

AIMobilityAuditPrep

Final Results Documentation

Document History

Version Date Editor Description

0.1 30.05.2022 Fabian Woitschek Initial creation

0.2 24.06.2022 Fabian Langer Add AP3 documentation

0.3 27.06.2022 Fabian Langer Include additional data requirements in AP3 (Req. 28, 29,

30, 31 & 43)

0.4 28.06.2022 Fabian Woitschek Use justification in AP3 documentation

Unify caption formatting

Add AP2 and AP4 documentation

0.5 22.07.2022 Fabian Woitschek Add AP5 documentation

1.0 12.08.2022 Fabian Woitschek Include feedback from BSI

1.1 07.09.2022 Thora Markert Include feedback from BSI

1.2 14.09.2022 Thora Markert Include feedback from BSI

1.3 09.11.2022 Fabian Woitschek Add author list

1.4 17.11.2022 Fabian Woitschek Add disclaimers

Federal Office for Information Security

P.O. Box 20 03 63

53133 Bonn

Internet: https://www.bsi.bund.de

© Federal Office for Information Security 2022

Authors

Federal Office for Information Security 3

Authors

The report was prepared by the companies ZF Friedrichshafen AG and TÜV Informationstechnik GmbH. The

authors of the report are the following members from the companies:

 ZF Friedrichshafen AG

o Fabian Woitschek

o Devi Padmavathi Alagarswamy

o Dr. Georg Schneider

 TÜV Informationstechnik GmbH

o Thora Markert

o Fabian Langer

o Vasilios Danos

To contact the authors, please use firstname.surname@zf.com or initial_letter_firstname.surname@tuvit.de.

Disclaimer

4 Federal Office for Information Security

Disclaimer

Nowadays, AI-based systems are becoming increasingly popular in the automotive industry (e. g. driving

assistance systems, autonomous driving functions etc.). However, appropriate standards, methodologies and

requirements to cover the AI-specific risks are still missing. The aim of this project is to develop generic

requirements, corresponding test methods and tools to assess such risks of AI-based systems. Due to the

complexity and the wide range of applications, the scope of this work is limited to certain aspects in the

automotive context. In selected use-cases the previously defined requirements are evaluated and tested as a

proof-of-concept. Hence, the results shall be considered as preliminary and as a guidance for best practices.

Furthermore, future development and additional use-cases are needed to perform adjustments and continue

the specification of these requirements.

Preliminary Remark

The document is based on the technically oriented and work package (in

-7

throughout the document. These serve internal purposes and can be ignored by the reader.

Table of Contents

Federal Office for Information Security 5

Table of Contents

1 Introduction ... 8

2 State-of-the-Art Report (AP2) ... 9

2.1 AI Lifecycle ... 9

2.2 Challenges of AI Systems ... 11

2.2.1 IT Security ... 11

2.2.2 Robustness .. 24

2.2.3 Explainability ... 25

2.2.4 Documentation ... 26

2.2.5 Safety ... 26

2.2.6 Certification and Verification ... 27

2.2.7 Standardization ... 27

2.3 Mitigation Strategies .. 28

2.3.1 IT-Security .. 28

2.3.2 Robustness .. 36

2.3.3 Explainability ... 38

2.3.4 Documentation ... 43

2.3.5 Safety ... 45

2.3.6 Certification and Verification ... 47

2.4 Mobility Use Cases .. 49

2.4.1 Modular Components .. 50

2.4.2 End-to-End System ... 54

2.5 Entire Mobility Systems ... 55

2.5.1 System Overview .. 55

2.5.2 AI Integration... 57

2.6 Mobility Datasets & Simulation ... 57

2.6.1 Datasets... 58

2.6.2 Simulators ... 59

2.6.3 Image Quality Enhancements .. 60

2.7 Standardization Activities AI & AD .. 61

2.7.1 Existing Standardization ... 61

2.7.2 Standardization in Progress ... 62

3 Generic Requirements (AP3) ... 63

3.1 Requirements Elicitation ... 64

3.1.1 Security Standards ... 64

3.1.2 Safety Standards ... 65

3.1.3 ASIL-derived Requirements .. 67

Table of Contents

6 Federal Office for Information Security

3.1.4 Additional Requirements .. 72

3.2 Entire System .. 72

3.2.1 General .. 72

3.2.2 Performance ... 74

3.2.3 Robustness .. 75

3.2.4 Monitoring .. 76

3.2.5 Documentation & Lifecycle ... 77

3.2.6 Summary of Requirements .. 78

3.3 AI Subsystem ... 79

3.3.1 Performance ... 79

3.3.2 Robustness .. 79

3.3.3 Interpretability .. 83

3.3.4 Documentation & Lifecycle ... 85

3.3.5 Monitoring .. 86

3.3.6 Summary of Requirements .. 87

3.4 Applicability of Requirements ... 89

3.5 Testability of Requirements .. 94

4 Use Case Comparison for Audit Criteria Development (AP4) ... 99

4.1 Category Overview ... 99

4.1.1 Required Categories from Description of Services .. 99

4.1.2 Additional Categories from AP2 & AP3 .. 101

4.2 Use Case Overview ... 102

4.2.1 Generic Use Cases .. 102

4.2.2 ADAS specific Use Cases ... 108

4.2.3 AD specific Use Cases... 109

4.3 Use Case Analysis ... 112

4.3.1 Single Use Cases ... 113

4.3.2 Combination of Use Cases ... 121

4.4 Use Case Recommendations.. 124

4.4.1 Use Case Recommendation AP5 ... 125

4.4.2 Use Case Recommendation AP7 ... 126

5 Planning and exemplary Creation of Toolbox (AP5) ... 129

5.1 Implementation Concepts .. 129

5.1.1 Toolchain .. 129

5.1.2 Toolbox .. 131

5.1.3 Strategies for Comparison of Simulation and Reality ... 136

5.2 Exemplary Toolchain Implementation .. 137

5.2.1 Dataset ... 137

Table of Contents

Federal Office for Information Security 7

5.2.2 DNN Models .. 138

5.2.3 Toolchain .. 138

5.3 Implementation of Safety/Security Requirements.. 143

5.3.1 Selection of Requirements .. 143

5.3.2 Implementation of Requirements ... 146

5.3.3 Summary of Requirements ... 163

6 Conclusion ... 165

6.1 Summary ... 165

6.2 Outlook ... 165

List of Figures ... 167

List of Tables ... 169

Acronyms ... 171

Bibliography ... 173

1 Introduction

8 Federal Office for Information Security

1 Introduction

AI-based systems are increasingly used as part of AD/ADAS systems. Especially, DNNs achieve an impressive

performance on most task and are the most promising solution to achieve higher level of autonomous

driving. At the same time, different manufacturers already use DNN-based solutions as part of L2 ADASs that

are operating on public roads. However, current DNNs introduce new and specific vulnerabilities into the

systems which can impact the performance of AD/ADAS systems negatively. This requires a detailed analysis

of existing vulnerabilities and potential mitigation strategies. To still enable the usage of such DNN-based

solutions for high-risk applications (like L4/L5 autonomous driving) clear guidelines and regulations are

required. This assures that systems with a high degree of autonomy are of a high quality and include

mitigation strategies to known vulnerabilities. However, currently no regulations or standards exist that are

tailored towards the use of AI-based systems for AD/ADAS and include AI specific vulnerabilities.

To increase the required knowledge in the areas of risk mitigation and auditing the goal of this project

-Systeme anhand

praktischer Use-Cases im Bereich Mobilität (AIMobilityAuditPrep) is to explore how auditing guidelines can

ensure the IT-Security of AI-based AD/ADAS systems for high-risk application areas. This project (in

combination with the follow- Erprobung und Weiterentwicklung von Anforderungen an KI-

Systeme anhand praktischer Use-Cases im Bereich Mobilität (AIMobilityAudit) lays the foundation of a

technical guideline which should be contributed to national and international standardization committees.

This document is the final report of work package six Dokumentation, Publikation & Präsentation

Ergebnisse, Handlungsempfehlung für Folgeprojekt " of the current project. Hence, it contains the results of

the previous work packages two to five which are already available in the individual reports (1), (2), (3) and (4).

Therefore, we cover the SOTA literature review, the creation of general auditing guidelines, the suitability

analysis of use cases and the creation of a toolchain and toolbox for training and auditing DNNs. Here, we

combine the individual reports using a common terminology and provide a joint summary and outlook.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 9

2 State-of-the-Art Report (AP2)

This chapter is the final report of work package two Erstellung State-of-the-Art-Dokument the project

derungen an KI-Systeme anhand

praktischer Use-Cases im Bereich Mobilität (AIMobilityAuditPrep) . Hence, it contains the results of the

research on the State-of-the-Art of the topics that are described in the service description. These consist of

the following:

• The entire AI-Lifecycle, from the planning phase, through the data collection and data quality

assurance phase, the training phase, the evaluation phase and the operating phase

• At least the following relevant aspects: IT security, safety, robustness, explainability and

documentation

• Relevant use cases from the mobility sector

• The role of simulation and synthetic data

• The integration of AI systems in an overall system, which typically consists of different software and

hardware components and is embedded in an environmental context

• Strategies and tools for the mitigation

• National and international activities for standardization/auditing

• Current scientific developments from conferences and journals

2.1 AI Lifecycle

The entire artificial intelligence (AI) lifecycle is considered only by a limited amount of research work. Instead,

in most cases only individual steps in the entire lifecycle are considered. Still, in the following we present a

selection of the most interesting and relevant publications to cover the AI lifecycle from the perspectives of

different stakeholders.

In (5) the authors present a detailed survey of all technologies surrounding an AI system and highlight many

technologies that are involved in an AI system. They cover the complete lifecycle from data collection to

human-machine interfaces and present relevant tasks of each step in the lifecycle. For these steps, they

introduce the basic algorithmic ideas and present current advances from the research. Additionally, hardware

technologies are discussed that are used for data collection, performant computing and deployment.

Different application domains are considered, and practical examples are presented.

The authors in (6) describe the AI lifecycle from the viewpoint of a maturity framework for enterprises. The

considered AI lifecycle is shown in Figure 1 and starts at the very beginning with the setting of goals and the

definition of business use cases. Then, the general steps of data collection, feature preparation, model training,

model evaluation and deployment are considered. For each step, the authors describe the concrete tasks that

need to be performed and provide best practices for companies from their experience. The developed

framework to measure the overall maturity of the AI lifecycle management is derived from the software

capability maturity model introduced in (7).

2 State-of-the-Art Report (AP2)

10 Federal Office for Information Security

Figure 1 Overview of the AI lifecycle from (6)

Furthermore, work exists that looks at the AI lifecycle from the viewpoint of trustworthy AI. In (8) the authors

perform an extensive survey on different aspects of trustworthiness at each step in the entire AI lifecycle.

They cover important aspects, like robustness, generalization, explainability and transparency that are also

considered in this project. Additionally, they also cover the aspects of fairness and alignment of AI systems

with human values so that the entire topic of trustworthiness is considered. In Figure 2 an overview of a subset

of the considered aspects and the categorization in the AI lifecycle is shown. All mentioned properties are

described in detail and the existing challenges at each step in the AI lifecycle are discussed. The authors also

provide concrete actions for practitioners at each step that are taken from current advances in the research.

In general, this publication seems to have a similar focus than our project and hence covers the same aspects.

A very similar viewpoint is also covered by the authors in (9). The complete AI lifecycle is considered, as well

as the integration of AI systems in larger IT systems. Vulnerabilities at each point in the lifecycle are discussed

and promising recently published mitigations strategies are described.

Figure 2 Partial overview of some aspects of AI trustworthiness depending on the steps of the AI lifecycle from (8)

Finally, the last viewpoint is based on the cloud lifecycle management of AI systems. In (10) the authors focus

on different tools that can support the management of AI systems and track the complete lifecycle. They base

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 11

their work on the principles of software lifecycle management and show how these can be adapted to the AI

lifecycle. This enables the reliability, traceability and reproducibility of the AI development process. Concrete

software tools that enable the described AI lifecycle tracking are presented later in Chapter 2.3.4.2 as part of

the chapter on the documentation of AI systems.

Additionally, the publications (11) and (12) look at the AI lifecycle from the viewpoint of documentation. For

internal documentation, different report structures at each point in the AI lifecycle are proposed that can also

be handed to third parties for external auditing. We discuss these publications in greater detail in Chapter

2.3.4.1.

2.2 Challenges of AI Systems

The use of AI-based systems leads to unique challenges that do not exist to the same extent for traditional

algorithmic IT systems. In comparison some properties of AI-based systems complicate the auditing process

to ensure the safe usage in high-risk applications like autonomous driving (AD). Especially, the more complex

lifecycle discussed in Chapter 2.1, the often very large input and system parameter space, the high data

dependency and the black-box property of AI systems pose new challenges. In this chapter an overview of all

arising challenges is given before we present potential mitigation strategies for each challenge in Chapter 2.3.

Additionally, it is important to note that the strict assignment of challenges to the following subchapters is

not uniquely defined. There exist overlaps between the individual challenges discussed in the remainder of

this chapter and depending on the viewpoint some aspects could also be assigned to other subchapters.

2.2.1 IT Security

In this chapter, an overview of IT security threats on AI-based

compromise the confidentiality, integrity, availability and privacy of the system (13). Most IT security attacks

pose a threat on the integrity and availability of a model. Here, evasion attacks and data poisoning attacks are

attack methods that emerged for data-driven systems, which do not exist to the same extent for traditional

IT systems. Both attack methods are also strongly related to the robustness of an AI-based system which is

discussed in Chapter 2.2.2. In contrast, threats on data privacy and confidentiality are excluded from the scope

of this project and therefore will not be addressed in detail. Namely, model extraction, membership inference

and model inversion attacks, pose a threat on the confidentiality and the privacy of the system. However,

model stealing attacks can also be used to enhance evasion attacks and due to the transferability property of

adversarial examples these methods can also pose a threat on the integrity and availability of a system (13).

2.2.1.1 Model Extraction Attacks

Model extraction attacks attempt to copy the functionality of a black-box victim model. The general concept

of such attacks can be described in two steps. First, a victim model is queried with data chosen by the adversary

and then a surrogate model is trained on the data and the queried predictions with the objective to be as

similar as possible to the victim model. These attacks can extract a white-box model similar to the victim

model, which enables the adversary to craft white-box adversarial attacks without any environmental or

domain constraints. Due to the before mentioned transferability property of adversarial attacks, the crafted

adversarial examples can be used to impose a threat on the integrity and availability of the victim model. The

attack success of the transferred adversarial examples depends on the similarity between the extracted model

and the victim model as discussed in (14).

Basic model extraction attacks utilize publicly available datasets and models that similar to typical

and the model architecture this can result in a high difference between the victim model and the extracted

model. Recently, works have emerged to enhance these model extraction methods through information

extraction attacks, to increase the similarity between the two models.

Since the attack success of adversarial attacks on the victim model depends on the similarity between the

surrogate and victim model, the aim of an attacker is to gain more knowledge of the model architecture and

2 State-of-the-Art Report (AP2)

12 Federal Office for Information Security

training of the victim model. Therefore, recent research demonstrates that combining information extraction

attacks of the model architecture or the training data enhances model extraction attacks.

The authors of (15) successfully infer the architecture of a black-box model by snooping information at the

PCIe bus and memory bus. They use a three-step method described in Figure 3

-time- -step, they train a long short-term

memory (LSTM) connectionist temporal classification network to predict each layer type of the victim model

based on the kernel features during run-time. In the next step, they reconstruct the connection between the

extracted layers through the read-after-write access patterns for each layer. Finally, they use the read and

write volumes to estimate the parametrization of each layer. The authors are able to construct a surrogate

model with a high similarity to the victim model and additionally achieve an 50,4% increase of the attack

success rate compared to model extraction methods based on publicly available model architectures.

In the publication (16) the authors demonstrate that data extraction attacks can enhance model extraction as

well. Concretely, they utilize a model inversion attack to improve the training phase of their surrogate model.

They initiate a substitute model by querying a victim model based on data from a public dataset. To improve

the substitute model, they select data samples from the public dataset where the victim model has a high

confidence score and inverse them using an autoencoder like the one designed in (17). Finally, they retrain

the surrogate model on the inversed data samples and the predictions from the victim model. The inversed

samples have resemblance with the training data of the victim model, which enables the surrogate model to

learn features similar to the victim model. With this approach, they are able to achieve a higher agreement

with the victim model than other SOTA model extraction attacks. Additionally, they can evade the SOTA

defense method from (18), which detects suspicious model queries linked to model extraction attacks.

Figure 3 Illustration of the steps necessary to extract model architectures from (15)

2.2.1.2 Evasion Attacks

In this chapter an overview over current state-of-the-art (SOTA) evasion attacks within the autonomous

driving domain is given. Evasion attacks, also known as adversarial attacks, are carefully perturbed input

samples (adversarial examples) that change the prediction of AI-based systems according to the adversar

will. This imposes a threat on the integrity and availability of the system. Therefore, evasion attacks pose a

significant threat for safety-critical systems such as autonomous driving systems, as a wrong prediction could

result in fatal accidents. Adversarial attacks are a highly researched attack type, especially with a focus on

DNNs within the image domain, which results in a vast variety of attacks with high attack success rates.

Another crucial threat imposed by adversarial attacks is their transferability. As explained in Chapter 2.2.1.1,

adversarial examples calculated for one model could be transferred to another with a high attack success.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 13

2.2.1.2.1 Categorization

Figure 4 gives an overview over the different types of evasion attacks. Within the autonomous driving

domain, there are two attack types that should be considered: digital adversarial attacks and physical

adversarial attacks. Digital adversarial attacks are attacks that aim to fool the AI-based model within the

autonomous driving system by digitally perturbing an image that is given directly as input to the model. These

attacks can be further categorized into three types: gradient-based attacks, optimization-based attacks and

generative-based attacks.

Figure 4 Categorization of evasion attacks

Since digital attacks are not realistic within the autonomous driving domain, a lot of research emerged

applying adversarial attacks to a physical and real-world setting, for example in (19). Physical adversarial

attacks aim to project adversarial perturbations into a physical scene that is captured by the cameras or other

sensors of the AD system, rather than perturbing single inputs that are fed to the AI-based model directly (20).

Additionally, an evasion attack is either designed to have black-box or white-box access to the model,

meaning the adversary has either limited knowledge or full knowledge about the model. Even though white-

box attacks pose a significant threat to an AD system, for these systems black-box attacks are more feasible as

discussed in (20). Furthermore, there are evasion attacks that can target a specific class for the

misclassification. In this case, the attack optimizes the worst-case perturbation towards being misclassified as

a target class. On the other hand, if the attack aims to achieve a general misclassification of the input towards

any class different from the true class of the input, the attack is described as untargeted.

2.2.1.2.2 Gradient-based Adversarial Attacks

Gradient-based adversarial attacks generate perturbations based on the gradients of the model. Hence, these

attacks require white-box access to the model. Two prominent examples of such attacks are the fast gradient

sign method (FGSM) introduced in (21) and the projected gradient descent (PGD) attack proposed in (22).

FGSM calculates the optimal perturbation for a misclassification based on the direction (i.e., the sign) of the

adversarial loss gradient. Figure 5 shows an example of a FGSM attack results on a 3D object detection system

within the AD domain from (23). Since FGSM is a well-studied and well-performing attack, many attacks have

been derived based on its concept. These include the IT-FGSM (24), the basic iterative method (BIM) (23) and

the PGD attack.

2 State-of-the-Art Report (AP2)

14 Federal Office for Information Security

Figure 5 FGSM attack results on a 3D object detection system from (23). The images on the left contain the clean

stereo image with the result of the 3D object detection underneath. The images on the right show the FGSM

perturbed stereo image and the corresponding 3D object detection result underneath.

The PGD attack randomly initializes the perturbation, updates it based on the direction of the adversarial loss

and projects it back into the perturbation budget of the adversary. Figure 6 gives an example of a PGD attack

on a 3D object detection system within the AD domain from (23).

Figure 6 PGD attack results on a 3D object detection system from (23). The images on the left contain the clean

stereo image with the result of the 3D object detection underneath. The images on the right show the PGD

perturbed stereo image and the corresponding 3D object detection result underneath.

2.2.1.2.3 Optimization-based Adversarial Attacks

Optimization-based adversarial attacks calculate adversarial examples formulated as an optimization

problem. They aim to minimize the distance between the adversarial example and the original image, while

achieving a misclassification of the adversarial example.

In (25) the authors introduce the DeepFool attack. It aims to solve the optimization problem by starting with

the assumption that a DNN is linear and finding an optimal solution for this simplified assumption. Because

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 15

DNNs are not linear in practical applications, the authors adapt their solution to fit this non-linearity. Further,

DeepFool is a non-targeted attack, i.e., it aims to find an adversarial example that produces a misclassification

as any other class. Figure 7 shows examples for adversarial attacks created with the DeepFool attack.

Figure 7 DeepFool attack results on MNIST images with different attack configurations from (25)

A prominent white-box optimization-based attack is the Carlini-Wagner (C&W) attack. This attack is

introduced in (26) and finds the smallest perturbation via minimization and box constraints. The attack is

designed to break SOTA defensive distillation techniques, which will be further discussed in Chapter 2.3.1.2.3.

Additionally, the authors are able to show that this attack performs well in a transferability setting and

therefore suggest that it can be utilized in black-box settings. Figure 8 shows L2 adversarial examples

generated for MNIST with different target labels for misclassifications.

Figure 8 Adversarial examples crafted with the C&W attack on MNIST from (26)

2.2.1.2.4 Generative-based Adversarial Attacks

Generative-based attacks generate adversarial examples using generative adversarial networks (GANs)

proposed in (27). The authors of (28) propose a framework called AdvGAN that utilizes a GAN with a

discriminator to create visually imperceptible adversarial examples from an original image within a white-

box and black-box setting. Figure 9 shows adversarial examples created by AdvGAN for both settings on the

CIFAR-10 dataset introduced in (29). This method is further extended in (30) by generating adversarial

examples based on latent features rather than an input image.

2 State-of-the-Art Report (AP2)

16 Federal Office for Information Security

Figure 9 Adversarial examples created by AdvGAN on MNIST from (28)

In (31) GANs are used to produce image-dependent and universal perturbations. The image-dependent

perturbations, displayed in Figure 10, are generated to resemble the natural image as much as possible and

fool a specific target model. Whereas the universal perturbations, displayed in Figure 11 are generated to fool

multiple target models at once. Both methods were compared to other adversarial attack methods in (24). In

a white-box setting they are able to achieve high attack success rates on three different models trained on the

(32) dataset containing real-world road images. However, with black-box access to the models and the dataset

the attack did not perform well with attack success rates of only 0,1% − 8,4% on the same model.

Figure 10 Image-dependent adversarial examples from (31)

Figure 11 Universal adversarial examples from (31)

2.2.1.2.5 Physical Adversarial Attacks

As explained in Chapter 2.2.1.2.1, physical attacks aim to create physical-world-resilient adversarial examples

to mislead AD systems. The following chapter gives examples for SOTA physical attacks that are tested in real-

world settings.

In (33) and (34) the transferability of generative-based attacks to a real-world setting on black-box models for

traffic sign recognition (TSR) is investigated. Both works use different generative-based attacks to digitally

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 17

generate stickers and patches that cause a misclassification and apply these stickers on physical traffic signs

to test their transferability. During an experiment using self-taken images of real-world traffic signs with

patches on them the authors of (33) are s accuracy from 86,7% to 17,2%. The

authors of (34) carry out their experiment with a camera attached to the dashboard of a moving vehicle and

achieve an attack success rate of 60% − 80% at speeds of 6 km/h and 30 km/h on traffic-signs with the

generated patches on them.

Finally, in (35) the authors propose the generative-based framework PhysGAN that is able to generate realistic

attacks against an end-to-end driving model. Their method creates adversarial examples from existing

billboards that are almost imperceptible to the human eye. With these adversarial examples, they are able to

produce a steering angle deviation by 19,17°.

Additionally, the authors in (36) investigate approaches to perform physical attacks on TSR systems that are

not based on generative adversarial attacks when only black-box access is available. They evaluate the success

rate of transferring a physical perturbation generated for an extracted white-box model and executing an

optimization-based attack but using a gradient approximation method to estimate the required gradients of

the unknown black-box system. Both targeted attack methods are successful by achieving a success rate of ≥

90% under the best configuration but it shows that the attack is significantly more expensive when only

black-box access is available.

2.2.1.2.6 Attacks on Mobility Use Cases

After presenting a general overview of evasion attacks, we now present a short summary of evasion attacks

on use cases that are specifically relevant for an AD system. For each perception use case presented later in

Chapter 2.4.1.1 we discuss the most interesting publications and provide an example of a digital and a physical

adversarial attack.

2.2.1.2.6.1 Image Data

As described previously most research work focuses on evasion attacks on DNNs that use image data as input.

Here, the first perception use case is represented by object detection. The authors in (37) consider this use case

in combination with semantic segmentation and generate digital perturbations that fool different DNNs for

both use cases at the same time. Physical attacks are explored in (38) where the authors generate patches that

can be stuck on traffic signs and evade the detection by current SOTA object detectors. They also observe a

transferability between different detectors which enable black-box attack with ≈ 40% success rate when

tested in reality.

The second perception use case from Chapter 2.4.1.1 is segmentation. In (39) the authors explore digital attacks

to fool DNNs for semantic segmentation by removing certain objects from the prediction or changing the

entire predicted segmentation. Moving to physical attacks, the authors in (40) focus on local attacks on DNNs

for semantic segmentation. They introduce a local attack that fools current segmentation models but only

evaluate the success rate on synthetic images and not on images captured in reality. The resulting

perturbation and segmentation prediction is shown in Figure 12 for different DNN models. As can be seen,

using the local patch to perform tests in reality is difficult because the patch is additive to the unperturbed

images.

Figure 12 Exemplary visualization of a patch-based evasion attack on semantic segmentation from (40)

Optical flow represents the third perception use case. Here, the authors in (41) present different digital attack

methods to fool DNNs for optical flow prediction either globally or locally. In (42) the authors then consider

patch-based perturbations which can be applied in the physical-world. These are shown in Figure 13 for an

2 State-of-the-Art Report (AP2)

18 Federal Office for Information Security

example. However, they only perform synthetic experiments and do not report success rates when the patch

is printed and applied in reality.

Figure 13 Exemplary visualization of a patch-based evasion attack on optical flow prediction from (42)

Lastly, different evasion attacks are also proposed for the depth prediction use case. The authors in (43)

generate digital perturbations that impact the prediction globally or locally. They are able to remove objects

from the prediction or change the overall distance that is predicted. Considering patch-based attacks the

authors in (44) test different patch-based perturbations against SOTA DNNs for depth estimation. We show

some examples in Figure 14. Again, the authors evaluate the attack success rate only on synthetic images and

do not experiment with printed patches in the real-world.

Figure 14 Exemplary visualization of a patch-based evasion attack on depth prediction from (44)

Concluding, it is important to note that most evasion attacks are designed for the white-box use case. In most

experiments the threat of black-box attacks is only evaluated by testing the transferability of the generated

perturbations. Only a limited number of works integrate different methods for attacking black-box systems

in their evaluations. Also, in most cases physical attacks based on patches are only evaluated when the patch

is added synthetically to an image. Performing the evaluation in the reality is most challenging and typically

also leads to reduced success rate of various attack methods.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 19

2.2.1.2.6.2 Point Cloud Data

For evasion attacks on perception use cases of an AD system that are based on point cloud data only a very

limited number of publications exist. One reason is that the required LiDAR sensors are more expensive and

experiments cannot be done as easily as for camera sensors. Also, only the use case of object detection is

covered because here point cloud data is most useful. In (45) the authors consider this task and propose an

attack method that generates point clouds that are marginally perturbed starting from original, unperturbed

points clouds. A human does not notice a significant difference meaning the presented perturbations are

similar to imperceptible digital perturbations on images. Alternatively, the authors in (46) consider the task

of physical adversarial attacks. They generate 3D objects which are not detected by a SOTA object detection

model. An exemplary visualization of the generated perturbation is shown in Figure 15. The authors also test

the success rate in reality by 3D-printing the adversarial example and performing a drive-by test using a real

LiDAR sensor. They find that their attack is still successful and fools the model under different environmental

conditions.

Figure 15 Exemplary visualization of an evasion attack on LiDAR-based object detection from (46)

In addition to research work that considers evasion attacks on camera-based and LiDAR-based perception

systems separately, recent methods consider the task of fooling both perception systems by the same

perturbation. Here, the authors in (47) propose an attack method to generate an adversarial object that is

placed on the roof of vehicles. For camera-based perception the object looks like a patch and for LiDAR-based

perception the object is a 3D mesh like the one described previously. In Figure 16 some examples of the

resulting object are shown for different scenes in both image and LiDAR space. The authors test the attack

success rate on simulated data and find that the attack is successful at fooling both perception systems at the

same time. However, the resulting perturbation looks highly suspicious and is quite large in comparison to

the vehicle it is applied on.

Figure 16 Exemplary visualization of an evasion attack on LiDAR and camera-based object detection from (47)

2 State-of-the-Art Report (AP2)

20 Federal Office for Information Security

Finally, there are also methods that attack LiDAR-based perception by sensor spoofing. In (48) the authors

transmit laser signals to a LiDAR sensor which creates a fake vehicle in the current scene. However, this attack

does not exploit any weaknesses of an AI-based system but instead tricks the physical capabilities of a sensor.

2.2.1.3 Data Poisoning

Data poisoning describes the injection of poisoned data samples in the training dataset. An adversary actively

tries to manipulate a part of the dataset by adding new data samples, changing existing data samples or

changing the associated labels. This impacts the behavior of all data-driven systems that are learned using the

poisoned dataset. The behavior is degraded depending on the specific goals of the adversary. In the following

we first present a categorization of different attacks and then discuss concrete attack methods for different

goals of an adversary.

A survey of the threat posed by data poisoning is given in (49). The authors cover different attack goals and

present methods from current research works. Additionally, they also cover defense strategies and point out

open problems in this research field. Open problems are also investigated in (50). The authors perform a

thorough evaluation of recently proposed attack methods and find that many methods perform worse when

evaluated under different settings. They observe a high sensitivity to variations in the evaluation setup and

conclude that many methods do not generalize to realistic attack scenarios. Hence, it is unclear how big the

threat posed by data poisoning is and whether stronger attacks can generalize better to realistic settings. To

improve the thoroughness of future evaluations of attack methods they develop a standardized benchmark

and show pitfalls in the evaluation process.

2.2.1.3.1 Categorization

In Figure 17 we present a taxonomy of data poisoning attacks that can be used to categorize different attack

methods. Most important is the first category that determines the type of the poisoning attack and thus the

goals of an adversary. This category is used to structure the remainder of this chapter, where we present

different methods for each attack type. Another important category is the required model access. Here, the

main distinction is whether a method needs access to a concrete model or can generate poisons for a variety

of models. The next important category is the required data access of a method. Some methods need access

to the concrete training dataset while others only need access to the rough test distribution the trained model

should operate in. Lastly, the last two categories focus on the perceptibility of the generated poisons. Here, it

is important to first distinguish the perceptibility. This can be analyzed either in visual image space or in some

latent feature space that only a system sees. Both determine how well a poisoning can be detected on revision

of the poisoned dataset. Similarly, the last category distinguishes whether an attack needs to corrupt the

associated label of data samples. Some methods keep the original label and as a result the poisoning is more

difficult to detect when the dataset is analyzed.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 21

Figure 17 Categorization of attacks for data poisoning

2.2.1.3.2 Backdoor Attacks

The first attack type are backdoor poisoning attacks. Here, an adversary tries to install a backdoor trigger in

the training dataset. When this backdoor trigger exists on an image the model should classify this image as a

specific class and not as the correct class. However, when the backdoor trigger is not part of an image the

model should show a normal, inconspicuous behavior. An overview of different backdoor poisoning attacks

and the used backdoor triggers is shown in Figure 18. For example, the patched-based backdoor introduced

in (51) inserts a small rectangular patch in an image. When this patch exists, the model should not classify the

this, the authors add images that contain the patch into the training dataset and assign the adversarial target

label to these images. Hence, they introduce images into the training dataset that are wrongly classified for

human observers and would be noticeable when inspecting the dataset. Also, in recent years different

methods are proposed that change the style of the backdoor trigger which is also shown in Figure 18. Now, it

is also possible to insert a backdoor trigger that is imperceptible for humans but can still be used to introduce

malicious behavior into the model.

Figure 18 Overview of different attack methods for backdoor poisoning from (52)

However, the described backdoor poisoning attacks can easily be detected when the labels of a dataset are

analyzed. Hence, the authors in (53) and (54) extend existing attacks to the clean label settings. Here, the

poisoned data samples are no longer assigned a wrong label but are inserted into the training dataset with the

correct label. This prevents the easy detection of poisoned data samples by humans and increases the threat

posed of such attacks. In Figure 19 an overview of an exemplary attack method for clean label backdoor

poisoning is shown. The authors expand the patch-based attack introduced earlier and propose a new method

to generate the poisoned data samples. Instead of inserting images that contain the patch and are labeled as

the target class, the authors insert poisoned examples of the target class into the dataset. These examples are

generated by adding specific noise with a small magnitude to original data samples such that a human does

2 State-of-the-Art Report (AP2)

22 Federal Office for Information Security

not notice a difference between the images. Nevertheless, the poisoned images lead to a change in the learned

decision boundaries of the model, which leads to a successful attack once the original backdoor is used during

inference.

Figure 19 Exemplary visualization of label consistent backdoor poisoning from (54)

Along with the development of improved attack methods defense methods are proposed, which are covered

in detail in Chapter 2.3.1.3. Some of these defenses use the fact that most backdoor attacks can be well

separated in a latent feature space of a trained model. To close this defense option the authors in (55) introduce

further improvements of backdoor attacks. They optimize the perceptibility with respect to some latent

feature space that the model learned. This hides the backdoor from detection based on the difference of the

representations in the latent feature space.

Recently, backdoor attacks are also proposed for models trained in a semi-supervised way using different

forms of self-training, e.g. using FixMatch from (56). The main advantage of such methods is that training on

largely unlabeled datasets is cheaper and faster to perform. However, the authors in (57) show that it is possible

to poison the unsupervised part of the dataset and hide backdoor triggers there. Hence, it is questionable

whether training on largely unlabeled datasets is desirable if the data quality cannot be guaranteed.

Finally, it is important to note that the evaluation of backdoor attacks is done only on synthetic data. To the

best of our knowledge no research work exists that test whether the backdoor is still successful when the

backdoor triggers are applied in the physical world and recaptured by a camera. For example, it would be

interesting to print the patch-based backdoor triggers and stick them to a real traffic sign. Then, one should

evaluate the attack success rate when images of the attacked traffic sign are captured from different angles

and under different lighting conditions.

2.2.1.3.3 Targeted Attacks

The second attack type for data poisoning attacks are targeted poisoning attacks. Here, the adversary no

longer aims to introduce a general backdoor into the behavior of a model, but instead tries to change the

classification of a predefined, unmodified target image. This different goal of the adversary is shown in Figure

20. The goal is that the specific image of an otter is misclassified as the target class Labrador. For this attack

type only clean label poisons are relevant since otherwise the target image would just be assigned the wrong

label. For this no advanced methods would be needed since the target images with the wrong label can just be

added to the training dataset.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 23

Figure 20 Exemplary visualization of targeted poisoning from (58)

In recent years multiple methods are proposed to perform targeted poisoning. One of the first is (59) where

the authors introduce an optimization-based method that needs knowledge of the model architecture that is

trained on the poisoned dataset. They poison data samples in the training dataset such that the latent feature

representation collides with those from the target image. An alternative approach is introduced in (60). Here,

the authors introduce a new optimization that uses an ensemble of models to generate the poisoned data

samples. They show that the resulting poisons transfer well to other models with unknown architectures and

training setups also when these are trained from scratch. Very recently, the authors in (58) introduce a new

targeted poisoning attack that is more efficient than previous attacks. For the first time they can attack models

that are trained from scratch on the entire ImageNet dataset introduced in (61). Their main idea is to explicitly

match the gradient direction of malicious examples such that they produce a malicious gradient signal during

training.

Similar to work on backdoor poisoning recently an attack is proposed that introduces targeted poisoning for

semi-supervised learning. In (62) the authors present a strategy to poison the unsupervised part of a dataset

by inserting multiple images that form a path from a correctly labeled image to the target image. Then, during

the semi-supervised training these images are iteratively assigned the label of the starting image until the

target image is reached.

Concluding, it shows that targeted poisoning attacks are not that relevant for this project. Like physical

adversarial attacks for evasion, data poisoning attacks are only relevant if they can be performed on an AD

system during deployment. To do so in the case of targeted poisoning attacks the adversary needs to insert

the target image into the AD system during deployment. It is not enough to place a backdoor in the

surrounding scene, but instead the original image captured by the camera needs to be exchanged with the

target image. To be able to do this the adversary would need access to the interface between the camera sensor

and the perception systems and perform the exchange during run-time. If an adversary can do so, it can

perform far easier and more efficient attacks. Therefore, only backdoor poisoning attacks form a principled

threat on AD systems if the backdoor trigger remains effective after application in reality.

2.2.1.3.4 Availability Attacks

The last attack type are availability poisoning attacks. The goal of these attacks is slightly different to both

attack types discussed previously. Instead of introducing a backdoor or targeted poison that the adversary can

exploit during inference, the goal is to change all data samples such that these cannot be used for training a

data-driven model. Hence, these attacks are important to prevent the unauthorized use of personal data that

is scraped from some publicly available database on the internet. They can be used to release secure datasets

where the data samples cannot be used for training a data-driven system. Therefore, these attacks are not

relevant for this project since they do not pose a threat on the security or safety of a model and are only

mentioned for completeness.

2 State-of-the-Art Report (AP2)

24 Federal Office for Information Security

The most promising methods for this attack type add some kind of noise to the original data samples. In (63)

the authors add error-minimizing noise on some data samples which tricks the training process into thinking

there is no information to learn from these data samples and thus ignoring them during training. A further

improvement is presented in (64) where the authors generate the noise by adversarial attacks discussed in

Chapter 2.2.1.2. They find that training a model only on adversarial perturbed images generated for a different

model basically prevents any training progress.

2.2.2 Robustness

This chapter presents different threats on the robustness of a data-driven system. Specifically, we cover the

general threat of encountering natural perturbations during inference where a system sees data samples from

a different distribution than the training dataset. Mitigation strategies to all presented robustness threats are

later covered in Chapter 2.3.

2.2.2.1 Natural Perturbations

In general, OOD data describes the presence of data samples that deviate from the exact training distribution

used during training of a data-driven system. This effect occurs naturally when systems are deployed in the

real-world outside of a completely supervised environment. For example, in the case of AD/ADAS it is

impossible to capture all possible environmental scenes or driving scenarios in the training dataset. During

deployment unseen situations will occur and the data quality of the sensors is impacted by different factors

like lighting, rain, heat, etc. These might lead to a shift in the data distribution and present a challenge on the

generalization of a system. Thereby, data distribution shifts exist at different levels which range from minor

shifts to full OOD data where new concepts exist during inference. At this strongest level it can be impossible

that the system keeps a correct prediction. For example, it might occur that a new traffic sign or parking space

marking is observed during deployment of an AD system. If the system is not trained on this specific sign or

marking the resulting distribution shift is so large that a correct prediction is impossible for the AD system.

Additionally, the problem is exacerbated by the fact that DNNs often show high confidence on OOD data

samples. This often prevents the detection that a data sample is OOD, which could be used to trigger safety

measures. A more detailed discussion on the confidence estimation is done in Chapter 2.3.2.2.

Since distribution shifts occur naturally in the real-world, research recently started into looking at the

performance of deep neural networks (DNNs) on OOD data. Here, different datasets are introduced that

mimic important and often used datasets but contain corruptions or perturbations. One of the first is

introduced in (65). Here, the authors present ImageNet-C which extends the original ImageNet dataset from

(61) by applying 15 different corruptions with five different strength levels on the original images. In (66) the

authors further propose an extension to the ImageNet-C dataset by using different corruptions that are

significantly different to the original corruptions. They argue to use this new dataset as a test dataset to

measure the generalization of systems that are trained on the original ImageNet-C dataset. Lastly, the authors

in (67) introduce ImageNet-R which contains various renditions like paintings or embroidery of the image

classes from the original ImageNet. This represents the strongest domain shift since only the semantic

concepts of a class are similar. In addition to the presented datasets to measure the generalization of standard

classifiers for image data, recently similar datasets for OOD data are proposed for perception tasks that are

relevant for the mobility use cases described in Chapter 2.4.1.1. We discuss these specific datasets in Chapter

2.6.1.

The problem of generalization of data-driven systems is typically attributed to the underlying problem of

shortcut learning. In (68)

on standard benchmarks but fail to transfer to more challenging testing conditions, such as real-world

 on OOD data or under evasion attacks

described in the Chapter 2.2.1.2. The systems do not learn robust feature representations but instead use every

piece of information available in the training dataset even if it is extremely brittle. This effect also shows when

comparing the robustness of human visual perception and current convolutional neural networks (CNNs) in

(69). First, humans are more robust than current CNNs when considering different corruption types.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 25

However, when CNNs are trained on a specific corruption type they consistently surpass human performance

on this specific corruption type. Nevertheless, on most other corruption types the CNNs perform worse and

do not have an increased robustness. Hence, training on a single corruption type does not necessarily imply

an increased robustness on other corruption types. The CNNs do not learn generally robust feature

representations and decision rules but still exploit the shortcuts for a specific corruption type.

2.2.2.2 Adversarial Perturbations

In addition to natural perturbations another threat on the robustness of a data-driven system is posed by

adversarial perturbations. These specific perturbations are the result of an evasion attack where an adversary

actively tries to harm the quality of a system. Such attacks are previously covered in Chapter 2.2.1.2. We again

mention these attacks here to highlight the tight interaction when considering the robustness and IT-Security

of AI systems. Adversarial attacks impact both categories and depending on the viewpoint can be assigned to

one or the other.

2.2.3 Explainability

The existing black-box character of AI-based systems combined with the complexity and number of

parameters of DNNs complicates the possibility to explain the behavior of a system. In contrast to traditional

IT systems that are based solely on algorithms, the behavior of the system is not directly determined by

human developers but is instead derived indirectly from the training dataset. Hence, it is largely unclear how

a system comes to its predictions and which features of a data sample are most important for a concrete

prediction. Therefore, the need arises for methods that can explain the decision or general behavior of a

system that is learned from data.

The topic of explainability also gained lots of interest from researchers in recent years. Hence, quite a number

of surveys emerged that summarize recent methods and discuss various types of explainability. For example,

in (70), (71) or (72) the authors conduct a survey on different aspects of explainability. All try to systematically

assess different methods and provide a comparison of the advantages and disadvantages for each method. In

(71) the authors only consider the task of explaining CNNs, while the other two surveys also discuss the

explainability of more traditional AI systems like decision trees or support-vector machines.

Additionally, it is important to point out that there is currently no agreement over the form of explanations

needed for AD systems to be deployed in the public. Important questions must be discussed and answered,

which include the following:

• For whom should an explanation be provided?

• Developers, auditors, customers, etc.

• Which part of an AD system should be explained?

• Perception, behavior prediction, path planning, end-to-end behavior, etc.

• When does an explanation have to be provided?

• During audits, in case of accidents, on demand, etc.

• Which details should an explanation provide?

• Highlight important features, exact traceability, etc.

However, such questions are not unique to AD systems, but arise in general as soon as AI-based systems are

used in safety-critical contexts. The authors in (73) make the same observation that the need for explainability

of black-box AI systems increases but only little work is done around discussing what is exactly needed.

Hence, they conduct a close-door workshop with different stakeholders from academics, industry,

policymakers and legal scholars. They discuss important unanswered questions about the design and

deployment of explainability methods and provide the main takeaways. It is key to involve stakeholders in

the development process and pay attention to the context in which an explanation is used.

2 State-of-the-Art Report (AP2)

26 Federal Office for Information Security

2.2.4 Documentation

The uniform documentation of AI systems only emerged recently as a relevant research topic. Up to now,

companies that deal with AI systems have their own workflow and solutions for the documentation of AI

requirements, the development process, deployment statistics, etc. Only limited work and efforts exist that

focus on the development of standardized documentation. This hinders the overall transparency of the

development process and of the resulting AI system.

Existing documentation practices for traditional IT systems can only be partially applied to AI-based systems

since the lifecycle of AI-based systems presented in Chapter 2.1 is more complex. Unique aspects like the data

collection or data-driven training process lack traditional documentation practices. In addition, there are no

common techniques that can be used by developers of AI-based systems to show that they addressed the

different challenges presented so far in this chapter. This is required to demonstrate the accordance which

serves to increase the transparency and trust in AI-based systems when deployed in reality. Additionally, this

is required such that an auditing process is able to properly assess the quality of a system for the different

aspects in the lifecycle.

2.2.5 Safety

Safety considerations within safety critical applications (e.g. automotive, industrial) are crucial since any

failure or malfunction can cause major impact to the physical integrity of the users and any person within

the application environment. Despite other important aspects like security, usability etc., safety is the highest

priority in any stage of the lifecycle of an application. In case data-driven algorithms and especially machine

learning (ML) algorithms determine the behavior, safety considerations also play an important role in the ML-

specific lifecycle. Thus, to minimize potential threats or hazards which can lead to risk or harm, ML-based

systems must comply with safety requirements mitigating the issues of the data-driven algorithms.

Despite the big advantages of ML which enable the current progress on autonomous driving or advanced

driver assistance systems (ADAS), ML-based algorithms imply several limitations and risks affecting the

following topics that are summarized in Figure 21:

• Design specification

• Lack of formal specification of the design & functionality

• Gap between design objectives and actual behavior

• Implementation transparency

• No traditional rule-based design

• Variables are unknown

• Lack of interpretability

• Formal verification

• Test coverage and residual risk almost unknown

• Common formal verification methods not fully applicable

• Performance and robustness

• Test set performance often unlike real-world performance

• Uncertain robustness against perturbations and unknown input data

• Monitoring

• Limited failure prediction

• Current prediction probabilities often unlike reliable uncertainty estimation

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 27

• Optimal ground truth behavior often unknown

Figure 21 Main limitations of ML algorithms with regard to safety

Independently of a specific safety standard or framework, the above-mentioned limitations impede safety

considerations. In contrast to classical software applications, examination of the safety properties of ML must

take the data-driven decision-making into account. Each safety consideration and its limitations have a

strong overlap to other chapters in this document e.g. IT Security, Robustness, Mitigation Strategies,

Standardization Activities AI & AD, etc.

2.2.6 Certification and Verification

Robustness certification (respectively verification of neural networks) is the procedure of examining the

functionality of a model, in particular when facing specially manipulated input data such as adversarial

examples discussed in Chapter 2.2.1.2. A DNN is robust against these manipulations if its predictions are still

considered as correct. The goal of verification/certification is to state that for a given input (space), the model's

output will lie within a specified output space. The procedure may give a guarantee under certain constraints

that the output is in the specified output space or a probability that this is the case. In other words, a lower

bound for the robustness of the DNN is determined.

The need for robustness certification results from an increasing number in attack approaches trying to

deceive DNNs and modify their predictions. Especially in security and safety critical applications, e.g.

autonomous driving, this could cause severe harm. Therefore, it is crucial to be able to measure the

vulnerability/robustness of DNNs against adversarial attacks to ensure a certain security level or reveal a

backlog in the matter of defense mechanisms.

Ideally, certification is embedded in the development phase of the AI-based system and is part of the testing

and benchmarking as shown in Figure 2. In this way, a potential lack of robustness is identified early on and

relevant countermeasures can be applied. Furthermore, the certification/verification can be part of the

assessment or auditing processes after development. For instance, this might be required in the case of

systems that are continuously retrained during deployment.

2.2.7 Standardization

The last challenge for using AI-based systems in safety-critical applications is based on the fact that currently

no standardization specific for AI exists. There are no uniformly acknowledged principles and practices that

the development, testing or deployment of AI-based system must fulfill. We discuss this further in Chapter

2.3.5 with the focus on the safety of AI-based systems.

Nevertheless, there are approaches to develop a standardization of AI-based systems. Best known here is the

EU AI Act introduced in (74) that tries to lay down uniform regulations on AI-based systems. They present a

horizontal regulatory approach with necessary requirements to address different risks and challenges when

AI is used without focusing on the needs for specific application areas. Additionally, there are also vertical

regulatory approaches which aim to develop standards for concrete application areas. Here, standardization

approaches for AI in mobility applications are most relevant for this project. Therefore, in Chapter 2.7 we

discuss existing and developing standardization approaches when AI-based systems are used in the area of

AD or ADAS.

2 State-of-the-Art Report (AP2)

28 Federal Office for Information Security

2.3 Mitigation Strategies

In this chapter specific mitigation strategies for the challenges discussed in Chapter 2.2 are presented. The

remainder of this chapter is structured in the same way as Chapter 2.2 so it is possible to directly map a

mitigation strategy to the associated challenge that is posed on AI-based systems.

2.3.1 IT-Security

In the following, mitigation strategies for the challenges on IT-Security from Chapter 2.2.1 are discussed. As

mentioned previously these are also strongly connected to robustness challenges from Chapter 2.2.2 where

the specific mitigation strategies are presented in Chapter 2.3.2.

2.3.1.1 Model Extraction Attacks

Within this chapter, dedicated privacy preserving methods are presented and discussed. To keep the focus on

safety and security related threats, only those methods are introduced that prevent adversaries to craft

successful adversarial examples with a lower attack effort.

2.3.1.1.1 Differential Privacy

Training data often includes sensitive information or represents intellectual property of the manufacturer.

Any leakage or exposure of the training data might result in a data privacy violation or commercial issues.

However, after the training of a data-driven model this model contains the information in an abstract manner

which allows an extraction in certain circumstances. To avoid any successful information extraction,

differential privacy provides a defense method based on adding random noise during the training phase (75).

Similar approaches add noise to weights, data and gradients and use specific noise distributions.

As shown in Figure 22, this defense method increases the robustness against information leakage but at the

same time decreases the performance of a model. Therefore, achieving differential privacy is always a tradeoff

between noise strength and model performance (75).

Figure 22 MNIST data set with different thresholds of added noise from (75)

2.3.1.1.2 Homomorphic Encryption

Another method to mask and hide the actual data is homomorphic encryption (76). Due to the homomorphic

properties, the computations can be executed on encrypted data without touching the sensitive, non-

encrypted content. After finalizing the computations, the output can be decrypted and provided to the user.

Limitations of this method are the restriction to suitable models due to polynomial constraints and the

applicability only during inference. The polynomial constraint entails that this method is only applicable to

polynomial functions, which harshly restricts the supported AI architecture. Additionally, homomorphic

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 29

encryption creates a computational overhead and increases the run-time of the system. However, the field of

homomorphic encryption in ML requires more research efforts and is under further development (76).

2.3.1.1.3 Trusted Execution Environment

Trusted execution environments (TEEs) (77) provide a trustworthy and controlled environment where

sensitive data can be computed. The data within a TEE can be processed unencrypted whereas data outside of

the TEE can be encrypted. An example of a TEE is given in Figure 23. Nevertheless, TEEs require a relatively

high effort in secure coding and do not provide full guarantees regarding information leakage. Side-channel

analysis or similar attacks are still applicable. However, it has to be noted that Side-channel attacks require an

extensive effort and can require physical access to the system (78).

Figure 23 Basic architecture of a TEE from (79)

2.3.1.2 Evasion Attacks

In this chapter SOTA mitigation strategies against evasion attacks are presented. An overview of evasion

attacks is given in Chapter 2.2.1.2. The general problem of evaluating mitigation strategies is described in (80)

where the authors note that adaptive attacks can often break previously proposed mitigations. Hence, they

list recommendations for an evaluation checklist to improve the general quality of the evaluation of

mitigation strategies. Similarly, the authors in (81) propose a new ensemble of evasion attacks and use this to

evaluate current defense strategies. They discover several broken defenses which again shows the difficulty

of correctly evaluating a mitigation strategy. All of the following methods create a tradeoff between the

efficiency of the defense and the computational and development effort.

2.3.1.2.1 Categorization

Figure 24 displays a categorization of mitigation strategies against evasion attacks. Mitigation strategies can

either be proactive by improving the robustness of a model before deployment, or reactive by mitigating

adversarial attacks on a deployed model. Adversarial training encompasses methods that aim to improve the

robustness of a model by retraining the model on adversarial examples. Defensive distillation describes

methods that aim to distill the information of the original model by distilling the original model predictions

through another model. By aggregating different models with each other, model ensemble methods exploit

the complexity of transferring adversarial examples over different models to improve the robustness.

Additionally, there exist a lot of methods to defend a model by either detecting adversarial input samples or

transforming the input data of a model in such a way, that the clean input data is reconstructed as best as

possible from the adversarial examples.

2 State-of-the-Art Report (AP2)

30 Federal Office for Information Security

Figure 24 Categorization of mitigation strategies against evasion attacks

2.3.1.2.2 Adversarial Training

Adversarial training is probably the most studied defense method against adversarial attacks. The basic

concept is to train a model on adversarial examples to make it more robust against such examples. This

enables the model to connect adversarial perturbations to their correct label and therefore prevents

misclassifications.

In (22) the authors first introduce the PGD attack, which is further explained in Chapter 2.2.1.2.2, and then

perform worst-case adversarial training using this attack. They train the model solely on adversarial examples

generated with PGD and are able to achieve high robustness against several attacks with white and black-box

access. However, it has been shown that this defense method leaves the model still vulnerable to certain types

of attacks (82).

The authors of (83) propose to improve the robustness of a model by training it with adversarial examples

transferred from other models. During the training process, they alternate between adversarial examples

created for the model to defend and the transferred adversarial examples from other models. This improves

overfitting issues of adversarial training, since the adversarial examples are more diverse. Additionally, the

training on transferred adversarial examples improves the black-box robustness of the models compared to

regular adversarial training.

Adversarial training also is a known defense against data poisoning attacks, which is described further in

Chapter 2.3.1.3. However, adversarial training requires very large datasets and must be done carefully to

prevent the model from overfitting, since overfitting in turn makes the model more vulnerable against

attacks. Additionally, it requires changes to the training process of the model.

2.3.1.2.3 Defensive Distillation

Defensive Distillation, as introduced in (84), is a method that distills the information of a model. The authors

train a second model with the probabilities of the logit layer from the original model as soft labels. A schematic

overview of the training with distillation is shown in Figure 25. This creates smoother classifiers and decreases

the classifiers sensitivity to input perturbations. However, it has been proven that defensive distillation can

be successfully evaded by attacks such as the C&W attack, for example in (20).

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 31

Figure 25 Training procedure under defensive distillation from (84)

2.3.1.2.4 Model Ensemble

In (85) the authors introduce random self-ensembles, where they inject noise layers before each convolutional

layer during the training and inference phase of a model as shown in Figure 26. They show that this approach

is equivalent to combining an infinite number of random models in an ensemble. Under the C&W attack this

mitigation strategy is able to maintain an accuracy of 86,1%.

Figure 26 Illustration of a Random Self-Ensemble model with noise layers before each convolutional layer from

(85)

The authors of (86) propose the use of an adaptive diversity promoter (ADP) training procedure to introduce

more diversity into their model ensemble. They use an ADP regularizer that encourages the low confidence-

predictions of each model to be orthogonal to each other. An illustration of the ADP regularizer during

training is shown in Figure 27. By introducing more diversity between the models within the ensemble, the

transferability of adversarial attacks on each of the models is more challenging. This in turn results in a higher

robustness against adversarial attacks. Finally, while model ensemble mitigate SOTA adversarial attacks, they

require higher computational effort and require the training process of the model to be adjusted extensively.

