Supplementary Information for

Activation of the Crtc2/Crebl transcriptional network in

skeletal muscle enhances weight loss during intermittent fasting

Nelson E. Bruno'*, Jerome C. Nwachukwu!, Sathish Srinivasan!, Richard HawKkins,
David Sturgill’, Gordon L. Hager’, Stephen Hurst*, Shey-Shing Sheu*, Michael D.

Conkright®, Kendall W. Nettles!'*

Correspondence: Nelson E  Bruno, nbruno@scripps.edu; Kendall Nettles,

knettles@scripps.edu



SUPPLEMENTARY FIGURES

—-— WT
—— Crtc2
110

Weight (% A)
)
(8,
]

Days on dox

T T T T T T 1
0 5101520253035

Weight (% A)

-15

Weight (% A)

-10

Crtc2 x time, p=3x 107

— WT
—— Crtc2

T T T 1

0 2 4 6 8

Cycles of ADF

0 Crtc2,p=8.3x10%

—-— WT
—— Crtc2

0 5 10 15

Cycles of ADF

Ambulation

Ambulation

2500+
2000
1500
1000

500+

—WT
— Crtc2

10001

Time (12 hr light/dark)

EWT B Cric2
ad libitum

fasted re-fed

Time (12 hr light/dark)

Fig. S1. Effects of skeletal muscle overexpression of Crtc2 on the response to ADF.
(A) Weight gain after treatment of 18-week old WT and Crtc2 transgenic mice (n=8) with

doxycycline.

(B) Changes in body weight during ADF.
(C) Average ambulatory activity during ad libitum feeding, fasting and re-feeding, n = 8
mice per group. 12-hr averages of the data. There were no significant effects of Crtc2.
A—C) Data shown as mean = SEM.
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Fig. S2. Transcriptional control of fasting and weight loss and its regulation by Crtc2.

(A) Mice TA muscles were transduced with GFP control or Crtc2 expression vector. Crtc2
mRNA levels in the TA of mice fed ad libitum (Fed), or subject to ADF (Fast) were
compared by qPCR. N =3 mice per group.

(B) Venn diagram showing the numbers of DEGs identified by mRNA-seq comparing the
effects of ADF in control versus Crtc2-transduced TA muscles.

(C) Biological processes and functions regulated by ADF and Crtc2. Gene ontology (GO)
analysis suggests that ADF regulates several processes/ functions in a Crtc2-sensitive
manner. The numbers of DEGs involved in each process are shown. See SI Appendix,
Dataset S1 for a complete list of represented GO annotations.

(D) Examples of ADF-regulated transcriptional programs and mRNAs in control TA
muscles.

(E-G) Gene expression profiles in control and Crtc2-transduced TA muscles of mice
subjected to ADF relative to the ad libitum fed mice (columns 1-2), and effect of Crtc2
transduction relative to control during ADF (column 3). Expression profiles of genes
that encode E) nuclear receptors, F) other transcription factors, and G) transcriptional
coregulators. ADF-regulated genes in control muscle appear in bold. *Crtc2-regulated
genes in mice subjected to ADF. *ADF-regulated genes in Crtc2-transduced muscle
but not control. FC, fold change. Also see SI Appendix, Dataset S1
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Fig. S3. Electron transport chain gene expression and whole-body energetics.
(A) Expression profiles of genes that encode the electron transport chain. The mRNA levels

in control and Crtc2-transduced TA muscles of mice subjected to ADF relative to the
ad libitum fed mice (columns 1-2), and effect of Crtc2 transduction relative to control
during ADF (column 3) are shown. ADF-regulated genes in control muscle appear in
bold. *Crtc2-regulated genes in mice subjected to ADF. *ADF-regulated genes in
Crtc2-transduced muscle but not control. FC, fold change

(B) VO (and VCO;) were measured continuously for 72 hrs. in a CLAMS animal

monitoring system. N = 8 per group

(C) Total energy expenditure (EE) for WT and Crtc2 mice was calculated from VO, and

VCO:s,. The data was adjusted by repeated measures ANCOVA in with lean mass (LM)
and fat mass (FM) as covariants at the following values: LM = 17.01 g; and FM = 1.62
g. Dot plot graphs shows adjusted means derived from repeated measure general linear
model ANCOVA, using 5 consecutive 12-hr time intervals: PM-ad libitum; AM-ad
libitum; PM-Fast; AM-Fast; and Re-feed EE as dependent variables, and LM and FM
as covariates. The lack of intersection of the planes graphically demonstrates lack of
covariation.

