important that the sensor setup that captures the relevant environmental context is 

comparable to the setup used during development or training. This ensures that the respective output can be 

trusted and that the environmental context is captured correctly. Likewise, it is also required that all sensors 

(hardware components) operate correctly and lie in their own ODD. If a calibration is required, it is performed 

correctly and verified. Again, processes must be in place that bring the entire system into a safe state when a 

significant divergence in the sensor setup occurs. As explained, this requirement ensures the safety of the 

system, therefore it should be implemented starting from medium risk application (see Table 20). 

In addition to requirements that are generally applicable to general purpose AI systems that consist of 

multiple components, there are also requirements that are needed specifically for systems in the mobility 

area. Most importantly, for systems that are used for automated/autonomous driving it is required that the 

vehicle model/capabilities are similar to the development/training setup. This is an extension to the general 

Requirement 3 for the case that the system also has actuators in addition to sensors. However, not every AI 

system is connected to actuators and thus the general requirement is formulated only for sensors. 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

1 The environmental context shall correspond to the 

operational design domain (ODD). 

+ ++ ++ ++ 

2 The communication, interfaces, signals, etc. between 

different components shall be coordinated. 

+ ++ ++ ++ 
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3.2.1.2.2 General Validity 

Requirement 4: The requirements for AI subsystems shall apply to the entire system (if applicable). 

The last overall requirement is that individual requirements for AI subsystems are also applied to the entire 

system if possible. For example, this includes the requirements described later in this document in 

Chapter 3.3. If it is applicable, these individual aspects shall be fulfilled for each component of the entire 

system. This in term enables that all individual aspects can also be fulfilled for the entire system by combining 

the information of individual components and enhancing it to be representative of the behavior of the entire 

system. 

Table 20 General additional requirements with risk levels 

 

3.2.2 Performance 

In the following, requirements specific for the aspect of performance are listed. Thereby, the focus on 

performance is in terms of the quality of a system and not in terms of computational resources and efficiency. 

In addition, in this requirement category on performance it is possible to derive specialized requirements for 

systems in the mobility sector. For example, in the case of AD/ADAS systems concrete KPIs can be specified 

to meaningfully represent Requirement 6 and Requirement 7 in this domain. One example for a high-level 

KPI would be to measure the average number of kilometers driven between any accidents. Then, a concrete 

requirement could assign a certain lower limit on the number of kilometers, which need to be fulfilled. 

Alternatively, the number of critical accidents in a certain time/distance frame serves as another exemplary 

very high-level KPI. A more detailed discussion on the applicability of the requirement is presented later in 

Chapter 3.4. 

3.2.2.1 ASIL-derived Requirements 

3.2.2.1.1 Performance Guarantee 

Requirement 5: The adequate performance shall be guaranteed for a certain timeframe after initial 

deployment. 

This requirement focusses on the behavior of the system when in operation and it implements ASIL 

recommendation FP2 from Table 7. Here, it is needed that the behavior of the system is guaranteed for a 

certain amount of time after the initial deployment of a system. This is similar to a warranty for traditional 

hardware products. The system must behave correctly when operated in the ODD for at least the specified 

timeframe. A voluntary extension of the mandatory timeframe is possible to provide behavior guarantees for 

example over the entire lifetime of the system. 

Table 21 ASIL-derived performance requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) 

for the entire system 

 

Method Risk 

Low Medium High Very high 

3 The sensor setup shall be similar to the 

development/training setup. 

+ ++ ++ ++ 

4  The requirements for AI subsystems shall apply to the 

entire system (if applicable).  

++ ++ ++ ++ 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

5 The adequate performance shall be guaranteed for a 

certain timeframe after initial deployment. 

+ + ++ ++ 
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3.2.2.2 Additional Requirements 

3.2.2.2.1 Performance KPIs 

Requirement 6: The performance on key performance indicators (KPIs) shall be as high as possible. 

The next performance requirement for every general-purpose AI system is that it achieves the highest 

possible KPIs for the concrete task on test data. Concretely, the KPI depends on the task the AI system is 

supposed to solve. Thus, this requirement must be specified for each specific application when certain KPIs 

can be defined. For example, for stock value prediction the absolute divergence at a given point in time might 

be a suitable KPI, whereas for trajectory prediction of traffic participants the displacement error at a given 

point in time is suitable. 

Table 22 Requirement regarding the performance on KPIs with risk levels 

 

3.2.3 Robustness 

performance is correct under different circumstances. Hence, it is necessary to define requirements ensuring 

its robustness. 

3.2.3.1 ASIL-derived Requirements 

3.2.3.1.1 Performance on Worst-Case Error 

Requirement 7: The performance shall be compliant to the allowed worst-case error. 

In addition to performing well in terms of the respective KPIs for a given task, it is desirable that the system 

is compliant to the allowed worst-case error or deviation. Hence, this requirement reflects whether the 

performance of a system is in the allowed boundary conditions on the entire test data set. Whereas 

Requirement 6 measures the average performance, this requirement relates to the allowed risk in safety 

critical applications. This requirement addresses the testing methods for the system level RS2 and RS3 from 

Table 6, as well as FP4, FP5 and FP6 from Table 7, IV3 from Table 9 and finally ET2 from Table 11. Further, 

this requirement addresses the methods for deriving test cases for the embedded software testing DE3 and 

DE4 from Table 12. 

3.2.3.1.2 Performance Reproducibility 

Requirement 8: The performance shall be reproducible in the real environment for operation. 

Requirement 6 and Requirement 7 relate to the main performance characteristics on test data, which is 

representative of the environment the system operates in after deployment. However, it is also relevant that 

the behavior of the system can be reproduced in the real environment it operates in. This is reflected in this 

requirement, which states that Requirement 6 and Requirement 7 need to be fulfilled also during operation 

and not only on previously captured/determined/generated test data. Thereby, the usage in the real operating 

environment inside the ODD is enabled. Overall, this requirement combines ASIL recommendations FP3 

from Table 7, ST3 from Table 10 and IV4 from Table 9. 

Method Risk 

Low Medium High Very high 

6 The performance on key performance indicators (KPIs) 

shall be as high as possible. 

+ ++ ++ ++ 
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Table 23 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) 

for the entire system 

 

3.2.4 Monitoring 

Here, requirements are proposed that indicate which aspects of the system should be supervised to enable 

downstream evaluation or active regulation, e.g. by updating the AI system. 

3.2.4.1 ASIL-derived Requirements 

3.2.4.1.1 Operation Monitoring 

Requirement 9: The feedback of the system shall be tracked while in operation. 

Requirement 9 focusses on the tracking of the system behavior when in operation, by refining ED4 and ED5 

from Table 17. During operation, it is important to track when any deviation from the ODD occurs, because 

this could show that the ODD is chosen not ideally or the user misuses the system. Similarly, it is important 

to track any feedback or intervention from the user. This could again show that the system does not operate 

in the ODD or does not show an ideal behavior. Additionally, any (critical) mistakes of the system should be 

tracked to analyze potential shortcomings in the design. 

3.2.4.1.2 Error Correction 

Requirement 10: The performance shall be corrected when critical errors occur after deployment. 

Lastly, the final ASIL-derived monitoring requirement from EH6 in Table 18 is that the performance of the 

system is continuously tracked and that (critical) errors are corrected after deployment for high-risk use cases. 

As long as the system is used in the intended ODD any repeatedly reoccurring errors need to be fixed. This is 

again similar to the common recall practice that is often used in many different industries. In the case of AI 

systems where the behavior is largely determined by software, it is also possible that the recall/update is 

conducted via an over-the-air software update. 

Table 24 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) 

for the entire system 

 

3.2.4.2 Additional Requirements 

3.2.4.2.1 Reproducibility 

Requirement 11: The system state shall be tracked in a reproducible way while in operation. 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

7 The performance shall be compliant to the allowed 

worst-case error. 

++ ++ ++ ++ 

8 The performance shall be reproducible in the real 

environment for operation. 

+ ++ ++ ++ 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

9 The feedback of the system shall be tracked while in 

operation. 

o + ++ ++ 

10 The performance shall be corrected when critical errors 

occur after deployment. 

+ + + ++ 
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In the case of errors or accidents, it is necessary to obtain as much information as possible of the system. For 

can be reproduced. The information to be tracked for this has to be defined for each system and component 

individually.  

Table 25 Requirement for the reproducibility of the system with risk levels 

 

3.2.5 Documentation & Lifecycle 

In this chapter, requirements for documentation purposes are introduced. They are related to the AI lifecycle 

and are relevant for the overall system. 

3.2.5.1 ASIL-derived Requirements 

3.2.5.1.1 Architectural Documentation 

Requirement 12: The architectural design shall be described explicitly. 

This requirement includes the recommendations from Table 8. A documentation of the architecture of the 

entire system is crucial for evaluation and assessment. The architectural description shall comprise the overall 

structure and the interfaces between the specific SW units. A clear and unambiguous description in natural 

language is always required. For low security applications, an additional informal description is sufficient. For 

(very) high security applications, at least a semi-formal notation is necessary. This requirement addresses the 

documentation of the overall system, therefore it may be partially covered by the documentation for regular 

non-AD/AI components. 

3.2.5.1.2 Developer Eligibility 

Requirement 13: The quality & trustworthiness for developers shall be assessed. 

Also, requirements can be imposed on the developers of a system that contains AI components. Depending 

on the safety criticality and risk of the intended usage different variants of this requirement are possible. On 

the one hand, it is important that a proper qualification of the developers is ensured. This includes required 

training assignments and raising the risk awareness for potential risks that need to be considered during 

development depending on the overall risk level of the system. On the other hand, this can also include the 

need for a security clearance or screening process when working on extremely high-risk use cases where the 

influence of external parties/countries/etc. must be ruled out. This requirement could be defined as an 

additional requirement, however it touches on the recommendations ED7 and EH7 from Table 17 and Table 

18 by controlling the access to the development facility. 

Table 26 ASIL-derived documentation requirements with ASIL recommendations from the ISO 26262 (165; 246; 

247) for the entire system 

 

Method Risk 

Low Medium High Very high 

11 The system state shall be tracked in a reproducible 

way while in operation. 

+ + ++ ++ 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

12 The architectural design shall be described explicitly. ++ ++ ++ ++ 

13 The quality & trustworthiness for developers shall be 

assessed. 

o + ++ ++ 
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3.2.5.2 Additional Requirements 

3.2.5.2.1 Development Documentation 

Requirement 14: The development process shall be tracked. 

It is required that important aspects of the development of the system are tracked. Most importantly, this 

includes the training and the architectural changes made during development. Additionally, any changes in 

the ODD that occurred during development need to be tracked and justified. Finally, this also includes to track 

the principles of the internal evaluation and the evolution of the tests performed. This is strongly connected 

to requirements on individual aspects like performance or robustness. 

Table 27 Development documentation requirement with risk levels 

 

3.2.6 Summary of Requirements 

Table 28 summarizes all requirements7 presented in this chapter with their corresponding risk level. For 

requirements that were derived from several ASIL recommendations the strictest ASIL classification was 

chosen. For the additional requirements, the previous sections presented definitions alongside descriptive 

paragraphs elucidating their ASIL recommendations. 

Table 28 Summary of generic requirements for the entire system7 

Requirement 

 

Risk level 

ID Description Type ASIL A/ 

Low 

ASIL B/ 

Medium 

ASIL C/ 

High 

ASIL D/ 

Very 

high 

1  The environmental context shall correspond to 

the operational design domain (ODD). 

ASIL + ++ ++ ++ 

2 The communication, interfaces, signals, etc. 

between different components shall be 

coordinated. 

ASIL + ++ ++ ++ 

3 The sensor setup shall be similar to the 

development/training setup. 

Additional + ++ ++ ++ 

4  The requirements for AI subsystems shall apply 

to the entire system (if applicable). 

Additional ++ ++ ++ ++ 

5 The adequate performance shall be guaranteed 

for a certain timeframe after initial deployment. 

ASIL + + ++ ++ 

6 The performance on key performance indicators 

(KPIs) shall be as high as possible. 

Additional + ++ ++ ++ 

7 The performance shall be compliant to the 

allowed worst-case error. 

ASIL ++ ++ ++ ++ 

                                                                 
7  The aim of our efforts is to develop firm requirements that mobility systems containing AI modules have 

to follow. In the work presented here the requirements are a first draft and the basis for further iterations. 
In their current state some of them are more to consider as a best practice and an ideal state in terms of 
safety and security. Nevertheless, the boundaries, values and wording of the requirements will be adjusted 
within further projects and actual automotive applications. 

Method Risk 

Low Medium High Very high 

14 The development process shall be tracked. + ++ ++ ++ 
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Requirement 

 

Risk level 

8 The performance shall be reproducible in the 

real environment for operation. 

ASIL + ++ ++ ++ 

9 The feedback of the system shall be tracked 

while in operation. 

ASIL o + ++ ++ 

10 The performance shall be corrected when 

critical errors occur after deployment. 

ASIL + + + ++ 

11 The system state shall be tracked in a 

reproducible way while in operation. 

Additional + + ++ ++ 

12 The architectural design shall be described 

explicitly. 

ASIL ++ ++ ++ ++ 

13 The quality & trustworthiness for developers 

shall be assessed. 

ASIL o + ++ ++ 

14 The development process shall be tracked. Additional + ++ ++ ++ 

 

3.3 AI Subsystem 

In this chapter, the generic requirements towards the AI subsystems within AD/ADAS systems are defined. 

The requirements are defined for each of the aspects performance, robustness, interpretability, monitoring 

and documentation. As discussed in Chapter 3.1, for each aspect, ASIL-derived requirements and additional 

requirements are formulated. At the end of this chapter, Section 3.3.6 provides an overview of all 

requirements and their risk level recommendations. 

3.3.1 Performance 

Since AI subsystems are part of the entire system, the requirements for the entire system are hierarchical. 

Therefore, Requirement 5 and Requirement 6 from Chapter 3.2.2 still hold for the AI subsystems. 

3.3.2 Robustness 

As discussed in (1), AI systems are susceptible to various robustness threats, which poses a high risk for the 

entire AD system. To address these concerns, robustness requirements for these AI systems are introduced in 

this section. 

3.3.2.1 ASIL-derived Requirements 

Based on the ASIL recommendations for modelling and coding (MC) guidelines, deriving test cases for 

software unit testing (DU) and software unit verification (UV), the following robustness requirements can be 

derived. 

3.3.2.1.1 Robustness Improvement 

Requirement 15: The AI model shall be implemented using mitigation strategies against robustness threats. 

From the ASIL recommendations for the modelling and coding guidelines listed in Table 14, 

Recommendation MC4 needs to be further specified in Requirement 15. To enhance the robustness of the AI 

model against attacks and robustness threats, suitable mitigation strategies as described in (1) shall be used. 

3.3.2.1.2 Software Verification and Testing 

The ISO 26262 recommends several methods aiding the software unit verification for road vehicle systems, 

which are listed in Table 16 in combination with their ASIL recommendation. It is important to note that the 

table follows the ISO 26262 definition, which focusses on software development for non-AI systems. 
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Therefore, the term model referenced in UV14 describes the software modelling of a regular software system 

and is not equivalent to an AI model. From the listed methods UV4, UV5, UV10 and UV12 have to be defined 

further for AI models.  

Requirement 16: The AI model shall be verified with formal robustness verification techniques. 

UV5 recommends the formal verification of the system for ASIL C and ASIL D, which can be further defined 

into Requirement 16. As stated in (1), formal robustness verification of AI models is not a trivial problem and 

not feasible for all models. Therefore, in cases where formal robustness verification is infeasible, Requirement 

17 shall be used as a substitution. 

Requirement 17: The robustness of the AI model shall be verified with empirical robustness estimation 

techniques. 

Requirement 17 addresses the recommendation for semi-formal verification UV4, as robustness estimation 

can be used to statistically verify the robustness of the model. Since empirical robustness is based on fault-

injection testing with data that is perturbed by worst-case perturbations generated by, for example, 

adversarial attacks or translations, this requirement additionally ensures UV12.  

Requirement 18: The AI model shall be tested against out-of-distribution data. 

By completing the testing procedure through out-of-distribution data testing defined in Requirement 18, 

UV10 can be ensured. 

3.3.2.1.3 Deriving Test Cases for Software Unit Testing 

To derive test cases for software units, ASIL defines methods to guide the derivation of test cases, defined in 

Table 15. DU3 and DU4 address the robustness of the AI model and are further refined in Requirement 19, 

Requirement 20 and Requirement 21.  

Requirement 19: Test cases at the boundary values of the input of the AI model shall be derived. 

To derive adequate test cases that determine the robustness of the model at the input boundary values, the 

input boundary values shall be analyzed. As mentioned in the beginning of Chapter 3, the input boundary 

values are system-dependent. Some use-cases will come with clear input boundaries, e.g., defined by 

documentation or domain experts, while others have infinite input space and the requirement is not 

applicable. The latter shall be covered by a rationale. 

Requirement 20: Test cases based on corner cases of the AI model shall be derived. 

If boundary values can not be defined, Requirement 20 shall be implemented to ensure that the model 

behaves robust in corner cases. Corner cases depict extreme values or parameter combinations which might 

lead to unpredictable system behavior. As for input boundary values, corner cases could be already defined in 

Notably, DU3 

has to be implemented for any system with a risk and damage potential above ASIL A.  

Requirement 21: Test cases shall be derived through error guessing based on knowledge and experience of 

the system. 

Concluding Requirement 21 states that error guessing based on knowledge or experience of domain experts 

shall be conducted to derive representative test cases for the AI model of the AD system. 

Table 29 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) 

for the AI subsystem 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

15 The AI model shall be implemented using mitigation 

strategies against robustness threats. 

+ + ++ ++ 
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3.3.2.2 Additional Requirements 

3.3.2.2.1 Fault injection test 

Requirement 22: The AI model shall be tested against possible robustness threats. 

The ISO 26262 recommends fault injection testing in Table 16 for ASIL A to ASIL C and highly recommends 

it only at ASIL D. Since AI models, different to conventional software systems, base their decisions solely on 

the input data, it is important to test them against damaged or manipulated data. Additionally, as discussed 

in (1), AI subsystems are highly susceptible to robustness threats. Therefore, it is highly important to test the 

AI model against these possible threats, such as IT security threats or data poisoning attacks. For the choice of 

possible robustness threats and for the test coverage of these threats a rationale shall be given depending on 

the use case. 

Due to the high susceptibility to these threats, there is a higher need for fault injection testing for AI models 

than suggested in the ISO 26262. To encompass this, Table 30 defines the risk levels for Requirement 22, where 

fault injection testing shall be done starting from a medium risk and damage potential. 

3.3.2.2.2 Data Validation 

To ensure robustness for AI subsystems, additional requirements towards the datasets used for training and 

testing of the AI subsystems are needed. The datasets determine the quality and decisions of the entire 

subsystem. Therefore, additional requirements regarding data validation (DV) are defined. 

Requirement 23: The source of the datasets shall be traceable. 

To mitigate vulnerabilities like data poisoning or backdoor attacks, the origin of the used datasets has to be 

clear. It is highly recommended to rely on self-generated datasets of valid, unmanipulated data for high 

security applications. Well-known open-source datasets can provide an alternative for lower security levels. 

These should be tested, e.g., for unwanted manipulation (see Requirements 25, 26 and 27). 

Requirement 24: The source of the dataset shall be verified. 

Requirement 25: The training, test and evaluation datasets shall have adequate coverage of the operational 

input domain. 

Requirement 25 warrants that the model is trained on representative data of the operational input domain of 

the system. As stated above the structure and size of the datasets are vital for the AI model s functionality. 

Therefore, it is important that the datasets have an adequate coverage of the input domain and reflect its 

features properly incorporating potential environmental constraints of the overall system. A rationale about 

the coverage of the dataset of the input domain in support of the use case shall be provided. 

Requirement 26: The datasets shall be verified against the safety requirements. 

16 The AI model shall be verified with formal robustness 

verification techniques. 

o o + + 

17 The robustness of the AI model shall be verified with 

empirical robustness estimation techniques. 

+ + ++ ++ 

18 The AI model shall be tested against out-of-distribution 

data. 

++ ++ ++ ++ 

19 Test cases at the boundary values of the input of the AI 

model shall be derived. 

+ ++ ++ ++ 

 

20 Test cases based on corner cases of the AI model shall be 

derived. 

+ ++ ++ ++ 

21 Test cases shall be derived through error guessing based 

on knowledge and experience of the system. 

+ + + + 
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Additionally, Requirement 26 ensures that the datasets comply with the safety requirements defined for the 

application. Since specific safety requirements are defined for each use case in detail, they state further 

information on corner cases, distributions and environmental factors of each individual use case. If the 

dataset does not comply to or does not contain the needed information, such as for example necessary 

lighting conditions or corner case scenarios, the datasets have to be adjusted. 

Requirement 27: The uncertainty of the datasets shall be analyzed and quantified. 

Finally, Requirement 27 states that the uncertainty within a dataset shall be analyzed and modelled. This gives 

more insight into the quality of the datasets and the testing can be adjusted accordingly. 

Requirement 28: The datasets used for training, testing and evaluation shall not contain any errors.  

In order to ensure proper training and testing of the model, the datasets shall not contain any errors. 

Therefore, the developers shall ensure that the datasets are properly analyzed and any identified errors shall 

be corrected. Additionally, to further support this requirement, it has to be ensured that the labels used for 

training are correct and reflect the input domain. 

Requirement 29: The training, test and evaluation datasets shall have sufficient size. 

Since DNN require are large amount of data to efficiently learn generalized features, it is important that the 

datasets used for training and testing the 

classification problem of the model, the domain, the data type and environmental constraints. Furthermore, 

the split-ratio of the datasets shall fit the intended purpose of each dataset. Therefore, a rationale on the choice 

and size of the dataset shall be provided. 

Requirement 30: The training, test and evaluation datasets shall be independent from each other. 

To ensure a proper training and testing process of the model, the model shall be trained, tested and evaluated 

on mutually independent datasets. This ensures that accuracy achieved during the training of the model can 

be projected on newly introduced data. Additionally, this enables the developers to detect issues during the 

training such as over- or underfitting. 

Requirement 31: The training, test and evaluation datasets shall be prepared in an adequate way. 

The necessary steps shall be taken to prepare the data according to the use case. This can for example entail a 

data cleaning step removing artifacts or errors from the dataset or a dimensionality reduction step. 
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Table 30 Additional robustness requirements with risk levels for the AI subsystem 

Table 30 gives an overview over the above defined dataset validation requirements. For low-risk applications, 

there is no need to validate the datasets used for training and testing further, as there is low risk and damage 

potential stemming from the model. Medium risk applications are recommended to implement these 

requirements; however, they are not required as the risk and damage is not as severe. Especially, high and very 

high-risk application shall implement the requirements or a combination of them. 

3.3.3 Interpretability 

Another challenge of AI subsystems within safety-critical systems is their black-box nature. Since their 

decisions give no insight into their decision-making process, it is hard to retrace whether a model is trained 

properly and focusses on relevant data points within the input to make its decisions. As an example, irrelevant 

features 

in the misclassification of real-world data. In this section, requirements are formulated to enhance the insight 

 in (1). 

3.3.3.1 ASIL-derived Requirements 

3.3.3.1.1 Deriving Test Cases for Explanations 

Requirement 32: The requirements shall be analyzed to derive test cases for interpretable model decisions. 

Based on the ASIL DU1 in Table 15 for deriving test cases for software unit testing, Requirement 32 is 

introduced. It states that the requirements towards the software unit shall be analyzed to derive test cases that 

should be explained. This ensures that some test cases are derived to support the requirements. 

3.3.3.1.2 Comparing Requirements and Model Decisions 

Another challenge of AI systems is to check whether the model decisions meet the requirements formulated 

for the software unit. The ISO 26262 defines ASIL recommendations towards the verification of the software 

unit to ensure this. The corresponding recommendations are presented in Table 16. 

Method Risk 

Low Medium High Very high 

22 The AI model shall be tested against possible 

robustness threats. 

+ ++ ++ ++ 

23 The source of the datasets shall be traceable. + + ++ ++ 

24 The source of the dataset shall be verified. o + ++ ++ 

25 The training, test and evaluation datasets shall 

have adequate coverage of the operational input 

domain. 

+ + ++ ++ 

26 The datasets shall be verified against the safety 

requirements. 

o + ++ ++ 

27 The uncertainty of the datasets shall be analyzed 

and quantified. 

o + ++ ++ 

28 The datasets used for training, testing and 

evaluation shall not contain any errors. 

++ ++ ++ ++ 

29 The training, test and evaluation datasets shall 

have sufficient size. 

+ ++ ++ ++ 

30 The training, test and evaluation datasets shall be 

independent from each other. 

++ ++ ++ ++ 

31 The training, test and evaluation datasets shall be 

prepared in an adequate way. 

+ ++ ++ ++ 
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Requirement 33:  decisions shall be explained to aid the comparison between the modelling of 

the system and the trained model. 

Requirement 34: s shall be explained to check if the requirements of the system are 

met. 

UV10 and UV14 are specified in Requirement 33 and Requirement 34 to support the interpretability of the 

model. As explained in Section 3.1.3.3, the term model in UV14 references the software modelling of the 

software unit and is different from the AI model. 

Table 31 ASIL-derived interpretability requirements with ASIL recommendations from the ISO 26262 (165; 246; 

247) for the AI subsystem 

 

3.3.3.2 Additional Requirements 

-making process some additional requirements have to 

be defined. 

3.3.3.2.1 Decision Explanations 

Requirement 35:  

Requirement 36: cases shall be explained. 

Requirement 35 and Requirement 36 ensure that during the testing phase of the AI system, possible errors or 

-

on boundary values and corner cases. Further, those explanations will give insight into the reasoning of the 

-critical scenarios. These two requirements are highly recommended to be 

implemented starting from a high risk level, since it is plausible that an AD system will encounter corner cases 

and boundary values. 

Requirement 37: . 

test scenarios shall be explained to 

aid the adjustment of the model or training data. To ensure this, Requirement 37 is recommended for systems 

with low and medium risk and highly recommended for high to very high-risk systems. 