2 State-of-the-Art Report (AP2)

32 Federal Office for Information Security

Figure 27 Side-by-side comparison between baseline model ensemble predictions and model ensemble

predictions under an ADP regularizer from (86)

2.3.1.2.5 Detection of Adversarial Attacks

Instead of improving the robustness of a model, there are mitigation strategies that rather focus on the

detection of adversarial examples. Hence, these methods aim to prevent the system from incorrect

predictions by filtering out adversarial examples. Similar to proactive mitigation strategies it also shows for

detection-based reactive strategies that stronger adversaries are able to break defense methods that are

considered as secure at the time of release. For example, in (87) the authors build on the PGD attack and break

four recently proposed methods for the detection of adversarial examples.

A method that is able to detect adversarial examples is called feature squeezing. As introduced in (88) the input

data of a model can be squeezed to make adversarial noise more perceptible by the model. They suggest two

methods for squeezing the original input samples in size and using a smoothing filter to change pixel values

of the input image. The adversarial examples are detected by comparing the resulting predictions on both

data samples.

In (89) the authors propose a detection method for both out-of-distribution samples and adversarial attacks.

They assume that the pre-trained features of a model follow a class-conditional Gaussian distribution. Based

on this assumption they use Gaussian discriminant analysis to measure the probability density of a test

sample. They are able to achieve high detection rates against out-of-distribution samples by an 45,3%

increase compared to other detection methods. Additionally, on adversarial samples created by the C&W

attack they are able to detect 95,8 % correctly.

2.3.1.2.6 Input Transformation

Input transformation methods aim to reproduce the clean data by removing any adversarial perturbations

before a data sample is presented to the model. In (90) a framework for regenerating the original image of an

adversarial example is proposed. The authors utilize a GAN-based framework to project input samples onto a

range of samples generated by the generator. Benign samples are expected to be closer to the generated

samples than adversarial examples. By projecting the input sample onto the generated range, the adversarial

perturbation is reduced. The projected sample is then presented to the model. An illustration of this is

presented in Figure 28. This method has been found effective against adversarial attacks such as C&W and

FGSM.

Figure 28 Illustration of defense-GAN from (90)

The authors of (91) propose high-level representation guided denoiser which is a method to remove

adversarial examples through a denoiser model. This denoiser is trained to generate negative noise maps that

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 33

are based on the distance of the high-level representation of the example. These noise maps are added to the

adversarial example to remove adversarial noise (i.e. reduce the distance of the high-level representation of

the example). Furthermore, the authors show that the denoiser is trained more efficiently to provide

robustness than adversarial training on the ImageNet dataset. Additionally, the denoiser can be transferred

to other classifiers.

As stated above input transformation methods can be enhance the robustness of a model against adversarial

perturbation, however as they adjust the input data before it is given to the model, they increase the

computational effort needed for each classification.

2.3.1.3 Data Poisoning

We present current mitigation strategies for data poisoning attacks from Chapter 2.2.1.3. It is important to

understand that the best mitigation is to ensure that all datasets are processed only inside the company and

measures are taken such that it is not possible to exchange any data samples by an adversary. This also

includes that the capturing of the dataset is controlled and it is not possible that images which contain

malicious intent are inserted. However, this can often not be guaranteed or it would be too expensive or time

consuming. Hence, in the following we present methods that can be applied if the correctness of a dataset

cannot be guaranteed.

In general, this research field shows effects similar to the research on the mitigation of evasion attacks

presented in Chapter 2.3.1.2. Multiple mitigation strategies are proposed that defend against the data

poisoning attacks that existed at that time. However, many strategies are broken a short time later by stronger

attack methods that exploit certain mitigation ideas. This results in an arms race between attackers and

defenders. Hence, in (92) the authors combine a list of common pitfalls that should be avoided when

evaluating new defenses. Most importantly, this includes evaluating against adaptive poisoning attacks which

is the current SOTA when evaluating defenses against evasion attacks.

2.3.1.3.1 Categorization

Before presenting concrete mitigation strategies we first introduce a common taxonomy to categorize

different methods. This is like our approach for data poisoning attacks in Figure 29. Most important are again

the different defense types that exist. These will be used to structure the remainder of this chapter. Then, the

time when a defense method is applied is relevant. Some methods are applied before training while others

take a trained model and thus are applied after training is done. Similarly, the number of iterations that a

mitigation strategy uses is important. Some are efficient to apply while others require extensive changes of

the training process. Another important category is the type of data poisoning attacks that are prevented by

a defense method. In the best case a defense method prevents data poisoning in general, but some methods

only prevent specific attacks. Lastly, it is important to distinguish the data that a defense method requires.

Here, some methods need access to at least some clean and correctly labeled data samples, while others also

work if only the poisoned dataset is available.

2 State-of-the-Art Report (AP2)

34 Federal Office for Information Security

Figure 29 Categorization of mitigation strategies for data poisoning

2.3.1.3.2 Filter/Detection

The first category of mitigation strategies consists of methods that try to detect poisoned data samples and

remove these from the dataset. This is first proposed in (93) and (94). In both methods a model is first trained

on the complete dataset that might contain poisoned data samples. After the training is done all data samples

from the training dataset are classified with the trained model and different parameters of the model are

analyzed. Here, the authors analyze the learned representations or activations of the penultimate layer of the

trained model. They find that those representations differ significantly on clean and poisoned data samples.

Hence, they filter out all data samples that can clearly be distinguished from the majority of data samples

based on their feature representations.

However, in (95) the authors are able to break both described methods. An adaptive attacker can optimize the

indistinguishability of the feature representations of poisoned and clean data samples. The resulting poisoned

data samples cannot be distinguished and the defense fails. In general, it shows that defense methods that are

based on outlier detection are typically ineffective against an adaptive adversary. If the criterion to detect

anomalous behavior can be integrated into the attack process an attacker can exploit this and break a defense.

A similar observation is made in (96) where the authors consider defenses that perform the anomaly detection

on the dataset and not on learned feature representation. They introduce a general approach to craft attacks

that can evade anomaly detectors and are able to break various defenses that try to sanitize a dataset from

poisoned data samples.

2.3.1.3.3 Robust Training

Methods for robust training represent the second category of defense strategies. In Figure 30 the effect of

different defense methods is visualized in case of the targeted poisoning attack from (58). Here, the tested

filter defenses are discussed previously in Chapter 2.3.1.3.2 and adversarial training represents the standard

method from (22) discussed previously in Chapter 2.3.1.2.2. It is important to note that this method is also

very successful at preventing targeted data poisoning and not only against evasion attacks. However, it has

the disadvantage that the standard performance is significantly reduced. All remaining methods in Figure 30

are based on robust training and are presented in the following.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 35

Figure 30 Overview of different defense methods against the targeted poisoning attack from (97)

The first method group uses standard data augmentations that are used to increase the performance of

models on standard data samples. For the first time, in (98) the authors propose to use strong data

augmentations as a simple but effective method to reduce the effect of backdoor and target poisoning attacks.

They find that especially using the MaxUp augmentation technique from (99) reduces the success of data

poisoning attacks. Thereby, MaxUp generates a set of augmented data samples for each original data sample

in a dataset and only minimizes the worst-case loss over the augmented data samples.

Another group of methods is based on models that are trained with differentially private stochastic gradient

descent (DP-SGD) introduced in (100). This method is originally introduced to ensure that learning is done

privately and no individual examples overly influence the training. To do so the training gradients are clipped

and Gaussian noise is added. In (101) these methods are extensively explored to mitigate data poisoning

attacks. The authors find that using DP-SGD increases the robustness of models even when no meaningful

privacy guarantees can be given.

The last method is recently proposed in (97). Here, the authors adapt standard adversarial training by

generating the adversarial samples using a targeted data poisoning attack instead of an evasion attack. Their

method achieves a similar robustness against data poisoning as standard adversarial training while suffering

a smaller drop in performance on standard data.

Concluding, the authors in (102) apply the concept of randomized smoothing from (103) to defend against

backdoor data poisoning attacks and provide a certifiable robustness bound. They provide the first

benchmark for certified robustness against backdoor attacks but only consider binary classification problems.

The concept of randomized smoothing is later discussed in Chapter 2.3.6.2.

2.3.1.3.4 Model Repair

Lastly, some mitigation strategies are based on repairing a model after this is trained on a dataset that might

contain poisoned data samples. In (104) the authors try to remove neurons that are inactive on clean data

samples. Hence, they test a model on data samples from a clean dataset and prune all neurons that show a low

activation on these samples. In addition, they further fine-tune the pruned model. First, this recovers lost

performance and secondly can change neurons that contain backdoor behavior which are not pruned earlier.

A similar, idea is also used by the authors in (105). Here, they first try to identify existing backdoors in a model

and then try to reconstruct the trigger. Based on these results they propose multiple defense strategies. On

the one hand, they try to prune neurons that are only active when the identified trigger exists in an image.

2 State-of-the-Art Report (AP2)

36 Federal Office for Information Security

On the other hand, they try to unlearn the backdoor trigger by retraining the model on images that contain

the reversed trigger.

However, for both described defense methods it is possible that adaptive attacks bypass the defense, because

they exploit the distinguishability of clean and poisoned data samples based on the activity of neurons. An

adaptive attacker can mimic the activity of neurons on clean samples on the poisoned data. For example, in

(55) the authors show that their backdoor is not detected by NeuralCleanse.

2.3.2 Robustness

This chapter presents mitigation strategies that are specific to the challenges on robustness discussed in

Chapter 2.2.2. Additionally, we present methods for the confidence or uncertainty estimation of DNNs which

can be seen as a general mitigation strategy not focused on a specific threat.

2.3.2.1 Natural Perturbations

In this chapter we present mitigation strategies that can be used to increase the performance of DNNs on

OOD data samples. Here, the most important category uses augmentation methods to improve the

generalization of DNNs during training. As discussed in Chapter 2.2.2.1 augmenting the training dataset using

only a single corruption type is not helpful for an increased performance against different corruptions. Hence,

most recent methods utilize strong data augmentation and the combination of different augmentation

operations. In (106) the authors combine the concept of MixUp from (107) with the use of standard

augmentations for computer vision. An example of their resulting method is shown in Figure 31. It consists

of applying different augmentation operations in parallel to an image. At the end, all different paths are

combined via a weighted summation and the resulting image is a mixture of the effect of all augmentations.

This method achieves a significantly increased robustness also on corruptions that are not used as part of the

augmentation operations. In (67) the authors further improve this method by intruding a new powerful

augmentation operation. Concretely, they pass a clean image through an image-to-image network and apply

various random perturbations at different stages in the reconstruction process. Hence, the reconstructed

image is not a perfect copy but will be visually diverse. They show that their method preserves the main

semantics of an image and at the same time generates unique distortions. Alternatively, the authors in (108)

introduce adversarial noise training. They first train a generative DNN that learns to find worst-case noise for

a standard image classifier depending on the current input. Then, the generative DNN is used as noise

generator and is incorporated in the training process. Here, they follow the method of standard adversarial

training from (22) but use the noise generator to find a perturbation instead of the PGD attack. The

fundamental method of adversarial training is previously discussed in Chapter 2.3.1.2.2.

Figure 31 Overview of the augmentation strategy from (106)

A second category of methods for an improved performance on OOD data uses improvements to the

architecture of DNNs. Here, one recent approach is (109) where the authors note that current CNN

architectures are not shift invariant since commonly used methods for down sampling like MaxPooling

ignore the Nyquist-Shannon sampling theorem. To fix this behavior they propose to include an anti-aliasing

filter in MaxPooling layers. This leads to an improved performance on standard data and to a better

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 37

generalization on corrupted data samples. Another method is proposed in (110). Here, the authors integrate a

technique for unsupervised online domain adaptation into the DNN architecture. They do this by estimating

the statistics for batch normalization (introduced in (111)) online using recently observed data samples. Then,

these values are used instead of the statistics that are estimated over the training dataset. This significantly

improves the robustness of a DNN and can be combined with methods for data augmentation described

previously for the best performance.

The final category for mitigation strategies for OOD generalization is based on online detection of data

samples that are OOD. Hence, these methods do not increase the robustness of the predictions of a DNN but

instead filter samples that deviate from the training distribution. If such samples are found these can then be

passed to a specialized DNN or traditional algorithms that can handle a shift in the data distribution better.

An overview of different methods for OOD detection is presented in (112). The authors define a standardized

evaluation procedure to reliably assess performance improvements and perform an extensive evaluation of

recently proposed methods based on this evaluation procedure. In general, one of the first methods is

proposed in (113). The authors observe that the maximum softmax probability that is output by a DNN for

classification tends to be higher on standard data samples than on OOD data samples. Hence, they define a

threshold on the softmax probability and assume that all data samples with a lower value come from a OOD

distribution. In (114) a more advanced method is introduced. The authors propose a decomposition of the

standard softmax layer and introduce a preprocessing step that is applied on all data samples during inference.

Both improvements help to significantly improve the detection performance. In addition to specific methods

for OOD detection it is possible to detect OOD samples based on the general confidence of a DNN. In Chapter

2.3.2.2 we present different methods to reliably estimate the confidence of a DNN which can be used to detect

OOD data samples when the confidence is below a predefined threshold.

2.3.2.2 Confidence Estimation

As a last category of mitigation strategies against robustness or IT-Security challenges, it is possible to use

methods for confidence estimation of DNNs. For each prediction these methods also provide a confidence or

uncertainty value that should be correlated with the actual reliability of a prediction. Then, this information

can be used to detect whether the current prediction of a DNN can be trusted. In the best case the confidence

of a DNN is high on in-domain data samples and is lower on OOD data samples or adversarial perturbed data

samples. In these cases, it is then possible to contact an alternative backup system if the confidence of a DNN

is below a certain threshold. This concept is especially important to incorporate safety systems into an entire

AD system. For example, it is possible to use DNN-based systems most of the time for performance reasons

and contact an alternative verifiable safety system if the prediction of the DNN is not reliable in a certain

situation.

One important category for confidence estimation are methods that are based on using an ensemble of

models instead of only a single model. This is first proposed in (115) where the authors use dropout layers

from (116) not only during training. Instead, dropout stays active during inference and an ensemble of models

is generated indirectly by predicting each data sample multiple times. Then the final prediction of the model

is the average of all individual predictions, which allows to estimate the uncertainty. The authors in (117) take

this approach even further and use a real ensemble. Hence, they train multiple models for the same task and

average the prediction of the individual models during inference. This has the disadvantage that multiple

models must fit in the available memory of the compute device at the same time and thus the authors in (118)

propose a more efficient method. Instead of using multiple models they expand a single model. For each layer

the normal weight matrix is shared among all members of the ensemble, but additional rank-one weight

matrices are introduced for each member. This allows to compute the prediction of the entire ensemble using

a single forward pass through the network by repeating the input data sample over a batch.

Another category of methods for confidence estimation consists of methods that introduce different

probabilistic layers in a DNN that output a more meaningful probability distribution than using the standard

softmax activation. Here, the authors in (119) exchange the softmax activation in the last layer with a rectified

linear unit (ReLU) activation and learn an evidence score for each class. This score is then used to place a

2 State-of-the-Art Report (AP2)

38 Federal Office for Information Security

Dirichlet distribution over the class probabilities, which allows to better estimate the uncertainty of each

classification. Alternatively, it is also possible to use Bayesian neural networks (BNNs), where the weights are

no longer deterministic but instead model a probability distribution, for example in (120). However, BNNs

typically underfit the dataset and lead to at least a doubling of the model parameters which prevents their use

on high dimensional data or in resource-constrained environments. Hence, the authors in (121) propose an

efficient approximation of a BNN. They recycle the approach from (118) and model the member specific rank-

one weight matrices using a Gaussian distribution instead of deterministic weights. Therefore, they combine

the idea of BNNs with techniques for efficient ensembles.

A third class of methods for confidence estimation also changes the architecture of a DNN, but without

introducing probabilistic concepts. For example, the authors in (122) introduce a hybrid model combining a

DNN and the k-nearest neighbors algorithm. For each data sample during inference, they estimate the

distance to the closest data samples seen during training and generate a confidence score based on this

distance. A simpler method is proposed in (123). Here, the authors introduce temperature scaling which adds

a scaling coefficient to the final logit layer of a DNN before passing the results through the final softmax

activation. This scaling coefficient is optimized on a hold-out dataset and improves the general calibration of

the probabilities.

Lastly, there are also methods that introduce a single metric which represent the confidence score of a DNN.

In (124) the authors add an additional output to a DNN which learns the confidence value for each prediction.

Hence, they train this single value to represent whether the classification of the DNN is correct or likely

incorrect. In contrast, the authors in (125) introduce a score that can be calculated for a trained DNN. They

first use gradient information to generate the pixel-wise feature importance. Then, this is used to generate

perturbed data samples and the confidence is generated by averaging over all perturbed samples. Since

gradient information is required to efficiently compute the attribution this method can only be used for

white-box systems. This is further improved upon by the authors in (126) that extend the approach to estimate

the confidence of black-box systems and enable a more efficient use in mobility applications.

2.3.3 Explainability

In this chapter we discuss the explainability of AI systems and present an overview of the most relevant

methods from current research. We focus mainly on methods that are applicable to explain and interpret

DNNs, since these are primarily used in AD systems, as we describe in Chapter 2.4.1.1. First, we introduce a

taxonomy to categorize different methods for explainability that is derived from recent surveys on

explainability. Then, methods for local explainability are discussed which try to explain the output of an AI

system on a single input sample. Afterwards, we discuss methods for global explainability which try to explain

the general behavior of an AI system instead of justifying the prediction of a single data sample.

2.3.3.1 Categorization

Most surveys on explainability discussed in Chapter 2.2.3 derive their own taxonomy for different

explainability methods. We try to combine these taxonomies and present an overview in Figure 32 that allows

to categorize each explainability method which is relevant in the context of AI for mobility systems. This

allows to compare different methods and easily determine which methods are feasible and handle the

complexity of the different mobility use cases which are described in Chapter 2.4.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 39

Figure 32 Categorization of methods for explainability

The first category is most important and groups explainability methods by the type of explanation they

provide. Here, local and global methods can be distinguished and we organize Chapter 2.3.3.2 and Chapter

2.3.3.3 using this categorization. Next, the required model access of explainability methods needs to be

considered. Some methods are model-agnostic and can be used to explain black-box systems, while others

require information of the system or gradients and can only be used to explain white-box systems. Another

important category to distinguish explainability methods is the feasible model complexity. On the one hand

it is only possible to apply some methods on tree-like systems. On the other hand, there are also methods that

can be used to explain complex systems based on large DNNs. Similarly, also the feasible input data differs a

lot between different methods. A lot of methods can only be applied reasonably on tabular-like data that has

a low dimensionality. Explaining image-based systems is harder due to the high-dimensionality and

nonexistence of simple feature categories. Lastly, the required effort to execute an explainability method

varies a lot. For some methods, a single forward pass of a data sample is enough, while others require extensive

approximation using many samples.

In addition to the already presented general surveys on explainability there are also some publications that

focus on a specific type of explainability. Here, the authors in (127) focus on methods that provide causal

explanations. They present a summary of the literature from this viewpoint and consider both traditional and

DNN-based systems. Focusing on the application of explainability methods to AD, the authors in (128) and

(129) first provide a general survey on different methods for explainability. Next, they focus on the application

on the different tasks that are relevant for AD and present a summary of publications that applied some form

of explanations in the context of AD.

2.3.3.2 Local Methods

Methods for local explainability try to explain the decision of a system on a single data sample. Hence, they

do not cover the entire application domain and need to be applied repetitively. This kind of explanation is

useful to understand a concrete prediction and provide justification of a system for a concrete data sample.

Also, methods for local explainability are easier to scale to complex DNNs than trying to explain the behavior

of a DNN globally. This is the main advantage and the reason most research work focuses on local

explainability of DNNs.

2.3.3.2.1 Saliency

The most prominent methods for local explanations of DNNs are saliency-based methods. Typically, these

generate a heatmap on the input data which is the visualization of features that are relevant for the prediction.

Some examples of different methods for saliency-based explanation are shown in Figure 33. In general, the

main advantage of saliency-based methods is that these can be applied to any DNN and on high dimensional

2 State-of-the-Art Report (AP2)

40 Federal Office for Information Security

data. Therefore, the focus of research lies on such methods and improvements are continuously introduced

in recent years.

Figure 33 Exemplary visualization of different saliency methods from (130)

Current methods for saliency-based explanations typically require white-box access to the system. One kind

of methods is based on using gradient information to aggregate the contribution of internal components of a

DNN to a prediction. Here, some current methods are (131) and (132)1. These can be easily applied to any

white-box DNN and only require a few iterations of passing data samples through a DNN. Alternatively,

another kind of promising methods is based on visualizing the internal activation patterns of a DNN and

projecting this to the input. Here, some recent methods are (130) and (133). Additionally, a third kind is based

on backpropagating the prediction output of a DNN through each layer back to the individual features. For

this kind, (134) and (135) are recently proposed methods. The three method kinds presented are mostly used

and most research work is focused in these areas.

Nevertheless, there exist also other approaches that use different concepts to generate saliency maps. An

interesting one is proposed in (136) where the authors use adversarial attacks that generate coherent visual

perturbations which is very similar to the concept of physical adversarial attacks discussed in Chapter 2.2.1.2.5.

Also, interestingly the authors in (137) train a separate DNN that upscales the feature maps learned in the

original DNN. They train their model to learn a saliency map that can be used in parallel to the original DNN.

However, the title of both publications is slightly misleading because they still require gradients to perform

the adversarial attack or train the upscaling model. Hence, these methods require white-box access and

cannot be used to explain true black-boxes.

Due to the success of saliency-based methods there are also publications that investigate whether the

provided explanations can be trusted. In (138) the authors analyze different saliency methods and discuss that

only relying on the visual inspection of saliency maps can be misleading. They show that some methods,

based on the guided backpropagation of the DNN output to the input data introduced in (134), are largely

invariant to the parameters of a DNN and basically just act as an edge detector in images. To increase the

practical trust in saliency-based methods they then propose two simple tests that assess the quality of

saliency-based explanations.

2.3.3.2.2 Approximation

Methods for approximation typically try to locally approximate a larger system by inherently explainable

models. Hence, most methods describe the local behavior of a system by a linearly weighted combination of

the input features. This allows to explain the impact of each feature in a very understandable fashion.

However, the linear combination also represents the main disadvantage because these do not scale well to

input data with high dimensionality like images or videos. Hence, the applicability to DNNs and specially to

explain image data is very limited and typically only allows very rough explanations based on super-pixels

from (139).

1 The open-source project is available at: https://github.com/PAIR-code/saliency

../:%20https:/github.com/PAIR-code/saliency

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 41

The first method that used a local linear approximation is LIME proposed in (140). The authors train a linear

model by generating new samples locally around the data sample that should be explained and observing the

output of the original system. The approximated model is locally correct and is used to explain the decision

of the original system for this specific data samples. An alternative is proposed in (141) where the authors

system locally. Any changes to the rest of the features does not have an influence on the prediction of the

system. Again, this method does not scale well to high dimensional input data and requires an intensive search

ther alternative is DeepSHAP proposed in (142). The authors use a

linear approximation of a system and calculate the importance of input features based on Shapley values.

Therefore, this method suffers from the same disadvantages discussed previously.

2.3.3.2.3 Counterfactual Example

Another type of methods where research interest picked up in recent years are explanations based on

chang

that the change of the data sample is easy to explain for humans. For example, this allows to explain a classifier

he pupils of the animal in the image were made larger the probability of a cat

would decrease by 20%

exactly the impact of a group of features. An example is shown in Figure 34 where the explanation of the

saliency-based method Grad-CAM is compared with a counterfactual example from the method GANalyze

for a Lion vs. Cheetah classifier. Typically, methods to generate counterfactual examples have similar

requirements to saliency-based methods discussed in Chapter 2.3.3.2.1. They require white-box access but can

be applied to large DNNs with high-dimensional input data.

Figure 34 Visualization of the explanations provided by counterfactual examples in comparison to saliency-based

explanations from (143)

One of the first publications to use counterfactual examples to explain vision-based systems is (144). Here, the

authors explain why an image was classified as a class 𝑐 rather than class 𝑐′. To do so, they replace the most

relevant region of the input image for the classification 𝑐 with a part from an image of class 𝑐′. The resulting

image would then be classified as class 𝑐′ and the generated explanation provides information about the

mainly responsible feature region. Alternative methods to generate counterfactual explanations are based on

generative DNNs instead of exchanging specific image parts. Here, (145) and (143) both use GANs to

synthetically generate the parts of the image that must be changed instead of extracting these from an existing

image of class 𝑐′. The basic principle behind GANs is discussed in more detail in Chapter 2.6.3.

Also, there is an approach that takes the opposite direction of counterfactual examples. In (146) the authors

explain the prediction of a system by showing the training data samples that are most responsible for this

prediction. Instead of generating a counterfactual example they provide multiple reinforcing examples from

the train dataset.

2 State-of-the-Art Report (AP2)

42 Federal Office for Information Security

2.3.3.3 Global Methods

In contrast to methods for local explanations, methods for global explanations try to explain the complete

behavior of a system. Hence, these do not only explain the prediction on a single data sample but provide a

model that is able to explain each prediction. Therefore, methods for global explainability achieve perfect

coverage. However, it is significantly more difficult to explain a complex system like a DNN globally instead

of providing a local explanation. Most of the methods that are presented in the following are limited in their

applicability or only achieve poor performance in comparison to the original system.

2.3.3.3.1 Model Translation

The idea behind methods for model translation is to transfer the behavior of a complex system to a simpler

model that is more explainable. Hence, the explainable model should mimic the behavior of a complex DNN

as best as possible. Here, one approach is to train a surrogate model that is inherently more interpretable. In

(147) the authors train a gradient boosted decision tree for any given black-box model. In principle, they

perform a model extraction attack and then provide explanations for the extracted model. These explanations

are again based on SHAP values that we already discussed in Chapter 2.3.3.2.2. Hence, this method has the

same disadvantages and cannot be scaled well to high dimensional data samples like images.

Alternatively, there are also approaches that integrate explainable models in a DNN and use a hybrid system.

In (148) the authors insert multiple autoencoder structures in a CNN to extract a limited number of high-level

latent features. The extracted features are then used to construct a Bayesian network that shows the exact

effect of each extracted feature. Hence, the feature extraction is still performed by a CNN, but the final

prediction is made in an understandable way by a graphical model. This represents a tradeoff between

increasing the explainability of a system but consequently reducing the prediction performance. A similar

method is also used in (149), where the authors learn a graphical model that represents the learned features

of a CNN. They use this to visualize the knowledge hierarchy learned in a CNN, which can be used to explain

the learned representation of a CNN.

2.3.3.3.2 Rule Extraction

Methods based on rule extraction try to extract the exact decision rules from a complex system and build an

exact replica of the system. If such methods are applied for DNNs typically decision trees are used that model

the behavior of each neuron depending on the current input values. Then, all trees are combined and

intermediate rules are extracted that simplify the resulting tree. As a result, these methods provide perfect

explainability because a decision tree is used instead of a DNN and for these each prediction is perfectly

traceable. However, these methods are extremely limited and can only be applied on shallow networks. Also,

they do not scale well with the input dimensionality. Hence, explainability based on rule extraction is more

an academic research field than something that can be used well in praxis.

This conclusion is also supported by the authors in (150), which review different methods for rule extraction

of DNNs. They conclude that only a limited number of publications consider this problem and satisfactory

solutions do not exist. This also shows in the evaluation of the currently most promising method DeepRED

in (151). The authors experiment with a binary classification task for two classes from the MNIST dataset

introduced in (152). Even for this purely academic task they first must prune the DNN and the extracted

decision tree only achieves a fidelity of ≈ 90%.

2.3.3.3.3 Explainable Training

Instead of trying to explain a system after training there are also approaches that incorporate explainability

directly in the system during training. Most notably in (153) the authors consider the task of providing

explanations for an end-to-end AD system. See Chapter 2.4.2 for a general introduction to these systems. Here,

the authors consider the task of predicting the steering angle of a vehicle from monocular images. They use a

DNN and incorporate visual explanations based on saliency maps into the architecture. In Figure 35 the

resulting architecture is shown and an exemplary explanation is visualized. The architecture consists of a

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 43

standard CNN to perform the feature extraction from the raw input images and a following LSTM to predict

the steering angle based on the current input and remembered information of the last seen input images.

Additionally, the authors insert an attention mechanism that is trained to visualize the regions in the learned

feature representation that are most relevant for the current prediction. As a result, this attention map can be

upscaled to the size of the original image which results in a saliency map. This allows a human to observe the

regions in the input image that had the most influence on the current prediction.

Figure 35 Overview of an explainable AD system from (153)

In another recent approach the authors in (154) learn a weighted linear combination of individual DNNs.

Thereby, each DNN only has a single input feature which allows to explain the overall prediction of the

combination of DNNs. Since each prediction results from a weighted combination and each DNN has a single

input feature the impact of each input feature on the final prediction can easily be explained. However, this

approach only works well for tabular-like data and currently does not scale to high dimensional data.

2.3.4 Documentation

This chapter summarizes potential strategies for the challenge of a uniform documentation of AI-based

systems discussed in Chapter 2.2.4. Additionally, we present software tools that can help to document the

development process, the evaluation of AI systems and track the complete AI lifecycle.

2.3.4.1 Proposals for Unification

Proposals that gained the most attention in recent years come from leading industry players and are based

on their practical experience. On the one hand, several works discuss the need for standardized

documentation of the datasets used for the training of data-driven systems. In (155) the authors propose to

create a mandatory datasheet that accompanies every release of a dataset. They provide a question catalogue

that covers all aspects that are relevant during the data acquisition and processing, ranging from the

fundamental motivation over the collection process to the distribution and maintenance. Some examples of

the question catalogue are shown in Figure 36 on the left side. The datasheets are also created for datasets that

are only available internally and can be handed to external parties on request. This increases transparency,

accountability and reproducibility. Alternatively, in (156) the authors also consider the problem of dataset

quality, but from a specification and verification perspective. First, they provide an overview of existing

standards for datasets in certain safety-critical domains. These standards can only partially be applied to AI

systems due to the increased input dimensionality, inability to formally verify strict completeness and data-

dependent behavior. Following, the authors provide a list of recommendations for the management of

datasets and propose the usage of three additional artifacts for the documentation of datasets, consisting of

the definition standard, the requirement specification and the verification plan.

2 State-of-the-Art Report (AP2)

44 Federal Office for Information Security

Figure 36 Exemplary visualization of datasheets from (155) on the left and model cards from (157) on the right

In addition to research on the documentation of datasets there is also some work to standardize the

documentation of a trained AI system. In (157) the authors propose to provide documentation for each release

of an AI system, which should describe the performance characteristics. Their model cards contain the basic

information of the model architecture, the training parameters and a detailed evaluation in a variety of

conditions in the intended domain. For each of the categories they provide guidance in determining a useful

question catalogue from which model cards can be derived. An example is shown in Figure 36 on the right

side. This clarifies the intended use case and shortcomings of each model leading to improved transparency.

Combining the different areas where documentation of AI systems is required, the authors in (158) and (159)

pr

in many industries for traditional (hardware) products. These include not only the final performance of a

system but also capture various aspects about the development, the testing, the robustness or the safety and

security. Again, the authors provide a question catalogue that can be used to create FactSheets for any AI

system and provide detailed examples from their experience. The proposed documentation forms the basis

that can be used to get an overview of a system. For the specific threats on IT-Security from Chapter 2.2.1 and

robustness from Chapter 2.2.2, it would be possible to extend the original FactSheets to also contain more

detailed information on the implemented mitigation strategies of the described threats and the evaluation

against exemplary attacks.

Similar to the previous concepts, the authors in (12) introduce a framework for the auditing of AI systems that

should be done internally at companies developing AI systems. At each stage of the lifecycle described in

Chapter 2.1 a set of documents is required before moving further in the lifecycle. Combined, these documents

form an overall audit report to assess decisions made during the development process, the evaluated test

scenarios and the quality of the AI system. An overview of the introduced auditing and documentation

process is shown in Figure 37. The authors propose to use the introduced framework to close the

accountability gap during large-scale deployment. They provide detailed descriptions of each step in the

internal development and parallel audit of an AI system and mention the required documentation at each

step. The framework for the documentation of AI systems is derived by combining lessons learned from

auditing practices in other industry areas.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 45

Figure 37 Overview of the proposed internal auditing process and associated documentation from (12)

In (11) the authors present the ABOUT ML2 project which is an initiative to increase the transparency of AI

systems across different stakeholders. They focus on the need for uniform documentation of the AI lifecycle

and standardized practices. The goal of the project is to consolidate past efforts for standardized

documentation and develop guidelines and templates to support documentation of an AI system. This should

lower the barrier to integrate thorough documentation in any AI development process for any industry. To

achieve this, during the project different pilot use cases are explored to test the applicability of the proposed

documentation guidelines in practice. Additionally, the project wants to develop means to tackle the inherent

transparency limitations resulting from intellectual property protection or information security.

2.3.4.2 Software Tools

To support the documentation of AI systems different tools exist that allow to track an AI system over the

complete lifecycle. In recent years multiple commercially available platforms were developed that provide

features ranging from data visualization over experiment tracking (including data and model versioning) to

code packaging for deployment. Heavily used and funded platforms include (160), (161) and (162). However,

more platforms exist where the focus is slightly different or less functionality is available. The platforms

mentioned also provide more advanced features like feature importance analysis, visual explainability or

automated parameter search. Also, the upscaling of AI operations in a company is a focus-point where the

platforms provide simple user interfaces, easy-to-use apps and the option to perform no-code experiments.

One limiting factor in using more advanced features is that in most cases only tabular and low dimensional

data is heavily supported. Explaining or evaluating vision or point cloud AI systems is more difficult due to

high input dimensionality and large system architectures as discussed in the associated chapters in this report.

In contrast to the previous commercial platforms for AI system tracking there are also open-source

alternatives that are largely developed by an independent community. Here, prominent examples include

(163) and (164). These provide the same basic features but do not yet include more advanced features.

Nevertheless, the basic need of tracking an AI system is fulfilled by having a model registry and training

parameter tracking. The usability is more focused on expert users and not on an as easy as possible integration

and development of AI systems. Still, the mentioned open-source platforms are a viable alternative that is

also used in the industry and consistently new features and improvements are introduced.

The mentioned platforms currently mainly support the internal documentation of the lifecycle of an AI

system and the tracking of experiments including training and evaluation. Companies might use this

information to produce the reports mentioned in Chapter 2.3.4.1 and expand it with additional information.

These platforms provide the basis to monitor the AI lifecycle internally and aggregate information to provide

to third parties.

2.3.5 Safety

Any safety requirement must consider the limitations mentioned in Chapter 2.2.5 in order to manage and

minimize the risks. In the automotive sector, there are several major norms, standards and frameworks with

respect to safety driven design and development (functional safety) of automotive products. One of the most

2 The project homepage is available at: https://partnershiponai.org/workstream/about-ml/

https://partnershiponai.org/workstream/about-ml/

2 State-of-the-Art Report (AP2)

46 Federal Office for Information Security

common standards for functional safety is the ISO 26262 (165) including functional safety requirements for

electronic systems embedded in road vehicles. The major approach of the ISO 26262 is shown in Figure 38

and is a risk driven approach that is comprised of requirement specification, architecture, implementation,

integration, verification and validation.

Figure 38 V-Model approach of the ISO 26262 requires mapping to the ML specific properties

Furthermore, the standard provides different automotive safety integrity levels (ASILs) where each level

represents a set of requirements regarding the acceptable residual risk. The higher the ASIL, the higher the

safety requirements and the lower the residual risk of the application. In general, high ASILs require a high

transparency, explainability, test coverage and (semi-) formal verification of the systems design and

functionality. Unfortunately, all these requirements collide with the limitations of ML-based systems listed

in Chapter 2.2.5 and lead to different strategies to achieve the demands. Figure 39 summarizes some strategies

to map and cover ML- specific aspects with safety requirements.

Figure 39 Suitable safety strategies for ML-based systems from (166)

In the following, some aspects of the listed strategies will be discussed in extracts. The most promising

approach is the use of inherently safe architectures realized by the possibility for formal verification of the

ML-based model. Formal verification for ML models is strongly connected to the robustness considerations

described in Chapter 2.3.2 and is covered more extensively in Chapter 2.3.6. The scope of formal methods for

verification is to find flaws or to prove that the system is flawless. Assigned to ML, formal verification shall

reveal robustness issues and/or enable robustness guarantees. Besides applying formal verification, the ISO

26262 demands (semi-) formal specifications of the design and functionality. The aim of this requirement is

to model t

literature provides some strategies to fulfill the demands of (semi-) formal specification. Here, Figure 40 shows

some relevant approaches.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 47

Figure 40 Challenges and possible mapping for (semi-) formal specification of ML based systems from (167)

Due to the limited applicability of formal methods (in particular for complex ML-based models) high-risk

applications represented by high ASILs are difficult to achieve or are even unfeasible. The majority of the

contradictions is based on the lack of formal verification of the model

residual risk estimation remains uncertain and the risk driven approach of the ISO 26262 cannot be justified

point to point. Nonetheless, a successful mapping and satisfying the safety requirements is constrained to the

selected safety level and the risk impact of the applications. The lower the safety level, the higher the

successful safety approval. Residual limitations in higher safety levels can be mitigated by redundant

(traditional) systems or safe fail architectures. As an example, automated driving systems and autonomous

vehicles (AVs) use additional sensor data (e.g. LiDAR, RADAR) to improve the decision process of the ML-based

algorithms and lower the risk in case of a misclassification based on the image data from a camera.

2.3.6 Certification and Verification

Here, we present the mitigation strategies for the challenges on certification presented in Chapter 2.2.6. When

applying certification, several things must be considered and an appropriate algorithm has to be chosen

accordingly. This involves the power of an attacker (e.g. 𝑙1, 𝑙2 or 𝑙∞ influence), the size and the architecture of

the DNN to certify. Broadly, there are two different categories of approaches for robustness certification:

complete and incomplete verification. These have distinct strengths, but also restrictions. There are also

attempts to combine the best of the two worlds to overcome their shortcomings. In the following, the

individual categories are discussed.

2.3.6.1 Complete Verification

Complete verification is the most exact, but also the most demanding approach. A successful complete

verification guarantees (under certain conditions) that for a given input sample, there is no adversarial

example, which results in a prediction other than the ground truth. Hence, the resulting boundaries for

robustness are exactly defined. However, the problem of complete verification of a DNN is NP-complete as

discussed in (168). The worst-case time complexity of this type of algorithms is exponential, although they

exhibit practical run times for smaller networks. Most approaches work with l adversaries as well as simple

feed-forward ReLU networks. A principled introduction to the use of ReLU as an activation function is given

in (169).

One approach for complete verification is using logical solvers for satisfiability modulo theories (SMT)

proposed in (170) or mixed integer linear programming (MILP) discussed in (171). When considering feed-

forward neural networks with ReLU activation functions, the components of the model architecture can be

transformed in mathematical functions, equations and inequalities. SMT and MILP solvers can determine if

these are satisfiable for a given input sample respectively if the network is robust. Though solver-based

approaches can successfully verify smaller neural networks under specific constraints (e.g. feed-forward

structure, ReLU activations), they do not offer an adequate scalability. The size of a model as well as its

architecture, which might not be convertible, are often the reason why this kind of approach is not feasible

for DNNs used in complex practical applications.

A more scalable approach to complete verification is branch-and-bound algorithms (172). Here, the linear

characteristic of ReLUs and affine mappings is exploited. This property reflects in the output as well, i.e., for a

2 State-of-the-Art Report (AP2)

48 Federal Office for Information Security

given input sample the output is locally linear. A bounding step determines approximate lower and upper

boundaries for possible output deviations by incomplete verification. The corresponding lower bound can

result in a successful verification, while an upper bound may result in a failed one. If both boundaries do not

yet lead to a verification decision, a neuron branching is applied. The neuron is transformed into two linear

constraints and for each the bounding step is applied again. If evaluation of both branches results in the same

decision, the verification of this branch is finished else the branching continues recursively with the following

neurons. If all neurons were branched and there are still branches not leading to a verification decision, then

the output deviation can be determined by linear programming. Though branch-and-bounding approaches

are more scalable than solver-based ones, the maximum size of neural networks is still limited. Furthermore,

the architecture must be suitable for the branching step, e.g. using ReLU activations.

Although leading to a robustness verification with exact boundaries, complete verification is only suitable for

small DNNs and datasets and is often restricted to model architectures using ReLUs. Additionally, complete

verification methods are limited to a model size of up 105 neurons and about 6 layers (173).

2.3.6.2 Incomplete Verification

In contrast to complete verification, incomplete verification only offers an approximate verification. The

advantage of this kind of approach is that the relaxations enhance the scalability of the used methods, thus

allowing the verification of larger networks.

Algorithms based on linear relaxations (174), again make use of the linear property of ReLU functions. A stable

ReLU can be relaxed to a linear equation. For an unstable ReLU, a lower and an upper output boundary is

determined which allows for bounding of the neuron by linear constraints. The bounded space is called ReLU

polytope. With the combination of linear equations and the ReLU polytopes, an approximate overall output

space for the whole network can be determined, which in turn can be used for an (approximate) robustness

verification. When dealing with different activation functions than ReLU, the authors in (175), propose a

verification for arbitrary neural network architectures. Linear relaxation methods scale to model sizes of 105

neurons and approximately 10 layers (173).

Probabilistic approaches are based on the concept of randomized smoothing. A smoothed model is created

by adding random noise to the input data. The noise shall eliminate the effects of adversarial perturbations

(176). Then, the new model is verifiable, but the verification only holds for this smoothed version. The applied

noise distribution must be chosen carefully, since the smoothing process can have a serious impact on the

accuracy of the model and in addition influences the tightness of the verification boundaries. Besides the

effect on prediction accuracy, the noise addition and even stronger the transition back into the correct

prediction can bring a computational overhead as shown in (177). In return, this approach is independent

from the model architecture. Most randomized smoothing based algorithms are conceived for 𝑙2 adversaries,

but there are also more flexible approaches regarding 𝑙𝑝 norms, e.g. (178), (179), (180) and smoothing

distribution from (181).

Incomplete verification is more flexible and scalable than complete approaches, but large datasets and DNNs

are still a challenge. Furthermore, the resulting robustness bounds are not exact, only hold for the smoothed

model or do not have a reasonable tightness in comparison to the actual robustness. Additionally, for

incomplete verification methods there exists a tradeoff between the scalability of the method and the

tightness of the calculated robustness bounds (173).

2.3.6.3 Hybrid Approaches

Next to pure algorithms from the classes of complete and incomplete verification, there are additional hybrid

methods. These try to combine the approximation techniques of incomplete verification, such as linear

relaxation, with procedures from complete verification. The result shall inherit the advantages of both

categories, scalability as well as precision or tightness of verification boundaries. Though enhanced in

comparison to complete verification, scalability still remains a constraint. For example, (182) combines MILP

solvers with the approach of linear relaxation for incomplete verification. In particular successful for 𝑙2

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 49

verification, is the method proposed in (183). Here, the input space is divided into convex polyhedral regions,

in which the output has a linear behavior. The regions can then be analyzed by geometric projections leading

to more precise verification results than many incomplete approaches.

2.4 Mobility Use Cases

The different use cases of AI in mobility applications are best discussed on the concrete example of a system

for AD. In Figure 41 a general overview of the components of such a system is shown. The fundamental goal

of AD is to capture the surrounding scene of a vehicle using different sensors and deriving concrete actuator

signals to maneuver the vehicle in this scene. Fundamentally, two different approaches can be distinguished

to perform the described task. On the one hand, end-to-end approaches exist which consist of a single

complex AI that takes the raw sensor data as input and predicts the control signals for the actuators. Current

approaches use DNNs for the complex AI and such systems are discussed in Chapter 2.4.2. On the other hand,

a modular approach exists where the complete task is split in different components. These components can

be represented by an AI system or also traditional algorithms. This approach is used for the current generation

of AD systems that are tested in specific regions on public roads. In Chapter 2.4.1 we discuss the tasks and

techniques for each of the modular components in greater detail.

Figure 41 Overview of the components of a system for AD

Generally, different surveys exist that cover relevant use cases of AI for AD. In (184) and (185) the authors start

by discussing different sensor types and an overview of the general architecture of an AD system. Then, they

cover all tasks of the modular approach and present a comparison of techniques based on AI with traditional

algorithms in detail. In contrast, the authors in (186) only focus on deep learning (DL) techniques. They first

present a general introduction to DL and then show DL-based solutions for each task in the modular

approach. Additionally, hardware requirements to perform real-time capable inference are discussed and

general hardware components are presented.

In addition to using AI in an AD system there is also the option to use AI as part of an ADAS. However, most

use cases are very similar because an ADAS is specialized on understanding only a part of the current scene.

All use cases that are solved by an ADAS are also incorporated in an AD system. Therefore, we focus on

presenting the modular components of an AD system and discuss how AI can be used to solve each individual

task. Nevertheless, also for ADAS some works exist that summarize the use cases. In (187) the authors provide

a short description of the main ADAS features that are deployed on public roads. Mainly, the authors discuss

different camera locations and data processing steps. A more detailed summary of all existing ADAS features

where AI could be used is given in (188). Again, a focus point is the discussion of different sensors and how

the fusion of the data from different sensor types can be performed.

2 State-of-the-Art Report (AP2)

50 Federal Office for Information Security

2.4.1 Modular Components

In the following we provide an overview of the tasks of the modular components of an entire AD system. We

discuss the goals and main techniques of each task and provide additional references for a detailed discussion

of the tasks.

2.4.1.1 Perception / Localization

The goal of perception modules is to understand the surrounding scene of a vehicle. The inputs are sensory

readings and different perception modules try to extract information about higher-level concepts from the

data. These higher-level concepts are then fed to modules further down the AD system. Some of the relevant

higher-level concepts are shown in Figure 42 for the case of visual perception from camera sensors. In general,

these concepts capture all information that is relevant for the understanding of the current scene, like how

humans use their sensory system to get a representation of a scene.

In (189) a very detailed survey is done for all perception tasks based on image data. The authors compare

traditional algorithms to extract the higher-level concepts with current approaches based on DL. For all tasks

the SOTA regarding accurate perception is achieved by DNNs. Traditional approaches do not match the

perception qualities of vision-based models that are trained on large datasets. Also, for AD/ADAS systems that

are tested in reality the perception is done exclusively by using different DNNS, as shown in (190), (191) or

(192). Therefore, in the following we discuss the individual perception tasks with DNNs in mind.

Figure 42 Overview of different visual perception tasks required for AD from (193)

2.4.1.1.1 Object Detection

The idea of object detection is to locate object instances from predefined categories in the current scene.

Typically, all detected objects are assigned a bounding box that is provided to following components in the

AD system. Traditionally, bounding boxes are predicted in the 2D image space (see Figure 42a), but some

approaches also perform 3D bounding box prediction. If only image sensors are used the prediction of the

depth of a bounding box is only an extrapolation, since no real depth information exists. In contrast, when

RADAR or LiDAR sensors are used the input data is not an image but a point cloud (see Figure 43). Here, it is

possible to have more accurate predictions of the depth component of the 3D bounding box.

The principal problem to detect objects is fundamental to computer vision and not a unique problem for

mobility systems. Hence, in (194) the authors present a detailed survey on techniques for object detection in

image data for different applications. In (195) the authors consider only the case of AD and discuss the

evolution of DNN architectures used for object detection. They present recent approaches and perform a

uniform evaluation on datasets specific for AD, but mainly focus on image data. Considering object detection

on point cloud data the authors in (196) present a summary of all relevant approaches. They show that this is

a more complex task due to high sparsity and irregularities of the point cloud data. Therefore, interest on this

task only started recently, but the number of publications increased largely in the last years.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 51

Figure 43 Visualization of object detection using 3D LiDAR data from (196)

2.4.1.1.2 Segmentation

Segmentation involves partitioning an image into multiple higher-level concepts. Thereby, segmentation is

in principle the individual classification of each pixel, where a concrete class is assigned to each pixel. The

individual pixels then form larger groups that can be interpreted as higher-level concepts. For example, in

Figure 42b the semantic segmentation of a driving scene is shown. Here, specific classes are used for all higher-

level concepts, like pedestrians, vehicles, signs, road surface, etc. Special cases of segmentation are shown in

Figure 42c and Figure 42d, where only specific aspects of the overall scene are relevant for the segmentation.

Similar to object detection the segmentation of images is not a task that is specific to AD. In (197) the authors

compare different DNN architectures to perform segmentation and introduce the basic idea behind each.

They also cover different applications and extensively discuss remaining challenges. In contrast, the authors

in (198) focus on the application of AD and summarize segmentation architectures that are applied on datasets

specific for AD. They also shortly cover object detection, but then discuss segmentation in great details. The

comparison of different DNN architectures is done for different segmentations tasks and for each task the

relevant datasets are described.

2.4.1.1.3 Optical Flow

Theoretically, optical flow is the motion of brightness patterns between two successive images. The motion

of patterns results from the movement of an object in a physical scene which is captured in successive images.

Hence, the resulting optical flow can be interpreted as the projection of the true motion of objects in a scene.

Ideally, it shows the displacement which maps all pixels of the former image to the new location in the second

image. An example of the resulting optical flow in an image is shown in Figure 42h. The usage of optical flow

estimation can give further insights into the layout of the current scene that the AV navigates and the

decomposition into the movement of individual objects. Such movement information can then be used by

following components as an alternative to track objects based on mapping bounding boxes from associated

frames.

In (199) the authors introduce the problem of object flow for AD. They discuss the underlying task and

summarize relevant datasets. However, they only use traditional algorithms to estimate the optical flow and

do not use any AI-based approaches. Such AI-based approaches were only introduced more recently and are

covered in (200). There the authors provide a systematic review of recently proposed techniques for optical

flow estimation and focus on techniques that use DNNs. Comparable to other perception tasks DNNs start to

outperform traditional algorithms also for optical flow estimation.

2.4.1.1.4 Depth Estimation

The goal of depth estimation is to estimate the distance of the camera to each point of a scene captured in an

image (see Figure 42g). In principle, estimating the depth only from a monocular image is an ill-posed

2 State-of-the-Art Report (AP2)

52 Federal Office for Information Security

problem. Nevertheless, this is an interesting approach since it reduces the need for RADAR or LiDAR sensors.

It would be beneficial for the costs and simplicity of AD systems if an accurate depth estimation were possible

from image data only and a major industry player is using only image data as discussed in (191). Alternatively,

depth estimation from images is also relevant because the estimated depth might be used as a backup when

RADAR or LiDAR sensors only provide point clouds with poor quality due to environmental conditions.

Monocular depth estimation is considered in (201). The authors introduce the problem and summarize

relevant datasets and quality metrics. Also, they present traditional approaches before considering recent

approaches using DNNs. These provide depth estimations that clearly outperform traditional approaches and

do not suffer from sparsity issues, since the depth can be estimated effortless for every point in an image.

Further, the authors in (202) consider depth estimation when stereo image data is available. They structure

their survey in a similar way and start by presenting relevant datasets. Alike, they conclude that DNN-based

approaches significantly outperform traditional approaches based on matching hand-crafted features across

multiple images.

2.4.1.1.5 Localization

Localization aims to determine the current position of the AV as it navigates through the scene. Thereby, the

position consists of the location and orientation of the vehicle on the current road or lane. The most

straightforward option is to use the global positioning system, but since the average accuracy of the position

can deviate up to multiple meters the usage is limited for AD. Here, the localization must be exact in terms of

decimeter level to stay in the correct lane. Available alternative solutions are discussed in (203) or (204) and

we show an overview in Figure 44. Most approaches are using traditional algorithms to perform the concrete

localization, e.g. for map matching, hence the localization is not a typical AI use case. However, AI approaches

can be used to derive landmarks or key points from the current sensory inputs, which is again an underlying

perception task. Here, the most relevant case is the detection of lane markings (see Figure 42c) which can be

used by further algorithms to exactly locate the AV in the lane.

Figure 44 Overview of different approaches to perform the localization of an autonomous vehicle from (203)

2.4.1.2 Behavior Prediction

The principled goal of behavior prediction is to predict the possible future behavior of all participants in the

current scene. Hence, it is based on the results of the perception modules since future behavior can only be

predicted for known objects. In Figure 45 an exemplary behavior prediction is shown for the case of

pedestrian path prediction from a birds-eye view perspective. Here, the perception provides a surface

annotation and relevant information of the detected person. Based on this information the most likely future

path of the pedestrian is predicted. Instead of only predicting the most likely future behavior it is also possible

to predict multiple future behaviors. These can be ranked by probability of occurrence and provide a deeper

understanding of possible future scenarios that can be exploited by the following components in the AD

system.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 53

Figure 45 Overview of behavior prediction and required data representations from (205)

A first survey on path prediction of pedestrians and vehicles is done in (205). The authors shortly cover

different methods to perform the feature extraction from images and then cover different algorithms for the

behavior prediction. This includes traditional approaches, as well as more recent approaches based on DNNs.

Concluding they provide an extensive overview of available datasets. In (206) the authors focus on the

behavior prediction of pedestrians. They present a variety of approaches and categorize them according to

the introduced taxonomy. Traditional algorithms are first extensively summarized before the authors present

more sophisticated approaches that use DNNs. Concluding, the authors in (207) focus on behavior prediction

using only DNNs. They present an overview of different prediction tasks and highlight the details of the used

architecture, training methods and datasets. Also, all relevant datasets and evaluation metrics are listed.

Looking at available literature, data-driven AI systems have recently surpassed traditional algorithms for

behavior prediction if enough high-quality data exists. Such systems are mostly based on DNNs and are

deployed in systems operating on public roads as we show for some examples in Chapter 2.5.2.

2.4.1.3 Path Planning

In the path planning component, the goal is to plan a concrete path for the vehicle to navigate in the current

scene. To achieve this goal multiple intermediate tasks must be performed. These different tasks are shown

in Figure 46. First, the global planning of the route is performed based on the user destination and the

available road network. Next, the local planning is used to navigate between the global waypoints that are

planned. Here, information of the previous perception and prediction components on the scene and moving

objects are used to decide the motion to perform. The possible motions are higher-level concepts like stay in

the lane, start parking maneuver, take evasive actions, etc. Based on the selected motion the detailed local

planning is done which outputs the path that the vehicle should use to navigate through the current scene.

Additionally, in Figure 46 the last step of an AD system is also shown, which is the translation of the planned

local path in actual commands for the actuators. We cover this component explicitly in Chapter 2.4.1.4.

Figure 46 Overview of the steps required for path planning from (208)

The authors in (208) cover traditional techniques for path planning and present the interaction with control

techniques. They strictly focus on the traditional planning steps shown in Figure 46 and do not discuss recent

approaches based on more sophisticated AI methods like DNNs. In (209) the authors focus on the path

2 State-of-the-Art Report (AP2)

54 Federal Office for Information Security

planning task and discuss traditional approaches as well as recent data-driven approaches. These do not

necessarily follow the traditional planning steps, but sometimes incorporate the behavior layer and the

motion planning from Figure 46 into a single learned component. They conclude that data-driven approaches

are on the rise and mostly outperform traditional approaches. However, for the more sophisticated

approaches the questions of safety, verification and explainability are largely unanswered which limits their

use in practice. Finally, the authors in (210) and (211) survey recent approaches on data-driven planning using

DNNs. They focus on reinforcement learning and imitation learning-based approaches, which are heavily

researched in recent years. They discuss different options to integrate such approaches into the AD system

and review different setups for the reinforcement learning environment. Additionally, the role of simulators

and synthetic data is discussed for training and validation. Summarizing, they point out the great potential

but also conclude that some challenges still must be solved before mature solutions are available.