(D) The respiratory quotient was determined during the CLAMS experiment described in

panel B.

(E) 12-hr light/dark averages of the data from panel D. Data are mean +SEM.
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Fig. S4. Analysis of succinate dehydrogenase in skeletal muscle fibers.

(A) ADF upregulated a panoply of genes involved in the transport, oxidation, and
esterification of fatty acids. Key among these are: Ppard and Ppara, the chief regulators
of fat metabolism in muscle; Cd36 that regulates plasma membrane fatty acid transport
and utilization to spare glucose; Ucp3, which is implicated in b-oxidation as well as
protection from triglyceride accumulation in muscle (1); Pdk2 and Pdk4, which promote
fatty acid oxidation over glycolysis (2); and multiple enzymes involved in Acyl-CoA
metabolism. Acox! is a peroxisomal Acyl-CoA oxidase, while Acadl0, Acadl, Acadm
are members of the acyl-coenzyme A dehydrogenase family that are critical for effective
beta-oxidation in the mitochondria. Acs/l, Acotl, Acot2, and Acot4 regulate the
generation and hydrolysis of Acyl-CoA. Differential expression of Dgat2, Daglb, Plin5
and other genes that regulate lipid storage and accumulation highlights their importance
in lipid homeostasis during fasting. Notably, the lipoprotein lipase (Lp/) gene, which
controls a rate limiting step in lipoprotein metabolism, was upregulated by ADF more
robustly in Crtc2-transduced legs than in control legs, suggesting an improved post
prandial metabolism of triglyceride-rich lipid particles. Sirt4, a mitochondrial sirtuin
that regulates the rate of fatty acid oxidation in muscle, was also substantially suppressed
during fasting but significantly less so in the Crtc2-overexpressing legs which may favor
the higher lipid accumulation that we previously described in muscle overexpressing
Crtc2 (3).

(B—C) Histological analysis of succinate dehydrogenase in myofibers from gastrocnemius
muscle sections of WT and Crtc2 mice after Dox treatment. Boxes highlight areas of
lighter and darker staining B) Scale bar = 2 mm. C) Scale bar = 100 pm. Close up from
boxed areas in B)
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Fig. S5. Glucose tolerance test and plasma feeding hormones in Crtc2 mice fed ad

libitum.

(A) Expression profiles of genes that regulate carbohydrate metabolism in mice described
in Figure 2. These included genes involved in glycogen metabolic processes, including
synthesis (Gys1, Fbp2, Ugp2, Epm2a, and Ppp1ch), branching (Gbel), and breakdown
(Gaa, Agl, Gsk3b) of glycogen, as well as insulin signaling genes, Irs2, Sorbsl, and
Insr. Genes necessary for glycolysis and fructose metabolism were suppressed by
ADF, including Pfkfb1, Pfkfb2, and Fuk. Ogt, an important inducer of insulin resistance
in skeletal muscle via the inhibition of AKT phosphorylation was also downregulated.

(B) Insulin and glucose tolerance tests (ITT and GTT) on WT (solid line) and Crtc2 (dashed
line) mice pre-doxycycline treatment

(C-D) GTT on WT and Crtc2 transgenic animals treated with dox for 1 week. Mice were
fasted for 16 hrs. before i.p. injection of 20% glucose. n =10 mice per group.

(D) Area under the curve (AUC) above baseline glucose for each experimental group. Data
are shown as mean + SEM.

(E-F) Analysis of plasma proteins regulating feeding and triglycerides and cholesterol in
Crtc2 expressing and WT mice.

(G) Reactome.org analysis of enriched pathways from a list of 171 putative secreted
proteins that were differentially expressed in Crtc2 or WT mice after ADF as described
in Figure 2.



References SI

1.

C. Aguer et al., Muscle uncoupling protein 3 overexpression mimics endurance
training and reduces circulating biomarkers of incomplete beta-oxidation. FASEB
J27,4213-4225 (2013).

S. Zhang, M. W. Hulver, R. P. McMillan, M. A. Cline, E. R. Gilbert, The pivotal
role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab
(Lond) 11, 10 (2014).

N. E. Bruno ef al., Creb coactivators direct anabolic responses and enhance
performance of skeletal muscle. The EMBO journal 33, 1027-1043 (2014).