3.3.3.2.2 Interpretable Model Architecture 

Requirement 38: The least complex model architecture needed to solve the task shall be chosen. 

Since the testability and interpretability of AI models decreases with the increase in complexity level, the least 

complex architecture possible shall be chosen. For example, for neural networks the complexity of a model 

architecture relates to its layer types (e.g. convolutional layer, recurrent layer, etc.), the number of parameters 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

32 The requirements shall be analyzed to 

derive test cases for interpretable model 

decisions. 

++ ++ ++ ++ 

33  decisions shall be explained 

to aid the comparison between the 

modelling of the system and the trained 

model. 

++ ++ ++ ++ 

34 s shall be explained 

to check if the requirements of the 

system are met. 

+ + ++ ++ 



3 Generic Requirements (AP3) 

Federal Office for Information Security 85 

and the connection between layers. As for all requirements, if it is not possible to choose the model 

architecture with the least complexity, a rationale shall be given. 

Requirement 39: A model architecture shall be chosen to maximize the interpretability of decisions. 

s, an interpretable architecture shall be chosen. Since 

interpretable model architectures are not feasible for every use case, this requirement shall be chosen for 

suitable use cases and systems. However, as for all other requirements, if an interpretable architecture is not 

feasible for the system at hand, it should be justified. 

Table 32 Additional interpretability requirements with risk levels for the AI subsystem 

 

3.3.4 Documentation & Lifecycle 

In this chapter, requirements for documentation purposes related to the AI lifecycle are introduced that are 

relevant for the AI subsystem. 

3.3.4.1 ASIL-derived Requirements 

3.3.4.1.1 Software Unit Documentation 

Requirement 40: The SW unit design shall be described explicitly. 

Requirement 40 combines the recommendations from Table 13 with recommendation MC6 from Table 14. A 

documentation of the design of the SW units is crucial for evaluation and assessment. Especially for the AI 

SW units, the A clear and unambiguous description in natural 

language is always required. For low security applications, an additional informal description is sufficient. For 

(very) high security applications, at least a semi-formal notation is necessary. 

Table 33 ASIL-derived documentation and lifecycle requirement with ASIL recommendations from ISO 

26262 (165; 246; 247) for the AI subsystem 

 

3.3.4.2 Additional Requirements 

3.3.4.2.1 Traceability 

Requirement 41: The dataset & model shall be versioned. 

Method Risk 

Low Medium High Very high 

35 

be explained. 

+ + ++ ++ 

36 cases shall be 

explained. 

+ + ++ ++ 

37 

explained. 

+ + ++ ++ 

38 The least complex model architecture needed to 

solve the task shall be chosen. 

+ + ++ ++ 

39 A model architecture shall be chosen to maximize 

the interpretability of decisions. 

o + + ++ 

Method ASIL recommendation 

ASIL A ASIL B ASIL C ASIL D 

40 The SW unit design shall be described explicitly. ++ ++ ++ ++ 
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The evolution of the used datasets and AI model shall be tracked. It is important to have a version history of 

the dataset and the changes/additions/cleanings/etc. performed on it. Additionally, the establishing data 

collection process and the captured environmental contexts need to be described. This allows to see whether 

the dataset is representative of the intended ODD and does reflect the real environmental context. Similarly, 

for a data-driven model that is trained on a dataset it is important to track the used hyperparameters and 

which version of the datasets is used. As a result, a version history can be generated that shows the evolution 

of the data and the model and the associated differences for each version. 

Requirement 42: Standardized methods to record characteristics of datasets, AI models and key processes 

shall exist and be followed. 

For traceability, the main characteristics of datasets, models and processes have to be documented. The 

utilized procedures shall be consistent throughout the whole project to establish comparability among 

recorded data. If there exist any general or industry-specific standards, these are preferable. 

Requirement 43: The labelling process of the dataset shall be documented and tracked. 

This requirement ensures that possible biases or incorrect label assumptions can be identified and tracked. 

Table 34 Traceability requirements with risk levels 

 

3.3.5 Monitoring 

The following section introduces the requirements towards the monitoring of the AI subsystems within an 

AD system. The requirements can be categorized into run-time monitoring requirements that aim to monitor 

either the input or output of the model; and fail-safe requirements that ensure that the AI subsystems fail 

safely to mitigate an entire system failure. 

3.3.5.1 ASIL-derived Requirements 

As discussed in Chapter 3.1.3.4, the ISO 26262 defines error detection and handling methods without ASIL 

recommendations. Therefore, Table 17 and Table 18 define risk levels for these methods according to the risk 

and damage potential defined in Chapter 3.1.4. 

3.3.5.1.1 Error Detection 

Requirement 44: The input shall be monitored and checked before it is given into the AI model. 

Requirement 45:  

Requirement 44 and Requirement 45 refine ED1, ED2 and ED3 to ensure that the input and output of the AI 

model are monitored. On the input side, this will prevent the model from evaluating damaged or manipulated 

data and providing incorrect output. Suitable detection techniques can be found in (1). The output of the 

model shall be checked for plausibility errors to detect implausible behavior of the AI subsystems. 

Requirement 46: The AI model shall be monitored during the program execution. 

ED4 and ED5 are refined in Requirement 46 where a monitoring component of the AI subsystem is required. 

This helps to identify failures within the AI subsystem before the entire system is possibly affected. This 

Method Risk 

Low Medium High Very high 

41 The dataset & model shall be versioned. o + ++ ++ 

42 Standardized methods to record characteristics of 

datasets, AI models and key processes shall exist 

and be followed. 

o + ++ ++ 

43 The labelling process of the dataset shall be 

documented and tracked. 

o + ++ ++ 
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requirement enables the logging of events concerning the AI subsystem and provides the groundwork for 

Requirement 47. 

Requirement 47: Errors of the model shall be logged. 

Including and enhancing ED3, this requirement provides the possibility for evaluation of the AI subsystem in 

case of failures or accidents. 

3.3.5.1.2 Error Handling 

Requirement 48: Damaged or manipulated inputs shall be corrected when it is safely possible. 

As recommended in EH6, Requirement 48 states that damaged data or code passed to the AI subsystem shall 

be corrected. As stated above, detection methods for manipulated data were introduced in the AP2 report. 

Requirement 49: Fail-safe methods shall be implemented to mitigate entire system failures. 

Requirement 49 integrates recommendations EH1, EH2 and EH3, by stating the need for fail-safe methods.  

Requirement 50: Parallel redundant AI models shall be implemented. 

Additionally, EH4 and EH5 can be addressed on the AI subsystem level by implementing a parallel and 

redundant AI model. Depending on the use case, the use of different sensors for the redundant models is 

advised. 

Table 35 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) 

for the AI subsystem 

 

3.3.6 Summary of Requirements 

In Table 36 a summary of the generic requirements8 defined in this chapter is presented. As explained in 

Section 3.2.6, the risk level is either based on the strictest ASIL recommendation of the involved 

ISO requirements or on a rationale that was provided for each additional requirement in this chapter. 

 

 

                                                                 
8  The aim of our efforts is to develop firm requirements that mobility systems containing AI modules have 

to follow. In the work presented here the requirements are a first draft and the basis for further iterations. 
In their current state some of them are more to consider as a best practice and an ideal state in terms of 
safety and security. Nevertheless, the boundaries, values and wording of the requirements will be adjusted 
within further projects and actual automotive applications. 

Method Risk level 

Low Medium High Very high 

44 The input shall be monitored and checked before it is 

given into the AI model. 

+ + ++ ++ 

45 

checked. 

+ + ++ ++ 

46 The AI model shall be monitored during the program 

execution. 

o + ++ ++ 

47 Errors of the model shall be logged. + ++ ++ ++ 

48 Damaged or manipulated inputs shall be corrected when 

it is safely possible. 

o o + ++ 

49 Fail-safe methods shall be implemented to mitigate 

entire system failures. 

+ + ++ ++ 

50 Parallel redundant AI models shall be implemented. o o + ++ 
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Table 36 Summary of generic requirements for the AI subsystems8 

Requirement 

 

Risk level 

ID Description Type ASIL A/ 

Low 

ASIL B/ 

Medium 

ASIL C/ 

High 

ASIL D/ 

Very high 

15 The AI model shall be implemented using 

mitigation strategies against robustness threats. 

ASIL + + ++ ++ 

16 The AI model shall be verified with formal 

robustness verification techniques. 

ASIL o o + + 

17 The robustness of the AI model shall be verified 

with empirical robustness estimation techniques. 

ASIL + + ++ ++ 

18 The AI model shall be tested against out-of-

distribution data. 

ASIL ++ ++ ++ ++ 

19 Test cases at the boundary values of the input of 

the AI model shall be derived. 

ASIL + ++ ++ ++ 

 

20 Test cases based on corner cases of the AI model 

shall be derived. 

ASIL + ++ ++ ++ 

21 Test cases shall be derived through error guessing 

based on knowledge and experience of the 

system. 

ASIL + + + + 

22 The AI model shall be tested against possible 

robustness threats. 

Additional + ++ ++ ++ 

23 The source of the datasets shall be traceable. Additional + + ++ ++ 

24 The source of the dataset shall be verified. Additional o + ++ ++ 

25 The training, test and evaluation datasets shall 

have adequate coverage of the operational input 

domain. 

Additional + + ++ ++ 

26 The datasets shall be verified against the safety 

requirements. 

Additional o + ++ ++ 

27 The uncertainty of the datasets shall be analyzed 

and quantified. 

Additional o + ++ ++ 

28 The datasets used for training, testing and 

evaluation shall not contain any errors. 

Additional ++ ++ ++ ++ 

29 The training, test and evaluation datasets shall 

have sufficient size. 

Additional + ++ ++ ++ 

30 The training, test and evaluation datasets shall be 

independent from each other. 

Additional ++ ++ ++ ++ 

31 The training, test and evaluation datasets shall be 

prepared in an adequate way. 

Additional + ++ ++ ++ 

32 The requirements shall be analyzed to derive test 

cases for interpretable model decisions. 

ASIL ++ ++ ++ ++ 

33  decisions shall be explained to aid 

the comparison between the modelling of the 

system and the trained model. 

ASIL ++ ++ ++ ++ 

34 s shall be explained to check 

if the requirements of the system are met. 

ASIL + + ++ ++ 

35 

be explained. 

Additional + + ++ ++ 

36 cases shall be 

explained. 

Additional + + ++ ++ 
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Requirement 

 

Risk level 

37 

explained. 

Additional + + ++ ++ 

38 The least complex model architecture needed to 

solve the task shall be chosen. 

Additional +  + ++ ++ 

39 A model architecture shall be chosen to 

maximize the interpretability of decisions. 

Additional o + + ++ 

40 The SW unit design shall be described explicitly. ASIL ++ ++ ++ ++ 

41 The dataset & model shall be versioned. Additional o + ++ ++ 

42 Standardized methods to record characteristics 

of datasets, AI models and key processes shall 

exist and be followed 

Additional o + ++ ++ 

43 The labelling process of the dataset shall be 

documented and tracked. 

Additional o + ++ ++ 

44 The input shall be monitored and checked before 

it is given into the AI model. 

ASIL + + ++ ++ 

45 

checked. 

ASIL + + ++ ++ 

46 The AI model shall be monitored during the 

program execution. 

ASIL o + ++ ++ 

47 Errors of the model shall be logged. ASIL + ++ ++ ++ 

48 Damaged or manipulated inputs shall be 

corrected when it is safely possible. 

ASIL o o + ++ 

49 Fail-safe methods shall be implemented to 

mitigate entire system failures. 

ASIL + + ++ ++ 

50 Parallel redundant AI models shall be 

implemented. 

ASIL o o + ++ 

 

3.4 Applicability of Requirements 

After presenting all generic requirements for the entire system and AI subsystems, this chapter focusses on 

the applicability of the generic requirements to concrete use cases. In Table 37 we discuss the applicability of 

each requirement when considering use cases from the mobility domain. A summary of the most important 

use cases is presented in the previous report from AP2 in (1). Concretely, we consider whether there exists a 

need for concretization and whether a requirement can be applied for mobility use cases in a straight-forward 

way without major adaptions. In doing so, we use the following categories and provide details on the reason 

of the concrete categorization for each requirement: 

 Applicability: This category determines how well a requirement is suited for different mobility use 

cases. It represents whether a requirement is in principle applicable without focusing on the 

concreteness of a requirement. 

 Simple: The requirement is well-suited for mobility use cases and can easily be applied. 

 Complex: The requirement is partly suited for mobility use cases and can be applied with slight 

modifications. 

 Unrealistic: The requirement is not suited for mobility use cases and can only be applied with major 

modifications or not at all. 
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 Concretization Effort: This category determines how concretely a requirement is formulated or 

whether there exists a need to provide further information about a requirement when used in practice 

for different mobility use cases. 

 None: The requirement is very concrete and can be used in practice without any concretization for 

mobility use cases. 

 Minor: One part of the requirement needs to be concretized before it can be used in practice for 

mobility use cases. In addition, the concretization of this part is rather straightforward. 

 Major: Multiple parts of the requirement need to be concretized before it can be used in practice for 

mobility use cases. Also included are requirements where only one part needs to be concretized but 

the concretization is not straightforward. 

Table 37 Applicability of requirements for mobility use cases 

Requirement Applicability Concretization Effort 

ID Description 

1  The environmental context 

shall correspond to the 

operational design domain 

(ODD). 

Simple Minor 

 Suitable measurement for 

environmental context 

2 The communication, interfaces, 

signals, etc. between different 

components shall be 

coordinated. 

Simple None 

3 The sensor setup shall be similar 

to the development/training 

setup. 

Simple Minor 

 Suitable definition of similarity 

4  The requirements for AI 

subsystems shall apply to the 

entire system (if applicable). 

Simple Minor 

 Suitable applicable requirements 

5 The adequate performance shall 

be guaranteed for a certain 

timeframe after initial 

deployment. 

Simple Major 

 Suitable definition of adequate 

 Suitable timeframe 

6 The performance on key 

performance indicators (KPIs) 

shall be as high as possible 

Simple Minor 

 Suitable KPIs 

7 The performance shall be 

compliant to the allowed worst-

case error. 

Complex 

 How to check high-dimensional 

(internal) data/output values 

Major 

 Suitable definition of worst-case 

error 

8 The performance shall be 

reproducible in the real 

environment for operation.  

Complex 

 How to define realistic dummies 

& simulations 

Major 

 Suitable definition of 

environment 

 Suitable coverage of complete 

environment 

9 The feedback of the system shall 

be tracked while in operation. 

Complex 

 How to log high-dimensional 

(internal) data/output values 

 How to limit storage 

demand/costs 

Minor 

 Suitable tracking methods 
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Requirement Applicability Concretization Effort 

ID Description 

10 The performance shall be 

corrected when critical errors 

occur after deployment. 

Complex 

 How to correct specific errors in 

complex systems 

Major 

 Suitable definition of critical 

errors 

11 The system state shall be tracked 

in a reproducible way while in 

operation. 

Complex 

 How to log the state of complex 

systems 

 How to limit storage 

demand/costs 

Major 

 Suitable tracking methods 

12 The architectural design shall be 

described explicitly. 

Simple None 

13 The quality & trustworthiness 

for developers shall be assessed. 

Simple Minor 

 Suitable assessment methods 

14 The development process shall 

be tracked. 

Simple Minor 

 Suitable tracking methods 

15 The AI model shall be 

implemented using mitigation 

strategies against robustness 

threats. 

Simple Major 

 Suitable definition of robustness 

threats 

 Suitable mitigation strategies 

 Suitable extension to new threats 

 Suitable coverage of robustness 

threats 

16 The AI model shall be verified 

with formal robustness 

verification techniques. 

Unrealistic 

 How to verify complex systems 

Major 

 Suitable verification techniques 

17 The robustness of the AI model 

shall be verified with empirical 

robustness estimation 

techniques. 

Simple Major 

 Suitable estimation techniques 

 Suitable coverage of complete 

robustness 

18 The AI model shall be tested 

against out-of-distribution data. 

Simple Major 

 Suitable definition of OOD data 

 Suitable coverage of complete 

OOD data 

19 Test cases at the boundary 

values of the input of the AI 

model shall be derived. 

Simple Minor 

 Suitable coverage of complete 

boundary values 

20 Test cases based on corner cases 

of the AI model shall be derived. 

Simple Major 

 Suitable definition of corner 

cases 

 Suitable coverage of complete 

corner cases 

21 Test cases shall be derived 

through error guessing based on 

knowledge and experience of 

the system. 

Simple Major 

 Suitable coverage of complete 

test cases 

22 The AI model shall be tested 

against possible robustness 

threats.  

Simple Major 

 Suitable definition of robustness 

threats 

 Suitable coverage of robustness 

threats 
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Requirement Applicability Concretization Effort 

ID Description 

23 The source of the datasets shall 

be traceable. 

Simple Minor 

 Suitable traceability 

24 The source of the dataset shall 

be verified. 

Simple Minor 

 Suitable verification 

25 The training, test and evaluation 

datasets shall have adequate 

coverage of the operational 

input domain. 

Simple Major 

 Suitable definition of adequate 

 Suitable coverage of complete 

input domain 

26 The datasets shall be verified 

against the safety requirements. 

Simple Major 

 Suitable safety requirements 

27 The uncertainty of the datasets 

shall be analyzed and quantified. 

Simple Minor 

 Suitable measurement of dataset 

uncertainty 

28 The datasets used for training, 

testing and evaluation shall not 

contain any errors. 

Complex 

 How to verify large & high-

dimensional datasets 

Major 

 Suitable definition of errors 

29 The training, test and evaluation 

datasets shall have sufficient 

size. 

Simple Minor 

 Suitable dataset size 

30 The training, test and evaluation 

datasets shall be independent 

from each other. 

Simple Minor 

 Suitable dataset comparison 

31 The training, test and evaluation 

datasets shall be prepared in an 

adequate way. 

Simple Major 

 Suitable definition of adequate 

32 The requirements shall be 

analyzed to derive test cases for 

interpretable model decisions. 

Simple Minor 

 Suitable coverage of complete 

test cases 

33  decisions shall be 

explained to aid the comparison 

between the modelling of the 

system and the trained model. 

Complex 

 How to explain high-

dimensional output values 

Minor 

 Suitable explanations 

34 s shall be 

explained to check if the 

requirements of the system are 

met. 

Complex 

 How to explain high-

dimensional output values 

Minor 

 Suitable explanations 

35 

boundary values shall be 

explained. 

Complex 

 How to explain high-

dimensional output values 

Major 

 Suitable explanations 

 Suitable coverage of complete 

boundary values 

36 

cases shall be explained. 

Complex 

 How to explain high-

dimensional output values 

Major 

 Suitable explanations 

 Suitable definition of corner 

cases 

 Suitable coverage of complete 

corner cases 

37 

tests shall be explained. 

Complex 

 How to explain high-

dimensional output values 

Minor 

 Suitable explanations 
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Requirement Applicability Concretization Effort 

ID Description 

38 The least complex model 

architecture needed to solve the 

task shall be chosen. 

Simple 

 

Minor 

 Suitable complexity measure 

 

39 A model architecture shall be 

chosen to maximize the 

interpretability of decisions. 

Complex 

 How to interpret complex 

systems 

Major 

 Suitable interpretability 

40 The SW unit design shall be 

described explicitly. 

Simple None 

41 The dataset & model shall be 

versioned. 

Simple/Complex 

 How to version complex systems 

Minor 

 Suitable versioning methods 

42 Standardized methods to record 

characteristics of datasets, AI 

models and key processes shall 

exist and be followed 

Simple Minor 

 Suitable recording methods 

43 The labelling process of the 

dataset shall be documented and 

tracked. 

Simple Minor 

 Suitable tracking methods 

44 The input shall be monitored 

and checked before it is given 

into the AI model. 

Simple Major 

 Suitable input checking 

45 The plausibility of the AI 

 

Simple Minor 

 Suitable plausibility checking 

46 The AI model shall be 

monitored during the program 

execution. 

Complex 

 How to limit storage 

demand/costs 

Minor 

 Suitable monitoring metrics 

47 Errors of the model shall be 

logged. 

Complex 

 How to log high-dimensional 

data 

 How to limit storage 

demand/costs 

Minor 

 Suitable timeframe of logging 

 Suitable extent of logging 

48 Damaged or manipulated inputs 

shall be corrected when it is 

safely possible. 

Complex 

 How to correct high-

dimensional data 

Major 

 Suitable input correction 

49 Fail-safe methods shall be 

implemented to mitigate entire 

system failures. 

Complex 

 How to limit computational 

resources / storage demand / 

costs 

Major 

 Suitable fail-safe methods 

50 Parallel redundant AI models 

shall be implemented. 

Complex 

 How to operate multiple 

complex systems 

 How to limit computational 

resources / storage demand / 

costs 

Major 

 Suitable extent of redundancy 

 Suitable redundant models 

 



3 Generic Requirements (AP3) 

94 Federal Office for Information Security 

3.5 Testability of Requirements 

In addition to the applicability of the generic requirements defined in Chapter 3.4, the testability of these 

requirements has to be addressed. Table 38 shows a mapping between each requirement and a short indicator 

on the test procedure and its overall testability. 

The testability of a requirement is categorized as: 

 High: The test effort for this requirement is low and can possibly be automated. 

 Medium: The tests for this requirement require domain knowledge or interpretations. 

 Low/Infeasible: This requirement is not testable without infeasible or very high effort or there 

exist no methods to test this requirement. 

However, the testability might depend on the specific use case, since some test efforts might change for 

different use cases, systems and environments. To give further insight into the testing procedure for these 

requirements, the tests can either be: 

 Evidence-based: The test for this requirement requires evidence in form of documentation or 

audits. 

 Metric-based: The test for this requirement requires the computation of statistics o metrics. 

Table 38 Overview on the testability of each generic requirement 

Requirement Testability Test Comments 

 ID Description 

1 The environmental context 

shall correspond to the 

operational design domain 

(ODD). 

Medium 

 

Evidence-based 

 Documentation on the 

environmental domain 

 

2 The communication, 

interfaces, signals, etc. 

between different 

components shall be 

coordinated. 

Medium Evidence-based 

 Interface implementation 

 Interface documentation 

 

3 The sensor setup shall be 

similar to the 

development/training setup. 

(High) 

Depends on the 

use case 

Evidence-based 

 Documentation on the sensor 

setup 

 Depends on the 

sensor setup 

 For similar sensors 

high testability 

4  The requirements for AI 

subsystems shall apply to the 

entire system (if applicable). 

Depends on the 

individual 

requirement 

Depends on the individual 

requirement 

 

5 The adequate performance 

shall be guaranteed for a 

certain timeframe after initial 

deployment. 

(Medium) 

Depends on the 

use case 

Metric-based 

 Performance metric over 

certain timeframe 

 Depends on the 

timeframe and 

additional system 

components 

6 The performance on key 

performance indicators (KPIs) 

shall be as high as possible 

High Metric-based 

 Calculation of KPIs 

 

7 The performance shall be 

compliant to the allowed 

worst-case error. 

(High) 

Depends on the 

use case  

Metric-based 

 Performance metric calculated 

for worst-case error 

 Depends on the 

verification of the 

worst-case error 

8 The performance shall be 

reproducible in the real 

environment for operation. 

Medium Metric-based 

 Assessing environments 
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Requirement Testability Test Comments 

 ID Description 

 Comparison of metrics within 

different environments 

9 The feedback of the system 

shall be tracked while in 

operation. 

High Evidence-based 

 System documentation/Code 

review 

 

10 The performance shall be 

corrected when critical errors 

occur after deployment. 

Medium 

 

Evidence-based/Metric-based 

 System documentation 

 Performance metrics on critical 

errors 

 

11 The system state shall be 

tracked in a reproducible way 

while in operation. 

Low 

 

Evidence-based 

 System documentation 

 What is reproducible 

 When to track 

 What does the system state 

entail 

 

12 The architectural design shall 

be described explicitly. 

High Evidence-based 

 Documentation of the 

architectural design 

 

13 The quality & trustworthiness 

for developers shall be 

assessed. 

High Evidence-based 

 Site audit and documentation 

 

14 The development process 

shall be tracked. 

High Evidence-based 

 Documentation of the 

development process 

 

15 The AI model shall be 

implemented using 

mitigation strategies against 

robustness threats. 

Medium Evidence-based 

 Code review/Documentation 

 Assessing suitable strategies 

 

16 The AI model shall be verified 

with formal robustness 

verification techniques. 

Low 

 

Metric-based 

 Verification metrics 

 

 Infeasible for 

complex models 

(>105 neurons and 6 

layers); For more 

information, see 

Chapter 2 

 

17 The robustness of the AI 

model shall be verified with 

empirical robustness 

estimation techniques. 

Medium Metric-based 

 Robustness metrics 

 Assessing suitable metrics 

 Assessing thresholds 

 

18 The AI model shall be tested 

against out-of-distribution 

data. 

High Metric-based 

 Performance metric on out-of-

distribution data 

 

19 Test cases at the boundary 

values of the input of the AI 

model shall be derived. 

High Evidence-based 

 Test documentation 
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Requirement Testability Test Comments 

 ID Description 

20 Test cases based on corner 

cases of the AI model shall be 

derived. 

(Medium) 

Depends on the 

use case 

Evidence-based 

 Test documentation 

 Assessing the quality 

of tests 

 Defining corner 

cases 

 Coverage of corner 

cases 

 Depends on system 

and environment 

21 Test cases shall be derived 

through error guessing based 

on knowledge and experience 

of the system. 

Medium Evidence-based 

 Test documentation 

 Assessing the quality of tests 

 

22 The AI model shall be tested 

against possible robustness 

threats. 

(Medium) 

Depends on the 

use case 

Evidence-based 

 Test documentation 

 Assessing the quality 

of tests 

 Defining possible 

threats 

 Depends on system 

and environment 

23 The source of the datasets 

shall be traceable. 

Medium Evidence-based 

 Dataset documentation 

 

24 The source of the dataset shall 

be verified. 

Medium Evidence-based 

 Dataset documentation 

 

25 The training, test and 

evaluation datasets shall have 

adequate coverage of the 

operational input domain. 