2.4.1.4 Control

The control component is the last component of an AD system and selects actuator commands to execute the

planned local path. It incorporates direct feedback from the vehicle and uses a kinematic model that describes

the general capabilities of the vehicle. The goal is to minimize the tracking error between the planned path

and the executed motion. In Figure 46 the main idea of the control component is shown on the right side as

the last step.

In (208) the authors cover traditional control algorithms and discuss formal derivations for different control

tasks. They provide a comparison which evaluates the used vehicle model, the time complexity and the path

stability guarantees. Instead of traditional algorithms, the authors in (212) focus on using DNNs in the control

component. Again, this trend emerged in recent years due to the ability of DNNs to model complex driving

environments and their principled ability to generalize learned rules to new scenes. The authors present

different approaches to use DNNs for controlling a vehicle and extensively discuss remaining challenges.

Again, the black-box character of DNNs complicates the verification because it is impossible to test these

systems on all scenarios that can occur in the real-world. Further research is required before learned control

systems are ready for deployment on public roads.

2.4.2 End-to-End System

In contrast to the modular approach, in end-to-end AD system all individual components that are described

earlier are exchanged with a single large DNN. This takes raw sensor data as input and directly outputs the

actuator commands to navigate the vehicle. An overview of different approaches to learn an end-to-end

system is given in (189). The authors also discuss available datasets and metrics to evaluate the quality of the

navigation.

 In this younger research field, the first relevant publication is (213). Here, the authors use a full end-to-end

system based on a DNN that outputs steering commands using raw pixel data from a single camera. No

explicit training incentive is used to force the network to learn the representation of higher-level concepts,

like vehicle detection or lane marking detection. Instead, all representations are learned automatically during

training. The main advantage of this approach is that it enables the simultaneous optimization of all

components. Instead of optimizing human-like modular tasks the DNN has the freedom to find the most

useful representations. Eventually, this will lead to better performing systems because the direct optimization

of the goal is possible. However, this approach has the direct disadvantage that explainability is lost and the

black-box character of the whole AD system is even amplified. Also, no explicit control of the safety of the

system exists. The DNN must be trusted to learn robust representations that also perform well on unknown

input data, because no safety modules exist. These are critical disadvantages and the reason why currently full

end-to-end systems are not used for commercial AD systems, as we describe in Chapter 2.5.

In (214) the authors also use an end-to-end approach to train a DNN to navigate a vehicle. However, the DNN

in this system outputs the next waypoint where the vehicle should navigate instead of actuator commands.

Comparing with Figure 41, this means that the control module is excluded from the DNN and only the

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 55

modules up to the path planning are learned from the raw sensor input data. The final actuator commands

are still generated by traditional control algorithms. Hence, this is some intermediate approach between a

modular and a full end-to-end system. It seems promising since it combines the potential of an increased

performance by optimizing most modules together with the possibility to include safety mechanisms in the

control algorithm. Here, it is also possible to include an additional safety backup system that the control

module can use as fall back if required.

An additional problem of most end-to-end approaches is that they need to collect data samples online during

training. Learning from expert human drivers is not sufficient to train a system that performs well under all

conditions. Hence, simulating worst-case conditions, like accidents or bad weather, is needed to train a system

that is as robust as possible. However, this suffers from the currently poor correlation of online driving

performance and offline testing, as shown in (215). Also, the domain gap between simulation and reality must

be reduced to safely transfer end-to-end learned systems to commercial AD systems. We present potential

solutions to closing this domain gap in Chapter 2.6.3.

2.5 Entire Mobility Systems

In this chapter we describe how the use cases from Chapter 2.4 can be integrated into an entire AD system

that can operate on public roads. We discuss the interaction with hardware components and the integration

of individual AI systems into the overall AD software. It is important to note that the concrete system

architecture of major industry players for AD is not known, since this is the intellectual property of the

respective company. Nevertheless, current research publications are available and these serve well to

introduce the main ideas for the integration of individual components into an entire system for AD.

2.5.1 System Overview

Early research work focuses on autonomous driving on special routes and not the ability to drive unknown

routes. Also, initially no DNNs are used and all modular components are represented by traditional

algorithms. Nevertheless, it is still interesting to investigate these systems, since the main architecture is very

similar for current systems. For example, this can be seen by comparing Figure 47 and Figure 49 which we

discuss in the following.

One of the first publications that present an entire system for AD is (216). Here, the authors provide an

overview of the vehicle that Stanford University used for competing at the 2007 defense advanced research

projects agency urban challenge. They discuss the used hardware and present the traditional algorithms used

for all components of the modular approach presented in Figure 41.

In (217) the authors present their approach to design a vehicle that travelled the Bertha Benz memorial route

autonomously. They provide a detailed overview of the autonomous vehicle and the algorithms for

perception, localization, planning, etc. In Figure 47 an overview of the used sensor setup and the general

system architecture is shown. As can be seen on the right side of the figure, the used architecture is very similar

to the overview of the modular approach in Figure 41. In addition to the previously presented components

the system contains a reactive layer. This layer includes safety logic in case a sudden emergency maneuver

becomes necessary. In this case the signal flow does not have to go through the entire modular pipeline but

is generated in this special layer. Again, the authors use no AI components, meaning the system relies only on

traditional algorithms. However, it is easy to integrate AI systems into the architecture shown on the right

side in Figure 47. For example, each component of the perception category could be replaced by an AI system,

e.g. using DNNs as described in Chapter 2.4.1.1. This is a plug-in replacement since the AI system takes the

same input and generates the same output. All interfaces stay the same, but the AI-based system takes over

the role of traditional perception algorithms.

2 State-of-the-Art Report (AP2)

56 Federal Office for Information Security

Figure 47 Sensor setup on the left and architecture on the right of the AD system from (217)

Like the last publication the authors in (218) present an overview of a system they developed for driving

autonomously in a specific scenario. Here, they focus on driving on German highways and present the sensor

setup, architecture overview and perception algorithms. Summarizing they discuss remaining challenges in

their approach that serve as the basis for future research.

In (185) the authors first present a general survey on the progress of autonomous driving in recent years. Then

they introduce their intelligent autonomous robotics automobile (IARA) research vehicle. They present a

detailed overview of the software architecture with the data flow and interaction of different components.

This architecture overview is shown in Figure 48. Again, they do not explicitly mention the use of AI

components, but it can well be seen how different components could be exchanged by AI components

without any change in the overall architecture. Additionally, the authors cover autonomous driving in the

industry and present all companies that focus on developing systems for highly automated driving. They

compare the sensors used and the maturity of the respective systems. As previously mentioned no concrete

system architectures are provided, since these are the secret of each company.

Figure 48 Detailed overview of the data flow in the IARA from (185)

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 57

Finally, the authors in (219) present a survey on hardware components used for AD. They compare different

sensors and list main advantages and disadvantages. Also, they describe the perception use cases where each

sensor is relevant and compare the performance in contrast to the human visual system. Then, they focus on

presenting available hardware components that are used for real-time capable AD and provide a comparison

between them. They cover the integration of software and conclude by a detailed discussion of remaining

challenges.

2.5.2 AI Integration

After presenting the architecture of systems for AD, the interaction with hardware components and the basic

idea how to integrate AI components into the entire architecture, we now discuss available information on

the concrete integration of AI components. As already discussed in Chapter 2.4.2 in (214) and (213) the authors

focus on using end-to-end approaches. They also present the software architecture and output of the DNN.

Especially, in (214) the interaction of different DNN components learned for different tasks is discussed. Here,

it shows again that AI components can be used as an alternative for most modular components. These can be

exchanged without a significant change in the overall system architecture.

Regarding the integration of AI components into commercially available systems only limited publications

exist. In (191)3the authors provide some information on autonomous driving research done at Tesla. They

cover the creation of a large-scale dataset and then present a very rough overview of the architecture of the

DNN used for autonomous driving. Here, it is again interesting to observe how different modular components

are merged in a single DNN that can have multiple heads for each required component output. These results

are then consumed by traditional algorithms to generate the control commands for the actuators.

More concretely, another overview of an architecture of a commercial system for AD is given in (220). Here,

Baidu provides the open source4 architecture Apollo that is also used as the basis for their commercially

available AD software Apollo Go which is tested in different Chinese metropolitan areas. The Apollo project

provides software utilities to develop, test and deploy systems for autonomous driving. It ships with pre-

trained DNN components for perception and prediction and has different algorithmic options for the

modular components. In Figure 49 we show an overview of the AD system, the hardware components and

the required connections between them. As can be seen on the left side the general AD system is very similar

to the system shown in Figure 47. It contains the same modular components, but now DNN-based systems

exist to perform some respective tasks. Overall, we can conclude that this architecture is representative of

most AD systems developed by different companies or research teams.

Figure 49 Overview of the AD system on the left and hardware components on the right of the AD system Apollo

from (220)

2.6 Mobility Datasets & Simulation

After presenting the different use cases of AI systems and the integration into a complete AD system, we now

discuss available datasets for data-driven AI systems. Then, we present options for generating synthetic data

3 The video presentation is available at: https://www.youtube.com/watch?v=g6bOwQdCJrc
4 The open-source project is available at: https://github.com/ApolloAuto/apollo

https://www.youtube.com/watch?v=g6bOwQdCJrc
https://github.com/ApolloAuto/apollo

2 State-of-the-Art Report (AP2)

58 Federal Office for Information Security

based on special purpose simulators. This is very important to cover corner cases and rare scenarios that

cannot all be captured in reality in a timely matter. However, the image quality of current simulators is not

representative of camera sensors used in the real-world. Therefore, we discuss recent approaches to improve

the image quality from simulators and close the domain gap between simulation and reality.

2.6.1 Datasets

At first, a principled overview of available datasets is part of most surveys focused on AD. Hence, in (184), (186)

and (189) the authors provide a summary of available datasets and a comparison between them. Additionally,

there are also publications that explicitly focus on comparing the quality and diversity of datasets. Here, (193)

is the most relevant publication. Additionally, the authors try to characterize the drivability of a scenario and

discuss what driving scenarios are currently not covered by existing datasets.

Also, consistently new datasets are proposed which include the main difference to previous works. Such a

publication is (221) and their comparison of automotive datasets is shown in Figure 50. It compares the most

used datasets using different relevant categories. Here, the most important aspects to distinguish datasets are

the used sensor types, the quality of the annotations, the scope and the diversity of the data. It is also

important to point out that some datasets contain real data, while others contain only synthetic data from

simulation. In general, we can conclude that enough datasets exist for developing performant systems for

perception and prediction on typical scenarios. However, rare edge cases are typically not covered in public

datasets because it is impractical to cover all possible scenarios that can occur. Here, simulation of interesting

and relevant scenarios is a promising direction that we discuss later in Chapter 2.6.2.

Figure 50 Overview of often used datasets for AD/ADAS from (221)

In addition to general datasets for AD that contain annotations for multiple perception tasks, there are also

datasets that focus on a single use case. For example, in (222) the authors present a dataset only for German

traffic signs. A similar dataset is presented in (223) for Chinese traffic signs or in (224) for American traffic

signs.

Special datasets do not only exist for traffic signs but also for all other basic perception tasks. An additional

example are datasets that focus on pedestrians. Here, (225) contains cropped images of humans from personal

photos and (226) contains pedestrians in different traffic scenes in an urban environment.

Additionally to the discussed datasets for different perception tasks, recently some research works propose

datasets with corrupted image quality that mimic corruptions which occur in reality like noise, rain, snow,

reflections, etc. First, such ideas are introduced for standard image classification described in Chapter 2.2.2.1.

Then, the authors in (227) expand the idea and add corruptions to a widely used dataset for object detection.

An overview of the used corruptions and resulting images is shown in Figure 51. Similarly, the authors in (228)

add corruptions to datasets that are widely used for semantic segmentation.

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 59

Figure 51 Overview of corrupted images used for object detection from (227)

2.6.2 Simulators

Using only data captured from reality is both time-consuming and expensive. Simulators provide an easy

alternative that can generate labelled data quickly for selected interesting situations. Hence, simulation plays

a vital role in the development and especially the verification of AD systems.

On the one hand, open-source simulators exist that are free to use and where the contribution is possible for

everyone. Here, by far the most used option is CARLA introduced in (229). It is built as special purpose

simulator to generate synthetic data for various traffic scenarios and is also used in the industry due to its

high flexibility. It ships with already included assets for scene layout, buildings or vehicles and can easily be

extended to include custom objects or road layouts. Also, the usage of different sensor types is possible and

different environmental conditions can be simulated out-of-the box. CARLA can generate labels for different

modalities and includes all relevant semantic classes for scene participants. In Figure 52 an overview of three

different sensing modalities is shown, where the left shows a normal image from a RGB camera, the middle

shows the ground-truth depth and the right shows the ground-truth semantic segmentation. As can be seen

the normal RGB image does not look photorealistic and there exists a clear gap to images captured in reality.

This is a typical phenomenon which represents the main disadvantage of using simulators but does not only

exist for CARLA. Currently, for all simulators it is possible to observe a difference to images from real data and

we discuss different techniques to reduce this gap in Chapter 2.6.3.

Figure 52 Example of three sensing modalities available in CARLA from (229)

An alternative open-source option to CARLA is AirSim introduced in (230). However, this simulator is not

tailored towards the requirements of automotive simulation but can be used to simulate a range of vehicles

also including flying vehicles. Hence, in the automotive industry CARLA is typically used when an open-

source simulator is needed.

2 State-of-the-Art Report (AP2)

60 Federal Office for Information Security

In addition to open-source simulators there also exist different proprietary simulators that are commercially

available. These options include CarMaker from (231) and DriveSim from (232). Both have similar features as

described for CARLA and additionally can be included in Hardware-in-the-Loop testing stations. Also, they

produce more realistically looking images but the gap to reality can still be observed. Nevertheless, for the

testing and validation of automated driving functions CarMaker represents the industry standard due to the

maturity of the product and the available functionality that also allows simulation of powertrain and motion

control use cases.

2.6.3 Image Quality Enhancements

As described earlier, current simulators do not produce images that look photorealistic. There exists a gap

between simulated data and data that is captured during drives in reality. Hence, using only synthetic data is

often considered as doomed to fail as soon as systems are tested offline in reality. Therefore, the authors in

(233) use recent progress in image-to-image translation to successfully close the domain gap. They are able to

train an end-to-end AD system using only simulated data and operate a vehicle in reality5. Their key idea is

to transfer images captured while driving to look like the simulated images the system is trained on before

feeding the images to the AD system.

The exact opposite approach is motivated by the authors in (234). Here, they also use image-to-image

translation but try enhancing the photorealism of a simulator6, instead of worsening the quality of real

images. They postprocess simulated videos and transfer the image style and quality to look like the images in

well-known datasets for AD. This improves the realism of the simulated data significantly and makes it hard

for humans to distinguish between simulated data and data captured in reality. Some examples of their

successful image-to-image translation are shown in Figure 53.

Figure 53 Examples of successful image-to-image translation from (234)

Both described methods use image-to-image translation to achieve the significant improvements and reduce

the domain gap. Here, GANs form the basis of the best performing methods. These special CNNs are first

introduced in (27) as a new approach for generative models. They can learn a latent representation of the

5 The video presentation is available at: https://www.youtube.com/watch?v=D7ZglEPu4lM
6 The video presentation is available at: https://www.youtube.com/watch?v=P1IcaBn3ej0

https://www.youtube.com/watch?v=D7ZglEPu4lM
https://www.youtube.com/watch?v=P1IcaBn3ej0

2 State-of-the-Art Report (AP2)

Federal Office for Information Security 61

features of an image dataset and then generate entirely new images that look like they originate from the

original distribution. Following, the authors in (235) adapt the basic idea of GANs but use synthetic images as

input data of the generator instead of random sampling from the latent representation. In recent years this

approach is further refined, for example by (236) or (237). Now, such approaches can be used to reduce the

domain gap between simulated and real images. This might enable the deployment of AD systems trained

with simulated data in reality without a significant decrease in quality.

Very recently another approach emerged for image-to-image translation that seems to match the quality of

GAN-based approaches or even further improve upon them. In (238) and (239) the authors use diffusion

models instead of GANs for image-to-image translation. Diffusion models are initially introduced in (240) and

use an iterative denoising process to convert samples from a Gaussian distribution to samples from the

training distribution. Applying this concept to image-to-image translation the denoising is no longer

conditioned on samples from a Gaussian distribution but instead on the images that should be transferred to

the reference style. This enables the application to enhance images from a simulator. However, to the best of

our knowledge up to now no approaches exist that explore this concrete translation, mainly because the

presented approaches were only proposed very recently. Nevertheless, it is still interesting to observe the

progress in this area and see if further improvements of the quality of the enhanced images can be achieved.

2.7 Standardization Activities AI & AD

Finally, the following chapter gives an overview on existing and developing standardization approaches.

Since most of these standards were created for general software systems, some of their contents and

requirements do not map well to AI and AD systems. Details on this gap are given in Chapter 2.2.5 and Chapter

2.3.5. Since this gap within the existing standardization is well known, currently there are ongoing

standardization efforts for AI and AD specific systems to fill this gap.

2.7.1 Existing Standardization

Table 1 gives an overview of existing standards related to either AD or AI systems.

Table 1 Existing safety and security standards in the domain of road vehicles

Standard Topic AI specific AD specific

ISO 26262:2018

Road vehicle - Functional Safety

Requirements ensuring the functional safety

of road vehicles.

No Partially

ISO/PAS 21448:2019

Road vehicles - Safety of the

intended functionality

Guidance on design, verification and

validation measures to ensure safety of the

intended functionality in absence of failure.

No Partially

ISO/IEC TR 24028

 AI Trustworthiness

Survey on approaches regarding the

trustworthiness of AI systems, such as

explainability, risk/threats and their

mitigation strategies.

Yes No

ISO/IEC TR 24029-1

Assessment of the robustness of

neural networks

Background of existing methods for

robustness assessment of neural network.

Yes No

IEC 61508:2010

Functional safety of

electrical/electronic/programmable

electronic safety-related system

General safety requirements towards

electrical/electronical/programmable systems.

Partially No

2 State-of-the-Art Report (AP2)

62 Federal Office for Information Security

The ISO 26262: (165) is an automotive standard that provides requirements

to ensure the functional safety of vehicles. The standard defines processes and requirements to design and

operate automotive products. Further, it defines the ASILs that classify different hazards. The ASILs are

calculated based on the severity, exposure and control of the hazard. Severity refers to the number of injuries

the hazard could cause, the exposure describes the expected times of occurrence of the hazard and the control

refers to the possibility to prevent the hazard (241). There are four ASILs from ASIL A to ASIL D (low to high

risk) and a quality management level for non-safety-related functionalities. Based on the ASIL of a hazard,

safety requirements can be derived.

The ISO/PAS 21448: Road vehicles - Safety of the intended functionality (SOTIF) (242) aims to cover

foreseeable misuse by the driver. It only covers the SAE L1 and L2, which are only driver-assisted systems.

Hence, it does not integrate SAE L3 and higher, which are highly automated driving systems (243).

Additionally, as discussed in (244) AI-based systems are not sufficiently covered by it. However, the ISO/PAS

21448 is going to be replaced by the ISO/FDIS 21448 (245), which is currently under development.

2.7.2 Standardization in Progress

Concluding this report, we list AI and AD specific standardization activities that are in progress in Table 2.

Table 2 Overview of ongoing AI and AD standardization activities

Standard Topic Status

ISO/CD TR 4804 Safety and cybersecurity for automated driving systems -

Design, verification and validation

In review

IEEE P2846 Guidance on design, verification and validation measures to

ensure safety of the intended functionality in absence of

failure

Draft status

ISO/IEC AWI TR 24030 Representative use cases of AI applications in a variety of

domains

Under development

VDE AR 2842-61 Application rule for the entire life cycle of trustworthy

autonomous (AI) systems

Partially published

ISO/FDIS 21448 Guidance on design, verification and validation measures to

ensure safety of the intended functionality in absence of

failure. (Will replace ISO/PAS 21448:2019)

Under development

DIN Standardization

Roadmap AI (2nd

edition)

Framework for early development of AI Standardization in

Germany

Under development

ISO/AWI PAS 8800 Safety-related properties and risk factors of AI components

within road vehicles.

Under development

 ISO/IEC AWI TR 5469 Functional Safety & AI Systems Under development

ISO/IEC DTS 4213.2 Assessment of machine learning classification performance Under development

 ISO/IEC TR 24029-2

Assessment of the

robustness of neural

networks

Methodology for the use of formal methods for robustness

assessment of neural networks.

Under development

 ISO/IEC FDIS 22898

AI Definitions

Artificial intelligence concepts and terminology Under development

3 Generic Requirements (AP3)

Federal Office for Information Security 63

3 Generic Requirements (AP3)

The aim of this chapter is to derive and formulate generic requirements towards systems for autonomous

driving (AD) and advanced driver assistance systems (ADAS) to ensure their safety. Due to the robustness

threats towards AD and artificial intelligence (AI) systems discussed in the AP2 report (2), there are risks and

vulnerabilities for the safety and security of such systems that have to be addressed during the entire

development process.

As Figure 54 illustrates, the safety and security of an AD or AI system is influenced by its performance,

robustness, interpretability, monitoring and documentation. Therefore, the generic requirements are

formulated to address these aspects along the entire lifecycle of the system. Additionally, the system s

compliance to existing standardization and norms has to be considered.

The requirements are derived in a two-step process. First, existing safety and security standards are

introduced. Their concepts and requirements, especially from ISO 26262 (165; 246; 247), are used to derive a

first set of requirements. In a second step, supplementary requirements are formulated to reduce the residual

risk and to address gaps arising from the involvement of AI components. Additionally, the requirements

address the entire lifecycle of a system from the design and conceptualization phase of the system to the

integration and testing of software units.

Figure 54 Overview of composition of requirements for AI systems

Overall, the requirements are formulated to fit all general AD/ADAS systems (i.e. perception system, traffic

sign recognition, etc.). Since these different systems differ in data, complexity and risk exposure, thresholds

and test cases are defined generically and have to be refined for each individual use case. As an example, some

3 Generic Requirements (AP3)

64 Federal Office for Information Security

systems might have sensor-induced boundary values, whereas other systems have an infinite input space and

therefore have to be tested against corner cases. The specific definition of the corner cases and boundary

values also may differ between different specific applications. Therefore, the requirements in this document

are to be understood as generic technical requirements and have to be refined for each application. For the

refinement of such requirements a concise rationale shall be given to enable and enhance auditability and

communication between stakeholders.

First, in Chapter 3.1, existing security and safety standards in automotive are introduced and the elicitation

process for the generic requirements is defined. Afterwards, in Chapter 3.2 the requirements towards the

entire system are introduced and in Chapter 3.3 requirements for the specific AI subsystems of the entire

system are defined. Chapter 3.4 discusses the applicability of the generic requirements to different use cases.

Finally, Chapter 3.5 categorizes the testability of each requirement.

3.1 Requirements Elicitation

In this chapter, the process used to derive the general requirements is introduced. As explained in the previous

chapter the scope of this document is to define safety and security requirements specific to AI and AD/ADAS

relevant systems. The general requirements are defined along the entire lifecycle of the system and for the

aspects of performance, robustness, interpretability, monitoring and documentation. Moreover, they are

defined to address characteristic features of AI systems, e.g., the difficulty of explainability or the vulnerability

against adversarial inputs. Several sources, i.e., norms, standards, technical reports and research studies are

consulted. Especially the ISO 26262 exhibits an extensive coverage of requirements and processes for

functional safety in automotive regarding electronical systems. Therefore, it is used as groundwork for

deriving a set of general requirements specific for AI systems. To further support the elicitation of safety

requirements, the ANSI/UL 4600 (248) was used as guidance to address remaining gaps regarding the safety

of the system. Since these norms focus on the safety of the system, the ISO/SAE 21434 (249) and the UNECE

R 155 (250) were used to derive security-related requirements. Lastly, additional requirements are defined to

fill remaining safety and security concerns.

Overall, the aim of the resulting list of generic requirements is to form a guidance for the development of safe

and secure AI components in AD and ADAS systems. For each use case there might not be the need to

implement all of the defined general requirements, but a subset or combination of them. If this is the case, a

rationale should be provided to ensure that the safety and security of the system is assured with the chosen

combination of requirements.

The first section of this chapter gives an introduction to security standard ISO/SAE 21434 (249) and the

UNECE R 155 (250) regulation. The next chapter provides a short overview on the safety standards

ANSI/UL 4600 (248) and ISO 26262. The third chapter shows how the requirements in this document are

derived with ISO 26262 as foundation. In the last section, a justification is given for formulation of additional

requirements and how these correspond with the first set of requirements regarding risk classification.

3.1.1 Security Standards

There are several standards regarding automotive cyber security. The most important one being

ISO/SAE 21434 proposing measures and processes to protect the vehicle against cyber attacks during the

entire life cycle. This standard provides the base for compliance with the UNECE R 155 regulation, a

mandatory part of European vehicle type approval.

3.1.1.1 ISO/SAE 21434

The ISO/SAE 21434 (249) is a norm that focusses on the cybersecurity of systems within an automotive

context. It gives guidance and normative information on measures, such as the definition of cybersecurity

goals, requirements and activities, to improve and control cybersecurity throughout the entire product

lifecycle of a system.

3 Generic Requirements (AP3)

Federal Office for Information Security 65

According to the ISO/SAE 21434 a cybersecurity goal is formulated during the concept phase as high-level

requirements related to possible threats. Then more detailed cybersecurity requirements are derived from

these goals and the cybersecurity requirements are then refined into technical cybersecurity activities and

controls to be implemented.

These cybersecurity activities can be classified in relation to the risk of possible threats through Cybersecurity

Assurance Levels (CALs). These levels are formulated as non-technical requirements defining the level of rigor

of the cybersecurity activities to be implemented in order to ensure an appropriate risk reduction for the

defined threats. During the concept phase of the product lifecycle, the CALs are determined and assigned to

the cybersecurity goals and inherited by their corresponding cybersecurity requirements. Additionally, the

CALs can be used during the product development phase to further control the rigor of cybersecurity

measures by, for example, CAL-dependent levels of independence or test parameters for specific activities.

In the scope of this project, the ISO/SAE 21434 was used to derive and refine requirements relevant to the

cybersecurity of the AD system.

3.1.1.2 UNECE R 155

The United Nations Economic Commission for Europe (UNECE) Regulation 155 for Cyber Security (250)

addresses the topic of cyber security attacks on vehicles. It will become a mandatory part of the type approval

in all UNECE member countries: applicable to new vehicle types from July 2022 and from July 2024 to all

vehicles. The regulation demands the implementation of a Cyber Security Management System

systematic risk based approach defining organisational processes, responsibilities and governance to treat risk

 (250).

For type approval, the technical service or approval authority has to verify by document review if the

requirements of the standard are implemented by the CSMS. Supplier-related risks shall be identified and

managed. Additionally, the standard requires the implementation of suitable measures for mitigating cyber

security threats and processes to verify that the applied techniques are effective. The processes and measures

should cover the entire life cycle, from development, production to post-production.

UN R 155 provides lists for threats and mitigations which have to be taken into account. The lists are not

complete and additional relevant threats and mitigations, e.g., specific for the vehicle type, should be

considered as well.

A risk assessment based on design and development documents has to be conducted including results of

testing and design choices for risk mitigation or enhancing risk assessment. It has to be ensured that risk

assessment is always up-to-

sources, e.g., vulnerability databases.

Incident detection and response mechanisms shall be supported by monitoring and logging for forensic

analysis. The occurrence of new cyber security threats and their coverage by existing measures has to be

checked continuously. New cyber security attacks shall be reported to the approval authority.

The implemented measures for protecting the vehicle against cyber security threats are verified by sample

testing. The testing process shall focus on high risks, but still cover all kinds of risks identified during risk

assessment.

The regulation demands a structured approach to cyber security of vehicles with defined processes and

measures without giving specific advice for their implementation.

3.1.2 Safety Standards

The most extensive safety standard in automotive is ISO 26262. Its implementation provides functional safety

to road vehicles by work products and defined requirements. ANSI/UL 4600 proposes an argumentation

framework to ensure an automotive system is safe. Thereby, ANSI/UL 4600 can cooperate with other

standards, e.g., ISO 26262, to help build the argumentation structure.

3 Generic Requirements (AP3)

66 Federal Office for Information Security

3.1.2.1 ANSI/UL 4600

The American National Standards Institute (ANSI) / Underwriters Laboratories (UL) 4600 standard for safety

for evaluation of autonomous products (248) targets the safe operation of fully autonomous vehicles without

driver. Its goal is to establish an argumentation structure to prove that an autonomous vehicle is sufficiently

safe. The safety standard is goal based. It helps in defining safety goals and gives practical advice on how to

achieve them, but does not state mandatory instructions. UL 4600 complements and can cooperate with other

standards, e.g., by using work products from ISO 26262 to fulfill a safety goal.

The scope of the standard incorporates hazard identification, safety cases, risk mitigation and the overall

context of the use case including, for example, the ODD. Since security is also affecting safety, the standard

demands a security plan, but does not go into detail how it should be implemented. The approach is on system

level and concerns the whole life cycle of AD systems, e.g., planning, development and deployment.

The main concept of UL 4600 is the definition of a safety case, an argumentation structure ensuring that the

autonomous vehicle performs sufficiently safe and is ready for deployment. A safety case contains safety-

ensuring goals or claims towards the autonomous vehicle (functions). Arguments supporting the claims have

to be constructed. Evidence should prove that the arguments are valid and thus the respective claim is

fulfilled. One is free in choosing the form of notation, as long as the safety case is described adequately and

entirely. The standard does not dictate how a claim should be fulfilled, but gives practical advice in this regard.

This freedom in implementation makes the standard quite flexible, which can be especially beneficial when

dealing with an AI system whose behavior might be not entirely comprehensible.

specify how these should be targeted. Each clause has prompt elements refining the corresponding topic. The

prompt elements come with a use case-independent application note. Mandatory prompt elements form a

group of safety topics that shall be implemented by all means, e.g., hazard identification is strictly necessary.

Required prompt elements can only be omitted when they are inherently not viable. Highly recommended

elements can be omitted when a coherent justification is given, while recommended prompt elements are

optional. Additionally, a conformance paragraph describes how the addressed clause can be assessed to verify

if the requirements of the standard are met, thus ensuring safe operation.

For risk categorization, the UL 4600 risk evaluation demands that a criticality level, describing the risk, shall

be assigned to each hazard. Furthermore, a prompt element of the standard requires the use of integrity levels,

e.g., from ISO 26262, or similar techniques.

The safety case and its claims have to be constantly monitored and evaluated during deployment. This

especially holds for assumptions and unknowns. For this purpose, safety metrics shall help monitoring safe

functionality. Correcting measures have to be implemented, if necessary. These feedback loops help to reduce

the risks of unknowns and potential gaps of the safety cases, thus continuously increasing safety even during

deployment.

3.1.2.2 ISO 26262

 is an ISO standard for the safety of electronical systems in

vehicles. Its goal is the correct and safe functionality of a system in its intended environment. The standard

has 12 parts covering topics such as management activities and organizational aspects, hazard analysis and

risk assessment, as well as requirements for development, production and monitoring.

The main part deals with system, hardware and software development and provides procedures, work

products and requirements towards vehicle safety. For the latter, different methods for implementation can

be utilized depending on the identified integrity level of the system.

The Automotive Safety Integrity Level (ASIL) concept is one of the key elements of ISO 26262. It is a four-level

classification from ASIL A to ASIL D to describe the risk of a system within a road vehicle. The levels are

defined based on the effect a hazard for the considered system can have. Namely, it is calculated based on the

3 Generic Requirements (AP3)

Federal Office for Information Security 67

severity of injuries from possible accidents. Table 3 gives an overview on how these three factors impact the

ASIL classification of the system. ASIL D is the highest classification level linked to the highest exposure,

severity and uncontrollability of the system. Quality management (QM) methods can already mitigate certain

basic risks. For a system whose risks are already covered by QM, it is not necessary to apply methods suggested

by the ASIL recommendations.

Table 3 Overview on the derivation of the ASIl classifications taken from (165)

Severity Exposure Controllability

Simple Normal Difficult,

uncontrollable

Light and moderate

injuries

Very low QM QM QM

Low QM QM QM

Medium QM QM A

High QM A B

Severe and life

threating injuries,

survival probable

Very low QM QM QM

Low QM QM A

Medium QM A B

High A B C

Life threatening and

fatal injuries

Very low QM QM A

Low QM A B

Medium A B C

High B C D

The ASIL recommendations are formulated along the entire product development process. For each of the

different aspects of the development process, several methods for ensuring the functional safety of the system

are defined. For each aspect of the development process a table is defined mapping the suggested method to

an ASIL recommendation for each ASIL. The recommendation is described as not recommended (o),

recommended (+) and highly recommended (++). Despite calling them recommendations, ISO 26262 states

that highly recommended methods shall be implemented. However, for each aspect it is sufficient to

implement an appropriate combination of entries, if a rationale is given that this combination is suitable to

address the safety concerns (165).

3.1.3 ASIL-derived Requirements

To formulate requirements for ADAS and AD systems, the requirements of ISO 26262-6 (247) for product

development at the software level provide a groundwork. Specific ASIL recommendations are chosen that are

either impacted by AI components or have to be further refined to fit AI components. It is important to note

that the ASIL recommendations not explicitly mentioned in this document are not affected by the AI

components and can therefore be implemented and addressed by techniques suited for regular software

systems. The following sections give an overview of those chosen ASIL recommendations from which the

final general requirements will be derived.

3.1.3.1 System Level

The ISO 26262 starts by defining ASIL recommendations at the system level. These recommendations address

functional safety concerns along the product development at the stage of integrating all existing components,

including potential AI subsystems, into the vehicle.

First, Table 4 gives an overview of ASIL recommendations for integration testing at the system level. The

recommended methods should be used to derive test cases for the entire system, after all components are

integrated.

3 Generic Requirements (AP3)

68 Federal Office for Information Security

Table 4 Methods for deriving test cases for integration testing (DI) taken from (247)

Secondly, test methods to ensure the correct and consistent implementation of interfaces are defined in Table

5.

Table 5 Methods for consistent and correct implementation of external and internal interfaces (CI) at the

hardware-software level taken from (247)

Since the robustness of AI systems has to be estimated differently to regular software systems, the ASIL

recommendations in Table 6 will be affected by the AI component.

Table 6 Level of robustness at the system (RS) level taken from (247)

The last recommendations to be included in this section are towards the testing of performance and the safety

at the vehicle level defined in Table 7. In general, the testing procedure of the system has to be adjusted to fit

AD/ADAS and AI system.

Table 7 Methods for correct functional performance, accuracy and timing of safety mechanisms at the vehicle

level (FP) taken from (247)

Method ASIL A ASIL B ASIL C ASIL D

DI1 Analysis of requirements ++ ++ ++ ++

DI2 Analysis of external and internal interfaces + ++ ++ ++

DI3 Generation and analysis of equivalence classes for hardware-

software integration

+ + ++ ++

DI4 Analysis of boundary values + + ++ ++

DI5 Error guessing based knowledge or experience + + ++ ++

DI6 Analysis of functional dependencies + + ++ ++

DI7 Analysis of common limit conditions, sequences and sources of

dependent failures

+ + ++ ++

DI8 Analysis of environmental conditions and operational use

cases

+ ++ ++ ++

DI9 Analysis of field experience + ++ ++ ++

Method ASIL A ASIL B ASIL C ASIL D

CI1 Test of external interfaces + ++ ++ ++

CI2 Test of internal interfaces + ++ ++ ++

CI3 Interface consistency check + ++ ++ ++

Method ASIL A ASIL B ASIL C ASIL D

RS1 Resource usage test o + ++ ++

RS2 Stress test o + ++ ++

RS3 Test for interference resistance and robustness under certain

environmental conditions

++ ++ ++ ++

Method ASIL A ASIL B ASIL C ASIL D

FP1 Performance test + + ++ ++

FP2 Long-term test + + ++ ++

FP3 User test under real-life conditions + + ++ ++

FP4 Fault injection test o + ++ ++

FP5 Error guessing test o + ++ ++

FP6 Test derived from field experience o + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 69

3.1.3.2 Software Integration

In addition to the recommendations catered towards the derivation of test cases for system level integration

testing, the ISO 26262 defines recommendations for the integration testing at the software level. These

recommendations describe the integration steps that should be taken until the software component is fully

integrated into the system.

The methods in Table 8 focus on the notations for the documentation of the software architectural design.

These methods can be converted to serve the purpose of describing the AI model and lifecycle of the

architectural design when deriving the general requirements.

Table 8 Notations for the software architectural design (NA) taken from (247)

Table 9 introduces methods regarding the verification of the software integration into the system. Later, these

can ensure that the integration of the AI subsystems into the entire system is tested and verified thoroughly.

Here, it is important to note that the language of the table is taken from the ISO 26262, which is formulated

towards conventional software product. Therefore, the term model that is referenced in method IV5 relates

to the modelling of the problem and software system and is not unanimous with the AI model within AI

subsystems.

Table 9 ASIL recommendations to verify the software integration (IV) taken from (247)

Additionally, to ensure that the software integration into the system is verified properly, the ISO defines

recommendations on the testing environment of the system (see Table 10). They give a high recommendation

for Hardware-in-the-loop testing and testing in electronic control unit network environments for all ASILs.

Vehicle tests are highly recommended starting from ASIL C to ASIL D.

Table 10 ASIL recommendations for software testing (ST) taken from (247)

The types of tests that are suggested in Table 11 for the software integration stage are requirements-based

tests highly recommended for all ASILs and fault injection testing is highly recommended for ASIL D.

Method ASIL A ASIL B ASIL C ASIL D

NA1 Natural language ++ ++ ++ ++

NA2 Informal notations ++ ++ + +

NA3 Semi-formal notations + + ++ ++

NA4 Formal notations + + + +

Method ASIL A ASIL B ASIL C ASIL D

IV1 Requirements-based test ++ ++ ++ ++

IV2 Interface test ++ ++ ++ ++

IV3 Fault injection test + + ++ ++

IV4 Resource usage evaluation ++ ++ ++ ++

IV5 Back-to-back comparison test between model and code, if

applicable

+ + ++ ++

IV6 Verification of the control flow and data flow + + ++ ++

IV7 Static code analysis ++ ++ ++ ++

IV8 Static analyses based on abstract interpretation + + + +

Method ASIL A ASIL B ASIL C ASIL D

ST1 Hardware-in-the-loop ++ ++ ++ ++

ST2 Electronic control unit network environments ++ ++ ++ ++

ST3 Vehicles + + ++ ++

3 Generic Requirements (AP3)

70 Federal Office for Information Security

Table 11 ASIL recommendations for embedded software testing (ET) taken from (247)

To derive the actual test cases to be used for the above-suggested testing methods, the ISO 26262 defines a

number of different methods in Table 12.

Table 12 ASIL recommendations for deriving test cases for embedded software testing (DE) taken from (247)

3.1.3.3 Software Unit

Since the ISO 26262 defines techniques along the entire product development process, it also addresses the

design, development and testing of the software unit. In the case of an AI/AD system, the software unit is

composed of the AI subsystems. Requirements formulated towards the following ASIL recommendations are

defined in Chapter 3.3.

Analogous to the architectural design documentation of the entire system, Table 13 holds the notations for

the documentation of the software unit design. Additionally, guidelines for modelling and coding of the

software unit (see Table 14) are recommended. These methods on the one hand address techniques for clean

and robust coding of the software unit (e.g. MC4) and on the other hand further address the documentation

and design of the software unit (e.g. MC6).

Table 13 Notations for the software unit design (NU) taken from (247)

Table 14 ASIL recommendations for modelling and coding guidelines (MC) taken from (247)

Method ASIL A ASIL B ASIL C ASIL D

MC1 Enforcement of low complexity ++ ++ ++ ++

MC2 Use of language subset ++ ++ ++ ++

MC3 Enforcement of strong typing ++ ++ ++ ++

MC4 Use of defensive implementation techniques + + ++ ++

MC5 Use well-trusted design principles + + ++ ++

MC6 Use of unambiguous graphical representation + ++ ++ ++

MC7 Use of style guides + ++ ++ ++

MC8 Use of naming conventions ++ ++ ++ ++

MC9 Concurrency aspects + + + +

Method ASIL A ASIL B ASIL C ASIL D

ET1 Requirements-based test ++ ++ ++ ++

ET2 Fault injection test + + + ++

Method ASIL A ASIL B ASIL C ASIL D

DE1 Analysis of requirements ++ ++ ++ ++

DE2 Generation and analysis of equivalence classes + ++ ++ ++

DE3 Analysis of boundary values + + ++ ++

DE4 Error guessing based on knowledge or experience + + ++ ++

DE5 Analysis of functional dependencies + + ++ ++

DE6 Analysis of operational use cases + ++ ++ ++

Method ASIL A ASIL B ASIL C ASIL D

NU1 Natural language ++ ++ ++ ++

NU2 Informal notations ++ ++ + +

NU3 Semi-formal notations + + ++ ++

NU4 Formal notations + + + +

3 Generic Requirements (AP3)

Federal Office for Information Security 71

Finally, Table 15 completes the software unit recommendations, by defining techniques towards the

derivation of test cases for the software unit. These methods cater to derive actual test cases to support the

testing and verification methods defined in Table 16.

Table 15 ASIL recommendations for deriving test cases for software unit testing (DU) taken from (247)

Again, it is important to note that just like in IV5 in Table 9, UV14 references the modelling of the system and

not an AI model.

Table 16 ASIL recommendations for software unit verification (UV) taken from (247)

3.1.3.4 Monitoring

Finally, the ISO 26262 touches upon techniques for error detection and error handling. However, the

techniques come without specific ASIL recommendations. Since error detection and handling methods play

a vital role for monitoring of AD and AI subsystems, the methods are included in this document.

To provide consistency to the other method suggestions by the ISO 26262, risk levels were defined based on

the risk classification defined in Section 3.1.4. Table 17 gives an overview on the methods for error detection

and Table 18 gives an overview of suggested error handling methods.

Method ASIL A ASIL B ASIL C ASIL D

DU1 Analysis of requirements ++ ++ ++ ++

DU2 Generation and analysis of equivalence classes + ++ ++ ++

DU3 Analysis of boundary values + ++ ++ ++

DU4 Error guessing based on knowledge or experience + + + +

Method ASIL A ASIL B ASIL C ASIL D

UV1 Walk-through ++ + o o

UV2 Pair-programming + + + +

UV3 Inspection + ++ ++ ++

UV4 Semi-formal verification + + ++ ++

UV5 Formal verification o o + +

UV6 Control flow analysis + + ++ ++

UV7 Data flow analysis + + ++ ++

UV8 Static code analysis ++ ++ ++ ++

UV9 Static analyses based on abstract interpretation + + + +

UV10 Requirements-based test ++ ++ ++ ++

UV11 Interface test ++ ++ ++ ++

UV12 Fault injection test + + + ++

UV13 Resource usage evaluation + + + ++

UV14 Back-to-back comparison test between model and code, if

applicable

+ + ++ ++

3 Generic Requirements (AP3)

72 Federal Office for Information Security

Table 17 Error detection methods (ED) from (247) with additional risk levels

Table 18 Error handling methods (EH) from (247) with additional risk levels

3.1.4 Additional Requirements

As explained above, the ASIL recommendations are formulated for regular software systems. However, AD

systems and AI subsystems face different risks and vulnerabilities than regular software systems. Therefore,

there is a need to address these risks and vulnerabilities with supplementary requirements. Since the ASIL

classification is well defined (see Table 3), the additional requirements are categorized along a four-level risk

and damage classification (low, medium, high and very high risk) that can be directly mapped to ASIL A to

ASIL D.

The resulting list of ASIL-derived and additional requirements is formulated to address a large number of

possible risks for AD/ADAS systems. Therefore, it has to be determined for each specific use case, whether a

requirement is relevant or even feasible. However, if a requirement is not implemented a rationale should be

given to reason that the requirement is not feasible to be implemented, is not relevant to the use case or that

it is already addressed through other requirements.

3.2 Entire System

In this chapter, general requirements for entire AD systems consisting of multiple (hardware) components

and AI subsystems embedded in an environmental context are discussed. The requirements address the

performance, robustness, interpretability, monitoring and documentation of the system. Requirements

specific for AI subsystems are described later in Chapter 3.3.

3.2.1 General

Here, some general requirements towards the entire AD system are defined. These requirements are not

assigned to one of the categories performance, robustness, interpretability, monitoring and documentation

and are composed in this general category.

Method Risk

Low Medium High Very high

ED1 Range checks of input and output data + ++ ++ ++

ED2 Plausibility check + + + ++

ED3 Detection of data errors + ++ ++ ++

ED4 Monitoring of program execution by an external

element

o + ++ ++

ED5 Temporal monitoring of program execution o + ++ ++

ED6 Diverse redundancy in the design o + ++ ++

ED7 Access violation control mechanisms o + ++ ++

Method Risk

Low Medium High Very high

EH1 Deactivation in order to achieve or maintain a safe

state

+ + ++ ++

EH2 Static recovery mechanism + + + +

EH3 Graceful degradation + + ++ ++

EH4 Homogenous redundancy in the design o o + ++

EH5 Diverse redundancy in the design o o + ++

EH6 Correcting codes or data + + + ++

EH7 Access permission management o + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 73

3.2.1.1 ASIL-derived Requirements

3.2.1.1.1 Environment Compliance

Requirement 1: The environmental context shall correspond to the operational design domain (ODD).

Requirement 1 is derived from the ASIL recommendations DI8 and DI9 addressing the methods to derive test

cases for the integration testing on the system level defined in Table 4. It is important that the system is only

used in the context it is developed for. The environment the systems is deployed in must be a part of the ODD

that is specified during the development of the system. In case the environmental context changes both

suddenly and significantly and the system falls outside of the ODD, processes must exist that lead the system

back into a safe state when the system risk is high or very high.

3.2.1.1.2 Component Interaction

Requirement 2: The communication, interfaces, signals, etc. between different components shall be

coordinated.

The next requirement describes that individual components are connected correctly and that the signal flow

works as intended. It combines the interface testing methods CI1 CI3 defined in Table 5, as well as IV2 from

Table 9. The interplay between different components is correctly initialized and the output from prior

components is in the correct form to be used by the following ones. Also, it is required that error or warning

messages generated by one component are not ignored by other connected components but are reacted upon.

Table 19 General ASIL-derived requirements with ASIL recommendations from the ISO 26262 (165; 246; 247) for

the entire system

3.2.1.2 Additional Requirements

3.2.1.2.1 Sensor Setup Compliance

Requirement 3: The sensor setup shall be similar to the development/training setup.

Like Requirement 1, it is important that the sensor setup that captures the relevant environmental context is

comparable to the setup used during development or training. This ensures that the respective output can be

trusted and that the environmental context is captured correctly. Likewise, it is also required that all sensors

(hardware components) operate correctly and lie in their own ODD. If a calibration is required, it is performed

correctly and verified. Again, processes must be in place that bring the entire system into a safe state when a

significant divergence in the sensor setup occurs. As explained, this requirement ensures the safety of the

system, therefore it should be implemented starting from medium risk application (see Table 20).

In addition to requirements that are generally applicable to general purpose AI systems that consist of

multiple components, there are also requirements that are needed specifically for systems in the mobility

area. Most importantly, for systems that are used for automated/autonomous driving it is required that the

vehicle model/capabilities are similar to the development/training setup. This is an extension to the general

Requirement 3 for the case that the system also has actuators in addition to sensors. However, not every AI

system is connected to actuators and thus the general requirement is formulated only for sensors.

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

1 The environmental context shall correspond to the

operational design domain (ODD).

+ ++ ++ ++

2 The communication, interfaces, signals, etc. between

different components shall be coordinated.

+ ++ ++ ++

3 Generic Requirements (AP3)

74 Federal Office for Information Security

3.2.1.2.2 General Validity

Requirement 4: The requirements for AI subsystems shall apply to the entire system (if applicable).

The last overall requirement is that individual requirements for AI subsystems are also applied to the entire

system if possible. For example, this includes the requirements described later in this document in

Chapter 3.3. If it is applicable, these individual aspects shall be fulfilled for each component of the entire

system. This in term enables that all individual aspects can also be fulfilled for the entire system by combining

the information of individual components and enhancing it to be representative of the behavior of the entire

system.

Table 20 General additional requirements with risk levels

3.2.2 Performance

In the following, requirements specific for the aspect of performance are listed. Thereby, the focus on

performance is in terms of the quality of a system and not in terms of computational resources and efficiency.

In addition, in this requirement category on performance it is possible to derive specialized requirements for

systems in the mobility sector. For example, in the case of AD/ADAS systems concrete KPIs can be specified

to meaningfully represent Requirement 6 and Requirement 7 in this domain. One example for a high-level

KPI would be to measure the average number of kilometers driven between any accidents. Then, a concrete

requirement could assign a certain lower limit on the number of kilometers, which need to be fulfilled.

Alternatively, the number of critical accidents in a certain time/distance frame serves as another exemplary

very high-level KPI. A more detailed discussion on the applicability of the requirement is presented later in

Chapter 3.4.

3.2.2.1 ASIL-derived Requirements

3.2.2.1.1 Performance Guarantee

Requirement 5: The adequate performance shall be guaranteed for a certain timeframe after initial

deployment.

This requirement focusses on the behavior of the system when in operation and it implements ASIL

recommendation FP2 from Table 7. Here, it is needed that the behavior of the system is guaranteed for a

certain amount of time after the initial deployment of a system. This is similar to a warranty for traditional

hardware products. The system must behave correctly when operated in the ODD for at least the specified

timeframe. A voluntary extension of the mandatory timeframe is possible to provide behavior guarantees for

example over the entire lifetime of the system.

Table 21 ASIL-derived performance requirements with ASIL recommendations from the ISO 26262 (165; 246; 247)

for the entire system

Method Risk

Low Medium High Very high

3 The sensor setup shall be similar to the

development/training setup.

+ ++ ++ ++

4 The requirements for AI subsystems shall apply to the

entire system (if applicable).

++ ++ ++ ++

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

5 The adequate performance shall be guaranteed for a

certain timeframe after initial deployment.

+ + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 75

3.2.2.2 Additional Requirements

3.2.2.2.1 Performance KPIs

Requirement 6: The performance on key performance indicators (KPIs) shall be as high as possible.

The next performance requirement for every general-purpose AI system is that it achieves the highest

possible KPIs for the concrete task on test data. Concretely, the KPI depends on the task the AI system is

supposed to solve. Thus, this requirement must be specified for each specific application when certain KPIs

can be defined. For example, for stock value prediction the absolute divergence at a given point in time might

be a suitable KPI, whereas for trajectory prediction of traffic participants the displacement error at a given

point in time is suitable.

Table 22 Requirement regarding the performance on KPIs with risk levels

3.2.3 Robustness

performance is correct under different circumstances. Hence, it is necessary to define requirements ensuring

its robustness.

3.2.3.1 ASIL-derived Requirements

3.2.3.1.1 Performance on Worst-Case Error

Requirement 7: The performance shall be compliant to the allowed worst-case error.

In addition to performing well in terms of the respective KPIs for a given task, it is desirable that the system

is compliant to the allowed worst-case error or deviation. Hence, this requirement reflects whether the

performance of a system is in the allowed boundary conditions on the entire test data set. Whereas

Requirement 6 measures the average performance, this requirement relates to the allowed risk in safety

critical applications. This requirement addresses the testing methods for the system level RS2 and RS3 from

Table 6, as well as FP4, FP5 and FP6 from Table 7, IV3 from Table 9 and finally ET2 from Table 11. Further,

this requirement addresses the methods for deriving test cases for the embedded software testing DE3 and

DE4 from Table 12.

3.2.3.1.2 Performance Reproducibility

Requirement 8: The performance shall be reproducible in the real environment for operation.

Requirement 6 and Requirement 7 relate to the main performance characteristics on test data, which is

representative of the environment the system operates in after deployment. However, it is also relevant that

the behavior of the system can be reproduced in the real environment it operates in. This is reflected in this

requirement, which states that Requirement 6 and Requirement 7 need to be fulfilled also during operation

and not only on previously captured/determined/generated test data. Thereby, the usage in the real operating

environment inside the ODD is enabled. Overall, this requirement combines ASIL recommendations FP3

from Table 7, ST3 from Table 10 and IV4 from Table 9.

Method Risk

Low Medium High Very high

6 The performance on key performance indicators (KPIs)

shall be as high as possible.

+ ++ ++ ++

3 Generic Requirements (AP3)

76 Federal Office for Information Security

Table 23 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246; 247)

for the entire system

3.2.4 Monitoring

Here, requirements are proposed that indicate which aspects of the system should be supervised to enable

downstream evaluation or active regulation, e.g. by updating the AI system.

3.2.4.1 ASIL-derived Requirements

3.2.4.1.1 Operation Monitoring

Requirement 9: The feedback of the system shall be tracked while in operation.

Requirement 9 focusses on the tracking of the system behavior when in operation, by refining ED4 and ED5

from Table 17. During operation, it is important to track when any deviation from the ODD occurs, because

this could show that the ODD is chosen not ideally or the user misuses the system. Similarly, it is important

to track any feedback or intervention from the user. This could again show that the system does not operate

in the ODD or does not show an ideal behavior. Additionally, any (critical) mistakes of the system should be

tracked to analyze potential shortcomings in the design.

3.2.4.1.2 Error Correction

Requirement 10: The performance shall be corrected when critical errors occur after deployment.

Lastly, the final ASIL-derived monitoring requirement from EH6 in Table 18 is that the performance of the

system is continuously tracked and that (critical) errors are corrected after deployment for high-risk use cases.

As long as the system is used in the intended ODD any repeatedly reoccurring errors need to be fixed. This is

again similar to the common recall practice that is often used in many different industries. In the case of AI

systems where the behavior is largely determined by software, it is also possible that the recall/update is

conducted via an over-the-air software update.

Table 24 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246; 247)

for the entire system

3.2.4.2 Additional Requirements

3.2.4.2.1 Reproducibility

Requirement 11: The system state shall be tracked in a reproducible way while in operation.

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

7 The performance shall be compliant to the allowed

worst-case error.

++ ++ ++ ++

8 The performance shall be reproducible in the real

environment for operation.

+ ++ ++ ++

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

9 The feedback of the system shall be tracked while in

operation.

o + ++ ++

10 The performance shall be corrected when critical errors

occur after deployment.

+ + + ++

3 Generic Requirements (AP3)

Federal Office for Information Security 77

In the case of errors or accidents, it is necessary to obtain as much information as possible of the system. For

can be reproduced. The information to be tracked for this has to be defined for each system and component

individually.

Table 25 Requirement for the reproducibility of the system with risk levels

3.2.5 Documentation & Lifecycle

In this chapter, requirements for documentation purposes are introduced. They are related to the AI lifecycle

and are relevant for the overall system.

3.2.5.1 ASIL-derived Requirements

3.2.5.1.1 Architectural Documentation

Requirement 12: The architectural design shall be described explicitly.

This requirement includes the recommendations from Table 8. A documentation of the architecture of the

entire system is crucial for evaluation and assessment. The architectural description shall comprise the overall

structure and the interfaces between the specific SW units. A clear and unambiguous description in natural

language is always required. For low security applications, an additional informal description is sufficient. For

(very) high security applications, at least a semi-formal notation is necessary. This requirement addresses the

documentation of the overall system, therefore it may be partially covered by the documentation for regular

non-AD/AI components.

3.2.5.1.2 Developer Eligibility

Requirement 13: The quality & trustworthiness for developers shall be assessed.

Also, requirements can be imposed on the developers of a system that contains AI components. Depending

on the safety criticality and risk of the intended usage different variants of this requirement are possible. On

the one hand, it is important that a proper qualification of the developers is ensured. This includes required

training assignments and raising the risk awareness for potential risks that need to be considered during

development depending on the overall risk level of the system. On the other hand, this can also include the

need for a security clearance or screening process when working on extremely high-risk use cases where the

influence of external parties/countries/etc. must be ruled out. This requirement could be defined as an

additional requirement, however it touches on the recommendations ED7 and EH7 from Table 17 and Table

18 by controlling the access to the development facility.

Table 26 ASIL-derived documentation requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the entire system

Method Risk

Low Medium High Very high

11 The system state shall be tracked in a reproducible

way while in operation.

+ + ++ ++

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

12 The architectural design shall be described explicitly. ++ ++ ++ ++

13 The quality & trustworthiness for developers shall be

assessed.

o + ++ ++

3 Generic Requirements (AP3)

78 Federal Office for Information Security

3.2.5.2 Additional Requirements

3.2.5.2.1 Development Documentation

Requirement 14: The development process shall be tracked.

It is required that important aspects of the development of the system are tracked. Most importantly, this

includes the training and the architectural changes made during development. Additionally, any changes in

the ODD that occurred during development need to be tracked and justified. Finally, this also includes to track

the principles of the internal evaluation and the evolution of the tests performed. This is strongly connected

to requirements on individual aspects like performance or robustness.

Table 27 Development documentation requirement with risk levels

3.2.6 Summary of Requirements

Table 28 summarizes all requirements7 presented in this chapter with their corresponding risk level. For

requirements that were derived from several ASIL recommendations the strictest ASIL classification was

chosen. For the additional requirements, the previous sections presented definitions alongside descriptive

paragraphs elucidating their ASIL recommendations.

Table 28 Summary of generic requirements for the entire system7

Requirement

Risk level

ID Description Type ASIL A/

Low

ASIL B/

Medium

ASIL C/

High

ASIL D/

Very

high

1 The environmental context shall correspond to

the operational design domain (ODD).

ASIL + ++ ++ ++

2 The communication, interfaces, signals, etc.

between different components shall be

coordinated.

ASIL + ++ ++ ++

3 The sensor setup shall be similar to the

development/training setup.

Additional + ++ ++ ++

4 The requirements for AI subsystems shall apply

to the entire system (if applicable).

Additional ++ ++ ++ ++

5 The adequate performance shall be guaranteed

for a certain timeframe after initial deployment.

ASIL + + ++ ++

6 The performance on key performance indicators

(KPIs) shall be as high as possible.

Additional + ++ ++ ++

7 The performance shall be compliant to the

allowed worst-case error.

ASIL ++ ++ ++ ++

7 The aim of our efforts is to develop firm requirements that mobility systems containing AI modules have

to follow. In the work presented here the requirements are a first draft and the basis for further iterations.
In their current state some of them are more to consider as a best practice and an ideal state in terms of
safety and security. Nevertheless, the boundaries, values and wording of the requirements will be adjusted
within further projects and actual automotive applications.

Method Risk

Low Medium High Very high

14 The development process shall be tracked. + ++ ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 79

Requirement

Risk level

8 The performance shall be reproducible in the

real environment for operation.

ASIL + ++ ++ ++

9 The feedback of the system shall be tracked

while in operation.

ASIL o + ++ ++

10 The performance shall be corrected when

critical errors occur after deployment.

ASIL + + + ++

11 The system state shall be tracked in a

reproducible way while in operation.

Additional + + ++ ++

12 The architectural design shall be described

explicitly.

ASIL ++ ++ ++ ++

13 The quality & trustworthiness for developers

shall be assessed.

ASIL o + ++ ++

14 The development process shall be tracked. Additional + ++ ++ ++

3.3 AI Subsystem

In this chapter, the generic requirements towards the AI subsystems within AD/ADAS systems are defined.

The requirements are defined for each of the aspects performance, robustness, interpretability, monitoring

and documentation. As discussed in Chapter 3.1, for each aspect, ASIL-derived requirements and additional

requirements are formulated. At the end of this chapter, Section 3.3.6 provides an overview of all

requirements and their risk level recommendations.

3.3.1 Performance

Since AI subsystems are part of the entire system, the requirements for the entire system are hierarchical.

Therefore, Requirement 5 and Requirement 6 from Chapter 3.2.2 still hold for the AI subsystems.

3.3.2 Robustness

As discussed in (1), AI systems are susceptible to various robustness threats, which poses a high risk for the

entire AD system. To address these concerns, robustness requirements for these AI systems are introduced in

this section.

3.3.2.1 ASIL-derived Requirements

Based on the ASIL recommendations for modelling and coding (MC) guidelines, deriving test cases for

software unit testing (DU) and software unit verification (UV), the following robustness requirements can be

derived.

3.3.2.1.1 Robustness Improvement

Requirement 15: The AI model shall be implemented using mitigation strategies against robustness threats.

From the ASIL recommendations for the modelling and coding guidelines listed in Table 14,

Recommendation MC4 needs to be further specified in Requirement 15. To enhance the robustness of the AI

model against attacks and robustness threats, suitable mitigation strategies as described in (1) shall be used.

3.3.2.1.2 Software Verification and Testing

The ISO 26262 recommends several methods aiding the software unit verification for road vehicle systems,

which are listed in Table 16 in combination with their ASIL recommendation. It is important to note that the

table follows the ISO 26262 definition, which focusses on software development for non-AI systems.

3 Generic Requirements (AP3)

80 Federal Office for Information Security

Therefore, the term model referenced in UV14 describes the software modelling of a regular software system

and is not equivalent to an AI model. From the listed methods UV4, UV5, UV10 and UV12 have to be defined

further for AI models.

Requirement 16: The AI model shall be verified with formal robustness verification techniques.

UV5 recommends the formal verification of the system for ASIL C and ASIL D, which can be further defined

into Requirement 16. As stated in (1), formal robustness verification of AI models is not a trivial problem and

not feasible for all models. Therefore, in cases where formal robustness verification is infeasible, Requirement

17 shall be used as a substitution.

Requirement 17: The robustness of the AI model shall be verified with empirical robustness estimation

techniques.

Requirement 17 addresses the recommendation for semi-formal verification UV4, as robustness estimation

can be used to statistically verify the robustness of the model. Since empirical robustness is based on fault-

injection testing with data that is perturbed by worst-case perturbations generated by, for example,

adversarial attacks or translations, this requirement additionally ensures UV12.

Requirement 18: The AI model shall be tested against out-of-distribution data.

By completing the testing procedure through out-of-distribution data testing defined in Requirement 18,

UV10 can be ensured.

3.3.2.1.3 Deriving Test Cases for Software Unit Testing

To derive test cases for software units, ASIL defines methods to guide the derivation of test cases, defined in

Table 15. DU3 and DU4 address the robustness of the AI model and are further refined in Requirement 19,

Requirement 20 and Requirement 21.

Requirement 19: Test cases at the boundary values of the input of the AI model shall be derived.

To derive adequate test cases that determine the robustness of the model at the input boundary values, the

input boundary values shall be analyzed. As mentioned in the beginning of Chapter 3, the input boundary

values are system-dependent. Some use-cases will come with clear input boundaries, e.g., defined by

documentation or domain experts, while others have infinite input space and the requirement is not

applicable. The latter shall be covered by a rationale.

Requirement 20: Test cases based on corner cases of the AI model shall be derived.

If boundary values can not be defined, Requirement 20 shall be implemented to ensure that the model

behaves robust in corner cases. Corner cases depict extreme values or parameter combinations which might

lead to unpredictable system behavior. As for input boundary values, corner cases could be already defined in

Notably, DU3

has to be implemented for any system with a risk and damage potential above ASIL A.

Requirement 21: Test cases shall be derived through error guessing based on knowledge and experience of

the system.

Concluding Requirement 21 states that error guessing based on knowledge or experience of domain experts

shall be conducted to derive representative test cases for the AI model of the AD system.

Table 29 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246; 247)

for the AI subsystem

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

15 The AI model shall be implemented using mitigation

strategies against robustness threats.

+ + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 81

3.3.2.2 Additional Requirements

3.3.2.2.1 Fault injection test

Requirement 22: The AI model shall be tested against possible robustness threats.

The ISO 26262 recommends fault injection testing in Table 16 for ASIL A to ASIL C and highly recommends

it only at ASIL D. Since AI models, different to conventional software systems, base their decisions solely on

the input data, it is important to test them against damaged or manipulated data. Additionally, as discussed

in (1), AI subsystems are highly susceptible to robustness threats. Therefore, it is highly important to test the

AI model against these possible threats, such as IT security threats or data poisoning attacks. For the choice of

possible robustness threats and for the test coverage of these threats a rationale shall be given depending on

the use case.

Due to the high susceptibility to these threats, there is a higher need for fault injection testing for AI models

than suggested in the ISO 26262. To encompass this, Table 30 defines the risk levels for Requirement 22, where

fault injection testing shall be done starting from a medium risk and damage potential.

3.3.2.2.2 Data Validation

To ensure robustness for AI subsystems, additional requirements towards the datasets used for training and

testing of the AI subsystems are needed. The datasets determine the quality and decisions of the entire

subsystem. Therefore, additional requirements regarding data validation (DV) are defined.

Requirement 23: The source of the datasets shall be traceable.

To mitigate vulnerabilities like data poisoning or backdoor attacks, the origin of the used datasets has to be

clear. It is highly recommended to rely on self-generated datasets of valid, unmanipulated data for high

security applications. Well-known open-source datasets can provide an alternative for lower security levels.

These should be tested, e.g., for unwanted manipulation (see Requirements 25, 26 and 27).

Requirement 24: The source of the dataset shall be verified.

Requirement 25: The training, test and evaluation datasets shall have adequate coverage of the operational

input domain.

Requirement 25 warrants that the model is trained on representative data of the operational input domain of

the system. As stated above the structure and size of the datasets are vital for the AI model s functionality.

Therefore, it is important that the datasets have an adequate coverage of the input domain and reflect its

features properly incorporating potential environmental constraints of the overall system. A rationale about

the coverage of the dataset of the input domain in support of the use case shall be provided.

Requirement 26: The datasets shall be verified against the safety requirements.

16 The AI model shall be verified with formal robustness

verification techniques.

o o + +

17 The robustness of the AI model shall be verified with

empirical robustness estimation techniques.

+ + ++ ++

18 The AI model shall be tested against out-of-distribution

data.

++ ++ ++ ++

19 Test cases at the boundary values of the input of the AI

model shall be derived.

+ ++ ++ ++

20 Test cases based on corner cases of the AI model shall be

derived.

+ ++ ++ ++

21 Test cases shall be derived through error guessing based

on knowledge and experience of the system.

+ + + +

3 Generic Requirements (AP3)

82 Federal Office for Information Security

Additionally, Requirement 26 ensures that the datasets comply with the safety requirements defined for the

application. Since specific safety requirements are defined for each use case in detail, they state further

information on corner cases, distributions and environmental factors of each individual use case. If the

dataset does not comply to or does not contain the needed information, such as for example necessary

lighting conditions or corner case scenarios, the datasets have to be adjusted.

Requirement 27: The uncertainty of the datasets shall be analyzed and quantified.

Finally, Requirement 27 states that the uncertainty within a dataset shall be analyzed and modelled. This gives

more insight into the quality of the datasets and the testing can be adjusted accordingly.

Requirement 28: The datasets used for training, testing and evaluation shall not contain any errors.

In order to ensure proper training and testing of the model, the datasets shall not contain any errors.

Therefore, the developers shall ensure that the datasets are properly analyzed and any identified errors shall

be corrected. Additionally, to further support this requirement, it has to be ensured that the labels used for

training are correct and reflect the input domain.

Requirement 29: The training, test and evaluation datasets shall have sufficient size.

Since DNN require are large amount of data to efficiently learn generalized features, it is important that the

datasets used for training and testing the

classification problem of the model, the domain, the data type and environmental constraints. Furthermore,

the split-ratio of the datasets shall fit the intended purpose of each dataset. Therefore, a rationale on the choice

and size of the dataset shall be provided.

Requirement 30: The training, test and evaluation datasets shall be independent from each other.

To ensure a proper training and testing process of the model, the model shall be trained, tested and evaluated

on mutually independent datasets. This ensures that accuracy achieved during the training of the model can

be projected on newly introduced data. Additionally, this enables the developers to detect issues during the

training such as over- or underfitting.

Requirement 31: The training, test and evaluation datasets shall be prepared in an adequate way.

The necessary steps shall be taken to prepare the data according to the use case. This can for example entail a

data cleaning step removing artifacts or errors from the dataset or a dimensionality reduction step.

3 Generic Requirements (AP3)

Federal Office for Information Security 83

Table 30 Additional robustness requirements with risk levels for the AI subsystem

Table 30 gives an overview over the above defined dataset validation requirements. For low-risk applications,

there is no need to validate the datasets used for training and testing further, as there is low risk and damage

potential stemming from the model. Medium risk applications are recommended to implement these

requirements; however, they are not required as the risk and damage is not as severe. Especially, high and very

high-risk application shall implement the requirements or a combination of them.

3.3.3 Interpretability

Another challenge of AI subsystems within safety-critical systems is their black-box nature. Since their

decisions give no insight into their decision-making process, it is hard to retrace whether a model is trained

properly and focusses on relevant data points within the input to make its decisions. As an example, irrelevant

features

in the misclassification of real-world data. In this section, requirements are formulated to enhance the insight

 in (1).

3.3.3.1 ASIL-derived Requirements

3.3.3.1.1 Deriving Test Cases for Explanations

Requirement 32: The requirements shall be analyzed to derive test cases for interpretable model decisions.

Based on the ASIL DU1 in Table 15 for deriving test cases for software unit testing, Requirement 32 is

introduced. It states that the requirements towards the software unit shall be analyzed to derive test cases that

should be explained. This ensures that some test cases are derived to support the requirements.

3.3.3.1.2 Comparing Requirements and Model Decisions

Another challenge of AI systems is to check whether the model decisions meet the requirements formulated

for the software unit. The ISO 26262 defines ASIL recommendations towards the verification of the software

unit to ensure this. The corresponding recommendations are presented in Table 16.

Method Risk

Low Medium High Very high

22 The AI model shall be tested against possible

robustness threats.

+ ++ ++ ++

23 The source of the datasets shall be traceable. + + ++ ++

24 The source of the dataset shall be verified. o + ++ ++

25 The training, test and evaluation datasets shall

have adequate coverage of the operational input

domain.

+ + ++ ++

26 The datasets shall be verified against the safety

requirements.

o + ++ ++

27 The uncertainty of the datasets shall be analyzed

and quantified.

o + ++ ++

28 The datasets used for training, testing and

evaluation shall not contain any errors.

++ ++ ++ ++

29 The training, test and evaluation datasets shall

have sufficient size.

+ ++ ++ ++

30 The training, test and evaluation datasets shall be

independent from each other.

++ ++ ++ ++

31 The training, test and evaluation datasets shall be

prepared in an adequate way.

+ ++ ++ ++

3 Generic Requirements (AP3)

84 Federal Office for Information Security

Requirement 33: decisions shall be explained to aid the comparison between the modelling of

the system and the trained model.

Requirement 34: s shall be explained to check if the requirements of the system are

met.

UV10 and UV14 are specified in Requirement 33 and Requirement 34 to support the interpretability of the

model. As explained in Section 3.1.3.3, the term model in UV14 references the software modelling of the

software unit and is different from the AI model.

Table 31 ASIL-derived interpretability requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the AI subsystem

3.3.3.2 Additional Requirements

-making process some additional requirements have to

be defined.

3.3.3.2.1 Decision Explanations

Requirement 35:

Requirement 36: cases shall be explained.

Requirement 35 and Requirement 36 ensure that during the testing phase of the AI system, possible errors or

-

on boundary values and corner cases. Further, those explanations will give insight into the reasoning of the

-critical scenarios. These two requirements are highly recommended to be

implemented starting from a high risk level, since it is plausible that an AD system will encounter corner cases

and boundary values.

Requirement 37: .

test scenarios shall be explained to

aid the adjustment of the model or training data. To ensure this, Requirement 37 is recommended for systems

with low and medium risk and highly recommended for high to very high-risk systems.

3.3.3.2.2 Interpretable Model Architecture

Requirement 38: The least complex model architecture needed to solve the task shall be chosen.

Since the testability and interpretability of AI models decreases with the increase in complexity level, the least

complex architecture possible shall be chosen. For example, for neural networks the complexity of a model

architecture relates to its layer types (e.g. convolutional layer, recurrent layer, etc.), the number of parameters

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

32 The requirements shall be analyzed to

derive test cases for interpretable model

decisions.

++ ++ ++ ++

33 decisions shall be explained

to aid the comparison between the

modelling of the system and the trained

model.

++ ++ ++ ++

34 s shall be explained

to check if the requirements of the

system are met.

+ + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 85

and the connection between layers. As for all requirements, if it is not possible to choose the model

architecture with the least complexity, a rationale shall be given.

Requirement 39: A model architecture shall be chosen to maximize the interpretability of decisions.

s, an interpretable architecture shall be chosen. Since

interpretable model architectures are not feasible for every use case, this requirement shall be chosen for

suitable use cases and systems. However, as for all other requirements, if an interpretable architecture is not

feasible for the system at hand, it should be justified.

Table 32 Additional interpretability requirements with risk levels for the AI subsystem

3.3.4 Documentation & Lifecycle

In this chapter, requirements for documentation purposes related to the AI lifecycle are introduced that are

relevant for the AI subsystem.

3.3.4.1 ASIL-derived Requirements

3.3.4.1.1 Software Unit Documentation

Requirement 40: The SW unit design shall be described explicitly.

Requirement 40 combines the recommendations from Table 13 with recommendation MC6 from Table 14. A

documentation of the design of the SW units is crucial for evaluation and assessment. Especially for the AI

SW units, the A clear and unambiguous description in natural

language is always required. For low security applications, an additional informal description is sufficient. For

(very) high security applications, at least a semi-formal notation is necessary.

Table 33 ASIL-derived documentation and lifecycle requirement with ASIL recommendations from ISO

26262 (165; 246; 247) for the AI subsystem

3.3.4.2 Additional Requirements

3.3.4.2.1 Traceability

Requirement 41: The dataset & model shall be versioned.

Method Risk

Low Medium High Very high

35

be explained.

+ + ++ ++

36 cases shall be

explained.

+ + ++ ++

37

explained.

+ + ++ ++

38 The least complex model architecture needed to

solve the task shall be chosen.

+ + ++ ++

39 A model architecture shall be chosen to maximize

the interpretability of decisions.

o + + ++

Method ASIL recommendation

ASIL A ASIL B ASIL C ASIL D

40 The SW unit design shall be described explicitly. ++ ++ ++ ++

3 Generic Requirements (AP3)

86 Federal Office for Information Security

The evolution of the used datasets and AI model shall be tracked. It is important to have a version history of

the dataset and the changes/additions/cleanings/etc. performed on it. Additionally, the establishing data

collection process and the captured environmental contexts need to be described. This allows to see whether

the dataset is representative of the intended ODD and does reflect the real environmental context. Similarly,

for a data-driven model that is trained on a dataset it is important to track the used hyperparameters and

which version of the datasets is used. As a result, a version history can be generated that shows the evolution

of the data and the model and the associated differences for each version.

Requirement 42: Standardized methods to record characteristics of datasets, AI models and key processes

shall exist and be followed.

For traceability, the main characteristics of datasets, models and processes have to be documented. The

utilized procedures shall be consistent throughout the whole project to establish comparability among

recorded data. If there exist any general or industry-specific standards, these are preferable.

Requirement 43: The labelling process of the dataset shall be documented and tracked.

This requirement ensures that possible biases or incorrect label assumptions can be identified and tracked.

Table 34 Traceability requirements with risk levels

3.3.5 Monitoring

The following section introduces the requirements towards the monitoring of the AI subsystems within an

AD system. The requirements can be categorized into run-time monitoring requirements that aim to monitor

either the input or output of the model; and fail-safe requirements that ensure that the AI subsystems fail

safely to mitigate an entire system failure.

3.3.5.1 ASIL-derived Requirements

As discussed in Chapter 3.1.3.4, the ISO 26262 defines error detection and handling methods without ASIL

recommendations. Therefore, Table 17 and Table 18 define risk levels for these methods according to the risk

and damage potential defined in Chapter 3.1.4.

3.3.5.1.1 Error Detection

Requirement 44: The input shall be monitored and checked before it is given into the AI model.

Requirement 45:

Requirement 44 and Requirement 45 refine ED1, ED2 and ED3 to ensure that the input and output of the AI

model are monitored. On the input side, this will prevent the model from evaluating damaged or manipulated

data and providing incorrect output. Suitable detection techniques can be found in (1). The output of the

model shall be checked for plausibility errors to detect implausible behavior of the AI subsystems.

Requirement 46: The AI model shall be monitored during the program execution.

ED4 and ED5 are refined in Requirement 46 where a monitoring component of the AI subsystem is required.

This helps to identify failures within the AI subsystem before the entire system is possibly affected. This

Method Risk

Low Medium High Very high

41 The dataset & model shall be versioned. o + ++ ++

42 Standardized methods to record characteristics of

datasets, AI models and key processes shall exist

and be followed.

o + ++ ++

43 The labelling process of the dataset shall be

documented and tracked.

o + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 87

requirement enables the logging of events concerning the AI subsystem and provides the groundwork for

Requirement 47.

Requirement 47: Errors of the model shall be logged.

Including and enhancing ED3, this requirement provides the possibility for evaluation of the AI subsystem in

case of failures or accidents.

3.3.5.1.2 Error Handling

Requirement 48: Damaged or manipulated inputs shall be corrected when it is safely possible.

As recommended in EH6, Requirement 48 states that damaged data or code passed to the AI subsystem shall

be corrected. As stated above, detection methods for manipulated data were introduced in the AP2 report.

Requirement 49: Fail-safe methods shall be implemented to mitigate entire system failures.

Requirement 49 integrates recommendations EH1, EH2 and EH3, by stating the need for fail-safe methods.

Requirement 50: Parallel redundant AI models shall be implemented.

Additionally, EH4 and EH5 can be addressed on the AI subsystem level by implementing a parallel and

redundant AI model. Depending on the use case, the use of different sensors for the redundant models is

advised.

Table 35 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246; 247)

for the AI subsystem

3.3.6 Summary of Requirements

In Table 36 a summary of the generic requirements8 defined in this chapter is presented. As explained in

Section 3.2.6, the risk level is either based on the strictest ASIL recommendation of the involved

ISO requirements or on a rationale that was provided for each additional requirement in this chapter.

8 The aim of our efforts is to develop firm requirements that mobility systems containing AI modules have

to follow. In the work presented here the requirements are a first draft and the basis for further iterations.
In their current state some of them are more to consider as a best practice and an ideal state in terms of
safety and security. Nevertheless, the boundaries, values and wording of the requirements will be adjusted
within further projects and actual automotive applications.

Method Risk level

Low Medium High Very high

44 The input shall be monitored and checked before it is

given into the AI model.

+ + ++ ++

45

checked.

+ + ++ ++

46 The AI model shall be monitored during the program

execution.

o + ++ ++

47 Errors of the model shall be logged. + ++ ++ ++

48 Damaged or manipulated inputs shall be corrected when

it is safely possible.

o o + ++

49 Fail-safe methods shall be implemented to mitigate

entire system failures.

+ + ++ ++

50 Parallel redundant AI models shall be implemented. o o + ++

3 Generic Requirements (AP3)

88 Federal Office for Information Security

Table 36 Summary of generic requirements for the AI subsystems8

Requirement

Risk level

ID Description Type ASIL A/

Low

ASIL B/

Medium

ASIL C/

High

ASIL D/

Very high

15 The AI model shall be implemented using

mitigation strategies against robustness threats.

ASIL + + ++ ++

16 The AI model shall be verified with formal

robustness verification techniques.

ASIL o o + +

17 The robustness of the AI model shall be verified

with empirical robustness estimation techniques.

ASIL + + ++ ++

18 The AI model shall be tested against out-of-

distribution data.

ASIL ++ ++ ++ ++

19 Test cases at the boundary values of the input of

the AI model shall be derived.

ASIL + ++ ++ ++

20 Test cases based on corner cases of the AI model

shall be derived.

ASIL + ++ ++ ++

21 Test cases shall be derived through error guessing

based on knowledge and experience of the

system.

ASIL + + + +

22 The AI model shall be tested against possible

robustness threats.

Additional + ++ ++ ++

23 The source of the datasets shall be traceable. Additional + + ++ ++

24 The source of the dataset shall be verified. Additional o + ++ ++

25 The training, test and evaluation datasets shall

have adequate coverage of the operational input

domain.

Additional + + ++ ++

26 The datasets shall be verified against the safety

requirements.

Additional o + ++ ++

27 The uncertainty of the datasets shall be analyzed

and quantified.

Additional o + ++ ++

28 The datasets used for training, testing and

evaluation shall not contain any errors.

Additional ++ ++ ++ ++

29 The training, test and evaluation datasets shall

have sufficient size.

Additional + ++ ++ ++

30 The training, test and evaluation datasets shall be

independent from each other.

Additional ++ ++ ++ ++

31 The training, test and evaluation datasets shall be

prepared in an adequate way.

Additional + ++ ++ ++

32 The requirements shall be analyzed to derive test

cases for interpretable model decisions.

ASIL ++ ++ ++ ++

33 decisions shall be explained to aid

the comparison between the modelling of the

system and the trained model.

ASIL ++ ++ ++ ++

34 s shall be explained to check

if the requirements of the system are met.

ASIL + + ++ ++

35

be explained.

Additional + + ++ ++

36 cases shall be

explained.

Additional + + ++ ++

3 Generic Requirements (AP3)

Federal Office for Information Security 89

Requirement

Risk level

37

explained.

Additional + + ++ ++

38 The least complex model architecture needed to

solve the task shall be chosen.

Additional + + ++ ++

39 A model architecture shall be chosen to

maximize the interpretability of decisions.

Additional o + + ++

40 The SW unit design shall be described explicitly. ASIL ++ ++ ++ ++

41 The dataset & model shall be versioned. Additional o + ++ ++

42 Standardized methods to record characteristics

of datasets, AI models and key processes shall

exist and be followed

Additional o + ++ ++

43 The labelling process of the dataset shall be

documented and tracked.

Additional o + ++ ++

44 The input shall be monitored and checked before

it is given into the AI model.

ASIL + + ++ ++

45

checked.

ASIL + + ++ ++

46 The AI model shall be monitored during the

program execution.

ASIL o + ++ ++

47 Errors of the model shall be logged. ASIL + ++ ++ ++

48 Damaged or manipulated inputs shall be

corrected when it is safely possible.

ASIL o o + ++

49 Fail-safe methods shall be implemented to

mitigate entire system failures.

ASIL + + ++ ++

50 Parallel redundant AI models shall be

implemented.

ASIL o o + ++

3.4 Applicability of Requirements

After presenting all generic requirements for the entire system and AI subsystems, this chapter focusses on

the applicability of the generic requirements to concrete use cases. In Table 37 we discuss the applicability of

each requirement when considering use cases from the mobility domain. A summary of the most important

use cases is presented in the previous report from AP2 in (1). Concretely, we consider whether there exists a

need for concretization and whether a requirement can be applied for mobility use cases in a straight-forward

way without major adaptions. In doing so, we use the following categories and provide details on the reason

of the concrete categorization for each requirement:

 Applicability: This category determines how well a requirement is suited for different mobility use

cases. It represents whether a requirement is in principle applicable without focusing on the

concreteness of a requirement.

 Simple: The requirement is well-suited for mobility use cases and can easily be applied.

 Complex: The requirement is partly suited for mobility use cases and can be applied with slight

modifications.

 Unrealistic: The requirement is not suited for mobility use cases and can only be applied with major

modifications or not at all.

3 Generic Requirements (AP3)

90 Federal Office for Information Security

 Concretization Effort: This category determines how concretely a requirement is formulated or

whether there exists a need to provide further information about a requirement when used in practice

for different mobility use cases.

 None: The requirement is very concrete and can be used in practice without any concretization for

mobility use cases.

 Minor: One part of the requirement needs to be concretized before it can be used in practice for

mobility use cases. In addition, the concretization of this part is rather straightforward.

 Major: Multiple parts of the requirement need to be concretized before it can be used in practice for

mobility use cases. Also included are requirements where only one part needs to be concretized but

the concretization is not straightforward.

Table 37 Applicability of requirements for mobility use cases

Requirement Applicability Concretization Effort

ID Description

1 The environmental context

shall correspond to the

operational design domain

(ODD).

Simple Minor

 Suitable measurement for

environmental context

2 The communication, interfaces,

signals, etc. between different

components shall be

coordinated.

Simple None

3 The sensor setup shall be similar

to the development/training

setup.

Simple Minor

 Suitable definition of similarity

4 The requirements for AI

subsystems shall apply to the

entire system (if applicable).

Simple Minor

 Suitable applicable requirements

5 The adequate performance shall

be guaranteed for a certain

timeframe after initial

deployment.

Simple Major

 Suitable definition of adequate

 Suitable timeframe

6 The performance on key

performance indicators (KPIs)

shall be as high as possible

Simple Minor

 Suitable KPIs

7 The performance shall be

compliant to the allowed worst-

case error.

Complex

 How to check high-dimensional

(internal) data/output values

Major

 Suitable definition of worst-case

error

8 The performance shall be

reproducible in the real

environment for operation.

Complex

 How to define realistic dummies

& simulations

Major

 Suitable definition of

environment

 Suitable coverage of complete

environment

9 The feedback of the system shall

be tracked while in operation.

Complex

 How to log high-dimensional

(internal) data/output values

 How to limit storage

demand/costs

Minor

 Suitable tracking methods

3 Generic Requirements (AP3)

Federal Office for Information Security 91

Requirement Applicability Concretization Effort

ID Description

10 The performance shall be

corrected when critical errors

occur after deployment.

Complex

 How to correct specific errors in

complex systems

Major

 Suitable definition of critical

errors

11 The system state shall be tracked

in a reproducible way while in

operation.

Complex

 How to log the state of complex

systems

 How to limit storage

demand/costs

Major

 Suitable tracking methods

12 The architectural design shall be

described explicitly.

Simple None

13 The quality & trustworthiness

for developers shall be assessed.

Simple Minor

 Suitable assessment methods

14 The development process shall

be tracked.

Simple Minor

 Suitable tracking methods

15 The AI model shall be

implemented using mitigation

strategies against robustness

threats.

Simple Major

 Suitable definition of robustness

threats

 Suitable mitigation strategies

 Suitable extension to new threats

 Suitable coverage of robustness

threats

16 The AI model shall be verified

with formal robustness

verification techniques.

Unrealistic

 How to verify complex systems

Major

 Suitable verification techniques

17 The robustness of the AI model

shall be verified with empirical

robustness estimation

techniques.

Simple Major

 Suitable estimation techniques

 Suitable coverage of complete

robustness

18 The AI model shall be tested

against out-of-distribution data.

Simple Major

 Suitable definition of OOD data

 Suitable coverage of complete

OOD data

19 Test cases at the boundary

values of the input of the AI

model shall be derived.

Simple Minor

 Suitable coverage of complete

boundary values

20 Test cases based on corner cases

of the AI model shall be derived.

Simple Major

 Suitable definition of corner

cases

 Suitable coverage of complete

corner cases

21 Test cases shall be derived

through error guessing based on

knowledge and experience of

the system.

Simple Major

 Suitable coverage of complete

test cases

22 The AI model shall be tested

against possible robustness

threats.

Simple Major

 Suitable definition of robustness

threats

 Suitable coverage of robustness

threats

3 Generic Requirements (AP3)

92 Federal Office for Information Security

Requirement Applicability Concretization Effort

ID Description

23 The source of the datasets shall

be traceable.

Simple Minor

 Suitable traceability

24 The source of the dataset shall

be verified.

Simple Minor

 Suitable verification

25 The training, test and evaluation

datasets shall have adequate

coverage of the operational

input domain.

Simple Major

 Suitable definition of adequate

 Suitable coverage of complete

input domain

26 The datasets shall be verified

against the safety requirements.

Simple Major

 Suitable safety requirements

27 The uncertainty of the datasets

shall be analyzed and quantified.

Simple Minor

 Suitable measurement of dataset

uncertainty

28 The datasets used for training,

testing and evaluation shall not

contain any errors.

Complex

 How to verify large & high-

dimensional datasets

Major

 Suitable definition of errors

29 The training, test and evaluation

datasets shall have sufficient

size.

Simple Minor

 Suitable dataset size

30 The training, test and evaluation

datasets shall be independent

from each other.

Simple Minor

 Suitable dataset comparison

31 The training, test and evaluation

datasets shall be prepared in an

adequate way.

Simple Major

 Suitable definition of adequate

32 The requirements shall be

analyzed to derive test cases for

interpretable model decisions.

Simple Minor

 Suitable coverage of complete

test cases

33 decisions shall be

explained to aid the comparison

between the modelling of the

system and the trained model.

Complex

 How to explain high-

dimensional output values

Minor

 Suitable explanations

34 s shall be

explained to check if the

requirements of the system are

met.

Complex

 How to explain high-

dimensional output values

Minor

 Suitable explanations

35

boundary values shall be

explained.

Complex

 How to explain high-

dimensional output values

Major

 Suitable explanations

 Suitable coverage of complete

boundary values

36

cases shall be explained.

Complex

 How to explain high-

dimensional output values

Major

 Suitable explanations

 Suitable definition of corner

cases

 Suitable coverage of complete

corner cases

37

tests shall be explained.

Complex

 How to explain high-

dimensional output values

Minor

 Suitable explanations

3 Generic Requirements (AP3)

Federal Office for Information Security 93

Requirement Applicability Concretization Effort

ID Description

38 The least complex model

architecture needed to solve the

task shall be chosen.

Simple

Minor

 Suitable complexity measure

39 A model architecture shall be

chosen to maximize the

interpretability of decisions.

Complex

 How to interpret complex

systems

Major

 Suitable interpretability

40 The SW unit design shall be

described explicitly.

Simple None

41 The dataset & model shall be

versioned.

Simple/Complex

 How to version complex systems

Minor

 Suitable versioning methods

42 Standardized methods to record

characteristics of datasets, AI

models and key processes shall

exist and be followed

Simple Minor

 Suitable recording methods

43 The labelling process of the

dataset shall be documented and

tracked.

Simple Minor

 Suitable tracking methods

44 The input shall be monitored

and checked before it is given

into the AI model.

Simple Major

 Suitable input checking

45 The plausibility of the AI

Simple Minor

 Suitable plausibility checking

46 The AI model shall be

monitored during the program

execution.

Complex

 How to limit storage

demand/costs

Minor

 Suitable monitoring metrics

47 Errors of the model shall be

logged.

Complex

 How to log high-dimensional

data

 How to limit storage

demand/costs

Minor

 Suitable timeframe of logging

 Suitable extent of logging

48 Damaged or manipulated inputs

shall be corrected when it is

safely possible.

Complex

 How to correct high-

dimensional data

Major

 Suitable input correction

49 Fail-safe methods shall be

implemented to mitigate entire

system failures.

Complex

 How to limit computational

resources / storage demand /

costs

Major

 Suitable fail-safe methods

50 Parallel redundant AI models

shall be implemented.

Complex

 How to operate multiple

complex systems

 How to limit computational

resources / storage demand /

costs

Major

 Suitable extent of redundancy

 Suitable redundant models

3 Generic Requirements (AP3)

94 Federal Office for Information Security

3.5 Testability of Requirements

In addition to the applicability of the generic requirements defined in Chapter 3.4, the testability of these

requirements has to be addressed. Table 38 shows a mapping between each requirement and a short indicator

on the test procedure and its overall testability.

The testability of a requirement is categorized as:

 High: The test effort for this requirement is low and can possibly be automated.

 Medium: The tests for this requirement require domain knowledge or interpretations.

 Low/Infeasible: This requirement is not testable without infeasible or very high effort or there

exist no methods to test this requirement.

However, the testability might depend on the specific use case, since some test efforts might change for

different use cases, systems and environments. To give further insight into the testing procedure for these

requirements, the tests can either be:

 Evidence-based: The test for this requirement requires evidence in form of documentation or

audits.

 Metric-based: The test for this requirement requires the computation of statistics o metrics.

Table 38 Overview on the testability of each generic requirement

Requirement Testability Test Comments

 ID Description

1 The environmental context

shall correspond to the

operational design domain

(ODD).

Medium

Evidence-based

 Documentation on the

environmental domain

2 The communication,

interfaces, signals, etc.

between different

components shall be

coordinated.

Medium Evidence-based

 Interface implementation

 Interface documentation

3 The sensor setup shall be

similar to the

development/training setup.

(High)

Depends on the

use case

Evidence-based

 Documentation on the sensor

setup

 Depends on the

sensor setup

 For similar sensors

high testability

4 The requirements for AI

subsystems shall apply to the

entire system (if applicable).

Depends on the

individual

requirement

Depends on the individual

requirement

5 The adequate performance

shall be guaranteed for a

certain timeframe after initial

deployment.

(Medium)

Depends on the

use case

Metric-based

 Performance metric over

certain timeframe

 Depends on the

timeframe and

additional system

components

6 The performance on key

performance indicators (KPIs)

shall be as high as possible

High Metric-based

 Calculation of KPIs

7 The performance shall be

compliant to the allowed

worst-case error.

(High)

Depends on the

use case

Metric-based

 Performance metric calculated

for worst-case error

 Depends on the

verification of the

worst-case error

8 The performance shall be

reproducible in the real

environment for operation.

Medium Metric-based

 Assessing environments

3 Generic Requirements (AP3)

Federal Office for Information Security 95

Requirement Testability Test Comments

 ID Description

 Comparison of metrics within

different environments

9 The feedback of the system

shall be tracked while in

operation.

High Evidence-based

 System documentation/Code

review

10 The performance shall be

corrected when critical errors

occur after deployment.

Medium

Evidence-based/Metric-based

 System documentation

 Performance metrics on critical

errors

11 The system state shall be

tracked in a reproducible way

while in operation.

Low

Evidence-based

 System documentation

 What is reproducible

 When to track

 What does the system state

entail

12 The architectural design shall

be described explicitly.

High Evidence-based

 Documentation of the

architectural design

13 The quality & trustworthiness

for developers shall be

assessed.

High Evidence-based

 Site audit and documentation

14 The development process

shall be tracked.

High Evidence-based

 Documentation of the

development process

15 The AI model shall be

implemented using

mitigation strategies against

robustness threats.

Medium Evidence-based

 Code review/Documentation

 Assessing suitable strategies

16 The AI model shall be verified

with formal robustness

verification techniques.

Low

Metric-based

 Verification metrics

 Infeasible for

complex models

(>105 neurons and 6

layers); For more

information, see

Chapter 2

17 The robustness of the AI

model shall be verified with

empirical robustness

estimation techniques.

Medium Metric-based

 Robustness metrics

 Assessing suitable metrics

 Assessing thresholds

18 The AI model shall be tested

against out-of-distribution

data.

High Metric-based

 Performance metric on out-of-

distribution data

19 Test cases at the boundary

values of the input of the AI

model shall be derived.

High Evidence-based

 Test documentation

3 Generic Requirements (AP3)

96 Federal Office for Information Security

Requirement Testability Test Comments

 ID Description

20 Test cases based on corner

cases of the AI model shall be

derived.

(Medium)

Depends on the

use case

Evidence-based

 Test documentation

 Assessing the quality

of tests

 Defining corner

cases

 Coverage of corner

cases

 Depends on system

and environment

21 Test cases shall be derived

through error guessing based

on knowledge and experience

of the system.

Medium Evidence-based

 Test documentation

 Assessing the quality of tests

22 The AI model shall be tested

against possible robustness

threats.

(Medium)

Depends on the

use case

Evidence-based

 Test documentation

 Assessing the quality

of tests

 Defining possible

threats

 Depends on system

and environment

23 The source of the datasets

shall be traceable.

Medium Evidence-based

 Dataset documentation

24 The source of the dataset shall

be verified.

Medium Evidence-based

 Dataset documentation

25 The training, test and

evaluation datasets shall have

adequate coverage of the

operational input domain.

Medium Evidence-based

 Dataset documentation

26 The datasets shall be verified

against the safety

requirements.

Medium Evidence-based

 Dataset documentation

27 The uncertainty of the

datasets shall be analyzed and

quantified.

Medium Metric-based

 Uncertainty metric

 How much uncertainty is

adequate

28 The datasets used for training,

testing and evaluation shall

not contain any errors.

Medium Evidence-based

 Dataset documentation

29 The training, test and

evaluation datasets shall have

sufficient size.

Medium Evidence-based

 Dataset documentation

30 The training, test and

evaluation datasets shall be

independent from each other.

High Evidence-based

 Dataset documentation

31 The training, test and

evaluation datasets shall be

prepared in an adequate way.

Medium Evidence-based

 Dataset documentation

 Software modelling

documentation

32 The requirements shall be

analyzed to derive test cases

Medium Evidence-based

 Test documentation

3 Generic Requirements (AP3)

Federal Office for Information Security 97

Requirement Testability Test Comments

 ID Description

for interpretable model

decisions.

33 decisions shall be

explained to aid the

comparison between the

modelling of the system and

the trained model..

Medium Metric-based/Evidence-based

 Explanation metric

 Software modelling

documentation

34 s shall be

explained to check if the

requirements of the system

are met.

Medium Metric-based/Evidence-based

 Explanation metric

 Requirement documentation

35

boundary values shall be

explained.

Medium Metric-based/Evidence-based

 Explanation metric

 Input space (boundary value)

documentation

36

corner cases shall be

explained.

(Medium)

Depends on the

use case

Metric-based/Evidence-based

 Explanation metric

 Corner case documentation

 Assessing the quality

of tests

 Defining corner

cases

 Coverage of corner

cases

 Depends on system

and environment

37

failed tests shall be explained.

Medium Metric-based

 Explanation metric

38 The least complex model

architecture needed to solve

the task shall be chosen.

Medium Evidence-based

 Model documentation

architecture

 Assessment of

rationale

39 A model architecture shall be

chosen to maximize the

interpretability of decisions.

Medium Evidence-based

 Model documentation

40 The SW unit design shall be

described explicitly.

High

Evidence-based

 Documentation of the SW unit

design

 Depending on the

degree of testing

white box access of

model is needed

41 The dataset & model shall be

versioned.

High Evidence-based

 Versioning documentation

42 Standardized methods to

record characteristics of

datasets, AI models and key

processes shall exist and be

followed

High Evidence-based

 Entire documentation

43 The labelling process of the

dataset shall be documented

and tracked.

High Evidence-based

 Dataset documentation

3 Generic Requirements (AP3)

98 Federal Office for Information Security

Requirement Testability Test Comments

 ID Description

44 The input shall be monitored

and checked before it is given

into the AI model.

Medium Evidence-based/Metric-based

 Software documentation

 Input checking metric

45 The plausibility of the AI

checked.

Medium Evidence-based

 Code review/Documentation

 Suitable plausibility checking

46 The AI model shall be

monitored during the

program execution.

Medium Evidence-based

 Suitable monitoring metrics

47 Errors of the model shall be

logged.

High

Evidence-based

 System documentation

 Logging

 Code review

48 Damaged or manipulated

inputs shall be corrected

when it is safely possible.

Medium Evidence-based/Metric-based

 Detection metric

 System documentation

 Code review

49 Fail-safe methods shall be

implemented to mitigate

entire system failures.

Medium Evidence-based

 Documentation of fail-safe

methods

50 Parallel redundant AI models

shall be implemented.

Medium

Evidence-based/Metric-based

 System Documentation

 Similarity metric of models

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 99

4 Use Case Comparison for Audit Criteria
Development (AP4)

This chapter -Cases im Hinblick auf Eignung

Anforderungen an KI-Systeme anhand praktischer Use-Cases im

Hence, it contains the results of the listing and categorization of potential use cases in the mobility area and

specifically use cases that are part of ADAS or AD systems. These use cases are categorized and the most

interesting and relevant ones are analyzed regarding their suitability for the development of audit criteria and

the practical testing of the generic requirements given in Chapter 3. Based on this the recommendation of use

cases for the work packages five and seven is performed.

As a general disclaimer, it is important to point out that the sheer number of potential use cases in the area of

AD/ADAS and the complexity of individual use cases makes an unambiguous categorization and comparison

close to impossible. Depending on the viewpoint different aspects can be assessed as more important leading

to a varying categorization. This also strongly depends on the details that one considers when categorizing

the use cases. In this document we try to give a general overview of relevant use cases for AD/ADAS and derive

a common categorization as best as possible. This does not claim to be the ideal and all-inclusive solution and

there are other options to perform the categorization. Nevertheless, a common categorization is needed to be

able to compare various use cases more easily. Only this enables the proper selection of the use cases for the

practical tests in work packages five and seven.

4.1 Category Overview

In this chapter we present the categories that are used to group the use cases in Chapter 4.2. We discuss

different categories that are used to differentiate the use cases and start by initially listing the categories that

are motivated in the description of services. Then, we present additional categories that cover further

important aspects of different mobility use cases. For each category we discuss the possible parameters and

give practical examples for the meaning of each parameter level. Each concrete parameter that is later used

to categorize the use cases is highlighted in bold face.

4.1.1 Required Categories from Description of Services

4.1.1.1 Safety Relevance

The first category that is mentioned is the impact and relevance of the use case for the safety of the entire

mobility system and external traffic participants. Here, possible parameter values are:

• High: The use case impacts the control of a vehicle and is executed at moderate/high speed levels where

a failure can cause significant damages.

• Medium: The use case impacts the control of a vehicle and is executed at moderate/high speed levels

where a failure can cause limited damages. Also included are use cases where a failure can cause

significant damages, but the use case only impacts the control of a vehicle as part of an assistance

system and not independently.

• Low: The use case impacts the control of a vehicle and is only executed at low speeds where a failure

can cause limited damages. Also included are use cases that are executed at moderate/high speed levels

where a failure can cause limited damages, but the use case only impacts the control of a vehicle as part

of an assistance system and not independently.

• None: The use case does not impact the driving performance and the control of a vehicle in any way

and is a pure comfort system.

4 Use Case Comparison for Audit Criteria Development (AP4)

100 Federal Office for Information Security

4.1.1.2 Input Data

This category covers the respective input data for each use case. Here, possible parameter values are:

• Sensor-based: Data that is generated by different sensors, including both exteroceptive and

interoceptive sensors. During the use case discussion in Chapter 4.2 we assume an exteroceptive sensor

if not described otherwise. Relevant sensors are:

• Camera

• LiDAR

• RADAR

• Acoustic

• Ultrasonic

• GPS

• HD Map: High-definition map that contains a more detailed representation of map and road elements.

• Internal: Data/Information that is generated internally in the entire system by previous components

or use cases and not by sensors.

• Fusion: Data that is combined from different sensors or components.

• None: The use case needs no data as input.

4.1.1.3 Modular Components

In this category the modular components of an AD system which are involved in each use case are covered.

The modular components are described in detail in the previous Chapter 2. In this category, possible

parameter values are:

• Perception

• Localization

• Prediction

• Planning

• Control

• None: No traditional modular component is used.

4.1.1.4 AI Usage

The next category differentiates the AI and ML techniques that are used in each use case. Generally, in the

remainder of this document we only cover use cases where an AI involvement is in principle possible and

logical. In this category, possible parameter values are:

• Current: This parameter lists the technique that is currently used by the majority of state-of-the-art

(SOTA) systems for each use case.

• Algos: Traditional algorithm/methods are used that are not based on ML.

• Tree

• SVM

• DNN

• ML-Future: In case currently traditional algorithms are used this parameter describes the expected

arrival time of ML-based techniques.

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 101

• Near: ML-based techniques are expected to be the SOTA in the next few (<3) years.

• Far: ML-based techniques are expected to be the SOTA in reasonable (3-10 years) time.

• Unlikely: ML-based techniques are not expected to be the SOTA in reasonable (<10 years) time.

4.1.1.5 Auditability

This category covers the test effort required to derive the residual risk of an AI system implementing the use

case. Here, possible parameter values are:

• Complex: The damage potential of hazards is medium or high and despite a high test effort, the residual

risk of the system is complex to derive.

• Medium: The residual risk can be measured with a reasonable test effort.

• Simple: The damage potential of hazards is low or the residual risk can be covered with low test effort.

4.1.2 Additional Categories from AP2 & AP3

4.1.2.1 Complexity

The first additional category differentiates the complexity of each use case. Here, different factors are relevant

to determine the overall complexity. On the one hand, one factor is the amount of different modular

components that is already covered in the requirement in Chapter 4.1.1.3. Additionally, other factors are

considered like the availability of relevant literature, whether the use case is completely new or already used

for some years and whether the use case is well understood or still heavily researched without commonly

used techniques. In this category, possible parameter values are:

• High: The use case is new, under research and contains multiple modular components.

• Medium: The use case is either new but only contains few modular components or the use case is well

understood but contains multiple modular components.

• Low: The use case is well understood and contains only a single modular component.

4.1.2.2 Widespread Distribution

This category covers the distribution of the usage of the use case. Here, possible parameter values are:

• High: The use case is present in most new high-priced vehicles.

• Medium: The use case is present in some new high-priced vehicles.

• Low: The use case is not present in most new high-priced vehicles.

4.1.2.3 Attack Applicability

In this category the applicability of potential attacks on the AI component is covered. Principled attack

methods are described in detail in Chapter 2. Again, multiple factors are important to consider when assessing

the general applicability of an attack in reality. The most important factors are the scalability of an attack, the

availability of literature or demonstrations of an attack, the required access interface of an adversary and

whether concrete implementations are publicly available. In this category, possible parameter values are:

• Unrealistic: The attack cannot be executed without internal access of the adversary.

• Complex: The attack can be executed without internal access of the adversary but cannot be scaled to

impact multiple vehicles or there exists no public knowledge of the attack.

• Medium: The attack can be executed without internal access of the adversary, can be partly scaled to

impact multiple vehicles and there exists at least some public knowledge of the attack.

4 Use Case Comparison for Audit Criteria Development (AP4)

102 Federal Office for Information Security

• Simple: The attack can be executed without internal access of the adversary, can be well scaled to

impact multiple vehicles and there exists extensive public knowledge of the attack.

4.1.2.4 Perception Components

This category focusses specifically on the involved perception components for each use case. Most of the

perception components are described in detail in Chapter 2. In this category, possible parameter values are:

• Detection

• Segmentation

• Depth

• Flow

• Clustering: Clustering is used to group 3D point cloud data.

• Occupancy Grid Map: Generate grid map of environment indicating the location of obstacles.

• Classification

• Regression

• None: No perception component is involved.

4.2 Use Case Overview

In this chapter we present an initial overview of use cases in the area of mobility that currently use AI systems

or where AI systems are potentially used in the future. A list of potential use cases is developed and the

previously introduced categories are used to compare the use cases. We focus on listing rather generic use

cases to be able to cover all important aspects of different use cases that arise in the context of AD and ADAS.

Later in Chapter 4.3, a more detailed discussion is performed for the most interesting and relevant use cases.

First, we discuss generic use cases that are relevant for both AD and ADAS before we focus on use cases that

are specific for each field. In both cases there exist different publications that cover use cases from different

viewpoints which we discuss in Chapter 2. Most importantly ((184), (185), (186)) cover use cases for AD and (

(187), (188)) cover use cases for ADAS. We try to combine these different viewpoints and first extract generic

use cases that are relevant for both domains.

4.2.1 Generic Use Cases

Table 39 gives an overview of the considered generic use cases and the grouping using the categories from

Chapter 4.1. It serves as an overview to compare the different use cases on a quick glance. In the remainder of

this chapter the concrete categorization is further discussed in detail for each use case. Additionally, we argue

whether the use case should be selected for the more fine-grained analysis in Chapter 4.3 that forms the basis

for the final selection of use cases in Chapter 4.4.

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 103

Table 39 Overview of general use cases
ID

U
se

C
as

e

Sa
fe

ty

R
el

ev
an

ce

In
p

u
t

D
at

a

M
od

u
la

r

C
om

po
n

en
ts

A
I

U
sa

ge

A
u

di
ta

bi
lit

y

C
om

pl
ex

it
y

W
id

es
p

re
ad

D
is

tr
ib

u
ti

on

A
tt

ac
k

A
pp

lic
ab

ili
ty

P
er

ce
p

ti
on

C
om

po
n

en
ts

1 E
m

er
ge

n
cy

 B
ra

ki
n

g

H
ig

h

C
am

er
a,

 L
iD

A
R

,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

,

C
on

tr
ol

C
u

rr
en

t:
A

lg
os

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

H
ig

h

C
am

er
a:

 M
ed

iu
m

P
o

in
t C

lo
u

d
:

C
om

pl
ex

D
et

ec
ti

on
, D

ep
th

,

C
la

ss
if

ic
at

io
n

,

C
lu

st
er

in
g

2 C
ol

lis
io

n

A
vo

id
an

ce

H
ig

h

C
am

er
a,

 L
iD

A
R

,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

,

P
re

d
ic

ti
on

,

C
on

tr
ol

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

H
ig

h

Lo
w

C
am

er
a:

 M
ed

iu
m

P
o

in
t C

lo
u

d
:

C
om

pl
ex

D
et

ec
ti

on
, D

ep
th

,

C
la

ss
if

ic
at

io
n

,

C
lu

st
er

in
g

3 La
n

e

K
ee

p
in

g

H
ig

h

C
am

er
a,

Fu
si

on

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

, C
on

tr
ol

C
u

rr
en

t:
A

lg
os

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

Si
m

p
le

Se
gm

en
ta

ti
on

4 La
n

e

C
h

an
gi

n
g

H
ig

h

C
am

er
a,

 L
iD

A
R

,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

,

P
la

n
n

in
g,

 C
on

tr
ol

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

H
ig

h

Lo
w

C
am

er
a:

 S
im

p
le

P
oi

n
t C

lo
u

d
:

C
om

pl
ex

D
et

ec
ti

on
, D

ep
th

,

Se
gm

en
ta

ti
on

,

C
lu

st
er

in
g

5 A
d

ap
ti

ve

C
ru

is
e

C
on

tr
ol

H
ig

h

C
am

er
a,

 L
iD

A
R

,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

, C
on

tr
ol

C
u

rr
en

t:
A

lg
os

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

H
ig

h

C
om

pl
ex

D
et

ec
ti

on
,

D
ep

th

6 R
ai

n
/G

ri
p

Le
ve

l

M
ed

iu
m

C
am

er
a,

 In
te

rn
al

P
er

ce
p

ti
on

C
u

rr
en

t:
D

N
N

C
om

pl
ex

M
ed

iu
m

Lo
w

C
om

pl
ex

C
la

ss
if

ic
at

io
n

,

R
eg

re
ss

io
n

7 V
ir

tu
al

Se
n

so
r

R
ep

la
ce

m
en

ts

M
ed

iu
m

In
te

rn
al

, F
u

si
on

P
er

ce
p

ti
on

C
u

rr
en

t:
D

N
N

Si
m

pl
e

- C
om

pl
ex

Lo
w

Lo
w

U
n

re
al

is
ti

c

C
la

ss
if

ic
at

io
n

,

R
eg

re
ss

io
n

4 Use Case Comparison for Audit Criteria Development (AP4)

104 Federal Office for Information Security

ID

U
se

C
as

e

Sa
fe

ty

R
el

ev
an

ce

In
p

u
t

D
at

a

M
od

u
la

r

C
om

po
n

en
ts

A
I

U
sa

ge

A
u

di
ta

bi
lit

y

C
om

pl
ex

it
y

W
id

es
p

re
ad

D
is

tr
ib

u
ti

on

A
tt

ac
k

A
pp

lic
ab

ili
ty

P
er

ce
p

ti
on

C
om

po
n

en
ts

8 D
ri

ve
r/

P
as

se
n

ge
r

In
te

ra
ct

io
n

N
on

e

C
am

er
a,

A
co

u
st

ic

P
er

ce
p

ti
on

C
u

rr
en

t:
D

N
N

Si
m

p
le

Lo
w

H
ig

h

C
am

er
a:

 U
n

re
al

is
ti

c

 A
co

u
st

ic
: S

im
pl

e

C
la

ss
if

ic
at

io
n

9 G
lo

ba
l

N
av

ig
at

io
n

 /
P

at
h

P
la

n
n

in
g

N
on

e

H
D

 M
ap

,

G
P

S

Lo
ca

liz
at

io
n

,

P
re

d
ic

ti
on

C
u

rr
en

t:
A

lg
os

, D
N

N

Si
m

p
le

Lo
w

H
ig

h

U
n

re
al

is
ti

c

C
la

ss
if

ic
at

io
n

,

R
eg

re
ss

io
n

10

A
u

to
m

at
ed

 P
ar

ki
n

g

Lo
w

C
am

er
a,

 L
iD

A
R

,

R
A

D
A

R
, U

lt
ra

so
n

ic
,

Fu
si

on

P
er

ce
p

ti
on

,

P
la

n
n

in
g,

C
on

tr
ol

C
u

rr
en

t:
A

lg
os

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

C
am

er
a:

 M
ed

iu
m

P
oi

n
t C

lo
u

d
:

C
om

pl
ex

D
et

ec
ti

on
,

Se
gm

en
ta

ti
on

,

D
ep

th

4.2.1.1 Emergency Braking (1)

The emergency braking use case contains all functionality that reacts to potential obstacles in the driving path

of a vehicle by initiating a deceleration motion. It can be executed at different speed levels and is independent

of the road type. Thus, it has a high relevance for the safety. Depending on the manufacturer different input

data types are possible. In some cases, only camera-based data is used, while others also include point cloud

data based on LiDAR or RADAR to have a more robust depth estimation for potential obstacles. Additionally,

the fusion of the described sensor data can be used. Since this use cases exploits sensor data, the perception

component is involved. In addition, the use case also impacts the control component of a vehicle by

automatically controlling the actuators to initiate a deceleration motion. For systems that are used in current

ADAS on public roads, typically traditional algorithms are used for regulatory reasons. Nevertheless, it is

already possible to use ML-based methods, which also promise a better performance and therefore will most-

likely be used in the near future. The auditability is classified as complex since the use case has a high safety

relevance and perception-based ML systems are hard to verify considering the almost infinite input space.