Medium Evidence-based 

 Dataset documentation 

 

26 The datasets shall be verified 

against the safety 

requirements. 

Medium Evidence-based 

 Dataset documentation  

 

27 The uncertainty of the 

datasets shall be analyzed and 

quantified. 

Medium Metric-based 

 Uncertainty metric 

 How much uncertainty is 

adequate 

 

28 The datasets used for training, 

testing and evaluation shall 

not contain any errors. 

Medium Evidence-based 

 Dataset documentation 

 

29 The training, test and 

evaluation datasets shall have 

sufficient size. 

Medium Evidence-based 

 Dataset documentation 

 

30 The training, test and 

evaluation datasets shall be 

independent from each other. 

High Evidence-based 

 Dataset documentation 

 

31 The training, test and 

evaluation datasets shall be 

prepared in an adequate way. 

Medium Evidence-based 

 Dataset documentation  

 Software modelling 

documentation 

 

32 The requirements shall be 

analyzed to derive test cases 

Medium Evidence-based 

 Test documentation 
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Requirement Testability Test Comments 

 ID Description 

for interpretable model 

decisions. 

33  decisions shall be 

explained to aid the 

comparison between the 

modelling of the system and 

the trained model.. 

Medium Metric-based/Evidence-based 

 Explanation metric 

 Software modelling 

documentation 

 

34 s shall be 

explained to check if the 

requirements of the system 

are met. 

Medium Metric-based/Evidence-based 

 Explanation metric 

 Requirement documentation 

 

35 

boundary values shall be 

explained. 

Medium Metric-based/Evidence-based 

 Explanation metric 

 Input space (boundary value) 

documentation 

 

36 

corner cases shall be 

explained. 

(Medium) 

Depends on the 

use case 

Metric-based/Evidence-based 

 Explanation metric 

 Corner case documentation 

 Assessing the quality 

of tests 

 Defining corner 

cases 

 Coverage of corner 

cases 

 Depends on system 

and environment 

37 

failed tests shall be explained. 

Medium Metric-based 

 Explanation metric 

 

38 The least complex model 

architecture needed to solve 

the task shall be chosen. 

Medium Evidence-based 

 Model documentation 

 

architecture 

 Assessment of 

rationale  

39 A model architecture shall be 

chosen to maximize the 

interpretability of decisions. 

Medium Evidence-based 

 Model documentation 

 

40 The SW unit design shall be 

described explicitly. 

High 

 

Evidence-based 

 Documentation of the SW unit 

design 

 Depending on the 

degree of testing 

white box access of 

model is needed 

41 The dataset & model shall be 

versioned. 

High Evidence-based 

 Versioning documentation 

 

42 Standardized methods to 

record characteristics of 

datasets, AI models and key 

processes shall exist and be 

followed 

High Evidence-based 

 Entire documentation 

 

43 The labelling process of the 

dataset shall be documented 

and tracked. 

High Evidence-based 

 Dataset documentation 
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Requirement Testability Test Comments 

 ID Description 

44 The input shall be monitored 

and checked before it is given 

into the AI model. 

Medium Evidence-based/Metric-based 

 Software documentation 

 Input checking metric 

 

45 The plausibility of the AI 

checked. 

Medium Evidence-based 

 Code review/Documentation 

 Suitable plausibility checking 

 

46 The AI model shall be 

monitored during the 

program execution. 

Medium Evidence-based 

 Suitable monitoring metrics 

 

47 Errors of the model shall be 

logged. 

High 

 

Evidence-based 

 System documentation 

 Logging 

 Code review 

 

48 Damaged or manipulated 

inputs shall be corrected 

when it is safely possible. 

Medium Evidence-based/Metric-based 

 Detection metric 

 System documentation 

 Code review 

 

49 Fail-safe methods shall be 

implemented to mitigate 

entire system failures. 

Medium Evidence-based 

 Documentation of fail-safe 

methods 

 

50 Parallel redundant AI models 

shall be implemented. 

Medium 

 

Evidence-based/Metric-based 

 System Documentation 

 Similarity metric of models 
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4 Use Case Comparison for Audit Criteria 
Development (AP4) 

This chapter -Cases im Hinblick auf Eignung 

Anforderungen an KI-Systeme anhand praktischer Use-Cases im 

Hence, it contains the results of the listing and categorization of potential use cases in the mobility area and 

specifically use cases that are part of ADAS or AD systems. These use cases are categorized and the most 

interesting and relevant ones are analyzed regarding their suitability for the development of audit criteria and 

the practical testing of the generic requirements given in Chapter 3. Based on this the recommendation of use 

cases for the work packages five and seven is performed. 

As a general disclaimer, it is important to point out that the sheer number of potential use cases in the area of 

AD/ADAS and the complexity of individual use cases makes an unambiguous categorization and comparison 

close to impossible. Depending on the viewpoint different aspects can be assessed as more important leading 

to a varying categorization. This also strongly depends on the details that one considers when categorizing 

the use cases. In this document we try to give a general overview of relevant use cases for AD/ADAS and derive 

a common categorization as best as possible. This does not claim to be the ideal and all-inclusive solution and 

there are other options to perform the categorization. Nevertheless, a common categorization is needed to be 

able to compare various use cases more easily. Only this enables the proper selection of the use cases for the 

practical tests in work packages five and seven. 

4.1 Category Overview 

In this chapter we present the categories that are used to group the use cases in Chapter 4.2. We discuss 

different categories that are used to differentiate the use cases and start by initially listing the categories that 

are motivated in the description of services. Then, we present additional categories that cover further 

important aspects of different mobility use cases. For each category we discuss the possible parameters and 

give practical examples for the meaning of each parameter level. Each concrete parameter that is later used 

to categorize the use cases is highlighted in bold face. 

4.1.1 Required Categories from Description of Services 

4.1.1.1 Safety Relevance 

The first category that is mentioned is the impact and relevance of the use case for the safety of the entire 

mobility system and external traffic participants. Here, possible parameter values are: 

• High: The use case impacts the control of a vehicle and is executed at moderate/high speed levels where 

a failure can cause significant damages. 

• Medium: The use case impacts the control of a vehicle and is executed at moderate/high speed levels 

where a failure can cause limited damages. Also included are use cases where a failure can cause 

significant damages, but the use case only impacts the control of a vehicle as part of an assistance 

system and not independently. 

• Low: The use case impacts the control of a vehicle and is only executed at low speeds where a failure 

can cause limited damages. Also included are use cases that are executed at moderate/high speed levels 

where a failure can cause limited damages, but the use case only impacts the control of a vehicle as part 

of an assistance system and not independently. 

• None: The use case does not impact the driving performance and the control of a vehicle in any way 

and is a pure comfort system. 
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4.1.1.2 Input Data 

This category covers the respective input data for each use case. Here, possible parameter values are: 

• Sensor-based: Data that is generated by different sensors, including both exteroceptive and 

interoceptive sensors. During the use case discussion in Chapter 4.2 we assume an exteroceptive sensor 

if not described otherwise. Relevant sensors are: 

• Camera 

• LiDAR 

• RADAR 

• Acoustic 

• Ultrasonic 

• GPS 

• HD Map: High-definition map that contains a more detailed representation of map and road elements. 

• Internal: Data/Information that is generated internally in the entire system by previous components 

or use cases and not by sensors. 

• Fusion: Data that is combined from different sensors or components. 

• None: The use case needs no data as input. 

4.1.1.3 Modular Components 

In this category the modular components of an AD system which are involved in each use case are covered. 

The modular components are described in detail in the previous Chapter 2. In this category, possible 

parameter values are: 

• Perception 

• Localization 

• Prediction 

• Planning 

• Control 

• None: No traditional modular component is used. 

4.1.1.4 AI Usage 

The next category differentiates the AI and ML techniques that are used in each use case. Generally, in the 

remainder of this document we only cover use cases where an AI involvement is in principle possible and 

logical. In this category, possible parameter values are: 

• Current: This parameter lists the technique that is currently used by the majority of state-of-the-art 

(SOTA) systems for each use case. 

• Algos: Traditional algorithm/methods are used that are not based on ML. 

• Tree 

• SVM 

• DNN 

• ML-Future: In case currently traditional algorithms are used this parameter describes the expected 

arrival time of ML-based techniques. 
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• Near: ML-based techniques are expected to be the SOTA in the next few (<3) years. 

• Far: ML-based techniques are expected to be the SOTA in reasonable (3-10 years) time. 

• Unlikely: ML-based techniques are not expected to be the SOTA in reasonable (<10 years) time. 

4.1.1.5 Auditability 

This category covers the test effort required to derive the residual risk of an AI system implementing the use 

case. Here, possible parameter values are: 

• Complex: The damage potential of hazards is medium or high and despite a high test effort, the residual 

risk of the system is complex to derive. 

• Medium: The residual risk can be measured with a reasonable test effort. 

• Simple: The damage potential of hazards is low or the residual risk can be covered with low test effort. 

4.1.2 Additional Categories from AP2 & AP3 

4.1.2.1 Complexity 

The first additional category differentiates the complexity of each use case. Here, different factors are relevant 

to determine the overall complexity. On the one hand, one factor is the amount of different modular 

components that is already covered in the requirement in Chapter 4.1.1.3. Additionally, other factors are 

considered like the availability of relevant literature, whether the use case is completely new or already used 

for some years and whether the use case is well understood or still heavily researched without commonly 

used techniques. In this category, possible parameter values are: 

• High: The use case is new, under research and contains multiple modular components. 

• Medium: The use case is either new but only contains few modular components or the use case is well 

understood but contains multiple modular components. 

• Low: The use case is well understood and contains only a single modular component. 

4.1.2.2 Widespread Distribution 

This category covers the distribution of the usage of the use case. Here, possible parameter values are: 

• High: The use case is present in most new high-priced vehicles. 

• Medium: The use case is present in some new high-priced vehicles. 

• Low: The use case is not present in most new high-priced vehicles. 

4.1.2.3 Attack Applicability 

In this category the applicability of potential attacks on the AI component is covered. Principled attack 

methods are described in detail in Chapter 2. Again, multiple factors are important to consider when assessing 

the general applicability of an attack in reality. The most important factors are the scalability of an attack, the 

availability of literature or demonstrations of an attack, the required access interface of an adversary and 

whether concrete implementations are publicly available. In this category, possible parameter values are: 

• Unrealistic: The attack cannot be executed without internal access of the adversary. 

• Complex: The attack can be executed without internal access of the adversary but cannot be scaled to 

impact multiple vehicles or there exists no public knowledge of the attack. 

• Medium: The attack can be executed without internal access of the adversary, can be partly scaled to 

impact multiple vehicles and there exists at least some public knowledge of the attack. 
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• Simple: The attack can be executed without internal access of the adversary, can be well scaled to 

impact multiple vehicles and there exists extensive public knowledge of the attack. 

4.1.2.4 Perception Components 

This category focusses specifically on the involved perception components for each use case. Most of the 

perception components are described in detail in Chapter 2. In this category, possible parameter values are:  

• Detection 

• Segmentation 

• Depth 

• Flow 

• Clustering: Clustering is used to group 3D point cloud data. 

• Occupancy Grid Map: Generate grid map of environment indicating the location of obstacles. 

• Classification 

• Regression 

• None: No perception component is involved. 

4.2 Use Case Overview 

In this chapter we present an initial overview of use cases in the area of mobility that currently use AI systems 

or where AI systems are potentially used in the future. A list of potential use cases is developed and the 

previously introduced categories are used to compare the use cases. We focus on listing rather generic use 

cases to be able to cover all important aspects of different use cases that arise in the context of AD and ADAS. 

Later in Chapter 4.3, a more detailed discussion is performed for the most interesting and relevant use cases. 

First, we discuss generic use cases that are relevant for both AD and ADAS before we focus on use cases that 

are specific for each field. In both cases there exist different publications that cover use cases from different 

viewpoints which we discuss in Chapter 2. Most importantly ( (184), (185), (186)) cover use cases for AD and ( 

(187), (188)) cover use cases for ADAS. We try to combine these different viewpoints and first extract generic 

use cases that are relevant for both domains. 

4.2.1 Generic Use Cases 

Table 39 gives an overview of the considered generic use cases and the grouping using the categories from 

Chapter 4.1. It serves as an overview to compare the different use cases on a quick glance. In the remainder of 

this chapter the concrete categorization is further discussed in detail for each use case. Additionally, we argue 

whether the use case should be selected for the more fine-grained analysis in Chapter 4.3 that forms the basis 

for the final selection of use cases in Chapter 4.4. 
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Table 39 Overview of general use cases 
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4.2.1.1 Emergency Braking (1) 

The emergency braking use case contains all functionality that reacts to potential obstacles in the driving path 

of a vehicle by initiating a deceleration motion. It can be executed at different speed levels and is independent 

of the road type. Thus, it has a high relevance for the safety. Depending on the manufacturer different input 

data types are possible. In some cases, only camera-based data is used, while others also include point cloud 

data based on LiDAR or RADAR to have a more robust depth estimation for potential obstacles. Additionally, 

the fusion of the described sensor data can be used. Since this use cases exploits sensor data, the perception 

component is involved. In addition, the use case also impacts the control component of a vehicle by 

automatically controlling the actuators to initiate a deceleration motion. For systems that are used in current 

ADAS on public roads, typically traditional algorithms are used for regulatory reasons. Nevertheless, it is 

already possible to use ML-based methods, which also promise a better performance and therefore will most-

likely be used in the near future. The auditability is classified as complex since the use case has a high safety 

relevance and perception-based ML systems are hard to verify considering the almost infinite input space. 

Emergency braking is already in use for some years (also on vehicles that operate on public roads) and rather 

well understood. Therefore, the complexity can be categorized as medium while the widespread distribution 

is rather high. Also, it is challenging to scale the applicability of attacks. For camera-based data one way to 

attack the emergency braking functionality is to attach physical perturbations on moving vehicles/obstacles. 

This does not scale to multiple vehicles at all and thus the only alternative is to create fake obstacles, e.g. using 

a beamer. For point cloud data it is far more difficult to pretend that an obstacle exists and close to no public 

knowledge exists here. Finally, the perception techniques of detection and classification are used to detect 

obstacles in image data, whereas depth and clustering techniques are used to detect obstacles in point cloud 

data. In Chapter 4.4 we do not consider this use case, because the collision avoidance use case discussed in 

Chapter 4.2.1.2 can be considered as including the emergency braking use case. 
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4.2.1.2 Collision Avoidance (2) 

This use case is a generalization of the emergency braking use case from Chapter 4.2.1.1. In addition to 

deceleration, collision avoidance functionalities also include acceleration and steering motions. Also, it is 

possible to avoid accidents resulting from side or rear-end collisions, instead of only focusing on collisions on 

the driving path of a vehicle. Thus, most parameters in Table 39 are like the categorization for emergency 

braking. For the modular components this use case additionally impacts the prediction component. In 

contrast to emergency braking, which performs an immediate and heavy braking maneuver, general collision 

avoidance has more degrees of freedom and can avoid accidents that are likely to happen in the future. Here, 

DNNs are used to predict the future behavior and trajectory of other participants which might need to be 

avoided. Therefore, this use case has a higher complexity and is currently not widely used yet. Again, the 

auditability is classified as complex for the same reasons as in Chapter4.2.1.1. This use case is further analyzed 

in Chapter 4.4 because it is most generic and includes different specific use cases to avoid collisions in certain 

situations or by executing certain maneuvers. 

4.2.1.3 Lane Keeping (3) 

The next use case consists of lane keeping, which includes all functionalities that keep a vehicle in the current 

driving lane. Here, mainly steering motions are performed to tackle the given task. In general, there is no need 

to perform a detection of other traffic participants and thus no point cloud data is required as input. However, 

next to perception localization plays a role to determine the current position of the vehicle on a map to 

understand the lane structure if markings are missing and to accurately estimate the position of the vehicle 

in the lane. Systems with lane keeping functionality are already deployed in the current generation of ADASs, 

meaning currently traditional algorithms are used. This also means that the complexity is only medium while 

the widespread distribution is partly given. The auditability is again classified as complex for the same reasons 

discussed previously. In contrast to the previously discussed use cases, the attack applicability is rather simple 

for the lane keeping use case. An adversary can prepare the road surface using markers, which potentially 

impacts all vehicles that drive by. Since the detection of other traffic participants is not required, only the 

segmentation task is relevant for the perception of the surrounding scene. For the detailed analysis this use 

case is included because it covers very relevant tasks for driving functionalities which are also currently 

deployed. 

4.2.1.4 Lane Changing (4) 

Like the discussion on use case 1 and use case 2, the lane changing use case has a more complex functionality 

than the previous lane keeping use case. This use case includes all functionalities that lead to a change in the 

driving lane of the vehicle. For example, this includes overtaking maneuvers on two lane roads, lane selection 

on intersections or entering highways. To perform such maneuvers steering motions are again most 

important. Nevertheless, also acceleration or deceleration motions are required to be able to merge in 

between two vehicles and adapt to the driving speed of the new lane. Hence, this use case again requires 

detecting other dynamic traffic participants and typically sensors for point cloud data are used. Also, the 

planning component is heavily impacted because lane changing is a complex maneuver which requires the 

trajectory planning of the vehicle for multiple steps in the future. Therefore, this use case is very complex and 

is not used widely yet. Similarly, the auditability is classified as complex for the reasons discussed in Chapter 

4.2.1.1. Like use case 3, the applicability of the attack is simple when only camera perception is used because 

static markings can be placed on the road. Attacking point cloud sensors for traffic participants detection is 

more complex as discussed in Chapter 4.2.1.1. In Chapter 4.4 this use case is analyzed in detail because it 

includes very important driving functionalities with a high safety relevance especially when considering 

higher levels of automated driving. 
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4.2.1.5 Adaptive Cruise Control (5) 

The adaptive cruise control use case includes functionalities that manage the distance to a vehicle driving in 

front of the ego vehicle. Here, deceleration and acceleration motions are important to control the distance to 

the front vehicle adaptively based on its driving maneuvers and speed. Hence, for this use case the detection 

of the front vehicle is important, which can be based on camera or point cloud data. Based on the detection 

and the estimated distance to the front vehicle, the speed of the ego vehicle is directly controlled without a 

relevant involvement of prediction or planning components. Nevertheless, the auditability of an AI system is 

again classified as complex. The functionalities for this use case are included in current ADASs, meaning 

currently traditional algorithms with a medium complexity are used. Attacks are very difficult to carry out 

and scale to impact multiple vehicles. It is possible to hide the front vehicle for perception by adding physical 

perturbation (e.g., stickers or 3d prints) on the vehicle, but an adversary gains little from this. Like use case 3 

the adaptive cruise control use case is further analyzed in Chapter 4.3 because in combination this enables to 

operate a vehicle autonomously in standard road scenarios. 

4.2.1.6 Rain/Grip Level (6) 

The next use case covers functionalities that measure the amount of rain on a road or the grip level in general. 

This can include the detection of ice or snow and an assessment of the general road surface. The goal is to 

provide an indication of the available grip level of the upcoming road which is integrated by the planning 

component in potential motions or used by the driver of a vehicle. Thus, the safety relevance is only medium 

because there is no direct control of driving functionalities. For grip level assessment mainly camera data is 

used for the perception and DNNs are mainly used to evaluate and interpret the data. The auditability is 

classified as complex despite the medium safety relevance of the use case, because perception-based ML 

systems are hard to verify considering the almost infinite input space. In principle, the idea behind the use 

case is rather simple, however research only started recently and the use case is relatively young. Hence, the 

widespread distribution is pretty low and the overall complexity is medium because grip level prediction is 

not extensively researched. Also, performing attacks is rather complex since an adversary would need to 

perturb the road surface continuously for a rather long distance. This is also the main reason why this use 

case is not further analyzed in Chapter 4.3. Another reason is that this use case is more niche and not 

necessarily required for automated driving. 

4.2.1.7 Virtual Sensor Replacements (7) 

This use case includes all functionalities where physical sensors are replaced by intelligent algorithms that 

provide the same (or even enhanced) information but use already existing sensor data to derive this 

information. Hence, the number of required sensors in a vehicle is reduced by using intelligent processing 

software. Like the discussion on the previous use case, there is no direct control of driving functionalities 

leading to a reduced safety relevance in case sensors are replaced that are mainly used for convenience 

functionalities. As mentioned, various internal data sources are used or fused with other external sensors to 

gather the required data which allows generating the same data that a traditional sensor would capture. Here, 

DNNs are most powerful to learn the functionality of a traditional sensor and replicate it from the available 

data. Depending on the level of criticality of the replaced sensor, the auditability of the virtual AI-based sensor 

can reach from simple to complex. The complexity is low compared to the other use cases, but the use of 

virtual sensors is also not widely spread yet. Also, it is unrealistic to perform any attacks because the adversary 

does not have a single attack point that only serves to attack sensor replacements. In addition, such sensor 

replacements are used for non-critical sensors for convenience functions where an attack does have very little 

or no damage potential. This use case is also not further analyzed for the same reasons as for use case 6. In 

future, it is likely that virtual sensor replacements are also used to replace sensors that are relevant for driving 

functionalities. However, such usages are not the focus for the categorization in Table 39. There, we mainly 

consider virtual replacements of sensors which are not directly involved in the perception components for 

AD/ADAS, i.e. Camera, RADAR or LiDAR sensors are not replaced. When these sensors are also replaced, the 



4 Use Case Comparison for Audit Criteria Development (AP4) 

Federal Office for Information Security 107 

complexity and safety relevance of this use case is significantly increased and new attack vectors open for 

adversaries.  

4.2.1.8 Driver/Passenger Interaction (8) 

In contrast to all previous use cases, this use case focusses on pure comfort functionalities inside a vehicle. 

Concretely, all functionalities are included that serve to interact with the driver or other passengers of a 

vehicle. Hence, different human-machine interfaces are relevant where the most important one is having a 

voice assistant for different comfort commands, like music/climate control or wishes to adjust the navigation 

route. Similarly, other interfaces are possible but typically AI is most important for voice interfaces. Here, the 

perception is based on the data from interoceptive acoustic sensors, which is processed by a DNN to achieve 

the performance of current voice assistants. The auditability of an AI-based system is ranked as simple 

because the use case has no direct impact on the safety of the driving functionality. Similarly, the overall 

complexity is low compared to use cases that include driving functionalities, but voice assistants are widely 

used in current vehicle generations. The attack applicability depends on the sensor that is used for perception. 

In case of acoustic sensors, a physical attack interface is to play perturbed sounds (songs, commercials, etc.) 

over radio (or Spotify, YouTube etc.). This attack scales potentially to a large number of vehicles and thus has 

a simple applicability. In case other sensor data is used the attack is instead unrealistic because an adversary 

would have to apply the physical perturbations at the inside of the vehicle. Since this use case has no safety 

relevance and does not directly impact any driving functionalities it is not included in the analysis in Chapter 

4.3. 

4.2.1.9 Global Navigation/Path Planning (9) 

The next use case includes AI related functionalities for global navigation and path planning. Here, the global 

route/path of a vehicle is planned, which consists of the rough path from the starting location to the target 

location. The most famous example are map services (Google Maps, etc.), which plan a route for the vehicle. 

This route is updated online during driving depending on the current occupancy of roads or the probability 

of traffic jams. Here, AI-based algorithms play a role to predict potential arrival times or likely traffic jams. In 

general, global path planning is not based on perception but only utilizes the localization and prediction 

components. It is already used for quite some years and thus is rather well understood. Therefore, global path 

planning is widely distributed and available for everyone via apps for smartphones. The auditability is ranked 

as simple similarly to Chapter 4.2.1.8. Also, the complexity is low in comparison to driving functionalities, but 

an attack is unrealistic because there exists no physical attack interface an adversary can exploit. In Chapter 

4.3 this use case is further analyzed due to the extremely widespread distribution and relevance for path 

planning of automated driving. 

4.2.1.10 Automated Parking (10) 

Finally, the last generic use case is automated parking, which covers functionalities for automatically finding 

a parking spot in a larger parking lot or performing automatic parking at the roadside. The safety relevance is 

low because the functionalities are only executed at low speeds, but otherwise use a similar sensor suite and 

detection concepts as functionalities for collision avoidance from use case 2. In addition, the planning 

component is involved to plan the concrete maneuver that is required to navigate the vehicle into a tight 

parking spot. Despite operating with low speed, a malfunctioning could harm pedestrians. Therefore, the 

auditability is classified as complex since perception-based ML systems are hard to verify considering the 

almost infinite input space. This use case is already available for some years in high-end vehicles and is 

continuously further included in current ADASs. Hence, a certain degree of widespread distribution is present 

and the complexity is in the middle of the range. Finally, the attack applicability is comparable to the 

discussion in Chapter 4.2.1.1. This use case is not included in the detailed analyses because it is a combination 

of different individual use cases but only executed at lower speeds for a concrete task. 
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4.2.2 ADAS specific Use Cases 

Similar to the previous Chapter 4.2.1, this chapter provides a general list of use cases that are specifically 

relevant for ADAS which are not yet covered in the use cases presented so far. Like Table 39 we show an 

overview in Table 40 and discuss the categorization of each use case in the following. 

Table 40 Overview of ADAS specific use cases 
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4.2.2.1 Blind Spot Monitoring (11) 

The blind spot monitoring use case includes functionalities that provide an aid to the driver by monitoring 

blind spots of the field of view of the driver. For example, this can include areas that are not visible in the 

mirrors or which are blocked by the vehicle chassis. In these blind spots the detection of obstacles and other 

traffic participants is performed which can be based on camera or point cloud data. Since this use case is a 

pure assistance system, only the perception component is relevant. Overall, there are already systems 

operating in public which offer blind spot monitoring leading to a partial distribution. The auditability is 

classified as complex despite a medium safety relevance of the use case for the same reasons discussed in 

Chapter 4.2.1.6. Also, the complexity is medium because the task is already researched for some years and is 

strictly simpler than the more complex use case 2 covering collision avoidance. An adversary trying to attack 

blind spot monitoring has a very complex task. One reason is that it is difficult to scale practical perturbations 

to impact multiple vehicles because perturbations need to be applied on individual vehicles. For the analysis 
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in Chapter 4.3 this use case is not covered because use case 2 can be seen as a generalization that includes 

similar but more complex functionalities. 