Emergency braking is already in use for some years (also on vehicles that operate on public roads) and rather

well understood. Therefore, the complexity can be categorized as medium while the widespread distribution

is rather high. Also, it is challenging to scale the applicability of attacks. For camera-based data one way to

attack the emergency braking functionality is to attach physical perturbations on moving vehicles/obstacles.

This does not scale to multiple vehicles at all and thus the only alternative is to create fake obstacles, e.g. using

a beamer. For point cloud data it is far more difficult to pretend that an obstacle exists and close to no public

knowledge exists here. Finally, the perception techniques of detection and classification are used to detect

obstacles in image data, whereas depth and clustering techniques are used to detect obstacles in point cloud

data. In Chapter 4.4 we do not consider this use case, because the collision avoidance use case discussed in

Chapter 4.2.1.2 can be considered as including the emergency braking use case.

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 105

4.2.1.2 Collision Avoidance (2)

This use case is a generalization of the emergency braking use case from Chapter 4.2.1.1. In addition to

deceleration, collision avoidance functionalities also include acceleration and steering motions. Also, it is

possible to avoid accidents resulting from side or rear-end collisions, instead of only focusing on collisions on

the driving path of a vehicle. Thus, most parameters in Table 39 are like the categorization for emergency

braking. For the modular components this use case additionally impacts the prediction component. In

contrast to emergency braking, which performs an immediate and heavy braking maneuver, general collision

avoidance has more degrees of freedom and can avoid accidents that are likely to happen in the future. Here,

DNNs are used to predict the future behavior and trajectory of other participants which might need to be

avoided. Therefore, this use case has a higher complexity and is currently not widely used yet. Again, the

auditability is classified as complex for the same reasons as in Chapter4.2.1.1. This use case is further analyzed

in Chapter 4.4 because it is most generic and includes different specific use cases to avoid collisions in certain

situations or by executing certain maneuvers.

4.2.1.3 Lane Keeping (3)

The next use case consists of lane keeping, which includes all functionalities that keep a vehicle in the current

driving lane. Here, mainly steering motions are performed to tackle the given task. In general, there is no need

to perform a detection of other traffic participants and thus no point cloud data is required as input. However,

next to perception localization plays a role to determine the current position of the vehicle on a map to

understand the lane structure if markings are missing and to accurately estimate the position of the vehicle

in the lane. Systems with lane keeping functionality are already deployed in the current generation of ADASs,

meaning currently traditional algorithms are used. This also means that the complexity is only medium while

the widespread distribution is partly given. The auditability is again classified as complex for the same reasons

discussed previously. In contrast to the previously discussed use cases, the attack applicability is rather simple

for the lane keeping use case. An adversary can prepare the road surface using markers, which potentially

impacts all vehicles that drive by. Since the detection of other traffic participants is not required, only the

segmentation task is relevant for the perception of the surrounding scene. For the detailed analysis this use

case is included because it covers very relevant tasks for driving functionalities which are also currently

deployed.

4.2.1.4 Lane Changing (4)

Like the discussion on use case 1 and use case 2, the lane changing use case has a more complex functionality

than the previous lane keeping use case. This use case includes all functionalities that lead to a change in the

driving lane of the vehicle. For example, this includes overtaking maneuvers on two lane roads, lane selection

on intersections or entering highways. To perform such maneuvers steering motions are again most

important. Nevertheless, also acceleration or deceleration motions are required to be able to merge in

between two vehicles and adapt to the driving speed of the new lane. Hence, this use case again requires

detecting other dynamic traffic participants and typically sensors for point cloud data are used. Also, the

planning component is heavily impacted because lane changing is a complex maneuver which requires the

trajectory planning of the vehicle for multiple steps in the future. Therefore, this use case is very complex and

is not used widely yet. Similarly, the auditability is classified as complex for the reasons discussed in Chapter

4.2.1.1. Like use case 3, the applicability of the attack is simple when only camera perception is used because

static markings can be placed on the road. Attacking point cloud sensors for traffic participants detection is

more complex as discussed in Chapter 4.2.1.1. In Chapter 4.4 this use case is analyzed in detail because it

includes very important driving functionalities with a high safety relevance especially when considering

higher levels of automated driving.

4 Use Case Comparison for Audit Criteria Development (AP4)

106 Federal Office for Information Security

4.2.1.5 Adaptive Cruise Control (5)

The adaptive cruise control use case includes functionalities that manage the distance to a vehicle driving in

front of the ego vehicle. Here, deceleration and acceleration motions are important to control the distance to

the front vehicle adaptively based on its driving maneuvers and speed. Hence, for this use case the detection

of the front vehicle is important, which can be based on camera or point cloud data. Based on the detection

and the estimated distance to the front vehicle, the speed of the ego vehicle is directly controlled without a

relevant involvement of prediction or planning components. Nevertheless, the auditability of an AI system is

again classified as complex. The functionalities for this use case are included in current ADASs, meaning

currently traditional algorithms with a medium complexity are used. Attacks are very difficult to carry out

and scale to impact multiple vehicles. It is possible to hide the front vehicle for perception by adding physical

perturbation (e.g., stickers or 3d prints) on the vehicle, but an adversary gains little from this. Like use case 3

the adaptive cruise control use case is further analyzed in Chapter 4.3 because in combination this enables to

operate a vehicle autonomously in standard road scenarios.

4.2.1.6 Rain/Grip Level (6)

The next use case covers functionalities that measure the amount of rain on a road or the grip level in general.

This can include the detection of ice or snow and an assessment of the general road surface. The goal is to

provide an indication of the available grip level of the upcoming road which is integrated by the planning

component in potential motions or used by the driver of a vehicle. Thus, the safety relevance is only medium

because there is no direct control of driving functionalities. For grip level assessment mainly camera data is

used for the perception and DNNs are mainly used to evaluate and interpret the data. The auditability is

classified as complex despite the medium safety relevance of the use case, because perception-based ML

systems are hard to verify considering the almost infinite input space. In principle, the idea behind the use

case is rather simple, however research only started recently and the use case is relatively young. Hence, the

widespread distribution is pretty low and the overall complexity is medium because grip level prediction is

not extensively researched. Also, performing attacks is rather complex since an adversary would need to

perturb the road surface continuously for a rather long distance. This is also the main reason why this use

case is not further analyzed in Chapter 4.3. Another reason is that this use case is more niche and not

necessarily required for automated driving.

4.2.1.7 Virtual Sensor Replacements (7)

This use case includes all functionalities where physical sensors are replaced by intelligent algorithms that

provide the same (or even enhanced) information but use already existing sensor data to derive this

information. Hence, the number of required sensors in a vehicle is reduced by using intelligent processing

software. Like the discussion on the previous use case, there is no direct control of driving functionalities

leading to a reduced safety relevance in case sensors are replaced that are mainly used for convenience

functionalities. As mentioned, various internal data sources are used or fused with other external sensors to

gather the required data which allows generating the same data that a traditional sensor would capture. Here,

DNNs are most powerful to learn the functionality of a traditional sensor and replicate it from the available

data. Depending on the level of criticality of the replaced sensor, the auditability of the virtual AI-based sensor

can reach from simple to complex. The complexity is low compared to the other use cases, but the use of

virtual sensors is also not widely spread yet. Also, it is unrealistic to perform any attacks because the adversary

does not have a single attack point that only serves to attack sensor replacements. In addition, such sensor

replacements are used for non-critical sensors for convenience functions where an attack does have very little

or no damage potential. This use case is also not further analyzed for the same reasons as for use case 6. In

future, it is likely that virtual sensor replacements are also used to replace sensors that are relevant for driving

functionalities. However, such usages are not the focus for the categorization in Table 39. There, we mainly

consider virtual replacements of sensors which are not directly involved in the perception components for

AD/ADAS, i.e. Camera, RADAR or LiDAR sensors are not replaced. When these sensors are also replaced, the

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 107

complexity and safety relevance of this use case is significantly increased and new attack vectors open for

adversaries.

4.2.1.8 Driver/Passenger Interaction (8)

In contrast to all previous use cases, this use case focusses on pure comfort functionalities inside a vehicle.

Concretely, all functionalities are included that serve to interact with the driver or other passengers of a

vehicle. Hence, different human-machine interfaces are relevant where the most important one is having a

voice assistant for different comfort commands, like music/climate control or wishes to adjust the navigation

route. Similarly, other interfaces are possible but typically AI is most important for voice interfaces. Here, the

perception is based on the data from interoceptive acoustic sensors, which is processed by a DNN to achieve

the performance of current voice assistants. The auditability of an AI-based system is ranked as simple

because the use case has no direct impact on the safety of the driving functionality. Similarly, the overall

complexity is low compared to use cases that include driving functionalities, but voice assistants are widely

used in current vehicle generations. The attack applicability depends on the sensor that is used for perception.

In case of acoustic sensors, a physical attack interface is to play perturbed sounds (songs, commercials, etc.)

over radio (or Spotify, YouTube etc.). This attack scales potentially to a large number of vehicles and thus has

a simple applicability. In case other sensor data is used the attack is instead unrealistic because an adversary

would have to apply the physical perturbations at the inside of the vehicle. Since this use case has no safety

relevance and does not directly impact any driving functionalities it is not included in the analysis in Chapter

4.3.

4.2.1.9 Global Navigation/Path Planning (9)

The next use case includes AI related functionalities for global navigation and path planning. Here, the global

route/path of a vehicle is planned, which consists of the rough path from the starting location to the target

location. The most famous example are map services (Google Maps, etc.), which plan a route for the vehicle.

This route is updated online during driving depending on the current occupancy of roads or the probability

of traffic jams. Here, AI-based algorithms play a role to predict potential arrival times or likely traffic jams. In

general, global path planning is not based on perception but only utilizes the localization and prediction

components. It is already used for quite some years and thus is rather well understood. Therefore, global path

planning is widely distributed and available for everyone via apps for smartphones. The auditability is ranked

as simple similarly to Chapter 4.2.1.8. Also, the complexity is low in comparison to driving functionalities, but

an attack is unrealistic because there exists no physical attack interface an adversary can exploit. In Chapter

4.3 this use case is further analyzed due to the extremely widespread distribution and relevance for path

planning of automated driving.

4.2.1.10 Automated Parking (10)

Finally, the last generic use case is automated parking, which covers functionalities for automatically finding

a parking spot in a larger parking lot or performing automatic parking at the roadside. The safety relevance is

low because the functionalities are only executed at low speeds, but otherwise use a similar sensor suite and

detection concepts as functionalities for collision avoidance from use case 2. In addition, the planning

component is involved to plan the concrete maneuver that is required to navigate the vehicle into a tight

parking spot. Despite operating with low speed, a malfunctioning could harm pedestrians. Therefore, the

auditability is classified as complex since perception-based ML systems are hard to verify considering the

almost infinite input space. This use case is already available for some years in high-end vehicles and is

continuously further included in current ADASs. Hence, a certain degree of widespread distribution is present

and the complexity is in the middle of the range. Finally, the attack applicability is comparable to the

discussion in Chapter 4.2.1.1. This use case is not included in the detailed analyses because it is a combination

of different individual use cases but only executed at lower speeds for a concrete task.

4 Use Case Comparison for Audit Criteria Development (AP4)

108 Federal Office for Information Security

4.2.2 ADAS specific Use Cases

Similar to the previous Chapter 4.2.1, this chapter provides a general list of use cases that are specifically

relevant for ADAS which are not yet covered in the use cases presented so far. Like Table 39 we show an

overview in Table 40 and discuss the categorization of each use case in the following.

Table 40 Overview of ADAS specific use cases

ID

U
se

C
as

e

Sa
fe

ty

R
el

ev
an

ce

In
p

u
t

D
at

a

M
od

u
la

r

C
om

po
n

en
ts

A
I

U
sa

ge

A
u

di
ta

bi
lit

y

C
om

pl
ex

it
y

W
id

es
p

re
ad

D
is

tr
ib

u
ti

on

A
tt

ac
k

A
pp

lic
ab

ili
ty

P
er

ce
p

ti
on

C
om

po
n

en
ts

11

B
lin

d
Sp

ot

M
on

it
or

in
g

M
ed

iu
m

C
am

er
a,

R
A

D
A

R
,

Fu
si

o
n

P
er

ce
p

ti
on

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

C
om

pl
ex

D
et

ec
ti

on
,

C
la

ss
if

ic
at

io
n

12

T
ra

ff
ic

Si
gn

A
ss

is
ta

n
t

Lo
w

C
am

er
a,

H
D

 M
ap

,

G
P

S

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

Si
m

p
le

 (C
om

p
le

x)

Lo
w

H
ig

h

Si
m

p
le

D
et

ec
ti

on
,

C
la

ss
if

ic
at

io
n

13

W
ro

n
g-

w
ay

W
ar

n
in

g

M
ed

iu
m

C
am

er
a

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

C
u

rr
en

t:
A

lg
os

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

Si
m

p
le

Se
gm

en
ta

ti
on

14

D
ri

ve
r

M
on

it
or

in
g

M
ed

iu
m

C
am

er
a

P
er

ce
p

ti
on

C
u

rr
en

t:
D

N
N

C
om

pl
ex

Lo
w

Lo
w

U
n

re
al

is
ti

c

D
et

ec
ti

on
,

C
la

ss
if

ic
at

io
n

4.2.2.1 Blind Spot Monitoring (11)

The blind spot monitoring use case includes functionalities that provide an aid to the driver by monitoring

blind spots of the field of view of the driver. For example, this can include areas that are not visible in the

mirrors or which are blocked by the vehicle chassis. In these blind spots the detection of obstacles and other

traffic participants is performed which can be based on camera or point cloud data. Since this use case is a

pure assistance system, only the perception component is relevant. Overall, there are already systems

operating in public which offer blind spot monitoring leading to a partial distribution. The auditability is

classified as complex despite a medium safety relevance of the use case for the same reasons discussed in

Chapter 4.2.1.6. Also, the complexity is medium because the task is already researched for some years and is

strictly simpler than the more complex use case 2 covering collision avoidance. An adversary trying to attack

blind spot monitoring has a very complex task. One reason is that it is difficult to scale practical perturbations

to impact multiple vehicles because perturbations need to be applied on individual vehicles. For the analysis

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 109

in Chapter 4.3 this use case is not covered because use case 2 can be seen as a generalization that includes

similar but more complex functionalities.

4.2.2.2 Traffic Sign Assistant (12)

This use case includes all functionalities that show currently relevant traffic signs to the driver. However, this

purely acts as an assistance feature and for example does not adapt the speed of a vehicle to the detected speed

limit automatically. Therefore, the safety relevance is rather low because only the perception or localization

components are involved. For the perception camera sensors are useful if no map data is available or if there

is a short-term temporary change in the traffic signs. Since the safety relevance is categorized as low, the

auditability activities can be quite simple. In case of a traffic sign assistant that automatically adapts the

vehicle speed to the detected speed limit, the auditability might rise with the safety relevance to a complex

level. This use case is very specific and includes clearly defined tasks leading to a rather low complexity. Also,

there are already functionalities deployed for some years leading to a widespread distribution. The attack

applicability is simple since physical perturbations can be applied to existing signs or phantom/spoofing signs

can be placed on the roadside. In Chapter 4.3 this use case is further analyzed, because the concrete

functionality is not yet represented in the current selection of use cases and provides a rather simple use case

which can become more important in the future for general-purpose autonomous driving.

4.2.2.3 Wrong-Way Warning (13)

Like use case 3 the wrong-way warning use case includes functionalities regarding the driving lane of a

vehicle. In contrast, only assistance systems are considered that provide a warning to the driver if the vehicle

enters the opposite lane or enters a one-way street in the wrong driving direction. Hence, most parameters

are similar to Chapter 4.2.1.3, but the complexity and safety relevance is lower because the control component

is not directly involved. We do not analyze this use case further because it can be seen as a specific application

of use case 3.

4.2.2.4 Driver Monitoring (14)

The last ADAS specific use case is based on the monitoring of the driver. For example, the goal is to detect the

drowsiness or distraction of a driver and provide a warning to the driver. Hence, this use case is again based

on camera perception facing the inside of a vehicle and does not involve other components than perception.

Since driver monitoring is again a pure assistance feature without influence on the control of the vehicle,

currently DNNs are used for the highest performance of driver attention prediction. Nevertheless, we want

to point out the importance of this use case, because the earliest as possible detection of a driver inattention

leads to the highest available prewarning time. This can reduce the number and criticality of accidents and is

also important when the driver must monitor assistance functionalities and be able to intervene rapidly. The

auditability is classified as complex similarly to the discussion in Chapter 4.2.2.1. The complexity is

comparably simple because the use case does not involve multiple traffic participants and only considers the

driver. Also, the spread of the use case is rather low since it only came up in recent years. At the same time, it

is unrealistic to apply an attack because an adversary would need to apply perturbations at the inside of the

vehicle. In the analysis in Chapter 4.3 this use case is included to also analyze a use case which focusses on the

perception of the inside of a vehicle.

4.2.3 AD specific Use Cases

Finally, this chapter covers use case for AD that are not included yet. Again, Table 41 provides an overview of

the use cases which are discussed in detail in the remainder of this chapter.

4 Use Case Comparison for Audit Criteria Development (AP4)

110 Federal Office for Information Security

Table 41 Overview of AD specific use cases

4.2.3.1 A Priori Map-based Localization (15)

Localization aims to determine the current position of the ego-vehicle as it navigates through the scene. In

autonomous driving, this is a very important component especially for lane keeping mentioned in Chapter

4.2.1.3 and for global navigation mentioned in Chapter 4.2.1.9. Hence, the safety relevance of localization is

categorized as high.

ID

U
se

C
as

e

Sa
fe

ty

R
el

ev
an

ce

In
p

u
t

D
at

a

M
od

u
la

r

C
om

po
n

en
ts

A
I

U
sa

ge

A
u

di
ta

bi
lit

y

C
om

pl
ex

it
y

W
id

es
p

re
ad

D
is

tr
ib

u
ti

on

A
tt

ac
k

A
pp

lic
ab

ili
ty

P
er

ce
p

ti
on

C
om

po
n

en
ts

15

A
 P

ri
or

i M
ap

-b
as

ed

Lo
ca

liz
at

io
n

H
ig

h

Li
D

A
R

, C
am

er
a,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

Lo
w

C
om

pl
ex

D
et

ec
ti

on
,

C
la

ss
if

ic
at

io
n

,

Se
gm

en
ta

ti
on

16

R
oa

d
 U

se
rs

D
et

ec
ti

on

H
ig

h

Li
D

A
R

, C
am

er
a,

A
co

u
st

ic
, R

A
D

A
R

,

Fu
si

o
n

P
er

ce
p

ti
on

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

C
am

er
a,

 A
co

u
st

ic
:

Si
m

p
le

-
P

o
in

t C
lo

u
d

:

C
om

pl
ex

D
et

ec
ti

on
, C

la
ss

if
i-

ca
ti

on
, S

eg
m

en
ta

-

ti
on

, C
lu

st
er

in
g

17

R
oa

d
 E

le
m

en
ts

D
et

ec
ti

on

H
ig

h

Li
D

A
R

, C
am

er
a,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

,

Lo
ca

liz
at

io
n

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

C
am

er
a:

 S
im

p
le

-

P
oi

n
t C

lo
u

d
:

C
om

pl
ex

D
et

ec
ti

on
, C

la
ss

if
i-

ca
ti

on
, S

eg
m

en
ta

ti
on

, C
lu

st
er

in
g

18

Fr
ee

 S
p

ac
e

D
et

ec
ti

on

H
ig

h

Li
D

A
R

, C
am

er
a,

R
A

D
A

R
, F

u
si

on

P
er

ce
p

ti
on

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

M
ed

iu
m

M
ed

iu
m

C
am

er
a:

 S
im

p
le

 -

P
oi

n
t C

lo
u

d
:

C
om

pl
ex

M
ed

iu
m

D

et
ec

ti
on

, S
eg

m
-

en
ta

ti
on

, O
cc

u
p

an
cy

G
ri

d
 M

ap
, D

et
ec

ti
on

19

B
eh

av
io

r
P

re
d

ic
ti

on

H
ig

h

In
te

rn
al

 o
r

se
n

so
r

ba
se

d
,

H
D

 M
ap

P
er

ce
p

ti
on

,

P
re

di
ct

io
n

C
u

rr
en

t:
A

lg
os

, D
N

N

M
L-

Fu
tu

re
: N

ea
r

C
om

pl
ex

H
ig

h

Lo
w

U
n

re
al

is
ti

c

D
et

ec
ti

on
,

C
la

ss
if

ic
at

io
n

20

Lo
ca

l P
at

h
 P

la
n

n
in

g

H
ig

h

In
te

rn
al

,

H
D

 M
ap

P
la

n
n

in
g,

 C
on

tr
ol

C
u

rr
en

t:
A

lg
os

 M
L-

Fu
tu

re
: F

ar

C
om

pl
ex

M
ed

iu
m

Lo
w

U
n

re
al

is
ti

c

N
on

e

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 111

There are several approaches for localization (184):

• GPS-IMU fusion based localization uses data from GPS and IMU with the dead-reckoning principle to

estimate the current position of the vehicle. This method alone does not give the accuracy required for

autonomous driving because of the inaccuracies in GPS data and the accumulation of errors in dead

reckoning.

• Another approach is SLAM which performs the localization of the vehicle and the map creation of its

environment at the same time. This method is commonly used for indoor robot navigation. Since this

method does mapping and localizing at the same time, it requires high computational costs and hence

is not efficient enough for using it in the outdoor world.

• Another approach is doing localization based on a pre-

in the following. This again contains two sub-approaches, namely landmark search and point cloud

matching.

• Landmark search commonly uses camera sensors to detect landmarks (e.g. poles, signs, road

markers, etc.) and matches them with a digital landmarks map to localize the vehicle. Hence,

the perception component is involved in this approach.

• In point cloud matching 3D sensors such as LiDAR are used. Here, the point cloud at a given

time is pre-processed and matched with an existing 3D map to get the position and orientation

of the ego-vehicle at that time.

For global navigation, GPS-IMU sensors together with traditional algorithms are used, which has high

widespread distribution. For accurate localization using camera or LiDAR sensors DNNs are used, which has

a low widespread distribution. Nevertheless, the auditability is classified as complex for the reason discussed

in Chapter 4.2.1.1. The complexity is considered medium as it is a well-understood use case and contains

relatively few modular components. However, the attack applicability is complex as attacking this component

requires to modify the environment extensively. Lastly, the perception components detection, classification

and segmentation are used for finding landmarks. We select this use case for the further analysis in Chapter

4.3 because it is not yet represented in the previously selected use cases and is very relevant for AD/ADAS.

4.2.3.2 Road Users Detection (16)

Road users are the dynamic traffic participants on the scene such as pedestrians, cars, cyclists etc. They can be

detected either from camera sensors or 3D sensors or using a fusion approach. In addition, acoustic sensors

can be used to detect emergency vehicles. This use case has a high safety relevance because failure to detect

road users can lead to high damages. The perception component is involved as it detects the road users around

the vehicle. Here, road user detection based on cameras uses DNNs, while road user detection based on 3D

sensors uses traditional algorithms like clustering. However, recently DNNs are also being used for 3D sensor

data. Like in Chapter 4.2.1.1 the auditability is classified as complex. Like the previous use case, complexity is

considered medium as it is a well-understood use case and contains relatively few modular components. It

has medium widespread distribution as it is found in many but not most new vehicles (e.g. vehicles from

Mazda, Hyundai). The attack applicability is simple in case of camera or acoustic sensors because the system

can be fooled by fake emergency vehicle sounds or pedestrians wearing special T-shirts with adversarial

prints. It is much more complex to fool the perception based on 3D sensors. When considering the involved

perception components, segmentation is camera specific, clustering is point cloud specific and detection &

classification are common to both. In Chapter 4.3 this use case is further analyzed since it is very relevant and

forms the basis for different functionalities.

4.2.3.3 Road Elements Detection (17)

Road elements are the static elements on the road such as lane markings, landmarks, traffic signs, traffic lights,

etc. They have a high safety relevance and failing to detect them can cause high damages. For example, failure

4 Use Case Comparison for Audit Criteria Development (AP4)

112 Federal Office for Information Security

to detect lane markings can make the vehicle drift outside the driving lane and failure to detect traffic signs

can result in incorrect speed or behavior of the vehicle. All the attributes are similar to the previous use case.

The only difference is that the localization is included in the modular components, as the detection of road

elements influences the localization output. Like the previous use case it is selected for the detailed analysis

later.

4.2.3.4 Free Space Detection (18)

This use case detects the free space on the road on which the ego-vehicle can potentially drive. It is a

complementary use case of the use cases 16 and 17, in the sense that the previous use cases detect the obstacles

on the road whereas this use case detects the drivable area on the road. Hence, all the attributes are the same

as for use case 17. Here, the perception component additionally includes occupancy grid maps which can be

used for free space detection. Since this use case is very similar to use case 17 it is not analyzed further in

Chapter 4.3.

4.2.3.5 Behavior Prediction (19)

This use case identifies the behavior and subsequently the trajectory of the traffic participants (e.g. crossing

the street, overtaking of a vehicle). It is required for accident-free local path planning discussed in Chapter

4.2.3.6 and has a high safety relevance for the same reasons as use cases 16 and 17. The inputs can be either

internally generated information (e.g. the pose of the detected pedestrians/vehicles in the last few frames) or

the raw-sensor data. Using HD map information (e.g. location of zebra crossing) can improve the behavior

prediction. Based on the type of inputs used, the involved modular components can be perception, prediction

or both. Traditionally model based prediction approaches are used, but in recent times DNN-based trajectory

prediction is gaining popularity. Again, the auditability is classified as complex as in Chapter 4.2.1.1. The

complexity of this use case is rated higher than the complexity of the other use cases because the human

factor is heavily involved and it is even for humans difficult to estimate the trajectory of the traffic

participants in all cases. Also, the high complexity results in a low widespread distribution. In general, it is

unrealistic to attack the system because this requires creating a fake behavior of other traffic participants

without having internal access. When sensors are used as input, the involved perception components are

detection and classification. This use case represents a different functionality than the other use cases and is

therefore included in the detailed analysis later.

4.2.3.6 Local Path Planning (20)

While the use case 9 deals with the end-to-end path planning, local path planning plans the path of the ego-

vehicle only in its perception range. The safety relevance is high, similar to the previous use cases. The

position. The modular components involved are planning and control. While traditionally tree-based and

probabilistic algorithms are used, reinforcement learning approaches are currently on the rise. Like DNNs,

reinforcement learning approaches face the problem of difficult (formal) verification and thus, considering

the high safety relevance, auditability is classified as complex. This use case has a medium complexity with

low widespread distribution. Similar to use case 9, attacks on local path planning are unrealistic. In Chapter

4.3 this use case is not further analyzed because it is very similar to use case 9 which is already included in

the detailed analysis.

4.3 Use Case Analysis

After presenting a list of potential use cases and their assignment in important categories in Chapter 4.2, we

now perform a more detailed analysis of important use cases. For this we use the selection of the most

important use cases from the list of all presented use cases and analyze the suitability of these for the

development of audit criteria. Afterwards, we also discuss how some use cases can be combined to cover even

more driving scenarios and expand the audit criteria development.

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 113

4.3.1 Single Use Cases

In the following, we present a detailed analysis of selected use cases from Chapter 4.2. These are selected so

that they cover all important use cases that are included in current systems for AD/ADAS. Use cases which

are more niche and not widely used are not considered in the following, because the final aim of this project

(or following ones) is to develop a technical guideline that allows the auditing of AI-based systems for AD.

Therefore, it is most relevant to cover use cases which are actively used or are nearly ready for deployment

from a technical point of view. The final selection for use cases for the development of the technical guideline

is discussed in Chapter 4.4.

4.3.1.1 Additional Categories

Each important and selected use case is further analyzed in Chapter 4.3.1.2 using the following additional

categories.

4.3.1.1.1 Representativity

First, we analyze the representativity of the general use case. Here, related specific tasks and functionalities

are listed that are part of the general use case but are more specialized and focus on a concrete application.

This gives a good overview of all techniques that belong to the broader use case.

4.3.1.1.2 Generalizability

Next, we discuss the generalizability for each general use case. Here, important factors are involved that

mainly limit how well results can be reused for other use cases. Most importantly this includes which sensors

are used, which perception components are involved and whether the use case impacts the planning and

control of the vehicle.

4.3.1.1.3 Resources

Additionally, for each general use case we discuss the required resources. Again, this includes multiple factors

like the availability of open-source datasets or representative implementations, the complexity and model

size of involved AI components and the required computational resources for training or inference.

Concretely, the following parameters are used to gain further insights on the required resources for each use

case:

• Specific dataset: Are specific public datasets available that concentrate on this use case or include this

use case amongst others.

• Available: There is at least one public dataset available that is commonly used in research. In

addition, a link to this dataset is provided.

• Uncommon: There is no public dataset that is commonly used in research.

• Open-source implementations: Are open-source implementations available that specifically

implement this use case or include this use case amongst others.

• Available: There is at least one public implementation available. In addition, a link to this

implementation is provided.

• Uncommon: There is no public implementation with sufficient trust level.

• Data dimensionality: The size of the input data dimensionality relative to all use cases.

• High: The dimensionality is on the higher end because:

(a) Image data from camera sensors with a high resolution is required.

(b) Point cloud data from LiDAR or RADAR sensors with a high resolution is required.

4 Use Case Comparison for Audit Criteria Development (AP4)

114 Federal Office for Information Security

• Medium: The dimensionality is in the middle of the range because:

(a) Image data with a low or medium resolution is sufficient.

(b) Point cloud data with a low or medium resolution is sufficient.

• Low: The dimensionality is on the lower end because:

(a) Internal data is required that is already processed and does not come directly from a camera,

RADAR or LiDAR sensor.

(b) Data from other sensors than camera, RADAR or LiDAR is required.

• Computational resources: The required computational resources needed to perform experiments

(training, testing, etc.) relative to all use cases.

• High: The required resources are on the higher end because:

(a) The data from multiple sensors needs to be fused.

(b) Recurrent/temporal algorithms or DNNs are used.

(c) Semantic segmentation is performed.

(d) The raw data needs extensive preprocessing before usage is possible.

• Medium: The required resources are in the middle of the range because:

(a) The data from a single sensor needs to be processed.

• Low: The required resources are on the lower end because:

(a) No sensor data is involved in real-time.

(b) Fast algorithms or small DNNs are sufficient/typically used.

• Development effort: The required development effort for use case functionality or auditing tools

relative to all use cases.

• High: The required development effort is on the higher end because:

(a) Large variance in relevant data attributes is possible.

(b) Dynamic elements are relevant for the output.

• Medium: The required development effort is in the middle of the range because:

(a) Variance of relevant data attributes is limited.

(b) Only static elements are relevant for the output.

• Low: The required development effort is on the lower end because:

(a) Relevant data attributes are always very similar.

(b) Only static elements are relevant for the output.

4.3.1.1.4 Standards/Tools

Depending on the use case different tools are available which consider testing and auditing at various stages

in the lifecycle. On the one hand, there exist tools which perform virtual tests using simulated data samples.

A first approach can be to utilize built-in evaluation capabilities which come with software libraries used

during development, e.g. performance evaluation with Scikit-learn9. Furthermore, general-purpose tools for

9 https://scikit-learn.org/

https://scikit-learn.org/

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 115

the validation of ML-based systems can be deployed which do not focus on the specific needs of mobility use

cases. Such tools are provided by different companies, for example by QuantPi10 which focusses on explaining

ML-based systems, or by LatticeFlow11 which focusses on the robustness of ML-based systems. Simulation

tools which are more use case specific can range from the specific hardware/sensor simulation, like Ansys

AVxcelerate Sensors12 or RT-LAB13, to the complete driving simulation or digital twins. For open-source

driving simulation tools the authors in (251) provide a comparison of different implementations.

Additionally, there are various commercial driving simulation tools, for example ASM Traffic14, CarMaker15

or rFpro16. Furthermore, tools for virtual validation are typically developed by each company independently

to fulfill the exact needs and requirements for the validation of their specific use case. Besides pure simulation

tools, there are also tools which consider the physical testing in the real-world environment. Here, simulation

is combined with physical devices and hardware, potentially mounted to a test vehicle. These tools enable a

more realistic evaluation of AD/ADAS systems, but this comes with increased cost and time effort. In Chapter

4.3.1.2, exemplary tools of this category are assigned to the chosen use cases.

In addition to the tools, we cover existing standards, norms or technical guidelines specific to each use case

in the tables below. The tables are organized based on the issuing body of the document. Additionally, it has

to be noted that all use cases shall conform to existing safety and security standards, such as the ISO 26262 (

(165), (246), (247)), ISO/PAS 21448 (242), ISO/SAE 21434 (249) and UNECE R 155 (250). Therefore, these norms

are not mentioned explicitly for each use case.

4.3.1.1.4.1 ISO

Table 42 Overview of relevant documents issued by ISO

ID Name

ISO 17387:2008 ISO 17387:2008: Intelligent transport systems Lane Change Decision Aid

Systems (LCDAS) Performance requirements and test procedures (last reviewed

in 2018) (252)

ISO 19377:2017 ISO 19377:2017: Heavy commercial vehicles and buses Emergency braking on a

defined path Test method for trajectory measurement (253)

ISO 19237:2017 ISO 19237:2017: Intelligent transport systems Pedestrian detection and collision

mitigation systems (PDCMS) Performance requirements and test procedures

(254)

ISO 22078:2020 ISO 22078:2020: Intelligent transport systems Bicyclist detection and collision

mitigation systems (BDCMS) Performance requirements and test procedures

(255)

ISO 3888-2:2011 ISO 3888-2:2011: Passenger Cars Test Track for a severe lane-change manoeuvre

 Part 2: Obstacle Avoidance (256)

ISO 22735:2021 ISO 22735:2021: Road vehicles Test method to evaluate the performance of

lane-keeping assistance systems (257)

ISO 11270:2014 ISO 11270:2014: Intelligent transport systems Lane keeping assistance systems

(LKAS) Performance requirements and test procedures (258)

ISO/SAE PAS 22736:2021 ISO/SAE PAS 22736:2021: Taxonomy and definitions for terms related to driving

automation systems for on-road motor vehicles (259)

10 https://quantpi.com/
11 https://latticeflow.ai/
12 https://ansys.com/de-de/products/av-simulation/ansys-avxcelerate-sensors
13 https://opal-rt.com/autonomous-vehicle/
14 https://dspace.com/de/gmb/home/medien/product_info/prodinf_asm_traffic.cfm
15 https://ipg-automotive.com/de/produkte-loesungen/software/carmaker/
16 https://rfpro.com/

https://quantpi.com/
https://latticeflow.ai/
https://ansys.com/de-de/products/av-simulation/ansys-avxcelerate-sensors
https://opal-rt.com/autonomous-vehicle/
https://dspace.com/de/gmb/home/medien/product_info/prodinf_asm_traffic.cfm
https://ipg-automotive.com/de/produkte-loesungen/software/carmaker/
https://rfpro.com/

4 Use Case Comparison for Audit Criteria Development (AP4)

116 Federal Office for Information Security

ID Name

ISO 19638:2018 ISO 19638:2018: Intelligent transport systems Road Boundary Departure

Prevention Systems (RBDPS) Performance requirements and test procedures

(260)

ISO 21717:2018 ISO 21717:2018: Intelligent transport systems Partially Automated In-Lane

Driving Systems (PADS) Performance requirements and test procedures (261)

ISO 21202:2020 ISO 21202:2020: Intelligent transport systems Partially Automated Lane Change

Systems (PALS) Functional / operational requirements and test procedures

(262)

ISO 15622:2018 ISO 15622:2018: Intelligent transport systems Adaptive Cruise Control Systems

 Performance requirements and test procedures (263)

ISO 20035:2019 ISO 20035:2019: Intelligent transport systems Cooperative Adaptive Cruise

Control Systems (CACC) Performance requirements and test procedures (264)

ISO 15622:2002 ISO 15622:2002: Transport information and control systems Adaptive Cruise

Control Systems Performance requirements and test procedures (265)

ISO/TR 22086-1:2019 ISO/TR 22086-1:2019: Intelligent transport systems (ITS) Network based precise

positioning infrastructure for land transportation Part 1: General information

and use case definitions (266)

ISO/TS 21176:2020 ISO/TS 21176:2020: Cooperative intelligent transport systems (C-ITS) Position,

velocity and time functionality in the ITS station (267)

ISO/TR 16786:2015 ISO/TR 16786:2015: Intelligent transport systems The use of simulation models

for evaluation of traffic management systems input parameters and reporting

template for simulation of traffic signal control systems (268)

ISO 22741:2022 ISO 22741:2022: Intelligent transport systems Roadside modules AP-DATEX

data interface (269)

ISO/AWI TS 5283 ISO/AWI TS 5283: Road Vehicles Ergonomic aspects of driver monitoring and

system interventions in the context of automated driving (still under

development) (270)

ISO 19206-3:2021 ISO 19206-3:2021: Road Vehicles Test devices for target vehicles, vulnerable

road users and other objects, for assessment of active safety functions Part 3:

Requirements for passenger vehicle 3D targets (271)

ISO/TS 18506:2014 ISO/TS 18506:2014: Procedure to construct injury risk curves for the evaluation of

road user protection in crash tests (272)

4.3.1.1.4.2 SAE

Table 43 Overview of relevant documents issued by SAE

ID Name

SAE J2400_200308 SAE J2400_200308: Human Factors in Forward Collision Warning Systems:

Operating Characteristics and User Interface Requirements (273)

SAE J3029_201510 SAE J3029_201510: Forward Collision Warning and Mitigation Vehicle Test

Procedure - Truck and Bus (274)

SAE J3048_201602 SAE J3048_201602: Driver-Vehicle Interface Considerations for Lane Keeping

Assistance Systems (275)

SAE J2808_201701 SAE J2808_201701: Lane Departure Warning Systems: Information for the Human

Interface (276)

SAE J3240 SAE J3240: Passenger Vehicle Lane Departure Warning and Lane Keeping

Assistance Systems Test Procedure (277)

SAE J2399_202110 SAE: J2399_202110: Adaptive Cruise Control (ACC) Operating Characteristics and

User Interface (stabilized Oct 2021) (278)

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 117

ID Name

SAE J2365 SAE J2365: Calculation and Measurement of the Time to Complete In-Vehicle

Navigation and Route Guidance Tasks (279)

SAE J2678_201609 SAE J2678_201609: Navigation and Route Guidance Function Accessibility While

Driving Rationale (Cancelled Sep 2016) (280)

SAE J3114_201612 SAE J3114_201612: Human Factors Definitions for Automated Driving and Related

Research Topics (281)

SAE J2396_201705 SAE J2396_201705: Definitions and Experimental Measures Related to the

Specification of Driver Visual Behavior Using Video Based Techniques (282)

SAE J2944_201506 SAE J2944_201506: Operational Definitions of Driving Performance Measures and

Statistics (283)

SAE J2945/A SAE J2945/A: Standard for Lane-Level and Road Furniture Mapping for

Infrastructure-based V2X Applications (284)

SAE J2945/9 SAE J2945/9: Vulnerable Road User Safety Message Minimum Performance

Requirements (285)

SAE J3134_201905 SAE J3134_201905: Automated Driving System (ADS) Marker Lamp (286)

4.3.1.1.4.3 UNECE

Table 44 Overview of relevant documents issued by UNECE

ID Name

UNECE R79 UNECE R79: Steering Equipment (287)

UNECE R157 UNECE R157: UN Automated Lane Keeping Systems (ALKS) (288)

UNECE GTR 9 UNECE GTR 9: Pedestrian Safety (289)

4.3.1.1.4.4 BSI

Table 45 Overview of relevant documents issued by BSI

ID Name

BSI Reliability Assessment of Traffic

Sign Classifiers

Reliability Assessment of Traffic Sign Classifiers (290)

4.3.1.2 Analysis

An overview of the resulting analysis is shown in Table 46 for all selected use cases. Here, more detailed

information is provided which explains the analysis further using the categories presented in Chapter 4.3.1.1.

For the resources category we provide the reasons for each categorization using the argumentation from

Chapter 4.3.1.1.3 denoted in the parenthesis.

Table 46 Overview of the use case analysis

ID Representativity Generalizability Resources Standards/Tools

2 Steering Torque Control

 Automated Emergency

Steering

 Emergency Braking Head-

on

 Emergency Braking

Junction

 Rear Emergency Braking

 Traffic Jam Assist

 Camera, LiDAR or fusion-

based outside perception

 Impact on longitudinal

and lateral control

 Using detection or

segmentation or clustering

 Specific datasets:

Uncommon

 Open-source

implementations:

Uncommon

 Data dimensionality: High

(a, b)

 Computational resources:

Medium (a) or High (a, c)

Standards:

 ISO 17387:2008

 ISO 19377:2017

 ISO 19237:2017

 ISO 22078:2020

 ISO 3888-2:2011

 SAE J2400_200308

 SAE J3029_201510

 UN ECE R79

4 Use Case Comparison for Audit Criteria Development (AP4)

118 Federal Office for Information Security

ID Representativity Generalizability Resources Standards/Tools

 Collision Warning / Crash

Alert

 Development effort: High

(a, b)

Tools:

 Sensor/driving

simulation

 Dewesoft17

 OxTS18

3 Lane Keeping Assist

 Lane Centering Assist

 Emergency Lane Keeping

 Lane Sway Warning

 Lane Departure Warning

 Camera or fusion-based

outside perception

 Impact on lateral control

 Using segmentation

 Specific datasets: Available

 e.g. CULane19

 Open-source

implementations:

Available e.g. DNN20

 Data dimensionality:

Medium (a)

 Computational resources:

High (c)

 Development effort:

Medium (a, b)

Standards:

 ISO 22735:2021
 ISO 11270:2014
 ISO/SAE PAS 22736:2021

 ISO 19638:2018

 ISO 21717:2018
 ISO 19377:2017

 SAE J3048_201602
 SAE J2808_201701

 UN ECE R157

Tools:

 Sensor/driving

simulation

 VBOX21

 Dewesoft

 OxTS

4 Driver Initiated Lane

Change

 Automated Lane Change

 Merge-In Request

 Automated Highway

Entering

 Automated Highway

Leaving

 Automated Lane Selection

Junction

 Automated Full Junction

Handling

 Camera, LiDAR or fusion-

based outside perception

 Impact on lateral control

 Using detection or

segmentation or clustering

 Specific datasets:

Uncommon

 Open-source

implementations:

Uncommon

 Data dimensionality: High

(a, b)

 Computational resources:

High (a, b, c)

 Development effort: High

(a, b)

Standards:

 ISO 21202:2020

 ISO 17387:2008

 ISO 19377:2017

 ISO 19237:2017

 ISO 22078:2020

 ISO 3888-2:2011

 SAE J3240

 SAE J2808_201701

 UN ECE R79

Tools:

 Sensor/driving simulation

 VBOX

 Dewesoft

 OxTS

5 Cruise Control

 Curve Speed Adaption

 Stop & Go Control

 Camera, LiDAR or fusion-

based outside perception

 Impact on longitudinal

control

 Using detection or

clustering

 Specific datasets:

Uncommon

 Open-source

implementations:

Uncommon

 Data dimensionality:

Medium (a, b)

Standards:

 ISO 15622:2018

 ISO 20035:2019

 ISO 15622:2002

 SAE: J2399_202110

Tools:

17 https://dewesoft.com/de/applikationen/fahrzeug-tests
18 https://www.oxts.com/de/industry/automotive-testing-and-development/
19 https://xingangpan.github.io/projects/CULane.html
20 https://github.com/voldemortX/pytorch-auto-drive
21 https://vboxautomotive.co.uk/index.php/de/

https://dewesoft.com/de/applikationen/fahrzeug-tests
https://www.oxts.com/de/industry/automotive-testing-and-development/
https://xingangpan.github.io/projects/CULane.html
https://github.com/voldemortX/pytorch-auto-drive
https://vboxautomotive.co.uk/index.php/de/

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 119

ID Representativity Generalizability Resources Standards/Tools

 Computational resources:

Medium (a) or High (a)

 Development effort:

Medium (a)

 Sensor/driving simulation

 VBOX

 Dewesoft

 OxTS

9 Global Route Planning

 Dynamic Route

Adjustment

 Traffic Jam Prediction

 Arrival Time Prediction

 Personalized Route

Learning

 No perception

 No impact on control

 Using prediction

 Specific datasets:

Uncommon

 Open-source

implementations:

Uncommon

 Data dimensionality: Low

(b)

 Computational resources:

Low (a)

 Development effort: Low

(a, b)

Standards:

 ISO/TR 22086-1:2019

 ISO/TS 21176:2020

 SAE J2365

 SAE: J2678_201609

Tools:

 Driving simulation

 VBOX

 Dewesoft

 OxTS

12 Traffic Sign Recognition

 Speed Limit Warning

 Automatic Speed

Adaption

 Right-of-Way Assistant

 Current Valid Signs

Reminder

 Camera-based outside

perception

 (No) impact on

longitudinal control

 No impact on lateral

control

 Using detection

 Specific datasets: Available

 e.g. GTSRB22

 Open-source

implementations:

Available e.g. DNN23

 Data dimensionality:

Medium (a)

 Computational resources:

Low (b)

 Development effort: Low

(a, b)

Standards:

 ISO/TR 16786:2015

 ISO 22741:2022

 BSI Reliability

Assessment of

Traffic Sign

Classifiers

Tools:

 Sensor/driving simulation

 OxTS

14 Fatigue/Drowsiness

Monitoring

 Distraction Alerts

 Gaze Detection

 Driving Suitability

Assessment

 Camera-based inside

perception

 No impact on control

 Using detection

 Specific datasets: Available

 e.g. Vicomtech DMD24

 Open-source

implementations:

Available e.g. DNN25

 Data dimensionality:

Medium (a)

 Computational resources:

Low (b)

 Development effort:

Medium (a)

Standards:

 ISO/AWI TS 5283

 SAE J3114_201612

 SAE J2396_201705

 SAE J2944_201506

Tools:

 Dewesoft

15 Ego Motion Estimation

 Features/Object Detection

 Map Updates

 Fusion-based outside

perception

 No impact on control

 Using feature matching

 Specific datasets: Available

 e.g. KITTI26

 Open-source

implementations:

Available e.g.

Algorithms27

Standards:

 SAE J2945/A

Tools:

 Sensor/driving simulation

 VBOX

 Dewesoft

22 https://benchmark.ini.rub.de/gtsrb_news.html
23 https://github.com/poojahira/gtsrb-pytorch
24 https://dmd.vicomtech.org/
25 https://github.com/AleksaArsic/ADAS-ML-Driver-Monitoring-System
26 http://www.cvlibs.net/datasets/kitti/
27 https://github.com/RozDavid/LOL

https://benchmark.ini.rub.de/gtsrb_news.html
https://github.com/poojahira/gtsrb-pytorch
https://dmd.vicomtech.org/
https://github.com/AleksaArsic/ADAS-ML-Driver-Monitoring-System
http://www.cvlibs.net/datasets/kitti/
https://github.com/RozDavid/LOL

4 Use Case Comparison for Audit Criteria Development (AP4)

120 Federal Office for Information Security

ID Representativity Generalizability Resources Standards/Tools

 Data dimensionality: High

(a, b)

 Computational resources:

Medium (a) or High (a, d)

 Development effort:

Medium (b)

16 Pedestrian Detection

 Vehicle Detection

 Bicycle Detection

 Scooter Detection

 Emergency Vehicle

Detection

 Camera, LiDAR or fusion-

based outside perception

 No impact on control

 Using detection or

segmentation or clustering

 Specific datasets: Available

 e.g. nuScenes28

 Open-source

implementations:

Available e.g. DNN29

 Data dimensionality: High

(a, b)

 Computational resources:

Medium (a) or High (a, c)

 Development effort: High

(a, b)

Standards:

 ISO 19206-3:2021

 ISO/TS 18506:2014

 SAE J2945/9

 SAE J3134_201905

 UN ECE GTR 9

Tools:

 Sensor/driving simulation

 VBOX

 Dewesoft

 OxTS

17 Lane Markings Detection

 Landmarks Detection

 Traffic Lights Detection

 Camera or fusion-based

outside perception

 No impact on control

 Using detection or

segmentation

 Specific datasets: Available

- e.g. Mapillary Vistas30

 Open-source

implementations:

Available e.g. DNN31

 Data dimensionality: High

(a)

 Computational resources:

High (c)

 Development effort:

Medium (a, b)

Standards:

 ISO 21202:2020

Tools:

 Sensor/driving

simulation

 VBOX

 Dewesoft

19 Pedestrian Motion

Prediction

 Vehicle Motion Prediction

 Driver Style Recognition

 Decision Making

 Prediction based on sensor

data or perception output

and map

 No impact on control

 Specific datasets: Available

 e.g. Caltech PIE32

 Open-source

implementations:

Available e.g. DNN33

 Data dimensionality: Low

(a) or High (a)

 Computational resources:

High (c)

 Development effort: High

(a, b)

Standards: -

Tools:

 Sensor/driving simulation

 A Scenario-Based

Platform for Testing

Autonomous Vehicle

Behavior Prediction

Models in

Simulation (291)

28 https://www.nuscenes.org/
29 https://github.com/xingyizhou/CenterNet
30 https://www.mapillary.com/dataset/vistas
31 https://github.com/open-mmlab/mmdetection
32 https://data.nvision2.eecs.yorku.ca/PIE_dataset/
33 https://github.com/aras62/PIEPredict

https://www.nuscenes.org/
https://github.com/xingyizhou/CenterNet
https://www.mapillary.com/dataset/vistas
https://github.com/open-mmlab/mmdetection
https://data.nvision2.eecs.yorku.ca/PIE_dataset/
https://github.com/aras62/PIEPredict

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 121

4.3.2 Combination of Use Cases

After analyzing specific use cases, in the following we discuss whether some use cases can be combined and

how this impacts the development of audit criteria. It is important to note that most use cases presented in

Chapter 4.3.1.2 already have a high complexity for auditing. Therefore, the development of audit criteria is

already complex even when no combination of use cases is considered. Hence, we perform the initial selection

of use cases in Chapter 4.4 only from the use cases presented so far and do not use a combination of use cases

for the initial development of the toolchain and the first tests of audit criteria.

Using a combination of use cases is more relevant later when the goal is to expand the tests and transfer

developed audit criteria to more use cases. Here, it is advantageous when it is relatively easy to add an

additional use case to the one considered for developing the audit criteria. If such an addition is naturally

possible this provides a straightforward way to expand the tests of the audit criteria to include more use cases

and driving functionalities.

Additionally, it is interesting to test the transferability of the developed audit criteria to use cases which differ

from the one used for the development regarding the generalization aspects discussed in Table 46. Since the

goal of this project (or follow-up projects) is to find audit criteria for a modular technical guideline, ideal audit

criteria are transferable to different use cases even when for example different sensors or perception

components are used. Hence, the evaluation of the proposed audit criteria for a use case outside of the

generalization of the use case used for development is interesting. Therefore, we also discuss for each

combination whether this combination enables to test the transferability of the audit criteria to a use case

with different aspects for the generalizability. Here, in principle all combinations of use cases which

complement each other with respect to the development of audit criteria are interesting to investigate,

regardless of whether the functionality of the use cases is connected to each other. By considering all possible

combinations, independent of whether they functionally complement each other, this perspective allows to

find a use case combination which enables to optimally test the transferability of audit criteria to use cases

with an entirely different generalizability. However, in the following we only discuss the combinations of use

cases that functionally complement each other, which allows the easiest expansion of the audit criteria tests

with the lowest amount of additional work.

Summarizing, in the following we will mainly discuss how use cases can be combined with the goal in mind

to expand the auditing process and criteria development while allowing on optimal coverage of the entire

parameter space. These combinations then serve as a guideline for following projects to expand the audit

criteria tests but are not used for the initial selection of use cases for AP5 and AP7.

4.3.2.1 Combination of AD Use Cases

The first sensible combinations arise when combining specific AD use cases (15, 16, 17 and 19 in Table 46) with

the other use cases in Table 46. Concretely, all considered AD use cases focus on perception or prediction and

do not include direct control functionalities. In contrast, the more generic use cases also mostly include

control functionalities. Hence, a sensible approach could be to start by using one of the presented AD use

cases for the initial development of audit criteria. Since there is no direct control impact, the development

and tests of the audit criteria are more focused to the IT security of the AI component and can be less

extensive. This enables an easier start of the criteria development and allows to approach the complexity of

an entire system step by step. Following the development of audit criteria for an AD use case, in the next step

this use case can then be integrated into one of the generic use cases. This embeds the use case in a higher

level to consider concrete driving functionalities that can be used in reality. Hence, the development of audit

criteria can be expanded to a use case that includes control components, which enables the exemplary full

auditing of an entire system and not only of the AI component. This approach allows to first optimally cover

important aspects of AI components while having a lower complexity to allow more feasible tests. Then, the

tests are expanded to the full complexity by considering the impact on the control component in the context

of a generic use case. Thus, in Table 47 we show where it is sensible to combine an AD use case with a more

4 Use Case Comparison for Audit Criteria Development (AP4)

122 Federal Office for Information Security

generic use case. Here, we also use two different levels for the estimated complexity of the combination with

respect to the implementation effort and entire system functionality.

Table 47 Overview of the combination complexity for AD use cases

AD Use Case Combination Complexity 1 Combination Complexity 2

ID Name ID Name ID Name

15 A Priori Map-based Localization 3

12

Lane Keeping

Traffic Sign Assistant

4 Lane Changing

16 Road Users Detection 2

5

Collision Avoidance

Adaptive Cruise Control

4 Lane Changing

17 Road Elements Detection 3

12

Lane Keeping

Traffic Sign Assistant

4 Lane Changing

19 Behavior Prediction 5

Adaptive Cruise Control 2

4

Collision Avoidance

Lane Changing

Use case 15 can be straightforwardly combined with use case 3 since the accurate localization plays a role for

keeping the driving lane. Additionally, the localization can be used as an alternative/redundancy to traffic

sign detection when an accurate map with all relevant traffic signs is available. This use case can also be

combined with use case 4 because the localization in the lane also plays a role during lane changing. However,

this is strictly more complex than the combination with the lane keeping use case as discussed in Chapter

4.2.1.4. For all presented combinations testing the transferability of audit requirements to use cases with

different aspects is possible. The main reason is that the map-based localization differs from all other use cases

because a classical perception component is usually not involved. Using feature matching is special and thus

any combination with another use case includes necessarily a test of the transferability of the requirements.

Next, use case 16 can be combined with use case 2 and use case 5 since both require the detection of other road

users for avoiding or following. Also, the combination with use case 4 is possible because lane change

maneuvers require the location of other road users to determine whether the lane is free to change. Again,

this is more complex since use case 4 itself is very complex. It is possible to test the transferability of audit

criteria for all presented combinations. This depends on the concrete implementation of the included

functionalities. For example, one possibility is to use a camera-based pedestrian detection for the initial

development of audit criteria. Then the combination with a point cloud-based vehicle detection is possible,

which in combination allows to implement the functionalities of the collision avoidance use case. Another

example is to start with a camera or point-cloud based detection of vehicles and use a camera-based

segmentation to enable the lane changing use case.

For use case 17 it is possible to combine it with use case 3 and 12 because for both use cases the detection of

road elements is important. In case of use case 12, the detection of traffic signs is required, whereas use case 3

requires the detection of road/lane markings. Here, we assume in the following camera-based road elements

detection which is mainly used. Like the previous use cases the combination with use case 4 is possible but

most challenging. In contrast to the discussion for the previous use case, testing the transferability of criteria

is only possible for the combination with the collision avoidance use case. The reason is that both use case 3

and 12 use camera-based perception, which is also mainly used for use case 17. Hence, only the combination

with use case 4 allows to test the transferability of audit criteria to different sensor setups and thus different

perception components.

Finally, use case 19 can be combined with use case 5, where the prediction of the driving behavior of the

leading vehicle might increase the overall performance. For the combinations with increased complexity,

using use case 2 is possible in addition to the previously discussed use case 4. For use case 2 more collisions

could be avoided when the possible behavior of other participants is predicted in advance, instead of only

reacting to the observed scene. Like the combinations discussed for use case 15, it is possible to test the

transferability of audit criteria for each combination with this use case. This is because use case 19 uses

different input data and thus captures an entirely different parameter space.

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 123

4.3.2.2 Combination of Generic Use Cases

In addition to expanding the AD use cases by combining them with the generic use cases, it is also possible to

combine the generic use cases among themselves. This further allows to increase the complexity and scale the

development and tests of audit criteria to more and more complex driving functionalities. It enables the

expansion from a single use case and builds on top of the achieved results to transfer them to more use cases

that can be meaningfully combined. In Table 48 sensible combinations are again shown with an estimation

of the required complexity.

Table 48 Overview of the combination complexity for non AD use cases

AD Use Case Combination Complexity 1 Combination Complexity 2

ID Name ID Name ID Name

2 Collision Avoidance 5 Adaptive Cruise Control 3 Lane Keeping

3 Lane Keeping 5

12

Adaptive Cruise Control

Traffic Sign Assistant

2

4

Collision Avoidance

Lane Changing

4 Lane Changing 5

12

Adaptive Cruise Control

Traffic Sign Assistant

3 Lane Keeping

5 Adaptive Cruise Control 2

3

4

12

Collision Avoidance

Lane Keeping

Lane Changing

Traffic Sign Assistant

-

9 Global Navigation/Path Planning -

12 Traffic Sign Assistant 3

4

5

Lane Keeping

Lane Changing

Adaptive Cruise Control

-

14 Driver Monitoring -

First, use case 2 can be combined with use case 5, which adds functionalities to react to potential collisions

while following a leading vehicle. In addition, the combination with use case 3 is possible to react to collisions

while also automatically staying in a driving lane. This has a higher complexity because during adaptive cruise

control the number of collisions that can occur with respect to colliding with the leading vehicle is lower than

the number of collisions that can occur during automatic lane keeping. All combinations can also be used to

test the transferability of audit criteria because it is possible to use different sensors for each use case. For

example, one could use LiDAR-based vehicle detection for collision avoidance and combine it with camera-

based detection for use case 5 or camera-based segmentation for use case 3.

Use case 3 can most easily be combined with use case 5, which enables to perform the standard driving

behavior of following a vehicle in a lane completely automatically. Here, the transferability testing of audit

criteria is also possible because different sensors and perception components can be used. The combination

with use case 12 allows to also adapt the vehicle speed to the current road speed limit, instead of simply

following a leading vehicle. However, this combination does not allow testing the audit criteria transferability

because both use cases are based on camera perception. For the more complex combinations, on the one hand,

the combination with use case 2 is possible as discussed previously. Additionally, the combination with use

case 4 is possible and adds even more complex driving functionalities. This allows to change lanes

automatically, for example to perform an overtake maneuver instead of only following a vehicle. Here, testing

the criteria transferability is also possible, because for use case 4 it is possible to use point cloud-based

perception in contrast to camera-based segmentation for use case 3.

Next, use case 4 can be combined with use case 5, which allows automatic overtakes and with use case 12,

which allows to adapt the driving speed to the speed limit in the new lane. For example, on multi-lane

highways there are situations where each lane has a different speed limit. Both combinations also enable the

testing of the transferability of audit criteria because different sensors and perception components can be

used. For example, it is possible to perform point cloud-based detection to detect free spaces for lane changing

4 Use Case Comparison for Audit Criteria Development (AP4)

124 Federal Office for Information Security

and use a camera-based detection for traffic signs or the leading vehicle. As discussed in the previous use case,

the combination with use case 3 is also possible.

For use case 5, the combination with the use cases 2, 3 and 4 is possible as discussed previously. Additionally,

the combination with use case 12 is possible, which enables the automated adaption of the current speed limit

while following a leading vehicle. Again, testing the transferability of criteria is possible, for example by using

point cloud-based detection of the leading vehicle and using camera-based detection of traffic signs.

Use case 9 and use case 14 cannot be sensibly combined with other use cases, since they do not consider driving

functionalities. Hence, there is no option to combine these use cases with the other ones, which all consider

concrete driving functionalities. Nevertheless, both use cases might be useful for a final test of the

transferability of audit criteria because they differ considerably from all other use cases. However, it is more

sensible to explore a meaningful combination of use cases first, as this allows to build upon already developed

tools and software and still allows to test the criteria transferability in most cases.

Finally, use case 12 can be combined with use cases 3,4 and 5, which is discussed previously at the respective

use case.

4.4 Use Case Recommendations

After presenting possible use cases for AI in AD and ADAS systems in Chapter 4.2 and performing a detailed

analysis of the most relevant and interesting use cases in Chapter 4.3, we now discuss the recommendations

of use cases for the following work packages five and seven. For these work packages it is important to have a

clearly defined and very specific use case to be able to perform the desired experiments and tests of the audit

criteria. The goal is to perform in-depth technical experiments and concretely analyze potential shortcomings

of proposed audit criteria. Therefore, it is required to select a narrow use case which allows to focus on a

concrete technique and assess potential audit requirements. For this we use the previous analysis described

in this document as the basis to first select a basic use case which determines the main functionality. Then,

we narrow this use case and select a concrete application of the use case which enables the described

procedure for work package five and seven. The result is a selection of a narrow use case which enables the

initial development and testing of audit criteria while representing a clear way to integrate the narrow

application into a real mobility use case which captures some realistic driving functionalities.

To perform the selection of the basic use case we revisit the analysis in Table 46 and the basic categorization

in the associated Table 39, Table 40 and Table 41. Depending on the performed categorization some use cases

are more suitable for the initial development and testing of audit criteria than others. In Table 49 a summary

of the suitability of all presented categories is shown. For each category a color is assigned which indicates

whether the respective parameters are well suited (green) for the initial development of audit criteria, partly

suited (yellow) or not suited (red).

First, a certain amount of safety relevance must be given and a high relevance is ideal. This allows to develop

audit criteria for critical tasks where an audit is important and required. Next, ML-based systems should be in

use or as close as possible to real world usage. If the usage of ML-based systems is unrealistic, the use case is

not suited for the development of audit criteria. In the best-case scenario, the auditability of a use case should

be simple, which allows for a feasible initial development and tests. However, as discussed in Chapter 4.2 the

auditability is typically rather complex, which means a complex auditability cannot be treated as a strict

exclusion criterion. Next, the suitability of the complexity of a use case follows the previous discussions on

the auditability, because the complexity of a use case should be rather low for the initial development, which

allows to perform more extensive tests and developments. A highly widespread distribution of a use case is

preferable because this allows to develop audit criteria that are very relevant for practical systems.

Nevertheless, having use cases with a less widespread distribution is not an exclusion criterion because these

can still be relevant and the distribution could increase rapidly in the near future. Regarding the attack

applicability it is important that an attack interface exists and that attacks can be performed theoretically. In

the best case, the applicability is simple, which allows the most feasible tests and deals with the most relevant

threats. Lastly, it is more suitable when datasets and implementations are publicly available and mainly low

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 125

resources are required for a use case. In contrast, when no dataset is available or the complexity of an

implementation is estimated as high, the use case is out-of-scope for this project due to the limited timeframe.

Table 49 Overview of the suitability of the analysis parameters per category for the audit criteria development

Requirement Suitable (S) Partially Suitable (PS) Unsuitable (U)

Safety Relevance High Medium, Low None

AI Usage ML: Current, Near ML: Far ML: Unrealistic

Auditability Simple Medium, Complex -

Complexity Low Medium, High -

Widespread Distribution High Medium, Low -

Attack Applicability Simple Medium, Complex Unrealistic

Resources All the following:

 Available dataset &

implementation

 Mainly low resources

Everything in between One of the following:

 No dataset available

 Estimated complex

implementation

After discussing the suitability of different parameters of the categories used for the analysis of the use cases,

in Table 50 we summarize the suitability of each use case selected in Chapter 4.3 for the development of audit

criteria by applying the introduced suitability to each parameter. Based on this overview it shows that the use

cases Collision Avoidance (2), Lane Changing (4), Adaptive Cruise Control (5), Global Navigation/Path Planning

(9), Driver Monitoring (14) and Behavior Prediction (19) are not suited for the initial development of audit

criteria. All remaining use cases are considered in the following for the recommendation. Thus, in Chapter

4.4.1 we first discuss which use case is most suited for the initial development of audit criteria and is therefore

recommended for AP5. We also narrow this use case such that a concrete application is selected which allows

to perform in-depth technical experiments and gain detailed insights. Afterwards, in Chapter 4.4.2 we

perform a complementary recommendation of an additional use case for AP7. Here, we also provide

alternative options, discuss the advantages and disadvantages of each use case and again narrow the use cases

to arrive at a concrete application which can be tested extensively.

Table 50 Overview of the suitability of use cases for the audit criteria development

ID Safety

Relevance

AI

Usage

Auditability Complexity Widespread

Distribution

Attack

Applicability

Resources

2 S S PS PS PS PS U

3 S S PS PS PS S PS

4 S S PS PS PS PS U

5 S S PS PS S PS U

9 U S S S S U U

12 PS S S S S S S

14 PS S PS PS PS U PS

15 S S PS PS PS PS PS

16 S S PS PS PS S PS PS

17 S S PS PS PS S PS PS

19 S S PS PS PS U PS

4.4.1 Use Case Recommendation AP5

As can be seen in Table 50, the use case Traffic Sign Assistant (12) is green for most categories and thus is most

suitable. Mostly the rather low complexity and simple auditability in combination with the availability of

datasets and implementations and in general a lower demand of resources are decisive and well suited for the

initial development and tests of audit criteria. The only parameter that is not well suited is the low safety

relevance of this use case. However, the safety relevance could also be increased by considering driving

functionalities that automatically adapt the vehicle speed to the detected speed limit and do not only serve as

4 Use Case Comparison for Audit Criteria Development (AP4)

126 Federal Office for Information Security

an assistance to the driver. This extension could be useful in following projects to increase the complexity and

add a direct impact on the control component of a vehicle. For the initial development of audit criteria in

AP5, the currently considered assistant functionality is well suited because it allows for easier experiments

and more extensive tests.

Summarizing, the use case recommendation for AP5 is based on the traffic sign assistant use case. Specifically,

this means that a single outside forward facing camera sensor is used to generate the required input data.

Based on this data, the classification (and previous detection) of traffic signs is performed using a DNN-based

system. Our recommendation is to first only consider systems that perform a pure classification of traffic

signs. The reason is that typically there exists a common detector for all kinds of road elements as discussed

in Chapter 4.2.3.3. Based on the detected objects, the content of the detected bounding boxes is fed to specific

systems that specialize in concretely classifying the object in a box based on the basic road elements classes.

For the case of traffic sign recognition this means that a preceding road elements detector exists which

outputs bounding boxes and an associated basic class, e.g. road sign, traffic light, etc. Then a specific classifier

exists for each basic class which outputs the concrete class, e.g. stop sign, green bus traffic light, etc. Thus, a

classifier that focusses on traffic signs is used to determine the concrete sign type based on the given cut out

part of the entire input image. The output of this system is therefore the detected traffic sign in the given

image. This specific classifier is selected for the development and tests in AP5 because it has a limited

complexity, which allows to perform extensive and in-depth technical experiments. Later, it is possible to

combine this specific classifier with a common detector, for example as part of AP7. Also, the classifier can be

considered as part of a real traffic sign assistant operating in vehicles on public roads. This allows to test the

developed audit criteria on production-ready systems and not only on academically developed ones.

4.4.2 Use Case Recommendation AP7

After recommending a use case for AP5, we now discuss the recommendation of an additional use case for

AP7. This use case should allow to test the transferability of the developed audit criteria in AP5 to other use

cases. Also, it is important that the second use case has a higher safety relevance than the first use case, which

allows developing audit criteria which are required for practical applications of AD/ADAS systems. The

selection is again based on the categorization of the suitability in Table 50. Also, it is important to note that as

part of AP7 at the beginning the use case recommendation is revisited. Depending on the results and

experience during AP5 it is assessed whether the recommendation is still valid. Otherwise, an alternative use

case is selected from the list of alternative use cases provided in Chapter 4.4.2.2. Therefore, the

recommendation for the additional use case in AP7 is not final and can change depending on the progress of

this project and specifically the information gained during AP5.

4.4.2.1 Main Use Cases

As mentioned previously the first use case of the two use case recommendations for AP7 is the use case Traffic

Sign Assistant (12), which is selected for AP5 discussed in Chapter 4.4.1. It is sensible to include this use case in

AP7 since it forms the basis of the audit criteria and toolchain development and allows directly expanding on

the previous work from AP5. In addition, a second use case needs to be selected which bases on the achieved

results and developed components but allows expanding the gained insights to further domains and

components. Here, it is preferable that the second use case can reuse most components while still allowing

testing the transferability of audit criteria.

For the remaining suitable use cases in Table 50, use case 3 is the only generic use case remaining. All other

use cases 15, 16 and 17 are more fundamental use cases which form the basis of an AD system or of other

generic use cases. As discussed in Chapter 4.3.2.1, for the initial development and tests of audit criteria it is

more sensible to select a fundamental use case which allows extensively testing the IT security of the AI

component itself without the increased complexity that arrives when the impact on the entire system and

control components is considered. Here, it is more realistic to cover the interplay of the entire system and the

concrete interplay with a planning or control component in following projects with an increased duration.

For this reason, we do not consider use case 3 for the recommendation of the use cases for AP7 since it would

4 Use Case Comparison for Audit Criteria Development (AP4)

Federal Office for Information Security 127

directly include the control components. Instead, our recommendation is to focus on a fundamental use case

in AP7 and then extend this use case to also consider the impact on the control component in following

projects for example by the use case combinations presented in Chapter 4.3.2.1.

All remaining fundamental use cases have a very similarly rated suitability in Table 50. The only difference

occurs when focusing on the applicability of an attack. Here, it shows that the attack applicability for use case

15 is considered as complex under all conditions. Instead, for use case 16 and 17 the attack applicability is only

considered complex when point cloud data is used as input data for the detection. Therefore, we disregard

use case 15 for the remaining considerations for an optimal recommendation of a second use case.

Summarizing, from all use cases in Table 50 we arrive at the use cases Road Users Detection (16) and Road

Elements Detection (17) which are still under consideration for the second use case in AP7. Additionally, use

case Free Space Detection (18) can be considered as well because it is complementary to both use cases 16 and

17 as discussed in Chapter 4.2.3.4. It shares all properties with the other two use cases and is therefore not

analyzed explicitly in Chapter 4.3 and Table 50. Nevertheless, since use case 16 and 17 remain as candidates

for the second use case recommendation, it is sensible to again include use case 18 at this point.

In the following, all three use cases are first narrowed down further before a final decision is made regarding

the recommendation. For use case 16 the most important concrete applications are the detection of vehicles

and the detection of pedestrians, which are the most relevant and often occurring road users. In both cases

the detection is based on outside facing sensors and can be based on camera sensors or on LiDAR sensors. For

use case 17 the most important concrete application is the detection of lane markings, which is mainly

camera-based and only in specific situations can be based on point cloud data (e.g. construction zones,

tunnels, etc.). To detect lane markings, segmentation techniques are typically used as the perception

component instead of bounding box detection techniques, which are typically used for use case 16. Similarly,

the most important concrete application of use case 18 is the camera-based detection of the drivable area in

the front of a vehicle, again using segmentation techniques. As described in Chapter 4.2.3.4 this is

complementary to the detection of road users and road elements like lane markings. In total, five narrowed

use cases result, which all seem fitting as a recommendation for AP7.

To decide on the best recommendation, we discuss the advantages of each narrowed use case in Table 51. The

respective disadvantages arise as the opposite of the advantages. For example, the advantage of all camera-

based use cases is that they are most like the use case selected for AP5 and the results and toolchain can likely

be reused easiest. At the same time the disadvantage arises that the transferability of audit criteria cannot be

tested just as well. This is then an advantage of selecting a LiDAR-based use case because it allows testing the

transferability of the proposed criteria to an entirely different sensor setup. Similarly, use cases that have a

different perception component have the advantage that the transferability of audit criteria can better be

examined than when a similar perception component is used. Regarding the difference between pedestrian

and vehicle detection it shows that detecting vehicles is typically easier due to a larger size, but the detection

of pedestrians is more critical since they are most vulnerable.

Table 51 Overview of advantages of specific use cases for deriving a second use case recommendation

Use Case Advantages

Camera-based Road User Detection Pedestrian Same sensor -> High similarity

 Most vulnerable users

Vehicle Same sensor -> High similarity

 Easiest to detect users

LiDAR-based Road User Detection Pedestrian Different sensor -> Test transferability

 Most vulnerable users

 Different perception techniques

Vehicle Different sensor -> Test transferability

 Easiest to detect users

 Different perception techniques

Camera-based Lane Marking Detection Same sensor -> High similarity

4 Use Case Comparison for Audit Criteria Development (AP4)

128 Federal Office for Information Security

Use Case Advantages

 Different perception techniques

Camera-based Drivable Area Detection Same sensor -> High similarity

 Different perception techniques

Based on the presented comparison of the advantages of the different use case we now recommend the use

case LiDAR-based vehicle detection for AP7. From all the use cases analyzed in Table 51 this use case has the

highest potential to test the transferability of audit criteria to a different parameter space, like different

sensors or perception components. Therefore, it is the best supplement of the traffic sign recognition use case

selected for AP5 to allow the development of modular audit criteria. However, the advantage of the highest

potential to test the transferability comes with the challenge of a low similarity between both use cases. For

the recommendation we assume that using a LiDAR-based use case is still manageable in the given timeframe.

However, if it shows during the development of AP5 that the effort for the development of the initial audit

criteria and toolbox is already higher than expected and it is too time-consuming to expand the development

to an entirely different sensor suite, we list camera-based use cases in Chapter 4.4.2.2 which serve as an

alternative to still comply with the limited duration of this project. As mentioned at the initial discussion in

Chapter 4.4.2 the use case recommendation is revisited as part of work package seven after work package five

is concluded. At that point it can be better judged whether using a LiDAR-based use case is possible in the

given timeframe of the project.

4.4.2.2 Alternative Use Cases

After we derived the main recommendation for a second use case, we now list alternatives to this

recommendation. As discussed previously, the main risk of the recommendation is that it is too time-

consuming to expand or adjust the toolbox and the developed audit criteria to a different sensor suite.

Therefore, we only list camera-based use cases as alternative, for which it is easier to expand the results from

AP5. Hence, the most straightforward alternative is to use the camera-based vehicle detection use case instead

of the LiDAR-based use case. This use case is most similar to the use case selected for AP5, which should allow

the easiest and fastest adaption of the toolbox. However, this also has the lowest potential to test the

transferability of the developed audit criteria due to the high similarity between the use cases. Therefore, our

main alternative recommendations are to use either the camera-based lane marking detection use case or the

camera-based drivable area detection use case. Both require different perception techniques based on

segmentation, which increases the potential to test the transferability of the audit criteria to different use

cases. These two use cases are rather similar, meaning it is difficult to provide a recommendation for the

ordering of the alternative use cases. It could be argued that detecting only lane markings is easier than

detecting the entire drivable space, however the applicability of attacks seems somewhat easier when the

entire drivable space is considered. Hence, the final ordering of alternative recommendations is only a

suggestion and needs to be discussed depending on the acquired knowledge and performed implementations

during AP5 when the case arises that an alternative use case needs to be selected for AP7. Summarizing, the

suggested ordering of the alternatively recommended use cases is the following:

1. Camera-based drivable area detection using segmentation

2. Camera-based lane marking detection using segmentation

3. Camera-based vehicle detection using object detection

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 129

5 Planning and exemplary Creation of Toolbox (AP5)

This chapter

Anforderungen an KI-Systeme anhand praktischer Use-Cases im Bereich Mobili

Hence, it contains the results of the toolbox planning and supporting documentation for the initial

development of the toolchain and audit tools. At first, we describe a generic toolchain which can be used to

develop, simulate and test autonomous driving (AD) or advanced driver assistance system (ADAS)

functionalities based on artificial intelligence (AI) and especially deep neural networks (DNNs). Afterwards,

we present the exemplary implementation of the toolchain focusing on the selected traffic sign recognition

(TSR) use case from Chapter 4.4.1 and discuss the selected interfaces and tools. Finally, based on the selected

use case and the developed list of audit criteria in the report of AP3 in Chapter 3 we discuss which safety and

security requirements are selected for the use case and how they are evaluated with the help of the toolbox to

aid an audit of the system.

As a general disclaimer, it is important to point out that the concrete implementation of the toolbox is only

performed in an exemplary manner. It should enable first experiments and allow assessing the suitability and

applicability of the proposed audit criteria. This represents a starting point to assess the feasibility of potential

audits but is by no means complete. The given resources and timeframe of the project do not allow for an

extensive implementation of an audit toolbox, thus only exemplary components are implemented.

5.1 Implementation Concepts

In this chapter we describe the principal concepts behind the toolchain for training a DNN-based AD/ADAS

system and the toolbox for auditing such trained systems. These concepts form the basis of the exemplary

implementation which is described later in Chapter 4.3 and Chapter 5.3.

5.1.1 Toolchain

Testing the proposed requirements from (2) for auditing AI-based AD/ADAS systems requires that a toolchain

exists which allows creating suitable AD/ADAS models. This toolchain can then be used to develop an

exemplary system for which the proposed requirements are evaluated. Therefore, the toolchain must

conceptually be capable of developing AD/ADAS systems for the different use cases described in (3). Hence, it

must be planned generically to allow the application to different use cases which can have different

prerequisites.

5.1.1.1 Generic

In Figure 55 an overview of the important elements of such a generic toolchain is shown. The development

starts by the general planning of the AD/ADAS system, which is followed by the data collection and

preprocessing phase. This is required for DNN-based systems, which rely on high-quality data. Next, the

development of the algorithm is performed, which includes the training of DNN models as well as the

integration into the overall system with all other hardware components. In this development step the

evaluation of the quality of the developed functionality is performed based on a predefined test dataset, which

is the standard best practice for developing DNN-based systems. Typically, this quality assessment only

includes evaluating the standard performance with respect to some KPI, like accuracy or intersection over

union, on this the dataset. However, it can also include more sophisticated evaluations like assessing the

robustness on variations of the test data distribution, analyzing whether meaningful data features are used

for a prediction or evaluating the IT-Security against an adversary. When all relevant performance aspects on

this dataset suffice, the next development phase is reached, which is a more extensive validation based on

simulation and importantly also based on physical tests with the real system and complete hardware

connections. Once the system passes these validation steps, it is cleared for deployment from the

development perspective. During deployment the system is then continuously monitored to ensure the

5 Planning and exemplary Creation of Toolbox (AP5)

130 Federal Office for Information Security

performance stays inside the assured quality. In practice the described process is often not straightforward

and at different steps multiple loops are performed. For exa

component it might turn out that the performance of the system does not reach the required performance

even after multiple improvements of the algorithm. Then it might be required to take a step back and collect

more or better data or even go back to the beginning to adjust the basic system design.

In parallel to the development steps, audits must be performed at different stages or after some development

steps are finished. These audits must ensure that the respective phase or result is according to the

requirements from (2) or to requirements from documents issued by standardization bodies like the ISO. If

some parts of the development or of the developed system do not fulfil the requirements, it is possible that

this development step must be repeated until the audit is successful. Only then the system is cleared for

deployment.

Figure 55 Overview of the generic toolchain for developing a DNN-based AD/ADAS system

5.1.1.2 Project-Specific

The generic toolchain from Figure 55 supports all required steps and tasks at the different stages in the

development. It is important to consider the toolchain from this very generic viewpoint since this allows

planning the project-specific implementation in accordance with the generic requirements of different use

cases. However, due to the limited time of the project it is only possible to implement an exemplary generic

toolchain. Therefore, in Figure 56 we show a simplified version of the toolchain which is possible to be

implemented in the given timeframe.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 131

Figure 56 Overview of the toolchain components which are implemented in this AP

In comparison to Figure 55 it is notable that the planning and monitoring stages are dropped. The planning

stage is dropped because the planning of the AD/ADAS system is already performed in (3) where the use case

is selected for which the toolchain and audit requirements are implemented in an exemplary manner. The

monitoring stage is dropped because in this AP the goal is not to deploy a system on public roads but only to

show in an exemplary manner the applicability of the toolchain and audit requirements for the selected use

case. In the data stage we limit ourselves to using available datasets in this AP. Collecting own data is infeasible

given the time and resource constraints. Similarly, we only focus on developing an AI model as AD/ADAS

component and do not consider the integration into the entire system with the interplay of different

hardware components. It is only feasible to consider the system functionality replicated in software and

running virtually. Thus, the final validation and auditing is also only performed in simulation since we do not

capture any real data and do not have a physical replica of the AD/ADAS system. The steps that are still

included in Figure 56 allow verifying the concept of the toolchain for an exemplary use case and assessing

whether all important aspects of development and auditing are supported by the toolchain.

5.1.2 Toolbox

In addition to the toolchain which allows to develop DNN-based AD/ADAS systems it is also relevant to

develop the audit tools that check whether certain requirements are fulfilled by the developed system.

Similarly to the approach in Chapter 5.1.1 we first discuss a general concept for different auditing tools and

then focus on specific examples and discussing what is feasible to implement in this AP.

5.1.2.1 Overview

In Figure 57 a generic overview of a toolbox component is shown. This component can be any requirement

from (2) which should be evaluated for a given AD/ADAS system. Thus, the input to the evaluation or audit

tool is represented by the model to audit and the associated representative data. In addition, the tool gets a

settings file as input, which contains all important information to perform the audit. As output the tool

generates a report based on defined metrics that summarize each audit given the requirement that should be

tested. Also, all failures are listed explicitly and are described in a report in more detail.

5 Planning and exemplary Creation of Toolbox (AP5)

132 Federal Office for Information Security

Figure 57 Overview of a generic toolbox component for auditing a DNN-based AD/ADAS system

5.1.2.2 Individual Components

After presenting the overview of a generic evaluation and audit tool we now discuss each component from

Figure 57 individually. When suitable, we also present which parts of the individual components are

implemented in this AP and where focus points lie.

5.1.2.2.1 Model/System

One of the inputs to the generic evaluation or audit toolbox component in Figure 57 is the model or system

for which the audit should be performed. This component is further specified in Figure 58 for the case that an

AI model is used as input. As discussed in Chapter 5.1.1.2, we only consider this case in this project and do not

discuss the case where entire systems should be audited. In the considered case the model component gets

the current data as input. The concrete input type depends on the actual use case but for the use cases

considered in this project the input data is typically an image or a point cloud. Then, the model outputs the

current prediction, which again depends on the use case and the type of task that should be solved. The output

value can then be consumed in concrete implementations of a toolbox component. In addition to the direct

input and output, the model has certain parameters or properties that can be set or queried. For example, this

includes parameters that influence the behavior of the model like the state of buffers or memory cells. Also,

model properties that are relevant for certain audit requirement tests can be queried. This can include

whether the model is recurrent or behaves entirely deterministically.

Figure 58 Overview of the model component

In the exemplary implementation in Chapter 4.3 and Chapter 5.3 we only consider a part of this generic model

component similar to the approach in Chapter 5.1.1.2. Hence, we select specific values for some of the

components of the model component. First, based on the selected TSR use case in (3) we only consider RGB

images of traffic signs as our data. In addition, the traffic signs are assumed to be already cut out, meaning a

bounding box detection is already performed and only the traffic sign with minimal background is used as

input for the model in our considered use case. The model itself is always represented as a CNN without any

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 133

stochastic layers, meaning it is entirely deterministic and not recurrent. Regarding the differentiability

different options are possible where the auditor either has white-box or black-box access to the model.

Finally, the output of the model is typical for a classification problem which fits the selected use case. Hence,

as default a probability vector over all available classes is returned by a softmax function. This can be further

limited by only returning the top-n classes instead of the entire probability vector or by not returning any

probabilities and only a class ranking.

5.1.2.2.2 Data

The second input to the generic toolbox component in Figure 57 is the data component. Here, it is important

to point out that three different data sources are possible as indicated in Figure 55. First, it is possible to use a

test dataset which is already collected and annotated. Second, it is possible that the data is generated online

in a simulator which interacts with the toolbox component. Last, it is possible that a physical validation or

audit is performed meaning the data is captured online in reality. All three different data sources are

important and play a decisive role at different stages during the development or audit. Therefore, it is required

that the interface of the data component with the generic toolbox component is comparable for all three data

types. For a toolbox component it should make no difference where the data originates from, meaning the

different data types should be formatted and structured in the same way. This ensures that each data source

can be processed by a single function without the need for extensive reimplementation specific for a certain

data source.

5.1.2.2.2.1 Offline Data Loader

Under this given constraint we show the structure of the data component in case test data is used in Figure

59. Here, the input is represented by the location where the test dataset is located. Then this is consumed by a

data loader, which outputs pairs of data samples and the associated labels. Like the model component in

Figure 58, the data component has different states and properties which can be set or queried. Most

importantly it is possible to set certain conditions that the data loader must fulfil. Some examples include the

size of the samples, the exact location where the sample was captured or the brightness in an image-based

data sample. These conditions can for example be set by a toolbox component when it requires very specific

data samples. Also, it is possible to get information about different properties from the data loader, which can

be important for an audit requirement test. For example, this includes the position of the sensor in the vehicle

or the frequency at which the data samples are collected.

Figure 59 Overview of the test data loader component

In the exemplary implementation, the generic test data loader is again concretized and only specific parts are

dataset root folder under which all images are stored using a split in the train, eval and test subsets. For this

use case, the sample that is output is a single RGB image and the output label is the class of the traffic sign

which is visible in the associated data sample.

5 Planning and exemplary Creation of Toolbox (AP5)

134 Federal Office for Information Security

5.1.2.2.2.2 Simulation Data Generator

After discussing the data component when using a test dataset, we now discuss the data component when

simulated data is used. The resulting overview is given in Figure 60. Here, it is important to understand that

simulated data can be generated in two different ways. First, it is possible to use a simulator which takes a

scenario description and then generates new data samples online. The scenario description can include

information like the sensor position, road course in the environment or the position of other traffic

participants. Alternatively, it is possible to again use an already existing dataset and perform the simulation

by performing various augmentations on already existing data samples. For example, in case of image data it

is possible to simulate weather effects like rain or snow by augmentation of an existing image. The output of

the simulated data generator is then identical to the output of the test data loader in Figure 59. This ensures

that a toolbox component can use these data components interchangeably without the need to implement

specific data processing methods. Additionally, the data generator has more conditions that can be set by a

toolbox component. For example, it can be useful to set the current weather status or specify if a sensor fault

should be simulated.

Figure 60 Overview of the simulation data generator

In this project we only consider the case when simulation is performed by augmenting already existing data

samples. Setting up and integrating an entire simulator to generate new data samples online is out of scope

of this project due to the given time and resource constraints. This can be added at a later stage in potential

follow-up projects.

5.1.2.2.2.3 Sensor Data Generator

Lastly, it is possible that sensor data which is captured online in reality during test drives is used as input of a

toolbox component. This is shown in Figure 61 but no exemplary implementation is described later in

Chapter 4.3. As discussed in Chapter 5.1.1.2, performing physical tests is not feasible in this project and thus

the overview of the sensor data generator is only mentioned for completeness. It can be used in potential

follow-up projects to incorporate such a component in the entire toolchain. Similarly to the components in

Figure 59 and Figure 60, it has the same output interface, which allows using existing toolbox components

without the need to implement specific methods for data handling.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 135

Figure 61 Overview of the sensor data generator

5.1.2.2.3 Test Settings

The last input component to the audit tool in Figure 57

settings for the execution of a respective audit requirement test are included, which allows reproducing the

results of this test. In Figure 62 a basic example of such a setting configuration is shown. At the top-level

different categories of requirements exist. These are then further specified by moving down in a tree-like

structure. For example, in Figure 62 a security test is performed by using an adversarial attack. For this attack

the specific parameters must be , which contains specific

settings for this attack. In a similar fashion, it is possible to build configuration settings for all audit

requirements from (2) which focus on testing a trained AD/ADAS system.

Figure 62 Overview of the setting component

5.1.2.2.4 Report Metrics

The output of the audit tool is represented by a report that summarizes the most important metrics of each

requirement test. This report is shown in Figure 63 and is structured in a similar way to the settings

configuration in Figure 62. Again, it contains the same tree-like structure having the same high-level

categories at the top. Then, for each audit requirement test suitable KPIs are defined, which are listed in the

report. The security test example from Figure 62 is again chosen and exemplary KPIs are listed for the case

where a test based on adversarial attacks is performed. Here, different success rates of the attack or the average

number of iterations until the attack is first successful are shown as exemplary metrics.

5 Planning and exemplary Creation of Toolbox (AP5)

136 Federal Office for Information Security

Figure 63 Overview of the report component

5.1.3 Strategies for Comparison of Simulation and Reality

As discussed in Chapter 5.1.2.2.2, it is possible to use data samples from different data sources in the toolchain.

This raises the question how it can be assured that the results generated using simulated data are as closely

comparable as possible to results generated using real data. To provide answers, in the following we discuss

comparison strategies for analyzing the transferability of results from simulation to reality.

In Figure 64 an overview of the different comparison strategies is shown. It is important to note that three

different options exist to represent the system functionality. First, it is possible to use a real test vehicle, which

includes all system components and is the most realistic system representation. On the other side, there is the

option to use a SIL, which represents the functionality of the system but does not include the hardware

components of the system. In between, it is possible to use a HIL, which includes all hardware components

that are relevant for the direct functionality of the system. Hence, it simulates the behavior of the real system

based on captured or simulated data samples: These are either replayed and captured by the sensors in the

HIL or are directly injected to the data processing module in the HIL by bypassing the sensor hardware.

However, it does not include other vehicle components like actuators. Both the HIL and the SIL can be used

on real and simulated data, while the physical test vehicle can only capture the data it observes in its

environment.

Figure 64 Overview of different options to analyze the transferability of results from simulation to reality

To assess the transferability of results from the simulated world to the physical world it is required to compare

the results for audits performed using simulated data samples and for audits performed using physically

captured data samples in a structured way. Here, it is most practical to perform most audit requirement tests

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 137

using the AD/ADAS system as a SIL. This enables the tightest integration in the remaining toolchain and

allows for different audit requirement tests in a quick succession. The fast assessment of the proposed audit

criteria allows for an efficient and continuous improvement of the audit criteria. After these initial tests are

performed, the next step is to test interesting audit requirements on a HIL and directly compare the results

with the tests on the SIL. This should be done for tests where it is identified in the SIL experiments that the

audit result is less stable or is more strongly influenced by minor factors of the data samples. For such tests it

is more questionable whether the results transfer well from simulated data to real-world data. As the last step,

it is required to perform some tests using a real vehicle and perform actual test drives. Only this enables to

assess the actual transferability in the most meaningful way. However, it is also the least practical in

comparison as real test drives require more time and resource expenses. Therefore, this final comparison

should only be done for a strict selection of audit requirement tests to find a balance between using the

available resources well and achieving the most meaningful comparison results. As discussed before, it is most

interesting to perform this final comparison for audit requirement tests where the results using the SIL or

HIL show some variance and are most likely to show a difference when comparing the simulated and real

data samples.

5.2 Exemplary Toolchain Implementation

After we presented the generic concepts of the toolchain and toolbox in Chapter 5.1, in the following we

describe the exemplary implementation of the toolchain. This includes the selection of the most important

software libraries and a discussion on the used datasets and models to develop the exemplary TSR system.

5.2.1 Dataset

As discussed in Chapter 5.1.1.2 we do not perform our own data collection and instead use an already existing

dataset. In Table 52 we list an overview of available datasets that focus on the task of traffic sign recognition

or detection. For each dataset, we list the country where the dataset is collected, the number of different traffic

sign classes included and the number of images in a dataset. This allows comparing the datasets with each

other based on the most relevant properties and enables the selection of the most fitting dataset for this

project.

Table 52 Overview of some available datasets for the TSR use case selected in AP4 (3)

Name Country Number

Classes

Number

Images

Link

German Traffic Sign

Recognition

Benchmark (GTSRB)

Germany 43 > 50k https://benchmark.ini.rub.de/gtsrb_news.html

KUL Traffic Sign

Dataset

Belgium 62 > 7k http://people.ee.ethz.ch/~timofter/traffic_signs/

Challenging Unreal

and Real

Environments for

Traffic Sign

Detection

Belgium 14 > 2m

(video

sequences

and partly

synthetic)

https://github.com/olivesgatech/CURE-TSD

Traffic Signs Dataset Swedish 19 > 3k https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/

Mapping and

Assessing the State

of Traffic

Infrastructure

Croatia 97 > 10k http://www.zemris.fer.hr/~ssegvic/mastif/datasets.shtml

LISA Traffic Sign

Dataset

USA 47 > 7k https://git-

disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/

https://benchmark.ini.rub.de/gtsrb_news.html
http://people.ee.ethz.ch/~timofter/traffic_signs/
https://github.com/olivesgatech/CURE-TSD
https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
http://www.zemris.fer.hr/~ssegvic/mastif/datasets.shtml
https://git-disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/
https://git-disl.github.io/GTDLBench/datasets/lisa_traffic_sign_dataset/

5 Planning and exemplary Creation of Toolbox (AP5)

138 Federal Office for Information Security

Name Country Number

Classes

Number

Images

Link

Chinese Traffic Sign

Database

China 58 > 6k http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html

Tsinghua-Tencent

100k

China 221 > 30k https://cg.cs.tsinghua.edu.cn/traffic-sign/

Based on the presented dataset comparison we select the GTSRB dataset for the exemplary training of an

AD/ADAS system for this project. This selection comes for numerous reasons:

1. The GTSRB dataset has the highest number of unique and real images. This is preferable for training

DNNs, which require sufficient and good data to achieve strong performances.

2. This dataset is often used in the literature when results are tested for the TSR use case. For example,

this includes the test of physical adversarial attacks or the OOD performance of confidence

estimation methods.

3. The dataset is based on traffic signs captured in Germany. This means that results on this dataset can

most easily be transferred to physical tests that are performed in a potential follow-up project. Since

this project is executed in Germany by German partners, German traffic signs are more easily

available and the road conditions are more similar. This should minimize the preparation effort for

real physical tests.

5.2.2 DNN Models

After selecting the dataset that is used for the exemplary implementation of the toolchain, we now discuss

the CNN models that are used as the basis of the TSR system. To minimize the implementation effort and at

the same time maximize the generalizability of the toolchain we use publicly available implementations34 of

common CNN backbones. These are then fine-tuned on the GTSRB dataset to learn the specific features of

traffic signs and function as AI models for the TSR use case. We use two different exemplary implementations

to ensure that the results of the audit requirements tests are not an effect existing for a single DNN

architecture. Concretely, we use the ResNet-18 architecture from (292) and the AlexNet architecture from

(293). ResNet-18 is selected because this architecture is one of the most successful architectures in DNN

history and is often used in literature as a sensible baseline independent of the concrete task and use case. In

addition, we select AlexNet because it represents a standard CNN architecture without the use of skip-

connections and batch normalization layers, which are both used in the ResNet-18 architecture.

Experimenting with two significantly different DNN architectures allows assessing the transferability of the

audit requirements to different DNN types.

5.2.3 Toolchain

For the exemplary implementation of the toolchain, we use Python35 as the main programming language. Its

nature of being a high-level scripting language allows a rapid prototyping and the highest possible coverage

of implemented components. At the same time, Python is used almost exclusively in research publications in

the AI and ML community and has the most open-source tools and utilities available. Again, this should allow

for the highest number of implemented components in the toolchain because already existing

implementations can be used. This also has the advantage that the resulting toolchain is mainly based on

open-source libraries, which should allow making most parts of the implemented toolchain publicly

available. Also, most research papers provide code that is written in Python, which allows the easiest

integration of recently discovered methods for security, robustness, explainability, etc.

34 https://pytorch.org/vision/0.8/models.html
35 https://www.python.org/

http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
https://cg.cs.tsinghua.edu.cn/traffic-sign/
https://pytorch.org/vision/0.8/models.html
https://www.python.org/

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 139

Following best practices for program code versioning we use the git36 tool, which enables the collaboration of

different parties and provides a clean version history of the toolchain. Additionally, we follow coding

standards like PEP837 or the clean code principle from (294) whenever possible.

5.2.3.1 DNN-related Tools

A large part of the toolchain is the handling and training of DNNs. Here, multiple different open-source

frameworks exist which all provide specific utilities for this task. We select PyTorch38 as the main library used

for developing DNNs. Concretely, we use the fastai39 library which allows training DNNs for different use

cases with minimal overhead. Since the focus of this project lies on testing the suitability of different audit

requirements, it is preferable to use a simple library that removes most of the need for boilerplate code for

DNN training while still enabling an easy customization of the training process when needed.

To ensure that the toolchain can also be used with other DL libraries we use the ONNX40 format to exchange

DNNs between different libraries when required. On the one hand, this allows training DNNs with a different

library and still use the implemented audit tools in the toolbox. At the same time, this also allows

implementing audit tools using a different DL library than PyTorch. This can be useful when some tools are

only available for a specific DL library and similar tools are not available for PyTorch. Then, the associated

audit tool can be implemented using the other library and the tool can still be incorporated in the overall

toolchain. Nevertheless, in this project all audit tools and toolchain components are implemented using

PyTorch for simplicity and consistency.

To track experiments for training DNNs we use the MLFlow41 library. This allows saving and registering

trained DNN models, tracking the hyperparameters of different runs for reproducibility or comparing the

results of different runs based on defined KPIs. An example for the provided interface to visualize the results

of different training runs is given in Figure 65. The image shows the main interface where all different

experiments are listed which were logged using MLFLow. In this case it shows the experiments on the GTSRB

dataset and the two DNNs selected in Chapter 5.2.2. A more detailed view on different experiments is later

given in Chapter 5.3.2.5 and Figure 71.

36 https://git-scm.com/
37 https://peps.python.org/pep-0008/
38 https://pytorch.org/
39 https://www.fast.ai/
40 https://onnx.ai/
41 https://mlflow.org/

https://git-scm.com/
https://peps.python.org/pep-0008/
https://pytorch.org/
https://www.fast.ai/
https://onnx.ai/
https://mlflow.org/

5 Planning and exemplary Creation of Toolbox (AP5)

140 Federal Office for Information Security

Figure 65 Exemplary excerpt from the experiment and model tracking using MLFlow

5.2.3.2 Simulation-related Tools

As discussed in Chapter 5.1.2.2.2.2 in this AP we only consider simulation by augmenting already existing

images or images of ideal traffic signs that are inserted on a real background image. The integration of a real

simulator for driving scenarios like CARLA42 is possible in a potential follow-up project. For augmentations

we use the albumentations43 library, which provides a rich set of fast augmentations that can be used for

different machine learning tasks. The use of this library is not limited to classification tasks, instead

albumentations ships with built-in support for segmentation and detection tasks for most provided

augmentations. This allows using the same augmentation library and the implemented toolchain

components also for other use cases than the TSR use case. In Figure 66 some examples are shown for standard

image augmentations that are possible using the albumentations library. Additionally, in Figure 67 further

augmentations are shown which focus on the simulation of different weather conditions, which is especially

relevant for AD/ADAS.

42 https://carla.org/
43 https://albumentations.ai/

https://carla.org/
https://albumentations.ai/

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 141

Figure 66 Exemplary overview of standard image augmentations from https://pypi.org/project/albumentations/

Figure 67 Exemplary overview of weather image augmentations adapted from

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library

5.2.3.3 Quality-related Tools

After discussing different tools and utilities used for the technical development of the toolchain, we now

shortly describe tools which are used to assure a high quality of the toolchain. First, this includes a tool to

regularly test the correctness and quality of the toolchain code. For this purpose, we use the pytest44 library,

which is a commonly used tool for testing Python code. We choose this library instead of the built-in testing

library unittest45 because it has a richer feature set and can easier be integrated and expanded. In Figure 68 an

example is shown where a test run is performed using the pytest test tool on the implemented tests for

different parts of the toolchain. For each test it is possible to specify under which conditions the test is

executed and in Figure 68 28 tests are skipped as demonstration.

44 https://docs.pytest.org/en/7.1.x/
45 https://docs.python.org/3/library/unittest.html

https://pypi.org/project/albumentations/
https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library
https://docs.pytest.org/en/7.1.x/
https://docs.python.org/3/library/unittest.html

5 Planning and exemplary Creation of Toolbox (AP5)

142 Federal Office for Information Security

Figure 68 Exemplary exempt from the implemented test session

Finally, we use the Sphinx46 library to generate the accompanying documentation of the program code. The

Sphinx library is used because it is the most popular choice for documenting Python code, has an optimized

integration and features the most options for the resulting documentation. In Figure 69 two exemplary

excerpts from the generated documentation are shown. These are generated automatically by Sphinx from

properly formatted docstrings that are written in the program code. This allows generating a high-quality

documentation with as little effort as possible, because some information like parameter names or types are

automatically extracted by Sphinx from the code and do not require any extra effort by the developer.

Figure 69 Exemplary excerpts from the code documentation

46 https://www.sphinx-doc.org/en/master/

https://www.sphinx-doc.org/en/master/

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 143

5.3 Implementation of Safety/Security Requirements

5.3.1 Selection of Requirements

The following chapter gives an overview of the safety and security requirements selected for auditing the

traffic sign use case. As discussed in the AP3 Report (2), safety and security requirements are to be

implemented within an ADAS or AD system based on the risk level of the application.

In the case of the traffic sign recognition system used as assistance, accidents and failures are highly

controllable and they entail low severity of injuries. Therefore, we assume an ASIL A/low risk for the

requirement selection.

5.3.1.1 Generic requirements for the Entire System

Table 53 All ASIL A/low risk generic requirements7 towards the entire system of a traffic sign recognition system.

Requirements highlighted in yellow are highly recommended and therefore mandatory for this use case. Further

recommended requirements that are implemented exemplarily are highlighted in red.

Requirement Recommendation

ID Description Type ASIL A/

 Low

1 The environmental context shall correspond to the

operational design domain (ODD).

ASIL +

2 The communication, interfaces, signals, etc. between different

components shall be coordinated.

ASIL +

3 The sensor setup shall be similar to the development/training

setup.

Additional +

4 The requirements for AI subsystems shall apply to the entire

system (if applicable).

Additional ++

5 The adequate performance shall be guaranteed for a certain

timeframe after initial deployment.

ASIL +

6 The performance on key performance indicators (KPIs) shall

be as high as possible

Additional +

7 The performance shall be compliant to the allowed worst-case

error.

ASIL ++

8 The performance shall be reproducible in the real

environment for operation.

ASIL +

9 The feedback of the system shall be tracked while in operation. ASIL o

10 The performance shall be corrected when critical errors occur

reproducibly after deployment.

ASIL +

11 The system state shall be tracked in a reproducible way while

in operation.

Additional +

12 The architectural design shall be described explicitly. ASIL ++

13 The quality & trustworthiness for developers shall be assessed. ASIL o

14 The development process shall be tracked. Additional +

5 Planning and exemplary Creation of Toolbox (AP5)

144 Federal Office for Information Security

5.3.1.2 Generic requirements for the AI Subsystem

Table 54 All ASIL A/low risk generic requirements8 towards the AI subsystems of a traffic sign recognition system.

Requirements highlighted in yellow are highly recommended and therefore mandatory for this use case. Further

recommended requirements that are implemented exemplarily are highlighted in red.

Requirement Recommendation

ID Description Type ASIL A/

 Low

15 The AI model shall be implemented using mitigation strategies

against robustness threats.

ASIL +

16 The AI model shall be verified with formal robustness

verification techniques.

ASIL O

17 The robustness of the AI model shall be verified with empirical

robustness estimation techniques.

ASIL +

18 The AI model shall be tested against out-of-distribution data. ASIL ++

19 Test cases at the boundary values of the input of the AI model

shall be derived.

ASIL +

20 Test cases based on corner cases of the AI model shall be

derived.

ASIL +

21 Test cases shall be derived through error guessing based on

knowledge and experience of the system.

ASIL +

22 The AI model shall be tested against possible robustness

threats.

Additional +

23 The source of the datasets shall be traceable. Additional +

24 The source of the dataset shall be verified. Additional O

25 The datasets shall have adequate coverage of the operational

input domain.

Additional +

26 The datasets shall be verified against the safety requirements. Additional O

27 The uncertainty of the datasets shall be analyzed and

quantified.

Additional O

28 The datasets used for training, testing and evaluation shall not

contain any errors.

Additional ++

29 The training, test and evaluation datasets shall have sufficient

size.

Additional +

30 The training, test and evaluation datasets shall be independent

from each other.

Additional ++

31 The training, test and evaluation datasets shall be prepared in

an adequate way.

Additional +

32 The requirements shall be analyzed to derive test cases for

interpretable model decisions.

ASIL ++

33

between the modelling of the system and the trained model.

ASIL ++

34

requirements of the system are met.

ASIL +

35

explained.

Additional +

36 be explained. Additional +

37 Additional +

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 145

Requirement Recommendation

38 The least complex model architecture needed to solve the task

shall be chosen.

Additional +

39 A model architecture shall be chosen to maximize the

interpretability of decisions.

Additional O

40 The SW unit design shall be described explicitly. ASIL ++

41 The dataset & model shall be versioned. Additional o

42 Standardized methods to record characteristics of datasets, AI

models and key processes shall exist and be followed

Additional o

43 The labelling process of the dataset shall be documented and

tracked.

Additional o

44 The input shall be monitored and checked before it is given

into the AI model.

ASIL +

45 output shall be checked. ASIL +

46 The AI model shall be monitored during the program

execution.

ASIL o

47 Errors of the model shall be logged. ASIL +

48 Damaged or manipulated inputs shall be corrected when it is

safely possible.

ASIL o

49 Fail-safe methods shall be implemented to mitigate entire

system failures.

ASIL +

50 Parallel redundant AI models shall be implemented. ASIL o

Since the chosen use case is classified as ASIL A/low risk, the following nine highly recommended

requirements are mandatory during the development of this project.

Table 55 Summary of the highly recommended requirements7 for this use case

Requirement Recommendation

ID Description Type ASIL A/

 Low

4 The requirements for AI subsystems shall apply to the entire

system (if applicable).

Additional ++

7 The performance shall be compliant to the allowed worst-case

error.

ASIL ++

12 The architectural design shall be described explicitly. ASIL ++

18 The AI model shall be tested against out-of-distribution data. ASIL ++

28 The datasets used for training, testing and evaluation shall not

contain any errors.

Additional ++

30 The training, test and evaluation datasets shall be independent

from each other.

Additional ++

32 The requirements shall be analyzed to derive test cases for

interpretable model decisions.

ASIL ++

33

between the modelling of the system and the trained model.

ASIL ++

40 The SW unit design shall be described explicitly. ASIL ++

5 Planning and exemplary Creation of Toolbox (AP5)

146 Federal Office for Information Security

To obtain further insight into the use of the generic requirements for the system and its auditability, we also

selected the following recommended requirements to be demonstrated on a schematic level. This will provide

guidance on how to determine and derive specific values such as thresholds or boundaries.

Table 56 Summary of recommended requirements7 implemented exemplarily for this use case

Requirement Recommendation

ID Description Type ASIL A/

 Low

6 The performance on key performance indicators (KPIs) shall

be as high as possible

Additional +

14 The development process shall be tracked. Additional +

19 Test cases at the boundary values of the input of the AI model

shall be derived.

ASIL +

20 Test cases based on corner cases of the AI model shall be

derived.

ASIL +

5.3.2 Implementation of Requirements

This chapter describes the implementation of the requirements. The structure starts with the determined test

parameters and a corresponding justifying statement. Subsequently, the audit procedure for this requirement

in depen

and findings, which specify to which extent the requirement is covered. A final section concludes the

evaluation and gives a final verdict based on the findings from the previous section.

Due to the evaluation of a constructed use case for demonstration purposes, the nature of some of the

requirements only allow a schematic evaluation. A restricting factor is, for example, the absence of an overall

system, in which an equivalent use case is embedded in real-world applications. Another question impeding

the implementation is the definition of meaningful test and evaluation parameters specified for the

considered use case without prior knowledge of equivalent projects, available standardization or legal

requirements.

5.3.2.1 Requirement 4

Requirement Recommendation

ID Description Type ASIL A/

 Low

4 The requirements for AI subsystems shall apply to the entire

system (if applicable).