4.2.2.2 Traffic Sign Assistant (12) 

This use case includes all functionalities that show currently relevant traffic signs to the driver. However, this 

purely acts as an assistance feature and for example does not adapt the speed of a vehicle to the detected speed 

limit automatically. Therefore, the safety relevance is rather low because only the perception or localization 

components are involved. For the perception camera sensors are useful if no map data is available or if there 

is a short-term temporary change in the traffic signs. Since the safety relevance is categorized as low, the 

auditability activities can be quite simple. In case of a traffic sign assistant that automatically adapts the 

vehicle speed to the detected speed limit, the auditability might rise with the safety relevance to a complex 

level. This use case is very specific and includes clearly defined tasks leading to a rather low complexity. Also, 

there are already functionalities deployed for some years leading to a widespread distribution. The attack 

applicability is simple since physical perturbations can be applied to existing signs or phantom/spoofing signs 

can be placed on the roadside. In Chapter 4.3 this use case is further analyzed, because the concrete 

functionality  is not yet represented in the current selection of use cases and provides a rather simple use case 

which can become more important in the future for general-purpose autonomous driving. 

4.2.2.3 Wrong-Way Warning (13) 

Like use case 3 the wrong-way warning use case includes functionalities regarding the driving lane of a 

vehicle. In contrast, only assistance systems are considered that provide a warning to the driver if the vehicle 

enters the opposite lane or enters a one-way street in the wrong driving direction. Hence, most parameters 

are similar to Chapter 4.2.1.3, but the complexity and safety relevance is lower because the control component 

is not directly involved. We do not analyze this use case further because it can be seen as a specific application 

of use case 3. 

4.2.2.4 Driver Monitoring (14) 

The last ADAS specific use case is based on the monitoring of the driver. For example, the goal is to detect the 

drowsiness or distraction of a driver and provide a warning to the driver. Hence, this use case is again based 

on camera perception facing the inside of a vehicle and does not involve other components than perception. 

Since driver monitoring is again a pure assistance feature without influence on the control of the vehicle, 

currently DNNs are used for the highest performance of driver attention prediction. Nevertheless, we want 

to point out the importance of this use case, because the earliest as possible detection of a driver inattention 

leads to the highest available prewarning time. This can reduce the number and criticality of accidents and is 

also important when the driver must monitor assistance functionalities and be able to intervene rapidly. The 

auditability is classified as complex similarly to the discussion in Chapter 4.2.2.1. The complexity is 

comparably simple because the use case does not involve multiple traffic participants and only considers the 

driver. Also, the spread of the use case is rather low since it only came up in recent years. At the same time, it 

is unrealistic to apply an attack because an adversary would need to apply perturbations at the inside of the 

vehicle. In the analysis in Chapter 4.3 this use case is included to also analyze a use case which focusses on the 

perception of the inside of a vehicle. 

4.2.3 AD specific Use Cases 

Finally, this chapter covers use case for AD that are not included yet. Again, Table 41 provides an overview of 

the use cases which are discussed in detail in the remainder of this chapter. 
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Table 41 Overview of AD specific use cases 

 

4.2.3.1 A Priori Map-based Localization (15) 

Localization aims to determine the current position of the ego-vehicle as it navigates through the scene. In 

autonomous driving, this is a very important component especially for lane keeping mentioned in Chapter 

4.2.1.3 and for global navigation mentioned in Chapter 4.2.1.9. Hence, the safety relevance of localization is 

categorized as high. 
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There are several approaches for localization (184): 

• GPS-IMU fusion based localization uses data from GPS and IMU with the dead-reckoning principle to 

estimate the current position of the vehicle. This method alone does not give the accuracy required for 

autonomous driving because of the inaccuracies in GPS data and the accumulation of errors in dead 

reckoning. 

• Another approach is SLAM which performs the localization of the vehicle and the map creation of its 

environment at the same time. This method is commonly used for indoor robot navigation. Since this 

method does mapping and localizing at the same time, it requires high computational costs and hence 

is not efficient enough for using it in the outdoor world. 

• Another approach is doing localization based on a pre-

in the following. This again contains two sub-approaches, namely landmark search and point cloud 

matching. 

• Landmark search commonly uses camera sensors to detect landmarks (e.g. poles, signs, road 

markers, etc.) and matches them with a digital landmarks map to localize the vehicle. Hence, 

the perception component is involved in this approach. 

• In point cloud matching 3D sensors such as LiDAR are used. Here, the point cloud at a given 

time is pre-processed and matched with an existing 3D map to get the position and orientation 

of the ego-vehicle at that time. 

For global navigation, GPS-IMU sensors together with traditional algorithms are used, which has high 

widespread distribution. For accurate localization using camera or LiDAR sensors DNNs are used, which has 

a low widespread distribution. Nevertheless, the auditability is classified as complex for the reason discussed 

in Chapter 4.2.1.1. The complexity is considered medium as it is a well-understood use case and contains 

relatively few modular components. However, the attack applicability is complex as attacking this component 

requires to modify the environment extensively. Lastly, the perception components detection, classification 

and segmentation are used for finding landmarks. We select this use case for the further analysis in Chapter 

4.3 because it is not yet represented in the previously selected use cases and is very relevant for AD/ADAS. 

4.2.3.2 Road Users Detection (16) 

Road users are the dynamic traffic participants on the scene such as pedestrians, cars, cyclists etc. They can be 

detected either from camera sensors or 3D sensors or using a fusion approach. In addition, acoustic sensors 

can be used to detect emergency vehicles. This use case has a high safety relevance because failure to detect 

road users can lead to high damages. The perception component is involved as it detects the road users around 

the vehicle. Here, road user detection based on cameras uses DNNs, while road user detection based on 3D 

sensors uses traditional algorithms like clustering. However, recently DNNs are also being used for 3D sensor 

data. Like in Chapter 4.2.1.1 the auditability is classified as complex. Like the previous use case, complexity is 

considered medium as it is a well-understood use case and contains relatively few modular components. It 

has medium widespread distribution as it is found in many but not most new vehicles (e.g. vehicles from 

Mazda, Hyundai). The attack applicability is simple in case of camera or acoustic sensors because the system 

can be fooled by fake emergency vehicle sounds or pedestrians wearing special T-shirts with adversarial 

prints. It is much more complex to fool the perception based on 3D sensors. When considering the involved 

perception components, segmentation is camera specific, clustering is point cloud specific and detection & 

classification are common to both. In Chapter 4.3 this use case is further analyzed since it is very relevant and 

forms the basis for different functionalities. 

4.2.3.3 Road Elements Detection (17) 

Road elements are the static elements on the road such as lane markings, landmarks, traffic signs, traffic lights, 

etc. They have a high safety relevance and failing to detect them can cause high damages. For example, failure 
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to detect lane markings can make the vehicle drift outside the driving lane and failure to detect traffic signs 

can result in incorrect speed or behavior of the vehicle. All the attributes are similar to the previous use case. 

The only difference is that the localization is included in the modular components, as the detection of road 

elements influences the localization output. Like the previous use case it is selected for the detailed analysis 

later. 

4.2.3.4 Free Space Detection (18) 

This use case detects the free space on the road on which the ego-vehicle can potentially drive. It is a 

complementary use case of the use cases 16 and 17, in the sense that the previous use cases detect the obstacles 

on the road whereas this use case detects the drivable area on the road. Hence, all the attributes are the same 

as for use case 17. Here, the perception component additionally includes occupancy grid maps which can be 

used for free space detection. Since this use case is very similar to use case 17 it is not analyzed further in 

Chapter 4.3. 

4.2.3.5 Behavior Prediction (19) 

This use case identifies the behavior and subsequently the trajectory of the traffic participants (e.g. crossing 

the street, overtaking of a vehicle). It is required for accident-free local path planning discussed in Chapter 

4.2.3.6 and has a high safety relevance for the same reasons as use cases 16 and 17. The inputs can be either 

internally generated information (e.g. the pose of the detected pedestrians/vehicles in the last few frames) or 

the raw-sensor data. Using HD map information (e.g. location of zebra crossing) can improve the behavior 

prediction. Based on the type of inputs used, the involved modular components can be perception, prediction 

or both. Traditionally model based prediction approaches are used, but in recent times DNN-based trajectory 

prediction is gaining popularity. Again, the auditability is classified as complex as in Chapter 4.2.1.1. The 

complexity of this use case is rated higher than the complexity of the other use cases because the human 

factor is heavily involved and it is even for humans difficult to estimate the trajectory of the traffic 

participants in all cases. Also, the high complexity results in a low widespread distribution. In general, it is 

unrealistic to attack the system because this requires creating a fake behavior of other traffic participants 

without having internal access. When sensors are used as input, the involved perception components are 

detection and classification. This use case represents a different functionality than the other use cases and is 

therefore included in the detailed analysis later. 

4.2.3.6 Local Path Planning (20) 

While the use case 9 deals with the end-to-end path planning, local path planning plans the path of the ego-

vehicle only in its perception range. The safety relevance is high, similar to the previous use cases. The 

position. The modular components involved are planning and control. While traditionally tree-based and 

probabilistic algorithms are used, reinforcement learning approaches are currently on the rise. Like DNNs, 

reinforcement learning approaches face the problem of difficult (formal) verification and thus, considering 

the high safety relevance, auditability is classified as complex. This use case has a medium complexity with 

low widespread distribution. Similar to use case 9, attacks on local path planning are unrealistic. In Chapter 

4.3 this use case is not further analyzed because it is very similar to use case 9 which is already included in 

the detailed analysis. 

4.3 Use Case Analysis 

After presenting a list of potential use cases and their assignment in important categories in Chapter 4.2, we 

now perform a more detailed analysis of important use cases. For this we use the selection of the most 

important use cases from the list of all presented use cases and analyze the suitability of these for the 

development of audit criteria. Afterwards, we also discuss how some use cases can be combined to cover even 

more driving scenarios and expand the audit criteria development. 
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4.3.1 Single Use Cases 

In the following, we present a detailed analysis of selected use cases from Chapter 4.2. These are selected so 

that they cover all important use cases that are included in current systems for AD/ADAS. Use cases which 

are more niche and not widely used are not considered in the following, because the final aim of this project 

(or following ones) is to develop a technical guideline that allows the auditing of AI-based systems for AD. 

Therefore, it is most relevant to cover use cases which are actively used or are nearly ready for deployment 

from a technical point of view. The final selection for use cases for the development of the technical guideline 

is discussed in Chapter 4.4. 

4.3.1.1 Additional Categories 

Each important and selected use case is further analyzed in Chapter 4.3.1.2 using the following additional 

categories. 

4.3.1.1.1 Representativity 

First, we analyze the representativity of the general use case. Here, related specific tasks and functionalities 

are listed that are part of the general use case but are more specialized and focus on a concrete application. 

This gives a good overview of all techniques that belong to the broader use case. 

4.3.1.1.2 Generalizability 

Next, we discuss the generalizability for each general use case. Here, important factors are involved that 

mainly limit how well results can be reused for other use cases. Most importantly this includes which sensors 

are used, which perception components are involved and whether the use case impacts the planning and 

control of the vehicle. 

4.3.1.1.3 Resources 

Additionally, for each general use case we discuss the required resources. Again, this includes multiple factors 

like the availability of open-source datasets or representative implementations, the complexity and model 

size of involved AI components and the required computational resources for training or inference. 

Concretely, the following parameters are used to gain further insights on the required resources for each use 

case: 

• Specific dataset: Are specific public datasets available that concentrate on this use case or include this 

use case amongst others. 

• Available: There is at least one public dataset available that is commonly used in research. In 

addition, a link to this dataset is provided. 

• Uncommon: There is no public dataset that is commonly used in research. 

• Open-source implementations: Are open-source implementations available that specifically 

implement this use case or include this use case amongst others. 

• Available: There is at least one public implementation available. In addition, a link to this 

implementation is provided. 

• Uncommon: There is no public implementation with sufficient trust level. 

• Data dimensionality: The size of the input data dimensionality relative to all use cases. 

• High: The dimensionality is on the higher end because: 

(a) Image data from camera sensors with a high resolution is required. 

(b) Point cloud data from LiDAR or RADAR sensors with a high resolution is required. 
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• Medium: The dimensionality is in the middle of the range because: 

(a) Image data with a low or medium resolution is sufficient. 

(b) Point cloud data with a low or medium resolution is sufficient. 

• Low: The dimensionality is on the lower end because: 

(a) Internal data is required that is already processed and does not come directly from a camera, 

RADAR or LiDAR sensor. 

(b) Data from other sensors than camera, RADAR or LiDAR is required. 

• Computational resources: The required computational resources needed to perform experiments 

(training, testing, etc.) relative to all use cases. 

• High: The required resources are on the higher end because: 

(a) The data from multiple sensors needs to be fused. 

(b) Recurrent/temporal algorithms or DNNs are used. 

(c) Semantic segmentation is performed. 

(d) The raw data needs extensive preprocessing before usage is possible. 

• Medium: The required resources are in the middle of the range because: 

(a) The data from a single sensor needs to be processed. 

• Low: The required resources are on the lower end because: 

(a) No sensor data is involved in real-time. 

(b) Fast algorithms or small DNNs are sufficient/typically used. 

• Development effort: The required development effort for use case functionality or auditing tools 

relative to all use cases. 

• High: The required development effort is on the higher end because: 

(a) Large variance in relevant data attributes is possible. 

(b) Dynamic elements are relevant for the output. 

• Medium: The required development effort is in the middle of the range because: 

(a) Variance of relevant data attributes is limited. 

(b) Only static elements are relevant for the output. 

• Low: The required development effort is on the lower end because: 

(a) Relevant data attributes are always very similar. 

(b) Only static elements are relevant for the output. 

4.3.1.1.4 Standards/Tools 

Depending on the use case different tools are available which consider testing and auditing at various stages 

in the lifecycle. On the one hand, there exist tools which perform virtual tests using simulated data samples. 

A first approach can be to utilize built-in evaluation capabilities which come with software libraries used 

during development, e.g. performance evaluation with Scikit-learn9. Furthermore, general-purpose tools for 

                                                                 
9 https://scikit-learn.org/  

https://scikit-learn.org/
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the validation of ML-based systems can be deployed which do not focus on the specific needs of mobility use 

cases. Such tools are provided by different companies, for example by QuantPi10 which focusses on explaining 

ML-based systems, or by LatticeFlow11 which focusses on the robustness of ML-based systems. Simulation 

tools which are more use case specific can range from the specific hardware/sensor simulation, like Ansys 

AVxcelerate Sensors12 or RT-LAB13, to the complete driving simulation or digital twins. For open-source 

driving simulation tools the authors in (251) provide a comparison of different implementations. 

Additionally, there are various commercial driving simulation tools, for example ASM Traffic14, CarMaker15 

or rFpro16. Furthermore, tools for virtual validation are typically developed by each company independently 

to fulfill the exact needs and requirements for the validation of their specific use case. Besides pure simulation 

tools, there are also tools which consider the physical testing in the real-world environment. Here, simulation 

is combined with physical devices and hardware, potentially mounted to a test vehicle. These tools enable a 

more realistic evaluation of AD/ADAS systems, but this comes with increased cost and time effort. In Chapter 

4.3.1.2, exemplary tools of this category are assigned to the chosen use cases. 

In addition to the tools, we cover existing standards, norms or technical guidelines specific to each use case 

in the tables below. The tables are organized based on the issuing body of the document. Additionally, it has 

to be noted that all use cases shall conform to existing safety and security standards, such as the ISO 26262  ( 

(165), (246), (247)), ISO/PAS 21448 (242), ISO/SAE 21434 (249) and UNECE R 155 (250). Therefore, these norms 

are not mentioned explicitly for each use case. 

4.3.1.1.4.1 ISO 

Table 42 Overview of relevant documents issued by ISO 

ID Name 

ISO 17387:2008 ISO 17387:2008: Intelligent transport systems Lane Change Decision Aid 

Systems (LCDAS)  Performance requirements and test procedures (last reviewed 

in 2018) (252) 

ISO 19377:2017 ISO 19377:2017: Heavy commercial vehicles and buses  Emergency braking on a 

defined path  Test method for trajectory measurement  (253) 

ISO 19237:2017 ISO 19237:2017: Intelligent transport systems  Pedestrian detection and collision 

mitigation systems (PDCMS)  Performance requirements and test procedures 

(254) 

ISO 22078:2020 ISO 22078:2020: Intelligent transport systems  Bicyclist detection and collision 

mitigation systems (BDCMS)  Performance requirements and test procedures 

(255) 

ISO 3888-2:2011 ISO 3888-2:2011: Passenger Cars  Test Track for a severe lane-change manoeuvre 

 Part 2: Obstacle Avoidance (256) 

ISO 22735:2021 ISO 22735:2021: Road vehicles  Test method to evaluate the performance of 

lane-keeping assistance systems (257) 

ISO 11270:2014 ISO 11270:2014: Intelligent transport systems  Lane keeping assistance systems 

(LKAS)  Performance requirements and test procedures (258) 

ISO/SAE PAS 22736:2021 ISO/SAE PAS 22736:2021: Taxonomy and definitions for terms related to driving 

automation systems for on-road motor vehicles (259) 

                                                                 
10 https://quantpi.com/  
11 https://latticeflow.ai/  
12 https://ansys.com/de-de/products/av-simulation/ansys-avxcelerate-sensors  
13 https://opal-rt.com/autonomous-vehicle/  
14 https://dspace.com/de/gmb/home/medien/product_info/prodinf_asm_traffic.cfm  
15 https://ipg-automotive.com/de/produkte-loesungen/software/carmaker/  
16 https://rfpro.com/  

https://quantpi.com/
https://latticeflow.ai/
https://ansys.com/de-de/products/av-simulation/ansys-avxcelerate-sensors
https://opal-rt.com/autonomous-vehicle/
https://dspace.com/de/gmb/home/medien/product_info/prodinf_asm_traffic.cfm
https://ipg-automotive.com/de/produkte-loesungen/software/carmaker/
https://rfpro.com/
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ID Name 

ISO 19638:2018 ISO 19638:2018: Intelligent transport systems  Road Boundary Departure 

Prevention Systems (RBDPS)  Performance requirements and test procedures 

(260) 

ISO 21717:2018 ISO 21717:2018: Intelligent transport systems  Partially Automated In-Lane 

Driving Systems (PADS)  Performance requirements and test procedures (261)  

ISO 21202:2020 ISO 21202:2020: Intelligent transport systems  Partially Automated Lane Change 

Systems (PALS)  Functional / operational requirements and test procedures 

(262) 

ISO 15622:2018 ISO 15622:2018: Intelligent transport systems  Adaptive Cruise Control Systems 

 Performance requirements and test procedures (263) 

ISO 20035:2019 ISO 20035:2019: Intelligent transport systems  Cooperative Adaptive Cruise 

Control Systems (CACC)  Performance requirements and test procedures (264) 

ISO 15622:2002 ISO 15622:2002: Transport information and control systems  Adaptive Cruise 

Control Systems  Performance requirements and test procedures (265) 

ISO/TR 22086-1:2019 ISO/TR 22086-1:2019: Intelligent transport systems (ITS)  Network based precise 

positioning infrastructure for land transportation  Part 1: General information 

and use case definitions (266) 

ISO/TS 21176:2020 ISO/TS 21176:2020: Cooperative intelligent transport systems (C-ITS)  Position, 

velocity and time functionality in the ITS station (267) 

ISO/TR 16786:2015 ISO/TR 16786:2015: Intelligent transport systems  The use of simulation models 

for evaluation of traffic management systems  input parameters and reporting 

template for simulation of traffic signal control systems (268) 

ISO 22741:2022 ISO 22741:2022: Intelligent transport systems  Roadside modules AP-DATEX 

data interface (269) 

ISO/AWI TS 5283 ISO/AWI TS 5283: Road Vehicles  Ergonomic aspects of driver monitoring and 

system interventions in the context of automated driving (still under 

development) (270) 

ISO 19206-3:2021 ISO 19206-3:2021: Road Vehicles  Test devices for target vehicles, vulnerable 

road users and other objects, for assessment of active safety functions  Part 3: 

Requirements for passenger vehicle 3D targets (271) 

ISO/TS 18506:2014 ISO/TS 18506:2014: Procedure to construct injury risk curves for the evaluation of 

road user protection in crash tests (272) 

 

4.3.1.1.4.2 SAE 

Table 43 Overview of relevant documents issued by SAE 

ID Name 

SAE J2400_200308 SAE J2400_200308: Human Factors in Forward Collision Warning Systems: 

Operating Characteristics and User Interface Requirements (273) 

SAE J3029_201510 SAE J3029_201510: Forward Collision Warning and Mitigation Vehicle Test 

Procedure - Truck and Bus (274) 

SAE J3048_201602 SAE J3048_201602: Driver-Vehicle Interface Considerations for Lane Keeping 

Assistance Systems (275) 

SAE J2808_201701 SAE J2808_201701: Lane Departure Warning Systems: Information for the Human 

Interface (276) 

SAE J3240 SAE J3240: Passenger Vehicle Lane Departure Warning and Lane Keeping 

Assistance Systems Test Procedure (277) 

SAE J2399_202110 SAE: J2399_202110: Adaptive Cruise Control (ACC) Operating Characteristics and 

User Interface (stabilized Oct 2021) (278) 
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ID Name 

SAE J2365 SAE J2365: Calculation and Measurement of the Time to Complete In-Vehicle 

Navigation and Route Guidance Tasks (279) 

SAE J2678_201609 SAE J2678_201609: Navigation and Route Guidance Function Accessibility While 

Driving Rationale (Cancelled Sep 2016) (280)  

SAE J3114_201612 SAE J3114_201612: Human Factors Definitions for Automated Driving and Related 

Research Topics (281) 

SAE J2396_201705 SAE J2396_201705: Definitions and Experimental Measures Related to the 

Specification of Driver Visual Behavior Using Video Based Techniques (282) 

SAE J2944_201506 SAE J2944_201506: Operational Definitions of Driving Performance Measures and 

Statistics (283) 

SAE J2945/A SAE J2945/A: Standard for Lane-Level and Road Furniture Mapping for 

Infrastructure-based V2X Applications (284) 

SAE J2945/9 SAE J2945/9: Vulnerable Road User Safety Message Minimum Performance 

Requirements (285) 

SAE J3134_201905 SAE J3134_201905: Automated Driving System (ADS) Marker Lamp (286) 

 

4.3.1.1.4.3 UNECE 

Table 44 Overview of relevant documents issued by UNECE 

ID Name 

UNECE R79 UNECE R79: Steering Equipment (287) 

UNECE R157 UNECE R157: UN Automated Lane Keeping Systems (ALKS) (288) 

UNECE GTR 9 UNECE GTR 9: Pedestrian Safety (289) 

 

4.3.1.1.4.4 BSI  

Table 45 Overview of relevant documents issued by BSI 

ID Name 

BSI Reliability Assessment of Traffic 

Sign Classifiers 

Reliability Assessment of Traffic Sign Classifiers (290) 

 

4.3.1.2 Analysis 

An overview of the resulting analysis is shown in Table 46 for all selected use cases. Here, more detailed 

information is provided which explains the analysis further using the categories presented in Chapter 4.3.1.1. 

For the resources category we provide the reasons for each categorization using the argumentation from 

Chapter 4.3.1.1.3 denoted in the parenthesis. 