Additional ++

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

One of the most basic requirements from the functional safety point of view is to consider any risk and threat

analysis of the components and sub-systems with regard to the entire system. More precisely, any risk

consideration of the system will be inherited to the sub-systems and components and vice versa as illustrated

in Figure 70. The aim is to have a consistent tracing of any malfunction or flaw which affects the safety and

security claim of the system.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 147

Figure 70 Schematic depiction of the shared risk consideration over several system layers

At each stage across the entire life cycle of the system and the underlying ML component, the risk

consideration shall be conducted and examined in terms of the impact of the entire system. For example, the

auditor shall examine and describe the impact of data poisoning at the development stage or the impact of an

adversarial perturbation within the application stage. The aim of this requirement is to reflect the demand of

risk considerations regarding functional safety and corresponding requirements from the homologation

body.

Implementation within the use case

The risk consideration is documented and shall cover the threat analysis of the component (e.g. the ML model)

in relation to the entire system. Any impact of flaws or malfunctions of the component shall be examined

and described with regard to their impact on the system. Thus, risk consideration in terms of threat analysis

consists of all potential vulnerabilities which might influence the entire system. The other way around, all

vulnerabilities concerning the overall system (including those coming from other sub-components) shall be

evaluated regarding their impact on the evaluated component, i.e. the AI subsystem.

Verdict

Due to the nature of the constructed use case and the absence of an entire system (architecture), no verdict is

given for this requirement.

5.3.2.2 Requirement 6

Requirement Recommendation

ID Description Type ASIL A/

 Low

6 The performance on key performance indicators (KPIs) shall

be as high as possible

Additional +

Specification of the parameters and rationale

The application-specific KPI is chosen as the accuracy of the model because the accuracy is the

recognition. The performance of the model on the given dataset is directly stated by the accuracy. It is

determined by the ratio of correct predictions to the total number of predictions done for the tested dataset.

Audit procedure

For the evaluation of this requirement, first a list of the different model configurations and versions that

occurred during development is compiled. Here, especially the resources linked to Requirement 14 in Chapter

5.3.2.5 shall be checked. The model list is examined regarding completeness, i.e. if apparently suitable model

configurations had been omitted. If the list is complete, the KPI is evaluated on the different model

configurations and/or versions. If the list is incomplete, the missing model configurations are added to the

KPI evaluation.

5 Planning and exemplary Creation of Toolbox (AP5)

148 Federal Office for Information Security

Implementation within the use case

For the development tracking, the version control Git was used. It showed that two different models were

considered for usage: a ResNet-18 and an AlexNet architecture. These represent state-of-the-art DNNs/CNNs

and a comparison of two networks seems reasonable for the presented use case. The evaluation results of the

models were stored in a separate folder using the tracking tool MLflow. The outcome of the specific

experiments can be seen in Figure 71. These results could be reproduced and ResNet-18 showed the highest

KPI.

Figure 71 Experiments of the best model training for ResNet-18 (above) and AlexNt (below) tracked via MLflow

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 149

Verdict

The evaluation showed reasonable choices for model configurations were made during development. The

KPIs were tested and the results could be reproduced. Therefore, it is concluded that Requirement 6 is fulfilled.

5.3.2.3 Requirement 7

Requirement Recommendation

ID Description Type ASIL A/

 Low

7 The performance shall be compliant to the allowed worst-case

error.

ASIL ++

Specification of the parameters and rationale

This requirement demands the definition of the worst-case error. The worst-case error has to be carefully

defined with regard to the intended application of the system, the operational environment and possible

threats and hazards stemming from them. In practice, such error definitions are developed after an extensive

risk analysis performed by domain experts. Since this project entails a schematic example use case, the worst-

case error definition is done in an exemplary way. For this purpose, we assume two different threat and hazard

scenarios for the traffic sign recognition system.

The first scenario assumes that the vehicle is operated in Germany, where rain and even heavy rain is

common. Therefore, the operational environment requires the system to be reliable and robust within heavy

rain conditions. To ensure the reliability, we assume that the assistive traffic sign recognition is still

explained above the definition of the hazard or threat as well as the boundary for the accuracy has to be

derived by a domain expert and a sound rationale has to be provided. As a result, we define the first example

worst-case error as follows: The performance shall be compliant to an accuracy above 90% under heavy rain

conditions.

The second scenario assumes that an adversary could alter the input of the model within a specific amount

of time. This entails for the security and safety of the system that the model has to be robust against adversarial

attacks from an adversary following the threat model of the system. In practice, the threat model for the entire

system would be defined by a domain expert. Here, we assume that the attacker has an available time of 1

second to alter the input before it is passed to the model. As the PGD attack is the current state-of-the-art

adversarial attack, we chose this attack to give an insight into the robustness of the system. The PGD attack is

controlled by a perturbation boundary, which controls the amount of visually perceptible perturbation added

to the attacked image. The less perceptible a PGD attack is, the higher the amount of time consumed to

produce the perturbation. Due to time available for the attack, we choose the perturbation boundary (epsilon)

for this attack as 0.3. As above, we assume a sufficient reliability at an accuracy of above 90%.

As a result, two requirements can be formulated as:

1. The performance shall be compliant to an accuracy above 90% under heavy rain conditions.

2. The performance shall be compliant to an accuracy above 90% under a PGD attack with a

perturbation boundary of 0.3.

Audit procedure

If this requirement was adhered to, the model should have been tested against the worst-case errors during

its development process. Therefore, the testing documentation and test code should include such tests. An

auditor assesses the testing documentation and test code to ensure the compliance with the requirement. In

addition, an auditor tests the model against the defined worst-case errors. Within the scope of this project,

mages. For the purpose

5 Planning and exemplary Creation of Toolbox (AP5)

150 Federal Office for Information Security

of this use case, the toolbox implements configurations for the PGD attack from the pytorch attacks library

and transformations from the albumentations library. The pytorch attacks library is a Python library that

contains a number of state-of-the-art adversarial attacks for image datasets. Finally, the albumentations

library contains several commonly used transformations that add some form of perturbation to an image,

such as rain, Gaussian noise or motion blur as discussed in Chapter 5.2.3.2.

Implementation within the use case

For the purpose of this use case, the model was tested against both defined worst-case errors using automated

unit tests. Equivalent to the auditing process implemented in the toolbox, the model was tested using the

pytorch attacks PGD implementation and the heavy rain transformation from the albumentations library

with the relevant settings. Figure 72 shows exemplary images for the heavy rain transformation.

GTSRB class 21

GTSRB class 27

GTSRB class 41

Figure 72 Exemplary images for class 21, 27 and 41 transformed by the heavy rain transformation

For the tests, 60 transformed images for every class were included in the test dataset. The results of the tests

can be seen in Table 57.

Table 57 Results of heavy rain transformation and PGD attack against the model (accuracies rounded to 4th

decimal place)

Worst-Case

Error

Tested Data

Samples

Correct

Predictions

Failed

Predictions

Accuracy Required

Accuracy

Heavy rain

transformati

on

2,580 2,031 549 0.7872 >0.9

PGD attack

(epsilon =

0.3)

2,580 552 2,028 0.2140 >0.9

The model had an accuracy of 78.72% on the evaluated dataset transformed with the heavy rain

transformation and thus misses the

accuracy on the dataset perturbed via the PGD attack with an epsilon of 0.3 was determined as 21.40%. The

set boundary of 90% accuracy was not reached.

Verdict

Based on the evaluation results above, the model fails the defined requirements regarding the acceptable

worst-case error. Therefore, Requirement 7 is not fulfilled.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 151

5.3.2.4 Requirement 12

Requirement Recommendation

ID Description Type ASIL A/

 Low

12 The architectural design shall be described explicitly. ASIL ++

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

Since the constructed use case is not embedded within an overall system, this requirement is evaluated

schematically. The evaluation of this requirement is twofold. In a first step, the suitability of the measures

taken for describing the architectural design adequately is examined. The used methods are reviewed

regarding their eligibility to provide a correct and

presentation is assessed.

The basic concept of this requirement is to ensure a broad overview of the overall system to especially

demonstrate the integration and the role of the AI subsystem in the entire system. Here, particular

importance lies within the presentation of the connections between the sub-components, but also to the

system environment, e.g. external (data) sources or interfaces for intervention. Furthermore, functionality of

the specific sub-components shall be illustrated as well as the data flow inside the system.

As is stated in the explanatory text corresponding to Requirement 12 in AP3 (2), a description in natural

considered low (see Chapter 5.3.1), an additional informal description is sufficient.

In a second step, the correct application of the used methods is verified. For this, it is mandatory to validate

correctness and completeness of the description provided by the final documentation. The source code of the

SW units and corresponding interfaces is reviewed and it is evaluated if documentation correctly and fully

represents the entire system regarding its overall structure and functionality in a comprehensive way.

Implementation within the use case

Text-based documentation describing the design process and the development process is often sufficient to

Frequently graphical representations, such as UML diagrams, are used by developers as assistance during

design and development phase or subsequently for documentation purposes as well.

Regarding functionality, a reference to documentation of the individual SW units is sufficient. The dataflow

of the system can be illustrated with automatically created flow charts or diagrams. Further depictions are

possible and not limited as long as these are sufficient for and complete in presenting the system in total

respectively functionality, dataflow or interfaces of its components.

Verdict

Due to the nature of the constructed use case and the absence of an entire system (architecture), no verdict

is given for this requirement.

5.3.2.5 Requirement 14

Requirement Recommendation

ID Description Type ASIL A/

 Low

14 The development process shall be tracked. Additional +

5 Planning and exemplary Creation of Toolbox (AP5)

152 Federal Office for Information Security

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

The evaluation of this requirement is twofold. In a first step, the suitability of the measures taken for tracking

of the development process is examined. The used methods are reviewed regarding their eligibility to provide

the possibility of reproducing and retracing the development of the system to comprehend design decisions

and examine the cause of errors.

For Requirement 14, especially a tracking of the training process and architectural changes to the model are

relevant. Furthermore, the results of the internal tests and evaluations shall be stored.

In a second step, the correct application of the used methods is verified. For this, the tracked items and affairs

are reviewed. It is examined if it is possible to retrace the progression of the training process and the final

model decision.

Implementation within the use case

For the overall tracking of the SW development, Git was used. The Git repository enables version control and

state control. With the Git status, it is possible to comprehend changes and updates made to the source code.

Several Git commits were found assigned to different development states of the source code.

For the tracking of the development of the model, MLflow was used. MLflow is an open-source tool for

managing the machine learning lifecycle. The platform consists of four components for experiment tracking,

project packing, model packing and model registry.

In this project, the utility of experiment tracking was implemented to record the training process. All started

training experiments are listed with timestamp and duration (see Figure 65). For every experiment, the

following values and parameters are stored:

 Parameters:

o Batch size

o Learning rate

o Loss type

o Number of epochs

o Type of optimizer

o Decay of weight

 Metrics:

o Accuracy on validation dataset (relative to epoch)

o Accuracy on test dataset

o Loss on training data (relative to epoch)

o Loss on validation data (relative to epoch)

o Loss on test data

Additionally, in each case the best model and the final model is stored and a reference to the related Git

commit is given. Several training experiments tracked with MLflow were found. The experiments for the final

models are illustrated in Figure 71.

Experiments other than training, such as model evaluation on transformed or perturbed data, or methods for

explainability are tracked in a separate log folder structure defining its type, model accuracy, loss and the data

used for inference.

Verdict

The SW development was tracked in a reproducible way. The development and training processes for the

final models could be reproduced and verified. Considering the evaluation results stated, Requirement 14 is

fulfilled.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 153

5.3.2.6 Requirement 18

Requirement Recommendation

ID Description Type ASIL A/

 Low

18 The AI model shall be tested against out-of-distribution data. ASIL ++

Specification of the parameters and rationale

For the out-of-distribution data, the China Academic Traffic Sign Amalgamated Dataset (CATSAD) is chosen.

The image structure of this dataset is quite similar to the GTSRB dataset , but displays significant differences,

both visually and semantically. The images of both datasets share similarities in:

 A diverse background,

 Traffic sign shape (from various angles),

 Different image sections,

Thus, the chosen out-of-distribution data is not completely unrelated to the training data. Obvious

differences between the sets are:

 Semantic content,

 Coloration of traffic signs.

Furthermore, the figures on the traffic signs can be quite similar to the German traffic signs, but also

completely differ, e.g. when showing Chinese letters.

The model shall not misclassify data from the out-of-distribution dataset. The boundary for an explicit

classification shall be set by a domain expert. For this exemplary use case it is set at a model accuracy of 80%

and upwards.

Audit procedure

The requir -of-distribution data.

First, a suitable dataset containing the out-of-distribution data has to be found. A rationale for the suitability

of the chosen dataset representing out-of-

the chosen dataset is evaluated and compared to the set boundary in the parameter specification.

Implementation within the use case

For the testing part, three classes of traffic signs from the CATSAD dataset were chosen, that share some

characteristics with one or more GTSRB classes. An exemplary image of each chosen class is shown in Figure

73.

CATSAD class i9

CATSAD class pl5

CATSAD class w55

Figure 73 Exemplary images of the chosen classes for out-of-distribution data

Evaluation CATSAD class i9:

The CATSAD class i9 contains 75 different images. All images of the class were fed into the model and the

5 Planning and exemplary Creation of Toolbox (AP5)

154 Federal Office for Information Security

Table 58 Evaluation results of CATSAD class i9 (accuracies rounded to 5th decimal place)

The evaluation results for class i9 of the CATSAD datasets are presented in Table 58. For every class, the model

showed only low accuracies (<0.5). Therefore, a false prediction of this type of traffic sign is rendered

unrealistic.

Evaluation CATSAD class pl5:

The CATSAD class pl5 contains 820 different images. All images of the class were fed into the model and the

Table 59 Evaluation results of CATSAD class pl5 (accuracies rounded to 5th decimal place)

The evaluation results for class pl5 of the CATSAD datasets are presented in Table 59. For class 00002 of the

GTSRB dataset, the model showed a relatively high accuracy of around 0.88, thus exceeding the 80% boundary

and posing a misclassification. For illustration, Figure 74 shows an exemplary image of this class. Concluding,

a false model prediction of a speed limit 5 sign as a speed limit 50 sign might occur.

GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy

00000 0.0 00015 0.0 00030 0.0

00001 0.0 00016 0.0 00031 0.0

00002 0.19697 00017 0.0 00032 0.0

00003 0.0 00018 0.0 00033 0.19697

00004 0.0 00019 0.0 00034 0.0

00005 0.0 00020 0.0 00035 0.0

00006 0.0 00021 0.0 00036 0.0

00007 0.0 00022 0.0 00037 0.0

00008 0.01515 00023 0.0 00038 0.46970

00009 0.03030 00024 0.0 00039 0.0

00010 0.0 00025 0.0 00040 0.0

00011 0.0 00026 0.0 00041 0.0

00012 0.0 00027 0.0 00042 0.0

00013 0.09091 00028 0.0

 00014 0.0 00029 0.0

GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy

00000 0.0 00015 0.00413 00030 0.0

00001 0.04132 00016 0.00551 00031 0.0

00002 0.87741 00017 0.0 00032 0.0

00003 0.0 00018 0.00137 00033 0.00551

00004 0.0 00019 0.0 00034 0.0

00005 0.00964 00020 0.00413 00035 0.0

00006 0.0 00021 0.0 00036 0.0

00007 0.0 00022 0.0 00037 0.00138

00008 0.00275 00023 0.0 00038 0.03719

00009 0.0 00024 0.0 00039 0.0

00010 0.0 00025 0.0 00040 0.0

00011 0.0 00026 0.00138 00041 0.0

00012 0.0 00027 0.0 00042 0.0

00013 0.00826 00028 0.0

 00014 0.0 00029 0.0

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 155

Figure 74 Exemplary image of class 00002 of the GTSRB

Evaluation CATSAD class w55:

The CATSAD class w55 contains 1,096 different images. All images of the class were fed into the model and

ed. The results are demonstrated below:

Table 60 Evaluation results of CATSAD class w55 (accuracies rounded to 5th decimal place)

The evaluation results for class w55 of the CATSAD datasets are presented in Table 60. For every class, the

model showed only low accuracies (<0.5 or just above). Therefore, a false prediction of this type of traffic

sign is rendered unrealistic.

Verdict

Appropriate out-of-distribution data was chosen using a dataset of Chinese traffic signs. The evaluation

showed that the model-under-test predicted 87% of the images of the CATSAD class pl5 as the German traffic

ssification cannot be excluded and Requirement 18 is

not passed.

5.3.2.7 Requirement 19

Requirement Recommendation

ID Description Type ASIL A/

 Low

19 Test cases at the boundary values of the input of the AI model

shall be derived.

ASIL +

Specification of the parameters and rationale

GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy GTSRB

Class ID

Accuracy

00000 0.0 00015 0.0 00030 0.08491

00001 0.0 00016 0.0 00031 0.00094

00002 0.0 00017 0.00189 00032 0.0

00003 0.02547 00018 0.00189 00033 0.0

00004 0.0 00019 0.0 00034 0.0

00005 0.00472 00020 0.00283 00035 0.0

00006 0.0 00021 0.00094 00036 0.0

00007 0.0 00022 0.0 00037 0.0

00008 0.0 00023 0.0 00038 0.0

00009 0.0 00024 0.0 00039 0.0

00010 0.0 00025 0.00377 00040 0.0

00011 0.51321 00026 0.00189 00041 0.0

00012 0.17547 00027 0.0 00042 0.0

00013 0.01698 00028 0.02075

 00014 0.0 00029 0.14434

5 Planning and exemplary Creation of Toolbox (AP5)

156 Federal Office for Information Security

As stated in the introduction of this section, a definition of the test and evaluation parameters is heavily

dependent on the considered use case. Regarding this requirement, a challenge is the definition of an

acceptable and meaningful input range. For numerical data this can often be trivial, but for other use cases it

can be quite complex. For example, the input range for the considered use case of image classification could

be every possible combination of different colored pixels, from pitch black to a completely white picture. A

more specific approach is to focus on specific image features, i.e. brightness, rotation, contrast or sharpness.

But even with the more focused approach, it is hard to define meaningful boundaries that are relevant for the

specific use case. For this, domain experts as well as literature or standardization and legal requirements shall

be consulted. Due to these reasons, the requirement is evaluated schematically by giving a general procedure.

Audit procedure

behavior for the edge region of the input is analyzed.

As stated above, first a specification of the boundary values is necessary. Either there already is a specified

value range or it has to be derived. For the latter, e.g., technical literature can be consulted to establish

common value spaces within the use case. The expertise of a domain expert can specify these input spaces

even further to derive adequate boundaries for the developed system.

The edge regions of the specified value range are tested as inference input and the resulting model behavior

is observed for non-expected or faulty behavior, e.g. out-of-range output values. Then, the defined edge

regions can be incorporated in Requirement 20 to craft corner cases, for example, as a combination of several

boundary values.

Implementation within the use case

The input value range and thus the boundary values are heavily dependent on the considered use case. Even

within the same area of application, diverse input ranges can be reasonable, e.g. due to different models. After

specifying the input range or respectively determining the boundary values of the use case and model, a

general proce

corresponding output values should be recorded and analyzed. Especially, deviations to normal behavior of

the model should be tracked and examined.

5.3.2.8 Requirement 20

Requirement Recommendation

ID Description Type ASIL A/

 Low

20 Test cases based on corner cases of the AI model shall be

derived.

ASIL +

Specification of the parameters and rationale

Similar to Requirement 19, it can be quite challenging to determine meaningful corner cases. Again, these are

heavily dependent on the specific use case and the entire system. For the definition, domain experts, literature

and prior experience shall be taken into account. In the image domain, corner cases can be crafted regarding

various features. These can be of technical nature (brightness, contrast, etc.), semantical (unlikely and

exceptional scenarios on the image), or combinations of them. Due to this, the requirement is evaluated

schematically by giving a general procedure.

Audit procedure

constellations of input parameters. Functional safety requirements demand such considerations for a certain

ASIL level. In contrast to boundary values, where the input parameters are varying along the specified range,

- ocess,

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 157

relevant inputs and values shall be selected and combined to set up a collection of corner cases which can be

used as input to the model. The selection process shall take the following guidance into account:

 Combination of the specified min/max values of the inputs (e.g. maximum possible contrast value at

the minimum possible brightness value, etc.)

 Selection of the most unlikely combination of inputs or scenarios (e.g. rainy foreground and cloudless

background, etc.)

 Analysis of the input parameter distributions and combination of values at edge regions.

The evaluation results are analyzed in terms of non-expected/faulty behavior of the model.

Implementation within the use case

Again, the corner case definition is heavily dependent on the considered use case. A general procedure would

be to present pre-selected corner cases crafted from the input signals to the model. An analysis of the results

can show unwanted deviations from the expected behavior.

5.3.2.9 Requirement 28

Requirement Recommendation

ID Description Type ASIL A/

 Low

28 The datasets used for training, testing and evaluation shall not

contain any errors.

Additional ++

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

To evaluate this requirement, the datasets used for training, testing and evaluation have to be reviewed. The

procedure how the dataset review is carried out highly depends on the use case and the type of data the dataset

contains. In the case of image classification, the following characteristics play an important role and shall be

evaluated:

 Size of the images

 Irrelevant images

 Labeling

 Repeated data entries

 Relevance of overall dataset or specific classes to the use case

 Damaged/invalid data samples

 Manipulated data samples

Implementation within the use case

In the considered use case, the GTSRB dataset was used. The dataset was split in a way that the training and

test set are independent of each other and do not share a common image (see Requirement 30, Chapter

5.3.2.10). The sets were analyzed regarding image size and no significant outlier was found. All images were

analyzed regarding their semantical meaning and relation to the use case without findings. The labeling

process was correct and no incorrect labels were identified. Also, there were no repetitive images in the

datasets.

Verdict

A review showed no indication of possible errors inside the used datasets. Therefore, it is concluded that

Requirement 28 is fulfilled.

5 Planning and exemplary Creation of Toolbox (AP5)

158 Federal Office for Information Security

5.3.2.10 Requirement 30

Requirement Recommendation

ID Description Type ASIL A/

 Low

30 The training, test and evaluation datasets shall be independent

from each other.

Additional ++

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

For this requirement, the datasets used for training, evaluation and testing of the ML model have to be

assessed.

The training dataset is the d

 and

training progress during the training procedure. The trained model is evaluated against this dataset and the

hyperparameters are adjusted accordingly. The testing dataset is used

the training on previously unseen data.

Mixing the datasets is problematic since data that is used for the training is already incorporated in the model

and thus is not suitable for the detection of anomalies and errors during training (such as underfitting and

overfitting). Further, it is considered best-practice to use unseen data for the final testing of the model, since

this

Implementation within the use case

to sets for training, validation

and evaluation. The splitting procedure is described in the toolbox documentation (295) in the section for

available datasets. The split is disjunct,such that no dataset shared an element with another. This was

confirmed by an examination of the stored datasets within the project.

Verdict

It was confirmed that the used training, validation and evaluation datasets do not share a common item.

Therefore, it is concluded that Requirement 30 is fulfilled.

5.3.2.11 Requirement 32

Requirement Recommendation

ID Description Type ASIL A/

 Low

32 The requirements shall be analyzed to derive test cases for

interpretable model decisions.

ASIL ++

Specification of the parameters and rationale

In order to implement and audit Requirement 32, the functional requirements towards the system of the

model have to be analyzed. Since the exemplary use case at hand is not attached to a full system and only

consist of the AI model itself, we assume the following exemplary system requirement: The system shall not

be susceptible to background information.

be able to reason that this requirement is met.

Audit procedure

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 159

The system requirements, testing documentation and test code of the system have to be reviewed by the

auditors. The evaluation is based on whether the requirements needed to be explained exist and that the

system was tested accordingly and correctly. During the audit process, the auditors need to use an Explainable

AI (XAI) method to explain the decisions made by the system. For this purpose, the toolbox contains a module

that uses the GradCam method from the pytorch-gradcam Python library. During the audit, the model is

tested on a randomly selected number of images for all classes and the decisions are explained using GradCam.

The explained decisions are analyzed whether the model considered any background information for its

classification. For this use case, the auditors check whether any information around the depicted traffic sign

is highlighted by the GradCam method.

Implementation within the use case

A unit test analogous to the toolbox implementation for certification of the system is performed. For the test

dataset,

whether the background information of any image was taken into account by the model for its decision

making.

An analysis of the classes via the GradCam module was conducted. Exemplary images of the GradCam results

 Figure 75. es

on the features directly related to the sign, especially the first digit. Background information played little to

no role in the decision process.

Figure 75 Example toolbox result for GradCam explanations of a 20 km/h traffic sign on the left and a 30 km/h

traffic sign on the right

Verdict

The system shall not be susceptible to background

 wa

method GradCam showed that the model did not focus on background information, but rather on the

significant features of the particular classes when processing the testing dataset. Therefore, based on the

evaluation above, Requirement 32 is fulfilled.

5.3.2.12 Requirement 33

Requirement Recommendation

ID Description Type ASIL A/

 Low

33

between the modelling of the system and the trained model.

ASIL ++

Specification of the parameters and rationale

5 Planning and exemplary Creation of Toolbox (AP5)

160 Federal Office for Information Security

No parameters have to be set for this requirement.

Audit procedure

(SW unit design), all crucial functionality of the system, sub-system and components must be explainable and

traceable. Decisions of the modelled parts have to be explainable in the matter of "if-then" taxonomy. The

auditor and homologation bodies shall be able to understand and follow the information flow which leads to

specific decisions of the system. As decision of ML models cannot be described in a fully comprehensible way.

This fact often contradicts the requirements within the SW unit design and the modelling process. Thus,

methods from the field of XAI shall be implemented and applied to the model in order to expose the crucial

decision processes and to understand how the model led to a certain output.

As a part of the audit, specific traffic scenarios, traffic signs etc. and the corresponding (desired) model reaction

shall be described in a formal way, e.g. by definition of the most important features for recognizing a specific

the

to the decision rationales by applying appropriate XAI methods previously. The results shall be checked for

consistency and deviations from the desired (modelled) behavior. The evaluation is based on the definition of

representative test scenarios during the audit process and the application of XAI methods.

Implementation within the use case

The toolbox contains a module that uses the GradCam method from the pytorch-gradcam Python library.

During the audit, the model is tested on previously defined test cases in which a formal decision rationale is

given. Then, the model's decisions are explained using GradCam. The results are analyzed and compared to

the desired (modelled) behavior with regard to consistency and deviations.

The general formal decision rationale for the considered use case of traffic sign recognition can be formulated

as:

figure displayed by the traffic sign, the sign s

A dataset containing different classes was evaluated on the model using GradCam. The dataset contained 60

images for each of the 43 classes of the GTSRB dataset. An

with the resulting images from GradCam was carried out. The accuracies for the individual classes were all

>0.98, meaning the great majority of images was classified correctly.

GTSRB class 9

GTSRB class 11

GTSRB class 12

Figure 76 Exemplary GradCam images from GTSRB

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 161

not resolved. Exemplary images are presented

in Figure 76.

Verdict

The evaluation targeted the suitability of GradCam to help understanding model decisions and thus giving

an indication if the modelling objective and goals were successfully implemented by the AI model. It showed

evaluation above, Requirement 33 is fulfilled.

5.3.2.13 Requirement 40

Requirement Recommendation

ID Description Type ASIL A/

 Low

40 The SW unit design shall be described explicitly. ASIL ++

Specification of the parameters and rationale

No parameters have to be set for this requirement.

Audit procedure

The evaluation of this requirement is twofold. In a first step, the suitability of the measures taken for

describing the SW unit are adequately examined. The used methods are reviewed regarding their eligibility

to provide a correct and complete

architecture. Therefore, the focus lies on the description of the SW parts responsible for the creation and the

training of the model. The documentation of potential additional modules of the system, e.g. for pre- or post-

processing, is considered as well.

As is stated in the explanatory text corresponding to Requirement 40 in AP3 (2), a description in natural

considered low (see Chapter 5.3.1), an additional informal description is sufficient.

In a second step, the correct application of the used methods is verified. For this, it is mandatory to validate

correctness and completeness of the description provided by the final documentation. The source code of the

SW units is reviewed and it is evaluated if documentation correctly and fully represents the SW regarding the

overall structure and functionality in a comprehensive way.

Implementation within the use case

The documentation of the software unit design is implemented using Sphinx as discussed in Chapter 5.2.3.3.

Sphinx extracts information from the python source code to create documentation files. More accurately, for

every SW module reStructuredText files are created from docstrings in the source code, which then again can

be converted, for example, into a HTML-based documentation.

The architecture of the used models is given in form of a graphical representation in Figure 77. Here, the

graphs describing the models are unambiguous and it was verified that the illustration matches the model

architecture.

5 Planning and exemplary Creation of Toolbox (AP5)

162 Federal Office for Information Security

Figure 77 Model architectures of ResNet-18 (left) and AlexNet (right)

The target of the evaluation consists solely of the machine learning model. Additional modules are not

present. For every module concerning the training process, clear and complete docstrings for classes,

functions and methods are present. Figure 78 illustrates a source code excerpt containing exemplary

docstrings.

5 Planning and exemplary Creation of Toolbox (AP5)

Federal Office for Information Security 163

Figure 78 Exemplary exempt for class and method describing docstrings

Verdict

The chosen form of documentation, i.e. the docstrings in the source code respectively their transformation

into a HTML-based documentation, generally fulfills the requirement regarding the description in natural

language. The graphical illustration of the model architecture is correct and fulfills the requirement regarding

an informal description of the SW unit. Therefore, based on the evaluation above, Requirement 40 is fulfilled.

5.3.3 Summary of Requirements

This chapter summarizes the evaluation results of the implemented requirements from Chapter 5.3.2. An

overview of the requirements and their verdicts is given in Table 61.

Table 61 Summary of the implemented requirements7 and their corresponding verdicts

Requirement Evaluation

ID Description Chapter Verdict

4 The requirements for AI subsystems shall apply to the entire

system (if applicable).

5.3.2.1 -

6 The performance on key performance indicators (KPIs) shall

be as high as possible

5.3.2.2 Pass

7 The performance shall be compliant to the allowed worst-case

error.

5.3.2.3 Fail

12 The architectural design shall be described explicitly. 5.3.2.4 -

14 The development process shall be tracked. 5.3.2.5 Pass

5 Planning and exemplary Creation of Toolbox (AP5)

164 Federal Office for Information Security

Requirement Evaluation

18 The AI model shall be tested against out-of-distribution data. 5.3.2.6 Fail

19 Test cases at the boundary values of the input of the AI model

shall be derived.

5.3.2.7 -

20 Test cases based on corner cases of the AI model shall be

derived.

5.3.2.8 -

28 The datasets used for training, testing and evaluation shall not

contain any errors.

5.3.2.9 Pass

30 The training, test and evaluation datasets shall be independent

from each other.

5.3.2.10 Pass

32 The requirements shall be analyzed to derive test cases for

interpretable model decisions.

5.3.2.11 Pass

33

between the modelling of the system and the trained model.

5.3.2.12 Pass

40 The SW unit design shall be described explicitly. 5.3.2.13 Pass

Overall, 13 requirements recommended for the evaluation of the considered use case are introduced. As stated

before, four requirements are covered schematically. From the remaining requirements, 7 were fulfilled,

while for Requirement 7 and Requirement 18 the conditions were not met. The failed requirements indicate

robustness is limited to certain classes or affects all classes. Potential measures to enhance the model for

fulfilling the failed requirements can include a general expansion of the training set with more data samples

as well as an integration of perturbed images for an adversarial training.

6 Conclusion

Federal Office for Information Security 165

6 Conclusion

6.1 Summary

The work and results described in this report build the foundation for the follow-up project AIMobilityAudit.

True to its name AIMobilityAuditPrep, the current project enables an extensive testing of different auditing

requirements for AI-based AD/ADAS systems in the future. For this, the first major contribution of this work

is a list of 50 requirements which are technically relevant to assure the IT-Security, robustness, explainability,

etc. of AI-based AD/ADAS systems. These requirements evolved based on a continuous discussion of the

different stakeholders that participated in this project und under attention to existing regulations, norms, or

guidelines and an extensive SOTA literature review. The literature review ensures that the proposed

requirements remain feasible and that current findings from recent research are incorporated to provide up

to date requirements.

The second main contribution of this work are the developed toolchain and toolbox components that are

useful to audit AI-based systems. On the one hand, with the developed software it is possible to train an

exemplary AD/ADAS systems for a chosen use case. In addition, tools are provided that allow to audit the

system whether it is compliant to selected audit requirements. Here, we exemplary implement 13

requirements which are supported in the developed toolchain as proof-of-concept. To demonstrate that the

toolchain concept is suitable and that the developed tools can be used to audit actual AI-based AD/ADAS

systems we demonstrate the use on a selected use case. First, to select the most fitting AD/ADAS use case we

perform an extensive comparison of many possible AD/ADAS use cases, based on different categories like

complexity, auditability, available resources, etc. In this analysis it showed that the TSR use case is best suited

for the initial testing of the toolchain and toolbox. Therefore, we use the developed toolchain to create and

train two exemplary TSR systems based on publicly available datasets and DNN architectures which serve as

exemplary AD/ADAS systems. These systems are then examined using the 13 implemented audit

requirements in the toolbox. Thereby, we use a simulation strategy which is based on the augmentation of

existing images to simulate different environmental conditions.

During the proof-of-concept implementation, we find that the toolbox is easily extendable to include further

audit requirements. Also, we find that the selected requirements can be specified to provide meaningful

results for a DNN-based TSR system which serves as a placeholder of a general AD/ADAS system. All in all,

the achieved results of this project serve as a good starting point for following projects which assess the

suitability of different audit requirements in more depth.

6.2 Outlook

As discussed in the last chapter we implemented only 13 of the 50 proposed audit requirements as proof-of-

concept. A natural step in a follow-up project is to extend the existing toolbox to include all 50 requirements.

This allows to assess for all requirements whether they are suitable to audit AI-based AD/ADAS systems or

whether some requirements are challenging or infeasible to implement for audits in praxis. Additionally, one

can expand the extent of the already implemented requirements. Some of these requirements are quite

extensive and can be implemented for practical tests in different ways. For example, the security can be

evaluated against different adversarial attacks and the robustness can be evaluated in different weather

conditions. In the current implementation we chose a single exemplary implementation for each

requirement to show the principled applicability of the toolbox. In a follow-up project this exemplary

implementation can be expanded to cover further aspects of the associated audit requirement. This enables

more extensive audits and increases the meaningfulness of the obtained results.

Furthermore, it is especially interesting to test some audit requirements using actual hardware and test

facilities. Instead of performing all tests in a simulation environment, the most interesting audit requirements

should also be tested in reality. Only these tests enable to properly assess the feasibility and expressiveness of

the proposed audit requirements. To maximize the gained information from practical tests, it is most

6 Conclusion

166 Federal Office for Information Security

important to perform the physical tests with audit requirements where one might suspect a difference

between the results obtained by performing the test in a simulation environment. Lastly, we advise to revisit

all proposed audit requirements based on the obtained results in the extensive tests and based on new insights

from the literature. This allows to continuously optimize the audit requirements and be best prepared to use

List of Figures

Federal Office for Information Security 167

List of Figures

Figure 1 Overview of the AI lifecycle from (6) ... 10

Figure 2 Partial overview of some aspects of AI trustworthiness depending on the steps of the AI lifecycle

from (8) ... 10

Figure 3 Illustration of the steps necessary to extract model architectures from (15) .. 12

Figure 4 Categorization of evasion attacks ... 13

Figure 5 FGSM attack results on a 3D object detection system from (23). The images on the left contain the

clean stereo image with the result of the 3D object detection underneath. The images on the right show the

FGSM perturbed stereo image and the corresponding 3D object detection result underneath. 14

Figure 6 PGD attack results on a 3D object detection system from (23). The images on the left contain the

clean stereo image with the result of the 3D object detection underneath. The images on the right show the

PGD perturbed stereo image and the corresponding 3D object detection result underneath. 14

Figure 7 DeepFool attack results on MNIST images with different attack configurations from (25) 15

Figure 8 Adversarial examples crafted with the C&W attack on MNIST from (26) .. 15

Figure 9 Adversarial examples created by AdvGAN on MNIST from (28) ... 16

Figure 10 Image-dependent adversarial examples from (31) .. 16

Figure 11 Universal adversarial examples from (31) ... 16

Figure 12 Exemplary visualization of a patch-based evasion attack on semantic segmentation from (40) 17

Figure 13 Exemplary visualization of a patch-based evasion attack on optical flow prediction from (42) 18

Figure 14 Exemplary visualization of a patch-based evasion attack on depth prediction from (44) 18

Figure 15 Exemplary visualization of an evasion attack on LiDAR-based object detection from (46) 19

Figure 16 Exemplary visualization of an evasion attack on LiDAR and camera-based object detection from

(47) .. 19

Figure 17 Categorization of attacks for data poisoning ... 21

Figure 18 Overview of different attack methods for backdoor poisoning from (52) .. 21

Figure 19 Exemplary visualization of label consistent backdoor poisoning from (54) .. 22

Figure 20 Exemplary visualization of targeted poisoning from (58) .. 23

Figure 21 Main limitations of ML algorithms with regard to safety .. 27

Figure 22 MNIST data set with different thresholds of added noise from (75) .. 28

Figure 23 Basic architecture of a TEE from (79) .. 29

Figure 24 Categorization of mitigation strategies against evasion attacks .. 30

Figure 25 Training procedure under defensive distillation from (84) ... 31

Figure 26 Illustration of a Random Self-Ensemble model with noise layers before each convolutional layer

from (85) .. 31

Figure 27 Side-by-side comparison between baseline model ensemble predictions and model ensemble

predictions under an ADP regularizer from (86) .. 32

Figure 28 Illustration of defense-GAN from (90) .. 32

Figure 29 Categorization of mitigation strategies for data poisoning ... 34

Figure 30 Overview of different defense methods against the targeted poisoning attack from (97) 35

Figure 31 Overview of the augmentation strategy from (106) .. 36

Figure 32 Categorization of methods for explainability.. 39

Figure 33 Exemplary visualization of different saliency methods from (130) ... 40

Figure 34 Visualization of the explanations provided by counterfactual examples in comparison to saliency-

based explanations from (143) .. 41

Figure 35 Overview of an explainable AD system from (153) ... 43

Figure 36 Exemplary visualization of datasheets from (155) on the left and model cards from (157) on the

right ... 44

Figure 37 Overview of the proposed internal auditing process and associated documentation from (12) 45

Figure 38 V-Model approach of the ISO 26262 requires mapping to the ML specific properties 46

Figure 39 Suitable safety strategies for ML-based systems from (166) .. 46

List of Figures

168 Federal Office for Information Security

Figure 40 Challenges and possible mapping for (semi-) formal specification of ML based systems from (167)

 ... 47

Figure 41 Overview of the components of a system for AD .. 49

Figure 42 Overview of different visual perception tasks required for AD from (193) ... 50

Figure 43 Visualization of object detection using 3D LiDAR data from (196) .. 51

Figure 44 Overview of different approaches to perform the localization of an autonomous vehicle from (203)

 ... 52

Figure 45 Overview of behavior prediction and required data representations from (205) 53

Figure 46 Overview of the steps required for path planning from (208) .. 53

Figure 47 Sensor setup on the left and architecture on the right of the AD system from (217) 56

Figure 48 Detailed overview of the data flow in the IARA from (185) ... 56

Figure 49 Overview of the AD system on the left and hardware components on the right of the AD system

Apollo from (220) ... 57

Figure 50 Overview of often used datasets for AD/ADAS from (221) .. 58

Figure 51 Overview of corrupted images used for object detection from (227) .. 59

Figure 52 Example of three sensing modalities available in CARLA from (229) ... 59

Figure 53 Examples of successful image-to-image translation from (234) .. 60

Figure 54 Overview of composition of requirements for AI systems .. 63

Figure 55 Overview of the generic toolchain for developing a DNN-based AD/ADAS system........................... 130

Figure 56 Overview of the toolchain components which are implemented in this AP .. 131

Figure 57 Overview of a generic toolbox component for auditing a DNN-based AD/ADAS system 132

Figure 58 Overview of the model component .. 132

Figure 59 Overview of the test data loader component ... 133

Figure 60 Overview of the simulation data generator .. 134

Figure 61 Overview of the sensor data generator ... 135

Figure 62 Overview of the setting component ... 135

Figure 63 Overview of the report component .. 136

Figure 64 Overview of different options to analyze the transferability of results from simulation to reality

 .. 136

Figure 65 Exemplary excerpt from the experiment and model tracking using MLFlow 140

Figure 66 Exemplary overview of standard image augmentations from

https://pypi.org/project/albumentations/ .. 141

Figure 67 Exemplary overview of weather image augmentations adapted from

https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library .. 141

Figure 68 Exemplary exempt from the implemented test session .. 142

Figure 69 Exemplary excerpts from the code documentation .. 142

Figure 70 Schematic depiction of the shared risk consideration over several system layers 147

Figure 71 Experiments of the best model training for ResNet-18 (above) and AlexNt (below) tracked via

MLflow .. 148

Figure 72 Exemplary images for class 21, 27 and 41 transformed by the heavy rain transformation 150

Figure 73 Exemplary images of the chosen classes for out-of-distribution data ... 153

Figure 74 Exemplary image of class 00002 of the GTSRB .. 155

Figure 75 Example toolbox result for GradCam explanations of a 20 km/h traffic sign on the left and a 30

km/h traffic sign on the right .. 159

Figure 76 Exemplary GradCam images from GTSRB .. 160

Figure 78 Model architectures of ResNet-18 (left) and AlexNet (right) .. 162

Figure 79 Exemplary exempt for class and method describing docstrings .. 163

List of Tables

Federal Office for Information Security 169

List of Tables

Table 1 Existing safety and security standards in the domain of road vehicles .. 61

Table 2 Overview of ongoing AI and AD standardization activities... 62

Table 3 Overview on the derivation of the ASIl classifications taken from (165) ... 67

Table 4 Methods for deriving test cases for integration testing (DI) taken from (247) ... 68

Table 5 Methods for consistent and correct implementation of external and internal interfaces (CI) at the

hardware-software level taken from (247) .. 68

Table 6 Level of robustness at the system (RS) level taken from (247) ... 68

Table 7 Methods for correct functional performance, accuracy and timing of safety mechanisms at the

vehicle level (FP) taken from (247) .. 68

Table 8 Notations for the software architectural design (NA) taken from (247) ... 69

Table 9 ASIL recommendations to verify the software integration (IV) taken from (247) .. 69

Table 10 ASIL recommendations for software testing (ST) taken from (247) ... 69

Table 11 ASIL recommendations for embedded software testing (ET) taken from (247) .. 70

Table 12 ASIL recommendations for deriving test cases for embedded software testing (DE) taken from (247)

 ... 70

Table 13 Notations for the software unit design (NU) taken from (247) ... 70

Table 14 ASIL recommendations for modelling and coding guidelines (MC) taken from (247) 70

Table 15 ASIL recommendations for deriving test cases for software unit testing (DU) taken from (247) 71

Table 16 ASIL recommendations for software unit verification (UV) taken from (247) .. 71

Table 17 Error detection methods (ED) from (247) with additional risk levels .. 72

Table 18 Error handling methods (EH) from (247) with additional risk levels .. 72

Table 19 General ASIL-derived requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the entire system ... 73

Table 20 General additional requirements with risk levels .. 74

Table 21 ASIL-derived performance requirements with ASIL recommendations from the ISO 26262 (165;

246; 247) for the entire system ... 74

Table 22 Requirement regarding the performance on KPIs with risk levels .. 75

Table 23 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the entire system ... 76

Table 24 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the entire system ... 76

Table 25 Requirement for the reproducibility of the system with risk levels .. 77

Table 26 ASIL-derived documentation requirements with ASIL recommendations from the ISO 26262 (165;

246; 247) for the entire system ... 77

Table 27 Development documentation requirement with risk levels ... 78

Table 28 Summary of generic requirements for the entire system .. 78

Table 29 ASIL-derived robustness requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the AI subsystem ... 80

Table 30 Additional robustness requirements with risk levels for the AI subsystem ... 83

Table 31 ASIL-derived interpretability requirements with ASIL recommendations from the ISO 26262 (165;

246; 247) for the AI subsystem .. 84

Table 32 Additional interpretability requirements with risk levels for the AI subsystem .. 85

Table 33 ASIL-derived documentation and lifecycle requirement with ASIL recommendations from ISO

26262 (165; 246; 247) for the AI subsystem .. 85

Table 34 Traceability requirements with risk levels ... 86

Table 35 ASIL-derived monitoring requirements with ASIL recommendations from the ISO 26262 (165; 246;

247) for the AI subsystem ... 87

Table 36 Summary of generic requirements for the AI subsystems ... 88

Table 37 Applicability of requirements for mobility use cases ... 90

List of Tables

170 Federal Office for Information Security

Table 38 Overview on the testability of each generic requirement .. 94

Table 39 Overview of general use cases ... 103

Table 40 Overview of ADAS specific use cases ... 108

Table 41 Overview of AD specific use cases ... 110

Table 42 Overview of relevant documents issued by ISO .. 115

Table 43 Overview of relevant documents issued by SAE ... 116

Table 44 Overview of relevant documents issued by UNECE .. 117

Table 45 Overview of relevant documents issued by BSI .. 117

Table 46 Overview of the use case analysis .. 117

Table 47 Overview of the combination complexity for AD use cases .. 122

Table 48 Overview of the combination complexity for non AD use cases ... 123

Table 49 Overview of the suitability of the analysis parameters per category for the audit criteria

development ... 125

Table 50 Overview of the suitability of use cases for the audit criteria development ... 125

Table 51 Overview of advantages of specific use cases for deriving a second use case recommendation 127

Table 52 Overview of some available datasets for the TSR use case selected in AP4 (3) ... 137

Table 53 All ASIL A/low risk generic requirements towards the entire system of a traffic sign recognition

system. Requirements highlighted in yellow are highly recommended and therefore mandatory for this use

case. Further recommended requirements that are implemented exemplarily are highlighted in red. 143

Table 54 All ASIL A/low risk generic requirements towards the AI subsystems of a traffic sign recognition

system. Requirements highlighted in yellow are highly recommended and therefore mandatory for this use

case. Further recommended requirements that are implemented exemplarily are highlighted in red. 144

Table 55 Summary of the highly recommended requirements for this use case .. 145

Table 56 Summary of recommended requirements implemented exemplarily for this use case 146

Table 57 Results of heavy rain transformation and PGD attack against the model (accuracies rounded to 4th

decimal place) ... 150

Table 58 Evaluation results of CATSAD class i9 (accuracies rounded to 5th decimal place) 154

Table 59 Evaluation results of CATSAD class pl5 (accuracies rounded to 5th decimal place) 154

Table 60 Evaluation results of CATSAD class w55 (accuracies rounded to 5th decimal place) 155

Table 61 Summary of the implemented requirements and their corresponding verdicts 163

Acronyms

Federal Office for Information Security 171

Acronyms

Acronym Meaning

AD Autonomous Driving

ADAS Advanced Driver Assistance System

ADP Adaptive Diversity Promoter

AI Artificial Intelligence

ANSI American National Standards Institute

AP Work Package (Arbeitspaket)

AR Application Rule

ASIL Automotive Safety Integrity Level

AV Autonomous Vehicle

AWI Approved Work Item

BIM Basic Iterative Method

BNN Bayesian Neural Network

BSI Bundesamt für Sicherheit in der Informationstechnik

CAL Cybersecurity Assurance Level

CATSAD China Academic Traffic Sign Amalgamated Dataset

CD Committee Draft

CI Correct implementation of external and internal interface

CNN Convolutional Neural Network

CU Chinese University of Hong Kong

DE Deriving test cases for the embedded software testing

DI Deriving test cases for integration testing

DIN German Institute for Standardization

DL Deep Learning

DMD Driver Monitoring Dataset

DNN Deep Neural Network

DP-SGC Differentially Private Stochastic Gradient Descent

DU Deriving test cases for the software unit testing

ED Error Detection

EH Error Handling

EU European Union

FDIS Final Draft International Standard

FGSM Fast Gradient Sign Method

FP Functional Performance

GAN Generative Adversarial Network

GPS Global Positioning System

GTSRB German Traffic Sign Recognition Benchmark

HD High-Definition

HIL Hardware in the Loop

HMI Human Machine Interface

IARA Intelligent Autonomous Robotics Automobile

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

ISO International Organization for Standardization

IT Information Technology

IV Software Integration Verification

Acronyms

172 Federal Office for Information Security

Acronym Meaning

KITTI Karlsruhe Institute of Technology/Toyota Technological Institute

KPI Key Performance Indicator

LiDAR Light Detection and Ranging

LSTM Long Short-Term Memory

MC Modelling and Coding Guidelines

MILP Mixed Integer Linear Programming

ML Machine Learning

NA Notations for the Architectural Design

NU Notations for the Software Unit Design

ODD Operational Design Domain

ONNX Open Neural Network Exchange

PAS Publicly Available Specification

PCI Peripheral Component Interconnect

PGD Projected Gradient Descent

PIE Pedestrian Intention Estimation

QM Quality Management

RADAR Radio Detection and Ranging

ReLU Rectified Linear Unit

RGB Red Green Blue

SAE Society of Automotive Engineers

SIL Software in the Loop

SLAM Simultaneous Localization and Mapping

SMT Satisfiability Modulo Theories

SOTA State-Of-The-Art

SOTIF Safety of the Intended Functionality

ST Software Testing

TEE Trusted Execution Environment

TR Technical Report

TSR Traffic Sign Recognition

UL Underwriters Laboratories

UNECE United Nations Economic Commission for Europe

UV Software Unit Verification

VDE Association for Electrical, Electronic & Information Technologies

XAI Explainable AI

Bibliography

Federal Office for Information Security 173

Bibliography

1. AIMobilityAuditPrep. Final Results AP2 - State-of-the-Art Report. 2022.

2. AIMobilityAuditPrep. Final Results AP3 - Generic Requirements. 2022.

3. AIMobilityAuditPrep. Final Results AP4 - Use Case Comparison for Audit Criteria Development.

2022.

4. AIMobilityAuditPrep. Final Results AP5 - Planning and exemplary Creation of Toolbox. 2022.

5. AI Enabling Technologies: A Survey. Gadepally, Vijay, et al. Ithaca, USA : arXiv, 2019, Vol.

abs/1905.03592.

6. Characterizing Machine Learning Process: A Maturity Framework. Akkiraju, Rama, et al. Business

Process Management: Lecture Notes in Computer Science, Berlin, Germany : Springer, Cham, 2020,

Vol. 12168.

7. Characterizing the Software Process: A Maturity Framework. Humphrey, Watts. New York, USA :

IEEE Software, 1988, Vol. 5.

8. Trustworthy AI: From Principles to Practices. Li, Bo, et al. New York, USA : Association for

Computing Machinery, 2021.

9. Vulnerabilities of Connectionist AI Applications: Evaluation and Defence. Berghoff, Christian, Neu,

Matthias and von Twickel, Arndt. Lausanne, Switzerland : Frontiers in Big Data, 2020, Vol. 3.

10. ModelOps: Cloud-Based Lifecycle Management for Reliable and Trusted AI. Hummer, Waldemar,

et al. San Francisco, USA : IEEE International Conference on Cloud Engineering, 2019.

11. ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine

Learning Lifecycles. Raji, Inioluwa Deborah and Yang, Jingying. Vancouver, Canada : Conference on

Neural Information Processing Systems, 2019.

12. Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal Algorithmic

Auditing. Raji, Inioluwa Deborah, et al. Barcelona, Spain : ACM Conference on Fairness,

Accountability, and Transparency, 2020.

13. Towards the Science of Security and Privacy in Machine Learning. Papernot, N., et al. s.l. : arXiv

preprint, 2016. arXiv:1611.03814.

14. Delving into Transferable Adversarial Examples and Black-Box Attacks. Liu, Yanpei, et al. s.l. : 5th

International Conference on Learning Representations, {ICLR} 2017, 2017.

15. DeepSniffer: A DNN Model Extraction Framework Based on Learning Architectural Hints. Hu,

Xing, et al. New York, USA : Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Systems, 2020.

16. InverseNet: Augmenting Model Extraction Attacks with Training Data Inversion. Xueluan, Gong,

et al. Montreal, Canada : Proceedings of the Thirtieth International Joint Conference on Artificial

Intelligence, 2021.

17. Autoencoders, Unsupervised Learning, and Deep Architectures. Baldi, Pierre. s.l. : ICML Workshop

on Unsupervised and Transfer Learning, 2012.

18. PRADA: Protecting against DNN Model Stealing Attacks. Juuti, Mika, Szyller, Sebastian and

Asokan, N. s.l. : IEEE European Symposium on Security and Privacy, 2019.

19. DeepBillboard: Systematic Physical-World Testing of Autonomous Driving Systems. Zhou,

Husheng, et al. Seoul, South Korea : International Conference on Software Engineering, 2020.

Bibliography

174 Federal Office for Information Security

20. Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and Defenses. Deng, Yao,

et al. s.l. : IEEE Transactions on Industrial Informatics, 2021.

21. Explaining and Harnessing Adversarial Examples. Goodfellow, Ian J., Shlens, Jonathon and

Szegedy, Christian. s.l. : 3rd International Conference on Learning Representations, {ICLR} 2015, 2015.

22. Towards Deep Learning Models Resistant to Adversarial Attacks. Madry, Aleksander, et al.

Vancouver, Canada : International Conference on Learning Representations, 2018.

23. Counteracting Adversarial Attacks in Autonomous Driving. Sun, Qi, et al. s.l. : 2020 IEEE/ACM

International Conference On Computer Aided Design (ICCAD), 2020.

24. An Analysis of Adversarial Attacks and Defenses on Autonomous Driving Models. Deng, Yao, et al.

s.l. : 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom),

2020.

25. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. Moosavi-Dezfooli,

Seyed-Mohsen, Fawzi, Alhussein and Frossard, Pascal. Las Vegas, USA : IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

26. Towards Evaluating the Robustness of Neural Networks. Carlini, Nicholas and Wagner, David. s.l. :

2017 IEEE Symposium on Security and Privacy (SP), 2017.

27. Generative Adversarial Nets. Goodfellow, Ian, et al. Montreal, Canada : Conference on Neural

Information Processing Systems, 2014.

28. Generating Adversarial Examples with Adversarial Networks. Xiao, C., et al. s.l. : IJCAI, 2018.

29. Learning Multiple Layers of Features from Tiny Images. Krizhevsky, Alex. Toronto, Canada :

University of Toronto, 2009.

30. AdvGAN++ : Harnessing Latent Layers for Adversary Generation. Mangla, Puneet, et al. Seoul,

South Korea : International Conference on Computer Vision, 2019.

31. Generative Adversarial Perturbations. Poursaeed, Omid, et al. s.l. : CVPR, 2018.

32. Udacity. Udacity challenge 2: Steering angle prediction. [Online] 2017.

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2.

33. Perceptual-Sensitive GAN for Generating Adversarial Patches. Liu, A., et al. s.l. : Proceedings of the

AAAI Conference on Artificial Intelligence, 2019.

34. Seeing Isn't Believing: Towards More Robust Adversarial Attack Against Real World Object

Detectors. Zhao, Yue, et al. s.l. : Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, 2019.

35. PhysGAN: Generating Physical-World-Resilient Adversarial Examples for Autonomous Driving.

Kong, Zelun, et al. s.l. : 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

36. Physical Adversarial Attacks on Deep Neural Networks for Traffic Sign Recognition: A Feasibility

Study. Woitschek, Fabian and Schneider, Georg. Nagoya, Japan : IEEE Intelligent Vehicles Symposium,

2021.

37. Adversarial Examples for Semantic Segmentation and Object Detection. Xie, Cihang, et al. Venice,

Italy : IEEE International Conference on Computer Vision, 2017.

38. Physical Adversarial Examples for Object Detectors. Eykholt, Kevin, et al. Baltimore, USA : USENIX

Workshop on Offensive Technologies, 2018.

Bibliography

Federal Office for Information Security 175

39. The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous

Driving: Enhancing Extensive Environment Sensing. Bär, Andreas, et al. New York, USA : IEEE Signal

Processing Magazine, 2021, Vol. 38.

40. Indirect Local Attacks for Context-aware Semantic Segmentation Networks. Nakka, Krishna Kanth

and Salzmann, Mathieu. Glasgow, United Kingdom : European Conference on Computer Vision, 2020.

41. Consistent Semantic Attacks on Optical Flow. Koren, Tom, et al. Ithaca, USA : arXiv, 2021, Vol.

abs/2111.08485.

42. What Causes Optical Flow Networks to be Vulnerable to Physical Adversarial Attacks. Schrodi,

Simon, Saikia, Tonmoy and Brox, Thomas. Ithaca, USA : arXiv, 2021, Vol. abs/2103.16255.

43. Targeted Adversarial Perturbations for Monocular Depth Prediction. Wong, Alex, Cicek, Safa and

Soatto, Stefano. Vancouver, Canada : Conference on Neural Information Processing Systems, 2020.

44. Monocular Depth Estimators: Vulnerabilities and Attacks. Mathew, Alwyn, Patra, Aditya Prakash

and Mathew, Jimson. Ithaca, USA : arXiv, 2020, Vol. abs/2005.14302.

45. AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds. Hamdi, Abdullah, et al.

Glasgow, United Kingdom : European Conference on Computer Vision, 2020.

46. Adversarial Objects Against LiDAR-Based Autonomous Driving Systems. Cao, Yulong, et al. Ithaca,

USA : arXiv, 2019, Vol. abs/1907.05418.

47. Exploring Adversarial Robustness of Multi-sensor Perception Systems in Self Driving. Tu, James,

et al. London, United Kingdom : Conference on Robot Learning, 2021.

48. Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial

Sensor Attack and Countermeasures. Sun, Jiachen, et al. Berkeley, USA : USENIX Security Symposium,

2020.

49. Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses.

Goldblum, Micah, et al. Ithaca, USA : arXiv, 2020, Vol. abs/2012.10544.

50. Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks.

Schwarzschild, Avi, et al. Vienna, Austria : International Conference on Machine Learning, 2021.

51. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. Gu, Tianyu,

Dolan-Gavitt, Brendan and Garg, Siddharth. New York, USA : IEEE Access, 2017, Vol. 7.

52. LIRA: Learnable, Imperceptible and Robust Backdoor Attacks. Doan, Khoa, et al. Montreal,

Canada : International Conference on Computer VIsion, 2021.

53. Label-Consistent Backdoor Attacks. Turner, Alexander, Tsipras, Dimitris and Madry, Aleksander.

Ithaca, USA : arXiv, 2019, Vol. abs/1912.02771.

54. Hidden Trigger Backdoor Attacks. Saha, Aniruddha, Subramanya, Akshayvarun and Pirsiavash,

Hamed. New York, USA : AAAI Conference on Artificial Intelligence, 2020.

55. Backdoor Attack with Imperceptible Input and Latent Modification. Doan, Khoa, Lao, Yingjie and

Li, Ping. San Diego, USA : Conference on Neural Information Processing Systems, 2021.

56. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. Sohn, Kihyuk,

et al. Vancouder, Canada : Conference on Neural Information Processing Systems, 2020.

57. Poisoning and Backdooring Contrastive Learning. Carlini, Nicholas and Terzis, Andreas. Lisbon,

Portugal : International Conference on Learning Representations, 2022.

58. Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching. Geiping, Jonas, et al.

Vienna, Austria : International Conference on Learning Representations, 2021.

Bibliography

176 Federal Office for Information Security

59. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks. Shafahi, Ali, et al.

Montreal, Canada : Conference on Neural Information Processing Systems, 2018.

60. MetaPoison: Practical General-purpose Clean-label Data Poisoning. Huang, Ronny, et al.

Vancouver, Canada : Conference on Neural Information Processing Systems, 2020.

61. ImageNet Large Scale Visual Recognition Challenge. Russakovsky, Olga, et al. Amsterdam,

Netherlands : International Journal of Computer Vision, 2015, Vol. 115.

62. Poisoning the Unlabeled Dataset of Semi-Supervised Learning. Carlini, Nicholas. Berkeley, USA :

USENIX Security Symposium, 2021.

63. Unlearnable Examples: Making Personal Data Unexploitable. Huang, Hanxun, et al. Vienna,

Austria : International Conference on Learning Representations, 2021.

64. Adversarial Examples Make Strong Poisons. Fowl, Liam, et al. Sydney, Australia : Conference on

Neural Information Processing Systems, 2021.

65. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations.

Hendrycks, Dan and Dietterich, Thomas. New Orleans, USA : International Conference on Learning

Representations, 2019.

66. On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness.

Mintun, Eric, Kirillov, Alexander and Xie, Saining. Ithaca, USA : arXiv, 2021, Vol. abs/2102.11273.

67. The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization.

Hendrycks, Dan, et al. Montreal, Canada : International Conference on Computer Vision, 2021.

68. Shortcut Learning in Deep Neural Networks. Geirhos, Robert, et al. Berlin, Germany : Nature

Machine Intelligence, 2020, Vol. 2.

69. Generalisation in Humans and Deep Neural Networks. Geirhos, Robert, et al. Montreal, Canada :

Conference on Neural Information Processing Systems, 2018.

70. Explaining Explanations: An Overview of Interpretability of Machine Learning. Gilpin, Leilani, et

al. Turin, Italy : International Conference on Data Science and Advanced Analytics, 2018.

71. Visual Interpretability for Deep Learning: a Survey. Zhang, Quanshi and Zhu, Song-Chun.

Hangzhou, China : Frontiers of Information Technology & Electronic Engineering, 2018, Vol. 19.

72. A Survey Of Methods for Explaining Black Box Models. Guidotti, Riccarda, et al. New York, USA :

ACM Computing Surveys, 2019, Vol. 51.

73. Machine Learning Explainability for External Stakeholders. Bhatt, Umang, et al. Barcelona, Spain :

Conference on Fairness, Accountability, and Transparency, 2020.

74. European Commission. Regulation of the European Parliament and of the Council Laying Down

Harmonised Rules on Artificial Intelligence and Amending Certain Union Legislative Acts. Brussels,

Belgium : EUR-Lex, 2021.

75. Broadening Differential Privacy for Deep Learning Against Model Inversion Attacks. Zhang,

Qiuchen, et al. Atlanta, USA : IEEE Conference on Big Data, 2020.

76. Towards a Robust and Trustworthy Machine Learning System Development: An Engineering

Perspective. Xiong, Pulei, et al. s.l. : arXiv, 2022.

77. Developing Privacy-preserving AI Systems: The Lessons learned. Chen, Huili, et al. s.l. : 57th

ACM/IEEE Design Automation Conference (DAC), 2020.

78. Trustworthy AI Inference Systems: An Industry Research View. Cammarota, Rosario, et al. s.l. :

arXiv, 2020.

Bibliography

Federal Office for Information Security 177

79. Better Together: Privacy-Preserving Machine Learning Powered by Intel® SGX and Intel® DL

Boost. Intel. Santa Clara, USA : Intel Artificial Intelligence Blog, 2021.

80. On Evaluating Adversarial Robustness. Carlini, Nicholas, et al. Ithaca, USA : arXiv, 2019, Vol.

abs/1902.06705.

81. Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free

Attacks. Croce, Francesco and Hein, Matthias. Vienna, Austria : International Conference on Machine

Learning, 2020.

82. Adversarial Training and Robustness for Multiple Perturbations. Tramèr, Florian and Boneh, Dan.

s.l. : Conference on Neural Information Processing Systems, 2019.

83. Ensemble Adversarial Training: Attacks and Defenses. Tramèr, Florian, et al. s.l. : International

Conference on Learning Representations, 2018.

84. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks. Papernot,

Nicolas, et al. s.l. : 37th IEEE Symposium on Security & Privacy, 2016.

85. Towards Robust Neural Networks via Random Self-Ensemble. Liu, Xuanqing, et al. s.l. : European

Conference on Computer Vision (ECCV), 2018.

86. Improving Adversarial Robustness via Promoting Ensemble Diversity. Pang, Tianyu, et al. s.l. :

International Conference on Machine Learning (ICML), 2019.

87. Evading Adversarial Example Detection Defenses with Orthogonal Projected Gradient Descent.

Bryniarski, Oliver, et al. s.l. : International Conference on Learning Representations, 2022.

88. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. Xu, Weilin, Evans,

David and Qi, Yanjun. s.l. : 25th Annual Network and Distributed System Security Symposium, 2018.

89. A simple unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks.

Lee, Kimin, et al. s.l. : Neural Information Processing Systems (NeurIPS), 2018.

90. Defense-GAN: Protecting Classifiers against Adversarial Attacks using Generative Models.

Samangouei, Pouya, Kabkab, Maya and Chellappa, Rama. s.l. : International Conference on Learning

Representations, 2018.

91. Defense against Adversarial Attacks using High-Level Representation guided Denoiser. Liao,

Fangzhou, et al. s.l. : IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

92. On Evaluating Neural Network Backdoor Defenses. Veldanda, Akshaj and Garg, Siddharth.

Vancouver, Canada : Conference on Neural Information Processing Systems: Workshop on Dataset

Curation and Security, 2020.

93. Spectral Signatures in Backdoor Attacks. Tran, Brandon, Li, Jerry and Madry, Aleksander.

Montreal, Canada : Conference on Neural Information Processing Systems, 2018.

94. Detecting Backdoor Attacks on Deep Neural Networks by Activation Clustering. Chen, Bryant, et

al. Honululu, USA : AAAI Conference on Artificial Intelligence: SafeAI Workshop, 2019.

95. Bypassing Backdoor Detection Algorithms in Deep Learning. Tan, Te Juin Lester and Shokri, Reza.

Genoa, Italy : IEEE European Symposium on Security and Privacy, 2020.

96. Stronger Data Poisoning Attacks Break Data Sanitization Defenses. Koh, Pang Wei, Steinhardt,

Jacob and Liang, Percy. Cham, Switzerland : Machine Learning, 2021, Vol. 111.

97. ust(er): Adversarial Training against Poisons and Backdoors.

Geiping, Jonas, et al. Vienna, Austria : Internationcal Conference on Computer Vision. Workshop on

Security and Safety in Machine Learning Systems, 2021.

Bibliography

178 Federal Office for Information Security

98. Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks without an Accuracy

Tradeoff. Borgnia, Eitan, et al. Toronto, Canada : IEEE International Conference on Acoustics, Speech,

and Signal Processing, 2021.

99. MaxUp: Lightweight Adversarial Training with Data Augmentation Improves Neural Network

Training. Gong, Chengyue, et al. Nashville, USA : IEEE Conference on Computer Vision and Learning

Representations, 2021.

100. Deep Learning with Differential Privacy. Abadi, Martin, et al. Vienna, Austria : ACM Conference

on Computer and Communications Security, 2016.

101. On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping. Hong,

Sanghyun, et al. Ithaca, USA : arXiv, 2020, Vol. abs/2002.11497.

102. RAB: Provable Robustness Against Backdoor Attacks. Weber, Maurice, et al. Ithaca, USA : arXiv,

2020, Vol. abs/2003.08904.

103. Certified Adversarial Robustness via Randomized Smoothing. Cohen, Jeremy, Rosenfeld, Elan

and Kolter, Zico. Long Beach, USA : Internatioanl Conference on Machine Learning, 2019.

104. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. Liu, Kang,

Dolan-Gavitt, Brendan and Garg, Siddharth. Heraklion, Greece : International Symposium on

Research in Attacks, Intrusions, and Defenses, 2018.

105. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. Wang, Bolun,

et al. San Franscisco, USA : IEEE Symposium on Security and Privacy, 2019.

106. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty. Hendrycks,

Dan, et al. Addis Ababa, Ethiopia : International Conference on Learning Representations, 2020.

107. Mixup: Beyond Empirical Risk Minimization. Zhang, Hongyi, et al. Vancouver, Canada :

International Conference on Learning Representations, 2018.

108. Increasing the Robustness of DNNs against Image Corruptions by Playing the Game of Noise.

Rusak, Evgenia, et al. Addisa Ababa, Ethiopia : International Conference on Learning Representations,

2020.

109. Making Convolutional Networks Shift-Invariant Again. Zhang, Richard. Long Beach, USA :

International Conference on Machine Learning, 2019.

110. Improving Robustness against Common Corruptions by Covariate Shift Adaptation. Schneider,

Steffen, et al. Vancouver, Canada : Conference on Neural Information Processing Systems, 2020.

111. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Ioffe, Sergey and Szegedy, Christian. Lille, France : International Conference on Machine Learning,

2015.

112. A Less Biased Evaluation of Out-of-Distribution Sample Detectors. Shafaei, Alireza, Schmidt,

Marc and Little, James. Cardiff, United Kingdom : British Machine Vision Conference, 2019.

113. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks.

Hendrycks, Dan and Gimpel, Kevin. Toulon, France : International Conference on Learning

Representations, 2017.

114. Generalized ODIN: Detecting Out-of-Distribution Image without Learning from Out-of-

Distribution Data. Hsu, Yen-Chang, et al. Seatlle, USA : IEEE Conference on Computer Vision and

Pattern Recognition, 2020.

115. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. Gal,

Yarin and Ghahramani, Zoubin. New York, USA : International Conference on Machine Learning,

2016.

Bibliography

Federal Office for Information Security 179

116. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Srivastava, Nitish, et al.

New Yotk, USA : The Journal of Machine Learning Research, 2014, Vol. 15.

117. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles.

Lakshminarayanan, Balaji, Pritzel, Alexander and Blundell, Charles. Long Beach, USA : Conference on

Neural Information Processing Systems, 2017.

118. BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning. Wen,

Yeming, Tran, Dustin and Ba, Jimmy. Addis Ababa, Ethiopia : International Conference on Learning

Representations, 2020.

119. Evidential Deep Learning to Quantify Classification Uncertainty. Sensoy, Murat, Kaplan, Lance

and Kandemir, Melih. Montreal, Canada : Conference on Neural Information Processing Systems,

2018.

120. Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning. Zhang, Ruqi, et al. Addis Abab,

Ethiopia : International Conference on Learning Representations, 2020.

121. Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. Dusenberry, Michael, et al.

Vienna, Austria : International Conference on Machine Learning, 2020.

122. Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning.

Papernot, Nicolas and McDaniel, Patrick. Ithaca, USA : arXiv, 2018, Vol. abs/1803.04765.

123. On Calibration of Modern Neural Networks. Guo, Chuan, et al. Sydney, Australia : International

Conference on Machine Learning, 2017.

124. Learning Confidence for Out-of-Distribution Detection in Neural Networks. DeVries, Terrance

and Taylor, Graham. Ithaca, USA : arXiv, 2018, Vol. abs/1802.04865.

125. Attribution-Based Confidence Metric For Deep Neural Networks. Jha, Susmit, et al. Vancouver,

Canada : Conference on Neural Information Processing Systems, 2019.

126. Online Black-Box Confidence Estimation of Deep Neural Networks. Woitschek, Fabian and

Schneider, Georg. Aachen, Germany : IEEE Intelligent Vehicles Symposium (Under Review), 2022.

127. Causal Interpretability for Machine Learning - Problems, Methods and Evaluation. Moraffah,

Raha, et al. New York, USA : ACM SIGKDD Explorations Newsletter, 2020, Vol. 22.

128. Explainability of Vision-Based Autonomous Driving Systems: Review and Challenges. Zablocki,

Eloi, et al. Toulouse, France : Dependable & Explainable Learning Workshop on Machine Learning in

Certified Systems, 2021.

129. Explanations in Autonomous Driving: A Survey. Omeiza, Daniel, et al. New York, USA : IEEE

Transactions on Intelligent Transportation Systems, 2021.

130. Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks. Wang,

Haofan, Wang, Zifan and Mardziel, Piotr. Seattle, USA : IEEE Conference on Computer Vision and

Pattern Recognition Workshops, 2020.

131. Axiomatic Attribution for Deep Networks. Sundararajan, Mukund, Taly, Ankur and Yan, Qiqi.

Sydney, Australia : International Conference on Machine Learning, 2017.

132. Attribution in Scale and Space. Xu, Shawn, Venugopalan, Subhashini and Sundararajan, Mukund.

Seattle, USA : IEEE Conference on Computer Vision and Pattern Recognition, 2020.

133. Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks. Chattopadhyay,

Aditya, et al. Lake Tahoe, USA : IEEE Winter Conference on Applications of Computer Vision, 2018.

134. Striving for Simplicity: The All Convolutional Net. Springenberg, Jost Tobias, et al. San Diego,

USA : International Conference on Learning Representations Workshops, 2015.

Bibliography

180 Federal Office for Information Security

135. Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers.

Binder, Alexander, et al. Barcelona, Spain : International Conference on Artificial Networks, 2016.

136. Interpretable Explanations of Black Boxes by Meaningful Perturbation. Fong, Ruth and Vedaldi,

Andrea. Venice, Italy : International Conference on Computer Vision, 2017.

137. Real Time Image Saliency for Black Box Classifiers. Dabkowski, Piotr and Gal, Yarin. Long Beach,

USA : Conference on Neural Information Processing Systems, 2017.

138. Sanity Checks for Saliency Maps. Adebayo, Julius, et al. Montreal, Canada : Conference on Neural

Information Processing Systems, 2018.

139. Quick Shift and Kernel Methods for Mode Seeking. Vedaldi, Andrea and Soatto, Stefano.

Marseille, France : European Conference on Computer Vision, 2008.

140. - Explaining the Predictions of Any Classifier. Ribeiro, Marco Tulio,

Singh, Sameer and Guestrin, Carlos. San Francisco, USA : ACM International Conference on

Knowledge Discovery and Data Mining, 2016.

141. Anchors: High-Precision Model-Agnostic Explanations. Ribeiro, Marco Tulio, Singh, Sameer and

Guestrin, Carlos. New Orleans, USA : AAAI Conference on Artificial Intelligence, 2018.

142. A Unified Approach to Interpreting Model Predictions. Lundberg, Scott and Lee, Su-In. Long

Beach, USA : Conference on Neural Information Processing Systems, 2017.

143. Explaining in Style: Training a GAN to explain a classifier in StyleSpace. Lang, Oran, et al.

Montreal, Canada : International Conference on Computer Vision, 2021.

144. Counterfactual Visual Explanations. Goyal, Yash, et al. Long Beach, USA : International

Conference on Machine Learning, 2019.

145. GANalyze: Toward Visual Definitions of Cognitive Image Properties. Goetschalckx, Lore, et al.

Seoul, South Korea : International Conference on Computer Vision, 2019.

146. Understanding Black-box Predictions via Influence Functions. Koh, Pang Wei and Liang, Percy.

Sydney, Australia : International Conference on Machine Learning, 2017.

147. Model-Agnostic Interpretability with Shapley Values. Messalas, Andreas, Kanellopoulos, Yiannis

and Makris, Christos. Patras, Greece : International Conference on Information, Intelligence, Systems

and Applications, 2019.

148. Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations.

Harradon, Michael, Druce, Jeff and Ruttenberg, Brian. Ithaca, USA : arXiv, 2018, Vol. abs/1802.00541.

149. Interpreting CNN Knowledge Via An Explanatory Graph. Zhang, Quanshi, et al. New Orleans,

USA : AAAI Conference on Artificial Intelligence, 2018.

150. Rule Extraction Algorithm for Deep Neural Networks: A Review. Hailesilassie, Tameru. New York,

USA : International Journal of Computer Science and Information Security, 2016, Vol. 14.

151. DeepRED Rule Extraction from Deep Neural Networks. Zilke, Jan Ruben, Loza, Eneldo and

Janssen, Frederik. Bari, Italy : International Conference on Discovery Science, 2016.

152. Gradient-based Learning Applied to Document Recognition. LeCun, Yann, et al. New York, USA :

Proceedings of the IEEE, 1998, Vol. 86.

153. Interpretable Learning for Self-Driving Cars by Visualizing Causal Attention. Kim, Jinkyu and

Canny, John. Venice, Italy : International Conference on Computer Vision, 2017.

154. Neural Additive Models: Interpretable Machine Learning with Neural Nets. Agarwal, Rishabh, et

al. San Diego, USA : Conference on Neural Information Processing Systems, 2021.

Bibliography

Federal Office for Information Security 181

155. Datasheets for Datasets. Gebru, Timnit, et al. New York, USA : Communication of the ACM, 2021,

Vol. 64.

156. Ensuring Dataset Quality for Machine Learning Certification. Picard, Sylvaine, et al. Coimbra,

Portugal : IEEE International Workshop on Software Certification, 2020.

157. Model Cards for Model Reporting. Mitchell, Margaret, et al. Atlanta, USA : ACM Conference on

Fairness, Accountability, and Transparency, 2019.

158. FactSheets: Increasing Trust in AI Services through Supplier's Declarations of Conformity.

Arnold, Matthew, et al. Yorktown Heights, USA : IBM Journal of Research and Development, 2019,

Vol. 1.

159. A Methodology for Creating AI FactSheets. Richards, John, et al. Ithaca, USA : arXiv, 2020, Vol.

abs/1810.03993.

160. Weights & Biases. https://wandb.ai/site. [Online] February 2022.

161. DataRobot. https://www.datarobot.com/. [Online] February 2022.

162. Neptune Labs. https://neptune.ai/. [Online] February 2022.

163. MLflow Project. https://mlflow.org/. [Online] February 2022.

164. Hopsworks. https://www.hopsworks.ai/. [Online] February 2022.

165. ISO 26262-3:2018 - Road vehicles - Functional safety. Concept phase. Geneva, Switzerland :

International Organization for Standardization (ISO), 2018.

166. Practical Solutions for Machine Learning Safety in Autonomous Vehicles. Mohseni, Sina, et al.

New York, USA : AAAI Conference on Artificial Intelligence: Workshop on Safe AI, 2020.

167. Practical Machine Learning Safety: A Survey and Primer. Mohseni, Sina, et al. New York, USA :

Association for Computing Machinery, 2021, Vol. 1.

168. Towards Fast Computation of Certified Robustness for ReLU Networks. Weng, Tsui-Wei, et al.

s.l. : CoRR, 2018. 1804.09699.

169. Rectified Linear Units Improve Restricted Boltzmann Machines. Nair, Vinod and Hinton,

Geoffrey. Haifa, Israel : International Conference on Machine Learning, 2010.

170. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. Katz, Guy, et al.

abs/1702.01135, s.l. : CoRR, 2017.

171. Evaluating Robustness of Neural Networks with Mixed Integer Programming. Tjeng, Vincent,

Xiao, Kai and Tedrake, Russ. s.l. : International Conference on Learning Representations, 2019.

172. Branch and Bound for Piecewise Linear Neural Network Verification. Bunel, Rudy, et al.

abs/1909.06588, s.l. : CoRR, 2019.

173. SoK: Certified Robustness for Deep Neural Networks. Li, Linyi, Xie, Tao und Li, Bo. s.l. : ArXIv,

2020.

174. Optimization and Abstraction: A Synergistic Approach for Analyzing Neural Network

Robustness. Anderson, Greg, et al. abs/1904.09959, s.l. : CoRR, 2019.

175. A Dual Approach to Scalable Verification of Deep Networks. Dvijotham, Krishnamurthy, et al.

s.l. : CoRR, 2018, Vol. abs/1803.06567. 1803.06567.

176. Certified Adversarial Robustness with Additive Noise. Li, Bai, et al. s.l. : CoRR, 2018, Vol.

abs/1809.03113. 1809.03113.

177. Certified Robustness to Adversarial Examples with Differential Privacy. Lecuyer, Mathias, et al.

San Francisco, USA : IEEE Symposium on Security and Privacy, 2019.

Bibliography

182 Federal Office for Information Security

178. PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach. Weng, Tsui-

Wei, et al. CoRR : s.n., 2018. 1812.08329.

179. Randomized Smoothing of All Shapes and Sizes. Yang, Greg, et al. s.l. : CoRR, 2020. 2002.08118.

180. Black-Box Certification with Randomized Smoothing: A Functional Optimization Based

Framework. Zhang, Dinghuai, et al. CoRR : s.n., 2020. 2002.09169.

181. A Framework for Robustness Certification of Smoothed Classifiers using F-Divergences.

Dvijotham, Krishnamurthy, et al. s.l. : ICLR 2020 Conference Blind Submission, 2019.

182. Boosting Robustness Certification of Neural Networks. Singh, Gagandeep, et al. s.l. : ICLR 2019

Conference Blind Submission, 2018.

183. Fast Geometric Projections for Local Robustness Certification. Fromherz, Aymeric, et al. CoRR :

s.n., 2020. 2002.04742.

184. A Survey of Autonomous Driving: Common Practices and Emerging Technologies. Yurtsever,

Ekim, et al. New York, USA : IEEE Access, 2020, Vol. 8.

185. Self-Driving Cars: A Survey. Badue, Claudine, et al. Amsterdam, Netherlands : Expert Systems

with Applications, 2021, Vol. 165.

186. A Survey of Deep Learning Techniques for Autonomous Driving. Grigorescu, Sorin, et al.

Hoboken, USA : Journal of Field Robotics, 2020, Vol. 37.

187. Trends in camera based Automotive Driver Assistance Systems (ADAS). Dabral, Shashank, et al.

College Station : IEEE International Midwest Symposium on Circuits and Systems, 2014.

188. A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion. Ziebinski, Adam, et

al. Halkidiki, Greece : International Conference on Computational Collective Intelligence, 2016.

189. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Janai, Joel, et

al. Boston, USA : Foundations and Trends in Computer Graphics and Vision, 2020, Vol. 12.

190. Experimental Security Research of Tesla Autopilot. Tencent Keen Security Lab. Shenzhen, China :

Tencent, 2019.

191. Workshop on Autonomous Driving - Tesla Keynote. Karpathy, Andrej. Nashville, USA : IEEE

Conference on Computer Vision and Pattern Recognition, 2021.

192. Waymo. Mountain View, USA :

Waypoint, 2021.

193. Is it Safe to Drive? An Overview of Factors, Metrics, and Datasets for Driveability Assessment in

Autonomous Driving. Guo, Junyao, Kurup, Unmesh and Shah, Mohak. New York, USA : IEEE

Transactions on Intelligent Transportation Systems, 2018, Vol. 21.

194. Deep Learning for Generic Object Detection: A Survey. Liu, Li, et al. Amsterdam, Nethrelands :

International Journal of Computer Vision, 2019, Vol. 128.

195. A Survey of Deep Learning Based Object Detection. Jiao, Licheng, et al. New York, USA : IEEE

Access, 2019, Vol. 9.

196. 3D Object Detection for Autonomous Driving: A Survey. Qian, Rui, Lai, Xin and Li, Xirong. Ithaca,

USA : arXiv, 2021, Vol. abs/2106.10823.

197. Image Segmentation Using Deep Learning: A Survey. Minaee, Shervin, et al. New York, USA :

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

198. A Survey on Deep Learning Based Approaches for Scene Understanding in Autonomous Driving.

Guo, Zhiyang, et al. Basel, Switzerland : Electronics, 2021, Vol. 10.

Bibliography

Federal Office for Information Security 183

199. Object Scene Flow for Autonomous Vehicles. Menze, Moritz and Geiger, Andreas. Boston, USA :

IEEE Conference on Computer Vision and Pattern Recognition, 2015.

200. A Survey of Variational and CNN-based Optical Flow Techniques. Tu, Zhigang, et al. Amsterdam,

Netherlands : Signal Processing: Image Communication, 2019, Vol. 72.

201. Monocular Depth Estimation Based On Deep Learning: An Overview. Xiaxogang, Ruan, et al.

Shanghai, China : Chinese Automation Congress, 2020.

202. A Survey on Deep Learning Techniques for Stereo-based Depth Estimation. Laga, Hamid, et al.

New York, USA : IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, Vol. 10.

203. Survey on Localization Methods for Autonomous Vehicles in Smart Cities. Chehri, Abdellah,

Quadar, Nordine and Rachid, Saadane. Casablanca, Morocco : International Conference on Smart City

Applications, 2019.

204. A Survey of Localization Methods for Autonomous Vehicles in Highway Scenarios. Laconte,

Johann, et al. Basel, Switzerland : Sensors (Under Review), 2022, Vol. 22.

205. Survey on Vision-based Path Prediction. Hirakawa, Tsubasa, et al. Las Vegas, USA : Distributed,

Ambient and Pervasive Interations, 2018.

206. Human Motion Trajectory Prediction: A Survey. Rudenko, Andrey, et al. New York, USA : The

International Journal of Robotics Research, 2020, Vol. 39.

207. Deep Learning for Vision-based Prediction: A Survey. Rasouli, Amir. Ithaca, USA : arXiv, 2020,

Vol. abs/2007.00095.

208. A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles. Paden,

Brian, et al. New York, USA : IEEE Transactions on Intelligent Vehicles, 2016, Vol. 1.

209. Planning and Decision-Making for Autonomous Vehicles. Schwarting, Wilko, Alonso-Mora,

Javier and Rus, Daniela. San Mateo, USA : Annual Review of Control, Robotics, and Autonomous

Systems, 2018, Vol. 1.

210. A Survey of Deep RL and IL for Autonomous Driving Policy Learning. Zhu, Zeyu and Zhao,

Huijing. Ithaca, USA : arXiv, 2021, Vol. abs/2101.01993.

211. Deep Reinforcement Learning for Autonomous Driving: A Survey. Kiran, Bangalore Ravi, et al.

New York, USA : IEEE Transactions on Intelligent Transportation Systems, 2021, Vol. 2.

212. A Survey of Deep Learning Applications to Autonomous Vehicle Control. Kuutti, Sampo, et al.

New York, USA : IEEE Transactions on Intelligent Transportation Systems, 2019, Vol. 12.

213. End to End Learning for Self-Driving Cars. Bojarski, Mariusz, et al. Holmdel, USA : NVIDIA

Developer Blog, 2016.

214. ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst. Bansal,

Mayank, Krizhevsky, Alex and Ogale, Abhijit. Freiburg, Germany : Robotics: Science and Systems,

2019.

215. On Offline Evaluation of Vision-based Driving Models. Codevilla, Felipe, et al. Munich, Germany :

European Conference on Computer Vision, 2018.

216. Towards Fully Autonomous Driving: Systems and Algorithms. Levinson, Jesse, et al. Baden-

Baden, Germany : IEEE Intelligent Vehicles Symposium, 2011.

217. Making Bertha Drive - An Autonomous Journey on a Historic Route. Ziegler, Julius, et al. New

York, USA : IEEE Intelligent Transportation Systems Magazine, 2014, Vol. 6.

Bibliography

184 Federal Office for Information Security

218. Experience, Results and Lessons Learned from Automated Driving on Germany's Highways.

Aeberhard, Michael, et al. New York, USA : IEEE Intelligent Transportation Systems Magazine, 2015,

Vol. 7.

219. Computing Systems for Autonomous Driving: State of the Art and Challenges. Liu, Liankai, et al.

New York, USA : IEEE Internet of Things Journal, 2021, Vol. 8.

220. Baidu. https://apollo.auto/developer.html. [Online] 2022.

221. All-In-One Drive: A Comprehensive Perception Dataset with High-Density Long-Range Point

Clouds. Weng, Xinshao, et al. Nagoya, Japan : IEEE Intelligent Vehicles Symposium: Workshop on 3D

Deep Learning for Automated Driving, 2021.

222. Man vs. Computer: Benchmarking Machine Learning Algorithms for Traffic Sign Recognition.

Stallkamp, Johannes, et al. San Jose, USA : International Joint Conference on Neural Networks, 2011.

223. Chinese Traffic Sign Recognition Database. Huang, Linlin. Beijing, China : School of Electronic

and Information Engingeering, 2019.

224. Vision-based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems:

Perspectives and Survey. Mogelmose, Andreas, Trivedi, Mohan Manubhai and Moeslund, Thomas.

New York, USA : IEEE Transactions on Intelligent Transportation Systems, 2012, Vol. 13.

225. Histograms of Oriented Gradients for Human Detection. Dalal, Navneet and Triggs, Bill. San

Diego, USA : IEEE Conference on Computer Vision and Pattern Recognition, 2005.

226. Pedestrian Detection: A Benchmark. Dollar, Piotr, et al. Miami, USA : IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

227. Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming.

Michaelis, Claudio, et al. Vancouver, Canada : Conference on Neural Information Processing Systems:

Machine Learning for Autonomous Driving Workshop, 2019.

228. Benchmarking the Robustness of Semantic Segmentation Models. Kamann, Christoph and

Rother, Carsten. Seattle, USA : IEEE Conference on Computer Vision and Pattern Recognition, 2020.

229. CARLA: An Open Urban Driving Simulator. Dosovitskiy, Alexey, et al. Mountain View, USA :

Conference on Robot Learning, 2017.

230. AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. Shah, Shital, et

al. Zürich, Switzerland : Conference on Field and Service Robotics, 2017.

231. IPG Automotive. https://ipg-automotive.com/de/produkte-loesungen/software/carmaker/.

[Online] February 2022.

232. NVIDIA. https://www.nvidia.com/en-us/self-driving-cars/simulation/. [Online] February 2022.

233. Learning to Drive from Simulation without Real World Labels. Bewley, Alex, et al. Montreal,

Canada : IEEE International Conference on Robotics and Automation, 2019.

234. Enhancing Photorealism Enhancement. Richter, Stephan, AlHaija, Hassan Abu and Koltun,

Vladlen. Vienna, Austria : Eurographics, 2021.

235. Learning from Simulated and Unsupervised Images through Adversarial Training. Shrivastava,

Ashish, et al. Honolulu, USA : IEEE Conference on Computer Vision and Pattern Recognition, 2016.

236. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. Zhu, Jun-

Yan, et al. Venedig, Italy : International Conference on Computer Vision, 2017.

237. Unpaired Image-to-Image Translation using Adversarial Consistency Loss. Zhao, Yihao, Wu,

Ruihai and Dong, Hao. Glasgow, United Kingdom : European Conference on Computer Vision, 2020.

Bibliography

Federal Office for Information Security 185

238. Image Super-Resolution via Iterative Refinement. Saharia, Chitwan, et al. Ithaca, USA : arXiv,

2021, Vol. abs/2104.07636.

239. Palette: Image-to-Image Diffusion Models. Saharia, Chitwan, et al. Ithaca, USA : arXiv, 2021, Vol.

abs/2111.05826.

240. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. Sohl-Dickstein, Jascha, et

al. Lille, France : International Conference on Machine Learning, 2015.

241. Automotive Safety and Machine Learning: Initial Results from a Study on How to Adapt the ISO

26262 Safety Standard. Henriksson, Jens, Borg, Markus and Englund, Cristofer. s.l. : ACM/IEEE 1st

International Workshop on Software Engineering for AI in Autonomous Systems, 2018.

242. ISO/PAS 21448. Road vehicles - Safety of the intended funtionality. Geneva, Switzerland :

International Organization for Standardization (ISO), 2019.

243. Aptiv, et al. Safety First for Automated Driving. [Online] 2019.

https://www.press.bmwgroup.com/global/article/attachment/T0298103EN/434404.

244. Organization of Machine Learning based Product Development as per ISO 26262 and ISO/PAS

21448. Radlak, Krystian, et al. s.l. : 25th {IEEE} Pacific Rim International Symposium on Dependable

Computing PRCD, 2020.

245. ISO. ISO/FDIS 21448. [Online] 2022. https://www.iso.org/standard/77490.html.

246. ISO 26262-4:2018 - Road vehicles - Functional safety. Product development at the system level.

Geneva, Switzerland : International Organization for Standardization (ISO), 2018.

247. ISO 26262-6:2018 - Road vehicles - Functional safety. Product development at the software level.

Geneva, Switzerland : International Organization for Standardization (ISO), 2018.

248. ANSI/UL 4600. Standard for Safety for the Evaluation of Autonomous Products. Washington,

D.C. : American National Standards Institute (ANSI), Underwriters Laboratories (UL), 2022. 2.

249. ISO/SAE 21434:2021. Road vehicles - Cybersecurity engineering. Geneva, Switzerland :

International Organization for Standardization (ISO), SAE, 2021. 1.

250. UNECE R 155. Uniform provisions concerning the approval of vehicles with regards to cyber

security and cyber security management system. Geneva, Switzerland : United Nations Economic

Commission for Europe (UNECE), 2021.

251. Kaur, Prabhjot, et al. A Survey on Simulators for Testing Self-Driving Cars. CoRR. 2021,

abs/2101.05337.

252. ISO 17387. Intelligent Transport Systems Lane Change Decision Aid Systems (LCDAS)

Performance Requirements and Test Procedures. Geneva, Switzerland : International Organization

for Standardization (ISO), 2008.

253. ISO 19377. Heavy commercial vehicles and buses Emergency braking on a defined path Test

method for trajectory measurement. Geneva, Switzerland : International Organization for

Standardization (ISO), 2017.

254. ISO 19237. Intelligent transport systems Pedestrian detection and collision mitigation systems

(PDCMS) Performance requirements and test procedures. Geneva, Switzerland : International

Organization for Standardization (ISO), 2017.

255. ISO 22078. Intelligent Transport Systems Bicyclist Detection And Collision Mitigation Systems

(BDCMS) Performance requirements and test procedures. Geneva, Switzerland : International

Organization for Standardization (ISO), 2020.

256. ISO 3888-2. Passenger Cars Test Track For A Severe Lane-Change manoeuvre Part 2: Obstacle

Avoidance. Geneva, Switzerland : International Organization for Standardization (ISO), 2011.

Bibliography

186 Federal Office for Information Security

257. ISO 22735. Road vehicles Test method to evaluate the performance of lane-keeping assistance

systems. Geneva, Switzerland : International Organization for Standardization (ISO), 2021.

258. ISO 11270. Intelligent transport systems Lane keeping assistance systems (LKAS)

Performance requirements and test procedures. Geneva, Switzerland : International Organization for

Standardization (ISO), 2014.

259. ISO/SAE PAS 22736. Taxonomy and definitions for terms related to driving automation systems

for on-road motor vehicles. Geneva, Switzerland : International Organization for Standardization

(ISO), 2021.

260. ISO 19638. Intelligent Transport Systems Road Boundary Departure Prevention Systems

(RBDPS) Performance Requirements And Test Procedures. Geneva, Switzerland : International

Organization for Standardization (ISO), 2018.

261. ISO 21717. Intelligent Transport Systems Partially Automated In-Lane Driving Systems (PADS)

 Performance Requirements And Test Procedures. Geneva, Switzerland : International Organization

for Standardization (ISO), 2018.

262. ISO 21202. Intelligent Transport Systems Partially Automated Lane Change Systems (PALS)

Functional / Operational Requirements And Test Procedures. Geneva, Switzerland : International

Organization for Standardization (ISO), 2020.

263. ISO 15622. Intelligent Transport Systems Adaptive Cruise Control Systems Performance

Requirements And Test Procedures. Geneva, Switzerland : International Organization for

Standardization (ISO), 2018.

264. ISO 20035. Intelligent Transport Systems Cooperative Adaptive Cruise Control Systems (CACC)

 Performance Requirements And Test Procedures. Geneva, Switzerland : International Organization

for Standardization (ISO), 2019.

265. ISO 15622. Transport Information And Control Systems Adaptive Cruise Control Systems

Performance Requirements And Test Procedures. Geneva, Switzerland : International Organization

for Standardization (ISO), 2002.

266. ISO/TR 22086-1. Intelligent Transport Systems (ITS) Network Based Precise Positioning

Infrastructure For Land Transportation Part 1: General Information And Use Case Definitions.

Geneva, Switzerland : International Organization for Standardization (ISO), 2019.

267. ISO/TS 21176. Cooperative Intelligent Transport Systems (C-ITS) Position, Velocity And Time

Functionality In The Its Station. Geneva, Switzerland : International Organization for Standardization

(ISO), 2020.

268. ISO/TR 16786. Intelligent transport systems The use of simulation models for evaluation of

traffic management systems input parameters and reporting template for simulation of traffic

signal control systems. Geneva, Switzerland : International Organization for Standardization (ISO),

2015.

269. ISO 22741. Intelligent transport systems Roadside modules AP-DATEX data interface. Geneva,

Switzerland : International Organization for Standardization (ISO), 2022.

270. ISO/AWI TS 5283. Road Vehicles Ergonomic aspects of driver monitoring and system

interventions in the context of automated driving. Geneva, Switzerland : International Organization

for Standardization (ISO), Under development.

271. ISO 19206-3. Road Vehicles Test devices for target vehicles, vulnerable road users and other

objects, for assessment of active safety functions Part 3: Requirements for passenger vehicle 3D

targets. Geneva, Switzerland : International Organization for Standardization (ISO), 2021.

Bibliography

Federal Office for Information Security 187

272. ISO/TS 18506. Procedure to construct injury risk curves for the evaluation of road user

protection in crash tests. Geneva, Switzerland : International Organization for Standardization (ISO),

2014.

273. SAE J2400_200308. Human Factors in Forward Collision Warning Systems: Operating

Characteristics and User Interface Requirements. Warrendale, USA : SAE, 2003.

274. SAE J3029_201510. Forward Collision Warning and Mitigation Vehicle Test Procedure - Truck

and Bus. Warrendale, USA : SAE, 2015.

275. SAE J3048_201602. Driver-Vehicle Interface Considerations for Lane Keeping Assistance Systems.

Warrendale, USA : SAE, 2016.

276. SAE J2808_201701. Lane Departure Warning Systems: Information for the Human Interface.

Warrendale, USA : SAE, 2017.

277. SAE J3240. Passenger Vehicle Lane Departure Warning and Lane Keeping Assistance Systems Test

Procedure. Warrendale, USA : SAE, Under development.

278. SAE: J2399_202110. Adaptive Cruise Control (ACC) Operating Characteristics and User Interface.

Warrendale, USA : SAE, 2021.

279. SAE J2365. Calculation and Measurement of the Time to Complete In-Vehicle Navigation and

Route Guidance Tasks. Warrendale, USA : SAE, Under development.

280. SAE J2678_201609. Navigation and Route Guidance Function Accessibility While Driving

Rationale. Warrendale, USA : SAE, 2016.

281. SAE J3114_201612. Human Factors Definitions for Automated Driving and Related Research

Topics. Warrendale, USA : SAE, 2016.

282. SAE J2396_201705. Definitions and Experimental Measures Related to the Specification of Driver

Visual Behavior Using Video Based Techniques. Warrendale, USA : SAE, 2017.

283. SAE J2944_201506. Operational Definitions of Driving Performance Measures and Statistics.

Warrendale, USA : SAE, 2015.

284. SAE J2945/A. Standard for Lane-Level and Road Furniture Mapping for Infrastructure-based V2X

Applications. Warrendale, USA : SAE, Under development.

285. SAE J2945/9. Vulnerable Road User Safety Message Minimum Performance Requirements.

Warrendale, USA : SAE, Under development.

286. SAE J3134_201905. Automated Driving System (ADS) Marker Lamp. Warrendale, USA : SAE, 2019.

287. UNECE R 79. Steering Equipment. Geneva, Switzerland : United Nations Economic Commission

for Europe (UNECE), 2008.

288. UNECE R 157. UN Automated Lane Keeping Systems (ALKS). Geneva, Switzerland : United

Nations Economic Commission for Europe (UNECE), 2021.

289. UNECE GTR 9. Pedestrian Safety. Geneva, Switzerland : United Nations Economic Commission

for Europe (UNECE), 2008.

290. Bielik, Pavol, et al. Reliability Assessment of Traffic Sign Classifiers. Bonn, Germany : Federal

Office for Information Security, 2020.

291. Indaheng, Francis, et al. A Scenario-Based Platform for Testing Autonomous Vehicle Behavior

Prediction Models. CoRR. 2021, abs/2110.14870.

292. Deep Residual Learning for Image Recognition. He, Kaiming, et al. Boston, USA : IEEE Conference

on Computer Vision and Pattern Recognition, 2015.

Bibliography

188 Federal Office for Information Security

293. ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky, Alex, Sutskever,

Ilya und Hinton, Geoffrey. Lake Tahoe, USA : Conference on Neural Information Processing Systems,

2012.

294. Martin, Robert Cecil. Clean Code: A Handbook of Agile Software Craftsmanship. New Jersey,

USA : Prentice Hall, 2008.

295. Woitschek, Fabian. AIMobilityAuditPrep Documentation. Sphinx Documentation of the Toolbox.

2022.

	1 Introduction
	2 State-of-the-Art Report (AP2)
	2.1 AI Lifecycle
	2.2 Challenges of AI Systems
	2.2.1 IT Security
	2.2.1.1 Model Extraction Attacks
	2.2.1.2 Evasion Attacks
	2.2.1.2.1 Categorization
	2.2.1.2.2 Gradient-based Adversarial Attacks
	2.2.1.2.3 Optimization-based Adversarial Attacks
	2.2.1.2.4 Generative-based Adversarial Attacks
	2.2.1.2.5 Physical Adversarial Attacks
	2.2.1.2.6 Attacks on Mobility Use Cases
	2.2.1.2.6.1 Image Data
	2.2.1.2.6.2 Point Cloud Data

	2.2.1.3 Data Poisoning
	2.2.1.3.1 Categorization
	2.2.1.3.2 Backdoor Attacks
	2.2.1.3.3 Targeted Attacks
	2.2.1.3.4 Availability Attacks

	2.2.2 Robustness
	2.2.2.1 Natural Perturbations
	2.2.2.2 Adversarial Perturbations

	2.2.3 Explainability
	2.2.4 Documentation
	2.2.5 Safety
	2.2.6 Certification and Verification
	2.2.7 Standardization

	2.3 Mitigation Strategies
	2.3.1 IT-Security
	2.3.1.1 Model Extraction Attacks
	2.3.1.1.1 Differential Privacy
	2.3.1.1.2 Homomorphic Encryption
	2.3.1.1.3 Trusted Execution Environment

	2.3.1.2 Evasion Attacks
	2.3.1.2.1 Categorization
	2.3.1.2.2 Adversarial Training
	2.3.1.2.3 Defensive Distillation
	2.3.1.2.4 Model Ensemble
	2.3.1.2.5 Detection of Adversarial Attacks
	2.3.1.2.6 Input Transformation

	2.3.1.3 Data Poisoning
	2.3.1.3.1 Categorization
	2.3.1.3.2 Filter/Detection
	2.3.1.3.3 Robust Training
	2.3.1.3.4 Model Repair

	2.3.2 Robustness
	2.3.2.1 Natural Perturbations
	2.3.2.2 Confidence Estimation

	2.3.3 Explainability
	2.3.3.1 Categorization
	2.3.3.2 Local Methods
	2.3.3.2.1 Saliency
	2.3.3.2.2 Approximation
	2.3.3.2.3 Counterfactual Example

	2.3.3.3 Global Methods
	2.3.3.3.1 Model Translation
	2.3.3.3.2 Rule Extraction
	2.3.3.3.3 Explainable Training

	2.3.4 Documentation
	2.3.4.1 Proposals for Unification
	2.3.4.2 Software Tools

	2.3.5 Safety
	2.3.6 Certification and Verification
	2.3.6.1 Complete Verification
	2.3.6.2 Incomplete Verification
	2.3.6.3 Hybrid Approaches

	2.4 Mobility Use Cases
	2.4.1 Modular Components
	2.4.1.1 Perception / Localization
	2.4.1.1.1 Object Detection
	2.4.1.1.2 Segmentation
	2.4.1.1.3 Optical Flow
	2.4.1.1.4 Depth Estimation
	2.4.1.1.5 Localization

	2.4.1.2 Behavior Prediction
	2.4.1.3 Path Planning
	2.4.1.4 Control

	2.4.2 End-to-End System

	2.5 Entire Mobility Systems
	2.5.1 System Overview
	2.5.2 AI Integration

	2.6 Mobility Datasets & Simulation
	2.6.1 Datasets
	2.6.2 Simulators
	2.6.3 Image Quality Enhancements

	2.7 Standardization Activities AI & AD
	2.7.1 Existing Standardization
	2.7.2 Standardization in Progress

	3 Generic Requirements (AP3)
	3.1 Requirements Elicitation
	3.1.1 Security Standards
	3.1.1.1 ISO/SAE 21434
	3.1.1.2 UNECE R 155

	3.1.2 Safety Standards
	3.1.2.1 ANSI/UL 4600
	3.1.2.2 ISO 26262

	3.1.3 ASIL-derived Requirements
	3.1.3.1 System Level
	3.1.3.2 Software Integration
	3.1.3.3 Software Unit
	3.1.3.4 Monitoring

	3.1.4 Additional Requirements

	3.2 Entire System
	3.2.1 General
	3.2.1.1 ASIL-derived Requirements
	3.2.1.1.1 Environment Compliance
	3.2.1.1.2 Component Interaction

	3.2.1.2 Additional Requirements
	3.2.1.2.1 Sensor Setup Compliance
	3.2.1.2.2 General Validity

	3.2.2 Performance
	3.2.2.1 ASIL-derived Requirements
	3.2.2.1.1 Performance Guarantee

	3.2.2.2 Additional Requirements
	3.2.2.2.1 Performance KPIs

	3.2.3 Robustness
	3.2.3.1 ASIL-derived Requirements
	3.2.3.1.1 Performance on Worst-Case Error
	3.2.3.1.2 Performance Reproducibility

	3.2.4 Monitoring
	3.2.4.1 ASIL-derived Requirements
	3.2.4.1.1 Operation Monitoring
	3.2.4.1.2 Error Correction

	3.2.4.2 Additional Requirements
	3.2.4.2.1 Reproducibility

	3.2.5 Documentation & Lifecycle
	3.2.5.1 ASIL-derived Requirements
	3.2.5.1.1 Architectural Documentation
	3.2.5.1.2 Developer Eligibility

	3.2.5.2 Additional Requirements
	3.2.5.2.1 Development Documentation

	3.2.6 Summary of Requirements

	3.3 AI Subsystem
	3.3.1 Performance
	3.3.2 Robustness
	3.3.2.1 ASIL-derived Requirements
	3.3.2.1.1 Robustness Improvement
	3.3.2.1.2 Software Verification and Testing
	3.3.2.1.3 Deriving Test Cases for Software Unit Testing

	3.3.2.2 Additional Requirements
	3.3.2.2.1 Fault injection test
	3.3.2.2.2 Data Validation

	3.3.3 Interpretability
	3.3.3.1 ASIL-derived Requirements
	3.3.3.1.1 Deriving Test Cases for Explanations
	3.3.3.1.2 Comparing Requirements and Model Decisions

	3.3.3.2 Additional Requirements
	3.3.3.2.1 Decision Explanations
	3.3.3.2.2 Interpretable Model Architecture

	3.3.4 Documentation & Lifecycle
	3.3.4.1 ASIL-derived Requirements
	3.3.4.1.1 Software Unit Documentation

	3.3.4.2 Additional Requirements
	3.3.4.2.1 Traceability

	3.3.5 Monitoring
	3.3.5.1 ASIL-derived Requirements
	3.3.5.1.1 Error Detection
	3.3.5.1.2 Error Handling

	3.3.6 Summary of Requirements

	3.4 Applicability of Requirements
	3.5 Testability of Requirements

	4 Use Case Comparison for Audit Criteria Development (AP4)
	4.1 Category Overview
	4.1.1 Required Categories from Description of Services
	4.1.1.1 Safety Relevance
	4.1.1.2 Input Data
	4.1.1.3 Modular Components
	4.1.1.4 AI Usage
	4.1.1.5 Auditability

	4.1.2 Additional Categories from AP2 & AP3
	4.1.2.1 Complexity
	4.1.2.2 Widespread Distribution
	4.1.2.3 Attack Applicability
	4.1.2.4 Perception Components

	4.2 Use Case Overview
	4.2.1 Generic Use Cases
	4.2.1.1 Emergency Braking (1)
	4.2.1.2 Collision Avoidance (2)
	4.2.1.3 Lane Keeping (3)
	4.2.1.4 Lane Changing (4)
	4.2.1.5 Adaptive Cruise Control (5)
	4.2.1.6 Rain/Grip Level (6)
	4.2.1.7 Virtual Sensor Replacements (7)
	4.2.1.8 Driver/Passenger Interaction (8)
	4.2.1.9 Global Navigation/Path Planning (9)
	4.2.1.10 Automated Parking (10)

	4.2.2 ADAS specific Use Cases
	4.2.2.1 Blind Spot Monitoring (11)
	4.2.2.2 Traffic Sign Assistant (12)
	4.2.2.3 Wrong-Way Warning (13)
	4.2.2.4 Driver Monitoring (14)

	4.2.3 AD specific Use Cases
	4.2.3.1 A Priori Map-based Localization (15)
	4.2.3.2 Road Users Detection (16)
	4.2.3.3 Road Elements Detection (17)
	4.2.3.4 Free Space Detection (18)
	4.2.3.5 Behavior Prediction (19)
	4.2.3.6 Local Path Planning (20)

	4.3 Use Case Analysis
	4.3.1 Single Use Cases
	4.3.1.1 Additional Categories
	4.3.1.1.1 Representativity
	4.3.1.1.2 Generalizability
	4.3.1.1.3 Resources
	4.3.1.1.4 Standards/Tools
	4.3.1.1.4.1 ISO
	4.3.1.1.4.2 SAE
	4.3.1.1.4.3 UNECE
	4.3.1.1.4.4 BSI

	4.3.1.2 Analysis

	4.3.2 Combination of Use Cases
	4.3.2.1 Combination of AD Use Cases
	4.3.2.2 Combination of Generic Use Cases

	4.4 Use Case Recommendations
	4.4.1 Use Case Recommendation AP5
	4.4.2 Use Case Recommendation AP7
	4.4.2.1 Main Use Cases
	4.4.2.2 Alternative Use Cases

	5 Planning and exemplary Creation of Toolbox (AP5)
	5.1 Implementation Concepts
	5.1.1 Toolchain
	5.1.1.1 Generic
	5.1.1.2 Project-Specific

	5.1.2 Toolbox
	5.1.2.1 Overview
	5.1.2.2 Individual Components
	5.1.2.2.1 Model/System
	5.1.2.2.2 Data
	5.1.2.2.2.1 Offline Data Loader
	5.1.2.2.2.2 Simulation Data Generator
	5.1.2.2.2.3 Sensor Data Generator

	5.1.2.2.3 Test Settings
	5.1.2.2.4 Report Metrics

	5.1.3 Strategies for Comparison of Simulation and Reality

	5.2 Exemplary Toolchain Implementation
	5.2.1 Dataset
	5.2.2 DNN Models
	5.2.3 Toolchain
	5.2.3.1 DNN-related Tools
	5.2.3.2 Simulation-related Tools
	5.2.3.3 Quality-related Tools

	5.3 Implementation of Safety/Security Requirements
	5.3.1 Selection of Requirements
	5.3.1.1 Generic requirements for the Entire System
	5.3.1.2 Generic requirements for the AI Subsystem

	5.3.2 Implementation of Requirements
	5.3.2.1 Requirement 4
	5.3.2.2 Requirement 6
	5.3.2.3 Requirement 7
	5.3.2.4 Requirement 12
	5.3.2.5 Requirement 14
	5.3.2.6 Requirement 18
	5.3.2.7 Requirement 19
	5.3.2.8 Requirement 20
	5.3.2.9 Requirement 28
	5.3.2.10 Requirement 30
	5.3.2.11 Requirement 32
	5.3.2.12 Requirement 33
	5.3.2.13 Requirement 40

	5.3.3 Summary of Requirements

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	List of Figures
	List of Tables
	Acronyms
	Bibliography