Table 46 Overview of the use case analysis 

ID Representativity Generalizability Resources Standards/Tools 

2  Steering Torque Control 

 Automated Emergency 

Steering 

 Emergency Braking Head-

on 

 Emergency Braking 

Junction 

 Rear Emergency Braking 

 Traffic Jam Assist 

 Camera, LiDAR or fusion-

based outside perception 

 Impact on longitudinal 

and lateral control 

 Using detection or 

segmentation or clustering 

 Specific datasets: 

Uncommon 

 Open-source 

implementations: 

Uncommon 

 Data dimensionality: High 

(a, b) 

 Computational resources: 

Medium (a) or High (a, c) 

Standards: 

 ISO 17387:2008 

 ISO 19377:2017 

 ISO 19237:2017 

 ISO 22078:2020 

 ISO 3888-2:2011 

 SAE J2400_200308 

 SAE J3029_201510 

 UN ECE R79 
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ID Representativity Generalizability Resources Standards/Tools 

 Collision Warning / Crash 

Alert 

 Development effort: High 

(a, b) 

Tools: 

 Sensor/driving 

simulation 

 Dewesoft17 

 OxTS18 

3  Lane Keeping Assist 

 Lane Centering Assist 

 Emergency Lane Keeping 

 Lane Sway Warning 

 Lane Departure Warning 

 Camera or fusion-based 

outside perception 

 Impact on lateral control 

 Using segmentation 

 Specific datasets: Available 

 e.g. CULane19 

 Open-source 

implementations: 

Available  e.g. DNN20 

 Data dimensionality: 

Medium (a) 

 Computational resources: 

High (c) 

 Development effort: 

Medium (a, b) 

Standards: 

 ISO 22735:2021 
 ISO 11270:2014 
 ISO/SAE PAS 22736:2021 

 ISO 19638:2018 

 ISO 21717:2018 
 ISO 19377:2017 

 SAE J3048_201602 
 SAE J2808_201701 

 UN ECE R157 
 

Tools: 

 Sensor/driving 

simulation 

 VBOX21 

 Dewesoft 

 OxTS 

4  Driver Initiated Lane 

Change 

 Automated Lane Change 

 Merge-In Request 

 Automated Highway 

Entering 

 Automated Highway 

Leaving 

 Automated Lane Selection 

Junction 

 Automated Full Junction 

Handling 

 Camera, LiDAR or fusion-

based outside perception 

 Impact on lateral control 

 Using detection or 

segmentation or clustering 

 Specific datasets: 

Uncommon 

 Open-source 

implementations: 

Uncommon 

 Data dimensionality: High 

(a, b) 

 Computational resources: 

High (a, b, c) 

 Development effort: High 

(a, b) 

Standards: 

 ISO 21202:2020 

 ISO 17387:2008 

 ISO 19377:2017 

 ISO 19237:2017 

 ISO 22078:2020 

 ISO 3888-2:2011 

 SAE J3240 

 SAE J2808_201701 

 UN ECE R79 

 

Tools: 

 Sensor/driving simulation 

 VBOX 

 Dewesoft 

 OxTS 

5  Cruise Control 

 Curve Speed Adaption 

 Stop & Go Control 

 Camera, LiDAR or fusion-

based outside perception 

 Impact on longitudinal 

control 

 Using detection or 

clustering 

 Specific datasets: 

Uncommon 

 Open-source 

implementations: 

Uncommon 

 Data dimensionality: 

Medium (a, b) 

Standards: 

 ISO 15622:2018 

 ISO 20035:2019 

 ISO 15622:2002 

 SAE: J2399_202110 

 

Tools: 

                                                                 
17 https://dewesoft.com/de/applikationen/fahrzeug-tests  
18 https://www.oxts.com/de/industry/automotive-testing-and-development/  
19 https://xingangpan.github.io/projects/CULane.html  
20 https://github.com/voldemortX/pytorch-auto-drive  
21 https://vboxautomotive.co.uk/index.php/de/  

https://dewesoft.com/de/applikationen/fahrzeug-tests
https://www.oxts.com/de/industry/automotive-testing-and-development/
https://xingangpan.github.io/projects/CULane.html
https://github.com/voldemortX/pytorch-auto-drive
https://vboxautomotive.co.uk/index.php/de/
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ID Representativity Generalizability Resources Standards/Tools 

 Computational resources: 

Medium (a) or High (a) 

 Development effort: 

Medium (a) 

 Sensor/driving simulation 

 VBOX 

 Dewesoft 

 OxTS 

9  Global Route Planning 

 Dynamic Route 

Adjustment 

 Traffic Jam Prediction 

 Arrival Time Prediction 

 Personalized Route 

Learning 

 No perception 

 No impact on control 

 Using prediction 

 Specific datasets: 

Uncommon 

 Open-source 

implementations: 

Uncommon 

 Data dimensionality: Low 

(b) 

 Computational resources: 

Low (a) 

 Development effort: Low 

(a, b) 

Standards: 

 ISO/TR 22086-1:2019 

 ISO/TS 21176:2020 

 SAE J2365 

 SAE: J2678_201609 

 

Tools: 

 Driving simulation 

 VBOX 

 Dewesoft 

 OxTS 

12  Traffic Sign Recognition 

 Speed Limit Warning 

 Automatic Speed 

Adaption 

 Right-of-Way Assistant 

 Current Valid Signs 

Reminder 

 Camera-based outside 

perception 

 (No) impact on 

longitudinal control 

 No impact on lateral 

control 

 Using detection 

 Specific datasets: Available 

 e.g. GTSRB22 

 Open-source 

implementations:  

Available  e.g. DNN23 

 Data dimensionality: 

Medium (a) 

 Computational resources: 

Low (b) 

 Development effort: Low 

(a, b) 

Standards: 

 ISO/TR 16786:2015 

 ISO 22741:2022 

 BSI Reliability 

Assessment of 

Traffic Sign 

Classifiers 

 

Tools: 

 Sensor/driving simulation 

 OxTS 

14  Fatigue/Drowsiness 

Monitoring 

 Distraction Alerts 

 Gaze Detection 

 Driving Suitability 

Assessment 

 Camera-based inside 

perception 

 No impact on control 

 Using detection 

 Specific datasets: Available 

 e.g. Vicomtech DMD24 

 Open-source 

implementations: 

Available  e.g. DNN25 

 Data dimensionality: 

Medium (a) 

 Computational resources: 

Low (b) 

 Development effort: 

Medium (a) 

Standards: 

 ISO/AWI TS 5283 

 SAE J3114_201612 

 SAE J2396_201705 

 SAE J2944_201506 

 

Tools: 

 Dewesoft 

15  Ego Motion Estimation 

 Features/Object Detection 

 Map Updates 

 Fusion-based outside 

perception 

 No impact on control 

 Using feature matching 

 Specific datasets: Available 

 e.g. KITTI26 

 Open-source 

implementations: 

Available  e.g. 

Algorithms27 

Standards: 

 SAE J2945/A 

 

Tools: 

 Sensor/driving simulation 

 VBOX 

 Dewesoft 

                                                                 
22 https://benchmark.ini.rub.de/gtsrb_news.html  
23 https://github.com/poojahira/gtsrb-pytorch  
24 https://dmd.vicomtech.org/  
25 https://github.com/AleksaArsic/ADAS-ML-Driver-Monitoring-System  
26 http://www.cvlibs.net/datasets/kitti/  
27 https://github.com/RozDavid/LOL  

https://benchmark.ini.rub.de/gtsrb_news.html
https://github.com/poojahira/gtsrb-pytorch
https://dmd.vicomtech.org/
https://github.com/AleksaArsic/ADAS-ML-Driver-Monitoring-System
http://www.cvlibs.net/datasets/kitti/
https://github.com/RozDavid/LOL
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ID Representativity Generalizability Resources Standards/Tools 

 Data dimensionality: High 

(a, b) 

 Computational resources: 

Medium (a) or High (a, d) 

 Development effort: 

Medium (b) 

 

16  Pedestrian Detection 

 Vehicle Detection 

 Bicycle Detection 

 Scooter Detection 

 Emergency Vehicle 

Detection 

 Camera, LiDAR or fusion-

based outside perception 

 No impact on control 

 Using detection or 

segmentation or clustering 

 Specific datasets: Available 

 e.g. nuScenes28 

 Open-source 

implementations: 

Available  e.g. DNN29 

 Data dimensionality: High 

(a, b) 

 Computational resources: 

Medium (a) or High (a, c) 

 Development effort: High 

(a, b) 

 

Standards: 

 ISO 19206-3:2021 

 ISO/TS 18506:2014 

 SAE J2945/9 

 SAE J3134_201905 

 UN ECE GTR 9 

 

Tools: 

 Sensor/driving simulation 

 VBOX 

 Dewesoft 

 OxTS 

17  Lane Markings Detection 

 Landmarks Detection 

 Traffic Lights Detection 

 Camera or fusion-based 

outside perception 

 No impact on control 

 Using detection or 

segmentation 

 Specific datasets: Available 

- e.g. Mapillary Vistas30 

 Open-source 

implementations: 

Available  e.g. DNN31 

 Data dimensionality: High 

(a) 

 Computational resources: 

High (c) 

 Development effort: 

Medium (a, b) 

 

Standards: 

 ISO 21202:2020 

 

Tools: 

 Sensor/driving 

simulation 

 VBOX 

 Dewesoft 

19  Pedestrian Motion 

Prediction 

 Vehicle Motion Prediction 

 Driver Style Recognition 

 Decision Making 

 Prediction based on sensor 

data or perception output 

and map 

 No impact on control 

 Specific datasets: Available 

 e.g. Caltech PIE32 

 Open-source 

implementations: 

Available  e.g. DNN33 

 Data dimensionality: Low 

(a) or High (a) 

 Computational resources: 

High (c) 

 Development effort: High 

(a, b) 

Standards: - 

 

Tools: 

 Sensor/driving simulation 

 A Scenario-Based 

Platform for Testing 

Autonomous Vehicle 

Behavior Prediction 

Models in 

Simulation (291)  

 

                                                                 
28 https://www.nuscenes.org/  
29 https://github.com/xingyizhou/CenterNet  
30 https://www.mapillary.com/dataset/vistas  
31 https://github.com/open-mmlab/mmdetection  
32 https://data.nvision2.eecs.yorku.ca/PIE_dataset/  
33 https://github.com/aras62/PIEPredict  

https://www.nuscenes.org/
https://github.com/xingyizhou/CenterNet
https://www.mapillary.com/dataset/vistas
https://github.com/open-mmlab/mmdetection
https://data.nvision2.eecs.yorku.ca/PIE_dataset/
https://github.com/aras62/PIEPredict
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4.3.2 Combination of Use Cases 

After analyzing specific use cases, in the following we discuss whether some use cases can be combined and 

how this impacts the development of audit criteria. It is important to note that most use cases presented in 

Chapter 4.3.1.2 already have a high complexity for auditing. Therefore, the development of audit criteria is 

already complex even when no combination of use cases is considered. Hence, we perform the initial selection 

of use cases in Chapter 4.4 only from the use cases presented so far and do not use a combination of use cases 

for the initial development of the toolchain and the first tests of audit criteria. 

Using a combination of use cases is more relevant later when the goal is to expand the tests and transfer 

developed audit criteria to more use cases. Here, it is advantageous when it is relatively easy to add an 

additional use case to the one considered for developing the audit criteria. If such an addition is naturally 

possible this provides a straightforward way to expand the tests of the audit criteria to include more use cases 

and driving functionalities. 

Additionally, it is interesting to test the transferability of the developed audit criteria to use cases which differ 

from the one used for the development regarding the generalization aspects discussed in Table 46. Since the 

goal of this project (or follow-up projects) is to find audit criteria for a modular technical guideline, ideal audit 

criteria are transferable to different use cases even when for example different sensors or perception 

components are used. Hence, the evaluation of the proposed audit criteria for a use case outside of the 

generalization of the use case used for development is interesting. Therefore, we also discuss for each 

combination whether this combination enables to test the transferability of the audit criteria to a use case 

with different aspects for the generalizability. Here, in principle all combinations of use cases which 

complement each other with respect to the development of audit criteria are interesting to investigate, 

regardless of whether the functionality of the use cases is connected to each other. By considering all possible 

combinations, independent of whether they functionally complement each other, this perspective allows to 

find a use case combination which enables to optimally test the transferability of audit criteria to use cases 

with an entirely different generalizability. However, in the following we only discuss the combinations of use 

cases that functionally complement each other, which allows the easiest expansion of the audit criteria tests 

with the lowest amount of additional work. 

Summarizing, in the following we will mainly discuss how use cases can be combined with the goal in mind 

to expand the auditing process and criteria development while allowing on optimal coverage of the entire 

parameter space. These combinations then serve as a guideline for following projects to expand the audit 

criteria tests but are not used for the initial selection of use cases for AP5 and AP7. 

4.3.2.1 Combination of AD Use Cases 

The first sensible combinations arise when combining specific AD use cases (15, 16, 17 and 19 in Table 46) with 

the other use cases in Table 46. Concretely, all considered AD use cases focus on perception or prediction and 

do not include direct control functionalities. In contrast, the more generic use cases also mostly include 

control functionalities. Hence, a sensible approach could be to start by using one of the presented AD use 

cases for the initial development of audit criteria. Since there is no direct control impact, the development 

and tests of the audit criteria are more focused to the IT security of the AI component and can be less 

extensive. This enables an easier start of the criteria development and allows to approach the complexity of 

an entire system step by step. Following the development of audit criteria for an AD use case, in the next step 

this use case can then be integrated into one of the generic use cases. This embeds the use case in a higher 

level to consider concrete driving functionalities that can be used in reality. Hence, the development of audit 

criteria can be expanded to a use case that includes control components, which enables the exemplary full 

auditing of an entire system and not only of the AI component. This approach allows to first optimally cover 

important aspects of AI components while having a lower complexity to allow more feasible tests. Then, the 

tests are expanded to the full complexity by considering the impact on the control component in the context 

of a generic use case. Thus, in Table 47 we show where it is sensible to combine an AD use case with a more 
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generic use case. Here, we also use two different levels for the estimated complexity of the combination with 

respect to the implementation effort and entire system functionality. 

Table 47 Overview of the combination complexity for AD use cases 

AD Use Case Combination Complexity 1 Combination Complexity 2 

ID Name ID Name ID Name 

15 A Priori Map-based Localization 3 

12 

Lane Keeping 

Traffic Sign Assistant 

4 Lane Changing 

16 Road Users Detection 2 

5 

Collision Avoidance 

Adaptive Cruise Control 

4 Lane Changing 

17 Road Elements Detection 3 

12 

Lane Keeping 

Traffic Sign Assistant 

4 Lane Changing 

19 Behavior Prediction 5 

 

Adaptive Cruise Control 2 

4 

Collision Avoidance 

Lane Changing 

Use case 15 can be straightforwardly combined with use case 3 since the accurate localization plays a role for 

keeping the driving lane. Additionally, the localization can be used as an alternative/redundancy to traffic 

sign detection when an accurate map with all relevant traffic signs is available. This use case can also be 

combined with use case 4 because the localization in the lane also plays a role during lane changing. However, 

this is strictly more complex than the combination with the lane keeping use case as discussed in Chapter 

4.2.1.4. For all presented combinations testing the transferability of audit requirements to use cases with 

different aspects is possible. The main reason is that the map-based localization differs from all other use cases 

because a classical perception component is usually not involved. Using feature matching is special and thus 

any combination with another use case includes necessarily a test of the transferability of the requirements. 

Next, use case 16 can be combined with use case 2 and use case 5 since both require the detection of other road 

users for avoiding or following. Also, the combination with use case 4 is possible because lane change 

maneuvers require the location of other road users to determine whether the lane is free to change. Again, 

this is more complex since use case 4 itself is very complex. It is possible to test the transferability of audit 

criteria for all presented combinations. This depends on the concrete implementation of the included 

functionalities. For example, one possibility is to use a camera-based pedestrian detection for the initial 

development of audit criteria. Then the combination with a point cloud-based vehicle detection is possible, 

which in combination allows to implement the functionalities of the collision avoidance use case. Another 

example is to start with a camera or point-cloud based detection of vehicles and use a camera-based 

segmentation to enable the lane changing use case. 

For use case 17 it is possible to combine it with use case 3 and 12 because for both use cases the detection of 

road elements is important. In case of use case 12, the detection of traffic signs is required, whereas use case 3 

requires the detection of road/lane markings. Here, we assume in the following camera-based road elements 

detection which is mainly used. Like the previous use cases the combination with use case 4 is possible but 

most challenging. In contrast to the discussion for the previous use case, testing the transferability of criteria 

is only possible for the combination with the collision avoidance use case. The reason is that both use case 3 

and 12 use camera-based perception, which is also mainly used for use case 17. Hence, only the combination 

with use case 4 allows to test the transferability of audit criteria to different sensor setups and thus different 

perception components. 

Finally, use case 19 can be combined with use case 5, where the prediction of the driving behavior of the 

leading vehicle might increase the overall performance. For the combinations with increased complexity, 

using use case 2 is possible in addition to the previously discussed use case 4. For use case 2 more collisions 

could be avoided when the possible behavior of other participants is predicted in advance, instead of only 

reacting to the observed scene. Like the combinations discussed for use case 15, it is possible to test the 

transferability of audit criteria for each combination with this use case. This is because use case 19 uses 

different input data and thus captures an entirely different parameter space. 
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4.3.2.2 Combination of Generic Use Cases 

In addition to expanding the AD use cases by combining them with the generic use cases, it is also possible to 

combine the generic use cases among themselves. This further allows to increase the complexity and scale the 

development and tests of audit criteria to more and more complex driving functionalities. It enables the 

expansion from a single use case and builds on top of the achieved results to transfer them to more use cases 

that can be meaningfully combined. In Table 48 sensible combinations are again shown with an estimation 

of the required complexity. 

Table 48 Overview of the combination complexity for non AD use cases 

AD Use Case Combination Complexity 1 Combination Complexity 2 

ID Name ID Name ID Name 

2 Collision Avoidance 5 Adaptive Cruise Control 3 Lane Keeping 

3 Lane Keeping 5 

12 

Adaptive Cruise Control 

Traffic Sign Assistant 

2 

4 

Collision Avoidance 

Lane Changing 

4 Lane Changing 5 

12 

Adaptive Cruise Control 

Traffic Sign Assistant 

3 Lane Keeping 

5 Adaptive Cruise Control 2 

3 

4 

12 

Collision Avoidance  

Lane Keeping 

Lane Changing 

Traffic Sign Assistant 

- 

9 Global Navigation/Path Planning - 

12 Traffic Sign Assistant 3 

4 

5 

Lane Keeping 

Lane Changing 

Adaptive Cruise Control 

- 

14 Driver Monitoring - 

First, use case 2 can be combined with use case 5, which adds functionalities to react to potential collisions 

while following a leading vehicle. In addition, the combination with use case 3 is possible to react to collisions 

while also automatically staying in a driving lane. This has a higher complexity because during adaptive cruise 

control the number of collisions that can occur with respect to colliding with the leading vehicle is lower than 

the number of collisions that can occur during automatic lane keeping. All combinations can also be used to 

test the transferability of audit criteria because it is possible to use different sensors for each use case. For 

example, one could use LiDAR-based vehicle detection for collision avoidance and combine it with camera-

based detection for use case 5 or camera-based segmentation for use case 3. 

Use case 3 can most easily be combined with use case 5, which enables to perform the standard driving 

behavior of following a vehicle in a lane completely automatically. Here, the transferability testing of audit 

criteria is also possible because different sensors and perception components can be used. The combination 

with use case 12 allows to also adapt the vehicle speed to the current road speed limit, instead of simply 

following a leading vehicle. However, this combination does not allow testing the audit criteria transferability 

because both use cases are based on camera perception. For the more complex combinations, on the one hand, 

the combination with use case 2 is possible as discussed previously. Additionally, the combination with use 

case 4 is possible and adds even more complex driving functionalities. This allows to change lanes 

automatically, for example to perform an overtake maneuver instead of only following a vehicle. Here, testing 

the criteria transferability is also possible, because for use case 4 it is possible to use point cloud-based 

perception in contrast to camera-based segmentation for use case 3. 

Next, use case 4 can be combined with use case 5, which allows automatic overtakes and with use case 12, 

which allows to adapt the driving speed to the speed limit in the new lane. For example, on multi-lane 

highways there are situations where each lane has a different speed limit. Both combinations also enable the 

testing of the transferability of audit criteria because different sensors and perception components can be 

used. For example, it is possible to perform point cloud-based detection to detect free spaces for lane changing 
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and use a camera-based detection for traffic signs or the leading vehicle. As discussed in the previous use case, 

the combination with use case 3 is also possible. 

For use case 5, the combination with the use cases 2, 3 and 4 is possible as discussed previously. Additionally, 

the combination with use case 12 is possible, which enables the automated adaption of the current speed limit 

while following a leading vehicle. Again, testing the transferability of criteria is possible, for example by using 

point cloud-based detection of the leading vehicle and using camera-based detection of traffic signs. 

Use case 9 and use case 14 cannot be sensibly combined with other use cases, since they do not consider driving 

functionalities. Hence, there is no option to combine these use cases with the other ones, which all consider 

concrete driving functionalities. Nevertheless, both use cases might be useful for a final test of the 

transferability of audit criteria because they differ considerably from all other use cases. However, it is more 

sensible to explore a meaningful combination of use cases first, as this allows to build upon already developed 

tools and software and still allows to test the criteria transferability in most cases. 

Finally, use case 12 can be combined with use cases 3,4 and 5, which is discussed previously at the respective 

use case. 

4.4 Use Case Recommendations 

After presenting possible use cases for AI in AD and ADAS systems in Chapter 4.2 and performing a detailed 

analysis of the most relevant and interesting use cases in Chapter 4.3, we now discuss the recommendations 

of use cases for the following work packages five and seven. For these work packages it is important to have a 

clearly defined and very specific use case to be able to perform the desired experiments and tests of the audit 

criteria. The goal is to perform in-depth technical experiments and concretely analyze potential shortcomings 

of proposed audit criteria. Therefore, it is required to select a narrow use case which allows to focus on a 

concrete technique and assess potential audit requirements. For this we use the previous analysis described 

in this document as the basis to first select a basic use case which determines the main functionality. Then, 

we narrow this use case and select a concrete application of the use case which enables the described 

procedure for work package five and seven. The result is a selection of a narrow use case which enables the 

initial development and testing of audit criteria while representing a clear way to integrate the narrow 

application into a real mobility use case which captures some realistic driving functionalities. 

To perform the selection of the basic use case we revisit the analysis in Table 46 and the basic categorization 

in the associated Table 39, Table 40 and Table 41. Depending on the performed categorization some use cases 

are more suitable for the initial development and testing of audit criteria than others. In Table 49 a summary 

of the suitability of all presented categories is shown. For each category a color is assigned which indicates 

whether the respective parameters are well suited (green) for the initial development of audit criteria, partly 

suited (yellow) or not suited (red). 

First, a certain amount of safety relevance must be given and a high relevance is ideal. This allows to develop 

audit criteria for critical tasks where an audit is important and required. Next, ML-based systems should be in 

use or as close as possible to real world usage. If the usage of ML-based systems is unrealistic, the use case is 

not suited for the development of audit criteria. In the best-case scenario, the auditability of a use case should 

be simple, which allows for a feasible initial development and tests. However, as discussed in Chapter 4.2 the 

auditability is typically rather complex, which means a complex auditability cannot be treated as a strict 

exclusion criterion. Next, the suitability of the complexity of a use case follows the previous discussions on 

the auditability, because the complexity of a use case should be rather low for the initial development, which 

allows to perform more extensive tests and developments. A highly widespread distribution of a use case is 

preferable because this allows to develop audit criteria that are very relevant for practical systems. 

Nevertheless, having use cases with a less widespread distribution is not an exclusion criterion because these 

can still be relevant and the distribution could increase rapidly in the near future. Regarding the attack 

applicability it is important that an attack interface exists and that attacks can be performed theoretically. In 

the best case, the applicability is simple, which allows the most feasible tests and deals with the most relevant 

threats. Lastly, it is more suitable when datasets and implementations are publicly available and mainly low 
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resources are required for a use case. In contrast, when no dataset is available or the complexity of an 

implementation is estimated as high, the use case is out-of-scope for this project due to the limited timeframe. 

Table 49 Overview of the suitability of the analysis parameters per category for the audit criteria development 

Requirement Suitable (S) Partially Suitable (PS) Unsuitable (U) 

Safety Relevance High Medium, Low None 

AI Usage ML: Current, Near ML: Far ML: Unrealistic 

Auditability Simple Medium, Complex - 

Complexity Low Medium, High - 

Widespread Distribution High Medium, Low - 

Attack Applicability Simple Medium, Complex Unrealistic 

Resources All the following: 

 Available dataset & 

implementation 

 Mainly low resources 

Everything in between One of the following: 

 No dataset available 

 Estimated complex 

implementation 

After discussing the suitability of different parameters of the categories used for the analysis of the use cases, 

in Table 50 we summarize the suitability of each use case selected in Chapter 4.3 for the development of audit 

criteria by applying the introduced suitability to each parameter. Based on this overview it shows that the use 

cases Collision Avoidance (2), Lane Changing (4), Adaptive Cruise Control (5), Global Navigation/Path Planning 

(9), Driver Monitoring (14) and Behavior Prediction (19) are not suited for the initial development of audit 

criteria. All remaining use cases are considered in the following for the recommendation. Thus, in Chapter 

4.4.1 we first discuss which use case is most suited for the initial development of audit criteria and is therefore 

recommended for AP5. We also narrow this use case such that a concrete application is selected which allows 

to perform in-depth technical experiments and gain detailed insights. Afterwards, in Chapter 4.4.2 we 

perform a complementary recommendation of an additional use case for AP7. Here, we also provide 

alternative options, discuss the advantages and disadvantages of each use case and again narrow the use cases 

to arrive at a concrete application which can be tested extensively. 

Table 50 Overview of the suitability of use cases for the audit criteria development 

ID Safety 

Relevance 

AI 

Usage 

Auditability Complexity Widespread 

Distribution 

Attack 

Applicability 

Resources 

2 S S PS PS PS PS U 

3 S S PS PS PS S PS 

4 S S PS PS PS PS U 

5 S S PS PS S PS U 

9 U S S S S U U 

12 PS S S S S S S 

14 PS S PS PS PS U PS 

15 S S PS PS PS PS PS 

16 S S PS PS PS S PS PS 

17 S S PS PS PS S PS PS 

19 S S PS PS PS U PS 

 

4.4.1 Use Case Recommendation AP5 

As can be seen in Table 50, the use case Traffic Sign Assistant (12) is green for most categories and thus is most 

suitable. Mostly the rather low complexity and simple auditability in combination with the availability of 

datasets and implementations and in general a lower demand of resources are decisive and well suited for the 

initial development and tests of audit criteria. The only parameter that is not well suited is the low safety 

relevance of this use case. However, the safety relevance could also be increased by considering driving 

functionalities that automatically adapt the vehicle speed to the detected speed limit and do not only serve as 
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an assistance to the driver. This extension could be useful in following projects to increase the complexity and 

add a direct impact on the control component of a vehicle. For the initial development of audit criteria in 

AP5, the currently considered assistant functionality is well suited because it allows for easier experiments 

and more extensive tests. 

Summarizing, the use case recommendation for AP5 is based on the traffic sign assistant use case. Specifically, 

this means that a single outside forward facing camera sensor is used to generate the required input data. 

Based on this data, the classification (and previous detection) of traffic signs is performed using a DNN-based 

system. Our recommendation is to first only consider systems that perform a pure classification of traffic 

signs. The reason is that typically there exists a common detector for all kinds of road elements as discussed 

in Chapter 4.2.3.3. Based on the detected objects, the content of the detected bounding boxes is fed to specific 

systems that specialize in concretely classifying the object in a box based on the basic road elements classes. 

For the case of traffic sign recognition this means that a preceding road elements detector exists which 

outputs bounding boxes and an associated basic class, e.g. road sign, traffic light, etc. Then a specific classifier 

exists for each basic class which outputs the concrete class, e.g. stop sign, green bus traffic light, etc. Thus, a 

classifier that focusses on traffic signs is used to determine the concrete sign type based on the given cut out 

part of the entire input image. The output of this system is therefore the detected traffic sign in the given 

image. This specific classifier is selected for the development and tests in AP5 because it has a limited 

complexity, which allows to perform extensive and in-depth technical experiments. Later, it is possible to 

combine this specific classifier with a common detector, for example as part of AP7. Also, the classifier can be 

considered as part of a real traffic sign assistant operating in vehicles on public roads. This allows to test the 

developed audit criteria on production-ready systems and not only on academically developed ones. 

4.4.2 Use Case Recommendation AP7 

After recommending a use case for AP5, we now discuss the recommendation of an additional use case for 

AP7. This use case should allow to test the transferability of the developed audit criteria in AP5 to other use 

cases. Also, it is important that the second use case has a higher safety relevance than the first use case, which 

allows developing audit criteria which are required for practical applications of AD/ADAS systems. The 

selection is again based on the categorization of the suitability in Table 50. Also, it is important to note that as 

part of AP7 at the beginning the use case recommendation is revisited. Depending on the results and 

experience during AP5 it is assessed whether the recommendation is still valid. Otherwise, an alternative use 

case is selected from the list of alternative use cases provided in Chapter 4.4.2.2. Therefore, the 

recommendation for the additional use case in AP7 is not final and can change depending on the progress of 

this project and specifically the information gained during AP5. 

4.4.2.1 Main Use Cases 

As mentioned previously the first use case of the two use case recommendations for AP7 is the use case Traffic 

Sign Assistant (12), which is selected for AP5 discussed in Chapter 4.4.1. It is sensible to include this use case in 

AP7 since it forms the basis of the audit criteria and toolchain development and allows directly expanding on 

the previous work from AP5. In addition, a second use case needs to be selected which bases on the achieved 

results and developed components but allows expanding the gained insights to further domains and 

components. Here, it is preferable that the second use case can reuse most components while still allowing 

testing the transferability of audit criteria. 

For the remaining suitable use cases in Table 50, use case 3 is the only generic use case remaining. All other 

use cases 15, 16 and 17 are more fundamental use cases which form the basis of an AD system or of other 

generic use cases. As discussed in Chapter 4.3.2.1, for the initial development and tests of audit criteria it is 

more sensible to select a fundamental use case which allows extensively testing the IT security of the AI 

component itself without the increased complexity that arrives when the impact on the entire system and 

control components is considered. Here, it is more realistic to cover the interplay of the entire system and the 

concrete interplay with a planning or control component in following projects with an increased duration. 

For this reason, we do not consider use case 3 for the recommendation of the use cases for AP7 since it would 
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directly include the control components. Instead, our recommendation is to focus on a fundamental use case 

in AP7 and then extend this use case to also consider the impact on the control component in following 

projects for example by the use case combinations presented in Chapter 4.3.2.1. 

All remaining fundamental use cases have a very similarly rated suitability in Table 50. The only difference 

occurs when focusing on the applicability of an attack. Here, it shows that the attack applicability for use case 

15 is considered as complex under all conditions. Instead, for use case 16 and 17 the attack applicability is only 

considered complex when point cloud data is used as input data for the detection. Therefore, we disregard 

use case 15 for the remaining considerations for an optimal recommendation of a second use case. 

Summarizing, from all use cases in Table 50 we arrive at the use cases Road Users Detection (16) and Road 

Elements Detection (17) which are still under consideration for the second use case in AP7. Additionally, use 

case Free Space Detection (18) can be considered as well because it is complementary to both use cases 16 and 

17 as discussed in Chapter 4.2.3.4. It shares all properties with the other two use cases and is therefore not 

analyzed explicitly in Chapter 4.3 and Table 50. Nevertheless, since use case 16 and 17 remain as candidates 

for the second use case recommendation, it is sensible to again include use case 18 at this point. 

In the following, all three use cases are first narrowed down further before a final decision is made regarding 

the recommendation. For use case 16 the most important concrete applications are the detection of vehicles 

and the detection of pedestrians, which are the most relevant and often occurring road users. In both cases 

the detection is based on outside facing sensors and can be based on camera sensors or on LiDAR sensors. For 

use case 17 the most important concrete application is the detection of lane markings, which is mainly 

camera-based and only in specific situations can be based on point cloud data (e.g. construction zones, 

tunnels, etc.). To detect lane markings, segmentation techniques are typically used as the perception 

component instead of bounding box detection techniques, which are typically used for use case 16. Similarly, 

the most important concrete application of use case 18 is the camera-based detection of the drivable area in 

the front of a vehicle, again using segmentation techniques. As described in Chapter 4.2.3.4 this is 

complementary to the detection of road users and road elements like lane markings. In total, five narrowed 

use cases result, which all seem fitting as a recommendation for AP7. 

To decide on the best recommendation, we discuss the advantages of each narrowed use case in Table 51. The 

respective disadvantages arise as the opposite of the advantages. For example, the advantage of all camera-

based use cases is that they are most like the use case selected for AP5 and the results and toolchain can likely 

be reused easiest. At the same time the disadvantage arises that the transferability of audit criteria cannot be 

tested just as well. This is then an advantage of selecting a LiDAR-based use case because it allows testing the 

transferability of the proposed criteria to an entirely different sensor setup. Similarly, use cases that have a 

different perception component have the advantage that the transferability of audit criteria can better be 

examined than when a similar perception component is used. Regarding the difference between pedestrian 

and vehicle detection it shows that detecting vehicles is typically easier due to a larger size, but the detection 

of pedestrians is more critical since they are most vulnerable. 

Table 51 Overview of advantages of specific use cases for deriving a second use case recommendation 

Use Case Advantages 

Camera-based Road User Detection Pedestrian  Same sensor -> High similarity 

 Most vulnerable users 

Vehicle  Same sensor -> High similarity 

 Easiest to detect users 

LiDAR-based Road User Detection Pedestrian  Different sensor -> Test transferability 

 Most vulnerable users 

 Different perception techniques 

Vehicle  Different sensor -> Test transferability 

 Easiest to detect users 

 Different perception techniques 

Camera-based Lane Marking Detection  Same sensor -> High similarity 
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Use Case Advantages 

 Different perception techniques 

Camera-based Drivable Area Detection  Same sensor -> High similarity 

 Different perception techniques 

Based on the presented comparison of the advantages of the different use case we now recommend the use 

case LiDAR-based vehicle detection for AP7. From all the use cases analyzed in Table 51 this use case has the 

highest potential to test the transferability of audit criteria to a different parameter space, like different 

sensors or perception components. Therefore, it is the best supplement of the traffic sign recognition use case 

selected for AP5 to allow the development of modular audit criteria. However, the advantage of the highest 

potential to test the transferability comes with the challenge of a low similarity between both use cases. For 

the recommendation we assume that using a LiDAR-based use case is still manageable in the given timeframe. 

However, if it shows during the development of AP5 that the effort for the development of the initial audit 

criteria and toolbox is already higher than expected and it is too time-consuming to expand the development 

to an entirely different sensor suite, we list camera-based use cases in Chapter 4.4.2.2 which serve as an 

alternative to still comply with the limited duration of this project. As mentioned at the initial discussion in 

Chapter 4.4.2 the use case recommendation is revisited as part of work package seven after work package five 

is concluded. At that point it can be better judged whether using a LiDAR-based use case is possible in the 

given timeframe of the project. 

4.4.2.2 Alternative Use Cases 

After we derived the main recommendation for a second use case, we now list alternatives to this 

recommendation. As discussed previously, the main risk of the recommendation is that it is too time-

consuming to expand or adjust the toolbox and the developed audit criteria to a different sensor suite. 

Therefore, we only list camera-based use cases as alternative, for which it is easier to expand the results from 

AP5. Hence, the most straightforward alternative is to use the camera-based vehicle detection use case instead 

of the LiDAR-based use case. This use case is most similar to the use case selected for AP5, which should allow 

the easiest and fastest adaption of the toolbox. However, this also has the lowest potential to test the 

transferability of the developed audit criteria due to the high similarity between the use cases. Therefore, our 

main alternative recommendations are to use either the camera-based lane marking detection use case or the 

camera-based drivable area detection use case. Both require different perception techniques based on 

segmentation, which increases the potential to test the transferability of the audit criteria to different use 

cases. These two use cases are rather similar, meaning it is difficult to provide a recommendation for the 

ordering of the alternative use cases. It could be argued that detecting only lane markings is easier than 

detecting the entire drivable space, however the applicability of attacks seems somewhat easier when the 

entire drivable space is considered. Hence, the final ordering of alternative recommendations is only a 

suggestion and needs to be discussed depending on the acquired knowledge and performed implementations 

during AP5 when the case arises that an alternative use case needs to be selected for AP7. Summarizing, the 

suggested ordering of the alternatively recommended use cases is the following: 

1. Camera-based drivable area detection using segmentation 

2. Camera-based lane marking detection using segmentation 

3. Camera-based vehicle detection using object detection 
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5 Planning and exemplary Creation of Toolbox (AP5) 

This chapter 

Anforderungen an KI-Systeme anhand praktischer Use-Cases im Bereich Mobili

Hence, it contains the results of the toolbox planning and supporting documentation for the initial 

development of the toolchain and audit tools. At first, we describe a generic toolchain which can be used to 

develop, simulate and test autonomous driving (AD) or advanced driver assistance system (ADAS) 

functionalities based on artificial intelligence (AI) and especially deep neural networks (DNNs). Afterwards, 

we present the exemplary implementation of the toolchain focusing on the selected traffic sign recognition 

(TSR) use case from Chapter 4.4.1 and discuss the selected interfaces and tools. Finally, based on the selected 

use case and the developed list of audit criteria in the report of AP3 in Chapter 3 we discuss which safety and 

security requirements are selected for the use case and how they are evaluated with the help of the toolbox to 

aid an audit of the system. 

As a general disclaimer, it is important to point out that the concrete implementation of the toolbox is only 

performed in an exemplary manner. It should enable first experiments and allow assessing the suitability and 

applicability of the proposed audit criteria. This represents a starting point to assess the feasibility of potential 

audits but is by no means complete. The given resources and timeframe of the project do not allow for an 

extensive implementation of an audit toolbox, thus only exemplary components are implemented. 

5.1 Implementation Concepts 

In this chapter we describe the principal concepts behind the toolchain for training a DNN-based AD/ADAS 

system and the toolbox for auditing such trained systems. These concepts form the basis of the exemplary 

implementation which is described later in Chapter 4.3 and Chapter 5.3. 

5.1.1 Toolchain 

Testing the proposed requirements from (2) for auditing AI-based AD/ADAS systems requires that a toolchain 

exists which allows creating suitable AD/ADAS models. This toolchain can then be used to develop an 

exemplary system for which the proposed requirements are evaluated. Therefore, the toolchain must 

conceptually be capable of developing AD/ADAS systems for the different use cases described in (3). Hence, it 

must be planned generically to allow the application to different use cases which can have different 

prerequisites. 

5.1.1.1 Generic 

In Figure 55 an overview of the important elements of such a generic toolchain is shown. The development 

starts by the general planning of the AD/ADAS system, which is followed by the data collection and 

preprocessing phase. This is required for DNN-based systems, which rely on high-quality data. Next, the 

development of the algorithm is performed, which includes the training of DNN models as well as the 

integration into the overall system with all other hardware components. In this development step the 

evaluation of the quality of the developed functionality is performed based on a predefined test dataset, which 

is the standard best practice for developing DNN-based systems. Typically, this quality assessment only 

includes evaluating the standard performance with respect to some KPI, like accuracy or intersection over 

union, on this the dataset. However, it can also include more sophisticated evaluations like assessing the 

robustness on variations of the test data distribution, analyzing whether meaningful data features are used 

for a prediction or evaluating the IT-Security against an adversary. When all relevant performance aspects on 

this dataset suffice, the next development phase is reached, which is a more extensive validation based on 

simulation and importantly also based on physical tests with the real system and complete hardware 

connections. Once the system passes these validation steps, it is cleared for deployment from the 

development perspective. During deployment the system is then continuously monitored to ensure the 
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performance stays inside the assured quality. In practice the described process is often not straightforward 

and at different steps multiple loops are performed. For exa

component it might turn out that the performance of the system does not reach the required performance 

even after multiple improvements of the algorithm. Then it might be required to take a step back and collect 

more or better data or even go back to the beginning to adjust the basic system design. 

In parallel to the development steps, audits must be performed at different stages or after some development 

steps are finished. These audits must ensure that the respective phase or result is according to the 

requirements from (2) or to requirements from documents issued by standardization bodies like the ISO. If 

some parts of the development or of the developed system do not fulfil the requirements, it is possible that 

this development step must be repeated until the audit is successful. Only then the system is cleared for 

deployment. 

 

Figure 55 Overview of the generic toolchain for developing a DNN-based AD/ADAS system 

5.1.1.2 Project-Specific 

The generic toolchain from Figure 55 supports all required steps and tasks at the different stages in the 

development. It is important to consider the toolchain from this very generic viewpoint since this allows 

planning the project-specific implementation in accordance with the generic requirements of different use 

cases. However, due to the limited time of the project it is only possible to implement an exemplary generic 

toolchain. Therefore, in Figure 56 we show a simplified version of the toolchain which is possible to be 

implemented in the given timeframe. 
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Figure 56 Overview of the toolchain components which are implemented in this AP 

In comparison to Figure 55 it is notable that the planning and monitoring stages are dropped. The planning 

stage is dropped because the planning of the AD/ADAS system is already performed in (3) where the use case 

is selected for which the toolchain and audit requirements are implemented in an exemplary manner. The 

monitoring stage is dropped because in this AP the goal is not to deploy a system on public roads but only to 

show in an exemplary manner the applicability of the toolchain and audit requirements for the selected use 

case. In the data stage we limit ourselves to using available datasets in this AP. Collecting own data is infeasible 

given the time and resource constraints. Similarly, we only focus on developing an AI model as AD/ADAS 

component and do not consider the integration into the entire system with the interplay of different 

hardware components. It is only feasible to consider the system functionality replicated in software and 

running virtually. Thus, the final validation and auditing is also only performed in simulation since we do not 

capture any real data and do not have a physical replica of the AD/ADAS system. The steps that are still 

included in Figure 56 allow verifying the concept of the toolchain for an exemplary use case and assessing 

whether all important aspects of development and auditing are supported by the toolchain. 

5.1.2 Toolbox 

In addition to the toolchain which allows to develop DNN-based AD/ADAS systems it is also relevant to 

develop the audit tools that check whether certain requirements are fulfilled by the developed system. 

Similarly to the approach in Chapter 5.1.1 we first discuss a general concept for different auditing tools and 

then focus on specific examples and discussing what is feasible to implement in this AP. 

5.1.2.1 Overview 

In Figure 57 a generic overview of a toolbox component is shown. This component can be any requirement 

from (2) which should be evaluated for a given AD/ADAS system. Thus, the input to the evaluation or audit 

tool is represented by the model to audit and the associated representative data. In addition, the tool gets a 

settings file as input, which contains all important information to perform the audit. As output the tool 

generates a report based on defined metrics that summarize each audit given the requirement that should be 

tested. Also, all failures are listed explicitly and are described in a report in more detail. 
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Figure 57 Overview of a generic toolbox component for auditing a DNN-based AD/ADAS system 

5.1.2.2 Individual Components 

After presenting the overview of a generic evaluation and audit tool we now discuss each component from 

Figure 57 individually. When suitable, we also present which parts of the individual components are 

implemented in this AP and where focus points lie. 

5.1.2.2.1 Model/System 

One of the inputs to the generic evaluation or audit toolbox component in Figure 57 is the model or system 

for which the audit should be performed. This component is further specified in Figure 58 for the case that an 

AI model is used as input. As discussed in Chapter 5.1.1.2, we only consider this case in this project and do not 

discuss the case where entire systems should be audited. In the considered case the model component gets 

the current data as input. The concrete input type depends on the actual use case but for the use cases 

considered in this project the input data is typically an image or a point cloud. Then, the model outputs the 

current prediction, which again depends on the use case and the type of task that should be solved. The output 

value can then be consumed in concrete implementations of a toolbox component. In addition to the direct 

input and output, the model has certain parameters or properties that can be set or queried. For example, this 

includes parameters that influence the behavior of the model like the state of buffers or memory cells. Also, 

model properties that are relevant for certain audit requirement tests can be queried. This can include 

whether the model is recurrent or behaves entirely deterministically. 

 

Figure 58 Overview of the model component 

In the exemplary implementation in Chapter 4.3 and Chapter 5.3 we only consider a part of this generic model 

component similar to the approach in Chapter 5.1.1.2. Hence, we select specific values for some of the 

components of the model component. First, based on the selected TSR use case in (3) we only consider RGB 

images of traffic signs as our data. In addition, the traffic signs are assumed to be already cut out, meaning a 

bounding box detection is already performed and only the traffic sign with minimal background is used as 

input for the model in our considered use case. The model itself is always represented as a CNN without any 
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stochastic layers, meaning it is entirely deterministic and not recurrent. Regarding the differentiability 

different options are possible where the auditor either has white-box or black-box access to the model. 

Finally, the output of the model is typical for a classification problem which fits the selected use case. Hence, 

as default a probability vector over all available classes is returned by a softmax function. This can be further 

limited by only returning the top-n classes instead of the entire probability vector or by not returning any 

probabilities and only a class ranking. 

5.1.2.2.2 Data 

The second input to the generic toolbox component in Figure 57 is the data component. Here, it is important 

to point out that three different data sources are possible as indicated in Figure 55. First, it is possible to use a 

test dataset which is already collected and annotated. Second, it is possible that the data is generated online 

in a simulator which interacts with the toolbox component. Last, it is possible that a physical validation or 

audit is performed meaning the data is captured online in reality. All three different data sources are 

important and play a decisive role at different stages during the development or audit. Therefore, it is required 

that the interface of the data component with the generic toolbox component is comparable for all three data 

types. For a toolbox component it should make no difference where the data originates from, meaning the 

different data types should be formatted and structured in the same way. This ensures that each data source 

can be processed by a single function without the need for extensive reimplementation specific for a certain 

data source. 

5.1.2.2.2.1 Offline Data Loader 

Under this given constraint we show the structure of the data component in case test data is used in Figure 

59. Here, the input is represented by the location where the test dataset is located. Then this is consumed by a 

data loader, which outputs pairs of data samples and the associated labels. Like the model component in 

Figure 58, the data component has different states and properties which can be set or queried. Most 

importantly it is possible to set certain conditions that the data loader must fulfil. Some examples include the 

size of the samples, the exact location where the sample was captured or the brightness in an image-based 

data sample. These conditions can for example be set by a toolbox component when it requires very specific 

data samples. Also, it is possible to get information about different properties from the data loader, which can 

be important for an audit requirement test. For example, this includes the position of the sensor in the vehicle 

or the frequency at which the data samples are collected. 

 

Figure 59 Overview of the test data loader component 

In the exemplary implementation, the generic test data loader is again concretized and only specific parts are 

dataset root folder under which all images are stored using a split in the train, eval and test subsets. For this 

use case, the sample that is output is a single RGB image and the output label is the class of the traffic sign 

which is visible in the associated data sample. 
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5.1.2.2.2.2 Simulation Data Generator 

After discussing the data component when using a test dataset, we now discuss the data component when 

simulated data is used. The resulting overview is given in Figure 60. Here, it is important to understand that 

simulated data can be generated in two different ways. First, it is possible to use a simulator which takes a 

scenario description and then generates new data samples online. The scenario description can include 

information like the sensor position, road course in the environment or the position of other traffic 

participants. Alternatively, it is possible to again use an already existing dataset and perform the simulation 

by performing various augmentations on already existing data samples. For example, in case of image data it 

is possible to simulate weather effects like rain or snow by augmentation of an existing image. The output of 

the simulated data generator is then identical to the output of the test data loader in Figure 59. This ensures 

that a toolbox component can use these data components interchangeably without the need to implement 

specific data processing methods. Additionally, the data generator has more conditions that can be set by a 

toolbox component. For example, it can be useful to set the current weather status or specify if a sensor fault 

should be simulated. 

 

Figure 60 Overview of the simulation data generator 

In this project we only consider the case when simulation is performed by augmenting already existing data 

samples. Setting up and integrating an entire simulator to generate new data samples online is out of scope 

of this project due to the given time and resource constraints. This can be added at a later stage in potential 

follow-up projects. 

5.1.2.2.2.3 Sensor Data Generator 

Lastly, it is possible that sensor data which is captured online in reality during test drives is used as input of a 

toolbox component. This is shown in Figure 61 but no exemplary implementation is described later in 

Chapter 4.3. As discussed in Chapter 5.1.1.2, performing physical tests is not feasible in this project and thus 

the overview of the sensor data generator is only mentioned for completeness. It can be used in potential 

follow-up projects to incorporate such a component in the entire toolchain. Similarly to the components in 

Figure 59 and Figure 60, it has the same output interface, which allows using existing toolbox components 

without the need to implement specific methods for data handling. 
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Figure 61 Overview of the sensor data generator 

5.1.2.2.3 Test Settings 

The last input component to the audit tool in Figure 57 

settings for the execution of a respective audit requirement test are included, which allows reproducing the 

results of this test. In Figure 62 a basic example of such a setting configuration is shown. At the top-level 

different categories of requirements exist. These are then further specified by moving down in a tree-like 

structure. For example, in Figure 62 a security test is performed by using an adversarial attack. For this attack 

the specific parameters must be , which contains specific 

settings for this attack. In a similar fashion, it is possible to build configuration settings for all audit 

requirements from (2) which focus on testing a trained AD/ADAS system. 

 

Figure 62 Overview of the setting component 

5.1.2.2.4 Report Metrics 

The output of the audit tool is represented by a report that summarizes the most important metrics of each 

requirement test. This report is shown in Figure 63 and is structured in a similar way to the settings 

configuration in Figure 62. Again, it contains the same tree-like structure having the same high-level 

categories at the top. Then, for each audit requirement test suitable KPIs are defined, which are listed in the 

report. The security test example from Figure 62 is again chosen and exemplary KPIs are listed for the case 

where a test based on adversarial attacks is performed. Here, different success rates of the attack or the average 

number of iterations until the attack is first successful are shown as exemplary metrics. 
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Figure 63 Overview of the report component 

5.1.3 Strategies for Comparison of Simulation and Reality 

As discussed in Chapter 5.1.2.2.2, it is possible to use data samples from different data sources in the toolchain. 

This raises the question how it can be assured that the results generated using simulated data are as closely 

comparable as possible to results generated using real data. To provide answers, in the following we discuss 

comparison strategies for analyzing the transferability of results from simulation to reality. 

In Figure 64 an overview of the different comparison strategies is shown. It is important to note that three 

different options exist to represent the system functionality. First, it is possible to use a real test vehicle, which 

includes all system components and is the most realistic system representation. On the other side, there is the 

option to use a SIL, which represents the functionality of the system but does not include the hardware 

components of the system. In between, it is possible to use a HIL, which includes all hardware components 

that are relevant for the direct functionality of the system. Hence, it simulates the behavior of the real system 

based on captured or simulated data samples: These are either replayed and captured by the sensors in the 

HIL or are directly injected to the data processing module in the HIL by bypassing the sensor hardware. 

However, it does not include other vehicle components like actuators. Both the HIL and the SIL can be used 

on real and simulated data, while the physical test vehicle can only capture the data it observes in its 

environment. 

 

Figure 64 Overview of different options to analyze the transferability of results from simulation to reality 

To assess the transferability of results from the simulated world to the physical world it is required to compare 

the results for audits performed using simulated data samples and for audits performed using physically 

captured data samples in a structured way. Here, it is most practical to perform most audit requirement tests 
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using the AD/ADAS system as a SIL. This enables the tightest integration in the remaining toolchain and 

allows for different audit requirement tests in a quick succession. The fast assessment of the proposed audit 

criteria allows for an efficient and continuous improvement of the audit criteria. After these initial tests are 

performed, the next step is to test interesting audit requirements on a HIL and directly compare the results 

with the tests on the SIL. This should be done for tests where it is identified in the SIL experiments that the 

audit result is less stable or is more strongly influenced by minor factors of the data samples. For such tests it 

is more questionable whether the results transfer well from simulated data to real-world data. As the last step, 

it is required to perform some tests using a real vehicle and perform actual test drives. Only this enables to 

assess the actual transferability in the most meaningful way. However, it is also the least practical in 

comparison as real test drives require more time and resource expenses. Therefore, this final comparison 

should only be done for a strict selection of audit requirement tests to find a balance between using the 

available resources well and achieving the most meaningful comparison results. As discussed before, it is most 

interesting to perform this final comparison for audit requirement tests where the results using the SIL or 

HIL show some variance and are most likely to show a difference when comparing the simulated and real 

data samples. 

5.2 Exemplary Toolchain Implementation 

After we presented the generic concepts of the toolchain and toolbox in Chapter 5.1, in the following we 

describe the exemplary implementation of the toolchain. This includes the selection of the most important 

software libraries and a discussion on the used datasets and models to develop the exemplary TSR system. 

5.2.1 Dataset 

As discussed in Chapter 5.1.1.2 we do not perform our own data collection and instead use an already existing 

dataset. In Table 52 we list an overview of available datasets that focus on the task of traffic sign recognition 

or detection. For each dataset, we list the country where the dataset is collected, the number of different traffic 

sign classes included and the number of images in a dataset. This allows comparing the datasets with each 

other based on the most relevant properties and enables the selection of the most fitting dataset for this 

project. 

Table 52 Overview of some available datasets for the TSR use case selected in AP4 (3) 

Name Country Number 

Classes 

Number 

Images 

Link 

German Traffic Sign 

Recognition 

Benchmark (GTSRB) 

Germany 43 > 50k https://benchmark.ini.rub.de/gtsrb_news.html  

KUL Traffic Sign 

Dataset 

Belgium 62 > 7k http://people.ee.ethz.ch/~timofter/traffic_signs/  

Challenging Unreal 

and Real 

Environments for 

Traffic Sign 

Detection 

Belgium 14 > 2m 

(video 

sequences 

and partly 

synthetic) 

https://github.com/olivesgatech/CURE-TSD  

Traffic Signs Dataset Swedish 19 > 3k https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/  

Mapping and 

Assessing the State 

of Traffic 

Infrastructure 

Croatia 97 > 10k http://www.zemris.fer.hr/~ssegvic/mastif/datasets.shtml  

LISA Traffic Sign 

Dataset 

USA 47 > 7k https://git-

disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/  

https://benchmark.ini.rub.de/gtsrb_news.html
http://people.ee.ethz.ch/~timofter/traffic_signs/
https://github.com/olivesgatech/CURE-TSD
https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
http://www.zemris.fer.hr/~ssegvic/mastif/datasets.shtml
https://git-disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/
https://git-disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/
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Name Country Number 

Classes 

Number 

Images 

Link 

Chinese Traffic Sign 

Database 

China 58 > 6k http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html  

Tsinghua-Tencent 

100k 

China 221 > 30k https://cg.cs.tsinghua.edu.cn/traffic-sign/  

Based on the presented dataset comparison we select the GTSRB dataset for the exemplary training of an 

AD/ADAS system for this project. This selection comes for numerous reasons: 

1. The GTSRB dataset has the highest number of unique and real images. This is preferable for training 

DNNs, which require sufficient and good data to achieve strong performances. 

2. This dataset is often used in the literature when results are tested for the TSR use case. For example, 

this includes the test of physical adversarial attacks or the OOD performance of confidence 

estimation methods. 

3. The dataset is based on traffic signs captured in Germany. This means that results on this dataset can 

most easily be transferred to physical tests that are performed in a potential follow-up project. Since 

this project is executed in Germany by German partners, German traffic signs are more easily 

available and the road conditions are more similar. This should minimize the preparation effort for 

real physical tests. 

5.2.2 DNN Models 

After selecting the dataset that is used for the exemplary implementation of the toolchain, we now discuss 

the CNN models that are used as the basis of the TSR system. To minimize the implementation effort and at 

the same time maximize the generalizability of the toolchain we use publicly available implementations34 of 

common CNN backbones. These are then fine-tuned on the GTSRB dataset to learn the specific features of 

traffic signs and function as AI models for the TSR use case. We use two different exemplary implementations 

to ensure that the results of the audit requirements tests are not an effect existing for a single DNN 

architecture. Concretely, we use the ResNet-18 architecture from (292) and the AlexNet architecture from 

(293). ResNet-18 is selected because this architecture is one of the most successful architectures in DNN 

history and is often used in literature as a sensible baseline independent of the concrete task and use case. In 

addition, we select AlexNet because it represents a standard CNN architecture without the use of skip-

connections and batch normalization layers, which are both used in the ResNet-18 architecture. 

Experimenting with two significantly different DNN architectures allows assessing the transferability of the 

audit requirements to different DNN types. 

5.2.3 Toolchain 

For the exemplary implementation of the toolchain, we use Python35 as the main programming language. Its 

nature of being a high-level scripting language allows a rapid prototyping and the highest possible coverage 

of implemented components. At the same time, Python is used almost exclusively in research publications in 

the AI and ML community and has the most open-source tools and utilities available. Again, this should allow 

for the highest number of implemented components in the toolchain because already existing 

implementations can be used. This also has the advantage that the resulting toolchain is mainly based on 

open-source libraries, which should allow making most parts of the implemented toolchain publicly 

available. Also, most research papers provide code that is written in Python, which allows the easiest 

integration of recently discovered methods for security, robustness, explainability, etc. 

                                                                 
34 https://pytorch.org/vision/0.8/models.html  
35 https://www.python.org/  

http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
https://cg.cs.tsinghua.edu.cn/traffic-sign/
https://pytorch.org/vision/0.8/models.html
https://www.python.org/
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Following best practices for program code versioning we use the git36 tool, which enables the collaboration of 

different parties and provides a clean version history of the toolchain. Additionally, we follow coding 

standards like PEP837 or the clean code principle from (294) whenever possible. 

5.2.3.1 DNN-related Tools 

A large part of the toolchain is the handling and training of DNNs. Here, multiple different open-source 

frameworks exist which all provide specific utilities for this task. We select PyTorch38 as the main library used 

for developing DNNs. Concretely, we use the fastai39 library which allows training DNNs for different use 

cases with minimal overhead. Since the focus of this project lies on testing the suitability of different audit 

requirements, it is preferable to use a simple library that removes most of the need for boilerplate code for 

DNN training while still enabling an easy customization of the training process when needed. 

To ensure that the toolchain can also be used with other DL libraries we use the ONNX40 format to exchange 

DNNs between different libraries when required. On the one hand, this allows training DNNs with a different 

library and still use the implemented audit tools in the toolbox. At the same time, this also allows 

implementing audit tools using a different DL library than PyTorch. This can be useful when some tools are 

only available for a specific DL library and similar tools are not available for PyTorch. Then, the associated 

audit tool can be implemented using the other library and the tool can still be incorporated in the overall 

toolchain. Nevertheless, in this project all audit tools and toolchain components are implemented using 

PyTorch for simplicity and consistency. 

To track experiments for training DNNs we use the MLFlow41 library. This allows saving and registering 

trained DNN models, tracking the hyperparameters of different runs for reproducibility or comparing the 

results of different runs based on defined KPIs. An example for the provided interface to visualize the results 

of different training runs is given in Figure 65. The image shows the main interface where all different 

experiments are listed which were logged using MLFLow. In this case it shows the experiments on the GTSRB 

dataset and the two DNNs selected in Chapter 5.2.2. A more detailed view on different experiments is later 

given in Chapter 5.3.2.5 and Figure 71. 

                                                                 
36 https://git-scm.com/  
37 https://peps.python.org/pep-0008/  
38 https://pytorch.org/  
39 https://www.fast.ai/  
40 https://onnx.ai/  
41 https://mlflow.org/  

https://git-scm.com/
https://peps.python.org/pep-0008/
https://pytorch.org/
https://www.fast.ai/
https://onnx.ai/
https://mlflow.org/
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Figure 65 Exemplary excerpt from the experiment and model tracking using MLFlow 

5.2.3.2 Simulation-related Tools 

As discussed in Chapter 5.1.2.2.2.2 in this AP we only consider simulation by augmenting already existing 

images or images of ideal traffic signs that are inserted on a real background image. The integration of a real 

simulator for driving scenarios like CARLA42 is possible in a potential follow-up project. For augmentations 

we use the albumentations43 library, which provides a rich set of fast augmentations that can be used for 

different machine learning tasks. The use of this library is not limited to classification tasks, instead 

albumentations ships with built-in support for segmentation and detection tasks for most provided 

augmentations. This allows using the same augmentation library and the implemented toolchain 

components also for other use cases than the TSR use case. In Figure 66 some examples are shown for standard 

image augmentations that are possible using the albumentations library. Additionally, in Figure 67 further 

augmentations are shown which focus on the simulation of different weather conditions, which is especially 

relevant for AD/ADAS. 

                                                                 
42 https://carla.org/  
43 https://albumentations.ai/  

https://carla.org/
https://albumentations.ai/
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Figure 66 Exemplary overview of standard image augmentations from https://pypi.org/project/albumentations/ 

 

Figure 67 Exemplary overview of weather image augmentations adapted from 

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library 

5.2.3.3 Quality-related Tools 

After discussing different tools and utilities used for the technical development of the toolchain, we now 

shortly describe tools which are used to assure a high quality of the toolchain. First, this includes a tool to 

regularly test the correctness and quality of the toolchain code. For this purpose, we use the pytest44 library, 

which is a commonly used tool for testing Python code. We choose this library instead of the built-in testing 

library unittest45 because it has a richer feature set and can easier be integrated and expanded. In Figure 68 an 

example is shown where a test run is performed using the pytest test tool on the implemented tests for 

different parts of the toolchain. For each test it is possible to specify under which conditions the test is 

executed and in Figure 68 28 tests are skipped as demonstration. 

                                                                 
44 https://docs.pytest.org/en/7.1.x/  
45 https://docs.python.org/3/library/unittest.html  

https://pypi.org/project/albumentations/
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
https://docs.pytest.org/en/7.1.x/
https://docs.python.org/3/library/unittest.html
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Figure 68 Exemplary exempt from the implemented test session 

Finally, we use the Sphinx46 library to generate the accompanying documentation of the program code. The 

Sphinx library is used because it is the most popular choice for documenting Python code, has an optimized 

integration and features the most options for the resulting documentation. In Figure 69 two exemplary 

excerpts from the generated documentation are shown. These are generated automatically by Sphinx from 

properly formatted docstrings that are written in the program code. This allows generating a high-quality 

documentation with as little effort as possible, because some information like parameter names or types are 

automatically extracted by Sphinx from the code and do not require any extra effort by the developer. 

         

Figure 69 Exemplary excerpts from the code documentation 

                                                                 
46 https://www.sphinx-doc.org/en/master/  

https://www.sphinx-doc.org/en/master/
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5.3 Implementation of Safety/Security Requirements 

5.3.1 Selection of Requirements 

The following chapter gives an overview of the safety and security requirements selected for auditing the 

traffic sign use case. As discussed in the AP3 Report (2), safety and security requirements are to be 

implemented within an ADAS or AD system based on the risk level of the application.  

In the case of the traffic sign recognition system used as assistance, accidents and failures are highly 

controllable and they entail low severity of injuries. Therefore, we assume an ASIL A/low risk for the 

requirement selection. 

5.3.1.1 Generic requirements for the Entire System 

Table 53 All ASIL A/low risk generic requirements7 towards the entire system of a traffic sign recognition system. 

Requirements highlighted in yellow are highly recommended and therefore mandatory for this use case. Further 

recommended requirements that are implemented exemplarily are highlighted in red. 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

1  The environmental context shall correspond to the 

operational design domain (ODD). 

ASIL + 

2 The communication, interfaces, signals, etc. between different 

components shall be coordinated. 

ASIL + 

3 The sensor setup shall be similar to the development/training 

setup. 

Additional + 

4 The requirements for AI subsystems shall apply to the entire 

system (if applicable). 

Additional ++ 

5 The adequate performance shall be guaranteed for a certain 

timeframe after initial deployment. 

ASIL + 

6 The performance on key performance indicators (KPIs) shall 

be as high as possible 

Additional + 

7 The performance shall be compliant to the allowed worst-case 

error. 

ASIL ++ 

8 The performance shall be reproducible in the real 

environment for operation. 

ASIL + 

9 The feedback of the system shall be tracked while in operation. ASIL o 

10 The performance shall be corrected when critical errors occur 

reproducibly after deployment. 

ASIL + 

11 The system state shall be tracked in a reproducible way while 

in operation. 

Additional + 

12 The architectural design shall be described explicitly. ASIL ++ 

13 The quality & trustworthiness for developers shall be assessed. ASIL o 

14 The development process shall be tracked. Additional + 
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5.3.1.2 Generic requirements for the AI Subsystem 

Table 54 All ASIL A/low risk generic requirements8 towards the AI subsystems of a traffic sign recognition system. 

Requirements highlighted in yellow are highly recommended and therefore mandatory for this use case. Further 

recommended requirements that are implemented exemplarily are highlighted in red. 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

15 The AI model shall be implemented using mitigation strategies 

against robustness threats. 

ASIL + 

16 The AI model shall be verified with formal robustness 

verification techniques. 

ASIL O 

17 The robustness of the AI model shall be verified with empirical 

robustness estimation techniques. 

ASIL + 

18 The AI model shall be tested against out-of-distribution data. ASIL ++ 

19 Test cases at the boundary values of the input of the AI model 

shall be derived. 

ASIL + 

20 Test cases based on corner cases of the AI model shall be 

derived. 

ASIL + 

21 Test cases shall be derived through error guessing based on 

knowledge and experience of the system. 

ASIL + 

22 The AI model shall be tested against possible robustness 

threats. 

Additional + 

23 The source of the datasets shall be traceable. Additional + 

24 The source of the dataset shall be verified. Additional O 

25 The datasets shall have adequate coverage of the operational 

input domain. 

Additional + 

26 The datasets shall be verified against the safety requirements. Additional O 

27 The uncertainty of the datasets shall be analyzed and 

quantified. 

Additional O 

28 The datasets used for training, testing and evaluation shall not 

contain any errors. 

Additional ++ 

29 The training, test and evaluation datasets shall have sufficient 

size. 

Additional + 

30 The training, test and evaluation datasets shall be independent 

from each other. 

Additional ++ 

31 The training, test and evaluation datasets shall be prepared in 

an adequate way. 

Additional + 

32 The requirements shall be analyzed to derive test cases for 

interpretable model decisions. 

ASIL ++ 

33 

between the modelling of the system and the trained model. 

ASIL ++ 

34 

requirements of the system are met. 

ASIL + 

35 

explained. 

Additional + 

36 be explained. Additional + 

37  Additional + 
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Requirement Recommendation 

38 The least complex model architecture needed to solve the task 

shall be chosen. 

Additional + 

39 A model architecture shall be chosen to maximize the 

interpretability of decisions. 

Additional O 

40 The SW unit design shall be described explicitly. ASIL ++ 

41 The dataset & model shall be versioned. Additional o 

42 Standardized methods to record characteristics of datasets, AI 

models and key processes shall exist and be followed 

Additional o 

43 The labelling process of the dataset shall be documented and 

tracked. 

Additional o 

44 The input shall be monitored and checked before it is given 

into the AI model. 

ASIL + 

45  output shall be checked. ASIL + 

46 The AI model shall be monitored during the program 

execution. 

ASIL o 

47 Errors of the model shall be logged. ASIL + 

48 Damaged or manipulated inputs shall be corrected when it is 

safely possible. 

ASIL o 

49 Fail-safe methods shall be implemented to mitigate entire 

system failures. 

ASIL + 

50 Parallel redundant AI models shall be implemented. ASIL o 

Since the chosen use case is classified as ASIL A/low risk, the following nine highly recommended 

requirements are mandatory during the development of this project.  

Table 55 Summary of the highly recommended requirements7 for this use case 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

4 The requirements for AI subsystems shall apply to the entire 

system (if applicable). 

Additional ++ 

7 The performance shall be compliant to the allowed worst-case 

error. 

ASIL ++ 

12 The architectural design shall be described explicitly. ASIL ++ 

18 The AI model shall be tested against out-of-distribution data. ASIL ++ 

28 The datasets used for training, testing and evaluation shall not 

contain any errors. 

Additional ++ 

30 The training, test and evaluation datasets shall be independent 

from each other. 

Additional ++ 

32 The requirements shall be analyzed to derive test cases for 

interpretable model decisions. 

ASIL ++ 

33 

between the modelling of the system and the trained model. 

ASIL ++ 

40 The SW unit design shall be described explicitly. ASIL ++ 
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To obtain further insight into the use of the generic requirements for the system and its auditability, we also 

selected the following recommended requirements to be demonstrated on a schematic level. This will provide 

guidance on how to determine and derive specific values such as thresholds or boundaries. 

Table 56 Summary of recommended requirements7 implemented exemplarily for this use case 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

6 The performance on key performance indicators (KPIs) shall 

be as high as possible 

Additional + 

14 The development process shall be tracked. Additional + 

19 Test cases at the boundary values of the input of the AI model 

shall be derived. 

ASIL + 

20 Test cases based on corner cases of the AI model shall be 

derived. 

ASIL + 

 

5.3.2 Implementation of Requirements 

This chapter describes the implementation of the requirements. The structure starts with the determined test 

parameters and a corresponding justifying statement. Subsequently, the audit procedure for this requirement 

in depen

and findings, which specify to which extent the requirement is covered. A final section concludes the 

evaluation and gives a final verdict based on the findings from the previous section. 

Due to the evaluation of a constructed use case for demonstration purposes, the nature of some of the 

requirements only allow a schematic evaluation. A restricting factor is, for example, the absence of an overall 

system, in which an equivalent use case is embedded in real-world applications. Another question impeding 

the implementation is the definition of meaningful test and evaluation parameters specified for the 

considered use case without prior knowledge of equivalent projects, available standardization or legal 

requirements. 

5.3.2.1 Requirement 4 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

4 The requirements for AI subsystems shall apply to the entire 

system (if applicable). 

Additional ++ 

 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

One of the most basic requirements from the functional safety point of view is to consider any risk and threat 

analysis of the components and sub-systems with regard to the entire system. More precisely, any risk 

consideration of the system will be inherited to the sub-systems and components and vice versa as illustrated 

in Figure 70. The aim is to have a consistent tracing of any malfunction or flaw which affects the safety and 

security claim of the system.  
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Figure 70 Schematic depiction of the shared risk consideration over several system layers 

At each stage across the entire life cycle of the system and the underlying ML component, the risk 

consideration shall be conducted and examined in terms of the impact of the entire system. For example, the 

auditor shall examine and describe the impact of data poisoning at the development stage or the impact of an 

adversarial perturbation within the application stage. The aim of this requirement is to reflect the demand of 

risk considerations regarding functional safety and corresponding requirements from the homologation 

body.  

Implementation within the use case 

The risk consideration is documented and shall cover the threat analysis of the component (e.g. the ML model) 

in relation to the entire system. Any impact of flaws or malfunctions of the component shall be examined 

and described with regard to their impact on the system. Thus, risk consideration in terms of threat analysis 

consists of all potential vulnerabilities which might influence the entire system. The other way around, all 

vulnerabilities concerning the overall system (including those coming from other sub-components) shall be 

evaluated regarding their impact on the evaluated component, i.e. the AI subsystem. 

Verdict 

Due to the nature of the constructed use case and the absence of an entire system (architecture), no verdict is 

given for this requirement. 

5.3.2.2 Requirement 6 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

6 The performance on key performance indicators (KPIs) shall 

be as high as possible 

Additional + 

 

Specification of the parameters and rationale 

The application-specific KPI is chosen as the accuracy of the model  because the accuracy is the 

recognition. The performance of the model on the given dataset is directly stated by the accuracy. It is 

determined by the ratio of correct predictions to the total number of predictions done for the tested dataset. 

Audit procedure 

For the evaluation of this requirement, first a list of the different model configurations and versions that 

occurred during development is compiled. Here, especially the resources linked to Requirement 14 in Chapter 

5.3.2.5 shall be checked. The model list is examined regarding completeness, i.e. if apparently suitable model 

configurations had been omitted. If the list is complete, the KPI is evaluated on the different model 

configurations and/or versions. If the list is incomplete, the missing model configurations are added to the 

KPI evaluation. 
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Implementation within the use case 

For the development tracking, the version control Git was used. It showed that two different models were 

considered for usage: a ResNet-18 and an AlexNet architecture. These represent state-of-the-art DNNs/CNNs 

and a comparison of two networks seems reasonable for the presented use case. The evaluation results of the 

models were stored in a separate folder using the tracking tool MLflow. The outcome of the specific 

experiments can be seen in Figure 71. These results could be reproduced and ResNet-18 showed the highest 

KPI. 

 

 

Figure 71 Experiments of the best model training for ResNet-18 (above) and AlexNt (below) tracked via MLflow 
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Verdict 

The evaluation showed reasonable choices for model configurations were made during development. The 

KPIs were tested and the results could be reproduced. Therefore, it is concluded that Requirement 6 is fulfilled. 

5.3.2.3 Requirement 7 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

7 The performance shall be compliant to the allowed worst-case 

error. 

ASIL ++ 

 

Specification of the parameters and rationale 

This requirement demands the definition of the worst-case error. The worst-case error has to be carefully 

defined with regard to the intended application of the system, the operational environment and possible 

threats and hazards stemming from them. In practice, such error definitions are developed after an extensive 

risk analysis performed by domain experts. Since this project entails a schematic example use case, the worst-

case error definition is done in an exemplary way. For this purpose, we assume two different threat and hazard 

scenarios for the traffic sign recognition system. 

The first scenario assumes that the vehicle is operated in Germany, where rain and even heavy rain is 

common. Therefore, the operational environment requires the system to be reliable and robust within heavy 

rain conditions. To ensure the reliability, we assume that the assistive traffic sign recognition is still 

explained above the definition of the hazard or threat as well as the boundary for the accuracy has to be 

derived by a domain expert and a sound rationale has to be provided. As a result, we define the first example 

worst-case error as follows: The performance shall be compliant to an accuracy above 90% under heavy rain 

conditions. 

The second scenario assumes that an adversary could alter the input of the model within a specific amount 

of time. This entails for the security and safety of the system that the model has to be robust against adversarial 

attacks from an adversary following the threat model of the system. In practice, the threat model for the entire 

system would be defined by a domain expert. Here, we assume that the attacker has an available time of 1 

second to alter the input before it is passed to the model. As the PGD attack is the current state-of-the-art 

adversarial attack, we chose this attack to give an insight into the robustness of the system. The PGD attack is 

controlled by a perturbation boundary, which controls the amount of visually perceptible perturbation added 

to the attacked image. The less perceptible a PGD attack is, the higher the amount of time consumed to 

produce the perturbation. Due to time available for the attack, we choose the perturbation boundary (epsilon) 

for this attack as 0.3. As above, we assume a sufficient reliability at an accuracy of above 90%.  

As a result, two requirements can be formulated as: 

1. The performance shall be compliant to an accuracy above 90% under heavy rain conditions. 

2. The performance shall be compliant to an accuracy above 90% under a PGD attack with a 

perturbation boundary of 0.3. 

Audit procedure 

If this requirement was adhered to, the model should have been tested against the worst-case errors during 

its development process. Therefore, the testing documentation and test code should include such tests. An 

auditor assesses the testing documentation and test code to ensure the compliance with the requirement. In 

addition, an auditor tests the model against the defined worst-case errors. Within the scope of this project, 

mages. For the purpose 
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of this use case, the toolbox implements configurations for the PGD attack from the pytorch attacks library 

and transformations from the albumentations library. The pytorch attacks library is a Python library that 

contains a number of state-of-the-art adversarial attacks for image datasets. Finally, the albumentations 

library contains several commonly used transformations that add some form of perturbation to an image, 

such as rain, Gaussian noise or motion blur as discussed in Chapter 5.2.3.2. 

Implementation within the use case 

For the purpose of this use case, the model was tested against both defined worst-case errors using automated 

unit tests. Equivalent to the auditing process implemented in the toolbox, the model was tested using the 

pytorch attacks PGD implementation and the heavy rain transformation from the albumentations library 

with the relevant settings. Figure 72 shows exemplary images for the heavy rain transformation. 

 
GTSRB class 21 

 
GTSRB class 27 

 
GTSRB class 41 

Figure 72 Exemplary images for class 21, 27 and 41 transformed by the heavy rain transformation 

For the tests, 60 transformed images for every class were included in the test dataset. The results of the tests 

can be seen in Table 57. 

Table 57 Results of heavy rain transformation and PGD attack against the model (accuracies rounded to 4th 

decimal place) 

Worst-Case 

Error 

Tested Data 

Samples 

Correct 

Predictions 

Failed 

Predictions 

Accuracy Required 

Accuracy 

Heavy rain 

transformati

on 

2,580 2,031 549 0.7872 >0.9 

PGD attack 

(epsilon = 

0.3) 

2,580 552 2,028 0.2140 >0.9 

 

The model had an accuracy of 78.72% on the evaluated dataset transformed with the heavy rain 

transformation and thus misses the 

accuracy on the dataset perturbed via the PGD attack with an epsilon of 0.3 was determined as 21.40%. The 

set boundary of 90% accuracy was not reached. 

Verdict 

Based on the evaluation results above, the model fails the defined requirements regarding the acceptable 

worst-case error. Therefore, Requirement 7 is not fulfilled. 
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5.3.2.4 Requirement 12 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

12 The architectural design shall be described explicitly. ASIL ++ 

 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

Since the constructed use case is not embedded within an overall system, this requirement is evaluated 

schematically. The evaluation of this requirement is twofold. In a first step, the suitability of the measures 

taken for describing the architectural design adequately is examined. The used methods are reviewed 

regarding their eligibility to provide a correct and 

presentation is assessed. 

The basic concept of this requirement is to ensure a broad overview of the overall system to especially 

demonstrate the integration and the role of the AI subsystem in the entire system. Here, particular 

importance lies within the presentation of the connections between the sub-components, but also to the 

system environment, e.g. external (data) sources or interfaces for intervention. Furthermore, functionality of 

the specific sub-components shall be illustrated as well as the data flow inside the system. 

As is stated in the explanatory text corresponding to Requirement 12 in AP3 (2), a description in natural 

considered low (see Chapter 5.3.1), an additional informal description is sufficient. 

In a second step, the correct application of the used methods is verified. For this, it is mandatory to validate 

correctness and completeness of the description provided by the final documentation. The source code of the 

SW units and corresponding interfaces is reviewed and it is evaluated if documentation correctly and fully 

represents the entire system regarding its overall structure and functionality in a comprehensive way. 

Implementation within the use case 

Text-based documentation describing the design process and the development process is often sufficient to 

Frequently graphical representations, such as UML diagrams, are used by developers as assistance during 

design and development phase or subsequently for documentation purposes as well. 

Regarding functionality, a reference to documentation of the individual SW units is sufficient. The dataflow 

of the system can be illustrated with automatically created flow charts or diagrams. Further depictions are 

possible and not limited as long as these are sufficient for and complete in presenting the system in total 

respectively functionality, dataflow or interfaces of its components. 

Verdict 

Due to the nature of the constructed use case and the absence of an entire system (architecture), no verdict 

is given for this requirement. 

5.3.2.5 Requirement 14 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

14 The development process shall be tracked. Additional + 



5 Planning and exemplary Creation of Toolbox (AP5) 

152 Federal Office for Information Security 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

The evaluation of this requirement is twofold. In a first step, the suitability of the measures taken for tracking 

of the development process is examined. The used methods are reviewed regarding their eligibility to provide 

the possibility of reproducing and retracing the development of the system to comprehend design decisions 

and examine the cause of errors. 

For Requirement 14, especially a tracking of the training process and architectural changes to the model are 

relevant. Furthermore, the results of the internal tests and evaluations shall be stored. 

In a second step, the correct application of the used methods is verified. For this, the tracked items and affairs 

are reviewed. It is examined if it is possible to retrace the progression of the training process and the final 

model decision. 

Implementation within the use case 

For the overall tracking of the SW development, Git was used. The Git repository enables version control and 

state control. With the Git status, it is possible to comprehend changes and updates made to the source code. 

Several Git commits were found assigned to different development states of the source code. 

For the tracking of the development of the model, MLflow was used. MLflow is an open-source tool for 

managing the machine learning lifecycle. The platform consists of four components for experiment tracking, 

project packing, model packing and model registry. 

In this project, the utility of experiment tracking was implemented to record the training process. All started 

training experiments are listed with timestamp and duration (see Figure 65). For every experiment, the 

following values and parameters are stored: 

 Parameters: 

o Batch size 

o Learning rate 

o Loss type 

o Number of epochs 

o Type of optimizer 

o Decay of weight 

 Metrics: 

o Accuracy on validation dataset (relative to epoch) 

o Accuracy on test dataset 

o Loss on training data (relative to epoch) 

o Loss on validation data (relative to epoch) 

o Loss on test data 

Additionally, in each case the best model and the final model is stored and a reference to the related Git 

commit is given. Several training experiments tracked with MLflow were found. The experiments for the final 

models are illustrated in Figure 71. 

Experiments other than training, such as model evaluation on transformed or perturbed data, or methods for 

explainability are tracked in a separate log folder structure defining its type, model accuracy, loss and the data 

used for inference. 

Verdict 

The SW development was tracked in a reproducible way. The development and training processes for the 

final models could be reproduced and verified. Considering the evaluation results stated, Requirement 14 is 

fulfilled. 
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5.3.2.6 Requirement 18 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

18 The AI model shall be tested against out-of-distribution data. ASIL ++ 

 

Specification of the parameters and rationale 

For the out-of-distribution data, the China Academic Traffic Sign Amalgamated Dataset (CATSAD) is chosen. 

The image structure of this dataset is quite similar to the GTSRB dataset , but displays significant differences, 

both visually and semantically. The images of both datasets share similarities in:  

 A diverse background,  

 Traffic sign shape (from various angles), 

 Different image sections, 

Thus, the chosen out-of-distribution data is not completely unrelated to the training data. Obvious 

differences between the sets are: 

 Semantic content, 

 Coloration of traffic signs. 

Furthermore, the figures on the traffic signs can be quite similar to the German traffic signs, but also 

completely differ, e.g. when showing Chinese letters. 

The model shall not misclassify data from the out-of-distribution dataset. The boundary for an explicit 

classification shall be set by a domain expert. For this exemplary use case it is set at a model accuracy of 80% 

and upwards. 

Audit procedure 

The requir -of-distribution data. 

First, a suitable dataset containing the out-of-distribution data has to be found. A rationale for the suitability 

of the chosen dataset representing out-of-

the chosen dataset is evaluated and compared to the set boundary in the parameter specification. 

Implementation within the use case 

For the testing part, three classes of traffic signs from the CATSAD dataset were chosen, that  share some 

characteristics with one or more GTSRB classes. An exemplary image of each chosen class is shown in Figure 

73. 

 
CATSAD class i9 

 
CATSAD class pl5 

 
CATSAD class w55 

Figure 73 Exemplary images of the chosen classes for out-of-distribution data 

Evaluation CATSAD class i9: 

The CATSAD class i9 contains 75 different images. All images of the class were fed into the model and the 
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Table 58 Evaluation results of CATSAD class i9 (accuracies rounded to 5th decimal place) 

The evaluation results for class i9 of the CATSAD datasets are presented in Table 58. For every class, the model 

showed only low accuracies (<0.5). Therefore, a false prediction of this type of traffic sign is rendered 

unrealistic. 

Evaluation CATSAD class pl5: 

The CATSAD class pl5 contains 820 different images. All images of the class were fed into the model and the 

 

Table 59 Evaluation results of CATSAD class pl5 (accuracies rounded to 5th decimal place) 

The evaluation results for class pl5 of the CATSAD datasets are presented in Table 59. For class 00002 of the 

GTSRB dataset, the model showed a relatively high accuracy of around 0.88, thus exceeding the 80% boundary 

and posing a misclassification. For illustration, Figure 74 shows an exemplary image of this class. Concluding, 

a false model prediction of a speed limit 5 sign as a speed limit 50 sign might occur. 

GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy 

00000 0.0 00015 0.0 00030 0.0 

00001 0.0 00016 0.0 00031 0.0 

00002 0.19697 00017 0.0 00032 0.0 

00003 0.0 00018 0.0 00033 0.19697 

00004 0.0 00019 0.0 00034 0.0 

00005 0.0 00020 0.0 00035 0.0 

00006 0.0 00021 0.0 00036 0.0 

00007 0.0 00022 0.0 00037 0.0 

00008 0.01515 00023 0.0 00038 0.46970 

00009 0.03030 00024 0.0 00039 0.0 

00010 0.0 00025 0.0 00040 0.0 

00011 0.0 00026 0.0 00041 0.0 

00012 0.0 00027 0.0 00042 0.0 

00013 0.09091 00028 0.0  

 00014 0.0 00029 0.0 

GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy 

00000 0.0 00015 0.00413 00030 0.0 

00001 0.04132 00016 0.00551 00031 0.0 

00002 0.87741 00017 0.0 00032 0.0 

00003 0.0 00018 0.00137 00033 0.00551 

00004 0.0 00019 0.0 00034 0.0 

00005 0.00964 00020 0.00413 00035 0.0 

00006 0.0 00021 0.0 00036 0.0 

00007 0.0 00022 0.0 00037 0.00138 

00008 0.00275 00023 0.0 00038 0.03719 

00009 0.0 00024 0.0 00039 0.0 

00010 0.0 00025 0.0 00040 0.0 

00011 0.0 00026 0.00138 00041 0.0 

00012 0.0 00027 0.0 00042 0.0 

00013 0.00826 00028 0.0  

 00014 0.0 00029 0.0 
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Figure 74 Exemplary image of class 00002 of the GTSRB 

Evaluation CATSAD class w55: 

The CATSAD class w55 contains 1,096 different images. All images of the class were fed into the model and 

ed. The results are demonstrated below: 

Table 60 Evaluation results of CATSAD class w55 (accuracies rounded to 5th decimal place) 

The evaluation results for class w55 of the CATSAD datasets are presented in Table 60. For every class, the 

model showed only low accuracies (<0.5 or just above). Therefore, a false prediction of this type of traffic 

sign is rendered unrealistic. 

Verdict 

Appropriate out-of-distribution data was chosen using a dataset of Chinese traffic signs. The evaluation 

showed that the model-under-test predicted 87% of the images of the CATSAD class pl5 as the German traffic 

ssification cannot be excluded and Requirement 18 is 

not passed. 

5.3.2.7 Requirement 19 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

19 Test cases at the boundary values of the input of the AI model 

shall be derived. 

ASIL + 

 

Specification of the parameters and rationale 

GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy   GTSRB 

Class ID 

Accuracy 

00000 0.0 00015 0.0 00030 0.08491 

00001 0.0 00016 0.0 00031 0.00094 

00002 0.0 00017 0.00189 00032 0.0 

00003 0.02547 00018 0.00189 00033 0.0 

00004 0.0 00019 0.0 00034 0.0 

00005 0.00472 00020 0.00283 00035 0.0 

00006 0.0 00021 0.00094 00036 0.0 

00007 0.0 00022 0.0 00037 0.0 

00008 0.0 00023 0.0 00038 0.0 

00009 0.0 00024 0.0 00039 0.0 

00010 0.0 00025 0.00377 00040 0.0 

00011 0.51321 00026 0.00189 00041 0.0 

00012 0.17547 00027 0.0 00042 0.0 

00013 0.01698 00028 0.02075  

 00014 0.0 00029 0.14434 
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As stated in the introduction of this section, a definition of the test and evaluation parameters is heavily 

dependent on the considered use case. Regarding this requirement, a challenge is the definition of an 

acceptable and meaningful input range. For numerical data this can often be trivial, but for other use cases it 

can be quite complex. For example, the input range for the considered use case of image classification could 

be every possible combination of different colored pixels, from pitch black to a completely white picture. A 

more specific approach is to focus on specific image features, i.e. brightness, rotation, contrast or sharpness. 

But even with the more focused approach, it is hard to define meaningful boundaries that are relevant for the 

specific use case. For this, domain experts as well as literature or standardization and legal requirements shall 

be consulted. Due to these reasons, the requirement is evaluated schematically by giving a general procedure. 

Audit procedure 

behavior for the edge region of the input is analyzed.  

As stated above, first a specification of the boundary values is necessary. Either there already is a specified 

value range or it has to be derived. For the latter, e.g., technical literature can be consulted to establish 

common value spaces within the use case. The expertise of a domain expert can specify these input spaces 

even further to derive adequate boundaries for the developed system. 

The edge regions of the specified value range are tested as inference input and the resulting model behavior 

is observed for non-expected or faulty behavior, e.g. out-of-range output values. Then, the defined edge 

regions can be incorporated in Requirement 20 to craft corner cases, for example, as a combination of several 

boundary values. 

Implementation within the use case 

The input value range and thus the boundary values are heavily dependent on the considered use case. Even 

within the same area of application, diverse input ranges can be reasonable, e.g. due to different models. After 

specifying the input range or respectively determining the boundary values of the use case and model, a 

general proce

corresponding output values should be recorded and analyzed. Especially, deviations to normal behavior of 

the model should be tracked and examined. 

5.3.2.8 Requirement 20 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

20 Test cases based on corner cases of the AI model shall be 

derived. 

ASIL + 

 

Specification of the parameters and rationale 

Similar to Requirement 19, it can be quite challenging to determine meaningful corner cases. Again, these are 

heavily dependent on the specific use case and the entire system. For the definition, domain experts, literature 

and prior experience shall be taken into account. In the image domain, corner cases can be crafted regarding 

various features. These can be of technical nature (brightness, contrast, etc.), semantical (unlikely and 

exceptional scenarios on the image), or combinations of them. Due to this, the requirement is evaluated 

schematically by giving a general procedure. 

Audit procedure 

constellations of input parameters. Functional safety requirements demand such considerations for a certain 

ASIL level. In contrast to boundary values, where the input parameters are varying along the specified range, 

- ocess, 
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relevant inputs and values shall be selected and combined to set up a collection of corner cases which can be 

used as input to the model. The selection process shall take the following guidance into account: 

 Combination of the specified min/max values of the inputs (e.g. maximum possible contrast value at 

the minimum possible brightness value, etc.) 

 Selection of the most unlikely combination of inputs or scenarios (e.g. rainy foreground and cloudless 

background, etc.) 

 Analysis of the input parameter distributions and combination of values at edge regions. 

The evaluation results are analyzed in terms of non-expected/faulty behavior of the model.  

Implementation within the use case 

Again, the corner case definition is heavily dependent on the considered use case. A general procedure would 

be to present pre-selected corner cases crafted from the input signals to the model. An analysis of the results 

can show unwanted deviations from the expected behavior. 

5.3.2.9 Requirement 28 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

28 The datasets used for training, testing and evaluation shall not 

contain any errors. 

Additional ++ 

 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

To evaluate this requirement, the datasets used for training, testing and evaluation have to be reviewed. The 

procedure how the dataset review is carried out highly depends on the use case and the type of data the dataset 

contains. In the case of image classification, the following characteristics play an important role and shall be 

evaluated: 

 Size of the images 

 Irrelevant images 

 Labeling 

 Repeated data entries 

 Relevance of overall dataset or specific classes to the use case 

 Damaged/invalid data samples 

 Manipulated data samples 

Implementation within the use case 

In the considered use case, the GTSRB dataset was used. The dataset was split in a way that the training and 

test set are independent of each other and do not share a common image (see Requirement 30, Chapter 

5.3.2.10). The sets were analyzed regarding image size and no significant outlier was found. All images were 

analyzed regarding their semantical meaning and relation to the use case without findings. The labeling 

process was correct and no incorrect labels were identified. Also, there were no repetitive images in the 

datasets. 

Verdict 

A review showed no indication of possible errors inside the used datasets. Therefore, it is concluded that 

Requirement 28 is fulfilled. 
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5.3.2.10 Requirement 30 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

30 The training, test and evaluation datasets shall be independent 

from each other. 

Additional ++ 

 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

For this requirement, the datasets used for training, evaluation and testing of the ML model have to be 

assessed. 

The training dataset is the d

 and 

training progress during the training procedure. The trained model is evaluated against this dataset and the 

hyperparameters are adjusted accordingly. The testing dataset is used 

the training on previously unseen data. 

Mixing the datasets is problematic since data that is used for the training is already incorporated in the model 

and thus is not suitable for the detection of anomalies and errors during training (such as underfitting and 

overfitting). Further, it is considered best-practice to use unseen data for the final testing of the model, since 

this  

Implementation within the use case 

to sets for training, validation 

and evaluation. The splitting procedure is described in the toolbox documentation (295) in the section for 

available datasets. The split is disjunct,such that no dataset shared an element with another. This was 

confirmed by an examination of the stored datasets within the project. 

Verdict 

It was confirmed that the used training, validation and evaluation datasets do not share a common item. 

Therefore, it is concluded that Requirement 30 is fulfilled. 

5.3.2.11 Requirement 32 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

32 The requirements shall be analyzed to derive test cases for 

interpretable model decisions. 

ASIL ++ 

 

Specification of the parameters and rationale 

In order to implement and audit Requirement 32, the functional requirements towards the system of the 

model have to be analyzed. Since the exemplary use case at hand is not attached to a full system and only 

consist of the AI model itself, we assume the following exemplary system requirement: The system shall not 

be susceptible to background information. 

be able to reason that this requirement is met. 

Audit procedure 
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The system requirements, testing documentation and test code of the system have to be reviewed by the 

auditors. The evaluation is based on whether the requirements needed to be explained exist and that the 

system was tested accordingly and correctly. During the audit process, the auditors need to use an Explainable 

AI (XAI) method to explain the decisions made by the system. For this purpose, the toolbox contains a module 

that uses the GradCam method from the pytorch-gradcam Python library. During the audit, the model is 

tested on a randomly selected number of images for all classes and the decisions are explained using GradCam. 

The explained decisions are analyzed whether the model considered any background information for its 

classification. For this use case, the auditors check whether any information around the depicted traffic sign 

is highlighted by the GradCam method. 

Implementation within the use case 

A unit test analogous to the toolbox implementation for certification of the system is performed. For the test 

dataset, 

whether the background information of any image was taken into account by the model for its decision 

making. 

An analysis of the classes via the GradCam module was conducted. Exemplary images of the GradCam results 

 Figure 75. es 

on the features directly related to the sign, especially the first digit. Background information played little to 

no role in the decision process. 

                                    

Figure 75 Example toolbox result for GradCam explanations of a 20 km/h traffic sign on the left and a 30 km/h 

traffic sign on the right 

Verdict 

The system shall not be susceptible to background 

 wa

method GradCam showed that the model did not focus on background information, but rather on the 

significant features of the particular classes when processing the testing dataset. Therefore, based on the 

evaluation above, Requirement 32 is fulfilled. 

5.3.2.12 Requirement 33 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

33 

between the modelling of the system and the trained model. 

ASIL ++ 

 

Specification of the parameters and rationale 
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No parameters have to be set for this requirement. 

Audit procedure 

(SW unit design), all crucial functionality of the system, sub-system and components must be explainable and 

traceable. Decisions of the modelled parts have to be explainable in the matter of "if-then" taxonomy. The 

auditor and homologation bodies shall be able to understand and follow the information flow which leads to 

specific decisions of the system. As decision of ML models cannot be described in a fully comprehensible way. 

This fact often contradicts the requirements within the SW unit design and the modelling process. Thus, 

methods from the field of XAI shall be implemented and applied to the model in order to expose the crucial 

decision processes and to understand how the model led to a certain output. 

As a part of the audit, specific traffic scenarios, traffic signs etc. and the corresponding (desired) model reaction 

shall be described in a formal way, e.g. by definition of the most important features for recognizing a specific 

the 

to the decision rationales by applying appropriate XAI methods previously. The results shall be checked for 

consistency and deviations from the desired (modelled) behavior. The evaluation is based on the definition of 

representative test scenarios during the audit process and the application of XAI methods. 

Implementation within the use case 

The toolbox contains a module that uses the GradCam method from the pytorch-gradcam Python library. 

During the audit, the model is tested on previously defined test cases in which a formal decision rationale is 

given. Then, the model's decisions are explained using GradCam. The results are analyzed and compared to 

the desired (modelled) behavior with regard to consistency and deviations. 

The general formal decision rationale for the considered use case of traffic sign recognition can be formulated 

as: 

figure displayed by the traffic sign, the sign s 

 

A dataset containing different classes was evaluated on the model using GradCam. The dataset contained 60 

images for each of the 43 classes of the GTSRB dataset. An 

with the resulting images from GradCam was carried out. The accuracies for the individual classes were all 

>0.98, meaning the great majority of images was classified correctly. 

 
GTSRB class 9 

 
GTSRB class 11 

 
GTSRB class 12 

Figure 76 Exemplary GradCam images from GTSRB 
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not resolved. Exemplary images are presented 

in Figure 76. 

Verdict 

The evaluation targeted the suitability of GradCam to help understanding model decisions and thus giving 

an indication if the modelling objective and goals were successfully implemented by the AI model. It showed 

evaluation above, Requirement 33 is fulfilled. 

5.3.2.13 Requirement 40 

Requirement Recommendation 

ID Description Type ASIL A/ 

 Low 

40 The SW unit design shall be described explicitly. ASIL ++ 

 

Specification of the parameters and rationale 

No parameters have to be set for this requirement. 

Audit procedure 

The evaluation of this requirement is twofold. In a first step, the suitability of the measures taken for 

describing the SW unit are adequately examined. The used methods are reviewed regarding their eligibility 

to provide a correct and complete  

architecture. Therefore, the focus lies on the description of the SW parts responsible for the creation and the 

training of the model. The documentation of potential additional modules of the system, e.g. for pre- or post-

processing, is considered as well. 

As is stated in the explanatory text corresponding to Requirement 40 in AP3 (2), a description in natural 

considered low (see Chapter 5.3.1), an additional informal description is sufficient. 

In a second step, the correct application of the used methods is verified. For this, it is mandatory to validate 

correctness and completeness of the description provided by the final documentation. The source code of the 

SW units is reviewed and it is evaluated if documentation correctly and fully represents the SW regarding the 

overall structure and functionality in a comprehensive way. 

Implementation within the use case 

The documentation of the software unit design is implemented using Sphinx as discussed in Chapter 5.2.3.3. 

Sphinx extracts information from the python source code to create documentation files. More accurately, for 

every SW module reStructuredText files are created from docstrings in the source code, which then again can 

be converted, for example, into a HTML-based documentation. 

The architecture of the used models is given in form of a graphical representation in Figure 77. Here, the 

graphs describing the models are unambiguous and it was verified that the illustration matches the model 

architecture. 



5 Planning and exemplary Creation of Toolbox (AP5) 

162 Federal Office for Information Security 

 

  

Figure 77 Model architectures of ResNet-18 (left) and AlexNet (right) 

The target of the evaluation consists solely of the machine learning model. Additional modules are not 

present. For every module concerning the training process, clear and complete docstrings for classes, 

functions and methods are present. Figure 78 illustrates a source code excerpt containing exemplary 

docstrings. 
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Figure 78 Exemplary exempt for class and method describing docstrings 

Verdict 

The chosen form of documentation, i.e. the docstrings in the source code respectively their transformation 

into a HTML-based documentation, generally fulfills the requirement regarding the description in natural 

language. The graphical illustration of the model architecture is correct and fulfills the requirement regarding 

an informal description of the SW unit. Therefore, based on the evaluation above, Requirement 40 is fulfilled. 

5.3.3 Summary of Requirements 

This chapter summarizes the evaluation results of the implemented requirements from Chapter 5.3.2. An 

overview of the requirements and their verdicts is given in Table 61. 

Table 61 Summary of the implemented requirements7 and their corresponding verdicts 

Requirement Evaluation 

ID Description Chapter Verdict 

4 The requirements for AI subsystems shall apply to the entire 

system (if applicable). 

5.3.2.1 - 

6 The performance on key performance indicators (KPIs) shall 

be as high as possible 

5.3.2.2 Pass 

7 The performance shall be compliant to the allowed worst-case 

error. 

5.3.2.3 Fail 

12 The architectural design shall be described explicitly. 5.3.2.4 - 

14 The development process shall be tracked. 5.3.2.5 Pass 



5 Planning and exemplary Creation of Toolbox (AP5) 

164 Federal Office for Information Security 

Requirement Evaluation 

18 The AI model shall be tested against out-of-distribution data. 5.3.2.6 Fail 

19 Test cases at the boundary values of the input of the AI model 

shall be derived. 

5.3.2.7 - 

20 Test cases based on corner cases of the AI model shall be 

derived. 

5.3.2.8 - 

28 The datasets used for training, testing and evaluation shall not 

contain any errors. 

5.3.2.9 Pass 

30 The training, test and evaluation datasets shall be independent 

from each other. 

5.3.2.10 Pass 

32 The requirements shall be analyzed to derive test cases for 

interpretable model decisions. 

5.3.2.11 Pass 

33 

between the modelling of the system and the trained model. 

5.3.2.12 Pass 

40 The SW unit design shall be described explicitly. 5.3.2.13 Pass 

 

Overall, 13 requirements recommended for the evaluation of the considered use case are introduced. As stated 

before, four requirements are covered schematically. From the remaining requirements, 7 were fulfilled, 

while for Requirement 7 and Requirement 18 the conditions were not met. The failed requirements indicate 

robustness is limited to certain classes or affects all classes. Potential measures to enhance the model for 

fulfilling the failed requirements can include a general expansion of the training set with more data samples 

as well as an integration of perturbed images for an adversarial training. 
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6 Conclusion 

6.1 Summary 

The work and results described in this report build the foundation for the follow-up project AIMobilityAudit. 

True to its name AIMobilityAuditPrep, the current project enables an extensive testing of different auditing 

requirements for AI-based AD/ADAS systems in the future. For this, the first major contribution of this work 

is a list of 50 requirements which are technically relevant to assure the IT-Security, robustness, explainability, 

etc. of AI-based AD/ADAS systems. These requirements evolved based on a continuous discussion of the 

different stakeholders that participated in this project und under attention to existing regulations, norms, or 

guidelines and an extensive SOTA literature review. The literature review ensures that the proposed 

requirements remain feasible and that current findings from recent research are incorporated to provide up 

to date requirements. 

The second main contribution of this work are the developed toolchain and toolbox components that are 

useful to audit AI-based systems. On the one hand, with the developed software it is possible to train an 

exemplary AD/ADAS systems for a chosen use case. In addition, tools are provided that allow to audit the 

system whether it is compliant to selected audit requirements. Here, we exemplary implement 13 

requirements which are supported in the developed toolchain as proof-of-concept. To demonstrate that the 

toolchain concept is suitable and that the developed tools can be used to audit actual AI-based AD/ADAS 

systems we demonstrate the use on a selected use case. First, to select the most fitting AD/ADAS use case we 

perform an extensive comparison of many possible AD/ADAS use cases, based on different categories like 

complexity, auditability, available resources, etc. In this analysis it showed that the TSR use case is best suited 

for the initial testing of the toolchain and toolbox. Therefore, we use the developed toolchain to create and 

train two exemplary TSR systems based on publicly available datasets and DNN architectures which serve as 

exemplary AD/ADAS systems. These systems are then examined using the 13 implemented audit 

requirements in the toolbox. Thereby, we use a simulation strategy which is based on the augmentation of 

existing images to simulate different environmental conditions. 

During the proof-of-concept implementation, we find that the toolbox is easily extendable to include further 

audit requirements. Also, we find that the selected requirements can be specified to provide meaningful 

results for a DNN-based TSR system which serves as a placeholder of a general AD/ADAS system. All in all, 

the achieved results of this project serve as a good starting point for following projects which assess the 

suitability of different audit requirements in more depth. 

6.2 Outlook 

As discussed in the last chapter we implemented only 13 of the 50 proposed audit requirements as proof-of-

concept. A natural step in a follow-up project is to extend the existing toolbox to include all 50 requirements. 

This allows to assess for all requirements whether they are suitable to audit AI-based AD/ADAS systems or 

whether some requirements are challenging or infeasible to implement for audits in praxis. Additionally, one 

can expand the extent of the already implemented requirements. Some of these requirements are quite 

extensive and can be implemented for practical tests in different ways. For example, the security can be 

evaluated against different adversarial attacks and the robustness can be evaluated in different weather 

conditions. In the current implementation we chose a single exemplary implementation for each 

requirement to show the principled applicability of the toolbox. In a follow-up project this exemplary 

implementation can be expanded to cover further aspects of the associated audit requirement. This enables 

more extensive audits and increases the meaningfulness of the obtained results.  

Furthermore, it is especially interesting to test some audit requirements using actual hardware and test 

facilities. Instead of performing all tests in a simulation environment, the most interesting audit requirements 

should also be tested in reality. Only these tests enable to properly assess the feasibility and expressiveness of 

the proposed audit requirements. To maximize the gained information from practical tests, it is most 
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important to perform the physical tests with audit requirements where one might suspect a difference 

between the results obtained by performing the test in a simulation environment. Lastly, we advise to revisit 

all proposed audit requirements based on the obtained results in the extensive tests and based on new insights 

from the literature. This allows to continuously optimize the audit requirements and be best prepared to use 
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IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IMU Inertial Measurement Unit 

ISO International Organization for Standardization 

IT Information Technology 

IV Software Integration Verification 
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Acronym Meaning 

KITTI Karlsruhe Institute of Technology/Toyota Technological Institute 

KPI Key Performance Indicator 

LiDAR Light Detection and Ranging 

LSTM Long Short-Term Memory 

MC Modelling and Coding Guidelines 

MILP Mixed Integer Linear Programming 

ML Machine Learning 

NA Notations for the Architectural Design 

NU Notations for the Software Unit Design 

ODD Operational Design Domain 

ONNX Open Neural Network Exchange 

PAS Publicly Available Specification 

PCI Peripheral Component Interconnect 

PGD Projected Gradient Descent 

PIE Pedestrian Intention Estimation 

QM Quality Management 

RADAR Radio Detection and Ranging 

ReLU Rectified Linear Unit 

RGB Red Green Blue 

SAE Society of Automotive Engineers 

SIL Software in the Loop 

SLAM Simultaneous Localization and Mapping 

SMT Satisfiability Modulo Theories 

SOTA State-Of-The-Art 

SOTIF Safety of the Intended Functionality 

ST Software Testing 

TEE Trusted Execution Environment 

TR Technical Report 

TSR Traffic Sign Recognition 

UL Underwriters Laboratories 

UNECE United Nations Economic Commission for Europe 

UV Software Unit Verification 

VDE Association for Electrical, Electronic & Information Technologies 

XAI Explainable AI 
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